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Abstract. We develop a theory of arithmetic characteristic classes
of (fully decomposed) automorphic vector bundles equipped with an
invariant hermitian metric. These characteristic classes have values
in an arithmetic Chow ring constructed by means of differential forms
with certain log-log type singularities. We first study the cohomolog-
ical properties of log-log differential forms, prove a Poincaré lemma
for them and construct the corresponding arithmetic Chow groups.
Then, we introduce the notion of log-singular hermitian vector bun-
dles, which is a variant of the good hermitian vector bundles intro-
duced by Mumford, and we develop the theory of arithmetic charac-
teristic classes. Finally we prove that the hermitian metrics of auto-
morphic vector bundles considered by Mumford are not only good but
also log-singular. The theory presented here provides the theoretical
background which is required in the formulation of the conjectures
of Maillot-Roessler in the semi-abelian case and which is needed to
extend Kudla’s program about arithmetic intersections on Shimura
varieties to the non-compact case.
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1 Introduction

The main goal. The main purpose of this article is to extend the arith-
metic intersection theory and the theory of arithmetic characteristic classes
à la Gillet, Soulé to the category of (fully decomposed) automorphic vector
bundles equipped with the natural equivariant hermitian metric on Shimura
varieties of non-compact type. In order to achieve our main goal, an extension
of the formalism by Gillet, Soulé taking into account vector bundles equipped
with hermitian metrics allowing a certain type of singularities has to be pro-
vided. The main prerequisite for the present work is the article [10], where
the foundations of cohomological arithmetic Chow groups are given. Before
continuing to explain our main results and the outline of the paper below, let
us fix some basic notations for the sequel.
Let B denote a bounded, hermitian, symmetric domain. By definition,
B = G/K, where G is a semi-simple adjoint group and K a maximal compact
subgroup of G with non-discrete center. Let Γ be a neat arithmetic subgroup
of G; it acts properly discontinuously and fixed-point free on B. The quotient
space X = Γ\B has the structure of a smooth, quasi-projective, complex va-
riety. The complexification GC of G yields the compact dual B̌ of B given by
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B̌ = GC/P+ ·KC, where P+ ·KC is a suitable parabolic subgroup of G equipped
with the Cartan decomposition of Lie(G) and P+ is the unipotent radical of
this parabolic subgroup. Every GC-equivariant holomorphic vector bundle Ě
on B̌ defines a holomorphic vector bundle E on X; E is called an automorphic
vector bundle. An automorphic vector bundle E is called fully decomposed, if
E = Eσ is associated to a representation σ : P+ · KC −→ GLn(C), which is
trivial on P+. Since K is compact, every fully decomposed automorphic vector
bundle E admits a G-equivariant hermitian metric h.

Let us recall the following basic example. Let π : B(N)
g −→ A(N)

g denote the
universal abelian variety over the moduli space of principally polarized abelian

varieties of dimension g with a level-N structure (N ≥ 3); let e : A(N)
g −→ B(N)

g

be the zero section, and Ω = Ω1

B
(N)
g /A

(N)
g

the relative cotangent bundle. The

Hodge bundle e∗Ω is an automorphic vector bundle on A(N)
g , which is equipped

with a natural hermitian metric h. Another example of an automorphic vector

bundle on A(N)
g is the determinant line bundle ω = det(e∗Ω); the corresponding

hermitian automorphic line bundle (det(e∗Ω),det(h)) is denoted by ω.

Background results. Let (E, h) be an automorphic hermitian vector bun-
dle on X = Γ\B, and X a smooth toroidal compactification of X. In [34],
D. Mumford has shown that the automorphic vector bundle E admits a canon-
ical extension E1 to X characterized by a suitable extension of the hermitian
metric h to E1. However, the extension of h to E1 is no longer a smooth her-
mitian metric, but inherits singularities of a certain type. On the other hand,
it is remarkable that this extended hermitian metric behaves in many aspects
like a smooth hermitian metric. In this respect, we will now discuss various
definitions which were made in the past in order to extract basic properties for
these extended hermitian metrics.

In [34], D. Mumford introduced the concept of good forms and good hermi-
tian metrics. The good forms are differential forms, which are smooth on the
complement of a normal crossing divisor and have certain singularities along
this normal crossing divisor; the singularities are modeled by the singularities
of the Poincaré metric. The good forms have the property of being locally
integrable with zero residue. Therefore, they define currents, and the map
from the complex of good forms to the complex of currents is a morphism of
complexes. The good hermitian metrics are again smooth hermitian metrics
on the complement of a normal crossing divisor and have logarithmic singu-
larities along the divisor in question. Moreover, the entries of the associated
connection matrix are good forms. The Chern forms for good hermitian vector
bundles, i.e., of vector bundles equipped with good hermitian metrics, are good
forms, and the associated currents represent the Chern classes in cohomology.
Thus, in this sense, the good hermitian metrics behave like smooth hermitian
metrics. In the same paper, D. Mumford proves that automorphic hermitian
vector bundles are good hermitian vector bundles.

In [14], G. Faltings introduced the concept of a hermitian metric on line bundles
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with logarithmic singularities along a closed subvariety. He showed that the
heights associated to line bundles equipped with singular hermitian metrics
of this type have the same finiteness properties as the heights associated to
line bundles equipped with smooth hermitian metrics. The Hodge bundle ω

on A(N)
g equipped with the Petersson metric provides a prominent example of

such a hermitian line bundle; it plays a crucial role in Faltings’s proof of the
Mordell conjecture. Recall that the height of an abelian variety A with respect
to ω is referred to as the Faltings height of A. It is a remarkable fact that, if
A has complex multiplication of abelian type, its Faltings height is essentially
given by a special value of the logarithmic derivative of a Dirichlet L-series.
It is conjectured by P. Colmez that in the general case the Faltings height is
essentially given by a special value of the logarithmic derivative of an Artin
L-series.

In [30], the third author introduced the concept of logarithmically singular
hermitian line bundles on arithmetic surfaces. He provided an extension of
arithmetic intersection theory (on arithmetic surfaces) adapted to such loga-
rithmically singular hermitian line bundles. The prototype of such a line bundle

is the automorphic hermitian line bundle ω on the modular curve A(N)
1 . J.-

B. Bost and, independently, U. Kühn calculated its arithmetic self-intersection
number ω2 to

ω2 = dN · ζQ(−1)

(
ζ ′Q(−1)

ζQ(−1)
+

1

2

)
;

here ζQ(s) denotes the Riemann zeta function and dN equals the degree of the

classifying morphism of A(N)
1 to the coarse moduli space A(1)

1 .

In [10], an abstract formalism was developed, which allows to associate to

an arithmetic variety X arithmetic Chow groups ĈH
∗
(X , C) with respect to

a cohomological complex C of a certain type. This formalism is an abstract
version of the arithmetic Chow groups introduced in [8]. In [10], the arithmetic

Chow ring ĈH
∗
(X ,Dpre)Q was introduced, where the cohomological complex

Dpre in question is built from pre-log and pre-log-log differential forms. This
ring allows us to define arithmetic self-intersection numbers of automorphic
hermitian line bundles on arithmetic varieties associated to X = Γ\B. It is
expected that these arithmetic self-intersection numbers play an important role
for possible extensions of the Gross-Zagier theorem to higher dimensions (cf.
conjectures of S. Kudla).

In [6], J. Bruinier, J. Burgos, and U. Kühn use the theory developed in [10] to
obtain an arithmetic generalization of the Hirzebruch-Zagier theorem on the
generating series for cycles on Hilbert modular varieties. Recalling that Hilbert
modular varieties parameterize abelian surfaces with multiplication by the ring
of integers OK of a real quadratic field K, a major result in [6] is the following
formula for the arithmetic self-intersection number of the automorphic hermi-
tian line bundle ω on the moduli space of abelian surfaces with multiplication
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by OK with a fixed level-N structure

ω3 = −dN · ζK(−1)

(
ζ ′K(−1)

ζK(−1)
+

ζ ′Q(−1)

ζQ(−1)
+

3

2
+

1

2
log(DK)

)
;

here DK is the discriminant of OK , ζK(s) is the Dedekind zeta function of
K, and, as above, dN is the degree of the classifying morphism obtained by
forgetting the level-N structure.

As another application of the formalism developed in [10], we derived a height
pairing with respect to singular hermitian line bundles for cycles in any codi-
mension. Recently, G. Freixas in [15] has proved finiteness results for our
height pairing, thus generalizing both Faltings’s results mentioned above and
the finiteness results of J.-B. Bost, H. Gillet and C. Soulé in [4] in the smooth
case.

The main achievement of the present paper is to give constructions of arithmetic
intersection theories, which are suited to deal with all of the above vector
bundles equipped with hermitian metrics having singularities of a certain type
such as the automorphic hermitian vector bundles on Shimura varieties of non-
compact type.

For a perspective view of applications of the theory developed here, we refer
to the conjectures of V. Maillot and D. Roessler [31], K. Köhler [26], and the
program due to S. Kudla [28], [29], [27].

Arithmetic characteristic classes. We recall from [36] that the arith-

metic K-group K̂0(X ) of an arithmetic variety X à la Gillet, Soulé is defined
as the free group of pairs (E, η) of a hermitian vector bundle E and a smooth
differential form η modulo the relation

(S, η′) + (Q, η′′) = (E, η′ + η′′ + c̃h(E)),

for every short exact sequence of vector bundles (equipped with arbitrary
smooth hermitian metrics)

E : 0 −→ S −→ E −→ Q −→ 0,

and for any smooth differential forms η′, η′′; here c̃h(E) denotes the (secondary)
Bott-Chern form of E .

In [36], H. Gillet and C. Soulé attached to the elements of K̂0(X ), represented

by hermitian vector bundles E = (E, h), arithmetic characteristic classes φ̂(E),

which lie in the “classical” arithmetic Chow ring ĈH
∗
(X )Q. A particular exam-

ple of such an arithmetic characteristic class is the arithmetic Chern character
ĉh(E), whose definition also involves the Bott-Chern form c̃h(E).

In order to be able to carry over the concept of arithmetic characteristic classes
to the category of vector bundles E over an arithmetic variety X equipped with
a hermitian metric h having singularities of the type considered in this paper,
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we proceed as follows: Letting h0 denote an arbitrary smooth hermitian metric
on E, we have the obvious short exact sequence of vector bundles

E : 0 −→ 0 −→ (E, h) −→ (E, h0) −→ 0,

to which is attached the Bott-Chern form φ̃(E) being no longer smooth, but
having certain singularities. Formally, we then set

φ̂(E, h) := φ̂(E, h0) + a
(
φ̃(E)

)
,

where a is the morphism mapping differential forms into arithmetic Chow
groups. In order to give meaning to this definition, we need to know the singu-
larities of φ̃(E); moreover, we have to show the independence of the (arbitrarily
chosen) smooth hermitian metric h0.

Once we can control the singularities of φ̃(E), the abstract formalism developed
in [10] reduces our task to find a cohomological complex C, which contains the

elements φ̃(E), and has all the properties we desire for a reasonable arithmetic
intersection theory. Once the complex C is constructed, we obtain an arithmetic
K-theory with properties depending on the complex C, of course.
The most naive way to construct an arithmetic intersection theory for auto-
morphic hermitian vector bundles would be to only work with good forms and
good metrics. This procedure is doomed to failure for the following two reasons:
First, the complex of good forms is not a Dolbeault complex. However, this
first problem can be easily solved by imposing that it is also closed under the
differential operators ∂, ∂̄, and ∂∂̄. The second problem is that the complex of
good forms is not big enough to contain the singular Bott-Chern forms which
occur. For example, if L is a line bundle, h0 a smooth hermitian metric and
h a singular metric, which is good along a divisor D (locally, in some open
coordinate neighborhood, given by the equation z = 0), the Bott-Chern form
(associated to the first Chern class) c̃1(L;h, h0) encoding the change of metrics
grows like log log(1/|z|), whereas the good functions are bounded.
The solution of these problems led us to consider the Dlog-complexes Dpre made
by pre-log and pre-log-log forms and its subcomplex Dl,ll consisting of log and
log-log forms. We emphasize that neither the complex of good forms nor the
complex of pre-log-log forms are contained in each other. We also note that
if one is interested in arithmetic intersection numbers, the results obtained by
both theories agree.

Discussion of results. The Dlog-complex Dpre made out of pre-log and
pre-log-log forms could be seen as the complex that satisfies the minimal re-
quirements needed to allow log-log singularities along a fixed divisor as well as
to have an arithmetic intersection theory with arithmetic intersection numbers
in the proper case (see [10]). As we will show in theorem 4.55, the Bott-Chern
forms associated to the change of metrics between a smooth hermitian met-
ric and a good metric belong to the complex of pre-log-log forms. Therefore,
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we can define arithmetic characteristic classes of good hermitian vector bun-
dles in the arithmetic Chow groups with pre-log-log forms. If our arithmetic
variety is proper, we can use this theory to calculate arithmetic Chern num-
bers of automorphic hermitian vector bundles of arbitrary rank. However, the
main disadvantage of Dpre is that we do not know the size of the associated
cohomology groups.
The Dlog-complex Dl,ll made out of log and log-log forms is a subcomplex of
Dpre. The main difference is that all the derivatives of the component func-
tions of the log and log-log forms have to be bounded, which allows us to use
an inductive argument to prove a Poincaré lemma, which implies that the asso-
ciated Deligne complex computes the usual Deligne-Beilinson cohomology (see
theorem 2.42). For this reason we have better understanding of the arithmetic
Chow groups with log-log forms (see theorem 3.17).
Since a good form is in general not a log-log form, it is not true that the Chern
forms for a good hermitian vector bundle are log-log forms. Hence, we introduce
the notion of log-singular hermitian metrics, which have, roughly speaking, the
same relation to log-log forms as the good hermitian metrics to good forms.
We then show that the Bott-Chern forms associated to the change of metrics
between smooth hermitian metrics and log-singular hermitian metrics are log-
log forms. As a consequence, we can define the Bott-Chern forms for short
exact sequences of vector bundles equipped with log-singular hermitian metrics.
These Bott-Chern forms have an axiomatic characterization similar to the Bott-
Chern forms for short exact sequences of vector bundles equipped with smooth
hermitian metrics. The Bott-Chern forms are the main ingredients in order to
extend the theory of arithmetic characteristic classes to log-singular hermitian
vector bundles.
The price we have to pay in order to use log-log forms is that it is more difficult
to prove that a particular form is log-log: we have to bound all derivatives. Note
however that most pre-log-log forms which appear are also log-log forms (see
for instance section 6). On the other hand, we point out that the theory of log-
singular hermitian vector bundles is not optimal for several other reasons. The
most important one is that it is not closed under taking sub-objects, quotients
and extensions. For example, let

0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0

be a short exact sequence of hermitian vector bundles such that the metrics
h′ and h′′ are induced by h. Then, the assumption that h is a log-singular
hermitian metric does not imply that the hermitian metrics h′ and h′′ are log-
singular, and vice versa. In particular, automorphic hermitian vector bundles
that are not fully decomposed can always be written as successive extensions
of fully decomposed automorphic hermitian vector bundles, whose metrics are
in general not log-singular. A related question is that the hermitian metric of a
unipotent variation of polarized Hodge structures induced by the polarization
is in general not log-singular. These considerations suggest that one should
further enlarge the notion of log-singular hermitian metrics.
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Since the hermitian vector bundles defined on a quasi-projective variety may
have arbitrary singularities at infinity, we also consider differential forms with
arbitrary singularities along a normal crossing divisor. Using these kinds of
differential forms we are able to recover the arithmetic Chow groups à la Gillet,
Soulé for quasi-projective varieties.

Finally, another technical difference between this paper and [10] is the fact that
in the previous paper the complex Dlog(X, p) is defined by applying the Deligne
complex construction to the Zariski sheaf Elog, which, in turn, is defined as the
Zariski sheaf associated to the pre-sheaf E◦

log. In theorem 3.6, we prove that
the pre-sheaf E◦

log is already a sheaf, which makes it superfluous to take the
associated sheaf. Moreover, the proof is purely geometric and can be applied
to other similar complexes like Dpre or Dl,ll.

Outline of paper. The set-up of the paper is as follows. In section 2, we
introduce several complexes of singular differential forms and discuss their re-
lationship. Of particular importance are the complexes of log and log-log forms
for which we prove a Poincaré lemma allowing us to characterize their cohomol-
ogy by means of their Hodge filtration. In section 3, we introduce and study
arithmetic Chow groups with differential forms which are log-log along a fixed
normal crossing divisor D. We also consider differential forms having arbitrary
singularities at infinity; in particular, we prove that for D being the empty set,
the arithmetic Chow groups defined by Gillet, Soulé are recovered. In section 5,
we discuss several classes of singular hermitian metrics; we prove that the Bott-
Chern forms associated to the change of metrics between a smooth hermitian
metric and a log-singular hermitian metric are log-log forms. We also show that
the Bott-Chern forms associated to the change of metrics between a smooth
hermitian metric and a good hermitian metric are pre-log-log. This allows us
to define arithmetic characteristic classes of log-singular hermitian vector bun-
dles. Finally, in section 6, after having given a brief recollection of the basics
of Shimura varieties, we prove that the fully decomposed automorphic vector
bundles equipped with an equivariant hermitian metric are log-singular hermi-
tian vector bundles. In this respect many examples are provided to which the
theory developed in this paper can be applied.
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2 Log and log-log differential forms

In this section, we will introduce several complexes of differential forms with
singularities along a normal crossing divisor D, and we will discuss their basic
properties.

The first one E
∗
X〈D〉 is a complex with logarithmic growth conditions in the

spirit of [22]. Unlike in [22], where the authors consider only differential forms
of type (0, q), we consider here the whole Dolbeault complex and we show that it
is an acyclic resolution of the complex of holomorphic forms with logarithmic
poles along the normal crossing divisor D, i.e., this complex computes the
cohomology of the complement of D. Another difference with [22] is that,
in order to be able to prove the Poincaré lemma for such forms, we need to
impose growth conditions to all derivatives of the functions. Note that a similar
condition has been already considered in [24].

