
Documenta Math. 199

Cohomology of Arithmetic Groups

with Infinite Dimensional Coefficient Spaces

Anton Deitmar and Joachim Hilgert

Received: December 7, 2004

Communicated by Patrick Delorme

Abstract. The cuspidal cohomology groups of arithmetic groups
in certain infinite dimensional modules are computed. As a result we
get a simultaneous generalization of the Patterson-Conjecture and the
Lewis-Correspondence.

2000 Mathematics Subject Classification: 11F75

Introduction

Let G be a semisimple Lie group and Γ ⊂ G an arithmetic subgroup. For a
finite dimensional representation (ρ,E) of G the cohomology groups H•(Γ, E)
are related to automorphic forms and have for this reason been studied by
many authors. The case of infinite dimensional representations has only very
recently come into focus, mostly in connection with the Patterson Conjecture
on the divisor of the Selberg zeta function [7, 8, 9, 11, 17]. In this paper we
want to show that the Patterson conjecture [7] is related to the Lewis corre-
spondence [21], i.e., that the multiplicities of automorphic representations can
be expressed in terms of cohomology groups with certain infinite dimensional
coefficient spaces.
One way to put (a special case of ) the Patterson conjecture for cocompact
torsion-free Γ in a split group G is to say that the multiplicity NΓ(π) of an
irreducible unitary principal series representation π in the space L2(Γ\G) is
given by

NΓ(π) = dim Hd−r(Γ, πω),

where r is the rank of G and πω is the subspace of analytic vectors in π, finally,
d = dim(G/K) is the dimension of the symmetric space attached to G, where
K is a maximal compact subgroup.
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Our main result states that this assertion can be generalized to all arithmetic
groups provided the ordinary group cohomology is replaced by the cuspidal
cohomology. It will probably also work for more general lattices, but we stick
to arihmetic groups, because some of the constructions used in this paper,
like the Borel-Serre compactification, or the decomposition of the regular G-
representation on the space L2(Γ\G), have in the literature only been formu-
lated for arithmetic groups. The relation to the Lewis correspondence is as
follows. In [25] Don Zagier states that the correspondence for Γ = PSL2(Z)
can be interpreted as the identity

NΓ(π) = dimH1
par(Γ, πω/2),

where π is as before, πω/2 is a slightly bigger space than πω and H1
par is the

parabolic cohomology. Since π is a unitary principal series representation it
follows that NΓ(π) coincides with the multiplicity of π in the cuspidal part
L2

cusp(Γ\G) of L2(Γ\G). More precisely, the correspondence gives an isomor-
phism

HomG

(

π, L2
cusp(Γ\G)

)

→ H1
par(Γ, πω/2).

As a consequence of our main result we will get the following theorem.

Theorem 0.1 For every Fuchsian group Γ we have

NΓ(π) = dimH1
cusp(Γ, πω

it).

Here H•
cusp is the cuspidal cohomology. For finite dimensional modules the

cuspidal cohomology is a subspace of the parabolic cohomology.
The following is our main theorem.

Theorem 0.2 Let Γ be a torsion-free arithmetic subgroup of a split semisimple
Lie group G. Let π ∈ Ĝ be an irreducible unitary principal series representa-
tion. Then

NΓ(π) = dimHd−r
cusp(Γ, πω),

where d = dimG/K and r is the real rank of G.
For G non-split the assertion remains true for a generic set of representations
π.

This raises many questions. For a finite dimensional representation E it is
known that the cuspidal cohomology is a subspace of the parabolic cohomology.
The same assertion for infinite dimensional E is wrong in general, see Corollary
5.2. Can one characterize those infinite dimensional E for which the cuspidal
cohomology indeed injects into ordinary cohomology?
Another question suggests itself: in which sense does our construction in the
case PSL2(Z) coincide with the Lewis correspondence? To even formulate
a conjecture we must assume two further conjectures. First assume that in
the relevant cases cuspidal and parabolic cohomology coincide; next assume
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that the parabolic cohomology with coefficients in πω agrees with parabolic
cohomology in πω/2. Let Mλ be the space of cusp forms of eigenvalue λ.
Then our construction gives a map into the dual space of the cohomology,
α : Mλ → H1

par(Γ, πω)∗. The Lewis construction on the other hand gives a
map β : Mλ → H1

par(Γ, πω). Together they define a duality on Mλ. One is
tempted to speculate that this duality coincides with the natural duality given
by the integral on the upper half plane. If that were so, then the two maps α
and β would determine each other.

