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Abstract. Reconstruction phases describe the motions experienced
by dynamical systems whose symmetry-reduced variables are undergo-
ing periodic motion. A well known example is the non-trivial rotation
experienced by a free rigid body after one period of oscillation of the
body angular momentum vector.

Here reconstruction phases are derived for a general class of Hamilto-
nians on a cotangent bundle T∗Q possessing a group of symmetries G,
and in particular for mechanical systems. These results are presented
as a synthesis of the known special cases Q = G and G Abelian, which
are reviewed in detail.
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Summary of selected notation

Numbers in parentheses refer to the relevant subsection.

pµ : g∗ → g∗µ natural projection (dual of inclusion gµ → g) (2.2)
prµ : g→ gµ orthogonal projection (2.8)
( · )Q associated form (3.2, 7.2)
iO ∈ Ω0(O, g∗) inclusion O ↪→ g∗ (3.3)
ρ◦ : (ker Tρ)◦ → T∗(Q/G) map sending dq(f ◦ ρ) to dρ(q)f (4.1)
A′ : T∗Q→ J−1(0) projection along (ker A)◦ (4.2)
T∗Aρ : T∗Q→ T∗(Q/G) Hamiltonian analogue of Tρ : TQ→ T(Q/G) (4.2)
iµ : J−1(µ) ↪→ P inclusion (5.1)
E(µ) ⊂ Tµg

∗ space orthogonal to Tµ(G · µ) (6.1)
forgE(µ) ⊂ g∗ image of E(µ) under identification Tµg

∗ ∼= g∗ (6.1)
ιµ : [g, gµ]◦ → g∗µ restriction of projection pµ : g∗ → g∗µ (6.1)
idg∗ ∈ Ω0(g∗, g∗) the identity map g∗ → g∗ (6.4)
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Reconstruction Phases 563

1 Introduction

When the body angular momentum of a free rigid body undergoes one period of
oscillation the body itself undergoes some overall rotation in the inertial frame
of reference. This rotation is an example of a reconstruction phase, a notion
one may formulate for an arbitrary dynamical system possessing symmetry,
whenever the symmetry-reduced variables are undergoing periodic motion. In-
terest in reconstruction phases stems from problems as diverse as the control
of artificial satellites [8] and wave phenomena [3, 2].

This paper studies reconstruction phases in the context of holonomic mechani-
cal systems, from the Hamiltonian point of view. Our results are quite general
in the sense that non-Abelian symmetries are included; however certain sin-
gularities must be avoided. We focus on so-called simple mechanical systems
(Hamiltonian=‘kinetic energy’ + ‘potential energy’) but our results are rele-
vant to other Hamiltonian systems on cotangent bundles T∗Q. The primary
prerequisite is invariance of the Hamiltonian with respect to the cotangent lift
of a free and proper action on the configuration space Q by the symmetry group
G. Our results are deduced as a special case of those in [6].

We do not study phases in the context of mechanical control systems and
locomotion generation, as in [17] and [15]; nor do we discuss Hanay-Berry
phases for ‘moving’ mechanical systems (such as Foucault’s pendulum), as in
[16]. Nevertheless, these problems share many features with those studied here
and our results may be relevant to generalizations of the cited works.

1.1 Limiting cases

The free rigid body is a prototype for an important class of simple mechanical
systems, namely those for which Q = G. Those systems whose symmetry
group G is Abelian constitute another important class, of which the heavy top
is a prototype. Reconstruction phases in these two general classes have been
studied before [16], [6]. Our general results are essentially a synthesis of these
two cases, but because the synthesis is rather sophisticated, detailed results
are formulated after reviewing the special cases in Section 2. This introduction
describes the new results informally after pointing out key features of the two
prototypes. A detailed outline of the paper appears in 1.5 below.

1.2 The free rigid body

In the free (Euler-Poinsot) rigid body reconstruction phases are given by an
elegant formula due to Montgomery [23]. Both the configuration space Q and
symmetry group G of the free rigid body can be identified with the rotation
group SO(3) (see, e.g., [18, Chapter 15]); here we are viewing the body from
an inertial reference frame centered on the mass center. Associated with each
state x is a spatial angular momentum J(x) which is conserved. The body
representation of angular momentum ν ∈ R3 of a state x with configuration
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q ∈ SO(3) is

(1) ν = q−1J(x) .

The body angular momentum ν evolves according to well known equations of
Euler which, in particular, constrain solutions to a sphere O centered at the
origin and having radius ‖µ0‖, where µ0 = J(x0) is the initial spatial angular
momentum. This sphere has a well known interpretation as a co-adjoint orbit
of SO(3).
Solutions to Euler’s equations are intersections with O of level sets of the
reduced Hamiltonian h : R3 → R, given by h(ν) ≡ 1

2ν · I−1ν. Here I denotes
the body inertia tensor; see Fig. 1. Typically, a solution νt ∈ O is periodic, in

PSfrag replacements
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Figure 1: The dynamics of body angular momentum in the free rigid body.

which case (1) implies that qTµ0 = q0µ0, where T is the period. This means
qT = gq0 for some rotation g ∈ SO(3) about the µ0-axis. According to [23],
the angle ∆θ of rotation is given by

(2) ∆θ =
2Th(ν0)

‖µ0‖
− 1

‖µ0‖2
∫

S

dAO ,

where S ⊂ O denotes the region bounded by the curve νt (see figure) and dAO
denotes the standard area form on the sphere O ⊂ R3.
Astonishingly, it seems that (2) was unknown to 19th century mathematicians,
a vindication of the ‘bundle picture’ of mechanics promoted in Montgomery’s
thesis [22].

1.3 The heavy top

Consider a rigid body free to rotate about a point O fixed to the earth (Fig. 2).
The configuration space is Q ≡ SO(3) but full SO(3) spatial symmetry is broken
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Reconstruction Phases 565

by gravity (unless O and the center of mass coincide). A residual symmetry
group G ≡ S1 acts on Q according to θ · q ≡ R3

θq (θ ∈ S1); here R3
θ denotes a

rotation about the vertical axis e3 through angle θ.

PSfrag replacements

e1

e2

e3

O

Figure 2: The heavy top.

The quotient space Q/G, known more generally as the shape space, is here
identifiable with the unit sphere S2: for a configuration q ∈ SO(3) the cor-
responding ‘shape’ r ∈ S2 is the position of the vertical axis viewed in body
coordinates:

(1) r = q−1e3 .

In place of Euler’s rigid body equations one considers the Euler-Poisson heavy
top equations [5, (10) & (11), Chapter 1], [18, §15.10]. In the special Lagrange
top case these equations are integrable (see, e.g., [4, §30]), but more generally
they admit chaotic solutions. In any case, a periodic solution to the Euler-
Poisson equations determines a periodic solution rt ∈ S2 in shape space but the
corresponding motion of the body qt ∈ SO(3) need not be periodic. However,
if T is the period of the given solution to the Euler-Poisson equations, then (1)
implies qT = R3

∆θq0, for some angle ∆θ. Assume rt ∈ S2 is an embedded curve
having T as its minimal period. Then

∆θ =

∫ T

0

dt

rt · Irt
−
∫

S

f dAS2 ,(2)

where f(r) ≡ Trace I
r · Ir −

2Ir · Ir
(r · Ir)2

.

Here S ⊂ S2 denotes the region bounded by the curve rt, dAS2 denotes the
standard area form on S2, and I denotes the inertia tensor, about O, of the
body in its reference configuration (q = id). Equation (2) follows, for instance,
from results reviewed in 2.6 and 2.7, together with a curvature calculation along
the lines of [16, pp. 48–50].
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1.4 General characteristics of reconstruction phases

In both 1.2(2) and 1.3(2) the angle ∆θ splits into two parts known as the
dynamic and geometric phases. The dynamic phase amounts to a time integral
involving the inertia tensor.1 The geometric phase is a surface integral, the
integrand depending on the inertia tensor in the case of the heavy top but being
independent of system parameters in the case of the free rigid body. Apart from
this, an important difference is the space in which the phase calculations occur.
In the heavy top this is shape space (which is just a point in the free rigid
body). In the free rigid body one computes on momentum spheres, i.e., on
co-adjoint orbits (which are trivial for the symmetry group S1 of the heavy
top).

As we will show, phases in general mechanical systems are computed in ‘twisted
products’ of shape space Q/G and co-adjoint orbits O, and geometric phases
have both a ‘shape’ and ‘momentum’ contribution. The source of geometric
phases is curvature. The ‘shape’ contribution comes from curvature of a con-
nection A on Q, bundled over shape space Q/G, constructed using the kinetic
energy. This is the so-called mechanical connection. The ‘momentum’ con-
tribution to geometric phases comes from curvature of a connection αµ0

on
G, bundled over a co-adjoint orbit O, constructed using an Ad-invariant inner
product on the Lie algebra g of G. We tentatively refer to this as a momentum
connection. The mechanical connection depends on the Hamiltonian; the mo-
mentum connection is a purely Lie-theoretic object . This explains why system
parameters appear explicitly in geometric phases for the heavy top but not in
the free rigid body.

In arbitrary simple mechanical systems the dynamic phase is a time integral
involving the so-called locked inertia tensor I. Roughly speaking, this tensor
represents the contribution to the kinetic energy metric coming from symmetry
variables. In a system of coupled rigid bodies moving freely through space, it
is the inertia tensor about the instantaneous mass center of the rigid body
obtained by locking all coupling joints [14, §3.3]

1.5 Paper outline

The new results of this paper are Theorems 3.4 and 3.5 (Section 3). These
theorems contain formulas for geometric and dynamic phases in general Hamil-
tonian systems on cotangent bundles, and in particular for simple mechanical
systems. These results are derived as a special case of [6], of which Section
2 is mostly a review. Specifically, Section 2 gives the abstract definition of
reconstruction phases, presents a phase formula for systems on arbitrary sym-
plectic manifolds, and surveys the special limiting cases relevant to cotangent
bundles. The mechanical connection A, the momentum connection αµ0

, and
limiting cases of the locked inertia tensor I are also defined.

1In the free rigid body one has 2Th(ν0) = 2Th(νt) =
∫ T
0 h(νt) dt = 2

∫ T
0 νt · I−1νt dt.
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Section 3 begins by showing how the curvatures of A and αµ0
can be respec-

tively lifted and extended to structures ΩA and Ωµ0
on ‘twisted products’ of

shape space Q/G and co-adjoint orbits O. On these products we also introduce
the inverted locked inertia function ξI.
The remainder of the paper is devoted to a proof of Theorems 3.4 and 3.5.
Sections 4 and 5 review relevant aspects of cotangent bundle reduction, cul-
minating in an intrinsic formula for symplectic structures on leaves of the
Poisson-reduced space (T∗Q)/G. Section 6 builds a natural ‘connection’ on
the symplectic stratification of (T∗Q)/G, and Sections 7 and 8 provide the de-
tailed derivations of dynamic and geometric phases. Appendix A describes the
covariant exterior calculus of bundle-valued differential forms, from the point
of view of associated bundles.

1.6 Connections to other work

Above what is explicitly cited here, our project owes much to [16]. Additionally,
we make crucial use of Cendra, Holm, Marsden and Ratiu’s description of
reduced spaces in mechanical systems as certain fiber bundle products [9].
In independent work, carried out from the Lagrangian point of view, Marsden,
Ratiu amd Scheurle [19] obtain reconstruction phases in mechanical systems
with a possibly non-Abelian symmetry group by directly solving appropriate
reconstruction equations. Rather than identify separate geometric and dynamic
phases, however, their formulas express the phase as a single time integral (no
surface integral appears). This integral is along an implicitly defined curve in
Q, whereas our formula expresses the phase in terms of ‘fully reduced’ objects.
The author thanks Matthew Perlmutter for helpful discussions and for making
a preliminary version of [24] available.

2 Review

In the setting of Hamiltonian systems on a general symplectic manifold P ,
reconstruction phases can be expressed by an elegant formula involving deriva-
tives of leaf symplectic structures and the reduced Hamiltonian, these deriva-
tives being computed transverse to the symplectic leaves of the Poisson-reduced
phase space P/G [6]. This formula, recalled in Theorem 2.3 below, grew out
of a desire to ‘Poisson reduce’ the earlier scheme of Marsden et al. [16, §2A],
in which geometric phases were identified with holonomy in an appropriate
principal bundle equipped with a connection. Familiarity with this holonomy
interpretation is not a prerequisite for understanding and applying Theorem
2.3.
We are ultimately concerned with the special case of cotangent bundles P =
T∗Q, and in particular with simple mechanical systems, which are introduced
in 2.4. After recalling the definition of the mechanical connection A in 2.5
we recall the formula for phases in the case of G Abelian (Theorem 2.6 &
Addendum 2.7). After introducing the momentum connection αµ in 2.8 we
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write down phase formulas for the other limiting case, Q = G (Theorem &
Addendum 2.9).

