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Abstract. Let P be a d-dimensional lattice polytope. We show
that there exists a natural number cd, only depending on d, such that
the multiples cP have a unimodular cover for every natural number
c ≥ cd. Actually, an explicit upper bound for cd is provided, together
with an analogous result for unimodular covers of rational cones.
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1. Statement of results

All polytopes and cones considered in this paper are assumed to be convex. A
polytope P ⊂ Rd is called a lattice polytope, or integral polytope, if its vertices
belong to the standard lattice Zd. For a (not necessarily integral) polytope
P ⊂ Rd and a real number c ≥ 0 we let cP denote the image of P under
the dilatation with factor c and center at the origin O ∈ Rd. A polytope of
dimension e is called an e-polytope.
A simplex ∆ is a polytope whose vertices v0, . . . , ve are affinely independent
(so that e = dim ∆). The multiplicity µ(∆) of a lattice simplex is the index of
the subgroup U generated by the vectors v1 − v0, . . . , ve − v0 in the smallest
direct summand of Zd containing U , or, in other words, the order of the torsion
subgroup of Zd/U . A simplex of multiplicity 1 is called unimodular. If ∆ ⊂ Rd
has the full dimension d, then µ(∆) = d! vol(∆), where vol is the Euclidean
volume. The union of all unimodular d-simplices inside a d-polytope P is
denoted by UC(P ).
In this paper we investigate for which multiples cP of a lattice d-polytope one

can guarantee that cP = UC(cP ). To this end we let cpol
d denote the infimum

of the natural numbers c such that c′P = UC(c′P ) for all lattice d-polytopes

1The second author was supported by the Deutsche Forschungsgemeinschaft.
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P and all natural numbers c′ ≥ c. A priori, it is not excluded that cpol
d = ∞

and, to the best of our knowledge, it has not been known up till now whether

cpol
d is finite except for the cases d = 1, 2, 3: cpol

1 = cpol
2 = 1 and cpol

3 = 2, where
the first equation is trivial, the second is a crucial step in the derivation of
Pick’s theorem, and a proof of the third can be found in Kantor and Sarkaria
[KS]. Previous results in this direction were obtained by Lagarias and Ziegler
(Berkeley 1997, unpublished).
The main result of this paper is the following upper bound, positively answering
Problem 4 in [BGT2]:

Theorem 1.1. For all natural numbers d > 1 one has

cpol
d ≤ O

(
d5
)(3

2

)⌈√d−1
⌉

(d−1)

.

Theorem 1.1 is proved by passage to cones, for which we establish a similar
result on covers by unimodular subcones (Theorem 1.3 below). This result,
while interesting of its own, implies Theorem 1.1 and has the advantage of
being amenable to a proof by induction on d.
We now explain some notation and terminology. The convex hull of a set
X ⊂ Rd is denoted by conv(X), and Aff(X) is its affine hull. Moreover,
R+ = {x ∈ R : x ≥ 0} and Z+ = Z ∩ R+.
A lattice simplex is called empty if its vertices are the only lattice points in
it. Every unimodular simplex is empty, but the opposite implication is false in
dimensions ≥ 3. (In dimension 2 empty simplices are unimodular.)
A cone (without further predicates) is a subset of Rd that is closed under linear
combinations with coefficients in R+. All cones considered in this paper are
assumed to be polyhedral, rational and pointed (i. e. not to contain an affine
line); in particular they are generated by finitely many rational vectors. For
such a cone C the semigroup C ∩ Zd has a unique finite minimal set of gener-
ators, called the Hilbert basis and denoted by Hilb(C). The extreme (integral)
generators of a rational cone C ⊂ Rd are, by definition, the generators of the
semigroups l ∩ Zd ≈ Z+ where l runs through the edges of C. The extreme
integral generators of C are members of Hilb(C). We define ∆C to be the
convex hull of O and the extreme integral generators of C.
A cone C is simplicial if it has a linearly independent system of generators.
Thus C is simplicial if and only if ∆C is a simplex. We say that C is empty
simplicial if ∆C is an empty simplex. The multiplicity of a simplicial cone is
µ(∆C). If ∆ is a lattice simplex with vertex O, then the multiplicity of the
cone R+∆ divides µ(∆). This follows easily from the fact that each non-zero
vertex of ∆ is an integral multiple of an extreme integral generator of R+∆.
A unimodular cone C ⊂ Rd is a rational simplicial cone for which ∆C is a
unimodular simplex. Equivalently we could require that C is simplicial and its
extreme integral generators generate a direct summand of Zd. A unimodular
cover of an arbitrary rational cone C is a finite system of unimodular cones
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whose union is C. A unimodular triangulation of a cone is defined in the usual
way – it is a unimodular cover whose member cones coincide along faces.
In addition to the cones C with apex in the origin O, as just introduced, we
will sometimes have to deal with sets of the form v+C where v ∈ Rd. We call
v + C a cone with apex v.
We define ccone

d to be the infimum of all natural numbers c such that every

rational d-dimensional cone C ⊂ Rd admits a unimodular cover C =
⋃k
j=1 Cj

for which
Hilb(Cj) ⊂ c∆C j ∈ [1, k].