1 Fuchsian groups

Let G be the group SL2(R)/ ± 1. For s ∈ C let πs denote the principal series
representation with parameter s. Recall that this representation can be viewed
as the regular representation on the space of square integrable sections of a
line bundle over P

1(R) ∼= G/P , where P is the subgroup of upper triangular
matrices. For s ∈ iR this representation will be irreducible unitary. For any
admissible representation π of G let πω denote the space of analytic vectors in π.
Then πω is a locally convex vector space with continuous G-representation ([18],
p. 463). Let π−ω be its continuous dual. For π = πs the space πω

s is the space

of analytic sections of a line bundle over P
1(R). Let π

ω/2
s denote the space of

sections which are smooth everywhere and analytic up to the possible exception
of finitely many points. Let Γ = SL2(Z)/ ± 1 be the modular group. For an
irreducible representation π of G let NΓ(π) be its multiplicity in L2(Γ\G). Let
H1

par(Γ, πω
s ) denote the parabolic cohomology, i.e., the subspace of H1(Γ, πω

s )
generated by all cocycles µ which vanish on parabolic elements. For the group
Γ = SL2(Z)/± 1 this means that H1

par consists of all cohomology classes which

have a representing cocycle µ with µ

(

1 1
0 1

)

= 0. In [25] D. Zagier stated

that for s ∈ iR,
NΓ(π) = dimH1

par(Γ, πω/2
s ).

We will first relate this to the Patterson Conjecture for the cocompact case.

Theorem 1.1 Let Γ ⊂ G be a discrete, cocompact and torsion-free subgroup,
then for s ∈ iR,

NΓ(πs) = dim H1
par(Γ, πω

s ) = dimH1(Γ, πω
s ).

Proof: Since Γ does not contain parabolic elements the parabolic cohomology
coincides with the ordinary group cohomology. The Patterson Conjecture [7,
12] shows that

NΓ(πs) = dim H1(Γ, π−ω
s ) − 2 dim H2(Γ, π−ω

s ).

Poincaré duality [8] implies that the dimension of the space Hj(Γ, πω
s ) equals

the dimension of H2−j(Γ, π−ω
s ). The Theorem follows from the next lemma.
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Lemma 1.2 For every Fuchsian group we have H0(Γ, πω
s ) = 0.

Proof: For this recall that every f ∈ πω
s is a continuous function on G

satisfying among other things, f(nx) = f(x) for every n ∈ N , where N is the
unipotent group of all matrices modulo ±1 which are upper triangular with
ones on the diagonal. If f is Γ-invariant, then f ∈ C(G/Γ). By Moore’s
Theorem ([26], Thm. 2.2.6) it follows that the action of N on G/Γ is ergodic.
In particular, this implies that f must be constant. Since s ∈ iR this implies
that f = 0. ¤

2 Arbitrary arithmetic groups

Throughout, let G be a semisimple Lie group with finite center and finitely
many connected components.
Let Γ be an arithmetic subgroup of G and assume that Γ is torsion-free. Then
Γ is the fundamental group of Γ\X, where X = G/K the symmetric space
and every Γ-module M induces a local system or locally constant sheaf M on
Γ\X. In the étale picture the sheaf M equals M = Γ\(X × M), (diagonal
action). Let Γ\X denote the Borel-Serre compactification [3] of Γ\X, then
Γ also is the fundamental group of Γ\X and M induces a sheaf also denoted
by M on Γ\X. This notation is consistent as the sheaf on Γ\X is indeed
the restriction of the one on Γ\X. Let ∂(Γ\X) denote the boundary of the
Borel-Serre compactification. We have natural identifications

Hj(Γ,M) ∼= Hj(Γ\X,M) ∼= Hj(Γ\X,M).

We define the parabolic cohomology of a Γ-module M to be the kernel of the
restriction to the boundary, ie,

Hj
par(Γ,M) def

= ker
(

Hj(Γ\X,M) → Hj(∂(Γ\X),M)
)

.

The long exact sequence of the pair (Γ\X, ∂(Γ\X)) gives rise to

. . . → Hj
c (Γ\X,M) → Hj(Γ\X,M) =

= Hj(Γ\X,M) → Hj(∂(Γ\X),M) → . . .

The image of the cohomology with compact supports under the natural map
is called the interior cohomology of Γ\X and is denoted by Hj

! (Γ\X,M). The
exactness of the above sequence shows that

Hj
par(Γ,M) ∼= Hj

! (Γ\X,M).

Let E be a locally convex space. We shall write E′ for its topological dual. We
assume that Γ acts linearly and continuously on E. We will present a natural
complex that computes the cohomology H•(Γ, E).
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Let EΓ be the locally constant sheaf on Γ\X given by E. Then EΓ has stalk E
and H•(Γ, E) = H•(XΓ, EΓ).
Let Ω0

Γ, . . . ,Ωd
Γ be the sheaves of differential forms on XΓ and let Ep

Γ be the
sheaf locally given by

Ep
Γ(U) = Ωp

Γ(U)⊗̂EΓ(U),

where ⊗̂ denotes the completion of the algebraic tensor product ⊗ in the pro-
jective topology. Write XΓ = Γ\G/K = Γ\X. Let d denote the exterior
differential. Then D = d ⊗ 1 is a differential on E•

Γ and

0 → EΓ
D
→ E0

Γ
D
→ · · ·

D
→ Ed

Γ → 0

is a fine resolution of EΓ. Hence H•(XΓ, EΓ) = H•(XΓ, E•
Γ).

