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1. Introduction

The main goal of this paper is to give closed formulas for the Arakelov-Green
function G and the Faltings delta-invariant δ of a compact Riemann surface.
Both G and δ are of fundamental importance in the Arakelov theory of arith-
metic surfaces [2] [8] and it is a central problem in this theory to relate these
difficult invariants to more accessible ones. For example, in [8] Faltings gives
formulas which relate G and δ for elliptic curves directly to theta functions
and to the discriminant modular form. Formulas of a similar explicit nature
were derived by Bost in [3] for Riemann surfaces of genus 2. As to the case of
general genus, less specific but still quite explicit formulas are known due to
Bost [3] (for the Arakelov-Green function) and to Bost and Gillet-Soulé [4] [10]
(for the delta-invariant). We recall these results in Sections 2 and 4 below.
In the present paper we express G and δ in terms of two new invariants S and
T . Both S and T are initially defined as the norms of certain isomorphisms
between line bundles, but eventually we find that they admit a very explicit
description in terms of theta functions. They are intimately related to the
divisor W of Weierstrass points. Of these new invariants, the T is certainly
the easiest one. We are able to calculate it for hyperelliptic Riemann surfaces
[13], where it is essentially a power of the Petersson norm of the discriminant
modular form. The invariant S is less easy and involves a certain integral
over the Riemann surface. We believe that the approach using S and T is
very suitable for obtaining numerical results. An example at the end of this
paper, where we compute δ and a special value of G for a certain hyperelliptic
Riemann surface of genus 3, is meant to illustrate this belief.
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We start our discussion by recalling the definitions of G and δ. From now on
until the end of section 4, we fix a compact Riemann surface X. Let g be its
genus, which we assume to be positive. The space of holomorphic differentials
H0(X,Ω1

X) carries a natural hermitian inner product (ω, η) 7→ i
2

∫
X

ω ∧ η. We
fix this inner product once and for all. Let {ω1, . . . , ωg} be an orthonormal basis
with respect to this inner product. We have then a fundamental (1,1)-form µ
on X given by µ = i

2g

∑g
k=1 ωk ∧ ωk. It is verified immediately that the form

µ does not depend on the choice of orthonormal basis, and hence is canonical.
Using this form, one defines the Arakelov-Green function G on X × X. This
function gives the local intersections “at infinity” of two divisors in Arakelov
theory [2].

Theorem 1.1. (Arakelov) There exists a unique function G : X × X → R≥0

satisfying the following properties for all P ∈ X:

(i) the function log G(P,Q) is C∞ for Q 6= P ;
(ii) we can write log G(P,Q) = log |zP (Q)| + f(Q) locally about P , where

zP is a local coordinate about P and where f is C∞ about P ;
(iii) we have ∂Q∂Q log G(P,Q)2 = 2πiµ(Q) for Q 6= P ;
(iv) we have

∫
X

log G(P,Q)µ(Q) = 0.

Theorem 1.1 is proved in [2]. We call the function G the Arakelov-Green
function of X. We note that by an application of Stokes’ theorem one can
prove the symmetry relation G(P,Q) = G(Q,P ) for any P,Q ∈ X.
Importantly, the Arakelov-Green function gives rise to certain canonical met-
rics on line bundles on X. First, consider line bundles of the form OX(P )
with P a point on X. Let s be the canonical generating section of OX(P ).
We then define a smooth hermitian metric ‖ · ‖OX(P ) on OX(P ) by putting
‖s‖OX(P )(Q) = G(P,Q) for any Q ∈ X. By property (iii) of the Arakelov-
Green function, the curvature form of OX(P ) is equal to µ. Second, it is
clear that the function G can be used to put a hermitian metric on the
line bundle OX×X(∆X), where ∆X is the diagonal on X × X, by putting
‖s‖(P,Q) = G(P,Q) for the canonical generating section s of OX×X(∆X).
Restricting to the diagonal, we have a canonical adjunction isomorphism
OX×X(−∆X)|∆X

∼
−→Ω1

X . We define a hermitian metric ‖ · ‖Ar on Ω1
X by

insisting that this adjunction isomorphism be an isometry. It is proved in [2]
that this gives a smooth hermitian metric on Ω1

X , and that its curvature form is
a multiple of µ. For the rest of the paper we shall take these metrics on OX(P )
and Ω1

X (as well as on tensor product combinations of them) for granted and
refer to them as Arakelov metrics.
Next we introduce the Faltings delta-invariant. Let Hg be the generalised
Siegel upper half plane of complex symmetric g×g-matrices with positive defi-
nite imaginary part. Let τ ∈ Hg be a period matrix associated to a symplectic
basis of H1(X, Z) and consider the analytic jacobian Jac(X) = Cg/Zg + τZg

associated to τ . We fix τ for the rest of our discussion. On Cg one has a
theta function ϑ(z; τ) =

∑
n∈Zg exp(πitnτn + 2πitnz), giving rise to an ef-

fective divisor Θ0 and a line bundle O(Θ0) on Jac(X). Now consider on the
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other hand the set Picg−1(X) of divisor classes of degree g − 1 on X. It
comes with a special subset Θ given by the classes of effective divisors. A
fundamental theorem of Abel-Jacobi-Riemann says that there is a canonical
bijection Picg−1(X)

∼
−→ Jac(X) mapping Θ onto Θ0. As a result, we can equip

Picg−1(X) with the structure of a compact complex manifold, together with
a divisor Θ and a line bundle O(Θ). We fix this structure for the rest of the
discussion.
The function ϑ is not well-defined on Picg−1(X) or Jac(X). We can remedy

this by putting ‖ϑ‖(z; τ) = (det Im τ)1/4 exp(−πty(Im τ)−1y)|ϑ(z; τ)|, with y =
Im z. One can check that ‖ϑ‖ descends to a function on Jac(X). By our

identification Picg−1(X)
∼
−→ Jac(X) we obtain ‖ϑ‖ as a function on Picg−1(X).