2.1 An abstract setting for reconstruction phases

Assume G is a connected Lie group acting symplectically from the left on
a smooth (C∞) symplectic manifold (P, ω), and assume the existence of an
Ad∗-equivariant momentum map J : P → g∗. (For relevant background, see
[14, 1, 18].) Here g denotes the Lie algebra of G. Assume G acts freely and
properly, and that the fibers of J are connected. All these hypotheses hold in
the case P = T∗Q when we take G to act by cotangent-lifting a free and proper
action on Q and assume Q is connected; details will be recalled in Section 3.
In general, P/G is not a symplectic manifold but merely a Poisson manifold, i.e.,
a space stratified by lower dimensional symplectic manifolds called symplectic
leaves; see opi cited. In the free rigid body, for example, one has P = T∗ SO(3),
G = SO(3), and P/G ∼= so(3)∗ ∼= R3. The symplectic leaves are the co-adjoint
orbits, i.e., the spheres centered on the origin.
Let xt denote an integral curve of the Hamiltonian vector field XH on P cor-
responding to some G-invariant Hamiltonian H. Restrict attention to the case
that the image curve yt under the projection π : P → P/G is T -periodic
(T > 0). Then the associated reconstruction phase is the unique grec ∈ G such
that xT = grec · x0; see Fig. 3.

PSfrag replacements

y0

grec

Pµ0
⊂ P/Gyt

π x0

xt

xT

J−1(µ0) ⊂ P

Figure 3: The definition of the reconstruction phase grec.

Noether’s theorem (J(xt) = constant) implies that yt, which is called the re-
duced solution, lies in the reduced space Pµ0

(see the figure), where

Pµ ≡ π(J−1(µ)) ⊂ P/G (µ ∈ g∗) ,

and where µ0 ≡ J(x0) is the initial momentum. In fact, Pµ0
is a symplectic leaf

of P/G (see Theorem 5.1) and the Ad∗-equivariance of J implies grec ∈ Gµ0
,

where Gµ0
is the isotropy of the co-adjoint action at µ0 ∈ g∗. Invariance of H

means H = h ◦ π for some h : P/G → R called the reduced Hamiltonian; the
reduced solution yt ∈ Pµ0

is an integral curve of the Hamiltonian vector field
Xhµ0

corresponding to Hamiltonian hµ0
≡ h|Pµ0

.
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2.2 Differentiating across symplectic leaves

We wish to define a kind of derivative in P/G transverse to symplectic leaves;
these derivatives occur in the phase formula for general Hamiltonian systems
to be recalled in 2.3 below. For this we require a notion of infinitesimal trans-
verse. Specifically, if C denotes the characteristic distribution on P/G (the
distribution tangent to the symplectic leaves), then a connection on the sym-
plectic stratification of P/G is a distribution D on P/G complementary to
C: TP = C ⊕ D. In that case there is a canonical two-form ωD on P/G
determined by D, whose restriction to a symplectic leaf delivers that leaf’s
symplectic structure, and whose kernel is precisely D.

Below we concern ourselves exclusively with connections D defined in a neigh-
borhood of a nondegenerate symplectic leaf, assuming D to be smooth in the
usual sense of constant rank distributions. Then ωD is smooth also.

Fix a leaf Pµ and assume D(y) is defined for all y ∈ Pµ. Then at each y ∈
Pµ there is, according to the Lemma below, a natural identification of the

infinitesimal transverse D(y) with g∗µ, denoted L(D,µ, y) : g∗µ
∼−→ D(y).

Now let λ be an arbitrary R-valued p-form on P/G, defined in a neighborhood
of Pµ . Then we declare the transverse derivative Dµλ of λ to be the gµ-valued
p-form on Pµ defined through

〈ν,Dµλ(v1, . . . , vp)〉 = dλ
(
L(D,µ, y)(ν), v1, . . . , vp

)

where ν ∈ g∗µ, v1, . . . , vp ∈ TyPµ and y ∈ Pµ.

Lemma and Definition. Let pµ : g∗ → g∗µ denote the natural projection, and
define TJ−1(µ)P ≡ ∪x∈J−1(µ)TxP . Fix y ∈ Pµ and let v ∈ D(y) be arbitrary.
Then for all w ∈ TJ−1(µ)P such that Tπ · w = v, the value of pµ〈dJ, w〉 ∈ g∗µ
is the same. Moreover, the induced map v 7→ pµ〈dJ, w〉 : D(y) → g∗µ is an
isomorphism. The inverse of this isomorphism (which depends on D, µ and y)
is denoted by L(D,µ, y) : g∗µ

∼−→ D(y).

We remark that the definition of L(D,µ, y) is considerably simpler in the case
of Abelian G; see [6].

2.3 Reconstruction phases for general Hamiltonian systems

Let g∗reg ⊂ g∗ denote the set of regular points of the co-adjoint action, i.e.,
the set of points lying on co-adjoint orbits of maximal dimension (which fill an
open dense subset). If µ0 ∈ g∗reg then gµ0

is Abelian; see Appendix B. In that
case Gµ0

is Abelian if it is connected.

Now suppose, in the scenario described earlier, that a reduced solution yt ∈ Pµ0

bounds a compact oriented surface Σ ⊂ Pµ0
.

Theorem (Blaom [6]). If µ0 ∈ g∗reg and Gµ0
is Abelian, then the reconstruc-
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tion phase associated with the periodic solution yt ∈ ∂Σ is

grec = gdynggeom , where:

gdyn = exp

∫ T

0

Dµ0
h(yt) dt , ggeom = exp

∫

Σ

Dµ0
ωD .

Here h denotes the reduced Hamiltonian, D denotes an arbitrary connection
on the symplectic stratification of P/G, ωD denotes the canonical two-form
on P/G determined byD, and Dµ0

denotes the transverse derivative operator
determined by D as described above.
The Theorem states that dynamic phases are time integrals of transverse deriva-
tives of the reduced Hamiltonian while geometric phases are surface integrals
of transverse derivatives of leaf symplectic structures.
We emphasize that while gdyn and ggeom depend on the choice of D, the total
phase grec is, by definition, independent of any such choice.
For the application of the above to non-free actions see [6].

2.4 Simple mechanical systems

Suppose a connected Lie group G acts freely and properly on a connected
manifold Q. All actions in this paper are understood to be left actions. A
Hamiltonian H : T∗Q → R is said to enjoy G-symmetry if it is invariant
with respect to the cotangent-lifted action of G on T∗Q (see [1, p. 283] for the
definition of this action). This action admits an Ad∗-equivariant momentum
map J : T∗Q→ g∗ defined through

(1) 〈J(x), ξ〉 ≡ 〈x, ξQ(q)〉 (x ∈ T∗qQ, q ∈ Q, ξ ∈ g) ,

where ξQ denotes the infinitesimal generator on Q corresponding to ξ. A simple
mechanical system is a Hamiltonian H : T∗Q→ R of the form

H(x) =
1

2
〈〈x, x〉〉∗Q + V (q) (x ∈ T∗qQ) .

Here 〈〈 · , · 〉〉∗Q denotes the symmetric contravariant two-tensor on Q determined
by some prescribed Riemannian metric 〈〈 · , · 〉〉Q on Q (the kinetic energy met-
ric), and V is some prescribed G-invariant function on Q (the potential en-
ergy). To ensure G-symmetry we are supposing that G acts on Q by 〈〈 · , · 〉〉Q-
isometries.

2.5 Mechanical connections

In general, the configuration space Q is bundled in a topologically non-trivial
way over shape space Q/G, i.e., there is no global way to separate shape vari-
ables from symmetry variables. However, fixing a connection on the bundle
allows one to split individual motions. In the case of simple mechanical sys-
tems such a connection is determined by the kinetic energy, but in general there
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is no canonical choice. All the phase formulas we shall present assume some
choice has been made.
Under our free and properness assumptions, the projection ρ : Q → Q/G is a
principal G-bundle. So we will universally require that this bundle be equipped
with a connection one-form A ∈ Ω1(Q, g). If a G-invariant Riemannian metric
on Q is prescribed (e.g., the kinetic energy in the case of simple mechanical
systems) a connection A is determined by requiring that the corresponding
distribution of horizontal spaces hor ≡ ker A are orthogonal to the ρ-fibers
(G-orbits). In this context, A is called the mechanical connection; its history
is described in [14, §3.3]
As we shall recall in 4.2, a connection A on ρ : Q → Q/G allows one to
construct a Hamiltonian analogue T∗Aρ : T∗Q → T∗(Q/G) for the tangent
map Tρ : TQ → T(Q/G). Thus for a state x ∈ T∗qQ one may speak of
the ‘generalized momentum’ T∗Aρ · x ∈ T∗r(Q/G) of the corresponding shape
r = ρ(q) ∈ Q/G.

2.6 Phases for Abelian symmetries

Let H : T∗Q → R be an arbitrary Hamiltonian enjoying G-symmetry. When
G is Abelian it is known that each reduced space Pµ (µ ∈ g∗, P = T∗Q) is
isomorphic to T∗(Q/G) equipped with the symplectic structure

ωµ = ωQ/G − 〈µ, (τ∗Q/G)∗ curv A〉 .
It should be emphasized that the identification Pµ ∼= T∗(Q/G) depends on the
choice of connection A. See, e.g., [6] for the details. In the above equation ωQ/G
denotes the canonical symplectic structure on T∗(Q/G) and τ∗Q/G : T∗(Q/G)→
Q/G is the usual projection; curv A denotes the curvature of A, viewed as
a g-valued two-form on Q/G (see, e.g., [16, §4]). The value of the reduced
Hamiltonian hµ : T∗(Q/G) → R at a point y ∈ T∗(Q/G) is H(x) where
x ∈ T∗Q is any point satisfying J(x) = µ and T∗Aρ · x = y.
The Theorem below is implicit in [6]. The special case in Addendum 2.7 is due
to Marsden et al [16] (explicitly appearing in [6]).

Theorem. Let yt ∈ Pµ0
∼= T∗(Q/G) be a periodic reduced solution curve. Let

rt ≡ τ∗Q/G(yt) ∈ Q/G denote the corresponding curve in shape space. Assume

t 7→ rt bounds a compact oriented surface S ⊂ Q/G. Assume rt and yt have
the same minimal period T . Then the reconstruction phase associated with yt
is

grec = gdynggeom , where:

gdyn = exp

∫ T

0

∂h

∂µ
(µ0, yt) dt , ggeom = exp

(
−
∫

S

curv A

)
,

and where ∂h/∂µ (µ′, y′) ∈ g is defined through

〈ν, ∂h
∂µ

(µ′, y′)〉 =
d

dt
hµ′+tν(y′)

∣∣∣
t=0

( ν, µ′ ∈ g∗, y′ ∈ T∗(Q/G) ) .

Documenta Mathematica 7 (2002) 561–604
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Here A denotes an arbitrary connection on Q→ Q/G.

2.7 Locked inertia tensor (Abelian case)

In the special case of a simple mechanical system one may be explicit about
the dynamic phase. To this end, define for each q ∈ Q a map Î(q) : g → g∗

through
〈Î(q)(ξ), η〉 = 〈〈ξQ(q), ηQ(q)〉〉Q (ξ, η ∈ g) ,

where ξQ denotes the infinitesimal generator on Q corresponding to ξ. Varying
over all q ∈ Q, one obtains a function Î : Q→ Hom(g, g∗). When G is Abelian,

Î is G-invariant, dropping to a function I : Q/G→ Hom(g, g∗) called the locked

inertia tensor (terminology explained in 1.4). As G acts freely on Q, Î(q) : g→
g∗ has an inverse Î(q)−1 : g∗ → g leading to functions Î−1 : Q → Hom(g∗, g)
and I−1 : Q/G→ Hom(g∗, g).

Addendum. When H : T∗Q → R is a simple mechanical system and A is
the mechanical connection, then the dynamic phase appearing in the preceding
Theorem is given by

gdyn =

∫ T

0

I−1(rt)µ0 dt .

In particular, the reconstruction phase grec is computed entirely in the shape
space Q/G.

2.8 Momentum connections

In the rigid body example discussed in 1.2 (G = SO(3)), the angle ∆θ may
be identified with an element of gµ0

, where µ0 ∈ g∗ ∼= R3 is the initial spatial
angular momentum. This angle is the logarithm of the reconstruction phase
grec ∈ Gµ0

, there denoted g. Let ω−O denote the ‘minus’ version of the sym-
plectic structure on O, viewed as co-adjoint orbit (see below). Then Equation
1.2(2) may alternatively be written

(1) 〈µ0, log grec〉 = 2Th(ν0) +

∫

S

ω−O .

