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Abstract. The classification of compact and simply connected PL
4-manifolds states that the homeomorphism classes coincide with the
homotopy classes, and that these are classified by the intersection
form. We show here that “most” of these classes with an indefinite
intersection form can be represented by a tight polyhedral embedding
into some Euclidean space. It remains open which of the PL structures
can be realized in such a way.
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Introduction and Result

An embedding M → E
N of a compact manifold into Euclidean space is called

tight, if for any open half space E+ ⊂ E
N the induced homomorphism

H∗(M ∩ E+) −→ H∗(M)

is injective where H∗ denotes an appropriate homology theory with coefficients
in a certain field. In the smooth case (and, with certain modifications, also in
the polyhedral case) this is equivalent to the condition that almost all height
functions on M are perfect functions, i.e., have the minimum number of critical
points which coincides with the sum of the Betti numbers. For a survey on
tightness see [14] or [3].

1The main result of this paper was first presented at the TFB conference on this occasion

at Providence, RI, Nov. 1, 2003.
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For compact 2-manifolds without boundary this is equivalent to the Two-piece
property (TPP) which states that the intersection of M with any (open or
closed) halfspace is connected. Smooth tight surfaces were investigated by
N.H.Kuiper [13] and others, the study of tight polyhedral surfaces was initi-
ated by T.F.Banchoff [1]. One of the results is that any given closed surface
admits a tight polyhedral embedding into some Euclidean space. For obtaining
this, it is sufficient to start with the three cases of the sphere, the real pro-
jective plane and the Klein bottle [2] and then to attach handles tightly. For
tight polyhedral immersions into 3-space the situation is the following: Any
given closed surface (except for the real projective plane and the Klein bot-
tle) admits a tight polyhedral immersion into 3-space. The crucial and most
difficult case χ = −1 had been open for many years and was solved only re-
cently by D.Cervone [5]. Smooth tight immersions into 3-space exist for all
surfaces except for the real projective plane, the Klein bottle and the surface
with χ = −1. The latter is again the most crucial case and was solved by
F.Haab [7]. There is a smooth tight embedding RP 2 → E

4 as a suitable linear
projection of the Veronese surface. The cases of the Klein bottle and χ = −1
seem still to be open. One approach might be to attach a handle tightly to
the Veronese surface in 4-space (or a slightly distorted version of it) but that
has so far turned out to be unmanageable. In 5-space the only smooth tight
surface is the classical Veronese surface itself by a theorem of N.H.Kuiper.

In the case of compact 3-manifolds not too much seems to be known at all.
Smooth tight examples include the Veronese embedding RP 3 → E

9, connected
sums of handles S1×S2 and cartesian products of a circle with tight surfaces as
well as tubes around embedded tight surfaces in 4-space. The more restrictive
class of taut 3-manifolds was classified in [17]. In particular it includes an
embedding of the twisted product S1 ×h S2 as a “complexified 2-sphere” and
the quaternion space as Cartan’s isoparametric hypersurface in S4. There
are a number of constructions for tight polyhedral embeddings of 3-manifolds,
compare [9]. However, we are far from being able to cover major parts of
the class of all 3-manifolds. It seems that we do not know a tight embedding
of any Lens space (except for RP 3) and it seems also that we do not even
know a tight polyhedral embedding of RP 3. For any given tight polyhedral
3-manifold it is easy to attach handles tightly but that procedure does not help
too much if the other building blocks are missing. Unfortunately there is no
simple combinatorial condition which implies the tightness. Instead one has to
check all the homology classes in all the open halfspaces, just by applying the
definition above. This is better in the case of simply connected 4-manifolds.