It can be checked that this function is independent of the choice of τ .
The delta-invariant is the constant appearing in the following theorem, due to
Faltings (cf. [8], p. 402).

Theorem 1.2. (Faltings) There is a constant δ = δ(X) depending only on
X such that the following holds. Let {ω1, . . . , ωg} be an orthonormal basis of
H0(X,Ω1

X). Let P1, . . . , Pg, Q be points on X with P1, . . . , Pg pairwise distinct.
Then the formula

‖ϑ‖(P1 + · · · + Pg − Q) = exp(−δ(X)/8) ·
‖det ωk(Pl)‖Ar∏

k<l G(Pk, Pl)
·

g∏

k=1

G(Pk, Q)

holds.

The definition of the delta-invariant may seem quite complicated, yet it plays
an important role in Arakelov intersection theory and in the function theory of
the moduli space Mg of Riemann surfaces of genus g. In fact, as has become
clear from certain asymptotic results [14] [20], the function exp(−δ(X)) can
be interpreted as a natural “distance” function on Mg measuring the distance
to the Deligne-Mumford boundary. As to Arakelov theory, the delta-invariant
plays the role of an archimedean contribution in the Noether formula for arith-
metic surfaces [8] [18]. The idea that δ(X) gives a distance to the boundary is
supported by this formula.
The plan of this paper is as follows. In Section 2 we state a proposition and
observe that it leads quickly to a formula for G. In Section 3 we prove this
proposition. In Section 4 we derive our closed formula for δ. Some applica-
tions of our results to Arakelov intersection theory are given in Section 5. We
conclude with a numerical example in Section 6.

2. The Arakelov-Green function

As was mentioned in the Introduction, the Weierstrass points of X play an
important role in our approach to G and δ. The idea of considering Weierstrass
points in the context of Arakelov theory is not new, cf. [6] and [14] for example.
We start by recalling how we obtain the divisor of Weierstrass points using
a Wronskian differential on X. Let {ψ1, . . . , ψg} be an (arbitrary) basis of
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H0(X,Ω1
X). Let P be a point on X and let z be a local coordinate about P .

Write ψk = fk(z)dz for k = 1, . . . , g. We have a holomorphic function

Wz(ψ) = det

(
1

(l − 1)!

dl−1fk

dzl−1

)

1≤k,l≤g

locally about P from which we build the g(g+1)/2-fold holomorphic differential

ψ̃ = Wz(ψ)(dz)⊗g(g+1)/2.

We call ψ̃ the Wronskian differential about P and it is readily checked that ψ̃ is
independent of the choice of the local coordinate. In fact, and this is less trivial,
the differential ψ̃ extends over X to give a non-zero global section of the line

bundle Ω
⊗g(g+1)/2
X . A change of basis changes the Wronskian differential by a

non-zero scalar factor and hence the divisor of a Wronskian differential ψ̃ on X
is unique. We denote this divisor by W, the divisor of Weierstrass points. This
divisor is effective and we have degW = g3 − g. Writing W =

∑
P∈X w(P ) · P

we call the integer w(P ) the weight at P . This weight can be calculated using
gap sequences, but we shall not need this.
Now fix for the moment a Q ∈ X. We consider the map φQ : X → Picg−1(X)
given by sending P 7→ [gP − Q]. We put a smooth hermitian metric on O(Θ)
by setting ‖s‖ = ‖ϑ‖ where s is the canonical generating section of O(Θ). We
shall refer to this metric as the Arakelov metric on O(Θ). It can be verified
by a short calculation using Riemann’s bilinear relations that φ∗

QO(Θ) is a

line bundle on X of degree g3 and with curvature form a multiple of µ. In
fact we can say more. It is a classical result (cf. for example [9], p. 31) that
φ∗

Q(Θ) = W+g ·Q. Hence we obtain the first statement of the next proposition.

Proposition 2.1. We have a canonical isomorphism

σQ : φ∗
Q(O(Θ))

∼
−→OX(W + g · Q)

of line bundles on X. When both sides are equipped with their Arakelov metrics,
the isomorphism σQ has constant norm on X. This norm is independent of
the choice of Q.

The proposition will be proven in the next section. Meanwhile, we observe that
it leads quite quickly to a closed formula for G.

Definition 2.2. We define S(X) to be the norm of σQ for any Q ∈ X.

In more concrete terms we have the following formula.

Corollary 2.3. For any P,Q on X we have

G(P,Q)g ·
∏

W∈W

G(P,W ) = S(X) · ‖ϑ‖(gP − Q) ,

where the Weierstrass points are counted with their weights.

It follows from this corollary that the function
∏

W∈W ‖ϑ‖(gP − W ) does not
vanish if P is not a Weierstrass point. Hence the following formula makes sense.
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Theorem 2.4. For any P,Q on X with P not a Weierstrass point we have

G(P,Q)g = S(X)1/g2

·
‖ϑ‖(gP − Q)∏

W∈W ‖ϑ‖(gP − W )1/g3
.

Here the Weierstrass points are counted with their weights.

Proof. This follows by applying the formula from Corollary 2.3 two times.
First, take the (weighted) product over Q running through W. This gives

∏

W∈W

G(P,W )g3

= S(X)g3−g ·
∏

W∈W

‖ϑ‖(gP − W ) .

Plug this in again in the formula from Corollary 2.3. This gives

G(P,Q)g · S(X)
g3−g

g3 ·
∏

W∈W

‖ϑ‖(gP − W )1/g3

= S(X) · ‖ϑ‖(gP − Q) ,

and a little rewriting gives the result. ¤

Taking logarithms in Corollary 2.3 and then integrating against µ with respect
to the variable P immediately gives the following explicit formula for S(X).

Theorem 2.5. For any fixed Q, the function log ‖ϑ‖(gP − Q) is integrable
against µ, and the formula

log S(X) = −

∫

X

log ‖ϑ‖(gP − Q) · µ(P )

holds.

