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Abstract. The notion of motivic functors refers to a motivic homo-
topy theoretic analog of continuous functors. In this paper we lay the
foundations for a homotopical study of these functors. Of particular
interest is a model structure suitable for studying motivic functors
which preserve motivic weak equivalences and a model structure suit-
able for motivic stable homotopy theory. The latter model is Quillen
equivalent to the category of motivic symmetric spectra.

There is a symmetric monoidal smash product of motivic functors,
and all model structures constructed are compatible with the smash
product in the sense that we can do homotopical algebra on the various
categories of modules and algebras. In particular, motivic cohomology
is naturally described as a commutative ring in the category of motivic
functors.
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1 Introduction

One of the advantages of the modern formulations of algebraic topology is that
invariants can be expressed, not merely as functors into groups, but actually
as functors taking values in spaces. As such, the invariants are now themselves
approachable by means of standard moves in algebraic topology; they can be
composed or otherwise manipulated giving structure and control which cannot
be obtained when looking at isolated algebraic invariants.
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Although handling much more rigid objects, Voevodsky’s motivic spaces [16]
are modeled on topological spaces. The power of this approach lies in that
many of the techniques and results from topology turn out to work in algebraic
geometry. As in topology, many of the important constructions in the theory
can be viewed as functors of motivic spaces. The functor MZ (called L in [16])
which defines motivic cohomology is an example: it accepts motivic spaces
as input and gives a motivic space as output. Given the importance of such
functors and the development of algebraic topology in the 1990s, it is ripe time
for a thorough study of these functors.

In this paper we initiate such a program for functors in the category of motivic
spaces. The functors we shall consider are the analogs of continuous functors:
motivic functors (MZ is an example; precise definitions will appear below).
This involves setting up a homological – or rather homotopical – algebra for
motivic functors, taking special care of how this relates to multiplicative and
other algebraic properties.

A large portion of our work deals with the technicalities involved in setting up
a variety of model structures on the category MF of motivic functors, each
localizing at different aspects of motivic functors.

One of the model structures we construct on MF is Quillen equivalent to the
stable model category of motivic spectra as defined, for instance by Jardine
[10] and by Hovey [8].

Just as in the topological case, this solution comes with algebraic structure in
the form of a symmetric monoidal smash product ∧. Furthermore, the algebra
and homotopy cooperate so that a meaningful theory paralleling that of ring
spectra and modules follows. A tentative formulation is

Theorem. There exists a monoidal model category structure MFsph on MF

satisfying the monoid axiom, and a lax symmetric monoidal Quillen equivalence
between MFsph and the model category of motivic symmetric spectra.

To be slightly more concrete, a motivic space in our context is just a pointed
simplicial presheaf on the category of smooth schemes over a base scheme S.
There is a preferred “sphere” given by the Thom space T of the trivial line
bundle A

1
S . A motivic spectrum is a sequence of motivic spaces E0, E1, · · ·

together with structure maps

T ∧ En
- En+1.

We should perhaps comment on the continuous/motivic nature of our functors,
since this aspect may be new to some readers. Let M be the category of
motivic spaces and fM the subcategory of finitely presentable motivic spaces.
A motivic functor is a functor

X : fM - M
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which is “continuous” or “enriched” in the sense that it induces a map of
internal hom objects. The enrichment implies that there is a natural map

A ∧ X(B) - X(A ∧ B).

As a consequence, any motivic functor X gives rise to a motivic spectrum
ev(X) by “evaluating on spheres”, that is

ev(X)n := X(T∧n)

with structure map

T ∧ ev(X)n = T ∧ X(T∧n) - X(T ∧ T∧n) = ev(X)n+1

given by the enrichment. The motivic functors fM - M form the category
MF mentioned in the main theorem, and the evaluation on spheres induces the
Quillen equivalence. The inclusion fM ⊂ - M is the unit in the monoidal
structure and plays the rôle of the sphere spectrum.

The reader should keep in mind how simple our objects of study are: they are
just functors of motivic spaces. All coherence problems one might conceive of
in relation to multiplicative structure, and which are apparent if one works with
e.g. motivic symmetric spectra, can safely be forgotten since they are taken care
of by the coherence inherent to the category of motivic spaces. Furthermore,
the smash product in our model is just like the usual tensor product in that,
though it is slightly hard to picture X∧Y , it is very easy to say what the maps

X ∧ Y - Z

are: they are simply natural maps

X(A) ∧ Y (B) - Z(A ∧ B),

where the smash product is sectionwise the smash product of pointed simplicial
sets; this is all we require to set up a simple motivic theory with multiplicative
structure.

A motivic ring is a monoid in MF. These are the direct analogs of ring spectra.
The multiplicative structure of motivic cohomology comes from the fact that
MZ is a commutative motivic ring. This means we can consider MZ-modules
and also MZ-algebras. Our framework allows one to do homotopical algebra.
For instance:

Theorem. The category of MZ-modules in MFsph acquires a monoidal model
category structure and the monoid axiom holds.

The “spherewise” structure MFsph is not the only interesting model structure
there is on MF. One aspect we shall have occasion to focus on is the fact
that although most interesting motivic functors preserve weak equivalences
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(hence the name “homotopy functors”), categorical constructions can ruin this
property. The standard way of getting around this problem is to consider only
derived functors. While fully satisfying when considering one construction
at the time, this soon clobbers up the global picture. A more elegant and
functorially satisfying approach is to keep our category and its constructions
as they are, but change our model structure. Following this idea we construct
a model structure suitable for studying homotopy functors, and yet another
model structure which is more suitable for setting up a theory of Goodwillie
calculus for motivic spaces.

As with the stable model, these models respect the smash product and algebraic
structure. The following statement gives an idea of what the homotopy functor
model expresses

Theorem. There exists a monoidal model category structure MFhf on MF

satisfying the monoid axiom. In this structure every motivic functor is weakly
equivalent to a homotopy functor, and a map of homotopy functors X - Y
is a weak equivalence if and only if for all finitely presentable motivic spaces A
the evaluation X(A) - Y (A) is a weak equivalence of motivic spaces.

At this point it is interesting to compare with Lydakis’ setup [11] for simplicial
functors, and note how differently simplicial sets and motivic spaces behave.
In the motivic case the theory fractures into many facets which coincide for
simplicial sets. For instance, there is no reason why the notions of “stable” and
“linear” (in Goodwillie and Waldhausen’s sense) should coincide.

The paper is organized as follows. In section 2 we set up the model structures
for unstable motivic homotopy theory suitable for our purposes.

In section 3 we present the four basic model structures on motivic functors.
In the preprint version of this paper we allowed the source category of motivic
functors to vary. This handy technical tool has been abandoned in this paper
for the sake of concreteness. We thank the referee for this suggestion and other
detailed comments.

All along the properties necessary for setting up a theory of rings and modules
are taken care of, and the results are outlined in section 4.
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2 Motivic Spaces

In this section we recall some facts about the category of motivic spaces and
fix some notation. We briefly discuss the categorical properties, and then the
homotopical properties.

For background in model category theory we refer to [7] while for enriched
category theory we refer to [3] and [4].

Let S be a Noetherian scheme of finite Krull dimension. Denote by Sm/S the
category of smooth S-schemes of finite type. Due to the finiteness condition,
Sm/S is an essentially small category. Furthermore, it has pullbacks, a terminal
object S and an initial object ∅, the empty scheme. If U, V ∈ ObSm/S, we
denote the set of maps between U and V by SetSm/S(U, V ).

Let S be the closed symmetric monoidal category of pointed simplicial sets
with internal hom objects S(−,−). Recall that the standard n-simplex ∆n is
the simplicial set represented by [n] ∈ ∆.

Definition 2.1. A motivic space is a contravariant functor A : Sm/S - S.
Let MS (or just M if confusion is unlikely to result) denote the category of
motivic spaces and natural transformations.

By reversal of priorities, M can alternatively be viewed as the category of
pointed set-valued presheaves on Sm/S × ∆. Denote by

Sm/S - M

U - hU

the Yoneda functor hU (V ) = SetSm/S(V,U)+ considered as a discrete pointed
simplicial set (the plus denotes an added base point).

Recall the following facts about the functor category M:
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Proposition 2.2. The category M is a locally finitely presentable bicomplete
S-category. The pointwise smash product gives M a closed symmetric monoidal
structure.

Since M is locally finitely presentable, it follows that finite limits commute
with filtered colimits. To fix notation, we find it convenient to explicate some
of this structure.

The pointwise smash A ∧ B on M is given by

(A ∧ B)(U) = A(U) ∧ B(U).

The unit is the constant presheaf S0. If U ∈ ObSm/S, then the evaluation
functor

EvU : M - S, EvU (A) = A(U)

preserves limits and colimits. The left adjoint of EvU is the functor

FrU : S - M, FrU (K) = hU ∧ K.

Note that, since hS(V ) = S0, we will often write K instead of FrSK. Checking
the relevant conditions we easily get that the functors FrS and EvU are strict
symmetric monoidal, while FrU is lax symmetric monoidal. The pair (FrU ,EvU )
is an S-adjoint pair.

Using FrS we get (co)actions (“(co)tensors”) of S on M: if A ∈ M and K ∈ S
the functor A ∧ K = A ∧ FrSK ∈ M sends U ∈ ObSm/S to A(U) ∧ K ∈ S,
and the functor AK sends U ∈ ObSm/S to S(K,A(U)).

We let SetM(A,B) be the set of natural transformations from A to B in M.
The enrichment of M in S is defined by letting the pointed simplicial set of
maps from A to B have n-simplices

SM(A,B)n := SetM(A ∧ ∆n
+, B).

Its simplicial structure follows from functoriality of the assignment [n] - ∆n.
The internal hom object is in turn given by

M(A,B)(U) = SM(A ∧ hU , B).