As we shall see, this generalizes to arbitrary groups G, but it refers only to
the µ0-component of the log phase. This engenders the following question,
answered in the Proposition below: Of what gµ0

-valued two-form on O is ω−O
the µ0-component?
For an arbitrary connected Lie group G equip g∗ with the ‘minus’ Lie-Poisson
structure (see, e.g., [14, §2.8]). The symplectic leaves are the co-adjoint orbits;
the symplectic structure on an orbit O = G · µ0 is ω−O, where ω−O is given
implicitly by

(2) ω−O

(
d

dt
exp(tξ1 ) · µ

∣∣∣
t=0

,
d

dt
exp(tξ2 ) · µ

∣∣∣
t=0

)
= −〈µ, [ξ1, ξ2]〉 ,
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for arbitrary µ ∈ O and ξ1, ξ2 ∈ g. The map τµ0
: G→ O sending g to g−1 · µ0

is a principal Gµ0
-bundle. If we denote by θG ∈ Ω1(G, g) the right-invariant

Mauer-Cartan form on G, then (2) may be succinctly written

(3) τ∗µ0
ω−O = −〈µ0,

1

2
θG ∧ θG〉 .

Assuming g admits an Ad-invariant inner product, the bundle τµ0
: G→ O ∼=

G/Gµ0
comes equipped with a connection one-form αµ0

≡ 〈prµ0
, θG〉; here

prµ0
: g→ gµ0

denotes the orthogonal projection. We shall refer to αµ0
as the

momentum connection on G→ O ∼= G/Gµ0
.

For simplicity, assume that µ0 lies in g∗reg and that Gµ0
is Abelian, as in 2.3.

Then the curvature of αµ0
may be identified with a gµ0

-valued two-form on
O = G · µ0 denoted curvαµ0

.

Proposition. Under the above conditions

(curvαµ0
)

(
d

dt
exp(tξ1 ) · µ

∣∣∣
t=0

,
d

dt
exp(tξ2 ) · µ

∣∣∣
t=0

)
= prµ0

g−1 · [ξ1, ξ2] ,

where g is any element of G such that µ = g · µ0, and ξ1, ξ2 ∈ g are arbitrary.
In particular, ω−O is a component of curvature: ω−O = −〈µ0, curvαµ0

〉.

Proof. Because Gµ0
is assumed Abelian, we have τ ∗µ0

curvαµ0
= dαµ0

=

〈prµ0
, dθG〉. Applying the Mauer-Cartan identity dθG = 1

2θG ∧ θG, we ob-

tain τ∗µ0
curvαµ0

= 〈prµ0
, 1

2θG ∧ θG〉, which implies both the first part of

the Proposition and the identity τ ∗µ0
〈µ0, curvαµ0

〉 = 〈µ0 ◦ prµ0
, 1

2θG ∧ θG〉.
But µ0 ∈ g∗reg implies that the space g⊥µ0

orthogonal to gµ0
coincides with

[g, gµ0
] (see Appendix B), implying 〈µ0,prµ0

ξ〉 = 〈µ0, ξ〉 for all ξ ∈ g.

So τ∗µ0
〈µ0, curvαµ0

〉 = 〈µ0,
1
2θG ∧ θG〉〉 = −τ∗µ0

ω−O, by (3). This implies

ω−O = −〈µ0, curvαµ0
〉.

2.9 Phases for Q = G

When Q = G, the Poisson manifold P/G = (T∗G)/G is identifiable with g∗

and the reduced space Pµ0
is the co-adjoint orbit O ≡ G ·µ0, equipped with the

symplectic structure ω−O discussed above. Continue to assume that g admits an
Ad-invariant inner product. As we will show in Proposition 6.1, the restriction
ιµ0

: [g, gµ0
]◦ → g∗µ0

of the natural projection pµ0
: g∗ → g∗µ0

is then an
isomorphism, assuming µ0 ∈ g∗reg. Here ◦ denotes annihilator. The following
result is implicit in [6].

Theorem. Assume µ0 ∈ g∗reg and Gµ0
is Abelian. Let νt ∈ Pµ0

∼= O ≡ G · µ0

be a periodic reduced solution curve bounding a compact oriented surface S ⊂
O. Let gt ∈ G be any curve such that νt = gt · µ0 ≡ Ad∗

g−1
t
µ0. Then the
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reconstruction phase associated with νt is given by

grec = gdynggeom , where:

gdyn = exp

∫ T

0

w(t) dt , ggeom = exp

(
−
∫

S

curvαµ0

)
,

and where w(t) ∈ gµ0
is defined through

〈λ,w(t)〉 =
d

dτ
h
(
gt · (µ0 + τι−1

µ0
(λ) )

) ∣∣∣
τ=0

(λ ∈ g∗µ0
) .

Here αµ0
denotes the momentum connection on G→ O ∼= G/Gµ0

.

For a simple mechanical system on T∗G the reduced Hamiltonian h : g∗ → R
is of the form

h(ν) =
1

2
〈ν, I−1ν〉 , (ν ∈ g∗)

for some isomorphism I : g
∼−→ g∗, the inertia tensor, which we may suppose is

symmetric as an element of g∗ ⊗ g∗.

Addendum ([6]). Let G act on Hom(g∗, g) via conjugation, so that g · I−1 =
Adg−1 ◦I−1 ◦Ad∗g−1 (g ∈ G). Then for a simple mechanical system one has

w(t) = prµ0

(
(g−1
t · I−1)(µ0)

)
,

where prµ0
: g→ gµ0

is the orthogonal projection. Moreover the generalization
2.8(1) of Montgomery’s rigid body formula holds.

3 Formulation of new results

According to known results reviewed in the preceding section, phases for sim-
ple mechanical systems are computed in shape space Q/G when G is Abelian,
and on a co-adjoint orbit O = G · µ0 when Q = G. For the general case, G
non-Abelian and Q 6= G, we need to introduce the concepts of associated bun-
dles and forms, and the locked inertia tensor for non-Abelian groups (3.1–3.3).
In 3.4 and 3.5 we present the main results of the paper, namely explicit for-
mulas for geometric and dynamic phases in Hamiltonian systems on cotangent
bundles.

3.1 Associated bundles

Given an arbitrary principal bundle ρ : Q→ Q/G and manifold O on which G
acts, we denote the quotient of Q×O under the diagonal action of G by OQ.
This is the total space of a bundle ρO : OQ → Q/G : [q, ν]G 7→ [q]G known as
the associated bundle for O. As its fibers are diffeomorphic to O, it may be
regarded as a ‘twisted product’ of Q/G and O.
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Here the important examples will be the co-adjoint bundle g∗Q and the co-
adjoint orbit bundle OQ ⊂ g∗Q, where O ⊂ g∗ is a co-adjoint orbit.

We have seen that log geometric phases are surface integrals of the curvature
curv A ∈ Ω2(Q/G, g) of the mechanical connection A, when G is Abelian,
and of the curvature curvαµ0

∈ Ω2(O, gµ0
) of the momentum connection αµ0

,
when Q = G. For simple mechanical systems the log dynamic phase is a time
integral of an inverted inertia tensor I−1 in both cases. To elaborate on the
claims regarding the general case made in 1.4, we need to see how curv A,
curvαµ0

and I−1 can be viewed as objects on OQ.
A non-Abelian G forces us to regard curv A as an element of Ω2(Q/G, gQ),
i.e., as bundle-valued. See, e.g., Note A.6 and A.2(1) for the definition. The
pull-back ρ∗O curv A is then a two-form on OQ, but with values in the pull-
back bundle ρ∗OgQ. Pull-backs of bundles and forms are briefly reviewed in
Appendix A.
On the other hand, curvαµ0

is vector-valued because gµ0
is Abelian under the

hypothesis µ0 ∈ g∗reg. It is a two-form on the model space O of the fibers of
ρO : OQ → Q/G. Its natural ‘extension’ to a two-form on OQ is the associated
form (curvαµ0

)Q ∈ Ω2(OQ, gµ0
), which we now define more generally.

3.2 Associated forms

Let ρ : Q → Q/G be a principal bundle equipped with a connection A, and
let O be a manifold on which G acts. If λ is a G-invariant, R-valued k-form
on O then the associated form λQ is the R-valued k-form on OQ defined as
follows: For arbitrary u1, . . . , uk ∈ T[q,ν]GOQ, there exist A-horizontal curves

t 7→ qhor
i (t) ∈ Q through q, and curves t 7→ νi(t) ∈ Q through ν, such that

ui =
d

dt
[qhor
i (t), νi(t)]G

∣∣∣
t=0

,

in which case λQ is well defined by

(1) λQ(u1, . . . , uk) = λ

(
d

dt
ν1(t)

∣∣∣
t=0

, . . . ,
d

dt
νk(t)

∣∣∣
t=0

)
.

When R is replaced by a general vector space V on which G acts linearly,
then the associated form λQ of a G-equivariant, V -valued k-form λ is a certain
k-form on OQ taking values in the pull-back bundle ρ∗OVQ. Its definition is
postponed to 7.2. In symbols, we have a map

λ 7→ λQ

ΩkG(O, V )→ Ωk(OQ, ρ∗OVQ) .

The identity (λ ∧ µ)Q = λQ ∧ µQ holds. If G acts trivially on V (e.g., V = R
or gµ0

), then ρ∗OVQ ∼= OQ × V and we identify λQ with a V -valued form on
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OQ and (1) holds.

This last remark applies, in particular, to curvαµ0
.

3.3 Locked inertia tensor (general case)

When G is non-Abelian the map Î : Q → Hom(g, g∗) defined in 2.7 is G-
equivariant if G acts on Hom(g, g∗) via conjugation. It therefore drops to a
(bundle-valued) function I ∈ Ω0(Q/G,Hom(g, g∗)Q), the locked inertia tensor:

I([q]G) ≡ [q, Î(q)]G .

The inverse I−1 ∈ Ω0(Q/G,Hom(g∗, g)Q) is defined similarly.
View the inclusion iO : O ↪→ g∗ as an element of Ω0(O, g∗). Then with the
help of the associated form (iO)Q ∈ Ω0(OQ, ρ∗Og∗Q) one obtains a function

ρ∗OI−1∧(iO)Q onOQ taking values in ρ∗OgQ. (Under the canonical identification
ρ∗Og∗Q ∼= OQ ⊕ g∗Q, one has (iO)Q(η) = η ⊕ η.) Here the wedge ∧ implies a
contraction Hom(g∗, g)⊗ g∗ → g.

3.4 Phases for simple mechanical systems

Before stating our new results, let us summarize with a few definitions. Put

ΩA ≡ ρ∗O curv A : the mechanical curvature,

Ωµ0
≡ (curvαµ0

)Q : the momentum curvature,

ξI ≡ ρ∗OI−1 ∧ (iO)Q : the inverted locked inertia function.

Recall here that A denotes a connection on Q → Q/G (the mechanical con-
nection if H is a simple mechanical system), αµ0

denotes the momentum con-
nection on G → O ∼= G/Gµ0

, ρO : OQ → Q/G denotes the associated bundle
projection and iO ∈ Ω0(O, g∗) denotes the inclusion O ↪→ g∗.
By construction, ΩA, Ωµ0

and ξI are all differential forms on OQ. The momen-
tum curvature Ωµ0

is gµ0
-valued, and can therefore be integrated over surfaces

S ⊂ OQ; the forms ΩA and ξI are ρ∗OgQ-valued. To make them gµ0
-valued

requires an appropriate projection:

Definition. Let G act on Hom(g, gµ0
) via g · σ ≡ Adg ◦σ and let Prµ0

∈
Ω0(O,Hom(g, gµ0

)) denote the unique equivariant zero-form whose value at µ0

is the orthogonal projection prµ0
: g→ gµ0

.

With the help of the associated form (Prµ0
)Q and an implied contraction

Hom(g, gµ0
) ⊗ g → gµ0

, we obtain ρ∗O(gµ0
)Q-valued forms (Prµ0

)Q ∧ ΩA and
(Prµ0

)Q ∧ ξI. As we declare G to act trivially on gµ0
, these forms are in fact

identifiable with gµ0
-valued forms as required.

For P = T∗Q and G non-Abelian the reduced space Pµ0
can be identified with

T∗(Q/G)⊕OQ, where O ≡ G · µ0. Here ⊕ denotes product in the category of
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fiber bundles over Q/G (see Notation in 4.2). This observation was first made
in the Lagrangian setting by Cendra et al. [9]. We recall details in 4.2 and
Proposition 5.1. A formula for the symplectic structure on Pµ0

has been given
by Perlmutter [24]. We derive the form of it we will require in 5.2. The value
of the reduced Hamiltonian hµ0

: Pµ0
→ R at z ⊕ [q, µ]G ∈ T∗(Q/G) ⊕ OQ is

H(x), where x ∈ T∗qQ is any point satisfying T∗Aρ · x = z and J(x) = µ.

In the case of simple mechanical systems one has

(1) hµ0
(z ⊕ [q, µ]G) =

1

2
〈〈z, z〉〉∗Q/G +

1

2
〈µ, Î−1(q)µ〉+ VQ/G(ρ(q)) .

