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Abstract. We show that the category of orbits of the bounded
derived category of a hereditary category under a well-behaved au-
toequivalence is canonically triangulated. This answers a question by
Aslak Buan, Robert Marsh and Idun Reiten which appeared in their
study [8] with M. Reineke and G. Todorov of the link between tilting
theory and cluster algebras (cf. also [16]) and a question by Hideto
Asashiba about orbit categories. We observe that the resulting trian-
gulated orbit categories provide many examples of triangulated cat-
egories with the Calabi-Yau property. These include the category of
projective modules over a preprojective algebra of generalized Dynkin
type in the sense of Happel-Preiser-Ringel [29], whose triangulated
structure goes back to Auslander-Reiten’s work [6], [44], [7].

2000 Mathematics Subject Classification: Primary 18E30; Secondary
16G20.
Keywords and Phrases: Derived category, Triangulated category, Or-
bit category, Calabi-Yau category

1 Introduction

Let T be an additive category and F : T → T an automorphism (a stan-
dard construction allows one to replace a category with autoequivalence by
a category with automorphism). Let FZ denote the group of automorphisms
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generated by F . By definition, the orbit category T /F = T /FZ has the same
objects as T and its morphisms from X to Y are in bijection with

⊕

n∈Z

HomT (X,FnY ).

The composition is defined in the natural way (cf. [17], where this category is
called the skew category). The canonical projection functor π : T → T /F is
endowed with a natural isomorphism π ◦ F ∼→ π and 2-universal among such
functors. Clearly T /F is still an additive category and the projection is an
additive functor. Now suppose that T is a triangulated category and that F is
a triangle functor. Is there a triangulated structure on the orbit category such
that the projection functor becomes a triangle functor? One can show that in
general, the answer is negative. A closer look at the situation even gives one
the impression that quite strong assumptions are needed for the answer to be
positive. In this article, we give a sufficient set of conditions. Although they
are very strong, they are satisfied in certain cases of interest. In particular,
one obtains that the cluster categories of [8], [16] are triangulated. One also
obtains that the category of projective modules over the preprojective algebra
of a generalized Dynkin diagram in the sense of Happel-Preiser-Ringel [29] is
triangulated, which is also immediate from Auslander-Reiten’s work [6], [44],
[7]. More generally, our method yields many easily constructed examples of
triangulated categories with the Calabi-Yau property.
Our proof consists in constructing, under quite general hypotheses, a ‘trian-
gulated hull’ into which the orbit category T /F embeds. Then we show that
under certain restrictive assumptions, its image in the triangulated hull is stable
under extensions and hence equivalent to the hull.
The contents of the article are as follows: In section 3, we show by examples
that triangulated structures do not descend to orbit categories in general. In
section 4, we state the main theorem for triangulated orbit categories of derived
categories of hereditary algebras. We give a first, abstract, construction of the
triangulated hull of an orbit category in section 5. This construction is based
on the formalism of dg categories as developped in [32] [21] [57]. Using the
natural t-structure on the derived category of a hereditary category we prove
the main theorem in section 6.
We give a more concrete construction of the triangulated hull of the orbit
category in section 7. In some sense, the second construction is ‘Koszul-dual’
to the first: whereas the first construction is based on the tensor algebra

TA(X) = ⊕∞
n=0X

⊗An

of a (cofibrant) differential graded bimodule X over a differential graded algebra
A, the second one uses the ‘exterior algebra’

A ⊕ X∧[−1]

on its dual X∧ = RHomA(XA, A) shifted by one degree. In the cases consid-
ered by Buan et al. [8] and Caldero-Chapoton-Schiffler [16], this also yields an
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interesting new description of the orbit category itself in terms of the stable
category [40] of a differential graded algebra.
In section 8, we observe that triangulated orbit categories provide easily con-
structed examples of triangulated categories with the Calabi-Yau property. Fi-
nally, in section 9, we characterize our constructions by universal properties in
the 2-category of enhanced triangulated categories. This also allows us to ex-
amine their functoriality properties and to formulate a more general version of
the main theorem which applies to derived categories of hereditary categories
which are not necessarily module categories.
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3 Examples

Let T be a triangulated category, F : T → T an autoequivalence and π : T →
T /F the projection functor. In general, a morphism

u : X → Y

of T /F is given by a morphism

X →
N⊕

i=1

FniY

with N non vanishing components u1, . . . , uN in T . Therefore, in general, u
does not lift to a morphism in T and it is not obvious how to construct a
‘triangle’

X
u // Y // Z // SZ

in T /F . Thus, the orbit category T /F is certainly not trivially triangulated.
Worse, in ‘most’ cases, it is impossible to endow T /F with a triangulated
structure such that the projection functor becomes a triangle functor. Let us
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consider three examples where T is the bounded derived category Db(A) =
Db(modA) of the category of finitely generated (right) modules modA over an
algebra A of finite dimension over a field k. Thus the objects of Db(A) are the
complexes

M = (. . . → Mp → Mp+1 → . . .)

of finite-dimensional A-modules such that Mp = 0 for all large |p| and mor-
phisms are obtained from morphisms of complexes by formally inverting all
quasi-isomorphisms. The suspension functor S is defined by SM = M [1],
where M [1]p = Mp+1 and dM [1] = −dM , and the triangles are constructed
from short exact sequences of complexes.
Suppose that A is hereditary. Then the orbit category Db(A)/S2, first intro-
duced by D. Happel in [27], is triangulated. This result is due to Peng and Xiao
[43], who show that the orbit category is equivalent to the homotopy category
of the category of 2-periodic complexes of projective A-modules.
On the other hand, suppose that A is the algebra of dual numbers k[X]/(X2).
Then the orbit category Db(A)/S2 is not triangulated. This is an observation
due to A. Neeman (unpublished). Indeed, the endomorphism ring of the trivial
module k in the orbit category is isomorphic to a polynomial ring k[u]. One
checks that the endomorphism 1 + u is monomorphic. However, it does not
admit a left inverse (or else it would be invertible in k[u]). But in a triangulated
category, each monomorphism admits a left inverse.
One might think that this phenomenon is linked to the fact that the algebra
of dual numbers is of infinite global dimension. However, it may also occur
for algebras of finite global dimension: Let A be such an algebra. Then, as
shown by D. Happel in [27], the derived category Db(A) has Auslander-Reiten
triangles. Thus, it admits an autoequivalence, the Auslander-Reiten translation
τ , defined by

Hom(?, SτM) ∼→ DHom(M, ?) ,

where D denotes the functor Homk(?, k). Now let Q be the Kronecker quiver

1
((
66 2 .

The path algebra A = kQ is finite-dimensional and hereditary so Happel’s
theorem applies. The endomorphism ring of the image of the free module AA

in the orbit category Db(A)/τ is the preprojective algebra Λ(Q) (cf. section 7.3).
Since Q is not a Dynkin quiver, it is infinite-dimensional and in fact contains
a polynomial algebra (generated by any non zero morphism from the simple
projective P1 to τ−1P1). As above, it follows that the orbit category does not
admit a triangulated structure.

