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Abstract. A recursion due to Kook expresses the Laplacian eigen-
values of a matroid M in terms of the eigenvalues of its deletion M−e
and contraction M/e by a fixed element e, and an error term. We show
that this error term is given simply by the Laplacian eigenvalues of
the pair (M − e,M/e). We further show that by suitably generalizing
deletion and contraction to arbitrary simplicial complexes, the Lapla-
cian eigenvalues of shifted simplicial complexes satisfy this exact same
recursion. We show that the class of simplicial complexes satisfying
this recursion is closed under a wide variety of natural operations, and
that several specializations of this recursion reduce to basic recursions
for natural invariants.

We also find a simple formula for the Laplacian eigenvalues of an
arbitrary pair of shifted complexes in terms of a kind of generalized
degree sequence.
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1. Introduction

The independence complex of matroids and shifted simplicial complexes are
two of only four types of simplicial complexes whose combinatorial Laplacians
L = ∂∂∗ + ∂∗∂ are known to have only integer eigenvalues (see Kook, Reiner,
and Stanton [27], and [16], respectively). The other two types, which will not
concern us further, are matching complexes of complete graphs [14] and chess-
board complexes [21]. More information and background about the combina-
torial Laplacian and its eigenvalues may be found in Section 2 and [16, 20, 27].
Our main result (Theorems 3.18 and 4.23) is another, more striking, similarity
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between the Laplacian eigenvalues of matroids and shifted complexes: they
satisfy the exact same recursion, which we call the spectral recursion, equation
(2). This recursion is stated in terms of the spectrum polynomial, a natural
generating function for Laplacian eigenvalues, defined in equation (1).
The Tutte polynomial TM of a matroid M satisfies the recursion TM = TM−e +
TM/e, when e is neither a loop nor an isthmus, and where M−e and M/e denote
the deletion and contraction, respectively, of M with respect to ground element
e. When Kook, Reiner, and Stanton proved that the Laplacian spectrum of a
matroid is integral, they also speculated on the existence of a Tutte polynomial-
like recursion for the spectrum polynomial of a matroid M , though possibly
with a third “error” term, besides the deletion and contraction, on the right-
hand side [27, Question 3]. Kook [26] found such a recursion, but the error term
in his formulation is somewhat complicated to state, with two cases depending
on whether or not the ground element e is a closed element in M . Subsequently,
Kook and Reiner (private communication) asked if this error term might be
just the spectrum polynomial of the matroid pair (M − e,M/e).
One of our main results (Theorem 3.18) is that Kook and Reiner’s conjecture
is true, that is, the spectrum polynomial of M can be expressed simply in
terms of the spectrum polynomials of M − e, M/e, and (M − e,M/e). This
is the spectral recursion. We show, furthermore, by suitably generalizing the
definitions of deletion and contraction from matroids to arbitrary simplicial
complexes (Section 2), that shifted complexes also satisfy the spectral recursion
(Theorem 4.23).
This raises the natural question: What is the largest class of simplicial com-
plexes, necessarily a common generalization of matroids and shifted complexes,
satisfying the spectral recursion? We will see that this class is closed under the
operations of join, skeleta, Alexander dual, and disjoint union (Corollaries 4.5,
4.19, 6.8, and 6.11, respectively). We might hope that it is closed also under
deletion and contraction, as matroids and shifted complexes each are. In the
same vein, it may be worthwhile to restrict our attention to those complexes
that are also Laplacian integral. Unfortunately, no hint to determining this
common generalization is apparent in the proofs of either Laplacian integral-
ity or the spectral recursion, which are each rather different for matroids and
shifted complexes.
Jarrah and Laubenbacher [23] examined another property shared by matroids
and shifted complexes. Klivans [24] has characterized simplicial complexes that
are simultaneously shifted and the matroid complex of some matroid; this is, in
some sense, the reverse of finding a natural common generalization of matroids
and shifted complexes.
The common generalization includes neither of the other known types of Lapla-
cian integral simplicial complexes. Direct computations show that the matching
complex of the complete graph on 5 vertices and the 2 × 3 chessboard com-
plex both fail to satisfy the spectral recursion with respect to any vertex. Also
excluded is the 3-edge path (Example 2.5), which rules out as the common
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generalization such otherwise likely candidates as vertex-decomposable [32][9,
Section 11] or shellable complexes [8, 9].
A key piece of the proof that matroids satisfy the spectral recursion is a decom-
position of the Laplacian of (M − e,M/e) into a direct sum of Laplacians of
M/C’s for all circuits C containing e (Lemma 3.3). We may combine this with
the spectral recursion to express the spectrum polynomial of a matroid com-
pletely in terms of spectrum polynomials of smaller matroids (with no matroid
pairs), which permits a truly recursive way of computing Laplacian eigenvalues
for matroids (Remark 3.19).
Unfortunately, we are unable to state any formula for the Laplacian eigenvalues
of an arbitrary matroid pair (i.e., besides (M −e,M/e)). We are able, however,
to use tools developed in the proof of the spectral recursion for shifted com-
plexes to find a simple formula for the Laplacian eigenvalues of an arbitrary
shifted simplicial pair (Theorem 5.7). This naturally generalizes a formula for
a single shifted complex [16]; the graph case goes back to Merris [29]. Simi-
larly, we generalize a related conjectured inequality on the Laplacian spectrum
of an arbitrary simplicial complex [16] to an arbitrary simplicial pair (Conjec-
ture 5.8); the graph case was conjectured by Grone and Merris [22]. Passing
from graphs to simplicial complexes in [16] required generalizing the well-known
notion of degree sequences for graphs. Now passing to simplicial pairs, we in-
troduce a less than obvious, but perfectly natural, further generalization of
degree sequence (Subsection 5.2).
The Tutte polynomial is arguably the most important invariant of matroid
theory (see, e.g., [12]). The spectrum polynomial shares several nice features
with the Tutte polynomial, such as being well-behaved under join (Corollary
4.3), disjoint union (Lemma 6.9), and several dual operators (equations (29)
and (32)). Furthermore, specializations obtained by plugging in particular
values for one or the other of the variables of the spectrum polynomial reduce
it to well-known invariants. Consequently (and now going beyond matroids and
the Tutte polynomial), in each of these specializations, the spectral recursion
holds for all simplicial complexes ∆ (not just matroids and shifted complexes),
because it reduces to a basic recursion expressing the relevant invariant for ∆
in terms of that invariant for ∆− e and ∆/e (Theorem 2.4 and Corollary 4.8).
In contrast to the Tutte polynomial recursion, the spectral recursion does not
need to exclude loops and isthmuses as special cases. Indeed, the spectral
recursion holds for all complexes (not just matroids and shifted complexes)
when e is a loop (Proposition 2.3) or an isthmus (Proposition 2.2 and Theorem
2.4).
Section 2 contains more information about Laplacians and the spectral recur-
sion, including some special cases. Sections 3 and 4 are devoted to the proofs
that matroids and shifted complexes, respectively, satisfy the spectral recursion.
The formula for eigenvalues of arbitrary shifted simplicial pairs is developed in
Section 5. Finally, in Section 6, we show that disjoint union and several duality
operators, including Alexander duality, all preserve the property of satisfying
the spectral recursion.
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2. Laplacians of simplicial pairs

For further background on simplicial complexes, their boundary maps and ho-
mology groups, see, e.g., [30, Chapter 1]. If ∆ and ∆′ are simplicial complexes
on the same ground set of vertices, then we will say (∆,∆′) is a simplicial pair,
but we set (∆,∆′) = (Γ,Γ′) when the set differences ∆\∆′ and Γ\Γ′ are equal
as subsets of the power set of the ground set of vertices (here A\B denotes the
set difference {a ∈ A : a 6∈ B} between sets A and B); more formally, then, a
simplicial pair is an equivalence class on ordered pairs of simplicial complexes.
In all cases, definitions applying to a simplicial pair (∆,∆′) may be special-
ized to a single simplicial complex ∆, by letting ∆′ = ∅, the empty simplicial
complex.
As usual, let Ci = Ci(∆,∆′; R) := Ci(∆; R)/Ci(∆

′; R) denote the i-dimensional
oriented R-chains of (∆,∆′), i.e., the formal R-linear sums of oriented i-
dimensional faces [F ] such that F ∈ ∆i\∆

′
i, where ∆i denotes the set of

i-dimensional faces of ∆. Let ∂(∆,∆′);i = ∂i : Ci → Ci−1 denote the usual
(signed) boundary operator. Via the natural bases ∆i\∆

′
i and ∆i−1\∆

′
i−1 for

Ci(∆,∆′; R) and Ci−1(∆,∆′; R), respectively, the boundary map ∂i has an ad-
joint map ∂∗

i : Ci−1(∆,∆′; R) → Ci(∆,∆′; R); i.e., the matrices representing ∂
and ∂∗ in the natural bases are transposes of one another.

Definition. Let L′
i = ∂i+1∂

∗
i+1 and L′′

i = ∂∗
i ∂i. Then the (i-dimensional )

Laplacian of (∆,∆′) is the map Li(∆,∆′) : Ci(∆,∆′; R) → Ci(∆,∆′; R) defined
by

Li = Li(∆,∆′) := L′
i + L′′

i = ∂i+1∂
∗
i+1 + ∂∗

i ∂i.

For more information, see, e.g., [16, 20, 27]. Laplacians of pairs of graphs were
considered in [13]. Each of L′

i and L′′
i is positive semidefinite, since each is the

composition of a linear map and its adjoint. Therefore, their sum Li is also
positive semidefinite, and so has only non-negative real eigenvalues. (See also
Proposition 4.6 and [20, Proposition 2.1].) These eigenvalues do not depend on
the arbitrary ordering of the vertices of ∆, and are thus invariants of (∆,∆′);
see, e.g., [16, Remark 3.2]. Define si(∆,∆′) to be the multiset of eigenvalues
of Li(∆,∆′), and define mλ(Li(∆,∆′)) to be the multiplicity of λ in si(∆,∆′).
The single complex case (∆′ = ∅) of the following proposition is the first result
of combinatorial Hodge theory, which goes back to Eckmann [18].

Proposition 2.1. The multiplicity of 0 as an eigenvalue of the i-dimensional
Laplacian Li of (∆,∆′) is the ith reduced Betti number of (∆,∆′), i.e.,

m0(Li(∆,∆′)) = β̃i(∆,∆′) = dimR H̃i(∆,∆′; R).

Proof. A nice summary is given in the proof of [20, Proposition 2.1]. The usual
setup is for just a single simplicial complex (i.e., the special case ∆′ = ∅), but
only depends on the Ci’s and ∂i’s forming a chain complex (∂2 = 0), which
still holds even when ∆′ 6= ∅. (Cf. Proposition 4.6.) ¤
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A natural generating function for the Laplacian eigenvalues of a simplicial pair
(∆,∆′) is

(1) S(∆,∆′)(t, q) :=
∑

i≥0

ti
∑

λ∈si−1(∆,∆′)

qλ =
∑

i,λ

mλ(Li−1(∆,∆′))tiqλ.