Here VQ/G denotes the function on Q/G to which the potential V drops on
account of its G-invariance, and 〈〈 · , · 〉〉∗Q/G denotes the symmetric contravari-

ant two-tensor on Q/G determined by the Riemannian metric 〈〈 · , · 〉〉Q/G that
Q/G inherits from the G-invariant metric 〈〈 · , · 〉〉Q on Q. (The second term
above may be written intrinsically as 1/2 ((idg∗)Q∧(ρ∗g∗I−1∧(idg∗)Q))([q, µ]G),
where (idg∗)Q is defined in 6.4.) The formula (1) is derived in 7.1.

Theorem. Let H : T∗Q → R be a simple mechanical system, as defined in
2.4. Assume µ0 ∈ g∗reg, Gµ0

is Abelian, and let zt⊕ ηt ∈ Pµ0
∼= T∗(Q/G)⊕OQ

(O = G · µ0) denote a periodic reduced solution curve. Assume zt ⊕ ηt and ηt
have the same minimal period T and assume t 7→ ηt bounds a compact oriented
surface S ⊂ OQ. Then the corresponding reconstruction phase is

grec = gdynggeom , where

gdyn = exp

∫ T

0

(Prµ0
)Q ∧ ξI (ηt) dt ,

ggeom = exp

(
−
∫

S

( Ωµ0
+ (Prµ0

)Q ∧ ΩA )

)
.

Here ΩA is the mechanical curvature, Ωµ0
the momentum curvature, and ξI the

inverted locked inertia function, as defined above; A denotes the mechanical
connection.

Notice that the phase grec does not depend on the zt part of the reduced solution
curve (zt, ηt), i.e., is computed exclusively in the space OQ.

3.5 Phases for arbitrary systems on cotangent bundles

We now turn to the case of general Hamiltonian functions on T∗Q (not neces-
sarily simple mechanical systems). To formulate results in this case, we need
the fact, recalled in Theorem 4.2, that (T∗Q)/G is isomorphic to T∗(Q/G)⊕g∗Q,
where ⊕ denotes product in the category of fiber bundles over Q/G (see No-
tation 4.2). This isomorphism depends on the choice of connection A on
ρ : Q→ Q/G.
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Theorem. Let H : T∗Q → R be an arbitrary G-invariant Hamiltonian and
h : T∗(Q/G) ⊕ g∗Q → R the corresponding reduced Hamiltonian. Consider a
periodic reduced solution curve zt ⊕ ηt ∈ Pµ0

∼= T∗(Q/G) ⊕ OQ, as in the
Theorem above. Then the conclusion of that Theorem holds, with the dynamic
phase now given by

gdyn = exp

∫ T

0

Dµ0
h(zt ⊕ ηt) dt ,

where Dµ0
h( · ) ∈ gµ0

is defined through

(1) 〈ν,Dµ0
h(z ⊕ [q, µ0]G)〉 =

d

dt
h(z ⊕ [q, µ0 + tι−1

µ0
(ν)]G)

∣∣∣
t=0

(ν ∈ g∗µ0
) .

Here ιµ0
: [g, gµ0

]◦
∼−→ g∗µ0

is the isomorphism defined in 2.9.

Theorems 3.4 and 3.5 will be proved in Sections 7 and 8.

4 Symmetry reduction of cotangent bundles

In this section and the next, we revisit the process of reduction in cotangent
bundles by describing the symplectic leaves in the associated Poisson-reduced
space. For an alternative treatment and a brief history of cotangent bundle
reduction, see Perlmutter [24, Chapter 3].

In the sequel G denotes a connected Lie group acting freely and properly on a
connected manifold Q, and hence on T∗Q; J : T∗Q→ g∗ denotes the momen-
tum map defined in 2.4(1); A denotes an arbitrary connection one-form on the
principal bundle ρ : Q→ Q/G.

4.1 The zero momentum symplectic leaf

The form of an arbitrary symplectic leaf Pµ of (T∗Q)/G will be described in
Section 5.1 using a concrete model for the abstract quotient (T∗Q)/G described
in 4.2 below. However, the structure of the particular leaf P0 = J−1(0)/G
can be described directly. Moreover, we shall need this description to relate
symplectic structures on T∗Q and T∗(Q/G) (Corollary 4.3).

Since ρ : Q → Q/G is a submersion, it determines a natural vector bundle
morphism ρ◦ : (ker Tρ)◦ → T∗(Q/G) sending dq(f ◦ ρ) to dρ(q)f , for each
locally defined function f on Q/G. Here (ker Tρ)◦ denotes the annihilator of
ker Tρ. In fact, 2.4(1) implies that (ker Tρ)◦ = J−1(0), so that J−1(0) is a
vector bundle over Q, and we have the commutative diagram
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ρ◦

J−1(0) T∗(Q/G)

.

Q Q/G
ρ

Notation. We will write J−1(0)q ≡ J−1(0) ∩ T∗qQ = (ker Tqρ)◦ for the fiber
of J−1(0) over q ∈ Q.

From the definition of ρ◦, it follows that ρ◦ maps J−1(0)q isomorphically onto
T∗ρ(q)(Q/G). In particular, ρ◦ is surjective.

It is readily demonstrated that the fibers of ρ◦ are G-orbits so that ρ◦ de-
termines a diffeomorphism between T∗(Q/G) and P0 = J−1(0)/G. More-
over, if ωQ/G denotes the canonical symplectic structure on T∗(Q/G) and
i0 : J−1(0) ↪→ T∗Q the inclusion, then we have

(1) (ρ◦)∗ωQ/G = i∗0ω .

This formula is verified by first checking the analogous statement for the canon-
ical one-forms on T∗Q and T∗(Q/G).

4.2 A model for the Poisson-reduced space (T∗Q)/G

Let hor = ker A denote the distribution of horizontal spaces on Q determined
by A ∈ Ω1(Q, g). Then have the decomposition of vector bundles over Q

(1) TQ = hor⊕ ker Tρ ,

and the corresponding dual decomposition

(2) T∗Q = J−1(0)⊕ hor◦ .

If A′ : T∗Q→ J−1(0) denotes the projection along hor◦, then the composite

(3) T∗Aρ ≡ ρ◦ ◦A′ : T∗Q→ T∗(Q/G)

is a vector bundle morphism covering ρ : Q → Q/G. It the Hamiltonian
analogue of the tangent map Tρ : TQ→ T(Q/G).

The momentum map J : T∗Q→ g∗ determines a map J′ : T∗Q→ g∗Q through

J′(x) ≡ [q,J(x)]G for x ∈ T∗qQ and q ∈ Q .

Note that while J is equivariant, the map J′ is G-invariant.
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Notation. If M1, M2 and B are smooth manifolds and there are maps f1 :
M1 → B and f2 : M2 → B, then one has the pullback manifold

{(m1,m2) ∈M1 ×M2 | f1(m1) = f2(m2)} ,

which we will denote by M1 ⊕BM2, or simply M1 ⊕M2. If f1 and f2 are fiber
bundle projections then M1 ⊕M2 is a product in the category of fiber bundles
over B. In particular, in the case of vector bundles, M1 ⊕M2 is the Whitney
sum of M1 and M2. In any case, we write an element of M1 ⊕M2 as m1 ⊕m2

(rather than (m1,m2)).

Noting that T∗(Q/G) and g∗Q are both vector bundles over Q/G, we have the
following result following from an unravelling of definitions:

Theorem. The map π : T∗Q→ T∗(Q/G)⊕g∗Q defined by π(x) ≡ T∗Aρ·x⊕J′(x)
is a surjective submersion whose fibers are the G-orbits in T∗Q. In other
words, T∗(Q/G) ⊕ g∗Q is a realization of the abstract quotient (T∗Q)/G, the
map π : T∗Q → T∗(Q/G) ⊕ g∗Q being a realization of the natural projection
T∗Q→ (T∗Q)/G.

The above model of (T∗Q)/G is simply the dual of Cendra, Holm, Marsden
and Ratiu’s model of (TQ)/G [9].

4.3 Momentum shifting

Before attempting to describe the symplectic leaves of the Poisson-reduced
space (T∗Q)/G ∼= T∗(Q/G) ⊕ g∗Q, we should understand the projection π :

T∗Q
/G−−→ T∗(Q/G)⊕ g∗Q better. In particular, we should understand the map

T∗Aρ : T∗Q → T∗(Q/G), which means first understanding the projection A′ :
T∗Q→ J−1(0) along hor◦.
Let x ∈ T∗qQ be given and define µ ≡ J(x). The restriction of J to T∗qQ is a
linear map onto g∗ (by 2.4(1)). The kernel of this restriction is J−1(0)q and
J−1(µ)q ≡ J−1(µ) ∩ T∗qQ is an affine subspace of T∗qQ parallel to J−1(0)q; see
Fig. 4.

*

PSfrag replacements

ρ◦

J−1(0)
T∗(Q/G)

.
Q

Q/G

ρ

x

A′(x)

J−1(µ)q

J−1(0)q O T∗qQ

∗ hor◦q

Figure 4: Describing the projection x 7→ A′(x) : T∗qQ→ J−1(0)q along hor◦q .

Since J−1(0)q and J−1(µ)q are parallel, it follows from the decomposition 4.2(2)
that J−1(µ)q and hor◦q intersect in a single point ∗, as indicated in the figure.
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We then have A′(x) = x − ∗. Indeed, viewing the R-valued one-form 〈µ,A〉
as a section of the cotangent bundle T∗Q → Q, one checks that the covector
〈µ,A〉(q) ∈ T∗qQ belongs simultaneously to J−1(µ) and hor◦, so that ∗ =
〈µ,A〉(q). We have therefore proven the following:

Lemma. Define the momentum shift Mµ : T∗Q → T∗Q, which maps J−1(0)q
onto to J−1(µ)q, by Mµ(x) ≡ x+ 〈µ,A〉(τ∗Q(x)), where τ∗Q : T∗Q→ Q denotes
the cotangent bundle projection. Then

A′(x) = M−1
J(x)(x) .

If θ denotes the canonical one-form on T∗Q, then one readily computes M∗µθ =
θ + 〈µ, (τ∗Q)∗A〉. In particular, as ω = −dθ,

M∗µω = ω − 〈µ, (τ∗Q)∗dA〉 .

This identity, Equation 4.1(1), and the above Lemma have the following im-
portant corollary, which relates the symplectic structures on the domain and
range of the map T∗Aρ : T∗Q→ T∗(Q/G):

Corollary. The two-forms (T∗Aρ)∗ωQ/G and ω + 〈µ, (τ∗Q)∗dA〉 agree when

restricted to J−1(µ).

5 Symplectic leaves in Poisson reduced cotangent bundles

In this section we describe the symplectic leaves Pµ ⊂ (T∗Q)/G as subsets
of the model described in 4.2. We then describe explicitly their symplectic
structures.

5.1 Reduced spaces as symplectic leaves

The following is a specialized version of the symplectic reduction theorem of
Marsden, Weinstein and Meyer [20, 21], formulated such that the reduced
spaces are realized as symplectic leaves (see, e.g., [7, Appendix E]).

Theorem. Consider P , ω, G, J and Pµ, as defined in 2.1, where µ ∈ J(P ) is
arbitrary. Then:

(1) Pµ is a symplectic leaf of P/G (which is a smooth Poisson manifold).

(2) The restriction πµ : J−1(µ)→ Pµ of π : P → P/G is a surjective submer-
sion whose fibers are Gµ-orbits in P , i.e., Pµ is a realization of the abstract
quotient J−1(µ)/Gµ.

(3) If ωµ is the leaf symplectic structure of Pµ, and iµ : J−1(µ) ↪→ P the
inclusion, then i∗µω = π∗µωµ.

(4) Pµ ∩ Pµ′ 6= ∅ if and only if Pµ = Pµ′ , which is true if and only if µ and µ′

lie on the same co-adjoint orbit. Also, P/G = ∪µ∈J(P ) Pµ.
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(5) codimPµ = codimG · µ.

Proposition. Fix µ ∈ g∗. Then, taking P ≡ T∗Q and identifying P/G with
T∗(Q/G)⊕ g∗Q (Theorem 4.2), one obtains

Pµ = T∗(Q/G)⊕OQ , where O ≡ G · µ .

Here G · µ denotes the co-adjoint orbit through µ and the associated bundle
OQ is to be viewed as a fiber subbundle of g∗Q in the obvious way.