Let Ω•(X) be the space of differential forms on X. The complex E•
Γ(XΓ) is

isomorphic to the space of Γ-invariants (Ω•(X)⊗̂E)Γ. So we get

H•(Γ, E) ∼= H•
(

(Ω•(X)⊗̂E)Γ
)

.

We can write
Ωp(X) = (C∞(G) ⊗ ∧pp∗)K ,

where p is the positive part in the Cartan decomposition g = k ⊕ p, where g

is the complexified Lie algebra of G and k is the complexified Lie algebra of
K. The group K acts on p∗ via the coadjoint representation and on C∞(G)
via right translations and Γ, or more precisely G, acts by left translations on
C∞(G).
From now on we assume that E is not only a Γ-module but is a topological
vector space that carries a continuous G-representation. We say that E is
admissible if every K-isotype E(τ), τ ∈ K̂ is finite dimensional. Let E∞

denote the subspace of smooth vectors. We say that E is smooth if E = E∞.
We then have

(C∞(G) ⊗ ∧pp∗)⊗̂E ∼= C∞(G)⊗̂(E ⊗ ∧pp∗)

as a G × K-module, where G acts diagonally on C∞(G) by left translations
and on E by the given representation. The group K acts diagonally on C∞(G)
by right translations and on ∧pp∗ via the coadjoint action.

Lemma 2.1 For any locally convex complete topological vector space F we have

C∞(G)⊗̂F ∼= C∞(G,F ),

where the right hand side denotes the space of all smooth maps from G to F .

Proof: See [14], Example 1 after Theorem 13. ¤

Thus we have a G × K-action on the space C∞(G,∧pp∗ ⊗ E) given by

(g, k).f = (Ad∗(k) ⊗ g)Lg Rk f,
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where Lgf(x) = f(g−1x) and Rkf(x) = f(xk).
The map

ψ : C∞(G,∧pp∗ ⊗ E) → C∞(G,∧pp∗ ⊗ E)

given by

ψ(f)(x) = (1 ⊗ x−1).f(x)

is an isomorphism to the same space with a different the G × K structure.
Indeed, one computes,

ψ((g, k).f)(x) = (1 ⊗ x−1)(g, k).f(x)

= (1 ⊗ x−1)(Ad∗(k) ⊗ g)f(g−1xk)

= (Ad∗(k) ⊗ k(g−1xk)−1)f(g−1xk)

= (Ad∗(k) ⊗ k)RkLgψ(f)(x).

For a smooth G-representation F we write H•(g,K, F ) for the cohomol-
ogy of the standard complex of (g,K)-cohomology [5]. Then H•(g,K, F ) =
H•(g,K, FK), where FK is the (g,K)-module of K-finite vectors in F .
If we assume that E is smooth, we get from this

H•(Γ, E) = H•(g,K,C∞(Γ\G)⊗̂E).

In the case of finite dimensional E one can replace C∞(Γ\G) with the space
of functions of moderate growth [6]. This is of importance, since it leads to a
decomposition of the cohomology space into the cuspidal part and contributions
from the parabolic subgroups. To prove this, one starts with differential forms
of moderate growth and applies ψ. For infinite dimensional E this proof does
not work, since it is not clear that ψ should preserve moderate growth, even if
one knows that the matrix coefficients of E have moderate growth.
By the Sobolev Lemma the space of smooth vectors L2(Γ\G)∞ of the natu-
ral unitary representation of G on L2(Γ\G) is a subspace of C∞(Γ\G). The
representation L2(Γ\G) splits as L2(Γ\G) = L2

disc ⊕ L2
cont, where L2

disc =
⊕

π∈Ĝ NΓ(π)π is a direct Hilbert sum of irreducible representations and
L2

cont is a finite sum of continuous Hilbert integrals. The space of cusp
forms L2

cusp(Γ\G) =
⊕

π∈Ĝ NΓ,cusp(π)π is a subspace of L2
disc. Note that

L2
cusp(Γ\G)∞ is a closed subspace of C∞(G). The cuspidal cohomology is de-

fined by

H•
cusp(Γ, E) = H•(g,K, L2

cusp(Γ\G)∞⊗̂E).

