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Documenta Mathematica veröffentlicht Forschungsarbeiten aus allen ma-
thematischen Gebieten und wird in traditioneller Weise referiert.

Documenta Mathematica erscheint am World Wide Web unter:
http://www.mathematik.uni-bielefeld.de/documenta

Artikel können als TEX-Dateien per E-Mail bei einem der Herausgeber ein-
gereicht werden. Hinweise für die Vorbereitung der Artikel können unter der
obigen WWW-Adresse gefunden werden.

Documenta Mathematica publishes research manuscripts out of all mathe-
matical fields and is refereed in the traditional manner.

Documenta Mathematica is published on the World Wide Web under:
http://www.mathematik.uni-bielefeld.de/documenta

Manuscripts should be submitted as TEX -files by e-mail to one of the editors.
Hints for manuscript preparation can be found under the above WWW-address.
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C∗-Algebras Associated

with Presentations of Subshifts
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Communicated by Joachim Cuntz

Abstract. A λ-graph system is a labeled Bratteli diagram with an up-
ward shift except the top vertices. We construct a continuous graph in
the sense of V. Deaconu from a λ-graph system. It yields a Renault’s
groupoid C∗-algebra by following Deaconu’s construction. The class of
these C∗-algebras generalize the class of C∗-algebras associated with sub-
shifts and hence the class of Cuntz-Krieger algebras. They are unital,
nuclear, unique C∗-algebras subject to operator relations encoded in the
structure of the λ-graph systems among generating partial isometries and
projections. If the λ-graph systems are irreducible (resp. aperiodic), they
are simple (resp. simple and purely infinite). K-theory formulae of these
C∗-algebras are presented so that we know an example of a simple and
purely infinite C∗-algebra in the class of these C∗-algebras that is not
stably isomorphic to any Cuntz-Krieger algebra.

2000 Mathematics Subject Classification: Primary 46L35, Secondary
37B10.
Keywords and Phrases: C∗-algebras, subshifts, groupoids, Cuntz-Krieger
algebras

1. Introduction

In [CK], J. Cuntz-W. Krieger have presented a class of C∗-algebras associated
to finite square matrices with entries in {0, 1}. The C∗-algebras are simple
if the matrices satisfy condition (I) and irreducible. They are also purely
infinite if the matrices are aperiodic. There are many directions to general-
ize the Cuntz-Krieger algebras (cf. [An],[De],[De2],[EL],[KPRR],[KPW],[Pi],
[Pu],[T], etc.). The Cuntz-Krieger algebras have close relationships to topo-
logical Markov shifts by Cuntz-Krieger’s observation in [CK]. Let Σ be a fi-
nite set, and let σ be the shift on the infinite product space ΣZ defined by
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2 Kengo Matsumoto

σ((xn)n∈Z) = (xn+1)n∈Z, (xn)n∈Z ∈ ΣZ. For a closed σ-invariant subset Λ

of ΣZ, the topological dynamical system Λ with σ is called a subshift. The
topological Markov shifts form a class of subshifts. In [Ma], the author has
generalized the class of Cuntz-Krieger algebras to a class of C∗-algebras associ-
ated with subshifts. He has formulated several topological conjugacy invariants
for subshifts by using the K-theory for these C∗-algebras ([Ma5]). He has also
introduced presentations of subshifts, that are named symbolic matrix system
and λ-graph system ([Ma5]). They are generalized notions of symbolic matrix
and λ-graph (= labeled graph) for sofic subshifts respectively.
We henceforth denote by Z+ and N the set of all nonnegative integers and the
set of all positive integers respectively. A symbolic matrix system (M, I) over a
finite set Σ consists of two sequences of rectangular matrices (Ml,l+1, Il,l+1), l ∈
Z+. The matrices Ml,l+1 have their entries in the formal sums of Σ and the
matrices Il,l+1 have their entries in {0, 1}. They satisfy the following relations

(1.1) Il,l+1Ml+1,l+2 =Ml,l+1Il+1,l+2, l ∈ Z+.

It is assumed for Il,l+1 that for i there exists j such that the (i, j)-component
Il,l+1(i, j) = 1 and that for j there uniquely exists i such that Il,l+1(i, j) = 1. A
λ-graph system L = (V,E, λ, ι) consists of a vertex set V = V0 ∪ V1 ∪ V2 ∪ · · · ,
an edge set E = E0,1 ∪ E1,2 ∪ E2,3 ∪ · · · , a labeling map λ : E → Σ and a
surjective map ιl,l+1 : Vl+1 → Vl for each l ∈ Z+. It naturally arises from a
symbolic matrix system. For a symbolic matrix system (M, I), a labeled edge

from a vertex vli ∈ Vl to a vertex vl+1
j ∈ Vl+1 is given by a symbol appearing

in the (i, j)-component Ml,l+1(i, j) of the matrix Ml,l+1. The matrix Il,l+1

defines a surjection ιl,l+1 from Vl+1 to Vl for each l ∈ Z+. The symbolic
matrix systems and the λ-graph systems are the same objects. They give rise
to subshifts by looking the set of all label sequences appearing in the labeled
Bratteli diagram (V,E, λ). A canonical method to construct a symbolic matrix
system and a λ-graph system from an arbitrary subshift has been introduced
in [Ma5]. The obtained symbolic matrix system and the λ-graph system are
said to be canonical for the subshift. For a symbolic matrix system (M, I), let
Al,l+1 be the nonnegative rectangular matrix obtained from Ml,l+1 by setting
all the symbols equal to 1 for each l ∈ Z+. The resulting pair (A, I) satisfies
the following relations from (1.1)

(1.2) Il,l+1Al+1,l+2 = Al,l+1Il+1,l+2, l ∈ Z+.

We call (A, I) the nonnegative matrix system for (M, I).
In the present paper, we introduce C∗-algebras from λ-graph systems. If a λ-
graph system is the canonical λ-graph system for a subshift Λ, the C∗-algebra
coincides with the C∗-algebra OΛ associated with the subshift. Hence the class
of the C∗-algebras in this paper generalize the class of Cuntz-Krieger algebras.
Let L = (V,E, λ, ι) be a λ-graph system over alphabet Σ. We first construct
a continuous graph from L in the sense of V. Deaconu ([D2],[De3],[De4]). We
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C∗-Algebras Associatedwith Presentations of Subshifts 3

then define the C∗-algebra OL associated with L as the Renault’s C∗-algebra
of a groupoid constructed from the continuous graph. For an edge e ∈ El,l+1,
we denote by s(e) ∈ Vl and t(e) ∈ Vl+1 its source vertex and its terminal vertex
respectively. Let Λl be the set of all words of length l of symbols appearing in
the labeled Bratteli diagram of L. We put Λ∗ = ∪∞l=0Λl where Λ0 denotes the
empty word. Let {vl1, . . . , vlm(l)} be the vertex set Vl. We denote by Γ−l (vli)

the set of all words in Λl presented by paths starting at a vertex of V0 and
terminating at the vertex vli. L is said to be left-resolving if there are no distinct
edges with the same label and the same terminal vertex. L is said to be
predecessor-separated if Γ−l (vli) 6= Γ−l (vlj) for distinct i, j and for all l ∈ N.
Assume that L is left-resolving and satisfies condition (I), a mild condition
generalizing Cuntz-Krieger’s condition (I). We then prove:

Theorem A (Theorem 3.6 and Theorem 4.3). Suppose that a λ-graph sys-
tem L satisfies condition (I). Then the C∗-algebra OL is the universal concrete
unique C∗-algebra generated by partial isometries Sα, α ∈ Σ and projections
Eli, i = 1, 2, . . . ,m(l), l ∈ Z+ satisfying the following operator relations:

∑

α∈Σ

SαS
∗
α = 1,(1.3)

m(l)∑

i=1

Eli = 1, Eli =

m(l+1)∑

j=1

Il,l+1(i, j)El+1
j ,(1.4)

SαS
∗
αE

l
i = EliSαS

∗
α,(1.5)

S∗αE
l
iSα =

m(l+1)∑

j=1

Al,l+1(i, α, j)El+1
j ,(1.6)

for i = 1, 2, . . . ,m(l), l ∈ Z+, α ∈ Σ, where

Al,l+1(i, α, j) =

{
1 if s(e) = vli, λ(e) = α, t(e) = vl+1

j for some e ∈ El,l+1,

0 otherwise,

Il,l+1(i, j) =

{
1 if ιl,l+1(vl+1

j ) = vli,

0 otherwise

for i = 1, 2, . . . ,m(l), j = 1, 2, . . . ,m(l + 1), α ∈ Σ.

If L is predecessor-separated, the following relations:

Eli =
∏

µ,ν∈Λl

µ∈Γ−
l

(vli),ν 6∈Γ−
l

(vli)

S∗µSµ(1− S∗νSν), l ∈ N,(1.7)

E0
i =

∑

α∈Σ

m(1)∑

j=1

A0,1(i, α, j)SαE
1
jS
∗
α
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4 Kengo Matsumoto

hold for i = 1, 2, . . . ,m(l), where Sµ = Sµ1
· · ·Sµk for µ =

(µ1, . . . , µk), µ1, . . . , µk ∈ Σ. In this case, OL is generated by only the
partial isometries Sα, α ∈ Σ.
If L comes from a finite directed graph G, the algebra OL becomes the Cuntz-
Krieger algebra OAG associated to its adjacency matrix AG with entries in
{0, 1}.
We generalize irreducibility and aperiodicity for finite directed graphs to λ-
graph systems. Then simplicity arguments of the Cuntz algebras in [C], the
Cuntz-Krieger algebras in [CK] and the C∗-algebras associated with subshifts
in [Ma] are generalized to our C∗-algebras OL so that we have

Theorem B (Theorem 4.7 and Proposition 4.9). If L satisfies condi-
tion (I) and is irreducible, the C∗-algebra OL is simple. In particular if L is
aperiodic, OL is simple and purely infinite.

There exists an action αL of the torus group T = {z ∈ C | |z| = 1} on the alge-
bra OL that is called the gauge action. It satisfies αLz(Sα) = zSα, α ∈ Σ
for z ∈ T. The fixed point subalgebra OL

αL of OL under αL is an AF-
algebra FL, that is stably isomorphic to the crossed product OL oαL

T. Let
(A, I) = (Al,l+1, Il,l+1)l∈Z+

be the nonnegative matrix system for the symbolic
matrix system corresponding to the λ-graph system L. In [Ma5], its dimen-
sion group (∆(A,I),∆

+
(A,I), δ(A,I)), its Bowen-Franks groups BF i(A, I), i = 0, 1

and its K-groups Ki(A, I), i = 0, 1 have been formulated. They are related to
topological conjugacy invariants of subshifts. The following K-theory formu-
lae are generalizations of the K-theory formulae for the Cuntz-Krieger alge-
bras and the C∗-algebras associated with subshifts ([Ma2],[Ma4],[Ma5],[Ma6],
cf.[C2],[C3],[CK]).

Theorem C (Proposition 5.3, Theorem 5.5 and Theorem 5.9).

(K0(FL),K0(FL)+, α̂L∗) ∼= (∆(A,I),∆
+
(A,I), δ(A,I)),

Ki(OL) ∼= Ki(A, I), i = 0, 1,

Exti+1(OL) ∼= BF i(A, I), i = 0, 1

where α̂L denotes the dual action of the gauge action αL on OL.

We know that the C∗-algebra OL is nuclear and satisfies the Universal Coef-
ficient Theorem (UCT) in the sense of Rosenberg and Schochet (Proposition
5.7)([RS], cf. [Bro2]). Hence, if L is aperiodic, OL is a unital, separable, nu-
clear, purely infinite, simple C∗-algebra satisfying the UCT, that lives in a
classifiable class by K-theory of E. Kirchberg [Kir] and N. C. Phillips [Ph]. By
Rørdam’s result [Rø;Proposition 6.7], one sees that OL is isomorphic to the
C∗-algebra of an inductive limit of a sequence B1 → B2 → B3 → · · · of simple
Cuntz-Krieger algebras (Corollary 5.8).
We finally present an example of a λ-graph system for which the associated
C∗-algebra is not stably isomorphic to any Cuntz-Krieger algebra OA and any
Cuntz-algebra On for n = 2, 3, . . . ,∞. The example is a λ-graph system L(S)
constructed from a certain Shannon graph S (cf.[KM]). We obtain

Documenta Mathematica 7 (2002) 1–30



C∗-Algebras Associatedwith Presentations of Subshifts 5

Theorem D (Theorem 7.7). The C∗-algebra OL(S) is unital, simple, purely
infinite, nuclear and generated by five partial isometries with mutually orthog-
onal ranges. Its K-groups are

K0(OL(S)) = 0, K1(OL(S)) = Z.

In [Ma7], among other things, relationships between ideals of OL and sub λ-
graph systems of L are studied so that the class of C∗-algebras associated with
λ-graph systems is closed under quotients by its ideals.

Acknowledgments: The author would like to thank Yasuo Watatani for his
suggestions on groupoid C∗-algebras and C∗-algebras of Hilbert C∗-bimodules.
The author also would like to thank the referee for his valuable suggestions and
comments for the presentation of this paper.

2. Continuous graphs constructed from λ-graph systems

We will construct Deaconu’s continuous graphs from λ-graph systems. They
yield Renault’s r-discrete groupoid C∗-algebras by Deaconu ([De],[De2],[De3]).
Following V. Deaconu in [De3], by a continuous graph we mean a closed subset
E of V × Σ × V where V is a compact metric space and Σ is a finite set. If in
particular V is zero-dimensional, that is, the set of all clopen sets form a basis
of the open sets, we say E to be zero-dimensional or Stonean.
Let L = (V,E, λ, ι) be a λ-graph system over Σ with vertex set V = ∪l∈Z+

Vl
and edge set E = ∪l∈Z+

El,l+1 that is labeled with symbols in Σ by λ : E → Σ,
and that is supplied with surjective maps ι(= ιl,l+1) : Vl+1 → Vl for l ∈ Z+.
Here the vertex sets Vl, l ∈ Z+ are finite disjoint sets. Also El,l+1, l ∈ Z+ are
finite disjoint sets. An edge e in El,l+1 has its source vertex s(e) in Vl and its
terminal vertex t(e) in Vl+1 respectively. Every vertex in V has a successor and
every vertex in Vl for l ∈ N has a predecessor. It is then required that there
exists an edge in El,l+1 with label α and its terminal is v ∈ Vl+1 if and only
if there exists an edge in El−1,l with label α and its terminal is ι(v) ∈ Vl. For
u ∈ Vl−1 and v ∈ Vl+1, we put

Eι(u, v) = {e ∈ El,l+1 | t(e) = v, ι(s(e)) = u},
Eι(u, v) = {e ∈ El−1,l | s(e) = u, t(e) = ι(v)}.

Then there exists a bijective correspondence between Eι(u, v) and Eι(u, v) that
preserves labels for each pair of vertices u, v. We call this property the local
property of L. Let ΩL be the projective limit of the system ιl,l+1 : Vl+1 →
Vl, l ∈ Z+, that is defined by

ΩL = {(vl)l∈Z+
∈
∏

l∈Z+

Vl | ιl,l+1(vl+1) = vl, l ∈ Z+}.

We endow ΩL with the projective limit topology so that it is a compact Haus-
dorff space. An element v in ΩL is called an ι-orbit or also a vertex. Let EL be

Documenta Mathematica 7 (2002) 1–30



6 Kengo Matsumoto

the set of all triplets (u, α, v) ∈ ΩL × Σ× ΩL such that for each l ∈ Z+, there
exists el,l+1 ∈ El,l+1 satisfying

ul = s(el,l+1), vl+1 = t(el,l+1) and α = λ(el,l+1)

where u = (ul)l∈Z+
, v = (vl)l∈Z+

∈ ΩL.

Proposition 2.1. The set EL ⊂ ΩL×Σ×ΩL is a zero-dimensional continuous
graph.

Proof. It suffices to show that EL is closed. For (u, β, v) ∈ ΩL × Σ× ΩL with
(u, β, v) 6∈ EL, one finds l ∈ N such that there does not exist any edge e in
El,l+1 with s(e) = ul, t(e) = vl+1 and λ(e) = β. Put

Uul = {(wi)i∈Z+
∈ ΩL | wl = ul}, Uvl+1 = {(wi)i∈Z+

∈ ΩL | wl+1 = vl+1}.

They are open sets in ΩL. Hence Uul × {β} × Uvl+1 is an open neighborhood
of (u, β, v) that does not intersect with EL so that EL is closed. ¤
We denote by {vl1, . . . , vlm(l)} the vertex set Vl. Put for α ∈ Σ, i = 1, . . . ,m(1)

U1
i (α) = {(u, α, v) ∈ EL | v1 = v1

i where v = (vl)l∈Z+
∈ ΩL}.

Then U1
i (α) is a clopen set in EL such that

∪α∈Σ ∪m(1)
i=1 U1

i (α) = EL, U1
i (α) ∩ U1

j (β) = ∅ if (i, α) 6= (j, β).

Put t(u, α, v) = v for (u, α, v) ∈ EL. Suppose that L is left-resolving. It is
easy to see that if U1

i (α) 6= ∅, the restriction of t to U 1
i (α) is a homeomor-

phism onto Uv1
i

= {(vl)l∈Z+
∈ ΩL | v1 = v1

i }. Hence t : EL → ΩL is a local

homeomorphism.
Following Deaconu [De3], we consider the set XL of all one-sided paths of EL:

XL = {(αi, ui)∞i=1 ∈
∞∏

i=1

(Σ× ΩL) | (ui, αi+1, ui+1) ∈ EL for all i ∈ N

and (u0, α1, u1) ∈ EL for some u0 ∈ ΩL}.

The set XL has the relative topology from the infinite product topology of
Σ × ΩL. It is a zero-dimensional compact Hausdorff space. The shift map
σ : (αi, ui)

∞
i=1 ∈ XL → (αi+1, ui+1)∞i=1 ∈ XL is continuous. For v = (vl)l∈Z+

∈
ΩL and α ∈ Σ, the local property of L ensures that if there exists e0,1 ∈
E0,1 satisfying v1 = t(e0,1), α = λ(e0,1), there exist el,l+1 ∈ El,l+1 and u =
(ul)l∈Z+

∈ ΩL satisfying ul = s(el,l+1), vl+1 = t(el,l+1), α = λ(el,l+1) for each
l ∈ Z+. Hence if L is left-resolving, for any x = (αi, vi)

∞
i=1 ∈ XL, there uniquely

exists v0 ∈ ΩL such that (v0, α1, v1) ∈ EL. Denote by v(x)0 the unique vertex
v0 for x ∈ XL.
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C∗-Algebras Associatedwith Presentations of Subshifts 7

Lemma 2.2. For a λ-graph system L, consider the following conditions

(i) L is left-resolving.
(ii) EL is left-resolving, that is, for (u, α, v), (u′, α, v′) ∈ EL, the condition

v = v′ implies u = u′.
(iii) σ is a local homeomorphism on XL.

Then we have
(i)⇔ (ii)⇒ (iii).

Proof. The implications (i)⇔ (ii) are direct. We will see that (ii)⇒ (iii). Sup-
pose that L is left-resolving. Let {γ1, . . . , γm} = Σ be the list of the alphabet.
Put

XL(k) = {(αi, vi)∞i=1 ∈ XL | α1 = γk}
that is a clopen set of XL. Since the family XL(k), k = 1, . . . ,m is a disjoint
covering of XL and the restriction of σ to each of them σ|XL(k) : XL(k)→ XL

is a homeomorphism, the continuous surjection σ is a local homeomorphism on
XL. ¤

Remark. We will remark that a continuous graph coming from a left-resolving,
predecessor-separated λ-graph system is characterized as in the following way.
Let E ⊂ V ×Σ×V be a continuous graph. Following [KM], we define the l-past
context of v ∈ V as follows:

Γ−l (v) = {(α1, . . . , αl) ∈ Σl | ∃v0, v1, . . . , vl−1 ∈ V;

(vi−1, αi, vi) ∈ E , i = 1, 2, . . . , l − 1, (vl−1, αl, v) ∈ E}.

We say E to be predecessor-separated if for two vertices u, v ∈ V, there exists
l ∈ N such that Γ−l (u) 6= Γ−l (v). The following proposition can be directly
proved by using an idea of [KM]. Its result will not be used in our further
discussions so that we omit its proof.

Proposition 2.3. Let E ⊂ V ×Σ×V be a zero-dimensional continuous graph
such that E is left-resolving, predecessor-separated. If the map t : E → V defined
by t(u, α, v) = v is a surjective open map, there exists a λ-graph system LE over
Σ and a homeomorphism Φ from V onto ΩLE such that the map Φ × id × Φ :
V × Σ× V → ΩLE × Σ× ΩLE satisfies (Φ× id× Φ)(E) = ELE .

3. The C∗-algebra OL.

In what follows we assume L to be left-resolving. Following V. Deaconu
[De2],[De3],[De4], one may construct a locally compact r-discrete groupoid from
a local homeomorphism σ on XL as in the following way (cf. [An],[Re]). Set

GL = {(x, n, y) ∈ XL × Z×XL | ∃k, l ≥ 0; σk(x) = σl(y), n = k − l}.

The range map and the domain map are defined by

r(x, n, y) = x, d(x, n, y) = y.
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The multiplication and the inverse operation are defined by

(x, n, y)(y,m, z) = (x, n+m, z), (x, n, y)−1 = (y,−n, x).

The unit space G0
L is defined to be the space XL = {(x, 0, x) ∈ GL | x ∈ XL}.

A basis of the open sets for GL is given by

Z(U, V, k, l) = {(x, k − l, (σl|V )−1 ◦ (σk(x)) ∈ GL | x ∈ U}

where U, V are open sets of XL, and k, l ∈ N are such that σk|U and σl|V are
homeomorphisms with the same open range. Hence we see

Z(U, V, k, l) = {(x, k − l, y) ∈ GL | x ∈ U, y ∈ V, σk(x) = σl(y)}.

The groupoid C∗-algebra C∗(GL) for the groupoid GL is defined as in the
following way ([Re], cf. [An],[De2],[De3],[De4]). Let Cc(GL) be the set of all
continuous functions on GL with compact support that has a natural product
structure of ∗-algebra given by

(f ∗ g)(s) =
∑

t∈GL,
r(t)=r(s)

f(t)g(t−1s) =
∑

t1,t2∈GL,
s=t1t2

f(t1)g(t2),

f∗(s) = f(s−1), f, g ∈ Cc(GL), s ∈ GL.

Let C0(G0
L) be the C∗-algebra of all continuous functions on G0

L that vanish
at infinity. The algebra Cc(GL) is a C0(G0

L)-module, endowed with a C0(G0
L)-

valued inner product by

(ξf)(x, n, y) =ξ(x, n, y)f(y), ξ ∈ Cc(GL), f ∈ C0(G0
L), (x, n, y) ∈ GL,

< ξ, η > (y) =
∑

x,n
(x,n,y)∈GL

ξ(x, n, y)η(x, n, y), ξ, η ∈ Cc(GL), y ∈ XL.

Let us denote by l2(GL) the completion of the inner product C0(G0
L)-module

Cc(GL). It is a Hilbert C∗-right module over the commutative C∗-algebra
C0(G0

L). We denote by B(l2(GL)) the C∗-algebra of all bounded adjointable
C0(G0

L)-module maps on l2(GL). Let π be the ∗-homomorphism of Cc(GL)
into B(l2(GL)) defined by π(f)ξ = f ∗ ξ for f, ξ ∈ Cc(GL). Then the closure
of π(Cc(GL)) in B(l2(GL)) is called the (reduced) C∗-algebra of the groupoid
GL, that we denote by C∗(GL).

Definition. The C∗-algebra OL associated with λ-graph system L is defined
to be the C∗-algebra C∗(GL) of the groupoid GL.

We will study the algebraic structure of the C∗-algebra OL. Recall that Λk

denotes the set of all words of Σk that appear in L. For x = (αn, un)∞n=1 ∈ XL,
we put λ(x)n = αn ∈ Σ, v(x)n = un ∈ ΩL respectively. The ι-orbit v(x)n
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is written as v(x)n = (v(x)ln)l∈Z+
∈ ΩL = lim←−Vl. Now L is left-resolving so

that there uniquely exists v(x)0 ∈ ΩL satisfying (v(x)0, α1, u1) ∈ EL. Set for
µ = (µ1, . . . , µk) ∈ Λk,

U(µ) = {(x, k, y) ∈ GL | σk(x) = y, λ(x)1 = µ1, . . . , λ(x)k = µk}
and for vli ∈ Vl,

U(vli) = {(x, 0, x) ∈ GL | v(x)l0 = vli}
where v(x)0 = (v(x)l0)l∈Z+

∈ ΩL. They are clopen sets of GL. We set

Sµ = π(χU(µ)), Eli = π(χU(vl
i
)) in π(Cc(GL))

where χF ∈ Cc(GL) denotes the characteristic function of a clopen set F on
the space GL. Then it is straightforward to see the following lemmas.

Lemma 3.1.

(i) Sµ is a partial isometry satisfying Sµ = Sµ1
· · ·Sµk , where µ =

(µ1, . . . , µk) ∈ Λk.
(ii)

∑
µ∈Λk SµS

∗
µ = 1 for k ∈ N. We in particular have

(3.1)
∑

α∈Σ

SαS
∗
α = 1.

(iii) Eli is a projection such that

(3.2)

m(l)∑

i=1

Eli = 1, Eli =

m(l+1)∑

j=1

Il,l+1(i, j)El+1
j ,

where Il,l+1 is the matrix defined in Theorem A in Section 1, corre-
sponding to the map ιl,l+1 : Vl+1 → Vl.

Take µ = (µ1, . . . , µk) ∈ Λk, ν = (ν1, . . . , νk′) ∈ Λk
′

and vli ∈ Vl with k, k′ ≤ l
such that there exist paths ξ, η in L satisfying λ(ξ) = µ, λ(η) = ν and t(ξ) =
t(η) = vli. We set

U(µ, vli, ν) ={(x, k − k′, y) ∈ GL | σk(x) = σk
′
(y), v(x)lk = v(y)lk′ = vli,

λ(x)1 = µ1, . . . , λ(x)k = µk, λ(y)1 = ν1, . . . , λ(y)k′ = νk′ }.

The sets U(µ, vli, ν), µ ∈ Λk, ν ∈ Λk
′
, i = 1, . . . ,m(l) are clopen sets and gener-

ate the topology of GL.

Lemma 3.2.
SµE

l
iS
∗
ν = π(χU(µ,vl

i
,ν)) ∈ π(Cc(GL)).

Hence the C∗-algebra OL is generated by Sα, α ∈ Σ and Eli, i = 1, . . . ,m(l), l ∈
Z+.

The generators Sα, E
l
i satisfy the following operator relations, that are straight-

forwardly checked.
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Lemma 3.3.

SαS
∗
αE

l
i = EliSαS

∗
α,(3.3)

S∗αE
l
iSα =

m(l+1)∑

j=1

Al,l+1(i, α, j)El+1
j ,(3.4)

for α ∈ Σ, i = 1, 2, . . . ,m(l), l ∈ Z+, where Al,l+1(i, α, j) is defined in Theorem
A in Section 1.

The four operator relations (3.1),(3.2),(3.3),(3.4) are called the relations (L).
Let Al, l ∈ Z+ be the C∗-subalgebra of OL generated by the projections Eli, i =
1, . . . ,m(l), that is,

Al = CEl1 ⊕ · · · ⊕ CElm(l).

The projections S∗αSα, α ∈ Σ and S∗µSµ, µ ∈ Λk, k ≤ l belong to Al, l ∈ N
by (3.4) and the first relation of (3.2). Let AL be the C∗-subalgebra of OL

generated by all the projections Eli, i = 1, . . . ,m(l), l ∈ Z+. By the second
relation of (3.2), the algebra Al is naturally embedded in Al+1 so that AL is a
commutative AF-algebra. We note that there exists an isomorphism between
Al and C(Vl) for each l ∈ Z+ that is compatible with the embeddings Al ↪→
Al+1 and Itl,l+1(= ι∗l,l+1) : C(Vl) ↪→ C(Vl+1). Hence there exists an isomorphism

between AL and C(ΩL). Let k, l be natural numbers with k ≤ l. We set

DL =The C∗-subalgebra of OL generated by SµaS
∗
µ, µ ∈ Λ∗, a ∈ AL.

F lk =The C∗-subalgebra of OL generated by SµaS
∗
ν , µ, ν ∈ Λk, a ∈ Al.

F∞k =The C∗-subalgebra of OL generated by SµaS
∗
ν , µ, ν ∈ Λk, a ∈ AL.

FL =The C∗-subalgebra of OL generated by SµaS
∗
ν , µ, ν ∈ Λ∗,

|µ| = |ν|, a ∈ AL.

The algebra DL is isomorphic to C(XL). It is obvious that the algebra F lk is

finite dimensional and there exists an embedding ιl,l+1 : F lk ↪→ F l+1
k through

the preceding embedding Al ↪→ Al+1. Define a homomorphism c : (x, n, y) ∈
GL → n ∈ Z. We denote by FL the subgroupoid c−1(0) of GL. Let C∗(FL) be
its groupoid C∗-algebra. It is also immediate that the algebra FL is isomorphic
to C∗(FL). By (3.1),(3.3),(3.4), the relations:

Eli =
∑

α∈Σ

m(l+1)∑

j=1

Al,l+1(i, α, j)SαE
l+1
j S∗α, i = 1, 2, . . . ,m(l)

hold. They yield

SµE
l
iS
∗
ν =

∑

α∈Σ

m(l+1)∑

j=1

Al,l+1(i, α, j)SµαE
l+1
j S∗να for µ, ν ∈ Λk,

that give rise to an embedding F lk ↪→ F l+1
k+1. It induces an embedding of F∞k

into F∞k+1 that we denote by λk,k+1.
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Proposition 3.4.

(i) F∞k is an AF-algebra defined by the inductive limit of the embeddings

ιl,l+1 : F lk ↪→ F l+1
k , l ∈ N.

(ii) FL is an AF-algebra defined by the inductive limit of the embeddings
λk,k+1 : F∞k ↪→ F∞k+1, k ∈ Z+.

Let Uz, z ∈ T = {z ∈ C | |z| = 1} be an action of T to the unitary group of
B(l2(GL)) defined by

(Uzξ)(x, n, y) = znξ(x, n, y) for ξ ∈ l2(GL), (x, n, y) ∈ GL.

The action Ad(Uz) on B(l2(GL)) leaves OL globally invariant. It gives rise to
an action on OL. We denote it by αL and call it the gauge action. Let EL

be the expectation from OL onto the fixed point subalgebra OL
αL under αL

defined by

(3.5) EL(X) =

∫

z∈T
αLz(X)dz, X ∈ OL.

Let PL be the ∗-algebra generated algebraically by Sα, α ∈ Σ and Eli, i =
1, . . . ,m(l), l ∈ Z+. For µ = (µ1, . . . , µk) ∈ Λk, it follows that by (3.3),
EliSµ1

· · ·Sµk = Sµ1
S∗µ1

EliSµ1
· · ·Sµk . As S∗µ1

EliSµ1
is a linear combination of

El+1
j , j = 1, . . . ,m(l+1) by (3.4), one sees S∗µ1

EliSµ1
Sµ2

= Sµ2
S∗µ2

S∗µ1
EliSµ1

Sµ2

and inductively

(3.6) EliSµ = SµS
∗
µE

l
iSµ, EliSµS

∗
µ = SµS

∗
µE

l
i.

By the relations (3.6), each element X ∈ PL is expressed as a finite sum

X =
∑

|ν|≥1

X−νS
∗
ν +X0 +

∑

|µ|≥1

SµXµ for some X−ν , X0, Xµ ∈ FL.

Then the following lemma is routine.

Lemma 3.5. The fixed point subalgebra OL
αL of OL under αL is the AF-

algebra FL.

We can now prove a universal property of OL.

Theorem 3.6. The C∗-algebra OL is the universal C∗-algebra subject to the
relations (L).

Proof. Let O[L] be the universal C∗-algebra generated by partial isometries

sα, α ∈ Σ and projections eli, i = 1, . . . ,m(l), l ∈ Z+ subject to the op-
erator relations (L). This means that O[L] is generated by sα, α ∈ Σ and

eli, i = 1, . . . ,m(l), l ∈ Z+, that have only operator relations (L). The C∗-

norm of O[L] is given by the universal C∗-norm. Let us denote by F [l]
[k],F[L]
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the similarly defined subalgebras of O[L] to F lk,FL respectively. The algebra

F [l]
[k] as well as F lk is a finite dimensional algebra. Since sµe

l
is
∗
ν 6= 0 if and only

if SµE
l
iS
∗
ν 6= 0, the correspondence sµe

l
is
∗
ν → SµE

l
iS
∗
ν , |µ| = |ν| = k ≤ l yields

an isomorphism from F [l]
[k] to F lk. It induces an isomorphism from F[L] to FL.

By the universality, for z ∈ C, |z| = 1 the correspondence sα → zsα, α ∈ Σ,
eli → eli, i = 1, . . . ,m(l), l ∈ Z+ gives rise to an action of the torus group
T on O[L], which we denote by α[L]. Let E[L] be the expectation from O[L]

onto the fixed point subalgebra O[L]
α[L] under α[L] similarly defined to (3.5).

The algebra O[L]
α[L] is nothing but the algebra F[L]. By the universality of

O[L], the correspondence sα → Sα, α ∈ Σ, eli → Eli, i = 1, . . . ,m(l), l ∈ Z+

extends to a surjective homomorphism from O[L] to OL, which we denote by
πL. The restriction of πL to F[L] is the preceding isomorphism. As we see that
EL ◦ πL = πL ◦E[L] and E[L] is faithful, we conclude that πL is isomorphic by
a similar argument to [CK; 2.12. Proposition]. ¤

4. Uniqueness and simplicity

We will prove thatOL is the unique C∗-algebra subject to the operator relations
(L) under a mild condition on L, called (I). The condition (I) is a generalization
of condition (I) for a finite square matrix with entries in {0, 1} defined by Cuntz-
Krieger in [CK] and condition (I) for a subshift defined in [Ma4]. A related
condition for a Hilbert C∗-bimodule has been introduced by Kajiwara-Pinzari-
Watatani in [KPW]. For an infinite directed graph, such a condition is defined
by Kumjian-Pask-Raeburn-Renault in [KPRR]. For a vertex vli ∈ Vl, let Γ+(vli)
be the set of all label sequences in L starting at vli. That is,

Γ+(vli) = {(α1, α2, . . . , ) ∈ ΣN | ∃en,n+1 ∈ En,n+1 for n = l, l + 1, . . . ;

vli = s(el,l+1), t(en,n+1) = s(en+1,n+2), λ(en,n+1) = αn−l+1}.

Definition. A λ-graph system L satisfies condition (I) if for each vli ∈ V, the
set Γ+(vli) contains at least two distinct sequences.

For vli ∈ Vl set F li = {x ∈ XL | v(x)l0 = vli} where v(x)0 = (v(x)l0)l∈Z+
∈ ΩL =

lim←−Vl is the unique ι-orbit for x ∈ XL such that (v(x)0, λ(x)1, v(x)1) ∈ EL as
in the preceding section. By a similar discussion to [Ma4; Section 5] (cf.[CK;
2.6.Lemma]), we know that if L satisfies (I), for l, k ∈ N with l ≥ k, there exists
yli ∈ F li for each i = 1, 2, . . . ,m(l) such that

σm(yli) 6= ylj for all 1 ≤ i, j ≤ m(l), 1 ≤ m ≤ k.

By the same manner as the proof of [Ma4;Lemma 5.3], we obtain

Lemma 4.1. Suppose that L satisfies condition (I). Then for l, k ∈ N with
l ≥ k, there exists a projection qlk ∈ DL such that

(i) qlka 6= 0 for all nonzero a ∈ Al,
(ii) qlkφ

m
L (qlk) = 0 for all m = 1, 2, . . . , k, where φmL (X) =

∑
µ∈Λm SµXS

∗
µ.
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Now we put Qlk = φkL(qlk) a projection in DL. Note that each element of

DL commutes with elements of AL. As we see Sµφ
j
L(X) = φ

j+|µ|
L (X)Sµ for

X ∈ DL, j ∈ Z+, µ ∈ Λ∗, a similar argument to [CK;2.9.Proposition] leads to
the following lemma.

Lemma 4.2.

(i) The correspondence: X ∈ F lk −→ QlkXQ
l
k ∈ QlkF lkQlk extends to an

isomorphism from F lk onto QlkF lkQlk.
(ii) QlkX −XQlk → 0, ‖QlkX‖ → ‖X‖ as k, l→∞ for X ∈ FL.

(iii) QlkSµQ
l
k, Q

l
kS
∗
µQ

l
k → 0 as k, l→∞ for µ ∈ Λ∗.

We then prove the uniqueness of the algebra OL subject to the relations (L).

Theorem 4.3. Suppose that L satisfies condition (I). Let Ŝα, α ∈ Σ and

Êli, i = 1, 2, . . . ,m(l), l ∈ Z+ be another family of nonzero partial isometries and

nonzero projections satisfying the relations (L). Then the map Sα → Ŝα, α ∈ Σ,

Eli → Êli, i = 1, . . . ,m(l), l ∈ Z+ extends to an isomorphism from OL onto the

C∗-algebra ÔL generated by Ŝα, α ∈ Σ and Êli, i = 1, . . . ,m(l), l ∈ Z+.

Proof. We may define C∗-subalgebras D̂L, F̂ lk, F̂L of ÔL by using the ele-

ments ŜµÊ
l
iŜ
∗
ν by the same manners as the constructions of the C∗-subalgebras

DL,F lk,FL of OL respectively. As in the proof of Theorem 3.6, the map

SµE
l
iS
∗
ν ∈ F lk → ŜµÊ

l
iŜ
∗
ν ∈ F̂ lk, |µ| = |ν| = k ≤ l extends to an isomorphism

from the AF-algebra FL onto the AF-algebra F̂L. By Theorem 3.6, the algebra
OL has a universal property subject to the relations (L) so that there exists

a surjective homomorphism π̂ from OL onto ÔL satisfying π̂(Sα) = Ŝα and

π̂(Eli) = Êli. The restriction of π̂ to FL is the preceding isomorphism onto F̂L.
Now L satisfies (I). Let Qlk be the sequence of projections as in Lemma 4.2. We

put Q̂lk = π̂(Qlk) ∈ D̂L that has the corresponding properties to Lemma 4.2 for

the algebra F̂L. Let P̂L be the ∗-algebra generated algebraically by Ŝα, α ∈ Σ

and Êli, i = 1, . . . ,m(l), l ∈ Z+. By the relations (L), each element X ∈ P̂L is
expressed as a finite sum

X =
∑

|ν|≥1

X−ν Ŝ
∗
ν +X0 +

∑

|µ|≥1

ŜµXµ for some X−ν , X0, Xµ ∈ F̂L.

By a similar argument to [CK;2.9.Proposition], it follows that the map X ∈
P̂L → X0 ∈ F̂L extends to an expectation ÊL from ÔL onto F̂L, that satisfies

ÊL ◦ π̂ = π̂ ◦ EL. As EL is faithful, we conclude that π̂ is isomorphic. ¤
Remark. Let ex be a vector assigned to x ∈ XL. Let HL be the Hilbert space
spanned by the vectors ex, x ∈ XL such that the vectors ex, x ∈ XL form its
complete orthonormal basis. For x = (αi, vi)

∞
i=1 ∈ XL, take v0 = v(x)0 ∈ ΩL.

For a symbol β ∈ Σ, if there exists a vertex v−1 ∈ ΩL such that (v−1, β, v0) ∈
EL, we define βx ∈ XL, by putting α0 = β, as

βx = (αi−1, vi−1)∞i=1 ∈ XL.
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Put

Γ−1 (x) = {γ ∈ Σ | (v−1, γ, v(x)0) ∈ EL for some v−1 ∈ ΩL}.

We define the creation operators S̃β , β ∈ Σ on HL by

S̃βex =

{
eβx if β ∈ Γ−1 (x),

0 if β 6∈ Γ−1 (x).

Proposition 4.4. Suppose that L satisfies condition (I). If L is predecessor-

separated, OL is isomorphic to the C∗-algebra C∗(S̃β , β ∈ Σ) generated by the

partial isometries S̃β , β ∈ Σ on the Hilbert space HL.

Proof. Suppose that L is predecessor-separated. Define a sequence of projec-

tions Ẽli, i = 1, . . . ,m(l), l ∈ N and Ẽ0
i , i = 1, . . . ,m(0) by using the formulae

(1.7) from the partial isometries S̃β , β ∈ Σ. It is straightforward to see that

Ẽli, i = 1, . . . ,m(l), l ∈ Z+ are nonzero. The partial isometries S̃β and the

projections Ẽli satisfy the relations (L). ¤

Let Λ be a subshift and LΛ its canonical λ-graph system, that is left-resolving
and predecessor-separated. It is easy to see that Λ satisfies condition (I) in the
sense of [Ma4] if and only if LΛ satisfies condition (I).

Corollary 4.5(cf.[Ma],[CaM]). The C∗-algebra OLΛ associated with λ-
graph system LΛ is canonically isomorphic to the C∗-algebra OΛ associated
with subshift Λ.

We next refer simplicity and purely infiniteness of the algebraOL. We introduce
the notions of irreducibility and aperiodicity for λ-graph system

Definition.

(i) A λ-graph system L is said to be irreducible if for a vertex v ∈ Vl and
x = (x1, x2, . . . ) ∈ ΩL = lim

←−
Vl, there exists a path in L starting at v

and terminating at xl+N for some N ∈ N.
(ii) A λ-graph system L is said to be aperiodic if for a vertex v ∈ Vl there

exists an N ∈ N such that there exist paths in L starting at v and
terminating at all the vertices of Vl+N .

Aperiodicity automatically implies irreducibility. Define a positive operator λL

on AL by

λL(X) =
∑

α∈Σ

S∗αXSα for X ∈ AL.

We say that λL is irreducible if there exists no non-trivial ideal of AL invariant
under λL, and λL is aperiodic if for a projection Eli ∈ Al there exists N ∈ N
such that λNL (Eli) ≥ 1. The following lemma is easy to prove (cf.[Ma4]).
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Lemma 4.6.

(i) A λ-graph system L is irreducible if and only if λL is irreducible.
(ii) A λ-graph system L is aperiodic if and only if λL is aperiodic.

We thus obtain

Theorem 4.7. Suppose that a λ-graph system L satisfies condition (I). If L
is irreducible, OL is simple.

Proof. Suppose that there exists a nonzero ideal I of OL. As L satisfies condi-
tion (I), by uniqueness of the algebra OL, I must contain a projection Eli for
some l, i. Hence I ∩ AL is a nonzero ideal of AL that is invariant under λL.
This leads to I = AL so that OL is simple. ¤

The above theorem is a generalization of [CK; 2.14.Theorem] and [Ma;Theorem
6.3]. We next see that OL is purely infinite (and simple) if L is aperiodic.
Assume that the subshift presented by λ-graph system L is not a single point.
Note that if L is aperiodic, it satisfies condition (I). By [Bra;Corollary 3.5], the
following lemma is straightforward.

Lemma 4.8. A λ-graph system L is aperiodic if and only if the AF-algebra FL

is simple.

As in the proof of [C3;1.6 Proposition], we conclude

Proposition 4.9 (cf.[C;1.13 Theorem]). If a λ-graph system L is aperi-
odic, OL is simple and purely infinite.

5. K-Theory

The K-groups for the C∗-algebras associated with subshifts have been com-
puted in [Ma2] by using an analogous idea to the Cuntz’s paper [C3]. The dis-
cussion given in [Ma2] well works for our algebras OL associated with λ-graph
systems. Let (A, I) be the nonnegative matrix system of the symbolic matrix
system for L. We first study the K0-group for the AF-algebra FL. We denote
by Λk(vli) the set of words of length k that terminate at the vertex vli. Let

F l,ik be the C∗-subalgebra of F lk generated by the elements SµE
l
iS
∗
ν , µ, ν ∈ Λk.

It is isomorphic to the full matrix algebra Mnl
i
(k)(C) of size nli(k) where nli(k)

denotes the number of the set Λk(vli), so that one sees

F lk ∼= Mnl1(k)(C)⊕ · · · ⊕Mnl
m(l)

(k)(C).

The map Φlk : [SµE
l
iS
∗
µ] ∈ K0(F lk) → [Eli] ∈ K0(Al) for i = 1, 2, . . . ,m(l), µ ∈

Λk(vli) yields an isomorphism between K0(F lk) and K0(Al) = Zm(l) =∑m(l)
i=1 Z[Eli]. The isomorphisms Φlk, l ∈ N induce an isomorphism Φk = lim−→

l

Φlk

from K0(F∞k ) = lim−→
ιl,l+1∗

K0(F lk) onto K0(AL) = lim−→
ιl,l+1∗

K0(Al) in a natural way.
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The latter group is denoted by ZIt , that is isomorphic to the abelian group
lim−→
l

{Zm(l), Itl,l+1} of the inductive limit of the homomorphisms I tl,l+1 : Zm(l) −→

Zm(l+1), l ∈ N. The embedding λk,k+1 of F∞k into F∞k+1 given in Proposition 3.4
(ii) induces a homomorphism λk,k+1∗ from K0(F∞k ) to K0(F∞k+1) that satisfies

λk,k+1∗([SµE
l
iS
∗
µ]) =

∑

α∈Σ

[SµαS
∗
αE

l
iSαS

∗
µα], µ ∈ Λk(vli), i = 1, 2, . . . ,m(l).

Define a homomorphism λl from K0(Al) to K0(Al+1) by

λl([E
l
i]) =

m(l+1)∑

j=1

Al,l+1(i, j)[El+1
j ].

As Al,l+1(i, j) =
∑
α∈ΣAl,l+1(i, α, j), we see λl([E

l
i]) =

∑
α∈Σ[S∗αE

l
iSα] by

(3.4). The homomorphisms λl : K0(Al) → K0(Al+1), l ∈ N act as the trans-
poses Atl,l+1 of the matrices Al,l+1 = [Al,l+1(i, j)]i,j , that are compatible with

the embeddings ιl,l+1∗(= Itl,l+1) : K0(Al) → K0(Al+1) by (1.2). They define

an endomorphism on ZIt(∼= K0(AL). We denote it by λ(A,I). Since the diagram

K0(F∞k )
λk,k+1∗−−−−−→ K0(F∞k+1)

Φk

y
yΦk+1

K0(AL) −−−−→
λ(A,I)

K0(AL)

is commutative, one obtains

Proposition 5.1. K0(FL) = lim
−→
{ZIt , λ(A,I)}.

The group lim
−→
{ZIt , λ(A,I)} is the dimension group ∆(A,I) for the nonnegative

matrix system (A, I) defined in [Ma5]. The dimension group for a nonnegative
square finite matrix has been introduced by W. Krieger in [Kr] and [Kr2]. It is
realized as the K0-group for the canonical AF-algebra inside the Cuntz-Krieger
algebra associated with the matrix ([C2],[C3]). If a λ-graph system L is arising
from the finite directed graph associated with the matrix, the C∗-algebras OL

and FL coincide with the Cuntz-Krieger algebra and the canonical AF-algebra
respectively (cf. Section 7). Hence in this case, K0(FL) coincides with the
Krieger’s dimension group for the matrix.

Let p0 : T → OL be the constant function whose value everywhere is the
unit 1 of OL. It belongs to the algebra L1(T,OL) and hence to the crossed
product OΛ oαL

T. By [Ro], the fixed point subalgebra OL
αL is isomorphic to

the algebra p0(OL oαL
T)p0 through the correspondence : x ∈ OL

αL → x̂ ∈
L1(T,OL) ⊂ OL oαL

T where the function x̂ is defined by x̂(t) = x, t ∈ T.
Then as in [Ma2;Section 4], the projection p0 is full in OL oαL

T. Since the
AF-algebra FL is realized as OL

αL , one sees, by [Bro;Corollary 2.6]

Documenta Mathematica 7 (2002) 1–30



C∗-Algebras Associatedwith Presentations of Subshifts 17

Lemma 5.2. OL oαL
T is stably isomorphic to FL.

The natural inclusion ι : p0(OLoαL
T)p0 → OLoαL

T induces an isomorphism
ι∗ : K0(p0(OL oαL

T)p0) → K0(OL oαL
T) on K-theory (cf.[Ri;Proposition

2.4]). Denote by α̂L the dual action of αL on OLoαL
T. Under the identification

between FL and p0(OLoαL
T)p0, we define an automorphism β on K0(FL) by

β = ι∗−1 ◦ α̂L∗ ◦ ι∗. By a similar argument to [Ma2;Lemma 4.5], [Ma2; Lemma
4.6] and [Ma2;Corollary 4.7], the automorphism β−1 : K0(FL) → K0(FL)
corresponds to the shift σ on lim

−→
{ZIt , λ(A,I)}. That is, if x = (x1, x2, . . . ) is a

sequence representing an element of lim
−→
{ZIt , λ(A,I)}, then β−1x is represented

by σ(x) = (x2, x3, . . . ). As the dimension automorphism δ(A,I) of ∆(A,I) is
defined to be the shift of the inductive limit lim

−→
{ZIt , λ(A,I)} ([Ma5]), we obtain

Proposition 5.3. (K0(FL),K0(FL)+, α̂L∗) ∼= (∆(A,I),∆
+
(A,I), δ(A,I)).

We will next present the K-theory formulae for OL. As K1(OLoαL
T) = 0, the

Pimsner-Voiculescu’s six term exact sequence of the K-theory for the crossed
product (OL oαL

T)o
α̂L
Z [PV] says the following lemma:

Lemma 5.4.

(i) K0(OL) ∼= K0(OL oαL
T)/(id− α̂L

−1
∗ )K0(OL oαL

T).

(ii) K1(OL) ∼= Ker(id− α̂L
−1
∗ ) on K0(OL oαL

T).

Therefore we have the K-theory formulae for OL by a similar argument to
[C3;3.1.Proposition].

Theorem 5.5.

(i)

K0(OL) ∼= ZIt/(id− λ(A,I))ZIt
∼= lim
−→
{Zm(l+1)/(Itl,l+1 −Atl,l+1)Zm(l); Ītl,l+1},

(ii)

K1(OL) ∼= Ker(id− λ(A,I)) in ZIt
∼= lim
−→
{Ker(Itl,l+1 −Atl,l+1) in Zm(l); Itl,l+1}

where Ītl,l+1 is the homomorphism from Zm(l)/(Itl−1,l − Atl−1,l)Zm(l−1) to

Zm(l+1)/(Itl,l+1 − Atl,l+1)Zm(l) induced by Itl,l+1. More precisely, for the mini-

mal projections El1, . . . , E
l
m(l) of Al with

∑m(l)
i=1 Eli = 1 and the canonical basis

el1, . . . , e
l
m(l) of Zm(l), the map [Eli] → eli extends to an isomorphism from

K0(OL) onto lim
−→
{Zm(l+1)/(Itl,l+1 −Atl,l+1)Zm(l); Ītl,l+1}. Hence we have

Ki(OL) ∼= Ki(A, I) i = 0, 1.

Since the double crossed product (OLoαL
T)×

α̂L
Z is stably isomorphic to OL,

the following proposition is immediate from Lemma 5.2 (cf.[RS],[Bl;p.287]).
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Proposition 5.6. The C∗-algebra OL is nuclear and satisfies the Universal
Coefficient Theorem in the sense of Rosenberg and Schochet [RS] (also [Bro2]).

Hence, for an aperiodic λ-graph system L, OL is a unital, separable, nuclear,
purely infinite, simple C∗-algebra satisfying the UCT so that it lives in a classi-
fiable class of nuclear C∗-algebras by Kirchberg [Kir] and Phillips [Ph]. As the
K-groups K0(OL),K1(OL) are countable abelian groups with K1(OL) torsion
free by Theorem 5.5, Rørdam’s result [Rø;Proposition 6.7] says the following:

Corollary 5.7. For an aperiodic λ-graph system L, the C∗-algebra OL is
isomorphic to the C∗-algebra of an inductive limit of a sequence B1 → B2 →
B3 → · · · of simple Cuntz-Krieger algebras.

Set the Ext-groups

Ext1(OL) = Ext(OL), Ext0(OL) = Ext(OL ⊗ C0(R)).

As the UCT holds for our algebras as in the lemma below, it is now easy to
compute the Ext-groups by using Theorem 5.5.

Lemma 5.8([RS],[Bro2]). There exist short exact sequences

0 −→ Ext1
Z(K0(OL),Z) −→ Ext1(OL) −→ HomZ(K1(OL),Z) −→ 0,

0 −→ Ext1
Z(K1(OL),Z) −→ Ext0(OL) −→ HomZ(K0(OL),Z) −→ 0

that split unnaturally.

We denote by ZI the abelian group defined by the projective limit lim←−
l

{Il,l+1 :

Zm(l+1) → Zm(l)}. The sequence Al,l+1, l ∈ Z+ naturally acts on ZI as an
endomorphism that we denote by A. The identity on ZI is denoted by I. Then
the cokernel and the kernel of the endomorphism I −A on ZI are the Bowen-
Franks groups BF 0(A, I) and BF 1(A, I) for (A, I) respectively ([Ma5]). By
[Ma5;Theorem 9.6], there exists a short exact sequence

0 −→ Ext1
Z(K0(A, I),Z) −→ BF 0(A, I) −→ HomZ(K1(A, I),Z) −→ 0

that splits unnaturally. And also

BF 1(A, I) ∼= HomZ(K0(A, I),Z).

As in the proof of [Ma5;Lemma 9.7], we see that Ext1
Z(ZIt ,Z) = 0 so that

Ext1
Z(Ker(id− λ(A,I)) in ZIt ,Z) = 0. This means that Ext1

Z(K1(A, I)),Z) = 0.
Theorem 5.5 says that Ki(A, I) ∼= Ki(OL) so that we conclude by Lemma 5.8,

Theorem 5.9.

(i) Ext(OL) = Ext1(OL) ∼= BF 0(A, I) = ZI/(I −A)ZI ,
(ii) Ext0(OL) ∼= BF 1(A, I) = Ker(I −A) in ZI .

Theorem 5.9 is a generalization of [CK;5.3 Theorem] and [Ma6].
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6. Realizations as endomorphism crossed
products and Hilbert C∗-bimodule algebras

Following Deaconu’s discussions in [De2],[De3],[De4], we will realize the algebra
OL as an endomorphism crossed product FL×βL

N. Recall that the algebra FL

is isomorphic to the C∗-algebra C∗(FL) of the groupoid FL. The groupoid FL

is written as

{(x, y) ∈ XL ×XL | σk(x) = σk(y) for some k ∈ Z+}.

Put

βL(f)(x, y) =
1√

p(σ(x))p(σ(y))
f(σ(x), σ(y)), f ∈ Cc(FL), x, y ∈ XL

where p(x) is the number of the paths z such that σ(z) = x, and for (x, n, y) ∈
GL

v(x, n, y) =

{ 1√
p(σ(x))

, if n = 1 and y = σ(x),

0 otherwise.

Regarding C∗(FL) as a subalgebra of C∗(GL), one sees that v is a nonunitary
isometry satisfying βL(f) = vfv∗ ([De2],[De3],[De4]). Then βL is a proper
corner endomorphism of C∗(FL) such that C∗(GL) is isomorphic to the crossed
product C∗(FL)×βL

N (cf.[Rø2]). We will write the isometry v in terms of the
generators Sα, E

l
i. For l ∈ N, i = 1, . . . ,m(l), we denote by nli the number

of the edges e in El−1,l such that t(e) = vli. As L is left-resolving, it is the
number of the symbols α ∈ Σ such that S∗αSαE

l
i 6= 0. It follows that nliE

l
i =∑

α∈Σ S
∗
αSαE

l
i. Note that if Il,l+1(i, j) = 1, then nli = nl+1

j . Then one obtains

(6.1) v =

m(l)∑

i=1

1√
nli

∑

α∈Σ

SαE
l
i

where the right-hand side does not depend on the choice of l ∈ N. We can
immediately see that OL is generated by the C∗-algebra FL and the above
isometry v, that satisfies

(6.2) v∗v = 1, vFLv
∗ ⊂ FL, v∗FLv ⊂ FL.

The universality (Theorem 3.6) of the algebra OL corresponds to the universal-
ity of the crossed product C∗(FL)×βL

N. It needs however a slightly complicated
argument to directly determine the operator relations (L) by using (6.1) and
(6.2), as it is possible. There are some merits to realize OL as FL ×βL

N. One
is the fact that its purely infiniteness is immediately deduced from Rørdam’s
result [Rø2;Theorem 3.1] under the condition that FL is simple. The other one
is K-theory formulae. Rørdam also in [Rø2; Corollary 2.2] showed that

(i) K0(FL ×βL
N) ∼= K0(FL)/(id− βL∗)K0(FL).

(ii) K1(FL ×βL
N) ∼= Ker(id− βL∗) on K0(FL)

Documenta Mathematica 7 (2002) 1–30



20 Kengo Matsumoto

(cf.Paschke [Pa], Deaconu [De3]). These are precisely the formulae of Lemma
5.4 with Lemma 5.2.

In [De3; Section 3], Deaconu showed that the groupoid C∗-algebras of continu-
ous graphs are realized as C∗-algebras constructed from Hilbert C∗-bimodules
defined in [Pi] (see also [Kat]). A special case of continuous graphs was studied
in Kajiwara-Watatani [KW]. We identify the algebra C(ΩL) of all continuous
functions on ΩL with the commutative C∗-algebra AL. Let XAL

be the set

C(EL) of all continuous functions on EL, that is identified with
∑⊕
α∈Σ CSαAL,

because L is left-resolving. We endow XAL
with a Hilbert C∗-bimodule struc-

ture over AL defined by

(Sαa) · b = Sα · ab, < Sαa, Sβb >AL
= a∗S∗αSβb,

φL(b)Sαa = bSαa = Sα · S∗αbSαa

for a, b ∈ AL, α, β ∈ Σ. A special case of this construction of the Hilbert
C∗-bimodules is seen in the proof of [PWY;Theorem 4.2] for the C∗-algebras
associated with subshifts. The above mentioned Deaconu’s result says the
following proposition:

Proposition 6.1. The C∗-algebra constructed from the Hilbert C∗-bimodule
(φL, XAL

) over AL is isomorphic to the C∗-algebra OL.

7. Examples

In this section, we give two kinds of examples of λ-graph systems and study
their associated C∗-algebras. The first ones appear as presentations of sofic
shifts. The second one is defined by a Shannon graph with countable infinite
vertices.

Presentations of sofic shifts come from labeled graphs with finite vertices that
are called λ-graphs (cf. [Fi],[Kr4],[Kr5],[LM],[We], . . . ). Let G = (V,E) be a
finite directed graph with finite vertex set V and finite edge set E. Let G =
(G,λ) be a labeled graph over Σ defined by G and a labeling map λ : E → Σ.
Suppose that it is left-resolving and predecessor-separated. Let AG be the
adjacency matrix of G, that is defined by

AG(e, f) =

{
1 if t(e) = s(e),

0 otherwise

for e, f ∈ E. The matrix AG defines a shift of finite type by regarding its
edges as its alphabet. Since the matrix AG is of entries in {0, 1}, we have the
Cuntz-Krieger algebra OAG defined by AG ([CK] cf.[KPPR],[Rø]). By putting
V Gl = V, EGl,l+1 = E for l ∈ Z+, and λG = λ, ιG = id, we have a λ-graph system

LG = (V G , EG , λG , ιG). Then we have
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Proposition 7.1. The C∗-algebra OLG is isomorphic to the Cuntz-Krieger
algebra OAG .

Proof. Let V = {v1, . . . , vm} be the vertex set of G. Let Sα, α ∈ Σ be the
canonical generating partial isometries of OLG . We denote by E1, E2, . . . , Em
the set of all minimal projections of Al = ALG , l ∈ N corresponding to the
vertices v1, . . . , vm. As the labeled graph G is predecessor-separated, they are
written in terms of Sα, α ∈ Σ as in (1.7). Note that in the algebra OLG ,
SαEi 6= 0 if and only if there exists an edge e ∈ E satisfying λ(e) = α and
t(e) = vi. As G is left-resolving, the correspondence

e ∈ E ←→ (λ(e), t(e)) ∈ {(α, vi) ∈ Σ× V | SαEi 6= 0}

is bijective. For e ∈ E, put se = Sλ(e)Et(e) ∈ OLG , where Evi denotes Ei. As
Et(e) = s∗ese for e ∈ E and Sα =

∑
e∈E,
λ(e)=α

se for α ∈ Σ, the algebra OLG is

generated by the partial isometries se, e ∈ E. It is immediate to see that the
following relations hold:

∑

e∈E
ses
∗
e = 1, s∗ese =

∑

f∈E
AG(e, f)sfs

∗
f .

This means that the C∗-algebra generated by se, e ∈ E is the Cuntz-Krieger
algebra OAG defined by the matrix AG. ¤

If, in particular, a labeled graph G = (G,λ) has different labels for different
edges, it defines a shift of finite type. In this case, one may identify the edge
set E with the alphabet Σ. Let LG be the λ-graph system LG as in the above
one. Let Sα, α ∈ Σ be the generating partial isometries of OLG . It is obvious
that the relations (1.4),(1.5) and (1.6) give rise to the following relations:

S∗αSα =
∑

β∈E
AG(α, β)SβS

∗
β , α ∈ Σ.

Remark. While completing this paper, Toke M. Carlsen let the author know
his preprint [Ca], where he shows that the C∗-algebra associated with sofic
shifts are isomorphic to the Cuntz-Krieger algebras of their left Krieger cover
graphs. His result is a special case of the above proposition.

We will next present a λ-graph system for which the associated C∗-algebra
is not stably isomorphic to any Cuntz-Krieger algebra and any Cuntz alge-
bra. There is a method introduced in [KM] to construct λ-graph systems from
Shannon graphs. By a Shannon graph we mean here a left-resolving labeled
directed graph with countable vertices and finite labels.
Let us consider a Shannon graph defined as follows: Let V = {v1, v2, . . . , }
be its countable infinite vertex set. Its alphabet Σ consist of the five symbols
{α, β, γ, δ, ε}. The edges labeled α are from vn+1 to vn for n = 1, 2, . . . . The
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edges labeled β are from v1 to v2 and from v2n to v2n+2 for n = 1, 2, . . . . The
edges labeled γ are self-loops at vn for n = 2, 3, . . . . The edge labeled δ is a
self-loop at v1. The edges labeled ε are from v1 to vn for n = 1, 2, . . . . The
resulting labeled graph is left-resolving and hence it is a Shannon graph. We
denote it by S. We will construct a λ-graph system L(S) from the Shannon
graph S by a method introduced in [KM] as in the following way. For a vertex
v ∈ V and for l ∈ N, let Γ−l (v) be the set of all label sequences of length l
terminating at v. Define an equivalence relation v ≈(l) v

′ for vertices v, v′ ∈ V
by Γ−l (v) = Γ−l (v′). For l = 0, define v ≈(l) v

′ for all v, v′ ∈ V. The vertex
set Vl is then defined by the set of ≈(l)-equivalence classes of V . We denote

by Vl = {vl1, . . . , vlm(l)}. The vertices vli, i = 1, . . . ,m(l) of Vl may be identified

with {Γ−l (v) : v ∈ V }. We define a map ιl,l+1 : Vl+1 → Vl by ιl,l+1(vl+1
j ) = vli

if vl+1
j ⊂ vli. We define an edge labeled ω ∈ Σ from vli to vl+1

j if there exists an

edge labeled ω in S from a vertex in vli to a vertex in vl+1
j . Then the resulting

labeled graph with vertex sets Vl, labeled edges from Vl to Vl+1 and surjective
maps ιl,l+1 : Vl+1 → Vl for l ∈ Z+ defines a λ-graph system over Σ ([KM]). We
denote it by L(S).
The vertex sets Vl, l ∈ Z+ are written as in the following way:

V0 : v0
1 = {vn | n = 1, 2, . . . }.

V1 : v1
1 = {v1}, v1

2 = {v2n | n = 1, 2, . . . }, v1
3 = {v2n+1 | n = 1, 2, . . . }.

V2 : v2
1 = {v1}, v2

2 = {v2}, v2
3 = {v2n | n = 2, 3, . . . },

v2
4 = {v2n+1 | n = 1, 2, . . . }.

V3 : v3
1 = {v1}, v3

2 = {v2}, v3
3 = {v4}, v3

4 = {v2n | n = 3, 4, . . . },
v3

5 = {v2n+1 | n = 1, 2, . . . }.
V4 : v4

1 = {v1}, v4
2 = {v2}, v4

3 = {v4}, v4
4 = {v6}, v4

5 = {v2n | n = 4, 5, . . . },
v4

6 = {v3}, v4
7 = {v2n+1 | n = 2, 3, . . . }.

V5 : v5
1 = {v1}, v5

2 = {v2}, v5
3 = {v4}, v5

4 = {v6}, v5
5 = {v8},

v5
6 = {v2n | n = 5, 6, . . . }, v5

7 = {v3}, v5
8 = {v5},

v5
9 = {v2n+1 | n = 3, 4, . . . }.

V6 : v6
1 = {v1}, v6

2 = {v2}, v6
3 = {v4}, v6

4 = {v6}, v6
5 = {v8}, v6

6 = {v10},
v6

7 = {v2n | n = 6, 7, . . . }, v6
8 = {v3}, v6

9 = {v5}, v6
10 = {v7},

v6
11 = {v2n+1 | n = 4, 5, . . . }.

V7 : v7
1 = {v1}, v7

2 = {v2}, v7
3 = {v4}, v7

4 = {v6}, v7
5 = {v8}, v7

6 = {v10},
v7

7 = {v12}, v7
8 = {v2n | n = 7, 8, . . . }, v7

9 = {v3}, v7
10 = {v5}, v7

11 = {v7},
v7

12 = {v9}, v7
13 = {v2n+1 | n = 5, 6, . . . }.

· · · · · · · · · .
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Lemma 7.2. The λ-graph system L(S) is aperiodic.

Proof. Take and fix an arbitrary vertex vli ∈ Vl, let k be the minimum number
such that vk ∈ vli. There exists a path of length k in L(S) that starts at vli and

ends at vl+k1 = {v1} ∈ Vl+k whose label is (α, α, . . . , α). There exist edges from

vl+k1 to vl+k+1
j for all j = 1, 2, . . . ,m(l+1) whose labels are ε. This means that

L(S) is aperiodic. ¤

Therefore the associated C∗-algebra OL(S) is simple and purely infinite.

Let us compute its K-groups. We first present the matrices Atl,l+1 and Itl,l+1

for all l ≥ 5. As in the preceding table, we see that m(l) = 2l − 1 for l ≥ 5.
We write the matrices along the ordered basis vl1, v

l
2, . . . , v

l
m(l), where blanks

denote zeros. For l = 5, we have

At5,6 =




2 1
2 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1
1 1 2




, It5,6 =




1
1

1
1

1
1

1
1

1
1

1




,

so that

At5,6 − It5,6 =




1 1
2 1
1 1
1 1 1
1 1
1 1 1
1 1
1 1 1
1 1 1
1 1
1 1 1




.
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For general l ≥ 5, we see

Atl,l+1 =




2 1
2 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
...

. . .
. . .

...
. . .

. . .
. . .

1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1
1 1 2




,

Itl,l+1 =




1
1

1
1

1
1

1
1

. . .
. . .

1
1

1
1

1
1

1




,
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and hence

Atl,l+1 − Itl,l+1 =




1 1
2 1
1 1
1 1 1
1 1
1 1 1
1 1
1 1 1
...

. . .
...

. . .
. . .

1 1
1 1 1
1 1
1 1 1
1 1 1
1 1
1 1 1




.

Lemma 7.3. For l ≥ 4 and z =




z1
...

z2l+1


 ∈ Z2l+1, put

ϕl([zi]
2l+1
i=1 ) = z2l−7 − z2l−5 − z2l−4 + z2l−2,

ψl([zi]
2l+1
i=1 ) = z2l−7 − z2l−4 − z2l−3 + z2l−1,

ξl([zi]
2l+1
i=1 ) = z2l−7 − z2l−4 − z2l + z2l+1.

Then there exists x =




x1
...

x2l−1


 ∈ Z2l−1 such that




z1
...

z2l−1

z2l

z2l+1




= (Atl,l+1 − Itl,l+1)




x1
...

x2l−1


+




0
...
0

ϕl(z)
ψl(z)

0
ξl(z)




.

Lemma 7.4. The map z = [zi]
2l+1
i=1 ∈ Z2l+1 → (ϕl(z), ψl(z), ξl(z)) ∈ Z3 induces

an isomorphism from Z2l+1/(Atl,l+1 − Itl,l+1)Z2l−1 onto Z3.
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Proof. It suffices to show the surjectivity of the induced map

z = [zi]
2l+1
i=1 ∈ Z2l+1/(Atl,l+1 − Itl,l+1)Z2l−1 −→ (ϕl(z), ψl(z), ξl(z)) ∈ Z3.

For (m,n, k) ∈ Z⊕ Z⊕ Z, put z = [zi]
2l+1
i=1 where

zi =





0 for i = 1, 2, . . . , 2l − 3, 2l,

m for i = 2l − 2,

n for i = 2l − 1,

k for i = 2l + 1.

Then we see that ϕl(z) = m,ψl(z) = n, ξl(z) = k. ¤
We denote by ρl+1 the above isomorphism from Z2l+1/(Atl,l+1 − Itl,l+1)Z2l−1

onto Z3. Let L be the matrix



−1 1 0
−1 0 1
−1 0 1


 . Since the following diagram is

commutative:

Z2l−1/(Atl−1,l − Itl−1,l)Z2l−3
Itl,l+1−−−−→ Z2l+1/(Atl,l+1 − Itl,l+1)Z2l−1

ρl

y ρl+1

y

Z3 L−−−−→ Z3,

we obtain

Proposition 7.5. K0(OL(S)) ∼= 0.

Proof. As L3 = 0, by Theorem 5.5, it follows that

K0(OL(S)) = lim−→{Z
2l+1/(Atl,l+1 − Itl,l+1)Z2l−1, Ītl+1,l+2} = lim−→{Z

3, L} ∼= 0.

¤
Concerning the group K1(OL(S)), one sees

Proposition 7.6. K1(OL(S)) ∼= Z.

Proof. For l ≥ 5, put x(l) = [xi]
2l−1
i=1 ∈ Z2l−1 where

x1 = 1, x2 = −1, x3 = −2,

xi = −1 for i = 4, 6, 8, . . . , 2l − 4, 2l − 3, 2l − 1,

xi = 0 for i = 5, 7, 9, . . . , 2l − 5, 2l − 2.

It is easy to see that

Ker(Atl,l+1 − Itl,l+1) = Zx(l), Itl,l+1x(l) = x(l + 1).

Hence we obtain K1(OL(S)) ∼= Z by Theorem 5.5. ¤
Therefore we conclude
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Theorem 7.7. The C∗-algebra OL(S) is unital, simple, purely infinite, nuclear
and generated by five partial isometries with mutually orthogonal ranges. Its
K-groups are

K0(OL(S)) ∼= 0, K1(OL(S)) ∼= Z.

As the K1-group of a Cuntz-Krieger algebra is the torsion-free part of its K0-
group, the algebra OL(S) lives outside the Cuntz-Krieger algebras (cf.[Ma3]).

Remark. M. Tomforde in [T] considered C∗-algebras associated to labeled
graphs as a generalization of Cuntz-Krieger algebras (cf.[T2]). He deals with
labeled directed graphs with (generally) infinite vertices. If the labeled graphs
have finite vertices, the resulting graphs are ones in the first examples of this
section. In this case, his C∗-algebras coincide with our C∗-algebras. The referee
informed to the author that his algebras in general are not ours of λ-graph
systems.
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Abstract. This note shows how two existing approaches to provid-
ing effective (quadratic) bounds for the freeness of adjoint line bundles
can be linked to establish a new effective bound which approximately
differs from the linear bound conjectured by Fujita only by a factor
of the cube root of the dimension of the underlying manifold. As an
application, a new effective statement for pluricanonical embeddings
is derived.
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1 Introduction and statement of the Main Theorem

Let L be an ample line bundle over a compact complex projective manifold
X of complex dimension n. Let KX be the canonical line bundle of X. The
following conjecture is due to Fujita [Fuj87].

Conjecture 1.1 (Fujita). The adjoint line bundle KX + mL is base point
free (i.e. spanned by global holomorphic sections) for m ≥ n + 1. It is very
ample for m ≥ n+ 2.

The standard example of the hyperplane line bundle on X = Pn shows that the
conjectured numerical bounds are optimal. In the case of X being a compact
Riemann surface, the conjecture is easily verified by means of the Riemann-
Roch theorem. Moreover, Reider [Rei88] was able to validate the conjecture
also in the case n = 2. In higher dimensions, the very ampleness part of the
conjecture has proved to be quite intractable so far. In fact, no further results
seem to be known here. On the other hand, several further results have been
established towards the freeness conjecture. The case n = 3 was solved by
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Ein and Lazarsfeld [EL93] (see also [Fuj93]), and n = 4 is due to Kawamata
[Kaw97]. In arbitrary dimension n, the state-of-the-art is that KX + mL is
base point free for any integer m that is no less than a number roughly of order
n2 (see below for exact statements).
To the author’s knowledge, [Dem00] constitutes the most recent survey on the
subject under discussion. It contains an extensive list of references (see also the
references at the end of this article) and, furthermore, introduces the reader to
various other effective results in algebraic geometry.
The above-mentioned bound in the case of arbitrary dimension n can be derived
from each of the following two theorems, due to Angehrn and Siu [AS95] (see
also [Siu96]) and Helmke [Hel97], [Hel99], respectively. Although the proofs
of these two theorems adhere to the same inductive approach, the key ideas
at their cores are of a different nature. In Proposition 3.5, we will show how
to use the techniques in question seamlessly in a back-to-back manner. This
insight, together with the numerical considerations in Section 2, will lead to
the improved bound asserted in the Main Theorem and proved in Section 3.
First, let us state the bound given by [AS95].

Theorem 1.2 ([AS95]). The line bundle KX +mL is base point free for m ≥
1
2n(n+ 1) + 1.

Secondly, we state Helmke’s result. Due to the nature of his technique, the
assumptions of his theorem are formulated in a slightly different way. We quote
the result in the way it is presented in [Hel97], because the slight improvement
achieved in [Hel99] is not relevant for our purposes.

Theorem 1.3 ([Hel97]). Assume that L has the additional properties that

Ln > nn

and for all x ∈ X:

Ld.Z ≥ mx(Z) · nd

for all subvarieties Z ⊂ X with x ∈ Z, d = dimZ ≤ n − 1 and multiplicity
mx(Z) ≤

(
n−1
d−1

)
at x. Then KX + L is base point free.

If n ≥ 3, it is clear that we need to set

m0 := max{n · d
√(

n− 1

d− 1

)
: d ∈ N and 1 ≤ d ≤ n}

to determine the minimal bound m0 deducible from Theorem 1.3 such that
KX +mL is base point free for any integer m ≥ m0. Since

d

√(
n− 1

d− 1

)
≥ 1

d
√

3

n1− 1
d

d
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according to our Lemma 2.3, we find that the m0 which one can derive from
Theorem 1.3 is essentially also of the order n2.
We conclude this section with the statement of our Main Theorem, which
asserts that the bound m0 can be chosen to be a number of the order n

4
3 .

Theorem 1.4 (Main Theorem). The line bundle KX +mL is base point free
for any integer m with

m ≥ (e+
1

2
)n

4
3 +

1

2
n

2
3 + 1,

where e ≈ 2.718 is Euler’s number.

2 Estimates for binomial coefficients

In order to understand precisely the nature of the numerical conditions in the
assumptions of Theorem 1.3, we prove some auxiliary estimates in this section.
We begin with the following lemma.

Lemma 2.1. For all x ∈ ]0, 1[ : 1 <
(

1
1−x

) 1−x
x

< e.

Proof. It is obvious that 1 is a strict lower bound of the given expression, so it
remains to show that (

1

1− x

) 1−x
x

< e.

Taking log on both sides of the inequality, we see that we are done if we can
show that

g(x) :=
x− 1

x
log(1− x) < 1

on the open unit interval. However, for this it suffices to prove that
limx→0+ g(x) = 1 and g′(x) < 0. The former is easily verified using L’Hôpital’s
rule, while the latter follows readily from a simple computation.

In the proof of the subsequent Lemma 2.3, we will employ Lemma 2.1 in the
form of the following corollary.

Corollary 2.2. Let n be an integer ≥ 2. Let d be an integer with 1 ≤ d ≤ n−1.
Then

1 <

(
n

n− d

)n−d
d

< e.

Proof. We have

(
n

n− d

)n−d
d

=

(
1

1− d
n

) 1− d
n
d
n

.

Thus the corollary follows immediately from Lemma 2.1.
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The preceding considerations allow us to estimate the binomial coefficients from
Theorem 1.3 in the form of the following lemma.

Lemma 2.3. Let 1 ≤ d ≤ n− 1. Then

1
d
√

3

n1− 1
d

d
≤ d

√(
n− 1

d− 1

)
≤ en

d
.

Proof. In [Ahl78], page 206, Stirling’s formula is stated as

Γ(x) =
√

2π xx−
1
2 e−xe

θ(x)
12x

for x > 0 with 0 < θ(x) < 1. In particular,

√
2π xx−

1
2 e−x ≤ Γ(x) ≤

√
2π xx−

1
2 e−xe

1
12

for any x ≥ 1. Thus, for the proof of the desired estimate from above, Stirling’s
formula enables us to proceed as follows.

(
n− 1

d− 1

)
=

(n− 1)!

(d− 1)!(n− d)!
=

1

n− d
Γ(n)

Γ(d)Γ(n− d)

≤ 1

n− d

√
2π nn−

1
2 e−ne

1
12

√
2π dd−

1
2 e−d

√
2π (n− d)n−d−

1
2 e−(n−d)

=
e

1
12√
2π

√
d

(n− d)n

(n
d

)d( n

n− d

)n−d

≤
(n
d

)d( n

n− d

)n−d
.

Resorting to Corollary 2.2, we eventually conclude:

(
n− 1

d− 1

) 1
d

≤ n

d

(
n

n− d

)n−d
d

≤ en
d
.

The desired estimate from below is proved analogously:
(
n− 1

d− 1

)
=

(n− 1)!

(d− 1)!(n− d)!
=

1

n− d
Γ(n)

Γ(d)Γ(n− d)

≥ 1

n− d

√
2π nn−

1
2 e−n√

2π dd−
1
2 e−de

1
12

√
2π (n− d)n−d−

1
2 e−(n−d)e

1
12

=
1

e
1
6

√
2π

√
d

(n− d)n

(n
d

)d( n

n− d

)n−d

≥ 1

3

1

n

(n
d

)d( n

n− d

)n−d
.
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Using Corollary 2.2 again, we obtain:

(
n− 1

d− 1

) 1
d

≥ d

√
1

3n

n

d
=

1
d
√

3

n1− 1
d

d
.

3 Proof of the Main Theorem

The following theorem states the improved effective freeness bound which we
shall prove at the end of this section.

Theorem 3.1 (Main Theorem). The line bundle KX +mL is base point free
for any integer m with

m ≥ (e+
1

2
)n

4
3 +

1

2
n

2
3 + 1,

where e ≈ 2.718 is Euler’s number.

First of all, let us recall how a result of this type can be proved by means of
multiplier ideal sheaves.
Let x ∈ X be an arbitrary but fixed point. The key idea of both [AS95] and
[Hel97] is to find an integer m0 (as small as possible) and a singular metric h
of the line bundle m0L with the following two properties:

1. Let h be given locally by e−ϕ. Then the curvature current i∂∂̄ϕ dominates
a positive definite smooth (1, 1)-form on X in the sense of currents.

2. Let the multiplier ideal sheaf of h be defined stalk-wise by (χ ∈ X):

(Ih)χ := {f ∈ OX,χ : |f |2e−ϕ is locally integrable at χ}.

Then, in a neighborhood of x, the zero set of Ih, which we denote by
V (Ih), is just the point x. (This is the key property we are looking for.
Note that the support of V (Ih) is just the set of points where h is not
locally integrable.)

The first property implies that

Hq(X, Ih(KX +m0L)) = (0) (q ≥ 1),

due to the vanishing theorem of Nadel [Nad89], [Nad90]. (In the special case
when the singular metric is algebraic geometrically defined, Nadel’s vanish-
ing theorem is the same as the theorem of Kawamata and Viehweg [Kaw82],
[Vie82].) With this information and the second property, it is easy to obtain
an element of Γ(X,KX +m0L) which does not vanish at x. Namely, consider
the short exact sequence

0→ Ih(KX +m0L)→ KX +m0L→ (OX/Ih)(KX +m0L)→ 0.
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The relevant part of the pertaining long exact sequence reads:

Γ(X,KX +m0L)→ Γ(V (Ih), (OX/Ih)(KX +m0L))→ 0,

which implies by virtue of the second property that

Γ(X,KX +m0L)
restr.−→ Γ({x},O{x}(KX +m0L))→ 0,

meaning that the restriction map to {x} is surjective, which is what we intended
to prove. Note that, since L is ample, there trivially exists a metric with the
two aforementioned properties for every line bundle mL with m ≥ m0 (just
multiply the metric for m0L by the (m −m0)-th power of a smooth positive
metric of L).
In both [AS95] and [Hel97], the sought-after metric h is produced by an induc-
tive method. First, here is the key statement proved in sections 7–9 of [AS95].
The cornerstone of its proof is a clever application of the theorem of Ohsawa
and Takegoshi on the extension of L2 holomorphic functions [OT87]. Note
that, in contrast to [AS95], we are only concerned with freeness, and not point
separation, so we can do without the complicated formulations found there.

Proposition 3.2 ([AS95]). Let d be an integer with 1 ≤ d ≤ n−1. Let kd be a
positive rational number, and let hd be a singular metric of the line bundle kdL.
Assume that x ∈ V (Ihd) and x 6∈ V (I(hd)γ ) for γ < 1. Moreover, assume that
the dimensions of those components of V (Ihd) which contain x do not exceed
d. Then there exist integers d′, kd′ with 0 ≤ d′ < d and kd < kd′ < kd+d+ ε (ε
denotes a positive rational number which can be chosen to be arbitrarily small)
and a singular metric hd′ of kd′L such that hd′ possesses the same properties
as hd, but with d and kd replaced by d′ and kd′ .

Second, the key statement of [Hel97] is the following proposition. It is stated in
such a way that it unites [Hel97], Proposition 3.2 (the inductive statement), and
[Hel97], Corollary 4.6 (the multiplicity bound), into one ready-to-use statement.
In its proof, the use of the aforementioned L2 extension theorem is avoided by
an explicit bound on the multiplicity of the minimal centers occurring in the
inductive procedure.

Proposition 3.3 ([Hel97]). Let d be an integer with 1 ≤ d ≤ n− 1. Let

Ln > nn

and
Ld̃.Z ≥ mx(Z) · nd̃

for all subvarieties Z ⊂ X such that x ∈ Z, d ≤ d̃ = dimZ ≤ n − 1 and
multiplicity mx(Z) ≤

(n−1
d̃−1

)
at x. Then there exists an integer 0 ≤ d′ < d,

a rational number 0 < c < 1 and an effective Q-divisor D such that D is Q-
linearly equivalent to cL, the pair (X,D) is log canonical at x and the minimal
center of (X,D) at x is of dimension d′.
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Let us briefly recall the definitions of some of the terms occurring in Proposition
3.3. First of all, for a pair (X,D) of a variety X and a Q-divisor D, an
embedded resolution is a proper birational morphism π : Y → X from a smooth
variety Y such that the union of the support of the strict transform of D
and the exceptional divisor of π is a normal crossing divisor. Next, we define
the following notions, which are fundamental in the study of the birational
geometry of pairs (X,D).

Definition 3.4. Let X be a normal variety and D =
∑
i diDi an effective

Q-divisor such that KX + D is Q-Cartier. If π : Y → X is a birational
morphism (in particular, an embedded resolution of the pair (X,D)), we define
the discrepancy divisor of (X,D) under π to be

∑

j

bjFj := KY − π∗(KX +D).

The pair (X,D) is called log canonical (resp. Kawamata log terminal) at x, if
there exists an embedded resolution π such that bj ≥ −1 (resp. bj > −1) for all
j with x ∈ π(Fj). Moreover, a subvariety Z of X containing x is said to be a
center of a log canonical singularity at x, if there exists a birational morphism
π : Y → X and a component Fj with π(Fj) = Z and bj ≤ −1.

It follows from Shokurov’s connectedness lemma in [Sho86] that the intersection
of two centers of a log canonical singularity is again a center of a log canonical
singularity (for a proof, see [Kaw97]). Thus there exists a unique minimal center
of a log canonical singularity at x with respect to the inclusion of subvarieties
on X.
In order to connect Proposition 3.2 and Proposition 3.3 for our purposes, we
derive from the conclusion of Proposition 3.3 a statement about the existence
of a certain singular metric:

Proposition 3.5. Let (X,D) be a pair of a smooth projective variety X and an
effective Q-divisor D. Let x ∈ X be an arbitrary but fixed point. Assume that
the pair (X,D) is a log canonical at x with its minimal center at x being non-
empty. Let 0 < c < 1 be a rational number such that D is Q-linearly equivalent
to cL. Then there exists a singular metric hD and a rational number c′ (which
can be chosen to be arbitrarily close to c) such that hD is a metric of c′L,
x ∈ V (IhD ) and V (IhD ) is contained in the minimal center of (X,D) at x in
a neighborhood of x. Moreover, x 6∈ V (I(hD)γ ) for γ < 1.

Proof. Let s be a multivalued holomorphic section of cL whose Q-divisor is
D. This means that for some positive integer p with cp being an integer, the
p-th power of s is the canonical holomorphic section of pcL with divisor pD.
Let Z denote the minimal center of (X,D) and π : Y → X a log resolution of
(X,D) with discrepancy divisor

∑
j bjFj . We choose π such that there exists

at least one index j0 with bj0 = −1 and π(Fj0) = Z. Furthermore, we set∑
j δjFj := π∗(D).
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Since L is ample, we can choose a finite number of multivalued holomorphic
sections s1, . . . , sq of L whose common zero set is exactly Z. Let δi,j denote
the vanishing order of π∗si along Fj at a generic point of Fj . If we set δ :=
min{δi,j0 : i = 1, . . . , q}, then δ > 0 holds because all si vanish on Z.
For small positive rational numbers ε, ε′, we define the following singular metric
of, say, c̃L:

h̃D :=
1

|s|2(1−ε)
1

(
∑q
i=1 |si|2)ε′

.

Whatever the choice of ε, ε′ may be, h̃D is locally integrable outside of Z in
a small neighborhood of x. Here is how to choose ε, ε′ in order to make h̃D
not integrable at x. In a small neighborhood U of x, the integrability of h̃D is
equivalent to the integrability of

π∗h̃D|Jac(π)|2 =
1

|s ◦ π|2(1−ε)
1

(
∑q
i=1 |si ◦ π|2)ε′

|Jac(π)|2

over every small open subset W of π−1(U). Note that |Jac(π)|2 can only be
defined locally, and over W we take it to be the quotient

π∗(ωU ∧ ω̄U )

ωW ∧ ω̄W
,

where ωU , ωW are arbitrary but fixed nowhere vanishing local holomorphic n-
forms on U and W , respectively. As we continue, we observe that there exists
a small open subset W of π−1(U) such that W ∩ Fj0 6= ∅ and π∗h̃D|Jac(π)|2
has a pole along W ∩ Fj0 , with its order at a generic point of W ∩ Fj0 being

bj0 + εδj0 − ε′δ.

This number equals −1 if we choose ε arbitrarily and set ε′ := 1
δ εδj0 . We

conclude that, with these choices for ε and ε′, h̃D is not integrable at x.
Finally, we set hD := (h̃D)r with

r := min{ρ : 0 < ρ ≤ 1, (h̃D)ρ is not integrable at x}

to obtain the desired singular metric for c′L. Notice that if we let ε→ 0, then
r → 1, c̃→ c and c′ → c.

Now we are in a position to prove our Main Theorem.

Proof. Fix x ∈ X. Our goal is to prove that, if m0 is the smallest integer no
less than

(e+
1

2
)n

4
3 +

1

2
n

2
3 + 1,

there exists a singular metric h of the line bundle m0L such that the two
properties listed at the beginning of this section are satisfied. As was explained
before, this is all that is necessary to prove the Main Theorem.
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Let a be the smallest integer which is no less than e n
4
3 . Let d0 be the integral

part of n
2
3 . According to Lemma 2.3, we have

(
n− 1

d̃− 1

) 1
d̃

n ≤ e n
2

d̃

for all integers d̃ with 1 ≤ d̃ ≤ n− 1. Furthermore,

e
n2

d̃
≤ e n 4

3 ≤ a

for d̃ ≥ n 2
3 . Thus we can use Proposition 3.3 to produce an effective Q-divisor

D such that D is Q-linearly equivalent to caL for some 0 < c < 1, the pair
(X,D) is log canonical at x and its minimal center at x is of dimension d′ for
some integer d′ with 0 ≤ d′ ≤ d0. By Proposition 3.5, this translates into the
existence of a singular metric h1 of c′aL (0 < c′ < 1) such that x ∈ V (Ih1

),
x 6∈ V (I(h1)γ ) for γ < 1 and the dimensions of those components of V (Ih1

)
that contain x do not exceed d′.
From this point onwards, we can use the method of [AS95] in the form of
Proposition 3.2 to produce inductively a singular metric h2 such that V (Ih2

)
is isolated at x. If the constructed metric h2 is a metric for, say, kL, then

k ≤ c′a+ 1 + 2 + . . .+ d0 + ε1 + ε2 + . . .+ εd0
.

Since the εi can be chosen to be arbitrarily small positive rational numbers and
since c′ < 1, we can assume that

c′a+ 1 + 2 + . . .+ d0 + ε1 + ε2 + . . .+ εd0
< a+ 1 + 2 + . . .+ d0.

To obtain a metric of m0L with the additional property that its curvature
current dominates a positive definite smooth (1, 1)-form on X in the sense of
currents, we can simply multiply h2 by the (m0 − k)-th power of a smooth
positive metric of L to obtain the desired metric h of m0L. Note that m0 − k
is a positive number because

m0 − k > m0 − (a+ 1 + 2 + . . .+ d0)

≥ m0 − (e n
4
3 + 1 + 1 + 2 + . . .+ d0)

= m0 − (e n
4
3 + 1 +

1

2
d0(d0 + 1))

≥ m0 − (e n
4
3 + 1 +

1

2
n

2
3 (n

2
3 + 1))

= m0 − ((e+
1

2
)n

4
3 +

1

2
n

2
3 + 1) ≥ 0.

The proof of the Main Theorem is now complete.
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4 Applications

As was indicated before, not much is known about the very ampleness part of
the Fujita conjecture. The theorems and techniques mentioned in the previous
sections do not seem to be directly applicable to it. However, Angehrn and Siu
[AS95] were able to prove the following weaker analog to the very ampleness
part of Fujita’s conjecture, in which they assume that L, in addition to being
ample, is also base point free. Their result improves on previous results of Ein,
Küchle and Lazarsfeld [EKL95] and Kollar [Kol93].

Theorem 4.1 ([AS95]). Let L be an ample line bundle over a compact complex
manifold X of complex dimension n such that L is free. Let A be an ample line
bundle. Then (n+ 1)L+A+KX is very ample.

In conjunction with our Main Theorem, Theorem 4.1 can readily be applied
to the case of an ample canonical line bundle in order to give the following
effective statement on pluricanonical embeddings. As far as the author knows,
this is the best effective statement on pluricanonical embeddings currently on
hand. Note that Fujita’s conjecture indicates that the statement of Corollary
4.2 should hold true for any integer m ≥ n+ 3.

Corollary 4.2. If X is a compact complex manifold of complex dimension n
whose canonical bundle KX is ample, then mKX is very ample for any integer
m ≥ (e+ 1

2 )n
7
3 + 1

2n
5
3 + (e+ 1

2 )n
4
3 + 3n+ 1

2n
2
3 + 5.

Proof. Let m0 be the smallest integer no less than (e + 1
2 )n

4
3 + 1

2n
2
3 + 1.

According to our Main Theorem, m0KX + KX = (m0 + 1)KX is base
point free (and, of course, ample). Thus we can apply Theorem 4.1 with
L = (m0 + 1)KX and A = KX to obtain that mKX is very ample for any
integer m ≥ (n+ 1)(m0 + 1) + 2. A simple estimate yields the following upper
bound for (n+ 1)(m0 + 1) + 2:

(n+ 1)(m0 + 1) + 2

= m0(n+ 1) + n+ 3

≤ ((e+
1

2
)n

4
3 +

1

2
n

2
3 + 1 + 1)(n+ 1) + n+ 3

= (e+
1

2
)n

7
3 +

1

2
n

5
3 + (e+

1

2
)n

4
3 + 3n+

1

2
n

2
3 + 5.

Finally, we remark that our effective statement on pluricanonical embeddings
can be used to sharpen the best known bound for the number of dominant
holomorphic maps from a fixed compact complex manifold with ample canoni-
cal bundle to any variable compact complex manifold with big and numerically
effective canonical bundle.

Documenta Mathematica 7 (2002) 31–42



Effective Freeness of Adjoint Line Bundles 41

Acknowledgement. The author is supported by a doctoral student fellow-
ship of the Studienstiftung des deutschen Volkes (German National Merit Foun-
dation). The results published in this article were obtained as part of the au-
thor’s research for his Ph.D. dissertation at the Ruhr-Universität Bochum un-
der the auspices of Professor A. T. Huckleberry. It is a great pleasure to thank
Professor Y.-T. Siu for introducing the author to the field of effective algebraic
geometry, and for numerous discussions on the subject, which took place during
visits to the Mathematics Department of Harvard University and the Institute
of Mathematical Research at the University of Hong Kong. Special thanks go
to Professor N. Mok for making an extended visit to Hong Kong possible. The
author is a member of the Forschungsschwerpunkt “Globale Methoden in der
komplexen Geometrie” of the Deutsche Forschungsgemeinschaft.

References

[Ahl78] L. Ahlfors. Complex analysis. McGraw-Hill Book Co., New York,
third edition, 1978. An introduction to the theory of analytic func-
tions of one complex variable, International Series in Pure and Ap-
plied Mathematics.

[AS95] U. Angehrn and Y.-T. Siu. Effective freeness and point separation for
adjoint bundles. Invent. Math., 122(2):291–308, 1995.

[Dem93] J.-P. Demailly. A numerical criterion for very ample line bundles. J.
Differential Geom., 37(2):323–374, 1993.
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Abstract. We introduce the notion of rigid embedding in a grid
surface, a new kind of plane drawing for simple triconnected planar
graphs. Rigid embeddings provide methods to (1) find well-structured
(cellular, here) minimal free resolutions for arbitrary monomial ideals
in three variables; (2) strengthen the Brightwell–Trotter bound on the
order dimension of triconnected planar maps by giving a geometric
reformulation; and (3) generalize Schnyder’s angle coloring of planar
triangulations to arbitrary triconnected planar maps via geometry.
The notion of rigid embedding is stable under duality for planar maps,
and has certain uniqueness properties.
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Introduction

Simple triconnected planar graphs admit numerous characterizations. Two
famous examples include Steinitz’ theorem on the edge graphs of 3-polytopes,
and the Koebe–Andreev–Thurston circle packing theorem (see [Zie95] for both).
These results produce “correct” planar (or spherical) drawings of the graphs in
question, from which a great deal of geometric and combinatorial information
flows readily.
This paper introduces a new kind of plane drawing for simple triconnected pla-
nar graphs, from which a great deal of algebraic and combinatorial information
flows readily. These geodesic embeddings inside grid surfaces provide methods
to

• solve the problem of finding well-structured (cellular, in this case) mini-
mal free resolutions for arbitrary monomial ideals in three variables;
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• strengthen the Brightwell–Trotter bound on the order dimension of tri-
connected planar maps [BT93] by giving a geometric reformulation; and

• generalize Schnyder’s angle coloring for planar triangulations [Tro92,
Chapter 6] to arbitrary triconnected planar maps via geometry.

We note that Felsner’s generalization of Schnyder’s angle coloring [Fel01] co-
incides with the orthogonal colorings independently discovered here as conse-
quences of geometric considerations. In parallel with circle-packed and polyhe-
dral graph drawings, additional evidence for the naturality of geodesic embed-
dings comes from their stability under duality, and the uniqueness properties
enjoyed by “correct” geodesic embeddings—called rigid embeddings in what
follows—for a given planar map.
The plan of the paper is as follows. Immediately following this Introduction is
a section containing two theorems summarizing the equivalences and construc-
tions forming main results of the paper. After that, the paper is divided into
three Parts.
Part I lays the groundwork for geodesic and rigid embeddings in grid surfaces,
and is geared almost entirely toward proving Theorem 5.1: the rigid embedding
theorem. Terminology for the rest of the paper is set in Section 1, which also
states a standard criterion for triconnectivity under edge contraction that serves
as an inductive tool in the proof of Theorem 5.1. Then Section 2 presents the
definition of grid surfaces, as well as the vertex and edge axioms for geodesic
and rigid embeddings. Their consequences, the region and rigid region axioms,
appear in Propositions 2.3 and 2.4. The first connection with order dimension
comes in Corollary 2.5.
Sections 3 and 4 consist of stepping stones to the rigid embedding theorem. The
basic inductive step for abstract planar maps is Lemma 3.1, which motivates
the preliminary grid surface construction of Lemma 3.2. Induction for grid
surfaces occupies the three Propositions in Section 4. They have been worded
so that their rather technical proofs (particularly that of Proposition 4.2) may
be skipped the first time through; instead, the Figures should provide ample
intuition.
Section 5 completes the induction with a few more arguments about abstract
planar maps. Corollary 5.2 recovers the Brightwell–Trotter bound on order
dimension from rigid embedding.
The focus shifts in Part II to the algebra of monomial ideals in three variables,
specifically their minimal free resolutions. A review of the standard tools oc-
cupies Section 6, while Section 7 recaps the more recent theory of cellular
resolutions, along with a triconnectivity result (Proposition 7.2) suited to the
applications here. Theorem 8.4 says how geodesic embeddings become min-
imal free resolutions. Corollary 8.5 then characterizes triconnectivity as the
condition guaranteeing that a planar map supports a minimal free resolution
of some artinian monomial ideal.
Section 9 displays even more reasons why rigid embeddings are better than
arbitrary geodesic embeddings: they have a strong uniqueness property (Corol-
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lary 9.1), which implies in particular that every minimal cellular resolution of
the corresponding monomial ideal is planar. Surprisingly, there can exist non-
planar cell complexes supporting minimal free resolutions of trivariate artinian
monomial ideals that are sufficiently nonrigid; Example 9.2 illustrates one.

Sections 10–12 are devoted to producing minimal cellular free resolutions of ar-
bitrary monomial ideals in three variables (Theorem 11.1). The deformations
reviewed in Section 10 serve as part of the algorithmic solution pseudocoded in
Algorithm 11.2. The proof of correctness for the algorithm and the theorem,
which occupy Section 12, are rather technical and delicate. As with Section 4,
the pictures may give a better feeling for the methods than the proofs them-
selves, at least upon first reading.

Part III continues where Part I left off, with more combinatorial theory for pla-
nar maps. Section 13 introduces orthogonal coloring, which generalizes Schny-
der’s angle coloring and abstracts the notion of geodesic embedding (Propo-
sition 13.1). Then, Section 14 shows how orthogonal coloring encodes the
abstract versions of the orthogonal flows that played crucial roles in Section 2.
As a consequence, Proposition 14.2 shows that orthogonal flows are examples
of—but somewhat better than—normal families of paths, connecting once again
with the work of Brightwell and Trotter on order dimension. Section 15 demon-
strates how Alexander duality for grid surfaces (or monomial ideals) manifests
itself as duality for planar maps geodesically embedded in grid surfaces.

Finally, Section 16 presents some open problems related to the notions devel-
oped in earlier sections, including a conjecture on orthogonal colorings and
some problems on classifying cell complexes supporting minimal resolutions.
Further questions concern applications of the present results to broader com-
binatorial algebraic problems, notably how to describe the “moduli space” of
all minimal free (or injective) resolutions of ideals generated by a fixed number
of monomials.

After completing an earlier version of this paper, the author was informed that
Stefan Felsner had independently discovered the theory in Sections 13 and 14
[Fel01, Sections 1 and 2]. In addition, Felsner proved Conjecture 16.3 in [Fel02]
after reading the preliminary version of this paper. See Section 16.3 for details
and consequences.

Part III is almost logically independent of Part II, the only exceptions being
Lemmas 8.2 and 8.3. Thus, the reader interested primarily in the combinatorics
of planar graphs (as opposed to resolutions of monomial ideals) can read Parts I
and III, safely skipping everything in Part II except for these two lemmas.
The reader interested primarily in resolutions of monomial ideals should skip
everything in Sections 3–5 except for the statement of Theorem 5.1.
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Summary theorems

For the sake of perspective and completeness, we collect the main ideas of
the paper into a pair of precisely stated summary theorems. Their proofs are
included, in the sense that the appropriate results from later on are cited. All
of the notions appearing in Theorems A and B will be introduced formally in
due time; until then, brief descriptions along with Figure 1 should suffice.
Let M be a connected simple planar map—that is, a graph embedded in a
surface S homeomorhpic to the plane R2. All graphs in this paper have finitely
many vertices and edges. Fix a point∞ ∈ S far from M , and define the exterior
region of M to be the connected component of S rM containing ∞. Given
three vertices ẋ, ẏ, ż ∈M bordering the exterior region, form the extended map
M∞(ẋ, ẏ, ż) by connecting ẋ, ẏ, ż to ∞. Call a graph triconnected either if it is
a triangle, or if it has at least four vertices of which deleting any pair along with
their incident edges leaves a connected graph. A set of paths leaving a fixed
vertex ν ∈M is said to be independent if their pairwise intersection is {ν}.
Let k[x, y, z] be the polynomial ring in three variables over a field k, and let I ⊂
k[x, y, z] be an ideal generated by monomials. The grid surface S corresponding
to I is the boundary of the staircase diagram of I, which is drawn (as usual) as
the stack of cubes corresponding to monomials not in I. Rigid embedding of
a planar map M in S involves identifying the edges of M as certain piecewise
linear geodesics in S, and constitutes an inclusion of the vertex-edge-face poset
of M into N3. Orthogonal coloring M involves coloring the angles in M with
three colors according to certain rules. Since it would take too long to do real
justice to the definitions of ‘rigid embedding’ and ‘orthogonal coloring’ here,
Figure 1 will have to do for now. The outer corners in the orthogonal coloring
and the vectors on the axes in S are called axial vertices. The grid surface S
is called axial when I is artinian.
Suppose M is a cell complex (finite CW complex) whose faces are labeled by
vectors in N3, in such a way that the union M¹α of faces whose labels precede
α ∈ N3 is a subcomplex of M for every α. Roughly speaking, M supports a
cellular free resolution of I if the boundary complex of M¹α with coefficients
in k is the N3-degree α piece of a free resolution of I, for every α ∈ N3.

Theorem A Let M be a planar map. The following are equivalent.

1. M has three vertices ẋ, ẏ, ż bordering its exterior region for which
M∞(ẋ, ẏ, ż) is triconnected.

2. M has three vertices ẋ, ẏ, ż bordering its exterior region to which every
vertex of M has independent paths.

3. M has an orthogonal coloring with axial vertices ẋ, ẏ, ż.

4. M can be rigidly embedded in an axial grid surface.
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Figure 1: Orthogonal coloring and rigid embedding of an extended map

5. M supports a cellular minimal free resolution of some artinian monomial
ideal in k[x, y, z].

Every artinian monomial ideal in k[x, y, z] has a minimal cellular resolution
supported on a cell complex M satisfying these conditions; in fact, Algo-
rithm 11.2 produces such an M automatically.

Proof. 4 ⇒ 3 follows from Proposition 13.1.
3 ⇒ 2 follows from Proposition 14.2.
2 ⇒ 1 follows easily from the definitions.
1 ⇒ 4 is Theorem 5.1.
4 ⇒ 5 follows from Theorem 8.4.
5 ⇒ 1 is Proposition 7.2.
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The final statement comes from Theorem 11.1 and Proposition 12.4. 2

Similar—but weaker—statements apply to minimal cellular free resolutions of
arbitrary (not necessarily artinian) monomial ideals in k[x, y, z].

Theorem B Let N be a planar map. The following two conditions are equiv-
alent.

1. N can be rigidly embedded in some grid surface.

2. N can be obtained by deleting ẋ, ẏ, ż and all edges incident to them from
some planar map M satisfying the equivalent conditions in Theorem A.

These conditions imply that

3. N supports a minimal free resolution of some monomial ideal in k[x, y, z].

Every monomial ideal in k[x, y, z] has a minimal free resolution supported on
a planar map N satisfying conditions 1 and 2; such an N can be produced
algorithmically.

Proof. 1 ⇒ 2 follows from Theorem 8.4 and Lemma 8.2.
2 ⇒ 1 follows from Theorem 5.1 and Lemma 8.2.
1 ⇒ 3 follows from Theorem 8.4.
The first half of the final statement is Theorem 11.1 along with the first para-
graph of its proof on p. 80; add in Proposition 12.4 for the algorithmic part. 2

In reality, the more detailed versions later on are considerably more precise,
demonstrating how some of the equivalent descriptions naturally give rise to
others.

Part I
Geodesic embedding in grid surfaces

1 Planar maps

Let V = {ν1, . . . , νr} be a finite set. A graph G with vertex set V is uniquely
determined by a collection E ⊆

(V
2

)
of edges, each consisting of a pair of vertices.

Except for one paragraph at the beginning of Section 15, we consider only
simple graphs—that is, without loops or multiple edges—so G is an abstract
simplicial complex of dimension 1 having vertex set V. Thus G can be regarded
as a topological space, via any geometric realization.
Let S be a surface homeomorphic to the Euclidean plane R2. A plane drawing
of G in S is a continuous morphism G ↪→ S of topological spaces that is a
homeomorphism onto its image. If G is connected, the image M is called
a planar map. Deleting the images of the vertices and edges of G from S
leaves several connected components whose closures are the regions of M . The
unique unbounded region is called the exterior region of M . Two planar maps

Documenta Mathematica 7 (2002) 43–90



50 Ezra Miller

are isomorphic if they result from plane drawings of the same graph G, their
regions have the same boundaries in G, and the boundaries of their exterior
regions correspond. We often blur the distinction between a planar map and
the underlying graph, by not distinguishing a vertex (resp. edge) of G from the
corresponding point (resp. arc) of M in the surface S.
A graph G is k-connected either if G is the complete graph on k vertices, or if
G has at least k + 1 vertices, and given any k − 1 vertices ν1, . . . , νk−1 of G,
the deletion del(G; ν1, . . . , νk−1) is connected. Here, the deletion is obtained
by removing ν1, . . . , νk−1 as well as all edges containing them from G. In case
k = 2 or 3, the graph G is called biconnected or triconnected, respectively.
Suppose that e is an edge of a planar map M , and that none of the (one or two)
regions containing e is a triangle. The contraction M/e of M along e is obtained
by removing the edge e and identifying the two vertices of e. The underlying
graph of M/e is the topological quotient G/e; it is still simple because e is the
only edge connecting its vertices in G (so G/e has no loops) and no triangles
contain e in G (so G/e has no multiple edges). Some plane drawing of M/e
is obtained by literally contracting the edge e in M (technically: there is a
homotopy G× [0, 1]→ S such that G× t→ S is a plane drawing of G for t < 1,
while G× 1→ S is a composition G→ G/e→ S with the second map being a
plane drawing). Contraction will be a crucial inductive tool, via a well-known
criterion for triconnectivity under contraction:

Proposition 1.1 Let M be a triconnected planar map with at least four ver-
tices, and let e be an edge. If there exist two regions F, F ′ of M such that

1. e ∩ F and e ∩ F ′ are the two vertices of e, and

2. F ∩ F ′ is nonempty,

then either e borders a triangle or the contraction M/e fails to be tricon-
nected. Conversely, if e borders no triangles and M/e is triconnected, then
no such F, F ′ exist.

Thinking of the surface S ∼= R2 as the 2-sphere minus ∞, many of the planar
maps M in this paper result by embedding some graph G∞ in the sphere
with ∞ as a vertex, and then considering the induced plane drawing M of
del(G∞;∞). When this is the case, we frequently need to consider the subset
M∞ ⊂ S obtained by omitting the point ∞ from the plane drawing of G∞
in the sphere; thus some of the vertices in M connect to the missing point ∞
by unbounded arcs in S. More generally, define an extended map M∞ ⊂ S
to be the union of a planar map M and a set of infinite nonintersecting arcs
connecting some of its vertices to ∞. The closure M∞ of M∞ in the sphere
need not be a simple graph because it can have doubled edges: some vertex in
M could have two or more unbounded arcs in M∞ containing it.
Suppose the edges contained in the exterior region of M form a simple closed
curve, called the exterior cycle. This occurs, for instance, when M is tricon-
nected. Three vertices ẋ, ẏ, ż ∈ M are called axial if they are encountered
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(in order) proceeding counterclockwise around the exterior cycle. Having cho-
sen axial vertices, define M∞(ẋ, ẏ, ż) ⊂ S to be the union of M and three
unbounded arcs, called the x, y, and z-axes, connecting ẋ, ẏ, ż to∞. We some-
times blur the distinction between M∞(ẋ, ẏ, ż) and its closure M∞(ẋ, ẏ, ż) in
the sphere. For instance, we say that M∞(ẋ, ẏ, ż) is triconnected if the graph
underlying M∞(ẋ, ẏ, ż) is.

2 Grid surfaces

Let R denote the real numbers. Write vectors in R3 as α = (αx, αy, αz), and
partially order R3 by setting α ¹ β (read ‘α precedes β’) whenever αu ≤ βu
for all u ∈ {x, y, z}. Say that α ∈ R3 strongly precedes β ∈ R3 when αu < βu
for all u = x, y, z; this is stronger than saying α ≺ β. (Throughout this paper,
the letter u denotes any one of x, y, z, in the same way that xi denotes one
of x1, . . . , xn.) Use α∨β and α∧β to denote the join (componentwise maximum)
and meet (componentwise minimum) of α, β ∈ R3.
Let V ⊂ N3 ⊂ R3 be a set of pairwise incomparable elements, where N denotes
the set of nonnegative integers. The order filter

〈V〉 = {α ∈ R3 | α º ν for some ν ∈ V}

generated by V is a closed subset of the topological space R3. Its boundary
SV is called a grid surface or staircase. Orthogonal projection onto the plane
x+ y + z = 0 restricts to a homeomorphism SV ∼= R2. (This homeomorphism
gives the correspondence between rhombic tilings of the orthogonal projection
of the |ẋ| × |ẏ| × |ż| parallelepiped and plane partitions of the |ẋ| × |ẏ| grid
with parts at most |ż|. The grid surface in Figure 1 clearly demonstrates
the homeomorphism: the diagram is, after all, drawn faithfully on the two-
dimensional page.)
One of the basic properties of grid surfaces is that α ∈ SV whenever ρ, σ ∈ SV
and ρ ¹ α ¹ σ. Therefore, if ρ, σ ∈ SV and ρ ¹ σ, then SV contains the line
segment in R3 connecting ρ to σ. In particular, if ν, ω ∈ V satisfy ν∨ω ∈ SV ,
then SV contains the union [ν, ω] of the two line segments joining ν and ω to
ν∨ω; we refer to such arcs as elbow geodesics1 in SV . When ν and ω are the
only vectors in V preceding ν∨ω, the arc [ν, ω] is called a rigid geodesic.
Denote the nonnegative rays of the coordinate axes in R3 by X, Y , and Z, and
use the letter U to refer to any of X,Y, Z. The ray ν + U intersects SV in an
oriented line segment Uν called the orthogonal ray leaving ν in the direction
of U . Thus every point in V has precisely three orthogonal rays, one parallel
to each coordinate axis and all contained in SV , although some orthogonal rays
may be unbounded while others are bounded.
If Uν is bounded, so it has an endpoint besides ν, then the other endpoint
of Uν can always be expressed as a join ν∨ω for some ω ∈ V. When there is

1Elbow geodesics do minimize length for the metric on SV induced by the usual metric
on R3, but this fact has no practical application in this paper.
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exactly one such point ω, so [ν, ω] is a rigid geodesic, we say that ν or Uν points
toward ω.
Observe that ν∨ω must share two coordinates with at least one (and perhaps
both) of ν and ω, so every elbow geodesic contains at least one orthogonal ray.
Making compatible choices of elbow geodesics containing all orthogonal rays
yields a planar map. To be precise, a plane drawing M ↪→ SV is a geodesic
grid surface embedding, or simply a geodesic embedding in SV , if the following
two axioms are satisfied:

(Vertex axiom) The vertices of M coincide with V.
(Elbow geodesic axiom) Every edge of M is an elbow geodesic

in SV , and every bounded orthogonal ray in SV is part of
an edge of M .

With the following stronger edge axiom instead, M ↪→ SV is a rigid embedding,
which we sometimes phrase by saying that M is rigidly embedded in SV :

(Rigid geodesic axiom) The elbow geodesic exiom holds, and every
edge of M is a rigid geodesic in SV .

The rigid geodesic axiom really consists of three parts, each of which puts
nontrivial restrictions on SV or M : every bounded orthogonal ray in SV is
part of a rigid geodesic (a priori, this has nothing to do with M); every rigid
geodesic in SV is an edge of M ; and every edge of M is a rigid geodesic in SV .

Lemma 2.1 Let M ↪→ SV be a geodesic or rigid embedding. Suppose V is in
order-preserving bijection with another set Ṽ of vertices via ν ↔ ν̃, so that
νu ≤ ωu ⇔ ν̃u ≤ ω̃u for all ν, ω ∈ V and u ∈ {x, y, z}. Then the elbow
or rigid geodesics in SṼ constitute another geodesic or rigid embedding of M .
In particular, linearly scaling one or more coordinate axes by integer factors
preserves geodesic or rigid embeddings.

Proof. Purely order-theoretic properties of V determine whether ν and ω are
the endpoints of an elbow geodesic, or whether ν points toward ω. 2

Any geodesic embedding M ↪→ SV determines an extended map

M∞ = M ∪ (unbounded orthogonal rays).

A special case occurs when SV is axial, having axial vectors

ẋ = (|ẋ|, 0, 0), ẏ = (0, |ẏ|, 0), and ż = (0, 0, |ż|)

in V for nonzero |ẋ|, |ẏ|, |ż| ∈ N. Thus, if M is geodesically embedded in an
axial grid surface SV , we can define the axial vertices of M to be the axial
vectors in V, and set M∞(ẋ, ẏ, ż) = M ∪Xẋ ∪Yẏ ∪Zż. (Precisely two bounded
orthogonal rays leave each axial vertex, while all three orthogonal rays leaving
any other vertex are bounded). Conversely, if M comes equipped with axial
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vertices ẋ, ẏ, ż, then we require any geodesic embedding M ↪→ SV to send these
axial vertices to axial vectors in V.
Suppose M is geodesically embedded in the axial grid surface SV . The edge
of M leaving any vertex ν 6= ż along the vertical orthogonal ray Zν con-
nects ν to another vertex ω with strictly larger z-coordinate, but weakly smaller
x and y-coordinates. Continuing in this manner constructs an orthogonal flow
[ν, ż] from ν to ż that is increasing in z, but weakly decreasing in x and y.
It follows that [ν, ż] and the similarly constructed paths [ν, ẋ] and [ν, ẏ] are
independent, meaning that they intersect pairwise only at ν itself. Since
[ẋ, ẏ], [ẏ, ż], and [ż, ẋ] partition the exterior cycle of M into three arcs, the
contractible sets bounded by

[ẋ, ν, ẏ] := [ν, ẋ] ∪ [ν, ẏ] ∪ [ẋ, ẏ]

and its cyclically permuted analogues partition the regions of M .

Lemma 2.2 Suppose M ↪→ SV is an axial geodesic embedding, and ν ∈ V
borders a region contained in [ẋ, ω, ẏ]. Then νz ≤ ωz, with strict inequality
if ν 6∈ [ω, ẋ] ∪ [ω, ẏ]. A similar statement holds for arbitrary permutations
of x, y, z.

Proof. The orthogonal flow [ν, ż] must cross [ω, ẋ] or [ω, ẏ], at ν ′ ∈ [ω, ẋ], say.
Concatenating the part of [ω, ẋ] from ω to ν ′ with the part of [ν, ż] from ν ′ to ν
yields a path from ω to ν that is weakly decreasing in z. This path is strictly
decreasing if ν 6∈ [ω, ẋ] ∪ [ω, ẏ], for then it traverses (downwards) the vertical
orthogonal ray Zν . 2

Proposition 2.3 (Region axiom) Let M ↪→ SV be an axial geodesic embed-
ding, and F a bounded region of M . If αF is the join of the vertices of F , then
αF ∈ SV , and every vertex ν ∈ F shares precisely one coordinate with αF .

Proof. If ω ∈ V, then Lemma 2.2 implies there is some u ∈ {x, y, z} such that
νu ≤ ωu for all ν ∈ F . This shows ω cannot strongly precede αF , so αF ∈ SV ;
every vertex ν ∈ F therefore shares at least one coordinate with αF . Suppose by
symmetry that νz = (αF )z. The two edges of F containing ν cannot increase
in z, so they exit ν counterclockwise of Xν and clockwise of Yν . At least
one of these edges strictly increases in x, and another strictly increases in y,
completing the proof. 2

The next proposition says that regions in rigid axial embeddings are 2-
dimensional analogues of rigid geodesics. In addition to its applications
throughout Sections 3 and 4, this fact will play a crucial role in Corollary 5.2,
by way of Corollary 2.5, below. Refer to Figure 2 for an illustration of the rigid
region axiom as well as its failure for nonrigid embeddings; ν and σ are vertices
of an elbow geodesic, but ρ ¹ ν∨σ in the latter case. The diagram is labeled
as in the coming proof of Proposition 2.4.
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ẋẋ ẏẏ
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Figure 2: The rigid region axiom and its failure for nonrigid embeddings

Proposition 2.4 (Rigid region axiom) Let M ↪→ SV be a rigid axial em-
bedding, and F a region of M∞(ẋ, ẏ, ż). If αF is the join of the vertices of F
and ω ∈ SV , then ω ∈ F ⇔ ω ¹ αF .

Proof. The claim is obvious if F is one of the three unbounded regions, so
assume F is bounded. Since ω ∈ F ⇒ ω ¹ αF by definition, let ω 6∈ F ,
and assume F is contained in [ẋ, ω, ẏ] by symmetry. Either ωz > νz for some
vertex ν ∈ F with maximal z-coordinate νz = (αF )z, in which case the proof
is trivial, or all vertices of F with z-coordinate (αF )z lie on [ω, ẋ] ∪ [ω, ẏ], by
Lemma 2.2. Assume there is one on [ω, ẏ] by transposing x and y if necessary,
and let ν ∈ F ∩ [ω, ẏ] be closest to ω.
The vertex ρ ∈ [ω, ẏ] pointing toward ν has the same z-coordinate as ν (be-
cause ωz ≥ ρz ≥ νz and ωz = νz), so the rigid geodesic [ρ, ν] consists of the
orthogonal rays Yρ and Xν . Of ν’s two neighbors in F , let σ have smaller
y-coordinate. Since ρ 6= σ and σ 6∈ [ω, ẏ], the edge connecting ν to σ exits ν
strictly counterclockwise of Xν and strictly clockwise of Yν . Thus σz < νz,
whence σx = (αF )x by the region axiom (Proposition 2.3). But ρ 6¹ ν∨σ by
the rigid geodesic axiom, while ρz = νz = (ν∨σ)z and ρy < σy = (ν∨σ)y by
construction. Therefore ρx > (ν∨σ)x = σx = (αF )x. The proof is complete
because ω decreases in x along [ω, ẏ] to ρ. 2

Corollary 2.5 Let M ↪→ SV be an axial rigid embedding. If P is a vertex,
edge, or bounded region of M , let αP denote join of the vertices in P . The map
sending P 7→ αP constitutes an embedding in N3 of the vertex-edge-face poset
of M .

Proof. Immediate from the vertex, rigid geodesic, and rigid region axioms. 2

Recall that the order dimension of a partially ordered set (poset) P is the
smallest d ∈ N such that P includes into the poset Rd. The previous corollary
says that the order dimension of an axial rigidly embedded planar map is no
greater than 3. See [Tro92] for more on order dimension.
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3 Gluing geodesic embeddings

Let M be a planar map with axial vertices ẋ, ẏ, ż and extended map M∞ =
M∞(ẋ, ẏ, ż). Suppose C is a simple cycle in M having three counterclockwise
ordered vertices ẍ, ÿ, z̈, and furthermore that C bounds a closed disk R ⊂ S
that is a union of bounded regions in M . Following Brightwell and Trotter
(cf. [Tro92, Chapter 6], although our definition differs slightly), we call C a
ring if every edge of M not contained in R intersects R in a (possibly empty)
subset of {ẍ, ÿ, z̈}. The double-dotted vertices play the roles of axial vertices
for a smaller map N = M ∩ R “glued into” M by external edges emanating
from N at ẍ, ÿ, z̈. Although we allow ü for u ∈ {x, y, z} to equal the original
axial vertex u̇ ∈M , we exclude the case where C is the exterior cycle of M by
referring to a proper ring.
Assume for each u = x, y, z that the vertex ü meets at least one edge in M∞
not contained in R (this occurs when M∞ is triconnected). If there are at least
two such edges then set ü = ü. Otherwise, call the unique edge eü and name
its other endpoint ü. Here, ü = ∞ is allowed because ü = u̇ is; but if C is
a proper ring, then at most one of ẍ, ÿ, z̈ can equal ∞, because there are no
proper rings containing two axial vertices u̇ ∈ {ẋ, ẏ, ż} such that R contains all
of their edges in M . Indeed, it would be impossible to choose the third vertex ü
from the pair of last points on the exterior cycle of M going from the two axial
vertices on C toward the third.
The closure in the 2-sphere of the subset M∞rR is a planar map whose inter-
section with R equals {ẍ, ÿ, z̈}. Construct the contraction M∞/R by leaving off
the edges {eü | ü 6= ü} as well as their endpoints ü on C, and then connecting
ẍ, ÿ, z̈ to a new vertex τ inside R. View M∞/R := (M∞/R)r∞ as being the
extension of a map M/R = del(M∞/R;∞). Thus M∞/R = (M/R)∞ has τ as
a vertex, and still has axes drawn to∞, although τ might replace one of ẋ, ẏ, ż
as an axial vertex. When τ replaces u̇, however, we are free to choose τ = u̇,
so we still write (M/R)∞(ẋ, ẏ, ż).

Lemma 3.1 Let M∞(ẋ, ẏ, ż) be triconnected and M contain a proper ring C as
above. Then both M ∩R and M/R are planar maps, with axial vertices, whose
extended maps (M ∩R)∞(ẍ, ÿ, z̈) and (M/R)∞(ẋ, ẏ, ż) are triconnected. Each
of M ∩R and M/R contains fewer edges and strictly fewer regions than M .

Proof. Deleting from M∞ any pair of vertices in M leaves every remaining
vertex ν ∈M ∩R connected to {ẍ, ÿ, z̈}, because every path connecting ν to∞
in M∞ passes through {ẍ, ÿ, z̈}. By the same argument, every vertex in M∞
that remains after deleting any pair of vertices in M is connected to R—and
hence to τ—in the deletion. (The removal of the edges eü ensures that M/R
has no bivalent vertices on the way to τ .) The fact that ẋ, ẏ, ż and ẍ, ÿ, z̈ can be
chosen as axial vertices follows from the triconnectivity of the extended maps
of M/R and M ∩R.
Now M has at least one region inside (resp. outside) R, because C is a simple
cycle (resp. a proper ring). Thus M/R (resp. M ∩R) has strictly fewer regions
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than M . The edge number inequality is obvious for M ∩ R. For M/R, the
number of edges is at most E + 3, counting the edges to τ , where E is the
number of edges in M r R. But the number of edges in M is at least E + 3,
because R contains the cycle C. 2

Let M and N be planar maps with axial vertices (ẋ, ẏ, ż) and (ẍ, ÿ, z̈), respec-
tively, such that M∞(ẋ, ẏ, ż) and N∞(ẍ, ÿ, z̈) are both triconnected. We now
show how to glue N into M at a vertex τ ∈M that is trivalent in M∞. Let the
counterclockwise ordered neighbors of τ be α, β, γ (one of which might be ∞)
in M∞. (Think of M and N as M/R and M∩R from Lemma 3.1, respectively.)
Start by replacing τ with a small triangle in M∞ (a ‘Y –∆’ transformation),
adding three new vertices in the process. This action requires working in M∞
rather than M if τ ∈ {ẋ, ẏ, ż}. Next, replace the new triangle and its interior
with N , in such a way that α, β, γ ∈M connect to the axial vertices ẍ, ÿ, z̈ ∈ N
via edges eẍ, eÿ, ez̈, called tethers in M∞. The result is an extended map for
M ∪τ N , the tethered gluing of N into M at τ . Contracting some or all of the
tethers yields a gluing of N into M , provided the resulting map is simple and
triconnected.
The construction of the tethered gluing works at the level of grid surfaces. For
instance, the hypotheses in the next lemma can easily be attained by scaling M .
This is a key observation, making the induction in the proof of Theorem 5.1
possible. The left columns of Figures 5 and 4 illustrate examples of SVM ,SVN , τ ,
and M ∪τ N ↪→ SV .

Lemma 3.2 Let M ↪→ SVM and N ↪→ SVN be rigid embeddings with respective
axial vertices ẋ, ẏ, ż and ẍ, ÿ, z̈, and suppose τ ∈M∞(ẋ, ẏ, ż) is trivalent. If Uτ
has length at least m+ 1 for U = X,Y, Z, then τ is the unique vector in VM
preceding τ + m1, where 1 = (1, 1, 1). If, in addition, |ü| ≤ m for u = x, y, z
and

V = (VM r τ) ∪ (τ + VN )

then the rigid geodesics in SV provide a rigid embedding of the map M ∪τ N .

Proof. The orthogonal raysXτ , Yτ , Zτ point toward α, β, γ (one of these may be
∞) in SVM because τ is trivalent. Each vertex ν ∈ VM with ν 6= τ has νx ≥ αx,
νy ≥ βy, or νz ≥ γz. Indeed, if ν lies in [ẋ, τ, ẏ] (say), then considering where
the orthogonal flow [ν, ż] intersects [τ, ẋ] ∪ [τ, ẏ] shows that either νx ≥ αx
or νy ≥ βy. Thus τ ¹ τ + m1 is unique in SVM ; the vertex axiom for V is
immediate.
The part of SV preceding τ +m1 equals τ + (the part of SVN preceding m1),
by the uniqueness in M of τ ¹ τ + m1. Thus every vertex, rigid geodesic, or
bounded orthogonal ray in N ↪→ SVN gets translated by τ to the corresponding
feature in SV . Similarly, the parts of SV and SVM not preceded by τ agree, so
any vertex, rigid geodesic, or bounded orthogonal ray in M ↪→ SVM survives
in SV , as long as it is contained in a (perhaps unbounded) region of M∞ not
containing τ , by the rigid region axiom.

Documenta Mathematica 7 (2002) 43–90



Planar Graphs as Minimal Resolutions 57

The only orthogonal rays unaccounted for as yet for the rigid geodesic axiom
are those leaving τ+ü and α, β, γ. Observe that τ+ü is the unique element of V
on the orthogonal ray Uτ ⊂ SVM . Thus an orthogonal ray leaving τ + ü either
points toward the corresponding one of α, β, γ whenever the latter is not∞, or
it points away from VM . An orthogonal ray leaving α, β, γ either points back
toward ü along a rigid geodesic eü, or it points away from τ + VN . We conclude
that the rigid geodesics in SV form a planar map isomorphic to M ∪τ N . 2

4 Contracting rigid geodesics

Proposition 4.1 Let M be a planar map with axial vertices ẋ, ẏ, ż. Suppose e
is the edge in the exterior cycle of M leaving ẋ toward ẏ, and that e borders no
triangles in M∞(ẋ, ẏ, ż). If M/e can be rigidly embedded in some grid surface,
then so can M .

Proof. Letting ν ∈ M be the other endpoint of e, we have ν 6= ẏ because the
unbounded region of M∞ containing e is not a triangle. The edge in M leaving
ν clockwise from e determines an edge f in any rigid embedding N ↪→ SV
isomorphic to M/e. Note that f ∈ N does not contain the orthogonal ray Yẋ
because f 6= e; and f 6⊃ Zẋ because ν sits between ẋ and ẏ. Therefore the
orthogonal ray Xω at the other endpoint ω of f in N points toward ẋ.
Assume all coordinates of vectors in V are even, by scaling. The claim is that
the rigid geodesics in SV∪ν constitute a rigid embedding isomorphic to M ,
where the coordinates of ν are defined by

ν = (νx, νy, νz) = (|ẋ| − 1, ωy, 0).

The addition of ν to V affects at most the rigid geodesics in N containing one
of the following: an orthogonal ray Xσ for some vertex σ ∈ V pointing toward
ẋ; an orthogonal ray at ν; or Yẋ. All other rigid geodesics lie behind the plane
x = |ẋ| − 1.
If σy < ωy, then Xσ is unaffected by ν, while if σy ≥ ωy, then ẋ and ν are the
only elements of V preceding σ∨ẋ = σ∨ν + (1, 0, 0). Thus Xσ points toward ν
if σy ≥ ωy, because ẋ 6¹ σ∨ν. The three orthogonal rays Xν , Zν , and Yν
leaving ν point respectively toward ẋ, ω, and the vertex to which Yẋ ⊂ SV
points in N . Finally, Yẋ ⊂ SV∪ν points toward ν. (Figure 3 illustrates the
transition M/eÃM .) 2

In the situation of Lemma 3.1, gluing M ∩R into M/R may involve contracting
some of the tethers in (M/R) ∪τ (M ∩ R). For the rest of this section, let
M ↪→ SVM and N ↪→ SVN be rigid embeddings having respective axial vertices
ẋ, ẏ, ż and ẍ, ÿ, z̈, with τ ∈ M∞(ẋ, ẏ, ż) a trivalent vertex having neighbors
α, β, γ. Let B be the region of M ∪τ N containing eÿ and ez̈.

Proposition 4.2 Assume that τ 6= ẏ, that Yẋ points toward τ , and that no
edge in M has vertices {ẋ, γ}. Contracting eẍ along with neither, either, or
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(if B has at least five vertices) both of ez̈ and eÿ in M ∪τ N yields a planar
map possessing a geodesic grid surface embedding.

Proof. Paragraph headings are included below to make parts of the proof easier
to follow and cross-reference.

Plan of proof

Given the conditions of the present proposition, assume all hypotheses and
notation of Lemma 3.2, as well; this is possible by Lemma 2.1. If |VN | = n,
scale M so that all coordinates of vectors in VM are divisible by n + 1. Until
further notice (see the special construction for (8), below), assume in addition
that the orthogonal rays Xτ , Yτ , Zτ all have length exactly m+ 1. Set

ν′ := τ + ν for ν ∈ VN .

The plan of the proof is to split into a number of cases, each of which demands
slightly different treatment. In every case, Lemma 2.1 allows a judicious choice
of coordinates for vectors in VN . Most often, omitting one or more of the
vertices {ẍ′, ÿ′, z̈′, β} from V leaves a set V such that the desired contraction
of M ∪τ N geodesically embeds into SV ; two of the cases require additional
fiddling with the surviving vertices to get the desired grid surface.

Eight cases

Let A and B be the bounded regions of M ∪τ N containing eẍ and eÿ, respec-
tively. By the region axiom, we think of A = (Ax, Ay, Az) and B = (Bx, By, Bz)
as the vectors given by the joins of their vertices. Denote by A(u) the set of
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vertices of A having u-coordinate Au. For instance, A(x) = {ẋ} = {α}, and
β ∈ B(y).
Here is the list of constructions yielding SV . In each of (1)–(7), choose VN
so that every coordinate of every vector in VN is at most n; we treat the last
case (8) separately later, since it involves somewhat different choices. Construct
V from V = (VM r τ)∪ (τ +VN ) by omitting the indicated vectors, and (in (5)
and (8)) making the specified alterations.

(1) To contract only eẍ: omit ẍ′.

(2) To contract eẍ and eÿ: omit ẍ′, ÿ′.

To contract eẍ and ez̈...

(3) if no edge in N has endpoints {ẍ, z̈}: omit ẍ′, z̈′.

if {ẍ, z̈} are the endpoints of an edge in N ...

(4) and Az > γz: omit ẍ′, z̈′.

(5) and Az = γz: omit ẍ′, z̈′; then add 1 to νz for all ν ∈ A(z)rγ.

To contract eẍ, eÿ, and ez̈...

(6) if no edge in N has endpoints {ÿ, z̈}: omit ÿ′ after (3)–(5).

if {ÿ, z̈} are the endpoints of an edge in N ...

(7) and βx ≥ γx: omit β after (3)–(5).

(8) and βx < γx: make the special construction below.

In general, observe that the only vertices connected to ẍ, ÿ, or z̈ in M ∪τ N are
α, β, γ, and some vertices in N . Also, one of (6)–(8) must occur if B has at least
5 vertices. Representative instances of the cases (1)–(8) appear in Figures 4
and 5.

Omitting vertices

In general, omitting one or more elements from V always leaves a set of pair-
wise incomparable vectors. The vertex axiom will follow immediately in the
applications below, in the sense that the surviving vertex vectors V are in obvi-
ous bijection with the vertices of the desired map. To check the rigid geodesic
axiom after omitting one vertex ν, we must verify that any orthogonal ray U
pointing toward ν before the omission of ν points to some other uniquely deter-
mined surviving vertex afterwards. This will show that the surviving vertices
V define a rigid embedding L ↪→ SV for some map L.
Specifically, L is obtained from M ∪τ N by first deleting ν along with all of
its incident edges, and then reconnecting the neighbors of ν to other surviving
vertices according to where their orthogonal rays point. It is important to
remember that some edges incident to ν may fail to reappear upon reconnecting
its neighbors: these non-reappearing edges are precisely those rigid geodesics
that, before the omission of ν, do not contain any orthogonal ray pointing
toward ν. (There are at most three such edges, because each one must contain
an orthogonal ray leaving ν.)
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ẍ′ ÿ′

z̈′

α
β

γ

SV omit ẍ′Ã result in case (1)
omit ÿ′Ã result in case (2)

SV in case (3)
omit ẍ′Ã SVrẍ′ omit z̈′Ã SVr{ẍ′,z̈′}

SV in case (4)
omit ẍ′Ã SVrẍ′ omit z̈′Ã result in case (4)

SV in case (5)
omit {ẍ′,z̈′}Ã SVr{ẍ′,z̈′} addÃ result in case (5)

SV in case (6)
case (3)Ã SVr{ẍ′,z̈′}

omit ÿ′Ã result in case (6)

Figure 4: Gluing grid surfaces: cases (1)–(6)
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result of case (3)
omit βÃ result in case (7)

SVN and SVM in case (8)
special constructionÃ contraction of ez̈

omit {ẍ′,ÿ′}Ã

result in case (8)

Figure 5: Gluing grid surfaces: cases (7)–(8)

Scale principle

We chose the relative sizes of VN and VM so that some arguments in what
follows can rely on the following principle: If ω, σ are two vectors whose coor-
dinates are all divisible by n+ 1, then ω ¹ σ if and only if ω ¹ σ + n1.

Rays leaving τ + VN
An orthogonal ray leaving ν ′ ∈ τ + VN and pointing toward z̈′ in SV must
be Zν′ ⊂ SV . We claim that after omitting z̈′, the ray Zν′ points toward γ,
regardless of whether or not one or both of ẍ′, ÿ′ has already been omitted.
Moreover, this statement remains valid after permuting the roles of x, y, z.
To see why, suppose that ω ¹ ν ′∨γ for ω ∈ V. We must show that
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ω ∈ {ν′, z̈′, γ}. If ω ∈ τ + VN then ωz ≤ τz + |z̈| and thus ω ¹ ν ′∨z̈′, so
ω ∈ {ν′, z̈′} because [ν ′, z̈′] is a rigid geodesic (Lemma 3.2). When ω ∈ VM r τ ,
apply the scale principle with σ = γ∨z̈′, using the fact that γ∨ν ′ ¹ γ∨z̈′ + n1
because τ ¹ z̈′, ν′ ¹ τ + n1. The argument is invariant under permutation
of x, y, z.

Proof of (1)

The rigid geodesics containing orthogonal rays Xν′ pointing toward ẍ′ before
the omission and toward α afterwards account for all of the necessary edges in
the contraction. It remains only to verify that Yα ⊂ SVrẍ′ points toward the
next vertex after ẍ′ whose z-coordinate is zero—that is, the counterclockwise
next vertex after ẍ′ on the exterior cycle of M ∪τ N . This easy argument is
left to the reader, completing the proof of (1). Until the proof of (8), assume
ẍ′ has been omitted.

Proof of (2)

The orthogonal rays pointing toward ÿ′ in SVrẍ′ are Yν′ for some vertices
ν ∈ VN , the ray Xβ , and possibly Yα (if ẍ and ÿ are the vertices of an edge
in N). The arguments in ‘Rays in τ + VN ’ and ‘Proof of (1)’ apply as well
to the omission of ÿ′, including the fact that the ray Xβ points toward the
next vertex after ÿ′ whose z-coordinate is zero (which may be α). None of
the edges incident to ÿ′ vanish (see ‘omitting vertices’), although Xβ and the
Y -orthogonal ray at height z = 0 pointing toward ÿ′ point toward each other
after omitting ÿ′, effectively contracting eÿ.

Cases (3)–(5)

Every rigid geodesic incident to z̈′ in SVrẍ′ contains an orthogonal ray pointing
toward z̈′, except the geodesic connecting α to z̈′, if there is one (this occurs
in (4) and (5) only, where Xz̈′ points toward α in SVrẍ′), and sometimes the
geodesic connecting γ to z̈′.
After omitting z̈′, we will verify the rigid geodesic axiom at γ separately for
each of (3)–(5), by checking only that an orthogonal ray leaving γ and pointing
toward z̈′ (if there is one) points instead to another surviving vertex after
omitting z̈′. Any other orthogonal ray in SVrẍ′ either leaves some vector in
τ + VN before omitting z̈′ (these have been dealt with in a paragraph above),
or points toward another vertex in VM r τ both before and after omitting z̈′.
Verifying the rigid geodesic axiom will complete the proof unless the edges
connecting α and γ to z̈′ (if these exist) both vanish upon omitting z̈′, for
otherwise all of the edges in the contraction of ez̈ are accounted for as in the
proofs of (1) and (2). Both geodesics vanish in (5) only: in (3), there is no edge
connecting α to z̈′; while in (4), the region axiom implies γy = Ay, whence Xγ

points toward z̈′. In (5), we show that the addition procedure reconstructs a
rigid geodesic connecting α to γ.

Documenta Mathematica 7 (2002) 43–90



Planar Graphs as Minimal Resolutions 63

Proof of (3)

If Xγ points toward z̈′ in SVrẍ′ , and ν′ is the vertex to which Xz̈′ points
in SVrẍ′ , then Xγ points toward ν ′ ∈ τ + VN after omitting z̈′ by the scale
principle (the hypothesis for (3) guarantees that ν ′ 6= ẍ′). A similar statement
holds by switching the roles of x and y (but ν ′ ∈ τ + VN is always guaranteed
to exist, since ÿ′ has not been omitted). This verifies the rigid geodesic axiom
at γ.

Proof of (4)

The assumption Az > γz implies Ay = γy, so that Xγ points toward z̈′ in SVrẍ′ .
If ν ∈ V r ẋ and νy < γy, then νz > γz, by the region axiom. The omission of
z̈′ therefore causes the ray Xγ ⊂ SVr{ẍ′,z̈′} to point toward α.

Proof of (5)

The region axiom implies γy < τy, so Xγ does not point toward z̈′. When Yγ
points toward z̈′, the rigid geodesic axiom holds for SVr{ẍ′,z̈′} by the argument
in the proof of (3), although no elbow geodesic connects α to γ in SVr{ẍ′,z̈′}.
Now we verify that the addition procedure outputs a rigid geodesic embedding,
and that an edge connecting α to γ is the only new rigid geodesic. We can
safely ignore all orthogonal rays contained in rigid geodesics on the positive
side of the plane y = γy. All of the vertices ω 6∈ A satisfying ωy ≤ γy must also
satisfy ωz > γz by the rigid region axiom. The adding rule therefore causes
Xγ to point toward α after omitting z̈′. The orthogonal rays leaving vertices
originally in A(z)r γ still point to the same vertices, by the scale principle. If
ω 6∈ A(z) ∪ {α}, then any orthogonal ray Uω pointing toward ν ∈ A(z) before
the addition still points toward the same vertex ν afterwards, because ωz > νz,
whence the join ν∨ω remains unaffected. Finally, if Zα points toward a vertex
in A(z) before the addition procedure, then Zα still points to the same vertex
afterwards, by the scale principle, while Yα remains unaffected.

Proof of (6)

No new phenomena occur here; see Proof of (3).

Technical lemma

The following result will be applied in the proofs of (7) and (8). For the proof
of (8), note that it holds after any rescaling of VM as in Lemma 2.1.

Let ω ∈ VM . If τx ≥ ωx ≥ βx, then ω ∈ {τ, β} or ωz ≥ γz.
Similarly, if τy ≥ ωy ≥ αy = 0, then ω ∈ {τ, α} or ωz ≥ γz.

Proof of technical lemma. Suppose τx ≥ ωx ≥ βx, but ωz < γz. If ω 6= τ , then
ωy ≥ βy by the uniqueness in Lemma 3.2 of τ among vectors preceding τ +m1
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in VM . Thus β ¹ ω, so β = ω. Swap the roles of x and y to prove the other
statement.

Proof of (7)

First claim: The only orthogonal rays pointing toward β are Yÿ′ , and Xν for
some vertices ν ∈M . These vertices ν all have νz < m+ 1.
The final sentence of the first claim is easy, because otherwise γ ¹ β∨ν. For the
rest of the claim, use the inequalities Bx = τx > βx ≥ γx and By = βy > τy ≥
γy, which follow from the hypotheses of (7). These imply γz = m + 1 = Bz,
thanks to the region axiom. By the technical lemma, any orthogonal ray Yν
pointing toward β in SV (and therefore in SVr{ẍ′,z̈′}) must have either νx ≥ τx
or νz ≥ m+ 1. When νx ≥ τx, we get νy < βy and hence ÿ′ ¹ ν∨β, so ν = ÿ′.
The case νz ≥ m + 1 is actually impossible, for it implies γ ¹ ν∨β, so ν = γ
is connected to β by an edge in M ∪τ N ; this cannot happen in (7) if B has
at least five vertices. The fact that βz = 0 rules out Zν pointing toward β,
completing the proof of the first claim.
Now we verify that Xν ⊂ SVr{ẍ′,β,z̈′} points toward ÿ′ whenever Xν ⊂
SVr{ẍ′,z̈′} points toward β. In other words, we need ω ¹ ν∨ÿ′ for ω ∈ V
to imply ω ∈ {ẍ′, z̈′, ÿ′, β, ν}. If ω ∈ τ + VN , then ωx = ÿ′x = τx implies
ω ∈ {ÿ′, z̈′}. If ω ∈ VM r τ , then either ωx ≤ βx, in which case ω ¹ β∨ν
implies ω ∈ {β, ν}, or ωz < m + 1 in addition to τx ≥ ωx ≥ βx, in which case
ω = β by the technical lemma.
It is easy to verify that ÿ′ points toward the next vertex after β having z-
coordinate zero. Note that such a next vertex must exist, since the rigid
geodesic leaving β and containing Zβ strictly decreases in x. This completes
the proof of (7).

Special construction for (8)

The meet (componentwise minimum) of τ and γ is τ∧γ = (γx, γy, 0) = γ −
(0, 0,m+ 1) since Zτ points toward γ in SVM . Observe that

ω ∈ VM and τ∧γ ¹ ω implies ω ∈ {τ, γ}. (9)

Indeed, if τ 6¹ ω but τ∧γ ¹ ω, then either τx ≥ ωx ≥ γx or τy ≥ ωy ≥ γy. The
hypothesis γx > βx of (8) plus the technical lemma imply ωz ≥ γz, whence
γ ¹ ω.
It follows from (9) that the set

VM = (VM r {τ, γ}) ∪ τ∧γ

of vectors determines a grid surface SV
M

. Use the freedom afforded by
Lemma 2.1 to rechoose VM and m so that n + 3 divides all coordinates of
vectors therein, while γz as well as the lengths of the orthogonal rays Xτ∧γ
and Yτ∧γ ⊂ SV

M
equal m+ 2. Applying (9) again, further alter VM by moving
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τ so that τ − τ∧γ equals (1, 0, 0), (0, 1, 0), or (1, 1, 0), depending on whether
τy = γy, τx = γx, or neither.
Now choose VN so that all of its nonzero x and y-coordinates lie in the interval
[m− n,m], but all of its z-coordinates are no greater than n. Let

V = (VM r τ∧γ) ∪ (τ∧γ + VN ),

and denote by ν the vector τ∧γ+ν for ν ∈ VN . Our (final) goal is to show that
the rigid geodesics in SV constitute an embedding of (M ∪τ N)/ez̈. After that,
eẍ and eÿ can be contracted by omitting ẍ and ÿ, using the same arguments
appearing in Scale principle, Rays leaving τ+VN , Proof of (1), and Proof of (2).

Proof of (8)

Begin by mimicking as closely as possible the proof of Lemma 3.2. First, τ∧γ
is the unique vector in VM preceding τ∧γ + m1, by Lemma 3.2 applied to
VM ; this is why τ needs to be so close to τ∧γ. The vertex axiom for SV is
immediate. Moreover, the part of SV that precedes τ∧γ+m1 equals τ∧γ+(the
part of SVN preceding m1). Thus every vertex, rigid geodesic, or bounded
orthogonal ray in N ↪→ SVN gets translated by τ∧γ to the corresponding
feature in SV . Similarly, the parts of SV and SV

M
not preceded by τ∧γ agree,

so any vertex, rigid geodesic, or bounded orthogonal ray in M ↪→ SVM survives
in SV whenever it is contained in a (perhaps unbounded) region of M∞ not
containing τ or γ, by the rigid region axiom.
The only orthogonal rays unaccounted for as yet for the rigid geodesic axiom
are Xẍ, Yÿ, Yα, Xβ , Zz̈, and any orthogonal ray Uν ⊂ SV such that Uν ⊂ SVM
points toward γ and ν 6= τ . (Neither the rigid geodesic connecting τ to γ in M
nor the orthogonal rays leaving γ in SVM play roles in this verification.) The
only case requiring significant effort are the Uν rays, which must point toward
z̈ in SV .
Suppose ω ¹ ν∨z̈ for some ω ∈ V. The technical lemma and (9) imply that
νz ≥ γz for any τ 6= ν ∈ VM pointing toward γ, whence ν∨z̈ = ν∨γ for any
such ν. Therefore ω 6= ν implies ω ∈ τ∧γ + VN . On the other hand, either
νy < βy or νx < αx, because otherwise β or α precedes ν∨γ = ν∨z̈. By the
choice of scaling, ωy ≤ νy < βy forces ωy ≤ νy ≤ βy − (n + 3) < γy + m − n,
whence ω = z̈ whenever ω ∈ τ∧γ + VN . This argument also works with the
roles of x and y switched.
The above reasoning proves that the rigid geodesics in SV embed some planar
map L. To conclude that L ∼= (M ∪τ N)/ez̈, one last item remains: show
that no geodesics in M vanish. More precisely, whenever Xγ or Yγ does not
point toward τ in VM , we require it to point toward a vertex in VM that points
back toward γ in SVM . Suppose Yγ ⊂ SVM does not point toward τ . Then
γx < τx = Bx, whence γz = Bz by the region axiom, because γy < βy = By.
If B(z) = {γ}, then Yγ ⊂ SVM must point toward β, because βx < γx. This
is impossible whenever the region B in M ∪τ N has at least five vertices, by
the hypothesis of (8) stipulating that [ẍ, z̈] is an edge in N . The analogous
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argument works for Xγ , but the reason why Xγ cannot point toward α is
different: it is ruled out by the statement of the Proposition. 2

Recall the conventions set before the statement of Proposition 4.2.

Proposition 4.3 Suppose τ = ẋ is trivalent. Contracting neither, either, or
(if B has at least five vertices) both of ez̈ and eÿ in M ∪τ N yields a planar
map possessing a rigid embedding.

Proof. Pretend eẍ has already been contracted, and apply the constructions
in the proofs of (6)–(8) in Proposition 4.2. (In reality, only (6) and (7) are
required here, given the symmetry switching the roles of y and z). 2

5 Triconnectivity and rigid embedding

Theorem 5.1 (Rigid embedding) A planar map M with given axial vertices
ẋ, ẏ, ż can be rigidly embedded in a grid surface if and only if the extended map
M∞(ẋ, ẏ, ż) is triconnected. In particular, every triconnected planar map can
be rigidly embedded.

Proof. (⇒) Let M ↪→ SV be an axial rigid embedding, and delete two ver-
tices ν, ω from M∞. If {ν, ω} ⊂ {ẋ, ẏ, ż} then each remaining vertex has an
orthogonal flow to the third axial vertex, by independence of the orthogonal
flows to ẋ, ẏ, ż. If {ν, ω} 6⊂ {ẋ, ẏ, ż} then what remains of the exterior cycle is
connected, and every vertex in the deletion still has an orthogonal flow to the
exterior cycle.
(⇐) Induct on the sum of the number of regions and the number of edges in M ,
observing that the minimal sum of five is attained only when M is a triangle.
Assume the notation of Section 3, and suppose M is not a triangle. Letting e
be the edge leaving ẋ towards ẏ on the exterior cycle of M , we claim that at
least one of the following occurs:

1. The endpoints of e are ẋ and ẏ.

2. The edge e does not border a triangle in M∞(ẋ, ẏ, ż), and M/e is tricon-
nected.

3. The edge e does not contain ẏ, and M contains a proper ring C for which
ẍ =∞.

4. The edge e does not contain ẏ, and M contains a proper ring C for which

(a) ẍ = ẍ = ẋ;
(b) ÿ is the other endpoint of e, and ÿ 6= ẏ (that is, ÿ 6=∞); and
(c) z̈ does not lie between ẋ and ż on the exterior cycle of M , and no

single edge outside the region bounded by C has endpoints {ẋ, z̈}.

If the first three cases do not occur, then Proposition 1.1 produces a ring C in
which ẍ and ÿ are the two endpoints of e, while z̈ is a vertex in F ∩ F ′ as in
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Proposition 1.1.2. Note that C is proper because ÿ 6= ẏ. Let C be a maximal
such ring.
The first half of 4(c) holds; if not, construct a ring satisfying option 3 as follows:
replace the arc of C connecting ẋ to z̈ with the arc traversing the exterior cycle
from ẋ to z̈ and then ez̈ (the latter only if z̈ 6= z̈). The second half of 4(c) also
holds, for if an edge f outside C connects ẋ to z̈, then replace the arc of C
connecting ẋ to z̈ in C by f and ez̈ (if z̈ 6= z̈). The resulting cycle is a larger
ring satisfying the condition defining C, contradicting maximality. Finally,
4(a) holds by the failure of option 3: C does not contain the edge of M leaving
ẋ toward ż on the exterior cycle of M .
Given the first option, M has a proper ring C, with z̈ = z̈ = ż, containing
every bounded region of M except the one containing e. Let M ∩ R ↪→ SV
be a geodesic embedding, where R is the union of regions contained within C.
Leaving ẋ, ẏ fixed while adding 1 to the z-coordinates of every other vector in V
yields a grid surface SV′ whose rigid geodesics constitute an embedding of M ;
the easy proof is omitted.
Given the second option, use Proposition 4.1. Given the third or fourth option,
use Lemma 3.1 with M = M/R and N = M ∩ R, along with Proposition 4.3
for option 3, or Lemma 3.2 and Proposition 4.2 for option 4. The ‘five vertex’
conditions in Propositions 4.2 and 4.3 are always satisfied when reconstruct-
ing M from the tethered gluing (M/R) ∪τ (M ∩ R), because M is simple and
triconnected. 2

The next corollary clarifies the close connection between grid surfaces and order
dimension for posets. It shows that Theorem 5.1 generalizes the three-variable
special case of [BPS98, Theorem 6.4], which is presented in the equivalent
language of monomial ideals.

Corollary 5.2 (Brightwell–Trotter [BT93]) The vertices, edges, and
bounded regions of any triconnected planar map form a partially ordered set of
order dimension ≤ 3.

Proof. Theorem 5.1 and Corollary 2.5. 2

Example 5.3 Theorem 5.1 is stronger than Corollary 5.2, even for triconneted
maps. In general, every inclusion of the vertex-edge poset of M into N3 yields
an inclusion of the vertex set V ↪→ SV such that each edge of M is a rigid
geodesic in SV . What fails is that there may be orthogonal rays in SV that are
not contained in any edges of M . Faces such as the central face in Figure 6 are
then forced to lie off of SV . 2

Remark 5.4 Rigid embeddings give a fresh perspective on a standard fact,
known as Menger’s theorem: If G is a triconnected planar graph and ν, ω ∈ G
are distinct vertices, then there are three independent paths from ν to ω in G.
To explain Menger’s theorem via Theorem 5.1, let M be a plane drawing of G,
and suppose e1, . . . , er are the edges of M containing ν, in cyclic order. Form
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Figure 6: A vertex-edge-face poset embedding that is not a geodesic embedding

a new map M ′ by drawing a small circle C around ν and adding new ver-
tices ν1, . . . , νr where e1, . . . , er intersect C. Then set Mν = del(M ′; ν), with
underlying graph Gν . Clearly Gν is triconnected.
Choose a plane drawing of Gν in which C is the exterior cycle, and let Gν ↪→ S
be an axial geodesic embedding compatible with some (any) choice of axial
vertices ẋ, ẏ, ż ∈ C. The orthogonal flows from ω to ẋ, ẏ, ż in Gν first intersect
C at points νix , νiy , νiz , giving rise to truncated orthogonal flows [ω, νiu ] for
u ∈ {x, y, z}. Connecting [ω, νiu ] to ν via the arc in G between νiu and ν yields
independent paths in G from ω to ν.

Part II
Monomial ideals

6 Betti numbers

Let k be a field, and consider the polynomial ring R = k[x, y, z] with the Z3-
grading in which deg(x) = (1, 0, 0), deg(y) = (0, 1, 0), and deg(z) = (0, 0, 1).
Use IV = 〈mν | ν ∈ V〉 to denote the ideal generated the monomials
mν = xνxyνyzνz for ν ∈ V. The integer points in 〈V〉 coincide with the expo-
nent vectors on monomials in IV , and V is axial if and only if IV is artinian,
containing a power of each variable.
Any principal monomial ideal 〈m〉 is a free Z3-graded R-module of rank 1.
If φ is Z3-graded homomorphism

⊕〈mq〉 ←−
⊕〈mp〉 of degree zero, then we

can express φ as a monomial matrix. This is a matrix whose entries λpq ∈ k
are scalars, and whose pth row (resp. qth column) is labeled by the monomial
mp (resp. mq) that generates the corresponding pth source (resp. qth target)
summand. Of course, λpq = 0 whenever mq does not divide mp, because then
there are no nonzero Z3-graded maps 〈mq〉 ← 〈mp〉. The map φ is called
minimal if also λpq = 0 whenever mp = mq. See [Mil00a, Section 2] for more
on monomial matrices.
We consider free resolutions of IV that are exact sequences having the form

F. : 0← IV
φ0←− F0

φ1←− F1
φ2←− F2 ← 0, (10)

in which Fi ∼=
⊕

p〈mip〉 for some (finite set of) monomials mip ∈ R. We call F.
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minimal if φ1 and φ2 are minimal (for any such direct sum decomposition). The
Betti number βi,α(IV) is the number of mip equal to mα, when F. is minimal.
This homological data reflects the local properties of SV near the vector α via
the Koszul simplicial complex of V at α ∈ N3,

Kα(V) = {σ ∈ {0, 1}3 | α− σ ∈ 〈V〉},

which is a subcomplex of the abstract triangle ({0, 1}3,¹).

Proposition 6.1 ([Hoc77, Roz70]) βi,α(IV) = dimk H̃i−1(Kα(V); k) is the
dimension of the (i−1)st reduced simplicial homology of Kα(V) with coefficients
in k.

The small number of simplicial complexes on three vertices seriously limits the
possibilities for nonzero Betti numbers.

Lemma 6.2 If V ⊂ N3 and i ∈ N then βi,α(IV) 6= 0 for at most one α ∈ Z3.
If βi,α is nonzero then βi,α = 1 unless Kα(V) has 3 vertices and no edges (so
β1,α = 2).

Proof. Use the previous proposition, and list all simplicial complexes on 3
vertices. 2

7 Cellular resolutions

Suppose M is a cell complex (precisely, a finite CW complex) of dimension 2
whose cells P have vector labels αP ∈ N3, in such a way that αP ¹ αP ′ if
P lies in the closure of P ′. For instance, if the vertices have natural labels,
then define αP to be the join of the labels on the vertices of P . Such a labeled
cell complex determines monomial matrices φvertex, φedge, and φregion for a
cellular free complex FM , by labeling the rows and columns of matrices for the
boundary map of the ordinary chain complex of M with the monomials mαP .
Using P also to denote the basis vector of a rank 1 free R-module 〈mαP 〉, the
cellular free complex FM takes the form

φvertex φedge φregion
0 ← IV ←−−−−

⊕

vertices ν

R · ν ←−−
⊕

edges e

R · e ←−−−−
⊕

regions F

R · F ← 0.

(11)
We say M supports FM ; see [BS98, Mil00a] for more on cellular monomial
matrices.
Our main examples of labeled cell complexes are of course the geodesically
embedded planar maps M ↪→ SV , whose labels are determined by the obvious
vertex labels by taking joins. We shall see in the next section that this cellular
free complex is exact and minimal, so it provides a cellular minimal free res-
olution of IV . Unfortunately, there are monomial ideals whose associated grid
surfaces contain no geodesically embedded map.
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Example 7.1 Let IV = 〈x, y, z〉2 = 〈x2, y2, z2, xy, xz, yz〉. The orthogonal
rays Xyz, Yxz, Zxy meet at a single point not in V, so there can be no planar map
geodesically embedded in SV . However, 〈x, y, z〉2 still has a minimal cellular
resolution: connect the midpoints of the edges of a triangle, and delete any one
of the three interior edges. Label the resulting planar map M with x2, y2, z2

on the corners of the outside triangle; xy between x2 and y2; yz between y2

and z2; and xz between x2 and z2. Label the edges and regions of M by the
joins of their vertex labels. 2

Although the map M in the above example fails to embed geodesically in SV ,
the extended map M∞(x2, y2, z2) is still triconnected. This phenomenon is
general. In the following proposition, we do not require planarity of M , so we
use G∞(ẋ, ẏ, ż) to mean the abstract graph obtained from G by adding a new
vertex ∞ connected to each of ẋ, ẏ, ż.

Proposition 7.2 If the labeled cell complex M supports a minimal free reso-
lution of an artinian ideal IV , and the 1-skeleton of M is a graph G, then the
extended graph G∞(ẋ, ẏ, ż) is triconnected, where ẋ, ẏ, ż are the vertices whose
labels lie on the axes.

Proof. Given ν ∈ V with ν 6= ż, the orthogonal ray Zν leaving ν has its head
at some vector α ∈ N3 for which Kα(V) is disconnected; indeed, the vertex
(0, 0, 1) is isolated in Kα(V). Choose a vertex ω′ 6= ν preceding α, so that
mα−νν − mα−ω′ω′ ∈ ker(φvertex). Since α − ν = Z(ν) lies on the z-axis Z,
there must be an edge e ∈ M connecting ν to a vertex ω (possibly different
from ω′) such that φedge(e) = zdν−mν∨ω−ωω for some d ∈ N. Clearly ωx ¹ νx
and ωy ¹ νy.
Repeating the procedure with ω in place of ν, and with x or y in place of z, we
find that M contains paths analogous to orthogonal flows from ν to each axial
vertex ẋ, ẏ, ż. As in Section 2, these paths are independent, intersecting only
at ν. 2

8 Graphs to minimal resolutions

Lemma 8.1 If M ↪→ SV is a geodesic embedding, then β1,α(IV) 6= 0 if and
only if α = ν∨ω for some elbow geodesic [ν, ω] ∈ M , and β1,ν∨ω(IV) = 1 in
this case.

Proof. Assume β1,α(IV) 6= 0. Then Kα(V) is disconnected by Proposition 6.1,
and this occurs if and only if Kα(V) contains an isolated vertex. An isolated
vertex of Kα(V) occurs if and only if α lies on an orthogonal ray leaving some
vertex ν ∈ V. Therefore, α = ν∨ω for some ω 6= ν by the edge axiom. Since
[ν, ω] is an elbow geodesic, Kν∨ω(V) cannot have three isolated points because
three orthogonal rays cannot meet at the point ν∨ω in the relative interior of
the edge [ν, ω] of M . 2
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Here is a result that sometimes reduces statements about arbitrary geodesic or
rigid embeddings to axial ones. Its straightforward proof is omitted.

Lemma 8.2 Append axial vertices to V by letting V = V ∪ {u̇ | SV ∩ U = ∅}
for sufficiently large |u̇|. A planar map M is geodesically embedded in SV if
and only if N = del(M ;V r V) is geodesically embedded in SV . Furthermore,
M ↪→ SV is rigidly embedded if and only if N ↪→ SV is rigidly embedded.

Lemma 8.3 Let M ↪→ SV be a geodesic embedding, and Smax
V the set of points

in SV maximal under the partial order induced by the relation ¹ on R3. Then
α ∈ Smax

V ⇔ β2,α(IV) 6= 0 ⇔ α = αF is the join of the vertices in a bounded
region F of M .

Proof. For the equivalence α ∈ Smax
V ⇔ β2,α(IV) 6= 0, use the fact that Kα(V)

is the boundary of the triangle; the easy details are omitted. The equivalence
α ∈ Smax

V ⇔ α = αF holds for all vertex sets V if it holds when V is axial.
Indeed, using the notation and result of Lemma 8.2, the maximal points of
SV are still maximal in SV , while the points in Smax

V r Smax
V are exactly those

having u-coordinate |u̇| for some u such that SV ∩U = ∅, by the region axiom
applied to SV . The bounded regions of N having such joins disappear upon
deleting u̇.
Assume henceforth that M ↪→ SV is axial. If ρ ∈ SV has some coordinate
ρu = 0, then ρ 6∈ Smax

V because adding ε to any other coordinate of ρ yields
another point in SV . Therefore each maximal point of SV lies in a bounded
region of M . When F is such a bounded region, the region axiom implies
αF ∈ Smax

V , because some vertex ν ∈ V strongly precedes αF +εu̇ for any ε > 0
and u ∈ {x, y, z}.
Every point ρ on a given elbow geodesic [ν, ω] precedes ν∨ω by definition, so
ρ ¹ ν∨ω ¹ αF whenever [ν, ω] ⊆ F . Any point σ on the line segment in R3

connecting ρ to αF therefore satisfies ρ ¹ σ ¹ αF , whence σ ∈ SV . It follows
that F is the union of such line segments, so every point of F precedes αF . 2

Theorem 8.4 Given a geodesic embedding M ↪→ SV , the cellular free complex
FM is a minimal free resolution of IV .

Proof. Since βi,α(IV) 6= 0 if and only if βi,α(IV) = 1 by Lemmas 6.2 and 8.1,
it makes sense simply to speak of the ith Betti degrees α, for which βi,α = 1.
The zeroth, first, and second Betti degrees are the labels on the vertices, edges,
and regions of M , respectively, by Lemmas 6.2, 8.1, and 8.3. Any minimal
free resolution F. of IV as in (10) therefore takes the form of (11), at least as
a homologically graded module; that is, F. ∼= FM abstractly as modules. We
need to show that some choice of this abstract isomorphism is a homomorphism
of complexes.
Identifying the homological degree zero parts of F. and FM , the zeroth homol-
ogy of FM surjects onto IV because the image of φedge is clearly contained in
the kernel of φ0. Since F. is exact and FM is a complex of free modules, there
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exists a homomorphism ψ : FM → F. lifting the surjection on zeroth homology
and the isomorphism in homological degree zero.
Suppose e ∈ FM maps to ψ(e) =

∑
mje

′
j , where each mj ∈ R is a monomial

with nonzero scalar coefficient, and each e′j denotes the generator of F1 corre-
sponding to the edge ej ∈M . The elbow geodesic e = [ν, ω] in M contains an
orthogonal ray Uν , so that ±φ1(

∑
mje

′
j) = mν∨ω−νν −mν∨ω−ωω, where the

first term is mν∨ω−νν = mU(ν)ν. Thus mU(ν)ν = u|Uν |ν appears with nonzero
scalar coefficient in φ1(mje

′
j) for some j. Since there is a unique first Betti

degree α satisfying α − ν ∈ U , namely αe = ν∨ω, it must be that e′j = e′

and mj is a nonzero scalar. Nakayama’s lemma implies ψ1 : (FM )1 → F1 is
surjective, and hence an isomorphism by rank considerations.
No summand R ·F ⊂ FM can map to zero in F2 because φregion(F ) is nonzero
in FM , and ψ is an isomorphism in homological degree 1. On the other hand,
the second Betti degrees are pairwise incomparable by Lemma 8.3. Thus ψ(F )
is some nonzero scalar multiple of the unique generator of F2 in degree αF .
The map ψ is therefore an isomorphism in homological degree 2, completing
the proof. 2

Corollary 8.5 A planar map M with axial vertices ẋ, ẏ, ż supports a mini-
mal free resolution of an artinian monomial ideal if and only if M∞(ẋ, ẏ, ż) is
triconnected. In particular, every triconnected planar map supports a minimal
free resolution.

Proof. ‘Only if’ is Proposition 7.2; apply Theorem 8.4 to Theorem 5.1 for ‘if’.
2

9 Uniqueness vs. nonplanarity

Continuing with the analogy at the beginning of the Introduction, circle pack-
ings and polytopes that realize planar graphs are unique up to Möbius transfor-
mation and spherical rotation, respectively (see [Zie95] for discussion and ref-
erences). Rigid embeddings M ↪→ SV for a fixed planar map are similarly not
unique: at the very least, any order-preserving bijection of V as in Lemma 2.1
gives another rigid embedding. Of course, such bijections affect neither the
combinatorics nor the algebra. In fact, rigid embeddings are uniquely deter-
mined by the algebraic properties of the grid surface in question, specifically
the minimal free resolution of the corresponding monomial ideal.

Corollary 9.1 When M ↪→ SV is rigidly embedded, M is the unique cell
complex supporting a minimal cellular free resolution of IV .

Proof. Let N be a labeled cell complex supporting a minimal cellular free
resolution of IV . The abstract graph underlying N (the 1-skeleton) coincides
with that of M by Theorem 8.4 and rigidity. The label αF on any region F
of N is a second Betti degree of IV , and hence coincides with the label on a
region F ′ of M by Theorem 8.4. The boundary of F in N is a cycle of edges
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Figure 7: Nonplanar minimal free resolution

whose degrees precede αF . The only such cycle consists of all the edges whose
degrees precede αF , by the rigid region axiom for F ′ in M (by Lemma 8.2 the
rigid region axiom holds for nonaxial grid surfaces). 2

Nonrigid monomial ideals can have many distinct isomorphism classes of min-
imal cellular resolutions; [MS99, Figure 4] depicts an example of this phe-
nomenon. In fact, the bad behavior gets much worse.

Example 9.2 Minimal cellular resolutions of ideals in k[x, y, z] need not be
supported planar cell complexes. In fact, explicit examples crop up with even
the smallest violations of rigidity. For instance, let

V = {(4, 3, 0), (3, 4, 0), (3, 0, 2), (2, 1, 1), (1, 2, 1), (0, 3, 2)}

and V = V ∪ {(5, 0, 0), (0, 5, 0), (0, 0, 3)}. The cell complex M depicted in
Figure 7 consists of five triangles in addition to the three quadrilaterals with
vertices

{500, 430, 121, 211}, {430, 121, 211, 341}, {050, 121, 211, 340}.

Label the edges and regions by the joins of their vertex labels. That M supports
a minimal free resolution of IV can be checked by verifying for each α ¹ (5, 5, 3)
that M¹α is acyclic [BS98, Corollary 1.3]. That M cannot be planar follows
by contracting the edges labeled 530 and 350 while deleting the edges labeled
312 and 132 to get the complete graph K5 as a minor of the 1-skeleton. 2

10 Deformation and genericity

Given a finite subset W ⊂ R3, write ∨W for the join of the vectors in W, and
set mW = m∨W . Following [BPS98], define the Scarf complex of V,

∆V = {W ⊆ V | if ∨W ′ = ∨W for some W ′ ⊆ V then W ′ =W},

to consist of the subsets whose joins are uniquely attained. It is an easy (but
not obvious) fact that ∆V is a simplicial complex. Each face W ∈ ∆V comes
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with a natural label ∨W, and the resulting cellular free complex F∆V is called
the free Scarf complex of IV . The Scarf complex is planar by virtue of its
containment in the hull complex [BS98], so the union of its edges and vertices
is a planar map. This planar map has already appeared, in Section 2: two
vertices ν, ω ∈ V are connected by a rigid geodesic if and only if {ν, ω} ∈ ∆V .
Under special circumstances, the Scarf complex is rigidly embedded in SV . To
be precise, call V strongly generic if no two distinct elements of V share a
nonzero coordinate. In other words, νu = ωu 6= 0 for some u ∈ {x, y, z} implies
ν = ω.

Corollary 10.1 (Bayer–Peeva–Sturmfels [BPS98, §3]) The free Scarf
complex F∆V minimally resolves IV when V is strongly generic.

Proof. Strong genericity easily implies that every orthogonal ray is contained
in a rigid geodesic, so the Scarf graph rigidly embeds in SV . It is straight-
forward to verify that the labels on triangles (2-dimensional faces) in ∆V are
maximal in SV . Furthermore, every maximal point of SV has exactly three vec-
tors in V preceding it by Lemma 8.3, the region axiom, and strong genericity.
Therefore, all maximal points are labels on regions in ∆V , and the result holds
by Theorem 8.4. 2

Since the definition of the Scarf complex depends only on the coordinatewise
order of the exponents of the generators, it also makes sense for (formal) mono-
mials with real exponents in Rn. This makes way for the following definition.
Let Q denote the rational numbers. A deformation ε of V is a choice of vectors
εν = (ενx, ε

ν
y , ε

ν
z ) ∈ Q3 for each ν ∈ V satisfying

νu < ωu ⇒ νu + ενu < ωu + εωu , and νu = 0 ⇒ ενu = 0

for u ∈ {x, y, z}. In practice, everything we do is invariant under scaling of V,
so we will always assume Vε = {ν + εν | ν ∈ V} consists of integer vectors. Set
νε = ν + εν .
The sole purpose of the ε vectors is to break ties one way or the other between
equal nonzero coordinates of vectors in V. In this manner, deformations of V
are closer to being generic than V is. The verb specialize is used here to indicate
that a deformation (generization) is being reversed; thus V is a specialization
of Vε if the latter is a deformation of the former.
One particular deformation will play a key role in the coming sections. To define
it, let V(u, a) = {ν ∈ V | νu = a} for each 0 < a ∈ N and u ∈ {x, y, z}. Up to
order-preserving bijection (as in Lemma 2.1), there is a unique deformation ε
satisfying the following condition as well as its analogues via cyclic permutation
of x, y, z:

If the elements of V(z, a) satisfy νx > · · · > ωx, then a = νεz < · · · < ωεz. (12)

Note that νx > · · · > ωx is equivalent to νy < · · · < ωy for elements of V(z, a),
by pairwise incomparability. Thus, looking down the x-axis, ε raises the vectors
in V(z, a) higher as they move to the right.
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11 Ideals to graphs: algorithm

Arbitrary monomial ideals in more than three variables need not have minimal
cellular free resolutions [RW01], but limiting to three variables forces better
behavior.

Theorem 11.1 Any monomial ideal IV ⊂ k[x, y, z] has a cellular minimal free
resolution supported on a labeled planar map M .

The proof (at the end of Section 12) will reduce to the artinian case, for which
Algorithm 11.2 produces M . The justification of Algorithm 11.2 appears in
Section 12. Heuristically, the idea is to apply the deformation ε of (12), and
show that specializing Vε Ã V step by step makes the spurious edges in the
Scarf triangulation disappear one at a time.
More precisely, the algorithm specializes V ε back to V by making strict inequal-
ities νεu < ωεu into equalities νu = ωu, judiciously and one at a time. Before
each specialization step, the (already partially specialized) ideal has a cellular
minimal resolution by induction; after each specialization step, the same planar
map still supports a cellular free resolution, although it may not be minimal.
However, in the nonminimal case, minimality is achieved by removing exactly
one edge.

Algorithm 11.2

input an artinian ideal IV ⊂ k[x, y, z]

output a planar map M supporting a cellular minimal free resolution of IV
initialize ε := the deformation of IV in (12) to a strongly generic ideal IVε

M := Scarf complex of Vε
while Vε 6= V do

choose ν ∈ V and u ∈ {x, y, z} such that νεu 6= νu and νεu is minimal;
for ease of notation, assume u = x by applying a cyclic
permutation of {x, y, z} translating u to x, if necessary

γx := νx
γy := νεy + |Yνε |
γz := minω 6=ν{ωεz | ωεx ≤ νx and ωεy < γy}
ρ := the element of {ωε ∈ Vε | ωεy = γy and ωεz < γz} with

maximal ωεz
redefine ε by replacing the x-coordinate ενx with 0

M by changing the label on νε accordingly

if ρx = νx

then redefine M by removing edge labeled γ = (γx, γy, γz)
else leave M unchanged

end if-then-else

end while-do

output M
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Figure 8: The geometry of Algorithm 11.2

Remark 11.3 Here are some elementary observations to aid in parsing the
algorithm. See also Figure 8, which illustrates the geometry.

(i) It may be necessary to scale V in order to choose εν ∈ N3 for all ν, because
of the condition a = νεu.

(ii) Note that γx = νx, not νεx.

(iii) The orthogonal ray Yνε used to define γy is bounded because νε 6= ν, so
that ν cannot be the axial vertex ẏ.

(iv) The set used to define γz is nonempty because the axial vector ż is in the
set; indeed, νε 6= ν implies ν 6= ż.

(v) γz > νεz because Vε consists of pairwise incomparable vectors.

(vi) The set defining ρ is nonempty because νε + Yνε = νε∨ωε for some ωε in
this set. Uniqueness of ρ follows from pairwise incomparability of elements
in Vε.

(vii) Relabeling M at the redefine step yields a cellular free resolution of the
resulting ideal with the new ε by [GPW00, Theorem 3.3], though it need
not be minimal.
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Example 11.4 If IV = 〈x4, x2y2, x2z2, y4, y2z2, z4〉 is obtained from Ex-
ample 7.1 by a scale factor of 2, then the generic deformation IVε =
〈x4, x2y3, x3z2, y4, y2z3, x4〉 satisfies the condition of Algorithm 11.2. Further-
more, the Scarf complex of IVε is the triangle with its edge-midpoints con-
nected, as in Example 7.1. If Algorithm 11.2 is run on this IV , then one of
the three nonminimal edges is removed on the first iteration of the while
loop. Precisely which of the nonminimal edges is removed depends on which
u ∈ {x, y, z} is chosen first; any u will work, not just u = x. In the remaining
two iterations of the while loop, no further edges are removed. It is instructive
to work out this example by hand; see Figure 8 for general pictures. 2

12 Ideals to graphs: proof

The gruntwork in proving that the algorithm accomplishes its goal is contained
in the following two technical lemmas, whose hypotheses are designed to be
satisfied by the deformation taking place in one pass of the while loop (af-
ter a cyclic permutation of (x, y, z) and an order-preserving bijection as in
Lemma 2.1, perhaps).

Lemma 12.1 Suppose IV ⊂ k[x, y, z] is artinian, and that ν ∈ V has νx 6= 0
and satisfies ωy ≥ νy whenever ωx = νx. Suppose further that ε = {εω}ω∈V is a
deformation of V with εω = 0 for ω 6= ν and εν = (1, 0, 0). Let γy = νεy + |Yνε |.
If α ∈ N3 then Kα(Vε) = Kα(V) unless

νz ≤ αz and νy ≤ αy ≤ γy and αx ∈ {νx, 1 + νx}. (13)

If αy 6= γy and α satisfies (13) with αx = νx, then Kα+εν (Vε) = Kα(V) while
both Kα(Vε) and Kα+εν (V) have no reduced homology.

The last sentence takes care of the case where α satisfies (13) and αx = 1 + νx,
because α + εν has x-coordinate 1 + νx; the case αy = γy will be covered in
Lemma 12.2.
The idea comes from Figure 8, where the grey dots represent elements of V ε,
the white dots represent maximal points of SVε (= second syzygies of IVε
= irreducible components of IVε), and the black dots represent first syzygies
of IVε . Looking from far down the x-axis, the vector νε has a vertical plateau
behind it: the big medium-grey wall, parallel to the yz-plane. Pushing νε back
to ν moves that vertical wall back a single unit. The only places where the
topology of Kα(V) can possibly change are at lattice points α that sit either on
the original wall in SVε or its pushed-back image in SV ; these are the vectors
α described in (13).
For vectors α+ εν that sit on the original wall but to the left of its right-hand
edge (i.e. those with αy 6= γy), the Koszul simplicial complex Kα+εν (Vε) gets
carried along for the ride to Kα(V) as the wall gets pushed back; the empty
circles denote where the filled (black and white) dots get moved to. On the
other hand, if α sits on the pushed-back image of the wall in SV (as the empty

Documenta Mathematica 7 (2002) 43–90



78 Ezra Miller

circles strictly to the left of γy do), then SVε is translation-invariant in the
x-direction near α, making Kα(Vε) a cone; the same goes for Kα+εν (V). Cones
have no reduced homology. Having this geometry in mind, here’s the official
proof of the lemma.

Proof. First assume α fails to satisfy (13). Use σ to denote an element
of {0, 1}3. To start off with, ω ¹ α − σ if and only if ωε ¹ α − σ when-
ever ω ∈ V r ν, so the only possible differences in the simplicial complexes
Kα(V) and Kα(Vε) come from the placement of ν and νε relative to the vec-
tors α−σ. If αx 6∈ {νx, 1+νx} then clearly ν ¹ α−σ if and only if νε ¹ α−σ.
And if αy < νy or αz < νz, then neither ν nor νε precedes α − σ. The only
remaining case of α not satisfying (13) has αx ≥ νx and αy > γy and αz ≥ νz.
Suppose νε + Yνε = νε∨ω. Then νε ¹ α⇒ ω ¹ α, and also ν ¹ α⇒ ω ¹ α, so
Kα(V) and Kα(Vε) do not depend on ν or νε.
Now assume α satisfies (13) and αy < γy. Then ω ¹ α − σ if and only if
ω ¹ α − (σ ∪ εν) whenever ω ∈ V r ν by the assumption ‘ωy ≥ νy whenever
ωx = νx’. If αx = νx then νε 6¹ α and thus Kα(Vε) is a cone with vertex εν .
If αx = 1 + νx then ν ¹ α − σ if and only if ν ¹ α − (σ ∪ εν), so Kα(V) is
another cone with vertex εν . Finally, suppose that αx = νx in addition to (13)
and αy < γy. Then ω ¹ α + εν − σ if and only if ω ¹ α − σ for ω ∈ V r ν by
the assumption ‘ωy ≥ νy whenever ωx = νx’. And clearly νε ¹ α + εν − σ if
and only if ν ¹ α−σ, since νε = ν+ εν . Therefore Kα+εν (Vε) = Kα(V) in this
case. 2

Lemma 12.2 Assume the hypotheses and notation from Lemma 12.1, let γx =
νx, and let

γz = min
ω 6=ν
{ωz | ωx ≤ νx and ωy < γy},

which exists because IV is artinian. Denote by F ε. a minimal free resolution of
IVε and by F. the specialized free resolution of IV via [GPW00, Theorem 3.3].
(This amounts to the redefine step applied to any cellular resolution supported
on a complex with vertex set Vε.) Then at most two syzygies of F ε. become
nonminimal in F.: a second syzygy sε2 in degree γ + εν = (1 + γx, γy, γz) and
a first syzygy sε1 in degree γ. Choose the unique ρ ∈ V with ρy = γy such that
ρz < γz is maximal. Then the specializations (s1, s2) of (sε1, s

ε
2) are nonminimal

if and only if ρx = γx.

Proof. The only possible nonminimal summands of F. occur in degrees
(νx, γy, αz) or (νεx, γy, αz) for some value of αz ≥ νz, because the other Betti
numbers of IV and IVε are in bijection by Lemma 12.1. Furthermore, nonmin-
imal summands cannot come from zeroth syzygies of IVε , since these are in
bijection with those of IV (no elements of Vε disappear when the ε is removed).
Therefore, nonminimal syzygies in F. can only be first or second syzygies.
It is a general fact about nonminimal free resolutions that nonminimal sum-
mands come in pairs (s1, s2) consisting of a first and second syzygy. In the
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present case, such pairs arise from minimal first and second syzygies (sε1, s
ε
2)

of IVε . Since deg(s1) = deg(s2) but deg(sε1) 6= deg(sε2), and the only change
is occurring in the x-direction, it must be that deg(sε2) = εν + deg(sε1).
Lemma 12.1 therefore implies that any minimal syzygy sε2 becoming nonmin-
imal in F. must have deg(sε2) along the vertical ray (νεx, γy, αz) for varying
αz ≥ νz. Furthermore, there can be at most one value γz for αz, since there
can be only one second syzygy along any line parallel to an axis. This proves
all but the last sentence.
The two specialized syzygies are nonminimal if and only if either one of them
is. The specialization of sε2 is a second syzygy in degree γ that is minimal if
and only if Kγ(V) is the boundary of a triangle by Proposition 6.1. In any case,
γ−(1, 1, 1) 6∈ 〈V〉 by minimality of γz. Suppose ρx 6= γx. Then (0, 1, 1) ∈ Kγ(V)
because γz > νz and γy > νy. Any vector ω ∈ V whose z-coordinate was used
to define γz has ωx < νx by the assumption ‘ωy ≥ νy whenever ωx = νx’; thus
(1, 1, 0) ∈ Kγ(V). And (1, 0, 1) ∈ Kγ(V) because of ρ. Therefore, Kγ(V) is the
boundary of the triangle when ρx 6= γx (in this case, there is no first syzygy of
IVε in degree γ waiting to cancel sε2 as it specializes to s2). Finally, if ρx = γx,
then (1, 0, 1) 6∈ Kγ(V), whence Kγ(V) cannot be the boundary of a triangle.

2

Example 12.3 Some possible combinatorial types for Kα(V), where α =
deg(s1) is the degree of the specialized first syzygy of Lemma 12.2, are de-
picted in Figure 8. The headings ‘else’ and ‘then’ correspond to the cases
in Algorithm 11.2. Observe that in the single then case, the white dot sε2 at
(1 + γx, γy, γz) gets smashed into the vertical plane during specialization and
cancels the black dot sε1 at (γx, γy, γz). On the other hand, the topology re-
mains constant in the first two else cases. In the final else case, two of the
black dots merge to become a “double” black dot, since the resulting Koszul
simplicial complex (3 disjoint vertices), has 2-dimensional H̃0 after the wall is
pushed back. 2

Proposition 12.4 At every iteration of the line end while-do in Algo-
rithm 11.2, the labeled map M provides a minimal cellular free resolution of IVε .

Proof. This has two parts, of course: then and else. Both follow from
Lemma 12.2, given Remark 11.3(vii). Indeed, removing the unique nonminimal
edge automatically destroys the unique nonminimal region by merging it with
an adjacent region.
This argument implicitly uses Proposition 7.2, which guarantees that the
deleted edge equals the entire intersection of the two regions containing it,
so that matrices for the ordinary boundary complex of the deletion are ob-
tained from those for M by removing the appropriate rows and columns. It
should also be reiterated that we can choose the deformation in Lemma 12.1
to be the one occurring in each pass of the while loop; indeed it is here that
the precise condition (12) on the deformation ε in Algorithm 11.2 is used in an
essential way. 2
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Proof of Theorem 11.1. It remains only to reduce to the artinian case. Let V =
V ∪ {u̇ | SV ∩ U = ∅} for sufficiently large |u̇|, as in Lemma 8.2. Given any
labeled cell complex M supporting a minimal cellular resolution of IV , taking
the subcomplex M ⊆ M whose labels precede the join ∨V} produces a cell
complex supporting a minimal resolution of M . This is the content of [BS98,
Corollary 1.3]. 2

Part III
Planar maps revisited

13 Orthogonal coloring

Let M be a planar map with vertex set V and M∞ an extended map. Since
M∞ is embedded in a surface S homeomorphic to the plane, it makes sense to
order the angles at any of its vertices cyclically, and to say that a list of angles
at a vertex is consecutive. The same comment applies as well to the angles in
any bounded region of M∞, to the four angles having any fixed bounded edge
as a leg (two at each vertex), and to the unbounded edges (read as the hands
on an analog clock). With these cyclically ordered sets in mind, let A be any
finite set of objects arranged cyclically in the surface S. Given three colors
x, y, z, the set A is trichromatic if

• there is an element in A colored u, for each u = x, y, z;

• the elements in A colored u are consecutive, for each u = x, y, z; and

• the block of elements colored z is immediately counterclockwise from the
block of elements colored y.

Deleting ‘counter’ from the last item defines clockwise trichromatic instead.
An orthogonal coloring O of M∞ is a labeling of the angles in M∞ at every
vertex in M by three colors x, y, z such that

(i) all vertices of M are trichromatic in M∞;

(ii) all bounded edges of M are clockwise trichromatic in M∞;

(iii) all bounded regions of M are trichromatic in M∞;

(iv) the two angles adjacent to each unbounded edge have different colors; and

(v) attaching to each unbounded edge the color missing from its two angles
makes the set of unbounded edges in M∞ trichromatic.

Suppose, in addition, that M has axial vertices ẋ, ẏ, ż, so M∞ = M∞(ẋ, ẏ, ż).
The angles interior to the three unbounded regions of M∞ are called exterior
angles of M∞; besides the obvious pair of angles at each of ẋ, ẏ, ż, they include
one angle at each nonaxial vertex lying on the exterior cycle. The interior angles
at vertices on the exterior cycle are the angles lying inside M—that is, the non-
exterior angles. Call an orthogonal coloring ofM axial if the following boundary
conditions, which imply axioms (iv) and (v), are satisfied for u = x, y, z:
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(iv)′ all interior angles at the axial vertex u̇ are colored u;

(v)′ all exterior angles of M∞ in the unbounded region not touching u̇ are
colored u.

For example, the orthogonal coloring in Figure 1 is axial. Roughly speaking,
even axioms (iv)′ and (v)′ say that something is trichromatic: (iv)′ says that the
exterior cycle, thought of as a triangle with vertices ẋ, ẏ, ż, is trichromatic; while
(v)′ says that the set of exterior angles is trichromatic. This observation makes
it particularly easy to remember the axioms defining an orthogonal coloring.
Felsner independently defined what he called Schnyder colorings in [Fel01, Sec-
tion 1]. These are the same thing as axial orthogonal colorings. Felsner also
pointed out that axiom (ii) follows from the others [Fel01, Lemma 1]. When
the planar map is a triangulation of a simplex with no new vertices on the
boundary, axial orthogonal coloring reduces to the angle-coloring of Schnyder
[Tro92, Theorem 6.2.1], justifying Felsner’s terminology. The next result and
its proof justify the adjective “orthogonal”.

Proposition 13.1 Any (axial) geodesic embedding M ↪→ SV induces an (ax-
ial) orthogonal coloring of M∞ = M ∪ (unbounded orthogonal rays).

Proof. Any angle in a geodesic embedding, whether between bounded or
unbounded edges or both, locally lies in a plane u = constant for some
u ∈ {x, y, z}. Color such an angle by u. The orthogonality axioms follow
readily from the definition of axial geodesic embedding and the region axiom
(which holds for nonaxial grid surfaces by Lemma 8.2) in Section 2. 2

14 Orthogonal flows

In this section the planar map M has axial vertices ẋ, ẏ, ż, and M∞(ẋ, ẏ, ż) is
orthogonally colored. We derive properties of orthogonal flows in grid surfaces
(Section 2) from the axioms for axial orthogonal coloring, for comparison with
[BT93]. In an earlier version of this paper, the current section was intended
to serve as a possible proof method for Conjecture 16.3, below. Felsner in fact
carried out this program [Fel02], having independently found the results in this
section already [Fel01].
To begin, interpret an orthogonal coloring as a family of three orthogonal
vector fields on M∞: for each vertex of M∞, assign precisely three arrows
pointing away from it—one of each color—along the edges separating the blocks
of differently colored angles. Thus, for example, the z-colored arrows point
upward along an edge if and only if the angles around the edge have colors
z
y|zx, yy|zx, zy|xx, or y|x (the z-axis). The first of these edges has no arrow pointing
downward from its top vertex, while the second and third have downward
arrows colored x and y, respectively.
The u-colored vector fields for u = x, y, z can be “integrated” to get orthogonal
flow lines: the u-colored flow line from ν ∈ M is a directed path in M∞,
beginning with ν, that is a union of edges underlying u-colored arrows. Thus
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the next vertex after ν is at the other end of the edge whose u-colored arrow
points away from ν.
Orthogonal flow lines can only meet in certain orientations. To make a precise
statement, let L be a directed path passing through a vertex ν, and K a directed
path containing an edge ~e pointing toward ν. Then K approaches L from the
left at ν if ~e is distinct from L’s two arrows at ν, and these three arrows are
oriented as in Eq. (14), below (ignoring the labels for the moment). Similarly,
given the mirror orientations, K approaches L from the right.

Lemma 14.1 A flow line colored x never approaches a flow line colored z from
the left. A flow line colored y never approaches a flow line colored z from the
right. These statements remain true for cyclic permutations of x, y, z.

Proof. Suppose ~e approaches the z-colored flow line L from the left at ν. The
angle coloration around ν looks like the following diagram,

L

y

x
x

c ~e
b

→ ν
a

y

x
x

(14)

in which a 6= x by edge trichromatics. (There may be other edges containing ν
but not shown.) Since none of the angles going clockwise between a and y at ν
can be x-colored (by vertex trichromatics), it is impossible to have {b, c} ⊆
{y, z}, by edge trichromatics. The other case is similar, and the symmetry is
obvious. 2

The observation in Lemma 14.1 imposes useful conditions on flow lines. The
next proposition says that orthogonal flow lines satisfy conditions slightly
stronger than the five “path properties” defining a normal family of paths,
as introduced by Brightwell and Trotter [BT93] (see [Tro92, Chapter 6] for
an exposition). A set of paths whose pairwise intersections consist of a single
vertex is called independent.

Proposition 14.2 (Path Properties) Endow M∞(ẋ, ẏ, ż) with an axial or-
thogonal coloring. Suppose ν ∈M is a vertex and u ∈ {x, y, z} is a color.

1. There is a unique u-colored flow line beginning at ν; it connects ν to ∞
via u̇.

2. If [ν, u̇] denotes the part of the u-colored flow line starting with ν and
ending with u̇, then [ν, ẋ], [ν, ẏ], and [ν, ż] are independent paths from ν.