The invariant S(X) is readily calculated in the case g = 1.

Example 2.6. Suppose that X = C/Z + τZ with Im τ > 0 is an elliptic curve.
The form µ is given by µ = i

2 (dz ∧ dz)/Im τ and we have

log S(X) = −

∫

X

log ‖ϑ‖ · µ .

A calculation (see [15], p. 45 or for a different approach [14], p. 250) yields

log S(X) = − log((Im τ)1/4|η(τ)|) ,

where η(τ) is the usual Dedekind eta-function η(q) = q1/24
∏∞

n=1(1 − qn) in
q = exp(2πiτ).

In the case that P = W is a Weierstrass point of X, the formula in Theorem
2.4 is still correct, provided that on the right hand side we take a limit for
P approaching W . That this limit exists and that it indeed gives G(W,Q)g

follows easily from the proof of Theorem 2.4.
We finish this section by discussing very shortly several other approaches to G
that we know from the literature. First of all, it is quite natural to develop
G in terms of the eigenvalues and eigenfunctions of a Laplacian associated to
µ on X. This is the approach taken in [8], see especially Section 3 of that
paper. Second, it is possible to express G in terms of abelian differentials of
the second and third kind, see for example [15], Chapter II. Third, and this is
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perhaps most close to our approach since it also involves theta functions quite
explicitly, there is an integral formula for G derived by Bost, cf. [3], Proposition
1. This interesting result reads as follows: let ν be the curvature form of O(Θ)
on Picg−1(X). Then there is an invariant A(X) of X such that for every P,Q
on X the formula

log G(P,Q) =
1

g!

∫

Θ+P−Q

log ‖ϑ‖ · νg−1 + A(X)

holds. It would be interesting to have results that relate A(X) and S(X) to
each other in a natural, conceptual way.

3. Proof of Proposition 2.1

Proposition 2.1 follows directly from Lemmas 3.1 and 3.2 below. We will be
dealing, among other things, with the line bundle ∧gH0(X,Ω1

X)⊗C OX on X.
We equip this line bundle with the constant metric deriving from the hermitian
inner product (ω, η) 7→ i

2

∫
X

ω∧η on H0(X,Ω1
X) that we introduced in Section

1. From now on, this metric will be taken for granted and we shall also refer
to it as an Arakelov metric.

Lemma 3.1. There is a canonical isomorphism of line bundles

ρ : Ω
⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX

)∨ ∼
−→OX(W)

on X. When both sides are equipped with their Arakelov metrics, the norm of
this isomorphism is constant on X.

Proof. The Wronskian differential ψ̃ formed on an arbitrary basis {ψ1, . . . , ψg}
of H0(X,Ω1

X) leads to a morphism of line bundles

∧gH0(X,Ω1
X) ⊗C OX −→ Ω

g(g+1)/2
X

by setting

ξ1 ∧ . . . ∧ ξg 7→
ξ1 ∧ . . . ∧ ξg

ψ1 ∧ . . . ∧ ψg
· ψ̃ .

This gives a canonical section in Ω
⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX

)∨
whose

divisor is W and thus we obtain the required isomorphism. The norm is con-
stant on X because both sides have the same curvature form, and the divisors
of their canonical sections are equal. ¤

Lemma 3.2. Let Q be an arbitrary point of X. There is a canonical isomor-
phism of line bundles

φ∗
Q(O(Θ))

∼
−→

(
Ω

⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX

)∨)
⊗ OX(g · Q)

on X. When both sides are equipped with their Arakelov metrics, the norm of
this isomorphism is constant on X and equal to exp(δ(X)/8).
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Proof. We are done once we prove that

exp(δ(X)/8) · ‖ϑ‖(gP − Q) = ‖ω̃‖Ar(P ) · G(P,Q)g

for arbitrary P,Q on X, where ω̃ is the Wronskian differential formed out of an
orthonormal basis {ω1, . . . , ωg} of H0(X,Ω1

X) and where the norm ‖ω̃‖Ar of ω̃

is taken in the line bundle Ω
⊗g(g+1)/2
X equipped with its Arakelov metric. The

required formula follows from the formula in Theorem 1.2, by a computation
which is also performed in [14], p. 233 and which runs as follows. Let P be
a point on X, and choose a local coordinate z about P . By definition of
the Arakelov metric on Ω1

X we have that limQ→P |z(Q) − z(P )|/G(Q,P ) =
‖dz‖Ar(P ). Letting P1, . . . , Pg approach P in Theorem 1.2 we obtain

lim
Pl→P

‖det ωk(Pl)‖Ar∏
k<l G(Pk, Pl)

= lim
Pl→P

{
‖det ωk(Pl)‖Ar∏

k<l |z(Pk) − z(Pl)|
·

∏
k<l |z(Pk) − z(Pl)|∏

k<l G(Pk, Pl)

}

=

{
lim

Pl→P

|det ωk(Pl)|∏
k<l |z(Pk) − z(Pl)|

}
· ‖dz‖

g+g(g−1)/2
Ar (P )

= |Wz(ω)(P )| · ‖dz‖
g(g+1)/2
Ar (P )

= ‖ω̃‖Ar(P ) .

The required formula is therefore just a limiting case of Theorem 1.2 where all
Pk approach P . ¤

4. The Faltings delta-invariant

In the present section we will express the Faltings delta-invariant δ(X) in terms
of S(X) and a second invariant T (X). The significance of our formula is that
the constant T (X) is in a sense “classical” and easy to calculate numerically.
To start our discussion, we observe that it follows from the previous sections
that (multiples of) the divisor W of Weierstrass points appear as a divisor of a
section of a line bundle in various different situations. We will take advantage of
this fact and take combinations until we obtain an isomorphism of line bundles
whose norm is easy to measure.
First of all, recall (this is Proposition 2.1) that we have for any Q on X a
canonical isomorphism

σQ : φ∗
Q(O(Θ))

∼
−→OX(W + g · Q) .