For compact and simply connected 4-manifolds without boundary the tightness
is equivalent to the requirement that M ∩ E+ is always connected and simply
connected. The only smooth tight immersions of simply connected 4-manifolds
which are known are spheres as convex hypersurfaces in 5-space, the Veronese-
type embedding of CP 2 into 8-space [13] and certain embeddings of arbitrary
connected sums of copies of S2 × S2 in 5-space [8]. G.Thorbergsson [18] found
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topological obstructions to the existence of smooth tight immersions in terms of
the intersection form and Stiefel-Whitney classes. This leads to restrictions for
the existence of smooth tight immersions of connected sums of copies of CP 2

and −CP 2. In particular, it turned out that the K3 surface does not admit any
smooth tight immersion. The obstruction is that it does not admit a splitting
as a connected sum of two smooth manifolds even though the intersection form
splits as a connected sum.

This is much different in the polyhedral case because the same type of topolo-
gical obstruction is not there. The polyhedral tight embedding CP 2 → E

8

[10] leads to tight embeddings CP 2#k(−CP 2) → E
8 for any number k, see [9,

Sect.6C], and a tight embedding of the K3 surface into 15-space was recently
found in [4]. We use them as building blocks and show in our Theorem 7
below how these – together with attaching 2-handles of type S2 × S2 – lead to
polyhedral tight embeddings of any given topological type of a simply connected
PL 4-manifold, subject to a certain extra assumption on the intersection form.
Our proof relies on the following results from the classification of 4-manifolds.
For an outline of them see [16, Sect.5].

Definition The intersection form Q of a compact 4-manifold M is the
symmetric bilinear form Q:H2(M ; Z) × H2(M ; Z) → Z which is dual to the
cup product defined on the cohomology H2(M ; Z). It satisfies the equation
Q(M1#M2) ∼= Q(M1) ⊕ Q(M2). If we represent the intersection form in a
basis over the integers then the corresponding matrix is invertible and hence
unimodular, i.e., it has determinant ±1. The rank of Q is the rank of H2(M ; Z)
as a Z-module, also known as the second Betti number, the signature is the
number of negative eigenvalues minus the number of positive eigenvalues. A
quadratic form is called odd if some diagonal entry in the representing integer
matrix is odd, otherwise it is called even. It is known from algebra [15] that
an indefinite quadratic form over the integers is uniquely classified by its rank,
its signature and by its type (even or odd).

Theorem 1 (S.S.Cairns 1940)
The equivalence classes of smooth 4-manifolds and PL 4-manifolds are in (1−
1)-correspondence. More precisely, every smooth 4-manifold induces precisely
one PL manifold (up to PL-homeomorphism) and, vice versa, every PL 4-
manifold admits exactly one smoothing (up to diffeomorphism).

Theorem 2 (V.A.Rohlin 1952)
The signature of any simply connected smooth or PL 4-manifold with an even
intersection form is an integer multiple of 16.

Theorem 3 (S.Donaldson 1983)
If the intersection form of a simply connected PL 4-manifold is definite then it
is diagonalizable over the integers and, in particular, odd.
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Theorem 4 (J.Milnor 1958)
The homotopy classes of simply connected 4-manifolds are uniquely classified
by their intersection forms.

The topological classification turned out to be much harder, and it took almost
25 more years until this problem was solved by M.Freedman. The smooth (or
PL) classification appears still to be open.

Theorem 5 (M.Freedman 1982)
The homeomorphism classes of simply connected PL 4-manifolds are uniquely
classified by their intersection forms. More precisely: Two such PL manifolds
M,M̃ are homeomorphic (not necessarily PL homeomorphic) if and only if

their intersection forms Q, Q̃ are equivalent over the integers.

There is an algebraic classification of indefinite unimodular quadratic forms as
follows:

Theorem 6 (see [16, Sect.5])

1. Any indefinite, odd and unimodular quadratic form over the integers is
equivalent to l(+1) ⊕ k(−1).

2. Any indefinite, even and unimodular quadratic form over the integers is
equivalent to n(∓E8) ⊕ m

(
0 1

1 0

)
.

The rank is k + l or 8n + 2m, respectively, the signature is k − l or ±8n,
respectively. Conversely, rank and signature of the quadratic form determine
these numbers k, l,m, n uniquely. Here E8 denotes the following unimodular
and positive definite matrix:

E8 =




2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2




Corollary
Let K3 denote the K3 surface with its intersection form (−E8)⊕(−E8)⊕3

(
0 1

1 0

)
.