The second complex E
∗
X〈〈D〉〉 contains differential forms with singularities of

log-log type along a normal crossing divisor D, and is related with the complex
of good forms in the sense of [34]. As the complex of good forms, it contains the
Chern forms for fully decomposed automorphic hermitian vector bundles and is
functorial with respect to certain inverse images. Moreover all the differential
forms belonging to this complex are locally integrable with zero residue. The
new property of this complex is that it satisfies a Poincaré lemma that implies
that this complex is quasi-isomorphic to the complex of smooth differential
forms, i.e., this complex computes the cohomology of the whole variety. The
main interest of this complex, as we shall see in subsequent sections, is that it
contains also the Bott-Chern forms associated to fully decomposed automorphic
vector bundles. Note that neither the complex of good forms in the sense of
[34] nor the complex of log-log forms are contained in each other.

The third complex E
∗
X〈D1〈D2〉〉 that we will introduce is a mixture of the

previous complexes. It is formed by differential forms which are log along a
normal crossing divisor D1 and log-log along another normal crossing divisor
D2. This complex computes the cohomology of the complement of D1.

By technical reasons we will introduce several other complexes.

2.1 Log forms

General notations. Let X be a complex manifold of dimension d. We will
denote by E

∗
X the sheaf of complex smooth differential forms over X.

Let D be a normal crossing divisor on X. Let V be an open coordinate subset
of X with coordinates z1, . . . , zd; we put ri = |zi|. We will say that V is
adapted to D, if the divisor D ∩ V is given by the equation z1 · · · zk = 0, and
the coordinate neighborhood V is small enough; more precisely, we will assume
that all the coordinates satisfy ri ≤ 1/ee, which implies that log(1/ri) > e and
log(log(1/ri)) > 1.

We will denote by ∆r ⊆ C the open disk of radius r centered at 0, by ∆r the
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closed disk, and we will write ∆∗
r = ∆r \ {0} and ∆

∗

r = ∆r \ {0}.
If f and g are two functions with non-negative real values, we write f ≺ g, if
there exists a real constant C > 0 such that f(x) ≤ C · g(x) for all x in the
domain of definition under consideration.

multi-indices. We collect here all the conventions we will use about multi-
indices.

Notation 2.1. For any multi-index α = (α1, . . . , αd) ∈ Zd
≥0, we write

|α| =

d∑

i=1

αi, zα =

d∏

i=1

zαi

i , z̄α =

d∏

i=1

z̄αi

i ,

rα =

d∏

i=1

rαi

i , (log(1/r))α =

d∏

i=1

(log(1/ri))
αi ,

∂|α|

∂zα
f =

∂|α|

∏d
i=1 ∂zαi

i

f,
∂|α|

∂z̄α
f =

∂|α|

∏d
i=1 ∂z̄αi

i

f.

If α and β are multi-indices, we write β ≥ α, if, for all i = 1, . . . , d, βi ≥ αi.
We denote by α + β the multi-index with components αi + βi. If 1 ≤ i ≤ d,
we will denote by γi the multi-index with all the entries zero except the i-th
entry that takes the value 1. More generally, if I is a subset of {1, . . . , d}, we
will denote by γI the multi-index

γI
i =

{
1,&i ∈ I,

0,&i 6∈ I.

We will denote by n the constant multi-index

ni = n.

In particular, 0 is the multi-index 0 = (0, . . . , 0).
If α is a multi-index and k ≥ 1 is an integer, we will denote by α≤k the multi-
index

α≤k
i =

{
αi, i ≤ k,

0,&i > k.

For a multi-index α, the order function associated to α,

Φα : {1, . . . , |α|} −→ {1, . . . , d}

is given by

Φα(i) = k, if

k−1∑

j=1

αj < i ≤
k∑

j=1

αj .
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Log forms. We introduce now a complex of differential forms with logarithmic
growth along a normal crossing divisor. This complex can be used to compute
the cohomology of a non-compact algebraic complex manifold with its usual
Hodge filtration. It contains the C∞ logarithmic Dolbeault complex defined
in [7], but it is much bigger and, in particular, it contains also the log-log
differential forms defined later. In contrast to the pre-log forms introduced in
[10], in the definition given here we impose growth conditions to the differential
forms and to all their derivatives.
The problem of the weight filtration of the complex of log forms will not be
treated here.
Let X be a complex manifold of dimension d, D a normal crossing divisor,
U = X \ D, and ι : U −→ X the inclusion.

Definition 2.2. Let V be a coordinate neighborhood adapted to D. For
every integer K ≥ 0, we say that a smooth complex function f on V \ D has
logarithmic growth along D of order K, if there exists an integer NK such
that, for every pair of multi-indices α, β ∈ Zd

≥0 with |α + β| ≤ K, it holds the
inequality

∣∣∣∣
∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(1/ri)
∣∣∣
NK

|zα≤k z̄β≤k | . (2.3)

We say that f has logarithmic growth along D of infinite order, if it has loga-
rithmic growth along D of order K for all K ≥ 0. The sheaf of differential forms
on X with logarithmic growth of infinite order along D, denoted by E

∗
X〈D〉, is

the subalgebra of ι∗E
∗
U generated, in each coordinate neighborhood adapted to

D, by the functions with logarithmic growth of infinite order along D and the
differentials

d zi

zi
,

d z̄i

z̄i
, for i = 1, . . . , k,

d zi, d z̄i, for i = k + 1, . . . , d.

(2.4)

As a shorthand, a differential form with logarithmic growth of infinite order
along D is called log along D or, if D is understood, a log form.

The Dolbeault algebra of log forms. The sheaf E
∗
X〈D〉 inherits from

ι∗E
∗
U a real structure and a bigrading. Moreover, it is clear that, if ω is a

log form, then ∂ω and ∂̄ω are also log forms. Therefore, E ∗
X〈D〉 is a sheaf

of Dolbeault algebras. We will use all the notations of [10], §5, concerning
Dolbeault algebras. For the convenience of the reader we will recall these
notations in section 3.1. In particular, from the structure of Dolbeault algebra,
there is a well defined Hodge filtration denoted by F .

Pre-log forms. Recall that, in [10], section 7.2, there is introduced the sheaf
of pre-log forms denoted E ∗

X〈D〉pre. It is clear that there is an inclusion of
sheaves

E
∗
X〈D〉 ⊆ E

∗
X〈D〉pre.
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The cohomology of the complex of log forms. Let Ω∗
X(log D) be the

sheaf of holomorphic forms with logarithmic poles along D (see [12]). Then,
the more general theorem 2.42 implies

Theorem 2.5. The inclusion

Ω∗
X(log D) −−−−→ E

∗
X〈D〉

is a filtered quasi-isomorphism with respect to the Hodge filtration.

In other words, this complex is a resolution of the sheaf of holomorphic forms
with logarithmic poles along D, Ω∗

X(log D). Thus, if X is a compact Kähler
manifold, the complex of global sections Γ(X,E ∗

X〈D〉) computes the cohomol-
ogy of the open complex manifold U = X \ D with its Hodge filtration.
Note that corollary 2.5 implies that there is an isomorphism in the derived
category Rι∗CU −→ E

∗
X〈D〉. This isomorphism is compatible with the real

structures. Hence, the complex E
∗
X〈D〉 also provides the real structure of the

cohomology of U .

Inverse images. The complex of log forms is functorial with respect to inverse
images. More precisely, we have the following result.

Proposition 2.6. Let f : X −→ Y be a morphism of complex manifolds
of dimension d and d′. Let DX , DY be normal crossing divisors on X, Y ,
respectively, satisfying f−1(DY ) ⊆ DX . If η is a section of E

∗
Y 〈DY 〉, then f∗η

is a section of E ∗
X〈DX〉.

Proof. Let p be a point of X. Let V and W be open coordinate neighborhoods
of p and f(p), respectively, adapted to DX and DY , and such that f(V ) ⊆ W .
Let k and k′ be the number of components of V ∩DX and W ∩DY , respectively.
Then, the condition f−1(DY ) ⊆ DX implies that f can be written as

f(x1, . . . , xd) = (z1, . . . , zd′) (2.7)

with

zi =

{
x

ai,1

1 · · ·xai,k

k ui, if i ≤ k′,

wi, if i > k′,

where u1, . . . , uk′ are holomorphic functions that do not vanish in V , the ai,j are
non negative integers and wk′+1, . . . , wd′ are holomorphic functions. Shrinking
V , if necessary, we may assume that the functions uj are holomorphic and do
not vanish in a neighborhood of the adherence of V .
For 1 ≤ i ≤ k′, we have

f∗

(
d zi

zi

)
=

k∑

j=1

ai,j
d xj

xj
+

d ui

ui
.

Since the function 1/ui is holomorphic in a neighborhood of the adherence of V ,
the function 1/ui and all its derivatives are bounded. If follows that f∗(d zi/zi)
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is a log form (along DX). The same argument shows that f∗(d z̄i/z̄i) is a log
form.
If a function g on W satisfies

|g(z1, . . . , zd′)| ≺

∣∣∣∣∣∣

k′∏

i=1

log(1/|zi|)

∣∣∣∣∣∣

N

,

then f∗g satisfies

|f∗g(x1, . . . , xd)| ≺

∣∣∣∣∣∣

k′∏

i=1




k∑

j=1

ai,j log(1/|xj |) + log(1/|ui|)




∣∣∣∣∣∣

N

≺

∣∣∣∣∣∣

k∏

j=1

log(1/|xj |)

∣∣∣∣∣∣

Nk′

.

Therefore, f∗g has logarithmic growth. It remains to bound the derivatives of
f∗g. To ease notation, we will bound only the derivatives with respect to the
holomorphic coordinates, the general case being analogous.
For any multi-index α ∈ Zd

≥0, the function ∂|α|/∂xα(f∗g) is a linear combina-
tion of the functions 




∂|β|

∂zβ
g

|β|∏

i=1

∂|αi|

∂xαi zΦβ(i)





β,{αi}

, (2.8)

where β runs over all multi-indices β ∈ Zd′

≥0 such that |β| ≤ |α|, and {αi} runs

over all families of multi-indices αi ∈ Zd
≥0 such that

|β|∑

i=1

αi = α.

The function Φα is the order function introduced in 2.1.
Then, since g is a log function,

∣∣∣∣∣∣
∂|β|

∂zβ
g

|β|∏

i=1

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣∣
≺

∣∣∣
∏k′

j=1 log(1/|zj |)
∣∣∣
N|β|

|zβ≤k′ |

∣∣∣∣∣∣

|β|∏

i=1

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣∣

≺

∣∣∣∣∣∣

k∏

j=1

log(1/|xj |)

∣∣∣∣∣∣

N|β|k
′

|β≤k′
|∏

i=1

∣∣∣∣∣
1

zΦβ(i)

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣ .

But, by the assumption on the map f , it is easy to see that, for 1 ≤ j ≤ k′, we
have ∣∣∣∣∣

1

zj

∂|αi|

∂xαi zj

∣∣∣∣∣ ≺
1

|x(αi)≤k | , (2.9)
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which implies the proposition.

Polynomial growth in the local universal cover. We can characterize
log forms as differential forms that have polynomial growth in a local universal
cover. Let M > 1 be a real number and let UM ⊆ C be the subset given by

UM = {x ∈ C | Imx > M}.

Let K be an open subset of Cd−k. We consider the space (UM )k × K with
coordinates (x1, . . . , xd).

Definition 2.10. A function f on (UM )k ×K is said to have imaginary poly-
nomial growth, if there is a sequence of integers {Nn}n≥0 such that for every
pair of multi-indices α, β ∈ Zd

≥0, the inequality

∣∣∣∣
∂|α|

∂xα

∂|β|

∂x̄β
f(x1, . . . , xd)

∣∣∣∣ ≺
∣∣∣∣∣

k∏

i=1

Imxi

∣∣∣∣∣

N|α|+|β|

(2.11)

holds. The space of differential forms on (UM )k×K with imaginary polynomial
growth is generated by the functions with imaginary polynomial growth and
the differentials

dxi, d x̄i, for i = 1, . . . , d.

Let X, D, U , and ι be as in definition 2.2.

Definition 2.12. Let W be an open subset of X and ω ∈ Γ(W, ι∗(E
∗
U )) be a

differential form. For every point p ∈ W , there is an open coordinate neigh-
borhood V ⊆ W , which is adapted to D and such that the coordinates of V
induce an identification V ∩ U = (∆∗

r)
k × K. We choose M > log(1/r) and

denote by π : (UM )k × K −→ V the covering map given by

π(x1, . . . , xd) = (e2πix1 , . . . , e2πixk , xk+1, . . . , xd).

We say that ω has polynomial growth in the local universal cover, if for every
V and π as above, π∗ω has imaginary polynomial growth.

It is easy to see that the differential forms with polynomial growth in the local
universal cover form a sheaf of Dolbeault algebras.

Theorem 2.13. A differential form has polynomial growth in the local universal
cover, if and only if, it is a log form.

Proof. We start with the case of a function. So let f be a function with polyno-
mial growth in the local universal cover and let V be a coordinate neighborhood
as in definition 2.12. Let g = π∗f . By definition, g satisfies

g(. . . , xi + 1, . . .) = g(. . . , xi, . . .), for 1 ≤ i ≤ k. (2.14)
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We write formally

f(z1, . . . , zd) = g(x1(z1), . . . , xd(zd))

with

xi(zi) =

{
1

2πi log zi,&for i ≤ k,

zi,&for i > k.

Note that this makes sense because of the periodicity properties (2.14). Then,
we have

∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd) =

∑

α′≤α
β′≤β

Cα′,β′

α,β

∂|α′|

∂xα′

∂|β′|

∂x̄β′ g(x1, . . . , xd)·

· ∂|α−α′|

∂zα−α′

(
∂x

∂z

)α′

∂|β−β′|

∂z̄β−β′

(
∂x̄

∂z̄

)β′

, (2.15)

for certain constants Cα′,β′

α,β . But the estimates

∣∣∣∣∣
∂|α′|

∂xα′

∂|β′|

∂x̄β′ g(x1, . . . , xd)

∣∣∣∣∣ ≺
∣∣∣∣∣

k∏

i=1

|xi|
∣∣∣∣∣

Nα′,β′

≺
∣∣∣∣∣

k∏

i=1

log(1/|zi|))
∣∣∣∣∣

Nα′,β′

and
∂|α−α′|

∂zα−α′

(
∂x

∂z

)α′

∂|β−β′|

∂z̄β−β′

(
∂x̄

∂z̄

)β′

≺ 1

|zα≤k z̄β≤k | (2.16)

imply the bounds of f and its derivatives. The converse is proven in the same
way.
To prove the theorem for differential forms, observe that, for 1 ≤ i ≤ k,

π∗

(
d zi

zi

)
= 2πid xi.

2.2 Log-log forms

log-log growth forms. Let X, D, U , and ι be as in definition 2.2.

Definition 2.17. Let V be a coordinate neighborhood adapted to D. For
every integer K ≥ 0, we say that a smooth complex function f on V \ D has
log-log growth along D of order K, if there exists an integer NK such that, for
every pair of multi-indices α, β ∈ Zd

≥0 with |α+β| ≤ K, it holds the inequality

∣∣∣∣
∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(log(1/ri))
∣∣∣
NK

|zα≤k z̄β≤k | . (2.18)
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We say that f has log-log growth along D of infinite order, if it has log-log
growth along D of order K for all K ≥ 0. The sheaf of differential forms
on X with log-log growth along D of infinite order is the subalgebra of ι∗E

∗
U

generated, in each coordinate neighborhood V adapted to D, by the functions
with log-log growth along D and the differentials

d zi

zi log(1/ri)
,

d z̄i

z̄i log(1/ri)
, for i = 1, . . . , k,

d zi, d z̄i, for i = k + 1, . . . , d.

A differential form with log-log growth along D of infinite order will be called
a log-log growth form. The sheaf of differential forms on X with log-log growth
along D of infinite order will be denoted by E

∗
X〈〈D〉〉gth.

The following characterization of differential forms with log-log growth of infi-
nite order is left to the reader.

Lemma 2.19. Let V be an open coordinate subset adapted to D and let I, J be
two subsets of {1, . . . , d}. Then, the form f d zI ∧ d z̄J is a log-log growth form
of infinite order, if and only if, for every pair of multi-indices α, β ∈ Zd

≥0, there
is an integer Nα,β ≥ 0 such that

∣∣∣∣
∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(log(1/ri))
∣∣∣
Nα,β

r(γI+γJ+α+β)≤k(log(1/r))(γI+γJ )≤k
. (2.20)

¤

Definition 2.21. A function that satisfies the bound (2.20) for any pair of
multi-indices α, β with α+β ≤ K will be called a (I, J)-log-log growth function
of order K. If it satisfies the bound (2.20) for any pair multi-indices α, β, it
will be called a (I, J)-log-log growth function of infinite order.

Log-log forms. Unlike the case of log growth forms, the fact that ω is a
log-log growth form does not imply that its differential ∂ω is a log-log growth
form.

Definition 2.22. We say that a smooth complex differential form ω is log-
log along D, if the differential forms ω, ∂ω, ∂̄ω, and ∂∂̄ω have log-log growth
along D of infinite order. The sheaf of differential forms log-log along D will
be denoted by E ∗

X〈〈D〉〉. As a shorthand, if D is clear from the context, a
differential form which is log-log along D, will be called a log-log form.

From the definition, it is clear that the sheaf of log-log forms is contained in
the sheaf of log forms.
Let V be a coordinate subset adapted to D. For i = 1, . . . , k, the function
log(log(1/ri)) is a log-log function and the differential forms

d zi

zi log(1/ri)
,

d z̄i

z̄i log(1/ri)
, for i = 1, . . . , k,
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are log-log forms.

The Dolbeault algebra of log-log forms. As in the case of log forms,
the sheaf E ∗

X〈〈D〉〉 inherits a real structure and a bigrading. Moreover, we
have forced the existence of operators ∂ and ∂̄. Therefore, E

∗
X〈〈D〉〉 is a sheaf

of Dolbeault algebras (see section 3.1). In particular, there is a well defined
Hodge filtration, denoted by F .