Remark 1.2. We will often use that a cone C can be triangulated into empty
simplicial cones C ′ such that ∆C′ ⊂ ∆C . In fact, one first triangulates C into
simplicial cones generated by extreme generators of C. After this step one can
assume that C is simplicial with extreme generators v1, . . . , vd. If ∆C is not
empty, then we use stellar subdivision along a ray through some v ∈ ∆C ∩ Zd,
v 6= 0, v1, . . . , vd, and for each of the resulting cones C ′ the simplex ∆C′ has a
smaller number of integral vectors than ∆C . In proving a bound on ccone

d it is
therefore enough to consider empty simplicial cones.
Similarly one triangulates every lattice polytope into empty simplices.

Results on ccone
d seem to be known only in dimensions ≤ 3. Since the empty

simplicial cones in dimension 2 are exactly the unimodular 2-cones (by a well
known description of Hilbert bases in dimension 2, see Remark 4.2) we have
ccone
2 = 1. Moreover, it follows from a theorem of Sebő [S1] that ccone

3 = 2.
In fact Sebő has shown that a 3-dimensional cone C can be triangulated into
unimodular cones generated by elements of Hilb(C) and that Hilb(C) ⊂ (d −
1)∆C in all dimensions d (see Remark 1.4(f)).
We can now formulate the main result for unimodular covers of rational cones:

Theorem 1.3. For all d ≥ 2 one has

ccone
d ≤

⌈√
d− 1

⌉
(d− 1)

d(d+ 1)

2

(
3

2

)⌈√d−1
⌉

(d−1)−2

.

Remark 1.4. (a) We have proved in [BGT1, Theorem 1.3.1] that there is a
natural number cP for a lattice polytope P ⊂ Rd such that cP = UC(cP )
whenever c ≥ cP , c ∈ N. However, neither did the proof in [BGT1] provide an
explicit bound for cP , nor was it clear that the numbers cP can be uniformly
bounded with respect to all d-dimensional polytopes. The proof we present
below is an essential extension of that of [BGT1, Theorem 1.3.1].
(b) It has been proved in [KKMS, Theorem 4, Ch. III] that for every lattice
polytope P there exists a natural number c such that cP admits even a regular
triangulation into unimodular simplices. This implies that c′cP also admits
such a triangulation for c′ ∈ N. However, the question whether there exists a
natural number ctriang

P such that the multiples c′P admit unimodular triangula-

tions for all c′ ≥ ctriang
P remains open. In particular, the existence of a uniform

bound ctriang
d (independent of P ) remains open.
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(c) The main difficulty in deriving better estimates for cpol
d lies in the funda-

mental open problem of an effective description of the empty lattice d-simplices;
see Haase and Ziegler [HZ] and Sebő [S2] and the references therein.
(d) A chance for improving the upper bound in Theorem 1.1 to, say, a poly-
nomial function in d would be provided by an algorithm for resolving toric
singularities which is faster then the standard one used in the proof of Theo-
rem 4.1 below. Only there exponential terms enter our arguments.
(e) A lattice polytope P ⊂ Rd which is covered by unimodular simplices is
normal, i. e. the additive subsemigroup

SP =
∑

x∈P∩Zd
Z+(x, 1) ⊂ Zd+1

is normal and, moreover, gp(SP ) = Zd+1. (The normality of SP is equivalent
to the normality of the K-algebra K[SP ] for a field K.) However, there are
normal lattice polytopes in dimension ≥ 5 which are not unimodularly covered
[BG]. On the other hand, if dimP = d then cP is normal for arbitrary c ≥ d−1
[BGT1, Theorem 1.3.3(a)] (and gp(ScP ) = Zd+1, as is easily seen). The exam-
ple found in [BG] is far from being of type cP with c > 1 and, correspondingly,

we raise the following question: is cpol
d = d− 1 for all natural numbers d > 1?

As mentioned above, the answer is ‘yes’ for d = 2, 3, but we cannot provide
further evidence for a positive answer.
(f) Suppose C1, . . . , Ck form a unimodular cover of C. Then Hilb(C1) ∪ · · · ∪
Hilb(Ck) generates C ∩Zd. Therefore Hilb(C) ⊂ Hilb(C1)∪· · ·∪Hilb(Ck), and
so Hilb(C) sets a lower bound to the size of Hilb(C1) ∪ · · · ∪ Hilb(Ck) relative
to ∆C . For d ≥ 3 there exist cones C such that Hilb(C) is not contained in
(d− 2)∆C (see Ewald and Wessels [EW]), and so one must have ccone

d ≥ d− 1.
On the other hand, d−1 is the best lower bound for ccone

d that can be obtained
by this argument since Hilb(C) ⊂ (d− 1)∆C for all cones C. We may assume
that C is empty simplicial by Remark 1.2, and for an empty simplicial cone C
we have

Hilb(C) ⊂ ¤C \ (v1 + · · ·+ vd −∆C) ⊂ (d− 1)∆C

where

(i) v1, . . . , vd are the extreme integral generators of C,
(ii) ¤C is the semi-open parallelotope spanned by v1, . . . , vd, that is,

¤C = {ξ1v1 + · · ·+ ξdvd : ξ1, . . . , ξd ∈ [0, 1)}.
Acknowledgement. We thank the referees for their careful reading of the paper.
It led to a number of improvements in the exposition, and helped us to correct
an error in the first version of Lemma 4.1.