Definition 2.3. A motivic space A is finitely presentable if the set-valued
hom functor SetM(A,−) commutes with filtered colimits. Similarly, A is M-
finitely presentable if the internal hom functor M(A,−) commutes with filtered
colimits.

Recall that a pointed simplicial set is finitely presentable if and only if it is
finite, that is, if it has only finitely many non-degenerate simplices. On the
other hand, a pointed simplicial set K is finite if and only the S-valued hom
functor S(K,−) commutes with filtered colimits. The same holds for motivic
spaces, as one can deduce from the following standard fact [3, 5.2.5].
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Lemma 2.4. Every motivic space is a filtered colimit of finite colimits of motivic
spaces of the form hU ∧ ∆n

+.

Let K be a pointed simplicial set. Using Lemma 2.4, the natural isomorphism
M(hU ∧ K,A) ∼= A(U ×S −)K and the fact that EvU commutes with colimits
we get

Lemma 2.5. Let K be a finite pointed simplicial set and U ∈ ObSm/S. Then
hU ∧ K is M-finitely presentable. The class of M-finitely presentable motivic
spaces is closed under retracts, finite colimits and the smash product. A motivic
space is M-finitely presentable if and only if it is finitely presentable.

The finiteness condition imposed on objects of Sm/S implies that the full sub-
category fM of finitely presentable motivic spaces in M is equivalent to a small
category [3, 5.3.8], cf. [3, 5.3.3] and the pointed version of [3, 5.2.2b]. Out of
convenience, since fM is the codomain of the functor category MF one could
choose such an equivalence. This ends our discussion of categorical precursors.

2.1 Unstable homotopy theory

Summarizing this section we get a model structure Mmo on M called the
motivic model structure satisfying

1. Mmo is weakly finitely generated.

2. Mmo is proper.

3. The identity on Mmo is a left Quillen equivalence to the Goerss-Jardine
A

1-model structure [10].

4. The smash product gives Mmo a monoidal model structure.

5. The smash product preserves weak equivalences.

6. Mmo satisfies the monoid axiom.

For the convenience of the reader we repeat briefly for M the definitions of the
notions weakly finitely generated, monoidal model structure and the monoid
axiom; for details, see for example [5, 3.4, 3.7, 3.8].

Weakly finitely generated means in particular that the cofibrations and acyclic
cofibrations in M are generated by sets I and J , respectively [7, 2.1.7]. In
addition, we require that I has finitely presented domains and codomains,
the domains of J are small and that there exists a subset J ′ of J with finitely
presented domains and codomains such that a map A - B of motivic spaces
with fibrant codomain is a fibration if and only if it has the right lifting property
with respect to all objects of J ′.
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Let f : A - B and g : C - D be two maps in M. The pushout product
of f and g is the canonical map

f ¤ g : A ∧ D
∐

A∧C

B ∧ C - C ∧ D.

That M is a monoidal model category means that the pushout product of two
cofibrations in M is a cofibration, and an acyclic cofibration if either one of
the two cofibrations is so. It implies that the smash product descends to the
homotopy category of M. If aCof(M) denotes the acyclic cofibrations of M,
then the monoid axiom means that all the maps in aCof(M)∧M-cell are weak
equivalences. Among other nice consequences mentioned below, the monoid
axiom allows to lift model structures to categories of monoids and modules
over a fixed monoid [14].

Definition 2.6. A map A - B in M is a schemewise weak equivalence if,
for all U ∈ Ob Sm/S, A(U) - B(U) is a weak equivalence in S. Schemewise
fibrations and schemewise cofibrations are defined similarly. A cofibration is
a map having the left lifting property with respect to all schemewise acyclic
fibrations.

Note that the schemewise cofibrations are simply the monomorphisms. We get
the following basic model structure.

Theorem 2.7. The schemewise weak equivalences, schemewise fibrations and
cofibrations equip M with the structure of a proper monoidal S-model category.
The sets

{hU ∧ (∂∆n ⊂ - ∆n)+}n≥0, U∈Ob Sm/S

{hU ∧ (Λn
i

⊂ - ∆n)+}0≤i≤n, U∈Ob Sm/S

induced up from the corresponding maps in S are sets of generating cofibrations
and acyclic cofibrations, respectively. The domains and codomains of the maps
in these generating sets are finitely presentable. For any U ∈ ObM, the pair
(FrU ,EvU ) is a Quillen pair.

Proof. The existence of the model structure follows from [7, 2.1.19], using the
generating cofibrations and generating acyclic cofibrations described above.
The properties which have to be checked are either straightforward or follow
from 2.5 and properties of the standard model structure on simplicial sets.
Properness follows from properness in S, where we use that a cofibration is in
particular a schemewise cofibration.

Clearly, FrU is a left Quillen functor for all U ∈ ObSm/S. Using the natural
isomorphism

(hU ∧ K) ∧ (hV ∧ L) ∼= hU×SV ∧ (K ∧ L),
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we see that for fj : Kj
- Lj ∈ S and Uj ∈ ObSm/S, j = 1, 2, we may

identify the pushout product of hU1
∧ f1 and hU2

∧ f2 with the map

hU1×SU2
∧



(K1 ∧ L2)
∐

(K1∧K2)

(L1 ∧ K2)



 - hU1×SU2
∧ (L1 ∧ L2).

Hence the pushout product axiom in S implies the pushout product axiom for
M. It follows that M is a monoidal S-model category via the functor FrS .

Notation 2.8. We let Msc denote the model structure of 2.7 on M. Scheme-

wise weak equivalences will be written
∼sc
- and schemewise fibrations

sc
-- .

Cofibrations are denoted by - - (since not all schemewise cofibrations are
cofibrations in Msc). Choose a cofibrant replacement functor (−)c - IdM

in Msc so that for any motivic space A, there is a schemewise acyclic fibration

Ac ∼sc
-- A with cofibrant domain. We note that every representable motivic

space is cofibrant.

The following statements are easily verified.

Lemma 2.9. Taking the smash product −∧A or a cobase change along a scheme-
wise cofibration preserves schemewise weak equivalences for all A ∈ ObM. The
monoid axiom holds in Msc.

It turns out that the properties in 2.7 and 2.9 hold in the model for motivic
homotopy theory. The latter is obtained by considering Sm/S in its Nisnevich
topology and by inverting the affine line A

1
S . The following allows to incorporate

Bousfield localization [6] in the motivic homotopy theory.

Recall that the Nisnevich topology is generated by elementary distinguished
squares [12]. These are pullback squares of the form

P - Y

Q =

U
?

ψ
- X

φ

?

where φ is étale, ψ is an open embedding and φ−1(X −U) - (X −U) is an
isomorphism of schemes (with the reduced structure).

Definition 2.10. A schemewise fibrant motivic space A is motivically fibrant
if the following conditions hold.

• A(∅) is contractible.

• If Q is an elementary distinguished square, then A(Q) is a homotopy
pullback square of pointed simplicial sets.
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• If U ∈ ObSm/S, the canonically induced map A(U) - A(U ×S A
1
S)

is a weak equivalence of pointed simplicial sets.

The first two conditions imply that A is a sheaf up to homotopy in the Nisnevich
topology. The third condition implies that A

1
S

- S is a weak equivalence
in the following sense (where (−)c is the cofibrant replacement functor in Msc

chosen in 2.8):

Definition 2.11. A map f : A - B of motivic spaces is a motivic weak
equivalence if, for every motivically fibrant Z, the map

SM(fc, Z) : SM(Bc, Z) - SM(Ac, Z)

is a weak equivalence of pointed simplicial sets.

In 2.17 we shall note that 2.11 agrees with the corresponding notion in [12].

Using either Smith’s work on combinatorial model categories or by Blander’s
[1, 3.1], we have

Theorem 2.12. The motivic weak equivalences and the cofibrations define a
cofibrantly generated model structure on M.

Notation 2.13. We refer to the model structure in 2.12 as the motivic model
structure and make use of the notation Mmo. Its weak equivalences will be

denoted by
∼
- and its fibrations by -- . In accordance with 2.10, we refer

to the fibrations as motivic fibrations, since a motivic space A is motivically
fibrant if and only if A - ∗ is a motivic fibration.

Alas, this notation conflicts slightly with [10]. See 2.17.

Next we shall derive some additional properties of the motivic model structure,
starting with a characterization of motivic fibrations with motivically fibrant
codomain. As above, consider an elementary distinguished square:

P - Y

Q =

U
?

ψ
- X

φ

?

Using the simplicial mapping cylinder we factor the induced map hP
- hY

as a cofibration hP
- - C = (hP ∧ ∆1

+)
∐

hP
hY followed by a simplicial

homotopy equivalence C
≃
- hY . Similarly we factor the canonical map

sq = hU

∐

hP
C - hX as sq-

q
- tq

≃
- hX . Finally, we consider

hU×SA1
S

- hU and the factorization hU×SA1
S

-
u
- Cu

≃
- hU .

Definition 2.14. Let Q denote the collection of all elementary distinguished
squares in Sm/S. Since Sm/S is essentially small, we may consider a skeleton
and form the set J̃ of maps

{∗- - h∅} ∪ {q : sq- - tq}Q∈Q ∪ {u : hU×SA1
S

- - Cu}U∈Ob Sm/S .
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Let J ′ be the set of pushout product maps f ¤ g where f ∈ J̃ and g ∈
{∂∆n

+
⊂ - ∆n

+}.

Lemma 2.15. A schemewise fibration with motivically fibrant codomain is a
motivic fibration if and only if it has the right lifting property with respect to
the set J ′ of 2.14.

Proof. We note that the (simplicial) functor SM(B,−) preserves simplicial
homotopy equivalences, which in particular are schemewise weak equivalences.
From the definitions, it then follows that a schemewise fibrant motivic space A

is motivically fibrant if and only if the canonical map A
sc
-- ∗ enjoys the right

lifting property with respect to J ′. The statement follows using properties of
Bousfield localizations [6, 3.3.16].