Pre-log-log forms Recall that, in [10], section 7.1, there is introduced the
sheaf of pre-log-log forms, denoted by E

∗
X〈〈D〉〉pre. It is clear that there is an

inclusion of sheaves
E

∗
X〈〈D〉〉 ⊆ E

∗
X〈〈D〉〉pre.

The cohomology of the complex of log-log differential forms.
Let Ω∗

X be the sheaf of holomorphic forms. Then, theorem 2.42, which will be
proved later, implies

Theorem 2.23. The inclusion

Ω∗
X −−−−→ E

∗
X〈〈D〉〉

is a filtered quasi-isomorphism with respect to the Hodge filtration.

In other words, this complex is a resolution of Ω∗
X , the sheaf of holomorphic

differential forms on X. Therefore, if X is a compact Kähler manifold, the
complex of global sections Γ(X,E ∗

X〈〈D〉〉) computes the cohomology of X with
its Hodge filtration. As in the case of log forms it also provides the usual real
structure of the cohomology of X. One may say that the singularities of the
log-log complex are so mild that they do not change the cohomology.

Inverse images. As in the case of pre-log-log forms, the sheaf of log-log
forms is functorial with respect to inverse images. More precisely, we have the
following result.

Proposition 2.24. Let f : X −→ Y be a morphism of complex manifolds
of dimension d and d′. Let DX , DY be normal crossing divisors on X, Y ,
respectively, satisfying f−1(DY ) ⊆ DX . If η is a section of E ∗

Y 〈〈DY 〉〉, then
f∗η is a section of E

∗
X〈〈DX〉〉.

Proof. Since the differential operators ∂ and ∂̄ are compatible with inverse
images, we have to show that the pre-image of a form with log-log growth of
infinite order has log-log growth of infinite order. We may assume that, locally,
f can be written as in equation (2.7). If a function g satisfies

|g(z1, . . . , zd′)| ≺

∣∣∣∣∣∣

k′∏

i=1

log(log(1/|zi|))

∣∣∣∣∣∣

N

,
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we then estimate

|(f∗g)(x1, . . . , xd)| ≺

∣∣∣∣∣∣

k′∏

i=1

f∗ log(log(1/|zi|))

∣∣∣∣∣∣

N

≺

∣∣∣∣∣∣

k′∏

i=1

k∑

j=1

log(log(1/|xj |))

∣∣∣∣∣∣

N

≺

∣∣∣∣∣∣

k∑

j=1

log(log(1/|xj |))

∣∣∣∣∣∣

Nk′

.

Therefore, f∗g has log-log growth.
Next we have to bound the derivatives of f∗g. As in the proof of proposition
2.6, we will bound only the derivatives with respect to the holomorphic coor-
dinates. Again, we observe that, for any multi-index α ∈ Zd

≥0, the function

∂|α|/∂xα(f∗g) is a linear combination of the functions (2.8). But, using that g
is a log-log growth function, we can further estimate

∣∣∣∣∣∣
∂|β|

∂zβ
g

|β|∏

i=1

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣∣
≺

∣∣∣
∏k′

j=1 log(log(1/|zj |))
∣∣∣
N|β|

|zβ≤k′ |

∣∣∣∣∣∣

|β|∏

i=1

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣∣

≺

∣∣∣∣∣∣

k∏

j=1

log(log(1/|xj |))

∣∣∣∣∣∣

N|β|k
′

|β≤k′
|∏

i=1

∣∣∣∣∣
1

zΦβ(i)

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣ .

By (2.9), this yields

∣∣∣∣∣∣
∂|β|

∂zβ
g

|β|∏

i=1

∂|αi|

∂xαi zΦβ(i)

∣∣∣∣∣∣
≺

∣∣∣∣∣∣

k∏

j=1

log(log(1/|xj |))

∣∣∣∣∣∣

N|β|k
′

|β≤k′
|∏

i=1

1

|xα≤k | .

Thus, f∗g has log-log growth of infinite order.
Finally, we are led to study the inverse image of the differential forms

d zi

zi log(1/|zi|)
,

d z̄i

z̄i log(1/|zi|)
, for i = 1, . . . , k′.

We have

f∗

(
d zi

zi log(1/ziz̄i)

)
=

1

log(1/ziz̄i)




k∑

i=j

ai,j
dxj

xj
+

dui

ui


 .

Since we have assumed that ui is a non-vanishing holomorphic function in a
neighborhood of the adherence of V (see the proof of proposition 2.6), the
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function 1/ui and all its derivatives are bounded. Therefore, it only remains
to show that the functions

f∗

(
1

log(1/|zi|)

)
and log(1/|xj |)f∗

(
1

log(1/|zi|)

)
, for ai,j 6= 0, (2.25)

have log-log growth of infinite order, which is left to the reader.

Integrability. Since the sheaf of log-log forms is contained in the sheaf of
pre-log-log forms, then [10], proposition 7.6, implies

Proposition 2.26. (i) Any log-log form is locally integrable.

(ii) If η is a log-log form, and [η]X is the associated current, then

[d η]X = d[η]X .

The same holds true for the differential operators ∂, ∂̄, and ∂∂̄.
¤

Logarithmic growth in the local universal cover. We will define a
new class of singular forms closely related to the log-log forms. The discussion
will be parallel to the one at the end of the previous section.
Let UM , K, and (x1, . . . , xd) be as in definition 2.10.

Definition 2.27. A function f on (UM )k ×K is said to have imaginary loga-
rithmic growth, if there is a sequence of integers {Nn}n≥0 such that for every
pair of multi-indices α, β ∈ Zd

≥0, the inequality

∣∣∣∣
∂|α|

∂xα

∂|β|

∂x̄β
f(x1, . . . , xd)

∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(Im xi)
∣∣∣
N|α|+|β|

|xα≤k x̄β≤k | (2.28)

holds. The space of differential forms with imaginary logarithmic growth is
generated by the functions with imaginary logarithmic growth and the differ-
entials

dxi

Im xi
,

d x̄i

Im xi
, for i = 1, . . . , k,

d xi, d x̄i, for i = k + 1, . . . , d.

Let X, D, U , and ι be as in definition 2.2.

Definition 2.29. Let W be an open subset of X and let ω be a differential
form in Γ(W, ι∗(EU )∗). For every point p ∈ W , there is an open coordinate
neighborhood V ⊆ W , which is adapted to D and such that the coordinates of
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V induce an identification V ∩ U = (∆∗
r)

k × K. We choose M > log(1/r) and
denote by π : (UM )k × K −→ V the covering map given by

π(x1, . . . , xd) = (e2πix1 , . . . , e2πixk , xk+1, . . . , xd).

We say that ω has logarithmic growth in the local universal cover, if, for every
V and π as above, π∗ω has imaginary logarithmic growth.

It is easy to see that the differential forms with logarithmic growth in the local
universal cover form a sheaf of Dolbeault algebras.

Theorem 2.30. The sheaf of differential forms with logarithmic growth in the
local universal cover is contained in the sheaf of log-log forms.

Proof. Since the forms with logarithmic growth in the local universal cover
form a Dolbeault algebra, it is enough to check that a differential form with
logarithmic growth in the local universal cover has log-log growth of infinite
order. We start with the case of a function. So let f and g be as in the proof
of theorem 2.13. To bound the derivatives of f we use equation (2.15). But in
this case

∣∣∣∣∣
∂|α′|

∂xα′

∂|β′|

∂x̄β′ g(x1, . . . , xd)

∣∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(|xi|)
∣∣∣
Nα′,β′

|xα′≤k x̄β′≤k |

≺

∣∣∣
∏k

i=1 log(log(1/|zi|))
∣∣∣
Nα′,β′

| log(1/|z|)α′≤k+β′≤k | .

(2.31)

Note that now the different terms of equation (2.15) have slightly different
bounds. If we combine the worst bounds of (2.31) with (2.16), we obtain

∣∣∣∣
∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(log(1/ri))
∣∣∣
NK

|zα≤k z̄β≤k |∏k
i=1 | log(1/r1)|min(αi,1)+min(βi,1)

,

(2.32)
which implies the bounds of f and its derivatives.
To prove the statement for differential forms, we observe that for 1 ≤ i ≤ k,

π∗ d zi

zi log(1/|zi|)
=

id xi

Im xi
.

Remark 2.33. The differential forms that interest us are the forms with log-
arithmic growth in the local universal cover. We have introduced the log-log
forms because it is easier to work with bounds of the function and its deriva-
tives in usual coordinates than with the condition of logarithmic growth in the
local universal cover. This is particularly true in the proof of the Poincaré
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lemma. Note however that theorem 2.30 provides us only with an inclusion
of sheaves and does not give us a characterization of differential forms with
logarithmic growth in the local universal cover. This can be seen by the fact
that the bounds (2.32) are sharper than the bounds of definition 2.21. We have
chosen the bounds of definition 2.21 because the sharper bounds (2.32) are not
functorial. Moreover, they do not characterize forms with logarithmic growth
in the local universal cover. In fact, it does not exist a characterization of forms
with logarithmic growth in the local universal cover in terms of bounds of the
function and its derivatives in usual coordinates.

2.3 Log and log-log mixed forms

For the general situation which we are interested in, we need a combination of
the concepts of log and log-log forms.

Mixed growth forms. Let X, D, U , and ι be as in the previous section. Let
D1 and D2 be normal crossing divisors, which may have common components,
and such that D = D1 ∪D2. We denote by D′

2 the union of the components of
D2 that are not contained in D1. We say that an open coordinate subset V ,
with coordinates z1, . . . , zd, is adapted to D1 and D2, if D1 ∩ V has equation
z1 · · · zk = 0 and D′

2 ∩ V has equation zk+1 · · · zl = 0; we put ri := |zi| < 1/ee

for i = 1, . . . , d.

Definition 2.34. Let V be a coordinate neighborhood adapted to D1 and D2.
For every integer K ≥ 0, we say that a smooth complex function f on V \ D
has log growth along D1 and log-log growth along D2 of order K, if there exists
an integer NK ≥ 0 such that, for every pair of multi-indices α, β ∈ Zd

≥0, with
|α + β| ≤ K, it holds the inequality

∣∣∣∣
∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣ ≺

∣∣∣
∏k

i=1 log(1/ri)
∏l

j=k+1 log(log(1/rj))
∣∣∣
NK

|zα≤l z̄β≤l | . (2.35)

We say that f has log growth along D1 and log-log growth along D2 of infinite
order, if it has log growth along D1 and log-log growth along D2 of order K for
all K ≥ 0. The sheaf of differential forms on X with log growth along D1 and
log-log growth along D2 of infinite order is the subalgebra of ι∗E

∗
U generated,

in each coordinate neighborhood V adapted to D1 and D2, by the functions
with log growth along D1 and log-log growth along D2, and the differentials

d zi

zi
,

d z̄i

z̄i
, for i = 1, . . . , k,

d zi

zi log(1/ri)
,

d z̄i

z̄i log(1/ri)
, for i = k + 1, . . . , l,

d zi, d z̄i, for i = l + 1, . . . , d.

When the normal crossing divisors D1 and D2 are clear from the context,
a differential form with log growth along D1 and log-log growth along D2 of

Documenta Mathematica 10 (2005) 619–716



640 J. I. Burgos Gil, J. Kramer, U. Kühn

infinite order will be called a mixed growth form. The sheaf of differential forms
on X with log growth along D1 and log-log growth along D2 of infinite order
will be denoted E

∗
X〈D1〈D2〉〉gth.

It is clear that

E
∗
X〈D1〉 ∧ E

∗
X〈〈D2〉〉gth ⊆ E

∗
X〈D1〈D2〉〉gth. (2.36)

Observe moreover that, by definition,

E
∗
X〈D1〈D2〉〉gth = E

∗
X〈D1〈D′

2〉〉gth.

We leave it to the reader to state the analogue of lemma 2.19.

Partial differentials. Let V be an open coordinate system adapted to D1

and D2. In this coordinate system we may decompose the operators ∂ and ∂̄
as

∂ =
∑

j

∂j and ∂̄ =
∑

j

∂̄j , (2.37)

where ∂j and ∂̄j contain only the derivatives with respect to zj .
The following lemma follows directly from the definition.

Lemma 2.38. Let Ej denote the divisor given by zj = 0. If ω ∈
E

∗
X〈D1〈D2〉〉gth(V ), then

∂jω ∈
{

E
∗
X〈D1〈D2〉〉gth(V ), if j ≤ k or j > l,

E
∗
X〈D1 ∪ Ej〈D2〉〉gth(V ), if k < j ≤ l,

and the same is true for the operator ∂̄j.

¤

Mixed Forms.

Definition 2.39. We say that a section ω of ι∗E
∗
U is log along D1 and log-

log along D2, if the differential forms ω, ∂ω, ∂̄ω, and ∂∂̄ω are sections of
E ∗

X〈D1〈D2〉〉gth. The sheaf of differential forms log along D1 and log-log along
D2 will be denoted by E

∗
X〈D1〈D2〉〉. As a shorthand, a differential form which

is log along D1 and log-log along D2, will be called a mixed form.

As the complexes we have defined in the previous sections, the complex
E

∗
X〈D1〈D2〉〉 is a sheaf of Dolbeault algebras.

Inverse images. We can generalize propositions 2.6 and 2.24, with the same
technique, to the case of mixed forms.

Proposition 2.40. Let f : X −→ Y be a morphism of complex manifolds.
Let D1, D2 and E1, E2 be normal crossing divisors on X and Y respectively,
such that D1∪D2 and E1∪E2 are also normal crossing divisors. Furthermore,
assume that f−1(E1) ⊆ D1 and f−1(E2) ⊆ D1 ∪ D2. If η is a section of
E

∗
Y 〈E1〈E2〉〉, then f∗η is a section of E

∗
X〈D1〈D2〉〉. ¤
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Integrability. Let X be a complex manifold and D a normal crossing divisor.
Let y be a p-codimensional cycle of X and let Y = supp y. Let π : X̃ −→ X
be an embedded resolution of singularities of Y , with normal crossing divisors
DY = π−1(Y ) and D̃ = π−1(D) and such that DY ∪D̃ is also a normal crossing
divisor.

Lemma 2.41. Assume that g ∈ Γ(X̃,E n
eX
〈DY 〈D̃〉〉). Then, the following state-

ments hold:

(i) If n < 2p, then g is locally integrable on the whole of X. We denote by
[g]X the current associated to g.

(ii) If n < 2p − 1, then d[g]X = [d g]X .

Proof. This is a particular case of [10], lemma 7.13.

The cohomology of the complex of mixed forms. We are now in
position to state the main result of this section.

Theorem 2.42. The inclusion

Ω∗
X(log D1) −−−−→ E

∗
X〈D1〈D2〉〉

is a filtered quasi-isomorphism with respect to the Hodge filtration.

Proof. To prove the theorem we will use the classical argument for proving the
Poincaré lemma in several variables. We will state here the general argument
and we will delay the specific analytic lemmas that we need until the next
section.
The theorem is equivalent to the exactness of the sequence of sheaves

0 −−−−→ Ωp
X(log D1)

i−−−−→ E
p,0
X 〈D1〈D2〉〉 ∂̄−−−−→ E

p,1
X 〈D1〈D2〉〉 ∂̄−−−−→ ...

The exactness in the first step is clear because a holomorphic form on X \
(D1 ∪ D2) that satisfies the growth conditions imposed in the definitions can
only have logarithmic poles along D1.
For the exactness in the other steps we choose a point x ∈ X. Let V be a
coordinate neighborhood of x adapted to D1 and D2, and such that x has
coordinates (0, . . . , 0).
Let 0 < ǫ ≪ 1, we denote by ∆d

x,ǫ the poly-cylinder

∆d
x,ǫ = {(z1, . . . , zd) ∈ V | ri < ǫ, i = 1, . . . , d}.

In the next section we will prove that, for j = 1, . . . , d and 0 < ǫ′ < ǫ ≪ 1,
there exist operators

Kǫ′,ǫ
j : E

p,q
X 〈D1〈D2〉〉(∆d

x,ǫ) −→ E
p,q−1
X 〈D1〈D2〉〉(∆d

x,ǫ′),

P ǫ′,ǫ
j : E

p,q
X 〈D1〈D2〉〉(∆d

x,ǫ) −→ E
p,q
X 〈D1〈D2〉〉(∆d

x,ǫ′),

that satisfy the following conditions
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(A) If the form ω does not contain any term with d z̄i for i > j, then Kǫ′,ǫ
j ω

and P ǫ′,ǫ
j ω do not contain any term with d z̄i for i ≥ j.

(B) ∂̄Kǫ′,ǫ
j + Kǫ′,ǫ

j ∂̄ + P ǫ′,ǫ
j = id.

Let q > 0 and let ω ∈ E
p,q
X 〈D1〈D2〉〉x be a germ of a closed form. Assume

that ω is defined in a poly-cylinder ∆d
x,ǫ. By abuse of notation we will not

distinguish between sections and germs. Therefore, ω will denote also a closed
differential form over ∆d

x,ǫ that represents this germ. Moreover, as the open set
of definition of each section will be clear from the context, we will not make it
explicit. We choose real numbers 0 < ǫ1 < . . . < ǫd < ǫ. Then, by property
(B), we have

ω = ∂̄Kǫ,ǫd

d (ω) + P ǫ,ǫd

d (ω).

We write ω1 = P ǫ,ǫd

d (ω). Then, ω1 does not contain d z̄d and ω − ω1 is a
boundary. We define inductively ωj+1 = P

ǫd−j+1,ǫd−j

d−j (ωj). Then, for all j,
ω − ωj is a boundary and ωj does not contain d z̄i for i > d − j. Therefore,
ωd−q+1 = 0 and ω is a boundary.

2.4 Analytic lemmas

In this section we will prove the analytic lemmas needed to prove theorem 2.42
and we will define the operators K and P that appear in the proof of this
theorem.