For finite dimensional E it turns out that H•
cusp(Γ, E) coincides with the im-

age in H•(g,K,C∞(Γ\G)⊗̂E) under the inclusion map. This comes about as
a consequence of the fact that the cohomology can also be computed using
functions of uniform moderate growth and that in the space of such functions,
L2

cusp(Γ\G)∞ has a G-complement. The Borel-conjecture [13] is a refinement
of this assertion. For infinite dimensional E this injectivity does not hold in
general, see Corollary 5.2.
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We define the reduced cuspidal cohomology to be the image H̃•
cusp(Γ, E) of

H•
cusp(Γ, E) in H•(Γ, E). Finally, let H(2)(Γ, E) be the image of the space

H•(g,K, L2(Γ\G)∞⊗̂E) in H•(g,K,C∞(Γ\G)⊗̂E).

Proposition 2.2 We have the following inclusions of cohomology groups,

H̃•
cusp(Γ, E) ⊂ H•

par(Γ, E) ⊂ H•
(2)(Γ, E).

Proof: The cuspidal condition ensures that every cuspidal class vanishes on
each homology class of the boundary. This implies the first conclusion. Since
every parabolic class has a compactly supported representative, the second also
follows. ¤

3 Gelfand Duality

Recall that a Harish-Chandra module is a (g,K)-module which is admissible
and finitely generated. Every Harish-Chandra module is of finite length. For
a Harish-Chandra module V write Ṽ for its dual, ie, Ṽ = (V ∗)K , the K-finite
vectors in the algebraic dual.
A globalization of a Harish-Chandra module V is a continuous representation
of G on a complete locally convex vector space W such that V is isomorphic to
the (g,K)-module of K-finite vectors WK . It was shown in [18] that there is
a minimal globalization V min and a maximal globalization V max such that for
every globalization W there are unique functorial continuous linear G-maps

V min →֒ W →֒ V max.

The spaces V min and V max are given explicitly by

V min = C∞
c (G) ⊗g,K V

and
V max = Homg,K(Ṽ , C∞(G)).

The action of G on V max is given by

g.α(ṽ)(x) = α(ṽ)(g−1x).

Let Ĝ be the unitary dual of G, i.e., the set of all isomorphism classes of
irreducible unitary representations of G. Note [18] that for π ∈ Ĝ we have
(πK)min = πω and (πK)max = π−ω.
The following is a key result of this paper.

Theorem 3.1 Let F be a smooth G-representation on a complete locally convex
topological vector space. Then there is a functorial isomorphism

H•(g,K, F ⊗̂V max) → Ext•g,K(Ṽ , F ),

where as usual one writes Ext•g,K(Ṽ , F ) for Ext•g,K(Ṽ , FK).
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Proof: We have

F ⊗̂V max = F ⊗̂Homg,K(Ṽ , C∞(G))

= Homg,K(Ṽ , F ⊗̂C∞(G))

= Homg,K(Ṽ , C∞(G,F )).

Lemma 3.2 The map

Homg,K

(

Ṽ , C∞(G,F ))
)g,K

→ Homg,K

(

Ṽ , F
)

φ 7→ α,

with α(ṽ) = φ(ṽ)(1) is an isomorphism.

Proof: Note that φ satisfies

φ(X.ṽ)(x) =
d

dt
φ(ṽ)(x exp(tX))

∣

∣

∣

∣

t=0

, X ∈ g,

since it is a (g,K)-homomorphism. Further,

d

dt
φ(ṽ)(exp(tX)x)

∣

∣

∣

∣

t=0

= X.φ(ṽ)(x), X ∈ g,

since φ is (g,K)-invariant. Similar identities hold for the K-action. This implies
that α is a (g,K)-homomorphism. Note that the (g,K)-invariance of φ also
leads to

φ(ṽ)(gx) = g.φ(ṽ)(x), g, x ∈ G.

Hence if α = 0 then φ = 0 so the map is injective. For surjectivity let α be
given and define φ by φ(ṽ)(x) = x.α(ṽ). Then φ maps to α. ¤

By the Lemma we get an isomorphism

H0(g,K, F ⊗̂V max) ∼= Homg,K(Ṽ , F ) ∼= Ext0g,K(Ṽ , F )

and thus a functorial isomorphism on the zeroth level. We will show that
both sides in the theorem define universal δ-functors [19]. From this the
theorem will follow. Fix V and let Sj(F ) = Hj(g,K, F ⊗̂V max) as well as
T j(F ) = Extj

g,K(Ṽ , F ). We will show that S• and T • are universal δ-functors
from the category Rep∞s (G) defined below to the category of complex vector
spaces. The objects of Rep∞s (G) are smooth continuous representations of G
on Hausdorff locally convex topological vector spaces and the morphisms are
strong morphisms. A continuous G-morphism f : A → B is called strong
morphism or s-morphism if (a) ker f and imf are closed topological direct
summands and (b) f induces an isomorphism of A/ ker f onto f(A). Then by
[5], Chapter IX, the category Rep∞s (G) is an abelian category with enough in-
jectives. In fact, for F ∈ Rep∞s (G) the map F → C∞(G,F ) mapping f to the
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function α(x) = x.f is a monomorphism into the s-injective object C∞(G,F )
(cf. [5], Lemma IX.5.2), which is considered a G-module via xα(y) = α(yx).