Corollary 2.16. The model category Mmo is weakly finitely generated. In
particular, motivic weak equivalences and motivic fibrations with motivically
fibrant codomains are closed under filtered colimits.

In the symmetric spectrum approach due to Jardine [10] one employs a slightly
different model structure on motivic spaces. The cofibrations in this model
structure are the schemewise cofibrations, i.e. the monomorphisms, while the
weak equivalences are defined by localizing the so-called Nisnevich local weak
equivalences [9] with respect to a rational point hS

- hA1
S
. Let us denote

this model structure by MGJ. Corollary 2.16 shows an advantage of working
with Mmo. On the other hand, in MGJ every motivic space is schemewise
cofibrant. We compare these two model structures in

Theorem 2.17. The weak equivalences in the model structures Mmo and MGJ

coincide. In particular, the identity IdM : Mmo
- MGJ is the left adjoint

of a Quillen equivalence.

Proof. The fibrations in the pointed version of the model structure in [9] are
called global fibrations. A weak equivalence in this model structure is a local
weak equivalence, and a cofibration is a schemewise cofibration. We say that a
globally fibrant presheaf Z is i0-fibrant if the map M(hS , Z) - M(hA1

S
, Z)

induced by the zero-section i0 : S - A
1
S is an acyclic global fibration. Since

hi0 is a monomorphism, this is equivalent to the pointed version of hi0-local
simplicial presheaves in [9, §1.2].

A map f : A - B is an i0-equivalence if for all i0-fibrant presheaf Z, the

induced map of pointed simplicial sets SM(B,Z) - SM(A,Z) is a weak

equivalence. The i0-equivalences are the weak equivalences in MGJ .

First we prove that any motivic weak equivalence is an i0-equivalence. Suppose

that f : A
∼
- B and Z is i0-fibrant. Then Z is motivically fibrant, and thus

SM(fc, Z) is a weak equivalence. Since f c is related to f via schemewise weak
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equivalences, it follows that f is an i0-equivalence. This proves that motivic
weak equivalences are i0-equivalences.

Choose a motivically fibrant Z and suppose f : A - B is an i0-equivalence.

According to [9] there exists a map Z
∼sc

- Z ′ where Z ′ is globally fibrant.
Since the domain and codomain of hi0 are cofibrant, 2.7 implies that Z ′ is i0-
fibrant. Using the fact that Mmo is an S-model category, we get the following
commutative diagram:

SM(Bc, Z)
SM(fc,Z)

- SM(Ac, Z)

SM(Bc, Z ′)

∼
?

SM(fc,Z′)
- SM(Ac, Z ′)

∼
?

The map SM(fc, Z ′) is a weak equivalence of spaces since f c is an i0-
equivalence, i.e. f is a motivic weak equivalence. The Quillen equivalence
follows.

Lemma 2.18. Smashing with a cofibrant motivic space preserves motivic weak
equivalences.

Proof. Suppose Z is motivically fibrant, that is, the canonical map Z -- ∗
is a schemewise fibration having the right lifting properties with respect to J ′.
If C is cofibrant, then M(C,Z) is schemewise fibrant according to 2.7. We
claim M(C,Z) is motivically fibrant. For this, it suffices to prove for every
generating cofibration

i := hU ∧ (∂∆n ⊂ - ∆n)+,

the induced map M(i, Z) has the right lifting property with respect to J ′. By
adjointness, it suffices to prove that the pushout product of i and any map in
J ′ is a composition of cobase changes of maps in J ′. This holds by the following
facts.

• h∅ ∧ hU
∼= h∅

• Taking the product of an elementary distinguished square with any object
U ∈ ObSm/S yields an elementary distinguished square.

• (hV ×SA1
- hV ) ∧ hU

∼= hU×SV ×SA1
- hU×SV

• The pushout product of ∂∆m ⊂ - ∆m and ∂∆n ⊂ - ∆n is an inclusion
of simplicial sets, hence can be formed by attaching cells.

To conclude, it remains to note that for every motivically fibrant Z and every

f : A
∼
- B, the induced map SM((f ∧ C)c, Z) is a weak equivalence. First,

note that by the argument above, the map SM(fc ∧C,Z) ∼= SM(fc,M(C,Z))
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is a weak equivalence. This means that f c ∧ C is a motivic weak equivalence.
But 2.9 and the commutative diagram

(A ∧ C)c ∼sc
-- A ∧ C ¾

∼sc
Ac ∧ C

(B ∧ C)c

(f∧C)c

?
∼sc
-- B ∧ C

f∧C

?

¾
∼sc

Bc ∧ C

fc∧C

?

show that (f ∧ C)c is a motivic weak equivalence if and only f c ∧ C is so.

Corollary 2.19. Mmo is a monoidal Msc-model category.

Proof. We have to check that the pushout product of hU ∧ (∂∆n ⊂ - ∆n)+
and a generating acyclic cofibration in Mmo is a motivic weak equivalence for
all U ∈ Ob Sm/S and n ≥ 0. Since hU is cofibrant, the result follows from 2.18
and left properness of Mmo.

We can now extend 2.18 to all motivic spaces.

Lemma 2.20. Taking the smash product − ∧ A or a cobase change along a
schemewise cofibration preserves motivic weak equivalences for all A ∈ ObM.

Proof. For the first claim: we may replace A by Ac using 2.9 and hence conclude
using 2.18. The second claim follows by factoring any motivic weak equivalence
as a motivic acyclic cofibration followed by a schemewise acyclic fibration, and
quoting 2.9 for the schemewise acyclic fibration.

Lemma 2.21. The monoid axiom holds in Mmo.

Proof. Let f be an acyclic cofibration in Mmo and let C be any motivic space.
By 2.20, f ∧ C is a schemewise cofibration and a motivic weak equivalence. It
suffices to prove that the class of such maps is closed under cobase changes and
sequential compositions. For this we use 2.20 and 2.16, respectively.

Lemma 2.22. The model category Mmo is proper.

Proof. Left properness of Mmo is obvious since the cofibrations are not altered.
To see that the model structure is right proper, one can either employ [1, 3.1],
or mimic Jardine’s proof of [10, A.5].

Remark 2.23. It is worth noticing that all of the results above hold more
generally. One may replace Sm/S by any site with interval, see [12], in which
the Grothendieck topology is generated by a bounded, complete and regular
cd-structure [17]. An interesting example is the cdh-topology on the category
Sch/S of schemes of finite type over S and representing interval the affine line.
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2.2 Stable homotopy theory

The model category Mmo has all the properties required to apply the results
of [8, Section 4]. On the one hand, Mmo is a cellular model category by [1], so
Hirschhorn’s localization methods work. On the other hand, one can also use
Smith’s combinatorial model categories for Bousfield localization. In any case,
the category Sp(Mmo, A) of spectra of motivic spaces (with respect to some
cofibrant finitely presentable motivic space A) has a stable model structure.
For precise statements consult [8, 4.12 and 4.14].

We are interested in special motivic spaces A. The basic “sphere” in motivic
homotopy theory is obtained in the same way as the circle in classical homotopy
theory. It is defined as the Thom space A

1
S/A

1
S −{0} of the trivial line bundle.

Since A
1
S is contractible, the pushout (A1

S − {0}, 1) ∧ S1 of the diagram

∗ ¾ hS ∧ S1 hi1
∧S1

- hA1
S
−{0} ∧ S1

is weakly equivalent to A
1
S/A

1
S − {0} [12, 3.2.2]. In the diagram, the map

i1 : S - A
1
S − {0} is induced by the closed point 1 ∈ A

1
S(S). Note that

although hi1 ∧S1 is a schemewise cofibration (i.e. monomorphism), it need not
be a cofibration in the motivic model structure Mmo.

Since the domain and codomain of hi1 ∧ S1 are cofibrant, we may factor this
map using the simplicial mapping cylinder as a cofibration hS∧S1- - C and a
simplicial homotopy equivalence. The quotient T := C/hS∧S1 is then cofibrant
and a finitely presentable motivic space, schemewise weakly equivalent to the
smash product (A1

S −{0}, 1)∧S1. Up to motivic weak equivalence the choice of
T is irrelevant. See [8, 5.7] and cp. 2.20. Now the identity IdM is a left Quillen
equivalence from Mmo to the pointed version of Jardine’s model structure on
M by 2.17. So that by [8, 5.7] the stable model structure on the category of
motivic spectra Sp(Mmo, T ) is Quillen equivalent to Jardine’s model for the
motivic stable homotopy category. Using Voevodsky’s observation about cyclic
permutations, we get

Lemma 2.24. The functor −∧ T : Sp(Mmo, T ) - Sp(Mmo, T ) is a Quillen
equivalence.

Proof. The identity idM induces a commutative diagram of left Quillen functors

Sp(Mmo, T ) - Sp(MGJ, T )

Sp(Mmo, T )

−∧T
?

- Sp(MGJ, T )

−∧T
?

where the two horizontal arrows are Quillen equivalences. Here MGJ denotes
the pointed version of the Goerss-Jardine model structure on M. In MGJ , the
cofibrations are the schemewise cofibrations. Hence every presheaf is cofibrant.
By [8, 10.3] it suffices to establish that T is weakly equivalent to a symmetric
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presheaf A, so that the next diagram commutates where cyc: A∧3 - A∧3 is
the cyclic permutation map and H is a homotopy from the cyclic permutation
to the identity; for details we refer to [8, 10.2].

A∧3 ∧ hS
A∧3∧hi0- A∧3 ∧ hA1

¾
A∧3∧hi1 A∧3 ∧ hS

A∧3 ∧ hS

H
? ¾ cyc

∧hS
id

A∧3
∧h

S

-

The presheaf A
1
S/A

1
S −{0} is weakly equivalent to T , and symmetric according

to [10, 3.13]. Hence −∧T on the right hand side is a Quillen equivalence, which
implies the same statement for the functor − ∧ T on the left hand side.