Taking the (weighted) tensor product over the Weierstrass points of X, we
obtain a canonical isomorphism

σW :
⊗

W∈W

φ∗
W (O(Θ))

∼
−→OX(g3 · W) .

Second, recall that by Lemma 3.1 we have a canonical isomorphism

ρ : Ω
⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX

)∨ ∼
−→OX(W) .
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Thirdly, taking a closer look at Lemma 3.2 we see that the proof in fact implies
that we have on X × X a canonical isomorphism

σ : Φ∗(O(Θ))
∼
−→OX×X(W · X + g · ∆X)

where Φ : X × X → Picg−1(X) is the map sending (P,Q) 7→ [gP − Q] and
where again ∆X is the diagonal on X ×X. Restricting σ to the diagonal, and
using the adjunction isomorphism, we obtain a canonical isomorphism

σ|∆ : Φ∗(O(Θ))|∆X
⊗ Ω⊗g

X
∼
−→OX(W) .

Taking suitable combinations of σW , ρ and σ|∆ we obtain

Proposition 4.1. There is a canonical isomorphism of (fractional) line bun-
dles

τ :
(
Φ∗(O(Θ))|∆X

⊗ Ω⊗g
X

)⊗(g+1) ∼
−→

(⊗

W

φ∗
W (O(Θ))

)⊗(g−1)/g3

⊗
(
Ω

⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX

)∨)⊗2

on X.

Our results thus far imply that τ has a constant norm for the Arakelov metrics
on both sides.

Definition 4.2. We define T (X) to be the norm of τ on X.

The constant T (X) admits the following concrete description using a local
coordinate.

Proposition 4.3. Let P ∈ X not a Weierstrass point and let z be a local
coordinate about P . Define ‖Fz‖(P ) as

‖Fz‖(P ) = lim
Q→P

‖ϑ‖(gP − Q)

|z(P ) − z(Q)|g
.

This limit exists and is non-zero. Further, let {ω1, . . . , ωg} be an orthonormal
basis of H0(X,Ω1

X). Then the formula

T (X) = ‖Fz‖(P )−(g+1) ·
∏

W∈W

‖ϑ‖(gP − W )(g−1)/g3

· |Wz(ω)(P )|2

holds, where Wz(ω) is the determinant of the Wronskian of {ω1, . . . , ωg} with
respect to z.

In particular, the evaluation of T (X) for a given X only involves the evaluation
of certain classical functions at an arbitrary (non-Weierstrass) point of X.

Proof. Let F be the canonical section of Φ∗(O(Θ))|∆X
⊗ Ω⊗g

X coming from
the canonical section in Φ∗(O(Θ)) and the canonical generating section of
OX×X(∆X) using the adjunction isomorphism. For its norm we have ‖F‖ =
‖Fz‖ · ‖dz‖g

Ar in the local coordinate z. We see from the isomorphism σ|∆
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that ‖F‖(P ) does not vanish if P is not a Weierstrass point. Next, the canon-
ical section of

⊗
W∈W φ∗

W O(Θ) has norm
∏

W∈W ‖ϑ‖(gP − W ) at P . Fi-

nally, the canonical section of Ω
⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX

)∨
has norm

‖ω̃‖Ar = |Wz(ω)| · ‖dz‖
g(g+1)/2
Ar . The proposition follows by taking the appro-

priate combinations of these norms. ¤

Considering the norms of the three isomorphisms σW , ρ and σ|∆ one sees that
they are directly expressible in terms of exp(δ) and S(X). Hence the same
holds for the norm T (X) of τ . Viewing things a little differently, we obtain a
formula for exp(δ) in terms of S(X) and T (X).

Theorem 4.4. The formula

exp(δ(X)/4) = S(X)−(g−1)/g3

· T (X)

holds.

Proof. The norm of σW is equal to S(X)g3−g. The norm of ρ is equal to
S(X) exp(−δ(X)/8) as becomes clear by decomposing again the isomorphism
from Proposition 2.1, which has norm S(X), into the isomorphisms from Lem-
mas 3.1 and 3.2. Lastly, the norm of σ|∆ is equal to S(X) since σ has this
norm and the restriction to the diagonal using the adjunction isomorphism is
an isometry. We obtain the required formula by just combining. ¤

We want to finish this section with a second formula for T (X), involving only
first order derivatives of the theta function. It is based on a function ‖J‖ on
SymgX introduced by Guàrdia in [11].
Let τ ∈ Hg be a period matrix associated to a symplectic basis of H1(X, Z) and
consider again the analytic jacobian Jac(X) = Cg/Zg + τZg. For w1, . . . , wg ∈
Cg we put

J(w1, . . . , wg) = det

(
∂ϑ

∂zk
(wl)

)

and

‖J‖(w1, . . . , wg) = (det Im τ)
g+2

4 exp(−π

g∑

k=1

tyk(Im τ)−1yk) · |J(w1, . . . , wg)| .

Here in the latter formula yk = Im wk for k = 1, . . . , g. It can be checked
that the function ‖J‖(w1, . . . , wg) depends only on the classes in Jac(X) of the
vectors wk. Now let P1, . . . , Pg be a set of g points on X. We take vectors
w1, . . . , wg ∈ Cg such that for all k = 1, . . . , g the class [wk] ∈ Jac(X) corre-
sponds to [

∑g
l=1

l 6=k

Pl] ∈ Picg−1(X) under the Abel-Jacobi-Riemann correspon-

dence Picg−1(X) ↔ Jac(X). We then put ‖J‖(P1, . . . , Pg) = ‖J‖(w1, . . . , wg).
One may check that this does not depend on the choice of the period ma-
trix τ . The function ‖J‖ has the following geometrical property: we have
‖J‖(P1, . . . , Pg) = 0 if and only if P1, . . . , Pg are linearly dependent on the
image of X under the canonical map X → P(H0(X,Ω1

X)∨). We refer to [11]
for a proof of the following theorem.
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Theorem 4.5. Let P1, . . . , Pg, Q be points on X with P1, . . . , Pg pairwise dis-
tinct. Then the formula

‖ϑ‖(P1 + · · ·+Pg −Q)g−1 = exp(δ(X)/8) · ‖J‖(P1, . . . , Pg) ·

∏g
k=1 G(Pk, Q)g−1

∏
k<l G(Pk, Pl)

holds.

