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On Families of Pure Slope L-Functions

Elmar Grosse-Klönne
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Communicated by Peter Schneider

Abstract. Let R be the ring of integers in a finite extension K of
Qp, let k be its residue field and let χ : π1(X) → R× = GL1(R) be
a ”geometric” rank one representation of the arithmetic fundamental
group of a smooth affine k-scheme X. We show that the locally K-
analytic characters κ : R× → C×

p are the Cp-valued points of a K-rigid
space W and that

L(κ ◦ χ, T ) =
∏

x∈X

1

1 − (κ ◦ χ)(Frobx)T deg(x)
,

viewed as a two variable function in T and κ, is meromorphic on
A1

Cp
× W. On the way we prove, based on a construction of Wan,

a slope decomposition for ordinary overconvergent (finite rank) σ-
modules, in the Grothendieck group of nuclear σ-modules.

2000 Mathematics Subject Classification: Primary 14F30; Secondary
14G10, 14G13, 14G15, 14G22

Introduction

In a series of remarkable papers [14] [15] [16], Wan recently proved a long
outstanding conjecture of Dwork on the p-adic meromorphic continuation of
unit root L-functions arising from an ordinary family of algebraic varieties
defined over a finite field k. We begin by illustrating his result by a concrete
example. Fix n ≥ 0 and let Y be the affine n + 1-dimensional Fp-variety in
A1 × Gn+1

m defined by

zp − z = x0 + . . . + . . . xn.

Define u : Y → Gm by sending (z, x0, . . . , xn) to x0x1 · · ·xn. For r ≥ 1 and
y ∈ F×

pr let Yy/Fpr be the fibre of u above y. For m ≥ 1 let Yy(Fprm) be the set
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2 Elmar Grosse-Klönne

of Fprm -rational points and (Yy)0 the set of closed points of Yy/Fpr (a closed
point z is an orbit of an Fpr -valued point under the pr-th power Frobenius map
σpr ; its degree degr(z) is the smallest positive integer d such that σd

pr fixes the
orbit pointwise). The zeta function of Yy/Fpr is

Z(Yy/Fpr , T ) = exp(

∞∑

m=1

|Yy(Fprm)|
m

Tm) =
∏

z∈(Yy)0

1

1 − T degr(z)
.

On the other hand for a character Ψ : Fp → C define the Kloosterman sum

Km(y) =
∑

xi∈F
×
prm

x0x1···xn=y

Ψ(TrFprm /Fp
(x0 + x1 + . . . + xn))

and let LΨ(Y, T ) be the series such that

TdlogLΨ(y, T ) =

∞∑

m=1

Km(y)Tm.

Then, as series, ∏

Ψ

LΨ(Y, T ) = Z(Yy/Fpr , T ),

hence to understand Z(Yy/Fpr , T ) we need to understand all the LΨ(y, T ).
Suppose Ψ is non-trivial. It is known that LΨ(y, T ) is a polynomial of degree
n + 1: there are algebraic integers α0(y), . . . , αn(y) such that

LΨ(y, T )(−1)n−1

= (1 − α0(y)T ) · · · (1 − αn(y)T ).

These αi(y) have complex absolute value prn/2 and are `-adic units for any
prime ` 6= p. We ask for their p-adic valuation and their variation with y.
Embedding Q → Qp we have αi(y) ∈ Qp(π) where πp−1 = −p. Sperber has
shown that we may order the αi(y) such that ordp(αi(y)) = i for any 0 ≤ i ≤ n.
Fix such an i and for k ∈ Z consider the L-function

∏

y∈(Gm)0/Fp

1

1 − αk
i (y)T deg1(y)

(here deg1(y) is the minimal r such that y ∈ F×
pr , and (Gm)0/Fp is the set of

closed points of Gm/Fp defined similarly as before). A priori this series defines
a holomorphic function only on the open unit disk. Dwork conjectured and
Wan proved that it actually extends to a meromorphic function on A1

Cp
, and

varies uniformly with k in some sense. Now let W be the rigid space of locally
Qp(π)-analytic characters of the group of units in the ring of integers of Qp(π).
In this paper we show that

L(T, κ) =
∏

y∈(Gm)0/Fp

1

1 − κ(αi(y))T deg1(y)

Documenta Mathematica 8 (2003) 1–42



On Families of Pure Slope L-Functions 3

defines a meromorphic function on A1
Cp

×W. Specializing κ ∈ W to the charac-

ter r 7→ rk for k ∈ Z we recover Wan’s result. The conceptual way to think of
this example is in terms of σ-modules: Fp acts on Y via z 7→ z + a for a ∈ Fp.
It induces an action of Fp on the relative n-th rigid cohomology Rnurig,∗OY of
u, and over Qp(π) the latter splits up into its eigencomponents for the various
characters of Fp. The Ψ-eigencomponent (Rnurig,∗OY )Ψ is an overconvergent

σ-module and LΨ(y, T )(−1)n−1

is the characteristic polynomial of Frobenius
acting on its fibre in y. Crucial is the slope decomposition of (Rnurig,∗OY )Ψ:
it means that for fixed i the αi(y) vary rigid analytically with y in some sense.
We are thus led to consider Dwork’s conjecture, i.e. Wan’s theorem, in the
following general context.
Let R be the ring of integers in a finite extension K of Qp, let π be a uni-
formizer and k the residue field. Let X be a smooth affine k-scheme, let A be
the coordinate ring of a lifting of X to a smooth affine weak formal R-scheme
(so A is a wcfg-algebra) and let Â be the p-adic completion of A. Let σ be an R-
algebra endomorphism of A lifting the q-th power Frobenius endomorphism of
X, where q = |k|. A finite rank σ-module over Â (resp. over A) is a finite rank

free Â-module (resp. A-module) together with a σ-linear endomorphism φ. A

finite rank σ-module over Â is called overconvergent if it arises by base change
A → Â from a finite rank σ-module over A. Let the finite rank overconvergent
σ-module Φ over Â be ordinary, in the strong sense that it admits a Frobenius
stable filtration such that on the j-th graded piece we have: the Frobenius is
divisible by πj and multiplied with π−j it defines a unit root σ-module Φj , i.e.
a σ-module whose linearization is bijective. (Recall that unit root σ-modules
over Â are the same as continuous representations of π1(X) on finite rank free
R-modules.) Although Φ is overconvergent, Φj will in general not be overcon-
vergent; and this is what prevented Dwork from proving what is now Wan’s
theorem: the L-function L(Φj , T ) is meromorphic on A1

Cp
. Moreover he proved

the same for powers (=iterates of the σ-linear endomorphism) Φk
j of Φj and

showed that in case Φj is of rank one the family {L(Φk
j , T )}k∈Z varies uniformly

with k ∈ Z in a certain sense. At the heart of Wan’s striking method lies his
”limiting σ-module” construction which allows him to reduce the analysis of
the not necessarily overconvergent Φj to that of overconvergent σ-modules —
at the cost of now working with overconvergent σ-modules of infinite rank, but
which are nuclear. To the latter a generalization of the Monsky trace formula
can be applied which expresses L(Φk

j , T ) as an alternating sum of Fredholm
determinants of completely continuous Dwork operators.
The first aim of this paper is to further explore the significance of the limiting
σ-module construction which we think to be relevant for the search of good
p-adic coefficients on varieties in characteristic p. Following an argument of
Coleman [4] we give a functoriality result for this construction. This is then
used to prove (Theorem 7.2) a slope decomposition for ordinary overconvergent

finite rank σ-modules, in the Grothendieck group ∆(Â) of nuclear σ-modules

over Â. More precisely, we show that any Φj as above, not necessarily overcon-
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4 Elmar Grosse-Klönne

vergent, can be written, in ∆(Â), as a sum of virtual nuclear overconvergent
σ-modules. (This is the global version of the decomposition of the correspond-
ing L-function found by Wan.) Our second aim is to strengthen Wan’s uniform
results on the family {L(Φk

j , T )}k∈Z in case Φj is of rank one. More generally
we replace Φj by the rank one unit root σ-module det(Φj) if Φj has rank > 1.

Let det Φj be given by the action of α ∈ Â× on a basis element. For x ∈ X

a closed point of degree f let x : Â → Rf be its Teichmüller lift, where Rf

denotes the unramified extension of R of degree f . Then

αx = x(ασ(α) . . . σf−1(α))

lies in R×. We prove that for any locally K-analytic character κ : R× → C×
p

the twisted L-function

L(α, T, κ) =
∏

x∈X

1

1 − κ(αx)T deg(x)

is p-adic meromorphic on A1
Cp

, and varies rigid analytically with κ. More

precisely, building on work of Schneider and Teitelbaum [13], we use Lubin-
Tate theory to construct a smooth Cp-rigid analytic variety W whose Cp-valued
points are in natural bijection with the set HomK-an(R×, C×

p ) of locally K-
analytic characters of R×. Then our main theorem is:

Theorem 0.1. On the Cp-rigid space A1
Cp

× W there exists a meromorphic

function Lα whose pullback to A1
Cp

via A1
Cp

→ A1
Cp

× W, t 7→ (t, κ) for any

κ ∈ HomK-an(R×, C×
p ) = W(Cp) is a continuation of L(α, T, κ).

The statement in the abstract above follows by the well known correspondence
between representations of the fundamental group and unit-root σ-modules.
The analytic variation of the L-series L(α, T, κ) with the weight κ makes it
meaningful to vastly generalize the eigencurve theme studied by Coleman and
Mazur [5] in connection with the Gouvêa-Mazur conjecture. Namely, we can
ask for the divisor of the two variable meromorphic function Lα on A1

Cp
×W.

From a general principle in [3] we already get: for fixed λ ∈ R>0, the difference
between the numbers of poles and zeros of Lα on the annulus |T | = λ is locally
constant on W. We hope for better qualitative results if the σ-module over A
giving rise to the σ-module Φ over Â carries an overconvergent integrable con-
nection, i.e. is an overconvergent F -isocrystal on X in the sense of Berthelot.
The eigencurve from [5] comes about in this context as follows: The Fredholm
determinant of the Up-operator acting on overconvergent p-adic modular forms
is a product of certain power rank one unit root L-functions arising from the
universal ordinary elliptic curve, see [3]. Also, again in the general case, the
p-adic L-function on W which we get by specializing T = 1 in Lα should be of
particular interest.
The proof of Theorem 0.1 consists of two steps. First we prove (this is essen-
tially Corollary 4.12) the meromorphic continuation to A1

Cp
×W0 for a certain

Documenta Mathematica 8 (2003) 1–42



On Families of Pure Slope L-Functions 5

open subspace W0 of W which meets every component of W: the subspace of
characters of the type κ(r) = r`u(r)x for ` ∈ Z and small x ∈ Cp, with u(r)
denoting the one-unit part of r ∈ R×. (In particular, W0 contains the char-
acters r 7→ κk(r) = rk for k ∈ Z; for these we have L(Φk

j , T ) = L(α, T, κk).)
For this we include det(Φj) in a family of nuclear σ-modules, parametrized by
W0: namely, the factorization into torsion part and one-unit part and then
exponentiation with ` ∈ Z resp. with small x ∈ Cp makes sense not just for
R×-elements but also for α, hence an analytic family of rank one unit root σ-
modules parametrized by W0. In the Grothendieck group of W0-parametrized
families of nuclear σ-modules, we write this deformation family of det(Φj)
as a sum of virtual families of nuclear overconvergent σ-modules. In each
fibre κ ∈ W0 we thus obtain, by an infinite rank version of the Monsky trace
formula, an expression of the L-function L(α, T, κ) as an alternating product
of characteristic series of nuclear Dwork operators. While this is essentially an
”analytic family version” of Wan’s proof (at least if X = An), the second step,
the extension to the whole space A1

Cp
×W, needs a new argument. We use a

certain integrality property (w.r.t. W) of the coefficients of (the logarithm of)
Lα which we play out against the already known meromorphic continuation on
A1

Cp
×W0. However, we are not able to extend the limiting modules from W0

to all of W; as a consequence, for κ ∈ W − W0 we have no interpretation of
L(α, T, κ) as an alternating product of characteristic series of Dwork operators.
Note that for K = Qp, the locally K-analytic characters of R× = Z×

p are
precisely the continuous ones; the space W0 in that case is the weight space
considered in [3] while W is that of [5].
Now let us turn to some technical points. Wan develops his limiting σ-module
construction and the Monsky trace formula for nuclear overconvergent infinite
rank σ-modules only for the base scheme X = An. General base schemes X
he embeds into An and treats (the pure graded pieces of) finite rank overcon-
vergent σ-modules on X by lifting them with the help of Dwork’s F -crystal to
σ-modules on An having the same L-functions. We work instead in the infinite
rank setting on arbitrary X. Here we need to overcome certain technical
difficulties in extending the finite rank Monsky trace formula to its infinite
rank version. The characteristic series through which we want to express the
L-function are those of certain Dwork operators ψ on spaces of overconvergent
functions with non fixed radius of overconvergence. To get a hand on these
ψ’s one needs to write these overconvergent function spaces as direct limits of
appropriate affinoid algebras on which the restrictions of the ψ’s are completely
continuous. Then statements on the ψ’s can be made if these affinoid algebras
have a common system of orthogonal bases. Only for X = An we find such
bases; but we show how one can pass to the limit also for general X. An
important justification for proving the trace formula in this form (on general
X, with function spaces with non fixed radius of overconvergence) is that in
the future it will allow us to make full use of the overconvergent connection
in case the σ-module over A giving rise to the σ-module Φ over Â underlies
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6 Elmar Grosse-Klönne

an overconvergent F -isocrystal on X (see above) — then the limiting module
also carries an overconvergent connection. Deviating from [14] [15], instead of
working with formally free nuclear σ-modules with fixed formal bases we work,
for concreteness, with the infinite square matrices describing them. This is of
course only a matter of language.
A brief overview. In section 1 we show the existence of common orthogonal
bases in overconvergent ideals which might be of some independent interest.
In section 2 we define the L-functions and prove the trace formula. In section
3 we introduce the Grothendieck group of nuclear σ-modules (and their defor-
mations). In section 4 we concentrate on the case where φj is the unit root
part of φ and is of rank one: here we need the limiting module construction. In
section 5 we introduce the weight space W, in section 6 we prove (an infinite
rank version of) Theorem 0.1, and in section 7 (which logically could follow
immediately after section 4) we give the overconvergent representation of Φj .

Acknowledgments: I wish to express my sincere thanks to Robert Coleman
and Daqing Wan. Manifestly this work heavily builds on ideas of them,
above all on Wan’s limiting module construction. Wan invited me to begin
further elaborating his methods, and directed my attention to many interesting
problems involved. Coleman asked me for the meromorphic continuation to
the whole character space and provided me with some helpful notes [4]. In
particular the important functoriality result 4.10 for the limiting module and
the suggestion of varying it rigid analytically is due to him. Thanks also to
Matthias Strauch for discussions on the weight space.

Notations: By |.| we denote an absolute value of K and by e ∈ N the ab-
solute ramification index of K. By Cp we denote the completion of a fixed
algebraic closure of K and by ordπ and ordp the homomorphisms C×

p → Q
with ordπ(π) = ordp(p) = 1. For R-modules E with πE 6= E we set

ordπ(x) := sup{r ∈ Q; r =
n

m
for some n ∈ N0,m ∈ N such that xm ∈ πnE}

for x ∈ E. Similarly we define ordp on such E. For n ∈ N we write
µn = {x ∈ Cp; xn = 1}. We let N0 = Z≥0. For an element g in a free
polynomial ring A[X1, . . . ,Xn] over a ring A we denote by deg(g) its (total)
degree.

1 Orthonormal bases of overconvergent ideals

In this preparatory section we determine explicit orthonormal K-bases of
ideals in overconvergent K-Tate algebras T c

n (1.5). Furthermore we recall the
complete continuity of certain Dwork operators (1.7).
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On Families of Pure Slope L-Functions 7

1.1 For c ∈ N we let

T c
n := {

∑

α∈Nn
0

bαπ[
|α|
c ]Xα; bα ∈ K, lim

|α|→∞
|bα| = 0}

where as usual |α| =
∑n

i=1 αi for α = (α1, . . . , αn) ∈ Nn
0 and where [r] ∈ Z

for a given r ∈ Q denotes the unique integer with [r] ≤ r < [r] + 1. This is
the ring of power series in X1, . . . ,Xn with coefficients in K, convergent on the
polydisk

{x ∈ Cn
p ; ordπ(xi) ≥ −1

c
for all 1 ≤ i ≤ n}.

We view T c
n as a K-Banach module with the unique norm |.|c for which

{π[
|α|
c ]Xα}α∈Nn

0
is an orthonormal basis (this norm is not power multiplicative).

Suppose we are given elements g1, . . . , gr ∈ R[X1, . . . ,Xn] − πR[X1, . . . ,Xn].
Let gj ∈ k[X1, . . . ,Xn] be the reduction of gj , let dj = deg(gj) ≤ deg(gj) be
its degree.

Lemma 1.2. For each 1 ≤ j ≤ r and each c > maxj deg(gj) we have

|π[
|α|+dj

c ]Xαgj |c = 1.

Proof: Write gj =
∑

β∈Nn
0

bβXβ with bβ ∈ K. There exists a β1 ∈ Nn
0 with

|β1| = dj and |bβ1
| = 1. Hence

|π[
|α|+dj

c ]Xαbβ1
Xβ1 |c = |π[

|α|+|β1|
c ]Xα+β1 |c = 1.

Now let β ∈ Nn
0 be arbitrary, with bβ 6= 0. If |β| > dj then |bβ | ≤ |π|. Hence

|π[
|α|+dj

c ]XαbβXβ |c ≤ |π[
|α|+dj

c ]−[
|α|+|β|

c ]+1π[
|α|+|β|

c ]Xα+β |c.

But [
|α|+dj

c ] − [ |α|+|β|
c ] + 1 ≥ 0 because bβ 6= 0, hence c > |β|. Thus,

|π[
|α|+dj

c ]XαbβXβ |c ≤ 1.

On the other hand, if |β| ≤ dj , then [
|α|+dj

c ] ≥ [ |α|+|β|
c ] and |bβ | ≤ 1, and again

we find

|π[
|α|+dj

c ]XαbβXβ |c ≤ 1.

We are done.

1.3 The Tate algebra in n variables over K is the algebra

Tn := {
∑

α∈Nn
0

bαXα; bα ∈ K, lim
|α|→∞

|bα| = 0}.

Let I∞ (resp. Ic) be the ideal in Tn (resp. in T c
n) generated by g1, . . . , gr. As

all ideals in T c
n, the ideal Ic is closed in T c

n. We view Ic as a K-Banach module
with the norm |.|c induced from T c

n.

Documenta Mathematica 8 (2003) 1–42



8 Elmar Grosse-Klönne

Lemma 1.4. If I∞ ⊂ Tn is a prime ideal, I∞ 6= Tn, then Ic = I∞ ∩ T c
n for

c >> 0.

Proof: For c >> 0 also Ic is a prime ideal in T c
n. The open immersion of

K-rigid spaces Sp(Tn) → Sp(T c
n) induces an open immersion V (I∞) → V (Ic)

of the respective zero sets of g1, . . . , gr. That Ic is prime means that V (Ic) is
irreducible, and I∞ 6= Tn means that V (I∞) is non empty. Hence an element
of I∞ ∩ T c

n, since it vanishes on V (I∞), necessarily also vanishes on V (Ic). By
Hilbert’s Nullstellensatz ([2]) it is then an element of Ic.

Now we fix an integer c′ > maxj deg(gj). By 1.2 we find a subset E of Nn
0 ×

{1, . . . , r} such that {π[
|α|+dj

c′
]Xαgj}(α,j)∈E is an orthonormal basis of Ic′ over

K.

Theorem 1.5. For integers c ≥ c′, the set {π[
|α|+dj

c ]Xαgj}(α,j)∈E is an or-
thonormal basis of Ic over K.

Proof: Let Kc be a finite extension of K containing a c-th root π
1
c and a c′-th

root π
1
c′ of π. The absolute value |.| extends to Kc. Any norm on a K-Banach

module M extends uniquely to a Kc-Banach module norm on M ⊗K Kc, and

we keep the same name for it. It is enough to show that {π[
|α|+dj

c ]Xαgj}(α,j)∈E

is an orthonormal basis of Ic ⊗K Kc over Kc. Let |.|′c be the supremum norm
on T c

n ⊗K Kc. This is the norm for which {X α
c }α∈Nn

0
is an orthonormal basis

over Kc. For j ∈ {1, . . . , r} write gj =
∑

β∈Nn
0

bβXβ with bβ ∈ K. Then, by a

computation similar to that in 1.2 we find

|π
|α|+dj

c XαbβXβ |′c = 1 if |β| = dj and |bβ | = 1,

|π
|α|+dj

c XαbβXβ |′c < 1 otherwise.

In particular it follows that |π
|α|+dj

c Xαgj |′c = 1. Now a comparison of expan-

sions shows that {π[
|α|+dj

c ]Xαgj}(α,j)∈E is an orthonormal basis of Ic ⊗K Kc

over Kc with respect to |.|c if and only if {π
|α|+dj

c Xαgj}(α,j)∈E is an orthonor-
mal basis of Ic ⊗K Kc over Kc with respect to |.|′c. In particular it follows on

the one hand that we only need to show that {π
|α|+dj

c Xαgj}(α,j)∈E is an or-
thonormal basis of Ic⊗K Kc over Kc with respect to |.|′c, and on the other hand

it follows (applying the above with c′ instead of c) that {π
|α|+dj

c′ Xαgj}(α,j)∈E

is an orthonormal basis of Ic′ ⊗K Kc over Kc with respect to |.|′c′ . Consider
the isomorphism

T c
n ⊗K Kc ∼= T c′

n ⊗K Kc, π
α
c Xα 7→ π

α
c′ Xα

which is isometric with respect to |.|′c resp. |.|′c′ . It does not necessarily map
Ic ⊗K Kc to Ic′ ⊗K Kc. However, from our above computations of the values
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|π
|α|+dj

c XαbβXβ |′c it follows that this isomorphism identifies the reductions

of the elements of the set {π
|α|+dj

c Xαgj}(α,j)∈Nn
0 ×{1,...,r} with the reductions

of the elements of the set {π
|α|+dj

c′ Xαgj}(α,j)∈Nn
0 ×{1,...,r} (here by reduction

we mean reduction modulo elements of absolute value < 1). The Kc-vector
subspaces spanned by these sets are dense in Ic ⊗K Kc resp. in Ic′ ⊗K Kc.
Since for a subset of |.| = 1 elements in an orthonormizable Kc-Banach module
the property of being an orthonormal basis is equivalent to that of inducing
an (algebraic) basis of the reduction, the theorem follows.

1.6 Let BK be a reduced K-affinoid algebra, i.e. a quotient of a Tate algebra
Tm over K (for some m), endowed with its supremum norm |.|sup. Let

B = (BK)0 := {b ∈ BK ; |b|sup ≤ 1}.

For positive integers m and c let

[m, c] := [m, c]R := {z ∈ R[[X1, . . . ,Xn]];

z =
∞∑

j=0

πjpj with pj ∈ R[X1, . . . ,Xn] and deg(pj) ≤ m + cj}

and
[m, c]B := [m, c]⊗̂RB

(the π-adically completed tensor product). Note that for m, c1, c2 ∈ N with
c1 < c2 we have [m, c1]B ⊂ T c2

n ⊗̂KBK and also (∪m,c[m, c]B) ⊗R K =
∪c(T

c
n⊗̂KBK). Let

R[X1, . . . ,Xn]† := R[X]† :=
⋃

m,c

[m, c].

Fix a Frobenius endomorphism σ of R[X]† lifting the q-th power Frobenius
endomorphism of k[X]. Also fix a Dwork operator θ (with respect to σ)
on R[X]†, i.e. an R-module endomorphism with θ(σ(x)y) = xθ(y) for all
x, y ∈ R[X]†. By [8] 2.4 we have θ(T c

n) ⊂ T c
n for all c >> 0, thus we get a

BK-linear endomorphism θ ⊗ 1 on T c
n⊗̂KBK .

Proposition 1.7. Let I be a countable set, m′, c′ positive integers and
M = (ai1,i2)i1,i2∈I an I × I-matrix with entries ai1,i2 in [m′, c′]B. Suppose
that M is nuclear, i.e. that for each M > 0 there are only finitely many
i2 ∈ I such that infi1 ordπai1,i2 < M . For c >> 0 and β ∈ Nn

0 develop

(θ⊗1)(π[
|β|
c ]Xβai1,i2) ∈ T c

n⊗̂KBK in the orthonormal basis {π[
|α|
c ]Xα}α of the

BK-Banach module T c
n⊗̂KBK and let Gc

{α,i1}{β,i2} ∈ BK for α ∈ Nn
0 be its

coefficients:

(θ ⊗ 1)(π[
|β|
c ]Xβai1,i2) =

∑

α

Gc
{α,i1}{β,i2}π

[
|α|
c ]Xα.
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10 Elmar Grosse-Klönne

Then for all c >> 0 and all M > 0 there are only finitely many pairs (α, i2) ∈
Nn

0 × I such that
inf
β,i1

ordπGc
{α,i1}{β,i2} < M.

Proof: For simplicity identify I with N. By [8] 2.3 we find integers r and c0

such that (θ⊗1)([qm, qc]B) ⊂ [m+r, c]B for all c ≥ c0, all m. Increasing c0 and
r we may assume that ai1,i2 ∈ [q(r− 1), c0]B for all i1, i2. Now let c be so large
that for c′ = c − 1 we have qc′ ≥ c0. Then one easily checks that Xβai1i2 ∈
[q(r + [ |β|q ]), qc′]B for all β, i1, i2. Hence (θ ⊗ 1)(Xβai1,i2) ∈ [r + [ |β|q ], c′]. This
means

|α| ≤ r + [
|β|
q

] + c′(ordπ(Gc
{α,i1}{β,i2}) + [

|α|
c

] − [
|β|
c

])

for all α, and thus

ordπ(Gc
{α,i1}{β,i2}) ≥ [

|β|
c

] − [
|α|
c

] +
|α| − r − [ |β|q ]

c′
.

Here the right hand side tends to infinity as |α| tends to infinity, uniformly for
all β — independently of i1 and i2 — because c/q ≤ c′ ≤ c. Now let M ∈ N be
given. By the above we find N ′(M) ∈ N such that for all α with |α| ≥ N ′(M)
we have ordπ(Gc

{α,i1}{β,i2}) ≥ M . Now fix α. We have

ordπ(Gc
{α,i1}{β,i2}) ≥ [

|β|
c

] − [
|α|
c

] + ordπ(θ ⊗ 1)(Xβai1,i2).

By nuclearity of M the right hand side tends to zero as i2 tends to infinity,
uniformly for all i1, all β. In other words, there exists N(α,M) such that
ordπ(Gc

{α,i1}{β,i2}) ≥ M for all i2 ≥ N(α,M), for all i1, all β. Now set

N(M) = N ′(M) + max{N(α,M); |α| < N ′(M)}.
Then we find infβ,i1 ordπGc

{α,i1}{β,i2} ≥ M whenever |α|+ i2 ≥ N(M). We are
done.

2 L-functions

This section introduces our basic setting. We define nuclear (overconvergent)
matrices (which give rise to nuclear (overconvergent) σ-modules), their asso-
ciated L-functions and Dwork operators and give the Monsky trace formula
(2.13).

2.1 Let q ∈ N be the number of elements of k, i.e. k = Fq. Let X = Spec(A)
be a smooth affine connected k-scheme of dimension d. So A is a smooth
k-algebra. By [6] it can be represented as A = A/πA where

A =
R[X1, . . . ,Xn]†

(g1, . . . , gr)
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with polynomials gj ∈ R[X1, . . . ,Xn] − πR[X1, . . . ,Xn] such that A is R-flat.
By [10] we can lift the q-th power Frobenius endomorphism of A to an R-
algebra endomorphism σ of A. Then A, viewed as a σ(A)-module, is locally
free of rank qd. Shrinking X if necessary we may assume that A is a finite free
σ(A)-module of rank qd. As before, BK denotes a reduced K-affinoid algebra,
and B = (BK)0.

2.2 Let I be a countable set. An I×I-matrix M = (ai1,i2)i1,i2∈I with entries in
an R-module E with E 6= πE is called nuclear if for each M > 0 there are only
finitely many i2 such that infi1 ordπ(ai1,i2) < M (thus M is nuclear precisely
if its transpose is the matrix of a completely continuous operator, or in the
terminology of other authors (e.g. [8]): a compact operator). An I × I-matrix
M = (ai1,i2)i1,i2∈I with entries in A⊗̂RB is called nuclear overconvergent if

there exist positive integers m, c and a nuclear matrix I × I-matrix M̃ with
entries in [m, c]B which maps (coefficient-wise) to M under the canonical map

[m, c]B ↪→ R[X]†⊗̂RB → A⊗̂RB.

Clearly, if M is nuclear overconvergent then it is nuclear.
Example: Let BK = K. Nuclear overconvergence implies that the matrix
entries are in the subring A of its completion A⊗̂RR = Â. Conversely, if I is
finite, an I×I-matrix with entries in A is automatically nuclear overconvergent.
Similarly, if I is finite, any I × I-matrix with entries in Â is automatically
nuclear.

2.3 For nuclear matrices N = (ch1,h2
)h1,h2∈H and N ′ = (dg1,g2

)g1,g2∈G with
entries in A⊗̂RB define the (G × H) × (G × H)-matrix

N ⊗N ′ := (e(h1,g1),(h2,g2))(h1,g1),(h2,g2)∈(G×H),

e(h1,g1),(h2,g2) := ch1,h2
dg1,g2

.

Now choose an ordering of the index set H. For k ∈ N0 let
∧k

(H) be the set

of k-tuples (h1, . . . , hk) ∈ Hk with h1 < . . . < hk. Define the
∧k

(H)×∧k
(H)-

matrix
k∧

(N ) := N∧k := (f~h1,~h2
)~h1,~h2∈

∧k(H),

f~h1,~h2
= f(h11,...,h1k),(h21,...,h2k) :=

k∏

i=1

ch1,ih2,i
.

It is straightforward to check that N ⊗N ′ and
∧k

(N ) are again nuclear, and
even nuclear overconvergent if N and N ′ are nuclear overconvergent.

2.4 We will use the term ”nuclear” also for another concept. Namely, suppose
ψ is an operator on a vector space V over K. For g = g(X) ∈ K[X] let

F (g) := ∩ng(ψ)nV and N(g) := ∪n ker g(ψ)n.
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12 Elmar Grosse-Klönne

Let us call a subset S of K[X] bounded away from 0 if there is an r ∈ Q such
that g(a) 6= 0 for all {a ∈ Cp; ordp(a) ≥ r}. We say ψ is nuclear if for any
subset S of K[X] bounded away from 0 the following two conditions hold:
(i) F (g) ⊕ N(g) = V for all g ∈ S
(ii) N(S) :=

∑
g∈S N(g) is finite dimensional.

(In particular, if g /∈ (X), we can take S = {g} and as a consequence of (ii)
get N(g) = ker g(ψ)n for some n.) Suppose ψ is nuclear. Then we can define
PS(X) = det(1−Xψ|N(S)) for subsets S of K[X] bounded away from 0. These
S from a directed set under inclusion, and in [8] it is shown that

P (X) := lim
S

PS(X)

(coefficient-wise convergence) exists in K[[X]]: the characteristic series of ψ.

2.5 Let (Nc)c∈N be an inductive system of BK-Banach modules with injective
(but not necessarily isometric) transition maps ρc,c′ : Nc → Nc′ for c′ ≥ c.
Suppose this system has a countable common orthogonal BK-basis, i.e. there
is a subset {qm;m ∈ N} of N1 such that for all c and m ∈ N there are λm,c ∈ K×

such that {λm,cρ1,c(qm);m ∈ N} is an orthonormal BK-basis of Nc. Let

N := lim
→
c

Nc” = ”
⋃

c

Nc

and let N ′ ⊂ N be a BK-submodule such that N ′
c = N ′ ∩ Nc is closed in Nc

for all c. Endow N ′
c with the norm induced from Nc and suppose that also the

inductive system (N ′
c)c∈N has a countable common orthogonal BK-basis. Let

u be a BK-linear endomorphism of N with u(N ′) ⊂ N ′ and restricting to a
completely continuous endomorphism u : Nc → Nc for each c. In that situation
we have:

Proposition 2.6. u induces a completely continuous BK-endomorphism u of
N ′′

c = Nc/N
′
c for each c, and det(1− uT ;N ′′

c ) is independent of c. If BK = K,
the induced endomorphism u of N ′′ = N/N ′ is nuclear in the sense of 2.4, and
its characteristic series coincides with det(1 − uT ;N ′′

c ) for each c.

Proof: From [3] A2.6.2 we get that u on N ′
c and u on N ′′

c are completely
continuous (note that N ′′

c is orthonormizable, as follows from [3] A1.2), and
that

det(1 − uT ;Nc) = det(1 − uT ;N ′
c) det(1 − uT ;N ′′

c )

for each c. The assumption on the existence of common orthogonal bases
implies (use [5] 4.3.2)

det(1 − uT ;Nc) = det(1 − uT ;Nc′), det(1 − uT ;N ′
c) = det(1 − uT ;N ′

c′)

for all c, c′. Hence

det(1 − uT ;N ′′
c ) = det(1 − uT ;N ′′

c′)
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for all c, c′. Also note that for c′ ≥ c the maps N ′′
c → N ′′

c′ are injective. The
additional assumptions in case BK = K now follow from [8] Theorem 1.3 and
Lemma 1.6.

2.7 Shrinking X if necessary we may assume that the module of (p-adically
separated) differentials Ω1

A/R is free over A. Fix a basis ω1, . . . , ωd. With
respect to this basis, let D be the d×d-matrix of the σ-linear endomorphism of
Ω1

A/R which the R-algebra endomorphism σ of A induces. Then D∧k =
∧k

(D)

is the matrix of the σ-linear endomorphism of Ωk
A/R =

∧k
(Ω1

A/R) which σ
induces.
Let θ = σ−1 ◦ Tr be the endomorphism of Ωd

A/R constructed in [7] Theorem

8.5. It is a Dwork operator: we have θ(σ(a)y) = aθ(y) for all a ∈ A, y ∈
Ωd

A/R. Denote also by θ the Dwork operator on A which we get by transport of

structure from θ on Ωd
A/R via the isomorphism A ∼= Ωd

A/R which sends 1 ∈ A

to our distinguished basis element ω1 ∧ . . . ∧ ωd of Ωd
A/R.

For c ∈ N define the subring Ac of AK = A ⊗R K as the image of

T c
n ↪→ R[X]† ⊗R K → AK .

This is again a K-affinoid algebra, and we have

θ(Ac) ⊂ Ac

for c >> 0. To see this, choose an R-algebra endomorphism σ̃ of R[X]† which
lifts both σ on A and the q-th power Frobenius endomorphism on k[X]. With

respect to this σ̃ choose a Dwork operator θ̃ on R[X]† lifting θ on A (as in the
beginning of the proof of [8] Theorem 2.3). Then apply [8] Lemma 2.4 which

says θ̃(T c
n) ⊂ T c

n.

2.8 Let M = (ai1,i2)i1,i2∈I be a nuclear overconvergent I×I-matrix with entries
in A⊗̂RB. For c ∈ N let M̌ c

I be the Ac⊗̂KBK-Banach module for which the set
of symbols {ěi}i∈I is an orthonormal basis. For c ≥ c′ we have the continuous
inclusion of BK-algebras Ac′⊗̂KBK ⊂ Ac⊗̂KBK , hence a continuous inclusion
of BK-modules M̌ c′

I ⊂ M̌ c
I . Since M is nuclear overconvergent we have ai1,i2 ∈

Ac⊗̂KBK for all c >> 0, all i1, i2. We may thus define for all c >> 0 the
BK-linear endomorphism ψ = ψ[M] of M̌ c

I by

ψ(
∑

i1∈I

bi1 ěi1) =
∑

i1∈I

∑

i2∈I

(θ ⊗ 1)(bi1ai1,i2)ěi2

(bi1 ∈ Ac⊗̂KBK). Clearly these endomorphisms extend each other for increas-
ing c, hence we get an endomorphism ψ = ψ[M] on

M̌I :=
⋃

c>>0

M̌ c
I .
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2.9 Suppose BK = K and I is finite, and M is the matrix of the σ-linear
endomorphism φ acting on the basis {ei}i∈I of the free A-module M . Then we
define ψ[M] as the Dwork operator

ψ[M] : HomA(M,Ωd
A/R) → HomA(M,Ωd

A/R), f 7→ θ ◦ f ◦ φ.

This definition is compatible with that in 2.8: Consider the canonical embed-
ding

HomA(M,Ωd
A/R) → HomA(M,Ωd

A/R) ⊗R K
w∼= M̌I

where the inverse of the AK-linear isomorphism w sends ěi ∈ M̌I to the
homomorphism which maps ei ∈ M to ω1 ∧ . . . ∧ ωd and which maps ei′ for
i′ 6= i to 0. This embedding commutes with the operators ψ[M].

Theorem 2.10. For each c >> 0, the endomorphism ψ = ψ[M] on M̌ c
I is a

completely continuous BK-Banach module endomorphism. Its Fredholm deter-
minant det(1−ψT ; M̌ c

I ) is independent of c. Denote it by det(1−ψT ; M̌I). If
BK = K, the endomorphism ψ = ψ[M] on M̌I is nuclear in the sense of [8],
and its characteristic series as defined in [8] coincides with det(1 − ψT ; M̌I).

Proof: Choose a lifting of M = (ai1,i2)i1,i2∈I to a nuclear matrix (ãi1,i2)i1,i2∈I

with entries in [m, c]B . Also choose a lifting of θ on A to a Dwork operator θ̃
on R[X]† (with respect to a lifting of σ, as in 2.7). Let N c

I be the T c
n⊗̂KBK-

Banach module for which the set of symbols {(ěi)̃}i∈I is an orthonormal basis,

and define the BK-linear endomorphism ψ̃ of N c
I by

ψ̃(
∑

i1∈I

b̃i1(ěi1 )̃) =
∑

i1∈I

∑

i2∈I

(θ̃ ⊗ 1)(̃bi1 ãi1,i2)(ěi2 )̃

(̃bi1 ∈ T c
n⊗̂KB). An orthonormal basis of N c

I as a BK-Banach module is given
by

{π[
|α|
c ]Xα(ěi)̃}α∈Nn

0 ,i∈I . (1)

By 1.7 the matrix for ψ̃ in this basis is completely continuous; that is, ψ̃ is
completely continuous. If Ic ⊂ T c

n and I∞ ⊂ Tn denote the respective ideals
generated by the elements g1, . . . , gr from 2.1, then I∞ ∩ T c

n is the kernel of
T c

n → Ac, so by 1.4 the sequences

0 → Ic → T c
n → Ac → 0 (2)

are exact for c >> 0. Let H be the BK-Banach module with orthonormal basis
the set of symbols {hi}i∈I . From (2) we derive an exact sequence

0 → Ic⊗̂KH → T c
n⊗̂KH → Ac⊗̂KH → 0 (3)
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(To see exactness of (3) on the right note that one of the equivalent norms on
Ac is the residue norm for the surjective map of K-affinoid algebras T c

n → Ac

(this surjection even has a continuous K-linear section as the proof of [3] A2.6.2
shows)). We use the following isomorphisms of T c

n⊗̂KBK-Banach modules (in
(i)) resp. of Ac⊗̂KBK-Banach modules (in (ii)):

T c
n⊗̂KH = (T c

n⊗̂KBK)⊗̂BK
H ∼= N c

I , 1 ⊗ hi 7→ (ěi)̃ (i)

Ac⊗̂KH = (Ac⊗̂KBK)⊗̂BK
H ∼= M̌ c

I , 1 ⊗ hi 7→ ěi (ii)

By 1.5 we find a subset E of Nn
0 ×{1, . . . , r} such that {π[

|α|+dj
c ]Xαgj}(α,j)∈E is

an orthonormal basis of Ic over K for all c >> 0. For the BK-Banach modules
Ic⊗̂KH = (Ic⊗̂KBK)⊗̂BK

H we therefore have the orthonormal basis

{π[
|α|+dj

c ]Xαgj ⊗ hi}(α,j)∈E,i∈I . (4)

It is clear that the systems of orthonormal bases (1) resp. (4) make up systems
of common orthonormal bases when c increases. (This is why we took pains
to prove 1.5; the present argument could be simplified if we could prove the
existence of a common orthogonal basis for the system (M̌ c

I )c>>0.) Now let
NI = ∪cN

c
I . From the exactness of the sequences (3) and from the injectivity

of the maps M̌ c
I → M̌ c′

I for c ≤ c′ we get Ic⊗̂KH = T c
n⊗̂KH ∩Ker(NI → M̌I).

Thus the theorem follows from 2.6.

Corollary 2.11.

d∏

r=0

det(1 − ψ[M⊗D∧r]T ; M̌I)
(−1)r−1

is the quotient of entire power series in the variable T with coefficients in BK ;
in other words, it is a meromorphic function on A1

K ×Sp(K) Sp(BK).

2.12 Let BK = K. We want to define the L-function of a nuclear matrix
M = (ai1,i2)i1,i2∈I (with entries in Â). For f ∈ N define the f -fold σ-power

M(σ)f

of M to be the matrix product

M(σ)f

:= ((ai1,i2)i1,i2∈I)(σ(ai1,i2)i1,i2∈I) . . . ((σf−1(ai1,i2))i1,i2∈I).

Let x ∈ X be a geometric point of degree f over k, that is, a surjective k-algebra
homomorphism A → Fqf . Let Rf be the unramified extension of R with residue

field Fqf , and let x : Â → Rf be the Teichmüller lifting of x with respect to
σ (the unique σf -invariant surjective R-algebra homomorphism lifting x). By
(quite severe) abuse of notation we write

Mx := x(M(σ)f

),
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the I×I-matrix with Rf -entries obtained by applying x to the entries of M(σ)f

— the ”fibre of M in x”. The nuclearity condition implies that Mx is nuclear;
equivalently, its transpose is a completely continuous matrix over Rf in the
sense of [12]. It turns out that the Fredholm determinant det(1 −MxT deg(x))
has coefficients in R, not just in Rf . We define the R[[T ]]-element

L(M, T ) :=
∏

x∈X

1

det(1 −MxT deg(x))
.

It is trivially holomorphic on the open unit disk. Let T be the set of k-
valued points x : A → k of X. For a completely continuous endomorphism
ψ of an orthonormizable K-Banach module we denote by TrK(ψ) ∈ K its trace.

Theorem 2.13. Let M be a nuclear overconvergent matrix over Â.
(1) For each x ∈ T the element

Sx :=
∑

0≤j≤d

(−1)jTr((D∧d−j)x)

is invertible in R. For 0 ≤ i ≤ d, we have

TrK(ψ[M⊗D∧i]) =
∑

x∈T

Tr((D∧d−i)x)Tr(Mx)

Sx
.

(2)

L(M, T ) =

d∏

r=0

det(1 − ψ[M⊗D∧r]T ; M̌I)
(−1)r−1

.

In particular, by 2.11, L(M, T ) is meromorphic on A1
K .

Proof: Let J ⊂ A be the ideal generated by all elements of the form a −
σ(a) with a ∈ A. Then Spec(A/J) is a direct sum of copies of Spec(R),
indexed by T : It is the direct sum of all Teichmüller lifts of elements in T
(or rather, their restrictions from Â to A; cf. [8] Lemma 3.3). Let C(A, σ)
be the category of finite (not necessarily projective) A-modules (M,φ) with a
σ-linear endomorphism φ, let m(A, σ) be the free abelian group generated by
the isomorphism classes of objects of C(A, σ), and let n(A, σ) be the subgroup
of m(A, σ) generated by the following two types of elements. The first type is
of the form (M,φ) − (M1, φ1) − (M2, φ2) where

0 → (M1, φ1) → (M,φ) → (M2, φ2) → 0

is an exact sequence in C(A, σ). The second type is of the form (M,φ1 +
φ2) − (M,φ1) − (M,φ2) for σ-linear operators φ1, φ2 on the same M . Set
K(A, σ) = m(A, σ)/n(A, σ). By the analogous procedure define the group
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K∗(A, σ) associated with the category of finite A-modules with a Dwork oper-
ator relative to σ. (Here we follow the notation in [16]. The notation in [8] is
the opposite one !). By [8], both K(A, σ) and K∗(A, σ) are free A/J-modules of
rank one. For a finite square matrix N over A we denote by TrA/J(N ) ∈ A/J
the trace of the matrix obtained by reducing modulo J the entries of N . More-
over, for such N we view ψ[N ] always as a Dwork operator on a (finite) A-
module as in 2.9, i.e. we do not invert π. From [16] sect.3 it follows that ψ[D∧i]
can be identified with the standard Dwork operator ψi on Ωi

A/R from [8]. By

[8] sect.5 Cor.1 we have

[ψ[D∧d]]
∑

0≤j≤d

(−1)jTrA/J(D∧d−j) = [(A, id)] (1)

in K∗(A, σ), and
∑

0≤j≤d(−1)jTrA/J(D∧d−j) is invertible in A/J . By [8] The-
orem 5.2 we also have

[ψ[D∧i]] = TrA/J(D∧d−i)[ψ[D∧d]] (2)

in K∗(A, σ). To prove the theorem suppose first that M is a finite square
matrix. It then gives rise to an element [M] of K(A, σ). By [16] 10.8 we have

[M] = TrA/J(M)[(A, id)]

in K(A, σ). Application of the homomorphism of A/J-modules

λd−i : K(A, σ) → K∗(A, σ)

of [16] p.42 gives

[ψ[M⊗D∧i]] = TrA/J(M)[ψ[D∧i]] (3)

in K∗(A, σ). From (1), (2), (3) we get

[ψ[M⊗D∧i]] =
TrA/J(M)TrA/J(D∧d−i)∑
0≤j≤d(−1)jTrA/J(D∧d−j)

[(A, id)]

in K∗(A, σ). Taking the R-trace proves (1) in case M is a finite square matrix.
Then taking the alternating sum over 0 ≤ i ≤ d gives the additive formulation
of (2) in case M is a finite square matrix (see also [16] Theorem 3.1).
The case where the index set I for M is infinite follows by a limiting argument
from the case where I is finite. We explain this for (2), leaving the easier (1)
to the reader. Let P(I) be the set of finite subsets of I. For I ′ ∈ P(I), the
I ′ × I ′-sub-matrix MI′

= (ai1,i2)i1,i2∈I′ of M is again nuclear overconvergent.
Hence, in view of the finite square matrix case it is enough to show

L(M, T ) = lim
I′∈P(I)

L(MI′

, T ) (1)
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and for any 0 ≤ r ≤ d also

det(1 − ψ[M⊗D∧r]T ; M̌I) = lim
I′∈P(I)

det(1 − ψ[MI′ ⊗D∧r]T ; M̌I) (2)

(coefficient-wise convergence). For I ′ ∈ P(I) define the I × I-matrix M[I ′] =
(aI′

i1,i2
)i1,i2∈I by aI′

i1,i2
= ai1,i2 if i2 ∈ I ′ and aI′

i1,i2
= 0 otherwise. For a

geometric point x ∈ X we may view the fibre matrices Mx resp. M[I ′]x for
I ′ ∈ P(I) as the transposed matrices of completely continuous operators λx

resp. λ[I ′]x acting all on one single K-Banach space Ex with orthonormal basis
indexed by I. And we may view the fibre matrix MI′

x as the transposed matrix
of the restriction of λ[I ′]x to a λ[I ′]x-stable subspace of Ex, spanned by a finite
subset of our given orthonormal basis and containing λ[I ′]x(Ex). For the norm
topology on the space L(Ex, Ex) of continuous K-linear endomorphisms of Ex

we find, using the nuclearity of M, that limI′ λ[I ′]x = λx. Hence it follows
from [12] prop.7,c) that

det(1 −MxT deg(x)) = lim
I′∈P(I)

det(1 −M[I ′]xT deg(x)).

But by [12] prop.7,d) we have

det(1 −M[I ′]xT deg(x)) = det(1 −MI′

x T deg(x)).

Together we get (1). The proof of (2) is similar: By the proof of 1.7 we have
indeed

lim
I′∈P(I)

ψ[M[I ′] ⊗D∧r] = ψ[M⊗D∧r]

in the space of continuous K-linear endomorphisms of M̌ c
I , so [12] prop.7,c)

gives

det(1 − ψ[M⊗D∧r]T ; M̌ c
I ) = lim

I′∈P(I)
det(1 − ψ[M[I ′] ⊗D∧r]T ; M̌ c

I ).

Now the ψ[M[I ′] ⊗D∧r] do not have finite dimensional image in general, but
clearly an obvious generalization of [12] prop.7,d) shows

det(1 − ψ[M[I ′] ⊗D∧r]T ; M̌ c
I ) = det(1 − ψ[MI′ ⊗D∧r]T ; M̌ c

I )

for I ′ ∈ P(I). We are done.

3 The Grothendieck group

In this section we introduce the Grothendieck group ∆(A⊗̂RB) of nuclear
σ-modules. It is useful since on the one hand, formation of the L-function
of a given nuclear σ-module factors over this group, and on the other hand,
many natural nuclear σ-modules which are not nuclear overconvergent can be
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represented in this group through nuclear overconvergent ones.

3.1 We will write σ also for the endomorphism σ ⊗ 1 of A⊗̂RB = Â⊗̂RB.
For ` = 1, 2 let M` be I` × I`-matrices with entries in A⊗̂RB, for countable
index sets I`. We say M1 is σ-similar to M2 over A⊗̂RB if there exist a
I1 × I2-matrix S and a I2 × I1-matrix S ′, both with entries in A⊗̂RB, such
that SS ′ (resp. S ′S) is the identity I1 × I1 (resp. I2 × I2) -matrix, and such
that S ′M1Sσ = M2 (in particular it is required that all these matrix products
converge coefficient-wise in A⊗̂RB). Clearly, σ-similarity is an equivalence
relation.

3.2 Let m(A⊗̂RB) be the free abelian group generated by the σ-similarity
classes of nuclear matrices (over arbitrary countable index sets) with entries in
A⊗̂RB. Let ∆(A⊗̂RB) be the quotient of m(A⊗̂RB) by the subgroup generated
by all the elements [M] − [M′] − [M′′] for matrices M = (ai1,i2)i1,i2∈I , M′ =
(ai1,i2)i1,i2∈I′ and M′′ = (ai1,i2)i1,i2∈I′′ where I = I ′ t I ′′ is a partition of I
such that ai1,i2 = 0 for all pairs (i1, i2) ∈ I ′× I ′′ (in other words, M is in block
triangular form and M′, M′′ are the matrices on the block diagonal).
Elements z ∈ ∆(A⊗̂RB) can be written as z = [M+] − [M−] with nu-
clear matrices M+,M−. If {Mn}n∈N is a collection of nuclear matrices
such that ordπ(Mn) → ∞ (where ordπ(M) = mini1,i2{ordπai1,i2} for a ma-
trix M = (ai1,i2)i1,i2∈I) and if {νn}n∈N are integers, then the infinite sum∑

n∈N νn[Mn] can be viewed as an element of ∆(A⊗̂RB) as follows: Sorting
the νn according to their signs means breaking up this sum into a positive and
a negative summand, so we may assume νn ≥ 1 for all n. Replacing Mn by the
block diagonal matrix diag(Mn,Mn, . . . ,Mn) with νn copies of Mn we may
assume νn = 1 for all n. Since all Mn are nuclear and ordπ(Mn) → ∞ the
block diagonal matrix M = diag(M1,M2,M3, . . .) is nuclear. It represents
the desired element of ∆(A⊗̂RB). Matrix tensor product (see 2.2) defines a
multiplication in ∆(A⊗̂RB): One checks that

([M1,+] − [M1,−]) ⊗ ([M2,+] − [M2,−])

= [M1,+ ⊗M2,+] − [M1,+ ⊗M2,−] − [M1,− ⊗M2,+] + [M1,− ⊗M2,−]

is independent of the chosen representations.

3.3 A more suggestive way to think of ∆(A⊗̂RB) is the following. We say
that a subset {ei}i∈I of an A⊗̂RB-module M is a formal basis if there is an
isomorphism of A⊗̂RB-modules

{(di)i∈I ; di ∈ A⊗̂RB} ∼= M

mapping for any j ∈ I the sequence (di)i with dj = 1 and di = 0 for i 6= j
to ej . A nuclear σ-module over A⊗̂RB is an A⊗̂RB-module M together with
a σ-linear endomorphism φ such that there exists a formal basis {ei}i∈I of M
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such that the action of φ on {ei}i∈I is described by a nuclear matrix M with
entries in A⊗̂RB, i.e. φei = Mei if we think of ei as the i-th column of the
identity I × I matrix. We usually think of a nuclear σ-module over A⊗̂RB as
a family of nuclear σ-modules over A, parametrized by the rigid space Sp(BK).
In the above situation, if S is a (topologically) invertible I × I-matrix with
entries in A⊗̂RB, then S−1MSσ is the matrix of φ in the new formal basis
consisting of the elements Sei = e′i of M (if now we think of e′i as the i-th column
of the identity I×I-matrix). Hence we can view ∆(A⊗̂RB) as the Grothendieck
group of nuclear σ-modules over A⊗̂RB, i.e. as the quotient of the free abelian
group generated by (isomorphism classes of) nuclear σ-modules over A⊗̂RB,
divided out by the relations [(M,φ)]− [(M ′, φ′)]− [(M ′′, φ′′)] coming from short
exact sequences

0 → (M ′, φ′) → (M,φ) → (M ′′, φ′′) → 0

which are A⊗̂RB-linearly (but not necessarily φ-equivariantly) split.

Proposition 3.4. Let BK = K. Let x ∈ ∆(Â) be represented by a convergent

series x =
∑

`∈N ν`[M`] with nuclear matrices M` over Â. Then the L-series

L(x, T ) :=
∏

`∈N

L(M`, T )ν`

is independent of the chosen representation of x. If all M` are nuclear over-
convergent, then L(x, T ) represents a meromorphic function on A1

K .

Proof: One checks that σ-similar nuclear matrices over Â have the same L-
function. Indeed, even the Euler factors at closed points of X are the same:
they are given by Fredholm determinants of similar (in the ordinary sense)
completely continuous matrices. Now let M, M′ and M′′ give rise to a typical
relation [M] = [M′]+[M′′] as in our definition of ∆(A⊗̂RB). Then one checks
that

L(M, T ) = L(M′, T )L(M′′, T ),

again by comparing Euler factors. And finally it also follows from the Eu-
ler product definition that ordπ(1 − L(M`, T )) → ∞ if ordπ(M`) → ∞.
Altogether we get the well definedness of L(x, T ). If the Ml are nuclear
overconvergent, then the L(M`, T ) are meromorphic by 2.13 and we get the
second assertion.

4 Resolution of unit root parts of rank one

In this section we describe a family version of the limiting module construc-
tion. Given a rank one unit root σ-module (Munit, φunit) which is the unit
root part of a (unit root ordinary) nuclear σ-module (M,φ) and such that
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φunit acts by a 1-unit ai0,i0 ∈ Â on a basis element of Munit, we choose an
affinoid rigid subspace Sp(BK) of A1

K such that for each Cp-valued point
x ∈ Sp(BK) ⊂ Cp the exponentiation ax

i0,i0
is well defined. Hence we get a

rank one σ-module over A⊗̂RB. We express its class in ∆(Â⊗̂RB) through
a set (indexed by r ∈ Z) of nuclear σ-modules (Br(M), Br(φ)) over A⊗̂RB
which are overconvergent if (M,φ) is overconvergent, even if (Munit, φunit) is
not overconvergent. Later Sp(BK) will be identified with the set of characters

κ : U
(1)
R → C×

p of the type κ(u) = κx(u) = ux for small x ∈ Cp, where

U
(1)
R denotes the group of 1-units in R. To obtain the optimal parameter

space for the Br(M) (i.e. the maximal region in Cp of elements x for which
κx occurs in the parameter space) one needs to go to the union of all these
Sp(BK). This K-rigid space is not affinoid any more; in the case K = Qp

it is the parameter space B∗ from [3]. We will however not pass to this
limit here, since for an extension of the associated unit root L-function even
to the whole character space we will have another method available in section 6.

Lemma 4.1. Let E be a p-adically separated and complete ring such that E →
E ⊗Q is injective and denote again by ordp the natural extension of ordp from
E to E ⊗ Q.
(i) Let x ∈ E. If ordp(x) > 1

p−1 , then ordp(
xn

n! ) ≥ 0 for all n ≥ 0, and

exp(x) =
∑

n≥0

xn

n!

converges.
(ii) Let x ∈ E. If ordp(x) > 0, then ordp(

xn

n ) ≥ 0 for all n ≥ 1, and

log(1 + x) = (−1)n−1
∑

n≥1

xn

n

converges. Moreover, if ordp(x) > β ≥ 1
p−1 , then ordp(log(1 + x)) > β; if

ordp(x) ≥ 1
p−1

1
pb for some b ∈ N0, then ordp(log(1 + x)) ≥ 1

p−1 − b.

Proof: Proceed as in [11], p.252, p.356.

4.2 Fix a countable non empty set I and an element i0 ∈ I, let I1 = I − {i0}.
Let M = (ai1,i2)i1,i2∈I be a nuclear I × I-matrix over Â. It is called 1-normal

if 1−ai0,i0 ∈ πÂ and if ai1,i2 ∈ πÂ for all (i1, i2) 6= (i0, i0). It is called standard

normal if ai1,i0 = 0 for all i1 ∈ I1, if ai0,i0 is invertible in Â and if ai1,i2 ∈ πÂ
for all (i1, i2) 6= (i0, i0). It is called standard 1-normal if it is both standard
normal and 1-normal.
That M is standard normal means that the associated σ-module (M,φ)
has a unique φ-stable submodule of rank one on which φ acts on a basis
element by multiplication with a unit in Â: the unit root part (Munit, φunit)
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of (M,φ). In general, (Munit, φunit) will not be overconvergent even if (M,φ)
is overconvergent. The purpose of this section is to present another construc-
tion of σ-modules departing from (M,φ) which does preserve overconvergence

and allows us to recapture (Munit, φunit) in ∆(Â), and even certain of its twists.

4.3 For ν ∈ Q we define the Cp-subsets

D≥ν := {x ∈ Cp; ordp(x) ≥ ν}

D>ν := {x ∈ Cp; ordp(x) > ν}.
We use these notations also for the natural underlying rigid spaces. Let B(ν)K

be the reduced K-affinoid algebra consisting of power series in the free variable
V , with coefficients in K, convergent on D≥ν (viewing V as the standard
coordinate). Thus

B(ν)K = {
∑

α∈N0

cαV α; cα ∈ K, lim
α→∞

(ordp(cα) + να) = ∞}.

4.4 Fix ν ∈ Q and let

B := (B(ν)K)0 := {
∑

α∈N0

cαV α ∈ B(ν)K ; ordp(cα) + να ≥ 0 for all α},

J := {q : I1 → N0; q(i) = 0 for almost all i ∈ I1},

C := (A⊗̂RB)J =
∏

J

A⊗̂RB.

Define a multiplication in C as follows. Given β = (βq)q∈J and β′ = (β′
q)q∈J

in C, the component at q ∈ J of the product ββ′ is defined as

(ββ′)q =
∑

(q1,q2)∈J2

q1+q2=q

βq1
β′

q2
.

C is p-adically complete. For c ∈ N0 we defined [0, c]B in 1.6, and now we let

Cc := ([0, c]B)J =
∏

J

[0, c]B ,

a complete subring of C. We view C as a A⊗̂RB-algebra by means of the ring
morphism h : A⊗̂RB → C defined for y ∈ A⊗̂RB by h(y)q = y ∈ A⊗̂RB if
q ∈ J is the zero map I1 → N0, and by h(y)q = 0 ∈ A⊗̂RB for all other q ∈ J .
In turn,

C ∼= A⊗̂RB[[I1]],

the free power series ring on the set I1 (viewed as a set of free variables).
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4.5 Let µ : S1 → S2 be a homomorphism of arbitrary R-modules. With I, i0,
I1 and J from above we now define a homomorphism

λ(µ) : (S1)
I =

∏

I

S1 → (S2)
J =

∏

J

S2.

Given a = (ai)i∈I ∈ ∏
I S1, the q-component λ(µ)(a)q of λ(µ)(a), for q ∈ J ,

is defined as follows. If q ∈ J is the zero map I1 → N0, then λ(µ)(a)q =
µ(ai0) ∈ S2. If there is a i ∈ I1 such that q(i) = 1 and q(i′) = 0 for all
i′ ∈ I1 −{i}, then λ(µ)(a)q = µ(ai) ∈ S2 (for this i). For all other q ∈ J we let
λ(µ)(a)q = 0 ∈ S2.

Returning to the situation in 4.4, the natural inclusion τ : Â → A⊗̂RB =
Â⊗̂RB gives us an embedding of Â-modules

λ = λ(τ) : ÂI =
∏

I

Â → C =
∏

J

A⊗̂RB.

It is clear that λ(([0, c]R)I) ⊂ Cc.

4.6 Now let M = (ai1,i2)i1,i2∈I be a nuclear and 1-normal I × I-matrix over

Â. Then

µ := inf({ordp(ai0,i0 − 1)} ∪ {ordp(ai1,i2); (i1, i2) 6= (i0, i0)}) ≥
1

e
> 0.

If µ > 1
p−1 choose ν ∈ Q such that ν > 1

p−1 − µ. If only µ ≥ 1
pb

1
p−1 for some

b ∈ N0 choose ν ∈ Q such that ν > b. With this ν define B and C as above.
We view M as the set, indexed by i2 ∈ I, of its columns

a(i2) := (ai1,i2)i1∈I ∈ ÂI .

For each r ∈ Z we now define a J × J-matrix Br(M) = (b
(r)
q1,q2)q1,q2∈J over

A⊗̂RB associated with M. To define Br(M) it is enough to define the set,
indexed by q2 ∈ J , of the columns

b
(r)
(q2)

= (b(r)
q1,q2

)q1∈J ∈
∏

J

A⊗̂RB = C

of Br(M). Using the ring structure of C we define

b
(r)
(q2)

:= λ(a(i0))
V λ(a(i0))

r

∏
i∈I1

λ(a(i))
q2(i)

λ(a(i0))
|q2| .

Here |q| =
∑

i∈I1
q(i) for q ∈ J , and λ(a(i0))

V ∈ C is defined as

λ(a(i0))
V := exp(V log(λ(a(i0)))).

For this to make sense note that ordp(λ(a(i0)) − 1C) ≥ µ > 1
p−1 (resp.

ordp(λ(a(i0)) − 1C) ≥ µ ≥ 1
pb

1
p−1 ), hence ordp(log(λ(a(i0)))) ≥ µ (resp.
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ordp(log(λ(a(i0)))) ≥ 1
p−1 − b) by 4.1(ii). Thus V log(λ(a(i0))) is, in view of our

choice of ν, indeed an element of A⊗̂RB, with ordp(V log(λ(a(i0)))) ≥ µ + ν >
1

p−1 (resp. ordp(V log(λ(a(i0)))) ≥ 1
p−1 − b + ν > 1

p−1 ), so we can apply 4.1(i)
to it.
If the free variable V specializes to integer values, λ(a(i0))

V specializes to
the usual exponentiation by integers of the unit λ(a(i0)) in C (just as we use

usual exponentiation for the other factors in the above definition of b
(r)
(q2)

). Let

Br
−(M) be the matrix obtained from Br(M) by replacing V with −V (i.e.

the matrix defined by the same recipe, but now using λ(a(i0))
−V in place of

λ(a(i0))
V as the first factor of b

(r)
(q2)

).

4.7 The particular choice of ν made in 4.6 will play no role in the sequel.
However, there is some theoretical interest in taking ν as small as possible:
the smaller ν, the larger D≥ν which is the parameter space for our families of
σ-modules defined by the matrices Br(M) and Br

−(M). The ultimate result
6.11 on the family of twisted unit root L-functions does not depend on the
choice (in the prescribed range) of ν here: for 6.11 it is not important how far
the family extends, we only need to extend it to D≥ν for some ν < ∞. But
we get trace formulas, which are important for a further qualitative study,
only for those members of this family of twisted unit root L-functions whose
parameters (=locally K-analytic characters) are in D≥ν .

Proposition 4.8. The matrices Br(M) and Br
−(M) are nuclear. If M is

nuclear overconvergent, then Br(M) and Br
−(M) are nuclear overconvergent.

Proof: Nuclearity: Given M > 0, we need to show ordπ(b
(r)
(q2)

) > M for all

but finitely many q2 ∈ J . It is clear that ordπ(λ(a(i0))
V λ(a(i0))

m) = 0 for all

m ∈ Z, therefore we need to concentrate only on the factors
∏

i∈I1
λ(a(i))

q2(i).
By nuclearity of M we know that ordπ(λ(a(i))) = ordπ(a(i)) > M for all but
finitely many i ∈ I1. Therefore we need to concentrate only on those q2 with
support inside this finite exceptional subset of I1. Among these q2 we have
|q2| > M for all but finitely many q2. But |q2| > M (and ordπ(a(i)) ≥ 1 for all
i ∈ I1) implies

ordπ(
∏

i∈I1

λ(a(i))
q2(i)) =

∑

i∈I1

q2(i)ordπ(a(i)) ≥
∑

i∈I1

q2(i) = |q2| > M.

Nuclearity is established. Now assume M is nuclear overconvergent.
Then it can be lifted to a nuclear, overconvergent and 1-normal matrix
M̃ = (ãi1,i2)i1,i2∈I with entries in R[X]†. Then, perhaps increasing the c
from our nuclearity condition, there is a c ∈ N such that ãi1,i2 ∈ [0, c]R for all

(i1, i2) 6= (i0, i0), and also ãi0,i0 − 1 ∈ [0, c]R. Then all entries of Br(M̃) are in

[0, c]B . Hence Br(M̃) is nuclear and overconvergent. Clearly it is a lifting of
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Br(M), so we are done.

4.9 Now let us look at the σ-module over A⊗̂RB defined by the matrix Br(M).
By construction, this is the A⊗̂RB-module C (which in fact even is a A⊗̂RB-
algebra), with the σ-linear endomorphism defined by Br(M). We view it as
an analytic family, parametrized by the rigid space Sp(B(ν)K) = D≥ν , of

nuclear σ-modules over Â; its fibres at points Z ∩ D≥ν are Wan’s ”limiting
modules” [15]. Yet another description is due to Coleman [4], which we now
present (in a slightly generalized form). It will be used in the proof of 4.10.

The nuclear matrix M over Â is the matrix in a formal basis {ei}i∈I of a

σ-linear endomorphism φ on a Â-module M . The element e = ei0 ∈ M can

also be viewed as an element of the symmetric Â-algebra SymÂ(M) defined
by M , so it makes sense to adjoin its inverse to SymÂ(M). Let D be the

subring of degree zero elements in SymÂ(M)[1e ]⊗̂RB: the A⊗̂RB-sub-algebra

of SymÂ(M)[1e ]⊗̂RB generated by all m
e for m ∈ M . Let I ⊂ D be the ideal

generated by all elements m
e for m ∈ M with φ(m) ∈ πM , and let Br(M) be

the (π, I)-adic completion of D. For all α ∈ (A⊗̂RB)×, all m1,m2 ∈ M , if we
set e′ = αe + πm1, we have

m2

e′
=

m2

αe

∞∑

i=0

(
π

α

m1

e
)i (∗)

in Br(M). By our assumptions on M we know φ(e)−e ∈ πM . Therefore there

exists a unique σ-linear ring endomorphism ψ of Br(M) with ψ(m
e ) = φ(m)

φ(e) for

all m ∈ M : Take (∗) as a definition, with e′ = φ(e), m2 = φ(m) and α = 1.
Similarly as in 4.6 we can define, for integers r ∈ Z, the element

(
φ(e)

e
)V +r = exp(V log(

φ(e)

e
))(

φ(e)

e
)r

of Br(M). We define the σ-linear endomorphism Br(φ) of Br(M) by

Br(φ)(y) = (
φ(e)

e
)V +rψ(y)

for y ∈ Br(M). Clearly Br(M) is the matrix of Br(φ) acting on the formal
basis

{
∏

i∈I

(
ei

e
)q(i)}q∈J

of Br(M) over A⊗̂RB. The σ-module defined by Br
−(M) is described similarly.

Proposition 4.10. The σ-similarity classes (over A⊗̂RB) of Br(M) and

Br
−(M) depend only on the σ-similarity class (over Â) of M.
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Proof: We prove this for Br(M), the argument for Br
−(M) is the same.

It is enough to prove that Br(M), as a A⊗̂RB-module together with its σ-
linear endomorphism Br(φ), depends only on the σ-module M . Let M′ =

(a′
i1,i2

)i1,i2∈I be another 1-normal nuclear matrix over Â which is σ-similar to
M. We can view M′ as the matrix of the same σ-linear endomorphism φ on
the same Â-module M , but in another formal basis {e′i}i∈I . For the element
e′ = e′i0 our assumptions imply φ(e′) − e′ ∈ πM . Therefore e′ and e both

generate the unit root part modulo π of M , hence there is a α ∈ Â× with
e′ − αe ∈ πM . Observe that

αe ≡ e′ ≡ φ(e′) ≡ φ(αe) ≡ σ(a)φ(e) ≡ σ(α)e

modulo πM . Since R× is the subgroup of Â× fixed by σ we may and will
assume α ∈ R×. From (∗) in 4.9 it follows that for m ∈ M the element m

e′

of the π-adic completion of SymÂ(M)[M−1]⊗̂RB actually lies in its subring
Br(M). By a symmetry argument we deduce that Br(M) is the same when
constructed with respect to e or with respect to e′. Moreover the endomorphism
ψ on Br(M) is the same when constructed with respect to e or with respect to
e′: it is uniquely determined by its action on Br(M) ∩ SymÂ(M)[M−1]⊗̂RB,

where it is characterized by ψ(m1

m2
) = φ(m1)

φ(m2)
for m1,m2 ∈ M . Now let

Br(φ)′(y) = (
φ(e′)

e′
)V +rψ(y)

for y ∈ Br(M). The needed A⊗̂RB-linear endomorphism λr of Br(M) sat-
isfying λr ◦ Br(φ)′ = Br(φ) ◦ λr we now define to be the multiplication with

( e′

αe )V +r ∈ Br(M) (by now obviously defined). Here we use that α ∈ R×.

Now suppose M = (ai1,i2)i1,i2∈I is even a standard 1-normal nuclear Â-matrix.

Define Munit := ai0,i0 ∈ Â and (Munit)
V = exp(V log(Munit)) ∈ A⊗̂RB as

in 4.6.

Theorem 4.11. For s ∈ Z we have the following equalities in ∆(A⊗̂RB):

[(Munit)
s(Munit)

V ] =
⊕

r≥1

(−1)r−1r[Bs−r(M) ⊗
r∧

(M)]

[(Munit)
s(Munit)

−V ] =
⊕

r≥1

(−1)r−1r[Bs−r
− (M) ⊗

r∧
(M)].

Proof: We prove the first equality, the second is proved similarly. First
note that our assumptions imply that πr−1 divides

∧r
(M), so the right

hand side converges. Since M is standard 1-normal we have Bs−r(M) =
(Munit)

sB−r(M) so we may assume s = 0. Let M′′ = (a′′
i1,i2

)i1,i2∈I be
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the Â-matrix with a′′
i1,i2

= ai1,i2 for all (i1, i2) ∈ (I1 × I1) ∪ {(i0, i0)}, and
a′′

i1,i2
= 0 for the other (i1, i2). Since M is standard 1-normal we see that

[B−r(M)⊗∧r
(M)] = [B−r(M′′)⊗∧r

(M′′)] in view of the relations divided out
in the definition of ∆(A⊗̂RB). Hence we may assume M = M′′. Suppose that
i0 is minimal in the ordering of I (which we tacitly chose to define

∧r
(I) and∧r

(M), see 2.2). For r ≥ 1 let Mr be the A⊗̂RB-module (A⊗̂RB)(J×∧r(I)).
It has the formal basis (e(q,~ı))q∈J,~ı∈∧r(I), where e(q,~ı) is the (q,~ı)-th column of
the identity (J ×∧r

(I))× (J ×∧r
(I))-matrix. The matrix B−r(M)⊗∧r

(M)
describes the action of a σ-linear endomorphism φr of Mr on this basis. Actu-
ally we will need r copies of (Mr, φr) and its formal basis (e(q,~ı))q∈J,~ı∈∧r(I): We

denote them by (M
(`)
r , φ

(`)
r ) and (e

(`)
(q,~ı))(q,~ı) for 1 ≤ ` ≤ r. We get the σ-module

(M•
r , φ•

r) = ⊕1≤`≤r(M
(`)
r , φ(`)

r )

with formal basis
Hr = (e

(`)
(q,~ı))q∈J,~ı∈∧r(I),`∈{1,...,r}.

Define A⊗̂RB-linear maps

α(`)
r : M (`)

r → M
(`)
r+1

β(`)
r : M (`)

r → M
(`+1)
r+1

as follows. For ~ı = (i1, . . . , ir) ∈ ∧r
(I) with i1 < . . . < ir, and another i ∈ I,

let τ(~ı, i) = max({t ≤ r; it < i} ∪ {0}), and if in addition i 6= iτ(~ı,i)+1 let

[~ı, i] = (i1, . . . , iτ(~ı,i), i, iτ(~ı,i)+1, . . . , ir) ∈
r+1∧

(I).

For q ∈ J and i ∈ I1 with q(i) 6= 0 define qi− ∈ J by qi−(i′) = q(i′) for
i′ ∈ I1 − {i}, and qi−(i) = q(i) − 1. Now set

α(`)
r (e

(`)
(q,~ı)) = e

(`)
(q,[~ı,i0])

if i1 6= i0, and set α
(`)
r (e

(`)
(q,~ı)) = 0 if i1 = i0. Set

β(`)
r (e

(`)
(q,~ı)) =

∑

t

(−1)τ(~ı,it)e
(`+1)

(qit−,[~ı,it])

where the sum runs through all 1 ≤ t ≤ r with it 6= i0, with it 6= iτ(~ı,it)+1

and with q(it) 6= 0. One checks that φ
(`)
r+1 ◦ α

(`)
r = α

(`)
r ◦ φ

(`)
r (use the standard

1-normality of M), and that φ
(`+1)
r+1 ◦ β

(`)
r = β

(`)
r ◦ φ

(`)
r (use M = M′′). Hence

for
ψ•

r = ⊕1≤`≤r(α
(`)
r ⊕ β(`)

r ) : M•
r → M•

r+1

we have φ•
r+1 ◦ψ•

r = ψ•
r ◦ φ•

r . Also note that φ•
1 = φ

(1)
1 on M•

1 = M
(1)
1 restricts

on the rank one A⊗̂RB-submodule M•
0 spanned by the basis element e

(1)
(0,i0)

∈
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J × I = J ×∧1
(I) to a σ-linear endomorphism φ0 with matrix (Munit)

V . Let
ψ•

0 : M•
0 → M•

1 be the inclusion and consider

0 → M•
0

ψ•
0→ M•

1

ψ•
1→ M•

2

ψ•
2→ . . . . (∗)

We saw that this sequence is equivariant for the σ-linear endomorphisms φ•
r

which are described by matrices as occur in the statement of the theorem, so
it remains to show that (∗) is split exact; more precisely, that for each r there
are disjoint subsets G1

r and G2
r of M•

r with the following properties: ψ•
r induces

a bijection of sets G2
r
∼= G1

r+1, and the union G1
r ∪ G2

r is a formal basis for
M•

r (transforming under an invertible matrix to the formal basis Hr). We let

G1
0 = ∅, G2

0 = H0 = {e(1)
(0,i0)

}. For r ≥ 1 we let

G1
r = {ψ•

r−1(h);h ∈ Hr−1}.

We let G2
r be the subset of Hr consisting of those e

(`)
(q,~ı) with `, q and ~ı =

(i1, . . . , ir) ∈
∧r

(I) satisfying one of the following conditions: either

[` = 1 and ((i1 6= i0) or (i1 = i0 and ∃(i ∈ I1 − {i2, . . . , ir}) : q(i) 6= 0))]

or

[` 6= 1 and ((i1 6= i0 and ∀(1 ≤ k ≤ r)∃(i ∈ I1 − {ik}) : q(i) 6= 0)

or (i1 = i0 and ∃(i ∈ I1 − {i2, . . . , ir}) : q(i) 6= 0))].

The desired properties are formally verified, the proof is complete.

Corollary 4.12. Suppose our M is also overconvergent nuclear. Then for
each s ∈ Z the series

∏

x∈X

1

det(1 − (Munit)s
x(Munit)

y
xT deg(x))

defines a meromorphic function in the variables T and y on A1
Cp

× D≥ν , spe-

cializing for y ∈ D≥ν(K) to L(Ms+y
unit, T ).

Proof: The series is trivially holomorphic on D>0 × D≥ν . We claim that it
is equal to

∏

r≥1

(
d∏

i=0

det(1 − ψ[Bs−r(M) ⊗
r∧

(M) ⊗D∧i]T )(−1)i−1

)(−1)r−1r

which clearly extends as desired. It suffices to prove equality at all specializa-
tions V = y at K-rational points y ∈ D≥ν(K) (since these y are Zariski dense
in D≥ν). But for such y both series coincide with

∏

r≥1

L(Bs−r(M)|V =y ⊗
r∧

(M), T )(−1)r−1r :
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For the series in the statement of 4.12 this follows from 3.4 and 4.11, for the
first series written in this proof this follows from 2.13.

5 Weight space W

In this section we describe a K-rigid analytic space W whose set of Cp-
valued points can be identified with the set of locally K-analytic characters
κ : R× → Cp occuring in Theorem 0.1.

5.1 For a K-analytic group manifold G (see [1]) we denote by HomK-an(G, C×
p )

the group of locally K-analytic characters G → C×
p : characters which locally

on G can be expanded into power series in dimK(G)-many variables. If K = Qp

these are precisely the continuous characters G → C×
p . The examples relevant

for us are G = R, G = R×, G = U
(1)
R and G = U

(1)

R , where we write

U
(1)
R := 1 + πR and U

(1)

R :=
U

(1)
R

(U
(1)
R )tors

.

To extinguish any confusion, although in these examples G even carries a
natural structure of K-rigid group variety, the definition of HomK-an(G, C×

p )
does not refer to this (indeed more ”rigid”) structure: local K-analycity of a
character κ requires only that κ, as a C×

p ⊂ Cp valued function on G, can be
expanded into convergent power series on each member of some open covering
of G — an open covering in the naive sense, not necessarily admissible in the
sense of rigid geometry.

5.2 Let G = Gπ be the Lubin-Tate formal group over R corresponding to our
chosen uniformizer π ∈ R (see [9]). For x ∈ R denote by [x] ∈ U.R[[U ]] the
formal power series which defines the multiplication with x in the formal R-
module G. The R-module HomOCp

(G⊗̂OCp
, Gm,OCp

) is free of rank one. Fix

a generator with corresponding power series F (Z) ∈ Z.OCp
[[Z]]. Substitution

yields power series F ([x]) ∈ U.OCp
[[U ]] for x ∈ R. By [13] we have a group

isomorphism

D>0 ∼=−→ HomK-an(R, C×
p )

z 7→ [x 7→ 1 + F ([x])(z)].

Here D>0 carries the group structure defined by G. Let m ∈ Z≥−1 be minimal

such that πm log(U
(1)
R ) ⊂ R. Since (U

(1)
R )tors = Ker(log) we have a well defined

injective homomorphism of K-analytic group varieties

U
(1)

R
θ−→ R, u 7→ πm log(u) = θ(u)

inducing a homomorphism

HomK-an(R, C×
p )

δ−→ HomK-an(U
(1)

R , C×
p ).
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Note that Coker(θ) is finite. Thus Ker(δ) is finite, and on the other hand δ

is surjective (since C×
p is divisible). In other words, HomK-an(U

(1)

R , C×
p ) is the

quotient of HomK-an(R, C×
p ) by a finite subgroup ∆ ⊂ HomK-an(R, C×

p ). The
formal group law G defines a structure of Cp-rigid analytic group variety on
D>0 (with its standard coordinate U). By means of the above isomorphism
we view HomK-an(R, C×

p ) as its group of Cp-valued points. Accordingly, we

view HomK-an(U
(1)

R , C×
p ) as the group (D>0/∆)(Cp) of Cp-valued points of the

Cp-rigid group variety D>0/∆. Let

U
(1)
R

u← R× v→ µq−1

be the natural projections. We have (U
(1)
R )tors = µpa for some a ≥ 0. Let

F = {0, . . . , pa − 1} × {0, . . . , q − 2}.

For each (s, t) ∈ F let W(s,t) be a copy of the Cp-rigid space D>0/∆, and let

W :=
∐

(s,t)∈F
W(s,t).

For an element ω ∈ W(s,t)(Cp) ⊂ W(Cp) we define the character

κω : R× → Cp, r 7→ u(r)sω̃(u(r))v(r)t =: κω(r)

where ω̃ ∈ HomK-an(U
(1)
R , C×

p ) is the image of ω under the natural map

W(s,t)(Cp) ∼= (D>0/∆)(Cp) ∼= HomK-an(U
(1)

R , C×
p ) → HomK-an(U

(1)
R , C×

p ).

Since R× = µq−1 × U
(1)
R we get:

Proposition 5.3. The assignment ω 7→ κω defines a bijection

W(Cp) ∼= HomK-an(R×, C×
p ).

Thus HomK-an(R×, C×
p ) can be viewed as the set of Cp-valued points of the

Cp-rigid variety W.

Lemma 5.4. For ν ∈ Q, ν > m
e + 1

p−1 , there exists an open embedding of

Cp-rigid varieties ι : D≥ν → D>0 such that for all x ∈ R and all y ∈ D≥ν we
have

1 + F ([x])(ι(y)) = exp(π−mxy).

Proof: Let logG be the logarithm of G. Write F (Z) = Ω.Z + . . . ∈ Z.OCp
[[Z]].

Then we have the identity of formal power series (cf. [13] sect.4)

1 + F ([x]) = exp(Ω logG([x]))
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in OCp
[[U ]]. But logG([x]) = x. logG(U) by [9] 8.6 Lemma 2, therefore it is

enough to find ι with

logG(ι(y)) = π−mΩ−1y.

By [9] 8.6 Lemma 4 the power series inverse to logG defines an open embedding
expG : D≥β → D>0 for β > 1

e(q−1) . Thus ι(y) = expG(π−mΩ−1y) is appropri-

ate; it is well defined on D≥ν because we have ordp(Ω) = 1
p−1 − 1

e(q−1) by [13],

hence ν − m
e − ordp(Ω) > 1

e(q−1) .

5.5 Example: Consider the case K = Qp, π = p. Then

G = Gm, logG(Z) = log(1 + Z), m = −1

[x] = (1 + U)x − 1 =
∑

n≥1

(
x

n

)
Un (x ∈ Zp).

We may choose F (Z) = Z, and for ν > 2−p
p−1 the associated embedding

ι : D≥ν → D>0; y 7→ ι(y) = exp(py) − 1

is an isomorphism ι : D≥ν ∼= D≥ν+1 ⊂ D>0.

6 Meromorphic continuation of unit root L-functions

In this section we prove (the infinite rank version of) Theorem 0.1. Let us

give a sketch. For simplicity suppose that α ∈ Â is a matrix of the ordinary
unit root part of some nuclear overconvergent σ-module M over A (in the
general case, α splits into two factors each of which is of this more special type
and can ”essentially” be treated separately). An appropriate multiplicative
decomposition of α (see 6.3) allows us to assume that α is a 1-unit. Then
the results of section 4, together with the trace formula 2.13 already show
meromorphy of Lα on A×W0 for some open subspace W0 ⊂ W meeting each
component of W: this is essentially what we proved in 4.12. More precisely
we get a decomposition of Lα into holomorphic functions on A × W0 which
are Fredholm determinants det(ψ) of certain completely continuous operators
ψ arising from limiting modules. We express the coefficients of the logarithms
of these det(ψ) through the traces Tr(ψf ) of iterates ψf of these ψ. Then
we repeat the limiting module construction in each fibre x ∈ X and prove its
commutation with its global counterpart. Together with the trace formula
2.13 and the description of the embedding W0 → W given in 5.4 this can be
used to show that all the functions Tr(ψf ), a priori living on W0, extend to
functions on W, bounded by 1. By the general principle 6.1 below this implies
the theorem.
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Lemma 6.1. For m ∈ N let gm(U) ∈ OCp
[[U1, . . . , Ug]]. Suppose there exists a

τ > 0 such that

f(T,U) = exp(−
∞∑

m=1

gm(U)

m
Tm) ∈ Cp[[T,U1, . . . , Ug]]

converges on A1
Cp

× (D≥τ )g, where T resp. U1, . . . , Ug are the standard coordi-

nates on A1
Cp

, resp. on (D≥τ )g. Then f(T,U) converges on all of A1
Cp
×(D>0)g.

Proof: We reduce the convergence of f at a given point x ∈ A1
Cp

× (D>0)g to

the convergence of f at regions – chosen in dependence on x – of A1
Cp

× (D≥τ )g

with possibly much larger T -coordinates than the T -coordinate of x. For m ≥ 1
let

Im = {i = (i1, . . . , im) ∈ (N0)
m; i1 + 2i2 + . . . + mim = m}.

We may write

f(T,U) = 1 +
∞∑

m=1

αm(U)Tm

αm(U) =
∑

i∈Im

(−1)i1+...+im
g1(U)i1 . . . gm(U)im

i1! . . . im!1i12i2 . . . mim
=

∑

`∈(N0)g

βm,`U
`

βm,` =
∑

i∈Im

(−1)i1+...+im
γm,`,(i1,...,im)

i1! . . . im!1i12i2 . . . mim

for certain γm,`,(i1,...,im) ∈ OCp
. We have the estimate

ordp(βm,l) ≥ min
i∈Im

−ordp(i1! . . . im!1i12i2 . . . mim)

≥ min
i∈Im

−
m∑

j=1

(ordp(ij !) + ij(
j

p
))

≥ min
i∈Im

−
m∑

j=1

(ij + ij(
j

p
))

≥ min
i∈Im

−2

m∑

j=1

jij = −2m.

Now let (t, u1, . . . , ug) ∈ A1
Cp

× (D>0)g be given. Set

0 < ρ = min{1,
ordp(u1)

τ
, . . . ,

ordp(ug)

τ
} ≤ 1

λ =
ordp(t) − 2(1 − ρ)

ρ
.
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Then we find

ordp(βm,`u
`tm) ≥ −2m(1 − ρ) + ρordp(βm,`) + ρ|`|τ + ρmλ + 2m(1 − ρ)

= ρ(ordp(βm,l) + |`|τ + mλ)

and this term tends to infinity as |`| + m tends to infinity since by hypothesis
f converges at the points (t̃, ũ1, . . . , ũg) with ordp(t̃) ≥ λ and ordp(ũi) ≥ τ .
The lemma follows.

Now let I and i0 ∈ I be as in 4.2. In particular we can talk about 1-normality
and standard normality of I × I-matrices.

Lemma 6.2. Suppose the nuclear I×I-matrix M with entries in Â is 1-normal.
Then M is σ-similar to a standard 1-normal nuclear I × I-matrix.

Proof: In case A = R[X]†, this is the translation of [15] Lemma 6.5 into
matrix terminology. But the proof works for general A.

Lemma 6.3. Let N be a nuclear overconvergent I × I-matrix over A which is
σ-similar to a standard normal nuclear I × I-matrix over Â. Then there exist
a ξ ∈ A and a nuclear overconvergent 1-normal I × I matrix M over A, both
unique up to σ-similarity, such that
(i) the 1 × 1-matrix ξq−1 is σ-similar to 1 ∈ A, and
(ii) ξM is σ-similar to N .

Proof: For the existence see Wan [16] (there I is finite, but at this point this
is not important). For the uniqueness (which by the way we do not need in
the sequel) we follow Coleman [4]. Let ξ′ and M′ be another such pair. Then

ξ′ = aξ for some a ∈ A×, hence aq−1 = σ(b)
b for some b ∈ A× by hypothesis

(i) for ξ and ξ′. On the other hand, from hypothesis (ii) for M and M′ it
follows that M′ and 1

aM are σ-similar, and by 1-normality of M and M′ this

implies a = dσ(c)
c for some c, d ∈ A× with d − 1 ∈ πA. Thus for e = b

cq−1 we

have dq−1 = σ(e)
e . In particular (σ(e) − e) ∈ πA, hence e ∈ R + πA, so we

may assume in addition e − 1 ∈ πA. For (the unique) f ∈ A with fq−1 = e

and f − 1 ∈ πA we then see d = σ(f)
f . Thus a = σ(ef)

ef and it follows that ξ is

σ-similar to σ′, and M to M′. We are done.

6.4 Let M be a standard 1-normal nuclear I × I-matrix over Â. Define I1 =
I − {i0} and J as in 4.4. Let x be a closed point of X of degree f and write
Mx = (ax

i1,i2
)i1,i2∈I for the fibre matrix Mx with entries ax

i1,i2
in Rf as defined

in 2.12. We denote its i2-column for i2 ∈ I by

ax
(i2)

:= (ax
i1,i2)i1∈I ∈

∏

I

Rf .
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Let
η = 1 + F ([πm log(ax

i0,i0)]) ∈ OCp
[[U ]]

with F and m as in 5.2. For r ∈ Z we now define a nuclear J × J-matrix
B̃r(Mx) = (b

(r),x
q1,q2)q1,q2∈J with entries in OCp

[[U ]]. It is enough to give the
columns

b
(r),x
(q2)

:= (b(r),x
q1,q2

)q1∈J ∈
∏

j∈J

OCp
[[U ]],

indexed by q2 ∈ J , of B̃r(Mx). The natural embedding ρ : Rf → OCp
[[U ]]

defines a map

λ = λ(ρ) :
∏

I

Rf →
∏

J

OCp
[[U ]]

as explained in 4.5. We will also need the OCp
[[U ]]-algebra structure on∏

J OCp
[[U ]] analogous to that on C in 4.4. Namely, the one we get from

the natural identification
∏

J

OCp
[[U ]] ∼= OCp

[[U ]][[I1]],

the formal power series ring over OCp
[[U ]] on the set I1 (viewed as a set of free

variables). Using this OCp
[[U ]]-algebra structure we set

b
(r),x
(q2)

:= ηλ(ax
(i0)

)r

∏
i∈I1

λ(ax
(i))

q2(i)

λ(ax
(i0)

)|q2| .

Note that λ(ax
(i0)

) = ax
i0,i0

in the OCp
[[U ]]-algebra

∏
J OCp

[[U ]] since M is

standard normal. Let B̃r
−(Mx) be the matrix defined by the same recipe, but

now using η−1 in place of η.

6.5 Let ξ ∈ A be a unit, let (s, t) ∈ F , let r1, r2 ∈ N, for ` = 1 and ` = 2 let I(`)

be a countable index set, i
(`)
0 ∈ I(`) an element and M` a standard 1-normal

(with respect to i
(`)
0 ) nuclear I(`)×I(`)-matrix over Â. Arguing as in 4.8, where

we proved that the matrices Br(M) are nuclear, we see that the trace

gr1,r2,s,t
x,ξ,M1,M2

(U) := Tr(ξt
xB̃s−r1(M1,x)⊗

r1∧
(M1)x ⊗ B̃−s−r2

− (M2,x)⊗
r2∧

(M2)x)

(the fibre ξx ∈ R is defined as in 2.12 by viewing ξ as a 1 × 1-matrix) is a well
defined element in OCp

[[U ]], i.e. the infinite sum of diagonal elements of this
tensor product matrix converges in OCp

[[U ]]. We may view it as a function
on D>0. Let ν ∈ Q satisfy both 5.4 and the condition from 4.6 for both M1

and M2 so that we may form the matrices Bs−r1(M1) and B−s−r2
− (M2) over

A⊗̂RB with B = (B(ν)K)0. Recall the embedding ι : D≥ν → D>0 from 5.4
and that we view the free variable V as standard coordinate on the source
D≥ν , and the free variable U as standard coordinate on the target D>0 of ι.
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For a matrix N with coefficients in A⊗̂RB and for y ∈ D≥ν we denote by
N|V =y the matrix with entries in Â obtained from N by specializing elements

a ⊗ V n ∈ A⊗̂RB (for n ∈ N0) to a ⊗ yn ∈ Â.

Lemma 6.6. For K-rational points y ∈ D≥ν we have

gr1,r2,s,t
x,ξ,M1,M2

(ι(y)) =

Tr(((ξtBs−r1(M1) ⊗
r1∧

(M1) ⊗ B−s−r2
− (M2) ⊗

r2∧
(M2))|V =y)x)

Proof: Taking x-fibres commutes with ⊗, thus

ξt
x(Bs−r1(M1)|V =y)x ⊗

r1∧
(M1)x ⊗ (B−s−r2

− (M2)|V =y)x ⊗
r2∧

(M2)x

= ((ξtBs−r1(M1) ⊗
r1∧

(M1) ⊗ B−s−r2
− (M2) ⊗

r2∧
(M2))|V =y)x.

Therefore it suffices to show

(Br(M)|V =y)x = B̃r(Mx)|U=ι(y) and (Br
−(M)|V =y)x = B̃r

−(Mx)|U=ι(y),

for standard 1-normal nuclear matrices M over Â and r ∈ Z. This is essentially
a statement on commutation of the two operations ”M 7→ Br(M)” and ”taking
the f -fold σ-power of a square matrix”. In our situation this holds since M
is standard normal, as we will now explain. For such M we keep the notation
from 6.4. From 5.4 it follows that B̃r(Mx)|U=ι(y) is the matrix constructed by

the same recipe as B̃r(Mx), but using

(ax
i0,i0)

y = exp(y log(ax
i0,i0)) ∈ Rf

in place of η. Observe that ax
i0,i0

= (ai0,i0)x where (ai0,i0)x is defined as
in 2.12 by viewing the (i0, i0)-entry ai0,i0 of M as a 1 × 1-matrix — this
is because M is standard. In particular we see (ax

i0,i0
)y = ((ai0,i0)x)y ∈ R.

Let (M,φ) be the σ-module over Â such that the action of φ on a for-

mal basis {ei}i∈I of M is given by M. As in 4.9 consider the Â-algebra
D = SymÂ(M)[ 1

ei0
]0 of degree zero elements in SymÂ(M)[ 1

ei0
]. Let Br(M)

be its completion as in 4.9. Denote by ψ the natural σ-linear ring endomor-
phism of Br(M) defined by φ, as in 4.9. Then Br(M)|V =y is the matrix
of the σ-linear endomorphism ψy+r = Br(φ)|V =y = ((ai0,i0)x)y+rψ (use
that M is standard). Hence (Br(M)|V =y)x is the matrix of the Rf -linear

endomorphism (ψf
y+r)x which the f -fold iterate ψf

y+r of ψy+r induces on the
fibre Br(M)x = Br(M) ⊗Â Rf (formed with respect to the Teichmüller lift

x : Â → Rf of x). On the other hand we can view Br(M)x as the completion
(analogously to 4.9) of SymRf

(Mx)[ 1
ei0

]0 (with Mx = M ⊗Â Rf ). Then
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B̃r(Mx)|U=ι(y) is the matrix of the Rf -linear endomorphism ((ai0,i0)x)y+rψf,x

of Br(M)x where ψf,x is the Rf -linear ring endomorphism of Br(M)x in-
duced by the endomorphism which the f -fold iterate φf of φ induces on
Mx. Thus it remains to show (ψf

y+r)x = ((ai0,i0)x)y+rψf,x. Now we clearly

have (ψf
y+r)x = ((ai0,i0)x)y+r(ψf )x with (ψf )x the fibre of ψf in Br(M)x.

Therefore we conclude using the functoriality (ψf )x = ψf,x of the (σ-linear)
functor SymÂ(?).

6.7 For f ∈ N let Tf be the set of all closed points of X of degree f . Let

Af = A ⊗R Rf . Note that the f -fold σ-power (D∧i)(σ)f

(as defined in 2.12) is
the matrix describing the endomorphism which the Rf -algebra endomorphism
σf ⊗ 1 of Af induces on Ωi

Af /Rf
= Ωi

A/R ⊗R Rf . Therefore we may apply

2.13 to the situation obtained by base change ⊗RRf , with σf ⊗ 1 ∈ End(Af )
replacing σ ∈ End(A). We get that

Sx :=
∑

0≤i≤d

(−1)iTr((D∧i)x)

for x ∈ Tf is invertible in Rf . For 0 ≤ j ≤ d we may define

hr1,r2,j,s,t
f,ξ,M1,M2

(U) :=
∑

x∈Tf

Tr((D∧d−j)x)

Sx
gr1,r2,s,t

x,ξ,M1,M2
∈ OCp

[[U ]],

Dr1,r2,j,s,t
ξ,M1,M2

(T,U) := exp(−
∞∑

f=1

hr1,r2,j,s,t
f,ξ,M1,M2

(U)

f
T f ) ∈ Cp[[T,U ]].

Theorem 6.8. If M1 and M2 are σ-similar to 1-normal nuclear overconver-
gent matrices over A, then Dr1,r2,j,s,t

ξ,M1,M2
(T,U) defines a holomorphic function on

A1
Cp

×D>0. There exists a nuclear overconvergent matrix N over A⊗̂RB which
is σ-similar to

ξtBs−r1(M1) ⊗
r1∧

(M1) ⊗ B−s−r2
− (M2) ⊗

r2∧
(M2),

and for K-rational points y ∈ D≥ν we have

Dr1,r2,j,s,t
ξ,M1,M2

(T, ι(y)) = det(1 − ψ[N|V =y ⊗D∧j ]T ).

Proof: The existence of N follows from 4.8 and 4.10. Next let us make a
general remark. For a nuclear overconvergent matrix M over A we defined the
completely continuous operator ψ[M] = ψA[M] in 2.8 relative to the Frobenius

endomorphism σ on A. Now consider the f -fold σ-power M(σ)f

of M from
2.12 and view it as a matrix over Af = A ⊗R Rf . As such we define the

Kf = Rf ⊗ Q-linear completely continuous operator ψAf
[M(σ)f

] relative to

the Frobenius endomorphism σf on Af . One finds

ψAf
[M(σ)f

] = ψA[M]f ⊗K Kf .
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We apply this to M = N|V =y ⊗D∧j and obtain

TrK(ψA[N|V =y ⊗D∧j ]f ) = TrKf
(ψA[N|V =y ⊗D∧j ]f ⊗K Kf )

= TrKf
(ψAf [(N|V =y ⊗D∧j)(σ)f

])

= TrKf
(ψAf [(N|V =y)(σ)f ⊗ (D∧j)(σ)f

])

=
∑

x∈Tf

Tr((D∧d−j)x)Tr((N|V =y)x)

Sx
.

where for the last equality we applied 2.13. But

Tr((N|V =y)x) = Tr(((ξtBs−r1(M1)⊗
r1∧

(M1)⊗B−s−r2
− (M2)⊗

r2∧
(M2))|V =y)x)

which by 6.6 is equal to gr1,r2,s,t
x,ξ,M1,M2

(ι(y)). Thus the stated formula is proven
since its right hand side may be written as

exp(−
∞∑

f=1

TrK(ψ[N|V =y ⊗D∧j ]f )

f
T f ).

Furthermore the points ι(y) for K-rational points y ∈ D≥ν are Zariski dense
in ι(D≥ν), therefore we get the equality of holomorphic functions

Dr1,r2,j,s,t
ξ,M1,M2

(T,U) = det(1 − ψ[N ⊗D∧j ]T )

on D>0 × ι(D≥ν), where in the function on the right hand side we substitute
V by ι−1(U). But the right hand side extends to a holomorphic function
on A1

Cp
× ι(D≥ν), since ψ[N ⊗ D∧j ] is completely continuous by 2.10. The

definition of Dr1,r2,j,s,t
ξ,M1,M2

(T,U) and 6.1 now show the holomorphy on all of

A1
Cp

× D>0, completing the proof.

6.9 Let α ∈ Â be a unit. For closed points x ∈ X define αx ∈ R as in 2.12 by
viewing α as a 1× 1-matrix. For κ ∈ HomK-an(R×, C×

p ) we ask for the twisted
L-function

L(α, T, κ) :=
∏

x∈X

1

1 − κ(αx)T deg(x)
.

It can be written as a power series with coefficients in OCp
, hence is trivially

holomorphic on D>0 (in the variable T ).

6.10 We say that α ∈ Â is ordinary geometric if there exists a nuclear G×G-
matrix H = (hg1,g2

)g1,g2∈G over Â, a non negative integer j ∈ N0 and a nested
sequence of (j + 1) finite subsets G0 ⊂ G1 ⊂ . . . ⊂ Gj of the (countable) index
set G such that:
(i) H is σ-similar to a nuclear overconvergent matrix over A.
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(ii) hg1,g2
= 0 whenever there is a 0 ≤ ` ≤ j with g2 ∈ G` and g1 /∈ G`. Thus,

H is in block triangular form.
(iii) π`+1 divides hg1,g2

whenever g2 /∈ G`, for all 0 ≤ ` ≤ j.
(iv) For all 0 ≤ ` ≤ j the element

H` := π−∑ `
i=1 i(ci−ci−1) det((hg1,g2

)g1,g2∈G`
)

of Â is a unit, where we set c` = |G`|. Set H−1 = 1.
(v) We have α = Hj/Hj−1 = π−j(cj−cj−1) det((hg1,g2

)g1,g2∈(Gj−Gj−1)).
The meaning of this definition is that α is the determinant of the pure slope j
part (as a unit root σ-module) of a nuclear σ-module over A which is ordinary
up to slope j and overconvergent (but neither the pure slope j part itself
nor its determinant need to be overconvergent). See [16] for details on the
Hodge-Newton decomposition by slopes.

Theorem 6.11. Suppose α is ordinary geometric. Then there exists a mero-
morphic function Lα on the Cp-rigid space A1

Cp
× W whose pullback to A1

Cp

via
A1

Cp
→ A1

Cp
×W, t 7→ (t, κ)

for any κ ∈ HomK-an(R×, C×
p ) = W(Cp) is a continuation of L(α, T, κ).

Proof: We treat every component W(s,t) of W separately, so let us fix (s, t) ∈
F . Keeping the notation from 6.10 we begin with some definitions. For 0 ≤
` ≤ j let I(`) be the index set of the nuclear matrix

∧c`(H). Our assumptions

on H imply that
∧c`(H) is standard normal with respect to some i

(`)
0 ∈ I`.

Moreover it is σ-similar to a nuclear overconvergent I(`) × I(`) matrix. Thus

we may apply 6.3 to get a ξ` ∈ A and a 1-normal (with respect to i
(`)
0 ) nuclear

overconvergent I(`) × I(`)-matrix M` over A such that ξq−1
` is σ-similar to

1 ∈ A, and ξ`M` is σ-similar to
∧c`(H). By 6.2 there is a standard 1-normal

(with respect to i
(`)
0 ) nuclear I(`) × I(`)-matrix M′

` over Â which is σ-similar

to M`. Let M′
`,unit ∈ Â be the (i

(`)
0 , i

(`)
0 )-entry of M′

`. This is a 1-unit. Then

ξ`M′
`,unit ∈ Â is σ-similar to the (i

(`)
0 , i

(`)
0 )-entry of

∧c`(H) which we denote
by a`. We will need these definitions for ` = j − 1 and ` = j if j > 0. If j = 0
we set ξ−1 = M−1 = M′

−1 = M′
−1,unit = a−1 = 1 ∈ R. Our definitions imply

α = aj/aj−1, thus if we set ξ = ξj/ξj−1 and µ = M′
j,unit/M′

j−1,unit we find
that α is σ-similar to ξµ. Let

H(T,U) =
∏

x∈X

1

1 − ξt
xµs

x(1 + F ([πm log(µx)]))T deg x
.

This is a holomorphic function on D>0 × D>0 where we view T (resp. U) as
coordinate for the first (resp. second) factor D>0. Recall from 5.2 the finite
étale covering of rigid spaces D>0 → W(s,t) which on Cp-valued points is given
by

D>0 → W(s,t)(Cp) ∼= HomK-an(U
(1)

R , C×
p )
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z 7−→ [w 7→ 1 + F ([πm log(w)])(z)].

We see that for any w ∈ U
(1)
R the holomorphic function 1 + F ([πm log(w)])(U)

in the variable U on D>0 descends to W(s,t). Thus our H(T,U) descends to a
holomorphic function Lα,(s,t) on D>0 ×W(s,t). Moreover, for κ ∈ W(s,t)(Cp) ⊂
W(Cp) = HomK-an(R×, C×

p ) the pullback of Lα,(s,t) via

D>0 → D>0 ×W(s,t), t 7→ (t, κ)

is L(α, T, κ): this is immediate since ξxµx = αx is the decomposition of αx ∈
R× according to R× = µq−1 × U

(1)
R , for any x ∈ X. These considerations also

show that for K-rational points y ∈ D≥ν we have

H(T, ι(y)) = L(ξtµsµy, T ) (1)

with ι : D≥ν → D>0 from 5.4. To show that Lα,(s,t) is meromorphic on
A1

Cp
×W(s,t) it is enough to show that H(T,U) is meromorphic on A1

Cp
×D>0.

Consider the Cp[[T,U ]]-element

H(T,U) =
∏

r1,r2≥1

(

d∏

i=0

Dr1,r2,i,s,t
ξ,M′

j ,M′
j−1

(T,U)(−1)i−1

)(−1)r1+r2r1r2 .

By 6.8 each factor Dr1,r2,i,s,t
ξ,M′

j ,M′
j−1

(T,U) is holomorphic on A1
Cp

×D>0. Moreover,

since
∧r`(M′

`) is divisible by πr`−1 it also follows from 6.8 that ordπ(1 −
Dr1,r2,i,s,t

ξ,M′
j ,M′

j−1
(T,U)) tends to infinity as r1 + r2 tends to infinity (if the index

set G is finite then the above product is even finite). Therefore H(T,U) is
meromorphic on A1

Cp
× D>0. We claim

H(T,U) = H(T,U)

as meromorphic functions on D>0 × D>0. As in 6.8 it is enough to check this
on all subsets D>0 × ι(y) ⊂ D>0 × D>0 for K-rational points y ∈ D≥ν . From

4.11 we get the following equalities in the Grothendieck group ∆(Â):

[ξt(M′
j,unit)

s(M′
j,unit)

y] =
⊕

r≥1

(−1)r−1r[ξtBs−r(M′
j)|V =y ⊗

r∧
(M′

j)]

[(M′
j−1,unit)

−s(M′
j−1,unit)

−y] =
⊕

r≥1

(−1)r−1r[B−s−r
− (M′

j−1)|V =y⊗
r∧

(M′
j−1)]

(with the notation |V =y explained in 6.5 still in force: V is the standard coor-
dinate on D≥ν). Together

[ξtµsµy] = [
ξt(M′

j,unit)
s(M′

j,unit)
y

(M′
j−1,unit)

s(M′
j−1,unit)

y
] =
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⊕

r1,r2≥1

(−1)r1+r2r1r2[ξ
t(Bs−r1(M′

j)⊗
r1∧

M′
j⊗B−s−r2

− (M′
j−1)⊗

r2∧
M′

j−1)|V =y].

Combining with 6.8 and the trace formula 2.13 we get

H(T, ι(y)) = L(ξtµsµy, T ). (2)

Comparing (1) and (2) completes the proof.

7 Higher rank

7.1 A finite rank σ-module (M,φ) over Â is called ordinary if it admits a

separated and exhausting φ-stable filtration by free sub-Â-modules

0 = M0 ⊂ M1 ⊂ M2 ⊂ . . .

of M with free quotients, such that each quotient (Mi/Mi+1, φ) is of
the form (Ui, π

i.φi) where (Ui, φi) is a unit root σ-module; that is,

Âσ ⊗ Ui → Ui, a ⊗ u 7→ a.φi(u) is bijective. The (Ui, φi) are called the
graded pieces of (M,φ), and (U0, φ0) is called the unit root part of (M,φ), also
denoted by φunit.

Theorem 7.2. (Hodge-Newton slope decomposition for overconvergent σ-
modules) Let M be the matrix, in some basis, of a graded piece of an ordinary

and overconvergent finite rank σ-module (M,φ) over Â. Then there exists a
convergent series representation

[M] =
∑

r≥1

±[Cr]

in ∆(Â) with nuclear overconvergent matrices Cr over A.

Proof: (1) By induction on m we prove that for each m ∈ N0 there exist finite
index sets J1

m, J2
m, ordinary overconvergent σ-modules αt and βt of finite rank

for each t ∈ J1
m ∪ J2

m, with (βt)unit of rank one, and integers mt ≥ m for each
t ∈ J2

m, such that

[M] = (
∑

t∈J2
m

±[πmt(αt)unit ⊗ (βt)
−1
unit]) + (

∑

t∈J1
m

±[αt ⊗ (βt)
−1
unit]) (∗)

in ∆(Â). Here, by abuse of notation, we identify a finite rank σ-module with
the σ-similarity class of matrices it corresponds to. For m = 0 one has [M] =
[αunit ⊗β−1

unit] for some α, β, by [16] 6.2. Now let us pass from m to m+1. Fix
t ∈ J2

m. Let (αt,t′)t′∈Tt
be the set of higher graded pieces of αt (i.e. (αt)unit

omitted). By [16] 6.2 again, there exist for each t′ ∈ Tt ordinary overconvergent
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finite rank σ-modules α̃t,t′ and β̃t,t′ , with (β̃t,t′)unit of rank one, such that

[αt,t′ ] = [(α̃t,t′)unit ⊗ (β̃t,t′)
−1
unit]. Thus

[(αt)unit ⊗ (βt)
−1
unit] = [αt ⊗ (βt)

−1
unit] −

∑

t∈Tt

[πmt′ (αt,t′) ⊗ (βt)
−1
unit]

= [αt ⊗ (βt)
−1
unit] −

∑

t∈Tt

[πmt′ (α̃t,t′)unit ⊗ (βt ⊗ β̃t,t′)
−1
unit]

with integers mt′ ≥ 1 (the higher slopes of αt). Inserting this into the formula
given by induction hypothesis for m gives the formula for m + 1.
(2) To get the desired convergent series representation for M it is now
enough to express, for t ∈ J1

m, the terms (βt)
−1
unit in (∗) through overconver-

gent matrices. This is achieved by factoring βt according to 6.3 and applying
4.11 (with V = 0 and s = −1 there) to the 1-normal overconvergent factor of βt.

7.3 As a corollary of Theorem 7.2 (and 3.4) we recover Wan’s result: that
L(M, T ) is a meromorphic function on A1.
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Abstract. Let p ≥ 5 be a prime number. The Hasse invariant is
a modular form modulo p that is often used to produce congruences
between modular forms of different weights. We show how to produce
such congruences between eigenforms of weights 2 and p+1, in terms
of group cohomology. We also illustrate how our method works for
inert primes p ≥ 5 in the contexts of quadratic imaginary fields (where
there is no Hasse invariant available) and Hilbert modular forms over
totally real fields, cyclic and of even degree over the rationals.

2000 Mathematics Subject Classification: 11F33

1 The puzzle

Let p ≥ 5 be a prime number. In the theory of modular forms mod p (see [S]
and [SwD]) a special role is played by the Hasse invariant and the Θ operator.
We fix an embedding Q ↪→ Qp, and denote the corresponding place of Q by ℘.
We have a modular form Ep−1 of weight p − 1 in Mp−1(SL2(Z),Zp), that
is congruent to 1 mod ℘ (see [S] and [SwD]). By congruence we will mean a
congruence of Fourier coefficients at almost all primes. The modular form Ep−1

is the normalised form of the classical Eisenstein series, and has q-expansion

1 − 2(p − 1)/Bp−1

∑
σp−2(n)qn,

and the congruence property of Ep−1 is then a consequence of the divisibility
of the denominator of Bp−1 by p (the theorem of Clausen-von Staudt: see
[S, §1.1]).
Multiplying by Ep−1 gives the fact that for any positive integer N prime
to p a weight 2 form in S2(Γ1(N),Zp) is congruent mod p to a weight
p + 1 form in Sp+1(Γ1(N),Zp). It follows that a weight 2 normalized eigen-
form in S2(Γ1(N),Zp) is congruent mod ℘ to a weight p + 1 eigenform in
Sp+1(Γ1(N),Zp) (see [DS, §6.10]).
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For N ≥ 5 prime to p, the Hasse invariant constructed geometrically (see
[Kz]) is a global section of the coherent sheaf ω⊗p−1

X1(N)Fp
where ωX1(N)Fp

is the

pull back of the canonical sheaf ΩE/X1(N)Fp
by the zero section of the map

EFp
→ X1(N)Fp

, and with EFp
the universal generalised elliptic curve over

X1(N)Fp
: Ep−1 can be interpreted as a characteristic zero lift of the Hasse

invariant (Deligne).
The Θ operator on modular forms mod p is defined by:

Θ(
∑

anqn) =
∑

nanqn

where an ∈ Fp. It preserves levels, and increases weights by p + 1, i.e., it gives
maps:

Mk(Γ1(N),Fp) −→ Mk+p+1(Γ1(N),Fp),

preserving cusp forms. The analog in group cohomology of the Θ operator on
mod p modular forms, can be found in [AS]. The aim of this note is to find a
group theoretic substitute for the Hasse invariant.
Unlike as is done in [AS] in the case of Θ, for good reasons we cannot find an
element in group cohomology that is an analog of the Hasse invariant. What
we do find instead is a procedure for raising weights by p − 1 of mod p Hecke
eigenforms of weight two (preserving the level) that is one of the principal uses
of the Hasse invariant.
Using the Eichler-Shimura isomorphism the relevant Hecke modules are
H1(Γ1(N),Fp) and H1(Γ1(N),Symmp−1(F2

p)). From the viewpoint of group
cohomology the above considerations give that a Hecke system of eigenvalues
(al)l 6=p in the former also arises from the latter. This at first sight is puzzling as
indeed the p−1st symmetric power of the standard 2-dimensional representation
of SL2(Fp) is irreducible. In this short note we “resolve” this puzzle.
Indeed the solution to the puzzle is implicit in an earlier paper of one of us
(cf. Remark 4 at the end of Section 3 of [K]) where the issue arose in trying
to understand why the methods for studying Steinberg lifts of an irreducible
modular Galois representation ρ:GQ → GL2(Fp) were qualitatively different
from those for studying principal series and supercuspidal lifts. The buzzwords
there were that the p-dimensional minimal K-type of a Steinberg representation
of GL2(Qp) also arises in the restriction to GL2(Zp) of any unramified principal
series representation of GL2(Qp).
The key to the solution of this puzzle (again) is a study of the degeneracy map
H1(Γ1(N),Fp)

2 → H1(Γ1(N) ∩ Γ0(p),Fp).
In Section 3 we will give applications of our method in the situtation of imag-
inary quadratic fields, where the “geometric Hasse invariant” perforce is not
available. Furthermore modular forms in this setting do not have a multiplica-
tive structure. We owe this observation, and indeed the suggestion that our
methods should work in this case, to Ian Kiming. Our cohomological methods
do work in this situation under the hypothesis that p ≥ 5 is inert, but have
the (inherent) defect that results are about characteristic p modular forms,
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and may not be used directly to produce congruences between characteristic 0
eigenforms of different weights. This comes from the fact that in this situation
torsion in cohomology can possibly occur even after localisation at “interesting”
maximal ideals of the Hecke algebra (see the concluding remark).
In Section 4 we deal with the case of p ≥ 5 inert in a totally real field that is
cyclic and of even degree over Q, and in Section 5 we spell out some conse-
quences of [K] for raising of levels in higher weights.
It would be interesting to see if the other cases cases can be treated by extending
these methods.

2 The solution to the puzzle

Let us recall the hypotheses: p ≥ 5 is prime, and N ≥ 1 is prime to p. Consider
the cohomology groups H1(Γ1(N),Fp) and H1(Γ1(N) ∩ Γ0(p),Fp). We have
the standard action of Hecke operators Tr on these cohomology groups. We
recall that we only consider the action for (r, p) = 1. We have the degeneracy
map

α : H1(Γ1(N),Fp)
2 → H1(Γ1(N) ∩ Γ0(p),Fp)

that is defined to be the sum α1 + α2 where α1 is the restiction map, and α2

the “twisted” restriction map, given by conjugation by

g :=

(
p 0
0 1

)

followed by restriction. The map α is equivariant for the Tr’s that we consider.
We have the following variant of a lemma of Ihara and Ribet (see [R], and
also [CDT, 6.3.1]).

Lemma 1 The map α:H1(Γ1(N),Fp)
2 → H1(Γ1(N) ∩ Γ0(p),Fp) is injective.

Proof. Let ∆ be the subgroup of SL2(Z[1/p]) of elements congruent to (1
0
∗
1 )

modulo N . The arguments of [S2, II, §1.4] show that ∆ is the amalgam of Γ1(N)
and gΓ1(N)g−1 along their intersection Γ1(N)∩Γ0(p). The universal property
of amalgams then implies that the kernel of α is H1(∆,Fp) i.e., Hom(∆,Fp).
By [S1], each subgroup of finite index of SL2(Z[1/p]) is a congruence subgroup,
hence each morphism from ∆ to Fp factors through the image ∆n of ∆ in some
SL2(Z/nZ) with n prime to p. The result follows, as p is at least 5 and does
not divide N . (We use that SL2(Z) maps surjectively to SL2(Z/nZ).)

By Shapiro’s lemma we see that H1(Γ1(N)∩Γ0(p),Fp) is isomorphic (as a Hecke
module) to H1(Γ1(N),Fp[P

1(Fp)]). Using an easy computation of Brauer char-
acters we deduce that the semisimplification of Fp[P

1(Fp)] under the natural
action of Γ1(N) (that factors through Γ1(N)/Γ1(N)∩Γ(p)) is id⊕Symmp−1(F2

p).
In fact as the cardinality of P1(Fp) is prime to p we deduce that this is
indeed true even before semisimplification, i.e., Fp[P

1(Fp)] is semisimple as
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a SL2(Fp)-module. The submodule id is identified with the constant func-
tions, with complement the functions with zero average. Thus we identify
H1(Γ1(N) ∩ Γ0(p),Fp) with H1(Γ1(N),Fp)⊕ H1(Γ1(N),Symmp−1(F2

p)). The
degeneracy map α takes the form:

H1(Γ1(N),Fp)
2 → H1(Γ1(N),Fp) ⊕ H1(Γ1(N),Symmp−1(F2

p)).

Lemma 2 The map:

β:H1(Γ1(N),Fp) −→ H1(Γ1(N),Symmp−1(F2
p)),

that is the composition of α2 with the projection of H1(Γ1(N) ∩ Γ0(p),Fp) to
H1(Γ1(N),Symmp−1(F2

p)), is injective.

Proof. This is an immediate consequence of Lemma 1, and the fact that
α1:H

1(Γ1(N),Fp) → H1(Γ1(N) ∩ Γ0(p),Fp) has image exactly the first sum-
mand of H1(Γ1(N),Fp) ⊕ H1(Γ1(N),Symmp−1(F2

p)).

In view of the Eichler-Shimura isomorphism (see [DI, §12]), we have a new proof
by a purely group cohomological method of the following well-known result.

Corollary 1 Suppose moreover that N ≥ 5. A semi-simple representa-
tion ρ:GQ → GL2(Fp) that arises from S2(Γ1(N),Qp) also arises from
Sp+1(Γ1(N),Qp).

Proof. This follows from the above lemma, together with the following facts.

1. The degeneracy map β is Hecke equivariant for the Tr’s that we con-
sider, and it sends H1

par(Γ1(N),Fp) to H1
par(Γ1(N),Symmp−1(F2

p)). The
subscript “par” denotes parabolic cohomology, i.e., the intersection of
the kernels of the restriction maps to the cohomology of the unipotent
subgroups of Γ1(N).

2. For V any Γ1(N)-module that is free of finite rank over Z, and such that
H0(Γ1(N),Fp ⊗ V ∨) = 0, the map:

H1
par(Γ1(N), V ) → H1

par(Γ1(N),Fp ⊗ V )

is surjective (one uses that H1
par(Γ1(N),Fp ⊗ V ) is a quotient of

H1
c (Y1(N),Fp ⊗ FV ), with FV the sheaf given corresponding to V , and

that H2
c (Y1(N),Fp ⊗FV ) = 0 by Poincaré duality).

Remarks.

1. One can ask the converse question as to which maximal ideals m of the
Hecke algebra acting on H1(Γ1(N),Symmp−1(F2

p)) are pull backs of max-
imal ideals of the Hecke algebra acting on H1(Γ1(N),Fp). Then, for non-
Eisenstein m, the answer is in terms of the Galois representation ρm: a
necessary and sufficient condition is that ρm be finite flat at p (see [R1,
Thm. 3.1]). Perhaps one does not expect to have a group cohomological
approach to such a subtle phenomenon.
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2. Let ρ be an irreducible 2-dimensional mod p representation of GQ. We
just saw that if ρ arises from S2(Γ1(N)), then it also does so from
Sp+1(Γ1(N)), using only group cohomology. See [He] for the case of
higher weights, when the raising of weights by p − 1 is explained more
directly in terms of the Jordan-Hölder series of the Symmn(F2

p). On the
other hand the method here being cohomological cannot be used to raise
weights from 1 to p, while multiplication by the Hasse invariant can be
used for this (see [DS]).

3 Imaginary quadratic fields

Let p ≥ 5 be a prime number, K an imaginary quadratic field in which p is
inert, and N a non-zero ideal in the ring of integers OK not containing p.
Let Γ1(N ) be the congruence subgroup of SL2(OK) of level N . As before we
have the degeneracy map:

α:H1(Γ1(N ),Fp)
2 → H1(Γ1(N ) ∩ Γ0(p),Fp)

that is defined to be the sum α1 ⊕ α2 where α1 is the restriction map, and α2

the “twisted” restriction map, given by “conjugation” by

g :=

(
p 0
0 1

)

followed by restriction. Then we again have:

Lemma 3 The map: α:H1(Γ1(N ),Fp)
2 → H1(Γ1(N )∩Γ0(p),Fp) is injective.

Proof. One replaces Z by OK and N by N in the proof of Lemma 1. Strong
approximation (see [PR]) guarantees that the reduction map from SL2(OK) to
SL2(OK/nOK) is surjective for all n ≥ 1.

By Shapiro’s lemma we see that H1(Γ1(N ) ∩ Γ0(p),Fp) is isomorphic to
H1(Γ1(N ),Fp[P

1(F℘)]), where F℘ = OK/℘. Using an easy computation of
Brauer characters we deduce that the semisimplification of F℘[P1(F℘)] un-
der the natural action of Γ1(N ) (that factors through Γ1(N )/Γ1(N ) ∩ Γ(℘))
is id ⊕ Symmp−1(F2

℘) ⊗ Symmp−1(F2
℘)σ, with σ the non-trivial automorphism

of F℘, and the superscript denotes that the action has been twisted by σ.
Note that Symmp−1(F2

℘)⊗Symmp−1(F2
℘)σ is irreducible as a SL2(F℘)-module:

this is a particular case of the well-known tensor product theorem of Steinberg
(see [St]). In fact as the cardinality of P1(F℘) is prime to p we deduce as
before that this is indeed true even before semisimplification, i.e., Fp[P

1(F℘)]
is semisimple as a SL2(F℘)-module.
Thus α maps H1(Γ1(N ),F℘)2 into the direct sum of H1(Γ1(N ),F℘) and
H1(Γ1(N ),Symmp−1(F2

℘) ⊗ Symmp−1(F2
℘)σ), and composing with the projec-

tion to the second term gives a map:

β:H1(Γ1(N ),F℘) → H1(Γ1(N ),Symmp−1(F2
℘) ⊗ Symmp−1(F2

℘)σ)
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Lemma 4 The map β is injective.

Proof. After the above discussion, this is an immediate consequence of
Lemma 3 as before.

The map β is equivariant for the the action of all Hecke operators outside p
(i.e., induced by elements of SL2(Ql ⊗ K) for l 6= p). Thus we have proved:

Corollary 2 Each system of Hecke eigenvalues in Fp that arises from
H1(Γ1(N ),Fp) also arises from H1(Γ1(N ),Symmp−1(F2

℘) ⊗ Symmp−1(F2
℘)σ).

Remark. This result as it stands does not yield any information about congru-
ences of systems of Hecke eigenvalues occurring in characteristic zero, as there
is a problem with lifting. More precisely, the obstruction is in the p-torsion of
H2(Γ1(N ),Symmp−1(O2) ⊗ Symmp−1(O2)σ).

4 Totally real fields

The method is also applicable at inert primes p ≥ 5 in the case of Hilbert
modular forms over cyclic totally real fields of even degree. We quickly sketch
the approach which is similar to that of the previous two sections. Let F/Q be
a totally real, cyclic extension of even degree, Gal(F/Q) = 〈σ〉, p ≥ 5 an inert
prime, with ℘ the unique prime of F above it, F℘ the residue field at ℘, and
N an ideal of the ring of integers of F that is prime to p.
Consider the quaternion algebra D over F ramified at all infinite places and
unramified at all finite places, and for any F -algebra R, set B(R) = (D⊗F R)∗.
Let A be the adeles of F , and U1(N ) the standard open compact (mod centre)
subgroup of B(A). The space of mod p weight 2 modular forms S(N ) (resp.,
S(N , ℘)) for U1(N ) (resp., U1(N ) ∩ U0(℘)) in this case consists of functions
B(A) → Fp that are left and right invariant under B(F ) and U1(N ) (resp.,
U1(N )∩U0(℘)) respectively, modulo the space of functions that factor through
the norm. These spaces come equipped with Hecke actions. This time control-
ling the kernel of the degeneracy map S(N )2 → S(N , ℘), i.e., analog of Lem-
mas 1 and 3, is easier and follows from strong approximation. Note again that

the representation Symmp−1(F2
℘)⊗Symmp−1(F2

℘)σ⊗· · ·⊗Symmp−1(F2
℘)σ[F :Q]−1

of GL2(F℘) (which again is a direct summand, with complement the trivial rep-
resentation, of the induction of the trivial representation from the Borel sub-
group of GL2(F℘) to GL2(F℘)) is irreducible as a consequence of Steinberg’s
tensor product theorem.
Now following the method of the previous section, and invoking the Jacquet-
Langlands correspondence yields the following result.

Proposition 1 With notation as above, suppose that an irreducible represen-
tation ρ:GF → GL2(Fp) arises from a Hilbert modular form on Γ1(N ) of
weight (2, . . . , 2). Then it also arises from a a Hilbert modular form on Γ1(N )
of weight (p + 1, . . . , p + 1).
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Remarks: It will be of interest to work out some of the Hasse invariants with
non-parallel weights obtained by E. Goren from the viewpoint of this paper
(see [G]).

5 Congruences between forms of level N and Np for weights ≥ 2

We take this opportunity to write down a level raising criterion from level N
to level Np for all weights that is easily deduced from Corollary 9 of [K], and
list some errata to [K].

Proposition 2 Let f be a newform in Sk(Γ1(N)) for an integer k ≥ 2, such
that the mod ℘ representation corresponding to it is irreducible. Then:

• If k = 2, f is congruent to a p-new form in Sk(Γ1(N) ∩ Γ0(p)) if and
only if ap(f)2 = εf (p) mod ℘ where εf is the nebentypus of f .

• If 2 < k ≤ p + 1, f is congruent to a p-new form in Sk(Γ1(N)∩Γ0(p)) if
and only if ap(f) is 0 mod ℘.

• If k > p+1, f is always congruent to a p-new form in Sk(Γ1(N)∩Γ0(p)).

Errata to [K]

One of us (C.K.) would like to point out some typos in [K]:

1. Lines 12 and 19 of Definition 10 page 143 of [K] replace

f :D(Q)\D(A∞)/V −→ HomO(M,Symmk−2(O)).

by
f :D(Q)\D(A∞) −→ HomO(M,Symmk−2(O)).

2. On line 12, page 146 of [K] replace V1(N)p by V1(N)p × Vp.
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References

[AS] A. Ash, G. Stevens, Modular forms in characteristic l and special val-
ues of their L-functions, Duke Math. J. 53 (1986), no. 3, 849–86

[CDT] B. Conrad, F. Diamond, R. Taylor. Modularity of certain potentially
Barsotti-Tate Galois representations. J.A.M.S. 12 (1999), 521–567.

Documenta Mathematica 8 (2003) 43–50



50 Bas Edixhoven, Chandrashekhar Khare

[DI] F. Diamond, J. Im Modular forms and modular curves. In “Seminar on
Fermat’s last theorem”, Canadian Mathematical Society Conference
Proceedings 17, 1995 (V. Kumar Murty, editor).

[DS] P. Deligne and J-P. Serre. Formes modulaires de poids 1. Ann. Sci.
Ecole Norm. Sup. (4) 7, 507–530 (1974).

[G] E.Z. Goren. Hasse invariants for Hilbert modular varieties. Israel J.
Math. 122 (2001), 157–174.

[He] A. Herremans. A combinatorial interpretation of Serre’s conjecture on
modular Galois representations, Preprint 2002-03, Orsay.

[K] C. Khare, A local analysis of congruences in the (p, p) case: Part II,
Invent. Math. 143 (2001), 129–155.

[Kz] N. Katz, A result on modular forms in characteristic p, Modular func-
tions of one variable V, pp. 53–61, Lecture Notes in Math., Vol. 601,
Springer, Berlin, 1977.

[PR] V. Platonov and A. Rapinchuk. Algebraic groups and number theory.
Academic Press, 1994.

[R] K.A. Ribet, Congruence relations between modular forms, Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw,
1983), 503–514, PWN, Warsaw, 1984.

[R1] K.A. Ribet, Report on mod l representations of Gal(Q/Q). Proceed-
ings of Symposia in Pure Mathematics, 55 (1994), Part 2.

[S] J-P. Serre, Formes modulaires et fonctions zeta p-adiques, Modular
functions of one variable III, pp. 191–268, Lecture Notes in Math.,
Vol. 350, Springer, 1973.

[S1] J-P. Serre, Le probleme des groupes de congruence pour SL2, Annals
of Math. 92 (1970), 489–527.

[S2] J-P. Serre, Trees. Springer-Verlag, 1980.

[St] R. Steinberg, Tensor product theorems. Proceedings of Symposia in
Pure Mathematics Volume 47 (1987), 331–338.

[SwD] H.P.F. Swinnerton-Dyer, On `-adic representations and congruences
for coefficients of modular forms, Modular functions of one variable
III, pp. 1–55, Lecture Notes in Math., Vol. 350, Springer, 1973.

Bas Edixhoven
Mathematisch Instituut
Universiteit Leiden
P.O. Box 9512
2300 RA Leiden
The Netherlands
edix@math.leidenuniv.nl

Chandrashekhar Khare
Department of Mathematics
University of Utah
155 South 1400 East
Salt Lake City
UT 84112
U.S.A.
shekhar@math.utah.edu

Documenta Mathematica 8 (2003) 43–50



Documenta Math. 51

Variations on the Bloch-Ogus Theorem

Ivan Panin, Kirill Zainoulline

Received: March 24, 2003

Communicated by Ulf Rehmann

Abstract. Let R be a semi-local regular ring of geometric type
over a field k. Let U = SpecR be the semi-local scheme. Consider a
smooth proper morphism p : Y → U . Let Yk(u) be the fiber over the
generic point of a subvariety u of U . We prove that the Gersten-type
complex for étale cohomology

0 → Hq
ét(Y,C) → Hq

ét(Yk(U), C) →
∐

u∈U(1)

Hq−1
ét (Yk(u), C(−1)) → . . .

is exact, where C is a locally constant sheaf with finite stalks of Z/nZ-
modules on Yet and n is an integer prime to char(k).

2000 Mathematics Subject Classification: 14F20, 16E05
Keywords and Phrases: étale cohomology, arithmetic resolution

1 Introduction

The history of the subject of the present paper starts with the famous paper
of D. Quillen [14] where he proves the geometric case of the Gersten’s conjec-
ture for K-functor. One may ask whether the similar result holds for étale
cohomology.
The first answer on this question was given by S. Bloch and A. Ogus in [2]. They
proved the analog of Gersten’s conjecture for étale cohomology with coefficients
in the twisted sheaf µ⊗i

n of n-th roots of unity. More precisely, let X be a
smooth quasi-projective variety over a field k and let x = {x1, . . . , xm} ⊂ X be
a finite subset of points. We denote by U = SpecOX,x the semi-local scheme
at x. Consider the sheaf µn of n-th roots of unity on the small étale site Xet,
with n prime to char(k). Then the main result of [2] (see Theorem 4.2 and
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Example 2.1) implies that the Gersten-type complex for étale cohomology with
supports

0 → Hq(U , µ⊗i
n ) →

∐

u∈U(0)

Hq
u(U , µ⊗i

n ) →
∐

u∈U(1)

Hq+1
u (U , µ⊗i

n ) → · · · (†)

is exact for all i ∈ Z and q ≥ 0, where U (p) denotes the set of all points of
codimension p in U .
The next step was done by O. Gabber in [8]. He proved that the complex (†)
is exact for cohomology with coefficients in any torsion sheaf C on Xet that
comes from the base field k, i.e., C = p∗C ′ for some sheaf C ′ on (Spec k)et and
the structural morphism p : X → Spec k.
It turned out that the proof of Gabber can be applied to any cohomology
theory with supports that satisfies the same formalism as étale cohomology do.
This idea was realized in the paper [4] by J.-L. Colliot-Thélène, R. Hoobler
and B. Kahn. Namely, they proved that a cohomology theory with support h∗

which satisfies some set of axioms [4, Section 5.1] is effaceable [4, Definition
2.1.1]. Then the exactness of (†) follows immediately by trivial reasons [4,
Proposition 2.1.2]. In particular, one gets the exactness of (†) for the case
when U is replaced by the product U ×k T , where T is a smooth variety over k
[4, Theorem 8.1.1]. It was also proven [4, Remark 8.1.2.(3), Corollary B.3.3] the
complex (†) is exact for the case when dimU = 1 and the sheaf of coefficients
µ⊗i

n is replaced by a bounded below complex of sheaves, whose cohomology
sheaves are locally constant constructible, torsion prime to char(k). The goal
of the present paper is to prove the latter case for any dimension of the scheme
U . Namely, we want to prove the following

1.1 Theorem. Let X be a smooth quasi-projective variety over a field k. Let
x = {x1, . . . , xm} ⊂ X be a finite subset of points and U = SpecOX,x be the
semi-local scheme at x. Let C be a bounded below complex of locally constant
constructible sheaves of Z/nZ-modules on Xet with n prime to char(k), Then
the E1-terms of the coniveau spectral sequence yield an exact complex

0 → Hq(U , C) →
∐

u∈U(0)

Hq
u(U , C) →

∐

u∈U(1)

Hq+1
u (U , C) → · · ·

of étale hypercohomology with supports.

1.2 Remark. For the definition of a constructible sheaf we refer to [1, IX] or
[9, V.1.8]. Observe that a locally constant sheaf with finite stalks provides an
example of a locally constant constructible sheaf (see [1, IX.2.13]).

1.3 Corollary. Let R be a semi-local regular ring of geometric type over
a field k. We denote by U = SpecR the respective semi-local affine scheme.
Let C be a bounded below complex of locally constant constructible sheaves of
Z/nZ-modules on Uet with n prime to char(k), Then the complex

0 → Hq
ét(U , C) → Hq

ét(Spec k(U), C) →
∐

u∈U(1)

Hq−1
ét (Spec k(u), C(−1)) → · · ·
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is exact, where k(U) is the function field of U , k(u) is the residue field of u and
C(i) = C ⊗ µ⊗i

n .

Proof. Follows by purity for étale cohomology (see the proof of [4, 1.4]).

1.4 Corollary. Let R be a semi-local regular ring of geometric type over a
field k. Let p : Y → U be a smooth proper morphism, where U = Spec R. Let C
be a locally constant constructible sheaf of Z/nZ-modules on Yet with n prime
to char(k). Then the complex

0 → Hq
ét(Y,C) → Hq

ét(Yk(U), C) →
∐

u∈U(1)

Hq−1
ét (Yk(u), C(−1)) → · · ·

is exact, where Yk(u) = Spec k(u) ×U Y .

Proof. The cohomology of Y with coefficients in C coincide with the hyper-
cohomology of U with coefficients in the total direct image Rp∗C [9, VI.4.2].
Observe that the bounded complex Rp∗C has locally constant constructible
cohomology sheaves. Now by the main result of paper [12], a bounded complex
of sheaves on Uet with locally constant constructible cohomology sheaves is in
the derived category isomorphic to a bounded complex of locally constant con-
structible sheaves. Hence, there exists a bounded complex C of locally constant
constructible sheaves that is quasi-isomorphic to the complex Rp∗C. Replace
Rp∗C by C and apply the previous corollary.

1.5 Remark. The assumptions on the sheaf C are essential. As it was shown
in [7] for the case k = C and C = Z there are examples of extensions Y/U for
which the map Hq

DR(Y ) → Hq
DR(Yk(U)) is not injective.

1.6 Remark. The injectivity part of Theorem 1.1 (i.e., the exactness at the
first term) has been proven recently in [15] by extending the arguments of
Voevodsky [16].

The structure of the proof of Theorem 1.1 is the following. First, we give some
general formalism (sections 2, 3 and 4). Namely, we prove that any functor F
that satisfies some set of axioms (homotopy invariance, transfers, finite mon-
odromy) is effaceable (Theorem 4.7). Then we apply this formalism to étale
cohomology (section 5). More precisely, we check that the étale cohomology
functor F (X,Z) = H∗

Z(X, C) satisfies all the axioms and, hence, is effaceable.
It implies Theorem 1.1 immediately.
We would like to stress that our axioms for the functor F are different from
those in [4]. The key point of the proof is that we use Geometric Presentation
Lemma of Ojanguren and Panin (see Lemma 3.5) instead of Gabber’s. This
fact together with the notion of a functor with finite monodromy allows us to
apply the techniques developed in [10], [11] and [17].

Acknowledgments This paper is based on ideas of an earlier unpublished
manuscript of the first author. Both authors want to thank INTAS project
99-00817 and TMR network ERB FMRX CT-97-0107 for financial support.
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2 Definitions and Notations

2.1 Notation. In the present paper all schemes are assumed to be Noetherian
and separated. By k we denote a fixed ground field. A variety over k is an
integral scheme of finite type over k. To simplify the notation sometimes we
will write k instead of the scheme Spec k. We will write X1×X2 for the fibered
product X1×kX2 of two k-schemes. By U we denote a regular semi-local scheme
of geometric type over k, i.e., U = SpecOX,x for a smooth affine variety X over
k and a finite set of points x = {x1, . . . , xn} of X. By X we denote a relative
curve over U (see 3.1.(i)). By Z and Y we denote closed subsets of X . By Z
and Z ′ we denote closed subsets of U . Observe that X and U are essentially
smooth over k and all schemes X , Z, Y, Z, Z ′ are of finite type over U .

2.2 Notation. Let U be a k-scheme. Denote by Cp(U) a category whose
objects are couples (X,Z) consisting of an U -scheme X of finite type over U and
a closed subset Z of the scheme X (we assume the empty set is a closed subset
of X). Morphisms from (X,Z) to (X ′, Z ′) are those morphisms f : X → X ′ of
U -schemes that satisfy the property f−1(Z ′) ⊂ Z. The composite of f and g
is g ◦ f .

2.3 Notation. Denote by F : Cp(U) → Ab a contravariant additive functor
from the category of couples Cp(U) to the category of (graded) abelian groups.
Recall that F is additive if one has an isomorphism

F (X1 q X2, Z1 q Z2) ∼= F (X1, Z1) ⊕ F (X2, Z2).

Sometimes we shall write FZ(X) for F (X,Z) having in mind the notation used
for cohomology with supports.

Now notions of a homotopy invariant functor, a functor with transfers and a
functor that satisfies vanishing property will be given.

2.4 Definition. A contravariant functor F : Cp(U) → Ab is said to be ho-
motopy invariant if for each U -scheme X smooth or essentially smooth over k
and for each closed subset Z of X the map FZ(X) → FZ×A1(X × A1) induced
by the projection X × A1 → X is an isomorphism.

2.5 Definition. One says a contravariant functor F : Cp(U) → Ab satisfies
vanishing property if for each U -scheme X one has F (X, ∅) = 0.

2.6 Definition. A contravariant functor F : Cp(U) → Ab is said to be en-
dowed with transfers if for each finite flat morphism π : X ′ → X of U -schemes
and for each closed subset Z ⊂ X it is given a homomorphism of abelian groups

TrX′

X : Fπ−1(Z)(X
′) → FZ(X) and the family {TrX′

X } satisfies the following
properties:
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(i) for each fibered product diagram of U -schemes with a finite flat morphism
π

X ′ f ′

←−−−− X ′
1

π

y
yπ1

X
f←−−−− X1

and for each closed subset Z ⊂ X the diagram

FZ′(X ′)
F (f1)−−−−→ FZ′

1
(X ′

1)

TrX′

X

y
yTr

X′
1

X1

FZ(X)
F (f)−−−−→ FZ1

(X1)

is commutative, where Z ′ = π−1(Z), Z1 = f−1(Z) and Z ′
1 = π−1

1 (Z1);

(ii) if π : X ′
1 qX ′

2 → X is a finite flat morphism of U -schemes, then for each
closed subset Z ⊂ X the diagram

FZ′(X ′
1 q X ′

2)
“+”//

Tr
X′

1qX′
2

X ))RRRRRRRRRRRRRRR
FZ′

1
(X ′

1) ⊕ FZ′
2
(X ′

2)

Tr
X′

1
X1

+Tr
X′

2
X2

²²
FZ(X)

is commutative, where Z ′ = π−1(Z), Z ′
1 = X ′

1 ∩ Z ′ and Z ′
2 = X ′

2 ∩ Z ′;

(iii) if π : (X ′, Z ′) → (X,Z) is an isomorphism in Cp(U), then two maps TrX′

X

and F (π) are inverses of each other, i.e.

F (π) ◦ TrX′

X = TrX′

X ◦ F (π) = id.

3 The Specialization Lemma

The following definition is inspired by the notion of a good triple used by
Voevodsky in [16].

3.1 Definition. Let U be a regular semi-local scheme of geometric type over
the field k. A triple (X , δ, f) consisting of an U-scheme p : X → U , a section
δ : U → X of the morphism p and a regular function f ∈ Γ(X ,OX ) is called a
perfect triple over U if X , δ and f satisfy the following conditions:

(i) the morphism p can be factorized as p : X π−→ A1 × U pr−→ U , where π
is a finite surjective morphism and pr is the canonical projection on the
second factor;

(ii) the vanishing locus of the function f is finite over U ;
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(iii) the scheme X is essentially smooth over k and the morphism p is smooth
along δ(U);

(iv) the scheme X is irreducible.

3.2 Remark. The property (i) says that X is an affine curve over U . The
property (iii) implies that X is a regular scheme. Since X and A1 × U are
regular schemes by [6, 18.17] the morphism π : X → A1 ×U from (i) is a finite
flat morphism.

The following lemma will be used in the proof of Theorems 4.2 and 4.7.

3.3 Lemma. Let U be a regular semi-local scheme of geometric type over an
infinite field k. Let (p : X → U , δ : U → X , f ∈ Γ(X ,OX )) be a perfect
triple over U . Let F : Cp(U) → Ab be a homotopy invariant functor endowed
with transfers which satisfies vanishing property (see 2.4, 2.6 and 2.5). Then
for each closed subset Z of the vanishing locus of f the following composite
vanishes

FZ(X )
F (δ)−−−→ Fδ−1(Z)(U)

F (idU )−−−−→ Fp(Z)(U)

3.4 Remark. The mentioned composite is the map induced by the morphism
δ : (U , p(Z)) → (X ,Z) in the category Cp(U). Observe that we have δ−1(Z) ⊂
p(Z), where p(Z) is closed by (ii) of 3.1.

Proof. Consider the commutative diagram in the category Cp(U)

(X ,Y)
idX−−−−→ (X ,Z)

δ

x
xδ

(U , Z ′)
idU−−−−→ (U , Z)

where Z = δ−1(Z), Z ′ = p(Z) and Y = p−1(Z ′). It gives the relation F (idU ) ◦
F (δ) = F (δ) ◦ F (idX ). Thus to prove the theorem it suffices to check that the
following composite vanishes

FZ(X )
F (idX )−−−−→ FY(X )

F (δ)−−−→ FZ′(U) (†)

By Lemma 3.5 below applied to the perfect triple (X , δ, f) we can choose the
finite surjective morphism π : X → A1 × U from (i) of 3.1 in such a way that
it’s fibers at the points 0 and 1 of A1 look as follows:

(a) π−1({0} × U) = δ(U) qD0 (scheme-theoretically) and D0 ⊂ Xf;

(b) π−1({1} × U) = D1 and D1 ⊂ Xf.

Observe that Y = π−1(A1 × Z ′). Let Z ′
0 = π−1({0} × Z ′) ∩ D0 and Z ′

1 =
π−1({1} × Z ′) be the closed subsets of Y. By definition Z ′

0, Z ′
1 are the closed

subsets of D0 and D1 respectively. Since Z is contained in the vanishing locus
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of f and D0, D1 ⊂ Xf we have Z ∩ D0 = Z ∩ D1 = ∅. The latter means that
there are two commutative diagrams in the category Cp(U)

(X ,Y)
idX−−−−→ (X ,Z)

I0

x
xI0

(D0,Z ′
0)

idD0−−−−→ (D0, ∅)

and

(X ,Y)
idX−−−−→ (X ,Z)

I1

x
xI1

(D1,Z ′
1)

idD1−−−−→ (D1, ∅)

where I0, I1 are the closed embeddings D0 ↪→ X and D1 ↪→ X respectively.
By vanishing property 2.5 we have F (D0, ∅) = F (D1, ∅) = 0. Then applying F
to the diagrams we immediately get

F (I0) ◦ F (idX ) = 0 and F (I1) ◦ F (idX ) = 0. (1)

Let i0, i1 : U ↪→ A1 × U be the closed embeddings which correspond to the
points 0 and 1 of A1 respectively. The homotopy invariance property 2.4 implies
that

F (i0) = F (i1) : FA1×Z′(A1 × U) → FZ′(U). (2)

The base change property 2.6.(i) applied to the fibered product diagram

(X ,Y)
I1←−−−− (D1,Z ′

1)

π

y
yπ

(A1 × U , A1 × Z ′)
i1←−−−− (U , Z ′)

gives the relation
F (i1) ◦ TrXA1×U = TrD1

U ◦ F (I1), (3)

where TrXA1×U : FY(X ) → FA1×Z′(A1 × U) and TrD1

U : FZ′
1
(D1) → FZ′(U) are

the transfer maps for the finite flat morphism π and π|D1
respectively.

Consider the commutative diagram

FZ(X )
F (idX ) // FY(X )

(F (δ),F (I0))//

TrX
A1×U

²²

FZ′qZ′
0
(U q D0)

“+” //

Tr

²²

FZ′(U) ⊕ FZ′
0
(D0)

id+Tr
D0
Uuullllllllllllll

FA1×Z′(A1 × U)
F (i0) // FZ′(U)

(4)
where the central square commutes by 2.6.(i) and the right triangle commutes
by 2.6.(ii). In the diagram we identify U with δ(U) by means of the isomorphism

δ : U → δ(U) and use the property 2.6.(iii) to identify Tr
δ(U)
U with F (δ).

The following chain of relations shows that the composite (†) vanishes and we
finish the proof of the lemma.

F (δ)◦F (idX )
(1)
= (id+TrD0

U )◦(F (δ), F (I0))◦F (idX )
(4)
= F (i0)◦TrXA1×U◦F (idX )

(2)
=
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F (i1) ◦ TrXA1×U ◦ F (idX )
(3)
= TrD1

U ◦ F (I1) ◦ F (idX )
(1)
= 0

The following lemma is the semi-local version of Geometric Presentation
Lemma [10, 10.1]

3.5 Lemma. Let R be a semi-local essentially smooth algebra over an infinite
field k and A an essentially smooth k-algebra, which is finite over the polynomial
algebra R[t]. Suppose that e : A → R is an R-augmentation and let I = ker e.
Assume that A is smooth over R at every prime containing I. Given f ∈ A
such that A/Af is finite over R we can find an s ∈ A such that

1. A is finite over R[s].

2. A/As = A/I × A/J for some ideal J of A.

3. J + Af = A.

4. A(s-1)+Af=A.

Proof. In the proof of [10, 10.1] replace the reduction modulo maximal ideal
by the reduction modulo radical of the semi-local ring.

4 The Effacement Theorem

We start with the following definition which is a slightly modified version of [4,
2.1.1].

4.1 Definition. Let X be a smooth affine variety over a field k. Let x =
{x1, . . . , xn} be a finite set of points of X and let U = SpecOX,x be the semi-
local scheme at x. A contravariant functor F : Cp(X) → Ab is effaceable at x
if the following condition satisfied:

Given m ≥ 1, for any closed subset Z ⊂ X of codimension m, there exist a
closed subset Z ′ ⊂ U such that

(1) Z ′ ⊃ Z ∩ U and codimU (Z ′) ≥ m − 1;

(2) the composite FZ(X)
F (j)−−−→ FZ∩U (U)

F (idU )−−−−→ FZ′(U) vanishes, where
j : U → X is the canonical embedding and Z ∩ U = j−1(Z).

4.2 Theorem. Let X be a smooth affine variety over an infinite field k and
x ⊂ X be a finite set of points. Let G : Cp(k) → Ab be a homotopy invariant
functor endowed with transfers which satisfies vanishing property (see 2.4, 2.6
and 2.5). Let F = p∗G denote the restriction of G to Cp(X) by means of the
structural morphisms p : X → Spec k. Then F is effaceable at x.
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Proof. We may assume x ∩ Z in non-empty. Indeed, if x ∩ Z = ∅ then the
theorem follows by the vanishing property of F (see 2.5).
Let f 6= 0 be a regular function on X such that Z is a closed subset of the
vanishing locus of f . By Quillen’s trick [14, 5.12], [13, 1.2] we can find a
morphism q : X → An−1, where n = dimX, such that

(a) q|f=0 : {f = 0} → An−1 is a finite morphism;

(b) q is smooth at the points x;

(c) q can be factorized as q = pr ◦Π, where Π : X → An is a finite surjective
morphism and pr : An → An−1 is a linear projection.

Consider the base change diagram for the morphism q by means of the com-

posite r : U = SpecOX,x
j−→ X

q−→ An−1.

X rX //

p

²²

X

q

²²
U r // An−1

So we have X = U ×An−1 X and p, rX denote the canonical projections on U ,
X respectively. Let δ : U → X = U ×A X be the diagonal embedding. Clearly
δ is a section of p. Set f = r∗X(f). Take instead of X it’s irreducible component
containing δ(U) and instead of f it’s restriction to this irreducible component
(since x∩Z is non-empty the vanishing locus of f on the component containing
δ(U) is non-empty as well).
Now assuming the triple (p : X → U , δ, f) is a perfect triple over U (see 3.1 for
the definition) we complete the proof as follows:
Let Z = r−1

X (Z) be the closed subset of the vanishing locus of f. Let Z ′ = p(Z)
be a closed subset of U . Since rX ◦δ = j we have δ−1(Z) = j−1(Z) = Z∩U . By
Specialization Lemma 3.3 applied to the perfect triple (X , δ, f) and the functor
j∗F : Cp(U) → Ab the composite

FZ(X )
F (δ)−−−→ FZ∩U (U)

F (idU )−−−−→ FZ′(U)

vanishes. In particular, the composite

FZ(X)
F (j)−−−→ FZ∩U (U)

F (idU )−−−−→ FZ′(U) (∗)

vanishes as well. Clearly Z ′ ⊃ Z∩U . By 3.1.(i) we have dimX = dimU+1. On
the other hand the morphism rX : X → X is flat (even essentially smooth) and,
thus, codimX (Z) = codimX Z. Therefore, we have codimU (Z ′) = codimX (Z)−
1 = m − 1.

Hence, it remains to prove the following:
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4.3 Lemma. The triple (p : X → U , δ, f) is perfect over U .

Proof. By the property (c) one has q = pr ◦Π with a finite surjective morphism
Π : X → An and a linear projection pr : An → An−1. Taking the base
change of Π by means of r : U → An−1 one gets a finite surjective U-morphism
π : X → A1 × U . This checks (i) of 3.1. Since the closed subset {f = 0} of
X is finite over An−1 the closed subset {f = 0} of X is finite over U and we
get 3.1.(ii). Since q is smooth at x the morphism r : U → An−1 is essentially
smooth. Thus the morphism rX : X → X is essentially smooth as the base
change of the morphism r. The variety X is smooth over k implies that X is
essentially smooth over k as well. Since q is smooth at x the morphism p is
smooth at each point y ∈ X with rX(y) ∈ x. In particular p is smooth at the
points δ(xi) (xi ∈ U). Since U is semi-local δ(U) is semi-local and p is smooth
along δ(U). This checks (iii) of 3.1. Since X is irreducible 3.1.(iv) holds. And
we have proved the lemma and the theorem.

To prove Theorem 4.2 in the case when F is defined over some smooth affine
variety we have to put an additional condition on F . In order to formulate this
condition we introduce some notations.

4.4 Notation. Let ρ : Y → X × X be a finite étale morphism together with
a section s : X → Y over the diagonal embedding ∆ : X → X × X, i.e.,
ρ ◦ s = ∆. Let pr1, pr2 : X ×X → X be the canonical projections. We denote
p1, p2 : Y → X to be the composite pr1 ◦ ρ, pr2 ◦ ρ respectively.
For a contravariant functor F : Cp(X) → Ab consider it’s pull-backs p∗1F and
p∗2F : Cp(Y ) → Ab by means of p1 and p2 respectively. From this point on we
denote F1 = p∗1F and F2 = p∗2F . By definition we have

Fi(Y
′ → Y,Z) = F (Y ′ → Y

pi−→ X,Z).

4.5 Remark. In general case the functors F1 and F2 are not equivalent. More-
over, the functors pr∗

1F and pr∗
2F are different. But in the case when F comes

from the base field k, i.e., F = p∗G where p : X → Spec k is the structural mor-
phism and G : Cp(k) → Ab is a contravariant functor, these functors coincide
with each other.

4.6 Definition. We say a contravariant functor F : Cp(X) → Ab has a finite
monodromy of the type (ρ : Y → X × X, s : X → Y ), where ρ is a finite
étale morphism and s is a section of ρ over the diagonal, if there exists an
isomorphism Φ : F1 → F2 of functors on Cp(Y ). A functor F : Cp(X) → Ab
is said to be a functor with finite monodromy if F has a finite monodromy of
some type.

4.7 Theorem. Let X be a smooth affine variety over an infinite field k and
x ⊂ X be a finite set of points. Let F : Cp(X) → Ab be a homotopy invariant
functor endowed with transfers which satisfies vanishing property (see 2.4, 2.6
and 2.5). If F is a functor with finite monodromy then F is effaceable at x.
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Proof. Similar to the proof of Theorem 4.2 let f 6= 0 be a regular function on
X such that Z is a closed subset of the vanishing locus of f . We may assume
x ∩ Z is non-empty. Consider the fibered product diagram from the proof of
Theorem 4.2

X rX //

p

²²

X

q

²²
U r // An−1

We have the projection p : X = U ×An−1 X → U , the section δ : U → X of p
and the regular function f = r∗X(f).

Since F is the functor with finite monodromy there is a finite étale morphism
ρ : Y → X × X, a section s : X → Y of ρ over the diagonal embedding
and a functor isomorphism Φ : F1 → F2 as in 4.4 and 4.6. Consider the base
change diagram for the morphism ρ : Y → X × X by means of the composite

g : X (p,rX)−−−−→ U × X
(j,id)−−−→ X × X

X̃
g̃ //

ρ̃

²²

Y

ρ

²²
X

g // X × X

Then ρ̃ is a finite étale morphism and there is the section δ̃ : U → X̃ of the
composite p̃ = p ◦ ρ̃ : X̃ → U such that ρ̃ ◦ δ̃ = δ (δ̃ is the base change of the
morphism s : X → Y by means of g̃ : X̃ → Y ). Set f̃ = ρ̃−1(f). As in the proof
of 4.2 we replace X̃ by it’s irreducible component containing δ̃(U) and f̃ by it’s
restriction to this component. By Lemma 4.8 below the triple (p̃ : X̃ → U , δ̃, f̃)
is perfect.

Let Z = r−1
X (Z) and Z̃ = ρ̃−1(Z). Set Z ′ = p(Z). Observe that p̃(Z̃) = Z ′.

The commutative diagram

FZ(X)
F (j) //

F (rX)

²²

FZ∩U (U)
F (idU ) // FZ′(U)

FZ(X )
F (ρ̃) //

F (δ)
99ssssssssss

FZ̃(X̃ )

F (δ̃)

OO

shows that to prove the relation F (idU ) ◦ F (j) = 0 (compare with (∗) of the
proof of 4.2) it suffices to check the relation F (idU ) ◦ F (δ̃) = 0.

Consider the pull-backs of the functors F1, F2 and the functor isomorphism Φ
by means of the morphism g̃ : X̃ → Y . We shall use the same notation F1, F2

and Φ for these pull-backs till the end of this proof. So we have F1 = g̃∗(p∗1F )

and F2 = g̃∗(p∗2F ). The isomorphism Φ : F1

∼=−→ F2 of functors over Cp(X̃ )
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provides us with the following commutative diagram

(F1)Z̃(X̃ )
F1(δ̃) //

Φ ∼=
²²

(F1)Z∩U (U)
F1(idU ) //

Φ ∼=
²²

(F1)Z′(U)

Φ∼=
²²

(F2)Z̃(X̃ )
F2(δ̃) // (F2)Z∩U (U)

F2(idU ) // (F2)Z′(U)

where the structure of an X̃ -scheme on U is given by δ̃.
Since rX ◦ ρ̃ = p2 ◦ g̃ we have ρ̃∗(r∗XF ) = F2. Thus to check the relation

F (idU )◦F (δ̃) = 0 for the functor F we have to verify the same relation F2(idU )◦
F2(δ̃) = 0 for the functor F2. Then by commutativity of the diagram it suffices
to prove the relation F1(idU ) ◦ F1(δ̃) = 0 for the functor F1.
Since j ◦ p̃ = p1 ◦ g̃ we have p̃∗(j∗F ) = F1 : Cp(X̃ ) → Ab. Thereby it suffices to
prove the relation G(idU ) ◦ G(δ̃) = 0 for the functor G = j∗F : Cp(U) → Ab.
This relation follows immediately from Theorem 3.3 applied to the functor G,
the triple (p̃ : X̃ → U , δ̃, f̃) and the closed subset Z̃ ⊂ X̃ .

4.8 Lemma. The triple (X̃ , δ̃, f̃) is perfect over U .

Proof. Observe that the triple (p : X → U , δ, f) is perfect by Lemma 4.3, the
morphism ρ̃ : X̃ → X is finite étale and ρ̃ ◦ δ̃ = δ for the section δ̃ : U → X̃
of the morphism p̃ : X̃ → U . For the finite surjective morphism of U-schemes

π : X → A1×U the composite X̃ ρ̃−→ X π−→ A1×U is a finite surjective morphism
of U-schemes as well. This proves 3.1.(i). Since ρ̃ is finite and the vanishing
locus of f is finite over U the vanishing locus of the function f̃ is finite over U as
well. This proves 3.1.(ii). Since ρ̃ ◦ δ̃ = δ, ρ̃ is étale and p is smooth along δ(U)
the morphism p̃ is smooth along δ̃(U). Since the scheme X is essentially smooth
over k and ρ̃ is étale the scheme X̃ is essentially smooth over k. This proves
3.1.(iii). Since X̃ is irreducible we have 3.1.(iv). And the lemma is proven.

5 Applications to Étale Cohomology

5.1 Definition. Let X be a smooth affine variety over a field k, n an integer
prime to char(k) and C a bounded below complex of locally constant con-
structible sheaves of Z/nZ-modules on Xet. Since étale cohomology commute
with inductive limits, we may suppose the complex C is also bounded from
above. We consider the functor F : Cp(X) → Ab which is given by

F (Y
f−→ X,Z) = H∗

Z(Y, f∗C),

where the object on the right hand side are étale hypercohomology. Since a
locally constant constructible sheaf of Z/nZ-modules on Xet is representable
by a finite étale scheme over X, we may assume that the hypercohomology are
taken on the big étale site of X [9, V.1]. Hence, we have a well-defined functor.

Documenta Mathematica 8 (2003) 51–67



Variations on the Bloch-Ogus Theorem 63

5.2 Lemma. The étale cohomology functor F (X,Z) = H∗
Z(X, C) is a functor

endowed with transfers (2.6).

Proof. Let π : Y → X be a finite flat morphism of schemes. For an X-scheme

X ′ set Y ′ = X ′×X Y and denote the projection Y ′ → X ′ by π′. If X ′′ g−→ X ′ is
an X-scheme morphism then set Y ′′ = X ′′×X Y and denote by π′′ : Y ′′ → X ′′

the projection on X ′′ and by gY : Y ′′ → Y ′ the morphism g × idY . If Z ⊂ X
is a closed subset then we set S = π−1(Z), Z ′ = X ′ ×X Z, Z ′′ = X ′′ ×X Z,
S′ = (π′)−1(Z ′), S′′ = (π′′)−1(Z ′′).
If Y ′ = Y ′

1qY ′
2 (disjoint union) then set π′

i = π′|Y ′
i
, Y ′′

i = g−1
Y (Y ′

i ), S′
i = Y ′

i ∩S′,
S′′

i = Y ′′
i ∩ S′′ and define gY,i : Y ′′

i → Y ′
i to be the restriction of gY .

Let C be a sheaf on the big étale site Et/X. If Z ⊂ X is a closed subset then
for an X-scheme X ′ we denote ΓZ′(X ′, C) = ker(Γ(X ′, C) → Γ(X ′ − Z ′, C))
and if Y ′ = Y ′

1 q Y ′
2 we denote ΓS′

i
(Y ′

i , C) = ker(Γ(Y ′
i , C) → Γ(Y ′

i − S′
i, C)).

Deligne in [5] constructed trace maps for finite flat morphisms. In particular,
for a X-scheme X ′ and for every presentation of the scheme Y ′ in the form
Y ′ = Y ′

1 q Y ′
2 there are certain trace maps Trπ′

i
: ΓS′

i
(Y ′

i , C) → ΓZ′(X ′, C).
These maps satisfy the following properties

(i) (base change) the diagram

ΓS′′
i
(Y ′′

i , C)
g∗

Y,i←−−−− ΓS′
i
(Y ′

i , C)

Trπ′′
i

y
yTrπ′

i

ΓZ′′(X ′′, C)
g∗

Y←−−−− ΓZ′(X ′, C)

commutes;

(ii) (additivity) the diagram

ΓS′(Y ′, C)
“+′′

−−−−→ ΓS′
1
(Y ′

1 , C) ⊕ ΓS′
2
(Y ′

2 , C)

Trπ′

y
yTrπ′

1
+Trπ′

2

ΓZ′(X ′, C)
id−−−−→ ΓZ′(X ′, C)

commutes;

(iii) (normalization) if π′
1 : Y ′

1 → X ′ is an isomorphism then the composite
map

ΓZ′(X ′, C)
(π′

1)
∗

−−−→ ΓS′
1
(Y ′

1 , C)
Trπ′

1−−−→ ΓZ′(X ′, C)

is the identity;

(iv) maps Trπ′
i

are functorial with respect to sheaves C on Et/X.
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Now let 0 → C → I• be an injective resolution of the sheaf C on Et/X. Then
for a closed subset Z ⊂ X and for a presentation Y ′ = Y ′

1 q Y ′
2 one has

Hp
S′

i
(Y ′

i , C) := Hp(ΓS′
i
(Y ′

i ,I•)) , Hp
Z′(X

′, C) := Hp(ΓZ′(X ′,I•)).

Thereby the property (iv) shows that the trace maps Trπ′
i

: ΓS′
i
(Y ′

i ,Ir) →
ΓZ′(X ′,Ir) determine a morphism of complexes ΓS′

i
(Y ′

i ,I•) → ΓZ′(X ′,I•).
Thus one gets the induced map which we will denote by Hp(Trπ′

i
) :

Hp
S′

i
(Y ′

i , C) → Hp
Z′(X ′, C). And these trace maps satisfy the following proper-

ties (the same as in Definition 2.6):

(i) the base changing property;

(ii) the additivity property;

(iii) the normalization property;

(iv) the functorality with respect to sheaves on Et/X.

5.3 Lemma. The étale cohomology functor F (X,Z) = H∗
Z(X, C) is a functor

with finite monodromy (4.6).

Proof. According to Definition 4.6 we have to show that there exist a finite
étale morphism ρ : Y → X × X together with a section s : X → Y of ρ
over the diagonal and a functor isomorphism Φ : F1 → F2 on Cp(Y ), where
F1 = ρ∗ ◦ pr∗

1F and F2 = ρ∗ ◦ pr∗
2F .

To produce Y we use the following explicit construction suggested by H. Esnault
(we follow [15]):
Let X̃ be a finite Galois covering with Galois group G such that the pull-
back of C to X̃ is a complex of constant sheaves. Consider the étale covering

X̃ ×k X̃ → X ×k X with Galois group G × G. Let X̃ ×k X = (X̃ ×k X̃)G

be the unique intermediate covering associated with the diagonal subgroup
G = (g, g) ∈ G × G. The diagonal map X̃ → X̃ ×k X̃ induces a map s :

X → X̃ ×k X which is a section to the projection X̃ ×k X → X ×k X over the
diagonal X ∼= ∆X ⊂ X×kX. Let Y be the connected component of X = im(s)

in X̃ ×k X. Then Y
ρ−→ X×k X is a connected Galois covering having a section

s over ∆X .
To check that there is the functor isomorphism Φ we refer to the end of section
4 of [15].

We also need the following technical lemma that is a slightly modified version
of Proposition 2.1.2, [4]

5.4 Lemma. Let U be a semi-local regular scheme of geometric type over a
field k, i.e., U = SpecOX,x for some smooth affine variety X and a finite
set of points x = {x1, . . . , xn} of X. Suppose the étale cohomology functor
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F (Y,Z) = H∗
Z(Y, C) from Theorem 1.1 is effaceable at x. Then, in the exact

couple [4, 1.1] defining the coniveau spectral sequence for (U , C), the map ip,q is
identically 0 for all p > 0. In particular, we have Ep,q

2 = Hq(U , C) if p = 0 and
Ep,q

2 = 0 if p > 0. And the Cousin complex [4, 1.3] yields the exact complex
from Theorem 1.1.

Proof. Consider the commutative diagram

Hn
Z(X, C) //

²²

Hn
Z∩U (U , C) //

²²

Hn
Z′(U , C)

²²
Hn

X(m)(X, C) // Hn
U(m)(U , C) // Hn

U(m−1)(U , C)

The composition of arrows in the first row is identically 0 for any n. There-
fore the compositions Hn

Z(X, C) → Hn
U(m)(U , C) → Hn

U(m−1)(U , C) are 0. Pass-
ing to the limit over Z, this gives that the compositions Hn

X(m)(X, C) →
Hn

U(m)(U , C) → Hn
U(m−1)(U , C) are 0. Passing to the limit over open neigh-

borhoods of x, we get that the map im,n−m : Hn
U(m)(U , C) → Hn

U(m−1)(U , C) is
itself 0 for any m ≥ 1.

Now we are ready to prove the main result of this paper stated in the Intro-
duction.

Proof of Theorem 1.1. Assume the ground field k is infinite. In this case, ob-
serve that the étale cohomology functor F (X,Z) = H∗

Z(X, C) satisfies all the
hypotheses of Theorem 4.7. Indeed, it is homotopy invariant according to [4,
7.3.(1)]. It satisfies vanishing property by the very definition. It has transfer
maps by Lemma 5.2 and it is a functor with finite monodromy by Lemma 5.3.
So that by Theorem 4.7 the functor F is effaceable. Now Theorem 1.1 follows
immediately from Lemma 5.4.
To finish the proof, i.e., to treat the case of a finite ground field, we apply the
standard arguments with transfers for finite field extensions (see the proof of
[4, 6.2.5]).

5.5 Remark. If the complex C comes from the base field k, i.e., each sheaf
in C can be represented as p∗C ′ for some sheaf C ′ on (Spec k)et, where p :
X → Spec k is the structural morphism. Then the étale cohomology functor F
satisfies all the hypotheses of Theorem 4.2. Hence, Theorem 1.1 holds without
assuming that F is a functor with finite monodromy.
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1. Introduction

In an elegant four page preprint “A shortened construction of the Rost motive”
N. Karpenko (see also [4]) gives a construction of Rost’s motive Ma assuming
the following result of Rost widely known as the “nilpotence theorem.”

Theorem 1.1. Let Q be a smooth quadric over a field k with algebraic closure
k and let f ∈ EndM(Q) be an endomorphism of its integral Chow motive.
Then, if f ⊗ k = 0 in EndM(Q ⊗ k), f is nilpotent.

For the proof, Karpenko refers the reader to a paper of Rost which proves
the theorem by invoking the fibration spectral sequence of the cycle module
of a product (also due to Rost [6]). (In [7], A. Vishik gives another proof of
Theorem 1.1 based on V. Voevodsky’s theory of motives.)
The existence of the Rost motive and the nilpotence theorem itself are both es-
sential to Voevodsky’s proof of the Milnor conjecture. It is, therefore, desirable
to have direct proofs of these fundamental results. The main goal of this paper
is to provide such a proof in the spirit of Karpenko’s preprint. To accomplish
this, I use a generalization to singular schemes of the notion of composition of
correspondences to obtain a proof of the theorem which avoids the use of cycle
modules.
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Both Rost’s proof of Theorem 1.1 and the proof presented here involve
two principal ingredients: (1) a theorem concerning nilpotent operators on
Hom(M(B),M(X)) for B and X smooth projective varieties, (2) a decompo-
sition theorem for the motive M(Q) of a quadric Q with a k-rational point. For
(1), we obtain an extension of Rost’s results (Theorem 3.1) allowing the motive
of B to be Tate twisted. Moreover, the method of proof can be used to extend
the result to arbitrary varieties B. For (2), the theorem stated here (Theo-
rem 4.1) is identical to Rost’s, but the proof is somewhat simpler as we are
able to perform computations with correspondences involving possibly singular
varieties.
V. Chernousov, S. Gille and A. Merkurjev have recently generalized Theo-
rem 1.1 to arbitrary homogeneous varieties [1]. Their approach is to write
down a decomposition as in (2) for homogeneous varieties in terms of group
theory and then to use the extension to (1) given here to prove a nilpotence
result. I would like to thank Merkurjev for pointing out to me the usefulness
of this extension.

1.1. Notation. As the main tool used in this paper is the intersection theory
of Fulton-MacPherson, we use the notation of [2]. In particular, a scheme will
be a scheme of finite type over a field and a variety will be an irreducible and
reduced scheme. We use the notation Chowk for k a field to denote the category
of Chow motives whose definition is recalled below in Section 2. For a scheme
X, AjX will denote the Chow group of dimension j cycles on X.
In section 3, we will use the notation H to denote the hyperbolic plane. That
is, H is the quadratic space consisting of k2 with quadratic form given by
q(x, y) = xy.

2. Refined Intersections

Let V and W be schemes over a field k, let {Vi}m
i=1 be the irreducible compo-

nents of V and write di = dimVi. The group of degree r Chow correspondences
is defined as

(1) Corrr(V,W ) = ⊕Adi−r(Vi × W ).

If X1,X2,X3 are smooth proper schemes, then it is well-known that there is a
composition

Corrr(X1,X2) ⊗ Corrs(X2,X3) → Corrr+s(X1,X3)(2)

g ⊗ f 7→ f ◦ g

given by the formula

(3) f ◦ g = p13∗(p
∗
12g · p∗23f)

where the pij : X1×X2×X3 → Xi×Xj are the obvious projection maps. Using
this formula, the category Chowk of Chow motives can be defined as follows
([4], see also [3]): The objects are the triples (X, p, n) where X is a smooth
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projective scheme over k, p ∈ Corr0(X,X) is a projector (that is, p2 = p) and
n is an integer. The morphisms are defined by the formula

(4) Hom((X, p, n), (Y, q,m)) = q Corrm−n(X,Y )p.

To fix notation, we remind the reader that the Tate twist of an object
M = (X, p, n) is the object M(k) = (X, p, n + k), and the objects Z(k) =
(Spec k, id, k) are customarily called the Tate objects. It is clear from (4) that

(5) Hom(Z(k),M(X)) = AkX, Hom(M(X), Z(k)) = AkX

where M(X) is the motive (X, id, 0) associated to the scheme X.