3 Motivic functors

In this section we shall introduce the category of motivic functors, describe its
monoidal structure and display some of its useful homotopy properties. We do
this in four steps. Each step involves giving a monoidal model structure to the
category of motivic functors.

The first step is defining the pointwise model, which is of little practical value,
but it serves as a building block for all the other models. The second step
deals with the homotopy functor model. We advocate this as a tool for doing
motivic homotopy theory on a functorial basis, mimicking the grand success in
algebraic topology. The most interesting functors are homotopy invariant, but
many natural constructions will take to functors which do not preserve weak
equivalences. The homotopy functor model structure is a convenient way of
handling these problems.

Thirdly we have the stable structure, which from our point of view is the natural
generalization of stable homotopy theory from algebraic topology, but which
unfortunately does not automatically agree with the other proposed models for
stable motivic homotopy theory. Hence we are forced to park this theory in
our technical garage for time being and introduce the fourth and final model
structure: the spherewise model structure. Although technically not as nice
as the stable model, the spherewise model is Quillen equivalent to the other
models for motivic stable homotopy theory.

Many of the results in this section can be justified by inferring references to [5].
For the convenience of the reader we will indicate most proofs of these results.

3.1 The category of motivic functors

Recall the category of motivic spaces M = MS = [(Sm/S)op,S] discussed in
the previous section. As a closed symmetric monoidal category, it is enriched
over itself, hence an M-category. Let fM be the full sub-M-category of finitely
presentable motivic spaces.
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Definition 3.1. A motivic functor is an M-functor X : fM - M. That
is, X assigns to any finitely presentable motivic space A a motivic space XA
together with maps of motivic spaces homX

A,B : M(A,B) - M(XA,XB)
compatible with the enriched composition and identities. We let MF be the
category of motivic functors and M-natural transformations.

Since MF is a category of functors with bicomplete codomain, it is bicomplete
and enriched over M. If X and Y are motivic functors, let MMF(X,Y ) be
the motivic space of maps from X to Y . If A is a finitely presentable motivic
space, then the motivic functor represented by A is given as

M(A,−) : fM - M, M(A,−)(B) = M(A,B)

The enriched Yoneda lemma holds, and every motivic functor can be expressed
in a canonical way as a colimit of representable functors.

Theorem 3.2 (Day). The category of motivic functors is closed symmetric
monoidal with unit the inclusion I : fM ⊂ - M.

This theorem is a special case of [4]; it is simple enough to sketch the basic
idea. Denote the monoidal product of two motivic functors X and Y by X∧Y .
Since every motivic functor is a colimit of representables, it suffices to fix the
monoidal product on representable functors

M(A,−) ∧M(B,−) := M(A ∧ B,−).

The internal hom is defined by setting

MF(X,Y )(A) = MMF(X,Y (− ∧ A)).

Let us describe a special feature of the category of motivic functors, which
makes the monoidal product more transparent. The point is just that motivic
functors can be composed. Note that any motivic functor X : fM - M
can be extended – via enriched left Kan extension along the full inclusion
I : fM ⊂ - M – to an M-functor I∗XM - M satisfying I∗X◦I ∼= X. Since
the category of motivic spaces is locally finitely presentable 2.2, this defines an
equivalence between MF and the category of M-functors M - M that
preserve filtered colimits. Given motivic functors X and Y , one defines their
composition by setting

X ◦ Y := I∗X ◦ Y.

Moreover, there is the natural assembly map X ∧ Y - X ◦ Y which is an
isomorphism provided Y is representable [5, 2.8]. In fact, if both X and Y are
representable, then the assembly map is the natural adjointness isomorphism

M(A,−) ∧M(B,−) = M(A ∧ B,−) ∼= M(A,M(B,−)).
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Remark 3.3. A motivic ring is a monoid in the category of motivic functors.
Given the simple nature of the smash product in MF motivic rings can be
described quite explicitly. Running through the definitions we see that a map
X∧X - X of motivic functors is the same as an M-natural transformation
of two variables XA ∧ XB - X(A ∧ B), and so a motivic ring is a motivic
functor X together with natural transformations XA∧XB - X(A∧B) and
A - XA such that the relevant diagrams commute. Hence motivic rings
are analogous to Bökstedt’s functors with smash product [2].

Example 3.4. Let SmCor/S be the category of smooth correspondences over
S. The special case S = Spec(k) is described in [18]. A motivic space with
transfers is an additive functor, or an Ab-functor, F : (SmCor/S)op - sAb

to the category of simplicial abelian groups. Let Mtr be the category of motivic
spaces with transfers. By forgetting the extra structure of having transfers and
composing with the opposite of the graph functor Γ: Sm/S - SmCor/S it
results a forgetful functor u : Mtr - M with left adjoint Ztr : M - Mtr.
The functor Ztr is determined by the property that Ztr(hU ∧ ∆n

+) =
HomSmCor/S(−, U) ⊗ Z(∆n).

Let MZ ∈ MF be the composite functor

fM ⊂ - M
Ztr
- Mtr u

- M.

We claim that MZ is a commutative monoid in MF. First, the unit I - MZ

is the unit of the adjunction between M and Mtr. To define a multiplication,
we note using [4] and [15] that Mtr is closed symmetric monoidal. Since the
graph functor is strict symmetric monoidal and forgetting the addition is lax
symmetric monoidal, general category theory implies Ztr is strict symmetric
monoidal and u is lax symmetric monoidal. In particular, we get the natural
multiplication map µ on MZ, given by

u(Ztr(A)) ∧ u(Ztr(B)) - u(Ztr(A) ⊗ Ztr(B)) - u(Ztr(A ∧ B)).

To see that MZ is a motivic functor, consider the composition

M(A,B) ∧ uZtrA - uZtrM(A,B) ∧ uZtrA - uZtr(M(A,B) ∧ A),

and note that uZtr(M(A,B) ∧ A) maps naturally to uZtrB. In 4.6 we show
MZ represents Voevodsky’s motivic Eilenberg-MacLane spectrum [16].

3.2 Evaluation on spheres

As explained in [5, Section 2.5], the category Sp(M, T ) of motivic spectra
with respect to the T of 2.2 can be described as a category of M-functors.
Let TSph be the sub-M-category of M with objects the smash powers T 0 =
S0, T, T∧2 := T ∧ T, T∧3 := T ∧ (T∧2), · · · of T . If k ≥ 0 the motivic space of
morphisms in TSph from T∧n to T∧n+k is T∧k considered by adjointness as
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a subobject of M(T∧n, T∧n+k). If k < 0 the morphism space is trivial. Let
i : TSph ⊂ - fM be the inclusion. Hence every motivic functor X gives rise
to a motivic spectrum ev(X) := X ◦ i.

Similarly, the category SpΣ(M, T ) of motivic symmetric spectra is isomorphic
to the category of M-functors (with values in M) from a slightly larger sub-
M-category j : TSphΣ ⊂ - fM, which is determined by the property that
it is the smallest sub-M-category containing TSph and the symmetric group
Σ(n)+ ⊆ M(T∧n, T∧n) for all n. Hence, if U denotes the forgetful functor,
then the evaluation map ev : MF - Sp(M, T ) factors as

MF
ev′

- SpΣ(M, T )
U
- Sp(M, T ).

Moreover ev′ is lax symmetric monoidal and its left adjoint is strict symmetric
monoidal. For further details we refer the reader to [5, Section 2.6].

3.3 The pointwise structure

We first define the pointwise model structure on MF. As earlier commented,
the pointwise structure is of no direct use for applications, but it is vital for
the constructions of the useful structures to come.

Definition 3.5. A map f : X - Y in MF is a

• Pointwise weak equivalence if for every object A in fM the induced map
f(A) : X(A) - Y (A) is a weak equivalence in Mmo.

• Pointwise fibration if for every object A in fM the induced map
f(A) : X(A) - Y (A) is a fibration in Mmo.

• Cofibration if f has the left lifting property with respect to all pointwise
acyclic fibrations.

The category MF, together with these classes of morphisms, is denoted MFpt

and referred to as the pointwise structure on MF.

Theorem 3.6. The pointwise structure MFpt is a cofibrantly generated proper
monoidal model category satisfying the monoid axiom.

Proof. The model structure follows from [7, 2.1.19], where the monoid axiom
for Mmo is used to ensure that the generating acyclic cofibrations listed in 3.7,
as well as sequential compositions of cobase changes of these, are pointwise
weak equivalences. The form of the generating (acyclic) cofibrations, together
with the behavior of ∧ on representables, ensures that MF is a monoidal model
category [7, 4.2.5]. Right properness follows at once from the fact that Mmo is
right proper 2.22. Left properness requires more than Mmo being left proper,
but follows from 2.20.
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To prove the monoid axiom, let X be a motivic functor and consider the smash
product

X ∧M(A,−) ∧ sj
X∧M(A,−)∧j

- X ∧M(A,−) ∧ tj

with a generating acyclic cofibration, where j is a generating acyclic cofibration
for Mmo. It is a pointwise weak equivalence by 2.20, and also pointwise a
schemewise cofibration. In particular, any sequential composition of cobase
changes of maps like these is a pointwise weak equivalence, which concludes
the proof.

Remark 3.7. If A varies over the set of isomorphism classes in fM and i :
si- - ti varies over the generating (acyclic) cofibrations in Mmo, then the
maps M(A,−) ∧ i : M(A,−) ∧ si - M(A,−) ∧ ti form a set of generating
(acyclic) cofibrations for MFpt. In particular, all representable motivic functors
(for example the unit) are cofibrant.

The following theorem will help us to deduce the monoid axiom for some other
model structures on motivic functors.

Theorem 3.8. Smashing with a cofibrant object in MFpt preserves pointwise
equivalences.