4 The main theorem

Assume that k is a field, and T is the bounded derived category Db(modA)
of the category of finite-dimensional (right) modules modA over a finite-
dimensional k-algebra A. Assume that F : T → T is a standard equivalence
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[48], i.e. F is isomorphic to the derived tensor product

?
L
⊗A X : Db(modA) → Db(modA)

for some complex X of A-A-bimodules. All autoequivalences with an ‘algebraic
construction’ are of this form, cf. section 9.

Theorem 1 Assume that the following hypotheses hold:

1) There is a hereditary abelian k-category H and a triangle equivalence

Db(modA) ∼→ Db(H)

In the conditions 2) and 3) below, we identify T with Db(H).

2) For each indecomposable U of H, only finitely many objects F iU , i ∈ Z,
lie in H.

3) There is an integer N ≥ 0 such that the F -orbit of each indecomposable of
T contains an object SnU , for some 0 ≤ n ≤ N and some indecomposable
object U of H.

Then the orbit category T /F admits a natural triangulated structure such that
the projection functor T → T /F is triangulated.

The triangulated structure on the orbit category is (most probably) not unique.
However, as we will see in section 9.6, the orbit category is the associated trian-
gulated category of a dg category, the exact (or pretriangulated) dg orbit cate-
gory, and the exact dg orbit category is unique and functorial (in the homotopy
category of dg categories) since it is the solution of a universal problem. Thus,
although perhaps not unique, the triangulated structure on the orbit category
is at least canonical, insofar as it comes from a dg structure which is unique
up to quasi-equivalence.
The construction of the triangulated orbit category T /F via the exact dg orbit
category also shows that there is a triangle equivalence between T /F and the
stable category E of some Frobenius category E .
In sections 7.2, 7.3 and 7.4, we will illustrate the theorem by examples. In
sections 5 and 6 below, we prove the theorem. The strategy is as follows:
First, under very weak assumptions, we embed T /F in a naturally triangulated
ambient category M (whose intrinsic interpretation will be given in section 9.6).
Then we show that T /F is closed under extensions in the ambient category
M. Here we will need the full strength of the assumptions 1), 2) and 3).
If T is the derived category of an abelian category which is not necessarily a
module category, one can still define a suitable notion of a standard equivalence
T → T , cf. section 9. Then the analogue of the above theorem is true, cf.
section 9.9.
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5 Construction of the triangulated hull M

The construction is based on the formalism of dg categories, which is briefly
recalled in section 9.1. We refer to [32], [21] and [57] for more background.

5.1 The dg orbit category

Let A be a dg category and F : A → A a dg functor inducing an equivalence in
H0A. We define the dg orbit category B to be the dg category with the same
objects as A and such that for X,Y ∈ B, we have

B (X,Y ) ∼→ colimp

⊕

n≥0

A (FnX,F pY ) ,

where the transition maps of the colim are given by F . This definition ensures
that H0B is isomorphic to the orbit category (H0A)/F .

5.2 The projection functor and its right adjoint

¿From now on, we assume that for all objects X,Y of A, the group

(H0A) (X,FnY )

vanishes except for finitely many n ∈ Z. We have a canonical dg functor
π : A → B. It yields an A-B-bimodule

(X,Y ) 7→ B (πX, Y ).

The standard functors associated with this bimodule are

- the derived tensor functor (=induction functor)

π∗ : DA → DB

- the derived Hom-functor (right adjoint to π∗), which equals the restriction
along π:

πρ : DB → DA

For X ∈ A, we have
π∗(X

∧) = (πX)∧ ,

where X∧ is the functor represented by X. Moreover, we have an isomorphism
in DA

πρπ∗(X
∧) =

⊕

n∈Z

Fn(X∧),

by the definition of the morphisms of B and the vanishing assumption made
above.
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5.3 Identifying objects of the orbit category

The functor πρ : DB → DA is the restriction along a morphism of dg categories.
Therefore, it detects isomorphisms. In particular, we obtain the following: Let
E ∈ DB, Z ∈ DA and let f : Z → πρE be a morphism. Let g : π∗Z → E be the
morphism corresponding to f by the adjunction. In order to show that g is an
isomorphism, it is enough to show that πρg : πρπ∗Z → πρE is an isomorphism.

5.4 The ambient triangulated category

We use the notations of the main theorem. Let X be a complex of A-A-
bimodules such that F is isomorphic to the total derived tensor product by
X. We may assume that X is bounded and that its components are projective
on both sides. Let A be the dg category of bounded complexes of finitely
generated projective A-modules. The tensor product by X defines a dg functor
from A to A. By abuse of notation, we denote this dg functor by F as well.
The assumption 2) implies that the vanishing assumption of subsection 5.2 is
satisfied. Thus we obtain a dg category B and an equivalence of categories

Db(modA)/F ∼→ H0B.

We let the ambient triangulated category M be the triangulated subcategory of
DB generated by the representable functors. The Yoneda embedding H0B →
DB yields the canonical embedding Db(modA)/F → M. We have a canonical
equivalence D(ModA) ∼→ DA and therefore we obtain a pair of adjoint functors
(π∗, πρ) between D(ModA) and DB. The functor π∗ restricts to the canonical
projection Db(modA) → Db(modA)/F .

6 The orbit category is closed under extensions

Consider the right adjoint πρ of π∗. It is defined on DB and takes values in the
unbounded derived category of all A-modules D(ModA). For X ∈ Db(modA),
the object π∗πρX is isomorphic to the sum of the translates F iX, i ∈ Z, of X.
It follows from assumption 2) that for each fixed n ∈ Z, the module Hn

modAF iX
vanishes for almost all i ∈ Z. Therefore the sum of the F iX lies in D(modA).
Consider a morphism f : π∗X → π∗Y of the orbit category T /F =
Db(modA)/F . We form a triangle

π∗X → π∗Y → E → Sπ∗X

in M. We apply the right adjoint πρ of π∗ to this triangle. We get a triangle

πρπ∗X → πρπ∗Y → πρE → Sπρπ∗X

in D(ModA). As we have just seen, the terms πρπ∗X and πρπ∗Y of the tri-
angle belong to D(modA). Hence so does πρE. We will construct an ob-
ject Z ∈ Db(modA) and an isomorphism g : π∗Z → E in the orbit cate-
gory. Using proposition 6.1 below, we extend the canonical t-structure on
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Db(H) ∼→ Db(modA) to a t-structure on all of D(modA). Since H is hereditary,
part b) of the proposition shows that each object of D(modA) is the sum of
its H-homology objects placed in their respective degrees. In particular, this
holds for πρE. Each of the homology objects is a finite sum of indecomposables.
Thus πρE is a sum of shifted copies of indecomposable objects of H. Moreover,
FπρE is isomorphic to πρE, so that the sum is stable under F . Hence it is a
sum of F -orbits of shifted indecomposable objects. By assumption 3), each of
these orbits contains an indecomposable direct factor of

⊕

0≤n≤N

(HnπρE)[−n].