We call S(∆,∆′) the spectrum polynomial of (∆,∆′). Although S(∆,∆′) is defined
for any simplicial pair (∆,∆′), it is only truly a polynomial when the Laplacian
eigenvalues are not only non-negative, but integral as well. This will be true for
the cases we are concerned with, primarily matroids [27], shifted complexes [16],
and shifted simplicial pairs (Theorem 5.7 and Remark 5.9). For the special case
of a matroid, a “spectrum polynomial” Spec was defined, differently, in [27], but
we will see later that the two definitions agree in this case up to simple changes
in indexing (see Lemma 3.6 and [27, Corollary 18]). Letting λ ∈ si−1 instead
of λ ∈ si simplifies the statement of some later results, notably Corollary 4.3.
Recall (e.g., [5, Section 7.3]) the independence complex IN(M) of a matroid
M on ground set E is the simplicial complex whose faces are the independent
sets of M and whose vertex set is E. (For background about matroids, see,
e.g., [31, 34, 35].) We will sometimes use M and IN(M) interchangeably, so,
for instance, Li(M) := Li(IN(M)) = Li(IN(M), ∅) and SM := SIN(M) =
S(IN(M),∅). Similarly, if N is another matroid on the same ground set such
that IN(N) ⊆ IN(M) (i.e., N ≤ M in the weak order on matroids), then
Li(M,N) = Li(IN(M), IN(N)) and S(M,N) = S(IN(M),IN(N)). In this case,
we say (M,N) is a matroid pair.
We now naturally generalize the notion of deletion and contraction for matroids
(see e.g., [11]) to arbitrary simplicial complexes.

Definition. Let ∆ be a simplicial complex on vertex set V , and e ∈ V . Then
the deletion of ∆ with respect to e is the simplicial complex

∆ − e = {F ∈ ∆: e 6∈ F}

on vertex set V − e, and the contraction of ∆ with respect to e is the simplicial
complex

∆/e = {F − e : F ∈ ∆, e ∈ F}

on vertex set V − e. Note that ∆/e = lk∆ e, the usual simplicial complex
link [30, Section 2]; we use the term “contraction” to highlight similarities to
matroid theory.

It is easy to verify that IN(M − e) = IN(M)− e as long as e is not an isthmus
of M , and that IN(M/e) = IN(M)/e as long as e is not a loop of M . There is
thus no confusion in the notational shortcuts SM−e := SIN(M−e) = SIN(M)−e

and SM/e := SIN(M/e) = SIN(M)/e as long as e is not an isthmus or a loop,
respectively.
Since e is an isthmus of M precisely when e is a vertex of every facet of IN(M),
define e to be an isthmus of a simplicial complex ∆ if e is a vertex of every
facet of ∆ (so ∆ is a cone with apex e – see Subsection 4.1). Similarly, since
e is a loop of M precisely when e is not a vertex of any face of IN(M), define
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e to be a loop of a simplicial complex ∆ if e is in the vertex set of ∆, but in
no face of ∆ (even the singleton {e} is not a face, contrary to usual simplicial
complex conventions).
Our definitions mean that if e is an isthmus of simplicial complex ∆, then the
deletion ∆−e equals ∆/e. (When e is an isthmus of a matroid M , the matroid
deletion M − e is left undefined in e.g., Brylawski [11], though M − e = M/e
in Welsh [34, Section 4.2] and Oxley [31, Corollary 3.1.25].) If e is a loop
of simplicial complex ∆, then the contraction ∆/e is ∅, the empty simplicial
complex. (When e is a loop of a matroid M , the matroid contraction M/e
equals M − e.)

Definition. We will say that a simplicial complex ∆ satisfies the spectral
recursion with respect to e if e is a vertex of ∆ and

(2) S∆(t, q) = qS∆−e(t, q) + qtS∆/e(t, q) + (1 − q)S(∆−e,∆/e)(t, q).

We will say ∆ satisfies the spectral recursion if ∆ satisfies the spectral recursion
with respect to every vertex in its vertex set. (Note that Proposition 2.3 below
means we need not be too particular about the vertex set of ∆.)

Our main result is that ∆ satisfies the spectral recursion when ∆ is either
the independence complex of a matroid (Theorem 3.18) or a shifted simplicial
complex (Theorem 4.23), and e is any vertex of ∆. We illustrate now a few
special cases of the spectral recursion, which are easy to verify, and some of
which are used in later sections.

Proposition 2.2. The simplicial complex whose sole facet is a single vertex
satisfies the spectral recursion.

Proposition 2.3. If e is a loop of simplicial complex ∆, then ∆ satisfies the
spectral recursion with respect to e.

Proposition 2.2 and Theorem 4.4 will show that, if e is an isthmus of ∆, then
∆ satisfies the spectral recursion with respect to e.

Theorem 2.4. If ∆ is any simplicial complex, and e is any vertex of ∆, then
the spectral recursion holds when q = 0, q = 1, t = 0, or t = −1.

Proof. Plugging q = 0 into S immediately yields S(∆,∆′)(t, 0) =
∑

i tiβ̃i−1(∆,∆′), by Proposition 2.1. Proving the spectral recursion in
this case then reduces to showing

(3) β̃i−1(∆) = β̃i−1(∆ − e,∆/e),

for all i. This, in turn, is a consequence of the basic topology facts β̃i−1(∆) =

β̃i−1(∆, st∆ e) and (∆, st∆ e) = (∆−e,∆/e), where st∆ e denotes the usual star
of e in ∆, the simplicial complex whose facets are the facets of ∆ containing e.
Setting q = 1, we see S(∆,∆′)(t, 1) =

∑

i(fi−1(∆) − fi−1(∆
′))ti, where fi is

the number of i-dimensional faces of ∆, since there are as many eigenvalues of
Li−1(∆,∆′) as there are faces in ∆i−1\∆

′
i−1 (assuming ∆′ ⊆ ∆). It is then
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an easy exercise to verify that, when q = 1, the ti+1 coefficient of the spectral
recursion reduces to the easy observation

(4) fi(∆) = fi(∆ − e) + fi−1(∆/e).

If we set t = 0, it is easy to see that S∆(0, q) = qv(∆), where v(∆) denotes the
number of non-loop vertices of ∆. The spectral recursion in this case reduces
to the trivial observation that v(∆) = 1 + v(∆ − e) if e is not a loop, but
v(∆) = v(∆ − e) if e is a loop.
We will also see in Corollary 4.8 that, when t = −1, the spectral recursion
reduces to an easy identity about Euler characteristic. ¤

In the special case where ∆ is a near-cone (see Subsection 4.5) and e is its apex,
it is not hard to verify that the tdim ∆+1 coefficient of the spectral recursion
reduces to [16, Lemma 5.3].
The following complex is the simplest and smallest counterexample to both
Laplacian integrality and the spectral recursion.

Example 2.5. Let ∆ be the 1-dimensional simplicial complex with vertices
a, b, c, d and facets (maximal faces) {a, b},{b, c}, and {c, d}. It is easy to check
directly that ∆ − e, ∆/e, and (∆ − e,∆/e) are all Laplacian integral for any
choice of e, while ∆ is not integral. It then follows immediately that ∆ does
not satisfy the spectral recursion for any choice of e.

3. Matroids

In this section, we show that the independence complex of a matroid satisfies
the spectral recursion, equation (2). The key step of the section is a simple trick
in Subsection 3.1 to reduce the problem of computing S(M−e,M/e) to computing
SM/C for all circuits C containing e. Subsection 3.2 shows how an algorithm
due to Kook, Reiner, and Stanton [27] allows us to compute the spectrum
polynomial of a matroid from its combinatorial information; we also compare
what this algorithm computes for M , M − e, M/e, and M/C. The final steps
of the calculation, which largely consist of translating to generating functions
the results of the previous subsections, are in Subsection 3.3.
We first set our notation for matroids; for further background, and any terms
not defined here, see [35]. Let M = M(E) be a matroid on ground set E. We
will let B = B(M), I = I(M), C = C(M), and F = F(M) denote the sets of
bases, independent sets, circuits, and flats (closed sets) of M , respectively. If
A ⊆ E, let rkM (A) = rk(A) denote the rank of A (with respect to M), and
let A = clM (A) denote the closure of A (with respect to M). We will often
write V for M(V ) in the special case when V is a flat of M . When A ⊆ V ,
the set V −A may be considered to be the matroid V/A in matroid M/A, but
considered to be the matroid V − A in matroid M − A. We will also use the
notions of internal and external activity as in, e.g., [5].
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3.1. A partition. If ∆ is a simplicial complex and A is a set disjoint from the
vertices of ∆, then let A ◦ ∆ denote

A ◦ ∆ := {A ∪̇ F : F ∈ ∆}.

It will soon be important to note that A◦∆ is a simplicial pair; in fact A◦∆ =
(2A ∗ ∆, (2A\{A}) ∗ ∆), where 2A denotes the simplicial complex consisting of
all subsets of A, and ∗ denotes the usual join, as defined in Section 4.

Lemma 3.1. If ∆ is a simplicial complex and A a finite set disjoint from the
vertices of ∆, then

SA◦∆(t, q) = t|A|S∆(t, q).

Proof. Under the natural bijection between ∆ and A ◦ ∆, given by φ : F 7→
A ∪̇ F , the boundary operators ∂∆ and ∂A◦∆ are the same. That is, ∂A◦∆[A ∪̇
F ] = [A]∂∆[F ], simply by numbering the vertices of A ◦∆ so that the elements
of A all come last. Since the boundary operators are the same, so are the
Laplacians, but the dimension shift in φ means si(∆) = si+|A|(A ◦ ∆). The
lemma now follows readily. ¤

If I is independent in M and p ∈ I−I, we will let ci(p, I) = ciM (p, I) = ciI(p, I)

be the unique circuit of I contained in I ∪̇ p. Dually, if b ∈ I, we will let
bo(b, I) = boM (b, I) = boI(b, I) be the unique bond of I contained in (I−I)∪̇b.

It is easy to see that if p 6∈ I, then I ∈ I(M/p). Therefore we may safely refer
to ciM (p, I) for any I ∈ I(M − p) − I(M/p).

Lemma 3.2. If I ′, I ∈ I(M − e) − I(M/e) and I ′ ⊆ I, then ciM (e, I ′) =
ciM (e, I).

Proof. From ciM (e, I ′) ⊆ I ′ ∪̇ e ⊆ I ∪̇ e it follows that ciM (e, I ′) is a circuit in
I ∪̇ e, and thus the unique circuit in I ∪̇ e, i.e., ciM (e, I). ¤

The following lemma is the key step to proving that matroids satisfy the spec-
tral recursion.

Lemma 3.3. Let M(E) be a matroid, and e ∈ E. If e is not a loop, then

Li(M − e,M/e) =
⊕

C∈C(M)
e∈C

Li((C − e) ◦ IN(M/C)).

Proof. For any C ∈ C(M) such that e ∈ C, let

MC = {I ∈ I(M − e) − I(M/e) : ciM (e, I) = C};

we will see shortly that this is a simplicial pair. By Lemma 3.2,

∂(M−e,M/e)[I] = ∂C [I]

for any I ∈ I(M − e) − I(M/e), where C = ciM (e, I). Thus removing M/e
from M − e partitions Li(M − e,M/e) into

Li(M − e,M/e) =
⊕

C∈C(M)
e∈C

Li(MC).
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Furthermore, it is easy to see that

MC = {I ∈ I(M − e) : C − e ⊆ I} = (C − e) ◦ IN((M − e)/(C − e))

= (C − e) ◦ IN(M/C).

¤

3.2. The Kook-Reiner-Stanton algorithm. The decomposition in
Proposition 3.4 below was first discovered by Etienne and Las Vergnas
[19, Theorem 5.1], but we will rely upon Algorithm 3.5, due to Kook, Reiner,
and Stanton [27, proof of Theorem 1], for producing this decomposition.

Proposition 3.4. Given a base B of matroid M , there is a unique disjoint
decomposition B = B1 ∪̇ B2 into two (necessarily) independent sets such that:

• B1 has internal activity 0; and
• B2 has external activity 0, with respect to the matroid M/V , where

V = B1.

Algorithm 3.5. This algorithm produces the decomposition guaranteed by
the previous theorem. It takes the base B as input, and outputs the pair
(B1, B2).