Proof. If X is representable, say X = M(A,−) and f : Y - Z is a pointwise
weak equivalence, then the assembly map is an isomorphism

f ∧M(A,−) ∼= f ◦M(A,−) = I∗f ◦M(A,−).

Since I∗f commutes with filtered colimits and every motivic space is a filtered
colimit of finitely presentable motivic spaces, 2.16 implies that I∗f(B) is a
motivic weak equivalence for every motivic space B, e.g. for B = M(A,C).

For an arbitrary cofibrant motivic functor, the result follows from the previous
case using induction on the attaching cells and the fact that cobase change
along monomorphisms preserves motivic weak equivalences 2.20.

3.4 The homotopy functor structure

The major caveat concerning the pointwise model structure is that a motivic

weak equivalence A
∼
- B of finitely presentable motivic spaces does not

necessarily induce a pointwise weak equivalence M(B,−) - M(A,−) of
representable motivic functors. To remedy this problem, we introduce a model
structure in which every motivic functor is a homotopy functor up to weak
equivalence. A homotopy functor is a functor preserving weak equivalences.

Recall that the pointwise structure is defined entirely in terms of the weakly
finitely generated model structure Mmo. However, to define the homotopy
functor structure it is also useful to consider the Quillen equivalent model
structure MGJ in which all motivic spaces are cofibrant. The slogan is: “use
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MGJ on the source and Mmo on the target”. This is the main difference from
the general homotopy functor setup presented in [5].

Definition 3.9. Let M be the set of acyclic monomorphisms (i.e. maps that
are both monomorphisms and motivic weak equivalences) of finitely presentable
motivic spaces. For a motivic space A, let ac(A) be the following category. The
objects of ac(A) are the maps A - B ∈ M that can be obtained by attaching
finitely many cells from M . The set of morphisms from an object β : A - B
to another γ : A - C is the set of maps τ : B - C that can be obtained
by attaching finitely many cells from M such that τβ = γ. Set

Φ(A) := colim
A→B∈ac(A)

B.

Note that the objects in ac(A) are acyclic cofibrations in MGJ.

The techniques from [5, Section 3.3] ensure the following properties of this
construction, see [5, 3.24]

Lemma 3.10. For every motivic space A, the map Φ(A) - ∗ has the right
lifting property with respect to the maps in M . In particular, Φ(A) is fibrant
in Mmo. Moreover, Φ is a functor and there exists a natural transformation
ϕA : A - Φ(A) which is an acyclic monomorphism. If the motivic space A
is finitely presentable, then Φ(A) is isomorphic to a filtered colimit of finitely
presentable motivic spaces weakly equivalent to A.

There are occasions where it is more convenient to employ M instead of the
set J ′ introduced in 2.15. For example, every motivic weak equivalence of
finitely presentable motivic spaces can be factored as a map in M , followed by
a simplicial homotopy equivalence. Adjointness and 2.7 imply:

Lemma 3.11. Suppose A is a motivic space such that A - ∗ has the right
lifting property with respect to the maps in M . If f : B - C is an acyclic
monomorphism of finitely presentable motivic spaces, then the induced map
M(C,A) - M(B,A) is an acyclic fibration in Mmo.

We define the (not necessarily motivic) functor ~(X) : fM - M by the
composition

~(X)(A) := I∗X(Φ(A)).

Note that ϕ : IdM
- Φ induces a natural transformations of functors

IdMF
- ~.

Definition 3.12. A map f : X - Y in MF is an

• hf-weak equivalence if the map ~(X)(A) is a weak equivalence in Mmo

for all A ∈ Ob fM.
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• hf-fibration if f is a pointwise fibration and for all acyclic monomorphisms

φ : A ⊂
∼
- B ∈ fM the diagram

X(A)
X(φ)

- X(B)

Y (A)

f(A)
?
?

Y (φ)
- Y (B)

f(B)
?
?

is a homotopy pullback square in Mmo.

In the following, the hf-weak equivalences and hf-fibrations together with the
class of cofibrations, will be referred to as the homotopy functor structure MFhf

on MF.

Lemma 3.13. A map in MF is both an hf-fibration and an hf-equivalence if
and only if it is a pointwise acyclic fibration.

Proof. One implication is clear.

If f : X - Y is an hf-fibration and an hf-equivalence, choose A ∈ fM and
consider the induced diagram:

X(A) - I∗X(Φ(A))

Y (A)

f(A)
?

- I∗Y (Φ(A))

I∗f(Φ(A))
?

It remains to prove that f(A) is a motivic weak equivalence. The right vertical
map is a motivic weak equivalence by assumption, so it suffices to prove that
the diagram is a homotopy pullback square. Since f is an hf-fibration and
I∗Z commutes with filtered colimits for any motivic functor Z, 3.10 shows the
square is a filtered colimit of homotopy pullback squares. By 2.16, homotopy
pullback squares in Mmo are closed under filtered colimits, which finishes the
proof.

Theorem 3.14. The homotopy functor structure is a cofibrantly generated and
proper monoidal model category.

Proof. First we establish the weakly finitely generated model structure. This
follows from [7, 2.1.19], where 3.13 and 3.11 are needed to check the relevant
conditions. More precisely, 3.11 shows that the generating acyclic cofibrations
listed in 3.17 below are hf-equivalences. By arguments which can be found
in the proof of [5, 5.9], any sequential composition of cobase changes of the
generating acyclic cofibrations is an hf-equivalence.

Concerning the monoidal part, the crucial observation is that if f : A - B
is an acyclic monomorphism in fM and C is finitely presentable, then the map
f ∧C : A∧C - B ∧C is an acyclic monomorphism in fM. For details and
also right properness, see [5, 5.12 and 5.13]. Left properness is clear.
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Theorem 3.15. Smashing with a cofibrant motivic functor preserves hf-
equivalences and MFhf satisfies the monoid axiom.

Proof. We factor the hf-equivalence into an hf-acyclic cofibration followed by
an hf-acyclic fibration. Now 3.13 shows that hf-acyclic fibrations are pointwise
acyclic fibrations, and 3.8 shows smashing with a cofibrant object preserves
pointwise weak equivalences. Hence we may assume the hf-equivalence is a
cofibration. Since the model structure MFhf is monoidal, smashing with a
cofibrant object preserves hf-acyclic cofibrations. This proves our first claim.

The monoid axiom is shown to hold as follows. Suppose that X-
∼hf

- Y is
a generating hf-acyclic cofibration, and Z is an object of MF with cofibrant

replacement Zc ∼pt
-- Z. Since X and Y are cofibrant, there is the diagram:

X ∧ Zc ∼hf
- Y ∧ Zc

X ∧ Z

∼pt

?

- Y ∧ Z

∼pt

?

This implies X ∧Z
∼hf
- Y ∧Z. The full monoid axiom follows as indicated in

[5, 6.30].

Remark 3.16. Every motivic functor is an S-functor since Mmo is a monoidal
S-model category. As such, they preserve simplicial homotopy equivalences,
see [5, 2.11]. Any motivic weak equivalence can be factored as the composition
of an acyclic monomorphism and a simplicial homotopy equivalence. It follows

that a pointwise fibration f : X
pt
-- Y is an hf-fibration if and only if for

every motivic weak equivalence φ : A
∼
- B in fM the following diagram is

a homotopy pullback square in the motivic model structure:

X(A)
X(φ)

- X(B)

Y (A)

f(A)
?
?

Y (φ)
- Y (B)

f(B)
?
?

In particular, the fibrant functors in MFhf are the pointwise fibrant homotopy
functors. On the other hand, we could have constructed the homotopy functor
structure as a Bousfield localization with respect to the homotopy functors,
avoiding ~ in 3.12. However, note that we have a characterization of arbitrary
fibrations, as opposed to the situation for a general Bousfield localization.

Remark 3.17. The generating cofibrations for the pointwise and homotopy
functor structures coincide. The generating acyclic cofibrations for MFhf may
be chosen as follows. Consider an acyclic monomorphism φ : A - B ∈ fM

and its associated factorization M(B,−)-
cφ
- Cφ

≃
- M(A,−) obtained
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using the simplicial mapping cylinder. The hf-acyclic cofibrations are generated
by the pointwise acyclic cofibrations of 3.7, together with the pushout product
maps

cφ¤i : M(B,−) ∧ ti
∐

M(B,−)∧si

Cφ ∧ si - Cφ ∧ ti,

where φ varies over the (isomorphism classes of) acyclic monomorphisms in
fM and i : si- - ti ∈ I varies over the generating cofibrations in Mmo. The
domains and codomains of these pushout product maps are finitely presentable
in MF.

To end this section, we indicate why ~(X)(A) has the correct homotopy type.

Lemma 3.18. Let X
∼hf

- Xhf be a fibrant replacement in MFhf . Then we
have natural motivic weak equivalences

~(X)(A)
∼
- ~(Xhf)(A) ¾

∼
Xhf(A).

Proof. The first map is a motivic weak equivalence by definition. The second
map is a motivic weak equivalence because ~(Xhf)(A) ∼= colim

A
∼
→B

Xhf(B) and Xhf

preserves motivic weak equivalences.

3.5 The stable structure

We start with the hf-model structure and define the stable model structure
more or less as for the general case in [5, Section 6]. The stable equivalences
are the maps which become pointwise weak equivalences after a stabilization
process, and the stably fibrant objects are morally the “Ω-spectra”.

Let us repeat the stabilization process in the case of MF and the motivic space
T of 2.2, weakly equivalent to A

1
S/(A1

S −{0}). If X is a motivic functor and A
is a finitely presentable motivic space, there is a map

tX(A) : X(A) - T(X)(A) := M(T,X(T ∧ A))

natural in both X and A. It is adjoint to the map X(A) ∧ T - X(T ∧ A)
which in turn is adjoint to the composition

T - M(A, T ∧ A)
homX

A,T∧A
- M(XA,X(T ∧ A)).