Then the manifolds

l(CP 2)#k(−CP 2) with k, l ≥ 0

and
n(±K3)#m(S2 × S2) with m,n ≥ 0
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cover all homotopy classes (and, in fact, homeomorphism classes) of simply
connected PL 4-manifolds with intersection forms

l(+1) ⊕ k(−1) or 2ν(∓E8) ⊕ µ

(
0 1

1 0

)
,

where k, l ≥ 0 and µ ≥ 3ν ≥ 0, respectively.

Remark For the intersection form of the K3 surface compare [15]. Theorem
3 together with the 11

8
-conjecture [6] implies that no other quadratic form can

occur as the intersection form of any simply connected PL 4-manifold. In more
detail this conjecture states that for an even intersection form Q the rank of Q
is always at least 11

8
times the absolute value of the signature of Q. It is easily

seen that for the form Q = 2ν(∓E8) ⊕ µ
(
0 1

1 0

)
we have

rank(Q)

|sign(Q)|
=

16ν + 2µ

16ν
≥

11

8
if and only if µ ≥ 3ν.

Our main result is the following Theorem 7 which provides a construction of
polyhedral tight embeddings for a large class of simply connected 4-manifolds.
This follows the pattern in the case of 2-manifolds which was mentioned at
the very beginning above: Start with certain building blocks and then attach
handles tightly.

Theorem 7 Let M be a simply connected PL 4-manifold with an indefinite
intersection form Q. Assume further that rank(Q) ≥ 11

8
|sign(Q)| + 44 in case

that Q is even with |sign(Q)| ≥ 32. Then there exists a tight polyhedral embed-

ding M̃ → E
N for some N such that M and M̃ are homeomorphic.

Since this result relies on the classification in terms of the intersection form, we
cannot obtain by this method that M and M̃ are PL homeomorphic. However,
by a theorem of C.T.C.Wall 1964 there is always a number k ≥ 0 such that the
manifolds M#k(S2 × S2) and M̃#k(S2 × S2) in Theorem 7 are PL homeo-
morphic. So in some sense in “most” of the cases we can not only prescribe
the topological type but also the PL type. Compare Remark 2 at the end of
the paper. However, there are an infinite number of undecided cases left. In
particular we do not have any example of a tight polyhedral realization of a
manifold homeomorphic to K3#K3# · · ·#K3. Such examples could remove
the number 44 from the extra assumption in Theorem 7 which then would just
transform into the hypothesis of the 11

8
-conjecture. For the case of a positive

definite intersection form it would be sufficient – by Theorem 3 – to find a
tight polyhedral embedding of k(CP 2) for arbitrary k ≥ 2. However, such an
example (for any k ≥ 2) is still missing.
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The building blocks and connected sums of them

First of all, there are tight triangulations of CP 2 and of the K3 surface. This
means, there is a triangulation of CP 2 (with 9 vertices, see [10], [11]) and one
of the K3 surface (with 16 vertices, see [4]) such that any simplexwise linear
embedding into any Euclidean space is tight. In particular, we can regard
CP 2

9 as a tightly embedded subcomplex of the 8-simplex 48 and (K3)16 as a
tightly embedded subcomplex of the 15-simplex 415. In each case the mani-
fold contains the complete 2-dimensional skeleton of the ambient 8-simplex or
15-simplex, respectively. This implies that the intersection with any open half-
space is connected and simply connected. Compare [9] for general properties
of tight triangulations and [12] for a list of known examples.