Thus there are only finitely many orbits involved. Let Z1, . . . , ZM be shifted
indecomposables of H such that πρE is the sum of the F -orbits of the Zi. Let
f be the inclusion morphism

Z =

M⊕

i=1

Zi → πρE

and g : π∗Z → E the morphism corresponding to f under the adjunction.
Clearly πρg is an isomorphism. By subsection 5.3, the morphism g is invertible
and we are done.

6.1 Extension of t-structures to unbounded categories

Let T be a triangulated category and U an aisle [35] in T . Denote the associated
t-structure [10] by (U≤0,U≥0), its heart by U0, its homology functors by Hn

U :
T → U0 and its truncation functors by τ≤n and τ>n. Suppose that U is
dominant, i.e. the following two conditions hold:

1) a morphism s of T is an isomorphism iff Hn
U (s) is an isomorphism for all

n ∈ Z and

2) for each object X ∈ T , the canonical morphisms

Hom(?,X) → limHom(?, τ≤nX) and Hom(X, ?) → limHom(τ>nX, ?)

are surjective.

Let T b be the full triangulated subcategory of T whose objects are the X ∈ T
such that Hn

U (X) vanishes for all |n| ≫ 0. Let Vb be an aisle on T b. Denote
the associated t-structure on T b by (V≤n,V>n), its heart by V0, the homology
functor by Hn

Vb : B → V0 and its truncation functors by (σ≤0, σ>0).
Assume that there is an N ≫ 0 such that we have

H0
Vb

∼→ H0
Vbτ>−n and H0

Vbτ≤n
∼→ H0

Vb
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for all n ≥ N . We define H0
V : T → V0 by

H0
V(X) = colimH0

Vbτ>−nτ≤mX

and Hn
V (X) = H0

VSnX, n ∈ Z. We define V ⊂ T to be the full subcategory of
T whose objects are the X ∈ T such that Hn

V (X) = 0 for all n > 0.

Proposition 1 a) V is an aisle in T and the associated t-structure is dom-
inant.

b) If Vb is hereditary, i.e. each triangle

σ≤0X → X → σ>0X → Sσ≤0X , X ∈ T b

splits, then V is hereditary and each object X ∈ T is (non canonically)
isomorphic to the sum of the S−nHn

V (X), n ∈ Z.

The proof is an exercise on t-structures which we leave to the reader.

7 Another construction of the triangulated hull of the orbit
category

7.1 The construction

Let A be a finite-dimensional algebra of finite global dimension over a field k.
Let X be an A-A-bimodule complex whose homology has finite total dimension.
Let F be the functor

?
L
⊗A X : Db(modA) → Db(modA).

We suppose that F is an equivalence and that for all L,M in Db(modA), the
group

Hom(L,FnM)

vanishes for all but finitely many n ∈ Z. We will construct a triangulated
category equivalent to the triangulated hull of section 5.
Consider A as a dg algebra concentrated in degree 0. Let B be the dg algebra
with underlying complex A ⊕ X[−1], where the multiplication is that of the
trivial extension:

(a, x)(a′, x′) = (aa′, ax′ + xa′).

Let DB be the derived category of B and Db(B) the bounded derived category,
i.e. the full subcategory of DB formed by the dg modules whose homology has
finite total dimension over k. Let per(B) be the perfect derived category of
B, i.e. the smallest subcategory of DB containing B and stable under shifts,
extensions and passage to direct factors. By our assumption on A and X, the
perfect derived category is contained in Db(B). The obvious morphism B → A
induces a restriction functor DbA → DbB and by composition, we obtain a
functor

DbA → DbB → Db(B)/per(B)
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Theorem 2 The category Db(B)/per(B) is equivalent to the triangulated hull
(cf. section 5) of the orbit category of Db(A) under F and the above functor
identifies with the projection functor.

Proof. If we replace X by a quasi-isomorphic bimodule, the algebra B is re-
placed by a quasi-isomorphic dg algebra and its derived category by an equiv-
alent one. Therefore, it is no restriction of generality to assume, as we will do,
that X is cofibrant as a dg A-A-bimodule. We will first compute morphisms
in DB between dg B-modules whose restrictions to A are cofibrant. For this,
let C be the dg submodule of the bar resolution of B as a bimodule over itself
whose underlying graded module is

C =
∐

n≥0

B ⊗A X⊗An ⊗A B.

The bar resolution of B is a coalgebra in the category of dg B-B-bimodules
(cf. e.g. [32]) and C becomes a dg subcoalgebra. Its counit is

ε : C → B ⊗A B → B

and its comultiplication is given by

∆(b0, x1, . . . , xn, bn+1) =

n∑

i=0

(b0, x1, . . . , xi) ⊗ 1 ⊗ 1 ⊗ (xi+1, . . . , bn+1).

It is not hard to see that the inclusion of C in the bar resolution is an homotopy
equivalence of left (and of right) dg B-modules. Therefore, the same holds for
the counit ε : C → B. For an arbitrary right dg B-module L, the counit ε thus
induces a quasi-isomorphism L⊗B C → L. Now suppose that the restriction of
L to A is cofibrant. Then L⊗AB⊗AB is cofibrant over B and thus L⊗B C → L
is a cofibrant resolution of L. Let C1 be the dg category whose objects are the
dg B-modules whose restriction to A is cofibrant and whose morphism spaces
are the

HomB(L ⊗B C,M ⊗B C).

Let C2 be the dg category with the same objects as C1 and whose morphism
spaces are

HomB(L ⊗B C,M).

By definition, the composition of two morphisms f and g of C2 is given by

f ◦ (g ⊗ 1C) ◦ (1L ⊗ ∆).

We have a dg functor Φ : C2 → C1 which is the identity on objects and sends
g : L → M to

(g ⊗ 1C) ◦ (1L ⊗ ∆) : L ⊗B C → M ⊗B C.
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The morphism

HomB(L ⊗B C,M) → HomB(L ⊗B C,M ⊗B C)

given by Φ is left inverse to the quasi-isomorphism induced by M ⊗B C → M .
Therefore, the dg functor Φ yields a quasi-isomorphism between C2 and C1

so that we can compute morphisms and compositions in DB using C2. Now
suppose that L and M are cofibrant dg A-modules. Consider them as dg B-
modules via restriction along the projection B → A. Then we have natural
isomorphisms of complexes

HomC2
(L,M) = HomB(L ⊗B C,M) ∼→ HomA(

∐

n≥0

L ⊗A X⊗An,M).

Moreover, the composition of morphisms in C2 translates into the natural com-
position law for the right hand side. Now we will compute morphisms in the
quotient category DB/per(B). Let M be as above. For p ≥ 0, let C≤p be the
dg subbimodule with underlying graded module

p∐

n=0

B ⊗A X⊗An ⊗A B.

Then each morphism
P → M ⊗B C

of DB from a perfect object P factors through

M ⊗B C≤p → M ⊗B C

for some p ≥ 0. Therefore, the following complex computes morphisms in
DB/per(B):

colimp≥1HomB(L ⊗B C,M ⊗B C/C≤p−1).