Let T
∞(X) be the colimit of the sequence

X
tX
- T(X)

T(tX)
- T(T(X)) - · · · ,

and let t∞X : X - T
∞(X) be the canonically induced map.

We fix a fibrant replacement X
∼hf

- Xhf in MFhf .
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Definition 3.19. A morphism f : X - Y in MF is a

• Stable equivalence if the induced map T
∞(fhf) : T

∞(Xhf) - T
∞(Y hf)

is a pointwise weak equivalence.

• Stable fibration if f is an hf-fibration and the diagram

X(A)
tX(A)

- T(X)(A)

Y (A)

?
?

tY (A)
- T(Y )(A)

?
?

is a homotopy pullback square in Mmo for all A ∈ fM.

We denote by MFst the stable structure on MF, i.e. the category MF together
with the classes of stable equivalences and stable fibrations.

Remark 3.20. The definition of stable equivalences in the general setting of
[5, 6.2] involves the functor ~(−) instead of (−)hf . By 3.18, this does not make
any difference. In particular, the class of stable equivalences does not depend
on the choice of (−)hf .

Lemma 3.21. A map is a stable fibration and a stable equivalence if and only
if it is a pointwise acyclic fibration.

Proof. One implication is obvious.

If f is a stable fibration and a stable equivalence, then fhf is also a stable
equivalence. In general, fhf will not be a pointwise fibration, but – as one can
prove by comparing with ~(f) – this is the only obstruction preventing fhf

from being a stable fibration. That is, the relevant squares appearing in the
definition of an hf-fibration 3.12 and in the definition of a stable fibration 3.19
are homotopy pullback squares for fhf . Details can be found in [5, Section 6.2].
Since homotopy pullback squares are closed under filtered colimits (like T

∞),
the statement follows.

To prove that the stable structure is in fact a model structure, we will introduce
generating stable acyclic cofibrations.

Definition 3.22. For a finitely presentable motivic space A, let τA be the
composition

M(T ∧ A,−) ∧ T
∼=
- M(T,M(A,−)) ∧ T

ǫT M(A,−)
- M(A,−),

where ǫT is the counit of the adjunction (− ∧ T,M(T,−)) on MF. There
exists a factorization dA : M(T ∧ A,−) ∧ T- - DA followed by a simplicial
homotopy equivalence. Let D be the set of pushout product maps dA¤i, where
i : si- - ti is a generating cofibration in Mmo.
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To deduce that the stable structure is a model structure, we need to know that
the maps in D-cell are stable equivalences. For this purpose, we compare with
the stable model structure on Sp(Mmo, T ) which exists by [8]. If X is a motivic
functor and A ∈ fM, we can form the composition X ◦ (− ∧ A) ∈ MF.

Lemma 3.23. Let f : X - Y be a map of motivic functors. Then f is a
stable equivalence if and only if ev(fhf ◦ (− ∧ B)) is a stable equivalence of
motivic spectra for every B ∈ fM.

Proof. Although the stabilizations in MF and Sp(Mmo, T ) do not coincide
under ev, they can be compared at each B ∈ fM and shown to yield motivic
weak equivalences

T
∞(fhf)(B)

∼
- (Θ∞ev(fhf(− ∧ B)))0.

Here Θ∞ is the stabilization defined in [8, 4.4]. Details are recorded in [5,
Section 6.3]. This proves the claim.

Lemma 3.24. The maps in D-cell are stable equivalences.

Proof. Our strategy is to note that 2.24 and 3.23 imply the maps in D are stable
equivalences. To this end, it suffices to show – using 2-out-of-3 and 2.9 – that
ǫTM(A,−) is a stable equivalence for all A ∈ Ob fM. Equivalently, according
to 3.23, we may consider the map of motivic spectra ev((ǫTM(A,−))hf◦(−∧B))
for B ∈ Ob fM. Write X := M(A,−). There is a zig-zag of pointwise weak
equivalences connecting (ǫT X)hf ◦ (− ∧ B) and ǫT (Xhf ◦ (− ∧ B)). It can be
constructed as follows. By naturality, the diagram

M(T,X) ∧ T

M(T,Xhf) ∧ T
¾

X

ǫT X

?

(M(T,X) ∧ T )hf

-

∼hf

-

Xhf

∼hf
?

?

¾ (ǫT
X)

hfǫT (X hf
) -

commutes. Factor the map ǫT (Xhf) as a pointwise acyclic cofibration, followed

by a pointwise fibration Z
pt
-- Xhf . Then Z

pt
-- Xhf is in fact an hf-

fibration. The reason is that Xhf is a pointwise fibrant homotopy functor, so
M(T,Xhf) is also a (pointwise fibrant) homotopy functor, since T is cofibrant.
By 2.18, M(T,Xhf)∧T is then a homotopy functor, hence the pointwise weak

equivalence M(T,Xhf)∧T-
∼pt
- Z implies that Z is a homotopy functor. Any

pointwise fibration of homotopy functors is an hf-fibration, thus Z
pt
-- Xhf

is an hf-fibration. Hence there exists a lift f : (M(T,X) ∧ T )hf - Z in the
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diagram:

M(T,X) ∧ T - M(T,Xhf) ∧ T-
∼pt

- Z

(M(T,X) ∧ T )hf

∼hf

?

?

(ǫT X)hf

-

f

-

Xhf

hf

?
?

We will prove that f is a pointwise weak equivalence. It suffices to prove that
f is an hf-equivalence because both the domain and the codomain of f are
homotopy functors. Hence by the 2-out-of-3 property it suffices to prove that
M(T,X)∧T - M(T,Xhf)∧T is an hf-equivalence. Since −∧T preserves hf-
equivalences, let us consider M(T,X) - M(T,Xhf). We have to prove that
for every finitely presentable motivic space C, ~(M(T,X) - M(T,Xhf))(C)
is a motivic weak equivalence. Since T is finitely presentable and ~ can be
described as a filtered colimit, the map in question is isomorphic to the map

M(T, ~(X-
∼hf

- Xhf)(C)). The map ~(X-
∼hf

- Xhf)(C) is a motivic weak
equivalence by definition, so it remains to observe that the domain and the
codomain are both fibrant in Mmo. Now X = M(A,−) where A is finitely
presentable, so the domain ~(M(A,−))(C) = M(A,Φ(C)) is fibrant in Mmo.
The codomain is isomorphic to a filtered colimit of fibrant objects, hence it is
fibrant in Mmo.

We have constructed the diagram:

M(T,M(A,−)hf) ∧ T
∼pt

- Z ¾
∼pt

(M(T,M(A,−)) ∧ T )hf

M(A,−)hf

? ¾
(ǫT

M(A,−))
hfǫT (M

(A,−) hf
)
-

Pre-composing with − ∧ B preserves pointwise weak equivalences so that we
get the desired zig-zag of pointwise weak equivalences connecting the two maps
ǫT (M(A,−)hf ◦ (− ∧ B)) and (ǫTM(A,−))hf ◦ (− ∧ B). Since ev preserves
pointwise weak equivalences, it suffices to check that

ev(ǫT (M(A,−)hf ◦ (− ∧ B))) = ǫT (ev(M(A,−)hf) ◦ (− ∧ B))

is a stable equivalence. In what follows, let us abbreviate by E the pointwise
fibrant motivic spectrum ev(M(A,−)hf ◦ (− ∧ B)). Then ιE : E - Θ∞E
is a stable equivalence whose codomain is a stably fibrant motivic spectrum
[8, 4.12]. Moreover, since T is finitely presentable and cofibrant, the map
M(T, ιE) : M(T,E) - M(T,Θ∞E) is also a stable equivalence with stably

fibrant codomain. Choose a cofibrant replacement M(T,Θ∞E)c ∼pt
-- M(T,E)
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and consider the induced commutative diagram:

M(T,E)c ∧ T
∼

- M(T,E) ∧ T
ǫT E

∼
- E

M(T,Θ∞E)c ∧ T

M(T,ιE)c∧T ∼
?

∼
- M(T,Θ∞E) ∧ T

M(T,ιE)∧T ∼
?

ǫT Θ∞E

∼
- Θ∞E

ιE

?

Since − ∧ T is a Quillen equivalence 2.24, the lower horizontal composition is
a stable equivalence. Since − ∧ T preserves pointwise weak equivalences 2.18,
both horizontal maps on the left hand side are pointwise weak equivalences.
The right vertical map is a stable equivalence by construction. By factoring a
stable equivalence as a stable acyclic cofibration, followed by a pointwise acyclic
fibration, one can see that − ∧ T preserves all stable equivalences. Hence also
the other two vertical maps are stable equivalences. It follows that the map in
question is a stable equivalence.

Theorem 3.25. The stable structure MFst is a cofibrantly generated, proper
and monoidal model category.

Proof. The model structure follows easily from [7, 2.1.19], using 3.21 and 3.24.
The smash product of M(T ∧ A,−) ∧ T - M(A,−) and M(B,−) is iso-
morphic to the map M(T ∧ (A ∧ B),−) ∧ T - M(A ∧ B,−). This implies
that the pushout product map of a generating cofibration M(B,−) ∧ hU ∧
(∂∆n ⊂ - ∆n)+ and a generating stable acyclic cofibration is again a stable
acyclic cofibration, which proves that the model structure is monoidal. Left
properness is clear, for right properness we refer to [5, 6.28].

Remark 3.26. In the pointwise and stable model structures, the generating
cofibrations coincide. The set of generating acyclic cofibrations for the stable
structure is the union of the set of generating hf-acyclic cofibrations in 3.17,
together with the set D described above. Note that all of the maps have
cofibrant domains and codomains. Furthermore, the domains and codomains
of the maps in D are finitely presentable.

Remark 3.27. In fact, by the proofs of [5, 5.13 and 6.28] stable equivalences
are closed under base change along pointwise fibrations.

By a verbatim copy of the argument in the hf-structure 3.15, we get the monoid
axiom for the stable structure.