3. The six paths [ẋ, ẏ], [ẏ, ẋ], [ẏ, ż], [ż, ẏ], [ẋ, ż], [ż, ẋ] are on the exterior cycle
of M .

4. If ω ∈M is a vertex such that ω ∈ [ν, u̇], then [ω, u̇] ⊆ [ν, u̇].
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5. If ω is in the union [ẋ, ν, ẏ] of [ν, ẋ], [ν, ẏ], [ẋ, ẏ], and any regions they
enclose, then [ẋ, ω, ẏ] ⊆ [ẋ, ν, ẏ]; the same holds with ż in place of ẋ or ẏ.

Proof. Existence and uniqueness in part 1 are obvious. Since the only arrows
in M∞ pointing out of M are on the axes by orthogonality axioms (iv)′ and (v)′,
part 1 is equivalent to statement that flow lines contain no cycles. Any flow
cycle C containing a vertex in the interior of the region it bounds contains
an entire flow cycle of some other color in its interior: one of the other colors
cannot escape by Lemma 14.1. Thus we may assume C has no vertices interior
to it. But then the argument in the proof of Lemma 14.1 forces the coloration
of the angles in the interior of C to omit one color entirely, violating region
trichromatics.
Now suppose two flow lines from ν—colored x and y, say—intersect, and con-
sider the cycle C formed by their arcs connecting ν to their first intersection
point. Assume for the moment that ω lies interior to C. Depending on the
orientations of the two flow lines around C, either z-flow lines cannot escape C,
or the u-flow line from ω exits through the u-colored arc of C, for u = x, y.
The first case contradicts acyclicity, while the second case produces a smaller
cycle C. Again, we may therefore assume C contains no vertices interior to it.
In the first orientation, no interior angle of C is colored z, while in the second
orientation, all interior angles of C are colored z.
Part 3 follows easily by applying orthogonality axiom (ii) to the edges on the
exterior cycle of M , each of which has two of its four colors specified by (v)′.
Part 4 is obvious from the definition of flow line.
To prove part 5, first observe that a flow line colored x or y cannot escape
[ẋ, ν, ẏ] if it originates at a vertex ω ∈ [ẋ, ν, ẏ] that is on neither [ν, ẋ] nor [ν, ẏ].
Indeed, if [ω, ẋ] intersects [ν, ẋ], then these two flow lines agree thereafter;
and [ω, ẋ] cannot even approach [ν, ẏ], thanks to Lemma 14.1. On the other
hand, if ν 6= ω ∈ [ν, ẏ], say, then [ω, ẏ] ⊂ [ν, ẏ] by part 4. Moreover, vertex
trichromatics force the first edge of [ω, ẋ] to exit ω clockwise from the y-colored
arrow pointing away ω, but counterclockwise from the other edge leaving ω and
in [ν, ẏ]. Therefore, [ω, ẋ] remains inside [ẋ, ν, ẏ] either by part 4 or the first
sentence of this paragraph. 2

Example 14.3 Orthogonal flow lines are better behaved than arbitrary normal
families of paths, since their strong local properties imply Path Property 2,
and especially the crucial Path Property 5, which are global. Figure 9 depicts
two triples of vector fields determined by trichromatic angle colorings whose
corresponding flow lines satisfy the conclusion of Proposition 14.2, and therefore
constitute normal families of paths. The vector fields in the left diagram are not
orthogonal because of the edge connecting the rightmost interior vertices, the
edge connecting the remaining interior vertex to ẋ, the interior region, and the
bottom region bordering [ẋ, ż]. Recoloring the angles at the leftmost interior
vertices yields the orthogonal vector fields at right. 2
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Figure 9: Nonorthogonal and orthogonal vector fields

Corollary 14.4 Let M be a planar with axial vertices ẋ, ẏ, ż. The extended
map M∞(ẋ, ẏ, ż) can be orthogonally colored if and only if it is triconnected.

Proof. Proposition 14.2.2 proves the ‘only if’ direction, while Theorem 5.1 and
Proposition 13.1 prove the ‘if’ direction. 2

Remark 14.5 The results of this section can be massaged to work for nonaxial
orthogonally colored extended maps M∞, as well. In fact, everything reduces
to the axial case: draw a large triangle containing all of M—not M∞—in its
interior, and call its three vertices ẋ, ẏ, ż, in counterclockwise order. Then
connect each u-colored unbounded edge to u̇. It is straightforward to verify
the axioms for axial orthogonal colorings, given the ordinary axioms for M∞.
Observe the analogy with Lemma 8.2.

15 Duality for geodesic embeddings

Let G be a graph embedded in the sphere S∪{∞}, where S ∼= R2, and assume
that G∩S is a planar map or extended map. For this paragraph only, we allow
graphs and planar maps to have multiple edges, although we assume G has no
loops, and that the edges of G in each one of its regions form a simple cycle.
Define the spherical dual Ĝ of G as usual: place a vertex Â in each region A
of G, and draw an edge connecting Â to B̂ through each edge contained in
A∩B. Then Ĝ also satisfies the no-loop and simple-cycle conditions, which are
dual to each other. Assume that∞ is a vertex of either G or Ĝ. When∞ 6∈ G,
so G is a planar map M ⊂ S, then Ĝ is an extended map that we denote by M̂∞
(with associated planar map del(Ĝ;∞) = M̂) and call the planar dual of M .
When ∞ ∈ G, so G ∩ S = N∞ is an extended map satisfying N = del(G;∞),
then Ĝ is a planar map that we denote by N̂ and call the planar dual of N∞.
For an arbitrary grid surface SV , let α̂ be any vector preceded by 1 + the join
of the vectors in V, where 1 = (1, 1, 1). Define V by throwing in axial vertices
missing from V:

V = V ∪ {u̇ | SV ∩ U = ∅}, where u̇ ∈ U has length |u̇| = α̂u.
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This notation agrees with that in Lemma 8.2, but specifies the length of u̇.
Define the Alexander dual grid surface SV̂ by

V̂ = {α̂− ρ | ρ ∈ Smax
V },

where the notation comes from Lemma 8.3. Neither SV̂ nor SV̂ depends com-
binatorially on α̂, in the sense of Lemma 2.1.
By definition, V = V and α̂ º ẋ+ ẏ + ż + 1 when SV is axial. Define SV to be
radial if νu 6= 0 for all ν ∈ V and u ∈ {x, y, z}. In particular, V = V ∪ {ẋ, ẏ, ż}
is a disjoint union when SV is radial. Although the following duality theorem
is stated only for axial and radial grid surfaces, similar (but slightly harder
to state) considerations apply to arbitrary geodesic and rigid embeddings; the
definition of Alexander dual grid surface extends verbatim. Recall that M∞ =
M ∪ (unbounded orthogonal rays in SV) for geodesic embeddings M ↪→ SV .

Theorem 15.1 Let M ↪→ SV be an axial geodesic embedding, and N ↪→ SW a
radial geodesic embedding.

1. M ∼= N̂ if and only if M̂ ∼= N .

2. There is a natural radial geodesic embedding M̂ ↪→ SV̂ that is rigid if and
only if M ↪→ SV is rigid.

3. There is a natural axial geodesic embedding N̂ ↪→ SŴ that is rigid if and
only if N ↪→ SW is rigid.

Proof. Part 1 is simply duality for spherical maps, as in the first paragraph of
this section. We prove part 2, since part 3 is similar and can even be simplified
by using parts 1 and 2. The vertex axiom for SV̂ follows immediately from
Lemma 8.3. The main point for the rest of the proof is that

{σ ∈ SV̂ | σ ¹ α̂} = {α̂− σ | σ ∈ SV and σ ¹ α̂}.

In other words, {σ ∈ SV | σ ¹ α̂} lies in the topological boundary of R3 r 〈V〉.
Every elbow geodesic [ν, ω] in M borders precisely two regions of M∞ because
M∞ is triconnected (apply Proposition 7.2 along with Theorem 8.4, or Proposi-
tion 13.1 along with Corollary 14.4). If these two regions A and B are bounded,
then the maximal points Â and B̂ in them (Lemma 8.3) connect via straight
line segments in SV to ν∨ω by the region axiom (see the proof of Lemma 8.3).
Furthermore, one of these segments must transform into an orthogonal ray
in SV̂ via σ 7→ α̂ − σ, because ν∨ω = Â∧B̂ (by the region axiom: for each
u ∈ {x, y, z} one of the two vectors ν and ω shares its u-coordinate with one of
the vectors Â and B̂). Thus every bounded edge of M̂∞ is an elbow geodesic
in SV̂ .
If [ν, ω] borders a bounded region A and an unbounded region, then νu = ωu =
0 for some u ∈ {x, y, z}. The vector ν∨ω shares both of its nonzero coordinates
with Â in this case, so Â is the unique maximal point of SV preceded by ν∨ω.
This forces the negative ray Â − U passing through Â and ν∨ω to transform
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axial radial

Figure 10: Duality for geodesic embeddings

into an unbounded orthogonal ray α̂− (Â−U) = (α̂− Â) +U in SV̂ . Thus the

unbounded edges of M̂∞ are unbounded orthogonal rays in SV̂ .

Now we show that every orthogonal ray in SV̂ is contained in an edge of M̂ .

Equivalently, for each maximal point Â ∈ SV and U ∈ {X,Y, Z}, there is an
elbow geodesic [ν, ω] ∈ M such that Â − ν∨ω ∈ U . By symmetry, set U = Z.
Choose the edge [ν, ω] ⊂ A so that νx = Âx and ωy = Ây; such an edge exists
by orthogonality property (iii) and Proposition 13.1.
For the statement about rigidity, use the rigid region axiom: ν∨ω ¹ Â⇔ ν ¹ Â
and ω ¹ Â, and this occurs precisely when ν ∈ A and ω ∈ A. Thus, when
[ν, ω] ⊂ SV is a rigid geodesic, ν∨ω precedes the maximal points in exactly two
regions of M : the regions A and B containing both ν and ω. That ν∨ω = Â∧B̂
was shown above. 2

Example 15.2 Figure 10 illustrates Theorem 15.1 for a particular (nonrigid)
geodesic embedding. Turning the picture upside-down yields two pictures of
the Alexander dual grid surface, with the radial embedding appearing the right
way out and the axial embedding backwards. 2

Considering the Theorem 8.4, the duality result here essentially falls under the
umbrella of duality for resolutions of monomial ideals [Mil00a, Section 4.2].
Although the above proof can be simplified greatly by applying duality for
resolutions, particularly in concert with [Mil00a, Proposition 3.20], it seemed
appropriate to keep Theorem 15.1 as self-contained as possible.

16 Open problems

16.1 Planar maps supporting resolutions of nonartinian ideals

Problem 16.1 Characterize those planar maps that support minimal resolu-
tions of trivariate monomial ideals.
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It would be nice to clean up the statement of Theorem B by proving 3 ⇒ 2.
Unfortunately, the most direct proof attempt fails.
To be precise, suppose the planar map N supports a minimal cellular free
resolution of some ideal IV . Following the procedure in the proof of Proposi-
tion 7.2, the underlying graph H of N has paths analogous to orthogonal flows.
However, since V may not be axial, these flows do not reach axial vertices, but
instead reach unbounded orthogonal rays. As an abstract graph, we can define
H by adding three new vertices ẋ, ẏ, ż to H, and then connecting each vertex
ν ∈ N to u̇ if the orthogonal ray Uν is unbounded. Judging from Theorems A
and B, one might expect that H is planar and triconnected, supporting a min-
imal free resolution of some artinian approximation to IV . But although H is
obviously triconnected, it need not be planar!
Take, for instance, the set V from Example 9.2, without the axial vectors.
Deleting ẋ, ẏ, ż from the nonplanar map M there yields a planar map N sup-
porting a minimal free resolution of IV , but reconnecting to ẋ, ẏ, ż as above
returns M again.

16.2 Nonrigid geodesic embeddings

Conjecture 16.2 Let the axial grid surface SV have vertices ν1, ν2, ν3, ν4 ∈ V,
each with no coordinate zero, such that [νi, νj ] is an elbow geodesic whenever
i 6= j. Then the ideal IV possesses a nonplanar cellular minimal free resolution.

Thus relatively minor violation of rigidity for SV not only implies nonunique-
ness of minimal cellular resolutions (cf. Corollary 9.1), but should even imply
nonplanarity. Intuitively, it should be possible to construct K5 out of elbow
geodesics (two of which cross) using two of the νi and ẋ, ẏ, ż, as in Example 9.2.
Given such a configuration, one is tempted to “fill in” the resulting 1-skeleton
to form a cell complex minimally resolving IV . This is, in fact, how Example 9.2
was constructed.

16.3 Orthogonal coloring to rigid embedding

Conjecture 16.3 (Felsner’s Theorem [Fel02]) Every orthogonal color-
ing on a planar map is induced by a rigid embedding, as in Proposition 13.1.

This converse to Proposition 13.1 reduces easily to the axial case, via Lemma 8.2
and Remark 14.5. Since the axial case was proved by Felsner [Fel02] in response
to seeing the conjecture here, this is in fact no longer an open problem. But see
[Fel02] for Felsner’s open questions regarding the set of orthogonal colorings.
Besides its applications to the questions discussed in the next subsection, the
motivation behind formulating the above statement was that it reduces Theo-
rem 5.1 to verifying that every planar map there has an orthogonal coloring.
This actually follows by the same induction used for rigid embeddings, but
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the details become much simpler; moreover, Felsner already proved existence
of orthogonal colorings in [Fel01]. Thus we get a substantially more palatable
proof of Theorem 5.1 via [Fel01, Fel02].

16.4 The Scarf stratification

Part of the motivation for the results presented here stems from the desire to
understand not just how to assign a minimal free resolution to any particular
monomial ideal, but to understand the collection of all minimal free or injective
resolutions of monomial ideals. Some recent results, notably those in [GPW00],
aim to classify monomial ideals according to whether their minimal resolutions
are in some sense isomorphic, by ascertaining what data determines the minimal
resolutions. Other results, such as those in [MSY00], raise the question of which
deformations (as in Section 10) preserve minimal resolutions. This latter idea
originated from [BPS98, PS98], which was in turn based upon work of H. Scarf
on related classifications for integer programs.
It seems that the most universal approach for minimal resolutions of mono-
mial ideals should combine the two types of classification above. Heuristically,
the question becomes, ‘What are all possible ways of deforming continuously
between monomial ideals having “nearby” isomorphism classes of resolutions?’
Ideally one would like a ‘fine moduli space’ for minimal resolutions, in the sense
that arcs in that space correspond to families of monomial ideals whose min-
imal resolutions deform continuously. Of course, there are only finitely many
deformation classes of minimal resolutions, so the space should interact well
with the poset of monomial ideals under deformation.
One tempting candidate for ‘fine moduli space’ can be defined as follows. Giv-
ing r monomials in n variables is the same as giving an r×nmatrix of exponents.
The generic monomial ideals partition an open dense subset of the nonnegative
orthant in this matrix space, by [BPS98, MSY00]. Taking the cells formed by
intersections of the closures of the generic loci yields a decomposition that we
propose to call the Scarf stratification. It should be a rational polyhedral fan,
if life is fair; but at least there should be a subdividing fan with finitely many
maximal cones such that the maximal Scarf cells are unions of maximal cones.
Any classifying space such as the Scarf stratification will feel rather more like an
algebraic stack than a fine moduli space, because even if it classifies deforma-
tions of minimal resolutions, the actual set of isomorphism classes of minimal
resolutions would be a quotient by some finite group (containing the symmet-
ric group on the variables, at least) of the set of strata: two monomial ideals
differing by a permutation of the variables might be far from each other in the
stratification.
Whatever the correct space of minimal resolutions ends up being, the methods
introduced here can be applied to elucidate its combinatorial structure, for
n = 3. Note that Felsner’s theorem (Conjecture 16.3) classifies the maximal
strata for the case of three variables—that is, the generic trivariate monomial
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ideals—by [MSY00]:

Corollary 16.4 Deformation classes of generic artinian trivariate monomial
ideals correspond bijectively to orthogonally colored axial planar triangulations.

The triangulations referred to here are orthogonally colored triangulations of
the simplex with new vertices on the boundary, so they are not Schnyder normal
colorings. Corollary 16.4 and Corollary 9.1 prompt the following:

Question 16.5 In terms of monomial ideals, what do deformation classes of
axial rigid embeddings correspond to in general, for non-triangulations?

For instance, do they correspond to certain Scarf strata? If the Scarf stratifi-
cation is a rational polyhedral fan, what linear equations define these cones?
We note that arbitrary geodesic embeddings have considerably more freedom
than do rigid embeddings, from the point of view of deformations (hence the
adjective ‘rigid’). The possible application of the material in this paper to the
classification of deformations of minimal resolutions was one of the motivations
for stating as many results as possible in the context of arbitrary geodesic
embeddings.
Our final remark concerns the bias in this paper toward artinian monomial ide-
als. Combinatorial considerations such as triconnectivity notwithstanding, the
bias also makes sense algebraically. Briefly, the homological characterization of
genericity for arbitrary monomial ideals [MSY00, Theorem 1.5 and Remark 1.7]
is a statement about graded injective resolutions under deformation; and any
result concerning Z3-graded injective resolutions of arbitrary monomial ideals
has an equivalent statement in terms of Z3-graded free resolutions of artinian
monomial ideals, by the duality results in [Mil00a]. We emphasize that the
theory surrounding injective resolutions played a crucial role in properly for-
mulating the graph-theoretic results in Part I, as well as the algebraic results in
Part II (the exposition in Sections 10–12 is based on [Mil00b, Theorem 5.60]).
Moreover, concentrating on injective resolutions (equivalently, artinian mono-
mial ideals) should ease the nonplanarity difficulties raised in Section 16.1, by
applying [Mil00a, Theorem 4.5.5 and Example 4.8.5], which says how to recover
free resolutions from injective resolutions.
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Abstract. Let G denote the p-adic group GL(n), let Π(G) denote
the smooth dual of G, let Π(Ω) denote a Bernstein component of
Π(G) and let H(Ω) denote a Bernstein ideal in the Hecke algebra
H(G). With the aid of Langlands parameters, we equip Π(Ω) with
the structure of complex algebraic variety, and prove that the periodic
cyclic homology of H(Ω) is isomorphic to the de Rham cohomology
of Π(Ω). We show how the structure of the variety Π(Ω) is related to
Xi’s affirmation of a conjecture of Lusztig for GL(n,C). The smooth
dual Π(G) admits a deformation retraction onto the tempered dual
Πt(G).
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Introduction

The use of unramified quasicharacters to create a complex structure is well
established in number theory. The group of unramified quasicharacters of the
idele class group of a global field admits a complex structure: this complex
structure provides the background for the functional equation of the zeta inte-
gral Z(ω,Φ), see [39, Theorem 2, p. 121].
Let now G be a reductive p-adic group and let M be a Levi subgroup of G.
Let Πsc(M) denote the set of equivalence classes of irreducible supercuspidal
representations of M . Harish-Chandra creates a complex structure on the
set Πsc(M) by using unramified quasicharacters of M [16, p.84]. This complex
structure provides the background for the Harish-Chandra functional equations
[16, p. 91].
Bernstein considered the set Ω(G) of all conjugacy classes of pairs (M,σ) where
M is a Levi subgroup of G and σ is an irreducible supercuspidal representation
of M . Making use of unramified quasicharacters of M , Bernstein gave the set

1Partially supported by a Leverhulme Trust Fellowship

Documenta Mathematica 7 (2002) 91–112



92 J. Brodzki, R. Plymen

Ω(G) the structure of a complex algebraic variety. Each irreducible component
Ω of Ω(G) has the structure of a complex affine algebraic variety [5].
Let Π(G) denote the set of equivalence classes of irreducible smooth represen-
tations of G. We will call Π(G) the smooth dual of G. Bernstein defines the
infinitesimal character from Π(G) to Ω(G):

inf.ch. : Π(G)→ Ω(G).

The infinitesimal character is a finite-to-one map from the set Π(G) to the
variety Ω(G).
Let F be a nonarchimedean local field and from now on let G = GL(n) =
GL(n, F ). Let now WF be the Weil group of the local field F , then WF admits
unramified quasicharacters, namely those which are trivial on the inertia sub-
group IF . Making use of the unramified quasicharacters of WF , we introduced
in [8] a complex structure on the set of Langlands parameters for GL(n). In
view of the local Langlands correspondence for GL(n) this creates, by transport
of structure, a complex structure on the smooth dual of GL(n).
In Section 1 of this article, we describe in detail the complex structure on the
set of L-parameters for GL(n). We prove that the smooth dual Π(GL(n)) has
the structure of complex manifold. The local L-factors L(s, π) then appear as
complex valued functions of several complex variables. We illustrate this with
the local L-factors attached to the unramified principal series of GL(n).
The complex structure on Π(GL(n)) is well adapted to the periodic cyclic
homology of the Hecke algebra H(GL(n)). The identical structure arises in
the work of Xi on Lusztig’s conjecture [40]. Let W be the extended affine
Weyl group associated to GL(n,C), and let J be the associated based ring
(asymptotic algebra) [27, 40]. Xi confirms Lusztig’s conjecture and proves that
J ⊗Z C is Morita equivalent to the coordinate ring of the complex algebraic

variety (̃C×)n/Sn, the extended quotient by the symmetric group Sn of the
complex n-dimensional torus (C×)n. In Section 2 we describe the theorem of
Xi on the structure of the based ring J .
So the structure of extended quotient, which runs through our work, occurs in
the work of Xi at the level of algebras. The link with our work is now provided
by the theorem of Baum and Nistor [3, 4]

HP∗(H(n, q)) ' HP∗(J)

where H(n, q) is the associated extended affine Hecke algebra.
Let Ω be a component in the Bernstein variety Ω(GL(n)), and let H(G) =⊕

H(Ω) be the Bernstein decomposition of the Hecke algebra.
Let

Π(Ω) = (inf.ch.)−1Ω.

Then Π(Ω) is a smooth complex algebraic variety with finitely many irreducible
components. We have the following Bernstein decomposition of Π(G):

Π(G) =
⊔

Π(Ω).
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Let M be a compact C∞ manifold. Then C∞(M) is a Fréchet algebra, and we
have Connes’ fundamental theorem [14, Theorem 2, p. 208]:

HP∗(C
∞(M)) ∼= H∗(M ;C).

Now the ideal H(Ω) is a purely algebraic object, and, in computing its periodic
cyclic homology, we would hope to find an algebraic variety to play the role of
the manifold M . This algebraic variety is Π(Ω).

Theorem 0.1. Let Ω be a component in the Bernstein variety Ω(G). Then
the periodic cyclic homology of H(Ω) is isomorphic to the periodised de Rham
cohomology of Π(Ω):

HP∗(H(Ω)) ∼= H∗(Π(Ω);C).

This theorem constitutes the main result of Section 3, which is then used to
show that the periodic cyclic homology of the Hecke algebra of GL(n) is isomor-
phic to the periodic cyclic homology of the Schwartz algebra of GL(n). We also
provide an explicit numerical formula for the dimension of the periodic cyclic
homology of H(Ω) in terms of certain natural number invariants attached to
Ω.
The smooth dual Π(GL(n)) has a natural stratification-by-dimension.
We compare this stratification with the Schneider-Zink stratification [34].
Stratification-by-dimension is finer than the Schneider-Zink stratification, see
Section 3.
A scheme X is a topological space, called the support of X and denoted |X|,
together with a sheaf OX of rings on X, such that the pair (|X|,OX) is locally
affine, see [15, p. 21]. The smooth dual Π(G) determines a reduced scheme, see
[18, Prop. 2.6]. If S is the reduced scheme determined by the Bernstein variety
Ω(G), then Π(G) is a scheme over S, i.e. a scheme together with a morphism
Π(G)→ S. This morphism is the q-projection introduced in [8]:

πq : Π(G)→ S.

In Section 4 we give a detailed description of the q-projection and prove that
the q-projection is a finite morphism.
From the point of view of noncommutative geometry it is natural to seek the
spaces which underlie the noncommutative algebras H(G) and S(G). The space
which underlies the Hecke algebra H(G) is the complex manifold Π(G). The
space which underlies the Schwartz algebra is the Harish-Chandra parameter
space, which is a disjoint union of compact orbifolds. In Section 5 we construct
a deformation retraction of the smooth dual onto the tempered dual. We view
this deformation retraction as a geometric counterpart of the Baum-Connes
assembly map for GL(n).
In Section 6 we track the fate of supercuspidal representations of G through the
diagram which appears in Section 5. In particular, the index map µ manifests
itself as an example of Ahn reciprocity.
We would like to thank Paul Baum, Alain Connes, Jean-Francois Dat and Nigel
Higson for many valuable conversations. Jacek Brodzki was supported in part
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by a Leverhulme Trust Fellowship. This article was completed while Roger
Plymen was at IHES, France.

1. The complex structure on the smooth dual of GL(n)

The field F is a nonarchimedean local field, so that F is a finite extension of
Qp, for some prime p or F is a finite extension of the function field Fp((x)).
The residue field kF of F is the quotient oF /mF of the ring of integers oF by
its unique maximal ideal mF . Let q be the cardinality of kF .
The essence of local class field theory, see [29, p.300], is a pair of maps

(d : G −→ Ẑ, v : F× −→ Z)

where G is a profinite group, Ẑ is the profinite completion of Z, and v is the
valuation.
Let F be a separable algebraic closure of F . Then the absolute Galois group
G(F |F ) is the projective limit of the finite Galois groups G(E|F ) taken over

the finite extensions E of F in F . Let F̃ be the maximal unramified extension
of F . The map d is in this case the projection map

d : G(F |F ) −→ G(F̃ |F ) ∼= Ẑ

The group G(F̃ |F ) is procyclic. It has a single topological generator: the

Frobenius automorphism φF of F̃ |F . The Weil group WF is by definition the
pre-image of < φF > in G(F | F ). We thus have the surjective map

d : WF −→ Z
The pre-image of 0 is the inertia group IF . In other words we have the following
short exact sequence

1→ IF →WF → Z→ 0

The group IF is given the profinite topology induced by G(F |F ). The topology
on the Weil group WF is dictated by the above short exact sequence. The Weil
group WF is a locally compact group with maximal compact subgroup IF . The
map

WF −→ G(F̃ |F )

is a continuous homomorphism with dense image.
A detailed account of the Weil group for local fields may be found in [37]. For
a topological group G we denote by Gab the quotient Gab = G/Gc of G by the
closure Gc of the commutator subgroup of G. Thus Gab is the maximal abelian
Hausdorff quotient of G. The local reciprocity laws [29, p.320]

rE|F : G(E|F )ab ∼= F×/NE|FE
×

now create an isomorphism [30, p.69]:

rF : W ab
F
∼= F×

We have WF = tΦnIF , n ∈ Z. The Weil group is a locally compact, totally
disconnected group, whose maximal compact subgroup is IF . This subgroup
is also open. There are three models for the Weil-Deligne group.
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One model is the crossed product WF nC, where the Weil group acts on C by
w · x = ‖w‖x, for all w ∈WF and x ∈ C.
The action of WF on C extends to an action of WF on SL(2,C). The semidirect
product WFnSL(2,C) is then isomorphic to the direct product WF×SL(2,C),
see [22, p.278]. Then a complex representation of WF ×SL(2,C) is determined
by its restriction to WF × SU(2), where SU(2) is the standard compact Lie
group.
From now on, we shall use this model for the Weil-Deligne group:

LF = WF × SU(2).

Definition 1.1. An L-parameter is a continuous homomorphism

φ : LF → GL(n,C)

such that φ(w) is semisimple for all w ∈WF . Two L-parameters are equivalent
if they are conjugate under GL(n,C). The set of equivalence classes of L-
parameters is denoted Φ(G).

Definition 1.2. A representation of G on a complex vector space V is smooth
if the stabilizer of each vector in V is an open subgroup of G. The set of
equivalence classes of irreducible smooth representations of G is the smooth
dual Π(G) of G.

Theorem 1.3. Local Langlands Correspondence for GL(n). There is a natural
bijection between Φ(GL(n)) and Π(GL(n)).

The naturality of the bijection involves compatibility of the L-factors and ε-
factors attached to the two types of objects.
The local Langlands conjecture for GL(n) was proved by Laumon, Rapoport
and Stuhler [25] when F has positive characteristic and by Harris-Taylor [17]
and Henniart [19] when F has characteristic zero.
We recall that a matrix coefficient of a representation ρ of a group G on a
vector space V is a function on G of the form f(g) = 〈ρ(g)v, w〉, where v ∈ V ,
w ∈ V ∗, and V ∗ denotes the dual space of V . The inner product is given by
the duality between V and V ∗. A representation ρ of G is called supercuspidal
if and only if the support of every matrix coefficient is compact modulo the
centre of G.
Let τj = spin(j) denote the (2j+ 1)-dimensional complex irreducible represen-
tation of the compact Lie group SU(2), j = 0, 1/2, 1, 3/2, 2, . . ..
For GL(n) the local Langlands correspondence works in the following way.

• Let ρ be an irreducible representation of the Weil group WF . Then
πF (ρ⊗ 1) is an irreducible supercuspidal representation of GL(n), and
every irreducible supercuspidal representation of GL(n) arises in this
way. If det(ρ) is a unitary character, then πF (ρ⊗1) has unitary central
character, and so is pre-unitary.

• We have πF (ρ⊗spin(j)) = Q(∆), the Langlands quotient associated to
the segment {| |−(j−1)/2πF (ρ), . . . , | |(j−1)/2πF (ρ)}. If det(ρ) is unitary,
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then Q(∆) is in the discrete series. In particular, if ρ = 1 then πF (1⊗
spin(j)) is the Steinberg representation St(2j + 1) of GL(2j + 1).

• If φ is an L-parameter for GL(n) then φ = φ1 ⊕ . . . ⊕ φm where φj =
ρj ⊗ spin(j). Then πF (ρ) is the Langlands quotient Q(∆1, . . . ,∆m).
If det(ρj) is a unitary character for each j, then πF (φ) is a tempered
representation of GL(n).

This correspondence creates, as in [23, p. 381], a natural bijection

πF : Φ(GL(n))→ Π(GL(n)).

A quasi-character ψ : WF → C× is unramified if ψ is trivial on the inertia
group IF . Recall the short exact sequence

0→ IF →WF
d→ Z→ 0

Then ψ(w) = zd(w) for some z ∈ C×. Note that ψ is not a Galois representation
unless z has finite order in the complex torus C×, see [37]. Let Ψ(WF ) denote
the group of all unramified quasi-characters of WF . Then

Ψ(WF ) ' C×
ψ 7→ z

Each L-parameter φ : LF → GL(n,C) is of the form φ1 ⊕ · · · ⊕ φm with each
φj irreducible. Each irreducible L-parameter is of the form ρ⊗ spin(j) with ρ
an irreducible representation of the Weil group WF .

Definition 1.4. The orbit O(φ) ⊂ ΦF (G) is defined as follows

O(φ) = {
m⊕

r=1

ψrφr | ψr ∈ Ψ(WF ), 1 ≤ r ≤ m}

where each ψr is an unramified quasi-character of WF .

Definition 1.5. Let detφr be a unitary character, 1 ≤ r ≤ m and let φ =
φ1 ⊕ . . .⊕ φm. The compact orbit Ot(φ) ⊂ Φt(G) is defined as follows:

Ot(φ) = {
m⊕

r=1

ψrφr | ψr ∈ Ψt(WF ), 1 ≤ r ≤ m}

where each ψr is an unramified unitary character of WF .

We note that IF ×SU(2) ⊂WF ×SU(2) and in fact IF ×SU(2) is the maximal
compact subgroup of LF . Now let φ be an L-parameter. Moving (if necessary)
to another point in the orbit O(φ) we can write φ in the canonical form

φ = φ1 ⊕ . . .⊕ φ1 ⊕ . . .⊕ φk ⊕ . . .⊕ φk
where φ1 is repeated l1 times, . . ., φk is repeated lk times, and the representa-
tions

φj |IF×SU(2)

are irreducible and pairwise inequivalent, 1 ≤ j ≤ k. We will now write
k = k(φ). This natural number is an invariant of the orbit O(φ). We have

O(φ) = Syml1C× × . . .× SymlkC×
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the product of symmetric products of C×.

Theorem 1.6. The set Φ(GL(n)) has the structure of complex algebraic vari-
ety. Each irreducible component O(φ) is isomorphic to the product of a complex
affine space and a complex torus

O(φ) = Al × (C×)k

where k = k(φ).

Proof. Let Y = V(x1y1 − 1, . . . , xnyn − 1) ⊂ C2n. Then Y is a Zariski-closed
set in C2n, and so is an affine complex algebraic variety. Let X = (C×)n. Set
α : Y → X,α(x1, y1, . . . , xn, yn) = (x1, . . . , xn) and β : X → Y, β(x1, . . . , xn) =
(x1, x

−1
1 , . . . , xn, x

−1
n ). So X can be embedded in affine space C2n as a Zariski-

closed subset. Therefore X is an affine algebraic variety, as in [36, p.50].
Let A = C[X] be the coordinate ring of X. This is the restriction to X of
polynomials on C2n, and so A = C[X] = C[x1, x

−1
1 , . . . , xn, x

−1
n ], the ring of

Laurent polynomials in n variables x1, . . . , xn. Let Sn be the symmetric group,
and let Z denote the quotient variety X/Sn. The variety Z is an affine complex
algebraic variety.
The coordinate ring of Z is

C[Z] ' C[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn .

Let σi, i = 1, . . . , n be the elementary symmetric polynomials in n variables.
Then from the last isomorphism we have

C[Z] ' C[x1, . . . , xn]Sn ⊗ C[σ−1
n ]

' C[σ1, . . . , σn]⊗ C[σ−1
n ]

' C[σ1, . . . , σn−1]⊗ C[σn, σ
−1
n ]

' C[An−1]⊗ C[A− {0}]
' C[An−1 × (A− {0})]

where An denotes complex affine n-space. The coordinate ring of the quotient
variety C×n/Sn is isomorphic to the coordinate ring of An−1× (A−{0}). Now
the categories of affine algebraic varieties and of finitely generated reduced
C-algebras are equivalent, see [36, p.26]. Therefore the variety C×n/Sn is
isomorphic to the variety An−1 × (A− {0}).
Consider A − {0} = V(f) where f(x) = x1x2 − 1. Then ∂f/∂x1 = x2 6= 0
and ∂f/∂x2 = x1 6= 0 on the variety V(f). So A − {0} is smooth. Then
An−1 × (A − {0}) is smooth. Therefore the quotient variety C×n/Sn is a
smooth complex affine algebraic variety of dimension n. Now each orbit O(φ)
is a product of symmetric products of C×. Therefore each orbit O(φ) is a
smooth complex affine algebraic variety. We have

O(φ) = Syml1C× × . . .× SymlkC× = Al × (C×)k

where l = l1 + . . .+ lk − k and k = k(φ). ¤
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We now transport the complex structure from Φ(GL(n)) to Π(GL(n)) via the
local Langlands correspondence. This leads to the next result.

Theorem 1.7. The smooth dual Π(GL(n)) has a natural complex structure.
Each irreducible component is a smooth complex affine algebraic variety.

The smooth dual Π(GL(n)) has countably many irreducible components of each
dimension d with 1 ≤ d ≤ n. The irreducible supercuspidal representations of
GL(n) arrange themselves into the 1-dimensional tori.
It follows from Theorems 1.6 and 1.7 that the smooth dual Π(GL(n)) is a
complex manifold. Then C × Π(GL(n)) is a complex manifold. So the local
L-factor L(s, πv) and the local ε-factor ε(s, πv) are functions of several complex
variables:

L : C×Π(GL(n)) −→ C

ε : C×Π(GL(n)) −→ C.

Example 1.8. Unramified representations. Let ψ1, . . . , ψn be unramified qua-
sicharacters of the Weil group WF . Then we have

ψj(w) = z
d(w)
j

with zj ∈ C× for all 1 ≤ j ≤ n. Let φ be the L-parameter given by ψ1⊕. . .⊕ψn.
Then the image πF (φ) of φ under the local Langlands correspondence πF is an
unramified principal series representation.
For the local L-factors L(s, π) see [23, p. 377]. The local L-factor attached to
such an unramified representation of GL(n) is given by

L(s, πF (φ)) =
n∏

j=1

(1− zjq−s)−1.

This exhibits the local L-factor as a function on the complex manifold C ×
SymnC×.

2. The structure of the based ring J

Let W be the extended affine Weyl group associated to GL(n,C). For each
two-sided cell c of W we have a corresponding partition λ of n. Let µ be the
dual partition of λ. Let u be a unipotent element in GL(n,C) whose Jordan
blocks are determined by the partition µ. Let the distinct parts of the dual
partition µ be µ1, . . . , µp with µr repeated nr times, 1 ≤ r ≤ p.
Let CG(u) be the centralizer of u inG = GL(n,C). Then the maximal reductive
subgroup Fc of CG(u) is isomorphic to GL(n1,C)×GL(n2,C)×· · ·×GL(np,C).
Following Lusztig [27] and Xi [40, 1.5] let J be the free Z-module with basis
{tw | w ∈W}. The multiplication twtu =

∑
v∈W γw,u,vtv defines an associative

ring structure on J . The ring J is the based ring of W . For each two-sided
cell c of W the Z-submodule Jc of J , spanned by all tw, w ∈ c, is a two-sided
ideal of J . The ring Jc is the based ring of the two-sided cell c. Let |Y | be the
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number of left cells contained in c. The Lusztig conjecture says that there is a
ring isomorphism

Jc 'M|Y |(RFc), tw 7→ π(w)

where RFc is the rational representation ring of Fc. This conjecture for
GL(n,C) has been proved by Xi [40, 1.5, 4.1, 8.2].
Since Fc is isomorphic to a direct product of the general linear groups GL(ni,C)
(1 ≤ i ≤ p) we see that RFc is isomorphic to the tensor product over Z of the
representation rings RGL(ni,C), 1 ≤ i ≤ p. For the ring RGL(n,C) we have

RGL(n,C) ' Z[X1, X2, . . . , Xn][X−1
n ]

where the elements X1, X2, . . . , Xn, X
−1
n are described in [40, 4.2][6, IX.125].

Then

RGL(n,C) ' Z[σ1, . . . , σn, σ
−1
n ]

' Z[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn

We have

RGL(n,C) ⊗Z C ' C[SymnC×]

and

RFc ⊗Z C ' C[Symn1C× × · · · × SymnpC×]

We recall the extended quotient. Let the finite group Γ act on the space X. Let

X̃ = {(x, γ) : γx = x}, let Γ act on X̂ by γ1(x, γ) = (γ1x, γ1γγ
−1
1 ). Then X̃/Γ

is the extended quotient of X by Γ, and we have

X̃/Γ =
⊔
Xγ/Z(γ)

where one γ is chosen in each Γ-conjugacy class.

There is a canonical projection X̃/Γ→ X/Γ.
Let γ ∈ Sn have cycle type µ, let X = (C×)n. Then

Xγ ' (C×)n1 × · · · × (C×)np

Z(γ) ' (Z/µ1Z) o Sn1
× · · · × (Z/µpZ) o Snp

Xγ/Z(γ) ' Symn1C× × · · · × SymnpC×

and so

RFc ⊗Z C ' C[Xγ/Z(γ)]

Then

J ⊗Z C = ⊕c(Jc ⊗Z C) ∼ ⊕c(RFc ⊗Z C) ' C[X̃/Sn]

The algebra J ⊗Z C is Morita equivalent to a reduced, finitely generated, com-
mutative unital C-algebra, namely the coordinate ring of the extended quotient

X̃/Sn.
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3. Periodic cyclic homology of the Hecke algebra

The Bernstein variety Ω(G) of G is the set of G-conjugacy classes of pairs
(M,σ), where M is a Levi (i.e. block-diagonal) subgroup of G, and σ is an
irreducible supercuspidal representation of M . Each irreducible smooth rep-
resentation of G is a subquotient of an induced representation iGMσ. The
pair (M,σ) is unique up to conjugacy. This creates a finite-to-one map, the
infinitesimal character, from Π(G) onto Ω(G).
Let Ω(G) be the Bernstein variety of G. Each point in Ω(G) is a conjugacy
class of cuspidal pairs (M,σ). A quasicharacter ψ : M −→ C× is unramified if
ψ is trivial on M◦. The group of unramified quasicharacters of M is denoted
Ψ(M). We have Ψ(M) ∼= (C×)` where ` is the parabolic rank of M . The group
Ψ(M) now creates orbits: the orbit of (M,σ) is {(M,ψ ⊗ σ) : ψ ∈ Ψ(M)}.
Denote this orbit by D, and set Ω = D/W (M,D), where W (M) is the Weyl
group of M and W (M,D) is the subgroup of W (M) which leaves D globally
invariant. The orbit D has the structure of a complex torus, and so Ω is a
complex algebraic variety. We view Ω as a component in the algebraic variety
Ω(G).
The Bernstein variety Ω(G) is the disjoint union of ordinary quotients. We now
replace the ordinary quotient by the extended quotient to create a new variety
Ω+(G). So we have

Ω(G) =
⊔
D/W (M,D) and Ω+(G) =

⊔
D̃/W (M,D)

Let Ω be a component in the Bernstein variety Ω(GL(n)), and let H(G) =⊕
H(Ω) be the Bernstein decomposition of the Hecke algebra.

Let

Π(Ω) = (inf.ch.)−1Ω.

Then Π(Ω) is a smooth complex algebraic variety with finitely many irreducible
components. We have the following Bernstein decomposition of Π(G):

Π(G) =
⊔

Π(Ω).

Let M be a compact C∞ manifold. Then C∞(M) is a Fréchet algebra, and we
have Connes’ fundamental theorem [14, Theorem 2, p. 208]:

HP∗(C
∞(M)) ∼= H∗(M ;C).

Now the ideal H(Ω) is a purely algebraic object, and, in computing its periodic
cyclic homology, we would hope to find an algebraic variety to play the role of
the manifold M . This algebraic variety is Π(Ω).

Theorem 3.1. Let Ω be a component in the Bernstein variety Ω(G). Then
the periodic cyclic homology of H(Ω) is isomorphic to the periodised de Rham
cohomology of Π(Ω):

HP∗(H(Ω)) ∼= H∗(Π(Ω);C).

Proof. We can think of Ω as a vector (τ1, . . . , τr) of irreducible supercuspidal
representations of smaller general linear groups, the entries of this vector being
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only determined up to tensoring with unramified quasicharacters and permuta-
tion. If the vector is equivalent to (σ1, . . . , σ1, . . . , σr, . . . , σr) with σj repeated
ej times, 1 ≤ j ≤ r, and σ1, . . . , σr are pairwise distinct, then we say that Ω
has exponents e1, . . . , er.
Then there is a Morita equivalence

H(Ω) ∼ H(e1, q1)⊗ . . .⊗H(er, qr)

where q1, . . . , qr are natural number invariants attached to Ω.
This result is due to Bushnell-Kutzko [11, 12, 13]. We describe the steps in
the proof. Let (ρ,W ) be an irreducible smooth representation of the compact
open subgroup K of G. As in [12, 4.2], the pair (K, ρ) is an Ω-type in G if and
only if, for (π, V ) ∈ Π(G), we have inf.ch.(π) ∈ Ω if and only if π contains ρ.
The existence of an Ω-type in GL(n), for each component Ω in Ω(GL(n)), is
established in [13, 1.1]. So let (K, ρ) be an Ω-type in GL(n). As in [12, 2.9],
let

eρ(x) = (volK)−1(dim ρ) TraceW (ρ(x−1))

for x ∈ K and 0 otherwise.
Then eρ is an idempotent in the Hecke algebra H(G). Then we have

H(Ω) ∼= H(G) ∗ eρ ∗H(G)

as in [12, 4.3] and the two-sided ideal H(G) ∗ eρ ∗H(G) is Morita equivalent to
eρ ∗H(G) ∗ eρ. Now let H(K, ρ) be the endomorphism-valued Hecke algebra
attached to the semisimple type (K, ρ). By [12, 2.12] we have a canonical
isomorphism of unital C-algebras :

H(G, ρ)⊗C EndCW ∼= eρ ∗H(G) ∗ eρ
so that eρ ∗H(G) ∗ eρ is Morita equivalent to H(G, ρ). Now we quote the main
theorem for semisimple types in GL(n) [13, 1.5]: there is an isomorphism of
unital C-algebras

H(G, ρ) ∼= H(G1, ρ1)⊗ . . .⊗H(Gr, ρr)

The factors H(Gi, ρi) are (extended) affine Hecke algebras whose structure is
given explicitly in [11, 5.6.6]. This structure is in terms of generators and
relations [11, 5.4.6]. So let H(e, q) denote the affine Hecke algebra associated
to the affine Weyl group Ze o Se. Putting all this together we obtain a Morita
equivalence

H(Ω) ∼ H(e1, q1)⊗ . . .⊗H(er, qr)

The natural numbers q1, . . . , qr are specified in [11, 5.6.6]. They are the cardi-
nalities of the residue fields of certain extension fields E1/F, . . . , Er/F .
Using the Künneth formula the calculation of HP∗(H(Ω)) is reduced to that
of the affine Hecke algebra H(e, q). Baum and Nistor demonstrate the spectral
invariance of periodic cyclic homology in the class of finite type algebras [3, 4].
Now H(e, q) is the Iwahori-Hecke algebra associated to the extended affine
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Weyl group Ze o Se, and let J be the asymptotic Hecke algebra (based ring)
associated to ZeoSe. According to [3, 4], Lusztig’s morphisms φq : H(e, q)→ J
induce isomorphisms

(φq)∗ : HP∗(H(e, q))→ HP∗(J)

for all q ∈ C× that are not proper roots of unity. At this point we can back
track and deduce that

HP∗(H(e, q)) ' HP∗(J) ' HP∗(H1)

and use the fact that H(e, 1) ' C[Ze o Se]. It is much more illuminating to
quote Xi’s proof of the Lusztig conjecture for the based ring J , see Section 2.
Then we have

HP∗(H(e, q)) ' HP∗(J) ' HP∗(C[(̃C×)e/Se]) ' H∗((̃C×)e/Se;C).

If Ω has exponents e1, . . . , er then e1 + . . . + er = d(Ω) = dimC Ω, and W (Ω)
is a product of symmetric groups:

W (Ω) = Se1 × . . .× Ser
We have

HP∗(H(Ω)) ' HP∗(H(e1, q1)⊗ · · · ⊗H(er, qr))
' HP∗(H(e1, q1))⊗ · · · ⊗HP∗(H(er, qr))

' H∗( ˜(C×)e1/Se1 ;C)⊗ · · · ⊗H∗( ˜(C×)er/Ser ;C)

Now the extended quotient is multiplicative, i.e.

˜(C×)d(Ω)/W (Ω) = ˜(C×)e1/Se1 × · · · × ˜(C×)er/Ser

which implies that

HP∗(H(Ω)) = H∗( ˜(C×)d(Ω)/W (Ω);C)

Recall that
Ω = (C×)d(Ω)/W (Ω)

Ω+ = ˜(C×)d(Ω)/W (Ω)

and by [8, p. 217] we have Π(Ω) ' Ω+. It now follows that

HP∗(H(Ω)) ' H∗(Π(Ω);C)

¤

Lemma 3.2. Let Ω be a component in the variety Ω(G) and let Ω have exponents
{e1, . . . , er}. Then for j = 0, 1 we have

dimCHPj H(Ω) = 2r−1β(e1) · · · β(er)

where

β(e) =
∑

|λ|=e
2α(λ)−1

and where α(λ) is the number of unequal parts of λ. Here |λ| is the weight of
λ, i.e. the sum of the parts of λ so that λ is a partition of e.
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Proof. Suppose first that Ω has the single exponent e. By Theorem 3.1 the
periodic cyclic homology of H(Ω) is isomorphic to the periodised de Rham
cohomology of the extended quotient of (C×)e by the symmetric group Se. The
components in this extended quotient correspond to the partitions of e. In fact,
if α(λ) is the number of unequal parts in the partition λ then the corresponding
component is homotopy equivalent to the compact torus of dimension α(λ).
We now proceed by induction, using the fact that the extended quotient is
multiplicative and the Künneth formula. ¤

Theorem 3.1, combined with the calculation in [7], now leads to the next result.

Theorem 3.3. The inclusion H(G) −→ S(G) induces an isomorphism at the
level of periodic cyclic homology:

HP∗(H(G)) ' HP∗(S(G)).

Remark 3.4. We now consider further the disjoint union

Φ(Ω) = O(φ1) t · · · t O(φr) ' Ω+

If we apply the local Langlands correspondence πF then we obtain

Π(Ω) = πF (O(φ1)) t · · · t πF (O(φr)) ' Ω+

This partition of Π(Ω) is identical to that in Schneider-Zink [34, p. 198], modulo
notational differences. In their notation, for each P ∈ B there is a natural map

QP : Xnr(NP)→ Irr(Ω)

such that

Irr(Ω) =
⊔

P∈B

im(QP).

In fact this is a special stratification of Irr(Ω) in the precise sense of their article
[34, p.198].
Let

ZP =
⋃

P′≤P

im(QP)

Then ZP is a Jacobson closed set, in fact ZP = V (JP), where JP is a certain
2-sided ideal [34, p.198]. We note that the set ZP is also closed in the topology
of the present article: each component in Ω+ is equipped with the classical
(analytic) topology.
Issues of stratification play a dominant role in [34]. The stratification of the
tempered dual Πt(GL(n)) arises from their construction of tempered K-types,
see [34, p. 162, p. 189]. In the context of the present article, there is a natural
stratification-by-dimension as follows. Let 1 ≤ k ≤ n and define

k-stratum = {O(φ) | dimC O(φ) ≤ k}
If πF (O(φ)) is the complexification of the component Θ ⊂ Πt(G) then we have

dimRΘ = dimC O(φ).

Documenta Mathematica 7 (2002) 91–112



104 J. Brodzki, R. Plymen

The partial order in [34] on the components Θ transfers to a partial order on
complex orbits O(φ). This partial order originates in the opposite of the natural
partial order on partitions, and the partitions manifest themselves in terms of
Langlands parameters. For example, let

φ = ρ⊗ spin(j1)⊕ · · · ⊕ ρ⊗ spin(jr)
φ′ = ρ⊗ spin(j′1)⊕ · · · ⊕ ρ⊗ spin(j′r)

Let λ1 = 2j1 + 1, . . . , λr = 2jr + 1, µ1 = 2j′1 + 1, . . . , µr = 2j′r + 1 and define
partitions as follows

λ = (λ1, . . . , λr), λ1 ≥ λ2 ≥ . . .
µ = (µ1, . . . , µr), µ1 ≥ µ2 ≥ . . .

The natural partial order on partitions is: λ ≤ µ if and only if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi

for all i ≥ 1, see [28, p.6]. Let l(λ) be the length of λ, that is the number of
parts in λ. Then dimC O(φ) = l(λ). Let λ′, µ′ be the dual partitions as in [28].
Then we have [28, 1.11] λ ≥ µ if and only if µ′ ≥ λ′. Note that l(λ) = λ′1,
l(µ) = µ′1. Then

Θλ ≤ Θµ ⇔ λ ≥ µ⇔ µ′ ≥ λ′ ⇒ λ′1 ≤ µ′1
So if Θλ ≤ Θµ then dimRΘλ ≤ dimRΘµ, similarly O(φ) ≤ O(φ′) im-
plies dimC O(φ) ≤ dimC O(φ′). Stratification-by-dimension is finer than the
Schneider-Zink stratification [34].

Let now R denote the ring of all regular functions on Π(G). The ring R is a
commutative, reduced, unital ring over C which is not finitely generated. We
will call R the extended centre of G. It is natural to believe that the extended
centre R of G is the centre of an ‘extended category’ made from smooth G-
modules. The work of Schneider-Zink [34, p. 201] contains various results in
this direction.

4. The q-projection

Let Ω be a component in the Bernstein variety. This component is an ordinary

quotient D/Γ. We now consider the extended quotient D̃/Γ =
⊔
Dγ/Zγ , where

D is the complex torus C×m. Let γ be a permutation of n letters with cycle
type

γ = (1 . . . α1) · · · (1 . . . αr)
where α1 + · · ·+αr = m. On the fixed set Dγ the map πq, by definition, sends
the element (z1, . . . , z1, . . . , zr, . . . , zr) where zj is repeated αj times, 1 ≤ j ≤ r,
to the element

(q(α1−1)/2z1, . . . , q
(1−α1)/2z1, . . . , q

(αr−1)/2zr, . . . , q
(1−αr)/2zr)

The map πq induces a map from Dγ/Zγ to D/Γ, and so a map, still denoted πq,

from the extended quotient D̃/Γ to the ordinary quotient D/Γ. This creates a
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map πq from the extended Bernstein variety to the Bernstein variety:

πq : Ω+(G) −→ Ω(G).

Definition 4.1. The map πq is called the q-projection.

The q-projection πq occurs in the following commutative diagram [8]:

Φ(G) −−−−→ Π(G)

α

y
yinf. ch.

Ω+(G)
πq−−−−→ Ω(G)

Let A,B be commutative rings with A ⊂ B, 1 ∈ A. Then the element x ∈ B is
integral over A if there exist a1, . . . , an ∈ A such that

xn + a1x
n−1 + . . .+ an = 0.

Then B is integral over A if each x ∈ B is integral over A. Let X,Y be affine
varieties, f : X −→ Y a regular map such that f(X) is dense in Y . Then
the pull-back f# defines an isomorphic inclusion C[Y ] −→ C[X]. We view
C[Y ] as a subring of C[X] by means of f#. Then f is a finite map if C[X] is
integral over C[Y ], see [35]. This implies that the pre-image F−1(y) of each
point y ∈ Y is a finite set, and that, as y moves in Y , the points in F−1(y)
may merge together but not disappear. The map A1−{0} −→ A1 is the classic
example of a map which is not finite.

Lemma 4.2. Let X be a component in the extended variety Ω+(G). Then the
q-projection πq is a finite map from X onto its image πq(X).

Proof. Note that the fixed-point set Dγ is a complex torus of dimension r, that
πq(D

γ) is a torus of dimension r and that we have an isomorphism of affine
varieties Dγ ∼= πq(D

γ). Let X = Dγ/Zγ , Y = πq(D
γ)/Γ where Zγ is the Γ-

centralizer of γ. Now each of X and Y is a quotient of the variety Dγ by a finite
group, hence X,Y are affine varieties [35, p.31]. We have Dγ −→ X −→ Y
and C[Y ] −→ C[X] −→ C[Dγ ]. According to [35, p.61], C[Dγ ] is integral over
C[Y ] since Y = Dγ/Γ. Therefore the subring C[X] is integral over C[Y ]. So
the map πq : X −→ Y is finite. ¤

Example 4.3. GL(2). Let T be the diagonal subgroup of G = GL(2) and
let Ω be the component in Ω(G) containing the cuspidal pair (T, 1). Then
σ ∈ Π(GL(2)) is arithmetically unramified if inf.ch.σ ∈ Ω. If πF (φ) = σ then
φ is a 2-dimensional representation of LF and there are two possibilities:
φ is reducible, φ = ψ1 ⊕ ψ2 with ψ1, ψ2 unramified quasicharacters of WF . So

ψj(w) = z
d(w)
j , zj ∈ C×, j = 1, 2. We have πF (φ) = Q(ψ1, ψ2) where ψ1 does

not precede ψ2. In particular we obtain the 1-dimensional representations of
G as follows:

πF (| |1/2ψ ⊕ | |−1/2ψ) = Q(| |1/2ψ, | |−1/2ψ) = ψ ◦ det.
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φ is irreducible, φ = ψ ⊗ spin(1/2). Then πF (φ) = Q(∆) with ∆ =
{| |−1/2ψ, | |1/2ψ} so πF (φ) = ψ ⊗ St(2) where St(2) is the Steinberg rep-
resentation of GL(2).
The orbit of (T, 1) is D = (C×)2, and W (T,D) = Z/2Z. Then Ω ∼=
(C×)2/Z/2Z ∼= Sym2 C×. The extended quotient is Ω+ = Sym2 C× t C×.
The q−projection works as follows:

πq : {z1, z2} 7→ {z1, z2}

πq : z 7→ {q1/2z, q−1/2z}
where q is the cardinality of the residue field of F .

Let A = H(GL(2)//I) be the Iwahori-Hecke algebra of GL(2). This is a finite
type algebra. Following [21, p. 327], denote by Primn(A) ⊂ Prim(A) the set
of primitive ideals B ⊂ A which are kernels of irreducible representations of A
of dimension n. Set X1 = Prim1(A), X2 = Prim1(A) t Prim2(A) = Prim(A).
Then X1 and X2 are closed sets in Prim(A) defining an increasing filtration
of Prim(A). Now A is Morita equivalent to the Bernstein ideal H(Ω), and
Π(Ω) ' Prim(A).
Let φ1 = 1 ⊗ spin(1/2), φ2 = 1 ⊗ 1 ⊕ 1 ⊗ 1. The 1-dimensional represen-
tations of GL(2) determine 1-dimensional representations of H(G//I) and so
lie in X1. The L-parameters of the 1-dimensional representations of GL(2)
do not lie in the 1-dimensional orbit O(φ1): they lie in the 2-dimensional orbit
O(φ2). The Kazhdan-Nistor-Schneider stratification [21] does not coincide with
stratification-by-dimension.

Example 4.4. GL(3). In the above example, the q-projection is stratified-
injective, i.e. injective on each orbit type. This is not so in general, as shown
by the next example. Let T be the diagonal subgroup of GL(3) and let Ω be
the component containing the cuspidal pair (T, 1). Then Ω = Sym3 C× and

Ω+ = Sym3 C× t (C×)2 t C×

.
The map πq works as follows:

{z1, z2, z3} 7→ {z1, z2, z3}
(z, w,w) 7→ {z, q1/2w, q−1/2w}

(z, z, z) 7→ {qz, z, q−1z}.
Consider the L-parameter

φ = ψ1 ⊗ 1⊕ ψ2 ⊗ spin(1/2) ∈ Φ(GL(3)).

If ψ(w) = zd(w) then we will write ψ = z. With this understood, let

φ1 = q ⊗ 1⊕ q−1/2 ⊗ spin(1/2)

φ2 = q−1 ⊗ 1⊕ q1/2 ⊗ spin(1/2).
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Then α(φ1), α(φ2) are distinct points in the same stratum of the extended quo-
tient, but their image under the q-projection πq is the single point {q−1, 1, q} ∈
Sym3 C×.
Let

φ3 = 1⊗ spin(3/2)

φ4 = q−1 ⊗ 1⊕ 1⊗ 1⊕ q ⊗ 1.

Then the distinct L-parameters φ1, φ2, φ3, φ4 all have the same image under
the q-projection πq.

5. The diagram

In this section we create a diagram which incorporates several major results.
The following diagram serves as a framework for the whole article:

Ktop
∗ (G) K∗(C

∗
r (G))

H∗(G;βG) HP∗(H(G)) HP∗(S(G))

H∗c(Φ(G);C) H∗c(Π(G);C) H∗c(Π
t(G);C)

?
ch

-µ

?
ch

-ppppppp?
-ı∗

? ?
- -

The Baum-Connes assembly map µ is an isomorphism [1, 24]. The map

H∗(G;βG)→ HP∗(H(G))

is an isomorphism [20, 33]. The map ı∗ is an isomorphism by Theorem 3.3. The
right hand Chern character is constructed in [9] and is an isomorphism after
tensoring over Z with C [9, Theorem 3]. The Chern character on the left hand
side of the diagram is the unique map for which the top half of the diagram is
commutative.
In the diagram, H∗c(Π

t(G);C) denotes the (periodised) compactly supported de
Rham cohomology of the tempered dual Πt(G), and H∗c(Π(G);C) denotes the
(periodised) de Rham cohomology supported on finitely many components of
the smooth dual Π(G). The map

HP∗(S(G))→ H∗c(Π
t(G);C)

is constructed in [7] and is an isomorphism [7, Theorem 7].
The map

H∗c(Π(G);C)→ H∗c(Π
t(G);C)

is constructed in the following way. Given an L-parameter φ : LF → GL(n,C)
we have

φ = φ1 ⊕ . . .⊕ φm
with each φj an irreducible representation. We have φj = ρj ⊗ spin(j) where
each ρj is an irreducible representation of the Weil group WF . We shall assume
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that det ρj is a unitary character. Let O(φ) be the orbit of φ as in Definition
1.4. The map O(φ)→ Ot(φ) is now defined as follows

ψ1φ1 ⊕ . . .⊕ ψmφm 7→ |ψ1|−1 · ψ1φ1 ⊕ . . .⊕ |ψm|−1 · ψmφm.
This map is a deformation retraction of the complex orbit O(φ) onto the com-
pact orbit Ot(φ). Since Φ(G) is a disjoint union of such complex orbits this
formula determines, via the local Langlands correspondence for GL(n), a de-
formation retraction of Π(G) onto the tempered dual Πt(GL(n)), which implies
that the induced map on cohomology is an isomorphism.
The map

H∗c(Φ(G);C)→ H∗c(Π(G);C)

is an isomorphism, induced by the local Langlands correspondence πF .
The map

HP∗(H(G))→ H∗c(Π(G);C)

is an isomorphism by Theorem 3.1.
There is at present no direct definition of the map

H∗(G;βG)→ H∗c(Φ(G);C).

Suppose for the moment that F has characteristic 0 and has residue field of
characteristic p. An irreducible representation ρ of the Weil group WF is called
wildly ramified if dim ρ is a power of p and ρ 6' ρ ⊗ ψ for any unramified
quasicharacter ψ 6= 1 of WF . We write Φwrm (F ) for the set of equivalence
classes of such representations of dimension pm. An irreducible supercuspidal
representation π of GL(n) is wildly ramified if n is a power of p and π 6'
π⊗ (ψ ◦det) for any unramified quasicharacter ψ 6= 1 of F×. We write Πwr

m (F )
for the set of equivalence classes of such representations of GL(pm, F ). In this
case Bushnell-Henniart [10] construct, for each m, a canonical bijection

πF,m : Φwrm (F )→ Πwr
m (F ).

Now the maximal simple type (J, λ) of an irreducible supercuspidal representa-
tion determines an element in the chamber homology of the affine building [2,
6.7]. The construction of Bushnell-Henniart therefore determines a map from
a subspace of Heven

c (Φ(G);C) to a subspace of H0(G;βG).
In the context of the above diagram the Baum-Connes map has a geometric
counterpart: it is induced by the deformation retraction of Π(GL(n)) onto the
tempered dual Πt(GL(n)).

6. Supercuspidal representations of GL(n)

In this section we track the fate of supercuspidal representations of GL(n)
through the diagram constructed in the previous Section. Let ρ be an irre-
ducible n-dimensional complex representation of the Weil group WF such that
det ρ is a unitary character and let φ = ρ ⊗ 1. Then φ is the L-parameter for
a pre-unitary supercuspidal representation ω of GL(n). Let O(φ) be the orbit
of φ and Ot(φ) be the compact orbit of φ. Then O(φ) is a component in the
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Bernstein variety isomorphic to C× and Ot(φ) is a component in the tempered
dual, isomorphic to T. The L-parameter φ now determines the following data.

6.1. Let (J, λ) be a maximal simple type for ω in the sense of Bushnell and
Kutzko [11, chapter 6]. Then J is a compact open subgroup of G and λ is a
smooth irreducible complex representation of J .
We will write

T = {ψ ⊗ ω : ψ ∈ Ψt(G)}
where Ψt(G) denotes the group of unramified unitary characters of G.

Theorem 6.1. Let K be a maximal compact subgroup of G containing J and
form the induced representation W = IndKJ (λ). We then have

`2(G×K W ) ' IndGK(W ) ' IndGJ (λ) '
∫

T
πdπ.

Proof. The supercuspidal representation ω contains λ and, modulo unramified
unitary twist, is the only irreducible unitary representation with this property
[11, 6.2.3]. Now the Ahn reciprocity theorem expresses IndGJ as a direct integral
[26, p.58]:

IndGJ (λ) =

∫
n(π, λ)πdπ

where dπ is Plancherel measure and n(π, λ) is the multiplicity of λ in π|J .
But the Hecke algebra of a maximal simple type is commutative (a Laurent
polynomial ring). Therefore ω|J contains λ with multiplicity 1 (thanks to C.
Bushnell for this remark). We then have n(ψ ⊗ ω, λ) = 1 for all ψ ∈ Ψt(G).
We note that Plancherel measure induces Haar measure on T, see [31].
The affine building of G is defined as follows [38, p. 49]:

βG = R× βSL(n)

where g ∈ G acts on the affine line R via t 7→ t + val(det(g)). Let G◦ =
{g ∈ G : val(det(g)) = 0}. We use the standard model for βSL(n) in terms of
equivalence classes of oF - lattices in the n-dimensional F -vector space V . Then
the vertices of βSL(n) are in bijection with the maximal compact subgroups
of G◦, see [32, 9.3]. Let P ∈ βG be the vertex for which the isotropy subgroup
is K = GL(n,oF ). Then the G-orbit of P is the set of all vertices in βG
and the discrete space G/K can be identified with the set of vertices in the
affine building βG. Now the base space of the associated vector bundle G×K
W is the discrete coset space G/K, and the Hilbert space of `2-sections of
this homogeneous vector bundle is a realization of the induced representation
IndGK(W ). ¤
The C0(βG)-module structure is defined as follows. Let f ∈ C0(βG), s ∈
`2(G×K W ) and define

(fs)(v) = f(v)s(v)

for each vertex v ∈ βG. We proceed to construct a K-cycle in degree 0. This
K-cycle is

(C0(βG), `2(G×K W )⊕ 0, 0)
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interpreted as a Z/2Z-graded module. This triple satisfies the properties of a

(pre)-Fredholm module [14, IV] and so creates an element in K top
0 (G). By The-

orem 5.1 this generator creates a free C(T)-module of rank 1, and so provides
a generator in K0(C∗r (G)).

6.2. The Hecke algebra of the maximal simple type (J, λ) is commutative (the
Laurent polynomials in one complex variable). The periodic cyclic homology
of this algebra is generated by 1 in degree zero and dz/z in degree 1.
The corresponding summand of the Schwartz algebra S(G) is Morita equiva-
lent to the Fréchet algebra C∞(T). By an elementary application of Connes’
theorem [14, Theorem 2, p. 208], the periodic cyclic homology of this Fréchet
algebra is generated by 1 in degree 0 and dθ in degree 1.

6.3. The corresponding component in the Bernstein variety is a copy of C×.
The cohomology of C× is generated by 1 in degree 0 and dθ in degree 1.
The corresponding component in the tempered dual is the circle T. The coho-
mology of T is generated by 1 in degree 0 and dθ in degree 1.
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AMS Memoir 749 (2002).

Jacek Brodzki
Faculty of Mathematical Studies
University of Southampton
Southampton SO17 1BJ, U.K.
j.brodzki@maths.soton.ac.uk

Roger Plymen
Department of Mathematics
University of Manchester
Manchester M13 9PL, U.K.
roger@maths.man.ac.uk

Documenta Mathematica 7 (2002) 91–112



Documenta Math. 113

Equivariant Fiber Polytopes

To the memory of Rodica Simion.

Victor Reiner

Received: February 15, 2002

Communicated by Günter M. Ziegler

Abstract. The equivariant generalization of Billera and Sturmfels’
fiber polytope construction is described. This gives a new relation
between the associahedron and cyclohedron, a different natural con-
struction for the type B permutohedron, and leads to a family of
order-preserving maps between the face lattice of the type B permu-
tohedron and that of the cyclohedron

2000 Mathematics Subject Classification: 52B12, 52B15
Keywords and Phrases: fiber polytope, associahedron, cyclohedron,
equivariant

Contents

1. Introduction 114
2. Equivariant polytope bundles 115
2.1. Group actions on polytope bundles 115
2.2. Equivariant fiber polytopes 119
2.3. Equivariant secondary polytopes 120
3. Small, visualizable examples 121
3.1. The standard example. 121
3.2. Triangulations of a regular hexagon. 122
4. Application examples. 124
4.1. Cyclohedra and associahedra. 124
4.2. The type B permutohedron. 125
4.3. Maps from the type B permutohedron to the cyclohedron. 126
5. Remarks/Questions 129
Acknowledgements 131
References 131

Documenta Mathematica 7 (2002) 113–132



114 Victor Reiner

(a) (b)

Figure 1. The 3-dimensional associahedron, containing the
2-dimensional cyclohedron as a planar slice.

1. Introduction

Much of this paper is motivated by a new relationship between two families
of convex polytopes which have appeared in diverse places within topology,
geometry, and combinatorics [4, 10, 12, 13, 16]: the associahedra (or Stasheff
polytopes), and the cyclohedra (or type B associahedra).
There is already a well-known relation between these two families: any face in
a cyclohedron is combinatorially isomorphic to a Cartesian product of a lower-
dimensional cyclohedron along with a collection of lower-dimensional associa-
hedra [16, §3.3], [6, Proposition 3.2.1]. Our point of departure is a different
relationship, illustrated in Figure 1. The 3-dimensional associahedron is de-
picted in Figure 1(a), with its vertices indexed by triangulations of a (centrally
symmetric) hexagon. Figure 1(b) shows inside it a hexagonal slice representing
the 2-dimensional cyclohedron, with vertices indexed by the subset of triangu-
lations possessing central symmetry – this slice is the invariant subpolytope for
a reflection symmetry acting on the associahedron, which swaps two vertices if
they correspond to triangulations that differ by 180◦ rotation.
Our main result (Theorem 2.10) asserts a similar relationship generally when
one considers subdivisions of a polytope which are invariant under some finite
group of symmetries. The theory of fiber polytopes introduced by Billera and
Sturmfels [1] shows that whenever one has a linear surjection of convex poly-

topes P
π→ Q, there is an associated convex polytope Σ(P

π→ Q), called the
fiber polytope. This fiber polytope has dimension dim P − dim Q, and its faces
correspond (roughly) to the subdivisions of Q by cells which are projections

of families of faces of P . Our result says that when the projection P
π→ Q

is G-equivariant for some finite group G acting as symmetries on both P and

Q, then G acts as a group of symmetries on Σ(P
π→ Q), and the G-invariant
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subpolytope ΣG(P
π→ Q) (the equivariant fiber polytope) is a polytope of di-

mension dim PG−dim QG whose faces correspond to those subdivisions which
are G-invariant.
The paper is structured as follows. Section 2 proves the main results, with
Subsection 2.1 containing the technical details needed to generalize fiber poly-
topes to the equivariant setting. Theorem 2.10 on the existence and dimension
of the equivariant fiber polytope is deduced in Subsection 2.2. The special case
of equivariant secondary polytopes is discussed in Subsection 2.3.
Section 3 contains some low-dimensional examples that are easily visualized,
while Section 4 gives some general examples as applications. In particular,
Example 4.1 explains the above relation between associahedra and cyclohedra,
and Example 4.2 explains how the type B permutohedron (that is, the zono-
tope generated by the root system of type B) occurs as an equivariant fiber
polytope. In Section 4.3 we answer a question of R. Simion, by exhibiting a
family of natural maps between the face lattices of the Bn-permutohedron and
n-dimensional cyclohedron.
Section 5 lists some remarks and open questions.

2. Equivariant polytope bundles

2.1. Group actions on polytope bundles. For convenience, we work with
the same notation as in [1, §1] in working out the equivariant versions of the
same results.
Let B → Q be a polytope bundle, that is, Q is a convex polytope in Rd, and
for each x in Q, the set Bx is a convex polytope in Rn, such that the graph⋃{Bx×x : x ∈ Q} is a bounded Borel subset of Rn+d. We further assume that
we have a finite group G acting linearly on both Rd and Rn.

Definition 2.1. Say that B → Q is a G-equivariant polytope bundle if

• G acts as symmetries of Q, i.e. g(Q) = Q for all g in G. In particular,
without loss of generality, the centroid of Q is the origin 0.

• for every x in Q and g in G one has Bg(x) = g(Bx).

Alternatively, equivariance of a polytope bundle is equivalent to G-invariance of
Q, along with G-invariance of B with respect to a natural G-action on polytope
bundles: given B → Q and g in G, let g(B → Q) be the polytope bundle defined
by g(B → Q)x := g(Bg−1x).
The linear action of G on Rn induces a contragredient action on the dual space
(Rn)∗ of functionals: g(ψ)(x) := ψ(g−1(x)) for g ∈ G, y ∈ Rn, ψ ∈ (Rn)∗.
A section γ of B → Q is a choice of γ(x) ∈ Bx for each x. If B → Q is
equivariant, there is a G-action on sections defined by g(γ)(x) := gγ(g−1x).
For any of these G-actions, define the averaging (or Reynolds) operator

πG =
1

|G|
∑

g∈G
g

which is an idempotent projector onto the subset (or subspace) of G-invariants,
e.g. π maps Rn → (Rn)G and maps (Rn)∗ → ((Rn)∗)G.

Documenta Mathematica 7 (2002) 113–132



116 Victor Reiner

It turns out that much of the reason that fiber polytopes interact well with
finite group actions boils down to πG being a linear operator which is a convex
combination of the group operations g in G.

Recall that for a polytope bundle B → Q, the Minkowski integral
∫
Q
B is the

subset of Rn consisting of all integrals
∫
Q
γ of measurable sections γ, and that

this is a non-empty compact, convex subset of Rn.

Proposition 2.2. Integration commutes with the G-action on sections of a
G-equivariant polytope bundle B → Q:

∫

Q

gγ = g

(∫

Q

γ

)

for all g in G.

Proof. ∫

Q

gγ =

∫

Q

g(γ(g−1x))dx

= g

(∫

Q

γ(g−1x)dx

)

= g

(∫

Q

γ(u)du

)

Here the second equality uses linearity of g and linearity of integration. The
third equality comes from the change of variable x = g(u), using the fact that
the Jacobian determinant for this change of variable is det(g), which must be
±1, since g is an element of finite order in GL(Rn). ¤

Corollary 2.3. For any G-equvariant polytope bundle B → Q, the group G
acts on the convex set

∫
Q
B.

Furthermore, one has

(2.1)

(∫

Q

B
)G

:=

(∫

Q

B
)
∩ (Rn)G

= πG

(∫

Q

B
)

=

{∫

Q

γ : G-equivariant, measurable sections γ

}
,

Proof. Proposition 2.2 implies the first assertion.
For the second equality in (2.1), we claim more generally that

C ∩ (Rn)G = πG(C)

for any convex G-invariant subset C ⊂ Rn. To see this, note that the left-hand
side is contained in the right because of idempotence of πG. The right-hand
side is obviously contained in (Rn)G. It also lies in C since for any x in C, the
convex combination πG(x) = 1

|G|
∑
g∈G g(x) will also lie in C.
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For the third equality in (2.1), note that the right-hand side is contained in the
left since the integral

∫
Q
γ of any G-equivariant section will be a G-invariant

point of Rn by Proposition 2.2. Conversely, a typical point on the left-hand
side is

∫
Q
γ where γ is a section such that g(

∫
Q
γ) =

∫
Q
γ for all g ∈ G, and

one can check using Proposition 2.2 that the G-equivariant section πGγ has the
same integral: ∫

Q

πGγ =
1

|G|
∑

g∈G

∫

Q

gγ

=
1

|G|
∑

g∈G
g

(∫

Q

γ

)

=

∫

Q

γ

¤

We wish to interpret faces of
(∫

Q
B
)G

in terms of face bundles. Recall that a

face bundle F → Q of B → Q is a polytope bundle in which Fx is a face of Bx
for every x in Q. A coherent face bundle of B → Q is one of the form Bψ → Q
having Bψx := (Bx)ψ, where ψ ∈ (Rn)∗ is any linear functional and Pψ denotes
the face of P on which the functional ψ is maximized.
When B → Q is G-equivariant, the G-action on bundles restricts to a G-action
on face bundles, and as before, a face bundle is G-equivariant if and only if it is
invariant under theG-action. The next proposition points out the compatibility
between the G-action on face bundles and the G-action on functionals.

Proposition 2.4. For any G-equivariant polytope bundle B → Q and any
functional g in (Rn)∗, the face bundle Bgψ → Q coincides with the bundle
g(Bψ → Q).
Consequently, Bψ is a G-equivariant (coherent) face bundle if and only if Bψ =
BπGψ.

Proof. For the first assertion, we compute

g(Bψ → Q)x := g(Bψg−1x)

= g({y ∈ Bg−1x : ψ(y) is maximized})
= {y′ ∈ gBg−1x : ψ(g−1y′) is maximized})
= {y′ ∈ Bx : g(ψ)(y′) is maximized})
= Bgψx .

For the second, note that

Bψ is G-equivariant⇔ g(Bψ) = Bψ ∀g ∈ G
⇔ Bgψx = Bψx ∀g ∈ G, x ∈ Q
⇔ BπGψx = Bψx ∀x ∈ Q
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where the last equality uses the fact that if for every g in G the functional gψ
maximizes on the same face of the polytope Bx, then the convex combination
πGψ will also maximize on this face. ¤

We recall also these key results from [1].

Proposition 2.5. [1, Prop. 1.2]. The Minkowski integral commutes with
taking faces (face bundles) in the following sense

(∫

Q

B
)ψ

=

∫

Q

Bψ ∀ψ ∈ (Rn)∗. ¤

Theorem 2.6. [1, Thm. 1.3, Cor. 1.4] If B → Q is piecewise-linear, then∫
Q
B is a convex polytope. Furthermore, the map Bψ 7→

∫
Q
Bψ induces an

isomorphism from its face lattice to the poset of coherent face bundles of B → Q
ordered by inclusion. ¤

Here is the equivariant generalization.

Theorem 2.7. Let B → Q be any G-equivariant piecewise-linear polytope bun-

dle. Then
(∫

Q
B
)G

is a convex polytope whose face lattice is isomorphic to the

poset of G-equivariant coherent face bundles of B → Q ordered by inclusion.

Proof. We use the following well-known fact about face lattices of affine images
of polytopes:

Lemma 2.8. [1, Lemma 2.2] For any affine surjection of polytopes P̂
f→ P , the

map sending a face F of P to the face f−1(F ) of P̂ embeds the face lattice of

P as the subposet of faces of P̂ of the form Pψ◦f for some ψ in (Rn)∗. ¤

Applying this lemma to the surjection
∫
Q
B πg→ (

∫
Q
B)G, we conclude that

(
∫
Q
B)G has face poset isomorphic to the subposet of faces of

∫
Q
B consisting

of all faces of the form
(∫

Q

B
)ψ◦πG

for ψ ∈ (Rn)∗

=

(∫

Q

B
)πGψ

for ψ ∈ (Rn)∗

=

∫

Q

BπGψ for ψ ∈ (Rn)∗

where the last equality uses Proposition 2.5. By Proposition 2.4, the set of
faces

∫
Q
BπGψ of

∫
Q
B for ψ ∈ (Rn)∗ is exactly the same as the subset of faces∫

Q
Bψ for ψ ∈ (Rn)∗ with Bψ → Q being G-equivariant. By Theorem 2.6, the

inclusion order on these faces is the same as the inclusion order on the set of
G-equivariant coherent face bundles of B → Q. ¤
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2.2. Equivariant fiber polytopes. We apply Theorem 2.7 to the situation
of a G-equivariant projection of polytopes.

Let P
π→ Q be a linear surjection of convex polytopes, with

P ⊂ Rn, dim (P ) = n

Q ⊂ Rd, dim (Q) = n

Recall from [1] that this gives rise to a polytope bundle B → Q via x 7→ Bx :=
π−1(x), and in this setting, the fiber polytope defined by

Σ(P
π→ Q) :=

∫

Q

B.

is a full (n−d)-dimensional polytope living in the fiber kerπ of the map π over
the centroid of Q.
For the equivariant set-up, we further assume that G is a finite group with
linear G-actions on Rn and Rd which have G acting as symmetries of P,Q, and
also that π is G-equivariant: g(π(y)) = π(g(y)) for all y ∈ Rn. In particular,
this implies that P,Q both have centroids at the origin. It is then easy to check
that B → Q defined as above is G-equivariant.

Definition 2.9. Define the equivariant fiber polytope by

ΣG(P
π→ Q) :=

1

vol(Q)

(∫

Q

B
)G

= πGΣ(P
π→ Q).

Theorem 2.10. The equivariant fiber polytope ΣG(P
π→ Q) is a full-

dimensional polytope inside dim ker(π) ∩ (Rn)G, and therefore has the same
dimension as this space, namely

dim (Rn)G − dim (Rd)G

(=dim PG − dim QG).

Its face lattice is isomorphic to the poset of all G-equivariant π-coherent sub-
divisions of Q ordered by refinement.

Proof. If R is any full-dimensional polytope in Rr containing the origin in its
interior, then its intersection R ∩ V with any linear subspace V has dim (R ∩
V ) = dim V . Since ΣG(P

π→ Q) = Σ(P
π→ Q) ∩ (Rn)G, this proves the first

assertion.
To see that dim ker(π) ∩ (Rn)G = dim (Rn)G − dim (Rd)G, note that

(Rn)G/(ker(π) ∩ (Rn)G) ∼= (Rd)G

since G-equivariance of π implies that the surjection Rn π→ Rd restricts to a

surjection (Rn)G
π→ (Rd)G.

The last assertion comes from the interpretation of coherent face bundles of
B → Q as π-coherent subdivisions, just as in [1, Thm 1.3]. ¤
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Recall that the fiber polytope Σ(P
π→ Q) has an expression [1, Thm 1.5] as a

finite Minkowski sum

Σ(P
π→ Q) =

∑

i

vol(σi)

vol(Q)
π−1(xi).

where the xi are the centroids of the chambers (maximal cells) σi in the cell
decomposition of Q induced by the projection of faces of P . From this one

immediately deduces a similar expression for ΣG(P
π→ Q) by applying the

averaging operator πG:

ΣG(P
π→ Q) =

∑

i

vol(σi)

vol(Q)
πG(π−1(xi))

Similarly, one can obtain a (redundant) set of vertex coordinates for ΣG(P
π→

Q) by applying πG to the vertex coordinates for Σ(P
π→ Q) given in [1, Cor 2.6].

On the other hand, identifying an irredundant subset of these vertices is not

so simple. One might expect that vertices of ΣG(P
π→ Q) correspond to tight

G-invariant π-coherent subdivisions (see [1, §2] for the definition of tightness).
However, Example 3.1 below shows that this is not the case. Rather, vertices

of ΣG(P
π→ Q) correspond to G-invariant π-coherent subdivisions satisfying

the weaker condition that they cannot be further refined while retaining both
G-invariance and π-coherence.

2.3. Equivariant secondary polytopes. We specialize Theorem 2.10 to
the situation where P is an (n− 1)-dimensional simplex.
Let A := {a1, . . . , an} be the images of the vertices of P under the map π, so
that Q = π(P ) is the convex hull of the point set A, a d-dimensional polytope
in Rd. Note that not every point in A need be a vertex of Q, but we assume
that the group G of symmetries acting linearly on Rd not only preserves Q,
but also the set A, i.e. gA = A for all g ∈ G. There is a well-defined notion
of a polytopal subdivision of A, and when such subdivisions are coherent (or
regular); see [1, §1], [8, Chap. 7]. Say that such a subdivision is G-invariant if
G permutes the polytopal cells occurring in the subdivision, taking into account
the labelling of cells by elements of A.
We may assume without loss of generality (e.g. by choosing P to be a regular
(n − 1)-simplex, that there is a linear G-action on Rn−1 which permutes the
vertices of P in the same way that G permutes A. In this setting, define the
equivariant secondary polytope

ΣG(A) := ΣG(P
π→ Q).

Let A/G denote the set of G-orbits of points in A.

Corollary 2.11. ΣG(A) is an (|A/G|−dim (Rd)G−1)-dimensional polytope,
whose face lattice is isomorphic to the poset of all G-invariant coherent polytopal
subdivisions of Q ordered by refinement.
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(c) (d)

(a) (b)

Figure 2. Equivariant secondary polytopes for subgroups G
of the dihedral group D6 acting on the point configuration A
shown in (a).
(b) G = 1. (c) G = C2. (d) G = C3 or D6.

Proof. Immediate from Theorem 2.10, once one notes that

dim (Rn−1)G = |A/G| − 1

and that G-invariance and coherence of a polytopal subdivision correspond to

G-equivariance and π-coherence with respect to the map P
π→ Q. ¤

3. Small, visualizable examples

3.1. The standard example. There is a classic example of a configuration A
of 6 points in the plane R2, depicted at the top of Figure 2(a), which has up to
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two incoherent triangulations (shown below it), depending on the exact coordi-
nates of its 6 points. If we choose coordinates so that A has the dihedral group
D6 as symmetries, then both of the triangulations shown in Figure 2(a) are
incoherent, and hence do not correspond to vertices of the secondary polytope
Σ(A) := Σ1(A) depicted in (b) of the same figure1 The only non-trivial proper
subgroups of D6 up to conjugacy are C2 generated by a reflection symmetry,
and C3 generated by a three-fold rotation. Figures 2(c), (d) respectively depict
as slices of Σ(A) the equivariant secondary polytopes ΣC2(A) (a pentagon) and
ΣC3(A)(= ΣD6(A) (a line segment) respectively. In both cases, the G-invariant
coherent triangulations labelling their vertices are shown.
If instead we slightly perturb the coordinates of the three interior points of A,
so that the D6-symmetry is destroyed, but still maintaining the C3-symmetry,
then something interesting happens in both Σ(A) and ΣC3(A). One of the
two incoherent triangulations depicted in Figure 2(a) becomes coherent, and
corresponds to a vertex which subdivides the “front” hexagon of Σ(A) in (b)
into 3 quadrangles. This new vertex also lies on the 1-dimensional slice ΣC3(A),
replacing one of its old endpoints.
Note that in Figure 2, some of the subdivisions labelling the vertices of ΣG(A)
are not triangulations, that is, they are not tight π-coherent subdivisions of Q.

3.2. Triangulations of a regular hexagon. Consider the vertex set A
of a regular hexagon. Its symmetry group is the dihedral group

D12 = 〈s, r : s2 = r3 = 1, srs = r−1〉
where s is any reflection symmetry, and r is a rotation through π

3 . In what
follows, we will assume for the sake of definiteness that s is chosen in the
conjugacy class of reflections whose reflection line passes through two vertices
of the hexagon.
A list of representatives of the subgroups G of D12 up to conjugacy is given in
the table below, along with the calculation of the dimension of the equivariant
secondary polytope ΣG(A) in each case.

G dim (Rn)G dim (Rd)G dim ΣG(A)
(= |A/G| − 1) (= dim (Rn)G − dim (Rd)G)

1 5 2 3
〈s〉 3 1 2
〈r3〉 2 0 2
〈sr〉 2 1 1
〈r2〉 1 0 1
〈r〉 0 0 0
〈s, r3〉 1 1 0

〈s, r〉(= D12) 0 0 0

1For an on-line manipulable version of this secondary polytope, see Electronic Geometry
Model No. 2000.09.033 at http://www.eg-models.de.
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(a) (b)

(c)
Figure 3. Equivariant secondary polytopes ΣG(A) for sub-
groups G of the dihedral group D12 acting on the set A of
vertices of a regular hexagon.
(a) G = 〈s〉. (b) G = 〈sr〉. (c) G = 〈r2〉.
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Depictions of these ΣG(A) as a slice of the 3-dimensional associahedron, in all
the non-trivial cases where it has dimension at least 1, appear in Figures 1 and
3.

4. Application examples.

4.1. Cyclohedra and associahedra. The case G = 〈r3〉 in the previous
example was discussed in the Introduction, and is a special case of a new
construction for the cyclohedron.
The cyclohedron was introduced by Bott and Taubes [4], rediscovered inde-
pendently and called the type B associahedron by Simion [16], and has been
studied by several other authors [6, 7, 13]. The n-dimensonal cyclohedron can
be thought of as the unique regular cell complex whose faces are indexed by
centrally symmetric subdivisions of a centrally symmetric 2n-gon. A proof that
this cell complex is realized by a convex polytope appears in [13] and in [16, §2],
and proceeds by a sequence of shavings (or blow-ups) of faces of an n-simplex,
similar to the construction of the associahedron in [12].
Simion provided one of the original motivations for our work by asking whether
a polytopal realization could be given along the lines of the fiber polytope
construction. An answer is that it can be achieved as the equivariant secondary
polytope ΣC2(A), whereA is the set of vertices of a centrally-symmetric 2n-gon,
on which C2 acts antipodally. In other words, one has the following proposition.

Proposition 4.1. The (n − 1)-dimensional cyclohedron embeds naturally in
the (2n− 3)-dimensional associahedron, namely as the inclusion

ΣC2(A) ↪→ Σ(A)

where A is the set of vertices of a centrally symmetric 2n-gon. ¤
It turns out that all equivariant secondary polytopes for a regular polygon are
either associahedra or cyclohedra.

Proposition 4.2. Let A be the vertex set of a regular n-gon, and G a non-
trivial subgroup of its dihedral symmetry group D2n.
Then the combinatorial type of the equivariant secondary polytope ΣG(A) is
either that of an associahedron or cyclohedron, depending upon whether G con-
tains reflections or not (that is, whether G is dihedral or cyclic).

Proof. Assume G contains some reflections, so G ∼= D2m for some m dividing
n. Choose a fundamental domain for the action of G on the regular n-gon Qn
consisting of a sector between two adjacent reflection lines. Label the vertices
in A which lie in this (closed) sector consecutively as v1, . . . , vr (here r is
approximately n

2m , but its exact value depends upon which conjugacy classes
of reflections in D2m are represented among the reflections in G).
The assertion then follows from the claim that there is an isomorphism be-
tween the poset of G-invariant polygonal subdivisions of Qn and the poset
of all polygonal subdivisions of an (r + 1)-gon Qr+1 labelled with vertices
w1, w2, w3, . . . , wr, w: the isomorphism sends a G-invariant subdivision σ of
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Qn to the unique subdivision τ of Qr+1 having an edge connecting wi, wj if
and only if vi, vj are connected by an edge in in σ, and with an edge between
wi, w if and only if σ has vi connected by an edge to some vertex of A outside
the fundamental sector. The fact that this map is a bijection requires some
straightforward geometric argumentation, which we omit. However, once one
knows that it is a bijection, it is easy to see that both it and its inverse are
order-preserving, since the refinement partial order on subdivisions of a polygon
can be defined by the inclusion ordering of their edge sets.
Now assume G contains only rotations, so G ∼= Cm for some m dividing n, and
let k = n

m . Label the vertices of Qn consecutively in m groups of size k by

11, 21, . . . , k1, 12, 22, . . . , k2, . . . 1m, 2m, . . . , km.

Note that any Cm-invariant subdivision of Qn is completely determined
by the set of interior edges connecting vertices in the first two groups
11, 21, . . . , k1, 12, 22, . . . , k2. This leads to an isomorphism between the poset of
G-invariant polygonal subdivisions of Qn and the poset of centrally symmetric
polygonal subdivisions of a centrally symmetric 2k-gon Q2k: label the vertices
of Q2k using the same scheme, and send a G-invariant subdivision σ of Qn to
the unique subdivision τ of Q2k whose interior diagonals have exactly the same
endpoint labels as the interior diagonals of σ involving vertices in the first two
groups in Q2n. Again we omit the straightforward geometric details involved
in checking that this is a bijection. ¤

4.2. The type B permutohedron. Given any finite reflection group W ,
form the zonotope which is the Minkowski sum of any collection of line segments
which contains exactly one line segment perpendicular to each of the reflecting
hyperplanes for a reflection in W . Call this zonotope the W -permutohedron.
It is known that the vertices of this zonotope are indexed by the elements of
W , and its 1-skeleton is isomorphic to the (undirected) Cayley graph for W
with respect to a natural set of Coxeter generators. Explicit descriptions of the
facial structure of W -permutohedra when W is one of the classical reflection
groups of type A,B(= C), or D may be found in [14].
In the case where W = An−1 is the symmetric group on n letters, the An−1-
permutohedron is usually known simply as the permutohedron. It can be con-

structed [1, Example 5.4] as the equivariant fiber polytope Σ(P
π→ Q) where

P = [0, 1]n is the unit n-cube, π : Rn → R1 is the linear map sending ei 7→ 1 for
each standard basis vector ei, and Q is the line segment [0, n] = π(P ). This is a
special case of a monotone path polytope [1, §5]: the vertices correspond to edge
paths in the n-cube P which are monotone with respect to the functional π. In
this case there is an obvious bijection between such paths and permutations of
{1, 2 . . . , n}; one simply reads off the parallelism class of the edges in the edge
paths.
In the case where W = Bn, something similar works using the equivariant
fiber polytope construction. Let P be the unit 2n-cube in R2n with standard
basis vectors labelled {e+i, e−i : i = 1, 2 . . . , n}. Consider the linear map
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π : R2n → R1 sending e±i 7→ ±1, and let Q = π(P ) = [−n, n]. Let the
generator of the group C2 of order 2 act on R2n by swapping e+i, e−i, and let
it act on R1 by −1. Then C2 acts as symmetries of both P,Q, and the map π
is C2-equivariant. It is then straightforward to check that the equivariant fiber

polytope ΣC2(P
π→ Q) is combinatorially isomorphic to the Bn-permutohedron.

Its vertices correspond to the C2-invariant monotone edge paths in the 2n-cube
P , which biject with signed permutations again by reading off the parallelism
class of the edges in the edge path.

4.3. Maps from the type B permutohedron to the cyclohedron.
There is a well-known set-map from the symmetric group Sn+1 to triangula-
tions of a convex (n + 2)-gon, or to equivalent objects such as binary trees -
see [18], [3, §9], [17, §1.3]. This map has several pleasant properties, includ-
ing the fact that it extends to a map from faces of the An-permutohedron
to faces of the n-dimensional associahedron. Simion [16, §4.2] asked whether
there is an analogous map between the Bn-permutohedron and n-dimensional
cyclohedron.
In fact, there is a whole family of such maps. To explain this, we first further
explicate [3, Remark 9.14] on how to view the map in type A as a consequence
of some theory of iterated fiber polytopes [2].

Given any tower P
π→ Q

ρ→ R of linear surjections of polytopes, it turns out

that π restricts to a surjection Σ(P
ρ◦π→ R)

π→ Σ(Q
ρ→ R) and so one can form

the iterated fiber polytope

Σ(P
π→ Q

ρ→ R) := Σ
(

Σ(P
ρ◦π→ R)

π→ Σ(Q
ρ→ R)

)
.

Both Σ(P
π→ Q

ρ→ R) and Σ(P
π→ Q) live in the vector space ker(π), and

[2, Theorem 2.1] says that the normal fan of Σ(P
π→ Q

ρ→ R) refines that

of Σ(P
π→ Q) (or equivalently, the latter is a Minkowski summand of the

former). This implies the existence of an order-preserving map from faces of

Σ(P
π→ Q

ρ→ R) to faces of Σ(P
π→ Q), corresponding to the map on their

normal cones which sends a cone in the finer fan to the unique cone containing
it in the coarser fan.
We apply this to the tower of projections

∆n+1 π→ Qn+2
ρ→ I

in which ∆n+1 is an (n+1)-dimensional simplex whose vertices map canonically
to the vertices of a convex (n + 2)-gon Qn+2, which then projects onto a 1-

dimensional interval I. In [2, §4] it is shown that Σ(∆n+1 ρ◦π→ I) and Σ(∆n+1 π→
Qn+2

ρ→ I), are combinatorially isomorphic (but not affinely equivalent) to

the n-cube and to the An−1-permutohedron, respectively. Since Σ(∆n+1 π→
Qn+2) is the (n− 1)-dimensional associahedron, in this case the above general
theory gives a map from the faces of the permutohedron to the faces of the
associahedron, which can be checked to coincide with the usual one.
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π

ρ
I

5

Q
6 −3

+1 +2

+3

−1
−2

(a) (b)

+1 +2 −2 −1

+1−2+2−1

−2+1−1+2

−1−2+2+1

−1−2+2+1

+2−1+1−2

+2+1−1−2

−2−1+1+2

Figure 4. (a) The tower of projections (4.1) for n = 2
(the 5-simplex ∆5 is shown only in a 2-dimensional projec-
tion). (b) One of the 4(= 22) maps from vertices of the B2-
permutohedron to vertices of the 2-dimensional cyclohedron.
The B2-permutohedron is shown with vertices labelled both by
a signed permutation and by the centrally-symmetric hexagon
triangulation which is their image under the map.

Now suppose we instead apply this theory to the following tower of C2-
equivariant projections

(4.1) ∆2n+1 π→ Q2n+2
ρ→ I

in which Q2n+2 is a centrally-symmetric (2n + 2)-gon, ∆2n+1 is a (2n + 1)-
dimensional (regular) simplex, and I is an interval. We assume that the vertices
of Q2n+2 are labelled in cyclic order as

+1,+2, . . . ,+(n+ 1),−1,−2, . . . ,−(n+ 1)

and that the C2-actions on ∆2n+1, Q2n+2, I are chosen so that the projections
are equivariant, i.e. C2 swaps the two vertices of I, and exchanges the pairs
of vertices of ∆2n+1 which map to the vertices labelled +i,−i of Q2n+2. We
further assume that the map ρ is generic in the sense that it takes on distinct
values on the different vertices of Q2n+2, and hence gives a linear ordering of
these vertices, which we will assume orders the vertices labelled −(n+1),+(n+
1) first and last, respectively. The map we eventually define will depend on
this ordering.
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Note that Σ(∆2n+1 ρ◦π→ I) will still be a combinatorial 2n-cube, and by Corol-
lary 2.3, it will carry a C2-action that makes the map π onto the interval

Σ(Q2n+2 ρ→ I) equivariant. We still have from [2, §4], that the iterated fiber

polytope Σ(∆2n+1 π→ Q2n+2
ρ→ I) is combinatorially an A2n−1-permutohedron,

and by Corollary 2.3 will carry a C2-action. With some work, for which we
omit the details, one can check that the C2-action on faces corresponds to the
same C2-action as in Example 4.2. Hence C2-invariant faces under this action
are identified with the faces of the Bn-permutohedron, so that the C2-invariant

subpolytope ΣC2(∆2n+1 π→ Q2n+2
ρ→ I) is combinatorially isomorphic to the

Bn-permutohedron.

On the other hand, ΣC2(∆2n+1 π→ Q2n+2) is the n-dimensional cyclohedron,

by Example 4.1. Since the normal fan of ΣG(P
π→ Q

ρ→ R) refines that of

ΣG(P
π→ Q) (by restricting this refinement of fans from the non-equivariant

setting to the invariant subspace (Rn)G), we obtain the existence of an order-
preserving map between their face lattices as desired.
To be explicit about this map and its dependence on the ordering of the ver-
tices of Q2n+2 by ρ, it suffices to describe its effect on vertices. A vertex of the
n-dimensional permutohedron is indexed by a signed permutation, that is a se-
quence w = w1w2 . . . wn where wi ∈ {±1, . . . ,±n} containing exactly one value
from each pair ±i. To obtain a centrally-symmetric triangulation of Q2n+2 from
w, we associate to w a sequence of 2n + 1 polygonal paths γ0, γ1, . . . , γ2n vis-
iting only vertices of Q2n+2, and let the triangulation be the one whose edges

are the union of these paths. Each γi is a section of the map Q2n+2
ρ→ I, and

hence completely specified by the set of vertices of Q2n+2 it visits (although
this implicitly requires knowledge of the fixed ordering of vertices of Q2n+2 by
ρ). Set γ0 to be the path visiting vertices −(n+1),+1,+2, . . . ,+(n+1), that is,
γ0 is half of the boundary of the polygon Q2n+2. Then inductively define γi to
be the unique path obtained from γi−1 by reading the ith value in the sequence
ŵ := w1w2 . . . wn − wn . . . − w2 − w1 and either removing this value from the
list of visited vertices when it is positive, or adding it when it is negative. Note
that the palindromic nature of ŵ insures that the associated triangulation is
centrally symmetric. Some examples of the map are shown in Figure 4.
How many maps have we defined in this way? The map depends only the
ordering of the vertices of Q2n+2 by ρ. Any such ordering starts and ends with
−(n + 1),+(n + 1), and in between is a shuffle of the usual integer order on
the positive vertices +1, . . . ,+n with the usual order on the negative vertices.
Since Q2n+2 is centrally-symmetric and ρ is linear, the order is determined by
knowing its first half. Hence it can be parametrized by the set S ⊂ {1, 2, . . . , n}
giving the positions in the first half of the order where the negative vertices
occur. This means there are 2n such maps.
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5. Remarks/Questions

Remark 5.1. One might expect a relation between

Σ(PG
π→ QG)

ΣG(P
π→ Q)

since both are full-dimensional polytopes embedded in the subspace (Rn)G ∩
kerπ. The case G = C2 in Example 3.1 already shows that they are not

isomorphic: here Σ(PG
π→ QG) = PG is a triangle, while ΣG(P

π→ Q) is a
pentagon.
Neither is there an inclusion in either direction, as illustrated by the following

example. Let P
π→ Q be the canonical projection of a regular 3-simplex onto

a square Q, with an equivariant C2-action that reflects the square across one
of its diagonals. Label the vertices of P by v1, v2, v3, v4 in such a way that the
C2-action swaps π(v1), π(v2) and fixes π(v3), π(v4). Then both polytopes in
question are 1-dimensional intervals, and one can calculate directly that

Σ(PG
π→ QG) =

[
1

3
x+

2

3
y,

2

3
x+

1

3
y

]

ΣG(P
π→ Q) =

[
0 · x+ 1 · y, 1

2
x+

1

2
y

](
= Σ(P

π→ Q)
)

where x = v1+v2

2 , y = v3+v4

2 .

The distinction between the two relates to weighted averages2 We know from

Corollary 2.3 that ΣG(P
π→ Q) is the set of all average values of G-equivariant

sections γ of P
π→ Q, while Σ(PG

π→ QG) consists of average values of sections

γ̄ of PG
π→ QG. Using Fubini’s Theorem, one can show that the average value

over Q of a G-equivariant section γ is the same as the weighted average value of

an appropriately defined section γ̄ of PG
π→ QG, obtained by integrating γ over

fibers π−1
G (x), in which the weight at a point x in QG is equal to the volume of

the fiber π−1
G (x). If these fiber volumes are not constant, the weighted average

and the average need not coincide.
One might still ask whether there is a relation between their associated normal
fans living in ker(π)∗G, e.g. one refining the other so that the one polytope is
a Minkowski summand of the other. But as far as we know there is no a priori
reason for such a relation. Using the notation of [2], one has that

NΣG(P
π→ Q) := NπGΣ(P

π→ Q)

= NΣ(P
π→ Q) ∩ im(π∗G)

= (projker(π)∗NP ) ∩ ker(π)∗G

2Thanks to John Baxter for an enlightening conversation in this regard.
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whereas

NΣ(PG
π→ QG) := projker(π)∗NPG

= projker(π)∗NπGP
= projker(π)∗(NP ∩ Rn∗G).

Remark 5.2. The fiber polytope Σ(P
π→ Q) has a toric interpretation given

by Kapranov, Sturmfels and Zelevinsky [11]. The associated toric variety
X

Σ(P
π→Q)

is the Chow quotient XP /T of the toric variety XP by the subtorus

T defined by the kernel of π.
One might then expect in the G-equivariant setting that there is a more general
interpretation for X

ΣG(P
π→Q)

, perhaps relating it to the G-invariant subvariety

(XP /T )G for an induced G-action on XP /T . However, even in the very special
case where Q = {0}, so that

Σ(P
π→ Q) = P

ΣG(P
π→ Q) = PG

XP /T = XP

the general relation between the G-invariant subvariety XG
P and the toric va-

riety XPG seems not to be trivial- see [9, Theorem 2] for a special case. We

leave the problem of interpreting ΣG(P
π→ Q) torically to the real experts.

Remark 5.3. Fomin and Zelevinsky [7] recently introduced a family of simplicial
spheres associated to each finite (crystallographic) root system, whose facial
structure coincides with the associahedron in type A and with the cyclohedron
in type B. They and Chapoton subsequently proved [5] that these spheres can
be realized as the boundaries of simplicial convex polytopes.
One might wonder whether they could be realized as the boundaries of equi-
variant fiber polytopes, as is true in the case of types A and B. However we do
not see how to do this for their spheres in the case of type D, whose 1-skeleton
is described in [7, Prop. 3.16].

Remark 5.4. In type A, the 1-skeleton of the permutohedron and associahe-
dron each have an acyclic orientation making them the Hasse diagrams for the
weak Bruhat order on Sn and the Tamari lattice, respectively. Both of these
partial orders are self-dual lattices, and the map between them mentioned in
Section 4.3 enjoys some very pleasant properties [3, §9].
There is a similar acyclic orientation for the 1-skeleton of the typeB permutohe-
dron, and Simion [16, §4.1] asked whether there are corresponding well-behaved
acyclic orientations and partial orders for the 1-skeleton of the cyclohedron. She
proposed two such orders, one of which is self-dual and has some nice properties
explored in [15], but neither of which is a lattice.
Because the maps introduced in Section 4.3 are surjective, they can be used to
transfer the acyclic orientation from the 1-skeleton of the type B permutohe-
dron to an orientation of the 1-skeleton of the cyclohedron, which may or may
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not be acyclic. Do any of these induced orientations end up being acyclic, and
are their partial orders well-behaved in any sense?

Remark 5.5. It was pointed out in the proof of Proposition 2.3 that whenever
a finite group G acts linearly on a convex polytope P , there is induced a linear

surjection P
πG→ PG. Does the “coinvariant polytope” Σ(P

πG→ PG) enjoy any
nice properties or interpretations?
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Abstract. In this paper we show that the bivariant Chern class
γ : F → H for morphisms from possibly singular varieties to nonsingular
varieties are uniquely determined, which therefore implies that the Brasse-
let bivariant Chern class is unique for cellular morphisms with nonsingular
target varieties. Similarly we can see that the Grothendieck transforma-
tion τ : Kalg → HQ constructed by Fulton and MacPherson is also unique
for morphisms with nonsingular target varieties.
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§1 Introduction

In [FM, Part I] W. Fulton and R. MacPherson developed the so-called Bivari-
ant Theories, which are simultaneous generalizations of covariant functors and
contravariant functors. They are equipped with three operations of product,
pushforward, pullback, and they are supposed to satisfy seven kinds of axioms.
A transformation from one bivariant theory to another bivariant theory, pre-
serving these three operations, is called a Grothendieck transformation, which
is a generalization of ordinary natural transformations.
The Chern-Schwartz-MacPherson class is the unique natural transformation
c∗ : F → H∗ from the covariant functor F of constructible functions to the
integral homology covariant functor H∗, satisfying the normalization condition
that the value c∗(11X) of the characteristic function 11X of a nonsingular variety
X is equal to the Poincaré dual of the total Chern class c(TX) of the tangent

1Partially supported by Grant-in-Aid for Scientific Research (C) (No.12640081), the

Japanese Ministry of Education, Science, Sports and Culture
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bundle TX of X. The existence of this transformation was conjectured by
Deligne and Grothendieck, and was proved by MacPherson (see [M] and also
[BS], [Sc]).
In [FM, Part I, §10.4] Fulton and MacPherson conjectured (or posed as a ques-
tion) the existence of a bivariant Chern class, i.e., a Grothendieck transfor-
mation γ : F → H from the bivariant theory F of constructible functions to
the bivariant homology theory H, satisfying the normalization condition that
for a morphism from a nonsingular variety X to a point the value γ(11X) of
the characteristic function 11X of X is equal to the Poincaré dual of the total
Chern class of X. The bivariant Chern class specializes to the original Chern-
Schwartz-MacPherson class, i.e., when restricted to morphisms to a point it
becomes the Chern-Schwartz-MacPherson class. As applications of the bivari-
ant Chern class, for example, one obtains the Verdier-Riemann-Roch for Chern
class and the Verdier’s specialization of Chern classes [V].
In [B] J.-P. Brasselet has solved the conjecture affirmatively in the category
of complex analytic varieties and cellular analytic maps. Any analytic map is
“conjecturally” cellular and indeed no example of a non-cellular analytic map
has been found so far. In this sense the condition of “cellularness” could be
dropped. For example, it follows from a result of Teissier [T] that an analytic
map to a smooth curve is cellular (see [Z2, 2.2.5 Lemme]). In [S] C. Sabbah
gave another construction of bivariant Chern classes, using the notions of bi-
variant cycle, relative local Euler obstruction, morphisme sans éclatement en
codimension 0 (see [S] or [Z1, Z2] for more details). And in [Z1] (and [Z2]) J.
Zhou showed that for a morphism from a variety to a smooth curve these two
bivariant Chern classes due to Brasselet and Sabbah are identical. However,
the uniqueness of bivariant Chern classes still remains as an open problem.
In [FM, Part II] Fulton and MacPherson constructed a Grothendieck transfor-
mation τ : Kalg → HQ, which is a bivariant-theoretic version of Baum-Fulton-
MacPherson’s Riemann-Roch τBFM : K0 → H∗Q constructed in [BFM]. The
uniqueness problem of this Grothendieck transformation remains open.
As remarked in [FM, Part I, §10.9: Uniqueness Questions], there are few unique-
ness theorems available concerning Grothendieck transformations.
In this paper we show that the bivariant Chern class for morphisms with non-
singular target varieties is unique if it exists. Therefore it follows that the
Brasselet bivariant Chern class is unique for cellular morphisms with nonsin-
gular target varieties, thus it gives another proof of Zhou’s result mentioned
above. Our method also implies that the above Grothendieck transformation
τ : Kalg → HQ constructed by Fulton and MacPherson is unique for morphisms
with nonsingular target varieties.
The author would like to thank Jean-Paul Brasselet and the referee for useful
comments and suggestions.
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§2 Bivariant constructible functions
and bivariant homology theory

For a general reference for the bivariant theory, see Fulton-MacPherson’s book
[FM]. In this section, we recall some basic ingredients, needed in this paper, of
the bivariant theory of constructible functions and bivariant homology theory.

For a morphism f : X → Y the bivariant theory F(X
f−→ Y ) of constructible

functions consists of all the constructible functions on X which satisfy the local
Euler condition with respect to f , i.e., the condition that for any point x ∈ X
and for any local embedding (X,x)→ (CN , 0) the following equality holds

α(x) = χ
(
Bε ∩ f−1(z);α

)
,

where Bε is a sufficiently small open ball of the origin 0 with radius ε and z is
any point close to f(x) (see [B], [FM], [S], [Z1]). The three operations on F are
defined as follows:
(i): the product operation

• : F(X
f−→ Y )⊗ F(Y

g−→ Z)→ F(X
gf−→ Z)

is defined by:
α • β := α · f∗β.

(ii): the pushforward operation

f∗ : F(X
gf−→ Z)→ F(Y

g−→ Z)

is the pushforward

(f∗α)(y) := χ(f−1(y);α) =

∫

f−1(y)

c∗(α|f−1(y)).

(iii): For a fiber square

X ′
g′−−−−→ X

f ′
y

yf

Y ′
g−−−−→ Y,

the pullback operation

g∗ : F(X
f−→ Y )→ F(X ′

f ′−→ Y ′)

is the functional pullback

(g′
∗
α)(x′) := α(g′(x′)).
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These operations satisfy the seven axioms listed in [FM, Part I, §2.2] and it is
also known that these three operations are well-defined (e.g., see [BY], [FM],

[S], [Z1]). Note that F(X
idX−→ X) consists of all locally constant functions and

F(X → pt) = F (X).
Let H be the Fulton-MacPherson bivariant homology theory, constructed from
the cohomology theory. For a morphism f : X → Y , choose a morphism
φ : X →M to a smooth manifold M of real dimension n such that Φ := (f, φ) :
X → Y ×M is a closed embedding. Of course, the morphism φ : X →M can be

already an embedding. Then the i-th bivariant homology group Hi(X f−→ Y )
is defined by

Hi(X f−→ Y ) := Hi+n(Y ×M, (Y ×M) \Xφ),

where Xφ is defined to be the image of the morphism Φ = (f, φ). The definition
is independent of the choice of φ, i.e., for any other morphism φ′ : X →M ′ to
a smooth manifold M ′ of real dimension n′ there is an isomorphism

Hi+n(Y ×M, (Y ×M) \Xφ) ∼= Hi+n′(Y ×M ′, (Y ×M ′) \Xφ′).

See [FM, §3.1] for more details of H.
A bivariant Chern class is a Grothendieck transformation from the bivariant
theory F of constructible functions to the bivariant homology theory H

γ : F→ H

satisfying the normalization condition that for a nonsingular variety X and for
the map π : X → pt to a point pt

γ(11π) = c(TX) ∩ [X]

where 11π = 11X ∈ F (X) = F(X
π−→ pt). Here the Grothendieck transfor-

mation γ : F → H preserves the three operations of product, pushforwad and
pullback, i.e.,
(i) γ(α • β) = γ(α) • γ(β),
(ii) γ(f∗α) = f∗γ(α) and
(iii) γ(g∗α) = g∗γ(α).

Theorem (2.1). (Brasselet’s Theorem [B]) For the category of analytic vari-
eties with cellular morphisms there exists a bivariant Chern class γ : F→ H.

§3 Uniqueness of the bivariant Chern class

First we take a bit closer look at the definition of the bivariant homology theory.
As seen above, for any morphism φ : X → M such that (f, φ) : X → Y ×M
is a closed embedding (or simply, for any closed embedding φ : X → M), we
have the isomorphism
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H(X
f−→ Y ) ∼= H∗(Y ×M, (Y ×M) \X).

This isomorphism is thought to be a “realization isomorphism with respect

to the embedding X → Y ×M” of the group H(X
f−→ Y ). We denote this

isomorphism by <X↪→Y×M , emphasizing the embedding Φ : X → Y ×M . In
particular, for a morphism f : X → pt to a point pt, the bivariant homology

group H(X
f−→ pt) is considered to be the homology group H∗(X), since

for any embedding of X into any manifold N we have the Alexander duality
isomorphism

H∗(N,N \X) ∼= H∗(X),

which shall be denoted by AX↪→N , again indicating the embedding X ↪→ N .
Note that the Alexander isomorphism is given by taking the cap product with

the fundamental class, i.e.,AX↪→N (a) = a ∩ [N ]. Therefore H(X
f−→ pt) =

H∗(X) and <X↪→N =
(
AX↪→N

)−1
. In particular, if X is nonsingular, the

Alexander duality isomorphism is the Poincaré duality isomorphism via Thom
isomorphism, denoted by PX :

AX↪→X = PX : H∗(X) ∼= H∗(X).

With these notation, it follows from the definition of the bivariant product in
H [FM, Part I, §3.1.7] that the bivariant product

• : H(X
f−→ Y )⊗H(Y

g−→ Z)→ H(X
gf−→ Z)

is described as follows: consider the following commutative diagram where the
rows are closed embedding and the verticals are the projections with M and
N being manifolds:

X −−−−→ Y ×M −−−−→ Z ×N ×M
y

yp

Y −−−−→ Z ×N
y

Z

Then for α ∈ H(X
f−→ Y ) and β ∈ H(Y

g−→ Z)

(3.1) α • β :=
(
<X↪→Z×N×M

)−1
(
<X↪→Y×M (α) · p∗<Y ↪→Z×N (β)

)
,

where the center dot · is the product defined by [FM, §3.1.7 (1), p.36]. The well-
definedness of the bivariant homology product given in Fulton-MacPherson’s
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book [FM] means that the above description (3.1) is independent of the choices
of M and N , i.e., the realization isomorphisms. This viewpoint becomes a
crucial one in our proof.

Remark (3.2). Suppose that γ : F → H is a bivariant Chern class. For a

morphism f : X → Y , we denote the homomorphim γ : F(X
f−→ Y ) →

H(X
f−→ Y ) by γX→Y . Then, for any variety X we see that the homomorphism

γX→pt : F (X) = F(X → pt)→ H(X → pt) = H∗(X) is nothing but the Chern-
Schwartz-MacPherson class homomorphism c∗ : F (X) → H∗(X), because
γX→pt is a natural transformation satisfying the normalization condtion and
thus it has to be the Chern-Schwartz-MacPherson class c∗ : F (X) → H∗(X)
since it is unique.

Let γ : F → H be a bivariant Chern class and let α ∈ F(X
f−→ Y ). Then we

have
γX→pt(α) = γX→Y (α) • γY→pt(11Y ),

Therefore it follows from Remark (3.2) that we have

(3.3) c∗(α) = γX→Y (α) • c∗(11Y ).

Furthermore, for any constructible function β ∈ F (Y ), we have

c∗(α · f∗β) = γX→Y (α) • c∗(β).

The uniqueness of γ : F → H, therefore, follows if we can show that ω ∈
H(X

f−→ Y ) and ω • c∗(β) = 0 for any β ∈ F (Y ) automatically implies that
ω = 0.
Heuristically or very loosely speaking, the bivariant Chern class γX→Y (α) of

the bivariant constructible function α ∈ F(X
f−→ Y ) could be or should be

“described” as a “quotient”

γX→Y (α) :=
c∗(α)

c∗(11Y )

in a reasonable way. Otherwise it would be an interesting problem to see if
there is a reasonable bivariant homology theory so that this “quotient” is well-
defined. We hope to come back to this problem in a different paper.
However, in the case of morphisms whose target varieties are nonsingular, the
above argument gives us the uniqueness of the bivariant Chern class and fur-

thermore we can describe the above “quotient” c∗(α)
c∗(11Y ) explicitly.

Theorem (3.4). Let γ : F→ H be a bivariant Chern class. Then it is unique,
when restricted to morphisms whose target varieties are nonsingular.
Explicitly, for a morphism f : X → Y with Y being nonsingular and for any

bivariant constructible function α ∈ F(X
f−→ Y ) the bivariant Chern class

γX→Y (α) is expressed by

γX→Y (α) = f∗s(TY ) ∩ c∗(α)

where s(TY ) is the total Segre class of the tangent bundle TY , i.e., s(TY ) =
c(TY )−1 the inverse of the total Chern class c(TY ).
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Corollary (3.5). The Brasselet bivariant Chern classes, defined on cellular
morphisms with nonsingular target varieties, are unique.

Thus in particular, we get the following

Corollary (3.6). (Zhou’s theorem [Z1, Z2]) For a morphism f : X → S
with S being a smooth curve, Brasselet’s bivariant Chern class and Sabbah’s
bivariant Chern class are the same.

Proof of Theorem (3.4). First, the hypothesis that the target variety Y is non-
singular implies that we have

H(X
f−→ Y ) = H(X → pt) = H∗(X).

This turns out to be a key fact. Let γ : F → H be a bivariant Chern class.
Then it follows from (3.3) that we have

c∗(α) = γX→Y (α) • c∗(11Y ).

To consider the product, we look at the following commutative diagram with
j : X → Y ×M being an embedding and p : Y ×M → Y the projection such
that f = p ◦ j:

X
j−−−−→ Y ×M id−−−−→ Y ×M

p

y
yp

Y
id−−−−→ Y

y

pt

Hence we have, via the realization isomorphisms <X↪→Y×M , that

c∗(α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (γX→Y (α)) · p∗<Y ↪→Y (c∗(Y ))

)
.

Here it should be noted that the realization isomorphism <X↪→Y×M functions
as two kinds of realization isomorphism: the first one is

<X↪→Y×M : H(X → pt) = H∗(X) ∼= H∗(Y ×M, (Y ×M) \X)

and the second one is

<X↪→Y×M : H(X
f−→ Y ) = H∗(X) ∼= H∗(Y ×M, (Y ×M) \X).

Since id : Y ×M → Y ×M is the identity, it follows from the definition of the
product · that it is nothing but the usual cup product, thus we have

c∗(α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (γX→Y (α)) ∪ p∗<Y ↪→Y (c∗(Y ))

)
.
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Since Y is nonsingular, c∗(Y ) = c(TY ) ∩ [Y ] and <Y ↪→Y : H∗(Y ) = H(Y →
pt) ∼= H∗(Y ) which is the inverse of the Poincaré duality isomorphism PY , we
have <Y ↪→Y (c∗(Y )) = c(TY ). Therefore we get that

c∗(α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (γX→Y (α)) ∪ p∗c(TY )

)
.

Which implies that

<X↪→Y×M (c∗(α)) = <X↪→Y×M (γX→Y (α)) ∪ p∗c(TY ).

Thus we get that

<X↪→Y×M (γX→Y (α)) = <X↪→Y×M (c∗(α)) ∪ p∗s(TY ),

which implies that

γX→Y (α) =
(
<X↪→Y×M

)−1
(
<X↪→Y×M (c∗(α)) ∪ p∗s(TY )

)
.

Furthermore this can be simplified more as follows. Since, as we observe in the
previous section,

(
<X↪→Y×M

)−1

(a) = a ∩ [Y ×M ],

we get

γX→Y (α) =

(
<X↪→Y×M (c∗(α)) ∪ p∗s(TY )

)
∩ [Y ×M ].

Then it follows from the equation [F, §19.1, (8), p.371] that we get the following:

γX→Y (α) =

(
<X↪→Y×M (c∗(α)) ∪ p∗s(TY )

)
∩ [Y ×M ]

= j∗p∗s(TY ) ∩
(
<X↪→Y×M (c∗(α)) ∩ [Y ×M ]

)

= j∗p∗s(TY ) ∩ c∗(α)

= f∗s(TY ) ∩ c∗(α). ¤

By the same argument as above, we can show the following:
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Theorem (3.7). The Grothendieck transformation

τ : Kalg → HQ

constructed in [FM, Part II] is unique on morphisms with nonsingular target
varieties. And the bivariant class τX→Y (α) for a bivariant coherent sheaf α ∈
Kalg(X → Y ) is given by

τX→Y (α) =
1

f∗td(TY )
∩ τBFM(α)

where τBFM : K0 → H∗Q is the Baum-Fulton-MacPherson’s Riemann-Roch
and td(TY ) is the total Todd class of the tangent bundle.

Remark (3.8). In the case when the target variety Y is singular, the above argu-
ment does not work at all. Thus the target variety being nonsingular is essential
(cf. [Y]). However, “modulo resolution” the uniqueness holds. Namely, by tak-

ing any resolution of singularities π : Ỹ → Y , for any bivariant constructible
function α ∈ F(X → Y ), the pullback π∗γ(α) is uniquely determined; i.e.,
suppose that we have two bivariant Chern classes γ, γ ′ : F → H, then for any

resolution π : Ỹ → Y we have

π∗γ(α) = π∗γ′(α).

It is the same for the Grothendieck transformation τ : Kalg → HQ, i.e.,

π∗τ(α) = π∗τ ′(α).
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[BY] J.-P. Brasselet and S. Yokura, Remarks on bivariant constructible func-
tions, Adv. Stud. Pure Math. 29 (2000), 53–77.

[FM] W. Fulton and R. MacPherson, Categorical frameworks for the study
of singular spaces, Memoirs of Amer. Math.Soc. 243 (1981).

[G1] V. Ginzburg, G-Modules, Springer’s Representations and Bivariant
Chern Classes, Adv. in Maths. 61 (1986), 1–48.

[G2] , Geometric methods in the representation theory of Hecke al-
gebras and quantum groups, in “Representation theories and algebraic
geometry (Montreal, PQ, 1997)” (ed. by A. Broer and A. Daigneault)
(1998), Kluwer Acad. Publ., Dordrecht, 127–183.

Documenta Mathematica 7 (2002) 133–142



142 Shoji Yokura

[M] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of
Math. 100 (1974), 423–432.

[S] C. Sabbah, Espaces conormaux bivariants, Thèse, Université Paris VII
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over a ring with finite unitary stable rank is established. First we de-
velop a ‘nerve theorem’ on the homotopy type of a poset in terms of
a cover by subposets, where the cover is itself indexed by a poset. We
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appear as a special case of our results.
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1. Introduction

Interest in homological stability problems in algebraic K-theory started with
Quillen, who used it in [15] to study the higher K-groups of a ring of integers.
As a result of stability he proved that these groups are finitely generated (see
also [7]). After that there has been considerable interest in homological stability
for general linear groups. The most general results in this direction are due to
the second author [20] and Suslin [19].
Parallel to this, similar questions for other classical groups such as orthogonal
and symplectic groups have been studied. For work in this direction, see [23],
[1], [5], [12], [13]. The most general result is due to Charney [5]. She proved
the homology stability for orthogonal and symplectic groups over a Dedekind
domain. Panin in [13] proved a similar result but with a different method and
with better range of stability.
Our goal in this paper is to prove that homology stabilizes of the unitary
groups over rings with finite unitary stable rank. To do so we prove that
the poset of isotropic unimodular sequences is highly connected. Recall that
Panin in [12] had already sketched how one can do this for a finite dimensional
affine algebra over an infinite field, in the case of symplectic and orthogonal
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groups. However, while the assumption about the infinite field provides a
significant simplification, it excludes cases of primary interest, namely rings
that are finitely generated over the integers.
Our approach is as follows. We first extend a theorem of Quillen [16, Thm
9.1] which was his main tool to prove that certain posets are highly connected.
We use it to develop a quantitative analogue for posets of the nerve theorem,
which expresses the homotopy type of a space in terms of the the nerve of
a suitable cover. In our situation both the elements of the cover and the
nerve are replaced with posets. We work with posets of ordered sequences
‘satisfying the chain condition’, as this is a good replacement for simplicial
complexes in the presence of group actions. (Alternatively one might try to
work with barycentric subdivisions of a simplicial complex.) The new nerve
theorem allows us to exploit the higher connectivity of the poset of unimodular
sequences due to the second author. The higher connectivity of the poset
of isotropic unimodular sequences follows inductively. We conclude with the
homology stability theorem.

2. Preliminaries

Recall that a topological space X is (−1)-connected if it is non-empty, 0-
connected if it is non-empty and path connected, 1-connected if it is non-empty
and simply connected. In general for n ≥ 1, X is called n-connected if X is
nonempty, X is 0-connected and πi(X,x) = 0 for every base point x ∈ X and
1 ≤ i ≤ n. For n ≥ −1 a space X is called n-acyclic if it is nonempty and
H̃i(X,Z) = 0 for 0 ≤ i ≤ n. For n < −1 the conditions of n-connectedness and
n-acyclicness are vacuous.

Theorem 2.1 (Hurewicz). For n ≥ 0, a topological space X is n-connected if

and only if the reduced homology groups H̃i(X,Z) are trivial for 0 ≤ i ≤ n and
X is 1-connected if n ≥ 1.

Proof. See [25], Chap. IV, Corollaries 7.7 and 7.8. ¤

Let X be a partially ordered set or briefly a poset. Consider the simplicial
complex associated to X, that is the simplicial complex where vertices or 0-
simplices are the elements of X and the k-simplices are the (k + 1)-tuples
(x0, . . . , xk) of elements of X with x0 < · · · < xk. We denote it again by X.
We denote the geometric realization of X by |X| and we consider it with the
weak topology. It is well known that |X| is a CW-complex [11]. By a morphism
or map of posets f : X → Y we mean an order-preserving map i. e. if x ≤ x′

then f(x) ≤ f(x′). Such a map induces a continuous map |f | : |X| → |Y |.

Remark 2.2. If K is a simplicial complex and X the partially ordered set of
simplices of K, then the space |X| is the barycentric subdivision of K. Thus
every simplicial complex, with weak topology, is homeomorphic to the geo-
metric realization of some, and in fact many, posets. Furthermore since it is
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well known that any CW-complex is homotopy equivalent to a simplicial com-
plex, it follows that any interesting homotopy type is realized as the geometric
realization of a poset.

Proposition 2.3. Let X and Y be posets.
(i) (Segal [17]) If f, g : X → Y are maps of posets such that f(x) ≤ g(x) for
all x ∈ X, then |f | and |g| are homotopic.
(ii) If the poset X has a minimal or maximal element then |X| is contractible.
(iii) If Xop denotes the opposite poset of X, i. e. with opposite ordering, then
|Xop| ' |X|.
Proof. (i) Consider the poset I = {0, 1 : 0 < 1} and define the poset map
h : I × X → Y as h(0, x) = f(x), h(1, x) = g(x). Since |I| ' [0, 1], we have
|h| : [0, 1]× |X| → |Y | with |h|(0, x) = |f |(x) and |h|(1, x) = |g|(x). This shows
that |f | and |g| are homotopic.
(ii) Suppose X has a maximal element z. Consider the map f : X → X with
f(x) = z for every x ∈ X. Clearly for every x ∈ X, idX(x) ≤ f(x). This shows
that idX and the constant map f are homotopic. So X is contractible. If X
has a minimal element the proof is similar.
(iii). This is natural and easy. ¤
The construction X 7→ |X| allows us to assign topological concepts to posets.
For example we define the homology groups of a poset X to be those of |X|, we
call X n-connected or contractible if |X| is n-connected or contractible etc. Note
that X is connected if and only if X is connected as a poset. By the dimension
of a poset X, we mean the dimension of the space |X|, or equivalently the
supremum of the integers n such that there is a chain x0 < · · · < xn in X. By
convention the empty set has dimension −1.
Let X be a poset and x ∈ X. Define Link+

X(x) := {u ∈ X : u > x} and

Link−X(x) := {u ∈ X : u < x}. Given a map f : X → Y of posets and an
element y ∈ Y , define subposets f/y and y\f of X as follows

f/y := {x ∈ X : f(x) ≤ y} y\f := {x ∈ X : f(x) ≥ y}.
In fact f/y = f−1(Y≤y) and y\f = f−1(Y≥y) where Y≤y = {z ∈ Y : z ≤ y} and
Y≥y = {z ∈ Y : z ≥ y}. Note that by 2.3 (ii), Y≤y and Y≥y are contractible. If
idY : Y → Y is the identity map, then idY /y = Y≤y and y\idY = Y≥y.
Let F : X → Ab be a functor from a poset X, regarded as a category in the
usual way, to the category of abelian groups. We define the homology groups
Hi(X,F) of X with coefficient F to be the homology of the complex C∗(X,F)
given by

Cn(X,F) =
⊕

x0<···<xn
F(x0)

where the direct sum is taken over all n-simplices in X, with differential ∂n =
Σni=0(−1)idni where dni : Cn(X,F)→ Cn−1(X,F) and dni takes the (x0 < · · · <
xn)-component of Cn(X,F) to the (x0 < · · · < x̂i < · · · < xn)-component of
Cn−1(X,F) via dni = idF(x0) if i > 0 and dn0 : F(x0) → F(x1). In particular,
for the empty set we have Hi(∅,F) = 0 for i ≥ 0.
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Let F be the constant functor Z. Then the homology groups with this coeffi-
cient coincide with the integral homology of |X|, that is Hk(X,Z) = Hk(|X|,Z)

for all k ∈ Z, [6, App. II]. Let H̃i(X,Z) denote the reduced integral homology

of the poset X, that is H̃i(X,Z) = ker{Hi(X,Z) → Hi(pt,Z)} if X 6= ∅ and

H̃i(∅,Z) =

{
Z if i = −1

0 if i 6= −1
. So H̃i(X,Z) = Hi(X,Z) for i ≥ 1 and for i = 0 we

have the exact sequence

0→ H̃0(X,Z)→ H0(X,Z)→ Z→ H̃−1(X,Z)→ 0

where Z is identified with the group H0(pt,Z). Notice that H0(X,Z) is iden-
tified with the free abelian group generated by the connected components of
X.
A local system of abelian groups on a space (resp. poset) X is a functor F
from the groupoid of X (resp. X viewed as a category), to the category of
abelian groups which is morphism-inverting, i. e. such that the map F(x) →
F(x′) associated to a path from x to x′ (resp. x ≤ x′) is an isomorphism.
Clearly, a local system F on a path connected space (resp. 0-connected poset)
is determined, up to canonical isomorphism, by the following data: if x ∈ X is
a base point, it suffices to be given the group F(x) and an action of π1(X,x)
on F(x).
The homology groups Hk(X,F) of a space X with a local system F are a
generalization of the ordinary homology groups. In fact if X is a 0-connected
space and if F is a constant local system on X, then Hk(X,F) ' Hk(X,F(x0))
for every x0 ∈ X [25, Chap. VI, 2.1].
Let X be a poset and F a local system on |X|. Then the restriction of F to
X is a local system on X. Considering F as a functor from X to the category
of abelian groups, we can define Hk(X,F) as in the above. Conversely if F
is a local system on the poset X, then there is a unique local system, up to
isomorphism, on |X| such that the restriction to X is F [25, Chap. VI, Thm
1.12], [14, I, Prop. 1]. We denote both local systems by F .

Theorem 2.4. Let X be a poset and F a local system on X. Then the homology
groups Hk(|X|,F) are isomorphic with the homology groups Hk(X,F).

Proof. See [25, Chap. VI, Thm. 4.8] or [14, I, p. 91]. ¤

Theorem 2.5. Let X be a path connected space with a base point x and let F
be a local system on X. Then the inclusion {x} ↪→ X induces an isomorphism

F(x)/G
'−→ H0(X,F) where G is the subgroup of F(x) generated by all the

elements of the form a− βa with a ∈ F(x), β ∈ π1(X,x).

Proof. See [25], Chap. VI, Thm. 2.8∗ and Thm. 3.2. ¤

We need the following interesting and well known lemma about the covering
spaces of the space |X|, where X is a poset (or more generally a simplicial set).
For a definition of a covering space, useful for our purpose, and some more
information, see [18, Chap. 2].
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Lemma 2.6. For a poset X the category of the covering spaces of the space |X|
is equivalent to the category LS(X), the category of functors F : X → Set,
where Set is the category of sets, such that F(x) → F(x′) is a bijection for
every relation x ≤ x′.
Proof. See [16, Section 7] or [14, I, p. 90]. ¤

3. Homology and homotopy of posets

Theorem 3.1. Let f : X → Y be a map of posets. Then there is a first
quadrant spectral sequence

E2
p,q = Hp(Y, y 7→ Hq(f/y,Z))⇒ Hp+q(X,Z).

The spectral sequence is functorial, in the sense that if there is a commutative
diagram of posets

X ′
f ′−→ Y ′ygX

ygY
X

f−→ Y

then there is a natural map from the spectral sequence arising from f ′ to
the spectral sequence arising from f . Moreover the map gX∗ : Hi(X

′,Z) →
Hi(X,Z) is compatible with this natural map.

Proof. Let C∗,∗(f) be the double complex such that Cp,q(f) is the free abelian
group generated by the set {(x0 < · · · < xq, f(xq) < y0 < · · · < yp) : xi ∈
X, yi ∈ Y }. The first spectral sequence of this double complex has as E1-
term E1

p,q(I) = Hq(Cp,∗(f)) =
⊕

y0<···<yp Hq(f/y0,Z). By the general theory

of double complexes (see for example [24, Chap. 5]), we know that E2
p,q(I) is

the homology of the chain complex E1
∗,q(I) = C∗(Y,Gq) where Gq : Y → Ab,

Gq(y) = Hq(f/y,Z) and hence E2
p,q(I) = Hp(Y,Gq) = Hp(Y, y 7→ Hq(f/y,Z)).

The second spectral sequence has as E1-term E1
p,q(II) = Hq(C∗,p(f)) =⊕

f(xp)<y0<···<yq Hq(f(xp)\idY ,Z). But by 2.3 (ii), f(xp)\idY = Y≥f(xp) is

contractible, so E1
∗,0(II) = C∗(Xop,Z) and E1

∗,q(II) = 0 for q > 0. Hence
Hi(Tot(C∗,∗(f))) ' Hi(X

op,Z) ' Hi(X,Z). This completes the proof of exis-
tence and convergence of the spectral sequence. The functorial behavior of the
spectral sequence follows from the functorial behavior of the spectral sequence
of a filtration [24, 5.5.1] and the fact that the first and the second spectral
sequences of the double complex arise from some filtrations. ¤

Remark 3.2. The above spectral sequence is a special case of a more general
Theorem [6, App. II]. The above proof is taken from [9, Chap. I] where the
functorial behavior of the spectral sequence is more visible. For more details
see [9].

Definition 3.3. Let X be a poset. A map htX : X → Z≥0 is called height
function if it is a strictly increasing map.
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Example 3.4. The height function htX(x) = 1 + dim(Link−X(x)) is the usual
one considered in [16], [9] and [5].

Lemma 3.5. Let X be a poset such that Link +
X(x) is (n− htX(x)− 2)-acyclic,

for every x ∈ X, where htX is a height function on X. Let F : X → Ab be
a functor such that F(x) = 0 for all x ∈ X with htX(x) ≥ m, where m ≥ 1.
Then Hk(X,F) = 0 for k ≤ n−m.

Proof. First consider the case of a functor F such that F(x) = 0 if htX(x) 6=
m − 1. Then Ck(X,F) =

⊕
x0<···<xk

htX (x0)=m−1

F(x0). Clearly 0 = dk0 = F(x0 < x1) =

F(x0) → F(x1). Thus ∂k = Σki=1(−1)idki . Define C−1(Link+
X(x0),F(x0)) =

F(x0) and complete the singular complex of Link+
X(x0) with coefficient in

F(x0) to

· · · → C0(Link+
X(x0),F(x0))

ε→ C−1(Link+
X(x0),F(x0))→ 0

where ε((gi)) = Σigi. Then

Ck(X,F) =
⊕

htX(x0)=m−1

(
⊕

x1<···<xk
x0<x1

F(x0))

=
⊕

htX(x0)=m−1

Ck−1(Link+
X(x0),F(x0)).

The complex Ck−1(Link+
X(x0),F(x0)) is the standard complex for computing

the reduced homology of Link+
X(x0) with constant coefficient F(x0). So

Hk(X,F) =
⊕

htX(x)=m−1

H̃k−1(Link+
X(x),F(x)).

If htX(x0) = m−1 then Link+
X(x0) is (n−(m−1)−2)-acyclic, and by the univer-

sal coefficient theorem [18, Chap. 5, Thm. 8], H̃k−1(Link+
X(x0),F(x0)) = 0 for

−1 ≤ k−1 ≤ n−(m−1)−2. This shows that Hk(X,F) = 0 for 0 ≤ k ≤ n−m.
To prove the lemma in general, we argue by induction on m. If m = 1 then
for htX(x) ≥ 1, F(x) = 0. So the lemma follows from the special case above.
Suppose m ≥ 2. Define F0 and F1 to be the functors

F0(x) =

{
F(x) if htX(x) < m− 1

0 if htX(x) ≥ m− 1
, F1(x) =

{
F(x) if htX(x) = m− 1

0 if htX(x) 6= m− 1

respectively. Then there is a short exact sequence 0 → F1 → F → F0 → 0.
By the above discussion, Hk(X,F1) = 0 for 0 ≤ k ≤ n −m and by induction
for m − 1, we have Hk(X,F0) = 0 for k ≤ n − (m − 1). By the long exact
sequence for the above short exact sequence of functors it is easy to see that
Hk(X,F) = 0 for 0 ≤ k ≤ n−m. ¤

Theorem 3.6. Let f : X → Y be a map of posets and htY a height function on
Y . Assume for every y ∈ Y , that Link+

Y (y) is (n−htY (y)−2)-acyclic and f/y
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is (htY (y)− 1)-acyclic. Then f∗ : Hk(X,Z)→ Hk(Y,Z) is an isomorphism for
0 ≤ k ≤ n− 1.

Proof. By theorem 3.1, we have the first quadrant spectral sequence

E2
p,q = Hp(Y, y 7→ Hq(f/y,Z))⇒ Hp+q(X,Z).

Since Hq(f/y,Z) = 0 for 0 < q ≤ htY (y) − 1, the functor Gq : Y → Ab,
Gq(y) = Hq(f/y,Z) is trivial for htY (y) ≥ q + 1, q > 0. By lemma 3.5,
Hp(Y,Gq) = 0 for p ≤ n − (q + 1). Hence E2

p,q = 0 for p + q ≤ n − 1, q > 0.
If q = 0, by writing the long exact sequence for the short exact sequence
0 → H̃0(f/y,Z) → H0(f/y,Z) → Z → 0, valid because f/y is nonempty, we
have

· · · → Hn(Y,Z)→ Hn−1(Y, y 7→ H̃0(f/y,Z))→ E2
n−1,0 →

· · · → H1(Y,Z)→ H0(Y, y 7→ H̃0(f/y,Z))→ E2
0,0 → H0(Y,Z)→ 0.

If htY (y) ≥ 1, then H̃0(f/y,Z) = 0. By lemma 3.5, Hk(Y, y 7→ H̃0(f/y,Z)) = 0
for 0 ≤ k ≤ n− 1. Thus

E2
p,q =

{
Hp(Y,Z) if q = 0, 0 ≤ p ≤ n− 1

0 if p+ q ≤ n− 1, q > 0
.

This shows that E2
p,q ' · · · ' E∞p,q for 0 ≤ p+ q ≤ n−1. Therefore Hk(X,Z) '

Hk(Y,Z) for 0 ≤ k ≤ n− 1. Now consider the commutative diagram

X
f−→ Yyf

yidY

Y
idY−→ Y

.

By functoriality of the spectral sequence 3.1, and the above calculation we get
the diagram

Hk(Y, y 7→ H0(f/y,Z))
'−→ Hk(X,Z)yidY ∗

yf∗
Hk(Y, y 7→ H0(idY /y,Z))

'−→ Hk(Y,Z)

.

Since idY /y = Y≤y is contractible, we have Hk(Y, y 7→ H0(idY /y,Z)) =
Hk(Y,Z). The map idY ∗ is an isomorphism for 0 ≤ k ≤ n − 1, from
the above long exact sequence. This shows that f∗ is an isomorphism for
0 ≤ k ≤ n− 1. ¤
Lemma 3.7. Let X be a 0-connected poset. Then X is 1-connected if and only
if for every local system F on X and every x ∈ X, the map F(x)→ H0(X,F),
induced from the inclusion {x} ↪→ X, is an isomorphism (or equivalently, every
local system on X is a isomorphic with a constant local system).

Proof. If X is 1-connected then by theorem 2.5 and the connectedness of X,

one has F(x)
'−→ H0(X,F) for every x ∈ X. Now let every local system on

X be isomorphic with a constant local system. Let F : X → Set be in LS(X).

Documenta Mathematica 7 (2002) 143–166



150 B. Mirzaii, W. van der Kallen

Define the functor G : X → Ab where G(x) is the free abelian group generated
by F(x). Clearly G is a local system and so it is constant system. It follows that
F is isomorphic to a constant functor. So by lemma 2.6, any connected covering
space of |X| is isomorphic to |X|. This shows that the universal covering of
|X|, is |X|. Note that the universal covering of a connected simplicial simplex
exists and is simply connected [18, Chap. 2, Cor. 14 and 15]. Therefore X is
1-connected. ¤

Theorem 3.8. Let f : X → Y be a map of posets and htY a height function
on Y . Assume for every y ∈ Y , that Link+

Y (y) is (n − htY (y) − 2)-connected
and f/y is (htY (y)− 1)-connected. Then X is (n− 1)-connected if and only if
Y is (n− 1)-connected.

Proof. By 2.1 and 3.6 we may assume n ≥ 2. So it is enough to prove that
X is 1-connected if and only if Y is 1-connected. Let F : X → Ab be a local
system. Define the functor G : Y → Ab with

G(y) =

{
H0(f/y,F) if htY (y) 6= 0

H0(Link+
Y (y), y′ 7→ H0(f/y′,F)) if htY (y) = 0

.

We prove that G is a local system. If htY (y) ≥ 2 then f/y is 1-connected and
by 3.6, F|f/y is a constant system, so by 3.7, H0(f/y,F) ' F(x) for every

x ∈ f/y. If htY (y) = 1, then f/y is 0-connected and Link+
Y (y) is nonempty.

Choose y′ ∈ Y such that y < y′. Now f/y′ is 1-connected and so F|f/y′
is a constant system on f/y′. But f/y ⊂ f/y′, so F|f/y is a constant sys-
tem. Since f/y is 0-connected, by 2.5 and the fact that we mentioned before
theorem 2.4, H0(f/y,F) ' F(x) for every x ∈ f/y. Now let htY (y) = 0.
Then Link+

Y (y) is 0-connected, f/y is nonempty and for every y′ ∈ Link+
Y (y),

H0(f/y′,F) ' H0((f/y)◦,F) where (f/y)◦ is a component of f/y, which we fix.
This shows that the local system F ′ : Link+

Y (y) → Ab with y′ 7→ H0(f/y′,F)

is isomorphic to a constant system, so H0(Link+
Y (y), y′ 7→ H0(f/y′,F)) =

H0(Link+
Y (y),F ′) ' F ′(y′) ' F(x) for every x ∈ f/y′. Therefore G is a local

system.
If Y is 1-connected, by 3.7, G is a constant system. But it is easy to see that
F ' G ◦ f . Therefore F is a constant system. Since X is connected by our
homology calculation, by 3.7 we conclude that X is 1-connected. Now let X
be 1-connected. If E is a local system on Y , then f ∗E := E ◦ f is a local system
on X. So it is a constant local system. As above we can construct a local
system G′ on Y from F ′ := E ◦ f . This gives a natural transformation from G ′
to E which is an isomorphism. Since E ◦ f is constant, by 2.5 and 3.7 and an
argument as above one sees that G ′ is constant. Therefore E is isomorphic to
a constant local system and 3.7 shows that Y is 1-connected. ¤

Remark 3.9. In the proof of the above theorem 3.8 we showed in fact that: Let
f : X → Y be a map of posets and htY a height function on Y and n ≥ 2.
Assume for every y ∈ Y , that Link+

Y (y) is (n− htY (y)− 2)-connected and f/y
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is (htY (y) − 1)-connected. Then f∗ : LS(Y ) → LS(X), with E 7→ E ◦ f is an
equivalence of categories.

Remark 3.10. Theorem 3.8 is a generalization of a theorem of Quillen [16,
Thm. 9.1]. We proved that the converse of that theorem is also valid. Our
proof is similar in outline to the proof by Quillen. Furthermore, lemma 3.5 is
a generalized version of lemma 1.3 from [5]. With more restrictions, Maazen,
in [9, Chap. II] gave an easier proof of Quillen’s theorem.

4. Homology and homotopy of posets of sequences

Let V be a nonempty set. We denote by O(V ) the poset of finite ordered
sequences of distinct elements of V , the length of each sequence being at least
one. The partial ordering on O(V ) is defined by refinement: (v1, . . . , vm) ≤
(w1, . . . , wn) if and only if there is a strictly increasing map φ : {1, . . . ,m} →
{1, . . . , n} such that vi = wφ(i), in other words, if (v1, . . . , vm) is an order
preserving subsequence of (w1, . . . , wn). If v = (v1, . . . , vm) we denote by |v|
the length of v, that is |v| = m. If v = (v1, . . . , vm) and w = (w1, . . . , wn), we
write (v1, . . . , vm, w1, . . . , wn) as vw. For v ∈ F , but for such v only, we define
Fv to be the set of w ∈ F such that wv ∈ F . Note that (Fv)w = Fwv. A subset
F of O(V ) is said to satisfy the chain condition if v ∈ F whenever w ∈ F ,
v ∈ O(V ) and v ≤ w. The subposets of O(V ) which satisfy the chain condition
are extensively studied in [9], [20] and [4]. In this section we will study them
some more.
Let F ⊆ O(V ). For a nonempty set S we define the poset F 〈S〉 as

F 〈S〉 := {((v1, s1), . . . , (vr, sr)) ∈ O(V × S) : (v1, . . . , vr) ∈ F}.
Assume s0 ∈ S and consider the injective poset map ls0 : F → F 〈S〉 with
(v1, . . . , vr) 7→ ((v1, s0), . . . , (vr, s0)). We have clearly a projection p : F 〈S〉 →
F with ((v1, s1), . . . , (vr, sr)) 7→ (v1, . . . , vr) such that p ◦ ls0 = idF .

Lemma 4.1. Suppose F ⊆ O(V ) satisfies the chain condition and S is a
nonempty set. Assume for every v ∈ F , that Fv is (n− |v|)-connected.
(i) If s0 ∈ S then (ls0)∗ : Hk(F,Z) → Hk(F 〈S〉,Z) is an isomorphism for
0 ≤ k ≤ n.
(ii) If F is min{1, n− 1}-connected, then (ls0)∗ : πk(F, v)→ πk(F 〈S〉, ls0(v)) is
an isomorphism for 0 ≤ k ≤ n.

Proof. This follows by [4, Prop. 1.6] from the fact that p ◦ ls0 = idF . ¤

Lemma 4.2. Let F ⊆ O(V ) satisfies the chain condition. Then |Link−F (v)| '
S|v|−2 for every v ∈ F .

Proof. Let v = (v1, . . . , vn). By definition Link−F (v) = {w ∈ F : w < v} =

{(vi1 , . . . , vik) : k < n, i1 < · · · < ik}. Hence |Link−F (v)| is isomorphic to the
barycentric subdivision of the boundary of the standard simplex ∆n−1. It is
well known that ∂∆n−1 ' Sn−2, hence |Link−F (v)| ' S|v|−2. ¤
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Theorem 4.3 (Nerve Theorem for Posets). Let V and T be two nonempty sets,
F ⊆ O(V ) and X ⊆ O(T ). Assume X =

⋃
v∈F Xv such that if v ≤ w in F ,

then Xw ⊆ Xv. Let F , X and Xv, for every v ∈ F , satisfy the chain condition.
Also assume
(i) for every v ∈ F , Xv is (l − |v|+ 1)-acyclic (resp. (l − |v|+ 1)-connected),
(ii) for every x ∈ X, Ax := {v ∈ F : x ∈ Xv} is (l − |x| + 1)-acyclic (resp.
(l − |x|+ 1)-connected).
Then Hk(F,Z) ' Hk(X,Z) for 0 ≤ k ≤ l (resp. F is l-connected if and only if
X is l-connected).

Proof. Let F≤l+2 = {v ∈ F : |v| ≤ l + 2} and let i : F≤l+2 → F be the
inclusion. Clearly |F≤l+2| is the (l + 1)-skeleton of |F |, if we consider |F |
as a cell complex whose k-cells are the |F≤v| with |v| = k + 1. It is well
known that i∗ : Hk(F≤l+2,Z)→ Hk(F,Z) and i∗ : πk(F≤l+2, v)→ πk(F, v) are
isomorphisms for 0 ≤ k ≤ l (see [25], Chap. II, corollary 2.14, and [25], Chap.
II, Corollary 3.10 and Chap. IV lemma 7.12.) So it is enough to prove the
theorem for F≤l+2 and X≤l+2. Thus assume F = F≤l+2 and X = X≤l+2. We
define Z ⊆ X × F as Z = {(x, v) : x ∈ Xv}. Consider the projections

f : Z → F, (x, v) 7→ v , g : Z → X, (x, v) 7→ x.

First we prove that f−1(v) ∼ v\f and g−1(x) ∼ x\g, where ∼ means homotopy
equivalence. By definition v\f = {(x,w) : w ≥ v, x ∈ Xw}. Define φ : v\f →
f−1(v), (x,w) 7→ (x, v). Consider the inclusion j : f−1(v) → v\f . Clearly
φ ◦ j(x, v) = φ(x, v) = (x, v) and j ◦ φ(x,w) = j(x, v) = (x, v) ≤ (x,w). So by
2.3(ii), v\f and f−1(v) are homotopy equivalent. Similarly x\g ∼ g−1(x).
Now we prove that the maps f op : Zop → Y op and gop : Zop → Xop satisfy the
conditions of 3.6. First fop : Zop → Y op; define the height function htF op on
F op as htF op(v) = l + 2 − |v|. It is easy to see that f op/v ' v\f ∼ f−1(v) '
Xv. Hence fop/v is (l − |v| + 1)-acyclic (resp. (l − |v| + 1)-connected). But
l−|v|+1 = (l+2−|v|)−1 = htF op(v)−1, so fop/v is (htF op(v)−1)-acyclic (resp.
(htF op(v)− 1)-connected). Let n := l+ 1. Clearly Link+

F op(v) = Link−F (v). By

lemma 4.2, |Link−F (v)| is (|v|−3)-connected. But |v|−3 = l+1−(l+2−|v|)−2 =

n − htF op(v) − 2. Thus Link+
F op(v) is (n − htF op(v) − 2)-acyclic (resp. (n −

htF op(v)− 2)-connected). Therefore by theorem 3.6, f∗ : Hi(Z,Z)→ Hi(F,Z)
is an isomorphism for 0 ≤ i ≤ l (resp. by 3.8, F is l-connected if and only if
Z is l-connected). Now consider gop : Zop → Xop. We saw in the above that
gop/x ' x\g ∼ g−1(x) and g−1(x) = {(x, v) : x ∈ Xv} ' {v ∈ F : x ∈ Xv}. It
is similar to the case of f op to see that gop satisfies the conditions of theorem
3.6, hence g∗ : Hi(Z,Z) → Hi(X,Z) is an isomorphism for 0 ≤ i ≤ l (resp.
by 3.8, X is l-connected if and only if Z is l-connected). This completes the
proof. ¤

Let K be a simplicial complex and {Ki}i∈I a family of subcomplexes such that
K =

⋃
i∈I Ki. The nerve of this family of subcomplexes of K is the simplicial

complex N (K) on the vertex set I so that a finite subset σ ⊆ I is in N (K) if
and only if

⋂
i∈σKi 6= ∅. The nerve N (K) of K, with the inclusion relation,
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is a poset. As we already said we can consider a simplicial complex as a poset
of its simplices.

Corollary 4.4 (Nerve Theorem). Let K be a simplicial complex and {Ki}i∈I
a family of subcomplexes such that K =

⋃
i∈I Ki. Suppose every nonempty

finite intersection
⋂t
j=1Kij is (l − t + 1)-acyclic (resp. (l − t + 1)connected).

Then Hk(K,Z) ' Hk(N (K),Z) for 0 ≤ k ≤ l (resp. K is l-connected if and
only if N (K) is l-connected).

Proof. Let V be the set of vertices of K. We give a total ordering to V and
I. Put F = {(i1, . . . , ir) : i1 < · · · < ir and

⋂r
j=1Kij 6= ∅} ⊆ O(I), X =

{(x1, . . . , xt) : x1 < · · · < xt and {x1, . . . , xt} is a simplex in K} ⊆ O(V ) and
for every (i1, . . . , ir) ∈ F , put X(i1,...,ir) = {(x1, . . . , xt) ∈ X : {x1, . . . , xt} ∈⋂r
j=1Kij}. It is not difficult to see that F ' N (K) and X ' K. Also one

should notice that Ax := {v ∈ F : x ∈ Xv} is contractible for x ∈ X. We leave
the details to interested readers. ¤

Remark 4.5. In [7], a special case of the theorem 4.3 is proved. The nerve
theorem for a simplicial complex 4.4, in the stated generality, is proved for the
first time in [3], see also [2, p. 1850]. For more information about different
types of nerve theorem and more references about them see [2, p. 1850].

Lemma 4.6. Let F ⊆ O(V ) satisfy the chain condition and let G : F op → Ab
be a functor. Then the natural map ψ :

⊕
v∈F, |v|=1 G(v) → H0(F op,G) is

surjective.

Proof. By definition C0(F op,G) =
⊕

v∈F op G(v), C1(F op,G) =
⊕

v<v′∈F op G(v)
and we have the chain complex

· · · → C1(F op,G)
∂1→ C0(F op,G)→ 0,

where ∂1 = d1
0 − d1

1. Again by definition H0(F op,G) = C0(F op,G)/∂1. Now
let w ∈ F and |w| ≥ 2. Then there is a v ∈ F , v ≤ w, with |v| = 1.
So w < v in F op, and we have the component ∂1|G(w) : G(w) → G(w) ⊕ G(v),

x 7→ d1
0(x)−d1

1(x) = d1
0(x)−x. This shows that G(w) ⊆ im∂1 +imψ. Therefore

H0(F op,G) is generated by the groups G(v) with |v| = 1. ¤

Theorem 4.7. Let V and T be two nonempty sets, F ⊆ O(V ) and X ⊆ O(T ).
Assume X =

⋃
v∈F Xv such that if v ≤ w in F , then Xw ⊆ Xv and let F , X

and Xv, for every v ∈ F , satisfy the chain condition. Also assume
(i) for every v ∈ F , Xv is min{l − 1, l − |v|+ 1}-connected,
(ii) for every x ∈ X, Ax := {v ∈ F : x ∈ Xv} is (l − |x|+ 1)-connected,
(iii) F is l-connected.
Then X is (l − 1)-connected and the natural map

⊕

v∈F, |v|=1

(iv)∗ :
⊕

v∈F, |v|=1

Hl(Xv,Z)→ Hl(X,Z)
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is surjective, where iv : Xv → X is the inclusion. Moreover, if for every v
with |v| = 1, there is an l-connected Yv with Xv ⊆ Yv ⊆ X, then X is also
l-connected.

Proof. If l = −1, then everything is easy. If l = 0, then for v of length one,
Xv is nonempty, so X is nonempty. This shows that X is (−1)-connected.
Also, every connected component of X intersects at least one Xw and therefore
also contains a connected component of an Xv with |v| = 1. This gives the
surjectivity of the homomorphism

⊕

v∈F, |v|=1

(iv)∗ :
⊕

v∈F, |v|=1

H0(Xv,Z)→ H0(X,Z).

Now assume that, for every v of length one, Xv ⊆ Yv where Yv is connected.
We prove, in a combinatorial way, that X is connected. Let x, y ∈ X, x ∈ X(v1)

and y ∈ X(v2) where (v1), (v2) ∈ F . Since F is connected, there is a sequence
(w1), . . . , (wr) ∈ F such that they give a path, in F , from (v1) to (v2), that is

(v1) (w1) (wr) (v2)
Â Á . . . Â Á

(v1, w1) (wr, v2) .

Since Y(v1) is connected, x ∈ X(v1) ⊆ Y(v1) and X(v1,w1) 6= ∅, there is an
element x1 ∈ X(v1,w1) such that there is a path, in Y(v1), from x to x1. Now
x1 ∈ Y(w1). Similarly we can find x2 ∈ X(w1,w2) such that there is a path, in
Y(w1), from x1 to x2. Now x2 ∈ Y(w2). Repeating this process finitely many
times, we find a path from x to y. So X is connected.
Hence we assume that l ≥ 1. As we said in the proof of theorem 4.3, we can
assume that F = F≤l+2 and X = X≤l+2 and we define Z, f and g as we defined
them there. Define the height function htF op on F op as htF op(v) = l + 2− |v|.
As we proved in the proof of theorem 4.3, f op/v ' v\f ∼ f−1(v) ' Xv. Thus
fop/v is (htF op(v) − 1)-connected if |v| > 1 and it is (htF op(v) − 2)-connected
if |v| = 1 and also |Link+

F op(v)| is (l+ 1−htF op(v)− 2)-connected. By theorem
3.1, we have the first quadrant spectral sequence

E2
p,q = Hp(F

op, v 7→ Hq(f
op/v,Z))⇒ Hp+q(Z

op,Z).

For 0 < q ≤ htF op(v) − 2, Hq(f
op/v,Z) = 0. Define Gq : F op → Ab, Gq(v) =

Hq(f
op/v,Z). Then Gq(v) = 0 for htF op(v) ≥ q + 2, q > 0. By lemma 3.5,

Hp(F
op,Gq) = 0 for p ≤ l + 1 − (q + 2). Therefore E2

p,q = 0 for p + q ≤ l − 1,

q > 0. If q = 0, arguing similarly to the proof of theorem 3.6, we get E2
p,0 = 0

if 0 < p ≤ l − 1 and E2
0,0 = Z. Also by the fact that F op is l-connected we

get the surjective homomorphism Hl(F
op, v 7→ H̃0(fop/v,Z)) ³ E2

l,0. Since

l ≥ 1, H̃0(fop/v,Z) = 0 for all v ∈ F op with htF op(v) ≥ 1 and so Hl(F
op, v 7→

H̃0(fop/v,Z)) = 0 by lemma 3.5. Therefore E2
l,0 = 0. Let

G′q : F op → Ab, G′q(v) =

{
0 if htF op(v) < l + 1

Hq(f
op/v,Z) if htF op(v) = l + 1
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and

G′′q : F op → Ab, G′′q(v) =

{
Hq(f

op/v,Z) if htF op(v) < l + 1

0 if htF op(v) = l + 1.

Then we have the short exact sequence 0 → G ′q → Gq → G′′q → 0 and the
associated long exact sequence

· · · → Hl−q(F
op,G′q)→ Hl−q(F

op,Gq)→
Hl−q(F

op,G′′q)→ Hl−q−1(F op,G′q)→ · · · .

If q > 0, then G′′q(v) = 0 for 0 < q ≤ htF op(v) − 1 and so by lemma 3.5,
Hp(F

op,G′′q) = 0 for p + q ≤ l, q > 0. Also if |v| = 1 then H0(fop/v,Z) = 0
for 0 < q ≤ htF op(v) − 2 = l − 1. This shows G ′q = 0 for 0 < q ≤ l − 1. From
the long exact sequence and the above calculation we get

E2
p,q =

{
Z if p = q = 0

0 if 0 < p+ q ≤ l, q 6= l.

HH
HY

l + 1 ∗ E2
p,q

l ∗ ∗
0 0 ∗
...

...
. . .

. . .

0 · · . . . ∗
0 Z 0 · · · 0 0 ∗

0 1 l l + 1

Thus for 0 ≤ p+q ≤ l, q 6= l, E2
p,q ' · · · ' E∞p,q and there exist an integer r such

that E2
0,l ³ · · · ³ Er0,l ' Er+1

0,l ' · · · ' E∞0,l. Hence we get a surjective map

H0(F op, v 7→ Hl(f
op/v,Z)) ³ Hl(Z

op,Z). By lemma 4.6, we have a surjective
map

⊕
v∈F, |v|=1Hl(f

op/v,Z)³ Hl(Z
op,Z).

Now consider the map gop : Zop → Xop and define the height function
htXop(x) = l + 2 − |x| on Xop. Arguing similarly to the proof of theorem
4.3 one sees that g∗ : Hk(Z,Z) → Hk(X,Z) is an isomorphism for 0 ≤ k ≤ l.
Therefore we get a surjective map

⊕
v∈F, |v|=1Hl(Xv,Z)³ Hl(X,Z). We call

it ψ. We prove that this map is the same map that we claimed. For v of length
one consider the commutative diagram of posets

{v}op −−−−→ F op

↗ ↗
f−1({v})op−−→ Zop

↘ ↘
Xop
v −−−−→ Xop
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By functoriality of the spectral sequence for the above diagram and lemma 4.6
we get the commutative diagram

Hl(f
op
v /v,Z)

(jv)∗−−−−−→ ⊕
v∈F,|v|=1Hl(f

op/v,Z)y y
H0({v}op, v 7→ Hl(f

op
v /v,Z)) −−−→ H0(F op, v 7→ Hl(f

op/v,Z))y y
Hl(f

−1(v)op,Z) −−−−−→ Hl(Z
op,Z)y y

Hl(X
op
v ,Z)

(iopv )∗−−−−−→ Hl(X
op,Z)

where jv : fopv /v → fop/v is the inclusion which is a homotopy equivalence
as we already mentioned. It is not difficult to see that the composition of
homomorphisms in the left column of the above diagram induces the identity
map from Hl(Xv,Z), the composition of homomorphisms in the right column
of above diagram induces the surjective map ψ and the last row induces the
homomorphism (iv)∗. This show that (iv)∗ = ψ|Hl(Xv,Z). This completes the
proof of surjectiveness.
Now let for v of length one Xv ⊆ Yv where Yv is l-connected. Then we have
the commutative diagram

Hl(Xv,Z)
(iv)∗−−−→ Hl(X,Z)

↘ ↗
Hl(Yv,Z)

.

By the assumption Hl(Yv,Z) is trivial and this shows that (iv)∗ is the zero
map. Hence by the surjectivity, Hl(X,Z) is trivial. If l ≥ 2, the nerve theorem
4.3 says that X is simply connected and by the Hurewicz theorem 2.1, X is
l-connected. So the only case that is left is when l = 1. By theorem 3.8, X is
1-connected if and only if Z is 1-connected. So it is enough to prove that Zop is
1-connected. Note that as we said, we can assume that F = F≤3 and X = X≤3.
Suppose F is a local system on Zop. Define the functor G : F op → Ab, as

G(y) =

{
H0(fop/v,F) if |v| = 1, 2

H0(Link+
F op(v), v′ 7→ H0(fop/v′,F)) if |v| = 3

.

We prove that G is a local system on F op. Put Zw := g−1(Yw) for |w| = 1. If
|v| = 1, 2, then fop/v is 0-connected and fop/v ⊆ Zopw , where w ≤ v, |w| = 1.
By remark 3.9 we can assume that F = E ◦ gop where E is a local system
on Xop. Then F|Zopw = E|Y opw ◦ gop|Zopw . Since Y opw is 1-connected, E|Y opw is
a constant local system. This shows that F|Zopw is a constant local system.
So F|fop/v is a constant local system and since f op/v is 0-connected we have
H0(fop/v,Z) ' F(x), for every x ∈ fop/v. If |v| = 3, with an argument
similar to the proof of the theorem 3.8 and the above discussion one can get
G(v) ' F(x) for every x ∈ fop/v. This shows that G is a local system on F op.
Hence it is a constant local system, because F op is 1-connected. It is easy to
see that F ' G ◦ f . Therefore F is a constant system. Since X is connected
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by our homology calculation, by 3.7 we conclude that X is 1-connected. This
completes the proof. ¤

5. Posets of unimodular sequences

Let R be an associative ring with unit. A vector (r1, . . . , rn) ∈ Rn is called
unimodular if there exist s1, . . . , sn ∈ R such that Σni=1risi = 1, or equivalently
if the submodule generated by this vector is a free summand of the left R-
module Rn. We denote the standard basis of Rn by e1, . . . , en. If n ≤ m, we
assume that Rn is the submodule of Rm generated by e1, . . . , en ∈ Rm.
We say that a ring R satisfies the stable range condition (Sm), if m ≥ 1 is an
integer so that for every unimodular vector (r0, r1, . . . , rm) ∈ Rm+1, there exist
t1, . . . , tm in R such that (r1 + r0t1, . . . , rm + r0tm) ∈ Rm is unimodular. We
say that R has stable rank m, we denote it with sr(R) = m, if m is the least
number such that (Sm) holds. If such a number does not exist we say that
sr(R) =∞.
Let U(Rn) denote the subposet of O(Rn) consisting of unimodular sequences.
Recall that a sequence of vectors v1, . . . , vk in Rn is called unimodular when
v1, . . . , vk is basis of a free direct summand of Rn. Note that if (v1, . . . , vk) ∈
O(Rn) and if n ≤ m, it is the same to say that (v1, . . . , vk) is unimodular as a
sequence of vectors in Rn or as a sequence of vectors in Rm. We call an element
(v1, . . . , vk) of U(Rn) a k-frame.

Theorem 5.1 (Van der Kallen). Let R be a ring with sr(R) <∞ and n ≤ m+1.
Let δ be 0 or 1. Then
(i) O(Rn + δen+1) ∩ U(Rm) is (n− sr(R)− 1)-connected.
(ii) O(Rn+δen+1)∩U(Rm)v is (n−sr(R)−|v|−1)-connected for all v ∈ U(Rm).

Proof. See [20, Thm. 2.6]. ¤

Example 5.2. Let R be a ring with sr(R) < ∞. Let n ≥ sr(R) + k + 1 and
assume (v1, . . . , vk) ∈ U(R2n). Set W = e2 + Σni=2Re2i. Renumbering the
basis one gets by theorem 5.1 that the poset F := O(W ) ∩ U(R2n)(v1,...,vk) is
((n−1)− sr(R)−k−1)-connected. Since n ≥ sr(R)+k+1, it follows that F is
not empty. This shows that there is v ∈W such that (v, v1, . . . , vk) ∈ U(R2n).
We will need such result in the next section but with a different method we
can prove a sharper result. Compare this with lemma 5.4.

An n× k-matrix B with n < k is called unimodular if B has a right inverse. If
B is an n×k-matrix and C ∈ GLk(R), then B is unimodular if and only if CB

is unimodular. A matrix of the form

(
1 u
0 B

)
, where u is a row vector with

coordinates in R, is unimodular if and only if the matrix B is unimodular.
We say that the ring R satisfies the stable range condition (Snk ) if for every
n × (n + k)-matrix B, there exists a vector r = (r1, . . . , rn+k−1) such that
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B

(
1 r
0 In+k−1

)
=
(
u B′

)
, where the n × (n + k − 1)-matrix B′ is uni-

modular and u is the first column of the matrix B. Note that (S1
k) is the same

as (Sk).

Theorem 5.3 (Vaserstein). For every k ≥ 1 and n ≥ 1, a ring R satisfies (Sk)
if and only if it satisfies (Snk ).

Proof. The definition of (Snk ) and the proof of this theorem is similar to the
theorem [22, Thm. 3′] of Vaserstein. ¤

Lemma 5.4. Let R be ring with sr(R) <∞ and let n ≥ sr(R)+k. Then for every
(v1, . . . , vk) ∈ U(R2n) there is a v ∈ e2 + Σni=2Re2i such that (v, v1, . . . , vk) ∈
U(R2n).

Proof. There is a permutation matrix A ∈ GL2n(R) such that (e2 +
Σni=2Re2i)A = e1 + Σ2n

j=n+2Rej . Let wi = viA for i = 1, . . . , k. So

(w1, . . . , wk) ∈ U(R2n). Consider the k × 2n-matrix B whose i-th row is the
vector wi. By theorem 5.3 there exists a vector r = (r2, . . . , r2n) such that

B

(
1 r
0 I2n−1

)
=
(
u1 B1

)
, where the k× (2n− 1)-matrix B1 is unimod-

ular and u1 is the first column of the matrix B. Now let s = (s3, . . . , s2n)

such that B1

(
1 s
0 I2n2

)
=
(
u2 B2

)
, where the k× (2n− 2)-matrix B2 is

unimodular and u2 is the first column of the matrix B1. Now clearly

B

(
1 r
0 I2n−1

)


1 0 0
0 1 s
0 0 I2n−2


 =

(
u1 u2 B2

)
.

By continuing this process, n times, we find a 2n× 2n matrix C of the form



1 ∗ ∗ ∗
. . . ∗ ∗ N

1 ∗ ∗
0 1 ∗

In−1




where N is an (n−1)×(n−1) matrix and BC = (L |M) where L is a k×(n+1)
matrix and M is a unimodular k × (n− 1) matrix. Now let
t = (tn+2, . . . , t2n) = −(first row of N). Then

(
1 0 . . . 0 tn+2 . . . t2n

B

)
C =

(
1 ∗ ∗ 0 . . . 0
∗ ∗ ∗ M

)
.

Since M is unimodular the right hand side of the above equality is unimodular.
This shows that the matrix(

1 0 . . . 0 tn+2 . . . t2n
B

)
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is unimodular. Put w = (1, 0, . . . , 0, tn+2, . . . , t2n). Then (w,w1, . . . , wk) ∈
U(R2n). Now v = wA−1 is the one that we are looking for. ¤

6. Hyperbolic spaces and some posets

Let there be an involution on R, that is an automorphism of the additive
group of R, R → R with r 7→ r, such that r = r and rs = s r. Let ε be an
element in the center of R such that εε = 1. Set Rε := {r − εr : r ∈ R} and
Rε := {r ∈ R : εr = −r} and observe that Rε ⊆ Rε. A form parameter relative
to the involution and ε is a subgroup Λ of (R,+) such that Rε ⊆ Λ ⊆ Rε and
rΛr ⊆ Λ, for all r ∈ R. Notice that Rε and Rε are form parameters. We denote
them by Λmin and Λmax, respectively. If there is an s in the center of R such
that s+ s ∈ R∗, in particular if 2 ∈ R∗ , then Λmin = Λmax.
Let ei,j(r) be the 2n × 2n-matrix with r ∈ R in the (i, j) place and zero
elsewhere. Consider Qn = Σni=1e2i−1,2i(1) ∈ M2n(R) and Fn = Qn + ε tQn =
Σni=1(e2i−1,2i(1) + e2i,2i−1(ε)) ∈ GL2n(R). Define the bilinear map h : R2n ×
R2n → R by h(x, y) = Σni=1(x2i−1y2i + εx2iy2i−1) and q : R2n → R/Λ by
q(x) = Σni=1x2i−1x2i mod Λ, where x = (x1, . . . , x2n), y = (y1, . . . , y2n) and x =
(x1, . . . , x2n). The triple (R2n, h, q) is called a hyperbolic space. By definition
the unitary group relative Λ is the group

U ε
2n(R,Λ) := {A ∈ GL2n(R) : h(xA, yA) = h(x, y), q(xA) = q(x), x, y ∈ R}.

For more general definitions and the properties of these spaces and groups see
[8].

Example 6.1. (i) Let Λ = Λmax = R. Then U ε
2n(R,Λ) = {A ∈ GL2n(R) :

h(xA, yA) = h(x, y) for all x, y ∈ R2n} = {A ∈ GL2n(R) : tAFnA = Fn}.
In particular if ε = −1 and if the involution is the identity map idR, then
Λmax = R. In This case U ε2n(R,Λmax) := Sp2n(R) is the usual symplectic
group. Note that R is commutative in this case.
(ii) Let Λ = Λmin = 0. Then U ε

2n(R,Λ) = {A ∈ GL2n(R) : q(xA) =
q(x) for all x ∈ R2n}. In particular if ε = 1 and if the involution is the identity
map idR, then Λmin = 0. In this case U ε2n(R,Λmin) := O2n(R) is the usual
orthogonal group. As in the symplectic case, R is necessarily commutative.
(iii) Let ε = −1 and the involution is not the identity map idR. If Λ = Λmax

then U ε
2n(R,Λ) := U2n(R) is the classical unitary group corresponding to the

involution.

Let σ be the permutation of the set of natural numbers given by σ(2i) = 2i−1
and σ(2i− 1) = 2i. For 1 ≤ i, j ≤ 2n, i 6= j, and every r ∈ R define

Ei,j(r) =





I2n + ei,j(r) if i = 2k − 1, j = σ(i), r ∈ Λ

I2n + ei,j(r) if i = 2k, j = σ(i), r ∈ Λ

I2n + ei,j(r) + eσ(j),σ(i)(−r) if i+ j = 2k, i 6= j

I2n + ei,j(r) + eσ(j),σ(i)(−ε−1r) if i 6= σ(j), i = 2k − 1, j = 2l

I2n + ei,j(r) + eσ(j),σ(i)(εr) if i 6= σ(j), i = 2k, j = 2l − 1
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where I2n is the identity element of GL2n(R). It is easy to see that Ei,j(r) ∈
U ε

2n(R,Λ). Let EU ε
2n(R,Λ) be the group generated by the Ei,j(r), r ∈ R. We

call it elementary unitary group.
A nonzero vector x ∈ R2n is called isotropic if q(x) = 0. This shows automati-
cally that if x is isotropic then h(x, x) = 0. We say that a subset S of R2n is
isotropic if for every x ∈ S, q(x) = 0 and for every x, y ∈ S, h(x, y) = 0. If
h(x, y) = 0, then we say that x is perpendicular to y. We denote by 〈S〉 the
submodule of R2n generated by S, and by 〈S〉⊥ the submodule consisting of
all the elements of R2n which are perpendicular to all the elements of S.
From now, we fix an involution, an ε, a form parameter Λ and we consider the
triple (R2n, h, q) as defined above.

Definition 6.2 (Transitivity condition). Let r ∈ R and define Cεr(R
2n,Λ) =

{x ∈ Um(R2n) : q(x) = r mod Λ}, where Um(R2n) is the set of all unimodular
vectors of R2n. We say that R satisfies the transitivity condition (Tn), if
EU ε

2n(R,Λ) acts transitively on Cεr(R
2n,Λ), for every r ∈ R. It is easy to see

that e1 + re2 ∈ Cεr(R2n,Λ).

Definition 6.3 (Unitary stable range). We say that a ring R satisfies the
unitary stable range condition (USm) if R satisfies the conditions (Sm) and
(Tm+1). We say that R has unitary stable rank m, we denote it with usr(R),
if m is the least number such that (USm) is satisfied. If such a number does
not exist we say that usr(R) =∞. Clearly sr(R) ≤ usr(R).

Remark 6.4. Our definition of unitary stable range is a little different than the
one in [8]. In fact if (USRm+1) satisfied then, by [8, Chap. VI, Thm. 4.7.1],
(USm) is satisfied where (USRm+1) is the unitary stable range as defined in [8,
Chap. VI, 4.6]. In comparison with the absolute stable rank asr(R) from [10],
we have that if m ≥ asr(R) + 1 or if the involution is the identity map (so R is
commutative) and m ≥ asr(R) then (USm) is satisfied [10, 8.1].

Example 6.5. Let R be a commutative Noetherian ring where the dimension
d of the maximal spectrum Mspec(R) is finite. If A is a finite R-algebra then
usr(A) ≤ d+ 1 (see [21, Thm. 2.8], [8, Thm. 6.1.4]). In particular if R is local
ring or more generally a semilocal ring then usr(R) = 1 [8, 6.1.3].

Lemma 6.6. Let R be a ring with usr(R) < ∞. Assume n ≥ usr(R) + k and
(v1, . . . , vk) ∈ U(R2n). Then there is a hyperbolic basis {x1, y1, . . . , xn, yn} of
R2n such that v1, . . . , vk ∈ 〈x1, y1, . . . , xk, yk〉.
Proof. The proof is by induction on k. If k = 1, by definition of unitary stable
range there is an E ∈ EU ε

2n(R,Λ) such that v1E = e1 + re2. So the base of
the induction is true. Let k ≥ 2 and assume the induction hypothesis. Ar-
guing as in the base of the induction we can assume that v1 = (1, r, 0, . . . , 0),
r ∈ R. Let W = e2 + Σni=2Re2i. By lemma 5.4, choose w ∈ W so that
(w, v1, . . . , vk) ∈ U(R2n). Then (w, v1 − rw, v2, . . . , vk) ∈ U(R2n). But
(w, v1 − rw) is a hyperbolic pair, so there is an E ∈ EU ε

2n(R,Λ) such
that wE = e2n−1, (v1 − rw)E = e2n by [8, Chap. VI, Thm. 4.7.1]. Let
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(wE, (v1−rw)E, v2E, . . . , vkE) =: (w0, w1, . . . , wk) where wi = (ri,1, . . . , ri,2n).
Put ui = wi − ri,2n−1e2n−1 − ri,2ne2n for 2 ≤ i ≤ k. Then (u2, . . . , uk) ∈
U(R2n−2). Now by induction there is a hyperbolic basis {a2, b2, . . . , an, bn} of
R2n−2 such that ui ∈ 〈a2, b2, . . . , ak, bk〉. Let a1 = e2n−1 and b1 = e2n. Then
wi ∈ 〈a1, b1, . . . , ak, bk〉. But v1E = w1 + rwE = e2n + re2n−1, viE = wi
for 2 ≤ i ≤ k and considering xi = aiE

−1, yi = biE
−1, one sees that

v1, . . . , vk ∈ 〈x1, y1, . . . , xk, yk〉. ¤

Definition 6.7. Let Zn = {x ∈ R2n : q(x) = 0}. We define the poset U ′(R2n)
as U ′(R2n) := O(Zn) ∩ U(R2n).

Lemma 6.8. Let R be a ring with sr(R) <∞ and n ≤ m. Then
(i) O(R2n) ∩ U ′(R2m) is (n− sr(R)− 1)-connected,
(ii) O(R2n)∩U ′(R2m)v is (n−sr(R)−|v|−1)-connected for every v ∈ U ′(R2m),
(iii) O(R2n) ∩ U ′(R2m) ∩ U(R2m)v is (n− sr(R)− |v| − 1)-connected for every
v ∈ U(R2m).

Proof. Let W = 〈e2, e4, . . . , e2n〉 and F := O(R2n)∩U ′(R2m). It is easy to see
that O(W )∩F = O(W )∩U(R2m) and O(W )∩Fu = O(W )∩U(R2m)u for every
u ∈ U ′(R2m). By theorem 5.1, the poset O(W )∩F is (n−sr(R)−1)-connected
and the poset O(W ) ∩ Fu is (n − sr(R) − |u| − 1)-connected for every u ∈ F .
It follows from lemma [20, 2.13 (i)] that F is (n − sr(R) − 1)-connected. The
proof of (ii) and (iii) is similar to the proof of (i). ¤

Lemma 6.9. Let R be a ring with usr(R) < ∞ and let (v1, . . . , vk) ∈ U ′(R2n).
If n ≥ usr(R)+k then O(〈v1, . . . , vk〉⊥)∩U ′(R2n)(v1,...,vk) is (n−usr(R)−k−1)-
connected.

Proof. By lemma 6.6 there is a hyperbolic basis {x1, y1, . . . , xn, yn} of R2n

such that v1, . . . , vk ∈ 〈x1, y1, . . . , xk, yk〉. Let W = 〈xk+1, yk+1, . . . , xn, yn〉 '
R2(n−k) and F := O(〈v1, . . . , vk〉⊥) ∩ U ′(R2n)(v1,...,vk). It is easy to see that

O(W )∩F = O(W )∩U ′(R2n). Let V = 〈v1, . . . , vk〉, then 〈x1, y1, . . . , xk, yk〉 =
V ⊕ P where P is a (finitely generated) projective module. Consider
(u1, . . . , ul) ∈ F\O(W ) and let ui = xi + yi where xi ∈ V and yi ∈ P ⊕W .
One should notice that (u1 − x1, . . . , ul − xl) ∈ U(R2n) and not necessarily in
U ′(R2n). It is not difficult to see that O(W ) ∩ F(u1,...,ul) = O(W ) ∩ U ′(R2n) ∩
U(R2n)(u1−x1,...,ul−xl). By lemma 6.8, O(W ) ∩ F is (n − k − usr(R) − 1)-
connected and O(W ) ∩ Fu is (n − k − usr(R) − |u| − 1)-connected for every
u ∈ F\O(W ). It follows from lemma [20, 2.13 (i)] that F is (n−usr(R)−k−1)-
connected. ¤

7. Posets of isotropic and hyperbolic unimodular sequences

Let IU(R2n) be the set of sequences (x1, . . . , xk), xi ∈ R2n, such that x1, . . . , xk
form a basis for an isotropic direct summand of R2n. Let HU(R2n) be the
set of sequences ((x1, y1), . . . , (xk, yk)) such that (x1, . . . , xk), (y1, . . . , yk) ∈
IU(R2n), h(xi, yj) = δi,j , where δi,j is the Kronecker delta. We call IU(R2n)
and HU(R2n) the poset of isotropic unimodular sequences and the poset of
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hyperbolic unimodular sequences, respectively. For 1 ≤ k ≤ n, let IU(R2n, k)
and HU(R2n, k) be the set of all elements of length k of IU(R2n) and HU(R2n)
respectively. We call the elements of IU(R2n, k) and HU(R2n, k) the isotropic
k-frames and the hyperbolic k-frames, respectively. Define the posetMU(R2n)
as the set of ((x1, y1), . . . , (xk, yk)) ∈ O(R2n×R2n) such that, (i) (x1, . . . , xk) ∈
IU(R2n), (ii) for each i, either yi = 0 or (xj , yi) = δji, (iii) 〈y1, . . . , yk〉 is
isotropic. We identify IU(R2n) with MU(R2n) ∩ O(R2n × {0}) and HU(R2n)
with MU(R2n) ∩ O(R2n × (R2n\{0})).
Lemma 7.1. Let R be a ring with usr(R) < ∞. If n ≥ usr(R) + k then
EU ε

2n(R,Λ) acts transitively on IU(R2n, k) and HU(R2n, k).

Proof. The proof is by induction on k. If k = 1, by definition EU ε
2n(R,Λ)

acts transitively on IU(R2n, 1) and by [8, Chap. VI, Thm. 4.7.1] the group
EU ε

2n(R,Λ) acts transitively on HU(R2n, 1). The rest is an easy induction
and the fact that for every isotropic k-frame (x1, . . . , xk) there is an isotropic
k-frame (y1, . . . , yk) such that ((x1, y1), . . . , (xk, yk)) is a hyperbolic k-frame [8,
Chap. I, Cor. 3.7.4]. ¤
Lemma 7.2. Let R be a ring with usr(R) < ∞, and let n ≥ usr(R) + k.
Let ((x1, y1), . . . , (xk, yk)) ∈ HU(R2n), (x1, . . . , xk) ∈ IU(R2n) and V =
〈x1, . . . , xk〉. Then
(i) IU(R2n)(x1,...,xk) ' IU(R2(n−k))〈V 〉,
(ii) HU(R2n) ∩MU(R2n)((x1,0),...,(xk,0)) ' HU(R2n)((x1,y1),...,(xk,yk))〈V × V 〉,
(iii) HU(R2n)((x1,y1),...,(xk,yk)) ' HU(R2(n−k)).

Proof. See [5], the proof of lemma 3.4 and the proof of Thm. 3.2. ¤
For a real number l, by blc we mean the largest integer n with n ≤ l.
Theorem 7.3. The poset IU(R2n) is bn−usr(R)−2

2 c-connected and IU(R2n)x is

bn−usr(R)−|x|−2
2 c-connected for every x ∈ IU(R2n).

Proof. If n ≤ usr(R), the result is clear, so let n > usr(R). Let Xv = IU(R2n)∩
U ′(R2n)v ∩ O(〈v〉⊥), for every v ∈ U ′(R2n), and put X :=

⋃
v∈F Xv where

F = U ′(R2n). It follows from lemma 7.1 that IU(R2n)≤n−usr(R) ⊆ X. So to

treat IU(R2n), it is enough to prove that X is bn−usr(R)−2
2 c-connected. First

we prove that Xv is bn−usr(R)−|v|−2
2 c-connected for every v ∈ F . The proof is

by descending induction on |v|. If |v| > n−usr(R), then bn−usr(R)−|v|−2
2 c < −1.

In this case there is nothing to prove. If n − usr(R) − 1 ≤ |v| ≤ n − usr(R),

then bn−usr(R)−|v|−2
2 c = −1, so we must prove that Xv is nonempty. This

follows from lemma 6.6. Now assume |v| ≤ n − usr(R) − 2 and assume by

induction that Xw is bn−usr(R)−|w|−2
2 c-connected for every w, with |w| > |v|.

Let l = bn−usr(R)−|v|−2
2 c, and observe that n− |v| − usr(R) ≥ l + 2. Put Tw =

IU(R2n)∩U ′(R2n)wv∩O(〈wv〉⊥) where w ∈ Gv = U ′(R2n)v∩O(〈v〉⊥) and put
T :=

⋃
w∈Gv Tw . It follows by lemma 6.6 that (Xv)≤n−|v|−usr(R) ⊆ T . So it is

enough to prove that T is l-connected. The poset Gv is l-connected by lemma

Documenta Mathematica 7 (2002) 143–166



Homology Stability for Unitary Groups 163

6.9. By induction, Tw is bn−usr(R)−|v|−|w|−2
2 c-connected. But min{l − 1, l −

|w|+ 1} ≤ bn−usr(R)−|v|−|w|−2
2 c, so Tw is min{l− 1, l− |w|+ 1}-connected. For

every y ∈ T , Ay = {w ∈ Gv : y ∈ Tw} is isomorphic to U ′(R2n)vy∩O(〈vy〉⊥) so
by lemma 6.9, it is (l− |y|+ 1)-connected. Let w ∈ Gv with |w| = 1. For every
z ∈ Tw we have wz ∈ Xv, so Tw is contained in a cone, call it Cw, inside Xv.
Put C(Tw) = Tw ∪ (Cw)≤n−|v|−usr(R). Thus C(Tw) ⊆ T . The poset C(Tw) is l-
connected because C(Tw)≤n−|v|−usr(R) = (Cw)≤n−|v|−usr(R). Now by theorems
5.1 and 4.7 , T is l-connected. In other words, we have now shown that Xv is

bn−usr(R)−|v|−2
2 c-connected. By knowing this one can prove, in a similar way,

that X is bn−usr(R)−2
2 c-connected. (Just pretend that |v| = 0.)

Now consider the poset IU(R2n)x for an x = (x1, . . . , xk) ∈ IU(R2n). The
proof is by induction on n. If n = 1, everything is easy. Similarly, we

may assume n − usr(R) − |x| ≥ 0. Let l = bn−usr(R)−|x|−2
2 c. By lemma

7.2, IU(R2n)x ' IU(R2(n−|x|))〈V 〉, where V = 〈x1, . . . , xk〉. In the above
we proved that IU(R2(n−|x|)) is l-connected and by induction, the poset

IU(R2(n−|x|))y is bn−|x|−usr(R)−|y|−2
2 c-connected for every y ∈ IU(R2(n−|x|)).

But l−|y| ≤ bn−|x|−usr(R)−|y|−2
2 c. So IU(R2(n−|x|))〈V 〉 is l-connected by lemma

4.1. Therefore IU(R2n)x is l-connected. ¤

Theorem 7.4. The poset HU(R2n) is bn−usr(R)−3
2 c-connected and HU(R2n)x

is bn−usr(R)−|x|−3
2 c-connected for every x ∈ HU(R2n).

Proof. The proof is by induction on n. If n = 1, then everything is triv-
ial. Let F = IU(R2n) and Xv = HU(R2n) ∩ MU(R2n)v, for every v ∈ F .
Put X :=

⋃
v∈F Xv. It follows from lemma 7.1 that HU(R2n)≤n−usr(R) ⊆

X. Thus to treat HU(R2n), it is enough to prove that X is bn−usr(R)−3
2 c-

connected, and we may assume n ≥ usr(R) + 1. Take l = bn−usr(R)−3
2 c

and V = 〈v1, . . . , vk〉, where v = (v1, . . . , vk). By lemma 7.2, there is an
isomorphism Xv ' HU(R2(n−|v|))〈V × V 〉, if n ≥ usr(R) + |v|. By in-

duction HU(R2(n−|v|)) is bn−|v|−usr(R)−3
2 c-connected and again by induction

HU(R2(n−|v|))y is bn−|v|−usr(R)−|y|−3
2 c-connected for every y ∈ HU(R2(n−|v|)).

So by lemma 4.1 , Xv is bn−|v|−usr(R)−3
2 c-connected. Thus the poset Xv is

min{l − 1, l − |v| + 1}-connected. Let x = ((x1, y1), . . . , (xk, yk)). It is easy
to see that Ax = {v ∈ F : x ∈ Xv} ' IU(R2n)(x1,...,xk). By the above the-

orem 7.3, Ax is bn−usr(R)−k−2
2 c-connected. But l − |x| + 1 ≤ bn−usr(R)−k−2

2 c,
so Ax is (l − |x| + 1)-connected. Let v = (v1) ∈ F , |v| = 1, and let
Dv := HU(R2n)(v1,w1) ' HU(R2(n−1)) where w1 ∈ R2n is a hyperbolic dual

of v1 ∈ R2n. Then Dv ⊆ Xv and Dv is contained in a cone, call it Cv,
inside HU(R2n). Take C(Dv) := Dv ∪ (Cv)≤n−usr(R). By induction Dv is

bn−1−usr(R)−3
2 c-connected and so (l− 1)-connected. Let Yv = Xv ∪C(Dv). By

the Mayer-Vietoris theorem and the fact that C(Dv) is l-connected, we get the
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exact sequence

H̃l(Dv,Z)
(iv)∗→ H̃l(Xv,Z)→ H̃l(Yv,Z)→ 0.

where iv : Dv → Xv is the inclusion. By induction (Dv)w is bn−1−usr(R)−|w|−3
2 c-

connected and so (l− |w|)-connected, for w ∈ Dv. By lemma 4.1(i) and lemma
7.2, (iv)∗ is an isomorphism, and by exactness of the above sequence we get

H̃l(Yv,Z) = 0. If l ≥ 1 by the Van Kampen theorem π1(Yv, x) ' π1(Xv, x)/N
where x ∈ Dv and N is the normal subgroup generated by the image of the
map (iv)∗ : π1(Dv, x) → π1(Xv, x). Now by lemma 4.1(ii), π1(Yv, x) is trivial.
Thus by the Hurewicz theorem 2.1, Yv is l-connected. By having all this we
can apply theorem 4.7 and so X is l-connected. The fact that HU(R2n)x is

bn−usr(R)−|x|−3
2 c-connected follows from the above and lemma 7.2. ¤

Remark 7.5. One can define a more generalized version of hyperbolic space
H(P ) = P ⊕ P ∗ where P is a finitely generated projective module. Charney
in [5, 2.10] introduced the posets IU(P ), HU(P ) and conjectured that if P
contains a free summand of rank on rank n then IU(P ) and HU(P ) are in fact
highly connected. We leave it as exercise to the interested reader to prove this
conjecture using the theorems 7.3 and 7.4 as in the proof of lemma 6.8. In
fact one can prove that if P contains a free summand of rank n then IU(P )

is bn−usr(R)−2
2 c-connected and HU(P ) is bn−usr(R)−3

2 c-connected. Also, by as-

suming the high connectivity of the IU(R2n), Charney proved that HU(R2n)
is highly connected. Our proof is different and relies on our theory, but we use
ideas from her paper, such as the lemma 7.2 and her lemma 4.1, which is a
modified version of work of Maazen [9].