Let us consider S• first. By Corollary IX.5.6 of [5] we have

S•(F ) = H•(g,K, F ⊗̂V max) ∼= H•
d (G,F ⊗̂V max),

where the right hand side is the differentiable cohomology. The functor .⊗̂V max

is s-exact and therefore S• is a δ-functor. We show that it is erasable. For this
it suffices to show that Sj(C∞(G,F )) = 0 for j > 0. Now

C∞(G,F )⊗̂V max ∼= C∞(G)⊗̂F ⊗̂V max ∼= C∞(G,F ⊗̂V max)

and therefore for j > 0,

Sj(C∞(G,F )) ∼= Hj
d(G,C∞(G,F ⊗̂V max)) = 0,

since C∞(G,F ⊗̂V max) is s-injective. Thus S• is erasable and therefore univer-
sal.

Next consider T •(F ) = Ext•g,K(Ṽ , F ). Since an exact sequence of smooth
representations gives an exact sequence of (g,K)-modules, it follows that T • is
a δ-functor.To show that it is erasable let j > 0. Then

T j(C∞(G,F )) = Extj
g,K(Ṽ , C∞(G)⊗̂F )

= Hj(g,K,HomC(Ṽ , C∞(G))⊗̂F )

= Hj
d(G,HomC(Ṽ , C∞(G))⊗̂F )

= Hj
d(G,HomC(Ṽ , C∞(G)))⊗̂F

= Extj
g,K(Ṽ , C∞(G))⊗̂F.

By Theorem 6.13 of [18] we have Extj
g,K(Ṽ , C∞(G)) = 0. The Theorem is

proven. ¤

Choosing C∞(Γ\G) and L2
cusp(Γ\G)∞ for F in Theorem 3.1 gives the following

Corollary.

Corollary 3.3 (i)

Hp(Γ, V max) ∼= Extp
g,K(Ṽ , C∞(Γ\G)).

For Γ cocompact and p = 0 this is known under the name Gelfand Dual-
ity.

(ii)

H•
cusp(Γ, V max) ∼= Ext•g,K(Ṽ , L2

cusp(Γ\G)∞).
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4 The case of the maximal globalization

The space of cusp forms decomposes discretely,

L2
cusp(Γ\G) =

⊕

π∈Ĝ

NΓ,cusp(π)π.

Suppose that V has an infinitesimal character χ. Let Ĝ(χ) be the set of all
irreducible unitary representations of G with infinitesimal character χ. It is
easy to see that

Ext•g,K(Ṽ , L2
cusp(Γ\G)∞) = Ext•g,K



Ṽ ,
⊕

π∈Ĝ(χ)

NΓ,cusp(π)πK





=
⊕

π∈Ĝ(χ)

NΓ,cusp(π) Ext•g,K

(

Ṽ , πK

)

=
⊕

π∈Ĝ(χ)

NΓ,cusp(π) Ext•g,K (π̃K , V )

The last line follows by dualizing.

Let P be a parabolic subgroup and m⊕ a⊕ n a Langlands decomposition of its
Lie algebra.

Lemma 4.1 For a (g,K)-module π and a (a ⊕ m,KM )-module U we have

Homg,K(π, IndG
P (U)) ∼= Homa⊕m,KM

(H0(n, π), U ⊗ CρP
),

where CρP
is the one dimensional A-module given by ρP .

Proof: See [15] page 101. ¤

Lemma 4.2 Let C be an abelian category with enough injectives. Let a be a
finite dimensional abelian complex Lie algebra and let T be a covariant left exact
functor from C to the category of a-modules. Assume that T maps injectives to
a-acyclics and that T has finite cohomological dimension, i.e., that RpT = 0
for p large. Let M be an object of C such that RpT (M) is finite dimensional
for every p. Let Ha denote the functor H0(a, ·). Then

∑

p≥0

(

p

r

)

(−1)p+r dimRp(Ha ◦ T )(M) =
∑

p≥0

(−1)p dimH0(a, RpT (M)),

where r = dim a. If M is T -acyclic, then these alternating sums degenerate to

dim Rr(Ha ◦ T )(M) = dimH0(a, T (M)).
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Proof: Split a = a1 ⊕ b1, where dim a1 = 1. Consider the Grothendieck
spectral sequence with Ep,q

2 = Hp(a1, R
q(Hb1

◦ T )(M)) which abuts to
Rp+q(Ha ◦ T )(M) (see [19], Theorem XX.9.6). Since a1 is one dimensional,
for any finite dimensional a1-module V we have H0(a, V ) ∼= H1(a, V ) and
Hp(a1, V ) = 0 if p > 1. This implies E0,q

2
∼= E1,q

2 and Ep,q
2 = 0 for p /∈ {0, 1}.

