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Abstract. Let R be the ring of integers in a finite extension K of
Qp, let k be its residue field and let χ : π1(X) → R× = GL1(R) be
a ”geometric” rank one representation of the arithmetic fundamental
group of a smooth affine k-scheme X. We show that the locally K-
analytic characters κ : R× → C×p are the Cp-valued points of a K-rigid
space W and that

L(κ ◦ χ, T ) =
∏

x∈X

1

1− (κ ◦ χ)(Frobx)T deg(x)
,

viewed as a two variable function in T and κ, is meromorphic on
A1
Cp × W. On the way we prove, based on a construction of Wan,

a slope decomposition for ordinary overconvergent (finite rank) σ-
modules, in the Grothendieck group of nuclear σ-modules.

2000 Mathematics Subject Classification: Primary 14F30; Secondary
14G10, 14G13, 14G15, 14G22

Introduction

In a series of remarkable papers [14] [15] [16], Wan recently proved a long
outstanding conjecture of Dwork on the p-adic meromorphic continuation of
unit root L-functions arising from an ordinary family of algebraic varieties
defined over a finite field k. We begin by illustrating his result by a concrete
example. Fix n ≥ 0 and let Y be the affine n + 1-dimensional Fp-variety in
A1 ×Gn+1

m defined by

zp − z = x0 + . . .+ . . . xn.

Define u : Y → Gm by sending (z, x0, . . . , xn) to x0x1 · · ·xn. For r ≥ 1 and
y ∈ F×pr let Yy/Fpr be the fibre of u above y. For m ≥ 1 let Yy(Fprm) be the set
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of Fprm -rational points and (Yy)0 the set of closed points of Yy/Fpr (a closed
point z is an orbit of an Fpr -valued point under the pr-th power Frobenius map
σpr ; its degree degr(z) is the smallest positive integer d such that σdpr fixes the
orbit pointwise). The zeta function of Yy/Fpr is

Z(Yy/Fpr , T ) = exp(

∞∑

m=1

|Yy(Fprm)|
m

Tm) =
∏

z∈(Yy)0

1

1− T degr(z)
.

On the other hand for a character Ψ : Fp → C define the Kloosterman sum

Km(y) =
∑

xi∈F
×
prm

x0x1···xn=y

Ψ(TrFprm/Fp(x0 + x1 + . . .+ xn))

and let LΨ(Y, T ) be the series such that

TdlogLΨ(y, T ) =

∞∑

m=1

Km(y)Tm.

Then, as series, ∏

Ψ

LΨ(Y, T ) = Z(Yy/Fpr , T ),

hence to understand Z(Yy/Fpr , T ) we need to understand all the LΨ(y, T ).
Suppose Ψ is non-trivial. It is known that LΨ(y, T ) is a polynomial of degree
n+ 1: there are algebraic integers α0(y), . . . , αn(y) such that

LΨ(y, T )(−1)n−1

= (1− α0(y)T ) · · · (1− αn(y)T ).

These αi(y) have complex absolute value prn/2 and are `-adic units for any
prime ` 6= p. We ask for their p-adic valuation and their variation with y.
Embedding Q → Qp we have αi(y) ∈ Qp(π) where πp−1 = −p. Sperber has
shown that we may order the αi(y) such that ordp(αi(y)) = i for any 0 ≤ i ≤ n.
Fix such an i and for k ∈ Z consider the L-function

∏

y∈(Gm)0/Fp

1

1− αki (y)T deg1(y)

(here deg1(y) is the minimal r such that y ∈ F×pr , and (Gm)0/Fp is the set of
closed points of Gm/Fp defined similarly as before). A priori this series defines
a holomorphic function only on the open unit disk. Dwork conjectured and
Wan proved that it actually extends to a meromorphic function on A1

Cp , and
varies uniformly with k in some sense. Now let W be the rigid space of locally
Qp(π)-analytic characters of the group of units in the ring of integers of Qp(π).
In this paper we show that

L(T, κ) =
∏

y∈(Gm)0/Fp

1

1− κ(αi(y))T deg1(y)
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defines a meromorphic function on A1
Cp×W. Specializing κ ∈ W to the charac-

ter r 7→ rk for k ∈ Z we recover Wan’s result. The conceptual way to think of
this example is in terms of σ-modules: Fp acts on Y via z 7→ z + a for a ∈ Fp.
It induces an action of Fp on the relative n-th rigid cohomology Rnurig,∗OY of
u, and over Qp(π) the latter splits up into its eigencomponents for the various
characters of Fp. The Ψ-eigencomponent (Rnurig,∗OY )Ψ is an overconvergent

σ-module and LΨ(y, T )(−1)n−1

is the characteristic polynomial of Frobenius
acting on its fibre in y. Crucial is the slope decomposition of (Rnurig,∗OY )Ψ:
it means that for fixed i the αi(y) vary rigid analytically with y in some sense.
We are thus led to consider Dwork’s conjecture, i.e. Wan’s theorem, in the
following general context.
Let R be the ring of integers in a finite extension K of Qp, let π be a uni-
formizer and k the residue field. Let X be a smooth affine k-scheme, let A be
the coordinate ring of a lifting of X to a smooth affine weak formal R-scheme
(so A is a wcfg-algebra) and let Â be the p-adic completion of A. Let σ be an R-
algebra endomorphism of A lifting the q-th power Frobenius endomorphism of
X, where q = |k|. A finite rank σ-module over Â (resp. over A) is a finite rank

free Â-module (resp. A-module) together with a σ-linear endomorphism φ. A

finite rank σ-module over Â is called overconvergent if it arises by base change
A→ Â from a finite rank σ-module over A. Let the finite rank overconvergent
σ-module Φ over Â be ordinary, in the strong sense that it admits a Frobenius
stable filtration such that on the j-th graded piece we have: the Frobenius is
divisible by πj and multiplied with π−j it defines a unit root σ-module Φj , i.e.
a σ-module whose linearization is bijective. (Recall that unit root σ-modules
over Â are the same as continuous representations of π1(X) on finite rank free
R-modules.) Although Φ is overconvergent, Φj will in general not be overcon-
vergent; and this is what prevented Dwork from proving what is now Wan’s
theorem: the L-function L(Φj , T ) is meromorphic on A1

Cp . Moreover he proved

the same for powers (=iterates of the σ-linear endomorphism) Φk
j of Φj and

showed that in case Φj is of rank one the family {L(Φk
j , T )}k∈Z varies uniformly

with k ∈ Z in a certain sense. At the heart of Wan’s striking method lies his
”limiting σ-module” construction which allows him to reduce the analysis of
the not necessarily overconvergent Φj to that of overconvergent σ-modules —
at the cost of now working with overconvergent σ-modules of infinite rank, but
which are nuclear. To the latter a generalization of the Monsky trace formula
can be applied which expresses L(Φk

j , T ) as an alternating sum of Fredholm
determinants of completely continuous Dwork operators.
The first aim of this paper is to further explore the significance of the limiting
σ-module construction which we think to be relevant for the search of good
p-adic coefficients on varieties in characteristic p. Following an argument of
Coleman [4] we give a functoriality result for this construction. This is then
used to prove (Theorem 7.2) a slope decomposition for ordinary overconvergent

finite rank σ-modules, in the Grothendieck group ∆(Â) of nuclear σ-modules

over Â. More precisely, we show that any Φj as above, not necessarily overcon-
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vergent, can be written, in ∆(Â), as a sum of virtual nuclear overconvergent
σ-modules. (This is the global version of the decomposition of the correspond-
ing L-function found by Wan.) Our second aim is to strengthen Wan’s uniform
results on the family {L(Φk

j , T )}k∈Z in case Φj is of rank one. More generally
we replace Φj by the rank one unit root σ-module det(Φj) if Φj has rank > 1.

Let det Φj be given by the action of α ∈ Â× on a basis element. For x ∈ X
a closed point of degree f let x : Â → Rf be its Teichmüller lift, where Rf
denotes the unramified extension of R of degree f . Then

αx = x(ασ(α) . . . σf−1(α))

lies in R×. We prove that for any locally K-analytic character κ : R× → C×p
the twisted L-function

L(α, T, κ) =
∏

x∈X

1

1− κ(αx)T deg(x)

is p-adic meromorphic on A1
Cp , and varies rigid analytically with κ. More

precisely, building on work of Schneider and Teitelbaum [13], we use Lubin-
Tate theory to construct a smooth Cp-rigid analytic varietyW whose Cp-valued
points are in natural bijection with the set HomK-an(R×,C×p ) of locally K-
analytic characters of R×. Then our main theorem is:

Theorem 0.1. On the Cp-rigid space A1
Cp × W there exists a meromorphic

function Lα whose pullback to A1
Cp via A1

Cp → A1
Cp × W, t 7→ (t, κ) for any

κ ∈ HomK-an(R×,C×p ) =W(Cp) is a continuation of L(α, T, κ).

The statement in the abstract above follows by the well known correspondence
between representations of the fundamental group and unit-root σ-modules.
The analytic variation of the L-series L(α, T, κ) with the weight κ makes it
meaningful to vastly generalize the eigencurve theme studied by Coleman and
Mazur [5] in connection with the Gouvêa-Mazur conjecture. Namely, we can
ask for the divisor of the two variable meromorphic function Lα on A1

Cp ×W.

From a general principle in [3] we already get: for fixed λ ∈ R>0, the difference
between the numbers of poles and zeros of Lα on the annulus |T | = λ is locally
constant on W. We hope for better qualitative results if the σ-module over A
giving rise to the σ-module Φ over Â carries an overconvergent integrable con-
nection, i.e. is an overconvergent F -isocrystal on X in the sense of Berthelot.
The eigencurve from [5] comes about in this context as follows: The Fredholm
determinant of the Up-operator acting on overconvergent p-adic modular forms
is a product of certain power rank one unit root L-functions arising from the
universal ordinary elliptic curve, see [3]. Also, again in the general case, the
p-adic L-function on W which we get by specializing T = 1 in Lα should be of
particular interest.
The proof of Theorem 0.1 consists of two steps. First we prove (this is essen-
tially Corollary 4.12) the meromorphic continuation to A1

Cp ×W0 for a certain
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open subspace W0 of W which meets every component of W: the subspace of
characters of the type κ(r) = r`u(r)x for ` ∈ Z and small x ∈ Cp, with u(r)
denoting the one-unit part of r ∈ R×. (In particular, W0 contains the char-
acters r 7→ κk(r) = rk for k ∈ Z; for these we have L(Φk

j , T ) = L(α, T, κk).)
For this we include det(Φj) in a family of nuclear σ-modules, parametrized by
W0: namely, the factorization into torsion part and one-unit part and then
exponentiation with ` ∈ Z resp. with small x ∈ Cp makes sense not just for
R×-elements but also for α, hence an analytic family of rank one unit root σ-
modules parametrized by W0. In the Grothendieck group of W0-parametrized
families of nuclear σ-modules, we write this deformation family of det(Φj)
as a sum of virtual families of nuclear overconvergent σ-modules. In each
fibre κ ∈ W0 we thus obtain, by an infinite rank version of the Monsky trace
formula, an expression of the L-function L(α, T, κ) as an alternating product
of characteristic series of nuclear Dwork operators. While this is essentially an
”analytic family version” of Wan’s proof (at least if X = An), the second step,
the extension to the whole space A1

Cp ×W, needs a new argument. We use a

certain integrality property (w.r.t. W) of the coefficients of (the logarithm of)
Lα which we play out against the already known meromorphic continuation on
A1
Cp ×W0. However, we are not able to extend the limiting modules from W0

to all of W; as a consequence, for κ ∈ W −W0 we have no interpretation of
L(α, T, κ) as an alternating product of characteristic series of Dwork operators.
Note that for K = Qp, the locally K-analytic characters of R× = Z×p are
precisely the continuous ones; the space W0 in that case is the weight space
considered in [3] while W is that of [5].
Now let us turn to some technical points. Wan develops his limiting σ-module
construction and the Monsky trace formula for nuclear overconvergent infinite
rank σ-modules only for the base scheme X = An. General base schemes X
he embeds into An and treats (the pure graded pieces of) finite rank overcon-
vergent σ-modules on X by lifting them with the help of Dwork’s F -crystal to
σ-modules on An having the same L-functions. We work instead in the infinite
rank setting on arbitrary X. Here we need to overcome certain technical
difficulties in extending the finite rank Monsky trace formula to its infinite
rank version. The characteristic series through which we want to express the
L-function are those of certain Dwork operators ψ on spaces of overconvergent
functions with non fixed radius of overconvergence. To get a hand on these
ψ’s one needs to write these overconvergent function spaces as direct limits of
appropriate affinoid algebras on which the restrictions of the ψ’s are completely
continuous. Then statements on the ψ’s can be made if these affinoid algebras
have a common system of orthogonal bases. Only for X = An we find such
bases; but we show how one can pass to the limit also for general X. An
important justification for proving the trace formula in this form (on general
X, with function spaces with non fixed radius of overconvergence) is that in
the future it will allow us to make full use of the overconvergent connection
in case the σ-module over A giving rise to the σ-module Φ over Â underlies
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an overconvergent F -isocrystal on X (see above) — then the limiting module
also carries an overconvergent connection. Deviating from [14] [15], instead of
working with formally free nuclear σ-modules with fixed formal bases we work,
for concreteness, with the infinite square matrices describing them. This is of
course only a matter of language.
A brief overview. In section 1 we show the existence of common orthogonal
bases in overconvergent ideals which might be of some independent interest.
In section 2 we define the L-functions and prove the trace formula. In section
3 we introduce the Grothendieck group of nuclear σ-modules (and their defor-
mations). In section 4 we concentrate on the case where φj is the unit root
part of φ and is of rank one: here we need the limiting module construction. In
section 5 we introduce the weight space W, in section 6 we prove (an infinite
rank version of) Theorem 0.1, and in section 7 (which logically could follow
immediately after section 4) we give the overconvergent representation of Φj .