Now it is not hard to check that the inclusion

M ⊗ X⊗Ap ⊗A A → M ⊗B (C/C≤p−1)

is a quasi-isomorphism of dg B-modules. Thus we obtain quasi-isomorphisms

HomB(L ⊗B C,M ⊗ X⊗Ap ⊗A A) → HomB(L ⊗B C,M ⊗B C/C≤p−1)

and
∏

n≥0

HomA(L ⊗A X⊗An,M ⊗A X⊗Ap) → HomB(L ⊗B C,M ⊗B C/C≤p−1).

Moreover, it is not hard to check that if we define transition maps

∏

n≥0

HomA(L⊗AX⊗An,M⊗AX⊗Ap) →
∏

n≥0

HomA(L⊗AX⊗An,M⊗AX⊗A(p+1))
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by sending f to f ⊗A 1X , then we obtain a quasi-isomorphism of direct sys-
tems of complexes. Therefore, the following complex computes morphisms in
DB/per(B):

colimp≥1

∏

n≥0

HomA(L ⊗A X⊗An,M ⊗A X⊗Ap).

Let C3 be the dg category whose objects are the cofibrant dg A-modules and
whose morphisms are given by the above complexes. If L and M are cofibrant
dg A-modules and belong to Db(modA), then, by our assumptions on F , this
complex is quasi-isomorphic to its subcomplex

colimp≥1

∐

n≥0

HomA(L ⊗A X⊗An,M ⊗A X⊗Ap).

Thus we obtain a dg functor
B → C3

(where B is the dg category defined in 5.1) which induces a fully faithful functor
H0(B) → DB/per(B) and thus a fully faithful functor M → Db(B)/per(B).
This functor is also essentially surjective. Indeed, every object in Db(B) is an
extension of two objects which lie in the image of Db(modA). The assertion
about the projection functor is clear from the above proof.

7.2 The motivating example

Let us suppose that the functor F is given by

M 7→ τS−1M ,

where τ is the Auslander-Reiten translation of Db(A) and S the shift functor.
This is the case considered in [8] for the construction of the cluster category.
The functor F−1 is isomorphic to

M 7→ S−2νM

where ν is the Nakayama functor

ν =?
L
⊗A DA , DA = Homk(A, k).

Thus F−1 is given by the bimodule X = (DA)[−2] and B = A ⊕ (DA)[−3] is
the trivial extension of A with a non standard grading: A is in degree 0 and
DA in degree 3. For example, if A is the quiver algebra of an alternating quiver
whose underlying graph is An, then the underlying ungraded algebra of B is the
quadratic dual of the preprojective algebra associated with An, cf. [15]. The
algebra B viewed as a differential graded algebra was investigated by Khovanov-
Seidel in [36]. Here the authors show that Db(B) admits a canonical action by
the braid group on n+1 strings, a result which was obtained independently in a
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similar context by Zimmermann-Rouquier [52]. The canonical generators of the
braid group act by triangle functors Ti endowed with morphisms φi : Ti → 1.
The cone on each φi belongs to per(B) and per(B) is in fact equal to its smallest
triangulated subcategory stable under direct factors and containing these cones.
Thus, the action becomes trivial in Db(B)/per(B) and in a certain sense, this
is the largest quotient where the φi become invertible.

7.3 Projectives over the preprojective algebra

Let A be the path algebra of a Dynkin quiver, i.e. a quiver whose underlying
graph is a Dynkin diagram of type A, D or E. Let C be the associated pre-
projective algebra [26], [20], [50]. In Proposition 3.3 of [7], Auslander-Reiten
show that the category of projective modules over C is equivalent to the sta-
ble category of maximal Cohen-Macaulay modules over a representation-finite
isolated hypersurface singularity. In particular, it is triangulated. This can
also be deduced from our main theorem: Indeed, it follows from D. Happel’s
description [27] of the derived category Db(A) that the category projC of finite
dimensional projective C-modules is equivalent to the orbit category Db(A)/τ ,
cf. also [25]. Moreover, by the theorem of the previous section, we have an
equivalence

projC ∼→ Db(B)/per(B)

where B = A ⊕ (DA)[−2]. This equivalence yields in fact more than just
a triangulated structure: it shows that projC is endowed with a canonical
Hochschild 3-cocycle m3, cf. for example [11]. It would be interesting to identify
this cocycle in the description given in [23].

7.4 Projectives over Λ(Ln)

The category of projective modules over the algebra k[ε]/(ε2) of dual numbers
is triangulated. Indeed, it is equivalent to the orbit category of the derived
category of the path algebra of a quiver of type A2 under the Nakayama au-
toequivalence ν. Thus, we obtain examples of triangulated categories whose
Auslander-Reiten quiver contains a loop. It has been known since Riedtmann’s
work [49] that this cannot occur in the stable category (cf. below) of a self-
injective finite-dimensional algebra. It may therefore seem surprising, cf. [58],
that loops do occur in this more general context. However, loops already do
occur in stable categories of finitely generated reflexive modules over certain
non commutative generalizations of local rings of rational double points, as
shown by Auslander-Reiten in [6]. These were completely classified by Reiten-
Van den Bergh in [46]. In particular, the example of the dual numbers and its
generalization below are among the cases covered by [46].
The example of the dual numbers generalizes as follows: Let n ≥ 1 be an
integer. Following [30], the generalized Dynkin graph Ln is defined as the graph

1 2 · · · n − 1 n
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Its edges are in natural bijection with the orbits of the involution which ex-
changes each arrow α with α in the following quiver:

1ε=ε ::
a1 //

2
a1

oo
a2 //

a2

oo · · ·
an−2

// n − 1
an−2

oo
an−1

// n
an−1

oo .

The associated preprojective algebra Λ(Ln) of generalized Dynkin type Ln is
defined as the quotient of the path algebra of this quiver by the ideal generated
by the relators

rv =
∑

α α ,

where, for each 1 ≤ v ≤ n, the sum ranges over the arrows α with starting point
v. Let A be the path algebra of a Dynkin quiver with underlying Dynkin graph
A2n. Using D. Happel’s description [27] of the derived category of a Dynkin
quiver, we see that the orbit category Db(A)/(τnS) is equivalent to the category
of finitely generated projective modules over the algebra Λ(Ln). By the main
theorem, this category is thus triangulated. Its Auslander-Reiten quiver is
given by the ordinary quiver of Λ(Ln), cf. above, endowed with τ = 1: Indeed,
in Db(A), we have S2 = τ−(2n+1) so that in the orbit category, we obtain

1 = (τnS)2 = τ2nS2 = τ−1.

8 On the Calabi-Yau property

8.1 Serre functors and localizations

Let k be a field and T a k-linear triangulated category with finite-dimensional
Hom-spaces. We denote the suspension functor of T by S. Recall from [47]
that a right Serre functor for T is the datum of a triangle functor ν : T → T
together with bifunctor isomorphisms

DHomT (X, ?) ∼→ HomT (?, νX) , X ∈ T ,

where D = Homk(?, k). If ν exists, it is unique up to isomorphism of triangle
functors. Dually, a left Serre functor is the datum of a triangle functor ν′ :
T → T and isomorphisms

DHomT (?,X) ∼→ HomT (ν′, ?) , X ∈ T .