Primitive functions with growth conditions. Let f be a smooth func-
tion on ∆∗

ǫ , which is integrable on any compact subset of ∆ǫ. Then, for ǫ′ < ǫ
and z ∈ ∆∗

ǫ′ , we write

Iǫ′(f)(z) =
1

2π
√
−1

∫

∆ǫ′

f(w)
d w ∧ d w̄

w − z
.

We denote r = |z|.

Lemma 2.43. (i) If f is a smooth function on ∆∗
ǫ such that

|f(z)| ≺ | log(log(1/r))|N
(r log(1/r))2

,

then f is integrable in each compact subset of ∆ǫ and

∂

∂z̄
Iǫ′(f)(z) = f(z).

(ii) If f is a smooth function on ∆∗
ǫ such that

|f(z)| ≺ | log(log(1/r))|N
r log(1/r)

and

∣∣∣∣
∂

∂z̄
f(z)

∣∣∣∣ ≺
| log(log(1/r))|N

(r log(1/r))2
,
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then

2π
√
−1f(z) =

∫

∂∆ǫ′

f(w)
d w

w − z
+

∫

∆ǫ′

∂

∂w̄
f(w)

d w ∧ d w̄

w − z
.

(iii) If f is a smooth function on ∆∗
ǫ such that

|f(z)| ≺ | log(log(1/r))|N
r log(1/r)

and

∣∣∣∣
∂

∂z
f(z)

∣∣∣∣ ≺
| log(log(1/r))|N

(r log(1/r))2
,

then

∂

∂z

∫

∆ǫ′

f(w)
d w ∧ d w̄

w − z
= −

∫

∂∆ǫ′

f(w)
d w̄

w − z
+

∫

∆ǫ′

∂

∂w
f(w)

d w ∧ d w̄

w − z
.

Proof. We start by proving the integrability of f . Viewed as a function of ǫ,
we estimate

∣∣∣∣
∫

∆ǫ

(log(log(1/r)))N

r2(log(1/r))2
d z ∧ d z̄

∣∣∣∣ ≺
∣∣∣∣
∫ ǫ

0

(log(log(1/r)))N

r2(log(1/r))2
r d r

∣∣∣∣

≺
∣∣∣∣
∫ ǫ

0

1

r(log(1/r))3/2
d r

∣∣∣∣

≺ 1

(log(1/ǫ))1/2
,

which proves the integrability. Then, the claimed formulas are proven as in [20],
pp. 24–26. The only new point one has to care about is that the singularities
at z = 0 do not contribute to Stokes theorem.

Lemma 2.44. Let 0 < ǫ ≪ 1 be a real number and let f be a smooth function
on ∆∗

ǫ . Let ǫ′ < ǫ.

(i) If ω = f d z̄ ∈ E
0,1
∆ǫ

〈0〉(∆ǫ), then the function f is integrable on any

compact subset of ∆ǫ. We write g = Iǫ′(f). Then, g ∈ E
0,0
∆ǫ′

〈0〉(∆ǫ′) and

∂̄g = ω. (2.45)

(ii) If, moreover, ω ∈ E
0,1
∆ǫ

〈〈0〉〉gth(∆ǫ), then g ∈ E
0,0
∆ǫ′

〈〈0〉〉gth(∆ǫ′).

(iii) If ω = f d z̄ ∧ d z ∈ E
1,1
∆ǫ

〈〈0〉〉gth(∆ǫ), then the function f is integrable
on any compact subset of ∆ǫ. If we write g = Iǫ′(f) as before, then
g d z ∈ E

1,0
∆ǫ′

〈〈0〉〉gth(∆ǫ′) and

∂̄(g ∧ d z) = ω. (2.46)
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Proof. The integrability in the three cases and equations (2.45) and (2.46) are
in lemma 2.43. Therefore, it remains only to prove the necessary bounds.
Proof of (i). The condition on ω is equivalent to the inequalities

∣∣∣∣
∂α+β

∂zα∂z̄β
f(z)

∣∣∣∣ ≺
|log(1/r)|Nα+β

rα+β+1
(2.47)

for a certain family of integers {Nn}n∈Z≥0
. We may assume that these integers

satisfy for a ≤ b the inequality Na ≤ Nb. We can apply [22], lemma 1, to
conclude that g is smooth on ∆∗

ǫ′ and that

|g(z)| ≺ |log(1/r)|N
′
0

for some integer N ′
0.

Thus, to prove statement (i), it remains to bound the derivatives of g. Equation
(2.45) implies the bound for the derivatives

∂α+β

∂zα∂z̄β
g,

when β ≥ 1. Therefore, we may assume β = 0 and α ≥ 1.
Let ρ : C −→ [0, 1] be a smooth function such that

ρ|B(0,1) = 1, ρ|C\B(0,2) = 0,

where B(p, δ) is the open ball of center p and radius δ. Fix z0 ∈ ∆∗
ǫ′ . Since

we want to bound the derivatives of g(z) as z goes to zero, we may assume
z0 ∈ ∆∗

ǫ′/2. Write r0 = |z0|, and put

ρz0
(z) = ρ

(
3
z − z0

r0

)
.

Then, we have
ρ|B(z0,r0/3) = 1, ρ|C\B(z0,2r0/3) = 0.

Moreover, we have
∂α

∂zα
ρz0

(z) ≤ Cα

rα
0

(2.48)

for some constants Cα.
By the choice of z0, we have that supp(ρz0

) ⊆ ∆∗
ǫ′ . We write f1 = ρz0

f and
f2 = (1−ρz0

)f . Then, for z ∈ B(z0, r0/3), we introduce the auxiliary functions

g1(z) =
1

2π
√
−1

∫

∆ǫ

f1(w)
d w ∧ d w̄

w − z
, g2(z) =

1

2π
√
−1

∫

∆ǫ

f2(w)
d w ∧ d w̄

w − z
.

These functions satisfy
g = g1 + g2.
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Therefore, we can bound the derivatives of g1 and g2 separately. We first bound
the derivatives of g1.

∂α

∂zα

∫

∆ǫ

f1(w)
d w ∧ d w̄

w − z
=

∂α

∂zα

∫

C

f1(w)
d w ∧ d w̄

w − z

=
∂α

∂zα

∫

C

f1(u + z)
du ∧ d ū

u

=

∫

C

∂α

∂zα
f1(u + z)

du ∧ d ū

u

=

∫

C

∂α

∂wα
f1(w)

d w ∧ d w̄

w − z

=

∫

B(z0,2r0/3)

∂α

∂wα
f1(w)

d w ∧ d w̄

w − z
.

Hence, using the bounds for the derivatives of f and equation (2.48), we find
the inequality

∣∣∣∣
∂α

∂zα
g1(z0)

∣∣∣∣ ≺
|log(1/r0)|Nα

rα+1
0

∣∣∣∣∣

∫

B(z0,2r0/3)

dw ∧ d w̄

w − z0

∣∣∣∣∣

≺ |log(1/r0)|Nα

rα
0

.

Now we bound the derivatives of g2. Since for z ∈ B(z0, r0/3), the function
f2(w) is identically zero in a neighborhood of the point w = z, we have

∂α

∂zα

∫

∆ǫ

f2(w)
d w ∧ d w̄

w − z
=

∫

∆ǫ

f2(w)α!
dw ∧ d w̄

(w − z)α+1
.

Let A = B(0, r0/2). Then, for w ∈ A, we have |w − z0| ≥ r0/2. Thus, we
obtain

∣∣∣∣
∫

A

f2(w)
d w ∧ d w̄

(w − z0)α+1

∣∣∣∣ ≺
1

rα+1
0

∫ r0/2

0

| log(1/ρ)|N0

ρ
ρd ρ

≺ 1

rα
0

| log(1/r0)|N0 .

Here we use that

∫
(log x)N dx = x

N∑

i=0

(−1)i N !

(N − i)!
(log x)N−i.

We write B = ∆ǫ′ \(A∪B(z0, r0/3)). In this region |w−z0| ≥ |w/4|. Therefore,
we get

∣∣∣∣
∫

B

f2(w)
dw ∧ d w̄

(w − z0)α+1

∣∣∣∣ ≺
∫ ǫ′

r0/2

| log(1/ρ)|N0

ρ

ρd ρ

ρα+1
≺ 1

rα
0

| log(1/r0)|N0+1.
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Here we use that
∫

(log x)n 1

xm
dx =

{
1

n+1 (log x)n+1 if m = 1,
1

xm−1 Pn,m(log x) if m > 1,

where Pn,m is a polynomial of degree n. Summing up, we obtain
∣∣∣∣

∂α

∂zα
g(z0)

∣∣∣∣ ≺
| log(1/r0)|Nα+1

rα
0

Observe that, for α = 0, this is the proof of [22], lemma 1.
Proof of (ii). In this case, by lemma 2.19, the condition on ω is equivalent to
the inequalities ∣∣∣∣

∂α+β

∂zα∂z̄β
f(z)

∣∣∣∣ ≺
|log(log(1/r))|Nα+β

rα+β+1 log(1/r)
(2.49)

for a certain increasing family of integers {Nn}n∈Z≥0
. Again, by lemma 2.19,

to prove statement (ii), we have to show

∣∣∣∣
∂α+β

∂zα∂z̄β
g(z)

∣∣∣∣ ≺
|log(log(1/r))|N

′
α+β

rα+β
(2.50)

for a certain family of integers {N ′
n}n∈Z≥0

.
By (2.45), the functions

∂α+β

∂zα∂z̄β
g,

when β ≥ 1, satisfy the required bounds. Thus, it remains to bound ∂α/∂zαg
for α ≥ 0. As in the proof of statement (i), we fix z0 and write g = g1 + g2.
For g1, we work as before and get for α ≥ 0

∣∣∣∣
∂α

∂zα
g1(z0)

∣∣∣∣ ≺
|log(log(1/r0))|Nα

rα
0 log(1/r0)

.

To bound g2, we integrate over the regions A and B as before. We first bound
the integral over the region A = B(0, r0/2).

∣∣∣∣
∫

A

f2(w)
d w ∧ d w̄

(w − z0)α+1

∣∣∣∣ ≺
1

rα+1
0

∫ r0/2

0

| log(log(1/ρ))|N0

log(1/ρ)
d ρ.

Since, for ρ < 1/eeN0
, the function

(log(log(1/ρ)))N0

log(1/ρ)

is an increasing function, we have

1

rα+1
0

∫ r0/2

0

| log(log(1/ρ))|N0

log(1/ρ)
d ρ ≺ | log(log(1/r0))|N0

rα+1
0 log(1/r0)

∫ r0/2

0

d ρ

≺ | log(log(1/r0))|N0

rα
0 log(1/r0)
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in the domain 0 < r0 ≤ 2/eeN0
.

If f and g are two continuous functions with g strictly positive, defined on
a compact set, then f ≺ g. Therefore, the above inequality extends to the
domain 0 ≤ r0 ≤ ǫ′/2.
We now bound the integral over the region B = ∆ǫ′ \ (A ∪ B(z0, r0/3)). By
the bound of the function f , we have

∣∣∣∣
∫

B

f2(w)
dw ∧ d w̄

(w − z0)α+1

∣∣∣∣ ≺
∫ ǫ′

r0/2

| log(log(1/ρ))|N0

ρα+1 log(1/ρ)
d ρ.

Thus, in the case α = 0, we have

∫ ǫ′

r0/2

| log(log(1/ρ))|N0

ρ log(1/ρ)
d ρ ≺ | log(log(1/r0))|N0+1.

In the case α > 0, since, for ρ < 1/ee, the function

(log(log(1/ρ)))N0

ρ1/2 log(1/ρ)

is a decreasing function, we have

∫ ǫ′

r0/2

| log(log(1/ρ))|N0

ρα+1 log(1/ρ)
d ρ ≺ | log(log(1/r0))|N0

r
1/2
0 log(1/r0)

∫ ǫ′

r0/2

1

ρα+1/2
d ρ

≺ | log(log(1/r0))|N0

rα
0 log(1/r0)

.

Summing up, we obtain

∣∣∣∣
∂α

∂zα
g(z0)

∣∣∣∣ ≺
| log(log(1/r0))|Nα+1

rα
0

.

This finishes the proof of the second statement.
Proof of (iii). In this case, again by lemma 2.19, the condition on ω is equivalent
to the conditions

∣∣∣∣
∂α+β

∂zα∂z̄β
f(z)

∣∣∣∣ ≺
|log(log(1/r))|Nα+β

rα+β+2(log(1/r))2

for a certain increasing family of integers {Nn}n∈Z≥0
, and the inequalities we

have to prove are

∣∣∣∣
∂α+β

∂zα∂z̄β
g(z)

∣∣∣∣ ≺
|log(log(1/r))|N

′
α+β

rα+β+1 log(1/r)

for a certain family of integers {N ′
n}n∈Z≥0

.
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First we note that, by equation (2.46), for β ≥ 1, the functions

∂α+β

∂zα∂z̄β
g

satisfy the required bounds. Thus, it remains to bound the functions ∂αg/∂zα

for α ≥ 0. The proof is similar as before. We decompose again g = g1 + g2. In
this case ∣∣∣∣

∂α

∂zα
g1(z0)

∣∣∣∣ ≺
|log(log(1/r0))|Nα

log(1/r0)2r
α+1
0

.

Whereas the integral of g2 over A is bounded as

∣∣∣∣
∫

A

f2(w)
d w ∧ d w̄

(w − z0)α+1

∣∣∣∣ ≺
1

rα+1
0

∫ r0/2

0

| log(log(1/ρ))|N0

ρ log(1/ρ)2
d ρ

≺ | log(log(1/r0))|N0

rα+1
0 log(1/r0)

,

and the integral of g2 over B is bounded as

∣∣∣∣
∫

B

f2(w)
d w ∧ d w̄

(w − z0)α+1

∣∣∣∣ ≺
∫ ǫ′

r0/2

| log(log(1/ρ))|N0

ρα+2 log(1/ρ)2
d ρ

≺ | log(log(1/r0))|N0

rα+1
0 log(1/r0)2

.

Summing up, we obtain for α ≥ 0
∣∣∣∣

∂α

∂zα
g(z0)

∣∣∣∣ ≺
| log(log(1/r0))|Nα

rα+1
0 log(1/r0)

.

This finishes the proof of the lemma.

Remark 2.51. Observe that, in general, a section of E
1,1
∆ǫ

〈0〉(∆ǫ) is not locally
integrable (see remark 2.55). Therefore, the analogue of lemma 2.44 (iii) is not
true for log forms.

The operators K and P . Let X, U , D, ι, D1, and D2 be as in definition
2.39.

Notation 2.52. Let x ∈ X. Let V be an open coordinate neighborhood of
x with coordinates z1, . . . , zd, adapted to D1 and D2, such that x has coor-
dinates (0, . . . , 0). Thus, D1 has equation z1 · · · zk = 0 and D′

2 has equation
zk+1 · · · zl = 0. Once this coordinate neighborhood is chosen, we put

ζi =
d zi

zi
, if 1 ≤ i ≤ k,

ζi = d zi, if i > k.
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For any subset I ⊆ {1, . . . , d}, we denote

ζI =
∧

i∈I

ζi, d z̄I =
∧

i∈I

d z̄i.

Given any differential form ω, let

ω =
∑

I,J

fI,JζI ∧ d z̄J

be the decomposition of ω in monomials. Then, we write

ωI,J = fI,JζI ∧ d z̄J .

For any subset I ⊆ {1, . . . , d} and i ∈ I, we will write

σ(I, i) = ♯{j ∈ I | j < i} and Ii = I \ {i}.

Definition 2.53. Let 0 < ǫ′ < ǫ ≪ 1. Let ∆d
x,ǫ be the poly-cylinder centered

at x of radius ǫ. Let ω ∈ E
p,q
X 〈D1〈D2〉〉gth(∆d

x,ǫ), and let

ω =
∑

I,J

fI,JζI ∧ d z̄J (2.54)

be the decomposition of ω into monomials. We define

Kǫ′,ǫ
j (ω) =

∑

I

(−1)#IζI∧

∑

J | j∈J

(−1)σ(J,j)

2π
√
−1

∫

∆ǫ′

fI,J(. . . , zj−1, w, zj+1, . . .)
dw ∧ d w̄

w − zj
d z̄Jj

,

P ǫ′,ǫ
j (ω) =

∑

I

ζI∧

∑

J | j 6∈J

1

2π
√
−1

∫

∂∆ǫ′

fI,J (. . . , zj−1, w, zj+1, . . .)
dw

w − zj
d z̄J .

To ease notation, if ǫ and ǫ′ are clear from the context, we will drop them and

write Kj , resp. Pj instead of Kǫ′,ǫ
j , resp. P ǫ′,ǫ

j .

Remark 2.55. The reason why we use the differentials ζI instead of d zI in the
definition of K and P , is that, in general, a log form is not locally integrable.
For instance, if d = k = 1 and ω = f d z ∧ d z̄ is a section of E

1,1
∆ǫ

〈0〉(∆ǫ), then
f satisfies

|f(z)| ≺ | log(1/r)|N
r2

,
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and the integral
∫

∆ǫ′

| log(1/|w|)|N
|w|2

dw ∧ d w̄

w − z

does not converge. But, by the definition we have adopted, Kǫ′,ǫ(ω) = g d z,
where

g(z) =
1

z
Iǫ′(z · f) =

1

2π
√
−1

1

z

∫

∆ǫ′

wf(w)
d w ∧ d w̄

w − z
.

This integral is absolutely convergent and

∂

∂z̄
g(z) =

1

z

∂

∂z̄
Iǫ′(z · f)(z) =

zf(z)

z
= f(z).

This trick will force us to be careful when studying the compatibility of K with
the operator ∂ because, for a log form ω, the definitions of K(ω) and of K(∂ω)
use different kernels in the integral operators.