Acknowledgments: I wish to express my sincere thanks to Robert Coleman
and Daqing Wan. Manifestly this work heavily builds on ideas of them,
above all on Wan’s limiting module construction. Wan invited me to begin
further elaborating his methods, and directed my attention to many interesting
problems involved. Coleman asked me for the meromorphic continuation to
the whole character space and provided me with some helpful notes [4]. In
particular the important functoriality result 4.10 for the limiting module and
the suggestion of varying it rigid analytically is due to him. Thanks also to
Matthias Strauch for discussions on the weight space.

Notations: By |.| we denote an absolute value of K and by e ∈ N the ab-
solute ramification index of K. By Cp we denote the completion of a fixed
algebraic closure of K and by ordπ and ordp the homomorphisms C×p → Q
with ordπ(π) = ordp(p) = 1. For R-modules E with πE 6= E we set

ordπ(x) := sup{r ∈ Q; r =
n

m
for some n ∈ N0,m ∈ N such that xm ∈ πnE}

for x ∈ E. Similarly we define ordp on such E. For n ∈ N we write
µn = {x ∈ Cp; xn = 1}. We let N0 = Z≥0. For an element g in a free
polynomial ring A[X1, . . . , Xn] over a ring A we denote by deg(g) its (total)
degree.

1 Orthonormal bases of overconvergent ideals

In this preparatory section we determine explicit orthonormal K-bases of
ideals in overconvergent K-Tate algebras T cn (1.5). Furthermore we recall the
complete continuity of certain Dwork operators (1.7).
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1.1 For c ∈ N we let

T cn := {
∑

α∈Nn0

bαπ
[
|α|
c ]Xα; bα ∈ K, lim

|α|→∞
|bα| = 0}

where as usual |α| =
∑n
i=1 αi for α = (α1, . . . , αn) ∈ Nn0 and where [r] ∈ Z

for a given r ∈ Q denotes the unique integer with [r] ≤ r < [r] + 1. This is
the ring of power series in X1, . . . , Xn with coefficients in K, convergent on the
polydisk

{x ∈ Cnp ; ordπ(xi) ≥ −
1

c
for all 1 ≤ i ≤ n}.

We view T cn as a K-Banach module with the unique norm |.|c for which

{π[
|α|
c ]Xα}α∈Nn0 is an orthonormal basis (this norm is not power multiplicative).

Suppose we are given elements g1, . . . , gr ∈ R[X1, . . . , Xn] − πR[X1, . . . , Xn].
Let gj ∈ k[X1, . . . , Xn] be the reduction of gj , let dj = deg(gj) ≤ deg(gj) be
its degree.

Lemma 1.2. For each 1 ≤ j ≤ r and each c > maxj deg(gj) we have

|π[
|α|+dj
c ]Xαgj |c = 1.

Proof: Write gj =
∑
β∈Nn0 bβX

β with bβ ∈ K. There exists a β1 ∈ Nn0 with

|β1| = dj and |bβ1
| = 1. Hence

|π[
|α|+dj
c ]Xαbβ1

Xβ1 |c = |π[
|α|+|β1|

c ]Xα+β1 |c = 1.

Now let β ∈ Nn0 be arbitrary, with bβ 6= 0. If |β| > dj then |bβ | ≤ |π|. Hence

|π[
|α|+dj
c ]XαbβX

β |c ≤ |π[
|α|+dj
c ]−[

|α|+|β|
c ]+1π[

|α|+|β|
c ]Xα+β |c.

But [
|α|+dj
c ]− [ |α|+|β|c ] + 1 ≥ 0 because bβ 6= 0, hence c > |β|. Thus,

|π[
|α|+dj
c ]XαbβX

β |c ≤ 1.

On the other hand, if |β| ≤ dj , then [
|α|+dj
c ] ≥ [ |α|+|β|c ] and |bβ | ≤ 1, and again

we find

|π[
|α|+dj
c ]XαbβX

β |c ≤ 1.

We are done.

1.3 The Tate algebra in n variables over K is the algebra

Tn := {
∑

α∈Nn0

bαX
α; bα ∈ K, lim

|α|→∞
|bα| = 0}.

Let I∞ (resp. Ic) be the ideal in Tn (resp. in T cn) generated by g1, . . . , gr. As
all ideals in T cn, the ideal Ic is closed in T cn. We view Ic as a K-Banach module
with the norm |.|c induced from T cn.
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Lemma 1.4. If I∞ ⊂ Tn is a prime ideal, I∞ 6= Tn, then Ic = I∞ ∩ T cn for
c >> 0.

Proof: For c >> 0 also Ic is a prime ideal in T cn. The open immersion of
K-rigid spaces Sp(Tn) → Sp(T cn) induces an open immersion V (I∞) → V (Ic)
of the respective zero sets of g1, . . . , gr. That Ic is prime means that V (Ic) is
irreducible, and I∞ 6= Tn means that V (I∞) is non empty. Hence an element
of I∞ ∩ T cn, since it vanishes on V (I∞), necessarily also vanishes on V (Ic). By
Hilbert’s Nullstellensatz ([2]) it is then an element of Ic.

Now we fix an integer c′ > maxj deg(gj). By 1.2 we find a subset E of Nn0 ×
{1, . . . , r} such that {π[

|α|+dj
c′ ]Xαgj}(α,j)∈E is an orthonormal basis of Ic′ over

K.

Theorem 1.5. For integers c ≥ c′, the set {π[
|α|+dj
c ]Xαgj}(α,j)∈E is an or-

thonormal basis of Ic over K.

Proof: Let Kc be a finite extension of K containing a c-th root π
1
c and a c′-th

root π
1
c′ of π. The absolute value |.| extends to Kc. Any norm on a K-Banach

module M extends uniquely to a Kc-Banach module norm on M ⊗K Kc, and

we keep the same name for it. It is enough to show that {π[
|α|+dj
c ]Xαgj}(α,j)∈E

is an orthonormal basis of Ic ⊗K Kc over Kc. Let |.|′c be the supremum norm
on T cn ⊗K Kc. This is the norm for which {X α

c }α∈Nn0 is an orthonormal basis

over Kc. For j ∈ {1, . . . , r} write gj =
∑
β∈Nn0 bβX

β with bβ ∈ K. Then, by a

computation similar to that in 1.2 we find

|π
|α|+dj
c XαbβX

β |′c = 1 if |β| = dj and |bβ | = 1,

|π
|α|+dj
c XαbβX

β |′c < 1 otherwise.

In particular it follows that |π
|α|+dj
c Xαgj |′c = 1. Now a comparison of expan-

sions shows that {π[
|α|+dj
c ]Xαgj}(α,j)∈E is an orthonormal basis of Ic ⊗K Kc

over Kc with respect to |.|c if and only if {π
|α|+dj
c Xαgj}(α,j)∈E is an orthonor-

mal basis of Ic ⊗K Kc over Kc with respect to |.|′c. In particular it follows on

the one hand that we only need to show that {π
|α|+dj
c Xαgj}(α,j)∈E is an or-

thonormal basis of Ic⊗KKc over Kc with respect to |.|′c, and on the other hand

it follows (applying the above with c′ instead of c) that {π
|α|+dj
c′ Xαgj}(α,j)∈E

is an orthonormal basis of Ic′ ⊗K Kc over Kc with respect to |.|′c′ . Consider
the isomorphism

T cn ⊗K Kc ∼= T c
′
n ⊗K Kc, π

α
cXα 7→ π

α
c′Xα

which is isometric with respect to |.|′c resp. |.|′c′ . It does not necessarily map
Ic ⊗K Kc to Ic′ ⊗K Kc. However, from our above computations of the values
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On Families of Pure Slope L-Functions 9

|π
|α|+dj
c XαbβX

β |′c it follows that this isomorphism identifies the reductions

of the elements of the set {π
|α|+dj
c Xαgj}(α,j)∈Nn0×{1,...,r} with the reductions

of the elements of the set {π
|α|+dj
c′ Xαgj}(α,j)∈Nn0×{1,...,r} (here by reduction

we mean reduction modulo elements of absolute value < 1). The Kc-vector
subspaces spanned by these sets are dense in Ic ⊗K Kc resp. in Ic′ ⊗K Kc.
Since for a subset of |.| = 1 elements in an orthonormizable Kc-Banach module
the property of being an orthonormal basis is equivalent to that of inducing
an (algebraic) basis of the reduction, the theorem follows.

1.6 Let BK be a reduced K-affinoid algebra, i.e. a quotient of a Tate algebra
Tm over K (for some m), endowed with its supremum norm |.|sup. Let

B = (BK)0 := {b ∈ BK ; |b|sup ≤ 1}.

For positive integers m and c let

[m, c] := [m, c]R := {z ∈ R[[X1, . . . , Xn]];

z =
∞∑

j=0

πjpj with pj ∈ R[X1, . . . , Xn] and deg(pj) ≤ m+ cj}

and
[m, c]B := [m, c]⊗̂RB

(the π-adically completed tensor product). Note that for m, c1, c2 ∈ N with
c1 < c2 we have [m, c1]B ⊂ T c2n ⊗̂KBK and also (∪m,c[m, c]B) ⊗R K =
∪c(T cn⊗̂KBK). Let

R[X1, . . . , Xn]† := R[X]† :=
⋃

m,c

[m, c].

Fix a Frobenius endomorphism σ of R[X]† lifting the q-th power Frobenius
endomorphism of k[X]. Also fix a Dwork operator θ (with respect to σ)
on R[X]†, i.e. an R-module endomorphism with θ(σ(x)y) = xθ(y) for all
x, y ∈ R[X]†. By [8] 2.4 we have θ(T cn) ⊂ T cn for all c >> 0, thus we get a
BK-linear endomorphism θ ⊗ 1 on T cn⊗̂KBK .

Proposition 1.7. Let I be a countable set, m′, c′ positive integers and
M = (ai1,i2)i1,i2∈I an I × I-matrix with entries ai1,i2 in [m′, c′]B. Suppose
that M is nuclear, i.e. that for each M > 0 there are only finitely many
i2 ∈ I such that inf i1 ordπai1,i2 < M . For c >> 0 and β ∈ Nn0 develop

(θ⊗1)(π[
|β|
c ]Xβai1,i2) ∈ T cn⊗̂KBK in the orthonormal basis {π[

|α|
c ]Xα}α of the

BK-Banach module T cn⊗̂KBK and let Gc{α,i1}{β,i2} ∈ BK for α ∈ Nn0 be its
coefficients:

(θ ⊗ 1)(π[
|β|
c ]Xβai1,i2) =

∑

α

Gc{α,i1}{β,i2}π
[
|α|
c ]Xα.
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10 Elmar Grosse-Klönne

Then for all c >> 0 and all M > 0 there are only finitely many pairs (α, i2) ∈
Nn0 × I such that

inf
β,i1

ordπG
c
{α,i1}{β,i2} < M.

Proof: For simplicity identify I with N. By [8] 2.3 we find integers r and c0

such that (θ⊗1)([qm, qc]B) ⊂ [m+r, c]B for all c ≥ c0, all m. Increasing c0 and
r we may assume that ai1,i2 ∈ [q(r− 1), c0]B for all i1, i2. Now let c be so large
that for c′ = c − 1 we have qc′ ≥ c0. Then one easily checks that Xβai1i2 ∈
[q(r + [ |β|q ]), qc′]B for all β, i1, i2. Hence (θ ⊗ 1)(Xβai1,i2) ∈ [r + [ |β|q ], c′]. This
means

|α| ≤ r + [
|β|
q

] + c′(ordπ(Gc{α,i1}{β,i2}) + [
|α|
c

]− [
|β|
c

])

for all α, and thus

ordπ(Gc{α,i1}{β,i2}) ≥ [
|β|
c

]− [
|α|
c

] +
|α| − r − [ |β|q ]

c′
.

Here the right hand side tends to infinity as |α| tends to infinity, uniformly for
all β — independently of i1 and i2 — because c/q ≤ c′ ≤ c. Now let M ∈ N be
given. By the above we find N ′(M) ∈ N such that for all α with |α| ≥ N ′(M)
we have ordπ(Gc{α,i1}{β,i2}) ≥M . Now fix α. We have

ordπ(Gc{α,i1}{β,i2}) ≥ [
|β|
c

]− [
|α|
c

] + ordπ(θ ⊗ 1)(Xβai1,i2).

By nuclearity of M the right hand side tends to zero as i2 tends to infinity,
uniformly for all i1, all β. In other words, there exists N(α,M) such that
ordπ(Gc{α,i1}{β,i2}) ≥M for all i2 ≥ N(α,M), for all i1, all β. Now set

N(M) = N ′(M) + max{N(α,M); |α| < N ′(M)}.
Then we find infβ,i1 ordπG

c
{α,i1}{β,i2} ≥M whenever |α|+ i2 ≥ N(M). We are

done.

2 L-functions

This section introduces our basic setting. We define nuclear (overconvergent)
matrices (which give rise to nuclear (overconvergent) σ-modules), their asso-
ciated L-functions and Dwork operators and give the Monsky trace formula
(2.13).

2.1 Let q ∈ N be the number of elements of k, i.e. k = Fq. Let X = Spec(A)
be a smooth affine connected k-scheme of dimension d. So A is a smooth
k-algebra. By [6] it can be represented as A = A/πA where

A =
R[X1, . . . , Xn]†

(g1, . . . , gr)
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On Families of Pure Slope L-Functions 11

with polynomials gj ∈ R[X1, . . . , Xn] − πR[X1, . . . , Xn] such that A is R-flat.
By [10] we can lift the q-th power Frobenius endomorphism of A to an R-
algebra endomorphism σ of A. Then A, viewed as a σ(A)-module, is locally
free of rank qd. Shrinking X if necessary we may assume that A is a finite free
σ(A)-module of rank qd. As before, BK denotes a reduced K-affinoid algebra,
and B = (BK)0.