The spectral sequence therefore degenerates and

∑

p≥0

(

p

r

)

(−1)p+r dim Rp(Ha ◦ T )(M)

=
∑

p≥0

(

p

r

)

(−1)p+r dim E0,p
2 +

∑

p≥1

(

p

r

)

(−1)p+r dimE1,p−1
2

=
∑

p≥0

(

p

r

)

(−1)p+r dim E0,p
2 +

∑

p≥0

(

p + 1

r

)

(−1)p+r−1 dim E1,p
2

=
∑

p≥0

((

p + 1

r

)

−

(

p

r

))

(−1)p+r−1 dimE0,p
2

=
∑

p≥0

(

p

r − 1

)

(−1)p+r−1 dim E0,p
2

=
∑

p≥0

(

p

r − 1

)

(−1)p+r−1 dim H0(a1, R
p(Hb1

◦ T )(M)).

Next we split b1 = a2 ⊕ b2, where a2 is one-dimensional. Since the a1-action
commutes with the a2-action the isomorphism

H0(a2, R
p(Hb2

◦ T )(M)) ∼= H1(a2, R
p(Hb2

◦ T )(M))

is an a1-isomorphism. Therefore we apply the same argument to get down to

∑

p≥0

(

p

r − 2

)

(−1)p+r−2 dim H0(a1 ⊕ a2, R
p(Hb2

◦ T )(M)).

Iteration gives the claim.

To get the last assertion of the lemma, note that if M is T -acyclic, then fol-
lowing the inductive argument above, one sees that Rp(Ha ◦ T (M) = 0 for
p > r. ¤

Let P be a minimal parabolic subgroup of G so that M is compact. For a
unitary irreducible representation σ of M and linear functional ν ∈ ia∗ we
obtain the unitary principal series representation πσ,ν of G induced from P .
Let t be a Cartan subalgebra of m = LieC(M). Then h = a ⊕ t is a Cartan
subalgebra of g. Let Λσ ∈ t∗ be a representative of the infinitesimal character
of σ. Then Λσ +ν ∈ h∗ is a representative of the infinitesimal character of πσ,ν .
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We say that the parameters (σ, ν) are generic if πσ,ν is irreducible and for any
two w,w′ in the Weyl group of (h, g) the linear functional

w(Λσ + ν)|a − w′(Λσ + ν)|a

on a is not a positive integer linear combination of positive roots.

Theorem 4.3 If G is R-split and πσ,ν is irreducible, we have

NΓ(πσ,ν) = Hr
cusp(Γ, π−ω

σ,ν ).

If G is not split, the assertions remains true if the parameters (σ, ν) are generic.

Proof: First note that since G is split, the decomposition of L2(Γ\G) as in
[20, 1] implies that for imaginary ν one has NΓ(πσ,ν) = NΓ,cusp(πσ,ν), since
the Eisenstein series are regular at imaginary ν. Applying Lemma 4.1 with
π = L2

cusp(Γ\G)∞ and IndG
P (U) = πσ,ν we find

Homa⊕m,M

(

H0(n, L2
cusp(Γ\G)∞K ), σ ⊗ (ν + ρP )

)

∼= Homg,K

(

L2
cusp(Γ\G)∞, πσ,ν

)

∼= Homg,K

(

π̃σ,ν , L2
cusp(Γ\G)∞

)

so that

NΓ,cusp
(πσ,ν) = dim Homa⊕m,M

(

H0(n, L2
cusp(Γ\G)∞K ), σ ⊗ (ν + ρP )

)

.

In order to calculate the latter we apply Lemma 4.2 to the category C of (g,K)
modules and

T (V ) = HomM (H0(n, Ṽ ), U ⊗ CρP
)

= (H0(n, Ṽ )∗ ⊗ U ⊗ CρP
)M .

The conditions of the Lemma 4.2 are easily seen to be satisfied since H0(n, ·)
maps injectives to injectives and H0(M, ·) is exact. Note that in the case of a
representation π of G,

Ha ◦ T (π) ∼= Homa⊕m,M (H0(n, π̃K), U ⊗ CρP
)

∼= Homg,K(π̃, IndG
P (U))

by Lemma 4.1. From this we obtain

Extj
g,K(π̃, IndG

P (U)) = Rp(Ha ◦ T )(π).