8. Homology stability

From theorem 7.4 one can get the homology stability of unitary groups. The
approach is well known.

Remark 8.1. To prove homology stability of this type one only needs high
acyclicity of the corresponding poset, not high connectivity. But usually this
type of posets are also highly connected. Here we also proved the high connec-
tivity. In particular we wished to confirm the conjecture of Charney [5, 2.10],
albeit with different bounds (see 7.5).

Theorem 8.2. Let R be a ring with usr(R) < ∞ and let the action of the
unitary group on the Abelian group A is trivial. Then the homomorphism Inc∗ :
Hk(U ε

2n(R,Λ), A)→ Hk(U ε2n+2(R,Λ), A) is surjective for n ≥ 2k + usr(R) + 2
and injective for n ≥ 2k + usr(R) + 3.

Proof. See [5, Section 4] and theorem 7.4. ¤

Remark 8.3. With the result of the previous section one also can prove ho-
mology stability of the unitary groups with twisted coefficients. For more
information in this direction see [20, §5] and [5, 4.2].
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Abstract. Jansen and Heß – correcting an earlier paper of Dou-
glas and Kroll – have derived a (pseudo-)relativistic energy expres-
sion which is very successful in describing heavy atoms. It is an ap-
proximate no-pair Hamiltonian in the Furry picture. We show that
their energy in the one-particle Coulomb case, and thus the resulting
self-adjoint Hamiltonian and its spectrum, is bounded from below for
αZ ≤ 1.006.
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1 Introduction

The energy of relativistic electrons in the electric field of a nucleus of charge
Ze is described by the Dirac Operator

Dγ = cα · ~
i
∇+mc2β − γ

|x| (1)

with γ = Ze2 and α, β the four Dirac matrices. The constant m is the mass
of the electron, c is the velocity of light, and ~ is the rationalized Planck
constant which we both take equal to one by a suitable choice of units. This
operator describes both electrons and positrons. In low energy processes as,
e.g., in quantum chemistry, there occur, however, only electrons. Brown and
Ravenhall [2] proposed to project the positrons out and to use the electronic
degrees of freedom only. They originally took the electrons and positrons given
by the free Dirac operator D0. Later it was observed that it might be suitable
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to define electrons directly by their external field (Furry picture). (See Sucher
[17] for a review.) This strategy, however, meets immediate difficulties, since
the projection χ(0,∞)(Dγ) is much harder to find for positive γ than for γ = 0.
To handle this problem Douglas and Kroll [4] used an approximate Foldy-Wout-
huysen transform to decouple the positive and negative spectral subspaces of
Dγ . Their approximation is perturbative of second order in the coupling con-
stant γ. Jansen and Heß [11] — correcting a sign mistake in [4] — wrote
down pseudo-relativistic one- and multi-particle operators to describe the en-
ergy which were successfully used to describe heavy relativistic atoms (see, e.g.,
[12]).
This derivation yields the operator (see [11], Equation (17))

Hext
D = βe+ E +

1

2
[W,O] , (2)

where

e(p) :=
√

p2 +m2, (3)

E := A(V +RV R)A, (4)

O := βA[R, V ]A, (5)

A(p) :=

(
e(p) +m

2e(p)

) 1
2

, (6)

R(p) :=
α · p

e(p) +m
, (7)

W (p, p′) = β
O(p, p′)

e(p) + e(p′)
. (8)

(Note that we write p for |p|.) Here V is the external potential which in the case
at hand is the Coulomb potential, and in configuration space it is multiplication
by −γ/|x|.
This operator – which acts on four spinors – is then sandwiched by the projec-
tion onto the first two components, namely (1 +β)/2. The resulting upper left
corner matrix operator Jγ : C∞0 (R3)⊗ C2 → L2(R3)⊗ C2 is

Jγ := Bγ + γ2K̃ = e− (γ/(2π2))K + γ2K̃. (9)

with

K(p, p′) =
(e(p) +m)(e(p′) +m) + (p · σ)(p′ · σ)

n(p)|p− p′|2n(p′)
(10)

where n(p) := (2e(p)(e(p) + m))1/2, i.e., Bγ is the Brown-Ravenhall operator
[2]. (See also Bethe and Salpeter[1] and Evans et al. [5]).
The last summand in (9) is given by the kernel

K̃(p, p′) = −1

2

∫
dp′′[W (p, p′′)P (p′′, p′) + P (p, p′′)W (p′′, p′)] (11)
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with

P (p, p′) =
σ · p(e(p′) +m)− (e(p) +m)σ · gp′

2π2n(p)|p− p′|2n(p′)
(12)

and

W (p, p′) =
P (p, p′)

e(p) + e(p′)
. (13)

Introducing b(p) := p/n(p) and a(p) := ((e(p) + m)/2e(p))1/2 we get more
explicitly

K̃(p, p′)

=
1

2(2π2)2

∫
dp′′

1

|p− p′′|2|p′′ − p′|2
(

1

e(p) + e(p′′)
+

1

e(p′′) + e(p′)

)

[
(ωp · σ) (ωp′ · σ) b(p)a(p′′)2b(p′)− (ωp · σ) (ωp′′ · σ) b(p)b(p′′)a(p′′)a(p′)

+ a(p)b(p′′)2a(p′)− (ωp′′ · σ) (ωp′ · σ) a(p)b(p′′)a(p′′)b(p′)
]
. (14)

(For later use we name the expression in the first line of the integrand in (14)
C and the four terms in the square bracket T1, ..., T4.)
The corresponding energy in a state u ∈ C∞0 (R3)⊗ C2 is

J (u) := (u, Jγu) = B(u) + γ2(u, K̃u) (15)

with

B(u) =

∫

R3

dp e(p)|u(p)|2 − γ

2π2

∫

R3

dp

∫

R3

dp′u(p)∗K(p, p′)u(p′) (16)

It is the quadratic form J which is our prime interest.
Throughout the paper we will use the following constants γc := 4π(π2 + 4 −√
−π4 + 24π2 − 16)/(π2−4)2), γBc := 2/(π/2+2/π), and dγ := 1−γ−4

√
2(3+√

2)γ2. Our goal is to show

Theorem 1. For all nonnegative masses m the following holds:

1. If γ ∈ [0, γc] then J is bounded from bellow, i.e., there exist a constant
c ∈ R such that for all u ∈ C∞0 (R3)⊗ C2

J (u) ≥ −cm‖u‖2.

2. If γ > γc, then J (u) is unbounded from below.

3. If γ ∈ [0, γBc ] then
J (u) ≥ dγm‖u‖2.

Note that γc ≈ 1.006077340. Because γ = αZ where α is the Sommerfeld
fine structure constant which has the physical value of about 1/137 and Z
is the atomic number, this allows for the treatment of all known elements.
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It also means that the method is applicable for all αZ where the Coulomb-
Dirac operator can be defined in a natural way through form methods (Nenciu
[15]). — Note, in particular, that the energy is bounded from below, even if
γc > γ > 1 although the perturbative derivation of the symmetric operator
Hext
D is questionable in this case.

We would like to remark that the lower bound can most likely be improved
for positive masses. In fact, we conjecture that the energy is positive for all
sub-critical γ. However, this is outside the scope of this work.
According to Friedrichs our theorem has the following immediate consequence:

Corollary 1. The symmetric operator Jγ has a unique self-adjoint extension
whose form domain contains C∞0 (R3)⊗ C2 for γ ∈ [0, γc].

In fact for γ < γc, since the potential turns out to be form bounded with
relative bound less than one, the self-adjoint operator defined has form domain
H1/2(R3)⊗ C2.
The structure of the paper is as follow: in Section 2 using spherical symme-
try we decompose the operator in angular momentum channels. In Section 3
we prove the positivity of the massless operators. Since these operators are
homogeneous under dilation an obvious tool to use is the Mellin transform, a
method that previously has been used with success to obtain tight estimates
on critical coupling constant (see, e.g., [3]). In Section 4 we find that the differ-
ence between the massless and the massive operator is bounded. Finally, some
useful identities are given in the Appendix.

2 Partial Wave Analysis of the Energy

To obtain a sharp estimate for the potential energy we decompose the operator
as direct sum on invariant subspaces. Because of the rotational symmetry of the
problem one might suspect that the angular momenta are conserved quantities.
Indeed, as a somewhat lengthy calculation shows, the total angular momentum
J = 1

2 (x× p +σ) commutes with Hext. In fact we can largely follow a strategy
carried out by Hardekopf and Sucher [9] and Evans et al. [5] in somewhat
simpler contexts.
We begin by observing that those of the spherical spinors

Ωl,m,s(ω) :=








√
l+s+m
2(l+s) Yl,m− 1

2
(ω)

√
l+s−m
2(l+s) Yl,m+

1
2

(ω)


 s = 1

2



−
√

l+s−m+1
2(l+s)+2 Yl,m− 1

2
(ω)

√
l+s+m+1
2(l+s)+2 Yl,m+

1
2

(ω)


 s = − 1

2

(17)

with l = 0, 1, 2, ... and m = −l − 1
2 , ..., l + 1

2 , that do not vanish, form an
orthonormal basis of L2(S2)⊗C2. Here Yl,k are normalized spherical harmonics
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on the unit sphere S2 (see, e.g., [14], p. 421) with the convention that Yl,k = 0,
if |k| > l. We denote the corresponding index set by I, i.e., I := {(l,m, s)|l ∈
N0,m = −l − 1

2 , ..., l + 1
2 , s = ± 1

2 ,Ωl,m,s 6= 0}. Thus any u ∈ L2(R3)⊗ C2 can
be written as

u(p) =
∑

(l,m,s)∈I
p−1fl,m,s(p)Ωl,m,s(ωp) (18)

where p = |p|, ωp = p/p, and

∑

(l,m,s)∈I

∫ ∞

0

|fl,m,s(p)|2dp =

∫

R3

|u(p)|2dp.

We now remind the reader that the expansion of the Coulomb potential in
spherical harmonics is given by

1

|p− p′|2 =
2π

pp′

∞∑

l=0

l∑

m=−l
ql(p/p

′)Yl,m(ωp)Y l,m(ωp′) (19)

where ql(x) := Ql((x+ 1/x)/2); Ql are Legendre functions of the second kind,
i.e.,

Ql(z) = 1
2

∫ 1

−1
Pl(t)
z−t dt (20)

where the Pl are Legendre polynomials. [See Stegun [16] for the notation and
some properties of these special functions.]
Inserting the expansion (18) and (19) into (15) yields

J (u) =
∑

(l,m,s)∈I
Jl,s(fl,m,s)

with

Jl,s(f) :=

∫ ∞

0

e(p)|f(p)|2dp− γ

π

∫ ∞

0

∫ ∞

0

f(p)kl,s(p, p
′)f(p)dpdp′

+ γ2

∫ ∞

0

dp

∫ ∞

0

dp′f(p)k̃l,s(p, p
′)f(p′) (21)

and

kl,s(p
′, p) =

(e(p′) +m)ql(
p′

p )(e(p) +m) + p′ql+2s(
p′

p )p

n(p′)n(p)
(22)

and

k̃l,s(p, p
′) =

1

2π2

∫ ∞

0

dp′′
(

1

e(p) + e(p′′)
+

1

e(p′′) + e(p′)

)

[
ql+2s(

p

p′′
)ql+2s(

p′

p′′
)b(p)a(p′′)2b(p′)− ql+2s(

p

p′′
)ql(

p′′

p′
)b(p)b(p′′)a(p′′)a(p′)

+ql(
p

p′′
)ql(

p′

p′′
)a(p)b(p′′)2a(p′)− ql(

p

p′′
)ql+2s(

p′′

p′
)a(p)b(p′′)a(p′′)b(p′)

]
. (23)
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The Legendre functions of the second kind appear here for exactly the same
reasons as in the treatment of the Schrödinger equation for the hydrogen atom
in momentum space (Flügge [6], Problem 77).] To obtain (21), we also use that
(ωp ·σ)Ωl,m,s(ωp) = −Ωl+2s,m,−s(ωp) (see, e.g., Greiner [8], p. 171, (12)). The
operators hl,s defined by the sesquilinear form (21) via the equation (f, hl,sf) =
Jl,s(f) are reducing the operatorHext on the corresponding angular momentum
subspaces.

3 The Massless Operators and Their Positivity

To proceed, we will first consider the massless operators. The lower bound in
the massive case will be a corollary of the positivity of the massless one. The
energy in angular momentum channel (l,m, s) in the massless case can be read
of from (14) and is given by

Jl,s(f) := Bl,s(f) + γ2

∫ ∞

0

dp

∫ ∞

0

dp′f(p)k̃l,s(p, p
′)f(p′) (24)

with

Bl,s(f)

=

∫ ∞

0

p|f(p)|2dp− γ

2π

∫ ∞

0

dp

∫ ∞

0

dp′f(p)

(
ql(

p

p′
) + ql+2s(

p

p′
)

)
f(p′) (25)

and

k̃l,s(p, p
′) =

1

8π2

∫ ∞

0

dp′′
(

1

p+ p′′
+

1

p′′ + p′

)

[
ql+2s(

p

p′′
)ql+2s(

p′′

p′
)− ql+2s(

p

p′′
)ql(

p′′

p′
)

+ql(
p

p′′
)ql(

p′′

p′
)− ql(

p

p′′
)ql+2s(

p′′

p′
)

]
. (26)

Using the simplifications of Appendix A, Formulae (57) and (59) we get

k̃l,s(p, p
′) =

1

8π2

∫ ∞

0

dp′′

p′′

(
ql(

p

p′′
)ql(

p′′

p′
)− ql+2s(

p

p′′
)ql(

p′′

p′
)

−ql(
p

p′′
)ql+2s(

p′′

p′
) + ql+2s(

p

p′′
)ql+2s(

p′′

p′
)

)
. (27)

Since the operator in question is homogeneous of degree minus one we Mellin
transform (see Appendix B) the quadratic form εl,s. If we write this form as a

functional J#
l,s of the Mellin transformed radial functions f#, we get

J#
l,s

(
f#
)

= B#
l,s

(
f#
)

+
1

2

( γ
2π

)2
∫ ∞

−∞
dt
∣∣f# (t+ i/2)

∣∣2 F#(t) (28)
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where B#
l,s is the Brown-Ravenhall energy in angular momentum channel (l, s)

in Mellin space, i.e.,

B#
l,s(g) :=

∫ ∞

−∞
dt |g (t+ i/2)|2

[
1− γ

2
(Vl(t) + Vl+2s(t))

]
(29)

with

Vl(t) =

√
2

π
q#
l (t− i/2) =

1

2

∣∣∣∣∣
Γ
(
l+1−it

2

)

Γ
(
l+2−it

2

)
∣∣∣∣∣

2

(30)

(see Tix [19] [note also the factor
√

2/π which is different from Tix’s original
formula]) and

F#(t) =
√

2π
(
q#
l (t− i/2)− q#

l+2s(t− i/2)
)2

. (31)

Formulae (29), (30), and (31) are obtained from (24), (25), and (27) using the
fact that the occurring integrals can be read as a Mellin convolution which is
turned by the Mellin transform into a product (see Appendix B, Formulae (61)
and (63)).

Note that Vl is the Coulomb potential after Fourier transform, partial wave
analysis, and Mellin transform.

3.1 Positivity of the Brown-Ravenhall Energy

To warm up for the minimization of J #
l,s we start with B#

l,s only. To this end
we first note

Lemma 1. We have

Vl+1(t) ≤ Vl+1(0) ≤ Vl(0). (32)

Note, that this is similar to Lemma 2 in [5].

Proof. First note that q0 ≥ q1 ≥ q2... which follows from the integral represen-
tation in [21], Chapter XV, Section 32, p. 334. This implies

∣∣∣q#
l+1(t− i/2)

∣∣∣ =
1√
2π

∣∣∣∣
∫ ∞

0

ql+1(p)p−it
dp

p

∣∣∣∣ ≤
1√
2π

∫ ∞

0

ql+1(p)
dp

p

≤ 1√
2π

∫ ∞

0

ql(p)
dp

p
,

(33)

which implies the lemma.

Theorem 2. For all u ∈ C∞0 (R3)⊗ C2 and m = 0 we have B ≥ 0 if and only
if γ ≤ γBc .
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Proof. Note that

Vl(t) + Vl+2s(t) ≤ V0(0) + V1(0) =
π

2
+

2

π
. (34)

Thus

B#
l,s(g) ≥

∫ ∞

−∞
dt |g (t+ i/2)|2

(
1− γ

2

(
π

2
+

2

π

))
(35)

which implies that the energy is nonnegative if γ ≤ 2/(π/2 + 2/π).

We remark that Theorem 2 was proved by Evans et al. [5]. However, since g
can be localized at t = 0, our method shows that Inequality (35) is sharp, i.e.,
the present proof shows also the sharpness of γBc , a result of Hundertmark et
al. [10] obtained by different means.

Since — according to Tix [19] — the difference of the massive and massless
Brown-Ravenhall operators is bounded, Theorem 2 shows also that the energy
in the massive case is bounded from below under the same condition on γ as
in the massless case.

3.2 The Jansen-Hess Energy

We now wish to treat the full relativistic energy according to Jansen and Heß as
given in (28) through (31). From these equations it is obvious that the energy
is positive, if the coupling constant γ does not exceed γBc , since the additional
energy term is non-negative. However, as can be expected, the critical coupling
constant is in fact bigger, i.e. we want to prove Theorem 1 in the massless case.

Lemma 2. For all u ∈ C∞0 (R3)⊗C2, m = 0, and γ ≤ γc we have (u,J u) ≥ 0.
Moreover, if γ > γc, then J is not bounded from bellow.

Proof. We write the energy density in Mellin space as given in Equations (28)
through (31) as

jl,s(t) := 1− γ

2
(Vl(t) + Vl+2s(t)) +

γ2

8
(Vl(t)− Vl+2s(t))

2. (36)

As in the case of the Brown-Ravenhall energy we want to show that jl,s attains
its minimum for l = 0 and t = 0.

First we note, that jl,s(t) = jl+2s,−s(t) which means that we can restrict the
following to s = 1/2, i.e., to jl,1/2.

Next we show that it is monotone decreasing in l. For γ ≤ 4/π we have

0 ≤ 1− γ

2
V0(0) ≤ 1− γ

2
Vl(t) ≤ 1− γ

4
Vl(t)−

γ

4
Vl+2(t)

≤ 1 +
γ

2
Vl+1(t)− γ

4
Vl(t)−

γ

4
Vl+2(t)

(37)
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where use successively (64), (32), Lemma 6 in Appendix C, and the positivity
of the Vl. Inequality (37) is – after multiplication by γ((Vl(t) − Vl+2(t))/2 –
identical with the desired monotonicity inequality

jl+1,1/2(t) ≥ jl,1/2(t). (38)

For later purposes we note that functions jl,1/2 are symmetric about the origin.
Next we will show that the energy density has its absolute minimum at the
origin: to this end we simply show that the derivative of j0,1/2 is nonnegative
on the positive axis, if γ ≤ 2/(π/2 + 2/π) which is bigger than 4/π. Since

|V0(t)− V1(t)| ≤
∫ ∞

0

(q0(x)− q1(x))
dx

x
= V0(0)− V1(0) =

π

2
− 2

π

we have
−1 +

γ

2
(V0(t)− V1(t)) ≤ 0 (39)

and obviously we have

−1− γ

2
(V0(t)− V1(t)) ≤ 0. (40)

Thus the derivative of the energy j0,1/2 is

j′0,1/2(t) =
γ

2
[−V ′0(t)− V ′1(t) +

γ

2
(V0(t)− V1(t))(V ′0(t)− V ′1(t))]

=
γ

2
{V ′0(t)[−1 +

γ

2
(V0(t)− V1(t))] + V ′1(t)[−1− γ

2
(V0(t)− V1(t))]} ≥ 0, (41)

since V0 and V1 are symmetrically decreasing about the origin (see Appendix
C).
Finally, the polynomial

j0,1/2(0) = 1− γ

2

(
π

2
+

2

π

)
+
γ2

8

(
π

2
− 2

π

)2

is nonnegative for γ ≤ γc as defined in the hypothesis. Thus, we have

jl,s(t) ≥ j0,1/2(0) ≥ 0.

4 Lower Bound on the Energy According to Jansen and Heß

To distinguish the massive and the massless expressions we will indicate in this
section the dependence their on the mass m by a superscript m, if it seems
appropriate.
The goal of this section is to show Theorem 1 for the massive case. We proceed
by enunciating the following lemmata.

Documenta Mathematica 7 (2002) 167–182



176 R. Brummelhuis, H. Siedentop, and Edgardo Stockmeyer

Lemma 3 (Tix [18, 20]). For all u ∈ C∞0 (R3)⊗ C2,m ≥ 0, and γ ≤ γBc then

B(u) ≥ m(1− γ).

Lemma 4 (Tix [19]). The expression |Bm(u) − B0(u)| is bounded for u ∈
C∞0 (R3)⊗ C2.

Lemma 5. For all m ≥ 0 and for all u ∈ C∞0 (R3)⊗ C2 we have

|K̃m(u)− K̃0(u)| ≤ md‖u‖2 (42)

where d :=
√

2(12 + 25/2).

We note that the first part of Theorem 1 follows from Lemmata 2, 4, and 5.
The third part is a consequence of Lemmata 3 and 5.

Proof. First we remark that

sup{|Jm(u)− J 0(u)| | ‖u‖ = 1} = m sup{|J 1(u)− J 0(u)| | ‖u‖ = 1}.

Then it is enough to start bounding |(u, K̃1u)− (u, K̃0u)|: By the mean value
theorem we have

|K̃1(p, p′)− K̃0(p, p′)| ≤ λ|D(µ, p, p′)| (43)

for some µ ∈ (0, λ) where λ ∈ (0, 1) is a deformation parameter and D(µ, p, p′)
is the derivative of K̃µ(p, p′) with respect to µ. Computing the derivative yields

|D(µ, p, p′)| =
∣∣∣∣
∫
dp′′F (µ, p, p′′, p′)

∣∣∣∣ (44)

with

F (µ, p, p′′, p′)

:=
1

2(2π2)2

(
∂C

∂λ
(T1 + ...+ T4) + C

∂(T1 + ...+ T4)

∂λ

)
(µ, p, p′′, p′) (45)

where C and T1, ..., T4 are defined right below (14). Note that a(p)2 ≤ 1 and
b(p)2 ≤ 1/2, i.e., by the definition T1, ..., T4 ≤ 1/2. Furthermore we note that

∂C

∂λ
=
−λ
E(p′′)

1

|p− p′′|2|p′′ − p′|2(
1

(E(p) + E(p′′))E(p)
+

1

(E(p′′) + E(p′))E(p′)

)
. (46)

First we treat ∂C
∂λ (T1+...+T4). We get using the above estimates on T1 through

T4 and (46)
∣∣∣∣
∂C

∂λ
(T1 + ...+ T4)(µ, p, p′′, p′)

∣∣∣∣ ≤
2

p′′
1

|p− p′′|2|p′′ − p′|2
(

1

p+ p′′
+

1

p′′ + p′

)

(47)
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Next we treat C ∂(T1+...+T4)
∂λ . To this end we note

∣∣∣∣
∂a

∂λ
(p)

∣∣∣∣ =
p2

4E(p)3

√
2E(p)

E(p) + λ
≤
√

2

4p
(48)

and ∣∣∣∣
∂b

∂λ
(p)

∣∣∣∣ = p

√
E(p) + λ

8E(p)5
≤ 1

2p
. (49)

Thus

|C ∂(T1 + ...+ T4)

∂λ
(µ, p, p′′, p′)|

≤ 3

23/2

1

|p− p′′|2|p′′ − p′|2
(

1

p+ p′′
+

1

p′′ + p′

)(
1

p
+

2

p′′
+

1

p′

)
. (50)

We now bound the integral operator K̃1 − K̃0 by a multiplication operator:
First pick α ∈ R. Then we have — using the symmetry of F (µ, p, p′′, p′) in p
and p′ for fixed p′′ —

|(u, (K̃1 − K̃0)u)| =
∣∣∣∣
∫
dp′′

∫
dp

∫
dp′u(p)∗F (µ, p, p′′, p′)u(p′)

∣∣∣∣

≤
∫
dp′′

∫
dp|u(p)|2

∫
dp′
∣∣∣∣
p

p′

∣∣∣∣
α

|F (µ, p, p′′, p′)| (51)

where we used the Schwarz inequality in the measure dpdp′ in the last step for
fixed p′′. Now using the estimates (47) and (50) and collecting similar terms
yields

|(u, (K̃1 − K̃0)u)| ≤ 1

25/2(2π2)2

∫
dp|u(p)|2

∫
dp′′

∫
dp′
∣∣∣∣
p

p′

∣∣∣∣
α

1

|p− p′′|2|p′′ − p′|2
(

1

p+ p′′
+

1

p′′ + p′

)(
3

p
+

2
5
2 + 6

p′′
+

3

p′

)
(52)

where we claim the last line to be bounded by 32(12 + 25/2)π4, i.e.,

|(u, (K̃1 − K̃0)u)| ≤
√

2

∫
dp|u(p)|2(12 + 25/2). (53)

To show the above bound we break the integral into three parts

I :=

∫
dp′′

∫
dp′
(
p

p′

)α
1

|p− p′′|2|p′′ − p′|2
(

1

p+ p′′
+

1

p′′ + p′

)
1

p
,

I ′′ :=

∫
dp′′

∫
dp′
(
p

p′

)α
1

|p− p′′|2|p′′ − p′|2
(

1

p+ p′′
+

1

p′′ + p′

)
1

p′′
,

I ′ :=

∫
dp′′

∫
dp′
(
p

p′

)α
1

|p− p′′|2|p′′ − p′|2
(

1

p+ p′′
+

1

p′′ + p′

)
1

p′
.

(54)
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We will also use the following integral (see [13], p.124)

Υ(β) :=

∫

R3

dp
1

|e− p|2
1

pβ
= π2 Γ(β−1

2 )Γ(1− β−1
2 )

Γ(2− β
2 )Γ(β2 )

, (55)

where e is an (arbitrary) unit vector in R3 and β ∈ (1, 3). We observe that
each of the integrals in (54) do not depend on the value of p (what becomes
evident after substitution of p′ → pp′ and p′′ → pp′′). So picking p = 1 and
doing p′ → p′′p′ in each integral in (54) we find

I =

∫
dp′′

∫
dp′
(

1

p′p′′

)α
1

|u− p′′|2|u′′ − p′|2
{

p′′

1 + p′′
+

1

1 + p′

}
≤ 2Υ(α)2,

I ′′ =

∫
dp′′

∫
dp′
(

1

p′p′′

)α
1

|u− p′′|2|u′′ − p′|2
{

1

1 + p′′
+

1

p′′(1 + p′)

}

≤ Υ(α)2 + Υ(α)Υ(α+ 1),

I ′ =

∫
dp′′

∫
dp′
(

1

p′p′′

)α
1

|u− p′′|2|u′′ − p′|2
{

1

p′(1 + p′′)
+

1

p′p′′(1 + p′)

}

≤ 2Υ(α+ 1)2,

(56)

We choose α = 3/2 and using (55) we obtain the same bound for each integral,
namely 32π4. Equation (53) proves Lemma 5 and follows by using the latter
bound in (52).

A Some Useful Integral Identities

Suppose f(x) = f(1/x) and suppose f(x)/(1+x) is integrable on (0,∞). Then

∫ ∞

0

f(x)

1 + x
dx =

∫ 1

0

f(x)

x
dx =

1

2

∫ ∞

0

f(x)

x
dx (57)

To show (57) we split the first integral

∫ 1

0

dx

x
f(x)

x

1 + x
+

∫ ∞

1

dx

x
f(x)

x

1 + x
=

∫ 1

0

dx

x
f(x)

=

∫ ∞

0

dx

x
f(x)−

∫ ∞

1

dx

x
f(x) =

∫ ∞

0

dx

x
f(x)−

∫ 1

0

dx

x
f(x). (58)

where we used the invariance under inversion of f for the first and third equality.

Next we wish to simplify the kernel jl,s. To this end we use again the abbrevi-
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ation ql(x) := Ql
(

1
2

(
x+ 1

x

))
as in (26). We claim

I(p, p′)

:=

∫ ∞

0

dp′′

p′′

(
ql(

p

p′′
)qm(

p′′

p′
) + qm(

p

p′′
)ql(

p′′

p′
)

)(
p′′

p+ p′′
+

p′′

p′′ + p′

)
(59)

=

∫ ∞

0

dp′′

p′′

(
ql(

p

p′′
)qm(

p′′

p′
) + qm(

p

p′′
)ql(

p′′

p′
)

)

To prove this we take the integral with the complete first factor times the
first summand of the second factor –we name I1– and the integral over the
complete first factor times the second summand of the second factor, I2. In I1
we substitute p′′ → pp′′ whereas in I2 we substitute p′′ → p′p′′. This yields
using (57)

I(p, p′) = I1 + I2 =
1

2

∫ ∞

0

dp′′

p′′

[
ql (p

′′) qm

(
p′′p
p′

)

+ qm(p′′)ql

(
p′′
p

p′

)
+ ql

(
p′′p′

p

)
qm(p′′) +qm

(
p′′
p′

p

)
ql(p

′′)

]
. (60)

Undoing the substitutions yields the desired result.

B The Mellin Transform

The Mellin transform is a unitary map from L2(R+) to L2(R) given by the
formula

f#(s) :=
1√
2π

∫ ∞

0

f(p)p−
1
2−isdp.

The Mellin convolution of two function f and g is defined as

(f ? g)(p) =

∫ ∞

0

f

(
p

q

)
g(q)

dq

q
. (61)

If f ∈ C∞0 (R+), then f# extends to an entire function, and we have

(pαf)#(s) = f#(s+ iα). (62)

We also have

(f ? g)#(s) =
√

2πf#(s)g#(s). (63)

Both, (62) and (63), can be verified by direct computation.
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C Some Properties Related to the Partial Wave Analysis of the
Coulomb potential in Mellin Space

We first remark the follow property on the difference of Vl and Vl+2.

Lemma 6. For l = 0, 1, 2, ... and t ∈ R we have Vl+2(t) < Vl(t).

Proof. From the definition of Vl in (30) we see that the claim is equivalent to

∣∣∣∣∣
Γ
(
l+1−it

2

)

Γ
(
l+2−it

2

)
∣∣∣∣∣

2

>

∣∣∣∣∣
Γ
(
l+3−it

2

)

Γ
(
l+4−it

2

)
∣∣∣∣∣

2

.

This, however, can be easily verified using the functional equation Γ(x+ 1) =
xΓ(x) of the Gamma function in the numerator and denominator of the right
hand side with x = (l + 1− it)/2 and x = (l + 2− it)/2.

From the definition of the Vl and from Formulae 8.332.2 and 8.333.3 in [7] one
finds V0 and V1 in terms of the hyperbolic tangent and cotangent:

V0(t) =
Tg(πt/2)

t
(64)

V1(t) =
t

1 + t2
Ctg(πt/2). (65)

Moreover, both of these functions are decreasing symmetricly about the origin.
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[3] Raymond Brummelhuis, Norbert Röhrl, and Heinz Siedentop. Stability of
the relativistic electron-positron field of atoms in Hartree-Fock approxi-
mation: Heavy elements. Doc. Math., J. DMV, 6:1–8, 2001.

Documenta Mathematica 7 (2002) 167–182



Relativistic One-Electron Atoms 181

[4] Marvin Douglas and Norman M. Kroll. Quantum electrodynamical cor-
rections to the fine structure of helium. Annals of Physics, 82:89–155,
1974.

[5] William Desmond Evans, Peter Perry, and Heinz Siedentop. The spec-
trum of relativistic one-electron atoms according to Bethe and Salpeter.
Commun. Math. Phys., 178(3):733–746, July 1996.
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Abstract. Let X be a p-divisible group with constant Newton poly-
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regular this was proved by N. Katz for dim S = 1 and by T. Zink for
dim S ≥ 1.
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Introduction

In this paper we work over base fields, and over base schemes over Fp, i.e. we
work entirely in characteristic p. We study p-divisible groups X over a base
scheme S (and, colloquially, a p-divisible group over a base scheme of positive
dimension will be called a “family of p-divisible groups”), such that the Newton
polygon of a fiber Xs is independent of s ∈ S. We call X a p-divisible group
with constant Newton polygon.

A p-divisible group over a field has a slope filtration, see [Z1], Corollary 13; for
the definition of a slope filtration, see Definition 1.1. Over a base of positive
dimension a slope filtration can only exist if the Newton polygon is constant. In
Example 4.1 we show that even in this case there are p-divisible groups which
do not admit a slope filtration.

The main result of this paper has as a corollary that for a p-divisible group with
constant Newton polygon over a normal base up to isogeny a slope filtration does
exist, see Corollary 2.2.

We have access to this kind of questions by the definition of a completely slope
divisible p-divisible group, see Definition 1.2, which implies a structure finer
than a slope filtration. The main theorem of this paper, Theorem 2.1, says that
over a normal base this structure on a p-divisible group exists up to isogeny.
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In [Z1], Theorem 7, this was shown to be true over a regular base. In 4.2 we
show that without the condition “normal” the conclusion of the theorem does
not hold.

Here is a motivation for this kind definition and of results:

• A p-divisible group over an algebraically closed field is isogeneous with a
p-divisible group which can be defined over a finite field.

• A p-divisible group over an algebraically closed field is completely slope
divisible, if and only if it is isomorphic with a direct sum of isoclinic
p-divisible groups which can be defined over a finite field, see 1.5.

We see that a completely slope divisible p-divisible group comes “as close as
possible” to a constant one, in fact up to extensions of p-divisible groups anni-
hilated by an inseparable extension of the base, and up to monodromy.

From Theorem 2.1 we deduce constancy results which generalize results of
Katz [K] and more recently of de Jong and Oort [JO]. In particular we prove,
Corollary 3.4 below:

Let R be a Henselian local ring with residue field k. Let h be a natural number.
Then there exists a constant c with the following property. Let X and Y be
isoclinic p-divisible groups over S = SpecR whose heights are smaller than h.
Let ψ : Xk → Yk be a homomorphism. Then pcψ lifts to a homomorphism
X → Y .

1 Completely slope divisible p-divisible groups

In this section we present basic definitions and methods already used in the
introduction.

Let S be a scheme over Fp. Let Frob : S → S be the absolute Frobenius
morphism. For a scheme G/S we write:

G(p) = G×S,Frob S.

We denote by Fr = FrG : G → G(p) the Frobenius morphism relative to S.
If G is a finite locally free commutative group scheme we write Ver = VerG :
G(p) → G for the “Verschiebung”.

Let X be a p-divisible group over S. We denote by X(n) the kernel of the
multiplication by pn : X → X. This is a finite, locally free group scheme which
has rank pnh if X is of height h.

Let s = Spec k the spectrum of a field of characteristic p. Let X be a p-divisible
group over s. Let λ ≥ 0 be a rational number. We call X isoclinic of slope λ,
if there exists integers r ≥ 0, s > 0 such that λ = r/s, and a p-divisible group
Y over S, which is isogeneous to X such that

p−r Frs : Y → Y (ps)
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is an isomorphism.

A p-divisible group X over S is called isoclinic of slope λ, if for each point
s ∈ S the group Xs is isoclinic of slope λ.

1.1 Definition. Let X/S be a p-divisible group over a scheme S. A filtration

0 = X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xm = X

consisting of p-divisible groups contained in X is called a slope filtration of X
if there exists rational numbers λ1, . . . , λm satisfying 1 ≥ λ1 > . . . > λm ≥ 0
such that every subquotient Xi/Xi−1, 1 < i ≤ m, is isoclinic of slope λi.

A p-divisible group X over a field admits a slope filtration, see [Z1], Corollary
13. The slopes λi and the heights of Xi/Xi−1 depend only on X. The height
of Xi/Xi−1 is called the multiplicity of λi.

Over connected base scheme S of positive dimension a slope filtration of X
can only exist if the slopes of Xs and their multiplicities are independent of
s ∈ S. In this case we say that X is a family of p-divisible groups with constant
Newton polygon. Even if the Newton polygon is constant a slope filtration in
general does not exist, see Example 4.1 below.

1.2 Definition. Let s > 0 and r1, . . . , rm be integers such that s ≥ r1 > r2 >
. . . > rm ≥ 0. A p-divisible group Y over a scheme S is said to be completely
slope divisible with respect to these integers if Y has a filtration by p-divisible
subgroups:

0 = Y0 ⊂ Y1 ⊂ . . . ⊂ Ym = Y

such that the following properties hold:

• The quasi-isogenies

p−ri Frs : Yi → Y
(ps)
i

are isogenies for i = 1, . . . ,m.

• The induced morphisms:

p−ri Frs : Yi/Yi−1 → (Yi/Yi−1)(ps)

are isomorphisms.

Note that the last condition implies that Yi/Yi−1 is isoclinic of slope λi := ri/s.
A filtration described in this definition is a slope filtration in the sense of the
previous definition.

Remark. Note that we do not require s and ri to be relatively prime. If Y
is as in the definition, and t ∈ Z>0, it is also completely slope divisible with
respect to t·s ≥ t·r1 > t·r2 > . . . > t·rm ≥ 0.
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We note that the filtration Yi of Y is uniquely determined, if it exists. Indeed,
consider the isogeny Φ = p−rm Frs : Y → Y (ps). Then Ym/Ym−1 is necessarily
the Φ-étale part Y Φ of Y , see [Z1] respectively 1.6 below. This proves the
uniqueness by induction.

We will say that a p-divisible group is completely slope divisible if it is
completely slope divisible with respect to some set integers and inequalities
s ≥ r1 > r2 > . . . > rm ≥ 0.

Remark. A p-divisible group Y over a field K is completely slope divisible
iff Y ⊗K L is completely slope divisible for some field L ⊃ K. - Proof. The
slope filtration on Y/K exists. We have Ker(prY ) ⊂ Ker(FrsY ) iff Ker(prYL) ⊂
Ker(FrsYL), and the same for equalities. This proves that the conditions in the
definition for completely slope divisibility hold over K iff they hold over L ⊃ K.

1.3 Proposition. Let Y be a completely slope divisible p-divisible group over
a perfect scheme S. Then Y is isomorphic to a direct sum of isoclinic and
completely slope divisible p-divisible groups.

Proof. With the notation of Definition 1.2 we set Φ = p−rm Frs. Let
Y (n) = SpecA(n) and let Y (n)Φ = SpecL(n) be the Φ-étale part (see Corol-
lary 1.7 below). Then Φ induces a Frobs-linear endomorphism Φ∗ of A(n) and
L(n) which is by definition bijective on L(n) and nilpotent on the quotient
A(n)/L(n). One verifies (compare [Z1], page 84) that there is a unique Φ∗-
equivariant section of the inclusion L(n) → A(n). This shows that Ym/Ym−1

is a direct factor of Y = Ym. The result follows by induction on m. Q.E.D.

Although not needed, we give a characterization of completely slope divisible
p-divisible groups over a field. If X is a p-divisible group over a field K, and
k ⊃ K is an algebraic closure, then X is completely slope divisible if and only
if Xk is completely slope divisible; hence it suffices to give a characterization
over an algebraically closed field.

Convention: We will work with the covariant Dieudonné module of a p-divisible
group over a perfect field ([Z2], [Me]). We write V , respectively F for Ver-
schiebung, respectively Frobenius on Dieudonné modules. Let K be a perfect
field, and let W (K) be its ring of Witt vectors. A Dieudonné module M over
K is the Dieudonné module of an isoclinic p-divisible group of slope r/s, iff
there exists a W (K)-submodule M ′ ⊂M such that M/M ′ is annihilated by a
power of p, and such that p−rV s(M ′) = M ′.

For later use we introduce the p-divisible group Gm,n for coprime positive
integers m and n. Its Dieudonné module is generated by one element, which
is stable under Fm − V n. Gm,n is isoclinic of slope λ = m/(m + n) (in the
terminology of this paper). The height of Gm,n is h = m + n, and this p-
divisible group is completely slope divisible with respect to h = m + n ≥ m.
The group Gm,n has dimension m, and its Serre dual has dimension n.

We have G1,0 = µp∞ , and G0,1 = Qp/Zp.
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1.4 Proposition. Let k be an algebraically closed field. An isoclinic p-
divisible group Y over k is completely slope divisible iff it can be defined over
a finite field; i.e. iff there exists a p-divisible group Y ′ over some Fq and an
isomorphism Y ∼= Y ′ ⊗Fq k.

Proof. Assume that Y is slope divisible with respect to s ≥ r ≥ 0. Let M be
the covariant Dieudonné module of Y . We set Φ = p−rV s. By assumption this
is a semilinear automorphism of M . By a theorem of Dieudonné (see 1.6 below)
M has a basis of Φ-invariant vectors. Hence M = M0 ⊗W (Fps ) W (k) where
M0 ⊂ M is the subgroup of Φ-invariant vectors. Then M0 is the Dieudonné
module of a p-divisible group over Fps such that Y ∼= Y ′ ⊗Fq k.

Conversely assume that Y is isoclinic over a finite field k of slope r/s. Let M be
the Dieudonné module of Y . By definition there is a finitely generated W (k)-
submodule M ′ ⊂M ⊗Q such that pmM ′ ⊂M ⊂M ′ for some natural number
m, and such that p−rV s(M ′) = M ′. Then Φ = p−rV s is an automorphism of
the finite set M ′/pmM ′. Hence some power Φt acts trivially on this set. This
implies that Φt(M) = M . We obtain that p−rtF st induces an automorphism
of Y . Therefore Y is completely slope divisible. Q.E.D.

1.5 Corollary. Let Y be a p-divisible group over an algebraically closed
field k. This p-divisible group is completely slope divisible iff Y ∼= ⊕Yi such
that every Yi is isoclinic, and can be defined over a finite field.

Proof. Indeed this follows from 1.3 and 1.4. Q.E.D.

1.6 The Φ-étale part.

For further use, we recall a notion explained and used in [Z1], Section 2. This
method goes back to Hasse and Witt, see [HW], and to Dieudonné, see [D],
Proposition 5 on page 233. It can be formulated and proved for locally free
sheaves, and it has a corollary for finite flat group schemes.

Let V be a finite dimensional vector space over a separably closed field k of
characteristic p. Let f : V → V be a Frobs-linear endomorphism. The set
CV = {x ∈ V | f(x) = x} is a vector space over Fps . Then V f = CV ⊗Fps k is a
subspace of V . The endomorphism f acts as a Frobs-linear automorphism on
V f and acts nilpotently on the quotient V/V f . This follows essentially form
Dieudonné loc.cit.. Moreover if k is any field of characteristic p we have still
unique exact sequence of k-vector spaces

0→ V f → V → V/V f → 0

such that f acts as a a Frobs-linear automorphism on V f and acts nilpotently
on the quotient V/V f .

This can be applied in the following situation: Let S be a scheme over Fp. Let
G be a locally free group scheme over S endowed with a homomorphism

Φ : G→ G(ps).
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In case S = Spec(K), where K is a field we consider the affine algebra A
of G. The Φ induces a Frobs-linear endomorphism f : A → A. The vector
subspace Af inherits the structure of a bigebra. We obtain a finite group
scheme GΦ = SpecAf , which is called the Φ-étale part of G. Moreover we have
an exact sequence of group schemes:

0→ GΦ−nil −→ G −→ GΦ → 0.

The morphism Φ induces an isomorphism GΦ → (GΦ)(ps), and acts nilpotently
on the kernel GΦ−nil.

Let now S be an arbitrary scheme over Fp. Then we can expect a Φ-étale part
only in the case where the rank of GΦ

x is independent of x ∈ S:

1.7 Corollary. Let G → S be a finite, locally free group scheme; let Φ :
G→ G(pt) be a homomorphism. Assume that the function

S → Z, defined by x 7→ rank((Gx)Φx)

is constant. Then there exists an exact sequence

0→ GΦ−nil −→ G −→ GΦ → 0

such that Φ is nilpotent on GΦ−nil and an isomorphism on the Φ-étale part GΦ.

The prove is based on another proposition which we use in section 3. Let M
be a finitely generated, locally free OS-module. Let t ∈ Z>0

f : OS ⊗FrobtS ,S
M =M(pt) →M

be a morphism of OS-modules. To every morphism T → S we associate

CM(T ) = {x ∈ Γ(T,MT ) | f(1⊗ x) = x}.

1.8 Proposition (see [Z1], Proposition 3). The functor CM is represented
by a scheme that is étale and affine over S. Suppose S to be connected; the
scheme CM is finite over S iff for each geometric point η → S the cardinality
of CM(η) is the same.

Let X be a p-divisible group over a field K. Suppose Φ : X → X (pt) is a
homomorphism. Then the Φ-étale part XΦ is the inductive limit of X(n)Φ.
This is a p-divisible group.

1.9 Corollary. Let X be a p-divisible group over S. Assume that for each
geometric point η → S the height of the Φ-étale part of Xη is the same. Then
a p-divisible group XΦ exists and commutes with arbitrary base change. There
is an exact sequence of p-divisible groups:

0→ XΦ−nil → X → XΦ → 0.

The following proposition can be deduced from proposition 1.8.
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1.10 Corollary. Assume that G → S is a finite, locally free group scheme
over a connected base scheme S. Let Φ : G

∼−→ G(q), q = ps be an isomor-
phism. Then there exists a finite étale morphism T → S, and a morphism
T → Spec(Fq), such that GT is obtained by base change from a finite group
scheme H over Fq:

H ⊗Spec Fq T
∼−→ GT .

Moreover Φ is induced from the identity on H.

Remark. If S is a scheme over F̄p the Corollary says in particular that GT
is obtained by base change from a finite group scheme over F̄p. In this case
we call GT constant (compare [K], (2.7)). This should not be confused with
the étale group scheme associated to a finite Abelian group A. We will discuss
“constant” p-divisible groups, see Section 3 below.

2 The main result: slope filtrations

In this section we show:

2.1 Theorem. Let h be a natural number. Then there exists a natural number
N(h) with the following property. Let S be an integral, normal Noetherian
scheme. Let X be a p-divisible group over S of height h with constant Newton
polygon. Then there is a completely slope divisible p-divisible group Y over S,
and an isogeny:

ϕ : X → Y over S with deg(ϕ) ≤ N(h).

In Example 4.2 we see that the condition “S is normal” is essential. By this
theorem we see that a slope filtration exists up to isogeny:

2.2 Corollary. Let X be a p-divisible group with constant Newton polygon
over an integral, normal Noetherian scheme S. There exists an isogeny ϕ :
X → Y , such that Y over S admits a slope filtration.

Q.E.D.

2.3 Proposition. Let S be an integral scheme with function field K = κ(S).
Let X be a p-divisible group over S with constant Newton polygon, such that
XK is completely slope divisible with respect to the integers s ≥ r1 > r2 > . . . >
rm ≥ 0. Then X is completely slope divisible with respect to the same integers.

Proof. The quasi-isogeny Φ = p−rm Frs : X → X(ps) is an isogeny, because
this is true over the general point. Over any geometric point η → S the Φ-étale
part of Xη has the same height by constancy of the Newton polygon. Hence
the Φ-étale part of X exists by Corollary 1.9. We obtain an exact sequence:

0→ XΦ−nil → X → XΦ → 0.

Assuming an induction hypothesis on XΦ−nil gives the result. Q.E.D.
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A basic tool in the following proofs is the moduli scheme of isogenies of degree d
of a p-divisible group (compare [RZ] 2.22): Let X be a p-divisible group over a
scheme S, and let d be a natural number. Then we define the following functor
M on the category of S-schemes T . A point of M(T ) consists of a p-divisible
group Z over T and an isogeny α : XT → Z of degree d up to isomorphism.
The functor M is representable by a projective scheme over S. Indeed, to each
finite, locally free subgroup scheme G ⊂ XT there is a unique isogeny α with
kernel G. Let n be a natural number such that pn ≥ d. Then G is a finite,
locally free subgroup scheme on X(n)T . We set X(n) = SpecS A. The affine
algebra of G is a quotient of the locally free sheaf AT . Hence we obtain a point
of the Grassmannian of A. This proves that M is representable as a closed
subscheme of this Grassmannian.

2.4 Lemma. For every h ∈ Z>0 there exists a number N(h) ∈ Z with the
following property. Let S be an integral Noetherian scheme. Let X be a p-
divisible group of height h over S with constant Newton polygon. There is a
non-empty open subset U ⊂ S, and a projective morphism π : S∼ → S of
integral schemes which induces an isomorphism π : π−1(U) → U such that
there exist a completely slope divisible p-divisible group Y over S∼, and an
isogeny XS∼ → Y , whose degree is bounded by N(h).

Proof. Let K be the function field of S. We know by [Z1], Prop. 12, that
there is a completely slope divisible p-divisible group Y 0 over K, and an isogeny
β0 : XK → Y 0, whose degree is bounded by a constant which depends only on
the height ofX. The kernel of this isogeny is a finite group schemeG0 ⊂ XK(n),
for some n. Let Ḡ be the scheme-theoretic image of G0 in X(n), see EGA,
I.9.5.3. Then Ḡ is flat over some nonempty open set U ⊂ S, and inherits there
the structure of a finite, locally free group scheme G ⊂ X(n)U . We form the
p-divisible group Z = XU/G. By construction there are integers s ≥ rm, such
that

p−rm Frs : ZK → Z
(ps)
K

is an isogeny, and rm/s is a smallest slope in the Newton polygon of X.
Therefore Φ = p−rm Frs : Z → Z(ps) is an isogeny too. As in the proof of the
last proposition the constancy of the Newton polygon implies that the Φ-étale
part ZΦ exists. We obtain an exact sequence of p-divisible groups on U :

0→ ZΦ−nil → Z → ZΦ → 0.

By induction we find a non-empty open subset V ⊂ U and a completely slope
divisible p-divisible group Ym−1 which is isogeneous to ZΦ−nil

V . Taking the

push-out of the last exact sequence by the isogeny ZΦ−nil
V → Ym−1 we find a

completely slope divisible p-divisible group Y over V which is isogeneous to
XV .

Let d be the degree of the isogeny ρ : XV → Y . We consider the moduli scheme
M of isogenies of degree d of X defined above. The isogeny XV → Y defines
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an S-morphism V → M. The scheme-theoretic image S∼ of V is an integral
scheme, which is projective over S. Moreover the morphism π : S∼ → S induces
an isomorphism π−1(V )→ V . The closed immersion S∼ →M corresponds to
an isogeny ρ∼ : XS∼ → Y ∼ to a p-divisible group Y ∼ on S∼. Moreover the
restriction of ρ∼ to V is ρ. Since Y ∼ has constant Newton polygon, and since
Y ∼ is completely slope divisible in the generic point of S∼ it is completely
slope divisible by Proposition 2.3. Q.E.D.

2.5 Lemma. Let k be an algebraically closed field of characteristic p. Let
s ≥ r1 > r2 > . . . > rm ≥ 0 and d > 0 be integers. Let X be a p-divisible
group over k. Then there are up to isomorphism only finitely many isogenies
X → Z of degree d to a p-divisible group Z, which is completely slope divisible
with respect to s ≥ r1 > r2 > . . . > rm ≥ 0.

Proof. It suffices to show this in case also X is completely slope divisible
with respect to s ≥ r1 > r2 > . . . > rm ≥ 0. Then X and Z are a direct
product of isoclinic slope divisible groups. Therefore we assume that we are in
the isoclinic case m = 1.

In this case we consider the contravariant Dieudonné modules M of X, and N
of Z. Let σ be the Frobenius on W (k). Then N ⊂ M is a submodule such
that lengthM/N = logp d. By assumption Φ = p−r1F s induces a σs-linear
automorphism of M respectively N . Let CN respectively CM be the invariants
of Φ acting of N respectively M . Hence CN is a W (Fps)-submodule of N such
that W (k)⊗W (Fps )CN = N (e.g. [Z2] 6.26). The same holds for M . We see that
CN is a W (Fps)-submodule of CM , such that lengthCM/CN = logp d. Since
there are only finitely many such submodules, the assertion follows. Q.E.D.

2.6 Lemma. Let f : T → S be a proper morphism of schemes such that
f∗OT = OS. Let g : T → M be a morphism of schemes. We assume that for
any point ξ ∈ S the set-theoretic image of the fiber Tξ by g is a single point in
M . Then there is a unique morphism h : S →M such that hf = g.

Proof. For ξ ∈ S we set h(ξ) = f(Tξ). This defines a set-theoretic map
h : S → M . If U ⊂ M is an open neighborhood of h(ξ) then g−1(U) is an
open neighborhood of Tξ. Since f is closed we find an open neighborhood V
of ξ with f−1(V ) ⊂ g−1(U). Hence h(V ) ⊂ U ; we see that h is continuous.
Then h∗OS = h∗f∗OT = g∗OT . We obtain a morphism of ringed spaces
OM → g∗OT = h∗OS . Q.E.D.

Theorem 2.1 follows from the following technical variant which is useful if we
do not know that the normalization is finite. We will need that later on.

2.7 Proposition. Let h be a natural number. Then there exists a natural
number N(h) with the following property. Let S be an integral Noetherian
scheme. Let X be a p-divisible group over S of height h with constant Newton
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polygon. Then there is a finite birational morphism T → S, a completely slope
divisible p-divisible group Y over T , and an isogeny:

XT → Y

over T whose degree is smaller than N(h).

Proof. Consider the proper birational map π : S∼ → S, and the isogeny
ρ : XS∼ → Y given by Lemma 2.4. Take the Stein factorization S∼ → T → S.
It is enough to find over T an isogeny to a completely slope divisible p-divisible
group. Therefore we assume S = T , i.e. π∗OS∼ = OS .

Let M → S be the moduli scheme of isogenies of X of degree d = degree ρ.
We will show that the S-morphism g : S∼ →M defined by Y factors through
S →M.

Let ξ ∈ S. We write S∼ξ = S∼ ×S Spec(κ(ξ)). By Lemma 2.6 it is suffices to
show that the set-theoretic image of S∼ξ by g is a single point of M. Clearly
Mξ classifies isogenies starting at Xξ of degree d. Over the algebraic closure
ξ̄, by Lemma 2.5, there are only finitely many isogenies of Xξ̄ → Z of degree d
to a completely slope divisible group (for fixed s and ri). This shows that the
image of S∼ξ (ξ̄)→Mξ(ξ̄) is finite. Since S∼ξ is connected, see [EGA], III1.4.3.1,
the image of S∼ξ is a single point of Mξ.

Hence we have the desired factorization S →M. It defines an isogeny X → Z
over S. Finally Z is completely slope divisible since it is completely slope
divisible in the general point of S, and because its Newton polygon is constant.

Q.E.D. 2.7 & 2.1

3 Constancy results

Let T be a scheme over F̄p. We study the question if a p-divisible group X
over T is constant up to isogeny, i.e. there exists a p-divisible group Y over F̄p
such that X is isogeneous to Y ×F̄p T .

3.1 Proposition. Let S be a Noetherian integral normal scheme over F̄p.
Let K be the function field of S and let K̄ be an algebraic closure of K. We
denote by L ⊂ K̄ the maximal unramified extension of K with respect to S. Let
T be the normalization of S in L.
Let X be an isoclinic p-divisible group over S. Then there is a p-divisible group
X0 over F̄p and an isogeny X ×S T → X0 ×Spec F̄p T such that the degree of
this isogeny is smaller than an integer which depends only on the height of X.

Proof: We use Theorem 2.1: there exists an isogeny ϕ : X → Y , where Y
over S is completely slope divisible. There are natural numbers r and s, such
that

Φ = p−r Frs : Y → Y (ps)
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is an isomorphism. Applying Corollary 1.10 to Y (n) and Φ we obtain finite
group schemes X0(n) over Fps and isomorphisms

Y (n)T ∼= X0(n)×Fps T
The inductive limit of the group schemes X0(n) is a p-divisible group X0 over
Fps . It is isogeneous to X over T . Q.E.D.

3.2 Corollary. Let S and T be as in the proposition. Let T perf → T
be the perfect hull of T . Let X be a p-divisible group over S with constant
Newton polygon. Then there is a p-divisible group X0 over F̄p and an isogeny
X0×Spec F̄p T

perf → X ×S T perf , whose degree is smaller than an integer which
depends only on the height of X.

Proof. This follows using Proposition 1.3. Q.E.D.

Finally we prove constancy results without the normality condition.

3.3 Proposition. Let R be a strictly Henselian reduced local ring over F̄p.
Let X be an isoclinic p-divisible group over S = SpecR. Then there is a p-
divisible group X0 over F̄p and an isogeny X0 ×Spec F̄p S → X, whose degree is
smaller than an integer which depends only on the height of X.

3.4 Corollary. To each natural number h there is a natural number c with
the following property: Let R be a Henselian reduced local ring over Fp with
residue field k. Let X and Y be isoclinic p-divisible groups over S = SpecR
whose heights are smaller than h. Let ψ : Xk → Yk be a homomorphism. Then
pcψ lifts to a homomorphism X → Y .

A proof of the proposition, and of the corollary will be given later.

Remark. In case the R considered in the previous proposition, or in the
previous corollary, is not reduced, but satisfies all other properties, the con-
clusions still hold, except that the integer bounding the degree of the isogeny,
respectively the integer c, depend on h and on R.

If R is strictly Henselian the corollary follows from Proposition 3.3. Indeed,
assume that X and Y are isogeneous to constant p-divisible groups X0 and Y0

by isogenies which are bounded by a constant which depends only on h. The
corollary follows because:

Hom((X0)k, (Y0)k) = Hom((X0)R, (Y0)R).

Conversely the corollary implies the proposition since by Proposition 3.1 over a
separably closed field an isoclinic p-divisible group is isogeneous to a constant
p-divisible group.

Remark. Assume Corollary 3.4. An isoclinic slope divisible p-divisible group
Y over k can be lifted to an isoclinic slope divisible p-divisible group over R.
Indeed the étale schemes associated by 1.8 to the affine algebra of Y (n) and
the isomorphism p−r Frs lift to R. Hence the categories of isoclinic p-divisible
groups up to isogeny over R respectively k are equivalent.
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3.5 Lemma. Consider a commutative diagram of rings over Fp:

R → A
↓ ↓
R0 → A0.

Assume that R→ R0 is a surjection with nilpotent kernel a, and that A→ A0 is
a surjection with nilpotent kernel b. Moreover let R→ A be a monomorphism.
Let X and Y be p-divisible groups over R. Let ϕ0 : XR0

→ YR0
be a morphism

of the p-divisible groups obtained by base change. Applying base change with
respect to R0 → A0 we obtain a morphism ψ0 : XA0

→ YA0
.

If ψ0 lifts to a morphism ψ : XA → YA, then ϕ0 lifts to a morphism ϕ : X → Y .

Proof. By rigidity, liftings of homomorphisms of p-divisible groups are unique.
Therefore we may replace R0 by its image in A0 and assume that R0 → A0 is
injective. Then we obtain a = b ∩R.

Let n be a natural number such that bn = 0. We argue by induction on n.
If n = 0, we have b = 0 and therefore a = 0. In this case there is nothing to
prove. If n > 0 we consider the commutative diagram:

R → A
↓ ↓

R/(bn−1 ∩R) → A/bn−1

↓ ↓
R0 → A0.

We apply the induction hypothesis to the lower square. Hence it is enough to
show the lemma for the upper square. We assume therefore without loss of
generality that a2 = 0, b2 = 0.

Let DX and DY be the crystals associated to X and Y by Messing [Me]. The
values DX(R) respectively DY (R) are finitely generated projective R-modules
which are endowed with the Hodge filtration FilX ⊂ DX(R) respectively
FilY ⊂ DY (R). We put on a respectively b the trivial divided power structure.
Then ϕ0 induces a map DX(R) → DY (R). By the criterion of Grothendieck
and Messing ϕ0 lifts to a homomorphism over R, iff D(ϕ0)(FilX) ⊂ FilY .

Since the construction of the crystal commutes with base change, see [Me],
Chapt. IV, 2.4.4, we have canonical isomorphisms:

DXA(A) = A⊗R DX(R), F ilXA = A⊗R FilX ,
DYA(A) = A⊗R DY (R), F ilYA = A⊗R FilY .

Since ψ0 lifts we have idA ⊗D(ϕ)(A⊗R FilX) ⊂ A⊗R FilY . Since R → A is
injective this implies D(ϕ0)(FilX) ⊂ FilY . Q.E.D.

Proof of Proposition 3.3. We begin with the case where R is an integral
domain. By Proposition 2.7 there is a finite ring extension R → A such that
A is contained in the quotient field of R, and such that there is an isogeny
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XA → Y to a completely slope divisible p-divisible group Y over A. The
degree of this isogeny is smaller than a constant which depends only on the
height of X. Since A is a product of local rings we may assume without loss
of generality that A is local. The ring A is a strictly Henselian local ring, see
[EGA] IV 18.5.10, and has therefore no non-trivial finite étale coverings. The
argument of the proof of Proposition 3.1 shows that Y is obtained by base
change from a p-divisible group X0 over F̄p. Therefore we find an isogeny

ϕ : (X0)A → XA

Let us denote by k the common residue field of A and R. Then ϕ induces an
isogeny ϕ : (X0)k → Xk. The last lemma shows that ϕ0 lifts to an isogeny
ϕ̂ : (X0)R̂ → XR̂ over the completion R̂ of R.

We apply the following fact:
Claim. Consider a fiber product of rings:

R → A1

↓ ↓
A2 → B.

Let X and Y be p-divisible groups over R. Let ψi : XAi → YAi for i = 1, 2 be
two homomorphisms of p-divisible groups which agree over B. Then there is a
unique homomorphism ψ : X → Y which induces ψ1 and ψ2.

In our concrete situation we consider the diagram:

R → A
↓ ↓
R̂ → Â = R̂⊗R A.

The morphisms ϕ̂ and ϕ agree over Â because they agree over the residue field
k. This proves the case of an integral domain R.

In particular we have shown the Corollary 3.4 in the case where R is a strictly
Henselian integral domain. To show the corollary in the reduced case we con-
sider the minimal prime ideals p1, . . . ps of R. Let ψ : Xk → Yk be a homo-
morphism. Then pcψ lifts to a homomorphims over each of the rings R/pi,
for i = 1, . . . , s. But then we obtain a homomorphism over R using the Claim
above. This proves the Corollary 3.4 and hence the Proposition 3.3 in the case
where R is reduced and strictly Henselian.
If R is not reduced one applies standard deformation theory to R→ Rred, [Z2],
4.47. Q.E.D.

Proof of Corollary 3.4. Consider the diagram:

R → Rsh

↓ ↓
R̂ → R̂sh.
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The upper index “sh” denotes the strict henselization. Using the fact that
the categories of finite étale coverings of R, k, respectively R̂ are equivalent
it is easy to see that the last diagram is a fiber product. We have already
proved that pcψ lifts to a homomorphism over Rsh. Applying Lemma 3.5 to
the following diagram we see that pcψ lifts to R̂. This is enough to prove the
corollary (compare the Claim above).

R/mn → Rsh/mnRsh

↓ ↓
R/m → Rsh/mRsh

In this diagram n is a positive integer and m is the maximal ideal of R. Q.E.D.

3.6 Corollary. Let R be a strictly Henselian reduced local ring over F̄p. Let
Rperf be the perfect hull of R. Let X be a p-divisible group over S = SpecR
with constant Newton polygon. We set Sperf = Spec(Rperf). Then there is a
p-divisible group X0 over F̄p and an isogeny X0 ×Spec F̄p S

perf → X ×S Sperf

such that the degree of this isogeny is bounded by an integer which depends only
on the height of X.

Proof: This follows using Proposition 1.3. Q.E.D.

4 Examples

In this section we use the p-divisible groups either Z = G1,n, with n ≥ 1,
or Z = Gm,1, with m ≥ 1 as building blocks for our examples. These have
the property to be iso-simple, they are defined over Fp, they contain a unique
subgroup scheme N ⊂ Z isomorphic with αp, and Z/N ∼= Z. Indeed, for
Z = G1,n we have an exact sequence of sheaves:

0→ αp → Z
Fr−→ Z → 0.

For Z = Gm,1 we have the exact sequence

0→ αp → Z
Ver−→ Z → 0.

Moreover every such Z has the following property: if ZK → Z ′ is an isogeny
over some field K, and k an algebraic closed field containing K, then Zk ∼= Z ′k.

4.1 Example. In this example we produce a p-divisible group X with con-
stant Newton polygon over a regular base scheme which does not admit a slope
filtration.

Choose Z1 and Z2 as above, with slope(Z1) = λ1 > λ2 = slope(Z2); e.g.
Z1 = G1,1 and Z2 = G1,2. We choose R = K[t], where K is a field. We write
S = Spec(R) and Zi = Zi × S for i = 1, 2. We define

(id, t) : αp → αp × αp ∼= N1 ×N2; this defines ψ : αp × S → Z1 ×Z2.
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Claim: X := (Z1×Z2)/ψ(αp×S) is a p-divisible group over S which does not
admit a slope filtration.

Indeed, for the generic point we do have slope filtration, where X = X ⊗K(t),
and 0 ⊂ X1 ⊂ X is given by: X1 is the image of

ξK : (Z1 ⊗K(t)→ (Z1 ×Z2)⊗K(t)→ X).

However the inclusion ξK extends uniquely a homomorphism ξ : Z1 → X ,
which is not injective at t 7→ 0. This proves the claim.

4.2 Example. In this example we construct a p-divisible group X with con-
stant Newton polygon over a base scheme S which is not normal, such that
there is no isogeny φ : X → Y to a completely slope divisible p-divisible group.
(i.e. we show the condition that S is normal in Theorem 2.1 is necessary).

We start again with the exact sequences over Fp:

0 → αp → G2,1
Ver−→ G2,1 → 0,

0 → αp → G1,2
Fr−→ G1,2 → 0.

(1)

We fix an algebraically closed field k. We write T = P1
k, and:

Z1 = G2,1 ×Fp T, Z2 = G1,2 ×Fp T, Z = Z1 × Z2, A = αp ×Fp T.

By base change we obtain sequences of sheaves on the projective line T = P1
k:

0 → A → Z1
Ver−→ Z1 → 0,

0 → A → Z2
Fr−→ Z2 → 0.

Lemma. Consider Z → T = P1
k as above. Let β : Z → Y be an isogeny to a

completely slope divisible p-divisible group Y over T . Then Y = Y1 × Y2 is a
product of two p-divisible groups and β = β1×β2 is the product of two isogenies
βi : Zi → Yi.

Proof. The statement is clear if we replace the base T by a perfect field, see
Proposition 1.3. In our case we show first that the kernel of the morphisms
Zi → Y , i = 1, 2 induced by β are representable by a finite, locally free group
schemes Gi. Indeed, let Gi the kernel in the sense of f.p.p.f sheaves. Let
us denote by G the kernel of the isogeny β. Choose a number n such that
pn annihilates G. Then pn annihilates Gi. Therefore Gi coincides with the
kernel of the morphism of finite group schemes Zi(n) → Y (n). Hence Gi is
representable by a finite group scheme Gi. We prove that Gi is locally free. It
suffices to verify that the rank of Gi in any geometric point η of T is the same.
But we have seen that over η the p-divisible group Y splits into a product
Yη = (Yη)1 × (Yη)2. This implies that

Gη = (G1)η × (G2)η.
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We conclude that the ranks of (Gi)η are independent of η since G is locally
free.

We define p-divisible groups Yi = Zi/Gi. We obtain a homomorphism of p-
divisible groups Y1 × Y2 → Y which is an isomorphism over each geometric
point η. Therefore this is an isomorphism. Q.E.D.

Next we construct a p-divisible group X on T = P1
k. Let L be a line bundle on

P1
k. We consider the associated vector group

V(L)(T ′) = Γ(T ′,L′T ),

where T ′ → T = P1
k is a scheme and L′T is the pull-back. The kernel of

the Frobenius morphism Fr : V(L) → V(L)(p) is a finite, locally free group
scheme αp(L) which is locally isomorphic to αp. We set A(−1) = αp(OP1

k
(−1)).

There are up to multiplication by an element of k∗ unique homomorphisms ι0
respectively ι∞ : OP1

k
(−1)→ OP1

k
whose unique zeroes are 0 ∈ P1

k respectively

∞ ∈ P1
k. This induces homomorphisms of finite group schemes ι0 : A(−1)→ A

respectively ι∞ : A(−1) → A which are isomorphisms outside 0 respectively
outside ∞. We consider the embeddings

A(−1)
(ι0,ι∞)−→ A×A ⊂ Z1 × Z2 = Z.

We define X = Z/A(−1):

ψ : Z −→ Z/A(−1) = X.

Note that

ψ0 : G2,1 ×G1,2 = Z0 −→ G2,1 × (G1,2/αp) = X0,

and
ψ∞ : G2,1 ×G1,2 = Z∞ −→ (G2,1/αp)×G1,2 = X∞.

We consider the quotient space S = P1
k/{0,∞}, by identifying 0 and ∞ into a

normal crossing at P ∈ S, i.e.

OS,P = {f ∈ OT,0 ∩ OT,∞ | f(0) = f(∞)};

S is a nodal curve, and

P1
k = T −→ S, 0 7→ P, ∞ 7→ P,

is the normalization morphism.

A finite, locally free scheme G over S is the same thing as a finite, locally free
scheme G over P1

k endowed with an isomorphism

G0
∼= G∞.
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It follows that the category of p-divisible groups Y over S is equivalent to the
category of pairs (Y, γY), where Y is a p-divisible group on P1

k and γY is an
isomorphism

γY : Y0
∼= Y∞

of the fibers of Y over 0 ∈ P1
k and ∞ ∈ P1

k. We call γY the gluing datum of Y.

We construct a p-divisible X over S by defining a gluing datum on the p-
divisible group X. In fact, the exact sequences in (1) give:

X0 = G2,1 × (G1,2/αp) ∼= (G2,1/αp)×G1,2 = X∞;

this gluing datum provides a p-divisible group X over S.

Claim: This p-divisible group X → S satisfies the property mentioned in the
example.

Let us assume that there exists an isogeny φ : X → Y to a completely slope
divisible p-divisible group Y over S. We set Y = Y ×S T and consider the
induced isogeny

φ×S T = ϕ : X → Y.

and the induced isogeny:

β = ϕ·ψ : (Z
ψ−→ X

ϕ−→ Y ).

By the lemma we see that

β = β1 × β2 : Z −→ Y1 × Y2 = Y.

Note that

ϕ∞ = φP = ϕ0 : X∞ = XP = X0 −→ Y∞ = YP = Y0;

these p-divisible groups both have a splitting into isoclinic summands:

X∞ = XP = X0 = X ′ ×X ′′, Y∞ = YP = Y0 = Y ′ × Y ′′,
and

φP = ϕ′ × ϕ′′ : X ′ ×X ′′ −→ Y ′ × Y ′′

is in diagonal form. On the one hand we conclude from

((β1)0 : (Z1)0 −→ (Y1)0) =
(

(Z1)0
∼→ X ′ → Y ′

)

that deg(β1) = deg(β1)0 = deg(ϕ′); on the other hand

((β1)∞ : (Z1)∞ −→ (Y1)∞) = ((Z1)∞ → (G2,1/αp) = X ′ → Y ′) ;

hence
deg(β1) = deg(β1)∞ = p· deg(ϕ′).

We see that the assumption that the isogeny φ : X → Y to a completely
slope divisible Y → S would exist leads to a contradiction. This finishes the
description and the proof of Example 4.2. Q.E.D.
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4.3 Example. For every positive integer d there exists a scheme S ′ of di-
mension d, a point P ′ ∈ S′ such that S′ is regular outside P ′, and a p-divisible
group X ′ → S′ which does not admit an isogeny to a completely slope divisible
group over S′.

This follows directly form the previous example. Indeed choose T as in the
previous example, and let T ′ → T smooth and surjective with T ′ of dimension
d. Pull back X/T to X ′/T ′; choose geometric points 0′ and ∞′ ∈ T ′ above
0 and ∞ ∈ T ; construct S′ by “identifying 0′ and ∞′”: outside P ′ ∈ S′,
this scheme is T ′\{0′,∞′}, and the local ring of P ′ ∈ S′ is the set of pairs of
elements in the local rings of 0′ and∞′ having the same residue value. We can
descend X ′ → T ′ to X ′ → S′, and this has the desired property.

References
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0. Introduction

The Witt group is the classical invariant classifying symmetric spaces, up to
isometry and modulo metabolic spaces, see for instance [12] for rings and [11]
for schemes. The Gersten conjecture for Witt groups, stated by Pardon in 1982
[16], claims the existence and the exactness of a complex GWCa(R):

0→W(R)→W(K)→
⊕

x∈X(1)

W(κ(x))→ . . .→
⊕

x∈X(n−1)

W(κ(x))→W(κ(m))→ 0

where (R,m) is an n-dimensional regular local ring in which 2 is invertible;
we denote by X = Spec(R) the spectrum of R, by X (p) the primes of height
p, by κ(x) the residue field at a point x ∈ X, and by K = κ(0) the field of
fractions of R. We call GWCa(R) an augmented Gersten-Witt complex. In [5]
Balmer and Walter constructed a Gersten-Witt complex

GWC(X) := . . .→ 0 −→
⊕

x∈X(0)

W(κ(x)) −→ . . . −→
⊕

x∈X(p)

W(κ(x))→ . . .

for general regular schemes X, not necessarily local or essentially of finite type,
as part of the so-called Gersten-Witt spectral sequence. We will recall these
constructions in Section 3. The augmented Gersten-Witt complex that we
consider here is simply their complex GWC(R) augmented by the natural map
W(R)→W(K). Our main result is Theorem 6.1 below, which says:
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204 P. Balmer, S. Gille, I. Panin and C. Walter

Theorem. The augmented Gersten-Witt complex GWCa(R) is exact for any
equicharacteristic regular local ring R, i.e. for R regular local containing some
field k.

If the field k can be taken infinite with R essentially smooth over k, this has
already been proven by Balmer [4] and independently by Pardon [17]. Here we
extend this result first to essentially smooth local algebras over finite ground
fields k. Then we extend it to regular local algebras which are not essentially
of finite type to obtain the above Theorem, following a method introduced by
Panin [15] to prove the equicharacteristic Gersten conjecture in K-theory.
Although these strategies have already been used for other theories, their appli-
cation to Witt theory has not been rapid. For instance the Gersten conjecture
for K-theory was proven by Quillen 30 years before the analogue for Witt
groups. The most significant problem was that until recently [2] [3] [4] [7] it
had not been established that Witt groups were part of a cohomology theory
with supports in the sense of Colliot-Thélène, Hoobler and Kahn [6]. It is ba-
sically this observation which led to the proof of the conjecture for essentially
smooth local algebras over infinite ground fields by means of a geometric proof
whose roots reach back to Ojanguren’s pioneering article [13].
Let us explain the general strategies to

(1) Go from infinite ground fields to any ground field.
(2) Go from essentially smooth local algebras to any regular local algebra.

The strategy for proving (1) is seemingly due to Colliot-Thélène, cf. [13], p. 115.
One considers infinite towers of finite field extensions k ⊂ F1 ⊂ F2 ⊂ . . .; the
result holds “at the limit” by assumption, hence holds for some finite extension,
and finally it holds for k itself by a transfer argument.
The strategy for proving (2) is due to Panin [15] and relies on results of
Popescu [18] [19] which imply that any equicharacteristic regular local ring R
is the filtered colimit of essentially smooth local algebras over some field k ⊂ R.
There is usually no hope of getting this limit to commute with Gersten-type
complexes because the morphisms in the colimit may be pretty wild. Panin’s
trick consists in finding a statement in terms of Zariski cohomology which is
equivalent to the considered Gersten conjecture (he did it for K-theory) and
then using a theorem of Grothendieck [1] asserting that the colimit and the
cohomology commute.
We follow these strategies for Witt groups. The main difference between the
usual cohomology theories (such as K-theory) and Witt groups is that the latter
depend not only on a scheme or a category but also on a duality functor E 7→ E∗

and biduality isomorphisms $E : E ∼= E∗∗. Most schemes and categories
which one studies this way come equipped with numerous choices for (∗, $).
For instance one can twist the duality functor for vector bundles by a line
bundle, one can use shifted dualities for chain complexes, and one can change
the sign of the biduality isomorphisms. When one wishes to apply a geometric
argument with a pullback or a pushforward along a map π : Y → X one has
to worry about which dualities on X and Y correspond for the construction in
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question. Pushforwards (or transfers) in particular are not yet widely available
(although some of the authors are working on it). Nevertheless, things have
reached the point where one understands enough to construct the Gersten-
Witt complex (Balmer-Walter [5]) and to treat pushforwards along a closed
embedding Spec(R/fR) ↪→ SpecR of spectra of regular local rings (Gille [7]).
This allows us to carry out (1) and (2).
Another reason we write this paper is that Panin’s strategy for (2) is still quite
new and has not yet been assimilated by the community. We hope that our
exposition of this method will aid the process of digestion.
Note that our proof of the Gersten conjecture is independent of Ojanguren’s
and Panin’s work [14] and hence we get a new proof of their main theorem,
namely the purity theorem for equicharacteristic regular local rings. Neverthe-
less, the present work is more a generalization than a simplification of [14] since
the various pieces of our proof (geometric presentation lemmas, transfers, and
Panin’s trick) are of similar complexity.
Apart from the ideas described in this introduction, our basic technical device
is the recourse to triangular Witt groups [2] [3], namely Witt groups of suitable
derived categories.

We would like to thank Winfried Scharlau and the Sonderforschungsbereich
of the University of Münster for their precious support and for the one week
workshop where this article was started.
The third author thanks very much for the support the TMR Network ERB
FMRX CT-97-0107, the grant of the year 2002 of the “Support Fund of National
Science” at the Russian Academy of Science, the grant INTAS-99-00817, and
the RFFI-grant 00-01-00116.

1. Notations

Convention 1.1. Each time we consider the Witt group of a scheme X or
of a category A, we implicitly assume that 2 is invertible, i.e. that 1/2 is in
the ring of global sections Γ(X,OX), respectively that A is Z[1/2]-linear. Of
course, this has nothing to do with “tensoring outside with Z[1/2]” and our
Witt groups might very well have non-trivial 2-torsion.

Let X be a noetherian scheme with structure sheaf OX , and let Z be a closed
subset. For a complex P of quasi-coherent OX -modules we define the (homo-
logical) support of P to be

supph(P ) :=
⋃

i∈Z
supp

(
Hi(P )

)
.

We denote byMX the category of quasi-coherent OX -modules and by PX the
category of locally free OX -modules of finite rank. We denote by Db(E) the
bounded derived category of an exact category E . Let Db

coh(MX) be the full
subcategory of Db(MX) of complexes whose homology modules are coherent,
and let Db

coh, Z(MX) be the full subcategory of Db
coh(MX) of those complexes
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whose homological support is contained in Z. The symbol Db
Z(PX) has an

analogous self-explanatory meaning. For any positive integer p ≥ 0 we set

Db
Z(PX)(p) :=

⋃

codim W = p
W ⊂ Z

Db
W(PX).

The category Db
coh, Z(MX)(p) is defined similarly.

Remark 1.2. We shall use here the following standard abbreviations:

(1) When Z = X, we drop its mention, as in Db(PX) to mean Db
X(PX).

(2) In the affine case, X = Spec(R), we drop “Spec”, as in Db
coh(MR)(p)

which stands for Db
coh(MSpec(R))

(p).
(3) If X = Spec(R) and Z = V (I) is defined by an ideal I ⊂ R, we

replace “Z” by “I”, and even further we abbreviate Db
f (PR) instead of

Db
fR(PR) where f ∈ R.

2. Triangulated categories with duality and their Witt groups

When not mentioned, the reference for this section is [2].

A triangulated category with duality is a triple (K, ],$), where K is a trian-
gulated category, ] : K → K is a δ-exact contravariant functor (δ = ±1) and
$ : idK → ]] is an isomorphism of functors such that idM] = ($M )] ·$M] and
$M [1] = $M [1].

Triangular Witt groups. We can associate to a triangulated category with
duality a series of Witt groups Wn(K), for n ∈ Z. The group Wn(K) classifies
the n-symmetric spaces modulo Witt equivalence. Here an n-symmetric space
is a pair (P, φ) with P ∈ K and with φ : P

∼−→ P ][n] an isomorphism such

that φ][n]$P = (−1)
n(n+1)

2 δnφ. The isometry classes of n-symmetric spaces
form a monoid with the orthogonal sum as addition. Dividing this monoid by
the submonoid of neutral n-symmetric spaces (see [2] Definition 2.12) gives the
n-th Witt group of K. These groups are 4-periodic, i.e. Wn(K) = Wn+4(K).
The class of (P, φ) in the Witt group is written [P, φ].

Derived Witt groups of schemes. Let X be a scheme and Z ⊂ X a closed subset.
The derived functor of HomOX (− ,OX) is then a duality on Db

Z(PX) making
it a triangulated category with 1-exact duality. We denote the corresponding
triangular Witt groups by Wn

Z(X) and call them the derived Witt groups of
X with support in Z. The abbreviations introduced in 1.2 also apply to this
notation, like Wn(X) for Wn

X(X). The comparison with the classical Witt
group of the scheme X defined by Knebusch [11] is given by the following fact
([3] Theorem 4.7): The natural functor PX → Db(PX) induces an isomorphism

W(X)
'−→W0(X).
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The cone construction and the localization long exact sequence. The main the-
orem of triangular Witt theory is the localization theorem. Let

0→ J −→ K q−→K/J → 0 (2.1)

be an exact sequence of triangulated categories with duality, i.e. a localization
with J ] ⊂ J . Let z be an element of W0(K/J ). Then there exists a symmetric
morphism ψ : P → P ] (i.e. ψ]$P = ψ) such that z = [q(P ), q(ψ)]. In particular
C := coneψ belongs to J . By [2] Theorem 2.6, there is a commutative diagram

P
ψ ��

δ$P
��

P ]
��

=
��

C
��

' φ
��

P [1]

δ$P [1]
��

P ]]
δψ]

��
P ]

�� C][1] �� P ]][1]

such that the upper and the lower rows are exact triangles dual to each other
and such that φ][1]$C = −δφ. The last property means that (C, φ) is a 1-
symmetric space, i.e. represents an element of W1(J ). The isometry class
of (C, φ) is uniquely determined by the isometry class of (P,ψ). We get a
morphism W0(K) −→ W1(J ) sending z = [q(P ), q(ψ)] to [C, φ]. In the same
manner we can define morphisms ∂ : Wn(K) −→ Wn+1(J ) fitting in a long
exact sequence, the localization sequence associated to the exact sequence (2.1)
of triangulated categories with duality:

. . . −→Wn(K) −→Wn(K/J )
∂−→Wn+1(J ) −→Wn+1(K) −→ . . .

3. Gersten-Witt spectral sequences and complexes

We review the Gersten-Witt spectral sequence, which was introduced by
Balmer and Walter [5] for regular schemes, and generalized by Gille [7] to
Gorenstein schemes of finite Krull dimension.

The construction: Let X be a regular scheme of finite Krull dimension and
Z ⊂ X a closed subset. Then Db

Z(PX) has a filtration

Db
Z(PX) = D0

Z ⊃ D1
Z ⊃ · · · ⊃ DdimX

Z ⊃ DdimX+1
Z ' 0

where we have written Dp
Z := Db

Z(PX)(p). The localization exact sequences

. . . −→Wi(Dp+1
Z ) −→Wi(Dp

Z) −→Wi(Dp
Z/D

p+1
Z ) −→Wi+1(Dp+1

Z ) −→ . . . ,

can be organized into an exact couple, giving rise to a convergent spectral
sequence:

Ep,q1 (X,Z) = Wp+q(Dp
Z/D

p+1
Z ) =⇒ Wp+q

Z (X).

This is the Gersten-Witt spectral sequence for X with supports in Z.
Using the 4-periodicity of Witt groups, as well as [5] Theorem 7.2 and [7]
Theorem 3.14, one sees that the E1-page is zero everywhere except for the

Documenta Mathematica 7 (2002) 203–217



208 P. Balmer, S. Gille, I. Panin and C. Walter

lines with q ≡ 0 (mod 4), which are all the same and which vanish outside
the interval codimXZ ≤ p ≤ dimX. So the information of the E1-page is
essentially given by the complex

0→ EcodimZ,0
1 (X,Z)→ EcodimZ+1,0

1 (X,Z)→ · · · → Edim X,0
1 (X,Z)→ 0.

Definition 3.1. Let X be a regular scheme of finite Krull dimension and Z ⊂
X a closed subset. Then we define the complex GWC•(X,Z) := E•,01 (X,Z).
In other words, we have

GWCp(X,Z) = Wp
(
Dp
Z/D

p+1
Z

)

where Dp
Z = Db

Z(PX)(p), and the differential dp = dp,01 is the composition

Wp
(
Dp
Z/D

p+1
Z

) ∂−→Wp+1
(
Dp+1
Z

)
−→Wp+1

(
Dp+1
Z /Dp+2

Z

)

where ∂ is the connecting homomorphism of the localization long exact se-
quence and where the second homomorphism is the natural one. When X = Z
we write Ep,q1 (X) instead of Ep,q1 (X,X), and similarly for GWC•(X). We
adopt the notation GWC•(X) to avoid confusion with the Grothendieck-Witt
group GW(X).

Adding in the edge morphism E0(X)→ E0,0
1 (X) of the spectral sequence gives

the augmented Gersten-Witt complex of X

GWCa(X) : 0 −→W(X) −→ GWC0(X) −→ GWC1(X) −→ · · ·

The E2-page of the spectral sequence has Ep,02 (X) = Hp(GWC•(X)). From
this we deduce the following result which will be used in the proofs of Theo-
rems 4.4 and 6.1.

Lemma 3.2. The following hold true :

(1) Let X be a regular scheme. Assume that H i(GWC•(X)) = 0 for all
i ≥ 1. Then the augmented Gersten-Witt complex for X is exact.

(2) Let R be a regular local ring. Assume only that H i(GWC•(R)) = 0 for
all i ≥ 4. Then the Gersten conjecture for Witt groups holds for R.

Proof. We start with (1). The hypothesis implies that Ep,q2 (X) = 0 for all
p 6= 0. It follows that the spectral sequence degenerates at E2, and so the
edge morphisms give isomorphisms Eq(X)

∼−→E0,q
2 (X) for all q. For q = 0 this

means that the natural map W(X)→ H0(GWC•(X)) is an isomorphism. This
is what we needed to show.
For (2), recall from above that E1 is concentrated in the lines q ≡ 0 mod 4.
Therefore the spectral sequence degenerates again at E2 = E5 because no
nonzero higher differentials can occur. Observe that for p = 1, 2, 3, the ho-
mology Hp(GWC•(R)) is simply Ep,02 and the latter is isomorphic to Wp(R)
by the convergence of the spectral sequence. Now, when R is local, we have
Wp(R) = 0 for p = 1, 2, 3 by [4] Theorem 5.6. So we can apply (1). ¤
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Dévissage: The localization morphisms SpecOX,x −→ X induce an isomor-
phism (see [5] Proposition 7.1 or [7] Theorem 3.12)

GWCp(X,Z)
'−→

⊕

x∈X(p)∩Z
Wp

mx
(OX,x), (3.1)

where X(p) is the set of points of codimension p and (OX,x,mx) is the local
ring at x ∈ X.
Let (S, n) be a regular local ring and ` = S/n. Then we have an isomorphism

W(`)
∼−→ WdimS

n (S) which depends on the choice of local parameters (see [5]
Theorem 6.1) and hence

GWCp(X,Z) '
⊕

x∈X(p)∩Z
W(κ(x))

for any regular scheme X with closed subset Z. It follows that our Gersten-Witt
complex has the form announced in the Introduction.
There are two ways of having a complex independent of choices. Either
work as we do here in Definition 3.1 with the underlying complex before
dévissage, or twist the dualities on the residue fields, see [5]. The latter
means that one can consider for each x ∈ X (p) the Witt group W(κ(x), ωxp/X)
with twisted coefficients in the one-dimensional κ(x)-vector space ωxp/X :=

Extp(κ(x),OX,x) = Λp(mx/m
2
x)
∗
, and we have then a canonical isomorphism

W(κ(x), ωxp/X) ∼= Wp
mx

(OX,x) and thus a canonical Gersten-Witt complex
with

GWCp(X,Z) ∼=
⊕

x∈X(p)∩Z
W(κ(x), ωxp/X).

After all, this dévissage is only relevant for cognitive reasons since it relates the
terms of the Gersten-Witt complex with quadratic forms over the residue fields.
But we will see in the sequel that our initial canonical definition GWCp(X,Z) =

Wp
(
Dp
Z/D

p+1
Z

)
is more convenient to handle.

Another construction of a Gersten Witt spectral sequence has been given by
Gille [7], Section 3. Let Y be a Gorenstein scheme of finite Krull dimension
and Z ⊂ Y a closed subset. Then the derived functor of HomOY (− ,OY )
is a duality on Db

coh, Z(MY ) making it a triangulated category with 1-exact

duality. Following [7] we denote the associated so called coherent Witt groups

by W̃
i

Z(Y ). On the triangulated category Db
coh(MY ) we have also a finite

filtration

Db
coh, Z(MY ) = D0

Z ⊃ D1
Z ⊃ D2

Z ⊃ . . . ⊃ DdimY
Z ,

where Dp
Z := Db

coh, Z(MY )(p). As above this gives us long exact sequences

. . . −→Wi(Dp+1
Z ) −→Wi(Dp

Z) −→Wi(Dp
Z/D

p+1
Z ) −→Wi+1(Dp+1

Z ) −→ . . . ,

and hence by Massey’s method of exact couples a convergent spectral sequence

Ẽp,q(Y,Z) := Wp+q(Dp+q
Z /Dp+q+1

Z ) =⇒ W̃
p+q

Z (Y ) .
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If now Y is regular we have equivalences Db
Z(PY )(p) '−→ Db

coh, Z(MY )(p)

which are duality preserving and hence give isomorphisms Wi(Db
Z(PY )(p)) '

Wi(Db
coh, Z(MY )(p)). We get then from the functorial properties of the localiza-

tion sequence an isomorphism of spectral sequences Ep,q1 (Y,Z)
'−→ Ẽp,q1 (Y,Z).

Hence in the regular case both constructions lead to the same result.

One advantage of this “coherent” approach is the following. Let Y = SpecR
with R a Gorenstein ring of finite Krull dimension and let the closed sub-
set Z be defined by a regular element f of R, i.e. Z = SpecR/Rf . We set
D̄p := Db

coh(MZ)(p) and as before Dp
Z := Db

coh, Z(MY )(p). The natural mor-

phism α : Z ↪→ Y induces a pushforward functor α∗ : D̄p → Dp+1
Z for any

p ∈ N. This functor shifts the duality structure by 1 (cf. [7], Theorem 4.2),

i.e. it induces morphisms Wi(D̄p) → Wi+1(Dp+1
Z ) for all i ∈ Z and p ∈ N.

From the functoriality of the localization sequence (cf. [7] Theorem 2.9) we get
commutative diagrams with exact rows

· · · Wi(D̄p+1)
��

��

Wi(D̄p)
��

��

Wi(D̄p/D̄p+1)
��

��

Wi+1(D̄p+1) · · ·

��

· · · Wi+1(Dp+2
Z ) �� Wi+1(Dp+1

Z ) �� Wi+1(Dp+1
Z /Dp+2

Z ) �� Wi+2(Dp+2
Z ) · · ·

(cf. [7], diagram on the bottom of p. 130). In particular we have a morphism

of spectral sequences α̃∗ : Ẽp,q1 (Z) −→ Ẽp+1,q
1 (Y,Z) which is an isomorphism

as shown in [7], Section 4.2.3.
If now R is regular local and f a regular parameter, i.e. R/Rf is regular too,
the identification above gives the following

Lemma 3.3. Let R be a regular local ring and f a regular parameter. Then we
have an isomorphism of spectral sequences

Ep,qr (R/fR)
'−→ Ep+1,q

r (R, fR).

In particular, we have isomorphisms of complexes

GWC•(R/fR)
'−→ GWC•+1(R, fR) .

4. A reformulation of the conjecture

Let X be a regular scheme and Z a closed subset. From Definition 3.1 and
from the dévissage formula (3.1), we immediately obtain a degree-wise split
short exact sequence

0→ GWC•(X,Z) −→ GWC•(X) −→ GWC•(X \ Z)→ 0.

We will consider below the long exact cohomology sequence of this short exact
sequence of complexes in the case X = SpecR, for R a regular local ring, and
Z is defined by a regular parameter f .
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Definition 4.1. Recall from the introduction that the Gersten conjecture as-
serts that for a regular local ring R the Gersten complex GWC•(R) is an exact
resolution of W(R).
We denote by W the Witt sheaf, i.e. the sheafification of the presheaf on the
Zariski site

U 7−→W(U) U ⊂ X open.

We have also a Gersten-Witt complex GWC• of sheaves on any regular scheme
of finite Krull dimension X. The definition of this complex in degree p ≥ 0 is:

U 7−→ GWCp(U) U ⊂ X open.

Lemma 4.2. Let X be a regular scheme of finite Krull dimension and assume
that the Gersten conjecture holds for all local rings OX,x of X. Then for all i
we have

Hi
Zar(X,W) ' Hi(Γ(X,GWC•)) = Hi(GWC•(X)).

Proof. Note that GWCp is a flabby sheaf and that (GWCp)x ' GWCp(OX,x)
for all points x of the scheme X. Since the natural morphism W(OX,x) −→Wx

is an isomorphism for all x ∈ X it follows that if the Gersten conjecture is true
for every local ring of the regular scheme X, then GWC• is a flabby resolution
of W on X. ¤

Definition 4.3. Let C be a class of regular local rings. We say that C is
nepotistic if the following holds: whenever R belongs to C, so do Rp for all
p ∈ SpecR and R/fR for all regular parameters f ∈ R.

The main result of this section is the following:

Theorem 4.4. If C is a nepotistic class of regular local rings (see 4.3), then
the following conditions are equivalent :

(i) The Gersten conjecture for Witt groups is true for any R ∈ C.
(ii) For any R ∈ C and for any regular parameter f ∈ R, we have for all

i ≥ 1 that Hi
Zar(SpecRf ,W) = 0. ( When R is a field, this condition is

empty and thus always true. )

Proof. The short exact sequence 0 → GWC•(R, fR) → GWC•(R) →
GWC•(Rf )→ 0 of Gersten-Witt complexes gives rise to a long exact sequence
of cohomology

0→ H0(GWC•(R)) −→ H0(GWC•(Rf ))
δ−→H1(GWC•(R, fR))→ · · ·

(i) ⇒ (ii). Let R ∈ C, and let f ∈ R be a regular parameter. Then the
Gersten conjecture for Witt groups holds for R and R/fR, and so we have
Hi(GWC•(R)) = 0 and H i(GWC•(R/fR)) = 0 for all i ≥ 1. Because of the
isomorphism of Lemma 3.3, we get H i(GWC•(R, fR)) = 0 for all i ≥ 2. It now
follows from the long exact sequence that H i(GWC•(Rf )) = 0 for all i ≥ 1.
The local rings of SpecRf are the Rp with f /∈ p, so they are all in C. So we

also have Hi
Zar(SpecRf ,W) = 0 for all i ≥ 1 by Lemma 4.2.
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(ii)⇒ (i). We will prove the Gersten conjecture for Witt groups for R ∈ C by
induction on n = dimR. For n = 0 the ring R is a field, and this is trivial.
So suppose n ≥ 1 and that the Gersten conjecture for Witt groups is true for all
S ∈ C with dimS < n. Let f ∈ m \m2 be a regular parameter. The local rings
of Rf are the local rings Rp for primes with f /∈ p, and they satisfy Rp ∈ C and
dimRp < n. So the Gersten conjecture holds for all local rings of SpecRf , and
so by (ii) and Lemma 4.2 we have H i(GWC•(Rf )) = 0 for all i ≥ 1. We also
have R/fR ∈ C with dimR/fR = n− 1, so we get H i(GWC•(R/fR)) = 0 for
all i ≥ 1. The identification of Lemma 3.3 now gives us H i(GWC•(R, fR)) = 0
for all i ≥ 2. So from the long exact sequence we get H i(GWC•(R)) = 0 for all
i ≥ 2 and the Gersten conjecture for Witt groups holds for R by Lemma 3.2,
part (ii). ¤

5. A pairing, a trace map and a projection formula

We recall here some techniques of Gille and Nenashev [8] that we shall use
below. For more details and a more general point of view see [8].

The pairing W(k)×Wi(Db(PR)) −→Wi(Db(PR)). Let k be a field of charac-
teristic not 2, and let R be a regular k-algebra of Krull dimension n. De-
note the duality on k-mod by V ∗ = Homk(V, k) and that on Db(PR) by
F ] := HomR(F,R). Let (V, ϕ) be a nondegenerate symmetric bilinear space
over k. Then V ⊗k− : Db(PR) −→ Db(PR) is an exact functor, and the system
of isomorphisms between V ⊗k F ] and (V ⊗k F )] ∼= V ∗⊗k F ] given by ϕ⊗ 1F ]
makes V ⊗k − duality-preserving. Actually, the duality-preserving functor is
formally the pair (V ⊗k − , ϕ ⊗ 1), and we will abbreviate it as (V, ϕ) ⊗k −.
Moreover, if we let Dp

R = Db(PR)(p) be the subcategory of complexes of homo-
logical support of codimension at least p, then (V, ϕ)⊗k − is compatible with
the filtration

Db(PR) = D0
R ⊃ D1

R ⊃ · · · ⊃ Dn+1
R ' 0.

Hence the maps Wi(Dp
R) −→Wi(Dp

R) and Wi(Dp
R/D

p+1
R ) −→Wi(Dp

R/D
p+1
R )

induced by (V, ϕ)⊗k− are compatible with the localization exact sequences and
induce endomorphisms of the Gersten-Witt exact couple and spectral sequence
for R. These endomorphisms depend only on the Witt class of (V, ϕ), and
they are compatible with the orthogonal direct sum (V, ϕ) ⊥ (W,ψ) and tensor
product (V ⊗W,ϕ⊗ ψ) of symmetric bilinear spaces over k. This gives us the
following result.

Lemma 5.1. If R is a regular k-algebra of finite Krull dimension, then the pair-
ing makes the Gersten-Witt spectral sequence Ep,qr (R) into a spectral sequence
of W(k)-modules. ¤
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Base change. Let `/k be a separable algebraic field extension. Denote by π the
projection π : Spec(` ⊗k R) → SpecR. Then ` ⊗k R is a regular `-algebra of
Krull dimension n ( see [9], and in particular Prop. 6.7.4, p. 146 for regularity ).
Moreover, Db(P`⊗kR) has a duality (−)[ given by G[ := Hom`⊗kR(G, `⊗k R),
and the exact functor ` ⊗k − : Db(PR) −→ Db(P`⊗kR) is naturally duality-
preserving. It is compatible with the filtration of Db(PR) and the corresponding
filtration

Db(P`⊗kR) = D0
`⊗kR ⊃ D1

`⊗kR ⊃ · · · ⊃ D
n+1
`⊗kR = 0.

of Db(P`⊗kR), so it induces a morphism of spectral sequences π∗ : Ep,qr (R) −→
Ep,qr (`⊗k R).

A trace map. If `/k is finite and separable, then choose 0 6= τ ∈ Homk(`, k)
and extend it to an R-linear map τR : ` ⊗k R −→ R by setting τR(l ⊗ a) =
τ(l)a. Let π∗ : P`⊗kR → PR be the restriction-of-scalars functor. The natural
homomorphism of R-modules

π∗(G[) = Hom`⊗kR(G, `⊗k R)
τR∗ �� HomR(G,R) = (π∗G)]

sending f 7→ τR ◦f is an isomorphism for any G in P`⊗kR, and it makes π∗ into
a duality-preserving exact functor π∗ : Db(P`⊗kR) → Db(PR). Actually, the
duality-preserving functor is formally the pair (π∗, τR∗), and we will abbreviate
it as Trτ`⊗kR/R. Since `⊗k R is flat and finite over R, the restriction-of-scalars
functor preserves the codimension of the support of the homology modules,
and so π∗ is compatible with the filtrations on the two derived categories. So
we again get a morphism of spectral sequences Trτ`⊗kR/R : Ep,qr (` ⊗k R) −→
Ep,qr (R).

Remark 5.2. For R = k and i = 0 our Trτ`/k is just the Scharlau transfer

τ∗ : W(`) −→W(k) (cf. [20] Section 2.5).

Let (U,ψ) be a nondegenerate symmetric bilinear space over `. The following
diagram of duality-preserving functors commutes up to isomorphism of duality-
preserving functors (see [5] §4 for the definition):

Db(PR)

Trτ`/k(U,ψ)⊗k −
��

`⊗k − �� Db(P`⊗kR)

(U,ψ)⊗` −
��

Db(PR) Db(P`⊗kR) .
Trτ`⊗kR/R

��

The induced maps on derived Witt groups, exact couples, and spectral se-
quences are then the same (cf. [5] Lemma 4.1(b)). This gives us a projection
formula (cf. [8] Theorem 4.1):

Theorem 5.3. Let R be a regular k-algebra of finite Krull dimension, let `/k
be a finite separable extension of fields, and let π : Spec(` ⊗k R) → SpecR be
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the projection. Let Ep,qr (R) and Ep,qr (`⊗k R) be the two Gersten-Witt spectral
sequences. Then

Trτ`⊗kR/R(u · π∗(x)) = Trτ`/k(u) · x,
for all u ∈W(`) and all x ∈ Ep,qr (R). ¤

Odd-degree extensions. If `/k is of odd degree, then there exists a τ ∈
Homk(`, k) such that Trτ`/k(1W(`)) = 1W(k) ([20] Lemma 2.5.8). We then have

Trτ`⊗kR/R(π∗x) = x for all x ∈ Ep,qr (R). In other words :

Corollary 5.4. If `/k is separable of odd degree, then π∗ : Ep,qr (R) →
Ep,qr (` ⊗k R) is a split monomorphism of spectral sequences. In particular
Hi(GWC•(R))→ Hi(GWC•(`⊗kR)) is a split monomorphism for every i. ¤

The base change maps for separable algebraic extensions commute with filtered
colimits.

Corollary 5.5. If `/k is a filtered colimit of separable finite extensions
of odd degree, then π∗ : Ep,qr (R) → Ep,qr (` ⊗k R) is a filtered colimit of
split monomorphisms of spectral sequences. In particular H i(GWC•(R)) →
Hi(GWC•(`⊗k R)) is a monomorphism for every i. ¤

6. The equicharacteristic case of the Gersten conjecture for
Witt groups

We are now ready to prove the main result of the paper.

Theorem 6.1. Let R be an equicharacteristic regular local ring, i.e. R contains
some field (of characteristic not 2). Then the Gersten conjecture for Witt
groups is true for R.

Fix the following notation: m is the maximal ideal of R. We prove the theorem
in two steps.

Step 1. Assume that R is essentially smooth over some field k.

When k is an infinite field, this is a special case of [4] Theorem 4.3 which states
the following. If S is a semilocal ring essentially smooth over a field ` (i.e. S is
the semi-localization of a smooth scheme over `), and if the field ` is infinite,
then the Gersten conjecture for Witt groups is true for S, i.e. H i(GWC(S)) = 0
for all i ≥ 1.
Assume now k is a finite field and hence perfect. Fix an odd prime s. For any
n ≥ 0 let `n be the unique extension of the finite field k of degree sn, and let
` =

⋃∞
n=0 `n. The `-algebra ` ⊗k R is integral over R and hence semilocal. It

is further essentially smooth over the infinite field ` ( [10] Prop. 10.1.b ) and
hence by the result above the Gersten conjecture is true for ` ⊗k R. Using
Corollary 5.5, we see that the same is true for R.
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Step 2. General equicharacteristic R.

For this case we use the following result:

Theorem 6.2. Let R be an equicharacteristic regular local ring, and let f ∈
m \m2 be a regular parameter. Then:

(1) There exist a perfect field k contained in R and a filtered system of
pairs (Rj , fj) such that each Rj is an essentially smooth local k-algebra,
each fj is a regular parameter in Rj , and such that R = colimRj and
Rf = colim(Rj)fj , and the morphisms Rj → R are local.

(2) In addition the natural maps

colimj Hi
Zar(Spec(Rj)fj ,W) −→ Hi

Zar(SpecRf ,W)

are isomorphisms for all i ≥ 0.

Proof. The first part is a consequence of Popescu’s Theorem [18] [19] (see
also [15] §3), while the second part follows from [15] Theorem 6.6, which was
inspired by the étale analogue of this result : [1] Exposé VII, Théorème 5.7. ¤
Let Ceq be the class of all equicharacteristic regular local rings, and let Csm be
the subclass of regular local rings that are essentially smooth over a field. Both
Ceq and Csm are nepotistic (Definition 4.3). The class Csm satisfies condition
(i) of Theorem 4.4 by the first step of our proof, and we wish to show that
Ceq satisfies the same condition. But conditions (i) and (ii) of Theorem 4.4
are equivalent, so it is enough to show that Ceq satisfies condition (ii) of Theo-
rem 4.4, knowing that Csm satisfies the same condition.
Let R be in Ceq, and let f be a regular parameter of R. By Theorem 6.2
there exist a perfect subfield k ⊂ R and a filtered system (Rj , fj) of essentially
smooth local k-algebras Rj plus regular parameters fj ∈ Rj such that Rf =

colim(Rj)fj . Since the Rj are in Csm, we have Hi
Zar(Spec(Rj)fj ,W) = 0 for all

i ≥ 1 and all j because Csm satisfies condition (ii) of Theorem 4.4. Then by
Theorem 6.2 (2) we also have Hi

Zar(SpecRf ,W) = 0 for i ≥ 1. This is condition
(ii) of Theorem 4.4 for the class Ceq, so we have completed the proof.

Documenta Mathematica 7 (2002) 203–217



216 P. Balmer, S. Gille, I. Panin and C. Walter

References

[1] M. Artin, A. Grothendieck, J.-L. Verdier, Théorie des Topos et Cohomolo-
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Abstract. Let X = G/K be a Riemannian symmetric space of the
noncompact type, Γ ⊂ G a discrete, torsion-free, cocompact subgroup,
and let Y = Γ\X be the corresponding locally symmetric space. In
this paper we explain how the Harish-Chandra Plancherel Theorem
for L2(G) and results on (g,K)-cohomology can be used in order to
compute the L2-Betti numbers, the Novikov-Shubin invariants, and
the L2-torsion of Y in a uniform way thus completing results previ-
ously obtained by Borel, Lott, Mathai, Hess and Schick, Lohoue and
Mehdi. It turns out that the behaviour of these invariants is essen-
tially determined by the fundamental rank m = rkCG−rkCK of G. In
particular, we show the nonvanishing of the L2-torsion of Y whenever
m = 1.

2000 Mathematics Subject Classification: 58J35, 57R19, 22E46
Keywords and Phrases: locally symmetric spaces, L2-cohomology,
Novikov-Shubin invariants, L2-torsion, relative Lie algebra cohomol-
ogy

1 Introduction

During the last two decades L2-invariants have proved to be a powerful tool in
the topology of compact manifolds (see [15] for an overview). Although they
can be defined in purely combinatorial terms we are interested here in their
equivalent analytic versions: They are spectral invariants of the p-form Lapla-
cians of the universal cover of the manifold. For particular nice manifolds these
might be computable. Indeed, the aim of the present paper is to extract from
the representation theoretic work of Harish-Chandra [9] and Borel-Wallach [2]
information on the spectral decomposition of the form Laplacians on Rieman-
nian symmetric spaces of the non-compact type which is sufficiently explicit
in order to compute the spectral invariants of interest. We try to do this in a
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rather detailed way which, we hope, keeps the paper readable for nonspecialists
in harmonic analysis. 1

Let X → Y be the universal cover of a compact Riemannian manifold. Set
Γ := π1(Y ). The form Laplacian ∆p = d∗d + dd∗ defines a non-negative,
elliptic, self-adjoint operator acting on L2(X,ΛpT ∗X), the square integrable
p-forms on X. By ∆′p and ∆c

p = (d∗d)′ we denote the restriction of ∆p to
the orthogonal complement of its kernel and the coclosed forms in this orthog-
onal complement, respectively. We consider the corresponding heat kernels
e−t∆

∗
p(x, x′) := (P∗e−t∆p)(x, x′), x, x′ ∈ X, for ∗ = ∅, ′ or c. Here P∗ denotes

the orthogonal projection to the corresponding subspace. The local traces
tr e−t∆

∗
p(x, x) are Γ-invariant functions on X. For a thorough discussion of the

following definitions we refer to [14], [17], [16], and [15].
We set

TrΓe
−t∆∗p :=

∫

F

tr e−t∆
∗
p(x, x) dx ,

where F ⊂ X is a fundamental domain of the action of Γ on X and dx is the
Riemannian volume element of X. Then the L2-Betti numbers are given by

b(2)
p (Y ) := lim

t→∞
TrΓe

−t∆p ∈ [0,∞) .

They are equal to the von Neumann dimension of ker ∆p viewed as Hilbert
N (Γ)-module, where N (Γ) is the group von Neumann algebra of Γ. If the
spectrum of ∆p has no gap around 0 the Novikov-Shubin invariants of Y are
defined by

α̃p(Y ) := sup{β | TrΓe
−t∆′p = O(t−

β
2 ) as t→∞} ∈ [0,∞] .

It measures the asymptotic behaviour of the spectral density function of ∆p at
0. In case of a gap around 0 we set α̃p(Y ) := ∞+. Replacing ∆′p by ∆c

p we
obtain the analogously defined Novikov-Shubin invariants αp(Y ) of d∗d. Using
the action of the exterior differential d on the Hodge decomposition of L2-forms
we obtain

α̃p(Y ) = min{αp(Y ), αp−1(Y )} . (1)

Finally, if αp(Y ) > 0 for all p (or, more generally, if X is of determinant class
(see [15])), then the L2-torsion of Y is defined by

ρ(2)(Y ) :=
1

2

∑
(−1)p+1p log detΓ(∆′p) =

1

2

∑
(−1)p log detΓ(∆c

p) ,

where for ∗ = ′, c

− log detΓ(∆∗p) :=
d

ds |s=0

(
1

Γ(s)

∫ ε

0

TrΓe
−t∆∗pts−1dt

)

+

∫ ∞

ε

TrΓe
−t∆∗pt−1dt

1Note added in proof: In the meanwhile the interested reader can find a discussion with-
out proofs of the results of the present paper in the recent monograph [16] which gives a
comprehensive treatment of the theory of L2-invariants.
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for any ε > 0, where the first integral is considered as a meromorphic function
in s. By Poincaré duality ρ(2)(Y ) = 0 for even dimensional manifolds Y .
From now on let X = G/K be a Riemannian symmetric space of the noncom-
pact type. Here G is a real, connected, linear, semisimple Lie group without
compact factors, and K ⊂ G is a maximal compact subgroup. It is the uni-
versal cover of compact locally symmetric spaces of the form Y = Γ\X, where
Γ ∼= π1(Y ) can be identified with a discrete, torsion-free, cocompact subgroup
of G. It will be convenient to consider also the compact dual Xd of X. Xd

is defined as follows: Let g, k be the Lie algebras of G, K. Then we have the
Cartan decomposition g = k⊕ p, and gd := k⊕ ip is another subalgebra of the
complexification of g. Let Gd be the corresponding analytic subgroup of the
complexification GC of G. Then Gd is a compact group, and Xd = Gd/K. We
normalize the Riemannian metric on Xd such that multiplication by i becomes
an isometry TeKX ∼= p → ip ∼= TeKX

d. In this paper we are going to prove
the following theorem:

Theorem 1.1 Let n = dimY and m = m(X) := rkCG − rkCK be the funda-
mental rank of G. Let χ(Y ) be the Euler characteristic of Y . Then

(a) b
(2)
p (Y ) 6= 0⇔ m = 0 and p = n

2 .

In particular, b
(2)
n
2

(Y ) = (−1)
n
2 χ(Y ) =

vol(Y )

vol(Xd)
χ(Xd).

(b) αp(Y ) 6=∞+ ⇔ m > 0 and p ∈ [n−m2 , n+m
2 − 1].

In this range αp(Y ) = m.

(c) ρ(2)(Y ) 6= 0⇔ m = 1.

Note that n − m is always even and positive. Part (a) of the theorem was
known for a long time, at least since Borel’s paper [1]. For special cases see
also [4], [5]. For the convenience of the reader we include a proof here. In fact,
we prove a stronger statement which should have been known to the experts
although we were not able to find it in the literature:

Proposition 1.2 The discrete spectrum of ∆p on L2(X,ΛpT ∗X) is empty
unless m(X) = 0 and p = n

2 . In this case 0 is the only eigenvalue of ∆p.

The strategy of the proof of (b) can already be found in Lott’s paper [14],
Section VII. To be more precise, Equation (1) implies the slightly weaker result

α̃p(Y ) =

{
∞+ p 6∈ [n−m2 , n+m

2 ] or m = 0
m p ∈ [n−m2 , n+m

2 ] and m 6= 0
. (2)

Lott proved the first line of (2) and that α̃p(Y ) is finite and independent of p
for the remaining values of p. He indicated how one should be able to compute
the precise value of α̃p(Y ). But he finished the computation in the real rank
one case, only. In addition, already Borel [1] showed that the range of the

Documenta Mathematica 7 (2002) 219–237



222 Martin Olbrich

differential dp of the L2-de-Rham-complex is not closed for p ∈ [n−m2 , n+m
2 −1].

Theorem 1.1 (b) can be considered as a quantitative refinement of this result.
After the present paper was written I was informed by S. Mehdi that there is
a joint paper of him with N. Lohoue [13] which has recently appeared in print
and which contains a proof of (2). The interested reader will also find there
more information concerning the material presented here in Sections 2 and 3.
But he should be aware that in that paper the range of finiteness of α̃p(Y ) is
constantly misprinted and that the proof of the second line of (2) as written
down there is not quite complete (it is not mentioned that it is important to
know that pξ(0) > 0, see Equation (14) below).
The main motivation to do the present work was to obtain part (c) of the
theorem. In our locally homogeneous situation we have for any x ∈ X

TrΓe
−t∆∗p = vol(Y ) · tr e−t∆∗p(x, x)

and thus
ρ(2)(Y ) = vol(Y ) · T (2)(X)

for a certain real number T (2)(X). Note that in contrast to ρ(2)(Y ) the num-
ber T (2)(X) depends on the normalization of the invariant metric on X (of
course only via the volume form). A well-known symmetry argument ([18],
Proposition 2.1) yields that T (2)(X) = 0 whenever m 6= 1. Lott [14] (see also
[17]) showed that T (2)(Hn) 6= 0 for n = 3, 5, 7, where Hn is the real hyperbolic
space (his values for T (2)(Hn) for n = 5, 7 were not correct). This led to the
conjecture that T (2)(Hn) 6= 0 for all odd n which was open until the work of
Hess-Schick [11] who found a trick in order to control the sign of log detΓ(∆c

p)
in terms of p and n. So they were able to show that there is a positive rational
number qn such that

T (2)(Hn) =

(
− 1

π

)n−1
2

qn . (3)

Here the metric on Hn is normalized to have sectional curvature −1. Along
the same lines Hess [10] obtained

T (2)(SL(3,R)/SO(3)) 6= 0 . (4)

Let us introduce

Qn =
2qn

(n−1
2 )!

and rewrite (3) as

T (2)(Hn) = (−1)
n−1

2
πQn

vol(Sn)
. (5)

Recall that Sn is the compact dual of Hn. The rational number Qn which
does not depend on the normalization of the metric has a nice interpretation
in terms of Weyl’s dimension polynomial for finite-dimensional representations,
see Proposition 5.3. But its significance remains to be clarified further, and it
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seems to be difficult to write down a practical formula valid for all odd n. One
has Q3 = 1

3 , Q5 = 31
45 , Q7 = 221

210 . For further information see [11].
We will reduce Theorem 1.1 (c) to (4) and the positivity of Qn. Let X be an
arbitrary symmetric space satisfying m(X) = 1. By the classification of simple
Lie groups X = X1 × X0, where m(X0) = 0 and X1 = SL(3,R)/SO(3) or
X1 = Xp,q := SO(p, q)0/SO(p)× SO(q) for p, q odd. (Here as throughout the
paper a superscript 0 denotes the connected component of the identity.) Note
that a corresponding decomposition of Y does not necessarily exist. We show

Proposition 1.3

(a) T (2)(Xp,q) = (−1)
pq−1

2 χ(Xd
p−1,q−1)

πQp+q−1

vol(Xd
p,q)

.

(b) If m(X) = 1, then T (2)(X) =
(−1)

n0
2 χ(Xd

0 )

vol(Xd
0 )

T (2)(X1).

Here n0 = dimX0.

Note that Xd
p−1,q−1 = SO(p+ q − 2)/SO(p− 1)× SO(q − 1) and for p, q > 1

χ(Xd
p−1,q−1) = 2

(p+q−2
2
p−1

2

)
.

In fact, it is a classical result that χ(Xd) > 0 whenever m(X) = 0 (compare
Theorem 1.1 (a)). It is equal to the quotient of the orders of certain Weyl
groups (see Section 5). Now Theorem 1.1 (c) follows from Proposition 1.3, (4)
and the positivity of Qn.
We are also able to identify the missing constant in (4).

Proposition 1.4 If X = SL(3,R)/SO(3), then

T (2)(X) =
2π

3vol(Xd)
.

If the invariant metric on X is induced from twice the trace form of the standard
representation of sl(3,R), then vol(Xd) = 4π3, and we have

T (2)(X) =
1

6π2
.

In particular, we see that (−1)
n−1

2 T (2)(X) is positive for all X with m(X) = 1.
Proposition 5.3 provides a uniform formula for the L2-torsion of all these spaces.
Acknowledgements: I am grateful to Wolfgang Lück and Thomas Schick for
inspiring discussions which have provided me with a sufficient amount of moti-
vation and of knowledge on L2-invariants in order to perform the computations
which led to the results of the present paper. I am also indebted to Wolfgang
Lück for giving me the opportunity to report on them at the Oberwolfach con-
ference “L2-methods and K-theory”, September 1999. In addition, I benefited
from discussions with J. Lott, P. Pansu, E. Hess and U. Bunke.
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2 The Harish-Chandra Plancherel Theorem

We want to understand the action of the Laplacian and of the corresponding
heat kernels on L2(X,ΛpT ∗X). Since the Laplacian coincides (up to the sign)
with the action of the Casimir operator Ω of G (Kuga’s Lemma [2], Thm. 2.5.)
it is certainly enough to understand the “decomposition” of L2(X,ΛpT ∗X) into
irreducible unitary representations of G. There is an isomorphism of homoge-
neous vector bundles ΛpT ∗X ∼= G×K Λpp∗, and, hence, of G-representations

L2(X,ΛpT ∗X) ∼= [L2(G)⊗ Λpp∗]K .

Thus our task consists of two steps: First to understand L2(G) as a repre-
sentation of G × G which is accomplished by the Harish-Chandra Plancherel
Theorem recalled in the present section and, second, to understand spaces of
the form [Vπ⊗Λpp∗]K , where (π, Vπ) is an irreducible unitary representation of
G occurring in the Plancherel decomposition. For general G, the second step
will resist a naive approach. However, if π(Ω) = 0, then the space [Vπ⊗Λpp∗]K

has cohomological meaning, and the theory of relative (g,K)-cohomology as
recalled in the next section will provide a sufficient amount of information.
An irreducible unitary representation (π, Vπ) of G is called a representation
of the discrete series if there is a G-invariant embedding Vπ ↪→ L2(G). Let
Ĝd denote the set of equivalence classes of discrete series representations of G.
Then we have

Theorem 2.1 (Harish-Chandra [7]) Ĝd is non-empty if and only if
m(X) = 0.

Note that m(X) = 0 means that G has a compact Cartan subgroup. The
Plancherel Theorem provides a decomposition of L2(G) which is indexed by
discrete series representations of certain subgroups M ⊂ G which we are going
to define now.
Let a0 ⊂ p be a maximal abelian subspace. It induces a root space decompo-
sition

g = g0 ⊕
⊕

α∈∆(g,a0)

gα .

Choose a decomposition ∆(g, a0) = ∆+
·∪ −∆+ into positive and negative

roots, and let Π ⊂ ∆+ be the subset of simple roots. For any subset F ⊂ Π we
define

aF = {H ∈ a0 | α(H) = 0 for all α ∈ Π} , AF = exp(aF ) ,

nF =
⊕

{α∈∆+|α|aF 6=0}
gα , NF = exp(nF ) .

Furthermore, there is a unique (possibly disconnected) subgroup MF ⊂ G
with Lie algebra mF such that MFAF is the centralizer of aF in G and mF
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is orthogonal to aF with respect to any invariant bilinear form on g. MF

is a reductive subgroup with compact center. The corresponding parabolic
subgroup PF := MFAFNF is called a standard parabolic. PF is called cuspidal
if MF has a compact Cartan subgroup. If for two subsets F, I ⊂ Π the spaces
aF and aI are conjugated by an element of K (thus by an element of the Weyl
group W (g, a0)) we call PF and PI associate. (In many cases this already
implies F = I.) The assignment PF 7→ AFT , where T is a compact Cartan
subgroup of MF , gives a one-to-one correspondence between association classes
of cuspidal parabolic subgroups and conjugacy classes of Cartan subgroups of
G.
For two subsets F ⊂ I ⊂ Π we have PF ⊂ PI , MF ⊂MI , AF ⊃ AI , NF ⊃ NI .
If F is understood we will often suppress the subscript F .
For illustration let us consider the two extreme cases. The minimal parabolic
arises for F = ∅. Since M∅ is compact P∅ is always cuspidal. For F = Π we
have P = M = G, and G is cuspidal iff m(X) = 0. For any cuspidal parabolic
subgroup we have dimA ≥ m(X), and there is exactly one association class of
cuspidal parabolic subgroups, called fundamental, with dimA = m(X).
Theorem 2.1 also holds in the context of such reductive groups like M . Thus
a parabolic P = MAN is cuspidal iff M has a non-empty discrete series M̂d.
Let a∗C be the complexified dual of the Lie algebra a of A. For a discrete series
representation (ξ,Wξ) of M and ν ∈ a∗C we form the induced representation
(πξ,ν , H

ξ,ν) by

Hξ,ν =

{
f : G→Wξ | f(gman) = a−(ν+ρa)ξ(m)−1f(g) for all

g ∈ G,man ∈MAN, f|K ∈ L2(K,Wξ)

}
,

(πξ,ν(g)f)(x) = f(g−1x) .

Here ρa =
1

2

∑

α∈∆+

α|a. If ν ∈ ia∗, then πξ,ν is unitary. An invariant bilinear

form on g induces corresponding forms on m and a∗C and determines Casimir
operators Ω and ΩM of G and M , respectively. Then we have

πξ,ν(Ω) = 〈ν, ν〉 − 〈ρa, ρa〉+ ξ(ΩM ) . (6)

Note that ξ(ΩM ) is a non-negative real scalar.
Let C(G) ⊂ L2(G) be the Harish-Chandra Schwartz space (for a definition see
e.g. [19], 7.1.2). It is stable under the left and right regular representations l
and r of G. Let C(G)K×K = {f ∈ C(G) | dim span{lk1

rk2
f | k1, k2 ∈ K} <∞}

be the subspace of Schwartz functions which are K-finite from the left and the
right. Note that C(G)K×K is dense in L2(G). Suppose that ν ∈ ia∗. Then for
f ∈ C(G)

πξ,ν(f) :=

∫

G

f(g)πξ,ν(g) dg

is a well-defined trace class operator on Hξ,ν which has finite rank if f ∈
C(G)K×K . Note that the map f 7→ πξ,ν(f) intertwines the G-actions in the
following way: πξ,ν(lxryf) = πξ,ν(x)πξ,ν(f)πξ,ν(y−1) for x, y ∈ G.
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The Harish-Chandra Plancherel Theorem can now be formulated as follows:

Theorem 2.2 (Harish-Chandra [9]) For each cuspidal parabolic subgroup
as constructed above and any discrete series representation ξ of the cor-
responding group M there exists an explicitly computable analytic function
pξ : ia∗ → [0,∞) of polynomial growth (the Plancherel density) such that for
any f ∈ C(G)K×K and g ∈ G

f(g) =
∑

P

∑

ξ∈M̂d

∫

a∗
Tr(πξ,iν(f)πξ,iν(g−1)) pξ(iν)dν .

Here the first sum runs over a set of representatives P = PF of association
classes of cuspidal parabolic subgroups of G.

For more details on the Plancherel Theorem and the structure theory behind
it the interested reader may consult the textbooks [12], [19], [20].
Note that the Plancherel measures pξ(iν)dν depend on the normalization of
the Haar measure dg. In the remainder of the paper we use the following one.
Let dx be the Riemannian volume form of X = G/K and dk be the Haar

measure of K with total mass one. Then

∫

G

f(g) dg =

∫

X

f̃(x) dx, where

f̃(gK) =

∫

K

f(gk)dk. We normalize the invariant bilinear form on g such that

its restriction to p ∼= TeKX coincides with the Riemannian metric of X. Let dν
be the Lebesgue measure corresponding to the induced form on a∗. By these
choices pξ is uniquely determined.

We are now able to give a kind of spectral expansion of TrΓe
−t∆∗p .

Corollary 2.3

TrΓe
−t∆p = vol(Y )

∑

P

∑

ξ∈M̂d

∫

a∗
e−t(‖ν‖

2+‖ρa‖2−ξ(ΩM ))

dim[Hξ,iν ⊗ Λpp∗]Kpξ(iν)dν (7)

= vol(Y )
∑

P

∑

ξ∈M̂d

∫

a∗
e−t(‖ν‖

2+‖ρa‖2−ξ(ΩM ))

dim[Wξ ⊗ Λpp∗]KM pξ(iν)dν . (8)

Here KM := K ∩M denotes the maximal compact subgroup of M . There are
only finitely many pairs (P, ξ) with [Hξ,iν ⊗ Λpp∗]K ∼= [Wξ ⊗ Λpp∗]KM 6= {0}.

Proof. We define kt ∈ [C(G) ⊗ End(Λpp∗)]K×K by kt(g) := e−t∆p(eK, gK) ◦
g. For f ∈ L2(X,ΛpT ∗X) ∼= [L2(G) ⊗ Λpp∗]K we have e−t∆pf(g0) =∫

G

kt(g)f(g0g) dg. In addition, tr e−t∆p(x, x) = tr kt(e) for any x ∈ X.

We consider πξ,iν(kt) as an operator acting on Hξ,iν ⊗ Λpp∗. Using Kuga’s
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Lemma, Equation (6), and the K × K-invariance of kt one derives that

πξ,iν(kt) = e−t(‖v‖
2+‖ρa‖2−ξ(ΩM ))P , where P is the orthogonal projection onto

the subspace of K-invariants in Hξ,iν ⊗ Λpp∗. The Plancherel formula now
yields

tr kt(e) =
∑

P

∑

ξ∈M̂d

∫

a∗
e−t(‖v‖

2+‖ρa‖2−ξ(ΩM )) dim[Hξ,iν ⊗ Λpp∗]K pξ(iν)dν .

This proves (7). Since Hξ,iν ∼= L2(K ×KM Wξ) as a representation of K Equa-
tion (8) follows by Frobenius reciprocity. The last assertion is a consequence
of the Blattner formula (see e.g. [19], 6.5.4) for the KM -types of discrete series
representations of M . 2

3 (g,K)-cohomology

If (π, Vπ) is a representation of G on a complete locally convex Hausdorff topo-
logical vector space, then we can form its subspace Vπ,K consisting of all K-
finite smooth vectors of Vπ. Vπ,K becomes a simultaneous module under g and
K, where both actions satisfy the obvious compatibility conditions. Such a
module is called a (g,K)-module (see [2], 0.2).
We are interested in the functor of (g,K)-cohomology V 7→ H∗(g,K, V ) which
goes from the category of (g,K)-modules to the category of vector spaces. It
is the right derived functor of the left exact functor taking (g,K)-invariants.
H∗(g,K, V ) can be computed using the standard relative Lie algebra cohomol-
ogy complex ([V ⊗ Λ∗p∗]K , d), where

dω(X0, . . . , Xp) =

p∑

i=0

(−1)iπ(Xi)ω(X0, . . . , X̂i, . . . , Xp) ,

ω ∈ [V ⊗ Λpp∗]K , Xi ∈ p .

Note that for V = C∞(G)K this complex is isomorphic to the de Rham complex
of the symmetric space X.
Let Z(g) be the center of the universal enveloping algebra of g. If (π, V ) is
an irreducible (g,K)-module, then any z ∈ Z(g) acts by a scalar χπ(z) on V .
The homomorphism χπ : Z(g) → C is called the infinitesimal character of V .
The following basic result can be considered as an algebraic version of Hodge
theory.

Proposition 3.1 ([2], II.3.1. and I.5.3.) Let (π, Vπ) be an irreducible uni-
tary representation of G, and let (τ, F ) be an irreducible finite-dimensional
representation of G. Then

Hp(g,K, Vπ,K ⊗ F ) =

{
[Vπ ⊗ F ⊗ Λpp∗]K π(Ω) = τ(Ω)

{0} π(Ω) 6= τ(Ω)
.
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If Hp(g,K, Vπ,K ⊗F ) 6= {0}, then χπ = χτ̃ , where τ̃ is the dual representation
of τ .

The cohomology groups Hp(g,K, Vπ,K ⊗ F ) for the representations π = πξ,iν
occurring in the Plancherel Theorem have been computed in [2]. We shall need
the following information.

Proposition 3.2 ([2],II.5.3., III.5.1., and III.3.3.)

(a) Let (τ, F ) be an irreducible finite-dimensional representation of G and
π ∈ Ĝd with χπ = χτ̃ . Then

dimHp(g,K, Vπ,K ⊗ F ) =

{
1 p = n

2
0 otherwise

.

(b) Let (πξ,ν , H
ξ,ν) be a representation occurring in the Plancherel Theorem.

Then
H∗(g,K,Hξ,iν

K ) = {0}
unless P is fundamental, ν = 0 and ξ belongs to a certain non-empty
finite subset Ξ ⊂ M̂d. If P is fundamental and ξ ∈ Ξ, then

dimHp(g,K,Hξ,0
K ) =

{ (
m

p−n−m2

)
p ∈ [n−m2 , n+m

2 ]

0 otherwise
.

Choose a Cartan subalgebra h ⊂ g and a system of positive roots. Via the
Harish-Chandra isomorphism any infinitesimal character χπ : Z(g) → C is
given by an element Λπ ∈ h∗C, which is uniquely determined up to the action
of the Weyl group W (g, h) ([19], 3.2.4.). The set of infinitesimal characters
of discrete series representations coincides (in case m = 0) with the set of
infinitesimal characters of finite-dimensional representations, which are of the
form µτ + ρg, µτ and ρg being the highest weight of τ and the half-sum of
positive roots, respectively. In the following we will represent infinitesimal
characters of discrete series representations by elements of this form. We in-
troduce a partial order on h∗C by saying that µ > ν, if µ − ν is a sum of (not
necessarily distinct) positive roots. Then a careful examination of the proof of
Proposition II.5.3. in [2], which only rests on some basic knowledge of the pos-
sible K-types occurring in discrete series representations, shows that slightly
more than Proposition 3.2 (a) is true.

Proposition 3.3 Let (τ, F ) be an irreducible finite-dimensional representa-
tion of G and π ∈ Ĝd with Λπ 6< Λτ̃ . Then

dim[Vπ,K ⊗ F ⊗ Λpp∗]K =

{
1 p = n

2 , χπ = χτ̃
0 otherwise

.
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4 L2-Betti numbers and Novikov-Shubin invariants

In this section we shall prove parts (a) and (b) of Theorem 1.1 as well as
Proposition 1.2.
Let L2(X,ΛpT ∗X)d be the discrete subspace of L2(X,ΛpT ∗X), i.e., the di-
rect sum of the L2-eigenspaces of the Laplacian. The Plancherel Theorem in
particular says that as a representation of G

L2(X,ΛpT ∗X)d ∼=
⊕

π∈Ĝd

Vπ̃ ⊗ [Vπ ⊗ Λpp∗]K .

Let (τ0,C) be the trivial representation of G. Let π ∈ Ĝd. Then Λπ 6< Λτ0 = ρg.
Proposition 3.3 now yields

dim[Vπ ⊗ Λpp∗]K =

{
1 p = n

2 , χπ = χτ0
0 otherwise

. (9)

Since in case m = 0 discrete series representations with infinitesimal character
χτ0 always exist (see e.g. [12], Thm. 9.20 or [19], Thm. 6.8.2) and τ0(Ω) = 0

this implies Proposition 1.2. In particular, b
(2)
p (Y ) is non-zero exactly when

m = 0 and p = n
2 . Using that the L2-Euler characteristic coincides with the

usual Euler characteristic and applying Hirzebruch proportionality we obtain

b
(2)
n
2

(Y ) = (−1)
n
2 χ(Y ) =

vol(Y )

vol(Xd)
χ(Xd) . (10)

We will give an alternative, purely analytic proof of that formula in the sequel
of Corollary 5.2. This finishes the proof of part (a) of Theorem 1.1.
We now turn to part (b). In order to compute αp(Y ) we need an expression

for TrΓe
−t∆c

p .

Proposition 4.1 For any triple (P, ξ, ν) appearing in (7) let Bp(ξ, ν) =
d([Hξ,iν ⊗ Λp−1p∗]K) be the space of coboundaries in the relative Lie algebra
cohomology complex and bp(ξ, ν) be its dimension. Then

TrΓe
−t∆c

p = vol(Y )
∑

P 6=G

∑

ξ∈M̂d

∫

a∗
e−t(‖ν‖

2+‖ρa‖2−ξ(ΩM ))

bp+1(ξ, ν) pξ(iν)dν . (11)

Here the first sum runs over a set of representatives P = PF of association
classes of proper cuspidal parabolic subgroups of G. If m > 0, P is fundamental,
ξ ∈ Ξ (see Proposition 3.2 (b)), and ν 6= 0, then

bp+1(ξ, ν) =

{ ( m−1
p−n−m2

)
p ∈ [n−m2 , n+m

2 − 1]

0 otherwise
. (12)
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Proof. We proceed exactly as in the proof of Corollary 2.3. The kernel e−t∆
c
p

determines a function kct ∈ [C(G)⊗ End(Λpp∗)]K×K . Then one computes that

πξ,iν(kct ) = e−t(‖v‖
2+‖ρa‖2−ξ(ΩM ))P c, where P c is the projection to the orthog-

onal complement in [Hξ,iν ⊗Λpp∗]K of the space of cocycles in the relative Lie
algebra cohomology complex. The dimension of that complement is equal to
bp+1(ξ, ν). If m = 0, P = G, and ξ ∈ Ĝd, then bp+1(ξ) = 0 for all p by (9).
This proves (11).
Let now m > 0, P be fundamental, ξ ∈ Ξ, and ν ∈ a∗. In this case
Hp(g,K,Hξ,0

K ) 6= {0} for some p. Hence Proposition 3.1 implies that πξ,0(Ω) =
0 and

hp(ξ) := dim[Hξ,iν ⊗ Λpp∗]K = dim[Hξ,0 ⊗ Λpp∗]K = dimHp(g,K,Hξ,0
K ) .

By Proposition 3.2 (b) we have hp(ξ) =
(

m
p−n−m2

)
. On the other hand,

dimHp(g,K,Hξ,iν
K ) = 0 for ν 6= 0 implies that hp(ξ) = bp(ξ, ν) + bp+1(ξ, ν).

(12) now follows inductively. 2

If Hp(g,K,Hξ,iν
K ) = {0} for all ν ∈ a∗, then by Proposition 3.1 dim[Hξ,iν ⊗

Λpp∗]K = 0 (which is independent of ν) or inf
ν∈a∗

(‖ν‖2 + ‖ρa‖2 − ξ(ΩM )) > 0.

Now Proposition 4.1 implies that the spectrum of ∆c
p has a gap around zero,

which means αp(Y ) =∞+, unless m > 0 and p ∈ [n−m2 , n+m
2 −1]. In the latter

case we obtain for some c > 0

TrΓe
−t∆c

p = vol(Y )

(
m− 1

p− n−m
2

)∑

ξ∈Ξ

∫

a∗
e−t‖ν‖

2

pξ(iν)dν +O(e−ct)

as t→∞, where a corresponds to a fundamental parabolic subgroup and thus
has dimension m.
Let P = MAN be fundamental and ξ ∈ M̂d. Then dim n =: 2u is even.
Choose a compact Cartan subgroup T ⊂ M with Lie algebra t and a system
∆+(m, t) of positive roots. Considering the pair (m, t) instead of (g, h) we can
define Λξ ∈ t∗C in the same way as at the end of Section 3. Then h := t ⊕ a
is a Cartan subalgebra of g. Let Φ+ be a system of positive roots for (g, h)
containing ∆+(m, t). Then there exists a positive constant cX depending only
on the normalization of the volume form dx such that

pξ(ν) = cX(−1)u
∏

α∈Φ+

〈α,Λξ + ν〉
〈α, ρg〉

(13)

(see [9], Thm. 24.1, [20], Thm. 13.5.1 or [12], Thm. 13.11). In particular, pξ
is an even polynomial of degree dim n. The factor (−1)u makes it nonnegative
on ia∗.
The element Λξ + ν gives the infinitesimal character of πξ,ν : Λπξ,ν = Λξ + ν
([12], Prop. 8.22). Let now ξ ∈ Ξ. Then Propositions 3.2 (b) and 3.1 imply
that πξ,0 has the same infinitesimal character as the trivial representation. It
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follows that Λξ is conjugated in h∗C by an element of the Weyl group W (g, h) to
ρg. By (13) we obtain pξ(0) = ±cX 6= 0. On the other hand pξ(0) ≥ 0, hence

pξ(0) > 0 . (14)

We decompose pξ(ν) =

u∑

k=0

pξ,2k(ν) into homogeneous polynomials. Set qξ,k =

∫

‖ν‖=1

pξ,2k(ν) dν. Then qξ,0 > 0 and

∫

a∗
e−t‖ν‖

2

pξ(iν)dν =
∑

qξ,k

∫ ∞

0

e−tr
2

rm−1+2kdr

=
∑

t−(m2 +k)qξ,k

∫ ∞

0

e−y
2

ym−1+2kdy .

Thus for p ∈ [n−m2 , n+m
2 − 1] the leading term of TrΓe

−t∆c
p as t → ∞ is a

non-zero multiple of t−
m
2 . This completes the proof of Theorem 1.1 (b).

5 L2-torsion

For even dimensional manifolds the L2-torsion vanishes. Thus we may assume
that m is odd, in particular m ≥ 1. Then ∆′p = ∆p. We first want to compute

kX(t) :=
1

2vol(Y )

n∑

p=0

(−1)ppTrΓe
−t∆p .

Then

T (2)(X) =
d

ds |s=0

(
1

Γ(s)

∫ ε

0

kX(t)ts−1dt

)
+

∫ ∞

ε

kX(t)t−1dt .

Let P = MAN be a parabolic subgroup appearing in (8). Set KM = K ∩M
and pm = p ∩ m. Then an elementary calculation in the representation ring
R(KM ) of KM yields

n∑

p=0

(−1)ppΛpp∗ = 0 , if dim a ≥ 2 ,

while for dim a = 1 we have

n∑

p=0

(−1)ppΛpp∗ =
n−1∑

p=0

(−1)p+1Λp(p∗m ⊕ n∗)

=

dim n∑

l=0

(−1)l+1(Λevp∗m − Λoddp∗m)⊗ Λln
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(see [18], Prop. 2.1 and Lemma 2.3). It follows from (8) that kX(t) ≡ 0 for
m > 1, hence ρ(2)(Y ) = 0.

From now on let m = 1. Let P = MAN be a fundamental parabolic subgroup
of G. Then (8) gives

kX(t) =
1

2

dim n∑

l=0

(−1)l+1
∑

ξ∈M̂d

dim [Wξ ⊗ (Λevp∗m − Λoddp∗m)⊗ Λln∗]KM

∫

a∗
e−t(‖ν‖

2+‖ρa‖2−ξ(ΩM )) pξ(iν)dν . (15)

Now X = X1 × X0, X1 = G1/K1, X0 = G0/K0, m(X0) = 0 as explained in
the introduction. Although (15) can be evaluated directly for general X with
m(X) = 1 we prefer to reduce the computation to the irreducible case X = X1.
In order to compute T (2)(X) it is sufficient to compare ρ(2)(Y ) with vol(Y ) for
one particular Y = Γ\X. If we choose Γ of the form Γ1 × Γ0, where Γ0 ⊂ G0

and Γ1 ⊂ G1, then

ρ(2)(Y ) = χ(Y0)ρ(2)(Y1) ,

where Y1 = Γ1\X1, Y0 = Γ0\X0. Applying Hirzebruch proportionality we
obtain the assertion of Proposition 1.3 (b)

T (2)(X) =
ρ(2)(Y )

vol(Y0)vol(Y1)
=

χ(Y0)

vol(Y0)
T (2)(X1)

=
(−1)

n0
2 χ(Xd

0 )

vol(Xd
0 )

T (2)(X1) . (16)

It remains to deal with the case X = X1. We can assume that G = SO(p, q)0,
p ≤ q odd, or G = SL(3,R). Then M ∼= SO(p − 1, q − 1), n ∼= Rp+q−2 or
M ∼= 0GL(2,R) := {A ∈ GL(2,R) | |detA| = 1}, n ∼= R2, respectively, and
M acts on n via the standard representation. Note that M is not connected
unless G = SO(1, q)0. The M0-representations Λln∗ ⊗C are irreducible unless
G = SO(p, q) and l = u = 1

2 dim n. In the latter case Λun∗ ⊗ C decomposes
into two irreducible components Λ+n⊕Λ−n. Since compact Cartan subgroups
of M are connected the discrete series representations of M are induced from
discrete series representations of M 0: Wξ = IndMM0(Wξ0), ξ0 ∈ (M̂0)d (see [19],

6.9 and 8.7.1). As representations of KM we have Wξ
∼= IndKM

K0
M

(Wξ0). By

Frobenius reciprocity we obtain

dim[Wξ ⊗ (Λevp∗m − Λoddp∗m)⊗ Λln∗]KM

= dim[Wξ0 ⊗ (Λevp∗m − Λoddp∗m)⊗ Λln∗]K
0
M .

Note that the infinitesimal characters χξ and χξ0 coincide. By χ(m,K0
M , .)

we denote the Euler characteristic of relative Lie algebra cohomology. Set
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v = 1
2 dim pm. Applying Propositions 3.1 and 3.2 (a) to M 0 instead of G we

obtain

dim[Wξ0 ⊗ (Λevp∗m − Λoddp∗m)⊗ Λ∗n∗]K
0
M

= χ(m,K0
M ,Wξ0,K0

M
⊗ Λ∗n∗)

=

{
(−1)v χξ = χΛ∗n

0 otherwise
.

Here Λ∗n∗, ∗ = l,+,−, denotes an irreducible component of Λln∗ ⊗ C.
In all cases under consideration the set {α|a | α ∈ ∆+, α|a 6= 0} consists of a

single element α0 ∈ a∗. It follows that ρa = uα0. Moreover, ΩM acts on Λln
as l(2u− l)‖α0‖2id (compare [18], Lemma 2.5).
In order to evaluate (15) further we have to determine the constant cX in
formula (13). This can be done in complete generality. So for a moment we
drop the assumptions m = 1, X = X1.

Lemma 5.1 Let P = MAN ⊂ G be fundamental. We retain the notation
introduced before (13). Set WA = {k ∈ K |Ad(k)a ⊂ a}/KM , SdA = exp(ia)K ⊂
Xd, and let Φ+

k be a positive root system for (k, t) with corresponding half sum
ρk. Then

cX =
1

|WA|(2π)
n+m

2

∏
α∈Φ+〈α, ρg〉∏
α∈Φ+

k
〈α, ρk〉

(17)

=
1

|WA|
vol(SdA)

(2π)m
1

vol(Xd)
. (18)

Proof. Formula (17) is a combination of [8], Thm. 37.1, with [9], Cor. 23.1,
Thm. 24.1 and Thm. 27.3. In order to apply these results correctly one
has to take into account that Harish-Chandra’s and our normalizations of the
measures dg and dν all of them starting from a fixed invariant bilinear form

on g differ by the factors 2
n−dim a0

2 ([8], Section 7 and Lemma 37.2) and (2π)m,
respectively. On the other hand we have

∏

α∈Φ+
k

〈α, ρk〉 = (2π)
dimK/T

2
vol(T )

vol(K)
(19)

(see e.g. [8], Lemma 37.4). Here the volumes are the Riemannian ones corre-
sponding to the invariant bilinear form 〈., .〉. Formula (19) holds for any pair
(K,T ) of a connected compact Lie group and a maximal torus. Applying it also
to the pair (Gd, Hd), where Hd is the maximal torus of Gd with Lie algebra
t⊕ ia, we obtain

∏
α∈Φ+〈α, ρg〉∏
α∈Φ+

k
〈α, ρk〉

= (2π)
n−m

2
vol(K)vol(Hd)

vol(Gd)vol(T )
= (2π)

n−m
2

vol(SdA)

vol(Xd)
. (20)
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The second equality follows from the fact that the map Hd/T → Xd,
hT 7→ hK, is an isometric embedding with image SdA. This proves (18). 2

In particular, specializing (13) and (18) to the case m = 0 we obtain as a
consequence of Weyl’s dimension formula

Corollary 5.2 Let π be a discrete series representation of G having the same
infinitesimal character as the finite-dimensional representation τ , then

pπ =
dim τ

vol(Xd)
.

Let us now give the promised analytic proof of (10). For a fixed finite-
dimensional representation τ of G (which still is assumed to be connected)
there are exactly |W (g, t)|/|W (k, t)| equivalence classes of discrete series repre-
sentations with infinitesimal character χτ (see [19], Thm. 8.7.1, or [12], Thm.
12.21). But this quotient of orders of Weyl groups is equal to χ(Xd) (see e.g.
[3]). By (7), (9) and Corollary 5.2 we obtain

b
(2)
n
2

= vol(Y )
∑

π∈Ĝd,χπ=χτ0

pπ = vol(Y )χ(Xd)
1

vol(Xd)
.

We return to the evaluation of kX(t) for m = 1, X = X1. The polynomial pξ
only depends on the infinitesimal character of ξ. By Λ∗ ∈ it∗, ∗ = l,+,−, we
denote the infinitesimal character of the irreducible M -representation Λ∗n. We
set

pl(ν) :=





∏
α∈Φ+

〈α,Λl+ν〉
〈α,ρg〉 G = SL(3,R)

or l 6= u∏
α∈Φ+

〈α,Λ++ν〉
〈α,ρg〉 +

∏
α∈Φ+

〈α,Λ−+ν〉
〈α,ρg〉

= 2
∏
α∈Φ+

〈α,Λ++ν〉
〈α,ρg〉 otherwise

.

For fixed infinitesimal character there are |W (m, t)|/|WKM | equivalence classes
of discrete series representations, where WKM = {k ∈ KM | Ad(k)t ⊂ t}/T .
Note that there is an embedding W (km, t) ↪→WKM which becomes an isomor-
phism if KM is connected. Furthermore, |WA| = 1 except for G = SO(1, q)0,
where |WA| = 2. In any case |WKM ||WA| = 2|W (km, t)|. Let Xd

M be the
compact dual of XM = M/KM = M0/K0

M . Then |W (m, t)|/|WKM ||WA| =
1
2χ(Xd

M ). In addition, u+ v = n−1
2 and

vol(SdA)

2π
=

1

‖α0‖
.

Summarizing the above discussion we obtain

kX(t) = (−1)
n−1

2
χ(Xd

M )

4‖α0‖vol(Xd)

2u∑

l=0

(−1)l+1kl(t) ,
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where

kl(t) =

∫

a∗
e−t(‖ν‖

2+(u−l)2‖α0‖2)pl(iν)dν .

For an even polynomial P and c ≥ 0 set

kP,c(t) =

∫ ∞

−∞
e−t(y

2+c2)P (iy)dy .

Then (compare [6], Lemma 2 and Lemma 3, [17], Lemma 6.4, [11], p.332)

d

ds |s=0

(
1

Γ(s)

∫ ε

0

kP,c(t)t
s−1dt

)
+

∫ ∞

ε

kP,c(t)t
−1dt

=

(∫ ε

0

kP,c(t)t
s−1dt

)

|s=0

+

∫ ∞

ε

kP,c(t)t
−1dt

= −2π

∫ c

0

P (y) dy .

Since pl = p2u−l we obtain

Proposition 5.3 Let X = G/K with m(X) = 1, P = MAN ⊂ G a funda-
mental parabolic subgroup, u = 1

2 dim n, and XM = M/KM . Then

T (2)(X) = (−1)
n−1

2 χ(Xd
M )

πQX
vol(Xd)

,

where

QX =
u−1∑

l=0

(−1)l
∫ u−l

0

pl(y · α0) dy .

In fact, we have proved the proposition for irreducible X, but (16) shows that
it holds in the general case, too.
Let us first discuss the case G = SO(p, q)0, X = Xp,q, p ≤ q odd. Then
n = pq and XM = Xp−1,q−1. Furthermore, the polynomials pl depend only on
the complexification of G, i.e., on p + q. Thus QXp,q = QHp+q−1 . This proves
Proposition 1.3 (a). We emphasize again that QHp+q−1 is a positive rational
number [11]. In fact, Hess-Schick showed that

(−1)l
∫ u−l

0

pl(y · α0) dy > 0 , l = 0, . . . , u− 1 .

Let X = SL(3,R)/SO(3). Then n = 5 and u = 1. We find that

QX =

∫ 1

0

y2dy =
1

3
, Xd

M = S2, χ(Xd
M ) = 2 .

Using for instance (20) also vol(Xd) can be easily computed. This proves
Proposition 1.4 and finishes the proof of Theorem 1.1.
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Abstract. Let p be an odd prime with odd relative class number
h−. In this article we compute the Farrell cohomology of Sp(p−1,Z),
the first p-rank one case. This allows us to determine the p-period of
the Farrell cohomology of Sp(p−1,Z), which is 2y, where p−1 = 2ry,
y odd. The p-primary part of the Farrell cohomology of Sp(p−1,Z) is
given by the Farrell cohomology of the normalizers of the subgroups of
order p in Sp(p−1,Z). We use the fact that for odd primes p with h−

odd a relation exists between representations of Z/pZ in Sp(p− 1,Z)
and some representations of Z/pZ in U((p− 1)/2).

2000 Mathematics Subject Classification: 20G10
Keywords and Phrases: Cohomology theory

1 Introduction

We define a homomorphism

φ : U(n) −→ Sp(2n,R)

X = A+ iB 7−→
(

A B
−B A

)
=: φ(X)

where A and B are real matrices. Then φ is injective and maps U(n) on
a maximal compact subgroup of Sp(2n,R). This homomorphism allows to
consider each representation

ρ̃ : Z/pZ −→ U((p− 1)/2)

as a representation
φ ◦ ρ̃ : Z/pZ −→ Sp(p− 1,R).

In an article of Busch [6] it is determined which properties ρ̃ has to fulfil for
φ ◦ ρ̃ to be conjugate in Sp(p− 1,R) to a representation

ρ : Z/pZ −→ Sp(p− 1,Z).
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Theorem 2.2. Let X ∈ U((p − 1)/2) be of odd prime order p. We define
φ : U((p − 1)/2) → Sp(p − 1,R) as above. Then φ(X) ∈ Sp(p − 1,R) is
conjugate to Y ∈ Sp(p− 1,Z) if and only if the eigenvalues λ1, . . . , λ(p−1)/2 of
X are such that {

λ1, . . . , λ(p−1)/2, λ1, . . . , λ(p−1)/2

}

is a complete set of primitive p-th roots of unity.

The proof of Theorem 2.2 involves the theory of cyclotomic fields. For the
p-primary component of the Farrell cohomology of Sp(p − 1,Z), the following
holds:

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

P∈P

Ĥ∗(N(P ),Z)(p)

where P is a set of representatives for the conjugacy classes of subgroups of
order p of Sp(p − 1,Z) and N(P ) denotes the normalizer of P ∈ P. This
property also holds if we consider GL(p−1,Z) instead of the symplectic group.
This fact was used by Ash in [1] to compute the Farrell cohomology of GL(n,Z)
with coefficients in Fp for p− 1 6 n < 2p− 2. Moreover, we have

Ĥ∗(N(P ),Z)(p)
∼=
(

Ĥ∗(C(P ),Z)(p)

)N(P )/C(P )

where C(P ) is the centralizer of P . We will determine the structure of C(P ) and
of N(P )/C(P ). After that we will compute the number of conjugacy classes
of those subgroups for which N(P )/C(P ) has a given structure. Here again
arithmetical questions are involved. In the articles of Brown [2] and Sjerve and
Yang [9] is shown that the number of conjugacy classes of elements of order
p in Sp(p − 1,Z) is 2(p−1)/2h− where h− denotes the relative class number of
the cyclotomic field Q(ξ), ξ a primitive p-th root of unity. If h− is odd, each
conjugacy class of matrices of order p in Sp(p− 1,R) that lifts to Sp(p− 1,Z)
splits into h− conjugacy classes in Sp(p−1,Z). The main results in this article
are

Theorem 3.7. Let p be an odd prime for which h− is odd. Then

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)
,

where K̃k denotes the number of conjugacy classes of subgroups of order p of
Sp(p−1,Z) for which |N/C| = k. Moreover K̃k > Kk, where Kk is the number
of conjugacy classes of subgroups of U((p− 1)/2) with |N/C| = k. As usual N
denotes the normalizer and C the centralizer of the corresponding subgroup.

Theorem 3.8. Let p be an odd prime for which h− is odd and let y be such
that p− 1 = 2ry and y is odd. Then the period of Ĥ∗(Sp(p− 1,Z),Z)(p) is 2y.
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Corresponding results have been shown for other groups, for example GL(n,Z)
in the p-rank one case [1], the mapping class group [8] and the outerautomor-
phism group of the free group in the p-rank one case [7].
This article presents results of my doctoral thesis, which I wrote at the ETH
Zürich under the supervision of G. Mislin. I thank G. Mislin for the suggestion
of this interesting subject.

2 The symplectic group

2.1 Definition

Let R be a commutative ring with 1. The general linear group GL(n,R) is
defined to be the multiplicative group of invertible n×n-matrices over R.

Definition. The symplectic group Sp(2n,R) over the ring R is the subgroup
of matrices Y ∈ GL(2n,R) that satisfy

Y TJY = J :=

(
0 In

−In 0

)

where In is the n×n-identity matrix.

It is the group of isometries of the skew-symmetric bilinear form

〈 , 〉 : R2n ×R2n −→ R
(x, y) 7−→ 〈x, y〉 := xTJy.

It follows from a result of Bürgisser [4] that elements of odd prime order p exist
in Sp(2n,Z) if and only if 2n > p− 1.

Proposition 2.1. The eigenvalues of a matrix Y ∈ Sp(p− 1,Z) of odd prime
order p are the primitive p-th roots of unity, hence the zeros of the polynomial

m(x) = xp−1 + · · ·+ x+ 1.

Proof. If λ is an eigenvalue of Y , we have λ = 1 or λ = ξ, a primitive p-th root
of unity, and the characteristic polynomial of Y divides xp − 1 and has integer
coefficients. Since m(x) is irreducible over Q, the claim follows.

2.2 A relation between U
(
p−1

2

)
and Sp(p− 1,Z)

Let X ∈ U(n), i.e., X ∈ GL(n,C) and X∗X = In where X∗ = X
T

and In is
the n×n-identity matrix. We can write X = A+ iB with A,B ∈ M(n,R), the
ring of real n×n-matrices. We now define the following map

φ : U(n) −→ Sp(2n,R)

X = A+ iB 7−→
(

A B
−B A

)
=: φ(X).

The map φ is an injective homomorphism. Moreover, it is well-known that φ
maps U(n) on a maximal compact subgroup of Sp(2n,R).

Documenta Mathematica 7 (2002) 239–254



242 C. Busch

Theorem 2.2. Let X ∈ U((p − 1)/2) be of odd prime order p. We define
φ : U((p − 1)/2) → Sp(p − 1,R) as above. Then φ(X) ∈ Sp(p − 1,R) is
conjugate to Y ∈ Sp(p− 1,Z) if and only if the eigenvalues λ1, . . . , λ(p−1)/2 of
X are such that {

λ1, . . . , λ(p−1)/2, λ1, . . . , λ(p−1)/2

}

is a complete set of primitive p-th roots of unity.

Proof. See [5] or [6].

In the proof of Theorem 2.2 we used the following facts. For a primitive p-th
root of unity ξ, we consider the cyclotomic field Q(ξ). It is well-known that
Q(ξ + ξ−1) is the maximal real subfield of Q(ξ), and that Z[ξ] and Z[ξ + ξ−1]
are the rings of integers of Q(ξ) and Q(ξ + ξ−1) respectively. Let (a, a) denote
a pair where a ⊆ Z[ξ] and a ∈ Z[ξ] are chosen such that a 6= 0 is an ideal in Z[ξ]
and aa = (a), a principal ideal. Here a denotes the complex conjugate of a. We
define an equivalence relation on the set of those pairs by (a, a) ∼ (b, b) if and
only if λ, µ ∈ Z[ξ] \ {0} exist such that λa = µb and λλa = µµb. We denote
by [a, a] the equivalence class of the pair (a, a) and by P the set of equivalence
classes [a, a].
Let Sp denote the set of conjugacy classes of elements of order p in Sp(p−1,Z).
Sjerve and Yang have shown in [9] that a bijection exists between P and Sp.
If Y ∈ Sp(p− 1,Z) is a matrix of order p, then the equivalence class [a, a] ∈ P
corresponding to the conjugacy class of Y in Sp(p − 1,Z) can be determined
in the following way. Let α = (α1, . . . , αp−1)T be an eigenvector of Y corres-
ponding to the eigenvalue ξ = ei2π/p, that is Y α = ξα. Then α1, . . . , αp−1 is a
basis of an ideal a ⊆ Z[ξ]. Sjerve and Yang [9] proved that this ideal a has the
property [a, a] ∈ P. Let h and h+ be the class numbers of Q(ξ) and Q(ξ+ ξ−1)
respectively. Then h− := h/h+ denotes the relative class number. Sjerve and
Yang [9] showed that the number of conjugacy classes of matrices of order p in
Sp(p− 1,Z) is h− 2(p−1)/2. The number of conjugacy classes in U((p− 1)/2) of
unitary matrices that satisfy the condition in Theorem 2.2 is 2(p−1)/2.
Let Up denote the set of conjugacy classes of matrices in U((p−1)/2) that satisfy
the condition on the eigenvalues that is given in Theorem 2.2. A consequence
of Theorem 2.2 is that it is possible to define a map

Ψ : Sp −→ Up

and that this map is surjective. Therefore the map

ψ : P −→ Up

is surjective either.
For a given choice of the ideal a (for example a = Z[ξ]), we denote by Pa the set
of those classes [a, a] ∈ P, where a corresponds to our choice. If the restriction

ψ|Pa
: Pa −→ Up
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is surjective each conjugacy class in Up of matrices that satisfy Theorem 2.2
yields h− conjugacy classes in Sp(p − 1,Z). In general ψ|Pa

is not surjective.
It is a result of Busch, [5], [6], that ψ|Pa

is surjective if h− is odd. If h− is even
and h+ is odd, we have no surjectivity of ψ|Pa

. This happens for example for
the primes 29 and 113.

2.3 Subgroups of order p in Sp(p− 1,Z)

It follows from Theorem 2.2 that a mapping exists that sends the conjugacy
classes of matrices Y ∈ Sp(p − 1,Z) of odd prime order p onto the conju-
gacy classes of matrices X in U((p − 1)/2) that satisfy the condition on the
eigenvalues described in Theorem 2.2. This mapping is surjective.

It is clear that detX = el2πi/p for some 1 6 l 6 p. If X ∈ U((p − 1)/2)
satisfies the condition on the eigenvalues, then so does Xk, k = 1, . . . , p− 1. If
detX = el2πi/p for some 1 6 l 6 p− 1, then

{
detX, . . . ,detXp−1

}
=
{
ei2π/p, . . . , ei(p−1)2π/p

}

and the Xk are in different conjugacy classes. If detX = 1, it is possible that
some k exists such that X and Xk are in the same conjugacy class. In this
section we will analyse when and how many times this happens. The number
of conjugacy classes of matrices X ∈ U((p − 1)/2) that satisfy the condition
required in Theorem 2.2 is 2(p−1)/2. Herewith we will be able to compute the
number of conjugacy classes of subgroups of matrices of order p in U((p−1)/2).
We remember that the number of conjugacy classes of matrices of order p in
Sp(p− 1,Z) is 2(p−1)/2h−. If h− = 1, a bijection exists between the conjugacy
classes of matrices of order p in Sp(p−1,Z) and the conjugacy classes of matrices
of order p in U((p− 1)/2) that satisfy the condition required in Theorem 2.2.

Let X ∈ U((p − 1)/2) with Xp = 1, X 6= 1. Then X generates a subgroup
S of order p in U((p − 1)/2). If detX = 1, it is possible that X is conjugate
to X ′ ∈ S with X 6= X ′. Two matrices in U((p − 1)/2) are conjugate to each
other if and only if they have the same eigenvalues. The set of eigenvalues of
X is {

eig12π/p, . . . , eig(p−1)/22π/p
}

where 1 6 gl 6 p− 1 for l = 1, . . . , p−1
2 and for all l 6= j, l, j = 1, . . . , (p− 1)/2,

gl 6= p−gj and gl 6= gj . From now on we consider the gj as elements of (Z/pZ)∗.
The matrix X is conjugate to Xκ for some κ if the eigenvalues of X and Xκ

are the same. This is equivalent to

{g1, . . . , g(p−1)/2} = {κg1, . . . , κg(p−1)/2} ⊂ (Z/pZ)∗

where gj and κgj , j = 1, . . . , (p − 1)/2, denote the corresponding congruence
classes.
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We introduce some notation that will be used in the whole section. Let

G := {g1, . . . , g(p−1)/2} ⊂ (Z/pZ)∗,

κG := {κg1, . . . , κg(p−1)/2} ⊂ (Z/pZ)∗

for some κ ∈ (Z/pZ)∗. Let x be a generator of the multiplicative cyclic group
(Z/pZ)∗ and let K be a subgroup of (Z/pZ)∗ with |K| = k. Then K is cyclic
and k divides p− 1. Let m := (p− 1)/k, then xm generates K.
First we prove the following proposition.

Proposition 2.3. Let G ⊂ (Z/pZ)∗ be a subset with |G| = (p − 1)/2. The
following are equivalent.

i) For all gj , gl ∈ G, gj 6= −gl and κ ∈ (Z/pZ)∗ exists with κG = G, κ 6= 1.

ii) An integer h ∈ N, 1 6 h 6 (p − 1)/2, and nj ∈ (Z/pZ)∗, j = 1, . . . , h,
exist with

G =

h⋃

j=1

njK

where

◦ K ⊂ (Z/pZ)∗ is the subgroup generated by κ,

◦ the order of K is odd,

◦ for κ′ ∈ K and all j, l = 1, . . . , h, nj 6= −nlκ′,
◦ and for all j = 2, . . . , h, nj 6∈ K.

Then we will analyse the uniqueness of this decomposition of G. This will
enable us to determine the number of G ⊂ (Z/pZ)∗ with |G| = (p − 1)/2 and
G = κG for some 1 6= κ ∈ (Z/pZ)∗. Herewith we will determine the number of
conjugacy classes of subgroups of order p in U((p−1)/2) whose group elements
satisfy the condition of Theorem 2.2.

Definition. Let κ ∈ (Z/pZ)∗ and let K be the subgroup of (Z/pZ)∗ generated
by κ. Let G ⊂ (Z/pZ)∗ be a subset with |G| = (p − 1)/2. We say that K
decomposes G if G, κ and K fulfil the conditions of Proposition 2.3.

So K decomposes G if the order of the group K is odd and G is a disjoint union
of cosets n1K, . . . , nhK of K in (Z/pZ)∗ for which for all nj , nl, j, l = 1, . . . , h,
holds njK 6= −nlK.

Lemma 2.4. Let G ⊂ (Z/pZ)∗ with |G| = (p − 1)/2. Then 1 6= κ ∈ (Z/pZ)∗

exists with κG = G if and only if 1 6 h 6 (p − 1)/2 and nj ∈ (Z/pZ)∗,
j = 1, . . . , h, exist with

G =

h⋃

j=1

njK

where nj 6∈ K for j = 2, . . . , h, and K is the subgroup of (Z/pZ)∗ that is
generated by κ.
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Proof. ⇐: Let κl ∈ K. Then

κlG = κl
h⋃

j=1

njK =

h⋃

j=1

njκ
lK =

h⋃

j=1

njK = G.

⇒: Without loss of generality we assume that 1 ∈ G. If 1 6∈ G, λ ∈ (Z/pZ)∗

exists with 1 ∈ λG because (Z/pZ)∗ is a multiplicative group. Of course
κλG = λG. Moreover, it is easy to see that if λG is a union of cosets of K,
this is also true for G. The equation κG = G implies that KG = G. If 1 ∈ G,
then K ⊆ G since KG = G. If K = G, we have finished the proof. If K 6= G,
we consider G′1 = G \K. For all κl ∈ K we have κlK = K and

κlG′1 = κl(G \K) = G \K = G′1.

Now λ1 ∈ (Z/pZ)∗ exists with 1 ∈ λ1G
′
1 =: G1. Then G = K ∪ λ−1

1 G1 and we
can repeat the construction on G1 instead of G. This procedure finishes after
h := (p − 1)/2k steps. Let n1 := 1 and for j = 2, . . . , h let nj := nj−1λ

−1
j−1.

Then G =
⋃h
j=1 njK.

Let G = {g1, . . . , g(p−1)/2} ⊂ (Z/pZ)∗ with |G| = (p − 1)/2 and κG = G for

some κ ∈ (Z/pZ)∗ with κ 6= 1, κk = 1. The following lemma will give an
answer to the question when G satisfies the conditions gl 6= gj , gl 6= −gj for all
j 6= l with j, l = 1, . . . , p−1

2 .

Lemma 2.5. Let G =
⋃h
j=1 njK ⊂ (Z/pZ)∗ be defined like in Lemma 2.4. Then

for all gj , gl ∈ G holds gj 6= −gl if and only if −1 6∈ K and for all κ ∈ K and
all j, l = 1, . . . , h holds nj 6= −nlκ.

Proof. ⇒: Suppose −1 ∈ K. Then −1 = κl for some l and n1 = −n1κ
l. But

then we have found g1 := n1 ∈ G and g2 := n1κ
l ∈ G with g1 = −g2.

⇐: Suppose gj , gl ∈ G exist with gj = −gl. Let gj = njκ
j , gl = nlκ

l. Then
njκ

j = −nlκl, and we have found κj−l ∈ K with nl = −njκj−l.

Which subgroups K ⊆ (Z/pZ)∗ satisfy the condition −1 6∈ K?

Lemma 2.6. Let K ⊆ (Z/pZ)∗ be a subgroup of order k. Then −1 6∈ K if and
only if k is odd.

Proof. The group (Z/pZ)∗ is cyclic of order p− 1 and K is a cyclic group. Let
x be a generator of K, then xk = 1. If k is even, k/2 ∈ Z and xk/2 ∈ K. But
then (xk/2)2 = xk = 1 and therefore xk/2 = −1 ∈ K since −1 is the element of
order 2 in (Z/pZ)∗. On the other hand if −1 ∈ K, then K contains an element
of order 2. But then k is even, since the order of any element of K divides the
order of K.

Proof of Proposition 2.3. A subgroup K decomposes a set G as required in
Lemma 2.5 if and only if the order of K is odd. Moreover, the order of K
divides p−1. Now Proposition 2.3 follows from Lemma 2.4 and Lemma 2.5.

Documenta Mathematica 7 (2002) 239–254



246 C. Busch

We did not yet analyse the uniqueness of the decomposition of a set G. It is
evident that the nj can be permuted and multiplied with any κl ∈ K, but we
will see that K and h are not uniquely determined. The next lemma states
that if K decomposes G then so does any nontrivial subgroup of K.

Lemma 2.7. Let G =
⋃h
j=1 njK ⊂ (Z/pZ)∗, |G| = (p − 1)/2, be such that K

decomposes G (Proposition 2.3). Let |K| = k be not a prime and let K ′ 6= K
be a nontrivial subgroup of K. Then K ′ decomposes G.

Proof. Since K ′ is a subgroup of K, K can be written as a union of cosets of
K ′ in K. Moreover, G is a union of cosets of K in (Z/pZ)∗. Therefore

G =

h⋃

j=1

njK =

h′⋃

i=1

n′iK
′.

Since K decomposes G, we have nlK 6= −njK for all l, j = 1, . . . , h. This
implies that n′lK

′ 6= −n′iK ′ for all i, l = 1, . . . , h′. So K ′ decomposes G.

Our next aim is to determine the number of sets G. Therefore we consider for
a given G the group K with |K| maximal and K decomposes G.

Lemma 2.8. Let K ⊂ (Z/pZ)∗ be a nontrivial subgroup of odd order k. Then
2(p−1)/2k different sets G exist such that K decomposes G and |G| = (p− 1)/2.

Proof. The order of K ⊂ (Z/pZ)∗ is odd. Then it follows from Lemma 2.6 that
−1 6∈ K. Consider the cosets njK of K in (Z/pZ)∗. Since −1 6∈ K, we have
njK 6= −njK. So nj , j = 1, . . . , (p− 1)/2k, exist such that

(Z/pZ)∗ =

(p−1)/2k⋃

j=1

(njK ∪ −njK).

The group K decomposes G if and only if G is a union of cosets of K and
mjK ⊆ G implies that −mjK 6⊆ G for mj = ±nj , j = 1, . . . , (p − 1)/2k.
Therefore 2(p−1)/2k sets G exist such that K decomposes G.

Definition. Let K ⊂ (Z/pZ)∗ be a group of odd order k. We define Nk to
be the number of G ⊂ (Z/pZ)∗ such that K decomposes G but any K ′ with
K ⊂ K ′ ⊂ (Z/pZ)∗, K 6= K ′, does not decompose G.

To determine Nk we have to subtract the number Nk′ from 2(p−1)/2k for each
odd k′ 6= k with k|k′, k′|p− 1. The integer k′ is the order of the group K ′ with
K ⊂ K ′. Therefore we get a recursive formula

Nk = 2(p−1)/2k −
∑

k′ odd, k′>k
k|k′, k′|p−1

Nk′ .
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Now it remains to determine Ny. Let y ∈ Z be such that p− 1 = 2ry and y is
odd. Then

Ny = 2(p−1)/2y = 22r−1

.

Let p− 1 = 2rpr11 . . . prll be a factorisation of p− 1 into primes where p1, . . . , pl
are odd and pi 6= pj for all i 6= j with i, j = 1, . . . , l. Since p− 1 is even, r > 1.
Let K be of order k = ps11 . . . psll where 0 6 sj 6 rj for j = 1, . . . , l. Let x be a
generator of (Z/pZ)∗. Then K is generated by xm, m = 2rpr1−s11 . . . prl−sll . If
k′ = pt11 . . . ptll where sj 6 tj 6 rj for j = 1, . . . , l, then K is a proper subgroup

of K ′ of order k′ if sj < tj for some 1 6 j 6 l. Herewith −1+
∏l
j=1(rj−sj +1)

groups K ′ exist such that K is a proper subgroup of K ′. So the number of sets
G that are decomposed by K and for which no K ′ ) K exists such that K ′

decomposes G is

Nk = 2(p−1)/2k −
∑

y∈Tk
Ny

where

Tk :=
{
y ∈ N

∣∣ y odd, k|y, y 6= k and y|p− 1
}
.

Now we have to determine the number of sets G that satisfy the conditions of
Proposition 2.3. Let this be the number NG. One easily sees that

NG =
∑

K⊂(Z/pZ)∗

|K|6=1
|K| odd

N|K| =
∑

k|p−1
k 6=1
k odd

Nk.

Now let G ⊂ (Z/pZ)∗ with |G| = (p − 1)/2, such that for all gi, gj ∈ G,
gi 6= −gj . Let N1 be the number of sets G for which no κ ∈ (Z/pZ)∗, κ 6= 1,
exists such that κG = G. Then

N1 = 2(p−1)/2 −NG = 2(p−1)/2 −
∑

16=k| p−1
k odd

Nk.

We have seen that each set G corresponds to the set of eigenvalues of a matrix
in U((p− 1)/2) that satisfies Theorem 2.2.

Definition. We define a matrix XG ∈ U
(
p−1

2

)
with the eigenvalues

{
eig12π/p, . . . , eig(p−1)/22π/p

}

where G = {g1, . . . , g(p−1)/2} ⊂ (Z/pZ)∗. We used the same notation for the
elements of (Z/pZ)∗ and their representatives in Z.

Let the maximal order of K that decomposes G be k. Then G yields k elements
of the group generated by XG. As a result we have:
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Proposition 2.9. The number of conjugacy classes of subgroups of order p in
U((p−1)/2) whose group elements satisfy the necessary and sufficient condition
is

K(p) =
1

p− 1

∑

k odd
k|p−1

kNk.

3 The Farrell cohomology

3.1 An introduction to Farrell cohomology

An introduction to the Farrell cohomology can be found in the book of Brown
[3]. The Farrell cohomology is a complete cohomology for groups with finite
virtual cohomological dimension (vcd). It is a generalisation of the Tate coho-
mology for finite groups. If G is finite, the Farrell cohomology and the Tate
cohomology of G coincide. It is well-known that the groups Sp(2n,Z) have
finite vcd.

Definition. An elementary abelian p-group of rank r > 0 is a group that is
isomorphic to (Z/pZ)r.

It is well-known that Ĥi(G,Z) is a torsion group for every i ∈ Z. We write

Ĥi(G,Z)(p) for the p-primary part of this torsion group, i.e., the subgroup of
elements of order some power of p. We will use the following theorem.

Theorem 3.1. Let G be a group such that vcdG < ∞ and let p be a prime.
Suppose that every elementary abelian p-subgroup of G has rank 6 1. Then

Ĥ∗(G,Z)(p)
∼=
∏

P∈P

Ĥ∗(N(P ),Z)(p)

where P is a set of representatives for the conjugacy classes of subgroups of G
of order p and N(P ) denotes the normalizer of P .

Proof. See Brown’s book [3].

We also have
Ĥ∗(G,Z) ∼=

∏

p

Ĥ∗(G,Z)(p)

where p ranges over the primes such that G has p-torsion.
A group G of finite virtual cohomological dimension is said to have periodic
cohomology if for some d 6= 0 there is an element u ∈ Ĥd(G,Z) that is invertible

in the ring Ĥ∗(G,Z). Cup product with u then gives a periodicity isomorphism

Ĥi(G,M) ∼= Ĥi+d(G,M) for any G-module M and any i ∈ Z. Similarly we

say that G has p-periodic cohomology if the p-primary component Ĥ∗(G,Z)(p),
which is itself a ring, contains an invertible element of non-zero degree d. Then
we have

Ĥi(G,M)(p)
∼= Ĥi+d(G,M)(p),
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and the smallest positive d that satisfies this condition is called the p-period of
G.

Proposition 3.2. The following are equivalent:

i) G has p-periodic cohomology.

ii) Every elementary abelian p-subgroup of G has rank 6 1.

Proof. See Brown’s book [3].

3.2 Normalizers of subgroups of order p in Sp(p− 1,Z)

In order to use Theorem 3.1, we have to analyse the structure of the normalizers
of subgroups of order p in Sp(p − 1,Z). We already analysed the conjugacy
classes of subgroups of order p in Sp(p−1,Z). Let N be the normalizer and let
C be the centralizer of such a subgroup. Then we have a short exact sequence

1 −−−−→ C −−−−→ N −−−−→ N/C −−−−→ 1.

Moreover, it follows from the discussion in the paper of Brown [2] that for p an
odd prime

C ∼= Z/pZ× Z/2Z ∼= Z/2pZ,

and therefore N is a finite group. We will use the following proposition.

Proposition 3.3. Let

1 −−−−→ U −−−−→ G −−−−→ Q −−−−→ 1

be a short exact sequence with Q a finite group of order prime to p. Then

Ĥ∗(G,Z)(p)
∼=
(

Ĥ∗(U,Z)(p)

)Q
.

Proof. See Brown [3], the Hochschild-Serre spectral sequence.

Applying this to our case, we get

Ĥ∗(N,Z)(p)
∼=
(

Ĥ∗(C,Z)(p)

)N/C
.

Therefore we have to determine N/C and its action on C ∼= Z/2pZ. From now
on, if we consider subgroups or elements of order p in U((p − 1)/2), we mean
those that satisfy the condition of Theorem 2.2. In what follows we assume
that p is an odd prime for which h− = 1, because in this case we have a
bijection between the conjugacy classes of subgroups of order p in U((p− 1)/2)
and those in Sp(p−1,Z). Therefore, in order to determine the structure of the
conjugacy classes of subgroups of order p in Sp(p − 1,Z), we can consider the
corresponding conjugacy classes in U((p − 1)/2). We have already seen that
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in a subgroup of U((p− 1)/2) of order p different elements can be in the same
conjugacy class. Let Nk be the number of conjugacy classes of elements of order
p in U((p − 1)/2) where k powers of one element are in the same conjugacy
class. Let Kk be the number of conjugacy classes of subgroups of U((p− 1)/2)
with |N/C| = k, where N denotes the normalizer and C the centralizer of this
subgroup. Then the number K(p) of conjugacy classes of subgroups of order p
in U((p− 1)/2) is

K(p) =
∑

k|p−1,
k odd

Kk.

If |N/C| = k, then

N/C ∼= Z/kZ ⊆ Z/(p− 1)Z ∼= Aut(Z/2pZ)

where k|p− 1 and k is odd. This means that N/C is isomorphic to a subgroup
of Aut(Z/pZ). So we get the short exact sequence

1 −−−−→ Z/2pZ −−−−→ N −−−−→ Z/kZ −−−−→ 1.

Moreover, we have an injection Z/pZ ↪→ Z/2pZ ↪→ N . Applying the proposi-
tion to this case yields

Ĥ∗(N,Z)(p)
∼=
(

Ĥ∗(Z/2pZ,Z)(p)

)Z/kZ
.

The action of Z/kZ on Z/2pZ is given by the action of Z/kZ as a subgroup of
the group of automorphisms of Z/pZ ⊂ Z/2pZ.

Lemma 3.4. The Farrell cohomology of Z/lZ is

Ĥ∗(Z/lZ,Z) = Z/lZ [x, x−1]

where deg x = 2, x ∈ Ĥ2(Z/lZ,Z), and 〈x〉 ∼= Z/lZ.

Proof. See Brown’s book [3]. For finite groups the Farrell cohomology and the
Tate cohomology coincide.

Proposition 3.5. Let p be an odd prime and let k ∈ Z divide p− 1. Then

(
Ĥ∗(Z/2pZ,Z)(p)

)Z/kZ ∼= Z/pZ[xk, x−k]

where x ∈ Ĥ2(Z/2pZ,Z).

Proof. For an odd prime p

Ĥ∗(Z/2pZ,Z)(p) =
(
Z/2pZ[x, x−1]

)
(p)

= Z/pZ[x, x−1].

We have to consider the action of Z/kZ on Z/pZ[x, x−1]. We have px = 0 and

x ∈ Ĥ2(Z/2pZ,Z). The action is given by x 7→ qx with q such that (q, p) = 1,
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qk ≡ 1 (mod p) and k is the smallest number such that this is fulfilled. The
action of Z/kZ on

Ĥ2m(Z/2pZ,Z)(p)
∼= (〈xm〉) ∼= Z/pZ

is given by
xm 7→ qmxm.

The Z/kZ-invariants of Ĥ∗(Z/2pZ,Z)(p) are the xm ∈ Ĥ2m(Z/2pZ,Z)(p) with
xm 7→ xm, or equivalently qm ≡ 1 (mod p). Herewith we get

Ĥ∗(N,Z)(p)
∼=
(

Ĥ∗(Z/2pZ,Z)(p)

)Z/kZ ∼=
(
Z/pZ[x, x−1]

)Z/kZ

∼= Z/pZ[xk, x−k].

Proposition 3.6. Let p be an odd prime for which h− = 1. Then

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

(Kk∏

1

Z/pZ[xk, x−k]

)
,

where Kk is the number of conjugacy classes of subgroups of U((p− 1)/2) with
|N/C| = k. As usual N denotes the normalizer and C the centralizer of this
subgroup.

Proof. Let p be a prime with h− = 1. Then a bijection exists between the con-
jugacy classes of matrices of order p in U((p− 1)/2) that satisfy the conditions
of Theorem 2.2 and the conjugacy classes of matrices of order p in Sp(p−1,Z).
Now this proposition follows from Theorem 3.1.

Now it remains to determine Kk, the number of conjugacy classes of subgroups
of U((p − 1)/2) of order p with N/C ∼= Z/kZ. Therefore we need Nk, the
number of conjugacy classes of elements X ∈ U((p− 1)/2) of order p for which
1 = j1 < · · · < jk < p exist such that the Xjl , l = 1, . . . , k, are in the same
conjugacy class than X and k is maximal. One such class yields k elements in
a group for which |N/C| = k and therefore

Kk = kNk
1

p− 1
.

We recall the formula for Nk:

Nk = 2
p−1
2k −

∑

k′ odd, k′>k
k|k′, k′|p−1

Nk′ .

Now we have everything we need to compute the p-primary part of the Farrell
cohomology of Sp(p− 1,Z) for some examples of primes with h− = 1.
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3.3 Examples with 3 6 p 6 19

p = 3 : It is Sp(2,Z) = SL(2,Z). One conjugacy class exists with N = C.
Therefore

Ĥ∗(Sp(2,Z),Z)(3)
∼= Z/3Z[x, x−1],

and Sp(2,Z) has 3-period 2.

p = 5 : One conjugacy class exists with N = C. Therefore

Ĥ∗(Sp(4,Z),Z)(5)
∼= Z/5Z[x, x−1],

and Sp(4,Z) has 5-period 2.

p = 7 : One conjugacy class exists with N/C ∼= Z/3Z, and one class exists with
N = C. Therefore

Ĥ∗(Sp(6,Z),Z)(7)
∼= Z/7Z[x3, x−3]× Z/7Z[x, x−1],

and Sp(6,Z) has 7-period 6.

p = 11 : One conjugacy class exists with N/C ∼= Z/5Z and 3 classes exist with
N = C. Therefore

Ĥ∗(Sp(10,Z),Z)(11)
∼= Z/11Z[x5, x−5]×

3∏
1
Z/11Z[x, x−1],

and Sp(10,Z) has 11-period 10.

p = 13 : One conjugacy class exists with N/C ∼= Z/3Z and 5 classes exist with
N = C. Therefore

Ĥ∗(Sp(12,Z),Z)(13)
∼= Z/13Z[x3, x−3]×

5∏
1
Z/13Z[x, x−1],

and Sp(12,Z) has 13-period 6.

p = 17 : 16 conjugacy classes exist with N = C. Therefore

Ĥ∗(Sp(16,Z),Z)(17)
∼=

16∏
1
Z/17Z[x, x−1],

and Sp(16,Z) has 17-period 2.

p = 19 : One conjugacy class exists with N/C ∼= Z/9Z, one class exists with
N/C ∼= Z/3Z, and 28 classes exist with N = C.

Ĥ∗(Sp(18,Z),Z)(19)
∼= Z/19Z[x9, x−9]× Z/19Z[x3, x−3]

×
28∏
1
Z/19Z[x, x−1],

and Sp(18,Z) has 19-period 18.
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3.4 The p-primary part of the Farrell cohomology of Sp(p− 1,Z)

Let p be an odd prime and let ξ be a primitive p-th root of unity. Let h− be the
relative class number of the cyclotomic field Q(ξ). In this section we compute

Ĥ∗(Sp(p− 1,Z),Z)(p) and its period for any odd prime p for which h− is odd.

Theorem 3.7. Let p be an odd prime for which h− is odd. Then

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)
,

where K̃k denotes the number of conjugacy classes of subgroups of order p of
Sp(p−1,Z) for which |N/C| = k. Moreover K̃k > Kk, where Kk is the number
of conjugacy classes of subgroups of U((p− 1)/2) with |N/C| = k. As usual N
denotes the normalizer and C the centralizer of the corresponding subgroup.

Proof. We have seen in Section 2.2 that if h− is odd, a bijection exists between
the conjugacy classes of matrices of order p in U((p − 1)/2) that satisfy the
conditions of Theorem 2.2 and the conjugacy classes of matrices of order p in
Sp(p − 1,Z) that correspond to the equivalence classes [Z[ξ], u] ∈ P. Each
conjugacy class of subgroups of order p in U((p− 1)/2) whose group elements
satisfy the condition required in Theorem 2.2 yields at least one conjugacy class
in Sp(p−1,Z). This implies that the p-primary part of the Farrell cohomology
of Sp(p− 1,Z) is a product

∏

k|p−1,
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)

where K̃k denotes the number of conjugacy classes of subgroups of order p of
Sp(p− 1,Z) that satisfy |N/C| = k. Let Kk be the number of such subgroups
in U((p− 1)/2). Because h− is odd, each such subgroup gives at least one such

subgroup of Sp(p − 1,Z). Therefore, if h− is odd, K̃k > Kk. If h− is even, it
may be possible that no subgroup of Sp(p − 1,Z) of order p exists for which
|N/C| = k.

Theorem 3.8. Let p be an odd prime for which h− is odd and let y be such
that p− 1 = 2ry and y is odd. Then the period of Ĥ∗(Sp(p− 1,Z),Z)(p) is 2y.

Proof. By Theorem 3.7 we know that the p-primary part of the Farrell coho-
mology of Sp(p− 1,Z) is

Ĥ∗(Sp(p− 1,Z),Z)(p)
∼=
∏

k|p−1
k odd

( K̃k∏

1

Z/pZ[xk, x−k]

)
.
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Moreover, K̃k > 1 and the period of Z/pZ[xk, x−k] is 2k. Herewith the period
of the p-primary part of the Farrell cohomology is 2y.

If p is a prime for which h− is even, the p-period of Ĥ∗(Sp(p − 1,Z),Z) is 2z
where z is odd and divides p−1. The period is not necessarily 2y because there
may be no subgroup of order p in which y elements are conjugate in Sp(p−1,Z)
even if we know that they are conjugate in Sp(p− 1,R).
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Abstract. Suppose that

A = lim
n→∞

(An =

tn⊕

i=1

M[n,i](C(Xn,i)), φn,m)

is a simple C∗-algebra, where Xn,i are compact metrizable spaces of
uniformly bounded dimensions (this restriction can be relaxed to a
condition of very slow dimension growth). It is proved in this article
that A can be written as an inductive limit of direct sums of matrix
algebras over certain special 3-dimensional spaces. As a consequence
it is shown that this class of inductive limit C∗-algebras is classified
by the Elliott invariant — consisting of the ordered K-group and the
tracial state space — in a subsequent paper joint with G. Elliott and
L. Li (Part II of this series). (Note that the C∗-algebras in this class
do not enjoy the real rank zero property.)

1This material is based upon work supported by, or in part by, the U.S. Army Research
Office under grant number DAAD19-00-1-0152. The research is also partially supported by
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0 Introduction

In this article and the subsequent article [EGL], we will classify all the unital
simple C∗-algebras A, which can be written as the inductive limit of a sequence

t1⊕

i=1

P1,iM[1,i](C(X1,i))P1,i
φ1,2−→

t2⊕

i=1

P2,iM[2,i](C(X2,i))P2,i
φ2,3−→ · · · ,

where Xn,i are compact metrizable spaces with sup{dimXn,i}n,i < +∞, [n, i]
and tn are positive integers, and Pn,i ∈ M[n,i](C(Xn,i)) are projections. The
invariant consists of the ordered K-group and the space of traces on the algebra.
The main result in the present article is that a C∗-algebra A as above can
be written in another way as an inductive limit so that all the spaces Xn,i

appearing are certain special simplicial complexes of dimension at most three.
Then, in [EGL], the classification theorem will be proved by assuming the C∗-
algebras are such special inductive limits.

In the special case that the groups K∗(C(Xn,i)) are torsion free, the C∗-algebra
A can be written as an inductive limit of direct sums of matrix algebras over
C(S1)(i.e., one can replace Xn,i by S1). Combining this result with [Ell2],
without [EGL]–the part II of this series—, we can still obtain the classification
theorem for this special case, which is a generalization of the result of Li for
the case that dim(Xn,i) = 1 (see [Li1-3]).

The theory of C∗-algebras can be regarded as noncommutative topology, and
has broad applications in different areas of mathematics and physics (e.g., the
study of foliated spaces, manifolds with group actions; see [Con]).

One extreme class of C∗-algebras is the class of commutative C∗-algebras,
which corresponds to the category of ordinary locally compact Hausdorff topo-
logical spaces. The other extreme, which is of great importance, is the class of
simple C∗-algebras, which must be considered to be highly noncommutative.
For example, the (reduced) foliation C∗-algebra of a foliated space is simple if
and only if every leaf is dense in the total space; the cross product C∗-algebra,
for a ZZ action on a space X, is simple if and only if the action is minimal.

Even though the commutative C∗-algebras and the simple C∗-algebras are
opposite extremes, remarkably, many (unital or nonunital) simple C∗-algebras
(including the foliation C∗-algebra of a Kronecker foliation, see [EE]) have
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been proved to be inductive limits of direct sums of matrix algebras over com-
mutative C∗-algebras, i.e., to be of the form
lim
n→∞

(An =
⊕tn

i=1M[n,i](C(Xn,i)), φn,m). (Note that the only commutative C∗-

algebras, or matrix algebras over commutative C∗-algebras, which are simple
are the very trivial ones, C| or Mk(C| ).) In general, it is a conjecture that any
stably finite, simple, separable, amenable C∗-algebra is an inductive limit of
subalgebras of matrix algebras over commutative C∗-algebras. This conjecture
would be analogous to the result of Connes and Haagerup that any amenable
von Neumann algebra is generated by an upward directed family of sub von
Neumann algebras of type I.
The sweeping classification project of G. Elliott is aimed at the complete clas-
sification of simple, separable, amenable C∗-algebras in terms of a certain
simple invariant, as we mentioned above, consisting of the ordered K-group
and the space of traces on the algebra. Naturally, the class of inductive limit
C∗-algebras A = lim

→
(An =

⊕tn
i=1 Pn,iM[n,i](C(Xn,i))Pn,i, φn,m), considered in

this article, is an essential ingredient of the project. Following Blackadar [Bl1],
we will call such inductive limit algebras AH algebras.
The study of AH algebras has its roots in the theory of AF algebras (see [Br]
and [Ell4]). But the modern classification theory of AH algebras was inspired
by the seminal paper [Bl3] of B. Blackadar and was initiated by Elliott in [Ell5].
The real rank of a C∗-algebra is the noncommutative counterpart of the di-
mension of a topological space. Until recently, the only known possibilities for
the real rank of a simple C∗-algebra were zero or one. It was proved in [DNNP]
that any simple AH algebra

A = lim
→

(An =

tn⊕

i=1

M[n,i](C(Xn,i)), φn,m)

has real rank either zero or one, provided that sup{dimXn,i}n,i < +∞. (Re-
cently, Villadsen has found a simple C∗-algebra with real rank different from
zero and one, see [Vi 2].)
For the case of simple C∗-algebras of real rank zero, the classification is
quite successful and satisfactory, even though the problem is still not com-
pletely solved. Namely, on one hand, the remarkable result of Kirchberg [Kir]
and Phillips [Phi1] completely classified all purely infinite, simple, separable,
amenable C∗-algebras with the so called UCT property (see also [R] for an
important earlier result). All purely infinite simple C∗-algebras are of real
rank zero; see [Zh]. On the other hand, in [EG1-2] Elliott and the author
completely classified all the stably finite, simple, real rank zero C∗-algebras
which are AH algebras of the form lim

→
(An =

⊕tn
i=1M[n,i](C(Xn,i)), φn,m) with

dim(Xn,i) ≤ 3. It was proved by Dadarlat and the author that this class
includes all simple real rank zero AH algebras with arbitrary but uniformly
bounded dimensions for the spaces Xn,i (see [D1-2], [G1-4] and [DG]).
In this article, the AH algebras considered are not assumed to have real rank
zero. As pointed out above, they must have real rank either zero or one. In fact,
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in a strong sense, almost all of them have real rank one. The real rank zero C∗-
algebras are the very special ones for which the space of traces (one part of the
invariant mentioned above) is completely determined by the ordered K-group
of the C∗-algebra (the other part of the invariant). Not surprisingly, the lack
of the real rank zero property presents new essential difficulties. Presumably,
dimension one noncommutative spaces are much richer and more complicated
than dimension zero noncommutative spaces. In what follows, we would like
to explain one of the main differences between the real rank zero case and the
general case in the setting of simple AH algebras.