Theorem 2.56. Let ω ∈ E
p,q
X 〈D1〈D2〉〉gth(∆x,ǫ). Then, we have

Kǫ′,ǫ
j (ω) ∈ E

p,q−1
X 〈D1〈D2〉〉gth(∆x,ǫ′), and

P ǫ′,ǫ
j (ω) ∈ E

p,q
X 〈D1〈D2〉〉gth(∆x,ǫ′).

These operators satisfy

(i) If the form ω does not contain any term with d z̄i for i > j, then Kjω
and Pjω do not contain any term with d z̄i for i ≥ j.

(ii) If ω ∈ E
p,q
X 〈D1〈D2〉〉(∆x,ǫ), then

Kǫ′,ǫ
j (ω) ∈ E

p,q−1
X 〈D1〈D2〉〉(∆x,ǫ′), and

P ǫ′,ǫ
j (ω) ∈ E

p,q
X 〈D1〈D2〉〉(∆x,ǫ′).

(iii) In this case, ∂̄Kj + Kj ∂̄ + Pj = id.

Proof. By lemma 2.44 and the theorem of taking derivatives under the integral
sign, we have that Kj(ω) ∈ E

p,q−1
X 〈D1〈D2〉〉gth(∆x,ǫ′), and it is clear that

Pj(ω) ∈ E
p,q
X 〈D1〈D2〉〉gth(∆x,ǫ′). Then, property (i) follows from the definition

and it is easy to see that, if ∂̄ω, ∂ω, and ∂∂̄ω belong to E
∗
X〈D1〈D2〉〉gth(∆x,ǫ),

the same is true for ∂̄Pj(ω), ∂Pj(ω), and ∂∂̄Pj(ω).

In the sequel of the proof, we will denote by Em the divisor given by zm = 0.
Assume now that ∂̄ω ∈ E

∗
X〈D1〈D2〉〉gth(∆x,ǫ). We will prove property (iii). We
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write

ω =
∑

I,J

fI,JζI ∧ d z̄J ,

ω1 =
∑

I,j∈J

fI,JζI ∧ d z̄J ,

ω2 =
∑

I,j 6∈J

fI,JζI ∧ d z̄J .

Recall that we have introduced the operator ∂̄j in equation (2.37). We write
∂̄ 6=j = ∂̄ − ∂̄j , and we decompose

∂̄Kj(ω) = ∂̄Kj(ω1) = ∂̄ 6=jKj(ω1) + ∂̄jKj(ω1),

and

Kj(∂̄ω) = Kj(∂̄ 6=jω1 + ∂̄jω2)

The difficulty at this point is that, when k < j ≤ l, the form ω is log-log along
Ej but, according to lemma 2.38, ∂̄jω only needs to be log along Ej , and the
integral operator Kj for log-log forms may diverge when applied to log forms.
The key point is to observe that the extra hypothesis about ∂̄ω allows us to
apply the operator Kj to the differential forms ∂̄ 6=jω1 and ∂̄jω2 individually:
Fix I and J with j ∈ J and m 6= j. We consider first the problematic case
k < j ≤ l. By lemma 2.38, we have

∂̄mωI,Jm
∈

{
E ∗

X〈D1 ∪ Em〈D2〉〉gth(∆d
x,ǫ), if k < m ≤ l,

E ∗
X〈D1〈D2〉〉gth(∆d

x,ǫ), otherwise.

Therefore, if we denote by D′ the union of all the components of D different
from Ej , then

(∂̄ 6=jω1)I,J ∈ E
∗
X〈D′〈Ej〉〉gth(∆d

x,ǫ).

Since, by hypothesis, (∂̄ω)I,J ∈ E ∗
X〈D1〈D2〉〉gth(∆x,ǫ) and (∂̄jω2)I,J = (∂̄ω −

∂̄ 6=jω1)I,J , then

(∂̄jω2)I,J ∈ E
∗
X〈D′〈Ej〉〉gth(∆d

x,ǫ),

and we can apply the operator Kj for log-log forms to the differential forms
∂̄ 6=jω1 and ∂̄jω2 individually. If j ≤ k, then ω is log along Ej ; the same is true
for the differential forms ∂̄ 6=jω1 and ∂̄jω2. But in this case the operator Kj is
the operator for log forms and can be applied to ∂̄ 6=jω1 and ∂̄jω2 individually.
The case j > l is similar. Thus, we can write

Kj(∂̄ 6=jω1 + ∂̄jω2) = Kj(∂̄ 6=jω1) + Kj(∂̄jω2).
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But by the theorem of taking derivatives under the integral sign, we now obtain

∂̄ 6=jKj(ω1) + Kj(∂̄ 6=jω1) = 0.

By lemma 2.44, we have

∂̄jKj(ω1) = ω1,

and by the generalized Cauchy integral formula (lemma 2.43 (ii)), we note

Kj(∂̄jω2) = ω2 − Pj(ω2) = ω2 − Pj(ω).

Summing up, we obtain

∂̄Kj(ω) + Kj(∂̄ω) = ω − Pj(ω). (2.57)

By (2.57) and the fact that Kj(∂̄ω), Pj(ω) ∈ E
∗
X〈D1〈D2〉〉gth(∆x,ǫ′), we obtain

that

∂̄Kj(ω) ∈ E
∗
X〈D1〈D2〉〉gth(∆x,ǫ′).

Assume now that ∂ω ∈ E ∗
X〈D1〈D2〉〉gth(∆x,ǫ). We fix I, J ⊆ {1, . . . , d}, with

j ∈ J . If j 6∈ I, then

(∂Kj(ω))I,Jj
=

∑

m 6=j

∂mKj(ωIm,J) = Kj


∑

m 6=j

∂mωIm,J


 = Kj((∂ω)I,J ).

Therefore, it belongs to E
∗
X〈D1〈D2〉〉gth(∆d

x,ǫ). If j ∈ I, we write

(∂Kj(ω))I,Jj
=

∑

m 6=j

∂mKj(ωIm,J) + ∂jKj(ωIj ,I). (2.58)

The theorem of taking derivatives under the integral sign implies for m 6= j

∂mKj(ωIm,J) = −Kj(∂mωIm,J).

Note that the term on the right hand side is well defined by lemma 2.38. We
first treat the case j ≤ k. We have to be careful because the integral kernels
appearing in the expressions ∂jKj(ωIj ,J) and Kj(∂jωIj ,J) are different in each
term.
Again by lemma 2.38,

∂jωIj ,J ∈ E
∗
X〈D1〈D2〉〉gth(∆d

x,ǫ.

Since, moreover, ∂ω ∈ E ∗
X〈D1〈D2〉〉gth(∆d

x,ǫ),

∑

m 6=j

∂mωIm,J = (∂ω)I,J − ∂jωIj ,J ∈ E
∗
X〈D1〈D2〉〉gth(∆d

x,ǫ).
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Hence, by lemma 2.44

Kj


∑

m 6=j

∂mωIm,J


 ∈ E

∗
X〈D1〈D2〉〉gth(∆d

x,ǫ).

By the same lemma it follows that

∂jKj(ωIj ,I) ∈ E
∗
X〈D1〈D2〉〉gth(∆d

x,ǫ).

Now we treat the case j > k. In this case the expressions ∂jKj(ωIj ,J) and
Kj(∂jωIj ,J) use the same integral kernel. By lemma 2.43 (iii), we have

∂jKj(ωIj ,J) = −Kj(∂jωIj ,J) +
(−1)#I+σ(J,j)+σ(I,j)

2π
√
−1

∫

γǫ′

fIj ,J
d w̄

w − z
ζI ∧ d z̄Jj

.

Hence, we arrive at

(∂Kj(ω))I,Jj
= −(Kj(∂ω))I,Jj

+
(−1)#I+σ(J,j)+σ(I,j)

2π
√
−1

∫

γǫ′

fIj ,J
d w̄

w − z
ζI ∧d z̄Jj

.

Thus, it belongs to E
∗
X〈D1〈D2〉〉gth(∆d

x,ǫ).

Finally, assume that ∂ω, ∂̄ω, ∂∂̄ω ∈ E
∗
X〈D1〈D2〉〉gth(∆d

x,ǫ). By equation (2.57),
we have

∂∂̄Kj(ω) = −∂Kj(∂̄ω) + ∂ω − ∂Pj(ω);

therefore, the result follows from the previous cases.

2.5 Good forms.

In this section we recall the definition of good forms in the sense of [34]. We
introduce the complex of Poincaré singular forms that is contained in both, the
complex of good forms and the complex of log-log forms.

Poincaré growth. Let X, D, U , and ι be as in definition 2.2.

Definition 2.59. Let V be a coordinate neighborhood adapted to D. We say
that a smooth complex function f on V \D has Poincaré growth (along D), if
it is bounded. We say that it has Poincaré growth (along D) of infinite order,
if for all multi-indices α, β ∈ Zd

≥0

∣∣∣∣
∂|α|

∂zα

∂|β|

∂z̄β
f(z1, . . . , zd)

∣∣∣∣ ≺
1

|zα≤k z̄β≤k | . (2.60)

The sheaf of differential forms on X with Poincaré growth (resp. of infinite
order) is the subalgebra of ι∗E

∗
U generated, in each coordinate neighborhood V
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adapted to D, by the functions with Poincaré growth (resp. of infinite order)
and the differentials

d zi

zi log(1/ri)
,

d z̄i

z̄i log(1/ri)
, for i = 1, . . . , k,

d zi, d z̄i, for i = k + 1, . . . , d.

Good forms. We recall that a smooth form ω on X \ D is good (along D),
if ω and dω have Poincaré growth along D (see [34]). Observe that, since the
operator d is not bi-homogeneous, the sheaf of good forms is not bigraded.
Although good forms are very similar to pre-log-log forms, there is no inclusion
between both sheaves. Nevertheless, we have the following easy

Lemma 2.61. If ω is a good form of pure bidegree, then it is a pre-log-log form,
if and only if, ∂∂̄ω has log-log growth of order 0. ¤

Poincaré singular forms.

Definition 2.62. We will say that ω is Poincaré singular (along D), if ω, ∂ω,
∂̄ω, and ∂∂̄ω have Poincaré growth of infinite order.

Note that the sheaf of Poincaré singular forms is contained in both, the sheaf
of good forms and the sheaf of log-log forms. Observe moreover that we cannot
expect to have a Poincaré lemma for the complex of Poincaré singular forms,
precisely due to the absence of the functions log(log(1/ri)).

Functoriality. The complex of Poincaré singular forms share some of the
properties of the complex of log-log forms. For instance, we have the following
compatibility with respect to inverse images which is proven as in proposition
2.24.

Proposition 2.63. Let f : X −→ Y be a morphism of complex manifolds
of dimension d and d′. Let DX , DY be normal crossing divisors on X, Y ,
respectively, satisfying f−1(DY ) ⊆ DX . If η is a Poincaré singular form on Y ,
then f∗η is a Poincaré singular form on X. ¤

3 Arithmetic Chow rings with log-log growth conditions

In this section we use the theory of abstract cohomological arithmetic Chow
rings developed in [10] to obtain a theory of arithmetic Chow rings with log-
log forms. Since we have computed the cohomology of the complex of log-log
forms, we have a more precise knowledge of the size of these arithmetic Chow
rings than of the arithmetic Chow rings with pre-log-log forms considered in
[10].
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3.1 Dolbeault algebras and Deligne algebras

In this section we recall the notion of Dolbeault algebra and the properties of
the associated Deligne algebra.

Dolbeault algebras.

Definition 3.1. A Dolbeault algebra A = (A∗
R,dA,∧) is a real differential

graded commutative algebra which is bounded from below and equipped with
a bigrading on AC := AR ⊗ C,

An
C =

⊕

p+q=n

Ap,q,

satisfying the following properties:

(i) The differential dA can be decomposed as the sum of operators dA = ∂+∂̄
of type (1, 0), resp. (0, 1).

(ii) It satisfies the symmetry property Ap,q = Aq,p, where denotes complex
conjugation.

(iii) The product induced on AC is compatible with the bigrading:

Ap,q ∧ Ap′,q′ ⊆ Ap+p′,q+q′

.

By abuse of notation, we will also denote by A∗ the complex differential graded
commutative algebra A∗

C.

Notation 3.2. Given a Dolbeault algebra A we will use the following notations.
The Hodge filtration F of A∗ is the decreasing filtration given by

F pAn
C =

⊕

p′≥p

Ap′,n−p′

.

The filtration F is the complex conjugate of F , i.e.,

F
p
An = F pAn.

For an element x ∈ A, we write xi,j for its component in Ai,j . For k, k′ ≥ 0,
we define an operator F k,k′

: A −→ A by the rule

F k,k′

(x) :=
∑

l≥k,l′≥k′

xl,l′ .

We note that the operator F k,k′

is the projection of A∗ onto the subspace

F kA∗ ∩ F
k′

A∗. We will write F k = F k,−∞.
We denote by An

R(p) the subgroup (2πi)p ·An
R ⊆ An, and we define the operator

πp : A −→ AR(p)

by setting πp(x) := 1
2 (x + (−1)px̄).
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The Deligne complex.

Definition 3.3. Let A be a Dolbeault algebra. Then, the Deligne complex
(D∗(A, ∗),dD) associated to A is the graded complex given by

Dn(A, p) =

{
An−1

R (p − 1) ∩ Fn−p,n−pAn−1, if n ≤ 2p − 1,

An
R(p) ∩ F p,pAn, if n ≥ 2p,

with differential given by (x ∈ Dn(A, p))

dD x =





−Fn−p+1,n−p+1 dA x, if n < 2p − 1,

−2∂∂̄x, if n = 2p − 1,

dA x, if n ≥ 2p.

The Deligne algebra.

Definition 3.4. Let A be a Dolbeault algebra. The Deligne algebra associated
to A is the Deligne complex D∗(A, ∗) together with the graded commutative
product • : Dn(A, p) ×Dm(A, q) −→ Dn+m(A, p + q), given by

x • y =




(−1)nrp(x) ∧ y + x ∧ rq(y), if n < 2p, m < 2q,

F l−r,l−r(x ∧ y), if n < 2p, m ≥ 2q, l < 2r,

F r,r(rp(x) ∧ y) + 2πr(∂(x ∧ y)r−1,l−r), if n < 2p, m ≥ 2q, l ≥ 2r,

x ∧ y, if n ≥ 2p, m ≥ 2q,

where we have written l = n + m, r = p + q, and rp(x) = 2πp(F
p dA x).

Specific degrees. In the sequel we will be interested in some specific degrees,
where we can give simpler formulas. Namely, we consider

D2p(A, p) = A2p
R (p) ∩ Ap,p,

D2p−1(A, p) = A2p−2
R (p − 1) ∩ Ap−1,p−1,

D2p−2(A, p) = A2p−3
R (p − 1) ∩ (Ap−2,p−1 ⊕ Ap−1,p−2).

The corresponding differentials are given by

dD x = dA x, if x ∈ D2p(A, p),

dD x = −2∂∂̄x, if x ∈ D2p−1(A, p),

dD(x, y) = −∂x − ∂̄y, if (x, y) ∈ D2p−2(A, p).

Moreover, the product is given as follows: for x ∈ D2p(A, p), y ∈ D2q(A, q) or
y ∈ D2q−1(A, q), we have

x • y = x ∧ y,
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and for x ∈ D2p−1(A, p), y ∈ D2q−1(A, q), we have

x • y = −∂x ∧ y + ∂̄x ∧ y + x ∧ ∂y − x ∧ ∂̄y.

Deligne complexes and Deligne-Beilinson cohomology. The main
interest in Deligne complexes is expressed by the following theorem which is
proven in [8] in a particular case, although the proof is valid in general.

Theorem 3.5. Let X be a complex algebraic manifold, X a smooth compact-
ification of X with D = X \ X a normal crossing divisor, and denote by
j : X −→ X the natural inclusion. Let A

∗ be a sheaf of Dolbeault algebras
over X

an
such that, for every n, p the sheaves A

∗ and F p
A

∗ are acyclic, A
∗

R

is a multiplicative resolution of Rj∗R and (A ∗, F ) is a multiplicative filtered
resolution of (Ω∗

X
(log D), F ). Putting A∗ = Γ(X,A ∗), we have a natural iso-

morphism of graded algebras

H∗
D(X, R(p)) ∼= H∗(D(A, p)).

¤

Notation. In the sequel we will use the following notation. The sheaves of
differential forms will be denoted by the italic letter E , and the corresponding
spaces of global sections will be denoted by the same letter in roman typography
E. For instance, we have

En
X〈D1〈D2〉〉 = Γ(X,E n

X〈D1〈D2〉〉).

Logarithmic singularities at infinity Let X be a quasi-projective com-
plex manifold. Let Elog(X) be the Dolbeault algebra of differential forms with
logarithmic singularities at infinity (see [10], §5). Recall that in [10], Elog is
defined as the Zariski sheaf associated to the pre-sheaf Elog

◦, which associates
to any quasi-projective complex manifold X

E∗
log(X)◦ = lim

−→
E∗

Xα
(log Dα),

where the limit is taken over all possible compactifications Xα of X with Dα =
Xα\X a normal crossing divisor. Nevertheless, the step of taking the associated
Zariski sheaf is not necessary by the following result. See [10], definition 3.1,
for the definition of a totally acyclic sheaf.

Theorem 3.6. For every pair of integers p, q, the pre-sheaf Ep,q
log

◦ is a totally
acyclic sheaf.

Proof. Let U and V be two open subsets of X. We have to prove the exactness
of the sequence

0 −→ Ep,q
log (U ∪ V )◦

φ−→ Ep,q
log (U)◦ ⊕ Ep,q

log (V )◦
ψ−→ Ep,q

log (U ∩ V )◦ −→ 0.
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The injectivity of φ and the fact that ψ ◦ φ = 0 are obvious.

Put Y = X \U and Z = X \V . Let πY ∩Z : X̃Y ∩Z −→ X be an embedded res-
olution of singularities of Y ∩Z such that the strict transform of Y , denoted by
Ŷ , and the strict transform of Z, denoted by Ẑ, do not meet. Let {σY,Z , σZ,Y }
be a partition of unity subordinate to the open cover {X̃ \ Ẑ, X̃ \ Ŷ }. If
ω ∈ Ep,q

log (U ∩ V )◦, then σY,Zω ∈ Ep,q
log (U)◦ and σZ,Y ω ∈ Ep,q

log (V )◦. Therefore,
we get

ω = ψ(−σY,Zω, σZ,Y ω),

which proves the surjectivity of ψ.