Theorem 3.28. Smashing with a cofibrant object in MFst preserves stable
equivalences, and MFst satisfies the monoid axiom.

Our goal now is to compare the stable model structure on motivic functors
with the stable model structure on motivic spectra.

It is clear that ev : MF - Sp(M, T ) preserves acyclic fibrations, and from
Hovey’s results [8, Section 4], ev preserves stable fibrations. Hence ev is a
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right Quillen functor, with left adjoint i∗ defined by left Kan extension along
the inclusion i : TSph ⊂ - fM. (In fact, ev preserves stable equivalences
of motivic homotopy functors by 3.23.) We would like ev to be a Quillen
equivalence, which according to [7, 1.3.16] is equivalent to the following two
conditions.

• ev detects stable equivalences of stably fibrant motivic functors.

• If E is a cofibrant motivic spectrum and (−)st denotes a stably fibrant
replacement functor for motivic spectra, then the canonical map

E - ev((i∗E)st)

is a stable equivalence.

Here is a proof of the second condition.

Lemma 3.29. Let E be a cofibrant motivic spectrum. Then E - ev((i∗E)st)
is a stable equivalence of motivic spectra.

Proof. Let us start by observing that, by 3.23, it is sufficient to show that the
map E - ev((i∗E)hf) is a stable equivalence. To describe (−)hf in convenient
terms, we will employ the enriched fibrant replacement functor IdMmo

- R
[5, 3.3.2]. Its construction uses an enriched small object argument. For our
notations concerning spectra see [8].

First, consider the case E = F0T
0. Then i∗F0T

0 ∼= M(T 0,−) ∼= I, and we
can choose I

hf = R ◦ I. The map F0T
0 - ev(R ◦ I) in degree n is the

canonical motivic weak equivalence T∧n ∼
- R(T∧n), hence a pointwise weak

equivalence.

To proceed in the slightly more general case when E = FnT 0, note that
i∗FnT 0 ∼= M(T∧n,−). Since T∧n is cofibrant, we may choose M(T∧n,−)hf =
M(T∧n, R(−)), cp. 3.18. Hence evM(T∧n, R(−)) = M(T∧n, evR(−)). The
map FnT 0 - M(T∧n, evR(−)) has an adjoint FnT 0 ∧ T∧n - evR(−)
which is ∗ - R(T∧k) in degree k < n and the canonical motivic weak

equivalence T∧m ∼
- R(T∧m) in degree m ≥ n. In particular, it is a stable

equivalence. Similarly for

FnT 0 ∧ T∧n ∼
- evR(−)

∼
- Θ∞evR(−).

¿From the proof of 3.24, one can see that M(T∧n,−) applied to the second
map is a stable equivalence with a stably fibrant codomain. Since − ∧ T is a
Quillen equivalence on Sp(Mmo, T ), this proves the slightly more general case.

The case E = FnA, where A is any motivic space, follows since

FnA - ev((i∗FnA)hf) ∼= (FnT 0 - evM(T∧n, R(−))) ∧ A
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and tensoring with any motivic space preserves stable equivalences of motivic
spectra. The latter follows from 2.20. This includes the domains and codomains
of the generating cofibrations in Sp(Mmo, T ).

The general case of any cofibrant motivic spectrum E follows, since E is a
retract of a motivic spectrum E′ such that ∗- - E′ is obtained by attaching
cells. That is, we can assume E = E′. We proceed by transfinite induction on
the cells, with the successor ordinal case first. Suppose Eα+1 is the pushout of

Fntj ¾
Fnj

¾Fnsj - Eα

where j is a generating cofibration in Mmo. Then (i∗Eα+1)◦R◦I is the pushout
of the diagram

M(T∧n, R(−)) ∧ tj ¾
M(T∧n,R(−))∧j

M(T∧n, R(−)) ∧ sj - i∗Eα ◦ R ◦ I.

The left horizontal map is pointwise a monomorphism. All the motivic functors
in this diagram are homotopy functors, so up to pointwise weak equivalence,
they coincide with their fibrant replacement in MFhf . The induction step
follows, since ev preserves pushouts, pointwise weak equivalences and pointwise
monomorphisms, by applying the gluing lemma to the diagram:

Fntj ¾
Fnj

¾Fnsj - Eα

evM(T∧n, R(−)) ∧ tj

∼
?

¾ evM(T∧n, R(−))

∼
?

- ev(i∗Eα ◦ R ◦ I)

∼
?

The limit ordinal case follows similarly; we leave the details to the reader.

For a general S, it is not known whether ev detects stable equivalences of stably
fibrant motivic functors. In order to obtain the “correct” homotopy theory of
motivic functors we modify the stable model structure.

3.6 The spherewise structure

Definition 3.30. A map f : X - Y of motivic functors is a spherewise
equivalence if the induced map ev(fhf) is a stable equivalence of motivic spectra.
The map f is a spherewise fibration if the following three conditions hold for

every A ∈ fM such that there exists an acyclic monomorphism T∧n ⊂
∼
- A

for some n ≥ 0:

• f(A) : X(A) - Y (A) is a motivic fibration.

• For every motivic weak equivalence A
∼
- B in fM,

XA - XB

Y A

f(A)
?
?

- Y B

f(B)
?
?
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is a homotopy pullback square in Mmo.

• The diagram

XA - M(T,X(T ∧ A))

Y A

f(A)
?
?

- M(T, Y (T ∧ A))

M(T,f(T∧A))
?
?

is a homotopy pullback square in Mmo.

A map is a spherewise cofibration if it has the left lifting property with respect
to the maps which are both spherewise equivalences and spherewise fibrations.

We shall refer to these classes as the spherewise structure on MF and use the

notations MFsph, X
∼sph

- Y , X
sph
-- Y and X-

sph
- Y . Now every stable

equivalence is a spherewise equivalence by 3.23, and stable fibrations are sphere-
wise fibrations. Hence the identity is a left Quillen functor MFsph

- MFst

provided the spherewise structure is a model structure.

Theorem 3.31. The spherewise structure is a cofibrantly generated proper
monoidal model structure on MF. The monoid axiom holds. Furthermore,
the evaluation functor

ev : MFsph
- Sp(Mmo, T )

is the right adjoint in a Quillen equivalence.

Proof. Let us denote by tM the full sub-M-category given by the finitely
presentable motivic spaces A such that there exists an acyclic monomorphism

T∧n ⊂
∼
- A for some n ≥ 0. It is possible to apply the general machinery

from [5] to the category [tM,M] of M-functors from tM to M and get a
cofibrantly generated proper model structure. We may then lift this model
structure using [6, 11.3.2] from [tM,M] to MF via the left Kan extension
along the full inclusion tM ⊂ - fM.

We follow a direct approach. By the proof of 3.21, a spherewise acyclic fibration

f : X
∼sph
-- Y is characterized by the property that the map f(A) : XA - Y A

is an acyclic fibration in Mmo for every A ∈ tM. This gives us the set of
generating spherewise cofibrations

{M(A,−) ∧ hU ∧ (∂∆n ⊂ - ∆n)+}A∈tM, U∈Ob Sm/S,n≥0.

This set is simply the restriction of the set of generating cofibrations for the
model structures on the motivic spaces in tM. Similarly, one can restrict the
generating acyclic cofibrations in 3.26 to the motivic spaces in tM. This gives a
set of generating spherewise acyclic cofibrations. Theorem [7, 2.1.19] implies the
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existence of the cofibrantly generated model structure. In fact, the conditions
required to apply this theorem have been checked before without the restriction
that A be in tM. For example, sequential compositions of cobase changes of
the generating spherewise acyclic cofibrations are even stable equivalences by
3.24, hence in particular spherewise equivalences.

Note that tM is closed under the smash product in M. In fact, if the maps

T∧m ⊂
∼
- A and T∧n ⊂

∼
- B are acyclic monomorphisms, then their smash

product T∧m+n - A ∧ B is an acyclic monomorphism. This is the crux
observation leading to the conclusion that the model structure is monoidal.
We claim that the monoid axiom holds. If X is an arbitrary motivic functor
and j is a generating spherewise acyclic cofibration, then j is in particular a
generating stable acyclic cofibration. The monoid axiom for the stable model
structure 3.28 implies that X ∧ j-cell consists of stable equivalences, which are
in particular spherewise equivalences. Our claim follows.

Finally, since T∧n ∈ Ob tM for every n ≥ 0, the evaluation functor ev preserves
spherewise fibrations and spherewise acyclic fibrations. Hence ev is a right
Quillen functor. By definition, ev reflects spherewise equivalences of motivic
homotopy functors. This implies ev also reflects spherewise equivalences of
motivic functors which are spherewise fibrant (A spherewise fibrant motivic
functor does not necessarily preserve all of the motivic weak equivalences in
fM, only those in tM. However, this is sufficient.). If E is a cofibrant motivic

spectrum and i∗E-
∼sph

- (i∗E)sph is a spherewise fibrant replacement, there is

a spherewise equivalence (i∗E)sph ∼sph
- (i∗E)st.

Using 3.29 above we conclude that ev : MFsph
- Sp(Mmo, T ) is a Quillen

equivalence.

Note that we do not claim that smashing with a spherewise cofibrant motivic
functor preserves spherewise equivalences.

3.7 Comparison with motivic symmetric spectra

We extend the result about the Quillen equivalence 3.31 to Jardine’s category of
motivic symmetric spectra [10]. As mentioned above, if U is the functor induced
by the inclusion TSph ⊂ - TSphΣ, and ev′ is the inclusion TSphΣ ⊂ - fM,
then ev : MF - Sp(M, T ) allows the factorization

MF
ev′

- SpΣ(M, T )
U
- Sp(M, T ).