2.2 Let I be a countable set. An I×I-matrixM = (ai1,i2)i1,i2∈I with entries in
an R-module E with E 6= πE is called nuclear if for each M > 0 there are only
finitely many i2 such that infi1 ordπ(ai1,i2) < M (thus M is nuclear precisely
if its transpose is the matrix of a completely continuous operator, or in the
terminology of other authors (e.g. [8]): a compact operator). An I × I-matrix
M = (ai1,i2)i1,i2∈I with entries in A⊗̂RB is called nuclear overconvergent if

there exist positive integers m, c and a nuclear matrix I × I-matrix M̃ with
entries in [m, c]B which maps (coefficient-wise) toM under the canonical map

[m, c]B ↪→ R[X]†⊗̂RB → A⊗̂RB.
Clearly, if M is nuclear overconvergent then it is nuclear.
Example: Let BK = K. Nuclear overconvergence implies that the matrix
entries are in the subring A of its completion A⊗̂RR = Â. Conversely, if I is
finite, an I×I-matrix with entries in A is automatically nuclear overconvergent.
Similarly, if I is finite, any I × I-matrix with entries in Â is automatically
nuclear.

2.3 For nuclear matrices N = (ch1,h2
)h1,h2∈H and N ′ = (dg1,g2

)g1,g2∈G with
entries in A⊗̂RB define the (G×H)× (G×H)-matrix

N ⊗N ′ := (e(h1,g1),(h2,g2))(h1,g1),(h2,g2)∈(G×H),

e(h1,g1),(h2,g2) := ch1,h2
dg1,g2

.

Now choose an ordering of the index set H. For k ∈ N0 let
∧k

(H) be the set

of k-tuples (h1, . . . , hk) ∈ Hk with h1 < . . . < hk. Define the
∧k

(H)×∧k(H)-
matrix

k∧
(N ) := N∧k := (f~h1,~h2

)~h1,~h2∈
∧k(H),

f~h1,~h2
= f(h11,...,h1k),(h21,...,h2k) :=

k∏

i=1

ch1,ih2,i
.

It is straightforward to check that N ⊗N ′ and
∧k

(N ) are again nuclear, and
even nuclear overconvergent if N and N ′ are nuclear overconvergent.

2.4 We will use the term ”nuclear” also for another concept. Namely, suppose
ψ is an operator on a vector space V over K. For g = g(X) ∈ K[X] let

F (g) := ∩ng(ψ)nV and N(g) := ∪n ker g(ψ)n.
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12 Elmar Grosse-Klönne

Let us call a subset S of K[X] bounded away from 0 if there is an r ∈ Q such
that g(a) 6= 0 for all {a ∈ Cp; ordp(a) ≥ r}. We say ψ is nuclear if for any
subset S of K[X] bounded away from 0 the following two conditions hold:
(i) F (g)⊕N(g) = V for all g ∈ S
(ii) N(S) :=

∑
g∈S N(g) is finite dimensional.

(In particular, if g /∈ (X), we can take S = {g} and as a consequence of (ii)
get N(g) = ker g(ψ)n for some n.) Suppose ψ is nuclear. Then we can define
PS(X) = det(1−Xψ|N(S)) for subsets S of K[X] bounded away from 0. These
S from a directed set under inclusion, and in [8] it is shown that

P (X) := lim
S
PS(X)

(coefficient-wise convergence) exists in K[[X]]: the characteristic series of ψ.

2.5 Let (Nc)c∈N be an inductive system of BK-Banach modules with injective
(but not necessarily isometric) transition maps ρc,c′ : Nc → Nc′ for c′ ≥ c.
Suppose this system has a countable common orthogonal BK-basis, i.e. there
is a subset {qm;m ∈ N} of N1 such that for all c and m ∈ N there are λm,c ∈ K×
such that {λm,cρ1,c(qm);m ∈ N} is an orthonormal BK-basis of Nc. Let

N := lim
→
c

Nc” = ”
⋃

c

Nc

and let N ′ ⊂ N be a BK-submodule such that N ′c = N ′ ∩ Nc is closed in Nc
for all c. Endow N ′c with the norm induced from Nc and suppose that also the
inductive system (N ′c)c∈N has a countable common orthogonal BK-basis. Let
u be a BK-linear endomorphism of N with u(N ′) ⊂ N ′ and restricting to a
completely continuous endomorphism u : Nc → Nc for each c. In that situation
we have:

Proposition 2.6. u induces a completely continuous BK-endomorphism u of
N ′′c = Nc/N

′
c for each c, and det(1− uT ;N ′′c ) is independent of c. If BK = K,

the induced endomorphism u of N ′′ = N/N ′ is nuclear in the sense of 2.4, and
its characteristic series coincides with det(1− uT ;N ′′c ) for each c.

Proof: From [3] A2.6.2 we get that u on N ′c and u on N ′′c are completely
continuous (note that N ′′c is orthonormizable, as follows from [3] A1.2), and
that

det(1− uT ;Nc) = det(1− uT ;N ′c) det(1− uT ;N ′′c )

for each c. The assumption on the existence of common orthogonal bases
implies (use [5] 4.3.2)

det(1− uT ;Nc) = det(1− uT ;Nc′), det(1− uT ;N ′c) = det(1− uT ;N ′c′)

for all c, c′. Hence

det(1− uT ;N ′′c ) = det(1− uT ;N ′′c′)
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On Families of Pure Slope L-Functions 13

for all c, c′. Also note that for c′ ≥ c the maps N ′′c → N ′′c′ are injective. The
additional assumptions in case BK = K now follow from [8] Theorem 1.3 and
Lemma 1.6.

2.7 Shrinking X if necessary we may assume that the module of (p-adically
separated) differentials Ω1

A/R is free over A. Fix a basis ω1, . . . , ωd. With
respect to this basis, let D be the d×d-matrix of the σ-linear endomorphism of
Ω1
A/R which the R-algebra endomorphism σ of A induces. Then D∧k =

∧k
(D)

is the matrix of the σ-linear endomorphism of Ωk
A/R =

∧k
(Ω1

A/R) which σ
induces.
Let θ = σ−1 ◦ Tr be the endomorphism of Ωd

A/R constructed in [7] Theorem

8.5. It is a Dwork operator: we have θ(σ(a)y) = aθ(y) for all a ∈ A, y ∈
ΩdA/R. Denote also by θ the Dwork operator on A which we get by transport of

structure from θ on ΩdA/R via the isomorphism A ∼= ΩdA/R which sends 1 ∈ A
to our distinguished basis element ω1 ∧ . . . ∧ ωd of ΩdA/R.
For c ∈ N define the subring Ac of AK = A⊗R K as the image of

T cn ↪→ R[X]† ⊗R K → AK .

This is again a K-affinoid algebra, and we have

θ(Ac) ⊂ Ac

for c >> 0. To see this, choose an R-algebra endomorphism σ̃ of R[X]† which
lifts both σ on A and the q-th power Frobenius endomorphism on k[X]. With

respect to this σ̃ choose a Dwork operator θ̃ on R[X]† lifting θ on A (as in the
beginning of the proof of [8] Theorem 2.3). Then apply [8] Lemma 2.4 which

says θ̃(T cn) ⊂ T cn.

2.8 LetM = (ai1,i2)i1,i2∈I be a nuclear overconvergent I×I-matrix with entries
in A⊗̂RB. For c ∈ N let M̌ c

I be the Ac⊗̂KBK-Banach module for which the set
of symbols {ěi}i∈I is an orthonormal basis. For c ≥ c′ we have the continuous
inclusion of BK-algebras Ac

′⊗̂KBK ⊂ Ac⊗̂KBK , hence a continuous inclusion
of BK-modules M̌ c′

I ⊂ M̌ c
I . SinceM is nuclear overconvergent we have ai1,i2 ∈

Ac⊗̂KBK for all c >> 0, all i1, i2. We may thus define for all c >> 0 the
BK-linear endomorphism ψ = ψ[M] of M̌ c

I by

ψ(
∑

i1∈I
bi1 ěi1) =

∑

i1∈I

∑

i2∈I
(θ ⊗ 1)(bi1ai1,i2)ěi2

(bi1 ∈ Ac⊗̂KBK). Clearly these endomorphisms extend each other for increas-
ing c, hence we get an endomorphism ψ = ψ[M] on

M̌I :=
⋃

c>>0

M̌ c
I .
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14 Elmar Grosse-Klönne

2.9 Suppose BK = K and I is finite, and M is the matrix of the σ-linear
endomorphism φ acting on the basis {ei}i∈I of the free A-module M . Then we
define ψ[M] as the Dwork operator

ψ[M] : HomA(M,ΩdA/R)→ HomA(M,ΩdA/R), f 7→ θ ◦ f ◦ φ.

This definition is compatible with that in 2.8: Consider the canonical embed-
ding

HomA(M,ΩdA/R)→ HomA(M,ΩdA/R)⊗R K
w∼= M̌I

where the inverse of the AK-linear isomorphism w sends ěi ∈ M̌I to the
homomorphism which maps ei ∈ M to ω1 ∧ . . . ∧ ωd and which maps ei′ for
i′ 6= i to 0. This embedding commutes with the operators ψ[M].

Theorem 2.10. For each c >> 0, the endomorphism ψ = ψ[M] on M̌ c
I is a

completely continuous BK-Banach module endomorphism. Its Fredholm deter-
minant det(1−ψT ; M̌ c

I ) is independent of c. Denote it by det(1−ψT ; M̌I). If
BK = K, the endomorphism ψ = ψ[M] on M̌I is nuclear in the sense of [8],
and its characteristic series as defined in [8] coincides with det(1− ψT ; M̌I).

Proof: Choose a lifting ofM = (ai1,i2)i1,i2∈I to a nuclear matrix (ãi1,i2)i1,i2∈I
with entries in [m, c]B . Also choose a lifting of θ on A to a Dwork operator θ̃
on R[X]† (with respect to a lifting of σ, as in 2.7). Let N c

I be the T cn⊗̂KBK-
Banach module for which the set of symbols {(ěi)̃}i∈I is an orthonormal basis,

and define the BK-linear endomorphism ψ̃ of N c
I by

ψ̃(
∑

i1∈I
b̃i1(ěi1 )̃) =

∑

i1∈I

∑

i2∈I
(θ̃ ⊗ 1)(̃bi1 ãi1,i2)(ěi2 )̃

(̃bi1 ∈ T cn⊗̂KB). An orthonormal basis of N c
I as a BK-Banach module is given

by

{π[
|α|
c ]Xα(ěi)̃}α∈Nn0 ,i∈I . (1)

By 1.7 the matrix for ψ̃ in this basis is completely continuous; that is, ψ̃ is
completely continuous. If Ic ⊂ T cn and I∞ ⊂ Tn denote the respective ideals
generated by the elements g1, . . . , gr from 2.1, then I∞ ∩ T cn is the kernel of
T cn → Ac, so by 1.4 the sequences

0→ Ic → T cn → Ac → 0 (2)

are exact for c >> 0. Let H be the BK -Banach module with orthonormal basis
the set of symbols {hi}i∈I . From (2) we derive an exact sequence

0→ Ic⊗̂KH → T cn⊗̂KH → Ac⊗̂KH → 0 (3)
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On Families of Pure Slope L-Functions 15

(To see exactness of (3) on the right note that one of the equivalent norms on
Ac is the residue norm for the surjective map of K-affinoid algebras T cn → Ac

(this surjection even has a continuous K-linear section as the proof of [3] A2.6.2
shows)). We use the following isomorphisms of T cn⊗̂KBK-Banach modules (in
(i)) resp. of Ac⊗̂KBK -Banach modules (in (ii)):

T cn⊗̂KH = (T cn⊗̂KBK)⊗̂BKH ∼= N c
I , 1⊗ hi 7→ (ěi)̃ (i)

Ac⊗̂KH = (Ac⊗̂KBK)⊗̂BKH ∼= M̌ c
I , 1⊗ hi 7→ ěi (ii)

By 1.5 we find a subset E of Nn0 ×{1, . . . , r} such that {π[
|α|+dj
c ]Xαgj}(α,j)∈E is

an orthonormal basis of Ic over K for all c >> 0. For the BK-Banach modules
Ic⊗̂KH = (Ic⊗̂KBK)⊗̂BKH we therefore have the orthonormal basis

{π[
|α|+dj
c ]Xαgj ⊗ hi}(α,j)∈E,i∈I . (4)

It is clear that the systems of orthonormal bases (1) resp. (4) make up systems
of common orthonormal bases when c increases. (This is why we took pains
to prove 1.5; the present argument could be simplified if we could prove the
existence of a common orthogonal basis for the system (M̌ c

I )c>>0.) Now let
NI = ∪cN c

I . From the exactness of the sequences (3) and from the injectivity

of the maps M̌ c
I → M̌ c′

I for c ≤ c′ we get Ic⊗̂KH = T cn⊗̂KH ∩Ker(NI → M̌I).
Thus the theorem follows from 2.6.

Corollary 2.11.

d∏

r=0

det(1− ψ[M⊗D∧r]T ; M̌I)
(−1)r−1

is the quotient of entire power series in the variable T with coefficients in BK ;
in other words, it is a meromorphic function on A1

K ×Sp(K) Sp(BK).

2.12 Let BK = K. We want to define the L-function of a nuclear matrix
M = (ai1,i2)i1,i2∈I (with entries in Â). For f ∈ N define the f -fold σ-power

M(σ)f of M to be the matrix product

M(σ)f := ((ai1,i2)i1,i2∈I)(σ(ai1,i2)i1,i2∈I) . . . ((σ
f−1(ai1,i2))i1,i2∈I).