Step 1: Set B1 = B, B2 = ∅.
Step 2: Let V = B1.
Step 3: Find an internally active element b for B1 as a base of the flat
V .

• If no such element b exists, then stop and output the pair (B1, B2).
• If such a b exists, then set B1 := B1 − b, B2 := B2 ∪̇ b (we call this

step a removal ), and return to Step 2.

Notation. If the decomposition of base B in matroid M produced by the
above algorithm is B = B1 ∪̇ B2, then let π(B) = πM (B) = B1. If I ∈
I(M), then let πM (I) = clV (πV (I)) = clM (πV (I)), where V = clM (I). If
W is any closed set containing I (equivalently, containing V = clM (I)), then
clW (I) = clM (I) = V , and so πW (I) = clV (πV (I)) = πM (I). In particular,
πV (I) = πM (I).

The following lemma, which is little more than a recasting of [27, Corollary
18] in language tailored to our purposes, reduces computations of the spectrum
polynomial to computations of π .

Lemma 3.6. For any matroid M(E),

SM (t, q) = q|E|
∑

I∈I(M)

trk(I)(q−1)|πM (I)| = q|E|
∑

V ∈F(M)

trk(V )
∑

I∈B(V )

(q−1)|πV (I)|.

Let χ̃(∆) :=
∑

(−1)ifi(∆) denote the (reduced) Euler characteristic of simpli-
cial complex ∆; we also use the shorthand χ̃(M) = χ̃(IN(M)). If V ⊆ W are
flats of matroid M , let µ(W,V ) = µM (W,V ) denote the Möbius function of
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the sublattice [W,V ] in the lattice of flats of M . The proof of [27, equation
(2.2)] shows that

(5)
∑

B∈B(M)

x|πM (B)| =
∑

V ∈F(M)

|χ̃(V )||µ(V,M)|x|V |.

We use the same techniques to do something similar.

Lemma 3.7. For any matroid M(E), and any e ∈ E,
∑

B∈B(M)
e∈πM (B)

x|πM (B)| =
∑

V ∈F(M)
e∈V

|χ̃(V )||µ(V,M)|x|V |.

In particular, this sum is independent of the linear order on E.

Proof. By Algorithm 3.5 (see also its proof in [27]), there is a bijection between:

• the set V of triples (V,B1, B2) where V is a flat of M , B1 is a base of
internal activity 0 for V (in particular, V = B1), and B2 is a base of
external activity 0 for M/V ; and

• the set B of bases B of M .

Furthermore, B = B1 ∪̇ B2 and πM (B) = B1. Thus
∑

B∈B(M)
e∈πM (B)

x|πM (B)| =
∑

(V,B1,B2)∈V
e∈V

x|V |.

We must then determine how many triples (V,B1, B2) there are in V for a fixed
flat V . Mimicking an argument from the proof of [27, Theorem 1], we recall
from [5, Theorem 7.8.4] that there are |χ̃(V )| bases of internal activity 0 for
V , and from [5, Proposition 7.4.7] that there are |µ(V,M)| bases of external
activity 0 for M/V . So for every V , there are |χ̃(V )| choices for B1, and,
independently, |µ(V,M)| choices for B2. Thus,

∑

(V,B1,B2)∈V
e∈V

x|V | =
∑

V ∈F(M)
e∈V

|χ̃(V )||µ(V,M)|x|V |,

completing the proof. ¤

We now see how Algorithm 3.5 works on M−e (Lemma 3.11) and M/e (Lemma
3.13), and on M/C when C is a circuit containing e (Lemma 3.15). We first
need three technical lemmas whose easy proofs are omitted. We abuse set
difference notation slightly to let A\x denote {a ∈ A : a 6= x}, when A is a set
that may or may not contain element x.

Lemma 3.8. Let I be an independent set in matroid M , let e be last in the
linear order, and assume that e 6∈ I and that e is not an isthmus of M . Then b
is internally active in I (with respect to M) iff b is internally active in I (with
respect to M − e).
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Lemma 3.9. Let I be an independent set in matroid M , and let e, b ∈ I. Then
b is internally active in I (with respect to M) iff b is internally active in I − e
(with respect to M/e).

Lemma 3.10. Let I be an independent set in matroid M , and let i be an isthmus
in I. Then b 6= i is internally active in I (with respect to M) iff b is internally
active in I − i (with respect to M).

Lemma 3.11. Let B be a base of M − e, so B is also a base of M and e 6∈ B.
Also assume e is last in the linear order. Then πM−e(B) = πM (B).

Proof. Use Algorithm 3.5 to compute πM (B). By Lemma 3.8, every step of
the algorithm can be copied in M − e; that is, when element b is removed from
B1 in M , we can remove b from B1 in M − e. And also by Lemma 3.8, when
there are no more elements to remove from B1 in M , then there are also no
more elements to remove from B1 in M − e. ¤

Corollary 3.12. Let I be an independent set of M−e, so I is also independent
in M and e 6∈ I. Also assume e is last in the linear order. Then

πM−e(I) = πM (I)\e.

Lemma 3.13. Let B be a base of M such that e ∈ B, so B − e is a base of
M/e. Also assume e is last in the linear order. Then

πM/e(B − e) = πM (B)\e

Proof. Again use Algorithm 3.5 to compute πM (B), except do not remove e
unless it is the only element that can be removed. As in Lemma 3.11, every step
can be copied in M/e, this time by Lemma 3.9, as long as we are not removing
e, and have not yet removed e. Also by Lemma 3.9, if we never remove e, then
when there are no more elements to remove in M , there are no more elements
to remove in M/e. Thus, if e is never removed (i.e., if e ∈ πM (B)), then
πM/e(B − e) = πM (B) − e.
If e is eventually removed in M , it must be when e is an isthmus, since e is
ordered last (so it can be the minimal element of bo(e, I) only if it is the only
element – i.e., if it is an isthmus). Since we put off removing e until there
were no other possible removals, Lemma 3.10 guarantees that there are no new
removals possible after e is removed. Since the removals were identical in M
and M/e until e was removed, πM/e(B − e) = πM (B). ¤

Corollary 3.14. Let I be an independent set of M such that e ∈ I, so I − e
is independent in M/e. Also assume e is last in the linear order. Then

πM/e(I − e) = πM (I)\e.

Proof. Let V = clM (I). Then clM/e(I−e) = V −e as sets, so clM/e(I−e) = V/e
as matroids. Thus, by the definition of π , we have

πM/e(I − e) = clM/e(πV/e(I − e)).

If e ∈ πV (I), then simply clM/e(πV/e(I−e)) = clM/e(πV (I)−e) = clM (πV (I))−
e = πM (I)\e; the first equality is by Lemma 3.13, the second equality is a
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routine exercise using e ∈ πV (I), and the last equality is from the definition of
π .
If e 6∈ πV (I), then the proof of Lemma 3.13 shows that e is an isthmus in
clV (πV (I) ∪ e). Then, since cl(A ∪̇ i) = (cl A) ∪̇ i for any A and any isthmus
i 6∈ A,

(6) clM (πV (I) ∪ e) = clV (πV (I) ∪ e) = clV (πV (I)) ∪ e = πM (I) ∪ e.

Now, also in this case,

clM/e(πV/e(I − e)) = clM/e(πV (I)) = clM (πV (I) ∪ e) − e = (πM (I) ∪ e) − e

= πM (I)\e;

the first equality is by Lemma 3.13, the second equality is from the definition
of clM/e, and the third equality is equation (6). ¤

Lemma 3.15. Let B be a base of matroid M(E), let e be first in the linear
order on E, and assume that e 6∈ B and e is not a loop. Let C = ci(e,B), so
B − (C − e) is a base of M/C. Then

πM/C(B − (C − e)) = πM (B) − (C − e).

Proof. It is an easy exercise to check that boM/C(b,B − (C − e)) = boM (b,B)
for any b ∈ B − (C − e). It then follows that b is internally active in B (with
respect to M) iff b is minimal in boM (b,B) = boM (b,B − (C − e)) iff b is
internally active in B − (C − e) (with respect to M/C).
Now, as in Lemmas 3.11 and 3.13, use Algorithm 3.5 to compute πM/C(B −
(C − e)). Once again, every step can be copied in M , computing πM (B).
Furthermore, when there are no more elements in B − (C − e) to remove in
computing πM/C(B − (C − e)), the only elements of B that could possibly
be removed in computing πM (B) must be in C − e. We now show that any
c ∈ C − e is not internally active, and thus that the removals in M and M/C
are identical, which will complete the proof.
It is easy to see that C = ciB1

(e,B1), where B1 is what remains of B after

performing all the removals in M corresponding to the removals in M/C. Thus
c ∈ C−e ⊆ ciB1

(e,B1) implies, by e.g., [5, Lemma 7.3.1], that e ∈ boB1
(c,B1).

Since e is first in the linear order, c is, as desired, not internally active. ¤

3.3. The spectral recursion for matroids. We now prove that matroids
satisfy the spectral recursion (Theorem 3.18), by comparing qtSM/e +qSM−e−
SM and S(M−e,M/e). In each case, we get two expressions, one in terms of χ̃
and µ, the other in terms of π . The expressions in terms of χ̃ and µ lead to
a quick proof, by reducing a key piece of the equation to the q = 0 case for a
flat. The expressions in terms of π suggest a more bijective proof, which is not
hard to prove either. Both proofs are given.
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Lemma 3.16. If M(E) is a matroid, and e ∈ E is neither an isthmus nor a
loop, then

qSM−e(t, q) + qtSM/e(t, q) − SM (t, q)

= (q − 1)q|E|
∑

V ∈F(M)

trkM (V )
∑

I∈B(V )
e∈πV (I)

(q−1)|πV (I)|

= (q − 1)
∑

V ∈F(M)

trkM (V )
∑

W∈F(V )
e∈W

|χ̃(W )||µ(W,V )|q|E|−|W |.

Proof. We compute each of SM−e and SM/e using Lemma 3.6. First,

SM−e(t, q) = q|E−e|
∑

I∈I(M−e)

trkM−e(clM−e(I))(q−1)|πM−e(I)|

= q|E−e|
∑

I∈I(M)
e6∈I

trkM (clM (I))(q−1)|πM (I)\e|,(7)

since: I ∈ I(M − e) iff I ∈ I(M) and e 6∈ I; |πM−e(I)| = |πM (I)\e|, by
Corollary 3.12; and rkM−e(clM−e(I)) = rkM (clM (I)\e) is an easy matroid
exercise. Similarly,

SM/e(t, q) = q|E−e|
∑

I′∈I(M/e)

trkM/e(clM/e(I′))(q−1)|πM/e(I′)|

= q|E−e|
∑

I∈I(M)
e∈I

trkM (clM (I))−1(q−1)|πM (I)\e|,(8)

where I = I ′∪̇e for I ′ ∈ I(M/e), since: |πM/e(I
′)| = |πM/e(I−e)| = |πM (I)\e|,

by Corollary 3.14; and rkM/e(clM/e(I
′)) = rkM (clM (I))−1 is a routine exercise,

using e ∈ clM (I).
Combining equations (7) and (8), and then sorting independent sets by their
closures, we get

qSM−e(t, q) + qtSM/e(t, q) = q|E|
∑

I∈I(M)

trkM (clM (I))(q−1)|πM (I)\e|

= q|E|
∑

V ∈F(M)

trkM (V )
∑

I∈B(V )

(q−1)|πV (I)\e|.(9)

Furthermore
∑

I∈B(V )

(q−1)|πV (I)\e| =
∑

I∈B(V )
e6∈πV (I)

(q−1)|πV (I)\e| +
∑

I∈B(V )
e∈πV (I)

(q−1)|πV (I)\e|

=
∑

I∈B(V )

(q−1)|πV (I)| + (q − 1)
∑

I∈B(V )
e∈πV (I)

(q−1)|πV (I)|;(10)
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plugging into equation (10) into equation (9) readily leads to the first equation
of the lemma. The second equation then follows directly from Lemma 3.7. ¤

Lemma 3.17. If M(E) is a matroid, and e ∈ E is neither an isthmus nor a
loop, then

S(M−e,M/e)(t, q) = q|E|
∑

V ∈F(M)

trkM (V )
∑

C∈C(V )
e∈C

q−|C|
∑

I∈B(V/C)

(q−1)|πV/C(I)|

=
∑

V ∈F(M)

trkM (V )
∑

W∈F(V )
e∈W

∑

C∈C(W )
e∈W

|χ̃(W/C)||µ(W,V )|q|E|−|W |.