If A = lim
→

(An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i, φn,m) is of real rank zero, then

Elliott and the author proved a decomposition result (see Theorem 2.21 of
[EG2]) which says that φn,m (for m large enough) can be approximately de-
composed as a sum of two parts, φ1 ⊕ φ2; one part, φ1, having a very small
support projection, and the other part, φ2, factoring through a finite dimen-
sional algebra.

In §4 of the present paper, we will prove a decomposition theorem which
says that, for the simple AH algebra A above (with or without the real rank
zero condition), φn,m (for m large enough) can be approximately decomposed
as a sum of three parts, φ1 ⊕ φ2 ⊕ φ3: the part φ1 having a very small support
projection compared with the part φ2; the part φ2 factoring through a finite
dimensional algebra; and the third part φ3 factoring through a direct sum of
matrix algebras over the interval [0, 1]. (Note that, in the case of a real rank
zero inductive limit, the part φ3 does not appear. In the general case, though,
the part φ3 has a very large support projection compared with the part φ1⊕φ2.)
With this decomposition theorem, we can often deal with the part φ1 ⊕ φ2 by
using the techniques developed in the classification of the real rank zero case
(see [EG1-2], [G1-4], [D1-2] and [DG]).

This new decomposition theorem is much deeper. It reflects the real rank
one (as opposed to real rank zero) property of the simple C∗-algebra. The
special case of the decomposition result that the spaces Xn,i are already sup-
posed to be one-dimensional spaces is due to L. Li (see [Li3]). The proof for the
case of higher dimensional spaces is essentially more difficult. In particular, as
preparation, we need to prove certain combinatorial results (see §3) and also
the following result (see §2): Any homomorphism from C(X) to Mk(C(Y ))
can be perturbed to a homomorphism whose maximum spectral multiplic-
ity (for the definition of this terminology, see 1.2.4 below) is not larger than
dimX + dimY , provided that X 6= {pt} and X is path connected.

The special simplicial complexes used in our main reduction theorem are
the following spaces: {pt}, [0, 1], S1, S2, {TII,k}∞k=2, and {TIII,k}∞k=2,
where the spaces TII,k are two-dimensional connected simplicial complexes
with H1(TII,k) = 0 and H2(TII,k) = ZZ/k, and the spaces TIII,k are three-
dimensional connected simplicial complexes with H1(TIII,k) = 0 = H2(TIII,k)
and H3(TIII,k) = ZZ/k. (See 4.2 of [EG2] for details.)

The spaces TII,k and TIII,k are needed to produce the torsion part of
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the K-groups of the inductive limit C∗-algebras. Since the algebras
C(TII,k), C(TIII,k), and C(S2) are not stably generated (see [Lo]), difficulties
occur in the construction of homomorphisms from these C∗-algebras, when we
prove our main reduction theorem (and the isomorphism theorem in [EGL]).
In the case of real rank zero algebras, this difficulty can be avoided by using
unsuspended E-theory (see [D1-2] and [G1-4]) combined with a certain unique-
ness theorem — Theorem 2.29 of [EG2], which only involves homomorphisms
(instead of general completely positive linear maps). Roughly speaking, the
trouble is that a completely positive linear ∗-contraction, which is an “almost
homomorphism”—a G-δ multiplicative map (see 1.1.2 below for the definition
of this concept) for sufficiently large G and sufficiently small δ—, may not be
automatically close to a homomorphism. As we mentioned above, after we ap-
proximately decompose φn,m as φ1⊕φ2⊕φ3, we will deal with the part φ1⊕φ2,
by using the results and techniques from the real rank zero case, in particu-
lar by using Theorem 1.6.9 below—a strengthened version of Theorem 2.29 of
[EG2]. Therefore, we will consider the composition of the map φ1 ⊕ φ2 and a
homomorphism from a matrix algebra over {pt}, [0, 1], S1, S2, {TII,k}∞k=2,
and {TIII,k}∞k=2, to An. We need this composition to be close to a homomor-
phism, but φ1⊕φ2 is not supposed to be close to a homomorphism (it is close to
the homomorphism φn,m in the case of real rank zero). To overcome the above
difficulty, we prove a theorem in §5—a kind of uniqueness theorem, which may
be roughly described as follows:
For any ε > 0, positive integer N , and finite set F ⊂ A = Mk(C(X)), where
X is one of the spaces {pt}, [0, 1], TII,k, TIII,k, and S2, there are a number
δ > 0, a finite set G ⊂ A, and a positive integer L, such that for any two
G-δ multiplicative ( see 1.1.2 below), completely positive, linear ∗-contractions
φ, ψ : Mk(C(X)) → B = Ml(C(Y )) (where dim(Y ) ≤ N), if they define the
same map on the level of K-theory and also mod-p K-theory (this statement
will be made precise in §5), then there are a homomorphism λ : A→ ML(B)
with finite dimensional image and a unitary u ∈ML+1(B) such that

‖(φ⊕ λ)(f)− u(ψ ⊕ λ)(f)u∗‖ < ε

for all f ∈ F .
This result is quite nontrivial, and may be expected to have more general ap-
plications. Some similar results appear in the literature (e.g., [EGLP, 3.1.4],
[D1, Thm A], [G4, 3.9]). But even for ∗-homomorphisms (which are G-δ mul-
tiplicative for any G and δ), all these results (except for contractible spaces)
require that the number L, the size of the matrix, depends on the maps φ and
ψ.
Note that the theorem stated above does not hold if one replaces X by S1,
even if both φ and ψ are ∗-homomorphisms. (Fortunately, we do not need the
theorem for S1 in this article, since C(S1) is stably generated. But on the
other hand, the lack of such a theorem for S1 causes a major difficulty in the
formulation and the proof of the uniqueness theorem involving homomorphisms
from C(S1) to Mk(C(X)), in [EGL]— part 2 of this series.)
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With the above theorem, if a G-δ multiplicative, positive, linear ∗-contraction
φ and a ∗-homomorphism (name it ψ) define the same map on the level of K-
theory and mod-pK-theory, then φ⊕λ is close to a ∗-homomorphism (e.g., Adu◦
(ψ ⊕ λ)) for some ∗-homomorphism λ : A → ML(B) with finite dimensional
image. In particular, the size L of the ∗-homomorphism λ can be controlled.
This is essential for the construction of ∗-homomorphisms fromA = Mk(C(X)),
where X is one of TII,k, TIII,k, and S2. In particular, once L is fixed, we can
construct the decomposition of φn,m as φ1⊕φ2⊕φ3, as mentioned above, such
that the supporting projection of the part φ2 is larger than the supporting
projection of the part φ1 by the amplification of L times. Hence we can prove
that, the composition of the map φ1 ⊕ φ2 and a homomorphism from a matrix
algebra over TII,k, TIII,k, and S2 to An, is close to a homomorphism (see
Theorems 5.32a and 5.32b below for details).

The theorem is also true for a general finite CW complex X, provided that
K1(C(X)) is a torsion group.

(Note that for the space S1 (or the spaces {pt}, [0, 1]), we do not need such
a theorem, since any G-δ multiplicative, positive, linear ∗-contraction from
Mk(C(S1)) will automatically be close to a ∗-homomorphism if G is sufficiently
large and δ is sufficiently small.)

The above mentioned theorem and the decomposition theorem both play im-
portant roles in the proof of our main reduction theorem, and also in the proof
of the isomorphism theorem in [EGL].

The main results of this article and [EGL] were announced in [G1] and in El-
liott’s lecture at the International Congress of Mathematicians in Zurich (see
[Ell3]). Since then, several classes of simple inductive limit C∗-algebras have
been classified (see [EGJS], [JS 1-2], and [Th1]). But all these later results
involve only inductive limits of subhomogeneous algebras with 1-dimensional
spectra. In particular, the K0-groups have to be torsion free, since it is impos-
sible to produce the torsion in K0-group with one-dimensional spectra alone,
even with subhomogeneous building blocks.

This article is organized as follows. In §1, we will introduce some notations,
collect some known results, prove some preliminary results, and discuss some
important preliminary ideas, which will be used in other sections. In particular,
in §1.5, we will discuss the general strategy in the proof of the decomposition
theorem, of which, the detailed proof will be given in in §2, §3 and §4. In §1.6,
we will prove some uniqueness theorem and factorization theorem which are
important in the proof of the main theorem. Even though the results in §1.6 are
new, most of the methods are modification of known techniques from [EG2],
[D2], [G4] and [DG]. In §2, we will prove the result about maximum spectral
multiplicities, which will be used in §4 and other papers. In §3, we will prove
certain results of a combinatorial nature. In §4, we will combine the results
from §2, §3, and the results in [Li2], to prove the decomposition theorem. In §5,
we will prove the result mentioned above concerning G-δ multiplicative maps.
In §6, we will use §4, §5 and §1.6 to prove our main reduction theorem. Our
main result can be generalized from the case of no dimension growth (i.e., Xn,i
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have uniformly bounded dimensions) to the case of very slow dimension growth.
Since the proof of this general case is much more tedious and complicated, we
will deal with this generalization in [G5], which can be regarded as an appendix
to this article.

Acknowledgements. The author would like to thank Professors M. Dadar-
lat, G. Elliott, L. Li, and H. Lin for helpful conversations. The author also like
to thank G. Elliott, L. Li and H. Lin for reading the article and making sug-
gestions to improve the readability of the article. In particular, L. Li suggested
to the author to make the pictures (e.g., in 3.6, 3.10 and 6.3) to explain the
ideas in the proof of some results; G. Elliott suggested to the author to write
a subsection §1.5 to explain the general strategy for proving a decomposition
theorem.

1 Preparation and some preliminary ideas

We will introduce some conventions, general assumptions, and preliminary re-
sults in this section.

1.1 General assumptions on inductive limits

1.1.1. If A and B are two C∗-algebras, we use Map(A,B) to denote the
space of all linear, completely positive ∗-contractions from A to
B. If both A and B are unital, then Map(A,B)1 will denote the subset of
Map(A,B) consisting of unital maps. By word “map”, we shall mean linear,
completely positive ∗-contraction between C∗-algebras, or else we shall mean
continuous map between topological spaces, which one will be clear from the
context.

By a homomorphism between C∗-algebras, will be meant a ∗-
homomorphism. Let Hom(A,B) denote the space of all homomorphisms
from A to B. Similarly, if both A and B are unital, let Hom(A,B)1 denote the
subset of Hom(A,B) consisting of unital homomorphisms.

Definition 1.1.2. Let G ⊂ A be a finite set and δ > 0. We shall say that
φ ∈ Map(A,B) is G-δ multiplicative if

‖φ(ab)− φ(a)φ(b)‖ < δ

for all a, b ∈ G.

Sometimes, we use MapG−δ(A,B) to denote all the G-δ multiplicative maps.

1.1.3. In the notation for an inductive system (An, φn,m), we understand
that φn,m = φm−1,m ◦ φm−2,m−1 · · · ◦ φn,n+1, where all φn,m : An → Am are
homomorphisms.
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We shall assume that, for any summand Ain in the direct sum An =
⊕tn

i=1A
i
n,

necessarily, φn,n+1(1Ain) 6= 0, since, otherwise, we could simply delete Ain from
An without changing the limit algebra.

1.1.4. If An =
⊕

iA
i
n and Am =

⊕
j A

j
m, we use φi,jn,m to denote the partial

map of φn,m from the i-th block Ain of An to the j-th block Ajm of Am.
In this article, we will assume that all inductive limit C∗-algebras are simple.
That is, the limit algebra has no nontrivial proper closed two sided ideals.
We will also assume that every inductive limit C∗-algebra A = lim

→
(An, φn,m)

coming into consideration is different both from Mk(C| ) (the matrix algebra
over C| ), and from K(H) (the algebra of all compact operators).
Since A = lim

→
(An =

⊕
iA

i
n, φn,m) is simple, by 5.3.2(b) of [DN], we may

assume that φi,jn,m(1Ain) 6= 0 for any blocks Ain and Ajm, where n < m.

1.1.5. To avoid certain counter examples (see [V]) of the main result of
this article, we will restrict our attention, in this article, to inductive systems
satisfying the following very slow dimension growth condition. This is
a strengthened form of the condition of slow dimension growth introduced in
[BDR].
If lim
→

(An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i, φn,m) is a unital inductive limit sys-

tem, the very slow dimension growth condition is

lim
n→+∞

max
i

{
(dimXn,i)

3

rank(Pn,i)

}
= 0,

where dim(Xn,i) denotes the (covering) dimension of Xn,i.
In this article, we will also study non-unital inductive limit algebras. The
above formula must then be slightly modified. The very slow dimension growth
condition in the non-unital case is that, for any summand
Ain = Pn,iM[n,i](C(Xn,i))Pn,i of a fixed An,

lim
m→+∞

max
i,j

{
(dimXm,j)

3

rankφi,jn,m(1Ain)

}
= 0,

where φi,jn,m is the partial map of φn,m from Ain to Ajm.
(For a unital inductive limit, the two conditions above are equivalent. Of
course, both conditions are only proposed for the simple case.)
If the set {dimXn,i} is bounded, i.e, there is an M such that

dimXn,i ≤M

for all n and i, then the inductive system automatically satisfies the very slow
dimension growth condition, as we already assume that the limit algebra is not
Mk(C| ) or K(H).
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We will prove our main reduction theorem for the case of uniformly bounded
dimensions in this article, since it is significantly simpler than the case of very
slow dimension growth. The general case will be discussed in [G5]—an ap-
pendix of this article. But the decomposition theorem will be proved for the
case of very slow dimension growth.
It must be noted that, without the above assumption on dimension growth,
the main theorem of this article does not hold (see [Vi1]). We shall leave the
following question open: can the above condition of very slow dimension growth
be replaced by the similar (but weaker) condition of slow dimension growth (see
[BDR]), in the main theorem of this article?

1.1.6. By 2.3 of [Bl1], in the inductive limit

A = lim
→

(An =

tn⊕

i=1

Pn,iM[n,i](C(Xn,i))Pn,i, φn,m),

one can always replace the compact metrizable spaces Xn,i by finite simplicial
complexes. Note that the replacement does not increase the dimensions of
the spaces. Therefore, in this article, we will always assume that all
the spaces Xn,i in a given inductive system are finite simplicial
complexes. Also, we will further assume that all Xn,i are path
connected. Otherwise, we will separate different components into different
direct summands. (Note that a finite simplicial complex has at most finitely
many path connected components.)
By simplicial complex we mean finite simplicial complex or polyhedron; see
[St].

1.1.7.
(a) We use the notation #(·) to denote the cardinal number of the set, if the
argument is a finite set. Very often, the sets under consideration will be sets
with multiplicity, and then we shall also count multiplicity when we use the
notation #.
(b) We shall use a∼k to denote a, · · · , a︸ ︷︷ ︸

k copies

. For example,

{a∼3, b∼2} = {a, a, a, b, b}.

(c) int(·) is used to denote the integer part of a real number. We reserve the
notation [·] for equivalence classes in possibly different contexts.
(d) For any metric space X, any x0 ∈ X and any c > 0, let Bc(x0) := {x ∈
X | d(x, x0) < c} denote the open ball with radius c and centre x0.
(e) Suppose that A is a C∗-algebra, B ⊂ A is a subalgebra, F ⊂ A is a (finite)
subset and let ε > 0. If for each element f ∈ F , there is an element g ∈ B such
that ‖f − g‖ < ε, then we shall say that F is approximately contained in B to
within ε, and denote this by F ⊂ε B.
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(f) Let X be a compact metric space. For any δ > 0, a finite set {x1, x2, · · ·xn}
is said to be δ-dense in X, if for any x ∈ X, there is xi such that dist(x, xi) < δ.
(g) We shall use • to denote any possible positive integer. To save notation,
y, y′, y′′, · · · or a1, a2, · · · may be used for finite sequences if we do not care how
many terms are in the sequence. Similarly, A1∪A2∪· · · or A1∩A2∩· · · may be
used for finite union or finite intersection. If there is a danger of confusion with
infinite sequence, union, or intersection, we will write them as a1, a2, · · · , a•,
A1 ∪A2 ∪ · · · ∪A•, or A1 ∩A2 ∩ · · ·A•.
(h) For A =

⊕t
i=1Mki(C(Xi)), where Xi are path connected simplicial com-

plexes, we use the notation r(A) to denote
⊕t

i=1Mki(C| ), which could be con-
sidered to be a subalgebra of A consisting of t-tuples of constant functions from
Xi to Mki(C| ) (i = 1, 2, · · · , t). Fix a base point x0

i ∈ Xi for each Xi, one can
define a map r : A→ r(A) by

r(f1, f2, · · · , ft) = (f1(x0
1), f2(x0

2), · · · ft(x0
t )) ∈ r(A).

(i) For any two projections p, q ∈ A, we use the notation [p] ≤ [q] to denote
that p is unitarily equivalent to a sub projection of q. And we use p ∼ q to
denote that p is unitarily equivalent to q.

1.2 Spectrum and spectral variation of a homomorphism

1.2.1. Let Y be a compact metrizable space. Let P ∈ Mk1
(C(Y )) be a

projection with rank(P ) = k ≤ k1. For each y, there is a unitary uy ∈Mk1
(C| )

(depending on y) such that

P (y) = uy




1
. . .

1
0

. . .

0




u∗y,

where there are k 1’s on the diagonal. If the unitary uy can be chosen to be
continuous in y, then P is called a trivial projection.
It is well known that any projection P ∈ Mk1

(C(Y )) is locally trivial. That
is, for any y0 ∈ Y , there is an open set Uy0

3 y0, and there is a continuous
unitary-valued function

u : Uy0
→Mk1

(C| )

such that the above equation holds for u(y) (in place of uy) for any y ∈ Uy0
.

If P is trivial, then PMk1
(C(X))P ∼= Mk(C(X)).

1.2.2. Let X be a compact metrizable space and ψ : C(X) → PMk1
(C(Y ))P
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be a unital homomorphism. For any given point y ∈ Y , there are points
x1(y), x2(y), · · · , xk(y) ∈ X, and a unitary Uy ∈Mk1

(C| ) such that

ψ(f)(y) = P (y)Uy




f(x1(y))

. . .

f(xk(y))

0

. . .

0




U∗yP (y) ∈ P (y)Mk1
(C| )P (y)

for all f ∈ C(X). Equivalently, there are k rank one orthogonal projections

p1, p2, · · · , pk with
∑k
i=1 pi = P (y) and x1(y), x2(y), · · · , xk(y) ∈ X, such that

ψ(f)(y) =

k∑

i=1

f(xi(y))pi, ∀ f ∈ C(X).

Let us denote the set {x1(y), x2(y), · · · , xk(y)}, counting multiplicities, by
SPψy. In other words, if a point is repeated in the diagonal of the above
matrix, it is included with the same multiplicity in SPψy. We shall call
SPψy the spectrum of ψ at the point y. Let us define the spectrum of
ψ, denoted by SPψ, to be the closed subset

SPψ :=
⋃

y∈Y
SPψy ⊆ X.

Alternatively, SPψ is the complement of the spectrum of the kernel of ψ, con-
sidered as a closed ideal of C(X). The map ψ can be factored as

C(X)
i∗−→ C(SPψ)

ψ1−→ PMk1
(C(Y ))P

with ψ1 an injective homomorphism, where i denotes the inclusion SPψ ↪→ X.
Also, if A = PMk1

(C(Y ))P , then we shall call the space Y the spectrum of
the algebra A, and write SPA = Y (= SP(id)).

1.2.3. In 1.2.2, if we group together all the repeated points in
{x1(y), x2(y), · · · , xk(y)}, and sum their corresponding projections, we can
write

ψ(f)(y) =

l∑

i=1

f(λi(y))Pi (l ≤ k),

where {λ1(y), λ2(y), · · · , λl(y)} is equal to {x1(y), x2(y), · · · , xk(y)} as a set,
but λi(y) 6= λj(y) if i 6= j; and each Pi is the sum of the projections cor-
responding to λi(y). If λi(y) has multiplicity m (i.e., it appears m times in
{x1(y), x2(y), · · · , xk(y)}), then rank(Pi) = m.
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Definition 1.2.4. Let ψ, y, and Pi be as above. The maximum spectral
multiplicity of ψ at the point y is defined to be maxi(rankPi). The
maximum spectral multiplicity of ψ is defined to be the supremum of
the maximum spectral multiplicities of ψ at the various points of Y .

The following result is the main theorem in §2, which says that we can make
the homomorphism not to have too large spectral multiplicities, up to a small
perturbation.

Theorem 2.1. Let X and Y be connected simplicial complexes and X 6= {pt}.
Let l = dim(X) + dim(Y ). For any given finite set G ⊂ C(X), any ε > 0, and
any unital homomorphism φ : C(X) → PM•(C(Y ))P , where P ∈ M•(C(Y ))
is a projection, there is a unital homomorphism φ′ : C(X) → PM•(C(Y ))P
such that
(1) ‖φ(g)− φ′(g)‖ < ε for all g ∈ G;
(2) φ′ has maximum spectral multiplicity at most l.

1.2.5. Set P k(X) = X ×X × · · · ×X︸ ︷︷ ︸
k

/ ∼, where the equivalence relation ∼

is defined by (x1, x2, · · · , xk) ∼ (x′1, x
′
2, · · · , x′k) if there is a permutation σ of

{1, 2, · · · , k} such that xi = x′σ(i), for each 1 ≤ i ≤ k. A metric d on X can be

extended to a metric on P k(X) by

d([x1, x2, · · · , xk], [x′1, x
′
2, · · · , x′k]) = min

σ
max

1≤i≤k
d(xi, x

′
σ(i)),

where σ is taken from the set of all permutations, and [x1, · · · , xk] denotes the
equivalence class in P k(X) of (x1, · · · , xk).

1.2.6. Let X be a metric space with metric d. Two k-tuples of (possibly
repeating) points {x1, x2, · · · , xk} ⊂ X and {x′1, x′2, · · · , x′k} ⊂ X are said to be
paired within η if there is a permutation σ such that

d(xi, x
′
σ(i)) < η, i = 1, 2, · · · , k.

This is equivalent to the following. If one regards (x1, x2, · · · , xk) and
(x′1, x

′
2, · · · , x′k) as two points in P kX, then

d([x1, x2, · · · , xk], [x′1, x
′
2, · · · , x′k]) < η.

1.2.7. Let ψ : C(X) → PMk1
(C(Y ))P be a unital homomorphism as in

1.2.5. Then
ψ∗ : y 7→ SPψy

defines a map Y → P kX, if one regards SPψy as an element of P kX. This
map is continuous. In term of this map and the metric d, let us define the
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spectral variation of ψ:

SPV(ψ) := diameter of the image of ψ∗.

Definition 1.2.8. We shall call the projection Pi in 1.2.3 the spectral
projection of φ at y with respect to the spectral element λi(y). If
X1 ⊂ X is a subset of X, we shall call

∑

λi(y)∈X1

Pi

the spectral projection of φ at y corresponding to the subset X1

(or with respect to the subset X1).
In general, for an open set U ⊂ X, the spectral projection P (y) of φ at y
corresponding to U does not depend on y continuously. But the following
lemma holds.

Lemma 1.2.9. Let U ⊂ X be an open subset. Let φ : C(X)→M•(C(Y )) be a
homomorphism. Suppose that W ⊂ Y is an open subset such that

SPφy ∩ (U\U) = ∅, ∀y ∈W.

Then the function

y 7→ spectral projection of φ at y correponding to U

is a continuous function on W . Furthermore, if W is connected then #(SPφy∩
U) (counting multiplicity) is the same for any y ∈W , and the map y 7→ SPφy∩
U ∈ P lX is a continuous map on W , where l = #(SPφy ∩ U).

Proof: Let P (y) denote the spectral projection of φ at y corresponding to the
open set U . Fix y0 ∈ W . Since SPφy0

is a finite set, there is an open set

U1 ⊂ U1 ⊂ U(⊂ X) such that SPφy0
∩ U1 = SPφy0

∩ U(= SPφy0
∩ U), or in

other words, SPφy0
⊂ U1 ∪ (X\U). Considering the open set U1 ∪ (X\U), by

the continuity of the function

y 7→ SPφy ∈ P kX,

where k = rank(φ(1)), there is an open set W1 3 y0 such that

(1) SPφy ⊂ U1 ∪ (X\U), ∀y ∈W1.

Let χ ∈ C(X) be a function satisfying

χ(x) =

{
1 if x ∈ U1

0 if x ∈ X\U .
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Then from (1) and the definition of spectral projection it follows that

φ(χ)(y) = P (y), ∀y ∈W1.

In particular, P (y) is continuous at y0.
The additional part of the lemma follows from the continuity of P (y) and the
connectedness of W .

ut
In the above proof, we used the following fact, a consequence of the continuity
of the map y 7→ SPφy. We state it separately for our future use.

Lemma 1.2.10. Let X be a finite simplicial complex, X1 ⊂ X be a closed
subset, and φ : C(X) → M•(C(Y )) be a homomorphism. For any y0 ∈ Y , if
SPφy0

∩ X1 = ∅, then there is an open set W 3 y0 such that SPφy ∩ X1 = ∅
for any y ∈W .
Another equivalent statement is the following. Let U ⊂ X be an open subset.
For any y0 ∈ Y , if SPφy0

⊂ U , then there is an open set W 3 y0 such that
SPφy ⊂ U for any y ∈W .

1.2.11. In fact the above lemma is a consequence of the following more general
principle: If φ : C(X)→ M•(C| ) is a homomorphism satisfying SPφ ⊂ U for a
certain open set U , then for any homomorphism ψ : C(X) → M•(C| ) which is
close enough to φ, we have SPψ ⊂ U . We state it as the following lemma.

Lemma 1.2.12. Let F ⊂ C(X) be a finite set of elements which generate
C(X) as a C∗-algebra. For any ε > 0, there is a δ > 0 such that if two
homomorphisms φ, ψ : C(X)→M•(C| ) satisfy

‖φ(f)− ψ(f)‖ < δ, ∀f ∈ F,

then SPψ and SPφ can be paired within ε. In particular, SPψ ⊂ U , where U
is the open set defined by U = {x ∈ X | ∃x′ ∈ SPφ with dist(x, x′) < ε}.

1.2.13. For any C∗ algebra A (usually we let A = C(X) or A =
PMk(C(X))P ), any homomorphism φ : A→M•(C(Y )), and any closed subset
Y1 ⊂ Y , denote by φ|Y1

the following composition:

A
φ−→M•(C(Y ))

restriction−→ M•(C(Y1)).

(As usual, for a subset or subalgebra A1 ⊂ A, φ|A1
will be used to denote the

restriction of φ to A1. We believe that there will be no danger of confusion as
the meaning will be clear from the context.)
The following trivial fact will be used frequently.

Lemma 1.2.14. Let Y1, Y2 ⊂ Y be two closed subsets. If φ1 : A→ Mk(C(Y1))
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and φ2 : A → Mk(C(Y2)) are two homomorphisms with φ1|Y1∩Y2
= φ2|Y1∩Y2

,
then for any a ∈ A, the matrix-valued function y 7→ φ(a)(y), where

φ(a)(y) =

{
φ1(a)(y) if y ∈ Y1

φ2(a)(y) if y ∈ Y2 ,

is a continuous function on Y1 ∪ Y2 (i.e., it is an element of Mk(C(Y1 ∪ Y2)).
Furthermore, a 7→ φ(a) defines a homomorphism φ : A→Mk(C(Y1 ∪ Y2)).

1.2.15. Let X be a compact connected space and let Q be a projection of rank
n in MN (C(X)). The weak variation of a finite set F ⊂ QMN (C(X))Q
is defined by

ω(F ) = sup
Π1,Π2

inf
u∈U(n)

max
a∈F
‖uΠ1(a)u∗ −Π2(a)‖

where Π1,Π2 run through the set of irreducible representations of
QMN (C(X))Q into Mn(C| ).
Let Xi be compact connected spaces and Qi ∈ Mni(C(Xi)) be projections.
For a finite set F ⊂ ⊕iQiMni(C(Xi))Qi, define the weak variation ω(F )
to be maxi ω(πi(F )), where πi :

⊕
iQiMni(C(Xi))Qi → QiMni(C(Xi))Qi is

the natural project map onto the i-th block.
The set F is said to be weakly approximately constant to within ε if
ω(F ) < ε. The other description of this concept can be found in [EG2, 1.4.11]
(see also [D2, 1.3]).

1.2.16. Let φ : Mk(C(X)) → PMl(C(Y ))P be a unital homomorphism. Set
φ(e11) = p, where e11 is the canonical matrix unit corresponding to the upper
left corner. Set

φ1 = φ|e11Mk(C(X))e11
: C(X) −→ pMl(C(Y ))p.

Then PMl(C(Y ))P can be identified with pMl(C(Y ))p ⊗Mk in such a way
that

φ = φ1 ⊗ 1k.

Let us define
SPφy := SP(φ1)y,

SPφ := SPφ1,

SPV(φ) := SPV(φ1) .

Suppose that X and Y are connected. Let Q be a projection in Mk(C(X))
and φ : QMk(C(X))Q → PMl(C(Y ))P be a unital map. By the Dilation
Lemma (2.13 of [EG2]; see Lemma 1.3.1 below), there are an n, a projection
P1 ∈Mn(C(Y )), and a unital homomorphism

φ̃ : Mk(C(X)) −→ P1Mn(C(Y ))P1
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such that
φ = φ̃|QMk(C(X))Q.

(Note that this implies that P is a subprojection of P1.) We define:

SPφy := SPφ̃y,

SPφ := SPφ̃,

SPV(φ) := SPV(φ̃) .

(Note that these definitions do not depend on the choice of the dilation φ̃.)
The following lemma was essentially proved in [EG2, 3.27] (the additional part
is [EG 1.4.13]).

Lemma 1.2.17. Let X be a path connected compact metric space. Let
p0, p1, p2, · · · , pn ∈ M•(C(Y )) be mutually orthogonal projections such that
rank(pi) ≥ rank(p0), i = 1, 2, · · · , n. Let {x1, x2, · · · , xn} be a δ

2 -dense sub-
set of X. If a homomorphism φ : C(X)→M•(C(Y )) is defined by

φ(f) = φ0(f)⊕
n∑

i=1

f(xi)pi,

where φ0 : C(X) → p0M•(C(Y ))p0 is an arbitrary homomorphism, then
SPV(φ) < δ. Consequently, if a finite set F ⊂ C(X) satisfies the condition
that ‖f(x)− f(x′)‖ < ε, for any f ∈ F , whenever dist(x, x′) < δ, then φ(F ) is
weakly approximately constant to within ε.
(For convenience, we will call such a homomorphism ψ : C(X) → M•(C(Y )),
defined by ψ(f) =

∑n
i=1 f(xi)pi, a homomorphism defined by point evalua-

tions on the set {x1, x2, · · · , xn}.)

Proof: For any two points y, y′ ∈ Y , the sets SPφy and SPφy′ have the following
subset in common:

{x∼rank(p1)
1 , x

∼rank(p2)
2 , · · · , x∼rank(pn)

n }.

The remaining parts of SPφy and SPφy′ are SP(φ0)y and SP(φ0)y′ , respectively,
which have at most rank(p0) elements.
It is easy to prove the following fact. For any a, b ∈ X, the sets
{a, x1, x2, · · · , xn} and {b, x1, x2, · · · , xn} can be paired within δ. In fact, by
path connectedness of X and δ

2 -density of the set {x1, x2, · · · , xn}, one can find
a sequence

a, xj1 , xj2 , · · · , xjk , b
beginning with a and ending with b such that each pair of consecutive terms
has distance smaller than δ. So {a, xj1 , · · · , xjk−1

, xjk} can be paired with
{xj1 , xj2 , · · · , xjk , b} (= {b, xj1 , · · · , xjk}) one by one to within δ. The other
parts of the sets are identical, each element can be paired with itself.
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Combining the above fact with the condition that rank(pi) ≥ rank(p0) for any
i, we know that SPφy and SPφy′ can be paired within δ. That is, SPV(φ) < δ.
The rest of the lemma is obvious. Namely, for any two points y, y′, φ(f)(y) is
approximately unitarily equivalent to φ(f)(y′) to within ε, by the same unitary
for all f ∈ F (see [EG2, 1.4.13]).

ut

1.2.18. In the last part of the above lemma, one does not need φ0 to be
a homomorphism to guarantee φ(F ) to be weakly approximately constant to
within a small number. In fact, the following is true.
Suppose that all the notations are as in 1.2.17 except that the maps φ0 :
C(X) → p0M•(C(Y ))p0 and φ : C(X) → M•(C(Y )) are no longer ho-
momorphisms. Suppose that for any y ∈ Y , there is a homomorphism
ψy : C(X)→ p0(y)M•(C| )p0(y) such that

‖φ0(f)(y)− ψy(f)‖ < ε, ∀f ∈ F.

Then the set φ(F ) is weakly approximately constant to within 3ε. One can
prove this claim as follows.
For any y ∈ Y , define a homomorphism φy → M•(C| ) by φy(f) = ψy(f) ⊕∑n
i=1 f(xi)pi. Then for any two points y, y′ ∈ Y , as same as in Lemma 1.2.17,

SP(φy) and SP(φy′) can be paired within δ. Therefore, φy(f) is approximately
unitarily equivalent to φy′(f) to within ε, by the same unitary for all f ∈ F .
On the other hand,

‖φ(f)(y)− φy(f)‖ < ε and ‖φ(f)(y′)− φy′(f)‖ < ε, ∀f ∈ F.

Hence φ(f)(y) is approximately unitarily equivalent to φ(f)(y′) to within 3ε,
by the same unitary for all f ∈ F .

1.2.19. Suppose that F ⊂Mk(C(X)) is a finite set and ε > 0. Let F ′ ⊂ C(X)
be the finite set consisting of all entries of elements in F and ε′ = ε

k , where k
is the order of the matrix algebra Mk(C(X)).
It is well known that, for any k × k matrix a = (aij) ∈ Mk(B) with entries
aij ∈ B, ‖a‖ ≤ kmaxij ‖aij‖. This implies the following two facts.
Fact 1. If φ1, ψ1 ∈ Map(C(X), B) are (complete positive) linear ∗-contraction
(as the notation in 1.1.1) which satisfy

‖φ1(f)− ψ1(f)‖ < ε′, ∀f ∈ F ′,

then φ := φ1 ⊗ idk ∈ Map(Mk(C(X)),Mk(B)) and ψ := ψ1 ⊗ idk ∈
Map(Mk(C(X)),Mk(B)) satisfy

‖φ(f)− ψ(f)‖ < ε, ∀f ∈ F.

Fact 2. Suppose that φ1 ∈ Map(C(X),M•(C(Y ))) is a (complete positive)
linear ∗-contraction. If φ1(F ′) is weakly approximately constant to within ε′,
then φ1 ⊗ idk(F ) is weakly approximately constant to within ε.
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Suppose that a homomorphism φ1 ∈ Hom(C(X), B) has a decomposition de-
scribed as follows. There exist mutually orthogonal projections p1, p2 ∈ B with
p1 + p2 = 1B and ψ1 ∈ Hom(C(X), p2Bp2) such that

‖φ1(f)− p1φ1(f)p1 ⊕ ψ1(f)‖ < ε′, ∀f ∈ F ′.

Then there is a decomposition for φ := φ1 ⊗ idk:

‖φ(f)− P1φ1(f)P1 ⊕ ψ(f)‖ < ε, ∀f ∈ F,

where ψ := ψ1 ⊗ idk and P1 = p1 ⊗ 1k.
In particular, if B = M•(C(Y )) and ψ1 is described by

ψ1(f)(y) =
∑

f(αi(y))qi(y), ∀f ∈ C(X),

where
∑
qi = p2 and αi : Y → X are continuous maps, then ψ can be described

by

ψ(f)(y) =
∑

qi(y)⊗ f(αi(y)), ∀f ∈Mk(C(X)),

regarding Mk(M•(C(Y ))) as M•(C(Y ))⊗Mk.
If αi are constant maps, the homomorphism ψ1 is called a homomorphism
defined by point evaluations as in Lemma 1.2.17. In this case, we will also call
the above ψ a homomorphism defined by point evaluations.
From the above, we know that to decompose a homomorphism
φ ∈ Hom(Mk(C(X)),M•(C(Y ))), one only needs to decompose
φ1 := φ|e11Mk(C(X))e11

∈ Hom(C(X), φ(e11)M•(C(Y ))φ(e11)).

1.3 Full matrix algebras, corners, and the dilation lemma

Some results in this article deal with a corner QMN (C(X))Q of the matrix
algebra MN (C(X)). But using the following lemma and some other techniques,
we can reduce the problems to the case of a full matrix algebra MN (C(X)).
The following dilation lemma is Lemma 2.13 of [EG2].

Lemma 1.3.1. (cf. Lemma 2.13 of [EG2]) Let X and Y be any connected
finite CW complexes. If φ : QMk(C(X))Q → PMn(C(Y ))P is a unital
homomorphism, then there are an n1, a projection P1 ∈ Mn1

(C(Y )), and a
unital homomorphism φ̃ : Mk(C(X)) → P1Mn1

(C(Y ))P1 with the property
that QMk(C(X))Q and PMn(C(Y ))P can be identified as corner subalgebras
of Mk(C(X)) and P1Mn1

(C(Y ))P1 respectively (i.e., Q and P can be consid-
ered to be subprojections of 1k and P1, respectively) and, furthermore, in such
a way that φ is the restriction of φ̃.
If φt : QMk(C(X))Q → PMn(C(Y ))P, (0 ≤ t ≤ 1) is a path of unital
homomorphisms, then there are P1Mn1

(C(Y ))P1 (as above) and a path of unital
homomorphisms φ̃t : Mk(C(X))→ P1Mn1

(C(Y ))P1 such that QMk(C(X))Q
and PMn(C(Y ))P are corner subalgebras of Mk(C(X)) and P1Mn1

(C(Y ))P1

respectively and φt is the restriction of φ̃t.
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Definition 1.3.2. Let A be a C∗-algebra. A sub-C∗-algebra A1 ⊂ A will be
called a limit corner subalgebra of A, if there is a sequence of increasing
projections

P1 ≤ P2 ≤ · · · ≤ Pn ≤ · · · ,

such that A1 =
⋃∞
n=1 PnAPn.

Using Lemma 1.3.1, it is routine to prove the following lemma.

Lemma 1.3.3. (cf. 4.24 of [EG2]) For any AH algebra A = lim
→

(An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i, φn,m), there is an inductive limit Ã = lim
→

(Ãn =
⊕tn

i=1M{n,i}(C(Xn,i)), φ̃n,m) of full matrix algebras over {Xn,i}, such that

A is isomorphic to a limit corner subalgebra of Ã. In particular, each
Pn,iM[n,i](C(Xn,i))Pn,i is a corner subalgebra of M{n,i}(C(Xn,i)) and φn,m
is the restriction of φ̃n,m on An =

⊕tn
i=1 Pn,iM[n,i](C(Xn,i))Pn,i.

Furthermore, A is stably isomorphic to Ã.

Remark 1.3.4. In the above lemma, in general, the homomorphisms φ̃n,m
cannot be chosen to be unital, even if all the homomorphisms φn,m are unital.

If A is unital, then A can be chosen to be the cut-down of Ã by a single
projection (rather than a sequence of projections).

Remark 1.3.5. In Lemma 1.3.3, if A is simple and satisfies the very slow di-
mension growth condition, then so is Ã. Hence when we consider the nonunital
case, we may always assume that A is an inductive limit of direct sums of full
matrix algebras over C(Xn,i) without loss of generality. Since the reduction
theorem in this paper will be proved without the assumption of unitality, we
may assume that the C∗-algebra A is an inductive limit of full matrix algebras
over finite simplicial complexes. But even in this case, we still need to consider
the cut-down PMl(C(X))P of Ml(C(X)) in some situations, since the image
of a trivial projection may not be trivial.

In the proof of the decomposition theorem in §4, we will not assume that A is
unital but we will assume that A is the inductive limit of full matrix algebras.

Note that a projection in M•(C(X)) corresponds to a complex vector bundle
over X. The following result is well known (see Chapter 8 of [Hu]). This result
is often useful when we reduce the proof of a result involving the cut-down
PMl(C(X))P to the special case of the full matrix algebra Ml(C(X)).

Lemma 1.3.6. Let X be a connected simplicial complex and P ∈Ml(C(X)) be
a non-zero projection. Let n = rank(P ) + dim(X) and m = 2 dim(X) + 1.

Then P is Murray-von Neumann equivalent to a subprojection of 1n, and 1n is
Murray-von Neumann equivalent to a subprojection of P ⊕ P ⊕ · · ·P︸ ︷︷ ︸

m

, where 1n

is a trivial projection with rank n. Therefore, PMl(C(X))P can be identified
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as a corner subalgebra of Mn(C(X)), and Mn(C(X)) can be identified as a
corner subalgebra of Mm(PMl(C(X))P ).

1.4 Topological preliminaries

In this subsection, we will introduce some notations and results in the topology
of simplicial complexes. We will also introduce a well known method for the
construction of cross sections of a fibre bundle. The content of this subsection
may be found in [St], [Hu] and [Wh].

1.4.1. Let X be a connected simplicial complex. Endow X with a metric d as
follows.
For each n-simplex ∆, one can identify ∆ with an n-simplex in IRn whose
edges are of length 1 (of course the identification should preserve the affine
structure of the simplices). (Such a simplex is the convex hull of n + 1 points
{x0, x1, · · · , xn} in IRn with dist(xi, xj) = 1 for any i 6= j ∈ {0, 1, · · ·n}.) Such
an identification gives rise to a unique metric on ∆. The restriction of metric
d of X to ∆ is defined to be the above metric for any simplex ∆ ⊂ X. For
any two points x, y ∈ X, d(x, y) is defined to be the length of the shortest
path connecting x and y. (The length is measured in individual simplexes, by
breaking the path into small pieces.)
If X is not connected, denote by L the maximum of the diameters of all the
connected components. Define d(x, y) = L+ 1, if x and y are in different com-
ponents. (Recall that all the simplicial complexes in this article are supposed
to be finite.)

1.4.2. For a simplex ∆, by ∂∆, we denote the boundary of the simplex ∆,
which is the union of all proper faces of ∆. Note that if ∆ is a single point—
zero dimensional simplex, then ∂∆ = ∅. Obviously, dim(∂∆) = dim(∆) − 1.
(We use the standard convention that the dimension of the empty space is −1.)
By interior(∆), we denote ∆\∂∆. Let X be a simplicial complex. Obviously,
for each x ∈ X, there is a unique simplex ∆ such that x ∈ interior(∆), which
is the simplex ∆ of lowest dimension with the condition that x ∈ ∆. (Here
we use the fact that if two different simplices of the same dimension intersect,
then the intersection is a simplex of lower dimension.)
For any simplex ∆, define

Star(∆) =
⋃
{interior(∆′) | ∆′ ∩∆ 6= ∅}.

Then Star(∆) is an open set which covers ∆.
We will use the following two open covers of the simplicial complex X.
(a) For any vertex x ∈ X, let

Wx = Star({x})(=
⋃
{interior(∆) | x ∈ ∆}).

Obviously {Wx}x∈Vertex(X) is an open cover parameterized by vertices of X.
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In this open cover, the intersection Wx1
∩Wx2

∩ · · · ∩Wxk is nonempty if and
only if x1, x2, · · · , xk span a simplex of X.
(b) We denote the original simplicial structure of X by σ. Introduce a barycen-
tric subdivision (X, τ) of (X,σ).
Then for each simplex ∆ of (X,σ) (before subdivision), there is exactly one
point C∆ ∈ Vertex(X, τ)—the barycenter of ∆, such that C∆ ∈ interior(∆).
(Here interior(∆) is clearly defined by referring ∆ as a simplex of (X,σ).)
Define

U∆ = Star(X,τ)({C∆}).
As in (a), {U∆ | ∆ is a simplex of (X,σ)} is an open cover. In fact,
U∆ ⊃ interior(∆). This open cover is parameterized by simplices of (X,σ)
(also by vertices of (X, τ), since there is a one to one correspondence between
the vertices of (X, τ) and the simplices of (X,σ)).
This cover satisfies the following condition: The intersection U∆1

∩U∆2
∩ · · · ∩

U∆k
is nonempty if and only if one can reorder the simplices, such that

∆1 ⊂ ∆2 ⊂ · · ·∆n.

One can verify that the open cover in (b) is a refinement of the open cover in
(a).

1.4.3. It is well known that a simplicial complex X is locally contractible.
That is, for any point x ∈ X and an open neighborhood U 3 x, there is an
open neighborhood W 3 x with W ⊂ U such that W can be contracted to a
single point inside U . (One can prove this fact directly, using the metric in
1.4.1.)
One can endow different metrics on X, but all the metrics are required to
induce the same topology as the one in 1.4.1.
Using the local contractibility and the compactness of X, one can prove the
following fact.
For any simplicial complex X with a metric d (may be different from the metric
in 1.4.1), there are δX,d > 0 and a nondecreasing function ρ : (0, δX,d] → IR+

such that the following are true.
(1) limδ→0+ ρ(δ) = 0, and
(2) for any δ ∈ (0, δX,d] and x0 ∈ X, the ball Bδ(x0) with radius δ and centre x0

(see 1.1.7 (d) for the notation) can be contracted into a single point within the
ball Bρ(δ)(x0). I.e., there is a continuous map α : Bδ(x0) × [0, 1] → Bρ(δ)(x0)
such that
(i) α(x, 0) = x for any x ∈ Bδ(x0),
(ii) α(x, 1) = x0 for any x ∈ Bδ(x0).
The following lemma is a consequence of the above fact.

Lemma 1.4.4. For any simplicial complex X with metric d, there are δX,d > 0
and a nondecreasing function ρ : (0, δX,d] → IR+ such that the following are
true.
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(1) limδ→0+ ρ(δ) = 0, and
(2) for any ball Bδ(x0) with radius δ ≤ δX,d, any simplex ∆ (not assumed to
be a simplex in X), and any continuous map f : ∂∆ → Bδ(x0), there is a
continuous map g : ∆→ Bρ(δ)(x0) such that g(y) = f(y) for any y ∈ ∂∆.

Proof: The simplex ∆ can be identified with ∂∆ × [0, 1]/∂∆ × {1} in such a
way that ∂∆ is identified with ∂∆× {0}. Define the map g by

g(y, t) = α(f(y), t) ∈ Bρ(δ)(x0),∀y ∈ ∂∆, t ∈ [0, 1],

where α is the map in 1.4.3.
ut

1.4.5. The following is a well known result in differential topology: Suppose
that M is an m-dimensional smooth manifold, N ⊂ M is an n-dimensional
submanifold. If Y is an l-dimensional simplicial complex with l < m− n, then
for any continuous map f : Y → M and any ε > 0, there is a continuous map
g : Y →M such that
(i) g(Y ) ∩N = ∅ and
(ii) dist(g(y), f(y)) < ε, for any y ∈ Y .
There is an analogous result in the case of a simplicial complex M and a sub-
complex N . Instead of the assumption that M is an m-dimensional smooth
manifold, let us suppose that M has the property D(m): for each x ∈ M ,
there is a contractible open neighborhood Ux 3 x such that Ux \{x} is (m−2)-
connected, i.e.,

πi(Ux \ {x}) = 0 for any i ∈ {0, 1, · · ·m− 2}.

(We use the following convention: by π0(X) = 0, it will be meant that X is a
path connected nonempty space.)
Note that IRm\{0} is (m− 2)-connected. Therefore, any m-dimensional mani-
fold has property D(m).
The following result is the relative version of Theorem 5.4.16 of [St] (see page
111 of [St]), which also holds according to the top of page 112 of [St].

Proposition 1.4.6. Suppose that M is a simplicial complex with property
D(m), and N ⊂M is a sub-simplicial complex. Suppose that Y is a simplicial
complex of dimension l < m − dim(N), and suppose that Y1 ⊂ Y is a sub-
simplicial complex. Suppose that f : Y → M is a continuous map such that
f(Y1) ∩ N = ∅. For any ε > 0, there is a continuous map f1 : Y → M such
that
(i) f1|Y1

= f |Y1
,

(ii) f1(Y ) ∩N = ∅, and
(iii) d(f(y), f1(y)) < ε for any y ∈ Y .

1.4.7. Let X,F be two simplicial complexes.
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Let Γ ⊂ Homeo(F ) be a subgroup of the group of homeomorphisms of the
space F .
Let us recall the definition of fibre bundle. A fibre bundle over X with
fibre F and structure group Γ, is a simplicial complex M with a contin-
uous surjection p : M → X such that the following is true. There is an open
cover U of X, and associated to each U ∈ U , there is a homeomorphism

tU : p−1(U)→ U × F

(called a local trivialization of the bundle) such that
(1) Each tU takes the fibre of p−1(U) at x ∈ U to the fibre of U × F at the
same point x—a trivialization of the restriction p−1(U) of the fibre bundle to
U , i.e., the diagram

p−1(U) -tU
U × F

@
@
@@R

p

¡
¡

¡¡ª
p1

U

is commutative, where p1 denotes the project map from the product U × F to
the first factor U , and
(2) The given local trivializations differ fibre-wise only by homeomorphisms in
the structure group Γ: for any U, V ∈ U and x ∈ U ∩ V ,

tU ◦ t−1
V |{x}×F ∈ Γ ⊂ Homeo(F ).

Furthermore, we will also suppose that the metric d of F is invariant
under the action of any element g ∈ Γ, i.e., d(g(x), g(y)) = d(x, y) for
any x, y ∈ F . We will see, the fibre bundles constructed in §2, satisfy this
condition.
(Note that, if F is the vector space IRn with Euclidean metric d, then d is
invariant under the action of O(n) ⊂ Homeo(F ), but not invariant under the
action of Gl(n) ⊂ Homeo(F ).)
A subset F1 ⊂ F is called Γ-invariant if for any g ∈ Γ, g(F1) ⊂ F1.

1.4.8. A cross section of fibre bundle p : M → X is a continuous map
f : X →M such that

(p ◦ f)(x) = x for any x ∈ X.

The following Theorem is a consequence of Proposition 1.4.6. The proof is a
standard argument often used in the construction of cross sections for fibre
bundles (see [Wh]). (In the literature such an argument is often taken for
granted.) We give it here for the convenience of the reader.

Documenta Mathematica 7 (2002) 255–461



278 Guihua Gong

Theorem 1.4.9. Suppose that p : M → X is a fibre bundle with fibre F .
Suppose that F1 ⊂ F is a Γ-invariant sub-simplicial complex of F . Suppose
that F has the property D(m) and dim(X) < m−dim(F1). Then for any cross
section s : X → M and any ε > 0, there is a cross section s1 : X → M such
that the following two statements are true:
(1) (tU ◦ s1)(x) /∈ {x} × F1 for any x ∈ U ∈ U , where U is the open cover of
X and {tU}U∈U is the local trivialization of the fibre bundle. That is, s1(X)
avoids F1 in each fibre;
(2) d(s1(x), s(x)) < ε for any x ∈ X, where the distance is taken in the fibre F .

Proof: If the fibre bundle is trivial, then the cross sections of the bundle can be
identified with maps from X to F . The conclusion follows immediately from
1.4.6.
For the general case, we will use the local trivializations.
For each open set U ∈ U , using the trivialization

tU : p−1(U)→ U × F,

each cross section f on U induces a continuous map f̃U : U → F by

f̃U (x) = p2(tU (f(x))),

where p2 : U × F → F is the projection onto the second factor.
Suppose that δF is as in 1.4.3 (see 1.4.4 also). That is, there is a nondecreasing
function ρ : (0, δF ] → (0,∞) such that limδ→0+ ρ(δ) = 0 and such that any
δ-ball Bδ(x) can be contracted to a single point within Bρ(δ)(x).
Let dim(X) = n. Choose a finite sequence of positive numbers

εn > εn−1 > εn−2 > · · · > ε1 > ε0 > 0

as follows. Set εn = min{δF , ε}. Then choose εn−1 to satisfy

ρ(3εn−1) <
1

3
εn and 3εn−1 <

1

3
εn.

Once εl is defined, then choose εl−1 to satisfy

ρ(3εl−1) <
1

3
εl and 3εl−1 <

1

3
εl.

Repeat this procedure until we choose ε0 to satisfy

ρ(3ε0) <
1

3
ε1 and 3ε0 <

1

3
ε1.

Let us refine the given simplicial complex structure on X in such a way that
each simplex ∆ is covered by an open set U ∈ U and that for any simplex ∆
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and an open set U ∈ U which covers ∆, the map s̃U |∆ : ∆ → F , induced by
the cross section s, satisfies

diameter(s̃U (∆)) < ε0.

(Since the metric on F is invariant under the action of any element in Γ, the
above inequality holds or not does not depend on the choice of the open set
U which covers ∆. In what follows, we will use this fact many times without
saying so.)
We will apply Proposition 1.4.6 to each simplex of X from the lowest dimension
to the highest dimension.
For any l ∈ {0, 1, · · · , n}, let us denote the l-skeleton of X by X (l). So X(n) =
X, and X(0) is the set of vertices of X.
Step 1. Fix a vertex x ∈ X(0), and suppose that x ∈ U ∈ U . Applying
Proposition 1.4.6 to {x} (in place of Y with Y1 = ∅) and F ( in place of M
with N = F1), there exists s̃0(x) ∈ F \ F1 such that

d(s̃0(x), s̃U (x)) < ε0.

Any choice of s̃0(x) gives a cross section s0 on {x} by

s0(x) = t−1
U (x, s̃0(x)),

where (x, s̃0(x)) ∈ {x} × F ⊂ U × F. Defining s0 on all vertices, we obtain a
cross section s0 on X(0) such that

d(s̃0
U (x), s̃U (x)) < ε0

for each x ∈ U ∩X(0).
Step 2. Suppose that for l < n = dim(X), there is a cross section sl : X(l) →
M such that for any U ∈ U and any x ∈ X(l) ∩ U , we have s̃lU (x) /∈ F1, and

(∗) d(s̃lU (x), s̃U (x)) < εl.

Let us define a cross section sl+1 : X(l+1) → M as follows. We will work one
by one on each (l + 1)-simplex ∆.
First, we shall simply extend the cross section sl|∂∆ to a cross section on ∆ (see
Substep 2.1 below). Then, apply Proposition 1.4.6 to perturb the cross section
sl|∆ to avoid F1 in each fibre (see Substep 2.2 below). Again, since Proposition
1.4.6 is only for maps (not for cross sections), we will use s̃lU |∂∆ : ∂∆→ F to
replace sl|∂∆, as in Step 1.
Substep 2.1. Let ∆ be an (l + 1)-simplex. Suppose that ∆ ⊂ U ∈ U . Then
s̃lU |∂∆ : ∂∆ → F is a continuous map. Since (∗) holds for any x ∈ ∂∆, and
since

diameter(s̃U (∆)) < ε0,

we have
diameter(s̃lU (∂∆)) < εl + εl + ε0.
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Let δ = εl + εl + ε0 < δF . Then there is a y ∈ F such that s̃lU (∂∆) ⊂ Bδ(y).
Since ρ(δ) ≤ ρ(3εl) <

1
3εl+1, by Lemma 1.4.4, s̃lU : ∂∆ → F can be extended

to a map (still denoted by s̃lU )

s̃lU : ∆→ F,

such that s̃lU (∆) ⊂ B 1
3 εl+1

(y). Consequently, the extended map s̃lU also satisfies

that diameter(s̃lU (∆)) < 2
3εl+1.

Substep 2.2. Note that s̃lU (x) /∈ F1 for any x ∈ ∂∆. Applying Proposition
1.4.6 to ∆ (in place of Y with subcomplex Y1 = ∂∆) and to F (in the place of
M with subcomplex N = F1), we obtain a continuous map

s̃l+1 : ∆→ F

such that
(1) s̃l+1(x) /∈ F1 for any x ∈ ∆,
(2) d(s̃l+1(x), s̃lU (x)) < ε0, for any x ∈ ∆, and
(3) s̃l+1|∂∆ = s̃lU |∂∆.
The map s̃l+1 defines a cross section sl+1 by

sl+1(x) = t−1
U (x, s̃l+1(x)).

After working out all the (l + 1)-simplices, we obtain a cross section sl+1 on
X(l+1)—it is a continuous cross section because it is continuous on each (l+1)-
simplex and sl+1|∂∆ = sl|∂∆ from (3) above.
Recall that diameter(s̃U (∆)) < ε0 and diameter(s̃lU (∆)) < 2

3εl+1. Combining
these facts with (∗), we have

(∗∗) d(s̃lU (x), s̃U (x)) < εl +
2

3
εl+1 + ε0

for any x ∈ ∆. Combining (∗∗) and (2) above, we have

d(s̃l+1
U (x), s̃U (x)) < εl +

2

3
εl+1 + 2ε0 < εl+1

for any x ∈ X l+1 ∩ U . This is (∗) for l + 1 (in place of l).
Step 3. By mathematical induction, we can define sl for each l = 0, 1, · · ·n as
the above. Let s1 = sn to finish the proof.

ut
The following relative version of the theorem is also true.

Corollary 1.4.10. Suppose that p : M → X is a fibre bundle with fibre F
and F1 is a Γ-invariant sub-simplicial complex of F . Suppose that F has the
property D(m) and that dim(X) < m − dim(F1). Suppose that X1 ⊂ X is a
sub-simplicial complex. Suppose that the cross section s : X →M satisfies that
(tU ◦ s)(x) /∈ {x} × F1 for any U ∈ U and any x ∈ X1 ∩ U , where U and tU
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are as in the definition of fibre bundle in 1.4.7. Then for any ε > 0, there is a
cross section s1 : X →M such that the following three statements are true:

(1) (tU ◦ s1)(x) /∈ {x} × F1, for any x ∈ U and U ∈ U ;

(2) d(s1(x), s(x)) < ε for any x ∈ X, where the distance is taken inside the
fibre F ;

(3) s1|X1
= s|X1

.

Proof: In the proof of Theorem 1.4.9, we have essentially proved this relative
version. If fact, in Step 2, we proved that a cross section on a simplex ∆ can be
constructed within arbitrarily small distance of the original cross section such
that

(1) it avoids F1 in each fibre, and

(2) it agrees with the original cross section on ∂∆, provided that the original
cross section avoids F1 on ∂∆.

This is a local version of the Corollary. To prove the Corollary, one only needs
to apply this local version, repeatedly, to the simplices ∆ with ∆\∂∆ ⊂ X\X1,
from the lowest dimension to the highest dimension.

ut

1.5 About the decomposition theorem

In this subsection, we will briefly discuss the main ideas in the proof of the
decomposition theorem stated in §4. Mainly, we will review the ideas in the
proofs of special cases already in the literature (see especially [EG2, Theorem
2.21]), point out the additional difficulties in our new setting, and discuss how
to overcome these difficulties. This subsection could be skipped without any
logical gap, but we do not encourage the reader to do so, except for the expert
in the classification theory. By reading this subsection, the reader will get the
overall picture of the proof. In particular, how §2, §3, and the results of [Li2] fit
into the picture. We will also discuss some ideas in the proof of the combina-
torial results of §3. This subsection may also be helpful for understanding the
corresponding parts of [EG2], [Li3], and (perhaps) other papers. Even though
the discussion in this subsection is sketched, the proof of Lemma 1.5.4 and
Propositions 1.5.7 and 1.5.7’ are complete. We will begin our discussion with
some very elementary facts.

1.5.1. Let A and B be unital C∗-algebras, and φ : A→ B, a unital homomor-
phism. If P ∈ B is a projection which commutes with the image of φ, i.e., such
that

Pφ(a)− φ(a)P = 0, ∀a ∈ A,

then φ(a) can be decomposed into two mutually orthogonal parts φ(a)P =
Pφ(a)P and φ(a)(1− P ) = (1− P )φ(a)(1− P ):

φ(a) = Pφ(a)P + (1− P )φ(a)(1− P ).
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1.5.2. In 1.5.1, let us consider the case that A = C(X). Let F ⊂ C(X) be
a finite set. Let unital homomorphism φ : C(X) → B and projection P ∈ B
be as in 1.5.1. Furthermore, suppose that there is a point x0 ∈ X such that
Pφ(f)P = φ(f)P is approximately equal to f(x0)P to within ε on F :

‖φ(f)P − f(x0)P‖ < ε, ∀f ∈ F.

Then

‖φ(f)− (1− P )φ(f)(1− P )⊕ f(x0)P‖ < ε, ∀f ∈ F.
More generally, if there are mutually orthogonal projections P1, P2, · · · , Pn ∈ B,
which commute with φ(C(X)), and points x1, x2, · · · , xn ∈ X such that

(∗) ‖φ(f)Pi− f(xi)Pi‖ < ε, ∀f ∈ F, i = 1, 2, · · ·n,

then

(∗∗) ‖φ(f)− (1−
n∑

i=1

Pi)φ(f)(1−
n∑

i=1

Pi)⊕
n∑

i=1

f(xi)Pi‖ < ε, ∀f ∈ F.

Here, we used the following fact: the norm of the summation of a set of mutu-
ally orthogonal elements in a C∗-algebra is the maximum of the norms of all
individual elements in the set. In this paper, this fact will be used many times
without saying so.

Example 1.5.3. Let F ⊂ C(X) be a finite set, and ε > 0. Choose η > 0 such
that if dist(x, x′) < η, then |f(x)− f(x′)| < ε for any f ∈ F .
Let x1, x2, · · · , xn ∈ X be distinct points, and
U1 3 x1, U2 3 x2, · · · , Un 3 xn be mutually disjoint open neighborhoods
with Ui ⊂ Bη(xi) (= {x ∈ X | dist(x, xi) < η}).
Consider the case that B = M•(C| ) and let φ : C(X) → M•(C| ) be a homo-
morphism. If Pi, i = 1, 2, · · · , n are the spectral projections corresponding to
the open sets Ui (see Definition 1.2.4), then the projections Pi commute with
φ(C(X)) and satisfy (*) in 1.5.2. Therefore, the decomposition

(∗∗) ‖φ(f)− (1−
n∑

i=1

Pi)φ(f)(1−
n∑

i=1

Pi)⊕
n∑

i=1

f(xi)Pi‖ < ε,

holds for all f ∈ F .
We remark that if #(SPφ ∩ Ui) (counting multiplicities) is large, then, in the
decomposition, rank(Pi)(= #(SPφ ∩ Ui)) is large.
In the setting of 1.5.2, not only is (**) true for the original pro-
jections P1, P2, · · · , Pn, but also it is true for any subprojections
p1 ≤ P1, p2 ≤ P2, · · · , pn ≤ Pn, with ε replaced by 3ε. Namely, the fol-
lowing lemma holds.
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Lemma 1.5.4. Let X be a compact metrizable space, and write A = C(X).
Let F ⊂ A be a finite set. Let B be a unital C∗ -algebra, and φ : A → B
be a homomorphism. Let ε > 0. Suppose that there are mutually orthogo-
nal projections P1, P2, · · · , Pn in B and points x1, x2, · · · , xn in X such that
Piφ(f) = φ(f)Pi (i = 1, 2, · · · , n) for any f ∈ C(X) and such that

(∗) ‖φ(f)Pi − f(xi)Pi‖ < ε (i = 1, 2, · · · , n) for any f ∈ F.

If p1, p2, · · · , pn are subprojections of P1, P2, · · · , Pn respectively, then

‖φ(f)− (1−
n∑

i=1

pi)φ(f)(1−
n∑

i=1

pi)⊕
n∑

i=1

f(xi)pi‖ < 3ε,

for any f ∈ F .
(Notice that the condition that the projections Pi commute with φ(f) does not
by itself imply that the pi almost commute with φ(f), but this does follows if
(*) holds.)
Different versions of this lemma have appeared in a number of papers (espe-
cially, [Cu], [GL], [EGLP]).

Proof: The proof is a straightforward calculation.
One verifies directly that

‖(
∑

Pi)φ(f)(
∑

Pi)−
∑

f(xi)Pi‖ < ε, ∀f ∈ F.

Hence on multiplying by 1−∑ pi and
∑
pi (one on each side),

‖(1−
∑

pi)φ(f)(
∑

pi)‖ < ε, and ‖(
∑

pi)φ(f)(1−
∑

pi)‖ < ε, ∀f ∈ F ;

on multiplying by
∑
pi on both sides,

‖(
∑

pi)φ(f)(
∑

pi)−
∑

f(xi)pi‖ < ε, ∀f ∈ F.

The desired conclusion follows from identity

φ(f) = ((1−
∑

pi) +
∑

pi)φ(f)((1−
∑

pi) +
∑

pi).

ut

Remark 1.5.5. One may wonder why we need the decomposition given in the
preceding lemma. In fact, the decomposition (**) of 1.5.2, with the original
projections, has a better estimation. Why do we need to use subprojections?
The reason is as follows.
Suppose that the C∗-algebra A = C(X), the finite set F ⊂ A, the points
x1, x2, · · · , xn ∈ X, and the open sets U1 3 x1, U2 3 x2, · · · , Un 3 xn are as in
1.5.3. Let us consider the case B = M•(C(Y )) (instead of M•(C| ) in 1.5.3),
where Y is a simplicial complex.
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Let φ : C(X)→M•(C(Y )) be a unital homomorphism. As in 1.5.3, let Pi(y)
denote the spectral projection of φ|y corresponding to the open set Ui (see
1.2.8). Then for each y ∈ Y , we have the inequality (**) above,

‖φ(f)(y)− (1−
n∑

i=1

Pi(y))φ(f)(y)(1−
n∑

i=1

Pi(y))⊕
n∑

i=1

f(xi)Pi(y)‖ < ε, ∀f ∈ F.

Unfortunately, Pi(y) does not in general depend continuously on y, and so this
estimation does not give rise to a decomposition for φ globally.
On the other hand, one can construct a globally defined continuous projec-
tion pi(y) which is a subprojection of Pi(y) at each point y, and is such
that rank(pi) is not much smaller than miny∈Y rank(Pi(y)) (more precisely,
rank(pi) ≥ miny∈Y rank(Pi(y)) − dim(Y )), by using the continuous selection
theorem of [DNNP] as 1.5.6 below.
Once this is done , then for each y ∈ Y , applying the lemma, we have

‖φ(f)(y)−(1−
n∑

i=1

pi(y))φ(f)(y)(1−
n∑

i=1

pi(y))⊕
n∑

i=1

f(xi)pi(y)‖ < 3ε, ∀f ∈ F.

Since the projections pi(y) depend continuously on y, they define elements
pi ∈ B. We can then rewrite the preceding estimate as

‖φ(f)− (1−
n∑

i=1

pi)φ(f)(1−
n∑

i=1

pi)⊕
n∑

i=1

f(xi)pi‖ < 3ε, ∀f ∈ F.

1.5.6. We would like to discuss how to construct the projections pi referred to
in 1.5.5, using the selection theorem [DNNP 3.2].
To guarantee pi to have a large rank, we should assume that Pi(y) has a large
rank at every point y. So let us assume that for some positive integer ki and
for every point y ∈ Y ,

#(SPφy ∩ Ui) ≥ ki,
equivalently, rank(Pi(y)) ≥ ki.
For the sake of simplicity, let us fix i and write U for Ui (U ⊂ X), P for Pi, k
for ki, and p for the desired projection pi. So for every point y ∈ Y ,

#(SPφy ∩ U) ≥ k,

equivalently, rankP (y) ≥ k. Let us construct a projection p(y), depending
continuously on y, such that rankp(y) ≥ k − dim(Y ) and p(y) ≤ P (y) for each
y ∈ Y .
For each fixed y0 ∈ Y , since SPφy0

∩ U is a finite set, one can choose an

open set U ′ ⊂ U ′ ⊂ U such that SPφy0
∩ U ′ = SPφy0

∩ U . In particular,

SPφy0
∩ (U ′\U ′) = ∅. By Lemma 1.2.10, there is a connected open set W 3 y0

in Y such that
SPφy ∩ (U ′\U ′) = ∅, ∀y ∈W.
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Let PW (y) be the spectral projection of φy corresponding to open set U ′. By
Lemma 1.2.9, this depends continuously on y, and so defines a continuous
projection-valued function

PW : W → projections of M•(C| ).

Furthermore, PW (y) ≤ P (y) for any y ∈ Y and, for each y in the (connected)
subset W ,

rank(PW (y)) = #(SPφy0
∩ U ′) = #(SPφy0

∩ U) ≥ k.

Once we have the above locally defined continuous projection-valued functions
PW (y), the existence of a globally defined continuous projection-valued func-
tion p(y) follows from the following result.

Proposition ([DNNP 3.2]). Let Y be a simplicial complex, and let k be a
positive integer. Suppose that W is an open covering of Y such that for each
W ∈ W, there is a continuous projection-valued map PW : W → M•(C| )
satisfying

rankPW (y) ≥ k for all y ∈W.

Then there is a continuous projection-valued map p : Y → M•(C| ) such that
for each y ∈ Y ,

rank p(y) ≥ k − dim(Y ), and

p(y) ≤
∨
{PW (y); W ∈ W, y ∈W}.

Let p(y) be as given in the preceding proposition with respect to PW as defined
above. Then as PW (y) ≤ P (y) for each W , p(y) ≤ P (y) also holds .

Recall, we write U for Ui, P for Pi and p for pi. So, we obtain a projection
pi such that pi(y) is a subprojection of Pi(y) for every y. Since Pi(y), i =
1, 2, · · · , n, are the spectral projections corresponding to Ui, i = 1, 2, · · ·n,
which are mutually disjoint, the projections Pi(y), i = 1, 2, · · · , n, are mutually
orthogonal, and so are the projections pi, i = 1, 2, · · · , n. Combining this
construction with Lemma 1.5.4, we have the following result.

Proposition 1.5.7. Let X be a simplicial complex, and F ⊂ C(X) a fi-
nite subset. Suppose that ε > 0 and η > 0 are as in 1.5.3, i.e., such that if
dist(x, x′) < η, then |f(x)− f(x′)| < ε for any f ∈ F .

Suppose that U1, U2, · · · , Un are disjoint open neighborhoods of (distinct) points
x1, x2, · · · , xn ∈ X, respectively, such that Ui ⊂ Bη(xi) for all 1 ≤ i ≤ n.
Suppose that φ : C(X) → M•(C(Y )) is a unital homomorphism, where Y is a
simplicial complex, such that

#(SPφy ∩ Ui) ≥ ki for 1 ≤ i ≤ n, and for all y ∈ Y.
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Then there are mutually orthogonal projections p1, p2, · · · , pn ∈M•(C(Y )) with
rank(pi) ≥ ki − dim(Y ) such that

‖φ(f)− p0φ(f)p0 ⊕
n∑

i=1

f(xi)pi‖ < 3ε for all f ∈ F,

where p0 = 1−∑ pi. Consequently,

rank(p0) ≤ (#(SPφy)−
n∑

i=1

ki) + n · dim(Y ).

(Note that #(SPφy) is the order of the matrix algebra M•(C(Y )).)
(In fact, the above is also true if one replaces M•(C(Y )) by PM•(C(Y ))P ,
with the exact same proof.)

1.5.8. Proposition 1.5.7 is implicitly contained in the proof of the main decom-
position theorem—Theorem 2.21 of [EG2], and explicitly stated as Theorem
2.3 of [Li3], for the case of dimension one.
To use 1.5.7 to decompose a partial map φi,jm,m′ : M[m,i](C(Xm,i)) →
M[m′,j](C(Xm′,j)) of the connecting homomorphism φm,m′ : Am → Am′ in
the inductive system (Am, φm,m′), we only need to write

φi,jm,m′ = φ⊗ id[m,i],

(see 1.2.9), and then decompose φ (cf. 1.2.19). In [EG2], we proved that such a
map φ (for m′ large enough) satisfies the condition in Proposition 1.5.7, if the
inductive limit is of real rank zero. More precisely, we constructed mutually
disjoint open sets U1, U2, · · · , Un, with small diameter, such that

∑n
i=1 ki is very

large compared with (#(SPφy)−∑n
i=1 ki), where ki = miny∈Y #(SPφy ∩ Ui).

(See the open sets Wi in the proof of Theorem 2.21 of [EG2].) Therefore,
in the above decomposition, the part

∑n
i=1 f(xi)pi, which has rank at least

(
∑n
i=1 ki)−n ·dim(Y ), has much larger size than the size of the part p0φ(f)p0,

which has rank at most (#(SPφy) −∑n
i=1 ki) + n · dim(Y ), if n · dim(Y ) is

very small compared with #(SPφy). (Notice that if φ is not unital, then p0 =
φ(1)−∑n

i=1 pi and #(SPφy) = rankφ(1).) (We should mention that n ·dim(Y )
is automatically small from the construction. This is a kind of technical detail,
to which the reader should not pay much attention now. The number n depends
only on η above, but #(SPφy) could be very large as m′ (for φm,m′) is large.
In particular, it could be much larger than dim(Y ) (note that Y = Xm′,j ), if
the inductive limit has slow dimension growth.)
The above construction is not trivial. It depends heavily on the real rank zero
property and Su’s result concerning spectral variation (see [Su]).
What was proved by this construction in [EG2] is the decomposition theorem
for the real rank zero case, as mentioned in the introduction.

1.5.9. For the case of a non real rank zero inductive system, we can not
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construct the mutually disjoint open set {Ui} as described in 1.5.8. Notice
that in the decomposition described in 1.5.8, the major part ψ defined by
ψ(f) :=

∑n
i=1 f(xi)pi has property that

SPψy = {x∼rank(p1)
1 , x

∼rank(p2)
2 , · · · , x∼rank(pn)

n }.

That is, the spectrum consists of several fixed points {xi}ni=1(⊂ X) with mul-
tiplicities. This kind of decomposition depends on the real rank zero property.
For the decomposition of the simple inductive limit algebras, we are forced to
allow the major part to have variable spectrum— SPψy varies when y varies.
The following results can be proved exactly the same as the way Proposition
1.5.7 is proved (see 1.5.6 and 1.5.4). (Proposition 1.5.7 is a special case of the
following result by taking αi(y) = xi, the constant maps, and Ui(y) = Ui 3 xi,
the fixed open sets.)

Proposition 1.5.7’. Let X be a simplicial complex, and F ⊂ C(X), a
finite subset. Suppose that ε > 0 and η > 0 are as in 1.5.3, i.e., such that if
dist(x, x′) < η, then |f(x)− f(x′)| < ε for any f ∈ F .
Suppose that α1, α2, · · ·αn : Y → X are continuous maps from a simplicial
complex Y to X. Suppose that U1(y), U2(y), · · · , Un(y) are mutually disjoint
open sets satisfying Ui ⊂ Bη(αi(y)) and satisfying the following continuity
condition:
For any y0 ∈ Y and closed set F ⊂ Ui(y0), there is an open set W 3 y0 such
that F ⊂ Ui(y) for any y ∈W .
Suppose that φ : C(X)→M•(C(Y )) is a unital homomorphism such that

#(SPφy
⋂
Ui(y)) ≥ ki, ∀i ∈ {1, 2, · · · , n}, y ∈ Y.

Then there are mutually orthogonal projections p1, p2, · · · , pn ∈M•(C(Y )) with
rank(pi) ≥ ki − dim(Y ) such that

‖φ(f)(y)− p0(y)φ(f)(y)p0(y)⊕
n∑

i=1

f(αi(y))pi(y)‖ < 3ε, ∀f ∈ F,

where p0 = 1−∑ pi. Consequently,

rank(p0) ≤ (#(SPφy)−
n∑

i=1

ki) + n dim(Y ).

(It is easy to see that the proof of Proposition 1.5.7 (see 1.5.6) can be generalized
to this case. Notice that the above continuity condition for Ui(y) assures that
U ′ ⊂ Ui(y) for any y ∈ W , where U ′ is described in 1.5.6 corresponding to y0

and U = Ui(y0). Then it will assure that PW (y) ≤ P (y), where PW (y) is the
locally defined continuous projection-valued function described in 1.5.6.)
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1.5.10. In the above proposition, if one can choose the maps αi : Y → X
factoring through the interval [0, 1]—the best possible 1-dimensional space—as

αi : Y
ai−→ [0, 1]

b−→ X,

then the part ψ, defined by ψ(f)(y) =
∑n
i=1 f(αi(y))pi(y), factors through

C[0, 1] as

C(X)
b∗−→ C([0, 1])

ψ′−→ (

n⊕

i=1

pi)M•(C(Y ))(

n⊕

i=1

pi),

where b∗ is induced by b : [0, 1]→ X and ψ′ is defined by

ψ′(f)(y) =

n∑

i=1

f(ai(y))pi(y).

In particular, if

(1)

n∑

i=1

ki >> (#(SPφy)−
n∑

i=1

ki),

where ki = miny∈Y #(SPφy ∩Ui), then we obtain a decomposition with major
part factoring through the interval algebras—direct sum of matrix algebras
over interval.

1.5.11. The ideal approach for obtaining a decomposition of φm,m′ with ma-
jor part factoring through an interval algebra, is to reduce it to the setting
of Proposition 1.5.7’, that is, to construct continuous maps {αi} (factoring
through interval) and the mutually disjoint open sets {Ui} as described in
1.5.7’, such that (1) in 1.5.10 holds for homomorphism φ induced from the
partial connecting homomorphism φi,jm,m′ described in 1.5.8.
Unfortunately, it seems impossible to realize such a construction globally.
A consequence of the property of αi described in Proposition 1.5.7’, is the
following property of αi, called property (Pairing):
Property (Pairing): For each y ∈ Y , there is a subset of SPφy, which can
be paired with

{α1(y)∼k1 , α2(y)∼k2 , · · · , αn(y)∼kn}
to within η, counting multiplicities. (See 1.1.7 (b) for the notation x∼k.)
Even though one can not construct the continuous maps {αi} (factoring
through interval [0, 1] and open sets {Ui} to satisfy the conditions in Proposition
1.5.7’ together with the condition (1) in 1.5.10, for the connecting homomor-
phisms in the simple inductive limit, Li constructed the maps {αi} to satisfy
the above weaker property (Pairing) and (1) in 1.5.10.
In fact, Li proves the following lemma.
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Lemma. Suppose that lim(Am, φm,m′) is a simple AH-inductive limit with slow
dimension growth and with injective connecting homomorphisms. For any η >
0, and Am, there are a δ > 0 and an integer N > m, such that for any m′ > N ,
SP(φi,jm,m′)y can be paired with

Θ(y) = {α1(y)∼T1 , α2(y)∼T2 , · · · , αL(y)∼TL}

to within η, counting multiplicities, for certain continuous maps αi : Y → X
factoring through [0,1], where X = Xm,i and Y = Xm′,j. Furthermore, if

we denote
rank(φi,j

m,m′ (1Aim
))

rank(1
Aim

)
by K, then Ti ≥ int(δK) and therefore L < 2

δ ,

provided δK ≥ 2, where int(δK) is the integer part of δK as in 1.1.7.
(This lemma is Theorem 2.19 (see also Remark 2.21) of [Li2]. The additional
part about the size of Ti could be obtained by inspecting the proof of the
theorem (see 2.16 and 2.18 of [Li2]).)
(Note that when we write φi,jm,m′ = φ⊗ id[m,i], we have SP(φi,jm,m′)y = SPφy.)
In particular, the condition (1) in 1.5.10 holds, since the right hand side is zero.
Therefore the following theorem will be useful for our setting, which is the first
theorem in §4.

Theorem 4.1. Let X be a connected finite simplicial complex, and F ⊂ C(X)
be a finite set which generates C(X). For any ε > 0, there is an η > 0 such
that the following statement is true.
Suppose that a unital homomorphism φ : C(X) → PM•(C(Y ))P (rank(P ) =
K) (where Y is a finite simplicial complex) satisfies the following condition:
There are L continuous maps

a1, a2, · · · , aL : Y −→ X

such that for each y ∈ Y, SPφy and Θ(y) can be paired within η, where

Θ(y) = {a1(y)∼T1 , a2(y)∼T2 , · · · , aL(y)∼TL}

and T1, T2, · · · , TL are positive integers with

T1 + T2 + · · ·+ TL = K = rank(P ).

Let T = 2L(dimX + dimY )3. It follows that there are L mutually orthogonal
projections p1, p2, · · · , pL ∈ PM•(C(Y ))P such that

(i) ‖φ(f)(y)− p0(y)φ(f)(y)p0(y)⊕∑L
i=1 f(ai(y))pi(y)‖ < ε for any f ∈ F and

y ∈ Y , where p0 = P −∑L
i=1 pi;

(ii) ‖p0(y)φ(f)(y)− φ(f)(y)p0(y)‖ < ε for any f ∈ F and y ∈ Y ;
(iii) rank(pi) ≥ Ti − T for 1 ≤ i ≤ L, and hence rank(p0) ≤ LT .
(In the above, η can be chosen to be any number satisfying that if dist(x, x′) <
2η, then |f(x)− f(x′)| < ε

3 , ∀f ∈ F.)
(Note that we can not make the number T in the above theorem as small as
dim(Y ), as in Proposition 1.5.7 or 1.5.7’, for some technical difficulties. This
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is the reason that we are forced to use the stronger condition of very slow
dimension growth instead of slow dimension growth in our main decomposition
theorem.)

1.5.12. The proof of the above theorem is much more difficult than that of
Proposition 1.5.7 or 1.5.7’. In particular, Theorem 2.1 (see §1.2 above), and
results in §3 are only for the purpose of proving the above theorem. With
these results in hand, the proof of Theorem 4.1 will be given in 4.2–4.19. Then
the main decomposition theorem described in the introduction—Theorems 4.35
and 4.37—will be proved based on Theorem 4.1 and the results from [Li2].

We would like to explain the difficulties, and how Theorem 2.1 and §3 will be
used to over come the difficulties.

Now, our notations are as in Theorem 4.1 above.

Fix i. Let Ui(y) = {x ∈ X | dist(x, ai(y)) < η}, then from the condition of
Theorem 4.1, we have

#(SPφy ∩ Ui(y)) ≥ Ti.

Let Pi(y) be the spectral projection corresponding to the open set Ui(y). This
is not a continuously defined projection. But using the same procedure in 1.5.6
(see 1.5.7 and 1.5.7’), one can construct a globally defined projection pi(y) such
that pi(y) ≤ Pi(y), and rank(pi(y)) ≥ Ti − dim(Y ).

But unfortunately, those pi(y) are not mutually orthogonal, since Ui(y) are not
mutually disjoint, and therefore Pi(y) are not mutually orthogonal.

1.5.13. If we assume that the maximum spectral multiplicity of φ is at most
Ω, then for each y ∈ Y , we can divide the set SPφy (with multiplicity)
into L mutually disjoint subsets E1, E2, · · · , EL such that, for each λ ∈ Ei,
dist(λ, ai(y)) ≤ η, i = 1, 2, · · · , L, and such that

Ti − Ω < #(Ei) < Ti + Ω, i = 1, 2, · · · , L,

counting multiplicity. By {Ei} being mutually disjoint, we mean that if an
element λ ∈ SPφy has multiplicity k, then we put the entire k copies of λ into
one of Ei, without separating them. (In the above, φ, ai, Ti, and L are all
from Theorem 4.1.)

(Note that if we require that #(Ei) = Ti, then we can not guarantee {Ei} are
mutually disjoint, because of spectral multiplicity.)

Then we can construct mutually disjoint open sets U1(y), U2(y), · · · , UL(y) such
that Ei ⊂ Ui(y) and Ui(y) ⊂ Bη(ai(y)). We can further assume that these

open sets have mutually disjoint closures. That is Ui(y) ∩ Uj(y) = ∅, for
i 6= j, i, j ∈ {1, 2, · · · , L}.
(The open sets from such construction usually do not satisfy the continuity
condition in Proposition 1.5.7’, so we can not apply Proposition 1.5.7’. We
need to check the proof of it (e.g. the argument in 1.5.6) against our new
setting.)
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For each y0 ∈ Y , there is an open set W (y0) 3 y0 such that

SPφy ⊂ U1(y0) ∪ U2(y0) ∪ · · · ∪ UL(y0), ∀y ∈W (y0).

As in 1.5.6, one can construct the mutually orthogonal locally defined contin-
uous projection-valued functions

P
W (y0)
i : W (y0)→ projection of M•(C| ), i = 1, 2, · · · , L,

where P
W (y0)
i (y) (y ∈W (y0)) are the spectral projections of φy corresponding

to open sets Ui(y0) (or SPφy ∩ Ui(y0)). Furthermore, rankP
W (y0)
i = #(Ei) >

Ti − Ω.
(Note that we do not need to introduce the smaller open set U ′ as in 1.5.6,
because it is automatically true that SPφy∩(Ui(y0)\Ui(y0)) = ∅, as {Ui(y0)}Li=1

are mutually disjoint and SPφy ⊂ U1(y0) ∪ U2(y0) ∪ · · · ∪ UL(y0).)
Theorem 2.1 guarantees that Ω is controlled, it is at most dim(X)+
dim(Y ), which will be very small compared with Ti, in our future
application.

1.5.14. There is a finite subcoverW = {W (yj)}j of the open cover {W (y)}y∈Y
of Y .
We can use the selection theorem [DNNP 3.2] (see 1.5.6 above) to construct
global defined continuous projection valued functions pi(y), i = 1, 2, · · · , L, of
ranks at least Ti − Ω− dim(Y ), such that

(∗) pi(y) ≤
∨
{PW (yj)

i (y) | y ∈W (yj) and W (yj) ∈ W}.

For any i1 6= i2 ∈ {1, 2, · · · , L}, W (yj) ∈ W, and y ∈ W (yj), we have

P
W (yj)
i1

(y)⊥PW (yj)
i2

(y).
Unfortunately, when y ∈W (yj1) ∩W (yj2), we do not have

P
W (yj1 )
i1

(y)⊥PW (yj2 )
i2

(y).

Therefore, one can not conclude that pi1(y)⊥pi2(y) from the above (*).

(Notice that, in the above, P
W (y0)
i (y) is the spectral projection of φy with

respect to the open set Ui(y0) (not Ui(y)), and in general, Ui1(yj1)∩Ui2(yj2) 6= ∅
if j1 6= j2. In Propositions 1.5.7 and 1.5.7’, we do not have such problem, since
PWi (y) is the spectral projection of U ′, which is an open subset of Ui (does not
depend on y) in the case of Proposition 1.5.7, or which is an open subset of
Ui(y0) ∩ Ui(y) in the case of Proposition 1.5.7’; see 1.5.6 and the explanation
after Proposition 1.5.7’ for more details.)

1.5.15. For any W ∈ W and y ∈ W , define QWi (y), i = 1, 2, · · · , L, to
be the spectral projections of φ at point y with respect to the open sets⋂
{j: W (yj)∩W 6=∅} Ui(yj), i = 1, 2, · · · , L. These are subprojections of PWi (y).
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The advantage of using these projections is the following fact. For any
y ∈W (yj1) ∩W (yj2), we do have

Q
W (yj1 )
i1

(y)⊥QW (yj2 )
i2

(y)

for any i1 6= i2 ∈ {1, 2, · · · , L}, because Ui1(yj1) ∩ Ui2(yj1) = ∅,⋂
{j: W (yj)∩W (yj1 )6=∅} Ui1(yj) ⊂ Ui1(yj1) and

⋂
{j: W (yj)∩W (yj2 )6=∅} Ui2(yj) ⊂

Ui2(yj1) (the second inclusion follows from W (yj1) ∩W (yj2) 6= ∅).
Then we apply the selection theorem to QWi (instead of PWi ) to find globally
defined continuous projection-valued functions pi(y) such that

pi(y) ≤
∨
{QW (yj)

i (y) | y ∈W (yj) and W (yj) ∈ W},

and such that

rank(pi(y)) ≥ min
y∈W∈W

{rank(QWi (y))} − dim(Y ).

(The readers may notice that QWi (y) are not continuous on W , so one can not
apply the selection theorem directly. But one can introduce the open subsets
U ′ as in 1.5.6 for

⋂
{j: W (yj)∩W 6=∅} Ui(yj) (instead of Ui). We omit the details.)

This time, pi1(y)⊥pi2(y) for any i1 6= i2 ∈ {1, 2, · · · , L}.
To guarantee rank(pi(y)) to be large—not too much smaller than Ti,
miny∈W∈W{rank(QWi (y))} must be large.

1.5.16. Fixed y0 ∈ Y with W (y0) ∈ W. Recall from the definitions of Ui(y0)
and W (y0) (see 1.5.13),

SPφy=
(
SPφy ∩ U1(y0)

)
∪
(
SPφy ∩ U2(y0)

)
∪· · ·∪

(
SPφy ∩ UL(y0)

)
,∀y ∈W (y0).

Define E
W (y0)
i (y) := SPφy ∩ Ui(y0). (E

W (y0)
i (y0) is the set Ei in 1.5.13, with

y0 in place of y.) Then for each y ∈W ∈ W, {EWi (y)}Li=1 is a division of SPφy
(in the terminology in §3, it will be called a grouping of SPφy).
From 1.5.15,

rank(QWi (y)) = #


SPφy ∩

⋂

{j: W (yj)∩W 6=∅}
Ui(yj)




= #(
⋂

{j: W (yj)∩W 6=∅}
E
W (yj)
i (y)).

Roughly speaking, for our construction in 1.5.15 to work, we need the following
condition.

Condition: For each y ∈ Y , the number #(
⋂
{W : y∈W∈W}E

W
i (y)) is large—

not too much smaller than Ti.
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(This condition is a little weaker than QWi (y) to be large. But we are going to
use some special open cover so that the above weaker condition will be enough.
We are not going to discuss details here, and the reader does not need to pay
much attention.)
But in 1.5.15, we only have #(EWi (y)) > Ti−Ω. To obtain the above condition,
we need the combinatorial results in §3. We are going to discuss it now.

1.5.17. For an intersection to be large, it will be certainly natural to require
the number of sets involved in the intersection be as small as possible. As in
the setting of 1.5.16, we should require that for any y ∈ Y , the number of sets
in W which cover y—#{W | y ∈W ∈ W}— is not too large.
From the definition of covering dimension, we know that for any n-dimensional
compact metrizable space Y and any finite cover U of Y , there is a refined cover
U1 of U such that for any point y ∈ Y , there are at most n+ 1 open sets in U1

to cover the point y. In particular, for a simplicial complex Y , the construct
of such open cover is given in 1.4.2 (a).
Let {Wy}y∈Vertex(Y ) be the open cover of Y given in 1.4.2(a). Recall that, for

any vertices y0, y1, · · · , yk, the intersection
⋂k
i=1Wyi is nonempty if and only if

y0, y1, · · · , yk share one simplex.
For any finite open cover, there is a finite open cover of the above form (for
some refined simplicial complex structure), refining the given open cover.
Without loss of generality, we can assume the open cover W = {W (yj)} in
1.5.14 is of the above form. Hence {yj} are vertices of the simplicial complex Y
and W (yj) are the open sets Wyj defined above. Then the condition in 1.5.16
becomes the following.
For any simplex ∆ of Y with vertices y0, y1, · · · , yk,

#
(
E
W (y0)
i (y) ∩ EW (y1)

i (y) ∩ · · · ∩ EW (yk)
i (y)

)
≥ Ti − C

for any y ∈ W (y0) ∩ W (y1) ∩ · · · ∩ W (yk), where C is not too large.
(In the proof of Theorem 4.1, the number C will be chosen to be
2LΩ(1 + dim(Y )(dim(Y ) + 1)), where Ω is the maximum spectral multiplic-
ity which is bounded by dim(X) + dim(Y ), by Theorem 2.1.)

1.5.18. To make the discussion simpler, we suppose that the homomorphism
φ has distinct spectrum at any point y ∈ Y . That is, the maximum spectral
multiplicity of φ is one. (Of course, in the proof of Theorem 4.1 in §4, we will
not make this assumption.)
If the simplicial structure is sufficiently refined, by the distinct property of
the spectrum, we can assume the following holds: For any simplex ∆ with
Z =

⋃
y∈Vertex(∆) W (y)( ⊃ ∆), there are continuous maps

λ1, λ2, · · · , λK : Z → X,

where K = rank(P ) as in Theorem 4.1, such that

SPφy = {λ1(y), λ2(y), · · · , λK(y)}, ∀y ∈ Y.
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Then for any y ∈ Vertex(∆), the division (or grouping) E
W (y)
i (y) of SPφy gives

rise to a division (or grouping) Ei(y) of {λ1, λ2, · · · , λK}. In the case of distinct
spectrum, the condition in 1.5.13 concerning #(Ei) is #(Ei(y)) = Ti. The
condition at the end of 1.5.17 is

#


 ⋂

y∈Vertex(∆)

Ei(y)


 ≥ Ti − C.

This is of course not true in general, unless we make some special arrangement.
But with the following lemma, we can always subdivide (or refine) the sim-
plicial complex and introduce the groupings of {λ1, λ2, · · · , λK} for all newly
introduced vertices, to make the above true for any simplex of new simplicial
structure (after subdivision).
The following formal definition of grouping is in 3.2 of §3.
Definition. Let E = {1, 2, · · · ,K} be an index set. Let T1, T2, · · · , TL be non
negative integers with

T1 + T2 + · · ·+ TL = K.

A grouping of E of type (T1, T2, · · · , TL) is a set of L mutually disjoint index
sets E1, E2, · · · , EL with

E = E1 ∪ E2 ∪ · · · ∪ EL,

and #(Ej) = Tj for each 1 ≤ j ≤ L.
Lemma. Suppose that (∆, σ) is a simplex, where σ is the standard
simplicial structure of the simplex ∆. Suppose that for each vertex
x ∈ Vertex(∆, σ), there is a grouping E1(x), E2(x), · · · , EL(x) of E
of type (T1, T2, · · · , TL).
It follows that there is a subdivision (∆, τ) of (∆, σ), and there is an extension
of the definition of the groupings of E for Vertex(∆, σ) to the groupings of E
(of type (T1, T2, · · · , TL)) for Vertex(∆, τ) (⊃ Vertex(∆, σ)) such that:
(1) For each newly introduced vertex x ∈ Vertex(X, τ),

Ej(x) ⊂
⋃

y∈Vertex(∆,σ)

Ej(y), j = 1, 2, · · · , L.

(2) For any simplex ∆1 of (X, τ) (after subdivision),

#(
⋂

x∈Vertex(∆1)

Ej(x)) ≥ Tj −
dim(∆)(dim(∆) + 1)

2
, j = 1, 2, · · · , L.

1.5.19. Condition (1) above is important for the following reason. In 1.5.13,
when we define Ei as a subset of SPφy, we require that dist(λ, ai(y)) < η for

any λ ∈ Ei. This condition guarantees that the projection PWi in 1.5.13 (or
QWi in 1.5.16) satisfies that φ(f)(y)PWi (y) (or φ(f)(y)QWi (y)) is approximately
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equal to f(ai(y))PWi (y) (or f(ai(y))QWi (y)) to within ε, which is the condition
(*) in Lemma 1.5.4.
We consider the grouping of E as the grouping of the spectral functions
{λ1, λ2, · · · , λK} in 1.5.18. Then the condition (1) in the lemma implies the
following fact. If for any vertex y0 ∈ Vertex(∆, σ) and any element k ∈ Ei(y0),
we have dist(λk(y), ai(y)) < η, ∀y ∈ ∆, then for any newly introduced
vertex y1 ∈ Vertex(∆, τ) and any element k′ ∈ Ei(y1) (here Ei(y1) is the
set Ei for the newly introduced grouping for the vertex y1), we still have
dist(λk′(y), ai(y)) < η, ∀y ∈ ∆.

1.5.20. In fact, in the proof of Theorem 4.1, we need the relative version of the
result: Suppose that there are a subdivision (∂∆, τ ′) of the boundary (∂∆, σ)
and groupings for all vertices in Vertex(∂∆, τ ′) (⊃ Vertex(∆, σ)), such that
the above (1) holds for any vertex in Vertex(∂∆, τ ′) and such that the above
(2) holds for any simplex ∆1 of (∂∆, τ ′) with dim(∂∆) in place of dim(∆).
Then there is a subdivision (∆, τ) of (∆, σ), and groupings for all vertices
in Vertex(∆, τ) such that the above (1) and (2) hold and in addition, the
following holds: the restriction of (∆, τ) onto the boundary ∂∆ is (∂∆, τ ′) and
the grouping associated to any vertex in Vertex(∂∆, τ)(= Vertex(∂∆, τ ′)) is
the same as the old one.
In §3, we will prove the above relative version. In fact, to prove the abso-
lute version will automatically force us to prove the stronger one—the relative
version.
Another complication comes from the multiplicities, since we can not assume
the spectrum to be distinct. In this case, even the definition of grouping needs
to be modified.

1.5.21. To give the readers some feeling about the lemma in 1.5.18, we shall
discuss the special case of dim(∆) = 1. That is, ∆ = [0, 1], the interval.
In this case, we have two groupings for the end points, {E1(0), E2(0), · · ·EL(0)}
and {E1(1), E2(1), · · ·EL(1)} of E of type (T1, T2, · · · , TL). Then we need to
introduce a sequence of points

0 = t0 < t1 < t2 < · · · < tn−1 < tn = 1,

(this give rise to a subdivision of ∆ = [0, 1]) and define groupings
{E1(tj), E2(tj), · · ·EL(tj)} for j = 1, 2, · · ·n − 1 such that conditions (1) and
(2) in the lemma holds.
The condition (1) in the lemma means

Ei(tj) ⊂ Ei(0) ∪ Ei(1), ∀i ∈ {1, 2, · · ·L}, j ∈ {1, 2, · · · , n− 1}.
The condition (2) in the lemma means

#(Ei(tj) ∩ Ei(tj+1)) ≥ Ti − 1,

i.e., for any i, and any pair of adjacent points tj , tj+1, the set Ei(tj+1) differs
from the set Ei(tj) by at most one element.
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Let us discuss how to make the above (2) hold for E1. Suppose that E1(0) and
E1(1) are different (otherwise, we do not need to do anything for them). We can
modify E1(0) to obtain E1(t1) as follows. Taking one element λ in E1(1)\E1(0)
to replace an element µ in E1(0)\E1(1), and define it to be E1(t1). So E1(t1)
contains λ but not µ. Since λ /∈ E1(0), it must be in some Ei(0), i > 1. In the
set Ei(0), after we take out λ and put it into E0(t1), Ei has one element less
than it should have, so we can put µ in it, and call it Ei(t1). For j 6= 1 or i,
Ej(t1) should be the same as Ej(0). In such a way, we construct the grouping
for t1, which satisfies the above (2) for the pair 0, t1. Furthermore, compare
to {Ei(0)}i, the new grouping {Ei(t1)}i is one step closer to the grouping
{Ei(1)}i. Repeating the above construction (e.g., for t1 in place of 0) we can
construct Ei(t2) and so on. Finally, we will reach the grouping at the other
end point 1 ∈ [0, 1].
If one does not require the condition (1), the above is the complete proof of
the lemma for the one-dimensional case.

1.5.22. Since we require the condition (1), when we add an element λ ∈
E1(1)\E1(0) into E1(0) to define E1(t1) (as in 1.5.21), we shall carefully choose
the element µ ∈ E1(0)\E1(1) to be replaced by λ. In §3, we shall prove the
following assertion: For any λ ∈ E1(1)\E1(0), there is µ ∈ E1(0)\E1(1) to
satisfy the following condition: let F = (E1(0)\{µ})∪{λ}; the set E\F can be
grouped into E′2, E

′
3, · · · , E′L (#(E′i) = Ti), in such a way that

Ei ⊂ Ei(0) ∪ Ei(1).

(Such an element µ is the element we should choose.) This is Lemma 3.9 with
Ei(0) ∪ Ei(1) in place of Hi.
With the above ideas in mind, it should not be difficult (hopefully) to read
the first part of §3, which does not involve multiplicity. The main step of §3 is
contained in the proof of Lemma 3.11.

1.5.23. In the case with multiplicity, there are two possible ways of proceeding.
1. Define a grouping of

E = {λ∼w1
1 , λ∼w2

2 , · · · , λ∼wkk }
to be a (set theoretical) partition of E as a disjoint union of L sets E =
E1 ∪ E2 ∪ · · ·EL. Using this definition, we have to allow that, at different
vertices, the groupings may be of different types. That is, #(Ei) may be
different for different vertices. (One can compare with Ti−Ω < #(Ei) < Ti+Ω
in 1.5.13.)
2. Define a grouping of

E = {λ∼w1
1 , λ∼w2

2 , · · · , λ∼wkk }
to be a collection of L subsets E1, E2, · · · , EL with

Ej = {λ∼p
j
1

1 , λ
∼pj2
2 , · · · , λ∼p

j
k

k },
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where 0 ≤ pji ≤ wj , such that

L∑

j=1

pji = wi, for each i = 1, 2, · · · , k.

The grouping is called to be of type (T1, T2, · · · , TL) if

#(Ej) =

k∑

i=1

pji = Tj , for each j = 1, 2, · · · , L.

In this way, as will be seen, all the groupings corresponding to vertices of
a simplicial complex (as in the proof of Theorem 4.1), may be chosen to
be of the same type. But the conclusion (2) in the lemma should be modi-
fied. Instead of #(

⋂
x∈Vertex(∆1)Ej(x)), j = 1, 2, · · · , L to be big, we require

#(
⋂
x∈Vertex(∆1)

◦
Ej(x)), j = 1, 2, · · · , L, to be big, where for any set F with

multiplicity,
◦
F is the subset of F consisting of all such elements λi that {λ∼wii }

are entirely inside F . (See 3.22 for detailed definition of
◦
F .)

In fact, either approaches can be carried out for our purpose. It turns out that
the second approach is shorter and more elegant. Therefore we shall take this
approach.
Even though, in our approach, it is allowed to separate some set {λ∼wii } into
different groups Ei of the grouping, we should still group as many whole sets
{λ∼wjj } of the index set {λ∼w1

1 , λ∼w2
2 , · · · , λ∼wnn } as possible into the same set

Ei of {E1, E2, · · · , EL}. Assumption 3.27 and Lemma 3.28 are for this purpose.
(One needs to pay special attention to the definition and properties of GI in
3.25.) Except this idea, all other parts of the proof are the same as the case of
multiplicity one.

1.5.24. Once we have the combinatorial results in §3, and the explanations
in 1.5.1–1.5.19, it will not be hard to understand the proof of Theorem 4.1,
though there are some other small techniques, which will be clearly explained
in the proof (see 4.2–4.19).

1.5.25. Combining Theorem 4.1 and the result of [Li2] (see the lemma stated
in 1.5.11), we can obtain a decomposition φ1⊕ψ of φm,m′ (for m′ large enough)
such that the major part ψ factors through an interval algebra.
But to deal with the part φ1, we should add to it, a relatively large (comparing
with φ1) homomorphism φ2, which factors through a finite dimensional C∗-
algebra—or which is defined by certain point evaluations (on a δ-dense subset
of Xn,i for some small number δ).
In [Li3], Li deals with this problem by another decomposition, taking such a
homomorphism out of the part ψ. (She only proved the one dimensional case.)
We take a different approach. Going back to the construction of the maps αi
in [Li2] (see the lemma inside 1.5.11 above), we can choose sufficiently many
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of them to be constant maps (see Lemma 4.33 in §4 below). Therefore ψ
automatically has such a part defined by point evaluations.
We believe that our approach is easier to understand than Li’s approach, though
the spirit is the same. Furthermore, our decomposition is a quantitative version
(see Theorem 4.35), and is stronger than Li’s theorem even in the case of one
dimensional spaces. (This will be important in [EGL].)
We shall not use any result from [Li3]. But we encourage the reader to read
the short article [Li2], on which our proof heavily depends.

1.6 Some uniqueness theorems and a factorization theorem

First, this subsection contains some uniqueness theorems. In general, a unique-
ness theorem states that, under certain conditions, two maps φ, ψ : A→ B (ho-
momorphisms or completely positive linear contractions between C∗-algebras
A and B) are approximately unitarily equivalent to each other to within a given
small number ε on a given finite set F ⊂ A, that is, there is a unitary u ∈ B
such that

‖φ(f)− uψ(f)u∗‖ < ε, ∀f ∈ F.
This subsection also contains a factorization theorem, which says that, there
is a homomorphism (in the class of the so called unital simple embeddings)
between matrix algebras over (perhaps higher dimensional) spaces, which must
approximately factor through a sum of matrix algebras over the special spaces
{pt}, [0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2, by means of almost multiplica-
tive maps.
We put these two kinds of results together into one subsection, since the proofs
of them have some similarity. Also, in the proof of the factorization theorem,
we use some uniqueness theorems of this same subsection.
Most of the results are modifications of some results in the literature [EG2],
[D1-2], [G4] and [DG] (see [Phi], [GL], [Lin1-2] and [EGLP] also). One of the
main theorems (Theorem 1.6.9) is a generalization of Theorem 2.29 of [EG2]—
the main uniqueness theorem in the classification of real rank zero AH algebras.
The proof given here is shorter than the proof given in [EG2]. Another main
theorem—Theorem 1.6.26 (see also Corollary 1.6.29) is a refinement of Lemma
2.2 of [D2] (see also Lemma 3.13 and 3.14 of [G4]). Both Theorem 1.6.9 and
Corollary 1.6.29 are important in the proof of our main results in §6.
The following well known result (see [Lo]) will be used frequently.

Lemma 1.6.1. Suppose that A =
⊕t

i=1Mki(C(Xi)), where Xi = {pt}, [0, 1], or
S1. For any finite set F ⊂ A and any number ε > 0, there is a finite set G ⊂ A
and there is a number δ > 0 such that if C is a C∗-algebra and φ ∈ Map(A,C)
is a G-δ multiplicative map, then there is a homomorphism φ′ ∈ Hom(A,C)
satisfying

‖φ(f)− φ′(f)‖ < ε, ∀f ∈ F.
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The following result is essentially contained in [EG2] (see [EG2, 2.11]) and is
stated as Theorem 1.2 of [D1] (see also [G4, 3.2 and 3.8]).

Lemma 1.6.2. ([D1, 1.2]) Let X be a finite simplicial complex. For any
finite subset F ⊂ C(X) and any number ε > 0, there are a positive integer L,
a unital homomorphism τ : C(X) → ML(C(X)), and a unital homomorphism
µ : C(X)→ML+1(C(X)) with finite dimensional image such that

‖diag(f, τ(f))− µ(f)‖ < ε, ∀f ∈ F.

By the argument in 1.2.19, in the above lemma, the algebra C(X) can be
replaced by Mn(C(X)).

Lemma 1.6.3. Let X be a finite simplicial complex and A = Mn(C(X)). For
any finite subset F ⊂ A and any number ε > 0, there are a positive integer
L, a unital homomorphism τ : A → ML(A)(= MnL(C(X))), and a unital
homomorphism µ : A→ML+1(A) with finite dimensional image such that

‖diag(f, τ(f))− µ(f)‖ < ε, ∀f ∈ F.

Remark 1.6.4. In general, a unital homomorphism λ : C(X)→ B with finite
dimensional image is always of the form:

λ(f) =
∑

f(xi)pi, ∀f ∈ F,

where {xi} is a finite subset of X, and {pi} ⊂ B is a set of mutually orthogonal
projections with

∑
pi = 1B . A homomorphism λ : A = Mn(C(X)) → B with

finite dimensional image is of the form

λ(f) =
∑

pi ⊗ f(xi), ∀f ∈Mn(C(X))

for a certain identification of λ(1A)Bλ(1A) ∼= (λ(e11)Bλ(e11))⊗Mn(C| ), where
{pi} is a set of mutually orthogonal projections in λ(e11)Bλ(e11).
The following Lemma is essentially proved in [D1, Lemma 1.4] (see [G4, The-
orem 3.9] also), using the idea from [Phi] and [GL].

Lemma 1.6.5. Let X be a finite simplicial complex and A = Mn(C(X)). For
a finite set F ⊂Mn(C(X)), a positive number ε > 0 and a positive integer N ,
there are a finite set G ⊂ Mn(C(X)), a positive number δ > 0 and a positive
integer L, such that the following is true.
For any unital C∗-algebra B, any N + 1 completely positive G-δ multiplica-
tive linear ∗-contraction φ0, φ1, · · ·φN ∈ MapG−δ(A,B), there are a homo-
morphism λ ∈ Hom(A,ML(B)) with finite dimensional image and a unitary
u ∈ML+1(B) such that

‖diag(φ0(f), λ(f))− udiag(φN (f), λ(f))u∗‖ < ε+ ω, ∀f ∈ F,
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where
ω = max

f∈F
max

0≤j≤N−1
‖φj(f)− φj+1(f)‖.

Proof: If we allow the number L to depend on the maps {φj}, then this is
Lemma 1.4 of [D1]. In fact, in the proof of [D1, Lemma 1.4], the author proves
this stronger version of the lemma. We will not repeat the entire proof in [D1],
instead, we will only repeat the construction of G, δ in [D1] and at the same
time choose the number L.
Apply Lemma 1.6.3 to F ⊂ A, ε4 > 0 to obtain the integer L1, τ : A→ML1

(A)
and µ : A → ML1+1(A) as in Lemma 1.6.3. Then D := µ(A) is a finite
dimensional C∗-subalgebra of ML1+1(A). By Lemma 1.6.1, there are a finite
set F1 ⊂ D(⊂ ML1+1(A)) and a positive number δ1 > 0 such that if C is any
C∗-algebra and ψ ∈ Map(D,C) is any F1-δ1 multiplicative map, then there is
a homomorphism ψ′ ∈ Hom(D,C) such that

‖ψ′(f)− ψ(f)‖ < ε

4
, ∀f ∈ µ(F ) (⊂ D).

From 1.2.19, there exist a finite set G ⊂ A and a positive number δ >
0 such that if φ ∈ Map(A,B) is G-δ multiplicative, then φ ⊗ idL1+1 ∈
Map(ML1+1(A),ML1+1(B)) is F1-δ1 multiplicative.
Let L := N(L1 + 1). The proof of [D1, Lemma 1.4] proves that such G, δ and
L are as desired. (Notice that the size of the homomorphism η on line 9 of
page 122 of [D1] is the number L above.)

ut
In Lemma 1.6.5, if we further assume that F ⊂ A is weakly approximately con-
stant to within ε, then one can replace the homomorphism λ in Lemma 1.6.5 by
an arbitrary homomorphism with finite dimensional image of sufficiently large
size (with ε replaced by 5ε). One can even use two different homomorphisms
(provided that the images of the matrix unit e11 under these two different homo-
morphisms are unitarily equivalent) for φ0 and φN , i.e., instead of diag(φ0, λ)
and diag(φN , λ), one can use diag(φ0, λ1) and diag(φN , λ2) in the estimation.
Namely, we can prove the following result.

Corollary 1.6.6. Let X be a finite simplicial complex and A = Mn(C(X)).
Suppose that ε > 0 and that a finite set F ⊂Mn(C(X)) is weakly approximately
constant to within ε. Suppose that N is a positive integer. Then there are a
finite set G ⊂ Mn(C(X)), a positive number δ > 0, and a positive integer L
such that the following is true.
For any unital C∗-algebra B and projection p ∈ B, any N+1 completely positive
G-δ multiplicative linear ∗-contractions φ0, φ1, · · · , φN ∈MapG−δ(A, pBp), any
λ1, λ2 ∈ Hom(A, (1 − p)B(1 − p)) with finite dimensional images and with
λ1(e11) ∼ λ2(e11) (see 1.1.7(i)) and [λ1(e11)] ≥ L · [p], there is a unitary u ∈ B
such that

‖diag(φ0(f), λ1(f))− udiag(φN (f), λ2(f))u∗‖ < 5ε+ ω, ∀f ∈ F,
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where
ω = max

f∈F
max

0≤j≤N−1
‖φj(f)− φj+1(f)‖.

Proof: Suppose that L and λ : A → ML(pBp) are as in Lemma 1.6.5 for the
G-δ multiplicative maps φ0, φ1, · · ·φN ∈ Map(A, pBp).
From 1.6.4, λ is of the following form

λ(f) =

s∑

i=1

pi ⊗ f(xi), ∀f ∈Mn(C(X))

for a certain identification of λ(1A)Bλ(1A) ∼= (λ(e11)Bλ(e11))⊗Mn(C| ), where
pi, i = 1, 2, · · · , s, are mutually orthogonal projections with

∑s
i=1 pi = λ(e11) ∈

ML(pBp), and {xi} ⊂ X.
Fix a base point x0 ∈ X. Since F is weakly approximately constant to within
ε, for each i, {f(xi)}f∈F is approximately unitarily equivalent to {f(x0)}f∈F
to within ε, one by one by the same unitary. I.e., for each i, there is a unitary
v ∈Mn(C| ) such that ‖vf(xi)v

∗ − f(x0)‖ < ε, for any f ∈ F .
Define newλ by newλ(f) =

∑s
i=1 pi⊗f(x0) = E⊗f(x0), where E := λ(e11) =∑s

i=1 pi. Then newλ is approximately unitarily equivalent to the old λ to
within ε on F . Therefore, with this newλ, we still have

(1) ‖diag(φ0(f), λ(f))− u1diag(φN (f), λ(f))u1‖ < 3ε+ ω, ∀f ∈ F,

for some unitary u1 ∈ML+1(pBp).
Since λ1(e11) ∼ λ2(e11), without loss of generality, we can assume that
λ1|

Mn(C| )
= λ2|

Mn(C| )
, where Mn(C| ) ⊂ Mn(C(X)) (= A). In particular,

λ1(1A) = λ2(1A) and λ1(e11) = λ2(e11). Denote λ1(e11) by E′. Similar to
the case of λ, we can assume that

λ1(f) =

s1∑

i=1

q1
i ⊗ f(x1

i ), ∀f ∈Mn(C(X)),

λ2(f) =

s2∑

i=1

q2
i ⊗ f(x2

i ), ∀f ∈Mn(C(X))

for a certain identification of λ1(1A)Bλ1(1A) ∼= (E′BE′) ⊗ Mn(C| ), where
{q1
i } and {q2

i } are two sets of mutually orthogonal projections with
∑s1
i=1 q

1
i =∑s2

i=1 q
2
i = E′ ∈ (1− p)B(1− p), and {x1

i }, {x2
i } ⊂ X.

Define λ̃ : A→ λ1(1A)Bλ1(1A) by

λ̃(f) = E′ ⊗ f(x0), ∀f ∈ F.

Similar to the argument for λ, both λ1 and λ2 are approximately unitarily
equivalent to λ̃ to within ε on F .
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Since [E] ≤ L · [p] ≤ [E′] (= [λ1(e11)]), there is a sub-projection E1 ≤ E′ which
is unitarily equivalent to E.
Write λ̃ = µ1 ⊕ µ2, where µ1(f) = E1 ⊗ f(x0) and µ2(f) = (E′ −E1)⊗ f(x0).
Then µ1 is unitarily equivalent to λ (strictly speaking, newλ). From (1), we
have

‖diag(φ0(f), µ1(f))− u2diag(φN (f), µ1(f))u∗2‖ < 3ε+ ω, ∀f ∈ F

for a unitary u2 ∈ (p⊕E1⊗1n)B(p⊕E1⊗1n). Notice that E1⊗1n ≤ E′⊗1n =
λ1(1A) ≤ (1− p).
Therefore,

‖diag(φ0(f), λ̃(f))− u3diag(φN (f), λ̃(f))u∗3‖ < 3ε+ ω, ∀f ∈ F,

where u3 := u2 ⊕ ((E′ − E1)⊗ 1n) ∈ (p⊕ (E′ ⊗ 1n))B(p⊕ (E′ ⊗ 1n)).
We already know that both λ1 and λ2 are approximately unitarily equivalent
to λ̃ on F to within ε, so we have

‖diag(φ0(f), λ1(f))− udiag(φN (f), λ2(f))u∗‖ < 5ε+ ω, ∀f ∈ F,

for a unitary u ∈ B.
ut

Lemma 1.6.7. Suppose that A = Mk(C(X)), and F ⊂ A is weakly approxi-
mately constant to within ε. Suppose that A1 is a C∗-algebra, and two homo-
morphisms φ and ψ ∈ Hom(A,A1) are homotopic to each other. There are a
finite set G ⊂ A1, a number δ > 0, and a positive integer L > 0 such that the
following is true.
If B is a unital C∗-algebra, p ∈ B is a projection, λ0 ∈ Map(A1, pBp) is G-δ
multiplicative, λ1 ∈ Hom(A1, (1− p)B(1− p)) is a homomorphism with finite
dimensional image satisfying [(λ1 ◦ φ)(e11)] ≥ L · [p], and λ ∈ Map(A1, B) is
defined by λ = λ0 ⊕ λ1, then there is a unitary u ∈ B such that

‖(λ ◦ φ)(f)− u(λ ◦ ψ)(f)u∗‖ < 6ε, ∀f ∈ F.

Proof: Since φ is homotopic to ψ. There is a continuous path of ho-
momorphisms φt, 0 ≤ t ≤ 1, such that φ0 = φ and φ1 = ψ. Choose
0 = t0 < t1 < · · · tN−1 < tN = 1 such that

‖φtj+1
(f)− φtj (f)‖ < ε, ∀j ∈ {0, 1, · · · , N − 1} and ∀f ∈ F.

Applying Corollary 1.6.6 to ε, F ⊂ A (which is weakly approximately constant
to within ε), and the number N from the above, there are G1 ⊂ A and δ > 0
and L as in the Corollary 1.6.6.
The set G :=

⋃N
j=0 φtj (G1) ⊂ A1, δ > 0 and number L are as desired.
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Suppose that λ0, λ1 are the maps satisfying the conditions described in the
lemma for G, δ, and L as chosen above. Choosing the sequence of G1-δ multi-
plicative maps in Corollary 1.6.6 to be λ0◦φt0(= λ0◦φ), λ0◦φt1 , · · · , λ0◦φtN (=
λ0 ◦ ψ), and the homomorphisms λ1 and λ2 (with finite dimensional images)
to be λ1 = λ1 ◦ φ and λ2 = λ1 ◦ ψ, and using that λ = λ0 ⊕ λ1, we have

‖(λ ◦ φ)(f)− u(λ ◦ ψ)(f)u∗‖ < 5ε+ ω, ∀f ∈ F,

for a certain unitary u ∈ B, where

ω = max
f∈F

max
0≤j≤N−1

‖(λ0 ◦ φtj+1
)(f)− (λ0 ◦ φtj )(f)‖ < ε,

since λ0 is a contraction—norm decreasing map. So the Lemma follows. (Note
that if λ0 is G-δ multiplicative, then λ0 ◦ φtj is G1-δ multiplicative. Also note
that we have the condition that [λ1 ◦ φ(e11)] ≥ L · [p]. Another condition
λ1 ◦ φ(e11) ∼ λ1 ◦ ψ(e11) follows from the condition φ ∼h ψ.)

ut
The author is indebted to Professor G. Elliott for pointing out the proof of the
following result to him.

Lemma 1.6.8. Suppose that C is a unital C∗-algebra, and D ⊂ C is a finite
dimensional C∗-subalgebra. For any finite set F ⊂ C and any positive number
ε > 0, there are a finite set G ⊂ C and a number δ > 0 such that if B
is a unital C∗-algebra, λ ∈ Map(C,B) is G-δ multiplicative, then there is a
λ′ ∈Map(C,B) satisfying the following conditions.
1. λ′|D is a homomorphism.
2. ‖λ′(f)− λ(f)‖ < ε, ∀f ∈ F .

Proof: Without loss of generality, we assume that ‖f‖ ≤ 1 for all f ∈ F .
By Kasparov’s version of Stinespring Dilation Theorem, for the completely
positive linear ∗-contraction λ : C → B, there is a homomorphism φ : C →
M(B⊗K) such that λ(f) = pφ(f)p for all f ∈ F , where K is the algebra of all
compact operators on an infinite dimensional separable Hilbert space, M(B⊗K)
is the multiplier algebra of B ⊗K, and p = 1B ⊗ e11 ∈ B ⊗K ⊂M(B ⊗K).
For the above λ and φ, it is straight forward to check that, for any fixed element
a ∈ C, if ‖λ(a · a∗)− λ(a)λ(a∗)‖ < δ, then ‖pφ(a)(1− p) · (pφ(a)(1− p))∗‖ < δ.
Therefore, if we choose the finite set G to satisfy that G = G∗, then the G-δ-
multiplicativity of the map λ implies the following property of the dilation φ
and the cutting down projection p:

(∗) ‖φ(a)− (pφ(a)p+ (1− p)φ(a)(1− p))‖ < 2
√
δ, ∀a ∈ G,

where 1 is the unit of M(B ⊗K).
By a well known perturbation technique (see [Gli] and [Br]), we have the follow-
ing: If G contains all matrix units eij of each block of D and δ is small enough,
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then the above condition (*) implies that there is a unitary u ∈M(B⊗K) with
‖u− 1‖ < ε

2 , such that

uφ(D)u∗ ⊂ pM(B ⊗K)p⊕ (1− p)M(B ⊗K)(1− p).

(One can obtain the above assertion by applying Lemma III.3.2 of [Da] (or even
stronger result of [Ch]) with φ(D) and pM(B⊗K)p⊕ (1− p)M(B⊗K)(1− p)
in place of U and B in [Da, III.3.2], respectively.)
The map λ′ : C → B, defined by λ′(f) = puφ(f)u∗p, is as desired.

ut
The following result can be considered to be a generalization of Theorem 2.29
of [EG 2].

Theorem 1.6.9. Suppose that A =
⊕s

i=1Mki(C(Xi)) and F ⊂ A is weakly
approximately constant to within ε. Suppose that C is a C∗-algebra, the homo-
morphisms φ and ψ ∈ Hom(A,C) are homotopic to each other. There are a
finite set G ⊂ C, a number δ > 0, and a positive integer L > 0 such that the
following is true.
If B is a unital C∗-algebra, p ∈ B is a projection, λ0 ∈ Map(C, pBp) is G-δ
multiplicative, λ1 ∈ Hom(C, (1 − p)B(1 − p)) is a homomorphism with finite
dimensional image satisfying that for each i ∈ {1, 2, · · · , s}, [(λ1 ◦ φ)(ei11)] ≥
L · [p], where ei11 is the matrix unit (of upper left corner ) of the i-th block,
Mki(C(Xi)), of A, then there is a unitary u ∈ B such that

‖(λ ◦ φ)(f)− u(λ ◦ ψ)(f)u∗‖ < 8ε, ∀f ∈ F,

where λ ∈Map(A1, B) is defined by λ = λ0 ⊕ λ1.

Proof: Let φt be the homotopy between φ and ψ. It is well known that there
is a unitary path ut ∈ C such that

φt(1Ai) = utφ0(1Ai)u
∗
t ,

for all blocks Ai = Mki(C(Xi)). Therefore, without loss of generality, we as-
sume that φ(1Ai) = ψ(1Ai), and that φ|Ai is homotopic to ψ|Ai within the
corner φ(1Ai)Cφ(1Ai).
Apply Lemma 1.6.7 to φ|Ai , ψ|Ai and πi(F ), where πi is the quotient map from
A to Ai, to obtain G1 (⊂ C), δ1 and L as G, δ and L in Lemma 1.6.7. For
convenience, without loss of generality, we assume that ‖g‖ ≤ 1 for all g ∈ G1.
Let Ei = φ(1Ai). Consider the finite dimensional subalgebra
D := C| · E1 ⊕ C| · E2 ⊕ · · · ⊕ C| · Es ⊂ C. Applying Lemma 1.6.8, there
are G ⊂ C with G ⊃ G1 and δ > 0 with δ < δ1

3 such that if λ0 ∈ Map(C, pBp)
is G-δ multiplicative, then there is another map λ′0 ∈ Map(C, pBp) satisfying
the following conditions.
1. The restriction λ′0|D is a homomorphism.
2. ‖λ′0(f)− λ0(f)‖ < min( δ13 , ε), ∀f ∈ G1 ∪ φ(F ) ∪ ψ(F ).
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As a consequence we also have
3. λ′0 is G1-δ1 multiplicative.
The condition 1 above yields that {λ′0(Ei)}si=1 are mutually orthogonal projec-
tions.
Such G, δ and L are as desired.
Suppose that λ0 and λ′0 are as above. Set λ′ = λ′0 ⊕ λ1. From Lemma 1.6.7
and the ways G1, δ1 and L are chosen, there are unitaries ui ∈ λ′(Ei)Bλ′(Ei)
such that

‖(λ′ ◦ φ|Ai)(f)− ui(λ′ ◦ ψ|Ai)(f)u∗i ‖ < 6ε, ∀f ∈ Fi.

Then the unitary u =
⊕

i ui ⊕ (1−∑i λ
′(Ei)) satisfies

‖(λ′ ◦ φ)(f)− u(λ′ ◦ ψ)(f)u∗‖ < 6ε, ∀f ∈ F.

Hence
‖(λ ◦ φ)(f)− u(λ ◦ ψ)(f)u∗‖ < 6ε+ 2ε = 8ε, ∀f ∈ F.

ut

Remark 1.6.10. The version of Theorem 2.29 of [EG2] with A being a direct
sum of full matrix algebras is a direct consequence of the above theorem and
Corollary 2.24 of [EG2] (see [EG2, Theorem 2.21] also). In order to obtain
the general version of Theorem 2.29 of [EG2], one needs to apply the dilation
lemma [EG2, 2.13] and Lemma 1.6.8 above. (The number 8ε should be changed
to 5 · 8ε = 40ε which is still better than 70ε in [EG2].)
The following lemma is a direct consequence of Lemma 1.6.5.

Lemma 1.6.11. Let X be a finite simplicial complex and A = C(X). Let
F ⊂ A be a finite set and ε > 0. There are a finite set G ⊂ A and a number
δ > 0 with the following property.
If B is a unital C∗-algebra, φt : A → B, 0 ≤ t ≤ 1 is a continuous path of
G-δ multiplicative maps (i.e., φt ∈ MapG−δ(A,B)), then there are a positive
integer L, a homomorphism λ : A → ML(B) with finite dimensional image,
and a unitary u ∈ML+1(B) such that

‖(φ0 ⊕ λ)(f)− u(φ1 ⊕ λ)(f)u∗‖ < ε, ∀f ∈ F.

The proof of the following corollary has some similarity to the proof of Corollary
1.6.6. Such method will be used frequently.

Corollary 1.6.12. Let X be a finite simplicial complex and A = C(X). Let
F ⊂ A be a finite set and ε > 0. There are a finite set G ⊂ A and a number
δ > 0 with the following property.
If B is a unital C∗-algebra, p ∈ B is a projection, φt : A→ pBp, 0 ≤ t ≤ 1 is a
continuous path of G-δ multiplicative maps , then there are a positive integer L
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and a number η > 0 such that for any η-dense subset {x1, x2, · · · , x•} ⊂ X, any
set of mutually orthogonal projections {p1, p2, · · · , p•} ⊂ B⊗K with [pi] ≥ L·[p]
and pi⊥p, we have

‖φ0(f)⊕
•∑

i=1

f(xi)pi − u(φ1(f)⊕
•∑

i=1

f(xi)pi)u
∗‖ < ε, ∀f ∈ F,

for a certain unitary u ∈ (p⊕ p1 ⊕ · · · p•)(B ⊗K)(p⊕ p1 ⊕ · · · p•).

Proof: For the finite set F ⊂ A, choose η small enough such that if dist(x, x′) <
η, then ‖f(x) − f(x′)‖ < ε

3 for all f ∈ F . Apply Lemma 1.6.11 to F and ε
3

to obtain G and δ. For the path φt : A → pBp, there exist a positive integer
L, a homomorphism λ : A → ML(pBp), and a unitary u1 ∈ ML+1(pBp) as in
Lemma 1.6.11. That is

‖(φ0 ⊕ λ)(f)− u1(φ1 ⊕ λ)(f)u∗1‖ <
ε

3
, ∀f ∈ F.

From 1.6.4, λ is of the form

λ(f) =

l∑

i=1

f(yi)qi,

where {y1, y2, · · · , yl} ⊂ X, and {q1, q2, · · · , ql} ⊂ML(pBp) is a set of mutually
orthogonal projections.
Since {x1, x2, · · · , x•} is an η-dense subset of X, we can divide the set
{y1, y2, · · · , yl} into a disjoint union of subsets X1∪X2∪· · ·∪X• (some Xi may
be empty) such that dist(y, xi) < η for any y ∈ Xi. Set p′i :=

∑
yj∈Xi qj and

define λ′ : C(X)→ML(pBp) by λ′(f) =
∑•
i=1 f(xi)p

′
i. (Note that for some i,

p′i might be 0.) Then from the way η is chosen, we have

‖λ′(f)− λ(f)‖ < ε

3
, ∀f ∈ F.

Therefore,
‖(φ0 ⊕ λ′)(f)− u1(φ1 ⊕ λ′)(f)u∗1‖ < ε, ∀f ∈ F.

Our corollary follows from the fact [p′i] ≤ L · [p] ≤ pi.
ut

If X does not contain any isolated point, then in the above corollary, we can
change the condition [pi] ≥ L · [p] to a weaker condition [pi] ≥ [p], by choosing η
smaller. (Roughly speaking, this is true because η could be chosen so small that
if {xi} is η-dense, then there are at least L points of xi in the η′-neighborhood
of any point in X for a pre-given small number η′. If X is a space of single
point, then this is not true.) Therefore, the number L does not appear in the
following corollary.

Corollary 1.6.13. Let X be a finite simplicial complex without any single
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point components, A = C(X). Let F ⊂ A be a finite set and ε > 0. There are
a finite set G ⊂ A and a number δ > 0 with the following property.
If B is a unital C∗-algebra, p ∈ B is a projection, φt : A → pBp, 0 ≤ t ≤ 1,
is a continuous path of G-δ multiplicative maps , then there is a number η > 0
such that for any η-dense subset {x1, x2, · · · , x•} ⊂ X, any set of mutually
orthogonal projections {p1, p2, · · · , p•} ⊂ B ⊗ K with [pi] ≥ [p] and pi⊥p, we
have

‖φ0(f)⊕
•∑

i=1

f(xi)pi − u(φ1(f)⊕
•∑

i=1

f(xi)pi)u
∗‖ < ε, ∀f ∈ F

for a certain unitary u ∈ (p⊕ p1 ⊕ · · · p•)(B ⊗K)(p⊕ p1 ⊕ · · · p•).

Proof: Let L and η1 (in place of η) be as in Corollary 1.6.12. Let η2 be the
minimum of the diameters of path connected components ofX, which is positive
since X has no single point component. And let η3 be a positive number such
that if dist(x, x′) < η3, then ‖f(x)− f(x′)‖ < ε.

Define η′ = min(η1, η2, η3). Let η = η′

8L .
Suppose that X ′ = {x1, x2, · · · , x•} is an η-dense finite subset of X. Choose a

η′-dense subset {xk1
, xk2

, · · · , xkl} ⊂ X ′ such that dist(xki , xkj ) ≥ η′

2 if i 6= j.
(Such subset exists. It could be chosen to be a maximum subset of X ′ such

that the distance of any two points in the set is at least η′

2 . Then the η′-density
follows from the maximality.) It is easy to see that there is a partition of X ′

as X ′ = X1 ∪X2 ∪ · · · ∪Xl such that

X ′ ∩B η′
4

(xki) ⊂ Xi ⊂ X ′ ∩Bη′(xki).

Since X ′ is η-dense and η = η′

8L ,

#(Xi) ≥ #(X ′ ∩B η′
4

(xki)) ≥ L.

(Here we also use the fact that the connected component of xki in X has
diameter at least η′. )
Let pj , j = 1, 2, · · · •, be the projections as in the corollary. Define qi =∑
xj∈Xi pj , i = 1, 2, · · · l. Then from [pj ] ≥ [p] and #(Xi) ≥ L, we have,

[qi] ≥ L · [p].
Our corollary (with 3ε in place of ε) follows from an application of Corollary
1.6.12 to {xki}li=1 and {qi}li=1, and the estimation

‖
•∑

i=1

f(xi)pi −
l∑

i=1

f(xki)qi‖ < ε, ∀f ∈ F.

(The above estimation is a consequence of the way η3 is chosen and the fact
that Xi ⊂ Bη′(xki) with η′ < η3.)

ut
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The following lemma is proved by applying Lemma 1.6.8.

Lemma 1.6.14. Let A =
⊕
Ak =

⊕l
k=1Ms(k)(C(Xk)), where Xk are con-

nected simplicial complexes and {s(k)} are positive integers. For any finite
set G′ ⊂ A, any number δ′ > 0, any finite sets Gk1 ⊂ C(Xk) and any numbers
δk1 > 0, k = 1, 2, · · · l, there are a finite set G ⊂ A and a number δ > 0 such that
if φ ∈ Map(A,B) is G-δ multiplicative, then there is a map φ′ ∈ Map(A,B)
satisfying the following conditions.
(1) φ′ is G′-δ′ multiplicative;
(2) ‖φ′(g)− φ(g)‖ < δ′ for all g ∈ G;
(3) {φ′(1Ak)}lk=1 are mutually orthogonal projections in B and φ′(ek11) ∈ B
are subprojections of φ′(1Ak) ∈ B. And if each φk1 ∈ Map(C(Xk), B) is
the restriction of φ′ on ek11Ms(k)(C(Xk))ek11

∼= C(Xk), then one can identify

φ′(1Ak)Bφ′(1Ak) with φ′(ek11)Bφ′(ek11)⊗Ms(k) such that

φ′ =
l⊕

k=1

φk1 ⊗ ids(k).

Furthermore, φk1 is Gk1-δk1 Multiplicative.

Proof: The part of Gk1-δk1 multiplicativity of φk1 follows from the G′-δ′ mul-
tiplicativity of φ′ if we enlarge the set G′ and reduce the number δ′ so that
G′ ⊃ {g · ek11 | g ∈ Gk1} and δ′ < δk1 . Also we can assume that G′ contains
{ekij}—the set of all matrix units.
By Lemma 1.6.8, without loss of generality, we assume that the restriction
φ|⊕l

k=1
Ms(k)(C| )

is a homomorphism.

Let φk1 = φ|ek11Ae
k
11
∈ Map(C(Xk), φ(ek11)Bφ(ek11)). Then φ′ :=

⊕l
k=1 φ

k
1⊗ids(k)

is defined by

φ′(f) =
∑

i,j

φ(eki1)φ(fij · ek11)φ(ek1j),

where f = (fij)s(k)×s(k) ∈ Ak.

Note that for the above f ∈ Ak, one can write f =
∑
i,j e

k
i1 · (fij · ek11) ·

ek1j . Obviously, if we choose G to be the set of all the elements which can be
expressed as products of at most ten elements from the set G′, and if we choose
δ small enough, then (1) and (2) will hold for φ′. (Notice that G′ contains all
the matrix units.)

ut
The following result follows from Lemma 1.6.14 and Corollary 1.6.12 (see also
1.2.19).

Corollary 1.6.15. Let A =
⊕l

k=1Ms(k)(C(Xk)), where Xk are connected
finite simplicial complexes and s(k) are positive integers. Let F ⊂ A be a finite
set and ε > 0. There are a finite set G ⊂ A and a number δ > 0 with the
following property.
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If B is a unital C∗-algebra, p ∈ B is a projection, φt : A→ pBp, 0 ≤ t ≤ 1 is
a continuous path of G-δ multiplicative maps , then there are a positive integer
L, and η > 0 such that for a homomorphism λ : A → B ⊗ K (with finite
dimensional image), there is a unitary u ∈ B satisfying:

‖φ0(f)⊕ λ(f)− u(φ1(f)⊕ λ(f))u∗‖ < ε, ∀f ∈ F,

provided that λ is of the following form: there are an η-dense subset
{x1, x2, · · · , x•} ⊂

∐l
k=1Xk (= SP(A)), and a set of mutually orthogonal

projections {p1, p2, · · · , p•} ⊂ λ(
⊕

k e
k
11)(B ⊗ K)λ(

⊕
k e

k
11) with [pi] ≥ L · [p],

such that

λ(f) =

•∑

i=1

pi ⊗ f(xi), ∀f ∈ A

under the identification λ(1Ak)Bλ(1Ak) ∼= (λ(ek11)Bλ(ek11))⊗Ms(k)(C| ).

Proof: One can apply Lemma 1.6.14 to φt ∈ Map(A, pBp[0, 1]) to reduce the
problem to the case of A = C(Xk) which is Corollary 1.6.12. (Here pBp[0, 1]
is defined to be the C∗-algebra of continuous pBp valued functions on [0, 1].)

ut
For convenience, we introduce the following definitions.

Definition 1.6.16. A homomorphism φ : A =
⊕n

i=1Mki(C(Xi)) → B =⊕n′

j=1Mlj (C(Yj)) is called m-large if for each partial map φij : Ai =

Mki(C(Xi))→ Bj = Mlj (C(Yj)) of φ,

rank(φij(1Ai) ≥ m · rank(1Ai)(= m · ki).

Definition 1.6.17. Let X be a connected finite simplicial complex, A =
Mk(C(X)). A unital *-monomorphism φ : A → Ml(A) is called a (unital)
simple embedding if it is homotopic to the homomorphism id ⊕ λ, where
λ : A→Ml−1(A) is defined by

λ(f) = diag(f(x0), f(x0), · · · , f(x0)︸ ︷︷ ︸
l−1

),

for a fixed base point x0 ∈ X.
Let A =

⊕n
i=1Mki(C(Xi)), where Xi are connected finite simplicial complexes.

A unital *-monomorphism φ : A → Ml(A) is called a (unital) simple embed-
ding, if φ is of the form φ = ⊕φi defined by

φ(f1, f2, · · · , fn) = (φ1(f1), φ2(f2), · · · , φn(fn)),

where the homomorphisms φi : Ai(= Mki(C(Xi)))→Ml(A
i) are unital simple

embeddings.
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1.6.18. For each connected finite simplicial complex X, there is a three di-
mensional connected simplicial complex Y = Y1 ∨ Y2 ∨ · · · ∨ Y• such that
K∗(X) = K∗(Y ), where Yi are the following special spaces: [0, 1], S1,
{TII,k}∞k=2, {TIII,k}∞k=2 and S2.

The space [0, 1] could be avoided in the construction of Y . But we would like to
use the space [0, 1] for the following special case: If K0(X) = ZZ and K1(X) = 0
(e.g., X is contractible) and X is not the space of a single point, then we choose
Y = [0, 1]. When X is the space of a single point, choose Y = {pt}.
The following result is Lemma 2.1 of [D2] (see Lemma 3.13 and Lemma 3.14
of [G4] also).

Lemma 1.6.19. ([D2, 2.1]) Let B1 =
⊕s

j=1Mk(j)(C(Yj)), where Yj are the

following spaces: {pt}, [0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2. Let X be a
connected finite simplicial complex, let Y be the three dimensional space defined
in 1.6.18 with K∗(X) = K∗(Y ), and let A = MN (C(X)).

Let α1 : B1 → A be a homomorphism. For any finite sets G ⊂ B1 and F ⊂ A,
and any number δ > 0, there exists a diagram

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2 ,

where

A′ = ML(A), B2 = MS(C(Y ));

ψ is a homomorphism, α2 is a unital homomorphism, and φ is a unital simple
embedding (see 1.6.17);

β ∈ Map(A,B2) is F -δ multiplicative.

Moreover there exist homotopies Ψ ∈ Map(B1, B2[0, 1]) and Φ ∈
Map(A,A′[0, 1]) such that Ψ is G-δ multiplicative, Φ is F -δ multiplicative, and

Ψ|1 = ψ, Ψ|0 = β ◦ α1, Φ|0 = α2 ◦ β and Φ|1 = φ.

(In the application of this lemma, it is important to require that φ is a unital
simple embedding. This requirement means that φ defines the same element in
kk(X,X) (connective KK theory) as the identity map id : A → A. Roughly
speaking, this lemma (and Theorem 6.26 below) means that an “identity map”
could factor through matrix algebras over Y — a special space of dimension
three.)

Proof: If one assumes that α1 : B1 → A is m-large (see 1.6.16) for a number
m > 4 dim(X), then this lemma becomes Lemma 2.1 of [D2]. We make use of
this special case to prove the general case as below.
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Define a unital simple embedding λ : A→Mm(A) (m > 4 dim(Y )) by

λ(f) = diag(f, f(x0), f(x0), · · · , f(x0)︸ ︷︷ ︸
m−1

).

Then α′1 = λ ◦ α1 is m-large. Apply Lemma 2.1 of [D2]— the special case of
the lemma to α′1, λ(F ) ⊂Mm(A) and G ⊂ B1 to obtain the following diagram

Mm(A)
φ′−→ A′xα′1 ↘β′

xα′2
B1

ψ′−→ B2

with homotopy paths Ψ′ and Φ′ with properties described in the lemma for the
homomorphism α′1, finite sets λ(F ) ⊂Mm(A) and G ⊂ B1.
Define β = β′ ◦ λ, φ = φ′ ◦ λ, α2 = α′2, ψ = ψ′, Ψ = Ψ′ and Φ = Φ′ ◦ λ. Then
we have the desired diagram with the desired properties.

ut

Remark 1.6.20. From the construction of φ and α2 in the proof of [D2,
Lemma 2.1], we know that φ and α2 take trivial projections to trivial projec-
tions. But ψ may not take trivial projections to trivial projections unless α1

does.

1.6.21. Let X and Y be path connected finite simplicial complexes, and
C = Mk(C(Y )), D = Ml(C(X)). Let x0 ∈ X and y0 ∈ Y be fixed base points.
Then from Lemma 3.14 of [EG2], we have the following: any homomorphism
φ ∈ Hom(C,D) is homotopy equivalent to a homomorphism φ′ ∈ Hom(C,D)
(within Hom(C,D)) such that φ′(C0) ⊂ D0, where C0, D0, are the ideals of C
and D, respectively, which consist of matrix valued functions vanishing on the
base points (see 1.1.7(h)). In other words, there is a unitary U ∈ Ml(C| ) such
that

φ′(f)(x0) = U




f(y0)

. . .

f(y0)

0

. . .

0




U∗ ∈Ml(C| ) ∀f ∈ C.

Notice that if a homomorphism α2 is as desired in Lemma 1.6.19, then any
homomorphism, which is homotopic to α2, is also as desired. Therefore, in
Lemma 1.6.19, we can require that the homomorphism α2 : B2(= MS(C(Y ))→
A′(= ML(C(X))) is of the above form for certain base points y0 ∈ Y and
x0 ∈ X.
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In the following, let us explain why we can also choose the homomorphism α2

to be injective.
If X is the space of a single point, then Y is also the space of a single point by
our choice. And therefore, α2 is injective, since B2 is simple.
If the connected simplicial complex X is not a single point (i.e., dim(X) ≥ 1),
then it can be proved that there is a continuous surjective map g : X → Y ,
using the standard idea of Peano curve. In fact, one can assume that the map
g is homotopy trivial—one can make it factor through an interval.
On the other hand, by Theorem 6.4.4 of [DN], if L ≥ 3S(dim(X) + 1), then
for the unital homomorphism α2 : MS(C(Y )) → ML(C(X)), there is a homo-
morphism α′ : MS(C(Y )) → ML−S(C(X)) such that α2 is homotopic to the
homomorphism defined by

f 7→ diag(α′(f), f(y0)),

Then α2 is homotopic to diag(α′, g∗) defined by

f 7→ diag(α′(f), f ◦ g),

since g is homotopy trivial. So we can replace α2 by diag(α′, g∗) which is
injective, since g is surjective.
Similarly, if SP(B2) = Y is not a single point space (i.e., X is not the space
of a single point), then the homomorphism ψ : B1 → B2 could be chosen to
be injective with in the same homotopy class of Hom(B1, B2), provided that
α1(1Bi1) 6= 0, for each block Bi1 of B1 (later on, we will always assume α1

satisfies this condition, since otherwise this block can be deleted from B1).

Lemma 1.6.22. Let B = Mk(C(Y )), A = Ml(C(X)). Suppose that a uni-
tal homomorphism α : B → A satisfies α(B0) ⊂ A0, and takes any trivial
projections of B to trivial projections of A, where B0 = Mk(C0(Y )) := {f ∈
Mk(C(Y )) | f(y0) = 0}, and A0 = Ml(C0(X)) := {f ∈ Ml(C(X)) | f(x0) =
0}, for some fixed base points y0 ∈ Y and x0 ∈ X. Let β0 : B → Mn(B) and
β1 : A→Mn(A) be unital homomorphisms defined by

β0(f)(y) = diag(f(y), f(y0), · · · , f(y0)), ∀f ∈ B,

and
β1(f)(x) = diag(f(x), f(x0), · · · , f(x0)), ∀f ∈ A.

Then the following diagram commutes up to unitary equivalence.

A
β1−→ Mn(A)

α

x
xα⊗idn

B
β0−→ Mn(B).

I.e., there is a unitary u ∈Mn(A) such that

β1 ◦ α = Adu ◦ (α⊗ idn) ◦ β0.
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Proof: β1 ◦ α is defined by:

f 7→ α(f) 7→ diag(α(f), α(f)(x0), · · · , α(f)(x0)),

and (α⊗ idn) ◦ β0 is defined by:

f 7→ diag(f, f(y0), · · · , f(y0)) 7→ diag(α(f), α(f(y0)), · · · , α(f(y0))),

where α(f(y0)) denotes the result of α acting on the constant function g =
f(y0).
On the other hand, from α(B0) ⊂ A0, we get

α(f)(x0) ∼u diag(f(y0), · · · , f(y0)︸ ︷︷ ︸
l
k

),

and from the fact that α takes trivial projections to trivial projections, we get

diag(f(y0), · · · , f(y0)︸ ︷︷ ︸
l
k

) ∼u α(f(y0)),

where the symbol ∼u means to be unitarily equivalent.
ut

The following result is from [EG2] (see 5.10, 5.11 of [EG2]).

Lemma 1.6.23. Let Y = Y1∨Y2∨· · ·∨Ym. If n is large enough, then any unital
homomorphism β : Mk(C(Y ))→Mnk(C(Y )) is homotopic to a homomorphism
β′ : Mk(C(Y )) → Mnk(C(Y )), which factors through

⊕m
i=1Mki(C(Yi)), for

certain integers {ki}, as

β′ : Mk(C(Y ))
β1−→

m⊕

i=1

Mki(C(Yi))
β2−→Mnk(C(Y )).

Furthermore, β1 and β2 above can be chosen to be injective.

Proof: If k = 1, then the lemma is Lemma 5.11 of [EG2]. (Notice that, we
choose both spaces X and Y in Lemma 5.11 of [EG2] to be the above space
Y . In addition, the spaces Xi in Lemma 5.11 of [EG2] could be chosen to be
spaces Yi in our case, according to 5.10 of [EG2].)
For the general case, one writes β as b ⊗ idk, where b = β|e11Mk(C(Y ))e11

:
C(Y )→ β(e11)Mnk(C(Y ))β(e11), then apply Lemma 5.11 of [EG2] to b.
Furthermore, one can make β1 and β2 injective in the same way as in the end
of 1.6.21. (Or one observes that the maps β1 and β2 constructed in Lemma
5.11 of [EG2] are already injective for our case.)

ut
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Combining Lemmas 1.6.19, 1.6.21, 1.6.22 and 1.6.23, we have the following
Lemma:

Lemma 1.6.24. Let B1 =
⊕s

j=1Mk(j)(C(Yj)), where Yj are spaces: {pt},
[0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2. Let X be a connected finite simpli-
cial complex and let A = MN (C(X)).
Let α1 : B1 → A be a homomorphism with α1(1Bi1) 6= 0 for each block Bi1 of
B1. For any finite sets G ⊂ B1 and F ⊂ A, and any number δ > 0, there exists
a diagram

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2 ,

where
A′ = ML(A), and B2 is a direct sum of matrix algebras over the spaces: {pt},
[0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2;
ψ is a homomorphism, α2 is a unital injective homomorphism, and φ is a unital
simple embedding (see 1.6.17).
β ∈ Map(A,B2) is F -δ multiplicative.
Moreover, there exist homotopies Ψ ∈ Map(B1, B2[0, 1]) and Φ ∈
Map(A,A′[0, 1]) such that Ψ is G-δ multiplicative, Φ is F -δ multiplicative, and

Ψ|1 = ψ, Ψ|0 = β ◦ α1, Φ|0 = α2 ◦ β and Φ|1 = φ.

Furthermore, if X is not the space of a single point, then at least one of the
blocks of B2 has spectrum different from the space of single point and ψ can be
chosen to be injective.

Proof: Let

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2 ,

be the diagram described in Lemma 1.6.19 with homotopies Φ and Ψ. Let n
be the integer obtained by applying Lemma 1.6.23 to B2 = Mk(C(Y )). Then
apply 1.6.22 to α2 : B2 → A′ to obtain a diagram

A′
β1−→ Mn(A′)

α2

x
xα2⊗idn

B2
β0−→ Mn(B2).

which commutes up to homotopy. (Here we have the condition that α2 takes
trivial projections to trivial projections from Remark 1.6.20. Also, α2 is homo-
topic to a homomorphism which takes B0 to A′0.)
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Furthermore, from Lemma 1.6.23, β0 is homotopic to a homomorphism β′0
factoring through a C∗-algebra newB2 which is a direct sum of matrix algebras
over spaces {pt}, [0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2. Now it is routine
to finish the construction of the diagram. We omit the details.

ut

1.6.25. Our next task is to add a homomorphism λ : A → Mn(B2) into the
diagram in Lemma 1.6.24 to obtain diagrams,

Axα1 ↘β⊕λ

B1
ψ⊕(λ◦α1)−→ Mn+1(B2)

and

A
φ⊕((α2⊗idn)◦λ)−→ Mn+1(A′)

↘β⊕λ
xα2⊗idn+1

Mn+1(B2)

which are almost commutative up to unitary equivalence, using Corollary
1.6.15.
To do so, we make the following assumption.
Assumption: α1 : B1 → A is injective.
Let G1 ⊂ B1 and F1 ⊂ A be any finite sets, and ε > 0. We will make the above
diagrams approximately commute on G1 and F1, respectively, to within ε, up
to unitary equivalence.
Apply Corollary 1.6.15 to G1 ⊂ B1 (in place of F ⊂ A) and ε > 0, to obtain
G ⊂ B1 and δ1 (in place of the set G and the number δ, respectively in Corollary
1.6.15). Similarly, apply Corollary 1.6.15 to F1 ⊂ A (in place of F ⊂ A) and
ε > 0 to obtain F ⊂ A and δ2 (in place of the set G and the number δ in
Corollary 1.6.15).
Let δ = min(δ1, δ2).
Suppose that the diagram

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2

is the one constructed in Lemma 1.6.24 with homotopy path Ψ ∈
Map(B1, B2[0, 1]) between β ◦ α1 and ψ, and homotopy path Φ ∈
Map(A,A′[0, 1]) between α2 ◦ β and φ, corresponding to the sets G ⊂ B1,
F ⊂ A and the number δ > 0.
Regarding the homotopy path Ψ as the homotopy path φt in Corollary 1.6.15,
we can obtain η1, L1 as the numbers η and L in Corollary 1.6,15. Similarly,
replacing the above Ψ by Φ, we obtain η2, L2.
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Notice that the injectivity of α1 implies that, for each block Bj1 of B1, SP(αj1) =

Yj(= SP(Bj1)). Therefore there is an η2-dense subset {x1, x2, · · ·xm} of X such

that
⋃m
i=1 SPαj1|xi is η1-dense in Yj for each j ∈ {1, 2, · · · , s}.

Define λ1 : A(= MN (C(X)))→MmN (B2) by

λ1(f) = diag(1B2
⊗ f(x1),1B2

⊗ f(x2), · · · ,1B2
⊗ f(xm)).

Then λ1 ◦ α1 : B1 → MmN (B2) is a homomorphism defined by the point
evaluations on the η1-dense subset

⋃s
j=1

⋃m
i=1 SPαj1|xi ⊂ SPB1. Also (α2 ⊗

idmN ) ◦ λ1 : A → MmN (A′) is defined by point evaluations on the η2-dense
subset {xj}mj=1 ⊂ X.
Let L = max(L1, L2) and n = mNL. Define λ : A → Mn(B2) =
ML(MmN (B2)) by λ = diag(λ1, λ1, · · · , λ1︸ ︷︷ ︸

L

).

Then, obviously, λ◦α1 : B1 →Mn(B2) satisfies the condition for λ in Corollary
1.6.15, for the homotopy Ψ, positive integer L1, and η1 > 0. And so does
(α2 ⊗ idn) ◦ λ : A→Mn(A′) for Φ, L2 and η2.
Therefore, there are unitaries u1 ∈Mn+1(B2) and u2 ∈Mn+1(A′) such that

‖((β ⊕ λ) ◦ α1)(f)− u1(ψ ⊕ (λ ◦ α1))(f)u∗1‖ < ε, ∀f ∈ G1,

‖(φ⊕ ((α2 ⊗ idn) ◦ λ))(f)− u2((α2 ⊗ idn+1) ◦ (β ⊕ λ))(f)u∗2‖ < ε, ∀f ∈ F1.

In the diagram in Lemma 1.6.24, if we replace B2 by Mn+1(B2), A′ by
Mn+1(A′), ψ by Adu1 ◦ (ψ⊕ (λ ◦ α1)), β by β ⊕ λ, α2 by Adu2 ◦ (α2 ⊗ idn+1),
and finally φ by φ⊕ ((α2 ⊗ idn) ◦ λ), then we have the diagram

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2

for which, the lower left triangle is approximately commutative on G1 to within
ε and the upper right triangle is approximately commutative on F1 to within
ε. Since G1 and F1 are arbitrary finite subsets, we proved the following main
factorization result.

Theorem 1.6.26. Let B1 =
⊕s

j=1Mk(j)(C(Yj)), where Yj are spaces: {pt},
[0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2. Let X be a connected finite simpli-
cial complex and let A = MN (C(X)).
Let α1 : B1 → A be an injective homomorphism. For any finite sets G ⊂ B1

and F ⊂ A, and for any numbers ε > 0 and δ > 0 there exists a diagram

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2 ,
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where

A′ = ML(A), and B2 is a direct sum of matrix algebras over the spaces: {pt},
[0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2;

ψ is an injective homomorphism, α2 is a unital injective homomorphism, and
φ is a unital simple embedding (see 1.6.17).

β ∈ Map(A,B2) is F -δ multiplicative.

Moreover

‖ψ(f)− (β ◦ α1)(f)‖ < ε, ∀f ∈ G;

‖φ(f)− (α2 ◦ β)(f)‖ < ε, ∀f ∈ F.

Corollary 1.6.27. Theorem 1.6.26 still holds if one replaces the injectivity
condition of α1 by the following condition:

For each block Bj1 of B1, either αj1 is injective or αj1(Bj1) is a finite dimensional
subalgebra of A.

(Of course, one still needs to assume that α1(1Bj1
) 6= 0 for each block Bj1 of

B1 and that at least one block of B2 has spectrum different from the space of
single point (equivalently, X 6= {pt}) , if he wants the homomorphism ψ to be
injective.

If one does not assume the above condition, he could still get the following
dichotomy condition for ψ: For each block Bj

1 of B1 and Bk2 of B2, either ψj,k

is injective or ψj,k has a finite dimensional image.)

Proof: Write B1 = B′ ⊕B′′ such that α1 is injective on B′ and α1(B′′) ⊂ A is
of finite dimension.

Consider the finite dimensional algebra

D :=
⊕

Bi1⊂B′
(α1(1Bi1) · C| )

⊕
α1(B′′) ⊂ A.

By Lemma 1.6.8, if β : A → B2 is sufficiently multiplicative, then β is close
to such a map β′ that the restriction β′|D is a homomorphism. β′ can be
connected to the original β by a linear path. If the original map β is sufficiently
multiplicative, then the connecting path, regarded as a map from A to B2[0, 1],
is F -δ multiplicative for any pre-given finite set F ⊂ A and number δ > 0.
Therefore, with out loss of generality, we assume that β|D is a homomorphism
for the original map β in 1.6.24.

By Lemma 1.6.8 again, if Ψ : B1 → B2[0, 1] is sufficiently multiplicative,
then Ψ is close to a map Ψ′ such that Ψ′|r(B1) is a homomorphism, where
r(B1) is defined in 1.1.7(h). Note that Ψ|1 = ψ is a homomorphism and
(Ψ|0)|r(B1) = β|D ◦ (α1|r(B1)) is also a homomorphism. From the proof of
Lemma 1.6.8, we can see that the above Ψ′ can be chosen such that Ψ′|1 = Ψ|1
and Ψ′|0 = Ψ|0. Therefore, without loss of generality, we can assume that the
homotopy path Ψ in Lemma 1.6.24 satisfies that Ψ|r(B1) is a homomorphism.
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Up to a unitary equivalence, we can further assume that Ψt(1Bi1) = Ψt′(1Bi1)

for any t, t′ ∈ [0, 1] and any block Bi1 of B1.

One can repeat the procedure in 1.6.25 to construct the homomorphism
λ : A → Mn(A), defined by point evaluations on an η2-dense subset
{x1, x2, · · · , xm} ⊂ X, to satisfy the condition that λ ◦ αj1 is defined by point

evaluations on an η1-dense subset
⋃m
i=1 SPαj1|xi ⊂ SPBj1 of sufficiently large

size, for each block Bj1 of the part B′. As in 1.6.25, we can define newβ to
be β ⊕ λ. At the same time, φ and α2 can also be defined as in 1.6.25. To
define ψ, we need to consider two cases. For the blocks Bj

1 in B′, ψ can be

defined as in 1.6.25, since λ ◦αj1 is defined by point evaluations on an η1-dense

subset (of sufficiently large size). For the blocks Bj
1 ⊂ B′′, we define ψ to be

(β ⊕ λ) ◦ αj1 = (newβ) ◦ αj1. (Note that β|α1(B′′) is a homomorphism.)

ut

Remark 1.6.28. Once the diagram in Theorem 1.6.26 (or Corollary 1.6.27)
exists for A′ = ML(A), then for any L′ > L, one can construct a diagram with
the same property as in the theorem or the corollary with A′ = ML′(A). This
is easily seen from the following.

Let r(A) = MN (C| ) and r : A → r(A) be as in 1.1.7(h). Let newB2 =
oldB2 ⊕ r(A), newβ = oldβ ⊕ r, newφ = diag(oldφ, i ◦ r, · · · , i ◦ r︸ ︷︷ ︸

L′−L

), newψ =

oldψ ⊕ (r ◦ α1), and newα2 = oldα2 ⊕ diag(i, · · · , i︸ ︷︷ ︸
L′−L

), where i : r(A) → A ⊂

ML′−L(A) ⊂ML′(A) is the inclusion (note that r(A) is a subalgebra of A as in
1.1.7(h)), and oldB2, oldβ, oldφ and oldα2 are B2, β, φ and α2, respectively,
from Lemma 1.6.26 or Corollary 1.6.27.

Corollary 1.6.29. Let B1 =
⊕s

j=1Mk(j)(C(Yj)), where Yj are spaces: {pt},
[0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2. Let A =

⊕t
j=1Ml(j)(C(Xj)),

where Xj are connected finite simplicial complex.

Let α1 : B1 → A be a homomorphism satisfying the following condition:

For each pair of blocks Bi1 of B1 and Aj of A, either the partial map αi,j1 is

injective or αi,j1 (Bi1) is a finite dimensional subalgebra of Aj.

For any finite sets G ⊂ B1 and F ⊂ A, and for any numbers ε > 0 and δ > 0,
there exists a diagram

A
φ−→ A′xα1 ↘β

xα2

B1
ψ−→ B2

where

A′ = ML(A), and B2 is a direct sum of matrix algebras over the spaces: {pt},
[0, 1], S1, {TII,k}∞k=2, {TIII,k}∞k=2, and S2;
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ψ is a homomorphism, α2 is a unital injective homomorphism, and φ is a unital
simple embedding (see 1.6.17).
β ∈ Map(A,B2) is F -δ multiplicative.
Moreover,

‖ψ(f)− (β ◦ α1)(f)‖ < ε, ∀f ∈ G;

‖φ(f)− (α2 ◦ β)(f)‖ < ε, ∀f ∈ F.
If we further assume that α1 satisfies the condition that αi,j1 (1Bi1) 6= 0 ∈ Aj for

any partial map αi,j1 : Bi1 → Aj of α1, then either the homomorphism ψ could
be chosen to be injective, or the spectra of all blocks of B2 could be chosen to
be the spaces of a single point.

Proof: We can construct the diagram for each block Aj of A, then put them
together in the obvious way. Using Remark 1.6.28, we can assume for each
block Aj , A′j = ML(Aj) for the same L.

ut
The following is Lemma 4.6 of [G4] (see Lemma 1.2 of [D2]).

Lemma 1.6.30. Let A =
⊕t

i=1Ml(i)(C(Xi)), where Xi are connected finite
simplicial complexes. Let A′ = ML(A). Let the algebra r(A) and the homo-
morphism r : A→ r(A) be as in 1.1.7(h). Let B be a direct sum of matrix al-
gebras over finite simplicial complexes of dimension at most m. Let φ : A→ A′

be a unital simple embedding (see Definition 1.6.17). For any (not necessarily
unital) (m · L)-large homomorphism φ′ : A → B, there is a homomorphism
λ : A′ ⊕ r(A)→ B such that φ′ is homotopic to λ ◦ (φ⊕ r).
Furthermore, λ could be chosen to satisfy the condition that for any block Bj

with SP(Bj) 6= {pt}, the partial map λ·,j : A′ ⊕ r(A)→ Bj of λ is injective as
remarked in 1.6.21.
(This lemma will be applied in conjunction with Lemma 1.6.26 or Corollary
1.6.29. From here, one can see the importance of the requirement that φ is a
unital simple embedding.)

Remark 1.6.31. In order to apply Lemma 1.6.30 later, we would like to do
one more modification for Corollary 1.6.29. Let r : A→ r(A) be as in 1.1.7(h).
Then the diagram in Corollary 1.6.29 could be modified to the following dia-
gram

A
φ⊕r−→ A′ ⊕ r(A)xα1 ↘β⊕r

xα2⊕id

B1
ψ⊕(r◦α1)−→ B2 ⊕ r(A)

which satisfies that β ⊕ r is F -δ multiplicative and

‖(ψ ⊕ (r ◦ α1))(f)− ((β ⊕ r) ◦ α1)(f)‖ < ε, ∀f ∈ G;

‖(φ⊕ r)(f)− ((α2 ⊕ id) ◦ (β ⊕ r))(f)‖ < ε, ∀f ∈ F.
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In the application of 1.6.29 and 1.6.30 in the proof of our main reduction
theorem, we will still denote B2 ⊕ r(A) by B2, β ⊕ r by β, ψ ⊕ (r ◦ α1) by ψ,
and α2 ⊕ id by α2. So the diagram is

A
φ⊕r−→ A′ ⊕ r(A)xα1 ↘β

xα2

B1
ψ−→ B2 .

2 Spectral Multiplicity

In this section, we will show how to perturb a homomorphism φ : C(X) →
PMk(C(Y ))P in such a way that the resulting homomorphism does not have
large spectral multiplicities (see 1.2.4). Namely, the following result will be
proved.

Theorem 2.1. Let X and Y be connected simplicial complexes with X 6= {pt}.
Set dim(X) + dim(Y ) = l. For any given finite set G ⊂ C(X), any ε > 0, and
any unital homomorphism φ : C(X) → PM•(C(Y ))P , where P ∈ M•(C(Y ))
is a projection, there is a unital homomorphism φ′ : C(X) → PM•(C(Y ))P
such that
(1) ‖φ(g)− φ′(g)‖ < ε for all g ∈ G, and
(2) φ′ has maximum spectral multiplicity at most l.

2.2. Let k be a positive integer. Let Hom(C(X),Mk(C| ))1 = F kX. The space
F kX is compact and metrizable. We can endow the space F kX with a fixed
metric d as below.
Choose a finite set {fi}ni=1 ⊂ C(X) which generates C(X) as a C∗-algebra (e.g.
one can embed X into IRn, then choose {fi} to be the coordinate functions).
For any φ, ψ ∈ F kX which, by definition, are unital homomorphisms from
C(X) to Mk(C| ), define

d(φ, ψ) =

n∑

i=1

‖φ(fi)− ψ(fi)‖.

Without loss of generality, we can assume that the above finite set {fi}ni=1 ⊂ G.
On the other hand, F kX is a finite simplicial complex (see [DN], [Se] and [Bl1]).

2.3. Let k = rank(P ), where P is the projection in Theorem 2.1.
For any fixed y, there is a unitary uy ∈M•(C| ) such that P (y) = uydiag(1k, 0)u∗y
(as in 1.2.1). Using this unitary, one can identify P (y)M•(C| )P (y) with Mk(C| )
by sending a ∈ P (y)M•(C| )P (y) to the element in Mk(C| ) corresponding to
the upper left corner of u∗yauy. (Notice that for any a ∈ P (y)M•(C| )P (y), the
matrix

u∗yauy = u∗yP (y)aP (y)uy = u∗yP (y)uyu
∗
yauyu

∗
yP (y)uy
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= diag(1k, 0)u∗yauydiag(1k, 0)

has the form (
(∗)k×k 0

0 0

)
.)

In this way, for any y ∈ Y , the space Hom(C(X), P (y)M•(C| )P (y))1 can be
identified with F kX.
Consider the disjoint union

⋃

y∈Y
Hom(C(X), P (y)M•(C| )P (y))1

as a subspace of Hom(C(X),M•(C| ))×Y with the induced topology. Using the
above identification we can define a locally trivial fibre bundle

⋃

y∈Y
Hom(C(X), P (y)M•(C| )P (y))1

↓ π
Y

with fibre F kX, as shown below, where π is the natural map sending any
element in the set Hom(C(X), P (y)M•(C| )P (y))1 to the point y.

For simplicity, write EP :=
⋃

y∈Y
Hom(C(X), P (y)M•(C| )P (y))1.

For any point y0 ∈ Y , there are an open set U 3 y, and a continuous unitary
valued function u : U → M•(C| ) such that P (y) = u(y)diag(1k, 0)u∗(y). (See
1.2.1.) Let R : M•(C| ) → Mk(C| ) be the map taking any element in M•(C| ) to
the k×k upper left corner of the element. Let the trivialization tU : π−1(U)→
U × F kX be defined as follows. For any φ ∈ Hom(C(X), P (y)M•(C| )P (y))1 ⊂
π−1(U), where y ∈ U , define tu(φ) = (y, ψ), where ψ ∈ F kX is defined by

ψ(f) = R(u∗(y)φ(f)u(y)) for any f ∈ C(X).

(Again, u∗(y)φ(f)u(y) is of the form

(
(∗)k×k 0

0 0

)
.)

Since the set Y is compact, there is a finite cover U = {U} of Y with the above
trivialization for each U . This defines a fibre bundle π : EP → Y .
(See §1.4 for the definition and other materials of fibre bundle.)

2.4. In the above fibre bundle, the structure group Γ ⊂ Homeo(F kX) could
be chosen to be the collection of all γ ∈ Homeo(F kX) of the form: there is a
unitary u ∈Mk(C| ) such that

γ(φ)(f) = u∗φ(f)u for any φ ∈ F kX and f ∈ C(X).

One can see this as follows.
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Suppose that U and V are two open sets in U , and tU and tV are trivializations,
as in 2.3, defined by unitary valued functions u : U → M•(C| ) and v : V →
M•(C| ), respectively.
For any point y ∈ U ∩ V , the map tU ◦ t−1

V : F kX → F kX, can be computed
as below.
For any φ ∈ F kX, define φ̃ : C(X)→M•(C| ) by

φ̃(f) =

(
φ(f)k×k 0

0 0

)
,∀f ∈ C(X).

Then
t−1
V (φ)(f) = v(y)φ̃(f)v∗(y) ∈ P (y)M•(C| )P (y),

and
tU ◦ t−1

V (φ)(f) = R(u∗(y)v(y)φ̃(f)v∗(y)u(y)).

Notice that

u(y)diag(1k, 0)u∗(y) = P (y) = v(y)diag(1k, 0)v∗(y).

It follows that v∗(y)u(y) commutes with diag(1k, 0). This implies that this
matrix has the form (

(w1)k×k 0
0 w2

)
,

where both w1 and w2 are unitaries. This shows that

tU ◦ t−1
V (φ)(f) = w∗1φ(f)w1, ∀φ ∈ F kX, f ∈ C(X).

In other words, tU ◦ t−1
V ∈ Γ.

Obviously, Hom(C(X), PM•(C(Y ))P )1 can be regarded as a collection of con-
tinuous cross sections of the bundle π : EP → Y .
Since for any elements a, b ∈Mk(C| ) and unitary u ∈Mk(C| ),

‖uau∗ − ubu∗‖ = ‖a− b‖,

it is easy to see that the metric d on F kX defined in 2.2 is invariant under
the action of any element in Γ in the sense of 1.4.6.

2.5. There is a natural map

θ : F kX −→ P kX

defined as follows. For any φ ∈ F kX given by φ : C(X)→Mk(C| ), define

θ(φ) = SP(φ) ∈ P kX,

counting multiplicities. (See 1.2.5 and 1.2.7.)
For each point x = [x1, x2, · · · , xk] ∈ P kX, if the element xi appears µi times
in x for i = 1, 2, · · · , k, then the maximum multiplicity of x is defined to be
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the maximum of µ1, µ2, · · · , µk. The maximum multiplicity of a point φ ∈ F kX
is defined to be the maximum multiplicity of θ(φ) ∈ P kX, which agrees with
the maximum multiplicity of homomorphism φ : C(X) → Mk(C| ) defined in
1.2.4.

The homomorphism φ ∈ Hom(C(X), PM•(C(Y ))P )1 corresponds to a contin-
uous cross section f : Y → EP . This correspondence is one to one. For any
cross section f : Y → EP , any point y ∈ Y , the maximum multiplicity of f(y)
is understood to be that obtained by regarding f(y) as an element in F kX by
an identification of Hom(C(X), P (y)M•(C| )P (y))1 with F kX. Note that the
maximum multiplicity of an element φ ∈ F kX is invariant under the action of
any element of Γ.

2.6. It is easy to see that for any finite set G ⊂ C(X) and ε > 0, there is
an ε′ > 0 such that if d(φy, φ

′
y) < ε′ for any y ∈ Y , then ‖φ(g) − φ′(g)‖ < ε

for any g ∈ G, where φy, φ
′
y ∈ F kX are determined by an identification of

Hom(C(X), P (y)M•(C| )P (y))1 with F kX, as above. (Again the choice of the
identification is not important, because the metric d is invariant under the
action of any element in Γ.)

Before proving Theorem 2.1, we prove the following weak version of Theorem
2.1.

Lemma 2.7. Let X and Y be as in Theorem 2.1. Let k > l = dim(X)+dim(Y ).
For any given finite set G ⊂ C(X), any ε > 0, and any unital homomor-
phism φ : C(X) → PM•(C(Y ))P , where P ∈ M•(C(Y )) is a projection with
rank(P ) = k, there is a unital homomorphism φ′ : C(X) → PM•(C(Y ))P
such that

(1) ‖φ(g)− φ′(g)‖ < ε for all g ∈ G, and

(2) φ′ has maximum spectral multiplicity at most k − 1.

Comparing with Theorem 2.1, in the above result, we allow the maximum
spectral multiplicity of the resulting homomorphism to be larger than l— only
require it to be smaller than k = rank(P )—the maximum possible multiplicity.

Since we assume that all the generators fi of C(X) are inside the set G, Lemma
2.7 is equivalent to the following theorem.

Lemma 2.8. Suppose that X,Y , and P are as in Theorem 2.1 and that
rank(P ) = k > dim(X) + dim(Y ). For any ε > 0 and any cross section
f : Y → EP , there is a cross section f ′ : Y → EP such that

(1) d(f(y), f ′(y)) < ε for all y ∈ Y , and

(2) f ′(y) has multiplicity at most k − 1 for all y ∈ Y .

To prove our main theorem of this section—Theorem 2.1, we need the following
result. The proof of this result will be given after the proof of Theorem 2.1.

Theorem 2.9. Suppose that X is a connected simplicial complex and X 6=
{pt}. For any ε > 0 and any x ∈ FmX, there is a contractible open neighbor-
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hood Ux 3 x with Ux ⊂ Bε(x) ⊂ FmX such that

πi(Ux\{x}) = 0

for any 0 ≤ i ≤ m− 2. In other words, FmX has property D(m) as in 1.4.3.
We will use Theorem 2.9 and Corollary 1.4.10 (see also Theorem 1.4.9) to prove
the following relative version of Lemma 2.8 (which gives rise to Lemma 2.8, by
taking Y1 = ∅ ).

Lemma 2.10. Let X,Y , and P be as in Theorem 2.1, and Y1 ⊂ Y be a sub
simplicial complex. Suppose that rank(P ) = k > dim(X) + dim(Y ). Suppose
that a cross section f : Y → EP satisfies the condition that f(y) has multiplicity
at most k − 1, for any y ∈ Y1. It follows that for any ε > 0, there is a cross
section f ′ : Y → EP such that
(1) d(f(y), f ′(y)) < ε for all y ∈ Y , and
(2) f ′(y) has multiplicity at most k − 1 for all y ∈ Y .
(3) f ′(y) = f(y), for any y ∈ Y1.

Proof: Let F1 ⊂ F kX denote the subset of all elements of maximum multi-
plicity equal to k. In other words, a homomorphism in F1 has one dimensional
range. Obviously, F1 is the set of all homomorphisms φ ∈ Hom(C(X),Mk(C| ))1

which are of the form

φ(f) =




f(x)
f(x)

. . .

f(x)




for a certain point x ∈ X. Hence F1 is homeomorphic to X, and dim(F1) =
dim(X).
As mentioned in 2.5, the maximum multiplicity of an element of F kX is in-
variant under the action of Γ. So F1 is an invariant subset under the action of
Γ.
The conclusion of the Lemma 2.10 follows from Corollary 1.4.10 with EP → Y ,
F kX, F1, Y1 and k in place of M → X, F , F1 , X1 and m in Corollary 1.4.10,
respectively. (Note that, from Theorem 2.9, F kX has property D(k).)

ut
The above lemma is equivalent to the following lemma (we stated it with pro-
jection Q instead of P to emphasis that we may use projections other than
P—we will use subprojections of P ).

Lemma 2.11. Let Y2 ⊂ Y1 ⊂ Y be sub-simplicial complexes of Y . Let Q ∈
M•(C(Y1)) be a projection with rank m > l = dim(X)+dim(Y ). For any given
finite set G ⊂ C(X), any ε > 0, and any unital homomorphism ψ : C(X) →
QM•(C(Y1))Q with the property that for any y ∈ Y2, the multiplicity of ψ at y
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is at most m−1, there is a unital homomorphism ψ′ : C(X)→ QM•(C(Y1))Q
such that
(1) ‖ψ(g)(y)− ψ′(g)(y)‖ < ε for all g ∈ G and y ∈ Y1,
(2) ψ′ has spectral multiplicity at most m− 1,
(3) ψ′|Y2

= ψ|Y2
.

In the proof of Theorem 2.1, we will not use Theorem 2.9 or Lemma 2.10
directly. We will use Lemma 2.11 instead. (So we do not need anything from
fibre bundles in the rest of the proof of Theorem 2.1.)

2.12 Sketch of the idea of the proof of Theorem 2.1. Note that
the proof of Lemma 2.10 can not be used to prove Theorem 2.1 (or the fibre
bundle version of Theorem 2.1) in a straightforward way. For example, if we
let F1 ⊂ F kX be the subset of all elements with maximum multiplicity at
least l + 1 (instead of k), then dim(F1) may be very large— much larger than
dim(X). In fact, dim(F1) also depends on k and l.
In Lemma 2.11 (or Lemma 2.10), we have already perturbed the homomorphism
to avoid the largest possibility of maximum multiplicity—k. Next, we will
perturb it again to avoid the next largest possibility of maximum multiplicity—
k − 1. We will continue the procedure in this way.
In general, suppose that the homomorphism φ : C(X) → PM•(C(Y ))P has
maximum multiplicity m, with l < m ≤ k, we will prove that φ can be ap-
proximated arbitrarily well by another homomorphism φ′ with maximum mul-
tiplicity at most m− 1. Once this is done, Theorem 2.1 follows from a reverse
induction argument beginning with m = k > l. (Note that for the case k ≤ l,
we have nothing to prove.)
To do the above, we need to work simplex by simplex. In fact, on each small
simplex, the homomorphism φ can be decomposed into a direct sum of several
homomorphisms

⊕
i φi, such that the projections φi(1) has rank at most m.

Then we can apply Lemma 2.11 to each φi to avoid maximum multiplicity m.
With these ideas in mind, it will not be difficult for the reader to construct the
proof of Theorem 2.1. The complete detail will be contained in the next few
lemmas, in particular, see the proof of Lemma 2.16.

Lemma 2.13. Suppose that P,X and Y are as in Theorem 2.1. For any
ε > 0 and any positive integer d, there is a δ > 0 such that if ∆ ⊂ Y is a
simplex of dimension d, if P is regarded as a projection in M•(C(∆)), and if
ψ : C(X)→ PM•(C(∂∆))P is a homomorphism such that

‖ψ(g)(y)− ψ(g)(y′)‖ < δ, ∀g ∈ G, y, y′ ∈ ∂∆,

then there is a homomorphism ψ′ : C(X)→ PM•(C(∆))P such that
(1) ‖ψ′(g)(y)− ψ′(g)(y′)‖ < ε, ∀g ∈ G, y, y′ ∈ ∆, and
(2) ψ′|∂∆ = ψ.

Proof: Note that P |∆ is a trivial projection, since a simplex ∆ is contractible.
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So PM•(C(∆))P ∼= Mk(C(∆)), where k = rank(P ). The lemma follows from
the fact that

F kX = Hom(C(X),Mk(C| ))1

is a simplicial complex (see [DN] and [Bl]), which is locally contractible (see
1.4.2 and 1.4.3).

ut
We need the following lemma, which is obviously true.

Lemma 2.14. Suppose that φ : C(X)→ PM•(C(Y ))P has maximum spectral
multiplicity at most m. Then there exist η > 0 and δ > 0 such that the following
statement holds.
For any subset Z ⊂ Y with diameter(Z) < η, and homomorphism ψ : C(X)→
PM•(C(Z))P with the property that

‖ψ(g)(z)− φ(g)(z)‖ < δ, ∀z ∈ Z, g ∈ G,

there is a decomposition of ψ such as described below.
There are open sets O1, O2, · · · , Ot ⊂ X, with mutually disjoint closures
(i.e., Ōi ∩ Ōj = ∅, ∀i 6= j), and there are mutually orthogonal projections
Q1, Q2, · · · , Qt ∈M•(C(Z)) and homomorphisms ψi : C(X)→ QiM•(C(Z))Qi
such that
1. ψ =

∑t
i=1 ψi

2. P (z) =
∑t
i=1Qi(z),∀z ∈ Z,

3. rank(Qi) ≤ m, and
4. SPψi ⊂ Oi for all i.

Proof: One can prove it using the following fact. Suppose that SPφ ⊂ ∪Oi. If
ψ is close enough to φ, then SPψ ⊂ ∪Oi and #(SPφ∩Oi) = #(SPψ ∩Oi) (see
1.2.12).
Qi in the lemma should be chosen to be the spectral projections of ψ corre-
sponding to the open sets Oi (see 1.2.9).
(Notice that Y is compact and that G ⊂ C(X) contains a set of the generators.)

ut

Lemma 2.15. Suppose that φ : C(X)→ PM•(C(Y ))P has maximum spectral
multiplicity at most m. Then there exist η > 0 and δ > 0 such that the following
statement holds.
For any ε > 0, any simplex ∆ ⊂ Y (of any simplicial decomposition of Y ) with
diameter(∆) < η, and any homomorphism ψ : C(X)→ PM•(C(∆))P with the
following properties:
(i) ‖ψ(g)(z)− φ(g)(z)‖ < δ, ∀z ∈ ∆, g ∈ G, and
(ii) ψ|∂∆ has maximum multiplicity at most m− 1,
there exists a homomorphism ψ′ : C(X)→ PM•(C(∆))P such that
(1) ‖ψ(g)(y)− ψ′(g)(y)‖ < ε for all g ∈ G and y ∈ ∆;
(2) ψ′ has spectral multiplicity at most m− 1;
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(3) ψ′|∂∆ = ψ|∂∆.

Proof: . Suppose that η and δ are as in Lemma 2.14. If ψ is as described in
this lemma, then one can obtain the decomposition ψ =

∑t
i=1 ψi of ψ as in

Lemma 2.14.
Then we only need to apply Lemma 2.11 to each map ψi to obtain ψ′i : C(X)→
QiM•(C(Z))Qi to satisfy the conclusion of Lemma 2.11 with ψi, ∆, ∂∆, and
Qi in place of ψ, Y1, Y2, and Q, respectively.
If ε is small enough, then SPψ′i ⊂ Oi, where the open sets Oi are from Lemma
2.14. Hence the sum ψ′ =

∑t
i=1 ψ

′
i is as desired.

ut

Lemma 2.16. Suppose that φ : C(X)→ PM•(C(Y ))P has maximum spectral
multiplicity at most m > l = dim(X) + dim(Y ). For any simplicial subcomplex
Y1 ⊂ Y , with respect to any simplicial decomposition of Y , and any ε > 0, there
is a homomorphism φ′ : C(X)→ PM•(C(Y1))P with multiplicity at most m−1
such that

‖φ′(g)(y)− φ(g)(y)‖ < ε, ∀g ∈ G, y ∈ Y1.

(In particular, the above is true for Y1 = Y .)

Proof: We will prove the lemma by induction on dim(Y1).
If dim(Y1) = 0, the lemma follows from the fact that, for a connected simplicial
complex X with X 6= {pt}, the subset of homomorphisms with distinct spec-
trum (maximum spectral multiplicity one) is dense in
Hom(C(X),Mk(C| ))1.
Suppose that the lemma is true for any simplicial subcomplex of dimension n,
with respect to any simplicial decomposition.
Let Y1 ⊂ Y be a simplicial complex of dimension n+ 1 ≤ dimY , with respect
to some simplicial decomposition of Y .
Let ε > 0.
Let δ1, η1 be the δ and η of Lemma 2.15.
Apply Lemma 2.13 with n + 1 in place of d, and 1

4 min(ε, δ1) in place of ε, to
find δ2 as δ in the lemma.
Choose η2 > 0 such that if dist(y, y′) < η2, then

(∗) ‖φ(g)(y)− φ(g)(y′)‖ < 1

4
min(ε, δ1, δ2),∀g ∈ G.

Endow Y1 with a simplicial complex structure such that diameter(∆) <
min(η1, η2) for any simplex ∆ of Y1. Let Y ′ ⊂ Y1 be the n-skeleton of Y1

with respect to the simplicial structure.
From the inductive assumption, there is a homomorphism φ1 : C(X) →
PM•(C(Y ′))P , with multiplicity at most m− 1, such that

(∗∗) ‖φ1(g)(y)− φ(g)(y)‖ < 1

4
min(ε, δ1, δ2), ∀g ∈ G and y ∈ Y ′.(∗∗)
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Consider a fixed simplex ∆ ⊂ Y1 of top dimension (i.e., dim(∆) = n+ 1). Let
us extend φ1|∂∆ to ∆ (notice that ∂∆ ⊂ Y ′).
For any two points y, y′ ∈ ∂∆, applying (*) to the pair of points y and y′,
applying (**) to the points y and y′ separately, and combining all these three
inequalities together, we get

‖φ1(g)(y)− φ1(g)(y′)‖ < 3

4
min(ε, δ1, δ2) < δ2, ∀g ∈ G.

By Lemma 2.13 and the way δ2 is chosen, there is a homomorphism (let us
still denote it by φ1) φ1 : C(X) → PM•(C(∆))P , which extends the original
φ1|∂∆, such that

(∗∗∗) ‖φ1(g)(y)− φ1(g)(y′)‖ < 1

4
min(ε, δ1), ∀g ∈ G and y, y′ ∈ ∆.

For any point y ∈ ∆, choose a point y′ ∈ ∂∆. Applying both (*) and (***)
to the pair (y, y′), applying (**) to the point y′ ∈ ∂∆ ⊂ Y ′ and combining all
these three inequalities together, we get

(∗∗∗∗) ‖φ1(g)(y)− φ(g)(y)‖ < 3

4
min(ε, δ1),∀g ∈ G and y ∈ ∆.

Since δ1 and η1 are chosen as in Lemma 2.15, and diameter(∆) < η1, it follows
from (∗ ∗ ∗∗) and Lemma 2.15 that there is a homomorphism φ′ : C(X) →
PM•(C(∆))P such that
(1) ‖φ′(g)(y)− φ1(g)(y)‖ < 1

4ε, ∀g ∈ G and y ∈ ∆.
(2) φ′ has spectral multiplicity at most m− 1.
(3) φ′|∂∆ = φ1|∂∆.
Combining (1) above with (****), yields

‖φ′(g)(y)− φ(g)(y)‖ < 3

4
min(ε, δ1) +

1

4
ε ≤ ε,∀g ∈ G and y ∈ ∆.

Carry out the above construction independently for each simplex ∆. Since the
definition of φ′ on ∂∆ is as same as φ1, the definitions of φ′ on different simplices
are agree on their intersection. By Lemma 1.2.14, this yields a homomorphism
over the whole set Y1. The lemma follows.

ut
Obviously, Theorem 2.1 follows from Lemma 2.16 by reverse induction argu-
ment beginning with m = k. (Note that we only need Lemma 2.16 for the case
Y1 = Y .)
Now we are going to prove Theorem 2.9, which is the only missing part in the
proof of Theorem 2.1. The proof is somewhat similar to the proof of Theorem
6.4.2 of [DN]. It will therefore be convenient to recall some of the terminology
and notation of [DN]. (It will be important to consider a certain method of
decomposing the space F kX.)

2.17. Recall from 6.17 of [DN] (cf. 1.2.4 above) that there is a map λ :
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Xk × U(k)→ F kX, defined as follows. If u ∈ U(k) and (x1, x2, · · · , xk) ∈ Xk,
then

(λ(x1, x2, · · · , xk, u))(f) = u




f(x1)
f(x2)

. . .

f(xk)


u∗

for any f ∈ C(X). Since λ is surjective, F kX can be regarded as a quotient
space Xk × U(k). Therefore, for convenience, a point in F kX will be written
as

[x1, x2, · · · , xk, u]

which means λ(x1, x2, · · · , xk, u).
With the above notation, it is easy to see that, if X is path connected and is
not a single point, then any element in F kX can be approximated arbitrarily
well by elements in F kX with distinct spectra.

2.18. If X1 ⊂ X is a subset, then define F kX1 to be the subset of F kX
consisting of those homomorphisms φ ∈ Hom(C(X),Mk(C| )) with SP(φ) ⊂ X1

as a set. Obviously, if X1 is open (closed resp.), then F kX1 is open (closed
resp.).
If X1, X2, · · · , Xi are disjoint subspaces of X, and k1, k2, · · · , ki are nonnegative
integers with

k1 + k2 + · · ·+ ki = k,

then define F (k1,k2,···,ki)(X1, X2, · · · , Xi) to be the subset of F kX consisting of
all φ with

#(SP(φ) ∩Xi) = ki

counting multiplicity.
Usually when we use the above notation, we suppose that X̄i1 ∩ X̄i2 = ∅ if
i1 6= i2, where X̄i is the closure of Xi. In this case,

F k(X1 ∪X2 ∪ · · · ∪Xi) =
∐

k1+k2+···+ki=k
F (k1,k2,···,ki)(X1, X2, · · · , Xi)

is a disjoint union of separate components.

2.19. For each i-tuple (k1, k2, · · · , ki) with

k1 + k2 + · · ·+ ki = k,

one can define G(k1,k2,···,ki)(C|
k) to be the collection of i-tuples (p1, p2, · · · , pi)

of orthogonal projections pj ∈ Mk(C| ) with rank(pj) = kj (1 ≤ j ≤ i) and∑i
j=1 pj = 1 ∈ Mk(C| ). Note that if i = 2, G(k1,k2)(C| k) is the ordinary

complex Grassmannian manifold Gk1
(C| k) = Gk2

(C| k).
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For each fixed i-tuple (k1, k2, · · · , ki), there is a locally trivial fibre bundle

F k1(X1)× F k2(X2)× · · · × F ki(Xi) −→ F (k1,k2,···,ki)(X1, X2, · · · , Xi)
↓

G(k1,k2,···,ki)(C|
k).

2.20. For certain purposes, it is more convenient to use CW complexes
(instead of simplicial complexes).
For the terminology used below, see [Wh].
Suppose that (X,A) is a relative CW complex pair. If X is path connected,
then (X,A) is zero connected CW complex pair, no matter A is connected
or not. In particular, (X,A) is homotopy equivalent to (X1, A), where X1 is
obtained from A by attaching finitely many cells of dimension ≥ 1 (see Theorem
2.6 of Chapter five of [Wh]). This can not be done if one only uses simplicial
complex pair. (Note, we always assume our CW complexes to be finite CW
complexes without saying so.)
For a relative CW complex pair (X,A), define FmA X ⊂ FmX to be the sub-
space consisting of those elements x ∈ FmX, with

SP(x) ∩A 6= ∅.

(This is different from the set FmA (defined in 2.18) which consists of elements
x ∈ FmX such that SP(x) ⊂ A.)

Lemma 2.21. Suppose that (X,A) is a relative CW complex pair. Suppose
that X is obtained from A by attaching cells of dimension at least 1. It follows
that the inclusion

FmA X ↪→ FmX

is m − 1 equivalent, i.e., i∗ : πj(F
m
A X) → πj(F

mX) is an isomorphism for
any 0 ≤ j ≤ m− 2 and a surjection for j = m− 1, where i∗ is induced by the
inclusion map.
The proof of this lemma is divided into two steps.

Lemma 2.22. Lemma 2.21 is true if X is obtained from A by attaching several
cells of dimension 1.

Proof: Let X = A∪e1∪e2∪· · ·∪et, where e1, e2, · · · , et are 1-cells with ∂ei ⊂ A.
Then FmX\FmA X consists of those points whose spectra are contained in

◦
e1 ∪

◦
e2 ∪ · · · ∪

◦
et ,

where each
◦
ej = ej\∂ej is homeomorphic to (0, 1).

In other words,

FmX\FmA X =
∐

k1+k2+···+kt=m
F (k1,k2,···,kt)(

◦
e1 ,

◦
e2 , · · · ,

◦
et ).
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For each fixed t-tuple (k1, k2, · · · , kt) with
∑
ki = m, the space

F (k1,k2,···,kt)(
◦
e1 ,

◦
e2 , · · · ,

◦
et ) is a smooth manifold. To see this, we can

consider the fibre bundle

F k1(
◦
e1 )× F k2(

◦
e2 )× · · · × F kt(

◦
et ) −→ F (k1,k2,···,kt)(

◦
e1 ,

◦
e2 , · · · ,

◦
et )

↓
G(k1,k2,···,kt)(C| )

introduced in 2.19. Evidently, the fibre of the bundle is

F k1(
◦
e1 )× F k2(

◦
e2 )× · · · × F kt(

◦
et ) ∼= IRk2

1 × IRk2
2 × · · · × IRk2

t .