2. Slope independence

By [0, 1]d = {(z1, . . . , zd) | 0 ≤ z1, . . . , zd ≤ 1} we denote the standard unit
d-cube. Consider the system of simplices

∆σ ⊂ [0, 1]d, σ ∈ Sd,
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where Sd is the permutation group of {1, . . . , d}, and ∆σ is defined as follows:

(i) ∆σ = conv(x0, x1, . . . , xd),
(ii) x0 = O and xd = (1, . . . , 1),

(iii) xi+1 differs from xi only in the σ(i+1)st coordinate and xi+1,σ(i+1) = 1
for i ∈ [0, d− 1].

Then {∆σ}σ∈Sd is a unimodular triangulation of [0, 1]d with additional good
properties [BGT1, Section 2.3]. The simplices ∆σ and their integral parallel
translates triangulate the entire space Rd into affine Weyl chambers of type
Ad. The induced triangulations of the integral multiples of the simplex

conv(O, e1, e1 + e2, . . . , e1 + · · ·+ ed} ⊂ Rd

are studied in great detail in [KKMS, Ch. III]. All we need here is the very
existence of these triangulations. In particular, the integral parallel translates
of the simplices ∆σ cover (actually, triangulate) the cone

R+e1 + R+(e1 + e2) + · · ·+ R+(e1 + · · ·+ ed) ≈ Rd+
into unimodular simplices.
Suppose we are given a real linear form

α(X1, . . . , Xd) = a1X1 + · · ·+ adXd 6= 0.

The width of a polytope P ⊂ Rd in direction (a1, . . . , ad), denoted by
widthα(P ), is defined to be the Euclidean distance between the two extreme
hyperplanes that are parallel to the hyperplane a1X1 + · · · + adXd = 0 and
intersect P . Since [0, 1]d is inscribed in a sphere of radius

√
d/2, we have

widthα(∆σ) ≤
√
d whatever the linear form α and the permutation σ are. We

arrive at

Proposition 2.1. All integral parallel translates of ∆σ, σ ∈ Sd, that intersect
a hyperplane H are contained in the

√
d-neighborhood of H.

In the following we will have to consider simplices that are unimodular with
respect to an affine sublattice of Rd different from Zd. Such lattices are sets

L = v0 +
e∑

i=1

Z(vi − v0)

where v0, . . . , ve, e ≤ d, are affinely independent vectors. (Note that L is
independent of the enumeration of the vectors v0, . . . , vd.) An e-simplex ∆ =
conv(w0, . . . , we) defines the lattice

L∆ = w0 +

e∑

i=0

Z(wi − w0).

Let L be an affine lattice. A simplex ∆ is called L-unimodular if L = L∆, and
the union of all L-unimodular simplices inside a polytope P ⊂ Rd is denoted
by UCL(P ). For simplicity we set UC∆(P ) = UCL∆

(P ).
Let ∆ ⊂ ∆′ be (not necessarily integral) d-simplices in Rd such that the origin
O ∈ Rd is a common vertex and the two simplicial cones spanned by ∆ and ∆′
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at O are the same. The following lemma says that the L∆-unimodularly covered
area in a multiple c∆′, c ∈ N, approximates c∆′ with a precision independent
of ∆′. The precision is therefore independent of the “slope” of the facets of ∆
and ∆′ opposite to O. The lemma will be critical both in the passage to cones
(Section 3) and in the treatment of the cones themselves (Section 6).

Lemma 2.2. For all d-simplices ∆ ⊂ ∆′ having O as a common vertex at which
they span the same cone, all real numbers ε, 0 < ε < 1, and c ≥

√
d/ε one has

(c− εc)∆′ ⊂ UC∆(c∆′).

Proof. Let v1, . . . , vd be the vertices of ∆ different from O, and let wi, i ∈ [1, d]
be the vertex of ∆′ on the ray R+vi. By a rearrangement of the indices we can
achieve that

|w1|
|v1|

≥ |w2|
|v2|

≥ · · · ≥ |wd||vd|
≥ 1.

where | | denotes Euclidean norm. Moreover, the assertion of the lemma is
invariant under linear transformations of Rd. Therefore we can assume that

∆ = conv(O, e1, e1 + e2, . . . , e1 + · · ·+ ed).

Then L∆ = Zd. The ratios above are also invariant under linear transforma-
tions. Thus

|w1|
|e1|
≥ |w2|
|e1 + e2|

≥ · · · ≥ |wd|
|e1 + · · ·+ ed|

≥ 1.