Let x ∈ X be a geometric point of degree f over k, that is, a surjective k-algebra
homomorphism A→ Fqf . Let Rf be the unramified extension of R with residue

field Fqf , and let x : Â → Rf be the Teichmüller lifting of x with respect to
σ (the unique σf -invariant surjective R-algebra homomorphism lifting x). By
(quite severe) abuse of notation we write

Mx := x(M(σ)f ),
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16 Elmar Grosse-Klönne

the I×I-matrix with Rf -entries obtained by applying x to the entries ofM(σ)f

— the ”fibre ofM in x”. The nuclearity condition implies thatMx is nuclear;
equivalently, its transpose is a completely continuous matrix over Rf in the
sense of [12]. It turns out that the Fredholm determinant det(1−MxT

deg(x))
has coefficients in R, not just in Rf . We define the R[[T ]]-element

L(M, T ) :=
∏

x∈X

1

det(1−MxT deg(x))
.

It is trivially holomorphic on the open unit disk. Let T be the set of k-
valued points x : A → k of X. For a completely continuous endomorphism
ψ of an orthonormizable K-Banach module we denote by TrK(ψ) ∈ K its trace.

Theorem 2.13. Let M be a nuclear overconvergent matrix over Â.
(1) For each x ∈ T the element

Sx :=
∑

0≤j≤d
(−1)jTr((D∧d−j)x)

is invertible in R. For 0 ≤ i ≤ d, we have

TrK(ψ[M⊗D∧i]) =
∑

x∈T

Tr((D∧d−i)x)Tr(Mx)

Sx
.

(2)

L(M, T ) =

d∏

r=0

det(1− ψ[M⊗D∧r]T ; M̌I)
(−1)r−1

.

In particular, by 2.11, L(M, T ) is meromorphic on A1
K .

Proof: Let J ⊂ A be the ideal generated by all elements of the form a −
σ(a) with a ∈ A. Then Spec(A/J) is a direct sum of copies of Spec(R),
indexed by T : It is the direct sum of all Teichmüller lifts of elements in T
(or rather, their restrictions from Â to A; cf. [8] Lemma 3.3). Let C(A, σ)
be the category of finite (not necessarily projective) A-modules (M,φ) with a
σ-linear endomorphism φ, let m(A, σ) be the free abelian group generated by
the isomorphism classes of objects of C(A, σ), and let n(A, σ) be the subgroup
of m(A, σ) generated by the following two types of elements. The first type is
of the form (M,φ)− (M1, φ1)− (M2, φ2) where

0→ (M1, φ1)→ (M,φ)→ (M2, φ2)→ 0

is an exact sequence in C(A, σ). The second type is of the form (M,φ1 +
φ2) − (M,φ1) − (M,φ2) for σ-linear operators φ1, φ2 on the same M . Set
K(A, σ) = m(A, σ)/n(A, σ). By the analogous procedure define the group
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K∗(A, σ) associated with the category of finite A-modules with a Dwork oper-
ator relative to σ. (Here we follow the notation in [16]. The notation in [8] is
the opposite one !). By [8], both K(A, σ) and K∗(A, σ) are free A/J-modules of
rank one. For a finite square matrix N over A we denote by TrA/J (N ) ∈ A/J
the trace of the matrix obtained by reducing modulo J the entries of N . More-
over, for such N we view ψ[N ] always as a Dwork operator on a (finite) A-
module as in 2.9, i.e. we do not invert π. From [16] sect.3 it follows that ψ[D∧i]
can be identified with the standard Dwork operator ψi on ΩiA/R from [8]. By

[8] sect.5 Cor.1 we have

[ψ[D∧d]]
∑

0≤j≤d
(−1)jTrA/J(D∧d−j) = [(A, id)] (1)

in K∗(A, σ), and
∑

0≤j≤d(−1)jTrA/J(D∧d−j) is invertible in A/J . By [8] The-
orem 5.2 we also have

[ψ[D∧i]] = TrA/J(D∧d−i)[ψ[D∧d]] (2)

in K∗(A, σ). To prove the theorem suppose first that M is a finite square
matrix. It then gives rise to an element [M] of K(A, σ). By [16] 10.8 we have

[M] = TrA/J(M)[(A, id)]

in K(A, σ). Application of the homomorphism of A/J-modules

λd−i : K(A, σ)→ K∗(A, σ)

of [16] p.42 gives

[ψ[M⊗D∧i]] = TrA/J(M)[ψ[D∧i]] (3)

in K∗(A, σ). From (1), (2), (3) we get

[ψ[M⊗D∧i]] =
TrA/J (M)TrA/J(D∧d−i)∑
0≤j≤d(−1)jTrA/J(D∧d−j) [(A, id)]

in K∗(A, σ). Taking the R-trace proves (1) in caseM is a finite square matrix.
Then taking the alternating sum over 0 ≤ i ≤ d gives the additive formulation
of (2) in case M is a finite square matrix (see also [16] Theorem 3.1).
The case where the index set I forM is infinite follows by a limiting argument
from the case where I is finite. We explain this for (2), leaving the easier (1)
to the reader. Let P(I) be the set of finite subsets of I. For I ′ ∈ P(I), the
I ′ × I ′-sub-matrix MI′ = (ai1,i2)i1,i2∈I′ of M is again nuclear overconvergent.
Hence, in view of the finite square matrix case it is enough to show

L(M, T ) = lim
I′∈P(I)

L(MI′ , T ) (1)
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18 Elmar Grosse-Klönne

and for any 0 ≤ r ≤ d also

det(1− ψ[M⊗D∧r]T ; M̌I) = lim
I′∈P(I)

det(1− ψ[MI′ ⊗D∧r]T ; M̌I) (2)

(coefficient-wise convergence). For I ′ ∈ P(I) define the I × I-matrix M[I ′] =
(aI
′
i1,i2

)i1,i2∈I by aI
′
i1,i2

= ai1,i2 if i2 ∈ I ′ and aI
′
i1,i2

= 0 otherwise. For a
geometric point x ∈ X we may view the fibre matrices Mx resp. M[I ′]x for
I ′ ∈ P(I) as the transposed matrices of completely continuous operators λx
resp. λ[I ′]x acting all on one single K-Banach space Ex with orthonormal basis
indexed by I. And we may view the fibre matrixMI′

x as the transposed matrix
of the restriction of λ[I ′]x to a λ[I ′]x-stable subspace of Ex, spanned by a finite
subset of our given orthonormal basis and containing λ[I ′]x(Ex). For the norm
topology on the space L(Ex, Ex) of continuous K-linear endomorphisms of Ex
we find, using the nuclearity of M, that limI′ λ[I ′]x = λx. Hence it follows
from [12] prop.7,c) that

det(1−MxT
deg(x)) = lim

I′∈P(I)
det(1−M[I ′]xT

deg(x)).

But by [12] prop.7,d) we have

det(1−M[I ′]xT
deg(x)) = det(1−MI′

x T
deg(x)).

Together we get (1). The proof of (2) is similar: By the proof of 1.7 we have
indeed

lim
I′∈P(I)

ψ[M[I ′]⊗D∧r] = ψ[M⊗D∧r]

in the space of continuous K-linear endomorphisms of M̌ c
I , so [12] prop.7,c)

gives

det(1− ψ[M⊗D∧r]T ; M̌ c
I ) = lim

I′∈P(I)
det(1− ψ[M[I ′]⊗D∧r]T ; M̌ c

I ).

Now the ψ[M[I ′]⊗D∧r] do not have finite dimensional image in general, but
clearly an obvious generalization of [12] prop.7,d) shows

det(1− ψ[M[I ′]⊗D∧r]T ; M̌ c
I ) = det(1− ψ[MI′ ⊗D∧r]T ; M̌ c

I )

for I ′ ∈ P(I). We are done.

3 The Grothendieck group

In this section we introduce the Grothendieck group ∆(A⊗̂RB) of nuclear
σ-modules. It is useful since on the one hand, formation of the L-function
of a given nuclear σ-module factors over this group, and on the other hand,
many natural nuclear σ-modules which are not nuclear overconvergent can be
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represented in this group through nuclear overconvergent ones.

3.1 We will write σ also for the endomorphism σ ⊗ 1 of A⊗̂RB = Â⊗̂RB.
For ` = 1, 2 let M` be I` × I`-matrices with entries in A⊗̂RB, for countable
index sets I`. We say M1 is σ-similar to M2 over A⊗̂RB if there exist a
I1 × I2-matrix S and a I2 × I1-matrix S ′, both with entries in A⊗̂RB, such
that SS ′ (resp. S ′S) is the identity I1 × I1 (resp. I2 × I2) -matrix, and such
that S ′M1Sσ =M2 (in particular it is required that all these matrix products
converge coefficient-wise in A⊗̂RB). Clearly, σ-similarity is an equivalence
relation.

3.2 Let m(A⊗̂RB) be the free abelian group generated by the σ-similarity
classes of nuclear matrices (over arbitrary countable index sets) with entries in
A⊗̂RB. Let ∆(A⊗̂RB) be the quotient ofm(A⊗̂RB) by the subgroup generated
by all the elements [M]− [M′]− [M′′] for matrices M = (ai1,i2)i1,i2∈I , M′ =
(ai1,i2)i1,i2∈I′ and M′′ = (ai1,i2)i1,i2∈I′′ where I = I ′ t I ′′ is a partition of I
such that ai1,i2 = 0 for all pairs (i1, i2) ∈ I ′× I ′′ (in other words,M is in block
triangular form and M′, M′′ are the matrices on the block diagonal).
Elements z ∈ ∆(A⊗̂RB) can be written as z = [M+] − [M−] with nu-
clear matrices M+,M−. If {Mn}n∈N is a collection of nuclear matrices
such that ordπ(Mn) → ∞ (where ordπ(M) = mini1,i2{ordπai1,i2} for a ma-
trix M = (ai1,i2)i1,i2∈I) and if {νn}n∈N are integers, then the infinite sum∑
n∈N νn[Mn] can be viewed as an element of ∆(A⊗̂RB) as follows: Sorting

the νn according to their signs means breaking up this sum into a positive and
a negative summand, so we may assume νn ≥ 1 for all n. ReplacingMn by the
block diagonal matrix diag(Mn,Mn, . . . ,Mn) with νn copies of Mn we may
assume νn = 1 for all n. Since all Mn are nuclear and ordπ(Mn) → ∞ the
block diagonal matrix M = diag(M1,M2,M3, . . .) is nuclear. It represents
the desired element of ∆(A⊗̂RB). Matrix tensor product (see 2.2) defines a
multiplication in ∆(A⊗̂RB): One checks that

([M1,+]− [M1,−])⊗ ([M2,+]− [M2,−])

= [M1,+ ⊗M2,+]− [M1,+ ⊗M2,−]− [M1,− ⊗M2,+] + [M1,− ⊗M2,−]

is independent of the chosen representations.

3.3 A more suggestive way to think of ∆(A⊗̂RB) is the following. We say
that a subset {ei}i∈I of an A⊗̂RB-module M is a formal basis if there is an
isomorphism of A⊗̂RB-modules

{(di)i∈I ; di ∈ A⊗̂RB} ∼= M

mapping for any j ∈ I the sequence (di)i with dj = 1 and di = 0 for i 6= j
to ej . A nuclear σ-module over A⊗̂RB is an A⊗̂RB-module M together with
a σ-linear endomorphism φ such that there exists a formal basis {ei}i∈I of M
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such that the action of φ on {ei}i∈I is described by a nuclear matrix M with
entries in A⊗̂RB, i.e. φei = Mei if we think of ei as the i-th column of the
identity I × I matrix. We usually think of a nuclear σ-module over A⊗̂RB as
a family of nuclear σ-modules over A, parametrized by the rigid space Sp(BK).
In the above situation, if S is a (topologically) invertible I × I-matrix with
entries in A⊗̂RB, then S−1MSσ is the matrix of φ in the new formal basis
consisting of the elements Sei = e′i ofM (if now we think of e′i as the i-th column
of the identity I×I-matrix). Hence we can view ∆(A⊗̂RB) as the Grothendieck
group of nuclear σ-modules over A⊗̂RB, i.e. as the quotient of the free abelian
group generated by (isomorphism classes of) nuclear σ-modules over A⊗̂RB,
divided out by the relations [(M,φ)]− [(M ′, φ′)]− [(M ′′, φ′′)] coming from short
exact sequences

0→ (M ′, φ′)→ (M,φ)→ (M ′′, φ′′)→ 0

which are A⊗̂RB-linearly (but not necessarily φ-equivariantly) split.

Proposition 3.4. Let BK = K. Let x ∈ ∆(Â) be represented by a convergent

series x =
∑
`∈N ν`[M`] with nuclear matrices M` over Â. Then the L-series

L(x, T ) :=
∏

`∈N
L(M`, T )ν`

is independent of the chosen representation of x. If all M` are nuclear over-
convergent, then L(x, T ) represents a meromorphic function on A1

K .

Proof: One checks that σ-similar nuclear matrices over Â have the same L-
function. Indeed, even the Euler factors at closed points of X are the same:
they are given by Fredholm determinants of similar (in the ordinary sense)
completely continuous matrices. Now letM,M′ andM′′ give rise to a typical
relation [M] = [M′]+[M′′] as in our definition of ∆(A⊗̂RB). Then one checks
that

L(M, T ) = L(M′, T )L(M′′, T ),

again by comparing Euler factors. And finally it also follows from the Eu-
ler product definition that ordπ(1 − L(M`, T )) → ∞ if ordπ(M`) → ∞.
Altogether we get the well definedness of L(x, T ). If the Ml are nuclear
overconvergent, then the L(M`, T ) are meromorphic by 2.13 and we get the
second assertion.