A combination of Theorems 2.4, 4.4 and 4.5 yields the following formula for
T (X).

Proposition 4.6. Let P1, . . . , Pg, Q be generic points on X. Then the formula

T (X) =

(
‖ϑ‖(P1 + · · · + Pg − Q)∏g

k=1 ‖ϑ‖(gPk − Q)1/g

)2g−2

·

·

(∏
k 6=l ‖ϑ‖(gPk − Pl)

1/g

‖J‖(P1, . . . , Pg)2

)
·

∏

W∈W

g∏

k=1

‖ϑ‖(gPk − W )(g−1)/g4

holds. Again the Weierstrass points are counted with their weights.

Let us make the invariant T (X) explicit in the case that X is an elliptic curve.
Writing X = C/Z+ τZ with Im τ > 0 we obtain from either Proposition 4.3 or
4.6 that

T (X) = (Im τ)−3/2 exp(πIm τ/2) · |
∂ϑ

∂z
(
1 + τ

2
; τ)|−2 .

By Jacobi’s derivative formula (cf. [19], Chapter I, §13) we can rewrite this as

T (X) = (2π)−2 · ((Im τ)6|∆(τ)|)−1/4

where ∆ is the discriminant modular form ∆(q) = η(q)24 = q
∏∞

n=1(1 − qn)24

in q = exp(2πiτ). Using Theorem 4.4 we obtain

δ(X) = − log((Im τ)6|∆(τ)|) − 8 log(2π)

which is well-known, see [8], p. 417.
In [13] we obtain a generalisation of the above formula for T (X) to the case
where X is a hyperelliptic Riemann surface of genus g ≥ 2. The result is
expressed in terms of the discriminant modular form ϕg on the generalised
Siegel upper half plane Hg as defined in [17], Section 3. This is a modular form

on Γg(2) = {γ ∈ Sp(2g, Z) : γ ≡ I2g mod 2} of weight 4r, where r =
(
2g+1
g+1

)
,

generalising the usual discriminant modular form ∆ in genus 1.

Theorem 4.7. Let X be a hyperelliptic Riemann surface of genus g ≥ 2.
Choose an ordering of the Weierstrass points on X and construct a canonical
symplectic basis of H1(X, Z) starting with this ordering (cf. [19], Chapter IIIa,
§5). Let τ ∈ Hg be a period matrix of X associated to this canonical basis and

put ∆g(τ) = 2−(4g+4)n · ϕg(τ) where n =
(

2g
g+1

)
. Then ∆g(τ) is non-zero and

the formula

T (X) = (2π)−2g · ((Im τ)2r|∆g(τ)|)−
3g−1

8ng

holds.
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It is an intriguing question whether the invariant T (X) admits of a simple
description in terms of modular forms for a general Riemann surface X of
genus g.
We finish this section by remarking that a closed formula of a quite different
type can be given for δ using work of Bost [4] and Gillet-Soulé [10]. The point of
view leading to this formula is the Riemannian manifold structure on X deriving
from µ. Let ds2 be the metric on X given in conformal coordinates by ds2 =
2hzzdzdz with hzz = ‖dz‖−2

Ar . Let det′ ∆h be the zeta regularised determinant
of the Laplace operator with respect to this metric, and let vol(X,h) be the
volume of X. Then the formula

δ(X) = c(g) − 6 log
det ∆′

h

vol(X,h)

holds, where c(g) is a constant depending only on g. It would be interesting to
know whether the terms occurring in this formula can be naturally related to
the constants S(X) and T (X) which are the subject of this paper.

5. Applications to intersection theory

In this section we discuss several applications of our results to Arakelov inter-
section theory. Let p : X → B be an arithmetic surface over the spectrum B of
the ring of integers of a number field K. For us this means that X is a regular
scheme and that p is a proper and flat relative curve whose generic fiber is
smooth and geometrically connected. We denote this generic fiber by XK . We
assume that the reader is familiar with the basic notions and statements in the
Arakelov intersection theory on X , as explained in [2] or [8].
We let g be the genus of XK , and assume that it is positive. We fix a K-
basis {ψ1, . . . , ψg} of regular differential 1-forms on XK . Looking back at the
discussion at the beginning of Section 2, which was purely algebraic, we note
that a non-zero Wronskian differential ψ̃ can be formed out of this basis. Its
divisor div ψ̃ is an effective K-divisor on XK and we have, completely analogous
to Lemma 3.1, a canonical isomorphism

Ω
⊗g(g+1)/2
XK

⊗OXK

(
∧gH0(XK ,Ω1

XK
) ⊗K OXK

)∨ ∼
−→OXK

(div ψ̃)

of invertible sheaves on XK . We denote by W the Zariski closure of div ψ̃ in
X . Let ωX/B be the relative dualising sheaf of p : X → B.

Lemma 5.1. The above isomorphism extends to a canonical isomorphism

ρ : ω
⊗g(g+1)/2
X/B ⊗OX

(
p∗(det p∗ωX/B)

)∨ ∼
−→OX (V + W)

of invertible sheaves on X , for some effective divisor V whose support is entirely
contained in the fibers of p.