2.1. Refined correspondences. The main observation behind this paper is
that a composition generalizing that of (2) holds for arbitrary varieties X1 and
X3 provided that X2 is smooth and proper. To define this composition we use
the the Gysin pullback through the regular embedding

X1 × X2 × X3
id×∆×id→ X1 × X2 × X2 × X3.

We can then define the composition by the formula

(6) f ◦ g = p13∗((id×∆ × id)!(g ⊗ f)).

We need to verify that the definition given in (6) agrees with that of (3) and
satisfies various functoriality properties needed to make it a useful extension.
To state these properties in their natural generality, it is helpful to also consider
(6) in a slightly different situation from that of (2). For X2 a smooth scheme
and X1,X3 arbitrary schemes, we define a composition

Ar(X1 × X2) ⊗ Corrs(X2,X3) → Ar−s(X1 × X3)(7)

g ⊗ f 7→ f ◦ g

where f ◦ g is defined as in (6). We consider (7) because ⊕i Corri(X1,X2) is
not necessarily equal to ⊕iAi(X1 × X2) unless X1 is scheme with irreducible
connected components. Therefore, in the case that X1 does not have irreducible
connected components, Corr∗(X1,X2) is not a reindexing of the Chow groups
of X1 × X2.

Proposition 2.1. Let Xi, i ∈ {1, 2, 3} be schemes with X2 smooth and proper.

(a) If all Xi are smooth and X2 is proper, then the definition of f ◦ g for
g ∈ Corrr(X1,X2), f ∈ Corrs(X2,X3) given in (6) agrees with that of (3).

(b) If π : X ′
1 → X1 is a proper morphism, then the diagram

Ar(X
′
1 × X2) ⊗ Corrs(X2,X3) //

π∗

²²

Ar−s(X
′
1 × X3)

π∗

²²
Ar(X1 × X2) ⊗ Corrs(X2,X3) // Ar−s(X1 × X3)

commutes. Here, for the vertical arrows, by π∗ we mean the morphism
induced by π∗ on the first factor and the identity on the other factors.

Documenta Mathematica 8 (2003) 69–78



72 Patrick Brosnan

(c) If φ : X ′
1 → X1 is flat of constant relative dimension e, then

Ar(X1 × X2) ⊗ Corrs(X2,X3) //

φ∗

²²

Ar−s(X1 × X3)

φ∗

²²
Ar+e(X

′
1 × X2) ⊗ Corrs(X2,X3) // Ar+e−s(X

′
1 × X3)

commutes.

Proof. First note that it suffices to prove the proposition for X2 irreducible of
dimension d2. This is because Corrs(X2,X3) and Ar(X1 ×X2) are both direct
sums over the irreducible components of X2 and all of the maps in the theorem
commute with these direct sum decompositions.
(a): Another formulation of (3) is that f ◦ g is given by

p13∗∆
!
123(p

∗
12g ⊗ p∗23f)

where

∆123 : X1 × X2 × X3 → (X1 × X2 × X3) × (X1 × X2 × X3)

is the obvious diagonal.
Consider the sequence of maps

(8) X1×X2×X3
∆123→ (X1×X2×X3)×(X1×X2×X3)

p12×p23→ X1×X2×X2×X3

with composition ∆2 : X1 × X2 × X3 → X1 × X2 × X2 × X3.
Since all Xi are smooth, p12 × p23 is a smooth morphism. It follows from ([2]
Proposition 6.5.b) that

∆!
2(g ⊗ f) = ∆!

123(p12 × p23)
∗(g ⊗ f)

= ∆!
123(p

∗
12g ⊗ p∗23f).

(a) now follows by taking push-forwards.
(b): We have a fiber diagram

(9) X ′
1 × X2 × X3

∆′
2 //

²²

X ′
1 × X2 × X2 × X3

²²
X1 × X2 × X3

∆2

// X1 × X2 × X2 × X3

where ∆′
2 and ∆2 are both induced by the diagonal

X2 → X2 × X2.

Since ∆2 and ∆′
2 are both regular of codimension d2, it follows from ([2],

Proposition 6.2.c) that both morphisms induce the same Gysin pullback on the
top row of the diagram.
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By ([2], 6.2 (a)), proper push-forward and Gysin pull-back through a regular
embedding commute. Applying this fact to (9), we have

π∗(f ◦ g) = (π × id3)∗p13∗∆
!
2(g ⊗ f)

= p13∗(π × id2 × id3)∗∆
!
2(g ⊗ f)

= p13∗∆
!
2(π × id2 × id2 × id3)∗(g ⊗ f)

= p13∗∆
!
2((π × id)∗g ⊗ f))

= f ◦ (π∗g).

(c) Here the argument is very similar to the one for (b): We have a pullback
diagram

X ′
1 × X2 × X3

φ×id2 × id3 //

p′
13

²²

X1 × X2 × X3

p13

²²
X ′

1 × X3
φ×id3

// X1 × X3.

Since the vertical arrows are proper and the horizontal arrows are flat, it follows
from ([2], 1.7) that

(10) p′13∗(φ × id2 × id3)
∗ = (φ × id3)

∗p13∗

We then consider the pullback

X ′
1 × X2 × X3

∆′
2 //

φ

²²

X ′
1 × X2 × X2 × X3

φ

²²
X1 × X2 × X3

∆2

// X1 × X2 × X2 × X3

in which the vertical arrow are flat and the horizontal arrow are regular embed-
dings both of codimension d2. By ([2], 6.2 (c)) it follows that the flat pullbacks
commutes with the Gysin pullbacks; thus,

φ∗(f ◦ g) = (φ × id3)
∗p′13∗∆

!
2(g ⊗ f)

= p13∗(φ × id2 × id3)
∗∆!

2(g × f)

= p13∗∆
!
2((φ

∗g) ⊗ f))

= f ◦ (φ∗g).

¤

Remark 2.2. If X1 and X3 are taken to be schemes with irreducible con-
nected components, then in (b) and (c), we can replace A∗(X1 × X2) with
Corr∗(X1,X2) after a shift in the indices. Then the roles of X1 and X3 in the
theorem can also be interchanged by the symmetry of Corr∗(X,Y ).

The fact that morphisms in Corr∗( , ) are not in general composable is miti-
gated somewhat by the following result.

Proposition 2.3. Let {Xi}4
i=1 be schemes with X2 and X3 smooth and proper.
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(a) If ∆ ∈ Corr0(X2 × X2) is the class of the diagonal then, the morphism
Ar(X1 × X2) → Ar(X1 × X2) given by f 7→ ∆ ◦ f is the identity.

(b) If f1 ∈ Ar(X1 × X2) and fi ∈ Corrri
(Xi,Xi+1) for i = 2, 3, then

(f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1).

In other words, composition is associative.

Proof. (a) can be easily checked on the level of cycles in Zr(X1 ×X2). For (b),
the important point is the commutativity of the diagram

(11) X1 × X2 × X3 × X4
//

²²

∆23

++WWWWWWWWWWWWWWWWWWWWW
X1 × X2 × X2 × X3 × X4

²²
X1 × X2 × X3 × X3 × X4

// X1 × X2 × X2 × X3 × X3 × X4

where the arrows are the obvious diagonal morphisms. Both compositions in
(b) can be computed as p14∗∆!

23(f3 ⊗ f2 ⊗ f1). ¤

3. Rost’s Correspondence Theorem

If X and Y are smooth projective varieties and f : M(X) → M(Y ) is a mor-
phism, we obtain a morphism f∗ : Ar(X) → Ar(Y ) induced by the composition

Z(r) → M(X)
f→ M(Y )

using (5). Similarly, for a smooth projective variety B and an integer a, we
obtain a morphism f∗ : Hom(M(B)(a),M(X)) → Hom(M(B)(a),M(Y )) given
by

(12) g 7→ f ◦ g

with g ∈ Hom(M(B)(a),M(X)) = Corr−a(B,X).
Rost’s nilpotence theorem is a consequence of the following more general the-
orem concerning correspondences between smooth varieties.

Theorem 3.1. Let B and X be smooth projective varieties over a field k with
dimB = d. For any b ∈ B, let Xb denote the fiber of the projection π : B×X →
B. If f ∈ End(M(X)) is a morphism such that f∗Ar(Xb) = 0 for all b and all
0 ≤ r ≤ d + a, then

(13) fd+1
∗ Hom(M(B)(a),M(X)) = 0.

In the case a = 0, the theorem is due to Rost ([5], Proposition 1). Our proof of
the theorem is based on Rost’s proof, but uses the results of Section 2 in place
of Rost’s cycle module spectral sequence. Note that, while the hypotheses of
the theorem assume that B is smooth, the the proof is essentially an induction
on all subvarieties (smooth or otherwise) of B. Moreover, the result holds with
a slight change of notation (which we describe after the proof) for arbitrary B.
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Proof of Theorem 3.1. Let Zk(B×X) denote the group of k-dimensional cycles
on B ×X, and let FpZk(B ×X) denote the subgroup of Zk(B ×X) generated
by subvarieties V of dimension k such that dim π(V ) ≤ p. Let FpAk(B × X)
denote the image of FpZk(B×X) under the rational equivalence quotient map.
To prove the theorem, it is clearly sufficient to show that

(14) f∗FpAd+a(B × X) ⊂ Fp−1Ad+a(B × X)

since F−1Ad+a(B × X) = 0. Therefore, it is sufficient to show that, for V
a (d + a)-dimensional subvariety of B × X such that dimπ(V ) = p, f∗[V ] ∈
Fp−1Ad+a(B × X).
Let Y = π(V ). By the hypotheses of the theorem, there is a nonempty open set
U ⊂ Y such that f∗[VU ] = 0. (Here we write VU for the fiber product V ×Y U .)
Let W = Y − U , and consider the short exact sequence of Chow groups

(15) Ad+aW × X
i∗→ Ad+aY × X

j∗

→ Ad+aU × X → 0.

By the results of Section 2, f∗[VU ] = j∗f∗[V ] where f∗[V ] is the composition
f ◦ [V ] of f with [V ] viewed as an element of Corrp−d−a Y × X. It follows
that f∗[V ] lies in the image of the first morphism in (15). Thus f∗[V ] ∈
Fp−1Ad+aB × X. ¤

Remark 3.2. Using the associativity of composition (Proposition 2.3), it is
easy to see that the above proof generalizes to the case where B is ar-
bitrary. The statement of the theorem remains the same, except that
Hom(M(B)(a),M(X)) is replaced with Corr−a(B,X).

4. Rost Nilpotence

If M = (Y, p, n) is a motive in Chowk and X is an arbitrary scheme, we define

Corr(X,M) = pCorrn(X,Y ).

Since Y is smooth and projective, this definition makes sense by what we
have seen in Section 2. If j : U → X is flat we obtain a pullback
Corr(X,M) → Corr(U,M) and, if p : X ′ → X is proper, we obtain a push-
forward Corr(X ′,M) → Corr(X,M). This follows from Proposition 2.1. Simi-
larly, by Remark 2.2 we can define Corr(M,X).
Using this observation, we can easily obtain a result of Rost’s on the decom-
position of the motive of a quadric. To state the theorem, we must first recall
a fact about quadrics with points.
Suppose Q is the projective quadric corresponding to a non-degenerate qua-
dratic form q; that is, Q = V (q). As we are discussing quadrics and quadratic
forms, we will assume for the remainder of the paper that the field k over which
Q and q are defined has characteristic not equal to 2. Suppose further that Q
has a point over k. Then the quadratic form q splits as an orthogonal direct
sum q = H ⊥ q′. (This is a standard fact about quadratic forms which is also
an easy exercise). Let Q′ denote the (clearly smooth) quadric associated to q′.
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Theorem 4.1 (Rost decomposition). If Q has a point over k then M(Q) =
Z ⊕ M(Q′)(1) ⊕ Z(d) where d = dim Q and Q′ is the smooth quadric of the
proceeding paragraph.

Proof. For the proof, we use Rost’s methods and notation ([5], Proposition 2)
with some simplifications coming from our results in the previous sections. ‘
We can write q = xy + q′(z) where z denotes a d-dimensional variable. Let
Q1 denote the closed subvariety V (x) and let p denote the closed point on
Q1 corresponding to the locus x = z = 0, y = 1. Note that U1 := Q − Q1 is
isomorphic to Ad. Moreover, Q1−{p} is an A1-bundle over Q′ via the morphism
(y, z) 7→ z. For any motive M , we thus obtain short exact sequences

Corr(M,Q1) → Corr(M,Q) ³ Corr(M, Ad),(16)

Corr(M,p) → Corr(M,Q1) ³ Corr(M(−1), Q′).(17)

Here Q1 is, in general, a singular quadric. However, by Theorem 2.3, each of the
entries of (16) and (17) can each be interpreted as presheaves on the category
of Chow motives given, for example, by the association M Ã Corr(M,Q1).
Moreover, by Proposition 2.1, the morphisms in (16) and (17) induce maps of
presheaves, i.e., they are functorial in M .
In fact, in both sequences the first morphism is an injection and the second
morphism is a split surjection. To see this we construct splittings for the first
morphism in each sequence.
For (17), let π : Q1 → p denote the projection to a point. Then π∗ :
Corr(M,Q1) → Corr(M,p) induces a splitting. Again, by Proposition 2.1,
this map is functorial in M .
For (16), let r denote the point corresponding to x = 1, y = z = 0, and let
U denote the open subset Q − {r} in Q. Then there is a morphism φ◦ :
U → Q1 given by (x, y, z) 7→ (y, z). Let φ denote the closure of the graph
of φ◦ in Corr(Q,Q1). By the results of section 2, φ induces a morphism φ∗ :
Corr(M,Q) → Corr(M,Q1). We claim that φ∗ splits (16) and is functorial in
M . (This is not hard to check on the level of cycles.)
Since the push-forward on the second factor induces an isomorphism

Corr(M, Ad)
∼=→ Hom(M, Z(d)),

we have a decomposition

(18) Hom(M,M(Q)) = Hom(M, Z(d))⊕Hom(M, Z)⊕Hom(M,M(Q′)(−1)).

The decomposition of the theorem the follows from Yoneda’s lemma which ap-
plies in this case because of the functoriality of the decomposition with respect
to M .

¤

We are now prepared to prove Rost nilpotence, Theorem 1.1. The proof is
essentially identical to Rost’s, but I include it for the convenience of the reader.
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We first note that, due to the inductive structure of the proof, it is actually
helpful to strengthen the conclusion of the theorem slightly. We therefore
restate the theorem with the stronger conclusion.

Theorem 4.2 (Rost [5], Proposition 2). For each d ∈ N, there is a number
N(d) such that, if Q is a smooth quadric of dimension d over a field k and
f ∈ End(M(Q)) such that f ⊗ k = 0, then fN(d) = 0.

Proof. If d = 0, Q either consists either of two points defined over k or of one
point defined over a quadratic extension of k. In the first case, End(M(Q)) =
End(Z⊕Z) and in the second End(M(Q)) is isomorphic to the rank 2 subring
of End(M(Q ⊗ k)) consisting of matrices invariant under conjugation by

(
0 1
1 0

)
.

The theorem, therefore, holds trivially with N(0) = 1.
We then induct on d. Suppose Q is a rank d > 0 quadric with a point over k.
Then M(Q) splits as in Rost’s decomposition theorem. In fact, we also have a
splitting

(19) End(M(Q)) = End(Z(d)) ⊕ End(Z) ⊕ End(M(Q′)).

This follows from the fact that the six cross terms (e.g. Hom(Z, Z(d)),
Hom(Z,M(Q′)) and Hom(M(Q′), Z)) are all zero for dimension reasons. As
End(Z(j)) = Z, we have

End(M(Q)) = Z ⊕ Z ⊕ End(M(Q′))

and fN(d−2) = 0 by the induction hypothesis applied to Q′.
If Q does not have a point over k, then Q ⊗ k(x) does have a point (trivially)
over the residue field of any point x. Therefore fN(d−2) ⊗ k(x) = 0 for every
such point x by the induction hypothesis. (For this to hold for dimQ = 1, we
have to set N(−1) = 1.) Now apply Theorem 3.1 to fN(d−2). We obtain the
conclusion that f (d+1)N(d−2) = 0. Thus we can take N(d) = (d + 1)N(d − 2)
and the theorem is proved. ¤

Remark 4.3. The proof shows that we can take N(d) = (d+1)!! in the theorem.
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Abstract. A property of subshifts is described that allows to asso-
ciate to the subshift a distinguishied presentation by a compact Shannon
graph. For subshifts with this property and for the resulting invariantly
associated compact Shannon graphs and their λ-graph systems the term
‘Cantor horizon’ is proposed. The Dyck shifts are Cantor horizon. The
C∗-algebras that are obtained from the Cantor horizon λ-graph systems
of the Dyck shifts are separable, unital, nuclear, purely infinite and sim-
ple with UCT. The K-groups and Bowen-Franks groups of the Cantor
horizon λ-graph systems of the Dyck shifts are computed and it is found
that the K0-groups are not finitely generated.
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0. Introduction

Let Σ be a finite alphabet. On the shift space ΣZ one has the left-shift that
sends a point (σi)i∈Z into the point (σi+1)i∈Z. In symbolic dynamics one studies
the dynamical systems, called subshifts, that are obtained by restricting the
shift to a shift invariant closed subset of ΣZ. For an introduction to symbolic
dynamics see [Ki] or [LM]. A finite word in the symbols of Σ is said to be
admissible for the subshift X ⊂ ΣZ if it appears somewhere in a point of X.
A subshift is uniquely determined by its set of admissible words. Throughout
this paper, we denote by Z+ and N the set of all nonnegative integers and the
set of all positive integers respectively.
A directed graph G whose edges are labeled by symbols in the finite alphabet
Σ is called a Shannon graph if for every vertex u of G and for every α ∈ Σ, G
has at most one edge with initial vertex u and label α. We say that a Shannon
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graph G presents a subshift X if every vertex of G has a predecessor and a
successor and if the set of admissible words of X coincides with the set of label
sequences of finite paths on G. To a Shannon graph G there is associated a
topological Markov chain M(G). The state space of M(G) is the set of pairs
(u, α), where u is a vertex of G and α is the label of an edge of G with initial
vertex u. Here a transition from state (u, α) to state (v, β) is allowed if and
only if v is the final vertex of the edge with initial vertex u and label α. For
a vertex u of Shannon graph G we denote the forward context of u by Γ+(u).
Γ+(u) is the set of sequences in ΣN that are label sequences of infinite paths
in G that start at the vertex u. We say that a Shannon graph G is forward
separated if vertices of G, that have the same forward context, are identical.
The Shannon graphs that we consider in this paper are forward separated. We
always identify the vertices of a forward separated Shannon graph G with their
forward contexts, and then use on the vertex set of G the topology that is given
by the Hausdorff metric on the set of nonempty compact subsets of ΣN.
There is a one-to-one correspondence between forward-separated compact
Shannon graphs G such that every vertex has a predecessor and a class of
λ-graph systems [KM]. We recall that a λ-graph system is a directed labelled
Bratteli diagram with an additional structure. We write the vertex set of a
λ-graph system as

V =
⋃

n∈Z+

V−n.

Every edge with initial vertex in V−n, has its final vertex in V−n+1, n ∈ N.
It is required that every vertex has a predecessor and every vertex except the
vertex in V0 has a successor. In this paper we consider λ-graph-systems that
are forward separated Shannon graphs. Their additional structure is given by
a mapping

ι :
⋃

n∈N

V−n → V

such that

ι(V−n) = V−n+1, n ∈ N

that is compatible with the labeling, that is, if u is the initial vertex of an edge
with label α and final vertex v, then ι(u) is the intial vertex of an edge with
label α and final vertex ι(v).
Given a subshift X ⊂ ΣZ there is a one-to-one correspondence between the
compact forward separated Shannon graphs that present X, and the forward
separated Shannon λ-graph systems that present X. To describe this one-
to-one correspondence denote for a vertex v of a Shannon graph by vn the
set of initial segments of length n of the sequences in V, n ∈ N. The λ-graph
system that corresponds to the forward separated Shannon graph has as its
set V−n the set of vn, n ∈ Z+, v a vertex of G, and if in G there is an edge
with initial vertex u and final vertex v and label α then in the corresponding
λ-graph system there is an edge with initial vertex un, final vertex vn−1, n ∈ N,
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and label α, the mapping ι of the corresponding λ-graph system deleting last
symbols.
λ-graph systems can be described by their symbolic matrix systems [Ma]

(M−n,−n−1, I−n,−n−1)n∈Z+
.

Here M−n,−n−1 is the symbolic matrix

[M−n,−n−1(u, v)]u∈V−n,v∈V−n−1

that is given by setting M−n,−n−1(u, v) equal to α1 + · · ·+ αk if in V there is
an edge with initial vertex v and final vertex u with label αi, i = 1, . . . , k and
by setting M−n,−n−1(u, v) equal to zero otherwise. I−n,−n−1 is the zero-one
matrix

[I−n,−n−1(u, v)]u∈V−n,v∈V−n−1

that is given by setting I−n,−n−1(u, v) equal to one if ι(v) = u and by setting
I−n,−n−1(u, v) equal to zero otherwise. We remark that the time direction
considered here is opposite to the time direction in [Ma]. For symbolic matrix
systems there is a notion of strong shift equivalence [Ma] that extends the
notion of strong shift equivalence for transition matrices of topological Markov
shifts [Wi] and of the symbolic matrices of sofic systems [BK,N].
To a symbolic matrix system there are invariantly associated K-groups and
Bowen-Franks groups [Ma]. To describe them, let

Mn,n+1 = [Mn,n+1(u, v)]u∈V−n,v∈V−n−1

be the nonnegative matrix that is given by setting Mn,n+1(u, v) equal to zero if
M−n,−n−1(u, v) is zero, and by setting it equal to the number of the symbols
whose sum is M−n,−n−1(u, v) otherwise. We let In,n+1, n ∈ Z+ be I−n,−n−1.
Let m(n) be the cardinal number of the vertex set V−n. Also denote by
Īt
n,n+1, n ∈ Z+ the homomorphism from Zm(n)/(M t

n−1,n − It
n−1,n)Zm(n−1) to

Zm(n+1)/(M t
n,n+1 − It

n,n+1)Z
m(n) that is induced by It

n,n+1. Then

K0(M, I) = lim−→
n
{Zm(n+1)/(M t

n,n+1 − It
n,n+1)Z

m(n), Īt
n,n+1},

K1(M, I) = lim−→
n
{Ker(M t

n,n+1 − It
n,n+1) in Zm(n), It

n,n+1}.

Let ZI be the group of the projective limit lim−→
n
{Zm(n), In,n+1}. The sequence

Mn,n+1 − In,n+1, n ∈ Z+ acts on it as an endomorphism, denoted by M − I.
The Bowen-Franks groups BF I(M, I), i = 0, 1 are defined by

BF 0(M, I) = ZI/(M − I)ZI , BF 1(M, I) = Ker(M − I) in ZI .
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Given a subshift X ⊂ ΣZ we use for x = (xi)i∈Z ∈ X notation like

x[j,k] = (xi)j≤i≤k,

and we set
X[j,k] = {x[j,k] | x ∈ X}, j, k ∈ Z, j < k,

using similar notations when indices range is infinite intervals. We denote the
forward context of a point x− in X(−∞,0] by Γ+(x−),

Γ+(x−) = {x+ ∈ X[1,∞) | (x−, x+) ∈ X}.

The set G(X) = {Γ+(x−) | x− ∈ X(−∞,0]} is the vertex set of a forward sepa-
rated Shannon graph that presents X. The λ-graph system of its closure was
introduced in [KM] as the canonical λ-graph system of the subshift X. It is
canonically associated to the subshift in the sense that a topological conju-
gacy of subshifts induces a strong shift equivalence of their canonical λ-graph
systems.
For a subshift X ⊂ ΣZ that is synchronizing [Kr] (or semisynchronizing [Kr] )
one has an intrinsically defined shift invariant dense subset Ps(X) of periodic
points of X, and one has associated to X the presenting forward separated
Shannon graph whose vertex set is the set of forward contexts Γ+(x), where
x is left asymptotic to a point in Ps(X). These Shannon graphs are canon-
ically associated to the synchronizing (or semisynchronizing) subshift, in the
sense that a topological conjugacy of subshifts induces a block conjugacy of
the topological Markov chains of the Shannon graphs and also a strong shift
equivalence [Ma] of the λ-graph systems of their closures. Prototype examples
of semisynchronizing subshifts are the Dyck shifts that can be defined via the
Dyck inverse monoids. The Dyck inverse monoid is the inverse monoid (with
zero) with generators αn, βn, 1 ≤ n ≤ N, and relations

αnβn = 1, 1 ≤ n ≤ N,

αnβm = 0, 1 ≤ n,m ≤ N, n 6= m

and the Dyck shift DN is defined as the subshift DN ⊂ {αn, βn | 1 ≤ n ≤ N}Z,
whose admissible words (γi)0≤i≤I satisfy the condition

∏

0≤i≤I

γi 6= 0.

In section 1 we introduce another class of subshifts X ⊂ ΣZ with an intrinsically
defined shift invariant dense set PCh(X) of periodic points. Again the Dyck
shifts serve here as prototypes. In the Dyck shift DN the points in PCh(DN )
are such that during a period there appears an event that has the potential
to influence even the most distant future. In other words, a point (xi)i∈Z in
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DN with period p is in PCh(DN ) if the normal form of the word (xi)0≤i<p is a
word in the symbols αn, 1 ≤ n ≤ N. One can view here the record of an infinite
sequence of events as a point in a Cantor discontinuum. With this in mind,
we call the subshifts in this class Cantor horizon subshifts. The presenting
Shannon graph with vertex set the set of forward contexts Γ+(y−), where y−

is negatively asymptotic to a point in PCh(X), is canonically associated to the
Cantor horizon subshift X ⊂ ΣZ, and so is the λ-graph system of its closure,
that we call the Cantor horizon λ-graph system of X. The Cantor horizon
λ-graph system of a Cantor horizon subshift is a sub λ-graph system of its
canonical λ-graph system.
The K-groups and Bowen-Franks groups of the symbolic matrix system
(MDN , IDN ) for the canonical λ-graph systems of the Dyck shifts DN , N ≥ 2
were computed in [Ma2]. These are

K0(MDN , IDN ) ∼=
∑

n∈N

Z, K1(MDN , IDN ) ∼= 0,

BF 0(MDN , IDN ) ∼= 0, BF 1(MDN , IDN ) ∼=
∏

n∈N

Z.

In section 3 we determine the symbolic matrix system (MCh(D2), ICh(D2)) of
the Cantor horizon λ-graph system LCh(D2) of the Dyck shift D2, and we
compute its K-groups. Denoting the group of all Z-valued continuous functions
on the Cantor discontinuum C by C(C, Z) one has

K0(MCh(D2), ICh(D2)) ∼= Z/2Z ⊕ C(C, Z),

and one has
K1(MCh(D2), ICh(D2)) ∼= 0.

One can construct simple C∗-algebras from irreducible λ-graph systems [Ma3].
A λ-graph system is said to be irreducible if for a sequence v−n ∈ V−n, n ∈ Z+

of vertices with ι(v−n) = v−n+1 and for a vertex u, there exists an N ∈ Z+

such that there is a path from v−N to u. It is said to be aperiodic if for a vertex
u, there exists an N ∈ Z+ such that for all v ∈ V−N there exist paths from
v to u. The Cantor horizon λ-graph system LCh(D2) of the Dyck shift D2 is
irreducible and moreover aperiodic. Hence the resulting C∗-algebra OLCh(D2) is
simple and purely infinite whose K0-group and K1-group are the above groups
K0(MCh(D2), ICh(D2)) and K1(MCh(D2), ICh(D2)) respectively (cf. [Ma3]). In
section 4, we compute the Bowen-Franks groups of the symbolic matrix system
(MCh(D2), ICh(D2)).
In section 5, we consider the K-groups and Bowen-Franks groups of the Dyck
shifts DN , N ≥ 2. Here one has

K0(MCh(DN ), ICh(DN )) ∼= Z/NZ ⊕ C(C, Z),

K1(MCh(DN ), ICh(DN )) ∼= 0.
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1. Subshifts with Cantor horizon lambda-graph systems

Denoting for a given subshift X ⊂ ΣZ, the right context of an admissible block
x[i,j], x ∈ X, i, j ∈ Z, i ≤ j, by Γ+(x[i,j]),

Γ+(x[i,j]) = {y+ ∈ X(j,∞) | (x[i,j], y
+) ∈ X[i,∞)}

and its left context by Γ−(x[i,j]),

Γ−(x[i,j]) = {y− ∈ X(−∞,i) | (y−, x[i,j]) ∈ X(−∞,j]},

we set

ω+(x[i,j]) =
⋂

y−∈Γ−(x[i,j])

{y+ ∈ X(j,∞) | (y−, x[i,j], y
+) ∈ X}.

Lemma 1.1. Let X̃ ⊂ Σ̃Z,X ⊂ ΣZ be subshifts and let ψ : X̃ → X be a
topological conjugacy. Let for some L ∈ Z+ ψ be given by a (2L+1)-block map

Ψ and ψ−1 be given by a (2L + 1)-block map Ψ̃. Let Ñ ∈ N, and let x̃ ∈ X̃ be
such that

(1.1) ω+(x̃
(−L−Ñ,−L]

) = ω+(x̃(−L−ñ,−L]), ñ ≥ Ñ .

Then for x = ψ(x̃) and N = Ñ + 2L,

(1.2) ω+(x(−N,0]) = ω+(x(−n,0]), n ≥ N.

Proof. Let n ≥ N, and let

(1.3) y+ ∈ ω+(x(−n,0]).

Let
ỹ+ = Ψ̃(x[−L,0], y

+).

One has

(1.4) ỹ+ ∈ ω+(x̃
(−Ñ−L,−L]

),

which implies that
y+ ∈ ω+(x(−N,0]),

confirming (1.2). We note that by (1.1) one has that (1.4) follows from

ỹ+ ∈ ω+(x̃(−ñ−L,−L]),

which in turn follows from (1.3). ¤

Let X ⊂ ΣZ be a subshift and P (X) be its set of periodic points. Denote by
Pa(X) the set of x ∈ P (X) such that there is an N ∈ N such that

ω+(x(−N,0]) = ω+(x(−n,0]), n ≥ N.
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Lemma 1.2. Let X̃ ⊂ Σ̃Z,X ⊂ ΣZ be subshifts and let ψ : X̃ → X be a
topological conjugacy. Then

ψ(Pa(X̃)) = Pa(X).

Proof. Apply Lemma 1.1. ¤

By Lemma 1.1 the following property of a subshift X ⊂ ΣZ is invariant under
topological conjugacy : For x ∈ X and N ∈ N such that

ω+(x(−N,0]) = ω+(x(−n,0]), n ≥ N

there exists an M ∈ N such that

ω+(x[−M,0)) = ω+(x[−m,0)), m ≥ M.

For a subshift X ⊂ ΣZ with this property we consider the subgraph GCh(X)
of G(X) with vertices Γ+(u−) where u− ∈ X(−∞,0] is negatively asymptotic to
a point in PCh(X) = P (X)\Pa(X). If here GCh(X) presents X then we say
that X is a Cantor horizon subshift, and we call the λ-graph system of the
closure of GCh(X) the Cantor horizon λ-graph system of X. By Lemma 1.2
the Cantor horizon property is an invariant of topological conjugacy and the
Cantor horizon λ-graph system is invariantly associated to the Cantor horizon
subshift.

2. The Dyck shift

We consider the Dyck shift D2 with alphabet Σ = Σ− ∪ Σ+ where Σ− =
{α0, α1},Σ+ = {β0, β1}. A periodic point x of D2 with period p is not in
Pa(D2) precisely if for some i ∈ Z the normal form of the word (xi+q)0≤q<p is
a word in the symbols of Σ−, in other words, if the multiplier of x in the sense
of [HI] is negative. We also note that periodic points with negative multipliers
give rise to the same irreducible component of GCh(D2) precisely if they have
the same multiplier.
We describe the Cantor horizon λ-graph system LCh(D2) of D2: The vertices at
level l are given by the words of length l in the symbols of Σ−. The mapping ι
deletes the first symbol of a word. A word (αi(n))1≤n≤l accepts βi precisely if
i(l) = i, i = 0, 1, effecting a transition to the word (αi(n))1≤n<l, and it accepts
αi, effecting a transition to the word (αi(n))2≤n≤l. The forward context of the
word a = (αi(n))1≤n≤l contains precisely all words c = (γn)1≤n≤l in symbols

of Σ such that (a, c) is admissible for D2. In describing the Cantor horizon
symbolic matrix system (M, I) of the Dyck shift and the resulting nonnegative
matrix system (M, I) we use the reverse lexcographic order on the words in the

symbols in Σ−, that is, we assign to a word (αi(n))1≤n≤l ∈ Σ−[1,l]
the number

∑

1≤n≤l

i(n)2n−1.
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One has then

M0,−1 = [β0 + α0 + α1, β1 + α0 + α1] = [α0 + α1 + β0, α0 + α1 + β1],

I0,−1 = [1, 1].

For l ∈ Z+ and a ∈ {α0, α1, β0, β1}, let Il(a) be the 2l × 2l diago-
nal matrix with diagonal entries a, and Sl(a) be the 2l−1 × 2l+1 matrix
[Sl(a)(i, j)]1≤i≤2l−1,1≤j≤2l+1 where Sl(a)(i, j) is a for j = 4i, 4i−1, 4i−2, 4i−3,
and is otherwise zero.

Proposition 2.1. For l = 1, 2, . . . , the matrix M−l,−l−1 is a 2l × 2l+1 rect-
angular matrix that is given as the block matrix:

(2.1) M−l,−l−1 =

[
Sl(α0)
Sl(α1)

]
+ [ Il(β0) | Il(β1) ]

and

(2.2) I−l,−l−1(i, j) =

{
1 (j = 2i − 1, 2i),

0 elsewhere.

Proof. The first summand in (2.1) describes the transitions that arise when a
vertex accepts a symbol in Σ+. The second summand arises from the transitions
that arise when a vertex accepts a symbol in Σ−, the arrangement of the
components of the matrix as well as (2.2) being a component of the ordering
of the vertices at level l and l − 1. ¤

We note that the λ-graph systems of the closures of the irreducible components
of GCh(X) are identical.

Proposition 2.2. The λ-graph system LCh(D2) for (M, I) is irreducible and
aperiodic.

Proof. Let V−l, l ∈ Z+ be the vertex set of the λ-graph system LCh(D2). For
any vertex u of V−l, there are labeled edges from each of the vertices in V−2l

to the vertex u. This implies that (M, I) is aperiodic. ¤

3. Computation of the K-groups

Let Ml,l+1 for l ∈ Z+ be the nonnegative matrix obtained from M−l,−l−1 by
setting all the symbols of the components of M−l,−l−1 equal to 1. The matrix
Il,l+1 for l ∈ Z+ is defined to be I−l,−l−1. For l > 1 and 1 ≤ i ≤ 2l−2 let

ai(l) = [ai(l)n]2
l

n=1 be the vector that is given by

ai(l)n =

{
1 (n = 4i − 3, 4i − 2, 4i − 1, 4i),

0 elsewhere.
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Define for 1 < l ∈ N El as the 2l × 2l-matrix whose i−th column vector and
whose (2l−1 + i)−th column vector are both equal to ai(l), 1 ≤ i ≤ 2l−2, the
other column vectors being equal to zero vectors.

For l > 1 and 1 ≤ i ≤ 2l−1 let bi(l) = [bi(l)n]2
l

n=1 be the vector that is given by

bi(l)n =

{
1 (n = 2i − 1, 2i),

0 elsewhere.

Define for 1 < l ∈ N Fl as the 2l ×2l-matrix whose i−th column vector is equal
to bi(l), 1 ≤ i ≤ 2l−1, the other column vectors being equal to zero vectors.
One has

(3.1) It
l,l+1El = El+1I

t
l,l+1, It

l,l+1Fl = Fl+1I
t
l,l+1, l > 1.

Let Il denote the unit matrix of size 2l. Define a 2l × 2l−1 matrix Hl,l−1 by
setting

Hl,l−1 =

[
Il−1

−Il−1

]
, l > 1.

Lemma 3.1. For l > 1 one has

(El − Fl)Hl,l−1 = −It
l−1,l.

Proof. One has
ElHl,l−1 = 0, FlHl,l−1 = It

l−1,l.

¤

Set y1(2) =




1
1
1
1


 , y2(2) =




1
1
0
0


 , y3(2) =




0
1
1
1


 , y4(2) =




0
0
0
1


 , and define

inductively for l > 2 vectors yi(l), 1 ≤ i ≤ 2l, where

(3.2) yi(l) = It
l−1,lyi(l − 1), 1 ≤ i ≤ 2l−1

and

(3.3) yi(l) = Hl,l−1yi−2l−2(l − 1), 2l−1 < i ≤ 2l−1 + 2l−2

where one defines the vectors

yi(l) = [yi(l)n]
2l

n=1, 2l−1 + 2l−2 < i ≤ 2l

by setting
(3.4)

y2l−1+2l−2+i(l)n =





1 (n = 4i − 1, 4i, 2l−1 + 2i),

−1 (n = 2l−1 + 4i − 1, 2l−1 + 4i),

0 elsewhere,

1 ≤ i ≤ 2l−3
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and by setting

(3.5) y2l−1+2l−2+2l−3+i(l)n =

{
1 (n = 2l−1 + 2l−2 + 2i),

0 elsewhere,
1 ≤ i ≤ 2l−3.

Define for l > 2, Tl as the 2l ×2l-matrix whose column vectors yi(l), 1 ≤ i ≤ 2l.
Here y1(l) has all components equal to 1, that is, y1(l) is the eigenvector of
El − Fl for the eigenvalue 1. Also the vectors

yi(l), 2l−1 + 2l−2 < i ≤ 2l

are linearly independent vectors in the kernel of El − Fl and one sees from
(3.1), (3.2), (3.3), (3.4) and (3.5) that Tl is invertible and that T−1

l (El − Fl)Tl

is a matrix that is in a normal form. This normal form is a Jordan form in
the sense that by conjugation with a suitable permutation matrix, followed by
a conjugation with a suitable diagonal matrix whose entries are 1 or −1, the
matrix assumes a Jordan form with Jordan blocks arranged along the diagonal.
There will be one Jordan block of length 1 for the eigenvalue 1, and there will
be 2l−1 Jordan blocks for the eigenvalue 0, and if one lists these by decreasing
length then the k−th Jordan block for the eigenvalue 0 has length l − µ(k)
where µ(k) be given by 2µ(k)−1 < k ≤ 2µ(k), 1 ≤ k ≤ 2l−2.
By an elementary column operation we will mean the addition or subtraction
of one column vector from another or the exchange of two column vectors.

Lemma 3.2. Let l ∈ N and let K be a 2l × 2l-matrix with column vectors
zi, 1 ≤ i ≤ 2l,

zi = bi(l), 1 ≤ i ≤ 2l−1,

and column vectors

z2l−1+i = [z2l−1+i,n]
2l

n=1
, 1 ≤ i ≤ 2l−1

such that

z2l−1+i,2j−1 = z2l−1+i,2j = 0, 1 ≤ j < i,

z2l−1+i,2i−1 = 0, z2l−1+i,2i = 1,

z2l−1+i,2j−1 = 0, z2l−1+i,2j ∈ {−1, 0, 1}, i < j ≤ 2l−1.

Then K can be converted into the unit matrix by a sequence of elementary
column operations.

Proof. Let the vector cj = [cj,n]
2l

n=1, 1 ≤ j ≤ 2l−1, be given by

cj,n =

{
1 (n = 2j),

0 elsewhere.
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and denote by K[j], 1 ≤ j ≤ 2l−1 the matrix that is obtained by replacing
in the matrix K the last j column vectors by the vectors c2l−1−i, j ≥ i ≥ 1.
K[1] is equal to K and K[j], 1 < j ≤ 2l−1, can be obtained from K[j − 1] by
subtracting from and adding to the (2l − j)-th column appropriate selections
of the the (2l − i)-th columns, 1 ≤ i ≤ j. K[2l−1] has as its first 2l−1 column
vectors the vectors bi(l), 1 ≤ i ≤ 2l−1, and as its last 2l−1 column vectors
the vectors ci(l), 1 ≤ i ≤ 2l−1, and can be converted into the unit matrix by
elementary column operations. ¤

Lemma 3.3. Let l ∈ N and let K be a 2l × 2l-matrix with column vectors
zi, 1 ≤ i ≤ 2l,

zi = bi(l), 1 ≤ i ≤ 2l−1,

and column vectors

z2l−1+i = [z2l−1+i,n]
2l

n=1
, 1 < i ≤ 2l−1

such that

(z2l−1+i,2j−1,z2l−1+i,2j) ∈ {(0, 0), (1, 1)}, 1 ≤ j < i,

z2l−1+i,2i−1 = 0, z2l−1+i,2i = 1,

(z2l−1+i,2j−1,z2l−1+i,2j) ∈ {(−1,−1), (0, 0), (1, 1), (0, 1), (0,−1)}, i < j < 2l−1.

Then K can be converted into the unit matrix by a sequence of elementary
column operations.

Proof. For all i, 2l−1 < i ≤ 2l, one subtracts from the i-th column of K and
adds to the i-th column of K appropriate selections of the first 2l−1 columns
of K to obtain a matrix to which Lemma 3.2 applies. ¤

Proposition 3.4. The matrix Tl is unimodular.

Proof. The matrix T2 can be converted into the unit matrix by elementary
column operations. The proof is by induction on l. Assume that the matrix
Tl−1, l > 2 can be converted into the unit matrix by a sequence of elementary
column operations. Then by (3.2) the matrix Tl can be converted by a sequence
of elementary column operations into a matrix whose first 2l−1 column vectors
are the vectors bi(l), 1 ≤ i ≤ 2l−1 and whose last 2l−1 column vectors are those
of the matrix Tl, and by (3.2),(3.3) and (3.4) Lemma 3.3 is applicable to this
matrix. ¤

Define a 2l × 2l matrix Ll by setting

Ll = Il + El − Fl, l > 1.

Denote by 0k,l the 2k × 2l matrix with entries 0’s. Also define permutation
matrices Pl(i, j), 1 ≤ i, j ≤ 2l, l > 1, by

Pl(i, 2
l − i + 1) = 1, 1 ≤ i ≤ 2l,

and set

Bl+1 =

[
Ll 0l,l

PlLlPl 0l,l

]
.
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Lemma 3.5. Bl+1 = [M t
l,l+1 − It

l,l+1 | 0l+1,l ] , l > 1.

Proof. This follows from Proposition 2.1. ¤

Define 2l+1 × 2l+1 matrices J(l + 1) and Ul+1 by setting

J(l + 1) =

[
T−1

l LlTl 0l,l

0l,l 0l,l

]
, Ul+1 =

[
Tl 0l,l

PlTl Il

]
.

Lemma 3.6. Ul+1 is unimodular and

U−1
l+1Bl+1Ul+1 = J(l + 1), l > 1.

Proof. One has

U−1
l+1 =

[
T−1

l 0l,l

−Pl Il

]

and further
[

T−1
l 0l,l

−Pl Il

] [
Ll 0l,l

PlLlPl 0l,l

] [
Tl 0l,l

PlTl Il

]
=

[
T−1

l LlTl 0l,l

0l,l 0l,l

]
.

¤

Define a 2l+1 × 2l matrix Gl+1,l by setting

Gl+1,l =

[
Il

0l,l

]
, l > 1.

One has

It
l,l+1Tl = Tl+1Gl+1,l,(3.6)

It
l,l+1PlTl = Pl+1Tl+1Gl+1,l.(3.7)

Define a 2l+1 × 2l matrix Jl+1,l by setting

Jl+1,l =

[
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

]
, l > 1.

Lemma 3.7. It
l,l+1Ul = Ul+1Jl+1,l, l > 1.

Proof. From (3.6) and (3.7), it follows that

[
It
l−1,l 0l,l−1

0l,l−1 It
l−1,l

][
Tl−l 0l,l−1

Pl−1Tl−1 Il−1

]
=

[
TlGl,l−1 0l,l−1

PlTlGl,l−1 It
l−1,l

]

=

[
Tl 0l,l

PlTl Il

][
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

]
.

¤
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Lemma 3.8.
Jl+1,lJ(l) = J(l + 1)Jl+1,l, l > 1.

Proof. By (3.1)
It
l−1,lLl−1 = LlI

t
l−1,l

and by (3.6)
T−1

l+1I
t
l,l+1Tl = Gl+1,lT

−1
l .

Therefore by (3.6)

Gl,l−1T
−1
l−1Ll−1Tl−1 = T−1

l It
l−1,lLl−1Tl−1

= T−1
l LlI

t
l−1,lTl−1

= T−1
l LlTlGl,l−1

and therefore

[
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

] [
T−1

l−1Ll−1Tl−1 0l,l−1

0l,l−1 0l,l−1

]

=

[
Gl,l−1T

−1
l−1Ll−1Tl−1 0l,l−1

0l,l−1 0l,l−1

]

=

[
T−1

l LlTlGl,l−1 0l,l−1

0l,l−1 0l,l−1

]

=

[
T−1

l LlTl 0l,l−1

0l,l−1 0l,l−1

] [
Gl,l−1 0l,l−1

0l,l−1 It
l−1,l

]
.

¤

By the preceding lemma, the matrix Jl+1,l induces a homomorphism

J̄l+1,l : Z2l

/J(l)Z2l → Z2l+1

/J(l + 1)Z2l+1

and by Proposition 3.4 and Lemma 3.6 the matrix Ul, as BlZ2l

= (M t
l−1,l −

It
l−1,l)Z

2l−1

, induces a homomorphism

Ūl : Z2l

/J(l)Z2l → Z2l

/BlZ2l

.

Lemma 3.9. The diagram :

Z2l

/(M t
l−1,l − It

l−1,l)Z
2l−1 Īt

l,l+1−−−−→ Z2l+1

/(M t
l,l+1 − It

l,l+1)Z
2l

Ūl

x Ūl+1

x

Z2l

/J(l)Z2l J̄l+1,l−−−−→ Z2l+1

/J(l + 1)Z2l+1
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is commutative.

Proof. Apply Lemma 3.7. ¤

Define a diagonal matrix D(l) by setting

D(l) = diag(2,

2l−1︷ ︸︸ ︷
1, 1, . . . , 1), l ∈ N.

As J(l+1)Z2l+1

= D(l)Z2l ⊕(

2l

︷ ︸︸ ︷
0, . . . , 0) and hence Z2l+1

/J(l+1)Z2l+1 ∼= Z/2Z⊕
Z2l

, through the map ϕl ⊕ id where ϕl : Z2l

/D(l)Z2l → Z/2Z is defined by

ϕl([(xi)
2l

i=1]) = [x1] (mod 2), we have

Proposition 3.10. The following diagram is commutative:

Z2l

/J(l)Z2l J̄l+1,l−−−−→ Z2l+1

/J(l + 1)Z2l+1

ϕl−1⊕id

y ϕl⊕id

y

Z/2Z ⊕ Z2l−1 id⊕It
l−1,l−−−−−−→ Z/2Z ⊕ Z2l

.

Corollary 3.11.

lim−→
l

{Z2l+1

/(M t
l,l+1 − It

l,l+1)Z
2l

, Īt
l,l+1} ∼= Z/2Z ⊕ C(C, Z).

Proof. As the group of the inductive limit: lim−→
l

{It
l,l+1 : Z2l → Z2l+1} is isomor-

phic to C(C, Z), we get the assertion. ¤

Theorem 3.12.

K0(M, I) ∼= Z/2Z ⊕ C(C, Z), K1(M, I) ∼= 0.

By Proposition 2.2, the Cantor horizon λ-graph system LCh(D2) of D2 is ape-
riodic so that the C∗-algebra OLCh(D2) associated with the λ-graph system
LCh(D2) is simple and purely infinite ([Ma3;Proposition 4.9]). It satisfies the
UCT by [Ma3;Proposition 5.6] (cf.[Bro],[RS]). By [Ma3;Theorem 5.5], the K-
groups Ki(OLCh(D2)) are isomorphic to the K-groups Ki(M, I) so that we get

Corollary 3.13. The C∗-algebra OLCh(D2) associated with the λ-graph sys-
tem LCh(D2) is separable, unital, nuclear, simple, purely infinite with UCT such
that

K0(OLCh(D2)) ∼= Z/2Z ⊕ C(C, Z), K1(OLCh(D2)) ∼= 0.
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4. Computation of the Bowen-Franks groups

We compute next the Bowen-Franks groups BF 0(M, I) and BF 0(M, I).

Lemma 4.1. Ext1Z(C(C, Z), Z) ∼= 0.

Proof. From [Ro] (cf.[Sch;Theorem 1.3]) one has that for an inductive sequence
{Gi} of abelian groups there exists a natural short exact sequence

0 → lim
←−

1HomZ(Gi, Z) → Ext1Z(lim
−→

Gi, Z) → lim
←−

Ext1Z(Gi, Z) → 0.

The lemma follows therefore from C(C, Z) = lim−→
l

{It
l,l+1 : Z2l → Z2l+1} and

Ext1Z(Z2l

, Z) = lim
←−

1HomZ(Z2l

, Z) = 0. ¤

As in [Ma;Theorem 9.6], one has the following lemma that provides a universal
coefficient type theorem.

Lemma 4.2. For i = 0, 1 there exists an exact sequence

0 → Ext1Z(Ki(M, I), Z) → BF i(M, I) → HomZ(Ki+1(M, I), Z) → 0.

Theorem 4.3.
BF 0(M, I) ∼= Z/2Z.

Proof. By Theorem 3.12 and by Lemma 4.2 one has

BF 0(M, I) ∼= Ext1Z(Z/2Z, Z) ⊕ Ext1Z(C(C, Z), Z).

As Ext1Z(Z/2Z, Z) ∼= Z/2Z, the theorem follows from Lemma 4.1. ¤

Theorem 4.4.
BF 1(M, I) ∼= HomZ(C(C, Z), Z).

Proof. HomZ(Z/2Z, Z) is trivial. Therefore by Theorem 3.12

HomZ(K0(M, I)) ∼= HomZ(C(C, Z), Z).

Since the group K1(M, I) is trivial, by Lemma 4.2, one gets

BF 1(M, I) ∼= HomZ(C(C, Z), Z).

¤

As the Bowen-Franks groups BF 0(M, I) and BF 1(M, I) are isomorphic
to the Ext-groups Ext1(OLCh(D2))(= Ext(OLCh(D2))) and Ext0(OLCh(D2))(=
Ext(OLCh(D2) ⊗ C0(R)) for the C∗-algebra OLCh(D2) (cf. [Ma3]), we obtain

Corollary 4.5.

Ext1(OLCh(D2)) ∼= Z/2Z, Ext0(OLCh(D2)) ∼= HomZ(C(C, Z), Z).
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5. General Dyck shifts

One can extend the preceding results for the Dyck shift D2 to the general
Dyck shifts DN with 2N symbols αn, βn, 1 ≤ n ≤ N, for N > 2, generalizing
the previous discussions for the case of N = 2. We will briefly explain this.
We consider the Cantor horizon λ-graph system LCh(DN ) of DN as in the

previous case and write its symbolic matrix system (MCh(DN )
−l,−l−1, I

Ch(DN )
−l,−l−1) as

(Ml,l+1, Il,l+1). We define the nonnegative matrices Ml,l+1, Il,l+1, l ∈ Z+ in a

similar way. The size of the matrices Ml,l+1, Il,l+1 is N l×N l+1. Let I
(N)
l be the

unit matrix with size N l. For l > 1 and 1 ≤ i ≤ N l−2 let a
(N)
i (l) = [a

(N)
i (l)n]N

l

n=1

be the vector that is given by

a
(N)
i (l)n =

{
1 (N2(i − 1) + 1 ≤ n ≤ N2i),

0 elsewhere.

Define for 1 < l ∈ N E
(N)
l as the N l × N l-matrix whose i−th, (N l−1 + i)−th,

(2N l−1 + i)−th, . . . , ((N − 1)N l−1 + i)−th column vectors are all equal to

a
(N)
i (l), 1 ≤ i ≤ N l−2, the other column vectors being equal to zero vectors.

Let b
(N)
i (l) = [b

(N)
i (l)n]N

l

n=1 be the vector that is given by

b
(N)
i (l)n =

{
1 (N(i − 1) + 1 ≤ n ≤ Ni),

0 elsewhere.

Define for 1 < l ∈ N F
(N)
l as the N l × N l-matrix whose i−th column vector

is equal to b
(N)
i (l), 1 ≤ i ≤ N l−1, the other column vectors being equal to zero

vectors.
Define a N l × N l matrix by

L
(N)
l = I

(N)
l + E

(N)
l − F

(N)
l , l ∈ N.

Also define permutation matrices P
(N),k
l , k = 1, 2, . . . , N − 1, by

P
(N),k
l (i,N l − i + 1 − (k − 1)) = 1, 1 ≤ i ≤ N l,

where 1 ≤ N l − i + 1 − (k − 1) ≤ N l is taken mod N l. Denote by 0k,l the
Nk × N l matrix with entries 0’s.
We define an N l+1 × N l+1 matrix B

(N)
l+1 by

B
(N)
l+1 = [M t

l,l+1 − It
l,l+1 | 0l+1,l],

that is written as the block matrix



L
(N)
l 0l,l

P
(N),1
l L

(N)
l P

(N),1
l 0l,l

...
...

P
(N),N−1
l L

(N)
l P

(N),N−1
l 0l,l


 .

By an argument that is similar to the one of the previous sections, one can
conclude then
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Theorem 5.1.

K0(M, I) ∼= Z/NZ ⊕ C(C, Z), K1(M, I) ∼= 0,

BF 0(M, I) ∼= Z/NZ, BF 1(M, I) ∼= HomZ(C(C, Z), Z).

Corollary 5.2. The C∗-algebra OLCh(DN ) associated with the Cantor horizon

λ-graph system LCh(DN ) of DN is separable, unital, nuclear, simple, purely
infinite such that

K0(OLCh(DN )) ∼= Z/NZ ⊕ C(C, Z), K1(OLCh(DN )) ∼= 0,

Ext1(OLCh(DN )) ∼= Z/NZ, Ext0(OLCh(DN )) ∼= HomZ(C(C, Z), Z).
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1. Introduction

The large measure of attention that complex Calabi-Yau varieties drew in re-
cent years stands in marked contrast to the limited attention for their coun-
terparts in positive characteristic. Nevertheless, we think these varieties de-
serve a greater interest, especially since the special nature of these varieties
lends itself well for excursions into the largely unexplored territory of varieties
in positive characteristic. In this paper we mean by a Calabi-Yau variety a
smooth complete variety of dimension n over a field with dimHi(X,OX) = 0
for i = 1, . . . , n−1 and with trivial canonical bundle. We study some invariants
of Calabi-Yau varieties in characteristic p > 0, especially the height h of the
Artin-Mazur formal group for which we prove the estimate h ≤ h1,n−1 + 1 if
h 6= ∞. We show how this invariant is related to the cohomology of sheaves of
closed forms.
It is well-known that K3 surfaces do not possess non-zero global 1-forms. The
analogous statement about the existence of global i-forms with i = 1 and
i = n − 1 on a n-dimensional Calabi-Yau variety is not known and might
well be false in positive characteristic. We show that for a Calabi-Yau variety
of dimension ≥ 3 over an algebraically closed field k of characteristic p > 0
with no non-zero global 1-forms there is no p-torsion in the Picard variety and
Pic/pPic is isomorphic to NS/pNS with NS the Néron-Severi group of X. If in
addition X does not have a non-zero global 2-form then NS/pNS ⊗Fp

k maps

injectively into H1(X,Ω1
X). This yields the estimate ρ ≤ h1,1 for the Picard
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number. We also study Calabi-Yau varieties of Fermat type and of Kummer
type to illustrate the results.

2. The Height of a Calabi-Yau Variety

The most conspicuous invariant of a Calabi-Yau variety X of dimension n
in characteristic p > 0 is its height. There are several ways to define it, using
crystalline cohomology or formal groups. In the latter setting one considers the
functor F r

X : Art → Ab defined on the category of local Artinian k-algebras
with residue field k by

F r
X(S) := Ker{Hr

et(X × S, Gm) −→ Hr
et(X, Gm)}.

According to a theorem of Artin and Mazur [2], for a Calabi-Yau variety X and
r = n this functor is representable by a smooth formal group ΦX of dimension 1
with tangent space Hn(X,OX). Formal groups of dimension 1 in characteristic
p > 0 are classified up to isomorphism by their height h which is a natural
number ≥ 1 or ∞. In the former case (h 6= ∞) the formal group is p-divisible,
while in the latter case the formal group is isomorphic to the additive formal
group Ĝa.
For a non-singular complete variety X over an algebraically closed field k
of characteristic p > 0 we let WmOX be the sheaf of Witt rings of length
m, which is coherent as a sheaf of rings. It has three operators F , V and
R given by F (a0, . . . , am) = (ap

0, . . . , a
p
m), V (a0, . . . , am) = (0, a0, . . . , am)

and R(a0, . . . , am) = (a0, . . . , am−1) satisfying the relations RV F = FRV =
RFV = p. The cohomology groups Hi(X,WmOX) with the maps induced by
R form a projective system of finitely generated Wm(k)-modules. The projec-
tive limit is the cohomology group Hi(X,WOX). Note that this need not be
a finitely generated W (k)-module. It has semi-linear operators F and V .
Let X be a Calabi-Yau manifold of dimension n. The vanishing of the groups
Hi(X,OX) for i 6= 0, n and the exact sequence

0 → Wm−1OX → WmOX → OX → 0

imply that Hi(X,WmOX) vanishes for i = 1, . . . , n − 1 and all m > 0, hence
Hi(X,WOX) = 0. We also see that restriction R : WmOX → Wm−1OX

induces a surjective map Hn(X,WmOX) → Hn(X,Wm−1OX) with kernel
Hn(X,OX). The fact that F and R commute implies that if the induced map
F : Hn(X,WmOX) → Hn(X,WmOX) vanishes then F : Hn(X,WiOX) →
Hn(X,WiOX) vanishes for i < m too. It also follows that Hn(X,WiOX) is a
k-vector space for i < m.
It is known by Artin-Mazur [2] that the Dieudonné module of the formal group
ΦX is Hn(X,WOX) with WOX the sheaf of Witt vectors of OX . This implies
the following result, cf. [3] where we proved this for K3-surfaces. We omit the
proof which is similar to that for K3 surfaces.
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Theorem 2.1. For a Calabi-Yau manifold X of dimension n we have the fol-
lowing characterization of the height:

h(ΦX) = min{i ≥ 1: [F : Hn(WiOX) → Hn(WiOX)] 6= 0}.
We now connect this with de Rham cohomology. Serre introduced in [14] a
map Di : Wi(OX) → Ω1

X of sheaves in the following way:

Di(a0, a1, . . . , ai−1) = api−1−1
0 da0 + . . . + ap−1

i−2 dai−2 + dai−1.

It satisfies Di+1V = Di, and Serre showed that this induces an injective map
of sheaves of additive groups

Di : WiOX/FWiOX → Ω1
X . (1)

The exact sequence 0 → WiOX
F−→ WiOX −→ WiOX/FWiOX → 0 gives rise

to an isomorphism

Hn−1(WiOX/FWiOX) ∼= Ker[F : Hn(WiOX) → Hn(WiOX)]. (2)

Proposition 2.2. If h 6= ∞ then the induced map

Di : Hn−1(X,WiOX/FWiOX) → Hn−1(X,Ω1
X)

is injective, and dim Im Di = min{i, h − 1}.
Proof. We give a proof for the reader’s convenience. Take an affine open cov-
ering {Ui} of X. Assuming some D` is not injective, we let ` be the smallest
natural number such that D` is not injective on Hn−1(W`OX/FW`OX). Let

α = {fI} with fI = (f
(0)
I , . . . , f

(`−1)
I ) ∈ Γ(Ui0,...,in−1

,W`OX) represent a non-
zero element of Hn−1(W`OX/FW`OX) such that D`(α) is zero in Hn−1(Ω1

X).
Then there exists elements ωJ = ωj0j1...jn−2

in Γ(Uj0 ∩ . . . ∩ Ujn−2
,Ω1

X) such
that

`−1∑

j=0

(f
(j)
I )p`−j−1

d log f
(j)
I =

∑

j

ωIj
,

where the multi-index Ij = {i0, . . . , in−1} is obtained from I by omitting ij .
By applying the inverse Cartier operator we get an equation

`−1∑

j=0

(f
(j)
I )p`−j

d log f
(j)
I + df

(`)
I =

∑

j

ω̃Ij

for certain functions f
(`)
I and differential forms ω̃Ij

with C(ω̃Ij
) = ωIj

.

Since α is an non-zero element of Hn−1(W`OX/FW`OX), the element β =

(f
(0)
I , . . . , f

(`−1)
I , f

(`)
I ) gives a non-zero element of Hn−1(W`+1OX/FW`+1OX).

In view of (2) for i = ` + 1 the element β gives a non-zero element β̃ of

Hn(W`+1OX) such that F (β̃) = 0 in Hn(W`+1OX). Take the element α̃ in
Hn(W`OX) which corresponds to the element α under the isomorphism (2) for
i = `. Then we have F (α̃) = 0 in Hn(W`OX), and R`(α̃) 6= 0 in Hn(X,OX)

by the assumption on `. Therefore, we have R`(β̃) 6= 0 in Hn(X,OX), and the
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elements V jRj(β̃) for j = 0, . . . , ` generate Hn(W`+1OX). Hence the Frobe-
nius map is zero on Hn(W`+1OX). Repeating this argument, we conclude that
the Frobenius map is zero on Hn(WiOX) for any i > 0 and this contradicts
the assumption h 6= ∞.

Corollary 2.3. If the height h of an n-dimensional Calabi-Yau variety X is
not ∞ then h ≤ dimHn−1(Ω1

X) + 1.

Definition 2.4. A Calabi-Yau manifold X is called rigid if
dimHn−1(X,Ω1

X) = 0.

Please note that the tangent sheaf ΘX is the dual of Ω1
X , hence by the triviality

of the canonical bundle it is isomorphic to Ωn−1
X . Therefore, by Serre duality

the space of infinitesimal deformations H1(X,ΘX) is isomorphic to the dual of
Hn−1(X,Ω1

X).

Corollary 2.5. The height of a rigid Calabi-Yau manifold X is either 1 or
∞.

3. Cohomology Groups of Calabi-Yau Varieties

Let X be a Calabi-Yau variety of dimension n over k. The existence of Frobe-
nius provides the de Rham cohomology with a very rich structure from which
we can read off characteristic p properties. If F : X → X(p) is the relative
Frobenius operator then the Cartier operator C gives an isomorphism

Hj(F∗Ω
•
X/k) = Ωj

X,d-closed
/dΩj−1

X −̃→ Ωj
X(p)

of sheaves on X(p). We generalize the sheaves dΩj−1
X and Ωj

X,d-closed
by setting

(cf. [6])

B0Ω
j
X = (0), B1Ω

j
X = dΩj−1

X , Bm+1Ω
j
X = C−1(BmΩj

X).

and

Z0Ω
j
X = Ωj

X , Z1Ω
j
X = Ωj

X,d-closed
, Zm+1Ω

j
X = Ker(dCm).

Note that we have the inclusions

0 = B0Ω
j
X ⊂ B1Ω

j
X ⊂ . . . ⊂ BmΩj

X ⊂ . . .

. . . ⊂ ZmΩj
X ⊂ . . . ⊂ Z1Ω

j
X ⊂ Z0Ω

j
X = Ωj

X

and that we have an exact sequence

0 → Zm+1Ω
j
X −→ ZmΩj

X
dCm

−→ dΩj
X → 0.

Alternatively, the sheaves BmΩj
X and ZmΩj

X can be viewed as locally free

subsheaves of (Fm)∗Ω
j
X on X(pm). Duality for the finite morphism Fm implies

that for every j ≥ 0 there is a perfect pairing of OX(pm)-modules Fm
∗ Ωj

X ⊗
Fm
∗ Ωn−j

X −→ Ωn
X(pm) given by (α, β) 7→ Cm(α ∧ β). This induces perfect

pairings of OX(pm) -modules

BmΩj
X ⊗ Fm

∗ Ωn−j
X /ZmΩn−j

X → ΩX(pm)
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and

ZmΩj
X ⊗ Fm

∗ Ωn−j
X /BmΩn−j

X → ΩX(pm)

Now we have an isomorphism Fm
∗ Ωj

X/ZmΩj
X

∼= BmΩj+1
X induced by the map

d. Going back to the interpretation of the BmΩj
X as sheaves on X we find in

this way for 1 ≤ j ≤ n and m > 0 perfect pairings

BmΩj
X ⊗ BmΩn+1−j

X → Ωn
X (ω1 ⊗ ω2) 7→ Cm(ω1 ∧ ω2).

We first note another interpretation for BmΩ1
X : the injective map of sheaves

of additive groups Dm : Wm(OX)/FWm(OX) → Ω1
X induces an isomorphism

Dm : Wm(OX)/FWm(OX) −̃→ BmΩ1
X . (3)

We write hi(X,−) for dimk Hi(X,−). Note that duality implies hi(BmΩn
X) =

hn−i(BmΩ1
X).

Proposition 3.1. We have hi(X,BmΩ1
X) = 0 unless i = n or i = n − 1. If

i = n − 1 or i = n we have

hi(BmΩ1
X) =

{
min{m,h − 1} if h 6= ∞
m if h = ∞.

Proof. The statement about hn−1(BmΩ1
X) follows from (3) and the character-

ization of the height given in Section 2. The other statements follow from the
long exact sequence associated with the short exact sequence

0 −→ OX
F−→ OX

d−→ dOX −→ 0

and the exact sequence

0 → Bm → Bm+1
Cm

−−→B1 → 0. (4)

The details can safely be left to the reader. This concludes the proof.

The natural inclusions BiΩ
j
X ↪→ Ωj

X and ZiΩ
j
X ↪→ Ωj

X of sheaves of groups on
X induce homomorphisms

H1(BiΩ
j
X) → H1(Ωj

X) and H1(ZiΩ
j
X) → H1(Ωj

X)

whose images are denoted by Im H1(BiΩ
j
X) and ImH1(ZiΩ

j
X). Note that we

have a non-degenerate cup product pairing

〈 , 〉 : Hn−1(X,Ω1
X) ⊗ H1(X,Ωn−1

X ) → Hn(X,Ωn
X) ∼= k.

Lemma 3.2. The images Im Hn−1(BiΩ
1
X) and Im H1(ZiΩ

n−1
X ) are orthogonal

to each other for the pairing 〈 , 〉.
Proof. From the definitions it follows that for elements α ∈ Hn−1(BiΩ

1
X) and

β ∈ H1(ZiΩ
n−1
X ) we have Ci(α ∧ β) = 0. The long exact sequence associated

to

0 → B1Ω
n
X → Z1Ω

n
X → Ωn

X → 0 (5)

together with the fact that Hn(ZiΩ
n
X) = Hn(Ωn

X) for i ≥ 0 implies that C acts
without kernel on Hn(Ωn

X). This proves the required orthogonality.
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Lemma 3.3. If h 6= ∞ we have dim ImH1(X,ZiΩ
n−1
X ) = dimH1(Ωn−1

X )− i for
0 ≤ i ≤ h − 1.

Proof. If the height h = 1 then we have Hn−1(BiΩ
1
X) = 0 by (4) and moreover

the vanishing of Hi(X, dΩn−1
X ) and the exact sequence

0 → Zi+1Ω
n−1
X −→ ZiΩ

n−1
X

dCi

−−→ dΩn−1
X → 0 (6)

imply that ImH1(X,ZiΩ
n−1
X ) = H1(X,Ωn−1

X ) for i ≥ 1. For 2 ≤ h < ∞,
we know by Proposition 2.2 that ImHn−1(X,BiΩ

1
X) ⊂ Hn−1(X,Ω1

X) is of
dimension min{i, h − 1}. The exact sequence (6) gives an exact sequence

k −→ H1(Zi+1Ω
n−1
X )

ψi+1−−→ H1(ZiΩ
n−1
X ) −→ k

from which we deduce that either dimψi+1(H
1(Zi+1Ω

n−1
X )) =

dimH1(ZiΩ
n−1
X ) + 1 or dimψi+1(H

1(Zi+1Ω
n−1
X )) = dimH1(ZiΩ

n−1
X ). By

induction dim ImH1(ZiΩ
n−1
X ) is at least dim H1(Ωn−1

X ) − i. On the other

hand, by Proposition 3.1 we have dim ImH1(ZiΩ
n−1
X ) ≤ dimH1(Ωn−1

X ) − i for
i ≤ h − 1.

Lemma 3.4. If X is a Calabi-Yau manifold of dimension n with h = ∞ then

(Im Hn−1(X,BiΩ
1
X))⊥ = Im H1(ZiΩ

n−1
X ).

Proof. We prove this by induction on i. By the exact sequence (5) we have
dimHi(X, dΩn−1

X ) = 1 for i = 0, 1. Thus, by the exact sequence (6) we see
that the difference dim ImH1(ZiΩ

n−1)− dim ImH1(Zi+1Ω
n−1) is equal to 0 or

1, and we have an exact sequence

H1(Zi+1Ω
n−1)

φ−→ H1(ZiΩ
n−1)

dCi

−→ H1(dΩn−1
X ).

Assume that Im Hn−1(Bj−1Ω
1) 6= Im Hn−1(BjΩ

1) for j ≤ i and
ImHn−1(BiΩ

1) = Im Hn−1(Bi+1Ω
1). By Lemma 3.2,

ImH1(Zi−1Ω
n−1) ⊃ ImH1(ZiΩ

n−1)

and ImH1(Zi−1Ω
n−1) 6= ImH1(ZiΩ

n−1) for j ≤ i. Suppose ImH1(ZiΩ
n−1) 6=

ImH1(Zi+1Ω
n−1). The natural homomorphism φ : H1(Zi+1Ω

n−1) →
H1(ZiΩ

n−1) is not surjective. Since H1(dΩn−1
X ) ∼= k, we see that dCi :

H1(ZiΩ
n−1) → H1(dΩn−1

X ) is surjective and we factor it as

H1(ZiΩ
n−1)

Ci

−→ H1(Ωn−1)
d−→ H1(dΩn−1

X ).

Since dCi is surjective, d is not the zero map on Ci(H1(ZiΩ
n−1)). Therefore,

we have
Ci(H1(ZiΩ

n−1)) 6⊂ Im H1(Z1Ω
n−1).

Take an affine open covering of X, and take any Čech cocycle Ci(η) = {Ci(ηjk)}
of Ci(H1(ZiΩ

n−1)) with respect to this affine open covering. Take any element

ζ ∈ Hn−1(BiΩ
1). Then there exists an element ζ̃ such that Ci(ζ̃) = ζ. We

consider the image of the element Ci(η) ∧ ζ in Hn(X,Ωn
X). Then, we have

Ci(η̃) ∧ ζ = Ci(η̃) ∧ Ci(ζ̃) = Ci(η ∧ ζ̃)
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Since ImHn−1(B2iΩ
1) = ImHn−1(BiΩ

1), the image of ζ̃ in Hn−1(Ω1
X) is con-

tained in ImHn−1(BiΩ
1). As ImH1(ZiΩ

n−1)) is orthogonal to ImHn−1(BiΩ
1),

we see that η∧ζ̃ is zero in Hn(X,Ωn
X), and we have Ci(η∧ζ̃) = 0 in Hn(X,Ωn

X).

Therefore, we see that the image of Ci(H1(ZiΩ
n−1)) in H1(Ωn−1

X ) is orthogonal
to ImHn−1(BiΩ

1) and we have

Ci(H1(ZiΩ
n−1)) ⊂ ImHn−1(BiΩ

1)⊥ ⊂ ImH1(ZiΩ
n−1) ⊂ ImH1(Z1Ω

n−1),

a contradiction. Hence, we have ImH1(ZiΩ
n−1) = ImH1(Zi+1Ω

n−1).

Collecting results we get the following theorem.

Theorem 3.5. If X is a Calabi-Yau variety of dimension n and height h then
for i ≤ h − 1 we have

ImHn−1(X,BiΩ
1
X)⊥ = ImH1(X,ZiΩ

n−1
X ).

One reason for our interest in the spaces ImH1(X,ZiΩ
n−1
X ) comes from the

fact that they play a role as tangent spaces to strata in the moduli space as in
the analogous case of K3 surfaces, cf. [3]. We intend to come back to this in a
later paper.

4. Picard groups

We suppose that X is a Calabi-Yau variety of dimension n ≥ 3. We have the
following result for the space of regular 1-forms.

Proposition 4.1. All global 1-forms are indefinitely closed: for i ≥ 0 we have
H0(X,ZiΩ

1
X) = H0(X,Ω1

X). The action of the Cartier operator on this space
is semi-simple.

Proof. Since the sheaves BiΩ
1
X have non non-zero cohomology in degree 0 and

1 the exact sequence

0 → BiΩ
1
X −→ ZiΩ

1
X

Ci

−→ Ω1
X → 0.

implies dim H0(ZiΩ
1
X) = dimH0(Ω1

X). Since the natural map H0(ZiΩ
1
X) →

H0(Ω1
X) is injective, we have H0(ZiΩ

1
X) = H0(Ω1

X). The second assertion
follows from H0(BiΩ

1
X) = 0.

It is well known that for a p−1-linear semi-simple homomorphism λ on a finite-
dimensional vector space V the map λ− idV is surjective. This means that we
have a basis of logarithmic differential forms Cω = ω.

Corollary 4.2. If id denotes the identity homomorphism on H0(X,Ω1
X) the

map C − id : H0(X,Ω1
X) → H0(X,Ω1

X) is surjective.

Proposition 4.3. Suppose that X is a smooth complete variety for which all
global 1-forms are closed and such that C gives a bijection H0(X,Z1Ω

1
X) −→

H0(X,Ω1
X). Then we have an isomorphism

H0(X,Ω1
X) ∼= Pic(X)[p] ⊗Z k.
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Proof. Let L be a line bundle representing an element [L] of order p in Pic(X).
Then there exists a rational function g ∈ k(X)∗ such that (g) = pD, where D
is a divisor corresponding to L. One observes now by a local calculation that
dg/g is a regular 1-form and thus defines an element of H0(X,Ω1

X). Conversely,
if ω is a global regular 1-form with Cω = ω then ω can be represented locally as
dfi/fi with respect to some open cover {Ui}. From the relation dfi/fi = dfj/fj

we see d log(fi/fj) = 0 and this implies d(fi/fj) = 0. Hence we see that
fi/fj = φp

ij form some 1-cocycle {φij}. This cocycle defines a torsion element

of order p of Pic(X). These two maps are each others inverse and the result
follows.
We are using the notation Pic(X) (resp. NS(X)) for the Picard group (resp.
Néron-Severi group) of X. If L is a line bundle with transition functions {fij}
then d log fij represents the first Chern class of L. In this way we can define a
homomorphism

ϕ1 : Pic(X) −→ H1(Z1Ω
1
X), [L] 7→ c1(L) = {dfij/fij}

which obviously factors through Pic(X)/pPic(X).

Proposition 4.4. The homomorphism ϕ1 : Pic(X)/pPic(X) −→
H1(X,Z1Ω

1
X) is injective.

Proof. We take an affine open covering {Ui}. Suppose that there exists an
element [L] such that ϕ1([L]) = 0. Then there exists a d-closed regular 1-form
ωi on an affine open set Ui such that dfij/fij = ωj − ωi on Ui ∩ Uj and we
have dfij/fij = C(ωj) − C(ωi). Therefore, we have ωj − C(ωj) = ωi − C(ωi)
on Ui ∩ Uj . This shows that there exists an regular 1-form ω on X such that
ω = ωi − C(ωi) on Ui. By Corollary 4.2, there exists an element ω′ ∈ H0(Ω1

X)
such that (C − id)ω′ = ω. Replacing ωi + ω′ by ωi, we have

dfij/fij = ωj − ωi

with C(ωi) = ωi. Then, there exists an regular function fi on Ui such that
ωi = dfi/fi. So we have d log fij = d log(fj/fi). Therefore, there exists a
regular function ϕij on Ui ∩ Uj such that fij = (fj/fi)ϕ

p
ij . Thus [L] is a p-th

power. We conclude that ϕ1 : Pic(X)/pPic(X) → H1(Z1Ω
1
X) is injective.

Proposition 4.5. The natural homomorphism H1(Z1Ω
1
X) → H2

DR(X) is in-
jective.

Proof. Let {Ui} be an affine open covering of X. A Čech cocycle {ωij} in
H1(Z1Ω

1
X) is mapped to {(0, ωij , 0)} in H2

DR(X). Suppose this element is zero
in H2

DR(X). Then there exist elements ({fij}, {ωi}) with fij ∈ Γ(Ui ∩Uj , OX)
and ωi ∈ Γ(Ui,Ω

1
X) such that

fjk − fik + fij = 0 ωij = dfij + ωj − ωi dωi = 0.

Since {fij} gives an element of H1(OX) and H1(OX) = 0, there exists an
element {fi} such that fij = fj − fi on Ui ∩ Uj . Therefore, we have ωij =
(dfj + ωj)− (dfi + ωi). Since d(dfi + ωi) = 0, we conclude that {ωij} is zero in
H1(Z1Ω

1
X).
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The results above imply the following theorem.

Theorem 4.6. The natural homomorphism Pic(X)/pPic(X) −→ H2
DR(X) is

injective.

Let us point out at this point that for a Calabi-Yau manifold X the Picard group
Pic(X) is reduced and coincides with the Néron-Severi group NS(X) because
NS(X) = Pic(X)/Pic0(X) and Pic0(X) vanishes because of H1(X,OX) = 0.

Lemma 4.7. For a Calabi-Yau manifold X of dimension n ≥ 3 with non non-
zero global 1-forms Pic(X) has no p-torsion.

Proof. Take an affine open covering {Ui} of X. Assume {fij} represents an
element [L] ∈ Pic(X) which is p-torsion. Then, there exist regular functions
fi ∈ H0(Ui, O

∗
X) such that fp

ij = fi/fj . The dfi/fi on Ui glue together to yield

a regular 1-form ω on X. Since H0(X,Ω1
X) = 0, we see ω = 0, i.e., dfi = 0.

Therefore, there exist regular functions gi ∈ H0(Ui, O
∗
X) such that fi = gp

i .
Hence, we have {fij} ∼ 0 and we see that Pic(X) has no p-torsion.

Lemma 4.8. Let X be a Calabi-Yau manifold X of dimension n ≥ 3 with no
non-zero global 2-forms. Then, the homomorphism

Pic(X)/pPic(X) −→ H1(Ω1
X)

defined by {fij} 7→ {dfij/fij} is injective.

Proof. By the assumption H0(X,Ω2
X) = 0 we have H0(X, dΩ1

X) = 0. There-
fore, from the exact sequence

0 → Z1Ω
1
X −→ Ω1

X
d−→ dΩ1

X → 0,

we deduce a natural injection H1(Z1Ω
1
X) −→ H1(Ω1

X). So the result follows
from Lemma 4.4.

Theorem 4.9. Let X be a Calabi-Yau manifold X of dimension n ≥ 3 with
H0(X,Ωi

X) = 0 for i = 1, 2. Then the natural homomorphism

NS(X)/pNS(X) ⊗Fp
k −→ H1(Ω1

X) = H2
dR(X)

is injective and the Picard number satisfies ρ ≤ dimk H1(Ω1
X).

Proof. Suppose that this homomorphism is not injective. Then with respect

to a suitable affine open covering {Ui} there exist elements {f (ν)
ij } representing

non-zero elements in NS(X)/pNS(X), such that

∑̀

ν=1

aνdf
(ν)
ij /f

(ν)
ij = 0 in H1(Ω1

X)

for suitable aν ∈ k. We take such elements with the minimal `. We may assume
a1 = 1 and we have ai/aj /∈ Fp for i 6= j. By Lemma 4.8, we have ` ≥ 2. There
exists ωi ∈ H1(Ui,Ω

1
X) such that

∑̀

ν=1

aνdf
(ν)
ij /f

(ν)
ij = ωj − ωi (1)
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on Ui ∩ Uj . There exists an element ω̃i ∈ H1(Ui,Ω
1
X) such that C(ω̃i) = ωi.

Therefore, taking the Cartier inverse, we have

∑̀

ν=1

ãνdf
(ν)
ij /f

(ν)
ij + dgij = ω̃j − ω̃i

with ãν ∈ k, ãp
ν = aν , and suitable dgij ∈ H0(Ui∩Uj , dOX). Since {df (ν)

ij /f
(ν)
ij }

is a cocycle, we see that {dgij} ∈ H1(X, dOX). Since H1(X, dOX) = 0, there
exists an element dgi ∈ H0(Ui, dOX) such that dgij = dgj − dgi. Therefore, we
have

∑̀

ν=1

ãνdf
(ν)
ij /f

(ν)
ij = (ω̃j − dgj) − (ω̃i − dgi). (2)

Subtracting (2) from (1) we get a non-trivial linear relation with a smaller ` in
H1(Ω1

X), a contradiction.
Remark. In the case of a K3 surface X the natural homomorphism

NS(X)/pNS(X) ⊗Fp
k −→ H2

DR(X)

is not injective if X is supersingular in the sense of Shioda. Ogus showed that
the kernel can be used for describing the moduli of supersingular K3 surfaces,
cf. Ogus[10]. So the situation is completely different in dimension ≥ 3.

5. Fermat Calabi-Yau manifolds

Again p is a prime number and m a positive integer which is prime to p. Let f
be a smallest power of p such that pf ≡ 1 mod m and put q = pf . We denote
by Fq a finite field of cardinality q. We consider the Fermat variety Xr

m(p) over
Fq defined by

Xm
0 + Xm

1 + . . . + Xm
r+1 = 0

in projective space Pr+1 of dimension r + 1. The zeta function of Xr
m over Fq

was calculated by A. Weil (cf. [18]). The result is:

Z(Xr
m/Fq, T ) =

P (T )(−1)r−1

(1 − T )(1 − qT ) . . . (1 − qrT )
,

where P (T ) =
∏

α(1 − j(α)T ) with the product taken over a set of vectors α
and j(α) is a Jacobi sum defined as follows. Consider the set

Am,r = {(a0, a1, . . . , ar+1) ∈ Zr+2 | 0 < ai < m,
∑r+1

j=0aj ≡ 0(mod m)},
and choose a character χ : F∗

q → C∗ of order m. For α = (a0, a1, . . . , ar+1) ∈
Am,r we define

j(α) = (−1)r
∑

χ(va1
1 ) . . . χ(v

ar+1

r+1 ),

where the summation runs over vi ∈ F∗
q with 1 + v1 + . . . + vr+1 = 0. Thus

the j(α)’s are eigenvalues of the Frobenius map over Fq on the `-adic étale
cohomology group Hr

et(X
r
m,Q`).

Now, let ζ = exp(2πi/m) be a primitive m-th root of unity, and K = Q(ζ)
the corresponding cyclotomic field with Galois group G = Gal(K/Q). For an
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element t ∈ (Z/mZ)∗ we let σt be the automorphism of K defined by ζ 7→ ζt.
The correspondence t ↔ σt defines an isomorphism (Z/mZ)∗ ∼= G and we shall
identify G with (Z/mZ)∗ by this isomorphism. We define a subgroup H of
order f of G by H = {pj mod m | 0 ≤ j < f}
Let {t1, . . . , tg} with ti ∈ Z/mZ∗, be a complete system of representatives of
G/H with g = |G/H|, and put

AH(α) =
∑

t∈H

[
r+1∑

j=1

〈taj/m〉],

where [a] (resp. 〈a〉) means the integral part (resp. the fractional part) of a
rational number a.
Choose a prime ideal P in K lying over p; it has norm N(P) = pf = q. If Pi

denotes the prime ideal Pσ−1
−ti we have the prime decomposition (p) = P1 · · · Pg

in K and Stickelberger’s theorem tells us that

(j(α)) =

g∏

i=1

PAH(tiα)
i ,

where tiα = (tia0, . . . , tiar+1). For the details we refer to Lang[7] or Shioda-
Katsura[16].
Now we restrict our attention to Fermat Calabi-Yau manifolds Xr

m(p) with
m = r + 2.

Theorem 5.1. Assume r ≥ 2. Let Φr be the Artin-Mazur formal group of the
r-dimensional Calabi-Yau variety X = Xr

r+2(p). The height h of Φr is equal
to either 1 or ∞. Moreover, h = 1 if and only if p ≡ 1 (mod r + 2).

Before we give the proof of this theorem we state a technical lemma.

Lemma 5.2. Under the notation above, assume [
∑r+1

j=1〈taj/(r + 2)〉] = 0 with

t ∈ (Z/(r + 2)Z)∗. Then aj = t−1 in (Z/(r + 2)Z)∗ for all j = 0, 1, . . . , r + 1.

Proof. Since t ∈ (Z/(r+2)Z)∗, we have 〈taj/(r+2)〉 ≥ 1/(r+2). Suppose there
exists an index i such that tai 6≡ 1 (mod r + 2). Then we have the inequality

〈tai/(r+2)〉 ≥ 2/(r+2) and thus
∑r+1

j=1〈taρ/(r+2)〉 ≥ 1, which contradicts the

assumption. So we have tai ≡ 1 (mod r + 2) and aj ≡ t−1 for j = 1, . . . , r + 1.
Since a0 + a1 + . . . + ar+1 ≡ 0 (mod r + 2), we conclude a0 ≡ t−1.
Proof of the theorem. The Dieudonné module D(Φr) of Φr is isomorphic to
Hr(X,WOX). We denote by Q(W) the quotient field of the Witt ring W (k)
of k. Then, if h < ∞, we have

h = dimQ(W ) Hr(X,WOX) ⊗W (k) Q(W ).

and by Illusie [6] we know we have

Hr(X,WOX) ⊗W (k) Q(W ) ∼= Hr
cris(X) ⊗ Q(W )[0,1[.

According to Artin-Mazur [2], the slopes of Hr
cris(X) ⊗ Q(W ) are given by

(ordPq)/f and the (ordPj(α))/f . Hence, the height h is equal to the number
of j(α) such that AH(α) < f .
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First, assume p ≡ 1 (mod r + 2), i.e. f = 1. Then H = 〈1〉 and AH(α) <
f = 1 implies AH(α) = 0. Therefore, by Lemma 5.2, we have aj = 1 for all
j = 0, 1, . . . , r + 1 and there is only one α, namely α = (1, 1, . . . , 1), such that
ordPj(α) = 0. So we conclude h = 1 in this case.
Secondly, assume p 6≡ 1 (modr + 2). By definition, we have f ≥ 2. We
now prove that there exists no α such that AH(α) < f . Suppose AH(α) =∑

t∈H [
∑r+1

j=1〈taj/(r + 2)〉] < f . Then there exists an element t ∈ H such that

[
∑r+1

j=1〈taj/(r + 2)〉] = 0. By Lemma 5.2 we have α = (t−1, t−1, . . . , t−1). For

t′ ∈ H with t′ 6= t we have [
∑r+1

ρ=1〈t′t−1/(r + 2)〉] 6= 0. Therefore the inequality

yields [
∑r+1

j=1〈t′t−1/(r + 2)〉] = 1 for t′ ∈ H, t′ 6= t. Since AH(tα) = AH(α) for

any t ∈ H, by a translation by t, we may assume α = (1, 1, . . . , 1), i.e., t = 1.
Moreover, we can take a representative of t′ ∈ H such that 0 < t′ < r + 2.
Then,

1 = [

r+1∑

j=1

〈t′t−1/(r + 2)〉] = [

r+1∑

j=1

〈t′/(r + 2)〉] = [

r+1∑

j=1

t′/(r + 2)]

= [(r + 1)t′/(r + 2)]

and we get 1 ≤ (r + 1)t′/(r + 2) < 2. By this inequality, we see t′ = 2.
Therefore, we have H = {1, 2}. Since H is a subgroup of (Z/(r + 2)Z)∗, we
see that 22 ≡ 1 mod r + 2. Therefore, we have r = 1, which contradicts our
assumption.
Hence there exists no α such that ordPj(α) < 1 and we conclude h = ∞ in
this case. This completes the proof of the theorem.

For K3 surfaces we have two notions of supersingularity. We generalize these
to higher dimensions.

Definition 5.3. A Calabi-Yau manifold X of dimension r is said to be of
additive Artin-Mazur type (‘supersingular in the sense of Artin’) if the height
of Artin-Mazur formal group associated with Hr(X,OX) is equal to ∞.

Definition 5.4. A non-singular complete algebraic variety X of dimension r
is said to be fully rigged (‘supersingular in the sense of Shioda’) if all the even
degree étale cohomology groups are spanned by algebraic cycles.

By the theorem above, we know that the Fermat Calabi-Yau manifolds are of
additive Artin-Mazur type if and only if p 6≡ 1 mod m with m = r + 2. As to
being fully rigged we have the following theorem.

Theorem 5.5 (Shioda-Katsura [16]). Assume m ≥ 4, (p,m) = 1 and r is
even. Then the Fermat variety Xr

m(p) is fully rigged if and only if there exists
a positive integer ν such that pν ≡ −1 mod m.

M. Artin conjectured that a K3 surface X is supersingular in the sense of
Artin if and only if X is supersingular in the sense of Shioda. He also showed
that “if part” holds. In the case of the Fermat K3 surface, i.e, X2

4 (p), by the
two theorems above, we see, as is well-known, that the Artin conjecture holds.
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However, in the case of even r ≥ 4, the above two theorems imply that this
straightforward generalization of the Artin conjecture to higher dimension does
not hold.

6. Kummer Calabi-Yau manifolds

Let A be an abelian variety of dimension n ≥ 2 defined over an algebraically
closed field of characteristic p > 0, and G be a finite group which acts on A
faithfully. Assume that the order of G is prime to p, and that the quotient
variety A/G has a resolution which is a Calabi-Yau manifold X. We call X a
Kummer Calabi-Yau manifold. We denote by π : A −→ A/G the projection,
and by ν : X −→ A/G the resolution.

Theorem 6.1. Under the assumptions above the Artin-Mazur formal group
Φn

X is isomorphic to the Artin-Mazur formal group Φn
A.

Proof. Since the order of G is prime to p, the singularities of A/G are rational,
and we have Riν∗OX = 0 for i ≥ 1. So by the Leray spectral sequence we have
Hn(A/G,OA/G) ∼= Hn(X,OX) ∼= k and Hn−1(A/G,OA/G) ∼= Hn−1(X,OX) ∼=
0. It follows that the Artin-Mazur formal group Φn

A/G is pro-representable by

a formal Lie group of dimension 1 (cf. Artin-Mazur[2]). Since the tangent
space Hn(A/G,OA/G) of Φn

A/G is naturally isomorphic to the tangent space

Hn(X,OX) of Φn
X as above, the natural homomorphism from Φn

A/G to Φn
X is

non-trivial. One-dimensional formal groups are classified by their height and
between formal groups of different height there are no non-trivial homomor-
phisms . So the height of Φn

A/G is equal to that of Φn
X and we thus see that

Φn
A/G and Φn

X are isomorphic.

Since the order of G is prime to p, there is a non-trivial trace map
from Hn(A,OA) to Hn(A/G,OA/G). Therefore, π∗ : Hn(A/G,OA/G) −→
Hn(A,OA) is an isomorphism. Therefore, as above we see that the height of
Φn

A/G is equal to the height of Φn
A, and that Φn

X is isomorphic to Φn
A. Q.e.d.

Though the following lemma might be well-known to specialists we give here a
proof for the reader’s convenience.

Lemma 6.2. Let A be an abelian variety of dimension n ≥ 2 and p-rank f(A).
The height h of the Artin-Mazur formal group ΦA of A is as follows:

(1) h = 1 if A is ordinary, i.e., f(A) = n,
(2) h = 2 if f(A) = n − 1,
(3) h = ∞ if f(A) ≤ n − 2.

Proof. We denote by Hi
cris(A) the i-th cristalline cohomology of A and as usual

by Hi
cris(A)[`,`+1[ the additive group of elements in Hi

cris(A) whose slopes are
in the interval [`, ` + 1[. By the general theory in Illusie [6], we have

Hn(A,W (OA)) ⊗W Q(W ) ∼= (Hn
cris(A) ⊗W Q(W ))[0,1[

with Q(W ) the quotient field of W . The theory of Dieudonné modules implies

h = dimQ(W ) D(ΦA) = dimQ(W ) Hn(A,W (OA)) ⊗W Q(W ) if h < ∞,
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and dimQ(W ) D(ΦA) = 0 if h = ∞. We know the slopes of H1
cris(A) for each

case. Since we have
Hn

cris(A) ∼= ∧nH1
cris(A),

counting the number of slopes in [0, 1[ of Hn
cris(A) gives the result.

Corollary 6.3. Let X be a Kummer Calabi-Yau manifold of dimension n
obtained from an abelian variety A as above. Then the height of the Artin-
Mazur formal group Φn

X is equal to either 1, 2 or ∞.

Example 6.4. Assume p ≥ 3. Let A be an abelian surface and ι the map
A → A sending a ∈ A to its inverse −a ∈ A. We denote by Km(A) the
Kummer surface of A, i.e., the minimal resolution of A/〈ι〉. Then Φ2

Km(A) is

isomorphic to Φ2
A.

Example 6.5. Assume p ≥ 5, and let ω be a primitive third root of unity. Let
E be a non-singular complete model of the elliptic curve defined by y2 = x3+1,
and let σ be an automorphism of E defined by x 7→ ωx, y 7→ y. We set A = E3

and put σ̃ = σ × σ × σ. The minimal resolution X of A/〈σ̃〉 is a Calabi-Yau
manifold, and the Artin-Mazur formal group Φ3

X is isomorphic to Φ3
A.

Let ω be a complex number with positive imaginary part, and L = Z + Zω
be a lattice in the complex numbers C. From here on, we consider an elliptic
curve E = C/L, and we assume that E has a model defined over an algebraic
number field K. Then A = E × E × E is an abelian threefold, and we let
G ⊆ AutK(E) be a finite group which faithfully acts on A. We assume that
G has only isolated fixed points on A and that the quotient variety A/G has
a crepant resolution ν : X → A/G defined over K, [12]. We denote by π the
projection A → A/G. For a prime p of K, we denote by X̄ the reduction
modulo p of X.

Example 6.6. [K. Ueno [17]] Assume that E is an elliptic curve defined over
Q having complex multiplication σ : E → E by a primitive third root of unity.
Then G = Z/3Z = 〈σ〉 acts diagonally on A = E3. A crepant resolution of A/G
gives a rigid Calabi-Yau manifold defined over Q. For a prime number p ≥ 5
the reduction modulo p of A is the abelian threefold given in Example 6.5.

Theorem 6.7. Let X be a Calabi-Yau obtained as crepant resolution of A/G
as above. Assume moreover that X is rigid. Then the elliptic curve E has
complex multiplication and the intermediate Jacobian of X is isogenous to E.

Corollary 6.8. Under the assumptions as in the theorem, we take a prime
p of good reduction for Xand let X̄ be the reduction of X modulo p. Then
the height of the formal group ΦX̄ is either 1 or ∞. It is ∞ if and only if
the reduction of the intermediate Jacobian variety of X at p is a supersingular
elliptic curve.

Example 6.9. We consider the reduction X̄ modulo p of the variety X in the
Example 6.6. We assume the characteristic of the residue field of p is not equal
to 2 and 3. Then the height h(ΦX̄) = ∞ if and only if the reduction modulo p
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of the intermediate Jacobian of X is a supersingular elliptic curve, and this is
the case if and only if p ≡ 2 (mod 3).

Before we prove the theorem we introduce some notation. We have a natural
identification H1(E,Z) = Z + Zω. Fixing a non-zero regular differential form
η on E determines a regular three form p∗1η ∧ p∗2η ∧ p∗3η = ΩA on A. We have
a natural homomorphism

H3(X,Z) → H3
dR(X) → H3(X,OX).

If X is rigid, the corresponding quotient H3(X,OX)/H3(X,Z) gives the inter-
mediate Jacobian of X. Since dimC H3(X,OX) = 1, the intermediate Jacobian
of X is isomorphic to an elliptic curve.
We can define the period map with respect to ΩA:

πA : H3(X,Z) −→ C γ 7→
∫

γ

ΩA.

By Poincaré duality we can identify πA with the natural projection H3(X,Z) →
H3(X,C) → H3(X,OX) = C (cf. Shioda [15], for instance.) There exists a
regular 3-form ΩX on X such that ΩA = (ν−1 ◦π)∗ΩX . We can define πX with
respect to ΩX for the Calabi-Yau manifold X as well.
In order to describe the structure of the intermediate Jacobian of X we look
at the period map of an abelian threefold, following the method in Shioda [15]
(also see Mumford [8]). Choose a basis u1, u2 of H1(E,R). This determines a
C-basis H1(E,R) ⊗R C = H1(E,C). If ei for i = 1, 2, 3 is the standard basis
of C3 then u2i−1 = ei and u2i = ωei for i = 1, 2, 3 form a basis of H1(A,Z)
and A = C3/M with M the lattice generated by u1, . . . , u6. The dual basis is
denoted by vi. The basis of H1(A,Z) determines a canonical basis vi ∧ vj ∧ vk

of H3(A,Z). The natural homomorphism

pA : H3(A,Z) −→ H3
dR(A) −→ H3(A,OA) ∼= C.

is an element of HomC(H3(A,C),C) and can be considered as an element of
H3(A,C) and is given by

pA =
∑

i<j<k

det(ui, uj , uk)vi ∧ vj ∧ vk.

Therefore the image of pA in C is spanned by the complex numbers 1, ω, ω2

and ω3 over Z.
We now give the proof of Theorem 6.7. Let S be the set of non-free points of
the action of G on A. Then the restriction of π to A\S is étale on A/G\π(S).
Since S is of codimension 3 in A, we have the following diagram:

H3(A,Z) ∼= H3(A \ S,Z)
pA−→ H3(A,OA) ∼= C

↓ π∗ ↓ (π |A\S)∗ ↓ π∗

H3(A/G,Z) ∼= H3(A/G \ π(S),Z)
pA/G−→ H3(A/G,OA/G) ∼= C

↓ ∼= ↓ ν∗

H3(X,Z)
pX−→ H3(X,OX) ∼= C.
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The vertical arrows on the right hand side give an identification of H3(A,OA)
and H3(X,OX). Because p does not divide the order of G we see that H3(A, Q)
maps surjectively to H3(A/G, Q) = H3(A, Q)G, hence the image of H3(A, Z)
is commensurable with H3(X, Z).
Now Im pX is a lattice in C, and Im pA is a lattice in C as well. We know
that Im pA is generated by 1, ω, ω2 and ω3 and thus ω is a quadratic number
and the intermediate Jacobian has complex multiplication by Q(ω). Hence the
intermediate Jacobian C/Im pX of X is isogenous to E.

7. Questions

We close with two natural basic questions that suggest themselves.
Is there a function f(n) such that a Calabi-Yau variety in characteristic p >
0 of dimension n lifts to characteristic 0 if p > f(n)? Note that Hirokado
constructed a non-liftable Calabi-Yau threefold in characteristic 3, see [5] (see
also [13]).
Can a Calabi-Yau variety of dimension 3 in positive characteristic have non-zero
regular 1-forms or regular 2-forms?
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Introduction

G. Faltings has proved that for each semistable vector bundle E over an al-
gebraic curve of genus g, there is another vector bundle F such that E ⊗ F
has slope g − 1 and no global sections. (Note that any vector bundle of slope
> g−1 has global sections by Riemann–Roch.) See [3] and [4] where this result
is interpreted in terms of theta functions and used for a new construction of
moduli schemes of vector bundles.
In the present paper, an arithmetic analogue of that theorem is proposed. The
algebraic curve is replaced by the set X of all places of a number field K; we
call X an arithmetic curve. Vector bundles are replaced by so-called Arakelov
bundles, cf. section 3. In the special case K = Q, Arakelov bundles without
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global sections are lattice sphere packings, and the slope µ measures the packing
density.
We will see at the end of section 4 that the maximal slope of Arakelov bundles
of rank n without global sections is d(log n+O(1))/2+(log d)/2 where d is the
degree and d is the discriminant of K. Now the main result is:

Theorem 0.1 Let E be a semistable Arakelov bundle over the arithmetic curve
X. For each n À 0 there is an Arakelov bundle F of rank n satisfying

µ(E ⊗ F) >
d

2
(log n − log π − 1 − log 2) +

log d

2

such that E ⊗ F has no nonzero global sections.

The proof is inspired by (and generalises) the Minkowski-Hlawka existence
theorem for sphere packings; in particular, it is not constructive. The principal
ingredients are integration over a space of Arakelov bundles (with respect to
some Tamagawa measure) and an adelic version of Siegel’s mean value formula.
Section 2 explains the latter, section 3 contains all we need about Arakelov
bundles, and the main results are proved and discussed in section 4.
This paper is a condensed and slightly improved part of the author’s Ph. D.
thesis [6]. I would like to thank my adviser G. Faltings for his suggestions; the
work is based on his ideas. It was supported by a grant of the Max-Planck-
Institut in Bonn.

1 Notation

Let K be a number field of degree d over Q and with ring of integers OK .
Let X = Spec(OK) ∪ X∞ be the set of places of K; this might be called an
‘arithmetic curve’ in the sense of Arakelov geometry. X∞ consists of r1 real
and r2 complex places with r1 +2r2 = d. w(K) is the number of roots of unity
in K.
For every place v ∈ X, we endow the corresponding completion Kv of K with
the map | . |v : Kv → R≥0 defined by µ(a ·S) = |a|v ·µ(S) for a Haar measure µ
on Kv. This is the normalised valuation if v is finite, the usual absolute value
if v is real and its square if v is complex. The well known product formula∏

v∈X |a|v = 1 holds for every 0 6= a ∈ K. On the adele ring A, we have the
divisor map div : A → RX

≥0 that maps each adele a = (av)v∈X to the collection
(|av|v)v∈X of its valuations.
Let Ov be the set of those a ∈ Kv which satisfy |a|v ≤ 1; this is the ring of
integers in Kv for finite v and the unit disc for infinite v. Let OA denote the
product

∏
v∈X Ov; this is the set of all adeles a with div(a) ≤ 1. By D ≤ 1 for

an element D = (Dv)v∈X of RX
≥0, we always mean Dv ≤ 1 for all v.

We fix a canonical Haar measure λv on Kv as follows:

• If v is finite, we normalise by λv(Ov) = 1.

• If v is real, we take for λv the usual Lebesgue measure on R.
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• If v is complex, we let λv come from the real volume form idz ∧ dz̄ on C.
In other words, we take twice the usual Lebesgue measure.

This gives us a canonical Haar measure λ :=
∏

v∈X λv on A. We have

λ(A/K) =
√

d where d = dK/Q denotes (the absolute value of) the discriminant.
More details on this measure can be found in [12], section 2.1.

Let Vn = πn/2

(n/2)! be the volume of the unit ball in Rn. For v ∈ X∞, we

denote by On
v the unit ball with respect to the standard scalar product on Kn

v .
Observe that this is not the n-fold Cartesian product of Ov ⊆ Kv. Similarly,
On

A :=
∏

v∈X On
v is not the n-fold product of OA ⊆ A. Its volume λn(On

A) is
V r1

n (2nV2n)r2 .

2 A mean value formula

The following proposition is a generalisation of Siegel’s mean value formula
to an adelic setting: With real numbers and integers instead of adeles and
elements of K, Siegel has already stated it in [10], and an elementary proof is
given in [7]. (In the special case l = 1, a similar question is studied in [11].)

Proposition 2.1 Let 1 ≤ l < n, and let f be a nonnegative measurable func-
tion on the space Matn×l(A) of n × l adele matrices. Then

∫

Sln(A)/Sln(K)

∑

M∈Matn×l(K)

rk(M)=l

f(g · M) dτ(g) = d−nl/2

∫

Matn×l(A)

f dλn×l (1)

where τ is the unique Sln(A)-invariant probability measure on Sln(A)/Sln(K).

Proof: The case l = 1 is done in section 3.4 of [12], and the general case can
be deduced along the same lines from earlier sections of this book. We sketch
the main arguments here; more details are given in [6], section 3.2.
Let G be the algebraic group Sln over the ground field K, and denote by τG the
Tamagawa measure on G(A) or any quotient by a discrete subgroup. The two
measures τ and τG on Sln(A)/Sln(K) coincide because the Tamagawa number
of G is one.
G acts on the affine space Matn×l by left multiplication. Denote the first l
columns of the n × n identity matrix by E ∈ Matn×l(K), and let H ⊆ G be
the stabiliser of E. This algebraic group H is a semi-direct product of Sln−l

and Matl×(n−l). Hence section 2.4 of [12] gives us a Tamagawa measure τH on
H(A), and the Tamagawa number of H is also one.
Again by section 2.4 of [12], we have a Tamagawa measure τG/H on G(A)/H(A)
as well, and it satisfies τG = τG/H · τH in the sense defined there. In particular,
this implies

∫

G(A)/H(K)

f(g · E) dτG(g) =

∫

G(A)/H(A)

f(g · E) dτG/H(g).
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It is easy to see that the left hand sides of this equation and of (1) coincide.
According to lemma 3.4.1 of [12], the right hand sides coincide, too. 2

3 Arakelov vector bundles

Recall that a (Euclidean) lattice is a free Z-module Λ of finite rank together
with a scalar product on Λ⊗R. This is the special case K = Q of the following
notion:

Definition 3.1 An Arakelov (vector) bundle E over our arithmetic curve X =
Spec(OK)∪X∞ is a finitely generated projective OK-module EOK

endowed with

• a Euclidean scalar product 〈 , 〉E,v on the real vector space EKv
for every

real place v ∈ X∞ and

• a Hermitian scalar product 〈 , 〉E,v on the complex vector space EKv
for

every complex place v ∈ X∞

where EA := EOK
⊗ A for every OK-algebra A.

A first example is the trivial Arakelov line bundle O. More generally, the trivial
Arakelov vector bundle On consists of the free module On

K together with the
standard scalar products at the infinite places.
We say that E ′ is a subbundle of E and write E ′ ⊆ E if E ′

OK
is a direct summand

in EOK
and the scalar product on E ′

Kv
is the restriction of the one on EKv

for
every infinite place v. Hence every vector subspace of EK is the generic fibre
of one and only one subbundle of E .
From the data belonging to an Arakelov bundle E , we can define a map

‖ . ‖E,v : EKv
−→ R≥0

for every place v ∈ X:

• If v is finite, let ‖e‖E,v be the minimum of the valuations |a|v of those
elements a ∈ Kv for which e lies in the subset a · EOv

of EKv
. This is the

nonarchimedean norm corresponding to EOv
.

• If v is real, we put ‖e‖E,v :=
√
〈e, e〉v, so we just take the norm coming

from the given scalar product.

• If v is complex, we put ‖e‖E,v := 〈e, e〉v which is the square of the norm
coming from our Hermitian scalar product.

Taken together, they yield a divisor map

divE : EA → RX
≥0 e = (ev) 7→ (‖ev‖E,v).

Although OA is not an OK-algebra, we will use the notation EOA
, namely for

the compact set defined by

EOA
:= {e ∈ EA : divE(e) ≤ 1}.
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Recall that these norms are used in the definition of the Arakelov degree: If L
is an Arakelov line bundle and 0 6= l ∈ LK a nonzero generic section, then

deg(L) := − log
∏

v∈X

‖l‖L,v

and the degree of an Arakelov vector bundle E is by definition the degree of
the Arakelov line bundle det(E). µ(E) := deg(E)/rk(E) is called the slope of E .
One can form the tensor product of two Arakelov bundles in a natural manner,
and it has the property µ(E ⊗ F) = µ(E) + µ(F).
Moreover, the notion of stability is based on slopes: For 1 ≤ l ≤ rk(E), denote

by µ
(l)
max the supremum (in fact it is the maximum) of the slopes µ(E ′) of

subbundles E ′ ⊆ E of rank l. E is said to be stable if µ
(l)
max < µ(E) holds for all

l < rk(E), and semistable if µ
(l)
max ≤ µ(E) for all l.

To each projective variety over K endowed with a metrized line bundle, one
can associate a zeta function as in [5] or [1]. We recall its definition in the
special case of Grassmannians associated to Arakelov bundles:

Definition 3.2 If E is an Arakelov bundle over X and l ≤ rk(E) is a positive
integer, then we define

ζ
(l)
E (s) :=

∑

E′⊆E
rk(E′)=l

exp(s · deg(E ′)).

The growth of these zeta functions is related to the stability of E . More pre-
cisely, we have the following asymptotic bound:

Lemma 3.3 There is a constant C = C(E) such that

ζ
(l)
E (s) ≤ C · exp(s · lµ(l)

max(E))

for all sufficiently large real numbers s.

Proof: Fix E and l. Denote by N(T ) the number of subbundles E ′ ⊆ E of rank
l and degree at least −T . There are C1, C2 ∈ R such that

N(T ) ≤ exp(C1T + C2)

holds for all T ∈ R. (Embedding the Grassmannian into a projective space,
this follows easily from [9]. See [6], lemma 3.4.8 for more details.)

If we order the summands of ζ
(l)
E according to their magnitude, we thus get

ζ
(l)
E (s) ≤

∞∑

ν=0

N
(
−lµ(l)

max(E) + ν + 1
)
· exp

(
s · (lµ(l)

max(E) − ν)
)

≤ exp(s · lµ(l)
max(E)) ·

∞∑

ν=0

C3

exp((s − C1)ν)
.

But the last sum is a convergent geometric series for all s > C1 and decreases
as s grows, so it is bounded for s ≥ C1 + 1. 2
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4 The main theorem

The global sections of an Arakelov bundle E over X = Spec(OK) ∪X∞ are by
definition the elements of the finite set

Γ(E) := EK ∩ EOA
⊆ EA.

Note that in the special case K = Q, an Arakelov bundle without nonzero
global sections is nothing but a (lattice) sphere packing: Γ(E) = 0 means that
the (closed) balls of radius 1/2 centered at the points of the lattice EZ are
disjoint. Here larger degree corresponds to denser packings.

Theorem 4.1 Let E be an Arakelov bundle over the arithmetic curve X. If an
integer n > rk(E) and an Arakelov line bundle L satisfy

1 >

rk(E)∑

l=1

d−nl/2 · λnl

(
K∗Onl

A

K∗

)
· ζ(l)

E (n) exp(l deg(L)),

then there is an Arakelov bundle F of rank n and determinant L such that

Γ(E ⊗ F) = 0.

Proof: Note that any global section of E ⊗ F is already a global section of
E ′ ⊗ F for a unique minimal subbundle E ′ ⊆ E , namely the subbundle whose
generic fibre is the image of the induced map (FK)dual → EK . We are going
to average the number of these sections (up to K∗) for a fixed subbundle E ′ of
rank l.
Fix one particular Arakelov bundle F of rank n and determinant L. Choose
linear isomorphisms φE′ : Kl → E ′

K and φF : Kn → FK and let

φ : Matn×l(K)
∼−→ (E ′ ⊗F)K

be their tensor product. Our notation will not distinguish these maps from
their canonical extensions to completions or adeles.
For each g ∈ Sln(A), we denote by gF the Arakelov bundle corresponding to the
K-lattice φF (gKn) ⊆ FA. More precisely, gF is the unique Arakelov bundle
satisfying (gF)A = FA, (gF)OA

= FOA
and (gF)K = φF (gKn). This gives the

usual identification between Sln(A)/Sln(K) and the space of Arakelov bundles
of rank n and fixed determinant together with local trivialisations.
Observe that the generic fibre of E ′ ⊗ gF is φ(gMatn×l(K)). A generic section
is not in E ′′ ⊗ gF for any E ′′ ( E ′ if and only if the corresponding matrix
has rank l. So according to the mean value formula of section 2, the average
number of global sections

∫

Sln(A)/Sln(K)

card


K∗Γ(E ′ ⊗ gF)

K∗ \
⋃

E′′(E′

K∗Γ(E ′′ ⊗ gF)

K∗


 dτ(g)
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is equal to the integral

d−nl/2

∫

Matn×l(A)

(fK ◦ divE′⊗F ◦ φ) dλn×l. (2)

Here the function fK : RX
≥0 → R≥0 is defined by

fK(D) :=





1/card{a ∈ K∗ : div(a) · D ≤ 1} if D ≤ 1

0 otherwise

with the convention 1/∞ = 0.
In order to compute (2), we start with the local transformation formula

λn×l
v ({M ∈ Matn×l(Kv) : c1 ≤ ‖φ(M)‖E′⊗F,v ≤ c2}) =

λnl
v ({M ∈ Knl

v : c1 ≤ ‖M‖ ≤ c2}) · ‖det(φ)‖−1
det(E′⊗F),v

for all c1, c2 ∈ R≥0. Regarding this as a relation between measures on R≥0 and
taking the product over all places v ∈ X, we get the equation

(divE′⊗F ◦ φ)∗λ
n×l = expdeg(E ′ ⊗F) · (divOnl)∗λ

nl (3)

of measures on RX
≥0. Hence the integrals of fK with respect to these measures

also coincide:
∫

Matn×l(A)

(fK ◦ divE′⊗F ◦ φ) dλn×l = exp(ndeg(E ′) + l deg(F)) · λnl

(
K∗Onl

A

K∗

)
.

We substitute this for the integral in (2). A summation over all nonzero sub-
bundles E ′ ⊆ E yields

∫

Sln(A)/Sln(K)

card

(
K∗Γ(E ⊗ gF) \ 0

K∗

)
dτ(g) =

=

rk(E)∑

l=1

d−nl/2 · ζ(l)
E (n) exp(l deg(F)) · λnl

(
K∗Onl

A

K∗

)
.

But the right hand side was assumed to be less than one, so there there has to
be a g ∈ Sln(A) with Γ(E ⊗ gF) = 0. 2

In order to apply this theorem, one needs to compute λN (K∗ON
A /K∗) for

N ≥ 2. We start with the special case K = Q. Here each adele a ∈ ON
A outside

a set of measure zero has a rational multiple in ON
A with valuation one at all

finite places, and this multiple is unique up to sign. Hence we conclude

λN

(
Q∗ON

A

Q∗

)
=

VN

2
·

∏

p prime

λN
p (ZN

p \ pZN
p ) =

VN

2ζ(N)
.
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In particular, the special case K = Q and E = O of the theorem above is
precisely the Minkowski-Hlawka existence theorem for sphere packings [8], §15.
For a general number field K, we note that the roots of unity preserve ON

A .
Then we apply Stirling’s formula to the factorials occurring via the unit ball
volumes and get

λN

(
K∗ON

A

K∗

)
≤ λN (ON

A )

w(K)
≤

(
2πe

N

)dN/2

·
(

1

πN

)(r1+r2)/2

· 1

2r2/2w(K)
.

Using such a bound and the asymptotic statement 3.3 about ζ
(l)
E , one can

deduce the following corollary of theorem 4.1.

Corollary 4.2 Let the Arakelov bundle E over X be given. If n is a suffi-
ciently large integer and µ is a real number satisfying

µ(l)
max(E) + µ ≤ d

2
(log n + log l − log π − 1 − log 2) +

log d

2

for all 1 ≤ l ≤ rk(E), then there is an Arakelov bundle F of rank n and slope
larger than µ such that Γ(E ⊗ F) = 0.

If E is semistable, this gives the theorem 0.1 stated in the introduction. Here
is some evidence that these bounds are not too far from being optimal:

Proposition 4.3 Assume given ε > 0 and a nonzero Arakelov bundle E. Let
n > n(ε) be a sufficiently large integer, and let µ be a real number such that

µ(l)
max(E) + µ ≥ d

2
(log n + log l − log π − 1 + log 2 + ε) +

log d

2

holds for at least one integer 1 ≤ l ≤ rk(E). Then there is no Arakelov bundle
F of rank n and slope µ with Γ(E ⊗ F) = 0.

Proof: Fix such an l and a subbundle E ′ ⊆ E of rank l and slope µ
(l)
max(E). For

each F of rank n and slope µ, we consider the Arakelov bundle F ′ := E ′ ⊗ F
of rank nl. By Stirling’s formula, the hypotheses on n and µ imply

exp deg(F ′) · λnl(Onl
A ) > 2nld · dnl/2.

Now choose a K-linear isomorphism φ : Knl ∼−→ F ′
K and extend it to adeles.

Applying the global transformation formula (3), we get

λnl(φ−1F ′
OA

) > 2nld · λnl(Anl/Knl).

According to Minkowski’s theorem on lattice points in convex sets (in an adelic
version like [11], theorem 3), φ−1(F ′

OA
) ∩ Knl 6= {0} follows. This means that

F ′ — and hence E ⊗ F — must have a nonzero global section. 2

Observe that the lower bound 4.2 and the upper bound 4.3 differ only by the
constant d log 2. So up to this constant, the maximal slope of such tensor
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products without global sections is determined by the stability of E , more

precisely by the µ
(l)
max(E).

Taking E = O, we get lower and upper bounds for the maximal slope of
Arakelov bundles without global sections, as mentioned in the introduction. In
the special case E = O and K = Q of lattice sphere packings, [2] states that
no essential improvement of corollary 4.2 is known whereas several people have
improved the other bound 4.3 by constants.
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Abstract. This paper studies the reciprocity obstruction to the
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Let K be a field of characteristic zero that has (n+2)-dimensional global duality
in étale cohomology with respect to a collection of n-local fields K ⊂ Kv ⊂ K
indexed by v ∈ ΩK . Examples of such fields are totally imaginary number fields
(then n = 1) and function fields over n-local fields. See Section 1 for details.
Let X be a nonsingular complete variety over K. Writing X(AK) :=∏

v∈Ω X(Kv), we have a reciprocity pairing

X(AK) × Hn+1(X,Q/Z(n)) → Q/Z.

Writing X(AK)rcpr for the collections of points that pair to zero with every
ω ∈ Hn+1(X,Q/Z(n)), we have that X(K) ↪→ X(AK)rcpr. In particular, when
X(AK)rcpr = ∅ then X(K) = ∅.
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Hence the reciprocity pairing gives an obstruction to the local–global principle.
When K is a number field, this obstruction is easily seen to be equivalent to
the obstruction coming from the well-known Brauer–Manin pairing

X(AK) × H2(X,Gm) → Q/Z

introduced by Yu. Manin in [Ma].

Main result

In this paper we will show that under a technical assumption on Galois coho-
mology of tori the reciprocity obstruction is the only obstruction to the local–
global principle for any smooth compactification of a torsor under a torus over
K (i.e., any nonsingular complete variety containing a principal homogeneous
space under a torus over K as a Zariski-dense open subvariety).

Theorem 1. Let K be a field of characteristic zero with global duality. Assume
that X

2(K,T ) is of finite exponent for every torus T over K.
Then for any smooth compactification X of a torsor under a torus over K we
have that X(AK)rcpr = ∅ if and only if X(K) = ∅.
Proof. This follows immediately from Corollary 3.3 and Corollary 4.3.

This generalises (and simplifies the proof of) the original result of Sansuc that
for a smooth compactification of a torsor under a torus over a number field the
Brauer–Manin obstruction is the only obstruction against the Hasse principle
(see [San] and also [Sk]).
The condition on X

2(K,T ) is not only known to hold for number fields, but
also for p-adic function fields (this follows from the duality theorems in [SvH]).
In particular, we get a proof of the following unconditional result, due to Schei-
derer (private communication), that has not appeared in the literature before.

Corollary. Let p be a prime and let K be a p-adic function field (i.e., a
finite extension of Qp(t)). Then for any smooth compactification X of a torsor
under a torus over K we have that X(AK)rcpr = ∅ if and only if X(K) = ∅.
I do not know any other examples of fields of characteristic zero with global
duality and finite exponent for X

2 of tori, nor do I know any examples of
tori over fields of characteristic zero with global duality where X

2 has infinite
exponent.

Method of proof

The proof uses pseudo-motivic homology

1H∗(X,Z) := Ext−∗
ksm

(RΓ(X/k,Gm),Gm)

as defined in [vH1] for nonsingular complete varieties over a field k of charac-
teristic zero (see Section 2 for some more information).
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This homology theory (covariant in X) can be considered to be in between

motivic homology and étale homology with coefficients in Ẑ (see [vH1], [vH2]).
It is more tractable than motivic homology, but it still contains some important
geometric/arithmetic data. In particular, in certain cases 1H0(X,Z) can decide
whether X has k-rational points.

Theorem 2. Let X be a smooth compactification of a torsor under a torus
over a field k of characteristic zero. Then the degree map

1H0(X,Z) → 1H0(Spec k,Z) = Z

is surjective if and only if X(k) 6= ∅.

Proof. If X(k) 6= ∅, then functoriality of 1H0(−,Z) implies the surjectivity of
the degree map. The converse follows from Corollary 4.3.

This is the key result in the paper and in fact an easy consequence of Hilbert’s
Theorem 90 and Rosenlicht’s result that the invertible functions on a torus are
characters up to translation. Theorem 1 is then essentially a purely formal
consequence of global duality. However, to avoid any unnecessary technical
subtleties we will actually derive Theorem 1 from the slightly stronger Corol-
lary 4.3.
As we will see in Section 5, the approach taken here is strongly related to the
approach of Colliot-Thélène and Sansuc in the case of number fields: Corol-
lary 4.3 is equivalent to their result that a smooth compactification of a torsor
under a torus has rational points if and only if the so-called elementary obstruc-
tion vanishes. However, the proofs in the present paper are simpler, and extend
easily to higher cohomological dimension. This can be explained by the fact
that for the varieties under consideration the homological formalism of pseudo-
motivic homology happens to be more natural than the dual cohomological
formalism of descent.

Structure of the paper

Most of this paper is devoted to setting up the conceptual framework and
establishing its formal properties. In Section 1 we recall the concept of an
n-local field, originally due to Parshin, and we will introduce a cohomological
global analogue: (n + 2)-dimensional global duality in étale cohomology. We
will introduce the reciprocity pairing in this framework and establish some ba-
sic properties. In Section 2 we will recall the definition and basic properties
of pseudo-motivic homology. In Section 3 we define a cap-product between
pseudo-motivic homology and étale cohomology and we establish a partial du-
ality.
After setting up the proper framework in the first three sections, we show in
Section 4 that a principal homogeneous space under a torus actually coincides
with the degree 1 part of its zero-dimensional homology. This is essentially a
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rephrasing of Rosenlicht’s result on the invertible functions on a torus. The
main results then follow immediately.
Finally, in Section 5 we will compare the methods used here to other methods
in the literature.
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1 Higher dimensional local and global duality

1.1 Higher dimensional local duality

In this paper, an n-local field (for n ≥ 1) will be a field k that admits a sequence
of fields

k0, k1, . . . , kn = k

such that:

• k0 is a finite field

• For each i > 0 the field ki is the quotient field of an excellent henselian
discrete valuation ring Oki

with residue field ki−1.

A generalised n-local field will be a field satisfying the same hypotheses, except
that k0 is only required to be quasi-finite, i.e., a perfect field with absolute
Galois group isomorphic to Ẑ.
A generalised n-local field k with k1 of characteristic zero satisfies n-
dimensional local duality in étale cohomology :

• There is a canonical isomorphism Hn+1
ét (k,Q/Z(n)) = Q/Z

• For any finite Gal(k̄/k)-module M and any i ∈ Z the Yoneda pairing

Hi
ét(k,M) × Extn+1−i

ét (M,Q/Z(n)) → Hn+1
ét (k,Q/Z(n)) = Q/Z

is a perfect pairing of finite groups.

• For a finite unramified Gal(k̄/k)-module M of order prime to the charac-
teristic of kn−1, the unramified cohomology of M is precisely the annihi-
lator of the unramified cohomology of Hom(M,Q/Z(n)) in the duality
pairing.

Here an unramified Gal(k̄/k)-module M is a Galois module on which the
inertia group I acts trivially, and the unramified cohomology of M is the
image in Hi

ét(k,M) = Hi(Gal(k̄/k),M) of the Galois cohomology group
Hi(Gal(k̄/k)/I,M) under the restriction map (see for example [Mi, I, p.36]). In
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terms of étale cohomology it is the image of the restriction map Hi
ét(Ok,M) →

Hi
ét(k,M).

For ordinary local fields (the case n = 1 and finite k0), the duality in étale
cohomology is due to Tate (see for example [Mi, §I.4]). For higher dimensional
local fields (with finite k0) this is [DW, Th. 1.1, Prop. 1.2]. Since the proofs
only rely on the cohomological properties of k0, they easily generalise to the
case of quasi-finite k0.

1.2 Higher dimensional global duality

Let K be a field of characteristic zero and suppose we have

• A collection Ω of discrete valuations v : K → Z.

• An n ≥ 1 such that for every v ∈ Ω the quotient field Kh
v of the henseli-

sation Oh
v of the discrete valuation ring Ov := {x ∈ K : v(k) ≥ 0} is an

n-local field.

• A noetherian ring OK ⊂ K such that K is the quotient field of OK and
such that for all but finitely many v ∈ O we have that OK ⊂ Ov.

We will use the notation AK (or simply A) for the ring of (henselian) adèles
corresponding to (K,Ω), i.e., the subring of

∏
v∈Ω Kh

v consisting of the {xv}v∈Ω

with xv ∈ Ov for all but finitely many v ∈ Ω. Since for every finite Gal(K/K)-
module M we have that M extends to a locally constant étale sheaf over an
affine open subscheme U ⊂ SpecOK , we may define the adèlic étale cohomology
group

H∗
ét(AK ,M) := lim−→

V ⊂U
open affine




∏

v∈Ω
v∈V

H∗
ét(O

h
v ,M) ×

∏

v∈Ω
v 6∈V

H∗
ét(K

h
v ,M)


 .

By abuse of notation we write v ∈ SpecOK if OK ⊂ Ov and similarly for every
affine open subscheme U ⊂ SpecOK .
As an example, observe that the canonical isomorphisms Hn+1(Kh

v ,Q/Z(n)) '
Q/Z (with the unramified part being zero) induce an isomorphism

Hn+1(A,Q/Z(n)) '
⊕

v∈Ω

Q/Z.

We write X
i(K,M) for the kernel of the map

Hi
ét(K,M) → Hi

ét(A,M).

Similarly we define the complex of abelian groups RΓét(A,M) for any étale
sheaf (or complex of étale sheaves) M over some open subscheme U ⊂ SpecOK .
We have a map

RΓét(K,M) → RΓét(A,M)
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and we define the complex RΓ(K,A;M) to be the complex of abelian groups
that makes a triangle

RΓét(K,A;M) → RΓét(K,M) → RΓét(A,M).

As the notation indicates, the corresponding cohomology groups
Hi

ét(K,A;M) := Hi(RΓ(K,A;M)) should be thought of as relative co-
homology groups. By definition we have a long exact sequence

· · · → Hi
ét(K,A;M) → Hi

ét(K,M) → Hi
ét(A,M) → Hi+1

ét (K,A;M) → . . .

Observe that, even if the henselian adèles used here are different from the usual
adèles (defined using completions), their cohomology with finite coefficients
is the same, since their Galois groups are isomorphic (see for example [Mi,
App. I.A]).

Remark 1.1. The relative cohomology groups H∗
ét(K,A;−) can be thought of

as the cohomology with compact supports of SpecK regarded as something
very open in a compactification of SpecOK (compare [Mi, §II.2]). This way of
seeing it is more in line with the Grothendieck–Verdier approach to cohomology
and duality. However, a notation H∗

c can lead to confusion when studying the
cohomology of varieties over K, so the ‘Eilenberg–MacLane’-style of notation
as relative cohomology seems more convenient.

For any finite Gal(K/K)-module M , any i, j ∈ Z we have that an ω ∈
Exti

Két
(M,Q/Z(j)) induces maps

Hq
ét(K,A;M) → Hq+i

ét (K,A;Q/Z(j))

Hq
ét(K,M) → Hq+i

ét (K,Q/Z(j))

Hq
ét(A,M) → Hq+i

ét (A;Q/Z(j))

which are compatible with the long exact sequences of the pair (K,A). Allow-
ing ω to vary we get the Yoneda pairings

Hq
ét(K,A;M)⊗Exti

Két
(M,Q/Z(j)) → Hq+i

ét (K,A;Q/Z(j)),

Hq
ét(K,M)⊗Exti

Két
(M,Q/Z(j)) → Hq+i

ét (K,Q/Z(j)),

Hq
ét(A,M)⊗Exti

Két
(M,Q/Z(j)) → Hq+i

ét (A;Q/Z(j)).

We say that K has (n + 2)-dimensional global duality in étale cohomology if:

• We have an isomorphism Hn+2
ét (K,A;Q/Z(n)) ' Q/Z such that the

boundary map Hn+1
ét (A,Q/Z(n)) → Hn+2

ét (K,A;Q/Z(n)) corresponds

to the summation map
⊕

v∈Ω Q/Z
∑

−−−→ Q/Z.

• For every finite Gal(K/K)-module M and any i ∈ Z the Yoneda pairing

Hi
ét(K,A;M) × Extn+2−i

Két
(M,Q/Z(n)) → Hn+2

ét (K,A;Q/Z(n)) ' Q/Z

is a nondegenerate pairing of abelian groups inducing an isomorphism
Hi

ét(K,A;M)
∼→ Hom(Extn+2−i

Két
(M,Q/Z(n)),Q/Z).
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As a purely formal consequence we get duality for any bounded complex C of
constructible étale sheaves defined over an open subset U ⊂ SpecOK : we have
for any i ∈ Z that

Hi
ét(K,A;C ) × Extn+2−i

Két
(C ,Q/Z(n)) → Hn+2

ét (K,A;Q/Z(n)) ' Q/Z

is a nondegenerate pairing of abelian groups inducing an isomorphism
Hi

ét(K,A;C )
∼→ Hom(Extn+2−i

Két
(C ,Q/Z(n)),Q/Z).

Examples of fields that satisfy (n + 2)-dimensional global duality in étale co-
homology are

• Totally imaginary number fields (with n = 1).

• Function fields of curves over generalised (n − 1)-local fields with k1 of
characteristic zero.

Remark 1.2. To get 3-dimensional global duality for number fields that admit
real embeddings, one needs to take care of the real places separately (as in [Mi,
§II.2]). Having done that, the methods of this paper still apply.

1.3 The reciprocity pairing

Let X be a nonsingular complete variety over a field K having (n + 2)-
dimensional global duality in étale cohomology.
For any i, j ∈ Z the restriction map gives pairings of sets

X(K) × Hi
ét(X,Q/Z(j)) → Hi

ét(K;Q/Z(j))

X(A) × Hi
ét(XA,Q/Z(j)) → Hi

ét(A;Q/Z(j))

where we use the notation

Hi
ét(XA,Q/Z(j)) := Hi

ét(A, RΓ(X/K,Q/Z(j))).

When we compare these two pairings, we see that composition with the re-
striction map Hi

ét(X,Q/Z(j)) → Hi
ét(XA,Q/Z(j)) and the boundary map

Hi
ét(A;Q/Z(j)) → Hi+1

ét (K,A;Q/Z(j)) transforms the second pairing into a
pairing

X(A) × Hi
ét(X,Q/Z(j)) → Hi+1

ét (K,A;Q/Z(j))

with the property that the image of the map X(K) → X(A) lands into the
subset

X(A)⊥Hi
ét(X,Q/Z(j)) :=

{
{xv} ∈ X(A) : 〈{xv}, ω〉 = 0 for any ω ∈ Hi

ét(X,Q/Z(j))
}

Taking i = n + 1, j = n, we get the reciprocity pairing

X(A) × Hn+1
ét (X,Q/Z(n)) → Hn+2

ét (K,A;Q/Z(n)) = Q/Z

mentioned in the introduction, and we have that

X(K) ↪→ X(A)rcpr = X(A)⊥Hn+1
ét (X,Q/Z(n)).
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1.4 Generalised global duality beyond finite coefficients

Later in this paper we will use (n + 2)-dimensional global duality to detect
elements in H2

ét(K,A;X(M)) for a finitely generated group scheme over K.
Here a finitely generated group scheme over a perfect field k is a group scheme
G such that G(k̄) is a finitely generated group. By

X(M) := Hom(M,Gm)

we denote the Cartier dual of M .
Morally speaking, one would expect a nondegenerate pairing

Hn
ét(K,M

L
⊗Z(n − 1))) × H2

ét(K,A;X(M)) → Hn+3
ét (K,A;Z(n))) = Q/Z

for suitable ‘motivic’ complexes of sheaves Z(n − 1) and Z(n) in the sense of
Beilinson and Lichtenbaum (see [BMS], [L]; recall that we have Z(0) = Z and
Gm = Z(1)[1]). Such a duality for ‘integral’ coefficients is known when K is
a number field (cf. [Mi, §I.4]), but I do not know of such a full duality in any
other case — even for K a p-adic function field, the results of [SvH] do give the
required duality between H2

ét(K,M ⊗L Z(1)) and H2
ét(K,A;X(M)), but this

duality is obtained without introducing a complex Z(2).
To avoid these complications, we consider the torsion version

Hn−1
ét (K,M

L
⊗Q/Z(n − 1))) × H2

ét(K,A;X(M))

→ Hn+2
ét (K,A;Q/Z(n))) = Q/Z (1)

which can be defined as the Yoneda pairing associated to the isomorphisms

M
L
⊗µ⊗n−1

m ' R Hom(X(M),Gm

L
⊗µ⊗n−1

m ) = R Hom(X(M), µ⊗n
m [1])

for all m ∈ N.

Proposition 1.3. Let K be a field that has (n+2)-dimensional global duality,
and let M be a finitely generated group scheme over K. If X

2(K,X(M)) is of
finite exponent, then the pairing (1) is nondegenerate on the right.

Proof. By hypothesis, we have an N ∈ N such that X
2(K,X(M)) is N -torsion.

By Hilbert’s Theorem 90 and a restriction–corestriction argument we also have
an N ′ ∈ N such that H1

ét(A,X(M)) is N ′-torsion.
The long exact sequence of relative cohomology now implies
that H2

ét(K,A;X(M)) is NN ′-torsion, so this group embeds into
H2

ét(K,A;X(M)⊗L Z/NN ′) by the Kummer sequence.
Global duality then implies that H2

ét(K,A;X(M)) embeds into the
dual of Hn−1

ét (K,M ⊗L Z/NN ′(n − 1))), hence into the dual of
Hn−1

ét (K,M ⊗L Q/Z(n − 1))).

We will also use the following easy lemma.
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Lemma 1.4. Let K be a field that has (n + 2)-dimensional global duality. The
pairing

Hn+1
ét (K,Q/Z(n)) × H1

ét(K,A;Z) → Hn+2
ét (K,A;Q/Z(n))) = Q/Z (2)

is nondegenerate on the right.

Proof. This follows easily from the fact that H1
ét(K,A;Z) =

(∏
v∈Ω Z

)
/Z,

whereas Hn+1
ét (K,Q/Z(n)) surjects onto the kernel of the map

⊕
v∈Ω Q/Z =

Hn+1
ét (A,Q/Z(n)) → Hn+2

ét (K,A;Q/Z(n))) = Q/Z.

2 Pseudo-motivic homology

Let k be a field of characteristic zero. Let X be a nonsingular variety over k.
We write Xsm for the smooth site over X (i.e., underlying category the smooth
schemes of finite type over X and coverings the surjective smooth morphisms).
For any sheaf F on Xsm we denote by RΓ(X/Ksm,F ) the total direct image
in the derived category of sheaves on (Spec k)sm of F under the structure
morphism X → Spec k. With this notation we define

C
∗(X,Gm) := RΓ(X/ksm,Gm)

C
c
∗ (X,Z) := R Homksm

(C ∗(X,Gm),Gm)
1Hc

i (X,Z) := H−i(ksm,C c
∗ (X,Z))

When X is complete, we have that 1Hc
i (X,Z) = 1Hi(X,Z), pseudo-motivic

homology, which was introduced and studied in [vH1] for nonsingular complete
varieties. For a noncomplete X, we have that 1Hc

i (X,Z) is pseudo-motivic
homology with compact supports, which was studied in [vH2].
As in [vH2] we will work with a truncated version for technical reasons. We
define

C
∗(X,Gm)τ := τ≤1RΓ(X/ksm,Gm)

Hi(X,Gm)τ := Hi(ksm,C ∗(X,Gm)τ )

C
c
∗ (X,Z)τ := R Homksm

(C ∗(X,Gm)τ ,Gm)
1Hc

i (X,Z)τ := H−i(ksm,C c
∗ (X,Z)τ )

Finally, we will also need the associated ‘truncated’ cohomology theory with
torsion coefficients, so we define

C
∗(X,µ⊗j

m )τ := C
∗(X,Gm)τ

L
⊗µ⊗j

m

Hi(X,µ⊗j
m )τ := Hi(ksm,C ∗(X,µ⊗j

m )τ )

Hi(X,Q/Z(j))τ := lim−→
m

Hi(X,µ⊗j
m )τ
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Remark 2.1. We only need the smooth topology in the definition of the com-
plexes C c

∗ (X,Z)(τ). After that, the comparison between smooth cohomology
and étale cohomology of the complexes of sheaves that we are using assures that
we might as well compute everything on the étale site. In particular, there is
no need to distinguish in notation between H∗(ksm,−) and H∗(két,−), and we
will normally just write H∗(k,−)

2.1 Some calculations

In the present paper we are interested in varieties with a finitely generated
geometric Picard group. For these varieties the truncated pseudo-motivic ho-
mology has a very simple structure.

Lemma 2.2. Assume X is a nonsingular complete geometrically irreducible
variety over k such that the Picard scheme PicX/k is a finitely generated group
scheme. Then we have a triangle

Hom(PicX/k,Gm)[1] → C∗(X,Z)τ → Z.

Proof. By Cartier duality this follows from the fact that we have a triangle

Gm → C
∗(X,Gm)τ → PicX/K [−1]. (3)

Corollary 2.3. With X as above, we have a long exact sequence

· · · → H1(k,Hom(PicX/k,Gm)) → 1H0(X,Z)τ → H0(k,Z)

→ H2(k,Hom(PicX/k,Gm)) → · · ·
Lemma 2.4. Assume V is a nonsingular geometrically irreducible variety over
k such that PicV/k = 0. Then we have a triangle

Hom(k̄[V ]∗/k̄∗,Gm) → C∗(V,Z)τ → Z

Proof. Let V ↪→ X be a smooth compactification, let Z ⊂ X be the closed
complement, and let Z 1

Z (X/k) be the locally free abelian sheaf on ksm asso-
ciated to the Galois permutation module generated by the set of irreducible
components of Z that are of codimension 1 in X. Let M be the kernel of the
surjective map of sheaves

Z
1

Z (X/k) → PicX/k .

We have that M is a locally free abelian sheaf on ksm, hence it is the sheaf
associated to a torsion-free Galois module. It follows from the triangle (3) and
the triangle [vH2, eq. (3)] that we have a triangle

Gm → C
∗(V,Z)τ → M.

Checking the global sections over k̄ then gives that M is the sheaf corresponding
to the finitely generated Galois module k̄[V ]∗/k̄∗.
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Lemma 2.5. Let X be a nonsingular projective variety over k and let V ⊂ X
be an open subvariety, then the natural map

1Hc
0(V,Z)τ → 1H0(X,Z)τ

is surjective

Proof. This is part of [vH2, Cor. 1.5].

2.2 Homology classes of points

For any variety V over k we have that the covariantly functorial properties of
pseudo-motivic homology give a natural map

V (k) → 1Hc
0(V,Z).

We denote the homology class of a k-valued point x ∈ V (k) by [x], If x corre-
sponds to a map i : Spec k → V then [x] corresponds to the morphism

RΓ(X/k,Gm) → Gm

induced by the natural morphism

Gm → i∗Gm

of sheaves on X. We will not make a distinction in notation between the
class [x] ∈ 1Hc

0(V,Z) and its image under the truncation map 1Hc
0(V,Z) →

1Hc
0(V,Z)τ

The sheafified version of this map gives a morphism of sheaves (of sets) over
ksm

V → 1
H

c
0 (V,Z)

with the image of V landing in the inverse image of 1 under the degree map

1
H

c
0 (V,Z) → Z.

See [vH1] and [vH2] for more information.

Lemma 2.6. Assume V is a nonsingular geometrically connected variety over
k such that PicV/k = 0. Then the morphism

V → 1
H

c
0 (V,Z) = R Homksm

(Γ(V/ksm,Gm),Gm)

is given by locally sending a section x ∈ V to the map that sends a local section
f of Γ(V/ksm,Gm) to f(x).

Proof. This follows immediately from the definitions.
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3 The cap-product and partial generalised global duality for
pseudo-motivic homology

3.1 Definition and basic properties of the cap product

Let X be a nonsingular variety over a field k of characteristic zero. Since
C c
∗ (X,Z) = R Homksm

(C ∗(X,Gm),Gm), we have well-defined Yoneda-
products

1Hc
i (X,Z) × Hj(X,Gm) → Hj−i(k,Gm)

1Hc
i (X,Z) × Hj(X,Q/Z(1)) → Hj−i(k,Q/Z(1)).

Applying Tate twist to the torsion coefficients in the second pairing gives us

1Hc
i (X,Z) × Hj(X,Q/Z(m)) → Hj−i(k,Q/Z(m)).

for any m ∈ Z. Similarly, we have the truncated versions

1Hc
i (X,Z)τ × Hj(X,Gm)τ → Hj−i(k,Gm)

1Hc
i (X,Z)τ × Hj(X,Q/Z(m))τ → Hj−i(k,Q/Z(m)).

All these pairings can be called cap-product pairings and will be denoted by
− ∩−.
For a k-valued point x : Spec k ↪→ X, and an ω ∈ Hj(X,Q/Z(m))(τ) we have
that

[x] ∩ ω = i∗ω ∈ Hj(k,Q/Z(m)). (4)

This follows easily from the definitions, in particular from the fact that the
homology class [x] is defined using the the natural maps Gm → i∗Gm and
the pull-back homomorphism i∗ is defined using the natural map Q/Z(m) →
i∗Q/Z(m).

3.2 Partial generalised global duality for pseudo-motivic ho-
mology

Let K be a field of characteristic zero with global (n + 2)-dimensional duality
in étale cohomology, and let X be a nonsingular variety over K. We define:

1Hc
i (XA,Z)(τ) := H−i(A,C c

∗ (X,Z)(τ))
1Hc

i (X,XA;Z)(τ) := H−i(K,A;C c
∗ (X,Z)(τ)).

The cap product and the maps in cohomology for the pair (K,A) give us
pairings

1Hc
i (XA,Z)(τ) × Hj(X,Q/Z(m))(τ) → Hj−i+1(K,A;Q/Z(m))

1Hc
i (X,XA;Z)(τ) × Hj(X,Q/Z(m))(τ) → Hj−i+1(K,A;Q/Z(m)).
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We will be interested in the case i = 0, j = n + 1, m = n. By equation (4) we
get a commutative diagram of pairings

X(A)

²²

×Hn+1(X,Q/Z(n))(τ)
rcpr

// Q/Z

1Hc
0(XA,Z)(τ) × Hn+1(X,Q/Z(n))(τ)

∩
// Q/Z

(5)

The aim of this section is to identify the left kernel of the bottom pairing in the
truncated version of the above diagram with the image of 1Hc

0(X,Z)τ . Since
the long exact sequences in the cohomology of the pair (K,A) gives a long
exact sequences in pseudo-motivic homology:

· · · → 1Hc
i (X,XA,Z)τ → 1Hc

i (X,Z)τ → 1Hc
i (XA,Z)τ →

1Hc
i−1(X,XA,Z)τ → · · · (6)

it will be sufficient to prove that Hn+1(X,Q/Z(n))τ detects all elements in
1Hc

−1(X,XA,Z)τ

Theorem 3.1. Let X be a nonsingular complete variety over a field K having
(n + 2)-dimensional global duality in étale cohomology. Assume that PicX/K

is a finitely generated group scheme and that X
2(K,X(PicX/K)) is of finite

exponent. Then the cap-product pairing

1H−1(X,XA;Z)τ × Hn+1(X,Q/Z(n))τ → Hn+2(K,A;Q/Z(n)) = Q/Z

is nondegenerate on the left.

Proof. The triangle of Lemma 2.2 gives the following diagram of compatible
pairings with exact rows

0 // H2(K,A;X(PicX/K))

×

// 1H−1(X, XA;Z)τ

×

// H1(K,A;Z)
×

0 Hn−1(K, PicX/K ⊗L Q/Z(n − 1))

²²

oo Hn+1(X,Q/Z(n))τ

²²

oo Hn+1(K,Q/Z(n))

²²

oo

Q/Z Q/Z Q/Z

where the leftmost pairing is the pairing (1) and the rightmost pairing is the
pairing of Lemma 1.4. Since those two pairings are nondegenerate on the
(K,A)-side, it follows that the middle pairing is nondegenerate on the (K,A)-
side as well.

Corollary 3.2. Let X be as in Theorem 3.1. Then the left kernel of the
cap-product pairing

1H0(XA;Z)τ × Hn+1(X,Q/Z(n))τ → Q/Z

is precisely the image of the map

1H0(X,Z)τ → H0(XA,Z)τ
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Proof. This follows from Theorem 3.1, the exact sequence (6) for the pseudo-
motivic homology of the pair (X,XA), and the fact that we have a compatible
diagram of pairings

1H0(XA;Z)τ

²²

× Hn+1(X,Q/Z(n))τ
// Q/Z

1H−1(X,XA;Z)τ × Hn+1(X,Q/Z(n))τ
// Q/Z

Corollary 3.3. Let X be as in Theorem 3.1. If X(A)rcpr 6= ∅, then the degree
map

H0(X,Z)τ → Z

is surjective.

Proof. Take an adèlic point {xv} ∈ X(A)rcpr. The compatibility between cap-
product and the map X(A) → 1H0(XA,Z)τ implies that its homology class

[{xv}] ∈ 1H0(XA,Z)τ

is orthogonal to any ω ∈ Hn+1(X,Q/Z(n)), so certainly to any ω ∈
Hn+1(X,Q/Z(n))τ . Therefore, the homology class [{xv}] is the restriction
of some γ ∈ 1H0(X,Z). Since each [xv] ∈ 1H0(XKv

,Z) is of degree 1, the
degree of γ is 1.

4 Pseudo-motivic homology of compactifications of torsors un-
der tori

Throughout this section V will be a torsor under a torus T over a field k of
characteristic zero.
Since PicV/k = 0, Lemma 2.4 gives us that the complex C∗(V,Z)τ is in fact
quasi-isomorphic to a sheaf which is represented by a group scheme locally of
finite type (the extension of Z by a torus). We denote this group scheme by
1H c

0 (V,Z).

Proposition 4.1. (i) The triangle of 2.4 is naturally isomorphic to the tri-
angle of sheaves associated to the short exact sequence of group schemes

0 → T → 1
H

c
0 (V,Z) → Z → 0

(ii) The natural map V → 1H c
0 (V,Z) induces a T -equivariant isomorphism

of V with the connected component of 1H c
0 (V,Z) mapping to 1 ∈ Z.

Proof. The first part of the proposition follows by Cartier duality from the
sheafified version of Rosenlicht’s result that we have a short exact sequence

0 → Gm → Γ(V/ksm,Gm) → X(T ) → 0.
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See [Ro], and also [Ray, Cor. VII.1.2.], [CTS, Prop. 1.4.2].

To get the second part of the proposition, we need the extra information that
the map Γ(V/ksm,Gm) → X(T ) considered above is defined locally by sending
a local section f of Γ(V/ksm,Gm) to the map that sends a local section t of T to
f(t · x)/f(x) for any local section x of V . Comparing this with the description
of the map V → 1H c

0 (V,Z) in Lemma 2.6 gives the desired result.

Corollary 4.2. For any field extension k′/k we have that the natural map

V (k′) → 1Hc
0(Vk′ ,Z)τ

gives a T (k′)-equivariant isomorphism of V (k′) onto the subset of elements of
1Hc

0(Vk′ ,Z)τ of degree 1.

Proof. Immediate from the above, since 1Hc
0(Vk′ ,Z)τ = 1H c

0 (V,Z)(k′) by
Lemma 2.4.

Corollary 4.3. Let X be a nonsingular complete variety over k containing
V as a Zariski-dense subvariety.

(i) The degree map
1Hc

0(V,Z)τ → Z

is surjective if and only if V (k′) 6= ∅.

(ii) The degree map
1H0(X,Z)τ → Z

is surjective if and only if X(k) 6= ∅.

Proof. The first statement follows immediately from Corollary 4.2, whereas the
second statement follows from the first combined with Lemma 2.5.

Together with the results of Section 3 this implies the two theorems in the
introduction.

Remark 4.4. It is clear from the above, that we can sharpen Theorem 1
by replacing the full group Hn+1(X,Q/Z(n)) in the reciprocity pairing
by the truncated group Hn+1(X,Q/Z(n))τ , or its image under the map
Hn+1(X,Q/Z(n))τ → Hn+1(X,Q/Z(n)).

In the case of a number field, this makes no difference, since for smooth com-
pactifications of torsors under tori we have that our truncated cohomological
Brauer group H2(X,Gm)τ is equal to the full cohomological Brauer group
H2(X,Gm). (For an arbitrary variety X our truncated group H2(X,Gm)τ

is equal to the the so-called ‘algebraic’ cohomological Brauer group, i.e., the
kernel of the map H2(X,Gm) → H2(X,Gm)).
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5 Comparison with the literature

Torsors under a torus T over a (generalised) global field K which are trivial ev-
erywhere locally are classified by X

1(K,T ). It follows from Rosenlicht’s result
and Hilbert Theorem 90 that H1(K,T ) embeds into H2(K,X(PicX/K)) for any
smooth compactification X of a principal homogeneous space V under T . For
a field K as in Theorem 1, duality gives that X

1(K,T ) embeds into the dual of
Hn−1(K,PicX/K ⊗L Q/Z(n − 1)), hence into the dual of Hn+1(X,Q/Z(n))τ .
Therefore, it is not very surprising that the reciprocity pairing detects a failure
of the local–global principle.
The only problem is to relate the abstract ‘arithmetic’ pairing

X
1(K,T ) × Hn+1(X,Q/Z(n))τ → Q/Z

to the ‘geometric’ reciprocity pairing

X(A) × Hn+1(X,Q/Z(n))τ → Q/Z.

We have seen that pseudo-motivic homology provides a nice conceptual inter-
mediate to compare the two pairings, but there have been other approaches as
well. The existing literature deals with number fields, so here we consider the
Brauer group, rather than H2(X,Q/Z(1))τ .
In [San] the comparison between the ‘geometric’ and the ‘arithmetic’ pairing
is essentially done in Lemma 8.4, using explicit ways of representing classes in
the Brauer group and explicit cochain calculations. If one would want to apply
this approach to global duality fields of higher cohomological dimension, both
the higher degree of the cochains and the fact that the coefficients would be in
Q/Z(n) should complicate things considerably.
A more conceptual approach, the descent method, due to Colliot-Thélène and
Sansuc and described in [CTS] uses the concept of a universal X-torsor under
groups of multiplicative type. The most streamlined version of this approach
is probably presented in [Sk]. As in the present paper, the proof proceeds in
two major steps. The first result is that for any nonsingular complete variety
X over a number field K with X(AK)Br(X)τ 6= ∅ we have that the universal X-
torsor exists. The second result is that for a smooth projective compactification
of a torsor under a torus over K the universal X-torsor exists if and only if
X(K) 6= ∅.
There is a very clear relation with the present paper: Colliot-Thélène and
Sansuc show that the universal X-torsor exists if and only if the 2-fold extension
of Galois modules

0 → k̄∗ → k̄(X)∗ → Div(X) → Pic(X) → 0

is trivial. This can be seen to be equivalent to the surjectivity of the degree
map

1H0(X,Z)τ → Z.
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Therefore, the two steps of the proof in the present paper are equivalent to the
two steps in the descent method, but in both steps the methods of proof are
different. In particular in the first step the homology approach of the present
paper seems much more efficient than the approach of Colliot-Thélène and San-
suc (or Skorobogatov’s streamlined version in [Sk, Sec. 6.1]), where again the
core of the proof is a comparison of the ‘geometric’ and the ‘arithmetic’ pair-
ing using cocycle computations. Recently, Salberger has published a different
proof of the first step in the descent method, which no longer needs explicit
cocyle computations ([Sal, Prop. 1.26]). However, Salberger’s proof does re-
quire a subtle cohomological construction that might not be easy to generalise
to global fields of higher cohomological dimension.
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Abstract.

We introduce a new bivariant cyclic theory for topological algebras,
called local cyclic cohomology. It is obtained from bivariant periodic
cyclic cohomology by an appropriate modification, which turns it into
a deformation invariant bifunctor on the stable diffeotopy category of
topological ind-algebras. We set up homological tools which allow the
explicit calculation of local cyclic cohomology. The theory turns out
to be well behaved for Banach- and C∗-algebras and possesses many
similarities with Kasparov’s bivariant operator K-theory. In partic-
ular, there exists a multiplicative bivariant Chern-Connes character
from bivariant K-theory to bivariant local cyclic cohomology.
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mation, almost multiplicative map, stable diffeotopy category, Fréchet
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homology, bivariant Chern-Connes character.

Introduction

A central topic of noncommutative geometry is the study of topological alge-
bras by means of homology theories. The most important of these theories
(and most elementary in terms of its definition) is topological K-theory. Vari-
ous other homology theories have been studied subsequently. This has mainly
been done to obtain a better understanding of K-theory itself by means of
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theories which either generalize the K-functor or which provide explicitely cal-
culable approximations of it. The latter is the case for cyclic homology, which
was introduced by Connes [Co1], and independently by Tsygan [FT], in order
to extend the classical theory of characteristic classes to operator K-theory,
respectively to algebraic K-theory. Concerning operator K-theory, which is
ZZ/2ZZ-graded by the Bott periodicity theorem, one is mainly interested in pe-
riodic cyclic theories. Periodic cyclic homology HP is defined as the homology
of a natural ZZ/2ZZ-graded chain complex ĈC∗ associated to each complex al-
gebra [Co1]. It can be expressed in terms of derived functors, which allows
(in principle) its explicit calculation [Co]. There exists a natural transforma-
tion ch : K∗ −→ HP∗, called the Chern-character, from K-theory to periodic
cyclic homology [Co1]. If this Chern-character comes close to an isomorphism
(after tensoring with lC), then periodic cyclic homology provides an explicitely
calculable approximation of the K-groups one is interested in.
It turns out, however, that the Chern-character is often quite degenerate for
Banach- and C∗-algebras. Unfortunately, this is the class of algebras, for which
the knowledge of the K-groups would be most significant. The main reason for
the degeneracy of Chern characters lies in the different functorial behavior
of K-theory and periodic cyclic homology: due to its algebraic nature, cyclic
homology possesses the continuity properties of K-theory only in a weak sense.
The essential properties of K-theory are:

• Invariance with respect to (continuous) homotopies

• Invariance under topologically nilpotent extensions
(infinitesimal deformations)

• Topological Morita invariance

• Excision

• Stability under passage to dense subalgebras which are closed under
holomorphic functional calculus.

• Compatibility with topological direct limits

Periodic cyclic homology verifies only a list of considerably weaker conditions:

• Invariance with respect to diffeotopies (smooth homotopies) [Co1], [Go]

• Invariance under nilpotent extensions [Go]

• Algebraic Morita invariance [Co1]

• Excision [CQ2]

In the sequel we will ignore the excision property. The lists of remaining prop-
erties will be called strong respectively weak axioms.
To illustrate some of the differences between the two theories we discuss two
well known examples.
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Example 1: While for the algebra of smooth functions on a compact manifold
M the periodic cyclic cohomology

HP ∗(C∞(M)) ' HdR
∗ (M)

coincides with the de Rham homology of M [Co1], the periodic cyclic cohomol-
ogy of the C∗-algebra of continuous functions on a compact space X is given
by

HP ∗(C(X)) ' C(X)′

the space of Radon measures on X [Ha]. Thus HP is not stable under passage
to dense, holomorphically closed subalgebras. Taking X = [0, 1], one sees more-
over that periodic cyclic (co)homology cannot be invariant under (continuous)
homotopies.
Example 2: The inclusion A ↪→ Mn(A) of an algebra into its matrix algebra
gives rise to a (co)homology equivalence by the Morita-invariance of HP . In
contrast the inclusion B ↪→ lim

n→∞
Mn(B) = B⊗C∗K (K the algebra of compact

operators on a Hilbert space) of a C∗-algebra into its stable matrix algebra
induces the zero map in periodic cyclic (co)homology [Wo]. Thus HP is not
topologically Morita invariant. Moreover, it does not commute with topological
direct limits. Finally it is known that periodic cyclic cohomology is not stable
under topologically nilpotent extensions or infinitesimal deformations.
In order to obtain a good homological approximation of K-theory one therefore
has to find a new cyclic homology theory which possesses a similar functorial
behavior and is still calculable by means of homological algebra.
In this paper we introduce such a theory, called local cyclic cohomology. It
is defined on the category of formal inductive limits of nice Fréchet algebras
(ind-Fréchet algebras). A well behaved bivariant Chern-Connes character with
values in bivariant local cyclic cohomology is constructed in [Pu2].
We proceed in two steps. In the first part of the paper we study diffeotopy
functors of topological ind-algebras which satisfy the weak axioms. Our main
result is a simple criterion, which guarantees that such a functor even satisfies
the strong axioms. In the second part of the paper we modify periodic cyclic
homology so that it satisfies this criterion and discuss the cyclic homology
theory thus obtained.
A new basic object that emerges here is the stable diffeotopy category of ind-
algebras (formal inductive limits of algebras). Its definition is in some sense
similar to that of the stable homotopy category of spectra [Ad]. We construct
first a triangulated prestable diffeotopy category, which possesses the usual
Puppe exact sequences, by inverting the smooth suspension functor. Then
we invert the morphisms with weakly contractible mapping cone to obtain
the stable diffeotopy category. The criterion mentioned before can now be
formulated as follows:
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Theorem 0.1. Let F be a functor on the category of ind-Fréchet algebras with
approximation property [LT], which satisfies the weak axioms. Suppose that F
is invariant under infinitesimal deformations and under stable diffeotopy, i.e.
that it factors through the stable diffeotopy category. Then F also satisfies the
strong axioms.

In order to understand why this result holds we have to explain the signif-
icance of infinitesimal deformations. The approach of Cuntz and Quillen to
periodic cyclic homology [CQ], [CQ1] emphasizes the invariance of the theory
under quasinilpotent extensions. The corresponding notion for Fréchet alge-
bras is that of a topologically nilpotent extension or infinitesimal deformation
[Pu1], see also [Me], which is defined as an extension of Fréchet algebras with
bounded linear section and topologically nilpotent kernel. Here a Fréchet al-
gebra is called topologically nilpotent if the family of its relatively compact
subsets is stable under taking multiplicative closures. Among the possible in-
finitesimal deformations of an algebra there is an initial or universal one [Pu],
provided one works in the more general context of formal inductive limits of
Fréchet algebras (or ind-Fréchet algebras). The universal infinitesimal defor-
mation functor T , which is left adjoint to the forgetful functor from ind-Fréchet
algebras to a category with the same objects but with a more general kind of
morphisms. These are the ”almost multiplicative maps” which were introduced
and studied in [Pu1]. By its very definition, every functor of ind-algebras, which
is invariant under infinitesimal deformations, will be functorial with respect to
almost multiplicative maps. This additional functoriality, which played already
a fundamental role in [Pu], gives us the means to verify the strong axioms. For
example, the inclusion of a dense, smooth subalgebra into a Banach algebra
(with approximation property) possesses an almost multiplicative inverse up to
stable diffeotopy. It is given by any family of linear regularization maps into
the subalgebra, which converges pointwise to the identity. Thus this inclusion
is turned by the given functor into an isomorphism.
It should be noted that there is an alternative way to introduce universal in-
finitesimal extensions, which is based on bornological algebras [Me]. This ap-
proach appears to be simpler, but does not seem to lead to homology theories
which are accessible to calculation or which possess nice continuity properties.
In order to obtain the results of this paper it is indispensable to work with
ind-algebras (see section three). It allows to replace a large and complicated
topological algebra by a large diagram of algebras of a very simple type. We
split thus the information encoded in the initial data into a purely combinato-
rial and an algebro-analytic part of very particular type. This is reminiscent
of algebraic topology where one replaces complicated spaces by model spaces
given by simple building blocks and combinatorial gluing data.
In the second part of the paper we apply the results obtained so far to the
functor given by bivariant periodic cyclic cohomology [CQ1]. For a pair of
Fréchet algebras (A,B) it is given in terms of the natural cyclic bicomplex by
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HP∗(A,B) := Mor∗Ho(ĈC(A), ĈC(B))

the group of chain homotopy classes of continuous chain maps of cyclic bi-
complexes. Periodic cyclic (co)homology satisfies the weak axioms above, as
mentioned at the beginning of the introduction. One can associate to it in a
canonical way a homology theory which is invariant under infinitesimal defor-
mations. This is analytic cyclic (co)homology

HCan
∗ (A,B) := Mor∗Ho(ĈC(T A), ĈC(T B))

which was defined in [Pu] and developed in great generality in [Me]. Then we
introduce the derived ind-category D which is obtained by localizing the chain
homotopy category of ZZ/2ZZ-graded ind-chain complexes with respect to chain
maps with weakly contractible mapping cone. Finally we define local cyclic
cohomology as

HCloc
∗ (A,B) := Mor∗D(ĈC(T A), ĈC(T B))

Thus, by construction, local cyclic cohomology satisfies the assumptions of
theorem (0.1). In particular, the first list of axioms holds for local cyclic coho-
mology, which behaves therefore very much like K-theory.
The second issue which distinguishes local cyclic cohomology among most other
cyclic theories is its computability in terms of homological algebra.
There is a spectral sequence calculating morphism groups in the derived ind-
category D which can be used to compute local cyclic cohomology groups.
If (C = “ lim

−→
i∈I

” Ci, C′ = “ lim
−→
j∈J

” C ′
j) is a pair of ind-chain complexes, then the

E2-term of the spectral sequence calculating Mor∗D(C, C′) is given by

E2
pq = Rp lim

←−
i∈I

lim
−→
j∈J

Mor∗Ho(Ci, C
′
j)

where Rp lim
←−
i∈I

denotes the p-th right derived functor of the inverse limit over I.

If the cardinalities of the index set I is not too large, then the spectral sequence
converges. A consequence of this result is the following theorem which is at the
basis of most calculations of local cyclic cohomology groups.

Theorem 0.2. (Limit theorem)
Suppose that the Banach algebra A is the topological direct limit of the countable
family of Banach algebras (An)n∈lN and suppose that A satisfies the approxi-
mation property (see (6.16)). Then there is a natural isomorphism

lim
n→∞

HCloc
∗ (An)

'−→ HCloc
∗ (A)

of local cyclic homology groups and a natural short exact sequence

0 −→ lim
←−
n

1 HC∗−1
loc (An) −→ HC∗

loc(A) −→ lim
←−
n

HC∗
loc(An) −→ 0

of local cyclic cohomology groups.
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Although it might seem that nothing has been gained in this way, because
one intractable cohomology group has been replaced by a limit of similarly in-
tractable objects, the spectral sequence proves to be a surprisingly efficient tool
for computations. The reason lies in the fact that, although the involved groups
are mostly unknown, the transition maps in the corresponding limits often turn
out to be quite accessible. We present a number of explicit calculations of local
cyclic cohomology groups, which illustrate this principle.
The content of the different sections is as follows. In section one we introduce
the notions of almost multiplicative morphism, topologically nilpotent exten-
sion, and universal infinitesimal deformation, which are used throughout the
paper. This material is taken from [Pu1]. In section two the stable diffeotopy
category of ind-algebras is introduced and section three presents various results
about the stable diffeotopy type of universal infinitesimal deformations. The
main theorem mentioned before is proved in section four. It is applied in sec-
tion five to periodic cyclic homology. After a short review of the known cyclic
homology theories we introduce local cyclic cohomology. In section six we de-
velop the tools for computing local cyclic cohomology groups. Various natural
transformations relating the different cyclic theories are discussed in section
seven, see also [Me1], and in section eight we give examples of calculations of
local cyclic cohomology. We present there also a partial solution of a problem
posed by A. Connes in [Co3]. More detailed information can be found in the
introductions to the various sections.
This paper is a completely revised and rewritten version of the preprint [Pu1].
A precursor of the theory presented here is asymptotic cyclic cohomology, which
was introduced in [CM] and developed in [Pu]. While it shares the good func-
torial properties of local cyclic cohomology, there is no way to calculate asymp-
totic cyclic cohomology by homological means.
The excision property of local cyclic cohomology is a consequence of excision in
analytic cyclic cohomology and is shown in [Pu2]. In that paper we construct
a multiplicative bivariant Chern-Connes character

chbiv : KK∗(−,−) −→ HCloc
∗ (−,−)

from Kasparov’s bivariant K-theory [Ka] to bivariant local cyclic cohomology.
This character provides a good approximation of (bivariant) K-theory. An
equivariant version of the bivariant Chern-Connes character and the compu-
tational tools developed in this paper are used in [Pu4] and [Pu5] to verify
the Kadison-Kaplansky idempotent conjecture in various cases. These applica-
tions show the potential power of local cyclic cohomology as a tool for solving
problems in noncommutative geometry. The present paper and the articles
[Pu2] and [Pu5] form the published version of the authors Habilitationsschrift
presented at the Westfälische Wilhelms-Universität Münster.
It is a pleasure for me to thank Joachim Cuntz for numerous discussions on the
subject of this paper. I thank Ralf Meyer for bringing his work [Me1] to my
attention.
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1 Topological ind-algebras and their
universal infinitesimal deformations

1.1 Nice Fréchet algebras

A convenient category of algebras to work with for the purpose of this paper
is the category of nice (or admissible) Fréchet algebras. These algebras are in
many ways similar to Banach algebras. In addition, they are stable under a
number of operations which cannot be performed in the category of Banach
algebras, for example, the passage to a dense, holomorphically closed subal-
gebra. (We decided to replace the name ”admissible Fréchet algebra” used in
[Pu] and [Pu1] by that of a ”nice Fréchet algebra” because the old terminology
seemed us too ugly.)

Definition 1.1. [Pu] A Fréchet algebra A is called nice iff there exists an open
neighborhood U of zero such that the multiplicative closure of any compact
subset of U is precompact in A.

The open set U is called an “open unit ball” for A. It is by no means unique.

The class of nice Fréchet algebras contains all Banach algebras and derived
subalgebras of Banach algebras [BC] and many Fréchet algebras which occur
as dense, holomorphically closed subalgebras of Banach algebras.

Nice Fréchet algebras share a number of properties with Banach algebras: the
spectrum of an element of a nice Fréchet-algebra is compact and nonempty
and holomorphic functional calculus is valid in nice Fréchet-algebras. (This is
most easily seen by noting that according to (1.5) a nice Fréchet algebra is the
algebraic direct limit of Banach algebras. Another proof can be found in [Pu],
section 1.)

The class of nice Fréchet algebras is closed under taking projective tensor prod-
ucts [Pu], (1.17). If A is nice with open unit ball U and if X is a compact space
then the Fréchet algebra C(X,A) is nice with open unit ball C(X,U).

1.2 Formal inductive limits

In the sequel we will work with certain diagrams of algebras. An appropriate
language to deal with such diagrams is provided by the notion of a formal
inductive limit.

Definition 1.2. Let C be a category. The category ind-C of ind-objects or
formal inductive limits over C is defined as follows.

The objects of ind-C are small directed diagrams over C:

Obind-C = {“ lim
−→
i∈I

”Ai

∣∣∣ I a partially ordered directed set }

= {Ai, fij : Ai → Aj , i ≤ j ∈ I
∣∣∣ fjk ◦ fij = fik}
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The morphisms between two ind-objects are given by

Morind-C(“ lim
−→
i∈I

”Ai, “ lim
−→
j∈J

”Bj) := lim
←−
i∈I

lim
−→
j∈J

MorC(Ai, Bj)

where the limits on the right hand side are taken in the category of sets.

There exists a fully faithful functor ι : C → ind-C which identifies C with the
full subcategory of constant ind-objects.

Lemma 1.3. In ind-C there exist arbitrary inductive limits over directed index
sets.

This is [SGA], I, 8.5.1. Inductive limits in an ind-category will be denoted
by Lim

−→
. Even if direct limits exist in C, they are usually different from the

corresponding direct limit in ind-C. If (Ai)i∈I is a small directed diagram in C
which is viewed as diagram of constant ind-objects, then

Lim
−→
i∈I

Ai ' “ lim
−→
i∈I

”Ai

as objects of ind-C. If F : C → C′ is a functor to a category in which direct limits
exist, then F possesses a unique extension F ′ : ind-C → C′ which commutes
with direct limits. One has

F ′(“ lim
−→
i∈I

”Ai) = lim
−→
i∈I

F (Ai)

1.3 Diagrams of compactly generated algebras

It is our aim to construct and study continuous functors on categories of topo-
logical algebras. By this we mean either functors which are determined by
their values on suitable families of dense subalgebras or more generally func-
tors which commute with topological direct limits. The first step towards the
construction of such functors will be the functorial replacement of ”large” al-
gebras by infinite diagrams of ”small” algebras of a particular type. Part of
the structure of a ”large” algebra will be encoded in the combinatorics of the
diagram and one is left with the study of ”small” algebras with peculiar proper-
ties. The natural choice for these ”small” algebras will be the Banach algebras
generated by the compact subsets of the original algebra.

Definition and Lemma 1.4. There exists a functor B from the category of
nice Fréchet algebras to the category of ind-Banach algebras which assigns to
a nice Fréchet algebra the diagram of minimal Banach completions of its com-
pactly generated subalgebras.

Proof: Let A be a nice Fréchet algebra and let U be an open unit ball for A.
Fix a compact subset S ⊂ U and denote by A[S] the subalgebra of A generated
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by S. There exists a largest submultiplicative seminorm on A[S] which satisfies
‖ S ‖≤ 1. For x ∈ A[S] it is given by

‖ x ‖= inf
x=

∑
aisi

∑
|ai|

where the infimum is taken over the set of all presentations x =
∑

aisi such
that ai ∈ lC and si ∈ S∞, the multiplicative closure of S. The completion
of A[S] with respect to this seminorm is a Banach algebra denoted by AS .
Any inclusion S ⊂ S′ ⊂ U of compact subsets of U gives rise to a bounded
homomorphism of Banach algebras AS → AS′ so that one obtains an ind-
Banach algebra

B(A,U) := “ lim
−→

S⊂U
S compact

”AS

Let f : A → A′ be a bounded homomorphism of nice Fréchet algebras and fix
open unit balls U ⊂ A and U ′ ⊂ A′. For S ⊂ U compact let S′ ⊂ U ′ be a
compact set which absorbs f(S∞) (S∞ denotes the multiplicative closure of S).
This is possible because S∞ is precompact (A is nice) and f is bounded. The
map f gives then rise to a bounded homomorphism AS → A′

S′ . The collection
of all these homomorphisms defines a morphism of ind-Banach algebras
f∗ : B(A,U) → B(A′, U ′). Applying this to the case f = id shows that the ind-
Banach algebra B(A,U) does not depend (up to unique isomorphism) on the
choice of U . It will henceforth be denoted by B(A). The construction above
shows furthermore that B(−) is a functor from the category of nice Fréchet
algebras to the category of ind-Banach algebras. 2

Lemma 1.5. There exists a natural transformation of functors

φ : B → ι

(see (1.2)). It is provided by the tautological homomorphism

B(A) = “ lim
−→

S⊂U

”AS → A

In fact lim
−→

S⊂U

AS = A in the category of abstract algebras.

Proof: The fact that the multiplicative closure of a compact subset S of a
unit ball of A is precompact implies that the inclusion A[S] → A extends to a
bounded homomorphism AS → A. These fit together to a bounded homomor-
phism

φA : B(A) → ι(A)

of ind-Fréchet algebras. It is clear that the homomorphisms φA define a natural
transformation as claimed by the lemma. In fact

lim
→
S

A[S]
'−→ lim

→
S

AS
'−→ A
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where the limit is taken in the category of abstract algebras. This yields the
second assertion. 2

Lemma 1.6. The functor B is fully faithful.

Proof: Let ψ : B(A) → B(A′) be a morphism of ind-Banach algebras. It gives
rise to a homomorphism

ψ′ : A = lim
−→
S

AS −→ lim
−→
S′

A′
S′ = A′

of abstract algebras which maps precompact sets to bounded sets and is there-
fore bounded. This defines a map morind−Alg(B(A), B(A′)) → morAlg(A,A′)
which is clearly inverse to the map on morphism sets induced by B. Therefore
the functor B is fully faithful. 2

The canonical extension of the functor B to the category of nice ind-Fréchet
algebras (1.2) will be denoted by the same letter. To study it in further detail
we introduce the following notion.