The category T has Serre duality if it has both a left and a right Serre functor,
or equivalently, if it has a onesided Serre functor which is an equivalence, cf.
[47] [13]. The following lemma is used in [9].

Lemma 1 Suppose that T has a left Serre functor ν′. Let U ⊂ T be a thick
triangulated subcategory and L : T → T /U the localization functor.

a) If L admits a right adjoint R, then Lν′R is a left Serre functor for T /U .
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b) More generally, if the functor ν′ : T → T admits a total right derived
functor Rν′ : T /U → T /U in the sense of Deligne [19] with respect to
the localization T → T /U , then Rν′ is a left Serre functor for T /U .

Proof. a) For X, Y in T , we have

HomT /U (Lν′RX,Y ) = HomT (ν′RX,RY )

= DHomT (RY,RX) = DHomT /U (Y,X).

Here, for the last isomorphism, we have used that R is fully faithful (L is a
localization functor).
b) We assume that T is small. Let ModT denote the (large) category of func-
tors from T op to the category of abelian groups and let h : T → ModT
denote the Yoneda embedding. Let L∗ be the unique right exact functor
ModT → Mod(T /U) which sends hX to hLX, X ∈ T . By the calculus of
(right) fractions, L∗ has a right adjoint R which takes an object Y to

colimΣY
hY ′ ,

where the colim ranges over the category ΣY of morphisms s : Y → Y ′ which
become invertible in T /U . Clearly L∗R is isomorphic to the identity so that R
is fully faithful. By definition of the total right derived functor, for each object
X ∈ T /U , the functor

colimΣX
h(Lν′X ′) = L∗ν′∗Rh(X)

is represented by Rν′(X). Therefore, we have

HomT /U (Rν′(X), Y ) = HomModT /U (L∗ν′∗Rh(X), h(Y ))

= HomModT (ν′∗Rh(X), Rh(Y )).

Now by definition, the last term is isomorphic to

HomModT (colimΣX
h(ν′X ′), colimΣY

hY ′) = limΣX
colimΣY

HomT (ν′X ′, Y ′)

and this identifies with

limΣX
colimΣY

DHomT (Y ′,X ′) = D(colimΣX
limΣY

HomT (Y ′,X ′))

= DHomT /U (Y,X).

8.2 Definition of the Calabi-Yau property

Keep the hypotheses of the preceding section. By definition [39], the triangu-
lated category T is Calabi-Yau of CY-dimension d if it has Serre duality and
there is an isomorphism of triangle functors

ν ∼→ Sd.
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By extension, if we have νe ∼→ Sd for some integer e > 0, one sometimes
says that T is Calabi-Yau of fractional dimension d/e. Note that d ∈ Z is
only determined up to a multiple of the order of S. It would be interesting to
link the CY-dimension to Rouquier’s [51] notion of dimension of a triangulated
category.
The terminology has its origin in the following example: Let X be a smooth
projective variety of dimension d and let ωX = ΛdT ∗

X be the canonical bundle.
Let T be the bounded derived category of coherent sheaves on X. Then the
classical Serre duality

DExtiX(F ,G) ∼→ Extd−i(G,F ⊗ ωX) ,

where F , G are coherent sheaves, lifts to the isomorphism

DHomT (F ,G) ∼→ HomT (G,F ⊗ ωX [d]) ,

where F , G are bounded complexes of coherent sheaves. Thus T has Serre
duality and ν =? ⊗ ωX [d]. So the category T is Calabi-Yau of CY-dimension
d iff ωX is isomorphic to OX , which means precisely that the variety X is
Calabi-Yau of dimension d.
If T is a Calabi-Yau triangulated category ‘of algebraic origin’ (for example, the
derived category of a category of modules or sheaves), then it often comes from
a Calabi-Yau A∞-category. These are of considerable interest in mathematical
physics, since, as Kontsevich shows [38], [37], cf. also [18], a topological quan-
tum field theory is associated with each Calabi-Yau A∞-category satisfying
some additional assumptions1.

8.3 Examples

(1) If A is a finite-dimensional k-algebra, then the homotopy category T of
bounded complexes of finitely generated projective A-modules has a Nakayama
functor iff DA is of finite projective dimension. In this case, the category T
has Serre duality iff moreover AA is of finite injective dimension, i.e. iff A is
Gorenstein, cf. [28]. Then the category T is Calabi-Yau (necessarily of CY-
dimension 0) iff A is symmetric.
(2) If ∆ is a Dynkin graph of type An, Dn, E6, E7 or E8 and h is its Coxeter
number (i.e. n + 1, 2(n − 1), 12, 18 or 30, respectively), then for the bounded
derived category of finitely generated modules over a quiver with underlying
graph ∆, we have isomorphisms

νh = (Sτ)h = Shτh = S(h−2).

1Namely, the associated triangulated category should admit a generator whose endo-
morphism A∞-algebra B is compact (i.e. finite-dimensional), smooth (i.e. B is perfect as
a bimodule over itself), and whose associated Hodge-de Rham spectral sequence collapses
(this property is conjectured to hold for all smooth compact A∞-algebras over a field of
characteristic 0).
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Hence this category is Calabi-Yau of fractional dimension (h − 2)/h.
(3) Suppose that A is a finite-dimensional algebra which is selfinjective (i.e. AA

is also an injective A-module). Then the category modA of finite-dimensional
A-modules is Frobenius, i.e. it is an abelian (or, more generally, an exact)
category with enough projectives, enough injectives and where an object is
projective iff it is injective. The stable category mod A obtained by quotienting
modA by the ideal of morphisms factoring through injectives is triangulated,
cf. [27]. The inverse of its suspension functor sends a module M to the kernel
ΩM of an epimorphism P → M with projective P . Let NM = M ⊗A DA.
Then mod A has Serre duality with Nakayama functor ν = Ω ◦ N . Thus, the
stable category is Calabi-Yau of CY-dimension d iff we have an isomorphism
of triangle functors

Ω(d+1) ◦ N = 1.

For this, it is clearly sufficient that we have an isomorphism

Ωd+1
Ae (A) ⊗A DA ∼→ A ,

in the stable category of A-A-bimodules, i.e. modules over the selfinjective
algebra A ⊗ Aop. For example, we deduce that if A is the path algebra of
a cyclic quiver with n vertices divided by the ideal generated by all paths of
length n − 1, then mod A is Calabi-Yau of CY-dimension 3.
(4) Let A be a dg algebra. Let per(A) ⊂ D(A) be the subcategory of perfect dg
A-modules, i.e. the smallest full triangulated subcategory of D(A) containing
A and stable under forming direct factors. For each P in per(A) and each
M ∈ D(A), we have canonical isomorphisms

DRHomA(P,M) ∼→ RHomA(M,DRHomA(P,A))

and

P
L
⊗A DA ∼→ DRHomA(P,A).