Now Lemma 2.4 below shows that the distance h from O to the affine hyper-
plane H through w1, . . . , wd is at least 1.
By Proposition 2.1, the subset

(c∆′) \ U√d(cH) ⊂ c∆′

is covered by integral parallel translates of the simplices ∆σ, σ ∈ Sd that are
contained in c∆. (Uδ(M) is the δ-neighborhood of M .) In particular,

(1) (c∆′) \ U√d(cH) ⊂ UC∆(c∆′).

Therefore we have

(
1−ε

)
c∆′ ⊂

(
1−
√
d

c

)
c∆′ ⊂

(
1−
√
d

ch

)
c∆′ =

ch−
√
d

ch
c∆′ = (c∆′)\U√d(cH),

and the lemma follows from (1). ¤

Remark 2.3. One can derive an analogous result using the trivial tiling of
Rd+ by the integral parallel translates of [0, 1]d and the fact that [0, 1]d itself
is unimodularly covered. The argument would then get simplified, but the
estimate obtained is c ≥ d/ε, and thus worse than c ≥

√
d/ε.

We have formulated the Lemma 2.2 only for full dimensional simplices, but it
holds for simplices of smaller dimension as well: one simply chooses all data
relative to the affine subspace generated by ∆′.
Above we have used the following
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Lemma 2.4. Let e1, . . . , ed be the canonical basis of Rd and set wi = λi(e1 +
· · · + ei) where λ1 ≥ · · · ≥ λd > 0. Then the affine hyperplane H through
w1, . . . , wd intersects the set Q = λd(e1 + · · ·+ ed)− Rd+ only in the boundary
∂Q. In particular the Euclidean distance from O to H is ≥ λd.

Proof. The hyperplane H is given by the equation

1

λ1
X1 +

(
1

λ2
− 1

λ1

)
X2 + · · ·+

(
1

λd
− 1

λd−1

)
Xd = 1.

The linear form α on the left hand side has non-negative coefficients and wd ∈
H. Thus a point whose coordinates are strictly smaller than λd cannot be
contained in H. ¤

3. Passage to cones

In this section we want to relate the bounds for cpol
d and ccone

d . This allows us
to derive Theorem 1.1 from Theorem 1.3.

Proposition 3.1. Let d be a natural number. Then cpol
d is finite if and only if

ccone
d is finite, and, moreover,

(2) ccone
d ≤ cpol

d ≤
√
d(d+ 1)ccone

d .

Proof. Suppose that cpol
d is finite. Then the left inequality is easily obtained by

considering the multiples of the polytope ∆C for a cone C: the cones spanned
by those unimodular simplices in a multiple of ∆C that contain O as a vertex
constitute a unimodular cover of C.
Now suppose that ccone

d is finite. For the right inequality we first triangulate
a polytope P into lattice simplices. Then it is enough to consider a lattice
d-simplex ∆ ⊂ Rd with vertices v0, . . . , vd.
Set c′ = ccone

d . For each i there exists a unimodular cover (Dij) of the corner
cone Ci of ∆ with respect to the vertex vi such that c′∆− c′vi contains ∆Dij

for all j. Thus the simplices ∆Dij + c′vi cover the corner of c′∆ at c′vi, that
is, their union contains a neighborhood of c′vi in c′∆.
We replace ∆ by c′∆ and can assume that each corner of ∆ has a cover by
unimodular simplices. It remains to show that the multiples c′′∆ are unimod-
ularly covered for every number c′′ ≥

√
d(d + 1) for which c′′P is an integral

polytope.
Let

ω =
1

d+ 1
(v0 + · · ·+ vd)

be the barycenter of ∆. We define the subsimplex ∆i ⊂ ∆ as follows: ∆i is
the homothetic image of ∆ with respect to the center vi so that ω lies on the
facet of ∆i opposite to vi. In dimension 2 this is illustrated by Figure 1. The
factor of the homothety that transforms ∆ into ∆i is d/(d+ 1). In particular,
the simplices ∆i are pairwise congruent. It is also clear that

(3)

d⋃

i=0

∆i = ∆.
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v0

v2

v1

∆0

∆
C0

ω

Figure 1.

The construction of ω and the subsimplices ∆i commutes with taking multiples
of ∆. It is therefore enough to show that c′′∆i ⊂ UC(c′′∆) for all i. In order
to simplify the use of dilatations we move vi to O by a parallel translation.
In the case in which vi = O the simplices c′′∆ and c′′∆i are the unions of their
intersections with the cones Dij . This observation reduces the critical inclusion
c′′∆i ⊂ c′′∆ to

c′′(∆i ∩Dij) ⊂ c′′(∆ ∩Dij)

for all j. But now we are in the situation of Lemma 2.2, with the unimodular
simplex ∆Dij in the role of the ∆ of 2.2 and ∆ ∩ Dij in that of ∆′. For

ε = 1/(d+ 1) we have c′′ ≥
√
d/ε and so

c′′(∆i ∩Dij) = c′′
d

d+ 1
(∆ ∩Dij) = c′′(1− ε)(∆ ∩Dij) ⊂ UC(∆ ∩Dij),

as desired. ¤

At this point we can deduce Theorem 1.1 from Theorem 1.3. In fact, using the
bound for ccone

d given in Theorem 1.3 we obtain

cpol
d ≤

√
d(d+ 1)ccone

d

≤
√
d(d+ 1)

⌈√
d− 1

⌉
(d− 1)

d(d+ 1)

2

(
3

2

)⌈√d−1
⌉

(d−1)−2

≤ O
(
d5
)(3

2

)⌈√d−1
⌉

(d−1)

,

as desired. (The left inequality in (2) has only been stated for completeness; it
will not be used later on.)