Definition 1.7. An ind-Banach algebra is called compact if it is isomorphic
to an ind-Banach algebra “ lim

−→
i∈I

”Ai satisfying the following condition: for every

i ∈ I there exists i′ ≥ i such that the structure homomorphism Ai → Ai′ is
compact.

The proof of the following results is facilitated by the technical

Lemma 1.8. Define a functor B′ from the category of nice Fréchet algebras to
the category of ind-Banach algebras by

B′(A) := “ lim
−→

S⊂U

S nullsequence

”AS

Then the canonical natural transformation B′ → B is an isomorphism of func-
tors.

Proof: This follows from the fact that every compact subset of a Fréchet space
is contained in the convex hull of a nullsequence. (A proof is given for example
in [Pu], (1.7).) The actual argument is however rather long and tedious and
quite close to the one given in the proof of [Pu], (5.8). 2

Lemma 1.9. Let A be a nice ind-Fréchet algebra. Then the ind-Banach algebra
B(A) is compact.

Proof: It suffices by lemma (1.8) to verify that B′(A) is compact for every nice
Fréchet algebra A. Let S be a nullsequence in U . As A is nice the multiplicative
closure of S is a nullsequence S∞ = (an)n∈lN. Choose a sequence (λn)n∈lN of
strictly positive real numbers tending to infinity such that S′ := (λnan)n∈lN is
still a nullsequence and let S′′ ⊂ U be a compact set absorbing S′. The induced
homomorphism AS → AS′′ of the Banach algebras generated by S respectively.
S′′ is then compact. 2
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Proposition 1.10. The functor B is right adjoint to the forgetful functor from
the category of compact ind-Banach algebras to the category of nice ind-Fréchet
algebras. In fact for every compact ind-Banach algebra A and every nice ind-
Fréchet algebra A′ the natural transformation φ (1.5) induces an isomorphism

Morind−alg(A, B(A′))
'−→ Morind−alg(A, A′)

Proof: This is an immediate consequence of the definitions. 2

Corollary 1.11. For every compact ind-Banach algebra A the canonical ho-

momorphism φA : B(A)
'−→ A is an isomorphism.

Proof: The corollary follows from (1.9) by applying twice the adjunction
formula (1.10). 2

Corollary 1.12. The canonical natural transformation

φB : B2 := B ◦ B '−→ B

is an isomorphism of functors on the category of nice ind-Fréchet algebras.

Proof: This follows from (1.9) and (1.11). 2

1.4 Almost multiplicative maps

A fundamental property of operator K-theory and other homology theories
for topological algebras is the invariance under quasinilpotent extensions or
infinitesimal deformations. The Cuntz-Quillen approach to periodic cyclic ho-
mology [CQ], [CQ1] for example is based on the deformation invariance of the
theory.
Invariance under infinitesimal deformations is equivalent to the given theory
being functorial not only under homomorphisms between algebras but also un-
der homomorphisms between their quasinilpotent extensions. In other words,
a deformation invariant theory extends to a functor on the category obtained
by inverting epimorphisms with linear section and quasinilpotent kernel.
It is this ”extended functoriality” which makes deformation invariance relevant
for us and which will play a fundamental role in the present work.
The notions of (quasi)nilpotent extensions or infinitesimal deformations are
well known for abstract and adically complete algebras. We develop the cor-
responding notions for complete locally convex algebras in close analogy. The
existence of a universal quasinilpotent extension of adically complete algebras
allows to describe explicitely the morphisms in the extended category. These
correspond to linear maps f : R −→ S, for which products of a large number
of curvature terms [CQ]

ωf (a, a′) := f(a · a′) − f(a) · f(a′), a, a′ ∈ R,

(measuring the deviation from multiplicativity) are small. It is straightforward
to define the corresponding kind of morphisms for diagrams of Fréchet algebras
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which leads to the notion of an almost multiplicative map. As such maps are
stable under composition one obtains in this way a category. (In fact, we will
introduce two different notions of almost multiplicativity depending on whether
we are interested in uniform estimates or in estimates which are uniform on
compact subsets only.)
We construct the universal infinitesimal deformation functors in the topological
context as left adjoints of the corresponding forgetful functors to the almost
multiplicative categories. This allows finally to introduce the notions of topo-
logical nilpotence and of a topologically quasifree algebra.
The basic motivation to study the class of almost multiplicative maps is that it
contains a lot of interesting examples, in particular if one passes to diffeotopy
categories. Essentially all the results of section three follow immediately from
the existence of certain almost multiplicative morphisms in the stable diffeotopy
category. We will comment on this fact in the introduction to section three.
An important class of almost multiplicative maps is provided by the (linear)
asymptotic morphisms introduced by Connes and Higson [CH]. These are
used by them to construct a universal bivariant K-functor for C∗-algebras.
It will turn out that the stable diffeotopy category of universal infinitesimal
deformations possesses a lot of similarities with the Connes-Higson category.
The reason for introducing topologically quasifree ind-algebras lies in their
excellent homological behavior, which is similar to that of quasifree abstract
(or adically complete) algebras exploited in [CQ]. The fact that universal
infinitesimal deformations are topologically quasifree will allow us in section five
to topologize the cyclic complexes of ind-Fréchet algebras in a straightforward
way. The correct topologies on these complexes are not completely easy to find
otherwise.
While for us the notion of topological nilpotence plays a minor role (compared
to the notion of almost multiplicative morphisms), topological nilpotence is
at the heart of the approach to analytic cyclic cohomology for bornological
algebras presented by Meyer in his thesis [Me].
We begin by introducing a quite restrictive class of almost multiplicative maps.
It will be used to facilitate the construction of universal infinitesimal deforma-
tions.

Definition 1.13. For a linear map f : A → B of algebras and a subset T ⊂ A
put

ω(f, T ) := { f(aa′) − f(a)f(a′) | a, a′ ∈ T } ⊂ B

a) A bounded linear map f : A → B of Banach algebras is called strongly
almost multiplicative if

lim
n→∞

‖ ω(f, T )n ‖ 1
n = 0

for any bounded subset T of A.

b) A bounded linear morphism Φ = (φij) : “ lim
−→
i∈I

”Ai → “ lim
−→
j∈J

”Bj of ind-

Banach algebras is called strongly almost multiplicative if for all i ∈ I
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and all bounded subsets Ti ⊂ Ai

lim
−→
j∈J

lim
n→∞

‖ ω(φij , Ti)
n ‖ 1

n = 0

This is independent of the choice of the family of homomorphisms (φij)
representing the morphism Φ of ind-objects.

The more basic notion of almost multiplicativity is the following.

Definition 1.14. a) A bounded linear map f : A → B of nice Fréchet
algebras is called almost multiplicative if for every compact subset
K ⊂ A the multiplicative closure

ω(f,K)∞

of ω(f,K) is relatively compact in B.

b) A bounded linear morphism Ψ = (ψij) : “ lim
−→
i∈I

”Ai → “ lim
−→
j∈J

”Bj of nice

ind-Fréchet algebras is called almost multiplicative if for all i ∈ I and all
compact subsets Ki ⊂ Ai the multiplicative closure

ω(ψij ,Ki)
∞

is relatively compact for sufficiently large j ∈ J .

It follows immediately from the definitions that a bounded linear morphism
Ψ : A → A′ of nice ind-Fréchet algebras is almost multiplicative if and only
if B(Ψ) : B(A) → B(A′) is a strongly almost multiplicative morphism of
ind-Banach algebras.

Proposition 1.15. The composition of strongly almost multiplicative mor-
phisms of ind-Banach algebras is strongly almost multiplicative. Ind-Banach
algebras therefore form a category under strongly almost multiplicative bounded
linear morphisms. The same assertions hold for nice ind-Fréchet algebras and
almost multiplicative maps.

Proof: It suffices by the previous remark to verify the proposition in the case
of strongly almost multiplicative linear maps. For any linear map ϕ : R → S
of algebras let ωϕ(r, r′) := ϕ(rr′) − ϕ(r)ϕ(r′). If f : A → B and g : B → C
are linear maps of algebras then the deviation from multiplicativity of g ◦ f is
given by

ωg◦f (a, a′) = g(ωf (a, a′)) + ωg(f(a), f(a′))

If f and g are bounded linear maps of Banach algebras and if a0, . . . , a2n are
elements of the unit ball U of A then the previous equation and the ”Bianchi
identity” [CQ], (1.2)

ωf (a, a′) · f(a′′) = ωf (a, a′ · a′′) − ωf (a · a′, a′′) + f(a) · ω(a′, a′′)
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allow to express elements of ω(g ◦ f)n naturally in normal form as

ωg◦f (a1, a2) · . . . ·ωg◦f (a2n−1, a2n) =
∑

j

g(αj
0)ωg(α

j
1, α

j
2) · . . . ·ωg(α

j
2kj−1, α

j
2kj

)

where each element αj
i is of the form

αi = f(a′
0)ωf (a′

1, a
′
2) · . . . · ωf (a′

2li−1, a
′
2li), a′

0, . . . , a′
2li ∈ U

Moreover

]ωf :=
2kj∑
i=0

li ≤ n , ]ωg := kj ≤ n , ]ωf + ]ωg ≥ n

for all j and the number ]j of summands is bounded by ]j ≤ 9n. For all
this see [Pu] (5.1). An easy calculation allows to deduce from these estimates
that strongly almost multiplicative maps of Banach algebras are stable under
composition. 2

The following example provides a large number of almost multiplicative maps.
Moreover it gives a hint why the stable diffeotopy category of universal infinites-
imal deformations possesses similarities with the categories related to bivariant
K-theories [CH],[Hi].

Example 1.16. Let ft : A → B be a linear asymptotic morphism of Banach
algebras (or nice Fréchet-algebras) [CH], i.e. (ft),t≥0 is a bounded continuous
family of bounded linear maps such that

lim
t→∞

ft(aa′) − ft(a)ft(a
′) = 0 ∀a, a′ ∈ A

Let f̃ : A → Cb(lR+, B) be the associated linear map satisfying evalt ◦ f̃ = ft.
Then f̃ defines an almost multiplicative linear map

f̃ : A → “ lim
t→∞

” Cb([t,∞[, B)

The class of almost multiplicative maps is considerably larger than the class
of asymptotic morphisms. Whereas the curvature terms ωf (a, a′), a, a′ ∈ A
of a linear asymptotic morphism become arbitrarily small in norm, almost
multiplicativity means only that products of a large number of such terms
become small in norm. So in particular the spectral radius of the curvature
terms has to be arbitrarily small. This will explain an important difference
between the homotopy category of asymptotic morphisms, used in E-theory,
and the stable diffeotopy category of universal infinitesimal deformations: in the
latter one the universal deformation of a Banach algebra is often isomorphic to
the universal deformations of its dense and holomorphically closed subalgebras.
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1.5 Infinitesimal deformations and topologically nilpotent
algebras

With the notion of almost multiplicative morphism at hand one can intro-
duce the topological analogs of nilpotence, infinitesimal deformation and formal
smoothness.
As mentioned in the introduction of this section, Meyer has introduced a much
more general notion of topological nilpotence which plays a crucial role in his
approach to analytic cyclic cohomology for bornological algebras. We refer the
reader to [Me].
We give here a slightly less general definition than the one in [Pu1], which
suffices however for our purpose.

Definition 1.17. a) A Banach algebra A is strongly topologically
nilpotent if the multiplicative closure of every norm bounded subset is
norm bounded.

b) A Fréchet algebra A is topologically nilpotent if the multiplicative
closure of every relatively compact subset is relatively compact.

c) An ind-Banach algebra “ lim
−→
i∈I

”Ai is strongly topologically nilpotent if for

each i ∈ I and each bounded subset Ui ⊂ Ai there exists i′ ≥ i such that
the image of the multiplicative closure U∞

i in Ai′ is bounded.

d) A nice ind-Fréchet algebra “ lim
−→
j∈J

”Bj is topologically nilpotent if for each

j ∈ J and each compact subset Kj ⊂ Bj there exists j′ ≥ j such that the
image of the multiplicative closure K∞

j in Bj′ is relatively compact.

Note that a topologically nilpotent Fréchet algebra is necessarily nice, the al-
gebra itself being a possible open unit ball.

Definition 1.18. Let

0 → I → R π−→ S → 0

be an extension of nice ind-Fréchet algebras (ind-Banach algebras) which pos-
sesses a bounded linear section. In particular, the ind-Fréchet space underly-
ing R splits into the direct sum of I and S. Then R is called a (strong)
infinitesimal deformation of S iff I is (strongly) topologically nilpotent.

The generic example of a (strongly) almost multiplicative map is given by

Lemma 1.19. Let

0 → I → R π−→ S → 0

be a (strong) infinitesimal deformation of the nice ind-Fréchet algebra (ind-
Banach algebra) S. Then every bounded linear section of π is (strongly) almost
multiplicative.
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Proof: Obvious from the definitions. 2

We finally extend the notion of formal smoothness to the context of locally
convex ind-algebras.

Definition 1.20. A nice ind-Fréchet algebra (ind-Banach algebra) A is called
(strongly) topologically quasifree if

Morind−alg(A,R)
π∗−→ Morind−alg(A, S)

is surjective for any (strong) infinitesimal deformation π : R → S.

1.6 The universal infinitesimal deformation

In this section the universal infinitesimal deformation functor is introduced as
the adjoint of the forgetful functor to the category of ind-algebras under almost
multiplicative maps.

The construction of the universal infinitesimal deformation proceeds in two
steps. The existence of a universal strong deformation of ind-Banach algebras
is established first. Then the universal strong deformation of the diagram of
compactly generated subalgebras of a nice ind-Fréchet algebra is identified as
the universal deformation of the ind-algebra itself.

Theorem 1.21. The forgetful functor from the category of ind-Banach algebras
to the category with the same objects and strongly almost multiplicative linear
maps as morphisms possesses a left adjoint T ′, called the strong universal
infinitesimal deformation functor. This means that for all ind-Banach
algebras R, S there exists a natural and canonical isomorphism

Morind
alg

(T ′R, S)
'−→ Mor str

alm
mult

(R, S)

Proof: We proceed in several steps.

• We cite from [CQ], (1.2). Let R be an algebra and let TR := ⊕∞
k=1R

⊗k

be the tensor algebra over R. Let ρ : R → TR be the canonical linear
inclusion and let π : TR → R be the canonical algebra epimorphism
satisfying π ◦ ρ = IdR. The associated extension of algebras

0 → IR → TR
π→ R → 0

is the universal linear split extension of R. The kernel IR is a twosided
ideal of TR and defines an adic filtration of TR. There is a canonical
isomorphism of filtered vector spaces

(TR, IR-adic filtration)
'←− (ΩevR,

1

2
degree filtration)
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between the tensor algebra over R and the module of algebraic differential
forms of even degree over R. It is given by the formulas

ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ←− a0da1 . . . da2n

ω(a1, a2) . . . ω(a2n−1, a2n) ←− da1 . . . da2n

where ω(a, a′) := ρ(aa′) − ρ(a)ρ(a′) ∈ IR is the curvature of ρ.

• Let R be a Banach algebra. For ε > 0 let ‖ − ‖ε be the largest sub-
multiplicative seminorm on TR satisfying ‖ ρ(a) ‖ε ≤ 2 ‖ a ‖R and
‖ ω(a, a′) ‖ε ≤ ε ‖ a ‖R · ‖ a′ ‖R. Denote the completion of TR with
respect to this seminorm by TRε. It is a Banach algebra. By construc-
tion ‖ − ‖ε ≤‖ − ‖ε′ for ε < ε′ so that the identity on TR extends
to a bounded homomorphism TRε′ → TRε of Banach algebras. Put
T ′R := ”lim

ε→0
”TRε. It is called the strong universal infinitesimal defor-

mation of R.

• Let ‖ − ‖ε,0 respectively ‖ − ‖ε,1 be the largest seminorms on TR satis-
fying

‖ ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ‖ε,0 ≤ εn ‖ a0 ‖R . . . ‖ a2n ‖R

respectively

‖ ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ‖ε,1 ≤ (2 + 2n) εn ‖ a0 ‖R . . . ‖ a2n ‖R

It follows from the Bianchi identity

ω(a, a′) ρ(a′′) = ω(a, a′a′′) − ω(aa′, a′′) + ρ(a)ω(a′, a′′)

that they satisfy
‖ xy ‖ε,0 ≤‖ x ‖ε,1 ‖ y ‖ε,0

for all x, y ∈ TR. With this it is not difficult to verify the estimates

‖ − ‖ε,0 ≤‖ − ‖4ε ≤‖ − ‖4ε,1

on TR.

• Let f : R → S be a bounded homomorphism of Banach algebras and let
Tf : TR → TS be the induced homomorphism of tensor algebras. It is
immediate from the definitions that given ε > 0 there exist ε′ > 0 and
C > 0 such that

‖ Tf(x) ‖ε′,1 ≤ C ‖ x ‖ε,0 ∀x ∈ TR

With the previous estimate this implies that Tf extends to a bounded
homomorphism

T ′f : T ′R −→ T ′S
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of ind-Banach algebras. This allows to define the strong universal in-
finitesimal deformation of an ind-Banach algebra as

T ′(“ lim
−→
i∈I

”Ri) := Lim
−→
i∈I

T ′Ri

• Let ϕ : R → S be a strongly almost multiplicative linear morphism from
a Banach algebra R to some ind-Banach algebra S := “ lim

−→
j∈J

”Sj . Let

ϕj : R → Sj be a bounded linear map representing ϕ and satisfying

lim
n→∞

(
‖ ωϕj

(U)n ‖Sj

) 1
n ≤ ε

8

where U denotes the unit ball of R. Fix n0 such that
‖ ωϕj

(U)n ‖Sj
≤

(
ε
4

)n
for n ≥ n0. Let Tϕj : TR → Sj be the algebra

homomorphism which is characterized by the condition Tϕj ◦ ρ = ϕj .
Then for arbitrary n one has the estimate

‖ Tϕj (ρ(U)ω(U,U)n) ‖Sj
≤ C(n, ε) ‖ ρ(U)ω(U,U)n ‖ ε

4 ,0

with C(n, ε) =‖ ϕj ‖ ·(‖ ϕj ‖ + ‖ ϕj ‖2) n ·
(

ε
4

)−n
whereas for n ≥ n0 the

stronger estimate

‖ Tϕj (ρ(U)ω(U,U)n) ‖Sj
≤‖ ϕj ‖ · ‖ ρ(U)ω(U,U)n ‖ ε

4 ,0

holds. This implies

‖ Tϕj(x) ‖Sj
≤ C ‖ x ‖ ε

4 ,0

which shows with the previous estimates that Tϕj extends to a bounded
homomorphism T ′ϕj : TRε → Sj . Therefore ϕ induces a homomorphism

T ′ϕ : T ′R −→ S

of ind-Banach algebras. If φ : R −→ S is a strongly almost multi-
plicative morphism of ind-Banach algebras then one obtains similarly a
homomorphism of ind-Banach algebras

T ′ϕ : T ′R −→ S

This construction is natural and defines a canonical and natural map

Mor str
alm
mult

(R, S) −→ Morind
alg

(T ′R, S)

• Let R be a Banach algebra and consider the canonical linear embedding
ρ : R → T ′(R). It is bounded because ‖ ρ(U) ‖ε≤ 2 and strongly almost
multiplicative as

‖ ωρ(U,U)n ‖
1
n
ε ≤‖ ω(U,U)n ‖

1
n
ε ≤ ε
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where U denotes the unit ball of R. Similarly the canonical linear mor-
phism ρ : R → T ′R of ind-Banach algebras is strongly almost multi-
plicative. In particular, composition with homomorphisms of ind-Banach
algebras defines a canonical map

ρ∗ : Morind
alg

(T ′R, S) −→ Mor str
alm
mult

(R, S)

that is obviously inverse to the map constructed above. Therefore ρ∗ is
an isomorphism.

• Finally it is easy to show that

T ′ : Mor str

alm
mult

(R, S) −→ Morind
alg

(T ′R, T ′S)

φ → T ′φ

turns the strong universal infinitesimal deformation T ′ into a covariant
functor from the category of ind-Banach algebras with strongly almost
multiplicative morphisms to the category of ind-Banach algebras. The
previous considerations show also that it is left adjoint to the forgetful
functor.

2 The proof of the previous theorem gives no explicit description of the
seminorms defining the strong universal infinitesimal deformation of a Banach
algebra. If one works with formal inductive limits of Fréchet algebras instead
of Banach algebras such an explicit description can be given.

Definition and Lemma 1.22. Let R be a Banach algebra and let TR be
the tensor algebra over R. Denote by ‖ − ‖ε,m the largest seminorm on TR
satisfying

‖ ρ(a0)ω(a1, a2) . . . ω(a2n−1, a2n) ‖ε,m ≤ (2 + 2n)m εn ‖ a0 ‖ . . . ‖ a2n ‖

a) The seminorms ‖ − ‖ε,m are not submultiplicative but satisfy

‖ xy ‖ε,m ≤‖ x ‖ε,m+1 · ‖ y ‖ε,m

b) The completion of the tensor algebra TR with respect to the seminorms
‖ − ‖ε,m, m ∈ lN, is a nice Fréchet algebra TRε. An open unit ball of
TRε is given by the open unit ball with respect to the seminorm ‖ − ‖ε,1.

c) The formal inductive limit

T′R := “ lim
ε→0

”TRε

is isomorphic in the category of ind-Fréchet algebras to the strong uni-
versal infinitesimal deformation T ′R of R.
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Proof: Assertions a) and b) are shown in [Pu], (5.6). Assertion c) is a conse-
quence of the estimates

‖ − ‖ε,0 ≤‖ − ‖4ε ≤‖ − ‖4ε,1

obtained in the proof of (1.21) and the fact that ‖ − ‖ε′,m ≤ Cm ‖ − ‖ε,0 for
ε′ < ε. 2

Using the previous results the existence of a universal infinitesimal deformation
functor can be established.

Theorem 1.23. The forgetful functor from the category of nice ind-Fréchet
algebras to the category with the same objects and almost multiplicative linear
maps as morphisms possesses a left adjoint T , which is called the universal
infinitesimal deformation functor. This means that for all nice ind-Fréchet
algebras R, S there exists a natural and canonical isomorphism

Morind
alg

(T R, S)
'−→ Moralm

mult
(R, S)

The universal infinitesimal deformation functor is given by the composition

T = T ′ ◦ B

of the functor B (1.4), associating to an algebra the diagram of its compactly
generated subalgebras, and the strong universal infinitesimal deformation func-
tor T ′.

Proof: Put T := T ′ ◦ B. For any nice ind-Fréchet algebras R, S one has a
sequence of natural isomorphisms

Moralm
mult

(R, S)
'−→ Mor str

alm
mult

(B(R), B(S))

by the remark following (1.14)

Mor str
alm
mult

(B(R), B(S))
'−→ Morind

alg
(T R, B(S))

by the previous theorem and

Morind
alg

(T R, B(S))
'−→ Morind

alg
(T R, S)

by (1.10) and the following lemma. 2

Lemma 1.24. For any nice ind-Fréchet algebra R the ind-Banach algebra T R
is compact.

Proof: The ind-Banach algebra B(R) is compact by (1.9). In order to show
that T R = T ′B(R) is compact it suffices therefore to prove the following.
The homomorphism T ′f : T ′A → T ′B induced by a compact homomorphism
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f : A → B of Banach algebras is compact. As the notion of compactness is
stable under isomorphism one can pass to the morphism T′f : T′A → T′B of
ind-Fréchet algebras (1.22). The definition of the seminorms on this ind-algebra
show immediately that for given ε > 0 the homomorphisms Tf : TAε → TBε′

are compact for ε′ > 0 small enough. This establishes the lemma. 2

It remains to verify that the functors constructed in the previous theorems
merit their names and provide in fact (strong) infinitesimal deformations.

Lemma 1.25. Let A be a nice ind-Fréchet algebra. Then the canonical epi-
morphism π : T A → A (resp. π′ : T ′A → A) adjoint to the identity of A
via (1.21) (resp. (1.23)) is a (strong) infinitesimal deformation in the sense of
(1.18).

Proof: We show first that 0 → I ′A → T ′A π−→ A → 0 is a strong infinitesi-
mal deformation. By lemma (1.22) it suffices to verify the corresponding state-

ment for the extension 0 → I′A → T′A π−→ A → 0. Henceforth the notations
of (1.22) are used. Let S ⊂ IAε := Ker(π : TAε → A) be a bounded set.
Then for sufficiently small ε′ < ε the (bounded) image of S in TAε′ satisfies
‖ S ‖ε′,1 ≤ 1. The estimate ‖ xy ‖ε′,0 ≤‖ x ‖ε′,1 · ‖ y ‖ε′,0 allows then to deduce

that ‖ S∞ ‖ε′,0 < ∞. It follows that the image of S∞ in TAε′′ is bounded for

ε′′ < ε′ (compare the proof of (1.22)). Thus T ′A π−→ A is a strong infinitesimal

deformation of A. This result and (1.24) imply finally that T A π−→ A is an
infinitesimal deformation in the sense of (1.18). 2

One can now make precise in which sense the almost multiplicative maps of
(1.19) are generic.

Corollary 1.26. Every almost multiplicative map φ : A → B of nice ind-
Fréchet algebras factorizes as φ = f ◦ ψ where ψ : A → A′ is a bounded
linear section of an infinitesimal deformation π : A′ → A and f : A′ → B is
a homomorphism of ind-Fréchet algebras.

Finally the infinitesimal deformations given by the completed tensor algebras
will be characterized by a universal property.

Theorem 1.27. Let A be a nice ind-Fréchet algebra. The extension

0 → IA → T A π−→ A → 0

with the canonical linear section ρ : A → T A adjoint to the identity of T A via
(1.23) is the universal infinitesimal deformation of A in the following sense.
Let

0 → J → R π′

−→ S → 0

be an infinitesimal deformation of S with fixed bounded linear section and let
f : A → S be a homomorphism of nice ind-Fréchet algebras. Then there exists
a unique homomorphism of extensions

0 → IA → T A π−→ A → 0
↓ ↓ ↓ f

0 → J → R π′

−→ S → 0
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compatible with the given linear sections. In particular, T A is topologically
quasifree (1.20).
In a similar sense for a given ind-Banach algebra R the extension

0 → I ′R → T ′R π−→ R → 0

is the universal strong infinitesimal deformation of R. In particular, the ind-
Banach algebra T ′R is strongly topologically quasifree.

2 The stable diffeotopy category of ind-algebras

A diffeotopy is a homotopy which depends smoothly on its parameter. Dif-
feotopy is a finer equivalence relation than homotopy. For example, the algebra
of continuous functions on a closed interval vanishing at one endpoint is null-
homotopic but not nulldiffeotopic. Following closely some well known ideas of
homotopy theory (see [Ad])we set up in this chapter a stable diffeotopy cate-
gory of topological ind-algebras. Its construction proceeds in several steps. One
defines first an unstable diffeotopy category in a straightforward way. Then the
notions of suspension and mapping cone are introduced. The diffeotopy cat-
egory is stabilized by inverting the suspension functor which gives rise to a
prestable category which is already triangulated, i.e. which possesses long ex-
act Puppe sequences. The stable diffeotopy category of ind-algebras is finally
obtained from the prestable one by a category theoretic localization process
which is necessary to get rid of some pathologies related to weakly contractible
ind-algebras. We then present a criterion for detecting isomorphisms in the
stable diffeotopy category which will be frequently used in the rest of the pa-
per.
As mentioned before we begin by introducing the relation of diffeotopy between
homomorphisms of topological ind-algebras.

Definition 2.1. (Diffeotopy category)

a) Let C∞([0, 1]) be the nice nuclear Fréchet algebra of smooth functions on
the unit interval all of whose derivatives vanish at the endpoints. For an
ind-Fréchet algebra “ lim

−→
i∈I

”Ai let

C∞([0, 1], A) := “ lim
−→
i∈I

” C∞([0, 1], Ai) = “ lim
−→
i∈I

” C∞([0, 1]) ⊗π Ai

It is again an ind-Fréchet algebra.

b) Two homomorphisms A ⇒ A′ of ind-Fréchet algebras are called dif-
feotopic if they factorize as

A −→ C∞([0, 1], A′) ⇒ A′

where the homomorphisms on the right hand side are given by evaluation
at the endpoints. Diffeotopy is an equivalence relation. The equivalence
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classes are called diffeotopy classes of homomorphisms. The set of dif-
feotopy classes of homomorphisms between ind-Fréchet algebras A and
A′ is denoted by [A, A′].

c) The (unstable) diffeotopy category of ind-Fréchet algebras is the category
with ind-Fréchet algebras as objects and with diffeotopy classes of ind-
algebra homomorphisms as morphisms.

Now suspensions and mapping cones are defined which are necessary to trian-
gulate diffeotopy categories, i.e. to establish Puppe sequences.

Definition 2.2. (Suspension and mapping cone)

a) Let C∞(]0, 1[) be the nice nuclear Fréchet algebra of smooth functions
on the unit interval which vanish together with all their derivatives at
the endpoints. If A := “ lim

−→
i∈I

”Ai is an ind-Fréchet algebra then the ind-

Fréchet algebra

SA := “ lim
−→
i∈I

” C∞(]0, 1[, Ai) = “ lim
−→
i∈I

” C∞(]0, 1[) ⊗π Ai

is called the suspension of A. The suspension defines a functor of the
category of ind-Fréchet algebras to itself.

b) Let f : “ lim
−→
i∈I

”Ai −→ “ lim
−→
j∈J

”A′
j be a homomorphism of ind-Fréchet alge-

bras. Define a directed set K by

K := {(i, j, fij) | i ∈ I, j ∈ J, fij : Ai → A′
j represents f}

and by declaring (i, j, fij) ≤ (i′, j′, fi′j′) iff i ≤ i′, j ≤ j′ and the diagram

Ai′
fi′j′−→ A′

j′

↑ ↑
Ai

fij−→ A′
j

commutes. The mapping cone Cone(f) of f is the ind-Fréchet algebra

Cone(f) := “ lim
−→
K

”Cone(fij)

with

Cone(fij) := {(a, χ) ∈ Ai × C∞([0, 1[, A′
j) | fij(a) = χ(0)}

Here C∞([0, 1[) is the nice nuclear Fréchet subalgebra of C∞([0, 1]) con-
sisting of the functions vanishing at the endpoint 1 of the unit interval.
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Thus a morphism B → Cone(f) is given by a couple (ϕ, ν) consisting of
a homomorphism ϕ : B → A and a nulldiffeotopy ν of the composed map

B ϕ−→ A f−→ A′.
The suspension of an ind-algebra A is a special case of a mapping cone as
SA ' Cone(p) where p : C∞([0, 1[, A) → A is the evaluation at 0. The
mapping cone of a morphism f : A → A′ fits into a natural sequence of
homomorphisms

Sf−→ SA′ s−→ Cone(f)
p−→ A f−→ A′

where s and p are defined on individual algebras of the formal inductive systems
by s : SA′

j → Cone(fij), s(χ) := (0, χ) and p : Cone(fij) → Ai, p(a, χ′) := a.
The mapping cone functor commutes with suspensions, i.e. there exists a

natural isomorphism Cone(Sf)
'−→ SCone(f).

In the next step the diffeotopy category shall be stabilized so that it becomes
a triangulated category with shift automorphism given by the inverse of the
suspension. In order to do so the suspension has to be made an automorphism
of the underlying category which leads to

Definition 2.3. (Prestable diffeotopy category) (See [Ma])
The prestable diffeotopy category of ind-Fréchet algebras is the additive cate-
gory with objects given by pairs (A, n) consisting of an ind-Fréchet algebra A
and an integer n and with the abelian groups

Mor∗((A, n), (A′, n′)) := lim
k→∞

[Sk−nA, Sk−n′A′]

as morphisms. The transition maps in the limit are given by suspensions. The
shift functor T : T (A, n) := (A, n + 1) is an automorphism of the prestable
diffeotopy category and its inverse is canonically isomorphic to the suspension
functor: T−1 ' S.

The prestable diffeotopy category is in fact triangulated.

Lemma 2.4. The prestable diffeotopy category is a triangulated category [KS]
(1.5) in a natural way. The shift functor is given by the functor T of (2.3) and
a triangle in the prestable diffeotopy category is distinguished iff it is isomorphic
to a triangle of the form

SA′ s−→ Cone(f)
p−→ A f−→ A′

Proof: A classical result asserts that the homotopy category of pointed topo-
logical spaces becomes triangulated after inverting the suspension functor. Here
one declares a triangle to be distinguished iff it is isomorphic to a cofibration

sequence X
f−→ Y −→ Cone(f) −→ ΣX. A proof of this can be found in

[Ma], Chapter 1 and Appendix II. Section 1.4 of [KS] might also be helpful.
The present lemma is obtained from this result by the following modifications.
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One restricts to locally compact spaces, considers the dual function algebras
and generalizes to arbitrary Fréchet algebras. Then one passes from algebras
to ind-algebras. Finally one replaces the homotopy relation by the finer dif-
feotopy relation. The demonstration that the various prestable categories ob-
tained along the way are triangulated carries over through each of these steps.
This yields the assertion. 2

As a consequence [KS], one obtains

Corollary 2.5. Every homomorphism of ind-Fréchet algebras induces a co-
variant and a contravariant long exact Puppe sequence in the prestable dif-
feotopy category.

The prestable diffeotopy category turns out to be too rigid for our purposes.
In fact there is a class of ind-algebras, the weakly contractible ones, which one
would like to be equivalent to zero in a reasonable stable diffeotopy category.

Definition 2.6. An ind-Fréchet algebra A = “ lim
−→
i∈I

”Ai is called weakly con-

tractible if for each i ∈ I there exists i′ ≥ i such that the structure homomor-
phism Ai → Ai′ is nulldiffeotopic. It is called stably weakly contractible if SkA
is weakly contractible for k >> 0.

Every direct limit (1.2) (in the category of ind-algebras) of weakly contractible
ind-algebras is weakly contractible.

Lemma 2.7. The family of stably weakly contractible ind-Fréchet algebras forms
a null system, [KS], 1.6.6, in the prestable diffeotopy category.

Proof: It is easily shown that the family N of stably weakly contractible
ind-algebras is closed under isomorphism in the prestable diffeotopy category.
If f : A → A′ is a stable homomorphism of weakly contractible ind-algebras
then it is almost immediate that Cone(f) is weakly contractible, too. 2

Finally we arrive at

Definition 2.8. (Stable diffeotopy category) (See [Ad], [Ma])
The smooth stable diffeotopy category of ind-Fréchet algebras is the triangu-

lated category obtained from the prestable diffeotopy category by inverting all
morphisms with stably weakly contractible mapping cone. A triangle in the
stable diffeotopy category is distinguished if it is isomorphic to the image of a
distinguished triangle in the prestable diffeotopy category.

It follows in particular that exact covariant and contravariant Puppe sequences
exist in the stable diffeotopy category.
In the sequel we will make use of the

Proposition 2.9. (Isomorphism criterion)
Let f : “ lim

−→
i∈I

”Ai −→ “ lim
−→
j∈J

”A′
j be a homomorphism of ind-Fréchet algebras

and suppose that the following conditions are satisfied: Every homomorphism
fij representing the restriction of f to Ai fits into a diagram
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Ai A′
j

Ai′ A′
j′

-
fij

-
fi′j′

@
@

@
@

@
@

@
@

@
@I

ψ

6 6

such that

• the vertical arrows are given by the structure homomorphisms of the cor-
responding ind-algebras.

• the horizontal arrows represent the restrictions of f to Ai respectively Ai′ .

• the diagram commutes up to diffeotopy.

Then the homomorphism f becomes an isomorphism in the stable diffeotopy
category.

Proof: A simple diagram chase shows that a morphism in the unstable dif-
feotopy category satisfies the criterion of the proposition iff its mapping cone
is weakly contractible. Therefore the morphisms under considerations are ex-
actly those belonging to the multiplicative system [KS], 1.6.7., associated to the
null system of weakly contractible ind-algebras. In particular, these morphisms
become isomorphisms in the stable diffeotopy category. 2

There seems to be no reason for stable diffeotopy equivalences to be preserved
under direct limits (in the category of ind-algebras). There is however a partial
result in this direction.

Proposition 2.10. Let I be a directed set. Let (Ai)i∈I , (Bi)i∈I be I-diagrams
of ind-Fréchet algebras and let f = (fi : Ai −→ Bi)i∈I be a morphism of
I-diagrams. Suppose that the isomorphism criterion (2.9) applies to each of
the morphisms fi, i ∈ I. Then it applies also to the morphism

Lim
−→
i∈I

(fi) : Lim
−→
i∈I

Ai −→ Lim
−→
i∈I

Bi

of direct limits which therefore is an isomorphism in the stable diffeotopy cate-
gory.

Proof: It is a tedious but straightforward exercise to show that

Lim
−→
i∈I

Cone(fi)
'−→ Cone(Lim

−→
i∈I

(fi)) is an isomorphism of ind-Fréchet al-

gebras. As noted above, a morphism of ind-algebras satisfies the isomorphism
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criterion iff it has a weakly contractible mapping cone. Therefore the assertion
follows from the fact that direct limits of weakly contractible ind-algebras are
weakly contractible. 2

3 The stable diffeotopy type of universal
infinitesimal deformations

In this section some of the main results of this paper are presented. They
describe the behavior of the universal infinitesimal deformations of nice ind-
Fréchet algebras viewed as objects of the stable diffeotopy category. Among
other things we show that under some mild technical assumptions the following
assertions hold:

• The inclusion A ↪→ A of a dense and holomorphically closed subalgebra
of a nice Fréchet algebra induces a stable diffeotopy equivalence of its
universal infinitesimal deformations.

• The universal infinitesimal deformation of a topological direct limit of nice
Fréchet algebras is stably diffeotopy equivalent to the inductive limit of
the universal infinitesimal deformations of the individual algebras.

We will comment on these results in more detail in the introductions of the
corresponding subsections. Instead we want to indicate why they hold.
Consider an inclusion i : A ↪→ A of a dense and holomorphically closed sub-
algebra of a nice Fréchet algebra. Suppose that a family of bounded linear
”regularization” maps s = (sα : A → A, α ∈ Λ) is given which approximate
the identity on A uniformly on compact subsets. The norms of the ”curvature”
terms {ωα(a, a′) = sα(aa′) − sα(a)sα(a′), a, a′ ∈ A, α ∈ Λ }, which measure
the deviation of s from multiplicativity, might be quite large in norm but their
spectral radii will be very small (as they are the same if measured in A or in
A). Therefore large powers of curvature terms, or in many situations even any
product of a large number of curvature terms, will be arbitrarily small in norm.
Consequently the family s of regularization maps is almost multiplicative and
defines a morphism T s : T A −→ T A of universal infinitesimal deformations
in the stable diffeotopy category. It turns out that the morphism T s provides
a stable diffeotopy inverse of the morphism T i : T A −→ T A of universal de-
formations induced by the inclusion of A into A. Thus the inclusion of a dense
and holomorphically closed subalgebra induces a stable diffeotopy equivalence
of universal infinitesimal deformations, provided that a sufficiently good family
of linear regularizations exists. In order to guarantee this we will make some
not too restrictive assumptions on the topological vector spaces underlying the
algebras under consideration.

3.1 The Grothendieck approximation property

It turns out that the majority of the results presented in this section require
that the topological vector spaces underlying the considered algebras verify a
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regularity condition. This condition is known as Grothendieck’s approximation
property [LT].

Definition 3.1. (Grothendieck approximation property) [LT]
Let E be a Fréchet space. Then E has the Grothendieck approximation prop-
erty if the finite rank operators are dense in L(E) with respect to the topology
of uniform convergence on compacta. Thus E possesses the approximation
property iff for each seminorm ‖ ‖ on E, for each ε > 0, and each compact set
K ⊂ E there exists a bounded linear selfmap φ ∈ L(E) of finite rank such that
sup
x∈K

‖φ(x) − x‖ < ε.

Examples of Fréchet-algebras whose underlying topological vector spaces have
the approximation property are

• nuclear Fréchet-algebras

• nuclear C∗-algebras

• lp-spaces

• separable, symmetrically normed operator ideals

• the reduced group C∗-algebra of a finitely generated free group.

The algebra of all bounded operators on an infinite dimensional Hilbert space,
on the contrary, does not have the approximation property.

3.2 Approximation by ind-algebras of countable type

In order to work with universal infinitesimal deformations of nice Fréchet alge-
bras it turns out to be indispensable to dispose of small models of their stable
diffeotopy type. In particular, one is interested in models which are given by a
countable formal inductive limit. Under not too restrictive assumptions, their
existence is guaranteed by

Theorem 3.2. (Approximation theorem)
Let A be a separable nice Fréchet algebra which possesses the Grothendieck

approximation property. Let U be a convex open unit ball of A.
Let 0 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ . . . be an increasing sequence of finite

dimensional subspaces of A such that
∞⋃

n=0
Vn is a dense subalgebra of A, and

let (λn)n∈lN be a strictly monotone increasing sequence of positive real numbers
such that lim

n→∞
λn = 1. Put Sn := Vn ∩ λnU . Then the canonical morphism

“ lim
n→∞

”ASn
↪→ B(A)

induces a stable diffeotopy equivalence of strong universal infinitesimal deforma-
tions. In particular, the universal infinitesimal deformation T A of A is stably
diffeotopy equivalent to a countable formal inductive limit of Banach algebras.
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Proof:

Recall that for a nice Fréchet algebra A one has T A = “ lim
S⊂U
ε→0

” (TAS)ε in the

notations of (1.4), (1.21) and (1.23), where S ranges over the family of compact
subsets of some fixed open unit ball U of A. We want to apply the isomorphism
criterion (2.9) to the morphism

T ′(“ lim
n→∞

” ASn
) = Lim

n→∞
T ′(ASn

) −→ T ′B(A) = T A

So it has to be shown that any structure morphism i : (TASn
)εn

−→ (TAS)ε′

fits into a diagram

(TASn
)εn

(TAS)ε′

(TASm
)εm

(TAS′)ε′′

j

-

i

i′

j′

-

@
@

@
@

@
@

@
@

@
@I

Tφ

6 6

where the homomorphisms i, j, i′, j′ are given by the structure maps and which
commutes up to diffeotopy.

By definition the identity homomorphism of TAS gives rise to morphisms
(TAS)ε′ −→ T ′AS ' T′AS = “ lim

ε1→0
” (TAS)ε1 . In order to define the di-

agonal morphism in the desired diagram it suffices therefore to construct a
bounded homomorphism Tφ : (TAS)ε1 −→ (TASm

)εm
for ε1 given and suit-

able m >> 0 large and εm > 0 small enough.

Fix ε with 0 < 4ε < ε1. As A possesses the Grothendieck approximation
property there exists a bounded finite rank selfmap φ of A which is close to
the identity on the (relatively compact) multiplicative closure S∞ of S. We
may suppose that φt := (1− t) · φ + t · Id satisfies ωφt

(S∞) ⊂ εU for t ∈ [0, 1]
and that φ(A) is contained in the dense subspace

⋃∞
n=0 Vn of A. In particular

φ(A) ⊂ Vm for some m >> 0.

By definition the Banach algebra AS is the completion of the subalgebra of
A generated by S with respect to the seminorm ‖a‖ := inf

∑ |λi| where the
infimum is taken over all presentations a =

∑
λi si of a with λi ∈ lC, si ∈ S∞.

It follows from this that φ induces a bounded linear map φ : AS −→ ASm
of

Banach spaces for sufficiently large m such that φ(A)
⋃

φ(A)2 ⊂ Vm. Fix such
m and let C0 be the norm of the linear map φ.
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Let a0, . . . , a2n ∈ AS . One finds in the notations of (1.21) and (1.22)

‖ Tφ(ρ(a0)ω(a1, a2) · . . . · ω(a2n−1, a2n)) ‖εm

≤‖ Tφ(ρ(a0)) ‖εm
·

n∏

i=1

‖ Tφ(ω(a2i−1, a2i)) ‖εm

because ‖ − ‖εm
is submultiplicative. The identity

Tφ(ω(a, a′)) = %(ωφ(a, a′)) + ω(φ(a), φ(a′))

shows then that

‖ Tφ(ω(a, a′)) ‖εm
≤ 2 ‖ ωφ(a, a′) ‖ASm

+ εm ‖ φ(a) ‖ASm
· ‖ φ(a′) ‖ASm

≤ (2 · m + 1

m
· ε + εm · C2

0 )· ‖ a ‖AS
· ‖ a′ ‖AS

So for εm sufficiently small

‖ Tφ(ρ(a0)ω(a1, a2)·. . .·ω(a2n−1, a2n)) ‖εm
≤ 2·C0·εn

1 · ‖ a0 ‖AS
· . . . · ‖ a2n ‖AS

from which the estimate

‖ Tφ(α) ‖εm
≤ C· ‖ α ‖ε1,0, ∀α ∈ (TAS)ε1

results. This establishes the existence of the diagonal morphism in the diagram.
The same kind of estimate shows that, after possibly modifying the choice of
m and εm, the one parameter family Tφt = T ((1 − t) · φ + t · Id) defines
a diffeotopy connecting the homomorphisms Tφ ◦ i and j from (TASn

)εn
to

(TASm
)εm

. Similarly the same family Tφt defines a diffeotopy between the
homomorphisms i′ ◦Tφ and j′ from (TAS)ε′ to (TAS′)ε′′ after choosing S′ and
ε′′ appropriately. This completes the proof.

2

Corollary 3.3. Let “ lim
−→
i∈I

”Ai be a formal inductive limit of nice Fréchet al-

gebras which possess the Grothendieck approximation property. Suppose that
for each i ∈ I a sequence (V i

n)n∈lN of finite dimensional subspaces of Ai and
a sequence (λi

n)n∈lN of real numbers has been chosen as in (3.2) and such that
the structure maps Ai → Aj , i ≤ j map

⋃
n V i

n into
⋃

n V j
n . Then the countable

ind-Banach algebras “ lim
n→∞

”Ai
Sn

form an inductive system, labeled by I, and

the natural morphism

Lim
−→
i∈I

(“ lim
n→∞

”Ai
Sn

) −→ Lim
−→
i∈I

B(Ai) = B(“ lim
−→
i∈I

”Ai)

induces a stable diffeotopy equivalence of strong universal infinitesimal defor-
mations.

Proof: The corollary follows from the proof of the previous theorem and
proposition (2.10). 2
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3.3 Smooth subalgebras

A fundamental question in the study of functors of topological algebras is their
compatibility with completions. Put differently, one asks how a functor be-
haves under passage to dense topological subalgebras. A prototype of such a
stability phenomenon occurs in topological K-theory which is well known to be
stable under passage to dense subalgebras which are closed under holomorphic
functional calculus. Here we investigate stability properties of the universal in-
finitesimal deformation functor with values in the stable diffeotopy category. To
this end we introduce a class of dense and holomorphically closed subalgebras
of a nice Fréchet algebra, called smooth subalgebras. It contains in particu-
lar the domains of densely defined unbounded derivations. Under rather mild
restrictions it is shown that the stable diffeotopy type of the universal infinites-
imal deformation of a nice Fréchet algebra does not change under passage to
smooth subalgebras. As a consequence, continuous homotopy equivalences of
nice Fréchet algebras give rise to stable diffeotopy equivalences of their universal
infinitesimal deformations.

Definition 3.4. Let i : A ↪→ A be an inclusion of Fréchet algebras with dense
image and suppose that A is nice. Then A is called a smooth subalgebra
of A if there exists an open neighborhood U of 0 in A such that i−1(U) is an
open unit ball of A in the sense of (1.1).

In particular, smooth subalgebras of nice Fréchet algebras are nice. The condi-
tion of smoothness is quite restrictive. In fact, smooth subalgebras are closed
under holomorphic functional calculus.

Lemma 3.5. [Pu], (7.2). Let A ⊂ A be a smooth subalgebra of the nice Fréchet
algebra A. Then A is closed under holomorphic functional calculus in A.

The name ”smooth subalgebra” is motivated by the following example.

Lemma 3.6. [Pu], (7.4) Let A be a nice Fréchet algebra and let ∆ := {δi, i ∈ I}
be an at most countable set of unbounded derivations on A. Suppose that there
is a common dense domain dom(∆) of all finite compositions of derivations in
∆. Then every at most countable set Σ of graph seminorms

‖ a ‖k,f,m:=
∑

J⊂{1,... ,k}
‖

∏

j∈J

δf(j) (a) ‖m

defines a locally convex topology on dom(∆), where ‖ − ‖m ranges over a set
of seminorms defining the topology of A, J runs over the ordered subsets of
{1, . . . , k} and f is a map from the finite set {1, . . . , k} to the index set I.
Denote by AΣ the Fréchet algebra obtained by completion of this locally convex
algebra. Then AΣ is a smooth subalgebra of A.

Proof: We treat for simplicity the case k = 1, the reasoning in the general
case being similar. Therefore the topology on A is defined by the seminorms

‖ a ‖′m:=‖ ∂a ‖m + ‖ a ‖m
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Let U ⊂ A be an open unit ball. We claim that U ′ := U ∩ A is an open unit
ball in A. Let K ⊂ U ′ be compact and choose λ > 1 such that λK ⊂ U ′ which
is possible by the compactness of K. One finds for aj ∈ K

‖
n∏

1

aj ‖′m=‖
n∑

i=1

a1 · . . . · (∂ai) · . . . · an ‖m + ‖
n∏

1

aj ‖m

≤
n∑

i=1

λ1−n ‖
n∑

i=1

(λa1) · . . . · (∂ai) · . . . · (λan) ‖m +λ−n ‖
n∏

1

(λaj) ‖m

By hypothesis λK ⊂ U has relatively compact multiplicative closure in A.
Moreover ∂(K) ⊂ A is compact. An estimation of the sum above yields there-
fore

‖
n∏

1

aj ‖′m ≤ (λC0n + C1)λ
−n

If one treats the case k > 1 one sees that the number of summands after differ-
entiating a product of n factors k times equals nk which is of subexponential
growth in n so that the assertion holds then as well. 2

Another example of smooth subalgebras is provided by

Example 3.7. [Pu], (7.9) Let A be a separable C∗-algebra and let τ be an
(unbounded), densely defined, positive trace on A. Then its domain `1(A, τ) is
a smooth subalgebra of A.

The basic result about smooth subalgebras is

Theorem 3.8. (Smooth subalgebra theorem)
Let A be a nice Fréchet algebra, let A be a smooth subalgebra of A and suppose
that at least one of the following conditions is satisfied

• There exists a family (ϕλ : A → A, λ ∈ Λ) of bounded linear maps,
labeled by a directed set Λ, such that {i ◦ ϕλ(x), λ ∈ Λ} is bounded and
lim
−→
λ∈Λ

i ◦ ϕλ(x) = x for all x ∈ A.

• A possesses the Grothendieck approximation property.

Then the inclusion
A −→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Let i : A ↪→ A be the inclusion and let T i : T A → T A be the
induced homomorphism of universal infinitesimal deformations. We will apply
the isomorphism criterion (2.9) to show that T i is an isomorphism in the stable
diffeotopy category.
Fix an open unit ball U of A such that U ′ := i−1(U) is an open unit ball of
A. This is possible because A is a smooth subalgebra of A. Let S′ ⊂ U ′ and
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S ⊂ U be compact and let ε′ > 0, ε > 0 be such that Ti : (TAS′)ε′ → (TAS)ε

represents the restriction of T i to (TAS′)ε′ .
In order to verify the isomorphism criterion it suffices to show that this map
fits into a diagram

(TAS′)ε′ (TAS)ε

(TAS′
1
)ε′1

(TAS1
)ε1

-

Ti

T i
-

@
@

@
@

@
@

@
@

@
@I

Tφ

6 6

with the vertical arrows given by structure maps and which commutes up to
diffeotopy.
By our assumptions (and the theorem of Banach-Steinhaus in the first case
mentioned above) there exist bounded linear maps ϕ : A → A such that the
family i ◦ ϕt := (1 − t) · i ◦ ϕ + t · Id : A → A, 0 ≤ t ≤ 1 is arbitrarily
close to the identity on S∞ and i(S

′∞). In particular, one can find for given
ε0 > 0 a bounded linear map φ : A → A such that ωφt(S∞) ⊂ ε0U and

ωφt(i(S
′∞)) ⊂ ε0U for all t ∈ [0, 1]. Consequently ωφ(S∞) ⊂ ε0U

′ by our
choice of open unit balls.
The arguments given in the proof of theorem (3.2) apply word for word and
show that the homomorphism Tφ : TA −→ TA defines (for a suitable
choice of S′

1 ⊂ U ′ compact and ε′1 > 0) a bounded algebra homomorphism
Tφ : (TAS)ε −→ (TAS′

1
)ε′1

which makes the left lower triangle of the diagram
commute up to diffeotopy.
After choosing S1 ⊂ U and ε1 > 0 appropriately, the upper right triangle of
the diagram will also commute up to diffeotopy by a similar reasoning.
This completes the proof of the theorem. 2

Corollary 3.9. Let “ lim
−→
i∈I

”Ai be a nice ind-Fréchet algebra. For each i ∈ I let

Ai be a smooth subalgebra of Ai satisfying the assumptions of (3.8). Suppose
that the smooth subalgebras (Ai)i∈I form an inductive system “ lim

−→
i∈I

”Ai under

the structure maps of “ lim
−→
i∈I

”Ai. Then the canonical morphism

“ lim
−→
i∈I

”Ai −→ “ lim
−→
i∈I

”Ai
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induces a stable diffeotopy equivalence of universal deformations.

Proof: This follows from the proof of the previous theorem and proposition
(2.10). 2

3.3.1 Examples

Corollary 3.10. Let A be a nice Fréchet algebra which possesses the
Grothendieck approximation property. Let ∆ := {δi, i ∈ I} be an at most
countable set of unbounded derivations on A and let AΣ be one of the comple-
tions of dom(∆) introduced in (3.6). Then the inclusion

AΣ ↪→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: The corollary follows from (3.6) and (3.8). 2

Corollary 3.11. Let A be a nice Fréchet algebra and let (Φt)t∈lR be a contin-
uous one parameter group of automorphisms of A. Let ∆ be the corresponding
unbounded derivation with domain A∞ := {a ∈ A, Φt(a) ∈ C∞(lR, A)}. Then
the inclusion

A∞ ↪→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Let uλ, λ ∈ Λ, be a family of smooth functions with compact support
on the real line which approach the delta distribution at 0. Then the family of
regularization maps ϕλ : A −→ A∞, ϕλ(a) :=

∫ ∞
−∞ uλ(t)Φt(a) dt satisfies the

conditions of (3.8). The conclusion follows. 2

Corollary 3.12. Let A be a nice ind-Fréchet algebra, let M be a smooth
compact manifold without boundary, and let k ≥ 0 be an integer. Then the
canonical morphisms

C∞(M,A) ↪→ Ck(M,A) ↪→ C(M,A)

of nice ind-Fréchet algebras induce stable diffeotopy equivalences of universal
infinitesimal deformations.

Proof: The corollary follows as before from (3.6) and (3.8) by noting that
C(M,A) is nice (1.1) and by using convolution with a family of smooth kernels
(kλ) on M × M , approaching the delta distribution along the diagonal, as
family of regularization maps (ϕλ). There is also a version for manifolds with
boundary. For the definition of the appropriate function spaces see [Pu], (7.7).

2
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Corollary 3.13. Let A be a nice ind-Fréchet algebra and let k ≥ 0 be an
integer. Then the canonical inclusions

C∞([0, 1],A) ↪→ Ck([0, 1],A) ↪→ C([0, 1],A)

of nice ind-Fréchet algebras induce stable diffeotopy equivalences of universal
infinitesimal deformations.

Proof: This is the case M = [0, 1] of (3.12) for manifolds with boundary. 2

Corollary 3.14. Let A be a separable C∗-algebra. Let τ be a densely de-
fined, positive, unbounded trace on A and let `1(A, τ) be its domain. Then the
canonical inclusion

`1(τ,A) ↪→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: By (3.7) the domain of τ is a smooth subalgebra of A. There exists a
bounded approximate unit (uλ), λ ∈ Λ, for A consisting of elements of the dense
twosided ideal `1(τ,A). Left-multiplication with uλ provides the regularization
maps ϕλ asked for in (3.8). For details see [Pu], (7.9). 2

3.4 Topological direct limits

Another fundamental question in the study of functors of topological algebras
is their behavior with respect to topological direct limits. As is well known
topological K-theory commutes with arbitrary topological direct limits. Under
rather mild restrictions the universal infinitesimal deformation functor with
values in the stable diffeotopy category possesses a similar behavior.
It turns out that, under these restrictions, the universal infinitesimal deforma-
tion of a topological direct limit is stably diffeotopy equivalent to the direct
limit (in the ind-category of algebras) of the individual universal deformations.
This result provides an effective tool for calculations, as will be shown in a
number of examples.

Theorem 3.15. (Limit theorem)
Let “ lim

−→

λ∈Λ

”Aλ be a directed family of nice Fréchet algebras and let

f = lim
←

fλ : “ lim
−→

λ∈Λ

”Aλ −→ A

be a homomorphism to a nice Fréchet algebra A. Suppose that the following
conditions hold:

• A is separable and possesses the Grothendieck approximation property.

• The image Im(f) := lim
−→
λ∈Λ

fλ(Aλ) is dense in A.
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• There exist seminorms ‖ − ‖λ on Aλ, λ ∈ Λ, respectively ‖ − ‖ on A,
and a constant C such that

i) The set of elements of length less than 1 with respect to the seminorm
is an open unit ball for Aλ, λ ∈ Λ, respectively A.

ii)
Sup
λ′≥λ

‖ iλλ′(aλ) ‖λ′ < ∞

for all aλ ∈ Aλ, λ ∈ Λ.

iii)
lim
−→
λ∈Λ

‖ aλ ‖λ ≤ C ‖ f(a) ‖

for all
a = lim

−→
λ∈Λ

aλ ∈ lim
−→
λ∈Λ

Aλ

Then
f : “ lim

−→

λ∈Λ

”Aλ −→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

During the proof we will several times make use of the following

Lemma 3.16. Let the assumptions of the previous theorem be valid. Then for
given K ⊂ Aλ compact and given ε > 0 there exists λ′ ∈ Λ such that
‖ iλλ′(a) ‖λ′ ≤ C· ‖ fλ(a) ‖A + ε for all a ∈ K. Here C denotes the constant
of the assumption of the previous theorem.

Proof: By the theorem of Banach-Steinhaus and our assumptions the family
{ iλλ′ : Aλ → (Aλ′ , ‖ − ‖λ′), λ′ ≥ λ } ⋃ { fλ : Aλ → (A, ‖ − ‖A) } of bounded
linear maps on Aλ is equicontinuous. Accordingly there exists a seminorm
‖ − ‖′ on Aλ and a constant C ′ such that ‖ iλλ′(a) ‖λ′ ≤ C ′· ‖ a ‖′ and
‖ fλ(a) ‖A ≤ C ′· ‖ a ‖′ for all a ∈ Aλ and λ′ > λ. Choose a finite subset
{y1, . . . , yk} of K such that the balls with respect to ‖ − ‖′ around y1, . . . , yk

with radius ε
2C′(1+C) cover K. Choose finally λ′ > λ so large that one has

‖ iλλ′(yl) ‖λ′ ≤ C· ‖ fλ(yl) ‖A + ε
2 for all yl, 1 ≤ l ≤ k, which is possible by

the assumptions of the theorem. With these choices the desired estimates hold.
2

Proof of the theorem:
We want to apply the isomorphism criterion (2.9) to the morphism

T f : T (“ lim
−→

λ∈Λ

” Aλ) = Lim
−→
λ∈Λ

T Aλ −→ T A

of ind-Banach algebras. So let (TAλ
Sλ

)ελ
→ (TAS)ε′ be a homomorphism

representing T fλ where Sλ ⊂ Aλ and S ⊂ A are compact sets satisfying
‖ Sλ ‖Aλ

< 1 and ‖ S ‖A< 1 and ελ > 0, ε′ > 0. It has to be shown that this
map fits into a diagram of homomorphisms
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(TAλ
Sλ

)ελ
(TAS)ε′

(TAλ′

Sλ′
)ελ′ (TAS′)ε′′

-

-

@
@

@
@

@
@

@
@

@
@I

Tψ

6 6

which commutes up to diffeotopy.
Denote by S∞(S∞

λ ) the relatively compact multiplicative closures of S(Sλ).
Step 1:
Fix ε > 0 such that 4ε < ε′. As A possesses the Grothendieck approximation
property there exists a bounded linear selfmap φ ∈ L(A) of finite rank such that
φ(A) ⊂ lim

−→
µ

f(Aµ) and ‖ω(φt, S∞ ∪ fλ(S∞
λ ))‖A < ε

2C for all t ∈ [0, 1] where

φt := (1− t) · Id + t · φ and where C ≥ 1 is a constant as in the assumption of
the theorem.
Step 2:
As φ is of finite rank one finds a finite dimensional subspace V ⊂ Aµ for some
µ ≥ λ such that fµ : Aµ → A maps V onto φ(A). Let s : φ(A) → V be
any linear section of fµ : V → φ(A). The set K := ω(s ◦ φ, S∞) is then a
bounded and thus relatively compact subset of the finite dimensional space
W := V + V 2 ⊂ Aµ. Similarly K ′ :=

⋃1
t=0 ω((1 − t) · iλµ + t · s ◦ φ ◦ fλ, S∞

λ )
is a relatively compact subset of Aµ.
Step 3:
Choose according to the assumptions of the theorem and the previous lemma
some λ′ ∈ Λ such that ‖iµλ′(a)‖Aλ′ ≤ C ·‖fµ(a)‖A + ε

2 for all a ∈ K∪K ′ ⊂ Aµ.
Put finally

Ψ := iµλ′ ◦ s ◦ φ : A → Aλ′

Step 4:
We estimate the deviation of Ψ from multiplicativity on S∞.

ω(Ψ, S∞) = iµλ′(ω(s ◦ φ, S∞)) = iµλ′(K)

so that
‖ ω(Ψ, S∞) ‖λ′ = ‖ iµλ′(K) ‖λ′

≤ C· ‖ fµ(K) ‖A +
ε

2
= C· ‖ ω(φ, S∞) ‖A +

ε

2
< ε

Documenta Mathematica 8 (2003) 143–245



Local Cyclic Cohomology 181

Step 5:
We estimate the deviation of χt := (1−t) · iλλ′ + t ·Ψ◦fλ from multiplicativity
on S∞

λ .

ω(χt, S∞
λ ) = iµλ′(ω((1 − t) · iλµ + t · s ◦ φ ◦ fλ, S∞

λ )) ⊂ iµλ′(K ′)

so that
‖ ω(χt, S∞

λ ) ‖λ′ ≤‖ iµλ′(K ′) ‖λ′

≤ C· ‖ fµ(K ′) ‖A +
ε

2
= C· ‖ ω(φt, fλ(S∞

λ )) ‖A +
ε

2
< ε

Step 6:
We finally estimate the deviation of µt := (1 − t) · IdA + t · fλ′ ◦ Ψ from
multiplicativity on S∞.

ω(µt, S∞) = ω(φt, S∞)

so that
‖ ω(µt, S∞) ‖A < ε

Step 7:
The arguments in the proof of (3.2) show then that for a suitable choice of
Sλ′ ⊂ Aλ′ , S′ ⊂ A and ελ′ , ε′′ > 0:

• Tψ : TA → TAλ′ induces a bounded homomorphism
Tψ : (TAS)ε′ −→ (TAλ′

Sλ′
)ελ′ by the estimates of step 4.

• Tχt, 0 ≤ t ≤ 1 defines a diffeotopy between TΨ ◦ Tfλ and Tiλλ′ by the
estimates of step 5.

• Tµt : (TAS)ε′ −→ (TAS′)ε′′ , 0 ≤ t ≤ 1, defines a diffeotopy between
Tfλ′ ◦ TΨ and the structure homomorphism by the estimates of step 6.

This establishes the desired diagram. The theorem is therefore proved. 2

Note that for nice Fréchet algebras with Grothendieck approximation prop-
erty the smooth subalgebra theorem (3.8) is a consequence of the previous
direct limit theorem, applied to the constant inductive family given by the
fixed smooth subalgebra.
As a special case of the limit theorem we obtain

Corollary 3.17. Let “ lim
−→

λ∈Λ

”Aλ be a directed family of nice Fréchet algebras.

Suppose that there exist seminorms ‖ − ‖λ on Aλ, λ ∈ Λ, such that the set of
elements of length less than 1 is an open unit ball for Aλ, and such that

lim
−→

λ∈Λ

‖ a ‖λ = 0

for all a ∈ lim
−→

λ∈Λ

Aλ. Then the universal infinitesimal deformation

T (“ lim
−→

λ∈Λ

”Aλ) = Lim
−→

λ∈Λ

T Aλ

is a weakly contractible ind-Fréchet algebra.
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Proof: The given conditions are equivalent to the assertion that the con-
stant morphism “ lim

−→

λ∈Λ

” Aλ −→ 0 satisfies the assumptions of the limit theo-

rem (3.15). The proof of this theorem shows therefore that the isomorphism
criterion (2.9) applies to the constant morphism T (“ lim

−→

λ∈Λ

” Aλ) −→ T (0) = 0.

This implies our claim. 2

3.4.1 Examples

The theorem allows to determine the stable diffeotopy type of universal in-
finitesimal deformations of numerous algebras which occur as topological direct
limits. We present some examples.
Let H be a separable, infinite dimensional Hilbert space and let B(H) be the
algebra of bounded linear operators on H. It is well known that every nontrivial
twosided ideal J of B(H) satisfies F ⊂ J ⊂ K, i.e. contains the smallest
nonzero ideal F of finite rank operators and is contained in the largest ideal
K of all compact operators. An ideal J is called symmetrically normed if
it is complete with respect to a norm ‖ ‖J which satisfies the characteristic
inequality ‖AXB‖J ≤ ‖A‖B(H) · ‖X‖J · ‖B‖B(H) for all X ∈ J , A,B ∈ B(H),
and ‖P‖J = ‖PB(H)‖ = 1 for some (and therefore every) rank one projection
P ∈ B(H). It follows easily from the definition that the inclusion J ↪→B(H) is
a bounded map of Banach spaces and that ‖ ‖B(H) ≤ ‖ ‖J on J . This implies
that (J , ‖ ‖J ) is a nonunital Banach algebra. It is known that J is separable
if and only if the ideal F of finite rank operators is dense in J . (For all this
consider [Co] and the references therein).

Corollary 3.18. Let J be a separable, symmetrically normed operator ideal
in B(H). Let i : “ lim

n→∞
”Mn( lC) → J be a homomorphism of ind-Banach

algebras sending the matrix units (ekk), k ∈ lN, to the orthogonal projections
onto the lines spanned by the vectors of some orthonormal basis of H. Then

i : “ lim
n→∞

”Mn( lC) −→ J

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: First of all J possesses the Grothendieck approximation property.
To see this consider the contraction with a finite rank projection P . It de-
fines a linear selfmap of J of norm one because of the characteristic inequal-
ity ‖PXP‖J ≤ ‖P‖B(H)‖X‖J ‖P‖B(H) = ‖X‖J . As the finite rank oper-
ators are dense in J (J is separable) it suffices to prove that for every fi-
nite set {A1, .., Ak} of finite rank operators and every ε > 0 there exists a
finite rank projection P satisfying ‖PAiP − Ai‖J < ε for 1 ≤ i ≤ k. Ev-
ery finite rank operator can be written as a product of three such operators:
Ai = BiCiDi. Therefore ‖PAiP − Ai‖J ≤ ‖PBi − Bi‖B(H)‖Ci‖J ‖DiP‖B(H)

+‖Bi‖B(H)‖Ci‖J ‖DiP − Di‖B(H) so that the claim has only to be verified for
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the operator norm for which it is obvious. Actually this argument shows also
that the image of i is dense in J .

As any two norms on the finite dimensional algebras Mn( lC) are equivalent
the ind-Fréchet algebra “ lim

n→∞
” Mn( lC) does not depend (up to isomorphism)

on the choice of the norms on the algebras Mn( lC), n ∈ lN. If we choose the
norms obtained from the norm on J by restriction to lim

n→∞
i(Mn( lC)) then the

corollary follows immediately from theorem (3.15). 2

Corollary 3.19. Let the notations of (3.18) be valid. Then for any nice
ind-Fréchet algebra A the homomorphism

Id ⊗ i : Lim
n→∞

Mn(A) = Lim
n→∞

A⊗π Mn( lC) −→ A⊗π J

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Let A = “ lim
−→
i∈I

”Ai. A reasoning similar to the proof of (3.18) shows

that the isomorphism criterion (2.9) applies to the morphisms
T (Lim

n→∞
Mn(Ai)) −→ T (Ai⊗π J ) for all i ∈ I. Proposition (2.10) implies then

that T (Lim
n→∞

Mn(A)) −→ T (A⊗π J ) is a stable diffeotopy equivalence as well.
2

Corollary 3.20. Let A be a C∗-algebra. Let i : “ lim
n→∞

”Mn( lC) → K(H) be

an inclusion as defined in (3.18). Then the homomorphism

Id ⊗ i : “ lim
n→∞

”Mn(A) = “ lim
n→∞

”A ⊗π Mn( lC) −→ A ⊗C∗ K(H)

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

The proof is similar to that of (3.19).

Corollary 3.21. Let “ lim
n→∞

”An be an inductive system of separable

C∗-algebras and let A be the enveloping C∗-algebra of the algebraic direct limit
lim

n→∞
An. Suppose that A possesses the Grothendieck approximation property.

Then the canonical homomorphism

“ lim
n→∞

”An −→ A

induces a stable diffeotopy equivalence of universal infinitesimal deformations.

Proof: Obvious from (3.15) and the fact that lim
n→∞

‖ an ‖An
= ‖ a ‖A for all

a = lim
n→∞

an ∈ A. 2
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4 Diffeotopy functors on categories of ind-algebras

In this section we summarize what we obtained so far concerning our original
goal of improving invariance and stability properties of functors of topological
algebras. The results underline the crucial role played by the stable diffeotopy
category in this question. We consider functors of nice ind-Fréchet algebras,
which are invariant under diffeotopy, under infinitesimal deformations, and un-
der passage to infinite matrix algebras. Suppose in addition that the given
functor is not only invariant under diffeotopy, i.e. factors through the unsta-
ble diffeotopy category, but that it factors even through the stable diffeotopy
category. Then it possesses in fact a number of remarkable properties:

• Continuous homotopy invariance

• Invariance under passage to dense smooth subalgebras (in the presence
of the approximation property)

• Topological Morita invariance, i.e. invariance under passage to comple-
tions of the infinite matrix algebra over the given algebra

Thus the fact that a matrix stable and deformation invariant functor factors
through the stable diffeotopy category ensures already that it behaves in many
ways like K-theory. It turns out that among these three required properties
the factorization property is the crucial one. Suppose that F is any functor
on the ind-category of nice Fréchet algebras which factors through the stable
diffeotopy category. Then there is a universal matrix stable and deformation
invariant functor associated to it, given by the composition

F ′ := F ◦ T ◦ M∞ ' F ◦ M∞ ◦ T

with the universal infinitesimal deformation functor T and the infinite matrix
functor M∞. This functor will possess all the properties listed above.
The universal example of a stable diffeotopy functor is the tautological functor
from the category of nice ind-Fréchet algebras to the stable diffeotopy category.
The functor T ◦ M∞ with values in the stable diffeotopy category has therefore
a lot of similarities with the (bivariant) K-functor.
It might be interesting to compare this functor to other functors and categories
that have been constructed as models of bivariant K-theory such as Higson’s
category [Hi],[Cu], the category of asymptotic morphisms of Connes and Higson
[CH], and the bivariant theories introduced by Cuntz in [Cu1]. There is however
an important difference between all these theories and the one considered in
the present paper because we completely ignore the excision problem. A closer
study of these questions has to be undertaken elsewhere.
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Definition 4.1. Let F be a functor on the ind-category of nice Fréchet alge-
bras.

a) F is said to factor through the stable diffeotopy category if it is isomorphic
to a functor of the form F ′◦i where i is the canonical functor to the stable
diffeotopy category.

b) F is called invariant under infinitesimal deformations, if for every topo-
logically nilpotent extension of nice ind-Fréchet algebras

0 −→ N −→ A −→ B −→ 0

the induced morphism

F (A)
'−→ F (B)

is an isomorphism.

c) For a nice ind-Fréchet algebra A let

M∞(A) := Lim
n→∞

Mn(A)

be its infinite matrix algebra with structure maps Mn ↪→ Mn+1 given
by the ”inclusion of the upper left corner”. The functor F is called
matrix-stable if it turns the canonical morphism A −→ M∞(A) into an
isomorphism.

Theorem 4.2. Let F be a functor on the ind-category of nice Fréchet algebras
which satisfies the following conditions:

• F factors through the stable diffeotopy category

• F is invariant under infinitesimal deformations

• F is matrix stable

Then the following assertions hold

a) F is a homotopy functor, i.e. if f, f ′ : A −→ A′ are continuously
homotopic homomorphisms of nice ind-Fréchet algebras then

F (f) = F (f ′)

b) If A ↪→ B is the inclusion of a smooth subalgebra into a nice Fréchet
algebra possessing the Grothendieck approximation property, then

F (A)
'−→ F (B)

is an isomorphism.
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b)’ If
A = “ lim

−→
i∈I

”Ai −→ “ lim
−→
i∈I

”Bi = B

is a morphism of I-diagrams of nice Fréchet algebras such that Ai ↪→ Bi

is the inclusion of a smooth subalgebra and such that Bi possesses the
Grothendieck approximation property for all i ∈ I, then

F (A)
'−→ F (B)

is an isomorphism.

c) Let J be a separable, symmetrically normed operator ideal and let
j : lC → J be a homomorphism which maps 1 to a projection of rank one.
Then

F (Id ⊗π j) : F (A)
'−→ F (A⊗π J )

is an isomorphism for every nice ind-Fréchet algebra A.

c)’ Let K(H) be the algebra of compact operators on a separable Hilbert space
and let i : lC → K(H) be a homomorphism which maps 1 to a projection
of rank one. Then

F (Id ⊗C∗ i) : F (B)
'−→ F (B ⊗C∗ K(H))

is an isomorphism for every ind-C∗-algebra B.

Suppose in addition that F commutes with direct limits (Recall that direct limits
exist in any ind-category). Then moreover the following is true.

d) If (Ai)i∈I is a directed family of nice Fréchet algebras such that the topo-
logical direct limit lim

−→
i∈I

Ai exists in the category of nice Fréchet algebras

and possesses the Grothendieck approximation property, then the natural
morphism

lim
−→
i∈I

F (Ai)
'−→ F (lim

−→
i∈I

Ai)

is an isomorphism.

It should be noted that assertions a) b) and d) do not require the matrix
stability of the functor under consideration.
Proof: For a nice ind-Fréchet algebra A denote by π : T A −→ A the canon-
ical epimorphism adjoint to the identity map of A (1.23). For any morphism
f : A −→ B of nice ind-Fréchet algebras there is the commutative diagram

F (T A)
F (T f)−→ F (T B)

F (π) ↓ ↓ F (π)

F (A)
F (f)−→ F (B)
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The invariance of F under infinitesimal deformations implies that the verti-
cal arrows of the diagram are isomorphisms (1.25). Suppose now that the
morphism f induces a stable diffeotopy equivalence of universal infinitesimal
deformations, i.e. T f : T A −→ T B is a stable diffeotopy equivalence. Then
the upper horizontal map in the diagram becomes an isomorphism, because F
factors through the stable diffeotopy category. Thus one may conclude that
F (f) : F (A) −→ F (B) is an isomorphism.
We now prove assertion a) of the theorem. By the smooth subalgebra
theorem (3.8) the previous arguments apply to the inclusion of algebras

C∞([0, 1], A) −→ C([0, 1], A) so that F (C∞([0, 1], A))
'−→ F (C([0, 1], A))

is an isomorphism. Any evaluation homomorphism C∞([0, 1], A) −→ A is a
diffeotopy equivalence and therefore turned by F into an isomorphism. Al-
together this shows that any evaluation homomorphism C([0, 1], A) −→ A
induces an isomorphism F (C([0, 1], A))

'−→ F (A). This statement is equiva-
lent to the homotopy invariance of F . Assertions b), c) and d) follow from the
previous discussion and the smooth subalgebra theorem (3.8), respectively the
direct limit theorem (3.15) and its corollaries (3.18) and (3.19). 2

We now make some observations concerning the problem of constructing func-
tors which satisfy the conditions of the previous theorem. It turns out that one
can associate in a universal way to any functor F on the ind-category of nice
Fréchet algebras, which factors through the stable diffeotopy category, a functor
F ′, which is matrix stable and invariant under infinitesimal deformations. The
modified functor F ′ will be shown to satisfy the assertions of theorem (4.2).
This result shows the crucial role played by the stable diffeotopy category in
the search for functors of topological algebras with good homotopy, stability,
and continuity properties.

Theorem 4.3. Let F be a functor on the ind-category of nice Fréchet algebras
and suppose that F factors through the stable diffeotopy category. Let

F ′ := F ◦ T ◦ M∞

be the functor obtained by composition with the universal infinitesimal defor-
mation functor T and the infinite matrix functor M∞. Then the functor F ′ is
matrix stable, invariant under infinitesimal deformations, and satisfies all the
assertions of Theorem (4.2).

Remark 4.4. If one ignores Morita invariance there is a similar statement for
the functor F ′′ := F ◦ T . It is universal among all functors which are invariant
under infinitesimal deformations and equipped with a natural transformation to
F . It satisfies assertions a), b) and d) of Theorem(4.2).

Proof: We show first that F ′ is matrix stable. So let A be an ind-Fréchet
algebra and let A −→ M∞(A) be the canonical inclusion. The induced homo-
morphism M∞(A) −→ M∞(M∞(A)) is known to be a diffeotopy equivalence.
As the universal deformation functor preserves the relation of diffeotopy and
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as F is diffeotopy invariant, the conclusion follows. We verify next that F ′ is
invariant under infinitesimal deformations. So let

0 −→ N −→ A −→ B −→ 0

be an infinitesimal deformation of B. It follows that

0 −→ M∞(N ) −→ M∞(A) −→ M∞(B) −→ 0

is again an infinitesimal deformation. (Note that this has only to be verified for
finite matrices of fixed size.) Applying the universal infinitesimal deformation
functor T one obtains a morphism

T (M∞(A)) −→ T (M∞(B))

which is a diffeotopy equivalence by the universal properties of T (1.27).
Applying the diffeotopy invariant functor F one concludes that

F ′(A) −→ F ′(B)

is an isomorphism. Let finally f : A −→ B be a morphism of ind-algebras, such
that for each n ∈ lN the isomorphism criterion (2.9) applies to the morphism

T (Mn(f)) : T (Mn(A)) −→ T (Mn(B))

In particular T (Mn(f)) is a stable diffeotopy equivalence. By (2.10) the direct
limit

T (M∞(f)) : T (M∞(A)) −→ T (M∞(B))

of these morphisms is again a stable diffeotopy equivalence. Consequently the
induced map

F ′(f) : F ′(A) −→ F ′(B)

is an isomorphism. The condition is satisfied in the following cases: For the
inclusion of a smooth subalgebra (a diagram of smooth subalgebras) as in (3.8),
for any of the morphisms M∞(A) −→ A ⊗π J or M∞(B) −→ B ⊗C∗ K(H)
considered in (3.18) and (3.19), and for the morphism Lim

−→
i∈I

Ai −→ A of a family

(Ai)i∈I into a topological direct limit A, which possesses the Grothendieck
approximation property (3.15). If, in the latter case, the functor F commutes
in addition with direct limits, one deduces further from

F ′(Lim
−→
i∈I

Ai) = F (T (M∞(Lim
−→
i∈I

Ai))) = F (Lim
−→
i∈I

T (M∞(Ai))) = Lim
−→
i∈I

F ′(Ai)

that
Lim
−→
i∈I

F ′(Ai) −→ F ′(A)

is an isomorphism. 2

It should be noted that there is no reason for the functor F ′ to factor through
the stable diffeotopy category in the way asked for in (4.1) although the original
functor F does so. The reason lies in the fact that the suspension and universal
infinitesimal deformation functors do not commute in any reasonable sense.
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Corollary 4.5. Consider the functor from the ind-category of nice Fréchet
algebras to the stable diffeotopy category which associates to a nice ind-Fréchet
algebra the universal infinitesimal deformation of its infinite matrix algebra.
This functor is homotopy invariant, invariant under passage to smooth subal-
gebras (in the presence of the approximation property), and topologically Morita
invariant (invariant under projective tensor products with separable symmetri-
cally normed operator ideals or under the C∗-tensor product with the algebra
of compact operators in the case of ind-C∗-algebras).

In particular, this functor shows many similarities with a bivariant K-functor.
The basic difference from a K-functor is that the present functor has no reason
to satisfy excision.

5 Local cyclic cohomology

We apply now the ideas of the previous section in order to improve the ho-
motopy, stability, and continuity properties of continuous periodic cyclic coho-
mology. Continuous periodic cyclic (co)homology has the following drawbacks
which prevent it from being a good approximative model of K-theory. It is
not invariant under continuous homotopies, it is not stable under tensoriza-
tion with general operator ideals, it is not stable under passage to smooth
subalgebras, and it is not compatible with topological direct limits. The con-
siderations of the previous section suggest how to modify continuous periodic
cyclic (co)homology in order to obtain a cyclic theory which does not have
the mentioned disadvantages. The new cyclic theory should be invariant un-
der infinitesimal deformations and should factor through the stable diffeotopy
category of ind-algebras. There is indeed a canonical choice for a homology
theory which satisfies these conditions. This is local cyclic (co)homology. The
drawbacks mentioned before disappear under the passage from periodic to local
cyclic cohomology. So it possesses in fact many properties which are typical
for bivariant K-theory [Ka]. Besides this it will turn out to be accessible to
direct computation. Local cyclic cohomology becomes thus a valuable tool for
the study of problems in noncommutative geometry.

5.1 Cyclic cohomology theories

We recall some well known facts about various cyclic homology theories.

Periodic cyclic cohomology [Co1], [FT]

For a complex algebra A define the A-bimodule of algebraic differential forms
by

ΩnA := Ã ⊗ A⊗n, ΩA :=
⊕
n

ΩnA

with Ã := A ⊕ lC1 the algebra obtained from A by adjoining a unit. The A-
bimodule structure on ΩA is the obvious one. The Hochschild complex of A is
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given by

C∗(A) := (Ω∗A, b)

with Hochschild differential

b(a0⊗. . .⊗an) :=

n−1∑

i=0

(−1)ia0⊗. . .⊗aiai+1⊗. . .⊗an + (−1)nana0⊗. . .⊗an−1

which equals

b(ωda) = (−1)|ω|[ω, a]

Its homology HH∗(A,A) := H∗(C∗(A)) is called the Hochschild homology of
A. There is a canonical isomorphism

HH∗(A,A) ' TorÃ⊗Ãop

∗ (A,A)

Associated to the Hochschild complex there is the contractible ZZ/2-graded
cyclic bicomplex

CC∗(A) :=

(⊕

n∈ZZ

Ω∗+2nA, b + B

)

where the Connes differential B is given by

B(a0 ⊗ . . . ⊗ an) :=

n∑

j=0

(−1)jn 1 ⊗ aj ⊗ . . . ⊗ an ⊗ a0 ⊗ . . . ⊗ aj−1

The Hodge-filtration of the cyclic bicomplex is the descending filtration defined
by the subcomplexes

FilkHodge CC∗(A) :=
(
bΩkA

⊕
Ω≥kA, b + B

)

generated by algebraic differential forms of degree at least k.
The periodic cyclic bicomplex ĈC∗(A) of a complex algebra is the completion
of the cyclic bicomplex CC∗(A) with respect to the Hodge filtration:

ĈC∗(A) := lim
←−
n

CC∗(A)/F ilnHodgeCC∗(A)

Its homology HP∗(A) := H∗(ĈC∗(A)) is called the periodic cyclic homology
of A. The cohomology HP ∗(A) of the dual chain complex is the periodic
cyclic cohomology of A. The relation between periodic cyclic and Hochschild
homology, which can be computed as a derived functor, allows the explicit
calculation of periodic cyclic cohomology groups.
Cuntz and Quillen [CQ1] propose an approach to periodic cyclic (co)homology
which emphasizes the ZZ/2ZZ-periodicity and the stability of the theory under
nilpotent extensions. Moreover they work throughout in a bivariant setting.

Documenta Mathematica 8 (2003) 143–245



Local Cyclic Cohomology 191

For a complex algebra A consider the universal linear split extension

0 → IA → TA :=
⊕

n

A⊗n → A → 0

of A [CQ]. The completion T̂A := lim
←−

TA/IAn of the tensor algebra with

respect to the corresponding adic topology is the universal topologically nilpo-
tent extension of A in the category of adically complete algebras. It is quasifree
[CQ] in the sense that every topologically nilpotent extension of it possesses a
multiplicative linear section.
The X-complex [CQ1] of A is the ZZ/2ZZ-graded chain complex

X∗(A) := −→ A
∂0−→ Ω1A/[Ω1A,A]

∂1−→ A −→

∂0(a) = da, ∂1(a
0da1) = [a0, a1]

The X-complex of an adically complete algebra Â = lim
←−

A/In is defined as

the adically complete chain complex X∗(Â) := lim
←−

X∗(A/In).

Cuntz and Quillen introduce the bivariant periodic cyclic cohomology of a pair
of algebras (A,B) as [CQ1]

HP∗(A,B) := MorHo (X∗(T̂A), X∗(T̂B))

where Ho denotes the homotopy category of adically complete ZZ/2ZZ-graded
chain complexes. This functor coincides in the case A = lC (resp. B = lC) with
the periodic cyclic homology (resp. cohomology) as defined by Connes.
Bivariant periodic cyclic cohomology is a bifunctor on the category of abstract
(and more generally of adically complete) complex algebras. Its fundamental
properties are

• Homotopy invariance with respect to polynomial homotopies [Co1], [Go]

• Invariance under nilpotent extensions [Go]

• Morita invariance [Co1]

• Excision [CQ2]

The invariance under nilpotent extensions implies that the projection

ĈC∗(T̂A) := lim
←−

n

ĈC∗(TA/IAn) −→ ĈC∗(A)

is a quasiisomorphism (in fact a chain homotopy equivalence). As mentioned

before, the algebra T̂A is quasifree [CQ], which is equivalent to the fact that
it is of projective dimension at most one as bimodule over itself. It follows
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that the columns and therefore the total complex of Fil2HodgeĈC∗(T̂A) are
contractible, so that the projection

ĈC∗(T̂A) −→ ĈC∗(T̂A)/F il2HodgeĈC∗(T̂A) ' X∗(T̂A)

is a quasiisomorphism (in fact a chain homotopy equivalence), too. This estab-
lishes the equivalence of the different approaches to periodic cyclic cohomology.
Any reasonable definition of a cyclic cohomology theory for topological alge-
bras has to take the topologies of the underlying algebras into account. This
is usually done by topologizing the cyclic complexes and by passing then to
its completions. Several such theories have been proposed, in particular the
following ones.

Continuous periodic cyclic cohomology [Co1]

Let A be a locally convex algebra with jointly continuous multiplication. The
A-bimodule of continuous differential forms is given by

ΩnA := Ã ⊗π A⊗n
π ΩA :=

⊕
n

ΩnA

The continuous Hochschild, cyclic and periodic cyclic complexes are defined
similarly to the corresponding algebraic complexes by using continuous instead
of algebraic differential forms. The homology HP∗ of the continuous periodic
cylic bicomplex ĈC is called continuous periodic cyclic homology, the cohomol-
ogy HP ∗ of the dual complex of bounded linear functionals on ĈC is called
the continuous periodic cyclic cohomology. It is calculated in the same way
as the cyclic groups of abstract algebras with the noteworthy difference that
topologically projective resolutions [Co1] have to be used for the computation
of Hochschild groups.
The Cuntz-Quillen approach in the continuous case goes as follows. One con-
siders the universal extension

0 → IA → TA := ⊕A⊗πn → A → 0

of complete, locally convex algebras with bounded linear section and denotes
by T̂A := lim

←−
TA/IAn its I-adic completion.

The X-complex is given in the continuous case by

X∗(A) := (A ⊕ Ω1A/[Ω1A,A], ∂)

Bivariant periodic cyclic cohomology is then defined as

HP∗(A,B) := MorHo (X∗(T̂A), X∗(T̂B))

the group of morphisms of the X-complexes in the homotopy category of com-
plexes of complete locally convex vector spaces. As before these bivariant
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groups coincide with the ones introduced by Connes if one of the variables
equals lC.
The fundamental properties of bivariant continuous periodic cyclic cohomology
are

• Diffeotopy invariance [Co1],

• Invariance under nilpotent extensions [Go],

• Morita invariance [Co1]

• Excision with respect to extensions with bounded linear section [Cu2]

• Existence of a Chern-character K∗ −→ HP∗ on topological K-theory with
values in continuous periodic cyclic homology [Co1]

• Existence of a Chern-Connes character for finitely summable Fredholm
modules with values in continuous periodic cyclic cohomology [Co1]

Whereas continuous periodic cyclic (co)homology is rather well behaved for
nuclear Fréchet algebras it has several serious drawbacks if one intends to use
it as approximation to the K-functor for Banach- or C∗-algebras.

• The continuous periodic cyclic cohomology of a nuclear C∗-algebra A
equals the space of bounded traces on A [Ha]. Thus for a compact Haus-
dorff space X the cohomology HP ∗(C(X)) of the C∗-algebra C(X) of
continuous functions on X equals the space C(X)′ of Radon measures on
X. Consequently continuous periodic cyclic cohomology is not invariant
under continuous homotopies as HP ∗(C([0, 1])) = C([0, 1])′ is infinite
dimensional whereas HP ∗( lC) = lC.

• The continuous periodic cyclic (co)homology of stable C∗-algebras
A ' A ⊗C∗ K(H) vanishes altogether [Wo] while K-groups remain
unaffected under stabilization.

• In the cases mentioned above the Chern-character with values in con-
tinuous periodic cyclic homology is obviously far from being rationally
injective.

Entire cyclic cohomology [Co2]

The search for a Chern-character in K-homology for not necessarily finitely
summable Fredholm modules led Connes [Co2] to the definition of entire cyclic
cohomology. For a Banach algebra A let ΩAε be the completion of the space
ΩA =

⊕
n

Ã ⊗π A⊗n
π with respect to the family of seminorms

∑

n

([
n

2
]!)−1 · R−n· ‖ − ‖⊗π(n+1)

A , R > 1
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(For later use we introduce also the spaces ΩAε,r, r < 1, as the completions of

ΩA with respect to the seminorms
∑

n ([n
2 ]!)−1 · (1 + n)m · rn· ‖ − ‖⊗π(n+1)

A for
m ∈ lN.) The entire cyclic bicomplex CCε

∗ is defined in the usual way using
the space ΩAε instead of continuous differential forms. Its (co)homology is the
entire cyclic (co)homology of A. The bivariant entire cyclic cohomology groups
of a pair are defined as

HCε
∗(A,B) := MorHo (CCε

∗(A), CCε
∗(B))

There are similar complexes CCε,r
∗ , r < 1 based on the spaces ΩAε,r. Their

cohomology will be denoted by HC∗
ε,r(B) := H∗(CCε,r

∗ (B)).
In the Cuntz-Quillen approach entire cyclic cohomology can be described in
terms of the strong universal infinitesimal deformation functor T ′ (1.21) as

HCε
∗(A, B) = MorHo (X∗(T ′A), X∗(T ′B))

where the morphisms are taken in the homotopy category Ho of ind-complexes
(5.2). This explains why Connes’ definition of CCε

∗(A) is natural.
The basic properties of entire cyclic (co)homology are

• Diffeotopy invariance [Co2]

• Invariance under strongly topologically nilpotent extensions [Pu1]

• Morita invariance [Co]

• Excision with respect to extensions with bounded linear section [Pu2]

• Existence of a Chern character K∗ −→ HCε
∗ on topological K-theory with

values in entire cyclic homology [Co2].

• Existence of a Chern-Connes character for Θ-summable Fredholm
modules with values in entire cyclic cohomology [Co2].

Entire cyclic (co)homology can be characterized as the universal functor asso-
ciated to periodic cyclic (co)homology which is invariant under strong infinites-
imal deformations.
Considered as a functor on Banach- resp. C∗-algebras, entire cyclic cohomology
has similar drawbacks as the continuous cyclic theory. Again the cohomology
of a nuclear C∗-algebra coincides with the space of continuous traces [Kh].
Thus entire cyclic cohomology cannot be homotopy invariant. Moreover it
vanishes identically on nuclear stable C∗-algebras. Finally it turns out to be
very difficult to calculate entire cyclic cohomology groups directly in terms of
their definition.
A basic problem, which actually motivated Connes to introduce cyclic cohomol-
ogy [Co1] was the search for a Chern-character on K-homology and ultimately
for a bivariant Chern-Connes character on Kasparov’s bivariant K-theory [Ka].
The target theory of such a character must necessarily be invariant under con-
tinuous homotopies. Therefore there cannot exist a bivariant Chern-Connes
character with values in any of the cyclic theories discussed so far.
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Analytic cyclic cohomology [Pu], [Me]

Let T be the universal infinitesimal deformation functor (1.23) on the category
of nice Fréchet algebras. The bivariant analytic cyclic cohomology of a pair of
such algebras is defined [Pu], section 5, as

HC∗
an(A, B) := Mor∗Ho(X(T A), X(T B))

The basic properties of analytic cyclic (co)homology are

• Diffeotopy invariance

• Invariance under topologically nilpotent extensions

• Morita invariance

• Excision with respect to extensions with bounded linear section [Pu2],
[Me]

• Existence of a Chern character K∗ −→ HCε
∗ on topological K-theory with

values in analytic cyclic homology.

• Existence of a Chern-Connes character for arbitrary Fredholm modules
with values in analytic cyclic cohomology [Me].

Analytic cyclic (co)homology can be characterized by its invariance under topo-
logically nilpotent extensions in a similar way as the entire theory is character-
ized by its invariance under strong infinitesimal deformations.
In [Me] Meyer develops analytic cyclic cohomology in much greater generality
for bornological algebras and shows that most of its properties continue to hold
in this broader context. In the case of the precompact bornology he recovers
the theory introduced in [Pu].
Analytic cyclic cohomology is quite similar to the entire cyclic theory. The main
difference is the existence of a Chern-Connes character for arbitrary Fredholm
modules with values in analytic cyclic cohomology. Consequently it is pos-
sible to construct interesting analytic cyclic cocycles on general Banach- and
C∗-algebras. Explicit calculations of cohomology groups turn out to be quite
difficult, however. It remains an open problem, whether analytic cyclic coho-
mology is invariant under continuous homotopies [Me]. In particular, one does
not know whether there exists a bivariant Chern-Connes character with values
in analytic cyclic cohomology.

Asymptotic cyclic cohomology [CM], [Pu]

Asymptotic cyclic cohomology was introduced by Connes and Moscovici in
[CM] and developed further in [Pu]. The novelty is the introduction of an
asymptotic parameter space with one end at ”infinity”. An asymptotic cocycle
should be thought of as a family of densely defined cyclic cocycles indexed by
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the parameter space whose domain of definition grows larger and larger as the
parameter tends to infinity.
Before we give the definition of the asymptotic theory we have to recall some
notation from [Pu]. A DG-object (differential graded object) will be an integer-
graded object equipped with a differential d of degree one satisfying d2 = 0.
Any morphism of DG objects is supposed to preserve gradings and to commute
with the differentials. If A is a nice Fréchet algebra, then the ind-complex
X∗(ΩT A) is a DG-object in an obvious way. Let M be a smooth manifold
and let U = (Uα)α∈I be a cover of M by relatively compact open sets. For an
ind-Fréchet space V = “ lim

−→
i∈I

”Vi define an ind-DG-module by

E(U,V) := Ker(
∏

α

ΩdR(Uα) ⊗π V −→
∏

α,β

ΩdR(Uα ∩ Uβ) ⊗π V )

Up to canonical isomorphism, this formal inductive limit does not depend on
the choice of U and will henceforth be denoted by E(M,V). If M itself is
compact, then E(M,V) is isomorphic to the space ΩdR(M)⊗π V of differential
forms on M with coefficients in V, but for open M this is not the case.
Let U be a fundamental system of neighborhoods of ∞, ordered by inclusion,
in the manifold lRn

+, n >> 0, equipped with the topology of [Pu] (1.1). Put
E(U ,V) := Lim

−→
U∈U

E(U, V). If V is a ind-DG-complex, then so is E(U ,V).

The asymptotic cyclic cohomology of a pair (A,B) of nice Fréchet algebras is
defined as

HCα
∗ (A,B) := MorDG

Ho (X∗(ΩT A), E(U , X∗(ΩT B)))

Asymptotic cyclic cohomology possesses the following properties.

• Continuous homotopy invariance [Pu] (6.15)

• Invariance under topologically nilpotent extensions [Pu1]

• Invariance under passage to certain smooth subalgebras [Pu] (7.1)

• Topological Morita invariance [Pu] (7.10)

• Excision with respect to extensions with bounded linear section [Pu2]

• Existence of a multiplicative bivariant Chern-Connes character
KK∗ −→ HCα

∗ on bivariant K-theory with values in bivariant asymptotic
cyclic cohomology. [Pu] (10.1)

So asymptotic cyclic cohomology possesses most of the properties one would
like to have for a reasonable cyclic theory of topological algebras. The main
drawback of the asymptotic theory lies in the fact that, just as for entire or
analytic cyclic cohomology, there are no methods to calculate it directly by
homological methods.
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We will pass now from algebras to ind-algebras and will generalize various cyclic
theories to this context. Cyclic homology theories for ind-algebras take their
value in suitable homotopy categories of ind-complexes which we introduce
next.

5.2 Homotopy categories of chain-complexes

We introduce some homotopy categories of chain complexes which are similar
to the diffeotopy categories of algebras treated in section 2.
Let A be a fixed additive category. We let C be the category of ZZ/2ZZ-graded
ind-complexes over A, i.e. the category of formal inductive limits of
ZZ/2ZZ-graded chain complexes over A.

Definition 5.1. The homotopy category Ho of ZZ/2ZZ-graded ind-complexes
over A is the category with the same objects as C and with homotopy classes
of chain maps (of degree k ∈ ZZ/2ZZ) as morphisms (of degree k ∈ ZZ/2ZZ):

Mork(“ lim
−→
i∈I

” C
(i)
∗ , “ lim

−→
j∈J

” D
(j)
∗ ) :=

= Hk(Hom ∗
C(“ lim

−→
i∈I

” C(i), “ lim
−→
j∈J

” D(j)))

= Hk(lim
←−
i∈I

lim
−→
j∈J

Hom ∗
A(C(i), D(j))),

Hom ∗
A(C•,D•) :=

(∏

l

Hom A(Cl,Dl+∗), ∂

)

with
∂(φ) := ∂D ◦ φ − (−1)deg(φ)φ ◦ ∂C

Definition 5.2. Let f : “ lim
−→
i∈I

” Ci
∗ −→ “ lim

−→
j∈J

” C ′j
∗ be a morphism of ind-

complexes. Define a directed set K of triples (i, j, fij), i ∈ I, j ∈ J,

fij : Ci
∗ → C ′j

∗ in the same way as in (2.2) and define the mapping cone of f
as the ind-complex

Cone(f) := “ lim
−→
K

” Cone(fij)

where

Cone(fij)∗ := (Ci
∗[1] ⊕ C ′j

∗, ∂Ci
∗[1] ◦ π1 ⊕ fij ◦ π1 + ∂C′j

∗
◦ π2)

is the cone of the individual chain map fij . There are obvious morphisms of
ind-complexes

“ lim
−→
j∈J

” C ′j
∗ −→ Cone(f), Cone(f) −→ “ lim

−→
i∈I

” Ci
∗[1]
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Lemma 5.3. Call a triangle X → Y → Z → X[1] in Ho distinguished if it is

isomorphic to a triangle of the form C
f−→ C ′ → Cone(f). Equipped with this

family of distinguished triangles, the homotopy category Ho of ind-complexes
becomes a triangulated category.

For a proof see [KS], 1.4.

Definition 5.4. An ind-complex “ lim
−→
i∈I

” Ci
∗ is called weakly contractible if for

each i ∈ I there exists i′ ≥ i, such that the structure map Ci
∗ → Ci′

∗ is
nullhomotopic.

The family of weakly contractible ind-complexes defines a nullsystem in Ho.

Definition 5.5. (Derived ind-category)
The derived ind-category D of ZZ/2ZZ-graded ind-complexes over A is the local-
ization of the triangulated homotopy category Ho of ind-complexes obtained
by inverting the morphisms with weakly contractible mapping cone. It be-
comes a triangulated category by declaring a triangle in D distinguished if it
is isomorphic to the image of a distinguished triangle in Ho.

The isomorphism criteria (2.9) and (2.10) apply verbatim to morphisms in the
derived ind-category.

5.3 Cyclic cohomology theories of ind-algebras

Continuous periodic cyclic cohomology

The continuous periodic cyclic bicomplex defines a functor from the category of
complete, locally convex algebras with jointly continuous multiplication to the
category of complexes of complete, locally convex vector spaces. We still denote
by ĈC∗ the unique extension of this functor to the corresponding ind-categories
which commutes with direct limits. Thus one has

ĈC∗(“ lim
−→
i∈I

”Ai) = “ lim
−→
i∈I

” ĈC∗(Ai)

The bivariant continuous periodic cyclic cohomology of a pair

(A, B) = (“ lim
−→
i∈I

”Ai, “ lim
−→
j∈J

”Bj)

of ind-algebras is then defined as

HP∗(A, B) := Mor∗Ho(ĈC(A), ĈC(B))

the graded group of morphisms between the cyclic complexes in the homotopy
category of ind-complexes. This group can be calculated as the cohomology of
the single complex

lim
←−
i∈I

lim
−→
j∈J

Hom∗(ĈC(Ai), ĈC(Bj))
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The Cuntz and Quillen approach generalizes similarly to ind-algebras and yields

HP∗(A, B) ' Mor∗Ho(X(T̂A), X(T̂B))

the group of morphisms between the corresponding X-complexes of I-adic com-
pletions.
The Cartan homotopy formula [Go] shows that diffeotopic morphisms of
ind-algebras induce chain homotopic maps of the corresponding cyclic ind-
complexes. Therefore continuous periodic cyclic cohomology is invariant under
diffeotopy, i.e. it descends to a functor from the unstable diffeotopy category
of ind-algebras (2.1) to the chain homotopy category of ind-complexes.

Entire, analytic, and asymptotic cyclic cohomology

In a similar way the entire (analytic) cyclic bicomplex and entire (analytic,
asymptotic) cyclic (co)homology can be naturally extended to ind-algebras.
The Cuntz-Quillen approach provides a description of entire (analytic) cyclic
cohomology of ind-Banach algebras (nice ind-Fréchet algebras) in terms of the
(strong) universal infinitesimal deformation functor T ′ (1.21) (resp. T (1.23))
as follows:

HCε
∗(A, B) ' Mor∗Ho(X(T ′A), X(T ′B))

HCan
∗ (A, B) ' Mor∗Ho(X(T A), X(T B))

HCα
∗ (A,B) := MorDG

Ho (X∗(ΩT A), E(U , X∗(ΩT B)))

This shows the invariance of the entire (analytic) cyclic theory under strongly
topologically nilpotent extensions (topologically nilpotent extensions). In fact
there is the following characterization of entire (analytic) cyclic theory in terms
of this invariance.

Lemma 5.6. Let F : ind − alg −→ Ho be a functor which is invariant under
strongly topologically nilpotent extensions (topologically nilpotent extensions)

and let Φ : F → ĈC∗ be a natural transformation to periodic cyclic homology.
Then F factors uniquely through entire (analytic) cyclic homology.

Proof: The canonical map ĈC∗(T ′A) −→ X(T ′A) (respectively

ĈC∗(T A) −→ X(T A)) is a deformation retraction, because T ′A (re-
spectively T A) is strongly topologically quasifree (respectively topologically
quasifree) (1.25), [CQ1]. The lemma follows then from a look at the natural
commutative diagram

F (T ′A)
'−→ F (A)

Φ ↓ ↓ Φ

CCε
∗(A)

'−→ X∗(T ′A)
'←− ĈC∗(T ′A) −→

π∗

ĈC∗(A)

Documenta Mathematica 8 (2003) 143–245



200 Michael Puschnigg

respectively

F (T A)
'−→ F (A)

Φ ↓ ↓ Φ

CCan
∗ (A)

'−→ X∗(T A)
'←− ĈC∗(T A) −→

π∗

ĈC∗(A)

and the fact that the transformations of the bottom lines coincide with the
chain homotopy classes of the canonical morphisms of the cyclic complexes. 2

5.4 Local cyclic cohomology

We are going to modify continuous periodic cyclic (co)homology in order to
obtain a cyclic theory satisfying continuous homotopy invariance, topological
Morita invariance, invariance under passage to smooth subalgebras, and com-
patibility with topological direct limits.
The results of section four tell us that a functor on the ind-category of nice
Fréchet algebras possesses the desired properties provided

• It is invariant under infinitesimal deformations
(topologically nilpotent extensions).

• It is matrix stable

• It factors through the stable diffeotopy category of ind-algebras.

Among the cyclic theories presented so far, analytic cyclic cohomology is char-
acterized by its invariance under infinitesimal deformations. Moreover it is
matrix stable. In order to obtain a cyclic theory which satisfies in addition the
last condition we make the

Definition 5.7. (Local cyclic cohomology)
Let T be the universal infinitesimal deformation functor (1.23) on the category
of nice ind-Fréchet algebras and let D be the derived ind-category (5.5) of the
category of complete, locally convex vector spaces. The bivariant local cyclic
cohomology of a pair (A, B) of nice ind-Fréchet algebras is defined as

HCloc
∗ (A, B) := Mor∗D(X(T A), X(T B))

the group of morphisms in the derived ind-category between the X-complexes of
the universal infinitesimal deformations of the given ind-algebras. The groups

HCloc
∗ (A) := HCloc

∗ ( lC, A)

respectively

HC∗
loc(A) := HCloc

∗ (A, lC)

are called the local cyclic homology, respectively local cyclic cohomology of A.
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An immediate consequence of the definition is the existence of a composition
product.

Proposition 5.8. (Composition products)
Bivariant local cyclic cohomology is a bifunctor on the ind-category of nice

Fréchet algebras. The composition of morphisms in the derived ind-category
defines a natural associative composition product

◦ : HCloc
∗ (A, B) ⊗ HCloc

∗ (B, C) −→ HCloc
∗ (A, C)

With this product the bivariant local cyclic cohomology HCloc
∗ (A, A) becomes

a unital ring, and the bivariant groups HCloc
∗ (A, B) become HCloc

∗ (A, A)-
HCloc

∗ (B, B)-bimodules. A bivariant local cyclic cohomology class is called a
HCloc-equivalence if the corresponding morphism of complexes in the derived
ind-category is an isomorphism.

By its very definition, local cyclic cohomology satisfies the conditions mentioned
before. This is shown in the following two propositions.

Proposition 5.9. Consider the continuous periodic cyclic bicomplex as a func-
tor on the ind-category of nice Fréchet algebras with values in the derived ind-
category. Then this functor factors through the stable diffeotopy category of
ind-algebras.

Proof: The Cartan homotopy formula [Go], [CQ] shows that the functor ĈC∗
is invariant under diffeotopy. According to Cuntz [Cu2] continuous periodic
cyclic cohomology satisfies excision for extensions with bounded linear section.
In particular, a homomorphism f : A −→ B of Fréchet algebras induces a nat-
ural chain homotopy equivalence ĈC∗(Conef) −→ Cone(ĈC∗(f))[1]. Due to
the naturality of its homotopy inverse this result carries over to ind-Fréchet al-
gebras. This proves that the continuous periodic cyclic bicomplex ĈC∗ defines
a homological functor on the prestable diffeotopy category (2.3). It remains to
verify that this functor vanishes on weakly contractible ind-algebras which is
evident from the definition of the derived ind-category and the Cartan homo-
topy formula in periodic cyclic homology. 2

The proposition shows that theorem (4.3) applies to the functor ĈC∗. In

particular, the functor ĈC∗ ◦ T ◦ M∞ with values in the derived ind-category
possesses all the properties listed in theorem (4.2). It remains to identify it
with local cyclic cohomology.

Lemma 5.10. Let T be the universal infinitesimal deformation functor (1.23)
and let M∞ be the infinite matrix functor (4.1) on the ind-category of nice
Fréchet algebras. There is an isomorphism of functors

ĈC∗ ◦ T ◦ M∞
'−→ X∗ ◦ T ◦ M∞

'−→ X∗ ◦ T

with values in the homotopy category of ind-complexes. Here the transformation
on the right hand side is given by the contraction with the trace [Co1].
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Proof: We work in the homotopy category of ind-complexes. The universal
infinitesimal deformation of any ind-algebra is topologically quasifree, which
implies by [CQ1] that

ĈC∗ ◦ T ◦ M∞
'−→ X∗ ◦ T ◦ M∞

is an isomorphism of functors. By making use of excision in analytic cyclic
cohomology [Pu2], it suffices to verify that the contraction with the trace
τ∗ : X∗T (M∞A) −→ X∗T A is an isomorphism for unital A. In this case τ∗
factors as

X∗T (M∞A)
µ−→ X∗T (M∞ lC) ⊗π X∗T A τ⊗Id−→ X∗T A

where the coproduct µ is an isomorphism by [Pu3]. It remains thus to ver-
ify that τ∗ : X∗T (M∞ lC) −→ X∗T lC ' lC is an isomorphism. It factorizes
again as X∗T (M∞ lC) −→ X∗(M∞ lC) −→ lC. The first map is an isomorphism
because M∞ lC is topologically quasifree [CQ], and the second map is an iso-
morphism by the Morita invariance of cyclic homology. The lemma is proved.

2

Corollary 5.11. The functor X∗ ◦ T : ind − alg −→ D from the ind-
category of nice Fréchet algebras to the derived ind-category (5.5) is invariant
under infinitesimal deformations, matrix stable, and factors through the stable
diffeotopy category in the sense of (4.1).

We are ready to list the basic properties of local cyclic (co)homology.

Theorem 5.12. (Homotopy Invariance)
Bivariant local cyclic cohomology is invariant under continuous homotopies,

i.e. for a nice ind-Fréchet algebra A any evaluation homomorphism

eval : C([0, 1], A) −→ A

defines a HCloc-equivalence

eval∗ ∈ HCloc
∗ (C([0, 1], A), A)

Proof: This follows from (5.11), (5.7) and (4.2). 2

Theorem 5.13. (Excision) [Pu2]
Every extension

0 −→ I −→ A −→ B −→ 0

of nice ind-Fréchet algebras, which admits a local linear section ([Pu2],(5.12)),
gives rise to natural long exact sequences

HCloc
∗ (−, I) −→ HCloc

∗ (−, A) −→ HCloc
∗ (−, B)

∂ ↑ ↓ ∂

HCloc
∗+1(−, B) ←− HCloc

∗+1(−, A) ←− HCloc
∗+1(−, I)
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and
HCloc

∗ (I, −) ←− HCloc
∗ (A, −) ←− HCloc

∗ (B, −)

∂ ↓ ↑ ∂

HCloc
∗+1(B, −) −→ HCloc

∗+1(A, −) −→ HCloc
∗+1(I, −)

of local cyclic cohomology groups.

This is [Pu2], (5.12).

Theorem 5.14. (Topological Morita Invariance)
Let A be a nice ind-Fréchet algebra and let B be an ind-C∗-algebra.

a) Let

i : A −→ Mn(A)

be a homomorphism which is given by exterior multiplication with a rank
one projector in Mn( lC). Then

i∗ ∈ HCloc
0 (A, Mn(A))

is a HCloc-equivalence.

b) Let J be a separable, symmetrically normed operator ideal and let

i′ : A −→ A⊗π J

be a homomorphism which is given by exterior multiplication with a rank
one projector in J . Then

i′∗ ∈ HCloc
0 (A, A⊗π J )

is a HCloc-equivalence.

c) Let K be the C∗-algebra of compact operators and let

i′′ : B −→ B ⊗C∗ K

be a homomorphism which is given by exterior multiplication with a rank
one projector in K. Then

i′′∗ ∈ HCloc
0 (B, B ⊗C∗ K)

is a HCloc-equivalence.

Proof: This follows from (5.11), (5.7) and (4.2). 2
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Theorem 5.15. (Invariance under passage to smooth subalgebras)
Let A be a smooth subalgebra (3.4) of a nice Fréchet algebra A. If the inclusion

i : A ↪→ A

satisfies the conditions of (3.8) then

i∗ ∈ HCloc
0 (A, A)

is a HCloc-equivalence. This is in particular the case if A possesses the
Grothendieck approximation property. A similar assertion holds for the in-
clusion of I-diagrams of smooth subalgebras satisfying the conditions of (3.8).

Proof: This follows from (5.7), (5.11), and (4.2). 2

In particular the algebra inclusions mentioned in (3.10) up to (3.14) induce
HCloc-equivalences.
According to [Pu3], there exists a natural exterior product on bivariant pe-
riodic, entire, analytic, and asymptotic cyclic cohomology. There is also a
corresponding product in local cyclic cohomology.

Theorem 5.16. (Exterior products)
There exists a natural and associative exterior product

× : HCloc
∗ (A, C) ⊗ HCloc

∗ (B, D) −→ HCloc
∗ (A⊗π B, C ⊗π D)

on bivariant local cyclic cohomology of unital ind-algebras. The exterior prod-
uct is compatible with the composition product in the sense that local cyclic
cohomology classes α, β, α′, β′ satisfy

(α ◦ β) × (α′ ◦ β′) = (α × α′) ◦ (β × β′)

whenever these expressions are defined.

Proof: According to [Pu3] there exist natural continuous chain maps

µ : XT (A⊗π B) −→ X(T A) ⊗π X(T B)

and
ν : X(T A) ⊗π X(T B) −→ XT (A⊗π B)

which are naturally chain homotopy inverse to each other. On the level of chain
maps of ind-complexes the exterior product is defined as

α × β := νA′,B′ ◦ (α ⊗π β) ◦ µA,B

The induced map on homology gives rise to the exterior product on analytic
cyclic (co)homology. Its compatibility with the composition product follows
immediately from the fact that the chain maps µ and ν are chain homotopy
inverse to each other. Let ϕ : X(T A) −→ X(T B) be a chain map with weakly
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contractible mapping cone and let C be a nice unital ind-Fréchet algebra. The
mapping cone of ϕ× IdC : X(T (A⊗π C)) −→ X(T (B⊗π C)) is then chain ho-
motopy equivalent to the weakly contractible ind-complex Cone(ϕ)⊗π X(T C)
and therefore weakly contractible itself. It follows that the transformation ×
descends to an exterior product on local cyclic (co)homology. 2

Proposition 5.17. (Chern character) [Co1]
The Chern character map of [Co1], [CQ1], defines a natural transformation

ch : K∗ −→ HCloc
∗

from topological K-theory to local cyclic homology.

Proof: This follows from [Co2] and [CQ1]. 2

Theorem 5.18. (Bivariant Chern-Connes character) [Pu2]

a) There exists a natural transformation of bifunctors on the category of
separable C∗-algebras

chbiv : KK∗(−,−) −→ HCloc
∗ (−,−)

from Kasparov’s bivariant KK-theory to bivariant local cyclic cohomology
called the bivariant Chern-Connes character.

b) It is uniquely characterized by the following two properties:

– If f : A → B is a homomorphism of C∗-algebras with associated
class [f ] ∈ KK0(A,B), then

chbiv([f ]) = f∗

– If ε : 0 → I → A → B → 0 is an extension of C∗-algebras with
completely positive section and associated class [ε] ∈ KK1(B, I),
and if [δ] ∈ HP 1(B, I) denotes the boundary map in local cyclic
homology then

chbiv([ε]) = [δ]

c) The bivariant Chern-Connes character is multiplicative up to a period
factor 2πi.
For any separable C∗-algebras A,B,C the diagram

KKj(A,B) ⊗ KKl(B,C)
◦−→ KKj+l(A,C)

↓ chbiv ⊗ chbiv ↓ chbiv

HCj
lc(A,B) ⊗ HCl

lc(B,C) −→
1

(2πi)jl ◦
HCj+l

lc (A,C)
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commutes, where the upper horizontal map is the Kasparov product and
the lower horizontal map is given by 1

(2πi)jl times the composition product.

(See [Pu] for an explanation of the factor 2πi).

d) (Grothendieck-Riemann-Roch Theorem)

Let
ch′ := 1

(2πi)j ch : Kj −→ HCloc
j

be the normalized Chern character on K-theory, and let α ∈ KKl(A,B).
Then the diagram

Kj(A)
−⊗α−→ Kj+l(B)

↓ ch′ ↓ ch′

HCloc
j (A) −→

−◦ 1
(2πi)jl chbiv(α)

HCloc
j+l(B)

commutes.

e) Let 0 → I → A → B → 0 be an extension of separable C∗-algebras with
completely positive section. Then the bivariant Chern-Connes character
is compatible with long exact sequences, i.e. the diagrams

−→ KKj(−, B)
δ−→ KKj−1(−, I) −→

↓ chbiv ↓ chbiv

−→ HCj
loc(−, B) −→

(2πi)jδ
HCj−1

loc (−, I) −→

and

←− KKj+1(B,−)
δ←− KKj(I,−) ←−

↓ chbiv ↓ chbiv

←− HCj+1
loc (B,−) ←−

(2πi)jδ
HCj

loc(I,−) ←−

commute.

Proof: This is [Pu2], (6.3). 2

6 Calculation of local cyclic cohomology groups

The other issue that distinguishes local cyclic cohomology from most cyclic the-
ories is its computability in terms of homological algebra. Striking examples of
such calculations are given in [Pu4] and [Pu5]. No computational tools similar
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to the ones presented here are available for entire, analytic, or asymptotic cyclic
cohomology. Its nice functorial properties and its computability by homological
methods make local cyclic cohomology a rather accessible invariant for a large
class of algebras.

6.1 Calculation of morphism groups in the derived ind-category

The aim of this section is the construction of a natural spectral sequence which
calculates morphism groups in the derived ind-category. The strategy for ob-
taining such a spectral sequence is well known [Bo], and we just have to adapt
it to the setting of this paper. The idea behind it is subsumed in

Definition and Lemma 6.1. Let C be a triangulated category, let N be a
nullsystem in C and denote by C/N the corresponding quotient triangulated
category.

a) An object X ∈ ob C is called N-colocal if MorC(X,N) = 0, ∀N ∈ N.

b) Suppose that X is N-colocal. Then the canonical map

MorC(X,Y )
'−→ MorC/N(X,Y )

is an isomorphism for all Y ∈ ob C = ob C/N.

c) Let X ∈ ob C and suppose that there exists a morphism f : P (X) → X
from an N-colocal object P (X) to X such that Cone(f) ∈ N. Then

(f∗) : MorC/N(X,Y )
'−→ MorC(P (X), Y )

is an isomorphism for all Y ∈ ob C.

d) If the morphisms described in c) exist for every X ∈ ob C = ob C/N,
then

P : C/N −→ C, X −→ P (X)

becomes a functor which is left adjoint to the forgetful functor C −→ C/N.

In the sequel this lemma will be applied to the nullsystem of weakly contractible
ind-complexes in the triangulated homotopy category of ind-complexes over an
additive category.

Example 6.2. Let A be a fixed additive category and let C be the category
of ZZ/2ZZ-graded ind-complexes over A. The associated homotopy category is
denoted by Ho and its derived ind-category by D. Let finally N be the nullsystem
of weakly contractible ind-complexes in Ho. Then

• Every constant ind-complex (i.e. every ordinary chain complex over A)
is N-colocal.
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• The direct limit (in C) of N-colocal ind-complexes is not necessarily
N-colocal.

In fact, if limits of colocal ind-complexes were colocal, then all ind-complexes
would be colocal as they are limits of constant ind-complexes. In particular,
weakly contractible ind-complexes would be genuinely contractible, which is
not the case.
We will construct now a canonical colocal model for the direct limit of a fam-
ily of colocal ind-complexes. It will serve for calculations in the derived ind-
category.
The notations of the previous example will be used throughout this section.

Definition 6.3. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes

Ci := “ lim
−→
Ji

” Cji
∗

over an additive category A. (In other words C is an ind-object over C.)

Let F be the set of triples (I ′, ϕ, f) such that

1) I ′ is a finite directed subset of I.

2) ϕ : I ′ → ∐
i∈I′

Ji is a map such that ϕ(i) ∈ Ji for all i ∈ I ′.

3) f is a collection of morphisms fii′ : C
ϕ(i)
∗ −→ C

ϕ(i′)
∗ , i < i′ ∈ I ′

representing the structure maps Ci → Ci′ and such that
fi′i′′ ◦ fii′ = fii′′ for i < i′ < i′′ ∈ I ′.

The set F is partially ordered by putting (I ′, ϕ, f) ≤ (I ′′, ϕ′, f ′) iff

1) I ′ ⊂ I ′′

2) ϕ(i) ≤ ϕ′(i) for all i ∈ I ′

3) For all i < i′ ∈ I ′ the diagram
C

ϕ′(i)
∗

f ′
ii′−→ C

ϕ′(i′)
∗

↑ ↑
C

ϕ(i)
∗

fii′−→ Cϕ(i′)

commutes,

where the vertical arrows are given by the structure maps of the
ind-objects Ci and Ci′ , respectively. With this order F becomes in
fact a directed set.

For (I ′, ϕ, f) ∈ F define a bicomplex P
(I′,ϕ,f)
∗∗ with underlying bigraded

object

P (I′,ϕ,f)
pq :=

⊕

i0>...>ip

i0,... ,ip∈I′

Cϕ(ip)
q , p ∈ lN, q ∈ ZZ/2ZZ,

and with differentials ∂′, ∂′′ given as follows:

∂′ :=

p∑

k=0

(−1)k ∂k : P (I′,ϕ,f)
pq −→ P

(I′,ϕ,f)
(p−1)q
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where the face maps ∂k, 0 ≤ k ≤ p, act on the indices (i0, . . . , ip) by
deleting the k-th element of the string and on the corresponding objects
by the identity if k < p respectively by the morphism
fipip−1

: Cq
ϕ(ip) → Cq

ϕ(ip−1) if k = p.

The second differential ∂′′ is given by

∂′′ : P
(I′,ϕ,f)
pq −→ P

(I′,ϕ,f)
p(q−1)

∂′′ := (−1)p · dq

where dq : Cq
ϕ(ip) → Cq−1

ϕ(ip) is the differential in the complex C
ϕ(ip)
∗ .

The total ZZ/2ZZ-graded chain complexes

P
(I′,ϕ,f)
∗ :=

(⊕

p

P
(I′,ϕ,f)
p,∗−p , d = ∂′ + ∂′′

)

form an ind-complex

P(C) := “ lim
−→
F

” P
(I′,ϕ,f)
∗

It is called the canonical resolution of C.

Lemma 6.4. Let I be a directed set. The canonical resolution (6.3) defines a
functor

P : CI −→ C

from the category of I-diagrams over C to C.

The canonical resolution provides a model for the direct limit of the family
C = (Ci)i∈I in the following sense:

Lemma 6.5. Let C = (Ci)i∈I be a directed system of ZZ/2ZZ-graded ind-
complexes over A, let Lim

−→
i∈I

Ci be its direct limit in the category of ind-complexes,

and let P(C) be its canonical resolution. There exists a canonical morphism

P(C) −→ Lim
−→
i∈I

Ci

of ind-complexes with weakly contractible mapping cone. If C −→ C′ is a mor-
phism of I-diagrams of ind-complexes, then the corresponding diagram

P(C) −→ Lim
−→
i∈I

Ci

↓ ↓
P(C′) −→ Lim

−→
i∈I

C′
i

commutes.
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Proof: Consider the ind-complex

“ lim
−→
F

” E
(I′,ϕ,f)
∗ , E

(I′,ϕ,f)
∗ := C

ϕ(i′)
∗

where i′ is the largest element of the finite directed set I ′ (the transition mor-

phism E
(I′,ϕ,f)
∗ −→ E

(I′′,ϕ′,f ′)
∗ equals f ′

i′i′′). An easy verification shows that
this ind-complex is a direct limit of the family C = (Ci)i∈I :

“ lim
−→
F

” E
(I′,ϕ,f)
∗ ' Lim

−→
I

Ci

Let

π : P(C) = “ lim
−→
F

” P
(I′,ϕ,f)
∗ −→ “ lim

−→
F

” E
(I′,ϕ,f)
∗

be the morphism of ind-complexes which is given on the level of the individual
complexes Pα

∗ , α = (I ′, ϕ, f) ∈ F , as follows:

πα :
⊕

p

⊕

i0>...>ip

i0,... ,ip∈I′

C
ϕ(ip)
∗ −→ C

ϕ(i′)
∗

equals zero on direct summands corresponding to strings i0 > . . . > ip with

p > 0 and is otherwise given by fi0i′ : C
ϕ(i0)
∗ −→ C

ϕ(i′)
∗ .

The cone of this morphism equals Cone π ' “ lim
−→
F

” Cone πα. We are going to

show that Cone πα is contractible for each α ∈ F which implies that Cone π is
weakly contractible (it will not be genuinely contractible in general).
Let sα : Eα

∗ −→ Pα
∗ be the morphism of ZZ/2ZZ-graded objects of A which

identifies Eα
∗ = C

ϕ(i′)
∗ with the summand of Pα

∗ corresponding to the string
i0 = i′. Let furthermore χα : Pα

∗ −→ Pα
∗+1 be the operator which vanishes

on direct summands corresponding to strings i0 > . . . > ip with i0 = i′ and
identifies otherwise the direct summand corresponding to i0 > . . . > ip with
the direct summand corresponding to i′ > i0 > . . . > ip. The morphism

hα : (Cone πα)∗ = Pα
∗ [1] ⊕ Eα

∗ −→ Pα
∗+1[1] ⊕ Eα

∗+1 = (Cone πα)∗+1

hα :=

(
−χα ◦ (Id − sα ◦ πα) −χα ◦ (∂ ◦ sα − sα ◦ ∂) + sα

0 0

)

defines then a contracting homotopy of Cone πα. The naturality of the con-
struction with respect to morphisms of I-diagrams is obvious. 2

Lemma 6.6. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes over A with canonical resolution P(C) and let C′ be some other
ZZ/2ZZ-graded ind-complex over A. Let Q∗(C,C′) :=

∏
p

Qp,∗−p(C,C′) be the
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ZZ/2ZZ-graded total complex associated to the bicomplex of abelian groups

Qpq(C,C′) :=
∏

i0>...>ip
i0,... ,ip∈I

Homq
ind-A(Cip

,C′), p ∈ lN, q ∈ ZZ/2ZZ,

where Homq
ind-A(Cip

,C′) denotes the morphisms of degree q ∈ ZZ/2ZZ of the
graded ind-objects over A underlying the ind-complexes Cip

and C′. The differ-
entials are given on the one hand by the simplicial differential ∂′ :=

∑
(−1)k∂k,

deleting the appropriate index from the indexing strings and acting in the
straightforward manner on the corresponding direct factor, and on the other
hand by the differential ∂′′(Φ) := Φ◦∂Cip

− (−1)|Φ|∂C′ ◦Φ of the Hom-complex
Hom∗

ind-A(Cip
,C′). Then there is a natural isomorphism

Mor∗Ho(P(C),C′) ' H∗(Q•(C,C′))

i.e. the graded group of morphisms from P(C) to C′ in the homotopy category
of ind-complexes is given by the homology of Q∗(C,C′).

Proof: The graded group of morphisms between two objects C, C′ of the
homotopy category Ho of ZZ/2ZZ-graded ind-complexes over A can be calculated
as the homology of the Hom-complex Hom∗

ind-A(C, C′). Therefore one finds

Morn
Ho (P(C),C′)

= Hn(Hom∗
ind-A(P(C),C′) )

= Hn(lim
←−
F

lim
−→

J

Hom∗
A (C(I′,ϕ,f), C ′ j ) )

= Hn(lim
←−
F

lim
−→

J

Hom∗
A (

⊕

p

⊕

i0>...>ip

i0,... ,ip∈I′

Cϕ(ip) [−p], C ′ j ))

= Hn(lim
←−
F

lim
−→

J

∏

p

∏

i0>...>ip

i0,... ,ip∈I′

Hom∗
A (Cϕ(ip) [−p], C ′ j ) )

= Hn(lim
←−
F

∏

p

∏

i0>...>ip

i0,... ,ip∈I′

lim
−→

J

Hom∗
A (Cϕ(ip) [−p], C ′ j ))

because direct limits and finite products commute

= Hn(
∏

p

∏

i0>...>ip
i0,... ,ip∈I

lim
←−
Jip

lim
−→

J

Hom∗
A (C(jip ) [−p], C ′ j ) )

= Hn(
∏

p

∏

i0>...>ip
i0,... ,ip∈I

Hom∗
ind-A (Cip

[−p], C′ ))

Documenta Mathematica 8 (2003) 143–245



212 Michael Puschnigg

= Hn(
∏

p

Qp,∗−p (C,C′) )

= Hn(Q∗ (C,C′) )

2

The following result justifies the introduction of the canonical resolution.

Proposition 6.7. Let N be the nullsystem of weakly contractible ind-complexes
in the homotopy category Ho of ZZ/2ZZ-graded ind-complexes over A. If
C = (Ci)i∈I is a directed family of N-colocal ind-complexes, then its canon-
ical resolution P(C) is N-colocal as well.

Proof: Let C′ be a weakly contractible ZZ/2ZZ-graded ind-complex. According
to lemma (6.6)

Mor∗Ho (P(C), C′) ' H∗(Q•(C, C′) )

The weak contractibility of C′ implies that the columns of the bicomplex
Q∗∗(C, C′) are acyclic. In fact their homology equals

∏

i0>...>ip
i0,... ,ip∈I

Morq
Ho(Cip

,C′) = 0

The total complex Q∗(C, C′) is then acyclic as well which proves the claim. 2

The following theorem provides the basis for most calculations in the derived
ind-category.

Theorem 6.8. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes over A. Suppose that the ind-complexes (Ci)i∈I are colocal with
respect to the nullsystem of weakly contractible ind-complexes and let C′ be
some ind-complex.

a) There exists a spectral sequence (Epq
r , dr ) with E2-term

Epq
2 = Rp lim

←−
i∈I

Morq
Ho (Ci, C′ )

which is natural in C ∈ CI and C′
∗ ∈ Ho. Here Rp lim

←−
i∈I

denotes the p-th

right derived functor of the inverse limit functor lim
←−
i∈I

.

b) Suppose that the higher derived limits Rp lim
←−
i∈I

vanish for p >> 0. Then

the spectral sequence converges to

Epq
∞ = Grp Morp+q

D (Lim
−→
i∈I

Ci, C′ )

Documenta Mathematica 8 (2003) 143–245



Local Cyclic Cohomology 213

c) Suppose that the directed set I is countable. Then the spectral sequence
collapses and gives rise to a natural short exact sequence

0 → lim
←−
i∈I

1 Morn−1
Ho (Ci, C′ ) → Morn

D (Lim
−→
i∈I

Ci, C′ ) →

→ lim
←−
i∈I

Morn
Ho (Ci, C′ ) → 0

Proof: Consider the chain complex Q∗ (C,C′) introduced in (6.6). We calcu-
late its homology in two different ways. By lemma (6.6)

H∗(Q•(C,C′)) ' Mor∗Ho(P(C),C′)

As the ind-complexes Ci, i ∈ I, are N -colocal by assumption, the ind-complex
P(C) itself is N -colocal by proposition (6.7). Therefore lemma (6.1) applies
and shows that the canonical map

Mor∗Ho(P(C),C′)
'−→ Mor∗D(P(C),C′)

is an isomorphism. By lemma (6.5) the canonical morphism

π : P(C) −→ Lim
−→
i∈I

Ci

defines an isomorphism in the derived ind-category D so that one obtains

Mor∗D(P(C),C′)
'←− Mor∗D(Lim

−→
i∈I

Ci,C
′)

This shows finally that

H∗(Q•(C,C′)) ' Mor∗D(Lim
−→
i∈I

Ci, C′ )

We now exhibit a natural filtration of the complex Q∗(C,C′) and calculate its
homology by the associated spectral sequence.
The bicomplex Q∗∗ ( C, C′ ) possesses a natural descending filtration with asso-
ciated graded modules given by the columns Qp∗, p ≥ 0. We take (Epq

r , dr ) to
be the spectral sequence associated to the corresponding filtration of the total
complex Q∗ ( C,C′ ). For the E1-term one obtains

Epq
1 = Hq(Qp∗ ( C, C′ ), ∂′′ )

= Hq (
∏

i0>...>ip
i0,... ,ip∈I

Hom∗
ind-A(Cip

, C′) )

=
∏

i0>...>ip
i0,... ,ip∈I

Morq
Ho(Cip

, C′ )
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For the E2-term one finds

Epq
2 = Hp (

∏

i0>...>i∗
i0,... ,i∗∈I

Morq
Ho (Ci∗ , C′ ), ∂′ )

This latter complex equals the standard complex calculating the higher inverse
limits of the system

Morq
Ho (Ci, C′ ), i ∈ I

so that one obtains finally

Epq
2 = Rp lim

←−
i∈I

Morq
Ho (Ci, C′ )

b) The vanishing of the higher inverse limits Rp lim
←−
i∈I

for p >> 0 implies that the

projective system H∗(Q ( C,C′ )/F ilkQ ( C,C′ )), k ∈ lN, satisfies the Mittag-
Leffler condition. In particular

H∗(Q ( C,C′ ))
'−→ lim

←−
k

H∗(Q ( C,C′ )/F ilk ( C,C′ ) )

i.e. the spectral sequence converges.
c) Is an immediate consequence of a) and b) and the fact that for countable I
the higher inverse limits Rp lim

←−
i∈I

vanish in degree p > 1. 2

In all applications we will deal exclusively with countable ind-complexes and
therefore will only make use of part c) of the theorem.
Remark: In [Pu1] I erroneously claimed that the spectral sequence above
converges in general. In fact there is no reason why that should be the case. I
thank Ralf Meyer for pointing this out to me. However, in all situations where
the spectral sequence can be calculated, the condition of b) is automatically
satisfied so that no convergence problem arises.
The following consequences of the previous theorem will be particularly useful.

Theorem 6.9. Let C = “ lim
−→
i∈I

”Ci, C′ = “ lim
−→
j∈J

”C ′
j be ZZ/2ZZ-graded ind-

complexes over A. Suppose that I is countable. Then there exists a short exact
sequence

0 → lim
←−
i∈I

1 lim
−→
j∈J

Morn−1
Ho (Ci, C ′

j ) → Morn
D (C, C′ ) →

→ lim
←−
i∈I

lim
−→
j∈J

Morn
Ho (Ci, C ′

j ) → 0

where Ho denotes the homotopy category of ZZ/2ZZ-graded chain complexes and
D denotes the derived ind-category over A.
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Proof: Identify each chain complex Ci, i ∈ I, with the associated constant
ind-complex Ci, which is N-colocal (6.2). The direct limit of the corresponding
family of constant ind-complexes equals

Lim
−→
i∈I

Ci ' C

Theorem (6.8) therefore applies and yields the assertion as there are natural
isomorphisms

Morn
Ho (Ci, C′ ) ' Hn(Hom∗

ind-A(Ci, C′ ) ) = Hn(lim
−→
j∈J

Hom∗
A(Ci, C ′

j ) )

' lim
−→
j∈J

Hn(Hom∗
A(Ci, C ′

j ) ) ' lim
−→
j∈J

Morn
Ho (Ci, C ′

j )

2

By a similar reasoning we obtain

Theorem 6.10. Let C = “ lim
−→
i∈I

”Ci be a ZZ/2ZZ-graded ind-complex and let

(C′
j), j ∈ J, be a directed family of ZZ/2ZZ-graded ind-complexes over A. Sup-

pose that I is countable. Then there exists a short exact sequence

0 → lim
←−
i∈I

1 lim
−→
j∈J

Morn−1
Ho (Ci, C′

j ) → Morn
D (C, Lim

−→
j∈J

C′
j ) →

→ lim
←−
i∈I

lim
−→
j∈J

Morn
Ho (Ci, C′

j ) → 0

where Ho denotes the homotopy category of ZZ/2ZZ-graded ind-complexes and
D denotes the derived ind-category over A.

Whereas the previous result is needed for computations, the following one al-
lows to treat direct limits.

Theorem 6.11. Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-
complexes and let C′ be a ZZ/2ZZ-graded ind-complex over A. Suppose that I is
countable. Then there exists a short exact sequence

0 → lim
←−
i∈I

1 Morn−1
D (Ci, C′ ) → Morn

D (Lim
−→
i∈I

Ci, C′ ) →

→ lim
←−
i∈I

Morn
D (Ci, C′ ) → 0

For the proof of the theorem we need

Lemma 6.12. Every countable chain C0 → C1 → . . . of ind-objects

Ci = “ lim
−→
Ji

”C
(i)
ji

is isomorphic to a chain C′
0 → C′

1 → . . . of ind-objects with
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one and the same index set (equal to J) and morphisms C′
n → C′

n+1 given by

families C ′(n)
j → C ′(n+1)

j , j ∈ J, such that the diagrams

C ′(n)
j′ → C ′(n+1)

j′

↑ ↑
C ′(n)

j → C ′(n+1)
j

commute for all j < j′ ∈ J .

Proof: Let J be the set of sequences (fk : C
(k)
jk

→ C
(k+1)
jk+1

)k∈lN of composable

morphisms such that fk is representing the restriction of Ck → Ck+1 to C
(k)
jk

.
The set J is partially ordered (and directed) in an obvious way. Define ind-

objects C′
k, k ∈ lN, with index set J , by putting C′

k := “ lim
−→
J

” C
(k)
jk

and define

morphisms C′
n → C′

n+1, n ∈ lN, of ind-objects by the family (πn(α)), α ∈ J,

given by the n-th element πn(α) = fn : C
(n)
jn

→ C
(n+1)
jn+1

of the sequence α.
There is a straightforward morphism of infinite chains of ind-objects from
(C′

0 → C′
1 → . . . ) to (C0 → C1 → . . . ), which is easily seen to be an iso-

morphism. 2

Proof of theorem (6.11):

Let C = (Ci)i∈I be a directed family of ZZ/2ZZ-graded ind-complexes, labeled by
the countable index set I. After passage to a cofinal subset, which does not af-
fect the statement of the theorem, we may assume that I = lN. By the previous
lemma, we may further assume that C is given by a countable directed family of
J-diagrams of complexes for some large directed set J . The canonical resolution
of an ind-complex (6.3) is functorial on diagrams of complexes (6.4), so that
we obtain a countable directed family P(Ci) of ZZ/2ZZ-graded ind-complexes.
Each of these ind-complexes is colocal with respect to the nullsystem of weakly
contractible ind-complexes (6.7). Theorem (6.8) applies therefore and yields
for any ZZ/2ZZ-graded ind-complex C′ a short exact sequence

0 → lim
←−
i∈I

1 Morn−1
Ho (P(Ci), C′ ) → Morn

D (Lim
−→
i∈I

P(Ci), C′ ) →

→ lim
←−
i∈I

Morn
Ho (P(Ci), C′ ) → 0

The canonical projections πi : P(Ci) → Ci are natural in the sense that they
give rise to a morphism of directed families (6.5). The cone of the induced mor-
phism π : Lim

−→
i∈I

P(Ci) −→ Lim
−→
i∈I

Ci of direct limits equals the direct limit of the

cones of the morphisms πi. Because these cones are weakly contractible (6.5),
the same holds for the cone of the morphism π. This morphism is therefore an
isomorphism in the derived ind-category. As the groups Morn

Ho (P(Ci), C′ )
equal Morn

D (Ci, C′ ) by (6.7) and (6.1), the short exact sequence finally takes
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the form

0 → lim
←−
i∈I

1 Morn−1
D (Ci, C′ ) → Morn

D (Lim
−→
i∈I

Ci, C′ ) →

→ lim
←−
i∈I

Morn
D (Ci, C′ ) → 0

2

6.2 Applications to local cyclic cohomology

The following results provide the basic tools for explicit calculations of local
cyclic cohomology groups.

Theorem 6.13. (Approximation Theorem)
Let A be a nice separable Fréchet algebra which possesses the Grothendieck

approximation property and let U be a convex open unit ball of A.
Let V0 ⊂ . . . ⊂ Vn ⊂ . . . be an increasing sequence of finite dimen-

sional subspaces of A such that
∞⋃

n=0
Vn is a dense subalgebra of A, and let

(λn)n∈lN, (rn)n∈lN, be monotone decreasing sequences of positive real numbers
such that lim

n→∞
λn = 1, lim

n→∞
rn = 0. Denote by An the Banach algebra obtained

by completion of the subalgebra A generated by Vn with respect to the largest
submultiplicative seminorm satisfying ‖ λnVn ∩ U ‖≤ 1. Let (TA)r, respec-
tively HC∗

ε,r, be the completions of the tensor algebra, respectively the cyclic
bicomplex, introduced in (1.22), respectively in the section about entire cyclic
cohomology.
Then there exists a natural isomorphism

lim
n→∞

HCε
∗(An)

'−→ HCloc
∗ (A)

of homology groups and a natural exact sequence

0 −→ lim
←−

n

1 HC∗−1
ε,rn

(An) −→ HC∗
loc(A) −→ lim

←−
n

HC∗
ε,rn

(An) −→ 0

or
0 −→ lim

←−
n

1 H∗−1(X((TAn)rn)) −→ HC∗
loc(A) −→

−→ lim
←−

n

H∗(X((TAn)rn)) −→ 0

of cohomology groups. Thus the local cyclic (co)homology groups of a nice
Fréchet algebra A with approximation property can be expressed in terms
of suitable cyclic (co)homology groups of the approximating Banach algebras
An, n ∈ lN. A similar statement holds if the modified entire cyclic complexes
of the approximating algebras are replaced by the corresponding analytic cyclic
complexes.
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Corollary 6.14. Let A be a Banach algebra which possesses the Grothendieck
approximation property. Let S ⊂ A be a finite set which generates a dense
subalgebra A′ of A and let for λ > 1 be Aλ the completion of A′ with respect to
the largest submultiplicative seminorm satisfying ‖ S ‖≤ λ. Then there exists
a natural isomorphism

lim
λ→1

HCε
∗(Aλ)

'−→ HCloc
∗ (A)

of homology groups and a natural exact sequence

0 −→ lim
←−
λ, r

1 HC∗−1
ε,r (Aλ) −→ HC∗

loc(A) −→ lim
←−
λ, r

HC∗
ε,r(Aλ) −→ 0

or
0 −→ lim

←−
λ, r

1 H∗−1(X((TAλ)r)) −→ HC∗
loc(A) −→

−→ lim
←−
λ, r

H∗(X((TAλ)r)) −→ 0

of cohomology groups.

Remark 6.15. It should be noted that although entire and analytic cyclic co-
homology groups are usually very difficult to compute, a direct or inverse limit
of such groups can be quite accessible to calculation.

Proof: By the approximation theorem for ind-algebras (3.2) there are isomor-
phisms

“ lim
−→
n

” (TAn)rn
'−→ Lim

−→
n

T ′(An)
'−→ T ′B(A) = T (A)

in the stable diffeotopy category. Passing to continuous cyclic bicomplexes and
noting that the ind-algebra “ lim

−→
n

” (TAn)rn is strictly topologically quasifree,

one obtains an isomorphism

“ lim
−→
n

” X∗((TAn)rn)
'−→ X∗(T A)

in the derived ind-category. As the ind-complex X∗(T ( lC)) is chain homotopy
equivalent to the constant ind-complex lC, which is N -colocal by (6.2), the

first assertion follows from the identity lim
−→

H∗(Ci)
'−→ Mor∗D( lC, ”lim

−→
”Ci).

The second assertion is a consequence of (6.9). The equivalence of the two
exact sequences follows from the comparison of the Connes and Cuntz-Quillen
approach to cyclic homology [CQ1], [Pu] (5.27). 2

Theorem 6.16. (Limit Theorem)
Let “ lim

−→

λ∈Λ

”Aλ be a countable directed family of nice Fréchet algebras and let

f = lim
←

fλ : “ lim
−→

λ∈Λ

”Aλ −→ A
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be a homomorphism to a nice Fréchet algebra A. Suppose that the following
conditions hold:

• A is separable and possesses the Grothendieck approximation property.

• The image Im(f) := lim
−→
λ∈Λ

fλ(Aλ) is dense in A.

• There exist seminorms ‖ − ‖λ on Aλ, λ ∈ Λ, respectively ‖ − ‖ on A,
and a constant C such that

i) The set of elements of length less than 1 with respect to the seminorm
is an open unit ball for Aλ, λ ∈ Λ, respectively A.

ii)
lim
−→
λ∈Λ

‖ aλ ‖λ ≤ C ‖ f(a) ‖

for all
a = lim

−→
λ∈Λ

aλ ∈ lim
−→
λ∈Λ

Aλ

Then there exists a natural isomorphism

lim
−→
λ∈Λ

HCloc
∗ (Aλ)

'−→ HCloc
∗ (A)

of local cyclic homology groups and for any nice ind-Fréchet algebra B a natural
exact sequence

0 −→ lim
←−
λ∈Λ

1 HCloc
∗−1(Aλ, B) −→ HCloc

∗ (A, B) −→

−→ lim
←−
λ∈Λ

HCloc
∗ (Aλ, B) −→ 0

of bivariant local cyclic cohomology groups.

Proof: This follows from the limit theorem for ind-algebras (3.15), theorem
(6.11), and the remark about the colocality of X∗(T lC) made in the proof of
the previous theorem. 2

7 Relations between cyclic cohomology theories

The various cyclic cohomology theories are related by a number of natural
transformations. These fall into two groups: transformations of functors of one
variable, i.e. of homology or cohomology, and transformations of bifunctors.
All transformations preserve exterior products and in the bivariant case they
preserve composition products as well. We will also comment on comparison
results for the various cyclic theories.

Documenta Mathematica 8 (2003) 143–245



220 Michael Puschnigg

For an ind-Banach algebra R the identity of its tensor algebra induces a natural
bounded homomorphism T ′R −→ T̂R of completed tensor algebras and thus a
natural transformation T ′ −→ T̂ of functors. Recall the functor B associating
to a nice ind-Fréchet algebra the diagram of associated compactly generated
Banach algebras and the transformation B → ι to the identity functor (1.5).
Using these one obtains natural transformations

T = T ′ ◦ B −→ T ′ ◦ ι = T ′ −→ T̂

for ind-Banach algebras and

T = T ′ ◦ B −→ T̂ ◦ B −→ T̂

for nice ind-Fréchet algebras. Passing to X-complexes and taking (co)homology
groups we end up with the following

Proposition 7.1. There exist canonical natural transformations

HCan
∗ (−) −→ HCε

∗(−) −→ HP∗(−)

of cyclic homology theories for (ind-)Banach algebras, respectively

HCan
∗ (−) −→ HP∗(−)

of cyclic homology theories for nice (ind-)Fréchet algebras. All these trans-
formations are compatible with exterior products and with the Chern-character
from topological K-theory.

Proposition 7.2. There exist canonical natural transformations

HP ∗(−) −→ HC∗
ε (−) −→ HC∗

an(−)

of cyclic cohomology theories for (ind-)Banach algebras, respectively

HP ∗(−) −→ HC∗
an(−)

of cyclic cohomology theories for nice (ind-)Fréchet algebras. All these trans-
formations are compatible with exterior products.

There exist various Chern characters in K-homology [Co], which are defined
for suitable classes of Fredholm modules and take values in the different cyclic
cohomology theories. A detailed study of the relations between these characters
will be the content of another paper.
The compatibility of the transformations with exterior products is clear because
these are induced by explicit natural chain maps of cyclic complexes which are
continuous with respect to all relevant topologies.
It arises the question to what extent these transformations are equivalences.
The comparison problem turns out to be simpler for cohomology than for ho-
mology. In [Me1] Meyer obtains a number of results concerning this problem.
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He presents examples of nice Fréchet algebras for which analytic and continu-
ous periodic cyclic homology are different. The simplest example he provides is
given by the algebra S(ZZ) of sequences of rapid decay. One should also expect
that there exist Banach algebras for which analytic, entire, and continuous pe-
riodic cyclic homology are different from each other. However no such examples
have been exhibited so far. In Meyer’s example the continuous periodic and
analytic cohomology groups are different as well.

In [Me] Meyer constructs a Chern character for arbitrary Fredholm modules
with values in analytic cyclic cohomology. The character is compatible with
the index pairing. This allows to exhibit nontrivial analytic cyclic cocycles for
large classes of Banach and even C∗-algebras. However there seem to be no
methods to determine the corresponding cohomology groups. On the one hand
the foregoing discussion shows in particular that HC∗

an(K(H)) does not vanish.
On the other hand the results of Haagerup [Ha] and Khalkhali [Kh] imply that
the entire cyclic cohomology groups of a nuclear C∗-algebra are isomorphic to
the space of continuous traces on that algebra. Therefore HC∗

ε (K(H)) vanishes.
Thus the natural transformation HC∗

an −→ HC∗
ε from analytic to entire cyclic

cohomology cannot be an equivalence.

We come now to the transformations relating bivariant cyclic theories.

Proposition 7.3. There exist canonical natural transformations

HCan
∗ (−,−) −→ HCα

∗ (−,−) −→ HCloc
∗ (−,−)

of bivariant cyclic cohomology theories of nice (ind-)Fréchet algebras. All these
transformations are compatible with composition and exterior products.

Proof: Let Ho −→ D be the canonical functor from the homotopy category
of ind-complexes to the derived ind-category. It induces a natural map

MorHo(X∗T (−),X∗T (−)) −→ MorD(X∗T (−),X∗T (−))

of morphism groups which defines the desired transformation from bivariant
analytic to bivariant local cyclic cohomology. The compatibility with composi-
tion products follows from the compatibility of functors with the composition
of morphisms and the compatibility with exterior products is a consequence of
the construction of the product in local cyclic cohomology. A bit more work is
needed to construct the desired transformations of asymptotic cyclic cohomol-
ogy. Let DG-Ho be the homotopy category of ind-complexes of DG-modules
and let DG-D be the localization of this homotopy category with respect to the
null system given by weakly contractible ind-complexes of DG-modules. Let

MorHo(X∗(T A), X∗(T B)) −→ MorDG-Ho(X∗(ΩT A), E(U , X∗(T B)))

be the transformation which extends a given morphism of ind-complexes ϕ to
the morphism of DG-ind-complexes that equals ϕ⊗1 in degree zero and vanishes
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in positive degrees. By [Pu], (4.14), the canonical projection of X∗(ΩT B) onto
its degree zero subspace induces a natural isomorphism

MorDG-Ho(X∗(ΩT A), E(U , X∗(ΩT B)))

↓'

MorDG-Ho(X∗(ΩT A), E(U , X∗(T B)))

By composition one obtains a natural transformation

MorHo(X∗T (−), X∗T (−)) −→ MorDG-Ho(X∗(ΩT (−)), E(U , X∗(ΩT (−))))

from bivariant analytic to bivariant asymptotic cyclic cohomology.

The fact that the ordered family of neighborhoods of ∞ in lRn
+ contains a

cofinal family of convex open sets, the Cartan homotopy formula [Pu], (4.11),
(4.12) for the asymptotic parameter space, and the isomorphism criterion (2.9)
imply that

Id ⊗ 1 : X∗(ΩT (−)) −→ E(U , X∗(ΩT (−)))

is an isomorphism in DG-D. Then the canonical functor DG-Ho −→ DG-D
induces a natural map

HCα
∗ (A,B) = MorDG-Ho(X∗(ΩT A), E(U , X∗(ΩT B)))

−→ MorDG-D(X∗(ΩT A), E(U , X∗(ΩT B)))

' MorDG-D(X∗(ΩT A),X∗(ΩT B)) ' MorDG-D(X∗(T A),X∗(T B))

by [Pu], (6.9) and (4.14)

' MorD(X∗(T A),X∗(T B)) = HCloc
∗ (A,B)

It is obvious that this map defines a natural transformation. The composi-
tion HCan

∗ −→ HCα
∗ −→ HCloc

∗ clearly coincides with the transformation
described at the beginning of the proof. 2

Corollary 7.4. (Functoriality under linear asymptotic morphisms)
Let ft : A −→ B, t > 0, be a linear asymptotic morphism of nice Fréchet-

algebras [CH]. Then f induces a natural element f∗ ∈ HCloc
0 (A,B) depending

only on the continuous homotopy class of f . Moreover (g ◦ f)∗ = g∗ ◦ f∗ under
the composition product. Consequently local cyclic cohomology of nice Fréchet-
algebras is functorial under linear asymptotic morphisms.

Proof: This follows from the corresponding statement for asymptotic cyclic
cohomology [Pu], (6.11), by applying the natural transformation to bivariant
local cyclic cohomology. 2
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Lemma 7.5. In all the previously mentioned cyclic theories there exist canonical
natural equivalences

H∗(−)
'−→ H∗( lC,−)

and

H∗(−)
'−→ H∗(−, lC)

between homology resp. cohomology groups and suitable bivariant cohomology
groups. These are compatible with exterior products and with the natural trans-
formations between the various cyclic theories.

Proof: This follows from the fact that the canonical chain map

lC = X∗( lC) −→ X∗(T lC), 1 → ch(e)

is an isomorphism in the homotopy category of ind-complexes [CQ1]. 2

In particular, one obtains from (7.3) canonical natural transformations

HCan
∗ (−) −→ HCα

∗ (−) −→ HCloc
∗ (−)

in homology and

HC∗
an(−) −→ HC∗

α(−) −→ HC∗
loc(−)

in cohomology.
Concerning the transformations of homology groups one finds

Proposition 7.6. The canonical natural transformations

HCan
∗ (−)

'−→ HCα
∗ (−) and HCα

∗ (−)
'−→ HCloc

∗ (−)

are natural equivalences.

Proof: The first assertion is shown in [Pu], (6.9). The ind-complex X∗(T lC)
is isomorphic to the constant ind-complex lC ([CQ1]) and thus N-colocal (6.2).

Therefore HCan
∗ (−)

'−→ HCloc
∗ (−) is an isomorphism by (6.1) which implies

the second assertion. 2

Not much is known about the comparison between bivariant analytic and bi-
variant asymptotic or local cyclic cohomology. The basic unsolved question is
whether analytic cyclic cohomology is invariant under continuous homotopies
[Me] as it is the case for the asymptotic and local theories.
Finally a remark about the comparison between bivariant asymptotic and local
cyclic cohomology. The functorial properties of both theories are identical (with
the exception of the results depending on the approximation property). Recall
that local cyclic cohomology was obtained from the analytic cyclic theory by
turning it into a functor which factors through the stable diffeotopy category.
This latter was obtained by inverting morphisms of ind-algebras with weakly
contractible mapping cone. Asymptotic cyclic cohomology can be interpreted
in a similar way. It is constructed by making analytic cyclic cohomology factor
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through the category of ind-algebras obtained by inverting morphisms with
weakly contractible mapping cone labeled by a countable index set. So there
is some reason to believe that both theories coincide for certain sufficiently
”small” algebras.
We finally summarize the natural transformations between the various cyclic
homology and cohomology theories in the diagrams

HP∗(−) ←− HCε
∗(−) ←− HCan

∗ (−)

HCan
∗ (−)

'−→ HCα
∗ (−)

'−→ HCloc
∗ (−)

and
HP ∗(−) −→ HC∗

ε (−) −→ HC∗
an(−)

HC∗
an(−) −→ HC∗

α(−) −→ HC∗
loc(−)

All transformations are compatible with exterior products and the transforma-
tions in homology are compatible with the Chern character from K-theory.

8 Examples

In this last section we give some simple but characteristic examples of explicit
calculations of local cyclic cohomology groups. They illustrate the abstract
computation scheme developed in section 6. Examples of a similar but more
involved nature can be found [Pu4] and [Pu5]. We finally apply local cyclic
cohomology to obtain a partial solution of a problem on n-traces formulated in
[Co3].
The general idea is to realize the local cyclic (co)homology HCloc(A) of a
given algebra A as a limit of the (co)homology groups HCloc(An) of a count-
able directed family (An), n ∈ lN, of approximating algebras of a simpler
type. Whereas it is usually not possible to compute these approximating
(co)homology groups, the transition maps in this directed family often turn
out to be amenable to study. And they are all one needs to determine the limit
one is interested in.
In the presence of the approximation property one can try to proceed as follows.
1) One looks for a dense subalgebra A of A with nice homological properties. By
this we mean for example that A is of finite Hochschild-homological dimension.
Consequently FilkHodge(ĈC∗(A) will be contractible for k >> 0. If one is lucky

the quotient complex ĈC(A)/F ilkHodge(ĈC∗(A) can be identified up to chain
homotopy equivalence with a complex with known homology.
2) One chooses an increasing family 0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂ . . . of finite dimen-
sional subspaces of A such that

⋃
Vn is a dense subalgebra of A and constructs

the enveloping approximating Banach algebras (An), n ∈ lN, as in (3.15). By
the approximation theorem (6.13) the canonical morphism

“ lim
n→∞

” CCε
∗(An) ∼ “ lim

n→∞
” X∗(T An) −→ X∗(T A)
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is then an isomorphism in the derived ind-category. If one is very lucky the
vanishing result of step one carries over to the Banach completions An, n ∈ lN,
so that

“ lim
n→∞

” FilkHodgeCCε
∗(An)

becomes contractible for k >> 0.
3) If one is able to get a good hold of the Banach algebras An, n ∈ lN, con-
structed in step two, one can identify the formal inductive limit

“ lim
n→∞

” CCε
∗(An)/F ilkHodgeCCε

∗(An) ∼ X∗(T A)

(up to chain homotopy equivalence) with a well known small chain complex.
This is how we will proceed in our first example, the algebra of holomorphic
functions on an annulus, where all three steps can be carried out without any
difficulty. In the second example, the C∗-algebra of continuous functions on a
compact metrizable space, there is no really good choice for a dense subalgebra
of finite homological dimension. For special types of spaces like smooth mani-
folds or finite simplicial complexes there are many more or less natural choices
of dense smooth subalgebras. But none of these possess topologically projec-
tive resolutions which allow to carry out the second step above. For a compact
subset X ⊂ lRn the optimal choice seems to take the subalgebra of polynomial
functions in C(X) as dense subalgebra and to take the rings of bounded holo-
morphic functions on a sequence of smaller and smaller Grauert tubes around
X as approximating Banach algebras. But the lack of a nice contracting ho-
motopy of the acyclic Koszul complex on such a tube makes it impossible to
follow the strategy outlined above. We approximate instead a given compact
space by a sequence of smooth compact manifolds with boundary and use the
limit theorem (6.16) to reduce to the case of the algebra of smooth functions
on a manifold. The local cyclic cohomology of these algebras can be calculated
by the diffeotopy invariance and excision property of the theory.
In the third example we finally treat a noncommutative algebra, the reduced
group C∗-algebra C∗

r (Fn) of a finitely generated free group. In this case it is
easy to follow the first two steps outlined above, the dense subalgebra in ques-
tion being obviously the group ring. The third step however cannot be carried
out directly because one has no control of the approximating Banach algebras
constructed in step two. We calculate instead the local cyclic cohomology of
a smooth dense Banach subalgebra A(Fn) of C∗

r (Fn), introduced by Haagerup
[Ha1], which can be done by the strategy outlined above. We refer then to the
smooth subalgebra theorem (3.8) to deduce the corresponding result for the
group C∗-algebra.
We want to make a remark on the possibility of using the outlined strategy
(and in particular the second step of it) in concrete calculations. Suppose that
a dense subalgebra A of finite homological dimension d of a Banach algebra A
is given. If d = 1, i.e. if A is quasifree [CQ], then “ lim

n→∞
” Fild+1

HodgeCCε
∗(An)

will be contractible for any approximating sequence An, n ∈ lN, as constructed
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above (8.8). We want to emphasize however that this is an exceptional phe-
nomenon and usually does not occur in homological dimension d > 1. Take for
example A = `1(Γ), the Banach convolution algebra of a finitely generated dis-
crete group Γ, and choose as dense subalgebra the group ring A = lC[Γ]. Then
the Hochschild homological dimension d of A equals the homological dimension
of the group Γ. The assertion that “ lim

n→∞
” Fild+1

HodgeCCε
∗(An) is contractible

for some d and some approximating sequence (An), n ∈ lN, implies however
that every cohomology class in H∗(Γ, lC) can be represented by group cocycles
which are of subexponential growth with respect to any word metric on Γ, and
this is rarely the case. A notable exception, where the described strategy in
fact works, is the class of hyperbolic and nonpositively curved groups [Pu4],
[Pu5].
It should be noted that in the presented examples the images of the approximat-
ing Banach algebras An, n ∈ lN, are not closed under holomorphic functional
calculus in the ambient Banach algebra A. Dense and holomorphically closed
subalgebras play a central role in K-theory but do not seem to be relevant in
questions related to cyclic cohomology.

8.1 Rings of holomorphic functions on an annulus

Let UR := {z ∈ lC, R−1 < |z| < R}, R > 1, be the R-annulus in the complex
plane. It is known that every domain in lC with infinite cyclic fundamental
group is biholomorphically equivalent to exactly one R-annulus. We consider
the algebra

O(U)R := O(U)R ∩ C(UR)

of holomorphic functions on the annulus which extend continuously to its
boundary. It is a unital Banach algebra with respect to the maximum norm.
We are going to determine the local cyclic cohomology of O(U)R. It is well
known that the Banach algebras O(UR), R > 1, possess the Grothendieck
approximation property and contain the ring of Laurent polynomials as a dense
subalgebra. The algebra O(UR) is a topological direct limit of the family
O(UR′), R′ > R, in the sense of (3.15). Therefore we deduce from the limit
theorem (6.16) that the canonical chain map

Lim
R′→R

X∗T (O(UR′)) −→ X∗T (O(UR))

is an isomorphism in the derived ind-category. One might have the impression
that nothing has been gained by this because a complex which is quite hard
to analyze has been replaced by a limit of similar complexes. It turns out
however that the transition maps in the above limit are quite accessible to
computation. So the limit Lim

R′→R
X∗T (O(UR′)) can be calculated although one

has essentially no information about the individual complexes in the underlying
directed family. Phenomena of this kind often arise in calculations of local cyclic
cohomology groups and show the importance of the approximation and limit
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theorems in explicit computations. In fact these theorems distinguish local
cyclic cohomology among the known cyclic theories.
In order to carry out the computation we need to recall the reduced tensor
algebra and reduced infinitesimal deformations. The reduced tensor algebra of
a unital algebra A is RA := T̃A/(1−ρ(1A)). The functor R(−) is characterized
as the left adjoint of the forgetful functor to the category of unital algebras
with unital linear maps as morphisms. The reduced universal infinitesimal
deformation RA := T̃ A/(1 − ρ(1A)) of a nice unital ind-Fréchet algebra A
is characterized similarly by an obvious universal property. The natural map
of X-complexes of universal deformations X∗(T A) −→ X∗(RA) is a chain
homotopy equivalence.

Lemma 8.1. Let A = lC[z, z−1] be the ring of Laurent polynomials and consider
the norms ‖ ∑

n
anzn ‖r:=

∑
n
|an| · r|n|, r > 1. Let ‖ − ‖r

N,m be the largest

seminorm on the reduced tensor algebra RA satisfying

‖ ρ(zk0)ω(zk1 , zk2) · . . . · ω(zk2n−1 , zk2n) ‖r
N,m ≤ (2 + 2n)m · N−n · rk1+...+k2n

Let ϕ : A → RA be the algebra homomorphism which splits the canonical
projection
π : RA → A and is characterized by

ϕ(z) = ρ(z), ϕ(z−1) = ϕ(z)−1 = ρ(z−1)
∞∑

n=0
ω(z, z−1)n

Then for given r′ > r > 1 there exists N0 >> 0 and constants Cm,m ∈ lN,
such that

‖ ϕ(f) ‖r
N,m ≤ Cm· ‖ f ‖r′

for all f ∈ A and N ≥ N0.

Proof: The straightforward calculation based on the Bianchi-identity
ω(a, a′)ρ(a′′) = ω(a, a′a′′) − ω(aa′, a′′) + ρ(a)ω(a′, a′′) is left to the reader.
2

Lemma 8.2. Denote by R the reduced infinitesimal deformation functor. The
canonical projection

π : Lim
R′→R

R(O(UR′)) −→ “ lim
R′→R

” (O(UR′))

is a diffeotopy equivalence of ind-algebras. Consequently the projection

π∗ : Lim
R′→R

X∗T (O(UR′)) −→ “ lim
R′→R

”X∗(O(UR′))

is a chain homotopy equivalence of ind-complexes.

Proof: Denote by Ar the completion of the algebra A of Laurent polynomials
with respect to the norm ‖ − ‖r introduced in (8.1). It follows from Cauchy’s
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integral formula that the ind-algebra “ lim
R′→R

” (O(UR′)) is canonically isomor-

phic to “ lim
R′→R

” AR′ . By the estimates of the previous lemma the reduced

universal infinitesimal deformation π : Lim
R′→R

R(AR′) −→ “ lim
R′→R

” AR′ pos-

sesses a multiplicative section. Consequently the ind-algebras “ lim
R′→R

” AR′

and “ lim
R′→R

”O(UR′) are topologically quasifree. This implies the first asser-

tion and the second assertion follows from the Cartan homotopy formula for
the X-complexes of quasifree algebras [CQ1] and the fact that the canonical
morphism Lim

R′→R
X∗T (O(UR′)) −→ Lim

R′→R
X∗R(O(UR′)) is a chain homotopy

equivalence. 2

Proposition 8.3. Let O(UR), R > 1, be the Banach algebra of holomorphic
functions on the annulus

UR = {z ∈ lC, R−1 < |z| < R}

which extend continuously to its boundary. Then there is a canonical isomor-
phism

X∗T (O(UR))
'−→ lC

⊕
lC[1]

in the derived ind-category. For any pair of nice ind-Fréchet algebras (A, B)
there are canonical and natural isomorphisms

HCloc
∗ (O(UR) ⊗π A, B) ' HCloc

∗ (A, B) ⊕ HCloc
∗+1(A, B)

and
HCloc

∗ (A, O(UR) ⊗π B) ' HCloc
∗ (A, B) ⊕ HCloc

∗+1(A, B)

of bivariant local cyclic cohomology groups.

Proof: It is not easy to determine the precise structure of the complexes
X∗(O(UR)), R > 1. Using Cauchy’s integral formula and the fact that the
inclusion maps O(UR′) → O(UR′′) for R′ > R′′ > 1 are nuclear, one may
conclude at least that the identity map on the space of algebraic differential
forms over the ring of Laurent polynomials induces an isomorphism of ind-
complexes

“ lim
R′→R

” X∗(O(UR′))
'−→ “ lim

R′→R
” Ω∗

dR(O(UR′))

where Ω∗
dR(O(UR′)) denotes the analytic de Rham complex on the open annulus

O(UR′). It is obvious from de Rham theory that the latter is chain homotopy
equivalent to lC

⊕
lC[1]. So in the end one obtains a chain of isomorphisms

X∗T (O(UR))
'←− Lim

R′→R
X∗T (O(UR′))

'−→ “ lim
R′→R

” X∗(O(UR′))

“ lim
R′→R

” X∗(O(UR′))
'−→ “ lim

R′→R
” Ω∗

dR(O(UR′))
'−→ lC

⊕
lC[1]
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in the derived ind-category. 2

We note that neither the periodic, nor the analytic or asymptotic cyclic co-
homology groups of the algebras O(UR) seem to be known. The analytic and
asymptotic cyclic homology groups on the other hand coincide of course with
the local ones computed here.
Thus in the example considered above the existence of a dense subalgebra of
A of finite (Hochschild)-homological dimension d = 1 implies the contractabil-
ity of the limit Lim

n→∞
Fild+1

HodgeCCan
∗ (An) in an approximating sequence An of

Banach subalgebras of A. It should be noted that this phenomenon is rather
exceptional and in some sense peculiar to subalgebras of homological dimension
at most one (quasifree algebras).

8.2 Commutative C∗-algebras

As another example we calculate the bivariant local cyclic cohomology of sep-
arable commutative C∗-algebras (see also [Pu], Chapter 11). It would be nice
to apply directly the computational methods developed in this paper. Despite
serious efforts I was not able to do this and therefore we have to refer in addi-
tion to the excision property [Pu2] of local cyclic cohomology. Using excision
we obtain

Proposition 8.4. Let M be a smooth compact manifold with (possibly empty)
boundary. Then there is a natural chain homotopy equivalence

CCan
∗ (C∞(M))

∼−→ H∗(M, lC)

from the analytic cyclic bicomplex of C∞(M) to the ZZ/2ZZ-graded sheaf coho-
mology groups of M , viewed as complex with vanishing differentials.

Proof: We proceed in several steps.

• Let (M,∂M) be a smooth compact Riemannian manifold with boundary
and let C∞(M,∂M) respectively C∞

0 (M,∂M) be the algebras of smooth
functions on M vanishing along ∂M , respectively vanishing of infinite
order along ∂M . We claim that the inclusion

C∞
0 (M,∂M) ↪→ C∞(M,∂M)

is a diffeotopy equivalence and that the induced morphism

Ω∗
dR(M,∂M) −→ Ω0,dR(M,∂M)

of the associated de Rham complexes is a chain homotopy equivalence. In
fact let ϕ : lR+ → lR+ be a strictly monotone increasing smooth homeo-
morphism of the real halfline which is a diffeomorphism outside the origin,
equals the identity outside [0, 1], and has vanishing Taylor series at the
origin. An open tubular neighborhood W of ∂M in M can be identified

Documenta Mathematica 8 (2003) 143–245



230 Michael Puschnigg

with ∂M × lR+. One can extend the smooth homeomorphism Id × ϕ of
∂M × lR+ to a smooth homeomorphism ψ of M by putting it equal to the
identity outside W . The algebra homomorphism ψ∗ : C∞(M) −→ C∞(M)
maps C∞(M,∂M) to C∞

0 (M,∂M) and is obviously an inverse to the in-
clusion C∞

0 (M,∂M) ↪→ C∞(M,∂M) up to diffeotopy. By applying the
Cartan homotopy formula one obtains the corresponding statement for
the de Rham complexes.

• Let (M,∂M) be a smooth compact n-dimensional manifold with (possibly
empty) boundary ∂M . We assume without loss of generality that M is
connected.

Every appropriate Morse function on M provides a filtration

Dn = M0 ⊂ M1 ⊂ . . . ⊂ Mj = M

such that for i = 0, . . . , j − 1

– Mi is a codimension 0 submanifold with corners of M which does
not intersect the boundary ∂M .

– The extension of nice nuclear Fréchet algebras

0 → C∞(Mi+1,Mi) → C∞(Mi+1) → C∞(Mi) → 0

possesses a bounded linear section.

–

C∞
0 (Mi+1,Mi) ' C∞

0 (Dk × Dn−k, ∂(Dk) × Dn−k)

' C∞
0 (Dk, ∂(Dk)) ⊗π C∞(Dn−k)

• Suppose that a filtration of (M,∂M) as constructed before is given. We
show by induction over i that the canonical chain map

CCan
∗ (C∞(M)) −→ Ω∗

dR(M)

obtained by antisymmetrization of differential forms [Co] is a chain ho-
motopy equivalence. Consider the commutative diagram

CCan
∗ (C∞(Mi+1,Mi)) → CCan

∗ (C∞(Mi+1)) → CCan
∗ (C∞(Mi))

↓ ↓ ↓

Ω∗
dR(Mi+1,Mi) → Ω∗

dR(Mi+1) → Ω∗
dR(Mi)

of complexes. By the excision theorem in analytic cyclic (co)homology
[Pu2] the upper line is a distinguished triangle. The lower line is an
exact sequence of complexes with bounded linear section and is thus a
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distinguished triangle as well. By the properties of the filtration of M ,
the induction hypothesis, and the five lemma it suffices to verify that

CCan
∗ (C∞(Dn)) −→ Ω∗

dR(Dn)

and
CCan

∗ (C∞
0 (Dk × Dn−k, ∂(Dk) × Dn−k))

↓

Ω∗
0,dR(Dk × Dn−k, ∂(Dk) × Dn−k)

are chain homotopy equivalences. By the Cartan homotopy formulas for
the analytic cyclic bicomplex and the de Rham complex the last statement
is equivalent to the assertion that

CCan
∗ (C∞

0 (Dk, ∂(Dk))) −→ Ω∗
0,dR(Dk, ∂(Dk))

is a chain homotopy equivalence. This follows however from a simple
induction over k making use of the Cartan homotopy formulas, excision
in analytic cyclic cohomology, and the arguments in the first part of this
demonstration.