Proof. By Lemmas 3.6, 3.1, and 3.3,

S(M−e,M/e)(t, q) =
∑

C∈C(M)
e∈C

trkM (C)SM/C(t, q)

=
∑

C∈C(M)
e∈C

trkM (C)q|E−C|
∑

W∈F(M/C)

trkM/C(W )
∑

I∈B(W )

(q−1)|πW (I)|.

Now, the flats of M/C are V − C as sets, and thus V/C as matroids, for all
flats V of M containing C. Therefore,

S(M−e,M/e)(t, q)

= q|E|
∑

C∈C(M)
e∈C

trkM (C)q−|C|
∑

V ∈F(M)
C⊆V

trkM (V )−rkM (C)
∑

I∈B(V/C)

(q−1)|πV/C(I)|

= q|E|
∑

V ∈F(M)

trkM (V )
∑

C∈C(M)
e∈C⊆V

q−|C|
∑

I∈B(V/C)

(q−1)|πV/C(I)|,

which is the first equation of the lemma, once we note that C ∈ C(V ) iff
C ∈ C(M) and C ⊆ V .
The second equation of the lemma then follows from

∑

C∈C(V )
e∈C

q−|C|
∑

I∈B(V/C)

(q−1)|πV/C(I)|

=
∑

C∈C(V )
e∈C

q−|C|
∑

W/C∈F(V/C)

|χ̃(W/C)||µV/C(W/C, V/C)|(q−1)|W/C|

=
∑

C∈C(V )
e∈C

∑

W∈F(V )
C⊆W

|χ̃(W/C)||µ(W,V )|(q−1)|W |

=
∑

W∈F(V )
e∈W

∑

C∈C(V )
e∈C⊆W

|χ̃(W/C)||µ(W,V )|(q−1)|W |.
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The first equation above is from equation (5); we are also using the same
characterization of flats of a contraction as in the previous paragraph. The
second equation is since the interval [W/C, V/C] in the lattice of flats of V/C
is isomorphic to the interval [W,V ] in the lattice of flats of V , again by that
same characterization of flats in a contraction. It only remains to again note
that C ∈ C(W ) iff C ∈ C(M) and C ⊆ W . ¤

Theorem 3.18. If M is a matroid, then its independence complex IN(M)
satisfies the spectral recursion, equation (2).

Proof. By Proposition 2.3, we may assume e is not a loop. By Lemma 2.2
and Theorem 4.4 below (which does not depend on anything in this section),
we may assume e is not an isthmus. As discussed at the beginning of the
subsection, there are now two ways to finish off the proof, one using the q = 0
case, the other using a bijection.
q = 0 proof. By Theorem 2.4, we know that the spectral recursion holds, for
any matroid, with q = 0. By Lemmas 3.16 and 3.17, this means

(11) |χ̃(M)| =
∑

C∈C(M)
e∈C

|χ̃(M/C)|

for any matroid M , since only terms with W = E survive when q = 0. (Equa-
tion (11) is also, as noted by Kook [25], dual to Crapo’s complementation
theorem (e.g., [1, Theorem 4.33]) applied to the dual matroid of M .) Thus,
simply by plugging in the flat W , as a matroid, for the matroid M in equation
(11),

|χ̃(W )| =
∑

C∈C(W )
e∈C

|χ̃(W/C)|

whenever W is a flat of M containing e. By Lemmas 3.16 and 3.17 again, we
are done.
Bijective proof. By Lemmas 3.16 and 3.17, it suffices to show

(12)
∑

I∈B(M)
e∈πW (I)

(q−1)|πM (I)| =
∑

C∈C(M)
e∈C

∑

I∈B(M/C)

(q−1)|πM/C(I)|+|C|.

Further, Lemma 3.7 shows that the sum on the left-hand side of equation (12)
is independent of the ordering of the ground set. Similarly, Lemma 3.17 itself
shows the same thing for the sum on the right-hand side. So we now assume,
for the remainder of this proof, that e is ordered first in the linear order on E.
Equation (12) would follow naturally from a bijection

φ : {B ∈ B(M) : e ∈ πM (B)} → {(C, I) : C ∈ C(M), I ∈ B(M/C), e ∈ C}

such that

(13) πM/C(I) ∪̇ C = πM (B),

where φ(B) = (C, I). Such a bijection is given by, as we now show, C = ci(e,B)
and I = B − (C − e) in one direction, and B = I ∪̇ C − e in the other.
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First note that, since e is ordered first, if e ∈ B then e is internally active in
B, and so e 6∈ πM (B). It is then easy to see in this case that e 6∈ πM (B). We
may therefore safely assume e 6∈ B, and so C = ci(e,B) is well-defined. It then
follows that φ is well-defined.
It is easy to see that φ is injective. Showing that φ is surjective reduces to
verifying that e ∈ πM (B) when B = I ∪̇C−e; by Lemma 3.15, C−e ⊆ πM (B),
so e ∈ C = C − e ⊆ πM (B).
Finally, to verify equation (13), by Lemma 3.15 and the definition of closure
in a matroid contraction, πM/C(B − (C − e)) = clM (πM (B) ∪ e) − C. Also,
clM (πM (B) ∪ e) = clM (πM (B)) = πM (B), since e ∈ πM (B), which completes
the proof of equation (13). ¤

Remark 3.19. The spectral recursion does not provide a truly recursive way
to compute SM , due to the presence of S(M−e,M/e), since the recursion only
applies to a single matroid, and not a matroid pair like (M − e,M/e). We
can however, combine it with Lemmas 3.1 and 3.3 for a recursion that is truly
recursive, albeit with more terms than the spectral recursion:

SM (t, q) = qSM−e(t, q) + qtSM/e(t, q) + (1 − q)
∑

C∈C(M)
e∈C

trkM (C)SM/C(t, q).

I am grateful to E. Babson for this observation.

4. Shifted complexes

We postpone until Subsection 4.5 the actual definition of shifted complexes,
but we will see there that a shifted complex is a skeleton of a cone of a smaller
shifted complex (Lemmas 4.21 4.22. To prove that shifted complexes satisfy
the spectral recursion, equation (2), then, it suffices to show that taking skeleta
and taking cones each preserve the property of satisfying the spectral recursion
– which are interesting results in their own right.
We will prove in Subsection 4.1 that the property of satisfying the spectral
recursion is preserved by taking joins (Corollary 4.5), and thus by taking cones
(cf. Proposition 2.2). The key step is that a simple formula [16, Theorem
4.10] for the eigenvalues of the join generalizes straightforwardly from single
simplicial complexes to simplicial pairs (Corollaries 4.2 and 4.3).
Proving that taking skeleta preserves the property of satisfying the spectral
recursion is harder, and is the focus of Subsections 4.2–4.4. The key facts about
Laplacians, established in Subsections 4.2 and 4.3, respectively, are that the
non-zero eigenvalues come in pairs in consecutive dimensions (Lemma 4.7), and
that taking (d−1)-skeleta preserves non-zero eigenvalues of the finer Laplacians
in dimension d − 1 and below (Lemma 4.11).
The only eigenvalues in dimension d− 1 and below that are changed by taking
(d − 1)-skeleta, then, are some (d − 1)-dimensional eigenvalues that become
0 when their counterparts (in the sense of Lemma 4.7) in dimension d are
removed. It is auspicious that these replaced (d − 1)-dimensional eigenvalues
must line up properly in the spectral recursion (since their counterparts in
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dimension d, the only non-zero eigenvalues in that dimension, do as well) and
that the 0’s that replace them also line up properly (since the spectral recursion
is true with q = 0 for both the original complex and its skeleton, by Theorem
2.4). But it turns out that we are better off with f -vectors (q = 1, also a good
case by Theorem 2.4) than with homology (q = 0), in part because the change
in f -vectors resulting from taking skeleta is much easier to describe than the
change in homology.
In Subsection 4.4, we will see that the difference between the spectrum poly-
nomials of the skeleton and the original complex can be described largely in
terms of the f -vector (Lemma 4.14), allowing us to describe the difference in
the spectral recursion between the skeleton and the original complex in a par-
ticularly useful form (Lemma 4.15). From there, simple generating function
manipulations lead to Theorem 4.18, which states that a d-dimensional simpli-
cial complex satisfies the spectral recursion with respect to a vertex if and only
if its (d− 1)-skeleton and pure d-skeleton (the complex generated by its facets)
do as well.

4.1. Joins and cones. Define the join (∆,∆′) ∗ (Γ,Γ′) of two simplicial pairs
on disjoint vertex sets to be

(∆,∆′) ∗ (Γ,Γ′) := {F ∪̇ G : F ∈ ∆\∆′, G ∈ Γ\Γ′}

(here, ∪̇ denotes disjoint union), which equals the simplicial pair

(14) (∆ ∗ Γ, (∆′ ∗ Γ) ∪ (∆ ∗ Γ′)).

When ∆′ = Γ′ = ∅, this reduces to the usual join ∆ ∗ Γ. When, further, ∆ is a
single vertex, say v, the join is written as v ∗ Γ, the cone over Γ with apex v.
The proofs of the following two results on simplicial pairs are identical (mod-
ulo some indexing changes) to those of the analogous statements for single
simplicial complexes [16, Section 4].

Proposition 4.1. For any two simplicial pairs (∆,∆′) and (Γ,Γ′) and every
k, the map defined R-linearly by [F ]⊗ [G] 7→ [F ∪̇G] identifies the vector spaces

⊕

i+j=k

Ci−1((∆,∆′); R) ⊗ Cj−1((Γ,Γ′); R) ∼= Ck−1((∆,∆′) ∗ (Γ,Γ′); R)

and has the following property with respect to the Laplacians L of the appro-
priate dimensions in (∆,∆′), (Γ,Γ′), and (∆,∆′) ∗ (Γ,Γ′):

(15) L((∆,∆′) ∗ (Γ,Γ′)) = L(∆,∆′) ⊗ id + id ⊗ L(Γ,Γ′).

Corollary 4.2. If (∆,∆′) and (Γ,Γ′) are two simplicial pairs, then

sk−1((∆,∆′) ∗ (Γ,Γ′)) =
⋃

i+j=k
λ∈si−1(∆,∆′), µ∈sj−1(Γ,Γ′)

λ + µ.

It is then an easy exercise in generating functions to verify the following corol-
lary.
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Corollary 4.3. If (∆,∆′) and (Γ,Γ′) are two simplicial pairs, then

S(∆,∆′)∗(Γ,Γ′) = S(∆,∆′)S(Γ,Γ′).

Theorem 4.4. If ∆ satisfies the spectral recursion with respect to e, and Γ is
any simplicial complex whose vertex set is disjoint from the vertex set of ∆,
then the join ∆ ∗ Γ satisfies the spectral recursion with respect to e.

Proof. By Corollary 4.3 twice, and our hypothesis,

S∆∗Γ = S∆SΓ = (qS∆−e + qtS∆/e + (1 − q)S(∆−e,∆/e))SΓ

= qS(∆−e)∗Γ + qtS(∆/e)∗Γ + (1 − q)S(∆−e,∆/e)∗Γ.