Let now (ω, η) ∈ Ep,q
log (U)◦ ⊕ Ep,q

log (V )◦ be such that ψ(ω, η) = 0. Then, ω and
η agree on U ∩ V . Therefore, they define a smooth form on U ∪ V ; by abuse
of notation, we denote it by ω. The subtle point here is to know that, after
some blow-ups with centers contained in Y , ω will have logarithmic singularities
along the exceptional divisor, and the same is true after some blow-ups with
centers contained in Z. We have to prove that ω has logarithmic singularities
after blowing-up only centers contained in Y ∩ Z.

To this end we need the following easy lemma, which follows from Hironaka’s
resolution of singularities.

Lemma 3.7. Let X be a regular variety over a field of characteristic zero and
let C1 and C2 be two closed subsets. Let π : X̃ −→ X be a proper birational
morphism, which is an isomorphism in the complement of C1∪C2. Then, there
is a factorization

X̃2

ÂÂ?
??

??
??

?
π2

~~~~
~~

~~
~

X̃1

π1
ÃÃB

BB
BB

BB
B

X̃

π
~~~~

~~
~~

~~

X

where X̃1 and X̃2 are regular varieties, π1 and π2 are proper birational mor-
phisms, π1 is an isomorphism over the complement of C1 and π2 is an iso-
morphism over the complement of the strict transform of C2 in X̃1. More-
over, it is possible to choose the factorization in such a way that π−1

1 (C1) and
(π−1

2 ◦ π−1
1 )(C1 ∪ C2) are normal crossing divisors. ¤

Let πY ∩Z : X̃Y ∩Z −→ X be as before, and denote by DY ∩Z the exceptional di-
visor. Since ω ∈ Ep,q

log (U)◦, there exists an embedded resolution of singularities

X̃Y of Y with exceptional divisor DY , which we can assume to factor through a
proper birational morphism X̃Y −→ X̃Y ∩Z , and ω ∈ Ep,q

eXY

(log DY ). We apply

the previous lemma to the morphism X̃Y −→ X̃Y ∩Z and the closed subsets
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DY ∩Z and Ŷ . In this way we obtain a diagram

X̃ ′
Y

""DD
DD

DD
DD

{{ww
ww

ww
ww

w

X̃ ′
Y ∩Z

π′
Y ∩Z ##GG

GG
GG

GG
G

X̃Y

||yy
yy

yy
yy

X̃Y ∩Z

In X̃ ′
Y ∩Z we denote by Ŷ ′ and by Ẑ ′ the strict transforms of Y and Z, respec-

tively, and by D′
Y ∩Z the exceptional divisor. Now, since ω ∈ Ep,q

log (V )◦, we can

repeat the process. There exists an embedded resolution of singularities X̃ ′
Z of

Z in X with exceptional divisor D′
Z that factors through a proper birational

morphism X̃ ′
Z −→ X̃ ′

Y ∩Z . Then, ω ∈ Ep,q
eX′

Z

(log D′
Z). We apply the previous

lemma to this last morphism and the closed subsets D′
Y ∩Z and Ẑ ′ to obtain

the diagram

X̃ ′′
Z

""DD
DD

DD
DD

{{ww
ww

ww
ww

w

X̃ ′′
Y ∩Z

##GGGGGGGG
X̃ ′

Z

||zz
zz

zz
zz

X̃ ′
Y ∩Z

In X̃ ′′
Y ∩Z we denote by Ŷ ′′ and Ẑ ′′ the strict transforms of Y and Z, respectively,

and by D′′
Y ∩Z the exceptional divisor. To conclude the proof of the theorem,

it is enough to show that

ω ∈ Ep,q
eX′′

Y ∩Z

(log D′′
Y ∩Z).

This condition can be checked locally.
If x 6∈ D′′

Y ∩Z , by hypothesis, ωx is the germ of a smooth form.

Assume now that x ∈ D′′
Y ∩Z \ Ẑ ′′. We write D′

Z and D′′
Z for the preimages

of Z in X̃ ′
Z and X̃ ′′

Z , respectively. By construction, both are normal crossing
divisors. By hypothesis, ω ∈ Ep,q

eX′
(log D′

Z). By the functoriality of logarithmic

singularities, ω ∈ Ep,q
eX′′

(log D′′
Z). Let W be a neighborhood of x, whose inter-

section with Ẑ ′′ is empty. Therefore, it is isomorphic to an open subset of X̃ ′′
Z ,

hence
ω|W ∈ Γ(W,E p,q

eX′′
Y ∩Z

(log D′′
Y ∩Z)) = Γ(W,E p,q

eX′′
Z

(log D′′
Z)).

Finally, if x ∈ D′′
Y ∩Z ∩ Ẑ ′′, we use a similar argument.
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Remark 3.8. The argument of the previous theorem applies also to the com-
plex Epre(X) of [10], definition 7.16. Therefore, it that case, the morphism
between the pre-sheaf and the associated sheaf is an isomorphism. Observe
moreover that the same argument will apply to all the Zariski sheaves that we
will introduce in this paper.

The Deligne complex with logarithmic singularities. We will denote

D∗
log(X, p) = D∗(Elog(X), p).

Then, theorem 3.5 implies that

H∗
D(X, R(p)) ∼= H∗(Dlog(X, p)).

3.2 The Dlog-complex of log-log forms

Dlog-complexes. Recall that, to define the arithmetic Chow groups of an
arithmetic variety X as in [10], we need first an auxiliary complex of graded
abelian sheaves on the Zariski site of smooth real schemes that satisfies Gillet
axioms. As in [10], we will use the complex of sheaves Dlog. This sheaf is given,
for any smooth real scheme UR, by

Dlog(UR, p) = Dlog(UC, p)σ,

where σ is the involution that acts as complex conjugation on the space and
on the coefficients (see [10], §5.3).
Then, we need to choose a Dlog-complex over XR. That is, a complex C∗

XR
(∗) of

graded abelian sheaves on the Zariski topology of XR together with a morphism

Dlog,XR
−→ CXR

such that all the sheaves Cn
XR

(p) are totally acyclic (see [10], definitions 3.1 and
3.4). The Dlog-complex C plays the role of the fiber over the archimedean places
of the arithmetic ring A. The aim of this section is to construct a Dlog-complex
by mixing log and log-log forms.

Varieties with a fixed normal crossing divisor. We will follow the
notations of [10], §7.4, that we recall shortly. Let X be a complex algebraic
manifold of dimension d, and D a normal crossing divisor. We will denote by X
the pair (X,D). If W ⊆ X is an open subset, we will write W = (W,D ∩ W ).
In the sequel we will consider all operations adapted to the pair X. For instance,
if Y ( X is a closed algebraic subset and W = X \ Y , then an embedded

resolution of singularities of Y in X is a proper modification π : X̃ −→ X such
that π

∣∣
π−1(W )

: π−1(W ) −→ W is an isomorphism, and

π−1(Y ), π−1(D), π−1(Y ∪ D)
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are normal crossing divisors on X̃. Using Hironaka’s theorem on the reso-
lution of singularities [25], one can see that such an embedded resolution of
singularities exists.
Analogously, a normal crossing compactification of X will be a smooth com-
pactification X such that the adherence D of D, the subsets BX = X \X and
BX ∪ D are normal crossing divisors.

Logarithmic growth along infinity. Given a diagram of normal crossing
compactifications of X

X
′ ϕ // X

X

``AAAAAAA

OO

with divisors BX
′ and BX at infinity, respectively, proposition 2.40 gives rise

to an induced morphism

ϕ∗ : E
∗
X
〈BX〈D〉〉 −→ E

∗
X

′〈BX
′〈D′〉〉.

In order to have a complex that is independent of the choice of a particular
compactification we take the limit over all possible compactifications.

Definition 3.9. Let X = (X,D) be as above. Then, we define the complex
E∗

l,ll(X) of differential forms on X log along infinity and log-log along D as

E∗
l,ll(X) = lim

−→
Γ(X,E ∗

X
〈BX〈D〉〉),

where the limit is taken over all normal crossing compactifications X of X.

A Dlog-complex. Let X be a smooth real variety and D a normal crossing
divisor defined over R; as before, we write X = (X,D). For any U ⊆ X, the
complex E∗

l,ll(UC) is a Dolbeault algebra with respect to the wedge product.

Definition 3.10. For any Zariski open subset U ⊆ X, we put

D∗
l,ll,X(U, p) = (D∗

l,ll,X(U, p),dD) = (D∗(El,ll(UC), p)σ,dD),

where the operator D is as in definition 3.4 and σ is the involution that acts as
complex conjugation in the space and in the coefficients (see [10], 5.55). When
the pair X is understood, we write D∗

l,ll instead of D∗
l,ll,X . The complex D∗

l,ll

will be called the Dlog-complex of log-log forms or just the complex of log-log
forms.

Then, the analogue of [10], theorem 7.18, holds.

Theorem 3.11. The complex Dl,ll,X is a Dlog-complex on X. Moreover, it is
a pseudo-associative and commutative Dlog-algebra. ¤
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The cohomology of the complex Dl,ll,X . The main advantage of the
complex Dl,ll,X over the complex Dpre,X of [10] is the following result that is a
consequence of theorem 2.42 and theorem 3.5 (see [10], theorem 5.19, and [8]).

Theorem 3.12. The inclusion Dlog,X −→ Dl,ll,X is a quasi-isomorphism.
Therefore, the hypercohomology over X of the complex of sheaves Dl,ll,X , as
well as the cohomology of its complex of global sections, is naturally isomorphic
to the Deligne-Beilinson cohomology of X. ¤

3.3 Properties of Green objects with values in Dl,ll.

We start by noting that theorem 3.11 together with [10], section 3, provides us
with a theory of Green objects with values in Dl,ll,X .

Mixed forms representing the class of a cycle. Since we know the
cohomology of the complex of mixed forms, we obtain the analogue of propo-
sition 5.48 in [10], which is more precise than the analogue of proposition 7.20
in [10]. In particular, we have

Proposition 3.13. Let X be a smooth real variety and D a normal crossing
divisor. Put X = (X,D). Let y be a p-codimensional cycle on X with support
Y . Then, we have that the class of the cycle (ω, g) in H2p

Dl,ll,Y
(X, p) is equal to

the class of y, if and only if

−2∂∂̄[g]X = [ω] − δy. (3.14)

Proof. The proof is completely analogous to the proof of [10], 5.48, using the-
orem 3.12 and lemma 2.41.

Inverse images.

Proposition 3.15. Let f : X −→ Y be a morphism of smooth real vari-
eties, let DX , DY be normal crossing divisors on X, Y respectively, satisfying
f−1(DY ) ⊆ DX . Put X = (X,DX) and Y = (Y,DY ). Then, there exists a
contravariant f-morphism

f# : Dl,ll,Y −→ f∗Dl,ll,X .

Proof. By proposition 2.40, the pull-back of differential forms induces a mor-
phism of the corresponding Dolbeault algebras of mixed forms. This morphism
is compatible with the involution σ. Thus, this morphism gives rise to an
induced morphism between the corresponding Deligne algebras.

Push-forward. We will only state the most basic property concerning direct
images, which is necessary to define arithmetic degrees. Note however that
we expect that the complex of log-log forms will be useful in the study of non
smooth, proper, surjective morphisms. By proposition 2.26, we have
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Proposition 3.16. Let X = (X,D) be a proper, smooth real variety with
fixed normal crossing divisor D. Let f : X −→ Spec(R) denote the structural
morphism. Then, there exists a covariant f-morphism

f# : f∗Dl,ll,X −→ Dlog,Spec(R).

In particular, if X has dimension d, we obtain a well defined morphism

f# : Ĥ2d+2
Dl,ll,Zd+1(X, d) −→ Ĥ2

Dlog,Z1(Spec(R), 1) = R.

Note that, by dimension reasons, we have Zd+1 = ∅, and

Ĥ2d+2
Dl,ll,Zd+1(X, d) = H2d+1(Dl,ll(X, d + 1)) = H2d+1

D (X, R(d + 1).

Thus, every element of Ĥ2d+2
Dl,ll,Zd+1(X, d) is represented by a pair g = (0, g̃). The

morphism f# mentioned above, is then given by

g = (0, g̃) 7−→
(

0,
1

(2πi)d

∫

X

g

)
.

3.4 Arithmetic Chow rings with log-log forms

Arithmetic Chow groups. We are now in position to apply the machinery
of [10]. Let (A,Σ, F∞) be an arithmetic ring and let X be a regular arithmetic
variety over A. Let D be a fixed normal crossing divisor of XΣ stable under
F∞. As in the previous section, we will denote by X the pair (XR,D). The
natural inclusion Dlog −→ Dl,ll induces a Dlog-complex structure in Dl,ll. Then,
(X,Dl,ll) is a Dlog-arithmetic variety. Therefore, applying the theory of [10],

section 4, we define the arithmetic Chow groups ĈH
∗
(X,Dl,ll). These groups

will be called log-log arithmetic Chow groups.

Exact sequences. We start the study of these arithmetic Chow groups by
writing the exact sequences of [10], theorem 4.13. Observe that, since we have
better control on the cohomology of Dl,ll, we obtain better results than in [10],
§7.

Theorem 3.17. The following sequences are exact:

CHp−1,p(X)
ρ−→ D̃2p−1

l,ll (X, p)
a−→ ĈH

p
(X,Dl,ll)

ζ−→ CHp(X) −→ 0,

CHp−1,p(X)
ρ−→ H2p−1

D (XR, R(p))
a−→ ĈH

p
(X,Dl,ll)

(ζ,−ω)−→
CHp(X) ⊕ ZD2p

l,ll(X, p)
cl +h−→ H2p

D (XR, R(p)) −→ 0,

CHp−1,p(X)
ρ−→ H2p−1

D (XR, R(p))
a−→ ĈH

p
(X,Dl,ll)0

ζ−→ CHp(X)0 −→ 0.

¤
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Multiplicative properties. Since Dl,ll is a pseudo-associative and commu-
tative Dlog-algebra, we have

Theorem 3.18. The abelian group

ĈH
∗
(X,Dl,ll)Q =

⊕

p≥0

ĈH
p
(X,Dl,ll) ⊗ Q

is an associative and commutative Q-algebra with a unit. ¤

Inverse images. By proposition 2.40, there are some cases, where we can
define the inverse image for the log-log arithmetic Chow groups.

Theorem 3.19. Let f : X −→ Y be a morphism of arithmetic varieties over
A. Let E be a normal crossing divisor on YR and D a normal crossing divisor
on XR such that f−1(E) ⊆ D. Write X = (XR,D) and Y = (YR, E). Then,
there is defined an inverse image morphism

f∗ : ĈH
∗
(Y,Dl,ll) −→ ĈH

∗
(X,Dl,ll).

Moreover, it is a morphism of rings after tensoring with Q. ¤

Push-forward. We will state only the consequence of the integrability of
log-log forms.

Theorem 3.20. If X is projective over A, then there is a direct image mor-
phism of groups

f∗ : ĈH
d+1

(X,Dl,ll) −→ ĈH
1
(Spec A),

where d is the relative dimension of X. ¤

Relationship with other arithmetic Chow groups. Since we know the
cohomology of the complex Dl,ll, we can make a comparison statement more
precise than in [10], theorem 6.23.

Theorem 3.21. The structural morphism

Dlog,X −→ Dl,ll,X

induces a morphism

ĈH
∗
(X,Dlog) −→ ĈH

∗
(X,Dl,ll)

that is compatible with inverse images, intersection products and arithmetic

degrees. If X is projective, the isomorphism between ĈH
∗
(X,Dlog) and the
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arithmetic Chow groups defined by Gillet and Soulé (denoted by ĈH
∗
(X)) in-

duce morphisms

ĈH
∗
(X) −→ ĈH

∗
(X,Dl,ll) (3.22)

also compatible with inverse images, intersection products and arithmetic de-
grees. Moreover, if D is empty and X is projective, then the above morphisms
are isomorphisms. ¤

3.5 The Dlog-complex of log-log forms with arbitrary singular-
ities at infinity

The arithmetic Chow groups defined by Gillet and Soulé for quasi-projective
varieties use differential forms with arbitrary singularities in the boundary.
Therefore, in order to be able to recover the arithmetic Chow groups of Gillet
and Soulé, we have to introduce another variant of arithmetic Chow groups,
where we allow the differential forms to have arbitrary singularities in certain
directions.

Mixing log, log-log and arbitrary singularities. Let X be a complex
algebraic manifold and D a fixed normal crossing divisor of X. We write
X = (X,D).

Definition 3.23. For every Zariski open subset U of X, we write

E∗
l,ll,a,X(U) = lim

−→
U

Γ(U,E ∗
U
〈BU 〈D〉〉),

where the limit is taken over all diagrams

U
ι //

ι

ÂÂ@
@@

@@
@@

@ U

β

²²
X

such that ι is an open immersion, β is a proper morphism and BU = U \ U ,
D = β−1(D), BU ∪ D are normal crossing divisors.

Definition 3.24. Let X be a complex algebraic manifold and D a fixed normal
crossing divisor of X. We write X = (X,D) as before. For any Zariski open
subset U ⊆ X, we put

D∗
l,ll,a,X(U, p) = (D∗

l,ll,a,X(U, p),dD) = (D∗(El,ll,a,X(UC), p),dD).

If X is a smooth algebraic variety over R, and D, U are defined over R, we put

D∗
l,ll,a,X(U, p) = (D∗

l,ll,a,X(U, p),dD) = (D∗(El,ll,a,X(UC), p)σ,dD),

where σ is as in section 3.2.