Proof. Under the given identification, the projection P → P/G is represented
by the map π : T∗Q → T∗(Q/G) ⊕ g∗Q defined in Theorem 4.2. From this

definition it easily follows that Pµ ≡ π(J−1(µ)) is contained in T∗(Q/G)⊕OQ.
We now prove the reverse inclusion T∗(Q/G)⊕OQ ⊂ π(J−1(µ)).
Let z ⊕ [q′, µ′]G be an arbitrary point in T∗(Q/G) ⊕ OQ. Then µ′ ∈ O, so
that µ′ = g · µ for some g ∈ G, giving us z ⊕ [q′, µ′]G = z ⊕ [q, µ]G, where
q ≡ g−1 · q′. Now z and [q, µ]G necessarily have a common base point in Q/G,
which means that z ∈ T∗ρ(q)(Q/G). The map ρ◦ : J−1(0) → T∗(Q/G) of 4.1

maps J−1(0)q ≡ J−1(0) ∩ T∗qQ isomorphically onto T∗ρ(q)(Q/G). Therefore

there exists x0 ∈ J−1(0)q such that ρ◦(x0) = z. Define x ≡ Mµ(x0) ∈ J−1(µ),
where Mµ is the momentum shift of Lemma 4.3. Then T∗Aρ · x = z. We now
compute

π(x) = T∗Aρ · x⊕ J′(x) = z ⊕ [τ∗Q(x),J(x)]G = z ⊕ [q, µ]G = z ⊕ [q′, µ′]G .

Since x lies in J−1(µ) and z⊕ [q′, µ′]G was an arbitrary point of T∗(Q/G)⊕OQ,
this proves T∗(Q/G)⊕OQ ⊂ π(J−1(µ)).

5.2 The leaf symplectic structures

The remainder of the section is devoted to the proof of the following key result,
which is due (in a different form) to Perlmutter [24, Chapter 3]:

Theorem. Let O denote the co-adjoint orbit through a point µ in the im-
age of J, let ω−O denotes the ‘minus’ co-adjoint orbit symplectic structure on
O (see 2.8), and let iO ∈ Ω0(O, g∗) denote the inclusion O ↪→ g∗. Let
(ω−O)Q ∈ Ω2(OQ) and (iO)Q ∈ Ω0(OQ, ρ∗Og∗Q) denote the corresponding as-
sociated forms; see 3.2. (Under the canonical identification ρ∗Og∗Q ∼= OQ ⊕ g∗Q,
one has (iO)Q(η) = η ⊕ η.) Then the symplectic structure of the leaf Pµ =
T∗(Q/G)⊕OQ is given by

ωµ = pr∗1 ωQ/G + pr∗2
(

(ω−O)Q − (iO)Q ∧ ρ∗O curv A
)
,

where pr1 : T∗(Q/G)⊕OQ → T∗(Q/G) and pr2 : T∗(Q/G)⊕OQ → OQ denote
the projections onto the first and second summands, and curv A ∈ Ω2(Q/G, gQ)
denotes the curvature of A.
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Because the restriction πµ : J−1(µ) → Pµ of π : T∗Q → T∗(Q/G) ⊕ g∗Q
is a surjective submersion, by Theorem 5.1(2), to prove the above Theorem
it suffices to verify the formula in 5.1(3). Appealing to the definition of π
(Theorem 4.2) and Corollary 4.3, we compute

(1) π∗µ pr∗1 ωQ/G = i∗µ(T∗Aρ)∗ωQ/G = i∗µω + 〈µ, i∗µ(τ∗Q)∗dA〉 .
For the next part of the proof we need the following technical result proven at
the end:

Lemma. If u ∈ Tx(J−1(µ)) is arbitrary, then

TJ′ · u =
d

dt
[qhor(t), exp(tξ) · µ]G

∣∣∣
t=0

,

for some A-horizontal curve t 7→ qhor(t) ∈ Q, where ξ ≡ −A(Tτ∗Q · u).

Now π∗µ pr∗2(ω−O)Q = i∗µ(J′)∗(ω−O)Q and, by definition,

ω−O

(
d

dt
exp(tξ) · µ

∣∣∣
t=0

,
d

dt
exp(tη) · µ

∣∣∣
t=0

)
= −〈µ, [ξ, η]〉 (ξ, η ∈ g) .

So it readily follows from the lemma that

(2) π∗µ pr∗2(ω−O)Q = −1

2
〈µ, i∗µ(τ∗Q)∗(A ∧A)〉 .

A routine calculation of pullbacks shows that

(3) (π∗µ pr∗2(iO)Q)(x) = [x⊕ τ∗Q(x), µ]G ∈ (ρO ◦ pr2 ◦πµ)∗g∗Q (x ∈ J−1(µ))

and

(4) (π∗µ pr∗2 ρ
∗
O curv A)(u1, u2) =

[x⊕ τ∗Q(x), i∗µ(τ∗Q)∗DA(u1, u2)]G ∈ (ρO ◦ pr2 ◦πµ)∗gQ ,

for u1, u2 ∈ Tx(J−1(µ)), where DA ∈ Ω2(Q, g) denotes the exterior covariant
derivative of A. In deriving (4) we have used the fact that ρO ◦ pr2 ◦πµ =
ρ ◦ τ∗Q ◦ iµ and that ρ∗ curv A ∈ Ω2(Q, ρ∗gQ) satisfies the identity

(ρ∗ curv A)(v1, v2) = [q ⊕ q,DA(v1, v2)]G ∈ ρ∗gQ (v1, v2 ∈ TqQ) .

This identity simply states, in pullback jargon, that curv A is the two-form
DA on Q, viewed as a gQ-valued form on the base Q/G.
Carrying out an implied contraction, Equations (3) and (4) deliver

(5) π∗µ(pr∗2((iO)Q ∧ ρ∗O curv A)) = 〈µ, i∗µ(τ∗Q)∗DA〉 ∈ Ω2(J−1(µ)) .

From Equations (2), (5) and the Mauer-Cartan equation dA = DA + 1
2A∧A,

follows the formula

(6) π∗µ pr∗2( (ω−O)Q − (iO)Q ∧ ρ∗O curv A) = −〈µ, i∗µ(τ∗Q)∗dA〉 .
The formula in 5.1(3) follows from (6) and (1), which completes the proof of
the theorem.
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Proof of the Lemma. We have u = d/dt x(t) |t=0 for some curve t 7→ x(t) ∈
J−1(µ), in which case

TJ′ · u =
d

dt
[q(t), µ]G

∣∣∣
t=0

,

where q(t) ≡ τ∗Q(x(t)). We can write q(t) = g(t) · qhor(t) for some A-horizontal

curve t 7→ qhor(t) ∈ Q and some curve t 7→ g(t) ∈ G with g(0) = id and with

d

dt
g(t)

∣∣∣
t=0

= A

(
d

dt
q(t)

∣∣∣
t=0

)
= A(Tτ∗Q · u) = −ξ .

Then

TJ′ · u =
d

dt
[qhor(t), g(t)−1 · µ]G

∣∣∣
t=0

=
d

dt
[qhor(t), exp(tξ) · µ]G

∣∣∣
t=0

,

as required.

6 A connection on the Poisson-reduced phase space

To apply Theorem 2.3 to the case P = T∗Q we need to choose a connection
D on the symplectic stratification of P/G ∼= T∗(Q/G)⊕ g∗Q. Such connections
were defined in 2.2. As we shall see, this more-or-less amounts to choosing
an inner product on g∗ (or g). Life is made considerably easier if this choice
is Ad-invariant. (For example, in the case Q = G, which we discuss first,
one might be tempted to use the inertia tensor I ∈ g∗ ⊗ g∗ to form an inner
product. However, this seems to lead to intractable calculations of the phase.
It also makes the geometric phase ggeom more ‘dynamic’ and less ‘geometric.’)
Fortunately, we will see that the particular choice of invariant inner product is
immaterial.

In 6.3 and 6.4 we discuss details needed to describe explicitly the transverse
derivative operator Dµ, and we also compute the canonical two-form ωD (both
these depend on the choice of D). Recall that these will be needed to apply
Theorem 2.3.

6.1 The limiting case Q = G

When Q = G, we have P/G ∼= g∗ and the symplectic leaves are the co-adjoint
orbits. A connection on the symplectic stratification of P/G is then distribution
on g∗ furnishing a complement, at each point µ ∈ g∗, for the space Tµ(G · µ)
tangent to the co-adjoint orbit G·µ through µ. As a subspace of g∗ this tangent
space is the annihilator g◦µ of gµ.
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Lemma. Let G be a connected Lie group whose Lie algebra g admits an Ad-
invariant inner product. Then for all µ ∈ g∗reg one has

g⊥µ = [g, gµ] .

Here g∗reg denotes the set of regular points of the co-adjoint action

Proof. See Appendix B.

The following proposition constructs a connection E on the symplectic strati-
fication of g∗.

Proposition. Let G be a connected Lie group whose Lie algebra g admits an
Ad-invariant inner product and equip g∗ with the corresponding Ad∗-invariant
inner product. Let E denote the connection on the symplectic stratification of
g∗ obtained by orthogonalizing the distribution tangent to the co-adjoint orbits:

E(µ) ≡
(

Tµ(G · µ)
)⊥

.

Let forgE(µ) denotes the image of E(µ) under the canonical identification
Tµg

∗ ∼= g∗, i.e., forgE(µ) ⊂ g∗ is E(µ) ⊂ Tµg
∗ with base point ‘forgotten.’

Then for all µ ∈ g∗reg:

(1) forgE(µ) = [g, gµ]◦.

(2) E(µ) is independent of the particular choice of inner product.

(3) The restriction ιµ : forgE(µ) → g∗µ of the natural projection pµ : g∗ → g∗µ
is an isomorphism.

(4) The orthogonal projection prµ : g → gµ is independent of the choice of
inner product and satisfies the identity

〈ι−1
µ (ν), ξ〉 = 〈ν,prµ ξ〉 (ν ∈ g∗µ, ξ ∈ g) .

(5) The complementary projection pr⊥µ ≡ id− prµ satisfies the identity

prµ[pr⊥µ ξ,pr⊥µ η] = prµ[ξ, η] (ξ, η ∈ g) .

(6) There exists a subspace V ⊂ g∗ containing µ and an open neighborhood
S ⊂ V of µ such that TsS = E(s) for all s ∈ S.

Remark. One can choose the V in (6) to be Gµ-invariant (see the proof below),
so that S (suitably shrunk) is a slice for the co-adjoint action. This is provided,
of course, that G has closed co-adjoint orbits. Although we do not assume that
these orbits are closed, the reader may nevertheless find it helpful to think of
S as a slice. We do not use (6) until Section 8.
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Proof. In fact (3) is true for any space E(µ) complementary to Tµ(G · µ), for
this means

(7) Tµg
∗ = E(µ)⊕ Tµ(G · µ) ,

which, on identifying the spaces with subspaces of g∗, delivers the decomposi-
tion

g∗ = forgE(µ)⊕ g◦µ .

Since g◦µ is the kernel of the linear surjection pµ : g∗ → g∗µ, (3) must be true.
The identity in (4) is an immediate corollary.
Because taking annihilator and orthogonalizing are commutable operations,
we deduce from the above Lemma the formula (g◦µ)⊥ = [g, gµ]◦. Since g◦µ =
forg Tµ(G · µ), (1) holds. Claim (2) follows.
Regarding (5), we have

prµ[pr⊥µ ξ,pr⊥µ η] = prµ[ξ − prµ ξ, η − prµ η]

= prµ([ξ, η] + [prµ ξ,prµ η]− [ξ,prµ η] + [η,prµ ξ]) .

The second term in parentheses vanishes because gµ is Abelian (since µ ∈ g∗reg).
The third and fourth terms vanish because they lie in [g, gµ], which is the kernel
of prµ, on account of the Lemma. This kernel is evidently independent of the
choice of inner product, which proves the first part of (4).
To prove (6), take

V ≡ [g, gµ]◦ = {ν ∈ g∗ | gν ⊂ gµ} ,
which clearly contains µ. Since dim gµ = dim gν if and only if ν ∈ g∗reg, we
conclude that

V ∩ g∗reg = {ν ∈ g∗ | gν = gµ} .
Since, g∗reg ⊂ g∗ is an open set (see Appendix B), it follows that µ has a
neighborhood S ⊂ V of µ such that S ⊂ g∗reg and gs = gµ for all s ∈ S. For
any s ∈ S we then have

(8) forg(E(s)) = [g, gs]
◦ = [g, gµ]◦ = V = forg(TsS) ,

where the first equality follows from (1). Equation (8) implies that E(s) = TsS,
as required.

Henceforth E denotes the connection on the symplectic stratification of g∗

defined in the above Proposition.

6.2 The general case Q 6= G

In general, a connection D on the symplectic stratification of (T∗Q)/G ∼=
T∗(Q/G)⊕ g∗Q is given by

D(z ⊕ [q, µ]G) ≡
{ d
dt
z ⊕ [q, µ+ tδ]G

∣∣
t=0

∣∣∣ δ ∈ forgE(µ)
}

(1)
(
z ∈ T∗ρ(q)(Q/G), q ∈ Q, µ ∈ g∗

)
.
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If [q′, µ′]G = [q, µ]G, then the right-hand side of (1) is unchanged by a sub-
stitution by primed quantities, because E is G-invariant. This shows that the
distribution D is well defined. It is a connection on the symplectic stratification
of T∗(Q/G)⊕ g∗Q because E is a connection on the symplectic stratification of
g∗, and because the symplectic leaf through a point z⊕[q, µ]G is T∗(Q/G)⊕OQ,
where O ≡ G · µ.