This last expression is exactly what we need, since it is easy to verify that join
commutes with deletion and contraction, i.e., (∆ − e) ∗ Γ = (∆ ∗ Γ) − e and
(∆/e) ∗ Γ/e = (∆ ∗ Γ)/e, and also since equation (14) with ∆′ = ∅ then yields

(∆ − e,∆/e) ∗ Γ = ((∆ − e) ∗ Γ, (∆/e) ∗ Γ) = ((∆ ∗ Γ) − e, (∆ ∗ Γ)/e).

¤

Corollary 4.5. If ∆ and Γ each satisfy the spectral recursion, then so does
their join ∆ ∗ Γ.

4.2. Finer Laplacians. Recall from Section 2 that L′
i = L′

i(∆,∆′) :=
∂i+1∂

∗
i+1 and L′′

i = L′′
i (∆,∆′) := ∂∗

i ∂i, so that Li = L′
i + L′′

i . Define s
′
i(∆,∆′)

and s
′′
i (∆,∆′) to be the multiset of eigenvalues of L′

i(∆,∆′) and L′′
i (∆,∆′),

respectively, arranged in weakly decreasing order.
Following [16], let the equivalence relation λ ⊜ µ on multisets λ and µ denote
that λ and µ agree in the multiplicities of all of their non-zero parts, i.e.,
that they coincide except for possibly their number of zeroes. Also let λ ∪ µ

denote the ⊜-equivalence class whose non-zero parts are the multiset union of
the non-zero parts of λ and µ.

Proposition 4.6. If (∆,∆′) is a simplicial pair, then

si(∆,∆′) ⊜ s
′′
i (∆,∆′) ∪ s

′′
i+1(∆,∆′).

Proof. The proof is identical to the single simplicial complex (∆′ = ∅) case
in [16, Equation (3.6)], and depends only upon ∂2 = 0 and routine eigenvalue
calculations involving adjoints. ¤

If (∆,∆′) is a simplicial pair, let

S′′
(∆,∆′),i(q) :=

∑

λ∈s
′′

i (∆,∆′)
λ6=0

qλ, and

S′′
(∆,∆′)(t, q) :=

∑

i

S′′
(∆,∆′),i−1(q)t

i.
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Zero eigenvalues are omitted from these definitions of S′′ in order to more
naturally encode Proposition 4.6 into the language of generating functions, in
Lemma 4.7, below. Also let

B(∆,∆′)(t) :=
∑

i

β̃i−1(∆,∆′)ti =
∑

i

m0(Li−1(∆,∆′))ti = S(∆,∆′)(t, 0).

These three definitions of B are equivalent by Proposition 2.1.
From now on, when there is no confusion about the variables t and q, we will
often omit them for clarity.

Lemma 4.7. If (∆,∆′) is a simplicial pair, then

S(∆,∆′) = (1 + t−1)S′′
(∆,∆′) + B(∆,∆′).

Proof. Combine Propositions 4.6 and 2.1. ¤

Corollary 4.8. If ∆ is any simplicial complex, and e is any vertex of ∆, then
the spectral recursion holds when t = −1.

Proof. By Lemma 4.7, for any simplicial pair (∆,∆′),

S(∆,∆′)(−1, q) = B(∆,∆′)(−1, q) =
∑

i

(−1)iβ̃i(∆,∆′) = χ(∆,∆′),

where χ(∆,∆′) denotes the Euler characteristic of the simplicial pair (∆,∆′)
(see e.g., [30]). The identity χ(∆,∆′) = χ(∆) − χ(∆′), which holds as long as
∆′ ⊆ ∆, immediately reduces the t = −1 instance of the spectral recursion to
χ(∆) = χ(∆− e)− χ(∆/e). This, in turn, follows from χ(∆) =

∑

i(−1)ifi(∆)
and equation (4). ¤

If ∆ is a simplicial complex, define

F∆(t) :=
∑

i

fi−1(∆)ti.

If φ(q) is a function of q, define

Dqφ := φ(q) − φ(1).

The point of Dq is that it helps us convert from B and homology (the effect
on which of taking skeleta is hard to describe) to F and f -vectors (the effect
on which of taking skeleta is easy to describe) in the following lemma.

Lemma 4.9. If ∆ ⊆ ∆′ are simplicial complexes, then

S(∆,∆′) = (1 + t−1)DqS
′′
(∆,∆′) + F∆ − F∆′ .

Proof. By Lemma 4.7,

F∆(t) − F∆′(t) = S(∆,∆′)(t, 1) = (1 + t−1)S′′
(∆,∆′)(t, 1) + B(∆,∆′)(t).

Thus

B(∆,∆′)(t) = −(1 + t−1)S′′
(∆,∆′)(t, 1) + F∆(t) − F∆′(t),

which, when plugged back into Lemma 4.7, yields the desired result. ¤
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4.3. Skeleta. Recall the s-skeleton of a simplicial complex ∆ is

∆(s) := {F ∈ ∆: dimF ≤ s}.

Also recall that a simplicial complex is pure if all its facets have the same
dimension. The pure s-skeleton of a simplicial complex ∆ is

∆[s] := {F ∈ ∆: F ⊆ G,G ∈ ∆,dim G = s}.

In other words, ∆[s] is the subcomplex of ∆ consisting of the s-dimensional
faces of ∆, and all their subfaces. (See [8, Definition 2.8].) The results of the
following lemma are easy exercises.

Lemma 4.10. If ∆ is a simplicial complex and e is a vertex of ∆, then

(1) (∆ − e)(s) = ∆(s) − e;
(2) (∆/e)(s−1) = ∆(s)/e;
(3) ∆s = (∆[s])s;
(4) (∆ − e)s = (∆[s] − e)s; and
(5) (∆/e)s−1 = (∆[s]/e)s−1.

Lemma 4.11. If dim ∆′ ≤ d − 1, then

s
′′
d−1(∆,∆′) ⊜ s

′′
d−1(∆

(d−1),∆′(d−2)
).

Proof. Since ∆ and ∆(d−1) agree in dimensions d − 1 and below,

s
′′
d−1(∆,∆′) = s

′′
d−1(∆

(d−1),∆′).

Next, replacing ∆′ by ∆′(d−2)
in (∆(d−1),∆′) has the effect of adding (d −

1)-dimensional faces (in fact, all the (d − 1)-dimensional faces of ∆′) to the
simplicial pair, all of whose boundary faces are still not present in the simplicial
pair, since dim ∆′ ≤ d − 1. Thus

∂(∆(d−1),∆′(d−2));d−1 = ∂(∆(d−1),∆′);d−1 ⊕ 0

(equivalently, the matrices representing the two boundary operators differ only
in some additional zero columns); cf. proof of Lemma 5.1. It is then easy to
check that, since L′′

d−1 = ∂∗
d−1∂d−1,

L′′
d−1(∆

(d−1),∆′(d−2)
) = L′′

d−1(∆
(d−1),∆′) ⊕ 0,

and so

s′′d−1(∆
(d−1),∆′(d−2)

) ⊜ s′′d−1(∆
(d−1),∆′).

¤

Corollary 4.12. If dim ∆′ ≤ d − 1, then

S′′
(∆,∆′),d−1 = S′′

(∆(d−1),∆′(d−2)),d−1

Corollary 4.13. If dim ∆ ≤ d and dim ∆′ ≤ d − 1, then

S′′
(∆(d−1),∆′(d−2))

= S′′
(∆,∆′) − S′′

(∆,∆′),dt
d+1.
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Proof. Clearly, (∆,∆′) and (∆(d−1),∆′(d−2)
) agree in dimensions d − 2 and

below. Corollary 4.12 thus ensures S′′
(∆(d−1),∆′(d−2))

=
∑

i≤d S′′
(∆,∆′),i−1t

i. Then

simply note, since dim ∆ ≤ d, that S′′
(∆,∆′),dt

d+1 is the only remaining term

from S′′
(∆,∆′) not found in S′′

(∆(d−1),∆′(d−2))
. ¤

4.4. The spectral recursion and skeleta.

Lemma 4.14. If dim ∆ ≤ d, dim ∆′ ≤ d − 1, and ∆′ ⊆ ∆, then

S(∆(d−1),∆′(d−2))

= S(∆,∆′) − (fd(∆) + fd−1(∆))td+1 − (DqS
′′
(∆,∆′),d − fd−1(∆

′))(td+1 + td).

Proof. First use the definition of Dq and Corollary 4.13 to get

(16) DqS
′′
(∆(d−1),∆′(d−2))

= DqS
′′
(∆,∆′) − (DqS

′′
(∆,∆′),d)t

d+1.

Then apply Lemma 4.9 (twice) and equation (16) to compute

S(∆(d−1),∆′(d−2))

(17)

= S(∆,∆′) − (F∆ − F∆′) − (td + td+1)DqS
′′
(∆,∆′),d

+ (F∆(d−1) − F∆′(d−2))

= S(∆,∆′) − (fd(∆)td+1 − fd−1(∆
′)td) − (td + td+1)DqS

′′
(∆,∆′),d.(18)

The lemma now follows by adding the quantity (td + td+1)fd−1(∆
′) to the

middle term of the right hand side of equation (18), while subtracting it from
the last term. ¤

If ∆ is a simplicial complex and e is a vertex of ∆, let

S∆,e := S∆ − (qS∆−e + qtS∆/e + (1 − q)S(∆−e,∆/e)),

Sd
∆,e := S′′

∆,d − (qS′′
∆−e,d + qS′′

∆/e,d−1 + (1 − q)S′′
(∆−e,∆/e),d), and

Dd
∆,e := DqS

d
∆,e + (1 − q)fd−1(∆/e).

We have defined S∆,e precisely so that ∆ satisfies the spectral recursion with
respect to e if and only if S∆,e = 0, and we have defined Sd

∆,e to be the d-
dimensional finer Laplacian version of S∆,e. The significance of D is made
apparent by the next lemma, which is the last key step to proving Theorem
4.18.

Lemma 4.15. If dim ∆ ≤ d and e is a vertex of ∆, then

S∆(d−1),e = S∆,e − (td + td+1)Dd
∆,e.
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Proof. Since dim ∆ ≤ d, then dim ∆ − e ≤ d and dim ∆/e ≤ d − 1. Therefore

S∆(d−1),e

= S∆(d−1) − qS(∆−e)(d−1) − qtS(∆/e)(d−2) − (1 − q)S((∆−e)(d−1),(∆/e)(d−2))

= S∆ − qS∆−e − qtS∆/e − (1 − q)S(∆−e,∆/e)

− fd(∆)td+1 + qfd(∆ − e)td+1 + qtfd−1(∆/e)td

+ (1 − q)(fd(∆ − e) + fd−1(∆/e))td+1

− DqS
′′
∆,d(t

d+1 + td) + qDqS
′′
∆−e,d(t

d+1 + td) + qtDqS
′′
∆/e,d−1(t

d + td−1)

+ (1 − q)(DqS
′′
(∆−e,∆/e),d − fd−1(∆/e))(td+1 + td).

The first equation above is by the definition of S and Lemma 4.10. The second
equation involves expanding each term of the left-hand side by Lemma 4.14,
and then regrouping like terms. Now, the second line and third lines of this
last expression add up to zero, by equation (4). The lemma then follows from
the definitions of S and Sd. ¤

Lemma 4.16. If dim ∆ ≤ d and e is a vertex of ∆, then S∆,e = 0 implies
Dd

∆,e = 0.

Proof. It is easy to see that S∆(d−1),e has no power of t higher than dim ∆(d−1)+

1 = d. But since S∆,e = 0, Lemma 4.15 implies that 0 = [td+1]S∆(d−1),e = Dd
∆,e.