4. Bounding toric resolutions

Let C be a simplicial rational d-cone. The following lemma gives an upper
bound for the number of steps in the standard procedure to equivariantly re-
solve the toric singularity Spec(k[Zd ∩C]) (see [F, Section 2.6] and [O, Section
1.5] for the background). It depends on d and the multiplicity of ∆C . Exponen-
tial factors enter our estimates only at this place. Therefore any improvement
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of the toric resolution bound would critically affect the order of magnitude of

the estimates of cpol
d and ccone

d .

Theorem 4.1. Every rational simplicial d-cone C ⊂ Rd, d ≥ 3, admits a
unimodular triangulation C = D1 ∪ · · · ∪DT such that

Hilb(Dt) ⊂
(
d

2

(
3

2

)µ(∆C)−2)
∆C , t ∈ [1, T ].

Proof. We use the sequence hk, k ≥ −(d−2), of real numbers defined recursively
as follows:

hk = 1, k ≤ 1, h2 =
d

2
, hk =

1

2
(hk−1 + · · ·+ hk−d), k ≥ 3.

One sees easily that this sequence is increasing, and that

hk =
1

2
hk−1 +

1

2
(hk−2 + · · ·+ hk−d−1)− 1

2
hk−d−1 =

3

2
hk−1 −

1

2
hk−d−1

≤ d

2

(
3

2

)k−2

for all k ≥ 2.
Let v1, . . . , vd be the extreme integral generators of C and denote by ¤C the
semi-open parallelotope

{
z | z = ξ1v1 + · · ·+ ξdvd, 0 ≤ ξ1, . . . , ξd < 1

}
⊂ Rd.

The cone C is unimodular if and only if

¤C ∩ Zd = {O}.
If C is unimodular then the bound given in the theorem is satisfied (note that
d ≥ 3). Otherwise we choose a non-zero lattice point, say w, from ¤C ,

w = ξi1vi1 + · · ·+ ξikvik , 0 < ξij < 1.

We can assume that w is in (d/2)∆C . If not, then we replace w by

(4) vi1 + · · ·+ vik − w.
The cone C is triangulated into the simplicial d-cones

Cj = R+v1 + · · ·+ R+vij−1 + R+w + R+vij+1 + · · ·+ R+vd, j = 1, . . . , k.

Call these cones the second generation cones, C itself being of first generation.
(The construction of the cones Cj is called stellar subdivision with respect to
w.)
For the second generation cones we have µ(∆Ci) < µ(∆C) because the volumes
of the corresponding parallelotopes are in the same relation. Therefore we are
done if µ(∆C) = 2.
If µ(∆C) ≥ 3, we generate the (k + 1)st generation cones by successively sub-
dividing the kth generation non-unimodular cones. It is clear that we obtain
a triangulation of C if we use each vector produced to subdivide all kth gen-
eration cones to which it belongs. Figure 2 shows a typical situation after 2
generations of subdivision in the cross-section of a 3-cone.
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Figure 2.

If C ′′ is a next generation cone produced from a cone C ′, then µ(∆C′′) <
µ(∆C′), and it is clear that there exists g ≤ µ(∆C) for which all cones of
generation g are unimodular.
We claim that each vector w(k) subdividing a (k− 1)st generation cone C(k−1)

is in
hk ∆C .

For k = 2 this has been shown already. So assume that k ≥ 3. Note that all the
extreme generators u1, . . . , ud of C(k−1) either belong to the original vectors
v1, . . . , vd or were created in different generations. By induction we therefore
have

ui ∈ hti ∆C , t1, . . . , td pairwise different.

Using the trick (4) if necessary, one can achieve that

w(k) ∈ c∆C , c ≤ 1

2
(ht1 + · · ·+ htd).

Since the sequence (hi) is increasing,

c ≤ 1

2
(hk−1 + · · ·+ hk−d) = hk. ¤

Remark 4.2. (a) In dimension d = 2 the algorithm constructs a triangulation
into unimodular cones Dt with Hilb(Dt) ⊂ ∆C .
(b) For d = 3 one has Sebő’s [S1] result Hilb(Dt) ⊂ 2∆C . It needs a rather
tricky argument for the choice of w.

5. Corner covers

Let C be a rational cone and v one of its extreme generators. We say that a
system {Cj}kj=1 of subcones Cj ⊂ C covers the corner of C at v if v ∈ Hilb(Cj)

for all j and the union
⋃k
j=1 Cj contains a neighborhood of v in C.

Lemma 5.1. Suppose that ccone
d−1 <∞, and let C be a simplicial rational d-cone

with extreme generators v1, . . . , vd.