Proof. The idea for the proof is taken from [1], p. 1298, where an analogous

result is proven for the function field case. We recall that ψ̃ is given in a local
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coordinate z by Wz(ψ)(dz)⊗g(g+1)/2 where

Wz(ψ) = det

(
1

(l − 1)!

dl−1fk

dzl−1

)

1≤k,l≤g

if the ψk are locally written as ψk = fk(z)dz for k = 1, . . . , g. On XK this gives
rise to a morphism of invertible sheaves

∧gH0(XK ,Ω1
XK

) ⊗K OXK
−→ Ω

⊗g(g+1)/2
XK

by setting

ξ1 ∧ . . . ∧ ξg 7→
ξ1 ∧ . . . ∧ ξg

ψ1 ∧ . . . ∧ ψg
· ψ̃

(cf. the proof of Lemma 3.1). Now note that the construction of ψ̃ is valid for
smooth proper curves over any base scheme. As a result, by modifying the basis
{ψ1, . . . , ψg} if necessary, the above morphism extends canonically at least over
the open dense subscheme of X where p is smooth. Automatically it extends

then further to give a canonical morphism p∗(det p∗ωX/B) → ω
⊗g(g+1)/2
X/B on the

whole of X . Multiplying by (p∗(det p∗ωX/B))∨ we obtain from this a morphism

OX −→ ω
⊗g(g+1)/2
X/B ⊗OX

(
p∗(det p∗ωX/B)

)∨
.

The image of 1 is a section whose divisor is a divisor V+W where V is effective
and has support entirely contained in the fibers of p. This gives the lemma. ¤

The divisor V is an invariant of the arithmetic surface p : X → B and we shall
use it without further mention in the sequel.

Example 5.2. In the case that g = 1, the morphism p∗p∗ωX/B → ωX/B in
the above proof is just the natural morphism, as is readily checked. According
to [16], Corollary 3.27, if p : X → B is a minimal arithmetic surface, then the
natural morphism p∗p∗ωX/B → ωX/B is in fact an isomorphism. Hence we find
V = ∅ in this case.

We want to translate the isomorphism ρ of Lemma 5.1 into an equality of
Arakelov divisors on X . For this we need a notation for the norm of ρ at the
various complex embeddings of K.

Definition 5.3. Let X be a compact Riemann surface of positive genus. We
denote by R(X) the norm of the isomorphism ρ from Lemma 3.1.

It follows from our discussion so far that R(X) = S(X) · exp(−δ(X)/8). Now
let’s turn back to our arithmetic surface p : X → B. We recall from [2] [8]
that both sides of the isomorphism ρ from Lemma 5.1 come equipped with
a canonical structure of metrised invertible sheaf, and that to each non-zero
rational section of such a sheaf we can associate its Arakelov divisor. For each
complex embedding σ of K we denote by Xσ the compact Riemann surface
(XK ⊗K,σ C)(C) obtained from base changing XK to C along σ. We denote by
Fσ the corresponding Arakelov fiber. The next proposition follows easily from
Lemma 5.1 and from the fact that ρ has constant norm R(Xσ) on Xσ.
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Proposition 5.4. We have an equality

1

2
g(g + 1)ωX/B = V + W +

∑

σ

log R(Xσ) · Fσ + p∗(det p∗ωX/B)

of Arakelov divisors on X . Here the sum runs over the complex embeddings of
K.

This proposition can be used to deduce some interesting formulas involving
Arakelov intersection numbers.

Definition 5.5. We define a function R on the set of closed fibers of p : X → B
as follows. Let s be a closed point of B. If g = 1, we put R(Xs) = 0. If g ≥ 2,
then we define R(Xs) by the equality (2g−2)·log R(Xs) = (Vs, ωX/B)·log #k(s),
where (Vs, ωX/B) is the usual intersection number of the divisors V and ωX/B

above s, and where k(s) is the residue field at s.

As the next proposition implies, the function R can be seen as an analogue
of the previously defined R for compact Riemann surfaces. The quantity

d̂eg det p∗ωX/B is the usual Arakelov degree of the metrised invertible sheaf
det p∗ωX/B on B (i.e., [K : Q] times the Faltings height of p : X → B).

Proposition 5.6. Assume that p : X → B is a semi-stable arithmetic surface.
Then for the self-intersection of the relative dualising sheaf we have a lower
bound

(ω, ω) ≥
8(g − 1)

(2g − 1)(g + 1)
·

(∑

s

log R(Xs) +
∑

σ

log R(Xσ) + d̂eg det p∗ωX/B

)
.

Here the first sum runs over the closed points s ∈ B, and the second sum runs
over the complex embeddings of K.

Proof. In the case g = 1, the lower bound is trivially satisfied since we have
(ωX/B , ωX/B) = 0 in this case by [8], Theorem 7. So assume that g ≥ 2. We
take the equality from Proposition 5.1 and intersect the divisors on both sides
with ωX/B . This gives that 1

2g(g + 1)(ωX/B , ωX/B) can be written as

(W, ωX/B) + (2g − 2) ·

(∑

s

log R(Xs) +
∑

σ

log R(Xσ) + d̂eg det p∗ωX/B

)
.

For the term (W, ωX/B) we have by [8], Theorem 5 the lower bound

(W, ωX/B) ≥
g3 − g

2g(2g − 2)
(ωX/B , ωX/B) =

1

4
(g + 1)(ωX/B , ωX/B)

since the generic degree of W is g3 − g. Using this in the first equality gives
the required lower bound. ¤

We remark that for a semi-stable arithmetic surface p : X → B the num-
bers log R(Xs) are always non-negative. Lower bounds of a similar type for
(ωX/B , ωX/B) can be found in [6]. The problem with the above proposition is
that the right hand side may be negative, and then the lower bound becomes
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useless in view of the fundamental inequality (ωX/B , ωX/B) ≥ 0 proved by
Faltings [8]. However, for any fixed g ≥ 2 the invariant log R(X) can become
arbitrarily large, as the next proposition shows.

Proposition 5.7. Let Xt be a holomorphic family of compact Riemann sur-
faces of genus g ≥ 2 over the punctured disk, degenerating as t → 0 to the union
of two Riemann surfaces of positive genera g1, g2 with two points identified.
Suppose that neither of these two points was a Weierstrass point. Then the
formula

log R(Xt) = −
g1g2

2g
log |t| + O(1)

holds as t → 0.