Note that the above fibre bundle has an obvious cross section (see [DN]). There-
fore, the fibre bundle can be regarded as a smooth vector bundle with the vector

space IRk2
1+k2

2+···+k2
t as the fibre. The zero section of the bundle has codimen-

sion
k2

1 + k2
2 + · · ·+ k2

t ≥ k1 + k2 + · · ·+ kt = m.

By a standard argument from topology, using the transversality theorem, the
lemma can be proved. (See [DN, 6.3.4] for details.)

ut

2.23. The next step is to prove Lemma 2.21 by induction, starting with 2.22.
Since the proof is a complete repetition of the proof of Theorem 6.4.2 of [DN],
we omit the detail—only point out how to define the collection W (n, r) in our
setting, and several small modifications.
Let W (1, 0) = {A}—the set with single element: the space A. For r >
0, W (n, r) is the class of all finite CW complexes, each of which is obtained by
attaching at most one cell of dimension n to a space in W (n, r − 1). Let

W (n+ 1, 0) =

+∞⋃

r=0

W (n, r).

Lemma 2.22 says that FmA X → FmX is m − 1 equivalent if X ∈ W (2, 0). In
applying the argument in [DN, 6.4.2], FmA X is in place of F k(X) and FmX is
in place of F k+1(X). All the other parts of the proof follow from [DN]. The
only thing needs mentioning is that the inclusion

FmA (X\αI) ↪→ FmA X

is 1-equivalent, where αI is a set of finitely many points inside one of the
n-cells of X, and n ≥ 2. To prove this statement, one needs to prove that
any continuous map from S1 to FmA X can be perturbed to a map from S1 to
FmA (X\αI). To do this, he can first perturb a map to a piecewise linear map
for which the image will be one dimensional. And the resulting map can be

Documenta Mathematica 7 (2002) 255–461



332 Guihua Gong

easily perturbed again to a map whose spectrum avoids any given finite set of
points in any cell of dimension at least 2.

ut

2.24. Let X be a simplicial complex, and x0 ∈ X be a vertex.
Define X ′ to be the sub-simplicial complex consisting of all the simplices ∆ (
and their faces) with ∆ 3 x0. Then X ′ is contractible.
We also use x0 to denote the point in FmX defined by

φ(f) = f(x0) · 1m ∈Mm(C| )

for each f ∈ C(X).
We can easily prove the following claim: The map FmX ′\{x0} ↪→ FmX ′ is
(m− 1) equivalent.
To see this, let

A = ∪{∆ | ∆ is a simplex of X ′ and x0 /∈ ∆}.

Then A is a sub-simplicial complex of X ′. A may not be connected, but (X ′, A)
is 0-connected. In the notation of 1.4.2,

X ′ = Star({x0}) and A = Star({x0})\Star({x0}).

It is obvious that A ↪→ X ′\{x0} is a homotopy equivalence. Therefore,
FmA X

′ ↪→ (FmX ′)\{x0} is a homotopy equivalence. By Lemma 2.21, the claim
holds. In particular,

πi(F
mX ′\{x0}) = 0

for any 0 ≤ i ≤ m− 2, since FmX ′ is contractible. Equivalently,

πi(F
m(X ′\A)\{x0}) = 0

for any 0 ≤ i ≤ m − 2. Note that X ′\A is an open neighborhood of x0 ∈ X,
which is the interior of X ′.

2.25. Proof of Theorem 2.9. Suppose that

SP(x) = { λ1, λ1, · · · , λ1︸ ︷︷ ︸
k1

, λ2, λ2, · · · , λ2︸ ︷︷ ︸
k2

, · · · , λi, λi, · · · , λi︸ ︷︷ ︸
ki

},

where λ1, λ2, · · · , λi ∈ X are distinct points and k1 +k2 + · · ·+ki = m. Choose
mutually disjoint open sets U1 3 λ1, U2 3 λ2, · · · , Ui 3 λi, in X. Then there is
a locally trivial fibre bundle

F k1(U1)× F k2(U2)× · · · × F ki(Ui) −→ F (k1,k2,···,ki)(U1, U2, · · · , Ui)
↓

G(k1,k2,···,ki)(C| ).
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Note that G(k1,k2,···,ki)(C| ) = U(m)/(U(k1)× U(k2)× · · · × U(ki)) is a smooth

manifold of dimension t := m2−∑i
j=1 k

2
j . There is a small contractible neigh-

borhood Ux ⊂ Bε(x) which is homeomorphic to the space

F k1(X1)× F k2(X2)× · · ·F ki(Xi)× IRt,

where X1, X2, · · · , Xi are mutually disjoint open subsets of X. The space Xi

can be chosen so that X̄i is the simplicial complex X ′ as in 2.24 corresponding
to vertex λi, with respect to some simplicial decomposition of X.

The following fact is well known in topology. Suppose that X and Y are
connected CW complexes with base points x0, y0 respectively. If X\{x0} is
l1-connected and X\{y0} is l2-connected, then (X×Y )\{x0, y0} is (l1 + l2 +2)-
connected.

Combining this fact with 2.24, we conclude that Ux\{x} is

i∑

j=1

kj − 2 + t = m− 2 + t

connected. This ends the proof.

ut

3 Combinatorial Results

In this section, we will prove certain results of a combinatorial nature, for the
preparation of the proof of the Decomposition Theorem—Theorem 4.1 of the
next section.

We will need the results in the case that certain multiplicities are general—not
just equal to one. For the sake of clarity, we will first state and prove the results
in the special case of multiplicity one. We will then consider the general case.

3.1. Suppose that X is a simplicial complex. Let σ denote the simplicial
complex structure of X—which tells what the simplices of X are, and what
the faces of each simplex of X are. In this section, we will use (X,σ) to denote
the simplicial complex X with simplicial structure σ, to emphasize that we
may endow the same space X with different simplicial complex structures.
In this section, we will reserve the notation, σ, τ, σ1, τ1, · · · , etc., for simplicial
complex structures.

Recall that, if ∆ is a simplex, its boundary is denoted by ∂∆. For example, if
dim(∆) = 0, i.e., ∆ = {pt}, the set consisting of a single point, then ∂∆ = ∅;
if dim(∆) = 1, i.e., ∆ is an interval, then ∂∆ is the set consisting of the two
extreme points of the interval. Let us also consider the set ∆\∂∆, and denote
it by interior(∆).

If (X,σ) is a simplicial complex, then for any point x ∈ X, there is a unique
simplex ∆ such that x ∈ interior(∆).
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As usual, if each simplex of (X,σ1) is a union of certain simplices of (X,σ2),
then we shall call σ2 a subdivision of σ1. This is equivalent to the property
that any simplex of (X,σ2) is contained in a simplex of (X,σ1).
The notation Vertex(X,σ) (respectively, Vertex(∆) ) will be used to denote
the set of vertices of (X,σ) (or of the simplex ∆).

Definition 3.2. Let E = {1, 2, · · · ,K} be an index set. (The index set E
can be any set with exactly K elements.) Let K1,K2, · · · ,Km be non negative
integers with

K1 +K2 + · · ·+Km = K.

A grouping of E of type (K1,K2, · · · ,Km) is a collection of m mutually
disjoint index sets E1, E2, · · · , Em with

E = E1 ∪ E2 ∪ · · · ∪Em,

and #(Ej) = Kj for each 1 ≤ j ≤ m. (Cf. 1.5.18.)
Usually, we will keep the tuple (K1,K2, · · · ,Km) fixed and just call the collec-
tion E1, E2, · · · , Em a grouping of E (without mentioning the type).
(Most of the time, K1,K2, · · ·Km will be positive integers, i.e., nonzero. But
for convenience, we allow some numbers Ki = 0, and then the corresponding
sets Ei should be the empty set.)

3.3. Let (X,σ) be a simplicial complex. Suppose that, associated to
each vertex x ∈ X, there is a grouping E1(x), E2(x), · · · , Em(x) of E of type
(K1,K2, · · · ,Km). (In our application in the proof of Theorem 4.1, the index
set E will be the spectrum of a homomorphism at the given vertex, see 1.5.13,
1.5.17–1.5.22.)
Suppose that these groupings for all the vertices are chosen arbitrarily. Then,
in general, for a simplex ∆ with vertices x0, x1, · · · , xn, the intersections

⋂

x∈Vertex(∆)

Ej(x) = Ej(x0) ∩ Ej(x1) ∩ · · · ∩Ej(xn), j = 1, 2, · · · ,m,

may have very few elements—the sets Ej(x0), Ej(x1), · · · , Ej(xn) may be very
different.
The purpose of this section is to introduce a subdivision (X, τ) of (X,σ), and
to associate to each new vertex of (X, τ) a grouping to make the following true:
For any simplex ∆ of (X, τ) (after the subdivision), for each j, the number of
elements in the intersection

⋂

x∈Vertex(∆)

Ej(x)

is not much less than the number of elements in each individual set Ej(x) (note
that #(Ej(x)) = Kj for each x); in other words, the groupings of adjacent
vertices (after subdivision) should be almost as the same as each other.
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First we will state the following lemma (the proof will be given in 3.15). Later
on, we will need a relative version of the lemma.
(See 1.5.17 to 1.5.23 for the explanations of the role of this lemma in §4. To
visualize the following lemma, see 1.5.21 for the explanation of the one dimen-
sional case.)

Lemma 3.4. Let (X,σ) be a simplicial complex consisting of a single simplex
X and its faces. Suppose that associated to each x ∈ Vertex(X,σ), there is a
grouping E1(x), E2(x), · · · , Em(x) of E (of type (K1,K2, · · · ,Km)).
It follows that there is a subdivision (X, τ) of (X,σ), and associated to each
new vertex x ∈ Vertex(X, τ), there is a grouping E1(x), E2(x), · · · , Em(x) of E
(of type (K1,K2, · · · ,Km)), (for any old vertex of (X,σ), the grouping should
not be changed), such that the following hold.
For each newly introduced vertex x ∈ Vertex(X, τ),

(1)
⋂

y∈Vertex(X,σ)

Ej(y) ⊂ Ej(x), j = 1, 2, · · · ,m,

and

(2) Ej(x) ⊂
⋃

y∈Vertex(X,σ)

Ej(y), j = 1, 2, · · · ,m.

For any simplex ∆ of (X, τ) (after subdivision),

(3) #(
⋂

x∈Vertex(∆)

Ej(x)) ≥ Kj −
n(n+ 1)

2
, j = 1, 2, · · · ,m,

where n = dimX.
(When we apply this lemma in §4, the simplexX will be a simplex of a simplicial
complex Y , and Kj >> (dimY )3; from this it follows that

#(
⋂

x∈Vertex(∆)

Ej(x)) ≥ Kj −
n(n+ 1)

2
>> (dimY )3, j = 1, 2, · · · ,m.)

Remark 3.5. The inclusion Ej(x) ⊂ ⋃y∈Vertex(X,σ) Ej(y) in the condition

(2) of Lemma 3.4 is important for our application in §4 (see 1.5.19 for the
explanation). We will put this inclusion into a more general context, 3.7. So
we will only discuss the condition (1) in this remark.
The inclusion

⋂
y∈Vertex(X,σ) Ej(y) ⊂ Ej(x) in the condition (1) above, will

not be used in our application in §4. But taking this inclusion as a part of the
conclusion will make the induction argument easier in the proof.
We would like to point out that the weak version of the above lemma with-
out requiring the inclusion in (1) will automatically imply the above stronger
version. (This can be seen from the proof of Corollary 3.14 below.)
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3.6. Strategy and logistics of the proof of Lemma 3.4
We shall prove it by induction. So we assume that the lemma is true for simplex
of dimension at most n− 1, and prove the case that dim(X) = n.
First, we introduce a new vertex, which is the barycenter of X, and introduce
a model grouping Emodel1 , Emodel2 , · · · , Emodelm of E for the new vertex.
We shall view X as many layers similar to the boundary ∂X: ∂X ×{0}, ∂X ×
{t1}, · · · , and the top layer ∂X × {1} is identified into a single point which
is the barycenter, where t1, t2, · · · , is a finite sequence of increasing numbers
between 0 and 1 (the number of terms in this sequence depending in a certain
sense on the distance between the giving groupings at the vertices and the
model grouping at the barycenter). See the picture below.
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We will introduce a subdivision of each layer ∂X×{ti} (identifying the layer as
a set with ∂X and thereby endow it with a simplicial complex structure), and
a grouping for each vertex on this layer. The general principle we shall follow
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is: the higher the layer is, the closer the groupings are to the model grouping.
We should, gradually, change the groupings from each layer to the next higher
layer.
Let us explain it for the case dim(X) = 2 and dim(∂X) = 1. Fix a ti, and
suppose that we have the simplicial structure and groupings for all vertices on
∂X×{ti}. Let us using the following picture to show the vertices of ∂X×{ti}.
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x5

x4

∂X × {ti}

(I.e., there are five 1-dimensional simplices [x1, x2], [x2, x3], [x3, x4], [x4, x5] and
[x5, x1].)
Let us assume that the condition (3) holds for any simplex of ∂X × {ti} with
dim(X) replaced by dim(∂X). (We will also discuss the condition (1) below,
but not the condition (2).)
We shall construct simplicial structure and groupings on ∂X×{ti+1}. To begin
with, let us provisionally define the simplicial structure on ∂X × {ti+1} to be
as the same as that on ∂X × {ti}, as in the picture on the next page.

Fix an element λ ∈ Emodel1 such that λ /∈ ⋂5
k=1E1(xk). (If such an element

does not exist, then the groupings are already good for E1. In other words,
E1(xk) contains and therefore equals Emodel1 for every k. Then we should go
on to E2 or other parts.)
The grouping on the vertex yj , j = 1, · · · , 5 will be taken to be either the
grouping on the corresponding vertex xj , if E1(xj) 3 λ, or the grouping on the
corresponding vertex xj , with a certain element of E1(xj)\Emodel1 replaced by
λ ∈ Emodel1 if E1(xj) 63 λ. Lemma 3.9 below tells which element should be cho-
sen to be replaced. Of course the other part Et, t > 1 of the grouping must also
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be slightly modified. Lemma 3.9 also guarantees that such modification exists.
Subsections 3.7 and 3.8 give the definition used in 3.9. (This consideration are
all in order to ensure the condition (2).)
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x

x

x1 x2 x3

x5

x4

y1 y2 y3

y5

y4

∂X × {ti} ∂X × {ti+1}

Now,
⋂5
k=1E1(yk) contains one more element of Emodel1 than

⋂5
k=1E1(xk),

namely, λ. So for E1, the groupings on ∂X×{ti+1} are (globally) closer to the
model grouping than that on ∂X × {ti}.
But the groupings on ∂X×{ti+1}may not satisfy the condition (3) with dim(X)
replaced by dim(∂X), as the groupings on ∂X × {ti} do .

By the induction assumption, applied to each individual simplex of ∂X×{ti+1}
(with the provisional simplicial structure), we can introduce a subdivision for
∂X×{ti+1} and groupings for the new vertices to make the condition (3), with
dim(X) replaced by dim(∂X), hold for ∂X × {ti+1}. The picture now looks
like
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y′5
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y′′3

y′3

∂X × {ti} ∂X × {ti+1}

In this picture, y′1, y
′
2, y
′
3, y
′′
3 , and y′5 are the new vertices introduced in the

subdivision.

(Of course this picture only shows a special case.)

It goes without saying that we wish to ensure the condition (1) (and also
the condition (2)) for the groupings associated to the new vertices inside each
provisional simplex of ∂X×{ti+1}. In the other words, when we introduce the
groupings for a new vertex inside a fixed provisional simplex of ∂X × {ti+1}
(e.g., y′2 inside [y2, y3]), for each k we should keep the intersection of the sets
Ek over vertices of this simplex (e.g., Ek(y2)∩Ek(y3)) inside the set Ek for the
new vertex (e.g., inside Ek(y′2)). This is the condition (1) for this provisional
simplex. The condition (1) for all the individual simplices implies that after the
subdivision, the intersection over the whole layer

⋂
y∈Vertex(X×{ti+1})E1(y) is

equal to the intersection over the vertices of provisional simplicial structure⋂5
k=1E1(yk), and therefore still contains one more element of Emodel1 than⋂5
k=1E1(xk) (namely , λ).
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One may notice that the subset ∂X× [ti, ti+1] is not automatically a simplicial
complex. We shall use Lemma 3.10 below to decompose it into a simplicial
complex.
Because we do not change much from the grouping of xj to the grouping of
yj and because we make (1) true when introduce groupings for new vertices
y′j , y

′′
j , etc., the groupings for any simplex inside ∂X × [ti, ti+1] will satisfy the

condition (3) (of course with dim(X) not replaced by dim(∂X)).
Finally, let us mention that, we carry out the above construction separately for
E1, E2, etc. Once this has been done for E1, the same method can be used for
E2. The condition (1) will guarantee that when we work on E2, we will not
affect the condition (3) for E1, which was supposed to be already satisfied.
(The details will be contained in the proof of Lemma 3.11)
As we mentioned above, when we construct E1(yj) from E1(xj), we need to
replace one element of E1(xj)\Emodel1 by the element λ ∈ Emodel1 \E1(xj). If we
choose an arbitrary element µ ∈ E1(xj)\Emodel1 to be replaced by λ to define
E1(yj), then in general, E1(yj) may not be extended to a grouping satisfying
the condition (2), in other words, there may not exist a grouping E1, E2, · · · , Em
of E of type (K1,K2, · · · ,Km) such that E1 = E1(yj) and

Ek ⊂
⋃

x∈Vertex(X)

Ek(x), k = 1, 2, · · · ,m.

So we need to give a condition to ensure that a subset E1 ⊂ E can be extended
to a grouping satisfying condition (2). This will be discussed in 3.7 and 3.8.
(See condition (∗∗) in 3.8.)
The proof of Lemma 3.4 will be given in 3.7 to 3.16.

3.7. We will put the inclusion Ej(x) ⊂ ⋃y∈Vertex(X,σ) Ej(y) in the condition

(2) of Lemma 3.4, into a more general form, as follows. (In fact, we will use
this more general form in our application.)
Suppose that H1, H2, · · · , Hm are (not necessarily disjoint) subsets of E, sat-
isfying the following condition (called Condition (∗)). For each subset I ⊂
{1, 2, · · · ,m},

#(
⋃

i∈I
Hi) ≥

∑

i∈I
Ki . (∗)

It follows obviously that H1∪H2∪· · ·∪Hm = E, since #(H1∪H2∪· · ·∪Hm) ≥∑m
i=1Ki = #(E).

From the Marriage Lemma of [HV] (or the Pairing Lemma in [Su]), the condi-
tion (∗) is a necessary and sufficient condition for the existence of a grouping
E1, E2, · · · , Em of E of type (K1,K2, · · · ,Km) with the condition Ei ⊂ Hi.
(Recall that, the Marriage Lemma of [HV] is stated as follows.
Suppose that there are two groups of K boys and K girls. Suppose that the
following condition holds:
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For any subset of K1 girls (K1 = 1, 2, · · · ,K), there are at least K1 boys, each
of them knows at least one girl from this subset.
Then there is a way to arrange marriage between them such that each boy
marries one of the girls he knows.
Our claim above is a special case of this Marriage Lemma. One can see this as
follows. Suppose that the K girls are from m different clubs, and the i-th club
has exactly Ki girls. Number the boys by 1, 2, · · · ,K. Let us define the relation
consisting of a boy knowing a girl as follows. If j ∈ Hi, then the boy j knows
all the girls in the i-th club. Otherwise, he does not know any girl in the i-th
club. (Notice that the boy j could be in different Hi, so he could know girls
from different clubs.) Obviously the condition (*) becomes the above condition
in the Marriage Lemma. So if the condition (∗) holds, then there is a way to
arrange the marriage as in the lemma. One can define Ei to be the set of boys
each of whom marries a girl from the i-th club. Obviously Ei ⊂ Hi. This
proves the sufficiency part of the condition. The necessary part is trivial.)
If we let Hi =

⋃
y∈Vertex(X,σ) Ei(y), then the inclusion in (2) of Lemma 3.4

becomes Ei(x) ⊂ Hi for each x ∈ Vertex(X,σ).
For any subset I ⊂ {1, 2, · · · ,m}, let

HI =
⋃

i∈I
Hi .

3.8. We say that a subset E1 ⊂ H1, of K1 elements, satisfies Condition (∗∗)
if for any I ⊂ {2, 3, · · · ,m},

(∗∗) #(HI\E1) ≥
∑

i∈I
Ki .

(Caution: 1 /∈ I.) Again, from the Marriage Lemma, E1 ⊂ H1 satisfies (∗∗)
if and only if E1 can be extended to a grouping E1, E2, · · · , Em of E of type
(K1,K2, · · · ,Km) such that Ei ⊂ Hi.

Lemma 3.9. Suppose that E1, F1 (⊂ H1) are two subsets satisfying (∗∗). If
λ ∈ F1\E1, then there is a µ ∈ E1\F1 such that

E′1 = (E1\{µ}) ∪ {λ},

satisfies (∗∗).

Proof: Let G = E1 ∪ {λ}. Since E1 satisfies (∗∗), necessarily,

#(HI\G) ≥
∑

i∈I
Ki − 1 ,

for all subsets I ⊂ {2, 3, · · · ,m}.
Let H̃i = Hi\G, i ∈ {2, 3, · · · ,m}. And let H̃I = ∪i∈IH̃i for any I ⊂
{2, 3, · · · ,m}. The above inequality becomes #(H̃I) ≥

∑
i∈I Ki − 1 .
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Let I0 be a minimum subset of {2, 3, · · · ,m} such that

#(H̃I0) =
∑

i∈I0
Ki − 1 .

Note that such set I0 exists, since if I = {2, 3, · · · ,m},

#(H̃I) =
∑

i∈I
Ki − 1 .

Using the fact that #(HI0\F1) ≥∑i∈I0 Ki , we can prove that

E1 ∩HI0 6⊂ F1.

If it is not true, then G ∩ HI0 ⊂ F1, since λ ∈ F1 and G = E1 ∪ {λ}. And
therefore,

#(H̃I0) = #(HI0\G) ≥ #(HI0\F1) ≥
∑

i∈I0
Ki ,

which contradicts with the above equation.
Choose any element µ ∈ (E1 ∩ HI0)\F1; we will prove that µ is as desired in
the lemma. I.e., the set

E′1 = (E1\{µ}) ∪ {λ} = G\{µ}

satisfies (∗∗). That is, for any J ⊂ {2, 3, · · · ,m}, #(HJ\E′1) ≥∑i∈J Ki .
The proof is divided into three cases.
(i) The case that J ∩ I0 = ∅. By the relations

H̃I0∪J = (H̃J\H̃I0) ∪ H̃I0 (disjoint union)

and
#(H̃I0∪J) ≥

∑

i∈I0∪J
Ki − 1 ,

combined with the definition of I0, one knows that

(a) #(H̃J\H̃I0) ≥
∑

i∈J
Ki ,

which is stronger than the condition

#(HJ\E′1) ≥
∑

i∈J
Ki .

(ii) The case that J ⊂ I0. Obviously, for J = I0, we have

#(HI0\E′1) = #(HI0\G) + 1 =
∑

i∈I0
Ki ,
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since E′1 = G\{µ} and µ ∈ HI0 ∩G.
So we can suppose that J ⊂6= I0.

By the minimality of I0, we know that

#(HJ\G) ≥
∑

i∈J
Ki .

Therefore,

#(HJ\E′1) ≥
∑

i∈J
Ki .

(iii) The general case. Let J0 = J ∩ I0, and J1 = J\J0. Then

(HJ\E′1) ⊃ (H̃J1
\H̃I0) ∪ (HJ0

\E′1),

where the right hand side is a disjoint union since J0 ⊂ I0.
Evidently, this case follows from (a) above and case (ii).

ut
The following lemma is perhaps well known.

Lemma 3.10. Let (X,σ0) be a simplicial complex and (X,σ1) be a subdivision
of (X,σ0). It follows that there is a simplicial structure σ of X × [0, 1] such
that
(1) all vertices of (X × [0, 1], σ) are on three subsets X × {0}, X × { 1

2}, and
X × {1};
(2) (X × [0, 1], σ)|X×{0} = (X,σ0), and (X × [0, 1], σ)|X×{1} = (X,σ1);
(3) For a simplex ∆ of (X× [0, 1], σ), there is a simplex ∆0 of (X,σ0) (caution:
we do not use (X,σ1)) such that

∆ ⊂ ∆0 × [0, 1],

as a subset.

Proof: We prove it by induction on dim(X).
If X is 0-dimensional simplicial complex which consists of finitely many points,
the conclusion is obvious, since X × [0, 1] is finitely many disjoint intervals.
(Note that, at this case, necessarily, (X,σ0) = (X,σ1).) For us to visualize
the general case later on, we introduce a new vertex (x, 1

2 ) ∈ X × { 1
2} for each

x ∈ X. That is, we divide the interval {x}× [0, 1] into two simplices {x}× [0, 1
2 ]

and {x} × [ 1
2 , 1].

As the induction assumption, let us assume that the lemma is true for any
n-dimensional complex. Let dim(X) = n+ 1.
Let X(n) be the n-skeleton of (X,σ0) (we use σ0 not σ1 here). By the induction
assumption, there is a simplicial structure σ′ of X(n) × [0, 1] such that
(1) all vertices of (X(n)× [0, 1], σ′) are on three subsets X(n)×{0}, X(n)×{ 1

2},
and X(n) × {1};
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(2) (X(n) × [0, 1], σ′)|X(n)×{0} = (X(n), σ0|X(n)), and

(X(n) × [0, 1], σ′)|X(n)×{1} = (X(n), σ1|X(n));

(3) For an simplex ∆ of (X(n) × [0, 1], σ′), there is a simplex ∆0 of (X(n), σ0)
such that

∆ ⊂ ∆0 × [0, 1],

as a subset.

Let us introduce the simplicial structure σ on X × [0, 1] such that
(X × [0, 1], σ)|X(n)×[0,1] = (X(n) × [0, 1], σ′), (X × [0, 1], σ)|X×{0} = (X,σ0),
and (X × [0, 1], σ)|X×{1} = (X,σ1).

Consider each ∆ × [0, 1] for any (n + 1)-simplex ∆ of (X,σ0) (again, we use
σ0 not σ1). From the above, we already have the simplicial structure on the
boundary

∂(∆× [0, 1]) = (∆× {0}) ∪ (∂∆× [0, 1]) ∪ (∆× {1}).

Namely, on ∆× {0}, we use σ0; on ∂∆× [0, 1], we use σ′; and on ∆× {1}, we
use σ1.

Let c be the barycenter of ∆, introduce a new vertex C = (c, 1
2 ) ∈ X × { 1

2}.
The simplices of σ on ∆× [0, 1] are of the following forms.

(i) C itself is a zero dimensional simplex;

(ii) Any simplex of the boundary ∂(∆× [0, 1]) is a simplex for σ on ∆× [0, 1];
and

(iii) For any simplex ∆′ of the boundary ∂(∆×[0, 1]), the convex hull of ∆′∪{C}
is a simplex of dimension (dim(∆′) + 1) for σ on ∆× [0, 1].

Define such simplicial structure for each (n + 1)-simplex separately, and put
them together give rise to a simplicial structure of X × [0, 1], which obviously
satisfies the conditions (1), (2), and (3).

(Note that the simplicial structure on ∂∆× [0, 1] is as the same as σ′, therefore
the simplicial structure on ∆ × [0, 1] and on ∆1 × [0, 1] for different (n + 1)-
dimensional simplices ∆ and ∆1 are compatible on the intersection (∆∩∆1)×
[0, 1].)

The following pictures may help the reader to visualize the construc-
tion. They are pictures only for the case n = 0, dim(∆) = 1, and
dim(∆× [0, 1]) = 2.

Documenta Mathematica 7 (2002) 255–461



Simple Inductive Limit C∗-Algebras, I 345

Suppose the simplicial structure for the boundary ∂(∆ × [0, 1]) is as follows.
(The dots represent vertices.)

x x

x xx

x

x

x

∆× {0} ∆× {1}

Then the simplicial structure on ∆ × [0, 1] will be described by the following
picture.

x x

x xx

x

x

x

∆× {0} ∆× {1}
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The following lemma presents the main technical step of this section.

Lemma 3.11. Suppose that {H1, H2, · · · , Hm} satisfies the condition (∗). Sup-
pose that (X,σ) is a simplicial complex consisting of a single simplex ∆0 and
its faces. Let (Y, σ) = (∂∆0, σ), and (Y, τ) be a subdivision of (Y, σ). Suppose
that it is assigned, for each vertex x ∈ (Y, τ), a set E1(x) ⊂ H1 which satisfies
the condition (∗∗). Furthermore, suppose that for any simplex ∆ of (Y, τ),

#


 ⋂

y∈Vertex(∆)

E1(y)


 ≥ K1 −

dimY (dimY + 1)

2
.

It follows that there are a subdivision (X, τ̃) of (X,σ) and an assignment, for
each vertex x ∈ Vertex(X, τ̃), a set E1(x) ⊂ H1, satisfying condition (∗∗), with
the following conditions.
(1) (X, τ̃)|Y = (Y, τ), and for each vertex y ∈ Vertex(Y, τ), the assignment
E1(y) is as same as the original one.
(2) For any x ∈ (X, τ̃),

E1(x) ⊃
⋂

y∈Vertex(Y,τ)

E1(y) .

(3) For any simplex ∆ of (X, τ̃),

#


 ⋂

x∈Vertex(∆)

E1(x)


 ≥ K1 −

dimX(dimX + 1)

2
.

Proof: The Lemma is proved by induction on the dimension of the simplex.
If dim(∆0) = 0, then ∆0 = {pt}, a set of single point, and ∂∆0 = ∅. Obviously,
the lemma holds by choosing any E1(pt) ⊆ H1 of K1 element to satisfy (∗∗).
Let us prove the 1-dimensional case. Logically, this part could be skipped. But
the proof of this case will be easier to visualize which can be used to understand
the general case.
Suppose that dim(∆0) = 1. ∆0 is a line segment [0, 1]. Divide [0, 1] into several
subintervals by

0 = t00 < t01 < t02 < · · · < t0a−1 < t0a =
1

2
= t1a < t1a−1 < · · · < t12 < t11 < t10 = 1.

(The natural number a is to be determined later.) The points {tij}i=0,1;j=1,2···,a
will be the new vertices of (∆0, τ̃). (Note that t0a is the same vertex as t1a.)
Choose a model Emodel1 ⊂ H1 to satisfy (∗∗) and

Emodel1 ⊃ E1(t00) ∩ E1(t10).
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In fact, one can choose Emodel1 to be either E1(t00) or E0(t10). (Note that t00 = 0
and t10 = 1 are vertices of (∆0, σ).)
Let G = E1(t00) ∩ E1(t10) ∩ Emodel1 . Without loss of generality, we can assume
that there is λ ∈ Emodel1 \G. Otherwise, Emodel1 = G = E1(t00) = E1(t10), and
the conclusion already holds before introducing any subdivision.
By Lemma 3.9, if λ /∈ E1(ti0) (i = 0, 1), then there is a µ ∈ E1(ti0)\Emodel1 such
that E1(ti0) ∪ {λ}\{µ} satisfies (∗∗). Define

E1(ti1) =

{
E1(ti0) if λ ∈ E1(ti0)
(E1(ti0) ∪ {λ})\{µ} if λ /∈ E1(ti0) .

Then E1(ti1) ⊃ G ∪ {λ}. Therefore,

E1(t01) ∩ E1(t11) ∩ Emodel1
⊃
6= E1(t00) ∩ E1(t10) ∩ Emodel1 .

Suppose that we already have the definitions of E1(t0i ) and E1(t1i ), we can
define E1(t0i+1) and E1(t1i+1) exactly the same as above (i in place of 0, and
i+ 1 in place of 1), and obtain

E1(t0i+1) ∩ E1(t1i+1) ∩ Emodel1
⊃
6= E1(t0i ) ∩ E1(t1i ) ∩ Emodel1 .

Carrying out this procedure for at most finitely many times, we will reach
E1(t0a−1) ∩ E1(t1a−1) ∩ Emodel1 = Emodel1 . Then define E1(tia) = Emodel1 . (Note
that t1a = t0a = 1

2 .)
For i = 0, 1; j = 0, 1, 2, · · · , a− 1,

#(E1(tij) ∩ E1(tij+1)) ≥ K1 − 1 = K1 −
dim(∆0)(dim(∆0) + 1)

2
,

since we take out at most one point from E1(tij) to define E1(tij+1). This proves
that the lemma holds for n = 1.
(Let us point out that for one dimensional case, the proof could be simpler.
We choose the above proof to present some idea for the general case below.)
Suppose that the lemma is true for any simplex of dimension ≤ n− 1. We will
prove it for dim(X) = n. (One should compare to the explanation in 3.6.)
Step 1. Identify ∆0 with ∂∆0× [0, 1]/∂∆0×{1}. Regard ∂∆0 as ∂∆0×{0} ⊂
∂∆0 × [0, 1]. Note that ∂∆0 × {1} is identified as a single point which is the
center of ∆0, and is NOT a vertex of (∆0, σ).
Choose 0 = t0 < t1 < · · · < ta = 1. (The natural number a is to be determined
later.)
We will first introduce some new vertices (for the subdivision (X, τ̃)) on ∂∆0×
{t1}, ∂∆0 × {t2}, · · · , ∂∆0 × {ta}, and define E1 for those vertices.
Later on (in Step 4), we will consider each ∂∆ × [ti, ti+1] to be X × [0, 1] in
Lemma 3.10, and introduce new vertices on ∂∆×{ ti+ti+1

2 } (in place of X×{ 1
2}).

(We need to do this, because ∂∆ × [ti, ti+1] is not automatically a simplicial
complex.)
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Choose a model Emodel1 ⊂ H1 to satisfy (∗∗). We also require that

Emodel1 ⊃
⋂

y∈Vertex(Y,τ)

E1(y) .

(One can choose Emodel1 to be E1(y) for any vertex y ∈ Vertex(Y, τ).)
Define E1{(x, 1)} = Emodel1 . (Note that {(x, 1)} ⊂ ∂∆0 × [0, 1] is identified to
a single point, the center of ∆0.)
The construction will be carried out in Step 2, 3 and 4. The procedure can be
outlined as follows. If we already have the construction of simplicial structure τ̃
for ∂∆0×{ti−1} and the definition of E1 on all vertices in Vertex(∂∆0×{ti−1}),
then, to define the simplicial structure on ∂∆0 × [ti−1, ti] (in particular, to
introduce vertices on ∂∆0 × {ti}), and to define E1 on the newly introduced
vertices (on ∂∆0 × {ti}), we will only use the simplicial structure and the
definition of E1 on ∂∆0 × {ti−1}.
In this procedure, if there is a vertex x ∈ Vertex(∂∆0 × {ti−1}, τ̃) such that

E1(x) 6= Emodel1 ,

then we will require that

(a)
⋂

x∈Vertex(∂∆0×{ti},τ̃)

E1(x)∩Emodel1
⊃
6=

⋂

x∈Vertex(∂∆0×{ti−1},τ̃)

E1(x)∩Emodel1 .

(That is, the sets E1’s on ∂∆0 × {ti} are globally closer to Emodel1 than those
on ∂∆0 × {ti−1}.) Finally, within finitely many steps, we will reach that, for
certain i− 1, and for all vertices x ∈ Vertex(∂∆0 × {ti−1}, τ̃),

E1(x) = Emodel1 .

Then we choose ti = ta = 1, and choose any simplicial structure on ∂∆0 ×
[ta−1, 1]/∂∆0 × {1} with vertex set to be Vertex(∂∆0 × {ta−1}) ∪ ∂∆0 × {1}.
Recall that the set ∂∆0×{1} is identified as a single point with E1(∂∆0×{1}) =
Emodel1 .)
Furthermore, in this procedure, we not only make (3) true for any simplex in
∂∆0 × [ti−1, ti], but also make the following stronger statement true for any
simplex ∆ lies on ∂∆0 × {ti}:

(b) #


 ⋂

y∈Vertex(∆)

E1(y)


 ≥ K1 −

(n− 1)n

2
.

(Note that n − 1 = dim(∂∆0 × {ti}) = dim(∂∆0).) This condition has to be
satisfied for the construction of the next step by induction.
Step 2. We will do all the above construction only for ∂∆0 × [t0, t1]. For the
other part of the construction, one uses induction argument with aid of (b)
(i.e., let ti−1 play the role of t0, and ti play the role of t1.)
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Let {(y1, t0), (y2, t0), · · · , (yp, t0)} be the vertices of ∂∆0×{t0} = Y . There is a
simplicial complex structure on ∂∆0×{t1}, which is exactly the same as that of
(∂∆0×{t0}, τ̃), since both ∂∆0×{t1} and ∂∆0×{t0} can be regarded as ∂∆0.
We call such simplicial complex τ̃pre. Therefore, each point (yi, t1) (1 ≤ i ≤ p)
is a vertex of (∂∆0 × {t1}, τ̃pre). We will introduce more vertices later.

Let G = E1(y1, t0)∩E1(y2, t0)∩ · · · ∩E1(yp, t0)∩Emodel1 . If G = Emodel1 , then
E1(yi, t0) = Emodel1 for each 1 ≤ i ≤ p and the construction is done. So we
assume

G 6= Emodel1 .

Choose λ ∈ Emodel1 \G. When we define E1(x) for any vertex x ∈ ∂∆0 × {t1},
it is always required that

E1(x) ⊃ G ∪ {λ}.

Therefore, (a) holds for the pair {t0, t1}.
For each point (yi, t0), if λ /∈ E1(yi, t0), by Lemma 3.9, there is µ ∈
E1(yi, t0)\Emodel1 such that (E1(yi, t0) ∪ {λ})\{µ} satisfies (∗∗). Define

E1(yi, t1) =

{
E1(yi, t0) if λ ∈ E1(yi, t0)
(E1(yi, t0) ∪ {λ})\{µ} if λ /∈ E1(yi, t0) .

In this way, obviously, E1(x) ⊃ G ∪ {λ} for each vertex x = (yi, t1) ∈
Vertex(∂∆0 × {t1}, τ̃pre).
Step 3. Note that the definition of E1 on Vertex(∂∆0 × {t1}, τ̃pre) may not
satisfies (b). Therefore we can not use the simplicial structure τ̃pre and the
definition of E1 on Vertex(∂∆0 × {t1}, τ̃pre) to construct simplicial structure
and the definition of E1 for ∂∆0 × {t2}. We need to introduce a subdivision
for (∂∆0 × {t1}, τ̃pre) and the definitions of E1 for new vertices to make (b)
true. (This step is not needed in the one dimensional case, since for any zero
dimensional simplex (which is a point), (b) automatically holds.)

Apply the induction assumption to each simplex of (∂∆0 × {t1}, τ̃pre) with the
above definition of E1 on Vertex(∂∆0 × {t1}, τ̃pre), from the simplices of the
lowest dimension ( dimension 1) to the simplices of the highest dimension (di-
mension n − 1). (Note that each such simplex has dimension at most n − 1.)
One should begin with each 1-simplex (with boundary being two points — two
0-simplices), then each 2-simplex, and so on.

First, let e be any 1-simplex of (∂∆0 × {t1}, τ̃pre) with boundary ∂e = {v0, v1}.
Obviously, the condition of Lemma 3.11 automatically holds for simplex e in
place of ∆0 and ∂e in place of ∂∆0, since ∂e is zero-dimensional. By the
induction assumption, there is a subdivision (e, τ̃) of (e, τ̃pre) and the definition
of E1 for each vertex of (e, τ̃) such that

(1) The definition of E1 on the original vertices {v0, v1} are the same as before.

(2) For any x ∈ Vertex(e, τ̃),

E1(x) ⊃ E1(v0) ∩ E1(v1).
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(3) For any simplex e′ of (e, τ̃) (a line segment of e)

⋂

x∈Vertex(e′)

E1(x) ≥ K1 −
dim(e)(dim(e) + 1)

2
.

After we have done the above procedure for each 1-simplex, we can do it for
each 2-simplex, since we already have simplicial structure and the definition of
E1 for the boundary of any 2-simplex as required in the condition of Lemma
3.11.

Going through this way, finally, one obtains a subdivision (∂∆0 × {t1}, τ̃) of
(∂∆0 × {t1}, τ̃pre) and the definition of E1 for each newly introduced vertex,
such that the following two statements hold.

1. For each old simplex ∆ of (∂∆0 × {t1}, τ̃pre) and any new vertex x ∈ ∆,

(c) E1(x) ⊃
⋂

y∈Vertex(∆,τ̃pre)

E1(y) .

2. If ∆ is a simplex of (∂∆0 × {t1}, τ̃), then

#


 ⋂

y∈Vertex(∆)

E1(y)


 ≥ K1 −

dimY (dimY + 1)

2
= K1 −

(n− 1)n

2
.

(This is the requirement (b) in Step 1.)

The first statement is the induction assumption of validity of (2) and the second
statement is the induction assumption of validity of (3).

Step 4. In this step, we will apply Lemma 3.10 to define the simplicial struc-
ture τ̃ on ∂∆0 × [t0, t1] and the definitions of E1 on all vertices. Note that we
already have simplicial structure τ̃ on ∂∆0×{t0} and on ∂∆0×{t1}. Further-
more, τ̃ |∂∆0×{t1} is a subdivision of τ̃ |∂∆0×{t0} if we regard both ∂∆0 × {t0}
and ∂∆0×{t1} as ∂∆0. Apply Lemma 3.10 (with ∂∆0 in place of X) to obtain
the simplicial structure on ∂∆0×[t0, t1] (we only need to introduce new vertices
on ∂∆0 × { t0+t1

2 }).
For each new vertex (u, t0+t1

2 ) ∈ ∂∆0 × { t0+t1
2 }, consider (u, t0) ∈ ∂∆0 × {t0}.

From 3.1, there is a unique simplex ∆ of (∂∆0 × {t0}, τ̃) such that (u, t0) ∈
interior(∆). Choose any vertex x of ∆ and define E1(u, t0+t1

2 ) = E1(x).

So we have the simplicial structure τ̃ on ∂∆0 × [t0, t1] and the definition of
E1(x) for each x ∈ Vertex(∂∆0 × [t0, t1]). We need to verify the condition (3).

Let ∆ be any simplex of (∂∆0 × {t0}, τ̃) with vertices {(u0, t0), (u1, t0), · · · ,
(ui, t0)}. Then

#(E1(u0, t0) ∩ E1(u1, t0) ∩ · · · ∩ E1(ui, t0)) ≥ K1 −
dimY (dimY + 1)

2
.
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Let G1 = E1(u0, t0)∩E1(u1, t0)∩ · · · ∩E1(ui, t0). From the above definition of
E1 for vertices of ∂∆0 × { t0+t1

2 }, we know that if (u, t0) ∈ ∆ and (u, t0+t1
2 ) ∈

Vertex(∂∆0 × [0, 1], τ̃ ), then

(d) E1(u,
t0 + t1

2
) ⊃ G1.

Since each E1(uj , t1) is either E1(uj , t0) or is obtained by replacing one element
of E1(uj , t0) by λ, we have

(e)

#(G1 ∩E1(u0, t1) ∩ E1(u1, t1) ∩ · · · ∩ E1(ui, t1))

≥ K1 − dimY (dimY+1)
2 − (i+ 1)

≥ K1 − (n−1)n
2 − n

= K1 − n(n+1)
2 .

(Note that there are i+ 1 (≤ n) sets of {E1(uj , t1)}ij=0, and, therefore, at most
i+ 1 points were taken out from G1.)
Recall that τ̃ on ∆0 × {t1} is the subdivision of τ̃pre. By (c) of Step 3, we have

⋂

x∈Vertex(∆×{t1},τ̃)

E1(x) ⊃
⋂

y∈Vertex(∆×{t1},τ̃pre)

E1(y)

= E1(u0, t1) ∩ E1(u1, t1) ∩ · · · ∩ E1(ui, t1).

(Note that (c) implies that the above “⊃” holds if the left hand side of “⊃”
is replaced by E1(x) for any x ∈ Vertex(∆ × {t1}, τ̃), so it also holds for the
intersection of these E1(x). In fact, the above “⊃” can be replaced by “=”.)
Then combining it with (d), we have

⋂

x∈Vertex(∆×[t0,t1],τ̃)

E1(x) = G1 ∩ E1(u0, t1) ∩ E1(u1, t1) ∩ · · · ∩ E1(ui, t1)

which has at least K1 − n(n+1)
2 elements by (e). Combining this fact with (3)

of Lemma 3.10, we know that the desired condition (3) holds for any simplex
of (∂∆0 × [t0, t1], τ̃).
Evidently, (2) holds from the construction.
Since (b) holds for ∂∆0×{t1}, one can continue this procedure. This ends the
proof.

ut

Corollary 3.12. Suppose that {H1, H2, · · · , Hm} satisfies the condition (∗).
Suppose that (X,σ) is a simplicial complex consisting of a single simplex and
its faces. Suppose that there is assigned, for each vertex x ∈ (X,σ), a set
E1(x) ⊂ H1 which satisfies the condition (∗∗).
It follows that there are a subdivision (X, τ) of (X,σ) and an assignment, for
each new vertex x ∈ Vertex(X, τ), a set E1(x) ⊂ H1, satisfying condition (∗∗),
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with the following conditions. (The definition of E1 for the old vertex should
not be changed.)
(1) For any x ∈ Vertex(X, τ),

E1(x) ⊃
⋂

y∈Vertex(X,σ)

E1(y) .

(2) For any simplex ∆ of (X, τ),

#


 ⋂

x∈Vertex(∆)

E1(x)


 ≥ K1 −

dimX(dimX + 1)

2
.

Proof: To prove this corollary, one needs to apply Lemma 3.11 to simplices
from the lowest dimension (e.g. dimension one simplex whose boundary consists
two vertices of (X,σ)) to the highest dimension (e.g the simplex X itself with
boundary ∂X). Each time, we only work on a single simplex ∆ of (X,σ). And
when we work on ∆, we should assume that we already have the subdivision
and the definition of E1 on the boundary ∂∆ to satisfy the condition in Lemma
3.11 with dim(∂∆) in place of dim(Y ).

ut

Corollary 3.13. Let (X,σ) be a simplicial complex consisting of a single
simplex X and all its faces. Suppose that associated to each x ∈ Vertex(X,σ),
there is a grouping E1(x), E2(x), · · · , Em(x) of E.
It follows that there is a subdivision (X, τ) of (X,σ), and associated to each
new vertex x ∈ Vertex(∆, τ), there is a grouping E1(x), E2(x), · · · , Em(x) of E
(for any old vertex of (∆, σ), the grouping should not be changed), such that
the following hold.
For each newly introduced vertex x ∈ Vertex(X, τ),

(2) Ej(x) ⊂
⋃

y∈Vertex(X,σ)

Ej(y), j = 1, 2, · · · ,m.

For any simplex ∆ of (X, τ) (after subdivision),

(3) #(
⋂

x∈Vertex(∆)

E1(x)) ≥ K1 −
n(n+ 1)

2

where n = dimX.
(In this corollary, we do not require the condition (1) in Lemma 3.4. This will
be done in the next corollary.)

Proof: Set
⋃
y∈Vertex(X,σ) Ej(y) := Hj , j = 1, 2, · · · ,m. Then
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H1, H2, · · · , Hm satisfy condition (∗), and for each x ∈ Vertex(X,σ), E1(x) ⊂
H1 satisfies (∗∗).
Applying Corollary 3.12, we obtain the subdivision (X, τ) and the definition
of E1(x), for each new vertex, to satisfy condition (∗∗), and (1) and (2) in the
Corollary 3.12.
For each new vertex x, since E1(x) satisfies (∗∗), we can extend it to a grouping
E1(x), E2(x), · · · , Em(x) such that Ei(x) ⊂ Hi. Therefore this grouping satisfy
the condition (2) of our corollary.
The condition (3) follows from the condition (2) of Corollary 3.12. Thus the
corollary is proved.

ut

Corollary 3.14. Let (X,σ) be a simplicial complex consisting of a single
simplex X and all its faces. Suppose that associated to each x ∈ Vertex(X,σ),
there is a grouping E1(x), E2(x), · · · , Em(x) of E.
It follows that there is a subdivision (X, τ) of (X,σ), and associated to each
new vertex x ∈ Vertex(∆, τ), there is a grouping E1(x), E2(x), · · · , Em(x) of E
(for any old vertex of (∆, σ), the grouping should not be changed), such that
the following hold.
For each newly introduced vertex x ∈ Vertex(X, τ),

(1)
⋂

y∈Vertex(X,σ)

Ej(y) ⊂ Ej(x), j = 1, 2, · · · ,m,

and

(2) Ej(x) ⊂
⋃

y∈Vertex(X,σ)

Ej(y), j = 1, 2, · · · ,m.

For any simplex ∆ of (X, τ) (after subdivision),

(3) #(
⋂

x∈Vertex(∆)

E1(x)) ≥ K1 −
n(n+ 1)

2
.

where n = dimX.
(Comparing this Corollary to Lemma 3.4, the only difference is that we require
(3) holds only for E1 in the corollary.)

Proof: The only difference between this corollary and Corollary 3.13 is that we
require condition (1) holds. To make (1) hold, we need to do the following. Re-
serve all the subsets

⋂
y∈Vertex(X,σ) Ej(y), j = 1, 2, · · · ,m, which are supposed

to be in Ej(x) (if we want the condition (1) to hold), for any newly introduced
vertex x; group the rest of the elements of E (using Corollary 3.13); and finally
put

⋂
y∈Vertex(X,σ) Ej(y) into each Ej(x). The details are as follows.

Set
⋂
y∈Vertex(X,σ) Ej(y) := Dj , j = 1, 2, · · · ,m. Then Dj , j = 1, 2, · · · ,m

are mutually disjoint. To see this, we fix a y ∈ Vertex(X,σ), and notice
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that Dj ⊂ Ej(y), and Ej(y), j = 1, 2, · · · ,m are mutually disjoint, from the
definition of grouping. Similarly, if j1 6= j2, then Dj1 ∩ Ej2(y) = ∅, for any
y ∈ Vertex(X,σ).
Consider E′ = E\(∪jDj) and the m-tuple

(K ′1,K
′
2, · · · ,K ′m) = (K1 −#(D1),K2 −#(D2), · · · ,Km −#(Dm)).

For any y ∈ Vertex(X,σ), the grouping E1(y), E2(y), · · · , Em(y) of E of type
(K1,K2, · · · ,Km) induces a grouping E′1(y), E′2(y), · · · , E′m(y) of E′ of type
(K ′1,K

′
2, · · · ,K ′m), by setting E′j(y) = Ej(y)\Dj .

Apply Corollary 3.13 to the simplex (X,σ) and those groupings of E ′, to obtain
a subdivision (X, τ) and groupings E ′1(x), E′2(x), · · · , E′m(x) of E′ for all newly
introduced vertices x ∈ Vertex(X, τ) such that the following hold.
For each newly introduced vertex x ∈ Vertex(X, τ),

(2′) E′j(x) ⊂
⋃

y∈Vertex(X,σ)

E′j(y), j = 1, 2, · · · ,m.

For any simplex ∆ of (X, τ) (after subdivision),

(3′) #(
⋂

x∈Vertex(∆)

E′1(x)) ≥ K ′1 −
n(n+ 1)

2
,

where n = dimX.
Finally, let Ej(x) = E′j ∪Dj for any x ∈ Vertex(X, τ). Then the desired condi-
tion (1) of the corollary means Dj ⊂ Ej(x), which is true from the definition.
Also the conditions (2) and (3) of the corollary follows from (2′) and (3′).

ut

Corollary 3.15. Suppose that (X,σ) is a simplicial complex. Suppose that
for each vertex x ∈ Vertex(X,σ), there is a grouping E1(x), E2(x), · · · , Em(x)
of E.
It follows that there is a subdivision (X, τ) of (X,σ), and there is an extension
of the definition of the groupings of E for Vertex(X,σ) to the groupings of E
for Vertex(X, τ) ⊃ Vertex(X,σ) such that the following properties hold.
For each newly introduced vertex x ∈ Vertex(X, τ), if x ∈ ∆, where ∆ is a
simplex of (X,σ)(before subdivision), then

(1)
⋂

y∈Vertex(∆,σ)

Ej(y) ⊂ Ej(x), j = 1, 2, · · · ,m,

and

(2) Ej(x) ⊂
⋃

y∈Vertex(∆,σ)

Ej(y), j = 1, 2, · · · ,m.
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For any simplex ∆1 of (X, τ) (after subdivision),

(3) #(
⋂

x∈Vertex(∆1)

E1(x)) ≥ K1 −
n(n+ 1)

2
,

where n = dimX.
(The above (1) and (2) imply that for any x ∈ Vertex(X, τ),

⋂

y∈Vertex(X,σ)

Ej(y) ⊂ Ej(x) ⊂
⋃

y∈Vertex(X,σ)

Ej(y), j = 1, 2, · · · ,m.)

Proof: The proof is exactly the same as that of Corollaries 3.13 and 3.14. In
fact, in the proof of Corollary 3.13, we were working simplex by simplex from
the lowest dimension to the highest dimension. As same as Corollary 3.13,
when we work on simplex ∆, we should suppose that, we have already done
with ∂∆. The only difference is the following. We should choose the sets Hi,
Di differently according to the simplex we are working on. For simplex ∆,
choose Hi =

⋃
y∈Vertex(∆) Ei(y), Di =

⋂
y∈Vertex(∆) Ei(y), i = 1, 2 · · · ,m.

ut
Lemma 3.4 is a special case of the following theorem.

Theorem 3.16. Suppose that (X,σ) is a simplicial complex. Suppose that for
each vertex x ∈ Vertex(X,σ), there is a grouping E1(x), E2(x), · · · , Em(x) of
E.
It follows that there is a subdivision (X, τ) of (X,σ), and there is an extension
of the definition of the groupings of E for Vertex(X,σ) to the groupings of E
for Vertex(X, τ) ⊃ Vertex(X,σ) such that the following properties hold.
For each newly introduced vertex x ∈ Vertex(X, τ), if x ∈ ∆, where ∆ is a
simplex of (X,σ) (before subdivision), then

(1)
⋂

y∈Vertex(∆,σ)

Ej(y) ⊂ Ej(x), j = 1, 2, · · · ,m,

and

(2) Ej(x) ⊂
⋃

y∈Vertex(∆,σ)

Ej(y), j = 1, 2, · · · ,m.

For any simplex ∆1 of (X, τ) (after subdivision),

(3) #(
⋂

x∈Vertex(∆1)

Ej(x)) ≥ Kj −
n(n+ 1)

2
, j = 1, 2, · · · ,m,

where n = dimX.

Proof: We will apply Corollary 3.15 to prove our theorem. First we can apply
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Corollary 3.15 to E1 and (X,σ) to make the condition (3) of the theorem hold
for E1 and any simplex of the subdivision, and also the conditions (1) and (2)
of the theorem hold. We call the simplicial structure after this step, τ1.
Then we apply Corollary 3.15 to E2 (in place of E1 ) and (X, τ1) (in place
of (X,σ)). We call this new subdivision τ2. Now (3) for E2 holds for any
simplex of new subdivision τ2. Furthermore (1) and (2) of Corollary 3.15 hold
for (X, τ1) as the simplicial structure before subdivision (i.e., in place of (X,σ))
and (X, τ2) as the subdivision (i.e., in place of (X, τ)).
The important point is, (3) for E1 holds for any simplex ∆2 of (X, τ2), because
(3) for E1 holds for the simplex ∆1 of (X, τ1) which supports ∆2 (i.e., ∆1 ⊃ ∆2),
and because (1) holds for τ1 (in place of σ) and τ2 (in place of τ). So, now (3)
holds for both E1 and E2.
(It is also obvious that (1) for σ and τ2 ( in place of τ) follows from (1) for σ
and τ1 (in place of τ), together with (1) for τ1 (in place of σ) and τ2 (in place
of τ). The same thing also holds for (2).)
Repeating this procedure, we can define τ3, τ4, and so on, until τm. Then (1),
(2), (3) hold for σ and τm and any Ej , j = 1, 2, · · · ,m. Let τ = τm.

ut

Remark 3.17. Let us remark that, in the proof of Lemma 3.11 when we
construct the sets E1, simplex by simplex for (X,σ), it is impossible to obtain

#


 ⋂

x∈Vertex(∆′)

E1(x)


 ≥ K1 −

dim(∆′)(dim(∆′) + 1)

2
,

for each simplex ∆′ of subdivision (X, τ) of (X,σ). (Explained below.)
But from the proof of Corollary 3.12, we can make the following hold,

#


 ⋂

x∈Vertex(∆′)

E1(x)


 ≥ K1 −

dim(∆)(dim(∆) + 1)

2
,

where ∆ is any simplex of (X,σ) which support ∆′ (i.e., ∆′ ⊂ ∆ as spaces).
In other words,

#


 ⋂

x∈Vertex(∆′)

E1(x)


 ≥ K1 −

l(l + 1)

2
,

if ∆′ is a subspace of l-skeleton X(l) of (X,σ).
In the induction construction from dimension not larger than n−1 to dimension
n (see the proof of Lemma 3.11), in particular, from (∂∆0×{t0}, τ̃) to (∂∆0×
[t0, t1], τ̃), for any simplex ∆ inside one of (∂∆0×{t0}, τ̃) and (∂∆0×{t1}, τ̃),
we do have ⋂

x∈Vertex(∆)

E1(x) ≥ K1 −
(n− 1)n

2
,
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from our construction (see condition (b) in the proof of Lemma 3.11). But for
simplices ∆ which are not completely sitting inside one of (∂∆0 × {t0}, τ̃) and
(∂∆0 × {t1}, τ̃), we do NOT have

⋂

x∈Vertex(∆)

E1(x) ≥ K1 −
(n− 1)n

2
,

even if we assume dim(∆) ≤ n− 1.
For the application we have in mind, we need the following strengthened form
of Theorem 3.16 (in fact, we will need the version of the following result which
allow multiplicities; see Theorem 3.32).

Theorem 3.18. Let (X,σ) be a simplicial complex and Y = X (l) be the l-
skeleton of X. Suppose that there is a subdivision (Y, τ) of (Y, σ) and a grouping
for each vertex of (Y, τ) (and (X,σ)), such that
(a) if ∆ is a simplex of (Y, τ), then

#


 ⋂

y∈Vertex(∆,τ)

Ej(y)


 ≥ Kj −

l(l + 1)

2
. j = 1, 2, · · · ,m;

(b) if ∆ is a simplex of (Y, σ) ⊂ (X,σ), and y ∈ ∆ is a vertex of (Y, τ), then

⋂

x∈Vertex(∆,σ)

Ej(x) ⊂ Ej(y) ⊂
⋃

x∈Vertex(∆,σ)

Ej(x), j = 1, 2, · · · ,m.

It follows that there is a subdivision (X, τ̃) of (X,σ) and groupings for all the
vertices, such that
(1) (X, τ̃)|Y = (Y, τ), and groupings on Vertex(Y, τ) are the same as the old
ones.
(2) if ∆ is a simplex of (X,σ), and x1 ∈ ∆ is a newly introduced vertex of
(X, τ̃), then

⋂

x∈Vertex(∆,σ)

Ej(x) ⊂ Ej(x1) ⊂
⋃

x∈Vertex(∆,σ)

Ej(x), j = 1, 2, · · · ,m;

(3) for each simplex ∆ of (X, τ̃), if ∆ is inside the l′-skeleton (X,σ)(l′) (l′ ≥ l)
of (X,σ), then

#


 ⋂

x∈Vertex(∆,τ̃)

Ej(x)


 ≥ Kj −

l′(l′ + 1)

2
. j = 1, 2, · · · ,m.

Proof: If one does not require (1) (i.e., if it is allowed to introduce more vertices
into (Y, τ)), then the theorem is Theorem 3.16 (see 3.17 also).
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Recall, in the proof of Theorem 3.16, we first constructed a subdivision (X, τ1)
and the groupings to make the above (3) hold for E1. Then based on (X, τ1),
we constructed a new subdivision (X, τ2) and groupings to make the above (3)
hold also for E2, and so on. If we use the same procedure to prove Theorem
3.18, we will encounter a difficulty in the second step. We have no problem
for the first step, since we can begin with what we already have on (X (l), τ)
and work on each of the simplexes of dimension larger than l (see Lemma 3.11,
the proof of Corollary 3.12 and Remark 3.17). But for the second step, the
condition (a) may not hold for l-skeleton (X, τ1)(l) of (X, τ1). So we need to
start with the simplex of the lowest dimension, which forced us to introduce
vertices on (Y, τ) = (X(l), τ).
The following small trick can be used to avoid the difficulty mentioned above.
Consider simplex ∆. Suppose that the subdivision (∂∆, τ̃) and the groupings
for those vertices are chosen. Identify ∆ with ∂∆ × [0, 1]/∂∆ × {1} as in the
proof of Lemma 3.11. Choose a point t0 ∈ (0, 1), and write

∆ = ∂∆× [0, t0] ∪ (∂∆× [t0, 1]/∂∆× {1}).

Substitute ∆ by ∆sub = ∂∆ × [t0, 1]/∂∆ × {1}. The simplicial structure τ̃pre
and the groupings on ∂∆sub = ∂∆×{t0} should be endowed the same as τ̃ and
the groupings on ∂∆ = ∂∆×{0}. Then apply Theorem 3.16 to ∆sub. One may
introduce new vertices on (∂∆× {t0}, τ̃pre), but no new vertices are introduced
on ∂∆ = ∂∆× {0}. Finally, for the part ∂∆× [0, t0], same as in the Step 4 of
the proof of Lemma 3.11, we apply Lemma 3.10 to make this part a simplicial
complex, in which we do not introduce any new vertices on ∂∆× {0}.

ut

3.19. For convenience, define

Ej(∆) =
⋂

x∈Vertex(∆)

Ej(x), j = 1, 2, · · · ,m

for each simplex ∆ of (X, τ̃). Then (3) of 3.18 becomes

#(Ej(∆)) ≥ Kj −
l′(l′ + 1)

2
,

if ∆ is in the l′-skeleton of (X,σ) (l′ ≥ l).

3.20. We need a different version of Theorem 3.18 which allows multiplicity.
Let w1, w2, · · · , wk be a k-tuple of positive integers. Let

E = {λ∼w1
1 , λ∼w2

2 , · · · , λ∼wkk }

be an index set with multiplicity and λi 6= λj if i 6= j. (See 1.1.7 (b) for the
notation λ∼w.) Let w1+w2+· · ·+wk = K. (3.2 is a special case with each wi =
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1.) Let K1,K2, · · · ,Km be non negative integers with K1 +K2 + · · ·+Km = K.
Suppose that

Ej = {λ∼p
j
1

1 , λ
∼pj2
2 , · · · , λ∼p

j
k

k }, j = 1, 2, · · · ,m,

where pji are nonnegative integers. If {E1, E2, · · · , Em} satisfies

k∑

i=1

pji = Kj for each j = 1, 2, · · · ,m, and

m∑

j=1

pji = wi for each i = 1, 2, · · · , k,

then we call {E1, E2, · · · , Em} a grouping of E of type (K1,K2, · · · ,Km),
or just a grouping of E.

3.21. It is convenient to use the notations of union, intersection etc. for the
sets with multiplicity. A is called a subset of E if A is of the form

{λ∼t11 , λ∼t22 , · · · , λ∼tkk }

with 0 ≤ ti ≤ wi, for each 1 ≤ i ≤ k. Note that if all ti = 0, then A is called
the empty set. If ti = wi, then A = E. Let B be another subset of E of form
{λ∼s11 , λ∼s22 , · · · , λ∼skk }. A is a subset of B (denoted by A ⊂ B) if ti ≤ si
for all i. In general, define the union, intersection, and difference of
two subsets A and B of E as follows.

A ∪B = {λ∼max(t1,s1)
1 , λ

∼max(t2,s2)
2 , · · · , λ∼max(tk,sk)

k }

A ∩B = {λ∼min(t1,s1)
1 , λ

∼min(t2,s2)
2 , · · · , λ∼min(tk,sk)

k }

A\B = {λ∼max(0,t1−s1)
1 , λ

∼max(0,t2−s2)
2 , · · · , λ∼max(0,tk−sk)

k } .
(The definitions of union and intersection can be easily generalized to finitely
many subsets of E.)
Warning 1: B ∩ (A\B) may be a nonempty set.
Warning 2: The assumption that {E1, E2, · · ·Em} is a grouping of E does
NOT imply that ∪mi=1Ei = E or that Ei ∩ Ei′ = ∅ for i 6= i′. (See 3.20.)
But A\B = A\(A ∩B) still holds.

3.22. Let (X,σ) be a simplicial complex. Suppose that each vertex x ∈ X is
associated with a grouping {E1, E2, · · · , Em}, satisfying

#(Ej) =

k∑

i=1

pji = Kj .
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(Recall that, for the notation of #, we count multiplicity.)
In Theorem 3.18, we introduced subdivisions (X, τ) of (X,σ), and groupings
for newly introduced vertices to make #(Ej(∆)) large, for all simplices ∆ of
(X, τ). In order to prove the decomposition theorem in the next section, we
need a stronger result, since the multiplicity of the spectrum of the homomor-
phism is involved. (See §2. We can not always perturb the map to have distinct
spectrum, like the one dimensional case.) Fortunately, this stronger result can
be proved in the same way as that for Theorem 3.18, with a few modifications.
For any subset F = {λ∼u1

1 , λ∼u2
2 , · · · , λ∼ukk } ⊂ E, define

◦
F = {λ∼v1

1 , λ∼v2
2 , · · · , λ∼vkk },

where

vi =

{
ui if ui = wi

0 if ui < wi .

That is,
◦
F is the set of all those elements λi, which are entirely inside F .

Evidently,
◦
Ej(∆) =

⋂

x∈Vertex(∆)

◦
Ej(x).

Instead of the condition that Ej(∆) is large (see 3.18 and 3.19), we need to

make
◦
Ej(∆) large for any simplex ∆ of (X, τ̃). For this purpose,

◦
Ej(x) should

be large for each vertex of (X,σ) at the beginning.

3.23. For each set F = {λ∼u1
1 , λ∼u2

2 , · · · , λ∼ukk } ⊂ E, define

F̄ = {λ∼v1
1 , λ∼v2

2 , · · · , λ∼vkk }

where

vi =

{
wi if ui > 0

0 if ui = 0 .

Obviously,
◦
F ⊂ F ⊂ F̄ .

3.24. Let H1, H2, · · · , Hm (not necessarily disjoint) be finite subsets of E sat-
isfying condition (∗) in 3.7, and E = H1 ∪H2 ∪ · · · ∪Hm. Suppose that

◦
Hi = Hi = H̄i for each i = 1, 2, · · · ,m.

In what follows, we will require that

Ej ⊂ Hj , j = 1, 2, · · · ,m

(comparing with the condition (2) in Theorem 3.18).
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3.25. For each subset I ⊂ {1, 2, · · · ,m}, define

HI =
⋃

j∈I
Hj .

Let G′I = ∩j∈IHj . Then define

GI = G′I\
⋃

J ⊃6= I

G′J .

Another way to define GI is by

GI = {λ ∈ E | λ ∈ Hi if and only if i ∈ I}.

(Note that GI may be an empty set for some I.) Obviously,

◦
GI = GI = ḠI ⊂

◦
HI = HI = H̄I .

If I ∩ J = ∅, then HI ∩GJ = ∅.
Furthermore, for any λ ∈ E, there is a unique set I (defined by I = {i | λ ∈ Hi})
such that λ ∈ GI . Hence E is a disjoint union of

{GI , ∅ 6= I ⊂ {1, 2, · · · ,m}}.

Similarly, we have

HI =
⋃

J∩I 6=∅
GJ .

3.26. Under the above partition GI of E, two elements λ, µ ∈ E are in the
same part, if and only if the following is true. For any i = 1, 2, · · · ,m, either
Hi contains both λ and µ, or Hi contains none of λ and µ.
For any E1, E

′
1 ⊂ H1, if #(E1 ∩ GI) = #(E′1 ∩ GI) for any I ⊂ {1, 2, · · · ,m},

then from the end of 3.25,

#(E1 ∩HI) =
∑

J∩I 6=∅
#(E1 ∩GJ ) =

∑

J∩I 6=∅
#(E′1 ∩GJ) = #(E′1 ∩HI)

for any I ⊂ {1, 2, · · · ,m}. Hence #(HI\E1) = #(HI\E′1). At this circum-
stance, either both of E1 and E′1 satisfy (∗∗) in 3.8, or both of them do not
satisfy (∗∗) in 3.8.
Note that Hi = ∪I3iGI . A grouping {E1, E2, · · ·Em} satisfies Ei ⊂ Hi (i =
1, 2, · · ·m) if and only if for any i /∈ I, Ei ∩GI = ∅.
For the rest of the section, let Ω ≥ max(w1, w2, · · · , wm) be a fixed
number, where w1, w2, · · · , wm are the multiplicities in E. Note that for
our application, sometimes, we have to allow Ω to be larger than the maximum
multiplicity.
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Assumption 3.27. For each grouping {E1(x), E2(x), · · · , Em(x)}, we always
assume that

#(
◦
Ej(x)) ≥ #(Ej(x))−MΩ = Kj −MΩ, j = 1, 2, · · · ,m,

where M = 2m − 1. We not only require each initial grouping for (X,σ) to
satisfy the above assumption, but also require any new groupings for vertices
of (X, τ) to satisfy the assumption.

Since M = 2m − 1, there are totally M non-empty subsets I ⊂ {1, 2, · · · ,m}.
If the grouping {E1, E2, · · · , Em} satisfies

#(
◦
Ej ∩GI) ≥ #(Ej ∩GI)− Ω

for all j = 1, 2, · · · ,m and for all I ⊂ {1, 2, · · · ,m}, then it also satisfies As-
sumption 3.27.

Lemma 3.28. If {E1, E2, · · · , Em} is a grouping of E with Ei ⊂ Hi, then there
is a grouping {E′1, E′2, · · · , E′m} of E satisfying Assumption 3.27, and

E′i ⊂ Hi, E′i ⊃
◦
Ei for all i = 1, 2, · · · ,m.

Proof: The proof is straight forward. Consider E ′1, E
′
2, · · · , E′m to be m boxes

with no element at the beginning, and put each element of E into one of the
boxes, following the procedures described below.

Step 1. Put all the elements of
◦
Ei into box E′i for each i = 1, 2, · · · ,m. (Thus

E′i ⊃
◦
Ei.)

Step 2. Fix I ⊂ {1, 2, · · · ,m}. For the set E ′1, if there is a λi ∈ GI\(E′1 ∪E′2 ∪
· · · ∪ E′m) such that

#(E′1 ∩GI) + wi ≤ #(E1 ∩GI),

where wi is the multiplicity of λi in E, then put the entire set {λ∼wii } into E′1.
(Note that if 1 /∈ I, then E1 ∩ GI = ∅. Hence for I, we need not do anything
for E1.) Repeat this procedure until no such i exists. Thus, so far,

#(
◦
E′1 ∩GI) = #(E′1 ∩GI) ≥ #(E1 ∩GI)− (Ω− 1).

For the same I above, repeat the above construction for the set E ′2, then E′3,
etc.

After this step has been completed for each I, (it is done for each set I sepa-
rately) we have the following:

#(
◦
E′j ∩GI) = #(E′j ∩GI) ≥ #(Ej ∩GI)− (Ω− 1).
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Step 3. Put what left for each GI from the previous steps, arbitrarily into the
boxes

E′1, E
′
2, · · · , E′m

to make the following condition hold:

#(E′j ∩GI) = #(Ej ∩GI).

From the end of 3.26, E′i ⊂ Hi is a consequence of the above equation. (Note
that Ei ⊂ Hi.) Evidently, {E′1, E′2, · · · , E′m} is as desired.

ut

3.29. A set E1(⊂ H1) of K1 elements is said to satisfy the condition (∗∗∗), if
there is a grouping (E1, E2, · · · , Em) of E (of type (K1,K2, · · ·Km)), Ei ⊂ Hi,
satisfying Assumption 3.27.
Obviously, (∗ ∗ ∗) implies (∗∗).
The following corollary is a direct consequence of Lemma 3.28.

Corollary 3.30. For any set E1 (⊂ H1) satisfying (∗∗), there is a set E ′1 (⊂
H1) satisfying (∗ ∗ ∗) such that

E′1 ⊃
◦
E1.

Proof: Since E1 satisfies (∗∗), we can extend E1 to a grouping {E1, E2, · · · , Em}
of E such that Ei ⊂ Hi for each i. By Lemma 3.28, there is a grouping
{E′1, E′2, · · · , E′m} satisfying Assumption 3.27, and E ′i ⊂ Hi for each i. This is
condition (∗ ∗ ∗) for E′1.

ut

Lemma 3.31. Let E1 and F1 be two sets satisfying condition (∗ ∗ ∗). Suppose
that there is a λ ∈ E such that

{λ∼w} ⊂ ◦
F1\

◦
E1,

where w is the multiplicity of λ in E. Then there are (perhaps repeating)

elements µ1, µ2, · · · , µt ∈ E1\
◦
F1, where t = w −#({λ∼w} ∩ E1), such that

E′1 = (E1 ∪ {λ∼w})\{µ1, µ2, · · · , µt}

satisfies (∗∗) and

#((
◦
E′1 ∩

◦
E1) ∩GI) ≥ #(

◦
E1 ∩GI)− (w + Ω)

≥ #(
◦
E1 ∩GI)− 2Ω

for each I ⊂ {1, 2, · · · ,m}. As a consequence,

#(
◦
E′1 ∩

◦
E1) ≥ #(

◦
E1)− 2MΩ.
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Proof: Let t1 = #({λ∼w} ∩ E1). Then t1 < w. Applying Lemma 3.9 t :=
w − t1 times, one can obtain a (possibly repeating) set T ′ = {ν1, ν2, · · · , νt} ⊂
E1\F1 ⊂ E1\

◦
F1, such that

Ẽ1 = (E1 ∪ {λ∼w})\T ′

satisfies (∗∗).
From 3.26, if another set T = {µ1, µ2, · · · , µt} ⊂ E1\

◦
F1, satisfies that

#(T ∩GI) = #(T ′ ∩GI)

for each I ⊂ {1, 2, · · · ,m}, then E ′1 = (E1 ∪ {λ∼w})\T also satisfies (∗∗).
T ⊂ E1\

◦
F1 will be constructed to satisfy the following condition. For each

I ⊂ {1, 2, · · · ,m},
#(T ∩GI) = #(T ′ ∩GI),

and (T ∩ (E1\T )) ∩ GI is either empty or {µ∼si } for a certain µi ∈
{µ1, µ2, · · · , µt}. (Note that T ∩(E1\T ) may not be empty, since we are dealing
with sets with multiplicities.)

To do the above, write

(E1\
◦
F1) ∩GI = {λ∼s1i1

, λ∼s2i2
, · · · , }.

Then put each of the sets {λ∼s1i1
}, {λ∼s2i2

}, · · · , entirely into T one by one until
we can not do it without violating the restriction

#(T ∩GI) ≤ #(T ′ ∩GI).

Then make T to satisfy #(T ∩ GI) = #(T ′ ∩ GI) by putting part of {λ∼sjij
}

into T if necessary.

Since #(T ) ≤ w, combining with the above condition for (T ∩ (E1\T )) ∩ GI ,
after a moment thinking, one can obtain,

#((E1\T )◦ ∩GI) ≥ #(
◦
E1 ∩GI)− (w + Ω).

(In fact,
◦
E1\(E1\T )◦ ⊂ ◦

T ∪ (T ∩ (E1\T )), and (
◦
T ∪ (T ∩ (E1\T ))) ∩GI has at

most w + Ω elements.)

Hence

#((
◦
E′1 ∩

◦
E1) ∩GI) ≥ #(

◦
E1 ∩GI)− (w + Ω).

ut

The following is the main result of this section. Together with Lemma 3.28, it
will be used in §4.
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Theorem 3.32. Let (X,σ) be a simplicial complex, and Y = X (l), the l-
skeleton of X. Suppose that (Y, τ) is a subdivision of (Y, σ) and, for each
vertex y ∈ Vertex(Y, τ), there is a grouping E1(y), E2(y), · · · , Em(y) of E (of
type (K1,K2, · · · ,Km)). Suppose that the groupings satisfy the following three
conditions:

(a) For each simplex ∆ of (Y, τ), and i = 1, 2, · · · ,m,

#(
◦
Ei(∆)) ≥ Ki − (MΩ +MΩ dimY · (dimY + 1)),

where M = 2m − 1.
(b) Ei(x) ⊂ Hi, i = 1, 2, · · · ,m, for each x ∈ Vertex(Y, τ).

(c) Each grouping, for a vertex of (Y, τ), satisfies Assumption 3.27.

It follows that there exist a subdivision (X, τ̃) of (X,σ) and a grouping for each
vertex of (X, τ̃), satisfying the following conditions.
(1) (X, τ̃)|Y = (Y, τ), and each grouping on Vertex(Y, τ) is as same as the old
one.
(2) Ei(x) ⊂ Hi, i = 1, 2, · · · ,m, for each x ∈ Vertex(X, τ̃), and if ∆ is a
simplex of (X,σ) (before the subdivision), and x ∈ ∆ is a newly introduced
vertex of (X, τ̃), then

◦
Ej(x1) ⊃

⋂

y∈Vertex(∆∩Y,τ)

◦
Ej(y).

(3) For each simplex ∆ of (X, τ̃), if ∆ is inside the l′-skeleton (X,σ)(l′), (l′ >
l), of (X,σ), then

#(
◦
Ej(∆)) ≥ Kj − (MΩ +MΩl′(l′ + 1)).

(4) Each grouping on Vertex(X, τ̃) satisfies Assumption 3.27.

Proof: (Sketch) The proof is the same as the one of 3.18 (see 3.11 to 3.18), using
Lemma 3.31 to replace Lemma 3.9. The arguments in 3.12 – 3.18 are easily
adopted in this new setting. We only give the proof for the part corresponding
to 3.11 and sketch the differences for other parts.
As in 3.11, consider only one simplex X = ∆0 with Y = ∂∆0, and only one set
E1(x).
Similar to Step 1 of 3.11, choose Emodel1 to satisfy condition (∗ ∗ ∗) and

◦
E1

model ⊃
⋂

x∈Vertex(∂∆0,τ)

◦
E1(x).

Replace (a) of 3.11 by

⋂

x∈Vertex(∂∆×{ti},τ̃)

(
◦
E1(x)∩ ◦E1

model
) ⊃
6=

⋂

x∈Vertex(∂∆×{ti−1},τ̃)

(
◦
E1(x)∩ ◦E1

model
) .
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Keeping the notations in 3.11, in Step 2, replace G by

G =
◦
E1(y1, t0) ∩

◦
E1(y2, t0) ∩ · · · ∩

◦
E1(yp, t0) ∩

◦
E1

model
.

If G =
◦
E1

model
, then define

E1(yi, t1) = E1
model, i = 1, 2, · · · , p.

Suppose that G 6= ◦
E1

model
. Choose λ ∈ ◦

E1

model\G. Let w be the multiplicity
of λ. Then

{λ∼w} ⊂
◦
E1

model\G.

For each (yi, t0), if λ ∈
◦
E1(yi, t0), then define E1(yi, t1) = E1(yi, t0) (as in Step

2 of 3.11). If λ /∈ ◦
E1(yi, t0), apply Lemma 3.31 to obtain E ′1 satisfying(∗∗),

◦
E′1 ⊃ G ∪ {λ∼w} and

(A) #(
◦
E′1 ∩

◦
E1) ≥ #(

◦
E1)− 2MΩ.

Then we can apply Corollary 3.29 to find E ′′1 satisfying (∗ ∗ ∗) and
◦
E′′1 ⊃

◦
E′1.

Define

E1(yi, t1) = E′′1 .

Then
◦
E1(yi, t1) ⊃

◦
E′1 ⊃ G ∪ {λ∼w}.

The arguments in Step 3 and Step 4 of 3.11 can also be employed here. (Of

course, at many places (not all places), one needs to replace Ei by
◦
Ei.) The

estimation (e) in Step 4 of 3.11 will be changed to

#
( ◦
E1(u0, t0)∩

◦
E1(u1, t0)∩· · ·∩

◦
E1(ui, t0)∩

◦
E1(u0, t1)∩

◦
E1(u1, t1)∩· · ·∩

◦
E1(ui, t1)

)

≥ K1 − [MΩ +MΩ dimY · (dimY + 1)]− 2MΩ(i+ 1)
= K1 − [MΩ +MΩ · (n− 1) · n]− 2MΩ · n
= K1 − [MΩ +MΩ · n · (n+ 1)].

(Here we used the above estimation (A) which is from Lemma 3.31.)

Since E1(yi, t1) satisfies (∗ ∗ ∗), all the other parts (e.g., induction arguments)
in 3.11—3.18 can go through easily. In the part corresponding to the proof of
Corollary 3.14, the definition of Di should be changed to

Di =
⋂

x∈Vertex(∆)

◦
Ei(x).

ut
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We remark that in §4, we will only use the theorem of the case
that X = ∆, a single simplex with Y = ∂∆.

Remark 3.33. The condition Ei(x) ⊂ Hi in (2) can be strengthened as

Ei(x) ⊂
⋃

y∈Vertex(∆∩Y,τ)

Ēi(y),

where ∆ is a simplex of (X,σ) (before the subdivision) such that x ∈ ∆ is a
newly introduced vertex. (The notation is from 3.23.)

4 Decomposition Theorems

In this section, we will prove the decomposition theorems which are needed for
the proof of our main Reduction Theorem and the main results in [EGL]. The
following Theorem 4.1 is one version of the Decomposition Theorem. After
Theorem 4.1 has been proved, we will use [Li 2] to verify that the condition
of Theorem 4.1 holds for connecting homomorphisms φn,m(for each fixed n,
m should be large enough), with the maps a1, a2, · · · aL(see below) factoring
through interval [0, 1] or the single point space {pt}. In such a way, we can
prove our main decomposition theorems (Theorem 4.35 and Theorem 4.37).

Theorem 4.1. Let X be a connected finite simplicial complex, and F ⊂ C(X)
be a finite set which generates C(X). For any ε > 0, there is an η > 0 such
that the following statement is true.
Suppose that a unital homomorphism φ : C(X)→ PMK′(C(Y ))P (rank(P ) =
K) (where Y is a finite simplicial complex) satisfies the following condition:
There are L continuous maps

a1, a2, · · · , aL : Y −→ X

such that for each y ∈ Y, SPφy and Θ(y) can be paired within η, where

Θ(y) = {a1(y)∼T1 , a2(y)∼T2 , · · · , aL(y)∼TL}

and T1, T2, · · · , TL are positive integers with

T1 + T2 + · · ·+ TL = K = rank(P ).

(See 1.1.7(b) for notation x∼Ti .) Let T = 2L(dimX + dimY )3. It follows that
there are L mutually orthogonal projections p1, p2, · · · , pL ∈ PMK′(C(Y ))P
such that
(i) ‖φ(f)(y)−p0(y)φ(f)(y)p0(y)⊕∑L

i=1 f(ai(y))pi(y)‖ < ε, for any f ∈ F and

y ∈ Y , where p0 = P −∑L
i=1 pi;

(ii) ‖p0(y)φ(f)(y)− φ(f)(y)p0(y)‖ < ε for any f ∈ F and y ∈ Y ;
(iii) rank(pi) ≥ Ti − T for 1 ≤ i ≤ L, and hence rank(p0) ≤ LT .
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4.2. In the above theorem, some of the pi may be zero projections if Ti ≤ T .
But when the theorem is applied later in this article, the positive integers Ti
are always very large compared with T = 2L(dimX + dimY )3.

The proof of this theorem will be divided into several small steps. The results
in §2 and §3 will be used. In fact, §2 and §3 will only be used in the proof of
Theorem 4.1, no other place in this paper or [EGL]. (The results in §2 have
some other applications.)

4.3. The theorem is trivial if X = {pt}, applying Theorem 1.2 of [Hu,Chapter
8]. Without loss of generality, we assume that X 6= {pt}. By the results in
§2, we can assume that φ has maximum spectral multiplicity at most Ω :=
dimX + dimY .

4.4. For any ε > 0, there is an η > 0 such that for any x1, x2 ∈ X, if
dist(x1, x2) < 2η, then

|f(x1)− f(x2)| < ε

3
for all f ∈ F.

We will prove that this η is as desired.

4.5. Recall, from 1.2.5, for any positive integer n, P nX is the symmetric
product of n-copies of X. Also, any element Λ ∈ PKX can be considered as a
set with multiplicity. So SPφy ∈ PKX.

Suppose that Λ1 ∈ P k1X,Λ2 ∈ P k2X, · · · ,Λt ∈ P ktX. Write

Λ1 = {λ1, λ2, · · · , λk1
}

Λ2 = {λk1+1, λk1+2, · · · , λk1+k2
}

...

Λt = {λk1+···+kt−1+1, · · · , λk1+···+kt}

as sets with multiplicity. By abusing the notation, we use {Λ1,Λ2, · · · ,Λt} to
denote

{λ1, λ2, · · · , λk1
, λk1+1, · · · , λk1+k2

, · · · · · · , λk1+k2+···+kt} ,

which defines an element in P k1+k2+···+ktX.
(Note that {Λ1,Λ2, · · · ,Λt} = Λ1 ∪Λ2 ∪ · · · ∪Λt, if {Λj} are mutually disjoint.
See 3.21 for the definition of unions of sets with multiplicity.)

4.6. For any fixed point y ∈ Y , write

SPφy = {λ∼w1
1 , λ∼w2

2 , · · · , λ∼wkk }
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with λi 6= λj if i 6= j. Note that w1 +w2 + · · ·+wk = K. We denote the above
k by ty to indicate that this integer depends on y. Define

(a) θ(y) =
1

4
min

1≤i<j≤ty
dist(λi, λj).

Then θ(y) > 0 for any y ∈ Y . (Of course, θ(y), in general, does not depend on
y continuously.)
For each i = 1, 2, · · · , ty, there is an open set U(y, i) 3 λi such that

(b) diameter(U(y, i)) ≤ min

(
η

2(dimY + 1)
, θ(y)

)
.

Then, obviously,

(c) dist(U(y, i), U(y, j)) ≥ 2θ(y) if i 6= j.

Applying Lemma 1.2.10, there is an (connected) open neighborhood O(y) of y
such that

SPφy′ ⊂ U(y, 1)
⋃
U(y, 2)

⋃
· · ·
⋃
U(y, ty)

for all y′ ∈ O(y). Define the continuous maps

Λ1 : O(y) −→ Pw1U(y, 1) (⊂ Pw1X)

Λ2 : O(y) −→ Pw2U(y, 2) (⊂ Pw2X)

...

Λty : O(y) −→ PwtyU(y, 1) (⊂ PwtyX)

by Λi(y
′) = SPφy′ ∩ U(y, i). Then

SPφy′ = {Λ1(y′), Λ2(y′), · · · , Λty (y′)}

for each y′ ∈ O(y). Later on, we will use the disjoint open cover

U(y, 1)
⋃
U(y, 2)

⋃
· · ·
⋃
U(y, ty) ⊃ SPφy′

of SPφy′ to decompose SPφy′ into a disjoint union of SPφy′ ∩ U(y, t) and
to identify the elements in each set SPφy′ ∩ U(y, t) as a single element with
multiplicity wt.
We further require that O(y) is so small that

(c) diameter(ai(O(y))) ≤ η

2(dimY + 1)
,

where ai : Y → X is any one of the continuous maps a1, a2, · · · , aL, appeared
in Theorem 4.1.
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4.7. Considering the open cover {O(y)}y∈Y of Y , where the open sets O(y)
are from 4.6, there exists a finite sub-cover

O = {O1, O2, · · · , O•} ⊂ {O(y)}y∈Y ,

of Y .
Without loss of generality, we assume that the simplicial complex structure
(Y, σ) of Y satisfies the following condition, because we can always refine it if
necessary.
For each simplex ∆ of (Y, σ), the closure of

Star(∆) :=
⋃

∆′∩∆6=∅
interior(∆′)

can be covered by an open set Oi ∈ O, where

interior(∆′) = ∆′\∂∆′.

(Note that Star(∆) is an open set, see 1.4.2)

4.8. For each y ∈ Y , in order to construct p1(y), p2(y), · · · , pL(y), as in The-
orem 4.1, we need to split SPφy into L sets E1(y), E2(y), · · · , EL(y) such that
each set Ei(y) is contained in an open ball of ai(y) with small radius (smaller
than 2η) and that #(Ei(y)) = Ti, 1 ≤ i ≤ L, where ai and Ti are maps
and positive integers appeared in Theorem 4.1. Since E1(y), E2(y), · · · , EL(y)
may have non-empty intersection (because of the multiplicity of the spectrum),

we need to introduce certain subsets of them, which are
◦
E1 ⊂ E1(y),

◦
E2 ⊂

E2(y), · · · ,
◦
EL ⊂ EL(y), in the notations of 3.22. This will become pre-

cise when the index set with multiplicity is introduced later. The projections
p1(y), p2(y), · · · , pL(y), to be constructed, will be certain sub-projections of the

spectral projections corresponding to
◦
E1,

◦
E2, · · · ,

◦
EL, respectively. (See Defini-

tion 1.2.8 for the spectral projection.)
Following §3, a split of SPφy into L sets E1(y), E2(y), · · · , EL(y) will be called
a grouping of SPφy. The word “grouping” is reserved only for this
purpose.
Recall, from 4.6, SPφy′ can be written as a disjoint union

SPφy′ = (SPφy′ ∩ U(y, 1))
⋃

(SPφy′ ∩ U(y, 2))
⋃
· · ·
⋃

(SPφy′ ∩ U(y, ty)).

And the elements in each set SPφy′∩U(y, t) can be identified as a single element
with multiplicity. This will serve as the index set for the groupings. To avoid
confusion, the above decomposition is NOT called a “grouping” of SPφy′ . It
is called a decomposition instead.
In the next few paragraphs, we apply §3 to construct a subdivision (Y, τ) of
(Y, σ) and useful groupings for all vertices y ∈ Vertex(Y, τ).
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4.9. Let ∆ be a simplex of (Y, σ) and

O(y1), O(y2), · · · , O(yi),

the list of all open sets in O, each of which covers ∆. Suppose that

θ(y1) ≤ θ(y2) ≤ · · · ≤ θ(yi).

From 4.6, for any y ∈ ∆ ⊂ ∩ik=1O(yk), and j ∈ {1, 2, · · · , i},

SPφy ⊂ U(yj , 1)
⋃
U(yj , 2)

⋃
· · ·
⋃
U(yj , tyj ).

Claim: If j < j′ ∈ {1, 2, · · · , i}, then each open set U(yj , t) (t = 1, 2 · · · , tyj )
intersects with at most one of {U(yj′ , s)}

ty
j′

s=1.
Proof of the Claim: Suppose that the claim is not true, that is, for some
t ∈ {1, 2, · · · , tyj}, there are two different s1, s2 ∈ {1, 2 · · · , tyj′ } such that

U(yj , t) ∩ U(yj′ , s1) 6= ∅ and U(yj , t) ∩ U(yj′ , s2) 6= ∅.

Together with the fact that diameter(U(yj , t)) ≤ θ(yj) (see (b) in 4.6), it yields

dist(U(yj′ , s1), U(yj′ , s2)) ≤ θ(yj).

This contradicts with (c) in 4.6 which gives

dist(U(yj′ , s1), U(yj′ , s2)) ≥ 2θ(yj′) > θ(yj).

(Recall θ(yj) ≤ θ(yj′).) This proves the claim.
Still suppose that j < j′. From the claim, we have the following. For each
y ∈ ∆, if two different elements of SPφy are identified as a single element in
the decomposition

U(yj , 1)
⋃
U(yj , 2)

⋃
· · ·
⋃
U(yj , tyj )

(i.e., if these two elements are in the same open set U(yj , t) for some t ∈
{1, 2, · · · , tyj}), then these two elements are also identified as a single element
in the decomposition

U(yj′ , 1)
⋃
U(yj′ , 2)

⋃
· · ·
⋃
U(yj′ , tyj′ )

(i.e., these two elements are also in the same open set U(yj′ , s) for some s ∈
{1, 2, · · · , tyj′ }).
Therefore, the decompositions of SPφy corresponding to y1 and yi are the finest
and coarsest decompositions, respectively, among all the above decompositions
(corresponding to y1, y2, · · · , yi). The coarsest decomposition will be used to
decompose SPφy into several sets. The elements in each of the sets will be
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identified as a single element with multiplicity. Denote θ(yi) by θ(∆). (Recall
that O(y1), O(y2), · · · , O(yi) is the list of all open sets in O, each of which
covers ∆. Therefore, θ(yi) — the maximum of all {θ(yj)}ij=1 — depends only
on ∆.)
Introduce the following notations.

Λ(∆, 1)(y) = U(yi, 1) ∩ SPφy,

Λ(∆, 2)(y) = U(yi, 2) ∩ SPφy,

...

Λ(∆, t∆)(y) = U(yi, tyi) ∩ SPφy,

where t∆ = tyi . Recall (see 4.6) that SPφyi is written as

SPφyi = {λ∼w1
1 , λ∼w2

2 , · · · , λ∼wkk },

where k = t∆ = tyi . Since y ∈ ∆ ⊂ O(yi),

#(Λ(∆, t)(y)) = wt, 1 ≤ t ≤ t∆,

counting multiplicity. Define set

Λ(∆) = {Λ(∆, 1)∼w1 ,Λ(∆, 2)∼w2 , · · · ,Λ(∆, k)∼wk},

where k = t∆. That is, identify all the elements of SPφy in Λ(∆, t)(y) as a
single element (denoted by Λ(∆, t)) with the multiplicity.
As above, we will use Λ(∆, t)(y) for two purposes. It is a subset of SPφy, or it
is a single element in Λ(∆) which repeats wt times.
Strictly speaking, wt (t = 1, 2, · · · , t∆) should be written as wt(∆), and the set
Λ(∆) should be written as
{Λ(∆, 1)∼w1(∆),Λ(∆, 2)∼w2(∆), · · · ,Λ(∆, k)∼wk(∆)}. When there is a danger of
confusion, we will use wt(∆) instead of wt.

4.10. Let Y ′ ⊂ Y be a path connected subspace. Usually we will let Y ′

be either an open or a closed subset. Suppose that there are positive integers
u1, u2, · · · , ut and continuous maps

A(Y ′, i) : Y ′ → PuiX, i = 1, 2, · · · , t,

such that {SPφy}y∈Y ′ can be decomposed as

SPφy = {A(Y ′, 1)(y), A(Y ′, 2)(y), · · · , A(Y ′, t)(y)}

for all y ∈ Y ′. We say that the above decomposition of {SPφy}y∈Y ′
satisfies the condition (S) (S stands for separation) if
(S): there are mutually disjoint open sets U1, U2, · · · , Ut ⊂ X satisfying

A(Y ′, i)(y) ⊂ Ui, ∀y ∈ Y ′, i = 1, 2, · · · , t.

Documenta Mathematica 7 (2002) 255–461



Simple Inductive Limit C∗-Algebras, I 373

Define
A(Y ′) = {A(Y ′, 1)∼u1 , A(Y ′, 2)∼u2 , · · · , A(Y ′, t)∼ut},

where ui = #(A(Y ′, i)), counting multiplicity. Again, A(Y ′, s)(y) is used for
two purposes. It is regarded as a subset of SPφy or as a single element of A(Y ′)
with multiplicity us.
In fact, if U1, U2, · · ·Ut are open sets, with mutually disjoint closure, such that
SPφy ⊂ U1 ∪ U2 ∪ · · · ∪ Ut,∀y ∈ Y ′, then #(SPφy ∩ Ui), y ∈ Y ′ are constants,
denoted by ui, (note that Y ′ is path connected). Furthermore, the maps

A(Y ′, i) : Y ′ → PuiX, i = 1, 2, · · · t,

defined by A(Y ′, i)(y) = SPφy ∩ Ui, are continuous, and they determine a
decomposition of {SPφy}y∈Y ′ as

SPφy = {A(Y ′, 1)(y), A(Y ′, 2)(y), · · · , A(Y ′, t)(y)}

satisfying the condition (S). (See Lemmas 1.2.9 and 1.2.10.)
For any y ∈ Y ′, a grouping E1, E2, · · · , EL of SPφy induces a UNIQUE grouping

E
A(Y ′)
1 , E

A(Y ′)
2 , · · ·EA(Y ′)

L of A(Y ′), defined by

E
A(Y ′)
i = {A(Y ′, 1)∼v1 , A(Y ′, 2)∼v2 , · · · , A(Y ′, t)∼vt}, i = 1, 2, · · · , L,

where vj = #(Ei ∩ A(Y ′, j)(y)), counting multiplicity. (Here the intersection
of sets is defined as for the sets with multiplicity, as in 3.21.)
On the other hand, let E1, E2, · · · , EL be a grouping of A(Y ′). Define a group-
ing of the set SPφy, for any y ∈ Y ′, in the following way. For any j = 1, 2, · · · , L,
if the part Ej (for the grouping of A(Y ′)) contains exactly w elements of
{A(Y ′, s)∼us} (w ≤ us), then the part Ej (for the grouping of the set of
SPφy) contains exactly w elements (counting multiplicity) which are contained
in A(Y ′, s)(y). Since these w elements are to be chosen, the induced grouping
is not unique. But we will always fix one of them for use.
Let E1, E2, · · · , EL be a grouping of

A(Y ′) = {A(Y ′, 1)∼u1 , A(Y ′, 2)∼u2 , · · · , A(Y ′, t)∼ut}.

Define
◦
E1,

◦
E2, · · · ,

◦
EL as in 3.22.

Although the subsets of SPφy corresponding to Ei are not unique, the subsets

of SPφy corresponding to
◦
Ei are unique. We denote them by

◦
Ei|y. Also,

#(
◦
Ei) = #(

◦
Ei|y) counting multiplicity. Note that we use

◦
Ei|y instead of

◦
Ei(y)

for the following reason (also see the next paragraph). We reserve the notation
{Ei(y)}Li=1 for the grouping of SPφy which is associated to a vertex y in a
certain simplicial complex (Y, τ). (τ is a subdivision of σ.)
Suppose that y ∈ Y ′. Let E1(y), E2(y), · · ·EL(y) be a grouping of SPφy. Then

it induces a grouping E
A(Y ′)
1 (y), E

A(Y ′)
2 (y), · · ·EA(Y ′)

L (y) of A(Y ′) as above.

The sets
◦
E
A(Y ′)
i (y) are well defined as subsets of A(Y ′). (Warning:

◦
E
A(Y ′)
i (y)
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are not subsets of SPφy.) Also, from the last paragraph, the sets
◦
E
A(Y )
i (y)|z

are well defined as subsets of SPφz for any z ∈ Y ′ (may be different from y).

Furthermore, #(
◦
E
A(Y ′)
i (y)) = #(

◦
E
A(Y ′)
i (y)|z).

In the next few paragraphs, each grouping of SPφy can be referred as a grouping
of A(Y ′) for different space Y ′ and different decomposition A(Y ′) provided that
y ∈ Y ′, or vise versa.

4.11. Note that the collection of sets {Λ(∆, i)}t∆i=1 (in 4.9) could be regarded
as a decomposition of SPφy, y ∈ ∆ (see 4.6 also). And this decomposition
satisfies condition (S) for ∆ in place of Y ′; therefore 4.10 can be applied to
Λ(∆) as A(Y ′).
As mentioned in 4.8, we will introduce the groupings of SPφy for all vertices
of a certain subdivision of (Y, σ). As in section 3, for a simplex ∆ of (Y, σ),
once we have the subdivision (∂∆, τ) of (∂∆, σ) and groupings for all vertices in
Vertex(∂∆, τ), then we can define the subdivision (∆, τ) of (∆, σ) and introduce
the groupings for all newly introduced vertices. One may notice that, in section
3, for different vertices, the index sets involved are the same. But in the setting
here, the index sets SPφy are different for different vertices y. So some
special care should be taken.
Suppose that (∆, σ) is a simplicial complex consisting of a single sim-
plex ∆ and all its faces. Suppose that there is a subdivision (∂∆, τ) of
(∂∆, σ) and the groupings E1(y), E2(y), · · · , EL(y) of SPφy for all vertices
y ∈ Vertex(∂∆, τ) (see notation in 3.1–3.3). Attention: When we intro-
duce a grouping E1(z), E2(z), · · · , EL(z) of SPφz for any newly introduced ver-
tex z ∈ interior(∆) = ∆\∂∆, the following procedure will always be
used.
First, as in 4.10, we can regard the groupings E1(y), E2(y), · · · , EL(y) of

SPφy as groupings E
Λ(∆)
1 (y), E

Λ(∆)
2 (y), · · · , EΛ(∆)

L (y) of Λ(∆) for all vertices

y ∈ Vertex(∂∆, τ). (Then the set E
Λ(∆)
i (y)∩EΛ(∆)

i (y′)∩· · ·, as a subset of Λ(∆),

makes sense, for vertices y, y′, · · · ∈ Vertex(∂∆, τ). Also {
◦
E

Λ(∆)
i (y)}Li=1 are sub-

sets of Λ(∆).) Then we use these groupings of the same index set, Λ(∆), apply-
ing the results from section 3 (see 3.32), to introduce subdivision (∆, τ) of (∆, σ)
and groupings of Λ(∆) for all newly introduced vertices z ∈ ∆\∂∆. Finally,
theses groupings of Λ(∆) will induce the groupings E1(z), E2(z), · · · , EL(z) of
SPφz as in 4.10 (not unique, but we fix one of them for our use). Furthermore,

as in 4.10,
◦
E

Λ(∆)
1 (z),

◦
E

Λ(∆)
2 (z), · · · ,

◦
E

Λ(∆)
L (z) are well defined subsets of Λ(∆)

and
◦
E

Λ(∆)
1 (z)|z′ ,

◦
E

Λ(∆)
2 (z)|z′ , · · · ,

◦
E

Λ(∆)
L (z)|z′ are well defined subsets of SPφz′

for any z′ ∈ ∆ (not necessarily a vertex).

4.12. Let ∆′ be a face of ∆. Then for y ∈ ∆′ ⊂ ∆, both Λ(∆′) and Λ(∆) can
be viewed as decompositions of SPφy. Recall, in 4.9, the decomposition corre-
sponding to Λ(∆) is the coarsest decomposition among those corresponding to
O(yj) such that O(yj) ⊃ ∆ and that O(yj) ∈ O. Since ∆′ ⊂ ∆, any open set
in O which covers ∆ will also cover ∆′. Therefore, the decomposition of SPφy
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corresponding to Λ(∆′) is coarser than that corresponding to Λ(∆). That is,
each set Λ(∆′, s)(y) is a finite union of certain sets,

Λ(∆, t1)(y)
⋃

Λ(∆, t2)(y)
⋃
· · · ,

as subsets of SPφy. (Notice that if w′s = ws(∆
′) is the multiplicity appeared

in Λ(∆′) for Λ(∆′, s) and wt = wt(∆) is the multiplicity appeared in Λ(∆) for
Λ(∆, t), then w′s = wt1 + wt2 + · · · , a finite sum.)
It follows that if y ∈ ∆′ ⊂ ∆ and E1(y), E2(y), · · · , EL(y) is a grouping of
SPφy, then

◦
E

Λ(∆′)
j (y)|y′ ⊂

◦
E

Λ(∆)
j (y)|y′ ,

regarded as subsets of SPφy′ for any y′ ∈ ∆′. Now we are ready to construct
the subdivision (Y, τ) of (Y, σ), and the grouping for each vertex of (Y, σ) and
each vertex of the complex (Y, τ) (after subdivision).
Since the notations y1, y2, · · · , y• have been already used for the open cover
O = {O(y1), O(y1), · · · , O(y•)}, we use z1, z2, · · · to denote the points in Y ,
especially the vertices of certain simplicial structure.

4.13. Let Ω = dimX + dimY, M = 2L − 1, where L is the number of
the continuous maps {ai} appeared in the statement of 4.1. Note that all the
multiplicities wt appearing in any of Λ(∆) do not exceed Ω, by 4.3 and the
construction of Λ(∆) (see 4.6 and 4.9).
For each vertex z ∈ Vertex(Y, σ), by the condition of Theorem 4.1, SPφz and

Θ(z) = {a1(z)∼T1 , a2(z)∼T2 , · · · , aL(z)∼TL}

can be paired within η. Therefore, we can define a grouping
Epre,1(z), Epre,2(z), · · · , Epre,L(z) of SPφz, with T1, T2, · · · , TL elements, respec-
tively, counting multiplicity, such that

(1) dist(λ, ai(z)) < η

if λ ∈ Epre,i(z), where η is as in 4.4. (We denote them by Epre,i because this
grouping will be modified later.)
We can regard such a grouping of SPφz as a grouping of Λ(∆), where ∆ 3 z is
a simplex.
First we regard it as the grouping of Λ({z}), where {z} is the 0-dimensional
simplex of (Y, σ) corresponding to vertex z. By Lemma 3.28, we can modify
the grouping to satisfy the Assumption 3.27. Then this modified grouping of
Λ({z}) could induce a grouping on SPφz, for which the condition (1) above
may not hold. But if we carefully choose the sets Hi in Lemma 3.28, we could
still guarantee that any elements λ ∈ Ei are close to ai(z) (see (2) below). In
this subsection, we will also introduce the sets Hi(∆) to serve as the sets Hi of
Lemma 3.28 and Theorem 3.32, when we construct groupings on ∆ from the
groupings on ∂∆, by applying Theorem 3.32.
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For each vertex z0 ∈ Vertex(Y, σ), the notation {z0} is used to denote the
corresponding zero dimensional simplex of (Y, σ). The above grouping induces

a grouping {EΛ({z0})
pre,i } of

Λ({z0}) = {Λ({z0}, 1)∼w1 ,Λ({z0}, 2)∼w2 , · · · ,Λ({z0}, t{z0})
∼wt{z0}}.

Define subsets H1({z0}), H2({z0}), · · · , HL({z0}) of Λ({z0}) as follows. For any
i = 1, 2, · · · , L, Hi({z0}) is the collection of all
Λ({z0}, t)∼wt (⊂ Λ({z0})) satisfying

Λ({z0}, t)(z0) ⊂
{
x : dist(x, ai(z0)) < η +

1

(dimY + 1)
· η
}
.

Note that each set Λ({z0}, t)(z0) (as a subset of certain U(yj , t), from 4.9) has
diameter at most η

2(dimY+1) <
η

(dimY+1) (see (b) in 4.6). Combining this fact

with (1) above, we know that if λ1 ∈ Epre,i(z0) and λ1 ∈ Λ({z0}, t)(z0), then

(2) dist(λ, ai(z0)) < η +
η

(dimY + 1)

for any λ ∈ Λ({z0}, t)(z0). That means E
Λ({z0})
pre,i ⊂ Hi({z0}).

By Lemma 3.28, the above grouping can be modified to another grouping

E
Λ({z0})
i of Λ({z0}) satisfying

#(
◦
Ei

Λ({z0})
) ≥ Ti −MΩ.

(This is Assumption 3.27.) And E
Λ({z0})
i ⊂ Hi({z0}) still holds, regarded as a

grouping of Λ({z0}).
The above grouping of Λ({z0}) could induce a grouping
E1(z0), E2(z0), · · · , EL(z0) of SPφz0 (see 4.10 and 4.11). This grouping
will be used as the grouping for vertex z0. Even though (1) may not hold for
λ in the new Ei(z0), (2) holds for any λ in the new Ei(z0), from the definition

of Hi({z0}), and E
Λ({z0})
i ⊂ Hi({z0}).

For each simplex ∆ of (Y, σ), let us also define the subsets H1(∆), H2(∆), · · · ,
HL(∆) of Λ(∆) as follows. For each j = 1, 2, · · · , L, Hj(∆) is the collection of
all such Λ(∆, t)∼wt (⊂ Λ(∆)) that Λ(∆, t)(z), as a subset of SPφz, satisfies

Λ(∆, t)(z) ⊂ {x : dist(x, ai(z)) < η +
dim(∆) + 1

(dimY + 1)
· η}

for any z ∈ ∆. These sets will serve as the sets H1, H2, · · · , HL when we apply
Theorem 3.32.
The following fact follows directly from the definition of Λ(∆, t) and Hi(∆),
which will be used in 4.14:
Suppose that z ∈ ∆. A grouping E1, E2, · · ·EL of SPφz, regarded as a grouping
of Λ(∆), satisfies Ei ⊂ Hi(∆) if and only if for any λ ∈ Ei (as a subset of
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SPφz), for the index t satisfying λ ∈ Λ(∆, t)(z) (such t exists; see 4.9), we have
{Λ(∆, t)∼wt(∆)} ⊂ Hi(∆).

4.14. Beginning with the simplicial structure (Y, σ) and the above groupings
for all 0-dimensional simplex (i.e., vertex) of (Y, σ), we will construct a sub-
division (Y, τ) of (Y, σ) and the groupings for newly introduced vertices. We
will refine (Y, σ), simplex by simplex, from the lowest dimension to the highest
dimension by use of Theorem 3.32.
To avoid confusion, use Γ,Γ1,Γ2,Γ

′, etc. to denote the simplices of (Y, τ), af-
ter subdivision, and reserve the notations ∆,∆′,∆1, etc. for the simplices of
(Y, σ)—with original simplicial complex structure σ introduced in 4.7.
As the induction assumption, we suppose that there are a subdivision (∂∆, τ)
of (∂∆, σ) and the groupings of SPφz for all vertices z ∈ Vertex(∂∆, τ) with
the following properties.
(1) If ∆′ is a proper face of (∆, σ) (by a proper face of ∆, we mean a face
∆′ with ∆′ ⊂ ∂∆) and z ∈ ∆′, then the grouping of Λ(∆′), induced by the
grouping of SPφz satisfies

Ei ⊂ Hi(∆
′).

In other words, E
Λ(∆′)
i (z) ⊂ Hi(∆

′).
(2) Let Γ be a simplex of (∂∆, τ) with vertices z0, z1, · · · , zj . If Γ ⊂ ∆′, where
∆′ is a proper face of ∆, then

#
( ◦
E

Λ(∆′)
i (z0) ∩

◦
E

Λ(∆′)
i (z1) ∩ · · · ∩

◦
E

Λ(∆′)
i (zj)

)

≥ Ti − [MΩ +MΩ dim ∆′(dim ∆′ + 1)]

(≥ Ti − [MΩ +MΩ dim ∂∆(dim ∂∆ + 1)]) .

(3) For each vertex z of (∂∆, τ), Assumption 3.27 holds. I.e.,

#(
◦
E

Λ(∆′)
i (z)) ≥ Ti −MΩ

for any proper face ∆′ of ∆ with z ∈ ∆′.

(In the above conditions (1), (2) and (3), {EΛ(∆′)
i (z)}Li=1 are regarded as group-

ings of the set Λ(∆′) (with multiplicity); see 4.11.)
Now we define the subdivision (∆, τ) of (∆, σ) and the groupings for all newly
introduced vertices. The restriction of the simplicial structure (∆, τ) on ∂∆
will be the same as (∂∆, τ), that is, we will only introduce new vertices inside
interior(∆) = ∆\∂∆. We need to define the groupings as groupings of Λ(∆).
Then they will induce groupings of SPφz.
Claim: For any vertex z of (∂∆, τ), if the grouping of SPφz is regarded as the
grouping of Λ(∆), then

(1’) Ei(z) ⊂ Hi(∆) for i = 1, 2, · · · , L. In other words, E
Λ(∆)
i (z) ⊂ Hi(∆).

Proof of the Claim: Let y be the point yi in the definition of Λ(∆) in 4.9. Then
∆ ⊂ O(y) ∈ O. (We avoid the notation yi, since i is used for Ei above. So we
use y instead.)
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Let λ ∈ Ei(z). Since z ∈ ∂∆, there is a proper face ∆′ of ∆ such that
z ∈ ∆′. By (1) above, Ei(z) ⊂ Hi(∆

′) (regarded as a grouping of Λ(∆′)).
From the end of 4.13, there is an index s such that λ ∈ Λ(∆′, s)(z) and that
{Λ(∆′, s)∼ws(∆

′)} ⊂ Hi(∆
′).

Recall, from 4.12, Λ(∆′, s)(z′) is a finite union Λ(∆, t1)(z′)∪Λ(∆, t2)(z′)∪ · · ·,
for any z′ ∈ ∆′ ⊂ ∆. Hence, there is an index t such that

λ ∈ Λ(∆, t)(z) ⊂ Λ(∆′, s)(z),

where both Λ(∆, t)(z) and Λ(∆′, s)(z) are regarded as subsets of SPφz. To
prove the claim, by the end of 4.13, we only need to prove {Λ(∆, t)∼wt(∆)} ⊂
Hi(∆). From the definition of Hi(∆), this is equivalent to

(A) Λ(∆, t)(z1) ⊂ {x : dist(x, ai(z1)) < η +
dim(∆) + 1

(dimY + 1)
· η}

for any z1 ∈ ∆. From {Λ(∆′, s)∼ws(∆
′)} ⊂ Hi(∆

′) and the definition of Hi(∆
′),

we have

Λ(∆′, s)(z′) ⊂ {x : dist(x, ai(z
′)) < η +

dim(∆′) + 1

(dimY + 1)
· η}

for any z′ ∈ ∆′. In the above, if we choose z′ = z—the vertex in the claim—
(and note that Λ(∆, t)(z) ⊂ Λ(∆′, s)(z)), then

(a) Λ(∆, t)(z) ⊂ {x : dist(x, ai(z)) < η +
dim(∆′) + 1

(dimY + 1)
· η}.

On the other hand, from (d) in 4.6, we have

(b) diameter(ai(∆)) ≤ diameter(ai(O(y))) <
η

2(dimY + 1)
.

And from (b) in 4.6, we have

(c) diameter(U(y, t)) <
η

2(dimY + 1)
.

From 4.6 and 4.9, Λ(∆, t)(z1) ⊂ U(y, t) for any z1 ∈ ∆ ⊂ O(y). Combining
this with (c) above, for any µ ∈ Λ(∆, t)(z1) (z1 ∈ ∆), we have

dist(µ,Λ(∆, t)(z)) <
η

2(dimY + 1)
.

Then combining it with (a) above, we have

dist(µ, ai(z)) < η +
(dim(∆′) + 1)η

(dimY + 1)
+

η

2(dimY + 1)
.
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Finally, combining it with (b),

dist(µ, ai(z1)) < η +
(dim(∆′) + 1)η

(dimY + 1)
+

η

2(dimY + 1)
+

η

2(dimY + 1)

≤ η +
dim(∆) + 1

(dimY + 1)
,

since dim(∆′) ≤ dim(∆) − 1. Note that z1 ∈ ∆ and µ ∈ Λ(∆, t)(z1) are
arbitrary, this proves (A) and the Claim.
Suppose that Γ is a simplex of (∂∆, τ) with vertices z0, z1, · · · zj . Suppose that
Γ ⊂ ∆′, where ∆′ is a face of ∆. As mentioned in 4.12,

◦
E

Λ(∆′)
i (z)|z′ ⊂

◦
E

Λ(∆)
i (z)|z′

as a subset of SPφz′ for all z′ ∈ ∆′ and all z = z0, z1, · · · , zj . Therefore, from
(2) and (3) above, we have the following (2’) and (3’).

(2’) #
( ◦
E

Λ(∆)
i (z0) ∩

◦
E

Λ(∆)
i (z1) ∩ · · · ∩

◦
E

Λ(∆)
i (zj)

)

= #
( ◦
E

Λ(∆)
i (z0)|z′ ∩

◦
E

Λ(∆)
i (z1)|z′ ∩ · · · ∩

◦
E

Λ(∆)
i (zj)|z′

)

≥ #
( ◦
E

Λ(∆′)
i (z0)|z′ ∩

◦
E

Λ(∆′)
i (z1)|z′ ∩ · · · ∩

◦
E

Λ(∆′)
i (zj)|z′

)

= #
( ◦
E

Λ(∆′)
i (z0) ∩

◦
E

Λ(∆′)
i (z1) ∩ · · · ∩

◦
E

Λ(∆′)
i (zj)

)

≥ Ti − [MΩ +MΩ dim ∂∆(dim ∂∆ + 1)],

for every simplex Γ ⊂ (∂∆, τ) with vertices z0, z1, · · · , zj .
(3’) The Assumption 3.27 holds for the grouping {Ei(z)}Li=1 regarded as a
grouping of Λ(∆), i.e.,

#(
◦
E

Λ(∆)
i (z)) ≥ Ti −MΩ,

where z is a vertex of (∂∆, τ).
Apply Theorem 3.32 to obtain a subdivision (∆, τ) of (∆, σ), and, for each
newly introduced vertex z ∈ ∆, a grouping E1(z), E2(z), · · ·EL(z) of SPφz
such that (1), (2) and (3) hold with the version obtained by replacing ∆′ by ∆,
and dim(∂∆) by dim ∆. (As mentioned in 4.11, for each vertex z, we should
first get the groupings of Λ(∆), then this grouping induces a grouping of SPφz.)
Using Mathematical Induction, combined with 4.13, we obtain our subdivision
(Y, τ) of (Y, σ) and the groupings.
We summarize what we obtained in 4.13 and 4.14 as in the following proposi-
tion.
Proposition: There is a subdivision (Y, τ) of (Y, σ), and for all vertices
z ∈ Vertex(Y, τ), there are groupings E1(z), E2(z), · · · , EL(z) of SPφz of type
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(T1, T2, · · · , TL) (i.e., #(Ei(z)) = Ti ∀i) such that the following are true.
(1) If ∆ is a simplex of (Y, σ) (before subdivision) and z ∈ ∆, then the

grouping (E
Λ(∆)
1 (z), E

Λ(∆)
2 (z), · · ·EΛ(∆)

L (z)) of Λ(∆), induced by the grouping
(E1(z), E2(z), · · · , EL(z)) of SPφz, satisfies

E
Λ(∆)
i (z) ⊂ Hi(∆).

(2) Let Γ be a simplex of (Y, τ) with vertices z0, z1, · · · , zj. If Γ ⊂ ∆, where ∆
is a simplex of (Y, σ) (before subdivision), then

#
( ◦
E

Λ(∆)
i (z0) ∩

◦
E

Λ(∆)
i (z1) ∩ · · · ∩

◦
E

Λ(∆)
i (zj)

)

≥ Ti − [MΩ +MΩ dim ∆(dim ∆ + 1)]

(≥ Ti − [MΩ +MΩ dimY (dimY + 1)]) .

(We do not need the condition (3) any more.)

4.15. For the simplicial complex (Y, τ), there is a finite open cover

{W (Γ) : Γ is a simplex of (Y, τ)}

of Y , with the following properties.
(a) W (Γ) ⊃ interior(Γ) = Γ\∂Γ.
(b) If W (Γ1) ∩W (Γ2) 6= ∅, then either Γ1 is a face of Γ2 or Γ2 is a face of Γ1.
(Such open cover has been constructed in 1.4.2 (b).)
For any simplex Γ, we will construct an open set O(Γ) ⊃ Γ and introduce a
decomposition Ξ(Γ) of {SPφy}y∈O(Γ), which is the finest possible decomposition
satisfying the condition (S) for Γ in place Y ′ in 4.10.
Recall that K = rank(P ), and y 7→ SPφy defines a map SPφ : Y → PKX. We
will prove the following easy fact.
Claim 1: SPφ|Γ := ∪z∈ΓSPφz (⊂ X) has at most K connected components.
(For K = 1, the claim says that the image of a connected space Γ under a
continuous map SPφ : Γ→ P 1X = X is connected. This is a trivial fact.)
Proof of Claim 1: Suppose that by the contrary, SPφ|Γ has more than
K connected components. Write SPφ|Γ = X1 ∪ X2 ∪ · · · ∪ XK+1, where
X1, X2, · · · , XK+1 are mutually disjoint non empty closed subsets (which are
not necessary connected).
There are open sets U1, U2, · · · , UK+1 with mutually disjoint closures such that
Ui ⊃ Xi. Then for any z ∈ Γ, SPφz ⊂ ∪K+1

i=1 Ui. By Lemma 1.2.9, for each i,
#(SPφz ∩ Ui) is a nonzero constant. Hence #(SPφz) ≥ K + 1, contradicting
with #(SPφz) = K = rank(P ), counting multiplicity. This proves the claim.
We are back to our construction of open set O(Γ) and decomposition Ξ(Γ).
Write SPφ|Γ = X1 ∪X2 ∪ · · · ∪Xt, where X1, X2, · · · , Xt (with t ≤ K) are mu-
tually disjoint connected components of SPφ|Γ. Choose open sets U1, U2, · · · , Ut
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with mutually disjoint closures such that Xi ⊂ Ui. By Lemma 1.2.9, there is
an open set O(Γ) ⊃ Γ such that SPφ|O(Γ) ⊂ ∪ti=1Ui.
As in 4.10, define

Ξ(Γ, t)(z) = SPφz ∩ Ui, ∀z ∈ O(Γ), i = 1, 2, · · · , t.

This gives a decomposition

SPφz = {Ξ(Γ, 1)(z),Ξ(Γ, 2)(z), · · · ,Ξ(Γ, t)(z)}, ∀z ∈ O(Γ).

Let ci = #(Ξ(Γ, i), counting multiplicity. And write

Ξ(Γ) := {Ξ(Γ, 1)∼c1 ,Ξ(Γ, 2)∼c2 , · · · ,Ξ(Γ, t)∼ct}.

Note that the above decomposition satisfies condition (S) in 4.10 as the decom-
position of spectrum on O(Γ) (not only on Γ). In 4.16 below, when we apply
4.10, we will use U(Γ) (a subset of O(Γ)) in place of Y ′ of 4.10. Obviously,
Ξ(Γ) is the finest decomposition among all the decompositions of (SPφz)z∈Γ

satisfying condition (S) on Γ, since each Xi is connected. In particular, if
z ∈ Γ ⊂ ∆, where ∆ is a simplex of (Y, σ) (before subdivision), then the de-
composition of SPφz corresponding to Ξ(Γ) is finer than the decomposition of
SPφz corresponding to Λ(∆).
We will use the following fact later.
Claim 2: If Γ′ ⊂ Γ is a face, then for any z ∈ O(Γ′) ∩ O(Γ), the decomposi-
tion of SPφz corresponding to Ξ(Γ′) is finer than the decomposition of SPφz
corresponding to Ξ(Γ).
Proof of Claim 2: The Claim follows from the definition of Ξ(Γ) and the fact
that any connected component of SPφ|Γ′ is completely contained in a connected
component of SPφ|Γ.

4.16. For each simplex Γ, define U(Γ) = W (Γ) ∩O(Γ).
{U(Γ); Γ is a simplex of (Y, τ)} is an open covering of Y since U(Γ) ⊃
interior(Γ).
For each U = U(Γ), we will define mutually orthogonal projection valued func-
tions

PU1 , P
U
2 , · · · , PUL : U(Γ) 3 y 7→ { sub-projections of P (y)}.

Then apply Proposition 3.2 of [DNNP] to construct the globally defined pro-
jections p1, p2, · · · , pL for our Theorem 4.1.
(Attention: For each vertex z of (Y, τ), we have a grouping
E1(z), E2(z), · · · , EL(z) of SPφz. It will induce a grouping of Ξ(Γ), as in 4.10,
if Γ 3 z. In the following construction of PUi (y), this grouping will be used.
That is, we will use the decomposition of SPφz corresponding to Ξ(Γ). The de-
composition of SPφz corresponding to Λ(∆) will NOT be used in the definition
of PUi (y) at all— it is only used in the estimation of rank(PUi ).
In the definition of the grouping E1(z), E2(z), · · · , EL(z) of SPφz, it involves the
decomposition of SPφz corresponding to Λ(∆). But once it has been defined, it
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makes sense by itself without the decomposition of SPφz corresponding to Λ(∆)

as a reference (though
◦
E

Λ(∆)
i (z)|z only makes sense with the decomposition as

the reference).)
Back to our construction. For each y ∈ U (= U(Γ)) and each i = 1, 2, · · · , L,
define PUi (y) to be the spectral projection of φy corresponding to

( ◦
E

Ξ(Γ)
i (z0) ∩

◦
E

Ξ(Γ)
i (z1) ∩ · · · ∩

◦
E

Ξ(Γ)
i (zj)

)
|y ,

where z0, z1, · · · , zj are all vertices of Γ, and the notations
◦
E

Ξ(Γ)
i (z) and

◦
E

Ξ(Γ)
i (z)|y are as in 4.10. (That is,

◦
E

Ξ(Γ)
i (z) is a subset of Ξ(Γ) and

◦
E

Ξ(Γ)
i (z)|y

is a subset of SPφy.)

By Lemma 1.2.9, the above functions PUi (y) depend on y continuously. In
fact, for each i and any y ∈ U(Γ) ⊂ Y , PUi (y) is the spectral projection of
φy corresponding to an open subset (of X)— in the notation of 4.15 (see the
paragraph after the proof of Claim 1 in 4.15), the open subset is the union of
all open subsets Uj ⊂ X such that

Ξ(Γ, j) ∈
◦
E

Ξ(Γ)
i (z0) ∩

◦
E

Ξ(Γ)
i (z1) ∩ · · · ∩

◦
E

Ξ(Γ)
i (zj)(⊂ Ξ(Γ)).

(Note that when we apply Lemma 1.2.9, we use the fact that {Ui} have mutu-
ally disjoint closures and SPφy ⊂

⋃
Ui from 4.15.) Recall, the decomposition

of SPφz corresponding to Ξ(Γ) is finer than any decomposition of SPφz corre-

sponding to Λ(∆), if Γ ⊂ ∆. Therefore,
◦
E

Ξ(Γ)
i (z0)|z ⊃

◦
E

Λ(∆)
i (z0)|z, regarded as

a subset of SPφz, for any vertex z0 ∈ Γ and any point z ∈ Γ. By Condition (2)
of the grouping (see 4.14),

rank(PUj ) ≥ Tj − [MΩ +MΩ dimY (dimY + 1)]

for each U .
The projections PUi , i = 1, 2, · · · , L are mutually orthogonal, since they are
spectral projections corresponding to mutually disjoint subsets of X.
Let Γ′ be a face of Γ and z ∈ U(Γ) ∩ U(Γ′). By Claim 2 in 4.15, opposite to
the case of decompositions corresponding to Λ(∆) and Λ(∆′), the decomposi-
tion of SPφz corresponding to Ξ(Γ′) is finer than that corresponding to Ξ(Γ).
Therefore,

◦
E

Ξ(Γ)
i (z0)|y ⊂

◦
E

Ξ(Γ′)
i (z0)|y

for all z0 ∈ Vertex(Γ′, τ) ⊂ Vertex(Γ, τ). Combining it with the fact that
Vertex(Γ′, τ) ⊂ Vertex(Γ, τ), we get


 ⋂

zj∈Vertex(Γ,τ)

◦
E

Ξ(Γ)
i (zj)


 |y ⊂


 ⋂

zj∈Vertex(Γ′,τ)

◦
E

Ξ(Γ′)
i (zj)


 |y.

Consequently,

P
U(Γ)
i (y) ≤ PU(Γ′)

i (y) if y ∈ U(Γ) ∩ U(Γ′).
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Finally, from the condition (1) of the groupings (see the proposition in the end
of 4.14) and the definition of Hi(∆), we have

( ◦
E

Ξ(Γ)
i (z)

)
|y ⊂

{
λ; dist(λ, ai(y)) < η + (dimY+1)

(dimY+1) · η = 2η
}
,

where ∆ is any simplex of (Y, σ) satisfying Γ ⊂ ∆. Therefore, P Ui (y) is the
spectral projection of φy corresponding to a subset of

{λ; dist(λ, ai(y)) ≤ 2η} ⊂ X.

We have proved the following lemma.

Lemma 4.17. There is a collection U of finitely many open sets which covers
Y . For each open set U ∈ U , there are mutually orthogonal projection valued
continuous functions

PU1 , P
U
2 , · · · , PUL : U 3 y 7→ { sub-projections of P (y)}

with the following properties.
(1) If U1, U2 ∈ U , and U1 ∩ U2 6= ∅, then either

PU1
i (z) ≤ PU2

i (z)

is true for all i = 1, 2, · · · , L and all z ∈ U1 ∩ U2, or

PU2
i (z) ≤ PU1

i (z)

is true for all i = 1, 2, · · · , L and all z ∈ U1 ∩ U2.
(2) rank(PUi (z)) ≥ Ti − [MΩ +MΩ dimY (dimY + 1)].
(3) Each PUi (z) is a spectral projection of φz corresponding to a subset of

{λ; dist(λ, ai(z)) < 2η} .

4.18. For i = 1, 2, · · · , L, applying Proposition 3.2 of [DNNP] to {P Ui }U∈U ,
there exist continuous projection valued functions

pU1 , p
U
2 , · · · , pUL : Y 3 y 7→ { sub-projections of P (y)}

such that
pi(y) ≤

∨
{PUi (y); y ∈ U ∈ U}

and that

rank(pi) ≥ Ti − [MΩ +MΩ dimY (dimY + 1)]− dimY > Ti − T .

(Note that T = 2L(dimX + dimY )3.)
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By Condition (1) of 4.17, for each y,

span{PUi ; y ∈ U ∈ U} = PU0
i

for a certain U0 3 y which does not depend on i. Therefore, {pi(y)}Li=1 are
mutually orthogonal since {PU0

i }Li=1 are mutually orthogonal.

4.19. We will prove that the above projections {pi}Li=1 and p0 = P −∑L

i=1 pi
are as desired in Theorem 4.1. This is a routine calculation, as in the proof of
Theorem 2.7 of [GL1] or the last part of the proof of Theorem 2.21 of [EG2].
(See 1.5.4 and 1.5.7 also.) Since we need an extra property of p0φp0 (described
in 4.20 below), we write down the complete proof.
For each y ∈ Y , as mentioned in 4.18, there exists an open set U0 ∈ U with
U0 3 y such that

span{PUi ; y ∈ U ∈ U} = PU0
i , i = 1, 2, · · · , L.

Let Pi(y) = PU0
i (y). Then

pi(y) ≤ Pi(y), i = 1, 2, · · · , L,

and each Pi(y) is the spectral projection corresponding to a certain subset of

{λ; λ ∈ SPφy, dist(λ, ai(y)) < 2η} .

Let mutually different elements µ1, µ2, · · · , µs ∈ SPφy be the list of spec-
tra which are not in the set of those spectra belonging to the projec-
tions {Pi(y)}Li=1. Let q1, q2, · · · , qs be spectral projections corresponding to
{µ1}, {µ2}, · · · , {µs}, respectively. (The rank of each qi is the multiplicity of µi
in SPφy.) Then

P (y) =
L∑

i=1

Pi(y) +
s∑

i=1

qi.

Therefore,

p0(y) = P (y)−
L∑

i=1

pi(y) =

L∑

i=1

(Pi(y)− pi(y)) +

s∑

i=1

qi.

Since the spectra belonging to Pi(y) are within distance 2η of ai(y), by the way
η is chosen in 4.4, for each f ∈ F ,

‖φ(f)(y)− [

L∑

i=1

f(ai(y))Pi +

s∑

i=1

f(µi)qi]‖ <
ε

3
.

Therefore, for each f ∈ F , ‖p0(y)φ(f)(y)− φ(f)(y)p0(y)‖ < 2ε
3 , and

(∗) ‖p0(y)φ(f)(y)p0(y)− [

L∑

i=1

f(ai(y))(Pi(y)− pi(y)) +

s∑

i=1

f(µi)qi]‖ <
ε

3
.
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Also, for all f ∈ F ,

‖pi(y)φ(f)(y)− f(ai(y))pi(y)‖ < ε

3
and

‖φ(f)(y)pi(y)− f(ai(y))pi(y)‖ < ε

3
.

Let P ′ =
∑L

i=1 pi. Then

‖P ′(y)φ(f)(y)p0(y)‖ = ‖∑L

i=1 pi(y)φ(f)(y)p0(y)‖
≤ ‖∑L

i=1[pi(y)φ(f)(y)− pi(y)f(ai(y))]p0(y)‖+‖∑L

i=1 pi(y)f(ai(y))p0(y)‖
≤ ε

3 + 0 = ε
3 .

Similarly, for all f ∈ F ,

‖p0(y)φ(f)(y)P ′(y)‖ < ε

3
.

Also,

‖P ′(y)φ(f)(y)P ′(y)−
L⊕

i=1

f(ai(y))pi(y)‖ < ε

3
.

Combining all the above estimations, we have, for f ∈ F ,

‖φ(f)(y)− p0(y)φ(f)(y)p0(y)⊕
L⊕

i=1

f(ai(y))pi(y)‖ < ε

3
+
ε

3
+
ε

3
= ε.

This ends the proof of Theorem 4.1.
ut

Attention: In fact, we proved that the conclusion of Theorem 4.1 holds not
only for f in the finite set F , but also for any f satisfying the condition that if
dist(x, x′) < 2η, then ‖f(x)− f(x′)‖ < ε

3 .

Remark 4.20. The following is the (∗) from 4.19:

(∗) ‖p0(y)φ(f)(y)p0(y)− [

L∑

i=1

f(ai(y))(Pi(y)− pi(y)) +

s∑

i=1

f(µi)qi]‖ <
ε

3
.

Recall that for any x, x′ ∈ X, if dist(x, x′) < 2η, then

‖f(x)− f(x′)‖ < ε

3

for all f ∈ F .
Note that ξy : C(X)→ p0(y)M•(C| )p0(y), defined by
ξy(f) =

∑L

i=1 f(ai(y))(Pi(y)− pi(y)) +
∑s
i=1 f(µi)qi, is a homomorphism. By

1.2.18, we have the following claim.
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Claim: Let {x1, x2, · · · , xr} be an η-dense subset of X. Suppose that mutually
orthogonal projections p1, p2, · · · , pr ∈ (P − p0)MK′(C(Y ))(P − p0) satisfy

rank(pi) ≥ rank(p0).

Let ψ : C(X) → (p0 ⊕ p1 ⊕ p2 ⊕ · · · ⊕ pr)MK′(C(Y ))(p0 ⊕ p1 ⊕ p2 ⊕ · · · ⊕ pr)
be the positive linear map defined by

ψ(g) = p0φ(g)p0 ⊕
r∑

i=1

g(xi)p
i ,

for all g ∈ C(X). Then ψ(F ) is weakly approximately constant to within ε.
This fact will be used later.

Remark 4.21. The proof of Theorem 4.1 is very long and complicated.
We point out that the following direct approaches will encounter difficulties.
(These discussions have appeared in §1.5.)
1. One may let PUi (y) be the spectral projections corresponding to the open
sets

{λ; dist(λ, ai(y)) < η}
and make use of Proposition 3.2 of [DNNP] to construct the projection pi.
The trouble is that such {pi}Li=1 are not mutually orthogonal since PUi are not
mutually orthogonal.
2. For each sufficiently small neighborhood U , applying the theorem about
spectral multiplicity from §2, one can construct mutually orthogonal projec-
tions {PUi (y)}Li=1 with relatively large rank such that each PUi (y) is the spectral
projection corresponding to a subset of

{λ; dist(λ, ai(y)) < η}.

But one cannot guarantee that the projection associated to
∨{PUi ; U 3 y} is

orthogonal to the projection associated to
∨{PUj ; U 3 y}, for i 6= j. So one

still can not obtain orthogonal projections {pi}Li=1.
3. One may try to define p1, p2, · · · , pL, one by one. For example, after p1(y) is
defined, try to choose PU2 (y) to be orthogonal to p1(y) and to be the spectral
projection of a certain subset of X. Then this subset can not be chosen to be
a subset of {λ; dist(λ, a2(y)) < η} since some spectra may have been taken
out when p1(y) is defined. In fact, this subset can be chosen to be a subset
of {λ; dist(λ, a2(y)) < 2η}. In this way, when we define PUi (y), it will be a
spectral projection corresponding to a subset of

{λ; dist(λ, ai(y)) < i · η}.

In order for the theorem to hold, L·η needs to be small, which makes η depend
on L. This is not useful at all for the application.
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Remark 4.22. Note that in 4.19, when we prove that the projections {pi}Li=1

satisfy the desired conditions (i) and (ii) of Theorem 4.1, we only use the
property that for any y ∈ Y , pi(y), i = 1, 2, · · · , L, are subprojections of
Pi(y), i = 1, 2, · · · , L, respectively. This means, (i) and (ii) of Theorem 4.1 hold
for any set of projections {p′i}Li=1 with p′i ≤ pi, i = 1, 2, · · · , L. So we have the
freedom to replace any pi by its subprojection (with suitable rank). This fact
is important for the discussion below and in 4.41 and 4.44.
In what follows, we will use the fact that, for the projections in MK′(C(Y )) of
rank at least dim(Y ), cancellation always holds. That is , if three projections
p, q and r in M•(C(Y )) satisfy that rank(p) > dim(Y ), rank(q) > dim(Y ) and
p⊕r is Murry von Neumann equivalent to q⊕r, then p is Murry von Neumann
equivalent to q.
(a) In fact, in 4.19, rank(pi) for our projections pi satisfy the stronger condition
(see 4.18):

rank(pi) ≥ Ti − [MΩ +MΩ dimY (dimY + 1)]− dimY.

From Theorem 1.2 of [Hu, Chapter 8], there is a trivial projection p′i < pi such
that

rank(p′i) ≥ rank(pi)− dimY
≥ Ti − [MΩ +MΩ dimY (dimY + 1)]− 2 dimY.

That is, rank(p′i) is still larger than Ti − T , where T = 2L(dimX + dimY )3.
(In fact it is larger than Ti− T + 2 dimY .) In Theorem 4.1, replacing pi by p′i,
one makes all the projections {pi}Li=1 trivial.
(b) Suppose that there is an i0 ∈ {1, 2, · · · , L} such that Ti0 > T + dimY .
Suppose that the projections p1, p2, · · · , pL are trivial as in (a). In particular,
suppose that rank(pi0) ≥ Ti0 − T + 2 dimY as mentioned in (a). By [Hu],
P ∈ MK′(C(Y )) (the total projection of the target algebra PMK′(C(Y ))P in
Theorem 4.1) can be written in the form

q ⊕ (trivial projection),

where q is of rank Ti0 − T + dimY . It follows from [Hu], that there is a sub-
projection p′i0 of pi0 which is unitarily equivalent to q. Replacing pi0 by p′i0 ,
and keeping all the other projections pi, then P will be unitarily equivalent to
a projection of the form

L⊕

i=1

pi ⊕ (trivial projection).

Therefore, p0 = P −⊕L

i=1 pi is a trivial projection. (Note that rank(p0) ≥
dimY .)
In other words, in Theorem 4.1, we can choose all the projections p0, p1, · · · , pL
to be trivial except one of them, pi0 , where i0 6= 0. In particular, p0 is a trivial
projection, as comparing with (a) above.
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The following theorem is proved in [EGL].

Theorem 4.23. ([EGL]) Let A = lim
n→∞

(An, φn,m) be an inductive limit C∗-

algebra (not necessarily unital) with

An =

tn⊕

i=1

M[n,i](C(Xn,i)),

where Xn,i are simplicial complexs. Then one can write A = lim
n→∞

(Bn, ψn,m)

with

Bn =

tn⊕

i=1

M{n,i}(C(Yn,i)),

where Yn,i are (not necessarily connected) simplicial complexs, with dim(Yn,i) ≤
dim(Xn,i), such that all the connecting maps ψn,m are injective.
Furthermore, if (An, φn,m) satisfies the very slow dimension growth condition,
then so does (Bn, ψn,m).

4.24. Without loss of generality, in the rest of this article, we
will assume that the connecting maps φn,m in the inductive limit
system are injective. Without this assumption one can still prove all the
theorems in this paper by modifying our arguments, and by passing to some
good subsets of Xn,i. But this assumption makes the discussions much simpler.
As mentioned in 1.1.5, we will suppose that the inductive limit algebra
A = lim

n→∞
(An =

⊕tn
i=1M[n,i](C(Xn,i)), φn,m) satisfies the very slow dimension

growth condition.

4.25. As a consequence of Theorem 4.1 and the lemma inside 1.5.11— a
result due to Li—, one can obtain a decomposition for each (partial map of a)
connecting map φi,jn,m (m large enough), with the major part factoring though
an interval algebra. But for our application, we need a certain part of the
decomposition to be defined by point evaluations and (even if it is not large
absolutely) to be relatively large compared to the “bad” part p0φp0, where p0

is the projection in Theorem 4.1, and φ is the map corresponding to φi,jn,m (see

1.2.18 and 1.2.19), i.e., φ = φi,jn,m|e11Aine11
.

Following Section 2 of [Li3] (see the proof of Theorem 2.28 in [Li3]), we can
prove our main Decomposition Theorem (see Theorem 4.37 below). [Li3] only
proves the special case that Xn,i = graphs (one dimensional spaces). Although
the idea behind Li’s proof is reasonably simple and clear (see the explanation in
2.29 of [Li3]), the proof itself is complicated and long. It combines several diffi-
culties together. For convenience in the higher dimensional case, we will give a
slightly different approach. (See 1.5.25 for the explanation of the difference be-
tween our approach and Li’s approach.) Our proof will be a little shorter, and
perhaps easier to follow (hopefully). More importantly, using this approach, we
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will be able to prove the Decomposition Theorem for any homomorphism pro-
vided that the homomorphism satisfies a certain quantitative condition (see
Theorem 4.35 below). (Li’s theorem is for the homomorphism φn,m with m
sufficiently large.) This slightly stronger version of the theorem is needed in
[EGL] to prove the Uniqueness Theorem. It should be emphasized that our
proof is essentially the same as Li’s proof in spirit.
The idea behind our proof is roughly as follows.
In [Li2, 2.18–2.19] (see 1.5.11), Li proves that for fixed η > 0, for m large
enough, and for any (partial) connecting map φi,jn,m—denoted by φ—, there
are L continuous maps β1, β2, · · · , βL : Y (= Xm,j) −→ X (= Xn,i), factoring
through the interval [0, 1], such that for each y ∈ Y , the set SPφy and the set

Θ(y) =
{
β1(y)∼L2 , β2(y)∼L2 , · · · , βL−1(y)∼L2 , βL(y)∼L2+L1

}

can be paired within η, where L2 could be very large compared with
L · 2L · (dim(X) + dim(Y ))3, if the inductive limit system satisfies the very
slow dimension growth condition.
What we are going to prove is that, if SPφy and Θ(y) can be paired within η,
then they can still be paired within some small number (e.g., 2η), if one changes
a number—a small number compared with L—of maps βi to arbitrary maps
(in particular, to constant maps), provided that X is path connected and φ has
a certain spectral distribution property related to the number η and another
number δ (see 4.26 below). (Note that, how many maps are allowed to be
changed, also depends on η and δ.) (Those constant maps form the part of
the homomorphism defined by point evaluations.) At first sight, it might seem
impossible for this to be true. But, with the spectral distribution property of
the homomorphism φ, Lemma 2.15 of [Li2] (see Lemma 4.29 below) says that if
φ and another homomorphism ψ (in the application, ψ should be chosen to be
a homomorphism with the family of spectral functions Θ(y), i.e., SPψy = Θ(y)
for all y ∈ Y ) are close on the level of AffT , then their spectra SPφy and SPψy
can be paired within a small number. On the other hand, changing a very few
spectral functions (no matter how large a change in each function), will not
create a big change on the level of AffT (see 4.28 and the claims in 4.31 below).
Since the results of [Li 2] are not of a quantitative nature—they are for con-
necting homomorphisms φn,m with m large—, we can not apply them (2.18
and 2.19 of [Li 2]) directly. So we repeat part of the arguments in [Li 2].
The above method will lead us to Lemma 4.33 (see 4.26–4.33 for details). Then
our main decomposition theorems—Theorem 4.35 and Theorem 4.37— will be
more or less consequences.
Finally we remark that, in our decomposition, we cannot require that both
parts of the decomposition be homomorphisms as in 2.28 of [Li3], since in
general, C(X) is not stably generated (see [Lo]).

4.26. For the reader’s convenience, we will quote some notations, terminolo-
gies and results from [Li1] and [Li2].
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The following notation is inspired by a similar notation in [Li1].
For any η > 0, δ > 0, a homomorphism φ : PMk(C(X))P →QMk′(C(Y ))Q is
said to have the property sdp(η, δ) (spectral distribution property with
respect to η and δ) if for any η−ball

Bη(x) := {x′ ∈ X; dist(x′, x) < η} ⊂ X

and any point y ∈ Y ,

#(SPφy ∩Bη(x)) ≥ δ#(SPφy),

counting multiplicity.
(Attension: The property sdp(r, δ) in [Li1] corresponds to sdp( 1

2r , δ) above.)
Any homomorphism φ : ⊕ Mk(C(X)) → ⊕Ml(C(Y )) is said to have the
property sdp(η, δ) if each partial map has sdp(η, δ).

4.27. The following notations can be found in Section 2 of [Li2]. Let X be a
connected simplicial complex. For any closed set X1 ⊂ X, M > 0, let

χ
X1,M

(x) =





1 if x ∈ X1

1−M · dist(x,X1) if dist(x,X1) ≤ 1
M

0 if dist(x,X1) ≥ 1
M .

For η > 0 and δ > 0, let

H1(η) = {χX1,
32
η

: X1 ⊂ X closed }.

Then there is a finite set H ⊂ H1(η) such that for all h ∈ H1(η), dist(h,H) < δ
8

(the distance is the distance defined by uniform norm). Denote such set by
H(η, δ,X) (⊂ C(X)). Although such a set is not unique, we fix one for each
triple (η, δ,X) for our purpose. (As pointed out in [Li1], the existence of such
finite set H(η, δ,X) follows from equi-continuity of the functions in H1(η).)

4.28. For a unital C∗-algebra A, let TA denote the space of all tracial states
of A, i.e., τ ∈ TA if and only if τ is a positive linear map from A to C| , with
τ(xy) = τ(yx) and τ(1) = 1. AffTA is the collection of all the affine maps from
TA to IR.
Any unital homomorphism φ : A→ B induces an affine map

AffTφ : AffTA −→ AffTB.

It is well known, for any connected metrizable space X and any projection
P ∈Mk(C(X)),

AffT (PMk(C(X))P ) = AffT (C(X)) = CIR(X).

We would like to quote some easy facts about the AffT map from [Li1] and
[Li2].
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If φ : C(X)→ PMl(C(Y ))P is a unital homomorphism and rank(P ) = k, then
AffTφ : C(X)→ C(Y ) is given by

AffTφ(f) =
1

k

l∑

i=1

φ(f)ii,

where each φ(f)ii is the diagonal entry of φ(f) ∈ PMl(C(Y ))P ⊂ Ml(C(Y ))
at the place (i, i)
For a continuous map β : Y → X, let β∗ : C(X)→ C(Y ) be defined by

β∗(f) = f ◦ β (∈ C(Y )) for any f ∈ C(X).

Suppose that β1, β2, · · · βl : Y → X are continuous maps. If ψ : C(X) →
Ml(C(Y )) is a homomorphism with {βi}li=1 as the set of spectral functions,
(e.g., ψ is defined by ψ(f) = diag(β∗1(f), β∗2 (f), · · · , β∗l (f)),) then

AffTψ(f) =
1

l

l∑

i=1

β∗i (f).

(Let H ⊂ CIR(X) be a finite subset satisfying ‖f‖ ≤ 1 for any f ∈ H. If one
modifies the above homomorphism ψ to a new homomorphism ψ′, by replacing
k functions from the set of spectral functions {βi}li=1 by other functions (from
Y to X), then

‖AffTψ(f)−AffTψ′(f)‖ ≤ k

l
, ∀f ∈ H.

In particular, this modification (from ψ to ψ′) does not create a big change on
the level of AffT , provided that k is very small compared with l, as mentioned
in 4.25.)
For a unital homomorphism φ : C(X) → PMl(C(Y ))P with rank(P ) = k,
quoting from 1.9 of [Li1], we have

AffTφ(f)(y) =
1

k

∑

xi(y)∈SPφy

f(xi(y)).

Consider ey : PMl(C(Y ))P → P (y)Ml(C| )P (y) (∼= Mrank(P )(C| )), which is
the homomorphism defined by evaluation at the point y. Then from the above
paragraph, we know that AffT (ey ◦ φ) depends only on SPφy. We can denote
ey ◦φ by φ|y ( this is the homomorphism φ|{y} in 1.2.13 for the single point set
{y}).

Lemma 4.29. ([Li2,2.15]) Suppose that two unital homomorphisms
φ : C(X) → PMk(C(Y ))P and ψ : C(X) → QMk(C(Y ))Q with rank(P ) =
rank(Q), satisfy the following two conditions:
(1) φ has the property sdp( η32 , δ);

(2) ‖AffTφ(h)−AffTψ(h)‖ < δ
4 , for all h ∈ H(η, δ,X).
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Then SPφy and SPψy can be paired within η
4 for any y ∈ Y .

(Notice that, no matter how small the δ is , the above conditions (1) and (2)
do not imply the other assumption rank(P ) = rank(Q), which is necessary for
our conclusion.)

Proof: If P = Q, this is exactly 2.15 of [Li2]. (Notice that, we use η
32 in place of

η
8 of [Li2 2.15], so our conclusion is that, SPφy and SPψy can be paired within
η
4 (instead of η). Also notice that the set H in [Li2 2.15] is chosen to be the
same as the above set H(η, δ,X).)
To see the general case, fix y ∈ Y . We can consider two maps φ|y and ψ|y which
are unital homomorphisms from C(X) to C∗-algebras which are isomorphic to
the same C∗-algebra Mrank(P )(C| ). (Note that rank(P ) = rank(Q).) The
conditions (1) and (2) above imply the same conditions for φ|y and ψ|y, since
AffTφ(h)(y) = AffT (φ|y)(h). Therefore, by 2.15 of [Li 2], SPφy = SP (φ|y) and
SPψy = SP (ψ|y) can be paired within η

4 .
(If one checks the proof of 2.15 of [Li2] carefully, then he will easily recognize
that the above Lemma is already proved there.)

ut

4.30. In the following paragraphs (4.30—4.32), we will apply the materials
from 2.8 – 2.10 of [Li2].
For any η > 0 and δ > 0, from 2.9 of [Li2], there exist a continuous map
α : [0, 1]→ X, and a unital positive linear map ξ : C[0, 1]→ C(X) such that

‖ξ◦α∗(f)− f‖ < δ

16
,

for each f ∈ H(η, δ,X), where α∗ : C(X)→ C[0, 1] is induced by α. Further-
more, we can choose α such that image(α) is η

32 -dense in X.
For α : [0, 1]→ X, there is a σ > 0 such that |t− t′| < 2σ implies that

dist(α(t), α(t′)) <
η

32
.

For a fixed space X, the number σ depends only on η and δ, since so does the
continuous map α. We denote the number σ by σ(η, δ).

4.31. Let H̃ = α∗(H(η, δ,X)) ⊂ C[0, 1]. For the finite set H̃ and δ
16 > 0,

there is an integer N (as in Theorem 2.1 of [Li2]) such that for any positive
linear map ζ : C[0, 1]→ C(Y ), and for any r ≥ N , there are r continuous maps

β1, β2, · · · , βr : Y −→ [0, 1]

such that ∥∥∥∥∥ζ(f)− 1

r

r∑

i=1

β∗i (f)

∥∥∥∥∥ <
δ

16

for all f ∈ H̃, where β∗i : C[0, 1]→ C(Y ) is induced by βi.
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We will also assume 1
N < δ

64 . Then we can prove the following claim.
Claim 1: For any r ≥ N , if

∥∥∥∥∥ζ(f)− 1

r

r∑

i=1

β∗i (f)

∥∥∥∥∥ <
δ

16
for all f ∈ H̃,

then for any other two continuous maps τ1, τ2 : Y −→ [0, 1],
∥∥∥∥∥ζ(f)− 1

r + 2

(
r∑

i=1

β∗i (f) + τ∗1 (f) + τ∗2 (f)

)∥∥∥∥∥ <
δ

8
, ∀f ∈ H̃

Proof of the claim: The claim follows from

∥∥∥∥∥ζ(f)− 1

r + 2

(
r∑

i=1

β∗i (f) + τ∗1 (f) + τ∗2 (f)

)∥∥∥∥∥

≤
∥∥∥∥∥ζ(f)− 1

r

r∑

i=1

β∗i (f)

∥∥∥∥∥+

∥∥∥∥∥
1

r

r∑

i=1

β∗i (f)− 1

r + 2

r∑

i=1

β∗i (f)

∥∥∥∥∥

+

∥∥∥∥
1

r + 2
(τ∗1 (f) + τ∗2 (f))

∥∥∥∥

<
δ

16
+ 2 · δ

64
+ 2 · δ

64
=
δ

8

for any f ∈ H̃. In the above estimation, we use the facts that ‖f‖ ≤ 1,
‖β∗i (f)‖ ≤ 1 and ‖τ∗i (f)‖ ≤ 1 for any f ∈ H̃.
In the above claim, if we replace the condition r ≥ N by the condi-
tion r ≥ mN , then in the conclusion, we can allow 2m continuous maps
τ1, τ2, · · · , τ2m : Y −→ [0, 1], instead of two maps. Namely, the following
claim can be proved in exactly the same way.
Claim 2: For any r ≥ mN , if

∥∥∥∥∥ζ(f)− 1

r

r∑

i=1

β∗i (f)

∥∥∥∥∥ <
δ

16
, ∀ f ∈ H̃,

then for any 2m continuous maps τ1, τ2, · · · , τ2m : Y −→ [0, 1],
∥∥∥∥∥ζ(f)− 1

r + 2m

(
r∑

i=1

β∗i (f) +
2m∑

i=1

τ∗i (f)

)∥∥∥∥∥ <
δ

8
, ∀f ∈ H̃.

4.32. Let n = int
(

1
σ(η,δ)

)
+ 1, where int(·) denote the integer part of the

number (see 1.1.7 (c)).
Divide [0, 1] into n intervals such that each of them has length at most σ(η, δ).
Choose n points

t1, t2, · · · , tn,
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one from each of the intervals. Let xi = α(ti) ∈ X, i = 1, 2, · · · ,m. Then the
set

{x1, x2, · · · , xn}

is η
16 -dense in X by the way σ is chosen in 4.30.

From the above discussion, for fixed η > 0, δ > 0, and the space X, we can find
α, ξ, σ,N, n,H(η, δ,X), H̃ , the set {t1, t2, · · · , tn} ⊂ [0, 1], and the η

16 -dense set
{x1, x2, · · · , xn} ⊂ X. All of them depend only on η, δ, and the space X.

Lemma 4.33. For any connected simplicial complex X, any numbers η > 0 and
δ > 0, there are integers n,N , a continuous map α : [0, 1] → X, and finitely
many points {t1, t2, · · · , tn} ⊂ [0, 1] with {α(t1), α(t2), · · · , α(tn)} η

16 -dense in
X, such that the following is true. (Denote L := n(N + 2).)

If a unital homomorphism φ : C(X) → PMk(C(Y ))P satisfies the following
two conditions:

(i) φ has the property sdp( η32 , δ);

(ii) rankφ(1) := K ≥ L2 = (n(N + 2))2,

and write K = LL2 +L1 with L2 = int(KL ) and 0 ≤ L1 < L, (note that L ≤ L2,
since K ≥ L2,)

then there are L continuous functions

β1, β2, · · · , βn, βn+1, · · · , βL : Y −→ [0, 1]

such that

(1) βi(y) = ti for 1 ≤ i ≤ n;

(2) For each y ∈ Y, SPφy and the set

Θ(y) =
{
α◦β1(y)∼L2 , α◦β2(y)∼L2 , · · · , α◦βL−1(y)∼L2 , α◦βL(y)∼L2+L1

}

can be paired within η
2 .

(3) If Y is a connected finite simplicial complex and Y 6= {pt}, then the map
βn+1 : Y → [0, 1]—the first nonconstant map above—, is a surjection.

(This lemma is similar to Lemma 2.18 of [Li2], but we require some of the
functions βi (1 ≤ i ≤ n) to be constant functions.)

(Attention: To apply Theorem 4.1, one only needs SPφy and Θ(y) to be
paired within η. The advantage of using η

2 is the following. If ψ is another
homomorphism such that SPψy and SPφy can be paired within η

2 for any y,
then we can apply Theorem 4.1 to both φ and ψ without requiring ψ to have
the property sdp( η32 , δ). This observation will not be used in the proof of the
main theorem of this paper. But it will be used in the proof of the Uniqueness
Theorem in [EGL] (part II of the series), see 4.41–4.48 below.)

Proof: Follow the notations in 4.26 – 4.32. Let

ζ : C[0, 1] −→ C(Y )

Documenta Mathematica 7 (2002) 255–461



Simple Inductive Limit C∗-Algebras, I 395

be defined by ζ = AffTφ◦ξ. Since K − 2nL2 ≥ nL2N, there are K − 2nL2

continuous maps
γ1, γ2, · · · , γK−2nL2

: Y −→ [0, 1]

such that ∥∥∥∥∥ζ(f)− 1

K − 2nL2

K−2nL2∑

i=1

γ∗i (f)

∥∥∥∥∥ <
δ

16

for all f ∈ H̃. Let
β1, β2, · · · , βn : Y −→ [0, 1]

be defined by βi(y) = ti. Then by Claim 2 of 4.31 (taking m = nL2),

∥∥∥∥∥ζ(f)− 1

K

(
K−2nL2∑

i=1

γ∗i (f) + 2L2

n∑

i=1

β∗i (f)

)∥∥∥∥∥ <
δ

8

for all f ∈ H̃ ⊂ C[0, 1]. Therefore,

∥∥∥∥∥(ζ◦α∗)(f)− 1

K

(
K−2nL2∑

i=1

(α◦γi)
∗(f) + 2L2

n∑

i=1

(α◦βi)
∗(f)

)∥∥∥∥∥ <
δ

8

for all f ∈ H(η, δ,X). On the other hand, by 4.30 and ζ = AffTφ◦ξ,

‖AffTφ(f)− (ζ◦α∗)(f)‖ < δ

16
for f ∈ H(η, δ,X).

One can define a unital homomorphism ψ : C(X)→MK(C(Y )) with
{α◦γi}K−2nL2

i=1 ∪ {(α◦βi)∼2L2}ni=1 as the family of the spectral functions. Then
from 4.28,

AffTψ(f) =
1

K

(
K−2nL2∑

i=1

(α◦γi)
∗(f) + 2L2

n∑

i=1

(α◦βi)
∗(f)

)
.

Hence,

‖AffTφ(f)−AffTψ(f)‖ ≤ δ

8
+

δ

16
<
δ

4

for all f ∈ H(η, δ,X). Note that rank(P ) = K. By Lemma 4.29, SPφy and

SPψy =
{
α◦β1(y)∼2L2 , α◦β2(y)∼2L2 , · · · , α◦βn(y)∼2L2 , α◦γ1(y), · · · , α◦γL−2nL2

(y)
}

can be paired within η
4 .

Note that in our lemma, we only need L2 copies of each constant maps βi
(i = 1, 2, · · · , n). One may wonder why we put 2L2 copies of each of maps βi
in the above set. The reason is that, after taking out L2 copies of βi, we still
want the set Θ(y) to have enough elements in each small interval of length σ,
and the other L2 copies of βi can serve for this purpose.
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Consider the following set (of K − nL2 elements)

{β∼L2
1 (y), β∼L2

2 (y), · · · , β∼L2
n (y), γ1(y), γ2(y), · · · , γK−2nL2

(y)}.

In each interval of [0, 1] of length σ, there are at least L2 points (counting
multiplicities) in the above set.
The following argument appeared in 2.18 of [Li2].
For each fixed y, we can rearrange all the elements in the above set in the
increasing order. I.e., write them as γ ′1(y), γ′2(y), · · · , γ′K−nL2

(y) such that for
each fixed y

{γ′1(y), γ′2(y), · · · , γ′K−nL2
(y)} =

= {β1(y)∼L2 , β2(y)∼L2 , · · · , βn(y)∼L2 , γ1(y), γ2(y), · · · , γK−2nL2
(y)}

(as a set with multiplicity), and such that

0 ≤ γ′1(y) ≤ γ′2(y) ≤ · · · ≤ γ′K−nL2
(y) ≤ 1.

It is easy to prove that γ′i(y), 1 ≤ i ≤ K − nL2 are continuous (real-valued)
functions, using the following well known fact repeatedly: For any two real-
valued continuous functions f and g, the functions max(f, g) and min(f, g) are
also continuous.
We can put each group of L2 consecutive functions of {γ′i} (beginning with
smallest one) together except the last L2 +L1 functions which will be put into
a single group—the last group. Then we replace all the functions in a same
group by the smallest function in the group. Namely, let

βn+1 = γ′1, βn+2 = γ′L2+1, · · · , βL = γ′(L−n−1)L2+1 .

Then from the fact that in each interval of [0, 1] of length σ, there are at least
L2 points (counting multiplicity) in the set {γ ′1(y), γ′2(y), · · · , γ′K−nL2

(y)}, we
know that {γ′1(y), γ′2(y), · · · , γ′K−nL2

(y)} and

{βn+1(y)∼L2 , βn+2(y)∼L2 , · · · , βL−1(y)∼L2 , βL(y)∼L2+L1}

can be paired within 2σ. Recall that |t−t′| < 2σ implies that dist(α(t), α(t′)) <
η
16 . Hence

{
α◦β1(y)∼2L2 , α◦β2(y)∼2L2 , · · · , α◦βn(y)∼2L2 ,

α◦γ1(y), α◦γ2(y), · · · , α◦γL−2nL2
(y)}

and

Θ(y) =
{
α◦β1(y)∼L2 , α◦β2(y)∼L2 , · · · , α◦βn(y)∼L2 ,

α◦βn+1(y)∼L2 , · · · , α◦βL−1(y)∼L2 , α◦βL(y)∼L2+L1
}
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can be paired within η
16 . Therefore, SPφy and Θ(y) can be paired within

η
4 + η

16 <
5η
16 .

Note that {α◦β1(y), α◦β2(y), · · · , α◦βn(y)} is η
16 dense in X. From the proof

of Lemma 1.2.17, if we replace only one map (say βn+1) by an arbitrary map
from Y to [0, 1], then the new Θ(y) can be paired with the old Θ(y) to within
η
8 . As a consequence, we still have that SPφy and the new Θ(y) can be paired

within 5η
16 + η

8 <
η
2 . In particular, if Y is a connected finite simplicial complex

which is not a single point, then βn+1 could be chosen to be a surjection, again
using the Peano curve.

ut

4.34. Fix a large positive integer J . We require that the decomposition in
4.1 to satisfy the condition

J · (rank(p0) + 2 dim(Y )) ≤ rank(pi), ∀i ≥ 1.

To do so, we need rank(φ(1)) to be large enough. We describe it as follows.
For a connected simplicial complex X, and for numbers η > 0 and δ > 0, let
N,n and α : [0, 1]→ X be as in Lemma 4.33. Let L = n(N + 2). Suppose that
φ : C(X) → Mk(C(Y )) is a homomorphism. If φ has the property sdp( η32 , δ)
and

rank(φ(1)) ≥ 2JL2 · 2L(dimX + dimY + 1)3,

then there are continuous functions

β1, β2, · · · , βL : Y −→ [0, 1]

(as in Lemma 4.33) such that SPφy and the set

{
α◦β1(y)∼L2 , α◦β2(y)∼L2 , · · · , α◦βL−1(y)∼L2 , α◦βL(y)∼L2+L1

}

can be paired within η
2 , where

L2 = int

(
rankφ(1)

L

)
≥ 2JL · 2L(dimX + dimY + 1)3,

and 0 ≤ L1 < L. For any given set F ⊂ C(X), if η is chosen as in Theorem
4.1 (see 4.4), then by Theorem 4.1, there are mutually orthogonal projections
p1, p2, · · · , pL and p0 = φ(1)−∑L

i=1 pi such that
(1) For all f ∈ F and y ∈ Y ,

‖φ(f)(y)− p0(y)φ(f)(y)p0(y)⊕
L⊕

i=1

f(ai(y))pi(y)‖ < ε;

(2) For each i = 1, 2, · · · , L, rank(pi) ≥ L2 − 2L(dimX + dimY + 1)3, and

J(rank(p0) + 2 dim(Y )) ≤ J(L · 2L(dimX + dimY + 1)3 + 2 dimY ) ≤ rank(pi).
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By [Hu], p0 ⊕ p0 ⊕ · · · ⊕ p0︸ ︷︷ ︸
J

is (unitarily) equivalent to a subprojection of pi,

since every complex vector bundle (over Y ) of dimension J · rank(p0) is a sub-
bundle of any vector bundle (over Y ) of dimension at least J ·rank(p0)+dim(Y ).
We denote this fact by J [p0] < [pi].
Let Q0 = p0, Q1 = p1 + p2 + · · ·+ pn and Q2 = pn+1 + pn+2 + · · ·+ pL. Then

φ(1) = Q0 +Q1 +Q2.

Let φ0 : C(X) → Q0Mk(C(Y ))Q0, φ1 : C(X) → Q1Mk(C(Y ))Q1 and φ2 :
C(X)→ Q2Mk(C(Y ))Q2 be defined by

φ0(f)(y) = p0φ(f)(y)p0,

φ1(f) =

n∑

i=1

f(α◦βi(y))pi, and

φ2(f)(y) =

L∑

i=n+1

f(α◦βi(y))pi.

Then we have the following facts.
(a) φ2 is a homomorphism factoring through C[0, 1] as

φ2 : C(X)
ξ1−→ C[0, 1]

ξ2−→ Q2Mk(C(Y ))Q2.

Furthermore, if Y 6= {pt}, then ξ2 is injective. (This follows from the surjection
of βn+1.)
(b) Note that

α◦β1(y) = x1, α◦β2(y) = x2, · · · , α◦βn(y) = xn

are n constant maps with {x1, x2, · · · , xn} η-dense in X. By the claim in 4.20,
(φ0 ⊕ φ1)(F ) is approximately constant to within ε. (Note that φ0 is not a
homomorphism, it is a completely positive linear ∗-contraction.)
Furthermore, if η < ε, then the set {x1, x2, · · · , xn} is ε-dense in X.
Therefore, we have proved the following theorem.

Theorem 4.35. Let X be a connected finite simplicial complex, and ε > η > 0.
For any δ > 0, there is an integer L > 0 such that the following holds.
Suppose that F ⊂ C(X) is a finite set such that dist(x, x′) < 2η implies |f(x)−
f(x′)| < ε

3 for all f ∈ F .
If φ : C(X) → Mk(C(Y )) is a homomorphism with the property sdp( η32 , δ),
and rank(φ(1)) ≥ 2J · L2 · 2L(dimX + dimY + 1)3, where Y is a con-
nected finite simplicial complex and J is any fixed positive integer, then there
are three mutually orthogonal projections Q0, Q1, Q2 ∈ Mk(C(Y )), a map
φ0 ∈ Map(C(X), Q0Mk(C(Y ))Q0)1 and two homomorphisms
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φ1 ∈ Hom(C(X), Q1Mk(C(Y ))Q1)1 and φ2 ∈ Hom(C(X), Q2Mk(C(Y ))Q2)1

such that
(1) φ(1) = Q0 +Q1 +Q2;
(2) ‖φ(f)− φ0(f)⊕ φ1(f)⊕ φ2(f)‖ < ε for all f ∈ F ;
(3) The homomorphism φ2 factors through C[0, 1] as

φ2 : C(X)
ξ1−→ C[0, 1]

ξ2−→ Q2Mk(C(Y ))Q2.

Furthermore, if Y 6= {pt}, then ξ2 is injective;
(4) The set (φ0 ⊕ φ1)(F ) is approximately constant to within ε;
(5) Q1 = p1 + · · · + pn, with J [Q0] ≤ [pi] (i = 1, 2 · · ·n), φ0 is defined by
φ0(f) = Q0φ(f)Q0, and φ1 is defined by

φ1(f) =

n∑

i=1

f(xi)pi, ∀f ∈ C(X),

where p0, p1, · · · pn are mutually orthogonal projections and {x1, x2, · · ·xn} ⊂ X
is an ε-dense subset of X. (Again by J [p] ≤ [q], we mean that p⊕ p⊕ · · · ⊕ p︸ ︷︷ ︸

J

is (unitarily) equivalent to a subprojection of q.)
Furthermore, we can choose any two of projections Q0, Q1, Q2 to be trivial, if we
wish. If φ(1) is trivial, then all of them can be chosen to be trivial projections.
(This is remark 4.22.)

4.36. Let a simple C∗-algebra A be an inductive limit of matrix algebras
over simplicial complexes (An =

⊕tn
i=1M[n,i](C(Xn,i)), φn,m) with injective

homomorphisms. Suppose that this inductive limit system possesses the very
slow dimension growth condition.
In what follows, we will use the material from 1.2.19.
Fix An, finite set Fn =

⊕tn
i=1 F

i
n ⊂ An, and ε > 0. Let ε′ = ε

max1≤i≤tn{[n,i]}
.

Let F ′i ⊂ C(Xn,i) be the finite set consisting of all the entries of elements in
F in (⊂ M[n,i](C(Xn,i))). Let η > 0 (η ≤ ε) be such that if x, x′ ∈ Xn,i (i =

1, 2 · · · tn) and dist(x, x′) < 2η, then |f(x)− f(x′)| < ε′

3 for any f ∈ F ′i.
For the above η > 0, there is a δ > 0 such that for sufficiently large m,
each partial map φi,jn,m : Ain → Ajm has the property sdp( η32 , δ). (This is a
consequence of simplicity of the algebra A and injectivity of φn,m. See [DNNP],
[Ell], [Li1-2] for details.)
For these numbers η and δ, and the simplicial complexes Xn,i, there are
L(i), i = 1, 2, · · · , tn, as in Theorem 4.35. (Note that the numbers Li only
depend on η, δ and the spaces.) Let L = maxi L(i). Fix a positive integer J .
By the very slow dimension growth condition, there is an integer M such that
for any m ≥M ,

rankφi,jn,m(1Ain)

rank(1Ain)
> 2J · L2 · 2L(dimXn,i + dimXm,j + 1)3.
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As in 1.2.16, (also see 1.2.19) each partial map
φi,jn,m : Ain → φi,jn,m(1Ain)Ajmφ

i,j
n,m(1Ain) can be written as φ′ ⊗ 1[n,k] for some

homomorphism φ′ : C(Xn,i) → EAjmE, where E = φi,jn,m(e11), and e11 is the
canonical matrix unit corresponding to the upper left corner. The map φ′ also
has the property sdp( η32 , δ).

Applying Theorem 4.35 to F ′i ⊂ C(Xn,i), η, δ, and φ′ (as the above) and using
1.2.19, one can obtain the following Theorem.

Theorem 4.37. For any An, finite set F =
⊕tn

i=1 F
i ⊂ An, positive in-

teger J , and number ε > 0, there are an Am, mutually orthogonal projec-
tions Q0, Q1, Q2 ∈ Am with Q0 + Q1 + Q2 = φn,m(1An), a unital map ψ0 ∈
Map(An, Q0AmQ0)1, and unital homomorphisms ψ1 ∈ Hom(An, Q1AmQ1)1,
ψ2 ∈ Hom(An, Q2AmQ2)1, such that
(1) ‖φn,m(f)− ψ0(f)⊕ ψ1(f)⊕ ψ2(f)‖ < ε for all f ∈ F ;
(2) The set (ψ0 ⊕ ψ1)(F ) is weakly approximately constant to within ε;
(3) The homomorphism ψ2 factors through

⊕tn
i=1M[n,i](C[0, 1]) as

ψ2 : An
ξ1−→

tn⊕

i=1

M[n,i](C[0, 1])
ξ2−→ Q2AmQ2,

and ξ2 satisfies the following condition: if Xm,j 6= {pt}, then ξi,j2 :
M[n,i](C[0, 1])→ Ajm is injective;

(4) Each partial map ψi,j0 : Ain → Qi,j0 AjmQ
i,j
0 (where Qi,j0 = ψi,j0 (1Ain)) is

of the form ψ′0 ⊗ id[n,k] with ψ′0 : C(Xn,i) → q0A
j
mq0 (where q0 = ψi,j0 (e11)

is a projection). Each partial map ψi,j1 : Ain → Qi,j1 AjmQ
i,j
1 (where Qi,j1 =

ψi,j1 (1Ain)) is of the form ψ′1 ⊗ id[n,k] and ψ′1 : Ain → pi,jAjmp
i,j (where pi,j =

ψi,j1 (e11)), satisfies the following

ψ′1(f) =

n∑

i=1

f(xi)pi

for any f ∈ C(Xn,i), where p1, · · · , pn are mutually orthogonal projections with
pi,j = p1 + · · ·+pn, and with J · [q0] ≤ [ps] (s = 1, 2 · · ·n) and {x1, x2, · · ·xn} ⊂
Xn,i is an ε-dense subset in Xn,i.
(When we apply this theorem in Section 6, Q0 + Q1 will be chosen to be a
trivial projection.)

Definition 4.38. Let A = PMl(C(X))P , and L be a positive integer and
η > 0. A homomorphism λ : A→ B = QMl1(C(Y ))Q is said to be defined
by point evaluations of size at least L at an η-dense subset if there
are mutually orthogonal projections Q1, Q2, · · · , Qn with rank(Qi) ≥ L, an
η-dense subset {x1, x2, · · · , xn} ⊂ X, and unital homomorphisms λi : A →
QiBQi, i = 1, 2, · · · , n such that
(1) λ(1) =

∑n
i=1Qi, and λ =

⊕n
i=1 λi;
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(2) The homomorphisms λi factor through P (xi)Ml(C| )P (xi) (∼= Mrank(P )
(C| ))

as

λi = λ′i ◦ exi : PMl(C(X))P
exi−→P (xi)Ml(C| )P (xi)

λ′i−→QiBQi,
where exi are evaluation maps defined by exi(f) = f(xi) and
λ′i ∈ Hom(Mrank(P )

(C| ), QiBQi)1.

We will also call the above homomorphism λ to have the property PE(L, η).
(PE stands for point evaluation.)
A homomorphism λ : A→ B = QMl1(C(Y ))Q is said to contain a part of
point evaluation at point x of size at least L, if λ = λ1⊕λ′, where λ1

factor through P (x)Ml(C| )P (x) as

λ1 = λ′1 ◦ ex : PMl(C(X))P
ex−→P (x)Ml(C| )P (x)

λ′1−→Q1BQ1,

and λ′1 is a unital homomorphism with rank(Q1) ≥ L.
The following result is a corollary of Theorem 4.37, and will also be used in the
proof of our main reduction theorem.

Corollary 4.39. For any An, finite set F =
⊕tn

i=1 F
i ⊂ An, positive

integer J , any numbers ε > 0 and η > 0, and any projection P = ⊕P i ∈
⊕Ain, there are an Am, mutually orthogonal projections Q0, Q1, Q2 ∈ Am with
Q0 +Q1 +Q2 = φn,m(1An), a unital map ψ0 ∈ Map(An, Q0AmQ0)1, and unital
homomorphisms ψ1 ∈ Hom(An, Q1AmQ1)1, ψ2 ∈ Hom(An, Q2AmQ2)1, such
that
Part I:
(1) ‖φn,m(f)− ψ0(f)⊕ ψ1(f)⊕ ψ2(f)‖ < ε for all f ∈ F ;
(2) The homomorphism ψ2 factors through a direct sum of matrix algebras over
C[0, 1] as

ψ2 : An
ξ1−→

tn⊕

i=1

M[n,i](C[0, 1])
ξ2−→ Q2AmQ2,

and ξ2 satisfies the condition that, if Xm,j 6= {pt}, then ξi,j2 : M[n,i](C[0, 1])→
Ajm is injective.
(3) For any blocks Ain ⊂ An, Ajm ⊂ Am, and for the partial maps ψi,j0 and

ψi,j1 , we have that ψi,j0 (1Ain) := Qi,j0 is a projection and ψi,j1 has the property

PE(J · rank(Qi,j0 ), η).
(4) The set (ψ0 ⊕ ψ1)(F ) is weakly approximately constant to within ε.
Part II:
ψi,j0 (P i) and ψi,j0 (1Ain − P i) are mutually orthogonal projections, and the de-
composition of φ′n,m := φn,m|PAnP as the direct sum of ψ′0 := ψ0|PAnP ,
ψ′1 := ψ1|PAnP , and ψ′2 := ψ2|PAnP satisfies the following conditions:
(1) ‖φ′n,m(f)− ψ′0(f)⊕ ψ′1(f)⊕ ψ′2(f)‖ < ε for all f ∈ PFP = ⊕P iF iP i;
(2) The homomorphism ψ′2 factors through a C∗-algebra C which is a direct
sum of matrix algebras over C[0, 1] as

ψ′2 : PAnP
ξ′1−→ C

ξ′2−→ Q′2AmQ
′
2,
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and ξ′2 satisfies the following condition, if Xm,j 6= {pt}, then ξi,j2 : Ci → Ajm is
injective, where Q′2 = ψ2(P ).

(3) For any blocks Ain ⊂ An, Ajm ⊂ Am, and for the partial maps ψ
′i,j
0 and

ψ
′i,j
1 , we have that ψ

′i,j
0 (P i) := Q

′i,j
0 is a projection and ψ

′i,j
1 has property

PE(J · rank(Q
′i,j
0 ), η).

Proof: Obviously, the first part of the corollary follows from Theorem 4.37.
To prove the second part, we only need to perturb ψ0 ∈ Map(A,Q0BQ0)1 to
newψ0 such that the restriction newψ0|D is a homomorphism, where

D :=
⊕

i

C| · P i ⊕
⊕

i

C| · (1Ain − P
i)

is a finite dimensional subalgebra of An.
By Lemma 1.6.8, such perturbation exists if ψ0 is sufficiently multiplicative,
which is automatically true if the set F is large enough and the number ε is
small enough, using the next lemma.
(Note that C := ξ1(P )(

⊕tn
i=1M[n,i](C[0, 1]))ξ1(P ) is still a direct sum of matrix

algebras over C[0, 1], since all the projections in M•(C[0, 1]) are trivial.)
ut

Lemma 4.40. Let A be a unital C∗-algebra. Suppose that G ⊂ A is a finite set
containing 1A, and G1 = G × G := {gh | g ∈ G, h ∈ G}. Suppose that δ > 0,
and δ′ = 1

3
1
‖G‖δ, where ‖G‖ = maxg∈G{‖g‖}.

Suppose that B is a unital C∗-algebra and p ∈ B is a projection. If a
homomorphism φ ∈ Hom(A,B) and two maps φ1 ∈ Map(A, pBp), φ2 ∈
Map(A, (1− p)B(1− p)) satisfy

‖φ(g)− φ1(g)⊕ φ2(g)‖ < δ′, ∀g ∈ G1,

then both φ1 and φ2 are G-δ multiplicative.

Proof: The proof is straight forward, we omit it.
Theorem 4.37 and Corollary 4.39 will be used in the proof of our Main Reduc-
tion Theorem in this article. Theorem 4.35 will be used in the proof of the
Uniqueness Theorem in [EGL]. The rest of this section will not be used in this
paper. They are important to [EGL].

4.41. In the rest of this section, we will compare the decompositions of two
different homomorphisms. Such comparison will be used in the proof of the
Uniqueness Theorem in [EGL].
Let X, η, δ, φ, {βi}Li=1, and Θ(y) be as in 4.34. (Take J = 1.) Suppose that
φ : C(X) → Mk(C(Y )) is as in Theorem 4.35, and ψ : C(X) → Mk(C(Y )) is
another homomorphism with φ(1) = ψ(1). If

‖AffTφ(f)−AffTψ(f)‖ < δ

4
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for all f ∈ H(η, δ,X), then by Lemma 4.29, SPφy and SPψy can be paired
within η

2 . Since SPφy and Θ(y) can be paired within η
2 , SPψy and Θ(y) can be

paired within η. Similar to 4.34, by Theorem 4.1, there are mutually orthogonal
projections q1, q2, · · · , qn, qn+1, · · · , qL and q0 = ψ(1)−∑L

i=1 qi such that
(1) For all y ∈ Y and f ∈ F ,

‖ψ(f)(y)− q0ψ(f)(y)q0 ⊕
L∑

i=1

f(α◦βi(y))qi‖ < ε.

(2) rank(q0) + 2 dim(Y ) ≤ rank(qi).
As Remark 4.22, we can choose projections pi for φ and qi for ψ to be trivial
projections with rank(pi) = rank(qi). (Note that, in 4.34, the number L2

and L2 + L1, which serve as Ti, i = 1, 2, · · · , L (i.e., Ti = L2, for 1 ≤ i ≤
L− 1, and TL = L2 + L1) in Theorem 4.1, are very larger.) Therefore, there
is a unitary u ∈Mk(C(Y )) such that

uqiu
∗ = pi, i = 1, 2, · · · , L.

Let ψ̃ = Adu◦ψ. Then

‖ψ̃(f)(y)− p0ψ̃(f)(y)p0 ⊕
L∑

i=1

f(α◦βi(y))pi‖ < ε

for all y ∈ Y and f ∈ F .
Note that the above decomposition has the same form as that of φ, even with
the same projections pi and the part

∑L

i=1 f(α◦βi(y))pi. Also, in the part∑L

i=1 f(α◦βi(y))pi, there is a map defined by point evaluations:

φ′(f) =
n∑

i=1

f(xi)pi,

with {x1, x2, · · · , xn} η-dense in X, and rank(pi) ≥ rank(p0) + 2 dim(Y ). This
means that two different homomorphisms which are close at the level of AffT
can be decomposed in the same way. This result will be useful in the proof of
the Uniqueness Theorem for certain spaces X with K1(C(X)) a torsion group.
We summarize what we obtained as the following proposition which will be used
in the proof of the Uniqueness Theorem for certain spaces X with K1(C(X))
a torsion group.

Proposition 4.42. Let X be a connected simplicial complex, ε > 0, and
F ⊂ C(X) be a finite set.
Suppose that η ∈ (0, ε) satisfies that if dist(x, x′) < 2η, then |f(x)− f(x′)| < ε

3
for all f ∈ F .
For any δ > 0, there is an integer L > 0 and a finite set H ⊂ AffT (C(X))(=
C(X)) such that the following holds.
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If φ, ψ : C(X)→Mk(C(Y )) are homomorphisms with properties
(a) φ has sdp( η32 , δ);
(b) rank(φ(1)) ≥ 2L2 · 2L(dimX + dimY + 1)3;
(c) φ(1) = ψ(1) and

‖AffTφ(h)−AffTψ(h)‖ < δ

4
, ∀h ∈ H,

then there are two orthogonal projections Q0, Q1 ∈ Mk(C(Y )), two
maps φ0, ψ0 ∈ Map(C(X), Q0Mk(C(Y ))Q0)1, a homomorphism φ1 ∈
Hom(C(X), Q1Mk(C(Y ))Q1)1, and a unitary u ∈Mk(C(Y )) such that
(1) φ(1) = ψ(1) = Q0 +Q1;
(2) ‖φ(f) − φ0(f) ⊕ φ1(f)‖ < ε, and ‖(Adu ◦ ψ)(f) − ψ0(f) ⊕ φ1(f)‖ < ε for
all f ∈ F ;
(3) φ1 factors through C[0, 1].
(4) Q0 = p0 +p1 + · · ·+pn with rank(p0)+2 dim(Y ) ≤ rank(pi) (i = 1, 2 · · ·n),
and φ0 and ψ0 are defined by

φ0(f) = p0φ(f)p0 +
n∑

i=1

f(xi)pi, ∀f ∈ C(X),

ψ0(f) = p0(Adu ◦ ψ)(f)p0 +
n∑

i=1

f(xi)pi, ∀f ∈ C(X),

where p0, p1, · · · pn are mutually orthogonal projections and {x1, x2, · · ·xn} ⊂ X
is an ε-dense subset in X.
(Comparing with Theorem 4.35, the maps φ0 and φ1 in 4.35 have been put
together to form the map φ0 in the above proposition.)
(In [EGL], we will prove that the above φ0 and ψ0 are approximately unitarily
equivalent to each other to within some small number (under the condition
KK(φ) = KK(ψ)), then so also are φ and ψ.)

4.43. The above proposition is not strong enough to prove the Uniqueness
Theorem for homomorphisms from C(S1) to Mk(C(Y )), since K1(C(S1)) is
infinite. Before we conclude this section, we introduce a result which can be
used to deal with this case (i.e, the case S1).
We will discuss briefly what the problem is, and how to solve the problem.
Suppose that φ and ψ are two homomorphisms from C(S1) to another C∗-
algebra, For φ and ψ to be approximately unitarily equivalent to each other,
they should agree not only on AffT (C(S1)) and K∗(C(S1)), but also on the
determinant functions. That is, φ(z)ψ(z)∗ should have only a small variation in
the determinant, where z ∈ C(S1) is the standard generator. (All these things
will be made precise in [EGL].) This idea has appeared in [Ell2] and [NT].
Roughly speaking, if φ and ψ agree (approximately) to within ε at the level of
the determinant (this will also be made precise in [EGL]), then the maps p0φp0
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and p0(Adu ◦ ψ)p0 from Proposition 4.42 agree only to within rank(φ(1))

rank(p0)
ε at

the level of the determinant. So for the decomposition to be useful for the
proof of the uniqueness theorem, rank(p0) should not be too small compared
with rank(φ(1)). (This will be the property (2) of Theorem 4.45 below.) On
the other hand, in the decompositions of φ and Adu ◦ ψ, we also need the
homomorphism defined by point evaluations, which by Proposition 4.42 is the
same for both of these decompositions, to be large in order to absorb the parts
p0φp0 and p0(Adu ◦ ψ)p0. This will be the property (3) of Theorem 4.45.
Therefore, rank(p0) should not be too large either.
To do that, besides the property sdp( η32 , δ), we also need sdp property for an

extra pair ( η̃32 , δ̃), where η̃ depends on δ. For those readers who are familiar with
[Ell2] and [NT], we encourage them to compare the sdp property for the two
pairs ( η32 , δ) and ( η̃32 , δ̃), with the conditions of Theorem 4 of [Ell2], and Lemma
2.3 and Theorem 2.4 of [NT], in the following way. In Theorem 4 of [Ell2] (see
page 100 of [Ell2]), roughly speaking, the sentence on lines 16–20 corresponds
to our property sdp( η̃32 , δ̃), and the sentence on lines 21–22 corresponds to our
property sdp( η32 , δ). That is, 1

m corresponds to our η
32 (or η

16 in some sense),
3
n corresponds to our δ, 1

n corresponds to our η̃
32 , and δ corresponds to our δ̃.

Similarly, in Lemma 2.3 of [NT], condition (1) corresponds to our sdp( η32 , δ)

and condition (2) corresponds to our sdp( η̃32 , δ̃). Also in Theorem 2.4 of [NT],
condition (2) corresponds to our sdp( η32 , δ) and condition (3) corresponds to

our sdp( η̃32 , δ̃).
Such a construction will be given in 4.44 below.
In 4.44, we will first describe the condition that φ should satisfy. Then we will
carry out the construction in three steps.
In Step 1, we will follow the procedure in 4.34, to decompose φ into p0φp0⊕φ1,
corresponding to the property sdp( η̃32 , δ̃) (not sdp( η32 , δ)). (Here, the map φ1

is φ1 ⊕ φ2 in the notation of 4.34 or 4.35.)
In Step 2, we will take a part p′φ1p

′ out of φ1 and add it to p0φp0 to obtain
P0φP0, where P0 = p0 + p′. The rest of φ1 will be defined to be newφ1. In this
way, we can get the projection P0 with suitable size (neither too small nor too
large). The size depends on δ, which explains why η̃ depends on δ.
In Step 3. we will prove that newφ1 can be decomposed again in such a way
that the point evaluation part of its decomposition is sufficiently large that it
can be used to control P0φP0, in the proof of the uniqueness theorem in [EGL].
(See the property (3) of Theorem 4.45.) The property sdp( η32 , δ) is used in this
step.

4.44. Let F ⊂ C(X) be a finite set, ε > 0 and ε1 > 0. Suppose that the
positive number η < ε1

4 satisfies the condition that, if dist(x, x′) < 2η, then

‖f(x)− f(x′)‖ < ε

3
.

For any δ > 0, consider the pair (η, δ) as in 4.33. Let N,n be as in 4.33. Instead
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of choosing L = n(N + 2), we choose

L ≥ max{n(N + 2), 8
δ ,

4
ε ,

4
ε1
}.

Consider ε̃ = 1
8L < min(ε, ε1). Let positive number η̃ < η

4 satisfy that, if
dist(x, x′) < 2η̃, then

‖f(x)− f(x′)‖ < ε̃

3
.

Let δ̃ > 0 be any number. Then for the pair (η̃, δ̃), there exists an integer L̃
playing the role of L as in Lemma 4.33. We can assume L̃ > L. Let

Λ = 6L̃2 · 2L̃(dimX +M + 1)3,

where M is a positive integer.
Now let Y be a simplicial complex with dimY ≤ M , and φ : C(X) →
PMk(C(Y ))P be a unital homomorphism satisfying the following two con-
ditions:
(a) φ has both sdp( η32 , δ) and sdp( η̃32 , δ̃);
(b) rank(P ) ≥ Λ.
We will construct a decomposition for φ.
Step 1. By the discussion in 4.34 corresponding to sdp( η̃32 , δ̃), there is a set

Θ(y) =
{
α◦β1(y)∼L2 , α◦β2(y)∼L2 , · · · , α◦βL̃−1(y)∼L2 , α◦βL̃(y)∼L2+L1

}
,

where

L2 = int

(
rank(P )

L̃

)
≥ int

(
Λ

L̃

)
,

such that SPφy and Θ(y) can be paired within η̃
2 .

As in 4.34, there are mutually orthogonal projections p0 and P1 =
∑L̃

i=1 pi and
a homomorphism φ1 : C(X)→ P1Mk(C(Y ))P1, such that
(1) ‖φ(f)− p0φ(f)p0 ⊕ φ1(f)‖ ≤ ε̃ ≤ 1

8L ,

(2) rank(p0) ≤ L̃ · 2L̃(dimX +M + 1)3 ≤ int
(

Λ
6L̃

)
,

where φ1 is defined by

φ1(f)(y) =

L̃∑

i=1

f(α◦βi(y))pi

with rank(pi) ≥ L2 − 2L̃(dimX +M + 1)3.
Step 2. We will take a part p′φ1p

′ out from φ1 and add it into p0φp0, such

that the projection P0 = p0 + p′ has rank about rank(P )
L , which is neither too

large nor too small. (Here we use L not L̃.)
There exists a projection p′ satisfying the following two conditions.

(c) p′ =
∑L̃

i=1 p
′
i, with p′i < pi, i = 1, 2, · · · , L̃.
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(d) rank(p′) = int
(

rank(P )
L

)
(here we use L, not L̃), where L was chosen in

the beginning of this subsection.
We can make the above (d) hold for the following reason. First,

rank(

L̃∑

i=1

pi) ≥ rank(P )− int

(
Λ

6L̃

)
> int

(
rank(P )

L

)
+ L̃dim(Y ).

So one can choose non negative integers k1, k2, · · · , kL̃ such that
∑L̃
i=1 ki =

int
(

rank(P )
L

)
and that ki ≤ rank(pi) − dim(Y ). Therefore, by [Hu], we can

choose trivial projections p′i < pi with rank(p′i) = ki.
Define

P0 = p0 ⊕ p′ and newP1 = P1 ª p′.
Note that p′ is a sub-projection of P1 =

∑L̃

i=1 pi. Define newφ1 : C(X) →
newP1Mk(C(Y ))newP1 by

(newφ1(f))(y) =

L̃∑

i=1

f(α◦βi(y))(pi ª p′i).

newP1 and newφ1 are still denoted by P1 and φ1, respectively. Evidently, the
following are true.