4 Resolution of unit root parts of rank one

In this section we describe a family version of the limiting module construc-
tion. Given a rank one unit root σ-module (Munit, φunit) which is the unit
root part of a (unit root ordinary) nuclear σ-module (M,φ) and such that
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φunit acts by a 1-unit ai0,i0 ∈ Â on a basis element of Munit, we choose an
affinoid rigid subspace Sp(BK) of A1

K such that for each Cp-valued point
x ∈ Sp(BK) ⊂ Cp the exponentiation axi0,i0 is well defined. Hence we get a

rank one σ-module over A⊗̂RB. We express its class in ∆(Â⊗̂RB) through
a set (indexed by r ∈ Z) of nuclear σ-modules (Br(M), Br(φ)) over A⊗̂RB
which are overconvergent if (M,φ) is overconvergent, even if (Munit, φunit) is
not overconvergent. Later Sp(BK) will be identified with the set of characters

κ : U
(1)
R → C×p of the type κ(u) = κx(u) = ux for small x ∈ Cp, where

U
(1)
R denotes the group of 1-units in R. To obtain the optimal parameter

space for the Br(M) (i.e. the maximal region in Cp of elements x for which
κx occurs in the parameter space) one needs to go to the union of all these
Sp(BK). This K-rigid space is not affinoid any more; in the case K = Qp
it is the parameter space B∗ from [3]. We will however not pass to this
limit here, since for an extension of the associated unit root L-function even
to the whole character space we will have another method available in section 6.

Lemma 4.1. Let E be a p-adically separated and complete ring such that E →
E⊗Q is injective and denote again by ordp the natural extension of ordp from
E to E ⊗Q.
(i) Let x ∈ E. If ordp(x) > 1

p−1 , then ordp(
xn

n! ) ≥ 0 for all n ≥ 0, and

exp(x) =
∑

n≥0

xn

n!

converges.
(ii) Let x ∈ E. If ordp(x) > 0, then ordp(

xn

n ) ≥ 0 for all n ≥ 1, and

log(1 + x) = (−1)n−1
∑

n≥1

xn

n

converges. Moreover, if ordp(x) > β ≥ 1
p−1 , then ordp(log(1 + x)) > β; if

ordp(x) ≥ 1
p−1

1
pb

for some b ∈ N0, then ordp(log(1 + x)) ≥ 1
p−1 − b.

Proof: Proceed as in [11], p.252, p.356.

4.2 Fix a countable non empty set I and an element i0 ∈ I, let I1 = I − {i0}.
Let M = (ai1,i2)i1,i2∈I be a nuclear I × I-matrix over Â. It is called 1-normal

if 1−ai0,i0 ∈ πÂ and if ai1,i2 ∈ πÂ for all (i1, i2) 6= (i0, i0). It is called standard

normal if ai1,i0 = 0 for all i1 ∈ I1, if ai0,i0 is invertible in Â and if ai1,i2 ∈ πÂ
for all (i1, i2) 6= (i0, i0). It is called standard 1-normal if it is both standard
normal and 1-normal.
That M is standard normal means that the associated σ-module (M,φ)
has a unique φ-stable submodule of rank one on which φ acts on a basis
element by multiplication with a unit in Â: the unit root part (Munit, φunit)
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of (M,φ). In general, (Munit, φunit) will not be overconvergent even if (M,φ)
is overconvergent. The purpose of this section is to present another construc-
tion of σ-modules departing from (M,φ) which does preserve overconvergence

and allows us to recapture (Munit, φunit) in ∆(Â), and even certain of its twists.

4.3 For ν ∈ Q we define the Cp-subsets

D≥ν := {x ∈ Cp; ordp(x) ≥ ν}

D>ν := {x ∈ Cp; ordp(x) > ν}.
We use these notations also for the natural underlying rigid spaces. Let B(ν)K
be the reduced K-affinoid algebra consisting of power series in the free variable
V , with coefficients in K, convergent on D≥ν (viewing V as the standard
coordinate). Thus

B(ν)K = {
∑

α∈N0

cαV
α; cα ∈ K, lim

α→∞
(ordp(cα) + να) =∞}.

4.4 Fix ν ∈ Q and let

B := (B(ν)K)0 := {
∑

α∈N0

cαV
α ∈ B(ν)K ; ordp(cα) + να ≥ 0 for all α},

J := {q : I1 → N0; q(i) = 0 for almost all i ∈ I1},

C := (A⊗̂RB)J =
∏

J

A⊗̂RB.

Define a multiplication in C as follows. Given β = (βq)q∈J and β′ = (β′q)q∈J
in C, the component at q ∈ J of the product ββ ′ is defined as

(ββ′)q =
∑

(q1,q2)∈J2

q1+q2=q

βq1β
′
q2 .

C is p-adically complete. For c ∈ N0 we defined [0, c]B in 1.6, and now we let

Cc := ([0, c]B)J =
∏

J

[0, c]B ,

a complete subring of C. We view C as a A⊗̂RB-algebra by means of the ring
morphism h : A⊗̂RB → C defined for y ∈ A⊗̂RB by h(y)q = y ∈ A⊗̂RB if
q ∈ J is the zero map I1 → N0, and by h(y)q = 0 ∈ A⊗̂RB for all other q ∈ J .
In turn,

C ∼= A⊗̂RB[[I1]],

the free power series ring on the set I1 (viewed as a set of free variables).
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4.5 Let µ : S1 → S2 be a homomorphism of arbitrary R-modules. With I, i0,
I1 and J from above we now define a homomorphism

λ(µ) : (S1)I =
∏

I

S1 → (S2)J =
∏

J

S2.

Given a = (ai)i∈I ∈
∏
I S1, the q-component λ(µ)(a)q of λ(µ)(a), for q ∈ J ,

is defined as follows. If q ∈ J is the zero map I1 → N0, then λ(µ)(a)q =
µ(ai0) ∈ S2. If there is a i ∈ I1 such that q(i) = 1 and q(i′) = 0 for all
i′ ∈ I1−{i}, then λ(µ)(a)q = µ(ai) ∈ S2 (for this i). For all other q ∈ J we let
λ(µ)(a)q = 0 ∈ S2.

Returning to the situation in 4.4, the natural inclusion τ : Â → A⊗̂RB =
Â⊗̂RB gives us an embedding of Â-modules

λ = λ(τ) : ÂI =
∏

I

Â→ C =
∏

J

A⊗̂RB.

It is clear that λ(([0, c]R)I) ⊂ Cc.

4.6 Now let M = (ai1,i2)i1,i2∈I be a nuclear and 1-normal I × I-matrix over

Â. Then

µ := inf({ordp(ai0,i0 − 1)} ∪ {ordp(ai1,i2); (i1, i2) 6= (i0, i0)}) ≥ 1

e
> 0.

If µ > 1
p−1 choose ν ∈ Q such that ν > 1

p−1 − µ. If only µ ≥ 1
pb

1
p−1 for some

b ∈ N0 choose ν ∈ Q such that ν > b. With this ν define B and C as above.
We view M as the set, indexed by i2 ∈ I, of its columns

a(i2) := (ai1,i2)i1∈I ∈ ÂI .

For each r ∈ Z we now define a J × J-matrix Br(M) = (b
(r)
q1,q2)q1,q2∈J over

A⊗̂RB associated with M. To define Br(M) it is enough to define the set,
indexed by q2 ∈ J , of the columns

b
(r)
(q2) = (b(r)q1,q2)q1∈J ∈

∏

J

A⊗̂RB = C

of Br(M). Using the ring structure of C we define

b
(r)
(q2) := λ(a(i0))

V λ(a(i0))
r

∏
i∈I1 λ(a(i))

q2(i)

λ(a(i0))|q2|
.

Here |q| = ∑i∈I1 q(i) for q ∈ J , and λ(a(i0))
V ∈ C is defined as

λ(a(i0))
V := exp(V log(λ(a(i0)))).

For this to make sense note that ordp(λ(a(i0)) − 1C) ≥ µ > 1
p−1 (resp.

ordp(λ(a(i0)) − 1C) ≥ µ ≥ 1
pb

1
p−1 ), hence ordp(log(λ(a(i0)))) ≥ µ (resp.
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ordp(log(λ(a(i0)))) ≥ 1
p−1 − b) by 4.1(ii). Thus V log(λ(a(i0))) is, in view of our

choice of ν, indeed an element of A⊗̂RB, with ordp(V log(λ(a(i0)))) ≥ µ+ ν >
1
p−1 (resp. ordp(V log(λ(a(i0)))) ≥ 1

p−1 − b+ ν > 1
p−1 ), so we can apply 4.1(i)

to it.
If the free variable V specializes to integer values, λ(a(i0))

V specializes to
the usual exponentiation by integers of the unit λ(a(i0)) in C (just as we use

usual exponentiation for the other factors in the above definition of b
(r)
(q2)). Let

Br−(M) be the matrix obtained from Br(M) by replacing V with −V (i.e.
the matrix defined by the same recipe, but now using λ(a(i0))

−V in place of

λ(a(i0))
V as the first factor of b

(r)
(q2)).

4.7 The particular choice of ν made in 4.6 will play no role in the sequel.
However, there is some theoretical interest in taking ν as small as possible:
the smaller ν, the larger D≥ν which is the parameter space for our families of
σ-modules defined by the matrices Br(M) and Br−(M). The ultimate result
6.11 on the family of twisted unit root L-functions does not depend on the
choice (in the prescribed range) of ν here: for 6.11 it is not important how far
the family extends, we only need to extend it to D≥ν for some ν < ∞. But
we get trace formulas, which are important for a further qualitative study,
only for those members of this family of twisted unit root L-functions whose
parameters (=locally K-analytic characters) are in D≥ν .

Proposition 4.8. The matrices Br(M) and Br−(M) are nuclear. If M is
nuclear overconvergent, then Br(M) and Br−(M) are nuclear overconvergent.

Proof: Nuclearity: Given M > 0, we need to show ordπ(b
(r)
(q2)) > M for all

but finitely many q2 ∈ J . It is clear that ordπ(λ(a(i0))
V λ(a(i0))

m) = 0 for all

m ∈ Z, therefore we need to concentrate only on the factors
∏
i∈I1 λ(a(i))

q2(i).
By nuclearity of M we know that ordπ(λ(a(i))) = ordπ(a(i)) > M for all but
finitely many i ∈ I1. Therefore we need to concentrate only on those q2 with
support inside this finite exceptional subset of I1. Among these q2 we have
|q2| > M for all but finitely many q2. But |q2| > M (and ordπ(a(i)) ≥ 1 for all
i ∈ I1) implies

ordπ(
∏

i∈I1
λ(a(i))

q2(i)) =
∑

i∈I1
q2(i)ordπ(a(i)) ≥

∑

i∈I1
q2(i) = |q2| > M.

Nuclearity is established. Now assume M is nuclear overconvergent.
Then it can be lifted to a nuclear, overconvergent and 1-normal matrix
M̃ = (ãi1,i2)i1,i2∈I with entries in R[X]†. Then, perhaps increasing the c
from our nuclearity condition, there is a c ∈ N such that ãi1,i2 ∈ [0, c]R for all

(i1, i2) 6= (i0, i0), and also ãi0,i0 − 1 ∈ [0, c]R. Then all entries of Br(M̃) are in

[0, c]B . Hence Br(M̃) is nuclear and overconvergent. Clearly it is a lifting of
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Br(M), so we are done.

4.9 Now let us look at the σ-module over A⊗̂RB defined by the matrix Br(M).
By construction, this is the A⊗̂RB-module C (which in fact even is a A⊗̂RB-
algebra), with the σ-linear endomorphism defined by Br(M). We view it as
an analytic family, parametrized by the rigid space Sp(B(ν)K) = D≥ν , of

nuclear σ-modules over Â; its fibres at points Z ∩ D≥ν are Wan’s ”limiting
modules” [15]. Yet another description is due to Coleman [4], which we now
present (in a slightly generalized form). It will be used in the proof of 4.10.

The nuclear matrix M over Â is the matrix in a formal basis {ei}i∈I of a

σ-linear endomorphism φ on a Â-module M . The element e = ei0 ∈ M can

also be viewed as an element of the symmetric Â-algebra SymÂ(M) defined
by M , so it makes sense to adjoin its inverse to SymÂ(M). Let D be the

subring of degree zero elements in SymÂ(M)[ 1
e ]⊗̂RB: the A⊗̂RB-sub-algebra

of SymÂ(M)[ 1
e ]⊗̂RB generated by all m

e for m ∈ M . Let I ⊂ D be the ideal
generated by all elements m

e for m ∈ M with φ(m) ∈ πM , and let Br(M) be

the (π, I)-adic completion of D. For all α ∈ (A⊗̂RB)×, all m1,m2 ∈M , if we
set e′ = αe+ πm1, we have

m2

e′
=
m2

αe

∞∑

i=0

(
π

α

m1

e
)i (∗)

in Br(M). By our assumptions onM we know φ(e)−e ∈ πM . Therefore there

exists a unique σ-linear ring endomorphism ψ of Br(M) with ψ(me ) = φ(m)
φ(e) for

all m ∈ M : Take (∗) as a definition, with e′ = φ(e), m2 = φ(m) and α = 1.
Similarly as in 4.6 we can define, for integers r ∈ Z, the element

(
φ(e)

e
)V+r = exp(V log(

φ(e)

e
))(
φ(e)

e
)r

of Br(M). We define the σ-linear endomorphism Br(φ) of Br(M) by

Br(φ)(y) = (
φ(e)

e
)V+rψ(y)

for y ∈ Br(M). Clearly Br(M) is the matrix of Br(φ) acting on the formal
basis

{
∏

i∈I
(
ei
e

)q(i)}q∈J

of Br(M) over A⊗̂RB. The σ-module defined by Br−(M) is described similarly.

Proposition 4.10. The σ-similarity classes (over A⊗̂RB) of Br(M) and

Br−(M) depend only on the σ-similarity class (over Â) of M.
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Proof: We prove this for Br(M), the argument for Br−(M) is the same.