So we obtain a canonical isomorphism

DRHomA(P,M) ∼→ RHomA(M,P
L
⊗A DA).

Thus, if we are given a quasi-isomorphism of dg A-A-bimodules

φ : A[n] → DA ,

we obtain
DRHomA(P,M) ∼→ RHomA(M,P [n])

and in particular per(A) is Calabi-Yau of CY-dimension n.
(5) To consider a natural application of the preceding example, let B be the
symmetric algebra on a finite-dimensional vector space V of dimension n and
T ⊂ D(B) the localizing subcategory generated by the trivial B-module k
(i.e. the smallest full triangulated subcategory stable under infinite sums and
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containing the trivial module). Let T c denote its subcategory of compact
objects. This is exactly the triangulated subcategory of D(B) generated by
k, and also exactly the subcategory of the complexes whose total homology is
finite-dimensional and supported in 0. Then T c is Calabi-Yau of CY-dimension
n. Indeed, if

A = RHomB(k, k)

is the Koszul dual of B (thus, A is the exterior algebra on the dual of V
concentrated in degree 1; it is endowed with d = 0), then the functor

RHomB(k, ?) : D(B) → D(A)

induces equivalences from T to D(A) and T c to per(A), cf. for example [32].
Now we have a canonical isomorphism of A-A-bimodules A[n] ∼→ DA so that
per(A) and T are Calabi-Yau of CY-dimension n. As pointed out by I. Reiten,
in this case, the Calabi-Yau property even holds more generally: Let M ∈ D(B)
and denote by MT → M the universal morphism from an object of T to M .
Then, for X ∈ T c, we have natural morphisms

HomD(B)(M,X[n]) → HomT (MT ,X[n]) ∼→ DHomT (X,MT )
∼→ DHomD(B)(X,M).

The composition

(∗) HomD(B)(M,X[n]) → DHomD(B)(X,M)

is a morphism of (co-)homological functors in X ∈ T c (resp. M ∈ D(B)). We
claim that it is an isomorphism for M ∈ per(B) and X ∈ T c. It suffices to
prove this for M = B and X = k. Then one checks it using the fact that

RHomB(k,B) ∼→ k[−n].

These arguments still work for certain non-commutative algebras B: If B is
an Artin-Schelter regular algebra [2] [1] of global dimension 3 and type A and
T the localizing subcategory of the derived category D(B) of non graded B-
modules generated by the trivial module, then T c is Calabi-Yau and one even
has the isomorphism (∗) for each perfect complex of B-modules M and each
X ∈ T c, cf. for example section 12 of [41].

8.4 Orbit categories with the Calabi-Yau property

The main theorem yields the following

Corollary 1 If d ∈ Z and Q is a quiver whose underlying graph is Dynkin
of type A, D or E, then

T = Db(kQ)/τ−1Sd−1

is Calabi-Yau of CY-dimension d. In particular, the cluster category CkQ is
Calabi-Yau of dimension 2 and the category of projective modules over the
preprojective algebra Λ(Q) is Calabi-Yau of CY-dimension 1.
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The category of projective modules over the preprojective algebra Λ(Ln) of
example 7.4 does not fit into this framework. Nevertheless, it is also Calabi-
Yau of CY-dimension 1, since we have τ = 1 in this category and therefore
ν = Sτ = S.

8.5 Module categories over Calabi-Yau categories

Calabi-Yau triangulated categories turn out to be ‘self-reproducing’: Let T be
a triangulated category. Then the category modT of finitely generated functors
from T op to Modk is abelian and Frobenius, cf. [24], [42]. If we denote by Σ
the exact functor modT → modT which takes Hom(?,X) to Hom(?, SX), then
it is not hard to show [24] [25] that we have

Σ ∼→ S3

as triangle functors modT → modT . One deduces the following lemma, which
is a variant of a result which Auslander-Reiten [7] obtained using dualizing
R-varieties [4] and their functor categories [3], cf. also [5] [45]. A similar result
is due to Geiss [25].

Lemma 2 If T is Calabi-Yau of CY-dimension d, then the stable category
mod T is Calabi-Yau of CY-dimension 3d − 1. Moreover, if the suspension
of T is of order n, the order of the suspension functor of mod T divides 3n.

For example, if A is the preprojective algebra of a Dynkin quiver or equals
Λ(Ln), then we find that the stable category mod A is Calabi-Yau of CY-
dimension 3 × 1 − 1 = 2. This result, with essentially the same proof, is due
to Auslander-Reiten [7]. For the preprojective algebras of Dynkin quivers, it
also follows from a much finer result due to Ringel and Schofield (unpublished).
Indeed, they have proved that there is an isomorphism

Ω3
Ae(A) ∼→ DA

in the stable category of bimodules, cf. Theorems 4.8 and 4.9 in [15]. This
implies the Calabi-Yau property since we also have an isomorphism

DA ⊗A DA ∼→ A

in the stable category of bimodules, by the remark following definition 4.6 in
[15]. For the algebra Λ(Ln), the analogous result follows from Proposition 2.3
of [12].

9 Universal properties

9.1 The homotopy category of small dg categories

Let k be a field. A differential graded (=dg) k-module is a Z-graded vector
space

V =
⊕

p∈Z

V p
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endowed with a differential d of degree 1. The tensor product V ⊗W of two dg
k-modules is the graded space with components

⊕

p+q=n

V p ⊗ W q , n ∈ Z ,

and the differential d⊗ 1 + 1⊗ d, where the tensor product of maps is defined
using the Koszul sign rule. A dg category [32] [21] is a k-category A whose
morphism spaces are dg k-modules and whose compositions

A(Y,Z) ⊗A(X,Y ) → A(X,Z)

are morphisms of dg k-modules. For a dg category A, the category H0(A) has
the same objects as A and has morphism spaces H0A (X,Y ), X,Y ∈ A. A
dg functor F : A → B between dg categories is a functor compatible with the
grading and the differential on the morphism spaces. It is a quasi-equivalence
if it induces quasi-isomorphisms in the morphism spaces and an equivalence of
categories from H0(A) to H0(B). We denote by dgcat the category of small
dg categories. The homotopy category of small dg categories is the localization
Ho(dgcat) of dgcat with respect to the class of quasi-equivalences. According
to [56], the category dgcat admits a structure of Quillen model category (cf.
[22], [31]) whose weak equivalences are the quasi-equivalences. This implies in
particular that for A,B ∈ dgcat, the morphisms from A to B in the localization
Ho(dgcat) form a set.