(1′) ‖φ(f)− P0φ(f)P0 ⊕ φ1(f)‖ < 1

4L
.

(2′)
rank(P )

L
≤ rank(P0) ≤ 2 · int

(
rank(P )

L

)
.

(Notice that, to get the above decomposition, one only needs the condition
that SPφy and Θ(y) can be paired within η̃ (see the way η is chosen in 4.4
for Theorem 4.1 and the way η̃ is chosen above). On the other hand, SPφy
and Θ(y) can be paired within η̃

2 in our case. So if ψ satisfies the condition

that SPψy and SPφy can be paired within η̃
2 , then the above decomposition

also holds for ψ, as discussed in 4.41. In particular, for a certain unitary u,
Adu ◦ ψ can have same form of decomposition as φ does— same projection P0

and even exactly the same part of the above φ1. This will be used in 4.46 and
Proposition 4.47.)
Step 3. Now, we can decompose φ1 again to obtain a large part of the homo-
morphism defined by point evaluations, which will be used to absorb the part
of P0φP0, in the proof of the uniqueness theorem in [EGL].
For the compact metric space X, and η > 0 (now we use η not η̃), there exists
a finite η-dense subset {x1, x2, · · · , xm} such that dist(xi, xj) ≥ η, if i 6= j.
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(Such set could be chosen to be a maximum set of finite many points which
have mutual distance at least η. Then the η-density of the set follows from the
maximality.)
We will prove the following claim.
Claim: There are mutually orthogonal projections q1, q2, · · · , qm < P1 with
rank(qi) > rank(P0) + dim(Y ), such that

∥∥∥∥∥φ1(f)− (P1 −
m∑

i=1

qi)φ1(f)(P1 −
m∑

i=1

qi)⊕
m∑

i=1

f(xi)qi

∥∥∥∥∥ < ε

for all f ∈ F .
Proof of the claim:
First, we know that the set (SPφ1)y is obtained by deleting rank(P0) points
(counting multiplicity) from the set Θ(y). Also SPφy and Θ(y) can be paired

within η̃
2 . Recall that,

Θ(y) =
{
α◦β1(y)∼L2 , α◦β2(y)∼L2 , · · · , α◦βL̃−1(y)∼L2 , α◦βL̃(y)∼L2+L1

}

is the set corresponding to φ and the pair (η̃, δ̃) in 4.33. And recall that

L2 = int
(

rank(P )

L̃

)
. From (a), φ has the property sdp( η32 , δ). So Θ(y) has the

property sdp( η32 + η̃
2 , δ). But (SPφ1)y is obtained by deleting

rank(P0)

(
≤ 2 · int

(
rank(P )

L

)
≤ δ

4
rank(P )

)

points from Θ(y). (Note that 1
L < δ

8 .) Therefore, in the ( η32 + η̃
2 )-ball of any

point in X, (SPφ1)y contains at least

δ · rank(P )− δ

4
rank(P ) =

3δ

4
rank(P )

points (counting multiplicity). That is, φ1 has the property sdp( η32 + η̃
2 ,

3δ
4 ).

Therefore φ1 has the property sdp( η4 ,
3δ
4 ), since η̃ < η

4 .
Set Ui = B η

2
(xi), i = 1, 2, · · · ,m. Then Ui, i = 1, 2, · · · ,m are mutually

disjoint open sets, since dist(xi, xj) ≥ η, if i 6= j. By the property sdp( η4 ,
3δ
4 )

of φ1, for any y ∈ Y ,

#(SP(φ1)y ∩Ui) ≥
3δ

4
rank(P ) >

2

L
rank(P ) + 3 dimY > rank(P0) + 3 dim(Y ).

The claim follows from the following proposition:
Proposition. Let X be a simplicial complex, and F ⊂ C(X) a finite subset.
Let ε > 0 and η > 0 be such that if dist(x, x′) < 2η, then |f(x)− f(x′)| < ε

3 for
any f ∈ F .
Suppose that U1, U2, · · · , Um are disjoint open neighborhoods of points
x1, x2, · · · , xm ∈ X, respectively, such that Ui ⊂ Bη(xi) for all 1 ≤ i ≤ m.
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Suppose that φ : C(X) → PM•(C(Y ))P is a unital homomorphism, where Y
is a simplicial complex, such that

#(SPφy ∩ Ui) ≥ ki, for 1 ≤ i ≤ m and for all y ∈ Y.

Then there are mutually orthogonal projections q1, q2, · · · , qm ∈ PM•(C(Y ))P
with rank(qi) ≥ ki − dim(Y ) such that

‖φ(f)− p0φ(f)p0 ⊕
m∑

i=1

f(xi)qi‖ < ε, for all f ∈ F,

where p0 = P −∑ qi.
This is Proposition 1.5.7 of this paper (see 1.5.4—1.5.6 for the proof). Since the
expert reader may skip §1.5, we point out that the above result was essentially
proved in [EG2, Theorem 2.21].
So we obtain the projections qi with

rank(qi) ≥ min
y

(#(SP(φ1)y ∩ Ui))− dim(Y ) ≥ rank(p0) + 2 dim(Y ).

Summarizing the above, we obtain the following theorem.

Theorem 4.45. Let F ⊂ C(X) be a finite set, ε > 0, ε1 > 0, and let M be
a positive integer (in the application in [EGL], we will let M = 3). Let the
positive number η < ε1

4 satisfy that, if dist(x, x′) < 2η, then

‖f(x)− f(x′)‖ < ε

3
for all f ∈ F.

Let δ > 0 be any positive number. There is an integer L > max{ 8
δ ,

4
ε ,

4
ε1
} satis-

fying the following condition. The rest of the theorem describes this condition.
Suppose that η̃ > 0 satisfies that, if dist(x, x′) < 2η̃, then

‖f(x)− f(x′)‖ < 1

24L
for all f ∈ F.

For any δ̃ > 0, there is a positive integer Λ such that if a unital homomor-
phism φ : C(X) → PMk(C(Y ))P (with dimY ≤ M) satisfies the following
conditions
(a) φ has the properties sdp( η32 , δ) and sdp( η̃32 , δ̃);
(b) rank(P ) ≥ Λ,
then there are projections P0, P1 ∈ PMk(C(Y ))P (with P0 + P1 = P ) and a
homomorphism φ1 : C(X)→ P1Mk(C(Y ))P1 such that
(1) ‖φ(f)− P0φ(f)P0 ⊕ φ1(f)‖ < 1

4L for all f ∈ F ;

(2) rank(P0) ≥ rank(P )
L ;

(3) There are mutually orthogonal projections q1, q2,· · ·, qm ∈P1Mk(C(Y ))P1

and an η-dense finite subset {x1, x2, · · · , xm} ⊂ X with the following properties.
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(i) rank(qi) > rank(P0) + 2 dim(Y ), i = 1, 2, · · · ,m;
(ii) ‖φ1(f)− (P1 −

∑m
i=1 qi)φ1(f)(P1 −

∑m
i=1 qi)⊕

∑m
i=1 f(xi)qi‖ < ε for all

f ∈ F .

4.46. Let η̃ and δ̃ be as in 4.44 (or 4.45), and H(η̃, δ̃, X) ⊂ C(X) the
subset defined in 4.27. Suppose that φ : C(X) → PMk(C(Y ))P satisfies
the conditions (a) and (b) in Theorem 4.45. And suppose that ψ : C(X) →
PMk(C(Y ))P is another homomorphism satisfying

‖AffTφ(h)−AffTψ(h)‖ < δ̃

4
,

for all h ∈ H(η̃, δ̃, X). Similar to 4.41, there is a unitary u ∈ PMk(C(Y ))P
such that

‖Adu◦ψ(f)− P0Adu◦ψ(f)P0 ⊕ φ1‖ <
1

4L
, ∀f ∈ F

where P0 and φ1 are exactly the same as those for φ in Theorem 4.45. (See the
end of step 2 of 4.44.)
So we have the following proposition.

Proposition 4.47. Let F ⊂ C(X) be a finite set, ε > 0, ε1 > 0, and let M
be a positive integer (in the application in [EGL], we will let M = 3). Let the
positive number η < ε1

4 satisfy that, if dist(x, x′) < 2η, then

‖f(x)− f(x′)‖ < ε

3
for all f ∈ F.

Let δ > 0 be any positive number. There is an integer L > max{ 8
δ ,

4
ε ,

4
ε1
}

satisfying the following condition. The rest of the proposition describes this
condition.
Suppose that η̃ > 0 satisfies that, if dist(x, x′) < 2η̃, then

‖f(x)− f(x′)‖ < 1

24L
for all f ∈ F.

For any δ̃ > 0, there is a positive integer Λ and a finite set H ⊂ AffT (C(X))(=
C(X)) such that if unital homomorphisms φ, ψ : C(X)→ PMk(C(Y ))P (with
dimY ≤M) satisfy the following conditions:
(a) φ has the properties sdp( η32 , δ) and sdp( η̃32 , δ̃);
(b) rank(P ) ≥ Λ;

(c) ‖AffTφ(h)−AffTψ(h)‖ < δ̃
4 , ∀h ∈ H,

then there are projections P0, P1 ∈ PMk(C(Y ))P (with P0 + P1 = P ), a ho-
momorphism φ1 : C(X) → P1Mk(C(Y ))P1 factoring through C[0, 1], and a
unitary u ∈ PMk(C(Y ))P such that
(1) ‖φ(f)− P0φ(f)P0 ⊕ φ1(f)‖ < 1

4L and
‖(Adu ◦ ψ)(f)− P0(Adu ◦ ψ)(f)P0 ⊕ φ1(f)‖ < 1

4L for all f ∈ F ;
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(2) rank(P0) ≥ rank(P )
L ;

(3) There are mutually orthogonal projections q1, q2,· · ·, qm ∈P1Mk(C(Y ))P1

and an η-dense finite subset {x1, x2, · · · , xm} ⊂ X with the following properties.

(i) rank(qi) > rank(P0) + 2 dim(Y );

(ii) ‖φ1(f)− (P1 −
∑m
i=1 qi)φ1(f)(P1 −

∑m
i=1 qi)⊕

∑m
i=1 f(xi)qi‖ < ε for all

f ∈ F .

In order to be consistent in notation with the application in [EGL], let us
rewrite the above proposition in the following form.

Proposition 4.47’. For any finite set F ⊂ C(X), ε > 0, ε1 > 0, there is a
number η > 0 with the property described below.

For any δ > 0, there are an integer K > 4
ε and a a number η̃ > 0 satisfying

the following condition.

For any δ̃ > 0, there is a positive integer L and a finite set H ⊂ AffT (C(X))(H
can be chosen to be H(η̃, δ̃, X) in 4.27) such that if two unital homomorphisms
φ, ψ : C(X) → PMk(C(Y ))P (with dimY ≤ 3) satisfy the following condi-
tions:

(a) φ has the properties sdp( η32 , δ) and sdp( η̃32 , δ̃);

(b) rank(P ) ≥ L;

(c) ‖AffTφ(h)−AffTψ(h)‖ < δ̃
4 , ∀h ∈ H,

then there are projections P0, P1 ∈ PMk(C(Y ))P (with P0 + P1 = P ), a ho-
momorphism φ1 : C(X) → P1Mk(C(Y ))P1 factoring through C[0, 1], and a
unitary u ∈ PMk(C(Y ))P such that

(1) ‖φ(f)− P0φ(f)P0 ⊕ φ1(f)‖ < 1
4K and

‖(Adu ◦ ψ)(f)− P0(Adu ◦ ψ)(f)P0 ⊕ φ1(f)‖ < 1
4K for all f ∈ F ;

(2) rank(P0) ≥ rank(P )
K ;

(3) There are mutually orthogonal projections q1, q2,· · ·, qm ∈P1Mk(C(Y ))P1

and an ε1
4 -dense finite subset {x1, x2, · · · , xm} ⊂ X with the following proper-

ties.

(i) rank(qi) > rank(P0) + 2 dim(Y );

(ii) ‖φ1(f)− (P1 −
∑m
i=1 qi)φ1(f)(P1 −

∑m
i=1 qi)⊕

∑m
i=1 f(xi)qi‖ < ε for all

f ∈ F .

(Notice that in the above statement, we change the notation L and Λ to K and
L respectively. Also, in condition (3), we change η-density to ε1

4 -density.)

4.48. Proposition 4.47’ will be used in the proof of the Uniqueness Theorem
in [EGL]. Namely, we will prove that, under certain conditions about KK(φ)
and KK(ψ) and the determinants of φ(z) and ψ(z) (see (4) of Theorem 2.4 of
[NT] ), where z ∈ C(S1) is the standard generator,

P0φ(f)P0 ⊕
m∑

i=1

f(xi)qi, f ∈ F
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is approximately unitarily equivalent to

P0Adu◦ψ(f)P0 ⊕
m∑

i=1

f(xi)qi, f ∈ F.

Therefore, {φ(f), f ∈ F} is approximately unitarily equivalent to {ψ(f), f ∈
F}. In [EGL], we need both of the following conditions:

rank(P0) ≥ rank(P )

L
and [qi] > [P0] in K0(C(Y )).

In comparison with Theorem 2.4 of [NT], in the Uniqueness Theorem in [EGL],
we also have a condition similar to (4) of Theorem 2.4 of [NT]. But this condi-
tion will be useful only when it is combined with the condition (2) above (see
[EGL] for details).

5 Almost Multiplicative Maps

In this section, we study almost multiplicative maps

φ ∈ Map (Ml(C(X)),Ml1(C(Y ))) ,

where X = TII,k, TIII,k, or S2, and Y is a simplicial complex of dimension at
most M with M a fixed number. In this section, all the simplicial complexes
are assumed to have dimension at most M .

5.1. Suppose that B1, B2, · · · , Bn, · · · are unital C∗-algebras. Let B =⊕+∞
n=1Bn. Then the multiplier algebra M(B) of B is

∏+∞
n=1Bn. The Six Term

Exact Sequence associated to

0 −→ B −→M(B) −→M(B)/B −→ 0

breaks into two exact sequences

0 −→ K0(B) −→ K0(M(B)) −→ K0(M(B)/B) −→ 0 and

0 −→ K1(B) −→ K1(M(B)) −→ K1(M(B))/B −→ 0.

since each projection (or unitary) in Mn(M(B)/B) can be lifted to a projection
(or a unitary) in Mn(M(B)).
Furthermore,

K0(B) =
+∞⊕

n=1

K0(Bn) and K1(B) =
+∞⊕

n=1

K1(Bn).

But in general, it is not true that

K0(M(B)) =
+∞∏

n=1

K0(Bn) or K1(M(B)) =
+∞∏

n=1

K1(Bn).
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In fact, K0(M(B)) is a subgroup of
∏+∞
n=1K0(Bn). But K1(M(B)) is more

complicated. In the first part of this section, we will calculate the K-theory of
M(B) (and of M(B)/B) for the case

Bn = Mkn(C(Xn)),

where Xn are simplicial complexes of dimension at most M . For convenience,
we always suppose that the spaces Xn are connected.

5.2. Consider S1 = {z; |z| = 1} ⊂ C| . Let

F : (S1\{−1})× [0, 1] −→ S1\{−1}
be defined by

F (eiθ, t) = eitθ, −π < θ < π.

Then |t− t′| < ε implies

|F (x, t)− F (x, t′)| < πε.

This fact implies the following. If u and v are unitaries such that ‖u− v‖ < 1,
then there is a path of unitaries ut with u0 = u, u1 = v such that |t − t′| < ε
implies ‖ut − ut′‖ < πε.
Let SU(n)(⊂ U(n)) denote the collection of n× n unitaries with determinant
1. Let SUn(X) denote the collection of continuous functions from X to SU(n).
Note SUn(X) ⊂ Un(X) ⊂Mn(C(X)).
From the proof of Theorem 3.3 (and Lemma 3.1) of [Phi2] (in particular (∗∗∗)
in Step 4 of 3.3 of [Phi2]), one can prove the following useful fact.

Lemma 5.3. ([Phi2]) For each positive integer M , there is an M ′ > 0 sat-
isfying the following condition. For any connected finite CW-complex X of
dimension at most M , and u, v ∈ SUn(X), if u and v can be connected to each
other in Un(X), then there is a path ut ∈ SUn(X) such that
1. u0 = u, u1 = v and
2. |t− t′| < ε implies ‖ut − ut′‖ < M ′ · ε.
(Note that M ′ does not depend on n, the size of the unitaries.)

5.4. Let Bn = Mkn(C(Xn)), dim(Xn) ≤ M . Let B =
⊕+∞

n=1Bn. Then we
can describe K0(M(B)) as below. Let (K0(Bn),K0(Bn)+,1Bn) be the scaled
ordered K-group of Bn (see 1.2 of [EG2]). Let ΠbK0(Bn) be the subgroup of∏+∞
n=1K0(Bn) consisting of elements

(x1, x2, · · · , xn, · · ·) ∈
+∞∏

n=1

K0(Bn)

with the property that there is a positive integer L such that

−L[1Bn ] < xn < L[1Bn ] ∈ K0(Bn)
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for all n.

Lemma 5.5. K0

(∏+∞
n=1Bn

)
= ΠbK0(Bn).

Proof: Any element in K0

(∏+∞
n=1Bn

)
is of the form [p] − [q], where p, q ∈

ML

(∏+∞
n=1Bn

)
are projections. Let

p = (p1, p2, · · · , pn, · · ·), q = (q1, q2, · · · , qn, · · ·) ∈ML

(
+∞∏

n=1

Bn

)
.

Then [p]− [q] ∈ K0

(∏+∞
n=1Bn

)
corresponds to the element

([p1]− [q1], [p2]− [q2], · · · , [pn]− [qn], · · ·) ∈ ΠbK0(Bn).

We will prove that this correspondence is bijective.
Surjectivity: Let

([p1]− [q1], [p2]− [q2], · · · , [pn]− [qn], · · ·) ∈ ΠbK0(Bn).

Then there is an L > M such that

−L[1Bn ] < [pn]− [qn] < L[1Bn ], ∀n.

Therefore,
−L · kn ≤ rank(pn)− rank(qn) < L · kn, ∀n.

It is well known that (see [Hu]) any vector bundle of dimension M + T over
an M dimensional space has a T dimensional trivial sub-bundle. Thus one can
replace pn by p′n, qn by q′n, with properties

[p′n] < 2L[1Bn ], [q′n] < 2L[1Bn ] and

[p′n]− [q′n] = [pn]− [qn] in K0(Bn).

([p′1] − [q′1], [p′2] − [q′2], · · ·) is in the image of the correspondence, since every
element [p′n] < 2L[1Bn ] can be realized by a projection in M4L(Bn) (recall that
L > M).
Injectivity. Let p = (p1, p2, · · · , pn, · · ·) and q = (q1, q2, · · · , qn, · · ·) be

projections in ML

(∏+∞
n=1Bn

)
. Suppose that for each n, [pn] = [qn] ∈

K0(Bn). We have to prove that [(p1, p2, · · · , pn, · · ·)] = [(q1, q2, · · · , qn, · · ·)] ∈
K0

(∏+∞
n=1Bn

)
.

Without loss of generality, assume that L > M . Let 1n ∈ML(Bn) be the unit.
By [Hu], for each n, the projection pn ⊕ 1n is unitary equivalent to qn ⊕ 1n.
That is, there is a unitary un ∈M2L(Bn) such that qn ⊕ 1n = un(pn ⊕ 1n)u∗n.
Hence the unitary u = (u1, u2, · · · , un, · · ·) ∈ M2L(

∏+∞
n=1Bn) satisfies q ⊕ 1 =

u(p⊕ 1)u∗. It follows that [q] = [p].
ut
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5.6. Let X be a finite CW complex. Then K1(C(X)) = K1(X) is defined to
be the collection of homotopy equivalence classes of continuous maps from X
to U(∞), denoted by [X,U(∞)], (or from X to U(n), denoted by [X,U(n)],
for n large enough). Consider the fibration

SU(n) −→ U(n)
b−→ S1,

where S1 ⊂ C| is the unit circle, b is defined by sending a unitary to its de-
terminant, and SU(n) is the special unitary group consisting the unitaries of

determinant 1. The fibration has a splitting S1 b−1−→ U(n), defined by

S1 3 z b−17−→




z
1

. . .

1


 ∈ U(n).

One can identify U(n) with SU(n)×S1 by U(n) 3 u 7→ ((b−1 ◦ b(u))∗u, b(u)) ∈
SU(n)× S1.
Therefore, [X,U(n)] = [X,SU(n)] ⊕ [X,S1] as a group. We use notation
SK1(C(X)) or SK1(X) to denote [X,SU(n)], n large enough, and π1(X) to
denote [X,S1]. Then

K1(C(X)) = SK1(C(X))⊕ π1(X).

(The splitting is not a natural splitting.)

5.7. Let {Xn} be a sequence of connected finite CW complexes of dimension
at most M . Let Bn = Mkn(C(Xn)). Define a map

τ : K1

(
+∞∏

n=1

Bn

)
−→

+∞∏

n=1

K1Bn by

τ [(u1, u2, · · · , un, · · ·)] = ([u1], [u2], · · · , [un], · · ·),

where (u1, u2, · · · , un, · · ·) is a unitary in ML

(∏+∞
n=1Bn

)
. If L ≥M , then any

element in K1(Bn) can be realized by a unitary in ML(Bn). Based on this fact,
we know that τ is surjective. We will prove that

0 −→ Kerτ −→ K1

(
+∞∏

n=1

Bn

)
−→

+∞∏

n=1

K1Bn −→ 0

is a splitting exact sequence. A splitting

τ̃ :
+∞∏

n=1

K1Bn −→ K1

(
+∞∏

n=1

Bn

)
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will be defined such that τ ◦ τ̃ = id on
∏+∞
n=1K1Bn. By 5.6,

K1Bn = SK1Bn ⊕ π1(Xn).

Hence we define τ̃ on
∏+∞
n=1 SK1Bn and

∏+∞
n=1 π

1(Xn) separately.

If x ∈∏+∞
n=1 SK1Bn is represented by a sequence of unitaries

u1 ∈ML(B1), u2 ∈ML(B2), · · · , un ∈ML(Bn), · · · ,

each with determinant 1, then define

τ̃(x) = [(u1, u2, · · · , un, · · ·)] ∈ K1

(
+∞∏

n=1

Bn

)
.

To see that τ̃ is well defined, let v1, v2, · · · , vn, · · · be another sequence with
determinant 1 and

[un] = [vn] in K1(Bn).

Without loss of generality, we assume that L > M . By Lemma 5.3, for each
n, there is a unitary path un such that un(0) = un, un(1) = vn, and ‖un(t)−
un(t′)‖ < M ′ · |t−t′|, ∀t ∈ [0, 1], where M ′ is a constant which does not depend
on n. Obviously,

(u1(t), u2(t), · · · , un(t), · · ·) ∈ (ML(
+∞∏

n=1

Bn))⊗ C([0, 1]).

Hence
[(u1, u2, · · · , un, · · ·)] = [(v1, v2, · · · , vn, · · ·)].

That is, the above map is well defined.
(Warning: It is not enough to prove that each un can be connected to vn, since
a sequence of paths, each connecting un and vn (n = 1, 2, · · ·), only defines an
element in ML(

∏+∞
n=1(Bn ⊗ C[0, 1])), but

(
+∞∏

n=1

Bn

)
⊗ C[0, 1] ⊂

6=

+∞∏

n=1

(Bn ⊗ C[0, 1]). )

The following claim is a well known folklore result in topology. Since we can
not find a precise reference, we present a proof here.
Claim: For any connected simplicial complex X, the cohomotopy group π1(X)
is a finitely generated free abelian group.
Proof of the claim. Let X(1) be the 1-skeleton of X. Then X(1) is homotopy
equivalent to a finite wedge of S1. Evidently, π1(X(1)) is a finitely generated
free abelian group. (In comparison with the above cohomotopy group, we point
out that the fundamental group π1(X(1)) of a finite wedge X(1) of S1 is a free
group (not a free abelian group).)
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On the other hand, we can prove that

i∗ : π1(X)→ π1(X(1)),

induced by the inclusion i : X(1) → X, is an injective map as below. Once this
is done, the claim follows from the result in group theory that any subgroup of
a free abelian group is still a free abelian group.

Let us prove the injectivity of i∗. Suppose that f, g : X → S1 are two maps
satisfying that

i∗([f ]) = i∗([g]),

where [f ], [g] ∈ π1(X) are elements represented by f and g, respectively. Then
f |X(1) is homotopic to g|X(1) . Let F : X(1) × [0, 1] → S1 be a homotopy path
connecting f |X(1) and g|X(1) . That is

F |X(1)×{0} = f |X(1) and F |X(1)×{1} = g|X(1) .

We are going to extend the homotopy F to a homotopy on the entire space
X × [0, 1]. The construction is done by induction. Suppose that F has been
extended to a homotopy (let us still denote it by F ) F : X (n) × [0, 1] →
S1 between f |X(n) and g|X(n) on the n-skeleton (where n ≥ 1) of X. I.e.,
F |X(n)×{0} = f |X(n) and F |X(n)×{1} = g|X(n) . We need to prove that it can be
extended to a homotopy on the (n+1)-skeleton. Let ∆ be any (n+1)-simplex.
Then ∂∆ ⊂ X(n). Let G : ∂∆× [0, 1] ∪∆× {0} ∪∆× {1} → S1 be defined by

G(x) =





F (x) if x ∈ ∂∆× [0, 1]
f(x) if x ∈ ∆× {0}
g(x) if x ∈ ∆× {1} .

Then G(x) is a continuous map from ∂(∆ × [0, 1]) to S1. Since πn+1(S1) = 0
and ∂(∆ × [0, 1]) = Sn+1, G can be extended to a map G : ∆ × [0, 1] → S1.
Define F on each simplex ∆ to be this G. Then F is the desired extension.
This ends the proof of the claim.

Let us go back to the construction of τ̃ on
∏+∞
n=1 π

1(Xn). Let x0
1 ∈ X1, x

0
2 ∈

X2, · · · , x0
n ∈ Xn, · · · , be chosen as the base points of the spaces. Let

θn,1, θn,2, · · · , θn,tn : Xn −→ S1

be the functions representing the generators

[θn,1], [θn,2], · · · , [θn,tn ] ∈ π1(Xn).

Suppose that

θn,j(x
0
n) = 1 ∈ S1 ⊂ C| , j = 1, 2, · · · , tn.
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For any element (x1, x2, · · · , xn, · · ·) ∈
∏+∞
n=1 π

1(Xn), define τ̃(x) as below. Let
un ∈ Bn be defined by

un(y) =




θn,1(y)m1 · θn,2(y)m2 · · · θn,tn(y)mtn

1
. . .

1



kn×kn

∈ Mkn(C| )

for each y ∈ Xn, where m1,m2, · · · ,mtn are integers with

(∗) xn = m1[θn,1] +m2[θn,2] + · · ·+mtn [θn,tn ] ∈ π1(Xn).

Define

τ̃(x) = [(u1, u2, · · · , un, · · ·)] ∈ K1

(
+∞∏

n=1

Bn

)
.

Since each π1(Xn) is a free abelian group, the expression (∗) for xn is unique. It
is easy to check that τ̃ on

∏+∞
n=1 π

1(Xn) is a well defined group homomorphism.
It is straight forward to check that

τ ◦ τ̃ = id :

+∞∏

n=1

π1(Xn) −→
+∞∏

n=1

π1(Xn)

And that

τ ◦ τ̃ = id :
+∞∏

n=1

SK1(Bn) −→
+∞∏

n=1

SK1(Bn).

That is,

τ ◦ τ̃ = id :

+∞∏

n=1

K1(Bn) −→
+∞∏

n=1

K1(Bn).

The splitting τ̃ :
∏+∞
n=1K1(Bn) −→ K1

(∏+∞
n=1Bn

)
of the exact sequence

0 −→ Ker(τ) −→ K1

(
+∞∏

n=1

Bn

)
τ−→

+∞∏

n=1

K1Bn −→ 0

gives an isomorphism

K1

(
+∞∏

n=1

Bn

)
=

+∞∏

n=1

K1Bn ⊕Ker(τ).

5.8. In order to identify Ker(τ), suppose that

u = [(u1, u2, · · · , un, · · ·)] ∈ K1

(
+∞∏

n=1

Bn

)
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satisfies that

τ(u) = 0 ∈
+∞∏

n=1

K1Bn.

Note that any unitary matrix v ∈ M•(C| ) can be connected to 1 ∈ M•(C| ), by
a path v(t) satisfying that, if |t− t′| < ε, then

‖v(t)− v(t′)‖ < 2πε.

Based on this fact, we have

[(u1, u2, · · ·)] = [(u∗1(x0
1)u1, u

∗
2(x0

2)u2, · · ·)] ∈ K1

(
+∞∏

n=1

Bn

)
.

Therefore, without loss of generality, we assume that

un(x0
n) = 1 ∈ML(Bn),

where x0
n ∈ Xn are the base points.

Since τ(u) = 0, if we assume L ≥ M , then each un can be connected to
1 ∈ML(Bn). This implies that the map

determinant(un) : Xn −→ S1

is homotopy trivial. Therefore, this map can be lifted to a unique map

det(un) : Xn −→ IR

such that det(un)(x0
n) = 0 ∈ IR and

exp(2πidet(un)) = determinant(un).

Let
∐
Xn be the disjoint union of Xn and Map (

∐
Xn, IR)0 the set of all con-

tinuous maps f :
∐
Xn → IR with f(x0

n) = 0 for all x0
n. Let Mapb (

∐
Xn, IR)0

be the set of those maps with bounded images.

Define a map d : Ker(τ)→
Map

(∐+∞
n=1

Xn,IR
)

0

Mapb
(∐+∞

n=1
Xn,IR

)
0

by

d(u) = [(
det(u1)

k1
,

det(u2)

k2
, · · · , det(un)

kn
, · · ·)].

We will prove that d is a well defined isomorphism.
Suppose that u can be represented by another unitary

(v1, v2, · · · , vn, · · ·) ∈ML

(
+∞∏

n=1

Bn

)
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with v(x0
n) = 1 ∈ ML(Bn). Then for the unit of a certain matrix algebra over∏+∞

n=1Bn

1L1 ∈ML1

(
+∞∏

n=1

Bn

)
,

we have that, the element

(u1 ⊕ 1, u2 ⊕ 1, · · · , un ⊕ 1, · · ·) ∈ML+L1

(
+∞∏

n=1

Bn

)

can be connected to the element

(v1 ⊕ 1, v2 ⊕ 1, · · · , vn ⊕ 1, · · ·) ∈ML+L1

(
+∞∏

n=1

Bn

)

by a unitary path

(u1(t), u2(t), · · · , un(t), · · ·) ∈
(
ML+L1

(
+∞∏

n=1

Bn

))
⊗ C[0, 1].

We need to prove that
(

det(u1)− det(v1)

k1
,

det(u2)− det(v2)

k2
, · · · , det(un)− det(vn)

kn
, · · ·

)

has a uniformly bounded image in IR. This follows from the following fact. If
two unitaries w1, w2 ∈M(L+L1)kn(C| ) satisfying |w1 − w2| < ε < 1

4 , then

|determinant(w∗1w2)− 1| < π(L+ L1)knε.

Now, we have to prove that d is an isomorphism.
Obviously, d is surjective. In fact, for any function

(f1, f2, · · · , fn, · · ·) ∈ Map

(
+∞∐

n=1

IR

)

0

,

let u ∈ K1

(∏+∞
n=1Bn

)
be the element represented by

(exp(2πif1), exp(2πif2), · · · , exp(2πifn), · · ·) ∈
+∞∏

n=1

Bn =

+∞∏

n=1

Mkn(C(Xn)).

Then d(u) = [(f1, f2, · · · , fn, · · ·)].
Finally, we have to prove that d is injective. Suppose that u ∈ Ker(τ) is
represented by

(u1, u2, · · · , un, · · ·) ∈ML

(
+∞∏

n=1

Bn

)
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satisfying

(
det(u1)

k1
,

det(u2)

k2
, · · · , det(un)

kn
, · · ·

)
∈ Mapb

(∐
Xn, IR

)
0
.

Let fn = det(un)
kn

: Xn → IR and

vn = exp
2πifn
L
∈MLkn(C(Xn)).

Then v∗nun ∈ SULkn(Xn), i.e., it has determinant 1 every where. Since
(f1, f2, · · · , fn, · · ·) is of uniformly bounded image, we know that

(u1, u2, · · · , un, · · ·) and (v∗1u1, v
∗
2u2, · · · v∗nun, · · ·)

can be connected by a continuous path in

(
ML

(
+∞∏

n=1

Bn

))
⊗ C[0, 1].

Therefore, u = [(v∗1u1, v
∗
2u2, · · · v∗nun, · · ·)]. The latter is zero by Lemma 5.3

and the fact that u ∈ Ker(τ).
Summarizing the above, we obtain

Lemma 5.9. K1

(∏+∞
n=1Bn

)
=
∏+∞
n=1K1Bn ⊕

Map
(∐+∞

n=1
Xn,IR

)
0

Mapb
(∐+∞

n=1
Xn,IR

)
0

=

+∞∏

n=1

SK1Bn ⊕
+∞∏

n=1

π1(Xn)⊕
Map

(∐+∞
n=1Xn, IR

)
0

Mapb

(∐+∞
n=1Xn, IR

)
0

.

Corollary 5.10.

K1

(
+∞∏

n=1

Bn

/ +∞⊕

n=1

Bn

)
=

(
+∞∏

n=1

K1Bn

/ +∞⊕

n=1

K1Bn

)
⊕

Map
(∐+∞

n=1Xn, IR
)

0

Mapb

(∐+∞
n=1Xn, IR

)
0

.

5.11. From [Sch], for any C∗-algebra A in the bootstrap class and any C∗-
algebra B (not necessarily separable), there is a splitting short exact sequence

0 −→ K∗(A)⊗K∗(B) −→ K∗(A⊗B) −→ Tor(K∗(A),K∗(B)) −→ 0.

Let A = C0(Wk), where Wk = TII,k as in the introduction. Wk is used for
TII,k only when involving mod k K-theory K∗(B,ZZ/k). From the definition

K∗(B,ZZ/k) := K∗(A⊗B),
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one has

0 −→ K0(B)⊗ ZZ/k −→ K0(B,ZZ/k) −→ Tor(ZZ/k,K1(B)) −→ 0

and

0 −→ K1(B)⊗ ZZ/k −→ K1(B,ZZ/k) −→ Tor(ZZ/k,K0(B)) −→ 0.

Since G⊗ ZZ/k can be identified with the cokernel of

G
×k−→ G,

and Tor(ZZ/k,G) can be identified with the kernel of

G
×k−→ G,

one has the following well known exact sequences

K0(B)
×k−→ K0(B) −→ K0(B,ZZ/k) −→ K1(B)

×k−→ K1(B)

and
K1(B)

×k−→ K1(B) −→ K1(B,ZZ/k) −→ K0(B)
×k−→ K0(B).

5.12. Let {Xn}+∞n=1, Bn = Mkn(C(Xn)) be as above, and B =
⊕+∞

n=1Bn,

M(B) =
∏+∞
n=1Bn, Q(B) = M(B)/B.

From Lemma 5.5 and Corollary 5.10, we have

K0(Q(B)) = ΠbK0(Bn)/⊕K0(Bn) and

K1(Q(B)) =

{∏+∞
n=1K1(Bn)⊕+∞
n=1K1(Bn)

}⊕




Map
(∐+∞

n=1Xn, IR
)

0

Mapb

(∐+∞
n=1Xn, IR

)
0



 .

It is easy to see that the map





Map
(∐+∞

n=1Xn, IR
)

0

Mapb

(∐+∞
n=1Xn, IR

)
0




×k−→





Map
(∐+∞

n=1Xn, IR
)

0

Mapb

(∐+∞
n=1Xn, IR

)
0





is an isomorphism.
Any torsion element xn ∈ K0(Bn) can be realized as a formal difference of two
projections p, q ∈M∞(Bn) of the same rank. (The rank of a projection makes
sense since Xn are connected. Also for any element x ∈ K0(Bn) represented
by [p]− [q], we define rank(x) = rank(p)− rank(q), which is always a (possibly
negative) integer.) By [Hu], if a projection p ∈ M•(C(Xn)) has rank larger
than dim(Xn) + r, then p has a trivial sub projection of rank r. Therefore,
any torsion element xn ∈ K0(Bn) can be realized as a formal difference of two
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projections p, q ∈ML(Bn) if L > dim(Xn). Based on this fact, one can directly
compute that

Kernel
(

ΠbK0(Bn)
×k−→ ΠbK0(Bn)

)
= Kernel

(
+∞∏

n=1

K0(Bn)
×k−→

+∞∏

n=1

K0(Bn)

)
.

Fixed a positive integer k. let x = (x1, x2, · · · , xn, · · ·) ∈
∏+∞
n=1K0(Bn). For

each element xn ∈ K0(Bn), one can write rank(xn) = k ·M · ln + rn, where
ln is a (possibly negative) integer, M is the maximum of {dim(Xn)}n, and
0 < k ·M ≤ rn < 2k ·M . Let pn be the trivial rank one projection in Bn. Then
xn can be written as k ·M · ln[pn] + [qn], where qn is a projection of rank rn.
Therefore, x can can be written as x = x′ + x′′, where x′ ∈ k(

∏+∞
n=1K0(Bn))

and x′′ ∈ ΠbK0(Bn). As a consequence, one can compute that

Cokernel
(

ΠbK0(Bn)
×k−→ ΠbK0(Bn)

)

= Cokernel

(
+∞∏

n=1

K0(Bn)
×k−→

+∞∏

n=1

K0(Bn)

)
.

Combined with 5.11, yields

K0(Q(B),ZZ/k) =

+∞∏

n=1

K0(Bn,ZZ/k)
/ +∞⊕

n=1

K0(Bn,ZZ/k),

and

K1(Q(B),ZZ/k) =

+∞∏

n=1

K1(Bn,ZZ/k)
/ +∞⊕

n=1

K1(Bn,ZZ/k).

5.13. Following [DG], denote

K(A) = K∗(A) ⊕
+∞⊕

n=2

K∗(A,ZZ/n).

For any finite CW complex X and two KK-elements α, β ∈ KK(C(X), A),
from [DL] (also see [DG]), we know that α = β if and only if

α∗ = β∗ : K(C(X)) −→ K(A).

We will discuss the special cases of X = {pt}, [0, 1], TII,k, TIII,k and S2, where
TII,k, TIII,k are defined in the Introduction. (See §4 of [EG2] for details.) (The
case X = {pt} or [0, 1] is similar to the case X = S2, so we will not discuss the
spaces {pt} and [0, 1] separately.)
From [DL], there is an isomorphism

KK(C(X), B) −→ HomΛ(K(C(X)),K(B)),

Documenta Mathematica 7 (2002) 255–461



424 Guihua Gong

where HomΛ(K(C(X)),K(B)) is the set of systems of group homomorphisms
which is compatible with all the Bockstein Operations (see [DL] for details).
For any fixed finite CW complex X, an element α ∈ KK(C(X), B) is deter-
mined by the system of maps

α∗n : K∗(C(X),ZZ/n) −→ K∗(B,ZZ/n), n = 0, 2, 3, · · ·

which are induced by α. In fact α would be determined by a few maps from
the above list—all the other maps in the system {α∗n}+∞n=0 : K(C(X))→ K(B)
would be completely determined by these few maps via the Bockstein Opera-
tions. We will choose those few maps for the cases X = {pt}, [0, 1], S2, TII,k,
or TIII,k.
1. X = S2. Then

K(C(S2)) −→ K(B)

is completely determined by

K0(C(S2)) −→ K0(B)

via the Bockstein Operation

K0(C(S2)) −→ K0(C(S2),ZZ/k)
↓ ↓

K0(B) −→ K0(B,ZZ/k)

since the top horizontal map is surjective. (Note that K1(C(S2)) and
K1(C(S2),ZZ/k) are trivial groups.) Therefore,

KK(C(S2), B) ∼= Hom(K0(C(S2)),K0(B)).

(This is also a well known consequence of the Universal Coefficient Theorem.)
(The case X = {pt} or [0, 1] is similar to the above case.)
2. X = TII,k. Let rC(TII,k) ∼= C| and let C0(TII,k) be the ideal of C(TII,k)
consisting of the continuous functions vanishing at the base point. (See 1.6 of
[EG2] and 1.1.7 for the notations.) Consider the splitting exact sequence

0 −→ K0(C0(TII,k)) −→ K0(C(TII,k)) −→ K0(rC(TII,k)) −→ 0.

Each KK-element α ∈ KK(C(TII,k), B) induces two group homomorphisms

α0
0 : K0(rC(TII,k)) (= ZZ) −→ K0(B) and

α1
k : K1(C(TII,k),ZZ/k) (= ZZ/k) −→ K1(B,ZZ/k).

This induces a map

KK(C(TII,k),B)−→Hom(K0(rC(TII,k)),K0(B))
⊕

Hom(K1(C(TII,k),ZZ/k),K1(B,ZZ/k))

= Hom(ZZ,K0(B))
⊕

Hom(ZZ/k,K1(B,ZZ/k)).
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It can be verified that any two homomorphisms

α0
0 : K0(rC(TII,k)) (= ZZ) −→ K0(B) and

α1
k : K1(C(TII,k),ZZ/k) (= ZZ/k) −→ K1(B,ZZ/k)

induces a unique system of homomorphisms in HomΛ(K(C(TII,k)),K(B)).
Therefore, the above map is an isomorphism.
Another way to see it, is as follows. Note that

K1(C(TII,k),ZZ/k) = K0(C0(TII,k)) ⊂ K0(C(TII,k)).

Considering

K1(B)
×k−→ K1(B) −→ K1(B,ZZ/k) −→ K0(B)

×k−→ K0(B),

we obtain

Hom(K1(C(TII,k),ZZ/k),K1(B,ZZ/k))

∼= Hom(K0(C0(TII,k)),K0(B))⊕ Ext(K0(C0(TII,k)),K1(B)).

Then from the Universal Coefficient Theorem,

KK(C(TII,k), B)
∼= Hom(K0(C(TII,k)),K0(B))⊕ Ext(K0(C(TII,k)),K1(B))
∼= Hom(K0(rC(TII,k)),K0(B))⊕Hom(K0(C0(TII,k)),K0(B))

⊕Ext(K0(C0(TII,k)),K1(B)).

(Note that K1(C(TII,k)) = 0.) Hence one can see again, the map mentioned
above is an isomorphism.
3. X = TIII,k. Also, let rC(TIII,k) = C| and let C0(TIII,k) be the ideal
consisting of functions vanishing at the base point. Notice that

K0(C(TIII,k)) = ZZ and K0(C0(TIII,k),ZZ/k) = ZZ/k.

By the splitting exact sequence

0→K0(C0(TIII,k),ZZ/k)→ K0(C(TIII,k),ZZ/k)→ K0(rC(TIII,k),ZZ/k)→ 0

we know that each α ∈ KK(C(TIII,k), B) induces an element

α0
k : K0(C0(TIII,k),ZZ/k) −→ K0(B,ZZ/k).

It can be proved that

KK(C(TIII,k), B)

∼= Hom(K0(C(TIII,k)),K0(B))
⊕

Hom(K0(C0(TIII,k),ZZ/k),K0(B,ZZ/k))

= Hom(ZZ,K0(B))
⊕

Hom(ZZ/k,K0(B,ZZ/k)),
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as what we did for TII,k.
(Notice that the map K1(C(TIII,k))→ K1(B) is completely determined by the
map K0(C0(TIII,k),ZZ/k)→ K0(B,ZZ/k).)
Summarizing the above, we have the following.
For any two elements α, β ∈ KK(C(X), B), α = β if and only if
(1) α0

0 = β0
0 : K0(C(X)) −→ K0(B), when X = S2;

(2) α0
0 = β0

0 : K0(rC(X)) −→ K0(B) and α1
k = β1

k : K1(C(X),ZZ/k) −→
K1(B,ZZ/k), when X = TII,k;
(3) α0

0 = β0
0 : K0(C(X)) −→ K0(B) and α0

k = β0
k : K0(C0(X),ZZ/k) −→

K0(B,ZZ/k), when X = TIII,k.
Therefore, we have the following lemma.

Lemma 5.14. Let A = PMl(C(X))P , and X one of {pt}, [0, 1], TII,k, TIII,k,
or S2. Let α, β ∈ KK(A,B), where B is a C∗-algebra. Then α = β if and
only if the following hold:
1. When X = {pt}, [0, 1] or S2,

α∗ = β∗ : K0(A) −→ K0(B);

2. When X = TII,k,

α∗ = β∗ : K0(A) −→ K0(B) and

α∗ = β∗ : K1(A,ZZ/k) −→ K1(B,ZZ/k);

3. When X = TIII,k,

α∗ = β∗ : K0(A) −→ K0(B) and

α∗ = β∗ : K0(A,ZZ/k) −→ K0(B,ZZ/k).

Combined with Theorem 6.1 of [DG], yields the following lemma.

Lemma 5.15. Let A = PMl(C(X))P, and X, one of {pt}, [0, 1], TII,k, TIII,k
or S2, and let B be any C∗-algebra. Let φ, ψ ∈ Hom(A,B). Suppose that the
following statements hold.
1. When X = {pt}, [0, 1] or S2,

[φ]∗ = [ψ]∗ : K0(A) −→ K0(B);

2. When X = TII,k,

[φ]∗ = [ψ]∗ : K0(A) −→ K0(B) and

[φ]∗ = [ψ]∗ : K1(A,ZZ/k) −→ K1(B,ZZ/k);

3. When X = TIII,k,

[φ]∗ = [ψ]∗ : K0(A) −→ K0(B) and
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[φ]∗ = [ψ]∗ : K0(A,ZZ/k) −→ K0(B,ZZ/k).

It follows that, for any finite set F ⊂ A and any number ε > 0, there exist
n ∈ IN, µ ∈ Hom(A,Mn(B)) with finite dimensional image and a unitary
u ∈Mn+1(B) such that

‖u(φ(a)⊕ µ(a))u∗ − ψ(a)⊕ µ(a)‖ < ε

for all a ∈ F .

5.16. Fix A = PMl(C(X))P , X = {pt}, [0, 1], TII,k, TIII,k or S2. Then A is
stably isomorphic to C(X). By 5.14, an element α ∈ KK(A,B) is completely
determined by

α0
0 : K0(A)→ K0(B),

α0
k : K0(A,ZZ/k)→ K0(B,ZZ/k), and

α1
k : K1(A,ZZ/k)→ K1(B,ZZ/k).

Note that, for any C∗-algebra A,

K0(A⊗ C(Wk × S1)) ∼= K0(A)⊕K1(A)⊕K0(A,ZZ/k)⊕K1(A,ZZ/k).

Each projection p ∈M∞(A⊗ C(Wk × S1)) defines an element

[p] ∈ K0(A)⊕K1(A)⊕K0(A,ZZ/k)⊕K1(A,ZZ/k) ⊂ K(A).

This defines a map from the set of projections in
⋃∞
k=2M∞(A⊗ C(Wk × S1))

to K(A).
For any finite set P ⊂ ⋃∞

k=2M∞(A ⊗ C(Wk × S1)) of projections, denoted
by PK(A) the finite subset of K(A) consisting of elements coming from the
projections p ∈ P, that is

PK(A) = {[p] ∈ K(A)| p ∈ P}.

In particular, if A = PMl(C(X))P,X = TII,k, or TIII,k, then we can choose
a finite set of projections PA ⊂ M•(A⊗ C(Wk × S1)) such that the set {[p] ∈
K0(A) ⊕K1(A) ⊕K0(A,ZZ/k) ⊕K1(A,ZZ/k) | p ∈ PA} = PAK(A) generates
K0(A) ⊕ K1(A) ⊕ K0(A,ZZ/k) ⊕ K1(A,ZZ/k) ⊂ K(A). For X = {pt}, [0, 1]
or S2, choose PA ⊂ M•(A) such that {[p] ∈ K0(A) | p ∈ PA} generates
K0(A) ⊂ K(A). We will use P to denote PA if there is no danger of confusion.

5.17. Let A = PMl(C(X))P,X = {pt}, [0, 1], TII,k, TIII,k or S2, and P ⊂
M•(A ⊗ C(Wk × S1)) or P ⊂ M•(A) be as in 5.16. There are a finite subset
G(P) ⊂ A and a number δ(P) > 0 such that if B is any C∗-algebra and
φ ∈ Map(A,B) is G(P)− δ(P) multiplicative, then

‖((φ⊗ id)(p))2 − (φ⊗ id)(p)‖ < 1

4
, ∀p ∈ P,
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where id is the identity map on M•(C(Wk × S1)) or on M•(C| ). Hence for any
p ∈ P, there is a projection q ∈ M•(B ⊗ C(Wk × S1)) (or q ∈ M•(B) ) such
that

‖(φ⊗ id)(p)− q‖ < 1

2
.

So q defines an element in K(B). (If q′ is another projection satisfying the
same condition, then ‖q − q′‖ < 1, hence q′ is unitarily equivalent to q.)
Therefore, if φ is G(P)− δ(P) multiplicative, then it induces a map

φ∗ : PK(A)→ K(B).

Note that such G(P) and δ(P) could be defined for any finite set P ⊂M∞(A)∪
M∞(A⊗ C(S1)) ∪⋃∞k=2M∞(A⊗ C(Wk × S1)) of projections.

Theorem 5.18. Let X be one of the spaces {pt}, [0, 1], TII,k, TIII,k or S2.
Let A = PMl(C(X))P and P be as in 5.16. For any finite set F ⊂ A, any
positive number ε > 0, and any positive integer M , there are a finite set G ⊂ A
(G ⊃ G(P) large enough ), a positive number δ > 0 (δ < δ(P) small enough),
and a positive integer L (large enough) such that the following statement is
true.
If φ, ψ ∈ Map(A,B) are G-δ multiplicative and

φ∗ = ψ∗ : PK(A) −→ K(B),

where B = QM•(C(Y ))Q with dim(Y ) ≤ M , then there is a homomorphism
ν ∈ Hom(A,ML(B)), with finite dimensional image, and there is a unitary
u ∈ML+1(B) such that

‖u(φ⊕ ν)(a)u∗ − (ψ ⊕ ν)(a)‖ < ε, ∀f ∈ F.

Proof: We first prove the theorem for the case B = M•(C(Y )). Then we apply
Lemma 1.3.6 to reduce the general case to this special case.
We prove the theorem by contradiction.
Let G(P) ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · · be a sequence of finite subsets with

∪Gn = unit ball of A.

Let δ(P) > δ1 > δ2 > · · · > δn > · · · be a sequence of positive numbers with
δn → 0. Let L1 < L2 < · · · < Ln < · · · be a sequence of positive integers with
Ln → +∞.
Suppose that the theorem does not hold for (Gn, δn, Ln). That is, there exist
a C∗-algebra Bn = Mkn(C(Yn)) and two Gn-δn multiplicative maps

φn, ψn : A −→ Bn
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with (φn)∗ = (ψn)∗ : PK(A) −→ K(Bn) and

inf
ν,u

sup
a∈F
‖u(φn ⊕ ν)(a)u∗ − (ψn ⊕ ν)(a)‖ ≥ ε, (∗)

where ν runs over all subsets of Hom(A,MLn(Bn)) consisting of those homo-
morphisms with finite dimensional images, and u runs over U(MLn+1(Bn)).
The above {φn}+∞n=1, {ψn}+∞n=1 induce two homomorphisms

φ̃, ψ̃ : A −→
+∞∏

n=1

Bn

/ +∞⊕

n=1

Bn = Q(B).

We will prove that KK(φ) = KK(ψ).
1. X = {pt}, [0, 1] or S2. By Lemma 5.14, KK(φ̃) is completely determined by

([φ̃]∗)
0
0 : K0(A) −→ K0(Q(B)).

From 5.12,

K0(Q(B)) = ΠbK0(Bn)
/ +∞⊕

n=1

K0(Bn).

That is, the above ([φ̃]∗)0
0 is completely determined by the component ([φn]∗)0

0.
From the condition that

[φn]∗ = [ψn]∗ : PK(A) −→ K(Bn)

and the condition that the group generated by PK(A) is K0(A), we know that
KK(φ) = KK(ψ).
2. X = TII,k. By Lemma 5.14, KK(φ̃) is completely determined by

([φ̃]∗)
0
0 : K0(A) −→ K0(Q(B)) and

([φ̃]∗)
1
k : K1(A,ZZ/k) −→ K1(Q(B),ZZ/k).

Furthermore, by 5.12,

K1(Q(B),ZZ/k) =

+∞∏

n=1

K1(Bn,ZZ/k)
/ +∞⊕

n=1

K1(Bn,ZZ/k).

Again, ([φ̃]∗)0
0 and ([φ̃]∗)1

k are completely determined by the components cor-

responding to [φn]∗. And from [φn]∗ = [ψn]∗ on PK(A), we obtain KK(φ̃) =
KK(ψ̃). (Note that, we also use the fact that PK(A) generates a subgroup of
K(A) containing K0(A) and K1(A,ZZ/k).) (The subgroup of K(A) generated
by PK(A) also contains K1(A), though we do not use this fact.)
3. X = TIII,k. It can be proved that KK(φ̃) = KK(ψ̃) as above. Note that

K0(Bn,ZZ/k) =
∏+∞
n=1K0(Bn,ZZ/k)/

⊕+∞
n=1K0(Bn,ZZ/k), by 5.12.
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By Lemma 5.15, there are a positive integer L and a homomorphism ν̃ :
A → ML(

∏+∞
n=1Bn/

⊕+∞
n=1Bn) with finite dimensional image, and a unitary

ũ ∈ML+1(
∏+∞
n=1Bn/

⊕+∞
n=1Bn), such that

‖ũ(φ̃⊕ ν̃)(a)ũ∗ − (ψ̃ ⊕ ν̃)(a)‖ < ε

2

for all a ∈ F . Since ν̃ has finite dimensional image, one can find a sequence of
homomorphisms

νn : A −→ML(Bn)

of finite dimensional images such that {νn}+∞n=1 induces ν̃. One can also lift ũ
to a sequence of unitaries un ∈ML+1(Bn). Then if n is large enough, we have

‖un(φn ⊕ νn)(a)u∗n − (ψn ⊕ νn)(a)‖ < ε

for all a ∈ F . This contradicts with (∗) if one choose n to satisfy Ln ≥ L.
Now we apply Lemma 1.3.6 to prove the general case. Let G, δ and L1 (in
place of L) be as above for the case of full matrix algebras over C(Y ) with
dim(Y ) ≤ M . Choose L = (2M + 2)L1 − 1. We will verify that G, δ and
L satisfies the condition of the theorem even for B = QM•(C(Y ))Q—cutting
down of full matrix algebras by projections, as follows.
Let n = rank(Q) + dim(Y ) and m = 2M + 1. Then by Lemma 1.3.6,
QM•(C(Y ))Q can be identified as a corner subalgebra of Mn(C(Y )), and
Mn(C(Y )) can be identified as corner subalgebra of Mm(QM•(C(Y ))Q).
If φ, ψ ∈ MapG−δ(A,B) satisfy the condition in the theorem, then regarding
B as a corner subalgebra of Mn(C(Y )), we can regard φ, ψ as elements in
MapG−δ(A,Mn(C(Y ))) which still satisfy the condition. Hence from the above
special case of the theorem, there are ν : A→ ML1

(Mn(C(Y ))) and a unitary
u1 ∈ML1+1(Mn(C(Y ))) such that

‖u1(φ⊕ ν)(a)u∗1 − (ψ ⊕ ν)(a)‖ < ε, ∀a ∈ F.

Also, Mn(C(Y )) can be regarded as a corner subalgebra of Mm(QM•(C(Y ))Q),
so φ ⊕ ν and ψ ⊕ ν can be regarded as maps from A to
ML1+1(Mm(QM•(C(Y ))Q)) = ML+1(QM•(C(Y ))Q). Therefore, there is
a unitary u ∈ML+1(B)

‖u(φ⊕ ν)(a)u∗ − (ψ ⊕ ν)(a)‖ < ε, ∀a ∈ F.

ut

Remark 5.19. The theorem is not true for X = S1, even if we assume that
both φ and ψ are homomorphisms. A counterexample is given below .
Let φn, ψn : C(S1)→ C[0, 1] be defined by

φn(f)(t) = f(e2πint) and ψn(f)(t) = f(1).
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Then KK(φn) = KK(ψn). Let F = {z} and ε = 1
4 , where z ∈ C(S1) is a

canonical generator. One can prove that there is no integer L which is good
for all (φn, ψn) as in Theorem 5.18, by using the variation of determinant.

5.20. If X is any finite CW complex such that K1(C(X)) is a torsion group,
then Theorem 5.18 holds for X — one needs to choose PA accordingly, which
is described below.
Suppose that m1,m2, · · · ,mi are the degrees of all the torsion elements in
K0(A) and K1(A). Let m be the least common multiple of m1,m2, · · · ,mi.
Since K1(A) is a torsion group, similar to the discussion in 5.13, an element
α ∈ KK(A,B) is completely determined by the K-theory maps

α0 : K0(A) −→ K0(B),

α0
p : K0(A,ZZ/p) −→ K0(B,ZZ/p),

α1
p : K1(A,ZZ/p) −→ K1(B,ZZ/p),

where p are all the numbers with p|m. (In particular, the map α1 : K1(A) −→
K1(B) is determined by the above maps.)
One can choose P to be a finite set of projections in
M•(A)

⋃⋃
p|mM•(A ⊗ C(Wp ⊗ S1)) such that the set PK(A) (defined in

5.16) generates a sub group containing the group

K0(A)⊕
⊕

k|m
K∗(A,ZZ/k).

Similar to the proof of Theorem 5.18, we can prove the following theorem,
since, to determine a KK-element α ∈ KK(A,B), one does not need the map
from K1(A). (G(P) and δ(P) can be chosen accordingly as in 5.17.)

Theorem 5.21. Suppose that X is a finite CW complex with K1(X) a torsion
group. Suppose that A = PMl(C(X))P and P are as in 5.20. For any finite
set F ⊂ A, positive number ε > 0, and positive integer M , there are a finite
set G ⊂ A (G ⊃ G(P) large enough ), a positive number δ > 0 (δ < δ(P)
small enough), and a positive integer L (large enough) such that the following
statement is true.
If φ, ψ ∈ Map(A,B) are G(P)-δ(P) multiplicative and

φ∗ = ψ∗ : PK(A) −→ K(B),

where B = QM•(C(Y ))Q with dim(Y ) ≤ M , then there is a homomorphism
ν ∈ Hom(A,ML(B)) with finite dimensional image, and there is a unitary
u ∈ML+1(B) such that

‖u(φ⊕ ν)(a)u∗ − (ψ ⊕ ν)(a)‖ < ε

for all a ∈ F .
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The following is a direct consequence of Theorem 5.18.

Corollary 5.22. Let A = C(X), where X is one of the spaces:
[0, 1], S2, TII,k or TIII,k, and let P be as in 5.16. For any finite set F ⊂ C(X),
any positive number ε > 0 and any positive integer M , there are a finite set
G ⊂ C(X) (G ⊃ G(P) large enough), positive numbers δ > 0 (δ ≤ δ(P) small
enough) and η > 0 (small enough) such that the following statement is true.
Let B = M•(C(Y )) with dim(Y ) ≤M , and p ∈ B, a projection.
If φ, ψ ∈ Map(C(X), pBp) are G-δ multiplicative maps inducing the same maps
φ∗ = ψ∗ : PK(C(X)) −→ K(B), and {x1, x2, · · · , xn} is an η-dense subset
of X, and q1, q2, · · · , qn are mutually orthogonal projections in (1− p)B(1− p)
with rank(qi) ≥ rank(p), then there is a unitary

u ∈ (p⊕ q1 ⊕ q2 ⊕ · · · ⊕ qn)B(p⊕ q1 ⊕ q2 ⊕ · · · ⊕ qn)

such that
∥∥∥∥∥φ(f)⊕

n∑

i=1

f(xi)qi − u
(
ψ(f)⊕

n∑

i=1

f(xi)qi

)
u∗
∥∥∥∥∥ < ε, ∀f ∈ F.

In particular, if ψ is a homomorphism, then there is a homomorphism φ̃ ∈
Hom(C(X), (p⊕ q1⊕ q2⊕· · ·⊕ qn)B(p⊕ q1⊕ q2⊕· · ·⊕ qn)) (defined by φ̃(f) =
u (ψ(f)⊕∑n

i=1 f(xi)qi)u
∗) such that

∥∥∥∥∥φ̃(f)−
(
φ(f)⊕

n∑

i=1

f(xi)qi

)∥∥∥∥∥ < ε, ∀ f ∈ F.

Proof: Since X is not the space of a single point, we can assume that X,
as a metric space, satisfies that diameter(X) = 1. Apply Theorem 5.18 to
the finite set F ⊂ A, the positive number ε

3 and the integer M to obtain
G, δ, L as in Theorem 5.18. Choose a positive number η < 1

8ML2 such that if
dist(x, x′) < 8ML2 · η, then ‖f(x)− f(x′)‖ < ε

3 for all f ∈ F .
Let {x1, x2, · · · , xn} be an η-dense subset of X and let q1, q2, · · · , qn ∈ (1 −
p)B(1 − p) be mutually orthogonal projections with rank(qi) ≥ rank(p). Sim-
ilar to the proof of Corollary 1.6.13, one can find a 8ML · η-dense sub-
set {xk1

, xk2
, · · · , xkl} ⊂ {x1, x2, · · · , xn} and mutually orthogonal projections

Q1, Q2, · · · , Ql with rank(Qj) ≥ML · rank(p), such that

‖
n∑

i=1

f(xi)qi −
l∑

j=1

f(xkj )Qj‖ <
ε

3
, ∀f ∈ F.

Since rank(Qi) ≥ML · rank(p), it follows that [Qi] ≥ L · [p].
Again, similar to the proofs of Corollaries 1.6.12 and 1.6.13, it can be proved
that a homomorphism ν ∈ Hom(A,ML(pBp)) with finite dimensional image
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(from 5.18) can be perturbed, at the expense of at most ε
3 on the finite set F ,

to a homomorphism ν ′ which is of the form

ν′(f) =

l∑

j=1

f(xkj )q
′
j

with [q′j ] ≤ [Qj ] (some of the projections q′j could be zero). Hence the
corollary follows (see the proof of Corollary 1.6.12).

ut
By the discussion in 1.2.19, we have the following corollary.

Corollary 5.23. Let A = Ml(C(X)), where X is one of the spaces:
[0, 1], S2, TII,k or TIII,k, and let P be as in 5.16. For any finite set F ⊂ A,
any positive number ε > 0 and any positive integer M , there are a finite set
G ⊂ A (G ⊃ G(P) large enough), numbers δ > 0 (δ ≤ δ(P) small enough) and
η > 0 (small enough) such that the following statement is true.
Let B = M•(C(Y )) with dim(Y ) ≤M , and p ∈ B a projection.
If φ, ψ ∈ Map(A, pBp) are G-δ multiplicative maps inducing the same map
φ∗ = ψ∗ : PK(A) −→ K(B), and {x1, x2, · · · , xn} is an η-dense subset of X,
and

q1 = q′1 ⊕ q′1 ⊕ · · · ⊕ q′1︸ ︷︷ ︸
l

, q2 = q′2 ⊕ q′2 ⊕ · · · ⊕ q′2︸ ︷︷ ︸
l

, · · · , qn = q′n ⊕ q′n ⊕ · · · ⊕ q′n︸ ︷︷ ︸
l

are mutually orthogonal projections in (1−p)B(1−p) with rank(qi) ≥ rank(p),
then there is a unitary

u ∈ (p⊕ q1 ⊕ q2 ⊕ · · · ⊕ qn)B(p⊕ q1 ⊕ q2 ⊕ · · · ⊕ qn)

such that
∥∥∥∥∥φ(f)⊕

n∑

i=1

q′i ⊗ f(xi)− u
(
ψ(f)⊕

n∑

i=1

q′i ⊗ f(xi)

)
u∗
∥∥∥∥∥ < ε, ∀f ∈ F.

In particular, if ψ is a homomorphism, then there is a homomorphism φ̃ ∈
Hom(C(X), (p⊕ q1 ⊕ q2 ⊕ · · · ⊕ qn)B(p⊕ q1 ⊕ q2 ⊕ · · · ⊕ qn)) such that

∥∥∥∥∥φ̃(f)−
(
φ(f)⊕

n∑

i=1

q′i ⊗ f(xi)

)∥∥∥∥∥ < ε, ∀ f ∈ F.

Proof: Thanks to Lemma 1.6.8, we can always assume that the two maps φ and
ψ satisfy the condition that φ|

Ml(C| )
and ψ|

Ml(C| )
are homomorphisms. Using

the condition φ∗ = ψ∗ : PK(A) −→ K(B), we can assume

φ|
Ml(C| )

= ψ|
Ml(C| )
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after conjugating with a unit.
Now the corollary follows from the following claim.
Claim: For any finite set F ⊂ A = Ml(C(X)), any ε > 0, there are a finite set
G ⊂ A and a positive number δ > 0 such that if a map φ : A→ B is G-δ mul-
tiplicative and φ|

Ml(C| )
is a homomorphism, then there are a map φ1 : C(X)→

φ(e11)Bφ(e11) and an identification of φ(1)Bφ(1) ∼= Ml(φ(e11)Bφ(e11)) such
that

‖φ(f)− (φ1 ⊗ 1l)(f)‖ < ε ∀f ∈ F.
Furthermore, if G1 ⊂ C(X) and δ1 > 0 are a pregiven finite set and a pregiven
positive number, then one can modify the set G and the number δ so that the
map φ1 above can be chosen to be G1-δ1 multiplicative.
Proof of Claim: Suppose 1 ∈ F . Let F1 = {aij |(aij)l×l ∈ F}(⊂ C(X)) be the
set of all entries of the elements in F . Let G = {(bij)l×l =

∑
bijeij | bij ∈ F1 ∪

G1 ⊂ C(X)}( ⊂ A) and δ = min
(
ε

2l2 , δ1
)
. Suppose that φ : Ml(C(X)) → B

is G-δ multiplicative. Let

φ1 = φ|e11Ml(C(X))e11
: C(X)→ φ(e11)Bφ(e11).

Obviously the G-δ multiplicativity of φ implies the G1-δ1 multiplicativity of φ1.
Identify φ(1)Bφ(1) ∼= (φ(e11)Bφ(e11)) ⊗Ml by sending φ(eij) to eij ∈ Ml ⊂
(φ(e11)Bφ(e11))⊗Ml. Under this identification, we have

(φ1 ⊗ 1l)(a) =
∑

i,j

φ(ei1)φ1(aij)φ(e1j),

where a = (aij)l×l ∈ Ml(C(X)). On the other hand, writing a =∑
e1i(aije11)e1j and using the G-δ multiplicativity of φ, we have

‖φ(a)− (φ1 ⊗ 1l)(a)‖ ≤
∑

i,j

‖φ(e1i(aije11)e1j)− φ(ei1)φ1(aij)φ(e1j)‖

=
∑

i,j

‖φ(e1i(aije11)e1j)− φ(ei1)φ(aije11)φ(e1j)‖

≤
∑

i,j

2δ = 2l2δ ≤ ε.

This proves the Claim.
Applying the Claim, one can reduce the proof to the case A = C(X) which is
Corollary 5.22.

ut

Definition 5.24. Let A be a unital C∗-algebra, let

P ⊂M•(A) ∪M•(A⊗ C(S1)) ∪
∞⋃

k=2

M•(A⊗ C(Wk × S1))
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be a finite set of projections, and let G(P), δ(P) be as in 5.17. A G(P)− δ(P)
multiplicative map φ : A→ B is called quasi-PK-homomorphism if there is
a homomorphism ψ : A→ B with φ(1A) = ψ(1A) such that

[φ]∗ = [ψ]∗ : PK(A)→ K(B).

Using the above definition and Definition 4.38, we can restate the second part
of Corollary 5.23 as below.

Lemma 5.25. Let A = Ml(C(X)), where X is one of the spaces:
[0, 1], S2, TII,k or TIII,k, and let P be as in 5.16. For any finite set F ⊂ A,
any positive number ε > 0 and any positive integer M , there are a finite set
G ⊂ A (G ⊃ G(P) large enough), positive numbers δ > 0 (δ ≤ δ(P) small
enough) and η > 0 (small enough) such that the following statement is true.
Let B = M•(C(Y )) with dim(Y ) ≤ M , and let p ∈ B be a projection. If
φ ∈ Map(A, pBp) is a G-δ multiplicative quasi-PK-homomorphism, and λ ∈
Hom(A, (1 − p)B(1 − B)) has the property PE(rank(p), η), then there is a
homomorphism φ̃ ∈ Hom(A,B) such that

‖φ̃(f)− (φ⊕ λ)(f)‖ < ε, ∀f ∈ F.

Furthermore if Y is a connected simplicial complex different from the single
point space, then φ̃ can be chosen to be injective.

Proof: The main body of the lemma is a restatement of Corollary 5.23. So
we only need to prove the last sentence of the lemma. We need the following
fact: Let X = [0, 1], S2, TII,k or TIII,k, and let Y be a connected finite sim-
plicial complex different from {pt}. If λ1 : Ml(C(X)) → p1M•(C(Y ))p1 is a
homomorphism defined by the point evaluation at a point x1 ∈ X as

Ml(C(X))
ex1−→Ml(C| ) −→ p1M•(C(Y ))p1,

then λ1 is homotopic to an injective homomorphism λ′1 : Ml(C(X)) →
p1M•(C(Y ))p1. (Again, this fact can be proved by using the Peano Curve.)
Let η′ be as the η desired in the main body of the lemma for ε

2 (in place of
ε). We can also assume that η′ satisfies the condition that if dist(x, x′) < η′,

then ‖f(x) − f(x′)‖ < ε
2 for all f ∈ F . Choose η = η′

4 . Suppose that λ ∈
Hom(A, (1− p)B(1− p)) has the property PE(rank(p), η). Write λ =

⊕n
i=1 λi,

where

λi : Ml(C(X))
exi−→Ml(C| )

φi−→ piBpi,

are point evaluations at an η-dense set {x1, x2, · · · , xn} and φi are unital ho-
momorphisms.
Let p1 be a projection with minimum rank among all the projections
p1, p2, · · · , pn. Let φ ∈ Map(A, pBp) be a G-δ multiplicative quasi-PK-
homomorphism. Then φ ⊕ λ1 ∈ Map(A, (p ⊕ p1)B(p ⊕ p1)) is also a G-δ
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multiplicative quasi-PK-homomorphism. Furthermore, from the above fact,
it defines the same map on the level of PK(A) as an injective homomor-
phism ψ ∈ Hom(A, (p ⊕ p1)B(p ⊕ p1)). On the other hand, λ′ =

⊕n
i=2 λi

has the properties PE(rank(p), 2η) and PE(rank(p1), 2η), since λ =
⊕n

i=1 λi
has PE(rank(p), η), and rank(p1) ≤ rank(pi), i = 2, · · · , n. Similar to the
proof of Corollary 5.22, λ′ can be perturbed to a homomorphism λ′′ which
has the property PE(rank(p) + rank(p1), 4η) at the expense of at most ε

2 on
the finite set F . Note that 4η = η′, and ψ is injective. Hence the homomor-
phism Adu ◦ (ψ ⊕ λ′′) (for a certain unitary u), as desired in the main body
of the lemma, is also injective.

ut

Lemma 5.26. Let X and Y be connected finite simplicial complexes. Sup-
pose that φ1 : PMk(C(X))P → Q1Ml(C(Y ))Q1 and φ2 : PMk(C(X))P →
Q2Ml(C(Y ))Q2 are unital homomorphisms, where P, Q1, and Q2 are projec-
tions with

rank(Q2)− rank(Q1) ≥ 2 dim(Y ) · rank(P ).

Then there exists a homomorphism ψ : PMk(C(X))P →M•(C(Y )) such that

[ψ] = [φ2]− [φ1] ∈ KK(C(X), C(Y )).

Proof: First, we suppose that A = C(X). As in Lemma 3.14 of [EG 2]
(see Remark 1.6.21 above), we can assume that φ1(C0(X)) ⊂ Ml(C0(Y )) and
φ2(C0(X)) ⊂ Ml(C0(Y )), where C0(X) and C0(Y ) are sets of functions van-
ishing on fixed base points of X and Y , respectively. Hence φi defines an
element kk(φi) ∈ kk(Y,X) (see [DN]). Furthermore, [φi] ∈ KK(C(X), C(Y ))
is completely determined by kk(φi) and φi∗([1A]) ∈ K0(B). Let α = kk(φ2)−
kk(φ1) ∈ kk(Y,X) (note that kk(Y,X) is an abelian group, see [DN]). Since
rank(Q2)−rank(Q1) ≥ 2 dim(Y ), by [Hu], there is a projection Q3 ∈M•(C(Y ))
such that [Q3] = [Q2]− [Q1] ∈ K0(C(Y )). By Theorem 4.11 of [DN] or Lemma
3.16 of [EG2], there is a unital homomorphism ψ : C(X) → Q3M•(C(Y ))Q3

to realize α ∈ kk(Y,X). Obviously ψ is as desired.

For the general case, using the Dilation Lemma (Lemma 1.3.1), one can prove
that [φi] ∈ KK(C(X), C(Y )) can be realized by homomorphism φ′i : C(X) →
M•(C(Y )). This reduces the proof to the above case.

ut

Remark 5.27. In the above lemma, if Q1 < Q2, then one can choose ψ to
satisfy ψ(1A) = Q2 −Q1.

Lemma 5.28. Let X be a finite simplicial complex, and A = PMl(C(X))P .
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For any finite set

P ⊂M•(A) ∪M•(A⊗ C(S1)) ∪
∞⋃

k=2

M•(A⊗ C(Wk × S1)),

there are a finite set G ⊂ A and a number δ > 0, such that the following is
true.
If Y is a simplicial complex, Q > Q1 are two projections in M•(C(Y )) with
rank(Q) − rank(Q1) ≥ 2 dim(Y )rank(P ), and two unital homomorphisms φ ∈
Hom(A,QM•(C(Y ))Q)1, φ1 ∈ Hom(A,Q1M•(C(Y ))Q1)1 and a unital map
φ2 ∈ Map(A, (Q−Q1)M•(C(Y ))(Q−Q1))1 satisfy that

(∗) ‖φ(f)− φ1(f)⊕ φ2(f)‖ < δ, ∀g ∈ G,

then there is a homomorphism ψ : A→ (Q−Q1)M•(C(Y ))(Q−Q1) such that

[ψ]∗ = [φ2]∗ : PK(A)→ K(C(Y )).

In other words, φ2 is a quasi-PK-homomorphism.
(Notice that, from Lemma 4.40, if G is large enough and δ is small enough,
then (*) above implies that
φ2 ∈ Map(A, (Q−Q1)M•(C(Y ))(Q−Q1))1 is G(P)− δ(P) multiplicative, and
hence [φ2]∗ : PK(A)→ K(C(Y )) makes sense.)

Proof: If G is large enough and δ is small enough, then (*) implies

[φ2]∗ = [φ]∗ − [φ1]∗ : PK(A)→ K(C(Y )).

Then the lemma follows from Lemma 5.26 and Remark 5.27.
ut

Remark 5.29. In Corollary 4.39, we can choose ψ0 (or ψ′0) such that ψi,j0 (or

ψ
′i,j
0 ) is a quasi-PK-homomorphism for any pre-given set of projections

P ⊂M•(A) ∪M•(A⊗ C(S1)) ∪
∞⋃

k=2

M•(A⊗ C(Wk × S1)).

To do so, by Lemma 5.28, one only needs to choose the projection Qi,j0 to have
rank at least 2 dim(Xm,j) · rank(1Ain). But from the construction in 4.34, we
have freedom to do so.

Lemma 5.30. Fix a positive integer M . Suppose that B =
⊕s

i=1Mli(C(Yi)),
where Yi are the spaces: {pt}, [0, 1], S1, TII,k, TIII,k, S

2. For any finite set G ⊂
B and positive number ε > 0, there exist a finite set G1 ⊂ B, numbers δ1 > 0
and η > 0 such that the following is true.
If a map α = α0 ⊕ α1 : B → A =

⊕t
j=1Mkj (C(Xj)), with dim(Xj) ≤ M ,

satisfies the following conditions:

Documenta Mathematica 7 (2002) 255–461



438 Guihua Gong

(1) α0 is G1-δ1 multiplicative, {α0(1Bi)}si=1 are mutually orthogonal projec-
tions, and α1 is a homomorphism with finite dimensional image (i.e., defined
by point evaluations);
(2) For any block Bi with Yi = TII,k, TIII,k or S2 and any block Aj, the

partial map αi,j0 is quasi-PK-homomorphism, where P is the set of projec-

tions associated to Bi as in 5.16, and the homomorphism αi,j1 has the property

PE(rankαi,j0 (1Bi), η);

then there is a unital homomorphism α′ : B → α(1B)Aα(1B) such that

‖α′(g)− α(g)‖ < ε, ∀g ∈ G.

Proof: We only need to perturb all the individual maps αi,j to homomorphisms
α
′i,j within αi,j(1Bi)A

jαi,j(1Bi).
For a block of Bi with spectrum {pt}, [0, 1] or S1, such perturbation exists
by Lemma 1.6.1. For a block of Bi with spectrum TII,k, TIII,k or S2, such
perturbation exists by Lemma 5.25.

ut

Lemma 5.31. Let M be a fixed positive integer. Let B = Ml(C(Y )), Y =
TII,k, TIII,k or S2. Let the set of projections P ⊂M•(B)∪M•(B⊗C(Wk×S1))
be as in 5.16.
Let A = RMl1(C(X))R with dim(X) ≤ M , where R ∈ Ml1(C(X)) is a pro-
jection. Let α : B → A be an injective homomorphism. Let a finite set of
projections P ′ be given by P ′ := (α⊗ id)(P) ⊂M•(A)∪M•(A⊗C(Wk × S1)).
Let η > 0. Choose η1 > 0 such that if a finite set {x1, x2, · · · , xn} ⊂ X is
η1-dense in X, then

⋃n
i=1 SPαxi is η-dense in Y . (Such η1 exists because of

injectivity of α.)
For any finite subset G1 ⊂ B and any number δ1 > 0, there are a finite subset
G2 ⊂ A and a number δ2 > 0 such that the following are true.
Let C = M•(Z) with dim(Z) ≤M .
(1) If ψ0 : A → Q0CQ0 is a G2-δ2 multiplicative quasi-P ′K-homomorphism
and ψ0(α(1B)) is a projection, then ψ0 ◦α is a G1-δ1 multiplicative quasi-PK-
homomorphism.
(2) If ψ1 : A → Q1CQ1 has the property PE(J · L, η1), where J = rank(R),
then ψ1 ◦ α : B → ψ1(α(1B))Cψ1(α(1B)) has property PE(L, η).
In particular, if ψ1 has the property PE(J ·rank(Q0), η1), (this is the condition
(3) of Corollary 4.39), then ψ1 ◦α has the property PE(rank((ψ0 ◦α)(1B)), η).
(Note that rank((ψ0◦α)(1B)) ≤ rank(Q0).) Consequently, if we further assume
that G1, δ1 and η are as those chosen in 5.30 for a finite set G ⊂ B and
ε > 0, and Q1 is orthogonal to Q0, then there is a homomorphism ψ : B →
(Q0 ⊕Q1)C(Q0 ⊕Q1) such that

‖ψ(g)− (ψ0 ⊕ ψ1)(α(g))‖ < ε, ∀g ∈ G.
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Proof: (1) holds if we choose G2 ⊃ α(G) and δ2 < δ1.
(2) follows from the following fact: if a homomorphism φ : RMl1(C(X))R →
Mt(C(Z)) contains a part of point evaluation at a point x ∈ X of size at least
L (see Definition 4.38), then for any y ∈ SPαx ⊂ Y , φ ◦ α contains a part of
point evaluation at point y of size at least L

rank(R)
.

ut
The following two theorems are important for the proof of our main theorem.

Theorem 5.32a. Let M be a positive integer. Let
lim
n→∞

(An =
⊕kn

i=1M[n,i](C(Xn,i)), φn,m) be a simple inductive limit with

injective connecting homomorphisms φn,m and with dim(Xn,i) ≤ M, for any
n, i. Let B =

⊕s
i=1Mli(C(Yi)), where Yi are the spaces: {pt}, [0, 1], S1, TII,k,

TIII,k, and S2.
Suppose that a homomorphism α : B → An satisfies the following dichotomy
condition:
For any block Bi of B and any block Ajn of An, either the partial map αi,j :
Bi → Ajn is injective or it has a finite dimensional image.
Denote α(1B) := R(=

⊕
Ri) ∈ An(=

⊕
Ain). For any finite sets G ⊂ B

and F ⊂ RAnR, any positive number ε > 0, and any positive integer L,
there are Am and mutually orthogonal projections Q0, Q1, Q2 ∈ Am, with
φn,m(R) = Q0 + Q1 + Q2, a unital map θ0 ∈ Map(RAnR,Q0AmQ0)1, two
unital homomorphisms θ1 ∈ Hom(RAnR,Q1AmQ1)1 and
ξ ∈ Hom(RAnR,Q2AmQ2)1 such that
(1) ‖φn,m(f)− (θ0(f) + θ1(f) + ξ(f))‖ < ε, ∀f ∈ F ;
(2) there is a homomorphism α1 : B → (Q0 ⊕Q1)Am(Q0 ⊕Q1) such that

‖α1(g)− (θ0 + θ1) ◦ α(g)‖ < ε, ∀g ∈ G;

(3) θ0 is F − ε multiplicative and θ1 satisfies that for any nonzero projection
(including any rank 1 projection) e ∈ RiAinRi

θi,j1 ([e]) ≥ L · [θi,j0 (Ri)],

(the condition (3) will be used when we apply Theorem 1.6.9 in the proof of the
Main Theorem);
(4) ξ factors through a C∗-algebra C—a direct sum of matrix algebras over
C[0, 1] or C| — as

ξ : RAnR
ξ1−→ C

ξ2−→ Q2AmQ2,

and the partial maps of ξ2 satisfy the dichotomy condition;
(5) the partial maps of α1 satisfies the dichotomy condition.

Proof: Let Ei,j = αi,j(1Bi) ∈ Ajn. Let

I = {(i, j) | αi,j : Bi → Ajn has finite dimensional image}.
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Let the subalgebra D ⊂ An =
⊕
Ain be defined by

D =
⊕

j


 ⊕

(i,j)∈I
αi,j(Bi)⊕

⊕

(i,j)/∈I
αi,j(C| · 1Bi)


 ⊂

⊕

j

Ajn.

Notice that D is a finite dimensional subalgebra of An containing the mutually
orthogonal projections {Ei,j = αi,j(1Bi)}i,j .
Apply part 2 of Corollary 4.39 for sufficiently large set F ′ ⊂ RAnR, sufficiently
small number ε′ > 0 and η′ > 0, and positive integer J = L ·maxi rank(Ri), to
obtain Am and the decomposition θ0⊕θ1⊕ξ of φn,m|RAnR as ψ′0⊕ψ′1⊕ψ′2 in 4.39.
By Lemma 1.6.8, we can assume that the restriction θ0|D is a homomorphism.
The condition (1) follows if we choose F ′ ⊃ F , and ε′ < ε.
The F − ε multiplicativity of θ0 in (3) follows from Lemma 4.40, if F ′ is large
enough and ε′ is small enough, and the desired property of θ1 in (3) follows
from the choice of J and Lemma 5.31.
To construct α1 as desired in the condition (2), we need to construct

αi,j,k1 : Bi → θj,k(Ei,j)Akmθ
j,k(Ei,j),

where θ = θ0 ⊕ θ1, to satisfy

‖αi,j,k1 (g)− θj,k ◦ αi,j(g)‖ < ε, ∀g ∈ G.
The construction are divided into three cases.
1. If (i, j) ∈ I, then θj,k ◦ αi,j is already a homomorphism and can be chosen

to be αi,j,k1 .

2. If (i, j) /∈ I, and Yi = [0, 1] or S1, then the existence of αi,j,k1 follows from
Lemma 1.6.1 and Lemma 4.40, if F ′ is large enough and ε′ is small enough.
(See Lemma 5.30 also.) In fact, in this case, the map θj,k0 ◦ αi,j itself can
be perturbed to a homomorphism. On the other hand, the homomorphism
θj,k1 ◦ αi,j is defined by the point evaluations on an η-dense set for a certain

small number η. Evidently, such a homomorphism θj,k1 ◦ αi,j from Mli(C(S1))
or Mli(C([0, 1])) (to Akm) can be perturbed to an injective homomorphism,
provided that η is sufficiently small and that the path connected simplicial
complex Xm,k is not the space of a single point. Therefore, in this case, the

homomorphism αi,j,k1 can be chosen to be injective.
3. If (i, j) /∈ I, and Yi = TII,k, TIII,k or S2, then αi,j is injective, and the

existence of αi,j,k1 follows from Lemma 5.30 and the choice of J , if F ′ is large
enough and ε′ is small enough, and if we choose η′ to be the number η1 in
Lemma 5.31 corresponding to the η in Lemma 5.30. The homomorphism αi,j,k1

can also be chosen to be injective, if Xm,k is not the space of a single point,
according to the last part of Lemma 5.25.
Finally, define the partial map αi,k1 of α1 to be

⊕
j α

i,j,k
1 to complete the con-

struction. Obviously, it follows, from the discussion of the injectivity in case 2
and case 3, that α1 satisfies the dichotomy condition.

ut
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Theorem 5.32b. Let M be a positive integer. Let
lim
n→∞

(An =
⊕kn

i=1M[n,i](C(Xn,i)), φn,m) be a simple inductive limit with

injective connecting homomorphisms φn,m and with dim(Xn,i) ≤ M, for any
n, i. Let B =

⊕s
i=1Mli(C(Yi)), where Yi are the spaces:{pt}, [0, 1], S1, TII,k,

TIII,k, and S2.

Suppose that a homomorphism α : B → An satisfies the following dichotomy
condition:

For any block Bi of B and any block Ajn of An, either the partial map αi,j :
Bi → Ajn is injective or it has a finite dimensional image.

For any finite sets G ⊂ B and F ⊂ An, and any number ε > 0, there
are Am and mutually orthogonal projections P,Q ∈ Am, with φn,m(1An) =
P + Q, a unital map θ ∈ Map(An, PAmP )1, and a unital homomorphism
ξ ∈ Hom(An, QAmQ)1 such that

(1) ‖φn,m(f)− (θ(f)⊕ ξ(f))‖ < ε, ∀f ∈ F ;

(2) there is a homomorphism α1 : B → PAmP such that

‖α1(g)− (θ ◦ α)(g)‖ < ε, ∀g ∈ G;

(3) θ(F ) is weakly approximately constant to within ε;

(4) ξ factors through a C∗-algebra C—a direct sum of matrix algebras over
C[0, 1] or C| — as

ξ : An
ξ1−→ C

ξ2−→ QAmQ,

and the partial maps of ξ2 satisfy the dichotomy condition;

(5) the partial maps of α1 satisfy the dichotomy condition.

The proof is similar to the proof of Theorem 5.32a, we omit it.

6 The proof of the main theorem

In this section, we will combine §4, §5 and §1.6 to prove our Main Theorem —
the Reduction Theorem.

The following is Proposition 3.1 of [D2].

Proposition 6.1. ([D2, 3.1]) Consider the diagram

A1

φ1,2−→ A2

φ2,3−→ · · · −→ An
φn,n+1−→ An+1 −→ · · ·xα1

β1↘
xα2

β2↘ · · ·
xαn βn↘

xαn+1 ↘
B1

ψ1,2−→ B2

ψ2,3−→ · · · −→ Bn
ψn,n+1−→ Bn+1 −→ · · · ,

where An, Bn are C∗-algebras, φn,n+1, ψn,n+1 are homomorphisms and αn, βn
are linear ∗-contractions.
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Suppose that Fn ⊂ An, En ⊂ Bn are finite sets satisfying the following condi-
tions.

φn,n+1(Fn) ∪ αn+1(En+1) ⊂ Fn+1, ψn,n+1(En) ∪ βn(Fn) ⊂ En+1,

and
⋃∞
n=1(φn,∞(Fn)) and

⋃∞
n=1(ψn,∞(En)) are the unit balls of A =

lim(An, φn,m) and B = lim(Bn, ψn,m), respectively. Suppose that there is a
sequence ε1, ε2, · · · of positive numbers with

∑
εn < +∞ such that αn and βn

are Fn-εn multiplicative and En-εn multiplicative, respectively, and

‖φn,n+1(f)− αn+1 ◦ βn(f)‖ < εn, and ‖ψn,n+1(g)− βn ◦ αn(g)‖ < εn

for all f ∈ Fn and g ∈ En.
Then A is isomorphic to B.

Lemma 6.2. Let lim(An =
⊕tn

i=1M[n,i](C(Xn,i)), φn,m) be a simple inductive
limit C∗-algebra with φn,m injective, where Xn,i are path connected finite sim-
plicial complexes with uniformly bounded dimensions. Let C∗-algebra C be a
direct sum of matrix algebras over the spaces: {pt}, [0, 1], S1, TII,k, TIII,k and
S2, and φ : C → An be an injective homomorphism. Then for any finite set
F ⊂ C and ε > 0, there is a positive integer N > n such that for any m > N ,
there is a homomorphism ψ : C → Am satisfying the following conditions.
(1) ψ(1Ci) = (φn,m ◦ φ)(1Ci), for any block Ci of C.
(2) ‖ψ(f)− (φn,m ◦ φ)(f)‖ < ε, ∀f ∈ F.
(3) ψ satisfies the following dichotomy condition:
For any block Ci of C and Ajm of Am, either ψi,j is injective or ψi,j has finite
dimensional image.
(For the proof of the main theorem of this article—Theorem 6.3 below, we only
need this lemma for the case that C is a direct sum of matrix algebras over
spaces {pt} and [0, 1]. The full generality of the lemma will be used in the
proof of Corollary 6.11 below.)

Proof: We only need to prove for the case that C has only one block C =
Mk(C(X)). And, by the discussion in 1.2.19, this case can further be reduced
to the case C = C(X).
For the finite set F ⊂ C, there is an η > 0 such that if dist(t, t′) < 4η, then

‖f(t)− f(t′)‖ < ε, ∀f ∈ F.

Let (X,σ) be a simplicial decomposition of X such that for any simplex ∆ ⊂
(X,σ),diameter(∆) < η. We call a simplex ∆ a top simplex if ∆ is not a proper
face of any simplex. Obviously, ∆ is a top simplex if and only if the interior
◦
∆ is an open subset of X.

From [DNNP, Proposition 2.1], using the injectivity of φ and φn,m, it follows

that there is an integer N > n such that for any open set
◦
∆ — the interior of
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a top simplex ∆ ⊂ (X,σ), one has

SP (φn,m ◦ φ)y ∩
◦
∆ 6= ∅.

We can define the homomorphism ψ : C → Am for each block Ajm of Am
separately. That is, we need to define ψj : C → Ajm, then let ψ := ⊕ψj .
If SP(Ajm) = Xm,j = {pt}, then the partial map (φn,m ◦ φ)j has finite di-
mensional image, and we can define it to be ψj . Hence we assume that the
connected finite simplicial complex Xm,j is not the space of single point {pt}.
Let α = (φn,m ◦ φ)j : C → Ajm.

Let Y be the union of all such top simplices ∆ that
◦
∆ ∩ SPα is uncountable.

Let Z be the union of all simplices ∆ which are not top simplices. Both Y and
Z are closed subset of X. Let ∆1,∆2, · · · ,∆l be the list of all top simplices
such that ∆i 6⊂ Y, i = 1, 2, · · · , l. Then

X = Y ∪∆1 ∪∆2 · · · ∪∆l.

(This fact will be used later.) (Here we use the fact that X is equal to the
union of all top simplices, since each simplex is a face of a top simplex.)

For each ∆i,
◦
∆i ∩ SPα is a countable nonempty set. There is a point xi and

an open disk Ui = Bεi(xi) 3 xi such that

SPα ∩ Ui = {xi}.

We can assume that Ui ⊂
◦
∆i . Obviously, ∂∆i is a deformation retract of

∆i\Ui.
Set

(
X\
(
∪li=1Ui

))
∩ SPα = T . Then SPα = T ∪ {x1, x2, · · · , xl}.

Define a function g : T → Y ∪ Z(⊂ X) as below.
Let g′ : Z → Y ∪ Z be the identity map, that is,

g′(z) = z, ∀z ∈ Z.

We will extend the map g′ to a map (let us still denote it by g′).

g′ : X\
(
∪li=1Ui

)
−→ Y ∪ Z.

For each top simplex ∆ ⊂ Y , extend g′|∂∆ to a map g′ : ∆→ ∆ satisfying

g′(T ∩∆) = ∆.

(Such extension exists since T ∩
◦
∆ is uncountable, see Lemma 2.6 of [EGL].)

For any simplex ∆i, i = 1, 2, · · · , l, one can extend g′|∂∆ to a map g′ : ∆i\Ui →
∂∆i, since ∂∆i is a deformation retract of ∆i\Ui.
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Thus we obtain the extension g′ : X\
(
∪li=1Ui

)
−→ Y ∪ Z. Let g = g′|T . Then

g(T ) ⊃ Y, and dist(g(x), x) < η, ∀x ∈ T.

Since SPα = T ∪{x1, x2, · · · , xl}, there are homomorphisms α0 : C(T )→ Ajm
and αi : C| = C({xi})→ Ajm, j = 1, 2, · · · , l, with mutually orthogonal images,
such that

α(f) = α0(f |T ) +

l∑

i=1

(f |{xi}), ∀f ∈ C(X).

Define β0 : C(Y ∪ Z)→ Ajm by

β0(f) = α0(f ◦ g), ∀f ∈ C(Y ∪ Z),

where g : T → Y ∪ Z is defined as above. For each ∆i, there is a surjective
map gi : Xm,j → ∆i, since Xm,j 6= {pt}. Define βi : C(∆i)→ Ajm by

βi(f)(x) = f(gi(x)) · αi(1C| ), ∀f ∈ C(∆i), x ∈ Xm,j .

Then, obviously, we have
(1′) β0(1C(Y ∪Z)) = α0(1C(T )), and βi(1C(∆i)) = αi(1C| ), for i = 1, 2, · · · , l.
From the way η is chosen and the properties that dist(g(x), x) < η for any
x ∈ T , and that diameter(∆i) < η for any i = 1, 2, · · · , l, we have
(2′) ‖β0(f |Y ∪Z) − α0(f |T )‖ < ε, and ‖βi(f |∆i

) − αi(f |{xi})‖ < ε for i =
1, 2, · · · , l, and f ∈ F .
Finally, let the partial homomorphism ψj : C(X)→ Ajm be defined by

ψj(f) = β0(f |Y ∪Z) +

l∑

i=1

βi(f |∆i
).

Since T ⊂ SPα0 and the map g : T → Y ∪ Z satisfies g(T ) ⊃ Y , we have
SP(β0) ⊃ Y . Hence SPψj = SPβ0 ∪∪li=1SPβi ⊃ Y ∪∪li=1∆i = X. That is, ψj

is injective.
The property (1) follows from (1′) and (2) follows from (2′).

ut
We will use 5.32a, 5.32b, 1.6.9, 1.6.29, 1.6.30 to prove the following main the-
orem of this article.

Theorem 6.3. Suppose that lim(An =
⊕tn

i=1M[n,i](C(Xn,i)), φn,m) is a simple
inductive limit C∗-algebra with dim(Xn,i) ≤M for a fixed positive integer M .

Then there is another inductive system (Bn =
⊕tn

i=1M{n,i}(C(Yn,i)), φn,m)
with the same limit algebra as the above system, where all Yn,i are spaces of
forms {pt}, [0, 1], S1, S2, TII,k, or TIII,k.

Proof: Without loss of generality, assume that the spaces Xn,i are connected
finite simplicial complexes and the connecting maps φn,m are injective (see
Theorem 4.23).
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Let ε1 > ε2 > ε3 > · · · > 0 be a sequence of positive numbers satisfying∑
εn < +∞.

We need to construct the intertwining diagram

F1⋂ F2⋂ Fn⋂ Fn+1⋂

As(1)

φs(1),s(2)−→ As(2)

φs(2),s(3)−→ · · · −→ As(n)

φs(n),s(n+1)−→ As(n+1) −→ · · ·xα1
β1↘

xα2
β2↘

xαn βn↘
xαn+1 ↘

B1

ψ1,2−→ B2

ψ2,3−→ · · · −→ Bn
ψn,n+1−→ Bn+1 −→ · · ·⋃

E1

⋃
E2

⋃
En

⋃
En+1

satisfying the following conditions.

(0.1) (As(n), φs(n),s(m)) is a sub-inductive system of (An, φn,m). (Bn, ψn,m)
is an inductive system of matrix algebras over the spaces: {pt}, [0, 1], S1,
{TII,k}∞i=2, {TIII,k}∞i=2, S

2.

(0.2) Choose {aij}∞j=1 ⊂ As(i) and {bij}∞j=1 ⊂ Bi to be countable dense subsets
of the unit balls of As(i) and Bi, respectively. Fn are subsets of the unit balls
of As(n), and En are subsets of the unit balls of Bn satisfying

φs(n),s(n+1)(Fn) ∪ αn+1(En+1) ∪
n+1⋃

i=1

φs(i),s(n+1)({ai1, ai2, · · · , ai n+1}) ⊂ Fn+1

and

ψn,n+1(En) ∪ βn(Fn) ∪
n+1⋃

i=1

ψi,n+1({bi1, bi2, · · · , bi n+1}) ⊂ En+1.

(Here we use the convention that φn,n = id : An → An.)

(0.3) βn are Fn − 2εn multiplicative and αn are homomorphisms.

(0.4) ‖ψn,n+1(g) − βn ◦ αn(g)‖ < 2εn for all g ∈ En, and
‖φs(n),s(n+1)(f)− αn+1 ◦ βn(f)‖ < 12εn for all f ∈ Fn.

(0.5) For any block Bin of Bn and any block Ajs(n) of As(n), the map αi,jn satisfies

the following dichotomy condition:

either αi,jn is injective or αi,jn has a finite dimensional image.

The diagram will be constructed inductively.

First, let B1 = {0}, As(1) = A1, α1 = 0. Let b1j = 0 ∈ B1 for j = 1, 2, · · · ,
and let {a1j}∞j=1 be a countable dense subset of the unit ball of As(1). And let
E1 = {b11} = B1 and F1 = {a11} ⊂ As(1).
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As an inductive assumption, assume that we already have the diagram

F1⋂ F2⋂ Fn⋂

As(1)

φs(1),s(2)−→ As(2)

φs(2),s(3)−→ · · · −→ As(n)xα1
β1↘

xα2
β2↘ · · · βn−1↘

xαn
B1

ψ1,2−→ B2

ψ2,3−→ · · · −→ Bn⋃
E1

⋃
E2

⋃
En

and, for each i = 1, 2 · · · , n, we have countable dense subsets {aij}∞j=1 ⊂
unit ball of As(i) and {bij}∞j=1 ⊂ unit ball of Bi to satisfy the conditions (0.1)-
(0.5) above. We have to construct the next piece of the diagram,

Fn ⊂ As(n)

φs(n),s(n+1)−→ As(n+1) ⊃ Fn+1xαn βn↘
xαn+1

En ⊂ Bn
ψn,n+1−→ Bn+1 ⊃ En+1 ,

to satisfy the conditions (0.1)-(0.5).
Our construction are divided into several steps. In order to provide the reader
with a whole picture of the construction, we first give an outline of it. Then
the detailed construction will follow.

Outline of the construction. We will construct the following diagram.

C
ξ2- P1Am1P1

φm1,s(n+1) - φm1,s(n+1)(P1)As(n+1)φm1,s(n+1)(P1)

As(n)

≈φs(n),m1

θ
-P0Am1P0

?

¤
¤
¤
¤
¤
¤
¤
¤º

ξ1

φm1,m2

¡
¡
¡
¡µ

RAm2R

θ0+θ1

QQ
QQ
QQ
QQ
QQs

λ◦α′

¡
¡
¡
¡¡µ

RAm2R
θ0+θ1- (Q0+Q1)As(n+1)(Q0+Q1)

α′′

»»»
»»»

»»»
»»»

»»: ¡ª¤-Adu

ξ3- D
ξ4 - (Q2)As(n+1)(Q2)

⊕

⊕

≈φm2,s(n+1)

§̈ ¦61 §̈ ¦62

§̈ ¦6u

§̈ ¦63
6

Bn

α

¡
¡
¡
¡
¡µ

- B
ψ

αn β

⊕

This large picture consists of several smaller diagrams, each of which is called
a sub-diagram. There are two kinds of sub-diagrams. The sub-diagrams of
the first kind are labeled by the numbers 1, 2, 3 and the letter u (in the
centers of the sub-diagrams). These sub-diagrams are almost commutative in
some sense. For example, the one in the center of the large picture, labeled
by the letter u consists of two composite maps (θ0 + θ1) ◦ (λ ◦ α′) ◦ β and
(θ0 + θ1) ◦ (φm1,m2

|P0Am1
P0

). They are almost equal to each other on a given
finite set up to unitary equivalence.
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The sub-diagrams of the second kind are those two labeled by “≈ φs(n),m1
” and

“≈ φm2,s(n+1)”. They describe the approximate decompositions of the given
maps “φs(n),m1

” and “φm2,s(n+1)|RAm2
R”.

All the maps in the above picture are homomorphisms except β, θ, and θ0 +
θ1 (which are represented by broken line arrows). These maps are linear ∗-
contractions which are almost multiplicative on some given finite sets (i.e., on
the sets Fn ⊂ As(n), F := θ(Fn) ⊂ P0Am1

P0, or a certain (large enough) finite
subset F ′ ⊂ RAm2

R2) to within given small numbers (i.e., εn or some related
small numbers).

The sub-diagrams labeled by the numbers 1, 2, and 3 are approximately com-
mutative on certain given finite sets (i.e., En ⊂ Bn, G := ψ(En) ∪ β(F ) ⊂ B
(F is from the above paragraph)) to within a small number (i.e., εn). The sub-
diagram labeled by the letter u is approximately commutative on a finite set
(F := θ(Fn)) to within a given small number (9εn) up to unitary equivalence.

The sub-diagrams labeled by “≈ φs(n),m1
” and “≈ φm2,s(n+1)” are approximate

decompositions of φs(n),m1
and φm2,s(n+1)|RAm2

R, respectively. (E.g., the direct
sum θ ⊕ (ξ2 ◦ ξ1) of the two maps θ and ξ2 ◦ ξ1 is close to φs(n),m1

to within a
small number εn on a given finite set Fn.)

The above decomposition of φs(n),m1
and the almost commutative sub-diagram

labeled by the number 1 are obtained in Step 1 in the detailed proof, applying
Theorem 5.32b to As(n) and αn : Bn → As(n) (and to the finite sets En
and Fn). The main purpose of this step is to make the set θ(Fn) := F weakly
approximately constant to within εn (the other part ξ2◦ξ1 of the decomposition
factors through an interval algebra C), which will be useful later when we apply
Theorem 1.6.9. (If one assumes in the beginning that the set Fn is weakly
approximately constant to within εn, then he does not need this step.)

The sub-diagrams labeled by 2 or u will be explained by another picture later.
The almost commutative sub-diagram labeled by the number 3 and the decom-
position of φm2,s(n+1)|RAm2

R (i.e., “≈ φm2,s(n+1)” in the picture), are obtained
in Step 4, applying Theorem 5.32a to RAm2

R and λ ◦ α′ : B → RAm2
R (and

certain finite subsets of B and RAm2
R). The purpose of applying Theorem

5.32a is to construct the map θ0 + θ1 to satisfy the condition in Theorem 1.6.9
for the two homotopic homomorphisms λ ◦ (φ⊕ r) and φm1,m2

|P0Am1
P0

in the
next picture, and therefore to obtain the almost commutative sub-diagram up
to unitary equivalence—the sub-diagram labeled by u—, (the other part ξ4 ◦ ξ3
of the decomposition factors through an interval algebra D).

In order to get the parts of the sub-diagram labeled by 2 and u, we need to
start with α : Bn → P0Am1

P0. We describe it in the next picture.
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RAm2
R

³³
³³

³³1φm1,m2 6
λ

A(= P0Am1
P0) -φ⊕ r
§̈ ¦6h

§̈ ¦64§̈ ¦62
β

QQ
QQ
QQ
QQ
QQs

ML(A)⊕ r(A)

Bn

6
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α α′
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θ0+θ1 -(Q0+Q1)As(n+1)(Q0+Q1)¥°¤±-Adu

By Corollary 1.6.29 (see 1.6.31 also), applied to the homomorphism α from the
first picture, we obtain the almost commutative sub-diagrams labeled by the
numbers 2 and 4. Then we apply Lemma 1.6.30 to obtain the sub-diagram
labeled by the letter h which commutes up to homotopy equivalence. By The-
orem 1.6.9 and the property of the map θ0 + θ1 (from Theorem 5.32a), this
sub-diagram leads to the sub-diagram labeled by u in the first picture.
With the first picture in mind, we define

Bn+1 = C ⊕B ⊕D,

ψn,n+1 = (ξ1 ◦ αn)⊕ ψ ⊕ (ξ3 ◦ φm1,m2
|P0Am1

P0
◦ α),

βn = ξ1 ⊕ (β ◦ θ)⊕ (ξ3 ◦ φm1,m2
|P0Am1

P0
◦ θ),

and
αn+1 = (φm1,s(n+1)|P1Am1

P1
◦ ξ2)⊕ (Adu ◦ α′′)⊕ ξ4.

In the definitions of ψn,n+1 and αn+1, we use solid line arrows only since these
maps are supposed to be homomorphisms (but in the definition of βn, we can
use broken line arrows).
One can easily verify the conditions (0.1)–(0.5) except that the map
φm1,s(n+1)|P1Am1

P1
◦ ξ2 may not automatically satisfy the dichotomy condition

(0.5), for which we have to apply Lemma 6.2 to make some modification.
Details of the construction. The above outline can be used as a guide
to understand the following construction. But the proof below is complete by
itself. (We encourage readers to compare the following detailed proof with the
two diagrams in the outline.)
Among the conditions in the induction assumption, only the dichotomy condi-
tion (0.5) of αn is used in the following construction.
Step 1. By Theorem 5.32b, applied to αn : Bn → As(n), En ⊂ Bn, Fn ⊂ As(n),
and ε > 0, there are Am1

(m1 > s(n)), two orthogonal projections P0, P1 ∈ Am1

with φs(n),m1
(1As(n)

) = P0 +P1 and P0 trivial, a C∗-algebra C — a direct sum
of matrix algebras over C[0, 1] or C| —, a unital map θ ∈ Map(As(n), P0Am1

P0)1,
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a unital homomorphism ξ1 ∈ Hom(As(n), C)1, an injective unital homomor-
phism ξ2 ∈ Hom(C,P1Am1

P1)1 and a (not necessarily unital) homomor-
phism α ∈ Hom(Bn, P0Am1

P0) such that
(1.1) ‖φs(n),m1

(f)− θ(f)⊕ (ξ2 ◦ ξ1)(f)‖ < εn for all f ∈ Fn.
(1.2) θ is Fn-εn multiplicative and F := θ(Fn) is weakly approximately constant
to within εn.
(1.3) ‖α(g)− θ ◦ αn(g)‖ < εn for all g ∈ En.
(1.4) Both α : Bn → P0Am1

P0 and ξ2 : C → P1Am1
P1 satisfy the dichotomy

condition in (0.5).
(Thus we finished the construction of the sub-diagrams labeled by the number
“1” and “≈ φs(n),m1

” of the large diagram in the outline.)
Let all the blocks of C be parts of C∗-algebra Bn+1. That is,

Bn+1 = C ⊕ (some other blocks).

The map βn : As(n) → Bn+1 and the homomorphism ψn,n+1 : Bn → Bn+1 are
defined by

βn = ξ1 : As(n) → C(⊂ Bn+1) and ψn,n+1 = ξ1 ◦ αn : Bn → C ( ⊂ Bn+1)

for the blocks of C ( ⊂ Bn+1). For this part, βn is also a homomorphism.
Step 2. Let A = P0Am1

P0, F = θ(Fn). Since P0 is a trivial projection,

A ∼=
⊕

Mli(C(Xm1,i)).

Let rA :=
⊕
Mli(C| ) ⊂ A, and r : A → rA be the homomorphism defined by

evaluation at certain base points x0
i ∈ Xm1,i (see 1.1.7(h)).

Applying Corollary 1.6.29 (see Remark 1.6.31 also) to α : Bn → A (notice
that α satisfies the dichotomy condition), En ⊂ Bn and F ⊂ A, we obtain the
following diagram:

A
φ⊕r−→ ML(A)⊕ r(A)xα β↘

xα′
Bn

ψ−→ B

such that
(2.1) B is a direct sum of matrix algebras over {pt}, [0, 1], S1, TII,k, TIII,k, or
S2.
(2.2) α′ is an injective homomorphism, and β is an F -εn multiplicative map.
(2.3) φ : A → ML(A) is a unital simple embedding. r : A → r(A) is the
homomorphism defined by evaluations as in 1.1.7(h).
(2.4) ‖β ◦ α(g)− ψ(g)‖ < εn for all g ∈ En, ‖(φ⊕ r)(f)− α′ ◦ β(f)‖ < εn
for all f ∈ F (:= θ(Fn)).
(Thus we finished the construction of the sub-diagrams labeled by the number
“2” and “4” of the second diagram in the outline.)
Let all the blocks B be also parts of Bn+1, that is,

Bn+1 = C ⊕B ⊕ (some other blocks).
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The maps βn : As(n) → Bn+1, ψn,n+1 : Bn → Bn+1 are defined by

βn := β ◦ θ : As(n)
θ−→ A

β−→ B (⊂ Bn+1)

and
ψn,n+1 := ψ : Bn −→ B (⊂ Bn+1)

for the blocks of B(⊂ Bn+1). This part of βn is Fn-2εn multiplicative, since θ
is Fn-εn multiplicative, β is F -εn multiplicative, and F = θ(Fn).
Step 3. By the simplicity of lim(An, φn,m), for m large enough, the homo-
morphism φm1,m|P0Am1

P0
is 4M -large in the sense of 1.6.16. By Lemma 1.6.30,

applied to φ ⊕ r : A → ML(A) ⊕ r(A), there is an Am2
and unital homo-

morphism λ : ML(A) ⊕ r(A) → RAm2
R, where R = φm1,m2

(P0) (write R as⊕
j R

j ∈⊕j A
j
mi) such that the diagram

RAm2
R

³³
³³

³³
³1φm1,m2 6

λ

A(= P0Am1
P0) -φ⊕ r

ML(A)⊕ r(A)

satisfies the following conditions:
(3.1) For each block Ajm2

, the partial map

λ·,j : ML(A)⊕ r(A) −→ RjAjm2
Rj

is non zero. Furthermore, either it is injective or it has finite dimensional image
— depending on whether SP(Ajm2

) is a single point space.
(3.2) λ ◦ (φ⊕ r) is homotopy equivalent to

φ′ := φm1,m2
|A.

(Thus we finished the construction of the sub-diagram labeled by the letter “h”
of the second diagram in the outline.)
Step 4. Applying Theorem 1.6.9 to the finite set F ⊂ A (which is weakly
approximately constant to within εn), and to two homotopic homomorphisms

φ′ and λ ◦ (φ⊕ r) : A −→ RAm2
R

(with RAm2
R in place of C), we obtain a finite set F ′ ⊂ RAm2

R, δ > 0 and
L > 0 as in the Theorem 1.6.9.
Let G := ψ(En) ∪ β(F ) ⊂ B. By Theorem 5.32a, applied to RAm2

R,

λ ◦ α′ : B −→ RAm2
R
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(which satisfies the dichotomy condition by (2.2) and (3.1)), finite sets G ⊂
B, F ′ ⊂ RAm2

R, min(εn, δ) > 0 (in place of ε), and L > 0, there are As(n+1),
mutually orthogonal projections Q0, Q1, Q2 ∈ As(n+1) with φm2,s(n+1)(R) =
Q0 + Q1 + Q2, a C∗-algebra D — a direct sum of matrix algebras over
C[0, 1]—, a unital map θ0 ∈ Map(RAm2

R,Q0As(n+1)Q0) and four unital homo-
morphisms θ1 ∈ Hom(RAm2

R,Q1As(n+1)Q1)1, ξ3 ∈ Hom(RAm2
R,D)1, ξ4 ∈

Hom(D,Q2As(n+1)Q2)1, and α′′ ∈ Hom(B, (Q0 +Q1)As(n+1)(Q0 +Q1))1 such
that the following are true:
(4.1) ‖φm2,s(n+1)(f)− ((θ0 + θ1)⊕ (ξ4 ◦ ξ3))(f)‖ < εn for all f ∈ F ′ ⊂ RAm2

R.
(4.2) ‖α′′(g)− (θ0 + θ1) ◦ λ ◦ α′(g)‖ < εn for all g ∈ G.
(4.3) θ0 is F ′-min(εn, δ) multiplicative and θ1 satisfies that

θi,j1 ([q]) > L · [θi,j0 (Ri)]

for any non zero projection q ∈ RiAm2
Ri.

(4.4) Both α′′ : B −→ (Q0 +Q1)As(n+1)(Q0 +Q1) and ξ4 : D → Q2As(n+1)Q2

satisfy the dichotomy condition (0.5).
(Thus we finished the construction of the sub-diagrams labeled by the number
“3” and “≈ φm2,s(n+1)” of the large diagram in the outline. Combined with
Step 2 and Step 3, these two sub-diagrams will lead to the sub-diagram labeled
by the letter “u” of the large diagram as below.)
By the end of 1.1.4, for any blocks Ai, Akm2

and any non zero projection e ∈
Ai, φi,km1,m2

(e) ∈ Akm2
is a non zero projection. As a consequence of (4.3), we

have

[(θ1 ◦ φ′)(e)] ≥ L · [θ0(R)] (= L · [Q0]),

(Recall that φ′ = φm1,m2
|A). Therefore, θ0 and θ1 (in place of λ0 and λ1)

satisfy the condition in Theorem 1.6.9. By Theorem 1.6.9, there is a unitary
u ∈ (Q0 +Q1)As(n+1)(Q0 +Q1) such that

‖(θ0 + θ1) ◦ φ′(f)−Adu ◦ (θ0 + θ1) ◦ λ ◦ (φ⊕ r)(f)‖ < 8εn, ∀f ∈ F.

Combining it with the second inequality of (2.4), we have
(4.5) ‖(θ0 + θ1) ◦ φ′(f)−Adu ◦ (θ0 + θ1) ◦ λ ◦ α′ ◦ β(f)‖ < 9εn, ∀f ∈ F.
Step 5. Finally, let all the blocks of D be the rest of Bn+1. Namely, let

Bn+1 = C ⊕B ⊕D,

where C is from Step 1, B is from Step 2, and D is from Step 4.
We already have the definitions of βn : As(n) → Bn+1 and ψn,n+1 : Bn → Bn+1

for those blocks of C ⊕B ⊂ Bn+1 (from Step 1 and Step 2). The definitions of
βn and ψn,n+1 for blocks of D, and the homomorphism αn+1 : C ⊕B ⊕D →
As(n+1) will be given below.
The part of βn : As(n) → D (⊂ Bn+1) is defined by

βn = ξ3 ◦ φ′ ◦ θ : As(n)
θ−→ A

φ′−→ RAm2
R

ξ3−→ D.
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(Recall that A = P0Am1
P0 and φ′ = φm1,m2

|A.) Since θ is Fn-εn multiplicative,
and φ′ and ξ3 are homomorphisms, we know that this part of βn is Fn-εn
multiplicative.
The part of ψn,n+1 : Bn → D (⊂ Bn+1) is defined by

ψn,n+1 = ξ3 ◦ φ′ ◦ α : Bn
α−→ A

φ′−→ RAm2
R

ξ3−→ D

which is a homomorphism. The homomorphism αn+1 : C ⊕B ⊕D → As(n+1)

is defined as follows.
Consider the composition

φ′′ ◦ ξ2 : C
ξ2−→ P1Am1

P1
φ′′−→ φm1,s(n+1)(P1)As(n+1)φm1,s(n+1)(P1),

where P1 and ξ2 are from Step 1, φ′′ = φm1,s(n+1)|P1Am1
P1
. Using the di-

chotomy condition of ξ2, by Lemma 6.2, there is a homomorphism τ : C →
φm1,s(n+1)(P1)As(n+1)φm1,s(n+1)(P1) such that
(5.1) ‖τ(f)− (φ′′ ◦ ξ2)(f)‖ < εn, ∀f ∈ ξ1(Fn) ⊂ C, and
(5.2) τ satisfies the dichotomy condition (0.5).
Define

αn+1|C = τ : C → φm1,s(n+1)(P1)As(n+1)φm1,s(n+1)(P1),

αn+1|B = Adu ◦ α′′ : B
α′′−→ (Q0 +Q1)As(n+1)(Q0 +Q1) °̄§̈6 Adu ,

where α′′ is from Step 4, and define

αn+1|D = ξ4 : D −→ Q2As(n+1)Q2.

Finally, choose {an+1 j}∞j=1 ⊂ As(n+1) and {bn+1 j}∞j=1 ⊂ Bn+1 to be countable
dense subsets of unit balls of As(n+1) and Bn+1, respectively. And choose

Fn+1 = φs(n),s(n+1)(Fn) ∪ αn+1(En+1) ∪
n+1⋃

i=1

φs(i),s(n+1)({ai1, ai2, · · · , ai n+1})

and

En+1 = ψn,n+1(En) ∪ βn(Fn) ∪
n+1⋃

i=1

ψi,n+1({bi1, bi2, · · · , bi n+1}).

Thus we obtain the following diagram:

Fn ⊂ As(n)

φs(n),s(n+1)−→ As(n+1) ⊃ Fn+1xαn βn↘
xαn+1

En ⊂ Bn
ψn,n+1−→ Bn+1 ⊃ En+1 .

Step 6. Now we need to verify all the conditions (0.1)–(0.5) for the above
diagram.
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(0.1)–(0.2) hold from the construction (see the constructions of B,C,D in Step
1, Step 2 and Step 4, and En+1, Fn+1 in the end of Step 5.)
(0.3) follows from the end of Step 1, the end of Step 2, and the part of the
definition of βn for D from Step 5.
(0.5) follows from (4.4) and (5.2).
So we only need to verify (0.4).
Combining (1.1) with (4.1), we have

‖φs(n),s(n+1)(f)− [(φ′′ ◦ ξ2 ◦ ξ1)⊕ ((θ0 + θ1) ◦ φ′ ◦ θ)⊕ (ξ4 ◦ ξ3 ◦ φ′ ◦ θ)](f)‖
< εn + εn = 2εn

for all f ∈ Fn (recall that φ′′ = φm1,s(n+1)|P1Am1
P1
, φ′ := φm1,m2

|P0Am1
P0

).
Combined with (4.2), (4.5), (5.1) and the definitions of βn and αn+1, the pro-
ceeding inequality yields

‖φs(n),s(n+1)(f)− (αn+1 ◦ βn)(f)‖ < 9εn + εn + 2εn = 12εn ∀f ∈ Fn.
Combining (1.3), the first inequality of (2.4), and the definitions of βn and
ψn,n+1, we have

‖ψn,n+1(g)− βn ◦ αn(g)‖ < εn + εn = 2εn ∀g ∈ En.
So we obtain (0.4).
The theorem follows from Proposition 6.1.

ut

Remark 6.4. In the proof of the above theorem, if there is at least one block
of Bn+1 having spectrum of forms S1, TII,k, TIII,k, or S2, then we can chose
the map ψn,n+1 to be injective (e.g., the map ψ in Step 2 can be chosen to
be injective). Hence, in general, we can make the maps ψn,m, in the inductive
system (Bn, ψn,m), injective. (Note that if no space of S1, TII,k, TIII,k or S2

appears, then it is easy to make the maps injective; see Theorem 2.2.1 of [Li2]).

Remark 6.5. By Lemma 1.3.3, our main result Theorem 6.3 also holds for
general simple AH inductive limit C∗-algebras
lim(An =

⊕tn
i=1 Pn,iM[n,i](C(Xn,i))Pn,i, φn,m) with uniformly bounded dimen-

sions of Xn,i, where Pn,i ∈ M[n,i](C(Xn,i)) are projections. That is, such
an AH algebra can be written as an inductive limit of a system (Bn =⊕sn

i=1Qn,iM{n,i}(C(Yn,i))Qn,i, ψn,m), where Yn,i are the spaces:
{pt}, [0, 1], S1, TII,k, TIII,k and S2, and Qn,i ∈M{n,i}(C(Yn,i)) are projections.

6.6. Suppose that a simple C∗-algebra A is an inductive limit of matrix
algebras over Xn,i, where Xn,i are the spaces of forms {pt}, [0, 1], S1, S2, TII,k
or TIII,k. Suppose that K∗(A) is torsion free. Then it can be proved that for
each fixed algebra An, integer N > 0, there is an Am such that

rankφi,jn,m(1Ain)

rank(1Ain)
≥ N,
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and that (φn,m)∗(torK∗(An)) = 0. Based on this, using the argument
from §4 of [G2], we know that for any F ⊂ An, ε > 0, if N is large
enough, then the above φn,m is homotopic to a homomorphism ψ : An →
φn,m(1An)Amφn,m(1An) satisfying ψ(F ) ⊂ε C, where C is a direct sum of ma-
trix algebras over spaces {pt}, [0, 1] and S1. (See [G1] and the proof of Lemma
5.6 of [EGL] also.) Using the above fact, the following Corollary is a direct
consequence of our Main Theorem and its proof. (In fact, since the algebras
Mk(C| ),Mk(C[0, 1]) and Mk(C(S1)) are stably generated, the proof is much
simpler (see §3 of [Li3]).

Corollary 6.7. Suppose that A is a simple C∗-algebra which is an inductive
limit of an AH system with uniformly bounded dimensions of local spectra.
If K∗(A) is torsion free, then it is an inductive limit of matrix algebras over
C(S1).

Combining the above corollary with [El2] (see [NT] also), we have the following
theorem.

Theorem 6.8. Suppose that A= lim
n→∞

(An=
⊕tn

i=1Pn,iM[n,i](C(Xn,i))Pn,i,φn,m)

and B = lim
n→∞

(Bn =
⊕sn

i=1Qn,iM{n,i}(C(Yn,i))Qn,i, ψn,m) are unital simple

inductive limit algebras with uniformly bounded dimensions of local spectra Xn,i

and Yn,i, respectively. Suppose that K∗(A) = K∗(B) are torsion free.
Suppose that there is an isomorphism of ordered groups

φ0 : K0A −→ K0B

taking [1] ∈ K0A into [1] ∈ K0B, that there is a group isomorphism

φ1 : K1A −→ K1B

and that there is an isomorphism between compact convex sets

φT : TB −→ TA,

where TA and TB denote the simplices of tracial states of A and B, respectively.
Suppose that φ0 and φT are compatible, in the sense that

τ(φ0g) = φT (τ)(g), g ∈ K0A, τ ∈ TB.

It follows that there exists an isomorphism

φ : A −→ B

giving rise to φ0, φ1, φT .

Remark 6.9. Since the C∗-algebras C(TII,k), C(TIII,k) and C(S2) are not
stably generated, our proof heavily depends on the results that, certain G-δ
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multiplicative maps (with parts of point evaluations of sufficiently large sizes)
are approximated by true homomorphisms in §5. We believe that such results
should play important role in the future study of general simple C∗-algebras
(with or without real rank zero property).

Remark 6.10. From a result of J. Villadsen, [V1], one knows that the
restriction on the dimensions of the spaces Xn,i can not be removed.

In [G5]—an appendix to this article, we will show that the condition of uni-
formly bounded dimensions of local spectra can be replaced by the condition
of very slow dimension growth. The main difficulty for this case is that we can
not obtain the homomorphism from Bn to As(n) as the homomorphism αn in
the above proof. (The αn in this case will be only a sufficiently multiplicative
map.) But we can still construct homomorphisms ψn : Bn → Bn+1, if we
carefully choose αn and βn. This case does not create essential difficulty, but
makes the proof much longer. We refer it to [G5] , a separate appendix to this
paper.

It could be an improvement if one can replace the very slow dimension growth
condition by the slow dimension growth condition. The author believes that
the theorem is also true for this case. In fact, if one can prove the corresponding
decomposition results (see Section 4) for the AH-algebras with slow dimension
growth, then the Main Theorem in this article would also hold, by the same
proof as in [G5].

Corollary 6.11. Suppose that A = lim
n→∞

(An =
⊕tn

i=1M[n,i](C(Xn,i)), φn,m)

is a simple inductive limit C∗-algebras. Suppose that each of the spaces Xn,i

is of the forms: {pt}, [0, 1], S1, S2, TII,k or TIII,k. And suppose that all the
connecting maps φn,m are injective. For any F ⊂ An, ε > 0, if m is large
enough, then there are two mutually orthogonal projections P,Q ∈ Am and two
homomorphisms φ : An → PAmP and ψ : An → QAmQ such that

(1) ‖φn,m(f)− (φ⊕ ψ)(f)‖ < ε for all f ∈ F ;

(2) φ(F ) is weakly approximately constant to within ε and SPV(φ) < ε;

(3) ψ factors through matrix algebras over C[0, 1].

Furthermore, if for some i, j, the partial map φi,jn,m : Ain → Ajm is homotopic
to a homomorphism with finite dimensional image, then the part φ of the
decomposition φ⊕ψ corresponding to this partial map can be chosen to be zero
(or, equivalently, φi,jn,m itself is close to a homomorphism factoring through a
matrix algebra over C[0, 1]).

Proof: It follows from the corollary of 2.3 of [Su] that for any Ml(C(X)),
ε > 0, there are ε1 > 0 and a finite subset F of self adjoint elements
of Ml(C(X)) (i.e., F ⊂ (Ml(C(X)))s.a) such that for any homomorphism
φ : Ml(C(X)) → Ml1(C(Y )), if φ(F ) is weakly approximately constant to
within ε1, then SPV(φ) < ε. Therefore, for the desired condition (2) above, we
only need to make φ(F ) weakly approximately constant to within min(ε, ε1).
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To simplify the notation, we still denote min(ε, ε1) by ε.

Now, the main body of the corollary follows from Lemma 6.2 and Theorem
5.32b. Namely, first apply Lemma 6.2 to id : An → An (in place of φ) and An
in place of both B and An to find An1

(in place of Am) and homomorphism
α : An → An1

such that α satisfies the dichotomy condition and such that α
is sufficiently close to φn,n1

on the finite set F . Then apply Lemma 5.32b to
An and F ⊂ An (in place of B and G ⊂ B), An1

and φn,n1
(F ) ⊂ An1

(in place
of An and F ⊂ A), and α : An → An1

(in place of α : B → An) to construct
the desired decomposition. (Note that we use the following trivial fact: If two
maps φ1, φ2 : An → Am are approximately equal to each other to within ε1 on
the finite set F and the set φ1(F ) is weakly approximately constant to within
ε2, then the set φ2(F ) is weakly approximately constant to within 2ε1 + ε2.)

For the last part of the Corollary, one needs to notice the following facts.

(i) In the additional parts of Corollaries 5.22 and 5.23, if the homomorphisms ψ
are homomorphisms with finite dimensional images, then the homomorphisms φ̃
in the corollaries 5.22 and 5.23 are also homomorphisms with finite dimensional
images.

(ii) In Lemma 5.28, if both φ and φ1 are homomorphisms factoring through
interval algebras (this condition implies that they are homotopic to homomor-
phisms with finite dimensional images), then the homomorphism ψ in Lemma
5.28 (with [ψ]∗ = [φ2]∗) can be chosen to be a homomorphism with finite
dimensional image.

With the above facts, if φi,jn,m is homotopic to a homomorphism with finite
dimensional image and if Xn,i 6= S1, then the corresponding part of φ in our
corollary could be chosen to be a homomorphism with finite dimensional image,
and therefore it can also factor through matrix algebras over C[0, 1]. So, we
can put it together with the part ψ and hence the part φ disappears from the
decomposition of this partial map. This proves the additional part for the case
Xn,i 6= S1.

For the case that Xn,i = S1, the additional part of the corollary follows from
the following claim.

Claim: For any unitary u ∈ Ain and any ε > 0, there is an integer N > n such
that if m > N , and if φi,jn,m(u) is in the path connected component of the unit

in the unitary group of φi,jn,m(1Ain)Ajmφ
i,j
n,m(1Ain), then there is a self adjoint

element a ∈ φi,jn,m(1Ain)Ajmφ
i,j
n,m(1Ain) such that

‖φi,jn,m(u)− e2πia‖ < ε.

(Obviously, if φi,jn,m is homotopic to a homomorphism with finite dimensional

image, then φi,jn,m(u) is in the path connected component of the unit element

in the unitary group of φi,jn,m(1Ain)Ajmφ
i,j
n,m(1Ain).)

The proof of the above claim is exactly the same as the proof of the main
theorem of [Phi3]: the simple inductive limit C∗-algebra in our corollary has
exponential rank at most 1 + ε. We omit the details.
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We point out that, in [EGL], we will only need this result for the case Xm,j =
S2. Since dim(S2) ≤ 2, PM•(C(S2))P has exponential rank at most 1 + ε.
Therefore, the claim for the case Xm,j = S2 (Xn,i = S1) is trivial.

ut
By Lemma 1.3.3, the above corollary also holds for the case of
An =

⊕tn
i=1 Pn,iM[n,i](C(Xn,i))Pn,i, instead of An =

⊕tn
i=1M[n,i](C(Xn,i)).

Corollary 6.12. Suppose that A = lim
n→∞

(An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i,

φn,m) is a simple inductive limit C∗-algebra. Suppose that each of the spaces
Xn,i is of the forms: {pt}, [0, 1], S1, S2, TII,k or TIII,k. And suppose that all
the connecting maps φn,m are injective. For any F ⊂ An, ε > 0, if m is large
enough, then there are two mutually orthogonal projections P,Q ∈ Am and two
homomorphisms φ : An → PAmP and ψ : An → QAmQ such that
(1) ‖φn,m(f)− (φ⊕ ψ)(f)‖ < ε for all f ∈ F ;
(2) φ(F ) is weakly approximately constant to within ε and SPV(φ) < ε;
(3) ψ factors through matrix algebras over C[0, 1].
Furthermore, if for some i, j, the partial map φi,jn,m : Ain → Ajm is homotopic
to a homomorphism with finite dimensional image, then the part φ of the
decomposition φ⊕ψ corresponding to this partial map can be chosen to be zero
(or, equivalently, φi,jn,m itself is close to a homomorphism factoring through a
matrix algebra over C[0, 1]).

Proof: By Lemma 1.3.3, there is an inductive system

Ã = lim
n→∞

(Ãn =

tn⊕

i=1

M{n,i}(C(Xn,i)), φ̃n,m)

such that each Pn,iM[n,i](C(Xn,i))Pn,i is a corner of M{n,i}(C(Xn,i)) and

φn,m = φ̃n,m|Pn,iM[n,i](C(Xn,i))Pn,i . Ã is simple since it is stably isomorphic

to a simple C∗-algebra A. φ̃n,m are injective since φn,m are injective. Apply

Corollary 6.11 to F ∪ {1Ain}
tn
i=1 ⊂ An ⊂ Ãn and ε

4 > 0 to obtain φ̃ and ψ̃ as
the homomorphisms φ and ψ in Corollary 6.11. Since

‖(φ̃+ ψ̃)(1Ain)− φ̃n,m(1Ain)‖ < ε

4
, ∀i,

there is a unitary u ∈ Ãm such that ‖u− 1‖ < ε
2 and

u((φ̃+ ψ̃)(1Ain))u∗ = φ̃n,m(1Ain) = φn,m(1Ain), ∀i

Finally, let

φ = (Adu ◦ φ̃)|An and ψ = (Adu ◦ ψ̃)|An
to obtain our corollary.

ut
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Abstract. Let P be a d-dimensional lattice polytope. We show
that there exists a natural number cd, only depending on d, such that
the multiples cP have a unimodular cover for every natural number
c ≥ cd. Actually, an explicit upper bound for cd is provided, together
with an analogous result for unimodular covers of rational cones.
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1. Statement of results

All polytopes and cones considered in this paper are assumed to be convex. A
polytope P ⊂ Rd is called a lattice polytope, or integral polytope, if its vertices
belong to the standard lattice Zd. For a (not necessarily integral) polytope
P ⊂ Rd and a real number c ≥ 0 we let cP denote the image of P under
the dilatation with factor c and center at the origin O ∈ Rd. A polytope of
dimension e is called an e-polytope.
A simplex ∆ is a polytope whose vertices v0, . . . , ve are affinely independent
(so that e = dim ∆). The multiplicity µ(∆) of a lattice simplex is the index of
the subgroup U generated by the vectors v1 − v0, . . . , ve − v0 in the smallest
direct summand of Zd containing U , or, in other words, the order of the torsion
subgroup of Zd/U . A simplex of multiplicity 1 is called unimodular. If ∆ ⊂ Rd
has the full dimension d, then µ(∆) = d! vol(∆), where vol is the Euclidean
volume. The union of all unimodular d-simplices inside a d-polytope P is
denoted by UC(P ).
In this paper we investigate for which multiples cP of a lattice d-polytope one

can guarantee that cP = UC(cP ). To this end we let cpol
d denote the infimum

of the natural numbers c such that c′P = UC(c′P ) for all lattice d-polytopes

1The second author was supported by the Deutsche Forschungsgemeinschaft.
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P and all natural numbers c′ ≥ c. A priori, it is not excluded that cpol
d = ∞

and, to the best of our knowledge, it has not been known up till now whether

cpol
d is finite except for the cases d = 1, 2, 3: cpol

1 = cpol
2 = 1 and cpol

3 = 2, where
the first equation is trivial, the second is a crucial step in the derivation of
Pick’s theorem, and a proof of the third can be found in Kantor and Sarkaria
[KS]. Previous results in this direction were obtained by Lagarias and Ziegler
(Berkeley 1997, unpublished).
The main result of this paper is the following upper bound, positively answering
Problem 4 in [BGT2]:

Theorem 1.1. For all natural numbers d > 1 one has

cpol
d ≤ O

(
d5
)(3

2

)⌈√d−1
⌉

(d−1)

.

Theorem 1.1 is proved by passage to cones, for which we establish a similar
result on covers by unimodular subcones (Theorem 1.3 below). This result,
while interesting of its own, implies Theorem 1.1 and has the advantage of
being amenable to a proof by induction on d.
We now explain some notation and terminology. The convex hull of a set
X ⊂ Rd is denoted by conv(X), and Aff(X) is its affine hull. Moreover,
R+ = {x ∈ R : x ≥ 0} and Z+ = Z ∩ R+.
A lattice simplex is called empty if its vertices are the only lattice points in
it. Every unimodular simplex is empty, but the opposite implication is false in
dimensions ≥ 3. (In dimension 2 empty simplices are unimodular.)
A cone (without further predicates) is a subset of Rd that is closed under linear
combinations with coefficients in R+. All cones considered in this paper are
assumed to be polyhedral, rational and pointed (i. e. not to contain an affine
line); in particular they are generated by finitely many rational vectors. For
such a cone C the semigroup C ∩ Zd has a unique finite minimal set of gener-
ators, called the Hilbert basis and denoted by Hilb(C). The extreme (integral)
generators of a rational cone C ⊂ Rd are, by definition, the generators of the
semigroups l ∩ Zd ≈ Z+ where l runs through the edges of C. The extreme
integral generators of C are members of Hilb(C). We define ∆C to be the
convex hull of O and the extreme integral generators of C.
A cone C is simplicial if it has a linearly independent system of generators.
Thus C is simplicial if and only if ∆C is a simplex. We say that C is empty
simplicial if ∆C is an empty simplex. The multiplicity of a simplicial cone is
µ(∆C). If ∆ is a lattice simplex with vertex O, then the multiplicity of the
cone R+∆ divides µ(∆). This follows easily from the fact that each non-zero
vertex of ∆ is an integral multiple of an extreme integral generator of R+∆.
A unimodular cone C ⊂ Rd is a rational simplicial cone for which ∆C is a
unimodular simplex. Equivalently we could require that C is simplicial and its
extreme integral generators generate a direct summand of Zd. A unimodular
cover of an arbitrary rational cone C is a finite system of unimodular cones
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whose union is C. A unimodular triangulation of a cone is defined in the usual
way – it is a unimodular cover whose member cones coincide along faces.
In addition to the cones C with apex in the origin O, as just introduced, we
will sometimes have to deal with sets of the form v+C where v ∈ Rd. We call
v + C a cone with apex v.
We define ccone

d to be the infimum of all natural numbers c such that every

rational d-dimensional cone C ⊂ Rd admits a unimodular cover C =
⋃k
j=1 Cj

for which
Hilb(Cj) ⊂ c∆C j ∈ [1, k].

Remark 1.2. We will often use that a cone C can be triangulated into empty
simplicial cones C ′ such that ∆C′ ⊂ ∆C . In fact, one first triangulates C into
simplicial cones generated by extreme generators of C. After this step one can
assume that C is simplicial with extreme generators v1, . . . , vd. If ∆C is not
empty, then we use stellar subdivision along a ray through some v ∈ ∆C ∩ Zd,
v 6= 0, v1, . . . , vd, and for each of the resulting cones C ′ the simplex ∆C′ has a
smaller number of integral vectors than ∆C . In proving a bound on ccone

d it is
therefore enough to consider empty simplicial cones.
Similarly one triangulates every lattice polytope into empty simplices.

Results on ccone
d seem to be known only in dimensions ≤ 3. Since the empty

simplicial cones in dimension 2 are exactly the unimodular 2-cones (by a well
known description of Hilbert bases in dimension 2, see Remark 4.2) we have
ccone
2 = 1. Moreover, it follows from a theorem of Sebő [S1] that ccone

3 = 2.
In fact Sebő has shown that a 3-dimensional cone C can be triangulated into
unimodular cones generated by elements of Hilb(C) and that Hilb(C) ⊂ (d −
1)∆C in all dimensions d (see Remark 1.4(f)).
We can now formulate the main result for unimodular covers of rational cones:

Theorem 1.3. For all d ≥ 2 one has

ccone
d ≤

⌈√
d− 1

⌉
(d− 1)

d(d+ 1)

2

(
3

2

)⌈√d−1
⌉

(d−1)−2

.

Remark 1.4. (a) We have proved in [BGT1, Theorem 1.3.1] that there is a
natural number cP for a lattice polytope P ⊂ Rd such that cP = UC(cP )
whenever c ≥ cP , c ∈ N. However, neither did the proof in [BGT1] provide an
explicit bound for cP , nor was it clear that the numbers cP can be uniformly
bounded with respect to all d-dimensional polytopes. The proof we present
below is an essential extension of that of [BGT1, Theorem 1.3.1].
(b) It has been proved in [KKMS, Theorem 4, Ch. III] that for every lattice
polytope P there exists a natural number c such that cP admits even a regular
triangulation into unimodular simplices. This implies that c′cP also admits
such a triangulation for c′ ∈ N. However, the question whether there exists a
natural number ctriang

P such that the multiples c′P admit unimodular triangula-

tions for all c′ ≥ ctriang
P remains open. In particular, the existence of a uniform

bound ctriang
d (independent of P ) remains open.
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(c) The main difficulty in deriving better estimates for cpol
d lies in the funda-

mental open problem of an effective description of the empty lattice d-simplices;
see Haase and Ziegler [HZ] and Sebő [S2] and the references therein.
(d) A chance for improving the upper bound in Theorem 1.1 to, say, a poly-
nomial function in d would be provided by an algorithm for resolving toric
singularities which is faster then the standard one used in the proof of Theo-
rem 4.1 below. Only there exponential terms enter our arguments.
(e) A lattice polytope P ⊂ Rd which is covered by unimodular simplices is
normal, i. e. the additive subsemigroup

SP =
∑

x∈P∩Zd
Z+(x, 1) ⊂ Zd+1

is normal and, moreover, gp(SP ) = Zd+1. (The normality of SP is equivalent
to the normality of the K-algebra K[SP ] for a field K.) However, there are
normal lattice polytopes in dimension ≥ 5 which are not unimodularly covered
[BG]. On the other hand, if dimP = d then cP is normal for arbitrary c ≥ d−1
[BGT1, Theorem 1.3.3(a)] (and gp(ScP ) = Zd+1, as is easily seen). The exam-
ple found in [BG] is far from being of type cP with c > 1 and, correspondingly,

we raise the following question: is cpol
d = d− 1 for all natural numbers d > 1?

As mentioned above, the answer is ‘yes’ for d = 2, 3, but we cannot provide
further evidence for a positive answer.
(f) Suppose C1, . . . , Ck form a unimodular cover of C. Then Hilb(C1) ∪ · · · ∪
Hilb(Ck) generates C ∩Zd. Therefore Hilb(C) ⊂ Hilb(C1)∪· · ·∪Hilb(Ck), and
so Hilb(C) sets a lower bound to the size of Hilb(C1) ∪ · · · ∪ Hilb(Ck) relative
to ∆C . For d ≥ 3 there exist cones C such that Hilb(C) is not contained in
(d− 2)∆C (see Ewald and Wessels [EW]), and so one must have ccone

d ≥ d− 1.
On the other hand, d−1 is the best lower bound for ccone

d that can be obtained
by this argument since Hilb(C) ⊂ (d− 1)∆C for all cones C. We may assume
that C is empty simplicial by Remark 1.2, and for an empty simplicial cone C
we have

Hilb(C) ⊂ ¤C \ (v1 + · · ·+ vd −∆C) ⊂ (d− 1)∆C

where

(i) v1, . . . , vd are the extreme integral generators of C,
(ii) ¤C is the semi-open parallelotope spanned by v1, . . . , vd, that is,

¤C = {ξ1v1 + · · ·+ ξdvd : ξ1, . . . , ξd ∈ [0, 1)}.
Acknowledgement. We thank the referees for their careful reading of the paper.
It led to a number of improvements in the exposition, and helped us to correct
an error in the first version of Lemma 4.1.

2. Slope independence

By [0, 1]d = {(z1, . . . , zd) | 0 ≤ z1, . . . , zd ≤ 1} we denote the standard unit
d-cube. Consider the system of simplices

∆σ ⊂ [0, 1]d, σ ∈ Sd,
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where Sd is the permutation group of {1, . . . , d}, and ∆σ is defined as follows:

(i) ∆σ = conv(x0, x1, . . . , xd),
(ii) x0 = O and xd = (1, . . . , 1),

(iii) xi+1 differs from xi only in the σ(i+1)st coordinate and xi+1,σ(i+1) = 1
for i ∈ [0, d− 1].

Then {∆σ}σ∈Sd is a unimodular triangulation of [0, 1]d with additional good
properties [BGT1, Section 2.3]. The simplices ∆σ and their integral parallel
translates triangulate the entire space Rd into affine Weyl chambers of type
Ad. The induced triangulations of the integral multiples of the simplex

conv(O, e1, e1 + e2, . . . , e1 + · · ·+ ed} ⊂ Rd

are studied in great detail in [KKMS, Ch. III]. All we need here is the very
existence of these triangulations. In particular, the integral parallel translates
of the simplices ∆σ cover (actually, triangulate) the cone

R+e1 + R+(e1 + e2) + · · ·+ R+(e1 + · · ·+ ed) ≈ Rd+
into unimodular simplices.
Suppose we are given a real linear form

α(X1, . . . , Xd) = a1X1 + · · ·+ adXd 6= 0.

The width of a polytope P ⊂ Rd in direction (a1, . . . , ad), denoted by
widthα(P ), is defined to be the Euclidean distance between the two extreme
hyperplanes that are parallel to the hyperplane a1X1 + · · · + adXd = 0 and
intersect P . Since [0, 1]d is inscribed in a sphere of radius

√
d/2, we have

widthα(∆σ) ≤
√
d whatever the linear form α and the permutation σ are. We

arrive at

Proposition 2.1. All integral parallel translates of ∆σ, σ ∈ Sd, that intersect
a hyperplane H are contained in the

√
d-neighborhood of H.

In the following we will have to consider simplices that are unimodular with
respect to an affine sublattice of Rd different from Zd. Such lattices are sets

L = v0 +
e∑

i=1

Z(vi − v0)

where v0, . . . , ve, e ≤ d, are affinely independent vectors. (Note that L is
independent of the enumeration of the vectors v0, . . . , vd.) An e-simplex ∆ =
conv(w0, . . . , we) defines the lattice

L∆ = w0 +

e∑

i=0

Z(wi − w0).

Let L be an affine lattice. A simplex ∆ is called L-unimodular if L = L∆, and
the union of all L-unimodular simplices inside a polytope P ⊂ Rd is denoted
by UCL(P ). For simplicity we set UC∆(P ) = UCL∆

(P ).
Let ∆ ⊂ ∆′ be (not necessarily integral) d-simplices in Rd such that the origin
O ∈ Rd is a common vertex and the two simplicial cones spanned by ∆ and ∆′
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at O are the same. The following lemma says that the L∆-unimodularly covered
area in a multiple c∆′, c ∈ N, approximates c∆′ with a precision independent
of ∆′. The precision is therefore independent of the “slope” of the facets of ∆
and ∆′ opposite to O. The lemma will be critical both in the passage to cones
(Section 3) and in the treatment of the cones themselves (Section 6).

Lemma 2.2. For all d-simplices ∆ ⊂ ∆′ having O as a common vertex at which
they span the same cone, all real numbers ε, 0 < ε < 1, and c ≥

√
d/ε one has

(c− εc)∆′ ⊂ UC∆(c∆′).

Proof. Let v1, . . . , vd be the vertices of ∆ different from O, and let wi, i ∈ [1, d]
be the vertex of ∆′ on the ray R+vi. By a rearrangement of the indices we can
achieve that

|w1|
|v1|

≥ |w2|
|v2|

≥ · · · ≥ |wd||vd|
≥ 1.

where | | denotes Euclidean norm. Moreover, the assertion of the lemma is
invariant under linear transformations of Rd. Therefore we can assume that

∆ = conv(O, e1, e1 + e2, . . . , e1 + · · ·+ ed).

Then L∆ = Zd. The ratios above are also invariant under linear transforma-
tions. Thus

|w1|
|e1|
≥ |w2|
|e1 + e2|

≥ · · · ≥ |wd|
|e1 + · · ·+ ed|

≥ 1.

Now Lemma 2.4 below shows that the distance h from O to the affine hyper-
plane H through w1, . . . , wd is at least 1.
By Proposition 2.1, the subset

(c∆′) \ U√d(cH) ⊂ c∆′

is covered by integral parallel translates of the simplices ∆σ, σ ∈ Sd that are
contained in c∆. (Uδ(M) is the δ-neighborhood of M .) In particular,

(1) (c∆′) \ U√d(cH) ⊂ UC∆(c∆′).

Therefore we have

(
1−ε

)
c∆′ ⊂

(
1−
√
d

c

)
c∆′ ⊂

(
1−
√
d

ch

)
c∆′ =

ch−
√
d

ch
c∆′ = (c∆′)\U√d(cH),

and the lemma follows from (1). ¤

Remark 2.3. One can derive an analogous result using the trivial tiling of
Rd+ by the integral parallel translates of [0, 1]d and the fact that [0, 1]d itself
is unimodularly covered. The argument would then get simplified, but the
estimate obtained is c ≥ d/ε, and thus worse than c ≥

√
d/ε.

We have formulated the Lemma 2.2 only for full dimensional simplices, but it
holds for simplices of smaller dimension as well: one simply chooses all data
relative to the affine subspace generated by ∆′.
Above we have used the following
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Lemma 2.4. Let e1, . . . , ed be the canonical basis of Rd and set wi = λi(e1 +
· · · + ei) where λ1 ≥ · · · ≥ λd > 0. Then the affine hyperplane H through
w1, . . . , wd intersects the set Q = λd(e1 + · · ·+ ed)− Rd+ only in the boundary
∂Q. In particular the Euclidean distance from O to H is ≥ λd.

Proof. The hyperplane H is given by the equation

1

λ1
X1 +

(
1

λ2
− 1

λ1

)
X2 + · · ·+

(
1

λd
− 1

λd−1

)
Xd = 1.

The linear form α on the left hand side has non-negative coefficients and wd ∈
H. Thus a point whose coordinates are strictly smaller than λd cannot be
contained in H. ¤

3. Passage to cones

In this section we want to relate the bounds for cpol
d and ccone

d . This allows us
to derive Theorem 1.1 from Theorem 1.3.

Proposition 3.1. Let d be a natural number. Then cpol
d is finite if and only if

ccone
d is finite, and, moreover,

(2) ccone
d ≤ cpol

d ≤
√
d(d+ 1)ccone

d .

Proof. Suppose that cpol
d is finite. Then the left inequality is easily obtained by

considering the multiples of the polytope ∆C for a cone C: the cones spanned
by those unimodular simplices in a multiple of ∆C that contain O as a vertex
constitute a unimodular cover of C.
Now suppose that ccone

d is finite. For the right inequality we first triangulate
a polytope P into lattice simplices. Then it is enough to consider a lattice
d-simplex ∆ ⊂ Rd with vertices v0, . . . , vd.
Set c′ = ccone

d . For each i there exists a unimodular cover (Dij) of the corner
cone Ci of ∆ with respect to the vertex vi such that c′∆− c′vi contains ∆Dij

for all j. Thus the simplices ∆Dij + c′vi cover the corner of c′∆ at c′vi, that
is, their union contains a neighborhood of c′vi in c′∆.
We replace ∆ by c′∆ and can assume that each corner of ∆ has a cover by
unimodular simplices. It remains to show that the multiples c′′∆ are unimod-
ularly covered for every number c′′ ≥

√
d(d + 1) for which c′′P is an integral

polytope.
Let

ω =
1

d+ 1
(v0 + · · ·+ vd)

be the barycenter of ∆. We define the subsimplex ∆i ⊂ ∆ as follows: ∆i is
the homothetic image of ∆ with respect to the center vi so that ω lies on the
facet of ∆i opposite to vi. In dimension 2 this is illustrated by Figure 1. The
factor of the homothety that transforms ∆ into ∆i is d/(d+ 1). In particular,
the simplices ∆i are pairwise congruent. It is also clear that

(3)

d⋃

i=0

∆i = ∆.
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v0

v2

v1

∆0

∆
C0

ω

Figure 1.

The construction of ω and the subsimplices ∆i commutes with taking multiples
of ∆. It is therefore enough to show that c′′∆i ⊂ UC(c′′∆) for all i. In order
to simplify the use of dilatations we move vi to O by a parallel translation.
In the case in which vi = O the simplices c′′∆ and c′′∆i are the unions of their
intersections with the cones Dij . This observation reduces the critical inclusion
c′′∆i ⊂ c′′∆ to

c′′(∆i ∩Dij) ⊂ c′′(∆ ∩Dij)

for all j. But now we are in the situation of Lemma 2.2, with the unimodular
simplex ∆Dij in the role of the ∆ of 2.2 and ∆ ∩ Dij in that of ∆′. For

ε = 1/(d+ 1) we have c′′ ≥
√
d/ε and so

c′′(∆i ∩Dij) = c′′
d

d+ 1
(∆ ∩Dij) = c′′(1− ε)(∆ ∩Dij) ⊂ UC(∆ ∩Dij),

as desired. ¤

At this point we can deduce Theorem 1.1 from Theorem 1.3. In fact, using the
bound for ccone

d given in Theorem 1.3 we obtain

cpol
d ≤

√
d(d+ 1)ccone

d

≤
√
d(d+ 1)

⌈√
d− 1

⌉
(d− 1)

d(d+ 1)

2

(
3

2

)⌈√d−1
⌉

(d−1)−2

≤ O
(
d5
)(3

2

)⌈√d−1
⌉

(d−1)

,

as desired. (The left inequality in (2) has only been stated for completeness; it
will not be used later on.)

4. Bounding toric resolutions

Let C be a simplicial rational d-cone. The following lemma gives an upper
bound for the number of steps in the standard procedure to equivariantly re-
solve the toric singularity Spec(k[Zd ∩C]) (see [F, Section 2.6] and [O, Section
1.5] for the background). It depends on d and the multiplicity of ∆C . Exponen-
tial factors enter our estimates only at this place. Therefore any improvement
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of the toric resolution bound would critically affect the order of magnitude of

the estimates of cpol
d and ccone

d .

Theorem 4.1. Every rational simplicial d-cone C ⊂ Rd, d ≥ 3, admits a
unimodular triangulation C = D1 ∪ · · · ∪DT such that

Hilb(Dt) ⊂
(
d

2

(
3

2

)µ(∆C)−2)
∆C , t ∈ [1, T ].

Proof. We use the sequence hk, k ≥ −(d−2), of real numbers defined recursively
as follows:

hk = 1, k ≤ 1, h2 =
d

2
, hk =

1

2
(hk−1 + · · ·+ hk−d), k ≥ 3.

One sees easily that this sequence is increasing, and that

hk =
1

2
hk−1 +

1

2
(hk−2 + · · ·+ hk−d−1)− 1

2
hk−d−1 =

3

2
hk−1 −

1

2
hk−d−1

≤ d

2

(
3

2

)k−2

for all k ≥ 2.
Let v1, . . . , vd be the extreme integral generators of C and denote by ¤C the
semi-open parallelotope

{
z | z = ξ1v1 + · · ·+ ξdvd, 0 ≤ ξ1, . . . , ξd < 1

}
⊂ Rd.

The cone C is unimodular if and only if

¤C ∩ Zd = {O}.
If C is unimodular then the bound given in the theorem is satisfied (note that
d ≥ 3). Otherwise we choose a non-zero lattice point, say w, from ¤C ,

w = ξi1vi1 + · · ·+ ξikvik , 0 < ξij < 1.

We can assume that w is in (d/2)∆C . If not, then we replace w by

(4) vi1 + · · ·+ vik − w.
The cone C is triangulated into the simplicial d-cones

Cj = R+v1 + · · ·+ R+vij−1 + R+w + R+vij+1 + · · ·+ R+vd, j = 1, . . . , k.

Call these cones the second generation cones, C itself being of first generation.
(The construction of the cones Cj is called stellar subdivision with respect to
w.)
For the second generation cones we have µ(∆Ci) < µ(∆C) because the volumes
of the corresponding parallelotopes are in the same relation. Therefore we are
done if µ(∆C) = 2.
If µ(∆C) ≥ 3, we generate the (k + 1)st generation cones by successively sub-
dividing the kth generation non-unimodular cones. It is clear that we obtain
a triangulation of C if we use each vector produced to subdivide all kth gen-
eration cones to which it belongs. Figure 2 shows a typical situation after 2
generations of subdivision in the cross-section of a 3-cone.
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Figure 2.

If C ′′ is a next generation cone produced from a cone C ′, then µ(∆C′′) <
µ(∆C′), and it is clear that there exists g ≤ µ(∆C) for which all cones of
generation g are unimodular.
We claim that each vector w(k) subdividing a (k− 1)st generation cone C(k−1)

is in
hk ∆C .

For k = 2 this has been shown already. So assume that k ≥ 3. Note that all the
extreme generators u1, . . . , ud of C(k−1) either belong to the original vectors
v1, . . . , vd or were created in different generations. By induction we therefore
have

ui ∈ hti ∆C , t1, . . . , td pairwise different.

Using the trick (4) if necessary, one can achieve that

w(k) ∈ c∆C , c ≤ 1

2
(ht1 + · · ·+ htd).

Since the sequence (hi) is increasing,

c ≤ 1

2
(hk−1 + · · ·+ hk−d) = hk. ¤

Remark 4.2. (a) In dimension d = 2 the algorithm constructs a triangulation
into unimodular cones Dt with Hilb(Dt) ⊂ ∆C .
(b) For d = 3 one has Sebő’s [S1] result Hilb(Dt) ⊂ 2∆C . It needs a rather
tricky argument for the choice of w.

5. Corner covers

Let C be a rational cone and v one of its extreme generators. We say that a
system {Cj}kj=1 of subcones Cj ⊂ C covers the corner of C at v if v ∈ Hilb(Cj)

for all j and the union
⋃k
j=1 Cj contains a neighborhood of v in C.

Lemma 5.1. Suppose that ccone
d−1 <∞, and let C be a simplicial rational d-cone

with extreme generators v1, . . . , vd.

(a) Then there is a system of unimodular subcones C1, . . . , Ck ⊂ C covering
the corner of C at v1 such that Hilb(C1), . . . ,Hilb(Ck) ⊂ (ccone

d−1 +1)∆C .
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(b) Moreover, each element w 6= v1 of a Hilbert basis of Cj, j ∈ [1, k], has
a representation w = ξ1v1 + · · ·+ ξdvd with ξ1 < 1.

Proof. For simplicity of notation we set c = ccone
d−1 . Let C ′ be the cone generated

by wi = vi− v1, i ∈ [2, d], and let V be the vector subspace of Rd generated by
the wi. We consider the linear map π : Rd → V given by π(v1) = 0, π(vi) = wi
for i > 0, and endow V with a lattice structure by setting L = π(Zd). (One
has L = Zd ∩ V if and only if Zd = Zv1 + (Zd ∩ V ).) Note that v1, z2, . . . , zd
with zj ∈ Zd form a Z-basis of Zd if and only if π(z2), . . . , π(zd) are a Z-basis
of L. This holds since Zv1 = Zd ∩ Rv1, and explains the unimodularity of the
cones Cj constructed below.
Note that wi ∈ L for all i. Therefore ∆C′ ⊂ conv(O,w2, . . . , wd). The cone
C ′ has a unimodular covering (with respect to L) by cones C ′j , j ∈ [1, k], with
Hilb(C ′j) ⊂ c∆C′ . We “lift” the vectors x ∈ Hilb(C ′j) to elements x̃ ∈ C as
follows. Let x = α2w2 + · · ·+αdwd (with αi ∈ Q+). Then there exists a unique
integer n ≥ 0 such that

x̃ := nv1 + x = nv1 + α2(v2 − v1) + · · ·+ αd(vd − v1)

= α1v1 + α2v2 + · · ·+ αdvd

with 0 ≤ α1 < 1. (See Figure 3.) If x ∈ c∆C′ ⊂ c · conv(O,w2, . . . , wd), then
x̃ ∈ (c + 1)∆C .

v1

v2

w2 x

x̃

Figure 3.

We now define Cj as the cone generated by v1 and the vectors x̃ where x ∈
Hilb(C ′j). It only remains to show that the Cj cover a neighborhood of v1 in
C. To this end we intersect C with the affine hyperplane H through v1, . . . , vd.
It is enough that a neighborhood of v1 in C ∩H is contained in C1 ∪ · · · ∪ Ck.
For each j ∈ [1, k] the coordinate transformation from the basis w2, . . . , wd of
V to the basis x2, . . . , xd with {x2, . . . , xd} = Hilb(C ′j) defines a linear operator

on Rd−1. Let Mj be its ‖ ‖∞ norm.
Moreover, let Nj be the maximum of the numbers ni, i ∈ [2, d] defined by the
equation x̃i = niv1 + xi as above. Choose ε with

0 < ε ≤ 1

(d− 1)MjNj
, j ∈ [1, k].
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and consider

y = v1 + β2w2 + · · ·+ βdwd, 0 ≤ βi < ε.

Since the C ′j cover C ′, one has β2w2 + · · ·+βdwd ∈ C ′j for some j, and therefore

y = v1 + γ2x2 + · · ·+ γdxd,

where {x2, . . . , xd} = Hilb(C ′j) and 0 ≤ γi ≤Mjε for i ∈ [2, d]. Then

y =

(
1−

d∑

i=2

niγi

)
v1 + γ2x̃2 + · · ·+ γdx̃d

and
d∑

i=2

niγi ≤ (d− 1)NjMjε ≤ 1,

whence
(
1−∑d

i=2 niγi
)
≥ 0 and y ∈ Cj , as desired. ¤

6. The bound for cones

Before we embark on the proof of Theorem 1.3, we single out a technical step.
Let {v1, . . . , vd} ⊂ Rd be a linearly independent subset. Consider the hyper-
plane

H = Aff(O, v1 + (d− 1)v2, v1 + (d− 1)v3, . . . , v1 + (d− 1)vd) ⊂ Rd

It cuts a simplex δ off the simplex conv(v1, . . . , vd) so that v1 ∈ δ. Let Φ denote
the closure of

R+δ \
((

(1 + R+)v1 + R+e2 + · · ·+ R+vd
)
∪∆

)
⊂ Rd.

where ∆ = conv(O, v1, . . . , vd). See Figure 4 for the case d = 2. The polytope

3v2

3v1

v2

v1

H

Φ

δ

3∆

Figure 4.

Φ′ = − 1

d− 1
v1 +

d

d− 1
Φ
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is the homothetic image of the polytope Φ under the dilatation with factor
d/(d− 1) and center v1. We will need that

(5) Φ′ ⊂ (d+ 1)∆.

The easy proof is left to the reader.

Proof of Theorem 1.3. We want to prove the inequality

(6) ccone
d ≤

⌈√
d− 1

⌉
(d− 1)

d(d+ 1)

2

(
3

2

)⌈√d−1
⌉

(d−1)−2

for all d ≥ 2 by induction on d.
The inequality holds for d = 2 since ccone

2 = 1 (see the remarks preceding
Theorem 1.3 in Section 1), and the right hand side above is 2 for d = 2. By
induction we can assume that (6) has been shown for all dimensions < d. We
set

γ =
⌈√

d− 1
⌉
(d− 1) and κ = γ

d(d+ 1)

2

(
3

2

)γ−2

.

As pointed out in Remark 1.2, we can right away assume that C is empty
simplicial with extreme generators v1, . . . , vd.

Outline. The following arguments are subdivided into four major steps. The
first three of them are very similar to their analogues in the proof of Propo-
sition 3.1. In Step 1 we cover the d-cone C by d + 1 smaller cones each of
which is bounded by the hyperplane that passes through the barycenter of
conv(v1, . . . , vd) and is parallel to the facet of conv(v1, . . . , vd) opposite of vi,
i = 1, . . . , d. We summarize this step in Claim A below.
In Step 2 Lemma 5.1 is applied for the construction of unimodular corner covers.
Claim B states that it is enough to cover the subcones of C ‘in direction’ of the
cones forming the corner cover.
In Step 3 we extend the corner cover far enough into C. Lemma 2.2 allows
us to do this within a suitable multiple of ∆C . The most difficult part of the
proof is to control the size of all vectors involved.
However, Lemma 2.2 is applied to simplices Γ = conv(w1, . . . , we) where
w1, . . . , we span a unimodular cone of dimension e ≤ d. The cones over the uni-
modular simplices covering cΓ have multiplicity dividing c, and possibly equal
to c. Nevertheless we obtain a cover of C by cones with bounded multiplicities.
So we can apply Theorem 4.1 in Step 4 to obtain a unimodular cover.

Step 1. The facet conv(v1, . . . , vd) of ∆C is denoted by Γ0. (We use the letter
Γ for (d−1)-dimensional simplices, and ∆ for d-dimensional ones.) For i ∈ [1, d]
we put

Hi = Aff(O, vi+(d−1)v1, . . . , vi+(d−1)vi−1, vi+(d−1)vi+1, . . . , vi+(d−1)vd)

and

Γi = conv
(
vi,Γ0 ∩Hi

)
.
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Observe that v1 + · · · + vd ∈ Hi. In particular, the hyperplanes Hi, i ∈ [1, d]
contain the barycenter of Γ0, i. e. (1/d)(v1 + · · ·+ vd). In fact, Hi is the vector
subspace of dimension d−1 through the barycenter of Γ0 that is parallel to the

facet of Γ0 opposite to vi. Clearly, we have the representation
⋃d
i=1 Γi = Γ0,

similar to (3) in Section 3. In particular, each of the Γi is homothetic to Γ0

with factor (d− 1)/d.
To prove (6) it is enough to show the following

Claim A. For each index i ∈ [1, d] there exists a system of unimodular cones

Ci1, . . . , Ciki ⊂ C

such that Hilb(Cij) ⊂ κ∆C , j ∈ [1, ki], and Γi ⊂
⋃ki
j=1 Cij .

The step from the original claim to the reduction expressed by Claim A seems
rather small – we have only covered the cross-section Γ0 by the Γi, and state
that it is enough to cover each Γi by unimodular subcones. The essential point
is that these subcones need not be contained in the cone spanned by Γi, but
just in C. This gives us the freedom to start with a corner cover at vi and to
extend it far enough into C, namely beyond Hi. This is made more precise in
the next step.

Step 2. To prove Claim A it is enough to treat the case i = 1. The induction
hypothesis implies ccone

d−1 ≤ κ − 1 because the right hand side of the inequality
(6) is a strictly increasing function of d. Thus Lemma 5.1 provides a system of
unimodular cones C1, . . . , Ck ⊂ C covering the corner of C at v1 such that

(7) Hilb(Cj) \ {v1, . . . , vd} ⊂
(
κ∆C

)
\∆C , j ∈ [1, k].

Here we use the emptiness of ∆C – it guarantees that Hilb(Cj)∩ (∆C \Γ0) = ∅
which is crucial for the inclusion (9) in Step 3.
With a suitable enumeration {vj1, . . . , vjd} = Hilb(Cj), j ∈ [1, k] we have
v11 = v21 = · · · = vk1 = v1 and

(8) 0 ≤ (vjl)v1
< 1, j ∈ [1, k], l ∈ [2, d],

where (−)v1
is the first coordinate of an element of Rd with respect to the basis

v1, . . . , vd of Rd (see Lemma 5.1(b)).
Now we formulate precisely what it means to extend the corner cover beyond
the hyperplane H1. Fix an index j ∈ [1, k] and let D ⊂ Rd denote the simplicial
d-cone determined by the following conditions:

(i) Cj ⊂ D,
(ii) the facets of D contain those facets of Cj that pass through O and v1,

(iii) the remaining facet of D is in H1.

Figure 5 describes the situation in the cross-section Γ0 of C.
By considering all possible values j = 1, . . . , k, it becomes clear that to prove
Claim A it is enough to prove
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D

H1

v1

Γ0

C2

C1

Figure 5.

Claim B. There exists a system of unimodular cones D1, . . . , DT ⊂ C such
that

Hilb(Dt) ⊂ κ∆C , t ∈ [1, T ] and D ⊂
T⋃

t=1

Dt.

Step 3. For simplicity of notation we put ∆ = ∆Cj , H = H1. (Recall that
∆ is of dimension d, spanned by O and the extreme integral generators of Cj .)
The vertices of ∆, different from O and v1 are denoted by w2, . . . , wd in such
a way that there exists i0, 1 ≤ i0 ≤ d, for which

(i) w2, . . . , wi0 ∈ D \ H (‘bad’ vertices, on the same side of H as v1),

(ii) wi0+1, . . . wd ∈ Cj \D (‘good’ vertices, beyond or on H),

neither i0 = 1 nor i0 = d being excluded. (X is the closure of X ⊂ Rd with
respect to the Euclidean topology.) In the situation of Figure 5 the cone C2

has two bad vertices, whereas C1 has one good and one bad vertex. (Of course,
we see only the intersection points of the cross-section Γ0 with the rays from
O through the vertices.)
If all vertices are good, there is nothing to prove since D ⊂ Cj in this case. So
assume that there are bad vertices, i. e. i0 ≥ 2. We now show that the bad
vertices are caught in a compact set whose size with respect to ∆C depends
only on d, and this fact makes the whole proof work.
Consider the (d− 1)-dimensional cone

E = v1 + R+(w2 − v1) + · · ·+ R+(wd − v1).

In other words, E is the (d − 1)-dimensional cone with apex v1 spanned by
the facet conv(v1, w2, . . . , wd) of ∆ opposite to O. It is crucial in the fol-
lowing that the simplex conv(v1, w2, . . . , wd) is unimodular (with respect to
Zd ∩Aff(v1, w2, . . . , wd)), as follows from the unimodularity of Cj .
Due to the inequality (8) the hyperplane H cuts a (d−1)-dimensional (possibly
non-lattice) simplex off the cone E. We denote this simplex by Γ. Figure 6
illustrates the situation by a vertical cross-section of the cone C.
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Cj

H

D \ Cj

E

C \D

∆C

wi

Γ
v1

R+v1

R+v2 + · · ·+ R+vd

Figure 6.

By (7) and (8) we have

Γ ⊂ Φ = R+Γ1 \
(
(v1 + C) ∪∆C

)
.

Let ϑ be the dilatation with center v1 and factor d/(d − 1). Then by (5) we
have the inclusion

(9) ϑ(Γ) ⊂ (d+ 1)∆C .

One should note that this inclusion has two aspects: first it shows that Γ is
not too big with respect to ∆C . Second, it guarantees that there is some ζ > 0
only depending on d, namely ζ = 1/(d−1), such that the dilatation with factor
1 + ζ and center v1 keeps Γ inside C. If ζ depended on C, there would be no
control on the factor c introduced below.
Let Σ1 = conv(v1, w2, . . . , wi0) and Σ2 be the smallest face of Γ that contains
Σ1. These are d′-dimensional simplices, d′ = i0 − 1. Note that Σ2 ⊂ ϑ(Σ2).
We want to apply Lemma 2.2 to the pair

γv1 + (Σ1 − v1) ⊂ γv1 + (Σ2 − v1).

of simplices with the common vertex γv1. The lattice of reference for the
unimodular covering is

L = Lγv1+(Σ1−v1) = γv1 +

i0∑

j=2

Z(wj − v1).

Set

ε =
1

d
and c =

d

d− 1
γ =

⌈√
d− 1

⌉
d.
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Since d′ ≤ d − 1, Lemma 2.2 (after the parallel translation of the common
vertex to O and then back to γv1) and (9) imply

(10) γΣ2 ⊂ UCL
(
γϑ(Σ2)

)
⊂ γ(d+ 1)∆C .

Step 4. Consider the i0-dimensional simplices spanned by O and the unimod-
ular (i0−1)-simplices appearing in (10). Their multiplicities with respect to the
i0-rank lattice ZLΣ1

are all equal to γ, since Σ1, a face of conv(v1, w2, . . . , wd)
is unimodular and, thus, we have unimodular simplices σ on height γ. The
cones R+σ have multiplicity dividing γ. Therefore, by Lemma 4.1 we conclude
that the i0-cone R+Σ2 is in the union δ1 ∪ · · · ∪ δT of unimodular (with respect
to the lattice ZLΣ1

) cones such that

Hilb(δ1), . . . ,Hilb(δT ) ⊂
(
d

2

(
3

2

)γ−2)
∆R+Σ2

⊂
(
d

2

(
3

2

)γ−2)
γ(d+ 1)∆C = κ∆C .

In view of the unimodularity of conv(v1, w2, . . . , wd), the subgroup ZLΣ1
is a

direct summand of Zd. It follows that

Dt = δt + R+wi0+1 + · · ·+ R+wd, t ∈ [1, T ],

is the desired system of unimodular cones. ¤
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Abstract. Let X be an anisotropic projective quadric possessing a
Rost projector ρ. We compute the 0-dimensional component of the
total Steenrod operation on the modulo 2 Chow group of the Rost
motive given by the projector ρ. The computation allows to determine
the whole Chow group of the Rost motive and the Chow group of every
excellent quadric (the results announced by Rost). On the other hand,
the computation is being applied to give a simpler proof of Vishik’s
theorem stating that the integer dimX + 1 is a power of 2.

2000 Mathematics Subject Classification: 11E04; 14C25
Keywords and Phrases: quadratic forms, Chow groups and motives,
Steenrod operations

M. Rost noticed that certain smooth projective anisotropic quadric hypersur-
faces are decomposable in the category of Chow motives into a direct sum of
some motives. The (in some sense) smallest direct summands are called the
Rost motives. For example, the motive of a Pfister quadric is a direct sum
of Rost motives and their Tate twists. The Rost projectors split off the Rost
motives as direct summands of quadrics. In the present paper we study Rost
projectors by means of modulo 2 Steenrod operations on the Chow groups
of quadrics. The Steenrod operations in motivic cohomology were defined by
V. Voevodsky. We use results of P. Brosnan who found in [1] an elementary
construction of the Steenrod operations on the Chow groups.
As a consequence of our computations we give a description of the Chow groups
of a Rost motive (Corollary 8.2). This result (which has been announced by
M. Rost in [11]) allows to compute all the Chow groups of every excellent
quadric (see Remark 8.4).
We also give a simpler proof of a theorem of A. Vishik [3, th. 6.1] stating that
if an anisotropic quadric X possesses a Rost projector, then dimX + 1 is a
power of 2 (Theorem 5.1).

1The second author was supported in part by NSF Grant #0098111.
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1. Parity of binomial coefficients

Lemma 1.1. Let i, n be any non-negative integers. The binomial coefficient(
n+i
i

)
is odd if and only if we don’t carry over units while adding n and i in

base 2.

Proof. For any integer a ≥ 0, let s2(a) be the sum of the digits in the base 2

expansion of a. By [9, Lemma 5.4(a)],
(
n+i
i

)
is odd if and only if s2(n + i) =

s2(n) + s2(i). ¤

The following statement is obvious:

Lemma 1.2. For any non-negative integer m, we don’t carry over units while
adding m and m+ 1 in base 2 if and only if m+ 1 is a power of 2. ¤

The following statement will be applied in the proof of Theorem 4.8:

Corollary 1.3. For any non-negative integer m, the binomial coefficient(−m−2
m

)
is odd if and only if m+ 1 is a power of 2.

Proof. By Lemma 1.1, the binomial coefficient
(−m− 2

m

)
= (−1)m

(
2m+ 1

m

)

is odd if and only if we don’t carry over units while adding m and m + 1 in
base 2. It remains to apply Lemma 1.2. ¤

2. Integral and modulo 2 Rost projectors

Let F be a field, X a quasi-projective smooth equidimensional variety over F .
We write CH(X) for the modulo 2 Chow group of X. The usual (integral)
Chow group is denoted by CH(X). We are working mostly with CH(X), but
several times we have to use CH(X) (for example, already the definition of a
modulo 2 Rost correspondence cannot be given on the level of the modulo 2
Chow group).
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Both groups are graded. We use the upper indices for the gradation by codimen-
sion of cycles and we use the lower indices for the gradation by the dimension
of cycles.
For projective X1 and X2, an element ρ ∈ CH(X1 ×X2) (we do not consider
the gradation on CH for the moment) can be viewed as a correspondence from
X1 to X2 ([2, §16.1]). In particular, it gives a homomorphism [2, def. 16.1.2]

ρ∗ : CH(X1)→ CH(X2), ρ∗(α) = pr2∗
(

pr∗1(α) · ρ
)
,

where pr1 and pr2 are the two projections of X1×X2 onto X1 and X2, and can
be composed with another correspondence ρ′ ∈ CH(X2 ×X3) [2, def. 16.1.1].
The same can be said and defined with CH replaced by CH.
Starting from here, we always assume that charF 6= 2. Let ϕ be a non-
degenerate quadratic form over F , and let X be the projective quadric ϕ = 0.
We set n = dimX = dimϕ− 2 and we assume that n ≥ 1.
An element % ∈ CHn(X × X) is called an (integral) Rost correspondence, if
over an algebraic closure F̄ of F one has:

%F̄ = [X̄ × x] + [x× X̄] ∈ CHn(X̄ × X̄)

with X̄ = XF̄ and a rational point x ∈ X̄. A Rost projector is a Rost corre-
spondence which is an idempotent with respect to the composition of corre-
spondences.

Remark 2.1. Assume that the quadric X is isotropic, i.e., contains a rational
closed point x ∈ X. Then [X×x] + [x×X] is a Rost projector. Moreover, this
is the unique Rost projector on X ([7, lemma 4.1]).

Remark 2.2. Let % be a Rost correspondence on X. It follows from the Rost
nilpotence theorem ([12, prop. 1]) that a certain power of % is a Rost projector
(see [7, cor. 3.2]). In particular, a quadric X possesses a Rost projector if and
only if it possesses a Rost correspondence.

A modulo 2 Rost correspondence ρ ∈ CHn(X×X) is a correspondence which can
be represented by an integral Rost correspondence. A modulo 2 Rost projector
is an idempotent modulo 2 Rost correspondence. Clearly, a modulo 2 Rost
correspondence represented by an integral Rost projector is a modulo 2 Rost
projector. Conversely,

Lemma 2.3. A modulo 2 Rost projector is represented by an integral Rost pro-
jector.

Proof. Let ρ be a modulo 2 Rost projector and let % be an integral Rost cor-
respondence representing ρ. The correspondence %F̄ is idempotent, therefore,
by the Rost nilpotence theorem (see [7, th. 3.1]), %r is idempotent for some
r; so, %r is an integral Rost projector. Since ρ is idempotent as well, %r still
represents ρ. ¤

Lemma 2.4. Let % be an integral Rost correspondence and let ρ be a modulo
2 Rost correspondence. Then %∗ is the identity on CH0(X) and on CH0(X);
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also ρ∗ is the identity on CH0(X) and on CH0(X). Moreover, for every i with

0 < i < n, the group %∗ CHi(X) vanishes over F̄ .

Proof. It suffices to prove the statements on %. Since CH0(X) and CH0(X)
inject into CH0(XF̄ ) and CH0(XF̄ ) (see [5, prop. 2.6] or [13] for the statement
on CH0(X)), it suffices to consider the case where the quadric X has a rational
closed point x and % = [X×x]+[x×X]. Since [X×x]∗([X]) = 0, [X×x]∗([x]) =
[x], [x × X]∗([X]) = [X], [x × X]∗([x]) = 0 and since [X] generates CH0(X)
while [x] generates CH0(X), we are done with the statements on CH0(X) and
on CH0(X). Since [X × x]∗([Z]) = 0 = [x×X]∗([Z]) for any closed subvariety
Z ⊂ X of codimension 6= 0, n, we are done with the rest. ¤

3. Steenrod operations

In this section we briefly recall the basic properties of the Steenrod operations
on the modulo 2 Chow groups constructed in [1].
Let X be a smooth quasi-projective equidimensional variety over a field F .
For every i ≥ 0 there are certain homomorphisms Si : CH∗(X) → CH∗+i(X)
called Steenrod operations; their sum (which is in fact finite because S i = 0 for
i > dimX)

S = SX = S0 + S1 + · · · : CH(X)→ CH(X)

is the total Steenrod operation (we omit the ∗ in the notation of the Chow
group to indicate that S is not homogeneous). They have the following basic
properties (see [1] for the proofs): for any smooth quasi-projective F -scheme
X, the total operation S : CH(X)→ CH(X) is a ring homomorphism such that
for every morphism f : Y → X of smooth quasi-projective F -schemes and for
every field extension E/F , the squares

CH(Y )
SY−−−−→ CH(Y )

xf∗ f∗
x

CH(X)
SX−−−−→ CH(X)

and

CH(XE)
SXE−−−−→ CH(XE)

xresE/F resE/F

x

CH(X)
SX−−−−→ CH(X)

are commutative. Moreover, the restriction Si|CHn(X) is 0 for n < i and the

map α 7→ α2 for n = i; finally S0 is the identity.
Also, the total Steenrod operation satisfies the following Riemann-Roch type
formula:

f∗
(
SY (α) · c(−TY )

)
= SX

(
f∗(α)

)
· c(−TX)

(in other words, S modified by c(−T ) this way, commutes with the push-
forwards) for any proper f : Y → X and any α ∈ CH(Y ), where f∗ : CH(Y )→
CH(X) is the push-forward, c is the total Chern class, TX is the tangent bundle
of X, and c(−TX) = c−1(TX) (the expression −TX makes sense if one considers
TX as an element of K0(X)). This formula is proved in [1]. It also follows
from the previously formulated properties of S by the general Riemann-Roch
theorem of Panin [10].
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Lemma 3.1. Assume that X is projective. For any α ∈ CH(X) and for any
ρ ∈ CH(X ×X), one has

SX(ρ∗(α)) = SX×X(ρ)∗
(
SX(α) · c(−TX)

)
,

where TX is the class in K0(X) of the tangent bundle of X.

Proof. Let pr1, pr2 : X ×X → X be the first and the second projections. By
the Riemann-Roch formula applied to the morphism pr 2, one has

SX(ρ∗(α)) = pr2∗

(
SX×X

(
pr∗1(α) · ρ

)
· c(−TX×X)

)
· c(TX) .

By the projection formula for pr 2, this gives

SX(ρ∗(α)) = pr2∗

(
SX×X(pr∗1(α) · ρ) · c

(
− TX×X + pr∗2(TX)

))
.

Since
TX×X = pr∗1(TX) + pr∗2(TX) ∈ K0(X ×X)

and since S (as well as c) commutes with the products and the pull-backs, we
get

pr2∗

(
pr∗1

(
SX(α) · c(−TX)

)
· SX×X(ρ)

)
= SX×X(ρ)∗

(
SX(α) · c(−TX)

)
.

¤

4. Main theorem

In this section, let ϕ be an anisotropic quadratic form over F , and let X be the
projective quadric ϕ = 0 with n = dimX = dimϕ − 2 ≥ 1. We are assuming
that an integral Rost projector (see §2 for the definition) % ∈ CHn(X×X) exists
for our X and we write ρ ∈ CHn(X ×X) for the modulo 2 Rost projector. We
write h for the class in CH1(X) (as well as in CH1(X)) of a hyperplane section
of X.

Proposition 4.1. One has for every i ≥ 0:

S
(
ρ∗(h

i)
)

= S(ρ)∗
(
hi · (1 + h)i−n−2

)
.

Proof. Since h ∈ CH1(X), we have S(h) = S0(h) + S1(h). Since S0 = id while
S1 on CH1(X) is the squaring, S(h) = h+h2 = h(1+h), hence S(hi) = S(h)i =
hi(1 + h)i. To finish the proof it suffices to check that c(TX) = (1 + h)n+2 for
the tangent bundle TX of the quadric X: then the formula of Lemma 3.1 will
give the formula of Proposition 4.1.
Let i : X ↪→ P be the embedding of X into the (n+ 1)-dimensional projective
space P . Let us write H for the class in CH1(P ) of a hyperplane. Note that
h = i∗(H).
The exact sequence of vector X-bundles

0→ TX → i∗(TP )→ i∗(OP (2))→ 0

gives the equality c(TX)·i∗
(
c(OP (2))

)
= i∗

(
c(TP )

)
. Since c(OP (2)) = 1+2H =

1 (we are working with the modulo 2 Chow groups) and c(TP ) = (1 + H)n+2,
we get c(TX) = (1 + h)n+2. ¤
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Lemma 4.2. Let L/F be a field extension such that the quadric XL is isotropic.
Then Si(ρL) = 0 for every i > 0.

Proof. By the uniqueness of a modulo 2 Rost projector on an isotropic quadric
(Remark 2.1) ρL = [X] × [x] + [x] × [X], where x ∈ XL is a rational point.
Since S = S0 = id on CH0(XL) 3 [X] as well as on CHn(XL) 3 [x], we have

S(ρL) = S([X]× [x] + [x]× [X]) = S([X])× S([x])+

S([x])× S([X]) = [X]× [x] + [x]× [X] = ρL = S0(ρL) .

¤
Lemma 4.3. The Witt index of the quadratic form ϕF (X) is 1.

Proof. Let Y ⊂ X be a subquadric of codimension 1. If iW (ϕF (X)) > 1, Y
has a rational point over F (X). Therefore there exists a rational morphism
X → Y . Let α ∈ CHn(X × X) be the correspondence given by the closure
of the graph of this morphism. Let us show that ∆∗(% ◦ α) ∈ CH0(X), where
∆: X → X ×X is the diagonal morphism, is an element of CH0(X) of degree
1 (giving a contradiction with the fact that the quadric X is anisotropic, this
will finish the proof).
Clearly, verifying the assertion on the degree, we may replace F by a field
extension of F . Therefore, we may assume that X has a rational point x. In
this case % = [X×x] + [x×X]. Since [x×X]◦α = 0 (because dimY < dimX)
while [X × x] ◦ α = [X × x], we get ∆∗(% ◦ α) = [x]. ¤
Lemma 4.4. Let X be an anisotropic F -quadric such that the Witt index of the
quadratic form ϕF (X) is 1. Then for every α ∈ CHi(XF (X)), i > 0, the degree

of the 0-cycle class hi · α is even.

Proof. It is sufficient to consider the case i = 1. We have ϕF (X) ' ψ⊥H for an
anisotropic quadratic form ψ over F (X) (where H is a hyperbolic plane). Let
X ′ be the quadric ψ = 0 over F (X). There is an isomorphism [5, §2.2]

f : CH1(XF (X))→ CH0(X ′)

taking hn−1 to the class of a closed point of degree 2. Since the quadric X ′ is
anisotropic, the group CH0(X ′) is generated by the class of a degree 2 closed
point (see [5, prop. 2.6] or [13]); therefore the group CH1(XF (X)) is generated

by hn−1. Since deg(h · hn−1) = 2, it follows that the integer deg(h · α) is even
for every α ∈ CH1(XF (X)). ¤
For the modulo 2 Chow groups we get

Corollary 4.5. Let µ ∈ CHi(X×X) for some 0 < i ≤ n be a correspondence
such that µF (X) = 0. Then µ∗(hi) = 0.

Proof. We replace µ by its representative in CHi(X×X) and we mean by h the
integral class of a hyperplane section of X in the proof (while in the statement
h is the class of a hyperplane section in the modulo 2 Chow group). Since the
degree homomorphism deg : CHn(X) → Z is injective ([5, prop. 2.6] or [13])
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with the image 2Z, it suffices to show that deg(µ∗(hi)) is divisible by 4. Let us
compute this degree. By definition of µ∗, we have µ∗(hi) = pr2∗

(
µ · pr∗1(hi)

)
.

Note that the product µ · pr∗1(hi) is in CH0(X ×X) and the square

CH0(X ×X)
pr2∗−−−−→ CH0(X)

pr1∗

y deg

y

CH0(X)
deg−−−−→ Z

commutes (the two compositions being the degree homomorphism of the group
CH0(X × X)). Therefore the degree of µ∗(hi) coincides with the degree of
pr1∗

(
µ · pr∗1(hi)

)
. By the projection formula for pr1∗ the latter element coin-

cides with the product hi · pr1∗(µ).
We are going to check that the degree of this element is divisible by 4. Since the
degree does not change under extensions of the base field, it suffices to verify
the divisibility relation over F (X). The class pr 1∗(µ)F (X) is divisible by 2 by
assumption, therefore the statement follows from Lemmas 4.3 and 4.4. ¤

Corollary 4.6. Sn−i(ρ)∗(hi) = 0 for every i with 0 < i < n.

Proof. We take µ = Sn−i(ρ). Since i < n, we have µF (X) = 0 by Lemma 4.2.

Since i > 0, we may apply Corollary 4.5 obtaining µ∗(hi) = 0. ¤

Putting together Corollary 4.6 and Proposition 4.1, we get

Corollary 4.7. For every i > 0, one has:

Sn−i
(
ρ∗(h

i)
)

=

(
i− n− 2

n− i

)
· ρ∗(hn) .

Proof. By Proposition 4.1, Sn−i
(
ρ∗(hi)

)
is the n-codimensional component of

S(ρ)∗
(
hi · (1 + h)i−n−2

)
; moreover, according to Corollary 4.6, S(ρ) can be

replaced by S0(ρ) = ρ. ¤

Finally, by Corollary 1.3, computing the binomial coefficient modulo 2, together
with Lemma 2.4, computing ρ∗(hn), we get

Theorem 4.8. Suppose that the anisotropic quadric X of dimension n pos-
sesses a Rost projector. Let ρ be a modulo 2 Rost projector on X and let i be
an integer with 0 < i < n. Then

Sn−i
(
ρ∗(h

i)
)

= hn

in CH0(X) if (and only if) the integer n− i+ 1 is a power of 2. ¤

As the quadric X is anisotropic, CH0(X) is an infinite cyclic group generated
by hn (see [5, prop. 2.6] or [13]); in particular, hn in CH0(X) is not 0. Therefore
we get

Corollary 4.9. For every i such that 0 < i < n and n − i + 1 is a power of
2, the element Sn−i(ρ∗(hi)) (and consequently ρ∗(hi)) is non-zero. ¤
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5. Dimensions of quadrics with Rost projectors

The following Theorem is proved in [3]. The proof given there makes use of
the Steenrod operations in the motivic cohomology constructed by Voevodsky
(since Voevodsky has announced that the operations were constructed in any
characteristic 6= 2 only quite recently, the assumption charF = 0 was made in
[3]). Here we give an elementary proof.

Theorem 5.1 ([3, th. 6.1]). If X is an anisotropic smooth projective quadric
possessing a Rost projector, then dimX + 1 is a power of 2.

Proof. Let us assume that this is not the case. Let r be the largest integer such
that n > 2r−1 where n = dimX. Then Theorem 4.8 applies to i = n−(2r−1),
stating that Sn−i

(
ρ∗(hi)

)
6= 0. Note that n − i ≥ i. Since the Steenrod

operation Si is trivial on CHj(X) with i > j, it follows that n − i = i and
therefore Sn−i

(
ρ∗(hi)

)
= ρ∗(hi)2. Since the element %∗(hi) (where % is the

integral Rost projector) vanishes over F̄ (Lemma 2.4), its square vanishes over
F̄ as well. The group CH0(X) injects however into CH0(XF̄ ), hence %∗(hi)2 = 0
and therefore Sn−i

(
ρ∗(hi)

)
= 0, giving a contradiction with Corollary 4.9. ¤

Remark 5.2. It turns out that Theorem 5.1 is extremely useful in the theory of
quadratic forms. For example, it is the main ingredient of Vishik’s proof of the
theorem that there is no anisotropic quadratic forms satisfying 2r < dimϕ <
2r + 2r−1 and [ϕ] ∈ Ir(F ) (see [14], [15]).

6. Rost motives

Let Λ be an associative commutative ring with 1. We set ΛCH = Λ⊗ZCH (we
will only need Λ = Z or Λ = Z/2).
We briefly recall the construction of the category of Grothendieck ΛCH-motives
similar to that of [4]. A motive is a triple (X, p, n), where X is a smooth

projective equidimensional F -variety, p ∈ ΛCHdimX(X × X) an idempotent
correspondence, and n an integer. Sometimes the reduced notations are used:
(X,n) for (X, p, n) with p the diagonal class; (X, p) for (X, p, n) with n = 0;
and (X) for (X, 0), the motive of the variety X.
For a motive M = (X, p, n) and an integer m, the m-th twist M(m) of M is
defined as (X, p, n+m).
The set of morphisms is defined as

Hom
(
(X, p, n), (X ′, p′, n′)

)
= p′ ◦ ΛCHdimX′−n+n′(X ×X ′) ◦ p .

In particular, every homogeneous correspondence α ∈ ΛCH(X×X ′) determines
a morphism of every twist of (X, p) to a certain twist of (X ′, p′).
The Chow group ΛCH∗(X, p, n) of a motive (X, p, n) is defined as

ΛCH∗(X, p, n) = p∗ ΛCH∗−n(X) .

It gives an additive functor of the category of ΛCH-motives to the category
of graded abelian groups (namely, the functor Hom(M(∗),−), where M is the
motive of a point).
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For any Λ, there is an evident additive functor of the category of CH-motives to
the category of ΛCH-motives (identical on the motives of varieties). In particu-
lar, every isomorphism of CH-motives automatically produces an isomorphism
of the corresponding ΛCH-motives. This is why bellow we mostly formulate
the results only on the integral motives.

We are coming back to the quadratic forms.

Definition 6.1. Let % be an integral Rost projector on a projective quadric
X. We refer to the motive (X, %) as to an (integral) Rost motive. (While the
CH-motive given by a modulo 2 Rost projector can be called a modulo 2 Rost
motive.) A Rost motive is anisotropic, if the quadric X is so.