(a) Then there is a system of unimodular subcones C1, . . . , Ck ⊂ C covering
the corner of C at v1 such that Hilb(C1), . . . ,Hilb(Ck) ⊂ (ccone

d−1 +1)∆C .
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(b) Moreover, each element w 6= v1 of a Hilbert basis of Cj, j ∈ [1, k], has
a representation w = ξ1v1 + · · ·+ ξdvd with ξ1 < 1.

Proof. For simplicity of notation we set c = ccone
d−1 . Let C ′ be the cone generated

by wi = vi− v1, i ∈ [2, d], and let V be the vector subspace of Rd generated by
the wi. We consider the linear map π : Rd → V given by π(v1) = 0, π(vi) = wi
for i > 0, and endow V with a lattice structure by setting L = π(Zd). (One
has L = Zd ∩ V if and only if Zd = Zv1 + (Zd ∩ V ).) Note that v1, z2, . . . , zd
with zj ∈ Zd form a Z-basis of Zd if and only if π(z2), . . . , π(zd) are a Z-basis
of L. This holds since Zv1 = Zd ∩ Rv1, and explains the unimodularity of the
cones Cj constructed below.
Note that wi ∈ L for all i. Therefore ∆C′ ⊂ conv(O,w2, . . . , wd). The cone
C ′ has a unimodular covering (with respect to L) by cones C ′j , j ∈ [1, k], with
Hilb(C ′j) ⊂ c∆C′ . We “lift” the vectors x ∈ Hilb(C ′j) to elements x̃ ∈ C as
follows. Let x = α2w2 + · · ·+αdwd (with αi ∈ Q+). Then there exists a unique
integer n ≥ 0 such that

x̃ := nv1 + x = nv1 + α2(v2 − v1) + · · ·+ αd(vd − v1)

= α1v1 + α2v2 + · · ·+ αdvd

with 0 ≤ α1 < 1. (See Figure 3.) If x ∈ c∆C′ ⊂ c · conv(O,w2, . . . , wd), then
x̃ ∈ (c + 1)∆C .

v1

v2

w2 x

x̃

Figure 3.

We now define Cj as the cone generated by v1 and the vectors x̃ where x ∈
Hilb(C ′j). It only remains to show that the Cj cover a neighborhood of v1 in
C. To this end we intersect C with the affine hyperplane H through v1, . . . , vd.
It is enough that a neighborhood of v1 in C ∩H is contained in C1 ∪ · · · ∪ Ck.
For each j ∈ [1, k] the coordinate transformation from the basis w2, . . . , wd of
V to the basis x2, . . . , xd with {x2, . . . , xd} = Hilb(C ′j) defines a linear operator

on Rd−1. Let Mj be its ‖ ‖∞ norm.
Moreover, let Nj be the maximum of the numbers ni, i ∈ [2, d] defined by the
equation x̃i = niv1 + xi as above. Choose ε with

0 < ε ≤ 1

(d− 1)MjNj
, j ∈ [1, k].
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and consider

y = v1 + β2w2 + · · ·+ βdwd, 0 ≤ βi < ε.

Since the C ′j cover C ′, one has β2w2 + · · ·+βdwd ∈ C ′j for some j, and therefore

y = v1 + γ2x2 + · · ·+ γdxd,

where {x2, . . . , xd} = Hilb(C ′j) and 0 ≤ γi ≤Mjε for i ∈ [2, d]. Then

y =

(
1−

d∑

i=2

niγi

)
v1 + γ2x̃2 + · · ·+ γdx̃d

and
d∑

i=2

niγi ≤ (d− 1)NjMjε ≤ 1,

whence
(
1−∑d

i=2 niγi
)
≥ 0 and y ∈ Cj , as desired. ¤

6. The bound for cones

Before we embark on the proof of Theorem 1.3, we single out a technical step.
Let {v1, . . . , vd} ⊂ Rd be a linearly independent subset. Consider the hyper-
plane

H = Aff(O, v1 + (d− 1)v2, v1 + (d− 1)v3, . . . , v1 + (d− 1)vd) ⊂ Rd

It cuts a simplex δ off the simplex conv(v1, . . . , vd) so that v1 ∈ δ. Let Φ denote
the closure of

R+δ \
((

(1 + R+)v1 + R+e2 + · · ·+ R+vd
)
∪∆

)
⊂ Rd.

where ∆ = conv(O, v1, . . . , vd). See Figure 4 for the case d = 2. The polytope

3v2

3v1

v2

v1

H

Φ

δ

3∆

Figure 4.

Φ′ = − 1

d− 1
v1 +

d

d− 1
Φ
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is the homothetic image of the polytope Φ under the dilatation with factor
d/(d− 1) and center v1. We will need that

(5) Φ′ ⊂ (d+ 1)∆.

The easy proof is left to the reader.