By truncating each of these subcomplexes at a vertex and by glueing in another
copy of the same kind, one gets tight embeddings

CP 2#(−CP 2) → E
8 and K3#(−K3) → E

15,

each with signature zero. This construction is quite similar to the original
version [2] of Banchoff’s tight Klein bottle in 5-space as a geometric connected
sum RP 2#RP 2. The process of truncating and glueing in additional copies of
the same combinatorial type can be repeated arbitrarily often, as shown in [9,
Sect.6C]. This implies that we can realize any quadratic form of type

(+1) ⊕ k(−1), k ≥ 1

or

2(−E8) ⊕ 2n(E8) ⊕ 3(n + 1)

(
0 1

1 0

)
∼= 2(n − 1)E8 ⊕ (3n + 19)

(
0 1

1 0

)
, n ≥ 1

by a tightly and polyhedrally embedded simply connected 4-manifold. In the
latter case we have the equations rank = 16(n − 1) + 6n + 38 = 22(n + 1) and
|sign| = 16(n − 1), so in particular rank ≥ 11

8
|sign| + 44.

In order to cover the other cases in Theorem 7, we have to attach handles, thus
realizing the sum of a previously given quadratic form Q and copies of

(
0 1

1 0

)
.

Attaching handles tightly

There is an obvious procedure to attach a handle to a tight polyhedral surface
in 3-space: Pick two faces opposite to one another (not necessarily in parallel
planes), cut out a certain triangle in each of them, and glue in a polyhedral
cylinder (as the boundary of a triangular prism), see Figure 1. It is, however,
much less obvious how one can attach a 2-handle or a 3-handle tightly to a
given polyhedron. One needs to fill in something within the convex hull of its
boundary without hitting the rest of the manifold.
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Figure 1: Attaching a 1-handle tightly

In general the procedure of attaching a k-handle of type Sk × Sn−k to an
n-manifold is equivalent to cutting out a submanifold of type Sk−1 × Bn−k+1

inside a topological ball (e.g., a coordinate chart) and replacing it by Bk×Sn−k.
This is the classical surgery which we have to carry out in a polyhedral setting.
The case k = 1 corresponds to attaching an ordinary 1-handle, like a bridge
between two parts of the manifold. The case k = 2, n = 4 is crucial in the
proof of our Theorem 7. For our purpose we have to realize this surgery within
the class of tight polyhedral submanifolds. Therefore, we have to describe this
process of tight surgery geometrically in the ambient space. It will always be
carried out in some Euclidean (n + 1)-space if the manifold is n-dimensional

Definition A simple polyhedral sphere Σk−1 is a triangulation of the sphere
Sk−1 with k + 1 vertices. This is nothing but the boundary complex of a k-
dimensional simplex. A short link of a certain (n−k)-simplex in a triangulated
n-manifold is a link which is combinatorially equivalent to a simple polyhedral
sphere Σk−1. Notice that the link of a codimension–1 face is always short, the
link of a codimension–2 face is short if and only if it has exactly 3 vertices and
3 edges. In the sequel let ∆k denote a certain k-dimensional simplex in the
simplicial complex which is considered, and let 4k denote an abstract k-simplex
which is not necessarily in the complex.

Lemma Assume that Mn ⊂ E
N is a simplicial submanifold containing a sim-

plex ∆n−k with a short link Σk−1 such that the n + 2 vertices of the star of
∆n−k are in general position. Then there is a polyhedral “solid torus” of type
Sk−1 × Bn−k+1 within the open star of ∆n−k which is a tight submanifold-
with-boundary in the affine subspace E

n+1 of E
N which is spanned by the n+2

vertices of the star of ∆n−k. Moreover, it can be arranged that the convex hull
of the short link does not hit M except for its boundary. Therefore, we can
choose the tight solid torus in such a way that its convex hull does not hit M
either except for the solid torus itself.

Proof. The procedure of attaching a handle will be carried out inside the open
star of ∆n−k without using any of the original vertices. Since the tightness is
affinely invariant, we can assume that the n + 2 vertices of the star of ∆n−k

form a regular simplex in (n + 1)-space. In the classical case k = 1 we take the
two barycenters of the two n-faces meeting at ∆n−1. These form a 0-sphere.
Then the procedure of attaching a handle tightly is suggested by Figure 1.
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If k = 2 we take the three barycenters of the three (n − 1)-faces meeting at
∆n−2. Any two of them can be joined by a straight line segment inside of one
of the three n-faces of M . The union of these three line segments is a simple
polyhedral 1-sphere ∂42 in M (but not as a subcomplex) such that its convex
hull does not hit M except along exactly those three line segments. Then we
construct a tight thickening of this polyhedral 1-sphere in the n-manifold as the
union of three prisms of type 41 ×4n−1 such that they fit mutually together
in (n + 1)-space as an embedded solid handle ∂ 42 ×4n−1.