• The classical theorems of de Rham and Hodge imply that for a smooth
compact manifold without boundary there is a chain homotopy equiva-
lence Ω∗

dR(M)
∼−→ H∗(M, lC) where H∗(M, lC) is viewed as complex with

zero differentials. We present here the proof of A. Weil which neatly cov-
ers the case of manifolds with boundary. Choose a Riemannian metric on
M and let U = (U0, . . . , Uk) be a finite open cover of M by geodesically
convex balls (semiballs) such that no ball with center in the interior meets
the boundary of M . Consider the bicomplex

Čpq(U ,Ω∗) :=
∏

i0<...<ip

Ωq
dR(Ui0 ∩ . . . ∩ Uip

)

with differentials given by the Čech-differential in the horizontal and the
de Rham differential in the vertical direction. On the one hand there is
a canonical embedding Ω∗

dR(M) ↪→ Č∗(U ,Ω∗) into the first column of
Č∗(U ,Ω∗) given by restriction of differential forms. The fact that sheaves
of differential forms are fine allows to deduce that Ω∗

dR(M) becomes a re-
tract of Č∗(U ,Ω∗). On the other hand there is a canonical embedding
Č∗(U , lC) ↪→ Č∗(U ,Ω∗) of the Čech complex of U with coefficients in the
constant sheaf lC into the first line of Č∗(U ,Ω∗). The fact that any inter-
section of the balls Ui, 0 ≤ i ≤ k, is geodesically convex and the Cartan
homotopy formula show, that Č∗(U , lC) is a retract of Č∗(U ,Ω∗) as well.
Therefore the de Rham complex Ω∗

dR(M) is chain homotopy equivalent
to the finite dimensional complex Č∗(U , lC) and in particular to the com-
plex with vanishing differentials given by the cohomology of the latter
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one. As U is a Leray cover the cohomology of Č∗(U , lC) coincides with
H∗(M, lC). Altogether we have shown that the analytic cyclic bicomplex
CCan

∗ (C∞(M)) of C∞(M) is chain homotopy equivalent to the complex
with vanishing differentials H∗(M, lC) given by the ZZ/2ZZ-graded sheaf
cohomology of M with coefficients in lC. The naturality of the chain map
is clear.

2

Proposition 8.5. Let X be a compact metrizable space and let C(X) be the
C∗-algebra of continuous functions on X.

a) There exists a projective system (Mn, ∂Mn), n ∈ lN, of smooth manifolds
(with boundary) and smooth maps, and a continuous map

lim
←−

fn : X −→ “ lim
←−

”(Mn, ∂Mn)

such that the family { f−1
n (Un), Un ⊂ Mn open, n ∈ lN } forms a basis of

the topology of X and such that the induced morphism

“ lim
n→∞

” C∞(Mn) −→ C(X)

satisfies the assumptions of the limit theorem (6.16).

b) There is an isomorphism

“ lim
n→∞

”H∗(Mn, lC)
'−→ X∗T (C(X))

in the derived ind-category. Here H∗(Mn, lC) denotes the sheaf cohomol-
ogy of Mn, viewed as ZZ/2ZZ-graded complex with zero differentials.

c) If A is a nice ind-Fréchet algebra, then there is a similar isomorphism

“ lim
n→∞

”H∗(Mn, lC) ⊗ X∗T (A)
'−→ X∗T (C(X, A))

in the derived ind-category, which is natural in A.

Proof: It is well known that the Gelfand transform, which assigns to a
commutative C∗-algebra its spectrum, defines an antiequivalence between
the category of commutative C∗-algebras and the category of locally com-
pact Hausdorff spaces. Under the Gelfand transform separable algebras cor-
respond to metrizable spaces. Let X be a compact metrizable space, let
A = C(X) be the separable C∗-algebra of continuous functions on X, and
let (an), n ∈ lN, a0 = 1, be a countable system of selfadjoint elements gener-
ating a dense involutive subalgebra of A. For each n ∈ lN let An ⊂ A be the
C∗-subalgebra generated by {a0, . . . , an}. Then A = lim

n→∞
An as C∗-algebras.

The map in : Sp(An) ↪→ lRn, which associates to a character χ ∈ Sp(An)
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the n-tuple (χ(a1), . . . χ(an)) defines a faithful embedding of Sp(An) into eu-
clidean n-space. Denote by Xn its image. Then πn+1(Xn+1) = Xn where
πn+1 : lRn+1 → lRn is the projection onto the first n coordinates. Let finally
Mn be a family of smooth manifolds with boundary satisfying the following
conditions for all n ∈ lN:

• Mn is a smooth codimension zero submanifold with boundary of lRn.

•
◦

Mn is an open neighborhood of Xn

• Mn is contained in a 1
n -neighborhood of Xn.

• πn+1(Mn+1) ⊂ Mn.

It is then clear that the family (Mn) satisfies the second assertion of part
a) of the proposition. Let (Un), n ∈ lN, be a countable family of finite open
covers of X such that

⋃
n {U, U ∈ Un} forms a basis of the topology of X

and choose for each n a partition of unity subordinate to Un. If one takes as
a countable generating system for C(X) the family of functions occurring in
these partitions of unity, then a corresponding family of manifolds will also
satisfy the first claim. Assertion b) is just a special case of c) which we show
now. Let A = “ lim

−→
i∈I

” Ai be a nice ind-Fréchet algebra. Then for fixed i ∈ I the

morphism
lim

n→∞
C∞(Mn, Ai) −→ C(X,Ai)

satisfies the conditions of theorem (6.16). Consequently, the isomorphism cri-
terion (2.9) applies to the morphism

Lim
n→∞

X∗T (C∞(Mn, Ai)) −→ X∗T (C(X,Ai))

We deduce therefore from proposition (2.10) that the canonical morphism of
ind-complexes

Lim
n→∞

X∗T (C∞(Mn,A)) ' Lim
−→
i∈I

(
Lim
n→∞

X∗T (C∞(Mn, Ai))
)

−→

−→ Lim
−→
i∈I

(X∗T (C(X,Ai))) ' X∗T (C(X,A))

is an isomorphism in the derived ind-category. By the Eilenberg-Zilber theorem
for cyclic complexes, [Pu3] and (5.16), there is a chain homotopy equivalence
of ind-complexes

Lim
n→∞

X∗T (C∞(Mn,A)) ' Lim
n→∞

X∗T (C∞(Mn)) ⊗π X∗T (A)

The previous proposition and (2.10) show then that in the derived ind-category
there are isomorphisms

Lim
n→∞

X∗T (C∞(Mn)) ⊗π X∗T (A)
'−→
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Lim
n→∞

(H∗(Mn, lC) ⊗π X∗T (A)) '
(
“ lim

n→∞
” H∗(Mn, lC)

)
⊗ X∗T (A)

Altogether one obtains the desired isomorphism

(
“ lim

n→∞
” H∗(Mn, lC)

)
⊗ X∗T (A)

'−→ X∗T (C(X,A))

Its naturality is obvious. 2

Theorem 8.6. Let X,Y be locally compact metrizable spaces and let
C0(X), C0(Y ) be the corresponding C∗-algebras of continuous functions van-
ishing at infinity. For a locally compact space denote by H∗

c (−,F) its sheaf
cohomology with compact supports and coefficients in the sheaf F .

a) The even(odd) local cyclic homology groups of C0(X) are naturally iso-
morphic to the direct sum of the even(odd) sheaf cohomology groups of X
with compact supports and complex coefficients

HCloc
∗ (C0(X))

'−→ ⊕
n∈ZZ

H∗+2n
c (X, lC)

b) The even(odd) local cyclic cohomology groups of C0(X) are naturally iso-
morphic to the direct product of the even(odd) Borel-Moore homology
groups of X with compact supports and complex coefficients [BM]

HC∗
loc(C0(X))

'−→ ∏
n∈ZZ

Hc
∗+2n(X, lC)

c) The even(odd) bivariant local cyclic cohomology groups of the pair
(C0(X), C0(Y )) are naturally isomorphic to the space of even(odd) linear
maps from the direct sum of the sheaf cohomology groups of X with com-
pact supports and complex coefficients to corresponding direct sum of the
sheaf cohomology groups of Y

HCloc
∗ (C0(X), C0(Y )) ' Hom∗

(⊕

n∈ZZ

H∗+2n
c (X, lC),

⊕

m∈ZZ

H∗+2m
c (Y, lC)

)

d) Let A be a nice ind-Fréchet algebra. Then there is a natural isomorphism

HCloc
∗ (C0(X,A))

'−→ ⊕
n∈ZZ

H∗+2n
c (X,HCloc

∗ (A))

which identifies the local cyclic homology groups of the ind-algebra of A-
valued continuous functions on X vanishing at infinity with the direct
sum of the sheaf cohomology groups of X with compact supports and co-
efficients in the constant sheaf HCloc

∗ (A).
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e) Let B be a further nice ind-Fréchet algebra. Then there is a natural
isomorphism

HCloc
∗ (C0(X,A), B)

'−→ Hom∗
( ⊕

n∈ZZ

H∗+2n
c (X, lC),HCloc

∗ (A,B)

)

There is a certain asymmetry in the statements concerning homology and co-
homology which is due to the fact, that maps from but not into a direct limit
are characterized by a universal property.
For the proof we will need the

Lemma 8.7. Let C, C′ be ZZ/2ZZ-graded ind-complexes of complete, locally con-

vex vector spaces. Suppose that C = “ lim
−→
i∈I

”C
(i)
∗ is a formal inductive limit

of finite dimensional complexes C
(i)
∗ with vanishing differentials and that C′

is colocal (see (6.1)) with respect to the nullsystem of weakly contractible ind-
complexes. Then the following holds

a) The ind-complex C ⊗π C′ is N -colocal.

b) For any ind-complex C′′ there is a natural isomorphism

Mor∗Ho(C ⊗π C′, C′′) ' Mor∗V ect(lim−→
i∈I

C
(i)
∗ , Mor∗Ho(C′, C′′))

where on the right hand side the morphisms are taken in the category
V ect of abstract ZZ/2ZZ-graded vector spaces.

Proof: Let C′ = “ lim
−→
j∈J

” C
(j)

∗ , C′′ = “ lim
−→

k∈K

” C
(k)

∗ be ind-complexes. Then

Mor∗Ho(C ⊗π C′, C′′) = H∗(lim
←−
I×J

lim
−→
K

Homcont(C
(i) ⊗ C

(j)
, C

(k)
))

= H∗(lim
←−
I×J

lim
−→
K

HomV ect(C
(i), Homcont(C

(j)
, C

(k)
))

= H∗(HomV ect(lim
−→
I

C(i), lim
←−
J

lim
−→
K

Homcont(C
(j)

, C
(k)

) )

because the complexes C(i), i ∈ I, are finite dimensional

= Hom∗
V ect(lim−→

I

C(i), H∗(lim
←−
J

lim
−→
K

Homcont(C
(j)

, C
(k)

) ))

because the differentials of the complexes C(i), i ∈ I, vanish

= Hom∗
V ect(lim−→

I

C(i), Mor∗Ho(C′, C′′))
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which proves the second assertion. If C′ happens to be N -colocal, then for
weakly contractible ind-complexes C′′ one has Mor∗Ho(C′, C′′) = 0 so that
Mor∗Ho(C ⊗π C′, C′′) = 0 by the previous calculation. This implies the first
assertion. 2

Proof of theorem (8.6):
Let X and Y be compact metrizable spaces and let A,B be nice ind-Fréchet
algebras. We begin by calculating the local cyclic cohomology of the pair
(C(X,A), B). Let (Mn)n∈lN be an approximating family of manifolds for X as
constructed in (8.5). Then the projection maps fn : X → Mn give rise to an
isomorphism

lim
n→∞

H∗(Mn, lC) ' lim
n→∞

H∗(Č(Mn, lC)) ' H∗( lim
n→∞

Č(Mn, lC))

' H∗(Č(X, lC)) ' H∗(X, lC)

by (8.5) a) where Č(−, lC) denotes the Čech-complex calculating the co-
homology of the constant sheaf lC. According to proposition (8.5) there
is an isomorphism X∗T (C(X,A)) ' “ lim

n→∞
” H∗(Mn, lC) ⊗π X∗(T A) in

the derived ind-category. Let P(X∗(T A)) be an N -colocal model of
X∗(T A). Then “ lim

n→∞
” H∗(Mn, lC) ⊗π P(X∗(T A)) is an N -colocal model of

“ lim
n→∞

” H∗(Mn, lC)⊗π X∗(T A) by (8.7), (6.5) and (2.10). With these remarks

in mind one finds

HCloc
∗ (C(X,A), B) = MorD(X∗(T C(X,A)), X∗(T B))

= MorD(“ lim
n→∞

”H∗(Mn, lC) ⊗π X∗(T A), X∗(T B))

= MorHo(“ lim
n→∞

” H∗(Mn, lC) ⊗π P(X∗(T A)), X∗(T B))

= Hom∗
V ect( lim

n→∞
H∗(Mn, lC), MorHo(P(X∗(T A)), X∗(T B)))

by lemma (8.7)

= Hom∗
V ect( lim

n→∞
H∗(Mn, lC), MorD(X∗(T A), X∗(T B)))

= Hom∗
V ect( lim

n→∞
H∗(Mn, lC), HCloc

∗ (A, B))

= Hom∗
V ect(H

∗(X, lC), HCloc
∗ (A, B))

where H∗(X, lC) =
⊕

n H∗+2n(X, lC) is the ZZ/2ZZ-graded sheaf cohomology of
X with coefficients in lC. For d) one finds similarly

HCloc
∗ (C(X,A)) = MorD( lC, X∗(T C(X,A)))

' MorD( lC, “ lim
n→∞

” H∗(Mn, lC) ⊗π X∗(T A))

' lim
n→∞

H∗(Mn, lC) ⊗ MorD( lC, X∗(T A))
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' lim
n→∞

H∗(Mn, lC) ⊗ HCloc
∗ (A) ' H∗(X, HCloc

∗ (A))

Finally assertion c) follows from d) and e) by taking A = lC, B = C(Y ) while a)
and b) are special cases of c). This establishes the theorem for compact spaces.
The locally compact case follows easily by using the excision property of local
cyclic cohomology.

2

8.3 Reduced C∗-algebras of free groups

We will calculate the local cyclic cohomology of the reduced group C∗-algebra
of a finitely generated free group. (See also [Pu], Chapter 11.)
Let Fn be a free group on n generators. The action by left translation induces
a unitary action on the Hilbert space H = `2(Fn) of square integrable func-
tions. Consider the corresponding representation of the group algebra lC[Fn]
on H. The enveloping C∗-algebra of its image is the reduced group-C∗-algebra
C∗

r (Fn). It is well known that C∗
r (Fn) possesses the Grothendieck approxima-

tion property [Ha1]. So we can make use of the approximation theorem (6.13).
Moreover the dense subalgebra lC[Fn] is quasifree [CQ]. The formal part of our
calculation is the content of

Lemma 8.8. Let R be a dense, finitely generated, unital, and quasifree sub-
algebra of the nice Fréchet algebra A with open unit ball U . Suppose that A
possesses the Grothendieck approximation property. Let V be a finite dimen-
sional subspace containing 1 and generating R as an algebra and denote by
An the completion of R with respect to the largest submultiplicative seminorm
satisfying ‖ V n∩U ‖≤ 1+ 1

n . Then the canonical morphisms of ind-complexes

“ lim
n→∞

”X∗(An)
'←− Lim

n→∞
X∗(T An)

'−→ X∗(T A)

are isomorphisms in the derived ind-category.

Proof: Because R is quasifree, there exists a connection ∇ in the sense of
Cuntz-Quillen [CQ] on Ω1R. It extends to a connection on Ω+R by the for-
mula ∇(a0da1 . . . dan) := a0∇(da1)da2 . . . dan. A connection gives rise to a

contracting chain homotopy of the subcomplex Fil2HodgeĈC∗(R) of the periodic

cyclic bicomplex of R, which is given by the formula h =
∞∑

k=0

(−∇◦B)k ◦∇, as

well as to an explicit linear section s of the quotient map p : ĈC∗(R) → X∗(R)
satisfying s ◦ p = Id − b ◦ ∇ on forms of degree one. Under the assump-
tions of the lemma these linear maps extend for given n to bounded lin-
ear operators h : Fil2HodgeCCan

∗ (An) −→ Fil2HodgeCCan
∗+1(An′) respectively

s : X∗(An) −→ CCan
∗ (An′), n′ >> n. In order to show this one writes ev-

ery element of R as a linear combination of products of a finite generating set
S ⊂ V ∩ U and makes use of the formula

∇(d(s1 . . . sN )) =
∑

s1 . . . sk−1∇(dsk)sk+1 . . . sN

+
∑

s1 . . . sk−1dskd(sk+1 . . . sN )
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Note that because the elements s1, . . . , sN belong to a finite subset of R, the
differential forms ∇(dsk) ∈ Ω2R are finite in number. Details of the straight-
forward calculation can be found in [Pu], (11.22), (11.23). It follows from this
result that Lim

n→∞
CCan

∗ (An) ∼ Lim
n→∞

X∗(T An) −→ “ lim
n→∞

” X∗(An) is a chain

homotopy equivalence of ind-complexes. This establishes the first part of the
assertion. The second part follows from the limit theorem (6.16). 2

Unfortunately it is often difficult to apply this result directly because one has
no information about the auxiliary algebras An used in the lemma. In the case
A = C∗

r (Fn), R = lC[Fn], I do not see how to calculate the homology of the
complexes X∗(An) directly. It seems therefore to be preferable to pass first
of all to a sufficiently large but well understood Banach subalgebra of C∗

r (Fn)
containing lC[Fn], and to apply the previous lemma to the latter subalgebra.
Such a good Banach subalgebra has been constructed by Haagerup [Ha1].

Proposition 8.9. (Haagerup) Let Fn be a free group on n generators s1, . . . sn

and let | − |S be the corresponding word length function. Let A(Fn) be the
completion of the group ring lC[Fn] with respect to the seminorms

‖
∑

agug ‖2
k =

∑
|ag|2 · (1 + |g|S)2k, k ∈ lN,

Then A(Fn) is a nice Fréchet subalgebra of the reduced group C∗-algebra
C∗

r (Fn). Moreover it coincides with the domain of an unbounded derivation
on C∗

r (Fn).

Applying the smooth subalgebra theorem (3.8) and lemma (8.8), we deduce
from Haagerup’s result

Proposition 8.10. Let Fn be a free group on n generators s1, . . . , sn. Let
A(Fn) be the associated Haagerup algebra and let V be the linear span of
s±1
1 , . . . , s±1

n in lC[Γ] ⊂ A(Fn). Let Ak(Fn) be the Banach subalgebras of A(Fn)
introduced in lemma (8.8). Then there is an isomorphism

“ lim
k→∞

”X∗(Ak(Fn)) ' X∗(T C∗
r (Fn))

in the derived ind-category.

Lemma 8.11. In the notations of 8.10 the continuous linear map

Ak(Fn)n −→ X1(Ak(Fn))

(a1, . . . , an) −→ a1ds1 + . . . + andsn

induces an isomorphism

“ lim
k→∞

”Ak(Fn)n '−→ “ lim
k→∞

”X1(Ak(Fn))

of ind-Fréchet spaces.
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Proof: We use the notations of (8.8) and (8.10). Let ∇ be the unique con-
nection on Ω1( lC[Fn]) satisfying ∇(dsi) = 0 for i = 1, . . . , n. The image of the
associated linear embedding s : X1( lC[Fn]) −→ Ω1( lC[Fn]) coincides then with
the subspace (Id − b ◦ ∇)Ω1( lC[Fn]) = lC[Fn]ds1 + . . . + lC[Fn]dsn of Ω1( lC[Fn]).
The lemma follows from the fact (8.8) that s extends to a bounded morphism
“ lim

k→∞
”X1(Ak(Fn)) −→ “ lim

k→∞
” Ω1Ak(Fn) of ind-Fréchet spaces (8.8). 2

From now on this identification of “ lim
k→∞

” X1(Ak(Fn)) will be understood. We

determine the homotopy type of the ind-complex “ lim
k→∞

” X∗(Ak(Fn)) in two

steps.

Lemma 8.12. Let Fn be a free group on n generators s1, . . . , sn.
Let h′ : X∗( lC[Fn]) → X∗+1( lC[Fn]) be the linear operator which vanishes on X1

and maps the element g ∈ Fn ⊂ lC[Fn] = X0( lC[Fn]) to uvd(u−1) ∈ X1( lC[Fn])
if g = uvu−1 is the unique reduced presentation of g in terms of the generators
s±1
1 , . . . , s±1

n such that the first letter of v is different from the inverse of its
last letter.

a) The operator π′ := Id− (h′ ◦ ∂ + ∂ ◦ h′) defines a deformation retraction
of X∗( lC[Fn]) onto the direct sum X ′

∗( lC[Fn])hom

⊕
X ′

∗( lC[Fn])inhom of the
following subcomplexes. The finite dimensional subcomplex X ′

∗( lC[Fn])hom

which is given by the linear span of 1 ∈ X0( lC[Γ]) and the finite set
{s−1

i dsi, i = 1, . . . , n} ⊂ X1( lC[Γ]). It has vanishing differential and
is thus isomorphic to the ZZ/2ZZ-graded vector space H∗(Fn, lC), viewed as
trivial chain complex. The subcomplex X ′

∗( lC[Fn])inhom which is given
by the linear span of the nontrivial elements g ∈ Fn ⊂ X0( lC[Fn]),
for which the first letter of the reduced word representing g is differ-
ent from the inverse of its last letter, and of the elements of the form
g′dsi, g′′d(s−1

i ) ∈ X1( lC[Fn]), i = 1, . . . , n such that the first and last let-
ter of the reduced word representing g′ (respectively g′′) is different from
s−1

i (respectively si).

b) The operator π′ is continuous in the sense that it gives rise to a defor-
mation retraction of completed complexes

“ lim
k→∞

”X ′
∗(Ak(Fn))hom

π′ : “ lim
k→∞

”X∗(Ak(Fn)) −→ ⊕
“ lim

k→∞
”X ′

∗(Ak(Fn))inhom

This follows from a straightforward calculation.

Lemma 8.13. There is an isomorphism of ind-complexes

“ lim
k→∞

”X ′
∗(Ak(Fn))hom ' H∗(Fn, lC) ' lC ⊕ lCn[1]

whereas the ind-complex “ lim
k→∞

”X ′
∗(Ak(Fn))inhom is contractible.
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Proof: We show the second assertion, the first being obvious from the def-
initions made in (8.12). Let g, g′dsi, g′′ds−1

i , (g, g′, g′′ ∈ Fn) be generating
elements of the complex X ′

∗( lC[Fn])inhom and suppose that they are repre-
sented by reduced words. Then there occur no cancellations under multipli-
cation of (g′, si) → g′si and (g′′, s−1

i ) → g′′s−1
i and under cyclic permuta-

tions of the letters of g, g′si and g′′s−1
i . Due to this the underlying spaces

of the complex X ′
∗( lC[Fn])inhom can be interpreted as subspaces of the ten-

sor algebra over the vector space with basis s±1
1 , . . . , s±1

n and the differentials
can be described in terms of the action of the appropriate cyclic group on
the tensor powers of the basis elements. Thus one finds that the differential
∂0 : X ′

0( lC[Fn])inhom → X ′
1( lC[Fn])inhom corresponds to the cyclic averaging op-

erator N and that the differential ∂1 : X ′
1( lC[Fn])inhom → X ′

0( lC[Fn])inhom cor-
responds to the operator 1−T where T generates the cyclic action. This shows
that X ′

∗( lC[Fn])inhom is acyclic, i.e. has vanishing homology. A contracting
homotopy operator can be given on generating elements of length n + 1 by the
formulas h′′

0 = 1
n+1 (Tn−1+2Tn−2+. . .+(n−1)T+1), respectively h′′

1 = 1
n+1 ·1.

A simple calculation shows that this contracting homotopy operator is continu-
ous with respect to the topology of the ind-complex “ lim

k→∞
” X ′

∗(Ak(Fn))inhom,

whence the result. 2

We can summarize now what we have obtained in the following

Theorem 8.14. a) Let Fn be a free group on n generators and let C∗
r (Fn)

be its reduced group C∗-algebra. Then there is a canonical isomorphism

X∗(T C∗
r (Fn))

'←− H∗(Fn, lC) ' lC
⊕

lCn[1]

in the derived ind-category.

b) Let F ′, F ′′ be finitely generated free groups and let A, B be nice ind-
Fréchet algebras. Then there is a canonical isomorphism between

HCloc
∗ (C∗

r (F ′) ⊗π A, C∗
r (F ′′) ⊗π B)

and
Hom∗(H∗(F

′, lC), H∗(F
′′, lC)) ⊗ HCloc

∗ (A, B)

which is natural in A and B.

Proof: The first assertion follows from (8.10), (8.12) and (8.13). The
Eilenberg-Zilber theorem for cyclic bicomplexes provides a chain homotopy
equivalence (5.16)

X∗(T (C∗
r (F ) ⊗π A))

'−→ X∗(T (C∗
r (F )) ⊗π X∗(T A)

A careful look at the morphism X∗(T C∗
r (Fn))

'←− H∗(Fn, lC) of the first asser-
tion shows that it is the composition of a morphism with weakly contractible
mapping cone and a series of chain homotopy equivalences. Therefore its map-
ping cone is weakly contractible. Thus the isomorphism criterion (2.10) applies
to the chain map H∗(Fn, lC)⊗X∗(T A) −→ X∗(T (C∗

r (F ))⊗π X∗(T A) showing
that the latter is an isomorphism in the derived ind-category. 2
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8.4 n-traces and analytic traces on Banach algebras

In his monumental paper [Co3] Alain Connes introduced a special type of
densely defined unbounded cyclic cocycles on Banach algebras, called n-traces.
Every n-trace defines an additive functional on the K-theory of the underlying
algebra, and represents thus a sensitive tool to detect nontrivial elements in
K-groups. In [Co3] it is asked whether n-traces can be viewed as cocycles of
a suitable cohomology theory and in particular how to define a cohomology
relation between n-traces. We give here a partial answer for algebras with
approximation property. This was inspired by a remark of Alain Connes.
First we recall the

Definition 8.15. Let A be a Banach algebra.

a) (A. Connes) [Co3]
An n-trace on A is a cyclic n-cocycle τ : ΩnA → lC on a dense subalgebra
A of A such that for any a1, . . . , an ∈ A there exists C(a1, . . . , an) < ∞
such that

|τ((x1da1) · (x2da2) · . . . · (xndan))| ≤ C(a1, . . . , an) · ‖x1‖A · . . . · ‖xn‖A

for all xi ∈ A.

b) An analytic trace on A is a cocycle τ ′ on the cyclic bicomplex CC∗(A) of
a dense subalgebra A of A, such that for every finite subset S ⊂ A there
exist constants Cn(S), n ∈ lN, satisfying

|τ ′((x1da1) · (x2da2) · . . . · (xndan))| ≤ Cn(S) · (n

2
)! · ‖x1‖A · . . . · ‖xn‖A

for all x1, . . . , xn ∈ A, a1, . . . , an ∈ S and

lim
n→∞

Cn(S)
1
n = 0

In particular every n-trace is analytic.

Now our result is

Theorem 8.16. Let A be a separable Banach algebra with approximation prop-
erty. Then every analytic trace τn on A defines a unique local cyclic cohomology
class

[τn] ∈ HCn
loc(A)

The linear functional on Kn(A) associated to τn by [Co3] coincides with the
Chern character pairing (5.17) with the class [τn] in local cyclic cohomology.

Proof: Let τ be an analytic trace on A. Denote by A its dense domain
of definition and let 0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vm ⊂ . . . be a chain of finite
dimensional subspaces of A whose union is a dense subalgebra of A. Following
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(6.13) choose strictly monotone decreasing sequences (λn), (rn), n ∈ lN, such
that lim

n→∞
λn = 1 and lim

n→∞
rn = 0, and denote by An the completion of

the subalgebra A[Vn] of A ⊂ A generated by Vn with respect to the largest
submultiplicative seminorm satisfying ‖ Vn ∩U ‖≤ λn (U the open unit ball of
A). Denote by (TAn)(rn) the completed tensor algebras introduced in (1.22).

We claim that the analytic trace τ defines a cocycle on the ind-complex

“ lim
n→∞

” X∗((TAn)rn)

The natural inclusions of algebras TA[V1] ⊂ . . . ⊂ TA[Vn] ⊂ . . . ⊂ TA induce
chain maps lim

n→∞
X∗(TA[Vn]) −→ lim

n→∞
CC∗(A[Vn]) −→ CC∗(A) where the

first chain map is the normalized Cuntz-Quillen projection. The analytic trace
yields therefore a cocycle τ ′ ∈ lim

←−
n

X∗(TA[Vn]) and it remains to check that τ ′

is continuous, i.e. extends to a functional on the completion X∗((TAn)rn) of
X∗(TAn). As the Cuntz-Quillen projection is continuous ([Pu], 5.25) it suffices
to prove the estimates

|τ(a0da1 . . . dak)| ≤ C(m) · (k

2
)! · (rn)

k
2

for some constant C(m) and all k ∈ lN, a0, . . . , ak ∈ K∞
n , the multi-

plicative closure of Kn := Vn ∩ λ−1
n U ⊂ A. The set Kn ⊂ Vn being

bounded, there exist finitely many elements c1, . . . , cl ∈ Vn such that Kn

is contained in the circled convex hull of S := {c1, . . . , cl}. The estimate
|φk((x1da1) · . . . · (xkdak))| ≤ Ck(S) · (k

2 )! · ‖x1‖ · . . . · ‖xk‖ for all x1, . . . , xk ∈ A

and a1, . . . , ak ∈ Kn follows. Let now a1, . . . , ak ∈ K∞
n . This means that these

elements can be written as products aj = b1
j . . . b

lj
j with bi

j ∈ Kn. In particu-

lar daj = Σ
lj
i=1b

1
j . . . bi−1

j dbi
jb

i+1
j . . . b

lj
j . As by construction ‖Kn‖A ≤ λ−1

n the
continuity property i) of the analytic trace implies

|τ(a0da1 . . . dak)| ≤ (Πk
j=1lj) · λ

−(Σk
j=1lj−k)

n · (k

2
)! · Ck(S)

≤ (
k

2
)! · Ck(S) · (λn)k · Πk

j=1lj(λn)−lj ≤ (
k

2
)! · Ck(S) · C(λn)k

for a suitable constant C(λn) and all k.

Because (Ck(S)
1
k · r−1

n · C(λn))k ≤ C ′(n) by condition ii), one has

|τ(a0da1 . . . dak)| ≤ C ′(n) · (k

2
)! · rk

n

for all k, and the claim follows. Thus τ defines an element of

Mor∗Ho(“ lim
n→∞

” X∗((TAn)rn), lC)
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As the canonical morphism

“ lim
n→∞

” X∗((TAn)rn) −→ X∗(T A)

is an isomorphism in the derived ind-category by the approximation theorem
(6.13), the analytic trace τ defines a cohomology class

[τ ] ∈ Mor∗D(“ lim
n→∞

” X∗((TAn)rn), lC) ' Mor∗D(X∗(T A), lC) = HC∗
loc(A)

This establishes the theorem.
2
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Abstract. Dans tout cet article, on désigne par k un corps de ca-
ractéristique différente de 2 et on appelle variété tout k-schéma séparé
et de type fini.

L’objet du présent article est d’étudier X (α1) et X (α2), les variétés
homogènes projectives associées à chacune des deux racines d’un
groupe de type G2. La première d’entre elles, X (α1), est une quadrique
projective de dimension 5 associée à une voisine de Pfister et l’autre,
X (α2), est une variété de Fano (de genre 10). Ces deux variétés ne sont
pas isomorphes, pourtant elles le deviennent en tant qu’objets d’une
catégorie plus large, à savoir la catégorie des correspondances (et par
conséquent également dans la catégorie des motifs de Chow). Nous
établissons que ce résultat est vrai que les variétés soient déployées
ou non. En première partie, nous rappelons quelques résultats clas-
siques sur les algèbres d’octonions et construisons un modèle d’algèbre
d’octonions déployée. En seconde partie, étape importante de notre
travail, nous construisons une structure cellulaire de X (α2) lorsqu’elle
est déployée. C’est également dans cette partie que nous déterminons
la structure de l’anneau de Chow déployé de la variété X (α2). En-
fin, en troisième partie, après avoir introduit nos notations et rappelé
les résultats nécessaires sur la catégorie des correspondances, nous
établissons l’isomorphisme motivique en toute généralité.

2000 Mathematics Subject Classification: 14C15, 14C25, 20G15.
Keywords and Phrases: variétés homogènes projectives, correspon-
dance, groupes de Chow
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Première partie
Rappels sur les algèbres d’octonions

1 Généralités

Pour commencer, nous rappelons quelques propriétés sur les algèbres à compo-
sition en général et les octonions en particulier. Pour un exposé plus complet,
on pourra consulter [SV] dont la plupart des résultats suivants sont tirés.

Définition 1. Soit C une algèbre unitaire d’unité 1, non nécessairement as-
sociative et telle qu’il existe, sur C, une forme quadratique q non dégénérée qui
permette la composition, i.e. telle que

∀x, y ∈ C q(xy) = q(x)q(y).

Une telle algèbre C est appelée algèbre à composition.

Remarque 1. On verra plus loin (cf. corollaire 1) que la forme quadratique q
est unique.

On désigne par Bq(·, ·) la forme bilinéaire symétrique associée à la forme
quadratique q, i.e. définie par

∀x, y ∈ C, Bq(x, y) =
1

2
(q(x + y) − q(x) − q(y)).

On définit également la forme linéaire suivante, appelée trace par

∀x ∈ C, T (x) = 2Bq(x, 1).

Dans la suite, nous allons identifier le corps de base k avec son image dans C
(et plus tard dans O) ainsi q, Bq et T seront considérées comme étant à valeurs
dans C. Cet abus nous permet d’alléger significativement nos notations.

La donnée de la forme quadratique q induit sur C l’existence d’une involution.

Proposition 1. Soit C une algèbre à composition. L’application

· : C −→ C
x 7→ x = 2Bq(x, 1) − x

est un anti-automorphisme1 involutif de C.

Démonstration. Voir par exemple [Gar99, Lem. 2.3.6 p. 14].

Cette involution joue un rôle important car elle permet de retrouver la forme
quadratique q et par conséquent elle caractérise également C.

1i.e. un automorphisme de l’espace vectoriel C vérifiant ∀x, y ∈ C xy = y x.
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Lemme 1. Soit x ∈ C on a

q(x) = xx

et

T (x) = x + x.

Démonstration. Voir [Gar99, Lem. 2.3.6 p. 6] pour le premier point ; le second
est trivial.

Ainsi, il existe dans la littérature des présentations des algèbres à composition
à partir de la donnée d’une involution · sur C telle que xx soit une forme
quadratique non-dégénérée et x + x une forme linéaire.

Ces deux constructions sont parfaitement équivalentes. En outre, cette in-
volution permet parfois de simplifier certains calculs dans C tout comme le
résultat suivant :

Proposition 2. Pour tout x d’une algèbre à composition C, on a

x2 − T (x)x + q(x) = 0 (1)

et pour tous x, y ∈ C, on a également

xy + yx − T (x)y − T (y)x + 2Bq(x, y) = 0. (2)

Si le sous-espace k1 ⊕ kx est de dimension 2 et non dégénéré, c’est une
algèbre à composition.

Démonstration. Voir [SV, Prop. 1.2.3 p. 6].

La formule (2) implique en particulier que xy = −yx dès que x, y ∈ ker T
et que x et y sont des vecteurs orthogonaux. Ce dernier point est primordial
pour la suite. D’autre part, la proposition 2 a pour conséquence (voir encore
une fois [SV]) les deux corollaires ci-dessous.

Corollaire 1. La forme quadratique q d’une algèbre à composition C est
déterminée de façon unique par l’algèbre C.

Corollaire 2. Les algèbres à composition C sont puissances-associatives, i.e.
pour tout x ∈ C, la sous-algèbre k[x] est associative.

Le premier de ces corollaires implique donc que la définition de C posée au
départ de ce texte est correcte. Le second est quant à lui un moyen très pratique
de simplifier un grand nombre de calculs lorsque l’on travaille dans une telle
algèbre.

Autre curiosité des algèbres à composition, ces dernières n’existent pas en
toute dimension. De surcrôıt, plus la dimension est grande, plus on perd de
bonnes propriétés de l’algèbre. Le résultat précis concernant ces derniers points
est énoncé sous la forme du théorème suivant :
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Théorème 1. Les dimensions possibles pour une algèbre à composition sont 1,
2, 4 et 8. Les algèbres à composition de dimension 1 ou 2 sont commutatives et
associatives, celles de dimension 4 sont associatives mais non commutatives,
et quant à celles de dimension 8 elles ne sont ni l’un ni l’autre.

Remarque 2. Les algèbres à composition de dimension 4 sont plus connues
sous le nom d’algèbres de quaternions.

Nous introduisons maintenant les algèbres d’octonions :

Définition 2. Toute algèbre de composition C de dimension 8 est appelée
algèbre d’octonions ou encore algèbre de Cayley.

À partir de maintenant et jusqu’à la fin de ce texte, nous désignons les
algèbres d’octonions par la lettre O.

Définition 3. Soit O une algèbre d’octonions. Si la forme quadratique q est
isotrope, on parlera d’algèbre d’octonions déployée.

Remarque 3. Sur tout corps de base, il existe une unique (à isomorphisme
près) algèbre d’octonions déployées. En revanche, sur un corps de base fixé,
il peut exister de nombreuses algèbres d’octonions non-déployée. Toute algèbre
non déployée se déploie sur une extension quadratique du corps de base. Pour
plus de détails, voir par exemple [S, Chap. 3 §4] ou [SV, Théo. 1.8.1 p. 19].

2 Un modèle d’algèbre d’octonions déployée

Nous allons maintenant construire O une algèbre d’octonions déployée. De ce
que nous avons dit en remarque 3, de telles algèbres sont uniques à isomor-
phisme près. Ainsi, sauf mention explicite du contraire, lorsque par la suite nous
parlerons d’algèbre d’octonions déployée, nous désignerons le modèle d’algèbre
que nous allons construire maintenant.

On se donne le k-espace vectoriel

O = M2(k) × M2(k)

où M2(k) désigne l’algèbre des matrices 2 × 2 à coefficients dans le corps k et
on munit O du produit

∀x, y ∈ O xy = (x1, x2)(y1, y2) = (x1y1 + ỹ2x2, y2x1 + x2ỹ1)

où
ỹi = t co(yi),

co(yi) désignant la matrice constituée des cofacteurs de yi.
De cette façon et comme signalé dans le corollaire 1, la forme quadratique q

sur O est uniquement déterminée et s’exprime2 sous la forme suivante :

∀x = (x1, x2) ∈ O, q(x) = det(x1) − det(x2).

2Les relations et le produit dans O étant connus, avec un peu d’algèbre linéaire le résultat
se déduit facilement.
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Il est clair que O est une algèbre unitaire d’unité 1 = (Id, 0) et que la forme
quadratique q est isotrope. Par conséquent, pour prouver qu’il s’agit d’une
algèbre d’octonions (déployée), il suffit de montrer que la forme quadratique
q permet la composition. Ce dernier point peut s’établir à la main moyennant
quelques calculs fastidieux que nous ne reproduisons pas ici. Une autre façon de
le voir serait de constater que l’algèbre ainsi construite est le résultat du procédé
de duplication de Cayley-Dickson appliqué à l’algèbre M2(k). Des détails sur
ces derniers points se trouvent, par exemple, dans [SV, §1.5 et §1.8] ou encore
dans [Gar99, §2.3].

L’anti-automorphisme et la trace associés à q sont, quant à eux, donnés par
le lemme suivant :

Lemme 2. Pour tout x ∈ C,

x = (x̃1, −x2),

T (x) = (trace(x1), 0).

Démonstration. Là encore un calcul direct est possible, sinon le lecteur peut
toujours se reporter à [SV, §1.8].

Nous considérons maintenant les vecteurs

e0 =

([
1 0
0 0

]
, [0]

)
; f0 =

([
0 0
0 1

]
, [0]

)
(3)

e1 =

([
0 1
0 0

]
, [0]

)
; f1 =

([
0 0

−1 0

]
, [0]

)
(4)

e2 =

(
[0],

[
−1 0

0 0

])
; f2 =

(
[0],

[
0 0
0 1

])
(5)

e3 =

(
[0],

[
0 0
1 0

])
; f3 =

(
[0],

[
0 1
0 0

])
(6)

où [0] désigne la matrice nulle ; ces vecteurs forment une base de O qui vérifie de
nombreuses propriétés dont les plus importantes sont résumées dans le lemme 3
ci-dessous.

Lemme 3. Tout d’abord on a

e0 + f0 = 1, e0 = f0, 2Bq(e0, f0) = 1,

e2
0 = e0, f2

0 = f0, e0f0 = f0e0 = 0

et pour tout i ∈ {1, 2, 3},

q(ei) = q(fi) = 0, 2Bq(ei, fj) = δij , e2
i = 0,

f2
i = 0, ei = −ei, fi = −fi,

f0ei = eie0 = 0, e0fi = fif0 = 0, e0ei = eif0 = ei,

f0fi = fie0 = fi, eifj = −δije0, fiej = −δijf0,
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eiei+1 = −ei+1ei = −fi+2, fifi+1 = −fi+1fi = −ei+2

ces deux dernières égalités étant vraies avec les indices i+1 et i+2 pris modulo
3 à valeur dans l’ensemble {1, 2, 3}.

Démonstration. Voir [Sch62, §1 p. 202].

En fait, il existe de nombreuses bases de O vérifiant ces propriétés et c’est
avec de telles bases que nous allons travailler. On énonce donc :

Définition 4. Toute base de O vérifiant les propriétés du lemme 3 est appelée
base normale (cf. [Sch62, §1 p. 202]).

Remarque 4. La base utilisée dans [SV] n’est pas une base normale.

Dans la suite de ce texte, nous travaillerons avec une base normale et comme
certains résultats du lemme 3 nous serons très utiles, nous les avons résumés
dans la figure 1 ci-dessous.

1f

3f2f

2e3e

1e

Fig. 1 – Diagramme illustrant la multiplication dans O.
Les traits pleins relient deux éléments dont le produit est nul. En pointillé le

produit de ces deux éléments donne celui situé au-dessus du trait et la flèche
indique la positivité. Par exemple f2f3 = −e1.

Deuxième partie
Décomposition cellulaire de X (α2)

3 Définition des variétés

Rappelons, tout d’abord, quelques résultats classiques concernant les groupes
algébriques et les variétés homogènes projectives sous jacentes. À l’aide de ces
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résultats, nous définissons les variétés X (α1) et X (α2) associées à un groupe
de type G2. Pour un exposé complet sur les groupes algébriques, nous vous
conseillons la lecture de [B] et vous renvoyons à [MPW96] en ce qui concerne
le choix de nos notations.

3.1 Variétés homogènes projectives

Soient G un groupe algébrique, T un tore maximal de G et B un sous-
groupe de Borel le contenant. Le choix de ce groupe de Borel fixe un ensemble
∆ = {α1, . . . , αn} de racines simples de G par rapport à T et pour tout αi,
il existe Uαi

un unique sous-groupe de racine de G. On associe également
à toute racine αi un autre sous-groupe de G, son sous-groupe de racine
opposé, noté U−αi

, qui est en fait le sous-groupe de racine associé à la racine
−αi. Dès lors, à tout sous-ensemble Θ de ∆, on associe PΘ, un sous-groupe
parabolique de G défini par

PΘ = gr(T, {Uα| α ∈ ∆}, {U−α| α /∈ Θ})
où gr(E) désigne le groupe engendré par l’ensemble E . Par exemple, pour Θ =
∆, le sous-groupe parabolique associé est le sous-groupe de Borel B et pour Θ =
∅, c’est G lui-même. On notera Pαi

le groupe P{αi} associé à une seule racine αi.
Enfin, on associe à Θ la variété projective G/PΘ, homogène sous l’action
de G, que nous notons3 X (Θ). Une telle variété X (Θ) est évidemment lisse
et est définie sur k, si et seulement si Θ est stable sous l’action du groupe de
Galois absolu de k.

Parallèlement, on peut associer à un groupe algébrique un certain ensemble
E, classiquement appelé immeuble sphérique. En détail, cet ensemble peut
être un k-espace vectoriel, un k-espace vectoriel quadratique, hermitien ou en-
core une k-algèbre. Ainsi, lorsque les racines sont convenablement4 numérotées,
X (αi) est une variété constituée à partir de certains sous-espaces de E, de di-
mension i sur k. Ensuite, on définit une relation d’incidence sur ces i-espaces
particuliers et on obtient les variétés associées aux autres sous-ensembles de ∆
à partir des variétés X (αi). Concrètement, la variété X (αi1 , . . . , αil

) associée
au sous-ensemble {αi1 , . . . , αil

} de ∆, a pour k-points l’ensemble :

{
(V1, . . . , Vl) ∈ X(αi1)(k) × . . . × X(αil

)(k) | Vi est incident à Vj

pour tout 1 6 i, j 6 l

}
.

Dans le cadre de notre étude, G est un groupe de type G2. Un tel groupe
peut se définir à l’aide d’une algèbre d’octonions comme cela nous est appris
par le résultat suivant :

Théorème 2. Le groupe G des automorphismes d’une algèbre d’octonions O
est un k-groupe algébrique simple adjoint de type G2. Tout groupe adjoint de
ce type est obtenu de cette façon.

3Là encore, nous notons simplement X (αi) à la place de X ({αi}).
4C’est-à-dire comme nous l’avons fait ici.
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Démonstration. Voir [SV, Th. 2.3.5 p. 33] ou sans preuve [Car14, p. 298]
et [Car52, p. 443].

Un groupe de type G2 est un groupe de rang 2. Il possède par conséquent
deux racines, notées α1 et α2 et son diagramme de Dynkin est donné par la
figure 2 ci-dessous.

α α1 2

Fig. 2 – Diagramme de Dynkin de G.

En dehors du point X (∅), nous avons donc trois variétés X (α1), X (α2) et
X (α1, α2), cette dernière étant celle dont la dimension est la plus grande. L’en-
semble que l’on associe à G pour décrire ses variétés homogènes projectives
est une algèbre d’octonions O et la relation d’incidence est tout simplement
l’inclusion. Les variétés X (αi) (i ∈ {1, 2}) sont constituées des sous-espaces Vi

de dimension i de O dont les éléments sont de trace nulle et tels que si x et y
sont deux éléments de Vi alors xy = 0.

Dans le cas présent, les variétés X (αi) (i ∈ {1, 2}) et X (α1, α2), sont définies
sur k si et seulement si O est déployée. Par extension, nous les qualifions alors
de variétés déployées.

Notre prochain objectif est d’exhiber la décomposition cellulaire de X (α2).
Pour ce faire, le langage des foncteurs de points nous est apparu comme le plus
indiqué. Toutefois, il nous semble, là encore, nécessaire de rappeler brièvement
quelques notions essentielles avant de rentrer dans le vif du sujet.

3.2 Foncteurs de points

On désigne par foncteur de points, tout foncteur covariant de la catégorie
Algk des k-algèbres associatives, unitaires et commutatives, à valeurs dans la
catégorie Ens des ensembles.

Un tel foncteur F est dit représentable s’il existe une k-variété X telle
que pour tout élément R de Algk on ait :

F(R) = Homk−Sch(Spec R,X)

On dit aussi que le foncteur F est représenté par X. On remarque au
passage que l’application X 7→ Homk−Sch(−,X) définit une transformation
naturelle allant de la catégorie des k-variétés dans celle des foncteurs de points
représentables qui est une équivalence de catégorie (cf [DG, Th. de comparaison
p. 18]).

Un exemple de foncteur de points est donné par le foncteur affine Spec R
associé à la k-algèbre R, défini pour tout élément S de Algk par
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Spec R(S) = HomAlgk
(R,S).

Ce foncteur est clairement représenté par la k-variété Spec R et c’est pour
cette raison qu’il est noté de la même manière.

On dit que G est un sous-foncteur de F , si pour toute k-algèbre R,
G(R) est un sous-ensemble de F(R) et si pour tout homomorphisme ϕ ∈
HomAlgk

(R,S) (où S ∈ Algk), l’application G(ϕ) : G(R) → G(S) est la res-
triction de F(ϕ).

On se donne maintenant un foncteur F représenté par une k-variété X. On
dit alors qu’un sous-foncteur G de F est ouvert (respectivement fermé), s’il
s’agit d’un sous-foncteur représentable de F qui est représenté par une sous-
variété ouverte (respectivement fermée) de X.

À présent, nous allons définir les foncteurs de points grassmanniennes.
Pour cela, on se donne un k-espace vectoriel V de dimension finie n et pour
toute k-algèbre R, on pose VR = V ⊗k R.

Définition 5. Soit i ∈ {1, . . . , n}, le foncteur grassmannienne Γi(V ) des sous-
espaces de dimension i est défini par les données suivantes :

– pour toute k-algèbre R, l’ensemble Γi(V )(R) est constitué des facteurs di-
rects de rang i de VR, en d’autres termes, il s’agit des sous-modules pro-
jectifs M de rang i de VR tels que VR/M est également projectif ;

– pour tout homomorphisme ϕ ∈ HomAlgk
(R,S), l’application Γi(V )(R) →

Γi(V )(S) est définie par la tensorisation par S sur R, i.e. par

VR ⊃ M 7→ M ⊗R S ⊂ VS .

On pourra par exemple consulter [EH, Ex. VI-18 p. 261] pour vérifier qu’il
s’agit bien du foncteur de points associé à la grassmannienne des i-sous-espaces
de V .

Soit maintenant f : V ×V → W une application k-bilinéaire où W est aussi un
k-espace vectoriel de dimension fini. On définit alors un sous-foncteur Γi(V, f)
de Γi(V ), i.e. celui des sous-espaces totalement isotropes de dimension i de V ,
en posant comme ensemble de ses R-points (R ∈ Algk) :

Γi(V, f)(R) = {M ∈ Γi(V )(R) | fR(M,M) = 0}

où fR est l’application R-bilinéaire induite par f . Ici nous utiliserons cette
définition dans le cas où V = W = O et où f est la multiplication de l’algèbre.
Pour plus de détails concernant ce formalisme et ces définitions nous renvoyons
le lecteur à [Kar01, §9 p. 23].

Nous sommes maintenant en mesure de donner les définitions explicites de
X (α1), X (α2) et X (α1, α2) en terme de foncteurs de points. Ces définitions sont
donc la version fonctorielle des définitions classiques que l’on peut par exemple
consulter dans [Sch62, §6 p. 207].
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3.3 Les foncteurs de points X (α1), X (α2) et X (α1, α2)

Dans les définitions de X (αi) (i ∈ {1, 2}) et X (α1, α2), les éléments mis en
jeu sont tous de traces nulles, par conséquent nous pouvons nous restreindre
à l’hyperplan H = ker T au lieu de travailler sur O tout entier et ce, même si
lorsqu’il s’agit d’effectuer le produit de deux éléments, le résultat est toujours
vu dans O. Nous obtenons ainsi pour tout élément R de Algk, les définitions
allégées suivantes :

X (α1)(R) = {D ∈ Γ1(H)(R) |∀u, v ∈ D, uv = 0},
X (α2)(R) = {P ∈ Γ2(H)(R) |∀u, v ∈ P, uv = 0}

et

X (α1, α2)(R) = {(D, P ) ∈ X (α1)(R) ×X (α2)(R) | D ⊂ P}

où Γ1(H) et Γ2(H) désignent donc respectivement le foncteur grassmannienne
des droites et des plans de H.

Regardons maintenant ces définitions d’un peu plus près. Nous avons déjà
fait remarquer que tous les éléments x de O vérifient (1), i.e.

x2 − T (x)x + q(x) = 0.

Par conséquent la définition de X (α1) devient

X (α1)(R) = {D ∈ Γ1(H)(R) |∀u ∈ D (q|H )R(u) = 0}

où (q|H )R désigne la forme quadratique q restreinte à H et étendue à R. Tou-
jours pour alléger les notations, nous posons q′ = q|H . En effet, un module pro-
jectif de rang 1 définit un faisceau localement libre de rang 1. Par conséquent,
localement la condition uv = 0 est équivalente à su2 = 0 (puisque le module
est libre de rang 1, il existe un scalaire s tel que v = su) et donc équivalente
à q′(u) = 0. Ce résultat étant vrai localement, il l’est également globalement.
Ainsi, il devient clair que

X (α1) = Γ1(H, q′)

i.e. que X (α1) est le foncteur des droites isotropes de H ou en d’autres termes,
il s’agit d’une quadrique projective de dimension 5. Ce résultat a déjà été mis en
évidence par M. Demazure (cf. [Dem77, §2 c)]), il s’agit d’un des quelques cas
où des variétés homogènes projectives associées à deux groupes algébriques bien
distincts sont isomorphes. En ce qui nous concerne, cet article présente aussi un
autre intérêt ; si G désigne encore une fois un groupe adjoint de type G2, l’article
de M. Demazure nous apprend que Aut(X (α1)) ' SO(q′) et que Aut(X (α2)) '
G. Dès lors, les variétés X (α1) et X (α2) ont des groupes d’automorphismes
différents et ne sont donc pas isomorphes en tant que variétés projectives lisses.
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Concernant maintenant X (α2), nous constatons là encore que tout ses points
sont des plans totalement isotropes. En effet, ils sont de traces nulles et le
produit de deux éléments quelconques est également nul. Ainsi, en vertu des
équations (1) et (2) que nous rappelons :

x2 − T (x)x + q(x) = 0

et

xy + yx − T (x)y − T (y)x + 2Bq(x, y) = 0,

nous constatons que q(x) = Bq(x, y) = 0, i.e. que tous les éléments sont
isotropes et orthogonaux deux à deux. En revanche, un plan totalement isotrope
constitué d’éléments de trace nulle n’appartient pas nécessairement à X (α2).
En effet, dans ce cas là les formules (1) et (2) nous indiquent juste que x2 = 0
et xy + yx = 0 ce qui n’implique pas que xy = yx = 0. Par exemple, dans
la base normale (3), le module libre engendré par f1 et f2 est bien isotrope
et vérifie les conditions requises car f1f2 = −f2f1 mais f1f2 = −e3 6= 0. En
conclusion, nous ne pouvons pas simplifier la définition de X (α2).

Nous allons maintenant donner la structure cellulaire de X (α2).

4 Structure cellulaire de X (α2)

Dans toute cette sous-section, nous désignons par O une algèbre d’octonions
déployée.

On rappelle que la structure cellulaire d’une variété alg”ébrique X
(lisse et complète) est la donnée d’une filtration

X = Xn ⊃ Xn−1 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅
constituée de sous-variétés fermées Xi telles que les différences Xi\Xi−1, avec
i ∈ {0, . . . , n}, soient des espaces affines. Par la suite, on appelle ces différences
des cellules.

D’après l’article de [Köc91], on sait que lorsque X (α2) est déployée, une
telle filtration existe. Toutefois, nous voulons l’établir explicitement afin de
prouver plus loin dans ce texte la rationnalité de certains cycles. Pour cela, nous
allons partir d’une structure cellulaire de Γ2(H) et en prendre l’intersection avec
X (α2) avant de raffiner la filtration en supprimant les termes redondants (i.e.
ceux dont les cellules sont vides).

Remarque 5. En général, même lorsqu’une variété X admet une structure cel-
lulaire et que Y est une sous-variété fermée de X, l’intersection de la structure
cellulaire de X avec Y ne donne pas nécessairement une structure cellulaire
pour Y (considérez par exemple une quadrique projective anisotrope dans un
espace projectif. . . ). Le fait que cela fonctionne dans le cas présent est donc
assez exceptionnel.
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La construction d’une telle filtration pour Γ2(H) se fait à partir de ses
variétés de Schubert (cf. ci-dessous), lesquelles se définissent à partir d’un
drapeau de H. Dans le cas d’une grassmannienne cette construction ne dépend
pas du choix du drapeau de départ. En revanche, ce choix est primordial si
l’on veut être capable d’écrire explicitement le résultat de l’intersection de la
structure cellulaire de Γ2(H) avec X (α2). En l’occurence, pour construire ce
drapeau nous partons d’une base normale (cf. (3)) de O, notre algèbre d’octo-
nions déployée et nous munissons H d’une base qui s’en déduit. Concrètement
nous avons

H = Vect{e1, f2, f3, e = e0 − f0, e3, e2, f1}
et l’ordre dans lequel nous venons d’écrire les vecteurs qui engendrent H est
important. En effet, pour définir notre drapeau, nous prenons comme premier
espace vectoriel (le plus grand), V7 = H. Nous déduisons ensuite Vi, nouvel
espace vectoriel de la filtration comme étant égal à Vect{vji

, . . . , vj1} où les vjk

sont les i derniers vecteurs de l’ensemble {e1, f2, f3, e = e0 − f0, e3, e2, f1}
pris dans le même ordre. Par exemple, V6 = Vect{f2, f3, e, e3, e2, f1} et
V3 = Vect{e3, e2, f1}.

Un drapeau de H étant maintenant fixé, on peut définir de façon classique
les variétés de Schubert (voir par exemple [M] ou [F]) de Γ2(H). Pour cela,
à un couple λ = (λ1, λ2) (avec 5 > λ1 > λ2 > 0) on associe la variété dont les
R-points (R ∈ Algk) sont les suivants :

Xλ(R) = {M ∈ Γ2(V )(R) | rg(M ∩ (V5+i−λi
)R) > i, 1 6 i 6 2}.

Ces variétés ne forment évidemment pas une filtration mais en prenant des
réunions de variétés (et/ou de cellules) de Schubert, il est possible d’en fabri-
quer une. Nous n’en dirons pas plus ici sur les variétés de Schubert et nous ne
reproduisons pas non plus la structure cellulaire de Γ2(H) ; nous nous conten-
tons de donner la structure cellulaire qui en résulte pour X (α2) et dont les
R-points (R ∈ Algk) sont les suivants :

X5(R) = X (α2)(R)

X4(R) = {P ∈ X (α2)(R) | rg(P ∩ (V7)R) > 2, rg(P ∩ (V5)R) > 1}
X3(R) = {P ∈ X (α2)(R) | rg(P ∩ (V6)R) > 2, rg(P ∩ (V3)R) > 1}
X2(R) = {P ∈ X (α2)(R) | rg(P ∩ (V5)R) > 2, rg(P ∩ (V2)R) > 1}
X1(R) = {P ∈ X (α2)(R) | rg(P ∩ (V3)R) > 2, rg(P ∩ (V1)R) > 1}
X0(R) = {P ∈ X (α2)(R) | rg(P ∩ (V2)R) > 2, rg(P ∩ (V1)R) > 1}

Là encore, il n’est pas nécessaire de vérifier qu’il s’agit bien de sous-foncteurs
fermés. Pour s’en convaincre on peut, par exemple, adapter les arguments
donnés dans [Kar01, Lem. 9.7 p. 25].
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Maintenant que nous avons une filtration, il nous faut vérifier que les cellules
sont bien des espaces affines afin d’avoir effectivement une décomposition cel-
lulaire. Tout d’abord, nous introduisons la notation suivante pour désigner les
cellules :

∀i ∈ {0, . . . , 5} X(i\i−1) = Xi\Xi−1

avec la convention X−1 = ∅. Il ne nous reste maintenant plus qu’à établir le
résultat suivant :

Lemme 4. ∀i ∈ {0, . . . , 5},
X(i\i−1) '

� i

où
� i désigne le foncteur espace affine de dimension i.

Démonstration. Dans sa démarche, la preuve est la même pour toutes les cel-
lules. Nous allons par conséquent nous limiter à celle de X(4\3) '

�4.
On se donne donc R une k-algèbre et P un R-point de X(4\3)(R). Nous allons

établir qu’il existe une bijection entre X(4\3)(R) et R4.
Soit j : V7 ³ V7/V6 la projection canonique. Dire que P ∈ X(4\3)(R) est

équivalent à dire que d’une part, l’application j étendue à R et restreinte à P ,
(jR)|P , est surjective, d’autre part que ker(jR)|P ⊂ (V5)R et enfin que (V5)R →
(V5/V4)R restreinte à ker(jR)|P est un isomorphisme. En conséquence, nous

posons i : (V5/V4)R ↪→ P l’application induite par l’isomorphisme (V5/V4)R
∼→

ker(jR)|P . La situation peut donc se résumer à la suite exacte courte suivante :

0 → (V5/V4)R
i

↪→ P
(jR)|P

³ (V7/V6)R → 0.

Il en découle que

P ' (V5/V4)R ⊕ (V7/V6)R

où l’isomorphisme dépend de la donnée d’une section de (jR)|P . De cet isomor-
phisme nous déduisons que P est en fait un module libre et par conséquent
nous allons pouvoir raisonner à partir des bases des Vi. Comme (V7/V6)R est
engendré par e1, classe de e1 modulo (V6)R et (V5/V4)R par f3, classe de f3

modulo (V4)R, une façon générique de remonter ces éléments est de prendre

m = m(a, b, c, d, g, h) = e1 + a · f2 + b · f3 + c · e + d · e3 + g · e2 + h · f1

et
n = n(w, x, y, z) = f3 + w · e + x · e3 + y · e2 + z · f1

où a, b, c, d, g, h, w, x, y et z sont des scalaires. Ces deux éléments forment
bien un module libre de rang 2. En fait, ce module est le même si nous rem-
plaçons m par m − b · n et ainsi nous éliminons un scalaire et réduisons le
problème. En conséquence et quitte à renommer les scalaires restants nous
pouvons travailler avec
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m = m(a, c, d, g, h) = e1 + a · f2 + c · e + d · e3 + g · e2 + h · f1

au lieu de la précédente définition de m. Dans l’ensemble de tous les modules
qu’il est possible de générer à partir de m et n en faisant varier la valeur des sca-
laires, nous nous intéressons au sous-ensemble des modules qui appartiennent
à X(4\3)(R). Par définition même, m et n sont dans H, il ne nous reste donc
plus qu’à vérifier que m · n = 0 et m2 = n2 = 0.

En effectuant les calculs, nous obtenons

m · n = 0 ⇐⇒





0 = hw − cz − xg + yd

0 = xc − dw + az

0 = yc + h − gw

0 = cw − z − d

0 = cw − ya

0 = x + aw

0 = −w − a

0 = −y − c

⇐⇒





h = c2 + gw

d = cw − z

x = w2

y = −c

a = −w

ce qui nous laisse déjà les variables c, g, w et z libres. Le calcul suivant nous
donne

m2 = 0 ⇐⇒ 0 = c2 − h − ag ⇐⇒ h = c2 − ag

qui est trivialement vérifié avec les précédentes relations. Enfin, le dernier calcul
nous donne

n2 = 0 ⇐⇒ 0 = w2 − x ⇐⇒ x = w2

qui est là encore une relation déjà présente dans le premier calcul.
Réciproquement, si nous considérons un module libre P engendré par

m = m(−w, c, cw − z, g, c2 + gw) et n = n(w, w2, −c, z), les cal-
culs précédents montrent directement que m2 = n2 = m · n = 0 et par
conséquent que P ∈ X(4\3)(R). Nous avons donc mis en bijection X(4\3)(R)
et l’ensemble des modules engendrés par m = m(−w, c, cw − z, g, c2 + gw)
et n = n(w, w2, −c, z) qui est en bijection avec R4. Comme annoncé, nous
avons ainsi établi que

X(4\3) '
�4.

Le calcul des autres cellules se fait en procédant de la même façon et finale-
ment, pour tout i ∈ {0, . . . , 5}, nous trouvons que

X(i\i−1) '
� i.
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5 Anneau de Chow de X (α2)

On rappelle qu’à toute variété algébrique X qui est lisse et complète, on as-
socie son anneau de Chow CH∗(X), engendré sur � par les classes de cycles
algébriques sur X modulo l’équivalence rationnelle et gradué par la codimension
des classes de cycles. On peut également considérer CH∗(X), l’anneau gradué
cette fois-ci par la dimension des classes de cycles et lorsque X est irréductible,
on a CHp(X) = CHd−p(X) où d = dimX. Bien que cela soit un abus de
langage, nous parlerons souvent de cycles plutôt que de classes de cycles.

Le but de cette section est de déterminer, dans le cas déployé, la structure
générale de l’anneau de Chow de X (α2). Pour cela, nous allons exhiber les
relations que vérifient les générateurs de CH∗(X (α2)).

Lorsqu’une variété possède une structure cellulaire, nous savons (c.f. [F, Ex.
1.9.1 p. 23]) que son groupe de Chow est librement engendré par les classes
pour l’équivalence rationnelle de l’adhérence des cellules. En conséquence, la
construction de la structure cellulaire de X (α2) précédemment établie nous
permet d’affirmer que CH∗(X (α2)) possède un unique générateur libre par
codimension. Ce qu’il nous faut maintenant comprendre, c’est comment ces
générateurs se multiplient entre eux. Pour cela, nous allons utiliser le fait que
X (α1, α2) peut être vue comme une fibration projective au-dessus de X (α2) au
moyen de l’application suivante :

pr : X (α1, α2) −→ X (α2)
(D,P ) 7→ P.

Cette fibration induit alors par pull-back une application qui fait du groupe
CH∗(X (α1, α2)) un CH∗(X (α2))-module libre de rang 2 (c.f. [F, Ex. 8.3.4 p. 141
et Th. 3.3 b) p. 64]). Nous allons utiliser cette structure de CH∗(X (α2))-module
pour calculer de deux façons différentes des invariants de CH∗(X (α1, α2)). En
comparant les résultats de ces deux calculs nous obtiendrons de façon presque
complète la table de multiplication des générateurs de CH∗(X (α2)). Nous ver-
rons que ces relations sont suffisantes pour établir l’isomorphisme motivique.
Pour commencer, il nous faut en apprendre d’avantage sur CH∗(X (α1, α2)).

5.1 Relations dans CH∗(X (α1, α2))

En premier lieu, il est connu (voir par exemple [Mar76, Lem. 5.1.1 p. 237])
que CH∗(X (α1, α2)) est un groupe libre engendré par un générateur libre en
codimension 0 et 6 et deux générateurs libres dans les autres codimensions.
Ainsi, nous désignons par gi et hi les générateurs de CHi(X (α1, α2)) pour i
dans {1, . . . , 5} et par g0 et g6 ceux de CH0(X (α1, α2)) et CH6(X (α1, α2))
respectivement. En second lieu, le calcul du produit de n’importe quel élément
de CH∗(X (α1, α2)) avec un élément de codimension 1 peut être obtenu par une
formule du type Pieri-Giambelli, la formule de Chevalley établie dans [Dem74,
§4 Cor. 2 p. 78]. Grâce à cette formule, nous calculons la table de multiplication
des générateurs de CH∗(X (α1, α2)).
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(g1)2 = 3g2 (h1)2 = h2 h1g2 = g3 + h3 g1h2 = g3 + 3h3

(g1)3 = 6g3 (h1)3 = 2h3 h1g3 = 2g4 + h4 g1h3 = g4 + 2h4

(g1)4 = 18g4 (h1)4 = 2h4 h1g4 = g5 + h5 g1h4 = g5 + 3h5

(g1)5 = 18g5 (h1)5 = 2h5 h1g5 = g6 g1h5 = g6

(g1)6 = 0 (h1)6 = 0 h1g1 = h2 + g2

Comme précédemment annoncé, nous allons maintenant calculer les inva-
riants de CH∗(X (α1, α2)).

5.2 Calcul des invariants de CH∗(X (α1, α2))

Nous désignons par A le sous-anneau de CH∗(X (α1, α2)) engendré par les
éléments du groupe CH1(X (α1, α2)). Nous considèrons ensuite Ai le groupe
abélien constitué des éléments de codimension i de A (i.e. engendré par les
polynômes homogènes de degré i en g1 et h1). Par conséquent, après calculs
nous obtenons que

A1 = gr(g1, h1)

A2 = gr((g1)2, g1h1, (h1)2)

= gr(3g2, g2 + h2, h2)

A3 = gr((g1)3, (g1)2h1, g1(h1)2, (h1)3)

= gr(6g3, 3(g3 + h3), g3 + 3h3, 2h3)

A4 = gr((g1)4, (g1)3h1, (g1)2(h1)2, g1(h1)3, (h1)4)

= gr(18g4, 12g4 + 6h4, 6(g4 + h4), 2g4 + 4h4, 2h4)

A5 = gr((g1)5, (g1)4h1, (g1)3(h1)2, (g1)2(h1)3, g1(h1)4, (h1)5)

= gr(18g5, 18(g5 + h5), 12g5 + 18h5, 6g5 + 12h5, 2g5 + 6h5, 2h5)

A6 = gr((g1)6, (g1)5h1, (g1)4(h1)2, (g1)3(h1)3, (g1)2(h1)4, g1(h1)5, (h1)6)

= gr(0, 2g6, 6g6, 12g6, 18g6, 18g6, 0)

où là encore, nous désignons par gr(E) le groupe abélien libre engendré par les
éléments de E sur �.

Nous rappellons que pour tout i dans {1, . . . 5}, nous avons

CHi(X (α1, α2)) = gr(gi, hi)

et que

CH6(X (α1, α2)) = gr(g6).
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En calculant les différents quotients nous trouvons ainsi que :

(CH1(X (α1, α2)) : A1) = 1

(CH2(X (α1, α2)) : A2) = 1

(CH3(X (α1, α2)) : A3) = 2

(CH4(X (α1, α2)) : A4) = 4

(CH5(X (α1, α2)) : A5) = 4

(CH6(X (α1, α2)) : A6) = 2

où nous désignons par (CHi(X (α1, α2)) : Ai), l’indice du sous-groupe Ai dans
CHi(X (α1, α2)).

Ces indices sont des invariants de l’anneau CH∗(X (α1, α2)) dont nous allons
nous servir pour déterminer la structure d’anneau de CH∗(X (α2)). Pour cela,
nous allons calculer une nouvelle fois ces indices en utilisant la structure de
CHi(X (α2))-module de CHi(X (α1, α2)).

5.3 Calcul de la structure de CH∗(X (α2))

Pour commencer, nous rappelons que le groupe CH∗(X (α2)) possède un seul
générateur par codimension que nous notons hi

2 (i ∈ {0, . . . , 5}). Ensuite, nous
avons déjà signalé que CH∗(X (α1, α2)) est un CH(X (α2))-module libre de rang
2 . Plus précisement, il admet pour base l’ensemble {1, ζ} où 1 désigne l’élément
neutre et ζ est un élément qui vérifie

ζ2 − c1h
1
2ζ + c2h

2
2 = 0

et où ci désigne la ième classe de Chern du fibré vectoriel associé au fibré
projectif sur X (α2) (voir [H, App. A §3]). Ainsi, pour i à valeurs dans l’en-
semble {1, . . . , 5}, les groupes CHi(X (α1, α2)) correspondent à gr(hi

2, ζhi−1
2 ),

et pour les indices 0 et 6, nous avons CH0(X (α1, α2)) ' CH0(X (α2)), et
CH6(X (α1, α2)) ' CH5(X (α2))ζ. Nous nous donnons ensuite quatre nombres
entiers positifs l, m, n et p tels que

(h1
2)

2 = lh2
2, (h1

2)
3 = lmh3

2, (h1
2)

4 = lmnh4
2, (h1

2)
5 = lmnph5

2.

Ceci étant posé, nous allons, là encore, considérer les sous-groupes Ai ex-
primés cette fois-ci en fonction de (h1

2)
i et ζ(h1

2)
i−1. Pour commencer,

A1 = gr(h1
2, ζ)

nous avons donc bien

(CH1(X (α1, α2)) : A1) = 1.
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Ensuite,

A2 = gr((h1
2)

2, h1
2ζ, ζ2)

= gr(lh2
2, h1

2ζ, c1h
1
2ζ − c2h

2
2)

= gr(lh2
2, c2h

2
2, h1

2ζ)

et comme

(CH2(X (α1, α2)) : A2) = 1

nous en déduisons que les nombres l et c2 sont premiers entres eux. Ce
résultat sera très largement exploité dans les calculs suivants. Concernant le
groupe A3, nous avons

A3 = gr((h1
2)

3, (h1
2)

2ζ, h1
2ζ

2, ζ3)

= gr((lmh3
2, lh2

2ζ, lc1h
2
2ζ − mc2h

3
2, (lc2

1 − c2)h
2
2ζ − mc1c2h

3
2)

= gr(mh3
2, h2

2ζ)

d’où

(CH3(X (α1, α2)) : A3) = m = 2.

Nous calculons maintenant A4,

A4 = gr((h1
2)

4, (h1
2)

3ζ, (h1
2)

2ζ3, h1
2ζ

3, ζ4)

= gr(2lnh4
2, 2lh3

2ζ, 2lc1h
3
2ζ − 2nc2h

4
2, 2(lc2

1 − c2)h
3
2ζ − 2nc1c2h

4
2,

2c1(lc
2
1 − 2c2)h

3
2ζ − 2n

l
(lc2

1 − c2)c2h
4
2)

= gr(2nh4
2, 2h3

2ζ,
2n

l
c2
2h

4
2)

ainsi

(CH4(X (α1, α2)) : A4) = 2 pgcd(2n,
2n

l
c2) = 4

où pgcd(2n, 2n
l c2) désigne le plus grand commun multiple de 2n

l c2 et 2n.
Par suite, comme pgcd(2n, 2n

l c2) = 2, nécessairement pgcd(n, n
l c2) = 1 et ainsi

l = n. Nous calculons maintenant

A5 = gr((h1
2)

5, (h1
2)

4ζ, (h1
2)

3ζ2, (h1
2)

2ζ3, h1
2ζ

4, ζ5)

= gr(2l2ph5
2, 2l2h4

2ζ, 2l2c1h
4
2ζ − 2lpc2h

5
2, 2l(lc2

1 − c2)h
4
2ζ − 2lpc1c2h

5
2 ,

2lc1(lc
2
1 − 2c2)h

4
2ζ − 2pc2(lc

2
1 − c2)h

5
2 ,

(2l2c4
1 − 6lc2

1c2 + 2c2
2)h

4
2ζ − 2pc1c2(lc

2
1 − 2c2)h

5
2)

= gr(2ph5
2, 2h4

2ζ)
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ainsi

(CH5(X (α1, α2)) : A5) = 4p = 4

d’où p = 1. Enfin, nous calculons

A6 = gr((h1
2)

6, (h1
2)

5ζ, (h1
2)

4ζ2, (h1
2)

3ζ3, (h1
2)

2ζ4, h1
2ζ

5, ζ6)

= gr(0, 2l2h5
2ζ, 2l2c1h

5
2ζ, 2l(lc2

1 − c2)h
5
2ζ, 2lc1(lc

2
1 − 2c2)h

5
2ζ,

(2l2c4
1 − 6lc2

1c2 + 2c2
2)h

5
2ζ, (2l2c5

1 − 8lc3
1c2 + 6c1c

2
2)h

5
2ζ)

= gr(2h5
2ζ)

et nous trouvons bien que

(CH6(X (α1, α2)) : A6) = 2.

Finalement, la table de multiplication partielle de CH∗(X (α2)) est

(h1
2)

2 = lh2
2

(h1
2)

3 = 2lh3
2

(h1
2)

4 = 2l2h4
2

(h1
2)

5 = 2l2h5
2

Malgré tous nos efforts, l reste donc jusque là indéterminé. Toutefois, l’image
de l’élément h1

2 dans CH∗(X (α1, α2) par l’application pr∗ : CH∗(X (α2)) →
CH∗(X (α1, α2)) induite par la fibration projective, est une combinaison de g1

et h1, i.e. pr∗(h1
2) = ag1 + bh1 avec a et b dans �, premiers entre eux (puisque

pr∗(h1
2) peut être choisis comme un des générateurs de CH1(X (α1, α2))). Or,

nous avons

lpr∗(h2
2) = (pr∗(h1

2))
2 = (3a2 + 2ab)g1 + (b2 + 2ab)h2

ce qui impose donc à a et b d’être pairs si l l’est. Ceci est en contradiction avec
le fait que a et b sont premiers entre eux. Par conséquent, l est nécessairement
impair et ce fait est primordial pour établir l’isomorphisme motivique. En effet,
bien que n’ayant pas totalement déterminé la structure de CH∗(X (α2)), nous
verrons que les informations dont nous disposons seront suffisantes pour établir
l’isomorphisme motivique entre X (α1) et X (α2).

Troisième partie
L’isomorphisme motivique

Nous allons maintenant commencer par introduire la catégorie des correspon-
dances sur laquelle nous allons travailler ainsi que les résultats accompagnant
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cette théorie. Il s’agit de résultats classiques et la motivation principale n’est
autre que l’introduction de nos notations.

6 Correspondances et motifs

Nous désignerons par Vark la catégorie des k-variétés lisses, complètes mais
non nécessairement connexes (on inclut également ∅ dans Vark). Nous avons
déjà signalé que pour X dans Vark, nous désignons par CH∗(X) l’anneau de
Chow de X et que bien que cela soit un abus de langage, nous parlons de cycles
plutôt que de classes de cycles.

Une correspondance de5 X dans Y , où X, Y sont dans Vark, est par
définition un cycle dans CH∗(X × Y ). La composition des correspondances se
fait de la façon classique (voir par exemple [F, Défi. 16.1.1 p. 305]) suivante :

CH∗(X × Y ) × CH∗(Y × Z) −→ CH∗(X × Z)
(f, g) 7→ g ◦ f = (pr13)∗((f × Z) · (X × g))

où · désigne la multiplication des cycles dans CH∗(X × Y × Z) et (pr13)∗ le
push-forward par rapport à la projection

pr13 : X × Y × Z −→ X × Z
(x, y, z) 7→ (x, z).

Soient maintenant X et Y dans Vark avec Y supposée connexe (ou d’une
façon plus générale équidimensionnelle). On définit dans un premier temps
une correspondance de X dans Y de degré p comme étant un cycle
homogène de CHdim Y +p(X×Y ). On étend ensuite cette définition au cas d’une
variété Y de Vark quelconque en désignant par correspondance de degré p, les
cycles homogènes de ⊕i CHdim Yi+p(X×Yi) où les Yi désignent les composantes
connexes de Y . Notez bien que l’on a

⊕i CHdim Yi+p(X × Yi) = ⊕j CHdim Xj−p(Xj × Y )

où les Xj désignent les composantes connexes de X.
Lorsque l’on compose des correspondances, les degrés s’ajoutent ([F, Ex.

16.1.1 p. 308]), ainsi l’ensemble des correspondances de degré 0 est stable par
composition et on définit par conséquent :

Définition 6. Soit Corr0k la catégorie additive dont les objets sont ceux de
Vark et les groupes de morphismes sont les correspondances de degré 0.

Une démonstration du fait que Corr0k est bien une catégorie est consultable
dans [F, §16.1 p. 305] . Nous signalons tout de même que l’application identité
de X, idX , est donnée par la classe de l’application diagonale sur X × X. Par
ailleurs, nous désignerons par End(X) le groupe Hom(X,X).

5Si Y = X on parle de correspondance sur X tout court.
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Dans ce texte, nous ne composons que des correspondances décomposées et
homogènes. Dans ce cas de figure, la composition de deux correspondances se
calcule explicitemment grâce au lemme suivant :

Lemme 5. Soient X, Y, Z ∈ Vark, f ∈ CH∗(X),g, g′ ∈ CH∗(Y ) et h ∈
CH∗(Z). On suppose que la variété Y est connexe (ou de façon plus générale
équidimensionnelle) et que les cycles g et g′ sont homogènes. Alors on a

(g′ × h) ◦ (f × g) = (pr13)∗(f × (g · g′) × h)

=

{
deg(g · g′)(f × h) si codim(g) + codim(g′) = dimY

0 sinon

où deg(−) désigne le degré d’un 0-cycle (voir [F][Défi. 1.4 p. 13]).

D’autre part, on définit également la transposé tf = τ∗(f) dans Hom(Y,X)
d’une correspondance f de Hom(X,Y ) où τ : X×Y → Y ×X est la permutation
des points, i.e. τ(x, y) = (y, x).

Enfin, si X est une variété définie sur le corps de base k et �/k est une
extension de corps, on désigne par X� la variété X définie sur �. On dit qu’un
cycle f de CH∗(X�) est défini sur k, si f est dans l’image de l’homomor-
phisme de restriction res�/k : CH∗(X) → CH∗(X�). De même, on dit qu’une
correspondance est définie sur k, si elle l’est en tant que cycle. De tels cycles
ou correspondances sont qualifiés de rationnels.

Ces préliminaires terminés, nous allons maintenant prouver que les variétés
X (α1) et X (α2) sont isomorphes dans la catégorie Corr0k et qu’il s’agit par
conséquent d’un isomorphisme motivique.

7 Isomorphisme

Nous allons maintenant nous employer à prouver l’isomorphisme. Pour cela
nous allons procéder en trois étapes. Nous allons prouver qu’un tel isomor-
phisme existe lorsque les variétés X (α1) et X (α2) sont déployées. Ensuite,
nous allons établir un théorème de nilpotence et enfin, grâce à ce théorème
de nilpotence, nous prouverons l’isomorphisme en toute généralité.

7.1 Cas déployé

Nous nous plaçons dans le cas où les variétés X (α1) et X (α2) sont déployées. On
rappelle que cela signifie que l’algèbre d’octonions sur laquelle le groupe de type
G2 agit l’est, ou encore de façon équivalente que la forme quadratique q définie
sur l’algèbre des octonions est isotrope. Nous allons donc établir qu’il existe
un cycle de degré 0 qui réalise un isomorphisme entre X (α1) et X (α2). Pour
prouver cet isomorphisme il nous faut trouver deux correspondances f et g, f
dans Hom(X (α1),X (α2)) et g dans Hom(X (α2),X (α1)) telles que g ◦ f = ∆1

et f ◦ g = ∆2 où ∆1 et ∆2 désignent respectivement la classe de l’application
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diagonale de X (α1) et X (α2). Si ∆1 est déjà connu, il va nous falloir expliciter
∆2.

Nous allons commencer par fixer quelques notations. Soit j un entier naturel
de l’ensemble {0, . . . , 5}, nous appelons hj

1 le générateur de CHj(X (α1)) et hj
2

celui de CHj(X (α2)). Les relations multiplicatives entre ces générateurs sont
désormais (presque totalement) déterminées (cf. sous-section 5.3). En outre,
comme X (α1) et X (α2) ont toutes les deux6 une structure cellulaire , X (α1)×
X (α1), X (α1)×X (α2), X (α2)×X (α1) et X (α2)×X (α2) en ont également une
que l’on déduit de celle de X (α1) et X (α2) (voir [Kar01, Défi. 7.2 p. 18]). Ceci
nous permet d’établir le résultat suivant :

Lemme 6. Les applications

CH∗(X (αi)) ⊗ CH∗(X (αj)) → CH∗(X (αi) ×X (αj))
(f ⊗ g) 7→ f × g

où i et j parcourent {1, 2}, sont des isomorphismes.

En fait, ce résultat est plus général ; il est vérifié dès que les deux variétés
ont une structure cellulaire.

D’après le lemme 6, les générateurs de CH∗(X (αi) × X (αj)) s’expriment
en fonction de ceux de CH∗(X (α1)) et CH∗(X (α2)). En particulier, en tant
qu’anneaux, ils sont sans torsion.

Remarque 6. On retrouve de cette façon un résultat déjà établi dans [Köc91,
Cor. 1.5 p. 365].

Nous sommes maintenant en mesure d’en déduire l’expression de l’application
diagonale de X (α2) :

Lemme 7.

∆2 =

5∑

i=0

hi
2 × h5−i

2

Démonstration. Tout ce qu’il y a faire ici, c’est de prouver que la correspon-
dance

∑5
i=0 hi

2 × h5−i
2 agit trivialement sur les générateurs de End(X (α2)) =

CH5(X (α2) ×X (α2)). D’après le lemme 5 on a :

(hi
2 × h5−i

2 ) ◦ (hj
2 × h5−j

2 ) =

{
deg(h5−j

2 · hi
2)(h

j
2 × h5−i

2 ) si i = j

0 sinon

Si i = j, nous devons tout d’abord calculer h5−i
2 · hi

2 pour toutes les valeurs
de j possibles, à savoir 0, 1 et 2. Il est tout d’abord clair en vertu de ce que
nous avons calculé que

6La structure cellulaire de X (α1) bien que non décrite ici est en fait classique et bien
connue.
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h0
2 · h5

2 = h5
2 · h0

2 = h5
2

et que

h1
2 · h4

2 = h4
2 · h1

2 = h5
2.

Pour j = 2, nous calculons tout d’abord

2h2
2 · h3

2 = (h1
2)

2 · h3
2

= h1
2 · 2h4

2

= 2h5
2

et par conséquent nous avons

h2
2 · h3

2 = h3
2 · h2

2 = h5
2,

en vertu de quoi nous concluons que

deg(h5−j
2 · hj

2) = deg(h5
2) = 1

pour tout indice j de l’ensemble {0, . . . , 5} et de là, nous en déduisons que pour
tout indice j,

(

5∑

i=0

hi
2 × h5−i

2 ) ◦ (hj
2 × h5−j

2 ) = hj
2 × h5−j

2 .

De l’unicité de l’élément neutre, nous concluons que

∆2 =

5∑

i=0

hi
2 × h5−i

2 .

Nous allons maintenant exprimer la correspondance réalisant l’isomorphisme
motivique dans le cas déployé.

Proposition 3. Soit

J =

5∑

i=0

hi
1 × h5−i

2 ∈ CH5(X (α1) ×X (α2)),

J réalise un isomorphisme motivique entre X (α1) et X (α2) dont l’inverse est
la correspondance transposée tJ .
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Démonstration. Nous pouvons nous contenter de prouver que J ◦t J = ∆2.
Pour cela nous utilisons une fois encore le lemme 5 pour calculer :

(hi
1 × h5−i

2 ) ◦ (hj
2 × h5−j

1 ) =

{
deg(h5−j

1 · hi
1)(h

j
2 × h5−i

2 ) si i = j

0 sinon

et là encore nous avons

deg(h5−j
1 · hi

1) = deg(h5
1) = 1

puisque

(h1
1)

2 = h2
1

(h1
1)

3 = 2h3
1

(h1
1)

4 = 2h4
1

(h1
1)

5 = 2h5
1

comme on peut s’en assurer en consultant [Kar90]. Par conséquent, il vient tout
naturellement en développant que

J ◦t J =

5∑

i=0

hi
2 × h5−i

2 = ∆2.

Nous ne les reproduisons pas ici, mais le même type de calculs nous montre
que tJ ◦J = ∆1 et par conséquent, J est donc bien un isomorphisme motivique
entre X (α1) et X (α2) comme annoncé.

Nous prouvons maintenant un théorème de nilpotence pour X (α2) comme
M. Rost l’a fait dans le cas des quadriques (voir [Bro03]).

7.2 Théorème de nilpotence et conséquence

En premier lieu, nous reproduisons ici quelques résultats établis par M. Rost.
On désigne par X et B deux variétés algébriques lisses sur le corps de base
k et π : B × X → B la première projection. Pour tout élément b de B, Xb =
Spec k(b)×kX désigne la fibre au-dessus de b et k(b) le corps résiduel en b. Pour
toute correspondance f de End(X), on note fb ∈ EndCorr0

(k(b))
(Xb) l’élément

obtenu par changement de base.
Le résultat suivant est démontré dans [Bro03, Th. 3.1 p. 74].

Proposition 4. Soit f ∈ End(X) et supposons que

(fb)∗ (CHi(Xb)) = 0

pour tout b ∈ B et tout i ∈ {0, . . . ,dim B}. Alors
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f (1+dim B) ◦ Hom(B,X) = 0.

Remarque 7. La puissance de f est prise dans l’anneau End(X).

Nous établissons maintenant le résultat suivant :

Lemme 8. Si X (α2) est déployée, alors

End(X (α2)) = ⊕i End�
(
CHi(X (α2))

)
.

Démonstration. D’aprés [Ros90, Lem. 6 p. 7] ce résultat est vrai pour les qua-
driques déployées7. Il est donc vrai pour X (α1) lorsqu’elle l’est. Nous savons
maintenant que dans ce cas X (α2) lui est isomorphe. Ce résultat est donc
également vrai pour X (α2).

Nous énonçons maintenant notre théorème de nilpotence.

Proposition 5 (Théorème de nilpotence). Soit f ∈ End(X (α2)) et �/k
une extension quelconque du corps de base k. Si f� = 0 ∈ EndCorr0�(X (α2)�),
alors il existe un entier n tel que fn = 0.

Démonstration. Dans le cas où X (α2) est déployée, comme

End(X (α2)) = ⊕i End�
(
CHi(X (α2))

)
,

le fait que f� = 0 implique nécessairement que f = 0 car End(X (α2)) est
invariant par extension.

Si maintenant nous sommes dans le cas où X (α2) n’est pas déployée, on
applique alors la propositon prcédente avec B = X (α2). Nous allons également
devoir utiliser, et donc prouver, le résultat suivant :

Lemme 9. Pour tout x ∈ X (α2), la fibre X (α2)x est déployée.

Démonstration. Il est clair que X (α2)x a un point rationnel et en conséquence,
il existe un plan P de l’algèbre d’octonions O tel que la trace restreinte à P
est identiquement nulle et que le produit de deux éléments quelconques de P
est lui aussi nul. Nous avons déja fait remarquer (cf. sous-section 3.3) que dans
ce cas là, P est totalement isotrope. Ainsi, la forme quadratique q sur O est
également isotrope, d’où O est déployée d’après le théorème 1.8.1 de [SV]. Par
conséquent, X (α2)x est déployée.

La variété X (α2)x étant totalement déployée, en utilisant ce que l’on à déjà
dit en début de preuve, (fx)� = 0 implique que fx = 0. Dès lors, on peut
appliquer la proposition précédente (la condition (fx)∗ (CHi(X (α2)x)) = 0 est
trivialement vérifiée) et en déduire que

7Dans l’article de M. Rost, le résultat est établi sur les dimensions mais comme nous tra-
vaillons avec des variétés irréductibles nous pouvons passer à la codimension sans problème.

Documenta Mathematica 8 (2003) 247–277



272 Jean-Paul Bonnet

f6 = 0.

Le résultat est donc établi.

De ce résultat nous déduisons un théorème d’isomorphisme :

Corollaire 3 (Théorème d’isomorphisme). Sous les hypothèses de la pro-
position 5, si f� est un isomorphisme alors f en est un.

Démonstration. Si X (α2)� n’est pas déployée, elle l’est sur une extension plus
grande. En conséquence, quitte à passer sur une autre extension, nous pouvons
supposer que X (α2)� est déployée. En utilisant le lemme 8, nous constatons
que

End(X (α2)) = ⊕5
i=0 End�(CHi(X (α2)))

et ainsi la correspondance f� est totalement déterminée par son action sur
les groupes CHi(X (α2)) ' �. D’où f� satisfait l’équation t2 − 1 = 0. Ainsi,
f2� = (∆2)� et d’après la proposition 5, nous en déduisons que f2 = ∆2 + g, où
g est un élément nilpotent. En conclusion, f est un automorphisme.

Remarque 8. V. Chernousov, S. Gille et A. Merkurjev ont depuis généralisé
ce résultat (et le théorème de nilpotence 5) dans leur preprint [CGM03, Th.
7.4 p. 13].

Nous allons maintenant établir que le cycle J est rationnel et ainsi être en
mesure de conclure que l’isomorphisme motivique est aussi réalisé dans le cas
anisotrope.

7.3 Cas anisotrope

Nous supposons à présent que les variétés X (α1) et X (α2) sont anisotropes
sur le corps de base k. Nous considérons alors

�
une clôture algébrique de

k et les variétés X (α1)� et X (α2)� sont, elles, clairement déployées. Comme
précédemment, nous désignons alors par, hi

1 et hi
2 les générateurs respectifs de

CHi(X (α1)�) et CHi(X (α2)�). Nous annonçons maintenant :

Proposition 6. La correspondance

J =

5∑

i=0

hi
1 × h5−i

2 ∈ CH5(X (α1)� ×X (α2)�)

est rationnelle.

Démonstration. Sur
�

, les variétés X (α1)� et X (α2)� sont déployées et ad-
mettent une structure cellulaire. Par conséquent, comme nous l’avons déjà fait
remarquer
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CH∗(X (α1)�) ⊗ CH∗(X (α2)�) ' CH∗(X (α1)� ×X (α2)�)

et donc CH∗(X (α1)� × X (α2)�) est engendré par les hi
1 × hj

2. Pour prouver
la rationnalité de J , nous allons procéder en plusieurs étapes et pour cela
démontrer les deux lemmes suivants :

Lemme 10. Le cycle h1
2 ∈ CH1(X (α2)�) est rationnel.

Démonstration. Lorsque nous avons calculé la structure cellulaire de X (α2)�
(cf. section 4) nous avons trouvé que le premier terme de la filtration admettait
pour R-points (R ∈ Algk) :

X4(R) = {P ∈ X (α2)(R) | rg(P ∩ (V7)R) > 2, rg(P ∩ (V5)R) > 1}

Par ailleurs, le groupe de Chow de la grassmannienne Γ2(H)� a également un
seul générateur en codimension 1 et ce générateur est la classe de l’adhérence
de la cellule de Schubert associée à la variété dont les R-points sont

(Γ2(H)�)(1,0)(R) = {P ∈ Γ2(H)(R) | rg(P ∩ (V7)R) > 2, rg(P ∩ (V5)R) > 1}.

Nous constatons ainsi que X4(R) = X (α2)�(R) ∩ (Γ2(H)�)(1,0)(R) et comme
nous avons de plus

codimX (α2)�X4 = codimΓ2(H)�X (α2)� ∩ (Γ2(H)�)(0,1),

l’image du générateur libre de CH1(Γ2(H)K) par le pull-back de l’application
X (α2)� → Γ2(H)� est exactement h1

2 = [X4]. Nous considérons alors les pull-
backs des extensions des scalaires

X (α2)� −→ X (α2) et Γ2(H)� −→ Γ2(H)

c’est-à-dire les applications

res�/k : CH1(X (α2)) −→ CH1(X (α2)�)

et

res�/k : CH1(Γ2(H)) −→ CH1(Γ2(H)�).

Il est maintenant entendu qu’une base normale n’existe pas sur le corps de
base k, toutefois comme nous l’avons déjà signalé, n’importe quelle base per-
met de définir toutes les variétés de Schubert d’une grassmannienne et les
classes modulo équivalence rationnelle de ces variétés forment un système de
générateurs libres de CH∗(Γ2(H)). Dès lors, il est bien clair que
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CH∗(Γ2(H)) ' CH∗(Γ2(H)�)

et ainsi en considérant le diagramme commutatif suivant

CH1(Γ2(H)�) CH1(X (α2)�)

CH1(Γ2(H)) CH1(X (α2))

res�/k

nous en déduisons que le cycle h1
2 est rationnel.

Lemme 11. Le cycle c = h0
1 × h3

2 + h3
1 × h0

2 ∈ CH3(X (α1)� × X (α2)�) est
rationnel.

Démonstration. Pour établir la rationalité de c, nous considérons le diagramme
commutatif suivant :

CH3(X (α1)� ×X (α2)�)
(idX(α1)�×p�)∗

CH3(X (α1)�(X (α2)�))

CH3(X (α1) ×X (α2))

res�/k

(idX(α1)×p)∗

CH3(X (α1)k(X (α2)))

res�(X(α2)�)/k(X(α2))

où les flèches horizontales sont les pull-backs par rapport aux morphismes plats

idX (α1) × p : X (α1)k(X (α2)) → X (α1) ×X (α2)

et
idX (α1)�× p� : X (α1)�(X (α2)�) → X (α1)� ×X (α2)�

où p (resp. p�) est le morphisme point générique de X (α1) (resp. X (α1)�).
Il est clair que la forme quadratique q est isotrope sur k(X (α2)) (comme

tout à l’heure dans le lemme 9 nous rajoutons un point rationnel à X (α1)).
Par conséquent, elle est totalement isotrope (par le même argument que dans
la preuve du lemme 9) et (h3

1)�(X (α2)�) est défini sur k(X (α2)) (puisque dans
ce cas là, tous les cycles le sont). Comme (idX (α1) × p)∗ est surjective (voir
par exemple [IK00, §5, Prop. 5.1 p. 8]), il en découle, qu’il existe un cycle
d ∈ CH3(X (α1)� ×X (α2)�) défini sur k tel que

(idX (α1)�× p�)∗(d) = (h3
1)�(X (α2)�).

Nous calculons maintenant l’action de (idX (α1)�× p�)∗ sur les éléments en-

gendrant le groupe CH3(X (α1)� ×X (α2)�) :

(idX (α1)�× p�)∗(hi
1 × h3−i

2 ) =

{
(h3

1)�(X (α2)�) si i = 3

0 sinon
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Et comme (idX (α1)�× p�)∗(d) = (h3
1)�(X (α2)�), il s’ensuit que

d = h3
1 × h0

2 +

2∑

i=1

aih
i
1 × h3−i

2 + ah0
1 × h3

2

pour a1, a2 et a dans �. Nous savons que h1
2 est rationnel d’après le lemme 10

donc (h1
2)

2 = lh2
2 l’est. D’autre part, par un argument de transfert, 2h2

2 est
aussi rationnel et comme l est impair (comme nous l’avons prouvé à la fin de la
sous-section 5.3), h2

2 est rationnel. D’autre part, h1
1 est aussi un cycle rationnel,

ce résultat classique relève du même argument que pour h1
2 et enfin, comme

h2
1 = (h1

1)
2, c’est aussi un cycle rationnel. De là, nous déduisons que h1

1 × h2
2

et h2
1 × h1

2 sont rationnels. De la même façon, h0
1 × h1

2 et h0
1 × h2

2 sont aussi
rationnels et comme nous pouvons écrire que

2h0
1 × h3

2 = (h0
1 × h1

2) · (h0
1 × h2

2),

il s’ensuit que le cycle 2h0
1 × h3

2 est lui aussi rationnel. Dès lors en soustrayant
des multiples de ces cycles à d, il en découle que selon la parité de a, soit
h3

1 × h0
2 est rationnel, soit h3

1 × h0
2 + h0

1 × h3
2 l’est. Dans ce dernier cas, la

preuve est terminée. Dans l’autre cas, nous devons refaire exactement le même
raisonnement avec X (α2)�(X (α1)�) au lieu de X (α1)�(X (α2)�), avec l’hypothèse
que h3

1 × h0
2 est rationnel, pour en déduire que h0

1 × h3
2 l’est aussi. Dans tous

les cas, nous pouvons conclure que

c = h3
1 × h0

2 + h0
1 × h3

2

est un cycle rationnel.

Les arguments précédents, nous montrent que les cycles h1
1 × h1

2 et h2
1 × h0

2

sont rationnels. Par conséquent, les correspondances

(h0
1 × h2

2) · c = h3
1 × h2

2 + h0
1 × h5

2

(h1
1 × h1

2) · c = h4
1 × h1

2 + lh1
1 × h4

2

(h2
1 × h0

2) · c = h5
1 × h0

2 + h2
1 × h3

2

sont également rationnelles. D’autre part, par un argument de transfert, 2h1
1 ×

h4
2 = h1

1 × 2h4
2 est rationnel et comme l est impair,

h1
1 × h4

2 + h4
1 × h1

2

est rationnel. Le cycle J étant égal à la somme des trois cycles, h3
1×h2

2+h0
1×h5

2,
h1

1×h4
2+ h4

1×h1
2 et h5

1×h0
2+h2

1×h3
2, il est par voie de conséquence rationnel.

Le fait que J soit une correspondance rationnelle signifie qu’il existe une
correspondance f telle que f� = J . Nous avons établi dans la proposition 3
que J induit un isomorphisme entre X (α1)� et X (α2)�. De même, tJ induit
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un isomorphisme entre X (α2)� et X (α1)� et est également rationnelle comme
transposé d’une correspondance rationnelle. Ainsi, d’après le théorème d’iso-
morphisme (cf. corollaire 3), f ◦tf et tf ◦f sont des automorphismes motiviques
de X (α2) et X (α1) respectivement. Par conséquent, f réalise un isomorphisme
motivique de X (α1) dans X (α2).

Nous avons donc prouvé que les variétés X (α1) et X (α2) bien que non iso-
morphes en tant que variétés algébriques lisses sont motiviquement isomorphes.
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Abstract. In these notes we develop a systematic study of the es-
sential dimension of functors. This approach is due to A. Merkurjev
and can be found in his unpublished notes [12]. The notion of essen-
tial dimension was earlier introduced for finite groups by J. Buhler
and Z. Reichstein in [3] and for an arbitrary algebraic group over an
algebraically closed field by Z. Reichstein in [14]. This is a numerical
invariant depending on the group G and the field k. This number
is denoted by edk(G). In this paper we insist on the behaviour of
the essential dimension under field extension k′/k and try to compute
edk(G) for any k. This will be done in particular for the group Z/n
when n ≤ 5 and for the circle group. Along the way we define the
essential dimension of functor with versal pairs and prove that all the
different notions of essential dimension agree in the case of algebraic
groups. Applications to finite groups are given. Finally we give a proof
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Summary of the paper

In Section 1, we introduce the notion of essential dimension of a covariant
functor from the category of field extensions over a base field k to the category
of sets. This notion is due to A. Merkurjev and can be found in [12]. We
then study the behaviour of this notion under products, coproducts and field
extensions. Along the way, we define the notion of fibration of functors.

In Section 2, we introduce the essential dimension of an algebraic group G
defined over an arbitrary field k. We then give some examples of computation
of this essential dimension, including the case of the circle group.

In Section 3, we give an upper bound for the essential dimension of an algebraic
group which acts linearly and generically freely on a finite-dimensional vector
space. As an application, we show that the essential dimension of any algebraic
group is finite. Compare this material with [14] where the essential dimension
of G is defined taking the point of view of G-actions. Very sketchy proofs of
these results can be found in [12]. For the convenience of the reader, we present
complete proofs of them using the ideas of [12], filling in technical details. We
then apply the previous results to estimate the essential dimension of finite
abelian groups and dihedral groups when the base field is sufficiently large.

In Section 4, we introduce Merkurjev’s notions of n-simple functors and non-
constant morphisms (see [12]). We apply it to give lower bounds of essential
dimension of some algebraic groups (e.g. symmetric groups) using non-trivial
cohomological invariants always following [12].

In Section 5, inspired by Rost’s definition of essential dimension for some sub-
functors of Milnor’s K-theory (see [16]), we define the notion of versal pair
for functors from the category of commutative and unital k-algebras to the
category of sets. We then define the (Rost’s) essential dimension for functors
having a versal pair, and compare it to Merkurjev’s essential dimension.
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In Section 6, we introduce the notion of generic torsor, following [9]. We then
prove that the essential dimension of an algebraic group G is the essential
dimension of a generic torsor. We also compare the essential dimension of an
algebraic group G with that of any closed subgroup. Along the way the notion
of compression of torsors is introduced following [14]. The present approach
has the advantage that no hypothesis on the ground field is needed. Again,
ideas of proofs of these results can be found in [12]. We use them, filling the
details and reformulating them in terms of versal pairs.

In Section 7, we focus on essential dimension of finite constant group schemes.
First of all, we prove that the essential dimension of such a group G is the min-
imum of the trdeg(E : k) for all the fields E ⊆ k(V ) on which G acts faithfully
(see [3]). We then apply these results to compute essential dimension of cyclic
and dihedral groups over the field of real numbers, and essential dimension of
cyclic groups of order at most 5 over any base field.

Finally, in Section 8, we give the proof of the homotopy invariance for essential
dimension of algebraic groups defined over an infinite field.

1. Introduction

Let k be a field. We denote by Ck the category of field extensions of k, i.e.
the category whose objects are field extensions K over k and whose morphisms
are field homomorphisms which fix k. We write Fk for the category of all
covariant functors from Ck to the category of sets. For such a functor F and
for a field extension K/k we will write F(K) instead of F(K/k). If K → L is a
morphism in Ck, for every element a ∈ F(K) we will denote by aL the image
of a under the map F(K) −→ F(L). We shall say that a morphism F −→ G

between functors in Fk is a surjection if, for any field extension K/k, the
corresponding map F(K) −→ G(K) is a surjection of sets. If F : Ck −→ Sets

is an object of Fk and if K/k is a field extension we will sometimes denote
by FK the functor F viewed as a functor over the category CK . By a scheme
over k, we mean a k-scheme of finite type.

Examples 1.1.

(1) The forgetful functor, denoted by O, which assigns to each field exten-
sion K/k the underlying set of K and to each morphism its underlying
map of sets, is an object of Fk.

(2) The stupid functor, denoted by ∗, sending a field K to a one-point set
is an object of Fk.
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(3) Let X be a scheme over k. It defines a “point functor”, still denoted
by X, in this way :

K 7→ X(K) = Hom(Spec(K),X).

The set X(K) is simply the set of all K-rational points of X.

(4) For any integer n ≥ 1, we put Qn(K) for the set of isomorphism
classes of non-degenerate quadratic forms of dimension n over K. It is
clear that Qn defines an object of Fk.

(5) A K-algebra is called primitive if it is isomorphic to a quotient of
K[X]. Every such algebra is thus of the form K[X]/<f > for a single
polynomial f = Xn + an−1X

n−1 + · · · + a1X + a0. We denote by
Algn(K) the set of isomorphism classes of n-dimensional primitive
algebras. This also defines a functor Algn from Ck to the category of
sets.

(6) Let K be a field. We recall that an étale algebra over K is a fi-
nite dimensional commutative K-algebra A which satisfies the equality
] HomK(A,K) = dimK A, where K denotes an algebraic closure of K.
This is equivalent to saying that A ⊗K K is reduced or that A is a
product of separable extensions of K. Moreover if K is infinite, A is
étale over K if and only if A ' K[X]/< f > where f has no multiple
roots in K. If A is étale over K and K → L is a field homomorphism
then A ⊗K L is étale over L.
For any field extension K/k and any integer n ≥ 1, let Étn(K) denote
the set of isomorphism classes of n-dimensional étale algebras over K.
It also defines an object of the category Fk. When the base field k

is infinite Étn is a subfunctor of Algn and these functors are closely
related for the essential dimension.

(7) Let G be a finite abstract group of order n and let K be a field. By
a Galois G-algebra over K (or Galois K-algebra with group G) we
mean an étale K-algebra L of dimension n such that G acts on L as
a group of K-automorphisms and such that LG = K. We denote by
G-Alg(K) the set of G-isomorphism classes of Galois G-algebras over
K. The assignment K 7→ G-Alg(K) from Ck to the category of sets
defines an object of Fk.

(8) For every integer d, n ≥ 2, define Fd,n(K) to be the set of all (non-
trivial) homogenous forms over K of degree d in n variables modulo
the GLn(K)-action and modulo the relation f ∼ λf for λ ∈ K×.
Once again Fd,n is an object of Fk.
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(9) Let S be a pointed set with at least two elements and d ≥ 1 an integer.
We shall define the functor Fd

S in the following way :

Fd
S(K) =





S if trdeg(K : k) ≥ d

∗ otherwise

and, for an extension K ′/K, the obvious constant map of pointed sets
Fd

S(K) −→ Fd
S(K ′).

(10) Let L/k be an arbitrary field extension. Then, the (covariant) rep-
resentable functor hL given by hL(K) = Hom(L,K) defines also an
object of Fk.

One natural question is to ask how many parameters are needed to describe a
given structure. For example, any n-dimensional quadratic form in character-
istic not 2, is determined by n parameters since it can be reduced to a diagonal
form.
A quadratic algebra will certainly be described by one parameter since it can
always be written as k[X]/< X2 + a > when 1

2 exists. The natural notion of
functor shall replace the word “structure” and the following crucial definition,
which is due to A. Merkurjev, shall make precise the concept of “how many
parameters” are needed to describe it.

Definition 1.2. Let F be an object of Fk, K/k a field extension and a ∈ F(K).
For n ∈ N, we say that the essential dimension of a is ≤ n (and we write
ed(a) ≤ n), if there exists a subextension E/k of K/k such that:

i) trdeg(E : k) ≤ n,

ii) the element a is in the image of the map F(E) −→ F(K).

We say that ed(a) = n if ed(a) ≤ n and ed(a) 6≤ n − 1. The essential
dimension of F is the supremum of ed(a) for all a ∈ F(K) and for all K/k.
The essential dimension of F will be denoted by edk(F).

Examples 1.3.

(1) It is clear from the very definition that ed(∗) = 0 and ed(O) = 1.
More generally, we may say that a functor F is flasque if, for any
field extension K ′/K, the map F(K) −→ F(K ′) is surjective. Clearly
every flasque functor F satisfies ed(F) = 0 and every constant functor
is flasque.
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(2) We shall do some very easy computations on polynomials of degree
2,3 and 4 in order to compute the essential dimension of Alg2,Alg3

and Alg4. We start with simple considerations on the functor Algn

for arbitrary n. Let A = K[X]/ < f > and B = K[Y ]/ < g > two

n-dimensional primitive algebras. We denote by x and y the classes of
X and Y respectively. A homomorphism ϕ : A −→ B is determined
by the image of x, say

ϕ(x) = cn−1y
n−1 + cn−2y

n−2 + · · · + c1y + c0,

satisfying f(ϕ(x)) = 0. Saying that ϕ is an isomorphism is nothing but
saying that ϕ(x) generates B. In this case we say that ϕ(x) is a nonde-
generate Tschirnhaus transformation of f . Clearly a polynomial
f = Xn + an−1X

n−1 + · · · + a1X + a0 is defined over k(a0, . . . , an−1)
and thus computing the essential dimension of (the isomorphism class
of) K[X]/ < f > is the same as reducing the number of coefficients ap-
pearing in f by means of nondegenerate Tschirnhaus transformations.
(This is the starting point of the paper [3]). It clearly suffices to do this
on the “generic element” Xn + tn−1X

n−1 + · · · + t1X + t0 (where the
ti’s are algebraically independent over k) since every other polynomial
is a specialization of this one.

Now, when the characteristic of the ground field k does not divide n,
the substitution Y = X − tn−1

n drops the coefficient tn−1 and hence

ed(Algn) ≤ n − 1.

For the polynomial X2 + aX + b this says that one can reduce it to
the form X2 + c. Now the algebra k(t)[X]/< X2 + t > is clearly not
defined over an algebraic extension of k and hence

ed(Alg2) = 1.

Now X3 + aX2 + bX + c can be reduced to X3 + b′X + c′ and, setting

Y = c′

b′ X, one makes the second and the third coefficient equal.

Thus one can reduce it to the form X3 +dX +d. As before the algebra
k(t)[X]/< X3 + tX + t > is not defined over an algebraic extension of
k and so

ed(Alg3) = 1.

Similarly the generic polynomial of degree 4 can be reduced to the form
X4 + sX2 + tX + t and hence ed(Alg4) ≤ 2. We will see that it cannot
be reduced, thus ed(Alg4) = 2.

Remark 1.4. The notion of essential dimension depends on the ground field k.
However, when the field k is fixed, there is no confusion by writing ed(F).
When the context is not clear, or when we want to insist on some hypotheses
made on the field, we shall write edk(F). In general, if k′/k is a field extension,
every object F of Fk, can be viewed (by restriction) as an object of Fk′ . The
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following proposition shows the behaviour of essential dimension under field
extension.

Proposition 1.5. Let k′/k a field extension and F an object of Fk. Then

edk′(F) ≤ edk(F).

Proof. If edk(F) = ∞, the result is obvious. Let edk(F) = n. Take K/k′

a field extension and a ∈ F(K). There is a subextension k ⊆ E ⊆ K with
trdeg(E : k) ≤ n such that a is in the image of the map F(E) −→ F(K). The
composite extension E′ = Ek′ then satisfies trdeg(E′ : k′) ≤ n and clearly a is
in the image of the map F(E′) −→ F(K). Thus ed(a) ≤ n and edk′(F) ≤ n.

Remarks 1.6.

(1) The above proposition says that, for a fixed functor F ∈ Fk, the map

ed−(F) : Ck −→ N ∪ {∞}
is a contravariant functor where N ∪ {∞} is considered as a category
by saying that there is a morphism n → m exactly when n ≤ m. This
implies that, if F is a functor defined over the category of all fields, to
give an upper bound of edk(F) it is sufficient to give an upper bound
over each prime field Fp when char(k) > 0, and to give an upper bound
over Q when char(k) = 0.

(2) In general one does not have edk(F) = edk′(F) for any field exten-
sion k′/k. Example (9) above shows that the essential dimension
can decrease considerably: one sees immediately that edk′(Fd

S) = 0
if trdeg(k′ : k) ≥ d. This is due to the fact that the functor becomes
constant over k′ and hence its essential dimension is zero. On the other
hand it is clear that edk(Fd

S) = d.

(3) Let L/k be an extension and hL the corresponding representable func-
tor of Example (10). Then one has edk′(hL) = trdeg(L : k′) if
k ⊆ k′ ⊆ L and edk′(hL) = 0 otherwise.

We shall see later on (Corollary 2.7 in Chapter II) an example of a functor for
which the inequality of Proposition 1.5 is strict even if the extension k′/k is
algebraic.

The behaviour of essential dimension with respect to subfunctors is not very
clear. For example take for G the constant functor G(K) = S where S is a set
with at least two elements. Then Fd

S is a subfunctor of G and the dimension of
the former is d (which is arbitrarily large) whereas the dimension of G is zero.
However there is a large class of subfunctors for which the essential dimension
has a nice behaviour.
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Definition 1.7. Let G be an object of Fk. A subfunctor F ⊆ G is called sat-
urated if for any field extension L/K over k and any element a ∈ G(K)
such that aL ∈ F(L) there is an algebraic subextension K ′/K such that
aK′ ∈ F(K ′).

Proposition 1.8. Let F ⊆ G be a saturated subfunctor. Then

ed(F) ≤ ed(G).

Proof. Let K/k be a field extension and a ∈ F(K). Assume that ed(G) = n.
Then there is a subextension L/k and an element b ∈ G(L) such that
trdeg ( L : k ) ≤ n and a = bK . Since F is saturated, there is an algebraic
subextension E/L in K/L such that bE ∈ F(E). Thus a ∈ im(F(E) −→ F(K))
and since trdeg(E : k) ≤ n this shows that ed(F) ≤ n.

We continue our investigation with some very simple lemmas concerning the
functorial properties of ed : Fk −→ N ∪ {∞}.

Lemma 1.9. Let f : F // // G be a surjection in Fk. Then

ed(G) ≤ ed(F).

Proof. Let K/k be an extension and b ∈ G(K). By assumption, there
is an element a ∈ F(K) such that fK(a) = b. Suppose that ed(F) = n.
Take a subextension k ⊆ E ⊆ K such that trdeg(E : k) ≤ n and such that
a ∈ im

(
F(E) −→ F(K)

)
. The lemma now follows from the commutativity of

the diagram

F(K)
fK // // G(K)

F(E)
fE // //

OO

G(E)

OO

Thus essential dimension is functorial (in a contravariant way) over the cat-
egory of functors in Fk with surjections as morphisms. Nevertheless we will
not restrict ourselves to that category, since this would not be very natural.
For instance, we will always consider products and coproducts in the cate-
gory of functors with all morphisms. The next lemma shows that the essential
dimension preserves coproducts.
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Lemma 1.10. Let F and G be two objects of Fk. Then

ed(F
∐

G) = max{ed(F), ed(G)}.
Proof. Let K/k be an extension and a ∈ F(K)

∐
G(K). Clearly

ed(a) ≤ ed(F) or ed(a) ≤ ed(G) and hence ed(F
∐

G) ≤ max{ed(F), ed(G)}.
The opposite inequality is clear since F and G are both saturated subfunctors
of F

∐
G.

Lemma 1.11. Let F and G be two objects of Fk. Then

ed(F × G) ≤ ed(F) + ed(G).

Proof. Take K/k a field extension and (a, a′) ∈ F(K) × G(K). Take two
extensions k ⊆ E,E′ ⊆ K with trdeg(E : k) ≤ ed(F), trdeg(E′ : k) ≤ ed(G)
and such that a (respectively a′) belongs to the image of F(E) −→ F(K)
(respectively G(E′) −→ G(K)). So there exist b ∈ F(E) and b′ ∈ G(E′)
such that bK = a and b′K = a′. If we consider L = EE′ and denote by c
(respectively c′) the image of b in F(L) (respectively the image of b′ in G(L))
it is easily seen that (c, c′) maps to (a, a′). Hence

ed(a, a′) ≤ trdeg(L : k) ≤ trdeg(E : k) + trdeg(E′ : k) ≤ ed(F) + ed(G).

Thus ed(F × G) ≤ ed(F) + ed(G).

A slight generalization of the previous inequality can be performed for functors
which are in some kind of “fibration position”.

First recall that an action of a set Y over a set X is nothing but a map
Y × X → X. If y ∈ Y and x ∈ X we shall write y · x for the image of (y, x)
under this map. We say that a functor F : Ck −→ Sets acts over a functor
G : Ck −→ Sets if, for every extension K/k, the set F(K) acts over G(K) and
if the obvious compatibility condition holds: for each morphism K → L and for
all elements y ∈ F(K) and x ∈ G(K), one has (y · x)L = yL · xL. We shall say
that the action of the functor F over the functor G is transitive if for every
K/k the action of the set F(K) is transitive over G(K) (that is there is only
one orbit). Recall also that, if π : G −→ H is a morphism of functors in Fk

and K/k is an extension, each element a ∈ H(K) gives rise to a functor π−1(a),
defined over the category CK , by setting π−1

L (a) = {x ∈ G(L) | πL(x) = aL}
for every extension L/K.

Definition 1.12. Let π : G // // H be a surjection in Fk. We say that a
functor F is in fibration position for π if F acts transitively on each fiber
of π. More precisely, for every extension K/k and every a ∈ H(K), we require
that the functor F (viewed over the category CK) acts transitively on π−1(a).

When F is in fibration position for π we simply write F Ã G
π // // H and

call this a fibration of functors.
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In the following proposition we insist on the fact that all the functors involved
do not necessarly take values in the category of groups.

Proposition 1.13. Let F Ã G
π // // H be a fibration of functors. Then

ed(G) ≤ ed(F) + ed(H).

Proof. Let K/k a field extension and a ∈ G(K). By definition there is a
field extension E with k ⊆ E ⊆ K, satisfying trdeg(E : k) ≤ ed(H), and an
element b′ ∈ H(E) such that b′K = πK(a). Since πE is surjective there exists
a′ ∈ G(E) such that πE(a′) = b′. Now clearly πK(a′

K) = πK(a) and thus a′
K

and a are in the same fiber. By assumption there exists an element c ∈ F(K)
such that a′

K · c = a. Now there exists an extension E′ with k ⊆ E′ ⊆ K and
trdeg(E′ : k) ≤ ed(F) such that c is in the image of the map F(E′) −→ F(K).
We take c′ ∈ F(E′) such that c′K = c. Considering now the composite extension
E′′ = EE′ and setting d = a′

E′′ · c′E′′ ∈ G(E′′) we have, since the action is
functorial,

dK = (a′
E′′ · c′E′′)K = a′

K · c′K = a′
K · c = a,

and thus

ed(a) ≤ trdeg(E′′ : k) ≤ trdeg(E : k) + trdeg(E′ : k) ≤ ed(H) + ed(F).

Since this is true for an arbitrary element a the desired inequality follows.

Remark 1.14. The inequality ed(F × G) ≤ ed(F) + ed(G) is a consequence of
this proposition. Indeed for a ∈ G(K) the fiber of the projection is F(K)×{a}
and the set F(K) acts transitively by simply setting x · (y, a) = (x, a).

Corollary 1.15. Let 1 −→ F −→ G −→ H −→ 1 be a short exact sequence
of group-valued functors. Then

ed(G) ≤ ed(F) + ed(H).

Proof. This is clear since H(K) ∼= G(K)/F(K) and the set F(K) acts tran-
sitively on equivalence classes by group multiplication.

Remarks 1.16.

a) One can have ed(G) < ed(F)+ed(H) as is shown by the following example:
For every field extension K let F(K) = K×2 be the subgroup of G(K) = K×

consisting of all the squares and H(K) = K×/K×2 the corresponding quotient
(as groups). It is not difficult to see that ed(F) = ed(G) = ed(H) = 1, and
thus 1 = ed(G) < ed(F) + ed(H) = 2 (but note that G 6∼= F × H as functors).

b) For a product of functors, since F × G maps onto both F and G, we have

max{ed(F), ed(G)} ≤ ed(F × G) ≤ ed(F) + ed(G).
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However, even the behaviour of products with respect to essential dimension is
not clear. Consider for instance the following two examples :

• Consider the functor Fd
S of example (9) above. Clearly Fd

S ×Fd
S = Fd

S×S and
hence

ed(Fd
S × Fd

S) = ed(Fd
S×S) = d = ed(Fd

S).

Thus it is possible to have ed(F × · · · × F) = ed(F).

• In contrast with the previous example consider O the forgetful functor. Then

ed(O × · · · × O︸ ︷︷ ︸
n times

) = n

and hence ed
( ∏

n∈N

O
)

= ∞.

The geometric class of functors introduced in example (3) has an easy essential-
dimensional behaviour. This is treated in the following

Proposition 1.17. Let X be a scheme over k. Then

ed(X) = dim(X).

Proof. Let K/k and a ∈ X(K) = Hom(Spec(K),X). If x denotes the
corresponding point, we have an inclusion k(x) ↪→ K, where k(x) is the residue
field at x. But

dim(X) = sup
x∈X

trdeg
(
k(x) : k

)
,

hence dim(X) = ed(X).

Definition 1.18. Let F be an object of Fk. A classifying scheme of F is
a k-scheme X such that there is a surjection X // // F .

Corollary 1.19. If X is a classifying scheme of F then

ed(F) ≤ dim(X).

Proof. This is clear from the definition and the previous considerations.

Examples 1.20.

• Consider Gm the multiplicative group scheme over k. If char(k) 6= 2, then
every quadratic form is diagonalizable, thus there is a surjective morphism of

functors Gn
m

// // Qn given by

Gn
m(K) // // Qn(K)

(a1, . . . , an) 7−→ 〈a1, . . . , an〉.
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Hence Gn
m is a classifying scheme of Qn. This shows that edk(Qn) ≤ n if

char(k) 6= 2.

• For example (6) above, when k is infinite, there is also a classifying scheme
X. Take A = k[t1, . . . , tn, 1

d(f) ] where f = xn + t1x
n−1 + · · ·+ tn and d(f) is the

discriminant of f . It now suffices to take X = Spec(A). Hence edk(Étn) ≤ n.

• In example (8) we easily see that every homogenous form of degree d with n

variables can be written with at most m =
(

d+n−1
n−1

)
coefficients. So one has a

very rough classifying scheme Pm−1 and thus

ed(Fd,n) ≤ m − 1.

Moreover there is a fibration of functors

Xn Ã Pm−1 // // Fd,n

where Xn is PGLn viewed as a scheme over k. Thus, by Proposition 1.13,
we have ed(Pm−1) ≤ ed(Xn) + ed(Fd,n). Since ed(Pm−1) = m − 1 and
ed(Xn) = n2 − 1 it follows that

ed(Fd,n) ≥ m − n2.

In the case n = 2 one can easily show that ed(Fd,2) ≤ d − 2 and the above
inequality tells us that ed(Fd,2) ≥ d − 3. Hence

d − 3 ≤ ed(Fd,2) ≤ d − 2.

For a discussion of the essential dimension of cubics in few variables, see a
forthcoming paper of the authors.

• In example (8) one could have preferred considering homogenous forms only
up to GLn and not up to a scalar. Denote by Gd,n this new functor. There is a
simple relationship between ed(Fd,n) and ed(Gd,n). Indeed there is an obvious
surjection of functors

Gd,n // // Fd,n

sending a class modulo GLn to its class in Fd,n. But the fiber of a form
[f ] ∈ Fd,n(K) is clearly the subset {[λf ] ∈ Gd,n(K) |λ ∈ K×} and thus K×

acts transitively on each fiber. We hence obtain a fibration of functors

X Ã Gd,n
// // Fd,n

where X is the scheme A1 \ {0} viewed as a functor. This gives the inequality

ed(Gd,n) ≤ ed(Fd,n) + ed(X) = ed(Fd,n) + 1.

Remark 1.21. In this section all the basic concepts are introduced by Merkurjev
in [12] with complete proofs. We have completed these results with Lemma
1.10, Definition 1.12, Corollary 1.15 and some trivial results. The discussion
on Fd,n is also new.
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2. Galois cohomology

We introduce an important class of functors using Galois cohomology. These
functors will be the center of our considerations. Their essential dimension was
first introduced by Reichstein, over an algebraically closed field, in terms of
compressions. See [14] for details. The standard reference for Galois cohomol-
ogy is Serre’s book [19].

Let G be a k-group scheme (always of finite type). Take K/k a field ex-
tension and Ks a separable closure. The group ΓK = Gal(Ks/K) acts
on G(Ks) compatibly with the G-action. The Galois cohomology set
H1

(
ΓK , G(Ks)

)
=: H1(K,G) is then well defined, i.e. does not depend on the

choice of the separable closure. Moreover H1(−, G) is a functor in the first
variable and thus is an object of Fk (see [19] page 83). This allows us to set
the following definition.

Definition 2.1. Let G be a k-group scheme. The essential dimension of
G is defined as

edk(G) = edk(H1(−, G)).

A big portion of this paper is dedicated to the study of the essential dimension
of certain group schemes. A certain number of techniques are developed in
order to estimate it. In the sequel all group schemes are assumed for simplicity
to be affine. We will mostly restrict ourselves to algebraic groups over k, that
is smooth affine group schemes over k whose Hopf algebra is finitely generated.

We briefly recall the following interpretation of Galois cohomology (see [19]
pages 128-129) which shows that many functors F : Ck −→ Sets can be viewed
as Galois cohomology functors.

Proposition 2.2. Let (V0, x0) be an algebraic structure over k (in the sense
of [19]). For any field extension K/k let G(K) = AutK(V0 ⊗k K) be the
group of K-automorphisms which preserve the structure. Then the set H1(k,G)
classifies the k-isomorphism classes of algebraic structures over k which become
isomorphic to (V0, x0) over a separable closure.

First examples. It is well known that H1(K,GLn) = 1 for every field K.
For n = 1 this is the so-called Hilbert 90 Theorem. Thus edk(GLn) = 0 for
every field k. Moreover the short exact sequence

1 −→ SLn −→ GLn −→ Gm −→ 1

induces an exact sequence in cohomology showing that H1(K,SLn) = 1 for
every field K. Thus one also has edk(SLn) = 0 for every field k. It is also
known that H1(K, Ga) is trivial for every field K. It follows that edk(Ga) = 0.
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Example of H1(k,Sn). We consider the symmetric group G = Sn as a
constant group scheme over k.

Take V0 = k × · · · × k = kn with its product k-algebra structure. It is easily
computed that Sn = AutK-alg(V0 ⊗k K). Thus, by the preceding proposition,
we have that H1(k,Sn) is the set of isomorphism classes of k-algebras A such
that there exists a separable extension L/k with A⊗k L ∼= Ln. It is then easily

checked that H1(−,Sn) ∼= Étn as functors and thus

edk(Sn) = edk(Étn).

Galois algebras. Let G any arbitrary finite constant group scheme over k.
For any field extension K/k there is a bijection from G-Alg(K) to H1(K,G)
given as follows: let L be a Galois G-algebra over K. The set EL of K-algebra
homomorphisms L → Ks is finite with dimK L elements. One shows easily
that EL is a principal homogenous space under ΓK and G. Sending [L] to [EL]
yields a well defined map from G-Alg(K) to H1(K,G) which one can show to
be a bijection (see [11] for details). Thus G-Alg ∼= H1(−, G).

Examples 2.3.

• The group µn.

Let k be a field and consider µn = Spec
(
k[X]/ < Xn − 1 >

)
the k-group

scheme of the n-th roots of the unity.

– Suppose that n is prime to the characteristic of k. Then it is well
known that for any field extension L/k one has a functorial isomorphism
H1(L, µn) ∼= L×/L×n. It thus follows that edk(µn) = 1.

– If n = char(k), then µn has trivial cohomology and thus edk(µn) = 0.

• The group Z/p.

Let k be a field, p a prime number and denote by Z/p the constant k-group
scheme represented by Spec(kZ/p).

– If char(k) 6= p and k contains all the p-th roots of unity we can identify the
group scheme Z/p with µp by choosing a primitive root of unity. In this case
one finds edk(Z/p) = 1. When the field does not contain all the p-th roots of
unity, the computation of edk(Z/p) is much harder as we shall see later.

– When char(k) = p the situation is easier. The long exact sequence in coho-
mology induced by the short exact sequence

0 // Z/p // Ga
// Ga

// 0

gives a functorial isomorphism H1(L, Z/p) ∼= L/℘(L) where ℘(x) = xp − x for
x ∈ L. It now clearly follows that edk(Z/p) = 1.
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Remark 2.4. When char(k) = p, the group Z/pn fits into a short exact sequence
of k-group schemes analogous to the previous one, but using Witt vectors:

0 // Z/pn // Wn
// Wn

// 0

where Wn(k) is the additive group of Witt vectors of length n (see [20]). Ap-
plying again cohomology and using the fact that H1(k,Wn) = 0, one finds that
Wn is a classifying scheme for Z/pn and hence

edk(Z/pn) ≤ n.

Another proof of the inequality edk(Z/pn) ≤ n is performed by looking at the
exact sequence

0 −→ Z/p −→ Z/pn −→ Z/pn−1 −→ 0.

It induces a long exact sequence in Galois cohomology but, when the base
field k is of characteristic p one has H2(K, Z/p) = 0 for every extension K/k
(see [19] page 86), and thus it reduces to a short exact sequence of group-valued
functors

0 −→ H1(−, Z/p) −→ H1(−, Z/pn) −→ H1(−, Z/pn−1) −→ 0.

Then, by Corollary 1.15, one has

edk(Z/pn) ≤ edk(Z/pn−1) + edk(Z/p)

and, since edk(Z/p) = 1, we are done by induction.

• The circle.

We are interested in the group scheme S1 = Spec
(
k[X,Y ]/< X2 + Y 2 − 1>

)

with its usual group structure. We first notice that when −1 is a square and
char(k) 6= 2, the rings k[X,Y ]/ < X2 + Y 2 − 1 > and k[t, t−1] are isomorphic.
In that case it follows that the algebraic groups S1 and Gm are isomorphic and
hence edk(S1) = 0. When −1 is not a square we will see that the essential
dimension increases.

Actually we will solve the problem for a wider class of algebraic groups.

Let k be a field and L an étale algebra over k. One defines the group scheme
G1

m,L by the exact sequence

1 // G1
m,L

// RL/k(Gm,L)
NL/k // Gm

// 1,

where RL/k denotes the Weil restriction (see [11] p.329 where it is called core-
striction).

In the sequel, we will prove the following result:
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Theorem 2.5. Let L/k be an étale algebra of dimension n ≥ 1. Then

edk(G1
m,L) =





0 if L is isomorphic to a product of field
extensions of relatively prime degrees

1 otherwise.

The above sequence induces, for any extension K/k, the exact sequence in
cohomology

(L ⊗ K)×
NK // K× // H1(K, G1

m,L) // 1

where NK is a short notation for NL⊗K/K . This gives an isomorphism

H1(K, G1
m,L) ' K×/NL⊗K/K(L ⊗ K)×.

In particular one has edk(G1
m,L) ≤ 1 for every field k.

Since the case n = 1 is trivial, we may assume until the end of this section
that n ≥ 2.

We start with the following lemma:

Lemma 2.6. Let k be a field, let L be a finite dimensional étale k-algebra of
dimension n ≥ 2, and let t be a transcendental element over k. Then t belongs
to the norm group of L ⊗ k(t)/k if and only if L is isomorphic to a product of
some finite separable field extensions of k those degrees are relatively prime.

Proof. Assume that there exists α ∈ L ⊗ k(t) such that NL⊗k(t)/k(t)(α) = t.
In the sequel, we will write L(t) instead of L⊗k(t) in order to simplify notation.

Write α =
1

Q(t)
·

m∑

i=0

λit
i, for some λi ∈ L, with λm 6= 0 and some nonzero

polynomial Q(t) ∈ k[t] of degree d ≥ 0. Assume first that L is a field. Then
L(t)/k(t) is again a separable field extension, and we have

Q(t)nt = NL(t)/k(t)(Q(t) · α) =
∏

σ

(
m∑

i=0

σ(λi) ⊗ ti

)
,

where σ describes Homk(L, ks). Since L is a field and λm 6= 0, the leading
coefficient of the right hand side term is equal to NL/k(λm)tmn. Since Q(t)nt
is a polynomial of degree nd + 1 and n ≥ 2, we get a contradiction.
Hence L ' L1 × · · · × Lr for r ≥ 2, where Li/k is a finite separable field
extension of degree ni. We then have

t = NL1(t)/k(t)(α1) · · ·NLr(t)/k(t)(αr)

for some αi ∈ Li(t)
×. As above write αi =

1

Qi(t)
·

mi∑

j=0

λ
(i)
j ⊗ tj , where λ

(i)
mi 6= 0.
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Since Li is a field, the computation above shows that the leading coefficient of
Q1(t)

n1 · · ·Qr(t)
nr t is

NL1/k(λ(1)
m1

)tm1n1 · · ·NLr/k(λ(r)
mr

)tmrnr ,

which has degree m1n1 + · · · + mrnr. By assumption, this degree is equal to
1+n1d1 + · · ·+nrdr. It follows immediately that the ni’s are relatively prime.
The converse is clear.

We now prove Theorem 2.5. Assume first that ed(G1
m,L) = 0. Then the class

of t in H1(k(t), G1
m,L) is defined over k. That is there exist an element a ∈ k

such that t = aNk(t)(α) for some α ∈ L⊗ k(t). Then u = t
a is a transcendental

element over k which belongs to the norm group of L ⊗ k(u). Applying the
previous lemma shows that L is isomorphic to a product of some finite separable
field extensions of k those degrees are relatively prime. Conversely, if L is
isomorphic to a product of some finite separable field extensions of k those
degrees are relatively prime, then one can easily see that NK is surjective for
any field extension K/k, so ed(G1

m,L) = 0.

Corollary 2.7. Let k be a field. Then

edk(S1) =





1 if char(k) 6= 2 and −1 /∈ k×2

0 otherwise.

Proof. If char(k) 6= 2, apply the previous theorem with L = k[X]/(X2 − 1).
If char(k) = 2, it is easy to see that for any field extension K/k, we have
S1(Ks) = {(x, x + 1) | x ∈ Ks}. In particular S1(Ks) ' Ks as Galois modules
and H1(−, S1) = 0, showing that edk(S1) = 0.

Remark 2.8. In this section new results are Remark 2.4, Theorem 2.5 and
Corollary 2.7.

3. Cohomological invariants

One way of giving lower bounds of essential dimension of functors is to use
cohomological invariants. This idea can be found in [14]. The advantage of
Merkurjev’s functorial point of view is that the definitions are natural and that
one could in theory apply these methods to a broader class of invariants.

Definition 3.1. Let F be an object of Fk and n ≥ 1 an integer. We say that
F is n-simple if there exists a field extension k̃/k such that for any extension

K/k̃ with trdeg(K : k̃) < n the set F(K) consists of one element.
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Example 3.2. Let M be a discrete torsion Γk-module and n ≥ 1 an integer.
Then it is known that Hn(K,M) = 0 if K contains an algebraically closed
field and is of transcendence degree < n over this field (see [19], Proposition

11, page 93). Taking for k̃ an algebraic closure of k one sees that Hn(−,M) is
n-simple.

Definition 3.3. A morphism of functors f : F → G is called non-constant
if for any field extension K/k there exists an extension L/K and elements
a ∈ F(K), a′ ∈ F(L) such that fL(aL) 6= fL(a′).

Proposition 3.4. Let f : F → G be a non-constant morphism and suppose
that G is n-simple. Then edk(F) ≥ n.

Proof. Let k̃ be the field in the definition of n-simplicity of G. Suppose that
edk(F) < n. Since edk̃(F) ≤ edk(F) one has edk̃(F) < n too. Since f is non-

constant there exists an extension L/k̃ and elements a ∈ F(k̃), a′ ∈ F(L) such

that fL(aL) 6= fL(a′). Since edk̃(F) < n there exists a subextension k̃ ⊆ E ⊆ L

of transcendence degree < n over k̃ such that a′ ∈ im(F(E) −→ F(L)) that is
a′ = a′′

L for some a′′ ∈ F(E).
Since the diagram

F(L)
fL // G(L)

F(E)
fE //

OO

G(E)

OO

F(k̃)
fk̃ //

OO

G(k̃)

OO

is commutative, and since fL(aL) 6= fL(a′) it follows that fE(aE) 6= fE(a′′).
This contradicts the fact that G(E) consists of one element.

Definition 3.5. Let k be a field and F be a covariant functor from Ck to the
category of pointed sets. A cohomological invariant of degree n of F

is a morphism of pointed functors ϕ : F −→ Hn(−,M), where M is a discrete
torsion Γk-module. (Here Hn(−,M) is pointed by 0, the class of the trivial
cocycle.) We say that it is non-trivial if for any extension K/k there exists
L ⊇ K and a ∈ F(L) such that ϕL(a) 6= 0 in Hn(L,M).

Corollary 3.6. Let k be an arbitrary field and F be a functor from Ck to the
category of pointed sets. If F has a non-trivial cohomological invariant ϕ of
degree n, then edk(F) ≥ n.
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Proof. Clearly any non-trivial cohomological invariant is a non-constant mor-
phism.

We will apply the above corollary to a special class of algebraic groups: finite
constant abelian groups. Recall that such a group G can always be written as
G ∼= Z/d1 ×· · ·×Z/dn where d1 | d2 | · · · | dn. The number n is called the rank
of G and is denoted by rank(G).

Proposition 3.7. Let G be a finite abelian group and k a field such that
char(k) - exp(G). Then edk(G) ≥ rank(G).

Proof. For the proof one can suppose that k is algebraically closed. We
will define a cohomological invariant ϕ of degree n for H1(−, G). There is an
isomorphism

H1(K,G) ∼= H1(K, Z/d1 × · · · × Z/dn) ∼= H1(K, Z/d1) × · · · × H1(K, Z/dn),

c 7−→ (c1, . . . , cn)

which, composed with the cup product

H1(K, Z/d1) × · · · × H1(K, Z/dn) → Hn(K, Z/d1 ⊗ · · · ⊗ Z/dn)

(c1, . . . , cn) 7−→ c1 ∪ · · · ∪ cn

defines a cohomological invariant

ϕ : H1(−, G) −→ Hn(−, Z/d1)

since Z/d1⊗· · ·⊗Z/dn
∼= Z/d1. It suffices to show that it is non-trivial. We have

to show that, for a field extension K/k, there exists L ⊇ K and a ∈ H1(L,G)
such that ϕL(a) 6= 0. We take L = K(t1, . . . , tn) and set (ti)= class of ti
in L×/L×di ∼= H1(L, Z/di) (this isomorphism holds since k is algebraically
closed). Then, the image of

a =
(
(t1), . . . , (tn)

)
∈ H1(L, Z/d1) × · · · × H1(L, Z/dn) ∼= H1(L,G)

is the element ϕ(a) = (t1) ∪ · · · ∪ (tn) ∈ Hn(L, Z/d1). We show that this
element is 6= 0 by induction on n :

– For n = 1, (t1) ∈ K(t1)
×/K(t1)

×d1 is clearly non-zero.

– Suppose that n > 1 :

We use a more general fact (see [1]). If K is a field equipped with a discrete
valuation υ : K× −→ Z, then there is the so-called residue homomorphism

∂υ : Hn(K, Z/d) −→ Hn−1(κ(υ), Z/d)

where κ(υ) denotes the residue field of υ. This homomorphism has the following
property :
If υ(a1) = · · · = υ(an−1) = 0 and υ(an) = 1 (i.e. ai ∈ O×

υ for i < n) then

∂υ

(
(a1) ∪ · · · ∪ (an−1) ∪ (an)

)
= (a1) ∪ · · · ∪ (an−1) ∈ Hn−1(κ(υ), Z/d)

where ai is the class of ai in Oυ/mυ = κ(υ).
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In our case, we take for υ the tn-adic valuation on L. We thus have

∂υ

(
(t1) ∪ · · · ∪ (tn)

)
= (t1) ∪ · · · ∪ (tn−1) ∈ Hn−1

(
K(t1, . . . , tn−1), Z/d1

)
.

By induction hypothesis this element is non-zero, hence (t1) ∪ · · · ∪ (tn) 6= 0
and ed(G) = n.

Remark 3.8. This shows that edk(G) ≥ rankp(G) for any field k with
char(k) 6= p. Here rankp(G) denotes the rank of the largest p-elementary
subgroup of G.

If char(k) = p this result is no longer true. Indeed, consider the group
Z/p × · · · × Z/p (n copies). If one takes for k a field containing Fpn there is
a short exact sequence

0 → Z/p × · · · × Z/p → Ga → Ga → 0

where the map Ga → Ga is given by x 7→ xp − x. This gives in cohomology an
exact sequence

Ga(K) → H1(K, Z/p × · · · × Z/p) → H1(K, Ga)︸ ︷︷ ︸
=0

→ · · ·

Thus Ga is a classifying scheme for Z/p × · · · × Z/p, when the field k contains
Fpn , and it follows that edk(Z/p × · · · × Z/p) = 1.

Corollary 3.9. Let n be an integer and k a field with char(k) - n. Then

edk(µn × · · · × µn︸ ︷︷ ︸
r times

) = r.

Proof. Since H1(K,µn × · · · × µn) = K×/K×n × · · · × K×/K×n, one has a
surjection of functors

Gm × · · · × Gm
// // H1(−, µn × · · · × µn)

and thus edk(µn × · · · × µn) ≤ r. For the opposite inequality it suffices to
remark that over an algebraic closure the group µn × · · · × µn is isomorphic to
the constant group Z/n × · · · × Z/n and apply Proposition 3.7.

Applying the same cohomological-invariant techniques to quadratic forms one
can prove the following result which can be found in [14].

Theorem 3.10. Assume that char(k) 6= 2. Then edk(Qn) = n.
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Proof. We have already shown that ed(Qn) ≤ n. We prove that ed(Qn) = n
using a non-trivial cohomological invariant: the Delzant’s Stiefel-Whitney class
(see [5]) denoted by ωn.

For any field extension K/k take L = K(t1, . . . , tn) and let q = 〈t1, . . . , tn〉.
One has ωn(q) = (t1) ∪ · · · ∪ (tn) ∈ Hn(L, Z/2) which is non-zero, as it was
checked before. Hence ωn is a non-trivial cohomological invariant of degree n.
It follows that ed(Qn) = n.

One of the most interesting features of the use of cohomological invariants is
the following application to the symmetric group. This was originally found
in [3].

Corollary 3.11. If char(k) 6= 2 one has ed(Sn) ≥
[

n
2

]
.

Proof. We have already seen that H1(K,Sn) = Étn(K). By Proposition
1.5, one can assume that k is algebraically closed. Consider now the functorial
morphism

Étn(K) −→ Qn(K)

A 7−→
(
TA/K : x 7→ TrA/K(x2)

)

and ωm : Qn(K) −→ Hm(K, Z/2) with m =
[

n
2

]
. We show that the composite

Étn(K) −→ Hm(K, Z/2)

is a non-trivial cohomological invariant. For any field extension K/k take
L = K(t1, . . . , tm) and let

A ∼=





L(
√

t1) × · · · × L(
√

tm) if n = 2m

L(
√

t1) × · · · × L(
√

tm) × L if n = 2m + 1.

Clearly the matrix of the trace form expressed in the basis {1,
√

t} is

(
2 0
0 2ti

)
.

Hence

TA/L '





〈2, 2t1, . . . , 2, 2tm〉 if n = 2m

〈2, 2t1, . . . , 2, 2tm, 1〉 if n = 2m + 1

' 〈t1, . . . , tm〉⊥〈1, . . . , 1〉,

since k is algebraically closed. Thus

ωm(TA/L) = ωm(〈t1, . . . , tm, 1, . . . , 1〉) = (t1) ∪ · · · ∪ (tm) 6= 0.
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4. Free actions and torsors

We recall here some facts about actions of group schemes and torsors in order
to estimate ed(G). The main reference is the book of Demazure-Gabriel [6].

Let G be a group scheme over a scheme S and let X be an S-scheme. We say
that G acts on X if there is a morphism of S-schemes

G ×S X −→ X

(g, x) 7−→ x · g
which satisfy the categorical conditions of a usual group (right) action. It
follows in particular that for any morphism T → S there is an action of the
group G(T ) on the set X(T ).

Recall that a group G acts freely on a set X if the stabilizer of any point of X
is trivial. One can mimic this and say that a group scheme G acts freely on
a scheme X if for any S-scheme T −→ S the group G(T ) acts freely on the set
X(T ). One can also define the stabilizer of a point of X in the following way:

Let x ∈ X be any point. The scheme-theoretic stabilizer of x is the
pull-back of the diagram

G ×S {x}

²²
Spec(k(x))

x // X

where the vertical map is the composite G ×S {x} −→ G ×S X −→ X. We
denote it by Gx. It is a group scheme over Spec(k(x)) and is a closed group
subscheme of G ×S {x}.

Once the vocabulary is established one has the following lemma.

Lemma 4.1. Let X and G be as above, everything being of finite type over
S = Spec(k). Then the following are equivalent

(i) G acts freely,

(ii) Gx = {1} for all points x ∈ X.

Proof. See [6], III, §2 Corollary 2.3.

One can also check these conditions on k̄-points, where k̄ is an algebraic closure
of k.

Recall first that, for an algebraic group G over k, the Lie algebra can be defined
as the kernel of the map G(k[τ ]) → G(k) where k[τ ] is the algebra k[t]/t2 and
the map k[τ ] → k is given by τ 7→ 0. Let x be a point of a scheme X and

denoted by K = k(x) its residue field. The point x is then viewed as an element
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of X(K) = Hom(Spec(K),X) and thus also as an element of X(K[τ ]) which
we will denote by xK[τ ].

Lemma 4.2. Let G be a group scheme of finite type over k acting on a k-scheme
X of finite type.

(i) Suppose char(k) = 0. Then G acts freely on X if and only if the group G(k̄)
acts freely on X(k̄).

(i′) Suppose char(k) > 0. Then G acts freely on X if and only if the group G(k̄)
acts freely on X(k̄), and for any closed point x ∈ X the Lie algebra Lie(Gx) is
trivial.

Proof. See [6], III, §2 Corollary 2.5 and Corollary 2.8. The Lie algebra
Lie(Gx) is called the Lie stabilizer of x.

Remark 4.3. The second part of condition (i′) can checked easily using the
following description of Lie(Gx) (see [6], III, §2, proof of Prop. 2.6.): let K
be the residue field of x, and let K[τ ] be the K-algebra K[X]/(X2). Then we
have

Lie(Gx) = {g ∈ Lie(G) ⊗ K[τ ] | g · xK[τ ] = xK[τ ]}.

Remark 4.4. Let G act on X as above. For every scheme T consider the
quotient map of sets π : X(T ) −→ Y (T ) := X(T )/G(T ). Sending a pair
(g, x) ∈ G(T ) × X(T ) to (x, x · g) gives a mapping

G(T ) × X(T ) −→ X(T ) ×Y (T ) X(T ).

If G acts freely this map is easily seen to be an isomorphism. It also says that
the fibers of π are principal homogenous spaces under G(T ) (at least when they
are non-empty). The notion of G-torsor generalizes this remark in the category
of schemes and is the suitable definition for defining “parametrized” principal
homogenous spaces.

Definition 4.5. Let G be a group scheme over Y which is flat and locally of
finite type over Y . We say that a morphism of schemes X → Y is a (flat)
G-torsor over Y if G acts on X, the morphism X → Y is flat and locally
of finite type, and the map ϕ : G ×Y X → X ×Y X defined by

G ×Y X → X ×Y X

(g, x) 7→ (x, x · g)

is an isomorphism.
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This condition is equivalent to the existence of a covering (Ui → Y ) for the flat
topology on Y such that X ×Y Ui is isomorphic to G×Y Ui for each i (see [13],
Chapter III, Proposition 4.1). This means that X is “locally” isomorphic to G
for the flat topology on Y . When the group G is smooth over Y it follows by
faithfully flat descent that X is also smooth.

A morphism between two G-torsors f : X → Y and f ′ : X ′ → Y defined
over the same base is simply a G-equivariant morphism ϕ : X → X ′ such
that f ′ ◦ ϕ = f . Again by faithfully flat descent it follows that any morphism
between G-torsors is an isomorphism.

Remark 4.6. Notice that if X → Y is a G-torsor, then G acts freely on X.
Indeed, take x ∈ X, then the fiber of the point (x, x) ∈ X ×Y X under the
map ϕ : G ×Y X → X ×Y X is isomorphic to Gx. Since ϕ is an isomorphism
it follows that Gx is trivial for every x.

We then consider the contravariant functor

G-Tors : Schemes −→ Sets,

defined by

G-Tors(Y ) = isomorphism classes of G-torsors over Y.

For every morphism f : Y ′ −→ Y the corresponding map G-Tors(f) is defined
as follows: if X → Y a G-torsor over Y , then the image of this torsor under
G-Tors(f) is the pull-back of the diagram

X

²²
Y ′ f // Y

which is easily checked to be a G-torsor over Y ′.

When Y is a point, say Y = Spec(K), and G is smooth over K then any
G-torsor X → Spec(K) gives rise to a principal homogeneous space over K.
Indeed X is smooth and thus X(Ks) 6= ∅ is a principal homogenous space
under G(Ks), thus an element of H1(K,G). We may thus consider G-Tors

as a generalization of the first Galois cohomology functor over the category of
fields.

Now that the notion of torsor is well-defined we have to overcome the problem
of quotients.
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Let G act on a S-scheme X. A morphism π : X −→ Y is called a categorical
quotient of X by G if π is (isomorphic to) the push-out of the diagram

G ×S X //

pr2

²²

X

X

In general such a quotient does not exist in the category of schemes. When it
exists the scheme Y is denoted by X/G. We will not give a detailed account
on the existence of quotients. We will only need the existence of a generic
quotient, that is a G-invariant dense open subscheme U of X for which the
quotient U −→ U/G exists. Moreover, we will need one non-trivial fact due to
P. Gabriel (which can be found in [7]) which asserts the existence of a generic
quotient which is also a G-torsor.

Theorem 4.7. Let G act freely on a S-scheme of finite type X such that the
second projection G ×S X → X is flat and of finite type. Then there exists a
(non-empty) G-invariant dense open subscheme U of X satisfying the following
properties:

i) There exists a quotient map π : U −→ U/G in the category of schemes.

ii) π is onto, open and U/G is of finite type over S.

iii) π : U −→ U/G is a flat G-torsor.

Proof. This follows from [7], Exposé V, Théorème 8.1, p.281 where the state-
ment is much more general and deals with groupoids. In order to recover
it we make a translation: in our context the groupoid is that of §2 Exem-
ple a) p.255 which simply defines the equivalence relation on the scheme X
under the G-action. The fact that our action is free implies that the mor-
phism G ×S X −→ X ×S X is quasi-finite, which is one of the hypotheses of
Théorème 8.1.

We thank J.-P. Serre for pointing out to us this result and an alternative proof
which can be found in a paper of Thomason ([22]).

Definition 4.8. Let G act on X. An open subscheme U which satisfies the
conclusion of the above theorem will be called a friendly open subscheme of
X.

From now on take S = Spec(k) where k is a field and G an algebraic group
over k, that is we require G to be smooth and of finite type over k, and all the
morphisms between schemes will be of finite type. Unless otherwise specified,
when we say that X −→ Y is a G-torsor we mean that X −→ Y is a GY -torsor
where GY is the group scheme obtained from G by base change Y → Spec(k).
In this case this says that there is an isomorphism G ×k X ' X ×Y X.
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Definition 4.9. Let π : X → Y be a G-torsor. For any field extension K/k
we define a map

∂ : Y (K) −→ H1(K,G)

as follows: for any y ∈ Y (K), the fiber Xy of π : X → Y at y is a twisted
form of G (that is locally isomorphic to G for the flat topology) and thus smooth
over K. Hence Xy has a Ks-rational point x. We then set ∂(y) = isomorphism
class of Xy(Ks).

We can paraphrase the definition in terms of cocycles: for all γ ∈ ΓK we have

π(γ · x) = γ · π(x) = γ · y = y.

Hence γ ·x belongs to Xy(Ks). Since X → Y is a G-torsor, there exists a unique
g(γ) ∈ G(Ks) such that γ · x = x · g(γ). The assignment γ 7−→ g(γ) is then a
1-cocycle and the map ∂ sends y to the class of that cocycle in H1(K,G).

Definition 4.10. We say that G acts generically freely on X if there
exists a non-empty G-stable open subscheme U of X on which G acts freely.

The previous considerations show in particular that, if G acts generically freely
on X, then there exists a friendly open subscheme U ⊂ X on which G acts
freely (take for U the intersection of a dense open subset on which G acts
freely and a friendly open subscheme). Hence the statement of the following
proposition is consistent.

Proposition 4.11. Let G be an algebraic group over k acting linearly and
generically free on an affine space A(V ), where V is a finite dimensional k-
vector space. Let U be a non-empty friendly open subscheme of A(V ) on which
G acts freely. Then U/G is a classifying scheme of H1(−, G). In particular we
have

ed(G) ≤ dim(V ) − dim(G).

Proof. It is sufficient to show that, for any field extension K/k, the map
∂ : U/G(K) −→ H1(K,G) is surjective. Let g ∈ Z1(K,G). We twist the
action of ΓK over V (Ks) by setting

γ ∗ v = γ · v · g(γ)−1

for all γ ∈ ΓK and v ∈ V (Ks). Clearly this action is ΓK-semilinear, that is
γ ∗ (λv) = γ(λ)(γ ∗ v) for all λ ∈ Ks. Hence V (Ks)

(ΓK ,∗) is Zariski-dense in
V (Ks). Since U is open, there exists an invariant point v0 ∈ U(Ks) for the
new action ∗. We thus have

v0 = γ ∗ v0 = γ · v0 · g(γ)−1

and hence v0 · g(γ) = γ · v0. In particular, we have for any γ ∈ ΓK

γ · π(v0) = π(γ · v0) = π(v0 · g(γ)) = π(v0),

hence π(v0) ∈ U/G(K) and maps to g under ∂.
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Remark 4.12. Any algebraic group G acts linearly and generically freely over
some vector space. Indeed, since G is isomorphic to a closed subgroup of some
GLn, one can assume that G ⊂ GLn. Let V = Mn(k). The group G then acts
linearly on A(V ) by (right) matrix multiplication. Now let U = GLn, viewed
as an open subscheme of A(V ). Clearly, the stabilizer of any matrix M ∈ U(k̄)
is trivial. Moreover, since the action of Lie(G) is obtained by restriction of the
action of G(k[τ ]) (where τ2 = 0), the Lie stabilizer of any closed point of U is
also trivial. Hence G acts freely on U . The previous proposition then shows
that the essential dimension of G is finite.

Our next aim is to deal with finite group schemes. Recall that a group scheme
over k is called étale if its Hopf algebra is a finitely generated separable algebra
over k (see [6] p.234–238 for an account on étale group schemes).

Proposition 4.13. Let G be an étale group scheme over k and let V be a finite
dimensional k-vector space. Then
i) G acts linearly and generically freely on A(V ) if and only if G is isomorphic
to a closed subgroup of GL(V ).
ii) G acts linearly and generically freely on P(V ) if and only if G is isomorphic
to a closed subgroup of PGL(V ).

Proof. We only prove the statement ii) since i) is similar. We have to find
an open subscheme U of P(V ) such that the group G acts freely on U . We
first consider the action of G(ks) on P(V )(ks). For each g ∈ G(ks) consider the

linear subspace Sg = {x ∈ P(V )(ks) | g · x = x} and let S =
⋃

g∈G(ks)

Sg. This

is an algebraic subvariety of P(V )(ks) which is invariant under the absolute
Galois group Γk. By descent theory (see [23] pp.131-138) there exists a closed
subscheme X of P(V ) defined over k such that X(ks) = S. Moreover, always by
descent theory, the group scheme G acts on X since G(ks) acts on X(ks) = S.
The desired open subscheme is then U = P(V ) \ X. To prove this, by Lemma
4.1, we have to check that for all points x ∈ U the stabilizer Gx is trivial. By
construction we have that Gx(ks) = 1 for all x ∈ U . But G is étale and hence
Gx too. It then follows that Gx = 1.

We now study more carefully the case of finite constant group schemes. The
following lemma is probably well-known, but we have not found any reference
for it, so we give a proof for the convenience of the reader.

Lemma 4.14. Let G be a constant group scheme, and let H be any algebraic
group scheme defined over k. Then the map

Hom(G,H) → Hom(G(k),H(k))

sending Φ ∈ Hom(G,H) to Φk is a bijection. Moreover, Φ is injective if and
only if Φk is injective.
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Proof. Given a morphism ϕ : G(k) −→ H(k), we have to show that there
exists a unique morphism of group schemes Φ : G −→ H such that Φk =
ϕ. We thus have to define, in a natural way, a group homomorphism ΦR :
G(R) −→ H(R) for every k-algebra R. Since G(

∏
Ri) =

∏
G(Ri) and since

every commutative ring is product of connected rings one may assume that R
is connected. In this case, since G is constant, one has G(R) = G = G(k) and
one then defines ΦR to be the composite G(R) = G(k) → H(k) → H(R). This
proves the first part of the statement.

Since Φ is a natural map and G(k̄) = G(k), it follows that Φk̄ is the composite
of Φk and of the inclusion H(k) ↪→ H(k̄). Hence, if Φk is injective, then Φk̄

is also injective. Since the Lie algebra of a constant group scheme is trivial,
Proposition 22.2 of [11] implies that Φ is injective.

Proposition 4.15. Let V be a finite dimensional k-vector space, and let G be
a finite constant group scheme over k. Then G acts linearly and generically
freely on A(V ) if and only if the abstract group G is isomorphic to a subgroup
of GL(V )(k). In this case, we have

edk(G) ≤ dim(V ).

Proof. If G is isomorphic to a subgroup of GL(V )(k), then there exists a
group morphism ϕ : G(k) ↪→ GL(V )(k). By Lemma 4.14 above there exists a
unique injective morphism of group schemes Φ : G −→ GL(V ) extending ϕ.
Proposition 4.13 then shows that G acts linearly and generically freely on A(V ).
The converse is clear. The inequality edk(G) ≤ dim(V ) is then a direct appli-
cation of the Proposition 4.11.

Proposition 4.15 helps in the computation of the essential dimension of finite
abelian groups over sufficiently big fields.

Corollary 4.16. Let G be a finite abelian group and k a field with
char(k) - exp(G). If the field k contains all the exp(G)-th roots of unity,
then

edk(G) = rank(G).

In particular, if G is cyclic then edk(G) = 1.

Proof. By Proposition 3.7 we only have to prove that edk(G) ≤ rank(G).
Let n = rank(G) and write G ∼= Z/d1 × · · · × Z/dn where d1 | d2 | · · · | dn. By
hypothesis, we have k ⊃ µdm

⊃ · · · ⊃ µd1
. We then have the following injection

G ∼= Z/d1 × · · · × Z/dn −→ GLn(k)

([m1], . . . , [mn]) 7→




ζm1
1 0

. . .

0 ζmn
n




where ζi denotes a primitive di-th root of unity. Now apply the above propo-
sition.
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We will see later on that the computation is much more complicated when no
roots of unity are assumed to be in the base field.

An action of an algebraic group G on a scheme X is called faithful if G is
isomorphic to a subgroup of Aut(X) via this action. Proposition 4.15 above
then shows that for a finite constant group G, faithful actions on a vector space
V correspond to generically free actions on V .

As a little application of faithful actions we give some bounds on the essential
dimension of dihedral groups Dn = Z/n o Z/2. We will use the classical
presentation Dn =< σ, τ | σn = τ2 = 1, τστ−1 = σ−1 >.

Corollary 4.17. Let k be a field of characteristic p ≥ 0. Let n be a natural
integer such that p - n and suppose that µn ⊂ k×. Then edk(Dn) ≤ 2.

Proof. Let ζ a n-th primitive root of unity and define an homomorphism

Dn −→ GL2(k) by sending σ to

(
ζ 0
0 ζ−1

)
and τ to

(
0 1
1 0

)
. One can eas-

ily show that this gives an injective group homomorphism, and then apply
Proposition 4.15.

For the groups D4 and D6, one can even drop the assumptions on the field at
least when char(k) 6= 2. Actually,

D4 −→ GL2(k)

σ 7−→
(

0 1
−1 0

)

τ 7−→
(

1 0
0 −1

)

and
D6 −→ GL2(k)

σ 7−→
(

0 1
−1 1

)

τ 7−→
(

0 1
1 0

)

are both faithful representations. Hence edk(D4) ≤ 2 and edk(D6) ≤ 2 for any
field k of characteristic 6= 2.

In the sequel we will not only deal with faithful linear representations but also
with projective ones. The following lemma is an immediate consequence of
Proposition 4.13 and Lemma 4.14. We state it here for further reference.

Lemma 4.18. Let G be a finite constant group scheme over k. Then G acts
generically freely on P(V ) if and only if the abstract group G is isomorphic to
a subgroup of PGL(V )(k).
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Remark 4.19. This section is directly inspired by the work of Merkurjev. In
particular Propositions 4.11, 4.15 and Corollary 4.16 can be found in [12]. How-
ever, all the previous presentation takes care of many technical details which
were not pointed out in Merkurjev’s paper. Proofs are consequently a little bit
longer and a great attention is given to working without any assumption on the
characteristic of the ground field. Some trivial results about dihedral groups
have been added. Proposition 4.13 has been proved for a future computation
on cubics (see the forthcoming paper of the authors: “Essential dimension of
cubics”).

5. Versal pairs and Rost’s definition

In this section we define another notion of essential dimension and compare it
with the one introduced at the beginning. The ideas described below are based
on the paper [16] where Rost computes ed(PGL4). We therefore call it Rost’s
essential dimension.

Let k be a field and Ak be the category of all (associative and unital) com-
mutative k-algebras with homomorphism of k-algebras (sending 1 to 1) as
morphisms. Every functor F : Ak −→ Sets by restriction defines a func-
tor Ck −→ Sets hence an object of Fk. We shall define the notion of essential
dimension for a special class of functors F : Ak −→ Sets.

Let K/k be an object of Ck. For a local k-subalgebra O of K, with maximal
ideal m, we will write κ(O) = O/m for its residue field and π : O −→ κ(O) for
the quotient map.

Definition 5.1. Let K and L be two extensions of k. A pseudo k-place
f : K Ã L is a pair (Of , αf ) where Of is a local k-subalgebra of K and

αf : κ(Of ) → L is a morphism in Ck.

Let F : Ak −→ Sets be a functor and take f : K Ã L a pseudo k-place. We
say that an element a ∈ F(K) is unramified in f if a belongs to the image of
the map F(Of ) −→ F(K). In this case we define the set of specializations
of a to be

f∗(a) =
{
F(αf ◦ π)(c) | c ∈ F(Of ) with cK = a

}
.

We say that a pair (a,K) with a ∈ F(K) is a versal pair for F (over k)
if for every extension L/k and every element b ∈ F(L) there exists a pseudo
k-place f : K Ã L such that a is unramified in f and such that b ∈ f∗(a).
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Here is a picture of the situation:

O //

π
²²²²

K

κ(O)
αf // L

⇒

F(O) //

²²

F(K) 3 a

F(κ(O)) // F(L) 3 b

Example 5.2. Let X be an irreducible k-scheme, k(X) its function field and
denote by η : Spec(k(X)) −→ X the unique morphism whose image is the
generic point of X. Then (η, k(X)) is a versal pair for X.
Indeed, take x : Spec(L) → X an element in X(L). Then the local ring OX,x

at the point x is naturally a subring of k(X) and there is a canonical morphism
from the residue field k(x) to L giving a pseudo k-place k(X) Ã L with the
desired property.

Definition 5.3. Let F : Ak −→ Sets be a functor which has a versal pair.
We define its (Rost’s) essential dimension (denoted by ed′(F)) to be the
minimum of the transcendence degree of the field of definition for versal pairs.
More precisely ed′(F) = min trdeg(K : k) for all K/k such that there exists an
element a ∈ F(K) making (a,K) into a versal pair for F.

Remark 5.4. In the paper of Rost ([16]) the notion is a little bit different. What
is called k-place in his context is a pseudo k-place where O is required to be a
valuation ring. Every k-place is then trivially a pseudo k-place. However the
converse is not true in general. Indeed for a local ring O in a field K one can
always find a valuation whose local ring Ov dominates it but there is no control
on the residue field.

Definition 5.5. Let F : Ak −→ Sets be a functor which has a versal pair.
We say that a versal pair (a,K) is nice if for any L ⊂ K and a′ ∈ F(L) such
that a = a′

K , the pair (a′, L) is versal. We say that F is nice if it has a nice
versal pair.

Proposition 5.6. Let F : Ak −→ Sets be a functor which has a versal pair.
Then we have

edk(F) ≤ ed′
k(F)

where on the left F is viewed as a functor on Ck. Moreover, if F is nice, then

ed′
k(F) = edk(F) = ed(a),

where (a,K) is any nice versal pair.
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Proof. Let L/k be any field extension, and let b ∈ F(L). Let (a,K) be a
versal pair such that trdeg(K : k) = ed′

k(F). Since (a,K) is versal, then b
comes from an element of F(κ(O)) for some local ring O. Then

ed(b) ≤ trdeg(κ(O) : k) ≤ trdeg(K : k).

This proves the first assertion.

Let now (a,K) be a nice versal pair (notice that trdeg(K : k) is not necessarily
minimal). Take a subextension k ⊂ L ⊂ K with an element a′ ∈ F(L) such
that a = a′

L and trdeg(L : k) = ed(a). By assumption, (a′, L) is versal, so
ed′

k(F) ≤ trdeg(L : k) = ed(a) ≤ edk(F). This concludes the proof.

Remark 5.7. All the present section is new but is inspired by the work of Rost
which can be found in [16].

6. Generic torsors and compressions

Now that we have seen the notion of versal pairs we want to apply it to H1(−, G)
when viewed as a functor over Ak. That is we consider the functor G-Tors

over the category of affine k-schemes. This section deals with compressions
of torsors and is closely related to Reichstein’s original discussion. Compare
with [14] where everything is done over an algebraically closed field. For the
definition of generic torsors we follow [9].

Let G be an algebraic group over k. If G acts linearly and generically freely
on a vector space V , there exists an open subscheme U ⊆ A(V ) such that
π : U −→ U/G = Y is a G-torsor. We have defined a map (see Definition 4.9)

∂ : Y (K) −→ H1(K,G)

and proved that ∂ is surjective (see Proposition 4.11). Actually, we have shown
a little more: for every torsor P ∈ H1(K,G), there exists a non-empty subset
S of Y such that the isomorphism class of π−1(y) is equal to P for every
y ∈ S(K). Such an S is a Zariski-dense subset of Y if K is infinite.

This leads naturally to the following definition:

Definition 6.1. Let f : X → Y be a G-torsor with Y irreducible. We say
that it is classifying for G if, for any field extension k′/k with k′ infinite
and for any principal homogenous space P ′ of G over k′/k, the set of points
y ∈ Y (k′) such that P ′ is isomorphic to the fiber f−1(y) is dense in Y . In

particular we have a surjection of functors Y // // H1(−, G) showing that Y

is a classifying scheme of G.
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Remark 6.2. Proposition 4.11 and Remark 4.12 show that a classifying G-torsor
always exist for any algebraic group G. Moreover one can always find a reduced
classifying torsor for G. Indeed take X → Y a classifying torsor for G and let
ϕ : Yred → Y the reduced scheme of Y with its canonical map. Then pulling
back X → Y along ϕ gives a torsor which is isomorphic to Xred → Yred and
which is also classifying.

Definition 6.3. We call generic torsor over G the generic fiber of a
classifying G-torsor X → Y , i.e. the pullback of

X

²²
Spec(k(Y )) // Y

where Spec(k(Y )) → Y is the generic point. If P −→ Spec(k(Y )) is such a
generic torsor it can be viewed as an element of H1(k(Y ), G).

More precisely one can restate the definition in the following way. Let G be
an algebraic group over k, K a field extension of k and P −→ Spec(K) a
G-torsor. We say that P is k-versal or k-generic if

i) there exists an irreducible scheme Y (whose generic point is denoted by η)
with function field k(Y ) ' K (such a scheme is called a model of K) and a
G-torsor f : X −→ Y whose generic fiber f−1(η) −→ Spec(K) is isomorphic
to P −→ Spec(K). In other words

P //

²²

X

²²
Spec(K) // Y

is a pull-back.

ii) For every extension k′/k with k′ infinite, for every non-empty open set U
of Y and for every G-torsor P ′ −→ Spec(k′), there exists a k′-rational point
x ∈ U such that f−1(x) ' P ′.

Remark 6.4. If f : X → Y is a classifying G-torsor, then, for any non-empty
open subset U of Y , the map f : f−1(U) → U is also a classifying torsor. This
says that generic torsors over G correspond bijectively to birational classes of
classifying torsors for G.
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Lemma 6.5. Let P → Spec(k(Y )) be a generic torsor. Then (P, k(Y )) is a
versal pair for G-Tors.

Proof. Take T → Spec(L) any torsor defined over L/k. Since X → Y is
a classifying torsor there exist a L-rational point y : Spec(L) → Y such that
T → Spec(L) fits into a pull-back

T //

²²

X

²²
Spec(L) // Y

Take OY,y the local ring at the point y and let ϕ : Spec(OY,y) → Y be the
canonical morphism. Consider P ′ → Spec(OY,y) the torsor obtained by pulling-
back X → Y along ϕ. The local ring OY,y is naturally a sub-k-algebra of k(Y )
and we have a diagram

P //

²²

))TTTTTT X

²²

P ′

77ooooooo

²²

Spec(k(Y ))

))RRRRRR
// Y

Spec(OY,y)
ϕ

88rrrrrr

showing that P → Spec(k(Y )) comes from a torsor over Spec(OY,y). Moreover
the morphism y : Spec(L) → Y factorizes through Spec(k(y)) and, if we denote
by P ′′ → Spec(k(y)) the torsor obtained by pulling-back P ′ → Spec(OY,y)
along the morphism Spec(k(y)) → Spec(OY,y), one has the following diagram

T //

²²

X

²²

P ′′ uu

l
l

l
l

l //

²²

P ′ ww
ooooooo

²²

Spec(L)
y // Y

Spec(k(y))
vv

nnnnn
// Spec(OY,y)

xx ϕ

rrrrrr

This shows that T → Spec(L) comes from P ′′ → Spec(k(y)). Thus the local
ring OY,y toghether with the morphism k(y) → L form the desired pseudo
k-place showing that (P, k(Y )) is a versal pair.

Remark 6.6. In the proof of the preceeding lemma the density hypothesis in
the definition of a classifying torsor is not used. This hypothesis will be used
when talking about compressions.
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Remark 6.7. Notice that when Y is smooth over k, the local ring OY,y of any
point of Y is dominated by a valuation ring whose residue field is equal to k(y).
It follows in this case that any pseudo k-place defines a k-place in the sense of
Rost (see [16]). Since we do not have a precise reference for this result we have
decided to deal only with pseudo k-places.

Actually we will see that a generic torsor give rise to a nice versal pair for the
functor G-Tors. We first need a definition

Definition 6.8. Let f : X −→ Y and f ′ : X ′ −→ Y ′ be two G-torsors.
We say that f ′ is a compression of f if there is a diagram

X

f

²²

g //___ X ′

f ′

²²
Y

h
//___ Y ′

where g is a G-equivariant rational dominant morphism and h is a rational
morphism too. The essential dimension of a G-torsor f is the smallest
dimension of Y ′ in a compression f ′ of f . We still denote this by ed(f).

Remark 6.9. Take as above a compression of f : X −→ Y and let U ⊆ Y
the open subscheme on which h is defined. Taking the pull-back of X ′ −→ Y ′

along h one obtains a G-torsor f ′′ : P −→ U which fits into a diagram

X

f

²²

//___ P

f ′′

²²

// X ′

f ′

²²
Y //___ U // Y ′

and f ′′ is a compression too.

The following simple result will be helpful in the sequel.