Proof of Theorem 1.3. We want to prove the inequality

(6) ccone
d ≤

⌈√
d− 1

⌉
(d− 1)

d(d+ 1)

2

(
3

2

)⌈√d−1
⌉

(d−1)−2

for all d ≥ 2 by induction on d.
The inequality holds for d = 2 since ccone

2 = 1 (see the remarks preceding
Theorem 1.3 in Section 1), and the right hand side above is 2 for d = 2. By
induction we can assume that (6) has been shown for all dimensions < d. We
set

γ =
⌈√

d− 1
⌉
(d− 1) and κ = γ

d(d+ 1)

2

(
3

2

)γ−2

.

As pointed out in Remark 1.2, we can right away assume that C is empty
simplicial with extreme generators v1, . . . , vd.

Outline. The following arguments are subdivided into four major steps. The
first three of them are very similar to their analogues in the proof of Propo-
sition 3.1. In Step 1 we cover the d-cone C by d + 1 smaller cones each of
which is bounded by the hyperplane that passes through the barycenter of
conv(v1, . . . , vd) and is parallel to the facet of conv(v1, . . . , vd) opposite of vi,
i = 1, . . . , d. We summarize this step in Claim A below.
In Step 2 Lemma 5.1 is applied for the construction of unimodular corner covers.
Claim B states that it is enough to cover the subcones of C ‘in direction’ of the
cones forming the corner cover.
In Step 3 we extend the corner cover far enough into C. Lemma 2.2 allows
us to do this within a suitable multiple of ∆C . The most difficult part of the
proof is to control the size of all vectors involved.
However, Lemma 2.2 is applied to simplices Γ = conv(w1, . . . , we) where
w1, . . . , we span a unimodular cone of dimension e ≤ d. The cones over the uni-
modular simplices covering cΓ have multiplicity dividing c, and possibly equal
to c. Nevertheless we obtain a cover of C by cones with bounded multiplicities.
So we can apply Theorem 4.1 in Step 4 to obtain a unimodular cover.

Step 1. The facet conv(v1, . . . , vd) of ∆C is denoted by Γ0. (We use the letter
Γ for (d−1)-dimensional simplices, and ∆ for d-dimensional ones.) For i ∈ [1, d]
we put

Hi = Aff(O, vi+(d−1)v1, . . . , vi+(d−1)vi−1, vi+(d−1)vi+1, . . . , vi+(d−1)vd)

and

Γi = conv
(
vi,Γ0 ∩Hi

)
.
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Observe that v1 + · · · + vd ∈ Hi. In particular, the hyperplanes Hi, i ∈ [1, d]
contain the barycenter of Γ0, i. e. (1/d)(v1 + · · ·+ vd). In fact, Hi is the vector
subspace of dimension d−1 through the barycenter of Γ0 that is parallel to the

facet of Γ0 opposite to vi. Clearly, we have the representation
⋃d
i=1 Γi = Γ0,

similar to (3) in Section 3. In particular, each of the Γi is homothetic to Γ0

with factor (d− 1)/d.
To prove (6) it is enough to show the following

Claim A. For each index i ∈ [1, d] there exists a system of unimodular cones

Ci1, . . . , Ciki ⊂ C

such that Hilb(Cij) ⊂ κ∆C , j ∈ [1, ki], and Γi ⊂
⋃ki
j=1 Cij .

The step from the original claim to the reduction expressed by Claim A seems
rather small – we have only covered the cross-section Γ0 by the Γi, and state
that it is enough to cover each Γi by unimodular subcones. The essential point
is that these subcones need not be contained in the cone spanned by Γi, but
just in C. This gives us the freedom to start with a corner cover at vi and to
extend it far enough into C, namely beyond Hi. This is made more precise in
the next step.

Step 2. To prove Claim A it is enough to treat the case i = 1. The induction
hypothesis implies ccone

d−1 ≤ κ − 1 because the right hand side of the inequality
(6) is a strictly increasing function of d. Thus Lemma 5.1 provides a system of
unimodular cones C1, . . . , Ck ⊂ C covering the corner of C at v1 such that

(7) Hilb(Cj) \ {v1, . . . , vd} ⊂
(
κ∆C

)
\∆C , j ∈ [1, k].

Here we use the emptiness of ∆C – it guarantees that Hilb(Cj)∩ (∆C \Γ0) = ∅
which is crucial for the inclusion (9) in Step 3.
With a suitable enumeration {vj1, . . . , vjd} = Hilb(Cj), j ∈ [1, k] we have
v11 = v21 = · · · = vk1 = v1 and

(8) 0 ≤ (vjl)v1
< 1, j ∈ [1, k], l ∈ [2, d],

where (−)v1
is the first coordinate of an element of Rd with respect to the basis

v1, . . . , vd of Rd (see Lemma 5.1(b)).
Now we formulate precisely what it means to extend the corner cover beyond
the hyperplane H1. Fix an index j ∈ [1, k] and let D ⊂ Rd denote the simplicial
d-cone determined by the following conditions:

(i) Cj ⊂ D,
(ii) the facets of D contain those facets of Cj that pass through O and v1,

(iii) the remaining facet of D is in H1.

Figure 5 describes the situation in the cross-section Γ0 of C.
By considering all possible values j = 1, . . . , k, it becomes clear that to prove
Claim A it is enough to prove
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D

H1

v1

Γ0

C2

C1

Figure 5.