6.3 Transverse derivatives.

To determine the transverse derivative operator Dµ determined by D in the
special case of cotangent bundles (needed to apply Theorem 2.3), we will need
an explicit expression for the isomorphism L(D, y, µ) : g∗µ → D(y) defined in
2.2.

Lemma. Fix µ ∈ g∗reg. Then:

(1) Each y ∈ Pµ is of the form y = z ⊕ [q, µ]G for some q ∈ Q and z ∈
T∗ρ(q)(Q/G).

(2) For each such y one has

L(D,µ, y)(ν) =
d

dt
z ⊕ [q, µ+ tι−1

µ (ν)]G

∣∣∣
t=0

,

where ιµ is defined by 6.1(3).

Proof. That each y ∈ Pµ is of the form given in (1) follows from an argument
already given in the proof of Proposition 5.1. Moreover, that proof shows
that there exists x0 ∈ J−1(0)q such that ρ◦(x0) = z. We prove (2) by first

computing the natural isomorphism D(y)
∼−→ g∗µ in Lemma 2.2 whose inverse

defines L(D,µ, y). Define x ≡ Mµ(x0), where Mµ is the momentum shift
defined in 4.3. Then x ∈ J−1(µ). According to (1), an arbitrary vector v ∈
D(y) is of the form

v =
d

dt
z ⊕ [q, µ+ tδ]G

∣∣∣
t=0

,

for some δ ∈ forgE(µ). We claim that the vector

w ≡ d

dt
Mµ+tδ(x0)

∣∣∣
t=0
∈ TxP ⊂ TJ−1(µ)P (P = T∗Q)

is a valid choice for the corresponding vector w in Lemma 2.2. Indeed, one has

Tπ · w =
d

dt
π(Mµ+tδ(x0))

∣∣∣
t=0

=
d

dt
T∗Aρ ·Mµ+tδ(x0)⊕ J′(Mµ+tδ(x0))

∣∣∣
t=0

=
d

dt
ρ◦(x0)⊕ [τ∗Q(Mµ+tδ(x0)), µ+ tδ]G

∣∣∣
t=0

=
d

dt
z ⊕ [q, µ+ tδ]G

∣∣∣
t=0

= v ,
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as required. We now compute

pµ〈dJ, w〉 = pµ
d

dt
J(Mµ+tδ(x0))

∣∣∣
t=0

= pµδ .

The natural isomorphism D(y)
∼−→ g∗µ is therefore given by

d

dt
z ⊕ [q, µ+ tδ]G

∣∣∣
t=0
7→ pµδ (δ ∈ forgE(µ)) .

Since L(D, y, µ) is the inverse of this map, this proves (2).

6.4 The canonical two-form determined by D

We now determine the canonical two-form ωD determined byD in the cotangent
bundle case.

According to Theorem 5.2, the symplectic structure of the leaf Pµ = T∗(Q/G)⊕
OQ (O ≡ G · µ) is given by

(1) ωµ = pr∗1 ωQ/G + pr∗2
(

(ω−O)Q − (iO)Q ∧ ρ∗O curv A
)
,

where pr1 : T∗(Q/G) ⊕ OQ → T∗(Q/G) and pr2 : T∗(Q/G) ⊕ OQ → OQ
are the canonical projections. We claim that the canonical two-form ωD ∈
Ω2(T∗(Q/G)⊕ g∗Q) determined by D (see 2.2) is given by

(2) ωD = pr∗1 ωQ/G + pr∗2
(

(ωE)Q − (idg∗)Q ∧ ρ∗g∗ curv A
)
.

Here pr1 and pr2 denote the canonical projections T∗(Q/G)⊕ g∗Q → T∗(Q/G)
and T∗(Q/G) ⊕ g∗Q → g∗Q. The form ωE denotes the canonical two-form on

g∗ determined by E. The zero-form (idg∗)Q ∈ Ω0(g∗Q, ρ
∗
g∗g
∗
Q) denotes the form

associated with the identity map idg∗ : g∗ → g∗, viewed as an element of
Ω0(g∗, g∗). (If one makes the identification ρ∗g∗g

∗
Q
∼= g∗Q⊕g∗Q, then (idg∗)Q(η) =

η ⊕ η.) Recall that ρg∗ : g∗Q → Q/G denotes associated bundle projection.

The formula in (2) is easily verified by checking that ωD(v, · ) = 0 for v ∈ D,
and by checking that the restriction of ωD to a leaf Pµ coincides with the
two-form on the right-hand side of (1).

7 The dynamic phase

For general G-invariant Hamiltonians H : T∗Q → R the formula for gdyn in
Theorem 3.5 follows from Theorem 2.3, Lemma 6.3, and the definition of Dµ0

given in 2.2. In this section we deduce the form taken by this phase in simple
mechanical systems, as reported in Theorem 3.4.
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7.1 The reduced Hamiltonian

The kinetic energy metric 〈〈 · , · 〉〉Q induces an isomorphism TQ
∼−→ T∗Q send-

ing hor ≡ ker A to J−1(0) and ker Tρ to hor◦ (see 4.2(1) and 4.2(2)). Since
J−1(0)q = (ker Tqρ)◦, it is not too difficult to see that

(1) x ∈ J−1(0)q ⇒ 〈〈x, x〉〉∗Q = 〈〈ρ◦(x), ρ◦(x)〉〉∗Q/G ,

where 〈〈 · , · 〉〉∗Q/G is defined in 3.4 and ρ◦ is defined in 4.1.

If instead, x ∈ hor◦q , then x is the image under the isomorphism TQ
∼−→ T∗Q

of ξQ(q), for some ξ ∈ g. For such ξ, and arbitrary η ∈ g, we compute

〈J(x), η〉 = 〈x, ηQ(q)〉 = 〈〈ξQ(q), ηQ(q)〉〉Q = 〈Î(q)(ξ), η〉 ,

where the first equality follows from 2.4(1). Since η ∈ g is arbitrary, it follows

that ξ = Î−1(q)(J(x)). We now conclude that

(2) x ∈ hor◦q ⇒ 〈〈x, x〉〉∗Q = 〈〈ξQ(q), ξQ(q)〉〉Q = 〈J(x), Î−1(q)(J(x))〉 .

An arbitrary element x ∈ T∗qQ decomposes into unique parts along J−1(0)q
and hor◦q , the first component being A′(x). From (1) and (2) one deduces

(3) 〈〈x, x〉〉∗Q = 〈〈T∗Aρ · x,T∗Aρ · x〉〉∗Q/G + 〈J(x), Î−1(q)(J(x))〉 (x ∈ T∗qQ) .

Define h : T∗(Q/G)⊕ g∗Q → R by

(4) h(z ⊕ [q, µ]G) =
1

2
〈〈z, z〉〉∗Q/G +

1

2
〈µ, Î−1(q)µ〉+ VQ/G(ρ(q)) ,

where VQ/G denotes the function on Q/G to which V drops on account of its
G-invariance. With the help of (3), one checks that H = h ◦ π, i.e., h is the
Poisson-reduced Hamiltonian. Substituting (4) into 3.5(1) delivers the formula

(5) Dµ0
h(z ⊕ [q, µ0]G) = prµ0

Î−1(q)µ0 ,

where prµ0
: g→ gµ0

denotes the orthogonal projection.

To establish the formula for gdyn in Theorem 3.4 it remains to show that

(6)
(

(Prµ0
)Q ∧ ξI

)
([q, µ0]G) = prµ0

Î−1(q)µ0 ,

where ξI ≡ ρ∗OI−1∧(iO)Q. We will be ready to do so after providing the general
definition of associated forms alluded to in 3.2.
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7.2 Associated forms (general case)

Let V be a real vector space on which G acts linearly and O an arbitrary
manifold on which G acts smoothly. Let λ be a V -valued k-form on O. For
the sake of clarity, we will suppose k = 1; the extension to general k will be
obvious.
Assuming that λ ∈ Ω1(O, V ) is equivariant in the sense that

λ(g · u) = g · λ(u) (g ∈ G, u ∈ TO) ,

we will construct a bundle-valued differential form λQ ∈ Ω1(OQ, ρ∗OVQ) called
the associated form. Recall that ρO : OQ → Q/G denotes the projection of the
associated bundle OQ ≡ (Q×O)/G, and ρ∗O denotes pullback. As always, we
assume ρ : Q→ Q/G is equipped with a connection one-form A.
We begin by noting that an arbitrary vector tangent to ρ∗OQ ≡ OQ ⊕Q/G Q is
of the form

(1)
d

dt
[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)

∣∣∣
t=0

,

for some ξ ∈ g, some A-horizontal curve t 7→ qhor(t) ∈ Q, and some curve
t 7→ ν(t) ∈ O. Define Λ ∈ Ω1(ρ∗OQ,V ) by

Λ

(
d

dt
[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)

∣∣∣
t=0

)
≡ λ

(
d

dt
ν(t)

∣∣∣
t=0

)
.

As the reader is left to verify, the equivariance of λ ensures that Λ is well
defined. Now ρ∗OQ ≡ OQ ⊕Q/G Q is a principal G-bundle (G acts according
g · (η ⊕ q) ≡ η ⊕ (g · q)) and we claim that Λ is tensorial.

Proof that Λ is tensorial. The (tangent-lifted) action of G on T(ρ∗OQ) is given
by

g · d
dt

[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)
∣∣∣
t=0

=
d

dt
[qhor(t), ν(t)]G ⊕ g exp(tξ) · qhor(t)

∣∣∣
t=0

=
d

dt
[g · qhor(t), g · ν(t)]G ⊕ exp(tg · ξ) · (g · qhor(t))

∣∣∣
t=0

.

Since t 7→ g · qhor(t) is A-horizontal, it follows that

Λ

(
g · d

dt
[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)

∣∣∣
t=0

)

= λ

(
d

dt
g · ν(t)

∣∣∣
t=0

)
= g · λ

(
d

dt
ν(t)

∣∣∣
t=0

)
,
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where the second quality follows from the equivariance of λ. What we have
just shown is that

Λ(g · u) = g · Λ(u) (g ∈ G)

for arbitrary u ∈ T(ρ∗OQ), i.e., Λ is equivariant. Also, the generic tangent
vector in (1) is vertical (in the principal bundle ρ∗OQ → OQ) if and only if
d/dt [qhor(t), ν(t)]G |t=0 = 0. This is true if and only if d/dt ν(t) |t=0 = 0. It
follows that Λ vanishes on vertical vectors. This fact and the forementioned
equivariance establishes that Λ is tensorial.

Because Λ ∈ Ω1(ρ∗OQ,V ) is tensorial, it drops to an element of Ω1(OQ, ρ∗OVQ),
which is the sought after associated form λQ. By construction one has the
implicit formula

(2) λQ

(
d

dt
[qhor(t), ν(t)]G

∣∣∣
t=0

)
=

[
[q, ν]G ⊕ q, λ

(
d

dt
ν(t)

∣∣∣
t=0

)]

G

,

where q ≡ qhor(0) and ν ≡ ν(0).

Formula (2) is for a one-form λ. From the zero-form analogue of (2), one
deduces

(Prµ0
)Q([q, µ0]G) = [[q, µ0]G ⊕ q,prµ0

]G(3)

(iO)Q([q, µ0]G) = [[q, µ0]G ⊕ q, µ0]G .(4)

Since
(ρ∗OI−1)([q, µ0]G) = [[q, µ0]G ⊕ q, Î(q)]G ,

we deduce

(Prµ0
)Q(ρ∗OI−1 ∧ (iO)Q)([q, µ0]G) = prµ0

Î−1(q)µ0 ,

which proves 7.1(6).

8 The geometric phase

This section derives the formula for ggeom reported in Theorem 3.4. We will
carry out several computations, some of them somewhat involved. However,
our objective throughout is clear: To apply the formula for ggeom in 2.3 we
must calculate the transverse derivative Dµ0

ωD of the leaf symplectic struc-
tures ωµ = ωD|Pµ. To do so we must first compute dωD. Our preference for a
coordinate free proof leads us to lift the computation to a bigger space, which
we do with the help of the ‘slice’ S for the co-adjoint action delivered by 6.1(6).

Using the fact that d is an antiderivation, that d commutes with pullbacks, and
that dωQ/G = 0, we obtain from 6.4(2)

(1) dωD = pr∗2( d(ωE)Q − d(idg∗)Q ∧ ρ∗g∗ curv A− (idg∗)Q ∧ ρ∗g∗d curv A ) .
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Note here that we are using the exterior derivative in the generalized sense
of bundle-valued forms, as defined with respect to the connection A; see A.5,
Appendix A. The last term in parentheses is immediately dispensed with, for
one has Bianchi’s identity2

(2) d curv A = 0 .