Lemma 6.10. Let g : X 99K X ′ be a rational dominant G-equivariant morphism
between generically free schemes. Then there exist X0 (resp. X ′

0) a friendly
open subscheme of X (resp. of X ′) such that g induces a compression of torsors

X0

²²

g //____ X ′
0

²²
X0/G

h
//___ X ′

0/G
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Proof. Take U some friendly open subscheme of X. Since g is dominant one
can find U ′, open subscheme of X ′, which lies in the image of g. Intersecting
U ′ with some friendly open set of X ′ gives a friendly open set X ′

0 in the image
of U . Then X0 = g−1(X ′

0) is the desired open set.

Lemma 6.11. Let f : X −→ Y be a G-torsor with Y irreducible and reduced.
Let T −→ Spec(k(Y )) be its generic fiber. Then ed(f) = ed(T ).

Proof. Let f and T be as above. Let f ′ : X ′ −→ Y ′ be a compression of f
and T ′ −→ Spec(k(Y ′)) its generic fiber. By Remark 6.9 above, and since the
generic fiber of f is isomorphic to the generic fiber of f ′′, one can suppose that
the compression is a pull-back. The cube

T //

²²

X

²²

T ′ uu

kkkkkkkkkkkk //

²²

X ′
}}

{{{{

²²

Spec(k(Y )) // Y

Spec(k(Y ′))
vv

lllllll
// Y ′

ÄÄ
~~~~~

then shows that T ′ maps to T under H1(k(Y ′), G) −→ H1(k(Y ), G). This
shows that ed(T ) ≤ ed(f).

Conversely suppose there is a subextension k ⊆ K ′ ⊆ K := k(Y ) together
with a principal homogenous space T ′ over K ′ such that T ′ maps to T under
H1(K ′, G) −→ H1(k(Y ), G). We have to find a G-torsor f ′ : X ′ −→ Y ′ such
that T ′ is isomorphic to its generic fiber and a compression from f to f ′.

First remark that one can suppose everything to be affine. Indeed the generic
point of Y lies in some open affine subset U and T is also the generic fiber of
the G-torsor f−1(U) −→ U .

Now rewrite the problem in terms of rings: say Y = Spec(A), X = Spec(B),
T = Spec(P ), T ′ = Spec(P ′) and let k[G] denote the algebra of G. We know
that K is the field of fractions of A (since Y is reduced), that P ' B ⊗A K
and P ' P ′⊗K′ K. We have to find a subring A′ of K ′ whose field of fractions
is K ′, a G-torsor B′/A′ such that P ′ ' B′ ⊗A′ K ′ and a rational compression
from B′/A′ to B/A.

Since K is of finite type over k we can write it as K = k(α) where (α) is a
short notation for (α1, . . . , αn). Similarly, since P is of finite type over K we
write it P = K[β] for some β1, . . . , βm. In the same way we write K ′ = k(α′)
and P ′ = K ′[β′].

We will take for A′ a localisation of the ring k[α′] for which the isomorphism
P ′ ⊗K′ P ′ ' P ′ ⊗k k[G] is defined. More precisely, since both P ′ ⊗K′ P ′ and
P ′ ⊗k k[G] are finitely generated algebras over K ′ one can find a polynomial f
in the α′

i such that B′ ⊗A′ B′ ' B′ ⊗k k[G] where A′ = k[α′]f and B′ = A′[β′]
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(since there is only a finite number of polynomials to invert in order to define
the isomorphism).

Now obviously P ′ ' B′ ⊗A′ K ′ and we just have to find a rational morphism
from A′ to A and this will induce a rational compression from B′/A′ to B/A.
This is easily done since the image of A′ under the map A′ ⊂ K ′ ⊂ K lies in a
subring of the form k[α]g for some polynomial g in the αi (again one has only
to invert the polynomials that appear in the image of the α′

i which are only
finite in number). Now A = k[α]h for some polynomial h and we have a natural
map A′ → k[α]g → (k[α]g)h = Ag. In the same way one finds a rational map
B′ → Bp compatible with the previous one.

It follows that ed(f) ≤ ed(T ) and the proof is complete.

Remark 6.12. The hypothesis “reduced” on Y can be dropped easily arguing
with A/Nil(A) rather then A. Since Remark 6.2 tells that one can always find
a reduced classifying torsor this will not be proved.

Lemma 6.13. Let f ′ : X ′ −→ Y ′ be a compression of a classifying torsor
f : X −→ Y . Then f ′ is also classifying.

Proof. Let

X

f

²²

g //___ X ′

f ′

²²
Y

h
//___ Y ′

be such a compression. Let k′/k be a field extension with k′ infinite and let
P ′ ∈ H1(k′, G). Since f is classifying one can find a k′-rational point y ∈ Y (k′)
which lies in U , the open set on which h is defined, such that f−1(y) ' P ′.
Then the fiber of f ′ at h(y) clearly gives a torsor isomorphic to P ′.

Corollary 6.14. Let T → Spec(K) be a generic G-torsor, K ′ ⊂ K and
T ′ → Spec(K ′) such that T ′

K = T . Then T ′ is also a generic torsor.

Proof. Take a classifying G-torsor X −→ Y which is a model for T . Then,
by the proof of Lemma 6.11, defining T over a smaller field means compressing
the torsor X −→ Y . Since the compression of a classifying torsor is again
classifying it follows that T comes from a generic torsor.

Corollary 6.15. The functor G-Tors is nice.

Proof. We have to show G-Tors has a nice versal pair. But a generic torsor
defines a versal pair and niceness is ensured by the previous corollary.
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Corollary 6.16. Let G be an algebraic group over k and let T ∈ H1(K,G)
be a generic torsor. Then ed′

k(G) = edk(G) = ed(T ).

Proof. As pointed out above, any generic torsor gives rise to a nice versal
pair and we can apply Proposition 5.6.

Proposition 6.17. Let G be an algebraic group acting linearly and generically
freely on A(V ) where V is some vector space. Suppose that the G-action induced
on P(V ) is again generically free. Then

ed(G) ≤ dim(V ) − dim(G) − 1.

Proof. The map A(V ) \ {0} → P(V ) gives a rational G-equivariant map from
A(V ) → P(V ) which gives a compression of the corresponding torsors in view
of Lemma 6.10 above.

Corollary 6.18. Let G be a finite constant group scheme over k. Suppose
that, for an integer n ≥ 2, there is an injective map ρ : G ↪→ GLn(k) such that
π ◦ ρ stays injective where π : GLn(k) → PGLn(k) is the canonical projection.
Then ed(G) ≤ n − 1.

Proof. Indeed G acts generically freely on An by Proposition 4.15 and by
Lemma 4.18 on Pn−1 too. We can thus apply the above result.

Using compressions we are able to explain the behaviour of the essential di-
mension of G with respect to a closed subgroup.

Theorem 6.19. Let G be an algebraic group and H a closed algebraic subgroup
of G. Then

ed(H) + dim(H) ≤ ed(G) + dim(G).

In particular, if G is finite, we have

ed(H) ≤ ed(G).

Proof. Let A(V ) be an affine space on which G acts generically freely. Take
U open in A(V ) such that U/G and U/H both exist and are torsors. Now take

U

²²

g //____ X

²²
U/G

h
//___ Y

a G-compression such that dim(Y ) = ed(G). Since the stabilizer in H of a
point x is a subgroup of Gx it follows that H acts generically freely on U and
on X too. Now g is also H-equivariant and by the Lemma 6.10 above g gives
rise to an H-compression of U −→ U/H. It then follows that

ed(H) ≤ dim(X) − dim(H)
= dim(Y ) + dim(G) − dim(H)
= ed(G) + dim(G) − dim(H).
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This provides another proof of the following

Corollary 6.20. If char(k) 6= 2 one has ed(Sn) ≥ [n
2 ].

Proof. We have H = Z/2 × · · · × Z/2︸ ︷︷ ︸
[ n
2 ] times

⊂ Sn. But we have seen (Corollary

4.16) that the essential dimension of a finite 2-torsion elementary abelian group
is equal to its rank if char(k) 6= 2. One concludes using the preceeding theorem.

Proposition 6.21. Let G be an algebraic group over k and denote by G0

its connected component. If edk(G) = 1 then G/G0 is isomorphic to a finite
subgroup of PGL2.

Proof. The fact that the group G/G0 is finite is well-known. Assume now
that edk(G) = 1. Let A(V ) be an affine space on which G acts generically
freely. Let U ⊆ A(V ) be a friendly open subscheme and let X −→ Y a G-torsor
together with a compression of the generic torsor U −→ U/G

U

²²

//____ X

²²
U/G //___ Y

.

Now G acts freely on X (by Remark 4.6) and hence G0 too. Then the quotient
X/G0 exists and G/G0 acts freely on it. It follows that there is a monomor-
phism of group schemes G/G0 → Aut(X/G0). Now A(V ) is rational and thus
X/G0 is unirational. But

dim(X/G0) = dim(X) − dim(G0) = dim(X) − dim(G) = dim(Y ) = 1

and then by a theorem of Lüroth X/G0 is birationnaly equivalent to P1. It
follows that Aut(X/G0) ∼= PGL2. Thus G/G0 is isomorphic to a subgroup
of PGL2.

Remark 6.22. The above discussion is longer than Merkurjev’s one. Many
details are given and proofs are completed. However the philosophy introduced
here is due to Merkurjev which was himself inspired by Reichstein’s work. The
discussion about the niceness of G-Tors is new. Proposition 6.21 is a new
result which was pointed out to us by J.-P. Serre.
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7. Some finite groups

In this section we will compute the essential dimension of some constant group
schemes. We first deal with some generalities and an application to the sym-
metric group (which can originally be found in [3]). Groups of the form Z/n
and dihedral groups are then studied more carefully.

In what follows G will denote a finite constant group scheme over k.

We first recall that if G is such a group, then any linear generically free action
on a vector space V is actually a faithful representation (see Proposition 4.15).
Since G is finite and acts faithfully on the field of functions k(V ), this gives
rise to a Galois extension k(V )/k(V )G. This is indeed a generic torsor for G
by our previous considerations. Now any subfield E ⊆ k(V ) on which G acts
faithfully gives rise in the same way to a Galois extension E/EG. From this
remark we have the following proposition which is the definition of essential
dimension in [3]

Proposition 7.1. Let G be a finite constant group scheme over k acting faith-
fully on a k-vector space V . Then the essential dimension of G is the minimum
of the trdeg(E : k) for all the fields E ⊆ k(V ) on which G acts faithfully.

Application to Sn.

In this example we suppose that char(k) 6= 2.

With this assumption on the ground field, Sn acts faithfully on the hyperplane
H = { x ∈ An

k | x1 + · · · + xn = 0 } and thus on k(x1, . . . , xn−1). But on
k(x1, . . . , xn−1) we have a multiplicative action, i.e. a Gm-action, given by
λ · xi = λxi for all λ ∈ Gm(k) and all i = 1, . . . , n − 1. This action commutes
with the action of Sn. We easily see that

k(x1, . . . , xn−1)
Gm = k

(
x1/xn−1, . . . , xn−2/xn−1

)
.

Now, if n ≥ 3, the group Sn acts faithfully on the latter field. The transcen-
dence degree of k

(
x1/xn−1, . . . , xn−2/xn−1

)
being equal to n−2, one concludes

that ed(Sn) ≤ n − 2 for n ≥ 3.

In particular we find ed(S3) = 1 and ed(S4) = 2.

If now we suppose n ≥ 5, we show that ed(Sn) ≤ n − 3.

The group PGL2(k) acts on k(x1, . . . , xn) in the following way :

[(
a b
c d

)]
· xi =

axi + b

cxi + d
∀ i = 1, . . . , n.

If now i, j, k, ` are distinct, the cross-sections [xi, xj , xk, x`] =
(xi−xk)(xj−x`)
(xj−xk)(xi−x`)

are PGL2-invariant. Hence we have

k([xi, xj , xk, x`]) ⊂ k(x1, . . . , xn)PGL2(k)
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where k([xi, xj , xk, x`]) is a short notation for the field generated by the biratios
[xi, xj , xk, x`] for i, j, k, l all distinct. But k([xi, xj , xk, x`]) is generated by the
biratios [x1, x2, x3, xi] with i = 4, . . . , n.
Hence k([xi, xj , xk, x`]) ∼= k(y1, . . . , yn−3). But, if n ≥ 5, every σ ∈ Sn \ {1}
moves at least one of the [xi, xj , xk, x`]’s. Consequently, since the above action
commutes with the Sn-action, Sn acts faithfully on k(y1, . . . , yn−3).

This shows that ed(Sn) ≤ n − 3 for all n ≥ 5.

In particular we have ed(S5) = 2 and ed(S6) = 3.

The question is still open concerning S7. Do we have ed(S7) = 3 or 4 ?

The following lemma is an immediate consequence of Proposition 6.21. We
restate it here in the case of finite groups and reprove it using an algebraic
argument. Compare with [3] Theorem 6.2.

Lemma 7.2 (Useful Lemma). Let G be a finite constant group. If edk(G) = 1,
then G is isomorphic to a subgroup of PGL2(k).

Proof. Let G act faithfully on a vector space V and let k(V )/k(V )G be the
corresponding Galois extension. Saying that edk(G) = 1 means that there is a
subextension K/k where trdeg(K : k) = 1 with G acting faithfully on K. Since
K is a subextension of k(V ), which is rational, and since trdeg(K : k) = 1, by
Lüroth’s theorem K is also rational. Thus K ∼= k(t). Since G acts faithfully
on k(t) this means that G is a subgroup of Aut(k(t)) ∼= PGL2(k).

We continue this section studying more carefully the groups Z/n and Dn.

We recall first of all that, if the field k contains the n-th roots of unity, one has
edk(Z/n) = 1 and that the inequality edk(Z/n) ≥ 1 holds for any field. Upper
bounds are usually given by actions or representations and these will essentially
depend on the ground field. Furthermore lower bounds are generally difficult
to find. We begin with some easy considerations in order to understand the
problem.

Consider Z/n as a constant R-group scheme. Then one has a faithful represen-
tation

Z/n −→ SL2(R)

given by sending the generator of Z/n to the matrix
(

cos θ − sin θ
sin θ cos θ

)

representing the rotation of angle θ = 2π/n. Hence edR(Z/n) ≤ 2 for every n.
Clearly this holds for an arbitrary field k containing R. The question becomes
particularly interesting when the field is Q. For a better results on the essential
dimension of cyclic and dihedral groups over Q see the work of A. Ledet in [10]
where for example the equality edQ(Z/7) = 2 is proven.
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But linear representations do not always give the best possible upper bounds.
Recall that if G is a finite subgroup of GLn(k) for some n and if its image in
PGLn(k) is still G then edk(G) ≤ n − 1 (see Corollary 6.18).

As we shall see, in the study of cyclic groups there is a gap between groups of
odd and even order.

Lemma 7.3 (Simple Lemma). Let n be an integer, k a field such that char(k) - n
and ζ ∈ k a primitive n-th root of the unity. Suppose that ζ + ζ−1 ∈ k. Let

S =

(
ζ + ζ−1 1

−1 0

)
and T =

(
0 1
1 0

)
. Then the order of S in GL2(k) equals n

and the subgroup generated by S and T is isomorphic to the dihedral group Dn.
Moreover, if n is odd, the same holds in PGL2(k) for the classes of S and T .

Proof. Let P =

(
1 ζ−1

1 ζ

)
. Then S = P−1

(
ζ 0
0 ζ−1

)
P showing that S has

order n. Moreover easily TST−1 = S−1.
Now assume that n is odd. We only have to check that Si 6= λI for all λ ∈ k
and all i = 1, . . . , n − 1. Suppose that Si = λI for some λ ∈ k and some
i = 1, . . . , n − 1. This would mean that ζi = λ and ζ−i = λ. Thus ζ2i = 1.
This means that n | 2i which is impossible.

This lemma gives us already the exact value of edk(Z/n), with n odd, when
the field contains ζ + ζ−1.

Proposition 7.4. Let n be an odd integer, k a field such that char(k) - n and ζ
a primitive n-th root of the unity. If ζ + ζ−1 ∈ k then

edk(Z/n) = 1.

Proof. We only have to prove that edk(Z/n) ≤ 1. But the lemma above
shows that Z/n injects into GL2(k) and that this map stays injective when
passing to PGL2(k). Thus edk(G) ≤ 2 − 1 = 1 by Corollary 6.18.

This gives the essential dimension of Z/3:

Corollary 7.5. For any field k one has edk(Z/3) = 1.

Proof. Clearly every field contains ζ + ζ−1 = −1 and hence, if the charac-
teristic of k is 6= 3, one can apply the above argument. In characteristic 3 we
already know the result (see Examples 2.3).

The tough problem is to deal with groups of the form Z/2n where n is even.
The following theorem gives an answer for n = 2. We postpone its proof until
the end of the present section.
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Theorem 7.6. Let k be a field of characteristic 6= 2. Then

edk(Z/4) =





1 if −1 is a square in k

2 otherwise.

The result was already known by Serre in [21] (see Exercice 1.2) even though
the notion of essential dimension was not defined. More recently in [17] Rost
computed the essential dimension of a twisted form of Z/4 generalizing the
present result.

The above Simple Lemma has a converse statement when n is prime.

Lemma 7.7. Let p > 2 a prime, k a field of characteristic 6= p and ζ ∈ k
a primitive p-th root of unity. If PGL2(k) has an element of order p then
ζ + ζ−1 ∈ k.

Proof. Let M ∈ GL2(k) of order p in PGL2(k). There is a λ ∈ k× such that
Mp = λI, thus the minimal polynomial mM divides Xp − λ. Hence Xp − λ is
not irreducible (otherwise p = deg(mM ) ≤ 2) and therefore λ = µp for some
µ ∈ k×. Thus we can suppose that λ = 1. In that case, the eigenvalues of
M are of the form ζi. Let ζi and ζj be the two eigenvalues of M . We have
det(M) = ζi+j ∈ k×. Suppose that i+ j 6≡ 0 mod p, then < ζi+j >= µp ⊂ k×

and hence ζ + ζ−1 ∈ k×. Suppose that i + j ≡ 0 mod p, then j ≡ −i. If i ≡ 0
then M = I which is impossible, hence i 6≡ 0 and the eigenvalues are disctinct.
Thus

M = P−1

(
ζi 0
0 ζ−i

)
P ∈ GL2(k)

for some invertible matrix P . But since i 6≡ 0, there exists j such that ij ≡ 1

mod p. Then M j = P−1

(
ζ 0
0 ζ−1

)
P belongs to GL2(k) and it follows that

ζ + ζ−1 = Tr(M j) ∈ k.

Corollary 7.8. Let p be a prime, k a field such that char(k) 6= p and suppose
that ζ + ζ−1 /∈ k. Then

edk(Z/p) ≥ 2.

Proof. Suppose that ed(Z/p) = 1, then by the Useful Lemma we would have
an injection Z/p −→ PGL2(k) which is impossible by the above lemma.

We now have the exact value of the essential dimension of Z/5.
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Corollary 7.9. Let k a field such that char(k) 6= 5 and ζ a primitive 5-th
root of unity. Then

edk(Z/5) =





1 if ζ + ζ−1 ∈ k

2 otherwise.

Proof. If ζ + ζ−1 ∈ k apply Proposition 7.4. If ζ + ζ−1 /∈ k then by the above
corollary we have edk(Z/5) ≥ 2. It then suffices to show that edk(S5) ≤ 2 since
Z/5 is a subgroup of S5 and thus edk(Z/5) ≤ edk(S5) = 2. If char(k) 6= 2 this
has been proven at the beginning of this section.
Assume now that char(k) = 2. It suffices to show that the generic torsor for
S5 is defined over a field of transcendence degree at most 2. By [2] Proposition
4.4, the generic polynomial defining the generic torsor can be reduced to the
form X5 + aX2 + bX + c. If b = 0 we are done. If b 6= 0 replacing X by c

bX
gives the conclusion.

Another application of the Useful Lemma concerns Z/p2 in characteristic p.
Recall that we already know that edk(Z/p2) ≤ 2 in that case as it was shown
in Section 2.

Proposition 7.10. If char(k) = p then edk(Z/p2) = 2.

Proof. By the Useful Lemma we know that if edk(G) = 1 then G is isomorphic
to a subgroup of PGL2(k). Thus it suffices to show that, if char(k) = p, there
are no elements of order p2 in PGL2(k). We leave it as an easy exercise to the
reader.

One can handle in a similar way the computation of some essential dimensions
for the dihedral groups Dn.

Corollary 7.11. Let n be odd, k a field such that char(k) - n and ζ a primitive
n-th root of the unity. If ζ + ζ−1 ∈ k then edk(Dn) = 1.

Proof. It readily follows from Simple Lemma above and Corollary 6.18.

Corollary 7.12. Let n be an integer. Then

edR(Dn) =





1 if n is odd,

2 if n is even.

Proof. By the Simple Lemma, there is a real 2-dimensional faithful represen-
tation of Dn for every n. Hence edR(Dn) ≤ 2. Moreover, when n is even Dn

contains Z/4 or Z/2×Z/2 as a subgroup, according to whether n is congruent
to 0 or 2 modulo 4. Thus the statement is a consequence of Theorem 7.6 and
Proposition 3.7.
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One very interesting result for finite groups can be found in [10] and concerns
the essential dimension of G × Z/2. We give here this result without proof.

Theorem 7.13 (Jensen, Ledet, Yui). Let k be a field of characteristic 0 con-
taing the primitive pth roots of unity, for a prime p, and let G be a finite group.
Assume that k does not contain the primitive rth root of unity for any prime
r 6= p dividing |Z(G)|. Then

edk(G × Z/2) = edk(G) + 1.

This result gives for example edQ(G×Z/2) = edQ(G)+1 for any finite group G.
The same holds for R.

Corollary 7.14. Let n be an odd integer. Then

edQ(Z/2n) = edQ(Z/n) + 1.

The same holds for R.

Using this result and Theorem 7.6 the computation over the real numbers for
cyclic groups is complete:

Corollary 7.15. Let n 6= 2 be an integer. Then

edR(Z/n) =





1 if n is odd

2 if n is even

Proof. We already know that edR(Z/n) ≤ 2. If n is odd, Proposition 7.4 tells
that edR(Z/n) = 1. If n is even, two cases arise: either n = 2m with m odd
and one applies the above corollary, or n = 4m and in this case Z/n contains
Z/4 as a subgroup. Then Theorem 7.6 shows that edR(Z/n) ≥ 2.

As promised, we finish the section with a proof of Theorem 7.6 which gives the
essential dimension of Z/4.

Notice first that when −1 is a square in k (and char(k) 6= 2) then Corollary
4.16 tells that edk(Z/4) = 1.

Notice also that one always has edk(Z/4) ≤ 2. Indeed let k be a field of

characteristic 6= 2 and let A =

(
0 −1
1 0

)
. Since A is of order 4, this gives

a faithful representation Z/4 −→ GL2 and one concludes that edk(Z/4) ≤ 2
using Proposition 4.15.

It thus suffices to prove that edk(Z/4) ≥ 2 when −1 /∈ k×2. Our proof is based
on the following parametrization of cyclic extensions of degree 4 (see [8]).
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Proposition 7.16. Let K be a field of characteristic 6= 2. Let D ∈ K× \K×2.

Then K(
√

D)/K is contained in a cyclic field extension of degree 4 if and
only if D is a sum of two squares in K. Let D = a2 + b2, a, b ∈ K. Then

K(
√

q(D + a
√

D)), q ∈ K× is a parametrization of all cyclic extensions of

degree 4 with discriminant D. The trace form of K(
√

q(D + a
√

D)) over K is

〈1,D, q, q〉.

This result tells us that the trace form essentially “depends on two parameters”.

Let L0 be the Galois algebra K(
√

q(D + a
√

D)) described in the above proposi-

tion. Let K = k(s, t) the function field in two variables and set D = s2+1, q = t
(here a = s, b = 1 in the notation of the proposition). Now the algebra L0 can
be viewed as an element of H1(k(s, t), Z/4). To prove ed(L0) = 2 it is sufficient
to show that the trace form q = 〈1, s2 + 1, t, t〉 is not defined over a subfield
K ⊂ k(s, t) of transcendence degree 1. We will show that this is the case when
k is a field in which −1 is not a square using an idea of Rost.

We begin by making some easy observations on the first residue map of qua-
dratic forms. For convenience we recall briefly its definition following [18].

Let (F, υ) be a field of characteristic different from 2 equipped with a dis-
crete valuation, and let π denotes a prime element (i.e. an element such that
υ(π) = 1). We denote by Oυ the valuation ring of υ and by κ(υ) the residue
field.

Any quadratic form q defined over F can be diagonalized as

q ' 〈a1, . . . , am, πam+1, . . . , πan〉,
with ai ∈ O×

υ . Then the map ∂υ : W (F ) −→ W (κ(v)) defined by

∂υ(q) := 〈ā1, · · · , ām〉
is a well-defined group homomorphism which is independent of the choice of π,
called the first residue map.

Now let K ⊂ F , and let ω = υ|K . If ω is trivial over K, then K ⊂ κ(υ) and it
follows from the definition that for any q ∈ W (K) we have ∂υ(qF ) = qκ(υ).

If ω is non-trivial over K, then any prime element π′ of (K,ω) can be written
as π′ = uπe for some u ∈ O×

υ and some non-negative integer e. The integer
e is well-defined and called the ramification index of (K,ω) in (F, υ). If
e = 1, we say that the extension (F, υ)/(K,ω) is unramified. Moreover in
this case, we have an inclusion κ(ω) ⊂ κ(υ).

If e is odd, then for any q ∈ W (K), one easily checks that in W (κ(υ)) the
equality ∂υ(qF ) = ∂υ(q)κ(υ) holds.
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Let now k a field in which −1 is not a square. We consider υ the t-adic valuation
on the field F = k(s, t) and υ′ the (s2 + 1)-adic valuation on κ(υ) ∼= k(s) (note
that since −1 is not a square we can consider this valuation).

Suppose now that q is defined over a subfield K ⊂ k(s, t) with trdeg(K : k) = 1,
and write q = q′F for some quadratic form q′ defined over K. Notice that, since
trdeg(K : k) = 1, then trdeg(F : K) = 1, and it follows that F/K is a purely
transcendental extension.

If the valuation ω = υ|K is trivial we have

∂υ(q) = ∂υ(q′F ) = q′κ(υ).

Since κ(υ) = k(s) ⊂ F , by scalar extension we obtain the following equality
in W (F )

∂υ(q)F = q.

It follows that 〈1, 1 + s2〉 = 〈1, 1 + s2, t, t〉, showing that 〈t, t〉 is hyperbolic
over F . Then, comparing discriminants, one finds that −1 is a square in
F = k(s, t), hence in k, which is a contradiction. Thus the valuation ω
is non-trivial over K.

Notice now that κ(ω) is a finite extension of k, since any discrete k-valuation
over a field extension of transcendence degree 1 over k is associated to some
irreducible polynomial with coefficients in k. Since κ(ω) ⊂ k(s), this implies
that κ(ω) = k. It follows, by [4], Prop. 2, p. 327, that ω and υ has same value
group, that is (F, υ)/(K,ω) is unramified. In particular, we have

∂υ(q) = ∂υ(q′F ) = ∂ω(q′)κ(υ).

Since ∂ω(q′) ∈ W (κ(ω)) = W (k), we then get ∂υ′(∂υ(q)) = ∂ω(q′), so we finally
obtain the equality

∂υ′(∂υ(q))κ(υ) = ∂υ(q),

that is 〈1〉 = 〈1, 1 + s2〉 in W (k(s)), which is a contradiction.

This shows that ed(〈1, s2 +1, t, t〉) = 2 when −1 is not a square. It follows that
ed(L0) = 2 and consequently edk(Z/4) ≥ 2 in that case. This completes the
proof of Theorem 7.6.

Remark 7.17. Most of the results of the present section were known to Buhler
and Reichstein over an algebraically closed field of characteristic 0. Emphasis
is given here to the computation of the essential dimension over arbitrary fields.
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8. Homotopy invariance

In this section we shall prove the so-called homotopy invariance (that is
edk(G) = edk(t)(G)) for algebraic groups defined over infinite fields. We first
begin with some considerations on places of the form k(t) Ã k. Unadorned ⊗
will always mean ⊗k.

Let k be any field, a(t) ∈ k(t) and τ ∈ k. We say that a(t) is unramified at τ if
a(t) ∈ k[t]mτ where mτ denotes the maximal ideal < t− τ > of k[t]. When a(t)
is unramified at τ one can evaluate or specialize it at τ by simply replacing t by
τ . Actually every τ ∈ k defines a pseudo k-place k(t) Ã k denoted by (Oτ , ατ )
where the local ring Oτ is k[t]mτ and the morphism ατ is the isomorphism
k[t]/mτ ' k. Saying that a(t) is unramified at τ is then the same than saying
that a(t) (viewed as an element of F(k(t)) where F is the forgetful functor)
is unramified in the place (Oτ , ατ ) and a(τ) the specialization of a(t) at τ is
nothing but the image of a(t) under the map

sτ : Oτ = k[t]mτ
→ k[t]mτ

/mτ ' k[t]/mτ ' k.

These considerations extend naturally to vector spaces as follows:

Definition 8.1. Let A be a k-vector space (not necessarily finite dimensional).
Let t be an indeterminate over k, and let τ ∈ k. We say that an element
a(t) ∈ A ⊗ k(t) is unramified at τ if a ∈ A ⊗ Oτ . Let sτ : Oτ −→ k be the
above morphism.The specialization of a(t), denoted by a(τ), is the image of
a(t) under the map IdA ⊗ sτ : A ⊗Oτ → A ⊗ k ' A.

Let B ⊂ A be a k-subspace. Recall that the maps B ⊗ k(t) → A ⊗ k(t),
B ⊗Oτ −→ B ⊗ k(t) etc are injective.

We need the following result:

Lemma 8.2. Let b(t) ∈ B ⊗ k(t). Assume that b(t), viewed as an element of
A⊗k(t) is unramified at τ . Then b(t), viewed as an element of B⊗k(t), is un-
ramified at τ , and the two corresponding specializations coincide. In particular
b(τ) is in B.

Proof. This follows from the formula (A ⊗Oτ ) ∩ (B ⊗ k(t)) = B ⊗Oτ .

We continue with some considerations on torsors. Let X −→ Y be a G-torsor
over k and let E/k be any field extension. Pulling back everything along
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Spec(E) → Spec(k) one obtains XE −→ YE a G-torsor over E:

XE
//

²²

X

²²
YE

//

²²

Y

²²
Spec(E) // Spec(k)

Now, for any field extension L/E and any G-torsor T → Spec(L) there is a
one-to-one correspondence between the set of L-rational points of Y having T
as a fiber and the set of L-rational points of YE having T as a fiber. Indeed if
y : Spec(L) → Y is such a point, we have a diagram

T

²² &&L
L

L
L

L
L

''
Spec(L)

""

%%L
L

L
L

L y

''

XE

²²

// X

²²
YE

//

²²

Y

²²
Spec(E) // Spec(k)

by the universal property of the pull-backs involved.

From now on we will deal with E = k(t) and we shall write X(t) −→ Y (t)
instead of Xk(t) −→ Yk(t).

Lemma 8.3. Let X → Y be a classifying torsor over an infinite field k. Then
the torsor X(t) → Y (t) is a classifying torsor over k(t).

Proof. First notice that one can suppose Y to be affine. Let now L/k(t)
be a field extension and T → Spec(L) be any G-torsor. Let Z ⊂ Y be the
dense subset of Y such that for every y : Spec(L) → Z the fiber of X → Y
at y is T . Denote by Z(t) the corresponding subset of Y (t). We have to show
that Z(t) is dense. Write Y = Spec(A) for some k-algebra A. We have that
Y (t) = Spec(A⊗ k(t)) and the bijection between the sets Z and Z(t) says that
every point p(t) ∈ Z(t) is of the form p ⊗ k(t) for exactely one p ∈ Z. Saying
that Z ⊂ Y is dense means that for every non-zero element f of A there exists
p ∈ Z such that f /∈ p. Take f(t) ∈ A ⊗ k(t) a non-zero element and suppose
that Z(t) is not dense, that is f(t) ∈ p(t) for all p(t) ∈ Z(t). Since k is infinite
one can find τ ∈ k such that f(t) is unramified at τ and f(τ) 6= 0. Now Lemma
8.2 tells that f(τ) ∈ p for all p ∈ Z contradicting the fact that Z is dense in Y .
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Theorem 8.4 (Homotopy invariance).
Let G be an algebraic group over an infinite field k. Then

edk(G) = edk(t)(G).

Proof. We only have to prove edk(G) ≤ edk(t)(G). Let X −→ Y a classifying
G-torsor over k with Y minimal for the dimension (that is dim(Y ) = edk(G)).
Pulling back everything along Spec(k(t)) one obtains X(t) −→ Y (t) which is
again a classifying torsor in view of the preceeding lemma.

Suppose now that edk(t)(G) < edk(G). This means that the torsor
X(t) −→ Y (t) can be further compressed over k(t). That means that there
exists a G-torsor X ′ −→ Y ′ with dim Y ′ < dim Y (t) = dim Y fitting into a
pull-back

X(t) //

²²

X ′

²²
Y (t) // Y ′

But now, one can find ϕ ∈ k[t] such that the above pull-back is defined over
Spec

(
k[t, 1

ϕ ]
)
. Now take ξ : Spec(k) → Spec

(
k[t, 1

ϕ ]
)

a k-rational point. Such

a point exists since k is infinite. Now Y ′
ξ , the fiber of Y ′ over ξ, is closed in

Y ′ and thus satisfies dim Y ′
ξ ≤ dim Y ′. Pulling back the above square along ξ

one has
X(t)ξ

//

²²

X ′
ξ

²²
Y (t)ξ

// Y ′
ξ

But X(t)ξ ' X, so the torsor X −→ Y can be compressed into a torsor
X ′

ξ −→ Y ′
ξ with dim Y ′

ξ ≤ dim Y ′ < dim Y contradicting the minimality of Y .

For the moment we do not know if homotopy invariance holds for finite fields.

Remark 8.5. To our knowledge the homotopy invariance is a new result.
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Springer-Verlag (1997)

[20] J.-P. Serre, Corps locaux. Hermann, Paris (1962)

Documenta Mathematica 8 (2003) 279–330



330 Grégory Berhuy, Giordano Favi

[21] J.-P. Serre, Topics in Galois Theory. Research notes in Math. 1, Jones
and Bartlett Pib., Boston, MA (1992)

[22] R. W. Thomason, Comparison of equivariant algebraic and topological K-
theory. Duke Math. J. 53, No 3, (1986), 795–825

[23] W. C. Waterhouse. Introduction to Affine Group Schemes. GTM 66,
Springer-Verlag (1979)

Grégory Berhuy
University of British Columbia
Department of Mathematics
1984 Mathematics Road
V6T 1Z2 Vancouver BC, Canada
berhuy@math.ubc.ca

Giordano Favi
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1 Introduction

Let p be a prime and let X1(p)/Q be the projective smooth algebraic curve
over Q that classifies elliptic curves equipped with a point of exact order p.
Let J1(p)/Q be its Jacobian. One of the goals of this paper is to prove:

Theorem 1.1.1. For every prime p, the Néron model of J1(p)/Q over Z(p) has
closed fiber with trivial geometric component group.
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This theorem is obvious when X1(p) has genus 0 (i.e., for p ≤ 7), and for
p = 11 it is equivalent to the well-known fact that the elliptic curve X1(11) has
j-invariant with a simple pole at 11 (the j-invariant is −212/11). The strategy
of the proof in the general case is to show that X1(p)/Q has a regular proper
model X1(p)/Z(p)

whose closed fiber is geometrically integral. Once we have
such a model, by using the well-known dictionary relating the Néron model of
a generic-fiber Jacobian with the relative Picard scheme of a regular proper
model (see [9, Ch. 9], esp. [9, 9.5/4, 9.6/1], and the references therein), it
follows that the Néron model of J1(p) over Z(p) has (geometrically) connected
closed fiber, as desired. The main work is therefore to prove the following
theorem:

Theorem 1.1.2. Let p be a prime. There is a regular proper model X1(p) of
X1(p)/Q over Z(p) with geometrically integral closed fiber.

What we really prove is that if X1(p)reg denotes the minimal regular reso-
lution of the normal (typically non-regular) coarse moduli scheme X1(p)/Z(p)

,
then a minimal regular contraction X1(p) of X1(p)reg has geometrically integral
closed fiber; after all the contractions of −1-curves are done, the component
that remains corresponds to the component of X1(p)/Fp

classifying étale order-p
subgroups. When p > 7, so the generic fiber has positive genus, such a minimal
regular contraction is the unique minimal regular proper model of X1(p)/Q.

Theorem 1.1.2 provides natural examples of a finite map π between curves
of arbitrarily large genus such that π does not extend to a morphism of the
minimal regular proper models. Indeed, consider the natural map

π : X1(p)/Q → X0(p)/Q.

When p = 11 or p > 13, the target has minimal regular proper model over
Z(p) with reducible geometric closed fiber [45, Appendix], while the source has
minimal regular proper model with (geometrically) integral closed fiber, by
Theorem 1.1.2. If the map extended, it would be proper and dominant (as
source and target have unique generic points), and hence surjective. On the
level of closed fibers, there cannot be a surjection from an irreducible scheme
onto a reducible scheme. By the valuative criterion for properness, π is defined
in codimension 1 on minimal regular proper models, so there are finitely many
points of X1(p) in codimension 2 where π cannot be defined.

Note that the fiber of J1(p) at infinity need not be connected. More specif-
ically, a modular-symbols computation shows that the component group of
J1(p)(R) has order 2 for p = 17 and p = 41. In contrast, A. Agashe has
observed that [47, §1.3] implies that J0(p)(R) is always connected.

Rather than prove Theorem 1.1.2 directly, we work out the minimal regular
model for XH(p) over Z(p) for any subgroup H ⊆ (Z/pZ)×/{±1} and use
this to study the mod p component group of the Jacobian JH(p); note that
JH(p) usually does not have semistable reduction. Our basic method is to
use a variant on the classical Jung–Hirzebruch method for complex surfaces,
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adapted to the case of a proper curve over an arbitrary discrete valuation ring.
We refer the reader to Theorem 2.4.1 for the main result in this direction; this
is the main new theoretical contribution of the paper. This technique will be
applied to prove:

Theorem 1.1.3. For any prime p and any subgroup H of (Z/pZ)×/{±1}, the
natural surjective map JH(p) → J0(p) of Albanese functoriality induces an
injection on geometric component groups of mod-p fibers, with the component
group Φ(JH(p)/Fp

) being cyclic of order |H|/gcd(|H|, 6). In particular, the

finite étale component-group scheme Φ(JH(p)/Fp
) is constant over Fp.

If we view the constant cyclic component group Φ(J0(p)/Fp
) as a quotient of

the cyclic (Z/p)×/{±1}, then the image of the subgroup Φ(JH(p)/Fp
) in this

quotient is the image of H ⊆ (Z/pZ)×/{±1} in this quotient.

Remark 1.1.4. The non-canonical nature of presenting one finite cyclic group
as a quotient of another is harmless when following images of subgroups under
maps, so the final part of Theorem 1.1.3 is well-posed.

The constancy in Theorem 1.1.3 follows from the injectivity claim and the
fact that Φ(J0(p)/Fp

) is constant. Such constancy was proved by Mazur-
Rapoport [45, Appendix], where it is also shown that this component group for
J0(p) is cyclic of the order indicated in Theorem 1.1.3 for H = (Z/pZ)×/{±1}.

Since the Albanese map is compatible with the natural map TH(p) → T0(p)
on Hecke rings and Mazur proved [45, §11] that Φ(J0(p)/Fp

) is Eisenstein as a

T0(p)-module, we obtain:

Corollary 1.1.5. The Hecke module Φ(JH(p)/Fp
) is Eisenstein as a TH(p)-

module (i.e., T` acts as 1 + ` for all ` 6= p and 〈d〉 acts trivially for all
d ∈ (Z/pZ)×).

In view of Eisenstein results for component groups due to Edixhoven [18]
and Ribet [54], [55] (where Ribet gives examples of non-Eisenstein component
groups), it would be of interest to explore the range of validity of Corollary
1.1.5 when auxiliary prime-to-p level structure of Γ0(N)-type is allowed. A
modification of the methods we use should be able to settle this more general
problem. In fact, a natural approach would be to aim to essentially reduce to
the Eisenstein results in [54] by establishing a variant of the above injectivity
result on component groups when additional Γ0(N) level structure is allowed
away from p. This would require a new idea in order to avoid the crutch of
cyclicity (the case of Γ1(N) seems much easier to treat using our methods
because the relevant groups tend to be cyclic, though we have not worked out
the details for N > 1), and preliminary calculations of divisibility among orders
of component groups are consistent with such injectivity.

In order to prove Theorem 1.1.3, we actually first prove a surjectivity result:

Theorem 1.1.6. The map of Picard functoriality J0(p) → JH(p) induces a
surjection on mod p component groups, with the mod p component group for
JH(p) having order |H|/ gcd(|H|, 6).
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In particular, each connected component of JH(p)/Fp
contains a multiple of

the image of (0) − (∞) ∈ J0(p)(Z(p)) in JH(p)(Fp).

Let us explain how to deduce Theorem 1.1.3 from Theorem 1.1.6. Recall [28,
Exposé IX] that for a discrete valuation ring R with fraction field K and an
abelian variety A over K over R, Grothendieck’s biextension pairing sets up a
bilinear pairing between the component groups of the closed fibers of the Néron
models of A and its dual A′. Moreover, under this pairing the component-group
map induced by a morphism f : A → B (to another abelian variety) has as an
adjoint the component-group map induced by the dual morphism f ′ : B′ → A′.
Since Albanese and Picard functoriality maps on Jacobians are dual to each
other, the surjectivity of the Picard map therefore implies the injectivity of the
Albanese map provided that the biextension pairings in question are perfect
pairings (and then the description of the image of the resulting Albanese in-
jection in terms of H as in Theorem 1.1.3 follows immediately from the order
calculation in Theorem 1.1.6).

In general the biextension pairing for an abelian variety and its dual need not
be perfect [8], but once it is known to be perfect for the JH(p)’s then surjectivity
of the Picard map in Theorem 1.1.6 implies the injectivity of the Albanese
map as required in Theorem 1.1.3. To establish the desired perfectness, one
can use either that the biextension pairing is always perfect in case of generic
characteristic 0 with a perfect residue field [6, Thm. 8.3.3], or that surjectivity
of the Picard map ensures that JH(p) has mod p component group of order
prime to p, and the biextension pairing is always perfect on primary components
prime to the residue characteristic [7, §3, Thm. 7].

It is probable that the results concerning the component groups Φ(JH(p)/Fp
)

and the maps between them that are proved in this article via models of XH(p)
over Z(p) can also be proved using [20, 5.4, Rem. 1], and the well-known stable
model of X1(p) over Z(p)[ζp] that one can find for example in [30]. (This
observation was prompted by questions of Robert Coleman.) However, such
an approach does not give information on regular models of XH(p) over Z(p).
Hence we prefer the method of this paper.
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1.2 Outline

Section 1.3 contains a few background notational remarks. In Section 2 we
develop the basic Jung–Hirzebruch resolution technique in the context of tame
cyclic quotient surface singularities. This includes mod-p singularities on many
(coarse) modular curves when p > 3 and the p-power level structure is only
on p-torsion. In Section 3, we recall some general results on moduli problems
for elliptic curves and coarse moduli schemes for such problems. In Section 4,
we use the results of Sections 2 and 3 to locate all the non-regular points on
the coarse moduli scheme XH(p)/Z(p)

(e.g., when H is trivial this is the set
of Fp-rational points (E, 0) with j = 0, 1728). In Section 5, we use the Jung–
Hirzebruch formulas to compute the minimal regular resolution XH(p)reg of
XH(p)/Z(p)

, and we use use a series of intersection number computations to
obtain a regular proper model for XH(p)/Q; from this, the desired results
on component groups follow. We conclude in Section 6 with some computer
computations concerning the arithmetic of J1(p) for small p, where (among
other things) we propose a formula for the order of the torsion subgroup of
J1(p)(Q).

To avoid using Weierstrass equations in proofs, we have sometimes argued
more abstractly than is strictly necessary, but this has the merit of enabling us
to treat cusps by essentially the same methods as the other points. We would
prefer to avoid mentioning j-invariants, but it is more succinct to say “cases
with j = 0” than it is to say “cases such that Aut(E/k) has order 6.”

Because we generally use methods of abstract deformation theory, the same
approach should apply to Drinfeld modular curves, as well as to cases with
auxiliary level structure away from p (including mod p component groups of
suitable Shimura curves associated to indefinite quaternion algebras over Q,
with p not dividing the discriminant). However, since a few additional techni-
calities arise, we leave these examples to be treated at a future time.

1.3 Notation and terminology

Throughout this paper, p denotes an arbitrary prime unless otherwise indicated.
Although the cases p ≤ 3 are not very interesting from the point of view of our
main results, keeping these cases in mind has often led us to more conceptual
proofs. We write Φp(T ) = (T p−1)/(T −1) ∈ Z[T ] to denote the pth cyclotomic
polynomial (so Φp(T + 1) is p-Eisenstein).

We write V ∨ to denote the dual of a vector space V , and we write F∨ to
denote the dual of a locally free sheaf F .

If X and S′ are schemes over a scheme S then X/S′ and XS′ denote X×S S′.
If S is an integral scheme with function field K and X is a K-scheme, by a
model of X (over S) we mean a flat S-scheme with generic fiber X.

By an S-curve over a scheme S we mean a flat separated finitely presented
map X → S with fibers of pure dimension 1 (the fibral dimension condition
need only be checked on generic fibers, thanks to [27, IV3, 13.2.3] and a re-
duction to the noetherian case). Of course, when a map of schemes X → S is
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proper flat and finitely presented with geometrically connected generic fibers,
then the other fibers are automatically geometrically connected (via reduction
to the noetherian case and a Stein factorization argument). For purely techni-
cal reasons, we do not require S-curves to be proper or to have geometrically
connected fibers. The main reason for this is that we want to use étale local-
ization arguments on X without having to violate running hypotheses. The
use of Corollary 2.2.4 in the proof of Theorem 2.4.1 illustrates this point.

2 Resolution of singularities

Our eventual aim is to determine the component groups of Jacobians of inter-
mediate curves between X1(p) and X0(p). Such curves are exactly the quotient
curves XH(p) = X1(p)/H for subgroups H ⊆ (Z/pZ)×/{±1}, where we iden-
tify the group AutQ(X1(p)/X0(p)) = AutQ(X1(p)/X0(p)) with (Z/pZ)×/{±1}
via the diamond operators (in terms of moduli, n ∈ (Z/pZ)× sends a pair (E,P )
to the pair (E,n · P )). The quotient XH(p)/Z(p)

is an arithmetic surface with
tame cyclic quotient singularities (at least when p > 3).

After some background review in Section 2.1 and some discussion of gener-
alities in Section 2.2, in Section 2.3 we will describe a class of curves that give
rise to (what we call) tame cyclic quotient singularities. Rather than work with
global quotient situations X/H, it is more convenient to require such quotient
descriptions only on the level of complete local rings. For example, this is what
one encounters when computing complete local rings on coarse modular curves:
the complete local ring is a subring of invariants of the universal deformation
ring under the action of a finite group, but this group-action might not be
induced by an action on the global modular curve. In Section 2.4 we estab-
lish the Jung–Hirzebruch continued-fraction algorithm that minimally resolves
tame cyclic quotient singularities on curves over an arbitrary discrete valuation
ring. The proof requires the Artin approximation theorem, and for this reason
we need to define the concept of a curve as in Section 1.3 without requiring
properness or geometric connectivity of fibers.

We should briefly indicate here why we need to use Artin approximation to
compute minimal resolutions. Although the end result of our resolution pro-
cess is intrinsic and of étale local nature on the curve, the mechanism by which
the proof gets there depends on coordinatization and is not intrinsic (e.g., we
do not blow-up at points, but rather along certain codimension-1 subschemes).
The only way we can relate the general case to a coordinate-dependent calcu-
lation in a special case is to use Artin approximation to find a common étale
neighborhood over the general case and a special case (coupled with the étale
local nature of the intrinsic minimal resolution that we are seeking to describe).

These resolution results are applied in subsequent sections to compute a
regular proper model of XH(p)/Q over Z(p) in such a way that we can compute
both the mod-p geometric component group of the Jacobian JH(p) and the
map induced by J0(p) → JH(p) on mod-p geometric component-groups. In
this way, we will prove Theorem 1.1.6 (as well as Theorem 1.1.2 in the case of
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trivial H).

2.1 Background review

Some basic references for intersection theory and resolution of singularities for
connected proper flat regular curves over Dedekind schemes are [29, Exposé X],
[13], and [41, Ch. 9].

If S is a connected Dedekind scheme with function field K and X is a normal
S-curve, when S is excellent we can construct a resolution of singularities as
follows: blow-up the finitely many non-regular points of X (all in codimension
2), normalize, and then repeat until the process stops. That this process always
stops is due to a general theorem of Lipman [40]. For more general (i.e., possibly
non-excellent) S, and X/S with smooth generic fiber, the same algorithm works
(including the fact that the non-regular locus consists of only finitely many
closed points in closed fibers). Indeed, when X/K is smooth then the non-
smooth locus of X → S is supported on finitely many closed fibers, so we may
assume S = Spec(R) is local. We can then use Lemma 2.1.1 below to bring

results down from X/R̂ since R̂ is excellent.

See Theorem 2.2.2 for the existence and uniqueness of a canonical minimal
regular resolution Xreg → X for any connected Dedekind S when X/K smooth.
A general result of Lichtenbaum [39] and Shafarevich [61] ensures that when
X/S is also proper (with smooth generic fiber if S isn’t excellent), by beginning
with Xreg (or any regular proper model of X/K) we can successively blow down
−1-curves (see Definition 2.2.1) in closed fibers over S until there are no more
such −1-curves, at which point we have reached a relatively minimal model
among the regular proper models of X/K . Moreover, when X/K is in addition
geometrically integral with positive arithmetic genus (i.e., H1(X/K ,O) 6= 0),
this is the unique relatively minimal regular proper model, up to unique iso-
morphism.

In various calculations below with proper curves, it will be convenient to work
over a base that is complete with algebraically closed residue field. Since pas-
sage from Z(p) to W (Fp) involves base change to a strict henselization followed
by base change to a completion, in order to not lose touch with the situation
over Z(p) it is useful to keep in mind that formation of the minimal regular
proper model (when the generic fiber is smooth with positive genus) is com-
patible with base change to a completion, henselization, and strict henselization
on the base. We will not really require these results, but we do need to use
the key fact in their proof: certain base changes do not destroy regularity or
normality (and so in particular commute with formation of normalizations).
This is given by:

Lemma 2.1.1. Let R be a discrete valuation ring with fraction field K and
let X be a locally finite type flat R-scheme that has regular generic fiber. Let
R → R′ be an extension of discrete valuation rings for which mRR′ = mR′ and
the residue field extension k → k′ is separable. Assume either that the fraction
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field extension K → K ′ is separable or that X/K is smooth (so either way,
X/K′ is automatically regular).

For any x′ ∈ X ′ = X ×R R′ lying over x ∈ X, the local ring OX′,x′ is regular
(resp. normal) if and only if the local ring OX,x is regular (resp. normal).

Proof. Since mRR′ = mR′ , the map π : X ′ → X induces πk : X/k ×k k′ → X/k

upon reduction modulo mR. The separability of k′ over k implies that πk is a
regular morphism. Thus, if x and x′ lie in the closed fibers then OX,x → OX′,x′

is faithfully flat with regular fiber ring OX′,x′/mx. Consequently, X is regular
at x if and only if X ′ is regular at x′ [44, 23.7]. Meanwhile, if x and x′ lie in
the generic fibers then they are both regular points since the generic fibers are
regular. This settles the regular case.

For the normal case, when X ′ is normal then the normality of X follows from
the faithful flatness of π [44, Cor. to 23.9]. Conversely, when X is normal then
to deduce normality of X ′ we use Serre’s “R1 +S2” criterion. The regularity of
X ′ in codimensions ≤ 1 is clear at points on the regular generic fiber. The only
other points of codimension ≤ 1 on X ′ are the generic points of the closed fiber,
and these lie over the (codimension 1) generic points of the closed fiber of X.
Such points on X are regular since X is now being assumed to be normal, so the
desired regularity on X ′ follows from the preceding argument. This takes care
of the R1 condition. It remains to check that points x′ ∈ X ′ in codimensions
≥ 2 contain a regular sequence of length 2 in their local rings. This is clear if
x′ lies on the regular generic fiber, and otherwise x′ is a point of codimension
≥ 1 on the closed fiber. Thus, x = π(x′) is either a generic point of X/k or is a
point of codimension ≥ 1 on X/k. In the latter case the normal local ring OX,x

has dimension at least 2 and hence contains a regular sequence of length 2; this
gives a regular sequence in the faithfully flat extension ring OX′,x′ . If instead
x is a generic point of X/k then OX,x is a regular ring. It follows that OX′,x′

is regular, so we again get the desired regular sequence (since dimOX′,x′ ≥ 2).

We wish to record an elementary result in intersection theory that we will
use several times later on. First, some notation needs to be clarified: if X is
a connected regular proper curve over a discrete valuation ring R with residue
field k, and D and D′ are two distinct irreducible and reduced divisors in the
closed fiber, then

D.D′ := dimk H0(D ∩ D′,O) =
∑

d∈D∩D′

dimk OD∩D′,d.

This is generally larger than the length of the artin ring H0(D ∩ D′,O), and
is called the k-length of D ∩ D′. If F = H0(D,OD), then D ∩ D′ is also an
F -scheme, and so it makes sense to define

D.F D′ = dimF H0(D ∩ D′,O) = D.D′/[F : k].
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We call this the F -length of D∩D′. We can likewise define D.F ′D′ for the field
F ′ = H0(D′,O). If D′ = D, we define the relative self-intersection D.F D to be
(D.D)/[F : k] where D.D is the usual self-intersection number on the k-fiber.

Theorem 2.1.2. Let X be a connected regular proper curve over a discrete
valuation ring, and let P ∈ X be a closed point in the closed fiber. Let C1, C2

be two (possibly equal) effective divisors supported in the closed fiber of X, with
each Cj passing through P , and let C ′

j be the strict transform of Cj under the

blow-up π : X ′ = BlP (X) → X. We write E ' P1
k(P ) to denote the exceptional

divsor.

We have π−1(Cj) = C ′
j + mjE where mj = multP (Cj) is the multiplicity of

the curve Cj at P . Also, mj = (C ′
j).k(P )E and

C1.C2 = C ′
1.C

′
2 + m1m2[k(P ) : k].

Proof. Recall that for a regular local ring R of dimension 2 and any non-zero
non-unit g ∈ R, the 1-dimensional local ring R/g has multiplicity (i.e., leading
coefficient of its Hilbert-Samuel polynomial) equal to the unique integer µ ≥ 1
such that g ∈ m

µ
R, g 6∈ m

µ+1
R .

We have π−1(Cj) = C ′
j + mjE for some positive integer mj that we must

prove is equal to the multiplicity µj = multP (Cj) of Cj at P . We have
E.k(P )E = −1, so E.E = −[k(P ) : k], and we also have π−1(Cj).E = 0,
so mj = (C ′

j .E)/[k(P ) : k] = (C ′
j).k(P )E. The strict transform C ′

j is the blow-
up of Cj at P , equipped with its natural (closed immersion) map into X ′. The
number mj is the k(P )-length of the scheme-theoretic intersection C ′

j ∩E; this
is the fiber of BlP (Cj) → Cj over P . Intuitively, this latter fiber is the scheme
of tangent directions to Cj at P , but more precisely it is Proj(Sj), where

Sj =
⊕

n≥0

mn
j /mn+1

j ,

and mj is the maximal ideal of OCj ,P = OX,P /(fj), with fj a local equation
for Cj at P . We have mj = m/(fj) with m the maximal ideal of OX,P . Since
fj ∈ mµj and fj 6∈ mµj+1,

Sj ' Symk(P )(m/m2)/f j = k(P )[u, v]/(f j)

with f j denoting the nonzero image of fj in degree µj . We conclude that
Proj(Sj) has k(P )-length µj , so mj = µj . Thus, we may compute

C1.C2 = π−1(C1).π
−1(C2) = C ′

1.C
′
2 + 2m1m2[k(P ) : k] + m1m2E.E

= C ′
1.C

′
2 + m1m2[k(P ) : k].
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2.2 Minimal resolutions

It is no doubt well-known to experts that the classical technique of resolution
for cyclic quotient singularities on complex surfaces [25, §2.6] can be adapted
to the case of tame cyclic quotient singularities on curves over a complete
equicharacteristic discrete valuation ring. We want the case of an arbitrary
discrete valuation ring, and this seems to be less widely known (it is not ad-
dressed in the literature, and was not known to an expert in log-geometry with
whom we consulted). Since there seems to be no adequate reference for this
more general result, we will give the proof after some preliminary work (e.g.,
we have to define what we mean by a tame cyclic quotient singularity, and we
must show that this definition is applicable in many situations. Our first step
is to establish the existence and uniqueness of a minimal regular resolution in
the case of relative curves over a Dedekind base (the case of interest to us);
this will eventually serve to make sense of the canonical resolution at a point.

Since we avoid properness assumptions, to avoid any confusion we should
explicitly recall a definition.

Definition 2.2.1. Let X → S be a regular S-curve, with S a connected
Dedekind scheme. We say that an integral divisor D ↪→ X in a closed fiber Xs

is a −1-curve if D is proper over k(s), H1(D,OD) = 0, and degkOD(D) = −1,
where k = H0(D,OD) is a finite extension of k(s).

By Castelnuovo’s theorem, a −1-curve D ↪→ X as in Definition 2.2.1 is k-
isomorphic to a projective line over k, where k = H0(D,OD).

The existence and uniqueness of minimal regular resolutions is given by:

Theorem 2.2.2. Let X → S be a normal S-curve over a connected Dedekind
scheme S. Assume either that S is excellent or that X/S has smooth generic
fiber.

There exists a birational proper morphism π : Xreg → X such that Xreg

is a regular S-curve and there are no −1-curves in the fibers of π. Such an
X-scheme is unique up to unique isomorphism, and every birational proper
morphism X ′ → X with a regular S-curve X ′ admits a unique factorization
through π. Formation of Xreg is compatible with base change to SpecOS,s and

Spec ÔS,s for closed points s ∈ S. For local S, there is also compatibility with
ind-étale base change S′ → S with local S′ whose closed point is residually
trivial over that of S.

We remind that reader that, for technical reasons in the proof of Theorem
2.4.1, we avoid requiring curves to be proper and we do not assume the generic
fiber to be geometrically connected. The reader is referred to [41, 9/3.32] for
an alternative discussion in the proper case.

Proof. We first assume S to be excellent, and then we shall use Lemma 2.1.1
and some descent considerations to reduce the general case to the excellent case
by passage to completions.
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As a preliminary step, we wish to reduce to the proper case (to make the
proof of uniqueness easier). By Nagata’s compactification theorem [43] and the
finiteness of normalization for excellent schemes, we can find a schematically
dense open immersion X ↪→ X with X/S normal, proper, and flat over S (hence

a normal S-curve). By resolving singularities along X − X, we may assume
the non-regular locus on X coincides with that on X. Thus, the existence and
uniqueness result for X will follow from that for X. The assertion on regular
resolutions (uniquely) factorizing through π goes the same way. Hence, we
now assume (for excellent S) that X/S is proper. We can also assume X to be
connected.

By Lemma 2.1.1 and resolution for excellent surfaces, there exists a birational
proper morphism X ′ → X with X ′ a regular proper S-curve. If there is a −1-
curve in the fiber of X ′ over some (necessarily closed) point of X, then by
Castelnuovo we can blow down the −1-curve and X ′ → X will factor through
the blow-down. This blow-down process cannot continue forever, so we get the
existence of π : Xreg → X with no −1-curves in its fibers.

Recall the Factorization Theorem for birational proper morphisms between
regular connected S-curves: such maps factor as a composite of blow-ups at
closed points in closed fibers. Using the Factorization Theorem, to prove
uniqueness of π and the (unique) factorization through π for any regular reso-
lution of X we just have to show that if X ′′ → X ′ → X is a tower of birational
proper morphisms with regular S-curves X ′ and X ′′ such that X ′ has no −1-
curves in its fibers over X, then any −1-curve C in a fiber of X ′′ → X is
necessarily contracted by X ′′ → X ′. Also, via Stein factorization we can as-
sume that the proper normal connected S-curves X, X ′, and X ′′ with common
generic fiber over S have geometrically connected fibers over S. We may as-
sume that S is local. Since the map q : X ′′ → X ′ is a composite of blow-ups,
we may assume that C meets the exceptional fiber E of the first blow-down
q1 : X ′′ → X ′′

1 of a factorization of q. If C = E we are done, so we may assume
C 6= E. In this case we will show that X is regular, so again uniqueness holds
(by the Factorization Theorem mentioned above).

The image q1(C) is an irreducible divisor on X ′′
1 with strict transform C,

so by Theorem 2.1.2 we conclude that q1(C) has non-negative self-intersection
number, so this self-intersection must be zero. Since X ′′

1 → S is its own Stein
factorization, and hence has geometrically connected closed fiber, q1(C) must
be the entire closed fiber of X ′′

1 . Thus, X ′′
1 has irreducible closed fiber, and

so the (surjective) proper birational map X ′′
1 → X is quasi-finite and hence

finite. Since X and X ′′
1 are normal and connected (hence integral), it follows

that X ′′
1 → X must be an isomorphism. Thus, X is regular, as desired.

With Xreg unique up to (obviously) unique isomorphism, for the base change
compatibility we note that the various base changes S′ → S being considered
(to completions on S, or to local S′ ind-étale surjective over local S and resid-
ually trivial at closed points), the base change Xreg

/S′ is regular and proper

birational over the normal curve X/S′ (see Lemma 2.1.1). Thus, we just have
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to check that the fibers of Xreg
/S′ → X/S′ do not contain −1-curves. The closed-

fiber situation is identical to that before base change, due to the residually
trivial condition at closed points, so we are done.

Now suppose we do not assume S to be excellent, but instead assume X/S

has smooth generic fiber. In this case all but finitely many fibers of X/S are
smooth. Thus, we may reduce to the local case S = Spec(R) with a discrete

valuation ring R. Consider X/R̂, a normal R̂-curve by Lemma 2.1.1. Since R̂

is excellent, there is a minimal regular resolution

π : (X/R̂)reg → X/R̂.

By [40, Remark C, p. 155], the map π is a blow-up along a 0-dimensional closed

subscheme Ẑ physically supported in the non-regular locus of X/R̂. This Ẑ is

therefore physically supported in the closed fiber of X/R̂, yet Ẑ is artinian and

hence lies in some infinitesimal closed fiber of X/R̂. Since X×R R̂ → X induces

isomorphisms on the level of nth infinitesimal closed-fibers for all n, there is a
unique 0-dimensional closed subscheme Z in X with Z/R̂ = Ẑ inside of X/R̂.

Since the blow-up BlZ(X) satisfies

BlZ(X)/R̂ ' BlẐ(X/R̂) = (X/R̂)reg,

by Lemma 2.1.1 we see that BlZ(X) is a regular S-curve. There are no −1-

curves in its fibers over X since Spec R̂ → Spec R is an isomorphism over
SpecR/m. This establishes the existence of π : Xreg → X, as well as its
compatibility with base change to completions on S. To establish uniqueness
of π, or more generally its universal factorization property, we must prove that
certain birational maps from regular S-curves to Xreg are morphisms. This
is handled by a standard graph argument that can be checked after faithfully
flat base change to R̂ (such base change preserves regularity, by Lemma 2.1.1).

Thus, the uniqueness results over the excellent base R̂ carry over to our original
R. The same technique of base change to R̂ shows compatibility with ind-étale
base change that is residually trivial over closed points.

One mild enhancement of the preceding theorem rests on a pointwise defini-
tion:

Definition 2.2.3. Let X/S be as in Theorem 2.2.2, and let Σ ⊆ X be a finite
set of closed points in closed fibers over S. Let U be an open in X containing Σ
such that U does not contain the finitely many non-regular points of X outside
of Σ. We define the minimal regular resolution along Σ to be the morphism
πΣ : XΣ → X obtained by gluing X − Σ with the part of Xreg lying over U
(note: the choice of U does not matter, and XΣ is not regular if there are
non-regular points of X outside of Σ).
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It is clear that the minimal regular resolution along Σ is compatible with
local residually-trivial ind-étale base change on a local S, as well as with base
change to a (non-generic) complete local ring on S. It is also uniquely charac-
terized among normal S-curves C equipped with a proper birational morphism
ϕ : C → X via the following conditions:

• πΣ is an isomorphism over X − Σ,

• XΣ is regular at points over Σ,

• XΣ has no −1-curves in its fibers over Σ.

This yields the crucial consequence that (under some mild restrictions on
residue field extensions) formation of XΣ is étale-local on X. This fact is
ultimately the reason we did not require properness or geometrically connected
fibers in our definition of S-curve:

Corollary 2.2.4. Let X/S be a normal S-curve over a connected Dedekind
scheme S, and let Σ ⊆ X be a finite set of closed points in closed fibers over
S. Let X ′ → X be étale (so X ′ is an S-curve), and let Σ′ denote the preimage
of Σ. Assume that S is excellent or X/S has smooth generic fiber.

If XΣ → X denotes the minimal regular resolution along Σ, and X ′ → X is
residually trivial over Σ, then the base change XΣ ×X X ′ → X ′ is the minimal
regular resolution along Σ′.

Remark 2.2.5. The residual triviality condition over Σ is satisfied when S is
local with separably closed residue field, as then all points of Σ have separably
closed residue field (and so the étale X ′ → X must induce trivial residue field
extensions over such points).

Proof. Since XΣ ×X X ′ is étale over XΣ, we conclude that XΣ ×X X ′ is an
S-curve that is regular along the locus over Σ′ ⊆ X ′, and its projection to X ′

is proper, birational, and an isomorphism over X ′ − Σ′. It remains to check
that

(2.2.1) XΣ ×X X ′ → X ′

has no −1-curves in the proper fibers over Σ′. Since X ′ → X is residually
trivial over Σ (by hypothesis), so this is clear.

2.3 Nil-semistable curves

In order to compute minimal regular resolutions of the sort that arise on
XH(p)’s, it is convenient to study the following concept before we discuss res-
olution of singularities. Let S be a connected Dedekind scheme and let X be
an S-curve.
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Definition 2.3.1. For a closed point s ∈ S, a closed point x ∈ Xs is nil-
semistable if the reduced fiber-curve Xred

s is semistable over k(s) at x and all
of the analytic branch multiplicities through x are not divisible by char(k(s)).
If Xred

s is semistable for all closed points s ∈ S and all irreducible components
of Xs have multiplicity not divisible by char(k(s)), X is a nil-semistable curve
over S.

Considerations with excellence of the fiber Xs show that the number of an-
alytic branches in Definition 2.3.1 may be computed on the formal completion
at a point over x in Xs/k′ for any separably closed extension k′ of k(s). We will
use the phrase “analytic branch” to refer to such (formal) branches through a
point over x in such a geometric fiber over s.

As is well-known from [34], many fine moduli schemes for elliptic curves are
nil-semistable.

Fix a closed point s ∈ S. From the theory of semistable curves over fields [24,
III, §2], it follows that when x ∈ Xred

s is a semistable non-smooth point then
the finite extension k(x)/k(s) is separable. We have the following analogue of
the classification of semistable curve singularities:

Lemma 2.3.2. Let x ∈ Xs be a closed point and let πs ∈ OS,s be a uniformizer.
If x is a nil-semistable point at which X is regular, then the underlying re-

duced scheme of the geometric closed fiber over s has either one or two analytic
branches at a geometric point over x, with these branches smooth at x. When
moreover k(x)/k(s) is separable and there is exactly one analytic branch at
x ∈ Xs, with multiplicity m1 in Osh

Xs,x, then

(2.3.1) Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(tm1
1 − πs).

If there are two analytic branches (so k(x)/k(s) is automatically separable),
say with multiplicities m1 and m2 in Osh

Xs,x, then

(2.3.2) Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(tm1
1 tm2

2 − πs).

Conversely, if Ôsh
X,x admits one of these two explicit descriptions with the

exponents not divisible by char(k(s)), then x is a nil-semistable regular point
on X with k(x)/k(s) separable.

In view of this lemma, we call the exponents in the formal isomorphisms
(2.3.1) and (2.3.2) the analytic geometric multiplicities of Xs at x (this re-
quires k(x)/k(s) to be separable). We emphasize that these exponents can be
computed after base change to any separably closed extension of k(s) when x
is nil-semistable with k(x)/k(s) separable.

Proof. First assume x ∈ Xred
s is a non-smooth semistable point and X is reg-

ular at x. Since k(x) is therefore finite separable over k(s), we can make a
base change to the completion of a strict henselization of OS,s to reduce to

Documenta Mathematica 8 (2003) 331–408



346 Conrad, Edixhoven, Stein

the case S = Spec(W ) with a complete discrete valuation ring W having sep-

arably closed residue field k such that x a k-rational point. Since ÔX,x is a
2-dimensional complete regular local W -algebra with residue field k, it is a
quotient of W [[t1, t2]] and hence has the form W [[t1, t2]]/(f) where f is a regular
parameter. The semistability condition and non-smoothness of Xred

/k at x imply

k[[t1, t2]]/rad(f) = (k[[t1, t2]]/(f))red ' ÔXred
/k

,x ' k[[u1, u2]]/(u1u2)

where f = f mod mW , so f has exactly two distinct irreducible factors and
these have distinct (non-zero) tangent directions in Xred

/k through x. We can
choose t1 and t2 to lift these tangent directions, so upon replacing f with a
unit multiple we may assume f = tm1

1 tm2
2 mod mW for some m1,m2 ≥ 1 not

divisible by p = char(k) ≥ 0. Let π be a uniformizer of W , so f = tm1
1 tm2

2 − πg
for some g, and g must be a unit since f is a regular parameter. Since some mj

is not divisible by p, and hence the unit g admits an mjth root, by unit-rescaling
of the corresponding tj we get to the case g = 1.

In the case when Xred
s is smooth at x and k(x)/k(s) is separable, we may

again reduce to the case in which S = SpecW with complete discrete valuation
ring W having separably closed residue field k and k(x) = k. In this case, there
is just one analytic branch and we see by a variant of the preceding argument
that the completion of Osh

X,x has the desired form.
The converse part of the lemma is clear.

In Definition 2.3.6, we shall give a local definition of the class of curve-
singularities that we wish to resolve, but we will first work through some global
considerations that motivate the relevance of the local Definition 2.3.6.

Assume X is regular, and let H be a finite group and assume we are given an
action of H on X/S that is free on the scheme of generic points (i.e., no non-
identity element of H acts trivially on a connected component of X). A good ex-
ample to keep in mind is the (affine) fine moduli scheme over S = Spec(Z(p)) of
Γ1(p)-structures on elliptic curves equipped with auxiliary full level `-structure
for an odd prime ` 6= p, and H = GL2(F`) acting in the usual manner (see
Section 3 for a review of these basic level structures).

We wish to work with a quotient S-curve X ′ = X/H, so we now also assume
that X is quasi-projective Zariski-locally on S. Clearly X → X ′ is a finite H-
equivariant map with the expected universal property; in the above modular-
curve example, this quotient X ′ is the coarse moduli scheme Y1(p) over Z(p).
We also now assume that S is excellent or X/K is smooth, so that there are
only finitely many non-regular points (all in codimension 2) and various results
centering on resolution of singularities may be applied.

The S-curve X ′ has regular generic fiber (and even smooth generic fiber
when X/S has smooth generic fiber), and X ′ is regular away from finitely
many closed points in the closed fibers. Our aim is to understand the minimal
regular resolution X ′reg of X ′, or rather to describe the geometry of the fibers
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of X ′reg → X ′ over non-regular points x′ satisfying a mild hypothesis on the
structure of X → X ′ over x′.

We want to compute the minimal regular resolution for X ′ = X/H at non-
regular points x′ that satisfy several conditions. Let s ∈ S be the image of x′,
and let p ≥ 0 denote the common characteristic of k(x′) and k(s). Pick x ∈ X
over x′.

• We assume that X is nil-semistable at x (by the above hypotheses, X is
also regular at x).

• We assume that the inertia group Hx|x′ in H at x (i.e., the stablizer in
H of a geometric point over x) has order not divisible by p (so this group
acts semi-simply on the tangent space at a geometric point over x).

• When there are two analytic branches through x, we assume Hx|x′ does
not interchange them.

These conditions are independent of the choice of x over x′ and can be checked
at a geometric point over x, and when they hold then the number of analytic
branches through x coincides with the number of analytic branches through
x′ (again, we are really speaking about analytic branches on a geometric fiber
over s).

Since p does not divide |Hx|x′ |, it follows that k(x′) is the subring of invariants
under the action of Hx|x′ on k(x), so a classical theorem of Artin ensures
that k(x)/k(x′) is separable (and even Galois). Thus, k(x)/k(s) is separable
if and only if k(x′)/k(s) is separable, and such separability holds when the
point x ∈ Xred

s is semistable but not smooth. Happily for us, this separability
condition over k(s) is always satisfied (we are grateful to Lorenzini for pointing
this out):

Lemma 2.3.3. With notation and hypotheses as above, particularly with
x′ ∈ X ′ = X/H a non-regular point, the extension k(x′)/k(s) is separable.

Proof. Recall that, by hypothesis, x ∈ Xred
s is either a smooth point or an

ordinary double point. If x is a non-smooth point on the curve Xred
s , then the

desired separability follows from the theory of ordinary double point singular-
ities. Thus, we may (and do) assume that x is a smooth point on Xred

s .
We may also assume S is local and strictly henselian, so k(s) is separably

closed and hence k(x) and k(x′) are separably closed. Thus, k(x) = k(x′)
and Hx|x′ is the physical stabilizer of the point x ∈ X. We need to show
that the common residue field k(x) = k(x′) is separable over k(s). If we let
X ′′ = X/Hx|x′ , then the image x′′ of x in X ′′ has complete local ring isomorphic
to that of x′ ∈ X ′, so we may replace X ′ with X ′′ to reduce to the case when
H has order not divisible by p and x is in the fixed-point locus of H. By [20,
Prop. 3.4], the fixed-point locus of H in X admits a closed-subscheme structure
in X that is smooth over S. On the closed fiber this smooth scheme is finite
and hence étale over k(s), so its residue fields are separable over k(s).
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The following refinement of Lemma 2.3.2 is adapted to the Hx|x′-action, and
simultaneously handles the cases of one and two (geometric) analytic branches
through x′.

Lemma 2.3.4. With hypotheses as above, there is an Ôsh
S,s-isomorphism

Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(tm1
1 tm2

2 − πs)

(with m1 > 0, m2 ≥ 0) such that the Hx|x′-action looks like h(tj) = χj(h)tj for

characters χ1, χ2 : Hx|x′ → Ôsh
S,s

×
that are the Teichmüller lifts of characters

giving a decomposition of the semisimple Hx|x′-action on the 2-dimensional
cotangent space at a geometric point over x. Moreover, χm1

1 χm2
2 = 1.

The characters χj also describe the action of Hx|x′ on the tangent space at (a
geometric point over) x. There are two closed-fiber analytic branches through
x when m1 and m2 are positive, and then the branch with formal parameter
t2 has multiplicity m1 since

(k[[t1, t2]]/(tm1
1 tm2

2 ))[1/t2] = k((t2))[t1]/(tm1
1 )

has length m1. Likewise, when m2 > 0 it is the branch with formal parameter
t1 that has multiplicity m2.

Proof. We may assume S = SpecW with W a complete discrete valuation ring
having separably closed residue field k and uniformizer π, so x is k-rational. Let

R = Ôsh
X,x = ÔX,x. We have seen in Lemma 2.3.2 that there is an isomorphism

of the desired type as W -algebras, but we need to find better such tj ’s to
linearize the Hx|x′-action.

We first handle the easier case m2 = 0. In this case there is only one minimal
prime (t1) over (π), so h(t1) = uht1 for a unique unit uh ∈ R×. Since tm1

1 = π
is Hx|x′ invariant, we see that uh ∈ µm1

(R) is a Teichmüller lift from k (since
p - m1). Thus, h(t1) = χ1(h)t1 for a character χ1 : Hx|x′ → R× that is a
lift of a character for Hx|x′ on Cotx(X). Since Hx|x′ acts semisimply on the
2-dimensional cotangent space Cotx(X) and there is a stable line spanned by
t1 mod m2

x, we can choose t2 to lift an Hx|x′ -stable line complementary to the
one spanned by t1 mod m2

x. If χ2 denotes the Teichmüller lift of the character
for Hx|x′ on this complementary line, then

h(t2) = χ2(h)(t2 + δh)

with δh ∈ mi
x for some i ≥ 2. It is straightfoward to compute that

h 7→ δh mod mi+1
x

is a 1-cocycle with values in the twisted Hx|x′ -module χ−1
2 ⊗(mi

x/mi+1
x ). Chang-

ing this 1-cocycle by a 1-coboundary corresponds to adding an element of
mi

x/mi+1
x to t2 mod mi+1

x . Since

H1(Hx|x′ , χ−1
2 ⊗ (mi

x/mi+1
x )) = 0,
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we can successively increase i ≥ 2 and pass to the limit to find a choice of t2
such that Hx|x′ acts on t2 through the character χ2. That is, h(t1) = χ1(h)t1
and h(t2) = χ2(h)t2 for all h ∈ Hx|x′ . This settles the case m2 = 0.

Now we turn to the more interesting case when also m2 > 0, so there are
two analytic branches through x. By hypothesis, the Hx|x′ -action preserves the
two minimal primes (t1) and (t2) over (π) in R. We must have h(t1) = uht1,
h(t2) = vht2 for unique units uh, vh ∈ R×. Since tm1

1 tm2
2 = π, by applying h

we get um1

h vm2

h = 1.
Consider what happens if we replace t2 with a unit multiple t′2 = vt2,

and then replace t1 with the unit multiple t′1 = v−m2/m1t1 so as to en-
sure t′m1

1 t′m2

2 = π. Note that an m1th root v−m2/m1 of the unit v−m2

makes sense since k is separably closed and p - m1. The resulting map
W [[t′1, t

′
2]]/(t′m1

1 t′m2

2 − π) → R is visibly surjective, and hence is an isomor-
phism for dimension reasons. Switching to these new coordinates on R has the
effect of changing the 1-cocycle {vh} by a 1-coboundary, and every 1-cocycle
cohomologous to {vh} is reached by making such a unit multiple change on t2.

By separately treating residue characteristic 0 and positive residue charac-
teristic, an inverse limit argument shows that H1(Hx|x′ , U) vanishes, where
U = ker(R× ³ k×). Thus, the natural map H1(Hx|x′ , R×) → H1(Hx|x′ , k×) is
injective. The Hx|x′ -action on k× is trivial since Hx|x′ acts trivially on W , so

H1(Hx|x′ , k×) = Hom(Hx|x′ , k×) = Hom(Hx|x′ , k×
tors),

with all elements in the torsion subgroup k×
tors of order not divisible by p and

hence uniquely multiplicatively lifting into R. Thus,

H1(Hx|x′ , R×) → H1(Hx|x′ , k×)

is bijective, and so replacing t1 and t2 with suitable unit multiples allows us
to assume h(t2) = χ2(h)t2, with χ2 : Hx|x′ → W×

tors some homomorphism of
order not divisible by p (since Hx|x′ acts trivially on k× and p - |Hx|x′ |).

Since
1 = um1

h vm2

h = um1

h χ2(h)m2

and p - m1, we see that uh is a root of unity of order not divisible by p. Viewing
k×
tors ⊆ R× via the Teichmüller lifting, we conclude that uh ∈ k×

tors ⊆ R×.
Thus, we can write h(t1) = χ1(h)t1 for a homomorphism χ1 : Hx|x′ → W×

tors

also necessarily of order not divisible by p. The preceding calculation also
shows that χm1

1 χm2
2 = 1 since um1

h vm2

h = 1.

Although Lemma 2.3.4 provides good (geometric) coordinate systems for
describing the inertia action, one additional way to simplify matters is to reduce
to the case in which the tangent-space characters χ1 and χ2 are powers of each
other. We wish to explain how this special situation is essentially the general
case (in the presence of our running assumption that H acts freely on the
scheme of generic points of X).
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First, observe that Hx|x′ acts faithfully on the tangent space Tx(X) at x.
Indeed, if an element in Hx|x′ acts trivially on the tangent space Tx(X), then

by Lemma 2.3.4 it acts trivially on the completion of Osh
X,x and hence acts

trivially on the corresponding connected component of the normal X. By
hypothesis, H acts freely on the scheme of generic points of X, so we conclude
that the product homomorphism

(2.3.3) χ1 × χ2 : Hx|x′ ↪→ k(x)×sep × k(x)×sep,

is injective (where k(x)sep is the separable closure of k(x) used when construct-
ing Osh

X,x). In particular, Hx|x′ is a product of two cyclic groups (one of which
might be trivial).

Lemma 2.3.5. Let κj = | ker(χj)|. The characters χκ2
1 and χκ1

2 factor through
a common quotient of Hx|x′ as faithful characters. When Hx|x′ is cyclic, this
quotient is Hx|x′ .

In addition, κ2|m1 and κ1|m2.

The cyclicity condition on Hx|x′ will hold in our application to modular
curves, as then even H is cyclic.

Proof. The injectivity of (2.3.3) implies that χ1 is faithful on ker(χ2) and χ2

is faithful on ker(χ1). Since χm1
1 χm2

2 = 1, we get κ2|m1 and κ1|m2 (even if
m2 = 0).

For the proof that the indicated powers of the χj ’s factor as faithful char-
acters of a common quotient of Hx|x′ , it is enough to focus attention on `-
primary parts for a prime ` dividing |Hx|x′ | (so ` 6= p). More specifically, if
G is an finite `-group that is either cyclic or a product of two cyclic groups,
and ψ0, ψ1 : G → Z/`nZ are homomorphisms such that ψ0 × ψ1 is injective
(i.e., ker(ψ0)∩ker(ψ1) = {1}), then we claim that the ψ

κ1−j

j ’s factor as faithful
characters on a common quotient of G, where κj = | ker(ψj)|. If one of the
ψj ’s is faithful (or equivalently, if the `-group G is cyclic), this is clear. This
settles the case in which G is cyclic, so we may assume G is a product of two
non-trivial cyclic `-groups and that both ψj ’s have non-trivial kernel. Since
the `-torsion subgroups ker(ψj)[`] must be non-trivial with trivial intersection,
these must be distinct lines spanning G[`]. Passing to group G/G[`] and the
characters ψ`

j therefore permits us to induct on |G|.

By the lemma, we conclude that the characters χ′
1 = χκ2

1 and χ′
2 = χκ1

1 both
factor faithfully through a common (cyclic) quotient H ′

x|x′ of Hx|x′ . Define

t′1 = tκ2
1 and t′2 = tκ1

2 . Since formation of Hx|x′ -invariants commutes with

passage to quotients on Ôsh
S,s-modules, Lemma 2.3.4 shows that in order to

compute the Hx|x′-invariants of Ôsh
X′,x′ it suffices to compute invariants on the

level of Ôsh
S,s[[t1, t2]] and then pass to a quotient. The subalgebra of invariants in
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Ôsh
S,s[[t1, t2]] under the subgroup generated by ker(χ1) and ker(χ2) is Ôsh

S,s[[t
′
1, t

′
2]],

and Hx|x′ acts on this subalgebra through the quotient H ′
x|x′ via the characters

χ′
1 and χ′

2. Letting m′
1 = m1/κ2 and m′

2 = m2/κ1 (so m′
2 = 0 in the case of

one analytic branch), we obtain the description

(2.3.4) Ôsh
X′,x′ = (Ôsh

S,s[[t
′
1, t

′
2]]/(t′1

m′
1t′2

m′
2 − πs))

H′
x|x′

Obviously χ′
2 = χ′

1
rx|x′ for a unique rx|x′ ∈ (Z/|H ′

x|x′ |Z)×, as the characters

χ′
j are both faithful on H ′

x|x′ .

Since |H ′
x|x′ | and rx|x′ ∈ (Z/|H ′

x|x′ |Z)× are intrinsic to x′ ∈ X ′ = X/H

and do not depend on x (or on a choice of k(x)sep), we may denote these
two integers nx′ and rx′ respectively. We have m′

1 + m′
2r

′
x′ ≡ 0 mod nx′ since

1 = χ′
1
m′

1χ′
2
m′

2 = χ′
1
m′

1+m′
2rx′ with χ′

1 faithful. Theorem 2.3.9 below shows
that nx′ > 1, since x′ is the non-regular.

If S were a smooth curve over C, then the setup in (2.3.4) would be the clas-
sical cyclic surface quotient-singularity situation whose minimal regular resolu-
tion is most readily computed via toric varieties. That case motivates what to
expect for minimal regular resolutions with more general S in §2.4, but rather
than delve into a relative theory of toric varieties we can just use the classical
case as a guide.

To define the class of singularities we shall resolve, let X ′
/S now be a normal

(not necessarily connected) curve over a connected Dedekind scheme S. Assume
moreover that either S is excellent or that X ′

/S has smooth generic fiber, so

there are only finitely many non-regular points (all closed in closed fibers).
Consider a closed point s ∈ S with residue characteristic p ≥ 0, and pick a
closed point x′ ∈ X ′

s such that X ′
s has one or two (geometric) analytic branches

at x′.

Definition 2.3.6. We say that a closed point x′ in a closed fiber X ′
s is a

tame cyclic quotient singularity if there exists a positive integer n > 1 not
divisible by p = char(k(s)), a unit r ∈ (Z/nZ)×, and integers m′

1 > 0 and

m′
2 ≥ 0 satisfying m′

1 ≡ −rm′
2 mod n such that Ôsh

X′,x′ is isomorphic to the

subalgebra of µn(k(s)sep)-invariants in Ôsh
S,s[[t

′
1, t

′
2]]/(t′1

m′
1t′2

m′
2 − πs) under the

action t′1 7→ ζt′1, t′2 7→ ζrt′2.

Remark 2.3.7. Note that when X ′
/S has a tame cyclic quotient singularity at

x′ ∈ X ′
s, then k(x′)/k(s) is separable and x′ is non-regular (by Theorem 2.3.9

below). Also, it is easy to check that the exponents m′
1 and m′

2 are necessarily
the analytic branch multiplicities at x′. Note that the data of n and r is merely
part of a presentation of ÔX′,x′ as a ring of invariants, so it is not clear a priori
that n and r are intrinsic to x′ ∈ X ′. The fact that n and r are uniquely
determined by x′ follows from Theorem 2.4.1 below, where we show that n and
r arise from the structure of the minimal regular resolution of X ′ at x′.
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Using notation as in the preceding global considerations, there is a very
simple criterion for a nil-semistable x′ ∈ X/H to be a non-regular point: there
should not be a line in Tx(X) on which the inertia group Hx|x′ acts trivially.
To prove this, we recall Serre’s pseudo-reflection theorem [57, Thm. 1′]. This
requires a definition:

Definition 2.3.8. Let V be a finite-dimensional vector space over a field k.
An element σ of Autk(V ) is called a pseudo-reflection if rank(1 − σ) ≤ 1.

Theorem 2.3.9 (Serre). Let A be a noetherian regular local ring with maximal
ideal m and residue field k. Let G be a finite subgroup of Aut(A), and let AG

denote the local ring of G-invariants of A. Suppose that:

1. The characteristic of k does not divide the order of G,

2. G acts trivially on k, and

3. A is a finitely generated AG-module.

Then AG is regular if and only if the image of G in Autk(m/m2) is generated
by pseudo-reflections.

In fact, the “only if” implication is true without hypotheses on the order of
G, provided AG has residue field k (which is automatic when k is algebraically
closed).

Remark 2.3.10. By Theorem 3.7(i) of [44] with B = A and A = AG, hypoth-
esis 3 of Serre’s theorem forces AG to be noetherian. Serre’s theorem ensures
that x′ as in Definition 2.3.6 is necessarily non-regular.

Proof. Since this result is not included in Serre’s Collected Works, we
note that a proof of the “if and only if” assertion can be found in [68,
Cor. 2.13, Prop. 2.15]. The proof of the “only if” implication in [68] works
without any conditions on the order of G as long as one knows that AG has
the same residue field as A. Such equality is automatic when k is algebraically
closed. Indeed, the case of characteristic 0 is clear, and for positive character-
istic we note that k is a priori finite over the residue field of AG, so if equality
were to fail then the residue field of AG would be of positive characteristic
with algebraic closure a finite extension of degree > 1, an impossibility by
Artin-Schreier.

To see why everything still works without restriction on the order of G
when we assume AG is regular, note first that regularity of AG ensures that
AG → A must be finite free, so even without a Reynolds operator we still have
(A ⊗AG A)G = A, where G acts on the left tensor factor. Hence, the proof of
[68, Lemma 2.5] still works. Meanwhile, equality of residue fields for AG and
A makes the proof of [68, Prop. 2.6] still work, and then one easily checks that
the proofs of [68, Thm. 2.8, Prop. 2.15(i)⇒(ii)] go through unchanged.
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The point of the preceding study is that in a global quotient situation
X ′ = X/H as considered above, one always has a tame cyclic quotient sin-
gularity at the image x′ of a nil-semistable point x ∈ Xs when x′ is not regular
(by Lemma 2.3.3, both k(x) and k(x′) are automatically separable over k(s)
when such non-regularity holds). Thus, when computing complete local rings
at geometric closed points on a coarse modular curve (in residue characteristic
> 3), we will naturally encounter a situation such as in Definition 2.3.6. The
ability to explicitly (minimally) resolve tame cyclic quotient singularities in
general will therefore have immediate applications to modular curves.

2.4 Jung–Hirzebruch resolution

As we noted in Remark 2.3.7, it is natural to ask whether the numerical data
of n and r ∈ (Z/nZ)× in Definition 2.3.6 are intrinsic to x′ ∈ X ′. We shall see
in the next theorem that this data is intrinsic, as it can be read off from the
minimal regular resolution over x′.

Theorem 2.4.1. Let X ′
/S be a normal curve over a local Dedekind base S

with closed point s. Assume either that S is excellent or that X ′
/S has smooth

generic fiber. Assume X ′ has a tame cyclic quotient singularity at a closed
point x′ ∈ X ′

s with parameters n and r (in the sense of Definition 2.3.6), where
we represent r ∈ (Z/nZ)× by the unique integer r satisfying 1 ≤ r < n and
gcd(r, n) = 1. Finally, assume either that k(s) is separably closed or that

all connected components of the regular compactification X
′
K of the regular

generic-fiber curve X ′
K have positive arithmetic genus.

Consider the Jung–Hirzebruch continued fraction expansion

(2.4.1)
n

r
= b1 −

1

b2 −
1

· · · − 1

bλ

with integers bj ≥ 2 for all j.
The minimal regular resolution of X ′ along x′ has fiber over k(x′)sep whose

underlying reduced scheme looks like the chain of Ej’s as shown in Figure 1,
where:

• all intersections are transverse, with Ej ' P1
k(x′)sep

;

• Ej .Ej = −bj < −1 for all j;

• E1 is transverse to the strict transform X̃ ′
1 of the global algebraic irre-

ducible component X ′
1 through x′ with multiplicity m′

2 (along which t′1 is

a cotangent direction), and similarly for Eλ and the component X̃ ′
2 with

multiplicity m′
1 in the case of two analytic branches.

Remark 2.4.2. The case X ′
2 = X ′

1 can happen, and there is no X̃ ′
1 in case of

one analytic branch (i.e., in case m′
2 = 0).
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X̃ ′
1

m′
2

E1

−b1

µ1

E2

−b2

µ2
Eλ

−bλ

µλ

m′
1

X̃ ′
2

Eλ−1

Figure 1: Minimal regular resolution of x′

We will also need to know the multiplicities µj of the components Ej in
Figure 1, but this will be easier to give after we have proved Theorem 2.4.1;
see Corollary 2.4.3.

The labelling of the Ej ’s indicates the order in which they arise in the reso-
lution process, with each “new” Ej linking the preceding ones to the rest of the
closed fiber in the case of one initial analytic branch. Keeping this picture in
mind, we see that it is always the strict transform X̃ ′

2 of the initial component
with formal parameter t′2 that occurs at the end of the chain, and this is the
component whose multiplicity is m′

1.

Proof. We may assume S is local, and if S is not already excellent then (by
hypothesis) X ′

K is smooth and all connected components of its regular com-
pactification have positive arithmetic genus. We claim that this positivity
assumption is preserved by extension of the fraction field K. That is, if C is a
connected regular proper curve over a field k with H1(C,OC) 6= 0 and C is a
dense open in C that is k-smooth, then for any extension k′/k we claim that
all connected components C ′

i of the regular k′-curve C ′ = C/k′ have compact-

ification C
′
i with H1(C

′
i,OC

′
i
) 6= 0. Since the field H0(C,OC) is clearly finite

separable over k, by using Stein factorization for C we may assume C is geo-

metrically connected over k. Thus, C
′
= C/k′ is a connected proper k′-curve

with H1(C
′
,OC

′) 6= 0 and there is a dense open C ′ that is k′-smooth, and

we want to show that the normalization of C
′
red has positive arithmetic genus.

Since C
′
is generically reduced, the map from OC

′ to the normalization sheaf
of OC

′
red

has kernel and cokernel supported in dimension 0, and so the map on

H1’s is an isomorphism. Thus, the normalization of C
′
red indeed has positive

arithmetic genus.
We conclude that Lemma 2.1.1 and the base-change compatibility of Defini-

tion 2.2.3 (via Theorem 2.2.2) permit us to base-change to ÔS,s without losing
any hypotheses. Thus, we may assume S = SpecW with W a complete (hence
excellent) discrete valuation ring. This brings us to the excellent case with all
connected components of the regular compactification of X ′

K having positive
arithmetic genus when the residue field is not separably closed. If in addition
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k(s) is not separably closed, then we claim that base-change to SpecW sh pre-
serves all hypotheses, and so we can always get to the case of a separably closed
residue field (in particular, we get to the case with k(x′) separably closed); see
[24, p. 17] for a proof that strict henselization preserves excellence. We need
to show that base change to W sh commutes with the formation of the minimal
regular resolution. This is a refinement on Theorem 2.2.2 because such base
change is generally not residually trivial.

From the proof of Theorem 2.2.2 in the excellent case, we see that if X ′ ↪→ X
′

is a Nagata compactification then the minimal resolution X → X ′ of X ′ is the

part of the minimal regular resolution of X
′
that lies over X ′. Hence, the base-

change problem for W → W sh is reduced to the proper case. We may assume
that X ′ is connected, so W̃ = H0(X ′,OX′) is a complete discrete valuation

ring finite over W . Hence, W̃ sh ' W̃ ⊗W W sh, so we may reduce to the case
when X ′ → SpecW is its own Stein factorization. In this proper case, the
positivity condition on the arithmetic genus of the generic fiber allows us to
use [41, 9/3.28] (which rests on a dualizing-sheaf criterion for minimality) to
conclude that formation of the minimal regular resolution of X ′ is compatible
with étale localization on W . A standard direct limit argument that chases
the property of having a −1-curve in a fiber over X ′ thereby shows that the
formation of the minimal regular resolution is compatible with ind-étale base
change (such as W → W sh). Thus, we may finally assume that W is excellent
and has a separably closed residue field, and so we no longer need to impose a
positivity condition on arithmetic genera of the connected components of the
generic-fiber regular compactification.

The intrinsic numerical data for the unique minimal resolution (that is, the
self-intersection numbers and multiplicities of components in the exceptional
divisor for this resolution) may be computed in an étale neighborhood of x′,
by Corollary 2.2.4 and Remark 2.2.5, and the Artin approximation theorem is
the ideal tool for finding a convenient étale neighborhood in which to do such a
calculation. We will use the Artin approximation theorem to construct a special
case that admits an étale neighborhood that is also an étale neighborhood of
our given x′, and so it will be enough to carry out the resolution in the special
case. The absence of a good theory of minimal regular resolutions for complete
2-dimensional local noetherian rings prevents us from carrying out a proof
entirely on ÔX′,x′ , and so forces us to use the Artin approximation theorem.
It is perhaps worth noting at the outset that the reason we have to use Artin
approximation is that the resolution process to be used in the special case will
not be intrinsic (we blow up certain codimension-1 subschemes that depend on
coordinates).

Here is the special case that we wish to analyze. Let n > 1 be a positive
integer that is a unit in W , and choose 1 ≤ r < n with gcd(r, n) = 1. Pick inte-
gers m1 ≥ 1 and m2 ≥ 0 satisfying m1 ≡ −rm2 mod n. For technical reasons,
we do not require either of the mj ’s to be units in W . To motivate things, let
us temporarily assume that the residue field k of W contains a full set of nth
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roots of unity. Let µn(k) act on the regular domain A = W [t1, t2]/(tm1
1 tm2

2 −π)
via

(2.4.2) [ζ](t1) = ζt1, [ζ](t2) = ζrt2.

Since the µn(k)-action in (2.4.2) is clearly free away from t1 = t2 = π = 0, the
quotient

Z = (Spec(A))/µn(k) = Spec(B)

(with B = Aµn(k)) is normal and also is regular away from the image point
z ∈ Z of t1 = t2 = π = 0.

To connect up the special situation (Z, z) and the tame cyclic quotient sin-
gularity x′ ∈ X ′

/S , note that Lemma 2.3.4 shows that our situation is formally

isomorphic to the algebraic Z = Spec(B) for a suitable such B and n ∈ W×.
By the Artin approximation theorem, there is a common (residually trivial)
connected étale neighborhood (U, u) of (Z, z) and (X ′, x′). That is, there is
a pointed connected affine W -scheme U = Spec(A) that is a residually-trivial
étale neighborhood of x′ and of z. In particular, U is a connected normal W -
curve. We can assume that u is the only point of U over z, and also the only
point of U over x′. Keep in mind (e.g., if gcd(m1,m2) > 1) that the field K
might not be separably closed in the function fields of U or Z, so the generic
fibers of U and Z = Spec(B) over W might not be geometrically connected
and U is certainly not proper over W in general.

The étale-local nature of the minimal regular resolution, as provided by
Corollary 2.2.4 and Remark 2.2.5, implies that the minimal regular resolutions
of (X ′, x′) and (Z, z) have pullbacks to (U, u) that coincide with the minimal
regular resolution of U along {u}. The fibers over u, x′, z are all the same due
to residual-triviality, so the geometry of the resolution fiber at x′ is the same as
that over z. Hence, we shall compute the minimal regular resolution Z ′ → Z
at z, and will see that the fiber of Z ′ over z is as in Figure 1.

Let us now study (Z, z). Since n is a unit in W , the normal domain
B = Aµn(k) is a quotient of W [t1, t2]

µn(k) via the natural map. Since the
action of µn(k) as in (2.4.2) sends each monomial te1

1 te2
2 to a constant multiple

of itself, the ring of invariants W [t1, t2]
µn(k) is spanned over W by the invariant

monomials. Clearly te1
1 te2

2 is µn(k)-invariant if and only if e1 + re2 = nf for
some integer f (so e2 ≤ (n/r)f), in which case te1

1 te2
2 = ufve2 , where u = tn1

and v = t2/tr1 are µn(k)-invariant elements in the fraction field of W [t1, t2].
Note that even though v does not lie in W [t1, t2], for any pair of integers i, j
satisfying 0 ≤ j ≤ (n/r)i we have uivj ∈ W [t1, t2] and

W [t1, t2]
µn(k) =

⊕

0≤j≤(n/r)i

Wuivj .

We have tm1
1 tm2

2 = uµvm2 with m1 + rm2 = nµ (so m2 ≤ (n/r)µ). Thus,

(2.4.3) B =

⊕
0≤j≤(n/r)i Wuivj

(uµvm2 − π)
.
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Observe that (2.4.3) makes sense as a definition of finite-type W -algebra, with-
out requiring n to be a unit and without requiring that k contain any non-trivial
roots of unity. It is clear that (2.4.3) is W -flat, as it has a W -module basis
given by monomials uivj with 0 ≤ j ≤ (n/r)i and either i < µ or j < m2. It
is less evident if (2.4.3) is normal for any n, but we do not need this fact. We
will inductively compute certain blow-ups on (2.4.3) without restriction on n
or on the residue field, and the process will end at a resolution of singularities
for SpecB.

Before we get to the blowing-up, we shall show that SpecB is a W -curve
and we will infer some properties of its closed fiber. Note that the map
K(u, v) → K(t1, t2) defined by u 7→ tn1 , v 7→ t2/tr1 induces a W -algebra in-
jection

(2.4.4)
⊕

0≤j≤(n/r)i

Wuivj → W [t1, t2]

that is finite because tn1 = u and tn2 = urvn. Thus, the left side of
(2.4.4) is a 3-dimensional noetherian domain and passing to the quotient by
uµvm2 − π = tm1

1 tm2
2 − π yields a finite surjection

(2.4.5) Spec(W [t1, t2]/(tm1
1 tm2

2 − π)) → Spec(B).

Passing to the generic fiber and recalling that B is W -flat, we infer that Spec(B)
is a W -curve with irreducible generic fiber, so Spec(B) is 2-dimensional and
connected. We also have a finite surjection modulo π,

(2.4.6) Spec(k[t1, t2]/(tm1
1 tm2

2 )) → Spec(B/π),

so the closed fiber of Spec(B) consists of at most two irreducible components
(or just one when m2 = 0), to be called the images of the t1-axis and t2-axis
(where we omit mention of the t1-axis when m2 = 0). Since the t2-axis is
the preimage of the zero-scheme of u = tn1 under (2.4.6), we conclude that
when m2 > 0 the closed fiber Spec(B/π) does have two distinct irreducible
components.

Inspired by the case of toric varieties, we will now compute the blow-up Z ′

of the W -flat Z = Spec(B) along the ideal (u, uv). Since

Spec(W [t1, t2]/(tm1
1 tm2

2 − π, tn1 , tn−r
1 t2)) → Spec(B/(u, uv))

is a finite surjection and the source is supported in the t2-axis of the closed fiber
over Spec(W ), it follows that Spec(B/(u, uv)) is supported in the image of the
t2-axis of the closed fiber of Spec(B) over Spec(W ). In particular, blowing up
Z along (u, uv) does not affect the generic fiber of Z over W . Since Z is W -flat,
it follows that the proper blow-up map Z ′ → Z is surjective.

There are two charts covering Z ′, D+(u) and D+(uv), where we adjoin the
ratios uv/u = v and u/uv = 1/v respectively. Thus,

D+(u) = Spec(B[v]) = Spec(W [u, v]/(uµvm2 − π))
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is visibly regular and connected, and D+(uv) = Spec(B[1/v]) with

B[1/v] =

⊕
j≤(n/r)i, 0≤i Wuivj

(uµvm2 − π)
.

We need to rewrite this latter expression in terms of a more useful set of vari-
ables. We begin by writing (as one does when computing the Jung–Hirzebruch
continued fraction for n/r)

n = b1r − r′

with b1 ≥ 2 and either r = 1 with r′ = 0 or else r′ > 0 with gcd(r, r′) = 1 (since
gcd(n, r) = 1). We will first treat the case r′ = 0 (proving that B[1/v] is also
regular) and then we will treat the case r′ > 0. Note that there is no reason to
expect that p cannot divide r or r′, even if p - n, and it is for this reason that
we had to recast the definition of B in a form that avoids the assumption that
n is a unit in W . For similar reasons, we must avoid assuming m1 or m2 is a
unit in W .

Assume r′ = 0, so r = 1, b1 = n, and b1µ − m2 = m1. Let i′ = b1i − j
and j′ = i, so i′ and j′ vary precisely over non-negative integers and
uivj = (1/v)i′(uvb1)j′

. Thus, letting u′ = 1/v and v′ = uvb1 yields

B[1/v] = W [u′, v′]/(u′b1µ−m2v′µ − π) = W [u′, v′]/(u′m1v′µ − π),

which is regular. In the closed fiber of Z ′ = Bl(u,uv)(Z) over Spec(W ), let D1

denote the v′-axis in D+(uv) = Spec B[1/v] and when m2 > 0 let D2 denote
the u-axis in D+(u). The multiplicities of D1 and D2 in Z ′

k are respectively
m1 = b1µ−m2 and m2 (with multiplicity m2 = 0 being a device for recording
that there is no D2). The exceptional divisor E is a projective line over k
(with multiplicity µ and gluing data u′ = 1/v) and hence the uniformizer π has
divisor on Z ′ = Bl(u,uv)(Z) given by

divZ′(π) = (b1µ − m2)D1 + µE + m2D2 = m1D1 + µE + m2D2

(when m2 = 0, the final term really is omitted).
It is readily checked that the Dj ’s each meet E transversally at a single

k-rational point (suppressing D2 when m2 = 0). The intersection product
divZ′(π).E makes sense since E is proper over k, even though Z is not proper
over W , and it must vanish because divZ′(π) is principal, so by additivity of
intersection products in the first variable (restricted to effective Cartier divisors
for a fixed proper second variable such as E) we have

0 = divZ′(π).E = b1µ − m2 + µ(E.E) + m2.

Thus, E.E = −b1.
Now assume r′ > 0. Since n = b1r − r′, the condition 0 ≤ j ≤ (n/r)i can

be rewritten as 0 ≤ i ≤ (r/r′)(b1i − j). Letting j′ = i and i′ = b1i − j,
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we have uivj = u′i′v′j′

with u′ = 1/v and v′ = uvb1 . In particular,

uµvm2 = u′b1µ−m2v′µ. Thus,

(2.4.7) B[1/v] =

⊕
0≤j′≤(r/r′)i′ Wu′i′v′j′

(u′b1µ−m2v′µ − π)
.

Note the similarity between (2.4.3) and (2.4.7) up to modification of parame-
ters: replace (n, r,m1,m2, µ) with (r, r′,m1, µ, b1µ − m2). The blow-up along
(u′, u′v′) therefore has closed fiber over Spec(W ) with the following irreducible
components: the v′-axis D1 in D+(uv) with multiplicity b1µ − m2, the u-axis
D2 in D+(u) with multiplicity m2 (so this only shows up when m2 > 0), and
the exceptional divisor E that is a projective line (via gluing u′ = 1/v) having
multiplicity µ and meeting D1 (as well as D2 when m2 > 0) transversally at
a single k-rational point. We will focus our attention on D+(uv) (as we have
already seen that the other chart D+(u) is regular), and in particular we are
interested in the “origin” in the closed fiber of D+(uv) over Spec(W ) where
the projective line E meets D1; near this origin, D+(uv) is an affine open that
is given by the spectrum of (2.4.7).

If r were also a unit in W then D+(uv) would be the spectrum of the ring
of µr(k)-invariants in W [t′1, t

′
2]/(t′1

m1t′2
µ − π) with the action [ζ](t′1) = ζt′1 and

[ζ](t′1) = ζr′

t′2 (this identification uses the identity m1 + r′µ = r(b1µ − m2)),
and without any restriction on r we at least see that (2.4.7) is an instance of
the general (2.4.3) and that there is a natural finite surjection

Spec(k[t′1, t
′
2]/(t′1

m1t′2
µ
)) → D+(uv)k.

On D+(uv)k, the component E of multiplicity µ is the image of the t′1-axis
and the component D1 with multiplicity m1 is the image of the t′2-axis. As
a motivation for what follows, note also that if r ∈ W× then since r > 1 we
see that the “origin” in D+(uv)k is necessarily a non-regular point in the total
space over Spec(W ) (by Serre’s Theorem 2.3.9).

We conclude (without requiring any of our integer parameters to be units in
W ) that if we make the change of parameters

(2.4.8) (n, r,m1,m2, µ) Ã (r, r′,m1, µ, b1µ − m2)

then D+(uv) is like the original situation (2.4.3) with a revised set of initial
parameters. In particular, n is replaced by the strictly smaller r > 1, so the
process will eventually end. Moreover, since µ > 0 we see that the case m2 = 0
is now “promoted” to the case m2 > 0. When we make the blow-up at the
origin in D+(uv)k, the strict transform E1 of E plays the same role that D2

played above, so E1 is entirely in the regular locus and the new exceptional
divisor E′ has multiplicity b1µ − m2 (this parameter plays the role for the
second blow-up that µ played for the first blow-up, as one sees by inspecting
our change of parameters in (2.4.8)).
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As the process continues, nothing more will change around E1, so inductively
we conclude from the descriptions of the regular charts that the process ends
at a regular connected W -curve with closed-fiber Weil divisor

(2.4.9) · · · + (b1µ − m2)E
′ + µE1 + m2D2 + . . .

(where we have abused notation by writing E′ to denote the strict transform
of E′ in the final resolution, and this strict transform clearly has generic mul-
tiplicity b1µ − m2). The omitted terms in (2.4.9) do not meet E1, so we may
form the intersection against E1 to solve

0 = (b1µ − m2) + µ(E1.E1) + m2

just as in the case r′ = 0 (i.e., r = 1), so E1.E1 = −b1. Since

n

r
= b1 −

1

r/r′
,

by induction on the length of the continued fraction we reach a regular resolu-
tion in the expected manner, with Ej .Ej = −bj for all j and the final resolution
having fiber over z ∈ Z looking exactly like in Figure 1. Note also that each
new blow-up separates all of the previous exceptional lines from the (strict
transform of the initial) component through z with multiplicity m1. Since
−bj ≤ −2 < −1 for all j, we conclude that at no stage of the blow-up pro-
cess before the end did we have a regular scheme (otherwise there would be
a −1-curve in a fiber over the original base Z). Thus, we have computed the
minimal regular resolution at z.

We now compute the multiplicity µj in the closed fiber of X ′reg for each
fibral component Ej over x′ ∈ X ′ in Figure 1. In order to compute the µj ’s, we
introduce some notation. Let n/r > 1 be a reduced-form fraction with positive
integers n and r, so we can write

n/r = [b1, b2, . . . , bλ]JH := b1 −
1

b2 −
1

· · · − 1

bλ

as a Jung–Hirzebruch continued fraction, where bj ≥ 2 for all j. Define
Pj = Pj(b1, . . . , bλ) and Qj = Qj(b1, . . . , bλ) by

P−1 = 0, Q−1 = −1, P0 = 1, Q0 = 0,

Pj = bjPj−1 − Pj−2, Qj = bjQj−1 − Qj−2

for all j ≥ 1. Clearly Pj and Qj are universal polynomials in b1, . . . , bj , and by
induction PjQj−1−QjPj−1 = −1 and Qj > Qj−1 for all j ≥ 0, so in particular
Qj > 0 for all j > 0. Thus,

[b1, . . . , bλ]JH =
Pλ(b1, . . . , bλ)

Qλ(b1, . . . , bλ)
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makes sense and Pλ/Qλ is in reduced form. Thus, Pλ = n and Qλ = r since
the Qj ’s are necessarily positive.

Corollary 2.4.3. With hypotheses and notation as in Theorem 2.4.1, let µj

denote the multiplicity of Ej in the fiber of X ′reg over k(x′)sep. The condition
r = 1 happens if and only if λ = 1, in which case µ1 = (m′

1 + m′
2)/n.

If r > 1 (so λ > 1), then the µj’s are the unique solution to the equation

(2.4.10)




b1 −1 0 0 . . . 0 0 0
−1 b2 −1 0 . . . 0 0 0
0 −1 b3 −1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 bλ−1 −1
0 0 0 0 . . . 0 −1 bλ







µ1

...

...
µλ




=




m′
2

0
...
0

m′
1




.

Keeping the condition r > 1, define P ′
j = Pj(bλ−j+1, . . . , bλ), so P ′

λ = n and
P ′

λ−1 = Qλ(b1, . . . , bλ) = r. If we let m̃2 = P ′
λ−1m

′
2 + m′

1 = rm′
2 + m′

1, then
the µj’s are also the unique solution to

(2.4.11)




P ′
λ 0 0 . . . 0 0 0

−P ′
λ−2 P ′

λ−1 0 . . . 0 0 0
0 −P ′

λ−3 P ′
λ−2 . . . 0 0 0

...
...

...
...

...
...

...
0 0 0 . . . −P ′

1 P ′
2 0

0 0 0 . . . 0 −1 P ′
1







µ1

...

...
µλ




=




m̃2

m′
1

...
m′

1

m′
1




.

In particular, µ1 = (rm′
2 + m′

1)/n.

Note that in the applications with X ′ = X/H as at the beginning of §2.3,
the condition χ′

1 6= χ′
2 (i.e., H ′

x|x′ does not act through scalars) is equivalent
to the condition r > 1 in Corollary 2.4.3.

Proof. The value of µ1 when r = 1 was established in the proof of Theorem
2.4.1, so now assume r > 1. On X ′reg (or rather, its base change to Osh

S,s) we
have

(2.4.12) div(πs) = m′
1X̃

′
2 +

λ∑

j=1

µjEj + m′
2X̃

′
1 + . . .

where

• the X̃ ′
1-term does not appear if there is only one analytic branch through

x′ (recall we also set m′
2 = 0 in this case),

• the X̃ ′
j-terms are a single term when there are two analytic branches

but only one global irreducible (geometric) component (in which case
m′

1 = m′
2),
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• the omitted terms “. . . ” on the right side of (2.4.12) are not in the fiber
over x′ (and in particular do not intersect the Ej ’s).

Thus, the equations Ej .div(πs) = 0 and the intersection calculations in the
proof of Theorem 2.4.1 (as summarized by Figure 1, including transversalities)
immediately yield (2.4.10). By solving this system of equations by working
up from the bottom row, an easy induction argument yields the reformulation
(2.4.11).

To prove Theorems 1.1.2 and 1.1.6, the preceding general considerations will
provide the necessary intersection-theoretic information on a minimal resolu-
tion. To apply Theorem 2.4.1 and Corollary 2.4.3 to the study of singularities
at points x′ on modular curves, we need to find the value of the parameter rx′

in each case. This will be determined by studying universal deformation rings
for moduli problems of elliptic curves.

3 The Coarse moduli scheme X1(p)

Let p be a prime number. In this section we review the construction of the
coarse moduli scheme X1(p) attached to Γ1(p) in terms of an auxiliary finite
étale level structure which exhibits X1(p) as the compactification of a quotient
of a fine moduli scheme. It is the fine moduli schemes whose completed local
rings are well understood through deformation theory (as in [34]), and this will
provide the starting point for our subsequent calculations of regular models
and component groups.

3.1 Some general nonsense

As in [34, Ch. 4], for a scheme T we let (Ell/T ) be the category whose objects
are elliptic curves over T -schemes and whose morphisms are cartesian diagrams.
The moduli problem [Γ1(p)] is the contravariant functor (Ell) → (Sets) that
to an elliptic curve E/S attaches the set of P ∈ E(S) such that the relative
effective Cartier divisor

[0] + [P ] + [2P ] + · · · + [(p − 1)P ],

viewed as a closed subscheme of E, is a closed subgroup scheme. For any
moduli problem P on (Ell/T ) and any object E/S over a T -scheme, we define
the functor PE/S(S′) = P(E/S′) to classify “P-structures” on base changes of
E/S . If PE/S is representable (with some property P relative to S) for every
E/S , we say that P is relatively representable (with property P). For example,
[Γ1(p)] is relatively representable and finite locally free of degree p2−1 on (Ell)
for every prime p.

For p ≥ 5, the moduli problem [Γ1(p)]/Z[1/p] is representable by a smooth
affine curve over Z[1/p] [34, Cor. 2.7.3, Thm. 3.7.1, and Cor. 4.7.1]. For any
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elliptic curve E/S over an Fp-scheme S, the point P = 0 is fixed by the auto-
morphism −1 of E/S , and is in [Γ1(p)](E/S) because [0]+[P ]+· · ·+[(p−1)P ] is

the kernel of the relative Frobenius morphism F : E → E(p). Thus, [Γ1(p)]/Z(p)

is not rigid, so it is not representable.

As there is no fine moduli scheme associated to [Γ1(p)]/Z(p)
for any prime

p, we let X1(p) be the compactified coarse moduli scheme M([Γ1(p)]/Z(p)
), as

constructed in [34, Ch. 8]. This is a proper normal Z(p)-model of a smooth
and geometrically connected curve X1(p)/Q, but X1(p) is usually not regular.
Nevertheless, the complete local rings on X1(p) are computable in terms of
abstract deformation theory. Since (Z/pZ)×/{±1} acts on isomorphism classes
of Γ1(p)-structures via

(E,P ) 7→ (E, a · P ) ' (E,−a · P ),

we get a natural action of this group on X1(p) which is readily checked to be a
faithful action (i.e., non-identity elements act non-trivially). Thus, for any sub-
group H ⊆ (Z/pZ)×/{±1} we get the modular curve XH(p) = X1(p)/H which
is a normal proper connected Z(p)-curve with smooth generic fiber XH(p)/Q.
When p > 3, the curve XH(p) has tame cyclic quotient singularities at its
non-regular points.

In order to compute a minimal regular model for these normal curves, we
need more information than is provided by abstract deformation theory: we
need to keep track of global irreducible components on the geometric fiber mod
p, whereas deformation theory will only tell us about the analytic branches
through a point. Fortunately, in the case of modular curves XH(p), distinct
analytic branches through a closed-fiber geometric point always arise from dis-
tinct global (geometric) irreducible components through the point. In order to
review this fact, as well as to explain the connection between complete local
rings on XH(p) and rings of invariants in universal deformation rings, we need
to recall how X1(p) can be constructed from fine moduli schemes. Let us briefly
review the construction process.

Pick a representable moduli problem P that is finite, étale, and Galois over
(Ell/Z(p)) with Galois group GP , and for which M(P) is affine. For example
(cf. [34, §4.5–4.6]) if ` 6= p is a prime with ` ≥ 3, we can take P to be the
moduli problem [Γ(`)]/Z(p)

that attaches to E/S the set of isomorphisms of
S-group schemes

φ : (Z/`Z)2S ' E[`];

the Galois group GP is GL2(F`). Let Y1(p;P) be the fine moduli scheme
M([Γ1(p)]/Z(p)

,P) that classifies pairs consisting of a Γ1(p)-structure and a P-
structure on elliptic curves over variable Z(p)-schemes. The scheme Y1(p;P) is
a flat affine Z(p)-curve. Let Y1(p) be the quotient of Y1(p;P) by the GP -action.

We introduce the global P rather than just use formal deformation theory
throughout because on characteristic-p fibers we need to retain a connection be-
tween closed fiber irreducible components of global modular curves and closed
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fiber “analytic” irreducible components of formal deformation rings. The pre-
cise connection between global P’s and infinitesimal deformation theory is given
by the well-known:

Theorem 3.1.1. Let k be an algebraically closed field of characteristic p and
let W = W (k) be its ring of Witt vectors. Let z ∈ Y1(p)/k be a rational point.
Let Aut(z) denote the finite group of automorphisms of the (non-canonically
unique) Γ1(p)-structure over k underlying z. Choose a P-structure on the el-
liptic curve underlying z, with P as above, and let z′ ∈ Y1(p;P)(k) be the
corresponding point over z.

The ring ÔY1(p;P)W ,z′ is naturally identified with the formal deformation ring

of z. Under the resulting natural action of Aut(z) on ÔY1(p;P)W ,z′ , the subring

of Aut(z)-invariants is ÔY1(p)W ,z.

For any subgroup H ⊆ (Z/pZ)×/{±1} equipped with its natural action on
Y1(p), the stabilizer Hz′|z of z′ in H acts faithfully on the universal deformation

ring ÔY1(p;P)W ,z′ of z in the natural way, with subring of invariants ÔYH(p)W ,z.

Proof. Since P is étale and Y1(p;P)W is a fine moduli scheme, the interpreta-

tion of ÔY1(p;P)W ,z′ as a universal deformation ring is immediate. Since Y1(p)W

is the quotient of Y1(p;P)W by the action of GP , it follows that ÔY1(p)W ,z is

identified with the subring of invariants in ÔY1(p;P)W ,z′ for the action of the
stabilizer of z′ for the GP -action on Y1(p;P)W . We need to compute this
stabilizer subgroup.

If z′ = (Ez, Pz, ι) with supplementary P-structure ι, then g ∈ GP fixes z′

if and only if (Ez, Pz, ι) is isomorphic to (Ez, Pz, g(ι)). This says exactly that
there exists an automorphism αg of (Ez, Pz) carrying ι to g(ι), and such αg is
clearly unique if it exists. Moreover, any two P-structures on Ez are related
by the action of a unique g ∈ GP because of the definition of GP as the Galois
group of P (and the fact that z is a geometric point). Thus, the stabilizer of
z in GP is naturally identified with Aut(Ez, Pz) = Aut(z) (compatibly with
actions on the universal deformation ring of z). The assertion concerning the
H-action is clear.

Since Y1(p;P) is a regular Z(p)-curve [34, Thm. 5.5.1], it follows that its
quotient Y1(p) is a normal Z(p)-curve. Moreover, by [34, Prop. 8.2.2] the natural
map j : Y1(p) → A1

Z(p)
is finite, and hence it is also flat [44, 23.1]. In [34],

X1(p) is defined to be the normalization of Y1(p) over the compactified j-line
P1

Z(p)
. Both X1(p) and Y1(p) are independent of the auxiliary choice of P. The

complex analytic theory shows that X1(p) has geometrically connected fibers
over Z(p), so the same is true for Y1(p) since the complete local rings at the
cusps are analytically irreducible mod p (by the discussion in §4.2, especially
the self-contained Lemma 4.2.4 and Lemma 4.2.5).
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3.2 Formal parameters

To do deformation theory computations, we need to recall some canonical
formal parameters in deformation rings. Fix an algebraically closed field k
of characteristic p and let W = W (k) denote its ring of Witt vectors. Let
z ∈ Y1(p)/k be a k-rational point corresponding to an elliptic curve Ez/k with
Γ1(p)-structure Pz.

For later purposes, it is useful to give a conceptual description of the 1-
dimensional “reduced” cotangent space m/(p,m2) of R0

z, or equivalently the
cotangent space to the equicharacteristic formal deformation functor of Ez:

Theorem 3.2.1. The cotangent space to the equicharacteristic formal defor-
mation functor of an elliptic curve E over a field k is canonically isomorphic
to Cot0(E)⊗2.

Proof. This is just the dual of the Kodaira-Spencer isomorphism. More specif-
ically, the cotangent space is isomorphic to H1(E, (Ω1

E/k)∨)∨, and Serre duality
identifies this latter space with

H0(E, (Ω1
E/k)⊗2) H0(E,Ω1

E/k)⊗2'oo Cot0(E)⊗2,

the first map being an isomorphism since Ω1
E/k is (non-canonically) trivial.

Let
Ez → Spec(R0

z)

denote an algebraization of the universal deformation of Ez, so non-canonically
R0

z ' W [[t]] and (by Theorem 3.1.1) there is a unique local W -algebra map
R0

z → Rz to the universal deformation ring Rz of (Ez, Pz) such that there is a
(necessarily unique) isomorphism of deformations between the base change of
Ez over Rz and the universal elliptic curve underlying the algebraized universal
Γ1(p)-structure deformation at z.

Now make the additional hypothesis Pz = 0, so upon choosing a formal co-
ordinate x for the formal group of Ez it makes sense to consider the coordinate

x = x(Pz) ∈ Rz

of the “point” Pz in the universal Γ1(p)-structure over Rz. We thereby get a
natural local W -algebra map

(3.2.1) W [[x, t]] → Rz.

Theorem 3.2.2. The natural map (3.2.1) is a surjection with kernel generated
by an element fz that is part of a regular system of parameters of the regular
local ring W [[x, t]]. Moreover, x and t span the 2-dimensional cotangent space
of the target ring.
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Proof. The surjectivity and cotangent-space claims amount to the assertion
that an artinian deformation whose Γ1(p)-structure vanishes and whose t-
parameter vanishes necessarily has p = 0 in the base ring (so we then have
a constant deformation). The vanishing of p in the base ring is [34, 5.3.2.2].
Since the deformation ring Rz is a 2-dimensional regular local ring, the kernel
of the surjection (3.2.1) is a height-1 prime that must therefore be principal
with a generator that is part of a regular system of parameters.

3.3 Closed-fiber description

For considerations in Section 5, we will need some more refined information,
particularly a description of fz mod p in Theorem 3.2.2. To this end, we first
need to recall some specialized moduli problems in characteristic p.

Definition 3.3.1. If E/S is an elliptic curve over an Fp-scheme S, and G ↪→ E
is a finite locally free closed subgroup scheme of order p, we shall say that G is a
(1, 0)-subgroup if G is the kernel of the relative Frobenius map FE/S : E → E(p)

and G is a (0, 1)-subgroup if the order p group scheme E[p]/G ↪→ E/G is the
kernel of the relative Frobenius for the quotient elliptic curve E/G over S.

Remark 3.3.2. This is a special case of the more general concept of (a, b)-cyclic
subgroup which is developed in [34, §13.4] for describing the mod p fibers of
modular curves. On an ordinary elliptic curve over a field of characteristic p,
an (a, b)-cyclic subgroup has connected-étale sequence with connected part of
order pa and étale part of order pb.

Let P be a representable moduli problem over (Ell/Z(p)) that is finite, étale,
and Galois with M(P) affine (as in §3.1). For (a, b) = (1, 0), (0, 1), it makes
sense to consider the subfunctor

(3.3.1) [[Γ1(p)]-(a, b)-cyclic,P]

of points of [Γ1(p)/Fp
,P] whose Γ1(p)-structure generates an (a, b)-cyclic sub-

group. By [34, 13.5.3, 13.5.4], these subfunctors (3.3.1) are represented by
closed subschemes of Y1(p;P)/Fp

that intersect at exactly the supersingular

points and have ordinary loci that give a covering of Y1(p;P)ord/Fp
by open sub-

schemes. Explicitly, we have an Fp-scheme isomorphism

(3.3.2) M([Γ1(p)]-(0, 1)-cyclic,P) ' M([Ig(p)],P)

with a smooth (possibly disconnected) Igusa curve, where [Ig(p)] is the mod-
uli problem that classifies Z/pZ-generators of the kernel of the relative Ver-
schiebung VE/S : E(p) → E, and the line bundle ω of relative 1-forms on the
universal elliptic curve over M(P)/Fp

provides the description

(3.3.3) M([Γ1(p)]-(1, 0)-cyclic,P) ' Spec((SymM(P)/Fp
ω)/ω⊗(p−1))
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as the cover obtained by locally requiring a formal coordinate of the level-p
structure to have (p−1)th power equal to zero. The scheme (3.3.3) has generic
multiplicity p − 1 and has smooth underlying reduced curve M(P)/Fp

.
We conclude that Y1(p;P) is Z(p)-smooth at points in

M([Γ1(p)]-(0, 1)-cyclic,P)ord,

and near points in M([Γ1(p)]-(1, 0)-cyclic,P) we can use a local trivialization
of ω to find a nilpotent function X with a moduli-theoretic interpretation as
the formal coordinate of the point in the Γ1(p)-structure (with Xp−1 arising as
Φp(X + 1) mod p along the ordinary locus). Thus, we get the “ordinary” part
of:

Theorem 3.3.3. Let k be an algebraically closed field of characteristic p, and
z ∈ Y1(p)/k a rational point corresponding to a (1, 0)-subgroup of an elliptic
curve E over k. Choose z′ ∈ Y1(p;P)/k over z. Let fz be a generator of the

kernel of the surjection W [[x, t]] ³ ÔY1(p;P),z′ in (3.2.1).
We can choose fz so that

fz mod p =

{
xp−1 if E is ordinary,
xp−1t′ if E is supersingular,

with p, x, t′ a regular system of parameters in the supersingular case. In par-
ticular, Y1(p;P)red/k has smooth irreducible components, ordinary double point
singularities at supersingular points, and no other non-smooth points.

The significance of Theorem 3.3.3 for our purposes is that it ensures the
regular Z(p)-curve Y1(p;P)Z(p)

is nil-semistable in the sense of Definition 2.3.1.

In particular, for p > 3 and any subgroup H ⊆ (Z/pZ)×/{±1}, the modular
curve XH(p) has tame cyclic quotient singularities away from the cusps.

Proof. The geometric irreducible components of Y1(p,P)red/k are smooth curves

(3.3.2) and (3.3.3) that intersect at exactly the supersingular points, and (3.3.3)
settles the description of fz mod p in the ordinary case. It remains to verify
the description of fz mod p at supersingular points z, for once this is checked
then the two minimal primes (x) and (t′) in the deformation ring at z must
correspond to the k-fiber irreducible components of the smooth curves (3.3.2)
and (3.3.3)red through z′, and these two primes visibly generate the maximal
ideal at z′ in the k-fiber so (3.3.2) and (3.3.3)red intersect transversally at z′ as
desired.

Consider the supersingular case. The proof of [34, 13.5.4] ensures that we
can choose fz so that

(3.3.4) fz mod p = g(1,0)g(0,1),

with k[[x, t]]/g(0,1) the complete local ring at z′ on the closed subscheme (3.3.2)
and likewise for k[[x, t]]/g(1,0) and (3.3.3). By (3.3.3), we can take g(1,0) = xp−1,
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so by (3.3.4) it suffices to check that the formally smooth ring k[[x, t]]/g(0,1) does
not have t as a formal parameter. In the proof of [34, 12.8.2], it is shown that
there is a natural isomorphism between the moduli stack of Igusa structures
and the moduli stack of (p− 1)th roots of the Hasse invariant of elliptic curves
over Fp-schemes. Since the Hasse invariant commutes with base change and
the Hasse invariant on the the universal deformation of a supersingular elliptic
curve over k[[t]] has a simple zero [34, 12.4.4], by extracting a (p − 1)th root
we lose the property of t being a formal parameter if p > 2. We do not need
the theorem for the supersingular case when p = 2, so we leave this case as an
exercise for the interested reader.

4 Determination of non-regular points

Since the quotient XH(p) of the normal proper Z(p)-curve X1(p;P) is normal,
there is a finite set of non-regular points in codimension-2 on XH(p) that we
have to resolve to get a regular model. We will prove that the non-regular points
on the nil-semistable XH(p) are certain non-cuspidal Fp-rational points with
j-invariants 0 and 1728, and that these singularities are tame cyclic quotient
singularities when p > 3, so Jung–Hirzebruch resolution in Theorem 2.4.1 will
tell us everything we need to know about the minimal regular resolution of
XH(p).

4.1 Analysis away from cusps

The only possible non-regular points on XH(p) are closed points in the closed
fiber. We will first consider those points that lie in YH(p), and then we will
study the situation at the cusps. The reason for treating these cases separately
is that the deformation theory of generalized elliptic curves is a little more
subtle than that of elliptic curves. One can also treat the situation at the
cusps by using Tate curves instead of formal deformation theory; this is the
approach used in [34].

In order to determine the non-regular points on YH(p), by Lemma 2.1.1 we
only need to consider geometric points. By Theorem 3.1.1, we need a criterion
for detecting when a finite group acting on a regular local ring has regular
subring of invariants. The criterion is provided by Serre’s Theorem 2.3.9 and
leads to:

Theorem 4.1.1. A geometric point z = (Ez, Pz) ∈ Y1(p) has non-regular image
in YH(p) if and only if it is a point in the closed fiber such that |Aut(Ez)| > 2,
Pz = 0, and 2|H| - |Aut(Ez)|.

In particular, when p > 3 there are at most two non-regular points on YH(p)
and such points are Fp-rational, while for p ≤ 3 (so H is trivial) the unique
(Fp-rational) supersingular point is the unique non-regular point.
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Proof. Let k be an algebraically closed field of characteristic p and define
W = W (k); we may assume that z is a k-rational point. By Lemma 2.1.1,
we may consider the situation after base change by Z(p) → W . A non-regular
point z must be a closed point on the closed fiber. Let z′ be a point over z in
Y1(p;P)(k). Let (Ez, Pz) be the structure arising from z.

First suppose p > 3 and H is trivial. The group Autk(Ez) is cyclic of
order prime to p, so the automorphism group Aut(z) of the Γ1(p)-structure
underlying z is also cyclic of order prime to p. By Theorems 3.1.1 and 2.3.9,
the regularity of ÔY1(p)W ,z is therefore equivalent to the existence of a stable
line under the action of Aut(z) on the 2-dimensional cotangent space to the

regular universal deformation ring Rz = ÔY1(p;P)W ,z′ of the Γ1(p)-structure z.

When the Γ1(p)-structure z is étale (i.e., Pz 6= 0), then the formal defor-
mation theory for z is the same as for the underlying elliptic curve Ez/〈Pz〉,
whence the universal deformation ring is isomorphic to W [[t]]. In such cases, p
spans an Aut(z)-invariant line in the cotangent space of the deformation ring.
Even when H is not assumed to be trivial, this line is stable under the action
of the stabilizer of z′ the preimage of H in (Z/pZ)×). Hence, we get regularity
at z for any H when p > 3 and Pz 6= 0.

Still assuming p > 3, now drop the assumption of triviality on H but suppose
that the Γ1(p)-structure is not étale, so z = (Ez, 0) and Aut(z) = Autk(Ez).
The preimage H ′ ⊆ (Z/pZ)× of H acts on the deformation ring Rz since
Pz = 0. By Theorem 3.1.1 and Theorem 3.2.2, the cotangent space to Rz is
canonically isomorphic to

(4.1.1) Cot0(Ez) ⊕ Cot0(Ez)
⊗2,

where this decomposition corresponds to the lines spanned by the images of x
and t respectively. Conceptually, the first line in (4.1.1) arises from equichar-
acterisitc deformations of the point of order p on constant deformations of the
elliptic curve Ez, and the second line arises from deformations of the elliptic
curve without deforming the vanishing level structure Pz. These identifications
are compatible with the natural actions of Aut(z) = Aut(Ez).

Since p > 3, the action of Aut(Ez) = Aut(z) on the line Cot0(Ez) is given
by a faithful (non-trivial) character χid, and the other line in (4.1.1) is acted
upon by Aut(Ez) via the character χ2

id. The resulting representation of Aut(z)
on Cot0(Ez)

⊗2 is trivial if and only if χ2
id = 1, which is to say (by faithfulness)

that Aut(Ez) has order 2 (i.e., j(Ez) 6= 0, 1728). Since the H ′-action is trivial
on the line Cot0(Ez)

⊗2 (due to H ′ only acting on the level structure) and we
are passing to invariants by the action of the group H ′×Aut(Ez/k), by Serre’s
theorem we get regularity without restriction on H when j(Ez) 6= 0, 1728.

If j(Ez) ∈ {0, 1728} then |Aut(Ez)| > 2 and the cyclic H ′ acts on (4.1.1)
through a representation ψ ⊕ 1 with ψ a faithful character. The cyclic Aut(z)
acts through a representation χ ⊕ χ2 with χ a faithful character, so χ2 6= 1.
The commutative group of actions on (4.1.1) generated by H ′ and Aut(z) is
generated by pseudo-reflections if and only if the action of the cyclic Aut(z) on
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the first line is induced by the action of a subgroup of H ′. That is, the order of
χ must divide the order of ψ, or equivalently |Aut(z)| must divide |H ′| = 2|H|.
This yields exactly the desired conditions for non-regularity when p > 3.

Now suppose p ≤ 3, so H is trivial. If Aut(Ez/k) = {±1}, so z is an ordinary
point, then for p = 3 we can use the preceding argument to deduce regularity
at z. Meanwhile, for p = 2 we see that Rz is formally smooth by Theorem
3.3.3, so the subring of invariants at z is formally smooth (by [34, p. 508]). It
remains to check non-regularity at the unique (supersingular) point z ∈ Y1(p)/k

with j = 0 = 1728 in k.
By Serre’s theorem, it suffices to check that the action of Aut(z) = Aut(Ez)

on (4.1.1) is not generated by pseudo-reflections, where Ez is the unique super-
singular elliptic curve over k (up to isomorphism). The action of Aut(Ez) is
through 1-dimensional characters, so the p-Sylow subgroup must act trivially.
In both cases (p = 2 or 3) the group Aut(Ez) has order divisible by only two
primes p and p′, with the p′-Sylow of order > 2. This p′-Sylow must act through
a faithful character on Cot0(Ez) (use [20, Lemma 3.3] or [68, Lemma 2.16]),
and hence this group also acts non-trivially on Cot0(Ez)

⊗2. It follows that this
action is not generated by pseudo-reflections.

4.2 Regularity along the cusps

Now we check that XH(p) is regular along the cusps, so we can focus our
attention on YH(p) when computing the minimal regular resolution of XH(p).
We will again use deformation theory, but now in the case of generalized elliptic
curves. Throughout this section, p is an arbitrary prime.

Recall that a generalized elliptic curve over a scheme S is a proper flat map
π : E → S of finite presentation equipped with a section e : S → Esm into the
relative smooth locus and a map

+ : Esm ×S E → E

such that

• the geometric fibers of π are smooth genus 1 curves or Néron polygons;

• + restricts to a commutative group scheme structure on Esm with identity
section e;

• + is an action of Esm on E such that on singular geometric fibers with
at least two “sides”, the translation action by each rational point in the
smooth locus induces a rotation on the graph of irreducible components.

Since the much of the basic theory of Drinfeld structures was developed in [34,
Ch. 1] for arbitrary smooth separated commutative group schemes of relative
dimension 1, it can be applied (with minor changes in proofs) to the smooth
locus of a generalized elliptic curve. In this way, one can merge the “affine”
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moduli-theoretic Z-theory in [34] with the “proper” moduli-theoretic Z[1/N ]-
theory in [15]. We refer the reader to [21] for further details on this synthesis.

The main deformation-theoretic fact we need is an analogue of Theorem
3.2.1:

Theorem 4.2.1. An irreducible generalized elliptic curve C1 over a perfect
field k of characteristic p > 0 admits a universal deformation ring that is
abstractly isomorphic to W [[t]], and the equicharacteristic cotangent space of
this deformation ring is canonically isomorphic to Cot0(C

sm
1 )⊗2.

Proof. The existence and abstract structure of the deformation ring are special
cases of [15, III, 1.2]. To describe the cotangent space intrinsically, we wish to
put ourselves in the context of deformation theory of proper flat curves. In-
finitesimal deformations of C1 admit a unique generalized elliptic curve struc-
ture once we fix the identity section [15, II, 2.7], and any two choices of iden-
tity section are uniquely related by a translation action. Thus, the deformation
theory for C1 as a generalized elliptic (i.e., marked) curve coincides with its de-
formation theory as a flat (unmarked) curve. In particular, the tangent space
to this deformation functor is canonically identified with Ext1C1

(Ω1
C1/k,OC1

)

[56, §4.1.1].
Since the natural map Ω1

C1/k → ωC1/k to the invertible relative dualizing

sheaf is injective with finite-length cokernel (supported at the singularity),

Ext1C1
(ωC1/k,OC1

) ' Ext1C1
(ω⊗2

C1/k, ωC1/k) ' H0(C1, ω
⊗2
C1/k)∨,

with the final isomorphism provided by Grothendieck duality. Thus, the cotan-
gent space to the deformation functor is identified with H0(C1, ω

⊗2
C1/k). Since

ωC1/k is (non-canonically) trivial, just as for elliptic curves, we get a canonical
isomorphism

H0(C1, ω
⊗2
C1/k) ' H0(C1, ωC1/k)⊗2 ' Cot0(C

sm
1 )⊗2

(the final isomorphism defined via pullback along the identity section).

Definition 4.2.2. A Γ1(N)-structure on a generalized elliptic curve E → S is
an “S-ample” Drinfeld Z/NZ-structure on Esm; i.e., a section P ∈ Esm[N ](S)
such that the relative effective Cartier divisor

D =
∑

j∈Z/NZ

[jP ]

in Esm is a subgroup scheme which meets all irreducible components of all
geometric fibers.

If E/S admits a Γ1(N)-structure, then the non-smooth geometric fibers must
be d-gons for various d|N . In case N = p is prime, this leaves p-gons and 1-
gons as the only options. The importance of Definition 4.2.2 is the following
analogue of Theorem 3.1.1:
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Theorem 4.2.3. Let k be an algebraically closed field of characteristic p > 0,
and W = W (k). The points of X1(p)/k − Y1(p)/k correspond to isomorphism
classes of Γ1(p)-structures on degenerate generalized elliptic curves over k with
1 or p sides.

For z ∈ X1(p)/k − Y1(p)/k, there exists a universal deformation ring Sz for

the Γ1(p)-structure z, and ÔX1(p)W ,z is the subring of Aut(z)-invariants in Sz.

Proof. In general, Γ1(p)-structures on generalized elliptic curves form a proper
flat Deligne-Mumford stack MΓ1(p) over Z(p) of relative dimension 1, and this
stack is smooth over Q and is normal (as one checks via abstract deformation
theory). For our purposes, the important point is that if we choose an odd
prime ` 6= p then we can define an evident [Γ1(p),Γ(`)]-variant on Definition
4.2.2 (imposing an ampleness condition on the combined level structure), and
the open locus of points with trivial geometric automorphism group is a scheme
(as it is an algebraic space quasi-finite over the j-line). This locus fills up the
entire stack M [Γ1(p),Γ(`)] over Z(p), so this stack is a scheme.

The resulting normal Z(p)-flat proper scheme M [Γ1(p),Γ(`)] is finite over the
j-line, whence it must coincide with the scheme X1(p; [Γ(`)]) as constructed
in [34] by the ad hoc method of normalization of the fine moduli scheme
Y1(p; [Γ(`)]) over the j-line. We therefore get a map

M [Γ1(p),Γ(`)] = X1(p; [Γ(`)]) → X1(p)

that must be the quotient by the natural GL2(F`)-action on the source. Since
complete local rings at geometric points on a Deligne-Mumford stack coincide
with universal formal deformation rings, we may conclude as in the proof of
Theorem 3.1.1.

We are now in position to argue just as in the elliptic curve case: we shall
work out the deformation rings in the various possible cases and for p 6= 2 we
will use Serre’s pseudo-reflection theorem to deduce regularity of X1(p) along
the cusps on the closed fiber. A variant on the argument will also take care of
p = 2.

As in the elliptic curve case, it will suffice to consider geometric points. Thus,
there will be two types of Γ1(p)-structures (E,P ) to deform: E is either a p-gon
or a 1-gon.

Lemma 4.2.4. Let E0 be a p-gon over an algebraically closed field k of char-
acteristic p, and P0 ∈ Esm

0 (k) a Γ1(p)-structure. The deformation theory of
(E0, P0) coincides with the deformation theory of the 1-gon generalized elliptic
curve E0/〈P0〉.

Note that in the p-gon case, the point P0 ∈ Esm
0 (k) generates the order-p

constant component group of Esm
0 , so the group scheme 〈P0〉 generated by P0

is visibly étale and the quotient E0/〈P0〉 makes sense (as a generalized elliptic
curve) and is a 1-gon.
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Proof. For any infinitesimal deformation (E,P ) of (E0, P0), the subgroup
scheme H generated by P is finite étale, and it makes sense to form the quo-
tient E/H as a generalized elliptic curve deformation of the 1-gon E0/H0 (with
H0 = 〈P0〉). Since any finite étale cover of a generalized elliptic curve admits a
unique compatible generalized elliptic curve structure once we fix a lift of the
identity section and demand geometric connectedness of fibers over the base
[15, II, 1.17], we see that the deformation theory of (E0,H0) (ignoring P ) is
equivalent to the deformation theory of the 1-gon E0/H0. The deformation
theory of a 1-gon is formally smooth of relative dimension 1 [15, III, 1.2], and
upon specifying (E,H) deforming (E0,H0) the étaleness of H ensures the exis-
tence and uniqueness of the choice of Γ1(p)-structure P generating H such that
P lifts P0 on E0. That is, the universal deformation ring for (E0, P0) coincides
with that of E0/H0.

In the 1-gon case, there is only one (geometric) possibility up to isomorphism:
the pair (C1, 0) where C1 is the standard 1-gon (over an algebraically closed
field k of characteristic p). For this, we have an analogue of (4.1.1):

Lemma 4.2.5. The universal deformation ring of the Γ1(p)-structure (C1, 0) is
isomorphic to the regular local ring W [[t]][[X]]/Φp(X + 1), with cotangent space
canonically isomorphic to

Cot0(C
sm
1 ) ⊕ Cot0(C

sm
1 )⊗2.

Proof. Since the p-torsion on Csm
1 is isomorphic to µp, upon fixing an isomor-

phism Csm
1 [p] ' µp there is a unique compatible isomorphism Csm[p] ' µp for

any infinitesimal deformation C of C1. Thus, the deformation problem is that
of endowing a Z/pZ-generator to the µp inside of deformations of C1 (as a
generalized elliptic curve). By Theorem 4.2.3, this is the scheme of generators
of µp over the universal deformation ring W [[t]] of C1.

The scheme of generators of µp over Z is Z[Y ]/Φp(Y ), so we obtain
W [[t]][Y ]/Φp(Y ) as the desired (regular) deformation ring. Now just set
X = Y − 1. The description of the cotangent space follows from Theorem
4.2.1.

Since C1 has automorphism group (as a generalized elliptic curve) generated
by the unique extension [−1] of inversion from Csm

1 to all of C1, we conclude
that Aut(C1, 0) is generated by [−1]. This puts us in position to carry over our
earlier elliptic-curve arguments to prove:

Theorem 4.2.6. The scheme XH(p) is regular along its cusps.

Proof. As usual, we may work after making a base change by W = W (k) for
an algebraically closed field k of characteristic p > 0. Let z ∈ X1(p)/k be a
cusp whose image zH in XH(p)/k we wish to study. Let H ′ be the preimage
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of H in (Z/pZ)×, and let H ′
z be the maximal subgroup of H ′ that acts on the

deformation space for z (e.g., H ′
z = H ′ if the level structure Pz vanishes). By

Theorem 4.2.3, the ring ÔXH(p),zH
is the subring of invariants under the action

of Aut(z) × H ′
z on the formal deformation ring for z. By Theorem 4.2.1 and

Lemma 4.2.4 (as well as [34, p. 508]), this deformation ring is regular (even
formally smooth) in the p-gon case. In the 1-gon case, Lemma 4.2.5 ensures
that the deformation ring is regular (and even formally smooth when p = 2).
Thus, for p 6= 2 we may use Theorem 2.3.9 to reduce the problem for p 6= 2 to
checking that the action of Aut(z)×H ′

z on the 2-dimensional cotangent space
to the deformation functor has an invariant line.

In the p-gon case, the deformation ring is W [[t]] and the cotangent line
spanned by p is invariant. In the 1-gon case, Lemma 4.2.5 provides a func-
torial description of the cotangent space to the deformation functor and from
this it is clear that the involution [−1] acts with an invariant line Cot0(z)⊗2

when p 6= 2 and that H ′
z also acts trivially on this line.

To take care of p = 2 (for which H is trivial), we just have to check that any
non-trivial W -algebra involution ι of W [[T ]] has regular subring of invariants.
In fact, for T ′ = Tι(T ) the subring of invariants is W [[T ′]] by [34, p. 508].

5 The Minimal resolution

We now are ready to compute the minimal regular resolution XH(p)reg of
XH(p). Since XH(p)/Q is a projective line when p ≤ 3, both Theorem 1.1.2 and
Theorem 1.1.6 are trivial for p ≤ 3. Thus, from now on we assume p > 3. We
have found all of the non-regular points (Theorem 4.1.1): the Fp-rational points
of (1, 0)-type such that j ∈ {0, 1728}, provided that |H| is not divisible by 3
(resp. 2) when j = 0 (resp. j = 1728). Theorem 3.3.3 provides the necessary lo-
cal description to carry out Jung–Hirzebruch resolution at these points. These
are tame cyclic quotient singularities (since p > 3). Moreover, the closed fiber
of XH(p) is a nil-semistable curve that consists of two irreducible components
that are geometrically irreducible, as one sees by considering the (1,0)-cyclic
and (0,1)-cyclic components.

5.1 General considerations

There are four cases, depending on p ≡ ±1,±5 mod 12 as this determines the
behavior of the j-invariants 0 and 1728 in characteristic p (i.e., supersingular
or ordinary). This dichotomy between ordinary and supersingular cases corre-
sponds to Jung–Hirzebruch resolution with either one or two analytic branches.

Pick a point z = (E, 0) ∈ X1(p)(Fp) with j = 0 or 1728 corresponding
an elliptic curve E over Fp with automorphism group of order > 2. Let
zH ∈ XH(p)(Fp) be the image of z. By Theorem 4.1.1, we know that zH

is non-regular if and only if |H| is odd for j(E) = 1728, and if and only if |H|
is not divisible by 3 for j(E) = 0.
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There is a single irreducible component through zH in the ordinary case
(arising from either (3.3.2) or (3.3.3)), while there are two such (transverse)
components in the supersingular case, and to compute the generic multiplicities
of these components in XH(p)/Fp

we may work with completions because the

irreducible components through zH are analytically irreducible (even smooth)
at zH .

Let C ′ and C denote the irreducible components of XH(p)/Fp
, with C ′ cor-

responding to étale level p-structures. Since the preimage of H in (Z/pZ)×

(of order 2|H|) acts generically freely (resp. trivially) on the preimage of C ′

(resp. of C) in a fine moduli scheme over XH(p)/Fp
obtained by adjoining

some prime-to-p level structure, ramification theory considerations and Theo-
rem 3.3.3 show that the components C ′ and C in XH(p)/Fp

have respective

multiplicities of 1 and (p − 1)/2|H| = [(Z/pZ)×/{±1} : H]. Moreover, by
Theorem 3.3.3 we see that zH lies on C when it is an ordinary point.

5.2 The case p ≡ −1 mod 12

We are now ready to resolve the singularities on XH(p)/W with W = W (Fp).
We will first carry out the calculation in the case p ≡ −1 (mod 12), so 0 and
1728 are supersingular j-values. In this case (p − 1)/2 is not divisible by 2 or
3, so |H| is automatically not divisible by 2 or 3 (so we have two non-regular
points).

Write p = 12k−1 with k ≥ 1. By the Deuring Mass Formula [34, Cor. 12.4.6]
the components C and C ′ meet in (p − 11)/12 = k − 1 geometric points away
from the two supersingular points with j = 0, 1728. Consider one of the two
non-regular supersingular points zH . The complete local ring at zH on XH(p)W

is the subring of invariants for the commuting actions of Aut(z) and the preim-
age H ′ ⊆ (Z/pZ)× of H on the universal deformation ring Rz of the Γ1(p)-
structure z. Note that the actions of H ′ and Aut(z) on Rz have a common
involution. The action of H ′ on the tangent space fixes one line and acting
through a faithful character on the other line (see the proof of Theorem 4.1.1),
so by Serre’s Theorem 2.3.9 the subring of H ′-invariants in Rz is regular. By
Lemma 2.3.5 and the subsequent discussion there, the subring of H ′-invariant

has the form W [[x′, t′]]/(x′(p−1)/|H′|
t′−p) with Aut(z)/{±1} acting on the tan-

gent space via χ|H|⊕χ for a faithful character χ of Aut(z)/{±1}. Let h = |H|,
so ρ := (p − 1)/2h is the multiplicity of C in XH(p)/Fp

.

When j(zH) = 1728 the character χ is quadratic, so we apply Theorem 2.4.1
and Corollary 2.4.3 with n = 2, r = 1, m′

1 = 1, m′
2 = ρ. The resolution has

a single exceptional fiber D′ that is transverse to the strict transforms C and

C
′
, and D′ has self-intersection −2 and multiplicity (m′

1 + m′
2)/2 = (ρ + 1)/2.

When j(zH) = 0 the character χ is cubic, so we apply Theorem 2.4.1 with
n = 3, m′

1 = 1, m′
2 = ρ, and r = h mod 3. That is, r = 1 when h ≡ 1 mod 6

and r = 2 when h ≡ −1 mod 6. In the case r = 1 we get a single exceptional

fiber E′ in the resolution, transverse to C and C
′
with self-intersection −3 and
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1
p−1
2h = ρ

k − 1

D′
−2

ρ+1
2

E′
−3

ρ+1
3

C C
′

(a) h ≡ 1 mod 6

1
p−1
2h = ρ

−2
D′

ρ+1
2

E′
1 −2 −2

E′
2

2ρ+1
3

ρ+2
3

C C
′

(b) h ≡ −1 mod 6

Figure 2: Minimal regular resolution XH(p)′ of XH(p), p = 12k − 1, k ≥ 1,
h = |H|

multiplicity (ρ + 1)/3 (by Corollary 2.4.3). This is illustrated in Figure 2(a).
In the case r = 2 we use the continued fraction 3/2 = 2 − 1/2 to see that the
resolution of zH has exceptional fiber with two components E′

1 and E′
2, and

these have self-intersection −2 and transverse intersections as shown in Figure
2(b) with respective multiplicities (2ρ + 1)/3 and (ρ + 2)/3 by Corollary 2.4.3.
This completes the computation of the minimal regular resolution XH(p)′ of
XH(p) when p ≡ −1 mod 12.

To compute the intersection matrix for the closed fiber of XH(p)′, we need
to compute some more intersection numbers. For h ≡ 1 mod 6 we let µ and
ν denote the multiplicities of D′ and E′ in XH(p)′, and for h ≡ −1 mod 6 we
define µ in the same way and let νj denote the multiplicity of E′

j in XH(p)′.
In other words,

µ = (ρ + 1)/2, ν = (ρ + 1)/3, ν1 = (2ρ + 1)/3, ν2 = (ρ + 2)/3.
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Thus,

(5.2.1) C
′
+ ρC + µD′ + νE′ ≡ 0,

so if we intersect (5.2.1) with C and use the identities

ρ = (6k − 1)/h, C
′
.C = k − 1 = (hρ − 5)/6,

we get
C.C = −1 − (h − ε)/6

where ε = ±1 ≡ h mod 6. In particular, C.C < −1 unless h = 1 (i.e., unless

H is trivial). We can also compute the self-intersection for C
′
, but we do not

need it.
When H is trivial, so C is a −1-curve, we can contract C and then by

Theorem 2.1.2 and Figure 2 the self-intersection numbers for the components
D′ and E′ drop to −1 and −2 respectively. Then we may contract D′, so E′

becomes a −1-curve, and finally we end with a single irreducible component

(coming from C
′
). This proves Theorem 1.1.2 when p ≡ −1 mod 12.

Returning to the case of general H, let us prove Theorem 1.1.6 for

p ≡ −1 mod 12. Since C
′

has multiplicity 1 in the closed fiber of XH(p)′,
we can use the following special case of a result of Lorenzini [9, 9.6/4]:

Lemma 5.2.1 (Lorenzini). Let X be a regular proper flat curve over a com-
plete discrete valuation ring R with algebraically closed residue field and frac-
tion field K. Assume that X/K is smooth and geometrically connected. Let

X1, . . . ,Xm be the irreducible components of the closed fiber X and assume
that some component Xi0 occurs with multiplicity 1 in the closed fiber divisor.

The component group of the Néron model of the Jacobian Pic0
XK/K has order

equal to the absolute value of the (m − 1) × (m − 1) minor of the intersection
matrix (Xi.Xj) obtained by deleting the i0th row and column.

The intersection submatrices formed by the ordered set {C,D′, E′} for
h ≡ 1 mod 6 and by {C,D′, E′

1, E
′
2} for h ≡ −1 mod 6 are given in Figure

3. The absolute value of the determinant is h in each case, so by Lemma 5.2.1
the order of the component group Φ(JH(p)/Fp

) is h = |H| = |H|/ gcd(|H|, 6).
To establish Theorem 1.1.6 for p ≡ −1 mod 12, it remains to show that the

natural Picard map J0(p) → JH(p) induces a surjection on mod-p geometric
component groups. We outline a method that works for general p but that we
will (for now) carry out only for p ≡ −1 mod 12, as we have only computed
the intersection matrix in this case.

The component group for J0(p) is generated by (0)−(∞), where (0) classifies
the 1-gon with standard subgroup µp ↪→ Gm in the smooth locus, and (∞)
classifies the p-gon with subgroup Z/pZ ↪→ (Z/pZ)×Gm in the smooth locus.
The generic-fiber Picard map induced by the coarse moduli scheme map

XH(p)/Z(p)
→ X0(p)/Z(p)
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C D′ E′ C D′ E′
1 E′

2

C
D′

E′



−1 − (h−1)

6 1 1
1 −2 0
1 0 −3




C
D′

E′
1

E′
2




−1 − (h+1)
6 1 1 0

1 −2 0 0
1 0 −2 1
0 0 1 −2




(a) h ≡ 1 mod 6 (b) h ≡ −1 mod 6

Figure 3: Submatrices of intersection matrix for XH(p)′, p ≡ −1 mod 12

pulls (0) − (∞) back to a divisor

(5.2.2) P −
(p−1)/2|H|∑

j=1

P ′
i

where the P ′
i ’s are Q-rational points whose (cuspidal) reduction lies in the

component C
′

classifying étale level-structures and P is a point with residue
field (Q(ζp)

+)H whose (cuspidal) reduction lies in the component C classi-
fying multiplicative level-structures. This description is seen by using the
moduli interpretation of cusps (i.e., Néron polygons) and keeping track of
Gal(Q/Q)-actions, and it is valid for any prime p (e.g., the Γ1(p)-structures on
the standard 1-gon consistute a principal homogenous space for the action of
Gal(Q(µp)/Q), so they give a single closed point P on XH(p)/Q with residue
field (Q(ζp)

+)H).

To apply (5.2.2), we need to recall some general facts (see [9, 9.5/9, 9.6/1])
concerning the relationship between the closed fiber of a regular proper model
X of a smooth geometrically connected curve Xη and the component group
Φ of (the Néron model of) the Jacobian of Xη, with the base equal to the
spectrum of a discrete valuation ring R with algebraically closed residue field.
If {Xi}i∈I is the set of irreducible components in the closed fiber of X, then
we can form a complex

ZI
α // ZI

β // Z

where ZI is the free group on the Xi’s, the map α is defined by the intersection
matrix (Xi.Xj), and β sends each standard basis vector to the multiplicity of
the corresponding component in the closed fiber. The cokernel ker(β)/im(α)
is naturally identified with the component group Φ via the map Pic(X) → ZI

that assigns to each invertible sheaf L its tuple of partial degrees degXi
(L).

By using [9, 9.1/5] to compute such line-bundle degrees, one finds that the
Néron-model integral point associated to the pullback divisor in (5.2.2) has
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reduction whose image in Φ(JH(p)/Fp
) is represented by

(5.2.3)
[Q(P ) : Q]

mult(C)
· C −

(p−1)/2|H|∑

i=1

C
′
= C − p − 1

2|H| · C
′

when this component group is computed by using the regular model XH(p)′

that we have found for p ≡ −1 mod 12 (the same calculation will work for all
other p’s, as we shall see).

The important property emerging from this calculation is that one of the
coefficients in (5.2.3) is ±1, so an element in ker(β) that is a Z-linear combi-

nation of C and C
′
must be a multiple of (5.2.3) and hence is in the image of

Φ(J0(p)) under the Picard map. Thus, to prove that the component group for
J0(p) surjects onto the component group for JH(p), it suffices to check that
any element in ker(β) can be modified modulo im(α) to lie in the Z-span of C

and C
′
.

Since the matrix for α is the intersection matrix, it suffices (and is even
necessary) to check that the submatrix MC,C

′ of the intersection matrix given

by the rows labelled by the irreducible components other than C and C
′
is a

surjective matrix over Z. Indeed, such surjectivity ensures that we can always
subtract a suitable element of im(α) from any element of ker β to kill coefficients

away from C and C
′
in a representative for an element in Φ ' ker(β)/im(α).

The surjectivity assertion over Z amounts to requiring that the matrix MC,C
′

have top-degree minors with gcd equal to 1. It is enough to check that those

minors that avoid the column coming from C
′
have gcd equal to 1. Thus, it is

enough to check that in Figure 3 the matrix of rows beneath the top row has top-