Let now π be a Pfister form and let ϕ be a neighbor of π which is minimal, that
is, has dimension dimπ/2 + 1. As noticed by M. Rost (see [7, 5.2] for a proof),
the projective quadric X given by ϕ possesses an integral Rost projector %.

Proposition 6.2. Let ϕ be as above. Let %′ be the Rost projector on the
quadric X ′ given by a minimal neighbor ϕ′ of another Pfister form π′. The
Rost motives (X, %) and (X ′, %′) are isomorphic if and only if the Pfister forms
π and π′ are isomorphic.

Proof. First we assume that (X, %) ' (X ′, %′). Looking at the degrees of 0-
cycles on X and on X ′, we see that ϕ is isotropic if and only if ϕ′ is isotropic,
thus π is isotropic if and only if π′ is isotropic. Therefore, the forms πF (π′) and
π′F (π) are isotropic. Since π and π′ are Pfister forms, it follows that π ' π′.
Conversely, assume that π ' π′. By [12, §3], in order to show that (X, %) '
(X ′, %′), it suffices to construct a morphism of motives (X, %)→ (X ′, %′) which
becomes mutually inverse isomorphism over an algebraic closure F̄ of F . We
will do a little bit more: we construct two morphisms (X, %)À (X ′, %′) which
become mutually inverse isomorphisms over an algebraic closure F̄ of F (in
this case, the initial F -morphisms are isomorphisms, although possibly not
mutually inverse ones, [7, cor. 3.3]).
Since π ' π′, the quadratic forms ϕ′F (ϕ) and ϕF (ϕ′) are isotropic. Therefore

there exist rational morphisms X → X ′ and X ′ → X. The closures of their
graphs give two correspondences α ∈ CH(X ×X ′) and β ∈ CH(X ′ ×X).
Over F̄ we have: %′ ◦ α ◦ % = [X × x′] + a[x×X ′], where x ∈ XF̄ and x′ ∈ X ′

F̄
are closed rational points, while a is an integer (which coincides, in fact, with
the degree of the rational morphism X → X ′). Similarly, %◦β ◦%′ = [X ′×x] +
b[x′ ×X] with some b ∈ Z over F̄ .
We are going to check that the integers a and b are odd. For this we consider
the composition

(% ◦ β ◦ %′) ◦ (%′ ◦ α ◦ %) ∈ CH(X ×X) .

Over F̄ this composition gives [X×x]+ab[x×X]. Consequently, by [6, th. 6.4]
and Lemma 4.3, the integer ab is odd.
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Let us take now

α′ = α− a− 1

2
· [y ×X ′] and β′ = β − b− 1

2
· [y′ ×X]

with some degree 2 closed points y ∈ X and y′ ∈ X ′. Then over F̄

%′ ◦ α′ ◦ % = [X × x′] + [x×X ′] while % ◦ β′ ◦ %′ = [X ′ × x] + [x′ ×X] ,

therefore the two F -morphisms (X, %) À (X ′, %′) given by these α′ and β′

become mutually inverse isomorphisms over F̄ . ¤

Definition 6.3. The motive (X, %) for X and % as in Proposition 6.2 (more
precisely, the isomorphism class of motives) is called the Rost motive of the
Pfister form π and denoted R(π).

Remark 6.4. It is conjectured in [7, conj. 1.6] (with a proof given for 3 and
7-dimensional quadrics) that every anisotropic Rost motive is the Rost motive
of some Pfister form.

7. Motivic decompositions of excellent quadrics

Theorem 7.1 (announced in [11]). Let ϕ be a neighbor of a Pfister form π
and let ϕ′ be the complementary form (that is, ϕ′ is such that the form ϕ⊥ϕ′
is similar to π). Then

(X) '
(m−1⊕
i=0

R(π)(i)
)⊕

(X ′)(m) ,

where m = (dimϕ − dimϕ′)/2, X is the quadric defined by ϕ, and X ′ is the
quadric defined by ϕ′.

Proof. Similar to [12, th. 17] (see also [7, prop. 5.3]). ¤

We recall that a quadratic form ϕ over F is called excellent, if for every field
extension E/F the anisotropic part of the form ϕE is defined over F . An
anisotropic quadratic form is excellent if and only if it is a Pfister neighbor
whose complementary form is excellent as well [8, §7].
Let π0 ⊃ π1 ⊃ · · · ⊃ πr be a strictly decreasing sequence of embedded Pfister
forms. Let ϕ be the quadratic form such that the class [ϕ] of ϕ in the Witt ring
of F is the alternating sum [π0]− [π1]+ · · ·+(−1)r[πr], while the dimension of ϕ
is the alternating sum of the dimensions of the Pfister forms. Clearly, ϕ is excel-
lent. Moreover, every anisotropic excellent quadratic form is similar to a form
obtained this way. Let us require additionally that 2 dimπr < dimπr−1. Then
every anisotropic excellent quadratic form is still similar to a form obtained
this way and, moreover, the Pfister forms π0, . . . , πr are uniquely determined
by the initial excellent quadratic form.
Let X be an excellent quadric, that is, the quadratic form ϕ giving X is excel-
lent. As Theorem 7.1 shows, the motive of X is a direct sum of twisted Rost
motives. More precisely,
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Corollary 7.2 (announced in [11]). Let X be the excellent quadric determined
by Pfister forms π0 ⊃ · · · ⊃ πr. Then

(X) '
(m0−1⊕

i=0

R(π0)(i)
)⊕(m0+m1−1⊕

i=m0

R(π1)(i)
)⊕

. . .

. . .
⊕( m0+···+mr⊕

i=m0+···+mr−1

R(πr)(i)
)

with mj = dimπj/2− dimπj+1 + dimπj+2 − . . . . ¤

Here are three examples of excellent forms which are most important for us:

Example 7.3 (Pfister forms, [12, prop. 19]). Let ϕ = π be a Pfister form.
Then

(X) '
dimπ/2−1⊕

i=0

R(π)(i) .

Example 7.4 (Maximal neighbors, [12, th. 17]). Let ϕ be a maximal neigh-
bor of a Pfister form π (that is, dimϕ = dimπ − 1). Then

(X) '
dimπ/2−2⊕

i=0

R(π)(i)

Example 7.5 (Norm forms, [12, th. 17]). Let ϕ be a norm quadratic form,
that is, ϕ is a minimal neighbor of a Pfister form π containing a 1-codimensional
subform which is similar to a Pfister form π′. Then

(X) ' R(π)
⊕( dimπ′/2−1⊕

i=1

R(π′)(i)
)
.

8. Chow groups of Rost motives

The following theorem computes the Chow groups of the modulo 2 Rost motive
of a Pfister form.

Theorem 8.1 (announced in [11]). Let ρ be the modulo 2 Rost projector on
the projective n-dimensional quadric X given by an anisotropic minimal Pfister
neighbor. Let i be an integer with 0 ≤ i ≤ n. If i+ 1 is a power of 2, then the
Chow group CHi(X, ρ) = ρ∗CHi(X) is cyclic of order 2 generated by ρ∗(hn−i).
Otherwise this group is 0.

Proof. According to Proposition 6.2, we may assume that X is a norm quadric,
that is, X contains a 1-codimensional subquadric Y being a Pfister quadric.
Let r be the integer such that n = dimX = 2r − 1.
We proceed by induction on r. Let Y ′ ⊂ Y be a subquadric of dimension
2r−1 − 2 which is a Pfister quadric. Let X ′ be a norm quadric of dimension
2r−1 − 1 such that Y ′ ⊂ X ′ ⊂ Y . Let ρ′ be a modulo 2 Rost projector on X ′.
By Example 7.5, passing from CH-motives to the category of CH-motives, we
see that the motive of X is the direct sum of the motive (X, ρ) and the motives
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(X ′, ρ′, i) with i = 1, . . . , 2r−1 − 1. Therefore

CH(X) ' ρ∗CH(X)
⊕( 2r−1−1⊕

i=1

ρ′∗CH(X ′)
)

(we do not care about the gradations on the Chow groups).
Also the motive of Y decomposes in the direct sum of the motives (X ′, ρ′, i)
with i = 0, . . . , 2r−1 − 1 (Example 7.3). Therefore

CH(Y ) '
2r−1−1⊕
i=0

ρ′∗CH(X ′) .

It follows that the order of the group CH(Y ) is |ρ′∗ CH(X ′)|2r−1

, while the order

of CH(X) is |ρ′∗ CH(X ′)|2r−1−1 · |ρ∗ CH(X)|.
In the exact sequence

CH(Y )→ CH(X)→ CH(U)→ 0

with U = X \ Y , the Chow group CH(U) of the affine norm quadric U is
computed by M. Rost ([7, th. A.4]): CH(U) = CH0(U) ' Z/2. Therefore, the
orders of these groups satisfy

|CH(X)| ≤ |CH(Y )| · |CH(U)| = 2|CH(Y )| ,
thus |ρ∗ CH(X)| ≤ 2|ρ′∗ CH(X ′)|.
The group ρ′∗ CH(X ′) is known by induction. In particular, the order of this
group is 2r. It follows that the order of ρ∗ CH(X) is at most 2r+1. Corollary 4.9
gives already r+1 non-zero elements of ρ∗CH∗(X) living in different dimensions
(more precisely, ρ∗(hn−2s+1) 6= 0 for s = 1, . . . , r − 1 by Corollary 4.9 and for
s = 0, r by Lemma 2.4) and therefore generating a subgroup of order 2r+1. It
follows that the order of ρ∗ CH(X) is precisely 2r+1 and the non-zero elements
we have found generate the group ρ∗ CH(X). ¤

The integral version of Theorem 8.1 is given by

Corollary 8.2 (announced in [11]). For X as in Theorem 8.1, let % be the
integral Rost projector on X. Then for every i with 0 ≤ i ≤ n, the Chow group
CHi(X, %) = %∗ CHi(X) is a cyclic group generated by %∗(hn−i). Moreover, the
element %∗(hn−i) is

• 0, if i+ 1 is not a power of 2;
• of order 2, if i+ 1 is a power of 2 and i 6∈ {0, n};
• of infinite order, if i ∈ {0, n}.

Proof. The statements on CHn(X) and on CH0(X) are clear. The rest fol-
lows from Theorem 8.1, if we show that 2 · %∗ CHi(X) = 0 for every i with
0 < i < n. Let L/F be a quadratic extension such that XL is isotropic.
Then (%L)∗ CHi(XL) = 0 for such i by [7, cor. 4.2] (cf. Lemma 2.4). Since
the composition of the restriction CHi(X) → CHi(XL) with the transfer
CHi(XL) → CHi(X) coincides with the multiplication by 2, it follows that
2 · %∗CHi(X) = 0. ¤
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Remark 8.3. The result of Corollary 8.2 was announced in [11]. A proof has
never appeared.

Remark 8.4. Clearly, Corollary 8.2 describes the Chow group of the Rost
motive of an anisotropic Pfister form. Since the motive of any anisotropic
excellent quadric is a direct sum of twists of such Rost motives (Corollary
7.2), we have computed the Chow group of an arbitrary anisotropic excellent
projective quadric. Note that the answer depends only on the dimension of the
quadric.
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Abstract. Extending work of Bielawski-Dancer [3] and Konno [14],
we develop a theory of toric hyperkähler varieties, which involves
toric geometry, matroid theory and convex polyhedra. The frame-
work is a detailed study of semi-projective toric varieties, meaning
GIT quotients of affine spaces by torus actions, and specifically, of
Lawrence toric varieties, meaning GIT quotients of even-dimensional
affine spaces by symplectic torus actions. A toric hyperkähler variety
is a complete intersection in a Lawrence toric variety. Both varieties
are non-compact, and they share the same cohomology ring, namely,
the Stanley-Reisner ring of a matroid modulo a linear system of pa-
rameters. Familiar applications of toric geometry to combinatorics,
including the Hard Lefschetz Theorem and the volume polynomials of
Khovanskii-Pukhlikov [11], are extended to the hyperkähler setting.
When the matroid is graphic, our construction gives the toric quiver
varieties, in the sense of Nakajima [17].

1 Introduction

Hyperkähler geometry has emerged as an important new direction in differ-
ential and algebraic geometry, with numerous applications to mathematical
physics and representation theory. Roughly speaking, a hyperkähler manifold
is a Riemannian manifold of dimension 4n, whose holonomy is in the unitary
symplectic group Sp(n) ⊂ SO(4n). The key example is the quaternionic space
Hn ' C2n ' R4n. Our aim is to relate hyperkähler geometry to the combina-
torics of convex polyhedra. We believe that this connection is fruitful for both
subjects. Our objects of study are the toric hyperkähler manifolds of Bielawski
and Dancer [3]. They are obtained from Hn by taking the hyperkähler quo-
tient [10] by an abelian subgroup of Sp(n). Bialewski and Dancer found that
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the geometry and topology of toric hyperkähler manifolds is governed by hy-
perplane arrangements, and Konno [14] gave an explicit presentation of their
cohomology rings. The present paper is self-contained and contains new proofs
for the relevant results of [3] and [14].
We start out in Section 2 with a discussion of semi-projective toric varieties.
A toric variety X is called semi-projective if X has a torus-fixed point and
X is projective over its affinization Spec(H0(X,OX)). We show that semi-
projective toric varieties are exactly the ones which arise as GIT quotients of a
complex vector space by an abelian group. Then we calculate the cohomology
ring of a semi-projective toric orbifold X. It coincides with the cohomology of
the core of X, which is defined as the union of all compact torus orbit closures.
This result and further properties of the core are derived in Section 3.
The lead characters in the present paper are the Lawrence toric varieties,
to be introduced in Section 4 as the GIT quotients of symplectic torus ac-
tions on even-dimensional affine spaces. They can be regarded as the “most
non-compact” among all semi-projective toric varieties. The combinatorics of
Lawrence toric varieties is governed by the Lawrence construction of convex
polytopes [22, §6.6] and its intriguing interplay with matroids and hyperplane
arrangements.
In Section 6 we define toric hyperkähler varieties as subvarieties of Lawrence
toric varieties cut out by certain natural bilinear equations. In the smooth case,
they are shown to be biholomorphic with the toric hyperkähler manifolds of
Bielawski and Dancer, whose differential-geometric construction is reviewed in
Section 5 for the reader’s convenience. Under this identification the core of the
toric hyperkähler variety coincides with the core of the ambient Lawrence toric
variety. We shall prove that these spaces have the same cohomology ring which
has the following description. All terms and symbols appearing in Theorem 1.1
are defined in Sections 4 and 6.

Theorem 1.1 Let A : Zn → Zd be an epimorphism, defining an inclusion
TdR ⊂ TnR of compact tori, and let θ ∈ Zd be generic. Then the following
graded Q-algebras are isomorphic:

1. the cohomology ring of the toric hyperkähler variety Y (A, θ) =
Hn////(θ,0)TdR,

2. the cohomology ring of the Lawrence toric variety X(A±, θ) = C2n//θ TdR,

3. the cohomology ring of the core C(A±, θ), which is the preimage of the
origin under the affinization map of either the Lawrence toric variety or
the toric hyperkähler variety,

4. the quotient ring Q[x1, . . . , xn]/(M∗(A) + Circ(A)), where M∗(A) is the
matroid ideal which is generated by squarefree monomials representing
cocircuits of A, and Circ(A) is the ideal generated by the linear forms
that correspond to elements in the kernel of A.
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If the matrix A is unimodular then X(A±, θ) and Y (A, θ) are smooth and Q
can be replaced by Z.

Here is a simple example where all three spaces are manifolds: take A : Z3 →
Z, (u1, u2, u3) 7→ u1 + u2 + u3 with θ 6= 0. Then C(A±, θ) is the complex
projective plane P2. The Lawrence toric variety X(A±, θ) is the quotient of
C6 = C3 ⊕ C3 modulo the symplectic torus action (x, y) 7→ (t · x, t−1 · y).
Geometrically, X is a rank 3 bundle over P2, visualized as an unbounded 5-
dimensional polyhedron with a bounded 2-face, which is a triangle. The toric
hyperkähler variety Y (A, θ) is embedded into X(A±, θ) as the hypersurface
x1y1 + x2y2 + x3y3 = 0. It is isomorphic to the cotangent bundle of P2. Note
that Y (A, θ) itself is not a toric variety.
For general matrices A, the varieties X(A±, θ) and Y (A, θ) are orbifolds, by
the genericity hypothesis on θ, and they are always non-compact. The core
C(A±, θ) is projective but almost always reducible. Each of its irreducible
components is a projective toric orbifold.
In Section 7 we give a dual presentation, in terms of cogenerators, for the co-
homology ring. These cogenerators are the volume polynomials of Khovanskii-
Pukhlikov [11] of the bounded faces of our unbounded polyhedra. As an ap-
plication we prove the injectivity part of the Hard Lefschetz Theorem for toric
hyperkähler varieties (Theorem 7.4). In light of the following corollary to The-
orem 1.1, this provides new inequalities for the h-numbers of rationally repre-
sentable matroids.

Corollary 1.2 The Betti numbers of the toric hyperkähler variety Y (A, θ)
are the h-numbers (defined in Stanley’s book [18, §III.3]) of the rank n − d
matroid given by the integer matrix A.

The quiver varieties of Nakajima [17] are hyperkähler quotients of Hn by some
subgroup G ⊂ Sp(n) which is a product of unitary groups indexed by a quiver
(i.e. a directed graph). In Section 8 we examine toric quiver varieties which
arise when G is a compact torus. They are the toric hyperkähler manifolds
obtained when A is the differential Zedges → Zvertices of a quiver. Note that
our notion of toric quiver variety is not the same as that of Altmann and Hille
[1]. Theirs are toric and projective: in fact, they are the irreducible components
of our core C(A±, θ).
We close the paper by studying two examples in detail. First in Section 9
we illustrate the main results of this paper for a particular example of a toric
quiver variety, corresponding to the complete bipartite graph K2,3. In the final
Section 10 we examine the ALE spaces of type An. Curiously, these manifolds
are both toric and hyperkähler, and we show that they and their products are
the only toric hyperkähler manifolds which are toric varieties in the usual sense.

Acknowledgment. This paper grew out of a lecture on toric aspects of
Nakajima’s quiver varieties [17] given by the second author in the Fall 2000
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Quiver Varieties seminar at UC Berkeley, organized by the first author. We
are grateful to the participants of this seminar for their contributions. In
particular we thank Mark Haiman, Allen Knutson and Valerio Toledano. We
thank Roger Bielawski for drawing our attention to Konno’s work [14], and
we thank Manoj Chari for explaining the importance of [15] for Betti numbers
of toric quiver varieties. Both authors were supported by the Miller Institute
for Basic Research in Science, in the form of a Miller Research Fellowship
(1999-2002) for the first author and a Miller Professorship (2000-2001) for the
second author. The second author was also supported by the National Science
Foundation (DMS-9970254).

2 Semi-projective toric varieties

Projective toric varieties are associated with rational polytopes, that is,
bounded convex polyhedra with rational vertices. This section describes toric
varieties associated with (typically unbounded) rational polyhedra. The re-
sulting class of semi-projective toric varieties will be seen to equal the GIT-
quotients of affine space Cn modulo a subtorus of TnC.
Let A = [a1, . . . , an] be a d×n-integer matrix whose d×d-minors are relatively
prime. We choose an n × (n−d)-matrix B = [b1, . . . , bn]T which makes the
following sequence exact:

0 −→ Zn−d B−→ Zn A−→ Zd −→ 0. (1)

The choice of B is equivalent to choosing a basis in ker(A). The configura-
tion B := {b1, . . . , bn} in Zn−d is said to be a Gale dual of the given vector
configuration A := {a1, . . . , an} in Zd.
We denote by TC the complex group C∗ and by TR the circle U(1). Their Lie
algebras are denoted by tC and tR respectively. We apply the contravariant
functor Hom( · ,TC) to the short exact sequence (1). This gives a short exact
sequence of abelian groups:

1 ←− Tn−dC
BT←− TnC

AT←− TdC ←− 1. (2)

Thus TdC is embedded as a d-dimensional subtorus of TnC. It acts on the affine
space Cn. We shall construct the quotients of this action in the sense of ge-
ometric invariant theory (= GIT). The ring of polynomial functions on Cn is
graded by the semigroup NA ⊆ Zd:

S = C[x1, . . . , xn] , deg(xi) = ai ∈ NA. (3)

A polynomial in S is homogeneous if and only if it is a TdC-eigenvector. For
θ ∈ NA, let Sθ denote the (typically infinite-dimensional) C-vector space of
homogeneous polynomials of degree θ. Note that Sθ is a module over the
subalgebra S0 of degree zero polynomials in S =

⊕
θ∈NA Sθ. The following

lemma is a standard fact in combinatorial commutative algebra.
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Lemma 2.1 The C-algebra S0 is generated by a finite set of monomials, cor-
responding to the minimal generators of the semigroup Nn ∩ im(B). For any
θ ∈ NA, the graded component Sθ is a finitely generated S0-module, and the
ring S(θ) =

⊕∞
r=0 Srθ is a finitely generated S0-algebra.

The C-algebra S0 coincides with the ring of invariants ST
d
C . The S0-algebra

S(θ) is isomorphic to
⊕∞

r=0 t
rSrθ. We regard it as N-graded by the degree of t.

Definition 2.2 The affine GIT quotient of Cn by the d-torus TdC is the affine
toric variety

X(A, 0) := Cn//0 TdC := Spec (ST
d
C) = Spec (S0) = Spec

(
C[Nn∩im(B)]

)
. (4)

For any θ ∈ NA, the projective GIT quotient of Cn by the d-torus TdC is the
toric variety

X(A, θ) := Cn//θ TdC := Proj (S(θ)) = Proj
∞⊕

r=0

tr · Srθ. (5)

Recall that the isomorphism class of any toric variety is given by a fan in a
lattice. A toric variety is a toric orbifold if its fan is simplicial. We shall describe
the fans of the toric varieties X(A, 0) and X(A, θ) using the notation in Fulton’s
book [8]. We write M for the lattice Zn−d in (1) and N = Hom(M,Z) for its
dual. The torus Tn−dC in (2) is identified with N ⊗ TC. The column vectors
B = {b1, . . . , bn} of the matrix BT form a configuration in N ' Zn−d. We
write pos(B) for the convex polyhedral cone spanned by B in the vector space
NR = N ⊗ R ' Rn−d. Note that the affine toric variety associated with the
cone pos(B) equals X(A, 0).
A triangulation of the configuration B is a simplicial fan Σ whose rays lie in B
and whose support equals pos(B). A T-Cartier divisor on Σ is a continuous
function Ψ : pos(B) → R which is linear on each cone of Σ and takes integer
values on N ∩ pos(B). The triangulation Σ is called regular if there exists a
T-Cartier divisor Ψ which is ample, i.e. the function Ψ : pos(B)→ R is convex
and restricts to a different linear function on each maximal cone of Σ. Two
T-Cartier divisors Ψ1 and Ψ2 are equivalent if Ψ1 − Ψ2 is a linear map on
pos(B), i.e. it is an element of M . A divisor on Σ is an equivalence class of
T-Cartier divisors on Σ. Since Ψ1 is ample if and only if Ψ2 is ample, ampleness
is well-defined for divisors [Ψ]. Finally, we define a polarized triangulation of B
to be a pair consisting of a triangulation Σ of B and an ample divisor [Ψ].

The cokernel of M
B−→ Zn is identified with Zd in (1) and we call it the Picard

group. Hence A = {a1, . . . , an} is a vector configuration in the Picard group.
The chamber complex Γ(A) of A is defined to be the coarsest fan with support
pos(A) that refines all triangulations of A. Experts in toric geometry will note
that Γ(A) equals the secondary fan of B as in [7]. We say that θ ∈ NA is
generic if it lies in an open chamber of Γ(A). Thus θ ∈ NA is generic if it is
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not in any lower-dimensional cone pos{ai1 , . . . , aid−1
} spanned by columns of

A. The chamber complex Γ(A) parameterizes the different combinatorial types
of the convex polyhedra

Pθ =
{
u ∈ Rn : Au = θ, u ≥ 0

}

as θ ranges over NA. In particular, θ is generic if and only if Pθ is (n − d)-
dimensional and each of its vertices has exactly d non-zero coordinates (i.e. Pθ
is simple). A vector θ in NA is called an integral degree if every vertex of the
polyhedron Pθ is a lattice point in Zn.

Proposition 2.3 There is a one-to-one correspondence between generic inte-
gral degrees θ in NA and polarized triangulations

(
Σ, [Ψ]

)
of B. When forgetting

the polarization this correspondence gives a bijection between open chambers of
Γ(A) and regular triangulations Σ of B.

Proof: Given a generic integral degree θ, we construct the corresponding
polarized triangulation

(
Σ, [Ψ]

)
. First choose any ψ ∈ Zn such that Aψ = −θ.

Then consider the polyhedron

Qψ :=
{
v ∈MR : Bv ≥ ψ

}
.

The map v 7→ Bv − ψ is an affine-linear isomorphism from Qψ onto Pθ
which identifies the set of lattice points Qψ ∩ M with the set of lattice points
Pθ ∩ Zn. The set of linear functionals which are bounded below on Qψ is
precisely the cone pos(B) ⊂ N . Finally, define the function

Ψ : pos(B)→ R , w 7→ min {w · v : v ∈ Qψ }.

This is the support function of Qψ, which is piecewise-linear, convex and con-
tinuous. It takes integer values on N ∩pos(B) because each vertex of Qψ lies in
M . Since Qψ is a simple polyhedron, its normal fan is a regular triangulation
Σθ of B, and Ψ restricts to a different linear function on each maximal face of
Σθ. Hence

(
Σθ, [Ψ]

)
is a polarized triangulation of B.

Conversely, if we are given a polarized triangulation
(
Σ, [Ψ]

)
of B, then we

define ψ := (Ψ(b1), . . . ,Ψ(bn)) ∈ Zn, and θ = −Aψ is the corresponding
generic integral degree in NA. ¤

Theorem 2.4 Let θ ∈ NA be a generic integral degree. Then X(A, θ) is an
orbifold and equals the toric variety X(Σθ), where Σθ is the regular triangula-
tion of B given by θ as in Proposition 2.3.

Proof: First note that the multigraded polynomial ring S is the homogeneous
coordinate ring in the sense of Cox [6] of the toric variety X(Σθ). Specifically,
our sequence (1) is precisely the second row in (1) on page 19 of [6]. The
irrelevant ideal BΣθ of X(Σθ) equals the radical of the ideal generated by
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⊕∞
r=1 Srθ. Since Σθ is a simplicial fan, by [6, Theorem 2.1], X(Σθ) is the

geometric quotient of Cn\V(BΣθ ) modulo TdC. The variety V(BΣθ ) consists of
the points in Cn which are not semi-stable with respect to the TdC-action. By
standard results in Geometric Invariant Theory, the geometric quotient of the
semi-stable locus in Cn modulo TdC coincides with X(A, θ) = Proj (S(θ)) =

Cn//θ TdC. Therefore X(A, θ) is isomorphic to X(Σθ). ¤

Corollary 2.5 The distinct GIT quotients X(A, θ) = Cn//θ TdC which are
toric orbifolds are in bijection with the open chambers in Γ(A), and hence with
the regular triangulations of B.

Recall that for every scheme X there is a canonical morphism

πX : X 7→ X0 (6)

to the affine scheme X0 = Spec(H0(X,OX)) of regular functions on X. We
call a toric variety X semi-projective if X has at least one torus-fixed point and
the morphism πX is projective.

Theorem 2.6 The following three classes of toric varieties coincide:

1. semi-projective toric orbifolds,

2. the GIT-quotients X(A, θ) constructed in (5) where θ ∈ NA is a generic
integral degree,

3. toric varieties X(Σ) where Σ is a regular triangulation of a set B which
spans the lattice N .

Proof: The equivalence of the classes 2 and 3 follows from Theorem 2.4.
Let X(Σ) be a toric variety in class 3. Since B spans the lattice, the fan Σ
has a full-dimensional cone, and hence X(Σ) has a torus-fixed point. Since
Σ is simplicial, X(Σ) is an orbifold. The morphism πX can be described as
follows. The ring of global sections H0(X(Σ),OX(Σ)) is the semigroup algebra
of the semigroup in M consisting of all linear functionals on N which are non-
negative on the support |Σ| of Σ. Its spectrum is the affine toric variety whose
cone is |Σ|. The triangulation Σ supports an ample T-Cartier divisor Ψ. The
morphism πX is projective since it is induced by Ψ. Hence X(Σ) is in class 1.
Finally, let X be any semi-projective toric orbifold. It is represented by a fan
Σ in a lattice N . The fan Σ is simplicial since X is an orbifold, and |Σ| spans
NR since X has at least one fixed point. Since the morphism πX is projective,
the fan Σ is a regular triangulation of a subset B′ of |Σ| which includes the rays
of Σ. The set B′ need not span the lattice N . We choose any superset B of B′
which is contained in pos(B′) = |Σ| and which spans the lattice N . Then Σ
can also be regarded as a regular triangulation of B, and we conclude that X
is in class 3. ¤
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Remark. 1. The passage from B′ to B in the last step means that any GIT
quotient of Cn′ modulo any abelian subgroup of Tn′C can be rewritten as a
GIT quotient of some bigger affine space Cn modulo a subtorus of TnC. This
construction applies in particular when the given abelian group is finite, in
which case the initial subset B′ of N is linearly independent.
2. Our proof can be extended to show the following: if X is any toric variety
where the morphism πX is projective then X is the product of a semi-projective
toric variety and a torus.
3. The affinization map (6) for X(A, θ) is the canonical map to X(A, 0).

A triangulation Σ of a subset B of N ' Zn−d is called unimodular if every
maximal cone of Σ is spanned by a basis of N . This property holds if and only
if X(Σ) is a toric manifold (= smooth toric variety). We say that a vector
θ in NA is a smooth degree if C−1 · θ ≥ 0 implies det(C) = ±1 for every
non-singular d× d-submatrix C of A. Equivalently, the edges at any vertex of
the polyhedron Pθ generate kerZA ∼= Zn−d. From Theorem 2.6 we conclude:

Corollary 2.7 The following three classes of smooth toric varieties coincide:

1. semi-projective toric manifolds,

2. the GIT-quotients X(A, θ) constructed in (5) where θ ∈ NA is a generic
smooth degree,

3. toric varieties X(Σ) where Σ is a regular unimodular triangulation of a
spanning set B ⊂ N .

Definition 2.8 The matrix A is called unimodular if the following equivalent
conditions hold:

• all non-zero d× d-minors of A have the same absolute value,

• all (n−d)× (n−d)-minors of the matrix B in (1) are −1, 0 or +1,

• every triangulation of B is unimodular,

• every vector θ in NA is an integral degree,

• every vector θ in NA is a smooth degree.

Corollary 2.9 For A unimodular, every GIT quotient X(A, θ) is a semi-
projective toric manifold, and the distinct smooth quotients X(A, θ) are in bi-
jection with the open chambers in Γ(A).

Every affine toric variety has a natural moment map onto a polyhedral cone,
and every projective toric variety has a moment map onto a polytope. These are
described in Section 4.2 of [8]. It is straightforward to extend this description
to semi-projective toric varieties. Suppose that the S0-algebra S(θ) in Lemma
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2.1 is generated by a set of m + 1 monomials in Sθ, possibly after replacing
θ by a multiple in the non-unimodular case. Let PmC be the projective space
whose coordinates are these monomials. Then, by definition of “Proj”, the
toric variety X(A, θ) is embedded as a closed subscheme in the product PmC ×
Spec(S0). We have an action of the (n − d)-torus TnC/TdC on PmC , since Sθ is
an eigenspace of TdC. This gives rise to a moment map µ1 : PmC → Rn−d,
whose image is a convex polytope. Likewise, we have the affine moment map
µ2 : Spec(S0)→ Rn−d whose image is the cone polar to pos(B). This defines
the moment map

µ : X(A, θ) ⊂ PmC × Spec(S0) → Rn−d, (u, v) 7→ µ1(u) + µ2(v). (7)

The image of X(A, θ) under the moment map µ is the polyhedron Pθ ' Qψ,
since the convex hull of its vertices equals the image of µ1 and the cone P0 ' Q0

equals the image of µ2.
Given an arbitrary fan Σ in N , Section 2.3 in [8] describes how a one-parameter
subgroup λv, given by v ∈ N , acts on the toric variety X(Σ). Consider any
point x in X(Σ) and let γ ∈ Σ be the unique cone such that x lies in the orbit
Oγ . The orbit Oγ is fixed pointwise by the one-parameter subgroup λv if and
only if v lies in the R-linear span Rγ of γ. Thus the irreducible components
Fi of the fixed point locus of the λv-action on X(Σ) are the orbit closures
Oσi where σi runs over all cones in Σ which are minimal with respect to the
property v ∈ Rσi.
The closure of Oγ in X(Σ) is the toric variety X(Star(γ)) given by the quotient
fan Star(γ) in N(γ) = N/(N ∩Rγ); see [8, page 52]. From this we can derive
the following lemma.

Lemma 2.10 For v ∈ N and x ∈ Oγ the limit limz→0 λv(z)x exists and lies
in Fi = Oσi if and only if γ ⊆ σi is a face and the image of v in NR/Rγ is in
the relative interior of σi/Rγ.

The set of all faces γ of σi with this property is closed under taking intersections
and hence this set has a unique minimal element. We denote this minimal
element by τi. Thus if we denote

Uvi =
{
x ∈ X(Σ) : lim

z→0
λv(z)x exists and lies in Fi

}
,

or just Ui for short, then this set decomposes as a union of orbits as follows:

Ui = ∪τi⊆γ⊆σiOγ . (8)

In what follows we further suppose v ∈ |Σ|. Then Lemma 2.10 implies X(Σ) =
∪iUi, which is the Bialynicki-Birula decomposition [2] of the toric variety with
respect to the one-parameter subgroup λv.
We now apply this to our semi-projective toric variety X(A, θ) with fan Σ = Σθ.
The moment map µv for the circle action induced by λv is given by the inner
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product µv(x) = 〈v, µ(x)〉 with µ as in (7). We relabel the fixed components
Fi according to the values of this moment map, so that

µv(Fi) < µv(Fj) implies i < j. (9)

Given this labeling, the distinguished faces τi ⊆ σi have the following important
property:

τi ⊆ σj implies i ≤ j. (10)

This generalizes the property (∗) in [8, Chapter 5.2], and it is equivalent to

Uj is closed in U≤j = ∪i≤jUi. (11)

This means that the Bialynicki-Birula decomposition of X(A, θ) is filtrable in
the sense of [2]. The following is well-known in the projective case.

Proposition 2.11 The integral cohomology of a smooth semi-projective toric
variety X(A, θ) equals

H∗(X(A, θ);Z) ∼= Z[x1, x2, . . . , xn]/(Circ(A) + Iθ),

where Iθ is the Stanley-Reisner ideal of the simplicial fan Σθ, i.e. Iθ is
generated by square-free monomials xi1xi2 · · ·xik corresponding to non-faces
{bi1 , bi2 , . . ., bik} of Σθ, and Circ(A) is the circuit ideal

Circ(A) := 〈
n∑

i=1

λixi | λ ∈ Zn, A · λ = 0 〉.

Proof: Let D1, D2, . . . , Dn denote the divisors corresponding to the rays
b1, b2, . . . , bn in Σθ. The cohomology class of any torus orbit closure Oσ can
be expressed in terms of the Di’s, namely if the rays in σ are bi1 , bi2 , . . . , bik ,
then [Oσ] = [Di1 ][Di2 ] · · · [Dik ]. Following the reasoning in [8, Section 5.2], we
first prove that certain torus orbit closures linearly span H∗(X(A, θ);Z) and
hence the cohomology classes [D1], [D2], . . . , [Dn] generate H∗(X(A, θ);Z) as a
Z-algebra.
We choose v ∈ |Σ| to be generic, so that each σi is (n − d)-dimensional and
each Fi is just a point. Then (8) shows that Ui is isomorphic with the affine
space Cn−ki , where ki = dim(τi).
We set U≤j = ∪i≤jUi and U<j = ∪i<jUi. Note that Uj is closed in U≤j .
Thus writing down the cohomology long exact sequence of the pair (U≤j , U<j),
we can show by induction on j that the cohomology classes of the closures
of the cells Ui generate H∗(X(A, θ);Z) additively. Because the closure of a
cell Ui is the closure of a torus orbit, it follows that the cohomology classes
[D1], [D2], . . . , [Dn] generate H∗(X(A, θ);Z). Thus sending xi 7→ [Di] defines
a surjective ring map Z[x1, . . . , xn] → H∗(X(A, θ);Z), whose kernel is seen
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to contain Circ(A) + Iθ. That this is precisely the kernel follows from the
“algebraic moving lemma” of [8, page 107]. ¤
A similar proof works with Q-coefficients when X(A, θ) is not smooth but just
an orbifold.

Corollary 2.12 The rational cohomology ring of a semi-projective toric orb-
ifold X(A, θ) equals

H∗(X(A, θ);Q) ∼= Q[u1, u2, . . . , un]/(Circ(A) + Iθ).

In light of Corollary 2.12, the Betti numbers of X(A, θ) satisfy b2i = hi(Σθ),
where hi(Σθ) are the h-numbers of the Stanley-Reisner ideal Iθ, cf. [18, Section
III.3]. This observation leads to the following result.

Corollary 2.13 If fi(P
bd
θ ) denotes the number of i-dimensional bounded

faces of Pθ then the Betti numbers of the semi-projective toric orbifold X(A, θ)
are given by the following formula:

b2k = dimQH
2k(X(A, θ);Q) =

n−d∑

i=k

(−1)i−k
(
i
k

)
fi(P

bd
θ ). (12)

Proof: Lemma 2.3 of [19] implies that

n−d∑

i=0

hi(Σθ) · xi =
∑

σ∈Σθ\∂Σθ

(x− 1)n−d−dim(σ), (13)

where ∂Σθ denotes the boundary of Σθ. Hence the right hand sum is over all
interior cones σ of the fan Σθ. These cones are in order-reversing bijection with
the bounded faces of Pθ. Hence (13) is the sum of (x− 1)dim(F ) where F runs
over all bounded faces of Pθ. This proves (12). ¤

3 The core of a toric variety

The proof of Corollary 2.13 shows the importance of interior cones of Σθ. They
are the ones for which the closure of the corresponding torus orbit in X(A, θ)
is compact. This suggests the following

Definition 3.1 The core of a semi-projective toric variety X(A, θ) is
C(A, θ) = ∪σ∈Σθ\∂ΣθOσ. Thus the core C(A, θ) is the union of all compact
torus orbit closures in X(A, θ).

Theorem 3.2 The core of a semi-projective toric orbifold X(A, θ) is the in-
verse image of the origin under the canonical projective morphism X(A, θ) →
X(A, 0) as in (6). It also equals the inverse image of the bounded faces of the
polyhedron Pθ under the moment map (7) from X(A, θ) onto Pθ. In particular,
the core of X(A, θ) is a union of projective toric orbifolds.
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Proof: On the level of fans, the toric morphism X(A, θ) → X(A, 0) corre-
sponds to forgetting the triangulation of the cone |Σ| = pos(B). It follows from
the description of toric morphisms in Section 1.4 of [8] that the inverse image
of the origin is the union of the orbit closures corresponding to interior faces of
Σ. This was our first assertion. Each face of a simple polyhedron is a simple
polyhedron, and each bounded face is a simple polytope. If σ is the interior
cone of Σ dual to a bounded face of Pθ then the corresponding orbit closure is
the projective toric orbifold X(Star(σ)). The core C(A, θ) is the union of these
orbifolds. ¤

We fix a generic vector v ∈ int|Σ|. Then the Fi above are points and lie
in C(A, θ). In what follows we shall study the action of the one-parameter
subgroup λv on the core C(A, θ). We define

Di = U−vi =
{
x ∈ X(A, θ) : lim

z→∞
λv(z)x exists and equals Fi

}
.

Lemma 2.10 implies that this gives a decomposition of the core: C(A, θ) =
∪iDi. The closure Di is a projective toric orbifold, and it is the preimage of a
bounded face of Pθ via the moment map (7). If we now introduce an ordering
as in (9) then the counterpart of (11) is the following:

D≤j = ∪i≤jDi is compact. (14)

This property of the decomposition C(A, θ) = ∪iDi translates into a non-
trivial statement about the convex polyhedron Pθ. Let P bdθ denote the bounded
complex, that is, the polyhedral complex consisting of all bounded faces of Pθ.
Let Pj denote the bounded face of Pθ corresponding to Dj , and let pj denote
the vertex of Pθ corresponding to Fj . Then P≤j = ∪i≤jPi is a subcomplex
of the bounded complex P bdθ , and P≤j\P<j consists precisely of those faces of
Pj which contain pj . This property is called star-collapsibility. It implies that
P<j is a deformation retract of P≤j and in turn that P bdθ is contractible. The
contractibility also follows from [4, Exercise 4.27 (a)]. In summary we have
proven the following result.

Theorem 3.3 The bounded complex P bdθ of Pθ is star-collapsible; in particular,
it is contractible.

This theorem implies that the core of any semi-projective toric variety is con-
nected, since C(A, θ) is the preimage of the bounded complex P bdθ under the
continuous moment map. Moreover, since the cohomology of P bdθ vanishes, the
bounded complex does not contribute to the cohomology of C(A, θ). This fact
is expressed in the following proposition, which will be crucial in Section 7.

Proposition 3.4 Let C(A, θ) be the core of a semi-projective toric orbifold
and consider a class α in H∗(C(A, θ);Q). If α vanishes on every irreducible
component of C(A, θ) then α = 0.
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Proof: Let v ∈ int|Σ|, Fi and Di as above. We prove by induction on j that

if α ∈ H∗(D≤j ;Q) and α |Di = 0 for i ≤ j, then α = 0. (15)

This implies the proposition, because if α vanishes on every irreducible com-
ponent of the core then it vanishes on every irreducible projective subvariety
Di of the core. The statement (15) then implies by induction that α vanishes
on the core.
To prove (15) consider the Mayer-Vietoris sequence of the covering D≤j =
D<j ∪Dj .

. . .→ Hk(D≤j ;Q)
α→ Hk(D<j ;Q)⊕Hk(Dj ;Q)

β→ Hk(D<j ∩Dj ;Q)→ . . .

We show that the map α is injective, which will prove our claim. For this we
show that β is surjective. This follows from the surjectivity of Hk(Dj ;Q) →
Hk(Dj\Dj ;Q), because clearly D<j ∩Dj = Dj\Dj .
To prove this we do Morse theory on the projective toric orbifold Dj . First it
follows from Morse theory that H∗(Dj ;Q)→ H∗(Dj\Fj ;Q) surjects. Moreover
we have that Dj\Dj is the core of the quasi-projective variety Dj\Fj . This
means that Dj\Dj is the set of points x in Dj such that limz→∞ λv(z)x is not
in Fj . Then the proof of Theorem 3.5 shows that H∗(Dj\Fj ;Q) is isomorphic
with H∗(Dj\Dj ;Q). This proves (15) and in turn our Proposition 3.4. ¤
We finish this section with an explicit description of the cohomology ring of
C(A, θ), namely, we identify it with the cohomology of the ambient semi-
projective toric orbifold X(A, θ):

Theorem 3.5 The embedding of the core C(A, θ) in X(A, θ) induces an iso-
morphism on cohomology with integer coefficients.

Proof: Let v ∈ int|Σ|, Fi, Ui and Di as above. We clearly have an inclu-
sion D≤j ⊂ U≤j . We show by induction on j that this inclusion induces an
isomorphism on cohomology. Consider the following commutative diagram:

. . .→ Hk(U≤j , U<j ;Z) → Hk(U≤j ;Z) → Hk(U<j ;Z) → . . .
↓ ↓ ↓

. . .→ Hk(D≤j , D<j ;Z) → Hk(D≤j ;Z) → Hk(D<j ;Z) → . . .
.

The rows are the long exact sequence of the pairs (U≤j , U<j) and (D≤j , D<j)
respectively. The vertical arrows are induced by inclusion. The last vertical
arrow is an isomorphism by induction.
By excision Hk(U≤j , U<j ;Z) ∼= Hk(T (Nj), t0;Z), where Nj is the normal (orbi-
)bundle to Uj and T (Nj) is the Thom space Nj ∪ t0, where t0 is the point
at infinity. Similarly Hk(D≤j , D<j ;Z) ∼= Hk(T (Dj), t0;Z), where T (Dj) =
D≤j/D<j is the one point compactification of Dj , which is homeomorphic
to the Thom space of Nj |Fj , the negative bundle at Fj . Because Fj is a
deformation retract of Uj and because the normal bundle Nj to Uj in U≤j
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restricts to the normal bundle of Fj in Dj , we find that T (Dj) is a deformation
retract of T (Nj). Consequently the first vertical arrow is also an isomorphism.
The Five Lemma now delivers our assertion. ¤

Remark. One can prove more, namely, that C(A, θ) is a deformation retract
of X(A, θ). This follows from Theorem 3.5 and the analogous statement about
the fundamental group, which vanishes for both spaces. Alternatively, one can
use Bott-Morse theory in the spirit of the proof of [16, Theorem 3.2] to get the
homotopy equivalence.

4 Lawrence toric varieties

In this section we examine an important class of toric varieties which are semi-
projective but not projective. We fix an integer d×n-matrix A as in (1), and we
write A± = [A,−A] for the d× 2n-matrix obtained by appending the negative
of A to A. The corresponding vector configuration A± = A∪−A spans Zd as
a semigroup; in symbols, NA± = ZA = Zd. A vector θ is generic with respect
to A± if it does not lie on any hyperplane spanned by a subset of A.

Definition 4.1 We call X(A±, θ) a Lawrence toric variety, for any generic
vector θ ∈ Zd.

Our choice of name comes from the Lawrence construction in polytope theory;
see e.g. Chapter 6 in [22]. The Gale dual of the centrally symmetric configu-
ration A± is denoted Λ(B) and is called the Lawrence lifting of B. It consists
of 2n vectors which span Z2n−d. The cone pos(Λ(B)) is the cone over the
(2n− d− 1)-dimensional Lawrence polytope with Gale transform A±.
Consider the even-dimensional affine space C2n with coordinates
z1, . . . , zn, w1, . . . , wn. We call a torus action on C2n symplectic if the
products z1w1, . . . , znwn are fixed under this action.

Proposition 4.2 The following three classes of toric varieties coincide:

1. Lawrence toric varieties,

2. toric orbifolds which are GIT-quotients of a symplectic torus action on
C2n for some n ∈ N,

3. toric varieties X(Σ) where Σ is the cone over a regular triangulation of
a Lawrence polytope.

Proof: This follows from Theorem 2.6 using the observation that a torus
action on C2n is symplectic if and only if it arises from a matrix of the form
A±. This means the action looks like

zi 7→ tai · zi , wi 7→ t−ai · wi (i = 1, 2, . . . , n)
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Note that a polytope is Lawrence if and only if its Gale transform is centrally
symmetric. ¤
The matrix A± is unimodular if and only if the smaller matrix A is unimodular.
Therefore unimodularity of A implies the smoothness of the Lawrence toric
variety, by Corollary 2.9. An interesting feature of Lawrence toric varieties is
that the converse to this statement also holds:

Proposition 4.3 The Lawrence toric variety X(A±, θ) is smooth if and only
if A is unimodular.

Proof: The chamber complex Γ(A±) is the arrangement of hyperplanes
spanned by subsets of A. The vector θ is assumed to lie in an open cell of
that arrangement. For any column basis C = {ai1 , . . . , aid} of the d×n-matrix
A there exists a unique linear combination

λ1ai1 + λ2ai2 + · · · + λdaid = θ.

Here all the coefficients λj are non-zero rational numbers. We consider the
polynomial ring

Z[x, y] = Z[x1, . . . , xn, y1, . . . , yn].

The 2n variables are used to index the elements of A± and the elements of
Λ(B). We set

σ(C, θ) = {xij : λj > 0 } ∪ { yij : λj < 0 }.

Its complement σ(C, θ) =
{
x1, . . . , xn, y1, . . . , yn

}
\σ(C, θ) corresponds to a

subset of Λ(B) which forms a basis of R2n−d. The triangulation Σθ of the
Lawrence polytope defined by θ is identified with its set of maximal faces. This
set equals

Σθ =
{
σ(C, θ) : C is any column basis of A

}
. (16)

Hence the Lawrence toric variety X(A±, θ) = X(Σθ) is smooth if and only if
every basis in Λ(B) spans the lattice Z2n−d if and only if every column basis
C of A spans Zd. The latter condition is equivalent to saying that A is a
unimodular matrix. ¤

Corollary 4.4 The Stanley-Reisner ideal of the fan Σθ equals

Iθ =
⋂

C

〈σ(C, θ)〉 ⊂ Z[x, y], (17)

i.e. Iθ is the intersection of the monomial prime ideals generated by the sets
σ(C, θ) where C runs over all column bases of A. The irrelevant ideal of the
Lawrence toric variety X(Σθ) equals

Bθ = 〈
∏

σ(C, θ) : C is any column basis of A 〉 ⊂ Z[x, y]. (18)
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We now compute the cohomology of a Lawrence toric variety. For simplicity
of exposition we assume A is unimodular so that X(A±, θ) is smooth. The
orbifold case is analogous. First note

Circ(A±) = 〈x1 + y1, x2 + y2, . . . , xn + xn〉 + Circ(A),

where Circ(A) is generated by all linear forms
∑n
i=1 λixi such that λ =

(λ1, . . . , λn) lies in ker(A) = im(B). From Proposition 2.11, we have

H∗
(
X(A±, θ) = Z[x, y] /

(
〈x1 + y1, x2 + y2, . . . , xn + yn〉 + Circ(A) + Iθ

)
.

Let φ denote the Z-algebra epimorphism which collapses the variables pairwise:

φ : Z[x1, . . . , xn, y1, . . . , yn] → Z[x1, . . . , xn], xi 7→ xi, yi 7→ −xi.

Then we can rewrite the presentation of the cohomology ring as follows:

H∗
(
X(A±, θ);Z

)
= Z[x1, . . . , xn] /

(
Circ(A) + φ(Iθ)

)
.

Clearly, the image of the ideal (17) under φ is the intersection of the ideals

φ
(
〈σ(C, θ)〉

)
= 〈xi : i ∈ C 〉

where C runs over the column bases of A. Note that this ideal is independent
of the choice of θ. It depends only on A. This ideal is called the matroid ideal
of B and it is abbreviated by

M∗(A) =
⋂{
〈xi1 , . . . , xid〉 : {ai1 , . . . , aid} ⊆ A is linearly independent

}

= 〈xi1 · · ·xik : {bi1 , . . . , bik} ⊆ B is linearly dependent 〉
= M(B).

We summarize what we have proven concerning the cohomology of a Lawrence
toric variety.

Theorem 4.5 The integral cohomology ring of a smooth Lawrence toric variety
X(A±, θ) is independent of the choice of the generic vector θ in Zd. It equals

H∗
(
X(A±, θ);Z

)
= Z[x1, . . . , xn]/

(
Circ(A) + M∗(A)

)
. (19)

The same holds for Lawrence toric orbifolds with Z replaced by Q.

Remark. The independence of the cohomology ring on θ is an unusual phe-
nomenon in the GIT-construction. Usually, the topology of the quotient
changes when one crosses a wall. Theorem 4.5 says that this is not the case
for symplectic torus actions. An explanation of this fact is offered through our
Theorem 1.1, as there are no walls in the hyperkähler quotient construction.
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The ring Q[x1, . . . , xn]/M∗(A) is the Stanley-Reisner ring of the matroid com-
plex (of linearly independent subsets) of the (n− d)-dimensional configuration
B. This ring is Cohen-Macaulay, and Circ(A) provides a linear system of
parameters. We write h(B) = (h0, h1, . . . , hn−d) for its h-vector. This is a
well-studied quantity in combinatorics; see e.g. [5] and [18, Section III.3].

Corollary 4.6 The Betti numbers of the Lawrence toric variety X(A±, θ)
are independent of θ, and they coincide with the entries in the h-vector of the
rank n− d matroid given by B:

dimQH
2i(X(A±, θ);Q) = hi(B). for i = 0, 1, . . . , n− d.

Our second result in this section concerns the core of a Lawrence toric variety
of dimension 2n− d. We fix a generic vector θ in Zd. The fan Σθ is the normal
fan of the unbounded polyhedron

Pθ =
{

(u, v) ∈ Rn ⊕ Rn : Au−Av = θ, u, v ≥ 0
}
.

As in the proof of Proposition 2.3, we chose any vector ψ ∈ Zn such that Aψ =
−θ, and we consider the following full-dimensional unbounded polyhedron in
R2n−d:

Qψ =
{

(w, t) ∈ Rn−d ⊕ Rn : t ≥ 0 , Bw + t ≥ ψ
}
.

The map (w, t) 7→ (Bw+t−ψ, t) is an affine-linear isomorphism from Qψ onto
Pθ. We define H(B,ψ) to be the arrangement of the following n hyperplanes
in Rn−d:

{w ∈ Rn−d : bi · w = ψi } (i = 1, 2, . . . , n).

The arrangement H(B,ψ) is regarded as a polyhedral subdivision of Rn−d into
relatively open polyhedra of various dimensions. The collection of all such
polyhedra which are bounded form a subcomplex, called the bounded complex
of H(B,ψ) and denoted by Hbd(B,ψ).

Theorem 4.7 The bounded complex Hbd(B,ψ) of the hyperplane arrangement
H(B,ψ) in Rn−d is isomorphic to the complex of bounded faces of the (2n−d)-
dimensional polyhedron Qψ ' Pθ.

Proof: We define an injective map from Rn−d into the polyhedron Qψ as
follows

w 7→
(
w, t
)
, where ti = max{0, ψi − bi · w}. (20)

This map is linear on each cell of the hyperplane arrangement H(B,ψ), and the
image of each cell is a face of Qψ. In particular, every bounded cell of H(B,ψ)
is mapped to a bounded face of Qψ and each unbounded cell of H(B,ψ) is
mapped to an unbounded face of Qψ. It remains to be shown that every
bounded face of Qψ lies in the image of the map (20).
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Now, the image of (20) is the following subcomplex in the boundary of our
polyhedron:

{ (w, t) ∈ Qψ : ti · (bi · w + ti − ψi) = 0 for i = 1, 2, . . . , n
}

' { (u, v) ∈ Pθ : ui · vi = 0 for i = 1, 2, . . . , n
}

Consider any face F of Pθ which is not in this subcomplex, and let (u, v) be
a point in the relative interior of F . There exists an index i with ui > 0 and
vi > 0. Let ei denote the i-th unit vector in Rn. For every positive real λ,
the vector (u + λei, v + λei) lies in Pθ and has the support as (u, v). Hence
(u+ λei, v + λei) lies in F for all λ ≥ 0. This shows that F is unbounded. ¤
Theorem 4.7 and Corollary 2.13 imply the following enumerative result:

Corollary 4.8 The Betti numbers of the Lawrence toric variety X(A±, θ)
satisfy

dimQH
2i(X(A±, θ);Q) =

n−d∑

i=k

(−1)i−k
(
i
k

)
fi(Hbd(B,ψ)),

where fi(Hbd(B,ψ)) denotes the number of i-dimensional bounded regions in
H(B,ψ).

There are two natural geometric structures on any Lawrence toric variety. First
the canonical bundle of X(A±, θ) is trivial, because the vectors in A± add
to 0. This means that X(A±, θ) is a Calabi-Yau variety. Moreover, since
the symplectic TdC-action preserves the natural Poisson structure on C2n ∼=
Cn⊕(Cn)∗, the GIT quotient X(A±, θ) inherits a natural holomorphic Poisson
structure. The holomorphic symplectic leaves of this Poisson structure are what
we call toric hyperkähler manifolds. The special leaf which contains the core
of X(A±, θ) will be called the toric hyperkähler variety. We present these
definitions in complete detail in the following two sections.

5 Hyperkähler quotients

Our aim is to describe an algebraic approach to the toric hyperkähler manifolds
of Bielawski and Dancer [3]. In this section we sketch the original differential
geometric construction in [3]. This construction is the hyperkähler analogue
to the construction of toric varieties using Kähler quotients. We first briefly
review the latter. Fix the standard Euclidean bilinear form on Cn,

g(z, w) =

n∑

i=1

(re(zi)re(wi) + im(zi)im(wi)) .

The corresponding Kähler form is

ω(z, w) = g(iz, w) =

n∑

i=1

(re(zi)im(wi)− im(zi)re(wi)) .
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Let A be as in (1) and consider the real torus TdR which is the maximal compact
subgroup of TdC. The group TdR acts on Cn preserving the Kähler structure.
This action has the moment map

µR : Cn → (tdR)∗ ∼= Rd , (z1, . . . , zn) 7→ 1

2

n∑

i=1

|zi|2ai. (21)

Fix ξR ∈ Rd. The Kähler quotient X(A, ξR) = Cn//ξRTdR = µ−1
R (ξR)/TdR inher-

its a Kähler structure from Cn at its smooth points. If ξR = θ lies in the lattice
Zd then there is a biholomorphism between the smooth loci in the GIT quotient
X(A, θ) and the Kähler quotient X(A, ξR). Hence if A is unimodular and θ
generic then the complex manifolds X(A, θ) and X(A, ξR) are biholomorphic.
Now we turn to toric hyperkähler manifolds. Let H be the skew field of quater-
nions, the 4-dimensional real vector space with basis 1, i, j, k and associative
algebra structure given by i2 = j2 = k2 = ijk = −1. Left multiplication by
i (resp. j and k) defines complex structures I : H → H, with I2 = −IdH,
(resp. J and K) on H. We now put the flat metric g on H arising from the
standard Euclidean scalar product on H ∼= R4 with 1, i, j, k as an orthonormal
basis. This is called a hyperkähler metric because it is a Kähler metric with
respect to all three complex structures I, J and K. It means that the differ-
ential 2-forms, the so-called Kähler forms, given by ωI(X,Y ) = g(IX, Y ) for
tangent vectors X and Y , and the analogously defined ωJ and ωK are closed.
For the reader’s convenience we write down these Kähler forms in coordinates
(x, y, u, v):

ωI = dx ∧ dy + du ∧ dv,
ωJ = dx ∧ du+ dv ∧ dy,
ωK = dx ∧ dv + dy ∧ du.

A special orthogonal transformation, with respect to this metric, is said to pre-
serve the hyperkähler structure if it commutes with all three complex structures
I, J and K or equivalently if it preserves the Kähler forms ωI , ωJ and ωK . The
group of such transformations, the unitary symplectic group Sp(1), is gener-
ated by multiplication by unit quaternions from the right. A maximal abelian
subgroup TR ∼= U(1) ⊂ Sp(1) is thus specified by a choice of a unit quaternion.
We break the symmetry between I, J and K and choose the maximal torus
generated by multiplication from the right by the unit quaternion i. Thus U(1)
acts on H by sending ξ to ξ exp(φi), for exp(φi) ∈ U(1) ⊂ R⊕Ri ∼= C. It follows
from (21) that the moment map µI : H → R with respect to the symplectic
form ωI is given by

µI(x+ yi+uj+ vk) = µI(x+ yi+ (−ui+ v)k) =
1

2
(x2 + y2−u2− v2). (22)

Similarly we obtain formulas for µJ and µK by writing down the eigenspace
decomposition in the respective complex structures:

µJ(x+ yi+ uj + vk) =
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= µJ

[(
y + u√

2
+
−x− v√

2
j

)
i+ j√

2
+

(
y − u√

2
j +
−x+ v√

2

)
k − 1√

2

]
= yu+ xv,

µK(x+ yi+ uj + vk) =

= µK

[(
y + v√

2
+
−x+ u√

2
k

)
i+ k√

2
+

(
y − v√

2
+
x+ u√

2
k

)
i− k√

2

]
= yv − xu.

We now consider the map µC = µJ + iµK from H to C. It can be thought of
as the holomorphic moment map for the I-holomorphic action of TC ⊃ TR on
H with respect to the I-holomorphic symplectic form ωC = ωJ + iωK . If we
identify H with C ⊕ C by introducing two complex coordinates, z = x + iy ∈
R ⊕ Ri ∼= C and w = v − ui ∈ R ⊕ Ri ∼= C, then the I-holomorphic moment
map µC : H→ C is given algebraically by multiplying complex numbers:

µC(z, w) = µJ (z, w) + iµK(z, w) = yu+ xv + i(yv − xu) = zw. (23)

The discussion in the previous paragraph generalizes in an obvious man-
ner to Hn for n > 1. Indeed, the n-dimensional quaternionic space Hn
has three complex structures I,J and K, given by left multiplication with
i, j, k ∈ H. Putting the flat metric gn = g⊕n on Hn yields a hyperkähler
metric, i.e. the differential 2-forms ωI(X,Y ) = gn(IX, Y ) and similarly ωJ
and ωK are Kähler (meaning closed) forms. The automorphism group of
this hyperkähler structure is the unitary symplectic group Sp(n). We fix the
maximal torus TnR = U(1)n ⊂ Sp(n) given by the following definition. For
λ = (exp(φ1i), exp(φ2i), . . . , exp(φni)) ∈ TnR and (ξ1, ξ2, . . . , ξn) ∈ Hn we set

λ(ξ1, ξ2, . . . , ξn) = (ξ1 exp(φ1i), ξ2 exp(φ2i), . . . , ξn exp(φni)). (24)

As in the n = 1 case above, this fixes an isomorphism Hn ∼= Cn ⊕ Cn where
two complex vectors z, w ∈ Cn ∼= Rn ⊕ iRn represent the quaternionic vector
z + wk ∈ Hn ∼= Rn ⊕ iRn ⊕ jRn ⊕ kRn. Expressing vectors in Hn in these
complex coordinates, the torus action (24) translates into

λ(z, w) = (λz, λ−1w) for λ ∈ TnR and (z, w) ∈ Hn. (25)

The toric hyperkähler manifolds in [3] are constructed by choosing a subtorus
TdR ⊂ TnR and taking the hyperkähler quotient [10] of Hn by TdR. We do this
by choosing integer matrices A and B as in (1) and (2). The subtorus TdR of
TnR acts on Hn by (25) preserving the hyperkähler structure. The hyperkähler
moment map of the action (25) of TdR on Hn is defined by

µ = (µI , µJ , µK) : Hn → (tdR)∗ ⊗ R3,

where µI , µJ and µK are the Kähler moment maps with respect to ωI , ωJ and
ωK respectively. Using the formulas (22) and (23), the components of µ are in
complex coordinates as follows:

µR(z, w) := µI(z, w) =
1

2

n∑

i=1

(|zi|2 − |wi|2) · ai ∈ (tdR)∗, (26)
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µC(z, w) := µJ(z, w) + iµK(z, w) =

n∑

i=1

ziwi · ai ∈ (tdR)∗ ⊗ C ∼= (tdC)∗. (27)

Here ai is the i-th column vector of the matrix A. We can also think of µC
as the moment map for the I-holomorphic action of TdC on Hn with respect to
ωC = ωJ + iωK . Now take

ξ = (ξ1, ξ2, ξ3) ∈ (tdR)∗ ⊗ R3

and introduce ξR = ξ1 ∈ (tdR)∗ and ξC = ξ2 + iξ3 ∈ (tdC)∗ so we can write
ξ = (ξR, ξC) ∈ (tdR)∗ ⊕ (tdC)∗. The hyperkähler quotient of Hn by the action (25)
of the torus TdR at level ξ is defined as

Y (A, ξ) := Hn////ξTdR := µ−1(ξ)/TdR =
(
µ−1
R (ξR) ∩ µ−1

C (ξC)
)
/TdR. (28)

By a theorem of [10], this quotient has a canonical hyperkähler structure on
its smooth locus.
Bielawski and Dancer show in [3] that if ξ ∈ (tdR)∗ ⊗R3 is generic then Y (A, ξ)
is an orbifold, and it is smooth if and only if A is unimodular. Since ξ is
generic outside a set of codimension three in (tdR)∗ ⊗ R3, they can show that
the topology and therefore the cohomology of the toric hyperkähler manifold is
independent on ξ. In what follows we consider vectors ξ for which ξC = 0 in Cd
and ξR = θ ∈ Zd ⊂ Rd ∼= (tdR)∗. The underlying complex manifold in complex
structure I of the hyperkähler manifold Y (A, (θ, 0C)) has a purely algebraic
description as explained in the next section.

6 Algebraic construction of toric hyperkähler varieties

The Zd-graded polynomial ring C[z, w] = C[z1, . . . , zn, w1, . . . , wn], with the
grading given by A± = [A,−A], is the homogeneous coordinate ring of the
Lawrence toric variety X(A±, θ). By a result of Cox [6], closed subschemes
of X(A±, θ) correspond to homogeneous ideals in C[z, w] which are saturated
with respect to the irrelevant ideal Bθ in (18). Let us now consider the ideal

Circ(B) := 〈
n∑

i=1

aijziwi | j = 1, . . . , d 〉 ⊂ C[z, w], (29)

whose generators are the components of the holomorphic moment map µC of
(27). The ideal Circ(B) is clearly homogeneous and it is a complete intersection.
We assume that none of the row vectors of the matrix B is zero. Under this
hypothesis, the ideal Circ(B) is a prime ideal.

Definition 6.1 The toric hyperkähler variety Y (A, θ) is the irreducible sub-
variety of the Lawrence toric variety X(A, θ) defined by the homogeneous ideal
Circ(B) in the coordinate ring C[z, w] of X(A, θ).
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Proposition 6.2 If θ is generic then the toric hyperkähler variety Y (A, θ) is
an orbifold. It is smooth if and only if the matrix A is unimodular.

Proof: It follows from (27) that a point in C2n has a finite stabilizer under
the group TdC if and only if the point is regular for µC of (27), i.e. if the
derivative of µC is surjective there. This implies that, for θ generic, the toric
hyperkähler variety Y (A, θ) is an orbifold because then the variety X(A±, θ)
is an orbifold. For the second statement note that if A is unimodular then
X(A±, θ) is smooth, consequently Y (A, θ) is also smooth. However, if A is not
unimodular then X(A±, θ) has orbifold singularities which lie in the core. Now
the core C(A±, θ) lies entirely in Y (A, θ), by Lemma 6.4 below, thus Y (A, θ)
inherits singular points from X(A±, θ). ¤
We can now prove that our toric hyperkähler varieties are biholomorphic to
the toric hyperkähler manifolds of the previous section.

Theorem 6.3 Let ξR = θ ∈ Zd ⊂ (tdR)∗ ∼= Rd for generic θ. Then the toric
hyperkähler manifold Y (A, (ξR, 0)) with complex structure I is biholomorphic
with the toric hyperkähler variety Y (A, θ).

Proof: Suppose A is unimodular. The general theory of Kähler quotients
(e.g. in [12]) implies that the Lawrence toric variety X(A±, θ) and the corre-
sponding Kähler quotient X(A±, ξR) = µ−1

R (ξR)/TdR are biholomorphic, where
µR is defined in (26) and ξR = θ ∈ Zd ⊂ Rd ∼= (tdR)∗. Now the point is that
µC : Hn → Cd is invariant under the action of TdR and therefore descends to
a map on X(A±, ξR) = µ−1

R (ξR)/TdR and similarly on X(A±, θ) making the
following diagram commutative:

µξC : X(A±, ξR) → Cd
∼= ∼=

µθC : X(A±, θ) → Cd
.

It follows that Y (A, (ξR, 0)) = (µξC)−1(0) and Y (A, θ) = (µθC)−1(0) are biholo-
morphic. The proof is similar when the spaces have orbifold singularities. ¤
Recall the affinization map πX : X(A±, θ) → X(A±, 0) from (6), and the
analogous map πY : Y (A, θ) → Y (A, 0). These fit together in the following
commutative diagram:

Y (A, θ)
πY→ Y (A, 0)

iθ ↓ ↓ i0
X(A±, θ)

πX→ X(A±, 0)
µθC ↓ ↓ µ0

C
Cd ∼= Cd

,

where iθ : Y (A, θ)→ X(A±, θ) denotes the natural embedding in Definition 6.1
by the preimage of µθC at 0 ∈ Cd. From this we deduce the following lemma:

Lemma 6.4 The cores of the Lawrence toric variety and of the toric hy-
perkähler variety coincide, that is, C(A±, θ) = π−1

X (0) = π−1
Y (0).
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Remark. It is shown in [3] that the core of the toric hyperkähler manifold
Y (A, θ) is the preimage of the bounded complex in the hyperplane arrangement
H(B, ψ) by the hyperkähler moment map. We know from Theorem 3.2 that the
core of the Lawrence toric variety equals the preimage of P bdθ under the Kähler
moment map. Thus Theorem 4.7 is a combinatorial analogue of Lemma 6.4.

We need one last ingredient in order to prove the theorem stated in the Intro-
duction.

Lemma 6.5 The embedding of the core C(A±, θ) in Y (A, θ) gives an isomor-
phism in cohomology.

Proof: Consider the TC-action on the Lawrence toric variety X(A±, θ) defined
by the vector v =

∑n
i=1 bi ∈ Zn−d. This action comes from multiplication by

non-zero complex numbers on the vector space C2n. The holomorphic moment
map µC of (27) is homogeneous with respect to multiplication by a non-zero
complex number, and consequently µθC is also homogeneous with respect to
the circle action λv. It follows that this TC-action leaves the toric hyperkähler
variety invariant. Moreover, since v is in the interior of pos(B), all the results
in Section 3 are valid for this TC-action on X(A±, θ). Now the proof of The-
orem 3.5 can be repeated verbatim to show that the cohomology of Y (A, θ)
agrees with the cohomology of the core. ¤
Proof of Theorem 1.1: 1.= 3. is a consequence of Lemma 6.4 and Lemma 6.5.
2.= 3. This is a consequence of Theorem 3.5.
1.= 4. is the content of Theorem 4.5. ¤

Remark. 1. In fact, we could claim more than the isomorphism of cohomology
rings in Theorem 1.1. The remark after Theorem 3.5 implies that the spaces
C(A±, θ) ⊂ Y (A, θ) ⊂ X(A±, θ) are deformation retracts in one another. A
similar result appears in [3, Theorem 6.5].
2. The result 2.=4. in the smooth case was proven by Konno in [14].
3. We deduce from Theorem 1.1, Corollary 4.6 and Corollary 4.8 the following
formulas for Betti numbers. The second formula is due to Bielawski and Dancer
[3, Theorem 6.7].

Corollary 6.6 The Betti numbers of the toric hyperkähler variety Y (A, θ)
agree with:

• the h-numbers of the matroid of B: b2k(Y (A, θ)) = hk(B).

• the following linear combination of the number of bounded regions of the
affine hyperplane arrangement H(B,ψ):

b2k(Y (A, θ)) =

n−d∑

i=k

(−1)i−k
(
i
k

)
fi(Hbd(B,ψ)). (30)
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This corollary shows the importance of the combinatorics of the bounded com-
plex Hbd(B,ψ) in the topology of Y (A, θ) and X(A±, θ). This intriguing con-
nection will be more apparent in the next section. Before we get there we
infer some important properties of the bounded complex from Corollary 9.1
and Theorem E of [21].

Proposition 6.7 The bounded complex Hbd(B,ψ) is pure-dimensional. If ψ
is generic and B is coloop-free then every maximal face of Hbd(B,ψ) is an
(n− d)-dimensional simple polytope.

A coloop of B is a vector bi which lies in every column basis of B. This is
equivalent to ai being zero. Note that if A has a zero column then we can
delete it to get A′, which means that Y (A, θ) = Y (A′, θ)×C2 and similarly for
the Lawrence toric variety. Therefore we will assume in the next section that
none of the columns of A is zero.

7 Cogenerators of the cohomology ring

There are three natural presentations of the cohomology ring of the toric hy-
perkähler variety Y (A, θ) associated with a d× n-matrix A and a generic vec-
tor θ ∈ Zd. In these presentations H∗(Y (A, θ);Q) is expressed as a quo-
tient of the polynomial ring Q[x, y] in 2n variables, as a quotient of the
polynomial ring Q[x] in n variables, or as a quotient of the polynomial ring
Q[ t ] ' Q[x]/Circ(A) in d variables, respectively. In this section we com-
pute systems of cogenerators for H∗(Y (A, θ);Q) relative to each of the three
presentations. As an application we show that the Hard Lefschetz Theorem
holds for toric hyperkähler varieties, and we discuss some implications for the
combinatorial problem of classifying the h-vectors of matroid complexes.
We begin by reviewing the definition of cogenerators of a homogeneous poly-
nomial ideal. Consider the commutative polynomial ring generated by a basis
of derivations on affine m-space:

Q[∂] = Q[∂1, ∂2, . . . , ∂m].

The polynomials in Q[∂] act as linear differential operators with constant co-
efficients on

Q[x] = Q[x1, x2, . . . , xm].

If Γ is any subset of Q[x] then its annihilator Ann(Γ) is the ideal in Q[∂]
consisting of all linear differential operators with constant coefficients which
annihilate all polynomials in Γ. If I is any zero-dimensional homogeneous ideal
in Q[∂] then there exists a finite set Γ of homogeneous polynomials in Q[x]
such that I = Ann(Γ). We say that Γ is a set of cogenerators of I. If Γ is a
singleton, say, Γ = {p}, then I = Ann(Γ) is a Gorenstein ideal. In this case,
the polynomial p = p(x) which cogenerates I is unique up to scaling. More
generally, if all polynomials in Γ are homogeneous of the same degree then
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I = Ann(Γ) is a level ideal. In this case, the Q-vector space spanned by Γ is
unique, and it is desirable for Γ to be a nice basis for this space.
We replace the vector ψ = (ψ1, . . . , ψn) in Theorem 4.7 by an indeterminate
vector x = (x1, . . . , xn) which ranges over a small neighborhood of ψ in Rn.
For x in this neighborhood, the polyhedron Qx remains simple and combina-
torially isomorphic to Qψ, and the hyperplane arrangement H(B, x) remains
isomorphic to H(B,ψ). Let ∆1, . . . ,∆r denote the maximal bounded regions
of H(B, x). These are (n − d)-dimensional simple polytopes, by Proposition
6.7 and our assumption that B is coloop-free. They can be identified with the
maximal bounded faces of the (2n− d)-dimensional polyhedron Qx, by Theo-
rem 4.7. The volume of the polytope ∆i is a homogeneous polynomial in x of
degree n− d denoted

Vi(x) = Vi(x1, . . . , xn) = vol(∆i) (i = 1, 2, . . . , r)

Theorem 7.1 The volume polynomials V1, . . . , Vr form a basis of cogenerators
for the cohomology ring of the Lawrence toric variety X(A±, θ) and of the toric
hyperkähler variety Y (A, θ):

H∗(Y (A, θ);Q) = Q[∂1, ∂2, . . . , ∂n]/Ann
(
{V1, V2, . . . , Vr}

)
. (31)

Proof: Each simple polytope ∆i represents an (n− d)-dimensional projective
toric variety Xi. The core C(A±, θ) is glued from the toric varieties X1, . . . , Xr,
and it has the same cohomology as X(A±, θ) and Y (A, θ) as proved in Theo-
rem 1.1. Hence we get a natural ring epimorphism induced from the inclusion
of each toric variety Xi into the core C(A±, θ):

φi : H∗
(
C(A±, θ);Q

)
→ H∗(Xi;Q). (32)

In terms of coordinates, the map φi is described as follows:

φi : Q[∂1, , . . . , ∂n]/
(
M(B)+Circ(A)

)
→ Q[∂1, , . . . , ∂n]/

(
I∆i

+Circ(A)
)
, (33)

where I∆i
is the Stanley-Reisner ring of the simplicial normal fan of the poly-

tope ∆i. Each facet of ∆i has the form {w ∈ ∆i : bj · w = ψj } for some
j ∈ {1, 2, . . . , n}. The ideal I∆i

is generated by all monomials ∂j1∂j2 · · · ∂js
such that the intersection of the facets {w ∈ ∆i : bjν · w = ψjν }, for
ν = 1, 2, . . . , s, is the empty set. By the genericity hypothesis on ψ, this
will happen if {bj1 , bj2 , . . . , bjs} is linearly dependent, or, equivalently, if
∂j1∂j2 · · · ∂js lies in the matroid ideal M(B). We conclude that M(B) ⊆ I∆i

,
and the map φi in (33) is induced by this inclusion.
Proposition 3.4 implies that

ker(φ1) ∩ ker(φ2) ∩ . . . ∩ ker(φr) = {0}. (34)

Here is an alternative proof for this in the toric hyperkähler case. We first note
that the top-dimensional cohomology of an equidimensional union of projective
varieties equals the direct sum of the pieces:

H2n−2d
(
C(A±, θ);Q

)
' H2n−2d

(
X1;Q

)
⊕ · · · ⊕ H2n−2d

(
Xr;Q

)
, (35)
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and the restriction of the map φi to degree 2n − 2d is the i-th coordinate
projection in this direct sum. In particular, (34) holds in the top degree.
We now use a theorem of Stanley [18, Theorem III.3.4] which states that the
Stanley-Reisner ring of a matroid is level. Using condition (j) in [18, Proposition
III.3.2], this implies that the socle of our cohomology ring H∗

(
C(A±, θ);Q

)

consists precisely of the elements of degree 2n−2d. Suppose that (34) does not
hold, and pick a non-zero element p(∂) of maximal degree in the left hand side.
The cohomological degree of p(∂) is strictly less than 2n− 2d by (35). For any
generator ∂j ofH∗

(
C(A±, θ);Q

)
, the product ∂j ·p(∂) lies in the left hand side of

(34) because φi(∂j ·p(∂)) = φi(∂j) ·φ(p(∂)) = 0. By the maximality hypothesis
in the choice of p(∂), we conclude that ∂j · p(∂) = 0 in H∗

(
C(A±, θ);Q

)
for all

j = 1, 2, . . . , n. Hence p(∂) lies in the socle of H∗
(
C(A±, θ);Q

)
. By Stanley’s

Theorem, this means that p(∂) has cohomological degree 2n − 2d. This is a
contradiction and our claim follows.
The result (34) which we just proved translates into the following ideal-theoretic
statement:

M(B) + Circ(A) =

r⋂

i=1

(
I∆i

+ Circ(A)
)
. (36)

Since Xi is a projective orbifold, the ring H∗(Xi;Q) is a Gorenstein ring. A
result of Khovanskii and Pukhlikov [11] states that its cogenerator is the volume
polynomial, i.e.

I∆i
+ Circ(A) = Ann(Vi) for i = 1, 2, . . . , r.

We conclude that M(B) + Circ(A) = Ann
(
{V1, . . . , Vr}

)
, which proves the

identity (31). ¤

Remark. We note that the above proof of (34) is reversible, i.e. Proposition 3.4
actually implies the levelness result of Stanley [18, Theorem III.3.4] for matroids
representable over Q.

We next rewrite the result of Theorem 7.1 in terms of the other two presen-
tations of our cohomology ring. From the perspective of the Lawrence toric
variety X(A±, θ), it is most natural to work in a polynomial ring in 2n vari-
ables, one for each torus-invariant divisor of X(A±, θ).

Corollary 7.2 The common cohomology ring H∗(X(A±, θ);Q) of the
Lawrence toric variety and the toric hyperkähler variety has the presentation

Q[∂x1
, ∂x2

, . . . , ∂xn , ∂y1
, ∂y2

, . . . , ∂yn ]/Ann
(
V1(x− y), . . . , Vr(x− y)

)
.

Proof: The polynomials Vi(x − y) = Vi(x1 − y1, x2 − y2, . . . , xn − yn)
are annihilated precisely by the annihilators of Vi(x) and by the extra ideal
generators ∂x1

+ ∂y1
, . . . , ∂xn + ∂yn . ¤
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This corollary states that the cogenerators of the Lawrence toric variety are the
volume polynomials of the maximal bounded faces of the associated polyhedron
Qψ = Pθ. The same result holds for any semi-projective toric variety, even if
the maximal bounded faces of its polyhedron have different dimensions. This
can be proved using Proposition 3.4.
The economical presentation of our cohomology ring is as a quotient of a poly-
nomial ring in d variables ∂t1 , . . . , ∂td . The matrix A defines a surjective ho-
momorphism of polynomial rings

α : Q[∂x1
, . . . , ∂xn ] → Q[∂t1 , . . . , ∂td ] , ∂xj 7→

d∑

i=1

aij∂ti ,

and a dual injective homomorphism of polynomial rings

α∗ : Q[t1, . . . , td] → Q[x1, . . . , xn] , ti 7→
n∑

j=1

aijxj .

The kernel of α equals Circ(A) and therefore

H∗
(
Y (A, θ);Q

)
= Q[∂t1 , . . . , ∂td ]/α(M(B)). (37)

We obtain cogenerators for this presentation of our cohomology ring as follows.
Suppose that the indeterminate vector t = (t1, . . . , td) ranges over a small
neighborhood of θ = (θ1, . . . , θd) in Rd. For t in this neighborhood, the poly-
hedron Pt remains simple and combinatorially isomorphic to Pθ. The maximal
bounded faces of Pt can be identified with ∆1, . . . ,∆r as before, but now the
volume of ∆i is a homogeneous polynomial of degree n− d in only d variables:

vi(t) = vi(t1, . . . , td) = vol(∆i) for i = 1, 2, . . . , r.

The polynomial vi(t) is the unique preimage of the polynomial Vi(x) under the
inclusion α∗.

Corollary 7.3 The cohomology of the Lawrence toric variety and the toric
hyperkähler variety equals

H∗
(
Y (A, θ);Q) = Q[∂t1 , . . . , ∂td ]/Ann

(
{v1, . . . , vr}).

Proof: A differential operator f = f(∂x1
, . . . , ∂xn) annihilates α∗(v) for some

v = v(t1, . . . , td) if and only if the operator α(f) annihilates v itself. This is
the Chain Rule of Calculus. Hence

Ann({v1, . . . , vr}) = α
(
Ann({V1, . . . , Vr})

)

= α
(
Circ(A) + M(B)

)

= α(M(B)).

The claim now follows from equation (37). ¤
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Remark. Since the cohomology ring of Y (A, θ) does not depend on θ, we get
the remarkable fact that the vector space generated by the volume polynomials
does not depend on θ either.

We close this section by presenting an application to combinatorics. We use
notation and terminology as in [18, Section III.3]. Let M be any matroid
of rank n − d on n elements which can be represented over the field Q, say,
by a configuration B ⊂ Zn−d as above, and let h(M) = (h0, h1, . . . , hk) be
its h-vector. A longstanding open problem is to characterize the h-vectors of
matroids. For a survey see [5] or [18, Section III.3]. We wish to argue that
toric hyperkähler geometry can make a valuable contribution to this problem.
According to Corollary 6.6 the h-numbers of M are precisely the Betti numbers
of the associated toric hyperkähler variety:

hi(M) = rankH2i
(
Y (A, θ);Q

)
. (38)

As a first step, we prove the injectivity part of the Hard Lefschetz Theo-
rem for toric hyperkähler varieties. The g-vector of the matroid is g(M) =
(g1, g2, . . . , gbn−d2 c

) where gi = hi − hi−1.

Theorem 7.4 The g-vector of a rationally represented coloop-free matroid is a
Macaulay vector, i.e. there exists a graded Q-algebra R = R0⊕R1⊕· · ·⊕Rbn−d2 c
generated by R1 and with gi = dimQ(Ri) for all i.

Proof: Let [D] ∈ H2(Y (A, θ);Q) be the class of an ample divisor. The
restriction D|Xj to any component Xj of the core is an ample divisor on the
projective toric orbifold Xj . Consider the map

L : H2i−2
(
Y (A, θ);Q

)
→ H2i

(
Y (A, θ);Q

)
, (39)

given by multiplication with [D]. We claim that this map is injective for i =
1, . . . , bn−d2 c. To see this, let α ∈ H2i−2(Y (A, θ);Q) be a nonzero cohomology
class. Then according to equation (34), there exists an index j ∈ {1, 2, . . . , r}
such that α|Xj is nonzero. Then the Hard Lefschetz Theorem for the projective
toric orbifold Xj implies that α|Xj · [D|Xj ] is a non-zero class in H2i(Xj ;Q).
Its preimage α · [D] under the map φj is non-zero, and we conclude that the
map (39) is injective for 2i ≤ n − d. Consider the quotient algebra R =
H∗(Y (A, θ);Q)/〈[D]〉. The injectivity result just established implies that

gi = hi − hi−1 = dimQ
(
H2i(Y (A, θ);Q)/〈[D]〉

)
= dimQ(Ri).

This completes the proof of Theorem 7.4. ¤

Remark. After the submission of our paper we learned that Swartz [20] has
given a different proof of Theorem 7.4 for all coloop-free matroids. The expla-
nation of this theorem in a combinatorial context and a comparision of the two
proofs will appear in a forthcoming paper [9].
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8 Toric quiver varieties

In this section we discuss an important class of toric hyperkähler manifolds,
namely, Nakajima’s quiver varieties in the special case when the dimension
vector has all coordinates equal to one. Let Q = (V,E) be a directed graph (a
quiver) with d + 1 vertices V = {v0, v1, . . . , vd} and n edges {eij : (i, j) ∈ E}.
We consider the group of all Z-linear combinations of V whose coefficients sum
to zero. We fix the basis {v0 − v1, . . . , v0 − vd} for this group, which is hence
identified with Zd. We also identify Zn with the group of Z-linear combinations∑
ij λijeij of the set of edges E. The boundary map of the quiver Q is the

following homomorphism of abelian groups

A : Zn → Zd, eij 7→ vi − vj . (40)

Throughout this section we assume that the underlying graph of Q is connected.
This ensures that A is an epimorphism. The kernel of A consists of all Z-linear
combinations of E which represent cycles in Q. We fix an n × (n − d)-matrix
B whose columns form a basis for the cycle lattice ker(A). Thus we are in the
situation of (1). The following result is well-known:

Lemma 8.1 The matrix A representing the boundary map of a quiver Q is
unimodular.

Every edge eij of Q determines one coordinate function zij on Cn and two
coordinate functions zij , wij on Hn. The action of the d-torus on Cn and Hn
given by the matrix A equals

zij 7→ tit
−1
j · zij , wij 7→ t−1

i tj · wij . (41)

We are interested in the various quotients of Cn and Hn by this action. Since
the matrix A represents the quiver Q, we write X(Q, θ) instead of X(A, θ), we
write X(Q±, θ) instead of X(A±, θ), and we write Y (Q, θ) instead of Y (A, θ).
From Corollary 2.9 and Lemma 8.1, we conclude that all of these quotients are
manifolds when the parameter vector θ is generic:

Proposition 8.2 Let θ be a generic vector in the lattice Zd. Then X(Q, θ)
is a smooth projective toric variety of dimension n − d, X(Q±, θ) is a non-
compact smooth toric variety of dimension 2n − d, and Y (Q, θ) is a smooth
toric hyperkähler variety of dimension 2(n− d).

We call Y (Q, θ) a toric quiver variety. These are precisely the quiver varieties of
Nakajima [17] in the case when the dimension vector has all coordinates equal
to one. Altmann and Hille [1] used the term “toric quiver variety” for the
projective toric variety X(Q, θ), which is specified by an oriented quiver. Our
toric quiver variety Y (Q, θ) and its ambient Lawrence toric variety X(Q±, θ)
incoorporate all orientations of the quiver simultaneously. In view of Theo-
rem 3.2, the Altmann-Hille variety X(Q, θ) is an irreducible component of the
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common core of Y (Q, θ) and X(Q±, θ). These manifolds and their core have
the same integral cohomology ring, to be described in terms of quiver data in
Theorem 8.3.
Fix a vector θ ∈ Zd and a subset τ ⊆ E which forms a spanning tree in Q.
Then there exists a unique linear combination with integer coefficients λτij
which represents θ as follows:

θ =
∑

(i,j)∈τ
λτij · (vi − vj).

Note that the vector θ is generic if λτij is non-zero for all spanning trees τ and
all (i, j) ∈ τ .
For every spanning tree τ , we define a subset of the monomials in T = C[zij , wij ]
as follows.

σ(τ, θ) :=
{
zij : (i, j) ∈ τ and λτij > 0

}
∪
{
wij : (i, j) ∈ τ and λτij < 0

}
.

Recall that a cut of the quiver Q is a collection D of edges which traverses
a partition (W,V \W ) of the vertex set V . We regard D as a signed set by
recording the directions of its edges as follows

D− =
{

(i, j) ∈ E : i ∈ V \W and j ∈W
}
,

D+ =
{

(i, j) ∈ E : i ∈W and j ∈ V \W
}
.

We now state our main result regarding toric quiver varieties:

Theorem 8.3 Let θ ∈ Zd be generic. The Lawrence toric variety X(Q±, θ) is
the smooth (2n− d)-dimensional toric variety defined by the fan whose 2n rays

are the columns of Λ(B) =

(
I I
0 BT

)
and whose maximal cones are indexed

by the sets σ(τ, θ), where τ runs over all spanning trees of Q. The toric quiver
variety Y (Q, θ) is the 2(n − d)-dimensional submanifold of X(Q±, θ) defined
by the equations

∑
(i,j)∈D+ zijwij =

∑
(i,j)∈D− zijwij where D runs over all

cuts of Q. The common cohomology ring of these manifolds is the quotient of
Z[∂ij : (i, j) ∈ E] modulo the ideal generated by the linear forms in ∂ · B and
the monomials

∏
(i,j)∈D ∂ij where D runs over all cuts of Q.

A few comments are in place: the variables ∂ij , (i, j) ∈ E, are the coordinates of
the row vector ∂, so the entries of ∂ ·B are a cycle basis for Q. The equations
which cut out the toric quiver variety Y (Q, θ) lie in the Cox homogeneous
coordinate ring of the Lawrence toric manifold X(Q±, θ). A more compact
representation is obtained if we replace “cuts” by “cocircuits”. By definition,
a cocircuit in Q is a cut which is minimal with respect to inclusion. The proof
of Theorem 8.3 follows from our general results for integer matrices A.
Corollary 6.6 shows that the Betti numbers of Y (Q, θ) are the h-numbers of the
matroid of B. This is not the usual graphic matroid of Q but it is the cographic
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matroid associated with Q. Thus the Betti numbers of the toric quiver variety
Y (Q, θ) are the h-numbers of the cographic matroid of Q. The generating
function for the Betti numbers, the h-polynomial of the cographic matroid, is
known in combinatorics as the reliability polynomial of the graph Q; see [5].

Corollary 8.4 The Poincaré polynomial of the toric quiver variety Y (Q, θ)
equals the reliability polynomial of the graph Q, which is the h-polynomial of its
cographic matroid. In particular, the Euler characteristic of Y (Q, θ) coincides
with the number of spanning trees of Q.

Lopez [15] gives an explicit enumerative interpretation of the coefficients of the
reliability polynomial of a graph and hence of the Betti numbers of a toric
quiver variety. In particular, he proves Stanley’s longstanding conjecture on
h-vectors of matroid complexes [18, Conjecture III.3.6] for the special case of
cographic matroids.

9 An example of a toric quiver variety

We shall describe a particular toric quiver variety Y (K2,3, θ) of complex di-
mension four. Consider the quiver in Figure 1, the complete bipartite graph
K2,3 given by d = 4, n = 6 and E = {(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)}.

e e e
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@
@
@
@R
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¡ª
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@

@
@I

0
3

1

2

4

Figure 1: The quiver K2,3

The matrix A representing the boundary map (40) is given in Figure 2. The
six columns of A span the cone over a triangular prism as depicted in Figure
3. A Gale dual of this configuration is given by the six vectors in the plane in
Figure 4. The rows of BT span the cycle lattice of K2,3.
Our manifolds are constructed algebraically from the polynomial rings

S = C[z02, z03, z04, z12, z13, z14]

and

Documenta Mathematica 7 (2002) 495–534



526 Tamás Hausel and Bernd Sturmfels

A =




0 0 0 −1 −1 −1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




Figure 2: The matrix A

u u

u

u

u

u








J
J
J
J
J
JJ







JJ

JJ

JJ

v0 − v2

v0 − v3

v0 − v4

v1 − v2

v1 − v3

v1 − v4

Figure 3: The column vectors of the matrix A

T = S[w02, w03, w04, w12, w13, w14],

where the degrees of the variables are given by the columns of the matrix A±:

degree(zij) = −degree(wij) = vi − vj . (42)

This grading corresponds to the torus action (41) on the polynomial rings S and
T . Fix θ = (θ1, θ2, θ3, θ4) ∈ Z4. It represents the following linear combination
of vertices of K2,3:

(θ1 + θ2 + θ3 + θ4)v0 − θ1v1 − θ2v2 − θ3v3 − θ4v4

The monomials zu02
02 zu03

03 zu04
04 zu12

12 zu13
13 zu14

14 in the graded component Sθ corre-

spond to the nonnegative 2×3-integer matrices

(
u02 u03 u04

u12 u13 u14

)
with column

sums θ2, θ3, θ4 and row sums θ1 + θ2 + θ3 + θ4 and −θ1. For instance, for
θ = (−3, 2, 2, 2) there are precisely seven monomials in Sθ as shown on Figure
6. Taking “Proj” of the algebra generated by these seven monomials we get
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BT =

[
1 0 −1 −1 0 1
0 1 −1 0 −1 1

]

Figure 4: Transpose of the matrix B

b02

b14b03

b12

b04 b13

Figure 5: Rows of the matrix B

Sθ = C
{

z02z03z04z12z13z14,
z2

02z04z
2
13z14,

z2
02z03z13z

2
14,

z02z
2
03z12z

2
14,

z2
03z04z

2
12z14,

z03z
2
04z

2
12z13,

z02z
2
04z12z

2
13

}
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Figure 6: Monomials in multidegree θ = (−3, 2, 2, 2)

a smooth toric surface X(K2,3, θ) in P6. This surface is the blow-up of P2 at
three points.
As θ varies, there are eighteen different types of smooth toric surfaces
X(K2,3, θ). They correspond to the eighteen chambers in the triangular prism,
or, equivalently, to the eighteen complete fans on B. This picture arises in the
Cremona transformation of classical algebraic geometry, where the projective
plane is blown up at three points and then the lines connecting them are blown
down. The eighteen surfaces are the intermediate blow-ups and blow-downs.
We next describe the Lawrence toric varieties X(K±2,3, θ) which are the GIT

quotients of C12 by the action (41). First, the (singular) affine quotient
X(K±2,3, 0) is the spectrum of the algebra

T0 = C
[
z02w02, z03w03, z04w04, z12w12, z13w13, z14w14, z02z13w12w03,

z03z12w13w02, z02z14w12w04, z04z12w14w02, z03z14w13w04, z04z13w14w03

]
.
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This is the affine toric variety whose fan is the cone over the 7-dimensional

Lawrence polytope given by the matrix

(
I I
0 BT

)
, where I is the 6 × 6-unit

matrix. This Lawrence polytope has 160 triangulations, all of which are regular,
so there are 160 different types of smooth Lawrence toric varieties X(K±2,3, θ)
as θ ranges over the generic points in Z4. For instance, for θ = (−3, 2, 2, 2) as
in Figure 6, X(K±2,3, θ) is constructed as follows. The graded component Tθ is
generated as a T0-module by 13 monomials: the seven z-monomials in Sθ and
the six additional monomials:

w02z
2
03z

2
04z

3
12, w03z

2
02z

2
04z

3
13, w04z

2
02z

2
03z

3
14,

w12z
2
13z

2
14z

3
02, w13z

2
12z

2
14z

3
03, w14z

2
12z

2
13z

3
04.

(43)

The 13 monomial generators of Tθ correspond to the 13 lattice points in the
star diagram in Figure 6. The toric variety X(K±2,3, θ) = Proj(⊕n≥0Tnθ) is
characterized by its irrelevant ideal in the Cox homogeneous coordinate ring
T , which is graded by (42). The irrelevant ideal is the radical of the monomial
ideal 〈Tθ〉. It is generated by the 12 square-free monomials obtained by erasing
exponents of the monomials in (43) and Figure 6. The 7-simplices in the
triangulation of the Lawrence polytope are the complements of the supports of
these twelve monomials,
We finally come to the toric quiver variety Y (K2,3, θ), which is smooth and
four-dimensional. It is the complete intersection in the Lawrence toric variety
X(K±2,3, θ) defined by the equations

z02w02 + z03w03 + z04w04 = z02w02 + z12w12 = z03w03 + z13w13 =

= z04w04 + z14w14 = 0.

These equations are valid for all 160 toric quiver varieties Y (K2,3, θ). The cores
of the manifolds vary greatly. For instance, for θ = (−3, 2, 2, 2), the core of
Y (K2,3, θ) consists of six copies of the projective plane P2 which are glued to
the blow-up of P2 at three points. These correspond to the six triangles which
are glued to the edges of the hexagon in Figure 6.
The common cohomology ring of the 8-dimensional Lawrence toric varieties
X(K±2,3, θ) and the 4-dimensional toric quiver varieties Y (K2,3, θ) is indepen-
dent of θ and equals

Z[∂]/〈∂03∂04∂12, ∂02∂04∂13, ∂02∂03∂14, ∂13∂14∂02, ∂12∂14∂03, ∂12∂13∂04, ∂02∂03∂04,

∂12∂13∂14, ∂02∂12, ∂03∂13, ∂04∂14, ∂02 − ∂03 − ∂12 + ∂13, ∂02 − ∂04 − ∂12 + ∂14〉.

From this presentation we can compute the Betti numbers as follows:

H∗(Y (K2,3);Z) = H0(Y (K2,3);Z) ⊕ H2(Y (K2,3);Z) ⊕ H4(Y (K2,3);Z)

= Z1 ⊕ Z4 ⊕ Z7.

The 7-dimensional space of cogenerators is spanned by the areas of the six
triangles in Figure 6, e.g., V{03,04,12}(x) = (x03 + x04 − x12)2, together with

Documenta Mathematica 7 (2002) 495–534



Toric Hyperkähler Varieties 529

the area polynomial of the hexagon

Vhex(x) = 2x03x14 + 2x14x02 + 2x02x13 + 2x13x04 + 2x04x12 + 2x12x03 −
−x2

02 − x2
03 − x2

04 − x2
12 − x2

13 − x2
14.

10 Which toric varieties are hyperkähler ?

Toric hyperkähler varieties are constructed algebraically as complete intersec-
tions in Lawrence toric varieties, but they are generally not toric varieties
themselves. What we mean by this is that there does not exist a subtorus
of the dense torus of X(A±, θ) such that Y (A, θ) is an orbit closure of that
subtorus. The objective of this section is to characterize and study the rare
exceptional cases when Y (A, θ) happens to be a toric variety. We are particu-
larly interested in the case of manifolds, when A is unimodular. The following
is the main result in this section.

Theorem 10.1 A toric manifold is a toric hyperkähler variety if and only if it
is a product of ALE spaces of type An if and only if it is a toric quiver variety
X(Q, θ) where Q is a disjoint union of cycles.

The ALE space of type An is denoted C2//Γn where Γn is the cyclic group of

order n acting on C2 as the matrix group
{( η 0

0 η−1

)
: ηn = 1

}
. The name

“ALE space” indicates the fact that these varieties are the underlying varieties
of Asymptotically Locally Euclidean gravitational instantons, or in other words
4-dimensional hyperkähler manifolds (see [13] for details).
The smooth surface C2//Γn is defined as the unique crepant resolution of the
2-dimensional cyclic quotient singularity

C2/Γn = SpecC[x, y]Γn = SpecC[xn, xy, yn].

Equivalently, we can construct C2//Γn as the smooth toric surface whose fan
Σn consists of the cones R≥0{(1, i − 1), (1, i)} for i = 1, 2, . . . , n and whose
lattice is the standard lattice Z2.
Let us start out by showing that the ALE space C2//Γn is indeed a toric
quiver variety. Let Cn denote the n-cycle. This is the quiver with vertices
V = {0, 1, . . . , n− 1} and edges

E =
{

(0, 1), (1, 2), (2, 3), . . . , (n−2, n− 1), (n− 1, 0)
}
.

We prove the following well-know result to illustrate our constructions.

Lemma 10.2 The affine quiver variety Y (Cn, 0) is isomorphic to C2/Γn and
for any generic vector θ ∈ Zn−1, the smooth quiver variety Y (Cn, θ) is isomor-
phic to the ALE space C2//Γn.
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Proof: The boundary map of the n-cycle Cn has the format Zn → Zn−1 and
looks like

A =




1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · 1 −1



.

and its Gale dual is the 1× n-matrix with all entries equal to one:

BT = ( 1 1 1 · · · 1 ) . (44)

The torus Tn−1
C acts via A± on the polynomial ring T = C [ zi,i+1, wi,i+1 :

i = 0, . . . , n − 1 ]. The affine Lawrence toric variety X(C±n , 0) = C2n//0Tn−1
C

is the spectrum of the invariant ring

T0 = C
[
z01w01 , . . . , zn−1,0wn−1,0 , z01z12 · · · zn−1,0 , w01w12 · · ·wn−1,0

]
.

The common defining ideal of all the quiver varieties Y (Cn, θ) is the following
ideal in T :

Circ(B) = 〈 zi−1,iwi−1,i − zi,i+1wi,i+1 : i = 1, 2, . . . , n 〉.

All indices are considered modulo n. The quiver variety Y (Cn, 0) is the spec-
trum of T0/(T0 ∩ Circ(B)). Dividing T0 by T0 ∩ Circ(B) means erasing the
double indices of all variables:

T0/(T0 ∩ Circ(B)) ' C[ zw, zn, wn ].

Passing to the spectra of these rings proves our first assertion: Y (Cn, 0) '
C2/Γn.
For the second assertion, we first note that θ = (θ1, . . . , θn−1) is generic for A±
if and only if all consecutive coordinate sums θi + θi+1 + · · ·+ θj are non-zero.
The associated hyperplane arrangement Γ(A) is linearly isomorphic to the braid
arrangement {ui = uj}. It has n ! chambers, and the symmetric group acts
transitively on the chambers. Hence it suffices to prove Y (Cn, θ) ' C2//Γn
for only one vector θ which lies in the interior of any chamber.
We fix the generic vector θ = (1, 1, . . . , 1). There are n monomials of degree θ
in T , namely,

i−1∏

j=1

zi−jj−1,j ·
n∏

k=i+1

wk−ik−1,k for i = 1, 2, . . . , n. (45)

The images of these monomials are minimal generators of the T0/(T0 ∩
Circ(B))-algebra

∞⊕

r=0

Trθ/(Trθ ∩ Circ(A)(B)).
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By definition, Y (Cn, θ) is the projective spectrum of this N-graded algebra.
Applying our isomorphism “erasing double indices”, the images of our n mono-
mials in (45) translate into

z(i2) · w(n−i+1
2 ) for i = 1, 2, . . . , n. (46)

Hence Y (Cn, θ) is the projective spectrum of the C[zw, zn, wn]-algebra gener-
ated by (46). It is straightforward to see that this is the toric surface with fan
Σn, i.e. the ALE space C2//Γn. ¤

It is instructive to write down our presentations for the cohomology ring of the
ALE space Y (Cn, θ) = C2//Γn. The circuit ideal of the n-cycle is the principal
ideal

Circ(A) = 〈 ∂01 + ∂12 + ∂23 + · · ·+ ∂n−1,0 〉.
The matroid ideal M(B) is generated by all quadratic squarefree monomials
in Z[∂]. It follows that Z[∂]/(Circ(A) +M(B)) is isomorphic to a polynomial
ring in n − 1 variables modulo the square of the maximal ideal generated by
the variables, and hence

H∗(Y (Cn, θ);Z) = H0(Y (Cn, θ);Z) ⊕ H2(Y (Cn, θ);Z) ' Z1 ⊕ Zn−1.

On our way towards proving Theorem 10.1, let us now fix an epimorphism
A : Zn → Zd and a generic vector θ ∈ Zd. We assume that A is not a cone,
i.e. the zero vector is not in B. We do not assume that A is unimodular. By a
binomial we mean a polynomial with two terms.

Proposition 10.3 The following three statements are equivalent:

(a) The hyperkähler toric variety Y (A, θ) is a toric subvariety of X(A±, θ).

(b) The ideal Circ(B) is generated by binomials.

(c) The configuration B lies on n − d linearly independent lines through the
origin in Rn−d.

Proof: The condition (b) holds if and only if the matrix A can be chosen to
have two nonzero entries in each row. This defines a graph G on {1, 2, . . . , n},
namely, j and k are connected by an edge if there exists i ∈ {1, . . . , d} such
that aij 6= 0 and aik 6= 0. The graph G is a disjoint union of n− d trees. Two
indices j and k lie in the same connected component of G if and only if the
vectors bj and bk are linearly dependent. Thus (b) is equivalent to (c).
Suppose that (b) holds. Then the prime ideal Circ(B) is generated by the
quadratic binomials aijzjwj + aikzkwk indexed by the edges (j, k) of G. The
corresponding coefficient-free equations

zjwj = zkwk for (j, k) ∈ G.
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define a subtorus T of the dense torus of the Lawrence toric variety X(A±, θ),
and the equations

aijzjwj + aikzkwk = 0 for (j, k) ∈ G.
define an orbit of T in the dense torus of X(A±, θ). The solution set of the same
equations in X(A±, θ) has the closure of that T-orbit as one of its irreducible
components. But that solution set is our hyperkähler variety Y (A, θ). Since
Y (A, θ) is irreducible, we can conclude that it coincides with the closure of the
T-orbit. Hence Y (A, θ) is a toric variety, i.e. (a) holds.
For the converse, suppose that (a) holds. The irreducible subvariety Y (A, θ) is
defined by a homogeneous prime ideal J in the homogeneous coordinate ring T
of X(A±, θ). Since Y (A, θ) is a torus orbit closure, the ideal J is generated by
binomials. The ideal Circ(B) has the same zero set as J does, and therefore,
by the Nullstellensatz and results of Cox, rad

(
Circ(B) : B∞θ

)
= J . Our

hypothesis 0 6∈ B ensures that Circ(B) itself is a prime ideal, and therefore we
conclude Circ(B) = J . In particular, this ideal is generated by binomials, i.e.
(b) holds. ¤
Proof of Theorem 10.1: Suppose that Q is a quiver with connected compo-
nents Q1, . . . , Qr. Then its boundary map is given by a matrix with block
decomposition

A = A1 ⊕ A2 ⊕ · · · ⊕ Ar, (47)

where Ai is the boundary map of Qi. There is a corresponding decomposition
of the Gale dual

B = B1 ⊕ B2 ⊕ · · · ⊕ Br. (48)

In this situation, the toric hyperkähler variety Y (A, θ) is the direct product of
the toric hyperkähler varieties Y (Ai, θ) for i = 1, . . . , r. For our quiver Q this
means

Y (Q, θ) = Y (Q1, θ) × Y (Q2, θ) × · · · × Y (Qr, θ).

Using Lemma 10.2, we conclude that a manifold is a product of ALE spaces of
type An if and only if it is a toric quiver variety Y (Q, θ) where Q is a disjoint
union of cycles Cni .
The matrix A in (47) is unimodular if and only if the matrices A1, . . . , Ar
are unimodular. Hence a product of toric hyperkähler manifolds is a toric
hyperkähler manifold. In particular, a product of ALE spaces C2/Γni is a
toric hyperkähler manifold which is also a toric variety.
For the converse, suppose that Y (A, θ) is a toric hyperkähler manifold which is
also a toric variety, so that statement (a) in Proposition 10.3 holds. Statement
(c) in Proposition 10.3 says that the matrix B has a decomposition (48) where
r = n − d and each Bi is a matrix with exactly one column. We may assume
that none of the entries in Bi is zero. The Gale dual Ai of Bi is a unimodular
matrix, and hence Bi is unimodular. For a matrix with one column this means
that all entries in Bi are either +1 or −1. After trivial sign changes, this
means BTi = ( 1 1 . . . 1 ). Now we are in the situation of (44), which means
that Y (Ai, θ) is an ALE space C2/Γni . ¤
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Abstract. In an important recent paper [12], May gave an ax-
iomatic description of the properties of triangulated categories with
a symmetric tensor product. The main point of the current article is
that there are two other results in the literature which can be used
to shed considerable light on May’s work. The first is a construction
of Verdier’s, which appeared in Beilinson, Bernstein and Deligne’s [4,
Prop. 1.1.11, pp. 24-25]. The second and more important is the
beautiful work of Happel, in [9], which can be used to better organise
May’s axioms.

Keywords and Phrases: derived category, tensor product, quiver

1. Introduction

We should begin with a disclaimer. This article definitely does not attempt
to give the definitive axiomatic description of tensor products in triangulated
categories. In the opinion of the authors, the subject is not ripe for such a
treatment. It is only very recently that there has been any real interest in
the field. The subject is still at a very formative stage. Time will tell which
properties of the tensor product really matter.
Let T be a triangulated category, and assume it has a (symmetric) tensor
product. For example, T might be the derived category of a commutative ring
R, or the homotopy category of spectra. It becomes interesting to know what
are the “natural” properties that this tensor product has. In a lovely recent
article [12], May made giant steps towards answering this question.
Some properties are obvious, and we do not repeat them here. The interest lies
in the following. Given two distinguished triangles

x −→ y −→ z −→ Σx
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x′ −→ y′ −→ z′ −→ Σx′

one can form the tensor product

x⊗ x′ ��

��

y ⊗ x′ ��

��

z ⊗ x′

��

��
Σx⊗ x′

��

x⊗ y′ ��

��

y ⊗ y′ ��

��

z ⊗ y′

��

�� Σx⊗ y′

��

x⊗ z′ ��

��

y ⊗ z′ ��

��

z ⊗ z′

��

��

(−)

Σx⊗ z′

��

Σx⊗ x′ �� Σy ⊗ x′ ��
Σz ⊗ x′ ��

Σ2x⊗ x′

It is natural to assume that the rows and columns are distinguished triangles.
The question is what, if any, are the other reasonable properties one could
postulate. It turns out that, at least for reasonable examples of triangulated
categories T with tensor products, in this diagram the diagonal arrows

x⊗ x′ ��

��

y ⊗ x′ ��

��

z ⊗ x′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

��

��
Σx⊗ x′

��

x⊗ y′ ��

��

y ⊗ y′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

��

��

z ⊗ y′

��

�� Σx⊗ y′

��

x⊗ z′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

��

��

y ⊗ z′ ��

��

z ⊗ z′

��

��

(−)

Σx⊗ z′

��

Σx⊗ x′ �� Σy ⊗ x′ ��
Σz ⊗ x′ ��

Σ2x⊗ x′

all have a common mapping cone. May’s axiom (TC3) describes very well the
various diagrams involving this common mapping cone.
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Of course, we could look at other diagonal arrows. In the diagram below

x⊗ x′ ��

��

y ⊗ x′

�
� �

��
��

��
��

��
��

��
�

��

��

z ⊗ x′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

��

��
Σx⊗ x′

��

x⊗ y′

�
� �

��
��

��
��

��
��

��
�

��

��

y ⊗ y′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

��

��

z ⊗ y′

�
� �

�
�

�
�

�
�

��

�� Σx⊗ y′

��

x⊗ z′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

��

��

y ⊗ z′

�
� �

�
�

�
�

�
�

��

��

z ⊗ z′

��

��

(−)

Σx⊗ z′

��

Σx⊗ x′ �� Σy ⊗ x′ ��
Σz ⊗ x′ ��

Σ2x⊗ x′

the squiggly arrows have a common mapping cone Σu, the straight arrows a
common mapping cone Σv and the broken arrows a common mapping cone
Σw. It becomes interesting to describe what relations there should be among
u, v and w. It turns out that there are many. May’s axioms include one such
relation.
In this paper, we will see that May’s results are related to earlier work by
Verdier and by Happel. We will show that the older approaches lead to new
insights; in terms of the above, in general, they lead to infinitely many relations
among u, v and w which May missed. We will see that the work of Happel is
particularly illuminating.
As we have already said, we do not see this as an attempt to give the definitive
foundational treatment. The subject is very young and active. Aside from
May’s paper there is the totally unrelated work by Balmer [3], and recent talks
by Gaitsgory (no manuscript yet) show that his work is also related. At this
point, all we want is to advertise widely the fact that the results of Verdier,
Happel and May (in chronological order) are related.
Of course, we must also persuade the reader that this relation, among three
existing articles in the literature, is interesting. Of most interest is how Happel’s
work in [9] leads to a better organisation of the theory. To illustrate this, we give
examples of new results that can be obtained. We make no attempt to prove
the best possible versions of these new results. That is not the point. We settle
for weaker-than-optimal statements of our new results, to make transparent
how they can be viewed as consequences of Happel’s work.
Since we want the article to be accessible to a wide audience, we try not to
assume much background knowledge. The experts in representations of quivers
will undoubtedly find Section 5 painfully slow and detailed. The experts in
topology will undoubtedly wonder why we assume the reader may never have
heard of closed model categories. The guiding policy in writing this article
was that the presentation should be as free of prerequisites as possible. The
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unfortunate side effect is that it adds to the length of the article. We ask the
experts to be patient with us.
The structure of the article is as follows. Section 2 sets some notation. Section 3
establishes the relation among the three approaches. Sections 4 and 5 apply
these to obtain new identities. The main results are

(i) Axiom (TC3) of May produces exactly the same diagram as Verdier found
in [4]. (See Theorem 3.5). Haynes Miller noticed this independently.

(ii) The special case of Db(2) is universal (Theorem 3.10).
(iii) May’s axiom (TC4) follows from (TC3) and the octahedral axiom (The-

orem 4.1).
(iv) There is an equivalence of categories Db(2) = Db(Y), where Db(Y) is the

bounded derived category of the category of representations of the quiver
D4. Happel studied this in the special case where the categories are all
linear over a field k. In the case of k-linear categories we can therefore
glean a great deal of information from Happel’s work (Section 5).

2. Notation for the octahedral axiom

An octahedron can be thought of as two pyramids glued together along their
square bases. There are three planes along which we can split the octahedron
into two pyramids. This gives three squares. For octahedra as in the octahedral
axiom, each edge is a morphism in a triangulated category and has a direction.
The four squares in an octahedron have arrows as follows

��

(1)

��

��

��

(2)

��

��

��

(3)

��

� �

�� �� ��

The convention we adopt is to always write the octahedron as a union of two
pyramids, split along the unique square where the arrows cycle around as in (1)
above. The octahedron splits into a “top pyramid” and a “bottom pyramid”
(of course, it is somewhat arbitrary which pyramid is declared to be “top” and
which “bottom”).
If we project the top and bottom pyramids to their common base plane, we get
diagrams

a

�� ������
����

��

a

�� ����������

d

� �����������

x ���� b

	
�
� � � � � � � �

� d
��

� �����������

y

� �

��

b

	
�
� � � � � � � � �

��

c

�� � � � � � � � � �

� �

c

�� � � � � � � � � �
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It turns out to be very convenient to twist and torture the octahedron. We
wish to switch the positions of c and d. The pyramids become

a

�� �������
���

��

a

�� ��
��������

c ��

�� �����������
x ��

��

b c ��

�� �����������
y

� �

�� b��

d d

� �

Of course, it now takes some imagination to see that these are pyramids. There
are still four triangles to each pyramid; but two of them project to straight lines
(the horizontal and vertical lines). We will frequently write our octahedra in
this contorted form.
The octahedral axiom tells us that, in a triangulated category, certain diagrams
can be completed to octahedra. The refined octahedral axiom tells us that the
two commutative squares, which arise from the two “other” planes splitting
the octahedron into pyramids, are homotopy pushouts. In the notation above,
there are canonical distinguished triangles

x −−−−→ b⊕ d −−−−→ y −−−−→ Σx

y −−−−→ a⊕ c −−−−→ x −−−−→ Σy.

There is a choice of sign here which we do not wish to make explicit, and
some of the morphisms are of degree 1. The important thing is that the maps
y −→ Σx and x −→ Σy are very explicitly given by the octahedron. We will
refer to them as the differentials of the squares.

3. The relation among the approaches

Suppose T is a triangulated category with a tensor product. We wish to study
when this tensor product is well-behaved. To this end, we make a definition.

Definition 3.1. We say that the tensor product on T is decent if the following
holds.

(i) There exists an abelian category A and a triangulated functor F :
Db(A) −→ T. [Here Db(A) means the bounded derived category of A.]

(ii) The category A has a natural tensor product.
(iii) The category A comes with a collection of special short exact sequences.

These form a subclass of all the short exact sequences.
(iv) For any special short exact sequence

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0
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and any X ∈ A, the two sequences

0 −−−−→ X ⊗A −−−−→ X ⊗B −−−−→ X ⊗ C −−−−→ 0

0 −−−−→ A⊗X −−−−→ B ⊗X −−−−→ C ⊗X −−−−→ 0

are both exact.
(v) Any distinguished triangle in T is isomorphic to

F (A) −−−−→ F (B) −−−−→ F (C) −−−−→ ΣF (A)

for some special short exact sequence in A

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0.

(vi) With the notation as in (iv) and (v) above, the two triangles

F (X ⊗A) −−−−→ F (X ⊗B) −−−−→ F (X ⊗ C) −−−−→ ΣF (X ⊗A)

F (A⊗X) −−−−→ F (B ⊗X) −−−−→ F (C ⊗X) −−−−→ ΣF (A⊗X)

are canonically independent of the choice of the special short exact se-
quence

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

lifting the triangle

F (A) −−−−→ F (B) −−−−→ F (C) −−−−→ ΣF (A).

(vii) Suppose X and Y are objects of A, which occur in some special short
exact sequences. Then there is a canonical isomorphism

F (X)⊗ F (Y ) = F (X ⊗ Y ).

Example 3.2. Let R be a commutative ring and let T = D−(R), the derived
category of bounded-above chain complexes of R–modules. The tensor product
on T is the derived tensor product. The category A is defined to be the abelian
category of bounded-above chain complexes of R–modules, with the obvious
tensor product. The special short exact sequences are the short exact sequences
of bounded-above chain complexes of projectives.

Roughly speaking, the idea in May’s article [12] is to study decent tensor prod-
ucts in triangulated categories. The existence of the abelian category A and
F : Db(A) −→ T has many consequences, allowing us to create complicated
diagrams in T. What May does is postulate the existence of the diagrams
in T as axioms for the tensor product, even in the absence of any explicit
F : Db(A) −→ T.

Remark 3.3. What we said above is slightly inaccurate. May handles a more
general framework. Instead of a functor F : Db(A) −→ T, he assumes only
that T has a closed model structure with a compatible tensor product. Since
we do not want to assume the reader knows what a closed model is, we have
allowed ourselves to restrict to the simplified situation.

Documenta Mathematica 7 (2002) 535–560



May’s axioms via Happel’s theorem 541

Suppose T is a triangulated category with a decent tensor product. Suppose
we are given two distinguished triangles in T. By Definition 3.1(v) these two
triangles are the images under F of two special short exact sequences

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

0 −−−−→ A′ −−−−→ B′ −−−−→ C ′ −−−−→ 0

The tensor product in A gives a 3× 3 diagram with exact rows and columns

0 0 0
y

y
y

0 −−−−→ A⊗A′ −−−−→ B ⊗A′ −−−−→ C ⊗A′ −−−−→ 0
y

y
y

0 −−−−→ A⊗B′ −−−−→ B ⊗B′ −−−−→ C ⊗B′ −−−−→ 0
y

y
y

0 −−−−→ A⊗ C ′ −−−−→ B ⊗ C ′ −−−−→ C ⊗ C ′ −−−−→ 0
y

y
y

0 0 0

The central idea in May’s [12] is to write down all the distinguished triangles
one can deduce from this diagram. It might be simplest to focus on one of
May’s results. From now until the end of the section, we consider (TC3).
Let X be the quotient of the injective map A⊗A′ −→ B ⊗B′. Then we have
two diagrams with exact rows and columns

0 0 0
y

y
y

0 −−−−→ A⊗A′ −−−−→ B ⊗A′ −−−−→ C ⊗A′ −−−−→ 0

1

y
y

y

0 −−−−→ A⊗A′ −−−−→ B ⊗B′ −−−−→ X −−−−→ 0
y

y
y

0 −−−−→ B ⊗ C ′ 1−−−−→ B ⊗ C ′ −−−−→ 0
y

y

0 0

and
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0 0
y

y

0 −−−−→ A⊗A′ 1−−−−→ A⊗A′ −−−−→ 0
y

y
y

0 −−−−→ A⊗B′ −−−−→ B ⊗B′ −−−−→ C ⊗B′ −−−−→ 0
y

y
y1

0 −−−−→ A⊗ C ′ −−−−→ X −−−−→ C ⊗B′ −−−−→ 0
y

y
y

0 0 0

The right column of the first of these diagrams and the bottom row of the
second exhibit F (X) as the mapping cone on two more maps, namely

Σ−1F (B ⊗ C ′) −−−−→ F (C ⊗A′)

and

Σ−1F (C ⊗B′) −−−−→ F (A⊗ C ′).

In other words, the diagonal arrows in the following diagram

Σ−1F (B ⊗ C ′) ��

�� �
� �������������

Σ−1F (C ⊗ C ′)

��

F (A⊗A′) ��

�� �
� ������������
F (B ⊗A′) ��

��

F (C ⊗A′)

��

Σ−1F (C ⊗B′) ��

�� �
� ������������

F (A⊗B′) ��

��

F (B ⊗B′) ��

��

F (C ⊗B′)

��

Σ−1F (C ⊗ C ′) �� F (A⊗ C ′) �� F (B ⊗ C ′) �� F (C ⊗ C ′)

all have the common mapping cone F (X). Playing around a little gives yet
more distinguished triangles. Instead of following May’s approach (which the
reader can find in [12]), let us see how Verdier found them.
As we have explained, May’s approach is based on beginning with a 3 × 3
diagram in an abelian category A, with exact rows and columns, and reading
off induced triangles in the derived category of A. To simplify the notation,
let us forget that the diagram arose from a tensor product of two short exact
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sequences in A. We have a diagram in A

0 0 0
y

y
y

0 −−−−→ x −−−−→ y −−−−→ z −−−−→ 0
y

y
y

0 −−−−→ x′ −−−−→ y′ −−−−→ z′ −−−−→ 0
y

y
y

0 −−−−→ x′′ −−−−→ y′′ −−−−→ z′′ −−−−→ 0
y

y
y

0 0 0

with exact rows and columns. It is well known that, for a diagram with exact
rows and columns

0 0
y

y

0 −−−−→ x −−−−→ y −−−−→ z −−−−→ 0
y

y
y

0 −−−−→ x′ −−−−→ y′ −−−−→ z′ −−−−→ 0
y

y

x′′ −−−−→ y′′
y

y

0 0

one has:

Lemma 3.4. the following assertions are equivalent:

(i) The map z −→ z′ is a monomorphism.
(ii) The map x′′ −→ y′′ is a monomorphism.

(iii) The map from the pushout of

x ��

��

y

x′

to y′ is a monomorphism.
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The entire 3× 3 diagram is, up to canonical isomorphism, entirely determined
by the commutative square of monomorphisms

x ��

��

y

��

x′
�� y′

satisfying the condition in Lemma 3.4(iii). Verdier’s idea was to build the entire
diagram using repeated applications of the octahedral axiom. We remind the
reader.
Our commutative square may be viewed as two commutative triangles

x ��

�� �����������

��

y

��

x′
�� y′

The two commutative triangles may be completed to two octahedra. In the
twisted notation of Section 2, the top pyramids of the octahedra may be written
as

x

�� �����������

��

Σ−1y′′

�� �
�

�
�

�
�

�
�

�
�

�
�

��

Σ−1z′
��

�� �
�

�
�

�
�

�
�

�
�

�
�

x′
��

��

y′ x ��

�� �
�

�
�

�
�

�
�

�
�

�
�

y ��

��

z

x′′ y′

We remind the reader how this should be read. The horizontal and vertical lines
are projections of distinguished triangles. We have, so far, four distinguished
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triangles. They are the rows and columns below

Σ−1y′′

��

x ��

��

y ��

��

z ��
Σx

Σ−1z′
��
x′

��

��

y′ ��

��

z′

x′′

��

y′′

Σx

We also have four commutative triangles, as below

Σ−1y′′

�� �� �
�

�
�

�
�

�
�

�
�

�

x ��

�� �
� �������������
y ��

��

z

Σ−1z′
��

�
� �

�
�

�
�

�
�

�
�

�
�

x′
��

��

y′

x′′

Our two octahedra also have bottom pyramids. We deduce diagrams

x

�� ����������� Σ−1y′′

�� �
�

�
�

�
�

�
�

�
�

�
�

Σ−1z′

�� �
�

�
�

�
�

�
�

�
�

�
�

w
(1)

��

(1)
d

� �

y′�� x

�� �
�

�
�

�
�

�
�

�
�

�
�

w
(1)

��

(1)
d

� �

z��

x′′

d

� �

y′

d

� �
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What we mean by this is that we may complete x −→ y′ to a distinguished
triangle

x −→ y′ −→ w −→ Σx.

This is our solid triangle. The octahedral lemma allows us to choose the dot-
ted arrows to complete each of the two octahedra. The diagrams depicting
the projections of the bottom pyramids exhibit the commutative triangles as
straight lines, and the distinguished triangles as triangles. But now we have
the bottom pyramid of an octahedron

Σ−1y′′

�� �
�

�
�

�
�

�
�

�
�

�
�

Σ−1z′

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

w
(1)

��

(1)
d

� �

z��

x′′

d

� �

which we may complete to a top pyramid. We have three octahedra, with top
pyramids

Σ−1y′′

�� �� �
�

�
�

�
�

�
�

�
�

�

x ��

�� �
� �������������
y ��

��

z

Σ−1z′
��

�
� �

�
�

�
�

�
�

�
�

�
�

�

��

x′
��

��

y′

Σ−1y′′ ��

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

Σ−1z′′
��

��

x′′

z

The remaining maps, which define the bottom pyramids of the octahedra, can
be written as

Σ−1w




α
β
γ




�� Σ−1y′′ ⊕ x⊕ Σ−1z′ z ⊕ y′ ⊕ x′′
(
a b c

)
�� w
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The three octahedra tell us, among other things, that the three diagonals have
the same mapping cone, namely the object w. But we know more. Each octahe-
dron gives two commutative squares. The “refined” octahedral lemma chooses
these commutative squares to be homotopy pushout squares; see Section 2 for
details. Using these six homotopy pushout squares, we can extend the above
to a commutative diagram

Σ−1w
α ��

β

��

(1)

Σ−1y′′

�� �� �
�

�
�

�
�

�
�

�
�

�
�

(∗∗) Σ−1w
β ��

γ

��

(2)

x ��

�� �
� ��������������
y ��

��

(4)

z

a

��

Σ−1w
γ ��

α

��

(3)

Σ−1z′
��

�
� �������������

��

x′
��

��

(5)

y′
b

��

b

��

w

Σ−1y′′ ��

�
� �

�
�

�
�

�
�

�
�

�
�

�
�

Σ−1z′′
��

��

(6)

x′′ c
��

c

��

w

z
a

�� w

In this diagram, the six squares labeled (1)−(6) are homotopy pushout squares,
and the differential of the square labeled (n) is given by the diagonal of the
square labeled (n + 3), where we read the labels modulo 6. For example, the
differential of (1) is given by the diagonal of (1 + 3) = (4).
We also have, in the upper part of the three octahedra, six distinguished tri-
angles. These assemble to a diagram

x ��

��

y ��

��

z

��

��
Σx

��

x′
��

��

y′ ��

��

z′
��

��

Σx′

��

x′′
��

��

y′′ ��

��

z′′
��

��

(−)

Σx′′

��

Σx
�� Σy ��

Σz
��

Σ2x

Documenta Mathematica 7 (2002) 535–560



548 Bernhard Keller and Amnon Neeman

The standard sign convention has all the squares commuting except the one at
the bottom right, which anticommutes. We put the symbol (−) in the bottom
right square to remind ourselves that it anticommutes.
If we begin with a square of monomorphisms in an abelian category, satisfying
the condition in Lemma 3.4(iii), then all the choices in the octahedra we con-
structed are canonically unique. Using only the octahedral axiom the above
argument (of Verdier) shows how to extend a commutative square to an elab-
orate diagram with many distinguished triangles. In the special case where
the square is the top left corner of a 3 × 3 diagram of short exact sequences
in A, the extension in Db(A) is unique. We recover the 3 × 3 diagram, the
mapping cone w on the map x −→ y′, and many distinguished triangles. The
first theorem is

Theorem 3.5. Axiom (TC3) of May’s is just the assertion that the tensor
product of two distinguished triangles comes with Verdier structure. By this we
mean that there exists an object w, and a diagram (∗∗) as on page 547.

Proof: It needs to be checked that May’s list of the properties of the object w
precisely coincides with what we obtained above, from the octahedral axiom.
We leave this to the interested reader; one needs to compare (∗∗) with May’s
beautifully drawn diagram on page 49 of [12]. 2

Remark 3.6. In the discussion preceding Theorem 3.5 we indicated how, fol-
lowing either May or Verdier, one can prove that a triangulated category T

with a decent tensor product satisfies (TC3).
Note that, both in May’s and in Verdier’s argument, the tensor product plays
a very minor role. What matters is that in the abelian category A we have a
3× 3 diagram with exact rows and columns. The fact that it happens to come
from the tensor product of two short exact sequences is largely irrelevant.

Remark 3.7. Haynes Miller independently observed that Verdier’s construc-
tion yields May’s diagram.

So far we have explained the relation between May’s work and Verdier’s. Now
we move to the more interesting observation. We will explain the relation
between two approaches we have already seen and Happel’s work.
What we have seen so far is the following. We started with a commutative
square of monomorphisms in A

x ��

��

y

��

x′
�� y′

satisfying the condition in Lemma 3.4(iii). Then, either by pushing out in
the abelian category A or by repeatedly applying the octahedral lemma, we
extended to an elaborate diagram of triangles giving May’s (TC3). Let k be
a noetherian commutative ring. Suppose the category A is k-linear. (For any
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abelian category A we may take k = Z.) A commutative square in A may be
viewed as a k-linear functor 2 −→ A, where 2 is the k-category presented by
the quiver (=oriented graph)

2
γ

�� �����

1

α � �
�����

β
�� ����� 4 with the relation γ α = δ β .

3
δ

� �
�����

In other words, the category 2 has four objects corresponding to the four
vertices of the quiver, and its morphisms between two objects are obtained by
taking all k-linear combinations of paths between the corresponding vertices of
the quiver and dividing out all consequences of the relations. Let mod k be the
category of finitely generated k-modules. Let mod 2 = Cat(2op,mod k) be the
category of all k-linear functors 2op −→ mod k. We remind the reader of the
well-known

Lemma 3.8. Up to canonical isomorphism, any k-linear functor 2 −→ A may
be factored uniquely as

2 −−−−→ mod 2
F−−−−→ A,

with F a right exact k-linear functor of k-linear categories.

Proof: Any right exact functor F : mod 2 −→ A is uniquely determined by
what it does on projective objects. And each projective object in the functor
category mod 2 is a direct factor of a finite sum of the representable functors
Pi = Hom2 (−, i). Since the Yoneda functor is covariant, the representable
functors appear in a commutative square

P2
γ∗

�� �����

(∗) P1

α∗ 	 
�����

β∗
�� �����

P4

P3

δ∗

	 
�����

.

Given a functor F : mod 2 −→ A, F must take the commutative square (∗) in
mod 2 to a commutative square in A. Conversely, given a commutative square
in A, we want a functor F . It is clear how to define F on P1, P2, P3 and P4.
This definition extends by additivity to direct summands of direct sums of the
Pi’s, that is to all projectives. Finally, to define F on an arbitrary object X,
choose a projective presentation for X

P −−−−→ Q −−−−→ X −−−−→ 0,

and F (X) is defined to be the cokernel of F (P ) −→ F (Q). 2
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Taking the left derived functor of the F in Lemma 3.8, we have that any com-
mutative square in A yields a functor Db(2) −→ Db(A), where we abbreviate
Db(mod 2) to Db(2).

Remark 3.9. For much more detail see [10], [8], [11].

Theorem 3.10. The relations which hold in Db(2) are universal. The same
diagram of triangles will exist in any triangulated category T with a decent
tensor product.

Proof: The commutative square, which we saw in Verdier’s construction of
the diagram, will give rise to a triangulated functor Db(2) −→ Db(A). The
decency of the tensor product gives a triangulated functor Db(A) −→ T. The
composite takes the diagram of triangles in Db(2) to T. 2

Remark 3.11. The word “universal” is appearing here in an extended, some-
what unusual way. We are not asserting that the category Db(2) has a decent
tensor product. As far as we know it has no tensor product at all; there does
not seem to be a Hopf algebra structure on the quiver algebra.
All we say is the following. Let T be a triangulated category with a decent
tensor product. Then triangles appearing in Db(2) will always be reflected
in the tensor product of two distinguished triangles in T. As we have already
said, the tensor product in T plays a minor role in the proof, and the category
Db(2) does not seem to have a tensor product at all.

The real use of Theorem 3.10 is that Happel studied the category Db(2) in
great detail, in the case where the ground ring k is a field. By appealing to his
results we can obtain a great deal of information, at least in the case of k-linear
triangulated categories over fields k. In principle, it should not be particularly
difficult to generalise Happel’s work to the case where k = Z. In this article we
chose not to do so. We chose to highlight the idea, not to pursue it to obtain
the sharpest results. The main reason is that we wanted to keep the article
reasonably brief.
In the next two sections, we will show how the different approaches can yield
new results.
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4. Consequences of the octahedral axiom

First we establish some notation. Consider the diagram

x ��

�� �� �

�

�

�

�

�
y ��

�� �� �
��

��
��

��
��

��
�

z

��

��

�� �
�

�
�

�
�

�
�

�
�

�
� Σx

��

Σ−1z′
��

�� �
� �

�
�

�
�

�
x′

��

�� ���
��

��
��

��
��

�

y′ ��

�� �� ����������� z′
��

��

Σx′

��

Σ−1y′′ ��

�� �
� �

�
�

�
�

�
�

Σ−1z′′
��

�� �
���������������
x′′

��

�� �� ����������� y′′ ��

��

z′′
��

��

Σx′′

��

y �� z ��
Σx

�� Σy ��
Σz

��
Σ2x

The axiom (TC3) assigns a common mapping cone w to the three broken
arrows. Applying (TC3) to rotations of the triangles, we expect a common
mapping cone Σu to the curly arrows, and a common mapping cone Σv to the
plain arrows. Needless to say, u, v and w should be related. May found one
relation. We will use the different approaches to obtain more.
In this section we will, following Verdier’s approach, see what the octahedral
lemma buys us. We have:

Theorem 4.1. May’s axiom (TC4) is a formal consequence of (TC3) and the
octahedral axiom. The proof will give us yet another distinguished triangle. It
is a triangle May missed, whose existence also follows formally from (TC3) and
the octahedral axiom.

Proof: Recall that the octahedra defining w give a homotopy pushout square

y ��

��

z

��

y′ �� w

The mapping cone on the diagonal y −→ w is just the sum of the mapping
cones on the horizontal and vertical maps, that is y′′ ⊕ Σx. The triangle

Σ−1z′ −→ x′′ −→ w −→ z′

gives us a map w −→ z′, and hence a commutative square

y ��

��

z

��

y′ ��
z′
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The object Σu is the mapping cone of the diagonal map y −→ z ′ in this square.
In other words, Σu is the mapping cone on a composite

y −→ w −→ z′.

We now complete to an octahedron. We know all the objects of the octahedron.
In the standard notation, where d stands for a distinguished triangle, + for a
commutative one and (1) for an arrow of degree one, we draw the octahedron.
The top pyramid is

y ��

�
� ������������� z′

��

w

� ������������

��� � � � � � � � � � � �

+

+

dd

y′′ ⊕ Σx

(1)

� �

Σx′′

(1)

���
�

�
�

�
�

�
�

�
�

�

(1)
��

The bottom pyramid is

y ��
z′

��

� 	
 
 
 
 
 
 
 
 
 
 


Σu

(1)

���
�

�
�

�
�

�
�

�
�

�
�

�

�� �
�

�
�

�
�

�
�

�
�

�

d

d

++

y′′ ⊕ Σx

 �������������

(1)

� �

Σx′′
(1)

��

From this octahedron we deduce two homotopy pushout squares. There are
therefore distinguished triangles

w −→ z′ ⊕ y′′ ⊕ Σx −→ Σu −→ Σw

and

u −→ y ⊕ x′′ −→ w −→ Σu

The first of these triangles is axiom (TC4) of May’s [12]. The second is new.
2

In the next section we will see how to better organise all the triangles above,
and more.

5. The relation with Happel’s work

As we saw in Theorem 3.10, the problem reduces to understanding the category
Db(2). It helps to introduce an equivalent derived category. We define
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Definition 5.1. Let D4 be the quiver(=oriented graph)

(1)

2

1
λ��

5

µ
 �������

ν
�

� ������
.

3

Let Y be the k-category presented by the quiver D4. Let mod Y be the category
of k-linear functors Yop −→ mod k. We denote the bounded derived category
Db(mod Y) by Db(Y).

The interest in this definition comes from the well-known

Lemma 5.2. The derived categories Db(2) and Db(Y) are equivalent, as k-
linear triangulated categories.

Proof: Recall that 2 is the category presented by the quiver

2
γ

�� �����

1

α � �
�����

β
�� ����� 4 with the relation γ α = δ β

3
δ

� �
�����

and Db(2) the bounded derived category of the category mod 2 of k-linear
functors 2op −→ mod k. The categories mod Y and mod 2 are related by
a natural pair L,R of adjoint functors: If M is in mod 2, we complete the
corresponding diagram of k-modules into

M2
Mα

�� Mµ	


M1 M5
Mλ

�� M4

Mγ
�� � � � � � �

Mδ	
�
� � � � � �

M3

Mν

�

Mβ

��
,

where M5 is the pushout of Mγ and Mδ. We define the object LM ∈ mod Y
as the full subdiagram on M1,M2,M3,M5. Similarly, if N is in mod Y, we
complete the corresponding diagram by defining N4 as the pullback of Nµ and
Nν, and we define RN to be the full subdiagram on N1, N2, N3, N4. Note that
the functors L and R are not equivalences (they take some non zero objects to
zero). But the left derived functor of L is easily computed to be quasi-inverse
to the right derived functor of R, giving an equivalence between Db(2) and
Db(Y). 2

Remark 5.3. The experts will note that the fact that L and R induce equiv-
alences of derived categories is a special case [1] of tilting theory (cf. e.g. [9],
[7], [2]).
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Theorem 3.10 tells us that we are reduced to understanding the distinguished
triangles in the category Db(2) = Db(Y). The proof of Theorem 3.10, more
specifically Lemma 3.8, tells us that in the category mod 2 ⊂ Db(2) we have
a commutative square

P2
γ∗

�� �
�

�
�

�

P1

α∗ 	 
�
�

�
�

�

β∗
�� �

�
�

�
�

P4

P3

δ∗

	 
�
�

�
�

�

and everything reduces to understanding the distinguished triangles in which
it lies. The equivalence Db(2) = Db(Y) is explicit enough to be able to work
out the image of this commutative square in Db(Y).

5.1. Happel’s description of Db(Y). From now on, we assume k is a field.
We will describe Db(Y) as a k-linear category, following Happel [9]. This de-
scription will also yield a great deal of information on the distinguished triangles
of Db(Y). Note that Happel built on previous work by many researchers, no-
tably Ringel [14], Riedtmann [13], Gabriel [6]. For more information, we refer
to the books [15], [2], [7].
Each object of the category Db(Y) decomposes into a finite sum of indecompos-
able objects with local endomorphism rings and this decomposition is unique
up to permutation and isomorphism. To describe Db(Y) as a k-linear category,
it suffices therefore to describe the full subcategory formed by the indecompos-
able objects.
We will give a presentation of the category of indecomposables in Db(Y). Let
us first describe its objects: The category mod Y is the k-category of represen-
tations of a quiver without relations. Therefore, it is an abelian category of
global dimension ≤ 1. This entails that in its derived category Db(Y), each ob-
ject is (non canonically) isomorphic to the direct sum of its homologies placed
in their respective degrees. Each indecomposable of Db(Y) is therefore concen-
trated in one degree, i.e. it is a shift of some indecomposable module. Now
D4 is a quiver whose underlying graph is a Dynkin diagram. So by Gabriel’s
theorem [5], there are only finitely many (isomorphism classes of) indecompos-
able modules; moreover, the indecomposables are in bijection with the twelve
positive roots of the corresponding root system (the orientation of the quiver
determines the positive cone). The bijection is given by sending each indecom-
posable M to its dimension vector dim M , i.e. to the function i 7→ dimMi.
For example, the dimension vector of the module P2 : i 7→ HomY(i, 2) is given
by

1
1 1

0
.

Note that, by definition of Pi, we have

Mi = HomY(Pi,M) , M ∈ mod Y .
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Thus the i-component of the dimension vector of M is the dimension of the
space of morphisms from Pi to M . The map M 7→ dimM induces an isomor-
phism

K0(mod Y) −→ Z4.

The simple modules correspond to the vectors of the standard basis.

Caution 5.4. In what follows, we make frequent reference to figure 1 and
figure 2. For the reader’s convenience, both figures have been placed on the
last page, after the bibliography.

Let us summarize the above: The indecomposable objects of Db(Y) are the
shifts of the indecomposable modules; the indecomposable modules are deter-
mined by their dimension vectors. The positive dimension vectors in figure 1 are
precisely the dimension vectors of indecomposable objects of Y. The negative
vectors in the figure correspond to shifted indecomposable modules.
We now describe the morphisms between indecomposable objects of Db(Y).
Let U and V be indecomposable. A radical morphism from U to V is a non
invertible morphism f : U −→ V . Denote by rad(U, V ) the space of radical
morphisms from U to V . Clearly, rad is an ideal of the category of indecom-
posables. Denote its square by rad2. Thus a morphism f : U −→ V belongs to
rad2(U, V ) iff it is reducible, i.e. we have

f =

n∑

i=1

gihi

for some n and for radical morphisms hi : U −→ Wi and gi : Wi −→ V . A
morphism is irreducible if it is not reducible. The Auslander-Reiten quiver of
Db(Y) is the quiver whose vertices are the isomorphism classes [U ] of inde-
composable objects and which has dim rad(U, V )/rad2(U, V ) arrows from the
vertex [U ] to the vertex [V ].
Happel’s theorem [9, Cor. 4.5] yields as a special case that the Auslander-
Reiten quiver of Db(Y) is the quiver R of figure 1.
We will obtain the required presentation of the category of indecomposables
of Db(Y) by dividing the free k-category on the Auslander-Reiten quiver by
suitable relations, which we now describe. To do so, we introduce the auto-
morphism τ : R −→ R which is the shift by two units to the left. It is called
the Auslander-Reiten translation. For example, we have

τ(
0

0 1
1

) =
1

1 1
0
, τ(

1
1 2

1
) =

0
1 1

0
.

The mesh relation associated to a vertex x of R is the relation∑
αβ = 0 ,

where the sum ranges over all subquivers

τ(x)
β �� y α �� x.
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Theorem 5.5 (Happel [9]). There is an equivalence Φ from the k-category pre-
sented by the Auslander-Reiten quiver R of figure 1 subject to all mesh relations
to the category of indecomposables of Db(Y). It can be chosen so that for each
vertex x of R, dim Φ(x) is the dimension vector associated with x and that for
each arrow α : x −→ y of R, Φ(α) is an irreducible morphism from Φ(x) to
Φ(y). Moreover, for each vertex x of R, there is a canonical triangle (called
the Auslander-Reiten triangle)

Φ(τ(x)) −→
⊕

Φ(y) −→ Φ(x) −→ ΣΦ(τ(x)) ,

where the sum ranges over all subquivers

τ(x)
β �� y α �� x.

Remark 5.6. Under the equivalence of the theorem, the suspension U 7→ ΣU
corresponds to τ−3.

Remark 5.7. The group S3×Z acts on the quiver R: The factor Z acts via τ ;

the factor S3 fixes the τ -orbit of
0

1 1
0

and simultaneously permutes the vertices

τ i (
1

1 1
0

) , τ i (
0

0 1
0

) , τ i (
0

1 1
1

)

for each i ∈ Z. By Happel’s theorem, we obtain an action on Db(Y). The
autoequivalences of Db(Y) which occur are triangulated functors.

Remark 5.8. Lemma 5.2 gives an equivalence Db(2) −→ Db(Y). The natural
commutative square in mod 2 maps via the composite

mod 2 −→ Db(2) −→ Db(Y)

to the square formed by the vertices labeled

0
1 0

0
,

1
1 1

0
,

0
1 1

1
,

1
1 1

1
.

Remark 5.9. Suppose that x is a vertex of R corresponding to a representable
functor Pi and y an arbitrary vertex. Then we have

dim Hom(Φ(x),Φ(y)) = dim Hom(Pi,Φ(y)) = (dim Φ(y))i .

For an arbitrary vertex x, there is always an i ∈ Z so that τ ix corresponds to
a representable. This allows us to compute

dim Hom(Φ(x),Φ(y)) = dim Hom(Φ(τ ix),Φ(τ iy))

very easily by inspecting figure 1.

Remark 5.10. Happel’s theorem allows us to exhibit many triangles produced
by short exact sequences of the module category mod Y. It is clear that a
sequence of modules

0 −→ L −→M −→ N −→ 0
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is exact iff it is a complex, the left arrow is a monomorphism, the right arrow
an epimorphism and we have dimM = dimL + dimN . These conditions are
easy to check with the help of the Auslander-Reiten quiver. Using the action
of S3 × Z of Remark 5.7 we obtain further triangles.

5.2. Application: Organising the triangles. Suppose that we have a
commutative square

x ��

��

y

��

x′
�� y′

in a k-linear triangulated category T. Suppose that, as in Theorem 3.10, we
also have a triangulated functor

F : Db(2) = Db(Y) −→ T

extending the square. If we compose F with the isomorphism Φ of Happel’s
theorem, we obtain the mapping suggested by superposing figures 1 and 2.
Here we use the notations of Sections 3 and 4, as well as some of the triangles
of Db(2) = Db(Y) obtained from Remark 5.10.
Note that, miraculously, the twelve objects of Section 3 and 4 correspond to
the twelve orbits of indecomposable Y-modules under the action of the group
ΣZ generated by Σ and that the ‘interesting’ objects u, v, w are in the same
orbit under the action of the group τZ generated by τ .

Remark 5.11. Perhaps the miracle deserves a small comment. The objects x,
x′, y and y′ in the commutative square

x −−−−→ y
y

y

x′ −−−−→ y′

correspond, in Db(2), to P1, P2, P3 and P4, all of which are (projective)
indecomposables in 2 ⊂ Db(2). Being indecomposable in Db(2), they must
remain indecomposable under the equivalence Db(2) ' Db(Y) of Lemma 5.2.
This much is not surprising.
The miracle, which the authors do not understand, is why the other naturally
arising eight objects correspond precisely, up to suspension, to the other classes
of indecomposables.

Let us call two triangles equivalent if they are obtained from one another by
rotations and the action of S3×Z. Then the triangles constructed in Sections 3
and 4 belong to the (distinct) equivalence classes of the following seven triangles
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(those marked with (∗) are rotations of Auslander-Reiten triangles)

x �� u ��
Σ−1z′′

��
Σx (∗)

x �� y �� z ��
Σx

x �� v ��
z ⊕ x′′ ��

Σx

x �� y′ �� w ��
Σx (∗)

u ��
x′′

�� Σx⊕ y′′ ��
Σu

u �� w �� Σx⊕ y′′ ⊕ z′ ��
Σu (∗)

u �� v ��
x′′ ⊕ z′ �� Σu ,

where the last triangle is equivalent to the new triangle constructed at the
end of Section 4. Note that the morphism space Hom(u, v) is 2-dimensional
so that the morphism u −→ v is not even unique up to a scalar multiple.
The morphism u −→ v occurring in the last triangle is defined to be the
composition u −→ y −→ v. Note that up to the action of S3 × Z this is the
only 2-dimensional morphism space between indecomposables.
Let us construct some more triangles: The plane Hom(u, v) contains three
distinguished lines given by the morphisms factoring respectively through x′,
y and Σ−1z′′. The mapping cone triangle over a morphism lying in one of the
lines is equivalent to the last triangle of the list above. However, if we choose
a morphism f outside of the three lines, we obtain a new triangle

u
f �� v

g �� w
ε(f,g)�� u

by looking at the corresponding short exact sequence of Y-modules. Thus, we
obtain a whole new family of isomorphism classes of triangles, parametrized by
the projective line over k punctured at 3 points.
We claim that this is the list of all equivalence classes of non-split triangles
with two indecomposable vertices. To check this, one proceeds in two steps:
(1) classify morphisms between indecomposables of Db(Y) up to conjugacy
under the the group S3 × Z; (2) inspect all mapping cone triangles over the
morphisms obtained in (1) and eliminate duplicates. We leave the details to
the interested reader.
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[1] Maurice Auslander, Maŕıa Inés Platzeck, and Idun Reiten, Coxeter functors
without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1–46.

Documenta Mathematica 7 (2002) 535–560



May’s axioms via Happel’s theorem 559

[2] Maurice Auslander, Idun Reiten, and Sverre Smalø, Representation theory
of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36,
Cambridge University Press, 1995 (English).

[3] Paul Balmer, Presheaves of triangulated categories and reconstruction of
schemes,, To appear in Math. Ann.

[4] Alexander A. Beilinson, Joseph Bernstein, and Pierre Deligne, Analyse et
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Abstract. Reconstruction phases describe the motions experienced
by dynamical systems whose symmetry-reduced variables are undergo-
ing periodic motion. A well known example is the non-trivial rotation
experienced by a free rigid body after one period of oscillation of the
body angular momentum vector.

Here reconstruction phases are derived for a general class of Hamilto-
nians on a cotangent bundle T∗Q possessing a group of symmetries G,
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Summary of selected notation

Numbers in parentheses refer to the relevant subsection.

pµ : g∗ → g∗µ natural projection (dual of inclusion gµ → g) (2.2)
prµ : g→ gµ orthogonal projection (2.8)
( · )Q associated form (3.2, 7.2)
iO ∈ Ω0(O, g∗) inclusion O ↪→ g∗ (3.3)
ρ◦ : (ker Tρ)◦ → T∗(Q/G) map sending dq(f ◦ ρ) to dρ(q)f (4.1)
A′ : T∗Q→ J−1(0) projection along (ker A)◦ (4.2)
T∗Aρ : T∗Q→ T∗(Q/G) Hamiltonian analogue of Tρ : TQ→ T(Q/G) (4.2)
iµ : J−1(µ) ↪→ P inclusion (5.1)
E(µ) ⊂ Tµg

∗ space orthogonal to Tµ(G · µ) (6.1)
forgE(µ) ⊂ g∗ image of E(µ) under identification Tµg

∗ ∼= g∗ (6.1)
ιµ : [g, gµ]◦ → g∗µ restriction of projection pµ : g∗ → g∗µ (6.1)
idg∗ ∈ Ω0(g∗, g∗) the identity map g∗ → g∗ (6.4)

Documenta Mathematica 7 (2002) 561–604



Reconstruction Phases 563

1 Introduction

When the body angular momentum of a free rigid body undergoes one period of
oscillation the body itself undergoes some overall rotation in the inertial frame
of reference. This rotation is an example of a reconstruction phase, a notion
one may formulate for an arbitrary dynamical system possessing symmetry,
whenever the symmetry-reduced variables are undergoing periodic motion. In-
terest in reconstruction phases stems from problems as diverse as the control
of artificial satellites [8] and wave phenomena [3, 2].

This paper studies reconstruction phases in the context of holonomic mechani-
cal systems, from the Hamiltonian point of view. Our results are quite general
in the sense that non-Abelian symmetries are included; however certain sin-
gularities must be avoided. We focus on so-called simple mechanical systems
(Hamiltonian=‘kinetic energy’ + ‘potential energy’) but our results are rele-
vant to other Hamiltonian systems on cotangent bundles T∗Q. The primary
prerequisite is invariance of the Hamiltonian with respect to the cotangent lift
of a free and proper action on the configuration space Q by the symmetry group
G. Our results are deduced as a special case of those in [6].

We do not study phases in the context of mechanical control systems and
locomotion generation, as in [17] and [15]; nor do we discuss Hanay-Berry
phases for ‘moving’ mechanical systems (such as Foucault’s pendulum), as in
[16]. Nevertheless, these problems share many features with those studied here
and our results may be relevant to generalizations of the cited works.

1.1 Limiting cases

The free rigid body is a prototype for an important class of simple mechanical
systems, namely those for which Q = G. Those systems whose symmetry
group G is Abelian constitute another important class, of which the heavy top
is a prototype. Reconstruction phases in these two general classes have been
studied before [16], [6]. Our general results are essentially a synthesis of these
two cases, but because the synthesis is rather sophisticated, detailed results
are formulated after reviewing the special cases in Section 2. This introduction
describes the new results informally after pointing out key features of the two
prototypes. A detailed outline of the paper appears in 1.5 below.

1.2 The free rigid body

In the free (Euler-Poinsot) rigid body reconstruction phases are given by an
elegant formula due to Montgomery [23]. Both the configuration space Q and
symmetry group G of the free rigid body can be identified with the rotation
group SO(3) (see, e.g., [18, Chapter 15]); here we are viewing the body from
an inertial reference frame centered on the mass center. Associated with each
state x is a spatial angular momentum J(x) which is conserved. The body
representation of angular momentum ν ∈ R3 of a state x with configuration
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q ∈ SO(3) is

(1) ν = q−1J(x) .

The body angular momentum ν evolves according to well known equations of
Euler which, in particular, constrain solutions to a sphere O centered at the
origin and having radius ‖µ0‖, where µ0 = J(x0) is the initial spatial angular
momentum. This sphere has a well known interpretation as a co-adjoint orbit
of SO(3).
Solutions to Euler’s equations are intersections with O of level sets of the
reduced Hamiltonian h : R3 → R, given by h(ν) ≡ 1

2ν · I−1ν. Here I denotes
the body inertia tensor; see Fig. 1. Typically, a solution νt ∈ O is periodic, in

PSfrag replacements

e1

e2

e3

νt

S

O

Figure 1: The dynamics of body angular momentum in the free rigid body.

which case (1) implies that qTµ0 = q0µ0, where T is the period. This means
qT = gq0 for some rotation g ∈ SO(3) about the µ0-axis. According to [23],
the angle ∆θ of rotation is given by

(2) ∆θ =
2Th(ν0)

‖µ0‖
− 1

‖µ0‖2
∫

S

dAO ,

where S ⊂ O denotes the region bounded by the curve νt (see figure) and dAO
denotes the standard area form on the sphere O ⊂ R3.
Astonishingly, it seems that (2) was unknown to 19th century mathematicians,
a vindication of the ‘bundle picture’ of mechanics promoted in Montgomery’s
thesis [22].

1.3 The heavy top

Consider a rigid body free to rotate about a point O fixed to the earth (Fig. 2).
The configuration space is Q ≡ SO(3) but full SO(3) spatial symmetry is broken
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by gravity (unless O and the center of mass coincide). A residual symmetry
group G ≡ S1 acts on Q according to θ · q ≡ R3

θq (θ ∈ S1); here R3
θ denotes a

rotation about the vertical axis e3 through angle θ.

PSfrag replacements

e1

e2

e3

O

Figure 2: The heavy top.

The quotient space Q/G, known more generally as the shape space, is here
identifiable with the unit sphere S2: for a configuration q ∈ SO(3) the cor-
responding ‘shape’ r ∈ S2 is the position of the vertical axis viewed in body
coordinates:

(1) r = q−1e3 .

In place of Euler’s rigid body equations one considers the Euler-Poisson heavy
top equations [5, (10) & (11), Chapter 1], [18, §15.10]. In the special Lagrange
top case these equations are integrable (see, e.g., [4, §30]), but more generally
they admit chaotic solutions. In any case, a periodic solution to the Euler-
Poisson equations determines a periodic solution rt ∈ S2 in shape space but the
corresponding motion of the body qt ∈ SO(3) need not be periodic. However,
if T is the period of the given solution to the Euler-Poisson equations, then (1)
implies qT = R3

∆θq0, for some angle ∆θ. Assume rt ∈ S2 is an embedded curve
having T as its minimal period. Then

∆θ =

∫ T

0

dt

rt · Irt
−
∫

S

f dAS2 ,(2)

where f(r) ≡ Trace I
r · Ir −

2Ir · Ir
(r · Ir)2

.

Here S ⊂ S2 denotes the region bounded by the curve rt, dAS2 denotes the
standard area form on S2, and I denotes the inertia tensor, about O, of the
body in its reference configuration (q = id). Equation (2) follows, for instance,
from results reviewed in 2.6 and 2.7, together with a curvature calculation along
the lines of [16, pp. 48–50].

Documenta Mathematica 7 (2002) 561–604



566 Anthony D. Blaom

1.4 General characteristics of reconstruction phases

In both 1.2(2) and 1.3(2) the angle ∆θ splits into two parts known as the
dynamic and geometric phases. The dynamic phase amounts to a time integral
involving the inertia tensor.1 The geometric phase is a surface integral, the
integrand depending on the inertia tensor in the case of the heavy top but being
independent of system parameters in the case of the free rigid body. Apart from
this, an important difference is the space in which the phase calculations occur.
In the heavy top this is shape space (which is just a point in the free rigid
body). In the free rigid body one computes on momentum spheres, i.e., on
co-adjoint orbits (which are trivial for the symmetry group S1 of the heavy
top).

As we will show, phases in general mechanical systems are computed in ‘twisted
products’ of shape space Q/G and co-adjoint orbits O, and geometric phases
have both a ‘shape’ and ‘momentum’ contribution. The source of geometric
phases is curvature. The ‘shape’ contribution comes from curvature of a con-
nection A on Q, bundled over shape space Q/G, constructed using the kinetic
energy. This is the so-called mechanical connection. The ‘momentum’ con-
tribution to geometric phases comes from curvature of a connection αµ0

on
G, bundled over a co-adjoint orbit O, constructed using an Ad-invariant inner
product on the Lie algebra g of G. We tentatively refer to this as a momentum
connection. The mechanical connection depends on the Hamiltonian; the mo-
mentum connection is a purely Lie-theoretic object . This explains why system
parameters appear explicitly in geometric phases for the heavy top but not in
the free rigid body.

In arbitrary simple mechanical systems the dynamic phase is a time integral
involving the so-called locked inertia tensor I. Roughly speaking, this tensor
represents the contribution to the kinetic energy metric coming from symmetry
variables. In a system of coupled rigid bodies moving freely through space, it
is the inertia tensor about the instantaneous mass center of the rigid body
obtained by locking all coupling joints [14, §3.3]

1.5 Paper outline

The new results of this paper are Theorems 3.4 and 3.5 (Section 3). These
theorems contain formulas for geometric and dynamic phases in general Hamil-
tonian systems on cotangent bundles, and in particular for simple mechanical
systems. These results are derived as a special case of [6], of which Section
2 is mostly a review. Specifically, Section 2 gives the abstract definition of
reconstruction phases, presents a phase formula for systems on arbitrary sym-
plectic manifolds, and surveys the special limiting cases relevant to cotangent
bundles. The mechanical connection A, the momentum connection αµ0

, and
limiting cases of the locked inertia tensor I are also defined.

1In the free rigid body one has 2Th(ν0) = 2Th(νt) =
∫ T
0 h(νt) dt = 2

∫ T
0 νt · I−1νt dt.
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Section 3 begins by showing how the curvatures of A and αµ0
can be respec-

tively lifted and extended to structures ΩA and Ωµ0
on ‘twisted products’ of

shape space Q/G and co-adjoint orbits O. On these products we also introduce
the inverted locked inertia function ξI.
The remainder of the paper is devoted to a proof of Theorems 3.4 and 3.5.
Sections 4 and 5 review relevant aspects of cotangent bundle reduction, cul-
minating in an intrinsic formula for symplectic structures on leaves of the
Poisson-reduced space (T∗Q)/G. Section 6 builds a natural ‘connection’ on
the symplectic stratification of (T∗Q)/G, and Sections 7 and 8 provide the de-
tailed derivations of dynamic and geometric phases. Appendix A describes the
covariant exterior calculus of bundle-valued differential forms, from the point
of view of associated bundles.

1.6 Connections to other work

Above what is explicitly cited here, our project owes much to [16]. Additionally,
we make crucial use of Cendra, Holm, Marsden and Ratiu’s description of
reduced spaces in mechanical systems as certain fiber bundle products [9].
In independent work, carried out from the Lagrangian point of view, Marsden,
Ratiu amd Scheurle [19] obtain reconstruction phases in mechanical systems
with a possibly non-Abelian symmetry group by directly solving appropriate
reconstruction equations. Rather than identify separate geometric and dynamic
phases, however, their formulas express the phase as a single time integral (no
surface integral appears). This integral is along an implicitly defined curve in
Q, whereas our formula expresses the phase in terms of ‘fully reduced’ objects.
The author thanks Matthew Perlmutter for helpful discussions and for making
a preliminary version of [24] available.

2 Review

In the setting of Hamiltonian systems on a general symplectic manifold P ,
reconstruction phases can be expressed by an elegant formula involving deriva-
tives of leaf symplectic structures and the reduced Hamiltonian, these deriva-
tives being computed transverse to the symplectic leaves of the Poisson-reduced
phase space P/G [6]. This formula, recalled in Theorem 2.3 below, grew out
of a desire to ‘Poisson reduce’ the earlier scheme of Marsden et al. [16, §2A],
in which geometric phases were identified with holonomy in an appropriate
principal bundle equipped with a connection. Familiarity with this holonomy
interpretation is not a prerequisite for understanding and applying Theorem
2.3.
We are ultimately concerned with the special case of cotangent bundles P =
T∗Q, and in particular with simple mechanical systems, which are introduced
in 2.4. After recalling the definition of the mechanical connection A in 2.5
we recall the formula for phases in the case of G Abelian (Theorem 2.6 &
Addendum 2.7). After introducing the momentum connection αµ in 2.8 we
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write down phase formulas for the other limiting case, Q = G (Theorem &
Addendum 2.9).

2.1 An abstract setting for reconstruction phases

Assume G is a connected Lie group acting symplectically from the left on
a smooth (C∞) symplectic manifold (P, ω), and assume the existence of an
Ad∗-equivariant momentum map J : P → g∗. (For relevant background, see
[14, 1, 18].) Here g denotes the Lie algebra of G. Assume G acts freely and
properly, and that the fibers of J are connected. All these hypotheses hold in
the case P = T∗Q when we take G to act by cotangent-lifting a free and proper
action on Q and assume Q is connected; details will be recalled in Section 3.
In general, P/G is not a symplectic manifold but merely a Poisson manifold, i.e.,
a space stratified by lower dimensional symplectic manifolds called symplectic
leaves; see opi cited. In the free rigid body, for example, one has P = T∗ SO(3),
G = SO(3), and P/G ∼= so(3)∗ ∼= R3. The symplectic leaves are the co-adjoint
orbits, i.e., the spheres centered on the origin.
Let xt denote an integral curve of the Hamiltonian vector field XH on P cor-
responding to some G-invariant Hamiltonian H. Restrict attention to the case
that the image curve yt under the projection π : P → P/G is T -periodic
(T > 0). Then the associated reconstruction phase is the unique grec ∈ G such
that xT = grec · x0; see Fig. 3.

PSfrag replacements

y0

grec

Pµ0
⊂ P/Gyt

π x0

xt

xT

J−1(µ0) ⊂ P

Figure 3: The definition of the reconstruction phase grec.

Noether’s theorem (J(xt) = constant) implies that yt, which is called the re-
duced solution, lies in the reduced space Pµ0

(see the figure), where

Pµ ≡ π(J−1(µ)) ⊂ P/G (µ ∈ g∗) ,

and where µ0 ≡ J(x0) is the initial momentum. In fact, Pµ0
is a symplectic leaf

of P/G (see Theorem 5.1) and the Ad∗-equivariance of J implies grec ∈ Gµ0
,

where Gµ0
is the isotropy of the co-adjoint action at µ0 ∈ g∗. Invariance of H

means H = h ◦ π for some h : P/G → R called the reduced Hamiltonian; the
reduced solution yt ∈ Pµ0

is an integral curve of the Hamiltonian vector field
Xhµ0

corresponding to Hamiltonian hµ0
≡ h|Pµ0

.
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2.2 Differentiating across symplectic leaves

We wish to define a kind of derivative in P/G transverse to symplectic leaves;
these derivatives occur in the phase formula for general Hamiltonian systems
to be recalled in 2.3 below. For this we require a notion of infinitesimal trans-
verse. Specifically, if C denotes the characteristic distribution on P/G (the
distribution tangent to the symplectic leaves), then a connection on the sym-
plectic stratification of P/G is a distribution D on P/G complementary to
C: TP = C ⊕ D. In that case there is a canonical two-form ωD on P/G
determined by D, whose restriction to a symplectic leaf delivers that leaf’s
symplectic structure, and whose kernel is precisely D.

Below we concern ourselves exclusively with connections D defined in a neigh-
borhood of a nondegenerate symplectic leaf, assuming D to be smooth in the
usual sense of constant rank distributions. Then ωD is smooth also.

Fix a leaf Pµ and assume D(y) is defined for all y ∈ Pµ. Then at each y ∈
Pµ there is, according to the Lemma below, a natural identification of the

infinitesimal transverse D(y) with g∗µ, denoted L(D,µ, y) : g∗µ
∼−→ D(y).

Now let λ be an arbitrary R-valued p-form on P/G, defined in a neighborhood
of Pµ . Then we declare the transverse derivative Dµλ of λ to be the gµ-valued
p-form on Pµ defined through

〈ν,Dµλ(v1, . . . , vp)〉 = dλ
(
L(D,µ, y)(ν), v1, . . . , vp

)

where ν ∈ g∗µ, v1, . . . , vp ∈ TyPµ and y ∈ Pµ.

Lemma and Definition. Let pµ : g∗ → g∗µ denote the natural projection, and
define TJ−1(µ)P ≡ ∪x∈J−1(µ)TxP . Fix y ∈ Pµ and let v ∈ D(y) be arbitrary.
Then for all w ∈ TJ−1(µ)P such that Tπ · w = v, the value of pµ〈dJ, w〉 ∈ g∗µ
is the same. Moreover, the induced map v 7→ pµ〈dJ, w〉 : D(y) → g∗µ is an
isomorphism. The inverse of this isomorphism (which depends on D, µ and y)
is denoted by L(D,µ, y) : g∗µ

∼−→ D(y).

We remark that the definition of L(D,µ, y) is considerably simpler in the case
of Abelian G; see [6].

2.3 Reconstruction phases for general Hamiltonian systems

Let g∗reg ⊂ g∗ denote the set of regular points of the co-adjoint action, i.e.,
the set of points lying on co-adjoint orbits of maximal dimension (which fill an
open dense subset). If µ0 ∈ g∗reg then gµ0

is Abelian; see Appendix B. In that
case Gµ0

is Abelian if it is connected.

Now suppose, in the scenario described earlier, that a reduced solution yt ∈ Pµ0

bounds a compact oriented surface Σ ⊂ Pµ0
.

Theorem (Blaom [6]). If µ0 ∈ g∗reg and Gµ0
is Abelian, then the reconstruc-
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tion phase associated with the periodic solution yt ∈ ∂Σ is

grec = gdynggeom , where:

gdyn = exp

∫ T

0

Dµ0
h(yt) dt , ggeom = exp

∫

Σ

Dµ0
ωD .

Here h denotes the reduced Hamiltonian, D denotes an arbitrary connection
on the symplectic stratification of P/G, ωD denotes the canonical two-form
on P/G determined byD, and Dµ0

denotes the transverse derivative operator
determined by D as described above.
The Theorem states that dynamic phases are time integrals of transverse deriva-
tives of the reduced Hamiltonian while geometric phases are surface integrals
of transverse derivatives of leaf symplectic structures.
We emphasize that while gdyn and ggeom depend on the choice of D, the total
phase grec is, by definition, independent of any such choice.
For the application of the above to non-free actions see [6].

2.4 Simple mechanical systems

Suppose a connected Lie group G acts freely and properly on a connected
manifold Q. All actions in this paper are understood to be left actions. A
Hamiltonian H : T∗Q → R is said to enjoy G-symmetry if it is invariant
with respect to the cotangent-lifted action of G on T∗Q (see [1, p. 283] for the
definition of this action). This action admits an Ad∗-equivariant momentum
map J : T∗Q→ g∗ defined through

(1) 〈J(x), ξ〉 ≡ 〈x, ξQ(q)〉 (x ∈ T∗qQ, q ∈ Q, ξ ∈ g) ,

where ξQ denotes the infinitesimal generator on Q corresponding to ξ. A simple
mechanical system is a Hamiltonian H : T∗Q→ R of the form

H(x) =
1

2
〈〈x, x〉〉∗Q + V (q) (x ∈ T∗qQ) .

Here 〈〈 · , · 〉〉∗Q denotes the symmetric contravariant two-tensor on Q determined
by some prescribed Riemannian metric 〈〈 · , · 〉〉Q on Q (the kinetic energy met-
ric), and V is some prescribed G-invariant function on Q (the potential en-
ergy). To ensure G-symmetry we are supposing that G acts on Q by 〈〈 · , · 〉〉Q-
isometries.

2.5 Mechanical connections

In general, the configuration space Q is bundled in a topologically non-trivial
way over shape space Q/G, i.e., there is no global way to separate shape vari-
ables from symmetry variables. However, fixing a connection on the bundle
allows one to split individual motions. In the case of simple mechanical sys-
tems such a connection is determined by the kinetic energy, but in general there
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is no canonical choice. All the phase formulas we shall present assume some
choice has been made.
Under our free and properness assumptions, the projection ρ : Q → Q/G is a
principal G-bundle. So we will universally require that this bundle be equipped
with a connection one-form A ∈ Ω1(Q, g). If a G-invariant Riemannian metric
on Q is prescribed (e.g., the kinetic energy in the case of simple mechanical
systems) a connection A is determined by requiring that the corresponding
distribution of horizontal spaces hor ≡ ker A are orthogonal to the ρ-fibers
(G-orbits). In this context, A is called the mechanical connection; its history
is described in [14, §3.3]
As we shall recall in 4.2, a connection A on ρ : Q → Q/G allows one to
construct a Hamiltonian analogue T∗Aρ : T∗Q → T∗(Q/G) for the tangent
map Tρ : TQ → T(Q/G). Thus for a state x ∈ T∗qQ one may speak of
the ‘generalized momentum’ T∗Aρ · x ∈ T∗r(Q/G) of the corresponding shape
r = ρ(q) ∈ Q/G.

2.6 Phases for Abelian symmetries

Let H : T∗Q → R be an arbitrary Hamiltonian enjoying G-symmetry. When
G is Abelian it is known that each reduced space Pµ (µ ∈ g∗, P = T∗Q) is
isomorphic to T∗(Q/G) equipped with the symplectic structure

ωµ = ωQ/G − 〈µ, (τ∗Q/G)∗ curv A〉 .
It should be emphasized that the identification Pµ ∼= T∗(Q/G) depends on the
choice of connection A. See, e.g., [6] for the details. In the above equation ωQ/G
denotes the canonical symplectic structure on T∗(Q/G) and τ∗Q/G : T∗(Q/G)→
Q/G is the usual projection; curv A denotes the curvature of A, viewed as
a g-valued two-form on Q/G (see, e.g., [16, §4]). The value of the reduced
Hamiltonian hµ : T∗(Q/G) → R at a point y ∈ T∗(Q/G) is H(x) where
x ∈ T∗Q is any point satisfying J(x) = µ and T∗Aρ · x = y.
The Theorem below is implicit in [6]. The special case in Addendum 2.7 is due
to Marsden et al [16] (explicitly appearing in [6]).

Theorem. Let yt ∈ Pµ0
∼= T∗(Q/G) be a periodic reduced solution curve. Let

rt ≡ τ∗Q/G(yt) ∈ Q/G denote the corresponding curve in shape space. Assume

t 7→ rt bounds a compact oriented surface S ⊂ Q/G. Assume rt and yt have
the same minimal period T . Then the reconstruction phase associated with yt
is

grec = gdynggeom , where:

gdyn = exp

∫ T

0

∂h

∂µ
(µ0, yt) dt , ggeom = exp

(
−
∫

S

curv A

)
,

and where ∂h/∂µ (µ′, y′) ∈ g is defined through

〈ν, ∂h
∂µ

(µ′, y′)〉 =
d

dt
hµ′+tν(y′)

∣∣∣
t=0

( ν, µ′ ∈ g∗, y′ ∈ T∗(Q/G) ) .
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Here A denotes an arbitrary connection on Q→ Q/G.

2.7 Locked inertia tensor (Abelian case)

In the special case of a simple mechanical system one may be explicit about
the dynamic phase. To this end, define for each q ∈ Q a map Î(q) : g → g∗

through
〈Î(q)(ξ), η〉 = 〈〈ξQ(q), ηQ(q)〉〉Q (ξ, η ∈ g) ,

where ξQ denotes the infinitesimal generator on Q corresponding to ξ. Varying
over all q ∈ Q, one obtains a function Î : Q→ Hom(g, g∗). When G is Abelian,

Î is G-invariant, dropping to a function I : Q/G→ Hom(g, g∗) called the locked

inertia tensor (terminology explained in 1.4). As G acts freely on Q, Î(q) : g→
g∗ has an inverse Î(q)−1 : g∗ → g leading to functions Î−1 : Q → Hom(g∗, g)
and I−1 : Q/G→ Hom(g∗, g).

Addendum. When H : T∗Q → R is a simple mechanical system and A is
the mechanical connection, then the dynamic phase appearing in the preceding
Theorem is given by

gdyn =

∫ T

0

I−1(rt)µ0 dt .

In particular, the reconstruction phase grec is computed entirely in the shape
space Q/G.

2.8 Momentum connections

In the rigid body example discussed in 1.2 (G = SO(3)), the angle ∆θ may
be identified with an element of gµ0

, where µ0 ∈ g∗ ∼= R3 is the initial spatial
angular momentum. This angle is the logarithm of the reconstruction phase
grec ∈ Gµ0

, there denoted g. Let ω−O denote the ‘minus’ version of the sym-
plectic structure on O, viewed as co-adjoint orbit (see below). Then Equation
1.2(2) may alternatively be written

(1) 〈µ0, log grec〉 = 2Th(ν0) +

∫

S

ω−O .

As we shall see, this generalizes to arbitrary groups G, but it refers only to
the µ0-component of the log phase. This engenders the following question,
answered in the Proposition below: Of what gµ0

-valued two-form on O is ω−O
the µ0-component?
For an arbitrary connected Lie group G equip g∗ with the ‘minus’ Lie-Poisson
structure (see, e.g., [14, §2.8]). The symplectic leaves are the co-adjoint orbits;
the symplectic structure on an orbit O = G · µ0 is ω−O, where ω−O is given
implicitly by

(2) ω−O

(
d

dt
exp(tξ1 ) · µ

∣∣∣
t=0

,
d

dt
exp(tξ2 ) · µ

∣∣∣
t=0

)
= −〈µ, [ξ1, ξ2]〉 ,
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for arbitrary µ ∈ O and ξ1, ξ2 ∈ g. The map τµ0
: G→ O sending g to g−1 · µ0

is a principal Gµ0
-bundle. If we denote by θG ∈ Ω1(G, g) the right-invariant

Mauer-Cartan form on G, then (2) may be succinctly written

(3) τ∗µ0
ω−O = −〈µ0,

1

2
θG ∧ θG〉 .

Assuming g admits an Ad-invariant inner product, the bundle τµ0
: G→ O ∼=

G/Gµ0
comes equipped with a connection one-form αµ0

≡ 〈prµ0
, θG〉; here

prµ0
: g→ gµ0

denotes the orthogonal projection. We shall refer to αµ0
as the

momentum connection on G→ O ∼= G/Gµ0
.

For simplicity, assume that µ0 lies in g∗reg and that Gµ0
is Abelian, as in 2.3.

Then the curvature of αµ0
may be identified with a gµ0

-valued two-form on
O = G · µ0 denoted curvαµ0

.

Proposition. Under the above conditions

(curvαµ0
)

(
d

dt
exp(tξ1 ) · µ

∣∣∣
t=0

,
d

dt
exp(tξ2 ) · µ

∣∣∣
t=0

)
= prµ0

g−1 · [ξ1, ξ2] ,

where g is any element of G such that µ = g · µ0, and ξ1, ξ2 ∈ g are arbitrary.
In particular, ω−O is a component of curvature: ω−O = −〈µ0, curvαµ0

〉.

Proof. Because Gµ0
is assumed Abelian, we have τ ∗µ0

curvαµ0
= dαµ0

=

〈prµ0
, dθG〉. Applying the Mauer-Cartan identity dθG = 1

2θG ∧ θG, we ob-

tain τ∗µ0
curvαµ0

= 〈prµ0
, 1

2θG ∧ θG〉, which implies both the first part of

the Proposition and the identity τ ∗µ0
〈µ0, curvαµ0

〉 = 〈µ0 ◦ prµ0
, 1

2θG ∧ θG〉.
But µ0 ∈ g∗reg implies that the space g⊥µ0

orthogonal to gµ0
coincides with

[g, gµ0
] (see Appendix B), implying 〈µ0,prµ0

ξ〉 = 〈µ0, ξ〉 for all ξ ∈ g.

So τ∗µ0
〈µ0, curvαµ0

〉 = 〈µ0,
1
2θG ∧ θG〉〉 = −τ∗µ0

ω−O, by (3). This implies

ω−O = −〈µ0, curvαµ0
〉.

2.9 Phases for Q = G

When Q = G, the Poisson manifold P/G = (T∗G)/G is identifiable with g∗

and the reduced space Pµ0
is the co-adjoint orbit O ≡ G ·µ0, equipped with the

symplectic structure ω−O discussed above. Continue to assume that g admits an
Ad-invariant inner product. As we will show in Proposition 6.1, the restriction
ιµ0

: [g, gµ0
]◦ → g∗µ0

of the natural projection pµ0
: g∗ → g∗µ0

is then an
isomorphism, assuming µ0 ∈ g∗reg. Here ◦ denotes annihilator. The following
result is implicit in [6].

Theorem. Assume µ0 ∈ g∗reg and Gµ0
is Abelian. Let νt ∈ Pµ0

∼= O ≡ G · µ0

be a periodic reduced solution curve bounding a compact oriented surface S ⊂
O. Let gt ∈ G be any curve such that νt = gt · µ0 ≡ Ad∗

g−1
t
µ0. Then the
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reconstruction phase associated with νt is given by

grec = gdynggeom , where:

gdyn = exp

∫ T

0

w(t) dt , ggeom = exp

(
−
∫

S

curvαµ0

)
,

and where w(t) ∈ gµ0
is defined through

〈λ,w(t)〉 =
d

dτ
h
(
gt · (µ0 + τι−1

µ0
(λ) )

) ∣∣∣
τ=0

(λ ∈ g∗µ0
) .

Here αµ0
denotes the momentum connection on G→ O ∼= G/Gµ0

.

For a simple mechanical system on T∗G the reduced Hamiltonian h : g∗ → R
is of the form

h(ν) =
1

2
〈ν, I−1ν〉 , (ν ∈ g∗)

for some isomorphism I : g
∼−→ g∗, the inertia tensor, which we may suppose is

symmetric as an element of g∗ ⊗ g∗.

Addendum ([6]). Let G act on Hom(g∗, g) via conjugation, so that g · I−1 =
Adg−1 ◦I−1 ◦Ad∗g−1 (g ∈ G). Then for a simple mechanical system one has

w(t) = prµ0

(
(g−1
t · I−1)(µ0)

)
,

where prµ0
: g→ gµ0

is the orthogonal projection. Moreover the generalization
2.8(1) of Montgomery’s rigid body formula holds.

3 Formulation of new results

According to known results reviewed in the preceding section, phases for sim-
ple mechanical systems are computed in shape space Q/G when G is Abelian,
and on a co-adjoint orbit O = G · µ0 when Q = G. For the general case, G
non-Abelian and Q 6= G, we need to introduce the concepts of associated bun-
dles and forms, and the locked inertia tensor for non-Abelian groups (3.1–3.3).
In 3.4 and 3.5 we present the main results of the paper, namely explicit for-
mulas for geometric and dynamic phases in Hamiltonian systems on cotangent
bundles.

3.1 Associated bundles

Given an arbitrary principal bundle ρ : Q→ Q/G and manifold O on which G
acts, we denote the quotient of Q×O under the diagonal action of G by OQ.
This is the total space of a bundle ρO : OQ → Q/G : [q, ν]G 7→ [q]G known as
the associated bundle for O. As its fibers are diffeomorphic to O, it may be
regarded as a ‘twisted product’ of Q/G and O.
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Here the important examples will be the co-adjoint bundle g∗Q and the co-
adjoint orbit bundle OQ ⊂ g∗Q, where O ⊂ g∗ is a co-adjoint orbit.

We have seen that log geometric phases are surface integrals of the curvature
curv A ∈ Ω2(Q/G, g) of the mechanical connection A, when G is Abelian,
and of the curvature curvαµ0

∈ Ω2(O, gµ0
) of the momentum connection αµ0

,
when Q = G. For simple mechanical systems the log dynamic phase is a time
integral of an inverted inertia tensor I−1 in both cases. To elaborate on the
claims regarding the general case made in 1.4, we need to see how curv A,
curvαµ0

and I−1 can be viewed as objects on OQ.
A non-Abelian G forces us to regard curv A as an element of Ω2(Q/G, gQ),
i.e., as bundle-valued. See, e.g., Note A.6 and A.2(1) for the definition. The
pull-back ρ∗O curv A is then a two-form on OQ, but with values in the pull-
back bundle ρ∗OgQ. Pull-backs of bundles and forms are briefly reviewed in
Appendix A.
On the other hand, curvαµ0

is vector-valued because gµ0
is Abelian under the

hypothesis µ0 ∈ g∗reg. It is a two-form on the model space O of the fibers of
ρO : OQ → Q/G. Its natural ‘extension’ to a two-form on OQ is the associated
form (curvαµ0

)Q ∈ Ω2(OQ, gµ0
), which we now define more generally.

3.2 Associated forms

Let ρ : Q → Q/G be a principal bundle equipped with a connection A, and
let O be a manifold on which G acts. If λ is a G-invariant, R-valued k-form
on O then the associated form λQ is the R-valued k-form on OQ defined as
follows: For arbitrary u1, . . . , uk ∈ T[q,ν]GOQ, there exist A-horizontal curves

t 7→ qhor
i (t) ∈ Q through q, and curves t 7→ νi(t) ∈ Q through ν, such that

ui =
d

dt
[qhor
i (t), νi(t)]G

∣∣∣
t=0

,

in which case λQ is well defined by

(1) λQ(u1, . . . , uk) = λ

(
d

dt
ν1(t)

∣∣∣
t=0

, . . . ,
d

dt
νk(t)

∣∣∣
t=0

)
.

When R is replaced by a general vector space V on which G acts linearly,
then the associated form λQ of a G-equivariant, V -valued k-form λ is a certain
k-form on OQ taking values in the pull-back bundle ρ∗OVQ. Its definition is
postponed to 7.2. In symbols, we have a map

λ 7→ λQ

ΩkG(O, V )→ Ωk(OQ, ρ∗OVQ) .

The identity (λ ∧ µ)Q = λQ ∧ µQ holds. If G acts trivially on V (e.g., V = R
or gµ0

), then ρ∗OVQ ∼= OQ × V and we identify λQ with a V -valued form on
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OQ and (1) holds.

This last remark applies, in particular, to curvαµ0
.

3.3 Locked inertia tensor (general case)

When G is non-Abelian the map Î : Q → Hom(g, g∗) defined in 2.7 is G-
equivariant if G acts on Hom(g, g∗) via conjugation. It therefore drops to a
(bundle-valued) function I ∈ Ω0(Q/G,Hom(g, g∗)Q), the locked inertia tensor:

I([q]G) ≡ [q, Î(q)]G .

The inverse I−1 ∈ Ω0(Q/G,Hom(g∗, g)Q) is defined similarly.
View the inclusion iO : O ↪→ g∗ as an element of Ω0(O, g∗). Then with the
help of the associated form (iO)Q ∈ Ω0(OQ, ρ∗Og∗Q) one obtains a function

ρ∗OI−1∧(iO)Q onOQ taking values in ρ∗OgQ. (Under the canonical identification
ρ∗Og∗Q ∼= OQ ⊕ g∗Q, one has (iO)Q(η) = η ⊕ η.) Here the wedge ∧ implies a
contraction Hom(g∗, g)⊗ g∗ → g.

3.4 Phases for simple mechanical systems

Before stating our new results, let us summarize with a few definitions. Put

ΩA ≡ ρ∗O curv A : the mechanical curvature,

Ωµ0
≡ (curvαµ0

)Q : the momentum curvature,

ξI ≡ ρ∗OI−1 ∧ (iO)Q : the inverted locked inertia function.

Recall here that A denotes a connection on Q → Q/G (the mechanical con-
nection if H is a simple mechanical system), αµ0

denotes the momentum con-
nection on G → O ∼= G/Gµ0

, ρO : OQ → Q/G denotes the associated bundle
projection and iO ∈ Ω0(O, g∗) denotes the inclusion O ↪→ g∗.
By construction, ΩA, Ωµ0

and ξI are all differential forms on OQ. The momen-
tum curvature Ωµ0

is gµ0
-valued, and can therefore be integrated over surfaces

S ⊂ OQ; the forms ΩA and ξI are ρ∗OgQ-valued. To make them gµ0
-valued

requires an appropriate projection:

Definition. Let G act on Hom(g, gµ0
) via g · σ ≡ Adg ◦σ and let Prµ0

∈
Ω0(O,Hom(g, gµ0

)) denote the unique equivariant zero-form whose value at µ0

is the orthogonal projection prµ0
: g→ gµ0

.

With the help of the associated form (Prµ0
)Q and an implied contraction

Hom(g, gµ0
) ⊗ g → gµ0

, we obtain ρ∗O(gµ0
)Q-valued forms (Prµ0

)Q ∧ ΩA and
(Prµ0

)Q ∧ ξI. As we declare G to act trivially on gµ0
, these forms are in fact

identifiable with gµ0
-valued forms as required.

For P = T∗Q and G non-Abelian the reduced space Pµ0
can be identified with

T∗(Q/G)⊕OQ, where O ≡ G · µ0. Here ⊕ denotes product in the category of
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fiber bundles over Q/G (see Notation in 4.2). This observation was first made
in the Lagrangian setting by Cendra et al. [9]. We recall details in 4.2 and
Proposition 5.1. A formula for the symplectic structure on Pµ0

has been given
by Perlmutter [24]. We derive the form of it we will require in 5.2. The value
of the reduced Hamiltonian hµ0

: Pµ0
→ R at z ⊕ [q, µ]G ∈ T∗(Q/G) ⊕ OQ is

H(x), where x ∈ T∗qQ is any point satisfying T∗Aρ · x = z and J(x) = µ.

In the case of simple mechanical systems one has

(1) hµ0
(z ⊕ [q, µ]G) =

1

2
〈〈z, z〉〉∗Q/G +

1

2
〈µ, Î−1(q)µ〉+ VQ/G(ρ(q)) .

Here VQ/G denotes the function on Q/G to which the potential V drops on
account of its G-invariance, and 〈〈 · , · 〉〉∗Q/G denotes the symmetric contravari-

ant two-tensor on Q/G determined by the Riemannian metric 〈〈 · , · 〉〉Q/G that
Q/G inherits from the G-invariant metric 〈〈 · , · 〉〉Q on Q. (The second term
above may be written intrinsically as 1/2 ((idg∗)Q∧(ρ∗g∗I−1∧(idg∗)Q))([q, µ]G),
where (idg∗)Q is defined in 6.4.) The formula (1) is derived in 7.1.

Theorem. Let H : T∗Q → R be a simple mechanical system, as defined in
2.4. Assume µ0 ∈ g∗reg, Gµ0

is Abelian, and let zt⊕ ηt ∈ Pµ0
∼= T∗(Q/G)⊕OQ

(O = G · µ0) denote a periodic reduced solution curve. Assume zt ⊕ ηt and ηt
have the same minimal period T and assume t 7→ ηt bounds a compact oriented
surface S ⊂ OQ. Then the corresponding reconstruction phase is

grec = gdynggeom , where

gdyn = exp

∫ T

0

(Prµ0
)Q ∧ ξI (ηt) dt ,

ggeom = exp

(
−
∫

S

( Ωµ0
+ (Prµ0

)Q ∧ ΩA )

)
.

Here ΩA is the mechanical curvature, Ωµ0
the momentum curvature, and ξI the

inverted locked inertia function, as defined above; A denotes the mechanical
connection.

Notice that the phase grec does not depend on the zt part of the reduced solution
curve (zt, ηt), i.e., is computed exclusively in the space OQ.

3.5 Phases for arbitrary systems on cotangent bundles

We now turn to the case of general Hamiltonian functions on T∗Q (not neces-
sarily simple mechanical systems). To formulate results in this case, we need
the fact, recalled in Theorem 4.2, that (T∗Q)/G is isomorphic to T∗(Q/G)⊕g∗Q,
where ⊕ denotes product in the category of fiber bundles over Q/G (see No-
tation 4.2). This isomorphism depends on the choice of connection A on
ρ : Q→ Q/G.
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Theorem. Let H : T∗Q → R be an arbitrary G-invariant Hamiltonian and
h : T∗(Q/G) ⊕ g∗Q → R the corresponding reduced Hamiltonian. Consider a
periodic reduced solution curve zt ⊕ ηt ∈ Pµ0

∼= T∗(Q/G) ⊕ OQ, as in the
Theorem above. Then the conclusion of that Theorem holds, with the dynamic
phase now given by

gdyn = exp

∫ T

0

Dµ0
h(zt ⊕ ηt) dt ,

where Dµ0
h( · ) ∈ gµ0

is defined through

(1) 〈ν,Dµ0
h(z ⊕ [q, µ0]G)〉 =

d

dt
h(z ⊕ [q, µ0 + tι−1

µ0
(ν)]G)

∣∣∣
t=0

(ν ∈ g∗µ0
) .

Here ιµ0
: [g, gµ0

]◦
∼−→ g∗µ0

is the isomorphism defined in 2.9.

Theorems 3.4 and 3.5 will be proved in Sections 7 and 8.

4 Symmetry reduction of cotangent bundles

In this section and the next, we revisit the process of reduction in cotangent
bundles by describing the symplectic leaves in the associated Poisson-reduced
space. For an alternative treatment and a brief history of cotangent bundle
reduction, see Perlmutter [24, Chapter 3].

In the sequel G denotes a connected Lie group acting freely and properly on a
connected manifold Q, and hence on T∗Q; J : T∗Q→ g∗ denotes the momen-
tum map defined in 2.4(1); A denotes an arbitrary connection one-form on the
principal bundle ρ : Q→ Q/G.

4.1 The zero momentum symplectic leaf

The form of an arbitrary symplectic leaf Pµ of (T∗Q)/G will be described in
Section 5.1 using a concrete model for the abstract quotient (T∗Q)/G described
in 4.2 below. However, the structure of the particular leaf P0 = J−1(0)/G
can be described directly. Moreover, we shall need this description to relate
symplectic structures on T∗Q and T∗(Q/G) (Corollary 4.3).

Since ρ : Q → Q/G is a submersion, it determines a natural vector bundle
morphism ρ◦ : (ker Tρ)◦ → T∗(Q/G) sending dq(f ◦ ρ) to dρ(q)f , for each
locally defined function f on Q/G. Here (ker Tρ)◦ denotes the annihilator of
ker Tρ. In fact, 2.4(1) implies that (ker Tρ)◦ = J−1(0), so that J−1(0) is a
vector bundle over Q, and we have the commutative diagram
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ρ◦

J−1(0) T∗(Q/G)

.

Q Q/G
ρ

Notation. We will write J−1(0)q ≡ J−1(0) ∩ T∗qQ = (ker Tqρ)◦ for the fiber
of J−1(0) over q ∈ Q.

From the definition of ρ◦, it follows that ρ◦ maps J−1(0)q isomorphically onto
T∗ρ(q)(Q/G). In particular, ρ◦ is surjective.