The functor ev′ is lax symmetric monoidal and has a strict symmetric
monoidal left adjoint. Hovey’s work [8, 8.7] yields a stable model structure
on SpΣ(Mmo, T ), slightly different from the stable model structure on motivic
symmetric spectra constructed in [10], that is, SpΣ(MGJ, T ). The latter uses
as input the model category MGJ in 2.17. The right adjoint of the Quillen
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equivalence MGJ
- Mmo given by IdM induces the commutative square

SpΣ(MGJ, T )
U
- Sp(MGJ, T )

SpΣ(Mmo, T )

?
U
- Sp(Mmo, T )

?

where the vertical functors are Quillen equivalences [8, 5.7, 9.3]. To apply
Hovey’s results one needs to check that MGJ is a cellular model structure.
An approach is to apply Smith’s work on combinatorial model categories, or
one can proceed directly. Indeed, using 2.17 one can show that the stable
equivalences coincide in both model structures. The upper forgetful functor in
the above displayed diagram is a Quillen equivalence by [10, 4.31], hence so is
the lower U . Since the evaluation ev : MFsph

- Sp(Mmo, T ) is a Quillen
equivalence 3.31, it suffices to prove the following result.

Theorem 3.32. The lax symmetric monoidal functor

ev′ : MFsph
- SpΣ(Mmo, T )

is the right adjoint in a Quillen equivalence. Its left adjoint is strict symmetric
monoidal. The induced pair on homotopy categories is a monoidal equivalence.

Proof. If ev′ is a right Quillen functor, then the monoidality statements follow
from [5, 2.16] and [7, 4.3.3]. The Quillen equivalence then follows by 2-out-of-3,
as explained prior to the statement of the theorem.

Since the spherewise acyclic fibrations are the maps f such that f(A) is an
acyclic fibration in Mmo for every A weakly equivalent to some Tn, we get
that ev′ preserves stable acyclic fibrations. Similarly, any spherewise fibration
gets mapped to a stable fibration, because its evaluation on some Tn is a
fibration and the square

XTn - M(T,XTn+1)

Y Tn

F (T∧n)
?
?

- M(T, Y Tn+1)

M(T,f(T n+1))
?
?

is a homotopy pullback square in Mmo for every n ≥ 0. ¿From the definition
of stable fibrations of symmetric T -spectra [10, 4.2], which also applies to Mmo

instead of MGJ, it follows that ev′ preserves stable fibrations.

4 Algebraic structure

In the paper so far, we have set up models for doing homotopical algebra over
the initial motivic ring I, which was simply the inclusion I : fM ⊆ M.
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However, the structure we have developed is sufficient to do homotopical alge-
bra in module categories, as well as in categories of algebras over commutative
ring functors.

In this section we use the results in [14] (for which many of the previous for-
mulations were custom-built), to outline how this can be done. The spherewise
structure MFsph is slightly different from the other ones, but deserves special
attention due to its Quillen equivalence to motivic symmetric spectra.

The reader’s attention should perhaps be drawn to corollary 4.5, where our
setup gives less than one should hope for: in order for a map of motivic
rings f : A - B to induce a Quillen equivalence of module categories in
the spherewise structure, we must assume that f is a stable equivalence. We
would of course have preferred that our setup immediately gave the conclusion
for spherewise equivalences, but apart from this deficiency the section can be
summed up by saying that each of the model structures given in the previous
section give rise to a natural homotopy theory for modules and algebras sat-
isfying all expected properties, where the weak equivalences and fibrations are
the same as in the underlying structure on MF.

4.1 Motivic rings and modules

Recall that a motivic ring is the same as a monoid in MF, i.e. a motivic functor
A together with a “unit” I - A and a unital and associative “multiplication”
A∧A - A. We use the same language for modules and algebras as e.g. [14].
A left A-module is a motivic functor M together with a unital and associative
action A ∧ M - M . If M is a left A-module and N is a right A-module,
then N ∧A M is defined as the coequalizer of the two obvious action maps from
N ∧ A ∧ M to N ∧ M . The category modA of left A-modules is enriched over
MF by a similar equalizer.

If k is a commutative motivic ring, then left and right modules can be identified
and the category of k-modules becomes a closed symmetric monoidal category.
The monoids therein are called k-algebras (which means that we have a third
legitimate name – “I-algebra”– for a motivic ring).

Definition 4.1. Let A be a motivic ring and k a commutative motivic ring.
Let modA be the category of left A-modules and algk the category of k-algebras.
A map in modA or algk is called a weak equivalence resp. fibration if it is so
when considered in MF. Cofibrations are defined by the left lifting property.

Theorem 4.2. Let A be a motivic ring, let k be a commutative motivic ring
and let MF be equipped with either of the model structures of section 3.

• The category modA of left A-modules is a cofibrantly generated model
category.

• The category of k-modules is a cofibrantly generated monoidal model cat-
egory satisfying the monoid axiom.
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• The category algk of k-algebras is a cofibrantly generated model category.

Proof. This follows immediately from [14, 4.1] and the results in section 3.

By the argument for [5, 8.4], we have

Lemma 4.3. Let MF be equipped with the pointwise structure, the homotopy
functor structure or the stable structure. Let A be a motivic ring. Then for any
cofibrant A-module N , the functor −∧A N takes weak equivalences in modAop

to weak equivalences in MF.

Corollary 4.4. Let MF be equipped with the pointwise structure, the homo-

topy functor structure or the stable structure. Let f : A
∼
- B be a weak

equivalence of motivic rings. Then extension and restriction of scalars define
the Quillen equivalence

modA

B∧A−
-

¾

f∗
modB .

If A and B are commutative, there is the Quillen equivalence

algA

B∧A−
-

¾

f∗
algB .

Proof. This is a consequence of [14, 4.3 and 4.4] according to 4.3.

In the case of the spherewise structure, we have the following result.

Corollary 4.5. Suppose f : A
∼
- B is a stable equivalence of motivic rings

and choose MFsph as our basis for model structures on modules and algebras.
Then extension and restriction of scalars define the Quillen equivalence

modA

B∧A−
-

¾

f∗
modB .

If A and B are commutative, there is the Quillen equivalence

algA

B∧A−
-

¾

f∗
algB .

Proof. Follows from 4.3, cf. [14, 4.3 and 4.4].

4.2 Motivic cohomology

Recall the commutative motivic ring MZ of example 3.4. We show:

Lemma 4.6. The evaluation ev(MZ) of MZ represents motivic cohomology
with integer coefficients.
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Proof. Let us repeat Voevodsky’s construction of the spectrum representing
motivic cohomology in [16]. His motivic spaces (simply called spaces) are
pointed Nisnevich sheaves on Sm/S, equipped with a model structure in which
the cofibrations are the monomorphisms. Let us denote this model cate-
gory by V. Note that V is closed symmetric monoidal. There is the stan-
dard cosimplicial object ∆S : ∆ - Sm/S which maps [n] to the scheme
A

n+1
S /(Σn

i=0Xi = 1). The right Quillen functor

Sing : V - Mmo, A - ((U, n) - A(∆n
S × U))

is a Quillen equivalence by [10, B.4, B.6] and 2.17.

Its left adjoint maps a motivic space A to the coend

|A|S =

∫ n∈∆

Nis(An ∧ h∆n
S
)

where Nis(B) is the Nisnevich sheafification of the presheaf B. The functor
| − |S is strict symmetric monoidal. As a special case, if A ∈ M is a discrete
Nisnevich sheaf (for example A = hU for some U ∈ Sm/S), then |A|S ∼= A.

The spectrum HZ defined by Voevodsky is an object in Sp(V, |(P1
S ,∞)|S),

where |(P1
S ,∞)|S := |hP1

S
/hS |S . Here hS

- hP1
S

corresponds to the rational

point ∞ ∈ P
1
S(S). Its nth term is

HZn = |MZ((P1
S ,∞)∧n)|S

with structure map given by the composition

|MZ((P1
S ,∞)∧n) ∧ (P1

S ,∞)|S

|MZ((P1
S ,∞)∧n) ∧ MZ(P1

S ,∞)|S

?

|MZ((P1
S ,∞)∧n+1)|S

?

which involves the unit and the multiplication of the motivic ring MZ. The
lemma follows now, essentially because (P1

S ,∞) and T are connected via a zig-
zag of motivic weak equivalences, which both |− |S and MZ respect. For |− |S
this is clear, since it is a left Quillen functor on MGJ. For MZ the claim is not
so clear, so we discuss this case in some details.

As a motivic functor, MZ preserves simplicial homotopy equivalences. One
can equip the category Mtr of motivic spaces with transfers with a whole
host of model structures. In the motivic model structure on Mtr, a map f
of motivic spaces with transfers is a weak equivalence resp. fibration if and
only if u(f) ∈ M is a motivic weak equivalence resp. motivic fibration [13]. By
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definition, it follows that u is a right Quillen functor, so that Ztr is a left Quillen
functor. Consequently, the composition u◦Ztr maps motivic weak equivalences
of cofibrant motivic spaces to motivic weak equivalences.

The zig-zag of motivic weak equivalences between (P1
S ,∞) and the Tate object

T involves only homotopy pushouts of representable motivic spaces and their
simplicial suspensions. By repeatedly applying the simplicial mapping cylinder
one can replace this zig-zag by a zig-zag of motivic weak equivalences involving

only cofibrant motivic spaces, except for the weak equivalence T ′ ∼
- (P1

S ,∞).
Here T ′ = C/hS where C denotes the simplicial mapping cylinder of the map
hS

- hP1
S
. However, we claim the following map is a weak equivalence

Ztr(C/hS) - Ztr(P
1
S ,∞).

Our claim holds because the following map of chain complexes of motivic spaces
with transfers is schemewise a quasi-isomorphism:

Ztr(hP1
S
) ¾ Ztr(hS) ¾ 0 ¾ · · ·

Ztr(hP1
S
)/Ztr(hS)
?

¾ 0
?

¾ 0
?

¾ · · ·

This finishes the proof.
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