Here, we are using the coefficient notation [ti](
∑

j ajt
j) := ai. ¤

Lemma 4.17. If ∆ is a simplicial complex and e is a vertex of ∆, then

Dd
∆,e = Dd

∆[d],e.

Proof. By expanding Dd
∆,e we need only show that we may replace ∆ by ∆[d] in

each of S′′
∆,d, S′′

∆−e,d, S′′
∆/e,d−1, S′′

(∆−e,∆/e),d, and fd−1(∆/e). But this follows

from Lemma 4.10 and the definition of S′′. ¤

Theorem 4.18. If dim ∆ ≤ d, and e is a vertex of ∆, then ∆ satisfies the
spectral recursion with respect to e iff ∆(d−1) and ∆[d] do as well.

Proof. First assume ∆ satisfies the spectral recursion with respect to e. Then
0 = S∆,e. By Lemma 4.16, then, Dd

∆,e = 0. And then by Lemma 4.15,

S∆(d−1),e = 0. Furthermore, Dd
∆[d],e

= Dd
∆,e = 0, by Lemma 4.17.

Conversely, assume ∆(d−1) and ∆[d] satisfy the spectral recursion with respect
to e. By Lemma 4.16, then Dd

∆[d],e
= 0. And then by Lemmas 4.17 and 4.15,

S∆,e = S∆(d−1),e + (td + td+1)Dd
∆,e = S∆(d−1),e + (td + td+1)Dd

∆[d],e = 0.

¤

Corollary 4.19. If dim ∆ ≤ d, then ∆ satisfies the spectral recursion iff
∆(d−1) and ∆[d] do as well.
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4.5. Shifted complexes. Recall a k-set is a set with k elements, and a k-
family over ground set E is a collection of k-subsets of E. For a k-set F , let
bdF denote the (k − 1)-family of all (k − 1)-subsets of F . For a k-family K,
its unsigned boundary bdK is the (k − 1)-family ∪F∈K bdF .
If F = {f1 < · · · < fk} and G = {g1 < · · · < gk} are k-subsets of integers, then
F ≤P G under the componentwise partial order if fp ≤ gp for all p. A k-family
K is shifted if F ≤P G and G ∈ K together imply that F ∈ K. A simplicial
complex ∆ is shifted if ∆i is shifted for every i. The useful properties of shifted
families in the following lemma are easy to verify.

Lemma 4.20. If K1 and K2 are shifted families, then so are bdK1 and K1∩K2.

We say that ∆ is a near-cone with apex 1 if bd(∆−1) ⊆ ∆/1, where bd denotes
the usual unsigned boundary complex consisting of all faces that are not facets.
Equivalently, ∆ is a near-cone with apex 1 if F − v ∪̇ 1 ∈ ∆ whenever F ∈ ∆,
1 6∈ F , and v ∈ F . (See, e.g., [7] for more on near-cones.) We omit the easy
proofs of the following two lemmas.

Lemma 4.21. Let ∆ be a simplicial complex on [n]. Then ∆ is shifted if and
only if ∆ is a near-cone with apex 1, and both ∆−1,∆/1 are shifted with respect
to the ordered vertex set [2, n].

Lemma 4.22. If ∆ is a pure d-dimensional near-cone with apex 1, then

∆ = (1 ∗ (∆ − 1))(d)

Theorem 4.23. If ∆ is a shifted simplicial complex, then ∆ satisfies the spectral
recursion, equation (2).

Proof. The proof is by induction on the dimension and number of vertices of
∆. The base cases, when dim ∆ = 0 or ∆ has one vertex (a special case of
dim ∆ = 0, anyway) are easy to check.
Assume dim ∆ = d ≥ 1. By induction, ∆(d−1) satisfies the spectral recursion.
By Corollary 4.19, it remains to show that ∆[d] satisfies the spectral recursion
as well.
To this end, first note that ∆d, the family of facets of ∆[d], is shifted; then, by
Lemma 4.20 and reverse induction on dimension, ∆[d] is shifted. By definition,
∆[d] is also pure, so Lemma 4.22 implies

∆[d] = (1 ∗ (∆[d] − 1))(d).

Since ∆[d] is shifted, ∆[d]−1 is also shifted, with one less vertex, and so satisfies
the spectral recursion, by induction. Thus 1∗(∆[d]−1) also satisfies the spectral
recursion by Proposition 2.2 and Corollary 4.5. Then Corollary 4.19 guarantees
that ∆[d] satisfies the spectral recursion. ¤

5. Arbitrary shifted simplicial pairs

Merris [29] found a simple description of the Laplacian spectrum of a shifted
graph (2-family), in terms of the degree sequence of the graph. This was
generalized in [16] to shifted families, by suitably generalizing the notion of
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degree sequence. In this section, we extend both the theorem, and the notion
of degree sequence, to shifted family pairs (Theorem 5.7). As in [16], the
technique is to find identical recursive formulas, similar to those in [16], for
the Laplacian spectrum (Corollary 5.4) and the generalized degree sequence
(Lemma 5.6), in Subsections 5.1 and 5.2, respectively. The two threads are
tied together with the proof of Theorem 5.7 in Subsection 5.3. Along the way,
we rely upon tools developed in Section 4.
Grone and Merris [22] conjectured that Merris’ description of the spectrum of
a shifted graph becomes a majorization inequality for an arbitrary graph. This
was also generalized from graphs to families (though still not proved) in [16].
In Subsection 5.3, we also further extend this conjecture from families to family
pairs (Conjecture 5.8).

5.1. Laplacians. Recall the definition of family in Subsection 4.5. If (for
some k), K and K′ are a k-family and (k − 1)-family, respectively, on the same
ground set of vertices, then we will say (K,K′) is a family pair, but we set
(K,K′) = (K,K′′) when (bdK) ∩ K′ = (bdK) ∩ K′′ (more formally, then, a
family pair is an equivalence class on ordered pairs of families). We will say
(K,K′) is a shifted family pair when K is shifted and (K,K′) = (K,K′′) for
some K′′ that is shifted on the same ordered ground set as K.
Let C(K; R) denote the oriented chains of k-family K, i.e., the formal R-linear
sums of oriented faces [F ] such that F ∈ K. If (K,K′) is a family pair, then
the boundary operator ∂(K,K′) : C(K; R) → C((bdK)\K′; R) is defined as it
is for simplicial complexes, except that the sum is now restricted to faces in
(bdK)\K′. Equivalently, ∂(K,K′) = ∂(∆(K),∆(K′));k−1, when K is a k-family and
K′ is a (k−1)-family. As with simplicial complexes, the boundary operator has
an adjoint ∂∗

(K,K′), so the matrices representing ∂ and ∂∗ in the natural bases

are transposes of one another.

Definition. The Laplacian of (K,K′) is the map L(K,K′) : C(K; R) →
C(K; R) defined by

L(K,K′) := ∂∗
(K,K′)∂(K,K′).

It immediately follows that

(19) L(K,K′) = L′′
k−1(∆(K),∆(K′)),

where ∆(K) denote the pure (k − 1)-dimensional simplicial complex whose
facets are the members of k-family K.

It should be clear that ∂(K,K′), and hence L(K,K′), is well-defined on family
pairs; that is, ∂(K,K′) = ∂(K,K′′) and L(K,K′) = L(K,K′′), when (K,K′) =
(K,K′′). Of course, we may always specialize to a single family by letting
K′ = ∅.
Recall that ∆i denotes the (i + 1)-family of i-dimensional faces of simplicial
complex ∆.

Lemma 5.1. If dim ∆′ ≤ d − 1, then

L′′
d(∆,∆′) = L(∆d,∆

′
d−1).
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Proof. The boundary maps ∂(∆,∆′);d and ∂(∆d,∆′

d−1)
used to define L′′

d(∆,∆′)

and L(∆d,∆
′
d−1), respectively, both act on Cd(∆; R). By the definitions of L

and L′′
d , then, it will suffice to show that, for any F ∈ ∆d,

(20) ∂(∆,∆′);d[F ] = ∂(∆d,∆′

d−1)
[F ].

Now, the only difference between the left-hand and right-hand sides of this
equation is that the left-hand side is a sum restricted to faces in the set dif-
ference ∆d−1\∆

′
d−1, and the right-hand side is a sum restricted to faces in

(bd∆d)\∆
′
d−1. Since ∆ is a simplicial complex, bd∆d ⊆ ∆d−1, so the only

difference between the two sums is provided by faces in ∆d−1\(bd ∆d). But
any such face will not be in bdF , the unsigned boundary of F , and thus not
appear in the expression for the signed boundary map, anyway. (Equivalently,
the matrices representing ∂(∆,∆′);d and ∂(∆d,∆′

d−1)
differ only in extra 0 rows

indexed by (d − 1)-dimensional faces of ∆ not contained in any d-dimensional
face of ∆, and these extra 0 rows do not affect L = ∂∗∂.) This establishes
equation (20), and hence the lemma. (Cf. the proof of Lemma 4.11). ¤

Lemma 5.1, Proposition 4.6, and equation (19) allow us to go back and forth
between families and complexes.

Lemma 5.2. If (Γ,Γ′) is a simplicial pair, then

qtS(Γ,Γ′) = S′′
(1∗Γ,1∗Γ′).

Proof. We compute S(1∗Γ,1∗Γ′) in two different ways. Since 1 ∗ Γ and 1 ∗ Γ′ are
cones, (1 ∗ Γ, 1 ∗ Γ′) has trivial homology, so B(1∗Γ,1∗Γ′) = 0. Thus, by Lemma
4.7,

S(1∗Γ,1∗Γ′) = (1 + t−1)S′′
(1∗Γ,1∗Γ′) + B(1∗Γ,1∗Γ′) = t−1(1 + t)S′′

(1∗Γ,1∗Γ′).

On the other hand, by Corollary 4.3,

S(1∗Γ,1∗Γ′) = S1∗(Γ,Γ′) = q(1 + t)S(Γ,Γ′).

The lemma now follows immediately. ¤

Define s(K,K′) to be the multiset of eigenvalues of L(K,K′), arranged in weakly
decreasing order. When s(K,K′) consists of non-negative integers, it is a parti-
tion. We will use the notation of [28] for partitions, except that we will denote

the conjugate or transpose of partition λ by λT . In particular, 1m = (m)T

denotes the partition consisting of m 1’s. Recall from Subsection 4.2 the def-
initions of ⊜ and ∪ for multisets, which apply equally well to partitions and
weakly decreasing sequences.
Recall the definition of near-cone from subsection 4.5.