degree minors with gcd equal to 1. This is clear in both cases. In particular,
this calculation (especially the analysis of (5.2.3)) yields the following result
when p ≡ −1 mod 12:

Corollary 5.2.2. Let ρ = (p − 1)/2|H|. The degree-0 divisor C − ρC
′
repre-

sents a generator of the mod-p component group of JH(p).

The other cases p ≡ 1,±5 mod 12 will behave similarly, with Corollary 5.2.2
being true for all such p. The only differences in the arguments are that cases
with |H| divisible by 2 or 3 can arise and we will sometimes have to use the “one
branch” version of Jung–Hirzebruch resolution to resolve non-regular ordinary
points.

5.3 The case p ≡ 1 mod 12.

We have p = 12k + 1 with k ≥ 1, so (p − 1)/2 = 6k. In this case 0 and
1728 are both ordinary j-invariants, so the number of supersingular points is
(p − 1)/12 = k by the Deuring Mass Formula. The minimal regular resolution
XH(p)′ of XH(p) is illustrated in Figure 4, depending on the congruence class
of h = |H| modulo 6. When h is divisible by 6 there are no non-regular points,
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so XH(p)′ = XH(p)/W is as in Figure 4(a). When h is even but not divisible by
3 there is only the non-regularity at j = 0 to be resolved, as shown in Figures
4(b),(c). The case of odd h is given in Figures 4(d)–(f), and these are all easy
applications of Theorem 2.4.1 and Corollary 2.4.3. We illustrate by working
out the case h ≡ 5 mod 6, for which there are two ordinary singularities to
resolve.

Arguing much as in the case p ≡ −1 mod 12, but now with a “one branch”
situation at ordinary points, the ring to be resolved is formally isomorphic to

the ring of invariants in W [[x′, t′]]/(x′(p−1)/2|H|−p) under an action of the cyclic
Aut(z)/{±1} with a tangent-space action of χ|H|⊕χ for a faithful character χ.
At a point with j = 1728 we have quadratic χ, n = 2, r = 1. Using the “one
branch” version of Theorem 2.4.1 yields the exceptional divisor D′ as illustrated
in Figure 4(f), transverse to C with self-intersection −2 and multiplicity ρ/2.
At a point with j = 0 we have a cubic χ, so n = 3. Since h ≡ 2 mod 3 when
h ≡ 5 mod 6, we have r = 2. Since 3/2 = 2 − 1/2, we get exceptional divisors
E′

1 and E′
2 with transverse intersections as shown and self-intersections of −2.

The “outer” component E′
1 has multiplicity ρ/3 and the “inner” component

E′
2 has multiplicity 2ρ/3. Once again we will suppress the calculation of C

′
.C

′

since it is not needed.
We now proceed to analyze the component group for each value of h mod 6.

Since C
′

has multiplicity 1 in the closed fiber, we can carry out the same
strategy that was used for p ≡ −1 mod 12, resting on Lemma 5.2.1. When

h ≡ 0 mod 6, there are only the components C and C
′

in the closed fiber of
XH(p)′ = XH(p), with C.C = −h/6. Thus, the component group has the
expected order |H|/6 and since there are no additional components we are
done in this case.

If h ≡ 1 mod 6, one finds that the submatrix of the intersection matrix
corresponding to the ordered set {C,D′, E′} is



−(h + 5)/6 1 1

1 −2 0
1 0 −3




with absolute determinant h = |H|/ gcd(|H|, 6) as desired, and the bottom two
rows have 2×2 minors with gcd equal to 1. Moreover, in the special case h = 1
we see that C is a −1-curve, and after contracting this we contract D′ and E′

in turn, leaving us with only the component C
′
. This proves Theorem 1.1.2 for

p ≡ 1 mod 12.
For h ≡ 2 mod 6, the submatrix indexed by {C,E′

1, E
′
2} is



−(h + 4)/6 0 1

0 −2 1
1 1 −2




with absolute determinant h/2 = |H|/ gcd(|H|, 6), and the bottom two rows
have 2 × 2 minors with gcd equal to 1. The cases h ≡ 3, 4 mod 6 are even
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Figure 4: Minimal regular resolution XH(p)′, p = 12k + 1, k ≥ 1, h = |H|,
ρ = (p − 1)/2h
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easier, since there are just two components to deal with, {C,D′} and {C,E′}
with corresponding matrices

(
−(h + 3)/6 1

1 −2

)
,

(
−(h + 2)/6 1

1 −3

)

that yield the expected results.
For the final case h ≡ −1 mod 6, the submatrix indexed by the ordered set

of components {C,D′, E′
1, E

′
2} is




−(h + 7)/6 1 0 1
1 −2 0 0
0 0 −2 1
1 0 1 −2




with absolute determinant h = |H|/ gcd(|H|, 6) and gcd 1 for the 3× 3 minors
along the bottom three rows. The case p ≡ 1 mod 12 is now settled.

5.4 The cases p ≡ ±5 mod 12

With p = 12k + 5 for k ≥ 0, we have (p − 1)/2 = 6k + 2, so h = |H| is not
divisible by 3. Thus, the supersingular j = 0 is always non-regular and the
ordinary j = 1728 is non-regular for even h.

Using Theorem 2.4.1 and Corollary 2.4.3, we obtain a minimal regular reso-
lution depending on the possibilities for h mod 6 not divisible by 3, as given in
Figure 5.

From Figure 5 one easily carries out the computations of the absolute de-
terminant and the gcd of minors from the intersection matrix, just as we have
done in earlier cases, and in all cases one gets |H|/ gcd(|H|, 6) for the absolute
determinant and the gcd of the relevant minors is 1. Also, the case h = 1 has
C as a −1-curve, and successive contractions end at an integral closed fiber, so
we have established Theorems 1.1.2 and 1.1.6 for the case p ≡ 5 mod 12.

When p = 12k − 5 with k ≥ 1, so (p − 1)/2 = 6k − 3 is odd, we have that
h = |H| is odd. Thus, j = 1728 does give rise to a non-regular point, but
the behavior at j = 0 depends on h mod 6. The usual applications of Jung–
Hirzebruch resolution go through, and the minimal resolution has closed-fiber
diagram as in Figure 6, depending on odd h mod 6, and both Theorem 1.1.2
and Theorem 1.1.6 drop out just as in the preceding cases.

6 The Arithmetic of J1(p)

Our theoretical results concerning component groups inspired us to carry out
some arithmetic computations in J1(p), and this section summarizes this work.

In Section 6.1 we recall the Birch and Swinnerton-Dyer conjecture, as this
motivates many of our computations, and then we describe some of the theory
behind the computations that went into computing the tables of Section 6.6.
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1 ρ

k

E′
1

2ρ+1
3

−2 −2

ρ+2
3 E′

2

C C
′

(a) h ≡ 2 mod 6

1 ρ

k

E′
−3 ρ+1

3

C C
′

(b) h ≡ 4 mod 6

1 ρ

k

D′
−2

ρ
2

ρ+1
3 −3

E′

C C
′

(c) h ≡ 1 mod 6

1 ρ

k

D′ −2

ρ
2

−2
−2

ρ+2
3

E′
2E′

1

C C
′

(d) h ≡ −1 mod 6

2ρ+1
3

Figure 5: Minimal regular resolution XH(p)′, p = 12k + 5, k ≥ 0, h = |H|,
ρ = (p − 1)/2h
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Figure 6: Minimal regular resolution XH(p)′, p = 12k − 5, k ≥ 1, h = |H|,
ρ = (p − 1)/2h

In Section 6.2 we find all p such that J1(p) has rank 0. We next discuss tables
of certain arithmetic invariants of J1(p) and we give a conjectural formula for
|J1(p)(Q)tor|, along with some evidence. In Section 6.3 we investigate Jaco-
bians of intermediate curves JH(p) associated to subgroups of (Z/pZ)×, and in
Section 6.4 we consider optimal quotients Af of J1(p) attached to newforms. In
Section 6.4.1 we describe the lowest-level modular abelian variety that (assum-
ing the Birch and Swinnerton-Dyer conjecture) should have infinite Mordell-
Weil group but to which the general theorems of Kato, Kolyvagin, et al., do
not apply.

6.1 Computational methodology

We used the third author’s modular symbols package for our computations;
this package is part of [10] V2.10-6. See Section 6.5 for a description of how to
use Magma to compute the tables. For the general theory of computing with
modular symbols, see [14] and [63].

Remark 6.1.1. Many of the results of this section assume that a Magma pro-
gram running on a computer executed correctly. Magma is complicated soft-
ware that runs on physical hardware that is subject to errors from both pro-
gramming mistakes and physical processes, such as cosmic radiation. We thus
make the running assumption for the rest of this section that the computa-
tions below were performed correctly. To decrease the chance of hardware
errors such as the famous Pentium bug (see [17]), we computed the tables in
Section 6.6 on three separate computers with different CPU architectures (an
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AMD Athlon 2000MP, a Sun Fire V480 which was donated to the third author
by Sun Microsystems, and an Intel Pentium 4-M laptop).

Let A be a modular abelian variety over Q, i.e., a quotient of J1(N) for
some N . We will make frequent reference to the following special case of the
general conjectures of Birch and Swinnerton-Dyer:

Conjecture 6.1.2 (BSD Conjecture). Let X(A) be the Shafarevich-Tate
group of A, let cp = |ΦA,p(Fp)| be the Tamagawa number at p for A, and let
ΩA be the volume of A(R) with respect to a generator of the invertible sheaf of
top-degree relative differentials on the Néron model A/Z of A over Z. Let A∨

denote the abelian variety dual of A. The group X(A) is finite and

L(A, 1)

ΩA
=

|X(A)| · ∏p|N cp

|A(Q)| · |A∨(Q)| ,

where we interpret the right side as 0 in case A(Q) is infinite.

Remark 6.1.3. The hypothesis that A is modular implies that L(A, s) has an
analytic continuation to the whole complex plane and a functional equation of
a standard type. In particular, L(A, 1) makes sense. Also, when L(A, 1) 6= 0,
[32, Cor. 14.3] implies that X(A) is finite.

Let {f1, . . . , fn} be a set of newforms in S2(Γ1(N)) that is Gal(Q/Q)-
stable. Let I be the Hecke-algebra annihilator of the subspace generated by
f1, . . . , fn. For the rest of Section 6.1, we assume that A = AI = J1(N)/IJ1(N)
for such an I. Note that A is an optimal quotient in the sense that
IJ1(N) = ker(J1(N) → A) is an abelian subvariety of J1(N).

6.1.1 Bounding the torsion subgroup

To obtain a multiple of the order of the torsion subgroup A(Q)tor, we proceed
as follows. For any prime ` - N , the algorithm of [3, §3.5] computes the
characteristic polynomial f ∈ Z[X] of Frob` acting on any p-adic Tate module
of A with p 6= `. To compute |A(F`)|, we observe that

|A(F`)| = deg(Frob` −1) = det(Frob` −1),

and this is the value of the characteristic polynomial of Frob` at 1. For any
prime ` - 2N , the reduction map A(Q)tor → A(F`) is injective, so |A(Q)tor|
divides

T = gcd{|A(F`)| : ` < 60 and ` - 2N}.
(If N is divisible by all primes up to 60, let T = 0. In all of the examples in
this paper, N is prime and so T 6= 0.) The injectivity of reduction mod ` on
the finite group A(Q)tor for any prime ` 6= 2 is well known and follows from
the determination of the torsion in a formal group (see, e.g., the appendix to
[33] and [59, §IV.6–9]).
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The cardinality |A(F`)| does not change if A is replaced by a Q-isogenous
abelian variety B, so we do not expect in general that |A(Q)tor| = T . (For
much more on relationships between |A(Q)tor| and T , see [33, p. 499].) When
we refer to an upper bound on torsion, T is the (multiplicative) upper bound
that we have in mind.

The number 60 has no special significance; we had to make some choice to do
computations, and in practice the sequence of partial gcd’s rapidly stabilizes.
For example, if A = J1(37), then the sequence of partial gcd’s is:

15249085236272475, 802583433488025, 160516686697605, . . .

where the term 160516686697605 repeats for all ` < 1000.

6.1.2 The Manin index

Let p be a prime, let ΩA/Z denote the sheaf of relative 1-forms on the Néron
model of A over Z, and let I be the annihilator of A in the Hecke alge-
bra T ⊂ End(J1(N)). For a subring R ⊂ C, let S2(Γ1(N), R) be the R-module
of cusp forms whose Fourier expansion at ∞ lies in R[[q]]. The natural sur-
jective Hecke-equivariant morphism J1(N) → J1(N)/IJ1(N) = A induces (by
pullback) a Hecke-equivariant injection ΨA : H0(A/Z,ΩA/Z) ↪→ S2(Γ1(N),Q)
whose image lies in S2(Γ1(N),Q)[I]. (Here we identify S2(Γ1(N),Q) with
H0(X1(N),ΩX1(N)/Q) = H0(J1(N),ΩJ1(N)/Q) in the usual manner.)

Definition 6.1.4 (Manin index). The Manin index of A is

c = [S2(Γ1(N),Z)[I] : ΨA(H0(A/Z,ΩA/Z))] ∈ Q.

Remark 6.1.5. We name c after Manin, since he first studied c, but only in
the context of elliptic curves. When X0(N) → A is an optimal elliptic-curve
quotient attached to a newform f , the usual Manin constant of A is the rational
number c such that π∗(ωA) = ±c·fdq/q, where ωA is a basis for the differentials
on the Néron model of A. The usual Manin constant equals the Manin index,
since S2(Γ1(N),Z)[I] is generated as a Z-module by f .

A priori, the index in Definition 6.1.4 is only a generalized lattice index in the
sense of [12, Ch. 1, §3], which we interpret as follows. In [12], for any Dedekind
domain R, the lattice index is defined for any two finite free R-modules V
and W of the same rank ρ that are embedded in a ρ-dimensional Frac(R)-
vector space U . The lattice index is the fractional R-ideal generated by the
determinant of any automorphism of U that sends V isomorphically onto W .
In Definition 6.1.4, we take R = Z, U = S2(Γ1(N),Q)[I], V = S2(Γ1(N),Z)[I],
and W = ΨA(H0(A/Z,ΩA/Z)). Thus, c is the absolute value of the determinant
of any linear transformation of S2(Γ1(N),Q)[I] that sends S2(Γ1(N),Z)[I] onto
ΨA(H0(A/Z,ΩA/Z)). In fact, it is not necessary to consider lattice indexes,
as the following lemma shows (note we will use lattices indices later in the
statement of Proposition 6.1.10).
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Lemma 6.1.6. The Manin index c of A is an integer.

Proof. Let Xµ(N) be the coarse moduli scheme over Z that classifies isomor-
phism classes of pairs (E/S, α), with α : µN ↪→ Esm a closed subgroup in the
smooth locus of a generalized elliptic curve E with irreducible geometric fibers
Es. This is a smooth Z-curve that is not proper, and it is readily constructed
by combining the work of Katz-Mazur and Deligne-Rapoport (see §9.3 and
§12.3 of [16]). There is a canonical Z-point ∞ ∈ Xµ(N)(Z) defined by the
standard 1-gon equipped with the canonical embedding of µN into the smooth
locus Gm, and the theory of the Tate curve provides a canonical isomorphism
between Spf(Z[[q]]) and the formal completion of Xµ(N) along ∞.

There is an isomorphism between the smooth proper curves X1(N) and
Xµ(N) over Z[1/N ] because the open modular curves Y1(N) and Yµ(N)
coarsely represent moduli problems that may be identified over the category of
Z[1/N ]-schemes via the map

(E,P ) 7→ (E/〈P 〉, E[N ]/〈P 〉),

where E[N ]/〈P 〉 is identified with µN via the Weil pairing on E[N ]. For our
purposes, the key point (which follows readily from Tate’s theory) is that under
the moduli-theoretic identification of the analytification of the C-fiber of Xµ(N)
with the analytic modular curve X1(N) via the trivialization of µN (C) by

means of ζN = e±2π
√−1/N , the formal parameter q at the C-point ∞ computes

the standard analytic q-expansion for weight-2 cusp forms on Γ1(N). The
reason we consider Xµ(N) rather than X1(N) is simply because we want a
smooth Z-model in which the analytic cusp ∞ descends to a Z-point.

Let φ : J1(N) → A be the Albanese quotient map over Q, and pass to Néron
models over Z (without changing the notation). Since Xµ(N) is Z-smooth,
there is a morphism Xµ(N) → J1(N) over Z that extends the usual morphism
sending ∞ to 0. We have a map Ψ : H0(A,Ω) → Z[[q]]dq/q of Z-modules defined
by composition

H0(A,Ω) → H0(J1(N),Ω) → H0(Xµ(N),Ω)
q−exp−−−−→ Z[[q]]

dq

q
.

The map Ψ is injective, since it is injective after base extension to Q and
each group above is torsion free. The image of Ψ in Z[[q]]dq/q is a finite free
Z-module, contained in the image of S = S2(Γ1(N),Z), the sub-Z-module of
S2(Γ1(N),C) of those elements whose analytic q-expansion at ∞ has coeffi-
cients in Z. Since Ψ respects the action of Hecke operators, the image of Ψ is
contained in S[I], so the lattice index c is an integer.

We make the following conjecture:

Conjecture 6.1.7. If A = Af is a quotient of J1(N) attached to a single
Galois-conjugacy class of newforms, then c = 1.
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Manin made this conjecture for one-dimensional optimal quotients of J0(N).
Mazur bounded c in some cases in [46], Stevens considered c for one-dimensional
quotients of J1(N) in [65], González and Lario considered c for Q-curves in [26],
Agashe and Stein considered c for quotients of J0(N) of dimension bigger than 1
in [4], and Edixhoven proved integrality results in [19, Prop. 2] and [22, §2].

Remark 6.1.8. We only make Conjecture 6.1.7 when A is attached to a single
Galois-conjugacy class of newforms, since the more general conjecture is false.
Adam Joyce [31] has recently used failure of multiplicity one for J0(p) to pro-
duce examples of optimal quotients A of J1(p), for p = 431, 503, and 2089,
whose Manin indices are divisible by 2. Here, A is isogenous to a product of
two elliptic curves, so A is not attached to a single Galois-orbit of newforms.

Remark 6.1.9. The question of whether or not c is an isogeny-invariant is not
meaningful in the context of this paper because we only define the Manin index
for optimal quotients.

6.1.3 Computing L-ratios

There is a formula for L(Af , 1)/ΩAf
in [3, §4.2] when Af is an optimal quotient

of J0(N) attached to a single Galois conjugacy class of newforms. In this section
we describe that formula; it applies to our quotient A of J1(N).

Recall our running hypothesis that A = AI is an optimal (new) quotient of
J1(N) attached to a Galois conjugacy class of newforms {f1, . . . , fn}. Let

Ψ : H1(X1(N),Q) → Hom(S2(Γ1(N))[I],C)

be the linear map that sends a rational homology class γ to the functional
∫

γ

on the subspace S2(Γ1(N))[I] in the space of holomorphic 1-forms on X1(N).
Let T ⊂ End(H1(X1(N),Q)) be the ring generated by all Hecke operators.

Since the T-module H = Hom(S2(Γ1(N))[I],C) has a natural R-structure
(and even a natural Q-structure), it admits a natural T-linear and C-semilinear
action by complex conjugation. If M is a T-submodule of H, let M+ denote
the T-submodule of M fixed by complex conjugation.

Let c be the Manin index of A as in Section 6.1.2, let c∞ be the number
of connected components of A(R), let ΩA be the volume of A(R) as in Con-
jecture 6.1.2, and let {0,∞} ∈ H1(X1(N),Q) be the rational homology class
whose integration functional is integration from 0 to i∞ along the i-axis (for
the precise definition of {0,∞} and a proof that it lies in the rational homology
see [38, Ch. IV §1–2]).

Proposition 6.1.10. Let A = AI be an optimal quotient of J1(N) attached to
a Galois-stable collection of newforms. With notation as above, we have

(6.1.1) c∞ · c · L(A, 1)

ΩA
= [Ψ(H1(X1(N),Z))+ : Ψ(T{0,∞})],

where the index is a lattice index as discussed in Section 6.1.7 (in particular,
L(A, 1) = 0 if and only if Ψ(T{0,∞}) has smaller rank than H1(X1(N),Z)+).
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Proof. It is straightforward to adapt the argument of [3, §4.2] with J0(N)
replaced by J1(N) (or even JH(N)), but one must be careful when replacing
Af with A. The key observation is that if f1, . . . , fn is the unique basis of
normalized newforms corresponding to A, then L(A, s) = L(f1, s) · · ·L(fn, s).

Remark 6.1.11. This equality (6.1.1) need not hold if oldforms are in-
volved, even in the Γ0(N) case. For example, if A = J0(22), then
L(A, s) = L(J0(11), s)2, but two copies of the newform corresponding to J0(11)
do not form a basis for S2(Γ0(22)).

We finish this section with some brief remarks on how to compute the rational
number c · L(A, 1)/ΩA using (6.1.1) and a computer. Using modular symbols,
one can explicitly compute with H1(X1(N),Z). Though the above lattice index
involves two lattices in a complex vector space, the index is unchanged if we
replace Ψ with any linear map to a Q-vector space such that the kernel is
unchanged (see [3, §4.2]). Such a map may be computed via standard linear
algebra by finding a basis for Hom(H1(X1(N),Q),Q)[I].

To compute c∞, use the following well-known proposition; we include a proof
for lack of an adequate published reference.

Proposition 6.1.12. For an abelian variety A over R,

c∞ = 2dimF2
A[2](R)−d,

where d = dimA and c∞ := |A(R)/A0(R)|.
Proof. Let Λ = H1(A(C),Z), so the exponential uniformization of A(C) pro-
vides a short exact sequence

0 → Λ → Lie(A(C)) → A(C) → 0.

There is an evident action of Gal(C/R) on all terms via the action on A(C), and
this short exact sequence is Galois-equivariant because A is defined over R. Let
Λ+ be the subgroup of Galois-invariants in Λ, so we get an exact cohomology
sequence

0 → Λ+ → Lie(A(R)) → A(R) → H1(Gal(C/R),Λ) → 0

because higher group cohomology for a finite group vanishes on a Q-vector
space (such as the Lie algebra of A(C)). The map Lie(A(R)) → A(R) is the
exponential map for A(R), and so its image is A(R)0. Thus, Λ+ has Z-rank
equal to dimA and

A(R)/A(R)0 ' H1(Gal(C/R),Λ).

To compute the size of this H1, consider the short exact sequence

0 → Λ
2→ Λ → Λ/2Λ → 0
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of Galois-modules. Since Λ/nΛ ' A[n](C) as Galois-modules for any n 6= 0,
the long-exact cohomology sequence gives an isomorphism

A[2](R)/(Λ+/2Λ+) ' H1(Gal(C/R),Λ).

Remark 6.1.13. Since the canonical isomorphism

A[n](C) ' H1(A(C),Z)/nH1(A(C),Z)

is Gal(C/R)-equivariant, we can identify A[2](R) with the kernel of τ − 1
where τ is the mod-2 reduction of the involution on H1(A(C),Z) induced by
the action τ of complex conjugation on A(C). In the special case when A is
a quotient of some J1(N), and we choose a connected component of C − R

to uniformize Y1(N) in the usual manner, then via the Gal(C/R)-equivariant
isomorphism H1(J1(N)(C),Z) ' H1(X1(N)(C),Z) we see that H1(A(C),Z)
may be computed by modular symbols and that the action of τ on the modular
symbol is {α, β} 7→ {−α,−β}. This makes A[2](R), and hence c∞, readily
computable via modular symbols.

6.2 Arithmetic of J1(p)

6.2.1 The Tables

For p ≤ 71, the first part of Table 1 (on page 399) lists the dimension of J1(p)
and the rational number L = c ·L(J1(p), 1)/ΩJ1(p). Table 1 also gives an upper
bound T (in the sense of divisibility) on |J1(p)(Q)tor| for p ≤ 71, as discussed
in §6.1.1.

When L 6= 0, Conjecture 6.1.2 and the assumption that c = 1 imply that the
numerator of L divides cp · |X(A)|, that in turn divides T 2L. For every p 6= 29
with p ≤ 71, we found that T 2L = 1. For p = 29, we have T 2L = 212; it would
be interesting if the isogeny-invariant T overestimates the order of J1(29)(Q)tor
or if X(J1(29)) is nontrivial.

6.2.2 Determination of positive rank

Proposition 6.2.1. The primes p such that J1(p) has positive rank are the
same as the primes for which J0(p) has positive rank:

p = 37, 43, 53, 61, 67, and all p ≥ 73.

Proof. Proposition 2.8 of [45, §III.2.2, p. 147] says: “Suppose g+ > 0 (which is
the case for all N > 73, as well as N = 37, 43, 53, 61, 67). Then the Mordell-
Weil group of J+ is a torsion-free group of infinite order (i.e. of positive rank).”
Here, N is a prime, g+ is the genus of the Atkin-Lehner quotient X0(N)+ of
X0(N), and J+ is isogenous to the Jacobian of X0(N)+. This is essentially
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correct, except for the minor oversight that g+ > 0 also when N = 73 (this is
stated correctly on page 34 of [45]).

By Mazur’s proposition J0(p) has positive algebraic rank for all p ≥ 73 and
for p = 37, 43, 53, 61, 67. The sign in the functional equation for L(J+, s) is −1,
so

L(J, 1) = L(J+, 1)L(J−, 1) = 0 · L(J−, 1) = 0

for all p such that g+ > 0. Using (6.1.1) we see that L(J, 1) 6= 0 for all p such
that g+ = 0, which by Kato (see [32, Cor. 14.3]) or Kolyvagin–Logachev (see
[36]) implies that J has rank 0 whenever g+ = 0. Thus L(J0(p), 1) = 0 if and
only if J0(p) has positive rank.

Work of Kato (see [32, Cor. 14.3]) implies that if J1(p) has analytic rank 0,
then J1(p) has algebraic rank 0. It thus suffices to check that L(J1(p), 1) 6= 0
for the primes p such that J0(p) has rank 0. We verify this by computing
c · L(J1(p), 1)/ΩJ1(p) using (6.1.1), as illustrated in Table 1.

If we instead consider composite level, it is not true that J0(N) has positive
analytic rank if and only if J1(N) has positive analytic rank. For example,
using (6.1.1) we find that J0(63) has analytic rank 0, but J1(63) has positive
analytic rank. Closer inspection using Magma (see the program below) shows
that there is a two-dimensional new quotient Af with positive analytic rank,
where f = q+(ω−1)q2 +(−ω−2)q3 + · · · , and ω3 = 1. It would be interesting
to prove that that the algebraic rank of Af is positive.

> M := ModularSymbols(63,2);

> S := CuspidalSubspace(M);

> LRatio(S,1); // So J_0(63) has rank 0

1/384

> G<a,b> := DirichletGroup(63,CyclotomicField(6));

> e := a^5*b;

> M := ModularSymbols([e],2,+1);

> S := CuspidalSubspace(M);

> LRatio(S,1); // This step takes some time.

0

> D := NewformDecomposition(S);

> LRatio(D[1],1);

0

> qEigenform(D[1],5);

q + (-2*zeta_6 + 1)*q^2 + (-2*zeta_6 + 1)*q^3 - q^4 + O(q^5)
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6.2.3 Conjectural order of J1(Q)tor

For any Dirichlet character ε modulo N , define Bernoulli numbers B2,ε by

N∑

a=1

ε(a)teat

eNt − 1
=

∞∑

k=0

Bk,ε

k!
tk.

We make the following conjecture.

Conjecture 6.2.2. Let p ≥ 5 be prime. The rational torsion subgroup
J1(p)(Q)tor is generated by the differences of Q-rational cusps on X1(p). Equiv-
alently (see below), for any prime p ≥ 5,

(6.2.1) |J1(p)(Q)tor| =
p

2p−3
·
∏

ε6=1

B2,ε

where the product is over the nontrivial even Dirichlet characters ε of conductor
dividing p.

Due to how we defined X1(p), its Q-rational cusps are exactly its cusps lying
over the cusp ∞ ∈ X0(p)(Q) (corresponding to the standard 1-gon equipped
with the subgroup µp in its smooth locus Gm) via the second standard degen-
eracy map

(E,P ) 7→ (E/〈P 〉, E[p]/〈P 〉).
In [49] Ogg showed that |J1(13)(Q)| = 19, verifying Conjecture 6.2.2 for p = 13.
The results of [37] are also relevant to Conjecture 6.2.2, and suggest that the
rational torsion of J1(p) is cuspidal. Let C(p) be the conjectural order of
J1(p)(Q)tor on the right side of (6.2.1). In [37, p. 153], Kubert and Lang prove
that C(p) is equal to the order of the group generated by the differences of
Q-rational cusps on X1(p) (in their language, these are viewed as the cusps
that lie over 0 ∈ X0(p)(Q) via the first standard degeneracy map

(E,P ) 7→ (E, 〈P 〉)),

and so C(p) is a priori an integer that moreover divides |J1(p)(Q)tor|.
Table 1 provides evidence for Conjecture 6.2.2. Let T (p) be the upper bound

on J1(p)(Q)tor (see Table 1). For all p ≤ 157, we have C(p) = T (p) except for
p = 29, 97, 101, 109, and 113, where T (p)/C(p) is 26, 17, 24, 37, and 212 · 32,
respectively. Thus Conjecture 6.2.2 is true for p ≤ 157, except possibly in these
five cases, where the deviation is consistent with the possibility that T (p) is a
nontrivial multiple of the true order of the torsion subgroup (recall that T (p)
is an isogeny-invariant, and so it is not surprising that it may be too large).

6.3 Arithmetic of JH(p)

For each divisor d of p−1, let H = Hd denote the unique subgroup of (Z/pZ)×

of order (p−1)/d. The group of characters whose kernel contains Hd is exactly
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the group of characters of order dividing d. Since the linear fractional trans-
formation associated to

(−1 0
0 −1

)
acts trivially on the upper half plane, we lose

nothing (for the computations that we will do in this section) if we assume that
−1 ∈ H, and so |H| is even.

For any subgroup H of (Z/pZ)× as above, let JH be the Jacobian of XH(p),
as in Section 1. For each p ≤ 71, Table 2 lists the dimension of JH = JH(p),
the rational number L = c · L(JH , 1)/ΩJH

, an upper bound T on |JH(Q)tor|,
the conjectural multiple T 2L of |X(JH)| · cp, and cp = |Φ(JH)|. We compute
|Φ(JH)(Fp)| = |Φ(JH)(Fp)| using Theorem 1.1.3. Note that Table 2 omits the
data for d = (p − 1)/2, since JH = J1(p) for such d, so the corresponding data
is therefore already contained in Table 1.

When L 6= 0, we have T 2L = |Φ(JH)| in all but one case. The exceptional
case is p = 29 and d = 7, where T 2L = 26, but |Φ(JH)| = 1; probably T
overestimates the torsion in this case. In the following proposition we use this
observation to deduce that |X(JH)| = c = 1 in some cases.

Proposition 6.3.1. Suppose that p ≤ 71 is a prime and d | (p − 1) with
(p − 1)/d even. Let JH be the Jacobian of XH(p), where H is the subgroup
of (Z/pZ)× of order (p − 1)/d. Assume that Conjecture 6.1.2 is true, and if
p = 29 then assume that d 6= 7, 14. If L(JH , 1) 6= 0, then |X(JH)| = 1 and
c = 1.

It is not interesting to remove the condition p ≤ 71 in the statement of the
proposition, since when p > 71 the quantity L(JH , 1) automatically vanishes
(see Proposition 6.2.1). It is probably not always the case that |X(JH)| = 1;
for example, Conjecture 6.1.2 and the main result of [1] imply that 72 divides
|X(J0(1091))|.

Proof. We deduce the proposition from Tables 1–3 as follows. Using Conjec-
ture 6.1.2 we have

(6.3.1) c · |X(JH)| = c · L(JH , 1)

ΩJH
· |Φ(JH)| · |JH(Q)tor|2.

Let T denote the torsion bound on JH(Q)tor as in Section 6.1.1 and let
L = c · L(JH , 1)/ΩJH

, so the right side of (6.3.1) divides T 2L/|Φ(JH)|. An
inspection of the tables shows that T 2L/|Φ(JH)| = 1 for JH satisfying the
hypothesis of the proposition (in the excluded cases p = 29 and d = 7, 14,
the quotient equals 26 and 212, respectively). Since c ∈ Z, we conclude that
c = |X(JH)| = 1.

Remark 6.3.2. Theorem 1.1.3 is an essential ingredient in the proof of Proposi-
tion 6.3.1 because we used Theorem 1.1.3 to compute the Tamagawa factor cp.
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6.4 Arithmetic of newform quotients

Tables 4–5 at the end of this paper contain arithmetic information about each
newform abelian variety quotient Af of J1(p) with p ≤ 71.

The first column gives a label determining a Galois-conjugacy class of new-
forms {f, . . .}, where A corresponds to the first class, B to the second, etc.,
and the classes are ordered first by dimension and then in lexicographical order
by the sequence of nonegative integers | tr(a2(f))|, | tr(a3(f))|, | tr(a5(f))|, . . ..
(WARNING: This ordering does not agree with the one used by Cremona in
[14]; for example, our 37A is Cremona’s 37B.) The next two columns list the
dimension of Af and the order of the Nebentypus character of f , respectively.
The fourth column lists the rational number L = L(Af , 1)/ΩAf

, and the fifth
lists the product T 2L, where T is an upper bound (as in Section 6.1.1) on the
order of Af (Q)tor. The sixth column, labeled “modular kernel”, lists invariants
of the group of Q-points of the kernel of the polarization A∨

f ↪→ J1(p) → Af ;
this kernel is computed by using an algorithm based on Proposition 6.4.1 be-
low. The elementary divisors of the kernel are denoted with notation such as
[22142] to denote

Z/2Z × Z/2Z × Z/14Z × Z/14Z.

Proposition 6.4.1. Suppose A = AI is an optimal quotient of J = J1(N)
attached to the annihilator I of a Galois-stable collection of newforms. The
group of Q-points of the kernel of the natural map A∨ ↪→ J → A is isomorphic
to the cokernel of the natural map

Hom(H1(X1(N),Z),Z)[I] → Hom(H1(X1(N),Z)[I],Z).

Proof. The proof is the same as [35, Prop. 1].

It is possible to compute the modular kernel by using the formula in this
proposition, together with modular symbols and standard algorithms for com-
puting with finitely generated abelian groups.

We do not give T in Tables 4–5, since in all but six cases T 2L 6= 0, hence
T 2L and L determine T . The remaining six cases are 37B, 43A, 53A, 61A,
61B, and 67C, and in all these cases T = 1.

Remark 6.4.2. If A = Af is an optimal quotient of J1(p) attached to a new-
form, then the tables do not include the toric, additive, and abelian ranks of
the closed fiber of the Néron model of A over Fp, since they are easy to de-
termine from other data about A as follows. If ε(f) = 1, then the toric rank
is dim(A), since A is isogenous to an abelian subvariety of J0(p) and so A has
purely toric reduction over Zp. Now suppose that ε(f) is nontrivial, so A is
isogenous to an abelian subvariety of the abelian variety J1(p)/J0(p) that has
potentially good reduction at p. Hence the toric rank of A is zero, and inertia
Ip ⊂ Gp = Gal(Qp/Qp) acts with finite image on the Q`-adic Tate module V`

of A for any ` 6= p. Hence V` splits as a nontrivial direct sum of simple repre-
sentations of Ip. Let V ′ be a factor of V` corresponding to a simple summand K
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of T ⊗ Q`, where T is the Hecke algebra. Since the Artin conductor of the
2-dimensional K-representation V ′

` is p, the Q`[Ip]-module Q`⊗Q`
V ′ is the di-

rect sum of the trivial representation and the character ε(f) : (Z/pZ)× → Q
×
`

viewed as a character of Gp via the identification Gal(Qp(ζp)/Qp) = (Z/pZ)×.
This implies that the abelian rank as well as the additive rank are both equal
to half of the dimension of A.

6.4.1 The Simplest example not covered by general theory

The prime p = 61 is the only prime p ≤ 71 such that the maximal quotient
of J1(p) with positive analytic rank is not a quotient of J0(p). Let ε be a
Dirichlet character of conductor 61 and order 6. Consider the abelian variety
Af attached to the newform

f = q + (e2πi/3 − 1)q2 − 2q3 + · · ·

that lies in the 6-dimensional C-vector space S2(Γ1(61), ε). Using Proposi-
tion 6.1.10, we see that L(f, 1) = 0.

It would be interesting to show that Af has positive algebraic rank, since
Af is not covered by the general theorems of Kolyvagin, Logachev, and Kato
concerning Conjecture 6.1.2. This example is the simplest example in the
following sense: every elliptic curve over Q is a quotient of some J0(N), and
an inspection of Tables 4–5 for any integer N < 61 shows that the maximal
quotient of J1(N) with positive analytic rank is also a quotient of J0(N).

The following observation puts this question in the context of Q-curves, and
may be of some use in a direct computation to show that Af has positive
algebraic rank. Since f = f ⊗ε−1, Shimura’s theory (see [62, Prop. 8]) supplies
an isogeny ϕ : Af → Af defined over the degree-6 abelian extension of Q cut
out by ker(ε). Using ϕ, one sees that Af is isogenous to a product of two elliptic
curves. According to Enrique Gonzalez-Jimenez (personal communication) and
Jordi Quer, if t6 + t5 − 25t4 + 8t3 + 123t2 − 126t + 27 = 0, so t generates the
degree 6 subfield of Q(ζ61) corresponding to ε, then one of the elliptic-curve
factors of Af has equation y2 = x3 + c4x + c6, where

c4 =
1

3
(−321 + 738t − 305t2 − 196t3 + 47t4 + 13t5),

c6 =
1

3
(−4647 + 6300t + 996t2 − 1783t3 − 432t4 − 14t5).

6.4.2 Can Optimal Quotients Have Nontrivial Component Group?

Let p be a prime. Component groups of optimal quotients of J0(p) are well-
understood in the sense of the following theorem of Emerton [23]:

Theorem 6.4.3 (Emerton). If A1, . . . , An are the distinct optimal quotients
of J0(p) attached the Galois-orbits of newforms, then the product of the or-
ders of the component groups of the Ai’s equals the order of the component
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group of J0(p), i.e., the numerator of (p − 1)/12. Moreover, the natural maps
Φ(J0(p)) → Φ(Ai) are surjective.

Shuzo Takehashi asked a related question about J1(p):

Question 6.4.4 (Takehashi). Suppose A = Af is an optimal quotient of
J1(p) attached to a newform. What can be said about the component group
of A? In particular, is the component group of A necessarily trivial?

Since J1(p) has trivial component group (see Theorem 1.1.1), the triviality
of the component group of A is equivalent to the surjectivity of the natural
map from Φ(J1(p)) to Φ(Af ).

The data in Tables 4–5 sheds little light on Question 6.4.4. The following
are the Af ’s that have nonzero L = c ·L(Af , 1)/Ω with numerator divisible by
an odd prime: 37D, 37F, 43C, 43F, 53D, 61E, 61F, 61G, 61J, 67D, 67E,
and 67G. For each of these, Conjecture 6.1.2 implies that c · X(Af ) · cp is
divisible by an odd prime. However, it seems difficult to deduce which factors
in the product are not equal to 1. We remark that for each Af listed above
such that the numerator of L is exactly divisible by p, there is a rank-1 elliptic
curve E over Q such that E[p] ⊂ A, so methods as in [2] may shed light on
this problem.

6.5 Using Magma to compute the tables

In this section, we describe how to use Magma V2.10-6 (or later) to compute
the entries in Tables 1–5 at the end of this paper.

6.5.1 Computing Table 1: Arithmetic of J1(p)

Let p be a prime. The following Magma code illustrates how to compute the
two rows in Table 1 corresponding to p (= 19). Note that the space of cuspidal
modular symbols has dimension 2 dim J1(p).

> p := 19;

> M := ModularSymbols(Gamma1(p));

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 19, weight 2, and dimension

14 over Rational Field (multi-character)

> LRatio(S,1);

1/19210689

> Factorization(19210689);

[ <3, 4>, <487, 2> ]

> TorsionBound(S,60);

4383

Remark 6.5.1. It takes less time and memory to compute c · L(J1(p), 1)/Ω in
Q×/2Z, and this is done by replacing M:=ModularSymbols(Gamma1(p)) with
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M:=ModularSymbols(Gamma1(p),2,+1). A similar remark applies to all com-
putations of L-ratios in the sections below.

6.5.2 Computing Tables 2–3: Arithmetic of JH(p)

Let p be a prime, d a divisor of p − 1 such that (p − 1)/d is even, and H the
subgroup of (Z/NZ)× of order (p−1)/d. We use Theorem 1.1.3 and commands
similar to the ones in Section 6.5.1 to fill in the entries in Tables 2–3. The
following code illustrates computation of the second row of Table 2 for p = 19.

> p := 19;

> [d : d in Divisors(p-1) | IsEven((p-1) div d)];

[ 1, 3, 9 ]

> d := 3;

> M := ModularSymbolsH(p,(p-1) div d, 2, 0);

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 19, weight 2, and dimension 2

over Rational Field (multi-character)

> L := LRatio(S,1); L;

1/9

> T := TorsionBound(S,60); T;

3

> T^2*L;

1

> Phi := d / GCD(d,6); Phi;

1

It takes about ten minutes to compute all entries in Table 2–3 using an Athlon
2000MP-based computer.

6.5.3 Computing Tables 4–5

Let p be a prime number. To compute the modular symbols factors cor-
responding to the newform optimal quotients Af of J1(p), we use the
NewformDecomposition command. To compute the modular kernel, we use
the command ModularKernel. The following code illustrates computation of
the second row of Table 4 corresponding to p = 19.

> p := 19;

> M := ModularSymbols(Gamma1(19));

> S := CuspidalSubspace(M);

> D := NewformDecomposition(S);

> D;

[

Modular symbols space for Gamma_0(19) of weight 2 and

dimension 2 over Rational Field,
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Modular symbols space of level 19, weight 2, and

dimension 12 over Rational Field (multi-character)

]

> A := D[2];

> Dimension(A) div 2;

6

> Order(DirichletCharacter(A));

9

> L := LRatio(A,1); L;

1/2134521

> T := TorsionBound(A,60);

> T^2*L;

1

> Invariants(ModularKernel(A));

[ 3, 3 ]

It takes about 2.5 hours to compute all entries in Tables 4–5, except that the
entries corresponding to p = 71, using an Athlon 2000MP-based computer.
The p = 71 entry takes about 3 hours.
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6.6 Arithmetic tables

The notation in Tables 1–5 below is explained in Section 6.

Table 1: Arithmetic of J1(p)

J1(p) dim c · L(J1(p), 1)/Ω

11 1 1/52

13 2 1/192

17 5 1/26 ·732

19 7 1/34 ·4872

23 12 1/112 ·371812

29 22 1/212 ·32 ·72 ·432 ·178372

31 26 1/24 ·54 ·72 ·112 ·23023812

37 40 0
41 51 1/28 ·52 ·132 ·314 ·4312 ·2501837212

43 57 0
47 70 1/232 ·1392 ·823970872 ·124511968332

53 92 0
59 117 1/292 ·592 ·99885536136913938123587942712

61 126 0
67 155 0
71 176 1/52 ·72 ·312 ·1132 ·2112 ·2812 ·7014 ·127132·

130708499192256557290612

J1(p) Torsion Bound

11 5
13 19
17 23 ·73
19 32 ·487
23 11·37181
29 212 ·3·7·43·17837
31 22 ·52 ·7·11·2302381
37 32 ·5·7·19·37·73·577·17209
41 24 ·5·13·312 ·431·250183721
43 22 ·7·19·29·463·1051·416532733
47 23·139·82397087·12451196833
53 7·13·85411·96331·379549·641949283
59 29·59·9988553613691393812358794271
61 5·72 ·112 ·19·31·2081·2801·40231·411241·514216621
67 11·67·193·6612 ·2861·8009·11287·9383200455691459
71 5·7·31·113·211·281·7012 ·12713 · 13070849919225655729061
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Table 2: Arithmetic of JH(p)

p d dim L = c · L(JH , 1)/Ω T = Torsion Bound T 2L |Φ(JH)|
11 1 1 1/5 5 5 5
13 1 0 1 1 1 1

2 0 1 1 1 1
3 0 1 1 1 1

17 1 1 1/22 22 22 22

2 1 1/23 22 2 2
4 1 1/24 22 1 1

19 1 1 1/3 3 3 3
3 1 1/32 3 1 1

23 1 2 1/11 11 11 11
29 1 2 1/7 7 7 7

2 4 1/32 ·7 3·7 7 7
7 8 1/26 ·72 ·432 26 ·7·43 26 1

31 1 2 1/5 5 5 5
3 6 1/24 ·5·72 22 ·5·7 5 5
5 6 1/54 ·112 52 ·11 1 1

37 1 2 0 3 0 3
2 4 0 3·5 0 3
3 4 0 3·7 0 1
6 10 0 3·5·7·37 0 1
9 16 0 32 ·7·19·577 0 1

41 1 3 1/2·5 2·5 2·5 2·5
2 5 1/26 ·5 23 ·5 5 5
4 11 1/28 ·5·132 24 ·5·13 5 5
5 11 1/2·52 ·4312 2·5·431 2 2
10 21 1/26 ·52 ·314 ·4312 23 ·5·312 ·431 1 1
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Table 3: Arithmetic of JH(p) (continued)

p d dim L = c · L(JH , 1)/Ω T = Torsion Bound T 2L |Φ(JH)|
43 1 3 0 7 0 7

3 9 0 22 ·7·19 0 7
7 15 0 7·29·463 0 1

47 1 4 1/23 23 23 23
53 1 4 0 13 0 13

2 8 0 7·13 0 13
13 40 0 13·96331·379549 0 1

59 1 5 1/29 29 29 29
61 1 4 0 5 0 5

2 8 0 5·11 0 5
3 12 0 5·7·19 0 5
5 16 0 5·2801 0 1
6 26 0 5·72 ·11·19·31 0 5
10 36 0 5·112 ·2081·2801 0 1
15 56 0 5·7·19·2801· 0 1

514216621
67 1 5 0 11 0 11

3 15 0 11·193 0 11
11 45 0 11·661·2861·8009 0 1

71 1 6 1/5·7 5·7 5·7 5·7
5 26 1/52 ·7·312 ·2112 5·7·31·211 7 7
7 36 1/5·72 ·1132 ·127132 5·7·113·12713 5 5
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Table 4: Arithmetic of Optimal Quotients Af of J1(p)

Af dim ord(ε) L = c · L(Af , 1)/Ω T 2L modular kernel
11A 1 1 1/52 1 []
13A 2 6 1/192 1 []
17A 1 1 1/24 1 [22]
17B 4 8 1/22 ·732 1 [22]
19A 1 1 1/32 1 [32]
19B 6 9 1/32 ·4872 1 [32]
23A 2 1 1/112 1 [112]
23B 10 11 1/371812 1 [112]
29A 2 2 1/32 1 [144]
29B 2 1 1/72 1 [22142]
29C 6 7 1/26 ·432 26 [210142]
29D 12 14 1/26 ·178372 26 [28144]
31A 2 1 1/52 1 [32152]
31B 4 5 1/52 ·112 1 [36152]
31C 4 3 1/24 ·72 1 [54154]
31D 16 15 1/23023812 1 [158]
37A 1 1 1/32 1 [122]
37B 1 1 0 0 [362]
37C 2 2 2/52 2 [184]
37D 2 3 3/72 3 [62182]
37E 4 6 1/372 1 [34184]
37F 6 9 3/5772 3 [26621024]
37G 6 9 1/32 ·192 1 [283421022]
37H 18 18 1/732 ·172092 1 [212612]
41A 2 2 1/24 1 [204]
41B 3 1 1/22 ·52 1 [22204]
41C 6 4 1/22 ·132 1 [521010]
41D 8 10 1/314 1 [412204]
41E 8 5 1/4312 1 [412204]
41F 24 20 1/2501837212 1 [2201012]
43A 1 1 0 0 [422]
43B 2 1 2/72 2 [32422]
43C 2 3 3/24 3 [3521052]
43D 4 3 1/192 1 [741054]
43E 6 7 1/292 1 [383922732]
43F 6 7 7/4632 7 [383922732]
43G 36 21 1/10512 ·4165327332 1 [3122112]
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Table 5: Arithmetic of Optimal Quotients Af of J1(p) (continued)

Af dim ord(ε) L = c · L(Af , 1)/Ω T 2L modular kernel
47A 4 1 1/232 1 [236]
47B 66 23 1/1392 ·823970872· 1 [236]

124511968332

53A 1 1 0 0 [522]
53B 3 1 2/132 2 [22262522]
53C 4 2 2/72 2 [268]
53D 36 13 13/963312 ·3795492 13 [266266]
53E 48 26 1/854112 ·6419492832 1 [264268]
59A 5 1 1/292 1 [298]
59B 112 29 1/592· 1 [298]

99885536136913938123587942712

61A 1 1 0 0 [602]
61B 2 6 0 0 [554]
61C 3 1 2/52 2 [62302602]
61D 4 2 2/112 2 [308]
61E 8 3 3/72 ·192 3 [108308]
61F 8 6 112/72 ·312 112 [1083043304]
61G 12 5 5/28012 5 [618306]
61H 16 10 1/112 ·20812 1 [38616308]
61I 32 15 1/5142166212 1 [240683016]
61J 40 30 52/402312 ·4112412 52 [2326123020]
67A 1 1 1 1 [1652]
67B 2 1 22/112 22 [623302]
67C 2 1 0 0 [664]
67D 10 11 11/28612 11 [31675212827312]
67E 10 3 32/1932 32 [11103310]
67F 10 11 1/6612 1 [31646232508532]
67G 20 11 11/80092 11 [3362409994]
67H 100 33 1/672 ·6612 ·112872· 1 [3603320]

93832004556914592

71A 3 1 1/72 1 [523523152]
71B 3 1 1/52 1 [723523152]
71C 20 5 1/312 ·2112 1 [7303510]
71D 30 7 1/1132 ·127132 1 [5503510]
71E 120 35 1/2812 ·7014· 1 [5203540]

130708499192256557290612
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Abstract. In this paper we employ enriched category theory to
construct a convenient model for several stable homotopy categories.
This is achieved in a three-step process by introducing the pointwise,
homotopy functor and stable model category structures for enriched
functors. The general setup is shown to describe equivariant stable
homotopy theory, and we recover Lydakis’ model category of simpli-
cial functors as a special case. Other examples – including motivic
homotopy theory – will be treated in subsequent papers.
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1 Introduction

An appropriate setting to study stable phenomena in algebraic topology is
the stable homotopy theory of spectra described in [1]. More recently, much
research has been focused on rebuilding the foundation of stable homotopy
theory. There are now several equivalent model categories to study structured
ring spectra and their modules. These frameworks are important in many
aspects and make powerful tools from algebra applicable to “brave new rings”.
For the purpose of this paper, the relevant constructions are those of symmetric
spectra [9] and simplicial functors [11].

In [8], Hovey considers the notion of spectra for general model categories. This
level of generality allows one to use techniques from stable homotopy theory
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in traditionally unrelated subjects. Of particular interest, where further ap-
plications are expected, is algebraic geometry and Voevodsky’s motivic stable
homotopy category [16]. We are interested in an approach to this subject where
all coherence problems which arise when one tries to make a smash product
are encoded in the underlying category. This is different from the popular
means of attack through symmetric spectra, where the controlling categories
are much more restricted. Our point of view is analogous to Lydakis’ work
[11] on simplicial functors as a model for ordinary spectra. But the theory we
develop here is complicated by the fact that we do not assume properties which
are particular to simplicial sets. Let us state a tentative version of the main
theorem in this paper. Due to their technical nature, we defer on listing all the
required assumptions. The basic input is a monoidal model category V and a
finitely presentable cofibrant object T in V, the 1-sphere. See Sections 6 and 7
for precise statements.

Theorem 1. There is a monoidal model category (F ,∧, I) which satisfies the
monoid axiom, and a right Quillen equivalence from F to the stable model
category of T -spectra.

A T -spectrum is a sequence (E0, E1, . . .) of objects in V together with structure
maps T ⊗ En

- En+1. An object in F is a functor X from a category of
finitely presentable objects in V to V, which is “continuous” or enriched in the
sense that for finitely presentable objects v and w there is a natural map

v ⊗ X(w) - X(v ⊗ w).

Using this map, it follows that any enriched functor yields a T -spectrum by
evaluating at spheres T⊗n. We show that the induced functor from F to the
category of T -spectra is a right Quillen equivalence. The monoidal structure is
a special case of a result due to Day [4]. By construction, the sphere spectrum
or unit I is the inclusion of the subcategory of finitely presentable objects.
For V the category of simplicial sets, Lydakis [11] has shown that F models
the classical stable homotopy category. Our theorem extends this result to
a wide range of model categories. In the sequel [5] we construct a model for
Voevodsky’s motivic stable homotopy category. Motivic cohomology has a
natural description as an algebra in this model. The monoid axiom implies
that also categories of algebras and modules in F have model structures [15].

As a guide to this paper, it seems appropriate to summarize the content of each
section. In Section 2 we recall categorical precursors and Day’s smash product
for enriched functors. This material is included to make the paper reason-
ably self-contained and to set notation. Next we record a general isomorphism
between enriched functor categories build from spheres and symmetric spec-
tra. Moreover, under this isomorphism the corresponding smash products are
shown to agree. Section 3 recalls some frequently used notions in homotopical
algebra. An expert could skip most of this part. We introduce a class of model
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categories dubbed weakly finitely generated and show that weak equivalences
and fibrant objects are closed under filtered colimits. Such a model structure
is cofibrantly generated, with additional finiteness conditions on the generat-
ing cofibrations and acyclic cofibrations which are satisfied in many cases of
interest. This introductory part ends with a discussion of fibrant replacement
functors. Quillen’s small object argument is the usual device for replacing ob-
jects in a model category by fibrant objects. Some modifications are necessary
in the enriched setting. If the monoid axiom holds and the model category
is weakly finitely generated, we construct enriched fibrant replacements. Our
constructions are primarily of a technical interest and might be omitted on a
first cursory reading. However, we should remark that much of the following
relies on this input.
In the remaining sections we study homotopical algebra for enriched functor
categories. First we construct the pointwise model structure where the fibra-
tions and weak equivalences are defined pointwise. This gives an example of
a weakly finitely generated model structure provided some weak assumptions
are satisfied. In many cases of interest, we prove the monoid axiom and that
smashing with a cofibrant object preserves weak equivalences. The latter re-
sult requires further assumptions on F , and is similar to the algebraic fact that
tensoring with a projective module preserves short exact sequences. These two
results are important for the model structures we construct later on.
One drawback with the pointwise model structure is that it has far too many

homotopy types. For example, a weak equivalence v
∼- w does not neces-

sarily induce a pointwise weak equivalence V(w,−) - V(v,−) on the level
of representable functors. However, for all fibrant objects u in V the map
V(w, u) - V(v, u) is a weak equivalence. We therefore enlarge the class of
pointwise weak equivalences by looking at fibrant objects as input only. The re-
sult is the homotopy functor model structure which has the same cofibrations as
the pointwise model structure. The fibrant functors are precisely the pointwise
fibrant functors which preserve weak equivalences, thus any enriched functor
is weakly equivalent in the homotopy functor model structure to a homotopy
functor. It seems to be of considerable interest to discuss a motivic version of
Goodwillie’s calculus of functors. Let us remark that the homotopy functor
model structure is a first step in this direction.
In Section 6, the stable model structure is constructed by means of a general sta-
bilization process. Theorem 6.26 lists conditions for the stable model structure
to exist. The stable fibrations are characterized by pointwise homotopy pull-
back squares, and stable acyclic fibrations are precisely the pointwise acyclic
fibrations. To prove these results we compare with spectra [8]. The stabiliza-
tion we use does not coincide with the usual stabilization for spectra, and it
requires some cruel details to compare them. These can be found in Appendix
A. We note that the monoid axiom holds under an additional assumption on
the source of the functor category. For a particular choice of the source cate-
gory, which is explained in Section 7, the evaluation functor is the right adjoint
in a Quillen equivalence. It follows that the highly structured category of en-

Documenta Mathematica 8 (2003) 409–488



412 B. I. Dundas, O. Röndigs, P. A. Østvær

riched functors describes the same homotopy theory as spectra in many cases
of interest. In Section 8, we give a short summary of the important algebraic
consequences of the previous sections.
In the last section we discuss equivariant homotopy theory for finite groups and
we prove the following theorem. The general machinery gives deeper structure
than stated, but we refer the reader to Section 9 for more details.

Theorem 2. Let G be a finite group. Then there is a monoidal model category
(GF ,∧, SG) satisfying the monoid axiom and a right Quillen equivalence from
GF to the category of G-spectra.

The general framework may seem abstract, but we obtain a common footing
for applications. A project in progress suggests that the approach anticipated
in the present paper is relevant for the theory of motives. We hope the reader
finds results herein which he or she can prove to have further applications.

2 Enriched Categories

This section contains an introduction to enriched categories, Day’s work on
enriched functor categories [4], and simplicial homotopies in categories enriched
over simplicial sets. In the last part we show that spectra and symmetric
spectra are isomorphic to enriched functor categories build from spheres.

2.1 Introduction

Entry points to the literature on enriched category theory include [2] and [12].
A monoidal category consists of a category V, and

• a functor ⊗:V × V - V and natural associativity isomorphisms

αA,B,C : (A ⊗ B) ⊗ C - A ⊗ (B ⊗ C)

subject to the coherence law [2, 6.1],

• an object e of V called the unit, and natural unit isomorphisms

lA: e ⊗ A - A and rA:A ⊗ e - A

such that [2, 6.2] holds.

The functor ⊗ is the tensor or monoidal product of V. A monoidal category is
symmetric monoidal if there is a natural isomorphism σA,B :A⊗B - B⊗A
subject to the coherence laws [2, 6.3, 6.4, 6.5]. A symmetric monoidal category
(V,⊗, e) is closed if there exists a right adjoint HomV(A,−):V - V to
the endofunctor − ⊗ A for every object A of V. The categories of sets Set

and pointed sets Set∗ are both closed symmetric monoidal categories. Let ∆
denote the simplicial category. Its objects are the finite ordered sets [n] =
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{0 < 1 < · · · < n} for n ≥ 0, and morphisms are order-preserving maps.
Consider sSet = Fun(∆op,Set), the category of simplicial sets. Its monoidal
product is the categorical product, formed degree-wise in Set. If K,L ∈ sSet,
the simplicial set of maps HomsSet(K,L) has n-simplices the set of maps from
K ×∆n to L. Here ∆n is the simplicial set represented by [n]. The unit of the
product is the terminal object ∆0.
Let (V,⊗, e) be a closed symmetric monoidal category. Then a V-category C,
or a category enriched over V, consists of a class Ob C of objects and

• for any pair (a, b) of objects in C, an object VC(a, b) of V called the V-
object of maps in C,

• a composition VC(b, c) ⊗ VC(a, b) - VC(a, c), an identity or unit map
e - VC(a, a) subject to the associativity and unit coherence laws listed
in [2, 6.9 and 6.10].

Categories in the usual sense are the Set-categories. If C is a category, let
SetC(a, b) denote the set of maps in C from a to b. A closed symmetric monoidal
category V is a V-category due to its internal Hom objects [2, 6.2.6]. Let
V(A,B) denote the V-object HomV(A,B) of maps in V. Any V-category C
defines a Set-category UC. Its class of objects is Ob C, the morphism sets are
SetUC(a, b) = SetV(e,VC(a, b)). For example, the Set-category obtained from
a sSet-category C has morphism sets SetsSet(∆

0, sSetC(a, b)) = sSetC(a, b)0
the zero-simplices of the simplicial sets of maps.
A V-functor F from C to D is an assignment from Ob C to ObD together with
morphisms homF

a,b:VC(a, b) - VD(F (a), F (b)) in V which preserve compo-
sition and identities. A small sSet-category defines a simplicial object in the
category Cat of small categories. With this description, a sSet-functor is a
natural transformation of functors from ∆op to Cat [11, 3.2].
If F and G are V-functors from C to D, a V-natural transformation t:F - G
consists of the following data: There is a morphism t(a):F (a) - G(a) in
UD for every a ∈ Ob C, and all the diagrams of the following form commute.

VC(a, b)
homF

a,b - VD(F (a), F (b))

VD(G(a), G(b))

homG
a,b

? VD(t(a),G(b))- VD(F (a), G(b))

VD(F (a),t(b))
?

The V-natural isomorphisms and V-adjoint pairs of V-functors are defined as
for V = Set. The adjoint pair of endofunctors (−⊗A,V(A,−)) on V explicate a
V-adjoint pair. Denote the unit of the adjunction by ηA: IdV - V(A,−⊗A),
and the counit by εA:V(A,−) ⊗ A - IdV . Details concerning hom−⊗A and

homV(A,−) can be found in Appendix A.
Note that any V-functor F : C - D gives a functor UF :UC - UD with the
same effect on objects as F , and similarly for V-natural transformations. That
is, one can consider U as a 2-functor from the 2-category of small V-categories,
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V-functors and V-natural transformations to the 2-category of small categories,
functors and natural transformations. A V-category C is called small provided
UC is small. In fact, U is the base change along the lax symmetric monoidal
functor SetV(e,−):V - Set, see [2, 6.4]. If no confusion can arise, we will
omit U from the notation.
The monoidal product C ⊗ D of two V-categories C and D is the V-category
where Ob (C⊗D) := Ob C×ObD and VC⊗D((a, x), (b, y)) := VC(a, b)⊗VD(x, y).
Note that the monoidal product in V induces a V-functor mon:V ⊗ V - V.
A V-category C is a right V-module if there is a V-functor act: C ⊗ V - C,
denoted (c,A) - c®A and a V-natural unit isomorphism rc: act(c, e) - c
subject to the following conditions.

• There are natural coherent associativity isomorphisms

act(c,A ⊗ B) - act(act(c,A), B).

• The isomorphisms act(c, e ⊗ A)
-- act(c,A) coincide.

A right V-module (C, act, r) is closed if there is a V-functor

coact:Vop ⊗ C - C

such that for all A ∈ ObV and c ∈ Ob C, the V-functor act(−, A): C - C
is left V-adjoint to coact(A,−) and act(c,−):V - C is left V-adjoint to
VC(c,−).
A monoidal V-category consists of a V-category C equipped with a V-functor
¦: C⊗C - C, a unit u ∈ Ob C, a V-natural associativity isomorphism and two
V-natural unit isomorphisms satisfying the conditions mentioned for V = Set.
Symmetric monoidal and closed symmetric monoidal V-categories are defined
similarly.

2.2 Categories of enriched functors

If C is a small V-category, V-functors from C to V and their V-natural transfor-
mations form the category [C,V] of V-functors from C to V. If V is complete,
then [C,V] is also a V-category. Denote this V-category by F(C), or F if no
confusion can arise. The morphism V-object VF (X,Y ) is the end

∫

Ob C
V(X(c), Y (c)).

See [2, 6.3.1] for details. Note that UF is [C,V]. One can compare F with C and
V as follows: Given c ∈ Ob C, X - X(c) defines the V-functor Evc:F - V
called “evaluation at c”. The assignment c - VC(c,−) from C to F is again
a V-functor Cop - F , called the V-Yoneda embedding [2, 6.3.6]. VC(c,−) is
a representable functor, represented by c.
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Lemma 2.1 (Enriched Yoneda lemma). Let V be a complete closed sym-
metric monoidal category and C a small V-category. For every V-functor
X: C - V and every c ∈ Ob C, there is a V-natural isomorphism X(c) ∼=
VF (VC(c,−),X).

The isomorphism in 2.1 is called the Yoneda isomorphism [2, 6.3.5]. It follows
from 2.1 that every V-functor can be expressed as a colimit of representable
functors [2, 6.6.13, 6.6.17]:

Lemma 2.2. If V is a bicomplete closed symmetric monoidal category and C is
a small V-category, then [C,V] is bicomplete. (Co)limits are formed pointwise.

Corollary 2.3. Assume V is bicomplete, and let C be a small V-category.
Then any V-functor X: C - V is V-naturally isomorphic to the coend

∫ Ob C
VC(c,−) ⊗ X(c).

See [2, 6.6.18] for a proof of 2.3.

Proposition 2.4. Let V be a closed symmetric monoidal category, and let C
be a small V-category. Then F is a closed V-module.

Proof. There is an obvious “pointwise” closed V-module structure. The V-
functor F ⊗ V - F defined by (X,A) - (−⊗A) ◦X gives the action of
V on F . Next, the assignment (A,X) - V(A,−) ◦ X defines the coaction.
There are V-natural isomorphisms VF ((−⊗A)◦X,Y ) ∼= VF (X,V(A,−)◦Y ) ∼=
V(A,VF (X,Y )) induced from the natural closed V-module structure on V.
From this, a routine check finishes the proof.

Recall the notion of left Kan extensions:

Proposition 2.5. Fix a bicomplete closed symmetric monoidal category V, and
a V-functor F : C - D of small V-categories. For any V-functor X: C - V,
there exists a V-functor F∗(X):D - V and a V-natural isomorphism

VF(D)(F∗X,Y ) ∼= VF(C)(X,Y ◦ F ).

In other words, there exists a V-adjoint pair of V-functors

F∗:F(C)
-¾ F(D):F ∗

where F ∗ denotes pre-composition with F .

See [2, 6.7.7] for a proof of 2.5. The V-functor F∗X is the left Kan extension
of X along F . An explicit expression is given by the coend

F∗X =

∫ Ob C
VD(F (c),−) ⊗ X(c).
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2.3 Smash product of enriched functors

Let (C, ¦, u) be a small symmetric monoidal V-category where V is bicomplete.
In [4], B. Day constructed a closed symmetric monoidal product ∧ on the
category [C,V] of V-functors from C to V. For X,Y ∈ Ob [C,V], there is the
V-functor

X∧Y : C ⊗ C X⊗Y- V ⊗ V mon- V.

The smash product X ∧ Y ∈ Ob [C,V] is the left Kan extension

¦∗(X∧Y ) =

∫ Ob (C⊗C)

VC(c ¦ d,−) ⊗ (X(c) ⊗ Y (d)): C - V.

The next result is a special case of [4, 3.3], cf. [4, 3.6, 4.1].

Theorem 2.6 (Day). Let (V,⊗, e) be a bicomplete closed symmetric monoidal
category and (C, ¦, u) a small symmetric monoidal V-category. Then the cate-
gory ([C,V],∧,VC(u,−)) is closed symmetric monoidal.

The V-category F of V-functors from C to V is also a closed symmetric monoidal
V-category. The internal Hom functor, right adjoint to − ∧ X, is given by

F(X,Y )(c) = VF (X,Y (c ¦ −)) =

∫

d∈Ob C
V(X(d), Y (c ¦ d)).

Concerning smash products of representable functors, one has the following
result.

Lemma 2.7. The smash product of representable functors is again repre-
sentable. There is a natural isomorphism VC(c,−) ∧ VC(d,−) ∼= VC(c ¦ d,−).

In the following, a sub-V-category means a sub-V-category of V. We use 2.7
to define assembly maps if C is a full sub-V-category containing the unit and
closed under the monoidal product. In this case, the inclusion I: C ⊂ - V
can be chosen as the unit of [C,V]. The composition X ◦ Y of two V-functors
X,Y : C - V is given by I∗X ◦ Y . Up to coherent natural isomorphisms, the
composition is associative with unit I.

Corollary 2.8. Given functors X and Y in [C,V], there exists a natural
assembly map X ∧ Y - X ◦ Y = I∗X ◦ Y which is an isomorphism if Y is
representable.

Proof. One can define the assembly map objectwise via the composition

I∗X(c) ⊗ Y (d)
swI∗X

Y (d)
(c)
- I∗X(Y (d) ⊗ c)

I∗X(swY
c (d))- I∗X(Y (c ⊗ d))

where swZ
c :Z ⊗ c - Z(c⊗−) is ‘the’ natural map described in Appendix A.

Here is another description via representable functors. Suppose X = V(c,−)
and Y = V(d,−), for c, d ∈ Ob C. By 2.7, X ∧ Y is naturally isomorphic to
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V(c ⊗ d,−), i.e. to V(c,−) ◦ V(d,−). If X is arbitrary, it follows from 2.3 that
X ∧ V(d,−) is naturally isomorphic to I∗X ◦ V(d,−). If also Y is arbitrary,
apply 2.3 and consider the natural map

∫ Ob C
(I∗X ◦ V(c,−)) ⊗ Y (c) - I∗X ◦

∫ Ob C
V(c,−) ⊗ Y (c).

2.4 Categories enriched over simplicial sets

A functor F :V - W of monoidal categories (V,⊗, e) and (W,⊗′, e′) is lax
monoidal if there is a natural transformation tA,B :F (A)⊗′F (B) - F (A⊗B)
and a morphism e′ - F (e), such that the diagrams [2, 6.27, 6.28] commute.
The word “lax” is replaced by “strict” if tA,B is a natural isomorphism and
e′ - F (e) is an isomorphism. F is lax symmetric monoidal if tB,A◦σFA,FB =
F (σA,B) ◦ tA,B . In this case, every W-category is a V-category by [2, 6.4.3].
We used this fact for the forgetful 2-functor U induced by SetV(e,−). The
assembly map makes Id[C,V] into a lax monoidal functor from the monoidal
category ([C,V], ◦, I) to the closed symmetric monoidal category ([C,V],∧, I).
Suppose that F : sSet - V is a lax symmetric monoidal functor. One can
then lift the notion of simplicial homotopy equivalence from sSet-categories to
V-categories.

Definition 2.9. Let C be a sSet-category and f, f ′:∆0 - sSetC(c, d) maps
in C. Then H:∆1 - sSetC(c, d) is a simplicial homotopy from f to f ′ if the
following diagram commutes, where i0 and i1 are the canonical inclusions.

∆0 i0 - ∆1 ¾ i1
∆0

sSetC(c, d)

H
?¾ f

′f -

The map f is called a simplicial homotopy equivalence if there exists a map
g:∆0 - sSetC(d, c), and simplicial homotopies from g ◦ f to idc and from
f ◦ g to idd. Let the symbol ' denote simplicial homotopy equivalences.

Simplicial homotopy equivalence is in general not an equivalence relation.
If C is a closed sSet-module with action (c,K) - c ® K and coac-
tion (c,K) - cK , a simplicial homotopy may also be described by maps

c®∆1 - d or c - d∆1

. If C has pushouts, the simplicial mapping cylin-
der factors any map f as follows: Let Cf denote the pushout of the diagram

c ® ∆1 ¾c®i1
c ® ∆0 ¾∼=

c
f- d.

The maps c ® ∆1 c®s- c ® ∆0
∼=- c

f- d and idd : d - d induce the
simplicial homotopy equivalence pf :Cf

- d. Its homotopy inverse is the
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canonical map. Denote the composition c - c ® ∆0 c®i0- c ® ∆1 - Cf

by if : c - Cf . Note the factorization pf ◦ if = f . The relevance of this will
become clear in the context of simplicial model categories. In this case, if is a
cofibration provided c is cofibrant. It is easy to prove the next result.

Lemma 2.10. A sSet-functor preserves simplicial homotopies, and therefore
simplicial homotopy equivalences.

Corollary 2.11. Assume F : sSet - V is a lax monoidal functor. Then
any V-functor preserves simplicial homotopy equivalences.

2.5 Spectra as enriched functors

Let (V,⊗, e) denote a bicomplete closed symmetric monoidal category with
initial object ∅. For T ∈ ObV, one can consider T -spectra in V, see [8, 1.1]. A
T -spectrum E is a sequence E0, E1, · · · of objects in V, together with structure
maps en:En ⊗ T - En+1 for all n. If E and F are T -spectra, a map of
T -spectra g:E - F is a collection of maps gn:En

- Fn such that

En ⊗ T
en- En+1

Fn ⊗ T

gn⊗T

?
fn- Fn+1

gn+1

?

commutes for all n. Thus T -spectra in V form a category Sp(V, T ), see [8, 1.3].
We claim Sp(V, T ) can be viewed as an enriched functor category, cf. [11, 4.3].
Its domain category is the V-category TSph. The objects in TSph are the
objects Tn for n ≥ 0, where T 0 = e and Tn := T ⊗ Tn−1 for n > 0. The
V-objects of morphisms are VTSph(Tm, Tn) := Tn−m for n ≥ m ≥ 0 and
VTSph(Tm, Tn) := ∅ for n < m. Note that there are canonical unit maps
idT 0 :T 0 - VTSph(Tn, Tn) for all n ≥ 0. It remains to describe the compo-
sition. For k, l,m ≥ 0, the map

VTSph(T l+m, T k+l+m) ⊗ VTSph(Tm, T l+m) - VTSph(Tm, T k+l+m)

is the associativity isomorphism αk,l:T
k ⊗ T l - T k+l. In all other cases,

the composition is uniquely determined. It follows that TSph is a V-category,
using the associativity and unit coherence laws in V.
To elaborate on this definition, let us describe a V-functor π:TSph - V.
Define π to be the identity on objects. Concerning morphisms, it suffices to
give homπ

T m,T k+m :VTSph(Tm, T k+m) - V(Tm, T k+m) for k,m ≥ 0, which
we choose as

ik,m:T k ηT mT k

- V(Tm, T k ⊗ Tm)
V(T m,αk,m)- V(Tm, T k+m).

Associativity coherence and a calculation with adjoints imply that the compo-

sition T k⊗T l αk,l- T k+l ik+l,m- V(Tm, T k+l+m) is the same as the composition
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T k ⊗ T l ik,l+m⊗il,m- V(T l+m, T k+l+m) ⊗ V(Tm, T l+m)
comp- V(Tm, T k+l+m).

Hence π preserves composition, and it clearly preserves identites. In our cases
of interest, the maps ηT mT k are monomorphisms so that TSph can be regarded
as a sub-V-category.

Proposition 2.12. The categories Sp(V, T ) and [TSph,V] are isomorphic.

Proof. Let X:TSph - V be a V-functor. Define Ψ(X) to be the spectrum
with Ψ(X)n := X(Tn) and structure maps Ψ(X)n ⊗ T - Ψ(X)n+1 adjoint
to T = VTSph(Tn, Tn+1) - V(X(Tn),X(Tn+1)). If f :X - Y is a V-
natural transformation, let Ψ(f)n := f(Tn):X(Tn) - Y (Tn). The diagram

X(Tn) ⊗ T - X(Tn+1)

Y (Tn) ⊗ T

f(T n)⊗T
?

- Y (Tn+1)

f(T n+1)
?

commutes by V-naturality, and Ψ respects identities and composition.
Define Φ:TSph - V by Φ(E)(Tn) := En. If n = m + k, m ≥ 0 and

k ≥ 1, hom
Φ(E)
T m,T n :T k = VTSph(Tm, Tn) - V(Em, En) is the adjoint of

the composition Em ⊗ T k
α−1

Em,T,T k−1- (Em ⊗ T ) ⊗ T k−1 em⊗T k−1

- Em+1 ⊗
T k−1 - · · · - En. The maps hom

Φ(E)
T n,T n are determined by the property

that Φ(E) has to preserve identities. To prove that Φ(E) is a V-functor, it
remains to note that

T k ⊗ T l αk,l - T k+l

V(El+m, Ek+l+m) ⊗ V(Em, El+m)

hom
Φ(E)

T l+m,T k+l+m
⊗hom

Φ(E)

T m,T l+m?
comp- V(Em, Ek+l+m)

hom
Φ(E)

T m,T k+l+m?

commutes for m ≥ 0 and k, l ≥ 1. This uses εEm
(−⊗Em)◦ηEm

⊗Em = id−⊗Em
,

associativity coherence, and associativity of composition in V. If g is a map,
let Φ(g)(Tn) be gn. Then Φ(g) is V-natural, and functoriality of Φ follows.
Note that Φ(Ψ(X)) = X on objects, i.e. for all powers of T . The structure maps
of X and Φ(Ψ(X)) coincide, since the adjointness isomorphism that defines
the structure maps of Φ(Ψ(X)) is inverse to the adjointness isomorphism that
defines the structure maps of Ψ(X). The equality Φ(Ψ(f)) = f is obvious,
hence Φ ◦ Ψ is the identity functor. Likewise, one finds Ψ ◦ Φ = IdSp(V,T ).

Remark 2.13. In the following, we will identify Sp(V, T ) with [TSph,V] via
2.12. Then Sp(V, T ) is a closed V-module by 2.4. A consequence of A.1 is that
the functor “suspension with T” obtained from the action of V on Sp(V, T ) can
also be defined as the prolongation [8, 1.5] of the functor −⊗T :V - V using
the natural transformation t: (−⊗ T ) ◦ (−⊗ T ) - (−⊗ T ) ◦ (−⊗ T ), which
twists the factors. In detail, the latter is defined by the coherence isomorphism
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(A⊗T )⊗T
αA,T,T- A⊗(T ⊗T )

A⊗σT,T- A⊗(T ⊗T )
α−1

A,T,T- (A⊗T )⊗T. Another
functor “suspension with T” – which we denote by ΣT – is obtained as the
prolongation of −⊗T using the identity natural transformation id(−⊗T )◦(−⊗T ).
If X:TSph - V is a V-functor, then the nth structure map in the associated
spectrum of X ⊗ T is the left hand side composition in the following diagram.

(Xn ⊗ T ) ⊗ T

T ⊗ (Xn ⊗ T )
α−1

T,Xn,T -¾
σXn

⊗T,T

(T ⊗ Xn) ⊗ T

σ
X

n ,T ⊗T

-

V(Xn, Xn+1) ⊗ (Xn ⊗ T )

homX
n,n+1⊗(Xn⊗T )

? α−1
V(Xn,Xn+1),Xn,T- (V(Xn, Xn+1) ⊗ Xn) ⊗ T

(homX
n,n+1⊗Xn)⊗T

?

V(Xn ⊗ T, Xn+1 ⊗ T ) ⊗ (Xn ⊗ T )

hom−⊗T
Xn,Xn+1 ?

εXn⊗T (Xn+1⊗T ) - Xn+1 ⊗ T

(εXn Xn+1)⊗T

?

The right hand side composition is the structure map of the spectrum ΣT X.
The lower square commutes by A.1, the middle square commutes by naturality,
but the triangle does not commute in general. This will cause some complica-
tions in our comparison of stable model categories, cp. Section 6.

The monoidal product ⊗ defines a V-functor mon:V ⊗ V - V where

hommon
(A1,A2)(B1,B2):V(A1, B1) ⊗ V(A2, B2) - V(A1 ⊗ A2, B1 ⊗ B2)

is the adjoint of the composition

V(A1, B1) ⊗ V(A2, B2) ⊗ A1 ⊗ A2

V(A1, B1) ⊗ A1 ⊗ V(A2, B2) ⊗ A2

V(A1,B1)⊗ σV(A2,B2),A1
⊗A2

?

B1 ⊗ B2.

εA1
B1⊗ εA2

B2

?

Now suppose that the symmetric monoidal product in V induces a V-functor
mon:TSph ⊗ TSph - TSph. On objects we have that mon(T k, T l) =
T k ⊗ T l = T k+l, while for V-objects of morphisms there is a map f from
VTSph(Tm, T k⊗Tm)⊗VTSph(Tn, T l⊗Tn) to VTSph(Tm⊗Tn, T k⊗Tm⊗T l⊗Tn)
rendering the following diagram commutative.

T k ⊗ T l f - T k ⊗ T l

V(Tm, T k ⊗ Tm) ⊗ V(Tn, T l ⊗ Tn)

ηT mT k⊗ηT nT l

?
hommon

- V(Tm ⊗ Tn, T k ⊗ Tm ⊗ T l ⊗ Tn)

ηT m⊗T n (T k⊗T l)
?
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Reverting to adjoints, a straightforward calculation shows that the maps

T k+l+m+n = T k⊗T l⊗Tm⊗Tn
f⊗T m⊗T n

-
T k⊗σ

T l,T m⊗T n
- T k⊗Tm⊗T l⊗Tn = T k+l+n+m

must coincide. This is only possible if σT,T = idT 2 and f = id. In other words,
the product ⊗ does not necessarily restrict to a monoidal product of TSph via
π:TSph - V. In the next section, we show – following [11, 5.15] – how to
remedy this by enlarging TSph.

2.6 Symmetric spectra as enriched functors

For ease of notation, we will leave out associativity and unit isomorphisms
throughout this section. If n ≥ 1, let n be short for {1, · · · , n} and let 0 denote
the empty set. Let Inj be the category with objects the sets n for all n ≥ 0,
and injective maps as morphisms. If m ≤ n, define

Inj(m,n) :=
∐

SetInj(m,n)

T 0

where T 0 is the unit of V. Note that Inj(n, n) is a group object in V, the
symmetric group on n letters. By regarding Inj(n, n) as a V-category with a
single object, a left Inj(n, n)-action on A ∈ ObV is a V-functor Inj(n, n) - V
with value A. One gets a left Inj(n, n)-action on Tn = Tn ⊗ · · · ⊗T2 ⊗T1 using
iterations of the commutativity isomorphism σT,T .
A symmetric T -spectrum X in V as defined in [8, 7.2] consists of a sequence
X0,X1, · · · ,Xn, · · ·, where Xn is an object of V with a left Inj(n, n)-action, and
with structure maps Xn ⊗ T - Xn+1 such that the following composition
Xn ⊗ Tm - Xn+1 ⊗ Tm−1 - · · · - Xn+m is Inj(n, n) ⊗ Inj(m,m)-
equivariant. A map of symmetric T -spectra consists of maps Xn

- Yn that
are compatible with the Inj(n, n)-action and the structure maps. We will show
that the category SpΣ(V, T ) of symmetric T -spectra in V is isomorphic to a
category of V-functors with codomain V and domain TSphΣ.
The objects in TSphΣ are the objects in TSph, but the morphism objects are
different. If n = k + m with m ≥ 0, k ≥ 0, define the V-object VTSphΣ(Tm, Tn)

to be Inj(m,n)⊗T k. If n < m, define VTSphΣ(Tm, Tn) to be the initial object.
The unit map T 0 - Inj(n, n) = VTSphΣ(Tn, Tn) is the canonical map to the
summand corresponding to idn. Next, to describe the composition, identify
Inj(m, k + m) ⊗ T k indexed by β:m - k + m with Tiβ

1
⊗ · · · ⊗ Tiβ

k
= T k.

Here {iβ1 , iβ2 , · · · , iβk} is the reordering of k + m \β(m) which satisfies that iβ1 >

iβ2 > · · · > iβk . If n = k + l + m with k, l,m ≥ 0, we define the map

Inj(l + m,n) ⊗ T k ⊗ Inj(m, l + m) ⊗ T l - Inj(m,n) ⊗ T k+l

in two steps. First, we identify the source of the map with the coproduct∐
SetInj(l+m,n)×SetInj(m,l+m) T k+l. For the second step, consider the unique
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isomorphism T k+l - T k+l induced by the permutation that reorders the
set {iγ1 , iγ2 , · · · , iγk , γ(iβ1 ), γ(iβ2 ), · · · , γ(iβl )}, i.e. the set k + l + m \ (γ ◦ β)(m),

as {iγ◦β
1 , iγ◦β

2 , · · · , iγ◦β
k+l}. This isomorphism maps the summand Tiγ

1
⊗ Tiγ

2
⊗

· · · ⊗ Tiγ
k
⊗ Tiβ

1
⊗ Tiβ

2
⊗ · · · ⊗ Tiβ

l
= T k+l indexed by (γ, β) to the summand

Tiγ◦β
1

⊗ Tiγ◦β
2

⊗ · · · ⊗ Tiγ◦β
k+l

= T k+l indexed by γ ◦ β.

Lemma 2.14. TSphΣ is a symmetric monoidal V-category.

Proof. The composition in TSphΣ is clearly unital. Associativity follows,
since the permutation reordering the set {iγ1 , iγ2 , . . . , iγk , γ(iβ1 ), γ(iβ2 ), . . . , γ(iβl )}
is unique.
On objects, (T l, T k) - T k+l defines the monoidal product in TSphΣ. For
morphisms, consider injections β:n - l + n and γ:m - k + m. Define
β . γ:m + n - k + l + m + n by concatenation. That is, β . γ(i) is defined
as γ(i) for i ≤ m and as β(i−m)+ k +m for i > m. Note that the ordered set

iβ1 + k +m > · · · > iβl + k +m > iγ1 > · · · > iγk coincides with iβ.γ
1 > · · · > iβ.γ

k+l .
On V-objects of morphisms, the map

Inj(n, l + n) ⊗ T l ⊗ Inj(m, k + m) ⊗ T k - Inj(m + n, k + l + m + n) ⊗ T k+l

sends the summand T l ⊗ T k = Tiβ
1
⊗ · · · ⊗ Tiβ

l
⊗ Tiγ

1
⊗ · · · ⊗ Tiγ

k
indexed by

(n
β- l + n,m

γ- k + m) via the identity onto the summand T k+l in-
dexed by β . γ. To see this, one can rewrite the indices according to the above
equality of ordered sets, that is, changing Tiβ

1
⊗ · · · ⊗ Tiβ

l
⊗ Tiγ

1
⊗ · · · ⊗ Tiγ

k
into

Tiβ
1 +k+m ⊗ · · · ⊗ Tiβ

l
+k+m ⊗ Tiγ

1
⊗ · · · ⊗ Tiγ

k
.

Let us check that this defines a V-functor monΣ:TSphΣ⊗TSphΣ - TSphΣ.
The reason is essentially that concatenation .: Inj × Inj - Inj is a func-
tor. Since idn . idm = idm+n, if follows that monΣ preserves identities. To

check compatibility with composition, fix four injective maps α:m - l + m,
β: l + m - k + l + m =: n, γ: r - q + r and δ: q + r - p + q + r. The
equality (δ ◦ γ) . (β ◦ α) = (δ . β) ◦ (γ . α) implies that it suffices to consider

only one summand, say M = {iδ1, · · · , iδp, iβ1 , · · · , iβk , iγ1 , · · · , iγq , iα1 , · · · , iαl }. First,

by rewriting M we find {iδ1, · · · , iδp, δ(iγ1), · · · , δ(iγq ), iβ1 , · · · , iβk , β(iα1 ), · · · , β(iαl )},
and next by reordering we get {iδ◦γ

1 , · · · , iδ◦γ
p+q, i

β◦α
1 , · · · , iβ◦α

k+l }. The monoidal

product rewrites the latter as M ′ = {iδ◦γ
1 + n, · · · , iδ◦γ

p+q + n, iβ◦α
1 , · · · , iβ◦α

k+l }
and there is a bijection M

∼=- M ′. On the other hand, the monoidal product
rewrites M as {iδ1 +n, · · · , iδp +n, iβ1 , · · · , iβk , iγ1 + l+m, · · · , iγq + l+m, iα1 , · · · , iαl },
and composition rewrites this set as {iδ1 + n, · · · , iδp + n, iβ1 , · · · , iβk , δ . β(iγ1 + l +
m), · · · , δ . β(iγq + l + m), δ . β(iα1 ), · · · , δ . β(iαl ).} By definition of ., this set
coincides with

{iδ1 + n, · · · , iδp + n, iβ1 , · · · , iβk , δ(iγ1) + n, · · · , δ(iγq ) + n, β(iα1 ), · · · , β(iαl )}
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which is then reordered as M ′ = {i(δ.β)◦(γ.α)
1 , · · · , i(δ.β)◦(γ.α)

k+l+p+q }. The corre-

sponding bijection M
∼=- M ′ is thus the same as above. Hence monΣ is a

V-functor.
By definition, monΣ(T 0, Tm) = Tm = monΣ(Tm, T 0). So T 0 is a strict unit in
TSphΣ. Similarly, strict associativity holds. The commutativity isomorphism
T 0 - VTSphΣ(Tm+n, Tm+n) is the canonical map on the summand indexed
by the permutation m + n - n + m which interchanges m and n. Next,
the coherence conditions [2, 6.3,6.4,6.5] follow by a straightforward calculation
with permutations of l + m + n. This ends the proof.

To explain the composition in TSphΣ more throughly, we will define V-functors
ν:TSph - TSphΣ and σ:TSphΣ - V such that σ ◦ ν = π:TSph - V.
Both ν and σ are the respectively identities on objects. The map

homν
T m,T l+m :T l - Inj(m, l + m) ⊗ T l ∼=

∐

SetInj(m,l+m)

T l

hits the summand indexed by the inclusion m ⊂ - l + m. It is then clear that
ν preserves identities. For the composition, consider

T k
⊗ T l id - T k+l

Inj(l + m, k + l + m) ⊗ T k
⊗ Inj(m, l + m) ⊗ T l

homν
T l+m,T k+l+m ⊗homν

T m,T l+m?
comp- Inj(m, k + l + m) ⊗ T k+l

homν
T m,T k+l+m?

and observe that the left vertical map hits the summand

(Tk+l+m ⊗ Tk+l+m−1 ⊗ · · · ⊗ Tl+m+1) ⊗ (Tl+m ⊗ Tl+m−1 ⊗ · · · ⊗ Tm+1)

indexed by the inclusions (l + m ⊂ - k + l + m,m ⊂ - l + m). Composition
in TSphΣ maps this summand by the identity to the summand Tk+l+m ⊗
· · · ⊗ Tm+1 indexed by the inclusion m ⊂ - l + m ⊂ - k + l + m, since the
indices are ordered in the prescribed way. So the diagram commutes and ν
is a V-functor. This also explains the ordering iβ1 > iβ2 > · · · > iβk of the set
k + m \ β(k).
The adjoint Inj(m, l + m) ⊗ T l ⊗ Tm ∼=

∐
SetInj(m,l+m) T l ⊗ Tm - T l+m

of homσ
T m,T l+m : Inj(m, l + m) ⊗ T l - V(Tm, T l+m) is defined as follows:

Consider the summand Tiβ
1
⊗ · · · ⊗ Tiβ

l
⊗ Tm ⊗ · · · ⊗ T1 indexed by β. First

rewrite the indices as Tiβ
1
⊗ · · · ⊗ Tiβ

l
⊗ Tβ(m) ⊗ · · · ⊗ Tβ(1), and then map

to Tl+m ⊗ · · · ⊗ T2 ⊗ T1 by the unique permutation which reorders the set
{iβ1 , · · · , iβl , β(m), · · · , β(1)}. To conclude that σ is a V-functor, one has to check

that reordering the set {iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl ), γ(β(m)), · · · , γ(β(1))} is the

same as first reordering {iγ1 , · · · , iγl , iβ1 , · · · , iβk , β(m), · · · , β(1)} as {iγ1 , · · · , iγl , l+
m, · · · , 2, 1}, and then reordering {iγ1 , · · · , iγl , γ(l+m), · · · , γ(2), γ(1)}. However,
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the monoidal product monΣ on TSphΣ is such that the diagram

TSphΣ ⊗ TSphΣ σ⊗σ- V ⊗ V

TSphΣ

monΣ

?
σ - V

mon

?

commutes, so σ is in fact a strict symmetric monoidal V-functor.

Proposition 2.15. The category [TSphΣ,V] is isomorphic to the category of
symmetric T -spectra in V, and ν induces the forgetful functor from symmetric
T -spectra to T -spectra. The smash product on [TSphΣ,V] corresponds to the
smash product on SpΣ(V, T ).

Proof. This is similar to 2.12, and some details will be left out in the proof. The
functor Φ: [TSphΣ,V] - SpΣ(V, T ) maps X:TSphΣ - V to the sequence
XT 0,XT 1, · · ·. It is clear that XTn has a left Inj(n, n)-action. The adjoint of
the structure map XTn⊗T - XTn+1 is given by homX

T n,T n+1 ◦homν
T n,T n+1 .

More generally, the composition of structure maps XTn ⊗ T k - XTn+k is

the adjoint of T k
homν

T n,T k+n- Inj(n, k + n)⊗ T k
homX

T n,T k+n- V(XTn,XT k+n).

This proves the required equivariance. The definition of Φ on V-natural trans-
formations is clear, and also functoriality.

The inverse Ψ: SpΣ(V, T ) - [TSphΣ,V] is harder to define. If X0,X1, · · ·
is a symmetric T -spectrum with structure maps x1

n:Xn ⊗ T - Xn+1,
define Ψ(X):TSphΣ - V on objects by Tn - Xn. Since Xn

has a left Inj(n, n)-action, there is the map hom
Ψ(X)
T n,T n :VTSphΣ(Tn, Tn) =

Inj(n, n) - V(Xn,Xn). Choose an injection β:n - k + n, and define

hom
Ψ(X)

T n,T k+n :VTSphΣ(Tn, T k+n) = Inj(n, k + n) - V(Xn,Xk+n)

on the summand Tiβ
1
⊗· · ·⊗Tiβ

k
as the adjoint map of the following composition

Tiβ
1
⊗ · · ·⊗Tiβ

k
⊗Xn

σ
T k,Xn- Xn ⊗Tiβ

1
⊗ · · ·⊗Tiβ

k

xk
n- Xk+n

- Xk+n where

xk
n is defined by the structure maps. The right hand map is the isomorphism

associated to the permutation of the set k + n that changes {k +n, · · · , 2, 1} to

{iβ1 , · · · , iβk , β(n), · · · , β(1)} and reorders this as {k +n, · · · , 2, 1}. For the latter
we use the left Inj(k + n, k + n)-action on Xk+n.

The Inj(n, n)-action on Xn is unital, so Ψ(X) preserves identities. To prove

that Ψ(X):TSphΣ - V is a V-functor, pick injective maps β:m - l + m,
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γ: l + m - k + l + m and consider the following diagram.

Ti
γ
1
⊗ · · · ⊗ Ti

γ
k
⊗ T

i
β
1
⊗ · · · ⊗ T

i
β
l
⊗ Xm

T k
⊗(xl

m◦σ
T l,Xm

)- Ti
γ
1
⊗ · · · ⊗ Ti

γ
k
⊗ Xl+m

T
i
γ◦β
1

⊗ · · · ⊗ T
i
γ◦β
k+l

⊗ Xm

f⊗Xm

?
Xk+l+m

¾
x
k
l+

m
◦σ T

k ,Xl+
m

xk+lm ◦σ
T k+l,X

m

-
Ti

γ
1
⊗ · · · ⊗ Ti

γ
k
⊗ Xl+m

T k
⊗b

?

Xk+l+m

xk+l
m ◦σ

T k+l,Xm
?

Xk+l+m

f ′

?
Xk+l+m

xk
l+m◦σ

T k,Xl+m?

Xk+l+m

cb

?¾

ccb

-

Here b:Xl+m
- Xl+m is the isomorphism obtained from reordering the set

{iβ1 , · · · , iβk , β(m), · · · , β(1)} as {l+m, · · · , 2, 1}, and similarly for c and cb. The
isomorphism f :T k+l - T k+l is induced by the permutation

{iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl )}
∼=- {iγ◦β

1 , · · · , iγ◦β
k+l}.

Similarly, f ′:Xk+l+m
- Xk+l+m is induced by the permutation

{iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl ),m, · · · , 1}
∼=- {iγ◦β

1 , · · · , iγ◦β
k+l ,m, · · · , 1}.

Since xk+l
m is Inj(k + l, k + l) ⊗ Inj(m,m)-equivariant, the left parallelogram

commutes. The upper triangle commutes by commutativity coherence. Finally,
the right parallelogram commutes, because xk

l+m is Inj(k, k)⊗ Inj(l+m, l+m)-
equivariant, the Inj(k+l+m, k+l+m)-action on Xk+l+m is associative and the

permutation obtained from reordering {iγ1 , · · · , iγk , iβ1 , · · · , iβl , β(m), · · · , β(1)} as
{iγ1 , · · · , iγk , γ(l + m), · · · , γ(1)} and then as {k + l + m, · · · , 2, 1} equals the

permutation obtained from {iγ1 , · · · , iγk , γ(iβ1 ), · · · , γ(iβl ), γ(β(m)), · · · , γ(β(1))}.
The definition of Ψ on maps is clear and functoriality follows easily. The proof
of 2.12 shows that Φ ◦ Ψ = IdSpΣ(V,T ), but an extra argument is required to
prove the equality Ψ ◦ Φ = Id[TSphΣ,V]. The only point which is not obvious is

whether the maps homX
T m,T k+m : Inj(m, k+m)⊗T k - V(XTm,XTm+k) and

hom
Ψ(Φ(X))

T m,T k+m : Inj(m, k + m) ⊗ T k - V(XTm,XTm+k) coincide. To prove

this, we fix an injection β:m - k + m and let ι:m ⊂ - k + m denote the in-
clusion. The permutation γ: k + m - k + m obtained from rewriting the set
{k +m, · · · , 1+m,m, · · · , 1} as {iβ1 , · · · , iβk , β(m), · · · , β(1)} and reordering this
set as {k +m, · · · , 2, 1} has the property that γ ◦ ι = β. Since X is a V-functor,
the map homX

T m,T k+m is determined by its restriction to the summand indexed

by m ⊂ - k + m. This shows that homX
T m,T k+m = hom

Ψ(Φ(X))

T m,T k+m .

The claim concerning [ν,V]: [TSphΣ,V] - [TSph,V] is clear by the above. It

remains to prove compatibility of the smash products. The smash product ∧′
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of symmetric T -spectra satisfies FmT 0∧′FnT 0 ∼= Fm+nT 0 by the remark below
[8, 7.3]. On the other hand, the monoidal product in [TSphΣ,V] is determined
by representable functors, and from 2.7 there is the natural isomorphism

VTSphΣ(Tm,−) ∧ VTSphΣ(Tn,−) ∼= VTSphΣ(Tm+n,−).

This completes the proof.

Corollary 2.16. Let C be a full sub-V-category. Assume C is closed under
the monoidal product, and contains the unit and T . Then σ:TSphΣ - V
factors over C ⊂ - V, and the induced V-functor TSphΣ - C induces
a lax symmetric monoidal functor [C,V] - SpΣ(V, T ) which has a strict
symmetric monoidal left adjoint.

Proof. The factorization of σ is clear. Under the isomorphism in 2.15, the
closed symmetric monoidal product on [TSphΣ,V] coincides with the closed
symmetric monoidal product on symmetric T -spectra. For formal reasons, the
V-functor induced by the first factor of σ is lax symmetric monoidal. By
checking on representable functors, it follows that its left V-adjoint obtained
by an enriched Kan extension 2.5 is strict symmetric monoidal.

3 Model Categories

The term model category is to be understood in the sense of [7, 1.1.4]. We

denote weak equivalences by
∼- , fibrations by -- and cofibrations by

- - .

3.1 Types of model categories

The model structures we will consider on enriched functor categories require
a cofibrantly generated model category (C, I, J) as input. For a definition of
this type of model categories and related terminology, consider [7, 2.1]. Maps
in I = {i: si- - ti}i∈I are called generating cofibrations, and maps in J =

{j: sj- ∼- tj}j∈J are called generating acyclic cofibrations. The (co)domains
of I and J may have additional properties.

Definition 3.1. An object A ∈ Ob C is finitely presentable if the set-valued
Hom-functor SetC(A,−) commutes with all filtered colimits. If C is a V-
category, A ∈ Ob C is V-finitely presentable if the V-valued Hom-functor
VC(A,−) commutes with all filtered colimits.

A set is finitely presentable in the category of sets if and only if it is a finite
set. If the unit e in V is finitely presentable, any V-finitely presentable object
of V is finitely presentable. See [8, 4.1] for 3.2 and 3.3.

Definition 3.2. A cofibrantly generated model category C is finitely generated
if I and J can be chosen such that the (co)domains of the maps in I and J are
κ-small for a finite cardinal κ.
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Finitely generated model categories are not necessarily closed under Bousfield
localization, cf. [8, §4]. The following definition was suggested by Voevodsky.

Definition 3.3. The cofibrantly generated model category C is almost finitely
generated if I and J can be chosen such that the (co)domains of the maps in I
are κ-small for a finite cardinal κ, and there exists a subset J ′ of J for which

• the domains and the codomains of the maps in J ′ are κ-small for a finite
cardinal κ,

• a map f :A - B in C such that B is fibrant is a fibration if and only
if it is contained in J ′-inj.

The left Bousfield localization with respect to a set with sSet-small domains
and codomains preserves the structure of almost finitely generated cellular left
proper simplicial model categories [6, Chapters 3,4]. For almost finitely gener-
ated model categories, the classes of weak equivalences and fibrant objects are
closed under sequential colimits. We require these classes to be closed under
filtered colimits, which holds for model categories of the following type.

Definition 3.4. A cofibrantly generated model category V is weakly finitely
generated if I and J can be chosen such that the following conditions hold.

• The domains and the codomains of the maps in I are finitely presentable.

• The domains of the maps in J are small.

• There exists a subset J ′ of J of maps with finitely presentable domains
and codomains, such that a map f :A - B in V with fibrant codomain
B is a fibration if and only if it is contained in J ′-inj.

The choices of the sets I, J and J ′ will often be left implicit in the following. A
weakly finitely generated model category is almost finitely generated. Examples
include simplicial sets, simplicial sets with an action of a finite group, cp. 9.5,
and the category of pointed simplicial presheaves on the smooth Nisnevich site.
The latter will be discussed in [5].

Lemma 3.5. Assume V is a weakly finitely generated model category. Then the
following classes are closed under filtered colimits: weak equivalences, acyclic
fibrations, fibrations with fibrant codomain, and fibrant objects.

Proof. Since V is cofibrantly generated, [6, 11.6.1] shows that Fun(I,V) sup-
ports a cofibrantly generated model structure for any small category I. Fibra-
tions and weak equivalences are defined pointwise. Any weak equivalence in
Fun(I,V) factors as an acyclic cofibration g composed with an acyclic fibration
p:T -- B. Consider the induced factorization colimp ◦ colimg. Note that
colimg is an acyclic cofibration, since colim is a left Quillen functor. Therefore,
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the second claim will imply the first claim. If I is filtered, then colimp is an
acyclic fibration: Let

si
α- colimT

ti

i

?

?

β- colimB

colimp

?

be a lifting problem, where i ∈ I. The existence of a lift in this diagram for all
choices of α and β is equivalent to surjectivity of the canonical map

φ:SetV(ti, colimT ) - SetV(si, colimT ) ×SetV(si,colimB) SetV(ti, colimB).

Since si and ti are finitely presentable by assumption and filtered colimits
commute with pullbacks in Set, the canonical map φ is the filtered colimit of
the canonical maps

φd:SetV(ti, T (d)) - SetV(si, T (d)) ×SetV(si,B(d)) SetV(ti, B(d))

induced by composition with p(d) and pre-composition with i. Note that φd

is surjective since i is a cofibration and p is a pointwise acyclic fibration. It
follows that φ is surjective and colimp is an acyclic fibration. The proof of the
third claim – including the last claim as a special case – is analogous.

Definition 3.6. Let (V,⊗, e) be a closed symmetric monoidal category, and
C a right V-module with action (C,A) - C ®A. Consider, for f :C - D
a map in C and g:A - B a map in V, the diagram:

C ® A
C®g- C ® B

D ® A

f®A

?
D®f- D ® B

f®B

?

If C has pushouts, denote the induced map from the pushout of the diagram
to the terminal corner by f¤g:D ® A ∪C®A C ® B - D ® B. This is the
pushout product map of f and g.

Note that 3.6 applies to (V,⊗, e) considered as a right V-module. Recall the
pushout product axiom [15, 3.1].

Definition 3.7. Let (V,⊗, e) be a closed symmetric monoidal category and a
model category. It is a monoidal model category if the pushout product f¤g
of two cofibrations f and g is a cofibration, which is acyclic if either f or g is
acyclic.

Monoidal model categories with a cofibrant unit are symmetric monoidal model
categories in the sense of [7, 4.2.6]. See [15, 3.3] for the following definition.
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Definition 3.8. Let V be a monoidal model category. For a class K of maps
in V, define K ⊗ V as the class of maps f ⊗ A, where f is a map in K and
A ∈ ObV. Let aCof(V) be the class of acyclic cofibrations in V. The monoid
axiom holds if every map in aCof(V) ⊗ V-cell is a weak equivalence.

In the proof of 4.2, we will use the monoid axiom to construct the pointwise
model structure on enriched functor categories. Let us end this section with
the definition of two other types of model categories.

Definition 3.9. Let V be a monoidal model category, C a closed V-module
and a model category. The action of V on C allows us to consider the pushout
product of a map in C and a map in V. Then C is a V-model category if the
pushout product of a cofibration f in C and a cofibration g in V is a cofibration
in C, which is acyclic if either f or g is acyclic.

Note that a simplicial model category is a sSet-model category.

Lemma 3.10. A simplicial homotopy equivalence in a sSet-model category is
a weak equivalence.

Proof. This follows from [6, 9.5.16]. Simplicial homotopy equivalences in 2.9
are also simplicial homotopy equivalences as defined in [6, 9.5.8].

Definition 3.11. Let F :V - W be a strict symmetric monoidal functor
of monoidal model categories. If F is a left Quillen functor, W is called a
monoidal V-model category .

A monoidal V-model category is clearly a V-model category.

3.2 Homotopy pullback squares

Homotopy pullback squares will be used to characterize fibrations. Definition
3.12 is equivalent to [7, 7.1.12].

Definition 3.12. Let C be a model category. A commutative diagram

A - B

C
?

g- D

f

?

in C is a homotopy pullback square if for any commutative diagram

C
g- D ¾f

B

C ′

∼
?

?

- D′

∼
?

?

¾¾ B′

∼
?

?

where C ′ and D′ are fibrant and B′ -- D′ is a fibration, the canonical map
A - C ′ ×D′ B′ is a weak equivalence.
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This definition seems to by asymmetric, but one of the squares

A
f- B A

g- C

or

C

g

?
i- D

h

?
B

f

?
h- D

i

?

is a homotopy pullback square if and only if the other is a homotopy pullback
square. We list some elementary properties.

Lemma 3.13. All diagrams below are commutative diagrams in C.

1. The diagram

A
f- B

C
? ∼- D

?

is a homotopy pullback square if and only if f is a weak equivalence.

2. Consider a natural transformation f :A - B of diagrams

A0
- A1 B0

- B1

and

A2

?
- A3

?
B2

?
- B3

?

which is a pointwise weak equivalence. That is, fi:Ai
- Bi is a weak

equivalence for all i ∈ {0, 1, 2, 3}. Then A is a homotopy pullback square
if and only if B is a homotopy pullback square.

3. Let

A0
- A1

- A2

(1) (2)

B0

?
- B1

?
- B2

?

be a diagram where (2) is a homotopy pullback square. Then the composed
square (12) is a homotopy pullback square if and only (1) is a homotopy
pullback square.

Lemma 3.14. Assume C is right proper. Then

A - B

C
?

- D

f

?
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is a homotopy pullback square if and only if for some factorization of f as a

weak equivalence B
∼- E followed by a fibration E -- D, the induced map

A - C ×D E is a weak equivalence.

Proof. Since C is right proper, the dual of the gluing lemma holds. The state-
ment follows easily.

3.3 Fibrant replacement functors

In every model category, any object may be replaced by a fibrant object in a
functorial way up to an acyclic cofibration. It is often desirable to explicate
fibrant replacement functors. Quillen’s small object argument is the classical
method 3.3.1. We place emphasis on enriched fibrant replacement functors
3.3.2. Another fibrant replacement functor is constructed in 3.3.3 as a certain
filtered colimit.

3.3.1 Classical

Fix a cocomplete category V and a set K = {sk - tk}k∈K of maps in V
with finitely presentable domains and finitely presentable codomains. The set
K gives rise to a natural transformation of endofunctors on V, namely

∐

k∈K

∐

f∈SetV(sk,−)

sk

∐
k∈K

∐
f∈SetV (sk,−)

k
-

∐

k∈K

∐

f∈SetV(sk,−)

tk.

Consider also

∐

k∈K

∐

f∈SetV(sk,−)

sk

∐
k∈K

∐
f∈SetV (sk,−)

f
-

∐

k∈K

∐

f∈SetV(sk,−)

IdV
codiagonal- IdV ,

and take the pushout of the two natural transformations. Let ιK1 : IdV - FK
1

denote the canonically induced map. This construction can be iterated. Sup-
pose there is a natural transformation ιKn :FK

n−1
- FK

n of endofunctors of V.
Next, define FK

n+1 as the pushout of

∐

k∈K

∐

f∈SetV(sk,Fn(−))

tk ¾
∐

k∈K

∐

f∈SetV(sk,Fn(−))

sk - Fn.

The colimit of the sequence IdV = F0
ιK
1- FK

1

ιK
2- · · · is denoted as

FK :V - V, and ιK : IdV - FK is the canonical natural transformation.
The following statement is a special case of [7, 2.1.14].

Lemma 3.15. For every object A in V, the map ιK(A):A - FK(A) is in
K-cell, and the map FK(A) - ∗ is in K-inj.
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Corollary 3.16. Suppose that V is a weakly finitely generated model category.
Then ιJ

′

: IdV - F J ′

is a fibrant replacement functor, i.e. F J ′

(A) is fibrant
and the natural map ιJ

′

(A):A - F J ′

(A) is an acyclic cofibration for all
A ∈ ObV.

This fibrant replacement functor yields “big” objects. We will make this more
precise after recalling some definitions from [6, Chapter 10].

Definition 3.17. A relative K-cell complex f :A - B is called finite if f

is a composition A = B0
f1- B1

f2- · · · fn- Bn = B where each fm is
a cobase change of a map in K, i.e. f is obtained by attaching finitely many
cells from K.

Definition 3.18. A relative K-cell complex f :A - B is called presented
if there is an explicit choice of the data [6, 10.6.3]. In detail, one chooses a

limit ordinal λ, a λ-sequence A = B0
f1- B1

- · · · fβ+1- Bβ+1
- · · ·

whose sequential composition is f , and fβ+1:Bβ
- Bβ+1 is gotten from the

pushout of the following diagram for every β < λ:

∐

m∈Mβ

tim ¾
∐

im
∐

m∈Mβ

sim - Bβ

We omit the choice from the notation. Let f :A - B be a presented relative
K-cell complex. A subcomplex of f is a presented K-cell complex g:A - C
relative to A such that the explicit choice relevant for g is a subset of the explicit
choice for f , see [6, 10.6.7]. In particular, there exists a map h:C - B in
K-cell such that h ◦ g = f . A subcomplex is called finite if it is a finite K-cell
complex relative to A, using the explicit choice.

Any relative K-cell complex can be turned into a presented one. If we consider
ιK(A) as a presented relative K-cell complex, we will use the explicit choices
appearing in its construction.

Lemma 3.19. Let f :A - B be a finite relative K-cell complex. Then f has
the structure of a finite subcomplex of ιK(K):A - FK(A).

Proof. We will prove this by induction on the number of cells. By convention, a
map obtained by attaching no cells is an identity map. Suppose the following is
true. If f :A - B is obtained by attaching n cells from K, with n ≥ 0, then f
has the structure of a finite subcomplex of the presented relative K-cell complex

A
ιK
1 (A)- · · · ιK

n (A)- FK
n (A). Assume f :A - B is obtained by attaching n+1

cells from K. By definition, there is a factorization A
g- C

h- B where
g is obtained by attaching n cells from K and h is the cobase change of some
k ∈ K along a map α: sk - C. From the induction hypothesis, α induces a
map sk - C - FnA, hence an element in SetV(sk, FnA). It follows that

Documenta Mathematica 8 (2003) 409–488



Enriched Functors and Stable Homotopy Theory 433

there is a map β: tk - Fn+1A rendering the diagram

sk
α- C - FK

n (A)

tk

k ∼
?

?

β - FK
n+1(A)

ιK
n+1(A)

?

commutative. Since h is the cobase change of k along α, there is a unique
induced map B - FK

n+1(A) which gives f the structure of a subcomplex of

the complex A
ιK
1 (A)- · · · ιK

n+1(A)- FK
n+1(A).

3.3.2 Enriched

Suppose that V is a cocomplete and closed symmetric monoidal category, and
that K is a set of maps with finitely presentable domains and codomains. The
fibrant replacement functor defined in 3.3.1 is a priori not a V-functor, but one
can remedy this as follows. Each k in K induces a V-natural transformation
V(sk,−)⊗k:V(sk,−)⊗sk - V(sk,−)⊗tk of endo-V-functors. On the other
hand, the counit εsk:V(sk,−)⊗sk - IdV is also a V-natural transformation.
By taking the coproduct over all k ∈ K, one gets the diagram of V-functors

∐

k∈K

V(sk,−) ⊗ tk ¾
∐

V(sk,−)⊗k ∐

k∈K

V(sk,−) ⊗ sk - IdV .

Denote the pushout by RK
1 . It is clear that one can iterate this construction.

Given a V-natural transformation ρK
n :RK

n−1
- RK

n of endo-V-functors of V,
let RK

n+1 be the pushout of

∐

k∈K

V(sk,RK
n (−))⊗ tk ¾

∐
k∈K

V(sk,RK
n (−))⊗k ∐

k∈K

V(sk,RK
n (−))⊗ sk - RK

n .

The colimit of the diagram IdV = R0
ρK
1- RK

1

ρK
2- · · · is called RK :V - V.

Let ρK : IdV - RK be the canonical V-natural transformation.

Lemma 3.20. Given any object A in V, the map ρK(A):A - RK(A) is in
K ⊗ V-cell, and the map RK(A) - ∗ is in K-inj.

Proof. The first statement is obvious. To prove that RK(A) - ∗ is in K-inj,
consider a lifting problem for k ∈ K:

sk
f- RK(A)

tk

k ∼
?

?

- ∗
?
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Note that f factors as sk
g- RK

n (A) - RK(A) for some n, since sk is
finitely presentable and R is a sequential colimit. The adjoint of g, tensored
with sk, induces the map h: sk - V(sk,RK

n (A))⊗sk such that the following
diagram commutes.

V(sk,RK
n (A)) ⊗ sk

sk
g -

h

-

RK
n (A)

ε
sk (R K

n (A
))-

Let h′ denote the canonical map to the coproduct given by h. Then the diagram

sk
h′

-
∐

k∈K

V(sk,RK
n (A)) ⊗ sk - RK

n (A)

tk

k ∼
?

?

-
∐

k∈K

V(sk,RK
n (A)) ⊗ tk

?
- RK

n+1(A)

?

shows that tk - ∐
k∈K V(sk,RK

n (A)) - RK
n+1(A) - RK(A) solves

the lifting problem above. This proves that RK(A) - ∗ is in K-inj.

Corollary 3.21. Let V be a weakly finitely generated monoidal model category
satisfying the monoid axiom. Then ρJ ′

: IdV - RJ ′

is a fibrant replacement
V-functor, i.e. RJ ′

(A) is fibrant and ρJ ′

(A) is a weak equivalence for all A.

Proof. It remains to prove that the natural map ρJ ′

A :A - RJ ′

(A) is a weak

equivalence for every A ∈ ObV. Note that ρJ ′

A is contained in aCof(V)⊗V-cell.

The monoid axiom for V implies that ρJ ′

A is a weak equivalence.

Remark 3.22. The map ρJ ′

(A) is not a cofibration in general, even if A is
cofibrant. But if all objects in V are cofibrant, then ρJ ′

(A) is a cofibration.

3.3.3 Filtered

Let V denote a cocomplete closed symmetric monoidal category, and K a set of
maps with finitely presentable domains and codomains. We will define for each
object A of V three categories acK(A), acK(A,R) and acK(A,F ), and functors
UR: acK(A,R) - acK(A), UF : acK(A,F ) - acK(A).
Objects in acK(A) are finite K-cell complexes β:A - B relative to A.
The morphisms in acK(A) from β:A - B to γ:A - C are finite K-cell
complexes τ :B - C for which τ ◦β = γ. The identity idA is the initial object
of acK(A). Consider the functor ΨA: acK(A) - V which sends β:A - B
to B and τ :B - C to τ . The colimit of ΨA will define the desired fibrant
replacement of A, up to isomorphism.
Objects in acK(A,R) are pairs (β:A - B, β′:B - RK(A)) such that β
is a finite K-cell complex relative to A, and β′ ◦ β = ρK(A) holds. A map
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from (β:A - B, β′:B - RK(A)) to (γ:A- ∼- C, γ′:C
∼- RK(A)) is

a finite K-cell complex τ :B- - C such that

B

A

β
-

RK(A)

β ′

-

C

τ

?
γ
′

-
γ -

commutes. The initial object of acK(A,R) is (idA, ρA). Denote the forgetful
functor acK(A,R) - acK(A) which maps the pair (β, β′) to β by UR.
The category acK(A,F ) has objects finite subcomplexes of the relative K-cell
complex ιK(A):A - FK(A). Such a subcomplex β:A - B comes with a
map β′:B - FK(A) in K-cell such that β′ ◦β = ιK(A), whence the objects
in acK(A,F ) are also denoted (β, β′). Maps are defined as for acK(A,R).
Here (idA, ι(A)) is the initial object. Let UF : acK(A,F ) - acK(A) be the
forgetful functor. Recall from [12, IX.3] the notion of a final functor.

Lemma 3.23. If maps in K-cell are monomorphisms, then UR and UF are final
functors, and acK(A,F ) is a small filtered preorder for all A ∈ ObV.

Proof. To prove that UR is final, let β:A - B be an object of acK(A). Since
RK(A) - ∗ is in K-inj, there exists a lift in the following diagram.

A
ρK(A)- RK(A)

B

β

?
- ∗

?

Hence the comma category β ↓ UR is nonempty. Consider objects (γ, γ′) and
(δ, δ′) in acK(A,R), and maps σ:β - γ, τ :β - δ in acK(A). The pushout

B
τ - D

C

σ

?
- C ∪B D

?

yields a finite K-cell complex α:A - C ∪B D. The maps γ′ and δ′ induce a
map α′:C ∪B D - RK(A) turning (α, α′) into an object of acK(A,R). The
cobase changes of σ and τ are maps (γ, γ′) - (α, α′) and (δ, δ′) - (α, α′)
in acK(A,R). This implies that β ↓ UR is connected. Hence UR is final. Next
we consider UF . Let β:A - B be an object of acK(A). By 3.19, β ↓ UF is
nonempty. Since maps in K-cell are monomorphisms, the union of two finite
subcomplexes is again a finite subcomplex [6, 12.2.1]. Connectness follows.
A category is a preorder if there is at most one map between any two objects.
Suppose that there exist two different maps σ:B - C and τ :B - C
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from (β:A - B, β′:B - FK(A)) to (γ:A - C, γ′:C - FK(A)).
By definition, we have γ′ ◦ σ = β′ = γ′ ◦ τ . Since γ′ is a monomorphism by
assumption, it follows that σ = τ . Note that acK(A,F ) is nonempty, since it
contains the initial object (idA, ιA). Hence to prove that acK(A,F ) is filtered,
it remains to observe that any two objects have a common upper bound, given
by the union of subcomplexes, cf. [6, 12.2.1]

The colimits of ΨA, ΨA◦UR and ΨA◦UF are isomorphic via the canonical maps
colimΨA ◦ UR

- colimΨA
¾ colimΨA ◦ UF by Theorem 1 of [12, IX.3].

To have a natural comparison with the V-functor RK , we let ΦK(A) be the
colimit of the functor ΨA ◦ UR: acK(A,R) - V. There is a canonical map
ϕA:A - ΦKA induced by the object (idA, ρK(A)) of acK(A,R). Likewise
there is a canonical map ωA: ΦK(A) - RK(A) induced by the maps β′.

Proposition 3.24. Suppose that relative K-cell complexes are monomor-
phisms. Then ΦK(A) - ∗ is in K-inj, and ϕA:A - ΦK(A) is a fil-
tered colimit of finite relative K-cell complexes. Moreover, the assignment

A - ΦK(A) defines a functor ΦK , and the maps A
ϕA- ΦK(A) and

ΦK(A)
ωA- RK(A) are natural transformations IdV

ϕ- ΦK ω- RK such
that ω ◦ ϕ = ρK .

Proof. The object ΦK(A) is isomorphic to Ã := colimΨA ◦UF . Hence to prove
the first claim, it suffices to consider a lifting problem

sk
f- Ã

tk

k ∼
?

?

- ∗
?

The object sk is finitely presentable, and Ã is the colimit of a filtered diagram

by 3.23. Hence f factors as sk
g- a - Ã for some finite subcomplex

(β:A - B, β′:B - FK(A)) in acK(A,F ). Take the pushout of

sk
g- B

tk

k

?
h- C

τ

?

and define γ := τ ◦ β:A - C. Since τ is the cobase change of k ∈ K, 3.19
implies that γ:A - C is a finite subcomplex of ιA such that τ :β - γ is
a map in acK(A,F ). The canonical map C - Ã belongs to γ, and the map

tk
h- C - Ã solves the lifting problem. Hence Ã - ∗ is in K-inj.

To prove the second assertion, let acK(A,F ) - π0acK(A,F ) be the canonical
projection onto the set of connected components of acK(A,F ). This functor
is final, and the constant diagram cA: acK(A,F ) - V with value A fac-
tors it. Since acK(A,F ) is connected, it follows that colimcA

∼= A. There
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is a natural transformation of diagrams cA
- ΨA ◦ UF with value β at

(β, β′). The induced map colimcA
- ΦK(A) coincides with the canoni-

cal map ϕA:A - ΦK(A) up to the isomorphism above. The proof of the
remaining claim is clear and will be left to the reader.

Corollary 3.25. Let V be a weakly finitely generated monoidal model category
satisfying the monoid axiom. If relative J ′-cell complexes are monomorphisms,
then

A
ϕA- ΦJ ′

(A)
ωA- RJ ′

(A)

are weak equivalences with fibrant codomains.

If V is pointed by ∗, any endo-V-functor on V maps the point to the point. On
the other hand, ι∗ is not an isomorphism and there may be non-trivial finite
subcomplexes of ι∗. So ΦK is not a V-functor in general. To define the stable
model structure we need Φ to be “enriched with respect to spheres”. This
requires a natural map T ⊗ Φ(A) - Φ(T ⊗ A) for some finitely presentable
object T , such that

T ⊗ ΦK(A) - ΦK(T ⊗ A)

T ⊗ RK(A)

T⊗ωA
?

swR
T (A)- RK(T ⊗ A)

ωT⊗A
?

is commutative. Here the lower horizontal map is the adjoint of

T
ηA(T )- V(A, T ⊗ A)

homRK

A,T⊗A- V(RK(A), RK(T ⊗ A)).

More details can be found in Appendix A. Suppose T ⊗ − maps finite K-cell
complexes relative to A to finite K-cell complexes relative to T ⊗A, for all A ∈
ObV. Then tensoring with T defines a functor ΘA: acK(A,R) - acK(T ⊗
A,R) by sending (β:A - B, β′:B - RK(A)) to

(T ⊗ A
T⊗β- T ⊗ B, T ⊗ B

T⊗β′

- T ⊗ RK(A)
r(T,A)- RK(T ⊗ A)).

This functor induces a map

T ⊗ ΦK(A) = T ⊗ colimacK(A,R) ΨA ◦ UR

∼= colimacK(A,R) (T ⊗−) ◦ ΨA ◦ UR

= colimacK(A,R) ΨT⊗A ◦ UR ◦ ΘA

- colimac(T⊗A,R) ΨT⊗A ◦ UR

= ΦK(T ⊗ A)

via the identity natural transformation (T ⊗−)◦ΨA◦UR
- ΨT⊗A◦UR◦ΘA.
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Lemma 3.26. Let V be a monoidal model category satisfying the monoid ax-
iom. Suppose that V is weakly finitely generated, and that relative J ′-cell
complexes are monomorphisms. If A is an object of V, the map θA:T ⊗
ΦJ ′

(A) - ΦJ ′

(T ⊗ A) is a weak equivalence making the diagram

T ⊗ ΦJ ′

(A)
θA- ΦJ ′

(T ⊗ A)

T ⊗ RJ ′

(A)

T⊗ωA ?
r(T,A)- RJ ′

(T ⊗ A)

ωT⊗A?

commutative. Furthermore, θA is natural in A.

Proof. Commutativity and naturality follow by the construction of θA. Note
that ρT⊗A and T ⊗ρJ ′

A ∈ aCof(V)⊗V-cell are weak equivalences. It follows that

r(T,A) is a weak equivalence since r(T,A) ◦ T ⊗ ρJ ′

A = ρJ ′

T⊗A. The map ϕT⊗A

is a weak equivalence, and T ⊗ ϕA is a filtered colimit of weak equivalences.
Hence the vertical maps in the diagram are weak equivalences.

Finally, we relate V-functors and ΦK in the case where I: C ⊂ - V is a full
sub-V-category and all objects in C are V-finitely presentable.

Lemma 3.27. Suppose that relative K-cell complexes are monomorphisms. Let
X: C - V be a V-functor and let A ∈ Ob C. There is an isomorphism

I∗X(ΦK(A)) ∼= colim(X ◦ ΨA ◦ UR: acK(A,R) - V)

which is natural in X.

Proof. To prove this, use the canonical expression of a V-functor as a coend of
representables 2.3, 3.23 and V-finiteness of the objects in C. Then

I∗X(ΦK(A)) =

∫ Ob C
V(c,ΦK(A))⊗X(c) ∼= colim

∫ Ob C
V(c,ΨA ◦UR)⊗X(c),

and the claim follows.

4 The pointwise model structure

Let V be a weakly finitely generated monoidal model category. If C is a small
V-category and the monoid axiom holds in V, we introduce the pointwise model
structure on [C,V]. Of particular interest are the cases where C is a full sub-V-
category, and C satisfies the following properties.

f0 Every object of V is a filtered colimit of objects in C.

f1 Every object of C is V-finitely presentable.

f2 The unit e is in C, and C is closed under the monoidal product in V.
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4.1 The general case

Our pointwise notions of weak equivalences, fibrations and cofibrations are as
follows.

Definition 4.1. A morphism f in [C,V] is a

• pointwise weak equivalence if f(c) is a weak equivalence in V for all c ∈
Ob C,

• pointwise fibration if f(c) is a fibration in V for all c ∈ Ob C,

• cofibration if f has the left lifting property with respect to all pointwise
acyclic fibrations.

Theorem 4.2. Let V be a weakly finitely generated monoidal model category,
and let C be a small V-category. Suppose the monoid axiom holds in V. Then
[C,V], with the classes of maps in 4.1, is a weakly finitely generated model
category.

Proof. We will use [7, 2.1.19]. The category [C,V] is bicomplete by 2.2. The
class of pointwise weak equivalences is closed under retracts and satisfies the
“two out of three” or saturation axiom. Let I be the generating cofibrations
in V, and J the generating acyclic cofibrations in V. Let PI be the set of maps

{VC(c,−) ⊗ si
VC(c,−)⊗i- VC(c,−) ⊗ ti | i ∈ I, c ∈ Ob C}.

Likewise, let PJ denote the set of maps

{VC(c,−) ⊗ sj
VC(c,−)⊗j- VC(c,−) ⊗ tj | j ∈ J, c ∈ Ob C}.

Since V is cofibrantly generated, it follows from adjointness that PJ -inj coin-
cides with the class of pointwise fibrations, and PI -inj coincides with the class
of pointwise acyclic fibrations. If A is finitely presentable (small) in V, then
VC(c,−)⊗A is finitely presentable (small) in [C,V] for any c ∈ Ob C, since col-
imits are computed pointwise according to 2.2. Hence the smallness conditions
listed in 3.4 are satisfied. It remains to show that maps in PJ -cell are pointwise
weak equivalences. Every map in PJ -cell is pointwise a map in J ⊗V-cell, and
the latter class consists of weak equivalences by the monoid axiom.

We refer to the model structure in 4.2 as the pointwise model structure. Note
that the evaluation functor preserves fibrations and acyclic fibrations.

Lemma 4.3. Suppose the pointwise model structure exists. Then the functor
from V to [C,V] which maps A to VC(c,−) ⊗ A is a left Quillen functor, with
right adjoint Evc for all c ∈ Ob C.

If the unit in V is cofibrant, then the representable functors are cofibrant in
the pointwise model structure.
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Theorem 4.4. Consider V and C as in 4.2. Then the pointwise model struc-
ture gives [C,V] the structure of a V-model category. Likewise, [C,V] is a
monoidal V-model category provided C is a symmetric monoidal V-category,
and the monoid axiom holds.

Proof. Recall from 2.4 that [C,V] is a closed V-module. By [7, 4.2.5] it suffices
to check the following conditions.

• Let VC(c,−)⊗ i:VC(c,−)⊗ si- - VC(c,−)⊗ ti be a map in PI , and let
j: sj- - tj be a map in I. Then the pushout product (VC(c,−) ⊗ i)¤j
is a cofibration.

• If either i or j in the above sentence are generating acyclic cofibrations,
then (VC(c,−) ⊗ i)¤j is a pointwise acyclic cofibration.

Since VC(c,−) ⊗− is a left adjoint, the pushout product map in question is of
the form VC(c,−)⊗ (i¤j). Hence the conditions hold, because V is a monoidal
model category and 4.3 holds.
The monoidality statement is proven similarly using [7, 4.2.5]. Note from 2.7
and the compatibility of ∧ and ⊗, that the pushout product map of VC(c,−)⊗i
and VC(d,−) ⊗ j is isomorphic to VC(c ¦ d,−) ⊗ (i¤j) where ¦ denotes the
monoidal product in C. Let u be the unit of C. Then VC(u,−) ⊗ − is a strict
symmetric monoidal functor and a left Quillen functor by 4.3.
It remains to prove the monoid axiom. Abbreviate [C,V] by F . Since F is
cofibrantly generated, it suffices to check that every map in the class PJ ∧ F-
cell is a pointwise weak equivalence. Let c ∈ Ob C, j ∈ J and X: C - V a
V-functor. Then (V(c,−) ⊗ j) ∧ X coincides up to isomorphism with the map
(V(c,−)∧X)⊗ j. In particular, ((V(c,−)∧X)⊗ j)(d) = (V(c,−)∧X)(d)⊗ j is
contained in J ⊗V for every d ∈ Ob C, X ∈ ObF . For a map f in PJ ⊗F-cell,
f(d) belongs to J ⊗ V-cell because colimits are formed pointwise. Since the
monoid axiom holds in V, f is a pointwise weak equivalence.

Remark 4.5. Via 2.12, the pointwise model structure on T -spectra corresponds
to the pointwise model structure on [TSph,V].

For a discussion of properness of the pointwise model structure, we introduce
the following definition. Let Cof(V) denote the class of cofibrations in V.

Definition 4.6. A monoidal model category V is strongly left proper if the
cobase change of a weak equivalence along any map in Cof(V)⊗V-cell is again
a weak equivalence.

Strongly left proper monoidal model categories are left proper. If a model
category has only cofibrant objects, it is left proper. If a monoidal model
category has only cofibrant objects, it is strongly left proper. The relevance of
4.6 is explained by the following lemma.

Lemma 4.7. Consider V and C as in 4.2. If f is a cofibration in [C,V], then
f(c) is a retract of a map in Cof(V) ⊗ V-cell for every c ∈ Ob C.
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Proof. Any cofibration in [C,V] is a retract of a relative PI -cell complex, and
VC(d, c) ⊗ i is a map in I ⊗ V-cell for every c ∈ Ob C. The claim follows.

Corollary 4.8. The pointwise model structure on [C,V] is right proper if V
is right proper, and left proper if V is strongly left proper.

4.2 The subcategory case

The goal in this section is to develop conditions under which smashing with
cofibrant V-functors preserves pointwise weak equivalences. This fact will be
used to prove the monoid axiom for the stable model structure. Recall that
if C is a full sub-V-category of V, the left Kan extension along the inclusion
functor I: C ⊂ - V is

I∗X =

∫ Ob C
V(c,−) ⊗ X(c).

Lemma 4.9. Assume V is a weakly finitely generated monoidal model category,
and C is a small and full sub-V-category satisfying f0 and f1. If f is a pointwise
weak equivalence in [C,V], then so is I∗f .

Proof. We have to check that, for any A ∈ ObV, I∗f(A) is a pointwise weak
equivalence. Write A as the colimit of C: I - C for I filtering by f0. Since
coends commute with colimits and f1 holds, it follows that

I∗f(A) =

∫ Ob (C)

V(B,A) ⊗ f(B)

∼=
∫ Ob (C)

V(B, colimi∈IC) ⊗ f(B)

∼= colimi∈I

∫ Ob (C)

V(B,C(i)) ⊗ f(B)

∼= colimi∈I f ◦ C.

Note that, since f is a pointwise weak equivalence, I∗f(A) is a filtered colimit
of weak equivalences and hence a weak equivalence by 3.5.

Corollary 4.10. Let V and C be as in 4.9. If C satisfies f2 and f is a pointwise
weak equivalence in [C,V], then f ∧ V(c,−) is a pointwise weak equivalence for
all c ∈ Ob C.

Proof. Axiom f2 implies that the smash product of two enriched functors exists.
By 2.8, f ∧V(c,−) is isomorphic to I∗f ◦V(c,−). Since I∗f is a pointwise weak
equivalence by 4.9, I∗f(V(c, d)) is a weak equivalence for all d ∈ Ob C.

Theorem 4.11. Let V and C be as in 4.10. Assume V satisfies the monoid
axiom and is strongly left proper, and tensoring with the domains and the
codomains of the generating cofibrations in V preserves weak equivalences. Then
smashing with a cofibrant object in [C,V] preserves pointwise weak equivalences.
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Proof. Let f :X - Y be a pointwise weak equivalence, and let Z be a
cofibrant V-functor. Since Z is cofibrant, it is a retract of some V-functor Z ′,
such that ∗ - Z ′ is the sequential composition of a sequence

∗ = Z ′
0
- g0- Z ′

1
- g1- · · ·-gn−1- Z ′

n
- gn- · · · ,

where gn is the cobase change of a coproduct of maps in PI . It suffices to
consider sequences indexed by the natural numbers, since the domains of the
maps in PI are finitely presentable. The map f ∧Z is a retract of f ∧Z ′, hence
it remains to prove that the latter is a pointwise weak equivalence. We will
prove this by induction on n. Consider the following diagram.

X ∧
∐

m∈M

V(cm,−) ⊗ tim ¾X∧
∐

V(cm,−)⊗im
X ∧

∐

m∈M

V(cm,−) ⊗ sim - X ∧ Zn

Y ∧
∐

m∈M

V(cm,−) ⊗ tim

f∧
∐

V(cm,−)⊗tim?
¾X∧

∐
V(cm,−)⊗im

Y ∧
∐

m∈M

V(cm,−) ⊗ sim

f∧
∐

V(cm,−)⊗sim?
- Y ∧ Zn.

f∧Zn

?

The map induced on the pushouts of the upper and lower row is f ∧ Zn+1.
Suppose f ∧ Z ′

n is a pointwise weak equivalence. By 4.10 and the hypothe-
sis on I, it follows that both of the other vertical maps are pointwise weak
equivalences. The horizontal maps on the left hand side are not necessarily
cofibrations. However, evaluation at any object gives maps in Cof(V) ⊗ V-
cell. Since V is strongly left proper, this implies that the map induced on the
pushouts – which is computed pointwise – is a pointwise weak equivalence.

Remark 4.12. Let V be a weakly finitely generated monoidal model category.
Suppose that − ⊗ si and − ⊗ ti preserve weak equivalences for every i ∈ I,
and V is strongly left proper. Then − ⊗ A preserves weak equivalences for
any cofibrant object A in V, cp. 4.11. We say a strongly left proper monoidal
model category is strongly monoidal if −⊗A preserves weak equivalences for A
either cofibrant or a domain or codomain of the generating cofibrations, if they
exist. A monoidal model category in which every object is cofibrant satisfies
this condition and also the monoid axiom.

5 The homotopy functor model structure

Suppose F : C - D is a functor of categories with chosen subclasses of weak
equivalences. If F maps weak equivalences to weak equivalences, then F is
called a homotopy functor. As a first step towards the stable model structure
on enriched functors, we define a model structure in which every enriched
functor is weakly equivalent to a homotopy functor.
Let V be a weakly finitely generated strongly monoidal sSet-model category.
Additionally, assume the following for V: the monoid axiom holds, the unit
is cofibrant, ∆1 is finitely presentable in V, filtered colimits commute with
pullbacks, and cofibrations are monomorphisms. The simplicial structure is
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used for the simplicial mapping cylinder construction. Let I: fV ⊂ - V be a
small full sub-V-category such that the following axioms hold.

f1 Every object of fV is V-finitely presentable.

f2 The unit e is in fV, and fV is closed under the monoidal product.

f3 If tj ¾∼ ¾sj - v is a diagram in V where v ∈ Ob fV and j ∈ J ′, then
the pushout tj ∪sj v is in fV.

Consider also the following additional axioms.

f0 Every object of V is a filtered colimit of objects in fV.

f4 All objects in fV are cofibrant.

f5 The simplicial mapping cylinder exists in fV.

Objects in fV will usually be denoted by small letters, since fV should be
thought of as a category of small objects. Let F be short for [fV,V]. Recall
the left Kan extension I∗X of X ∈ ObF along I: fV ⊂ - V, cp. 2.5.

5.1 Equivalences of homotopy functors

Let Φ: fV - V denote the functor induced by the fibrant replacement functor
ΦJ ′

from 3.3.3. In general it is not a V-functor. Denote by ~(X): fV - V
the composition I∗X ◦ Φ, and by ~:F - Fun(fV,V) the induced functor.
There is a natural transformation X - ~(X) induced by the canonical maps
ϕv: v - Φ(v) where v varies through the set of objects in fV.

Lemma 5.1. The functor ~ commutes with colimits and the action of V. The
natural transformations X - ~(X) define a natural transformation from the
forgetful functor F - Fun(fV,V) to ~.

Definition 5.2. A map f is an hf-equivalence if ~(f)(v) is a weak equivalence
in V for all v ∈ Ob fV.

Lemma 5.3. Any pointwise weak equivalences is an hf-equivalence. The class
of hf-equivalences is saturated.

Proof. The first statement follows as in 4.9, since ~(f)(v) = I∗(f)(Φ(v)) is a
filtered colimit of weak equivalences provided f is a pointwise weak equivalence.
The second statement follows from 5.1 and the analogous fact in V.

Lemma 5.4. Let f be a cofibration in F . Then ~(f)(v) is a retract of a map
in Cof(V) ⊗ V-cell for every v ∈ Ob fV.

Proof. If V(v,−) ⊗ i is a generating cofibration, then ~(V(v, w) ⊗ i) coincides
with V(v,Φ(w))⊗ i, which is in Cof(V)⊗V-cell. The general case follows since
~ commutes with colimits.

Documenta Mathematica 8 (2003) 409–488



444 B. I. Dundas, O. Röndigs, P. A. Østvær

5.2 Fibrations of homotopy functors

If φ: v - w is an acyclic cofibration in fV, the simplicial mapping cylinder
factors V(φ,−):V(w,−) - V(v,−) as a cofibration cφ:V(w,−)- - Cφ

followed by a simplicial homotopy equivalence. This uses that V(w,−) is a
cofibrant functor (since the unit in V is cofibrant), and that V (and hence F
by 4.4) is a sSet-model category. Take a generating cofibration i: si - ti in
V and form the pushout product

cφ¤i:V(w,−) ⊗ ti ∪V(w,−)⊗si Cφ ⊗ si - Cφ ⊗ ti.

Let H denote the set {cφ¤i}, where φ runs through the set of acyclic cofibra-
tions in fV and i runs through the set I of generating cofibrations in V.

Definition 5.5. A map is an hf-fibration if it is a pointwise fibration having
the right lifting property with respect to H.

Lemma 5.6. Let f :X - Y be a pointwise fibration. Then f is an hf-fibration
if and only if the following diagram is a homotopy pullback square in V for every

acyclic cofibration φ: v-
∼- w in fV.

X(v)
X(φ)- X(w)

Y (v)

f(v)
?

Y (φ)- Y (w)

f(w)
?

Proof. Let VF (X,Y ) denote the V-object of maps in F from X to Y . For a
map of V-functors f :X - Y , the square in the statement of the lemma is
naturally isomorphic, by the Yoneda lemma 2.1, to the square

VF (V(v,−),X)
VF (V(φ,−),X)- VF (V(w,−),X)

VF (V(v,−), Y )

VF (V(v,−),f)
? VF (V(φ,−),Y )- VF (V(w,−), Y ).

VF (V(w,−),f)
?

The factorization of V(φ,−) as a cofibration cφ:V(w,−)- - Cφ followed by a
simplicial homotopy equivalence Cφ

- V(v,−) induces a factorization of the
square above into two squares. Since VF (−,X) preserves simplicial homotopy
equivalences by 2.11, which are pointwise weak equivalences by 3.10, the square
above is a homotopy pullback square if and only if

VF (Cφ,X)
VF (cφ,X)- VF (V(w,−),X)

VF (Cφ, Y )

VF (Cφ,f)
? VF (cφ,Y )- VF (V(w,−), Y )

VF (V(w,−),f)
?
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is a homotopy pullback square. If f :X - Y is a pointwise fibration, the

induced map g:VF (Cφ,X) - VF (Cφ, Y ) ×VF (V(w,−),Y ) VF (V(w,−),X) is

a fibration in V. Here we use f2, so F is a monoidal model category when
equipped with the pointwise model structure, see 4.4. The square in 5.6 is
therefore a homotopy pullback square if and only if g has the right lifting
property with respect to the generating cofibrations in V. By adjointness, this
holds if and only if f has the right lifting property with respect to H.

Lemma 5.7. Let f :X - Y be an hf-fibration. Then

X(v) - ~(X)(v)

Y (v)

f(v)
?

- ~(Y )(v)

~(f)(v)
?

is a homotopy pullback square in V for every object v of fV.

Proof. Let f :X -- Y be a pointwise fibration of pointwise fibrant functors.
From 3.27, ~(f)(v) is a filtered colimit of fibrations of fibrant objects in V,
and therefore a fibration of fibrant objects by 3.5. This uses properties f1 and
f3. The square in the lemma is therefore a homotopy pullback square if and
only if X(v) - Y (v) ×colimY (a) colimX(a) is a weak equivalence in V. Up
to isomorphism, the colimit is taken over the category of finite subcomplexes

(α: v-
∼- a, α′: a-

∼- Fv) in Ob acJ ′

(v, F ). Note that the colimit is filtered
by 3.23. Filtered colimits commute with pullbacks in V by assumption, so the
map in question is a filtered colimit of maps X(v) - Y (v) ×Y (a) X(a) for

acyclic cofibrations α: v-
∼- a in fV. If f is an hf-fibration, then by 5.6 the

map in question is a filtered colimit of weak equivalences in V, and hence a
weak equivalence.
If f :X -- Y is any pointwise fibration, use the factorizations in the pointwise
model structure to construct a commutative square

X- ∼
g
- X ′

Y

f ??
- ∼

h
- Y ′

f ′

??

for f ′ a pointwise fibration of pointwise fibrant functors, and g and f pointwise
acyclic cofibrations. Note that f is an hf-fibration if and only f ′ is, see 3.13
and 5.6. The maps g and h are pointwise weak equivalences, hence ~(g)(v)
and ~(h)(v) are weak equivalences in V for every v. The square in question is
therefore a homotopy pullback square by the previous case.

Corollary 5.8. A map is an hf-fibration and an hf-equivalence if and only if
it is a pointwise acyclic fibration.
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Proof. If f is an hf-fibration, it is a pointwise fibration by definition. If f is
also an hf-equivalence, it is a pointwise weak equivalence by 3.13 and 5.7. A
pointwise acyclic fibration is an hf-fibration by 3.13 and 5.6.

5.3 The homotopy functor theorem

Before we prove the existence of the homotopy functor model structure, let us
first consider the maps in H-cell.

Lemma 5.9. The maps in H-cell are hf-equivalences.

Proof. Let φ: v-
∼- w be an acyclic cofibration in fV. Then the induced

map V(φ,−):V(w,−) - V(v,−) is an hf-equivalence, because ~(V(φ,−))(v)
is naturally isomorphic to V(φ,Φ(v)), φ is an acyclic cofibration and Φ(v) is
fibrant. Pointwise weak equivalences are hf-equivalences by 5.3, so the map
cφ:V(w,−)- - Cφ is an hf-equivalence.
Let i: si- - ti be a generating cofibration in V. Consider the diagram

V(w,−) ⊗ si
cφ⊗si- Cφ ⊗ si

V(w,−) ⊗ ti

V(w,−)⊗i
?

cφ⊗ti- Cφ ⊗ ti

Cφ⊗i

?

and the pushout product map cφ¤i. The functor ~ commutes with pushouts
and the action of V by 5.1, so ~(cφ¤i)(u) is the pushout product map obtained
from ~(cφ)(u) and i. Since V is strongly monoidal, it follows that ~(cφ)(u)¤i
is a weak equivalence. Hence the maps in H are hf-equivalences. The general
case of a map in H-cell follows using similar arguments and 5.4.

Theorem 5.10. Let V be a weakly finitely generated monoidal sSet-model cat-
egory, and let fV be a full sub-V-category satisfying f1, f2 and f3. Suppose the
monoid axiom holds in V, pullbacks commute with filtered colimits in V, and
∆1 is finitely presentable in V. Suppose also that V is strongly monoidal, and
that cofibrations in V are monomorphisms. Then F is a weakly finitely gener-
ated model category, with hf-equivalences as weak equivalences, hf-fibrations as
fibrations, and cofibrations as cofibrations.

Proof. Again we use [7, 2.1.19]. The set of generating cofibrations is PI , and
the set of generating acyclic cofibrations is the union PJ ∪H. It is clear that the
class of hf-equivalences is saturated and closed under retracts. It is also clear
that the domains of the maps in H are finitely presentable, because finitely
presentable objects are closed under pushouts and tensoring with finitely pre-
sentable objects. Here we use that ∆1 is finitely presentable in V. The other
properties which have to be checked are either obvious or follow from 5.8, 5.9
and the corresponding fact for the pointwise model structure 4.2.
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The model structure in 5.10 is called the homotopy functor model structure.
To emphasize the model structure, we use the notation Fhf . An hf-equivalence

is denoted by
∼hf- and an hf-fibration by

hf-- . Likewise, we use the

notations Fpt,
∼pt- and

pt-- for the pointwise model structure.

Lemma 5.11. The identity induces a left Quillen functor IdF :Fpt
- Fhf .

Lemma 5.12. Let V and fV be as in 5.10, and assume fV satisfies f4. Then
Fhf is a monoidal Fpt-model category.

Proof. Condition f2 is used to construct the smash product on F , and 4.4
holds. To prove that the homotopy functor model structure is monoidal, it
suffices to show that the pushout product map of a map cφ¤i in H (where

φ: v-
∼- w) and a generating cofibration V(u,−) ⊗ j is an hf-equivalence. It

is straightforward to check that this pushout product map coincides with the
pushout product map cφ⊗u¤f where f is the pushout product map in V of i and
j. Since V is a monoidal model category and fV satisfies f2 and f4, φ⊗u is an
acyclic cofibration in fV. Hence the map in question is an hf-equivalence.

Lemma 5.13. The homotopy functor model structure is left proper. If V is right
proper, then the homotopy functor model structure is right proper.

Proof. For left properness, let i:Y - Z ∪X Y be the cobase change of an

hf-equivalence g:X
∼hf- Z along a cofibration f :X- - Y . Factor g as a

cofibration h:X- - T , followed by a pointwise acyclic fibration p:T
∼-- Z.

Then g is an hf-equivalence, hence an acyclic cofibration in the homotopy func-
tor model structure. These maps are closed under cobase changes, so i factors
as an acyclic cofibration, followed by the cobase change of p. The latter is a
pointwise weak equivalence, since the cobase change of f along g is a cofibration
and the pointwise model structure is left proper by 4.8 provided V is strongly
left proper.

A slightly stronger property than right properness holds. Consider the maps

f :X
pt-- Z and g:Y

∼hf- Z. We claim the base change i of g along f is an
hf-equivalence. Let us shorten the notation by setting R = RJ ′

. To prove that

i is an hf-equivalence, factor Rf :RX - RZ as h:RX-∼ pt- T followed by

p:T
pt-- RZ. Then ~(p)(v) is a fibration of fibrant objects for any v by 3.5.

Moreover, ~(h)(v) and ~(ρZ(v)): ~(Z)(v) - ~(RZ)(v) are weak equivalences
for any v. Hence the base change of the weak equivalence ~(ρZ(v)) ◦ ~(g)(v)
along ~(b)(v) is a weak equivalence, using that V is right proper. Note that the
base change map factors as ~(h)(v) composed with the base change of ~(g)(v)
along ~(f)(v), i.e. ~(i)(v) since pullbacks commute with filtered colimits. It
follows that i is an hf-equivalence.
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5.4 Homotopy functors

We end this section with a discussion of homotopy functors. If f4 and f5 hold,
then a fibrant V-functor X in Fhf is a homotopy functor for the following
reasons: By 5.6, X maps acyclic cofibrations to weak equivalences. Using f4

and f5, every weak equivalence in fV can be factored as an acyclic cofibration
in fV, followed by a simplicial homotopy equivalence in fV. It follows from 2.11
that X preserves arbitrary weak equivalences in fV. Conversely, any V-functor
which is pointwise fibrant and a homotopy functor is fibrant in Fhf . Therefore
we regard the expressions “pointwise fibrant homotopy functor” and “fibrant
in Fhf” as synonymous. Next we define a fibrant replacement functor in Fhf

which allows to replace our definition of hf-equivalence by a better one.

Definition 5.14. For X ∈ ObF , define Xh as the composition I∗X ◦R, where
I: fV ⊂ - V is the inclusion and R := RJ ′

is the fibrant replacement V-functor
constructed in 3.3.2.

For pointed simplicial sets, Lydakis [11, 8.6] uses the singular complex applied
to the geometric realization as an enriched fibrant replacement functor. This
functor preserves fibrations, weak equivalences and finite limits.

Lemma 5.15. The map X - Xh is a V-natural transformation of V-
functors, and extends to a natural transformation IdF - (−)h. The functor
(−)h commutes with colimits and the action of V.

Proof. The first two statements follow from 3.25 and properties of enriched
Kan extension. For the last statement, use that coends commute with colimits
and the action of V, which are pointwise constructions.

Lemma 5.16. Assume f4 and let X ∈ ObF be cofibrant. For every object v

in fV, the weak equivalence ωv: Φ(v)
∼- R(v) induces a weak equivalence

~(X)(v) - Xh(v).

Proof. Since V is monoidal, f4 implies that V(w,Φv) - V(w,Rv) induced

by the canonical weak equivalence ωv: Φv
∼- R(v) is a weak equivalence for

every w ∈ fV. Now express X as a retract of a PI -cell complex. The lemma
follows then by induction, because V is strongly monoidal.

Corollary 5.17. Assume f4 holds and X is cofibrant. Then R ◦ Xh is a
pointwise fibrant homotopy functor and X - R◦Xh is an hf-equivalence. A
map f of cofibrant functors is an hf-equivalence if and only if fh is a pointwise
weak equivalence.

Proof. The second claim follows directly from 5.16, while the first claim requires
just a slight variation of the proof of 5.16.

Lemma 5.18. Suppose C satisfies f0 and f4. For any X ∈ ObV, the canonical

map ~(X)(v) - Xh(v) induced by the weak equivalence ωv: Φ(v)
∼- R(v)

is then a weak equivalence for all v ∈ Ob fV.
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Proof. Note that 4.9 holds. Hence, by a cofibrant replacement in Fpt, it suffices
to consider cofibrant functors. This case follows from 5.16.

Corollary 5.19. Assume f0 and f4 hold. A map f is then an hf-equivalence if
and only if fh is a pointwise weak equivalence. Furthermore, for any X ∈ ObF ,
the functor R◦Xh is a pointwise fibrant homotopy functor and the natural map
X - R ◦ Xh is an hf-equivalence.

Proof. As in 5.17, using 4.9.

Remark 5.20. If ρ: IdV - R has the property that its restriction to fV
takes values in cofibrant objects, then Xh is always a homotopy functor. The
reason is that in a sSet-model category, any weak equivalence of fibrant and
cofibrant objects is a simplicial homotopy equivalence, and V-functors preserve
them.

6 The stable model structure

We will construct the stable model structure on the category F = [fV,V] with
respect to some cofibrant object T of fV. For this, assume V and fV are as
in 5.10. In addition, V has to be right proper and cellular. We also require
that fV satisfies f4, in order to have a well-behaved fibrant replacement in Fhf .
Finally, we assume the adjoint pair (−⊗T,V(T,−)) is a Quillen equivalence on
the stable model structure on spectra described in 6.16. Since T is contained
in fV and f2 holds, the canonical functor π:TSph - V factors over the
inclusion as i:TSph - fV. Let (i∗, ev) denote the corresponding adjoint
pair of functors.

6.1 Stable equivalences

We start by describing the stabilization process. For every object v in fV,
the composition of the counit εTV(v,−):V(T,V(v,−)) ⊗ T - V(v,−) and
the natural isomorphism V(T,V(v,−)) ∼= V(T ⊗ v,−) define a morphism
τv:V(T ⊗ v,−) ⊗ T - V(v,−) which is natural in v. If X is a V-functor,
then the induced map VF (τv,X):VF (V(v,−),X) - VF (V(T ⊗v,−)⊗T,X)
is natural in v and X. Using the enriched Yoneda lemma 2.1, one obtains a
map tX(v):X(v) - V(T,X(T ⊗ v)). Let Sh:F - F denote the ‘shift’
functor obtained by pre-composing with the V-functor T ⊗−: fV - fV. De-
fine T:F - F to be the composition V(T,−) ◦ Sh, so that T(X)(v) =
V(T,X(T ⊗ v)). The collection of the maps tX(v) is a V-natural trans-
formation tX :X - T(X). Let T∞(X) denote the colimit of the se-

quence X
t(X)- T(X)

T(t(X))- T(T(X)) - · · ·. The canonical map
t∞X :X - T∞(X) yields a natural transformation t∞: IdF - T∞.
The definition of stable weak equivalences uses the fibrant replacement functor
ΦJ ′

considered in 3.3.3. Let Φ be short notation for ΦJ ′

, and similarly for the
other fibrant replacement functors R and F . Recall that ~(X) is not necessarily
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a V-functor for every X ∈ ObF . But it can be stabilized, since there are
natural weak equivalences θv:T ⊗ Φ(v) - Φ(T ⊗ v) according to 3.26. Let
T′: Fun(fV,V) - Fun(fV,V) be the functor that maps X to the composition
V(T,−) ◦ X ◦ (T ⊗−): fV - V. Define the map t′~(X): ~(X) - T′(~(X))
pointwise as the adjoint of

I∗X(Φ(v)) ⊗ T - I∗X(T ⊗ Φ(v)) - I∗X(Φ(T ⊗ v)).

The map on the left hand side in this composition is adjoint to the composition

T
ηΦ(v)(T )- V(Φ(v), T ⊗Φ(v))

homI∗X

Φ(v),T⊗Φ(v)- V(I∗X(Φ(v)), I∗X(T ⊗Φ(v))), and
the map on the right hand side is I∗X(θv)

Lemma 6.1. There is a natural transformation t′~: ~ - T′ ◦ ~. The natu-
ral transformation u:U - ~, where U :F - Fun(fV,V) is the forgetful
functor, makes the following diagram commutative.

U ◦ IdF
U◦t- U ◦ T = T′ ◦ U

~

u

?
t′

~ - T′ ◦ ~.

T′◦u
?

Proof. The claim follows since tX(v):X(v) - T(X)(v) can be defined as the
adjoint (under tensoring with T ) of the adjoint (under tensoring with X(v)) of
homX

v,T⊗v ◦ ηv(T ):T - V(v, T ⊗ v) - V(X(v),X(T ⊗ v)), cp. A.8.

Denote the colimit of ~(X)
t′

~(X)- T′(~(X))
T′(t′

~(X))- T′(T′(~(X))) - · · · by

T′∞(~(X)), and let t′∞~(X) be the canonical map ~(X) - T′∞(~(X)).

Definition 6.2. A map f in F is a stable equivalence if T′∞(~(Rf))(v) is a
weak equivalence in V for every object v of fV.

Lemma 6.3. Every hf-equivalence is a stable equivalence. The class of stable
equivalences is saturated.

There are canonical maps X(v) - RX(v) - ~(RX)(v) for all v ∈ Ob fV.

Consider the induced map T∞(X) - T′∞(~(RX)). The latter is sometimes

a pointwise weak equivalence.

Lemma 6.4. Assume X ∈ ObF is a pointwise fibrant homotopy functor. Then

T∞(X)(v) - T′∞(~(RX))(v) is a weak equivalence in V for all v ∈ Ob fV.

Proof. Note that X(v) - ~(RX)(v) is a weak equivalence of fibrant objects.
V(T,−) preserves weak equivalences of fibrant objects since T is cofibrant and
V is a monoidal model category. The map is question is hence a sequential
colimit of weak equivalences, so 3.5 concludes the proof.

Corollary 6.5. A map f between pointwise fibrant homotopy functors is a
stable equivalence if and only if T∞(f) is a pointwise weak equivalence.
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6.2 Stable fibrations

Let τv:V(T ⊗ v,−) ⊗ T - V(v,−) be the canonical map of V-functors de-
scribed in section 6.1. The simplicial mapping cylinder factors τv as a cofibra-
tion dv:V(T⊗v,−)⊗T- - Dv followed by a simplicial homotopy equivalence.
Take a generating cofibration i: si- - ti ∈ I in V and form the pushout prod-
uct dv¤i. The set D of generating acyclic cofibrations for the class of stable
equivalences is {dv¤i}, where v ∈ Ob fV and i ∈ I.

Definition 6.6. A map is called a stable fibration if it is an hf-fibration having
the right lifting property with respect to the set D.

Lemma 6.7. An hf-fibration f :X - Y is a stable fibration if and only if

X(v)
tX(v)- T(X)(v)

Y (v)

f(v)
?

tY (v)- T(Y )(v)

T(f)(v)
?

is a homotopy pullback square in V for every object v of fV.

Proof. The proof is formally the same as for 5.6.

The rest of this section is devoted to prove that a stable fibration which is also
a stable equivalence is a pointwise weak equivalence.

Lemma 6.8. Assume V is right proper, and that filtered colimits commute with
pullbacks in V. Let f :X - Y be a stable fibration. Then

~(RX)(v)
t′

~(RX)(v)- T′(~(RX))(v)

~(RY )(v)

~(Rf)(v)
? t′

~(RY )(v)- T′(~(RY ))(v)

T′(~(Rf))(v)
?

is a homotopy pullback square in V for all v ∈ Ob fV.

The proof of 6.8 uses 6.10, 6.11 and 6.12. We start with a general fact about
model categories.

Lemma 6.9. Let G: C - D be a functor between right proper model categories
which preserves pullbacks, fibrations and acyclic fibrations. Suppose

A
∼- B

C

f ?? ∼- D
?

is a commutative diagram in C, such that the horizontal maps are weak equiva-
lences with fibrant targets, and such that f :A -- C is a fibration. Then the
image of this square under G is a homotopy pullback square.
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Proof. By Ken Brown’s lemma, we can assume that the horizontal maps are
in fact acyclic cofibrations. Factor the composition A - D as an acyclic

cofibration i:A- ∼- E followed by a fibration p:E -- D. Then the map

B - D factors as B
∼- E

p-- D, by choosing a lift in the diagram

A- ∼
i
- E

B

∼
?

?

- D.

p??

Define P to be the pullback of C
∼- D ¾¾p

E and call the map induced by

f and i h:A - P . Since C
∼- D and i are weak equivalences and C is

right proper, h is a weak equivalence. Using the assumptions on G and right
properness of D (3.14), we have to prove that G(h) is a weak equivalence.

Let Q be the pullback of A
f-- C ¾¾p′

P , where p′ is the base change
of p. The maps idA and h induce a map A - Q which can be factored as

A- s

∼
- W

q-- Q. After all, we have a factorization of h as A- s

∼
- W

f ′◦q-- P ,

where f ′ is the base change of the fibration f . The map h is a weak equivalence,
thus f ′ ◦ q is an acyclic fibration. In particular, G(f ′ ◦ q) is an acyclic fibration.
The map p′′ ◦ q:W - A is a fibration (where p′′ is the base change of the

fibration p′) and has s:A- ∼- W as a section. Hence p′′ ◦ q is an acyclic
fibration, and so is G(p′′ ◦ q). Now G(s) is a section of G(p′′ ◦ q), implying that
G(s), and therefore G(h = (f ′ ◦ q) ◦ s), is a weak equivalence.

Corollary 6.10. Let f :X - Y be a pointwise fibration, and assume V
is right proper. Then the following is a homotopy pullback square in V for all
v ∈ Ob fV.

V(T,X(v))
V(T,ρX(v))- V(T,RX(v))

V(T, Y (v))

V(T,f(v))
? V(T,ρY (v))- V(T,RY (v))

V(T,Rf(v))
?

Proof. Follows from 6.9, since V(T,−):V - V is a right Quillen functor.

Corollary 6.11. Suppose V is right proper and f :X - Y is a stable
fibration. Then the following is a homotopy pullback square for all v ∈ Ob fV.

RX(v)
tRX(v)- T(RX)(v)

RY (v)

Rf(v)
?

tRY (v)- T(RY )(v)

T(Rf)(v)
?
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Proof. Consider the following commutative diagram.

X(v)
tX(v) - T(X)(v)

RX(v)
tRX(v) -

ρ
X(v) -

T(f)(v)

T(RX)(v)

T(ρ
X(v) )

-

Y (v)

f(v)

?
tY (v) - T(Y )(v)

?

RY (v)

Rf(v)

?
tRY (v) -

ρ
Y (v) -

T(RY )(v)

T(Rf)(v)

?

T(ρ
Y (v) )

-

The right hand square of the cube is a homotopy pullback square by 6.10.
Likewise for the square in the back using the assumption on f . In the left
hand square the horizontal maps are weak equivalences. Hence the square in
question is a homotopy pullback square by 3.13.

Lemma 6.12. Assume f :X - Y is a stable fibration of pointwise fibrant
functors, and filtered colimits commute with pullbacks in V. Then

~(X)(v)
t′

~(X)(v)- T′(~(X))(v)

~(Y )(v)

~(f)(v)
? t′

~(Y )(v)- T′(~(Y ))(v)

T′(~(f))(v)
?

is a homotopy pullback square for all v ∈ Ob fV.

Proof. Up to isomorphism, the square above decomposes into two squares:

colimac(v,R)X(a)
colimtX(a)- colimac(v,R)T(X)(a)

cX- colimac(T⊗v,R)V(T,X(b))

colimac(v,R)Y (a)

colimf(a)
?

colimtY (a)- colimac(v,R)T(Y )(a)

colimT(f)(a)
?

cY- colimac(T⊗v,R)V(T, Y (b))

colim V(T,f(b))
?

Recall from 3.3.3 that the objects in ac(T⊗v,R) are T⊗v-
∼- b - R(T⊗v).

The maps cX and cY are obtained from Θv: ac(v,R) - ac(T ⊗ v,R) which

maps v-
∼- a - R(v) to T⊗v-

∼- T⊗a - T⊗R(v) - R(T⊗v), and
the natural transformation V(T,X(T ⊗ Φv)) - V(T,X(ΦT⊗v ◦ Θv)) which
consists of identity maps. From 3.23, one can replace the indexing categories
ac(v,R) and ac(T ⊗ v,R) by filtered ones, namely ac(v, F ) and ac(T ⊗ v, F ).
Then all the vertical maps are fibrations of fibrant objects, because f is a
pointwise fibration of pointwise fibrant functors and 3.5 holds. It follows that
the left hand square is a homotopy pullback square if and only if the canonical

Documenta Mathematica 8 (2003) 409–488



454 B. I. Dundas, O. Röndigs, P. A. Østvær

map g from colimac(v,F )X(a) to the pullback is a weak equivalence. Filtered
colimits commute with pullbacks, so g is the filtered colimit of the canonical
maps induced by the squares

X(a)
tX(a)- T(X)(a)

Y (a)

f(a)
?

tY (a)- T(Y )(a)

T(f)(a)
?

for finite sub-complexes v-
∼- a of v-

ιv- Fv. These squares are all homotopy
pullback squares: f is a stable fibration, and the vertical maps are fibrations
of fibrant objects. It follows that g is a filtered colimit of weak equivalences,
so the left hand square is a homotopy pullback square.
That the right hand square is a homotopy pullback depends on whether f is
an hf-fibration. We claim that

X(T ⊗ a) - colimac(T⊗v,R)X(b)

Y (T ⊗ a)

f(T⊗a)
?

- colimac(T⊗v,R)Y (b)

colimac(T⊗v,R)f(b)
?

is a homotopy pullback square for all v-
∼
α
- a - R(v) in ac(v,R). Denote

the full subcategory of ac(T ⊗ v,R) consisting of T ⊗ v-
∼
β
- b - R(T ⊗ v),

where β factors as T ⊗ v-
T⊗α- T ⊗ a- - b, by ac(T ⊗ v,R)a. This category

is a final subcategory of ac(T ⊗ v,R). Hence we may assume the colimit in the
square above is indexed by ac(T ⊗v,R)a. As in the proof of 5.7, it follows that

the square above is a homotopy pullback square for all v-
∼
α
- a - R(v) in

ac(v,R). Here we use that f is an hf-fibration. The right hand square in the
main diagram is then a homotopy pullback square, using the by now standard
argument for filtered colimits of homotopy pullback squares.

A proof of 6.8 follows:

Proof. By 6.11, we may assume f is a stable fibration of pointwise fibrant
functors. The result is therefore a consequence of 6.12.

Lemma 6.13. Suppose that V is right proper and filtered colimits commute with
pullbacks in V. Let f :X - Y be a stable fibration. Then

X(v) - T′∞(~(RX))(v)

Y (v)

f(v)
?

- T′∞(~(RY ))(v)

T′∞(~(Rf))(v)
?

is a homotopy pullback square in V for all v ∈ Ob fV.
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Proof. Let f :X - Y be a stable fibration. Factor Rf as RX-∼ pt- Z

followed by g:Z
pt-- RY . Here g is a stable fibration of pointwise fibrant

functors by 5.6 and 6.11. The claim in 6.13 is equivalent to the statement that

Z(v) - T′∞(~(Z))(v)

RY (v)

g(v)
?

- T′∞(~(RY ))(v)

T′∞(~(g))(v)
?

is a homotopy pullback square. The vertical maps are fibrations of fibrant
objects, and there is the decomposition

Z(v) - ~(Z)(v) - T′∞(~(Z))(v)

RY (v)

g(v)
?

- ~(RY )(v)

~(g)(v)
?

- T′∞(~(RY ))(v)

T′∞(~(g))(v)
?

The left hand square is a homotopy pullback square by 5.7. The functor V(T,−)
preserves homotopy pullback squares provided the vertical maps are fibrations
of fibrant objects. It follows, using 6.8, that the right hand square is a homotopy
pullback square.

Corollary 6.14. A map is a stable fibration and a stable equivalence if and
only if it is a pointwise acyclic fibration.

Proof. Let f :X - Y be a stable fibration and a stable equivalence. Stable
fibrations are in particular pointwise fibrations, so it remains to prove that f
is a pointwise weak equivalence. By 6.13, the following diagram is a homotopy
pullback square in V for all v ∈ Ob fV.

X(v) - T′∞(~(RX))(v)

Y (v)

f(v)
?

- T′∞(~(RY ))(v)

T′∞(~(Rf))(v)
?

Since f is a stable equivalence, the right hand vertical map is a weak equiv-
alence. It follows that f is a pointwise weak equivalence. Consider the other
implication.
A pointwise acyclic fibration f :X - Y is a stable equivalence according to
6.3. So 5.8 implies that f is an hf-fibration. By 6.7, it remains to prove that

X(v)
t(X)(v)- T(X)(v)

Y (v)

f(v)
?

t(Y )(v)- T(Y )(v)

T(f)(v)
?

is a homotopy pullback square in V for all v ∈ fV. The maps f(v) and f(T ⊗v)
are acyclic fibrations and V(T,−) preserves acyclic fibrations. This implies that
T(f)(v) is an acyclic fibration.
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6.3 Comparison with T -spectra

To proceed with the stable model structure we will compare the stabilizations
of enriched functors 6.1 and spectra [8, §4]. Recall the “suspension with T”
functors − ⊗ T and ΣT on Sp(V, T ) from 2.13. Let Evn := EvT n denote the
functor evaluating a spectrum on Tn. If n ≥ 0, there is the commutative
diagram:

Sp(V, T )
−⊗T- Sp(V, T )

Sp(V, T )

ΣT

?
Evn - V

Evn

?

Hence, for any spectrum E, E⊗T and ΣT E differ only in their structure maps.
This statement carries over to the adjoints V(T,−): Sp(V, T ) - Sp(V, T ) and

ΩT : Sp(V, T ) - Sp(V, T ). The composition TSph ⊂ - V T⊗−- V does not
factor over the inclusion TSph ⊂ - V. Hence the shift functor Sh:F - F
does not have a compatible analog in the category of spectra. But there is the
shift sh: Sp(V, T ) - Sp(V, T ) where (sh(E))n: = En+1. The nth structure
map of sh(E) is en+1, and the following diagram commutes for all n ≥ 0.

F Sh - F ev- Sp(V, T )

Sp(V, T )

ev
?

sh- Sp(V, T )
Evn - V

Evn

?

The stabilization for spectra uses that the structure maps of a spectrum E de-
fine a natural map s(E):E - sh(ΩT E). Let us abbreviate the composition
sh◦ΩT by S: Sp(V, T ) - Sp(V, T ). Then s(E)n:En

- S(E)n = ΩT En+1

is the adjoint of en. The stabilization S∞(E) of a spectrum E is the colimit of

the diagram E
s(E)- S(E)

S(s(E))- S(S(E)) - · · ·. Let s∞:E - S∞(E)
be the canonical map. In [8, §4], the notation ι: IdSp(V,T )

- Θ is
used instead of s: IdSp(V,T )

- S, and j: IdSp(V,T )
- Θ∞ instead of

s∞: IdSp(V,T )
- S∞.

Definition 6.15. A map f :E - F of spectra is a stable equivalence if
S∞(R ◦ f) is a pointwise weak equivalence, and a stable fibration if f is a
pointwise fibration and

E - R ◦ E
s∞(R◦E)- S∞(R ◦ E)

F

f

?
- R ◦ F

R◦f

?
s∞(R◦F )- S∞(R ◦ F )

S∞(R◦f)
?

is a homotopy pullback square in the pointwise model structure.
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We summarize the results [8, 4.12, 4.14, 6.5].

Theorem 6.16 (Hovey). Let V be an almost finitely generated, pointed,
proper, and cellular monoidal model category. Let T be some cofibrant and
V-finitely presentable object of V. Assume sequential colimits commute with
pullbacks in V. Then Sp(V, T ) is an almost finitely generated proper V-model
category with stable equivalences as weak equivalences, stable fibrations as fi-
brations and cofibrations as cofibrations.

The condition that V be cellular might be weakened according to the remark
after [8, 4.12]. An important input in the proof of 6.16 is the following lemma.

Lemma 6.17. If E is pointwise fibrant, then s∞(E) is a stable equivalence with
a stably fibrant codomain.

The natural maps ev(t∞(X)) and s∞(ev(X)) do not coincide. Compatibility
of the two stabilization processes is therefore an issue, see 6.18 and 6.19 below.

Lemma 6.18. If v is an object of fV, let v∗:F - F be the functor where
X - X ◦ (v ⊗−) and let γv,n be short for the coherence isomorphism

T ⊗ (v ⊗ Tn)
αT,V,T n- (T ⊗ v) ⊗ Tn σT,v⊗T n

- (v ⊗ T ) ⊗ Tn
α−1

v,T,T n- v ⊗ Tn+1.

Then the next diagram is commutative and natural in X.

X(v ⊗ Tn)
t(X)(v⊗T n)- V(T,X(T ⊗ (v ⊗ Tn))) = T(X)(v ⊗ Tn)

V(T,X(v ⊗ Tn+1))

V(T,X(γv,n))
?

s(ev(v∗
(X)))n -

Proof. By definition, t(X)(v ⊗ Tn) is the adjoint of

T
ηv⊗T n (T )- V(v ⊗ Tn, T ⊗ (v ⊗ Tn))

homX

- V(X(v ⊗ Tn),X(T ⊗ (v ⊗ Tn))).

Likewise, the map s(ev(v∗(X)))n is the adjoint of

T
ηT n (T )- V(Tn, Tn+1)

hom
v∗(X)

T n,T n+1- V(X(v ⊗ Tn),X(v ⊗ Tn+1)).

Note that hom
v∗(X)
T n,T n+1 = hom

X◦(v⊗−)
T n,T n+1 = homX

v⊗T n,v⊗T n+1 ◦ homv⊗−
T n,T n+1 . The

claim follows from A.2.

Corollary 6.19. For all X ∈ ObF and v ∈ Ob fV, there exists an iso-
morphism γ: T∞(X)(v ⊗ Tn) - S∞(ev(v∗(X)))n and the diagram below is
commutative and natural in X.

X(v ⊗ Tn)
t∞(X)(v⊗T n)- T∞(X)(v ⊗ Tn)

S∞(ev(v∗(X)))n

γ
?

s∞
(ev(v ∗

(X)))n
-
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Proof. The maps γ and s∞(ev(v∗(X)))n are the vertical sequential composi-
tions in the following commutative diagram.

X(v ⊗ Tn)
idX(v⊗T n) - X(v ⊗ Tn)

T(X)(v ⊗ Tn)

t(X)(v⊗T n)
? V(T,X(γ1)) - V(T,X(v ⊗ Tn+1))

s(ev(v∗(X)))n

?

T(T(X))(v ⊗ Tn)

T(t(X))(v⊗T n)
? V(T,V(T,X(γ2)))- V(T,V(T,X(v ⊗ Tn+2)))

V(T,s(ev(v∗(X)))n+1)
?

...

?
...

?

Here γ1 is the map γv,n in 6.18. Note that the second square above is V(T,−)
applied to the diagram

X(T ⊗ (v ⊗ Tn))
t(X)(t⊗(v⊗T n))- T(X)(T ⊗ (v ⊗ Tn))

X(v ⊗ Tn+1)

V(T,X(γ1))
?

s(ev(v∗(X)))n+1- V(T,X(v ⊗ Tn+1)).

V(T,X(γ2))
?

Let γ2 be defined as T ⊗ (T ⊗ (v⊗Tn))
T⊗γv,n- T ⊗ (v⊗Tn+1)

γv,n+1- v⊗Tn+1.
Then the lower square commutes because of naturality and 6.18. Likewise one
constructs γn inductively, and puts γ to be colimnγn. The result follows.

If v ∈ Ob fV, the composition I∗X ◦Φ ◦ (v ⊗−) = ~(X) ◦ (v ⊗−) determines a
T -spectrum v∗X for every V-functor X. The nth term of v∗X is I∗X(Φ(v⊗Tn))
and the structure map v∗Xn ⊗ T - v∗Xn+1 is the composition

I∗X(Φ(v ⊗ Tn))⊗ T
swI∗X

T- I∗X(Φ(v ⊗ Tn)⊗ T )
I∗X(θv⊗T n )- I∗X(Φ(v ⊗ Tn+1))

up to an associativity isomorphism. This construction is functorial and com-
mutes with colimits and the closed V-module structures.

Lemma 6.20. A map f :X - Y in F is a stable equivalence if and only if
v∗f : v∗X - v∗Y is a stable equivalence of T -spectra for all v ∈ Ob fV.

Proof. Let f :X - Y be a stable equivalence, and pick v ∈ Ob fV. The map
T′∞(~(R◦f))(v⊗Tn) is a weak equivalence in V by definition. The isomorphism
mentioned in 6.19 implies that this map is isomorphic to S∞(v∗(R◦f)′)n. Thus
v∗(R ◦ f) is a stable equivalence of T -spectra. Since this is a pointwise fibrant
replacement of v∗f in Sp(V, T ), it follows that v∗f is a stable equivalence. The
converse holds by running the argument backwards.
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If additional conditions are satisfied, the characterization of stable equivalences
can be improved in that ~ becomes redundant. Note that the last characteri-
zation uses the axiom f4.

Corollary 6.21. A map f :X - Y of pointwise fibrant homotopy functors
is a stable equivalence if and only if ev(v∗(f)) is a stable equivalence of spectra
for every object v of fV.

Proof. By 6.4, f is a stable equivalence if and only if T∞(f)(w) is a weak
equivalence in V for every w. The proof proceeds as in 6.20.

Corollary 6.22. A map f of cofibrant functors is a stable equivalence if and
only if ev(v∗(fh)) is a stable equivalence of spectra for all v ∈ Ob fV.

Proof. Consider the diagram

X
∼hf- RXh

Y

f

? ∼hf- RY h.

Rfh

?

¿From 5.17 – which uses f4 – and 6.3 we have that f is a stable equivalence if
and only if Rfh is a stable equivalence. Corollary 6.21 shows that f is a stable
equivalence if and only if ev(v∗(Rfh)) is a stable equivalence in Sp(V, T ) for all
v ∈ Ob fV. Since ev(v∗(Rfh)) = R ev(v∗(fh)) and pointwise weak equivalences
of spectra are stable equivalences, it follows that f is a stable equivalence if
and only if ev(v∗(fh)) is a stable equivalence of spectra.

6.4 The generating stable equivalences