To write down formulas for other terms in (1), it will be convenient to have
an appropriate representation for vectors tangent to g∗Q. Indeed, as the reader
will readily verify, each such vector is of the form

d

dt
[qhor(t), µ(t)]G

∣∣∣
t=0

,

for some A-horizontal curve t 7→ qhor(t) ∈ Q and some curve t 7→ µ(t) ∈ g∗.
On occasion, and without loss of generality, we will take µ(t) to be of the form

µ(t) = exp(tξ) · (µ+ tv) ,

for some ξ ∈ g, µ ∈ g∗ and v ∈ forgE(µ) (see Proposition 6.1).
A straightforward computation gives

d(idg∗)Q

(
d

dt
[qhor(t), µ(t)]G

∣∣∣
t=0

)
= [[qhor(0), µ(0)]G⊕qhor(0), µ̇(0)]G ∈ ρ∗g∗g∗Q,

where µ̇(0) ≡ d/dt µ(t) |t=0 ∈ g∗. From this follows the formula

(d(idg∗)Q ∧ ρ∗g∗ curv A)

(
d

dt
[qhor

1 (t), µ1(t)]G

∣∣∣
t=0

, . . . ,
d

dt
[qhor

3 (t), µ3(t)]G

∣∣∣
t=0

)(3)

=
〈
µ̇1(0), DA(q̇hor

2 (0), q̇hor
3 (0))

〉

+
〈
µ̇2(0), DA(q̇hor

3 (0), q̇hor
1 (0))

〉

+
〈
µ̇3(0), DA(q̇hor

1 (0), q̇hor
2 (0))

〉
,

where D denotes exterior covariant derivative and q̇hor
j (0) ≡ d/dt qhor

j (t) |t=0.

To compute d(ωE)Q is not so straightforward.3 The difficulty lies partly in
the fact that the co-adjoint orbit symplectic structures, which ωE ‘collects
together,’ are defined implicitly in terms of the infinitesimal generators of the
co-adjoint action, and this action is generally not free. We overcome this by
pulling (ωE)Q back to a ‘bigger’ space where we can be explicit. We compute

2Perhaps the better known form of this identity is D(DA) = 0, where D denotes exterior
covariant derivative (see, e.g., [12, Theorem II.5.4]). Since, in the notation of Appendix A,
DA = (curv A)̂ , it follows that (d curv A)̂= 0, which in turn implies (2).

3The exterior derivative d does not commute with the formation of associated forms!
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the derivative in the bigger space and then drop to g∗Q. Here is the formula we
will derive:

d(ωE)Q

(
d

dt
[qhor

1 (t), exp(tξ1) · (µ+ tv1)]G

∣∣∣
t=0

,(4)

d

dt
[qhor

2 (t), exp(tξ2) · (µ+ tv2)]G

∣∣∣
t=0

,

d

dt
[qhor

3 (t), exp(tξ3) · (µ+ tv3)]G

∣∣∣
t=0

)

=− 〈v1, [ξ2, ξ3]〉 − 〈v2, [ξ3, ξ1]〉 − 〈v3, [ξ1, ξ2]〉
− 〈µ, [ξ1,DA(q̇hor

2 (0), q̇hor
3 (0))]G〉

− 〈µ, [ξ2,DA(q̇hor
3 (0), q̇hor

1 (0))]G〉
− 〈µ, [ξ3,DA(q̇hor

1 (0), q̇hor
2 (0))]G〉(

ξj ∈ g, µ ∈ g∗reg, vj ∈ forgE(µ)
)
,

where qhor
1 (0) = qhor

2 (0) = qhor
3 (0) ≡ q ∈ Q. Note that we insist that µ lies

in g∗reg. In other words, (4) is a formula for (ωE)Q on the open dense set
(g∗reg)Q ⊂ g∗Q.

Derivation of (4). With µ ∈ g∗reg fixed, let S ⊂ V ⊂ g∗ denote the correspond-
ing ‘slice’ furnished by Proposition 6.1(6). Define the map

b : Q×G× S → g∗Q

(q, g, s) 7→ [q, g · s]G .

At each point (q, g, s) ∈ Q×G×S we define, for each (u, η, ξ, v) ∈ Tρ(q)(Q/G)×
g× g× V , the tangent vector

〈u, η, ξ, v; q, g, s〉 ≡
d

dt

(
exp(tη) · qhor(t), exp(tξ) · g, s+ tv

) ∣∣∣
t=0
∈ T(q,g,s)(Q×G× S) ,

where t 7→ qhor(t) ∈ Q is any A-horizontal curve satisfying

qhor(0) = q

and
d

dt
ρ(qhor(t))

∣∣∣
t=0

= u .

Note that every vector tangent to Q×G× S is of the above form, and that

Tb · 〈u, η, ξ, v; q, g, s〉 =
d

dt
[exp(tη) · qhor(t), exp(tξ)g · (s+ tv)]G

∣∣∣
t=0

(5)

=
d

dt
[qhor(t), exp(−tη) exp(tξ)g · (s+ tv)]G

∣∣∣
t=0

.(6)
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From (6) and the definition of associated forms 3.2(1), we obtain

b∗(ωE)Q

(
〈u1, η1, ξ1, v1; q, g, s〉, 〈u2, η2, ξ2, v2; q, g, s〉

)
(7)

= ωE

(
d

dt
exp(−tη1) exp(tξ1)g · (s+ tv1)

∣∣∣
t=0

,

d

dt
exp(−tη2) exp(tξ2)g · (s+ tv2)

∣∣∣
t=0

)
.

Now ωE is the canonical two-form on g∗ determined by E and according to
6.1(6), we have

d

dt
s+ tvj

∣∣∣
t=0
∈ TsS = E(s) (j = 1, 2) .

It follows from (7) that

(8) b∗(ωE)Q

(
〈u1, η1, ξ1, v1; q, g, s〉, 〈u2, η2, ξ2, v2; q, g, s〉

)

= −
〈
g · s, [ξ1 − η1, ξ2 − η2]

〉
(uj ∈ Tρ(q)(Q/G); ηj , ξj ∈ g; vj ∈ V ) .

It is now that we see the reason for pulling (ωE)Q back to Q × G × S. For if
we define natural projections

πQ : Q×G× S → Q : (q, g, s) 7→ q

πG : Q×G× S → G : (q, g, s) 7→ g

πg∗ : Q×G× S → g∗ : (q, g, s) 7→ g · s
and denote by θG ∈ Ω1(G, g) the right-invariant Mauer-Cartan form on G, then
(8) may be written intrinsically as

b∗(ωE)Q = −1

2
πg∗ ∧

(
(π∗GθG − π∗QA) ∧ (π∗GθG − π∗QA)

)
,

where we view πg∗ : Q×G× S → g∗ as an element of Ω0(Q×G× S, g∗). We
can now take d of both sides, obtaining

(9) b∗d(ωE)Q =

− 1

2
dπg∗ ∧

(
(θ′G −A′′) ∧ (θ′G −A′′)

)
+ πg∗ ∧

(
(θ′G −A′′) ∧ d(θ′G −A′′)

)
,

where a single prime indicates pullback by πG, and a double prime indicates
pullback by πQ. We expand and simplify (9) by invoking the following identi-
ties:

dθ′G =
1

2
θ′G ∧ θ′G ,(10)

dA′′ = (DA)′′ +
1

2
A′′ ∧A′′ ,(11)

θ′G ∧ (θ′G ∧ θ′G) = 0 ,(12)

A′′ ∧ (A′′ ∧A′′) = 0 .(13)
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If the primes are suppressed, then (10) and (11) are the Mauer-Cartan equations
for G and the principal bundle Q resp., while (12) and (13) follow from Jacobi’s
identity. That we may add the primes follows from the fact that d commutes
with pullbacks, and that pullbacks distribute over wedge products. After some
manipulation, Equation (9) becomes

b∗d(ωE)Q = −1

2
dπg∗ ∧ (A′′ ∧A′′)− 1

2
dπg∗ ∧ (θ′G ∧ θ′G)

+ πg∗ ∧
(

A′′ ∧ (DA)′′
)
− πg∗ ∧

(
θ′G ∧ (DA)′′

)

− 1

2
πg∗ ∧

(
A′′ ∧ (θ′G ∧ θ′G)

)
− 1

2
πg∗ ∧

(
θ′G ∧ (A′′ ∧A′′)

)
.(14)

For future reference, we note here the easily computed formula

(15) dπg∗(〈u, η, ξ, v; q, g, s〉) = − ad∗ξ(g · s) + g · v .

By (5), we have

d

dt
[qhor(t), exp(tξ) · (µ+ tv)]G

∣∣∣
t=0

= Tb · 〈u, 0, ξ, v; q, id, µ〉 ,

so that

d(ωE)Q

(
d

dt
[qhor

1 (t), exp(tξ1) · (µ+ tv1)]G

∣∣∣
t=0

,

d

dt
[qhor

2 (t), exp(tξ2) · (µ+ tv2)]G

∣∣∣
t=0

,

d

dt
[qhor

3 (t), exp(tξ3) · (µ+ tv3)]G

∣∣∣
t=0

)

= b∗d(ωE)Q(〈u1, 0, ξ1, v1; q, id, µ〉, 〈u2, 0, ξ2, v2; q, id, µ〉, 〈u3, 0, ξ3, v3; q, id, µ〉),

We now substitute the formula for b∗d(ωE)Q in (14). In fact, since

A′′(〈uj , 0, ξj , vj ; q, id, µ〉) = 0 (j = 1, 2 or 3) ,

the only part on the right-hand side of (14) with a nontrivial contribution is

−1

2
dπg∗ ∧ (θ′G ∧ θ′G)− πg∗ ∧

(
θ′G ∧ (DA)′′

)
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and we obtain, with the help of (15),

d(ωE)Q

(
d

dt
[qhor

1 (t), exp(tξ1) · (µ+ tv1)]G

∣∣∣
t=0

,

d

dt
[qhor

2 (t), exp(tξ2) · (µ+ tv2)]G

∣∣∣
t=0

,

d

dt
[qhor

3 (t), exp(tξ3) · (µ+ tv3)]G

∣∣∣
t=0

)

= 〈ad∗ξ1 µ− v1, [ξ2, ξ3]〉 + cyclic terms

− 〈µ, [ξ1,DA(q̇hor
2 (0), q̇hor

3 (0))]〉 − cyclic terms

= 〈µ, [ξ1, [ξ2, ξ3]] + cyclic terms〉
− 〈v1, [ξ2, ξ3]〉 − cyclic terms

− 〈µ, [ξ1,DA(q̇hor
2 (0), q̇hor

3 (0))]〉 − cyclic terms .

The term appearing in the third last row vanishes, by Jacobi’s identity, and
what is left amounts to Equation (4).

One computes, using Lemma 6.3 and the definition of Dµ0
in 2.2,

〈
ν,Dµ0

ωD

( d

dt
z1(t)⊕ [qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,

d

dt
z2(t)⊕ [qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)〉

= dωD

( d

dt
z ⊕ [q, µ0 + tι−1

µ0
(ν)]G

∣∣∣
t=0

,

d

dt
z1(t)⊕ [qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,

d

dt
z2(t)⊕ [qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= −
〈
ι−1
µ0

(ν), [ξ1, ξ2]
〉
−
〈
ι−1
µ0

(ν), DA(q̇hor
1 (0), q̇hor

2 (0))
〉

=
〈
ν, −prµ0

(
[ξ1, ξ2] + DA(q̇hor

1 (0), q̇hor
2 (0)

)〉
.

The second equality follows from Equations (1)–(4) derived above; the last
equality follows from 6.1(4). Since ν ∈ g∗µ0

in this computation is arbitrary, we
conclude that

Dµ0
ωD

( d

dt
z1(t)⊕ [qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,(16)

d

dt
z2(t)⊕ [qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= − prµ0
[ξ1, ξ2]− prµ0

DA(q̇hor
1 (0), q̇hor

2 (0)) .
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Proposition 2.8 and the definition 3.2(1) of associated forms delivers the formula

(curvαµ0
)Q

( d

dt
[qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,(17)

d

dt
[qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)
= prµ0

[ξ1, ξ2] .

On the other hand, we have

(ρ∗O curv A)
( d

dt
[qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,

d

dt
[qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= [[q, µ0]G ⊕ q,DA(q̇hor
1 (0), q̇hor

2 (0))]G ∈ ρ∗OgQ .

Combining this with 7.2(3) gives

((Prµ0
)Q ∧ ρ∗O curv A)

( d

dt
[qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,(18)

d

dt
[qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= prµ0
DA(q̇hor

1 (0), q̇hor
2 (0)) .

Comparing the right-hand side of (16) with the right-hand sides of (17) and
(18), we deduce the intrinsic formula

Dµ0
ωD = −pr∗2

(
(curvαµ0

)Q + (Prµ0
)Q ∧ ρ∗O curv A

)
(19)

= −pr∗2(Ωµ0
+ (Prµ0

)Q ∧ ΩA) .