Now Lemma 4.2 shows that

dim Extr
g,K(π̃, IndG

P (U))
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equals

dim HomAM (H0(n, π̃K), U ⊗ CρP
).

Suppose that π is an irreducible summand in L2
cusp(Γ\G). If G is split, the

set of π which share the same infinitesimal character as πσ,ν equals the set of

all πξ,wν , where w ranges over the Weyl group and ξ ∈ M̂ . Then the space
HomAM (Hj(n, π̃K), U ⊗ CρP

) is only non-zero for π = πξ,wν for some w. But
then Proposition 2.32 of [15] implies that Hj(n, π̃K) is zero unless j = 0. The
same conclusion is assured in the non-split case by the genericity condition.
Now the proof is completed by the following calculation:

NΓ,cusp(πσ,ν) = dim Homa⊕m,M (H0(n, L2
cusp(Γ\G)∞K ), σ ⊗ (ν + ρP ))

= dim Extr
g,K(L2

cusp(Γ\G), πσ,ν)

= dim Extr
g,K(π̃σ,ν , L2

cusp(Γ\G))

= dim Hr
cusp(Γ, π−ω

σ,ν ),

where the last equality is a consequence of Corollary 3.3(ii), applied to V =
πσ,ν . ¤

5 Poincaré duality

In order to conclude the main Theorem it suffices to prove the following
Poincaré duality.

Theorem 5.1 (Poincaré duality)
For every Harish-Chandra module V ,

Hj
cusp(Γ, V max) ∼= Hd−j

cusp(Γ, Ṽ min)∗,

and both spaces are finite dimensional.

Before we prove the theorem, we add a Corollary.

Corollary 5.2 Let Γ be a torsion-free non-uniform lattice in G = PSL2(R)
and π ∈ Ĝ a principal series representation with NΓ,cusp(π) 6= 0. Let E = π̃min

K .
Then the natural map H•

cusp(Γ, E) → H•(Γ, E) is not injective.

Proof of the Corollary: We have H0
cusp(Γ, πmax) 6= 0 and by the Poincaré

duality, H2
cusp(Γ, E) 6= 0. However, as the cohomological dimension of Γ is 1,

it follows that H2(Γ, E) = 0. ¤

Proof of the Theorem: A duality between two complex vector spaces E,F
is a bilinear pairing,

〈., .〉 : E × F → C
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which is non-degenerate, i.e., for every e ∈ E and every f ∈ F ,

〈e, F 〉 = 0 ⇒ e = 0,

〈E, f〉 = 0 ⇒ f = 0.

We say that E and F are in duality if there is a duality between them. Note
that if E and F are in duality and one of them is finite dimensional, then
the other also is and their dimensions agree. The pairing is called perfect if it
induces isomorphisms E ∼= F ∗ and F ∼= E∗. If E and F are topological vector
spaces then the pairing is called topologically perfect if it induces topological
isomorphisms E ∼= F ′ and F ∼= E′, where the dual spaces are equipped with
the strong dual topology.
Now suppose that V and W are g,K-modules in duality through a g,K-
invariant pairing. Recall the canonical complex defining g,K-cohomology
which is given by Cq(V ) = HomK(∧q(g/k), V ) = (∧q(g/k)∗ ⊗ V )

K
. Let

d = dimG/K. The prescription 〈y ⊗ v, y′ ⊗ w〉 = (−1)q 〈v, w〉 y ∧ y′ gives a
pairing from Cq(V ) × Cd−q(W ) to ∧d(g/k)∗ ∼= C. Let d : Cq → Cq+1 be the
differential, then one sees [5], 〈da, b〉 = 〈a, db〉.
Let π be an irreducible unitary representation of G. Then the spaces π∞ and
π̃−∞ are each other’s strong duals [10]. The same holds for V max and Ṽ min

[18].

Lemma 5.3 The spaces A = π−∞⊗̂V max and B = π̃∞⊗̂Ṽ min are each other’s
strong duals. Both of them are LF-spaces.

Proof: Since C∞(G) is nuclear and Fréchet and π̃ is a Hilbert space the
results of [24], §III.50, allow us to conclude that C∞(G, π̃)′ = C∞(G)⊗̂π̃ is
nuclear which is then true also for C∞(G, π̃). Now the embedding of π̃∞ into
C∞(G, π̃) shows the nuclearity of π̃∞.
Since Ṽ is finitely generated one can embed the space

V max = Homg,K(Ṽ , C∞(G))

into a strict inductive limit lim
−→j

Hom(Ṽ j , C∞(G)) with finite dimensional V j ’s.

Then the nuclearity of V max follows from the nuclearity of

Hom(Ṽ j , C∞(G)) = (Ṽ j)∗ ⊗ C∞(G).