Recall the stable model structure on Sp(V, T ) from 6.16. In this structure,
(ΣT ,ΩT ) is a Quillen equivalence by [8, 3.9]. In general, it is not clear whether
(−⊗ T,V(T,−)) – which is more natural to consider when viewing spectra as
V-functors – is a Quillen equivalence. As explained in [8, 10.3], this holds if T
is symmetric, which roughly means that the cyclic permutation on T ⊗ T ⊗ T
is homotopic to the identity. We formulate a working hypothesis.
Hypothesis: The adjoint functor pair (−⊗T,V(T,−)) is a Quillen equivalence
for the model category Sp(V, T ) described in 6.16.

Lemma 6.23. The maps in D are stable equivalences.

Proof. A map dv¤i in D is a cofibration of cofibrant functors, and by 6.22 a
stable equivalence if and only if ev(w∗(dv¤i)h) = ev(w∗(dv)h)¤i is a stable
equivalence of spectra for all w ∈ Ob fV. We claim the latter holds if f :=
ev(w∗(dv)h) is a stable equivalence.
Factor f as a cofibration g followed by a pointwise acyclic fibration p. The
stable model structure on spectra is a V-model structure by 6.16, hence f¤i
factors as a cobase change of the stable acyclic cofibration g¤i, followed by the
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map p¤i. Since V is assumed to be strongly monoidal, p¤i is a pointwise weak
equivalence.
It remains to prove that dv is a stable equivalence. This condition is equivalent
to τv being a stable equivalence. The latter factors by definition as

V(T ⊗ v,−) ⊗ T
∼=- V(T,V(v,−)) ⊗ T

εT V (v,−)- V(v,−)

where εT is the counit (− ⊗ T ) ◦ V(T,−) - IdF . We are reduced to prove
that εT V (v,−) is a stable equivalence. By 6.22, this map is a stable equivalence
if and only if ev(w∗(εTV(v,−))h) is a stable equivalence of spectra for every
w. Since ev commutes with the action and coaction of V, ev(w∗(εTV(v,−))h)
coincides with εT ev(w∗(V(v,−))h).
Let q:Q - IdSp(V,T ) be a cofibrant replacement functor in the category of
spectra, so q(E)n is an acyclic fibration in V for every spectrum E and n ≥ 0.
Consider the following diagram, where the notation is simplified.

(QV(T, ev(V(v,R(w ⊗−))))) ⊗ T
q⊗T- V(T, ev(V(v,R(w ⊗−)))) ⊗ T

Qev(V(v,R(w ⊗−)))

QεT

?
q - ev(V(v,R(w ⊗−)))

εT

?

The composition

s∞ ◦ q ◦ QεT : (QV(T, ev(V(v,R(w ⊗−))))) ⊗ T - S∞(ev(V(v,R(w ⊗−))))

is a stable equivalence of spectra by the hypothesis. The target of s∞ ◦ q ◦QεT

is stably fibrant, and its domain is cofibrant. Recall that V(T,−) commutes
with filtered colimits. Up to an isomorphism, the stable weak equivalence

s∞ ◦ q:QV(T, ev(V(v,R(w ⊗−)))) - S∞(V(T, ev(V(v,R(w ⊗−)))))

is an adjoint of s∞ ◦ q ◦ QεT . Thus q ◦ QεT is a stable equivalence. The map
q ⊗ T is a pointwise weak equivalence since V is strongly monoidal. Hence εT

is a stable equivalence of spectra. This ends the proof.

To consider maps in D-cell, we need to record a property of the stable model
structure of spectra.

Lemma 6.24. Let f :E - F be a stable equivalence of spectra such that fn is
a retract of a map in Cof(V)⊗V-cell for every n ≥ 0. Then any cobase change
of f is a stable equivalence.

Proof. Let g:E - G be a map of spectra. Factor g as i:E- - T followed

by p:T
∼pt-- G, and consider the diagram:

E- i - T
p

∼pt
-- G

F

f

?
- - F ∪E T

f ′

?
p′

- F ∪E G

f ′′

?
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The stable model structure on spectra is left proper by 6.16, hence f ′ is a
stable equivalence. Pushouts are formed pointwise, so f ′

n is a retract of a map
belonging to Cof(V) ⊗ V-cell for every n ≥ 0. By the assumption that V is
strongly left proper, the cobase change p′ of the pointwise weak equivalence p
along f ′ is again a pointwise weak equivalence. Hence f ′′ is a stable equivalence.

Lemma 6.25. The maps in D-cell are stable equivalences.

Proof. Let f :X - Y be a map in D-cell. First suppose that X is cofi-
brant. Then Y is automatically cofibrant. By 6.22, it suffices to prove that
ev(v∗fh) is a stable equivalence of spectra for every v. The functors ev, v∗

and (−)h preserve colimits, hence ev(v∗fh) is in ev(v∗(Dh))-cell. Every map
in ev(v∗(Dh)) is of the form considered in 6.24, so cobase changes of these are
stable equivalences of spectra. The stable model structure on spectra is almost
finitely generated, which implies that stable equivalences of spectra are closed
under sequential compositions. This proves the lemma for maps in D-cell with
cofibrant domain.

For f arbitrary, we will construct a commutative diagram

X ′ f ′

- Y ′

X

∼pt

?
f- Y

∼pt

?

where X ′ is cofibrant and f ′ is a map in PJ ∪ D-cell. It allows to finish
the proof using the special case treated above. Without loss of generality,

f is the sequential composition of X = X0
f0- X1

f1- · · ·, where fn

is the cobase change of a coproduct of maps in D. We construct f ′ as a

sequential composition. Consider a cofibrant replacement g0:X
′
0 = X ′ ∼pt-- X.

Assume f0 is the cobase change of z0: sZ0
- tZ0, and let a0: sZ0

- X
be the attaching map. The functor sZ0 is cofibrant, so a0 lifts to a map
a′
0: sZ0

- X ′
0. Taking pushouts in the commutative diagram

tZ0
¾z0

sZ0
a′
0- X ′

0

tZ0

id

?
¾z0

sZ0

Id

?
a0- X0

g0

?

gives a pointwise weak equivalence tZ0∪sZ0
X ′

0

∼pt- X1. It factors as a map in

PJ -cell followed by say X ′
1

∼pt-- X1. By iterating this construction one finds

pointwise acyclic fibrations gn:X ′
n

∼pt-- Xn for all n ≥ 0. Taking the colimit
gives f ′:X ′ - Y := colimnX ′

n.
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6.5 The main theorem

Before stating our main theorem, we summarize the list of assumptions. First,
V is a weakly finitely generated monoidal sSet-model category for which the
monoid axiom holds. Moreover, V is strongly monoidal as defined in 4.12, right
proper and cellular. Assume that filtered colimits commute with pullbacks in V,
that ∆1 is finitely presentable in V, and that cofibrations are monomorphisms.
We require fV to satisfy

f1 Every object of fV is V-finitely presentable.

f2 The unit e is in fV, and fV is closed under the monoidal product.

f3 If tj ¾∼ ¾sj - v is a diagram in V where v ∈ Ob fV and j ∈ J ′, then
the pushout tj ∪sj v is in fV.

f4 All objects in fV are cofibrant.

In what follows, T is a cofibrant object of fV with the property that (− ⊗
T,V(T,−)) is a Quillen equivalence in the stable model structure on Sp(V, T ).

Theorem 6.26. Under the assumptions above, the classes of stable equiva-
lences, stable fibrations and cofibrations give F = [fV,V] the structure of a
weakly finitely generated model category.

Proof. The proof is analogous to the proof of 5.10, using 6.14 and 6.25. Nev-
ertheless we give some details. The set of additional generating acyclic cofi-
brations is the set D, and the domains and codomains of the maps in D are
finitely presentable. Lemma 6.25 then shows that relative cell complexes built
from the generating acyclic cofibrations are stable equivalences. By 6.14 and
4.2, the stable acyclic fibrations are detected by the generating cofibrations.
With 6.3 we get that all criteria of [7, 2.1.19] are satisfied.

We refer to the model structure in 6.26 as the stable model structure. If F
is equipped with the stable model structure, we indicate this by the subscript
“st”.

Lemma 6.27. The model category Fst is a monoidal Fhf-model category.

Proof. Axiom f4 implies that the homotopy functor structure is monoidal. Let
dv¤i be a map in D, and let V(w,−) ⊗ j be a map in PI . Then the pushout
product map in F is isomorphic to dv⊗w¤(i¤j), i.e. a stable equivalence.

Lemma 6.28. The stable model structure is proper.

Proof. Left properness follows since the pointwise model structure is left
proper. To prove right properness, it remains by 5.13 to check that the base
change of a stable equivalence of pointwise fibrant homotopy functors along
an hf-fibration of pointwise fibrant homotopy functors is a stable equivalence.
This follows from 6.5 since T∞ preserves pullbacks and pointwise fibrations of
pointwise fibrant functors, and Fpt is right proper.
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In the stable structure we have the following important result, analogous to
and in fact an easy a consequence of Theorem 4.11.

Theorem 6.29. If fV satisfies f0, then smashing with a cofibrant V-functor in
F preserves stable equivalences.

Proof. Factor a stable equivalence f as a stable acyclic cofibration followed
by a stable acyclic fibration, i.e. a pointwise acyclic fibration. By 4.11, we
may assume f is a stable acyclic cofibration. The claim follows since Fst is
monoidal.

Lemma 6.30. Suppose fV satisfies f0. Then the monoid axiom holds in Fst.

Proof. The domains of the generating acyclic cofibrations D′ := PJ ∪H∪D for
the stable model structure on F are cofibrant. Because f0 holds, 4.11 implies
that every map in D′∧F is a stable equivalence. The case of a map in D′∧F-cell
follows similarly as in the proof of 6.25.

7 A Quillen equivalence

In this section, we will discuss two natural choices for the domain category
fV. One of the choices gives a Quillen equivalence between the stable model
structure Sp(V, T )st on spectra and Fst.

7.1 The choices

Let fVmax be the category of all cofibrant V-finitely presentable objects, and
fVmin the full subcategory of fVmax given by the objects v for which there

exists an acyclic cofibration Tn- ∼- v for some n ≥ 0. In the applications,
the category of V-finitely presentable objects is equivalent to a small category,
hence its subcategories are valid domain categories. Axioms f1, f2 and f4 hold
in both cases. If the domains and codomains of the maps in J ′ are V-finite,
then f3 holds. The minimal choice satisfies a property which does not hold for
the maximal choice in general.

Lemma 7.1. A map f of pointwise fibrant homotopy functors in [fVmin,V] is
a stable equivalence if and only if ev(f) is a stable equivalence of spectra.

Proof. This follows by definition of fVmin.

The evaluation functor is a right Quillen functor for both choices.

Lemma 7.2. Evaluation ev:Fst
- Sp(V, T )st is a right Quillen functor.

Proof. Pointwise fibrations and pointwise acyclic fibrations are preserved by ev.
The characterizations of stable fibrations using homotopy pullback squares can
be compared using 6.19, which implies that ev preserves stable fibrations.

To deduce that ev is the right adjoint of a Quillen equivalence for the minimal
choice, we prove a property of the stable model structure of spectra which is
independent of the choice of fV.
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7.2 The unit of the adjunction

The following lemma is a crucial observation which depends on the hypotheses
on T and the stabilization functor of spectra 6.17. Recall that i∗ is the left
adjoint of ev.

Lemma 7.3. The canonical map

VTSph(Tn,−) - (V(Tn,−))h = ev((i∗VTSph(Tn,−))h)

is a stable equivalence of T -spectra for all n ≥ 0.

Proof. By 6.17, this follows if VTSph(Tn,−) - S∞((V(Tn,−))h) is a sta-
ble equivalence. The canonical map VTSph(Tn,−) ⊗ Tn - VTSph(T 0,−)
consists of isomorphisms in degree n and on, so it is a stable equivalence.

Note that the map VTSph(T 0,−) - V(T 0,−) is the identity, and that

V(T 0,−) - (V(T 0,−))h is even a pointwise weak equivalence. 6.17 shows
that V(T 0,−)h - S∞((V(T 0,−))h) is a stable equivalence whose codomain
is a stably fibrant T -spectrum. This uses that (V(T 0,−))h is pointwise fibrant:
T 0 is cofibrant and the input is fibrant. Hence the composition

VTSph(Tn,−) ⊗ Tn - VTSph(T 0,−) - V(T 0,−)h - S∞(V(T 0,−)h)

is a stable equivalence from the n-fold T -suspension of a cofibrant T -spectrum
to a stably fibrant T -spectrum. The functor −⊗ T is assumed to be a Quillen

equivalence. Thus its adjoint VTSph(Tn,−) - V(Tn, S∞((V(T 0,−))h)) is a

stable equivalence. Since T is V-finite, the latter T -spectrum is isomorphic to
S∞((V(Tn,−))h). It is straightforward to check that these observations imply
the claim.

Corollary 7.4. The canonical map cE :E - ev((i∗E)h) is a stable equiv-
alence for every cofibrant T -spectrum E.

Proof. For any T -spectrum E and A ∈ ObV, the map cE⊗A is isomor-
phic to cE ⊗ A. Tensoring with the domains and codomains of the gener-
ating cofibrations preserves stable equivalences of spectra since the analogues
statement holds for V. The cofibrant T -spectra are precisely the retracts of
Sph(I)-cell complexes, where Sph(I) denotes the set of generating cofibrations
{VTSph(Tn,−) ⊗ i}n≥0,i∈I from [8, 1.8]. So it suffices to consider Sph(I)-cell
complexes. Recall that ev, i∗ and (−)h preserve colimits, and stable equiva-
lences of T -spectra are closed under sequential compositions. This allows to
use transfinite induction. The induction step follows from the diagram:

VTSph(Tn,−) ⊗ ti ¾¾VTSph(Tn,−) ⊗ si - E

V(Tn,−)h ⊗ ti

∼
?

¾ f V(Tn,−)h ⊗ si

∼
?

- ev((i∗E)h)

∼
?
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The right hand vertical map is a stable equivalence by the induction hypothesis,
and likewise for the other vertical maps by 7.3 and the argument given above.
Note that f is not necessarily a cofibration of spectra, but it is pointwise in
Cof(V) ⊗ V. Finally, strong left properness of V implies that the map induced
on the pushouts of the rows in the diagram is a stable equivalence.

Corollary 7.5. The functor ev: [fVmin,V] - Sp(V, T ) is the right adjoint
in a Quillen equivalence.

Proof. Use 7.1 and 7.4.

Let V be the usual model category sSet∗ = S of pointed simplicial sets, and
let T be the circle S1 = ∆1/∂∆1. The n-sphere Sn is the n-fold smash product
of S1. Then fSmax is the full subcategory given by the finitely presentable
pointed simplicial sets, and fSmin is the full subcategory of pointed simplicial

sets K for which there exists an acyclic cofibration Sn- ∼- K for some n ≥ 0.

By [11] implies that the canonical functor [fSmax,S] - [fSmin,S] is the right

adjoint in a Quillen equivalence of stable model categories. This uses that all
pointed simplicial sets are generated by spheres.
In general, one needs to distinguish between using fVmin and fVmax. For exam-
ple, if V = S and T is the coproduct S0∨S0, we claim the corresponding stable
model categories are different. In this case, fSmax is as above, while fSmin is the
full subcategory of finitely presentable pointed simplicial sets which are weakly
equivalent to a discrete pointed simplicial set with 1+2n points for some n ≥ 0.
To show that the resulting stable model structures are not Quillen equivalent
via the restriction functor, we will describe a map f :X - Y of S0∨S0-stably
fibrant functors in SF := [fSmax,S] that is not a weak equivalence, although
f(K) is a weak equivalence for every discrete pointed simplicial set. Let Y be
the constant functor with value ∗. Let X be the stably fibrant replacement of
X ′, which maps K to the connected component of K containing the basepoint.
Since X ′(K ∧ ∆n

+) = X ′(K) ∧ ∆n
+, X ′ is enriched over S. Clearly, X ′ is a ho-

motopy functor, so using an enriched fibrant replacement functor R:S - S,
the S0 ∨ S0-stably fibrant replacement X of X ′ maps K to

X(K) = colimnS((S0 ∨ S0)n, RX ′((S0 ∨ S0)n ∧ K)).

If K is discrete, X(K) = ∗, hence the map X - ∗ is a weak equivalence in
[fSmin,S]. However, X(S1) is weakly equivalent to a countable product of a
countable coproduct of S1 with itself, and hence not contractible.

8 Algebraic structure

This section recalls the important algebraic structures which Fst supports if the
monoid axiom holds. Recall that Fst satisfies the monoid axiom if fV satisfies
f0, cp. 6.30. Fix a V which satisfies the conditions listed in the beginning
of Section 5, and a small full sub-V-category I: fV ⊂ - V which satisfies the
axioms f1–f4.
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8.1 Recollections

In a symmetric monoidal category like (F ,∧, I) there are notions of algebras
and modules over the algebras. Recall that an I-algebra is a monoid in (F ,∧, I)
or just an F-category with only one object.
If A is an I-algebra, a (left) A-module M is an object in F with an appropriate
action of A. It can alternatively be described as an F-functor from A to F .
The category of A-modules modA is then an F-category. There is a smash
product ∧A:modAop ∧ modA

- F . If M ∈ modAop and N ∈ modA, then
M ∧A N is the coequalizer of M ∧ A ∧ N -- M ∧ N . Likewise, for A-
modules M and N the function object modA(M,N) in F is the equalizer of
F(M,N)

-- F(A ∧ M,N).
If k is a commutative I-algebra, recall that modk

∼= modkop and modk is a
closed symmetric monoidal category under ∧k with internal morphism object
modk(M,N). A k-algebra is a monoid in (modk,∧k, k) or a modk-category
with one object. With this notation, notice that modI is F .

8.2 The model structures

Definition 8.1. If A is an I-algebra and k is a commutative I-algebra, then
a map in modA or algk is called a weak equivalence (resp. fibration) if it is so
when considered in Fst. Cofibrations are defined by the left lifting property.

Remark 8.2. Note that we chose the stable model structure as our basis. This
is fixed in the following (at least on the top level), so the missing prefix “stable”
from fibrations and weak equivalences should not be a source of confusion.

The next result is due to Schwede and Shipley [15, 4.1].

Theorem 8.3. Suppose that Fst satisfies the monoid axiom. With the struc-
tures described above, the following is true.

• Let A ∈ F be an I-algebra. Then the category modA of (left) A-modules
is a cofibrantly generated model category.

• Let k ∈ F be a commutative I-algebra. Then the category of k-modules
is a cofibrantly generated monoidal model category satisfying the monoid
axiom.

• Let k ∈ F be a commutative I-algebra. Then the category algk of k-
algebras is a cofibrantly generated model category.

Note that we did not state the hypothesis that all objects in F are small. Since
V is weakly finitely generated, Fst is so too. The smallness of the domains and
codomains of the generating cofibrations and generating acyclic cofibrations
in Fst carries over to the relevant smallness conditions needed to prove the
theorem. See also [15, 2.4].
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Lemma 8.4. Suppose that fV satisfies f0. Let A be an I-algebra. Then for any
cofibrant A-module N , the functor −∧A N takes weak equivalences in modAop

to weak equivalences in Fst.

Proof. Given a weak equivalence in modA, factor it as an acyclic cofibration
followed by an acyclic fibration. The only trouble is with the acyclic fibration,
but this is a pointwise acyclic fibration, and the argument can be phrased in
the analogous theory for A-modules built on the pointwise structure Fpt. In

this case, the generating cofibrations in modA are of the form A∧S
A∧i- A∧T

where S-
i- T is a generating cofibration in Fpt. The argument of 4.11 goes

through verbatim: smashing commutes with colimits and A ∧A S ∼= S.

Lemma 8.4 and [15, 4.3] imply:

Corollary 8.5. Suppose that fV satisfies the axiom f0. Let f :A
∼- B be a

weak equivalence of I-algebras. Then extension and restriction of scalars define
the Quillen equivalence

modA

B∧A−-¾
f∗

modB .

If A and B are commutative, there is the Quillen equivalence

algA

B∧A−-¾
f∗

algB .

9 Equivariant Stable Homotopy Theory

Let S be the category of pointed simplicial sets, or spaces for short. The
finitely presentable spaces are the ones with only finitely many non-degenerate
simplices, thus we may call these finite. A simplicial functor in the sense
of [11, 4.5] is an S-functor from the category of finite spaces to the category
of all spaces. In [11], Lydakis showed how simplicial functors give rise to a
monoidal model category which is Quillen equivalent to the model category of
spectra. Thus simplicial functors model the stable homotopy category. The
purpose of this section is to use the machinery developed in the main part of
the paper to give a functor model for the equivariant stable homotopy category.
For technical reasons we will only consider finite groups. Fix a finite group G
with multiplication µ:G × G - G.

9.1 Equivariant spaces

The category GS of G-spaces consists of pointed simplicial sets with a basepoint
preserving left G-action. Note that G+ is a S-category with only one object and
composition G+ ∧ G+

- G+ induced by µ. One can identify GS with the
category [G+,S] of S-functors K : G+

- S. We will often write (uK, aK)
for K to stress the underlying space uK ∈ ObS, i.e. the value of K at the single
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object, and the left G-action aK :G+ ∧ uK - uK. Note that aK is adjoint
to homK :G+

- S(uK, uK), where g - g:uK - uK. According to
2.4, GS is a closed S-module. The functor u:GS - S has a left S-adjoint
G+ ∧ −:S - GS by 2.5. Consider the G-space G+ ∧ K:G+

- S. Its
underlying space is G+ ∧ K, with left G-action

G+ ∧ (G+ ∧ K)
∼=- (G × G)+ ∧ K

µ+∧K- G+ ∧ K.

Similarly, the right S-adjoint of u is given by K - ×g∈GKg, the G-fold prod-
uct of K where h ∈ G sends Kg to Khg via the identity. Let (−)∧G:S - GS
be the functor whose value on K is the G-fold smash product K∧G = ∧g∈GKg

of K, where G acts by permuting the factors as above. Another functor we
consider is ct:S - GS. The G-space ctK is constant, i.e. the underlying
space is K and homctK :G+

- S(K,K) sends g to either the identity map
or the trivial map.
Let ∆G:G - G×G be the diagonal map. The smash product K ∧L of two
G-spaces K,L : G+

- S is given by the composition

G+
∆G+- (G × G)+ ∼= G+ ∧ G+

K∧L- S ∧ S ∧- S.

The right hand smash product uses [2, 6.2.9]. In other words, the smash prod-
uct of G-spaces is defined on the underlying spaces and G acts diagonally. For
this reason we denote the smash product of G-spaces by ∧. If G is commutative,
another closed symmetric monoidal product of G-spaces exists by 2.6.

Proposition 9.1. The category (GS,∧, ctS0) is closed symmetric monoidal.
The functors u, ct and (−)∧G are strict symmetric monoidal, and G+ ∧ − is
lax symmetric monoidal.

Lemma 9.2. Let K:G+
- S be a G-space. The following are equivalent.

1. K is GS-finitely presentable.

2. K is finitely presentable.

3. uK is finite.

Proof. Let Fix(G,−) be the S-functor that maps a G-space (uK, aK) to the
subspace Fix(G,K) = {x ∈ uK | aK(g, x) = x for all g ∈ G} fixed under the ac-
tion of G. Equivalently, Fix(G,K) is lim(K:G+

- S). Note that Fix(G,−)
commutes with filtered colimits since G+ is a finite index category. Fix(G,−) is
the right S-adjoint of ct:S - GS. In particular, the G-space ctS0 is finitely
presentable. This proves the implication 1 ⇒ 2. Likewise, the right adjoint of
u commutes with filtered colimits, thus 2 ⇒ 3.
It remains to prove 3 ⇒ 1. Let D: I - GS be a functor where I is filtered,
and consider the canonical map fK : colimIGS(K,D) - GS(K, colimID).
Since colimits in GS are formed on underlying spaces, u(fK) is the canonical
map colimIS(uK, u ◦D) - S(uK, colimIu ◦D). If uK is finite, u(fK) is an
isomorphism, which implies that fK is an isomorphism since the G-action on
the domain coincides with the G-action on the codomain. We are done.
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The full subcategory of finitely presentable G-spaces is equivalent to a small
category, which can be chosen to be closed under the smash product of 9.1.
Often we will refer to finite G-spaces instead of finitely presentable ones.

Lemma 9.3. Any G-space is the filtered colimit of its finite sub-G-spaces.

9.2 Unstable equivariant homotopy theory

Theorems 4.2 and 4.4 give GS the coarse model structure, with weak equiva-
lences and fibrations defined on underlying spaces. A cofibration is an injective
map f :K - L where G acts freely on the complement of f(K) in L. Hence,
the cofibrant G-spaces are the G-spaces with a free G-action away from the
basepoint. In the following, we will consider another model structure on GS.
If H is a subgroup of G, let G/H+ be the pointed G-space with action g ·g′H :=
(gg′)H. Consider the S-functor G/H+∧:S+

- GS+, K - G/H+ ∧ K,
with trivial action on K. Its right S-adjoint is Fix(H,−):GS+

- S+ which
maps L to the space of fixed points under the action of H on L. Note that
Fix(H,−) coincides with SGS(G/H+,−). If H and H ′ are two subgroups of
G, there is a natural isomorphism Fix(H ′, G/H+ ∧ K) ∼= Fix(H ′, G/H+) ∧ K.

Definition 9.4. A map f in GS is a G-weak equivalence if Fix(H, f) is a weak
equivalence in S for every subgroup H of G. Likewise for G-fibrations.

Theorem 9.5. There is a proper monoidal model structure on GS with G-weak
equivalences as weak equivalences and G-fibrations as fibrations. Cofibrations
are the injective maps. One can choose generating acyclic cofibrations and
generating cofibrations with finitely presentable domains and codomains.

Proof. This result is well-known. A proof is included for completeness. To
prove the existence of the model structure, we will apply [7, 2.1.19]. Let

IG := {G/H+ ∧ (∂∆n ⊂ - ∆n)+}n≥0, H subgroup of G

and
JG := {G/H+ ∧ (Λn

i
⊂ - ∆n)+}n≥1, 0≤i≤n, H subgroup of G.

It is clear by adjointness that a map is a G-fibration if and only if it is in JG-inj,
or a G-fibration and a G-weak equivalence if and only if it is in IG-inj. From
9.2, the domains and codomains of the maps in IG and JG are finite. The
natural isomorphism Fix(H ′, G/H+ ∧K) ∼= Fix(H ′, G/H+)∧K for subgroups
H and H ′ of G, shows that maps in JG are G-weak equivalences. The existence
of the model structure follows, if every map in JG-cell is a G-weak equivalence.
Since Fix(H ′,−) commutes with sequential colimits, it suffices to check that
the cobase change of a map in JG is a G-weak equivalence. Fix a subgroup H ′

and consider the pushout diagram:

A := (G/H × Λn
i )+ - K

B := (G/H × ∆n)+

?

∩

- L
?

∩
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The induced map Fix(H ′, B)∪Fix(H′,A)Fix(H ′,K) - Fix(H ′, L) is injective.
Surjectivity follows since Fix(H ′,−) preserves injective maps. Thus any cobase
change of a map in JG is a G-weak equivalence, and the model structure exists.
Any map in IG-cell is clearly injective. Conversely, by considering fixed point
spaces it follows that any injective map is contained in IG-cell. The statement
about the cofibrations follows, and also left properness. Right properness holds
since Fix(H,−) commutes with pullbacks and S is right proper.
The pushout product map of injective maps is again injective, so consider the
pushout product map

G/H+ ∧ (∂∆n ⊂ - ∆n)+)¤G/H ′
+ ∧ (Λm

i
⊂ - ∆m)+ ∼= (G/H × G/H ′)+ ∧ i,

where i is a weak equivalence of spaces. Since there is an isomorphism of spaces
Fix(H ′′, (G/H × G/H ′)+ ∧ i) ∼= Fix(H ′′, (G/H × G/H ′)+) ∧ i, the pushout
product map of a generating cofibration and a generating acyclic cofibration is
again acyclic. Hence the model structure is monoidal. The monoid axiom then
holds, since all G-spaces are cofibrant.

We will refer to the model structure in 9.5 as the fine model structure. The
regular representation S∧G is the G-fold smash product of S1 = ∆1/∂∆1 where
G acts by permuting the factors. Its geometric realization is homeomorphic –
as a G-space – to the one-point compactification of the real vector space RG of
maps G - R. The G-space S∧G is finite, since G is a finite group.

9.3 Stable equivariant homotopy theory

Let fGS denote the full sub-GS-category given by the finite G-spaces. It is
equivalent to a small GS-category. Objects of the enriched functor category
GF = [fGS, GS] will be called G-simplicial functors. If G is the trivial group,
then GF is Lydakis’ category of simplicial functors [11, 4.4]. Let ∧ denote
the smash product of G-simplicial functors. The unit of ∧ is the inclusion
SG = I: fGS ⊂ - GS. All G-spaces are cofibrant in the fine model structure.

Definition 9.6. A map f :X - Y in GF is a

• pointwise weak equivalence if f(K) is a G-weak equivalence for all finite
G-spaces K,

• pointwise fibration if f(K) is a G-fibration for all finite G-spaces K,

• cofibration if f has the left lifting property with respect to all pointwise
acyclic fibrations.

Theorem 9.7. The category GF , equipped with the classes described in 9.6,
is a monoidal proper model category satisfying the monoid axiom. Generat-
ing cofibrations and generating acyclic cofibrations can be chosen with finitely
presentable domains and codomains. Finally, smashing with a cofibrant G-
simplicial functor preserves pointwise weak equivalences.
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Proof. ¿From 4.2, PIG
= {GS(K,−) ∧ i}i∈IG, K finite are the generating cofi-

brations, and PJG
= {GS(K,−) ∧ j}j∈JG, K finite are the generating acyclic

cofibrations. The model structure is monoidal and satisfies the monoid axiom
by 4.4. Properness holds by 4.8. The functor − ∧ X preserves pointwise weak
equivalences for cofibrant X since 4.11 holds, cp. 9.3.

Let us write GFpt for the pointwise model structure. To define the homotopy
functor model structure on GF , let ρ: IdGS - R denote the enriched fibrant
replacement functor from 3.3.2 applied to the set JG. Denote by I∗X the
enriched left Kan extension of X: fGS - GS along I: fGS ⊂ - GS, and by
Xh the composition I∗X ◦ R ◦ I. Then Xh defines an endofunctor of GF and
there is a natural transformation IdGF - (−)h.

Definition 9.8. A map f :X - Y in GF is an

• hf-equivalence if fh is a pointwise weak equivalence.

• hf-fibration if f is a pointwise fibration and there is a homotopy pullback
square in GS

XK - XL

Y K

f(K)

?
- Y L

f(L)

?

for every G-weak equivalence K
∼- L of finitely presentable G-spaces.

Lemma 9.9. A map of G-simplicial functors is a pointwise acyclic fibration if
and only if it is an hf-fibration and an hf-equivalence.

Proof. The definition of hf-equivalences in 5.2 uses the filtered fibrant replace-
ment functor ΦJG from 3.3.3. All G-spaces are cofibrant, so the canonical
map ωK : ΦJGK - RK is a G-weak equivalence of fibrant G-spaces, hence
a simplicial homotopy equivalence. Recall that ~(X) = I∗X ◦ ΦJG . If K is fi-
nite, the induced map I∗X(ωK): ~(X)(K) - XhK is a simplicial homotopy
equivalence by 2.11, in particular a G-weak equivalence. It follows that fh is
a pointwise weak equivalence if and only if ~(f)(K) is a G-weak equivalence
for every finite G-space K. The arguments in 5.4 show that the hf-fibrations
in 9.8 allow the same characterization as general hf-fibrations, cp. 5.6. Since
every G-space is cofibrant, any G-weak equivalence of finite G-spaces can be
factored as an acyclic cofibration of finite G-spaces and a simplicial homotopy
equivalence. The lemma follows from 5.8.

Theorem 9.10. The category GF , equipped with the classes of hf-equivalences,
hf-fibrations and cofibrations, is a proper monoidal model category satisfying
the monoid axiom. Smashing with a cofibrant G-simplicial functor preserves
hf-equivalences. One can choose generating cofibrations and generating acyclic
cofibrations with finitely presentable domains and codomains.
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Proof. The model structure exists according to 5.10, is monoidal by 5.12 and
proper by 5.13. A factorization argument and 9.7 imply the claim concerning
cofibrant G-simplicial functors. The monoid axiom follows easily.
The generating acyclic cofibrations are HG ∪PJG

. It remains to define HG. A
G-weak equivalence of finite G-spaces w:K - L induces an hf-equivalence
GS(w,−):GS(L,−) - GS(K,−). The simplicial mapping cylinder gives
a cofibration cw : GS(L,−)- - Cw. Let i ∈ IG. Then HG is the set of
pushout product maps {cw¤i}, cp. Subsection 5.2. It is also possible, without
changing the model structure, to consider for w only acyclic cofibrations of
finite G-spaces.

Denote the model category in 9.10 by GFhf . In this category, X - R ◦ Xh

is a fibrant replacement of X. Recall the functor S:GF - GF mapping
X to GS(S∧G,X(S∧G ∧ −)) and the natural transformation s: IdGF - S

obtained pointwise as the adjoint of swX
S∧G(K):XK ∧ S∧G - X(S∧G ∧K).

This map is the adjoint of

S∧G ηKS∧G

- GS(K,S∧G ∧ K)
homX

K,S∧G∧K- GS(XK,X(S∧G ∧ K)).

Let S∞(X) denote the colimit of X
s(X)- S(X)

S(s(X))- S(S(X)) - · · ·, and
write s: IdGF - S∞ for the canonically induced natural transformation.

Definition 9.11. A map f :X - Y in GF is a

• stable equivalence if S∞(R ◦ fh) is a pointwise weak equivalence,

• stable fibration if f is an hf-fibration and

X
s(X)- S(X)

X

f

?
s(X)- S(X)

S(f)
?

is a homotopy pullback square in GFpt.

Lemma 9.12. A map of G-simplicial functors is a stable fibration and a stable
equivalence if and only if it is a pointwise acyclic fibration.

Proof. ¿From the proof of 9.9, one sees that the definition of stable equivalences
in 9.11 agrees with 6.2. The result follows from 6.14.

The definition of stable fibrations leads to a set of generating stable acyclic
cofibrations as in section 6.4. Recall the definition of S∧G-spectra in GS.

Definition 9.13. A G-spectrum E consists of a sequence E0, E1, · · · of G-
spaces, together with structure maps En∧S∧G - En+1. A map f :E - F
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of G-spectra is a sequence of maps fn:En
- Fn making the diagram

En ∧ S∧G - En+1

Fn ∧ S∧G

fn∧S∧G

?
- Fn+1

fn+1

?

commutative for every n ≥ 0.

By 2.12, Sp(GS, S∧G) is isomorphic to the enriched category [S∧GSph, GS] of
G-simplicial functors from the category of S∧G-spheres S∧GSph to GS. Thus
4.2 gives Sp(GS, S∧G) a pointwise model structure. A fibrant replacement
functor in this model structure is E - R ◦ E, where R is defined in 3.3.2.
Recall that the adjoints of the structure maps of a G-spectrum E can be
viewed as a natural map E - ΩGshE, where the nth structure map of
the G-spectrum ΩGshE is GS(S∧G, En+1

- GS(S∧G, En+2)), the S∧G-
loops of the n + 1-th structure map of E. Denote this natural transformation
by st: Id - St = ΩG ◦ sh, and let st∞: Id - St∞ be the colimit of

Id
st- St

St(st)- St2 - · · ·.
The stable model structure on G-spectra, which has the same cofibrations as
the pointwise model structure, is defined as follows.

Definition 9.14. A map f :E - F of G-spectra is a stable equivalence if
St∞(R ◦ f) is a pointwise weak equivalence, and a stable fibration if f is a
pointwise fibration such that

E
st- St(E)

F

f

?
st- St(F )

St(f)
?

is a homotopy pullback square in the pointwise model structure.

¿From now on, we consider G-spectra with the stable model structure. Note
that geometric realization induces a functor from Sp(GS, S∧G) to the category
of G-prespectra, cf. [3, 3.2]. It is plausible that this functor induces an equiv-
alence of homotopy categories. Hence the homotopy category of Sp(GS, S∧G)
is the G-equivariant stable homotopy category. Let us illustrate this by intro-
ducing spectra which are indexed on more general representations.
A G-representation is a finite-dimensional euclidean vector space on which G
acts via linear isometries. A G-representation V is irreducible if zero and V are
the only sub-G-representations. Let IrrG = {W1, . . . ,Wr} be a complete set of
pairwise non-isomorphic irreducible G-representations. Every G-representation
is isomorphic to a direct sum of representations in IrrG. That is, given a G-
representation V , there exist unique natural numbers (n1, . . . , nr) such that V
is isomorphic to W⊕n1

1 ⊕ · · · ⊕ W⊕nr
r .
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If V is a G-representation, let SV
top denote the one-point compactification of V ,

with ∞ as the (G-fixed) basepoint. This is a finite G-CW -complex. One has
SV ⊕W

top
∼= SV

top ∧ SW
top. Furthermore, one can choose a finite G-space SV such

that the geometric realization |SV | is homeomorphic to SV
top. Let Rep be the

GS-category with objects smash products

Sn1,...,nr := SW1 ∧ · · · ∧ SW1 ∧ SW2 ∧ · · · ∧ SWr

and morphisms GSRep(Sn1,...,nr , Sn1+k1,...,nr+kr) := Sk1,...,kr . Hence Rep con-
tains essentially all G-representations. The G-sphere S∧G does not reside in
this category, but it contains a G-space S̃∧G with homeomorphic realization.
Consequently, the stable model categories [S∧G, GS] and [S̃∧G, GS] are Quillen

equivalent, and there are inclusions S̃∧G ⊂
j- Rep ⊂ - fGS inducing functors

GF = [fGS, GS] - [Rep, GS]
j∗

- [S̃∧G, GS].

Note that j is a full inclusion.
It is straightforward to define the stabilization St∞RepX of a pointwise fibrant
GS-functor X: Rep - GS. Since every G-representation is a direct sum-
mand of a direct sum of copies of the regular representation RG, j∗(St∞RepX) is
equivalent to St∞j∗X. This shows that the stable model structure on [Rep, GS]
is Quillen equivalent to the stable model structure on G-spectra. In partic-
ular, smashing with SV is a Quillen equivalence of G-spectra for every G-
representation V .
Let us turn to the last ingredient needed in the proof of 9.16.

Proposition 9.15. The functor − ∧ S∧G: Sp(GS, S∧G) - Sp(GS, S∧G) is
a Quillen equivalence.

Proof. We will show that S∧G is G-weakly equivalent to a symmetric G-space.
The result follows then by [8, 10.3]. A G-space K is symmetric if there exists a
map H such that the following diagram commutes, where cyc:K∧3 - K∧3

is the cyclic permutation map.

K∧3 ∧ ctS0 K∧3∧cti0- K∧3 ∧ ct∆1
+

¾K
∧3∧cti1

K∧3 ∧ ctS0

K∧3 ∧ ctS0

H
? ¾ cyc

∧ctS
0id

K∧3∧ctS 0 -

Consider first the trivial group. The cyclic permutation map on the geometric
realization |S1|∧3 is homotopic to the identity. Thus the singular complex
K := sing|S1| is a symmetric space and there is a weak equivalence S1 - K.
We claim the induced map S∧G - K∧G of G-fold smash products is a
G-weak equivalence. To see this, choose a subgroup H of G and write the
underlying set of G as the union of the cosets gH. Fix a space L, and an
element x = xg1

∧ · · · ∧ xgn
of L∧G where n is the order of G and xgk

∈ L for
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every k. Note that x is invariant under the action of all h ∈ H if and only
if xgk

= xgj
for all gk, gj in the same coset of H. Thus Fix(H,L∧G) is – up

to a natural isomorphism – the G/H-fold smash product of L. In particular,
we get an expression of the “diagonal” dL: ctL - L∧G as the adjoint of the
isomorphism L - Fix(G,L∧G).
We will use essentially three maps to define a homotopy from the identity
map to the cyclic permutation map on K∧G ∧ K∧G ∧ K∧G: (1) the natural
isomorphism, cp. 9.1, of G-spaces fK,L:K∧G ∧ L∧G - (K ∧ L)∧G which
rearranges the factors, (2) the diagonal d = d∆1

+
: ct∆1

+
- (∆1

+)∧G, and (3)

the homotopy F : K∧K∧K∧∆1
+

- K∧K∧K from the cyclic permutation
map to the identity map. Consider now the composition

K∧G ∧ K∧G ∧ K∧G ∧ ct∆1
+

K∧G ∧ K∧G ∧ K∧G ∧ (∆1
+)∧G

id∧d
?

(K ∧ K ∧ K)∧G

∼=
?

(K ∧ K ∧ K ∧ ∆1
+)∧G

F∧G

?

K∧G ∧ K∧G ∧ K∧G.

∼=
?

This is the homotopy which shows that K∧G is a symmetric G-space.

Theorem 9.16. The category GF and the classes of stable equivalences, stable
fibrations and cofibrations, is a proper monoidal model category satisfying the
monoid axiom. One can choose generating cofibrations and generating acyclic
cofibrations with finite domains and codomains. Smashing with a cofibrant G-
simplicial functor preserves stable equivalences.

Proof. The results above allow us to apply 6.26, 6.27, 6.28, 6.29 and 6.30.

Let GFst refer to the stable model category in 9.16. We end this section by
comparing GFst with the stable model category of G-spectra. By Section 2.5,
S∧GSph is a sub-GS-category of fGS. Let i∗ be the enriched left Kan extension
along the corresponding inclusion i. It is left adjoint to pre-composition with
i, which we denote by ev. The next result follows from 7.2.

Lemma 9.17. ev:GFst
- Sp(GS, S∧G) is a right Quillen functor.

Lemma 7.4 implies that the unit of the adjunction has the following property.
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Lemma 9.18. The canonical map E - ev(i∗E)h is a stable equivalence of
G-spectra for every cofibrant G-spectrum E.

If G is the trivial group, Lydakis proved that a map of homotopy functors is a
stable equivalence if and only its evaluation is a stable equivalence of spectra.
The proof uses the Blakers-Massey theorem. We will extend this result to any
finite group using Spanier-Whitehead duality, cp. [14, 17.6].

Proposition 9.19. Let K and L be finitely presentable G-spaces. The canon-
ical map

ev(GS(K,R(−)) ∧ L) - ev(GS(K,R(L ∧ −)))

of G-spectra is a stable equivalence.

Proof. Let E?F denote the (closed) symmetric monoidal product in the equiv-
ariant stable homotopy category SH(G), with unit S, and let Hom(E,−) denote
the right adjoint of − ? E. A G-spectrum D is dualizable if the canonical map
Hom(D, S) ? D - Hom(D,D) is an isomorphism in SH(G). It follows that
the canonical map Hom(D,E) ? F - Hom(D,E ? F ) is an isomorphism for
all E,F ∈ ObSH(G) if D is dualizable [10, II, Section 1],
Suspension G-spectra of finite G-spaces are dualizable in SH(G) [3, 2.C], [10,
II, 2.7]. In particular, given finite G-spaces K and L, the canonical map

Hom(ev(−∧K), evR(−))?ev(−∧L) - Hom(ev(−∧K), evR(−)?ev(−∧L))

is an isomorphism in SH(G). In this special situation, a map of G-spectra
lifting this isomorphism can be given as

St∞(R(GS(K, evR(−)) ∧ L - GS(K, evR(L ∧ −)))).

In particular, this map is a stable equivalence. This finishes the proof, because
the above is a stably fibrant replacement of the map in question.

Corollary 9.20. Let X be a G-simplicial functor and L be a finite G-space.
The canonical map evXh ∧ L - evXh(L ∧ −) is a stable equivalence of
G-spectra. In particular, ev reflects stable equivalences of homotopy functors.

Proof. We sketch a proof, following the script for the trivial group [11, 11.7].
Consider the first statement. If X is a cofibrant G-simplicial functor, use 9.19
by attaching cells. If X is arbitrary, use a cofibrant replacement Xc. The
second statement then follows from 6.21.

Corollary 9.21. The stable model structure on G-simplicial functors is
Quillen equivalent to the stable model structure on G-spectra via the right
Quillen functor ev.

The Quillen equivalence from 9.21 factors through a Quillen equivalence to
the category of symmetric G-spectra. In fact, the work [8] of Hovey shows
that G-spectra and symmetric G-spectra are Quillen equivalent via a zig-zag
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of Quillen equivalences, but not necessarily via the canonical forgetful functor.
In this case, however, it is possible to conclude this by extending results of [9]
to G-spaces. Here are the details.

Theorem 9.22. The forgetful functor from symmetric G-spectra to G-spectra
is the right adjoint of a Quillen equivalence.

Proof. In both the categories of G-spectra and symmetric G-spectra, a map of
fibrant objects is a weak equivalence if and only if it is a pointwise weak equiva-
lence. Hence the forgetful functor U preserves and reflects weak equivalence of
fibrant objects. Its left adjoint V preserves cofibrations and pointwise acyclic
cofibrations. Further, if L resp. LΣ is the set of maps of G-spectra resp. sym-
metric G-spectra that Hovey uses to localize the pointwise model structures,
then V maps L to LΣ (up to isomorphism). Hence V also preserves stable
acyclic cofibrations by properties of Bousfield localization [6] and is thus a left
Quillen functor.
It remains to prove that the canonical map

E - U(V (E)f )

is a stable equivalence of G-spectra for E cofibrant. Here (−)f denotes a fi-
brant replacement in the stable model structure of symmetric G-spectra. In
fact, since both U and V preserve colimits and homotopy pushouts, it suffices
to prove this for E varying through the domains and codomains of the gen-
erating cofibrations. To do so, we use the functors Fix(H,−) on (symmetric)
spectrum level. This means the following. If E is a G-spectrum, the sequence
(Fix(H,E0),Fix(H,E1), . . .) is a Fix(H,S∧G) = S|G/H|-spectrum of spaces.
That is, it has structure maps

Fix(H,S∧G) ∧ Fix(H,En) ∼= Fix(H,S∧G ∧ En) - Fix(H,En+1).

The same construction works on the level of symmetric G-spectra, so we have
a commutative diagram

SpΣ(GS, S∧G)
Fix(H,−)- SpΣ(S, S|G/H|)

Sp(GS, S∧G)

U
?

Fix(H,−)- Sp(S, S|G/H|).

UH?

The domains and codomains of the generating cofibrations of G-spectra are of
the form Frn(K) (representable ∧K) for K in a certain set of G-spaces, and
similarly for the S|G/H|-spectra of spaces. Since Fix(H,−):GS - S com-
mutes with the smash product (up to natural isomorphism), we get a natural
isomorphism

VH(Frn(Fix(H,K))) ∼= VH(Fix(H,Frn(K))) ∼= Fix(H,V (Frn(K))).
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This isomorphism is compatible with the units of the adjunctions (V,U) and
(VH , UH), so that

Fix(H,Frn(K) - UV Frn(K)) ∼= FrnFix(H,K) - UHVH(FrnFix(H,K)).

The categories of (symmetric) S|G/H|-spectra of spaces are just slight variations
of the categories of (symmetric) spectra of spaces, which implies that (VH , UH)
is a Quillen equivalence. To conclude the same for (V,U), it is sufficient, by
the above, to prove the following two facts.

• A map f of G-spectra is a stable equivalence if so is Fix(H, f) for every
subgroup H.

• If jE :E- ∼- Ef is a stably fibrant replacement of the symmetric G-

spectrum E, then Fix(H, jE :E- ∼- Ef ) is a stably fibrant replacement
of Fix(H,E).

Concerning the first fact: a map f of G-spectra is clearly a pointwise weak
equivalence if and only if so is Fix(H, f) for every subgroup H. Since a
stable equivalence of stably fibrant G-spectra is a pointwise weak equiva-
lence, it suffices to prove that Fix(H,−) preserves stably fibrant replace-
ments for G-spectra. For this purpose, we apply the small object argument
to the following set. Let Jpt := {Frn(∧(G/H × (Λm

i
⊂ - ∆m))+}n,H,m,i

be the set of generating pointwise acyclic cofibrations. Obtain J̃st from
L = {Frn+1S

∧G - Frn(S0)}n by applying the simplicial mapping cylin-
der, and let Jst be the set

J̃st¤{(G/H × (∂∆m ⊂ - ∆m))}H,m

of pushout product maps. Finally, J = Jpt ∪ Jst is the set we may use for
a fibrant replacement1. Note first that Fix(H,Frn+1S

∧G - Frn(S0)) ∼=
Frn+1S

|G/H| - Frn(S0). Further, Fix(H,−) is compatible with the simpli-
cial mapping cylinder construction, since it commutes with the smash product
and with pushouts of diagrams containing a monomorphism. The latter fact
was already used in the proof of 9.5. It follows that Fix(H,−) maps J to the
corresponding set JH in the category Sp(S, S|G/H|). In particular, Fix(H,−)
maps sequential compositions of cobase changes of maps in J to stable equiv-
alences.
To conclude that Fix(H,−) preserves the fibrant replacement, we have to show
that it preserves stably fibrant objects. One can see this by arguing that
it is in fact a right Quillen functor, whose left adjoint lH is determined by
the requirement that lHFrn(K) = Frn(G/H+ ∧ K) for any n and any space
K. Using this description, one can see that lH preserves generating (acyclic)
cofibrations, hence is a left Quillen functor. It follows that Fix(H,−) preserves
the fibrant replacement. This proof translates to the category of symmetric

1The set J is in fact a set of generating acyclic cofibrations.

Documenta Mathematica 8 (2003) 409–488



Enriched Functors and Stable Homotopy Theory 479

G-spectra, which justifies the second fact in the list above. This finishes the
proof.

Since the resulting Quillen equivalence (j∗, j∗) between G-simplicial functors
and symmetric G-spectra has nice monoidal properties according to 2.16, the
closed symmetric monoidal structure induced by the smash product of G-
simplicial functors is the correct one. Given the above, comparisons of modules
and algebras along the lines of [14] are possible. Note, however, that at present
it is not clear how to compare commutative algebras [14, 0.9].

Corollary 9.23. The model categories of symmetric ring G-spectra and of
I-algebras in GF are Quillen equivalent via the canonical adjoint pair (ι∗, ι∗).
If R is a cofibrant I-algebra, the model categories of R-modules and of ι∗R-
modules are Quillen equivalent. If Q is a cofibrant symmetric ring G-spectrum,
the model categories of Q-modules and of j∗Q-modules are Quillen equivalent.

Proof. First we observe that the model category of symmetric G-spectra satis-
fies the monoid axiom. Here are some details. A pushout diagram

X - Y

Z

f

?
- Z ∪X Y

g

?

of symmetric G-spectra in which f is a pointwise cofibration is a homotopy
pushout square. This, the fact that stable equivalences of symmetric G-spectra
are closed under sequential colimits (see 3.5) and general arguments from [15]
show that it suffices to prove the following. Let X be a symmetric G-spectrum

and j: sj-
∼- tj a generating acyclic cofibration, then X ∧ j is a stable equiv-

alence and a pointwise cofibration. To see that the latter holds, note that the
pushout product map of a pointwise cofibration and a cofibration is a pointwise
cofibration, by comparing with the smash product of symmetric sequences of
G-spaces as in [9, section 5.3]. Now one can use that the stable model struc-
ture on symmetric G-spectra is stable in the sense that suspension with S1

is a Quillen equivalence. So X ∧ j will be a stable equivalence if and only if
X ∧ (tj/sj) is stably equivalent to a point. Note that tj/sj is cofibrant. Hence
it suffices to prove that the smash product of a cofibrant symmetric G-spectrum
and a pointwise weak equivalence is a pointwise weak equivalence. By argu-
ments which already appeared in this proof, one can reduce to the case of the
domains and codomains of the generating cofibrations (which are cofibrant).
These, however, are gotten directly from symmetric sequences of G-spaces. A
comparison like [9, proof of 5.3.7] of the smash products of symmetric G-spectra
and these sequences concludes the proof of the monoid axiom.
The hard work is done. Let S denote the unit in the category of symmetric
G-spectra, and recall that the unit in GF is the inclusion I. By 2.16, the
canonical adjoint pair (j∗, j∗) induced by the inclusion j:S∧GSphΣ ⊂ - fGS
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induces an adjoint pair
ι∗: algS

¾- algI: ι
∗.

Since the forgetful functors with domain algS resp. algI detect weak equivalences
and fibrations, (ι∗, ι∗) is a Quillen adjunction. Moreover, since j∗ preserves
and detects weak equivalences of fibrant G-simplicial functors, ι∗ detects weak
equivalences of fibrant I-algebras. To conclude that (ι∗, ι∗) is a Quillen equiv-
alence, it suffices to note that a cofibrant S-algebra is in particular a cofibrant
symmetric G-spectrum [15, 4.1].
The other two cases are similar, modulo an application of 8.4.

It is desirable to compare the stable model category of G-simplicial functors also
with the stable model category of orthogonal G-spectra [13]. As an intermediate
step, we will use symmetric spectra of topological G-spaces. Let T denote the
(closed symmetric monoidal) model category of pointed compactly generated
topological spaces [7, 2.4.21], and let GT be the category of G-objects in T. The
latter is closed symmetric monoidal by an analog of 9.1, and it is a monoidal
model category by transferring the model structure from 9.5 to the topological
situation (see [13, II.1.8 and II.1.22]). The (strict symmetric monoidal) Quillen
equivalence | − |:S - T given by geometric realization extends to a (strict
symmetric monoidal) Quillen equivalence | − |:GS - GT. In particular, we
can regard GT as a GS-model category. As one can check using results from [13,
II.1], the model structure on GT is cellular, so the stable model category of
symmetric spectra in GT with respect to |S∧G| exists by [8]. Further, we can
apply [8, 9.3] to conclude that

| − |: SpΣ(GS, S∧G) - SpΣ(GT, |S∧G|)

is a Quillen equivalence. By inspection, this Quillen functor is strict sym-
metric monoidal, and its right adjoint is lax symmetric monoidal. Thus to
obtain a variant of 9.23, it suffices to note that the stable model category
SpΣ(GT, |S∧G|) satisfies the monoid axiom. A proof can be obtained by trans-
lating the proof of the monoid axiom for SpΣ(GS, S∧G) to the topological
situation. It remains to relate orthogonal G-spectra to symmetric G-spectra
of topological spaces. For the definition of an orthogonal G-spectrum, which
we take to be indexed on all G-representations, consider [13]. Any orthogo-
nal G-spectrum X gives rise to a symmetric G-spectrum of topological spaces
uX by neglect of structure, or rather – since both objects are simply enriched
functors on certain domain GT-categories – restriction. The restriction takes
place both on objects (from all G-representations to direct sums of the regu-
lar representation RG) and morphisms (from orthogonal groups to symmetric
groups). See [14, 4.4] (for the non-equivariant case) and [13, II.4]. Viewed as a
restriction, u has a left adjoint v by enriched Kan extension.

Theorem 9.24. The adjoint pair (v, u) is a Quillen equivalence. It induces
Quillen equivalences between orthogonal ring G-spectra and symmetric ring G-
spectra of topological spaces. If R is a cofibrant symmetric ring G-spectrum and
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P is a cofibrant orthogonal ring G-spectrum, (v, u) induces Quillen equivalences

modR
¾- modvR moduP

¾- modP .

Proof. The forgetful functor UT: SpΣ(GT, |S∧G|) - Sp(GT, |S∧G|) has a
left adjoint VT fitting into a commutative diagram

Sp(GS, S∧G)
|−|- Sp(GT, |S∧G|)

SpΣ(GS, S∧G)

V
?

|−|- SpeΣ(GT, |S∧G|)

VT

?

in which the left vertical functor resp. the lower horizontal functor are Quillen
equivalences by 9.22 resp. [8, 9.3]. The upper horizontal functor is a Quillen
equivalence by [8, 5.7], hence the right vertical functor is a Quillen equivalence.
Thus to conclude that (v, u) is a Quillen equivalence, it suffices to prove that
the forgetful functor from orthogonal G-spectra to Sp(GT, |S∧G|) is a Quillen
equivalence.
By [13, III.4.16], the forgetful functor from orthogonal G-spectra to G-
prespectra as defined in [13, II.1.2] is a Quillen equivalence. The category of
G-prespectra so far is indexed on all G-representations. However, as observed
in [13, II.2.2 and V.1.10], one can index both orthogonal G-spectra and G-
prespectra on a collection of G-representations with is both closed under direct
sum and cofinal in the collection of all G-representations without changing the
homotopy theory. An acceptable candidate is the collection of direct sums of
the regular representation. Hence the restriction from orthogonal G-spectra to
Sp(GT, |S∧G|) is a Quillen equivalence. This proves the first statement. The
other statements then follow as in the proof of 9.23, since the monoid axiom
holds for orthogonal G-spectra [13, III.7.4].

Hence for the purpose of studying the homotopy theory of algebras and mod-
ules, the category of G-simplicial functors is as good as the category of orthogo-
nal G-spectra for a finite group G. Another comparison functor can be obtained
as in [14, 19.11] by passing from GF to GT-functors from an appropriate do-
main category (say, finite G-CW-complexes) to GT via geometric realization,
and then restricting to orthogonal G-spectra. Up to geometric realization, this
functor amounts to a neglect of structure.

A Calculations

This appendix looks into the proofs of the remaining claims in the main part
of the paper. The structure map hom−⊗T

A,B :V(A,B) - V(A ⊗ T,B ⊗ T ) of
the V-functor −⊗ T :V - V is defined as the adjoint of the composition

V(A,B) ⊗ (A ⊗ T )
α−1

V(A,B),A,T

∼=
- (V(A,B) ⊗ A) ⊗ T

(εAB)⊗T- T ⊗ A
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where α−1
V(B,T ),B,A is the associativity isomorphism. The next lemma shows

that there are in general two different suspension functors for T -spectra.

Lemma A.1. The following diagram commutes.

V(A,B) ⊗ (A ⊗ T )
hom−⊗T

A,B
⊗(A⊗T )- V(A ⊗ T,B ⊗ T ) ⊗ (A ⊗ T )

(V(A,B) ⊗ A) ⊗ T

α−1
V(A,B),A,T ?

(εAB)⊗T - B ⊗ T

εA⊗T (B⊗T )

?

Proof. Use naturality and the triangular identity

εA⊗T (V(A,B) ⊗ (A ⊗ T )) ◦ (ηA⊗TV(A,B)) ⊗ (A ⊗ T ) = idV(A,B)⊗(A⊗T ).

A similar statement is used to show that the stabilization of enriched functors
and the stabilization of spectra can be compared.

Lemma A.2. The following diagram commutes.

A
ηBA - V(B,A ⊗ B)

V(B ⊗ T,A ⊗ (B ⊗ T ))

ηB⊗T A
? V(B⊗T,α−1

A,B,T
)- V(B ⊗ T, (A ⊗ B) ⊗ T )

hom−⊗T
B,A⊗B

?

Proof. Similar to A.1, using εB(A ⊗ B) ◦ (ηBA) ⊗ B = idA⊗B.

Next we start the proof of: the two natural stabilization maps X - T (X)
described in 6.1 coincide. It is lengthy and perhaps not very illuminating. The

map hom
V(T,−)
A,B : V(A,B) - V(V(T,A),V(T,B)) is given as the adjoint of

comp:V(A,B) ⊗ V(T,A) - V(T,B) which, up to an associativity isomor-

phism, is adjoint to V(A,B)⊗ (V(T,A)⊗T )
V(A,B)⊗εT A- V(A,B)⊗A

εAB- B.

Lemma A.3. The following diagram commutes.

V(A,B)
hom

V(T,−)

A,B - V(V(T,A),V(T,B))

V(V(T,A) ⊗ T,B)

∼=
f

-
V(εT A,B)

-

Proof. Here, f is V(ηTV(T,A),V(T,B)) ◦ hom
V(T,−)
V(T,A)⊗T,B . The diagram

V(A,B)
hom

V(T,−)

A,B - V(V(T,A),V(T,B))

V(V(T,A) ⊗ T,B)

V(εT A,B)
? hom

V(T,−)

V(T,A)⊗T,B- V(V(T,V(T,A) ⊗ T ),V(T,B))

V(V(T,εT A),V(T,B))
?
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commutes, because V(T,−) is a V-functor. Therefore, f ◦V(εT (A), B) coincides

with V(ηTV(T,A),V(T,B))◦V(V(T, εT (A)),V(T,B))◦hom
V(T,−)
V(T,A)⊗T,B and the

triangular identity V(T, εT (A))◦ηTV(T,A) = idV(T,A) completes the proof.

Let C be a full sub-V-category closed under ⊗. If v ∈ Ob C and X: C - V
is a V-functor, one can consider the adjoint X(c) ⊗ v - X(v ⊗ c) of the

map v
ηcv- V(c, v ⊗ c)

homX
c,v⊗c- V(X(c),X(v ⊗ c)). It defines a V-natural

transformation swX
v :X ⊗ v - X ◦ (v ⊗ −) (X swallows v). One of the

maps X - T(X) is defined using the map swX
T . Using a commutativity

isomorphism, one can define a map v ⊗X - X ◦ (v ⊗−) which will also be

denoted swX
v . An interesting case is V(T,−):V - V. Then sw

V(T,−)
A (B):A⊗

V(T,B) - V(T,A ⊗ B) is the adjoint of (A ⊗ V(T,B)) ⊗ T
αA,V(T,B)- A ⊗

(V(T,B) ⊗ T )
A⊗εT B- A ⊗ B.

Lemma A.4. Let A,B, T ∈ ObV. The following diagram commutes.

A
ηV(T,B)A- V(V(T,B), A ⊗ V(T,B))

V(B,A ⊗ B)

ηBA
? hom

V(T,−)

B,A⊗B- V(V(T,B), V (T,A ⊗ B))

V(V(T,B),sw
V(T,−)

A
(B))

?

Proof. Using the definition of homV(T,−) and the description of sw
V(T,−)
A from

above, one gets a large diagram which commutes by naturality and the trian-
gular identity εB(A ⊗ B) ◦ (ηBA) ⊗ B = idA⊗B.

Lemma A.5. Let A,B, T ∈ ObV. The following diagram commutes.

V(A,B) ⊗ V(T,A)
sw

V(T,−)

V(A,B)
(A)

- V(T,V(A,B) ⊗ A)

V(V(T,A),V(T,B)) ⊗ V(T,A)

hom
V(T,−)

A,B
⊗V(T,A)

?
εV(T,A)V(T,B) - V(T,B)

V(T,εAB)
?

Proof. This is similar to the proof of A.4; the relevant triangular identity is
εV(T,A)(V(A,B)⊗V(T,A))◦(ηV(T,A)V(A,B))⊗V(T,A) = idV(A,B)⊗V(T,A).

Lemma A.6. Let A,B, T ∈ ObV. The following diagram commutes.

A ⊗ V(T,B)
ηT A⊗V(T,B)- V(T,A ⊗ T ) ⊗ V(T,B)

V(T,A ⊗ B)

sw
V(T,−)

A
(B)

?
V(T,V(T,B) ⊗ (A ⊗ T ))

sw
V(T,−)

V(T,B)
(A⊗T )

?

V(T,B ⊗ A)

V(T,σA,B)
?

¾V(T,(εT B)⊗A) V(T, (V(T,B) ⊗ T ) ⊗ A)

V(T,c)
?

Here c is the composition of an associativity and a commutativity isomorphism.
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Proof. Insert the description of swV(T,−) and use naturality, associativity and
commutativity coherence, and εT (A ⊗ T ) ◦ (ηT A) ⊗ T = idA⊗T .

Lemma A.7. Let C be a full sub-V-category closed under ⊗, X: C - V a
V-functor, and f :V(T,V(v, w)) - V(T ⊗v, w) the adjointness isomorphism,
with T, v, w ∈ Ob C. The following diagram commutes.

V(T,V(v, w)) ⊗ (T ⊗ Xv)
α−1

- (V(T,V(v, w)) ⊗ T ) ⊗ Xv

V(T ⊗ v, w) ⊗ X(T ⊗ v)

f⊗swX
T (v)

?
V(v, w) ⊗ Xv

(εT V(v,w))⊗Xv
?

V(X(T ⊗ v),Xw) ⊗ X(T ⊗ v)

homX
T⊗v,w⊗X(T⊗v)

?
V(Xv,Xw) ⊗ Xv

homX
v,w⊗Xv

?

Xw
¾ εX

v
Xw

ε
X

(T⊗v)Xw
-

Proof. The proof is divided into two steps. First we note that

V(T,V(v, w)) ⊗ (T ⊗ Xv)
α−1

- (V(T,V(v, w)) ⊗ T ) ⊗ Xv

V(T,V(Xv,Xw)) ⊗ (T ⊗ Xv)

V(T,homX
v,w)⊗(T⊗Xv)

?
V(v, w) ⊗ Xv

(εT V(v,w))⊗Xv
?

V(T ⊗ Xv,Xw) ⊗ (T ⊗ Xv)

g⊗(T⊗Xv)
?

V(Xv,Xw) ⊗ Xv

homX
v,w⊗Xv

?

Xw
¾ εX

v
Xw

εT⊗X
v Xw -

commutes, where g is the adjointness isomorphism

V(T ⊗ Xv, εXvXw) ◦ hom−⊗Xv
T,V(Xv,Xw).

Commutativity of the diagram follows from the definition of hom−⊗Xv, natu-
rality and the triangular identity εT⊗Xv(−⊗(T⊗Xv))◦(ηT⊗Xv)⊗(T⊗Xv) = id
applied to V(T,V(Xv,Xw)) ⊗ (T ⊗ Xv). In the second step, we prove that

V(T,V(v, w)) ⊗ T ⊗ Xv
V(T,homX

v,w)⊗T⊗Xv- V(T,V(Xv,Xw)) ⊗ T ⊗ Xv

V(T ⊗ v, w) ⊗ X(T ⊗ v)

f⊗swX
T

?
V(T ⊗ Xv,Xw) ⊗ T ⊗ Xv

g⊗T⊗Xv
?

V(X(T ⊗ v),Xw) ⊗ X(T ⊗ v)

homX
T⊗v,w ⊗X(T⊗v)

?
εX(T⊗v)Xw - Xw

εT⊗XvXw

?
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commutes. The adjoint of εX(T⊗v)Xw ◦ (homX
T⊗v,w ⊗ swX

T ) coincides with the

composition comp ◦ (homX
T⊗v,w ⊗ homX

v,T⊗v) ◦ V(T ⊗ v, w) ⊗ ηvT . Because X

is a V-functor, this map is the same as homX
v,w ◦ comp ◦ V(T ⊗ v, w) ⊗ ηvT .

Hence the diagram above commutes if and only if

V(T,V(v, w)) ⊗ T ⊗ Xv
V(T,homX

v,w)⊗T⊗Xv- V(T,V(Xv, Xw)) ⊗ T ⊗ Xv

V(T ⊗ v, w) ⊗ V(v, T ⊗ v) ⊗ Xv

f⊗ηvT⊗Xv

?
V(T ⊗ Xv, Xw) ⊗ T ⊗ Xv

g⊗T⊗Xv

?

V(v, w) ⊗ Xv

comp⊗Xv

?
Xw

εT⊗XvXw

?

V(Xv, Xw) ⊗ Xv

εXv
Xw

-
homX

v,w ⊗Xv
-

commutes. The shortest composition is homX
v,w ⊗ Xw ◦ (εTV(v, w)) ⊗ Xw, as

the triangular identity εT⊗Xv(−⊗(T⊗Xv))◦(ηT⊗Xv)⊗(T⊗Xv) = id−⊗(T⊗Xv)

evaluated at V(T,V(Xv,Xw)) shows. Therefore it remains to prove that the
map comp ◦ (f ⊗ ηvT ) coincides with the map εTV(v, w). It is equivalent to
switch to the adjoints (under tensoring with v), and here naturality and the
triangular identity εT⊗v(−⊗ (T ⊗v))◦ (ηT⊗v)⊗ (T ⊗v) = id−⊗(T⊗v) evaluated
at V(T,V(v, w)) give the desired identification.

In the proof of 6.1, we used the next result.

Proposition A.8. The two maps X - T(X) coincide.

Proof. Most for notational convenience, we will often leave out associativity
and commutativity constraints. The two maps in question are determined

by Xv
ηT Xv- V (T,Xv ⊗ T )

V (T,swX
T (v))- V(T,X(T ⊗ v)) and (up to Yoneda

isomorphism) τv(w):V(T ⊗ v, w)⊗ T
f⊗T- V(T,V(v, w))⊗ T

εT V(v,w)- V(v, w).
The Yoneda isomorphism

Xv
∼=-

∫

Ob C
V(V(v, w),Xw)

is induced by the natural transformation yX
v (w):Xv - V(V(v, w),Xw), that

is, the composition

Xv
ηV(v,w)Xv - V(V(v, w),Xv ⊗ V(v, w))

V(V(v,w),Xv⊗homX
v,w)- V(V(v, w),Xv ⊗ V(Xv,Xw))

V(V(v,w),σXv,V(Xv,Xw))- V(V(v, w),V(Xv,Xw) ⊗ Xv)

V(V(v,w),εXvXw) - V(V(v, w),Xw).
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Hence it suffices to prove that, for every w ∈ Ob C, the composition

a(w) := y
V(T,X)
T⊗v (w) ◦ V(T, swX

T (v)) ◦ ηT Xv

coincides with the composition b(w) := h ◦ V(τv,Xw) ◦ yX
v (w). Here h de-

notes the adjointness isomorphism V(V(T ⊗ v, w) ⊗ T,Xw) - V(V(T ⊗
v, w),V(T,Xw)). The isomorphism f :V(T,V(v, w)) - V(T ⊗ v, w) will be
used in the proof. The diagram

V(V(v, w),Xw)
homV(T,−)

- V(V(T,V(v, w)),V(T,Xw))

V(V(T ⊗ v, w)) ⊗ T,Xw)

V(τv,Xw)
?

V(f⊗T,Xw)
- V(V(T,V(v, w)) ⊗ T,Xw)

∼=
6

commutes by A.3, where the vertical map on the right hand side is the ad-
jointness isomorphism. Then by naturality and A.4, b(w) coincides with the

composition V(V(T,V(v, w)),V(T, εXvXw◦homX
v,w)◦swV(T,−)

Xv )◦ηV(T,V(v,w))Xv.
The diagram

Xv
ηV(T,V(v,w))Xv - V(V(T,V(v, w)),Xv ⊗ V(T,V(v, w)))

V(T,Xv ⊗ T )

ηT Xv
?

V(V(T,V(v, w)),V(T,Xv ⊗ T ) ⊗ V(T,V(v, w)))

V(V(T,V(v,w)),(ηT Xv) ⊗V(T,V(v,w)))
?

V(T,X(T ⊗ v))

V(T, swX
T (v))

?
ηV(T,V(v,w))- V(V(T,V(v, w)),V(T,X(T ⊗ v)) ⊗ V(T,V(v, w)))

V(V(T,V(v,w)),V(T,swX
T (v)) ⊗V(T,V(v,w)))

?

commutes by naturality. Hence the maps a(w) and b(w) coincide if

V(T,V(v, w)) ⊗ Xv
V(T,V(v,w))⊗ηT Xv - V(T,V(v, w)) ⊗ V(T, Xv ⊗ T )

V(T, Xv ⊗ V(v, w))

sw
V(T,−)
Xv

?
V(T,V(v, w)) ⊗ V(T, X(T ⊗ v))

V(T,V(v,w))⊗ V(T,swX
T (v))

?

V(T, Xv ⊗ V(Xv, Xw))

V(T,Xv⊗ homX
v,w)

?
V(T ⊗ v, w) ⊗ V(T, X(T ⊗ v))

f⊗ V(T,X(T⊗v))

?

V(T,V(Xv, Xw) ⊗ Xv)

V(T,σ)

?
V(X(T ⊗ v), Xw) ⊗ V(T, X(T ⊗ v))

homX
⊗ V(T,X(T⊗v))

?

V(T, Xw)

V(T,εXvXw)

?
¾ εV(T,X(T⊗v))

V(V(T, X(T ⊗ v)), V (T, Xw)) ⊗ V (T, X(T ⊗ v))

homV(T,−)
⊗ V(T,X(T⊗v))

?

commutes for all w. Now use A.5 (with A = X(T⊗v) and B = Xw), naturality
of the map swV(T,−) and the isomorphism f to replace the composition from
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the upper corner on the right hand side to the lower corner on the left hand
side. The result is the diagram

V(T,V(v, w)) ⊗ Xv
V(T,V(v,w))⊗ηT Xv - V(T,V(v, w)) ⊗ V(T,Xv ⊗ T )

V(T,Xv ⊗ V(v, w))

sw
V(T,−)

Xv
?

¾V(T,Xv⊗εT V(v,w)) V(T,V(T,V(v, w)) ⊗ X(T ⊗ v))

sw
V(T,−)

V(T,V(v,w))?

V(T,Xv ⊗ V(Xv,Xw))

V(T,Xv⊗ homX
v,w)

?
V(T,V(T ⊗ v, w) ⊗ X(T ⊗ v))

V(T,f⊗X(T⊗v))
?

V(T,V(Xv,Xw) ⊗ Xv)

V(T,σ)
?

V(T,V(X(T ⊗ v),Xw) ⊗ X(T ⊗ v))

V(T,homX ⊗X(T⊗v))
?

V(T,Xw).
¾ V(T,εX(T⊗v)X

w)V(T,εXv Xw)
-

The upper part commutes by A.6 (with A = Xv and B = V(v, w)), the lower
part is V(T,−) applied to a diagram which commutes by A.7. This completes
the proof.
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Abstract. The notion of motivic functors refers to a motivic homo-
topy theoretic analog of continuous functors. In this paper we lay the
foundations for a homotopical study of these functors. Of particular
interest is a model structure suitable for studying motivic functors
which preserve motivic weak equivalences and a model structure suit-
able for motivic stable homotopy theory. The latter model is Quillen
equivalent to the category of motivic symmetric spectra.

There is a symmetric monoidal smash product of motivic functors,
and all model structures constructed are compatible with the smash
product in the sense that we can do homotopical algebra on the various
categories of modules and algebras. In particular, motivic cohomology
is naturally described as a commutative ring in the category of motivic
functors.

2000 Mathematics Subject Classification: 55P42, 14F42
Keywords and Phrases: Motivic homotopy theory, functors of motivic
spaces, motivic cohomology, homotopy functors

1 Introduction

One of the advantages of the modern formulations of algebraic topology is that
invariants can be expressed, not merely as functors into groups, but actually
as functors taking values in spaces. As such, the invariants are now themselves
approachable by means of standard moves in algebraic topology; they can be
composed or otherwise manipulated giving structure and control which cannot
be obtained when looking at isolated algebraic invariants.
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Although handling much more rigid objects, Voevodsky’s motivic spaces [16]
are modeled on topological spaces. The power of this approach lies in that
many of the techniques and results from topology turn out to work in algebraic
geometry. As in topology, many of the important constructions in the theory
can be viewed as functors of motivic spaces. The functor MZ (called L in [16])
which defines motivic cohomology is an example: it accepts motivic spaces
as input and gives a motivic space as output. Given the importance of such
functors and the development of algebraic topology in the 1990s, it is ripe time
for a thorough study of these functors.

In this paper we initiate such a program for functors in the category of motivic
spaces. The functors we shall consider are the analogs of continuous functors:
motivic functors (MZ is an example; precise definitions will appear below).
This involves setting up a homological – or rather homotopical – algebra for
motivic functors, taking special care of how this relates to multiplicative and
other algebraic properties.

A large portion of our work deals with the technicalities involved in setting up
a variety of model structures on the category MF of motivic functors, each
localizing at different aspects of motivic functors.

One of the model structures we construct on MF is Quillen equivalent to the
stable model category of motivic spectra as defined, for instance by Jardine
[10] and by Hovey [8].

Just as in the topological case, this solution comes with algebraic structure in
the form of a symmetric monoidal smash product ∧. Furthermore, the algebra
and homotopy cooperate so that a meaningful theory paralleling that of ring
spectra and modules follows. A tentative formulation is

Theorem. There exists a monoidal model category structure MFsph on MF

satisfying the monoid axiom, and a lax symmetric monoidal Quillen equivalence
between MFsph and the model category of motivic symmetric spectra.

To be slightly more concrete, a motivic space in our context is just a pointed
simplicial presheaf on the category of smooth schemes over a base scheme S.
There is a preferred “sphere” given by the Thom space T of the trivial line
bundle A1

S . A motivic spectrum is a sequence of motivic spaces E0, E1, · · ·
together with structure maps

T ∧ En
- En+1.

We should perhaps comment on the continuous/motivic nature of our functors,
since this aspect may be new to some readers. Let M be the category of
motivic spaces and fM the subcategory of finitely presentable motivic spaces.
A motivic functor is a functor

X : fM - M
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which is “continuous” or “enriched” in the sense that it induces a map of
internal hom objects. The enrichment implies that there is a natural map

A ∧ X(B) - X(A ∧ B).

As a consequence, any motivic functor X gives rise to a motivic spectrum
ev(X) by “evaluating on spheres”, that is

ev(X)n := X(T∧n)

with structure map

T ∧ ev(X)n = T ∧ X(T∧n) - X(T ∧ T∧n) = ev(X)n+1

given by the enrichment. The motivic functors fM - M form the category
MF mentioned in the main theorem, and the evaluation on spheres induces the
Quillen equivalence. The inclusion fM ⊂ - M is the unit in the monoidal
structure and plays the rôle of the sphere spectrum.

The reader should keep in mind how simple our objects of study are: they are
just functors of motivic spaces. All coherence problems one might conceive of
in relation to multiplicative structure, and which are apparent if one works with
e.g. motivic symmetric spectra, can safely be forgotten since they are taken care
of by the coherence inherent to the category of motivic spaces. Furthermore,
the smash product in our model is just like the usual tensor product in that,
though it is slightly hard to picture X∧Y , it is very easy to say what the maps

X ∧ Y - Z

are: they are simply natural maps

X(A) ∧ Y (B) - Z(A ∧ B),

where the smash product is sectionwise the smash product of pointed simplicial
sets; this is all we require to set up a simple motivic theory with multiplicative
structure.

A motivic ring is a monoid in MF. These are the direct analogs of ring spectra.
The multiplicative structure of motivic cohomology comes from the fact that
MZ is a commutative motivic ring. This means we can consider MZ-modules
and also MZ-algebras. Our framework allows one to do homotopical algebra.
For instance:

Theorem. The category of MZ-modules in MFsph acquires a monoidal model
category structure and the monoid axiom holds.

The “spherewise” structure MFsph is not the only interesting model structure
there is on MF. One aspect we shall have occasion to focus on is the fact
that although most interesting motivic functors preserve weak equivalences
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(hence the name “homotopy functors”), categorical constructions can ruin this
property. The standard way of getting around this problem is to consider only
derived functors. While fully satisfying when considering one construction
at the time, this soon clobbers up the global picture. A more elegant and
functorially satisfying approach is to keep our category and its constructions
as they are, but change our model structure. Following this idea we construct
a model structure suitable for studying homotopy functors, and yet another
model structure which is more suitable for setting up a theory of Goodwillie
calculus for motivic spaces.

As with the stable model, these models respect the smash product and algebraic
structure. The following statement gives an idea of what the homotopy functor
model expresses

Theorem. There exists a monoidal model category structure MFhf on MF

satisfying the monoid axiom. In this structure every motivic functor is weakly
equivalent to a homotopy functor, and a map of homotopy functors X - Y
is a weak equivalence if and only if for all finitely presentable motivic spaces A
the evaluation X(A) - Y (A) is a weak equivalence of motivic spaces.

At this point it is interesting to compare with Lydakis’ setup [11] for simplicial
functors, and note how differently simplicial sets and motivic spaces behave.
In the motivic case the theory fractures into many facets which coincide for
simplicial sets. For instance, there is no reason why the notions of “stable” and
“linear” (in Goodwillie and Waldhausen’s sense) should coincide.

The paper is organized as follows. In section 2 we set up the model structures
for unstable motivic homotopy theory suitable for our purposes.

In section 3 we present the four basic model structures on motivic functors.
In the preprint version of this paper we allowed the source category of motivic
functors to vary. This handy technical tool has been abandoned in this paper
for the sake of concreteness. We thank the referee for this suggestion and other
detailed comments.

All along the properties necessary for setting up a theory of rings and modules
are taken care of, and the results are outlined in section 4.
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2 Motivic Spaces

In this section we recall some facts about the category of motivic spaces and
fix some notation. We briefly discuss the categorical properties, and then the
homotopical properties.

For background in model category theory we refer to [7] while for enriched
category theory we refer to [3] and [4].

Let S be a Noetherian scheme of finite Krull dimension. Denote by Sm/S the
category of smooth S-schemes of finite type. Due to the finiteness condition,
Sm/S is an essentially small category. Furthermore, it has pullbacks, a terminal
object S and an initial object ∅, the empty scheme. If U, V ∈ ObSm/S, we
denote the set of maps between U and V by SetSm/S(U, V ).

Let S be the closed symmetric monoidal category of pointed simplicial sets
with internal hom objects S(−,−). Recall that the standard n-simplex ∆n is
the simplicial set represented by [n] ∈ ∆.

Definition 2.1. A motivic space is a contravariant functor A : Sm/S - S.
Let MS (or just M if confusion is unlikely to result) denote the category of
motivic spaces and natural transformations.

By reversal of priorities, M can alternatively be viewed as the category of
pointed set-valued presheaves on Sm/S × ∆. Denote by

Sm/S - M

U - hU

the Yoneda functor hU (V ) = SetSm/S(V,U)+ considered as a discrete pointed
simplicial set (the plus denotes an added base point).

Recall the following facts about the functor category M:
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Proposition 2.2. The category M is a locally finitely presentable bicomplete
S-category. The pointwise smash product gives M a closed symmetric monoidal
structure.

Since M is locally finitely presentable, it follows that finite limits commute
with filtered colimits. To fix notation, we find it convenient to explicate some
of this structure.

The pointwise smash A ∧ B on M is given by

(A ∧ B)(U) = A(U) ∧ B(U).

The unit is the constant presheaf S0. If U ∈ ObSm/S, then the evaluation
functor

EvU : M - S, EvU (A) = A(U)

preserves limits and colimits. The left adjoint of EvU is the functor

FrU : S - M, FrU (K) = hU ∧ K.

Note that, since hS(V ) = S0, we will often write K instead of FrSK. Checking
the relevant conditions we easily get that the functors FrS and EvU are strict
symmetric monoidal, while FrU is lax symmetric monoidal. The pair (FrU ,EvU )
is an S-adjoint pair.

Using FrS we get (co)actions (“(co)tensors”) of S on M: if A ∈ M and K ∈ S
the functor A ∧ K = A ∧ FrSK ∈ M sends U ∈ ObSm/S to A(U) ∧ K ∈ S,
and the functor AK sends U ∈ ObSm/S to S(K,A(U)).

We let SetM(A,B) be the set of natural transformations from A to B in M.
The enrichment of M in S is defined by letting the pointed simplicial set of
maps from A to B have n-simplices

SM(A,B)n := SetM(A ∧ ∆n
+, B).

Its simplicial structure follows from functoriality of the assignment [n] - ∆n.
The internal hom object is in turn given by

M(A,B)(U) = SM(A ∧ hU , B).

Definition 2.3. A motivic space A is finitely presentable if the set-valued
hom functor SetM(A,−) commutes with filtered colimits. Similarly, A is M-
finitely presentable if the internal hom functor M(A,−) commutes with filtered
colimits.

Recall that a pointed simplicial set is finitely presentable if and only if it is
finite, that is, if it has only finitely many non-degenerate simplices. On the
other hand, a pointed simplicial set K is finite if and only the S-valued hom
functor S(K,−) commutes with filtered colimits. The same holds for motivic
spaces, as one can deduce from the following standard fact [3, 5.2.5].
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Lemma 2.4. Every motivic space is a filtered colimit of finite colimits of motivic
spaces of the form hU ∧ ∆n

+.

Let K be a pointed simplicial set. Using Lemma 2.4, the natural isomorphism
M(hU ∧ K,A) ∼= A(U ×S −)K and the fact that EvU commutes with colimits
we get

Lemma 2.5. Let K be a finite pointed simplicial set and U ∈ ObSm/S. Then
hU ∧ K is M-finitely presentable. The class of M-finitely presentable motivic
spaces is closed under retracts, finite colimits and the smash product. A motivic
space is M-finitely presentable if and only if it is finitely presentable.

The finiteness condition imposed on objects of Sm/S implies that the full sub-
category fM of finitely presentable motivic spaces in M is equivalent to a small
category [3, 5.3.8], cf. [3, 5.3.3] and the pointed version of [3, 5.2.2b]. Out of
convenience, since fM is the codomain of the functor category MF one could
choose such an equivalence. This ends our discussion of categorical precursors.

2.1 Unstable homotopy theory

Summarizing this section we get a model structure Mmo on M called the
motivic model structure satisfying

1. Mmo is weakly finitely generated.

2. Mmo is proper.

3. The identity on Mmo is a left Quillen equivalence to the Goerss-Jardine
A1-model structure [10].

4. The smash product gives Mmo a monoidal model structure.

5. The smash product preserves weak equivalences.

6. Mmo satisfies the monoid axiom.

For the convenience of the reader we repeat briefly for M the definitions of the
notions weakly finitely generated, monoidal model structure and the monoid
axiom; for details, see for example [5, 3.4, 3.7, 3.8].

Weakly finitely generated means in particular that the cofibrations and acyclic
cofibrations in M are generated by sets I and J , respectively [7, 2.1.7]. In
addition, we require that I has finitely presented domains and codomains,
the domains of J are small and that there exists a subset J ′ of J with finitely
presented domains and codomains such that a map A - B of motivic spaces
with fibrant codomain is a fibration if and only if it has the right lifting property
with respect to all objects of J ′.
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Let f : A - B and g : C - D be two maps in M. The pushout product
of f and g is the canonical map

f ¤ g : A ∧ D
∐

A∧C

B ∧ C - C ∧ D.

That M is a monoidal model category means that the pushout product of two
cofibrations in M is a cofibration, and an acyclic cofibration if either one of
the two cofibrations is so. It implies that the smash product descends to the
homotopy category of M. If aCof(M) denotes the acyclic cofibrations of M,
then the monoid axiom means that all the maps in aCof(M)∧M-cell are weak
equivalences. Among other nice consequences mentioned below, the monoid
axiom allows to lift model structures to categories of monoids and modules
over a fixed monoid [14].

Definition 2.6. A map A - B in M is a schemewise weak equivalence if,
for all U ∈ Ob Sm/S, A(U) - B(U) is a weak equivalence in S. Schemewise
fibrations and schemewise cofibrations are defined similarly. A cofibration is
a map having the left lifting property with respect to all schemewise acyclic
fibrations.

Note that the schemewise cofibrations are simply the monomorphisms. We get
the following basic model structure.

Theorem 2.7. The schemewise weak equivalences, schemewise fibrations and
cofibrations equip M with the structure of a proper monoidal S-model category.
The sets

{hU ∧ (∂∆n ⊂ - ∆n)+}n≥0, U∈Ob Sm/S

{hU ∧ (Λn
i

⊂ - ∆n)+}0≤i≤n, U∈Ob Sm/S

induced up from the corresponding maps in S are sets of generating cofibrations
and acyclic cofibrations, respectively. The domains and codomains of the maps
in these generating sets are finitely presentable. For any U ∈ ObM, the pair
(FrU ,EvU ) is a Quillen pair.

Proof. The existence of the model structure follows from [7, 2.1.19], using the
generating cofibrations and generating acyclic cofibrations described above.
The properties which have to be checked are either straightforward or follow
from 2.5 and properties of the standard model structure on simplicial sets.
Properness follows from properness in S, where we use that a cofibration is in
particular a schemewise cofibration.

Clearly, FrU is a left Quillen functor for all U ∈ ObSm/S. Using the natural
isomorphism

(hU ∧ K) ∧ (hV ∧ L) ∼= hU×SV ∧ (K ∧ L),
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we see that for fj : Kj
- Lj ∈ S and Uj ∈ ObSm/S, j = 1, 2, we may

identify the pushout product of hU1
∧ f1 and hU2

∧ f2 with the map

hU1×SU2
∧


(K1 ∧ L2)

∐

(K1∧K2)

(L1 ∧ K2)


 - hU1×SU2

∧ (L1 ∧ L2).

Hence the pushout product axiom in S implies the pushout product axiom for
M. It follows that M is a monoidal S-model category via the functor FrS .

Notation 2.8. We let Msc denote the model structure of 2.7 on M. Scheme-

wise weak equivalences will be written
∼sc- and schemewise fibrations

sc-- .
Cofibrations are denoted by - - (since not all schemewise cofibrations are
cofibrations in Msc). Choose a cofibrant replacement functor (−)c - IdM
in Msc so that for any motivic space A, there is a schemewise acyclic fibration

Ac ∼sc-- A with cofibrant domain. We note that every representable motivic
space is cofibrant.

The following statements are easily verified.

Lemma 2.9. Taking the smash product −∧A or a cobase change along a scheme-
wise cofibration preserves schemewise weak equivalences for all A ∈ ObM. The
monoid axiom holds in Msc.

It turns out that the properties in 2.7 and 2.9 hold in the model for motivic
homotopy theory. The latter is obtained by considering Sm/S in its Nisnevich
topology and by inverting the affine line A1

S . The following allows to incorporate
Bousfield localization [6] in the motivic homotopy theory.

Recall that the Nisnevich topology is generated by elementary distinguished
squares [12]. These are pullback squares of the form

P - Y

Q =

U
?

ψ- X

φ

?

where φ is étale, ψ is an open embedding and φ−1(X −U) - (X −U) is an
isomorphism of schemes (with the reduced structure).

Definition 2.10. A schemewise fibrant motivic space A is motivically fibrant
if the following conditions hold.

• A(∅) is contractible.

• If Q is an elementary distinguished square, then A(Q) is a homotopy
pullback square of pointed simplicial sets.
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• If U ∈ ObSm/S, the canonically induced map A(U) - A(U ×S A1
S)

is a weak equivalence of pointed simplicial sets.

The first two conditions imply that A is a sheaf up to homotopy in the Nisnevich
topology. The third condition implies that A1

S
- S is a weak equivalence

in the following sense (where (−)c is the cofibrant replacement functor in Msc

chosen in 2.8):

Definition 2.11. A map f : A - B of motivic spaces is a motivic weak
equivalence if, for every motivically fibrant Z, the map

SM(fc, Z) : SM(Bc, Z) - SM(Ac, Z)

is a weak equivalence of pointed simplicial sets.

In 2.17 we shall note that 2.11 agrees with the corresponding notion in [12].

Using either Smith’s work on combinatorial model categories or by Blander’s
[1, 3.1], we have

Theorem 2.12. The motivic weak equivalences and the cofibrations define a
cofibrantly generated model structure on M.

Notation 2.13. We refer to the model structure in 2.12 as the motivic model
structure and make use of the notation Mmo. Its weak equivalences will be

denoted by
∼- and its fibrations by -- . In accordance with 2.10, we refer

to the fibrations as motivic fibrations, since a motivic space A is motivically
fibrant if and only if A - ∗ is a motivic fibration.

Alas, this notation conflicts slightly with [10]. See 2.17.

Next we shall derive some additional properties of the motivic model structure,
starting with a characterization of motivic fibrations with motivically fibrant
codomain. As above, consider an elementary distinguished square:

P - Y

Q =

U
?

ψ- X

φ

?

Using the simplicial mapping cylinder we factor the induced map hP
- hY

as a cofibration hP
- - C = (hP ∧ ∆1

+)
∐

hP
hY followed by a simplicial

homotopy equivalence C
'- hY . Similarly we factor the canonical map

sq = hU

∐
hP

C - hX as sq-
q- tq

'- hX . Finally, we consider

hU×SA1
S

- hU and the factorization hU×SA1
S

- u- Cu
'- hU .

Definition 2.14. Let Q denote the collection of all elementary distinguished
squares in Sm/S. Since Sm/S is essentially small, we may consider a skeleton
and form the set J̃ of maps

{∗- - h∅} ∪ {q : sq- - tq}Q∈Q ∪ {u : hU×SA1
S

- - Cu}U∈Ob Sm/S .
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Let J ′ be the set of pushout product maps f ¤ g where f ∈ J̃ and g ∈
{∂∆n

+
⊂ - ∆n

+}.

Lemma 2.15. A schemewise fibration with motivically fibrant codomain is a
motivic fibration if and only if it has the right lifting property with respect to
the set J ′ of 2.14.

Proof. We note that the (simplicial) functor SM(B,−) preserves simplicial
homotopy equivalences, which in particular are schemewise weak equivalences.
From the definitions, it then follows that a schemewise fibrant motivic space A

is motivically fibrant if and only if the canonical map A
sc-- ∗ enjoys the right

lifting property with respect to J ′. The statement follows using properties of
Bousfield localizations [6, 3.3.16].

Corollary 2.16. The model category Mmo is weakly finitely generated. In
particular, motivic weak equivalences and motivic fibrations with motivically
fibrant codomains are closed under filtered colimits.

In the symmetric spectrum approach due to Jardine [10] one employs a slightly
different model structure on motivic spaces. The cofibrations in this model
structure are the schemewise cofibrations, i.e. the monomorphisms, while the
weak equivalences are defined by localizing the so-called Nisnevich local weak
equivalences [9] with respect to a rational point hS

- hA1
S
. Let us denote

this model structure by MGJ. Corollary 2.16 shows an advantage of working
with Mmo. On the other hand, in MGJ every motivic space is schemewise
cofibrant. We compare these two model structures in

Theorem 2.17. The weak equivalences in the model structures Mmo and MGJ

coincide. In particular, the identity IdM : Mmo
- MGJ is the left adjoint

of a Quillen equivalence.

Proof. The fibrations in the pointed version of the model structure in [9] are
called global fibrations. A weak equivalence in this model structure is a local
weak equivalence, and a cofibration is a schemewise cofibration. We say that a
globally fibrant presheaf Z is i0-fibrant if the map M(hS , Z) - M(hA1

S
, Z)

induced by the zero-section i0 : S - A1
S is an acyclic global fibration. Since

hi0 is a monomorphism, this is equivalent to the pointed version of hi0-local
simplicial presheaves in [9, §1.2].

A map f : A - B is an i0-equivalence if for all i0-fibrant presheaf Z, the

induced map of pointed simplicial sets SM(B,Z) - SM(A,Z) is a weak

equivalence. The i0-equivalences are the weak equivalences in MGJ .

First we prove that any motivic weak equivalence is an i0-equivalence. Suppose

that f : A
∼- B and Z is i0-fibrant. Then Z is motivically fibrant, and thus

SM(fc, Z) is a weak equivalence. Since fc is related to f via schemewise weak
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equivalences, it follows that f is an i0-equivalence. This proves that motivic
weak equivalences are i0-equivalences.

Choose a motivically fibrant Z and suppose f : A - B is an i0-equivalence.

According to [9] there exists a map Z
∼sc- Z ′ where Z ′ is globally fibrant.

Since the domain and codomain of hi0 are cofibrant, 2.7 implies that Z ′ is i0-
fibrant. Using the fact that Mmo is an S-model category, we get the following
commutative diagram:

SM(Bc, Z)
SM(fc,Z)- SM(Ac, Z)

SM(Bc, Z ′)

∼
?

SM(fc,Z′)- SM(Ac, Z ′)

∼
?

The map SM(fc, Z ′) is a weak equivalence of spaces since fc is an i0-
equivalence, i.e. f is a motivic weak equivalence. The Quillen equivalence
follows.

Lemma 2.18. Smashing with a cofibrant motivic space preserves motivic weak
equivalences.

Proof. Suppose Z is motivically fibrant, that is, the canonical map Z -- ∗
is a schemewise fibration having the right lifting properties with respect to J ′.
If C is cofibrant, then M(C,Z) is schemewise fibrant according to 2.7. We
claim M(C,Z) is motivically fibrant. For this, it suffices to prove for every
generating cofibration

i := hU ∧ (∂∆n ⊂ - ∆n)+,

the induced map M(i, Z) has the right lifting property with respect to J ′. By
adjointness, it suffices to prove that the pushout product of i and any map in
J ′ is a composition of cobase changes of maps in J ′. This holds by the following
facts.

• h∅ ∧ hU
∼= h∅

• Taking the product of an elementary distinguished square with any object
U ∈ ObSm/S yields an elementary distinguished square.

• (hV ×SA1 - hV ) ∧ hU
∼= hU×SV ×SA1 - hU×SV

• The pushout product of ∂∆m ⊂ - ∆m and ∂∆n ⊂ - ∆n is an inclusion
of simplicial sets, hence can be formed by attaching cells.

To conclude, it remains to note that for every motivically fibrant Z and every

f : A
∼- B, the induced map SM((f ∧ C)c, Z) is a weak equivalence. First,

note that by the argument above, the map SM(fc ∧C,Z) ∼= SM(fc,M(C,Z))
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is a weak equivalence. This means that fc ∧ C is a motivic weak equivalence.
But 2.9 and the commutative diagram

(A ∧ C)c ∼sc-- A ∧ C ¾∼sc
Ac ∧ C

(B ∧ C)c

(f∧C)c

? ∼sc-- B ∧ C

f∧C

?
¾∼sc

Bc ∧ C

fc∧C

?

show that (f ∧ C)c is a motivic weak equivalence if and only fc ∧ C is so.

Corollary 2.19. Mmo is a monoidal Msc-model category.

Proof. We have to check that the pushout product of hU ∧ (∂∆n ⊂ - ∆n)+
and a generating acyclic cofibration in Mmo is a motivic weak equivalence for
all U ∈ Ob Sm/S and n ≥ 0. Since hU is cofibrant, the result follows from 2.18
and left properness of Mmo.

We can now extend 2.18 to all motivic spaces.

Lemma 2.20. Taking the smash product − ∧ A or a cobase change along a
schemewise cofibration preserves motivic weak equivalences for all A ∈ ObM.

Proof. For the first claim: we may replace A by Ac using 2.9 and hence conclude
using 2.18. The second claim follows by factoring any motivic weak equivalence
as a motivic acyclic cofibration followed by a schemewise acyclic fibration, and
quoting 2.9 for the schemewise acyclic fibration.

Lemma 2.21. The monoid axiom holds in Mmo.

Proof. Let f be an acyclic cofibration in Mmo and let C be any motivic space.
By 2.20, f ∧ C is a schemewise cofibration and a motivic weak equivalence. It
suffices to prove that the class of such maps is closed under cobase changes and
sequential compositions. For this we use 2.20 and 2.16, respectively.

Lemma 2.22. The model category Mmo is proper.

Proof. Left properness of Mmo is obvious since the cofibrations are not altered.
To see that the model structure is right proper, one can either employ [1, 3.1],
or mimic Jardine’s proof of [10, A.5].

Remark 2.23. It is worth noticing that all of the results above hold more
generally. One may replace Sm/S by any site with interval, see [12], in which
the Grothendieck topology is generated by a bounded, complete and regular
cd-structure [17]. An interesting example is the cdh-topology on the category
Sch/S of schemes of finite type over S and representing interval the affine line.
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2.2 Stable homotopy theory

The model category Mmo has all the properties required to apply the results
of [8, Section 4]. On the one hand, Mmo is a cellular model category by [1], so
Hirschhorn’s localization methods work. On the other hand, one can also use
Smith’s combinatorial model categories for Bousfield localization. In any case,
the category Sp(Mmo, A) of spectra of motivic spaces (with respect to some
cofibrant finitely presentable motivic space A) has a stable model structure.
For precise statements consult [8, 4.12 and 4.14].

We are interested in special motivic spaces A. The basic “sphere” in motivic
homotopy theory is obtained in the same way as the circle in classical homotopy
theory. It is defined as the Thom space A1

S/A1
S −{0} of the trivial line bundle.

Since A1
S is contractible, the pushout (A1

S − {0}, 1) ∧ S1 of the diagram

∗ ¾ hS ∧ S1 hi1
∧S1

- hA1
S
−{0} ∧ S1

is weakly equivalent to A1
S/A1

S − {0} [12, 3.2.2]. In the diagram, the map
i1 : S - A1

S − {0} is induced by the closed point 1 ∈ A1
S(S). Note that

although hi1 ∧S1 is a schemewise cofibration (i.e. monomorphism), it need not
be a cofibration in the motivic model structure Mmo.

Since the domain and codomain of hi1 ∧ S1 are cofibrant, we may factor this
map using the simplicial mapping cylinder as a cofibration hS∧S1- - C and a
simplicial homotopy equivalence. The quotient T := C/hS∧S1 is then cofibrant
and a finitely presentable motivic space, schemewise weakly equivalent to the
smash product (A1

S −{0}, 1)∧S1. Up to motivic weak equivalence the choice of
T is irrelevant. See [8, 5.7] and cp. 2.20. Now the identity IdM is a left Quillen
equivalence from Mmo to the pointed version of Jardine’s model structure on
M by 2.17. So that by [8, 5.7] the stable model structure on the category of
motivic spectra Sp(Mmo, T ) is Quillen equivalent to Jardine’s model for the
motivic stable homotopy category. Using Voevodsky’s observation about cyclic
permutations, we get

Lemma 2.24. The functor −∧ T : Sp(Mmo, T ) - Sp(Mmo, T ) is a Quillen
equivalence.

Proof. The identity idM induces a commutative diagram of left Quillen functors

Sp(Mmo, T ) - Sp(MGJ, T )

Sp(Mmo, T )

−∧T
?

- Sp(MGJ, T )

−∧T
?

where the two horizontal arrows are Quillen equivalences. Here MGJ denotes
the pointed version of the Goerss-Jardine model structure on M. In MGJ , the
cofibrations are the schemewise cofibrations. Hence every presheaf is cofibrant.
By [8, 10.3] it suffices to establish that T is weakly equivalent to a symmetric

Documenta Mathematica 8 (2003) 489–525



Motivic Functors 503

presheaf A, so that the next diagram commutates where cyc: A∧3 - A∧3 is
the cyclic permutation map and H is a homotopy from the cyclic permutation
to the identity; for details we refer to [8, 10.2].

A∧3 ∧ hS
A∧3∧hi0- A∧3 ∧ hA1 ¾A

∧3∧hi1 A∧3 ∧ hS

A∧3 ∧ hS

H
? ¾ cyc

∧hS
id

A∧3
∧h

S

-

The presheaf A1
S/A1

S −{0} is weakly equivalent to T , and symmetric according
to [10, 3.13]. Hence −∧T on the right hand side is a Quillen equivalence, which
implies the same statement for the functor − ∧ T on the left hand side.

3 Motivic functors

In this section we shall introduce the category of motivic functors, describe its
monoidal structure and display some of its useful homotopy properties. We do
this in four steps. Each step involves giving a monoidal model structure to the
category of motivic functors.

The first step is defining the pointwise model, which is of little practical value,
but it serves as a building block for all the other models. The second step
deals with the homotopy functor model. We advocate this as a tool for doing
motivic homotopy theory on a functorial basis, mimicking the grand success in
algebraic topology. The most interesting functors are homotopy invariant, but
many natural constructions will take to functors which do not preserve weak
equivalences. The homotopy functor model structure is a convenient way of
handling these problems.

Thirdly we have the stable structure, which from our point of view is the natural
generalization of stable homotopy theory from algebraic topology, but which
unfortunately does not automatically agree with the other proposed models for
stable motivic homotopy theory. Hence we are forced to park this theory in
our technical garage for time being and introduce the fourth and final model
structure: the spherewise model structure. Although technically not as nice
as the stable model, the spherewise model is Quillen equivalent to the other
models for motivic stable homotopy theory.

Many of the results in this section can be justified by inferring references to [5].
For the convenience of the reader we will indicate most proofs of these results.

3.1 The category of motivic functors

Recall the category of motivic spaces M = MS = [(Sm/S)op,S] discussed in
the previous section. As a closed symmetric monoidal category, it is enriched
over itself, hence an M-category. Let fM be the full sub-M-category of finitely
presentable motivic spaces.

Documenta Mathematica 8 (2003) 489–525



504 B. I. Dundas, O. Röndigs, P. A. Østvær

Definition 3.1. A motivic functor is an M-functor X : fM - M. That
is, X assigns to any finitely presentable motivic space A a motivic space XA
together with maps of motivic spaces homX

A,B : M(A,B) - M(XA,XB)
compatible with the enriched composition and identities. We let MF be the
category of motivic functors and M-natural transformations.

Since MF is a category of functors with bicomplete codomain, it is bicomplete
and enriched over M. If X and Y are motivic functors, let MMF(X,Y ) be
the motivic space of maps from X to Y . If A is a finitely presentable motivic
space, then the motivic functor represented by A is given as

M(A,−) : fM - M, M(A,−)(B) = M(A,B)

The enriched Yoneda lemma holds, and every motivic functor can be expressed
in a canonical way as a colimit of representable functors.

Theorem 3.2 (Day). The category of motivic functors is closed symmetric
monoidal with unit the inclusion I : fM ⊂ - M.

This theorem is a special case of [4]; it is simple enough to sketch the basic
idea. Denote the monoidal product of two motivic functors X and Y by X∧Y .
Since every motivic functor is a colimit of representables, it suffices to fix the
monoidal product on representable functors

M(A,−) ∧M(B,−) := M(A ∧ B,−).

The internal hom is defined by setting

MF(X,Y )(A) = MMF(X,Y (− ∧ A)).

Let us describe a special feature of the category of motivic functors, which
makes the monoidal product more transparent. The point is just that motivic
functors can be composed. Note that any motivic functor X : fM - M
can be extended – via enriched left Kan extension along the full inclusion
I : fM ⊂ - M – to an M-functor I∗XM - M satisfying I∗X◦I ∼= X. Since
the category of motivic spaces is locally finitely presentable 2.2, this defines an
equivalence between MF and the category of M-functors M - M that
preserve filtered colimits. Given motivic functors X and Y , one defines their
composition by setting

X ◦ Y := I∗X ◦ Y.

Moreover, there is the natural assembly map X ∧ Y - X ◦ Y which is an
isomorphism provided Y is representable [5, 2.8]. In fact, if both X and Y are
representable, then the assembly map is the natural adjointness isomorphism

M(A,−) ∧M(B,−) = M(A ∧ B,−) ∼= M(A,M(B,−)).
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Remark 3.3. A motivic ring is a monoid in the category of motivic functors.
Given the simple nature of the smash product in MF motivic rings can be
described quite explicitly. Running through the definitions we see that a map
X∧X - X of motivic functors is the same as an M-natural transformation
of two variables XA ∧ XB - X(A ∧ B), and so a motivic ring is a motivic
functor X together with natural transformations XA∧XB - X(A∧B) and
A - XA such that the relevant diagrams commute. Hence motivic rings
are analogous to Bökstedt’s functors with smash product [2].

Example 3.4. Let SmCor/S be the category of smooth correspondences over
S. The special case S = Spec(k) is described in [18]. A motivic space with
transfers is an additive functor, or an Ab-functor, F : (SmCor/S)op - sAb

to the category of simplicial abelian groups. Let Mtr be the category of motivic
spaces with transfers. By forgetting the extra structure of having transfers and
composing with the opposite of the graph functor Γ: Sm/S - SmCor/S it
results a forgetful functor u : Mtr - M with left adjoint Ztr : M - Mtr.
The functor Ztr is determined by the property that Ztr(hU ∧ ∆n

+) =
HomSmCor/S(−, U) ⊗ Z(∆n).

Let MZ ∈ MF be the composite functor

fM ⊂ - M Ztr- Mtr u- M.

We claim that MZ is a commutative monoid in MF. First, the unit I - MZ
is the unit of the adjunction between M and Mtr. To define a multiplication,
we note using [4] and [15] that Mtr is closed symmetric monoidal. Since the
graph functor is strict symmetric monoidal and forgetting the addition is lax
symmetric monoidal, general category theory implies Ztr is strict symmetric
monoidal and u is lax symmetric monoidal. In particular, we get the natural
multiplication map µ on MZ, given by

u(Ztr(A)) ∧ u(Ztr(B)) - u(Ztr(A) ⊗ Ztr(B)) - u(Ztr(A ∧ B)).

To see that MZ is a motivic functor, consider the composition

M(A,B) ∧ uZtrA - uZtrM(A,B) ∧ uZtrA - uZtr(M(A,B) ∧ A),

and note that uZtr(M(A,B) ∧ A) maps naturally to uZtrB. In 4.6 we show
MZ represents Voevodsky’s motivic Eilenberg-MacLane spectrum [16].

3.2 Evaluation on spheres

As explained in [5, Section 2.5], the category Sp(M, T ) of motivic spectra
with respect to the T of 2.2 can be described as a category of M-functors.
Let TSph be the sub-M-category of M with objects the smash powers T 0 =
S0, T, T∧2 := T ∧ T, T∧3 := T ∧ (T∧2), · · · of T . If k ≥ 0 the motivic space of
morphisms in TSph from T∧n to T∧n+k is T∧k considered by adjointness as
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a subobject of M(T∧n, T∧n+k). If k < 0 the morphism space is trivial. Let
i : TSph ⊂ - fM be the inclusion. Hence every motivic functor X gives rise
to a motivic spectrum ev(X) := X ◦ i.

Similarly, the category SpΣ(M, T ) of motivic symmetric spectra is isomorphic
to the category of M-functors (with values in M) from a slightly larger sub-
M-category j : TSphΣ ⊂ - fM, which is determined by the property that
it is the smallest sub-M-category containing TSph and the symmetric group
Σ(n)+ ⊆ M(T∧n, T∧n) for all n. Hence, if U denotes the forgetful functor,
then the evaluation map ev : MF - Sp(M, T ) factors as

MF
ev′

- SpΣ(M, T )
U- Sp(M, T ).

Moreover ev′ is lax symmetric monoidal and its left adjoint is strict symmetric
monoidal. For further details we refer the reader to [5, Section 2.6].

3.3 The pointwise structure

We first define the pointwise model structure on MF. As earlier commented,
the pointwise structure is of no direct use for applications, but it is vital for
the constructions of the useful structures to come.

Definition 3.5. A map f : X - Y in MF is a

• Pointwise weak equivalence if for every object A in fM the induced map
f(A) : X(A) - Y (A) is a weak equivalence in Mmo.

• Pointwise fibration if for every object A in fM the induced map
f(A) : X(A) - Y (A) is a fibration in Mmo.

• Cofibration if f has the left lifting property with respect to all pointwise
acyclic fibrations.

The category MF, together with these classes of morphisms, is denoted MFpt

and referred to as the pointwise structure on MF.

Theorem 3.6. The pointwise structure MFpt is a cofibrantly generated proper
monoidal model category satisfying the monoid axiom.

Proof. The model structure follows from [7, 2.1.19], where the monoid axiom
for Mmo is used to ensure that the generating acyclic cofibrations listed in 3.7,
as well as sequential compositions of cobase changes of these, are pointwise
weak equivalences. The form of the generating (acyclic) cofibrations, together
with the behavior of ∧ on representables, ensures that MF is a monoidal model
category [7, 4.2.5]. Right properness follows at once from the fact that Mmo is
right proper 2.22. Left properness requires more than Mmo being left proper,
but follows from 2.20.
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To prove the monoid axiom, let X be a motivic functor and consider the smash
product

X ∧M(A,−) ∧ sj
X∧M(A,−)∧j- X ∧M(A,−) ∧ tj

with a generating acyclic cofibration, where j is a generating acyclic cofibration
for Mmo. It is a pointwise weak equivalence by 2.20, and also pointwise a
schemewise cofibration. In particular, any sequential composition of cobase
changes of maps like these is a pointwise weak equivalence, which concludes
the proof.

Remark 3.7. If A varies over the set of isomorphism classes in fM and i :
si- - ti varies over the generating (acyclic) cofibrations in Mmo, then the
maps M(A,−) ∧ i : M(A,−) ∧ si - M(A,−) ∧ ti form a set of generating
(acyclic) cofibrations for MFpt. In particular, all representable motivic functors
(for example the unit) are cofibrant.

The following theorem will help us to deduce the monoid axiom for some other
model structures on motivic functors.

Theorem 3.8. Smashing with a cofibrant object in MFpt preserves pointwise
equivalences.

Proof. If X is representable, say X = M(A,−) and f : Y - Z is a pointwise
weak equivalence, then the assembly map is an isomorphism

f ∧M(A,−) ∼= f ◦M(A,−) = I∗f ◦M(A,−).

Since I∗f commutes with filtered colimits and every motivic space is a filtered
colimit of finitely presentable motivic spaces, 2.16 implies that I∗f(B) is a
motivic weak equivalence for every motivic space B, e.g. for B = M(A,C).

For an arbitrary cofibrant motivic functor, the result follows from the previous
case using induction on the attaching cells and the fact that cobase change
along monomorphisms preserves motivic weak equivalences 2.20.

3.4 The homotopy functor structure

The major caveat concerning the pointwise model structure is that a motivic

weak equivalence A
∼- B of finitely presentable motivic spaces does not

necessarily induce a pointwise weak equivalence M(B,−) - M(A,−) of
representable motivic functors. To remedy this problem, we introduce a model
structure in which every motivic functor is a homotopy functor up to weak
equivalence. A homotopy functor is a functor preserving weak equivalences.

Recall that the pointwise structure is defined entirely in terms of the weakly
finitely generated model structure Mmo. However, to define the homotopy
functor structure it is also useful to consider the Quillen equivalent model
structure MGJ in which all motivic spaces are cofibrant. The slogan is: “use
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MGJ on the source and Mmo on the target”. This is the main difference from
the general homotopy functor setup presented in [5].

Definition 3.9. Let M be the set of acyclic monomorphisms (i.e. maps that
are both monomorphisms and motivic weak equivalences) of finitely presentable
motivic spaces. For a motivic space A, let ac(A) be the following category. The
objects of ac(A) are the maps A - B ∈ M that can be obtained by attaching
finitely many cells from M . The set of morphisms from an object β : A - B
to another γ : A - C is the set of maps τ : B - C that can be obtained
by attaching finitely many cells from M such that τβ = γ. Set

Φ(A) := colim
A→B∈ac(A)

B.

Note that the objects in ac(A) are acyclic cofibrations in MGJ.

The techniques from [5, Section 3.3] ensure the following properties of this
construction, see [5, 3.24]

Lemma 3.10. For every motivic space A, the map Φ(A) - ∗ has the right
lifting property with respect to the maps in M . In particular, Φ(A) is fibrant
in Mmo. Moreover, Φ is a functor and there exists a natural transformation
ϕA : A - Φ(A) which is an acyclic monomorphism. If the motivic space A
is finitely presentable, then Φ(A) is isomorphic to a filtered colimit of finitely
presentable motivic spaces weakly equivalent to A.

There are occasions where it is more convenient to employ M instead of the
set J ′ introduced in 2.15. For example, every motivic weak equivalence of
finitely presentable motivic spaces can be factored as a map in M , followed by
a simplicial homotopy equivalence. Adjointness and 2.7 imply:

Lemma 3.11. Suppose A is a motivic space such that A - ∗ has the right
lifting property with respect to the maps in M . If f : B - C is an acyclic
monomorphism of finitely presentable motivic spaces, then the induced map
M(C,A) - M(B,A) is an acyclic fibration in Mmo.

We define the (not necessarily motivic) functor ~(X) : fM - M by the
composition

~(X)(A) := I∗X(Φ(A)).

Note that ϕ : IdM - Φ induces a natural transformations of functors
IdMF

- ~.

Definition 3.12. A map f : X - Y in MF is an

• hf-weak equivalence if the map ~(X)(A) is a weak equivalence in Mmo

for all A ∈ Ob fM.
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• hf-fibration if f is a pointwise fibration and for all acyclic monomorphisms

φ : A ⊂
∼- B ∈ fM the diagram

X(A)
X(φ)- X(B)

Y (A)

f(A) ??
Y (φ)- Y (B)

f(B)??

is a homotopy pullback square in Mmo.

In the following, the hf-weak equivalences and hf-fibrations together with the
class of cofibrations, will be referred to as the homotopy functor structure MFhf

on MF.

Lemma 3.13. A map in MF is both an hf-fibration and an hf-equivalence if
and only if it is a pointwise acyclic fibration.

Proof. One implication is clear.

If f : X - Y is an hf-fibration and an hf-equivalence, choose A ∈ fM and
consider the induced diagram:

X(A) - I∗X(Φ(A))

Y (A)

f(A)
?

- I∗Y (Φ(A))

I∗f(Φ(A))
?

It remains to prove that f(A) is a motivic weak equivalence. The right vertical
map is a motivic weak equivalence by assumption, so it suffices to prove that
the diagram is a homotopy pullback square. Since f is an hf-fibration and
I∗Z commutes with filtered colimits for any motivic functor Z, 3.10 shows the
square is a filtered colimit of homotopy pullback squares. By 2.16, homotopy
pullback squares in Mmo are closed under filtered colimits, which finishes the
proof.

Theorem 3.14. The homotopy functor structure is a cofibrantly generated and
proper monoidal model category.

Proof. First we establish the weakly finitely generated model structure. This
follows from [7, 2.1.19], where 3.13 and 3.11 are needed to check the relevant
conditions. More precisely, 3.11 shows that the generating acyclic cofibrations
listed in 3.17 below are hf-equivalences. By arguments which can be found
in the proof of [5, 5.9], any sequential composition of cobase changes of the
generating acyclic cofibrations is an hf-equivalence.

Concerning the monoidal part, the crucial observation is that if f : A - B
is an acyclic monomorphism in fM and C is finitely presentable, then the map
f ∧C : A∧C - B ∧C is an acyclic monomorphism in fM. For details and
also right properness, see [5, 5.12 and 5.13]. Left properness is clear.
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Theorem 3.15. Smashing with a cofibrant motivic functor preserves hf-
equivalences and MFhf satisfies the monoid axiom.

Proof. We factor the hf-equivalence into an hf-acyclic cofibration followed by
an hf-acyclic fibration. Now 3.13 shows that hf-acyclic fibrations are pointwise
acyclic fibrations, and 3.8 shows smashing with a cofibrant object preserves
pointwise weak equivalences. Hence we may assume the hf-equivalence is a
cofibration. Since the model structure MFhf is monoidal, smashing with a
cofibrant object preserves hf-acyclic cofibrations. This proves our first claim.

The monoid axiom is shown to hold as follows. Suppose that X-∼hf- Y is
a generating hf-acyclic cofibration, and Z is an object of MF with cofibrant

replacement Zc ∼pt-- Z. Since X and Y are cofibrant, there is the diagram:

X ∧ Zc ∼hf- Y ∧ Zc

X ∧ Z

∼pt

?
- Y ∧ Z

∼pt

?

This implies X ∧Z
∼hf- Y ∧Z. The full monoid axiom follows as indicated in

[5, 6.30].

Remark 3.16. Every motivic functor is an S-functor since Mmo is a monoidal
S-model category. As such, they preserve simplicial homotopy equivalences,
see [5, 2.11]. Any motivic weak equivalence can be factored as the composition
of an acyclic monomorphism and a simplicial homotopy equivalence. It follows

that a pointwise fibration f : X
pt-- Y is an hf-fibration if and only if for

every motivic weak equivalence φ : A
∼- B in fM the following diagram is

a homotopy pullback square in the motivic model structure:

X(A)
X(φ)- X(B)

Y (A)

f(A) ??
Y (φ)- Y (B)

f(B)??

In particular, the fibrant functors in MFhf are the pointwise fibrant homotopy
functors. On the other hand, we could have constructed the homotopy functor
structure as a Bousfield localization with respect to the homotopy functors,
avoiding ~ in 3.12. However, note that we have a characterization of arbitrary
fibrations, as opposed to the situation for a general Bousfield localization.

Remark 3.17. The generating cofibrations for the pointwise and homotopy
functor structures coincide. The generating acyclic cofibrations for MFhf may
be chosen as follows. Consider an acyclic monomorphism φ : A - B ∈ fM
and its associated factorization M(B,−)-

cφ- Cφ
'- M(A,−) obtained
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using the simplicial mapping cylinder. The hf-acyclic cofibrations are generated
by the pointwise acyclic cofibrations of 3.7, together with the pushout product
maps

cφ¤i : M(B,−) ∧ ti
∐

M(B,−)∧si

Cφ ∧ si - Cφ ∧ ti,

where φ varies over the (isomorphism classes of) acyclic monomorphisms in
fM and i : si- - ti ∈ I varies over the generating cofibrations in Mmo. The
domains and codomains of these pushout product maps are finitely presentable
in MF.

To end this section, we indicate why ~(X)(A) has the correct homotopy type.

Lemma 3.18. Let X
∼hf- Xhf be a fibrant replacement in MFhf . Then we

have natural motivic weak equivalences

~(X)(A)
∼- ~(Xhf)(A) ¾∼

Xhf(A).

Proof. The first map is a motivic weak equivalence by definition. The second
map is a motivic weak equivalence because ~(Xhf)(A) ∼= colim

A
∼→B

Xhf(B) and Xhf

preserves motivic weak equivalences.

3.5 The stable structure

We start with the hf-model structure and define the stable model structure
more or less as for the general case in [5, Section 6]. The stable equivalences
are the maps which become pointwise weak equivalences after a stabilization
process, and the stably fibrant objects are morally the “Ω-spectra”.

Let us repeat the stabilization process in the case of MF and the motivic space
T of 2.2, weakly equivalent to A1

S/(A1
S −{0}). If X is a motivic functor and A

is a finitely presentable motivic space, there is a map

tX(A) : X(A) - T(X)(A) := M(T,X(T ∧ A))

natural in both X and A. It is adjoint to the map X(A) ∧ T - X(T ∧ A)
which in turn is adjoint to the composition

T - M(A, T ∧ A)
homX

A,T∧A- M(XA,X(T ∧ A)).

Let T∞(X) be the colimit of the sequence

X
tX- T(X)

T(tX)- T(T(X)) - · · · ,

and let t∞X : X - T∞(X) be the canonically induced map.

We fix a fibrant replacement X
∼hf- Xhf in MFhf .
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Definition 3.19. A morphism f : X - Y in MF is a

• Stable equivalence if the induced map T∞(fhf) : T∞(Xhf) - T∞(Y hf)
is a pointwise weak equivalence.

• Stable fibration if f is an hf-fibration and the diagram

X(A)
tX(A)- T(X)(A)

Y (A)

??
tY (A)- T(Y )(A)

??

is a homotopy pullback square in Mmo for all A ∈ fM.

We denote by MFst the stable structure on MF, i.e. the category MF together
with the classes of stable equivalences and stable fibrations.

Remark 3.20. The definition of stable equivalences in the general setting of
[5, 6.2] involves the functor ~(−) instead of (−)hf . By 3.18, this does not make
any difference. In particular, the class of stable equivalences does not depend
on the choice of (−)hf .

Lemma 3.21. A map is a stable fibration and a stable equivalence if and only
if it is a pointwise acyclic fibration.

Proof. One implication is obvious.

If f is a stable fibration and a stable equivalence, then fhf is also a stable
equivalence. In general, fhf will not be a pointwise fibration, but – as one can
prove by comparing with ~(f) – this is the only obstruction preventing fhf

from being a stable fibration. That is, the relevant squares appearing in the
definition of an hf-fibration 3.12 and in the definition of a stable fibration 3.19
are homotopy pullback squares for fhf . Details can be found in [5, Section 6.2].
Since homotopy pullback squares are closed under filtered colimits (like T∞),
the statement follows.

To prove that the stable structure is in fact a model structure, we will introduce
generating stable acyclic cofibrations.

Definition 3.22. For a finitely presentable motivic space A, let τA be the
composition

M(T ∧ A,−) ∧ T
∼=- M(T,M(A,−)) ∧ T

εT M(A,−)- M(A,−),

where εT is the counit of the adjunction (− ∧ T,M(T,−)) on MF. There
exists a factorization dA : M(T ∧ A,−) ∧ T- - DA followed by a simplicial
homotopy equivalence. Let D be the set of pushout product maps dA¤i, where
i : si- - ti is a generating cofibration in Mmo.
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To deduce that the stable structure is a model structure, we need to know that
the maps in D-cell are stable equivalences. For this purpose, we compare with
the stable model structure on Sp(Mmo, T ) which exists by [8]. If X is a motivic
functor and A ∈ fM, we can form the composition X ◦ (− ∧ A) ∈ MF.

Lemma 3.23. Let f : X - Y be a map of motivic functors. Then f is a
stable equivalence if and only if ev(fhf ◦ (− ∧ B)) is a stable equivalence of
motivic spectra for every B ∈ fM.

Proof. Although the stabilizations in MF and Sp(Mmo, T ) do not coincide
under ev, they can be compared at each B ∈ fM and shown to yield motivic
weak equivalences

T∞(fhf)(B)
∼- (Θ∞ev(fhf(− ∧ B)))0.

Here Θ∞ is the stabilization defined in [8, 4.4]. Details are recorded in [5,
Section 6.3]. This proves the claim.

Lemma 3.24. The maps in D-cell are stable equivalences.

Proof. Our strategy is to note that 2.24 and 3.23 imply the maps in D are stable
equivalences. To this end, it suffices to show – using 2-out-of-3 and 2.9 – that
εTM(A,−) is a stable equivalence for all A ∈ Ob fM. Equivalently, according
to 3.23, we may consider the map of motivic spectra ev((εTM(A,−))hf◦(−∧B))
for B ∈ Ob fM. Write X := M(A,−). There is a zig-zag of pointwise weak
equivalences connecting (εT X)hf ◦ (− ∧ B) and εT (Xhf ◦ (− ∧ B)). It can be
constructed as follows. By naturality, the diagram

M(T,X) ∧ T

M(T,Xhf) ∧ T
¾

X

εT X

?
(M(T,X) ∧ T )hf

-
∼hf

-

Xhf

∼hf
?

?

¾ (εT
X)

hfεT (X hf
) -

commutes. Factor the map εT (Xhf) as a pointwise acyclic cofibration, followed

by a pointwise fibration Z
pt-- Xhf . Then Z

pt-- Xhf is in fact an hf-
fibration. The reason is that Xhf is a pointwise fibrant homotopy functor, so
M(T,Xhf) is also a (pointwise fibrant) homotopy functor, since T is cofibrant.
By 2.18, M(T,Xhf)∧T is then a homotopy functor, hence the pointwise weak

equivalence M(T,Xhf)∧T-∼pt- Z implies that Z is a homotopy functor. Any

pointwise fibration of homotopy functors is an hf-fibration, thus Z
pt-- Xhf

is an hf-fibration. Hence there exists a lift f : (M(T,X) ∧ T )hf - Z in the

Documenta Mathematica 8 (2003) 489–525



514 B. I. Dundas, O. Röndigs, P. A. Østvær

diagram:

M(T,X) ∧ T - M(T,Xhf) ∧ T-∼pt - Z

(M(T,X) ∧ T )hf

∼hf

?

?

(εT X)hf

-

f

-

Xhf

hf

??

We will prove that f is a pointwise weak equivalence. It suffices to prove that
f is an hf-equivalence because both the domain and the codomain of f are
homotopy functors. Hence by the 2-out-of-3 property it suffices to prove that
M(T,X)∧T - M(T,Xhf)∧T is an hf-equivalence. Since −∧T preserves hf-
equivalences, let us consider M(T,X) - M(T,Xhf). We have to prove that
for every finitely presentable motivic space C, ~(M(T,X) - M(T,Xhf))(C)
is a motivic weak equivalence. Since T is finitely presentable and ~ can be
described as a filtered colimit, the map in question is isomorphic to the map

M(T, ~(X-∼hf- Xhf)(C)). The map ~(X-∼hf- Xhf)(C) is a motivic weak
equivalence by definition, so it remains to observe that the domain and the
codomain are both fibrant in Mmo. Now X = M(A,−) where A is finitely
presentable, so the domain ~(M(A,−))(C) = M(A,Φ(C)) is fibrant in Mmo.
The codomain is isomorphic to a filtered colimit of fibrant objects, hence it is
fibrant in Mmo.

We have constructed the diagram:

M(T,M(A,−)hf) ∧ T
∼pt - Z ¾ ∼pt

(M(T,M(A,−)) ∧ T )hf

M(A,−)hf

? ¾
(εT

M(A,−))
hfεT (M

(A,−) hf
)
-

Pre-composing with − ∧ B preserves pointwise weak equivalences so that we
get the desired zig-zag of pointwise weak equivalences connecting the two maps
εT (M(A,−)hf ◦ (− ∧ B)) and (εTM(A,−))hf ◦ (− ∧ B). Since ev preserves
pointwise weak equivalences, it suffices to check that

ev(εT (M(A,−)hf ◦ (− ∧ B))) = εT (ev(M(A,−)hf) ◦ (− ∧ B))

is a stable equivalence. In what follows, let us abbreviate by E the pointwise
fibrant motivic spectrum ev(M(A,−)hf ◦ (− ∧ B)). Then ιE : E - Θ∞E
is a stable equivalence whose codomain is a stably fibrant motivic spectrum
[8, 4.12]. Moreover, since T is finitely presentable and cofibrant, the map
M(T, ιE) : M(T,E) - M(T,Θ∞E) is also a stable equivalence with stably

fibrant codomain. Choose a cofibrant replacement M(T,Θ∞E)c ∼pt-- M(T,E)
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and consider the induced commutative diagram:

M(T,E)c ∧ T
∼- M(T,E) ∧ T

εT E

∼
- E

M(T,Θ∞E)c ∧ T

M(T,ιE)c∧T ∼
? ∼- M(T,Θ∞E) ∧ T

M(T,ιE)∧T ∼
?

εT Θ∞E

∼
- Θ∞E

ιE

?

Since − ∧ T is a Quillen equivalence 2.24, the lower horizontal composition is
a stable equivalence. Since − ∧ T preserves pointwise weak equivalences 2.18,
both horizontal maps on the left hand side are pointwise weak equivalences.
The right vertical map is a stable equivalence by construction. By factoring a
stable equivalence as a stable acyclic cofibration, followed by a pointwise acyclic
fibration, one can see that − ∧ T preserves all stable equivalences. Hence also
the other two vertical maps are stable equivalences. It follows that the map in
question is a stable equivalence.

Theorem 3.25. The stable structure MFst is a cofibrantly generated, proper
and monoidal model category.

Proof. The model structure follows easily from [7, 2.1.19], using 3.21 and 3.24.
The smash product of M(T ∧ A,−) ∧ T - M(A,−) and M(B,−) is iso-
morphic to the map M(T ∧ (A ∧ B),−) ∧ T - M(A ∧ B,−). This implies
that the pushout product map of a generating cofibration M(B,−) ∧ hU ∧
(∂∆n ⊂ - ∆n)+ and a generating stable acyclic cofibration is again a stable
acyclic cofibration, which proves that the model structure is monoidal. Left
properness is clear, for right properness we refer to [5, 6.28].

Remark 3.26. In the pointwise and stable model structures, the generating
cofibrations coincide. The set of generating acyclic cofibrations for the stable
structure is the union of the set of generating hf-acyclic cofibrations in 3.17,
together with the set D described above. Note that all of the maps have
cofibrant domains and codomains. Furthermore, the domains and codomains
of the maps in D are finitely presentable.

Remark 3.27. In fact, by the proofs of [5, 5.13 and 6.28] stable equivalences
are closed under base change along pointwise fibrations.

By a verbatim copy of the argument in the hf-structure 3.15, we get the monoid
axiom for the stable structure.

Theorem 3.28. Smashing with a cofibrant object in MFst preserves stable
equivalences, and MFst satisfies the monoid axiom.

Our goal now is to compare the stable model structure on motivic functors
with the stable model structure on motivic spectra.

It is clear that ev : MF - Sp(M, T ) preserves acyclic fibrations, and from
Hovey’s results [8, Section 4], ev preserves stable fibrations. Hence ev is a
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right Quillen functor, with left adjoint i∗ defined by left Kan extension along
the inclusion i : TSph ⊂ - fM. (In fact, ev preserves stable equivalences
of motivic homotopy functors by 3.23.) We would like ev to be a Quillen
equivalence, which according to [7, 1.3.16] is equivalent to the following two
conditions.

• ev detects stable equivalences of stably fibrant motivic functors.

• If E is a cofibrant motivic spectrum and (−)st denotes a stably fibrant
replacement functor for motivic spectra, then the canonical map

E - ev((i∗E)st)

is a stable equivalence.

Here is a proof of the second condition.

Lemma 3.29. Let E be a cofibrant motivic spectrum. Then E - ev((i∗E)st)
is a stable equivalence of motivic spectra.

Proof. Let us start by observing that, by 3.23, it is sufficient to show that the
map E - ev((i∗E)hf) is a stable equivalence. To describe (−)hf in convenient
terms, we will employ the enriched fibrant replacement functor IdMmo

- R
[5, 3.3.2]. Its construction uses an enriched small object argument. For our
notations concerning spectra see [8].

First, consider the case E = F0T
0. Then i∗F0T

0 ∼= M(T 0,−) ∼= I, and we
can choose Ihf = R ◦ I. The map F0T

0 - ev(R ◦ I) in degree n is the

canonical motivic weak equivalence T∧n ∼- R(T∧n), hence a pointwise weak
equivalence.

To proceed in the slightly more general case when E = FnT 0, note that
i∗FnT 0 ∼= M(T∧n,−). Since T∧n is cofibrant, we may choose M(T∧n,−)hf =
M(T∧n, R(−)), cp. 3.18. Hence evM(T∧n, R(−)) = M(T∧n, evR(−)). The
map FnT 0 - M(T∧n, evR(−)) has an adjoint FnT 0 ∧ T∧n - evR(−)
which is ∗ - R(T∧k) in degree k < n and the canonical motivic weak

equivalence T∧m ∼- R(T∧m) in degree m ≥ n. In particular, it is a stable
equivalence. Similarly for

FnT 0 ∧ T∧n ∼- evR(−)
∼- Θ∞evR(−).

¿From the proof of 3.24, one can see that M(T∧n,−) applied to the second
map is a stable equivalence with a stably fibrant codomain. Since − ∧ T is a
Quillen equivalence on Sp(Mmo, T ), this proves the slightly more general case.

The case E = FnA, where A is any motivic space, follows since

FnA - ev((i∗FnA)hf) ∼= (FnT 0 - evM(T∧n, R(−))) ∧ A
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and tensoring with any motivic space preserves stable equivalences of motivic
spectra. The latter follows from 2.20. This includes the domains and codomains
of the generating cofibrations in Sp(Mmo, T ).

The general case of any cofibrant motivic spectrum E follows, since E is a
retract of a motivic spectrum E′ such that ∗- - E′ is obtained by attaching
cells. That is, we can assume E = E′. We proceed by transfinite induction on
the cells, with the successor ordinal case first. Suppose Eα+1 is the pushout of

Fntj ¾Fnj¾Fnsj - Eα

where j is a generating cofibration in Mmo. Then (i∗Eα+1)◦R◦I is the pushout
of the diagram

M(T∧n, R(−)) ∧ tj ¾M(T∧n,R(−))∧j M(T∧n, R(−)) ∧ sj - i∗Eα ◦ R ◦ I.

The left horizontal map is pointwise a monomorphism. All the motivic functors
in this diagram are homotopy functors, so up to pointwise weak equivalence,
they coincide with their fibrant replacement in MFhf . The induction step
follows, since ev preserves pushouts, pointwise weak equivalences and pointwise
monomorphisms, by applying the gluing lemma to the diagram:

Fntj ¾ Fnj ¾Fnsj - Eα

evM(T∧n, R(−)) ∧ tj

∼
?

¾ evM(T∧n, R(−))

∼
?

- ev(i∗Eα ◦ R ◦ I)

∼
?

The limit ordinal case follows similarly; we leave the details to the reader.

For a general S, it is not known whether ev detects stable equivalences of stably
fibrant motivic functors. In order to obtain the “correct” homotopy theory of
motivic functors we modify the stable model structure.

3.6 The spherewise structure

Definition 3.30. A map f : X - Y of motivic functors is a spherewise
equivalence if the induced map ev(fhf) is a stable equivalence of motivic spectra.
The map f is a spherewise fibration if the following three conditions hold for

every A ∈ fM such that there exists an acyclic monomorphism T∧n ⊂
∼- A

for some n ≥ 0:

• f(A) : X(A) - Y (A) is a motivic fibration.

• For every motivic weak equivalence A
∼- B in fM,

XA - XB

Y A

f(A) ??
- Y B

f(B)??
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is a homotopy pullback square in Mmo.

• The diagram

XA - M(T,X(T ∧ A))

Y A

f(A) ??
- M(T, Y (T ∧ A))

M(T,f(T∧A))??

is a homotopy pullback square in Mmo.

A map is a spherewise cofibration if it has the left lifting property with respect
to the maps which are both spherewise equivalences and spherewise fibrations.

We shall refer to these classes as the spherewise structure on MF and use the

notations MFsph, X
∼sph- Y , X

sph-- Y and X-sph- Y . Now every stable
equivalence is a spherewise equivalence by 3.23, and stable fibrations are sphere-
wise fibrations. Hence the identity is a left Quillen functor MFsph

- MFst

provided the spherewise structure is a model structure.

Theorem 3.31. The spherewise structure is a cofibrantly generated proper
monoidal model structure on MF. The monoid axiom holds. Furthermore,
the evaluation functor

ev : MFsph
- Sp(Mmo, T )

is the right adjoint in a Quillen equivalence.

Proof. Let us denote by tM the full sub-M-category given by the finitely
presentable motivic spaces A such that there exists an acyclic monomorphism

T∧n ⊂
∼- A for some n ≥ 0. It is possible to apply the general machinery

from [5] to the category [tM,M] of M-functors from tM to M and get a
cofibrantly generated proper model structure. We may then lift this model
structure using [6, 11.3.2] from [tM,M] to MF via the left Kan extension
along the full inclusion tM ⊂ - fM.

We follow a direct approach. By the proof of 3.21, a spherewise acyclic fibration

f : X
∼sph-- Y is characterized by the property that the map f(A) : XA - Y A

is an acyclic fibration in Mmo for every A ∈ tM. This gives us the set of
generating spherewise cofibrations

{M(A,−) ∧ hU ∧ (∂∆n ⊂ - ∆n)+}A∈tM, U∈Ob Sm/S,n≥0.

This set is simply the restriction of the set of generating cofibrations for the
model structures on the motivic spaces in tM. Similarly, one can restrict the
generating acyclic cofibrations in 3.26 to the motivic spaces in tM. This gives a
set of generating spherewise acyclic cofibrations. Theorem [7, 2.1.19] implies the
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existence of the cofibrantly generated model structure. In fact, the conditions
required to apply this theorem have been checked before without the restriction
that A be in tM. For example, sequential compositions of cobase changes of
the generating spherewise acyclic cofibrations are even stable equivalences by
3.24, hence in particular spherewise equivalences.

Note that tM is closed under the smash product in M. In fact, if the maps

T∧m ⊂
∼- A and T∧n ⊂

∼- B are acyclic monomorphisms, then their smash
product T∧m+n - A ∧ B is an acyclic monomorphism. This is the crux
observation leading to the conclusion that the model structure is monoidal.
We claim that the monoid axiom holds. If X is an arbitrary motivic functor
and j is a generating spherewise acyclic cofibration, then j is in particular a
generating stable acyclic cofibration. The monoid axiom for the stable model
structure 3.28 implies that X ∧ j-cell consists of stable equivalences, which are
in particular spherewise equivalences. Our claim follows.

Finally, since T∧n ∈ Ob tM for every n ≥ 0, the evaluation functor ev preserves
spherewise fibrations and spherewise acyclic fibrations. Hence ev is a right
Quillen functor. By definition, ev reflects spherewise equivalences of motivic
homotopy functors. This implies ev also reflects spherewise equivalences of
motivic functors which are spherewise fibrant (A spherewise fibrant motivic
functor does not necessarily preserve all of the motivic weak equivalences in
fM, only those in tM. However, this is sufficient.). If E is a cofibrant motivic

spectrum and i∗E-∼sph- (i∗E)sph is a spherewise fibrant replacement, there is

a spherewise equivalence (i∗E)sph ∼sph- (i∗E)st.

Using 3.29 above we conclude that ev : MFsph
- Sp(Mmo, T ) is a Quillen

equivalence.

Note that we do not claim that smashing with a spherewise cofibrant motivic
functor preserves spherewise equivalences.

3.7 Comparison with motivic symmetric spectra

We extend the result about the Quillen equivalence 3.31 to Jardine’s category of
motivic symmetric spectra [10]. As mentioned above, if U is the functor induced
by the inclusion TSph ⊂ - TSphΣ, and ev′ is the inclusion TSphΣ ⊂ - fM,
then ev : MF - Sp(M, T ) allows the factorization

MF
ev′

- SpΣ(M, T )
U- Sp(M, T ).

The functor ev′ is lax symmetric monoidal and has a strict symmetric
monoidal left adjoint. Hovey’s work [8, 8.7] yields a stable model structure
on SpΣ(Mmo, T ), slightly different from the stable model structure on motivic
symmetric spectra constructed in [10], that is, SpΣ(MGJ, T ). The latter uses
as input the model category MGJ in 2.17. The right adjoint of the Quillen
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equivalence MGJ
- Mmo given by IdM induces the commutative square

SpΣ(MGJ, T )
U- Sp(MGJ, T )

SpΣ(Mmo, T )

?
U- Sp(Mmo, T )

?

where the vertical functors are Quillen equivalences [8, 5.7, 9.3]. To apply
Hovey’s results one needs to check that MGJ is a cellular model structure.
An approach is to apply Smith’s work on combinatorial model categories, or
one can proceed directly. Indeed, using 2.17 one can show that the stable
equivalences coincide in both model structures. The upper forgetful functor in
the above displayed diagram is a Quillen equivalence by [10, 4.31], hence so is
the lower U . Since the evaluation ev : MFsph

- Sp(Mmo, T ) is a Quillen
equivalence 3.31, it suffices to prove the following result.

Theorem 3.32. The lax symmetric monoidal functor

ev′ : MFsph
- SpΣ(Mmo, T )

is the right adjoint in a Quillen equivalence. Its left adjoint is strict symmetric
monoidal. The induced pair on homotopy categories is a monoidal equivalence.

Proof. If ev′ is a right Quillen functor, then the monoidality statements follow
from [5, 2.16] and [7, 4.3.3]. The Quillen equivalence then follows by 2-out-of-3,
as explained prior to the statement of the theorem.

Since the spherewise acyclic fibrations are the maps f such that f(A) is an
acyclic fibration in Mmo for every A weakly equivalent to some Tn, we get
that ev′ preserves stable acyclic fibrations. Similarly, any spherewise fibration
gets mapped to a stable fibration, because its evaluation on some Tn is a
fibration and the square

XTn - M(T,XTn+1)

Y Tn

F (T∧n) ??
- M(T, Y Tn+1)

M(T,f(T n+1))??

is a homotopy pullback square in Mmo for every n ≥ 0. ¿From the definition
of stable fibrations of symmetric T -spectra [10, 4.2], which also applies to Mmo

instead of MGJ, it follows that ev′ preserves stable fibrations.

4 Algebraic structure

In the paper so far, we have set up models for doing homotopical algebra over
the initial motivic ring I, which was simply the inclusion I : fM ⊆ M.
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However, the structure we have developed is sufficient to do homotopical alge-
bra in module categories, as well as in categories of algebras over commutative
ring functors.

In this section we use the results in [14] (for which many of the previous for-
mulations were custom-built), to outline how this can be done. The spherewise
structure MFsph is slightly different from the other ones, but deserves special
attention due to its Quillen equivalence to motivic symmetric spectra.

The reader’s attention should perhaps be drawn to corollary 4.5, where our
setup gives less than one should hope for: in order for a map of motivic
rings f : A - B to induce a Quillen equivalence of module categories in
the spherewise structure, we must assume that f is a stable equivalence. We
would of course have preferred that our setup immediately gave the conclusion
for spherewise equivalences, but apart from this deficiency the section can be
summed up by saying that each of the model structures given in the previous
section give rise to a natural homotopy theory for modules and algebras sat-
isfying all expected properties, where the weak equivalences and fibrations are
the same as in the underlying structure on MF.

4.1 Motivic rings and modules

Recall that a motivic ring is the same as a monoid in MF, i.e. a motivic functor
A together with a “unit” I - A and a unital and associative “multiplication”
A∧A - A. We use the same language for modules and algebras as e.g. [14].
A left A-module is a motivic functor M together with a unital and associative
action A ∧ M - M . If M is a left A-module and N is a right A-module,
then N ∧A M is defined as the coequalizer of the two obvious action maps from
N ∧ A ∧ M to N ∧ M . The category modA of left A-modules is enriched over
MF by a similar equalizer.

If k is a commutative motivic ring, then left and right modules can be identified
and the category of k-modules becomes a closed symmetric monoidal category.
The monoids therein are called k-algebras (which means that we have a third
legitimate name – “I-algebra”– for a motivic ring).

Definition 4.1. Let A be a motivic ring and k a commutative motivic ring.
Let modA be the category of left A-modules and algk the category of k-algebras.
A map in modA or algk is called a weak equivalence resp. fibration if it is so
when considered in MF. Cofibrations are defined by the left lifting property.

Theorem 4.2. Let A be a motivic ring, let k be a commutative motivic ring
and let MF be equipped with either of the model structures of section 3.

• The category modA of left A-modules is a cofibrantly generated model
category.

• The category of k-modules is a cofibrantly generated monoidal model cat-
egory satisfying the monoid axiom.
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• The category algk of k-algebras is a cofibrantly generated model category.

Proof. This follows immediately from [14, 4.1] and the results in section 3.

By the argument for [5, 8.4], we have

Lemma 4.3. Let MF be equipped with the pointwise structure, the homotopy
functor structure or the stable structure. Let A be a motivic ring. Then for any
cofibrant A-module N , the functor −∧A N takes weak equivalences in modAop

to weak equivalences in MF.

Corollary 4.4. Let MF be equipped with the pointwise structure, the homo-

topy functor structure or the stable structure. Let f : A
∼- B be a weak

equivalence of motivic rings. Then extension and restriction of scalars define
the Quillen equivalence

modA

B∧A−-¾
f∗

modB .

If A and B are commutative, there is the Quillen equivalence

algA

B∧A−-¾
f∗

algB .

Proof. This is a consequence of [14, 4.3 and 4.4] according to 4.3.

In the case of the spherewise structure, we have the following result.

Corollary 4.5. Suppose f : A
∼- B is a stable equivalence of motivic rings

and choose MFsph as our basis for model structures on modules and algebras.
Then extension and restriction of scalars define the Quillen equivalence

modA

B∧A−-¾
f∗

modB .

If A and B are commutative, there is the Quillen equivalence

algA

B∧A−-¾
f∗

algB .

Proof. Follows from 4.3, cf. [14, 4.3 and 4.4].

4.2 Motivic cohomology

Recall the commutative motivic ring MZ of example 3.4. We show:

Lemma 4.6. The evaluation ev(MZ) of MZ represents motivic cohomology
with integer coefficients.
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Proof. Let us repeat Voevodsky’s construction of the spectrum representing
motivic cohomology in [16]. His motivic spaces (simply called spaces) are
pointed Nisnevich sheaves on Sm/S, equipped with a model structure in which
the cofibrations are the monomorphisms. Let us denote this model cate-
gory by V. Note that V is closed symmetric monoidal. There is the stan-
dard cosimplicial object ∆S : ∆ - Sm/S which maps [n] to the scheme
An+1

S /(Σn
i=0Xi = 1). The right Quillen functor

Sing : V - Mmo, A - ((U, n) - A(∆n
S × U))

is a Quillen equivalence by [10, B.4, B.6] and 2.17.

Its left adjoint maps a motivic space A to the coend

|A|S =

∫ n∈∆

Nis(An ∧ h∆n
S
)

where Nis(B) is the Nisnevich sheafification of the presheaf B. The functor
| − |S is strict symmetric monoidal. As a special case, if A ∈ M is a discrete
Nisnevich sheaf (for example A = hU for some U ∈ Sm/S), then |A|S ∼= A.

The spectrum HZ defined by Voevodsky is an object in Sp(V, |(P1
S ,∞)|S),

where |(P1
S ,∞)|S := |hP1

S
/hS |S . Here hS

- hP1
S

corresponds to the rational

point ∞ ∈ P1
S(S). Its nth term is

HZn = |MZ((P1
S ,∞)∧n)|S

with structure map given by the composition

|MZ((P1
S ,∞)∧n) ∧ (P1

S ,∞)|S

|MZ((P1
S ,∞)∧n) ∧ MZ(P1

S ,∞)|S
?

|MZ((P1
S ,∞)∧n+1)|S

?

which involves the unit and the multiplication of the motivic ring MZ. The
lemma follows now, essentially because (P1

S ,∞) and T are connected via a zig-
zag of motivic weak equivalences, which both |− |S and MZ respect. For |− |S
this is clear, since it is a left Quillen functor on MGJ. For MZ the claim is not
so clear, so we discuss this case in some details.

As a motivic functor, MZ preserves simplicial homotopy equivalences. One
can equip the category Mtr of motivic spaces with transfers with a whole
host of model structures. In the motivic model structure on Mtr, a map f
of motivic spaces with transfers is a weak equivalence resp. fibration if and
only if u(f) ∈ M is a motivic weak equivalence resp. motivic fibration [13]. By
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definition, it follows that u is a right Quillen functor, so that Ztr is a left Quillen
functor. Consequently, the composition u◦Ztr maps motivic weak equivalences
of cofibrant motivic spaces to motivic weak equivalences.

The zig-zag of motivic weak equivalences between (P1
S ,∞) and the Tate object

T involves only homotopy pushouts of representable motivic spaces and their
simplicial suspensions. By repeatedly applying the simplicial mapping cylinder
one can replace this zig-zag by a zig-zag of motivic weak equivalences involving

only cofibrant motivic spaces, except for the weak equivalence T ′ ∼- (P1
S ,∞).

Here T ′ = C/hS where C denotes the simplicial mapping cylinder of the map
hS

- hP1
S
. However, we claim the following map is a weak equivalence

Ztr(C/hS) - Ztr(P1
S ,∞).

Our claim holds because the following map of chain complexes of motivic spaces
with transfers is schemewise a quasi-isomorphism:

Ztr(hP1
S
) ¾ Ztr(hS) ¾ 0 ¾ · · ·

Ztr(hP1
S
)/Ztr(hS)
?

¾ 0
?
¾ 0

?
¾ · · ·

This finishes the proof.
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Abstract. A conjecture of Amitsur states that two Severi-Brauer
varieties are birationally isomorphic if and only if the underlying al-
gebras are the same degree and generate the same cyclic subgroup of
the Brauer group. It is known that generating the same cyclic sub-
group is a necessary condition, however it has not yet been shown to
be sufficient.

In this paper we examine the case where the algebras have a maximal
subfield K/F of degree n with Galois closure E/F whose Galois group
is of the form Cn o H, where EH = K and |H| is prime to n. For
such algebras we show that the conjecture is true for certain cases of
n and H. In particular we prove the conjecture in the case that G is
a dihedral group of order 2p, where p is prime.

2000 Mathematics Subject Classification: 16K50, 16S35
Keywords and Phrases: Brauer groups, Severi-Brauer varieties

1 Introduction

Let F be a field. We fix for the entire paper a positive integer n, and we
suppose that either n is prime, or that F contains a primitive n’th root of
unity. For a field extension L/F , and A a central simple L-algebra, we write
V (A) or V (A/L) to denote the Severi-Brauer variety of A, consisting of (deg A)-
dimensional right ideals of A, and denote the function field of this variety by
L(A).
We recall the following conjecture:

1Partially supported by NSF grant DMS-9983726
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Conjecture (Amitsur, 1955 [Ami55]). Given A,B Central Simple algebras over
F , F (A) ∼= F (B) iff [A] and [B] generate the same cyclic subgroup of the
Br(F ).

Amitsur showed in [Ami55] that one of these implications hold. Namely if
F (A) ∼= F (B), then the equivalence classes of A and B generate the same cyclic
subgroup of the Brauer Group. The aim of this note is to prove the reverse
implication for certain algebras A and B. We will say that the conjecture holds
for the pair (A, l), or simply that (A, l) is true to mean that l is prime to deg(A)
and F (A) ∼= F (Al). We say that the conjecture is true for A if, for all l prime
to deg(A), (A, l) is true.
One important case is when the algebra A has a cyclic Galois maximal splitting
field. In this case we know that the conjecture is true for A ([Ami55], [Roq64]).
In this paper we extend this result to certain G − H crossed products. We
recall the following definitions:

Definition 1. Let G be a finite group, and H a subgroup of G. A field
extension K/F is called G − H Galois if there exists a field E containing K
such that E/F is G-Galois, and EH = K.

Definition 2. Let A be a central simple F -algebra. A is called a G − H
crossed product if A has a maximal subfield K which is G − H Galois. In the
case H = 1, we call A a G-crossed product.

The main theorem in this note concerns the case of an algebra which is a
so-called semidirect product algebra in the sense of [RS96]

Definition 3. A is called a semidirect product algebra if it is a G−H crossed
product where G = N o H.

This can be interpreted as meaning that A becomes an N - crossed product after
extending scalars by some field K/F which is H-Galois. In the case where
N is a cyclic group, we will try to exploit the fact that we know Amitsur’s
conjecture to be true for N crossed products to prove the conjecture for G
crossed products.

Semidirect product theorem 1. Let A be a semidirect product algebra of
degree n as in definition 3, with N = Cm = 〈τ〉, H = Cn = 〈σ〉, such that
the homomorphism N → Aut(H) (induced by conjugation) is injective and |N |
and |H| are relatively prime. Choose r so that we may write τστ−1 = σr. Let

S =
Z[ρ]

1 + ρ + ρ2 + · · · + ρn−1
,

and define an action of τ on S via τ(ρ) = ρr, and a ring homomorphism
ε : S → Z/nZ via ε(ρ) = 1. Then (A, l) is true for all l such that l ∈ ε

(
(S∗)τ

)
.

We give the proof of this in section 3. For now, we give the following corollary:
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Corollary 1. Suppose deg(A) = n, n odd. If A has a dihedral splitting field
of degree 2n. Then the conjecture is true for A.

Proof. In this case, we have ε((S∗)τ ) = (Z/nZ)∗. If l = 2k, l is the image of
(ρ+ ρ−1)k. If l = 2k +1, then l is the image of ρ−k + ρ−(k−1) + . . . + ρ−1 +1+
ρ + . . . + ρk−1 + ρk. Any other unit in (Z/nZ)∗ is easily seen to be the image
of a product of those above.

Remark. This theorem is already known when F contains the n’th roots of
unity, since by a theorem of Rowen and Saltman [RS82], any such algebra is in
fact cyclic, and so the theorem follows from [Ami55] or [Roq64].

It is worth noting that the hypothesis concerning the splitting field E can be
stated in weaker terms for the case n = p a prime number. In particular we
have:

Proposition 1. Suppose A is a central simple F -algebra of degree p with a
maximal subfield K, and suppose that there is some extension E′ of K such
that E′/F is Galois with group G = Cp o H where (E′)H = K. Then there is
a subfield E ⊂ E′ containing K such that E/F is Galois with group Cp o Cm

where Cm acts faithfully on Cp.

Proof. We define a homomorphism φ : H → Aut(Cp) via the natural conju-
gation action of H on Cp. Since Aut(Cp) is a cyclic group every subgroup is
cyclic, and we may regard φ as a surjective map H → Cm. Now we define a
map

G = Cp o H → Cp o Cm

(a, h) 7→ (a, φ(h))

one may check quickly that this is a homomorphism of groups and its kernel
is precisely the kernel of φ. Set H ′ = kerφ, and let E = (E′)H′

. Since H ′ is
normal in G (as the kernel of a homomorphism), we know that E/F is Galois
and its Galois group is G/H ′ = Cp o Cm. By construction, the action of Cm

is faithful on Cp.

Note also that in the case n = p a prime, S is a ring of cyclotomic integers.

2 Preliminaries

To begin, let us fix some notation. Let F be an infinite field, and let F alg

be an algebraic closure of F . The symbol ⊗ when unadorned will always
denote a tensor product over F and × will denote a fiber product of schemes
over Spec(F ). For us an F -variety will mean a quasi-projective geometrically
integral seperated scheme of finite type over F (note F is not assumed to
be algebraically closed). By geometrically integral we mean that the scheme
remains integral when fibered up to the algebraic closure of its field of definition.
If X is a variety, we denote its function field by F (X). We remark that X being
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geometrically integral variety implies that F (X) is a regular field extension of
F , that is to say, F (X) ⊗F F alg is a field.
Let E/F be G-Galois for some group G. If B is an E algebra, then a homo-
morphism α : G → AutF (B) defines an action of G on B (as an F algebra)
which is called semilinear in case

∀x ∈ E, b ∈ B, α(σ)(xb) = σ(x)α(σ)(b).

We refer to the pair (B,α) as a G-algebra, and a morphism between two G-
algebras is simply defined to be an algebra map which commutes with the
G-actions. The theory of descent tells us that the category of G-algebras is
equivalent to the category of F -algebras by taking a G-algebra (B,α) to its
G-invariants. Conversely, an F -algebra C gives us the G-algebra (C ⊗F E, ιC),
where ιC(σ) = id ⊗ σ.
Similarly, if X is an E-variety with structure map k : X → Spec(E), a ho-
momorphism α : G → AutSpec(F )(X) defines an action of G on X (as an
F -scheme) which is called semilinear in case σ ◦ k = k ◦ α(σ).
Also for B any E-algebra, given σ ∈ G, we define σB to be the algebra with
the same underlying set and ring structure as B, but with the structure map
σ−1 : E ↪→ σB.
Given A a central simple F -algebra, we recall that the functor of points of the
Severi-Brauer variety V (A) is given the following subfunctor of the Grassman-
nian functor of points (see [Jah00], [VdB88], or [See99], and [EH00] for the
definition of the Grassmannian functor):

V (A)(R) =

{
I ⊂ AR

∣∣∣∣
I is a left ideal and AR/I
is R-projective of rank n

}

and for a homomorphism of commutative F -Algebras R
ψ→ S we obtain the set

map

V (A)(ψ) : V (A)(R) → Vk(A)(S)

via I 7→ I ⊗R S

2.1 Descent and functors of points

Given X an F -variety, we obtain a functor

XE/F : {commutative F -algebras} → {sets}

by XE/F (R) = MorschE
(Spec(RE),XE). If f ∈ Mor(X,Y ), we abuse nota-

tion, and refer to the natural transformation induced by f by f also.
For σ ∈ G, we have an action of σ on XE = X ×Spec(F ) Spec(E) induced
by σ−1 acting on E. With this in mind, we obtain a natural transformation
σ : XE/F → XE/F via for φ ∈ XE/F (R), σ ¦ φ = σ ◦ φ ◦ σ−1. We denote this
action by

ιX : G → NatAut(XE/F ).
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Proposition 2. Let f ∈ MorE(XE , YE). Then f = gE for g ∈ MorF (X,Y )
iff the following diagram commutes:

XE/F Y E/F

XE/F Y E/F

-f

?

σ

?

σ

-f

that is, for every commutative F -algebra R and φ ∈ XE/F (R), we have

σ ¦ f(φ) = f(σ ¦ φ)

Proof. To begin, assume the above condition holds. We have (recalling that
f(φ) = f ◦ φ),

σ ¦ f(φ) = σ ¦ (f ◦ φ) = σ ◦ (f ◦ φ) ◦ σ−1

f(σ ¦ φ) = f(σ ◦ φ ◦ σ−1) = f ◦ σ ◦ φ ◦ σ−1

And setting these two to be equal, we have

σ ◦ f ◦ φ = f ◦ σ ◦ φ

which in turn gives us
f ◦ φ = σ−1 ◦ f ◦ σ ◦ φ

Since this must hold for each φ, this just says that the elements f, σ−1 ◦f ◦σ ∈
MorE(XE , YE) correspond to the same natural transformation when thought
of as elements of Nat(XE/F , Y E/F ) via the Yoneda embedding, and therefore
they must actually be equal - that is to say f = σ−1 ◦ f ◦ σ or σ ◦ f = f ◦ σ.
But now, by Galois descent of schemes, we know f = gE .
Conversely, assume that f = gE . In this case it is easy to see that we have
σ ◦ f = f ◦σ. Now we simply make our previous argument backwards and find
that the desired diagram does in fact commute.

We note the following lemma, which can be checked by examining the Grass-
mannian in terms of its Plüker embedding:

Lemma 1. Suppose that V is an F -vector space, and let X = Grk(V ). Then
the natural semilinear action ιX can be described functorially as the natural
transformation from XE/F to itself such that for R a commutative F -algebra,
σ ∈ G, M ∈ XE/F (R),

XE/F (ιX(σ))(M) = σ(M) = {σ(m)|m ∈ M}

where σ acts on the elements of VR⊗E in the natural way.
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Corollary 2. Suppose that A is an F -central simple algebra, and let X =
Vk(A). Then the natural semilinear action ιX can be described functorially as
the natural transformation from XE/F to itself such that for R a commutative
F -algebra, σ ∈ G, I ⊂ AR⊗E an element of XE/F (R)

XE/F (ιX(σ))(I) = σ(I) = {σ(x)|x ∈ I}

where σ acts on the elements of AR⊗E = A ⊗ R ⊗ E as id ⊗ id ⊗ σ.

2.2 Severi-Brauer varieties of crossed product algebras

We give here an explicit birational description of the Severi-Brauer Variety
of a crossed product algebra. A similar discussion (without the functorial
viewpoint) may be found in [Sal99] (Cor. 13.15). Let L/F be a G-galois
extension of degree n. Let A = (L,G, c) be a crossed product algebra, where c
is taken to be a specific 2-cocycle (not just a cohomology class) normalized so
that c(id, id) = 1.
We define the “functor of splitting 1-chains for c” via: To begin, define the
functor

F :

{
commutative L-algebras
with G-semilinear action

}
→ {sets}

F(S) = {z ∈ C1(G,S∗)|δz = c}

Where C1(G,S∗) denotes the set of 1-cochains. From this we define the functor
of splitting 1-chains of c as

Spc : {commutative F -algebras} → {sets}
Spc(R) = F(L ⊗ R)

Proposition 3. Spc is represented by on open subvariety of U of V (A), which
is given as an open subfunctor by U(R) = {I ∈ V (A)(R)|I + LR = AR}. This
isomorphism of functors is given by the natural isomorphism Λ : U → Spc,
where Λ(R)(I) is the 1-cochain

σ 7→ z(I)σ

where z(I)σ is the unique element of LR such that

z(I)σ − uσ ∈ I.

Further, the inverse is given by

Λ−1(z) =
∑

σ∈G

(L ⊗ R)(z(σ) − uσ)

Proof. First we note that if I ∈ U(R) then I ∩ LR = 0. This is because we
have the exact sequence of R-modules

0 → I ∩ LR → LR → AR/I → 0
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which is split since AR/I is projective. Hence LR = AR/I⊕ (I∩LR), and since
LR is projective (since L is) we have I ∩LR is also projective. By additivity of
ranks, we have that rk(AR/I) = n, rk(LR) = dimF (L) = n and so rk(I∩LR) =
0. Since I ∩ LR is projective, it must be trivial. Consequently, I + LR = AR

implies that AR = I ⊕ LR.
To see now that Λ(R) is well defined, we just note that −uσ ∈ AR = I ⊕ LR,
and so there is a unique element z(I)σ ∈ I such that z(I)σ − uσ ∈ I. Next we
check that z(I) defines an element of Spc(R). Since I is a left ideal,

z(I)τ − uτ , z(I)στ − uστ ∈ I

⇒ uσ

(
z(I)τ − uτ

)
− c(σ, τ)

(
z(I)στ − uστ

)
∈ I

And also we have therefore:

σ
(
z(I)τ

)(
z(I)σ − uσ

)
,

uσ

(
z(I)τ − uτ

)
− c(σ, τ)

(
z(I)στ − uστ

)
+ σ

(
z(I)τ

)(
z(I)σ − uσ

)
∈ I

But this last expression can be rewritten as:

uσ

(
z(I)τ − uτ

)
− c(σ, τ)

(
z(I)στ − uστ

)
+ σ

(
z(I)τ

)(
z(I)σ − uσ

)

= σ
(
z(I)τ

)
uσ − c(σ, τ)uστ − c(σ, τ)z(I)στ+

c(σ, τ)uστ + σ
(
z(I)τ

)
z(I)σ − σ

(
z(I)τ

)
uσ

= σ
(
z(I)τ

)
z(I)σ − c(σ, τ)z(I)στ ∈ L ⊗ R

But since this quantity is also in I and I ∩ (L⊗R) = 0, we get σ(z(I)τ )z(I)σ =
c(σ, τ)z(I)στ which says that

δ(z(I))(σ, τ) = σ(z(I)τ )z(I)σ(z(I)στ )−1 = c(σ, τ)

and therefore, z(I) ∈ Spc(R).
Next, we check that Λ−1 is well defined. Let z ∈ Spc(R) and set I = Λ−1(z).
It is clear from the definition that I +(L⊗R) = AR, and AR/I = L⊗R is free
(and so projective) of rank 1. To check that I is actually a left ideal, since it
follows from the definition that (L⊗R)I = I, we need only check that for each
σ ∈ G, uσI ⊂ I, and this in turn will follow if we can show uσ(z(τ) − uτ ) ∈ I
for each τ ∈ G. Calculating, we get

uσ

(
z(τ) − uτ

)
= σ

(
z(τ)

)
uσ − c(σ, τ)uστ

= σ
(
z(τ)

)
uσ − z(σ)σ

(
z(τ)

)
z(στ)−1uστ

= σ
(
z(τ)

)(