In the general case for arbitrary k we proceed similarly: Take the k+1 barycen-
ters of all the (n−k+1)-faces meeting at ∆n−k. These span a regular k-simplex
4k in an (n + 1)-dimensional Euclidean space. Its boundary is a simple poly-
hedral (k − 1)-sphere inside the star of ∆n−k in M (but not as a subcomplex).
Then take a similar n-dimensional thickening of that simple sphere inside M
and inside the same (n + 1)-space. Then again replace the interior of a “solid
torus” of type ∂ 4k ×4n−k+1 by the exterior of type 4k × ∂4n−k+1.

In order to describe this procedure in more detail we use the unique projective
transformation Φ: star(∆n−k)\∆n−k → E

n+1 which sends to infinity the hyper-
plane which contains ∆n−k and the k-plane parallel to the opposite k-simplex
in the star of ∆n−k. Then the rest of the open star becomes an orthogonal
cartesian product of the link of ∆n−k with an open part of some Euclidean
E

n−k+1. Furthermore Φ maps the union of the k + 1 open n-faces meeting at
∆n−k to an open part of the orthogonal cartesian product ∂ 4k ×E

n−k+1 in
E

k × E
n−k+1 = E

n+1. Hence the polyhedral thickening of ∂4k can be defined
as the cartesian product ∂4k×4n−k+1 where 4n−k+1 denotes a small simplex
in (n−k +1)-space. This is tightly embedded since it is a product of two tight
subsets. The boundary is the product ∂ 4k ×∂4n−k+1 which is also a tight
polyhedral embedding of Sk−1 × Sn−k.

By applying Φ−1 we obtain the tight solid torus in the actual open star of
∆n−k. Note that projective transformations preserve tightness. For the surgery
we cut out the interior of ∂ 4k ×4n−k+1 and replace it by the interior of
4k × ∂4n−k+1. A picture for n = 3 is shown in Figure 2. Note, however, that
this is a 3-dimensional projection of a 3-dimensional solid torus in 4-space. It
is not a solid torus in 3-space. ¤

Corollary Given a tight triangulation of a PL n-manifold M where some
(n − k)-simplex (k ≤ n/2) has a short link, we can tightly attach arbitrarily
many handles of type Sk ×Sn−k. Hence for any m we obtain a manifold of PL
type M#m(Sk × Sn−k) tightly embedded into Euclidean space.

Proof: We carry out the construction of the lemma above. It is quite clear
that we can repeat it arbitrarily often within one star since these solid tori
can be chosen arbitrarily thin and disjoint. It is not essential to use the exact
barycenters in the construction. The tightness of the solid torus implies that
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Figure 2: Attaching a 2-handle tightly; the case k = 2, n = 3

M minus the interior will still be tight. The same holds after the surgery. In
the case of n = 4 and k = 2 which is most important for Theorem 7. We can
easily see that the intersection with any halfspace is still connected and simply
connected after the surgery if it was before. The tightness in the other cases
follows similarly by considering the homology cycles created by the surgery. In
any case the original Sk−1 for starting the surgery is nullhomotopic in M , so
that the topology after one step is that of M#(Sk × Sn−k). ¤

Proof of Theorem 7:

In case 1 we consider a simply connected 4-manifold M with an odd intersection
form which is equivalent to l(+1) ⊕ k(−1). By assumption it is indefinite, so
we can assume that the signature is nonnegative and thus k ≥ l ≥ 1. This
quadratic form is also equivalent to

(+1) ⊕ (k − l + 1)(−1) ⊕ (l − 1)

(
0 1

1 0

)
.