Documenta Mathematica 10 (2005) 619–716



666 J. I. Burgos Gil, J. Kramer, U. Kühn

Note that, when X is quasi-projective, the varieties U of definition 3.23 are
not compactifications of U , but only partial compactifications. Therefore, the
sections of D∗

l,ll,a,X(U, p) have three different kinds of singularities. We can see

this more concretely as follows. Let Y be a closed subset of X with U = X \Y ,
and let X be a smooth compactification of X with Z = X \ X. Let η be a
section of D∗

l,ll,a,X(U, p). If we consider η as a singular form on X, then η is log

along Y (in the sense that it is log along a certain resolution of singularities
of Y ), log-log along D and has arbitrary singularities along Z. Therefore, in
general, we have

D∗
l,ll,a,X(U, p) 6= D∗

l,ll,a,U (U, p).

Nevertheless, when X is clear from the context, we will drop it from the nota-
tion.

Remark 3.25. If X is projective, the complexes of sheaves D∗
l,ll,a,X and D∗

l,ll,X

agree. In contrast, they do not agree, when X is quasi-projective. Note, more-
over, that, when X is quasi-projective, the complex D∗

l,ll,a,X does not com-
pute the Deligne-Beilinson cohomology of X, but a mixture between Deligne-
Beilinson cohomology and analytic Deligne cohomology. Nevertheless, as we
will see, the local nature of the purity property of Deligne-Beilinson cohomology
implies also a purity property for these complexes.

Logarithmic singularities and Blow-ups. Let X be a complex manifold,
D ⊆ X a normal crossing divisor, and Y ⊆ X an e-codimensional smooth
subvariety such that the pair (D,Y ) has normal crossings. Let π : X̃ −→ X

be the blow-up of X along Y . Write D̃ = π−1(D) and Ỹ = π−1(Y ). Let

i : Y −→ X and j : Ỹ −→ X̃ denote the inclusions, and let g : Ỹ −→ Y denote
the induced morphism. Observe that g is a projective bundle.

Proposition 3.26. Let p ≥ 0 be an integer. Then, we have:

(i) If Y ⊆ D, then the morphism Ωp
X(log D) −→ Rπ∗Ω

p
eX
(log D̃) is a quasi-

isomorphism, i.e.,

π∗Ω
p
eX
(log D̃) ∼= Ωp

X(log D), and

Rqπ∗Ω
p
eX
(log D̃) = 0, for q > 0.

(ii) If Y 6⊆ D and e > 1, then

π∗Ω
p
eX
(log D̃ ∪ Ỹ ) ∼= Ωp

X(log D),

Rqπ∗Ω
p
eX
(log D̃ ∪ Ỹ ) = 0, for q 6= 0, e − 1, and

Re−1π∗Ω
p
eX
(log D̃ ∪ Ỹ ) ∼= i∗(R

e−1g∗Ω
p−1
eY

(log D̃ ∩ Ỹ ))

∼= i∗(Ω
p−e
Y (log D ∩ Y ) ⊗ Re−1g∗Ω

e−1
eY /Y

).
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(iii) If Y 6⊆ D and e = 1, then π = id, and there is a short exact sequence

0 −→ Ωp
X −→ Ωp

X(log Y ) −→ i∗Ω
p−1
Y −→ 0.

Proof. The third statement is standard; the first statement is [19], Proposition
4.4 (ii).
Using [19], Proposition 4.4 (i), the fact that i∗ is an exact functor and that g
is a projective bundle, we obtain

π∗Ω
p
eX
(log D̃) ∼= Ωp

X(log D),

π∗j∗Ω
p−1
eY

(log D̃ ∩ Ỹ ) ∼= i∗g∗Ω
p−1
eY

(log D̃ ∩ Ỹ )

∼= i∗Ω
p−1
Y (log D ∩ Y ),

Rqπ∗Ω
p
eX
(log D̃) ∼= Rq(π ◦ j)∗Ω

p
eY
(log D̃ ∩ Ỹ )

∼= i∗R
qg∗Ω

p
eY
(log D̃ ∩ Ỹ )

∼=
{

i∗(Ω
p−q
Y (log D ∩ Y ) ⊗ Rqg∗Ω

q
eY /Y

), if 1 ≤ q < e,

0, if g ≥ e.

Let O(1) be the ideal sheaf of Ỹ in X̃. We consider the exact sequence

0 −→ Ωp
eX
(log D̃) −→ Ωp

eX
(log D̃ ∪ Ỹ )

Res−→ j∗Ω
p−1
eY

(log D̃ ∩ Ỹ ) −→ 0

and the corresponding long exact sequence obtained by applying the functor
Rπ∗. The connecting morphism of this long exact sequence

Rq−1π∗j∗Ω
p−1
eY

(log D̃ ∩ Ỹ ) ∼= i∗(Ω
p−q
Y (log D ∩ Y ) ⊗ Rq−1g∗Ω

q−1
eY /Y

)

−→ Rqπ∗Ω
p
eX
(log D̃) ∼= i∗(Ω

p−q
Y (log D ∩ Y ) ⊗ Rqg∗Ω

q
eY /Y

)

can be identified with the product by c1(O eX(1)), which is an isomorphism for
0 < q ≤ e − 1. The result now follows from this exact sequence.

This proposition has the following consequence.

Corollary 3.27. Let X be a complex algebraic manifold and Y a complex
subvariety of codimension e. Let X̃ −→ X be an embedded resolution of singu-
larities of Y obtained as in [25]. Then, we have

Rqπ∗Ω
p
eX
(log D) ∼=

{
Ωp

X , if q = 0,

0, if p < e or 0 < q < e − 1.

Proof. According to [25], X̃ is obtained by a series of elementary steps

X̃ = X̃N −→ X̃N−1 −→ . . . −→ X̃0 = X,
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where X̃k is the blow-up of X̃k−1 along a smooth subvariety Wk−1, contained
in the strict transform of Y , therefore of codimension greater or equal than e.
Moreover, if Dk is the union of exceptional divisors up to the step k, then the
pair (Dk,Wk) has normal crossings. The result follows by applying proposition
3.26 to each blow-up.

The following theorem implies in particular the weak purity condition for the
complex Dl,ll,a,X .

Theorem 3.28. Let X = (X,D) be as above. Let Y ⊆ X be a Zariski closed
subset of codimension greater or equal than p. Let c be the number of connected
components of Y of codimension p. Then, the natural morphisms

Hn
Dl,ll,a,Y (X, p) −→ Hn

Y (X, R(p))

are isomorphisms for all integers n. Therefore, we have

Hn
Dl,ll,a,Y (X, p) = 0, for n < 2p ,

H2p
Dl,ll,a,Y (X, p) ∼= R(p)c.

Proof. We fix a diagram

U
ι //

ι

ÂÂ@
@@

@@
@@

@ U

β

²²
X

such that ι is an open immersion, β is a proper morphism, and B = U \ U ,
D = β−1(D), B ∪ D are normal crossing divisors. Hence, U is an embedded
resolution of singularities of Y . We assume moreover that U is obtained from
X as X̃ is obtained from X in corollary 3.27.
By theorem 2.42, the complexes D∗

l,ll,a,X(X, p) and D∗
l,ll,a,X(U, p) are quasi-

isomorphic to the complexes D∗(E∗
X , p) and D∗(E∗

U
〈B〉, p), respectively.

By the definition of the Deligne complex and theorem 2.6.2 in [8], there are
quasi-isomorphisms

D∗(E∗
X , p) −→ s

(
E∗

X,R(p) → E∗
X /F pE∗

X

)
,

D∗(E∗
U
〈B〉, p) −→ s

(
E∗

U
〈B〉R(p) → E∗

U
〈B〉

/
F pE∗

U
〈B〉

)
.

By corollary 3.27 and theorem 2.5, the natural morphism

E∗
X /F pE∗

X −→ E∗
U
〈B〉

/
F pE∗

U
〈B〉

is a quasi-isomorphism. Hence, the morphism

s
(
D∗(E∗

X , p) → D∗(E∗
U
〈B〉, p)

)
−→ s

(
E∗

X,R(p) → E∗
U
〈B〉R(p)

)

is a quasi-isomorphism. Since the left hand complex computes Hn
Dl,ll,a,Y (X, p)

and the right hand complex computes Hn
Y (X, R(p)), we obtain the first state-

ment of the theorem. The second statement follows form the purity of singular
cohomology.
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Summing up the properties of the complex Dl,ll,a,X , we obtain

Theorem 3.29. The complex Dl,ll,a,X is a Dlog-complex on X. Moreover, it
is a pseudo-associative and commutative Dlog-algebra and satisfies the weak
purity condition (see [10], definition 3.1). ¤

3.6 Arithmetic Chow rings with arbitrary singularities at infin-
ity

Let A, X, D, and X be as at the beginning of section 3.4. Applying [10], section

4, we define the arithmetic Chow groups ĈH
∗
(X,Dl,ll,a). Then, theorems 3.18,

3.19, and 3.21 are also true for these groups. For theorem 3.20 to be true,
we need X to be projective, but in this case there is no difference between

ĈH
∗
(X,Dl,ll,a) and ĈH

∗
(X,Dl,ll).

Since Dl,ll,a,X satisfies the weak purity property, the analogue of theorem 3.17
reads as follows.

Theorem 3.30. The following sequence is exact:

CHp−1,p(X)
ρ−→ D̃2p−1

l,ll,a (X, p)
a−→ ĈH

p
(X,Dl,ll,a)

ζ−→ CHp(X) −→ 0.

¤

Another consequence of theorem 3.28 is the analogue of proposition 3.13, which
is proved in the same way.

Proposition 3.31. Let X be a smooth real variety and D a normal crossing
divisor. Put X = (X,D). Let y be a p-codimensional cycle on X with support
Y . Then, the class of the cycle (ω, g) in H2p

Dl,ll,a,Y (X, p) is equal to the class of
y, if and only if

−2∂∂̄[g]X = [ω] − δy. (3.32)

¤

From this proposition and theorem 3.30, we obtain the analogue of theorem
6.23 in [10]:

Theorem 3.33. Let ĈH
p
(X) be the arithmetic Chow groups defined by Gillet

and Soulé. If D = ∅, the assignment

[y, (ωy, g̃y)] 7→ [y, 2(2πi)d−p+1[gy]X ]

induces a well defined isomorphism

Ψ : ĈH
p
(X,Dl,ll,a) −→ ĈH

p
(X),

which is compatible with products and pull-backs.
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Remark 3.34. Note that, if f : X −→ Y is a proper morphism between
arithmetic varieties over A and such that fR : XR −→ YR is smooth, then
there is a covariant f -pseudo morphism (see [10], definition 3.71) that induces
a push-forward morphism

f∗ : ĈH
p
(X,Dl,ll,a) −→ ĈH

p
(Y,Dl,ll,a).

This push-forward is compatible with the push-forward defined by Gillet and
Soulé.

Remark 3.35. We can define Dl,ll,a,pre,X in the same way as Dl,ll,a,X by replac-
ing pre-log and pre-log-log forms for log and log-log forms. We then obtain a

theory of arithmetic Chow groups ĈH
p
(X,Dl,ll,a,pre) with analogous properties.

Note however that since we have not established the weak purity property of
pre-log forms, we do not have the analogue of theorem 3.33.

4 Bott-Chern forms for log-singular hermitian vector bundles

The arithmetic intersection theory of Gillet and Soulé is complemented by an
arithmetic K-theory and a theory of characteristic classes. A main ingredient
of the theory of arithmetic characteristic classes are the Chern forms and Bott-
Chern forms for hermitian vector bundles. In this section, after defining the
class of singular metrics considered in this paper, we will generalize the theory
of Chern forms and Bott-Chern forms to include this class of singular metrics.

4.1 Chern forms for hermitian metrics

Here we recall the Chern-Weil theory of characteristic classes for hermitian
vector bundles. By a hermitian metric we will always mean a smooth hermitian
metric.

Chern forms. Let B ⊆ R be a subring, let φ ∈ B[[T1, . . . , Tn]] be any
symmetric power series in n variables, and let Mn(C) be the algebra of n × n
complex matrices. For every k ≥ 0, let φ(k) be the homogeneous component
of φ of degree k. We will denote also by φ(k) : Mn(C) −→ C the unique
polynomial map which is invariant under conjugation by GLn(C) and whose
value in the diagonal matrix diag(λ1, . . . , λn), λi ∈ C, is φ(k)(λ1, . . . , λn). More
generally, if A is any B-algebra, φ(k) defines a map φ(k) : Mn(A) −→ A, and if
I ⊆ A is a nilpotent subalgebra, we can define φ =

∑
k φ(k) : Mn(I) −→ A.

Let E = (E, h) be a hermitian vector bundle of rank n on a complex manifold
X. Let ξ = {ξ1, . . . , ξn} be a frame for E in an open subset V ⊆ X. We denote
by h(ξ) = (hij(ξ)) the matrix of h in the frame ξ. Let K(ξ) be the curvature
matrix K(ξ) = ∂̄(∂h(ξ) ·h(ξ)−1). The Chern form associated to φ and E is the
form

φ(E) = φ(−K(ξ)) ∈ E∗
V .
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Basic properties. The following properties of the Chern forms are well
known.

Theorem 4.1. (i) By the invariance of the φ(k), the Chern form φ(E) is
independent of the choice of the frame ξ. Therefore, it globalizes to a
differential form φ(E) ∈ E∗

X .

(ii) The Chern forms are closed.

(iii) The component φ(k) belongs to D2k(EX , k) = Ek,k
X ∩ E2k

X,R(k).

(iv) If XR = (X,F∞) is a real manifold, the vector bundle E is defined over
R, and the hermitian metric h is invariant under F∞, then φ(k)(E, h) ∈
D2k(EX , k)σ, where σ is as in definition 3.10.

¤

Chern classes. Since the Chern forms are closed, they represent cohomol-
ogy classes φ(E) = [φ(E, h)] ∈ ⊕

k H2k(D(EX , k)). If X is projective, then⊕
k H2k(D(EX , k)) =

⊕
k H2k

D (X, R(k)), hence we obtain classes in Deligne-
Beilinson cohomology

φ(E) ∈
⊕

k

H2k
D (X, R(k)).

Note that, to simplify notations, the function φ will have different meanings
according to its arguments. For instance, φ(E, h) = φ(E) will mean the Chern
form that depends on the bundle and the metric, whereas φ(E) will mean the
Chern class that depends only on the bundle.
When X is quasi-projective, by means of smooth at infinity hermitian metrics,
the Chern-Weil theory also allows us to construct Chern classes in Deligne-
Beilinson cohomology.
Let E be an algebraic vector bundle on the quasi-projective complex manifold
X. By [11], proposition 2.2, there exists a compactification X̃ of X and a vector

bundle Ẽ on X̃ such that Ẽ|X = E. Let h̃ be a smooth hermitian metric on

Ẽ and let h be the induced metric on E. The hermitian metric h is said to be
smooth at infinity.
With these notation, we write

φ(E, h) = φ(Ẽ, h̃)|X .

By [11], the class represented by φ(E, h) does not depend on the choice of X̃,

Ẽ, nor h̃.
Recall that there are Chern classes defined in the Chow ring φ(E)CH ∈ CH∗(X);
they are compatible with the Chern classes in cohomology. More precisely, we
have
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Proposition 4.2. The composition

CHk(X)
cl−→ H2k

D (X, R(k)) −→ H2k(D(EX , k))

sends φ(k)(E)CH to φ(k)(E).

Proof. If X is projective, then H2k
D (X, R(k)) = Hk,k(X, C) ∩ H2k(X, R(k)).

Therefore, the result follows from the compatibility of Chern classes on the
Chow ring and on ordinary cohomology (see, e.g., [16], §19). If X is quasi-
projective, the result follows from the projective case by functoriality.

4.2 Bott-Chern forms for hermitian metrics

Here we recall the theory of Bott-Chern forms. For more details we refer to
[36], [11], [9].

Bott-Chern forms. Let

E : 0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0

be a short exact sequence of hermitian vector bundles; by this we mean a short
exact sequence of vector bundles, where each vector bundle is equipped with
an arbitrarily chosen hermitian metric. Let φ be as in 4.1 and assume E has
rank n.

The Chern classes behave additively with respect to exact sequences, i.e.,

φ(E) = φ(E′ ⊕ E′′).

In general, this is not true for the Chern forms. This lack of additivity on the
level of Chern forms is measured by the Bott-Chern forms.

The fundamental result of the theory of Bott-Chern forms is the following
theorem (see [5], [2], [17]).

Theorem 4.3. There is a unique way to attach to every sequence E as above,
a form φ̃(E) in

⊕

k

D̃2k−1(EX , k) =
⊕

k

D2k−1(EX , k)/ Im(dD)

satisfying the following properties

(i) dD φ̃(E) = φ(E′ ⊕ E′′, h′ ⊕ h′′) − φ(E, h).

(ii) f∗φ̃(E) = φ̃(f∗E), for every holomorphic map f : X −→ Y .

(iii) If (E, h) = (E′, h′)
⊥
⊕ (E′′, h′′), then φ̃(E) = 0.
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There are different methods to construct Bott-Chern forms. We will introduce
a variant of the method used in [17] and that is the dual of the construction
used in [11].

The first transgression bundle. Let O(1) be the dual of the tautological
line bundle of P1 with the standard metric. If (x : y) are projective coordinates
of P1

C, then x and y are generating global sections of O(1) with norms

‖x‖2 =
xx̄

xx̄ + yȳ
and ‖y‖2 =

yȳ

xx̄ + yȳ
.

Let

E : 0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0

be a short exact sequence of hermitian vector bundles such that h′ is induced
by h.
Let p1, p2, be the first and the second projection of X × P1

C, respectively. We
write E(n) = p∗1E ⊗ p∗2O(n). On this vector bundle we consider the metric
induced by h and the standard metric of O(n), and we denote by E(n) this
hermitian vector bundle. Analogously, we write E′′(n) = p∗1E

′′ ⊗ p∗2O(n) and

denote by E
′′
(n) the corresponding hermitian vector bundle.