It is enough to prove that Br(M), as a A⊗̂RB-module together with its σ-
linear endomorphism Br(φ), depends only on the σ-module M . Let M′ =

(a′i1,i2)i1,i2∈I be another 1-normal nuclear matrix over Â which is σ-similar to
M. We can view M′ as the matrix of the same σ-linear endomorphism φ on
the same Â-module M , but in another formal basis {e′i}i∈I . For the element
e′ = e′i0 our assumptions imply φ(e′) − e′ ∈ πM . Therefore e′ and e both

generate the unit root part modulo π of M , hence there is a α ∈ Â× with
e′ − αe ∈ πM . Observe that

αe ≡ e′ ≡ φ(e′) ≡ φ(αe) ≡ σ(a)φ(e) ≡ σ(α)e

modulo πM . Since R× is the subgroup of Â× fixed by σ we may and will
assume α ∈ R×. From (∗) in 4.9 it follows that for m ∈ M the element m

e′

of the π-adic completion of SymÂ(M)[M−1]⊗̂RB actually lies in its subring
Br(M). By a symmetry argument we deduce that Br(M) is the same when
constructed with respect to e or with respect to e′. Moreover the endomorphism
ψ on Br(M) is the same when constructed with respect to e or with respect to
e′: it is uniquely determined by its action on Br(M) ∩ SymÂ(M)[M−1]⊗̂RB,

where it is characterized by ψ(m1

m2
) = φ(m1)

φ(m2) for m1,m2 ∈M . Now let

Br(φ)′(y) = (
φ(e′)
e′

)V+rψ(y)

for y ∈ Br(M). The needed A⊗̂RB-linear endomorphism λr of Br(M) sat-
isfying λr ◦ Br(φ)′ = Br(φ) ◦ λr we now define to be the multiplication with

( e
′

αe )V+r ∈ Br(M) (by now obviously defined). Here we use that α ∈ R×.

Now supposeM = (ai1,i2)i1,i2∈I is even a standard 1-normal nuclear Â-matrix.

Define Munit := ai0,i0 ∈ Â and (Munit)
V = exp(V log(Munit)) ∈ A⊗̂RB as

in 4.6.

Theorem 4.11. For s ∈ Z we have the following equalities in ∆(A⊗̂RB):

[(Munit)
s(Munit)

V ] =
⊕

r≥1

(−1)r−1r[Bs−r(M)⊗
r∧

(M)]

[(Munit)
s(Munit)

−V ] =
⊕

r≥1

(−1)r−1r[Bs−r− (M)⊗
r∧

(M)].

Proof: We prove the first equality, the second is proved similarly. First
note that our assumptions imply that πr−1 divides

∧r
(M), so the right

hand side converges. Since M is standard 1-normal we have Bs−r(M) =
(Munit)

sB−r(M) so we may assume s = 0. Let M′′ = (a′′i1,i2)i1,i2∈I be
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the Â-matrix with a′′i1,i2 = ai1,i2 for all (i1, i2) ∈ (I1 × I1) ∪ {(i0, i0)}, and
a′′i1,i2 = 0 for the other (i1, i2). Since M is standard 1-normal we see that

[B−r(M)⊗∧r(M)] = [B−r(M′′)⊗∧r(M′′)] in view of the relations divided out
in the definition of ∆(A⊗̂RB). Hence we may assumeM =M′′. Suppose that
i0 is minimal in the ordering of I (which we tacitly chose to define

∧r
(I) and∧r

(M), see 2.2). For r ≥ 1 let Mr be the A⊗̂RB-module (A⊗̂RB)(J×∧r(I)).
It has the formal basis (e(q,~ı))q∈J,~ı∈∧r(I), where e(q,~ı) is the (q,~ı)-th column of
the identity (J ×∧r(I))× (J ×∧r(I))-matrix. The matrix B−r(M)⊗∧r(M)
describes the action of a σ-linear endomorphism φr of Mr on this basis. Actu-
ally we will need r copies of (Mr, φr) and its formal basis (e(q,~ı))q∈J,~ı∈∧r(I): We

denote them by (M
(`)
r , φ

(`)
r ) and (e

(`)
(q,~ı))(q,~ı) for 1 ≤ ` ≤ r. We get the σ-module

(M•r , φ
•
r) = ⊕1≤`≤r(M

(`)
r , φ(`)

r )

with formal basis
Hr = (e

(`)
(q,~ı))q∈J,~ı∈

∧r(I),`∈{1,...,r}.

Define A⊗̂RB-linear maps

α(`)
r : M (`)

r →M
(`)
r+1

β(`)
r : M (`)

r →M
(`+1)
r+1

as follows. For ~ı = (i1, . . . , ir) ∈
∧r

(I) with i1 < . . . < ir, and another i ∈ I,
let τ(~ı, i) = max({t ≤ r; it < i} ∪ {0}), and if in addition i 6= iτ(~ı,i)+1 let

[~ı, i] = (i1, . . . , iτ(~ı,i), i, iτ(~ı,i)+1, . . . , ir) ∈
r+1∧

(I).

For q ∈ J and i ∈ I1 with q(i) 6= 0 define qi− ∈ J by qi−(i′) = q(i′) for
i′ ∈ I1 − {i}, and qi−(i) = q(i)− 1. Now set

α(`)
r (e

(`)
(q,~ı)) = e

(`)
(q,[~ı,i0])

if i1 6= i0, and set α
(`)
r (e

(`)
(q,~ı)) = 0 if i1 = i0. Set

β(`)
r (e

(`)
(q,~ı)) =

∑

t

(−1)τ(~ı,it)e
(`+1)

(qit−,[~ı,it])

where the sum runs through all 1 ≤ t ≤ r with it 6= i0, with it 6= iτ(~ı,it)+1

and with q(it) 6= 0. One checks that φ
(`)
r+1 ◦ α

(`)
r = α

(`)
r ◦ φ(`)

r (use the standard

1-normality of M), and that φ
(`+1)
r+1 ◦ β

(`)
r = β

(`)
r ◦ φ(`)

r (use M =M′′). Hence
for

ψ•r = ⊕1≤`≤r(α
(`)
r ⊕ β(`)

r ) : M•r →M•r+1

we have φ•r+1 ◦ψ•r = ψ•r ◦ φ•r . Also note that φ•1 = φ
(1)
1 on M•1 = M

(1)
1 restricts

on the rank one A⊗̂RB-submodule M•0 spanned by the basis element e
(1)
(0,i0) ∈
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J × I = J ×∧1
(I) to a σ-linear endomorphism φ0 with matrix (Munit)

V . Let
ψ•0 : M•0 →M•1 be the inclusion and consider

0→M•0
ψ•0→M•1

ψ•1→M•2
ψ•2→ . . . . (∗)

We saw that this sequence is equivariant for the σ-linear endomorphisms φ•r
which are described by matrices as occur in the statement of the theorem, so
it remains to show that (∗) is split exact; more precisely, that for each r there
are disjoint subsets G1

r and G2
r of M•r with the following properties: ψ•r induces

a bijection of sets G2
r
∼= G1

r+1, and the union G1
r ∪ G2

r is a formal basis for
M•r (transforming under an invertible matrix to the formal basis Hr). We let

G1
0 = ∅, G2

0 = H0 = {e(1)
(0,i0)}. For r ≥ 1 we let

G1
r = {ψ•r−1(h);h ∈ Hr−1}.

We let G2
r be the subset of Hr consisting of those e

(`)
(q,~ı) with `, q and ~ı =

(i1, . . . , ir) ∈
∧r

(I) satisfying one of the following conditions: either

[` = 1 and ((i1 6= i0) or (i1 = i0 and ∃(i ∈ I1 − {i2, . . . , ir}) : q(i) 6= 0))]

or

[` 6= 1 and ((i1 6= i0 and ∀(1 ≤ k ≤ r)∃(i ∈ I1 − {ik}) : q(i) 6= 0)

or (i1 = i0 and ∃(i ∈ I1 − {i2, . . . , ir}) : q(i) 6= 0))].

The desired properties are formally verified, the proof is complete.

Corollary 4.12. Suppose our M is also overconvergent nuclear. Then for
each s ∈ Z the series

∏

x∈X

1

det(1− (Munit)sx(Munit)
y
xT

deg(x))

defines a meromorphic function in the variables T and y on A1
Cp ×D≥ν , spe-

cializing for y ∈ D≥ν(K) to L(Ms+y
unit, T ).

Proof: The series is trivially holomorphic on D>0 ×D≥ν . We claim that it
is equal to

∏

r≥1

(
d∏

i=0

det(1− ψ[Bs−r(M)⊗
r∧

(M)⊗D∧i]T )(−1)i−1

)(−1)r−1r

which clearly extends as desired. It suffices to prove equality at all specializa-
tions V = y at K-rational points y ∈ D≥ν(K) (since these y are Zariski dense
in D≥ν). But for such y both series coincide with

∏

r≥1

L(Bs−r(M)|V=y ⊗
r∧

(M), T )(−1)r−1r :
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For the series in the statement of 4.12 this follows from 3.4 and 4.11, for the
first series written in this proof this follows from 2.13.

5 Weight space W

In this section we describe a K-rigid analytic space W whose set of Cp-
valued points can be identified with the set of locally K-analytic characters
κ : R× → Cp occuring in Theorem 0.1.

5.1 For a K-analytic group manifold G (see [1]) we denote by HomK-an(G,C×p )
the group of locally K-analytic characters G → C×p : characters which locally
on G can be expanded into power series in dimK(G)-many variables. If K = Qp
these are precisely the continuous characters G→ C×p . The examples relevant

for us are G = R, G = R×, G = U
(1)
R and G = U

(1)

R , where we write

U
(1)
R := 1 + πR and U

(1)

R :=
U

(1)
R

(U
(1)
R )tors

.

To extinguish any confusion, although in these examples G even carries a
natural structure of K-rigid group variety, the definition of HomK-an(G,C×p )
does not refer to this (indeed more ”rigid”) structure: local K-analycity of a
character κ requires only that κ, as a C×p ⊂ Cp valued function on G, can be
expanded into convergent power series on each member of some open covering
of G — an open covering in the naive sense, not necessarily admissible in the
sense of rigid geometry.

5.2 Let G = Gπ be the Lubin-Tate formal group over R corresponding to our
chosen uniformizer π ∈ R (see [9]). For x ∈ R denote by [x] ∈ U.R[[U ]] the
formal power series which defines the multiplication with x in the formal R-
module G. The R-module HomOCp (G⊗̂OCp ,Gm,OCp ) is free of rank one. Fix

a generator with corresponding power series F (Z) ∈ Z.OCp [[Z]]. Substitution
yields power series F ([x]) ∈ U.OCp [[U ]] for x ∈ R. By [13] we have a group
isomorphism

D>0 ∼=−→ HomK-an(R,C×p )

z 7→ [x 7→ 1 + F ([x])(z)].

Here D>0 carries the group structure defined by G. Let m ∈ Z≥−1 be minimal

such that πm log(U
(1)
R ) ⊂ R. Since (U

(1)
R )tors = Ker(log) we have a well defined

injective homomorphism of K-analytic group varieties

U
(1)

R
θ−→ R, u 7→ πm log(u) = θ(u)

inducing a homomorphism

HomK-an(R,C×p )
δ−→ HomK-an(U

(1)

R ,C×p ).
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Note that Coker(θ) is finite. Thus Ker(δ) is finite, and on the other hand δ

is surjective (since C×p is divisible). In other words, HomK-an(U
(1)

R ,C×p ) is the
quotient of HomK-an(R,C×p ) by a finite subgroup ∆ ⊂ HomK-an(R,C×p ). The
formal group law G defines a structure of Cp-rigid analytic group variety on
D>0 (with its standard coordinate U). By means of the above isomorphism
we view HomK-an(R,C×p ) as its group of Cp-valued points. Accordingly, we

view HomK-an(U
(1)

R ,C×p ) as the group (D>0/∆)(Cp) of Cp-valued points of the
Cp-rigid group variety D>0/∆. Let

U
(1)
R

u← R×
v→ µq−1

be the natural projections. We have (U
(1)
R )tors = µpa for some a ≥ 0. Let

F = {0, . . . , pa − 1} × {0, . . . , q − 2}.

For each (s, t) ∈ F let W(s,t) be a copy of the Cp-rigid space D>0/∆, and let

W :=
∐

(s,t)∈F
W(s,t).

For an element ω ∈ W(s,t)(Cp) ⊂ W(Cp) we define the character

κω : R× → Cp, r 7→ u(r)sω̃(u(r))v(r)t =: κω(r)

where ω̃ ∈ HomK-an(U
(1)
R ,C×p ) is the image of ω under the natural map

W(s,t)(Cp) ∼= (D>0/∆)(Cp) ∼= HomK-an(U
(1)

R ,C×p )→ HomK-an(U
(1)
R ,C×p ).

Since R× = µq−1 × U (1)
R we get:

Proposition 5.3. The assignment ω 7→ κω defines a bijection

W(Cp) ∼= HomK-an(R×,C×p ).

Thus HomK-an(R×,C×p ) can be viewed as the set of Cp-valued points of the
Cp-rigid variety W.

Lemma 5.4. For ν ∈ Q, ν > m
e + 1

p−1 , there exists an open embedding of

Cp-rigid varieties ι : D≥ν → D>0 such that for all x ∈ R and all y ∈ D≥ν we
have

1 + F ([x])(ι(y)) = exp(π−mxy).

Proof: Let logG be the logarithm of G. Write F (Z) = Ω.Z+ . . . ∈ Z.OCp [[Z]].
Then we have the identity of formal power series (cf. [13] sect.4)

1 + F ([x]) = exp(Ω logG([x]))
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in OCp [[U ]]. But logG([x]) = x. logG(U) by [9] 8.6 Lemma 2, therefore it is
enough to find ι with

logG(ι(y)) = π−mΩ−1y.

By [9] 8.6 Lemma 4 the power series inverse to logG defines an open embedding
expG : D≥β → D>0 for β > 1

e(q−1) . Thus ι(y) = expG(π−mΩ−1y) is appropri-

ate; it is well defined on D≥ν because we have ordp(Ω) = 1
p−1 − 1

e(q−1) by [13],

hence ν − m
e − ordp(Ω) > 1

e(q−1) .

5.5 Example: Consider the case K = Qp, π = p. Then

G = Gm, logG(Z) = log(1 + Z), m = −1

[x] = (1 + U)x − 1 =
∑

n≥1

(
x

n

)
Un (x ∈ Zp).