The curve t 7→ ηt ∈ OQ in Theorem 3.4 is a closed embedded curve because it
bounds the surface S. Because zt ⊕ ηt and ηt have the same minimal period,
it follows that there exists a smooth map s : ∂S → T∗(Q/G) ⊕ OQ such that
s(ηt) = zt⊕ηt. As pr2 : T∗(Q/G)⊕OQ → OQ is a vector bundle, the map s can
be extended to a global section s : OQ → T∗(Q/G)⊕OQ of pr2. This follows,
for example, from [12, Theorem I.5.7]. Define Σ ≡ s(S), so that pr2(Σ) = S
and t 7→ zt ⊕ ηt is the boundary of Σ. Appealing to Theorem 2.3 and (19), we
obtain

ggeom = exp

∫

Σ

Dµ0
ωD = exp

(
−
∫

Σ

pr∗2 (Ωµ0
+ (Prµ0

)Q ∧ ΩA )

)

= exp

(
−
∫

S

( Ωµ0
+ (Prµ0

)Q ∧ ΩA )

)
,

which is the form of ggeom given in Theorem 3.4.
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A On bundle-valued differential forms

The exterior calculus of differential forms taking values in a vector bundle is
ordinarily constructed via Koszul (or ‘affine’) connections. See, for example,
[10, Chap. 9] or [13, Chap. 17]. On the other hand, given an associated vector
bundle VQ (see 3.1 for notation), one can model the exterior calculus of VQ-
valued forms on the exterior covariant calculus of tensorial V -valued forms on
Q. In place of a Koszul connection, one prescribes a principal connection on
Q. (The corresponding Koszul connection ∇ appears as the p = 0 case of
Lie derivatives of bundle-valued p-forms; see A.7.) When the vector bundle at
hand is realized as an associated bundle, this latter approach, while equivalent
to the former, is better suited to explicit computations. As we are unaware of
a readily accessible account of it, we outline the basics here.

A.1 Notation

Let ξ : E → B be a vector bundle with base B and consider the (Abelian) cate-
gory of real vector bundles over B, restricting attention to morphisms covering
the identity on B. Denote by Altp(TB,E) the bundle over B of all alternating
p-linear bundle morphisms from TB ⊕ · · · ⊕ TB into E . Then an E-valued
differential p-form is a smooth section of Altp(TB,E) → B. The space of all
such forms is denoted Ωp(B,E).

A.2 Bundle-valued forms as tensorial vector-valued forms

Let ρ : Q → B be a principal G-bundle equipped with a connection one-form
A and let V be a real vector space on which G acts linearly. Let Ωp

tens(Q,V )
denote the space of tensorial V -valued forms on Q (for a definition of tensorial
forms see, e.g., [12, Section II.5]). Here, as elsewhere, all actions are understood
to be left actions (contrary to the convention adopted in [12]). As is well known,
one has an isomorphism

λ 7→ λ̂

Ωp(B, VQ)
∼−→ Ωptens(Q,V )

defined implicitly through the formula

(1) λ(Tρ · u1, . . . ,Tρ · up) = [q, λ̂(u1, . . . , up)]G (uj ∈ TqQ, q ∈ Q) .

A.3 Pullbacks

If f : B′ → B is a smooth map, then the pullback f ∗Q of the principal bundle
Q is defined by

f∗Q ≡ B′ ⊕B Q
(see 4.2 for notation). The manifold f ∗Q is itself a principal G-bundle; its
base space is B′, the bundle projection is b′ ⊕ q → b′, and G acts according to
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g · (b′ ⊕ q) ≡ (b′ ⊕ g · q). One defines a map f̂ : f∗Q→ Q by f̂(b′ ⊕ q) ≡ q and
has the commutative diagram

PSfrag replacements

ρ◦

J−1(0)
T∗(Q/G)

.
Q

Q/G

ρ

f∗Q Q

B′ B

f̂

ρ .

f

A connection one-form for f∗Q→ B′ is f̂∗A.
If g : B′′ → B′ is a second map, then a natural isomorphism (f ◦ g)∗Q ∼=
g∗(f∗Q) is given by

B′′ ⊕B Q ∼−→ B′′ ⊕B′ (B′ ⊕B Q)

b′′ ⊕ q → b′′ ⊕ (g(b′′)⊕ q) .

The pullback f∗VQ of an associated vector bundle VQ can be defined analo-
gously but we will define it in a way making the pullback itself an associated
bundle:

f∗VQ ≡ Vf∗Q .

By the above we have (f ◦ g)∗VQ ∼= g∗(f∗VQ). This definition of f∗VQ is
equivalent to the forementioned alternative, for we have an isomorphism

f∗VQ
∼−→ B′ ⊕B VQ

[b′ ⊕ q, v]G 7→ b′ ⊕ [q, v]G .

The map f : B′ → B defines a pullback operator on forms f ∗ : Ωp(B, VQ) →
Ωp(B′, f∗VQ) defined through

(f∗λ)̂= f̂∗λ̂ ,

where the pullback on the right-hand side is the usual one for vector-valued
forms. Making the identification (f ◦ g)∗VQ ∼= g∗(f∗VQ) indicated above, we
have (f ◦ g)∗ = g∗ ◦ f∗.

A.4 Wedge products

The wedge product λ ∧ µ ∈ Ωp+q(B, (U ⊗ V )Q) of forms λ ∈ Ωp(B,UQ) and
µ ∈ Ωq(B, VQ) is defined through

(λ ∧ µ)̂= λ̂ ∧ µ̂ .

Suppose there is a natural, bilinear pairing (u, v) 7→ 〈u, v〉 : U × V → W that
is equivariant in the sense that 〈g · u, g · v〉 = g · 〈u, v〉. Then there is a G-

invariant homomorphism U ⊗ V → W allowing one to identify λ̂ ∧ µ̂ with an
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element of Ωp+qtens(Q,W ); λ ∧ µ is correspondingly identified with an element of
Ωp+q(B,WQ). In the special case that G acts trivially on W (e.g., W = R),
one has WQ

∼= W × Q and there is a further identification Ωp+q(B,WQ) ∼=
Ωp+q(B,W ).

A.5 Exterior derivatives

The exterior derivative dλ ∈ Ωp+1(B, VQ) of a form λ ∈ Ωp(B, VQ) is defined
through

(dλ)̂= Dλ̂ ,

where D denotes exterior covariant derivative with respect to the connection
A (see [12]).

A.6 Curvature

We next define the curvature form BV , which measures the degree to which
Poincaré’s identity d2 = 0 fails for VQ-valued differential forms.
By its equivariance, a tensorial zero-form F ∈ Ω0

tens(Q,V ) satisfies the identity

dF

(
d

dt
exp(tξ) · q

∣∣∣
t=0

)
= adVξ F (q) (ξ ∈ g, q ∈ Q) ,

where adVξ denotes the infinitesimal generator of the linear action of G on V
along ξ, viewed as an element of Hom(V, V ). From the definition of exterior
covariant derivative, one deduces the identity DF = dF − AV ∧ F , where
AV ∈ Ω1(Q,Hom(V, V )) is defined by

AV (u) ≡ adVA(u) (u ∈ TQ) .

It follows that D2F = −DAV ∧ F . Note that by the linearity of ξ 7→ adVξ , we
have

DAV (u1, u2) = adVDA(u1,u2) (u1, u2 ∈ TqQ, q ∈ Q) .

The two-form DAV is tensorial (with G acting on Hom(V, V ) by conjugation),
and so defines a two-form BV ∈ Ω2(B,Hom(V, V )Q) through4

B̂V = −DAV ,

allowing us to write D2F = B̂V ∧ F . Moreover, one can show that F in this
identity can be replaced by an arbitrary, tensorial, V -valued p-form. One does
so using the fact that such a form is an R-linear combination of products of
the form ω ∧ F , for some ω ∈ Ωp

tens(Q,R) and F ∈ Ω0
tens(Q,V ). In particular,

replacing F by λ̂ (λ ∈ Ωp(B, VQ)), one deduces the important identity

(1) d2λ = BV ∧ λ (λ ∈ Ωp(B, VQ)) .

4We have inserted a minus sign in the formula defining BV to ensure that the identity
(1) conforms with the case of right principal bundles, as well as the theory as developed via
Koszul connections.
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Notice that d2 = 0 if and only if BV = 0, which is true if and only if G acts
trivially on V or A is a flat connection.

Note. The two-form curv A ∈ Ω2(B, gQ) defined through (curv A)̂= DA is
known as the curvature of A. It is related to Bg in the following way: Bg is
the image of curv A under the natural map Ω2(B, gQ) → Ω2(B,Hom(g, g)Q)
induced by ξ 7→ − adξ : g→ Hom(g, g).

A.7 Lie derivatives and interior products

If X is a vector field on B and Xh denotes its A-horizontal lift to a vector field
on Q, then the (covariant) Lie derivative LX : Ωp(B, VQ) → Ωp(B, VQ) (often
denoted ∇X) is defined through

(LXλ)̂= LXh λ̂ (λ ∈ Ωp(B, VQ)) ,

where LXh : Ωp(Q,V )→ Ωp(Q,V ) is the standard Lie derivative along Xh.
The interior product (contraction) X λ of a vector field X on B with a VQ-
valued p-form λ satisfies the identity

(X λ)̂= Xh λ̂ .

A.8

Many familiar identities generalize to the vector bundle case, despite the fact
that d2 6= 0. These are derived by simply dropping the appropriate identity for
tensorial forms. For example, one has the well known identity

d

dt
exp

(
tDA(Xh(q), Y h(q))

)
· q
∣∣∣
t=0

= [X,Y ]h(q)− [Xh, Y h](q) (q ∈ Q) ,

which, for an arbitrary zero-form F ∈ Ω0(B, VQ), implies

DAV (Xh, Y h) ∧ F̂ = L[X,Y ]h F̂ − LXhLY h F̂ + LY hLXh F̂ .

Dropping to B, we obtain

BV (X,Y ) ∧ F = LXLY F − LY LXF − L[X,Y ]F ,

which characterizes BV in terms of (covariant) Lie derivatives.
Similarly, just as D is an antiderivation on tensorial vector-valued forms, d is
an antiderivation on bundle-valued forms, i.e.,

d(λ ∧ µ) = dλ ∧ µ+ (−1)pλ ∧ dµ (λ ∈ Ωp(B, VQ), µ ∈ Ωq(B, VQ)) .

In particular, applying d to both sides of A.6(1) gives

d2(dλ) = dBV ∧ λ+ BV ∧ dλ .
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Replacing λ in A.6(1) by dλ and substituting into the above equation yields

BV ∧ dλ = dBV ∧ λ+ BV ∧ dλ
⇒ dBV ∧ λ = 0 .

Since λ ∈ Ωp(B, VQ) is arbitrary, we conclude that dBV = 0 (Bianchi’s iden-
tity).

B On regular points of the co-adjoint action

This appendix is devoted to the proof of Lemma 6.1. While this could be
done using standard structure theory, we opt for a ‘direct’ proof based on the
following well known fact:5

Theorem (Duflo-Vergne [11]). Let G be any finite-dimensional Lie group.
Then g∗reg is open and dense in g∗. Furthermore, for all µ ∈ g∗reg, gµ is Abelian.

Fix an Ad-invariant inner product on g and equip g∗ with the corresponding
Ad∗-invariant inner product. The product on g defines an equivariant isomor-
phism ρ : g

∼−→ g∗, establishing an equivalence between the adjoint and co-
adjoint representations. We therefore begin by examining the adjoint action,
where computations are easier.
Put λ ≡ ρ−1(µ) (µ ∈ g∗reg). By invariance of the inner product on g, the
map ξ 7→ [ξ, λ] is skew-symmetric. Its kernel gλ and image [g, λ] are therefore
orthogonal:

(1) g⊥λ = [g, λ] .

In addition, we claim that

(2) [g, λ] = [g, gλ] .

Proof of (2). Equation (1) implies that g = gλ + [g, λ] so that for an arbitrary
η ∈ gλ we have

(3) [g, η] = [gλ + [g, λ], η] = [[g, λ], η] .

The second equality holds because gλ is Abelian (by the Theorem and the
equivalence of the adjoint and co-adjoint representations). It follows from (3)
that an arbitrary element of [g, η] is of the form [[ξ, λ], η], for some ξ ∈ g. But,
by Jacobi’s identity, we have

[[ξ, λ], η] = −[[η, ξ], λ]− [[λ, η], ξ]

= −[[η, ξ], λ] , since [λ, η] = 0 (gλ is Abelian)

⇒ [[ξ, λ], η] ∈ [g, λ] .

So [g, η] ⊂ [g, λ]. Since η ∈ gλ was arbitrary, we conclude that [g, gλ] ⊂ [g, λ].
As the reverse containment is obvious, Equation (2) is established.

5Proofs of this theorem in English are given in [18] and [25].
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Together (1) and (2) imply that g⊥λ = [g, gλ]. By the equivalence of the adjoint
and co-adjoint representations, we have g⊥µ = [g, gµ], as claimed.
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