It is readily demonstrated that the fibers of ρ◦ are G-orbits so that ρ◦ de-
termines a diffeomorphism between T∗(Q/G) and P0 = J−1(0)/G. More-
over, if ωQ/G denotes the canonical symplectic structure on T∗(Q/G) and
i0 : J−1(0) ↪→ T∗Q the inclusion, then we have

(1) (ρ◦)∗ωQ/G = i∗0ω .

This formula is verified by first checking the analogous statement for the canon-
ical one-forms on T∗Q and T∗(Q/G).

4.2 A model for the Poisson-reduced space (T∗Q)/G

Let hor = ker A denote the distribution of horizontal spaces on Q determined
by A ∈ Ω1(Q, g). Then have the decomposition of vector bundles over Q

(1) TQ = hor⊕ ker Tρ ,

and the corresponding dual decomposition

(2) T∗Q = J−1(0)⊕ hor◦ .

If A′ : T∗Q→ J−1(0) denotes the projection along hor◦, then the composite

(3) T∗Aρ ≡ ρ◦ ◦A′ : T∗Q→ T∗(Q/G)

is a vector bundle morphism covering ρ : Q → Q/G. It the Hamiltonian
analogue of the tangent map Tρ : TQ→ T(Q/G).

The momentum map J : T∗Q→ g∗ determines a map J′ : T∗Q→ g∗Q through

J′(x) ≡ [q,J(x)]G for x ∈ T∗qQ and q ∈ Q .

Note that while J is equivariant, the map J′ is G-invariant.
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Notation. If M1, M2 and B are smooth manifolds and there are maps f1 :
M1 → B and f2 : M2 → B, then one has the pullback manifold

{(m1,m2) ∈M1 ×M2 | f1(m1) = f2(m2)} ,

which we will denote by M1 ⊕BM2, or simply M1 ⊕M2. If f1 and f2 are fiber
bundle projections then M1 ⊕M2 is a product in the category of fiber bundles
over B. In particular, in the case of vector bundles, M1 ⊕M2 is the Whitney
sum of M1 and M2. In any case, we write an element of M1 ⊕M2 as m1 ⊕m2

(rather than (m1,m2)).

Noting that T∗(Q/G) and g∗Q are both vector bundles over Q/G, we have the
following result following from an unravelling of definitions:

Theorem. The map π : T∗Q→ T∗(Q/G)⊕g∗Q defined by π(x) ≡ T∗Aρ·x⊕J′(x)
is a surjective submersion whose fibers are the G-orbits in T∗Q. In other
words, T∗(Q/G) ⊕ g∗Q is a realization of the abstract quotient (T∗Q)/G, the
map π : T∗Q → T∗(Q/G) ⊕ g∗Q being a realization of the natural projection
T∗Q→ (T∗Q)/G.

The above model of (T∗Q)/G is simply the dual of Cendra, Holm, Marsden
and Ratiu’s model of (TQ)/G [9].

4.3 Momentum shifting

Before attempting to describe the symplectic leaves of the Poisson-reduced
space (T∗Q)/G ∼= T∗(Q/G) ⊕ g∗Q, we should understand the projection π :

T∗Q
/G−−→ T∗(Q/G)⊕ g∗Q better. In particular, we should understand the map

T∗Aρ : T∗Q → T∗(Q/G), which means first understanding the projection A′ :
T∗Q→ J−1(0) along hor◦.
Let x ∈ T∗qQ be given and define µ ≡ J(x). The restriction of J to T∗qQ is a
linear map onto g∗ (by 2.4(1)). The kernel of this restriction is J−1(0)q and
J−1(µ)q ≡ J−1(µ) ∩ T∗qQ is an affine subspace of T∗qQ parallel to J−1(0)q; see
Fig. 4.

*

PSfrag replacements

ρ◦

J−1(0)
T∗(Q/G)

.
Q

Q/G

ρ

x

A′(x)

J−1(µ)q

J−1(0)q O T∗qQ

∗ hor◦q

Figure 4: Describing the projection x 7→ A′(x) : T∗qQ→ J−1(0)q along hor◦q .

Since J−1(0)q and J−1(µ)q are parallel, it follows from the decomposition 4.2(2)
that J−1(µ)q and hor◦q intersect in a single point ∗, as indicated in the figure.
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We then have A′(x) = x − ∗. Indeed, viewing the R-valued one-form 〈µ,A〉
as a section of the cotangent bundle T∗Q → Q, one checks that the covector
〈µ,A〉(q) ∈ T∗qQ belongs simultaneously to J−1(µ) and hor◦, so that ∗ =
〈µ,A〉(q). We have therefore proven the following:

Lemma. Define the momentum shift Mµ : T∗Q → T∗Q, which maps J−1(0)q
onto to J−1(µ)q, by Mµ(x) ≡ x+ 〈µ,A〉(τ∗Q(x)), where τ∗Q : T∗Q→ Q denotes
the cotangent bundle projection. Then

A′(x) = M−1
J(x)(x) .

If θ denotes the canonical one-form on T∗Q, then one readily computes M∗µθ =
θ + 〈µ, (τ∗Q)∗A〉. In particular, as ω = −dθ,

M∗µω = ω − 〈µ, (τ∗Q)∗dA〉 .

This identity, Equation 4.1(1), and the above Lemma have the following im-
portant corollary, which relates the symplectic structures on the domain and
range of the map T∗Aρ : T∗Q→ T∗(Q/G):

Corollary. The two-forms (T∗Aρ)∗ωQ/G and ω + 〈µ, (τ∗Q)∗dA〉 agree when

restricted to J−1(µ).

5 Symplectic leaves in Poisson reduced cotangent bundles

In this section we describe the symplectic leaves Pµ ⊂ (T∗Q)/G as subsets
of the model described in 4.2. We then describe explicitly their symplectic
structures.

5.1 Reduced spaces as symplectic leaves

The following is a specialized version of the symplectic reduction theorem of
Marsden, Weinstein and Meyer [20, 21], formulated such that the reduced
spaces are realized as symplectic leaves (see, e.g., [7, Appendix E]).

Theorem. Consider P , ω, G, J and Pµ, as defined in 2.1, where µ ∈ J(P ) is
arbitrary. Then:

(1) Pµ is a symplectic leaf of P/G (which is a smooth Poisson manifold).

(2) The restriction πµ : J−1(µ)→ Pµ of π : P → P/G is a surjective submer-
sion whose fibers are Gµ-orbits in P , i.e., Pµ is a realization of the abstract
quotient J−1(µ)/Gµ.

(3) If ωµ is the leaf symplectic structure of Pµ, and iµ : J−1(µ) ↪→ P the
inclusion, then i∗µω = π∗µωµ.

(4) Pµ ∩ Pµ′ 6= ∅ if and only if Pµ = Pµ′ , which is true if and only if µ and µ′

lie on the same co-adjoint orbit. Also, P/G = ∪µ∈J(P ) Pµ.
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(5) codimPµ = codimG · µ.

Proposition. Fix µ ∈ g∗. Then, taking P ≡ T∗Q and identifying P/G with
T∗(Q/G)⊕ g∗Q (Theorem 4.2), one obtains

Pµ = T∗(Q/G)⊕OQ , where O ≡ G · µ .

Here G · µ denotes the co-adjoint orbit through µ and the associated bundle
OQ is to be viewed as a fiber subbundle of g∗Q in the obvious way.

Proof. Under the given identification, the projection P → P/G is represented
by the map π : T∗Q → T∗(Q/G) ⊕ g∗Q defined in Theorem 4.2. From this

definition it easily follows that Pµ ≡ π(J−1(µ)) is contained in T∗(Q/G)⊕OQ.
We now prove the reverse inclusion T∗(Q/G)⊕OQ ⊂ π(J−1(µ)).
Let z ⊕ [q′, µ′]G be an arbitrary point in T∗(Q/G) ⊕ OQ. Then µ′ ∈ O, so
that µ′ = g · µ for some g ∈ G, giving us z ⊕ [q′, µ′]G = z ⊕ [q, µ]G, where
q ≡ g−1 · q′. Now z and [q, µ]G necessarily have a common base point in Q/G,
which means that z ∈ T∗ρ(q)(Q/G). The map ρ◦ : J−1(0) → T∗(Q/G) of 4.1

maps J−1(0)q ≡ J−1(0) ∩ T∗qQ isomorphically onto T∗ρ(q)(Q/G). Therefore

there exists x0 ∈ J−1(0)q such that ρ◦(x0) = z. Define x ≡ Mµ(x0) ∈ J−1(µ),
where Mµ is the momentum shift of Lemma 4.3. Then T∗Aρ · x = z. We now
compute

π(x) = T∗Aρ · x⊕ J′(x) = z ⊕ [τ∗Q(x),J(x)]G = z ⊕ [q, µ]G = z ⊕ [q′, µ′]G .

Since x lies in J−1(µ) and z⊕ [q′, µ′]G was an arbitrary point of T∗(Q/G)⊕OQ,
this proves T∗(Q/G)⊕OQ ⊂ π(J−1(µ)).

5.2 The leaf symplectic structures

The remainder of the section is devoted to the proof of the following key result,
which is due (in a different form) to Perlmutter [24, Chapter 3]:

Theorem. Let O denote the co-adjoint orbit through a point µ in the im-
age of J, let ω−O denotes the ‘minus’ co-adjoint orbit symplectic structure on
O (see 2.8), and let iO ∈ Ω0(O, g∗) denote the inclusion O ↪→ g∗. Let
(ω−O)Q ∈ Ω2(OQ) and (iO)Q ∈ Ω0(OQ, ρ∗Og∗Q) denote the corresponding as-
sociated forms; see 3.2. (Under the canonical identification ρ∗Og∗Q ∼= OQ ⊕ g∗Q,
one has (iO)Q(η) = η ⊕ η.) Then the symplectic structure of the leaf Pµ =
T∗(Q/G)⊕OQ is given by

ωµ = pr∗1 ωQ/G + pr∗2
(

(ω−O)Q − (iO)Q ∧ ρ∗O curv A
)
,

where pr1 : T∗(Q/G)⊕OQ → T∗(Q/G) and pr2 : T∗(Q/G)⊕OQ → OQ denote
the projections onto the first and second summands, and curv A ∈ Ω2(Q/G, gQ)
denotes the curvature of A.
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Because the restriction πµ : J−1(µ) → Pµ of π : T∗Q → T∗(Q/G) ⊕ g∗Q
is a surjective submersion, by Theorem 5.1(2), to prove the above Theorem
it suffices to verify the formula in 5.1(3). Appealing to the definition of π
(Theorem 4.2) and Corollary 4.3, we compute

(1) π∗µ pr∗1 ωQ/G = i∗µ(T∗Aρ)∗ωQ/G = i∗µω + 〈µ, i∗µ(τ∗Q)∗dA〉 .
For the next part of the proof we need the following technical result proven at
the end:

Lemma. If u ∈ Tx(J−1(µ)) is arbitrary, then

TJ′ · u =
d

dt
[qhor(t), exp(tξ) · µ]G

∣∣∣
t=0

,

for some A-horizontal curve t 7→ qhor(t) ∈ Q, where ξ ≡ −A(Tτ∗Q · u).

Now π∗µ pr∗2(ω−O)Q = i∗µ(J′)∗(ω−O)Q and, by definition,

ω−O

(
d

dt
exp(tξ) · µ

∣∣∣
t=0

,
d

dt
exp(tη) · µ

∣∣∣
t=0

)
= −〈µ, [ξ, η]〉 (ξ, η ∈ g) .

So it readily follows from the lemma that

(2) π∗µ pr∗2(ω−O)Q = −1

2
〈µ, i∗µ(τ∗Q)∗(A ∧A)〉 .

A routine calculation of pullbacks shows that

(3) (π∗µ pr∗2(iO)Q)(x) = [x⊕ τ∗Q(x), µ]G ∈ (ρO ◦ pr2 ◦πµ)∗g∗Q (x ∈ J−1(µ))

and

(4) (π∗µ pr∗2 ρ
∗
O curv A)(u1, u2) =

[x⊕ τ∗Q(x), i∗µ(τ∗Q)∗DA(u1, u2)]G ∈ (ρO ◦ pr2 ◦πµ)∗gQ ,

for u1, u2 ∈ Tx(J−1(µ)), where DA ∈ Ω2(Q, g) denotes the exterior covariant
derivative of A. In deriving (4) we have used the fact that ρO ◦ pr2 ◦πµ =
ρ ◦ τ∗Q ◦ iµ and that ρ∗ curv A ∈ Ω2(Q, ρ∗gQ) satisfies the identity

(ρ∗ curv A)(v1, v2) = [q ⊕ q,DA(v1, v2)]G ∈ ρ∗gQ (v1, v2 ∈ TqQ) .

This identity simply states, in pullback jargon, that curv A is the two-form
DA on Q, viewed as a gQ-valued form on the base Q/G.
Carrying out an implied contraction, Equations (3) and (4) deliver

(5) π∗µ(pr∗2((iO)Q ∧ ρ∗O curv A)) = 〈µ, i∗µ(τ∗Q)∗DA〉 ∈ Ω2(J−1(µ)) .

From Equations (2), (5) and the Mauer-Cartan equation dA = DA + 1
2A∧A,

follows the formula

(6) π∗µ pr∗2( (ω−O)Q − (iO)Q ∧ ρ∗O curv A) = −〈µ, i∗µ(τ∗Q)∗dA〉 .
The formula in 5.1(3) follows from (6) and (1), which completes the proof of
the theorem.
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Proof of the Lemma. We have u = d/dt x(t) |t=0 for some curve t 7→ x(t) ∈
J−1(µ), in which case

TJ′ · u =
d

dt
[q(t), µ]G

∣∣∣
t=0

,

where q(t) ≡ τ∗Q(x(t)). We can write q(t) = g(t) · qhor(t) for some A-horizontal

curve t 7→ qhor(t) ∈ Q and some curve t 7→ g(t) ∈ G with g(0) = id and with

d

dt
g(t)

∣∣∣
t=0

= A

(
d

dt
q(t)

∣∣∣
t=0

)
= A(Tτ∗Q · u) = −ξ .

Then

TJ′ · u =
d

dt
[qhor(t), g(t)−1 · µ]G

∣∣∣
t=0

=
d

dt
[qhor(t), exp(tξ) · µ]G

∣∣∣
t=0

,

as required.

6 A connection on the Poisson-reduced phase space

To apply Theorem 2.3 to the case P = T∗Q we need to choose a connection
D on the symplectic stratification of P/G ∼= T∗(Q/G)⊕ g∗Q. Such connections
were defined in 2.2. As we shall see, this more-or-less amounts to choosing
an inner product on g∗ (or g). Life is made considerably easier if this choice
is Ad-invariant. (For example, in the case Q = G, which we discuss first,
one might be tempted to use the inertia tensor I ∈ g∗ ⊗ g∗ to form an inner
product. However, this seems to lead to intractable calculations of the phase.
It also makes the geometric phase ggeom more ‘dynamic’ and less ‘geometric.’)
Fortunately, we will see that the particular choice of invariant inner product is
immaterial.

In 6.3 and 6.4 we discuss details needed to describe explicitly the transverse
derivative operator Dµ, and we also compute the canonical two-form ωD (both
these depend on the choice of D). Recall that these will be needed to apply
Theorem 2.3.

6.1 The limiting case Q = G

When Q = G, we have P/G ∼= g∗ and the symplectic leaves are the co-adjoint
orbits. A connection on the symplectic stratification of P/G is then distribution
on g∗ furnishing a complement, at each point µ ∈ g∗, for the space Tµ(G · µ)
tangent to the co-adjoint orbit G·µ through µ. As a subspace of g∗ this tangent
space is the annihilator g◦µ of gµ.
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Lemma. Let G be a connected Lie group whose Lie algebra g admits an Ad-
invariant inner product. Then for all µ ∈ g∗reg one has

g⊥µ = [g, gµ] .

Here g∗reg denotes the set of regular points of the co-adjoint action

Proof. See Appendix B.

The following proposition constructs a connection E on the symplectic strati-
fication of g∗.

Proposition. Let G be a connected Lie group whose Lie algebra g admits an
Ad-invariant inner product and equip g∗ with the corresponding Ad∗-invariant
inner product. Let E denote the connection on the symplectic stratification of
g∗ obtained by orthogonalizing the distribution tangent to the co-adjoint orbits:

E(µ) ≡
(

Tµ(G · µ)
)⊥

.

Let forgE(µ) denotes the image of E(µ) under the canonical identification
Tµg

∗ ∼= g∗, i.e., forgE(µ) ⊂ g∗ is E(µ) ⊂ Tµg
∗ with base point ‘forgotten.’

Then for all µ ∈ g∗reg:

(1) forgE(µ) = [g, gµ]◦.

(2) E(µ) is independent of the particular choice of inner product.

(3) The restriction ιµ : forgE(µ) → g∗µ of the natural projection pµ : g∗ → g∗µ
is an isomorphism.

(4) The orthogonal projection prµ : g → gµ is independent of the choice of
inner product and satisfies the identity

〈ι−1
µ (ν), ξ〉 = 〈ν,prµ ξ〉 (ν ∈ g∗µ, ξ ∈ g) .

(5) The complementary projection pr⊥µ ≡ id− prµ satisfies the identity

prµ[pr⊥µ ξ,pr⊥µ η] = prµ[ξ, η] (ξ, η ∈ g) .

(6) There exists a subspace V ⊂ g∗ containing µ and an open neighborhood
S ⊂ V of µ such that TsS = E(s) for all s ∈ S.

Remark. One can choose the V in (6) to be Gµ-invariant (see the proof below),
so that S (suitably shrunk) is a slice for the co-adjoint action. This is provided,
of course, that G has closed co-adjoint orbits. Although we do not assume that
these orbits are closed, the reader may nevertheless find it helpful to think of
S as a slice. We do not use (6) until Section 8.
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Proof. In fact (3) is true for any space E(µ) complementary to Tµ(G · µ), for
this means

(7) Tµg
∗ = E(µ)⊕ Tµ(G · µ) ,

which, on identifying the spaces with subspaces of g∗, delivers the decomposi-
tion

g∗ = forgE(µ)⊕ g◦µ .

Since g◦µ is the kernel of the linear surjection pµ : g∗ → g∗µ, (3) must be true.
The identity in (4) is an immediate corollary.
Because taking annihilator and orthogonalizing are commutable operations,
we deduce from the above Lemma the formula (g◦µ)⊥ = [g, gµ]◦. Since g◦µ =
forg Tµ(G · µ), (1) holds. Claim (2) follows.
Regarding (5), we have

prµ[pr⊥µ ξ,pr⊥µ η] = prµ[ξ − prµ ξ, η − prµ η]

= prµ([ξ, η] + [prµ ξ,prµ η]− [ξ,prµ η] + [η,prµ ξ]) .

The second term in parentheses vanishes because gµ is Abelian (since µ ∈ g∗reg).
The third and fourth terms vanish because they lie in [g, gµ], which is the kernel
of prµ, on account of the Lemma. This kernel is evidently independent of the
choice of inner product, which proves the first part of (4).
To prove (6), take

V ≡ [g, gµ]◦ = {ν ∈ g∗ | gν ⊂ gµ} ,
which clearly contains µ. Since dim gµ = dim gν if and only if ν ∈ g∗reg, we
conclude that

V ∩ g∗reg = {ν ∈ g∗ | gν = gµ} .
Since, g∗reg ⊂ g∗ is an open set (see Appendix B), it follows that µ has a
neighborhood S ⊂ V of µ such that S ⊂ g∗reg and gs = gµ for all s ∈ S. For
any s ∈ S we then have

(8) forg(E(s)) = [g, gs]
◦ = [g, gµ]◦ = V = forg(TsS) ,

where the first equality follows from (1). Equation (8) implies that E(s) = TsS,
as required.

Henceforth E denotes the connection on the symplectic stratification of g∗

defined in the above Proposition.

6.2 The general case Q 6= G

In general, a connection D on the symplectic stratification of (T∗Q)/G ∼=
T∗(Q/G)⊕ g∗Q is given by

D(z ⊕ [q, µ]G) ≡
{ d
dt
z ⊕ [q, µ+ tδ]G

∣∣
t=0

∣∣∣ δ ∈ forgE(µ)
}

(1)
(
z ∈ T∗ρ(q)(Q/G), q ∈ Q, µ ∈ g∗

)
.
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If [q′, µ′]G = [q, µ]G, then the right-hand side of (1) is unchanged by a sub-
stitution by primed quantities, because E is G-invariant. This shows that the
distribution D is well defined. It is a connection on the symplectic stratification
of T∗(Q/G)⊕ g∗Q because E is a connection on the symplectic stratification of
g∗, and because the symplectic leaf through a point z⊕[q, µ]G is T∗(Q/G)⊕OQ,
where O ≡ G · µ.

6.3 Transverse derivatives.

To determine the transverse derivative operator Dµ determined by D in the
special case of cotangent bundles (needed to apply Theorem 2.3), we will need
an explicit expression for the isomorphism L(D, y, µ) : g∗µ → D(y) defined in
2.2.

Lemma. Fix µ ∈ g∗reg. Then:

(1) Each y ∈ Pµ is of the form y = z ⊕ [q, µ]G for some q ∈ Q and z ∈
T∗ρ(q)(Q/G).

(2) For each such y one has

L(D,µ, y)(ν) =
d

dt
z ⊕ [q, µ+ tι−1

µ (ν)]G

∣∣∣
t=0

,

where ιµ is defined by 6.1(3).

Proof. That each y ∈ Pµ is of the form given in (1) follows from an argument
already given in the proof of Proposition 5.1. Moreover, that proof shows
that there exists x0 ∈ J−1(0)q such that ρ◦(x0) = z. We prove (2) by first

computing the natural isomorphism D(y)
∼−→ g∗µ in Lemma 2.2 whose inverse

defines L(D,µ, y). Define x ≡ Mµ(x0), where Mµ is the momentum shift
defined in 4.3. Then x ∈ J−1(µ). According to (1), an arbitrary vector v ∈
D(y) is of the form

v =
d

dt
z ⊕ [q, µ+ tδ]G

∣∣∣
t=0

,

for some δ ∈ forgE(µ). We claim that the vector

w ≡ d

dt
Mµ+tδ(x0)

∣∣∣
t=0
∈ TxP ⊂ TJ−1(µ)P (P = T∗Q)

is a valid choice for the corresponding vector w in Lemma 2.2. Indeed, one has

Tπ · w =
d

dt
π(Mµ+tδ(x0))

∣∣∣
t=0

=
d

dt
T∗Aρ ·Mµ+tδ(x0)⊕ J′(Mµ+tδ(x0))

∣∣∣
t=0

=
d

dt
ρ◦(x0)⊕ [τ∗Q(Mµ+tδ(x0)), µ+ tδ]G

∣∣∣
t=0

=
d

dt
z ⊕ [q, µ+ tδ]G

∣∣∣
t=0

= v ,
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as required. We now compute

pµ〈dJ, w〉 = pµ
d

dt
J(Mµ+tδ(x0))

∣∣∣
t=0

= pµδ .

The natural isomorphism D(y)
∼−→ g∗µ is therefore given by

d

dt
z ⊕ [q, µ+ tδ]G

∣∣∣
t=0
7→ pµδ (δ ∈ forgE(µ)) .

Since L(D, y, µ) is the inverse of this map, this proves (2).

6.4 The canonical two-form determined by D

We now determine the canonical two-form ωD determined byD in the cotangent
bundle case.

According to Theorem 5.2, the symplectic structure of the leaf Pµ = T∗(Q/G)⊕
OQ (O ≡ G · µ) is given by

(1) ωµ = pr∗1 ωQ/G + pr∗2
(

(ω−O)Q − (iO)Q ∧ ρ∗O curv A
)
,

where pr1 : T∗(Q/G) ⊕ OQ → T∗(Q/G) and pr2 : T∗(Q/G) ⊕ OQ → OQ
are the canonical projections. We claim that the canonical two-form ωD ∈
Ω2(T∗(Q/G)⊕ g∗Q) determined by D (see 2.2) is given by

(2) ωD = pr∗1 ωQ/G + pr∗2
(

(ωE)Q − (idg∗)Q ∧ ρ∗g∗ curv A
)
.

Here pr1 and pr2 denote the canonical projections T∗(Q/G)⊕ g∗Q → T∗(Q/G)
and T∗(Q/G) ⊕ g∗Q → g∗Q. The form ωE denotes the canonical two-form on

g∗ determined by E. The zero-form (idg∗)Q ∈ Ω0(g∗Q, ρ
∗
g∗g
∗
Q) denotes the form

associated with the identity map idg∗ : g∗ → g∗, viewed as an element of
Ω0(g∗, g∗). (If one makes the identification ρ∗g∗g

∗
Q
∼= g∗Q⊕g∗Q, then (idg∗)Q(η) =

η ⊕ η.) Recall that ρg∗ : g∗Q → Q/G denotes associated bundle projection.

The formula in (2) is easily verified by checking that ωD(v, · ) = 0 for v ∈ D,
and by checking that the restriction of ωD to a leaf Pµ coincides with the
two-form on the right-hand side of (1).

7 The dynamic phase

For general G-invariant Hamiltonians H : T∗Q → R the formula for gdyn in
Theorem 3.5 follows from Theorem 2.3, Lemma 6.3, and the definition of Dµ0

given in 2.2. In this section we deduce the form taken by this phase in simple
mechanical systems, as reported in Theorem 3.4.
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7.1 The reduced Hamiltonian

The kinetic energy metric 〈〈 · , · 〉〉Q induces an isomorphism TQ
∼−→ T∗Q send-

ing hor ≡ ker A to J−1(0) and ker Tρ to hor◦ (see 4.2(1) and 4.2(2)). Since
J−1(0)q = (ker Tqρ)◦, it is not too difficult to see that

(1) x ∈ J−1(0)q ⇒ 〈〈x, x〉〉∗Q = 〈〈ρ◦(x), ρ◦(x)〉〉∗Q/G ,

where 〈〈 · , · 〉〉∗Q/G is defined in 3.4 and ρ◦ is defined in 4.1.

If instead, x ∈ hor◦q , then x is the image under the isomorphism TQ
∼−→ T∗Q

of ξQ(q), for some ξ ∈ g. For such ξ, and arbitrary η ∈ g, we compute

〈J(x), η〉 = 〈x, ηQ(q)〉 = 〈〈ξQ(q), ηQ(q)〉〉Q = 〈Î(q)(ξ), η〉 ,

where the first equality follows from 2.4(1). Since η ∈ g is arbitrary, it follows

that ξ = Î−1(q)(J(x)). We now conclude that

(2) x ∈ hor◦q ⇒ 〈〈x, x〉〉∗Q = 〈〈ξQ(q), ξQ(q)〉〉Q = 〈J(x), Î−1(q)(J(x))〉 .

An arbitrary element x ∈ T∗qQ decomposes into unique parts along J−1(0)q
and hor◦q , the first component being A′(x). From (1) and (2) one deduces

(3) 〈〈x, x〉〉∗Q = 〈〈T∗Aρ · x,T∗Aρ · x〉〉∗Q/G + 〈J(x), Î−1(q)(J(x))〉 (x ∈ T∗qQ) .

Define h : T∗(Q/G)⊕ g∗Q → R by

(4) h(z ⊕ [q, µ]G) =
1

2
〈〈z, z〉〉∗Q/G +

1

2
〈µ, Î−1(q)µ〉+ VQ/G(ρ(q)) ,

where VQ/G denotes the function on Q/G to which V drops on account of its
G-invariance. With the help of (3), one checks that H = h ◦ π, i.e., h is the
Poisson-reduced Hamiltonian. Substituting (4) into 3.5(1) delivers the formula

(5) Dµ0
h(z ⊕ [q, µ0]G) = prµ0

Î−1(q)µ0 ,

where prµ0
: g→ gµ0

denotes the orthogonal projection.

To establish the formula for gdyn in Theorem 3.4 it remains to show that

(6)
(

(Prµ0
)Q ∧ ξI

)
([q, µ0]G) = prµ0

Î−1(q)µ0 ,

where ξI ≡ ρ∗OI−1∧(iO)Q. We will be ready to do so after providing the general
definition of associated forms alluded to in 3.2.
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7.2 Associated forms (general case)

Let V be a real vector space on which G acts linearly and O an arbitrary
manifold on which G acts smoothly. Let λ be a V -valued k-form on O. For
the sake of clarity, we will suppose k = 1; the extension to general k will be
obvious.
Assuming that λ ∈ Ω1(O, V ) is equivariant in the sense that

λ(g · u) = g · λ(u) (g ∈ G, u ∈ TO) ,

we will construct a bundle-valued differential form λQ ∈ Ω1(OQ, ρ∗OVQ) called
the associated form. Recall that ρO : OQ → Q/G denotes the projection of the
associated bundle OQ ≡ (Q×O)/G, and ρ∗O denotes pullback. As always, we
assume ρ : Q→ Q/G is equipped with a connection one-form A.
We begin by noting that an arbitrary vector tangent to ρ∗OQ ≡ OQ ⊕Q/G Q is
of the form

(1)
d

dt
[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)

∣∣∣
t=0

,

for some ξ ∈ g, some A-horizontal curve t 7→ qhor(t) ∈ Q, and some curve
t 7→ ν(t) ∈ O. Define Λ ∈ Ω1(ρ∗OQ,V ) by

Λ

(
d

dt
[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)

∣∣∣
t=0

)
≡ λ

(
d

dt
ν(t)

∣∣∣
t=0

)
.

As the reader is left to verify, the equivariance of λ ensures that Λ is well
defined. Now ρ∗OQ ≡ OQ ⊕Q/G Q is a principal G-bundle (G acts according
g · (η ⊕ q) ≡ η ⊕ (g · q)) and we claim that Λ is tensorial.

Proof that Λ is tensorial. The (tangent-lifted) action of G on T(ρ∗OQ) is given
by

g · d
dt

[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)
∣∣∣
t=0

=
d

dt
[qhor(t), ν(t)]G ⊕ g exp(tξ) · qhor(t)

∣∣∣
t=0

=
d

dt
[g · qhor(t), g · ν(t)]G ⊕ exp(tg · ξ) · (g · qhor(t))

∣∣∣
t=0

.

Since t 7→ g · qhor(t) is A-horizontal, it follows that

Λ

(
g · d

dt
[qhor(t), ν(t)]G ⊕ exp(tξ) · qhor(t)

∣∣∣
t=0

)

= λ

(
d

dt
g · ν(t)

∣∣∣
t=0

)
= g · λ

(
d

dt
ν(t)

∣∣∣
t=0

)
,
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where the second quality follows from the equivariance of λ. What we have
just shown is that

Λ(g · u) = g · Λ(u) (g ∈ G)

for arbitrary u ∈ T(ρ∗OQ), i.e., Λ is equivariant. Also, the generic tangent
vector in (1) is vertical (in the principal bundle ρ∗OQ → OQ) if and only if
d/dt [qhor(t), ν(t)]G |t=0 = 0. This is true if and only if d/dt ν(t) |t=0 = 0. It
follows that Λ vanishes on vertical vectors. This fact and the forementioned
equivariance establishes that Λ is tensorial.

Because Λ ∈ Ω1(ρ∗OQ,V ) is tensorial, it drops to an element of Ω1(OQ, ρ∗OVQ),
which is the sought after associated form λQ. By construction one has the
implicit formula

(2) λQ

(
d

dt
[qhor(t), ν(t)]G

∣∣∣
t=0

)
=

[
[q, ν]G ⊕ q, λ

(
d

dt
ν(t)

∣∣∣
t=0

)]

G

,

where q ≡ qhor(0) and ν ≡ ν(0).

Formula (2) is for a one-form λ. From the zero-form analogue of (2), one
deduces

(Prµ0
)Q([q, µ0]G) = [[q, µ0]G ⊕ q,prµ0

]G(3)

(iO)Q([q, µ0]G) = [[q, µ0]G ⊕ q, µ0]G .(4)

Since
(ρ∗OI−1)([q, µ0]G) = [[q, µ0]G ⊕ q, Î(q)]G ,

we deduce

(Prµ0
)Q(ρ∗OI−1 ∧ (iO)Q)([q, µ0]G) = prµ0

Î−1(q)µ0 ,

which proves 7.1(6).

8 The geometric phase

This section derives the formula for ggeom reported in Theorem 3.4. We will
carry out several computations, some of them somewhat involved. However,
our objective throughout is clear: To apply the formula for ggeom in 2.3 we
must calculate the transverse derivative Dµ0

ωD of the leaf symplectic struc-
tures ωµ = ωD|Pµ. To do so we must first compute dωD. Our preference for a
coordinate free proof leads us to lift the computation to a bigger space, which
we do with the help of the ‘slice’ S for the co-adjoint action delivered by 6.1(6).

Using the fact that d is an antiderivation, that d commutes with pullbacks, and
that dωQ/G = 0, we obtain from 6.4(2)

(1) dωD = pr∗2( d(ωE)Q − d(idg∗)Q ∧ ρ∗g∗ curv A− (idg∗)Q ∧ ρ∗g∗d curv A ) .

Documenta Mathematica 7 (2002) 561–604



592 Anthony D. Blaom

Note here that we are using the exterior derivative in the generalized sense
of bundle-valued forms, as defined with respect to the connection A; see A.5,
Appendix A. The last term in parentheses is immediately dispensed with, for
one has Bianchi’s identity2

(2) d curv A = 0 .

To write down formulas for other terms in (1), it will be convenient to have
an appropriate representation for vectors tangent to g∗Q. Indeed, as the reader
will readily verify, each such vector is of the form

d

dt
[qhor(t), µ(t)]G

∣∣∣
t=0

,

for some A-horizontal curve t 7→ qhor(t) ∈ Q and some curve t 7→ µ(t) ∈ g∗.
On occasion, and without loss of generality, we will take µ(t) to be of the form

µ(t) = exp(tξ) · (µ+ tv) ,

for some ξ ∈ g, µ ∈ g∗ and v ∈ forgE(µ) (see Proposition 6.1).
A straightforward computation gives

d(idg∗)Q

(
d

dt
[qhor(t), µ(t)]G

∣∣∣
t=0

)
= [[qhor(0), µ(0)]G⊕qhor(0), µ̇(0)]G ∈ ρ∗g∗g∗Q,

where µ̇(0) ≡ d/dt µ(t) |t=0 ∈ g∗. From this follows the formula

(d(idg∗)Q ∧ ρ∗g∗ curv A)

(
d

dt
[qhor

1 (t), µ1(t)]G

∣∣∣
t=0

, . . . ,
d

dt
[qhor

3 (t), µ3(t)]G

∣∣∣
t=0

)(3)

=
〈
µ̇1(0), DA(q̇hor

2 (0), q̇hor
3 (0))

〉

+
〈
µ̇2(0), DA(q̇hor

3 (0), q̇hor
1 (0))

〉

+
〈
µ̇3(0), DA(q̇hor

1 (0), q̇hor
2 (0))

〉
,

where D denotes exterior covariant derivative and q̇hor
j (0) ≡ d/dt qhor

j (t) |t=0.

To compute d(ωE)Q is not so straightforward.3 The difficulty lies partly in
the fact that the co-adjoint orbit symplectic structures, which ωE ‘collects
together,’ are defined implicitly in terms of the infinitesimal generators of the
co-adjoint action, and this action is generally not free. We overcome this by
pulling (ωE)Q back to a ‘bigger’ space where we can be explicit. We compute

2Perhaps the better known form of this identity is D(DA) = 0, where D denotes exterior
covariant derivative (see, e.g., [12, Theorem II.5.4]). Since, in the notation of Appendix A,
DA = (curv A)̂ , it follows that (d curv A)̂= 0, which in turn implies (2).

3The exterior derivative d does not commute with the formation of associated forms!
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the derivative in the bigger space and then drop to g∗Q. Here is the formula we
will derive:

d(ωE)Q

(
d

dt
[qhor

1 (t), exp(tξ1) · (µ+ tv1)]G

∣∣∣
t=0

,(4)

d

dt
[qhor

2 (t), exp(tξ2) · (µ+ tv2)]G

∣∣∣
t=0

,

d

dt
[qhor

3 (t), exp(tξ3) · (µ+ tv3)]G

∣∣∣
t=0

)

=− 〈v1, [ξ2, ξ3]〉 − 〈v2, [ξ3, ξ1]〉 − 〈v3, [ξ1, ξ2]〉
− 〈µ, [ξ1,DA(q̇hor

2 (0), q̇hor
3 (0))]G〉

− 〈µ, [ξ2,DA(q̇hor
3 (0), q̇hor

1 (0))]G〉
− 〈µ, [ξ3,DA(q̇hor

1 (0), q̇hor
2 (0))]G〉(

ξj ∈ g, µ ∈ g∗reg, vj ∈ forgE(µ)
)
,

where qhor
1 (0) = qhor

2 (0) = qhor
3 (0) ≡ q ∈ Q. Note that we insist that µ lies

in g∗reg. In other words, (4) is a formula for (ωE)Q on the open dense set
(g∗reg)Q ⊂ g∗Q.

Derivation of (4). With µ ∈ g∗reg fixed, let S ⊂ V ⊂ g∗ denote the correspond-
ing ‘slice’ furnished by Proposition 6.1(6). Define the map

b : Q×G× S → g∗Q

(q, g, s) 7→ [q, g · s]G .

At each point (q, g, s) ∈ Q×G×S we define, for each (u, η, ξ, v) ∈ Tρ(q)(Q/G)×
g× g× V , the tangent vector

〈u, η, ξ, v; q, g, s〉 ≡
d

dt

(
exp(tη) · qhor(t), exp(tξ) · g, s+ tv

) ∣∣∣
t=0
∈ T(q,g,s)(Q×G× S) ,

where t 7→ qhor(t) ∈ Q is any A-horizontal curve satisfying

qhor(0) = q

and
d

dt
ρ(qhor(t))

∣∣∣
t=0

= u .

Note that every vector tangent to Q×G× S is of the above form, and that

Tb · 〈u, η, ξ, v; q, g, s〉 =
d

dt
[exp(tη) · qhor(t), exp(tξ)g · (s+ tv)]G

∣∣∣
t=0

(5)

=
d

dt
[qhor(t), exp(−tη) exp(tξ)g · (s+ tv)]G

∣∣∣
t=0

.(6)
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From (6) and the definition of associated forms 3.2(1), we obtain

b∗(ωE)Q

(
〈u1, η1, ξ1, v1; q, g, s〉, 〈u2, η2, ξ2, v2; q, g, s〉

)
(7)

= ωE

(
d

dt
exp(−tη1) exp(tξ1)g · (s+ tv1)

∣∣∣
t=0

,

d

dt
exp(−tη2) exp(tξ2)g · (s+ tv2)

∣∣∣
t=0

)
.

Now ωE is the canonical two-form on g∗ determined by E and according to
6.1(6), we have

d

dt
s+ tvj

∣∣∣
t=0
∈ TsS = E(s) (j = 1, 2) .

It follows from (7) that

(8) b∗(ωE)Q

(
〈u1, η1, ξ1, v1; q, g, s〉, 〈u2, η2, ξ2, v2; q, g, s〉

)

= −
〈
g · s, [ξ1 − η1, ξ2 − η2]

〉
(uj ∈ Tρ(q)(Q/G); ηj , ξj ∈ g; vj ∈ V ) .

It is now that we see the reason for pulling (ωE)Q back to Q × G × S. For if
we define natural projections

πQ : Q×G× S → Q : (q, g, s) 7→ q

πG : Q×G× S → G : (q, g, s) 7→ g

πg∗ : Q×G× S → g∗ : (q, g, s) 7→ g · s
and denote by θG ∈ Ω1(G, g) the right-invariant Mauer-Cartan form on G, then
(8) may be written intrinsically as

b∗(ωE)Q = −1

2
πg∗ ∧

(
(π∗GθG − π∗QA) ∧ (π∗GθG − π∗QA)

)
,

where we view πg∗ : Q×G× S → g∗ as an element of Ω0(Q×G× S, g∗). We
can now take d of both sides, obtaining

(9) b∗d(ωE)Q =

− 1

2
dπg∗ ∧

(
(θ′G −A′′) ∧ (θ′G −A′′)

)
+ πg∗ ∧

(
(θ′G −A′′) ∧ d(θ′G −A′′)

)
,

where a single prime indicates pullback by πG, and a double prime indicates
pullback by πQ. We expand and simplify (9) by invoking the following identi-
ties:

dθ′G =
1

2
θ′G ∧ θ′G ,(10)

dA′′ = (DA)′′ +
1

2
A′′ ∧A′′ ,(11)

θ′G ∧ (θ′G ∧ θ′G) = 0 ,(12)

A′′ ∧ (A′′ ∧A′′) = 0 .(13)
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If the primes are suppressed, then (10) and (11) are the Mauer-Cartan equations
for G and the principal bundle Q resp., while (12) and (13) follow from Jacobi’s
identity. That we may add the primes follows from the fact that d commutes
with pullbacks, and that pullbacks distribute over wedge products. After some
manipulation, Equation (9) becomes

b∗d(ωE)Q = −1

2
dπg∗ ∧ (A′′ ∧A′′)− 1

2
dπg∗ ∧ (θ′G ∧ θ′G)

+ πg∗ ∧
(

A′′ ∧ (DA)′′
)
− πg∗ ∧

(
θ′G ∧ (DA)′′

)

− 1

2
πg∗ ∧

(
A′′ ∧ (θ′G ∧ θ′G)

)
− 1

2
πg∗ ∧

(
θ′G ∧ (A′′ ∧A′′)

)
.(14)

For future reference, we note here the easily computed formula

(15) dπg∗(〈u, η, ξ, v; q, g, s〉) = − ad∗ξ(g · s) + g · v .

By (5), we have

d

dt
[qhor(t), exp(tξ) · (µ+ tv)]G

∣∣∣
t=0

= Tb · 〈u, 0, ξ, v; q, id, µ〉 ,

so that

d(ωE)Q

(
d

dt
[qhor

1 (t), exp(tξ1) · (µ+ tv1)]G

∣∣∣
t=0

,

d

dt
[qhor

2 (t), exp(tξ2) · (µ+ tv2)]G

∣∣∣
t=0

,

d

dt
[qhor

3 (t), exp(tξ3) · (µ+ tv3)]G

∣∣∣
t=0

)

= b∗d(ωE)Q(〈u1, 0, ξ1, v1; q, id, µ〉, 〈u2, 0, ξ2, v2; q, id, µ〉, 〈u3, 0, ξ3, v3; q, id, µ〉),

We now substitute the formula for b∗d(ωE)Q in (14). In fact, since

A′′(〈uj , 0, ξj , vj ; q, id, µ〉) = 0 (j = 1, 2 or 3) ,

the only part on the right-hand side of (14) with a nontrivial contribution is

−1

2
dπg∗ ∧ (θ′G ∧ θ′G)− πg∗ ∧

(
θ′G ∧ (DA)′′

)
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and we obtain, with the help of (15),

d(ωE)Q

(
d

dt
[qhor

1 (t), exp(tξ1) · (µ+ tv1)]G

∣∣∣
t=0

,

d

dt
[qhor

2 (t), exp(tξ2) · (µ+ tv2)]G

∣∣∣
t=0

,

d

dt
[qhor

3 (t), exp(tξ3) · (µ+ tv3)]G

∣∣∣
t=0

)

= 〈ad∗ξ1 µ− v1, [ξ2, ξ3]〉 + cyclic terms

− 〈µ, [ξ1,DA(q̇hor
2 (0), q̇hor

3 (0))]〉 − cyclic terms

= 〈µ, [ξ1, [ξ2, ξ3]] + cyclic terms〉
− 〈v1, [ξ2, ξ3]〉 − cyclic terms

− 〈µ, [ξ1,DA(q̇hor
2 (0), q̇hor

3 (0))]〉 − cyclic terms .

The term appearing in the third last row vanishes, by Jacobi’s identity, and
what is left amounts to Equation (4).

One computes, using Lemma 6.3 and the definition of Dµ0
in 2.2,

〈
ν,Dµ0

ωD

( d

dt
z1(t)⊕ [qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,

d

dt
z2(t)⊕ [qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)〉

= dωD

( d

dt
z ⊕ [q, µ0 + tι−1

µ0
(ν)]G

∣∣∣
t=0

,

d

dt
z1(t)⊕ [qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,

d

dt
z2(t)⊕ [qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= −
〈
ι−1
µ0

(ν), [ξ1, ξ2]
〉
−
〈
ι−1
µ0

(ν), DA(q̇hor
1 (0), q̇hor

2 (0))
〉

=
〈
ν, −prµ0

(
[ξ1, ξ2] + DA(q̇hor

1 (0), q̇hor
2 (0)

)〉
.

The second equality follows from Equations (1)–(4) derived above; the last
equality follows from 6.1(4). Since ν ∈ g∗µ0

in this computation is arbitrary, we
conclude that

Dµ0
ωD

( d

dt
z1(t)⊕ [qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,(16)

d

dt
z2(t)⊕ [qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= − prµ0
[ξ1, ξ2]− prµ0

DA(q̇hor
1 (0), q̇hor

2 (0)) .
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Proposition 2.8 and the definition 3.2(1) of associated forms delivers the formula

(curvαµ0
)Q

( d

dt
[qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,(17)

d

dt
[qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)
= prµ0

[ξ1, ξ2] .

On the other hand, we have

(ρ∗O curv A)
( d

dt
[qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,

d

dt
[qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= [[q, µ0]G ⊕ q,DA(q̇hor
1 (0), q̇hor

2 (0))]G ∈ ρ∗OgQ .

Combining this with 7.2(3) gives

((Prµ0
)Q ∧ ρ∗O curv A)

( d

dt
[qhor

1 (t), exp(tξ1) · µ0]G

∣∣∣
t=0

,(18)

d

dt
[qhor

2 (t), exp(tξ2) · µ0]G

∣∣∣
t=0

)

= prµ0
DA(q̇hor

1 (0), q̇hor
2 (0)) .

Comparing the right-hand side of (16) with the right-hand sides of (17) and
(18), we deduce the intrinsic formula

Dµ0
ωD = −pr∗2

(
(curvαµ0

)Q + (Prµ0
)Q ∧ ρ∗O curv A

)
(19)

= −pr∗2(Ωµ0
+ (Prµ0

)Q ∧ ΩA) .

The curve t 7→ ηt ∈ OQ in Theorem 3.4 is a closed embedded curve because it
bounds the surface S. Because zt ⊕ ηt and ηt have the same minimal period,
it follows that there exists a smooth map s : ∂S → T∗(Q/G) ⊕ OQ such that
s(ηt) = zt⊕ηt. As pr2 : T∗(Q/G)⊕OQ → OQ is a vector bundle, the map s can
be extended to a global section s : OQ → T∗(Q/G)⊕OQ of pr2. This follows,
for example, from [12, Theorem I.5.7]. Define Σ ≡ s(S), so that pr2(Σ) = S
and t 7→ zt ⊕ ηt is the boundary of Σ. Appealing to Theorem 2.3 and (19), we
obtain

ggeom = exp

∫

Σ

Dµ0
ωD = exp

(
−
∫

Σ

pr∗2 (Ωµ0
+ (Prµ0

)Q ∧ ΩA )

)

= exp

(
−
∫

S

( Ωµ0
+ (Prµ0

)Q ∧ ΩA )

)
,

which is the form of ggeom given in Theorem 3.4.
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A On bundle-valued differential forms

The exterior calculus of differential forms taking values in a vector bundle is
ordinarily constructed via Koszul (or ‘affine’) connections. See, for example,
[10, Chap. 9] or [13, Chap. 17]. On the other hand, given an associated vector
bundle VQ (see 3.1 for notation), one can model the exterior calculus of VQ-
valued forms on the exterior covariant calculus of tensorial V -valued forms on
Q. In place of a Koszul connection, one prescribes a principal connection on
Q. (The corresponding Koszul connection ∇ appears as the p = 0 case of
Lie derivatives of bundle-valued p-forms; see A.7.) When the vector bundle at
hand is realized as an associated bundle, this latter approach, while equivalent
to the former, is better suited to explicit computations. As we are unaware of
a readily accessible account of it, we outline the basics here.

A.1 Notation

Let ξ : E → B be a vector bundle with base B and consider the (Abelian) cate-
gory of real vector bundles over B, restricting attention to morphisms covering
the identity on B. Denote by Altp(TB,E) the bundle over B of all alternating
p-linear bundle morphisms from TB ⊕ · · · ⊕ TB into E . Then an E-valued
differential p-form is a smooth section of Altp(TB,E) → B. The space of all
such forms is denoted Ωp(B,E).

A.2 Bundle-valued forms as tensorial vector-valued forms

Let ρ : Q → B be a principal G-bundle equipped with a connection one-form
A and let V be a real vector space on which G acts linearly. Let Ωp

tens(Q,V )
denote the space of tensorial V -valued forms on Q (for a definition of tensorial
forms see, e.g., [12, Section II.5]). Here, as elsewhere, all actions are understood
to be left actions (contrary to the convention adopted in [12]). As is well known,
one has an isomorphism

λ 7→ λ̂

Ωp(B, VQ)
∼−→ Ωptens(Q,V )

defined implicitly through the formula

(1) λ(Tρ · u1, . . . ,Tρ · up) = [q, λ̂(u1, . . . , up)]G (uj ∈ TqQ, q ∈ Q) .

A.3 Pullbacks

If f : B′ → B is a smooth map, then the pullback f ∗Q of the principal bundle
Q is defined by

f∗Q ≡ B′ ⊕B Q
(see 4.2 for notation). The manifold f ∗Q is itself a principal G-bundle; its
base space is B′, the bundle projection is b′ ⊕ q → b′, and G acts according to
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g · (b′ ⊕ q) ≡ (b′ ⊕ g · q). One defines a map f̂ : f∗Q→ Q by f̂(b′ ⊕ q) ≡ q and
has the commutative diagram

PSfrag replacements

ρ◦

J−1(0)
T∗(Q/G)

.
Q

Q/G

ρ

f∗Q Q

B′ B

f̂

ρ .

f

A connection one-form for f∗Q→ B′ is f̂∗A.
If g : B′′ → B′ is a second map, then a natural isomorphism (f ◦ g)∗Q ∼=
g∗(f∗Q) is given by

B′′ ⊕B Q ∼−→ B′′ ⊕B′ (B′ ⊕B Q)

b′′ ⊕ q → b′′ ⊕ (g(b′′)⊕ q) .

The pullback f∗VQ of an associated vector bundle VQ can be defined analo-
gously but we will define it in a way making the pullback itself an associated
bundle:

f∗VQ ≡ Vf∗Q .

By the above we have (f ◦ g)∗VQ ∼= g∗(f∗VQ). This definition of f∗VQ is
equivalent to the forementioned alternative, for we have an isomorphism

f∗VQ
∼−→ B′ ⊕B VQ

[b′ ⊕ q, v]G 7→ b′ ⊕ [q, v]G .

The map f : B′ → B defines a pullback operator on forms f ∗ : Ωp(B, VQ) →
Ωp(B′, f∗VQ) defined through

(f∗λ)̂= f̂∗λ̂ ,

where the pullback on the right-hand side is the usual one for vector-valued
forms. Making the identification (f ◦ g)∗VQ ∼= g∗(f∗VQ) indicated above, we
have (f ◦ g)∗ = g∗ ◦ f∗.

A.4 Wedge products

The wedge product λ ∧ µ ∈ Ωp+q(B, (U ⊗ V )Q) of forms λ ∈ Ωp(B,UQ) and
µ ∈ Ωq(B, VQ) is defined through

(λ ∧ µ)̂= λ̂ ∧ µ̂ .

Suppose there is a natural, bilinear pairing (u, v) 7→ 〈u, v〉 : U × V → W that
is equivariant in the sense that 〈g · u, g · v〉 = g · 〈u, v〉. Then there is a G-

invariant homomorphism U ⊗ V → W allowing one to identify λ̂ ∧ µ̂ with an
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element of Ωp+qtens(Q,W ); λ ∧ µ is correspondingly identified with an element of
Ωp+q(B,WQ). In the special case that G acts trivially on W (e.g., W = R),
one has WQ

∼= W × Q and there is a further identification Ωp+q(B,WQ) ∼=
Ωp+q(B,W ).

A.5 Exterior derivatives

The exterior derivative dλ ∈ Ωp+1(B, VQ) of a form λ ∈ Ωp(B, VQ) is defined
through

(dλ)̂= Dλ̂ ,

where D denotes exterior covariant derivative with respect to the connection
A (see [12]).

A.6 Curvature

We next define the curvature form BV , which measures the degree to which
Poincaré’s identity d2 = 0 fails for VQ-valued differential forms.
By its equivariance, a tensorial zero-form F ∈ Ω0

tens(Q,V ) satisfies the identity

dF

(
d

dt
exp(tξ) · q

∣∣∣
t=0

)
= adVξ F (q) (ξ ∈ g, q ∈ Q) ,

where adVξ denotes the infinitesimal generator of the linear action of G on V
along ξ, viewed as an element of Hom(V, V ). From the definition of exterior
covariant derivative, one deduces the identity DF = dF − AV ∧ F , where
AV ∈ Ω1(Q,Hom(V, V )) is defined by

AV (u) ≡ adVA(u) (u ∈ TQ) .

It follows that D2F = −DAV ∧ F . Note that by the linearity of ξ 7→ adVξ , we
have

DAV (u1, u2) = adVDA(u1,u2) (u1, u2 ∈ TqQ, q ∈ Q) .

The two-form DAV is tensorial (with G acting on Hom(V, V ) by conjugation),
and so defines a two-form BV ∈ Ω2(B,Hom(V, V )Q) through4

B̂V = −DAV ,

allowing us to write D2F = B̂V ∧ F . Moreover, one can show that F in this
identity can be replaced by an arbitrary, tensorial, V -valued p-form. One does
so using the fact that such a form is an R-linear combination of products of
the form ω ∧ F , for some ω ∈ Ωp

tens(Q,R) and F ∈ Ω0
tens(Q,V ). In particular,

replacing F by λ̂ (λ ∈ Ωp(B, VQ)), one deduces the important identity

(1) d2λ = BV ∧ λ (λ ∈ Ωp(B, VQ)) .

4We have inserted a minus sign in the formula defining BV to ensure that the identity
(1) conforms with the case of right principal bundles, as well as the theory as developed via
Koszul connections.
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Notice that d2 = 0 if and only if BV = 0, which is true if and only if G acts
trivially on V or A is a flat connection.

Note. The two-form curv A ∈ Ω2(B, gQ) defined through (curv A)̂= DA is
known as the curvature of A. It is related to Bg in the following way: Bg is
the image of curv A under the natural map Ω2(B, gQ) → Ω2(B,Hom(g, g)Q)
induced by ξ 7→ − adξ : g→ Hom(g, g).

A.7 Lie derivatives and interior products

If X is a vector field on B and Xh denotes its A-horizontal lift to a vector field
on Q, then the (covariant) Lie derivative LX : Ωp(B, VQ) → Ωp(B, VQ) (often
denoted ∇X) is defined through

(LXλ)̂= LXh λ̂ (λ ∈ Ωp(B, VQ)) ,

where LXh : Ωp(Q,V )→ Ωp(Q,V ) is the standard Lie derivative along Xh.
The interior product (contraction) X λ of a vector field X on B with a VQ-
valued p-form λ satisfies the identity

(X λ)̂= Xh λ̂ .

A.8

Many familiar identities generalize to the vector bundle case, despite the fact
that d2 6= 0. These are derived by simply dropping the appropriate identity for
tensorial forms. For example, one has the well known identity

d

dt
exp

(
tDA(Xh(q), Y h(q))

)
· q
∣∣∣
t=0

= [X,Y ]h(q)− [Xh, Y h](q) (q ∈ Q) ,

which, for an arbitrary zero-form F ∈ Ω0(B, VQ), implies

DAV (Xh, Y h) ∧ F̂ = L[X,Y ]h F̂ − LXhLY h F̂ + LY hLXh F̂ .

Dropping to B, we obtain

BV (X,Y ) ∧ F = LXLY F − LY LXF − L[X,Y ]F ,

which characterizes BV in terms of (covariant) Lie derivatives.
Similarly, just as D is an antiderivation on tensorial vector-valued forms, d is
an antiderivation on bundle-valued forms, i.e.,

d(λ ∧ µ) = dλ ∧ µ+ (−1)pλ ∧ dµ (λ ∈ Ωp(B, VQ), µ ∈ Ωq(B, VQ)) .

In particular, applying d to both sides of A.6(1) gives

d2(dλ) = dBV ∧ λ+ BV ∧ dλ .

Documenta Mathematica 7 (2002) 561–604



602 Anthony D. Blaom

Replacing λ in A.6(1) by dλ and substituting into the above equation yields

BV ∧ dλ = dBV ∧ λ+ BV ∧ dλ
⇒ dBV ∧ λ = 0 .

Since λ ∈ Ωp(B, VQ) is arbitrary, we conclude that dBV = 0 (Bianchi’s iden-
tity).

B On regular points of the co-adjoint action

This appendix is devoted to the proof of Lemma 6.1. While this could be
done using standard structure theory, we opt for a ‘direct’ proof based on the
following well known fact:5

Theorem (Duflo-Vergne [11]). Let G be any finite-dimensional Lie group.
Then g∗reg is open and dense in g∗. Furthermore, for all µ ∈ g∗reg, gµ is Abelian.

Fix an Ad-invariant inner product on g and equip g∗ with the corresponding
Ad∗-invariant inner product. The product on g defines an equivariant isomor-
phism ρ : g

∼−→ g∗, establishing an equivalence between the adjoint and co-
adjoint representations. We therefore begin by examining the adjoint action,
where computations are easier.
Put λ ≡ ρ−1(µ) (µ ∈ g∗reg). By invariance of the inner product on g, the
map ξ 7→ [ξ, λ] is skew-symmetric. Its kernel gλ and image [g, λ] are therefore
orthogonal:

(1) g⊥λ = [g, λ] .

In addition, we claim that

(2) [g, λ] = [g, gλ] .

Proof of (2). Equation (1) implies that g = gλ + [g, λ] so that for an arbitrary
η ∈ gλ we have

(3) [g, η] = [gλ + [g, λ], η] = [[g, λ], η] .

The second equality holds because gλ is Abelian (by the Theorem and the
equivalence of the adjoint and co-adjoint representations). It follows from (3)
that an arbitrary element of [g, η] is of the form [[ξ, λ], η], for some ξ ∈ g. But,
by Jacobi’s identity, we have

[[ξ, λ], η] = −[[η, ξ], λ]− [[λ, η], ξ]

= −[[η, ξ], λ] , since [λ, η] = 0 (gλ is Abelian)

⇒ [[ξ, λ], η] ∈ [g, λ] .

So [g, η] ⊂ [g, λ]. Since η ∈ gλ was arbitrary, we conclude that [g, gλ] ⊂ [g, λ].
As the reverse containment is obvious, Equation (2) is established.

5Proofs of this theorem in English are given in [18] and [25].
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Together (1) and (2) imply that g⊥λ = [g, gλ]. By the equivalence of the adjoint
and co-adjoint representations, we have g⊥µ = [g, gµ], as claimed.
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Rd. This works for C∗r (G) twisted by a 2-cocycle, and thus for non-
commutative tori. Our approach involves Connes’ cosphere algebra,
and an interesting compactification of metric spaces which is closely
related to geodesic rays.

2000 Mathematics Subject Classification: Primary 47L87; Secondary
20F65, 53C23, 58B34
Keywords and Phrases: Group C∗-algebra, Dirac operator, quantum
metric space, metric compactification, boundary, geodesic ray, Buse-
mann point.

0. Introduction

The group C∗-algebras of discrete groups provide a much-studied class
of “compact non-commutative spaces” (that is, unital C∗-algebras). In [11]
Connes showed that the “Dirac” operator of an unbounded Fredholm mod-
ule over a unital C∗-algebra provides in a natural way a metric on the state
space of the algebra. Unbounded Fredholm modules (i.e. spectral triples) also
provide smooth structure, important homological data and much else. In the
subsequent years Connes has been strongly advocating this use of Dirac oper-
ators as the way to deal with the Riemannian geometry of non-commutative
spaces [12], [15], [14], [13]. The class of examples most discussed in [11] consists

1The research reported here was supported in part by National Science Foundation Grant
DMS–99–70509.
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of the group C∗-algebras of discrete groups, with the Dirac operator coming
in a simple way from a length function on the group. Connes obtained in
[11] strong relationships between the growth of a group and the summability
of Fredholm modules over its group C∗-algebra. However he did not explore
much the metric on the state space.

In [39], [40] I pointed out that, motivated by what happens for ordinary
compact metric spaces, it is natural to desire that the topology from the metric
on the state space coincides with the weak-∗ topology (for which the state space
is compact). This property was verified in [39] for certain examples, notably
the non-commutative tori, with “metric” structure coming from a different
construction. (See [40], [41], [42] for further developments.) But in general I
have found this property to be difficult to verify for many natural examples.

The main purpose of this paper is to examine this property for Connes’
initial class of examples, the group C∗-algebras with the Dirac operator coming
from a length function. To be more specific, let G be a countable (discrete)
group, and let Cc(G) denote the convolution ∗-algebra of complex-valued func-
tions of finite support on G. Let π denote the usual ∗-representation of Cc(G)
on `2(G) coming from the unitary representation of G by left translation on
`2(G). The norm-completion of π(Cc(G)) is by definition the reduced group
C∗-algebra, C∗r (G), of G. We identify Cc(G) with its image in C∗r (G), so that
it is a dense ∗-subalgebra.

Let a length function ` be given on G. We let M` denote the (usually
unbounded) operator on `2(G) of pointwise multiplication by `. Then M`

will serve as our “Dirac” operator. One sees easily [11] that the commutators
[M`, πf ] are bounded operators for each f ∈ Cc(G). We can thus define a
seminorm, L`, on Cc(G) by L`(f) = ‖[M`, πf ]‖.

In general, if L is a seminorm on a dense ∗-subalgebra A of a unital C∗-
algebra Ā such that L(1) = 0, we can define a metric, ρL, on the state space
S(Ā) of Ā, much as Connes did, by

ρL(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A, L(a) ≤ 1}.
(Without further hypotheses ρL may take value +∞.) In [40] we define L
to be a Lip-norm if the topology on S(Ā) from ρL coincides with the weak-∗
topology. We consider a unital C∗-algebra equipped with a Lip-norm to be a
compact quantum metric space [40].

The main question dealt with in this paper is whether the seminorms L`
coming as above from length functions on a group are Lip-norms. In the end we
only have success in answering this question for the groups Zd. The situation
there is already somewhat complicated because of the large variety of possible
length-functions. But we carry out our whole discussion in the slightly more
general setting of group C∗-algebras twisted by a 2-cocycle (definitions given
later), and so this permits us to treat successfully also the non-commutative
tori [38]. The main theorem of this paper is:

Main Theorem 0.1. Let ` be a length function on Zd which is either the
word-length function for some finite generating subset of Zd, or the restriction
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to Zd of some norm on Rd. Let c be a 2-cocycle on Zd, and let π be the
regular representation of C∗(Zd, c) on `2(Zd). Then the seminorm L` defined
on Cc(Zd) by L`(f) = ‖[M`, πf ]‖ is a Lip-norm on C∗(Zd, c).

The path which I have found for the proof of this theorem is somewhat
long, but it involves some objects which are of considerable independent inter-
est, and which may well be useful in treating more general groups. Specifically,
we need to examine Connes’ non-commutative cosphere algebra [14] for the
examples which we consider. This leads naturally to a certain compactifica-
tion which one can construct for any locally compact metric space. We call
this “the metric compactification”. Actually, this compactification had been
introduced much earlier by Gromov [24], but it is different from the famous
Gromov compactification for a hyperbolic metric space, and it seems not to
have received much study. Our approach gives a new way of defining this
compactification. We also need to examine the strong relationship between
geodesic rays and points in the boundary of this compactification, since this
will provide us with enough points of the boundary which have finite orbits.
For word-length functions on Zd this is already fairly complicated.

The contents of the sections of this paper are as follows. In Section 1 we
make more precise our notation, and we make some elementary observations
showing that on any separable unital C∗-algebra there is an abundance of Lip-
norms, and that certain constructions in the literature concerning groups of
“rapid decay” yield natural Lip-norms on C∗r (G). In Section 2 we begin our
investigation of the Dirac operators for C∗r (G) coming from length functions.
In Section 3 we examine Connes’ cosphere algebra for our situation. We show
in particular that if the action of the group on the boundary of its metric com-
pactification is amenable, then the cosphere algebra has an especially simple
description. Then in Section 4 we study the metric compactification in general,
with attention to the geodesic rays.

In Section 5 we begin our study of specific groups by considering the group
Z. This is already interesting. (Consider a generating set such as {±3,±8}.)
The phenomena seen there for Z indicate some of the complications which we
will encounter in trying to deal with Zd. In Section 6 we study the metric
compactification of Rd for any given norm, and then in Section 7 we apply this
to prove the part of our Main Theorem for length functions on Zd which are the
restrictions of norms on Rd. In Section 8 we study the metric compactification
of Zd for word-length functions, and in Section 9 we apply this to prove the
remaining part of our Main Theorem. We conclude in Section 10 with a brief
examination of the free (non-Abelian) group on two generators, to see both
how far our approach works, and where we become blocked from proving for it
the corresponding version of our Main Theorem.

Last-minute note: I and colleagues believe we have a proof that the Main
Theorem is also true for word-hyperbolic groups with word-length functions,
using techniques which are entirely different from those used here, and which
do not seem to apply to the case of Zd treated here.
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A substantial part of the research reported here was carried out while I
visited the Institut de Mathématique de Luminy, Marseille, for three months.
I would like to thank Gennady Kasparov, Etienne Blanchard, Antony Wasser-
man, and Patrick Delorme very much for their warm hospitality and their
mathematical stimulation during my very enjoyable visit.

1. An abundance of Lip-norms

In this section we establish some of our notation, and show that on any
separable unital C∗-algebra there is an abundance of Lip-norms. In the absence
of further structure these Lip-norms appear somewhat artificial. But we then
show that some known constructions for group C∗-algebras yield somewhat
related but more natural Lip-norms.

Our discussion in the next few paragraphs works in the greater generality
of order-unit spaces which was used in [40]. But we will not use that generality
in later sections, and so the reader can have in mind just the case of dense unital
*-subalgebras of unital C∗-algebras, with the identity element being the order
unit. We recall that a (possibly discontinuous) seminorm L on an order-unit
space is said to be lower semicontinuous if {a ∈ A : L(a) ≤ r} is norm-closed
for any r > 0.

Proposition 1.1. Let A be an order-unit space which is separable. For any
countable subset E of A there are many lower semicontinuous Lip-norms on A
which are defined and finite on E.

Proof. The proof is a minor variation on the fact that the weak-∗ topology on
the unit ball of the dual of a separable Banach space is metrizable (theorem
V.5.1 of [16]). We scale each non-zero element of E so that it is in the unit ball
of A (and 6= 0), and we incorporate E into a sequence, {bn}, of elements of A
which is dense in the unit ball of A. Let {ωn} be any sequence in R such that
ωn > 0 for each n and Σωn < ∞. Define a norm, M , on the dual space A′ of
A by

M(λ) = Σωn|λ(bn)|.
The metric from this norm, when restricted to the unit ball of A′, gives the
weak-∗ topology, because it is easily checked that if a net in the unit ball of
A′ converges for the weak-∗ topology then it converges for the metric from M ,
and then we can apply the fact that the unit ball is weak-∗ compact.

We let S(A) denote the state space of A. Since S(A) is a subset of the unit
ball of A′, the restriction to S(A) of the metric from the norm M gives S(A)
the weak-∗ topology. Let LM denote the corresponding Lipschitz seminorm
on C(S(A)) from this metric, allowing value +∞. View each element of A as
a function on S(A) in the usual way. Then LM (bn) ≤ ω−1

n < ∞ for each n,
because if µ, ν ∈ S(A) then

|bn(µ)− bn(ν)| = |(µ− ν)(bn)| ≤ ω−1
n M(µ− ν) = ω−1

n ρM (µ, ν).

Let B denote the linear span of {bn} together with the order unit. Then B
is a dense subspace of A containing the order-unit, and LM restricted to B is
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a seminorm which can be verified to be lower semicontinuous. The inclusion
of A into C(S(A)) is isometric (on self-adjoint elements if A is a C∗-algebra)
and since LM comes from an ordinary metric, it follows that LM on A is a
Lip-norm. (For example, use theorem 1.9 of [39].) ¤

The considerations above are close to those of theorem 9.8 of [40]. Let me
take advantage of this to mention here that Hanfeng Li showed me by clever
counterexample that theorem 9.8 of [40] is not correct as presented, because
A may not be big enough. However, if A is taken to be norm-complete, then
there is no difficulty. Theorem 9.11 needs to be adjusted accordingly. But this
change does not affect later sections of [40] nor the subsequent papers [41], [42].

We now turn to (twisted) group C∗-algebras, and we use a different ap-
proach, which takes advantage of the fact that the group elements provide a
natural “basis” for the group C∗-algebras. Thus let G be a countable discrete
group, and let c be a 2-cocycle [47] on G with values in the circle group T. We
assume that c is normalized so that c(x, y) = 1 if x = e or y = e. We let C∗(G, c)
denote the full c-twisted group C∗-algebra of G, and we let C∗r (G, c) denote
the reduced c-twisted group C∗-algebra [47], [35] coming from the left regular
representation, π, on `2(G). Both C∗-algebras are completions of Cc(G), the
space of finitely supported C-valued functions on G, with convolution twisted
by c. Our conventions, following [47], are that

(f ∗ g)(x) = Σf(y)g(y−1x)c(y, y−1x),

f∗(x) = f̄(x−1)c̄(x, x−1).

The left regular representation is given by the same formula as the above twisted
convolution, but with g viewed as an element of `2(G). Then C∗r (G, c) is
the completion of Cc(G) for the operator norm coming from the left regular
representation. We will often set A = C∗r (G, c). We note that when π is
restricted to G we have

(πyξ)(x) = ξ(y−1x)c(y, y−1x)

for ξ ∈ `2(G) and x, y ∈ G. In particular πyπz = c(y, z)πyz.
There is a variety of norms on Cc(G) which have been found to be useful in

addition to the C∗-norms. These other norms are not necessarily algebra norms.
To begin with, there is the `1-norm, as well as the `p-norms for 1 < p ≤ ∞.
But let ` be a length function on G, so that `(xy) ≤ `(x) + `(y), `(x−1) = `(x),
`(x) ≥ 0, and `(x) = 0 exactly if x = e, the identity element of G. Then in
connection with groups of “rapid decay” (such as word-hyperbolic groups) one
defines norms on Cc(G) of the following form [30], [29], [27], [28]:

‖f‖p,k = (Σ(|f(x)|(1 + `(x))k)p)1/p.

These norms clearly have the properties that

1) ‖f‖p,k ≤ ‖|f |‖p,k (actually =),
2) if |f | ≤ |g| then ‖|f |‖p,k ≤ ‖|g|‖p,k.
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Their interest lies in the fact that for a rapid-decay group and an appropriate
choice of p and k depending on the group, one has (see the first line of the
proof of theorem 1.3 of [27], combined, in the case of nontrivial cocycle, with
proposition 3.10b of [28]):

3) There is a constant, K, such that ‖f‖C∗r ≤ K‖f‖p,k.

Notice also that if the cocycle c is trivial and if G is amenable [35] then the
C∗-norm itself satisfies the above three properties, because from the trivial
representation we see that for f ∈ Cc(G) we have

‖f‖C∗(G) ≤ ‖f‖1 = ‖|f |‖C∗(G),

while if |f | ≤ |g| then

‖|f |‖C∗(G) = ‖f‖1 ≤ ‖g‖1 = ‖|g|‖C∗(G).

Finally, for any group and any cocycle we always have at least the `1-norm
which satisfies the above three properties.

With these examples in mind, we make

Definition 1.2. Let ‖ · ‖A denote the C∗-norm on A = C∗r (G, c). We will say
that a norm, ‖·‖, on Cc(G) is order-compatible with ‖·‖A if for all f, g ∈ Cc(G)
we have:

1) ‖f‖ ≤ ‖|f |‖.
2) If |f | ≤ |g| then ‖|f |‖ ≤ ‖|g|‖.
3) There is a constant, K, such that ‖f‖A ≤ K‖f‖.
We remark that these conditions are a bit weaker than those required for

a “good norm” in [32].
Suppose now that ω is a real-valued function on G such that ω(e) = 0 and

ω(x) > 0 for x 6= e. Fix an order-compatible norm ‖ · ‖ on Cc(G), and set

L(f) = ‖ω|f |‖.
It is clear that L is a seminorm which is 0 only on the span of the identity
element of the convolution algebra Cc(G, c). (Thus L is a Lipschitz seminorm
as defined in [40].) In the way discussed in the introduction, L defines a metric,
ρL, on S(C∗r (G, c)) by

ρL(µ, ν) = sup{|µ(f)− ν(f)| : L(f) ≤ 1},
which may take value +∞. Denote C∗r (G, c) by A, and its C*-norm by ‖ · ‖A,
as above.

Lemma 1.3. Suppose that there is a constant s > 0 such that ω(x) ≥ s for all
x 6= e. Then ρL gives S(A) finite radius. (In particular, ρL does not take the
value +∞.)

Proof. Let f ∈ Cc(G), and assume that f(e) = 0. Let K be the constant in
the definition of “order-compatible”. Then

‖f‖A ≤ K‖f‖ ≤ K‖|f |‖ ≤ Ks−1‖ω|f |‖ = Ks−1L(f).

The desired conclusion then follows from proposition 2.2 of [40]. ¤
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Lemma 1.4. Suppose that ω(x) = 0 only if x = e and that the function ω is
“proper”, in the sense that for any n the set {x ∈ G : ω(x) ≤ n} is finite (so, in
particular, there exists a constant s as in the above lemma). Then the topology
from the metric ρL on S(A) coincides with the weak-∗ topology. Thus L is a
Lip-norm.

Proof. We apply theorem 1.9 of [39]. As in that theorem, we set

B1 = {f ∈ Cc(G) : ‖f‖A ≤ 1 and L(f) ≤ 1}.
The theorem tells us that it suffices to show that B1 is totally bounded for
‖ · ‖A. So let ε > 0 be given. Adjust K if necessary so that K ≥ 1, and set

E = {x ∈ G : ω(x) ≤ 3K/ε}.
Then E is a finite set because ω is proper. Set AE = {f ∈ Cc(G) : f(x) =
0 for x /∈ E}, so that AE is a finite-dimensional subspace of Cc(G). In partic-
ular, AE ∩ B1 is totally bounded.

Let f ∈ B1. Then f = g + h where g ∈ AE and h(x) = 0 for x ∈ E. Now
|h| ≤ |f |, and ω(x) ≥ 3K/ε on the support of h, and so

‖h‖A ≤ K‖h‖ ≤ K‖|h|‖ ≤ K(ε/3K)‖ω|h|‖
≤ (ε/3)‖ω|f |‖ = (ε/3)L(f) ≤ ε/3.

Thus ‖f − g‖A = ‖h‖A ≤ ε/3. In particular, ‖g‖A ≤ 1 + (ε/3). Note also that
L(g) = ‖ω|g|‖ ≤ ‖ω|f |‖ = L(f) ≤ 1. Thus upon scaling g by (1 + ε/3)−1 if
necessary to obtain an element of B1, we see that f is within distance 2ε/3 of
B1 ∩ AE . Thus a finite subset of B1 ∩ AE which is ε/3 dense in B1 ∩ AE will
be ε-dense in B1. ¤

Lemma 1.5. Even without ω being proper, or satisfying the condition of Lemma
1.3, the seminorm L is lower semicontinuous (with respect to ‖ · ‖A).

Proof. Let {fn} be a sequence in Cc(G) which converges to g ∈ Cc(G) for
‖ · ‖A, and suppose that there is an r ∈ R such that L(fn) ≤ r for all n.
Now πfδ0 = f where on the right f is viewed as an element of `2 and δ0

is the “delta-function” at 0. Consequently ‖f‖A ≥ ‖f‖2 ≥ ‖f‖∞. Thus fn
converges uniformly on G to g. Let S denote the support of g, and let χS be
its characteristic function. Then the sequence ωχS |fn| converges uniformly to
ω|g|. But all norms on a finite-dimensional vector space are equivalent, and so
ωχS |fn| converges to ω|g| for ‖ · ‖. This says that L(χSfn) converges to L(g).
But L(χSfn) = ‖ωχSfn‖ ≤ L(f) ≤ r. Thus L(g) ≤ r. ¤

We combine the above lemmas to obtain:

Proposition 1.6. Let ω be a proper non-negative function on G such that
ω(x) = 0 exactly if x = e. Let ‖ · ‖ be an order-compatible norm on Cc(G), and
set

L(f) = ‖ω|f |‖
for f ∈ Cc(G). Then L is a lower semicontinuous Lip-norm on C∗r (G).

Documenta Mathematica 7 (2002) 605–651



612 Marc A. Rieffel

We remark that when ω is a length function on G and when ‖ · ‖ = ‖ · ‖1,
it is well-known and easily seen that L satisfies the Leibniz rule with respect
to ‖ · ‖1, that is

L(f ∗ g) ≤ L(f)‖g‖1 + ‖f‖1L(g).

But there seems to be no reason why many of the above Lip-norms should
satisfy the Leibniz rule with respect to ‖ · ‖A. And it is not clear to me
what significance the Leibniz rule has for the metric properties which we are
examining.

2. Dirac operators from length functions

In this section we make various preliminary observations about the semi-
norms L which come from using length functions on a group as “Dirac” opera-
tors, as described in the introduction. We also reformulate our main question
as concrete questions concerning C∗r (G) itself.

We use the notation of the previous section, and we let M` denote the (usu-
ally unbounded) operator on `2(G) of pointwise multiplication by the length
function `. We recall from [11] why the commutators [M`, πf ] are bounded for

f ∈ Cc(G). Let y ∈ G and ξ ∈ `2(G). Then we quickly calculate that

([M`, πy]ξ)(x) = (`(x)− `(y−1x))ξ(y−1x)c(y, y−1x).

From the triangle inequality for ` we know that |`(x) − `(y−1x)| ≤ `(y), and
so ‖[M`, πy]‖ ≤ `(y). In fact, this observation indicates the basic property of `
which we need for the elementary part of our discussion, namely that, although
` is usually unbounded, it differs from any of its left translates by a bounded
function.

This suggests that we work in the more general context of functions having
just this latter property, as this may clarify some aspects. Additional motiva-
tion for doing this comes from the importance which Connes has demonstrated
for examining the effect of automorphisms of the C∗-algebra as gauge trans-
formations, and the resulting effect on the metric. In Connes’ approach the
inner automorphisms play a distinguished role, giving “internal fluctuations”
of the metric [9], [10] (called “internal perturbations” in [15]). However, in our
setting we usually do not have available the “first order” condition which is
crucial in Connes’ setting. We discuss this briefly at the end of this section.

Anyway, in our setting the algebra C∗r (G, c) has some special inner auto-
morphisms, namely those coming from the elements of G. The automorphism
corresponding to z ∈ G is implemented on `2(G) by conjugating by πz. When
this automorphism is composed with the representation, the effect is to change
D = M` to Mαz(`), where αz(`) denotes the left translate of ` by z. But αz(`)
need not again be a length function, although it is translation bounded. (In
order to try to clarify contexts, we will from now on systematically use α to de-
note ordinary left translation of functions, especially when those functions are
not to be viewed as being in `2(G). Our convention is that (αz`)(x) = `(z−1x).)
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We will make frequent use of the easily-verified commutation relation that

πyMh = Mαy(h)πy

for any function h on G and any y ∈ G, as long as the domains of definitions
of the product operators are respected. This commutation relation is what we
used above to obtain the stated fact about the effect of inner automorphisms.

In what follows we will only use real-valued functions to define our Dirac
operators, so that the latter are self-adjoint. But much of what follows gen-
eralizes easily to complex-valued functions, or to functions with values in C∗-
algebras such as Clifford algebras. These generalizations deserve exploration.

To formalize our discussion above we make:

Definition 2.1. We will say that a (possibly unbounded) real-valued function,
ω, on G is (left) translation-bounded if ω−αyω is a bounded function for every
y ∈ G. For y ∈ G we set ϕy = ω−αy(ω). So the context must make clear what
ω is used to define ϕ. For each y ∈ G we set `ω(y) = ‖ϕy‖∞.

Thus every length-function on G is translation-bounded. Any group ho-
momorphism from G into R is translation bounded. (E.g., the homomorphism
ω(n) = n from Z to R which is basically the Fourier transform of the usual
Dirac operator on T.) Linear combinations of translation-bounded functions
are translation bounded. In particular, the sum of a translation-bounded func-
tion with any bounded function is translation bounded. (As a more general
context one could consider any faithful unitary representation (π,H) of G to-
gether with an unbounded self-adjoint operator D on H such that D− πzDπ∗z
is densely defined and bounded for each z ∈ G, and D satisfies suitable non-
triviality conditions. Our later discussion will indicate why one may also want
to require that the (πzDπ

∗
z)’s all commute with each other.)

It is simple to check that the ϕy’s satisfy the 1-cocycle identity

(2.2) ϕyz = ϕy + αy(ϕz).

We will make use of this relation a number of times. This type of relation occurs
in various places in the literature in connection with dynamical systems.

Simple calculations show that `ω satisfies the axioms for a length function
except that we may have `ω(x) = 0 for some x 6= e. Notice also that if ω is
already a length function, then `ω = ω. We also remark that in general we can
always add a constant function to ω without changing the corresponding ϕy’s,
`ω, or the commutators [M`, πy]. In particular, we can always adjust ω in this
way so that ω(e) = 0 if desired.

We now fix a translation-bounded function, ω, on G, and we consider the
operator, Mω, of pointwise multiplication on `2(G). It is self-adjoint. We use
it as a “Dirac operator”. The calculation done earlier becomes

[Mω, πy] = Mϕyπy.

From this we see that for each y ∈ G we have

‖[Mω, πy]‖ = `ω(y).
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For any f ∈ Cc(G) we have

[Mω, πf ] = Σf(y)Mϕyπy,

and consequently we have

‖[Mω, πf ]‖ ≤ ‖`ωf‖1,
where `ωf denotes the pointwise product. We set

Lω(f) = ‖[Mω, πf ]‖.
Then Lω is a seminorm on Cc(G) ⊆ C∗r (G, c), and Lω is lower semicontinuous
by proposition 3.7 of [40]. A calculation above tells us that Lω(δx) = `ω(x)
for all x ∈ G. In particular, Lω(δe) = 0, with δe the identity element of the
convolution algebra Cc(G).

If we view δz as the usual basis element at z for `2(G), then for any
f ∈ Cc(G) we have

[Mω, πf ]δz = Σf(y)Mϕyc(y, z)δyz

for each z. From this we easily obtain:

Proposition 2.3. Let f ∈ Cc(G). Then Lω(f) = 0 exactly if ϕy = 0 for
each y in the support of f , that is, exactly if `ωf = 0. Thus if `ω(x) > 0 for
all x 6= e, then Lω is a Lipschitz seminorm in the sense that its null space is
spanned by δe.

We would like to know when Lω is a Lip-norm. Of course, Lω defines, as
earlier, a metric on the state space S(C∗r (G, c)), which may take value +∞.
We denote this metric by ρω. As a first step, we would like to know whether ρω
gives S(C∗r (G, c)) finite radius. We recall from proposition 2.2 of [40] that this
will be the case if there is an r ∈ R such that ‖f‖∼ ≤ rL(f) for all f ∈ Cc(G),
where ‖f‖∼ = inf{‖f − αδe‖ : α ∈ C}. Officially speaking we should work
with self-adjoint f ’s, but by the comments before definition 2.1 of [41] we do
not need to make this restriction because clearly Lω(f∗) = Lω(f) for each f .
However we find it convenient to use the following alternative criterion for finite
radius, which is natural in our situation because we have a canonical tracial
state:

Proposition 2.4. Let L be a Lipschitz seminorm on an order-unit space A,
and let µ be a state of A. If the metric ρL from L gives S(A) finite radius r,
then ‖a‖ ≤ 2rL(a) for all a ∈ A such that µ(a) = 0. Conversely, if there is a
constant k such that

‖a‖ ≤ kL(a)

for all a ∈ A such that µ(a) = 0, then ρL gives S(A) radius no greater than k.

Proof. Suppose the latter condition holds. For any given a ∈ A set b = a −
µ(a)e. (Here e is the order-unit.) Then µ(b) = 0, and so ‖a− µ(a)e‖ ≤ kL(a).
It follows that ‖a‖∼ ≤ kL(a), so that the ρL-radius of S(A) is no greater than
k.
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Suppose conversely that ‖a‖∼ ≤ rL(a) for all a. Let a ∈ A with µ(a) = 0.
There is a t ∈ R such that ‖a− te‖ ≤ rL(a). Then

|t| = |µ(a)− t| = |µ(a− te)| ≤ ‖a− te‖ ≤ rL(a).

Thus
‖a‖ ≤ ‖a− te‖+ ‖te‖ ≤ 2rL(a).

So for k = 2r we have ‖a‖ ≤ kL(a) if µ(a) = 0. ¤

We see that the constant k is not precisely related to the radius. But for
our twisted group algebras there is a very natural state to use, namely the
tracial state τ defined by τ(f) = f(e), which is the vector state for δe ∈ `2(G).

Suppose now that ρω gives S(C∗r (G, c)) finite radius, so that as above, if
τ(f) = 0 then ‖π(f)‖ ≤ 2rL(f). Let x ∈ G with x 6= e. Then τ(δx) = 0, and
so

1 = ‖π(δx)‖ ≤ 2rLω(δx) = 2r`ω(x).

We thus obtain:

Proposition 2.5. If ρω gives S(C∗r (G, c)) finite radius r, then `ω(x) ≥ (2r)−1

for all x 6= e.

Thus, for example, if θ is an irrational number, then neither the (un-
bounded) length function ` defined on Z2 by `(m,n) = |m + nθ|, nor the
homomorphism ω(m,n) = m + nθ, will give metrics for which S(C∗(Z2)) has
finite radius.

But the condition of Proposition 2.5 is not at all sufficient for finite radius.
For example, for any G we can define a length function ` by `(x) = 1 if x 6= e.
Then it is easily checked that if f = f ∗ then

L`(f) = ‖f − τ(f)δe‖2.
If L` gives S(C∗(G)) finite radius, so that there is a constant k such that
‖πf‖ ≤ kL`(f) if f(e) = 0, then it follows that ‖πf‖ ≤ 2k‖f‖2 when f(e) = 0.
Since for any f we have |f(e)| ≤ ‖f‖2, it follows that ‖πf‖ ≤ (2k + 1)‖f‖2, so
that for any g ∈ Cc(G) we have

‖f ∗ g‖2 ≤ (2k + 1)‖f‖2‖g‖2.
This quickly says that the norm on `2(G) can be normalized so that `2(G)
forms an H∗-algebra, as defined in section 27 of [34]. But our algebra is unital,
and the theory of H∗-algebra in [34] shows that G must then have finite-
dimensional square-integrable unitary representations. But Weil pointed out
on page 70 of [46] that this means that G is compact (so finite), because if
x → Ux is the unitary matrix representation for a finite-dimensional square
integrable representation, then the matrix coefficients of

x 7→ I = UxU
∗
x

are integrable.
But beyond these elementary comments it is not clear to me what happens

even for word-length functions. Thus we have the basic:
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Question 2.6. For which finitely generated groups G with cocycle c does the
word-length function ` corresponding to a finite generating subset give a metric
ρ` which gives S(C∗r (G, c)) finite diameter? That is, when is there a constant,
k, such that if f ∈ Cc(G) and f(e) = 0 then

‖π(f)‖ ≤ k‖[M`, π(f)]‖?
(Is the answer independent of the choice of the generating set?)

I do not know the answer to this question when the cocycle c is trivial
and, for example, G is the discrete Heisenberg group, or the free group on two
generators. In later sections we will obtain some positive answers for G = Zd,
but even that case does not seem easy.

Even less do I know answers to the basic:

Question 2.7. For which finitely generated groups G with 2-cocycle c does the
word-length function ` corresponding to a finite generating subset give a metric
ρ` which gives S(C∗r (G, c)) the weak-∗ topology. That is [39], given that ρ` does
give S(C∗r (G, c)) finite diameter, when is

B1 = {f ∈ Cc(G) : ‖πf‖ ≤ 1 and L`(f) ≤ 1}
a totally-bounded subset of C∗r (G)?

But we now make some elementary observations about this second ques-
tion.

Proposition 2.8. Let L be a Lip-norm on an order-unit space A. If L is
continuous for the norm on A, then A is finite-dimensional.

Proof. Much as just above we set

B1 = {a ∈ A : ‖α‖ ≤ 1 and L(a) ≤ 1}.
Since L is a Lip-norm, B1 is totally bounded by theorem 1.9 of [39]. But if L
is also norm-continuous, then there is a constant k ≥ 1 such that L(a) ≤ k‖a‖
for all a ∈ A. Consequently {a : ‖a‖ ≤ k−1} ⊆ B1. It follows that the unit
ball for the norm is totally bounded, and so the unit ball in the completion of
A is compact. But it is well-known that the unit ball in a Banach space is not
norm-compact unless the Banach space is finite-dimensional. ¤

Corollary 2.9. Let A be an order-unit space which is represented faithfully
as operators on a Hilbert space H. Let D be a self-adjoint operator on H, and
set L(a) = ‖[D, a]‖. Assume that L is (finite and) a Lip-norm on A. If D is a
bounded operator, then A is finite-dimensional.

From this we see that in our setting of D = Mω for C∗r (G, c), if we want Lω

to be a Lip-norm, then we must use unbounded ω’s unless G is finite. But it is
not clear to me whether ω must always be a proper function, that is, whether
{x : |ω(x)| ≤ k} must be finite for every k. However, the referee has pointed
out to me that if ω is actually a length function, then ω must be proper if Lω

is to be a Lip-norm. For if it is not proper, then there is a constant, r, with
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0 < r ≤ 1, such that S = {x : ω(x) ≤ r−1} is infinite. But if ω is a length
function then L(δx) = ω(x). Thus {rδx : x ∈ S} is a norm-discrete subset of

B1 = {f ∈ Cc(G) : ‖f‖A ≤ 1 and L(f) ≤ 1},

so that B1 can not be totally bounded. (See the first three sentences of the
proof of Lemma 1.4.)

Finally, we will examine briefly three of Connes’ axioms for a non-
commutative Riemannian geometry [15]. We begin first with the axiom of
“reality” (axiom 7′ on page 163 of [15] and condition 4 on page 483 of [23]).
For any C∗-algebra A with trace τ there is a natural and well-known “charge-
conjugation” operator, J , on the GNS Hilbert space for τ , determined by
Ja = a∗. We are in that setting, and so our J is given by

(Jξ)(x) = ξ̄(x−1)

for ξ ∈ `2(G). For any f ∈ Cc(G) one checks that JπfJ is the operator of right-
convolution by f∗, where f∗(x) = f̄(x−1). In particular, JπfJ will commute
with any πg for g ∈ Cc(G). This means exactly that the axiom of reality is
true if one considers our geometry to have dimension 0.

With the axiom of reality in place, Connes requires that D be a “first-order
operator” (axiom 2′ of [15], or condition 5 on page 484 of [23], where the ter-
minology “first order” is used). This axiom requires that [D, a] commutes with
JbJ for all a, b ∈ A. For our situation, let ρz denote right c-twisted translation
on `2(G) by z ∈ G, so that Jπ∗zJ = ρz. Then in terms of the notation we have
established, the first-order condition requires that ρz commutes with Mϕy for
each z and y. This implies that for each x ∈ G we have

ω(x)− ω(y−1x) = ω(xz)− ω(y−1xz).

If we choose z = x−1 and rearrange, we obtain

ω(x) + ω(y−1) = ω(y−1x) + ω(e).

This says that if we subtract the constant function ω(e), then ω is a group
homomorphism from G into R. Thus the first-order condition is rarely satisfied
in our context. In fact, if we want ω to give S(C∗r (G)) finite radius then it
follows from Proposition 2.5 that G ∼= Z or is finite.

Lastly, we consider the axiom of smoothness (axiom 3 on page 159 of [15],
or condition 2 on page 482 of [23], where it is called “regularity” rather than
“smoothness”). This requires that a and [D, a] are in the domains of all powers
of the derivation T 7→ [|D|, T ]. In our context |D| = M|ω|. But

||ω(x)| − |ω(z−1x)|| ≤ |ω(x)− ω(z−1x)|,

so that |ω| is translation-bounded when ω is. From this it is easily seen that
the axiom of smoothness is always satisfied in our setting.
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3. The cosphere algebra

We now begin to establish some constructions which will permit us to
obtain positive answers to Questions 2.6 and 2.7 for the groups Zd, and which
may eventually be helpful in dealing with other groups.

Connes has shown (section 6 of [13], [22]) how to construct for each spectral
triple (A,H, D) a certain C∗-algebra, denoted S∗A. He shows that if A =
C∞(M) where M is a compact Riemannian spin manifold, and if (H, D) is
the corresponding Dirac operator, then S∗A is canonically isomorphic to the
algebra of continuous functions on the unit cosphere bundle ofM. Thus in the
general case it seems reasonable to call S∗A the cosphere algebra of (A,H, D).
(In [22] S∗A is called the “unitary cotangent bundle”.) In this section we will
explore what this cosphere algebra is for our (almost) spectral triples of form
(Cc(G), `2(G),Mω). (I thank Pierre Julg for helpful comments about this at
an early stage of this project.)

We now review the general construction. But for our purposes we do
not need the usual further hypothesis of finite summability for D. Thus we
just require that we have (A,H, D) such that [D, a] is bounded for all a ∈ A.
But, following Connes, we also make the smoothness requirement that [|D|, a]
be bounded for all a ∈ A. We saw in the previous section that this latter
condition is always satisfied in our setting where D = Mω.

Connes’ construction of the algebra S∗A is as follows. (See also the intro-
duction of [22].) Form the strongly continuous one-parameter unitary group
Ut = exp(it|D|). Let CD be the C∗-algebra of operators on H generated by the
algebra K of compact operators on H together with all of the algebras UtAU−t
for t ∈ R. (Note that usually UtAU−t 6⊆ A.) Clearly the action of conjugating
by Ut carries CD into itself. We denote this action of R on CD by η. Because of
the requirement that [|D|, a] be bounded, the action η is strongly continuous
on CD. (See the first line of the proof of corollary 10.16 of [23].) Since K is an
ideal (η-invariant) in CD, we can form CD/K. Then by definition S∗A = CD/K.
The action η drops to an action of R on S∗A, which Connes calls the “geodesic
flow”.

We now work out what the above says for our case in which we have
(C∗r (G, c), `2(G),Mω). We will write Cω instead of CD. Since only |ω| is perti-
nent, we assume for a while that ω ≥ 0. Set ut(x) = exp(itω(x)) for t ∈ R, so
that the Ut of the above construction becomes Mut . Then for each y ∈ G our
algebra Cω, defined as above, must contain

UtπyU
∗
t = MutMαy(u∗t )πy = Mutαy(u∗t )πy.

But Cω must also contain (πy)−1, and thus it contains each utαy(u∗t ), where
for notational simplicity we omit M . But

(utαy(u∗t ))(x) = exp(it(ω(x)− ω(y−1x))) = exp(itϕy(x)).

Since ϕy is bounded, the derivative of Utαy(U∗t ) at t = 0 will be the norm-limit
of the difference quotients. Thus we see that also ϕy ∈ Cω for each y ∈ G.
But Cω ⊇ K, and so Cω ⊇ C∞(G), the space of continuous functions vanishing
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at infinity, where the elements of C∞(G) are here viewed as multiplication
operators. Note also that Cω contains the identity element.

All of this suggests that we consider, inside the algebra Cb(G) of bounded
functions on G, the unital norm-closed subalgebra generated by C∞(G) to-
gether with {ϕy : y ∈ G}. We denote this subalgebra by Eω. Let Ḡω denote
the maximal ideal space of Eω, with its compact topology, so that Eω = C(Ḡω).
Note that G sits in Ḡω as a dense open subset because Eω ⊇ C∞(G). That
is, Ḡω is a compactification of the discrete set G. We will call it the ω-
compactification of G. Note that C(Ḡω) is separable because G is countable
and so there is only a countable number of ϕy’s. Thus the compact topology
of Ḡω has a countable base.

The action α of G on Cb(G) by left translation clearly carries Eω into
itself. From this we obtain an induced action on Ḡω by homeomorphisms. We
denote this action again by α.

Of course C(Ḡω) is faithfully represented as an algebra of pointwise mul-
tiplication operators on `2(G). This representation, M , together with the
representation π of G on `2(G) form a covariant representation [35], [47] of
(C(Ḡω), G, α, c). We have already seen earlier several instances of the covari-
ance relation πxMf = Mαx(f)πx. The integrated form of this covariant repre-

sentation, which we denote again by π, gives then a representation on `2(G) of
the full twisted crossed product algebra C∗(G,C(Ḡω), α, c). It is clear from the
above discussion that our algebra Cω contains π(C∗(G,C(Ḡω), α, c)). But for
any y ∈ G and t ∈ R we have exp(itϕy) ∈ C(Ḡω). From our earlier calculation
this means that π(C∗(G,C(Ḡω), α, c)) contains UtπyU

∗
t . Thus it also contains

Utπ(Cc(G))U∗t . Consequently:

Lemma 3.1. We have Cω = π(C∗(G,C(Ḡω), α, c)).

Now C(Ḡω) contains C∞(G) as an α-invariant ideal. The following fact
must be known, but I have not found a reference for it.

Lemma 3.2. With notation as above,

C∗(G,C∞(G), α, c) ∼= K(`2(G)),

the algebra of compact operator on `2(G), with the isomorphism given by π.

Proof. If we view elements of Cc(G,C∞(G)) as functions on G×G, and if for
f ∈ Cc(G,C∞(G)) we set (Φf)(x, y) = f(x, y)c(x, x−1y), then

Φ(f ∗c g) = (Φf) ∗ (Φg),

where only here we let ∗c denote convolution (in the crossed product) twisted
by c, while ∗ denotes ordinary convolution. The verification requires using the
2-cocycle identity to see that

c(y, y−1z)c(y−1x, x−1z) = c(y, y−1x)c(x, x−1z).

The untwisted crossed product C∞(G) ×α G is well-known to be carried onto
K(`2(G)) by π. (See [37].) (For non-discrete groups one must be more careful,
because cocycles are often only measurable, not continuous.) ¤
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Because K(`2(G)) is simple, it follows that the reduced C∗-algebra
C∗r (G,C∞(G), α, c) coincides with the full twisted crossed product, even when
G is not amenable. Anyway, the consequence of this discussion is:

Proposition 3.3. With notation as above, the cosphere algebra is

S∗A = π(C∗(G,C(Ḡω), α, c))/K(`2(G)).

For an element of π(C∗(G,C(Ḡω), α, c) it is probably appropriate to call its
image in S∗A its “symbol”, in analogy with the situation for pseudodifferential
operators.

We can use recently-developed technology to obtain a simpler picture in
those cases in which the action α of G on Ḡω is amenable [1], [3], [2], [26], [25].
This action will always be amenable if G itself is amenable, which will be the
case when we consider Zd in detail later. So the following comments will only
be needed there for that case. But we will see in Section 10 that the action can
be amenable also in some situations for which G is not amenable, namely for
the free group on two generators and its standard word-length function.

Let ∂ωG = Ḡω \ G. It is reasonable to call ∂ωG the “ω-boundary” of G.
Notice that α carries ∂ωG into itself. Suppose that the action α of G on ∂ωG
is amenable [2], [3]. One of the equivalent conditions for amenability of α (for
discrete G) is that the quotient map from C∗(G,C(∂ωG)) onto C∗r (G,C(∂ωG))
is an isomorphism (theorem 4.8 of [1] or theorem 3.4 of [2]). (No cocycle c is
involved here.) In proposition 2.4 of [31] it is shown that for situations like this
the amenability of the action on ∂ωG is equivalent to amenability of the action
on Ḡω. (I thank Claire Anantharaman–Delaroche for bringing this reference
to my attention, and I thank both her and Jean Renault for helpful comments
on related matters.) The proof in [31] uses the characterization of amenability
of the action in terms of nuclearity of the crossed product. Here is another
argument which does not use nuclearity. Following remark 4.10 of [36], we
consider the exact sequence of full crossed products

0→ C∗(G,C∞(G), α)→ C∗(G,C(Ḡω), α)→ C∗(G,C(∂ωG), α)→ 0

and its surjective maps onto the corresponding sequence of reduced crossed
products (which initially is not known to be exact). A simple diagram-chase
shows that if the quotient map onto C∗r (G,C(∂ωG), α) is in fact an isomor-
phism, then the sequence of reduced crossed products is in fact exact. Also,
as discussed above, C∗(G,C∞(G), α) is the algebra of compact operators, so
simple, and so the quotient map from it must be an isomorphism. A second
simple diagram-chase then shows that the quotient map from C∗(G,C(Ḡω), α)
must be an isomorphism, so that the action α of G on Ḡω is amenable. (The
verification that if the action on Ḡω is amenable then so is that on ∂ωG follows
swiftly from the equivalent definition of amenability in terms of maps whose
values are probability measures on G. This definition is given further below
and in example 2.2.14(2) of [3].)

For our general functions ω it is probably not reasonable to hope to find
a nice criterion for amenability of the action. But in the case in which ω is a
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length-function ` (in which case we write ∂`G instead of ∂ωG), we will obtain
in the next sections considerable information about ∂`G, and so it is reasonable
to pose:

Question 3.4. Let G be a finitely generated group, and let ` be the word-length
function for some finite set of generators. Under what conditions will the action
of G on ∂`G be amenable? For which class of groups will there exist a finite
set of generators for which the action is amenable? For which class of groups
will this amenability be independent of the choice of generators?

It is known that if G is a word-hyperbolic group, then its action on its
Gromov boundary is amenable. See the appendix of [3], written by E. Germain,
and the references given there. We would have a positive answer to Question
3.4 for word-hyperbolic groups if we had a positive answer to:

Question 3.5. Is it the case that for any word-hyperbolic group G and any
word-length function on G for a finite generating set, there is an equivariant
continuous surjection from ∂`G onto the Gromov boundary of G?

This seems plausible in view of our discussion of geodesic rays in the next
section, since the Gromov boundary considers geodesic rays which stay a finite
distance from each other to be equivalent.

We now explore briefly the consequences of the action being amenable.
The first consequence is that the full and reduced twisted crossed products
coincide. We have discussed the case of a trivial cocycle c above. I have not
seen the twisted case stated in the literature, but it follows easily from what
is now known. We outline the proof. To every 2-cocycle there is associated an
extension, E, of G by T. As a topological space E = T × G, and the product
is given by (s, x)(t, y) = (stc(x, y), xy). (See III.5.12 of [20].) We can compose
the evident map from E onto G with α to obtain an action, α, of E on Ḡω.
Let W be any compact space on which G acts, with the action denoted by α.
If α is amenable, then by definition (example 2.2.14(2) of [3], [2], [26], [25])
there is a sequence {mj} of weak-∗ continuous maps from W into the space
of probability measures on G such that, for α denoting also the corresponding
action on probability measures, we have for every x ∈ G

lim
j

sup
w∈W

‖αx(mj(w))−mj(αx(w))‖1 = 0.

Let h denote normalized Haar measure on T, and for each j and each w ∈ W
let nj(w) be the product measure h ⊗ mj(w) on E. Thus each nj(w) is a
probability measure on E. It is easily verified that the function w 7→ nj(w) is
weak-∗ continuous. Furthermore, a straight-forward calculation shows that

α(s,x)(nj) = h⊗ αx(mj)

for each (s, x) ∈ E and each j. Now E is not discrete. But from this cal-
culation it is easily seen that the action of E on W is amenable, where now
we use definition 2.1 of [2]. Then from theorem 3.4 of [2] (which is a special
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case of proposition 6.1.8 of [3]), it follows that C∗(E,C(W ), α) coincides with
C∗r (E,C(W ), α).

Now let p be the function on T defined by p(t) = exp(2πit), where here
we identify T with R/Z. Since T is an open subgroup of E, we can view
p as a function on E by giving it value 0 off of T. Since T is central in
E, and α is trivial on T, and C(W ) is unital, it follows that p is a central
projection in C∗(E,C(W ), α). From this it follows that the cut-down algebras
pC∗(E,C(W ), α) and pC∗r (E,C(W ), α) coincide. But it is easily seen (see
page 84 of [18] or page 144 of [19]) that pC∗(E,C(W ), α) = C∗(G,C(W ), α, c),
and similarly for C∗r . In this way we obtain:

Proposition 3.6. Let G be a discrete group, let α be an action of G on a
compact space W , and let c be a 2-cocycle on G. If the action α is amenable,
then C∗(G,C(W ), α, c) coincides with C∗r (G,C(W ), α, c).

With some additional care the above proposition can be extended to the
case in which W is only locally compact. In that case the projection p is only
in the multiplier algebras of the twisted crossed products.

We now return to the case in which G acts on Ḡω and ∂ωG. From
the above proposition it follows that if G acts amenably on ∂ωG, and so on
Ḡω, then we can view π as a representation of the reduced crossed product
C∗r (G,C(Ḡω), α, c). This has the benefit that we can apply corollary 4.19 of
[47] to conclude that π is a faithful representation of C∗r (G,C(Ḡω), α, c). The
hypotheses of this corollary 4.19 are that M be a faithful representation of
C(Ḡω), which is clearly true, and that M be G-almost free (definition 1.12 of
[47]). This latter means that for any non-zero subrepresentation N of M and
any x ∈ G with x 6= e there is a non-zero subrepresentation P of N whose
composition with the inner automorphism from x is disjoint from P . But sub-
representations of M correspond to non-empty subsets of G, and for P we can
take any one-point subset of a given subset. Thus our algebra Cω coincides
(under π) with C∗(G,C(Ḡω), α, c).

Now from Lemma 3.2 we know that C∗(G,C∞(G), α, c) coincides with
K(`2(G)), and the process of forming full twisted crossed products preserves
short exact sequences. (See the top of page 149 of [47].) Thus from Proposition
3.3, and on removing our requirement that ω ≥ 0, we obtain:

Theorem 3.7. Let ω be a translation bounded function on G such that the
action of G on ∂|ω|G is amenable. Then the cosphere algebra S∗ωA for

(C∗r (G, c), `2(G),Mω) is (naturally identified with)

S∗ωA = C∗(G,C(∂ωG), α, c) = C∗r (G,C(∂ωG), α, c).

4. The metric compactification

The purpose of this section is to show that when ω is a length-function
on G then geodesic rays in G for the metric on G from ω give points in the
compactification Ḡω. This will be a crucial tool for us in dealing with Zd, since
it will supply us with a sufficient collection of points in the boundary which have
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finite orbits. We will also see that Ḡω is then a special case of a compactification
of complete locally compact metric spaces introduced by Gromov [24] some
time ago. (This is probably related to the comment which Connes makes
about nilpotent groups in the second paragraph after the end of the proof of
proposition 2 of section 6 of [14].) Gromov’s definition appears fairly different
from that which we gave in the previous section, and so our treatment here
can also be viewed as showing how to define Gromov’s compactification as the
maximal ideal space of a unital commutative C∗-algebra. We will refrain from
using here the terms “Gromov compactification” and “Gromov boundary”,
since these terms seem already reserved in the literature for use with hyperbolic
spaces, where they have a different meaning and give objects which depend only
on the coarse quasi-isometry class of the metric. (See IIIH3 of [6].) We will
instead use the terms “metric compactification” and “metric boundary”, and
our notation will often show the dependence on the metric. We will see in
Example 5.2 that for a hyperbolic metric space the metric boundary and the
Gromov boundary can fail to be homeomorphic.

Let (X, ρ) be a metric space, and let Cb(X) denote the algebra of con-
tinuous bounded functions on X, equipped with the supremum norm ‖ · ‖∞.
Motivated by the observations in the previous section, we define ϕy,z on X for
y, z ∈ X by

ϕy,z(x) = ρ(x, y)− ρ(x, z).

Then the triangle inequality tells us that ‖ϕy,z‖∞ ≤ ρ(y, z), so that ϕy,z ∈
Cb(X). But on setting x = z we see that, in fact, ‖ϕy,z‖∞ = ρ(y, z). Let Hρ

denote the linear span in Cb(X) of {ϕy,z : y, z ∈ X}. Suppose that we fix some
base point z0 ∈ X. Then it is easily checked that ϕy,z = ϕz0,z − ϕz0,y. Thus
Hρ is equally well the linear span of {ϕz0,y : y ∈ X}, but is independent of the
choice of z0. (It will be useful to us that we can change base-points at will.) We
often find it convenient to fix z0, and to set ϕy = ϕz0,y, so that Hρ is the linear
span of the ϕy’s. When X is a group, it is natural to choose z0 = e. We were
implicitly doing this in the previous section. We note that ‖ϕy‖∞ = ρ(y, z0).

Much as above, we have ϕy −ϕz = ϕz,y, and so ‖ϕy −ϕz‖∞ = ‖ϕz,y‖∞ =
ρ(y, z). Thus the mapping y 7→ ϕy is an isometry from (X, ρ) into Cb(X). The
latter space is complete, and so this isometry extends to the completion of X.

We desire to obtain a compactification of X to which all of the functions
ϕy extend as continuous functions. We want X to be an open subset of the
compactification, and so we must require that X is locally compact. Then
the various compactifications of X in which X is open are just the maximal-
ideal spaces of the various unital closed *-subalgebras of Cb(X) which contain
C∞(X). Thus we set:

Definition 4.1. Let (X, ρ) be a metric space whose topology is locally com-
pact. Let G(X, ρ) be the norm-closed subalgebra of Cb(X) which is generated
by C∞(X), the constant functions, and Hρ. Let X̄ρ denote the maximal ideal
space of G(X, ρ). We call X̄ρ the metric compactification of X for ρ.
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Then, essentially by construction, X̄ρ is a compactification of X (within
which X is open). We remark that if, instead, we take the norm-closed subal-
gebra of Cb(X) generated by all of the bounded Lipschitz functions, then we
obtain the algebra of all bounded uniformly continuous (for ρ) functions on X.
(See the bottom of page 23 of [45].)

It is natural to think of Xρ\X as a boundary at infinity for X. But
from a metric standpoint this is not always reasonable. Suppose that X is not
complete. Each of the functions ϕy is a Lipschitz function, and so extends to

the completion X̂ρ of X. Each f ∈ C∞(X) extends continuously to X̂ρ by

setting it equal to 0 off X. The constant functions obviously extend to X̂ρ.
Thus the algebraic algebra generated by Hρ, C∞(X) and the constant functions

extends to an algebra of functions on X̂ρ, and the supremum norm is preserved
under this extension. Thus our completed algebra G(X, ρ) can be viewed as a

unital subalgebra of Cb(X̂
ρ). It is easily seen that this algebra separates the

points of X̂ρ. (E.g., use the fact that ρ extends to the completion.) Thus we

obtain a (continuous) injection of X̂ρ into X̄ρ. But there is no reason that X̂ρ

should be open in X̄ρ, notably if the completion is not locally compact. Even
if X̂ρ is locally compact, the points of X̂ρ\X will all be of finite distance from
the points of X, and so are not “at infinity”. For this reason it seems best to
define the “boundary” only for complete locally compact metric spaces. Thus
we make:

Definition 4.2. Let (X, ρ) be a metric space which is complete and locally
compact. Then its metric boundary is X̄ρ\X. We will denote the metric
boundary by ∂ρX.

We now show that the metric compactification and the metric boundary
which we have defined above coincide with those constructed by Gromov [24]
in a somewhat different way. Gromov proceeds as follows. (See also 3.1 of [5],
II.1 of [4] and II.8.12 of [6].) Let (X, ρ) be a complete locally compact metric
space, let C(X) denote the vector space of all continuous (possibly unbounded)
functions on X, and equip X with the topology of uniform convergence on
compact subsets of X. Let C∗(X) denote the quotient of C(X) by the subspace
of constant functions, with the quotient topology. For f ∈ C(X) denote its
image in C∗(X) by f̄ . For y ∈ X set ψy(x) = ρ(x, y). Then x 7→ ψx is an
embedding of X into C(X). Let ι denote the corresponding embedding of X
into C∗(X), and let C`(X) be the closure of ι(X) in C∗(X). Then C`(X) can
be shown to be compact, and ι(X) can be shown to be open in C`(X), so that
C`(X)\X is a boundary at infinity for X.

We now explain the relationship between this construction of Gromov and
our construction given earlier in this section. Fix a base point z0. For any given
u ∈ X̄ρ define the function gu by gu(x) = −ϕx(u), where ϕx is now viewed as
a function on X̄ρ. If u ∈ X then gu(x) = ρ(u, x) − ρ(u, z0). Since ρ(u, z0) is
constant in x, the image of gu in C∗(X) is exactly Gromov’s ι(u). On the other
hand, suppose that u ∈ ∂ρX. Because X is dense in X̄ρ, there is a net {yα} of
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elements of X which converges to u. Then for each x ∈ X we have

gu(x) = −ϕx(u) = − limϕx(yα) = lim gyα(x).

That is, gyα converges to gu pointwise on X. But each gy for y ∈ X is clearly
a Lipschitz function of Lipschitz constant 1, and pointwise convergence of a
net of functions of bounded Lipschitz constant implies uniform convergence
on compact sets. Thus gyα converges uniformly to gu on compact subsets of
X, so that ḡu ∈ C`(X). (In the literature cited above, gu would be called a
horofunction if u ∈ ∂ρX.) In this way we obtain a mapping, u 7→ ḡu, from X̄ρ

to C`(X). If ḡu = ḡv for some u, v ∈ X̄ρ, then there is a constant, k, such that
ϕx(u) = ϕx(v) + k for all x ∈ X. From this it is easily seen that u = v. Thus
the mapping u 7→ ḡu is injective on X̄ρ. Finally, if {uα} is a net in X̄ρ which
converges to u ∈ X̄ρ, then, much as above, guα converges to gu pointwise,
and so uniformly on compact sets. Thus the mapping u 7→ ḡu is continuous
from X̄ρ into C`(X). Since X̄ρ is compact, it follows that this mapping is a
homeomorphism onto its image. But the image of X in C`(X) is dense, and so
the mapping is a homeomorphism from X̄ρ onto C`(X), and so from ∂ρX to
C`(X)\X, as desired.

For our later purposes it is important for us to examine the relationship be-
tween geodesics and points of ∂ρX. Much of the content of the next paragraphs
appears in some form in various places in the literature [5], [4], [6], though usu-
ally not in the generality we consider here. And here we reformulate it in terms
of our approach to the construction of ∂ρX.

We will not assume that our metric spaces are connected. For example,
we will later consider Zd with its Euclidean metric from Rd. Every ray (half-
line) in Rd should give a direction toward infinity for Zd. But if the direction
involves irrational angles, the ray may not meet Zd at an infinite number of
points. So we need a slight generalization of geodesic rays. For perspective we
also include a yet weaker definition.

Definition 4.3. Let (X, ρ) be a metric space, let T be an unbounded subset of
R+ which contains 0, and let γ be a function from T into X. We will say that:

a) γ is a geodesic ray if ρ(γ(t), γ(s)) = |t− s| for all t, s ∈ T .
b) γ is an almost-geodesic ray if it satisfies the condition:

For every ε > 0 there is an integer N such that if t, s ∈ T and
t ≥ s ≥ N , then

|ρ(γ(t), γ(s)) + ρ(γ(s), γ(0))− t| < ε.

c) γ is a weakly-geodesic ray if for every y ∈ X and every ε > 0 there is
an integer N such that if s, t ≥ N then

|ρ(γ(t), γ(0))− t| < ε

and

|ρ(γ(t), y)− ρ(γ(s), y)− (t− s)| < ε.
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It is evident that any geodesic ray is an almost-geodesic ray. (I thank
Simon Wadsley for pointing out to me that my definition of weakly-geodesic
rays in the first version of this paper was defective.)

Lemma 4.4. Let γ be an almost-geodesic ray, and let (ε,N) be as in Definition
4.3b. Then for t ≥ s ≥ N we have:

a) |ρ(γ(t), γ(0))− t| < ε.
b) |ρ(γ(t), γ(s))− (t− s)| < 2ε.
c) ρ(γ(t), γ(s)) < ρ(γ(t), γ(0))− ρ(γ(s), γ(0)) + 2ε.

Proof. For a) set s = t in the condition of Definition 4.3b. For b) we have

|ρ(γ(t)), γ(s))− (t− s)|
= |(ρ(γ(t), γ(s)) + ρ(γ(s), γ(0))− t)− (ρ(γ(s), γ(0))− s)| < 2ε.

Finally, for c) we have

ρ(γ(t), γ(s))

= (ρ(γ(t), γ(s)) + ρ(γ(s), γ(0))− t)− ρ(γ(s), γ(0))

+ρ(γ(t), γ(0))− (ρ(γ(t), γ(0))− t)
< ρ(γ(t), γ(0))− ρ(γ(s), γ(0)) + 2ε.

¤
Lemma 4.5. Any almost-geodesic ray is weakly geodesic. Let γ be a weakly-
geodesic ray. Take γ(0) as the base-point for defining ϕy for any y ∈ X. Then
limt→∞ ϕy(γ(t)) exists for every y ∈ X. If γ is actually a geodesic ray, then
t 7→ ϕy(γ(t)) is a non-decreasing (bounded) function.

Proof. To motivate the rest of the proof, suppose first that γ is a geodesic ray.
We show that t 7→ ϕy(γ(t)) is a non-decreasing function (so has a limit). For
t ≥ s we have

ϕy(γ(t)) − ϕy(γ(s))

= ρ(γ(t), γ(0))− ρ(γ(t), y)− ρ(γ(s), γ(0)) + ρ(γ(s), y)

= t− s+ ρ(γ(s), y)− ρ(γ(t), y)

= ρ(γ(t), γ(s)) + ρ(γ(s), y)− ρ(γ(t), y) ≥ 0

by the triangle inequality.
Next, let γ be an almost-geodesic ray. It is useful and instructive to first

see why limt→∞ ϕy(γ(t)) exists. Given ε > 0, take N as in Definition 4.3b. We
will show first that if t ≥ s ≥ N then ϕy(γ(t)) > ϕy(γ(s))− 3ε. In fact,

ϕy(γ(t)) − ϕy(γ(s))

= ρ(γ(t), γ(0))− ρ(γ(t), y)− ρ(γ(s), γ(0)) + ρ(γ(s), y)

≥ −ρ(γ(t), γ(s)) + ρ(γ(t), γ(0))− ρ(γ(s), γ(0)) > −3ε,

by part c) of Lemma 4.4.
Now let m = limϕy(γ(t)). Since ϕy(x) ≤ ρ(y, γ(0)) for all x ∈ X, we must

have m ≤ ρ(y, γ(0)). Now there is an s0 ≥ N such that ϕy(γ(s0)) ≥ m − ε.
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Set M = s0. Then for t ≥M we must have m ≥ ϕy(γ(t)) ≥ m− 4ε according
to the previous paragraph. It follows that limϕy(γ(t)) = m.

We can now show that γ is weakly-geodesic. Given ε > 0, choose N and
M ≥ N as above. Then for t ≥ s ≥ M the first condition of Definition 4.3c is
satisfied by Lemma 4.4a, while for the second condition we have from above

|ρ(γ(t), y) − ρ(γ(s), y)− (t− s)|
≤ |ρ(γ(t), y)− ρ(γ(t), γ(0))− ρ(γ(s), y) + ρ(γ(s), γ(0))|
+ |ρ(γ(t), γ(0))− t|+ |ρ(γ(s), γ(0))− s|
≤ |ϕy(γ(t))− ϕy(γ(s))|+ 2ε < 6ε.

Finally, suppose that γ is a weakly-geodesic ray. For any y ∈ X we show
that {ϕy(γ(t))} is a Cauchy net. Let ε and N be as in Definition 4.3c. Then
for t, s ≥ N we have

|ϕy(γ(t)) − ϕy(γ(s))|
= |ρ(γ(t), γ(0))− ρ(γ(t), y)− ρ(γ(s), γ(0)) + ρ(γ(s), y)|
≤ |ρ(γ(s), y)− ρ(γ(t), y)− (s− t)|
+ |ρ(γ(t), γ(0))− t|+ |s− ρ(γ(s), γ(0))| < 3ε.

¤

For the next theorem we will need:

Proposition 4.6. Let (X, ρ) be a locally compact metric space. If the topology
of X has a countable base, then so do the topologies of X̄ρ and ∂ρX.

Proof. If (X, ρ) is a locally compact metric space whose topology has a count-
able base, then C∞(X) has a countable dense set. Also, X has a countable
dense set, and the corresponding ϕy’s can be used to construct a countable
dense subset of Hρ. Thus the C∗-algebra G(X, ρ) will have a countable dense
set, and so the underlying spaces will have countable bases for their topolo-
gies. ¤

We recall that a metric is said to be proper if every closed ball of finite
radius is compact.

Theorem 4.7. Let (X, ρ) be a complete locally compact metric space, and let
γ be a weakly-geodesic ray in X. Then limt→∞ f(γ(t)) exists for every f ∈
G(X, ρ), and defines an element of ∂ρX. Conversely, if ρ is proper and if the
topology of (X, ρ) has a countable base, then every point of ∂ρX is determined
as above by a weakly-geodesic ray.

Proof. It is clear that the limit exists for the constant functions. From the
definition of a weakly geodesic ray we see that γ must leave any compact set.
Thus the limit exists and is 0 for all f ∈ C∞(X). Choose γ(0) as the base-point
in defining ϕy for any y ∈ X. Then from Lemma 4.5 we know that limϕy(γ(t))
exists for all y ∈ X.
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Let G̃(X, ρ) denote the subalgebra of Cb(X) generated by C∞(X), the
constant functions, and the ϕy’s, before taking the norm-closure. It is clear

from the above that lim f(γ(t)) exists for every f ∈ G̃(X, ρ), and that

| lim f(γ(t))| ≤ ‖f‖∞. Thus the limit defines a homomorphism from G̃(X, ρ)
to C which is norm-continuous, and so extends to all of G(X, ρ) by continuity.
It thus defines a point, say u, of X̄ρ. But because γ leaves any compact subset
of X, the point defined by the limit must be in ∂ρX. It is easy to check now
that lim f(γ(t)) exists and equals f(u) for all f ∈ G(X, ρ).

Suppose now that the topology of (X, ρ) has a countable base, and that
ρ is proper. Let u ∈ ∂ρX. Then we can apply Proposition 4.6 to conclude
that there is a sequence, {wn}, in X which converges in X̄ρ to u. Since u /∈ X
and ρ is proper, the sequence {wn} must be unbounded. Thus we can find
a subsequence, which we denote again by {wn}, such that if n > m then
ρ(wn, w0) > ρ(wm, w0). Let T denote the set of ρ(wn, w0)’s, and for any t ∈ T
with t = ρ(wn, w0) set γ(t) = wn. Then lim γ(t) = u. We show that γ is
weakly-geodesic. Notice that by construction ρ(γ(t), γ(0)) = t for each t ∈ T ,
so that the first condition of Definition 4.3c is satisfied. Let y ∈ X. Use γ(0)
as the base-point for defining ϕy. Now ϕy(γ(t)) converges to ϕy(u), and so,
given ε > 0, we can find an N such that whenever s, t ∈ T with s, t ≥ N then
|ϕy(t)− ϕy(s)| ≤ ε. Then for such s, t we have

|ρ(γ(t), y)− ρ(γ(s), y)− (t− s)| = |ϕy(γ(t))− ϕy(γ(s))| ≤ ε.
¤

In view of the history of these ideas (see 1.2 of [24]), we make:

Definition 4.8. A point of ∂ρX which is defined as above by an almost-geodesic
ray γ will be called a Busemann point of ∂ρX, and we will denote the point by
bγ .

For any (X, ρ) it is an interesting question as to whether every point of
∂ρX is a Busemann point. This is known to be the case for CAT(0) spaces
(corollary II.8.20 of [6]). But in the next section we will need to deal with
metric spaces which are not CAT(0). We will also see there by example that
two metrics ρ1 and ρ2 on X which are Lipschitz equivalent, in the sense that
there are positive constants k, K such that

kρ1 ≤ ρ2 ≤ Kρ1,

can give metric boundaries for X which are not homeomorphic.
Here is an example of a complete locally compact non-compact metric

space X which has no geodesic rays, but for which every point of ∂ρX is a
Busemann point. Let X be the subset X = {(n, 1/n) : n ≥ 1} of R2, with the
restriction to it of the Euclidean metric on R2. This suggests the usefulness
of almost-geodesic rays. Just before Proposition 5.4 we will give an example
of a proper metric on Z for which there are no almost-geodesic rays, so no
Busemann points (but there are sufficiently many weakly-geodesic rays).

We will later need:
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Proposition 4.9. Let z0 ∈ X and let γ and γ′ be almost-geodesic rays from
z0 (i.e., γ(0) = z0 = γ′(0)). If for any positive integer N and any ε > 0 we
can find s and t in the domains of γ and γ ′ respectively such that s, t ≥ N and
ρ(γ(s), γ′(t)) < ε, then bγ = bγ′ .

Proof. Each ϕy has Lipschitz constant ≤ 2, so

|ϕy(γ(s))− ϕy(γ′(t))| ≤ 2ρ(γ(s), γ′(t)).

The desired result follows quickly from this. ¤
We now briefly consider isometries. Suppose that α is an isometry of (X, ρ)

onto itself. Then for y, z ∈ X we have ϕy,z ◦ α−1 = ϕα(y),α(z). Thus Hρ is
carried onto itself by α. Clearly so are C∞(X) and the constant functions, and
so α gives an automorphism of the algebra G(X, ρ). It follows that α gives a
homeomorphism of X̄ρ onto itself which extends α on X. This homeomorphism
carries ∂ρX onto itself. Thus:

Proposition 4.10. Every isometry of a complete locally compact metric space
(X, ρ) extends uniquely to a homeomorphism of X̄ρ onto itself which carries
∂ρX onto itself.

Later we will need to consider (cartesian) products of metric spaces. There
are many ways to define a metric on a product. One of these ways meshes espe-
cially simply with the construction of the metric compactification. If (X, ρX)
and (Y, ρY ) are metric spaces, we define ρ on X × Y by

ρ((x1, y1), (x2, y2)) = ρX(x1, x2) + ρY (y1, y2).

We will call ρ the “sum of metrics”.

Proposition 4.11. Let (X, ρX) and (Y, ρY ) be locally compact metric spaces,
and let ρ be the sum of metrics on X × Y . Then

(X × Y )−ρ = (X̄ρX )× (Ȳ ρY ).

Proof. We need to show that the evident map from X × Y to (X̄ρX )× (Ȳ ρY )
extends to a homeomorphism from (X × Y )−ρ. For this it suffices to show
that the restriction map from C((X̄ρX ) × (Ȳ ρY )) to Cb(X × Y ) maps into
C((X × Y )−ρ) and is onto. Let x0, y0 be base-points in X and Y respectively,
and use (x0, y0) as a base-point for X × Y . Then for (u, v) ∈ X × Y we have

ϕ(u,v)(x, y) = ρ((x, y), (x0, y0))− ρ((x, y), (u, v))

= ρX(x, x0)− ρX(x, u) + ρY (y, y0)− ρY (y, v)

= ϕu(x) + ϕv(y).

In particular, ϕ(u,y0) = ϕu ⊗ 1Y and ϕ(x0,v) = 1X ⊗ ϕv. Thus the restrictions

of ϕu⊗ 1Y and 1X ⊗ϕv are in C((X ×Y )−ρ). The same is true for any f ⊗ 1Y
and 1X ⊗ g where f ∈ Cc(X) and g ∈ Cc(Y ), or for constant functions. Thus
the range of the restriction map is in C((X × Y )−ρ). But from the calculation
above we also see that any ϕ(u,v) is in the range of the restriction map, and

from this it is easily seen that the restriction map is onto C((X × Y )−ρ). ¤
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5. The case of G = Z

In this section we will see how the constructions of the previous sections
can be used to deal with Questions 2.6 and 2.7 when G = Z. This case already
reveals some phenomena which we will have to deal with later for the case
G = Zd.

Example 5.1. We examine first the case in which ` is the standard length
function on G = Z defined by `(n) = |n|, so that ρ(m,n) = |m− n|. Note that
` is the word-length function for the generating set S = {±1}. We determine
∂`G. For any k ∈ Z we have

ϕk(n) = |n| − |n− k|.
In particular,

ϕk(n) =

{
k for n ≥ 0 and n ≥ k
−k for n ≤ 0 and n ≤ k.

From this it is clear that Z̄` is just Z with the points {±∞} adjoined in the
traditional way. The action α of Z on Z̄` is by translation leaving the points
at infinity fixed. Thus ∂`Z = {±∞} with the trivial action α of Z.

Now let f ∈ Cc(Z) be given. Since Z is amenable, we know that [M`, π(f)]
is in C(Z̄`) ×α Z, and that this crossed product is faithfully represented on
`2(Z), as discussed in Section 3. We can factor by K = C∞(Z) ×α Z, and
so look at the image of [M`, πf ] in the cosphere algebra S∗A, which by the
discussion of Section 3 is exactly C(∂`Z) ×α Z. This latter is isomorphic to
two copies of C∗(Z). The image of Σf(y)Mϕyπy in the copy at +∞ will be
{k 7→ kf(k)}, while the image in the copy at −∞ will be {k → −kf(k)}. Let
us take here the convention that the Fourier series for any g ∈ Cc(Z) is given
by ĝ(t) = Σg(k)eikt, so that ĝ′(t) = iΣkg(k)eikt. Then we see from just above
that

L(f) = ‖Σf(y)Mϕyπy‖ ≥ ‖f̂ ′‖∞.
But ‖f̂ ′‖∞ agrees with the standard Lip-norm on C∗(Z) = C(T) which gives
the circle a circumference of 2π. From the comparison lemma 1.10 of [39]
it follows that L is a Lip-norm, and that it gives T (and so the state space
S(C∗(Z))) radius no larger than π.

Example 5.2. Again we take G = Z, but now we take the word-length function
` corresponding to the generating set {±1,±2}. Then ` is given by

`(n) = [|n|/2],

where [·] denotes “least integer not less than”. Thus for any k ∈ Z
ϕk(n) = [|n|/2]− [|n− k|/2].

From this one finds that if k is even then

ϕk(n) =

{
k/2 for n ≥ 0 and n ≥ k
−k/2 for n ≤ 0 and n ≤ k,
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whereas if k is odd then

ϕk(n) =





(k − 1)/2 for n even
(k + 1)/2 for n odd

}
for n ≥ 0 and n ≥ k

−(k + 1)/2 for n even
−(k − 1)/2 for n odd

}
for n ≤ 0 and n ≤ k.

From this it is easily seen that ∂`Z will consist of 4 points, two at +∞ and two
at −∞, which we can label “even” and “odd”. The action of Z on ∂`Z will at
each end be that of Z on Z2 = Z/2Z. In particular, the boundary contains no
fixed-points for this action.

We learn several things from comparing this example with the one just be-
fore. First, two word-length metrics on a given group can give metric bound-
aries which are not homeomorphic. But it is well-known (e.g., proposition
8.3.18 of [8]) and easily seen that if G is a finitely-generated group and if `1

and `2 are the word-length functions for two finite generating sets, then the
corresponding left-invariant metrics are (Lipschitz) equivalent in the sense de-
fined in the previous section. Thus we see that equivalent metrics which give
(the same) locally compact topologies (even discrete) and for which the set is
complete, can give metric boundaries which are not homeomorphic.

Next, Z is an example of a hyperbolic group [21], and so for the metric
from either of these generating sets it is a hyperbolic metric space. But the
Gromov boundary of a hyperbolic space is independent of the metrics as long
as the metrics are equivalent, or at least coarsely equivalent. The Gromov
boundary for Z is just {±∞}. One way of viewing what is happening is that
for the metric of the Example 5.2 the maps m 7→ 2m and m 7→ 2m + 1 are
geodesic rays which determine Busemann points in the boundary which are our
two points at +∞. But for the Gromov boundary any two geodesic rays which
stay a bounded distance from each other define the same point at infinity. In
particular, our present example shows that for a given hyperbolic metric space
the metric boundary and the Gromov boundary can fail to be homeomorphic.

For our next observation, let (X, ρ) be a proper metric space with base-
point z0, and let T ⊂ R+ be a fixed domain for geodesic rays, so that 0 ∈ T
and T is unbounded. On the set of geodesic rays from z0 whose domain is T we
put the topology of pointwise convergence (which, because geodesic rays are
Lipschitz maps of Lipschitz constant 1, is equivalent to the topology of uniform
convergence on bounded subsets of T ). This is done in various places in the
literature. Because ρ is proper, it is easy to see that the set of all such geodesic
rays is compact. For groups G with a word-length ` (or for graphs in general)
it is natural to take T = Z+. It is reasonable to wonder then whether ∂`G is
the quotient of this compact set of geodesics, with the quotient topology. If
it were, then for each y ∈ G the function which assigns to each such geodesic
ray γ from e the number limϕy(γ(t)) should be a continuous function on this
compact set. But this already fails for Example 5.2. For each k ≥ 1 let γk be
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the geodesic ray from 0 defined by

γk(n) =

{
2n if n ≤ k

2n− 1 if n ≥ k + 1.

Then γk converges pointwise to the geodesic ray defined by γ∞(n) = 2n for all
n. But it is easy to see that bγ∞ is the even point at +∞ while bγk is the odd
point at +∞ for all k. We also remark that in our present example there is no
geodesic line which joins the two points at +∞ (so this example fails to have
the property of “visibility” [21]).

Our Example 5.2 also shows that the metric compactification is not in
general well-related to the Higson compactification, as defined in 5.4 of [43].
For that definition let (X, ρ) be a proper metric space. For any r > 0 we define
the variational function, Vrf , of any function f by

(Vrf)(x) = sup{|f(x)− f(y)| : ρ(y, x) ≤ r}.

The Higson compactification is the maximal ideal space of the unital commu-
tative C∗-algebra of all bounded continuous functions on X such that for each
r > 0 the function Vrf vanishes at infinity. For Example 5.2 let us consider
V2ϕ1. Easy calculation shows that for any n ≥ 1 we have ϕ1(2k) = 0 while
ϕ1(2k + 1) = 1. But ρ(2k, 2k + 1) = `(1) = 1 for all k. Thus (V2ϕ1)(k) ≥ 1
for all k. Consequently ϕ1 does not extend to the Higson compactification.
More generally, if a complete locally compact metric space (X, ρ) has geodesic
rays which determine distinct Busemann points of ∂ρX and yet stay a finite
distance from each other, then X̄ρ is not a quotient of the Higson compactifi-
cation. Indeed, since the ϕy’s separate the points of ∂ρX, there will be some y
such that its ϕy separates the two Busemann points, and Vrϕy will not vanish
at infinity if r is larger than the distance between the two rays.

The situation becomes yet more interesting when we consider generating
sets such as {±3,±8}. But the proof given above that we obtain a Lip-norm
when we use the generating set {±1} extends without too much difficulty to the
case of arbitrary finite generating sets for Z. We do not include this proof here
since in Section 9 we will treat the general case of Zd by similar techniques,
though the details are certainly more complicated.

However we will discuss here another approach for the case of G = Z which
uses a classical argument which was pointed out to me by Michael Christ. (I
thank him for his guidence in this matter). This second approach seems less
likely to generalize to more complicated groups, but it gives a stronger result
for Z. For any β with 0 < β ≤ 1 and any metric ρ on a set, ρβ will again be
a metric, because t → |t|β is a length function on R. In particular, if we set
`β(n) = |n|β then `β is a length function on Z.

Theorem 5.3. Let ω be a translation-bounded function on Z such that ω(0) =
0. If `β/ω is a bounded function (ignoring n = 0) for some β with 1/2 < β ≤ 1,
then Lω is a Lip-norm on C∗(Z) = C(T).
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Proof. For any group G and any ω we have

[Mω, πf ]δe = Σf(y)ϕy(y)δy = Σω(y)f(y)δy,

where {δy} here denotes the standard basis for `2(G). Thus

‖ωf‖2 ≤ ‖[Mω, πf ]‖ = Lω(f).

What is special about Z is that ‖ωf‖2 can control the norms we need. (This
is related to our discussion of “rapid decay” in Section 1.) For this we need
that `−1

β ∈ `2(Z), which happens exactly for β > 1/2. (Here and below we

ignore n = 0 or set `−1
β (0) = 0.) Let f ∈ Cc(Z), with f̂ its Fourier transform

on T = R/Z, viewed as a periodic function on R. For s, t ∈ R with s < t
and |t− s| < 1 let χ[s,t] denote the characteristic function of the interval [s, t],
extended by periodicity. Then

|f̂(s)− f̂(t)| =
∣∣∣∣
∫ t

s

f̂ ′(r)dr

∣∣∣∣ = |〈f̂ ′, χ[s,t]〉| = |〈(f̂ ′)∨, (χ[s,t])
∨〉|.

But (χ[s,t])
∨(n) = (1/i2πn)(e(nt) − e(ns)) if we set e(r) = e2πinr, while

(f̂ ′)∨(n) = −2πinf(n). Thus if we set gs,t(n) = (e(nt) − e(ns)), the above

becomes |〈f, gs,t〉| as a pairing between functions in `1(Z) and `∞(Z). But
(with ω−1(0) = 0) we can rewrite this as

|〈ωf, ω−1gs,t〉| ≤ ‖ωf‖2‖ω−1gs,t‖2,
and notice that

‖ω−1gs,t‖2 = ‖(`β/ω)`−1
β gs,t‖2

≤ ‖`β/ω‖∞‖`−1
β gs,t‖2 <∞,

since `−1
β ∈ `2(Z). Set m(s, t) = ‖`−1

β gs,t‖2. Then putting the above together,
we obtain

|f̂(t)− f̂(s)| ≤ m(s, t)‖`β/ω‖∞‖Lω(f)‖.
A simple estimate using the fact that `−1

β ∈ `2(Z) shows that for each ε > 0

there is a δ > 0 such that if |t−s| < δ thenm(s, t) < ε. From this we see that the

set of f̂ ’s for which Lω(f) ≤ 1 and f(0) = 0 forms a bounded subset of C(T)
which is equicontinuous, so totally bounded by the Arzela–Ascoli theorem.
From this it is clear that Lω gives finite radius and, by theorem 1.9 of [39], that
it is a Lip-norm. ¤

I suspect that when β < 1/2 then L`β fails to be a Lip-norm, but I have
not found a proof of this.

Notice that Theorem 5.3 applies if |ω(n)| ≥ 1 for n 6= 0 and if there are
positive constants c and K such that |ω− c`β | ≤ K, for then |`/ω| ≤ (K + 1)c.
This is the situation which occurs for the various word-length functions on Z
(for β = 1).
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It is interesting to see what the metric compactification of Z is when β < 1.
For any p ∈ Z we have

ϕp(n) = |n|β − |n− p|β =

∫ |n|

|n−p|
βtβ−1 dt.

Since tβ−1 → 0 at +∞ because β < 1, it follows that ϕp(n) → 0 as n → ±∞.
Thus ϕp ∈ C∞(Z), and so the metric compactification is just the one-point
compactification of Z. Note also that [M`β , πf ] is a compact operator for each

f ∈ Cc(Z). Thus the cosphere algebra for (C∗(Z), `2(Z),M`β ) is C∗(Z), and
the image of [M`β , πf ] in it is 0. We also remark that it is easily verified that if

we set γ(nβ) = n, then γ is a weakly-geodesic ray, but that there are no almost-
geodesic rays in Z for this metric, since by parts a) and b) of Lemma 4.4 if γ
were such a ray we would have, for any fixed big r, that |γ(t)|β − |γ(t − r)|b
would be approximately r as t→∞, contradicting our observation above that
it must go to 0.

We conclude this section with the following observation, which applies to
our more general case of Zd.

Proposition 5.4. Let ω be a translation-bounded function on a countable
discrete Abelian group G, let Lω on Cc(G) be defined as earlier by Lω(f) =

‖[Mω, πf ]‖, and let ρω be the corresponding metric on Ĝ (which may not give

the usual topology of Ĝ). Then ρω is invariant under translation on Ĝ.

Proof. Let us denote the pairing between G and Ĝ by 〈m, t〉. Then translation

on Ĝ corresponds to the dual action, β, of Ĝ on C∗(G) given on Cc(G) by
(βt(f))(m) = 〈m, t〉f(m). This is unitarily implemented in `2(G) by Mt, where
(Mtξ)(m) = 〈m, t〉ξ(m). Then

[Mω, βt(πf )] = [Mω,MtπfM
∗
t ]

= Mt[Mω, πf ]M∗t ,

so that Lω(βt(f)) = Lω(f). (In other words, β is an action by isometries as
defined in [41].) ¤

From Theorem 5.3 one begins to see that Td has a bewildering variety of
translation invariant metrics which give its topology. For example, if ρ is such a
metric then so is ρr for any r with 0 < r < 1, as is any convex function of ρ. The
sum of two metrics and the supremum of two metrics are again metrics. More
generally, the “`p-sum” of two metrics is a metric. These operations all preserve
translation invariance. For the case of T, any strictly increasing continuous
function ` on [0, 1/2] such that `(0) = 0 and `(s+ t) ≤ `(s) + `(t) if s+ t ≤ 1/2
gives in an evident way a continuous length function on T = R/Z, and all
continuous length functions on T arise in this way. It would be interesting to
determine which generating sets for Z determine which length functions on T,
but I have not investigated this question.
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6. The metric compactification for norms on Rd

One of our eventual aims is to show that when ` is a length function on
Zd which is the restriction to Zd of a norm on Rd, then L` is a Lip-norm. In
preparation for this we examine here the metric compactification of Rd for any
given norm. We begin by considering the usual `1-norm, both because it is
simple to treat and displays some interesting phenomena, and also because its
restriction to Zd gives the word-length function for the standard generating set.
Following up on Example 5.1, we set R̄ = R∪{±∞} in the usual way, with the
action of R fixing the points ±∞.

Proposition 6.1. The metric compactification of (Rd, ‖ · ‖1) is just (R̄)d with
its product action of Rd. Thus the metric boundary is the set of (x̃j) ∈ (R̄)d

such that at least one entry is +∞ or −∞.

Proof. The metric from ‖ · ‖1 on Rd is easily seen to be the sum of the metrics
on R in the sense used in Proposition 4.11. Thus we just need to apply that
proposition a number of times. ¤

We note that now there are orbits in the boundary which are not finite,
but there are also fixed points (only a finite number of them).

We now investigate what happens for other norms on Rd. It is notationally
convenient for us just to consider a finite-dimensional vector space V with some
given norm ‖ · ‖. We will denote the corresponding metric boundary simply by
∂`V , where `(x) = ‖x‖ for all x ∈ V .

For any v ∈ V with ‖v‖ = 1 it is evident that the function γ(t) = tv
for t ∈ T = [0,∞) is a geodesic ray, and so from our earlier discussion it
will determine a Busemann point, bv, in ∂`V . We now convert to this picture
some of the known elementary facts about tangent functionals of convex sets,
as explained for example in section V.9 of [17]. There is at least one linear
functional, say σ, on V such that ‖σ‖ = 1 = σ(v). We call such a σ a “support
functional” at v. Then for any y ∈ V we have

ϕy(γ(t)) = ‖tv‖ − ‖tv − y‖ ≤ t− σ(tv − y) = σ(y).

In particular, ϕ−y(γ(t)) ≤ −σ(y). On letting t go to +∞ we find that

−ϕ−y(bv) ≥ σ(y) ≥ ϕy(bv).

But theorem 5 of section V.9 of [17] (which uses the Hahn–Banach theorem)
tells us that for any real number r such that −ϕ−y(bv) ≥ r ≥ ϕy(bv) there is a
support functional σ at v such that σ(y) = r. To see that theorem V.9.5 really
applies here, we note that if we set s = t−1 then

‖tv‖ − ‖tv − y‖ = (‖v‖ − ‖v − sy‖)/s,
and that s→ +0 as t→ +∞. From this viewpoint we are thus looking at the
negative of the tangent functional to the unit ball at v in the direction of −y,
which fits the setting of theorem V.9.5.

The point v is called a smooth point of the unit sphere if there is only
one support functional σ at v. We denote this unique σ by σv. Then the

Documenta Mathematica 7 (2002) 605–651



636 Marc A. Rieffel

above considerations tell us that if v is smooth then ϕy(bv) = −ϕ−y(bv). On
combining this with the inequalities found above, we obtain:

Proposition 6.2. Let v be a smooth point of the unit sphere of V . Then

ϕy(bv) = σv(y)

for all y ∈ V .

For us the following proposition will be of considerable importance. We
consider the action of V on itself by translation, and the corresponding action
on ∂`V .

Proposition 6.3. Let v be a smooth point of the unit sphere of V . Then bv is
a fixed point under the action of V on ∂`V .

Proof. We use the 1-cocycle relation 2.2 and Proposition 6.2 to calculate that
for any x, y ∈ V we have

(αxϕy)(bv) = ϕx+y(bv)− ϕx(bv)

= σv(x+ y)− σv(x) = σv(y) = ϕy(bv).

¤

Finally, we note that theorem 8 of section V.9 of [17] says that, for any
norm, the set of smooth points of the unit sphere is dense in the unit sphere.
This does not imply that there are infinitely many fixed points in ∂`V , as the
next example shows. But we will see later that it does show that there are
enough for our purposes.

Example 6.4. We examine the case of R2 with ‖ · ‖1, whose metric compact-
ification is described by Proposition 6.1. Let us see how our considerations
concerning geodesics fit this example. We identify the dual space V ′ in the
usual way with R2 with the norm

‖(r, s)‖∞ = max{|r|, |s|}.
All but 4 points of the unit sphere of V are smooth. However, for any

v = (a, b) with 0 < a, 0 < b and a + b = 1 we see that σv = (1, 1) ∈ V ′.
Thus all these different v’s determine the same Busemann point of ∂`V . This
accords with Proposition 6.2 and the fact that ∂`V has only 4 fixed-points for
the action of R2.

If instead we let v be the non-smooth point (1, 0) and let γ be the corre-
sponding geodesic ray, then for any y = (p, q) ∈ R2 we have

ϕy(γ(t)) = ‖γ(t)‖ − ‖γ(t)− (p, q)‖
= |t| − |t− p| − |q|.

The limit as t→ +∞ is clearly p− |q|, so that

ϕ(p,q)(bv) = p− |q| = ϕp(+∞) + ϕq(0),
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where ϕp and ϕq are for R. Thus bv = (+∞, 0) in the description of ∂`V given
by Proposition 6.1. Clearly bv is not given by an element of V ′. It is easily
seen that this bv is not invariant under translation.

We see in this way that the linear geodesic rays from 0, corresponding to
the points of the unit sphere, determine only 8 Busemann points of ∂`V . But
we can show that every point of ∂`V is determined by at least one (possibly
non-linear) geodesic ray from 0. For example, if we consider (+∞, s) ∈ ∂`V for
some fixed s ∈ R, we can pick any t0 ≥ 0 and let γ consist of the unit-speed
straight-line path from (0, 0) to (t0, 0), followed by that from (t0, 0) to (t0, s),
followed by the linear ray from (t0, s) in the direction (1, 0). (We deal here with
the “Manhattan metric”.) It is easy to check that γ is a geodesic ray whose
Busemann point corresponds to (+∞, s). We see in this way that every point
of ∂`V is a Busemann point. It is also easy to see that for each of the 4 points
(±∞, 0) and (0,±∞) of ∂`V there is only one geodesic ray to them from 0, but
that for every other point of ∂`V there are uncountably many geodesic rays to
it from 0.

Question 6.5. Is it true that, for every finite-dimensional vector space and
every norm on it, every point of ∂`V is a Busemann point?

One says that (V, ‖·‖) is smooth if every point of the unit sphere, S, of V is
a smooth point. Let S′ denote the unit sphere of V ′. Then our earlier mapping
v 7→ σv is defined on all of S. Furthermore it is onto S ′, because V , being finite
dimensional, is reflexive. This mapping σ can also be seen to be continuous.
This is essentially the fact that, as remarked at the bottom of page 60 of [33],
a compactness argument shows that smoothness implies uniform smoothness.
However, if S has “flat spots” then σ will not be injective. It is not difficult to
show that for (V, ‖ · ‖) smooth, ∂`V can be naturally identified with S ′, glued
at ∞ using σ. In this case each point of ∂`V will be fixed by the action of V .

Question 6.6. For a general (V, ‖ · ‖) is there an attractive description of ∂`V
and of the action of V on it?

We have seen in Example 6.4 that the number of support functionals σv
coming from smooth points v of the unit sphere can be finite. The reason that
they nevertheless are adequate for our later purposes is given by the following
proposition (which must be already known):

Proposition 6.7. Let ‖ · ‖ be a norm on a finite-dimensional vector space
V . Let w ∈ V , and suppose that |σv(w)| ≤ r for all smooth points v of the
unit sphere. Then ‖w‖ ≤ r. Furthermore, the closed convex hull of {σv :
v is a smooth point} is the unit ball in the dual space V ′ for the dual norm
‖ · ‖′.
Proof. Let ‖w‖ = s. Because the smooth points are dense in the unit sphere
by theorem 8 of section V.9 of [17], for any ε > 0 we can find a smooth point v
such that ‖w−sv‖ < ε. Then |σv(w)−s| = |σv(w−sv)| < ε. Since |σv(w)| ≤ r
and ε is arbitrary, it follows that ‖w‖ = s ≤ r.
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Suppose now that τ ∈ V ′ and that τ /∈ c̄o{σv : v smooth}. Then by the
Hahn–Banach theorem there is a w ∈ V and an r ∈ R such that |σv(w)| ≤
r < τ(w) for all smooth v. But we have just seen that then ‖w‖ ≤ r. Thus
‖τ‖′ > 1. ¤

7. Restrictions of norms to Zd

In this section we will examine what happens when norms on V = Rd are
restricted to Zd. We begin with the case of the norm ‖ · ‖1. Following up on
Example 6.4 we set Z̄ = Z∪{±∞} in the usual way, with its action of Z leaving
fixed the points at infinity. The proof of the following proposition is basically
the same as that of Proposition 6.1.

Proposition 7.1. For ` = ‖ · ‖1, the metric compactification of (Zd, `) is (Z̄)d

with its product action of Zd. The metric boundary is the set of (ñj) ∈ (Z̄)d

such that at least one entry is +∞ or −∞.

Suppose now that ` = ‖ · ‖ is any norm on V = Rd, and that we restrict
it to Zd. For any y ∈ Zd the function ϕy clearly extends to V̄ `, and then
restricts to the closure of Zd in V̄ `. It is not evident to me whether the ϕy’s
for y ∈ Zd separate the points of this closure. But even if they did, it is not
clear to me that we could then use this to apply the results of the previous
section to show that there are sufficient fixed-points in ∂`Zd for the action of
Zd. It is this supply of fixed-points which we need later. So we take a more
direct tack. We show that every linear geodesic ray in V can be approximated
by an almost-geodesic ray in Zd. The following lemma is closely related to
Kronecker’s theorem [7], so we just sketch the proof.

Lemma 7.2. Let v ∈ V with ‖v‖ = 1. Then there is an unbounded strictly
increasing sequence {sn} of positive real numbers such that for every ε > 0 there
is an N such that if sn > N then there is an x ∈ Zd for which ‖x− snv‖ < ε.

Proof. If there is an r ∈ R+ with rv ∈ Zd then we simply take sn = nr.
Suppose now that no such r exists. Consider the image of Rv in V/Zd. Its
closure is a connected subgroup, and so is a torus. The dimension of this torus
must be ≥ 2 for otherwise there would be an r as above. But for any finite
closed interval I of R the image of Iv is compact, and so must stay away from
0 except at 0. Thus for any neighborhood of 0 there must be a t outside of I
such that the image of tv is in that neighborhood. ¤

Let {sn} be as in the lemma. Then we can find a subsequence, {tk},
of the sequence {sn}, and for each k we can choose a xk ∈ Zd, such that
‖xk − tkv‖ < 1/k for all k.

Lemma 7.3. For v, {tk} and {xk} as above, define γ by γ(0) = 0 and
γ(tk) = xk. Then γ is an almost-geodesic ray in V which determines the
same Busemann point in ∂`V as does the ray t 7→ tv.
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Proof. Given ε > 0, choose N such that 1/N < ε/3. Then for tn ≥ tm ≥ N we
have from the triangle inequality

|‖xn − xm‖ + ‖xm‖ − tn| = |‖xn − xm‖ − ‖(tn − tm)v‖+ ‖xm‖ − tm|
≤ ‖(xn − tnv)− (xm − tmv)‖+ ‖xm − tmv‖ < ε.

From this it follows that γ is an almost-geodesic ray. The fact that it determines
the same Busemann point as does v now follows from Proposition 4.9. ¤

Proposition 7.4. Let v be a smooth point of the unit sphere of V , with support
functional σv. Then there is a Busemann point bv ∈ ∂`Zd such that for any
y ∈ Zd we have

ϕy(bv) = σv(y).

Furthermore, bv is a fixed-point for the action of Zd on ∂`Zd.

Proof. Let γ be an almost-geodesic ray associated with v as in the above lem-
mas. By Proposition 6.2 we know that

limϕy(xk) = σv(y)

for all y ∈ V . But γ is equally well an almost-geodesic ray in Zd, and so defines
a Busemann point bγ ∈ ∂Zd. But for y ∈ Zd its ϕy for Zd is just the restriction
to Zd of its ϕy for V . Thus ϕy(bγ) = σv(y) for y ∈ Zd. The proof that bγ is a
fixed-point for the action is the same as that for Proposition 6.3. ¤

We remark that, just as for V , different smooth points v may have the
same σv, and so determine the same Busemann point of ∂`Zd, and so it can
happen that only a finite number of points of ∂`Zd arise from smooth points v.

We are now ready to prove one part of our Main Theorem 0.1, namely:

Theorem 7.5. Let ` on Zd be defined by `(x) = ‖x‖ for a norm ‖ · ‖ on Rd.
Let L` be defined on Cc(Zd, c) as before by

L`(f) = ‖[M`, πf ]‖.
Then L` is a Lip-norm on C∗(Zd, c).

Proof. Let v be a smooth point of the unit sphere of V for ‖·‖. Let σv denote its
support functional, and bv its corresponding Busemann point as above in ∂`Zd.
Since bv is a fixed-point, it determines a homomorphism from the cosphere
algebra C∗(G,C(∂`G), α, c) onto C∗(G, c) which takes Mϕy to the constant

σv(y). (We use here the amenability of Zd.) Then under this homomorphism
[M`, πf ] is sent to the operator

Σf(y)ϕy(bv)πy = Σf(y)σv(y)πy

in C∗(Zd, c). Let us denote this operator, and the corresponding function, by
Xvf . Of course ‖Xvf‖ ≤ L`(f).

We let β denote the usual dual action [35] of the dual group Ĝ on C∗(G, c)
determined by

(βp(f))(x) = 〈x, p〉f(x)
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for f ∈ Cc(Zd) and p ∈ Ĝ, where 〈·, ·〉 denotes the pairing of G and Ĝ. Each

τ ∈ V ′ determines an element of Ĝ by 〈x, τ〉 = exp(iτ(x)) for x ∈ Zd. Let
Γ denote the lattice in V ′ consisting of elements which on Zd take values in
2πZ. Then we can identify Ĝ with the torus V ′/Γ, and then V ′ is identified

with the Lie algebra of Ĝ, so that the exponential mapping is just the quotient
map from V ′ to V ′/Γ. The action β has an infinitesimal version which is a Lie
algebra homomorphism from the (Abelian) Lie algebra V ′ into the Lie algebra
of derivations on C∗(G, c). We denote it by dβ, and it is determined by

(dβτ (f))(x) = iτ(x)f(x).

Each f ∈ Cc(G) then determines a linear mapping, τ 7→ dβτ (f), from V ′ into
C∗(G, c), which we denote by df , much as done for theorem 3.1 of [39].

In terms of the notation just introduced, we see that for any smooth point
v we have

iXvf = dβσvf = df(σv).

With this notation our earlier inequality becomes

‖df(σv)‖ ≤ L`(f).

Now V ′ has the dual norm ‖ · ‖′, and C∗(G, c) has its C∗-norm. So the norm
of the linear map df between them is well-defined. We denote it by ‖df‖. But
by Proposition 6.7 the closed convex hull of the set of σv’s is the unit ball in
V ′. It follows that

‖df‖ ≤ L`(f).

But in theorem 3.1 of [39] it is shown that f 7→ ‖df‖ is a Lip-norm. Thus we
can apply comparison lemma 1.10 of [39] to conclude that L` is a Lip-norm as
well. ¤

8. The boundary of (Zd, S)

Let S be a finite generating subset of G = Zd such that S = −S and
0 /∈ S. Let ` denote the corresponding word-length function on G. I do
not know how to give a concrete description of ∂`G. (But note that ∂`G
is totally disconnected since each ϕy takes only integer values, in contrast to
what happens if ` comes, for example, from the Euclidean norm on Rd.) We will
show here how to construct a substantial supply of geodesic rays. (Somewhat
related considerations appear in [44], but geodesic rays and compactifications
are not considered there.) In the next section we will show that our supply is
sufficient to prove that when M` is used as the Dirac operator for C∗(G, c),
then the corresponding metric on the state space of C∗(G, c) gives the weak-∗
topology.

Our construction is motivated by several features which we found in Sec-
tions 6 and 7. For convenience we view G = Zd as embedded in Rd. We let
K = KS denote the (closed) convex hull in Rd of S. Because K is balanced
(since S = −S), it determines a norm, ‖·‖S , on Rd, for which it is the unit ball.
(In fact, (Rd, ‖ · ‖S) is the “asymptotic cone” of (Zd, `)—see exercise 8.2.12 of
[8].) We will see later that this norm is relevant. The set of extreme points
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of KS is a subset of S, which we will denote by Se. The faces of KS (of all
dimensions) will have certain subsets of Se as their extreme points, and will
intersect S in certain subsets F . Such an F is characterized by the fact that
there is a linear functional σ on Rn (not necessarily unique) such that σ(s) ≤ 1
for all s ∈ S and F = {s ∈ S : σ(s) = 1}. We call any such σ a support
functional for F . Note that |σ(s)| ≤ 1 for all s ∈ S. By abuse of terminology
we will refer to F itself as a face of KS , and we will not distinguish between F
and the usual face which F determines.

Lemma 8.1. Let σ be a support functional for a face F of KS. Then

|σ(x)| ≤ `(x)

for all x ∈ G.

Proof. Suppose that x = Σq(s)s for some function q from S to Z. Then

σ(x) = Σq(s)σ(s) ≤ Σ|q(s)|.
On considering the minimum for all such q, we see that σ(x) ≤ `(x). But this
holds for −x as well, which gives the desired result. ¤

Let F be a face of KS . Any function γ from Z+ to G which consists of
successively adding elements of F (i.e., γ(n + 1) − γ(n) ∈ F for n ≥ 0) is
a geodesic ray. In fact, for any support functional σ for F the above lemma
tells us that we have n ≥ `(γ(n)) ≥ σ(γ(n)) = n. Since F is finite, some
(perhaps all) elements of F will have to be added in an infinite number of
times. One can see that if the order in which the elements of F are added-in
is changed, but the number of times they ultimately appear is the same, then
one obtains an equivalent geodesic ray. A class of such geodesic rays can be
specified by a function on F which has values either in Z+ or +∞. But it
seems to be tricky to decide when two such functions (possibly for different
faces) determine the same Busemann point. For our present purposes we do
not need to concern ourselves with this issue. It is sufficient for us to associate
a canonical geodesic ray to each face. This will be a special case of forming
geodesic rays by successively adding elements of the semigroup generated by F
(so that the domain of the ray may be a proper subset of Z).

Notation 8.2. For a face F of KS set zf = Σ{s : s ∈ F}, and let γF denote
the geodesic ray whose domain is |F |Z+ (where |F | denotes the number of
elements of F ) and which is defined by γ(|F |n) = nzF . We denote by bF the
corresponding Busemann point. We denote by GF the subgroup of G generated
by F .

Again Lemma 8.1 quickly shows that the above ray is geodesic. The fol-
lowing proposition is analogous to Proposition 6.2.

Proposition 8.3. Let σ be a support functional for a face F of KS. For every
u ∈ GF we have

ϕu(bF ) = σ(u).
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Proof. Since u ∈ GF , there is a positive integer N such that whenever n ≥ N
then nzF −u can be expressed as a sum of elements of F , so that `(nzF −u) =
σ(nzF − u). Of course `(nzF ) = σ(nzF ). Thus for n ≥ N

ϕu(nzF ) = σ(nzF )− σ(nzF − u) = σ(u).

¤

Proposition 8.4. Let F and σ be as above. For any y ∈ G and u ∈ GF we
have

ϕy+u(bF ) = ϕy(bF ) + σ(u).

Proof. Consider the set of u’s such that this equation holds for all y ∈ G. It
is easy to verify that this set is a subsemigroup of G. But for u in this set we
have

ϕy−u(βF ) = ϕ(y−u)+u(βF )− σ(u) = ϕy(βF ) + σ(−u),

so that this set is a group. It thus suffices to verify the above equation for each
u = s ∈ F .

So let s ∈ S. Since n 7→ ϕy(nzF ) is integer-valued, non-decreasing by
Lemma 4.5, and bounded, we can find a positive integer N such that

ϕy(bF ) = `((N +m)zF )− `((N +m)zF − y)

for all m ≥ 0. We can find a larger N such that also

ϕy+s(bF ) = `((N +m)zF )− `((N +m)zF − (y + s))

for all m ≥ 0. Since σ(s) = 1 it is then clear that we need to show that

`((N +m)zF − (y + s)) = `((N +m)zF − y)− 1

for some m ≥ 0. Let ȳ = y −NzF . Then what we need becomes

`(mzF − (ȳ + s)) = `(mzF − ȳ)− 1

for some m ≥ 0. Note that `(mzF ) − `(mzF − ȳ) is independent of m ≥ 0
because of our choice of N , and similarly for ȳ + s instead of ȳ.

Since S = −S and 0 /∈ S, we can find a subset, S+, such that S+∪(−S+) =
S and S+ ∩ (−S+) = ∅. Since F ∩ (−F ) = ∅, we can require that F ⊆ S+.
Index the elements of S+ in such a way that s1 = s, and F = {s1, . . . , s|F |},
where |F | denote the number of elements in F . Since S generates G, we can
express ȳ as ȳ = Σnjsj where nj ∈ Z for each j. Then `(ȳ) will be the minimum
of the sums Σ|nj | over all such expressions for ȳ. We make a specific choice of
such a minimizing set {nj}. (It need not be unique.)

Since `(mzF ) = m|F | by Lemma 8.1, the stability described earlier says
that m|F | − `(mzF − ȳ) is independent of m ≥ 0. We combine this for m = 0
and m = 1 to obtain −`(−ȳ) = |F | − `(zF − ȳ). We use this to calculate

|F | + Σ|nj | = |F |+ `(−ȳ) = `(zF − ȳ)

= `


∑

j≤|F |
(1− nj)sj +

∑

j>|F |
njsj


 ≤

∑

j≤|F |
|1− nj |+

∑

j>|F |
|nj |.
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On comparing the two ends, we see that we must have nj ≤ 0 for j ≤ |F |, and
that the two ends must be equal. Thus

`(zF − ȳ) =
∑

j≤|F |
(1− nj) +

∑

j>|F |
|nj |.

Now

zF − ȳ − s =
∑

j≤|F |
(1− nj)sj +

∑

j>|F |
njsj − s1

= −n1s1 +

|F |∑

2

(1− nj)sj +
∑

j>|F |
njsj .

From the fact that nj ≤ 0 for j ≤ |F | it follows that

`(zF − ȳ − s) ≤ −n1 +

|F |∑

2

(1− nj) +
∑

j>|F |
|nj |

= −1 + `(zF − ȳ).

From the triangle inequality and the fact that `(s) = 1 it follows that

`(zF − ȳ − s) = −1 + `(zF − ȳ),

as needed. ¤

Corollary 8.5. For any y, z ∈ G and any u ∈ GF , and for any support
functional σ for F , we have

ϕy+u(αz(bF )) = ϕy(αz(bF )) + σ(u).

Proof. Using the 1-cocycle identity 2.2 and Proposition 8.4 we obtain

ϕy+u(αz(bF )) = (α−zϕy+u)(bF ) = ϕy−z+u(bF )− ϕ−z(bF )

= ϕy−z(bF ) + σ(u)− ϕ−z(bF )

= (α−zϕy)(bF ) + σ(u) = ϕy(αz(bF )) + σ(u).

¤

Proposition 8.6. Let F be a face of K. For each u ∈ GF the homeomorphism
αu of Ḡ` leaves fixed each point of the α-orbit of bF . That is, for each z ∈ G
we have

αu(αz(bF )) = αz(bF ).

Proof. Because G is Abelian, it suffices to show that αu(bF ) = bF . For this we
must verify that f(αu(bF )) = f(bF ) for all f ∈ C(Ḡ`). It suffices to verify this
for f = ϕy for each y ∈ G. But from the 1-cocycle identity 2.2 and Proposition
8.4 we have

ϕy(αu(bF )) = (α−uϕy)(bF ) = ϕy−u(bF )− ϕ−u(bF )

= ϕy(bF ) + σ(−u) + σ(u) = ϕy(bF ).

¤
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We will also need the following fact:

Proposition 8.7. If y /∈ GF then ϕy is not constant on the G-orbit of bF , and
in fact there is an s ∈ S such that s /∈ F and

ϕy(αs(bF )) = ϕy(bF ) + (1− ϕ−s(bF )),

with ϕ−s(bF ) = 0 or −1.

Proof. Let S+ and the indexing {sj} be as in the proof of Proposition 8.4.
Much as in that proof, we can find a large enough N that ϕy±sj ((N + m)zF )
is constant for m ≥ 0 for all ±sj simultaneously, as is ϕy((N + m)zF ). Set
ȳ = y −NzF . For this ȳ choose {nj} as before so that ȳ = Σnjsj and `(ȳ) =
Σ|nj |. Since y /∈ GF , also ȳ /∈ GF , and so there is a k > |F | such that nk 6= 0.
Suppose that nk ≥ 1. Then

ȳ − sk =
∑

j 6=k
njsj + (nk − 1)sk,

so that
`(ȳ − sk) ≤

∑

j 6=k
|nj |+ nk − 1 = `(ȳ)− 1.

From the triangle inequality we then obtain `(ȳ − sk) = `(ȳ)− 1, that is,

`(NzF − y + sk) = `(NzF − y)− 1.

From our choice of N (and with m = 0) we then get

ϕy−sk(bF ) = ϕy−sk(NzF )

= N |F | − `(NzF − y + sk) = N |F | − `(N |F | − y) + 1

= ϕy(bF ) + 1.

We combine this with the 1-cocycle identity 2.2 to obtain

ϕy(αsk(bF )) = (α−skϕy)(bF )

= ϕy−sk(bF )− ϕ−sk(bF )

= ϕy(bF ) + (1− ϕ−sk(bF )).

Since ϕ−sk takes only the values 0, ±1, the desired conclusion is then
obtained from:

Lemma 8.8. If s ∈ S and ϕs(bF ) = 1 then s ∈ F .

Proof. If ϕs(bF ) = 1, then for large n, and for a support functional σ for F ,
we have

n|F | − 1 = `(nzF )− 1 = `(nzF − s)
≥ σ(nzF − s) = n|F | − σ(s),

so that 1 ≤ σ(s), and so s ∈ F . ¤
The above argument for the proof of Proposition 8.7 was under the as-

sumption that nk ≥ 1. If instead we have nk ≤ −1, then we carry out a similar
argument using −sk instead of sk. This concludes the proof of Proposition
8.7. ¤
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9. Word-length functions give Lip-norms on C∗(Zd, c)

We will now see how to use the results of the previous section to prove the
part of our Main Theorem 0.1 concerning word-length functions. We use the
notation of the previous section, and in particular, the norm ‖·‖S determined by
K = KS . Here we will consider the (proper) faces of K of maximal dimension,
namely of dimension d−1. We will call them “facets” ofK, as is not infrequently
done. The interior points of the facets are the smooth points of the unit sphere
for ‖ · ‖S . Again our terminology and notation will not distinguish between
facets as intersections of K with hyperplanes, and as the corresponding subsets
of S. Because K has only a finite number of extreme points, every point of
the boundary of K is contained in at least one facet, and there are only a
finite number of facets. Each facet F has a unique support functional, which
we denote by σF . Furthermore, F contains a basis for Rd, and consequently
GF is of finite index in G. This has the crucial consequence for us that the
orbit, OF , of bF in ∂`G under the action α, is finite. (Apply Proposition
8.6.) We consider the restriction map from C(∂`G) onto C(OF ). Since it is α-
equivariant, it gives an algebra homomorphism, ΠF , from C∗(G,C(∂`G), α, c)
onto C∗(G,C(OF ), α, c). If we let π and M denote also the corresponding
homomorphisms of G and C(OF ) into this latter algebra, and if for each y ∈ G
we let ψy denote the restriction of ϕy to OF , then

ΠF ([M`, πf ]) = Σf(y)Mψyπy.

Let Q be a set of coset representatives for GF in G containing 0. Then we can
express the above as

Σq∈Q(Σu∈GF f(u+ q)Mψu+q
c̄(u, q)πu)πq.

From Corollary 8.5 we see that ψu+q = ψq + σF (u). For each q let gq be the
function on GF defined by gq(u) = f(u + q)c̄(u, q). We can also view gq as a
function on G by giving it value 0 off GF . Then we can rewrite our previous
expression for ΠF ([M`, πf ]) as

Σq(Σug
q(u)(σF (u) +Mψq )πu)πq.

As in Section 7 let Ĝ = Td be the dual group of G, and denote the pairing
between G and Ĝ by 〈x, s〉. Let β now denote the usual dual action of Ĝ on
C∗(G,C(OF ), α, c), so that

βs(Mψπx) = 〈x, s〉Mψπx.

Then the finite group (G/GF )∧ can be identified with the set of characters on G
which take value 1 on GF . We can thus restrict β to (G/GF )∧ and average over
(G/GF )∧. This gives a projection of norm 1 onto the subalgebra of elements
supported on GF , and this projection on functions on G is just restriction of
functions to GF . If for each fixed q we apply this projection to the product
with π∗q of the above expression for ΠF ([M`, πf ]), we find that

‖[M`, πf ]‖ ≥ ‖Σugq(u)(σF (u) +Mψq )πu‖
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for each q. The norm on the right is that of C∗(G,C(OF ), α, c). But
section 2.27 of [47] tells us that C∗(GF , C(OF ), α, c) is a C∗-subalgebra of
C∗(G,C(OF ), α, c) under the evident identification of functions. Thus we can
view the operator on the right as being in C∗(GF , C(OF ), α, c), where we are
here restricting α and c to GF . But from Proposition 8.6 we know that the
action α of GF on OF is trivial. Thus we have the decomposition

C∗(GF , C(OF ), α, c) ∼= C(OF )⊗ C∗(GF , c).
Let aq = Σgq(u)πu and bq = Σgq(u)σF (u)πu. Then in terms of the above
decomposition we are looking at I ⊗ bq + ψq ⊗ aq. From Proposition 8.7 we
know that ψq is not constant on OF for q 6= 0. Note that ψ0 ≡ 0. For given
q 6= 0 let mj for j = 1, 2 be two distinct values of ψq. Upon evaluating at the
points where ψq takes these values, and using our earlier inequality, we see that

‖bq +mjaq‖ ≤ ‖[M`, πf ]‖ = L`(f)

for j = 1, 2. Upon writing the inequalities as

‖m−1
j bq + aq‖ ≤ |mj |−1L`(f)

and using the triangle inequality to eliminate aq, and simplifying, we find that

‖bq‖ ≤ (|m1|+ |m2|)/|m1 −m2|L`(f).

(If either mj is 0 the path is simpler.) Of course m1 and m2 depend on q. Thus
we see that we have found a constant, kq, such that ‖bq‖ ≤ kqL`(f). For q = 0
we have the same inequality with k0 = 1 since ψ0 = 0. Much as in Section 7
set XF f = ΣσF (x)f(x)πx. Then

XF f = ΣσF (x)f(x)πx = Σq(Σu∈GF σF (u+ q)f(u+ q)c̄(u, q)πu)πq

= ΣqσF (q)(ΣuσF (u)gq(u)πu)πq = ΣσF (q)bqπq.

When we combine this with the inequality obtained earlier for ‖bq‖, we obtain

‖XF f‖ ≤ (Σ|σF (q)|kq)L`(f).

Observe that the σF (q)’s and kq’s do not depend on f , but only on F and the
choice Q of coset representatives. Thus for each facet F we have obtained a
constant, kF , such that

‖XF f‖ ≤ kFL`(f)

for all f ∈ Cc(G). Note that knowing that kF is finite is the crucial place where
we use that the number of coset representatives in Q is finite.

Just as toward the end of Section 7, we have the dual action β of Td on
C∗(G, c), and the corresponding differential df of any f ∈ Cc(G), such that
df(σF ) = iXF f . Then our inequality above gives, much as in Section 7,

‖df(σF )‖ ≤ kFL`(f).

Recall now the norm ‖ · ‖S determined by K = KS . The σF ’s are exactly
the support functionals corresponding to the smooth points of the unit sphere
for ‖ · ‖S . Let ‖df‖S denote the norm of the linear map df using the dual norm
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‖ · ‖′S . Also let k = max{kF : F is a facet}. Then from Proposition 6.7 we
conclude, much as in Section 7, that

‖df‖S ≤ kL`(f).

Then just as in Section 7 we conclude that L` is a Lip-norm. This concludes
the proof of Main Theorem 0.1.

¤
Since the norm ‖ · ‖′S on V ′ does not come from an inner product, and

V ′ can be thought of as the analogue of the tangent space at the non-existent
points of the quantum space C∗(G, c), we can consider that we have here a
non-commutative Finsler geometry (as also in section 3 of [39]). The metric
geometry from L` also, in a vague way, seems Finsler-like.

I imagine that the above considerations can be generalized so that the
Main Theorem can be extended to weighted-word-length functions, where each
generator has been assigned a weight. I imagine that they can also be gener-
alized to deal with extensions of Zd by finite groups. But I have not explored
these possibilities.

Since our estimates for the proof of the Main Theorem depend just on the
behavior of the ϕy’s on the boundary, the conclusions of the Main Theorem will
also be valid if ` is replaced by the translation-bounded function `+h where h
is any function in C∞(Zd).

10. The free group

We briefly discuss here how the ideas developed earlier apply to the free
(non-Abelian) group on two generators, G = F2. Denote the two generators
by a and b, and take them and their inverses as our generating set S. Let `
denote the corresponding length function. It is well-known [21] that F2 is a
hyperbolic group, and that its Gromov boundary, ∂hG, is described as the set
of all infinite (to the right) reduced words in the elements of S. (The “h” in
∂hG is for “hyperbolic”—it does not denote a length function.) The action of
G on ∂hG is the evident one by “left concatenation” (and then reduction). We
can obtain the topology of ∂hG and of the compactification of G as follows.
(See comment ii) on page 104 of [21].) To include the elements of G we need
a “stop” symbol. We denote it by p. We let S ′ denote S with p added, and

we let
∞∏
S′ denote the set of sequences with values in S ′, with its compact

topology of “index-wise” convergence.

Notation 10.1. Let Ḡh be the subset of
∞∏
S′ consisting of all sequences such

that

1) If p occurs in the sequence then all subsequent letters in that sequence
are p.

2) The sequence is reduced, in the sense that a and a−1 are never adjacent
entries, and similarly for b and b−1.
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It is easily seen that Ḡh is a closed subset of
∞∏
S′, so compact. We identify

the elements of G with the words containing p (and in particular, we identify
the identity element of G with the constant sequence with value p). With this
understanding, it is easily seen that G is an open dense subset of Ḡh. We
identify ∂hG with the infinite words which do not contain p.

The group G again acts on Ḡh by left concatenation. It is easily seen that
this action is by homeomorphisms. Consider the function ϕa on G. For any
word w we have `(a−1w) = `(w) + 1 if w begins with the letters a−1, b or b−1,
or is the identity element, while `(a−1w) = `(w)− 1 if w begins with the letter
a. Thus ϕa(w) = `(w) − `(a−1w) has value 1 if w begins with the letter a,
and value −1 otherwise. But we can extend ϕa to Ḡh by exactly this same
prescription, and it is easily seen that this extended ϕa is continuous on Ḡh.
We do the same with ϕb, ϕa−1 and ϕb−1 . By using the 1-cocycle identity 2.2
inductively, we see that each ϕx for x ∈ G extends to a continuous function
on Ḡh (in a unique way since G is dense). Of course the functions in C∞(G)
extend by giving them value 0 on ∂hG, and the constant functions also extend.
In this way we identify C(Ḡ`) with a unital subalgebra of C(Ḡh).

Let us see now that the subalgebra C(Ḡ`) separates the points of Ḡh.
Because the subalgebra contains C∞(G), it is clear that we only need to treat
the points of ∂hG. Let v, w ∈ ∂hG with v 6= w. Then there must be a first
entry where they differ. That is, we can write them as v = xṽ, w = xw̃ where x
is a finite word while ṽ and w̃ differ in their first entry. Suppose the first entry
of ṽ is a while the first entry of w̃ is not a. Then from what we saw above

(αxϕa)(v) = ϕa(x−1v) = ϕa(ṽ) = 1,

while in the same way (αxϕa)(w) = −1. Thus the subalgebra C(Ḡ`) separates
the points of Ḡh, and so by the Stone–Weierstrass theorem C(Ḡ`) = C(Ḡh),
so that Ḡ` = Ḡh. Thus in this case the metric and hyperbolic boundaries
coincide. (The referee has pointed out that if instead we take as generating
set {a±1, a±2, b±1}, then the resulting metric compactification will be different
from that described above, because just as in Example 5.2 we will obtain two
“parallel” geodesic rays, namely (e, a2, a4, . . . ) and (a, a3, a5, . . . ), which will
give different Busemann points.)

Each w ∈ ∂hG specifies a unique geodesic ray to it from e, namely
e, w1, w1w2, w1w2w3, . . . . Thus every point of ∂`G is a Busemann point. It
is well-known [2] that the action of G on ∂hG is amenable. If one uses the
definition of amenability in terms of maps from ∂hG to probability measures
on G which was stated in Section 3, then this is seen by letting the n-th map,
mn, be the map which assigns to w ∈ ∂hG the probability measure which gives
mass 1/n to the first n points of the geodesic ray from e to w [2]. In view of
Theorem 3.7 this implies that the cosphere algebra S∗`A for the spectral triple

(A = C∗r (F2), `2(F2),M`) is C∗(G,C(∂hF2), α).
However, the action α on ∂hF2 does not have any finite orbits, and so I

do not see how to continue along the lines of the previous section to deter-
mine whether the metric on the state space S(C∗r (F2)) coming from the above
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spectral triple gives the state space the weak-∗ topology, or even just finite di-
ameter. The difficulty remains: What information can one obtain about ‖πf‖
if one knows that ‖[M`, πf ]‖ ≤ 1?
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Abstract. We consider complete Kähler-Einstein metrics on the
complements of smooth divisors in projective manifolds. The esti-
mates proven earlier by the author [5] imply that in directions parallel
to the divisor at infinity the metric tensor converges to the Kähler-
Einstein metric on the divisor. Here we show that the holomorphic
sectional curvature is bounded from above by a negative constant near
infinity.
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1. Introduction and Statement of the Result

Complete Kähler-Einstein metrics ds2
X of constant Ricci curvature on quasi-

projective varieties are of interest in various geometric situations. The existence
of a unique complete Kähler-Einstein metric ds2

X of constant Ricci curvature

−1 on a manifold X of the form X\C, where X is a compact complex manifold
and C a smooth divisor is guaranteed under the condition

KX + C > 0 (N)

(cf. [2, 3, 7]).
In [5], asymptotic properties of ds2

X (with Kähler form ωX) were investigated.
In the special asymptotic situation, it is possible to prove estimates for the
curvature tensor based on constant negative Ricci curvature. We obtain the
following theorem.
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Theorem 1. Let X be a compact complex surface, C ⊂ X a smooth divi-
sor satisfying (N). Then the holomorphic sectional curvature of the complete
Kähler-Einstein metric on X = X\C is bounded from above by a negative con-
stant near the compactifying divisor. The sectional and holomorphic bisectional
curvatures are bounded on X.

For X = P2, the assumption of the theorem is satisfied, if the degree of the
curve C is at least four. So the statement of the above theorem appears to be
related to the Kobayashi conjecture about the algebraic degeneracy of entire
holomorphic curves and the hyperbolicity of complements of plane curves.

2. Properties of the Complete Kähler-Einstein Metric

The above condition (N) also implies the existence of a Kähler-Einstein metric
ωC on C. Using a canonical section σ of [C] as a local coordinate function on X
one can restrict the complete Kähler-Einstein metric ωX to the locally defined
sets Cσ0

= {σ = σ0}. The notion of locally uniform convergence of ωX |Cσ0
,

where σ0 → 0, makes sense.

Theorem 2 ([5]). The Kähler-Einstein metric ωX converges to the Kähler-
Einstein metric ωC , when restricted to directions parallel to C.

The result is a precise analytic version of the adjunction formula: Let h be an
hermitian metric on [C] and Ω∞ a volume form of class C∞ on X, such that
the restriction of Ω∞/h to C is the Kähler-Einstein volume form on C.
In terms of the Hölder spaces Ck,λ(X) and Ck,λ(W ) for open subsets W ⊂ X
depending on quasi-coordinates used in [1] by Cheng and Yau (cf. [2, 3]), the
above statement follows from the estimate below [5]: There exists a number
0 < α ≤ 1 such that for all k ∈ N and all 0 < λ < 1 the volume form of the
complete Kähler-Einstein metric is of the form

(1)
2Ω∞

‖σ‖2 log2(1/‖σ‖2)

(
1 +

ν

logα(1/‖σ‖2)

)
with ν ∈ Ck,λ(W )

For any given ν ∈Ck,λ(W ) according to [5, 2] there exists some µ ∈ Ck−1,λ(W )
such that

∂ν

∂σ
=

µ

σ log(1/|σ|2)
.

From now on we assume that dimC(X) = 2.

Documenta Mathematica 7 (2002) 653–658



Asymptotics of Kähler-Einstein Metrics 655

Let (σ,w) be local coordinates near [C], and gσσ, gσw etc. the coefficients of
the metric tensor of the Kähler-Einstein metric ωX .

gσσ =
2

|σ|2 log2(1/|σ|2)

(
1 +

g0
σσ

logα(1/|σ|2)

)
(2)

gσw =
g0
σw

σ log1+α(1/|σ|2)
(3)

gwσ =
g0
wσ

σ log1+α(1/|σ|2)
(4)

gww = g∞ww

(
1 +

g0
ww

logα(1/|σ|2)

)
(5)

where g0
σσ, g0

σw, g0
wσ, g0

ww are in Ck,λ(W ), whereas g∞ww is of class C∞, and

ωC =
√
−1(g∞ww|C)dw ∧ dw has constant curvature −1. We observe that in

the determinant of the components of the metric tensor the diagonal terms
dominate the rest. Moreover:

Proposition 1.

gσσ ∼ |σ|2 log2(1/|σ|2)(6)

gσw, gwσ = O
(
|σ| log1−α(1/|σ|2)

)
(7)

gww ∼ 1(8)

where p ∼ q denotes the existence of some C > 1 such that (1/C) ·p ≤ q ≤ C ·p.

3. Asymptotics of the Curvature Tensor

The order of the arguments is critical. We begin with the off-diagonal terms of
the curvature tensor, which require special attention. In the sequel we need the
volume form ΩX in our local coordinates (σ,w), and we set D := gσσ · gww −
gσw · gwσ, i.e.

D =
2g∞ww

|σ|2 log2(1/|σ|2)

(
1 +

g0
σσ + g0

ww

logα(1/|σ|2)
+
gσσ · gww − (g0

σw · g0
wσ/2g

∞
ww)

log2α(1/|σ|2)

)
.

(9)

We estimate

(10) Rσwσw = O
(
1/log2+α(1/|σ|2)

)

Proof of (10). We compute −D · Rσwσw = D · ∂2gσw
∂σ∂w

− ∂gσσ
∂σ gww

∂gσw
∂w

+
∂gσw
∂σ gwσ

∂gσw
∂w

+ ∂gσσ
∂σ gσw

∂gww
∂w
− ∂gσw

∂σ gσσ
∂gww
∂w

. We gather the first three terms:

D · ∂2gσw
∂σ∂w

=
−2g∞ww·

∂g0
σw
∂w

|σ|2σ2 log3+α(1/|σ|2)
·
(

1 +
g0
σσ+g0

ww

logα(1/|σ|2) +
gσσ·gww−(g0

σw·g0
wσ/2g

∞
ww)

log2α(1/|σ|2)

)
·

(
1 +O

(
1/log1(1/|σ|2)

))
. Next −∂gσσ∂σ gww

∂gσw
∂w

=
−2g∞ww·

∂g0
σw
∂w

|σ|2σ2 log3+α(1/|σ|2)
·
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(
1 +

g0
σσ+g0

ww

logα(1/|σ|2) +
g0
σσ·g0

ww

log2α(1/|σ|2)

)
·
(
1 +O

(
1/log1(1/|σ|2)

))
, and ∂gσw

∂σ gwσ
∂gσw
∂w

=

−gσσ·gww·
∂g0
σw
∂w

|σ|2σ2 log3+α(1/|σ|2)
· (1 +O

(
1/log1(1/|σ|2)

)
).

Hence the sum of the first three terms is of the form O
(
1/|σ|4 log4+3α(1/|σ|2)

)
.

Concerning the sum of the last two terms ( ∂gσσ∂σ · gσw −
∂gσw
∂σ · gσσ) · ∂gww

∂w
we

observe that both ∂gσσ
∂σ · gσw, and ∂gσw

∂σ · gσσ are of the form

−2g0
σw

σ2|σ|2 log3+α(1/|σ|2)
·
(

1 +
g0
σσ

logα(1/|σ|2)

)
·
(
1 +O

(
1/log1(1/|σ|2)

))
.

Hence again the sum is of order O
(
1/|σ|4 log4+3α(1/|σ|2)

)
. ¤

Next, we claim

(11) Rσσww = O
(
1/log2+α(1/|σ|2)

)

Proof. We compute −D ·Rσσww = D · ∂2gσσ
∂w∂w

− ∂gσσ
∂w gww

∂gσσ
∂w

+ ∂gσw
∂w gwσ

∂gσσ
∂w

+
∂gσσ
∂w gσw

∂gwσ
∂w
− ∂gσw

∂w gσσ
∂gwσ
∂w

. It follows immediately that all summands are of

the class O
(
1/|σ| log4+α(1/|σ|2)

)
. ¤

The remaining estimates are shown in several cycles.

Step 1. The following estimates hold for the components of the curvature ten-
sor:

Rσσσσ = O
(
1/|σ|4 log2(1/|σ|2)

)
(12)

Rσσσw = O
(
1/|σ|3 log2(1/|σ|2)

)
(13)

Rσwww = O(1/|σ| log1+α(1/|σ|2))(14)

Rwwww = O(1)(15)

Proof. For (12) we estimate ∂2gσσ
∂σ∂σ

, ∂gσσ
∂σ gσσ ∂gσσ

∂σ
= O

(
1/|σ|4 log2(1/|σ|2)

)
,

∂gσw
∂σ gwσ ∂gσσ

∂σ
, ∂gσσ

∂σ gσw ∂gwσ
∂σ

= O
(
1/|σ|4 log2+2α(1/|σ|2)

)
, ∂gσw

∂σ gww ∂gwσ
∂σ

=

O
(
1/|σ|4 log1+α(1/|σ|2)

)
.

We consider (13): ∂2gσσ
∂σ∂w

, ∂gσσ
∂σ gσσ ∂gσσ

∂w
= O(1/|σ|3 log2(1/|σ|2)),

∂gσw
∂σ gwσ ∂gσσ

∂w
, ∂gσσ

∂σ gσw ∂gwσ
∂w

, ∂gσw
∂σ gww ∂gwσ

∂w
= O(1/|σ|3 log2+2α(1/|σ|2))

In the same way we arrive at the estimates (14), (15). ¤

Some of these estimates need to be improved in a second step.

Step 2.

Rσσσσ = O(1/|σ|4 log3+α(1/|σ|2))(16)

Rσσσw = O(1/|σ|3 log3+α(1/|σ|2))(17)
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Proof. Concerning (16) we consider the equation

−gσσ = Rσσσσg
σσ +Rσσσwg

wσ +Rσσwσg
σw +Rσσwwg

ww

According to Step 1 and Proposition 1 the term Rσσσσg
σσ can be estimated

from above and below by 1/|σ|2 whereas the remaining terms are at least of
the class O

(
1/|σ|2 log1+α(1/|σ|2)

)
. This proves (16).

Next

−gσw = Rσwσσg
σσ +Rσwσwg

wσ +Rσwwσg
σw +Rσwwwg

ww

is of the class O
(
1/|σ| log1+α(1/|σ|2)

)
, and on the right-hand side all terms but

the first are a priori at least in O
(
1/|σ| log1+α(1/|σ|2)

)
, whereas Rσwσσg

σσ so
far is in O (1/|σ|). This shows (17). ¤
We need to do (16) again.

Step 3.

Rσσσσ = O
(
1/|σ|4 log4(1/|σ|2)

)
(18)

We consider once again

−g2
σσ = Rσσσσg

σσgσσ +Rσσσwg
wσgσσ +Rσσwσg

σwgσσ +Rσσwwg
wwgσσ.

The last three terms on the right-hand side are at least in
O
(
1/|σ|4 log4+α(1/|σ|2)

)
, whereas g2

σσ is in O
(
1/|σ|4 log4(1/|σ|2)

)
. This

shows (18), and moreover −Rσσσσ ∼ g2
σσ. ¤

Let us conclude with a refinement of (15)

Step 4.

−Rwwww = g2
ww

(
1 +O

(
1/logα(1/|σ|2)

))

Proof. We regard −gww = Rwwwwg
ww +Rwσwwg

σw +Rwwσwg
wσ +Rwσσwg

σσ.
The first summand is in O(1), whereas the remaining three terms are at least
in O

(
1/ logα(1/|σ|2)

)
. ¤

We summarize our estimates in the following way.

Proposition 2. In a neighborhood of the divisor at infinity we have

−Rσσσσ = g2
σσ(1 +O

(
1/logα(1/|σ|2)

)
)(19)

−Rwwww = g2
ww(1 +O

(
1/logα(1/|σ|2)

)
)(20)

Rσσσw = O
(
1/|σ|3 log3+α(1/|σ|2)

)
(21)

Rσσww = O
(
1/|σ|2 log2+α(1/|σ|2)

)
(22)

Rσwσw = O
(
1|σ|2 log2+α(1/|σ|2)

)
(23)

Rσwww = O
(
1/|σ| log1+α(1/|σ|2)

)
(24)
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Proof of Theorem 1. The above Proposition 2 implies that the curvature tensor
is dominated by the diagonal terms (19) and (20). We determine a domain of
negative holomorphic sectional curvature. Let

t = a · |σ| log(1/|σ|2)
∂

∂σ
+ b · ∂

∂w
with a, b ∈ C. Then

‖t‖2 = gσσ|a|2 log2(1/|σ|2) + (gσwab+ gwσba)|σ| log(1/|σ|2) + gww|b|2

= 2|a|2 + gww|b|2 + (|a|2 + |b|2) ·O
(
1/logα(1/|σ|2)

)
.

According to Proposition 2 we have

−R(t, t, t, t) = 4|a|4 + |b|4 + (|a|2 + |b|2)2 ·O
(
1/logα(1/|σ|2)

)

Now we pick a small upper bound for ‖σ‖2 which yields a negative upper
bound for the holomorphic sectional curvature. The sectional and holomorphic
bisectional curvatures are dealt with in a similar way. ¤
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