We may choose F (Z) = Z, and for ν > 2−p
p−1 the associated embedding

ι : D≥ν → D>0; y 7→ ι(y) = exp(py)− 1

is an isomorphism ι : D≥ν ∼= D≥ν+1 ⊂ D>0.

6 Meromorphic continuation of unit root L-functions

In this section we prove (the infinite rank version of) Theorem 0.1. Let us

give a sketch. For simplicity suppose that α ∈ Â is a matrix of the ordinary
unit root part of some nuclear overconvergent σ-module M over A (in the
general case, α splits into two factors each of which is of this more special type
and can ”essentially” be treated separately). An appropriate multiplicative
decomposition of α (see 6.3) allows us to assume that α is a 1-unit. Then
the results of section 4, together with the trace formula 2.13 already show
meromorphy of Lα on A×W0 for some open subspace W0 ⊂ W meeting each
component of W: this is essentially what we proved in 4.12. More precisely
we get a decomposition of Lα into holomorphic functions on A × W0 which
are Fredholm determinants det(ψ) of certain completely continuous operators
ψ arising from limiting modules. We express the coefficients of the logarithms
of these det(ψ) through the traces Tr(ψf ) of iterates ψf of these ψ. Then
we repeat the limiting module construction in each fibre x ∈ X and prove its
commutation with its global counterpart. Together with the trace formula
2.13 and the description of the embedding W0 → W given in 5.4 this can be
used to show that all the functions Tr(ψf ), a priori living on W0, extend to
functions on W, bounded by 1. By the general principle 6.1 below this implies
the theorem.
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Lemma 6.1. For m ∈ N let gm(U) ∈ OCp [[U1, . . . , Ug]]. Suppose there exists a
τ > 0 such that

f(T,U) = exp(−
∞∑

m=1

gm(U)

m
Tm) ∈ Cp[[T,U1, . . . , Ug]]

converges on A1
Cp × (D≥τ )g, where T resp. U1, . . . , Ug are the standard coordi-

nates on A1
Cp , resp. on (D≥τ )g. Then f(T,U) converges on all of A1

Cp×(D>0)g.

Proof: We reduce the convergence of f at a given point x ∈ A1
Cp × (D>0)g to

the convergence of f at regions – chosen in dependence on x – of A1
Cp × (D≥τ )g

with possibly much larger T -coordinates than the T -coordinate of x. For m ≥ 1
let

Im = {i = (i1, . . . , im) ∈ (N0)m; i1 + 2i2 + . . .+mim = m}.
We may write

f(T,U) = 1 +
∞∑

m=1

αm(U)Tm

αm(U) =
∑

i∈Im
(−1)i1+...+im

g1(U)i1 . . . gm(U)im

i1! . . . im!1i12i2 . . .mim
=

∑

`∈(N0)g

βm,`U
`

βm,` =
∑

i∈Im
(−1)i1+...+im

γm,`,(i1,...,im)

i1! . . . im!1i12i2 . . .mim

for certain γm,`,(i1,...,im) ∈ OCp . We have the estimate

ordp(βm,l) ≥ min
i∈Im

−ordp(i1! . . . im!1i12i2 . . .mim)

≥ min
i∈Im

−
m∑

j=1

(ordp(ij !) + ij(
j

p
))

≥ min
i∈Im

−
m∑

j=1

(ij + ij(
j

p
))

≥ min
i∈Im

−2

m∑

j=1

jij = −2m.

Now let (t, u1, . . . , ug) ∈ A1
Cp × (D>0)g be given. Set

0 < ρ = min{1, ordp(u1)

τ
, . . . ,

ordp(ug)

τ
} ≤ 1

λ =
ordp(t)− 2(1− ρ)

ρ
.

Documenta Mathematica 8 (2003) 1–42



On Families of Pure Slope L-Functions 33

Then we find

ordp(βm,`u
`tm) ≥ −2m(1− ρ) + ρordp(βm,`) + ρ|`|τ + ρmλ+ 2m(1− ρ)

= ρ(ordp(βm,l) + |`|τ +mλ)

and this term tends to infinity as |`|+m tends to infinity since by hypothesis
f converges at the points (t̃, ũ1, . . . , ũg) with ordp(t̃) ≥ λ and ordp(ũi) ≥ τ .
The lemma follows.

Now let I and i0 ∈ I be as in 4.2. In particular we can talk about 1-normality
and standard normality of I × I-matrices.

Lemma 6.2. Suppose the nuclear I×I-matrixM with entries in Â is 1-normal.
Then M is σ-similar to a standard 1-normal nuclear I × I-matrix.

Proof: In case A = R[X]†, this is the translation of [15] Lemma 6.5 into
matrix terminology. But the proof works for general A.

Lemma 6.3. Let N be a nuclear overconvergent I × I-matrix over A which is
σ-similar to a standard normal nuclear I × I-matrix over Â. Then there exist
a ξ ∈ A and a nuclear overconvergent 1-normal I × I matrix M over A, both
unique up to σ-similarity, such that
(i) the 1× 1-matrix ξq−1 is σ-similar to 1 ∈ A, and
(ii) ξM is σ-similar to N .

Proof: For the existence see Wan [16] (there I is finite, but at this point this
is not important). For the uniqueness (which by the way we do not need in
the sequel) we follow Coleman [4]. Let ξ′ and M′ be another such pair. Then

ξ′ = aξ for some a ∈ A×, hence aq−1 = σ(b)
b for some b ∈ A× by hypothesis

(i) for ξ and ξ′. On the other hand, from hypothesis (ii) for M and M′ it
follows thatM′ and 1

aM are σ-similar, and by 1-normality ofM andM′ this

implies a = dσ(c)
c for some c, d ∈ A× with d − 1 ∈ πA. Thus for e = b

cq−1 we

have dq−1 = σ(e)
e . In particular (σ(e) − e) ∈ πA, hence e ∈ R + πA, so we

may assume in addition e − 1 ∈ πA. For (the unique) f ∈ A with f q−1 = e

and f − 1 ∈ πA we then see d = σ(f)
f . Thus a = σ(ef)

ef and it follows that ξ is

σ-similar to σ′, and M to M′. We are done.

6.4 Let M be a standard 1-normal nuclear I × I-matrix over Â. Define I1 =
I − {i0} and J as in 4.4. Let x be a closed point of X of degree f and write
Mx = (axi1,i2)i1,i2∈I for the fibre matrixMx with entries axi1,i2 in Rf as defined
in 2.12. We denote its i2-column for i2 ∈ I by

ax(i2) := (axi1,i2)i1∈I ∈
∏

I

Rf .
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Let
η = 1 + F ([πm log(axi0,i0)]) ∈ OCp [[U ]]

with F and m as in 5.2. For r ∈ Z we now define a nuclear J × J-matrix
B̃r(Mx) = (b

(r),x
q1,q2)q1,q2∈J with entries in OCp [[U ]]. It is enough to give the

columns
b
(r),x
(q2) := (b(r),xq1,q2)q1∈J ∈

∏

j∈J
OCp [[U ]],

indexed by q2 ∈ J , of B̃r(Mx). The natural embedding ρ : Rf → OCp [[U ]]
defines a map

λ = λ(ρ) :
∏

I

Rf →
∏

J

OCp [[U ]]

as explained in 4.5. We will also need the OCp [[U ]]-algebra structure on∏
J OCp [[U ]] analogous to that on C in 4.4. Namely, the one we get from

the natural identification
∏

J

OCp [[U ]] ∼= OCp [[U ]][[I1]],

the formal power series ring over OCp [[U ]] on the set I1 (viewed as a set of free
variables). Using this OCp [[U ]]-algebra structure we set

b
(r),x
(q2) := ηλ(ax(i0))

r

∏
i∈I1 λ(ax(i))

q2(i)

λ(ax(i0))
|q2| .

Note that λ(ax(i0)) = axi0,i0 in the OCp [[U ]]-algebra
∏
J OCp [[U ]] since M is

standard normal. Let B̃r−(Mx) be the matrix defined by the same recipe, but
now using η−1 in place of η.

6.5 Let ξ ∈ A be a unit, let (s, t) ∈ F , let r1, r2 ∈ N, for ` = 1 and ` = 2 let I(`)

be a countable index set, i
(`)
0 ∈ I(`) an element and M` a standard 1-normal

(with respect to i
(`)
0 ) nuclear I(`)×I(`)-matrix over Â. Arguing as in 4.8, where

we proved that the matrices Br(M) are nuclear, we see that the trace

gr1,r2,s,tx,ξ,M1,M2
(U) := Tr(ξtxB̃s−r1(M1,x)⊗

r1∧
(M1)x ⊗ B̃−s−r2− (M2,x)⊗

r2∧
(M2)x)

(the fibre ξx ∈ R is defined as in 2.12 by viewing ξ as a 1× 1-matrix) is a well
defined element in OCp [[U ]], i.e. the infinite sum of diagonal elements of this
tensor product matrix converges in OCp [[U ]]. We may view it as a function
on D>0. Let ν ∈ Q satisfy both 5.4 and the condition from 4.6 for both M1

and M2 so that we may form the matrices Bs−r1(M1) and B−s−r2− (M2) over

A⊗̂RB with B = (B(ν)K)0. Recall the embedding ι : D≥ν → D>0 from 5.4
and that we view the free variable V as standard coordinate on the source
D≥ν , and the free variable U as standard coordinate on the target D>0 of ι.
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For a matrix N with coefficients in A⊗̂RB and for y ∈ D≥ν we denote by
N|V=y the matrix with entries in Â obtained from N by specializing elements

a⊗ V n ∈ A⊗̂RB (for n ∈ N0) to a⊗ yn ∈ Â.

Lemma 6.6. For K-rational points y ∈ D≥ν we have

gr1,r2,s,tx,ξ,M1,M2
(ι(y)) =

Tr(((ξtBs−r1(M1)⊗
r1∧

(M1)⊗ B−s−r2− (M2)⊗
r2∧

(M2))|V=y)x)

Proof: Taking x-fibres commutes with ⊗, thus

ξtx(Bs−r1(M1)|V=y)x ⊗
r1∧

(M1)x ⊗ (B−s−r2− (M2)|V=y)x ⊗
r2∧

(M2)x

= ((ξtBs−r1(M1)⊗
r1∧

(M1)⊗ B−s−r2− (M2)⊗
r2∧

(M2))|V=y)x.

Therefore it suffices to show

(Br(M)|V=y)x = B̃r(Mx)|U=ι(y) and (Br−(M)|V=y)x = B̃r−(Mx)|U=ι(y),

for standard 1-normal nuclear matricesM over Â and r ∈ Z. This is essentially
a statement on commutation of the two operations ”M 7→ Br(M)” and ”taking
the f -fold σ-power of a square matrix”. In our situation this holds since M
is standard normal, as we will now explain. For such M we keep the notation
from 6.4. From 5.4 it follows that B̃r(Mx)|U=ι(y) is the matrix constructed by

the same recipe as B̃r(Mx), but using

(axi0,i0)y = exp(y log(axi0,i0)) ∈ Rf

in place of η. Observe that axi0,i0 = (ai0,i0)x where (ai0,i0)x is defined as
in 2.12 by viewing the (i0, i0)-entry ai0,i0 of M as a 1 × 1-matrix — this
is because M is standard. In particular we see (axi0,i0)y = ((ai0,i0)x)y ∈ R.

Let (M,φ) be the σ-module over Â such that the action of φ on a for-

mal basis {ei}i∈I of M is given by M. As in 4.9 consider the Â-algebra
D = SymÂ(M)[ 1

ei0
]0 of degree zero elements in SymÂ(M)[ 1

ei0
]. Let Br(M)

be its completion as in 4.9. Denote by ψ the natural σ-linear ring endomor-
phism of Br(M) defined by φ, as in 4.9. Then Br(M)|V=y is the matrix
of the σ-linear endomorphism ψy+r = Br(φ)|V=y = ((ai0,i0)x)y+rψ (use
that M is standard). Hence (Br(M)|V=y)x is the matrix of the Rf -linear

endomorphism (ψfy+r)x which the f -fold iterate ψfy+r of ψy+r induces on the
fibre Br(M)x = Br(M) ⊗Â Rf (formed with respect to the Teichmüller lift

x : Â→ Rf of x). On the other hand we can view Br(M)x as the completion
(analogously to 4.9) of SymRf

(Mx)[ 1
ei0

]0 (with Mx = M ⊗Â Rf ). Then
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B̃r(Mx)|U=ι(y) is the matrix of the Rf -linear endomorphism ((ai0,i0)x)y+rψf,x
of Br(M)x where ψf,x is the Rf -linear ring endomorphism of Br(M)x in-
duced by the endomorphism which the f -fold iterate φf of φ induces on
Mx. Thus it remains to show (ψfy+r)x = ((ai0,i0)x)y+rψf,x. Now we clearly

have (ψfy+r)x = ((ai0,i0)x)y+r(ψf )x with (ψf )x the fibre of ψf in Br(M)x.

Therefore we conclude using the functoriality (ψf )x = ψf,x of the (σ-linear)
functor SymÂ(?).

6.7 For f ∈ N let Tf be the set of all closed points of X of degree f . Let

Af = A⊗R Rf . Note that the f -fold σ-power (D∧i)(σ)f (as defined in 2.12) is
the matrix describing the endomorphism which the Rf -algebra endomorphism
σf ⊗ 1 of Af induces on ΩiAf/Rf = ΩiA/R ⊗R Rf . Therefore we may apply

2.13 to the situation obtained by base change ⊗RRf , with σf ⊗ 1 ∈ End(Af )
replacing σ ∈ End(A). We get that

Sx :=
∑

0≤i≤d
(−1)iTr((D∧i)x)

for x ∈ Tf is invertible in Rf . For 0 ≤ j ≤ d we may define

hr1,r2,j,s,tf,ξ,M1,M2
(U) :=

∑

x∈Tf

Tr((D∧d−j)x)

Sx
gr1,r2,s,tx,ξ,M1,M2

∈ OCp [[U ]],

Dr1,r2,j,s,t
ξ,M1,M2

(T,U) := exp(−
∞∑

f=1

hr1,r2,j,s,tf,ξ,M1,M2
(U)

f
T f ) ∈ Cp[[T,U ]].