For a proof we refer to the author’s thesis [12].
The next application we have in mind is a formula for the self-intersection of
a point. In order to derive this formula it is convenient to use the machinery
of the determinant of cohomology detRp∗(·) and the Deligne bracket 〈·, ·〉, for
which we refer to [7]. We will use that for any section P : B → X and any in-

vertible sheaf L on X we have canonical isomorphisms 〈OX (P ), L〉
∼
−→P ∗L

and 〈P, ωX/B〉
∼
−→〈P, P 〉⊗−1. The latter is sometimes called the adjunc-

tion formula. Moreover, we have a Riemann-Roch theorem in the follow-
ing form: for each invertible sheaf L on X there is a canonical isomorphism
(detRp∗L)⊗2 ∼

−→〈L,L ⊗ ω−1
X/B〉 ⊗ (det p∗ωX/B)⊗2.

Lemma 5.8. Let P be a section of p, not a Weierstrass point on the generic
fiber. Then we have a canonical isomorphism

υ : P ∗(OX (V + W))⊗2 ∼
−→ (det Rp∗OX (gP ))

⊗−2

of line bundles on B. When restricted to the generic fiber, the left hand
side gets identified with O⊗2

SpecK and the right hand side gets identified with

H0(XK , OXK
(gP ))⊗−2. The latter has a canonical trivialising section 1 and

the isomorphism υ, when restricted to the generic fiber, sends the 1 of O⊗2
SpecK

to the 1 of H0(XK , OXK
(gP ))⊗−2.

Proof. The Riemann-Roch theorem applied to the invertible sheaf OX (gP )
gives a canonical isomorphism

(det Rp∗OX (gP ))
⊗2 ∼

−→〈OX (gP ), OX (gP ) ⊗ ω−1
X/B〉 ⊗ (det p∗ωX/B)⊗2 .

By the adjunction formula, the right hand side can be canonically identified
with 〈P, P 〉⊗g(g+1) ⊗ (det p∗ωX/B)⊗2, giving a canonical isomorphism

(det Rp∗OX (gP ))
⊗2 ∼

−→〈P, P 〉⊗g(g+1) ⊗ (det p∗ωX/B)⊗2 .

On the other hand, pulling back the isomorphism ρ from Lemma 5.1 along P
and using once more the adjunction formula we find a canonical isomorphism

〈P, P 〉⊗−g(g+1)/2 ∼
−→〈V + W, P 〉 ⊗ det p∗ωX/B
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and hence

〈P, P 〉⊗g(g+1) ∼
−→ (P ∗OX (V + W))

⊗−2
⊗ (det p∗ωX/B)⊗−2 .

The isomorphism υ follows by combining these isomorphisms. Since P is
not a Weierstrass point on the generic fiber, we have that H0(XK , gP ) is
1-dimensional and hence is generated by its canonical section 1. The last
statement of the lemma follows then by carefully spelling out all the isomor-
phisms. ¤

Proposition 5.9. Let P be a section of p, not a Weierstrass point on the
generic fiber. Then R1p∗OX (gP ) is a torsion module on B and the self-
intersection − 1

2g(g + 1)(P, P ) is given by

−
∑

σ

log G(Pσ,Wσ) + log #R1p∗OX (gP ) +
∑

σ

log R(Xσ) + d̂eg det p∗ωX/B .

Here σ runs through the complex embeddings of K.

Proof. That R1p∗OX (gP ) is a torsion module on B follows since we have
H1(XK , gP ) = 0 on the generic fiber. As to the formula, we take the equality
from Proposition 5.1 and intersect the divisors on both sides with P . By the
Arakelov adjunction formula (ω, P ) = −(P, P ) we obtain

−
1

2
g(g + 1)(P, P ) = (V + W, P ) +

∑

σ

log R(Xσ) + d̂eg det p∗ωX/B .

It remains therefore to see that (V + W, P )fin = log #R1p∗OX (gP ). For this
we invoke Lemma 5.8. It follows from the description of υ on the generic fiber
that in fact υ is the natural isomorphism over the open dense subscheme of B
where P does not meet V + W. Now for any closed point s of B denote by es

the length at s of R1p∗OX (gP ). Then if we let D =
∑

s es · s, the invertible
sheaf det R1p∗OX (gP ) gets identified with OB(D) and, since detR0p∗OX (gP )
is trivialised by the section 1, the determinant of cohomology detRp∗OX (gP )
gets identified with OB(−D). By Lemma 5.8, for any closed point s the length
es coincides with the intersection multiplicity of P and V +W at s and conse-
quently (V + W, P )fin =

∑
s es log #k(s) = log #R1p∗OX (gP ). ¤

6. A numerical example

In this section we use the results of Sections 2 and 4 to calculate the Falt-
ings height and the self-intersection of the relative dualising sheaf of a certain
hyperelliptic curve of genus 3 defined over the rationals. We start with two
theoretical results, both of which can be proved by methods similar to those
used in [5], Section 3.
Let K be a number field, and let OK be its ring of integers. For a non-
zero element a ∈ OK and a prime ideal ℘ of OK we denote by v℘(a) the
exponent of ℘ in the prime ideal decomposition of a · OK . Let f ∈ OK [x]
be a monic polynomial of degree 5 with f(0) and f(1) units in OK and put
g(x) = x(x − 1) + 4f(x).
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Proposition 6.1. Suppose that the discriminant ∆ of g is non-zero, that we
have v℘(∆) = 0 or 1 for each prime ideal ℘ of residue characteristic 6= 2, and
that g mod ℘ has a unique multiple root of multiplicity 2 for prime ideals ℘
with residue characteristic 6= 2 and with v℘(∆) = 1. Then the equation

Cf : y2 = x(x − 1)f(x)

defines a hyperelliptic curve of genus 3 over K. It extends to a semi-stable
arithmetic surface p : X → B = Spec(OK). We have that X has bad reduction
at ℘ if and only if ℘ has residue characteristic 6= 2 and v℘(∆) = 1. For such ℘,
the fiber at ℘ is an irreducible curve with a single double point. The differentials
dx/y, xdx/y, x2dx/y form a basis of the free OB-module p∗ωX/B. The points
W0,W1 on Cf given by x = 0 and x = 1 extend to disjoint sections of p.