uσ − z(σ)z(στ)−1uστ

)

= σ
(
z(τ)

)(
−

(
z(σ) − uσ

)
+

(
z(σ) − z(σ)z(στ)−1uστ

))

= σ
(
z(τ)

)(
−

(
z(σ) − uσ

)
+ z(σ)z(στ)−1

(
z(στ) − uστ

))

= −σ
(
z(τ)

)(
z(σ) − uσ

)
+ z(σ)σ

(
z(τ)

)
z(στ)−1

(
z(στ) − uστ

)

∈ (L ⊗ R)
(
z(τ) − uτ

)
+ (L ⊗ R)

(
z(στ) − uστ

)
⊂ I
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and hence I is a left ideal, and Λ−1 makes sense.

It remains to show that Λ and Λ−1 are natural transformations and are inverses
to one another. It follows fairly easily that if Λ is natural and they are inverses
of one another then Λ−1 will automatically be natural also.

To see that Λ is natural, we need to check that for φ : R → S a ring homomor-
phism, and I ∈ U(R), that

Λ(S)(U(φ)(I)) = Spc(φ)(Λ(R)(I))

the right hand side is

Spc(φ)(Λ(R)(I)) = Spc(φ)(z(I)) = (idL ⊗ φ)(z(I))

and by definition of z(I), we know for σ ∈ G, z(I)σ − uσ ∈ I and for the left
hand side we have

Λ(S)(U(φ)(I)) = Λ(S)(I ⊗R S)

but

z(I)σ − uσ ∈ I ⇒ z(I)σ ⊗ 1 − uσ ∈ I ⊗R S

and now, using the identification

(L ⊗ R) ⊗R S
∼→ L ⊗ S

(l ⊗ r) ⊗ s 7→ l ⊗ φ(r)s

z(I)σ ⊗ 1 becomes (idL ⊗ φ)(z(I)σ), and so combining these facts gives

Spc(φ)(Λ(R)(I))(σ) = (idL ⊗ φ)(z(I)σ) ∈ I ⊗R S ∩ (L ⊗ S − uσ)

(here, L ⊗ S − uσ denotes translation of L ⊗ S by uσ) and by definition of Λ,
this means

Λ(S)(I ⊗R S)(σ) = (idL ⊗ φ)(z(I)σ) = Spc(φ)(Λ(R)(I))(σ)

as desired.

Finally, we need to check that transformations are mutually inverse. Choosing
I ∈ U(R), we want to show

I =
∑

σ∈G

(L ⊗ R)(z(I)σ − uσ)

Now, it is easy to see that the right hand side is contained in the left hand
side. Furthermore, both of these are direct summands of AR of corank n. For
convenience of notation, let us call the right hand side J .

Claim. I / J is projective
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We show this by considering the exact sequence

0 → I/J → AR/J → AR/I → 0

Since AR/I is projective, this sequence splits and I/J ⊕ AR/I ∼= AR/J . But
since AR/J is projective, and I/J is a summand of it, I/J must be projective
as well, proving the claim.
Now, from the exact sequence

0 → J → I → I/J → 0

we know rank(I/J) = rank(I) − rank(J) = 0, and so I/J = 0 which says
I = J as desired.
Conversely, if z ∈ Spc(R), we need to verify that

I =
∑

σ∈G

(L ⊗ R)(z(σ) − uσ) ⇒ I ∩ (L ⊗ R − uσ) = z(σ) − uσ

But since z(σ) − uσ ∈ I, this immediately follows.

Remark. This same proof will work for an Azumaya algebra (the case where F
is a commutative ring).

This becomes simpler for the case that L/F is a cyclic extension, say A =
(L/F, σ, b). In this case, choosing c to be the standard 2-cocycle:

c(σi, σj) =

{
1 i + j < n

b i + j ≥ n

If z ∈ Spc(R), then z is determined by its value on σ, and z(σ) must be an
element of (L⊗R) with “σ-norm” equal to b, and conversely it is easy to check
that such an element will determine an element of Spc(R). With this in mind,
we will write [NL/F = b] for the functor Spc. By the above we may write (up
to natural isomorphism)

[NL/F = b](R) = {x ∈ L ⊗ R|xτ(x) · · · τm−1(x) = b} (1)

and for a homomorphism f : R → S, we have:

[NL/F = b](f)(x) = (idL ⊗ f)(x)

and by proposition 3, this is represented by an open subvariety of V (A).

2.3 Group algebra computations

For convenience of notation, since we will be dealing often with certain elements
of the group algebra R = ZG, we define for γ ∈ G, and j a positive integer

N j
γ = 1 + γ + γ2 + . . . + γj−1
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which we will call the j’th partial norm of γ.
These satisfy the following useful identity which can be easily verified:

(N j
γ)(N i

γj ) = N ij
γ

where γ is an element of G.
Now, suppose that u is an element in a arbitrary F-algebra B, and E′ is a
subfield of B such that for all x ∈ E′, ux = γ(x)u for γ ∈ AutF (E′). Then we
have the identity:




i−1∑

k=0




k∏

j=1

γi−j(x)


 ui−k−1


 (x − u) = γi−1(x)γi−2(x) · · · γ(x)x − ui

(where we consider the empty product in the case k = 0 to equal 1).
If we consider the group algebra Z 〈γ〉 to act on E′, then in the above notation,
there is an element a ∈ B such that

a(x − u) = N i
γx − ui. (2)

2.4 Galois monomial maps

As in (1), let [NE/L = b] be the functor representing elements of norm b. Recall,
that for a commutative F -algebra R, x ∈ [NE/L](R) means that x ∈ E ⊗ R

with σ-norm equal to bk ⊗ 1 ∈ L ⊗ R),

Definition 4. A Galois monomial in σ is an element of the group algebra
Z 〈σ〉.
Suppose P is a Galois monomial in σ. Let ε : Z 〈σ〉 −→ Z be the augmentation
map defined by mapping all group elements to 1. Then if we set l = ε(P ), for
every integer k, and every commutative F -algebra R, P induces a map of sets:

P : [NE/L = bk](R) → [NE/L = bkl](R)

via for x ∈ [NE/L = bk](R), if P =
p−1∑
i=0

niσ
i,

P (x) = xn0+n1σ+n2σ2+···+np−1σp−1 def
=

p−1∏

i=0

σi(xni).

We refer to this as the Galois monomial map induced by P .

Lemma 2. Let P be a Galois monomial as above with ε(P ) = l. Then the maps
induced by P fit together to give a natural transformation

[NE/L = bk] → [NE/L = bkl]

Proof. This is a routine check.

We will refer to the induced natural transformation above also by the letter P .
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3 Proof of the semidirect product theorem

We begin by fixing notation. Let A be a central simple semidirect product
algebra of degree n as in the statement of theorem 1, and fix K/F maximal
separable in A so that we have the following diagram of fields:

E

L K

F

¡¡
σ @@

τ

@@τ
¡¡

Now, as was shown in section 2.2, since AL is a cyclic algebra, the functor
[NE/L = b] is represented by an open subvariety of V (AL). The idea of the
proving theorem 1 will be to construct rational maps of Severi-Brauer varieties
by constructing natural transformations between the corresponding functors.
By the lemma from the previous section, one way to construct these natural
transformations is via Galois monomial maps.
Since the functor [NE/L = br] is represented by an open subvariety of V (Ar

L), a

Galois monomial P with ε(P ) = l yields an L-rational map V (Ak
L) → V (Akl

L ).
Our goal will be to determine when such a map induces an F -rational map
V (Ak) → V (Akl). To understand when this will happen, we first remark that
[NE/L = bk] can be written as Uk ×F L where Uk is the open subfunctor of

V (Ak) described in proposition 3, section 2.1. By proposition 2, section 2.1,

this will happen when when the τ actions on U
L/F
k and U

L/F
kl commute with

the natural transformation induced by P .

Remark. Since U
L/F
k (R) is the same as

(
Uk×F L

)
(R⊗L) = [NE/L = bk](R⊗L),

we will abuse notation and write [NE/L = bk] in place of U
L/F
k . This means

that for an F -algebra R, the notation x ∈ [NE/L = bk](R) means x ∈ R ⊗ E

has norm 1 ⊗ bk ∈ R ⊗ L.

In the notation above, we now need to examine when the action of τ on [NE/L =

bk] and [NE/L = bkl] commute with a given monomial P . We will proceed now
to describe the actions of τ , and then to translate these into actions on the
“norm set” functors, which will let us answer our question.

3.1 The Action of τ

We recall the notation of section 2. For an F -algebra C, we define the action
ιC on C ⊗ L by ιC(τ) = id ⊗ τ .

Lemma 3. Let B = C ⊗ L, where C is a central simple F -algebra of degree n.
If α is an arbitrary τ -semilinear action on B, then there is an isomorphism
(B,α) ∼= (B, ιC).
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Proof. Let D = Bα. Then by descent, we have an isomorphism (D ⊗ L, ιD) ∼=
(B,α)
Since m = [L : F ] is relatively prime to n = deg(B), the restriction map of
Brauer groups:

Brn(F )
resL/F−→ Brn(L)

is injective. Therefore, since both D and C restrict to the same element, they
are F -isomorphic. We can therefore write D ∼= C, and again by descent we
get an isomorphism of (D ⊗ L, ιD) ∼= (C ⊗ L, ιC). Combining this with the
isomorphism (D ⊗ L, ιD) ∼= (B,α), we have an isomorphism (C ⊗ L, ιC) ∼=
(B,α).

Corollary 3. Let B be a central simple L-algebra of degree n, α, β τ -
semilinear actions on B. Then (B,α) ∼= (B, β).

Proof. If B has a semilinear action α, we may write B ∼= C ⊗ L by descent,
where C is defined to the the invariants of B under the action induced by α.
Therefore the result follows directly from the lemma above.

Therefore, to understand the action of τ on AL via 1⊗ τ up to an isomorphism
of pairs, we need only define any τ -semilinear action on AL.

3.1.1 An Action of τ on AL

Since the algebra AL has a maximal subfield E which is cyclic over L, we may
write AL = (E, σ, b) for some element b ∈ L. Our goal in this section will be
to define a semilinear action of τ on AL.
Borrowing some of the ideas of Rowen and Saltman ([RS96]), we first investigate
the action of τ on b ∈ L. We first note that since A is an F -algebra, that if we
consider the algebra τAL, then this is isomorphic to AL by the map idA ⊗ τ .
On the other hand, one may also check that there is an isomorphism

τAL = τ (E, σ, b) → (E, σr, τ(b))

via E
τ→ E and u → u

and extending to make a homomorphism. Consequently, we have an isomor-
phism of central simple algebras (E, σ, b) ∼= (E, σr, τ(b)). In addition, there is
also an isomorphism (E, σ, b) ∼= (E, σr, br) ([Pie82] p.277 Cor.a), which means
(E, σr, br) ∼= (E, σr, τ(b)). This implies τ(b) = abr where a = Nσr (x) = Nσ(x)
for some x ∈ E∗ ([Pie82] p.279 Prop.b).
Now to define an action of τ on AL, we must first extend the action to the
maximal subfield of AL which is of the form L(b1/n). This will be made more
tractable by choosing a different b.

Lemma 4. There exists b′ ∈ L such that (E, σ, b) ∼= (E, σ, b′) and such that
τ(b′) = λn(b′)r where λ ∈ L.
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Proof. In the case where F contains the n’th roots of unity, this follows directly
from [RS96], Lemma 1.2.
For the case where n = p is prime, We consider the exact sequence of Z/pZ[τ ]
modules:

0 → NE/L(E∗)

(L∗)p
→ L∗

(L∗)p

π→ L∗

NE/L(E∗)
→ 0

By Maschke’s theorem ([Pie82], p.51), Z/pZ[τ ] is a semisimple algebra and
hence every module is projective and every exact sequence splits. We may
therefore choose a splitting map φ : L∗

NE/L(E∗) → L∗

(L∗)p . Let b′ be a coset

representative for φ(bNE/L(E∗)). Since φ is a splitting, π(b(L∗)p) = π(b′(L∗)p)
implies π(b/b′(L∗)p) = 1 which means that b and b′ differ by a norm and so
(E, σ, b) ∼= (E, σ, b′). Further, since φ is a τ -morphism,

τ(b′)(L∗)p = τ(φ(b)(L∗)p) = φ(τ(b)NE/L(E∗)) =

φ(abrNE/L(L∗)) = φ(brNE/L(E∗)) = (b′)r(L∗)p

This gives us τ(b′) = λp(b′)r for some λ ∈ L as desired.

Without loss of generality, we now substitute b′ for b and assume that τ(b) =
λnbr.
Now consider the field L(β), where β is defined to be a root of the polynomial
xn − b. We want to show that we can extend the action of τ to an order m au-
tomorphism of L(β)/F . To this effect we first define an map τ ′ : L(β) → L(β),
where τ ′|L = τ and τ ′(β) = λβr. One may verify this defines an automorphism
by considering L(β) = L[x]/(xn − b) and noting that τ ′ preserves the ideal
(xn − b).

Lemma 5. We may choose λ above so that τ ′ has order m in Aut(L(β)).

Proof. Since by definition τ ′|L = τ , we have (τ ′)m ∈ Aut(L(β)/L). We thereby
find that ord(τ ′)|mn, ord(τ) = m|ord(τ ′). Therefore we can write ord(τ ′) =
km, k|n, and set γ = (τ ′)k and M = L(β)γ . Since [M : F ] = n, [L : F ] = m
have relatively prime degrees and are both subfields of L(β), which has degree
nm, we find that L(β) = L ⊗F M . Hence we may define τ ′′ = τ ⊗ idM ∈
Aut(L(β)), which is an order m automorphism. But now

τ ′′|L = τ |L = τ ′|L
and τ(b) = λnbr =⇒ τ ′′(β) = ρλβr where ρ is an n’th root of unity. But we
see τ ′′ is defined in the same way as τ ′ except for using ρλ instead of λ as a
n’th root of unity. Hence, by changing our choice of λ to ρλ we obtain an order
m automorphism.

For simplicity of notation we denote the extension τ ′ of τ to L(β) also by τ .
By the above description, we have

τβ = λβr
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where λ ∈ L.
We now use this information to define an action of τ on A. Since AL = (E, σ, b)
can be thought of as the free noncommutative F -algebra generated by E and u
modulo the relations ux − σ(x)u = 0 and un = b, giving an F -homomorphism
AL → B is equivalent to giving an F -map φ : L → B and choosing and
element φ(u) ∈ B such that φ(u)φ(x)−φ(σ(x))φ(u) = 0 and φ(u)n −φ(b) = 0.
Consequently, since any F -endomorphism of AL is an automorphism (since AL

is finite dimensional and simple), to define an action of τ on AL, we need only
define τ on E and on u and then check that our relation is preserved.
To begin, we define τ |E : E → E ⊂ AL to be the original Galois action, and
τ(u) = λur. Checking our relations we have:

τ(u)τ(x) = λurτ(x) = λσrτ(x)ur = λτσ(x)ur = τσ(x)λur

= τ(σ(x))τ(u)

and
τ(un) = λnurn = λnbr = τ(b)

Since L(u) ∼= L(β) where L(β) is as above, we know that τm(u) = u. Since
τ has order m on E, together this means that τ as defined above is an order
m semilinear automorphism of AL. We will refer to this action as α : 〈τ〉 →
AutF (AL).

3.1.2 An Action of τ on Al
L

We define Al
L ⊂ ⊗lAL =

l - times︷ ︸︸ ︷
AL ⊗L . . . ⊗L AL to be the algebra generated by

E⊗L1⊗L. . .⊗L1 (which we will identify with just E), and v = u⊗Lu⊗L. . .⊗Lu.

Lemma 6. [Al
L] = [AL]l, where brackets denote classes in Br(L)

Proof. Since AL
∼= (E, σ, b), we simply need to verify that Al

L is just the symbol

algebra (E, σ, bl). But this follows because we clearly have Al
L =

p∐
i=0

Evi, and

we need only check the two defining identities:

vp = (u ⊗ u ⊗ . . . ⊗ u)p = up ⊗ up ⊗ . . . ⊗ up

= b ⊗ b ⊗ . . . ⊗ b

= bl ⊗ 1 ⊗ . . . ⊗ 1

and

vx = (u ⊗ u ⊗ . . . ⊗ u)(x ⊗ 1 ⊗ . . . ⊗ 1)

= (ux ⊗ u ⊗ . . . ⊗ u)

= (σ(x)u ⊗ u ⊗ . . . ⊗ u)

= (σ(x) ⊗ 1 ⊗ . . . ⊗ 1)(u ⊗ u ⊗ . . . ⊗ u)

= σ(x)v
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Next we note that we have a τ -semilinear action on ⊗lAL which is induced
(diagonally) by the τ action on AL, and further, since it is easy to establish
that:

τv = λlvr

and the action of τ is the usual one on E, we know that Al
L is preserved by τ

and hence we have an induced action on Al
L. We call this action αl

3.1.3 τ-Action on Norm Sets

Our goal now will be to describe an action on the norm sets which is com-
patible with the above τ -action on ideals. The following lemma assures us
that since the actions on the algebras AL and Al

L given above are isomorphic
to the standard actions, they also induce isomorphic actions on V (A)L/F and
V (Al)L/F respectively. Therefore, we may proceed to find actions on the norm
sets compatible with the τ actions given above.

Let (B, β) be an algebra with τ -semilinear action such that B central simple
over L. Then by corollary 2, we have an induced action on V (B)(R ⊗ L) via
for I ∈ V (B)(R ⊗ L), thinking of I ⊂ B ⊗L (L ⊗ R)

β(τ)I = {β(τ)(x)|x ∈ I}

where β(τ) is acting here on B ⊗L (L ⊗ R) = B ⊗ R as β(τ) ⊗ 1.

Lemma 7. If f : (B, β) → (B′, β′) is an isomorphism, then the induced iso-
morphism V (B)( ) → V (B′)( ) commutes with the actions of τ

Proof. This is a simple check:

f(β(τ)(I)) = f({β(τ)(x)|x ∈ I}) = {f(β(τ)(x))|x ∈ I} =

{β′(τ)(f(x))|x ∈ I} = β′(τ)(f(I))

As was shown in the previous section, we know τ acts on AL and hence also
on AL ⊗ R. This translates to τ acting on E ⊗ R via the natural action on E,
and by τu = λur (where we abuse notation by writing u for u⊗ 1). Therefore,
if x−u ∈ I then τx− τu ∈ τI, or in other words, τx/λ−ur ∈ τI. To translate
this into an action on norm sets, we recall that our birational identification
between V (AL) and [NE/L = x] is via I ∈ V (AL)E/L(R) being identified with
I ∩ (ER − u). Therefore to find our τ action on norm sets, we take an ideal I
with a given intersection x − u ∈ ER − u and find the intersection of the new
ideal τ(I).
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Since GCD(r, n) = 1 (because rm ≡n 1), we may select a positive integer t so
that rt = sn + 1. By equation 2 in 2.3, there is an a ∈ A such that

a(τx/λ − ur) = N t
σr (τx/λ) − urt

= N t
σr (τx/λ) − bsu

= τN t
σ(x)/N t

σr (λ) − bsu

= τN t
σ(x)/λt − bsu

where the last step follows from the fact that λ ∈ L = Eσ.

Now, since τI is a left ideal containing τx/λ − ur, it must also contain
τN t

σ(x)/λtbs − u. Therefore, τN t
σ(x)/λtbs − u ∈ τI ∩ (E − u). This tells

us precisely that τI corresponds to τN t
σ(x)/λtbs, and so we get an action of τ

on [NE/L = b] via

x
τ7→ τN t

σ(x)/λtbs

which makes the following diagram commute:

V (A)E/L V (A)E/L

[NE/L = b] [NE/L = b]

-τ

6

-τ

6

Similarly, using the fact that τ acts on Al via v 7→ λlvr, vp = bl, and v induces
σ on E, we get that τ ’s action on V (Al) yields an action on [NE/L = bl] via:

x
τ7→ τN t

σ(x)/λltbls.

Now, suppose P ∈ Z 〈σ〉, ε(P ) = l. As P can be considered as a map from
[NE/L = bk] to [NE/L = bkl], it is acted upon by τ via τ •P = τ ◦P ◦ τ−1. On
the other hand, there is a natural action of τ on the group algebra Z 〈σ〉 given

by conjugation by τ , i.e. σ
τ7→ σr. We claim that these two actions coincide.

Thinking of P as an element of the group algebra ZG, we write τPτ−1 as the
action of τ by conjugation (as a group element).

Proposition 4. τ • P = τPτ−1

Proof. We aim to show τ ◦P = τPτ−1◦τ . To start choose x ∈ [NE/L = bk](R).

Since P (x) ∈ [NE/L = bkl](R), we have

τ ◦ P (x) = τN t
σ(P (x))/λkltbkls

= τPN t
σ(x)/λkltbkls
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On the other hand,

τPτ−1 ◦ τ(x) = τPτ−1(τN t
σ(x)/λktbks)

= τPN t
σ(x)/τPτ−1(λktbks)

= τPN t
σ(x)/λkltbkls

= τ ◦ P (x)

where the second to last step follows from the fact that τPτ−1 is a monomial
in σ, and that λ and b are σ-fixed. To finish, we see that by composing on the
right by the map τ , we get

τPτ−1 = τ ◦ P ◦ τ−1 = τ • P

as desired.

Corollary 4. If P ∈ Z 〈σ〉τ then the induced map on norm sets

P : [NE/L = bk] → [NE/L = bkl]

commutes with the action of τ .

3.2 Proof of the Main Theorem

We recall our earlier definitions of ε, ε, and S.

Lemma 8. Let P1, P2 ∈ Z 〈σ〉, ε(P ) = li. Then for any k ∈ Z, P1P2 induces a
map

P1P2 : [NE/L = bk] → [NE/L = bkl1l2 ]

which is the composition of the maps

P2 : [NE/L = bk] → [NE/L = bkl2 ]

and P1 : [NE/L = bkl2 ] → [NE/L = bkl1l2 ]

Proof. This just comes from the fact that the group algebra acts on E∗ with
composition being identified with multiplication in the group algebra.

Definition 5. For i, k ∈ Z, we define a natural transformation (morphism)

φk : [NE/L = bi] → [NE/L = bi+nk]

by the rule: for x ∈ [N = bi](R), φj(x) = xbk.

Note that we abuse notation here, and don’t specify the domain or range of
φj in the notation. In any case, one may easily verify that φj ◦ φk = φj+k. In
particular, these maps are all invertible and hence are birational morphisms.

Lemma 9. φk commutes with the action of τ .
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Proof. We consider φk : [NE/L = bi] → [NE/L = bi+nk]. Using the formulas
for the τ actions described earlier, we have:

τ(φk(x)) = τ(xbk)

=
τN t

σ(bkx)

λ(i+nk)tb(i+nk)s

=
τN t

σ(bk)τN t
σ(x)

λitbisλnktbnks

=
τ(btk)τN t

σ(x)

λitbisλnktbnks

=
(λnbr)tkτN t

σ(x)

λitbisλnktbnks

=
λnkt(bsn+1)kτN t

σ(x)

λitbisλnktbnks

=
bkτN t

σ(x)

λitbis

= bkτ(x)

= φk(τ(x))

Lemma 10. For P any Galois monomial in σ, Pφk = φε(P )kP

Proof. If P =
n−1∑
i=0

niσ
i then we simply compute:

P ◦ φk(x) = P (bkx) =

n−1∏

i=0

(σi(bkx))ni =

n−1∏

i=0

(σi(bk))ni(σi(x))ni

=

n−1∏

i=0

(bk)ni

n−1∏

i=0

(σi(x))ni = (bk)
∑

niP (x) = bε(P )kP (x) = φε(P )kP (x)

We now prove the main theorem:

Theorem 2. If l ∈ Z such that l ∈ ε((S∗)τ ) then there is a birational map

V (A) → V (Al)

Proof. We note first that Z 〈σ〉τ → Sτ is surjective, since if we consider the
short exact sequence:

0 → NZ → Z 〈σ〉 → S → 0
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We get a long exact sequence in group cohomology

NZ → Z 〈σ〉τ → Sτ → H1(τ,NZ)

and since as a τ -module, NZ ∼= Z with trivial action, we have

H1(τ,NZ) = Hom(〈τ〉 , Z) = Hom(Z/mZ, Z) = 0

giving us a surjective map Z 〈σ〉τ → Sτ as claimed.
Now, choosing α ∈ (S∗)τ with ε(α) = l, we can find α̃ ∈ Z 〈σ〉τ mapping to α.
If ε(α̃) = l′, then by the commutativity of the diagram

0 ZN Z 〈σ〉 S 0

Z Z/nZ

- - -

?

ε

-

?

ε

-

(3)

we have l′ = l and so l′ = l + kn for some k ∈ Z. This means that α̃ : [NE/L =

b] → [NE/L = bl+nk], which commutes with the action of τ by 4. Composing
this with the map φ−k gives us a natural transformation φ−k ◦ α̃ : [NE/L =

b] → [NE/L = bl] which commutes with τ . We will show that this actually
induces an natural isomorphism.
Next pick β ∈ (S∗)τ such that αβ = 1 ∈ S, and choose β̃ ∈ Z 〈σ〉τ mapping to

β, and let
(
ε(β̃)

)
l = 1 + ns. We now have β̃ : [NE/L = bl] → [NE/L = b1+ns]

and composing with φ−s yields a natural transformation φ−s ◦ β̃ : [NE/L =

bl] → [NE/L = b] which commutes with τ .

Now, we compose φ−k ◦ α̃ with φ−s ◦ β̃, which by construction is a natural

transformation [NE/L = b] → [NE/L = b]. If we write α̃β̃ = 1+ rN , then using
10, we compute:

φ−s ◦ β̃ ◦ φ−k ◦ α̃ = φ−sφ−ε(β̃)kβ̃α̃ = φ−(s+ε(β̃)k)(1 + rN)

But 1 + rN : [NE/L = b] → [NE/L = b1+rn] is simply the map φr, so

φ−s ◦ β̃ ◦ φ−k ◦ α̃ = φ−(s+ε(β̃)k)φr = φr−s−ε(β̃)k

which is clearly an isomorphism (one can check in fact that r − s − ε(β̃)k = 0
giving that the right hand side above is the identity). This argument shows
that φ−k ◦ α̃ : [NE/L = b] → [NE/L = bl] is an also an isomorphism which
therefore induces a birational map

V (A) → V (Al).
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Abstract. We study spectral and scattering properties of the Lapla-
cian H(σ) = −∆ in L2(R2

+) corresponding to the boundary condition
∂u
∂ν + σu = 0 for a wide class of periodic functions σ. The Floquet
decomposition leads to problems on an unbounded cell which are an-
alyzed in detail. We prove that the wave operators W±(H(σ),H(0))
exist.
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Introduction

0.1 Setting of the problem

The present paper studies the Laplacian

H(σ)u = −∆u on R2
+ (0.1)

on the halfplane together with a boundary condition of the third type

∂u

∂ν
+ σu = 0 on R × {0}, (0.2)

where ν denotes the exterior unit normal and where the function σ : R → R is
assumed to be 2π-periodic. Moreover, let

σ ∈ Lq,loc(R) for some q > 1.
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Under this condition H(σ) can be defined as a self-adjoint operator in L2(R2
+)

by means of the closed and lower semibounded quadratic form

∫

R2
+

|∇u(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1, u ∈ H1(R2
+).

This is the first part of a paper where we analyze the spectrum of H(σ) and
develop a scattering theory viewing H(σ) as a (rather singular) perturbation of
H(0), the Neumann Laplacian on R2

+. (For the abstract mathematical scatter-
ing theory see, e.g., [Ya].)
The main result of the present paper is that the wave operators

W
(σ)
± := W±(H(σ),H(0))

exist.

0.2 Physical interpretation

In the physical interpretation, H(σ) is the Hamiltonian of a two-dimensional
quantum-mechanical system which consists of a particle in the upper halfplane
and a crystal that fills the lower halfplane. The particle can not enter the
crystal but interacts non-trivially with the surface of the crystal, described by
the function σ. The existence of the wave operators means that every particle

which is described by a state u ∈ R
(
W

(σ)
±

)
behaves like a free particle in the

distant future and the distant past. We emphasize that there may also exist

particles which are described by a state u ∈ R
(
W

(σ)
±

)⊥
. These are surface

states which propagate along the boundary and decay exponentially away from
the boundary. Such surface states will be investigated in the second part [FrSh]
of the paper.

0.3 Outline of the paper

Let us explain some of the mathematical ideas involved. A precise definition
of the operator H(σ) in terms of a quadratic form is given in Subsection 1.4.
By means of the Bloch-Floquet theory we represent H(σ) in Subsection 2.2 as
a direct integral ∫ 1/2

−1/2

⊕
H(σ)(k) dk

with fiber operators H(σ)(k) acting in L2(Π) where Π := (−π, π) × R+ is the
halfstrip. Functions in the domain of H(σ)(k) satisfy the third type condition
(0.2) on (−π, π)×{0} (at least if σ is smooth), so H(σ)(k) differs from H(0)(k)
by a relatively compact form perturbation. This makes a rather detailed anal-
ysis of the operators H(σ)(k) possible.
Our approach leans on a quadratic form version of the resolvent identity which
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The Laplacian with a periodic boundary condition 549

we present in Subsection 3.2 following [Ya]. A similar approach has been suc-
cessfully applied to study periodic Schrödinger operators (cf. [BShSu]). In
our case it allows to show that the difference of resolvents of H(σ)(k) and
H(0)(k) belongs to the trace class, and from the Birman-Krĕın theorem (which
is sometimes called Birman-Kuroda theorem, unaware of [BKr]) we deduce in
Subsection 3.4 the existence and completeness of the wave operators on the
halfstrip. Using the same representation we can prove a limiting absorption
principle in Subsection 3.6, which implies the absence of singular continuous
spectrum.

The existence of the wave operators W
(σ)
± on the halfplane is derived from the

existence of the wave operators on the halfstrip.
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1 Setting of the problem. The main result

1.1 Notation

We introduce the halfplane

R2
+ := {x = (x1, x2) ∈ R2 : x2 > 0} = R × R+,

and the halfstrip

Π := {x = (x1, x2) ∈ R2
+ : −π < x1 < π, x2 > 0} = (−π, π) × R+,

where R+ := (0,+∞). Moreover, we need the lattice 2πZ. Unless stated
otherwise, periodicity conditions are understood with respect to this lattice.
We think of the corresponding torus T := R/2πZ as the interval [−π, π] with
endpoints identified.
We use the notation D = (D1,D2) = −i∇ in R2.
For an open set Ω ⊂ Rd, d = 1, 2, the index in the notation of the norm
‖.‖L2(Ω) is usually dropped. The space L2(T) may be formally identified with
L2(−π, π). We define the (discrete) Fourier transformation F : L2(T) → l2(Z)
by

(Ff)n = f̂n :=
1√
2π

∫ π

−π

f(x1)e
−inx1 dx1. n ∈ Z,
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550 Rupert L. Frank

Next, for an open set Ω ⊂ Rd, d = 1, 2, Hs(Ω) is the Sobolev space of order
s ∈ R (with integrability index 2). By Hs(T) we denote the closure of C∞(T)
in Hs(−π, π). Here C∞(T) is the space of functions in C∞(−π, π) which can be
extended 2π-periodically to functions in C∞(R). The space Hs(T) is endowed
with the norm

‖f‖2
Hs(T) :=

∑

n∈Z

(1 + n2)s|f̂n|2, f ∈ Hs(T).

By H̃s(Π) we denote the closure of C̃∞(Π)∩Hs(Π) in Hs(Π). Here C̃∞(Π) is
the space of functions in C∞(Π) which can be extended 2π-periodically with
respect to x1 to functions in C∞(R2

+).
Statements and formulae which contain the double index ”±” are understood
as two independent assertions.

1.2 Scattering theory

Here we summarize the definitions and basic results on scattering theory. For
proofs we refer to [Ya].
Let H0, H be self-adjoint operators in a Hilbert space H. The projection onto
the absolutely continuous subspace of H0 and the unitary group of H0 are

denoted by P0 and U0(t) := exp(−itH0), respectively. We put H
(ac)
0 := R(P0).

For the similar objects related to the operator H we omit the index ”0”.
In case of existence, the limit

W±(H,H0) := s − lim
t→±∞

U(−t)U0(t)P0

is called the wave operator for the pair H, H0 and the sign ±. Thus the elements

u = W±(H,H0)u
±
0 ∈ R(W±(H,H0)), u±

0 ∈ H
(ac)
0 , satisfy

lim
t→±∞

‖U(t)u − U0(t)u
±
0 ‖ = 0.

The wave operators are partial isometries with initial subspace H
(ac)
0 . One

easily establishes the intertwining property

W±(H,H0)H0 = H W±(H,H0).

It follows that the subspace R(W±(H,H0)) and its orthogonal complement are
invariant under H and that the wave operator provides a unitary equivalence
between the part of H on R(W±(H,H0)) and the absolutely continuous part
of H0. In particular,

R(W±(H,H0)) ⊂ H(ac). (1.1)

The wave operator W±(H,H0) is said to be complete if equality holds in (1.1).
It is easy to see that the completeness of W±(H,H0) is equivalent to the ex-
istence of W±(H0,H). Thus, if the wave operator W±(H,H0) exists and is
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The Laplacian with a periodic boundary condition 551

complete, then the absolutely continuous parts of H0 and H are unitarily equiv-
alent.
Let us conclude this brief overview with a convenient sufficient condition for
the existence and completeness of the wave operators due to Birman and Krĕın
(cf. [BKr]).

Proposition 1.1. Let H0, H be self-adjoint operators on a Hilbert space H

such that (H − zI)−1 − (H0 − zI)−1 belongs to the trace class for some z ∈
ρ(H0) ∩ ρ(H). Then the wave operators W±(H,H0) exist and are complete.

1.3 Multiplication on the boundary

Here we present auxiliary statements related to Sobolev embedding theorems.
Let σ be a periodic function satisfying

σ ∈ Lq(T) for some q > 1. (1.2)

It follows from the compactness of the embedding H1/2(−π, π) ⊂ L2q′(−π, π)
(with 1

q + 1
q′ = 1) that the form

∫ π

−π
|σ(x1)||f(x1)|2 dx1, f ∈ H1/2(−π, π), is

compact in H1/2(−π, π). This implies

Lemma 1.2. Assume (1.2) and let ε > 0. Then there exists a constant
C1(ε, σ) > 0 such that

∫ π

−π

|σ(x1)||f(x1)|2 dx1 ≤ ε‖f‖2
H1/2(−π,π) +C1(ε, σ)‖f‖2, f ∈ H1/2(−π, π).

Now let us pass to the situation on the halfstrip and on the halfplane. The
trace operator u 7→ u(., 0) is bounded from H1(Π) to H1/2(−π, π). Hence the
form

∫ π

−π
|σ(x1)||u(x1, 0)|2 dx1, u ∈ H1(Π), is compact in H1(Π) and we obtain

Lemma 1.3. Assume (1.2) and let ε > 0. Then there exists a constant
C2(ε, σ) > 0 such that

∫ π

−π

|σ(x1)||u(x1, 0)|2 dx1 ≤ ε‖u‖2
H1(Π) + C2(ε, σ)‖u‖2, u ∈ H1(Π).

Now let u ∈ H1(R2
+). For each n ∈ Z we apply Lemma 1.3 to the function

Π 3 x 7→ u(x1 + 2πn, x2) and then sum over all n ∈ Z. This yields

Lemma 1.4. Assume (1.2) and let ε > 0. Then there exists a constant
C2(ε, σ) > 0 such that

∫

R

|σ(x1)||u(x1, 0)|2 dx1 ≤ ε‖u‖2
H1(R2

+) + C2(ε, σ)‖u‖2, u ∈ H1(R2
+).
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552 Rupert L. Frank

Our treatment in Section 3 needs a more precise, quantitative result on the
embedding H1/2(−π, π) ⊂ L2q′(−π, π). We begin by recalling the definition of
the weak lp-spaces

lp,w(Z) = {(αn)n∈Z : sup
t>0

tρ1/p
α (t) < ∞}, 0 < p < ∞,

where ρα(t) := ]{n ∈ Z : |αn| > t} for t > 0. lp,w(N) is defined in a similar
way. Further, recall (cf. Section 11.6 in [BS]) that Σp(H1,H2), 0 < p < ∞, is
the class of compact operators K from a Hilbert space H1 to a Hilbert space H2

for which (sn(K))n∈N ∈ lp,w(N), where (sn(K))n∈N is the sequence of singular
numbers of K. One puts Σp(H1) := Σp(H1,H1). The dependence on H1, H2 is
usually dropped in the notation if this does not lead to confusion.
The connection with the well-known Schatten class Sp of order p (which con-
sists of compact operators K for which (sn(K))n∈N ∈ lp(N)) can be seen from
the inclusions

Σr ⊂ Sp ⊂ Σp, r < p.

We will often use the fact that K1 ∈ Σp1
, K2 ∈ Σp2

implies

K1K2 ∈ Σ( 1
p1

+ 1
p2

)−1 . (1.3)

For a more general statement as well as for the proof of the following Cwikel-
type estimate we refer to Theorem 4.8 in [BKaS].

Proposition 1.5. Let β ∈ Lp(T) and α ∈ lp,w(Z) for some p > 2. Then
βF∗α ∈ Σp(l2(Z), L2(T)).

Let us consider the sequence α given by

αn := (1 + n2)−1/4, n ∈ Z, (1.4)

and a function β as above. We write βF∗α =
(
βF∗α2/p

)
α(p−2)/p. Clearly,

the operator of multiplication by α(p−2)/p belongs to Σ2p/(p−2)(l2(Z)), and by

Proposition 1.5 βF∗α2/p ∈ Σp(l2(Z), L2(T)). Thus, taking into account (1.3),
we obtain

Corollary 1.6. Let β ∈ Lp(T) for some p > 2 and α be given by (1.4). Then
βF∗α ∈ Σ2(l2(Z), L2(T)).

This is the desired embedding result. Note that F∗αF maps L2(T) unitarily
onto H1/2(T).

1.4 Definition of the operators H(σ) on the halfplane

Let σ be a real-valued periodic function satisfying (1.2). In the Hilbert space
L2(R2

+) we consider the quadratic form

D[h(σ)] := H1(R2
+),

h(σ)[u] :=

∫

R2
+

|Du(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1.
(1.5)

Documenta Mathematica 8 (2003) 547–565
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According to Lemma 1.4 the form h(σ) is lower semibounded and closed, so it
generates a self-adjoint operator which will be denoted by H(σ). By construc-
tion

(H(σ)u, v) = h(σ)[u, v], u ∈ D(H(σ)), v ∈ H1(R2
+),

so it follows that the distributional Laplacian ∆u of u ∈ D(H(σ)) belongs to
L2(R2

+) and that

H(σ)u = −∆u.

The case σ = 0 corresponds to the Neumann Laplacian on the halfplane,
whereas the case σ 6= 0 implements a (generalized) boundary condition of the
third type. More precisely, we have

Remark 1.7. Under the condition that σ is absolutely continuous with σ′ ∈
Lq(T) for some q > 1 it can be proved that

D(H(σ)) =

{
u ∈ H2(R2

+) : − ∂u

∂x2
+ σu = 0 on R × {0}

}
.

1.5 Main result

First we remark that the spectrum of the ”unperturbed” operator H(0) coin-
cides with [0,+∞) and is purely absolutely continuous of infinite multiplicity.
This can be seen easily by applying a Fourier transformation with respect to
the variable x1 and a Fourier cosine transformation with respect to the variable
x2.
We turn now to the ”perturbed” operator H(σ). We have recalled the abstract
definition of the wave operators in Subsection 1.2. In case of existence we will
use the notation

W
(σ)
± := W±(H(σ),H(0)).

The main result of the present paper is

Theorem 1.8. Assume that σ satisfies (1.2). Then the wave operators W
(σ)
±

exist and satisfy R(W
(σ)
+ ) = R(W

(σ)
− ).

We note that the equality R(W
(σ)
+ ) = R(W

(σ)
− ) implies the unitarity of the

scattering matrix.

It follows from Theorem 1.8 that the part of H(σ) on R(W
(σ)
± ) is unitarily

equivalent to H(0), and so σac

(
H(σ)

)
⊃ [0,+∞).

In the second part [FrSh] we supplement this theorem with the following re-
sults. The operator H(σ) has purely absolutely continuous spectrum. In general,
σ

(
H(σ)

)
may contain (apart from [0 + ∞)) additional bands, so the wave op-

erators W
(σ)
± may be not complete. The spectral subspaces corresponding to

the additional bands of H(σ) are additional channels of scattering. However,
under the additional assumption

σ ≥ 0 a.e. (1.6)
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554 Rupert L. Frank

the wave operators W
(σ)
± turn out to be complete and unitary.

Remark 1.9. The statement of Theorem 1.8 holds with obvious changes when
the role of the comparison operator H0 is played by the Dirichlet Laplacian
on the halfplane or the Laplacian on the whole plane. This follows easily
from the chain rule for wave operators and the fact, that the wave operators
W±(H(0),H0) exist and are complete. Indeed, they can be calculated easily.
(Clearly, if H0 is the Laplacian on the whole plane one has to use an identifi-
cation operator.)

Remark 1.10. A time-dependent characterization of the range of the wave oper-
ators and its orthogonal complement can be established by standard methods
(see [DaSi], [Sa]): With the notation U (σ)(t) := exp(−itH(σ)) for t ∈ R it
follows that

R(W
(σ)
± ) = {u ∈ L2(R2

+) : lim
t→±∞

∫

R×(0,a)

|U (σ)(t)u(x)|2 dx = 0, a ∈ R+},

R(W
(σ)
± )⊥ = {u ∈ L2(R2

+) : lim
a→+∞

sup
t∈R

∫

R×(a,+∞)

|U (σ)(t)u(x)|2 dx = 0}.

Thus, the additional channels of scattering correspond to ”surface states”, i.e.,
states concentrated near the boundary for all time.

2 Direct integral decomposition

2.1 Definition of the operators H(σ)(k) on the halfstrip

Let σ be a real-valued periodic function satisfying (1.2) and let k ∈ [− 1
2 , 1

2 ]. In
the Hilbert space L2(Π) we consider the quadratic form

D[h(σ)(k)] := H̃1(Π),

h(σ)(k)[u] :=

∫

Π

(
|(D1 + k)u(x)|2 + |D2u(x)|2

)
dx +

∫ π

−π

σ(x1)|u(x1, 0)|2 dx1.

(2.1)

According to Lemma 1.3 the form h(σ)(k) is lower semibounded and closed, so
it generates a self-adjoint operator which will be denoted by H(σ)(k). Similarly
as above one finds

H(σ)u = (D1 + k)2u + D2
2u = −∆u + 2kD1u + k2u, u ∈ D(H(σ)).

In addition to the Neumann (if σ = 0) or third type (if σ 6= 0) boundary
condition at {x2 = 0} the functions in D(H(σ)) satisfy periodic boundary
conditions at {x1 = ±π}. A statement analogous to Remark 1.7 holds.
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2.2 Direct integral decomposition of the operator H(σ)

The operator H(σ) can be partially diagonalized by means of the Gelfand trans-
formation U . This operator is initially defined for u ∈ S(R2

+), the Schwartz
class on R2

+, by

(Uu)(k, x) :=
∑

n∈Z

e−ik(x1+2πn)u(x1 + 2πn, x2), k ∈ [− 1
2 , 1

2 ], x ∈ Π,

and extended by continuity to a unitary operator

U : L2(R2
+) →

∫ 1/2

−1/2

⊕L2(Π) dk.

Moreover, it turns out that u ∈ H1(R2
+) iff (Uu)(k, .) ∈ H̃1(Π) for a.e. k ∈

[− 1
2 , 1

2 ] and
∫ 1/2

−1/2
‖(Uu)(k, .)‖2

H1(Π) dk < ∞, and in this case

(UD1u)(k, .) = (D1 + k)(Uu)(k, .), (UD2u)(k, .) = D2(Uu)(k, .).

Concerning the multiplication on the boundary by a periodic function σ satis-
fying (1.2), one finds for u ∈ H1(R2

+)

∫ 1/2

−1/2

∫ π

−π

σ(x1)|(Uu)(k, x1, 0)|2 dx1 dk =

∫

R

σ(x1)|u(x1, 0)|2 dx1.

To summarize, the Gelfand transformation satisfies

U
(
D[h(σ)]

)
=

{
F ∈

∫ 1/2

−1/2

⊕L2(Π) dk : F (k) ∈ H̃1(Π) for a.e. k ∈ [− 1
2 , 1

2 ],

∫ 1/2

−1/2

∣∣∣h(σ)(k)[F (k)]
∣∣∣ dk < ∞

}
,

h(σ)[u] =

∫ 1/2

−1/2

h(σ)(k)[(Uu)(k, .)] dk, u ∈ H1(R2
+),

which implies

U H(σ) U∗ =

∫ 1/2

−1/2

⊕H(σ)(k) dk. (2.2)

This relation allows us to investigate the operator H(σ) by studying the fibers
H(σ)(k).

2.3 Main result for the operators H(σ)(k) on the halfstrip

In case of existence we will use the notation

W
(σ)
± (k) := W±(H(σ)(k),H(0)(k)), k ∈

[
− 1

2 , 1
2

]
.
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Theorem 2.1. Assume that σ satisfies (1.2) and let k ∈ [− 1
2 , 1

2 ]. Then the

wave operators W
(σ)
± (k) exist and are complete.

The spectrum of the ”unperturbed” operator H(0)(k) (see Subsection 3.1) co-
incides with [k2,+∞) and is purely absolutely continuous. By the remarks
in Subsection 1.2 Theorem 2.1 implies that the absolutely continuous part of
H(σ)(k) is unitarily equivalent to H(0)(k), in particular

σac

(
H(σ)(k)

)
= [k2,+∞).

Concerning the singular continuous spectrum of H(σ)(k) we prove

Theorem 2.2. Assume that σ satisfies (1.2) and let k ∈ [− 1
2 , 1

2 ]. Then

σsc

(
H(σ)(k)

)
= ∅.

The point spectrum of H(σ)(k) is investigated in the second part [FrSh]. We
prove there that σp

(
H(σ)(k)

)
consists of eigenvalues of finite multiplicities

which may accumulate at +∞ only. The situation of infinitely many (em-
bedded) eigenvalues does actually occur. The discrete eigenvalues of H(σ)(k)
produce bands in the spectrum of H(σ). In general, the same is true for the
embedded eigenvalues of H(σ)(k). However, under the additional assumption
(1.6) we prove σp

(
H(σ)(k)

)
= ∅, which implies the completeness and even

unitarity of the wave operators W
(σ)
± .

2.4 Reduction of Theorem 1.8 to Theorem 2.1

Assuming Theorem 2.1, the proof of Theorem 1.8 is easy.

Proof of Theorem 1.8. For t ∈ R, k ∈ [− 1
2 , 1

2 ] put U (σ)(t) := exp(−itH(σ))

and U (σ)(t, k) := exp(−itH(σ)(k)), and similarly with σ replaced by 0. The

wave operators W
(σ)
± (k) exist by Theorem 2.1 and are measurable with respect

to k, so
∫ 1/2

−1/2
⊕W

(σ)
± (k) dk is well defined. Moreover, by (2.2) together with

Theorem XIII.85 in [ReSi4] one has

U U (σ)(t)U∗ = exp(−itU H(σ) U∗) =

∫ 1/2

−1/2

⊕U (σ)(t, k) dk,

where U is the Gelfand transformation from Subsection 2.2, and similarly with
σ replaced by 0. It follows that for all u ∈ L2(R2

+)

∥∥∥∥∥U U (σ)(−t)U (0)(t)u −
(∫ 1/2

−1/2

⊕W
(σ)
± (k) dk

)
Uu

∥∥∥∥∥

2

=

=

∫ 1/2

−1/2

∥∥∥U (σ)(−t, k)U (0)(t, k) (Uu)(k, .) − W
(σ)
± (k) (Uu)(k, .)

∥∥∥
2

dk → 0

(t → ±∞)
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by Lebesgue’s theorem. This means that the strong limits of U (σ)(−t)U (0)(t)

for t → ±∞ exist and coincide with W
(σ)
± = U∗ (

∫ 1/2

−1/2
⊕W

(σ)
± (k) dk)U . In

particular, because of the completeness of W
(σ)
± (k),

R(W
(σ)
± ) = U∗

(∫ 1/2

−1/2

⊕R(P (σ)
ac (k)) dk

)
U .

3 The operators H(σ)(k) on the halfstrip

3.1 The unperturbed operator H(0)(k) on the halfstrip

We start our investigation by summarizing results on the ”unperturbed” oper-
ator H(0)(k).
Let k ∈ [− 1

2 , 1
2 ]. By separation of variables one easily finds that the spec-

trum of the operator H(0)(k) coincides with [k2,+∞), is purely absolutely
continuous and that the spectral multiplicity of λ ∈ [k2,+∞) is ]{n ∈ Z :
(n + k)2 ≤ λ}. Note that the spectral multiplicity changes at the ”threshold
points” (n + k)2, n ∈ Z.
It is also easy to verify that the resolvent

R(0)(z, k) :=
(
H(0)(k) − zI

)−1

, z ∈ ρ
(
H(0)(k)

)
= C \ [k2,+∞),

is an integral operator with kernel

r(0)(x, y; z, k) :=
1

4π

∑

n∈Z

ein(x1−y1)

βn(z, k)

(
e−βn(z,k) (x2+y2) + e−βn(z,k) |x2−y2|

)
,

x, y ∈ Π, x2 6= y2.

(3.1)

where
βn(z, k) :=

√
(n + k)2 − z, n ∈ Z, z ∈ C \ [k2,+∞). (3.2)

Here and in the following we choose the canonical branch of the square root on
C \ (−∞, 0] satisfying Re

√
. > 0.

Note that the RHS of (3.1) converges absolutely and uniformly on compact
subsets of {(x, y) ∈ Π × Π : x2 6= y2}.

3.2 A general approach to the inversion of a perturbed operator

To investigate the ”perturbed” operators H(σ)(k) we use a version of the resol-
vent identity. The ”classical” resolvent identity (H − zI)−1 − (H0 − zI)−1 =
−(H0 − zI)−1(H −H0)(H − zI)−1 involves the difference of H and H0, which
may be not well-defined if the operators are defined via quadratic forms. Here
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we present a version of the resolvent identity that works also in the quadratic
form case. The proof may be found in Section 1.9 of [Ya].
We work in a general setting: Let H be a Hilbert space and H, H0 be self-adjoint
operators satisfying

D(|H|1/2) = D(|H0|1/2). (3.3)

We note that H and H0 are not assumed to be semibounded (but they will be
so in our application). Denote their resolvents by

R0(z) := (H0 − zI)−1, z ∈ ρ(H0), R(z) := (H − zI)−1, z ∈ ρ(H).

Suppose that there is an ”auxiliary” Hilbert space G and operators

G0 : H ⊃ D(G0) → G, G : H ⊃ D(G) → G,

such that the following is true.

(H1) The operators G0, G are |H0|1/2-bounded, i.e.,

D(|H0|1/2) ⊂ D(G0), D(|H0|1/2) ⊂ D(G),
G0(|H0|1/2 + I)−1 ∈ B(H,G), G(|H0|1/2 + I)−1 ∈ B(H,G).

(H2) The operators G0, G satisfy

(G0f,Gg) = (Gf,G0g), f, g ∈ D(|H0|1/2).

(H3) The relation H = H0 + G∗G0 holds in the sense of forms, i.e.,

(Hf, f0) = (f,H0f0) + (Gf,G0f0), f0 ∈ D(H0), f ∈ D(H).

The assumption (H1) guarantees that the operators GR0(z) : H → G and
G0(GR0(z))∗ : G → G are well-defined and bounded for z ∈ ρ(H0). With
slight abuse of notation we put

R0(z)G∗ := (GR0(z))∗, G0R0(z)G∗ := G0(GR0(z))∗.

Proposition 3.1. Let H0,H be self-adjoint operators satisfying (3.3) and as-
sume that the operators G0, G satisfy (H1)-(H3). Let z ∈ ρ(H0), then z ∈ ρ(H)
iff I + G0R0(z)G∗ is boundedly invertible, and in this case

R(z) − R0(z) = −R0(z)G∗ (I + G0R0(z)G∗)−1
G0R0(z). (3.4)

3.3 Some auxiliary operators

For k ∈ [− 1
2 , 1

2 ], z ∈ C \ [k2,+∞) we consider in L2(T) the operator

D(B(z, k)) := H1(T),

(B(z, k)f)(x1) :=
1√
2π

∑

n∈Z

βn(z, k) f̂n einx1 , x1 ∈ T,
(3.5)
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with βn(z, k) defined in (3.2). The operator B(z, k) is invertible for z ∈ C \
[k2,+∞) and its square root is well-defined (it may be considered as the square
root of an m-accretive operator). Now, let σ be a periodic function satisfying
(1.2) and define operators on L2(T) by

T
(σ)
0 (z, k) := (sgnσ)|σ|1/2B(z, k)−1/2, T (σ)(z, k) := |σ|1/2B(z, k)−1/2.

It follows from Corollary 1.6 that these are compact operators of class
Σ2(L2(T)).
Finally, for z ∈ C \ [k2,+∞) we consider the integral operator Y (z, k) acting
from L2(Π) to L2(T) whose kernel is given by

Y (x1, y; z, k) :=
1

2π

∑

n∈Z

1√
βn(z, k)

ein(x1−y1)e−βn(z,k) y2 , x1 ∈ T, y ∈ Π.

(3.6)
Writing down the singular value expansion explicitly we find that Y (z, k) is a
compact operator of class Σ1(L2(Π), L2(T)).

3.4 The resolvent difference

We are now ready to apply the general results from Subsection 3.2 to our
situation. Denote the resolvent of the operator H(σ)(k) by

R(σ)(z, k) :=
(
H(σ)(k) − zI

)−1

, z ∈ ρ
(
H(σ)(k)

)
.

The following statement is of crucial importance.

Proposition 3.2. Let k ∈ [− 1
2 , 1

2 ] and z ∈ C\ [k2,+∞). Then z ∈ ρ
(
H(σ)(k)

)

iff the operator I+T
(σ)
0 (z, k)T (σ)(z, k)∗ is boundedly invertible, and in this case

R(σ)(z, k) − R(0)(z, k) =

= −Y (z, k)∗ T (σ)(z, k)∗
(
I + T

(σ)
0 (z, k) T (σ)(z, k)∗

)−1

T
(σ)
0 (z, k) Y (z, k).

(3.7)

Proof. We want to apply the results of Subsection 3.2 to the case H = L2(Π),
G = L2(T), H0 = H(0)(k), H = H(σ)(k) and

D(G0) = D(G) := H̃1(Π),

(G0u)(x1) := (sgn σ(x1))
√

|σ(x1)|u(x1, 0), x1 ∈ T,

(Gu)(x1) :=
√

|σ(x1)|u(x1, 0), x1 ∈ T.

According to Lemma 1.3, the operators G0, G are well-defined and bounded
from H̃1(Π) to L2(T). Since (|H0|1/2 + I)−1 is a bounded operator from H

to H̃1(Π), the assumption (H1) in Subsection 3.2 holds. The remaining (3.3),
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(H2) and (H3) are obvious, so that the statement of Proposition 3.1 holds. Let
us determine the products G0R0(z), GR0(z) and G0R0(z)G∗.
The explicit form (3.1) of the free resolvent implies that for u ∈ L2(Π)

(R0(z)u)(x1, 0) =
1

2π

∑

n∈Z

1

βn(z, k)

∫

Π

u(y) ein(x1−y1) e−βn(z,k) y2 dy =

=
(
B(z, k)−1/2 Y (z, k)u

)
(x1), x1 ∈ T,

and hence

G0R0(z) = T
(σ)
0 (z, k)Y (z, k), GR0(z) = T (σ)(z, k)Y (z, k).

Moreover, for f ∈ L2(T) we have

(Y (z, k)∗f)(x) =
1√
2π

∑

n∈Z

f̂n√
βn(z, k)

einx1 e−βn(z,k) x2 , x ∈ Π,

so that Y (z, k)∗f ∈ H̃1(Π) and (Y (z, k)∗f)(., 0) = B(z, k)−1/2f . It follows

that G0Y (z, k)∗ = T
(σ)
0 (z, k) and

G0R0(z)G∗ = G0 (GR0(z))
∗

= T
(σ)
0 (z, k) T (σ)(z, k)∗.

This concludes the proof of the Proposition.

As an easy consequence of (3.7) we obtain

Corollary 3.3. Let k ∈ [− 1
2 , 1

2 ] and z ∈ ρ
(
H(σ)(k)

)
, then

R(σ)(z, k) − R(0)(z, k) ∈ Σ1/3(L2(Π)).

Proof. We have remarked in Subsection 3.3 that T
(σ)
0 (z, k), T (σ)(z, k) ∈

Σ2(L2(T)) and Y (z, k) ∈ Σ1(L2(Π), L2(T)), so the statement follows from
(1.3).

The proof of Theorem 2.1 is now immediate.

Proof of Theorem 2.1. Combine Corollary 3.3 with Proposition 1.1.

3.5 The limiting absorption principle for the unperturbed oper-
ator

It remains to prove Theorem 2.2, the absence of singular continuous spectrum.
This will be achieved by controlling the behavior of the resolvent R(σ)(z, k) as
the spectral parameter z tends to the real axis. We start with the unperturbed
case σ ≡ 0.
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We introduce the function Λ2(x) := (1 + x2
2)

1/2, x ∈ Π, and note that for
k ∈ [− 1

2 , 1
2 ], z ∈ C \ [k2,+∞) and s > 1

2 the operator

Λ−s
2 R(0)(z, k)Λ−s

2

belongs to the Hilbert-Schmidt class. The following result is called the limiting
absorption principle for the operator H(0)(k).

Proposition 3.4. Let s > 1
2 and k ∈ [− 1

2 , 1
2 ]. Then the limits

lim
ε→0+

Λ−s
2 R(0)(λ ± iε, k)Λ−s

2 , λ 6= (n + k)2, n ∈ Z,

exist in the Hilbert-Schmidt norm and are uniform for λ from compact intervals
of R \ {(n + k)2 : n ∈ Z}.

Proof. Fix λ ∈ R \ {(n + k)2 : n ∈ Z}, and define

r(0)(x, y;λ ± i0, k) := lim
ε→0+

r(0)(x, y;λ ± iε, k), x 6= y ∈ Π,

as pointwise limit using formula (3.1). We have to prove that

∫

Π

∫

Π

∣∣∣r(0)(x, y;λ ± iε, k) − r(0)(x, y;λ ± i0, k)
∣∣∣
2 dx

(1 + x2
2)

s

dy

(1 + y2
2)s

−→ 0

(ε → 0+).

(3.8)

We restrict ourselves to the ”+”-case, the other being similar, and for simplicity
of notation, we put

cn(ε) := βn(λ + iε, k), cn := lim
ε→0+

cn(ε).

Using Parseval’s identity and the triangle inequality we find

∫

Π

∫

Π

∣∣∣r(0)(x, y;λ ± iε, k) − r(0)(x, y;λ ± i0, k)
∣∣∣
2 dx

(1 + x2
2)

s

dy

(1 + y2
2)s

=

=
∑

n∈Z

∫ ∞

0

dx2

(1 + x2
2)

s

∫ ∞

0

dy2

(1 + y2
2)s

∣∣∣∣
e−cn(ε)(x2+y2) + e−cn(ε)|x2−y2|

2cn(ε)
− e−cn(x2+y2) + e−cn|x2−y2|

2cn

∣∣∣∣
2

≤

≤ 2
∑

n∈Z

∫ ∞

0

∫ ∞

0

(tn,ε(x2 + y2) + tn,ε(x2 − y2))
dx2

(1 + x2
2)

s

dy2

(1 + y2
2)s

,

where

tn,ε(a) :=

∣∣∣∣
e−cn(ε)|a|

2cn(ε)
− e−cn|a|

2cn

∣∣∣∣
2

, a ∈ R.
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For (n + k)2 < λ it follows from Lebesgue’s theorem that

∑

(n+k)2<λ

∫ ∞

0

∫ ∞

0

(tn,ε(x2 + y2) + tn,ε(x2 − y2))
dx2

(1 + x2
2)

s

dy2

(1 + y2
2)s

−→ 0,

(ε → 0+).

Suppose now that (n+k)2 > λ. To control the convergence of the tn,ε in terms
of n we need the elementary estimate

tn,ε(a) ≤ ε2
C

|cn|6
, a ∈ R,

with a constant C independent of a, ε, λ and n. It follows that

∑

(n+k)2>λ

∫ ∞

0

∫ ∞

0

(tn,ε(x2 + y2) + tn,ε(x2 − y2))
dx2

(1 + x2
2)

s

dy2

(1 + y2
2)s

≤

≤ 2Cε2
(∫ ∞

0

dx2

(1 + x2
2)

s

)2 ∑

n∈Z

1

|cn|6
.

The RHS converges to 0 as ε → 0+, which completes the proof of (3.8).
Finally, we remark that the limit in (3.8) is uniform in λ for λ from a compact
intervall not containing any of the points (n + k)2, n ∈ Z. This follows from
the fact, that cn depends continuously on λ.

3.6 The limiting absorption principle for the perturbed operator

Using the Analytic Fredholm Alternative and the resolvent identity (3.7) we de-
rive the limiting absorption principle for the operator H(σ)(k) from Proposition
3.4.

Lemma 3.5. Let k ∈ [− 1
2 , 1

2 ], then the operator families

T
(σ)
0 (z, k), T (σ)(z, k), z ∈ C \ [k2,∞),

can be extended norm-continuously to the cut from above and from below with
the exception of the points z = (n+k)2, n ∈ Z. Denoting the (upper and lower)
boundary values by

T
(σ)
0 (λ ± i0, k), T (σ)(λ ± i0, k), λ 6= (n + k)2,

the sets

N±(k) :={λ ∈ R \ {(n + k)2 : n ∈ Z} :

N (I + T
(σ)
0 (λ ± i0, k)T (σ)(λ ∓ i0, k)∗) 6= {0}}

are discrete in R \ {(n + k)2 : n ∈ Z}.
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Remark 3.6. One can show that the sets N+(k) and N−(k) coincide. Moreover,
in the second part [FrSh] we will prove that the sets N±(k) can accumulate at
+∞ only.

Proof. Let

B̃(z, k), z ∈ C \ {(n + k)2 + iy : n ∈ Z, y ≤ 0} =: D+(k)

be the analytic family of operators given by the same formal expression (3.5) as
the operators B(z, k), but where we choose in the definition (3.2) the branch of
the square root on C \ {iy : y ≥ 0} which coincides with the canonical branch
on the lower halfplane. In particular,

B̃(z, k) = B(z, k), z ∈ C+. (3.9)

It follows from Corollary 1.6 that

T̃ (σ)(z, k) := |σ|1/2B̃(z, k)−1/2, z ∈ D+(k),

is an analytic family of compact operators. Because of (3.9) it is a bounded
analytic (and hence norm-continuous) extension of the family T (σ)(z, k) across
the cut from above. We put

T (σ)(λ + i0, k) := T̃ (σ)(λ, k), λ 6= (n + k)2, n ∈ Z.

The construction of the operators T (σ)(λ − i0, k) is similar, replacing D+(k)
by D−(k) := C \ {(n + k)2 + iy : n ∈ Z, y ≥ 0}, and the statement about the

operators T
(σ)
0 (z, k) follows by multiplying T (σ)(z, k) with sgnσ.

Let us prove the statement about the sets N±(k). It follows easily that
‖T̃ (σ)(z, k)‖ < 1 if |Im z| is large. Now the Analytic Fredholm Alternative

(cf. Theorem VII.1.9 in [K]) applied to the operators T̃
(σ)
0 (z, k) T̃ (σ)(z, k)∗

yields the discreteness of the sets N±(k). This concludes the proof.

Proposition 3.7. Let s > 1
2 and k ∈ [− 1

2 , 1
2 ]. Then the limits

lim
ε→0+

Λ−s
2 R(σ)(λ ± iε, k)Λ−s

2 , λ /∈ {(n + k)2 : n ∈ Z} ∪ N±(k),

exist in the Hilbert-Schmidt norm and are uniform for λ from compact intervals
of R \

(
{(n + k)2 : n ∈ Z} ∪ N±(k)

)
.

Proof. We consider the resolvent identity (3.7). Because of Proposition 3.4 and
Lemma 3.5 it suffices to prove that the limits

lim
ε→0+

Y (λ ± iε, k)Λ−s
2 , λ 6= (n + k)2, n ∈ Z,

exist in the Hilbert-Schmidt norm and are uniform for λ from compact intervals
of R \ {(n + k)2 : n ∈ Z}.
Considering the integral kernel (3.6) of Y (z, k) one can procede similar to the
proof of Proposition 3.4.
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As an easy consequence of Proposition 3.7 we obtain now Theorem 2.2.

Proof of Theorem 2.2. Let [a, b] ⊂ R\
(
{(n + k)2 : n ∈ Z} ∪ N±(k)

)
be a com-

pact interval. Then for every u from the dense set R(Λ−s
2 ) (with s > 1

2 arbi-
trary) we have

sup
0<ε<1

∫ b

a

|(R(σ)(λ ± iε, k)u, u)|2 dλ < ∞

by Proposition 3.7. It follows (cf. Proposition 1.5.2 in [Ya]) that the spectrum
of H(σ)(k) is purely absolutely continuous on [a, b]. Therefore σsing

(
H(σ)(k)

)
⊂

{(n+k)2 : n ∈ Z}∪N±(k). Since the latter set accumulates only at {(n+k)2 :
n ∈ Z} and +∞, we conclude σsc

(
H(σ)(k)

)
= ∅, as claimed.
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Abstract. We discuss three natural, classically equivalent, Haus-
dorff separation properties for topological spaces in constructive math-
ematics. Using Brouwerian examples, we show that our results are the
best possible in our constructive framework.

1 Introduction

A typical feature of constructive mathematics—that is, mathematics with in-
tuitionistic logic [1, 2, 3, 4, 10]—is that a classical property may have several
constructively inequivalent counterparts. In this paper we describe such coun-
terparts of the notion of a Hausdorff space, examine their interconnections, and,
by means of Brouwerian examples, show that our results cannot be improved
without some additional, nonconstructive principles.
The original impetus for our work came from the constructive theory of apart-
ness (point–set [5, 11] and set–set [9]). However, in order to make the work
below accessible to anyone familiar with only the most basic notions of topol-
ogy, we have chosen to work with the usual notion of topological space. Note,
however, that we require a topological space to be equipped from the outset
with an inequality relation 6= satisfying the following properties for all x
and y:

x 6= y ⇒ ¬ (x = y) ,

x 6= y ⇒ y 6= x.

We then denote the complement of a subset S of X by

∼S = {x ∈ X : ∀y ∈ S (x 6= y)} .

On the other hand, the apartness complement of S defined to be

−S = (∼S)
◦
.
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If

∀x, y (¬ (x 6= y) ⇒ x = y) ,

then we say that the inequality is tight.

We note here, for future reference, that a topological space X is

• topologically cotransitive if

(x ∈ U ∧ U ∈ τ) ⇒ ∀y ∈ X (x 6= y ∨ y ∈ U) ;

• locally decomposable if

(x ∈ U ∧ U ∈ τ) ⇒ ∃V ∈ τ (x ∈ V ∧ X = U∪ ∼V ) .

Note that local decomposability implies topological cotransitivity. In the con-
structive theory of point–set apartness spaces, topological cotransitivity is pos-
tulated, and local decomposability is an extremely valuable property to have
[6, 7]. For example, local decomposability ensures that if an apartness relation
is induced by a topology, then the natural topology produced by the apartness
relation coincides with the original topology. So important is local decom-
posability that it is actually postulated as a property of an apartness relation
between sets [6].

We will need some basic facts about nets in constructive topology. By a di-
rected set we mean a nonempty set D with a preorder1 < such that for all
m,n ∈ D there exists p ∈ D with p < m and p < n. If (X, τ) is a topological
space, then to each x in X there corresponds a special net defined as follows.
Let

Dx = {(ξ, U) ∈ X × τ : x ∈ U ∧ ξ ∈ U} ,

with equality defined by

(ξ, U) = (ξ′, U ′) ⇔ (ξ = ξ′ ∧ U = U ′) ,

and for each n = (ξ, U) in Dx define xn = ξ. It is easy to see that D is a
directed set under the inclusion preorder defined by

(ξ, U) < (ξ′, U ′) ⇔ U ⊂ U ′,

so that Nx = (xn)n∈Dx
is a net—the basic neighbourhood net of x.

We say that a net (xn)n∈D in X converges to a limit x in X if

∀U ∈ τ (x ∈ U ⇒ ∃n0 ∈ D ∀n < n0 (xn ∈ U)) .

1The classical theory of nets requires a partial order. If we used a partial order in our
constructive theory, we would run into difficulties which the classical theory avoids by appli-
cations of the axiom of choice.
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2 Hausdorff and unique limit properties

Let (X, τ) be a topological space. More or less as in classical topology, we say
that X is Hausdorff, or separated, if it satisfies the following condition:

H If x, y ∈ X and x 6= y, then there exist U, V ∈ τ such that x ∈ U, y ∈ V,
and U ⊂∼V

In that case, V ⊂∼ U.
Classically, being Hausdorff is equivalent to having the unique limits prop-
erty:

ULP If (xn)n∈D is a net converging to limits x and y in X, then x = y.

We say that a point y in X is eventually bounded away from a net
(xn)n∈D in X if there exists n0 ∈ D such that

y ∈ −{xn : n < n0} .

From a constructive viewpoint, the unique limits property appears rather weak;
of more likely interest is the (classically equivalent) strong unique limits
property:

SULP If (xn)n∈D is a net in X that converges to a limit x, and if x 6= y ∈ X,
then (xn)n∈D is eventually bounded away from y.

In this section we investigate constructively the connection between these two
uniqueness properties and condition H. Specifically, we prove that the following
diagram of implications occurs:

Tight 

SULP

Hausdorff

ULP

We first have an elementary, but useful, lemma.

Lemma 1 Let X be a topological space, x a point of X, and ν = (ξ, U) ∈ Dx.
Then

U = {xn : n ∈ Dx, n < ν} . (1)
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Proof. Consider n ∈ Dx. If n = (xn,W ) < ν, then xn ∈ W ⊂ U. Hence
{xn : n < ν} ⊂ U. On the other hand, for each y ∈ U we have (y, U) < ν, so
y ∈ {xn : n < ν} .

Proposition 2 A topological space is Hausdorff if and only if it has the strong
unique limits property.

Proof. Let (X, τ) be a topological space. Assume first that X is Hausdorff,
let (xn)n∈D be a net converging to a limit x in X, and let x 6= y in X. Choose
U, V ∈ τ such that x ∈ U, y ∈ V, and U ⊂∼V. There exists n0 such that xn ∈ U
for all n < n0. Then

y ∈ V ⊂∼ U ⊂∼ {xn : n < n0} ,

so

y ∈ (∼ {xn : n < n0})◦ = −{xn : n < n0} .

Now suppose that X has the strong unique limits property, and let x, y be points
of X with x 6= y. Since the net Nx converges to x, there exist n0 = (ξ, U) ∈ Dx

and V ∈ τ such that

y ∈ V ⊂∼ {xn : n ∈ Dx, n < n0} .

By Lemma 1,

U = {xn : n ∈ Dx, n < n0} .

Thus x ∈ U, y ∈ V, and V ⊂∼U ; so X is Hausdorff.

Corollary 3 A Hausdorff space with tight inequality has the unique limits
property.

Proof. Let (xn)n∈D be a net converging to limits x, y in a Hausdorff space X
with tight inequality. If x 6= y, then we obtain a contradiction from Proposition
2. Hence ¬ (x 6= y) , and so, by tightness, x = y.

By a T1–space we mean a topological space (X, τ) with the property

x 6= y ⇒ ∃U ∈ τ (x ∈ U ⊂∼{y}) .

The following lemma enables us to prove a partial converse to Corollary 3.

Lemma 4 Let X be a topological space. If X is a T1–space with tight inequality,
then

∀x, y ∈ X
(
y ∈ {x} ⇒ x = y

)
. (2)

Conversely, if (2) holds and X is topologically cotransitive, then the inequality
on X is tight.
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Proof. Suppose that X is a T1–space with tight inequality, let y ∈ {x}, and
assume that x 6= y. Then there exists U ∈ τ such that x ∈ U ⊂∼{y} ; whence
y /∈ {x}, which is absurd. Thus ¬ (x 6= y) and therefore, by tightness, x = y.
Conversely, suppose that (2) holds and that X is topologically cotransitive.
Let ¬ (x 6= y) . For each U ∈ τ with x ∈ U, the topological cotransitivity of X
implies that either x 6= y or else y ∈ U ; the former alternative is ruled out, so
we must have y ∈ U. Hence y ∈ {x} and so, by (2), x = y.

Proposition 5 In a topological space with the unique limits property the in-
equality is tight.

Proof. Let X be a topological space with the unique limits property, and
suppose that y ∈ {x}. Then every open set containing x contains y. Let

L = {(z, U, V ) : U, V ∈ τ, x ∈ U, y ∈ V, z ∈ U ∩ V },

where
(z, U, V ) = (z′, U ′, V ′) ⇔ z = z′ ∧ U = U ′ ∧ V = V ′.

Define a binary relation < on L by

(z1, U1, V1) < (z2, U2, V2) ⇐⇒ U1 ⊂ U2.

It is easy to show that L is directed with respect to this binary relation. For
each n = (z, U, V ) in L define xn = z. Then the net (xn)n∈L converges to both
x and y in X; whence x = y. It follows from Lemma 4 that the inequality on
X is tight.

3 Limiting examples

In this section we show that the connections (summarised in the diagram pre-
sented earlier) we have established between the Hausdorff condition, the unique
limits property, and the strong unique limits property are the best possible
within our constructive framework. We begin by showing that Hausdorff is not
enough to establish tightness.

Proposition 6 If every topologically cotransitive topological space with the
unique limits property has tight inequality, then the law of excluded middle
holds in the weak form (¬¬P ⇒ P ) .

Proof. Let P be any syntactically correct statement such that ¬¬P holds,
and take X = {0, 1, 2} with equality satisfying

0 = 1 ⇔ P

and inequality given by

0 6= 2, 1 6= 2, and (0 6= 1 ⇔ ¬P ) .
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Define a topology τ on X by taking the basic open sets to be the complements
of subsets of X. To see that X has the topological cotransitivity property,
consider all possible cases that arise when x ∈ U and U ∈ τ. We may assume
that U =∼S for some S ⊂ X. If x = 0, then 0 ∈∼S. It follows that S ⊂ {2} :
for if s ∈ S, then either s = 1 or s = 2; in the former case, 0 6= 1 and therefore
¬P, which contradicts our hypotheses. Since 1 6= 2, we have 1 ∈ ∼S; since also
0 6= 2, we conclude that

∀y ∈ X (0 6= y ∨ y ∈∼S = U) .

The case x = 1 is similar, and the case x = 2 is even easier to handle.
We claim that X is a Hausdorff apartness space. If x 6= y, then without loss
of generality, either x = 0 and y = 2 or else x = 1 and y = 2. Taking, for
illustration, the former case, we have 0 ∈ {0, 1} =∼ {2} , 2 ∈ {2} =∼ {0} ,
and ∼ {2} =∼∼ {0} .Thus there exist U, V ∈ τ such that x ∈ U, y ∈ V, and
U ⊂∼V.
Finally, if the inequality on X is tight, then as ¬ (0 6= 1) , we have 0 = 1 and
therefore P.

Our final proposition shows that, even when the inequality is tight and certain
additional hypotheses hold, the strong unique limits property does not entail
being Hausdorff. For the proof we introduce a strange lemma and a general
construction. The lemma may seem obvious, but in fact we have to be careful
to avoid the axiom of choice, which implies the law of excluded middle [8].

Lemma 7 Let C be a class of subsets of a set X, and let (Si)i∈I be a family of
subsets of X such that for each i, if Si 6= ∅, then Si is a union of sets in C. If

S =
⋃

i∈I
Si 6= ∅, then S is also a union of sets in C.

Proof. For each x ∈ X define

Ix = {i ∈ I : x ∈ Si} .

Then

S =
⋃

x∈X

⋃
i∈I

Si.

If x ∈ S and i ∈ Ix, then Si 6= ∅ and so is a union of sets in C. Hence S itself
is such a union.

Let X be a set with a nontrivial inequality 6=. We say that a subset S of X is

• finitely enumerable (respectively, finite) if there exist a natural
number n and a mapping (respectively, one–one mapping) f of {1, . . . , n}
onto S;

• cofinite if it is the complement of a finitely enumerable subset.
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Note that the empty set is finitely enumerable, so X is cofinite. Also, if S is
finitely enumerable, then either S = ∅ or else S 6= ∅ (that is, there exists an
element of S).
We define the cofinite topology on X to be

τ = {S ⊂ X : S 6= ∅ ⇒ S is a union of cofinite sets} .

To see that this is a topology, note that (as above) X ∈ τ and, by ex falso
quodlibet, ∅ ∈ τ. The unions axiom for a topology is an immediate consequence
of Lemma 7 with C = τ. To verify the intersections axiom, let (Si)i∈I and
(Tj)j∈J be families of sets in τ. For all i, j choose finitely enumerable subsets
Ai, Bj of X such that Si =∼Ai and Tj =∼Bj . Then

(⋃
i∈I

Si

)
∩

(⋃
j∈J

Tj

)
=

(⋃
i∈I

∼Ai

)
∩

(⋃
j∈J

∼Bj

)

=
⋃

i∈I

⋃
j∈J

(∼Ai∩ ∼Bj)

=
⋃

i∈I

⋃
j∈J

∼(Ai ∪ Bj) ,

where each Ai ∪ Bj is cofinite.
We now recall Markov’s Principle,

For every binary sequence (an)
∞
n=1 such that ¬∀n (an = 1) , there

exists n such that an = 0,

a form of unbounded search that is well–known to be independent of Heyting
arithmetic (Peano arithmetic with intuitionistic logic) and is therefore generally
regarded as essentially nonconstructive.

Proposition 8 If every locally decomposable T1–space with the unique limits
property and tight inequality is Hausdorff, then Markov’s Principle holds.

Proof. We take a specific case of the foregoing construction. Let (an)
∞
n=1 be

a decreasing binary sequence such that a1 = 1 and ¬∀n (an = 1) . Take

X = {0} ∪
{an

n
: n = 1, 2, 3, . . .

}

with the discrete inequality, and let τ be the cofinite topology on X. To show
that X is a T1–space, let x 6= y in X. Either one of x, y is 0 or else both are
nonzero. If, for example, x = 0, then y = 1/n for some n with an = 1. Writing

U = {0} ∪
{ak

k
: k > n

}
=∼

{ak

k
: k ≤ n

}
,

we see that

U ∈ τ and x ∈ U ⊂∼{y} . (3)
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So we are left with the case where x = 1/m and y = 1/n, with am = an = 1.
In this case, without loss of generality taking m > n, we obtain (3) by defining

U = {0} ∪
{ak

k
: k ≥ m

}
.

To show that X is locally decomposable, again consider x ∈ X and U ∈ τ with
x ∈ U. We may assume that U =∼A for some finitely enumerable set A ⊂ X;
without loss of generality, A 6= ∅. Consider first the case x = 0. Let

K = max

{
k :

1

k
∈ A

}

and
V = {0} ∪

{ak

k
: k > K

}
=∼

{ak

k
: k ≤ K

}
.

Then V is a neighbourhood of 0. For each y ∈ X, either y = 0 ∈ U or else
y = 1/k for some k with ak = 1. In the latter case, if k > K, then y ∈∼A = U ;
whereas if k ≤ K, then y ∈∼V. This deals with the case x = 0. Now consider
the case where x = 1/m for some m with am = 1. Again let U =∼A be an
open neighbourhood of x, where A is finitely enumerable. If am+1 = 0, then
X is finite and hence locally decomposable; so we may assume that am+1 = 1.
Without loss of generality we may further assume that 1/ (m + 1) ∈ A. Thus

L = max

{
n :

1

n
∈ A

}
> m.

Set

V =
{ak

k
: (k > L ∧ ak = 1) ∨ k = m

}
=∼

(
{0} ∪

{ak

k
: k ≤ L, k 6= m

})
.

Then V is a neighbourhood of x. For each y ∈ X, either y = 0 and hence
y ∈∼V, or else y = ak/k for some k with ak = 1. If k > L, then y ∈∼A = U ;
if k = m, then y ∈ U ; if k ≤ L and k 6= m, then y ∈∼V .
Next, we prove that X has the unique limits property. To this end, suppose
that (xn)n∈D is a net in X that converges to both x and y. Suppose also that
x 6= y. For each n, if an = 0, then X is finitely enumerable and so has the
unique limits property; whence x = y, a contradiction. Thus an = 1 for all n,
which is also a contradiction. We conclude that ¬ (x 6= y) ; since we are dealing
with a discrete inequality, it follows that x = y.
Finally, noting that 0 6= 1, suppose there exist U, V in τ such that 0 ∈ U, 1 ∈ V,
and U ∩ V = ∅. There exist finitely enumerable sets A,B ⊂ X such that
0 ∈∼A ⊂ U and 1 ∈∼B ⊂ V. Let

N = max

{
n :

1

n
∈ A ∪ B

}
.

Then {ak

k
: k > N

}
⊂∼A∩ ∼B ⊂ U ∩ V.
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If aN+1 = 1, then U ∩ V 6= ∅, a contradiction. Hence aN+1 = 0.
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[11] Luminiţa Vı̂ţă and Douglas Bridges, ‘A constructive theory of point–set
nearness’, to appear in Topology in Computer Science: Constructivity;
Asymmetry and Partiality; Digitization (Proc. Dagstuhl Seminar 00231,
4-9 June 2000); R. Kopperman, M. Smyth, D. Spreen, eds.), special issue
of Theoretical Computer Science.

Documenta Mathematica 8 (2003) 567–576



576 Douglas Bridges and Luminiţa Vı̂ţă
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Introduction

In a former paper [15], the incompleteness phenomenon of the Weil-Petersson
metric on Calabi-Yau moduli spaces was studied. In this note, I shall discuss
some curvature properties of it. The first result is a simple explicit formula
(Theorem 2.1) for the Riemann curvature tensor. While this problem was
treated before in [6] and [10], the approach taken here is more elementary.
Two simple proofs of Theorem 2.1 are offered in §2 and both are based on
the Hodge-theoretic description of the Weil-Petersson metric [13]. The first
one uses a trick to select suitable coordinate system and line bundle section
to reduce the computation. The second proof uses Griffiths’ curvature formula
for Hodge bundles [2].
Direct consequences of Theorem 2.1 are relations between the Weil-Petersson
metric and the Hodge metric for Calabi-Yau threefolds and various positiv-
ity results on the curvature tensor (see §3). §4 is devoted to the asymptotic
analysis of the curvature near the boundary of moduli spaces. The method is
modelled on the first proof and uses Schmid’s theory on the degenerations of
Hodge structures [7]. The final section §5 contains some remarks toward the
completion and compactification problems of Calabi-Yau moduli spaces.
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1. The Weil-Petersson metric

A Calabi-Yau manifold is a compact Kähler manifold with trivial canonical
bundle. The local Kuranish family of polarized Calabi-Yau manifolds X → S is
smooth (unobstructed) by the Bogomolov-Tian-Todorov theorem [13]. One can
assign the unique (Ricci-flat) Yau metric g(s) on Xs in the polarization Kähler
class [17]. Then, on a fiber Xs =: X, the Kodaira-Spencer theory gives rise to an

injective map ρ : Ts(S) → H1(X,TX) ∼= H0,1

∂̄
(TX) (harmonic representatives).

The metric g(s) induces a metric on Λ0,1(TX). For v, w ∈ Ts(S), one then
defines the Weil-Petersson metric on S by

(1.1) gWP (v, w) :=

∫

X

〈ρ(v), ρ(w)〉g(s).

Let dim X = n. Using the fact that the global holomorphic n-form Ω(s) is flat
with respect to g(s), it can be shown [13] that

(1.2) gWP (v, w) = − Q̃(i(v)Ω, i(w)Ω)

Q̃(Ω, Ω̄)
.

Here, for convenience, we write Q̃ =
√
−1

n
Q(·, ·), where Q is the intersec-

tion product. Therefore, Q̃ has alternating signs in the successive primitive
cohomology groups P p,q ⊂ Hp,q, p + q = n.
(1.2) implies that the natural map H1(X,TX) → Hom(Hn,0,Hn−1,1) via the
interior product v 7→ i(v)Ω is an isometry from the tangent space Ts(S) to
(Hn,0)∗⊗Pn−1,1. So the Weil-Petersson metric is precisely the metric induced
from the first piece of the Hodge metric on the horizontal tangent bundle over
the period domain. A simple calculation in formal Hodge theory shows that

(1.3) ωWP = RicQ̃(Hn,0) = −∂∂̄ log Q̃(Ω, Ω̄),

where ωWP is the 2-form associated to gWP . In particular, gWP is Kähler and
is independent of the choice of Ω. In fact, gWP is also independent of the choice
of the polarization.
With this background, one can abstract the discussion by considering a polar-
ized variations of Hodge structures H → S of weight n with hn,0 = 1 and a
smooth base S. In this note, I always assume that it is effectively parametrized
in the sense that the infinitesimal period map (also called the second funda-
mental form [2])

(1.4) σ : Ts(S) → Hom(Hn,0,Hn−1,1) ⊕ Hom(Hn−1,1,Hn−2,2) ⊕ · · ·
is bijective in the first piece. Then the Weil-Petersson metric gWP on S is
defined by formula (1.2) (or equivalently, (1.3)).
One advantage to work with the abstract setting is that, instead of using P p,q

in the geometric case, we may write Hp,q directly in our presentation.

2. The Riemann curvature tensor formula

Here is the basic formula (compare with [6], [10] and [12]):
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Theorem 2.1. For a given effectively parametrized polarized variations of
Hodge structures H → S of weight n with hn,0 = 1, hn−1,1 = d and smooth S, in
terms of any holomorphic section Ω of Hn,0 and the infinitesimal period map σ,
the Riemann curvature tensor of the Weil-Petersson metric gWP = gij̄dti⊗dt̄j
on S is given by

(2.1) Rij̄k ¯̀ = −(gij̄gk ¯̀ + gi¯̀gkj̄) +
Q̃(σiσkΩ, σjσ`Ω)

Q̃(Ω, Ω̄)
.

2.1. The first proof. The main trick in the proof is a nice choice of the
holomorphic section Ω and special coordinate system on the base S. Since
the problem is local, we may assume that S is a disk in Cd around t = 0.
Specifically, we have

Lemma 2.2. For any k ∈ N, there is a local holomorphic section Ω of Hn,0

such that in the power series expansion at t = 0

(2.2) Ω(t) = a0 +
∑

i
aiti + · · · +

∑
|I|=k

1

I!
aIt

I + · · ·

we have a0 ∈ Hn,0, Q̃(a0, ā0) = 1 and Q̃(a0, āI) = 0 for any multi-index I 6= 0
and |I| ≤ k. (We always assume that aI = aJ if I = J as unordered sets.)

Proof. Only the last statement needs a proof. Let

Ω̃ =
∑

I
ãIt

I =
(
1 +

∑
i
λiti + · · · +

∑
|I|=k

λIt
I
)
Ω

= a0 +
∑

i
(λia0 + ai)ti + · · · +

∑
|I|=k

(λIa0 + aI)t
I + · · ·

Set λI = −Q̃(a0, āI), then clearly Q̃(ã0, ãI) = 0 for I 6= 0 and |I| ≤ k. ¤

Lemma 2.3. Pick Ω as in Lemma 2.2. For any k′ ∈ N with 2 ≤ k′ ≤ k, there
is a holomorphic coordinate system t such that ai form an orthonormal basis
of Hn−1,1, i.e. Q̃(ai, āi) = −δij. Moreover, Q̃(ai, āI) = 0 for all i and I with
2 ≤ |I| ≤ k′.

Proof. The Griffiths transversality says that

ai =
∂

∂ti
Ω

∣∣∣
t=0

∈ Hn,0 ⊕ Hn−1,1.

Lemma 2.2 then implies that ai ∈ Hn−1,1. It is also clear that by a linear
change of coordinates of t we can make ai to form an orthonormal basis of
Hn−1,1.
For the second statement, consider the following coordinates transformation:

ti = si +
∑

1≤j,k≤d
cjk
i sjsk + · · · +

∑
|I|=k′

cI
i s

I , 1 ≤ i ≤ d

with cI
i = cJ

i when I = J as unordered sets.
It’s easy to see that the number of coefficients to be determined is the same as
the number of equations Q̃(ai, ājk) = 0, hence the lemma. ¤
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Proof. (of Theorem 2.1) Let Ω and ti be as in the above lemmas. For multi-

indices I and J , we set qI,J := Q̃(aI , āJ ). By Lemma 2.2 and 2.3,

q(t) := Q̃(Ω(t),Ω(t))

= 1 −
∑

i
tit̄i + · · · +

∑
i,j,k,`

1

(ik)!(j`)!
qik,j` titk t̄j t̄` + O(t5).

To calculate Rij̄k ¯̀, we only need to calculate gk ¯̀ up to degree 2 terms:

gk ¯̀ = −∂k∂¯̀ log q = q−2(∂kq∂¯̀q − q∂k∂¯̀q)

=
(
1 + 2

∑
i
tit̄i + · · ·

)
×

[
t`t̄k −

(
1 −

∑
i
tit̄i

)(
− δk` +

∑
i,j

qik,j`tit̄j
)

+ · · ·
]

= δk` − δk`

∑
i
tit̄i + t`t̄k + 2δk`

∑
i
tit̄i −

∑
i,j

qik,j`tit̄j + · · ·

= δk` + δk`

∑
i
tit̄i + t`t̄k −

∑
i,j

qik,j`tit̄j + · · · .

Here we have used the fact that degree 3 terms of mixed type (contain tk t̄`)
must be 0 by our choice of Ω.
As a result, we find that the Weil-Petersson metric g is already in its geodesic
normal form, so the full curvature tensor at t = 0 is given by

Rij̄k ¯̀ = − ∂2gk ¯̀

∂ti∂t̄j
= −δijδk` − δi`δkj + qik,j`.

Rewriting this in its tensor form then gives the formula. ¤

Remark 2.4. The proof does not require the full condition that H → S is
a variation of Hodge structures. The essential part used is the polarization
structure on the indefinite metric Q̃ on H. It has a fixed sign on Hn−1,1 makes
possible the definition of the Weil-Petersson metric. For such cases, in terms of
the second fundamental form σ, Lemma 2.2 and 2.3 say that under this choice
of Ω and t, ordinary differentiations approximate σ up to second order at t = 0.
In particular, a0 = Ω(0), ai = σiΩ(0) and aij = aji = σiσjΩ(0) = σjσiΩ(0).

2.2. The second proof. Now we give another proof of Theorem 2.1 via Grif-
fiths’ curvature formula for Hodge bundles.

Proof. Recall the isometry in §1:

(2.3) Ts(S) ∼= (Hn,0)∗ ⊗ Hn−1,1

and Griffiths’ curvature formula ([2], Ch.II Prop.4):

(2.4) 〈R(e), e′〉 = 〈σe, σe′〉 + 〈σ∗e, σ∗e′〉.
Where R is the matrix valued curvature 2-form of Hp,q, e and e′ are any two
elements of Hp,q and 〈, 〉 is the Hodge metric.
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Let Ω be a holomorphic section of Hn,0 and consider the basis of Hn−1,1 given
by σiΩ, then T has a basis ei = Ω∗ ⊗ σiΩ from (2.3). In this basis, the Weil-
Petersson metric takes the form

(2.5) gij̄ =
〈σiΩ, σjΩ〉
〈Ω,Ω〉 .

Let K, R1 and R2 be the curvature of T , (Hn,0)∗ and Hn−1,1 respectively.
Using the standard curvature formulae for tensor bundle and dual bundle, we
find

K(ei) = (R1 ⊗ I2 + I1 ⊗ R2)(Ω
∗ ⊗ σiΩ)

= R1(Ω
∗) ⊗ σiΩ + Ω∗ ⊗ R2(σiΩ).

By taking scalar product with ej = Ω∗ ⊗ σjΩ and using the definition of dual
metric, we get

〈K(ei), ej〉WP = 〈R1(Ω
∗),Ω∗〉〈σiΩ, σjΩ〉 + 〈Ω∗,Ω∗〉〈R2(σiΩ), σjΩ〉

= −〈Ω,Ω〉−2〈R(Ω),Ω〉〈σiΩ, σjΩ〉 + 〈Ω,Ω〉−1〈R(σiΩ), σjΩ〉.
Now we evaluate this 2-form on ek∧ ē` and apply (2.4), we get (notice the order
of `, k and the sign)

(2.6) −〈σkΩ, σ`Ω〉
〈Ω,Ω〉

〈σiΩ, σjΩ〉
〈Ω,Ω〉 +

〈σkσiΩ, σ`σjΩ〉
〈Ω,Ω〉 − 〈σ∗

` σiΩ, σ∗
kσjΩ〉

〈Ω,Ω〉 .

Since hn,0 = 1, σ∗
pσq acts as a scalar operator on Hn,0:

σ∗
pσq =

〈σ∗
pσqΩ,Ω〉
〈Ω,Ω〉 =

〈σqΩ, σpΩ〉
〈Ω,Ω〉 .

Hence the last term in (2.6) becomes

(2.7) −〈σiΩ, σ`Ω〉
〈Ω,Ω〉

〈σjΩ, σkΩ〉
〈Ω,Ω〉 = −〈σiΩ, σ`Ω〉

〈Ω,Ω〉
〈σkΩ, σjΩ〉

〈Ω,Ω〉 .

Using (2.5) and (2.7), then (2.6) gives the formula (2.1). ¤

3. Some simple consequences of the curvature formula

3.1. Lower bounds of curvature. The immediate consequences of the gen-
eral curvature formula are various positivity results of different types of curva-
ture. We mention some of them here.

Theorem 3.1. For the Weil-Petersson metric gWP , we have

(1) The holomorphic sectional curvature
∑

i,j,k,` Rij̄k ¯̀ξiξ̄jξk ξ̄` ≥ −2|ξ|4.
(2) The Ricci curvature Rij̄ ≥ −(d + 1)gij̄ .
(3) The second term in (2.1) is “Nakano semi-positive”.

Proof. This is a pointwise question. For simplicity, let’s use the nor-
mal coordinate system given by Lemma 2.2. (1) is obvious since∑

i,j,k,` Q̃(aik, aj`)ξ
iξ̄jξk ξ̄` = Q̃(A, Ā) ≥ 0 for A =

∑
i,k aikξiξk.
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For (2), we need to show that
( ∑

k,` gk ¯̀
Q̃(aik, ajl)

)
i,j

is semi-positive. For any

vector ξ = (ξi), let Ak be the vector
∑

i aikξi. Then
∑

i,j,k,`
gk ¯̀

Q̃(aik, āj`)ξia
¯
rξj =

∑
k
Q̃(Ak, Āk) ≥ 0.

For (3), it simply means that for any vector u = (upq) with double indices,
∑

i,j,k,`
Q̃(aik, aj`)uikuj` = Q̃(A, Ā) ≥ 0

where A :=
∑

p,q apqupq. ¤

3.2. Relation to the Hodge metric. The period domain has a natural
invariant metric induced from the Killing form. The horizontal tangent bundle
also has a natural metric induced from the metrics on the Hodge bundles.
These two metrics are in fact the same ([2], p.18) and we call it the Hodge
metric. The Hodge metric gH on S is defined to be the metric induced from
the Hodge metric of the full horizontal tangent bundle.
In dimension three, e.g. the moduli spaces of Calabi-Yau threefolds, we can
reconstruct the Hodge metric from the Weil-Petersson metric. This result was
first deduced by Lu in 1996 through different method, see e.g. [4].

Theorem 3.2. In the case n = 3, we have

gH = (d + 3)gWP + Ric(gWP ).

In particular, the Hodge metric gH is Kähler.

Proof. The horizontal tangent bundle is

Hom(H3,0,H2,1) ⊕ Hom(H2,1,H1,2) ⊕ Hom(H1,2,H0,3)

The first piece gives the Weil-Petersson metric on S. The third piece is dual
to the first one, hence, as one can check easily, gives the same metric. Now

(d + 3)gij̄ + Rij̄ = 2gij̄ +
∑

k,`
gk ¯̀ Q̃(σiσkΩ, σjσ`Ω)

Q̃(Ω, Ω̄)
.

The last term gives the Hodge metric of the middle part of the horizontal
tangent bundle since σkΩ form a basis of H2,1 and the Hodge metric is defined
to be the metric of linear mappings, which are exactly the infinitesimal period
maps σi’s. ¤

Remark 3.3. Moduli spaces of polarized complex tori (resp. hyperkähler mani-
folds) correspond to variations of polarized weight one (resp. weight two) Hodge
structures. Their universal covering spaces are Hermitian bounded symmetric
domains and the invariant (Bergman) metrics are Kähler-Einstein of negative
Ricci curvature. In these cases, the weight n polarized VHS are completely
determined by the weight one (resp. weight two) polarized VHS. Based on this
observation, one can show that gWP and gH both coincide with the Bergman
metric up to a positive constant (cf. [9] for the case of gWP ). However, as
we will see in Theorem 4.4, the negativity of Ricci curvature fails for moduli
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spaces of general Calabi-Yau manifolds. In fact, the Hodge theory of Calabi-
Yau threefolds with h1(O) = 0 may be regarded as the first nontrivial instance
of Hodge theory of weight three.

3.3. Relation to the Bryant-Griffiths cubic form. In the case n = 3,
Bryant and Griffiths [1] has defined a symmetric cubic form on the parameter
space S:

Fijk :=
Q̃(σiσjσkΩ,Ω)

Q̃(Ω, Ω̄)
.

Strominger [12] has obtained a formula for the Riemann curvature tensor
through this cubic form Fijk (in physics literature it is called the Yukawa
coupling), and it has played important role in the study of Mirror Symmetry.
We may derive it from our formula (2.1):

Theorem 3.4. For an effectively parametrized polarized variations of Hodge
structures H → S of weight 3, the curvature tensor of gWP is given by

Rij̄k ¯̀ = −(gij̄gk ¯̀ + gi¯̀gkj̄) +
∑

p,q
gpq̄ FpikFqj`.

Proof. Since Q̃(σiσjΩ,Ω) = 0 by the consideration of types, the metric com-
patibility implies that

0 = ∂kQ̃(σiσjΩ,Ω) = Q̃(σkσiσjΩ,Ω) − Q̃(σiσjΩ, σkΩ).

Let us write σjσ`Ω =
∑

p ap σpΩ, then

∑
p
ap gpq̄ = −

∑
p
ap Q̃(σpΩ, σqΩ)

Q̃(Ω, Ω̄)
= − Q̃(σjσ`Ω, σqΩ)

Q̃(Ω, Ω̄)
= Fqj`.

So ap =
∑

q gpq̄Fqj` and the second term in (2.1) becomes

Q̃(σiσkΩ, σjσ`Ω)

Q̃(Ω, Ω̄)
=

∑
p,q

gpq̄ Fqj` Q̃(σiσkΩ, σpΩ) =
∑

p,q
gpq̄ Fpik Fqj`.

¤

Remark 3.5. In the geometric case, namely moduli of Calabi-Yau threefolds,
the cubic form is usually written as

Fijk = e−K

∫

X

∂i∂j∂k Ω ∧ Ω,

where K = log Q̃ and Ω is a relative holomorphic three-form over S.

4. Asymptotic behavior of the curvature along degenerations

To study the asymptotic behavior of the curvature, we may localize the problem
and study degenerations of polarized Hodge structures. By taking a holomor-
phic curve transversal to the degenerating loci, or equivalently we study the
limiting behavior of the holomorphic sectional curvature, we may consider the
following situation (consult [2], [7] for more details): a period mapping

φ : ∆× → 〈T 〉\D → 〈T 〉\P(V )
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which corresponds to the degeneration. Here V = Hn is a reference vector
space with a quadratic form Q as in §1, and with T ∈ Aut(V,Q) the Picard-
Lefschetz monodromy. Assume that T is unipotent and let N = log T . There
is an uniquely defined weight filtration W : 0 = W−1 ⊂ W0 ⊂ · · · ⊂ W2n = V
such that

NWi ⊂ Wi−2 and Nk : GrW
n+k

∼= GrW
n−k

where GrW
i := Wi/Wi−1. This W , together with the limiting Hodge filtration

F∞ := limt→0 e−zNFt (z = log t/2π
√
−1 is the coordinates on the upper half

plane, t ∈ ∆×) constitute Schmid’s polarized limiting mixed Hodge structures.
This means that GrW

i admits a polarized Hodge structure
⊕

p+q=i Hp,q
∞ of

weight i induced from F∞ and Q such that for k ≥ 0, the primitive part
PW

n+k := KerNk+1 ⊂ GrW
n+k is polarized by Q(·, Nk ·̄). Notice that N is a

morphism of type (−1,−1) in the sense that N(Hp,q
∞ ) ⊂ Hp−1,q−1

∞ . This allows
one to view the mixed Hodge structure in terms of a Hodge diamond and view
N as the operator analogous to “contraction by the Kähler form”.
By Schmid’s nilpotent orbit theorem ([7], cf. [15], §0-§1), we can pick the (multi-
valued) holomorphic section Ω of Fn over ∆× by

Ω(t) = Ω(z) := ezNa(t) = elog tÑa(t) ∈ Fn
t ,

where a(t) =
∑

ait
i is holomorphic over ∆ with value in V and Ñ :=

N/2π
√
−1. Also 0 6= a(0) = a0 ∈ Fn

∞. (Notice that while Ω(z) is single-
valued, Ω(t) is well-defined only locally or with its value mod T .)
Now we may summarize the computations done in [15], §1 in the following
form:

Theorem 4.1. The induced Weil-Petersson metric gWP on ∆× is incomplete
at t = 0 if and only if Fn

∞ ⊂ Ker N .

In the complete case, i.e. Na0 6= 0, let k := max{ i | N ia0 6= 0 }. Then Q̃(Ω, Ω̄)
blows up to +∞ with order c| log |t|2|k and the metric gWP blows up to +∞
with order

kdt ⊗ dt̄

|t|2
∣∣ log |t|2

∣∣2 ,

i.e. it is asymptotic to the Poincaré metric, where c = (k!)−1|Q̃(Ñka0, ā0)| > 0.
In the incomplete case, i.e. Na0 = 0, the holomorphic section Ω(t) extends
continuously over t = 0.

Idea of proof. We have the following well-known calculation: for any k ∈ R,

(4.1) −∂∂̄ log | log |t|2|k =
kdt ∧ dt̄

|t|2
∣∣ log |t|2

∣∣2 ,

which is also true asymptotically if t is a holomorphic section of a Hermitian line
bundle as the defining section of certain divisor, in a general smooth base S of
arbitrary dimension. The main point is to prove that lower order terms are still
of lower order whenever we take derivatives. This is done in [15] when S = ∆×.
This is also the main point of the remaining discussion in this section. ¤
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To achieve the goal, we define operators Sk = k + Ñ for any k ∈ Z. Then all
Sk commute with each other and Sk is invertible if k 6= 0. By Theorem 4.1, we
only need to study the incomplete case, i.e. Na0 = 0. As in Lemma 2.2., we
may assume that Q̃(a0, ā0) = 1 and Q̃(a0, āi) = 0 for all i ≥ 1.

Lemma 4.2. If ak is the first nonzero term other than a0, then Skak ∈ Fn−1
∞ .

If moreover Nak = 0 then ak ∈ Hn−1,1
∞ , and for the next nonzero term ak+`

we have S`Sk+`ak+` ∈ Fn−2
∞ .

Proof. By the Griffiths transversality, we have

(4.2) Ω′(t) = ezN
[1

t
Ña + a′

]
∈ Fn−1

t .

Since Na0 = 0, this implies Ñaktk−1 + kaktk−1 + · · · ∈ e−zNFn−1
t . Take out

the factor tk−1 and let t → 0, we get

Skak ∈ Fn−1
∞ .

In fact, we have from (4.2), ezN (Skak + Sk+1ak+1t + · · · ) ∈ Fn−1
t . Taking

derivative and by transversality again, we get

ezN
[1

t
ÑSkak + S1Sk+1ak+1 + S2Sk+2ak+2t + · · ·

]
∈ Fn−2

t .

So, if Nak = 0, then for the next nonzero term ak+`, we have by the same way

S`Sk+`ak+` ∈ Fn−2
∞ .

We also know the following equivalence: Nak = 0 iff NSkak = 0 iff Skak ∈
Hn−1,1

∞ (because Skak ∈ Fn−1
∞ ). Since N is a morphism of type (−1,−1) and

the only nontrivial part of Fn
∞ is in Hn,0

∞ , this is equivalent to ak ∈ Hn−1,1
∞ .

(This follows easily from the Hodge diamond.) ¤

Define qij = Q̃(ezNai, ezNaj) ≡ Q̃(elog |t|2Ñai, āj), which are functions of log |t|.
The following basic lemma is the key for all the computations, which explains
“lower order terms are stable under differentiations”.

Lemma 4.3. Let QSk(a, b̄) := Q(Ska, b̄) ≡ Q(a, Skb), then for all k, ` ∈ Z,

t
∂

∂t
(qijt

k t̄`) = qSk
ij tk t̄` and t̄

∂

∂t̄
(qijt

k t̄`) = qS`
ij tk t̄`.

Proof. Straightforward. ¤

Now we state the main result of this section:

Theorem 4.4. For any degeneration of polarized Hodge structures of weight n
with hn,0 = 1, the induced Weil-Petersson metric gWP has finite volume.
For one parameter degenerations with finite Weil-Petersson distance, if Na1 6=
0 then gWP blows up to +∞ with order c| log |t|2|k and the curvature form
KWP = Kdt ∧ dt̄ blows up to +∞ with order

kdt ∧ dt̄

|t|2| log |t|2|2 ,

where k = max{ i | N iS1a1 6= 0 } ≤ n − 1, c = (k!)−1|Q̃(ÑkS1a1, S1a1)| > 0.

Documenta Mathematica 8 (2003) 577–590



586 Chin-Lung Wang

Remark 4.5. The statement about finite volume is a standard fact in Hodge the-
ory. By the nilpotent orbit theorem, the Hodge metrics on the Hodge bundles
degenerate at most logarithmically. So gH , and hence gWP , has finite volume.
In fact, in view of (4.1), the method of the following proof implies that gH

is asymptotic to the Poincaré metric of the punctured disk along transversal
directions toward boundary divisors of the base space.

Proof. Pick a(t) and Ω(t) as before, (i.e. Na0 = 0, q00 = 1, q0i = 0 for i ≥ 1
and all other qij are functions of log |t|). We have

q(t) = Q̃(Ω(t), ¯Ω(t))

= 1 + q11tt̄ + (q12tt̄
2 + q21t

2t̄) + (q22t
2t̄2 + q31t

3t̄ + q13tt̄
3) + · · ·

Applying Lemma 4.3, we can compute

∂q

∂t

∂q

∂t̄
− q

∂2q

∂t∂t̄
= qS1

11 t̄qS1
11 t − (1 + q11tt̄)(q

S1S1
11 + qS1S2

12 t̄ + qS2S1
21 t

+ qS2S2
22 tt̄ + qS3S1

31 t2 + qS1S3
13 t̄2) + · · ·

(Since we will assume that Na1 6= 0, q11 will be the only term needed. However
we have calculated more terms in order for later use.) So the metric ds2 = g|dt|2
is given by

g = −∂t∂t̄ log q = q−2(∂tq∂t̄q − q∂t∂t̄q)

= −qS1S1
11 − (qS1S2

12 t + qS2S1
21 t̄)

+ (q11q
S1S1
11 + |qS1

11 |2 − qS2S2
22 )tt̄ − qS3S1

31 t2 − qS1S3
13 t̄2 + · · ·(4.3)

As t → 0, the first term determines the behavior of g. If Na1 6= 0 (so a1 6= 0),
let ξ = S1a1 ∈ Fn−1

∞ (by Lemma 4.2) and let k = max{ i | N iξ 6= 0 }. (k ≤ n−1

simply because GrW
2n = 0.) Then the highest order term of −qS1S1

11 , with respect
to log |t|2, is given by (for this purpose we can ignore all operators Si with i 6= 0)

(4.4) − 1

k!

(
log |t|2

)k
Q̃(Ñkξ, ξ̄).

This term has nontrivial coefficient and is in fact positive. This follows from
the fact that Q̃ polarizes the limiting mixed Hodge structures. Hence g blows
up with the expected order, with c = (k!)−1|Q̃(ÑkS1a1, S1a1)|.
For the curvature form Kdt ∧ dt̄ = −∂∂̄ log g, the most singular term of K is
given by

(
− qS1S1

11

)−2
[(

− qS1S1S0
11 t−1

)(
qS1S1S0
11 t̄−1

)
−

(
− qS1S1

11

)(
− qS1S1S0S0

11 t−1t̄−1
)]

=
(
− qS1S1

11

)−2
[
|qS1S1S0

11 |2 − qS1S1
11 qS1S1S0S0

11

]
|t|−2.

We need to show that this term is nontrivial. As before, we may ignore all Si

with i 6= 0. So the highest order terms of
(
|qS1S1S0

11 |2 − qS1S1
11 qS1S1S0S0

11

)
are

1

(k − 1)!

(
log |t|2

)2(k−1)∣∣Q̃(Ñkξ, ξ̄)
∣∣2 − 1

k!(k − 2)!

(
log |t|2

)k+(k−2)∣∣Q̃(Ñkξ, ξ̄)
∣∣2.
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It is clear that the coefficient 1
(k−1)! − 1

k!(k−2)! = 1
k!(k−1)! > 0. Taking into

account the order of (−qS1S1
11 )−2 given by (4.4) shows that K blows up to +∞

with the expected order k|t|−2
∣∣ log |t|2

∣∣−2
. ¤

Question 4.6. In the original smooth case in §2, a1 corresponds to the Kodaira-
Spencer class of the variation, so we know that a1 6= 0. For the degenerate case,
what is the geometric meaning of a1? Is it some kind of Kodaira-Spencer class
for singular varieties?

Remark 4.7. Assume that a1 6= 0. If Na1 = 0, then by Lemma 4.2, a1 ∈ Hn−1,1
∞

and
−qS1S1

11 = −Q̃(elog |t|2ÑS1a1, S1a1) ≡ −Q̃(a1, ā1) > 0.

From (4.3), gWP has a non-degenerate continuous extension over t = 0.
In the case n = 3, if the moduli is one-dimensional (h2,1 = 1), then a1 6= 0 and
Na1 = 0 imply that N ≡ 0. That is, the variation of Hodge structures does not
degenerate at all. More generally, if we have a positive answer to Question 4.6,
then we also have a similar statement for multi-dimensional moduli. Namely,
Nia0 = 0, Nia1,j = 0 for all i, j implies that Ni ≡ 0 for all i, where Ni’s are
the local monodromies, a1,j ’s are coefficients of the linear terms in a(t).

We conclude this section by a partial result:

Proposition 4.8. Assume that a1 6= 0, Na1 = 0 (so gWP is continuous over
t = 0). If Na2 = 0 then the curvature tensor has a continuous extension over
t = 0. The converse is true for n = 3. If the curvature tensor does not extend
continuously over t = 0, it has a logarithmic blowing-up.

Proof. Following Remark 4.7 and Lemma 2.3, we may assume that −q11 = 1,
q12 = 0 and q1j ’s are constants for j ≥ 2. So among the degree two terms of g,
only the tt̄ term contributes to the curvature. Namely from (4.3),

g = 1 + (2 − qS2S2
22 )tt̄ + · · · .

Again we are in the “normal coordinates”, so

K = −2 + qS2S2S1S1
22 + · · · .

It is clear that Na2 = 0 implies that qS2S2S1S1
22 is a constant (= 4Q̃(a2, ā2)).

We will show that the converse is true if n = 3. We may assume that a2 6= 0.
By Lemma 4.2 we have a1 ∈ H2,1

∞ and S1S2a2 ∈ F 1
∞, so we may write (from

the Hodge diamond) S1S2a2 = λa1 + α + β with α ∈ H2,2
∞ and β ∈ H1,1

∞ . Now

the constancy of qS2S2S1S1
22 implies that

Q̃(N(λa1 + α + β), λa1 + α + β) = 0

as it is the highest order term (N2 ≡ 0). So the fact Na1 = 0 and Nβ = 0

implies that Q̃(Nα, ᾱ) = 0. This in turn forces α = 0 by the polarization
condition. So S1S2a2 = λa1 + β, and S1S2Na2 = λNa1 + Nβ = 0. That
is, Na2 = 0. The remaining statement about the logarithmic blowing-up is
clear. ¤
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5. Concluding Remarks

Based on Yau’s solution to the Calabi Conjecture [17], the existence of the
coarse moduli spaces of polarized Calabi-Yau manifolds in the category of
separated analytic spaces was proved by Schumacher [8] in the 80’s. Com-
bined with the Bogomolov-Tian-Todorov theorem [13], these moduli spaces are
smooth Kähler orbifolds equipped with the Weil-Petersson metrics.
In the algebraic category, the coarse moduli spaces can also be constructed in
the category of Moishezon spaces. Moreover, for polarized (projective) Calabi-
Yau manifolds, the quasi-projectivity of such moduli spaces has been proved
by Viehweg [14] in late 80’s.
From the analytic viewpoint, there is also a theory originated from Siu and
Yau [11] dealing with the projective compactification problem for complete
Kähler manifolds with finite volume. Results of Mok, Zhong [5] and Yeung
[18] say that a sufficient condition is the negativity of Ricci curvature and
the boundedness of sectional curvature. In general, the Weil-Petersson metric
does not satisfy these conditions. This leads to some puzzles since the ample
line bundle constructed by Viehweg ([14], Corollary 7.22) seems to indicate
that ωWP will play important role in the compactification problem. Since the
curvature tends to be negative in the infinite distance boundaries, the puzzle
occurs only at the finite distance part. This leads to two different aspects:
The first one is the geometrical metric completion problem. In [15], it is pro-
posed that degenerations of Calabi-Yau manifolds with finite Weil-Petersson
distance should correspond to degenerations with at most canonical singular-
ities in a suitable birational model. Now this is known to follow from the
minimal model conjecture in higher dimensions [16]. With this admitted, one
may then go ahead to analyze the structure of these completed spaces. Are
they quasi-affine varieties?
Another aspect is the usage of Hodge metric. Näively, since the Ricci curvature
of the Weil-Petersson metric has a lower bound −(d + 1)gWP and blows up to
∞ at some finite distance boundary points, for any k > 0 one may pull these
points out to infinity by considering the following new Kähler metric

g̃ij̄ = (d + 1 + k)gij̄ + Rij̄ = kgij̄ +
∑

k,`
gk ¯̀ Q̃(σiσkΩ, σjσ`Ω)

Q̃(Ω, Ω̄)
.

When the blowing-up is faster than logarithmic growth (e.g. Na1 6= 0), g̃ is
then complete (at these boundaries). Otherwise one may need to repeat this
process. This inductive structure is implicit in Theorem 4.1 and 4.4 and is
explicitly expressed in Theorem 3.2 in the case n = 3, k = 2. It suggests that
the resulting metric will be quasi-isometric to the Hodge metric.
If we start with the Hodge metric directly, the coarse moduli spaces being
Moishezon allows us to assume that the boundary has a local model as normal
crossing divisors. Then a similar asymptotic analysis as in §4 implies that
the metric behaves like the Poincaré metric in the transversal direction toward
the codimension one boundaries (i.e. points with N 6≡ 0 where N is the local
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monodromy). In particular, it admits bounded sectional curvature. The main
problem here is the higher codimensional boundaries. In this direction, we
should mention that the negativity of the Ricci curvature for Hodge metrics
has recently been proved by Lu [3]. We expect that the Hodge metric would
eventually provide projective compactifications of the moduli spaces through
the recipe of [5], [18].
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Abstract. For any holomorphic symplectic manifold (X,σ), a closed
Jacobi diagram with 2k trivalent vertices gives rise to a Rozansky-
Witten class

RWX,σ(Γ) ∈ H2k(X,OX).

If X is irreducible, this defines a number βΓ(X,σ) by RWX,σ(Γ) =
βΓ(X,σ)[σ̄]k.

Let (X [n], σ[n]) be the Hilbert scheme of n points on a K3 surface
together with a symplectic form σ[n] such that

∫
X[n](σ

[n]σ̄[n])n = n!.

Further, let (A[[n]], σ[[n]]) be the generalised Kummer variety of di-
mension 2n − 2 together with a symplectic form σ[[n]] such that∫

A[[n]](σ
[[n]]σ̄[[n]])n = n!. J. Sawon conjectured in his doctoral thesis

that for every connected Jacobi diagram, the functions βΓ(X [n], σ[n])
and βΓ(A[[n]], σ[[n]]) are linear in n.

We prove that this conjecture is true for Γ being a connected Jacobi
diagram homologous to a polynomial of closed polywheels. We further
show how this enables one to calculate all Rozansky-Witten invariants
of X [n] and A[[n]] for closed Jacobi diagrams that are homologous to
a polynomial of closed polywheels. It seems to be unknown whether
every Jacobi diagram is homologous to a polynomial of closed poly-
wheels. If indeed the closed polywheels generate the whole graph
homology space as an algebrea, our methods will thus enable us to
compute all Rozansky-Witten invariants for the Hilbert schemes and
the generalised Kummer varieties using these methods.

Also discussed in this article are the definitions of the various graph
homology spaces, certain operators acting on these spaces and their
relations, some general facts about holomorphic symplectic manifolds
and facts about the special geometry of the Hilbert schemes of points
on surfaces.

1The author is supported by the Deutsche Forschungsgemeinschaft. This work has been

written under hospitality of the Department of Pure Mathematics and Mathematical Statis-
tics of the University of Cambridge.
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1. Introduction

A compact hyperkähler manifold (X, g) is a compact Riemannian manifold
whose holonomy is contained in Sp(n). An example of such a manifold is the
K3 surface together with a Ricci-flat Kähler metric (which exists by S. Yau’s
theorem [18]). In [15], L. Rozansky and E. Witten described how one can
associate to every vertex-oriented trivalent graph Γ an invariant bΓ(X) to X,
henceforth called a Rozansky-Witten invariant of X associated to Γ. In fact,
this invariant only depends on the homology class of the graph, so the invariants
are already defined on the level of the graph homology space B (see e.g. [1] and
this paper for more information about graph homology).
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Every hyperkähler manifold (X, g) can be given the structure of a Kähler
manifold X (which is, however, not uniquely defined) whose Kähler metric
is just given by g. X happens to carry a holomorphic symplectic two-form
σ ∈ H0(X,Ω2

X), whereas we shall call X a holomorphic symplectic manifold.
Now M. Kapranov showed in [8] that one can in fact calculate bΓ(X) from
(X,σ) by purely holomorphic methods.
The basic idea is the following: We can identify the holomorphic tangent bundle
TX of X with its cotangent bundle ΩX by means of σ. Doing this, the Atiyah
class αX (see [8]) of X lies in H1(X,S3TX). Now we place a copy of αX

at each trivalent vertex of the graph, take the ∪-product of all these copies
(which gives us an element in H2k(X, (S3TX)⊗2k) if 2k is the number of trivalent
vertices), and finally contract (S3TX)⊗2k) along the edges of the graph by
means of the holomorphic symplectic form σ. Let us call the resulting element
RWX,σ(Γ) ∈ H2k(X,OX). In case 2k is the complex dimension of X, we can
integrate this element over X after we have multiplied it with [σ]2k. This gives
us more or less bΓ(X). The orientation at the vertices of the graph is needed
in the process to get a number which is not only defined up to sign.
There are two main example series of holomorphic symplectic manifolds, the
Hilbert schemes X [n] of points on a K3 surface X and the generalised Kum-
mer varieties A[[n]] (see [2]). Besides two further manifolds constructed by
K. O’Grady in [13] and [12], these are the only known examples of irreducible
holomorphic symplectic manifolds up to deformation.
Not much work was done on actual calculations of these invariants on the
example series. The first extensive calculations were carried out by J. Sawon
in his doctoral thesis [16]. All Chern numbers are in fact Rozansky-Witten
invariants associated to certain Jacobi diagrams, called closed polywheels. Let
W be the subspace spanned by these polywheels in B. All Rozansky-Witten
invariants associated to graphs lying in W can thus be calculated from the
knowledge of the Chern numbers (which are computable in the case of X [n]

([3]) or A[[n]] ([11]). However, from complex dimension four on, there are graph
homology classes that do not lie in W. J. Sawon showed that for some of these
graphs the Rozansky-Witten invariants can still be calculated from knowledge
of the Chern numbers, which enables one to calculate all Rozansky-Witten
invariants up to dimension five. His calculations would work for all irreducible
holomorphic manifolds whose Chern numbers are known.
In this article, we will make use of the special geometry of X [n] and A[[n]]. Doing
this, we are able to give a method which enables us to calculate all Rozansky-
Witten invariants for graphs homology classes that lie in the algebra C generated
by closed polywheels in B. The closed polywheels form the subspace W of the
algebra B of graph homology. This is really a proper subspace. However, C, the
algebra generated by this subspace, is much larger, and, as far as the author
knows, it is unknown whether C = B, i.e. whether this work enables us to
calculate all Rozanky-Witten invariants for the main example series.
The idea to carry out this computations is the following: Let (Y, τ) be any
irreducible holomorphic symplectic manifold. Then H2k(Y,OY ) is spanned by
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[τ̄ ]k. Therefore, every graph Γ with 2k trivalent vertices defines a number
βΓ(Y, τ) by RWY,τ (Γ) = βΓ(Y, τ)[τ̄ ]k. J. Sawon has already discussed how
knowledge of these numbers for connected graphs is enough to deduce the
values of all Rozansky-Witten invariants.
For the example series, let us fix holomorphic symplectic forms σ[n], respective
σ[[n]] with

∫
X[n](σ

[n]σ̄[n])n = n! respective
∫

A[[n]](σ
[[n]]σ̄[[n]])n = n!. J. Sawon

conjectured the following:

The functions βΓ(X [n], σ[n]) and βΓ(X [[n]], σ[[n]]) are linear in
n for Γ being a connected graph.

The main result of this work is the proof of this conjecture for the class of
connected graphs lying in C (see Theorem 3). We further show how one can
calculate these linear functions from the knowledge of the Chern numbers and
thus how to calculate all Rozansky-Witten invariants for graphs in C.
We should note that we don’t make any use of the IHX relation in our deriva-
tions, and so we could equally have worked on the level of Jacobi diagrams.
Let us finally give a short description of each section. In section 2 we collect
some definitions and results which will be used later on. The next section is
concerned with defining the algebra of graph homology and certain operations
on this space. We define connected polywheels and show how they are related
with the usual closed polywheels in graph homology. We further exhibit a
natural sl2-action on an extended graph homology space. In section 4, we
first look at general holomorphic symplectic manifolds. Then we study the
two example series more deeply. Section 5 defines Rozansky-Witten invariants
while the last section is dedicated to the proof of our main theorem and explicit
calculations.

2. Preliminaries

2.1. Some multilinear algebra. Let T be a tensor category (commutative
and with unit). For any object V in T , we denote by SkV the coinvariants of
V ⊗k with respect to the natural action of the symmetric group and by ΛkV
the coinvariants with respect to the alternating action. Further, let us denote
by SkV and ΛkV the invariants of both actions.

Proposition 1. Let I be a cyclicly ordered set of three elements. Let V be an
object in T . Then there exists a unique map Λ3V → V ⊗I such that for every
bijection φ : {1, 2, 3} → I respecting the canonical cyclic ordering of {1, 2, 3}
and the given cyclic ordering of I the following diagram

Λ3V Λ3Vy
y

V ⊗3 −−−−→
φ∗

V ⊗I

(1)

commutes, where the map φ∗ is the canonical one induced by φ.
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Proof. Let φ, φ′ : {1, 2, 3} → I be two bijections respecting the cyclic ordering.
Then there exist an even permutation α ∈ A3 such that the lower square of the
following diagram commutes:

Λ3V Λ3Vy
y

V ⊗3 −−−−→
α∗

V ⊗3

φ

y
yφ′

V ⊗I V ⊗I .

We have to show that the outer rectangle commutes. For this it suffices to
show that the upper square commutes. In fact, since α is an even permutation,
every element of Λ3V is by definition invariant under α∗. ¤

2.2. Partitions. A partition λ of a non-negative integer n ∈ N0 is a sequence
λ1, λ2, . . . of non-negative integers such that

‖λ‖ :=

∞∑

i=1

iλi = n.(2)

Therefore almost all λi have to vanish. In the literature, λ is often notated by
1λ12λ2 . . . . The set of all partitions of n is denoted by P(n). The union of all
P(n) is denoted by P :=

⋃∞
n=0 P(n). For every partition λ ∈ P, we set

|λ| :=

∞∑

i=1

λi(3)

and

λ! :=

∞∏

i=1

λi!.(4)

Let a1, a2, . . . be any sequence of elements of a commutative unitary ring. We
set

aλ :=

∞∏

i=1

aλi
i(5)

for any partition λ ∈ P.
With these definitions, we can formulate the following proposition in a nice
way:

Proposition 2. In Q[[a1, a2, . . . ]] we have

exp

( ∞∑

i=1

ai

)
=

∑

λ∈P

aλ

λ!
.(6)
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Proof. We calculate

exp

( ∞∑

i=1

ai

)
=

∞∑

n=0

1

n!

( ∞∑

i=1

ai

)n

=

∞∑

n=0

1

n!

∑

λ∈P,|λ|=n

n!

∞∏

i=1

aλi
i

λi!
=

∑

λ∈P

aλ

λ!
.(7)

¤

If we set

∂

∂aλ
:=

∞∏

i=1

∂λi

∂aλi
i

∣∣∣∣∣
ai=0

,(8)

we have due to Proposition 2:

Proposition 3. In Q[[s1, s2, . . . ]][a1, a2, . . . ] we have

∂

∂aλ
exp

( ∞∑

i=1

aisi

)
= sλ.(9)

2.3. A lemma from umbral calculus.

Lemma 1. Let R be any Q-algebra (commutative and with unit) and A(t) ∈
R[[t]] and B(t) ∈ tR[[t]] be two power series. Let the polynomial sequences
(pn(x)) and (sn(x)) be defined by

∞∑

k=0

pk(x)
tk

k!
= exp(xB(t))(10)

and

∞∑

k=0

sk(x)
tk

k!
= A(t) exp(xB(t)).(11)

Let WB(t) ∈ tR[[t]] be defined by WB(t exp(B(t))) = t. Then we have
∞∑

k=0

xpk(x − k)

(x − k)

tk

k!
= exp(xB(WB(t)))(12)

and

∞∑

k=0

sk(x − k)

k!
tk =

A(WB(t))

1 + WB(t)B′(WB(t))
exp(xB(WB(t))).(13)

Proof. It suffices to prove the result for the field R = Q(a0, a1, . . . , b1, b2, . . . )
and A(t) =

∑∞
k=0 aktk and B(t) =

∑∞
k=1 bktk.

So let us assume this special case for the rest of the proof. Let us denote by f(t)
the compositional inverse of B(t), i.e. f(B(t)) = t. We set g(t) := A−1(f(t)).
For the following we will make use of the terminology and the statements in [14].
Using this terminology, (10) states that (pn(x)) is the associated sequence to
f(t) and (11) states that (sn(x)) is the Sheffer sequence to the pair (g(t), f(t))
(see Theorem 2.3.4 in [14]).
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Theorem 3.8.3 in [14] tells us that (sn(x − n)) is the Sheffer sequence to the

pair (g̃(t), f̃(t)) with

g̃(t) = g(t)(1 + f(t)/f ′(t))

and

f̃(t) = f(t) exp(t).

The compositional inverse of f̃(t) is given by B̃(t) := B(WB(t)):

B(WB(f̃(t))) = B(WB(f(t) exp(t))) = B(WB(f(t) exp(B(f(t))))) = B(f(t)) = t.

Further, we have

Ã(t) := g̃−1(B̃(t))

= (g(B(t))(1 + f(B(t))/f ′(B(t))))−1 ◦ WB(t) =
A(t)

1 + tB′(t)
◦ WB(t),

which proves (13) again due to Theorem 2.3.4 in [14].

It remains to prove (12), i.e. that (xpn(x)
x−n ) is the associated sequence to

f̃(t). We already know that (pn(x − n)) is the Sheffer sequence to the pair

(1 + f(t)/f ′(t), f̃(t)). By Theorem 2.3.6 of [14] it follows that the associated

sequence to f̃(t) is given by (1+f(d/dx)/f ′(d/dx))pn(x−n). By Theorem 2.3.7
and Corollary 3.6.6 in [14], we have

(
1 +

f(d/dx)

f ′(d/dx)

)
pn(x − n) = pn(x − n) +

1

f ′(d/dx)
npn−1(x − n)

= pn(x − n) +
npn(x − n)

x − n
=

xpn(x − n)

x − n
,

which proves the rest of the lemma. ¤

3. Graph homology

This section is concerned with the space of graph homology classes of unitriva-
lent graphs. A very detailed discussion of this space and other graph homology
spaces can be found in [1]. Further aspects of graph homology can be found
in [17], and, with respect to Rozansky-Witten invariant, in [7].

3.1. The graph homology space. In this article, graph means a collection
of vertices connected by edges, i.e. every edge connects two vertices. We want
to call a half-edge (i.e. an edge together with an adjacent vertex) of a graph
a flag. So, every edge consists of exactly two flags. Every flag belongs to
exactly one vertex of the graph. On the other hand, a vertex is given by the
set of its flags. It is called univalent if there is only one flag belonging to it,
and it is called trivalent if there are exactly three flags belonging to it. We
shall identify edges and vertices with the set of their flags. We shall also call
univalent vertices legs. A graph is called vertex-oriented if, for every vertex, a
cyclic ordering of its flags is fixed.
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e

v3 v4

v1 v2

u1 u2

Figure 1. This Jacobi diagram has four trivalent vertices
v1, . . . , v4, and two univalent vertices u1 and u2, and e is one
of its 7 edges.

Definition 1. A Jacobi diagram is a vertex-oriented graph with only uni- and
trivalent vertices. A connected Jacobi diagram is a Jacobi diagram which is
connected as a graph. A trivalent Jacobi diagram is a Jacobi diagram with no
univalent vertices.
We define the degree of a Jacobi diagram to be the number of its vertices. It
is always an even number.
We identify two graphs if they are isomorphic as vertex-oriented graphs in the
obvious sense.

Example 1. The empty graph is a Jacobi diagram, denoted by 1. The unique
Jacobi diagram consisting of two univalent vertices (which are connected by an
edge) is denoted by `.

u1

u2

Figure 2. The Jacobi diagram ` with its two univalent ver-
tices u1 and u2.

Remark 1. There are different names in the literature for what we call a “Ja-
cobi diagram”, e.g. unitrivalent graphs, chord diagrams, Chinese characters,
Feynman diagrams. The name chosen here is also used by D. Thurston in [17].
The name comes from the fact that the IHX relation in graph homology defined
later is essentially the well-known Jacobi identity for Lie algebras.
With our definition of the degree of a Jacobi diagram, the algebra of graph
homology defined later will be commutative in the graded sense. Further, the
map RW that will associate to each Jacobi diagram a Rozansky-Witten class
will respect this grading. But note that often the degree is defined to be half
of the number of vertices, which still is an integer.

We can always draw a Jacobi diagram in a planar drawing so that it looks like
a planar graph with vertices of valence 1, 3 or 4. Each 4-valent vertex has to
be interpreted as a crossing of two non-connected edges of the drawn graph
and not as one of its vertices. Further, we want the counter-clockwise ordering
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of the flags at each trivalent vertex in the drawing to be the same as the given
cyclic ordering.

Figure 3. These two graphs depict the same one.

In drawn Jacobi diagrams, we also use a notation like · · ·
n
− · · · for a part of a

graph which looks like a long line with n univalent vertices (“legs”) attached to
it, for example . . .⊥⊥⊥ . . . for n = 3. The position of n indicates the placement
of the legs relative to the “long line”.

Definition 2. Let T be any tensor category (commutative and with unit).
Every Jacobi diagram Γ with k trivalent and l univalent vertices induces a
natural transformation ΨΓ between the functors

T → T ,V 7→ SkΛ3V ⊗ SlV(14)

and

T → T ,V 7→ SeS2V,(15)

where e := 3k+l
2 which is given by

(16) ΨΓ : SkΛ3V ⊗ SlV
(1)→

⊗

t∈T

Λ3V ⊗
⊗

f∈U

V
(2)→

⊗

t∈T

⊗

f∈t

V ⊗
⊗

f∈U

V

(3)→
⊗

f∈F

V
(4)→

⊗

e∈E

⊗

f∈e

V
(5)→ SeS2V,

where T is the set of the trivalent vertices, U the set of the univalent vertices,
F the set of flags, and E the set of edges of Γ. Further,

(1) is given by the natural inclusions of the invariants in the tensor prod-
ucts,

(2) is given by the canonical maps (see Proposition 1 and recall that the
sets t are cyclicly ordered),

(3) is given by the associativity of the tensor product,
(4) is given again by the associativity of the tensor product, and finally
(5) is given by the canonical projections onto the coinvariants.

Definition 3. We define B to be the Q-vector space spanned by all Jacobi
diagrams modulo the IHX relation
�

=�−�(17)
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and the anti-symmetry (AS) relation
�

+�= 0,(18)

which can be applied anywhere within a diagram. (For this definition see
also [1] and [17].) Two Jacobi diagrams are said to be homologous if they are
in the same class modulo the IHX and AS relation.
Furthermore, let B′ be the subspace of B spanned by all Jacobi diagrams not
containing ` as a component, and let tB be the subspace of B′ spanned by
all trivalent Jacobi diagrams. All these are graded and double-graded. The
grading is induced by the degree of Jacobi diagrams, the double-grading by the
number of univalent and trivalent vertices.
The completion of B (resp. B′, resp. tB) with respect to the grading will be

denoted by B̂ (resp. B̂′, resp. tB̂).

We define Bk,l to be the subspace of B̂ generated by graphs with k trivalent
and l univalent vertices. B′

k,l and tBk := tBk,0 are defined similarly.

All these spaces are called graph homology spaces and their elements are called
graph homology classes or graphs for short.

Remark 2. The subspaces Bk of B̂ spanned by the Jacobi diagrams of degree
k are always of finite dimension. The subspace B0 is one-dimensional and
spanned by the graph homology class 1 of the empty diagram 1.

Remark 3. We have B̂ =
∏

k,l≥0 Bk,l. In view of the following Definition 4, B̂′

and B̂ are naturally Q-algebras. As Q-algebras, we have B̂ = B̂′[[`]]. Due to the

AS relation, the spaces B′
k,l are zero for l > k. Therefore, B̂′ =

∏∞
k=0

⊕k
l=0 B′

k,l.

Example 2. If γ is a graph which has a part looking like · · ·
n
−· · · , it will become

(−1)nγ if we substitute the part · · ·
n
−· · · by · · ·−

n
· · · due to the anti-symmetry

relation.

3.2. Operations with graphs.

Definition 4. Disjoint union of Jacobi diagrams induces a bilinear map

B̂ × B̂ → B̂, (γ, γ′) 7→ γ ∪ γ′.(19)

By mapping 1 ∈ Q to 1 ∈ B̂, the space B̂ becomes a graded Q-algebra, which
has no components in odd degrees. Often, we omit the product sign “∪”. B,
B′, tB, and so on are subalgebras.

Definition 5. Let k ∈ N. We call the graph homology class of the Jacobi

diagram
2k

© the 2k-wheel w2k, i.e. w2 =�, w4 =�, and so on. It has 2k
univalent and 2k trivalent vertices. The expression w0 will be given a meaning
later, see section 3.3.

Remark 4. The wheels wk with k odd vanish in B̂ due to the AS relation.
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Let Γ be a Jacobi diagram and u, u′ be two different univalent vertices of Γ.
These two should not be the two vertices of a component ` of Γ. Let v (resp.
v′) be the vertex u (resp. u′) is attached to. The process of gluing the vertices
u and u′ means to remove u and u′ together with the edges connecting them
to v resp. v′ and to add a new edge between v and v′. Thus, we arrive at a new
graph Γ/(u, u′), whose number of trivalent vertices is the number of trivalent
vertices of Γ and whose number of univalent vertices is the number of univalent
vertices of Γ minus two. To make it a Jacobi diagram we define the cyclic
orientation of the flags at v (resp. v′) to be the cyclic orientation of the flags at
v (resp. v′) in Γ with the flag belonging to the edge connecting v (resp. v′) with
u (resp. u′) replaced by the flag belonging to the added edge. For example,

u u′

Figure 4. Gluing the two univalent vertices u and u′ of the
left graph produces the right one, denoted by�2.

gluing the two univalent vertices of w2 leads to the graph�.
If π = {{u1, u

′
1} , . . . , {uk, u′

k}} is a set of two-element sets of legs that are
pairwise disjoint and such that each pair uk, u′

k fulfills the assumptions of the
previous construction, we set

Γ/π := Γ/(u1, u
′
1)/ . . . /(uk, u′

k).(20)

Of course, the process of gluing two univalent vertices given above does not
work if u and u′ are the two univalent vertices of `, thus our assumption on Γ.

Definition 6. Let Γ,Γ′ be two Jacobi diagrams, at least one of them without
` as a component and U = {u1, . . . , un} resp. U ′ the sets of their univalent
vertices. We define

Γ̂(Γ′) :=
∑

f :U↪→U ′

injective

(Γ ∪ Γ′)/(u1, f(u1))/ . . . /(un, f(un)),(21)

viewed as an element in B̂.
This induces for every γ ∈ B̂ a tB̂-linear map

γ̂ : B̂′ → B̂′, γ′ 7→ γ̂(γ′).(22)

Example 3. Set ∂ := 1
2
ˆ̀. It is is an endomorphism of B̂′ of degree −2. For

example, ∂�=�. By setting

∂(γ, γ′) := ∂(γ ∪ γ′) − ∂(γ) ∪ γ′ − γ ∪ ∂(γ′)(23)
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for γ, γ′ ∈ B̂′, we have the following formula for all γ ∈ B̂′:

∂(γn) =

(
n

1

)
∂(γ)γn−1 +

(
n

2

)
∂(γ, γ)γn−2.(24)

This shows that ∂ is a differential operator of order two acting on B̂′.
Acting by ∂ on a Jacobi diagram means to glue two of its univalent vertices
in all possible ways, acting by ∂(·, ·) on two Jacobi diagrams means to connect
them by gluing a univalent vertex of the first with a univalent vertex of the
second in all possible ways.

Definition 7. Let Γ,Γ′ be two Jacobi diagrams, at least one of them without
` as a component, and U = {u1, . . . , un} resp. U ′ the sets of their univalent
vertices. We define

〈Γ,Γ′〉 :=
∑

f :U→U ′

bijective

(Γ ∪ Γ′)/(u1, f(u1))/ . . . /(un, f(un)),(25)

viewed as an element in tB̂.
This induces a tB̂-bilinear map

〈·, ·〉 : B̂′ × B̂ → tB̂,(26)

which is symmetric on B̂′ × B̂′.

Note that 〈Γ,Γ′〉 is zero unless Γ and Γ′ have equal numbers of univalent
vertices. In this case, the expression is the sum over all possibilities to glue the
univalent vertices of Γ with univalent vertices of Γ′.
Note that 〈Γ,Γ′〉 is zero unless Γ and Γ′ have equal numbers of univalent
vertices. In this case, the expression is the sum over all possibilities to glue the
univalent vertices of Γ with univalent vertices of Γ′.

Proposition 4. The map 〈1, ·〉 : B̂ → tB̂ is the canonical projection map, i.e.

it removes all non-trivalent components from a graph. Furthermore, for γ ∈ B̂′

and γ′ ∈ B̂, we have
〈

γ,
`

2
γ′

〉
= 〈∂γ, γ′〉 .(27)

For γ, γ′ ∈ B̂′, we have the following (combinatorial) formula:

(28) 〈exp(∂)(γγ′), 1〉 = 〈exp(∂)γ, exp(∂)γ′〉 .

Proof. The formula (27) should be clear from the definitions.
Let us investigate (28) a bit more. We can assume that γ and γ′ are Jacobi
diagrams with l resp. l′ univalent vertices and l + l′ = 2n with n ∈ N0. So we
have to prove

∂n

n!
(γγ′) =

∞∑

m,m′=0
l−2m=l′−2m′

〈
∂m

m!
γ,

∂m′

m′!
γ′

〉
,
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since 〈·, 1〉 : B̂ → tB̂ means to remove the components with at least one univa-
lent vertex. Recalling the meaning of 〈·, ·〉, it should be clear that (28) follows

from the fact that applying ∂k

k! on a Jacobi diagram means to glue all subsets
of 2k of its univalent vertices to k pairs in all possible ways. ¤

3.3. An sl2-action on the space of graph homology. In this short sec-
tion we want to extend the space of graph homology slightly. This is mainly due
to two reasons: When we defined the expression Γ̂(Γ) for two Jacobi diagrams
Γ and Γ′, we restricted ourselves to the case that Γ or Γ′ does not contain a
component with an `. Secondly, we have not given the zero-wheel w0 a meaning
yet.
We do this by adding an element © to the various spaces of graph homology.

Definition 8. The extended space of graph homology is the space B̂[[©]].
Further, we set w0 := ©, which, at least pictorially, is in accordance with the
definition of wk for k > 0.

Note that this element is not depicting a Jacobi diagram as we have defined
it. Nevertheless, we want to use the notion that © has no univalent and no
trivalent vertices, i.e. the homogeneous component of degree zero of B̂[[©]] is
Q[[©]].
When defining Γ/(u, u′) for a Jacobi diagram Γ with two univalent vertices u
and u′, i.e. gluing u to u′, we assumed that u and u′ are not the vertices of one
component ` of Γ. Now we extend this definition by defining Γ/(u, u′) to be
the extended graph homology class we get by replacing ` with ©, whenever u
and u′ are the two univalent vertices of a component ` of Γ.
Doing so, we can give the expression γ̂(γ′) ∈ B̂[[©]] a meaning with no restric-

tions on the two graph homology classes γ, γ′ ∈ B̂, i.e. every γ ∈ B̂[[©]] defines

a tB̂[[©]]-linear map

(29) γ̂ : B̂[[©]] → B̂[[©]].

Example 4. We have

(30) ∂` = ©.

Remark 5. We can similarly extend 〈·, ·〉 : B̂′ × B̂ → tB̂ to a tB̂[[©]]-bilinear
form

(31) 〈·, ·〉 : B̂[[©]] × B̂[[©]] → tB̂[[©]].

Both `/2 and ∂ are two operators acting on the extended space of graph homol-
ogy, the first one just multiplication with `/2. By calculating their commutator,

we show that they induce a natural structure of an sl2-module on B̂[[©]].

Proposition 5. Let H : B̂[[©]] → B̂[[©]] be the linear operator which acts on

γ ∈ B̂k,l[[©]] by

(32) Hγ =

(
1

2
© +l

)
γ.
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We have the following commutator relations in End B̂[[©]]:

[`/2, ∂] = −H,(33)

[H, `/2] = 2 · `/2,(34)

and

[H, ∂] = −2∂,(35)

i.e. the triple (`/2,−∂,H) defines a sl2-operation on B̂[[©]].

Proof. Equations (34) and (35) follow from the fact that multiplying by ©
commutes with `/2 and ∂, and from the fact that `/2 is an operator of degree 2
with respect to the grading given by the number of univalent vertices, whereas
∂ is an operator of degree −2 with respect to the same grading.
It remains to look at (33). For γ ∈ B̂k,l[[©]], we calculate

[`, ∂]γ = `∂(γ) − ∂(`γ) = `∂(γ) − ∂(`)γ − `∂(γ) − ∂(`, γ) = −© γ − 2lγ = −2Hγ.

(36)

¤

Remark 6. Since B̂[[©]] is infinite-dimensional, we have unfortunately difficul-
ties to apply the standard theory of sl2-representations to this sl2-module. For
example, there are no eigenvectors for the operator H.

3.4. Closed and connected graphs, the closure of a graph. As the
number of connected components of a Jacobi diagram is preserved by the IHX-
and AS-relations each graph homology space inherits a grading by the number
of connected components. For any k ∈ N0 we define Bk to be the subspace
of B spanned by all Jacobi diagrams with exactly k connected components.
Similarly, we define tBk, B̂k, tB̂k.
We have B =

⊕∞
k=0 Bk with B0 = Q · 1. Analogous results hold for tB, B̂, tB̂.

Definition 9. A graph homology class γ is called closed if γ ∈ tB̂. The class
γ is called connected if γ ∈ B̂1. The connected component of γ is defined to be
pr1(γ) where pr1 : B̂ =

∏∞
i=0 B̂i → B̂1 is the canonical projection. The closure

〈γ〉 of γ is defined by 〈γ〉 := 〈γ, exp(`/2)〉. The connected closure 〈〈γ〉〉 of γ is
defined to be the connected component of the closure 〈γ〉 of γ.

For every finite set L, we define P2(L) to be the set of partitions of L into
subsets of two elements. With this definition, we can express the closure of a
Jacobi diagram Γ as

〈Γ〉 =
∑

π∈P2(L)

Γ/π.(37)

Example 5. We have 〈w2〉 =�, 〈〈w2〉〉 =�,
〈
w2

2

〉
= 2�2 +�2,

〈〈
w2

2

〉〉
= 2�2.

Let L1, . . . , Ln be finite and pairwise disjoint sets. We set L :=
⊔n

i=1 Li. Let
π ∈ P2(L) be a partition of L in 2-element-subsets. We say that a pair l, l′ ∈ L
is linked by π if there is an i ∈ {1, . . . n} such that l, l′ ∈ Li or {l, l′} ∈ π. We
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say that π connects the sets L1, . . . , Ln if and only if for each pair l, l′ ∈ L there
is a chain of elements l1, . . . , lk such that l is linked to l1, li is linked to li+1

for i ∈ {1, . . . , k − 1} and lk is linked to l′. The subset of P2(L) of partitions π
connecting L1, . . . , Ln is denoted by P2({L1, . . . , Ln}). We have

P2(L) =
⊔

⊔
I={1,...,n}

{⊔

I∈I

πI : πI ∈ P2({Li : i ∈ I})
}

.(38)

Here,
⊔

I = {1, . . . , n} means that I is a partition of {1, . . . , n} in disjoint
subsets.
Let Γ1, . . . ,Γn be connected Jacobi diagrams. We denote by Γ :=

∏n
i=1 Γi the

product over all these Jacobi diagrams. Let Li be the set of legs of Γi and
denote by L :=

⊔n
i=1 Li the set of all legs of Γ.

For every partition π ∈ P2(L) the graph Γ/π is connected if and only if π ∈
P2({L1, . . . , Ln}).
Using (38) we have

(39) 〈Γ〉 =
∑

π∈P2(L)

Γ/π =
∑

⊔
I={1,...,n}

∏

I∈I

∑

π∈P2({Li:i∈I})

(∏

i∈I

Γi

)
/π

=
∑

⊔
I={1,...,n}

∏

I∈I

〈〈∏

i∈I

Γi

〉〉
.

With this result we can prove the following Proposition:

Proposition 6. For any connected graph homology class γ we have

exp 〈〈exp γ〉〉 = 〈exp γ〉 .(40)

Note that both sides are well-defined in B̂ since γ and 〈〈· · · 〉〉 as connected
graphs have no component in degree zero.

Proof. Let Γ be any connected Jacobi diagram. By (39) we have

〈Γn〉 =
∑

⊔
I={1,...,n}

∏

I∈I

〈〈
Γ#I

〉〉
=

∑

λ∈P(n)

n!
∞∏

i=1

1

λi!

(〈〈
Γi

〉〉
/i!

)λi
.

By linearity this result holds also if we substitute Γ by the connected graph
homology class γ.
Using this,

〈exp γ〉 =

∞∑

n=0

1

n!
〈γn〉 =

∞∑

n=0

1

n!

∑

λ∈P(n)

n!

∞∏

i=1

1

λi!

(〈〈
γi

〉〉
/i!

)λi

=
∞∏

i=1

∞∑

λ=0

1

λ!

(〈〈
γi

〉〉
/i!

)λ
=

∞∏

i=1

exp
(〈〈

γi
〉〉

/i!
)

= exp 〈〈exp γ〉〉 .

¤
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3.5. Polywheels.

Definition 10. For each n ∈ N0 we set w̃2n := −w2n. Let λ be a partition of
n. We set

w̃2λ :=

∞∏

i=1

w̃λi
2i .(41)

The closure 〈w̃2λ〉 of w̃2λ is called a polywheel. The subspace in tB spanned
by all polywheels is denoted by W and called the polywheel subspace. The
subalgebra in tB spanned by all polywheels is denoted by C and called the
algebra of polywheels.
The connected closure 〈〈w̃2λ〉〉 of w̃2λ is called a connected polywheel.

Remark 7. As discussed by J. Sawon in his thesis [16], W is proper graded
subspace of tB. From degree eight on, tBk is considerably larger than Wk. On
the other hand it is unknown (at least to the author) if the inclusion C ⊆ tB is
proper.

Remark 8. The subalgebra C′ in tB spanned by all connected polywheels equals
C. This is since we can use (40) to express every polywheel as a polynomial of
connected polywheels and vice versa.

Example 6. Using Proposition 6 we calculated the following expansions of the
connected polywheels in terms of wheels:

〈〈w̃2〉〉 = 〈w̃2〉
〈〈

w̃2
2

〉〉
=

〈
w̃2

2

〉
− 〈w̃2〉2

〈〈w̃4〉〉 = 〈w̃4〉
〈〈

w̃3
2

〉〉
=

〈
w̃3

2

〉
− 3 〈w̃2〉

〈
w̃2

2

〉
+ 2 〈w̃2〉3

〈〈w̃2w̃4〉〉 = 〈w̃2w̃4〉 − 〈w̃2〉 〈w̃4〉
〈〈w̃6〉〉 = 〈w̃6〉

〈〈
w̃4

2

〉〉
=

〈
w̃4

2

〉
− 4 〈w̃2〉

〈
w̃3

2

〉
− 3

〈
w̃2

2

〉2
+ 12 〈w̃2〉2 − 6 〈w̃2〉4

〈〈
w̃2

2w̃4

〉〉
=

〈
w̃2

2w̃4

〉
− 2 〈w̃2〉 〈w̃2w̃4〉 −

〈
w̃2

2

〉
〈w̃4〉 + 2 〈w̃2〉2 〈w̃4〉

〈〈w̃2w̃6〉〉 = 〈w̃2w̃6〉 − 〈w̃2〉 〈w̃6〉
〈〈

w̃2
4

〉〉
=

〈
w̃2

4

〉
− 〈w̃4〉2

〈〈w̃8〉〉 = 〈w̃8〉 .

(42)

4. Holomorphic symplectic manifolds

4.1. Definition and general properties.

Definition 11. A holomorphic symplectic manifold (X,σ) is a compact com-
plex manifold X together with an everywhere non-degenerate holomorphic two-
form σ ∈ H0(X,Ω2

X). Here, we call σ everywhere non-degenerate if σ induces
an isomorphism TX → ΩX .
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The holomorphic symplectic manifold (X,σ) is called irreducible if it is simply-
connected and H0(X,Ω2

X) is one-dimensional, i.e. spanned by σ.

It follows immediately that every holomorphic symplectic manifold X has triv-
ial canonical bundle whose sections are multiples of σn, and, therefore, vanish-
ing first Chern class. In fact, all odd Chern classes vanish:

Proposition 7. Let X be a complex manifold and E a complex vector bundle
on X. If E admits a symplectic two-form, i.e. there exists a section σ ∈
H0(X,Λ2E∗) such that the induced morphism E → E∗ is an isomorphism, all
odd Chern classes of E vanish.

Remark 9. That the odd Chern classes of E vanish up to two-torsion follows
immediately from the fact c2k+1(E) = −c2k+1(E

∗) for k ∈ N0.

The following proof using the splitting principle has been suggested to me by
Manfred Lehn.

Proof. We prove the proposition by induction over the rank of E. For rkE = 0,
the claim is obvious.
By the splitting principle (see e.g. [5]), we can assume that E has a subbundle
L of rank one. Let L⊥ be the σ-orthogonal subbundle to L of E. Since σ is
symplectic, L⊥ is of rank n − 1 and L is a subbundle of L⊥. We have the
following short exact sequences of bundles on X:

0 −−−−→ L −−−−→ E −−−−→ E/L −−−−→ 0

and

0 −−−−→ L⊥/L −−−−→ E/L −−−−→ E/L⊥ −−−−→ 0.

Since σ induces a symplectic form on L⊥/L, by induction, all odd Chern classes
of this bundle of rank rkE − 2 vanish. Furthermore, note that σ induces an
isomorphism between L and (E/L⊥)∗, so all odd Chern classes of L ⊕ E/L⊥

vanish.
Now, the two exact sequences give us c(E) = c(L⊕E/L⊥)·c(L⊥/L). Therefore,
we can conclude that all odd Chern classes of E vanish. ¤

Proposition 8. For any irreducible holomorphic symplectic manifold (X,σ)
of dimension 2n and k ∈ 0, . . . , n the space H2k(X,OX) is one-dimensional
and spanned by the cohomology class [σ̄]k.

Proof. See [2]. ¤

4.2. A pairing on the cohomology of a holomorphic symplectic
manifold. Let (X,σ) be a holomorphic symplectic manifold. There is a nat-
ural pairing of coherent sheafs

Λ∗TX ⊗ Λ∗ΩX → OX .(43)
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As the natural morphism from Λ∗TX to Λ∗TX is an isomorphism and Λ∗TX

can be identified with Λ∗ΩX by means of the symplectic form, we therefore
have a natural map

Λ∗Ω ⊗ Λ∗ΩX → OX .(44)

We write

〈·, ·〉 : Hp(X,Ω∗) ⊗ Hq(X,Ω∗) → Hp+q(X,OX), (α, β) 7→ 〈α, β〉(45)

for the induced map for any p, q ∈ N0.
In [10] we proved the following proposition:

Proposition 9. For any α ∈ H∗(X,Ω∗) we have∫

X

α exp σ =

∫

X

〈α, exp σ〉 expσ.(46)

4.3. Example series. There are two main series of examples of irreducible
holomorphic symplectic manifolds. Both of them are based on the Hilbert
schemes of points on a surface:
Let X be any smooth projective surface over C and n ∈ N0. By X [n] we
denote the Hilbert scheme of zero-dimensional subschemes of length n of X.
By a result of Fogarty ([4]), X [n] is a smooth projective variety of dimension
2n. The Hilbert scheme can be viewed as a resolution ρ : X [n] → X(n) of the
n-fold symmetric product X(n) := Xn/Sn. The morphism ρ, sending closed
points, i.e. subspaces of X, to their support counting multiplicities, is called
the Hilbert-Chow morphism.
Let α ∈ H2(X, C) be any class. The class

∑n
i=1 pr∗i α ∈ H2(Xn, C) is invariant

under the action of Sn, where pri : Xn → X denotes the projection on the
ith factor. Therefore, there exists a class α(n) ∈ H2(X(n), C) with π∗α(n) =∑n

i=1 pr∗i α, where π : Xn → X(n) is the canonical projection. Using ρ this

induces a class α[n] in H2(X [n], C).
If X is a K3 surface or an abelian surface, there exists a holomorphic symplectic
form σ ∈ H2,0(X) ⊆ H2(X, C). It was shown by Beauville in [2] that σ[n] is
again symplectic, so (X [n], σ[n]) is a holomorphic symplectic manifold.

Example 7. For any K3 surface X and holomorphic symplectic form σ ∈
H2,0(X), the pair (X [n], σ[n]) is in fact an irreducible holomorphic symplec-
tic manifold.

This has also been proven by Beauville. In the case of an abelian surface A,
we have to work a little bit more as A[n] is not irreducible in this case:
Let A be an abelian surface and let us denote by s : A[n] → A the composition
of the summation morphism A(n) → A with the Hilbert-Chow morphism ρ :
A[n] → A(n).

Definition 12. For any n ∈ N, the nth generalised Kummer variety A[[n]] is
the fibre of s over 0 ∈ A. For any class α ∈ H2(A, C), we set α[[n]] := α[n]|A[[n]] .

Remark 10. For n = 2 the generalised Kummer variety coincides with the
Kummer model of a K3 surface (therefore the name).
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Example 8. For every abelian surface A and holomorphic symplectic form
σ ∈ H2,0(A), the pair (A[[n]], σ[[n]]) is an irreducible holomorphic symplectic
manifold of dimension 2n − 2.

The proof can also be found in [2].

4.4. About α[n] and α[[n]]. Let X be any smooth projective surface and n ∈
N0.
Let X [n,n+1] denote the incidence variety of all pairs (ξ, ξ′) ∈ X [n]×X [n+1] with
ξ ⊆ ξ′ (see [3]). We denote by ψ : X [n,n+1] → X [n+1] and by φ : X [n,n+1] →
X [n] the canonical maps. There is a third canonical map χ : X [n,n+1] → X
mapping (ξ, ξ′) 7→ x if ξ′ is obtained by extending ξ at the closed point x ∈ X.

Proposition 10. For any α ∈ H2(X, C) we have

ψ∗α[n+1] = φ∗α[n] + χ∗α.(47)

Proof. Let p : X(n) × X → X(n) and q : X(n) × X → X denote the canonical
projections. Let τ : X(n) × X → X(n+1) the obvious symmetrising map. The
following diagram

X [n,n+1] X [n,n+1]

(φ,χ)

y
yψ

X [n] × X X [n+1]

ρ×idX

y
yρ′

X(n) × X
τ−−−−→ X(n+1)

π×idX

x
xπ′

Xn+1 Xn+1

is commutative. (Note that we have primed some maps to avoid name clashes.)
We claim that τ∗α(n+1) = p∗α(n) + q∗α. In fact, since

(π × idX)∗τ∗α(n+1) = π′∗α(n+1) =

n+1∑

i=1

pr∗i α,

this follows from the definition of α(n). Finally, we can read off the diagram
that

ψ∗α[n+1] = ψ∗ρ′∗α(n+1) = (φ, χ)∗(ρ × idX)∗τ∗α(n+1)

= (φ, χ)∗(ρ × idX)∗(p∗α(n) + q∗α) = φ∗α[n] + χ∗α.

¤
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Proposition 11. Let X = X1 t X2 be the disjoint union of two projective
smooth surfaces X1 and X2. We then have

X [n] =
⊔

n1+n2=n

X
[n1]
1 × X

[n2]
2 .(48)

If α ∈ H2(X, C) decomposes as α|X1
= α1 and α|X2

= α2, then α[n] decomposes
as

α[n]|
X

[n1]

! ×X
[n2]
2

= pr∗1 α
[n1]
1 + pr∗2 α

[n2]
2 .(49)

Proof. The splitting of X [n] follows from the universal property of the Hilbert
scheme and is a well-known fact. The statement on α[n] is easy to prove and

so we shall only give a sketch: Let us denote by i : X
[n1]
1 × X

[n2]
2 → X [n] the

natural inclusion. Furthermore let j : X
(n1)
1 ×X

(n2)
2 → X(n) denote the natural

symmetrising map. The following diagram is commutative:

X
[n1]
1 × X

[n2]
2

i−−−−→ X [n]

ρ1×ρ2

y
yρ

X
(n1)
1 × X

(n2)
2 −−−−→

j
X(n),

(50)

where the ρi : X
[ni]
i → X

(ni)
i are the Hilbert-Chow morphisms. Since j∗α(n) =

pr∗1 α
(n1)
1 + pr∗2 α

(n2)
2 , the commutativity of the diagram proves the statement

on α[n]. ¤

Let A be again an abelian surface and n ∈ N. Since A acts on itself by
translation, there is also an induced operation of A on the Hilbert scheme
A[n]. Let us denote the restriction of this operation to the generalised Kummer
variety A[[n]] by ν : A×A[[n]] → A[n]. It fits into the following cartesian square:

A × A[[n]] ν−−−−→ A[n]

pr1

y
ys

A −−−−→
n

A,

(51)

where s is the summation map as having been defined above and n : A →
A, a 7→ na is the (multiplication-by-n)-morphism. Since n is a Galois cover of
degree n4, the same holds true for ν.

Proposition 12. For any α ∈ H2(A, C), we have

ν∗α[n] = npr∗1 α + pr∗2 α[[n]].(52)

Proof. By the Künneth decomposition theorem, we know that ν∗α[n] splits:

ν∗α[n] = pr∗1 α1 + pr∗2 α2.
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Set ι1 : A → A×A[[n]], a 7→ (a, ξ0) and ι2 : A[[n]] → A×A[[n]], ξ 7→ (0, ξ), where
ξ0 is any subscheme of length n concentrated in 0. We have

α1 = ι∗1ν
∗α[n] = (ρ ◦ ν ◦ ι1)

∗α(n) = (a 7→ (a, . . . a︸ ︷︷ ︸
n

))∗α(n) = nα(53)

and

α2 = ι∗2ν
∗α[n] = i∗α[n] = α[[n]],(54)

where i : A[[n]] → A[n] is the natural inclusion map, thus proving the proposi-
tion. ¤

4.5. Complex genera of Hilbert schemes of points on surfaces. The
following theorem is an adaption of Theorem 4.1 of [3] to our context.

Theorem 1. Let P be a polynomial in the variables c1, c2, . . . and α over
Q. There exists a polynomial P̃ ∈ Q[z1, z2, z3, z4] such that for every smooth
projective surface X, α ∈ H2(X, Q) and n ∈ N0 we have:

∫

X[n]

P (c∗(X
[n]), α[n]) = P̃

(∫

X

α2/2,

∫

X

c1(X)α,

∫

X

c1(X)2/2,

∫

X

c2(X)

)
.

(55)

Proof. The proof goes along the very same lines as the proof of Proposition 0.5
in [3] (see there). The only new thing we need is Proposition 10 of this paper
to be used in the induction step of the adapted proof of Proposition 3.1 of [3]
to our situation. ¤

Let R be any Q-algebra (commutative and with unit) and let φ ∈ R[[c1, c2, . . . ]]
be a non-vanishing power series in the universal Chern classes such that φ is
multiplicative with respect to the Whitney sum of vector bundles, i.e.

φ(E ⊕ F ) = φ(E)φ(F )(56)

for all complex manifolds and complex vector bundles E and F on X. Any
φ with this property induces a complex genus, also denoted by φ, by setting
φ(X) :=

∫
X

φ(TX) for X a compact complex manifold. Let us call such a φ
multiplicative.

Remark 11. By Hirzebruch’s theory of multiplicative sequences and complex
genera ([6]), we know that

(1) each complex genus is induced by a unique multiplicative φ, and
(2) the multiplicative elements in R[[c1, c2, . . . ]] are exactly those of the

form exp(
∑∞

k=1 aksk) with ak ∈ R.

More or less formally the following theorem follows from Theorem 1.

Theorem 2. For each multiplicative φ ∈ R[[c1, c2, . . . ]], there exist unique
power series Aφ(p), Bφ(p), Cφ(p),Dφ(p) ∈ pR[[p]] with vanishing constant co-
efficient such that for all smooth projective surfaces X and α ∈ H2(X, C) we
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have:

(57)

∞∑

n=0

(∫

X[n]

φ(X [n]) exp(α[n])

)
pn

= exp

(
Aφ(p)

∫

X

α2/2 + Bφ(p)

∫

X

c1(X)α

+ Cφ(p)

∫

X

c2
1(X)/2 + Dφ(p)

∫

X

c2(X)

)
.

The first terms of Aφ(p), Bφ(p), Cφ(p),Dφ(p) are given by

(58)

Aφ(p) = p + O(p2), Bφ(p) = φ1p + O(p2), Cφ(p) = φ11p + O(p2), and

Dφ(p) = φ2p + O(p2),

where φ1 is the coefficient of c1 in φ, φ11 the coefficient of c2
1/2 and φ2 the

coefficient of c2.

Proof. This theorem is again an adaption of a theorem (Theorem 4.2) of [3] to
our context. Nevertheless, let us give the proof here:
Set K :=

{
(X,α) : X is a smooth projective surface and α ∈ H2(X, C)

}
and

let γ : K → Q4 be the map (X,α) 7→ (α2/2, c1(X)α, c1(X)2/2, c2(X)). Here,
we have supressed the integral signs

∫
X

and interpret the expressions α2, etc.

as intersection numbers on X. The image of K spans the whole Q4 (for explicit
generators, we refer to [3]).
Now let us assume that a (X,α) ∈ K decomposes as (X,α) = (X1, α1) t
(X2, α2). By the multiplicative behaviour of φ and exp we see that

∫

X[n]

φ(c∗(X
[n])) exp(α[n])

=
∑

n1+n2=n

(∫

X
[n1]
1

φ(c∗(X
[n1])) exp(α

[n1]
2 )

) (∫

X
[n2]
2

φ(c∗(X
[n2])) exp(α

[n2]
2 )

)
,

whereas Hφ(p)(X,α) :=
∑∞

n=0

(∫
X[n] φ(X [n]) exp(α[n])

)
pn fulfills

Hφ(p)(X,α) = Hφ(p)(X1, α1)Hφ(p)(X2, α2).(∗)
Since Hφ(p) : K → Q4 factors through γ and a map h : Q4 → R[[p]] by
Theorem 1 and as the image of γ is Zariski dense in Q4, we conclude from (∗)
that log h is a linear function which proves the first part of the theorem.
To get the first terms of the power series, we expand both sides of (57). The
left hand side expands as

1 + (α2/2 + φ1c1(X)α +
φ11

2
c2
1(X) + φ2c2(X))p + O(p2),(59)

while the right hand side expands as

1 + (A1α
2/2 + B1c1(X)α + C1c1(X)2 + D1c2(X))p + O(p2),(60)
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where A1, B1, C1,D1 are the linear coefficients of Aφ, Bφ, Cφ, and Dφ, which
can therefore be read off by comparing the expansions. ¤

Corollary 1. Let X be any smooth projective surface, α ∈ H2(X, C), and
n ∈ N0. Then

∫

X[n]

exp(α[n] + ᾱ[n]) =
1

n!

(∫

X

αᾱ

)n

.(61)

For X = A an abelian surface and n ∈ N, we get

∫

A[[n]]

exp(α[[n]] + ᾱ[[n]]) =
n

(n − 1)!

(∫

X

αᾱ

)n−1

.(62)

Proof. By Theorem 2, in C[[q]]:

∞∑

n=0

(∫

X[n]

exp(q
1
2 (α[n] + ᾱ[n]))

)
pn = exp(pq

∫

X

αᾱ + O(p2)),(63)

which proves the first part of the corollary by comparing coefficients of q.
For the Kummer case, we calculate

∫

A[[n]]

exp(α[[n]] + ᾱ[[n]]) =

∫
A[[n]] exp(α[[n]] + ᾱ[[n]])

∫
A

exp(nα + nᾱ)∫
A

exp(nα + nᾱ)

= n2

∫
A[n] exp(α[n] + ᾱ[n])∫

A
exp(α + ᾱ)

,

which proves the rest of the corollary. ¤

Let ch be the universal Chern character. By sk = (2k)!ch2k we denote its
components. They span the whole algebra of characteristic classes, i.e. we have
Q[s1, s2, . . . ] = Q[c1, c2, . . . ].
Let us fix the power series

φ := exp(
∞∑

k=1

a2ks2ktk) ∈ Q[a2, a4, . . . ][t][[c1, c2, . . . ]].

This multiplicative series gives rise to four power series

Aφ(p), Bφ(p), Cφ(p),Dφ(p) ∈ pR[[p]]

according to the previous Theorem 2. We shall set for the rest of this article

A(t) := Aφ(1), and D(t) := Dφ(1)(64)

The constant terms of these power series in t are given by

A(t) = 1 + O(t), and D(t) = O(t).(65)
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5. Rozansky-Witten classes and invariants

The idea to associate to every graph Γ and every hyperkähler manifold X a
cohomology class RWX(Γ) is due to L. Rozansky and E. Witten (c.f. [15]).
M. Kapranov showed in [8] that the metric structure of a hyperkähler man-
ifold is not nessessary to define these classes. It was his idea to build the
whole theory upon the Atiyah class and the symplectic structure of an irre-
ducible holomorphic symplectic manifold. We will make use of his definition
of Rozansky-Witten classes in this section. A very detailed text on defining
Rozansky-Witten invariants is the thesis by J. Sawon [16].

5.1. Definition. Let (X,σ) be a holomorphic symplectic manifold. Let us
work in the category of complexes of coherent sheaves on X. In this category,
we have for every n ∈ Z a functor V 7→ V [n] that shifts a complex V by n to
the left. Due to the Koszul sign rule (i.e. the natural map (V [m]) ⊗ (W [n]) →
(W [n]) ⊗ (V [m]) for sheaves V and W and integers n and m incorporates a
sign (−1)mn), we have Sn(V [1]) = (ΛnV )[n] and Sn(V [1]) = (ΛnV )[n].
Every Jacobi diagram Γ with k trivalent and l univalent vertices defines in the
category of complexes of coherent sheaves on X a morphism

ΦΓ : SkΛ3(TX [−1]) ⊗ Sl(TX [−1]) → SeS2(TX [−1]),(66)

where TX [−1] is the tangent sheaf of X shifted by one and 2e = 3k + l. By the
sign rule above, this is equivalent to being given a map:

(ΛkS3TX ⊗ ΛlTX)[−3k − l] → (SeΛ2TX)[−2e],(67)

which is induced by a map

ΛkS3TX ⊗ ΛlTX → SeΛ2TX(68)

in the category of coherent sheaves on X. This gives rise to a map

ΨΓ : ΛkS3TX ⊗ SeΛ2ΩX → ΛlΩX .(69)

Let α̃ ∈ H1(X,Ω ⊗ End TX) be the Atiyah class of X, i.e. α̃ represents the
extension class of the sequence

0 −−−−→ ΩX ⊗ TX −−−−→ J1TX −−−−→ TX −−−−→ 0(70)

in Ext1X(TX ,ΩX ⊗ TX) = H1(X,ΩX ⊗ End TX). Here, J1TX is the bundle of
one-jets of sections of TX (for more on this, see [8]). The Atiyah class can also
be viewed as the obstruction for a global holomorphic connection to exist on
TX . We set α := i/(2π)α̃.
We use σ to identify the tangent bundle TX of X with its cotangent bundle
ΩX . Doing this, α can be viewed as an element of H1(X, T ⊗3

X ). Now the point
is that α is not any such element. The following proposition was proven by
Kapranov in [8]:

Proposition 13.

α ∈ H1(X,S3TX) ⊆ H1(X, T ⊗3
X ).(71)
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Therefore, α∪k ∪ σ∪l ∈ Hk(X,ΛkS3TX ⊗ SlΛ2ΩX). Applying the map ΨΓ on
the level of cohomology eventually leads to an element

RWX,σ(Γ) := ΨΓ
∗ (α∪k ∪ σ∪l) ∈ Hk(X,Ωl

X).(72)

We call RWX,σ(Γ) the Rozansky-Witten class of (X,σ) associated to Γ.
For a C-linear combination γ of Jacobi diagrams, RWX,σ(γ) is defined by linear
extension.
In [8], Kapranov also showed the following proposition, which is crucial for the
next definition. It follows from a Bianchi-identity for the Atiyah class.

Proposition 14. If γ is a Q-linear combination of Jacobi diagrams that is
zero modulo the anti-symmetry and IHX relations, then RWX,σ(γ) = 0.

Definition 13. We define a double-graded linear map

RWX,σ : B̂ → H∗(X,Ω∗
X),(73)

which maps Bk,l into Hk(X,Ωl
X) by mapping a homology class of a Jacobi

diagram Γ to RWX,σ(Γ).

Definition 14. Let γ ∈ B̂ be any graph. The integral

bγ(X,σ) :=

∫

X

RWX,σ(γ) exp(σ + σ̄)(74)

is called the Rozansky-Witten invariant of (X,σ) associated to γ.

5.2. Examples and properties of Rozansky-Witten classes. We sum-
marise in this subsection the properties of the Rozansky-Witten classes that
will be of use for us. For proofs take a look at [10], please.
Let (X,σ) again be a holomorphic symplectic manifold.

Proposition 15. The map RWX,σ : B̂ → H∗,∗(X) is a morphism of graded
algebras.

Proposition 16. For all γ ∈ B̂′ and γ′ ∈ B̂ we have

RWX,σ(〈γ, γ′〉) = 〈RWX,σ(γ),RWX,σ(γ′)〉 .(75)

Example 9. The cohomology class [σ] ∈ H2,0(X) is a Rozansky-Witten class;
more precisely, we have

RWX,σ(`) = 2[σ].(76)

Example 10. The components of the Chern charakter are Rozansky-Witten
invariants:

−RWX,σ(w2k) = RWX,σ(w̃2k) = s2k.(77)

The next two proposition actually aren’t stated in [10], so we shall give ideas
of their proofs here.

Proposition 17. Let ν : (X, ν∗σ) → (Y, σ) be a Galois cover of holomorphic

symplectic manifolds. For every graph homology class γ ∈ B̂,

RWX,ν∗σ(γ) = ν∗ RWY,σ(γ).(78)
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Proof. As ν is a Galois cover, we can identify TX with ν∗TY and so α̃X with
ν∗α̃Y where α̃X and α̃Y are the Atiyah classes of X and Y . By definition of
the Rozansky-Witten classes, (78) follows. ¤

Lemma 2. Let (X,σ) and (Y, τ) be two holomorphic symplectic manifolds. If
the tangent bundle of Y is trivial,

RWX×Y,p∗σ+q∗τ (γ) = p∗ RWX,σ(γ)(79)

for all graphs γ ∈ B̂′. Here p : X × Y → X and q : X × Y → Y denote the
canonical projections.

Proof. This lemma is a special case of the more general proposition in [16]
that relates the coproduct in graph homology with the product of holomorphic
symplectic manifolds. Since all Rozansky-Witten classes for graphs with at
least one trivalent vertex vanish on Y , our lemma follows easily from J. Sawon’s
statement. ¤

5.3. Rozansky-Witten classes of closed graphs. Let γ be a homoge-
neous closed graph of degree 2k. For every compact holomorphic symplectic
manifold (X,σ), we have RWX,σ(γ) ∈ H0,2k(X). If X is irreducible, we there-
fore have RWX,σ(γ) = βγ · [σ̄]k for a certain βγ ∈ C. We can express βγ

as

βγ =

∫
X

RWX,σ(γ)σ̄n−kσn

∫
X

(σσ̄)n
=

(n − k)!

n!

∫
X

RWX,σ(γ) exp(σ + σ̄)∫
X

exp(σ + σ̄)
(80)

where 2n is the dimension of X.
This formula makes also sense for non-irreducible X, which leads us to the
following definition:

Definition 15. Let (X,σ) be a compact holomorphic symplectic manifold
(X,σ) of dimension 2n. For any homogeneous closed graph homology class γ
of degree 2k with k ≤ n we set

βγ(X,σ) :=
(n − k)!

n!

∫
X

RWX,σ(γ) exp(σ + σ̄)∫
X

exp(σ + σ̄)
(81)

By linear extension, we can define βγ(X,σ) also for non-homogeneous closed
graph homology classes γ.

Remark 12. The map tB̂ → C, γ 7→ βγ(X,σ) is linear. If X is irreducible, it is
also a homomorphism of rings.

For polywheels w̃2λ, we can express β〈w̃2λ〉 in terms of characteristic classes:

Proposition 18. Let (X,σ) be a compact holomorphic symplectic manifold of
dimension 2n and k ∈ {1, . . . , n}. Let λ ∈ P (k) be any partition of k. Then

∫

X

RWX,σ(〈w̃2λ〉) exp(σ + σ̄) =

∫

X

s2λ(X) exp(σ + σ̄).(82)
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Proof. We calculate

(83)

∫

X

RWX,σ(〈w̃2λ〉) exp(σ + σ̄) =

∫

X

RWX,σ(〈w̃2λ, exp(`/2)〉) exp(σ + σ̄)

=

∫

X

〈s2λ, exp σ〉 exp(σ + σ̄) =

∫

X

s2λ exp(σ + σ̄).

¤

6. Calculation for the example series

6.1. Proof of the main theorem. Let X be a smooth projective surface
that admits a holomorphic symplectic form (e.g. a K3 surface or an abelian
surface). Let us fix a holomorphic symplectic form σ ∈ H2,0(X) that is nor-
malised such that

∫
X

σσ̄ = 1. It is known ([9]) that X [n] for all n ∈ N0 is a
compact holomorphic symplectic manifold.
For every homogeneous closed graph homology class γ of degree 2k and every
n ∈ N0, we set

hX
γ (n) := βγ(X [k+n], σ[k+n]).(84)

By linear extension, we define hX
γ (n) for non-homogeneous closed graph ho-

mology classes γ.

Proposition 19. For all closed graph homology classes γ, we have

∞∑

n=0

qn

n!
hX

γ (n) =

∞∑

l=0

∫

X[l]

RWX[l],σ[l](γ) exp(q
1
2 (σ[l] + σ̄[l]))(85)

in C[[q]].

Proof. Let us assume that γ is homogeneous of degree 2k. Then

hX
γ (n) = βγ(X [k+n], σ[k+n]) =

n!

(n + k)!

∫
X[k+n] RWX[k+n],σ[k+n](γ) exp(σ[k+n] + σ̄[k+n])∫

X[k+n] exp(σ[k+n] + σ̄[k+n])

= n!

∫

X[k+n]

RWX[k+n],σ[k+n](γ) exp(σ + σ̄).

In the last equation we have used Corollary 1. Summing up and introducing
the counting parameter q yields the claim. ¤

Proposition 20. Let a2, a4, . . . be formal parameters. We set

ω(t) :=

∞∑

k=1

a2ktkw̃2k ∈ B̂1[a2, a4, . . . ][t](86)
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and call ω the universal wheel. Further, we set W (t) := exp(ω(t)) and W :=
W (1). The Rozansky-Witten classes of the universal wheel are encoded by

∞∑

n=0

qn

n!
hX
〈W (t)〉(n) = exp(qA(t)) exp(c2(X)D(t)).(87)

Proof. Using Proposition 19 and Proposition 18 yields:

∞∑

n=0

qn

n!
hX
〈W (t)〉(n) =

∞∑

l=0

∫

X[l]

RWX[l],σ[l](〈W (t)〉) exp(q
1
2 (σ[l] + σ̄[l]))

=

∞∑

l=0

∫

X[l]

exp

( ∞∑

k=1

a2ks2k(X [l])tk

)
exp(q

1
2 (σ[l] + σ̄[l]))

= exp(qA(t)) exp(c2(X)D(t)).

¤

Corollary 2. For every n ∈ N0 we have

hX
〈W (t)〉(n) = exp(c2(X)D(t)) exp(n log A(t))(88)

Proof. Comparision of coefficients in (87) gives

hX
〈W (t)〉(n) = A(t)n exp(c2(X)D(t)).

Lastly, note that A is a power series in t that has constant coefficient one. ¤

Remark 13. By equation (88) we shall extend the definition of hX
〈W (t)〉(n) to

all n ∈ Z.

Proposition 21. Let A be an abelian surface. Let us fix a holomorphic sym-
plectic form σ ∈ H2,0(A) that is normalised such that

∫
A

σσ̄ = 1.
Let γ be a homogeneous connected closed graph of degree 2k. Then we have

βγ(A[[n]], σ[[n]]) =
n

n − k
βγ(A[n], σ[n])(89)

for any n > k.

Proof. The proof is a straight-forward calculation:

βγ(A[[n]], σ[[n]]) =
(n − 1 − k)!

(n − 1)!

∫
A[[n]] RWA[[n]],σ[[n]](γ) exp(σ[[n]] + σ̄[[n]])∫

A[[n]] exp(σ[[n]] + σ̄[[n]])

=
(n − 1 − k)!

(n − 1)!

∫
A[[n]] RWA[[n]],σ[[n]](γ) exp(σ[[n]] + σ̄[[n]])∫

A[[n]] exp(σ[[n]] + σ̄[[n]]

∫
A

exp(nσ + nσ̄)∫
A

exp(nσ + nσ̄)

=
(n − 1 − k)!

(n − 1)!

∫
A[n] RWA[n],σ[n](γ) exp(σ[n] + σ̄[n])∫

A[n] exp(σ[n] + σ̄[n])
=

n

n − k
βγ(A[n], σ[n]),

where we have used Proposition 12, Proposition 17 and Lemma 2. ¤
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Theorem 3. For any homogenous connected closed graph of degree 2k lying in
the algebra C of polywheels there exist two rational numbers aγ , cγ such that for
each K3 surface X together with a symplectic form σ ∈ H2,0(X) with

∫
X

σσ̄ = 1
and n ≥ k we have

βγ(X [n], σ[n]) = aγn + cγ(90)

and that for each abelian surface A together with a symplectic form σ ∈ H2,0(X)
with

∫
X

σσ̄ = 1 and n > k we have

βγ(A[[n]], σ[[n]]) = aγn.(91)

Proof. Let (X,σ) be a K3 surface or an abelian surface together with a sym-
plectic form with

∫
X

σσ̄ = 1. Let W2k be the homogeneous component of

degree 2k of W (1). Then W (t) =
∑∞

k=0 W2ktk. Thus we have by (88):

hX
〈W (t)〉(n) =

∞∑

k=0

hX
〈W2k〉(n)tk = Uc2(X)(t) exp(nV (t))(92)

with Uc2(X)(t) := exp(c2(X)D(t)) and V (t) := log A(t).
Let us consider the case of a K3 surface X first. Note that c2(X) = 24. By
definition of hX

γ (n) we have

β〈W2k〉(X
[n], σ[n]) = hX

〈W2k〉(n − k)(93)

for all n ≥ k. For n < k we take this equation as a definition for its
left hand side. Let the power series T (t) ∈ Q[a2, a4, . . . ][[t]] be defined by

T (t exp(V (t))) = t, and set Ṽ (t) := V (T (t)) and Ũ := U24(T (t))
1+T (t)V ′(T (t)) . By

Lemma 1, we have

β〈W (t)〉(X
[n], σ[n]) =

∞∑

k=0

hX
〈W2k〉(n − k)tk = Ũ(t) exp(nṼ (t)).

Note that W (t) is of the form exp(γ) where γ is a connected graph. By Propo-
sition 6 and Remark 12 we therefore have

β〈〈W (t)〉〉(X
[n], σ[n]) = βlog 〈W (t)〉(X

[n], σ[n]) = log β〈W (t)〉 = nṼ (t) + log U(t).

Finally, let λ be any partition. Setting

∂2λ :=

( ∞∏

i=1

∂λi

∂aλi
i

∣∣∣∣∣
ai=0

)∣∣∣∣∣
t=0

.

It is

β〈〈w̃2λ〉〉 = ∂2λβ〈〈W (t)〉〉 = n∂2λṼ (t) + ∂2λ log Ũ(t),

so the theorem is proven for K3 surfaces and all connected graph homology
classes of the form 〈〈w̃2λ〉〉 and thus for all connected graph homology classes
in C.
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Let us now turn to the case of a generalised Kummer variety, i.e. let X = A
be an abelian surface and n ≥ 1. Note that c2(A) = 0. Here, we have due to
Proposition 21:

β〈W2k〉(A
[[n]], σ[[n]]) =

n

n − k
hA
〈W2k〉(n − k)

for n > k. For n ≤ k we take this equation as a definition for its left hand side.
As U0(t) = 1, Lemma 1 yields in this case that

β〈W (t)〉(A
[[n]], σ[[n]]) =

∞∑

k=0

n

n − k
hX
〈W2k〉(n − k)tk = expnṼ (t).

We can then proceed as in the case of the Hilbert scheme of a K3 surface to
finally get

β〈〈w̃2λ〉〉 = n∂2λ(Ṽ (t)).

¤

6.2. Some explicit calculations. Now, we’d like to calculate the constants
aγ and cγ for any homogeneous connected closed graph homology class γ of
degree 2k lying in C. By the previous theorem, we can do this by calculating
βγ on (X,σ) for (X,σ) being the 2k-dimensional Hilbert scheme of points on
a K3 surface and the 2k-dimensional generalised Kummer variety.
We can do this by recursion over k: Let the calculation having been done for
homogeneous connected closed graph homology classes γ of degree less than 2k
in C and both example series.
Let λ be any partition of k. We can express 〈〈w̃2λ〉〉 as

〈〈w̃2λ〉〉 = 〈w̃2λ〉 + P,(94)

where P is a polynomial in homogeneous connected closed graph homology
classes γ of degree less than 2k in C (for this see Proposition 6). Therefore,
β〈〈w̃2λ〉〉(X,σ) is given by

β〈〈w̃2λ〉〉(X,σ) = β〈w̃2λ〉(X,σ) + P ′,(95)

where P ′ is a polynomial in terms like βγ′(X,σ) with γ′ ∈ C and deg γ′ <
2k. However, these terms have been calculated in previous recursion steps.
Therefore, the only thing new we have to calculate in this recursion step is
β〈w̃2λ〉(X,σ). We have:

β〈w̃2λ〉(X,σ) =
1

k!

∫
X

RWX,σ(w̃2λ) exp(σ + σ̄)∫
X

exp(σ + σ̄)
=

∫
X

s2λ(X)∫
X

exp (σ + σ̄)
.(96)

As all the Chern numbers of X can be computed with the help of Bott’s residue
formula (see [3] for the case of the Hilbert scheme and [11] for the case of the
generalised Kummer variety), we therefore are able to calculate β〈w̃2λ〉(X,σ).
This ends the recursion step as we have given an algorithm to compute aγ and
cγ for any homogeneous connected closed graph homology class γ of degree 2k
in C.
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We worked through the recursion for k = 1, 2, 3. Firstly, we have

〈〈w̃2〉〉 = 〈w̃2〉
〈〈

w̃2
2

〉〉
= 〈w̃4〉 − 〈〈w̃2〉〉2

〈〈w̃4〉〉 = 〈w̃4〉
〈〈

w̃3
2

〉〉
=

〈
w̃3

2

〉
− 3 〈〈w̃2〉〉

〈〈
w̃2

2

〉〉
− 〈〈w̃2〉〉3

〈〈w̃2w̃4〉〉 = 〈w̃2w̃4〉 − 〈〈w̃2〉〉 〈〈w̃4〉〉
〈〈w̃6〉〉 = 〈w̃6〉 .

(97)

Not let X be a K3 surface and A an abelian surface. Let us denote by σ
either a holomorphic symplectic two-form on X with

∫
X

σσ̄ = 1 or on A with∫
A

σσ̄ = 1. We use the following table of Chern numbers for the Hilbert scheme
of points on a K3 surface:

k s s[X [k]] s[A[[k+1]]]

1 s2 -48 -48
2 s2

2 3312 3024
s4 360 1080

3 s3
2 -294400 -241664

s2s4 -29440 -66560
s6 -4480 -22400

Going through the recursion, we arrive at the following table:

k γ βγ(A[[k+1]]) βγ(X [k]) aγ cγ

1 〈〈w̃2〉〉 -24 -48 12 -36
2

〈〈
w̃2

2

〉〉
-288 -288 -96 -96

〈〈w̃4〉〉 360 360 120 120

3
〈〈

w̃3
2

〉〉
-5120 -4096 -1280 -256

〈〈w̃2w̃4〉〉 6400 5120 1600 320
〈〈w̃6〉〉 -5600 -4480 -1400 -280

Now, we would like to turn to Rozansky-Witten invariants: Let γ be any
homogeneous closed graph homology class of degree 2k. For any holomorphic
symplectic manifold (X,σ) of dimension 2n, the associated Rozansky-Witten
invariant is given by

(98) bγ(X,σ) =

∫

X

RWX,σ(γ) exp(σ + σ̄) =
1

n!(n − k)!
βγ(X,σ)

∫

X

(σσ̄)n

=
n!

(n − k)!
βγ(X,σ)

∫

X

exp(σ + σ̄).

To know the Rozansky-Witten invariant associated to closed graph homology
classes, we therefore have just to calculate the value of βγ . On an irreducible
holomorphic symplectic manifold, γ 7→ βγ is multiplicative with respect to
the disjoint union of graphs, so it is enough to calculate βγ for connected
closed graph homology classes. However, we have just done this for the Hilbert
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schemes of points on a K3 surface and the generalised Kummer varieties — as
long as γ is spanned by the connected polywheels.
By the procedure outlined above, Theorem 3 therefore enables us to compute
all Rozansky-Witten invariants of the two example series associated to closed
graph homology classes lying in C.
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