Theorem 6.8. If M1 and M2 are σ-similar to 1-normal nuclear overconver-
gent matrices over A, then Dr1,r2,j,s,t

ξ,M1,M2
(T,U) defines a holomorphic function on

A1
Cp×D>0. There exists a nuclear overconvergent matrix N over A⊗̂RB which

is σ-similar to

ξtBs−r1(M1)⊗
r1∧

(M1)⊗ B−s−r2− (M2)⊗
r2∧

(M2),

and for K-rational points y ∈ D≥ν we have

Dr1,r2,j,s,t
ξ,M1,M2

(T, ι(y)) = det(1− ψ[N|V=y ⊗D∧j ]T ).

Proof: The existence of N follows from 4.8 and 4.10. Next let us make a
general remark. For a nuclear overconvergent matrixM over A we defined the
completely continuous operator ψ[M] = ψA[M] in 2.8 relative to the Frobenius

endomorphism σ on A. Now consider the f -fold σ-power M(σ)f of M from
2.12 and view it as a matrix over Af = A ⊗R Rf . As such we define the

Kf = Rf ⊗ Q-linear completely continuous operator ψAf [M(σ)f ] relative to

the Frobenius endomorphism σf on Af . One finds

ψAf [M(σ)f ] = ψA[M]f ⊗K Kf .
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We apply this to M = N|V=y ⊗D∧j and obtain

TrK(ψA[N|V=y ⊗D∧j ]f ) = TrKf (ψA[N|V=y ⊗D∧j ]f ⊗K Kf )

= TrKf (ψAf [(N|V=y ⊗D∧j)(σ)f ])

= TrKf (ψAf [(N|V=y)(σ)f ⊗ (D∧j)(σ)f ])

=
∑

x∈Tf

Tr((D∧d−j)x)Tr((N|V=y)x)

Sx
.

where for the last equality we applied 2.13. But

Tr((N|V=y)x) = Tr(((ξtBs−r1(M1)⊗
r1∧

(M1)⊗B−s−r2− (M2)⊗
r2∧

(M2))|V=y)x)

which by 6.6 is equal to gr1,r2,s,tx,ξ,M1,M2
(ι(y)). Thus the stated formula is proven

since its right hand side may be written as

exp(−
∞∑

f=1

TrK(ψ[N|V=y ⊗D∧j ]f )

f
T f ).

Furthermore the points ι(y) for K-rational points y ∈ D≥ν are Zariski dense
in ι(D≥ν), therefore we get the equality of holomorphic functions

Dr1,r2,j,s,t
ξ,M1,M2

(T,U) = det(1− ψ[N ⊗D∧j ]T )

on D>0 × ι(D≥ν), where in the function on the right hand side we substitute
V by ι−1(U). But the right hand side extends to a holomorphic function
on A1

Cp × ι(D≥ν), since ψ[N ⊗ D∧j ] is completely continuous by 2.10. The

definition of Dr1,r2,j,s,t
ξ,M1,M2

(T,U) and 6.1 now show the holomorphy on all of

A1
Cp ×D>0, completing the proof.

6.9 Let α ∈ Â be a unit. For closed points x ∈ X define αx ∈ R as in 2.12 by
viewing α as a 1× 1-matrix. For κ ∈ HomK-an(R×,C×p ) we ask for the twisted
L-function

L(α, T, κ) :=
∏

x∈X

1

1− κ(αx)T deg(x)
.

It can be written as a power series with coefficients in OCp , hence is trivially
holomorphic on D>0 (in the variable T ).

6.10 We say that α ∈ Â is ordinary geometric if there exists a nuclear G×G-
matrix H = (hg1,g2

)g1,g2∈G over Â, a non negative integer j ∈ N0 and a nested
sequence of (j + 1) finite subsets G0 ⊂ G1 ⊂ . . . ⊂ Gj of the (countable) index
set G such that:
(i) H is σ-similar to a nuclear overconvergent matrix over A.
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(ii) hg1,g2
= 0 whenever there is a 0 ≤ ` ≤ j with g2 ∈ G` and g1 /∈ G`. Thus,

H is in block triangular form.
(iii) π`+1 divides hg1,g2

whenever g2 /∈ G`, for all 0 ≤ ` ≤ j.
(iv) For all 0 ≤ ` ≤ j the element

H` := π−
∑ `
i=1 i(ci−ci−1) det((hg1,g2

)g1,g2∈G`)

of Â is a unit, where we set c` = |G`|. Set H−1 = 1.
(v) We have α = Hj/Hj−1 = π−j(cj−cj−1) det((hg1,g2

)g1,g2∈(Gj−Gj−1)).
The meaning of this definition is that α is the determinant of the pure slope j
part (as a unit root σ-module) of a nuclear σ-module over A which is ordinary
up to slope j and overconvergent (but neither the pure slope j part itself
nor its determinant need to be overconvergent). See [16] for details on the
Hodge-Newton decomposition by slopes.

Theorem 6.11. Suppose α is ordinary geometric. Then there exists a mero-
morphic function Lα on the Cp-rigid space A1

Cp × W whose pullback to A1
Cp

via
A1
Cp → A1

Cp ×W, t 7→ (t, κ)

for any κ ∈ HomK-an(R×,C×p ) =W(Cp) is a continuation of L(α, T, κ).

Proof: We treat every component W(s,t) of W separately, so let us fix (s, t) ∈
F . Keeping the notation from 6.10 we begin with some definitions. For 0 ≤
` ≤ j let I(`) be the index set of the nuclear matrix

∧c`(H). Our assumptions

on H imply that
∧c`(H) is standard normal with respect to some i

(`)
0 ∈ I`.

Moreover it is σ-similar to a nuclear overconvergent I (`) × I(`) matrix. Thus

we may apply 6.3 to get a ξ` ∈ A and a 1-normal (with respect to i
(`)
0 ) nuclear

overconvergent I(`) × I(`)-matrix M` over A such that ξq−1
` is σ-similar to

1 ∈ A, and ξ`M` is σ-similar to
∧c`(H). By 6.2 there is a standard 1-normal

(with respect to i
(`)
0 ) nuclear I(`) × I(`)-matrix M′` over Â which is σ-similar

to M`. Let M′`,unit ∈ Â be the (i
(`)
0 , i

(`)
0 )-entry of M′`. This is a 1-unit. Then

ξ`M′`,unit ∈ Â is σ-similar to the (i
(`)
0 , i

(`)
0 )-entry of

∧c`(H) which we denote
by a`. We will need these definitions for ` = j − 1 and ` = j if j > 0. If j = 0
we set ξ−1 =M−1 =M′−1 =M′−1,unit = a−1 = 1 ∈ R. Our definitions imply
α = aj/aj−1, thus if we set ξ = ξj/ξj−1 and µ = M′j,unit/M′j−1,unit we find
that α is σ-similar to ξµ. Let

H(T,U) =
∏

x∈X

1

1− ξtxµsx(1 + F ([πm log(µx)]))T deg x
.

This is a holomorphic function on D>0 ×D>0 where we view T (resp. U) as
coordinate for the first (resp. second) factor D>0. Recall from 5.2 the finite
étale covering of rigid spaces D>0 →W(s,t) which on Cp-valued points is given
by

D>0 →W(s,t)(Cp) ∼= HomK-an(U
(1)

R ,C×p )
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z 7−→ [w 7→ 1 + F ([πm log(w)])(z)].

We see that for any w ∈ U (1)
R the holomorphic function 1 + F ([πm log(w)])(U)

in the variable U on D>0 descends to W(s,t). Thus our H(T,U) descends to a
holomorphic function Lα,(s,t) on D>0×W(s,t). Moreover, for κ ∈ W(s,t)(Cp) ⊂
W(Cp) = HomK-an(R×,C×p ) the pullback of Lα,(s,t) via

D>0 → D>0 ×W(s,t), t 7→ (t, κ)

is L(α, T, κ): this is immediate since ξxµx = αx is the decomposition of αx ∈
R× according to R× = µq−1 × U (1)

R , for any x ∈ X. These considerations also
show that for K-rational points y ∈ D≥ν we have

H(T, ι(y)) = L(ξtµsµy, T ) (1)

with ι : D≥ν → D>0 from 5.4. To show that Lα,(s,t) is meromorphic on
A1
Cp ×W(s,t) it is enough to show that H(T,U) is meromorphic on A1

Cp ×D>0.

Consider the Cp[[T,U ]]-element

H(T,U) =
∏

r1,r2≥1

(

d∏

i=0

Dr1,r2,i,s,t
ξ,M′j ,M′j−1

(T,U)(−1)i−1

)(−1)r1+r2r1r2 .

By 6.8 each factor Dr1,r2,i,s,t
ξ,M′j ,M′j−1

(T,U) is holomorphic on A1
Cp ×D>0. Moreover,

since
∧r`(M′`) is divisible by πr`−1 it also follows from 6.8 that ordπ(1 −

Dr1,r2,i,s,t
ξ,M′j ,M′j−1

(T,U)) tends to infinity as r1 + r2 tends to infinity (if the index

set G is finite then the above product is even finite). Therefore H(T,U) is
meromorphic on A1

Cp ×D>0. We claim

H(T,U) = H(T,U)

as meromorphic functions on D>0 ×D>0. As in 6.8 it is enough to check this
on all subsets D>0 × ι(y) ⊂ D>0 ×D>0 for K-rational points y ∈ D≥ν . From

4.11 we get the following equalities in the Grothendieck group ∆(Â):

[ξt(M′j,unit)s(M′j,unit)y] =
⊕

r≥1

(−1)r−1r[ξtBs−r(M′j)|V=y ⊗
r∧

(M′j)]

[(M′j−1,unit)
−s(M′j−1,unit)

−y] =
⊕

r≥1

(−1)r−1r[B−s−r− (M′j−1)|V=y⊗
r∧

(M′j−1)]

(with the notation |V=y explained in 6.5 still in force: V is the standard coor-
dinate on D≥ν). Together

[ξtµsµy] = [
ξt(M′j,unit)s(M′j,unit)y

(M′j−1,unit)
s(M′j−1,unit)

y
] =
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⊕

r1,r2≥1

(−1)r1+r2r1r2[ξt(Bs−r1(M′j)⊗
r1∧
M′j⊗B−s−r2− (M′j−1)⊗

r2∧
M′j−1)|V=y].

Combining with 6.8 and the trace formula 2.13 we get

H(T, ι(y)) = L(ξtµsµy, T ). (2)

Comparing (1) and (2) completes the proof.

7 Higher rank

7.1 A finite rank σ-module (M,φ) over Â is called ordinary if it admits a

separated and exhausting φ-stable filtration by free sub-Â-modules

0 = M0 ⊂M1 ⊂M2 ⊂ . . .

of M with free quotients, such that each quotient (Mi/Mi+1, φ) is of
the form (Ui, π

i.φi) where (Ui, φi) is a unit root σ-module; that is,

Âσ ⊗ Ui → Ui, a ⊗ u 7→ a.φi(u) is bijective. The (Ui, φi) are called the
graded pieces of (M,φ), and (U0, φ0) is called the unit root part of (M,φ), also
denoted by φunit.

Theorem 7.2. (Hodge-Newton slope decomposition for overconvergent σ-
modules) Let M be the matrix, in some basis, of a graded piece of an ordinary

and overconvergent finite rank σ-module (M,φ) over Â. Then there exists a
convergent series representation

[M] =
∑

r≥1

±[Cr]

in ∆(Â) with nuclear overconvergent matrices Cr over A.

Proof: (1) By induction on m we prove that for each m ∈ N0 there exist finite
index sets J1

m, J
2
m, ordinary overconvergent σ-modules αt and βt of finite rank

for each t ∈ J1
m ∪ J2

m, with (βt)unit of rank one, and integers mt ≥ m for each
t ∈ J2

m, such that

[M] = (
∑

t∈J2
m

±[πmt(αt)unit ⊗ (βt)
−1
unit]) + (

∑

t∈J1
m

±[αt ⊗ (βt)
−1
unit]) (∗)

in ∆(Â). Here, by abuse of notation, we identify a finite rank σ-module with
the σ-similarity class of matrices it corresponds to. For m = 0 one has [M] =
[αunit⊗β−1

unit] for some α, β, by [16] 6.2. Now let us pass from m to m+ 1. Fix
t ∈ J2

m. Let (αt,t′)t′∈Tt be the set of higher graded pieces of αt (i.e. (αt)unit
omitted). By [16] 6.2 again, there exist for each t′ ∈ Tt ordinary overconvergent
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finite rank σ-modules α̃t,t′ and β̃t,t′ , with (β̃t,t′)unit of rank one, such that

[αt,t′ ] = [(α̃t,t′)unit ⊗ (β̃t,t′)
−1
unit]. Thus

[(αt)unit ⊗ (βt)
−1
unit] = [αt ⊗ (βt)

−1
unit]−

∑

t∈Tt
[πmt′ (αt,t′)⊗ (βt)

−1
unit]

= [αt ⊗ (βt)
−1
unit]−

∑

t∈Tt
[πmt′ (α̃t,t′)unit ⊗ (βt ⊗ β̃t,t′)−1

unit]

with integers mt′ ≥ 1 (the higher slopes of αt). Inserting this into the formula
given by induction hypothesis for m gives the formula for m+ 1.
(2) To get the desired convergent series representation for M it is now
enough to express, for t ∈ J1

m, the terms (βt)
−1
unit in (∗) through overconver-

gent matrices. This is achieved by factoring βt according to 6.3 and applying
4.11 (with V = 0 and s = −1 there) to the 1-normal overconvergent factor of βt.

7.3 As a corollary of Theorem 7.2 (and 3.4) we recover Wan’s result: that
L(M, T ) is a meromorphic function on A1.
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