Lemma 5.3. If ∆′ ⊆ ∆ are pure near-cones with apex 1, and dim ∆ = d and
dim ∆′ = d − 1, then, as partitions,

s
′′
d(∆,∆′) ⊜ 1fd−1(∆/1)−fd−1(∆

′−1) + (s′′d(∆ − 1,∆′ − 1) ∪ s
′′
d−1(∆/1,∆′/1)).
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Proof. Recall the coefficient notation [ti](
∑

j ajt
j) := ai. First note

[ti]S′′
(Γ,Γ′) = S′′

(Γ,Γ′),i−1(21)

[ti]B(Γ,Γ′) = β̃i−1(Γ,Γ′)(22)

for any simplicial pair (Γ,Γ′) and for any i. Then, by Lemmas 4.12, 4.22, 5.2,
and equation (21),

S′′
(∆,∆′),d = q[td]S(∆−1,∆′−1),

so s
′′
d(∆,∆′) has just as many non-zero parts as there are terms in

q[td]S(∆−1,∆′−1). Lemma 4.7 and equations (21) and (22) now imply

S′′
(∆,∆′),d = q[td]S(∆−1,∆′−1)

= q(S′′
(∆−1,∆′−1),d−1 + S′′

(∆−1,∆′−1),d + β̃d−1(∆ − 1,∆′ − 1)),

so the non-zero parts of s
′′
d(∆,∆′) are given by adding 1 to every element of

the multiset union of three partitions: s
′′
d−1(∆ − 1,∆′ − 1); s

′′
d(∆ − 1,∆′ − 1);

and the partition consisting of β̃d−1(∆ − 1,∆′ − 1) zeros. This means

(23) s
′′
d(∆,∆′) ⊜ 1m + (s′′d−1(∆ − 1,∆′ − 1) ∪ s

′′
d(∆ − 1,∆′ − 1)),

where m is the number of terms in q[td]S(∆−1,∆′−1), since we established above
that s

′′
d(∆,∆′) has m non-zero parts. But ∆′ ⊆ ∆ easily implies ∆′−1 ⊆ ∆−1,

and so there are

m = fd−1(∆ − 1) − fd−1(∆
′ − 1)

terms in q[td]S(∆−1,∆′−1).
It is easy to verify that, since ∆ and ∆′ are pure near-cones (of dimensions d
and d − 1, respectively) with apex 1,

(∆ − 1)(d−1) = ∆/1; and(24)

(∆′ − 1)(d−2) = ∆′/1.(25)

From equation (24), we conclude

(26) m = fd−1(∆ − 1) − fd−1(∆
′ − 1) = fd−1(∆/1) − fd−1(∆

′ − 1).

From equations (24) and (25), and Lemma 4.11, we conclude

(27) s
′′
d−1(∆ − 1,∆′ − 1) ⊜ s

′′
d−1(∆/1,∆′/1).

The lemma now follows from equations (23), (26), and (27). ¤

Definition. Let K be a k-family on ground set E, and e ∈ E. Then the
deletion of K with respect to e is the k-family

K − e = {F ∈ K : e 6∈ F}

on ground set E − e, and the contraction of K with respect to e is the (k − 1)-
family

K/e = {F − e : F ∈ K, e ∈ F}

on ground set E − e.
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The following identities are immediate: (∆(K)−e)k−1 = K−e, (∆(K)/e)k−2 =
K/e, and ∆(K)k−1 = K.
Define a k-family to be a near-cone with apex 1 when bd(K − 1) ⊆ K/1. It is
an easy exercise to verify that K is a near-cone iff ∆(K) is a near-cone. Also, as
with simplicial complexes (Lemma 4.21), K is shifted iff K is a near-cone with
apex 1 such that K−1 and K/1 are shifted. The following corollary generalizes
[16, Lemma 5.3].

Corollary 5.4. If K and K′ are near-cone families with apex 1 such that
K′ ⊆ bdK, then

s(K,K′) ⊜ 1|K/1|−|K′−1| + (s(K − 1,K′ − 1) ∪ s(K/1,K′/1)).

Proof. Say K is a k-family, so K′ is a (k − 1)-family. Let ∆ = ∆(K) and
∆′ = ∆(K′). From K′ ⊆ bdK, it follows that ∆′ ⊆ ∆. Then, by Lemmas 5.1
and 5.3,

s(K,K′) = s(∆k−1,∆
′
k−2) = s

′′
k−1(∆,∆′)

⊜ 1fk−2(∆/1)−fk−2(∆
′−1) + (s′′k−1(∆ − 1,∆′ − 1) ∪ s

′′
k−2(∆/1,∆′/1))

= 1fk−2(∆/1)−fk−2(∆
′−1)

+ (s((∆ − 1)k−1, (∆
′ − 1)k−2) ∪ s((∆/1)k−2, (∆

′/1)k−3))

= 1|K/1|−|K′−1| + (s(K − 1,K′ − 1) ∪ s(K/1,K′/1)).

¤

5.2. Degree sequences.

Notation. We will write F − λ to denote the set difference F\{λ}, with the
implicit assumption that λ ∈ F , just as writing F ∪̇ µ carries the implicit
assumption that µ 6∈ F . For instance, {F ∈ K : F − λ 6∈ K′} in the following
definition is shorthand for {F ∈ K : λ ∈ F, F\{λ} 6∈ K′}.

Definition. Let (K,K′) be a family pair on ground set E. Define the degree
of λ in (K,K′) by

dλ(K,K′) := |{F ∈ K : F − λ 6∈ K′}|.

It is easy to see that dλ is well-defined on family pairs; that is, dλ(K,K′) =
dλ(K,K′′) when (K,K′) = (K,K′′). The degree sequence d = d(K,K′) is the
partition whose parts are {dλ : λ ∈ E}.

In other words, to find the degree sequence of (K,K′), label all the edges in the
Hasse diagram of ∆(K) in the natural way, by the vertex being added; then dλ

counts the number of edges in the Hasse diagram labelled λ, and connecting a
face in K with a face in (bdK)\K′. When K′ = ∅, then d(K) = d(K, ∅) is the
generalized degree sequence of family K defined in [16, Section 2]. It is also
easy to see that dλ(K) = |K/λ|. When K is the set of edges of a graph, then
d(K) is the usual degree sequence of a graph.
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Lemma 5.5. If (K,K′) is a shifted family pair on [1, n] and 1 ≤ λ < µ ≤ n,
then dλ(K,K′) ≥ dµ(K,K′); i.e.

d(K,K′) = (d1(K,K′), d2(K,K′), . . . , dn(K,K′)).

In other words, the ordering of the degrees of the degree sequence of a shifted
family pair is given by the linear ordering of their vertices.

Proof. It will suffice to find an injection from {F ∈ K : F −µ 6∈ K′}, a set whose
cardinality equals dµ(K,K′), into {F ∈ K : F −λ 6∈ K′}, a set whose cardinality
equals dλ(K,K′). It is easy to verify, using that K and K′ are shifted, that such
an injection φ is given by

φ(F ) =

{

F if λ ∈ F

F − µ ∪̇ λ if λ 6∈ F .

¤

The following lemma generalizes [16, Lemma 5.2]

Lemma 5.6. If K and K′ are shifted families on ground set [1, n], and K′ ⊆
bdK, then, as partitions,

d(K,K′)T = 1|K/1|−|K′−1| + (d(K − 1,K′ − 1)T ∪ d(K/1,K′/1)T ).

Proof. By standard partition arguments, this reduces to showing

d(K,K′) = (|K/1| − |K′ − 1|) ∪ (d(K − 1,K′ − 1) + d(K/1,K′/1)),

which is a direct consequence of the following two facts:

• d1(K,K′) = |K/1| − |K′ − 1|; and
• if λ > 1, then dλ(K,K′) = dλ(K − 1,K′ − 1) + dλ(K/1,K′/1).

The indexing on the second fact is indeed what is necessary, thanks to Lemma
5.5, because K − 1, K′ − 1, K/1, and K′/1 each have ground set [2, n]. Each
fact is an easy exercise, the first of which depends upon K being shifted. ¤

5.3. A relative generalized Merris theorem. Merris [29, Theorem 2]
showed that when K is the 2-family of edges of a shifted graph, then s(K) ⊜

d(K)T . This was generalized in [16, Theorem 1.1] to allow K to be any shifted
family. The main result of this section, below, further generalizes this to shifted
family pairs. The proof is similar to that of [16, Theorem 1.1].

Theorem 5.7. If (K,K′) is a shifted family pair, then

s(K,K′) ⊜ d(K,K′)T

Proof. By Lemmas 4.20 and 4.21, (K−1,K′−1) = (K−1, (K′−1)∩bd(K−1))
and (K/1,K′/1) = (K/1, (K′/1) ∩ bd(K/1)) are shifted family pairs. Then the
result is immediate from Corollary 5.4, Lemmas 4.21 and 5.6, and induction on
the number of vertices. ¤
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Grone and Merris [22, Conjecture 2] conjectured that when K is the 2-family
of edges of an arbitrary graph, then the equality (modulo zeros) s(K) ⊜ d(K)T

above becomes a majorization inequality s(K) E d(K)T , i.e.,
∑k

j=1 sj ≤
∑k

j=1 dT
j for all k, where s(K) = (s1, s2, . . .) and d(K)T = (dT

1 , dT
2 , . . .) are

written as weakly decreasing sequences. This majorization inequality was also
conjectured (but not proved) to hold when K is any family, in [16, Conjecture
1.2]. Based on no more than a few examples, and that [16, Theorem 1] suc-
cessfully extends to pairs in Theorem 5.7 above, we extend this conjecture to
family pairs as well.

Conjecture 5.8. If (K,K′) is a family pair, then

s(K,K′) E d(K,K′)T .

Stephen [33, Theorem 4.3.1] has shown that if the Grone-Merris conjecture is
true for all graphs, then Conjecture 5.9 holds for graph pairs (K is a 2-family
and K′ is a 1-family).

Remark 5.9. Theorem 5.7 suffices to find the spectrum of a shifted simplicial
pair (that is, a simplicial pair (∆,∆′), where ∆ and ∆′ are each shifted on the
same ordered ground set), not just a shifted family pair. To see this, first note
that by Proposition 4.6, finding s

′′
i (∆,∆′) for all i determines the spectrum of

the simplicial pair (∆,∆′). Since s
′′
i depends only on i- and (i−1)-dimensional

faces, s
′′
i (∆,∆′) = s

′′
i (∆(i),∆′(i)). Finally, then, s

′′
i (∆,∆′) = s

′′
i (∆(i),∆′(i)) =

s
′′
i (∆(i),∆′(i−1)

) = s(∆i,∆
′
i−1), by Lemmas 4.11 and 5.1.

6. Operations that preserve the spectral recursion

In this section, we see how the spectral recursion, equation (2), and the spec-
trum polynomial behave with respect to some natural operators on simplicial
complexes. Each operator has significance for, or motivation from, matroids
and/or shifted complexes. Our main results are that the property of satisfying
the spectral recursion is preserved by disjoint union (Corollary 6.11), Alexander
duality (Corollary 6.8), and, with a slight modification allowing order filters as
well as simplicial complexes, two other dual operators (Theorems 6.3 and 6.6).

6.1. Duals. The Tutte polynomial for matroids (see, e.g., [12]) whose recur-
sion (TM = TM−e + TM/e) inspired and resembles the spectral recursion, is
well-behaved with respect to matroid duals (TM (x, y) = TM∗(y, x)), so it is
natural to ask what duality does to the spectrum polynomial and the spectral
recursion. There are three natural involutions on simplicial complexes that
are each appropriate generalizations of matroid duality. How these involutions
affect the Laplacians of families has already been considered in [16, Section 4].
Recall that an order filter Ψ with vertices V is a collection of subsets of V ,
closed under taking supersets; that is, F ∈ Ψ and F ⊆ G ⊆ V together imply
G ∈ Ψ.
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Definition. Let ∆ be a simplicial complex (respectively, order filter) with
vertex set V . The dual of ∆ is the order filter (respectively, simplicial complex)

∆∗ = {V − F : F ∈ ∆}.

The complement of ∆ is the order filter (respectively, simplicial complex)

∆c = {F ⊆ V : F 6∈ ∆}.

The Alexander dual of ∆ is the simplicial complex (respectively, order filter)

∆∨ = ∆∗c = ∆c∗.