Claim B. There exists a system of unimodular cones D1, . . . , DT ⊂ C such
that

Hilb(Dt) ⊂ κ∆C , t ∈ [1, T ] and D ⊂
T⋃

t=1

Dt.

Step 3. For simplicity of notation we put ∆ = ∆Cj , H = H1. (Recall that
∆ is of dimension d, spanned by O and the extreme integral generators of Cj .)
The vertices of ∆, different from O and v1 are denoted by w2, . . . , wd in such
a way that there exists i0, 1 ≤ i0 ≤ d, for which

(i) w2, . . . , wi0 ∈ D \ H (‘bad’ vertices, on the same side of H as v1),

(ii) wi0+1, . . . wd ∈ Cj \D (‘good’ vertices, beyond or on H),

neither i0 = 1 nor i0 = d being excluded. (X is the closure of X ⊂ Rd with
respect to the Euclidean topology.) In the situation of Figure 5 the cone C2

has two bad vertices, whereas C1 has one good and one bad vertex. (Of course,
we see only the intersection points of the cross-section Γ0 with the rays from
O through the vertices.)
If all vertices are good, there is nothing to prove since D ⊂ Cj in this case. So
assume that there are bad vertices, i. e. i0 ≥ 2. We now show that the bad
vertices are caught in a compact set whose size with respect to ∆C depends
only on d, and this fact makes the whole proof work.
Consider the (d− 1)-dimensional cone

E = v1 + R+(w2 − v1) + · · ·+ R+(wd − v1).

In other words, E is the (d − 1)-dimensional cone with apex v1 spanned by
the facet conv(v1, w2, . . . , wd) of ∆ opposite to O. It is crucial in the fol-
lowing that the simplex conv(v1, w2, . . . , wd) is unimodular (with respect to
Zd ∩Aff(v1, w2, . . . , wd)), as follows from the unimodularity of Cj .
Due to the inequality (8) the hyperplane H cuts a (d−1)-dimensional (possibly
non-lattice) simplex off the cone E. We denote this simplex by Γ. Figure 6
illustrates the situation by a vertical cross-section of the cone C.
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Cj

H

D \ Cj

E

C \D

∆C

wi

Γ
v1

R+v1

R+v2 + · · ·+ R+vd

Figure 6.

By (7) and (8) we have

Γ ⊂ Φ = R+Γ1 \
(
(v1 + C) ∪∆C

)
.

Let ϑ be the dilatation with center v1 and factor d/(d − 1). Then by (5) we
have the inclusion

(9) ϑ(Γ) ⊂ (d+ 1)∆C .

One should note that this inclusion has two aspects: first it shows that Γ is
not too big with respect to ∆C . Second, it guarantees that there is some ζ > 0
only depending on d, namely ζ = 1/(d−1), such that the dilatation with factor
1 + ζ and center v1 keeps Γ inside C. If ζ depended on C, there would be no
control on the factor c introduced below.
Let Σ1 = conv(v1, w2, . . . , wi0) and Σ2 be the smallest face of Γ that contains
Σ1. These are d′-dimensional simplices, d′ = i0 − 1. Note that Σ2 ⊂ ϑ(Σ2).
We want to apply Lemma 2.2 to the pair

γv1 + (Σ1 − v1) ⊂ γv1 + (Σ2 − v1).

of simplices with the common vertex γv1. The lattice of reference for the
unimodular covering is

L = Lγv1+(Σ1−v1) = γv1 +

i0∑

j=2

Z(wj − v1).

Set

ε =
1

d
and c =

d

d− 1
γ =

⌈√
d− 1

⌉
d.
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Since d′ ≤ d − 1, Lemma 2.2 (after the parallel translation of the common
vertex to O and then back to γv1) and (9) imply

(10) γΣ2 ⊂ UCL
(
γϑ(Σ2)

)
⊂ γ(d+ 1)∆C .

Step 4. Consider the i0-dimensional simplices spanned by O and the unimod-
ular (i0−1)-simplices appearing in (10). Their multiplicities with respect to the
i0-rank lattice ZLΣ1

are all equal to γ, since Σ1, a face of conv(v1, w2, . . . , wd)
is unimodular and, thus, we have unimodular simplices σ on height γ. The
cones R+σ have multiplicity dividing γ. Therefore, by Lemma 4.1 we conclude
that the i0-cone R+Σ2 is in the union δ1 ∪ · · · ∪ δT of unimodular (with respect
to the lattice ZLΣ1

) cones such that

Hilb(δ1), . . . ,Hilb(δT ) ⊂
(
d

2

(
3

2

)γ−2)
∆R+Σ2

⊂
(
d

2

(
3

2

)γ−2)
γ(d+ 1)∆C = κ∆C .

In view of the unimodularity of conv(v1, w2, . . . , wd), the subgroup ZLΣ1
is a

direct summand of Zd. It follows that

Dt = δt + R+wi0+1 + · · ·+ R+wd, t ∈ [1, T ],

is the desired system of unimodular cones. ¤
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