As to the Faltings height and the self-intersection of the relative dualising sheaf
of Cf we have the following. For a complex embedding σ of K we denote by
Xf,σ the compact Riemann surface (Cf ⊗K,σ C)(C) obtained by base changing
Cf to C along σ. For each σ, we choose a symplectic basis of H1(Xf,σ, Z) and
form the period matrix Ωσ = (Ω1,σ|Ω2σ) for dx/y, xdx/y and x2dx/y on this

basis. We further put τσ = Ω−1
1σ Ω2σ.

Proposition 6.2. The degree of det p∗ωX/B satisfies

d̂eg det p∗ωX/B = −
1

2

∑

σ

log
(
|det Ω1σ|

2(det Im τσ)
)

.

For the self-intersection of the relative dualising sheaf we have the formula

(ωX/B , ωX/B) = 24
∑

σ

log Gσ(W0,W1) ,

where Gσ denotes the Arakelov-Green function on Xf,σ.

We apply these propositions to a concrete example. We choose K = Q and
f(x) = x5 + 6x4 + 4x3 − 6x2 − 5x − 1. It can be checked that g(x) =
x(x − 1) + 4f(x) satisfies the conditions of Proposition 6.1. The correspond-
ing hyperelliptic curve Cf has bad reduction at the primes p = 37, p = 701
and p = 14717. Let Xf be the compact Riemann surface obtained from base
changing Cf to the complex numbers. We choose an ordering of the Weier-
strass points of X and as in [19], Chapter IIIa, §5 this gives us a canonical way
to construct a symplectic basis for H1(Xf , Z). We have computed the periods
with respect to this basis of the differentials dx/y, xdx/y and x2dx/y. Using
Proposition 6.2 we easily obtain

d̂eg det p∗ωX/B = −1.280295247656532068 . . .

which is the Faltings height of Cf . Next we take a look at the self-intersection of
the relative dualising sheaf. According to Proposition 6.2 we need to calculate
G(W0,W1). We apply Theorem 2.4 where we carefully take a limit for P
approaching W0. Using theory as developed for example in [19], Chapter IIIa
it is possible to make the Abel-Jacobi-Riemann correspondence Pic2(Xf ) ↔
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Jac(Xf ) completely explicit. This makes it easy to carry out the theta function
evaluations that are needed to compute G(W0,W1). The calculation of S(Xf )
is, however, considerably harder. We recall that in our case S(Xf ) is given by

log S(Xf ) = −

∫

Xf

log ‖ϑ‖(3P − Q) · µ(P )

where µ is the Arakelov metric and where Q is any point on Xf . We want to
express µ in terms of the coordinates x, y but then it immediately becomes clear
that the integrand will diverge at the Weierstrass point at infinity. However,
by taking logarithms in Theorem 2.4 and integrating against µ(Q) we find the
alternative formula

log S(Xf ) = −9

∫

X

log ‖ϑ‖(3P − Q) · µ(Q) +
1

3

∑

W∈W

log ‖ϑ‖(3P − W ) ,

valid for any non-Weierstrass point P on X, in which the integrand behaves
better. In fact, the integrand now only has a singularity at Q = P . Let
Ω = (Ω1|Ω2) be the period matrix of Xf referred to above and put τ = Ω−1

1 Ω2.

Let (µkl) be the matrix given by (µkl) =
(
Ω1(Im τ)tΩ1

)−1
. An application of

Riemann’s bilinear relations yields µ = i
6

∑
µkl ψk ∧ ψl with ψ1 = dx/y, ψ2 =

xdx/y and ψ3 = x2dx/y. Writing x = u + iv with u, v ∈ R we can rewrite this
as the real 2-form

µ =
1

3

(
µ11 + 2µ12u + 2µ13(u

2 − v2) + µ22(u
2 + v2)

+2µ23u(u2 + v2) + µ33(u
2 + v2)2

)
·

dudv

|h(u + iv)|
,

where h(x) = x(x − 1)g(x). Using a computer algebra package, we have eval-
uated the integral. This is a slow process, because one has to take care of the
logarithmic singularity. On the other hand, it is possible to check the answers
by trying various choices of P . We found that within reasonable time limits
we can only reach an accuracy within ± 0.005. The end result is

log S(Xf ) = 17.57 . . .

Using this we find the approximation

G(W0,W1) = 2.33 . . .

and finally

(ωX/B , ωX/B) = 20.32 . . .

It is almost no extra effort to compute also the delta-invariant of Xf . Using
Theorem 4.7 we obtain, first of all,

log T (Xf ) = −4.44361200473681284 . . .

With Theorem 4.4 and our value above for log S(Xf ) we get as a result

δ(Xf ) = −33.40 . . .
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The reader may check that the Noether formula [18] is verified by our numerical
results.
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Birkhäuser Verlag 2005.

[14] J. Jorgenson, Asymptotic behavior of Faltings’s delta function, Duke Math.
J. 61 (1990), 1, 303–328.

[15] S. Lang, Introduction to Arakelov theory. Springer-Verlag 1988.
[16] Q. Liu, Algebraic Geometry and Arithmetic Curves. Oxford Graduate

Texts in Mathematics 6, Oxford Science Publications 2002.
[17] P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer.

Math. Soc. 342 (1994), 2, 729–752.

Documenta Mathematica 10 (2005) 311–329



Arakelov Invariants of Riemann Surfaces 329

[18] L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques,
Inv. Math. 98 (1989), 491–498.

[19] D. Mumford, Tata Lectures on Theta I,II. Progress in Mathematics vol.
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