We can realize this by starting with the tight CP 2
9 in 8-space, by truncating

vertices and by glueing in k − l + 1 combinatorially equivalent copies of −CP 2
9

with an open vertex star removed (see [9, Sect.6C]), and finally by attaching
l−1 handles of type S2×S2. Here it is crucial that CP 2

9 does contain triangles
with a short link, e.g., the triangle ∆2 = 〈1, 2, 3〉 in the labeling of [10]. Hence
our lemma above is applicable.

In case 2 we consider an even intersection form with signature 0, 16 or 16m ≥
32. If the signature is zero we just take the standard ladder construction of
tight connected sums of S2 × S2, as described in [3, Ex.2.6.4]. The case of
the 4-sphere itself is realized by the boundary of any convex polyhedron. If
the signature is 16 we start with the tight K3 surface in 15-space and attach
handles of type S2×S2 tightly. Here it is crucial that this triangulation contains
a triangle with a short link. In the labeling of Figure 1 in [4] this is the triangle
∆2 =

〈(
0

0

)
,
(
1

0

)
,
(
x

0

)〉
.
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If the signature is 16m ≥ 32 we first build a tight (−K3)#(K3)#m(K3) by the
truncation process from [9, Sect.6C] and then attach handles of type S2 × S2

tightly. Here the extra assumption

rank(Q) ≥
11

8
sign(Q) + 44

comes in since the signature of (−K3)#(K3)#m(K3) is 16m whereas the rank
is 22(m + 2), so it is our assumption which implies that we have a nonnegative
number of handles to attach. In any case the resulting tightly embedded 4-
manifold has the same intersection form as M and is, therefore, homeomorphic
to M by Theorem 5. ¤

Remarks:

1. The cases of 4-manifolds which are not covered by Theorem 7 are k(CP 2)
where k ≥ 2 and m(K3)#n

(
0 1

1 0

)
where m ≥ 2 and n < 22. Examples of

that kind would imply that – modulo the validity of the 11

8
-conjecture – every

homotopy (or homeomorphism) class of simply connected PL 4-manifolds would
be realizable by a tight embedding into some Euclidean space .

2. It seems that no example is known of any pair M,M̃ of PL manifolds which
are homeomorphic to one another but not PL homeomorphic and where each
admits a tight PL embedding. One might expect that the “standard structure”
is preferred for tight polyhedral embeddings if there is any. This is true at least
for the sphere and for any homology sphere: The image of any tight polyhedral
embedding of a homology k-sphere is the boundary of a convex polyhedron in
(k + 1)-space, for a simple proof see [9, Cor.3.6].

3. The same construction of attaching handles can be applied to other classes of
manifolds. In the case of simply connected 5-manifolds we have tight connected
sums of S2 × S3 on the one hand and also a tight 13-vertex triangulation
of SU(3)/SO(3) on the other, see [12, p.170]. Since the tetrahedron ∆3 =
〈0, 1, 4, 6〉 in the latter one has a short 1-dimensional link, it is possible to
attach 2-handles of type S2 × S3 tightly.

4. The construction above of attaching handles does not raise the essential
codimension of the embedding. In fact, reaching or estimating the maximum
codimension is a different interesting problem. Here a conjecture states that
for any simply connected 4-manifold M a tight polyhedral embedding into E

N

(not in any hyperplane) can exist only if the Heawood type inequality

(
N − 3

3

)
≤ 10β2(M)

is satisfied where β2 denotes the second Betti number (similarly for (k − 1)-
connected 2k-manifolds), see [9, Sect.4]. Equality is attained for the tight
triangulations of CP 2 and the K3 surface, perhaps also in other cases. By stan-
dard arguments this conjecture would follow if the following generalized van

Documenta Mathematica 9 (2004) 401–412



Tight Embeddings of Simply Connected 4-Manifolds 411

Kampen–Flores theorem is true: Assume that a simply connected 4-manifold M
admits a polyhedral embedding of the complete 2-skeleton of the N -dimensional
simplex. Then the inequality

(
N−3

3

)
≤ 10β2(M) holds. The classical van

Kampen–Flores theorem is nothing but the case of the 4-sphere.
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