We conclude that the spaces V max and π̃∞ are nuclear Fréchet spaces. Their
duals π−∞ and Ṽ min are LF-spaces (see [14], Introduction IV). Therefore they
all are barreled ([22], p. 61). By [22], p. 119 we know that the inductive
completions of the tensor products π−∞⊗̄V max and π∞⊗̄V min are barreled.
Since V max and π∞ are nuclear, these inductive completions coincide with the
projective completions. So A and B are barreled. By Theorem 14 of [14] it
follows that the strong duals A′ and B′ are complete and by the Corollary to
Lemma 9 of [14] it follows that A′ = B and B′ = A. Finally, Lemma 9 of [14]
implies that A and B are LF-spaces. ¤
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Proposition 5.4 For every π ∈ Ĝ and every Harish-Chandra module V the
vector spaces Hq(g,K, π−∞⊗̂V max) and Hq(g,K, π̃∞⊗̂Ṽ min) are finite dimen-
sional. The above pairing between their canonical complexes induces a duality
between them, so

Hq(g,K, π−∞⊗̂V max) ∼= Hd−q(g,K, π̃∞⊗̂Ṽ min)∗.

Proof: Note that by Theorem 3.1,

Hq(g,K, π−∞⊗̂V max) ∼= Extq
g,K(Ṽ , π−∞) ∼= Extq

g,K(Ṽ , πK)

and the latter space is finite dimensional ([5], Proposition I.2.8). The proposi-
tion will thus follow from the next lemma.

Lemma 5.5 Let A,B be smooth representations of G. Suppose that A and
B are LF-spaces and that they are in perfect topological duality through a G-
invariant pairing. Assume that H•(g,K,A) is finite dimensional. Then the
natural pairing between Hq(g,K,A) and Hd−q(g,K,B) is perfect.

Proof: We only have to show that the pairing is non-degenerate. We will start
by showing that the induced map Hd−q(g,K,B) to Hq(g,K,A)∗ is injective.
So let b ∈ Zd−q(B) = Cd−q(B) ∩ ker d with 〈a, b〉 = 0 for every a ∈ Zq(A).
Define a map ψ : d(Cq(A)) → C by

ψ(da) = 〈a, b〉 .

We now show that the image d(Cq(A)) is a closed subspace of Cq+1(A) and
that the map Cq(A)/ ker d → d(Cq(A)) is a topological isomorphism. For this
let E be a finite dimensional subspace of Zq+1(A) that bijects to Hq+1(g,K,A).
Since E is finite dimensional, it is closed. The map η = d + 1: Cq(A) ⊕ E →
Zq+1(A) is continuous and surjective. Since Cq(A) and Zq+1(A) are LF-spaces,
the map η is open (see [24], p. 78), hence it induces a topological isomorphism
(Cq(A)/ ker d) ⊕ E → Zq+1(A). This implies that d(Cq(A)) is closed and
Cq(A)/ ker d → d(Cq(A)) is a topological isomorphism. Consequently, the
map ψ is continuous. Hence it extends to a continuous linear map on Cq+1(A).
Therefore, it is given by an element f of Cd−q−1(A), so

〈a, b〉 = 〈da, f〉 = 〈a, df〉

for every a ∈ Cq(A). We conclude b = df and thus the non-degeneracy on one
side. In particular it follows that H•(g,K,B) is finite dimensional as well. The
claim now follows by symmetry. ¤
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We will now deduce Theorem 5.1. We have

Hq
cusp(Γ, V max) ∼=

⊕

π∈Ĝ(χ)

NΓ,cusp(π) Extq
g,K(Ṽ , πK)

∼=
⊕

π∈Ĝ(χ)

NΓ,cusp(π)Hq(g,K, π−∞⊗̂V max)

∼=
⊕

π∈Ĝ(χ)

NΓ,cusp(π)Hd−q(g,K, π̃∞⊗̂Ṽ min)∗

∼=
⊕

π∈Ĝ(χ)

NΓ,cusp(π)Hd−q(g,K, π∞⊗̂Ṽ min)∗

∼= Hd−q
cusp(Γ, Ṽ min)∗.

In the second to last step we have used the fact that L2
cusp is self-dual. Theorem

5.1 and thus Theorem 0.2 follow.
It remains to deduce Theorem 0.1. For Γ torsion-free arithmetic it follows
directly from Theorem 0.2 and Lemma 1.2. Since the Borel-Serre compactifi-
cation exists for arbitrary Fuchsian groups, the proof runs through and we also
get Theorem 0.1 for torsion-free Fuchsian groups. An arbitrary Fuchsian group
Γ has a finite index subgroup Γ′ which is torsion-free. An inspection shows
that all our constructions allow descent from Γ′-invariants to Γ-invariants and
thus Theorem 0.1 follows. ¤
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