9.2 The bimodule bicategory

For two dg categories A, B, we denote by rep(A,B) the full subcategory of the
derived category D(Aop ⊗B), cf. [32], whose objects are the dg A-B-bimodules
X such that X(?, A) is isomorphic to a representable functor in D(B) for each
object A of A. We think of the objects of rep(A,B) as ‘representations up to
homotopy’ of A in B. The bimodule bicategory rep, cf. [32] [21], has as objects
all small dg categories; the morphism category between two objects A, B is
rep(A,B); the composition bifunctor

rep(B, C) × rep(A,B) → rep(A,B)

is given by the derived tensor product (X,Y ) 7→ X
L
⊗B Y . For each dg functor

F : A → B, we have the dg bimodule

XF : A 7→ B (?, FA) ,

which clearly belongs to rep(A,B). One can show that the map F 7→ XF

induces a bijection, compatible with compositions, from the set of morphisms
from A to B in Ho(dgcat) to the set of isomorphism classes of bimodules X in
rep(A,B). In fact, a much stronger result by B. Toën [57] relates rep to the
Dwyer-Kan localization of dgcat.
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9.3 Dg orbit categories

Let A be a small dg category and F ∈ rep(A,A). We assume, as we may, that

F is given by a cofibrant bimodule. For a dg category B, define ẽff0(A, F,B)
to be the category whose objects are the pairs formed by an A-B-bimodule P
in rep(A,B) and a morphism of dg bimodules

φ : P → PF.

Morphisms are the morphisms of dg bimodules f : P → P ′ such that we have
φ′ ◦f = (fF )◦φ in the category of dg bimodules. Define eff0(A, F,B) to be the

localization of ẽff0(A, F,B) with respect to the morphisms f which are quasi-
isomorphisms of dg bimodules. Denote by eff(A, F,B) the full subcategory of
eff0(A, F,B) whose objects are the (P, φ) where φ is a quasi-isomorphism. It
is not hard to see that the assignments

B 7→ eff0(A, F,B) and B 7→ eff(A, F,B)

are 2-functors from rep to the category of small categories.

Theorem 3 a) The 2-functor eff0(A, F, ?) is 2-representable, i.e. there is
small dg category B0 and a pair (P0, φ0) in eff(A, F,B0) such that for
each small dg category B, the functor

rep(B0,B) → eff0(A, F,B0) , G 7→ G ◦ P0

is an equivalence.

b) The 2-functor eff(A, F, ?) is 2-representable.

c) For a dg category B, a pair (P, φ) is a 2-representative for eff0(A, F, ?)
iff H0(P ) : H0(A) → H0(B) is essentially surjective and, for all objects
A,B of A, the canonical morphism

⊕

n∈N

A (FnA,B) → B (PA,PB)

is invertible in D(k).

d) For a dg category B, a pair (P, φ) is a 2-representative for eff(A, F, ?)
iff H0(P ) : H0(A) → H0(B) is essentially surjective and, for all objects
A,B of A, the canonical morphism

⊕

c∈Z

colimr≫0A (F p+rA,F p+c+rB) → B (PA,PB)

is invertible in D(k).
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We define A/F to be the 2-representative of eff(A, F, ?). For example, in the
notations of 5.1, A/F is the dg orbit category B. It follows from part d) of the
theorem that we have an equivalence

H0(A)/H0(F ) → H0(A/F ).

Proof. We only sketch a proof and refer to [54] for a detailed treatment. Define
B0 to be the dg category with the same objects as A and with the morphism
spaces

B0 (A,B) =
⊕

n∈N

A (FnA,B).

We have an obvious dg functor P0 : A → B0 and an obvious morphism φ :
P0 → P0F . The pair (P0, φ0) is then 2-universal in rep. This yields a) and c).
For b), one adjoins a formal homotopy inverse of φ to B0. One obtains d) by
computing the homology of the morphism spaces in the resulting dg category.

9.4 Functoriality in (A, F )

Let a square of rep

A
G //

F

²²

A′

F ′

²²
A

G // A′

be given and an isomorphism

γ : F ′G → GF

of rep(A,A′). We assume, as we may, that A and A′ are cofibrant in dgcat and
that F , F ′ and G are given by cofibrant bimodules. Then F ′G is a cofibrant
bimodule and so γ : F ′G → GF lifts to a morphism of bimodules

γ̃ : F ′G → GF.

If B is another dg category and (P, φ) an object of eff0(A′, F ′,B), then the
composition

PG
φG

// PF ′G
P γ̃

// PGF

yields an object PG → PGF of eff0(A, F,B). Clearly, this assignment extends
to a functor, which induces a functor

eff(A′, F ′,B) → eff(A, F,B).

By the 2-universal property of section 9.3, we obtain an induced morphism

G : A/F → A′/F ′.

One checks that the composition of two pairs (G, γ) and (G′, γ′) induces a
functor isomorphic to the composition of G with G′.
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9.5 The bicategory of enhanced triangulated categories

We refer to [33, 2.1] for the notion of an exact dg category. We also call these
categories pretriangulated since if A is an exact dg category, then H0(A) is
triangulated. More precisely, E = Z0(A) is a Frobenius category and H0(A) is
its associated stable category E (cf. example (3) of section 8.3 for these notions).
The inclusion of the full subcategory of (small) exact dg categories into
Ho(dgcat) admits a left adjoint, namely the functor A 7→ pretr(A) which maps
a dg category to its ‘pretriangulated hull’ defined in [14], cf. also [33, 2.2].
More precisely, the adjunction morphism A → pretr(A) induces an equivalence
of categories

rep (pretr(A),B) → rep(A,B)

for each exact dg category B, cf. [55].
The bicategory enh of enhanced [14] triangulated categories, cf. [32] [21], has
as objects all small exact dg categories; the morphism category between two
objects A, B is rep(A,B); the composition bifunctor

rep(B, C) × rep(A,B) → rep(A, C)

is given by the derived tensor product (X,Y ) 7→ X
L
⊗B Y .

9.6 Exact dg orbit categories

Now let A be an exact dg category and F ∈ rep(A,A). Then A/F is the dg
orbit category of subsection 5.1 and pretr(A/F ) is an exact dg category such
that H0pretr(A/F ) is the triangulated hull of section 5. In particular, we obtain
that the triangulated hull is the stable category of a Frobenius category. From
the construction, we obtain the universal property:

Theorem 4 For each exact dg category B, we have an equivalence of categories

rep(pretr(A/F ),B) → eff(F,B).

9.7 An example

Let A be a finite-dimensional algebra of finite global dimension and TA the
trivial extension algebra, i.e. the vector space A ⊕ DA endowed with the mul-
tiplication defined by

(a, f)(b, g) = (ab, ag + fb) , (a, f), (b, g) ∈ TA ,

and the grading such that A is in degree 0 and DA in degree 1. Let F : Db(A) →

Db(A) equal τS2 = νS and let F̃ be the dg lift of F given by ?⊗A R[1], where
R is a projective bimodule resolution of DA. Let Db(A)dg denote a dg category
quasi-equivalent to the dg category of bounded complexes of finitely generated
projective A-modules.
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Theorem 5 The following are equivalent

(i) The k-category Db(A)/F is naturally equivalent to its ‘triangulated hull’

H0(pretr(Db(A)dg/F̃ )).

(ii) Each finite-dimensional TA-module admits a grading.