The Alexander dual has received attention lately in combinatorial topology
(see, e.g., [2, 6]) and in combinatorial commutative algebra (see, e.g., [3, 4, 10,
17]).
It is easy to see that ∆∗∗ = ∆cc = ∆∨∨ = ∆ for every simplicial complex ∆,
and similarly for order filters. If we define an order filter Ψ to be shifted when
its every family Ψi of i-dimensional faces is shifted, then it is easy to see that
duality and complementation preserve being shifted, though with the reverse
vertex order. Consequently, Alexander duality preserves being shifted.
If Ψ and Ψ′ are order filters on the same ground set of vertices, we define the
order filter pair (Ψ,Ψ′) to be the simplicial pair (Ψ′c,Ψc), as defined in Section
2. (This means that, more formally, an order filter pair is an equivalence
class on ordered pairs of order filters.) Thus (Ψ,Ψ′) = (Ω,Ω′) when the set
differences Ψ\Ψ′ and Ω\Ω′ are equal as subsets of the power set of the ground
set of vertices. As with simplicial complexes, results and definitions about order
filter pairs (Ψ,Ψ′) may be specialized to a single order filter, by letting Ψ′ = ∅,
the empty order filter.
The definitions of deletion and contraction extend naturally to order filters.
The deletion and contraction Ψ − e and Ψ/e of an order filter Ψ on vertex set
V are still order filters, though on vertex set V − e. In contrast to simplicial
complexes, Ψ/e is not necessarily a subset of Ψ (though Ψ − e ⊆ Ψ, still), and
Ψ − e ⊆ Ψ/e (whereas, for simplicial complexes, ∆/e ⊆ ∆ − e).
We now borrow a trick from [27, Proposition 6] (see also [16, Proposition 4.2])
to investigate how the dual affects Laplacians and the spectral recursion. Let
(∆,∆′) be a simplicial pair with vertex set [n]; it is easy to specialize from
pairs of duals to a single dual, since the dual of the empty simplicial complex
is again empty, so ∆∗ = (∆∗, ∅) = (∆∗, ∅∗). Define φi(∆,∆′) : Ci(∆,∆′; R) →
Cn−i−2(∆

∗,∆′∗; R) to be the R-linear isomorphism induced by

φi(∆,∆′) : [F ] 7→ σ(F )[F ],

where σ(F ) = (−1)
P

j∈F j , and F = [n] − F .

Lemma 6.1. Let (∆,∆′) be a simplicial pair with vertex set [n], and let φj =
φj(∆,∆′) for any j. Then

(1) φ−1
i+1∂(∆∗,∆′∗);n−i−2φi = −∂∗

(∆,∆′);i+1, and

(2) φi∂(∆,∆′);i+1φ
−1
i+1 = −∂∗

(∆∗,∆′∗);n−i−2.
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Proof. These are each a routine check of signs. ¤

Corollary 6.2. Let (∆,∆′) be a simplicial pair with vertex set [n], and let
φj = φj(∆,∆′) for any j. Then

Li(∆,∆′) = φ−1Ln−i−2(∆
∗,∆′∗)φ.

An immediate corollary is that, as first conjectured by V. Reiner (personal
communication),

(28) si(∆,∆′) = sn−i−2(∆
∗,∆′∗),

which translates into generating functions as

(29) S(∆∗,∆′∗)(t, q) = tnS(∆,∆′)(t
−1, q).

We might hope that, if simplicial complex ∆ satisfies the spectral recursion with
respect to a vertex e, then ∆∗ would, too, but this is not quite true. Routine
calculations using equation (29), and duality identitites (∆ − e)∗ = ∆∗/e and
(∆/e)∗ = ∆∗ − e, show that

(30) S∆∗(t, q) = qtS∆∗/e(t, q) + qS∆∗−e(t, q) + (1 − q)tS(∆∗/e,∆∗−e)(t, q).

We thus call

(31) SΨ = qSΨ−e(t, q) + qtSΨ/e(t, q) + (1 − q)tS(Ψ/e,Ψ−e)(t, q)

the spectral recursion for order filters. Theorem 6.6 below provides further ev-
idence that this is the right formulation for order filters. A unified approach to
the spectral recursions for simplicial complexes and order filters is to develop a
spectral recursion for simplicial complex pairs (which includes simplicial com-
plexes and order filters as special cases), which is explored in [15].

Theorem 6.3. If ∆ is a simplicial complex and e is an element of its vertex
set, then ∆ satisfies the spectral recursion with respect to e iff ∆∗ satisfies the
spectral recursion for order filters, equation (31), with respect to e.

Proof. The forward implication follows from equation (30) above. The proof
of the reverse implication is similar. ¤

The following proposition is a restatement of [16, Corollary 4.7].

Proposition 6.4. Let ∆ be a simplicial complex with vertex set [n]. If λ 6= n,
then mλ(Li(∆)) = mλ(Ln−i−3(∆

∨)).

The following corollary was first conjectured by V. Reiner (personal communi-
cation).

Corollary 6.5. If ∆ is a simplicial complex with vertex set [n], then si−1(∆)
and si(∆

c) agree, except for the multiplicity of n.

Proof. By equation (28), si(∆
c) = si(∆

∨∗) = sn−i−2(∆
∨), so, if λ 6= n, then

mλ(Li(∆
c)) = mλ(Ln−i−2(∆

∨) = mλ(Ln−3−(n−i−2)(∆)) = mλ(Li−1)

by Proposition 6.4. ¤
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The preceding proof is not as simple as it seems. The proof of Proposition 6.4
in [16, Corollary 4.7] is somewhat involved, and gets to the Alexander dual
via the complement. Especially in light of the simplicity of the statement of
Corollary 6.5, we might hope it would have a more direct proof that does not
call upon the Alexander dual.
Corollary 6.5 translates into generating functions as

(32) S∆c(t, q) = tS∆(t, q) + qnA∆(t),

which we may rewrite as

(33) S∆(t, q) = t−1S∆c(t, q) − qnt−1A∆(t),

where A∆(t) is a polynomial in t that depends on ∆.

Theorem 6.6. If e is a vertex of simplicial complex ∆, then ∆ satisfies the
spectral recursion with respect to e iff ∆c satisfies the spectral recursion for
order filters, equation (31), with respect to e.

Proof. First assume ∆c satisfies the spectral recursion for order filters with
respect to e. Then, we may use equations (32) and (33), and the complement
identities (∆ − e)c = ∆c − e and (∆/e)c = ∆c/e, to compute

(34) S∆ = qS∆−e + qtS∆/e + (1− q)S(∆−e,∆/e) + qnt−1(A∆−e + A∆/e −A∆).

By Lemma 2.4, all simplicial complexes satisfy the spectral recursion when
q = 1, so plugging q = 1 into the above equation yields

S∆(1, t) = S∆(1, t) + 1nt−1(A∆−e + A∆/e − A∆).

Therefore A∆−e + A∆/e − A∆ = 0, which, when plugged back into equation
(34), proves ∆ satisfies the spectral recursion with respect to e.
The reverse implication is proved similarly. ¤

Theorems 6.3 and 6.6 together imply the corresponding result for Alexander
duality:

Theorem 6.7. If e is a vertex of simplicial complex ∆, then ∆ satisfies the
spectral recursion with respect to e iff ∆∨ satisfies the spectral recursion with
respect to e.

Corollary 6.8. If ∆ is a simplicial complex, then ∆ satisfies the spectral
recursion iff ∆∨ does as well.

6.2. Union. The Tutte polynomial is well-behaved with respect to matroid
direct sum (TM⊕N = TM + TN ), which corresponds to the union of simplicial
complexes with disjoint vertex sets (IN(M ⊕ N) = IN(M) ∪ IN(N)). So it
is natural to ask what disjoint union does to the spectrum polynomial and the
spectral recursion.

Lemma 6.9. If ∆ and Γ are two non-empty simplicial complexes with disjoint
vertex sets, then

S∆∪Γ = S∆ + SΓ + (t0 + t1)(qn+m − (qn + qm)) + t1q0,

where ∆ and Γ have n = f0(∆) and m = f0(Γ) non-loop vertices, respectively.
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Proof. For i > 1, it is clear that Li−1(∆ ∪ Γ) = Li−1(∆) ⊕ Li−1(Γ), since no
(i − 1)-dimensional face of ∆ has any boundary in Γ, and vice versa. Thus

si−1(∆ ∪ Γ) = si−1(∆) ∪ si−1(Γ)

for i > 1.
The vertices of ∆ and Γ are disjoint, but they share the empty face in their
boundary. It is easy to see that s

′′
0(Σ) ⊜ (f0(Σ)) for any simplicial complex Σ, so

s
′′
0(∆∪Γ) = (n+m), while s

′′
0(∆)∪s

′′
0(Γ) = (n,m). Also, since dim L0(∆∪Γ) =

f0(∆∪ Γ) = n + m = f0(∆) + f0(Γ) = dimL0(∆) + dimL0(Γ), then s0(∆ ∪ Γ)
and s0(∆) ∪ s0(Γ) have the same number of parts. By Proposition 4.6, it then
follows that

s0(∆ ∪ Γ) ∪ (n,m) = s0(∆) ∪ s0(Γ) ∪ (n + m, 0).

(In other words, to change s0(∆) ∪ s0(Γ) into s0(∆ ∪ Γ), replace (n,m) in
s0(∆)∪s0(Γ) by (n+m, 0) in s0(∆∪Γ).) Similarly, since ∆∪Γ, ∆, and Γ each
have exactly one empty face, s−1(∆∪Γ) has one element, and s−1(∆)∪ s−1(Γ)
has two elements, and so

s−1(∆ ∪ Γ) = (n + m),

while
s−1(∆) ∪ s−1(Γ) = (n,m).

The lemma now follows immediately. ¤

We continue to assume ∆ and Γ are non-empty simplicial complexes with dis-
joint vertex sets, and that Γ has m non-loop vertices. By arguments similar to
those in the proof of Lemma 6.9,

S(Γ,∅) = SΓ − (t0 + t1)qm + t1q0,

and so

(35) S(∆∪Γ,∆′) = S(∆,∆′) + SΓ − (t0 + t1)qm + t1q0.

Theorem 6.10. If ∆ satisfies the spectral recursion with respect to e, and Γ
is any simplicial complex whose vertex set is disjoint from the vertex set of ∆,
then ∆ ∪ Γ satisfies the spectral recursion with respect to e.

Proof. If Γ = ∅, then the theorem is trivially true. Otherwise, it is a routine
calculation with Lemma 6.9 and equation (35). ¤

Corollary 6.11. If ∆ and Γ each satisfy the spectral recursion, then so does
their disjoint union ∆ ∪ Γ.

The following example shows that the arbitrary union of two simplicial com-
plexes satisfying the spectral recursion does not itself necessarily satisfy the
spectral recursion, even if both complexes are pure.

Example 6.12. Let ∆ be the pure 1-dimensional simplicial complex on ver-
tex set {a, b, c, d, e} with facets {ab, ac, ad, ae, bc, bd}. (We omit brackets and
commas from each face for clarity.) Let Γ be the pure 1-dimensional simpli-
cial complex on the same vertex set with facets {ab, ac, ad, ae, de}. Now, ∆ is

Documenta Mathematica 10 (2005) 583–618



616 Art M. Duval

shifted with vertices ordered a < b < c < d < e, and Γ is shifted with vertices
ordered a < d < e < b < c, so each satisfies the spectral recursion.
On the other hand, we can easily show ∆ ∪ Γ does not satisfy the spectral
recursion with respect to vertex d. First check directly that ∆ ∪ Γ is not
Laplacian integral. (Note that ∆ ∪ Γ is the 1-dimensional skeleton of the cone
over Example 2.5.) Next, since (∆∪Γ)− d and (∆∪Γ)/d are each isomorphic
to shifted complexes (with different vertex orders), they are each Laplacian
integral. It is also easy to directly verify that ((∆ ∪ Γ) − d, (∆ ∪ Γ)/d) is
Laplacian integral as well. Thus, the right-hand side of the spectral recursion
in this instance has all integer exponents, but the left-hand side does not.
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