Proof. We have a natural functor

modA → grmodTA

given by viewing an A-module as a graded TA-module concentrated in degree 0.
As shown by D. Happel [27], cf. also [34], this functor extends to a triangle
equivalence Φ from Db(A) to the stable category grmod TA, obtained from
grmodTA by killing all morphisms factoring through projective-injectives. We
would like to show that we have an isomorphism of triangle functors

Φ ◦ τS2 ∼→ Σ ◦ Φ

where Σ is the grading shift functor for graded TA-modules: (ΣM)p = Mp+1

for all p ∈ Z. ¿From [27], we know that τS ∼→ ν, where ν =?
L
⊗A DA. Thus it

remains to show that
Φ ◦ νS ∼→ Σ ◦ Φ.

As shown in [34], the equivalence Φ is given as the composition

Db(modA) → Db(grmodTA) →

Db(grmodTA)/per(grmodTA) → grmod TA ,

where the first functor is induced by the above inclusion, the nota-
tion per(grmodTA) denotes the triangulated subcategory generated by the
projective-injective TA-modules and the last functor is the ‘stabilization func-
tor’ cf. [34]. We have a short exact sequence of graded TA-modules

0 → Σ−1(DA) → TA → A → 0.

We can also view it as a sequence of left A and right graded TA-modules. Let
P be a bounded complex of projective A-modules. Then we obtain a short
exact sequence of complexes of graded TA-modules

0 → Σ−1(P ⊗A DA) → P ⊗A TA → P → 0

functorial in P . It yields a functorial triangle in Db(grmodA). The second term
belongs to per(grmodTA). Thus in the quotient category

Db(grmodTA)/per(grmodTA) ,
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the triangle reduces to a functorial isomorphism

P ∼→ SΣ−1νP.

Thus we have a functorial isomorphism

Φ(P ) ∼→ SΣ−1Φ(νP ).

Since A is of finite global dimension, Db(modA) is equivalent to the homo-
topy category of bounded complexes of finitely generated projective A-modules.
Thus we get the required isomorphism

ΣΦ ∼→ ΦSν.

More precisely, one can show that grmod TA has a canonical dg structure and
that there is an isomorphism

(Db(A))dg
∼→ (grmod TA)dg

in the homotopy category of small dg categories which induces Happel’s equiv-
alence and under which Σ corresponds to the lift F̃ of F = Sν. Hence the orbit
categories Db(modA)/τS2 and grmod TA/Σ are equivalent and we are reduced
to determining when grmod TA/Σ is naturally equivalent to its triangulated
hull. Clearly, we have a full embedding

grmod TA/Σ → mod TA

and its image is formed by the TA-modules which admit a grading. Now
mod TA is naturally equivalent to the triangulated hull. Therefore, condition
(i) holds iff the embedding is an equivalence iff each finite-dimensional TA-
module admits a grading.
In [53], A. Skowroński has produced a class of examples where condition (ii)
does not hold. The simplest of these is the algebra A given by the quiver

•
β

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

²²

•

α
ÂÂ@

@@
@@

@@

•

with the relation αβ = 0. Note that this algebra is of global dimension 2.

9.8 Exact categories and standard functors

Let E be a small exact k-category. Denote by Cb(E) the category of bounded
complexes over E and by Acb(E) its full subcategory formed by the acyclic
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bounded complexes. The categories with the same objects but whose mor-
phisms are given by the morphism complexes are denoted respectively by
Cb(E)dg and Acb(E)dg. They are exact dg categories and so is the dg quotient
[33] [21]

Db(E)dg = Cb(E)dg/Acb(E)dg.

Let E ′ be another small exact k-category. We call a triangle functor F :
Db(E) → Db(E ′) a standard functor if it is isomorphic to the triangle func-
tor induced by a morphism

F̃ : Db(E)dg → Db(E ′)dg

of Ho(dgcat). Slightly abusively, we then call F̃ a dg lift of F . Each exact
functor E → E ′ yields a standard functor; a triangle functor is standard iff it
admits a lift to an object of rep(Db(E)dg,D

b(E ′)dg); compositions of standard
functors are standard; an adjoint (and in particular, the inverse) of a standard
functor is standard.
If F : Db(E) → Db(E) is a standard functor with dg lift F̃ , we have the dg orbit

category Db(E)dg/F̃ and its pretriangulated hull

Db(E)dg/F̃ → pretr(Db(E)dg/F̃ ).

The examples in section 3 show that this functor is not an equivalence in
general.

9.9 Hereditary categories

Now suppose that H is a small hereditary abelian k-category with the Krull-
Schmidt property (indecomposables have local endomorphism rings and each
object is a finite direct sum of indecomposables) where all morphism and ex-
tension spaces are finite-dimensional. Let

F : Db(H) → Db(H)

be a standard functor with dg lift F̃ .

Theorem 6 Suppose that F satisfies assumptions 2) and 3) of the main the-
orem in section 4. Then the canonical functor

Db(H)/F → H0(pretr(Db(H)dg/F̃ ))

is an equivalence of k-categories. In particular, the orbit category Db(H)/F ad-
mits a triangulated structure such that the projection functor becomes a triangle
functor.

The proof is an adaptation, left to the reader, of the proof of the main theorem.

Documenta Mathematica 10 (2005) 551–581



On Triangulated Orbit Categories 577

Suppose for example that Db(H) has a Serre functor ν. Then ν is a standard
functor since it is induced by the tensor product with bimodule

(A,B) 7→ DHomDb(H)dg
(B,A) ,

where D = Homk(?, k). The functor τ−1 = Sν−1 induces equivalences I ∼→ SP
and Hni → Hnp, where P is the subcategory of projectives, I the subcategory of
injectives, Hnp the subcategory of objects without a projective direct summand
and Hni the subcategory of objects without an injective direct summand. Now
let n ≥ 2 and consider the autoequivalence F = Snν−1 = Sn−1τ−1 of Db(H).
Clearly F is standard. It is not hard to see that F satisfies the hypotheses 2)
and 3) of the main theorem in section 4. Thus the orbit category

Db(H)/F = Db(H)/Snν−1

is triangulated. Note that we have excluded the case n = 1 since the hypotheses
2) and 3) are not satisfied in this case, in general, as we see from the last example
in section 3.
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vol. 95, Birkhäuser, Basel, 1991, pp. 389–404.

[29] Dieter Happel, Udo Preiser, and Claus Michael Ringel, Binary polyhedral
groups and Euclidean diagrams, Manuscripta Math. 31 (1980), no. 1-3,
317–329.

[30] , Vinberg’s characterization of Dynkin diagrams using subadditive
functions with application to DTr-periodic modules, Representation theory,
II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979),
Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 280–294.

[31] Mark Hovey, Model categories, Mathematical Surveys and Monographs,
vol. 63, American Mathematical Society, Providence, RI, 1999.

[32] Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4)
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[51] Raphaël Rouquier, Dimensions of triangulated categories,
arXiv:math.CT/0310134.
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[54] Gonçalo Tabuada, On the homotopy theory of dg categories, Ph. D. thesis
in preparation.

[55] , Invariants additifs de dg-catégories, Int. Math. Res. Notices 53
(2005), 3309–3339.
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