Definition 4.4. The first transgression bundle tr1(E) is the kernel of the mor-
phism

E(1) ⊕ E
′′
(1) −→ E′′(2)

(s, t) 7−→ s ⊗ x − t ⊗ y

with the induced metric.

Note that the definition of tr1(E) includes the metric; therefore, the expression
φ(tr1(E)) means the Chern form of the hermitian vector bundle tr1(E) and not
its Chern class.
The key property of the first transgression bundle is the following. We denote
by i0 and i∞ the morphisms X −→ X × P1 given by

i0(p) = (p, (0 : 1)),

i∞(p) = (p, (1 : 0)).

Then, i∗0(tr1(E)) is isometric to (E, h) and i∗∞(tr1(E)) is isometric to (E′, h′)
⊥
⊕

(E′′, h′′).

The construction of Bott-Chern forms. Let t = x/y be the absolute
coordinate of P1. Let us consider the current W1 =

[
− 1

2 log(tt̄)
]

on P1 given
by

W1(η) =

[
−1

2
log(tt̄)

]
(η) = − 1

2πi

∫

P1

η

2
log(tt̄).
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By the Poincaré Lelong equation

−2∂∂̄

[
−1

2
log(tt̄)

]
= δ(1:0) − δ(0:1). (4.5)

Definition 4.6. Let X be a complex manifold, E an exact sequence of hermi-
tian vector bundles

E : 0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0,

such that the metric h′ is induced by the metric h. The Bott-Chern form
associated to the exact sequence E is the differential form over X given by

φ(E) = W1(φ(tr1(E))) = − 1

2πi

∫

P1

φ(tr1(E))
1

2
log(tt̄).

Note that we use also the letter φ to denote the Bott-Chern form associated to a
power series φ because the meaning of φ(E) is determined again by the argument
E , which, in this case, is an exact sequence of hermitian vector bundles.

Definition 4.7. If E is an exact sequence as above, but such that h′ is not the
metric induced by h, then we consider the exact sequences

λ1E : 0 −→ (E′, h̃′) −→ (E, h) −→ (E′′, h′′) −→ 0,

where h̃′ is the hermitian metric induced by h, and

λ2E : 0 −→ 0 −→ (E′ ⊕ E′′, h̃′ ⊕ h′′) −→ (E′ ⊕ E′′, h′ ⊕ h′′) −→ 0.

The Bott-Chern form associated to the exact sequence E is

φ(E) = φ(λ1E) + φ(λ2E).

Proposition 4.8. If E is an exact sequence as above with h′ induced by h, then
the Bott-Chern forms obtained from definition 4.6 and definition 4.7 agree.

Proof. In this case we have λ1E = E . Thus, we have to show that φ(λ2E) = 0.
But tr1(λ

2(E)) is the bundle p∗1(E
′ ⊕ E′′) with the hermitian metric h′ ⊕ h′′,

which does not depend on the coordinate of P1. Therefore, we have

φ(λ2E) = − 1

2πi

∫

P1

φ(E′ ⊕ E′′, h′ ⊕ h′′)
1

2
log(tt̄) = 0.

It is easy to see that the forms φ(E) belong to
⊕

k D2k−1(EX , k). We will

denote by φ̃(E) the class of φ(E) in the group

⊕

k

D̃2k−1(EX , k) =
⊕

k

D2k−1(EX , k)/ Im(dD).
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Proposition 4.9. The classes φ̃(E) satisfy the properties of theorem 4.3.

Proof. The first property follows from the Poincaré lemma (see, e.g., [36]).
The second property is clear, because all the ingredients of the construction
are functorial. We prove the third property. If E is a split exact sequence with

(E, h) = (E′, h′)
⊥
⊕ (E′′, h′′) and the obvious morphisms, then

tr1(E) = E
′
(1) ⊕ E

′′
(0)

with the induced metrics. Let ω be the first Chern form of the line bundle
OP1(1). Then, we find

φ(E
′
(1) ⊕ E

′′
(0)) = p∗1(a) + p∗1(b) ∧ p∗2(ω),

where a and b are suitable forms on X. Now we get

φ(E) = − 1

2πi

∫

P1

(p∗1(a) + p∗1(b) ∧ p∗2(ω))
1

2
log(tt̄)

= − 1

2πi
a ∧

∫

P1

1

2
log(tt̄) − 1

2πi
b ∧

∫

P1

ω

2
log(tt̄) = 0.

Change of metrics. Of particular importance is the Bott-Chern form asso-
ciated to a change of hermitian metrics. Let E be a holomorphic vector bundle
of rank n with two hermitian metrics h and h′. We denote by tr1(E, h, h′) the
first transgression bundle associated to the short exact sequence

0 −→ 0 −→ (E, h) −→ (E, h′) −→ 0.

Explicitly, tr1(E, h, h′) is isomorphic to p∗1E with the embedding

p∗1E −→ E(1) ⊕ E
′
(1)

s 7−→ (s ⊗ y, s ⊗ x);

here E = (E, h) and E
′
= (E, h′). Therefore, if ξ is a local frame for E on an

open set U , it determines a local frame for tr(E, h, h′), also denoted by ξ, on
U × P1. In this frame the metric is given by the matrix

yȳh(ξ) + xx̄h′(ξ)

xx̄ + yȳ
. (4.10)

Definition 4.11. Let X be a complex manifold, E be a complex vector bundle
of rank n, h, h′ two hermitian metrics on E, and φ as in section 4.1. The Bott-
Chern form associated to the change of metric (E, h, h′) is the Bott-Chern form
associated to the short exact sequence

0 −→ 0 −→ (E, h) −→ (E, h′) −→ 0.

We will denote this form by φ(E, h, h′) or, if E is understood, by φ(h, h′). This
form satisfies

dD φ(E, h, h′) = −2∂∂̄φ(E, h, h′) = φ(E, h′) − φ(E, h). (4.12)

Documenta Mathematica 10 (2005) 619–716



676 J. I. Burgos Gil, J. Kramer, U. Kühn

4.3 Iterated Bott-Chern forms for hermitian metrics

The theory of Bott-Chern forms can be iterated defining higher Bott-Chern
forms for exact k-cubes of hermitian vector bundles. This theory provides
explicit representatives of characteristic classes for higher K-theory (see [11],
[9]).

Exact squares. Let 〈−1, 0, 1〉 be the category associated to the ordered set
{−1, 0, 1}.

Definition 4.13. A square of vector bundles over X is a functor from the
category 〈−1, 0, 1〉2 to the category of vector bundles over X. Given a square
of vector bundles F and numbers i ∈ {1, 2}, j ∈ {−1, 0, 1}, then the (i, j)-face
of F , denoted by ∂j

i F , is the sequence

∂j
1F : Fj,−1 −→ Fj,0 −→ Fj,1,

∂j
2F : F−1,j −→ F0,j −→ F1,j .

A square of vector bundles is called exact, if all the faces are short exact se-
quences. A hermitian exact square F is an exact square F such that the vector
bundles Fi,j are equipped with arbitrarily chosen hermitian metrics. If F is
a hermitian exact square, then the faces of F are equipped with the induced
hermitian metrics. The reader is referred to [11] for the definition of exact
n-cubes.

Let φ be as before and let F be a hermitian exact square of vector bundles over
X such that F0,0 has rank n. Then, the form

φ(∂−1
1 F ⊕ ∂1

1F) − φ(∂0
1F) − φ(∂−1

2 F ⊕ ∂1
2F) + φ(∂0

2F)

is closed in the complex
⊕

p D∗(EX , p). The iterated Bott-Chern form is a
differential form

φ(F) ∈
⊕

p

D2p−2(EX , p)

satisfying

dD φ(F) = φ(∂−1
1 F ⊕ ∂1

1F) − φ(∂0
1F) − φ(∂−1

2 F ⊕ ∂1
2F) + φ(∂0

2F).

The second transgression bundle.

Definition 4.14. Let F be a hermitian exact square such that for j = −1, 0, 1,
the hermitian metrics of the vector bundles Fj,−1 and F−1,j are induced by
the metrics of Fj,0 and F0,j , respectively. The second transgression bundle
associated to F is the hermitian vector bundle on X × P1 × P1 given by

tr2(F) = tr1
(
tr1(∂

−1
2 F) −→ tr1(∂

0
2F) −→ tr1(∂

1
2F)

)
.
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The second transgression bundle satisfies

tr2(F)|X×P1×(0:1) = tr1(∂
0
2F),

tr2(F)|X×P1×(1:0) = tr1(∂
−1
2 F)

⊥
⊕ tr1(∂

1
2F),

tr2(F)|X×(0:1)×P1 = tr1(∂
0
1F),

tr2(F)|X×(1:0)×P1 = tr1(∂
−1
1 F)

⊥
⊕ tr1(∂

1
1F).

(4.15)

The second Wang current. On P1 × P1 we put homogeneous coordinates
((x1 : y1), (x2 : y2)); let t1 = x1/y1 and t2 = x2/y2.

Definition 4.16. The second Wang current is the current on P1×P1 given by

W2 =
1

4

[
log(t1t̄1)

(
d t2
t2

− d t̄2
t̄2

)
− log(t2t̄2)

(
d t1
t1

− d t̄1
t̄1

)]
.

Observe that W2 ∈ D2(D∗
(P1)2 , 2), where D∗

(P1)2 is the Dolbeault complex of

currents on P1 × P1. Moreover, we can write

W2 =

[(
−1

2
log(t1t̄1)

)
•

(
−1

2
log(t2t̄2)

)]
, (4.17)

where • is the product in the Deligne complex (see definition 3.4).
For p = (x0 : y0) ∈ P1, i = 1, 2, let ιi,p : P1 −→ P1 × P1 be the inclusion given
by

ι1,p(x : y) = (x0 : y0) × (x : y),

ι2,p(x : y) = (x : y) × (x0 : y0).

Proposition 4.18. We have the equality

dD W2 = (ι1,(1:0))∗W1 − (ι1,(0:1))∗W1 − (ι2,(1:0))∗W1 + (ι2,(0:1))∗W1.

Proof. This proposition follows easily from a residue computation. Formally,
we can interpret it as the Leibniz rule for the Deligne complex and equations
(4.5), (4.17).

The iterated Bott-Chern form.

Definition 4.19. Let F be a hermitian exact square satisfying the condition of
definition 4.14. The iterated Bott-Chern form associated to F is the differential
form given by

φ(F) = W2(φ(F)) =
1

(4πi)2

∫

P1×P1

φ(tr2(F)) ∧ log(t1t̄1)

(
d t2
t2

− d t̄2
t̄2

)
−

1

(4πi)2

∫

P1×P1

φ(tr2(F)) ∧ log(t2t̄2)

(
d t1
t1

− d t̄1
t̄1

)
.
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When F does not satisfy the condition of definition 4.14 we proceed as follows.
Let λk

i F , i = 1, 2, k = 1, 2, be the hermitian exact square determined by

∂j
i (λk

i F) = λk(∂j
i F) (j = −1, 0, 1);

here λk(·) is as in definition 4.7.

Definition 4.20. Let F be a hermitian exact square. Then, the iterated Bott-
Chern form associated to F is the differential form given by

φ(F) = φ(λ1
1λ

1
2F) + φ(λ1

1λ
2
2F) + φ(λ2

1λ
1
2F) + φ(λ2

1λ
2
2F).

As in the case of exact sequences, if F satisfies the condition of definition 4.14,
then the iterated Bott-Chern forms obtained by means of definition 4.19 and
definition 4.20 agree.

Theorem 4.21. The second iterated Bott-Chern form satisfies

dD φ(F) = φ(∂−1
1 F ⊕ ∂1

1F) − φ(∂0
1F) − φ(∂−1

2 F ⊕ ∂1
2F) + φ(∂0

2F).

Proof. This follows from (4.15) and proposition 4.18.

The case of three different metrics. Let X be a complex manifold, E
a holomorphic vector bundle on X and h, h′, h′′ smooth hermitian metrics on
E. We will denote by F(E, h, h′, h′′) the hermitian exact square

0 −−−−→ 0 −−−−→ 0
y

y
y

0 −−−−→ (E, h) −−−−→ (E, h′′)
y

y
y

0 −−−−→ (E, h′) −−−−→ (E, h′′)

where the faces ∂j
1 are the rows and the faces ∂j

2 are the columns. As a
shorthand, we will denote the hermitian vector bundle tr2(F(E, h, h′, h′′)) by
tr2(E, h, h′, h′′), or simply by tr2(h, h′, h′′), if E is understood.

Definition 4.22. The iterated Bott-Chern form associated to the metrics h,
h′, h′′ is the differential form given by

φ(E, h, h′, h′′) = φ(F(E, h, h′, h′′)).

Proposition 4.23. The iterated Bott-Chern form satisfies

dD φ(E, h, h′, h′′) = φ(E, h, h′) + φ(E, h′, h′′) + φ(E, h′′, h).

Proof. By theorem 4.21, we have

dD φ(E, h, h′, h′′) = φ(E, h′, h′′) − φ(E, h, h′′) − φ(E, h′′, h′′) + φ(E, h, h′).

A direct computation shows that φ(E, h′′, h′′) = 0 and that φ(E, h, h′′) =
−φ(E, h′′, h), which implies the result.
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4.4 Chern forms for singular hermitian metrics

There are various successful concepts of singular metrics in Arithmetic and
Diophantine Geometry, see [3], [14], [33], and [34]. For our purposes the most
important are: Faltings’s notion of a metric with logarithmic singularities along
a divisors with normal crossings (see [14]) and Mumford’s notion of a good
metric (see [34]). Both concepts have in common nature that automorphic
vector bundles (equipped with their natural metrics) have the required local
behavior. And, in fact, the application to automorphic vector bundles was the
driving motivation to establish these definitions. For our purposes we will need
a more precise description of the kind of metrics that appear when studying
automorphic vector bundles.

Faltings’s logarithmic singular metric. Let X be a complex manifold
and let D be a normal crossing divisor. Put U = X \ D, and let j : U −→ X
be the inclusion. Let L be a line bundle on X and L0 the restriction to U .
A smooth metric h on L0 is said to have logarithmic singularities along D, if,
for any coordinate open subset V adapted to D and every non vanishing local
section s, there exists a number N ∈ N such that

max{h(s), h−1(s)} ≺
∣∣∣∣ min
j=1,..,k

{log |rj |}
∣∣∣∣
N

. (4.24)

Observe that this definition does not give any information on the behavior of
the Chern form associated to the metric.

Good metrics in the sense of Mumford. We recall the notion of a good
metric in the sense of Mumford, see [34].

Definition 4.25. Let E be a rank n vector bundle on X and E0 the restriction
to U . A smooth metric h on E0 is said to be good on X, if, for all x ∈ D, there
exist a neighborhood V adapted D and a holomorphic frame ξ = {e1, . . . , en}
such that, writing h(ξ)ij = h(ei, ej), we have:

(i) |h(ξ)ij |,det(h)−1 ≺
(∏k

i=1 log(ri)
)N

for some N ∈ N.

(ii) The 1-forms (∂h(ξ) · h(ξ)−1)ij are good.

A vector bundle provided with a good hermitian metric will be called a good
hermitian vector bundle.

Lemma 4.26. If (E, h) is a good hermitian vector bundle, then the 1-forms
(∂h(ξ) · h(ξ)−1)ij are pre-log-log forms.

Proof. Since a differential form with Poincaré growth has log-log growth (see
[10], §7.1), we have that (∂h(ξ) · h(ξ)−1)ij and d(∂h(ξ) · h(ξ)−1)ij have log-log
growth. Since the condition of having log-log growth is bihomogeneous and
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(∂h(ξ) ·h(ξ)−1)ij has pure bidegree (1, 0), we have that ∂(∂h(ξ) ·h(ξ)−1)ij and
∂̄(∂h(ξ) · h(ξ)−1)ij have log-log growth. Finally, since

∂(∂h(ξ) · h(ξ)−1) = ∂h(ξ) · h(ξ)−1 ∧ ∂h(ξ) · h(ξ)−1,

the form ∂∂̄(∂h(ξ) · h(ξ)−1)i,j also has log-log growth.

A fundamental property of the concept of good metrics is the following result
of Mumford, see [34].

Proposition 4.27. Let X, D, and U be as before.

(i) Let (E0, h) be a vector bundle over U . Then, it has at most one extension
to a vector bundle E to X such that h is good along D.

(ii) If (E, h) is a good hermitian vector bundle, then, for any power series
φ, the Chern form φ(E, h) is good. Moreover, its associated current[
φ(k)(E, h)

]
X

represents the Chern class φ(E) of E. ¤

Good Metrics of infinite order. Note that with the concept of good
metric we have control on the local behavior of the Chern forms and of the
cohomology class represented by its associated currents. As we will see later,
we can also control the local behavior of the Bott-Chern forms. In order to
have control on the cohomology classes represented by the Chern forms we
need a slightly stronger definition, that is the analogue of our definition 2.62
of Poincaré singular forms.

Definition 4.28. Let X, D, and U be as before. Let E be a rank n vector
bundle on X and let E0 be the restriction of E to U . A smooth metric on E0

is said to be good of infinite order (along D), if, for every x ∈ D, there exist a
trivializing open coordinate neighborhood V adapted to D and a holomorphic
frame ξ = {e1, . . . , en} such that, writing h(ξ)ij = h(ei, ej), we have:

(i) The functions h(ξ)ij , det(h(ξ))−1 belong to Γ(V,E 0
X〈D〉).

(ii) The 1-forms (∂h(ξ) · h(ξ)−1)ij are Poincaré singular.

A vector bundle equipped with a good hermitian metric of infinite order will
be called a ∞-good hermitian vector bundle.

Log-singular hermitian metrics. Although the hermitian metrics we are
interested in, the automorphic hermitian metrics, are ∞-good, we will consider
a slightly bigger set of singular metrics, the log-singular metrics, for which we
will be able to define arithmetic characteristic classes.

Definition 4.29. Let X, D, and U be as before. Let E be a rank n vector
bundle on X and let E0 be the restriction of E to U . A smooth metric on
E0 is said to be log-singular (along D), if, for every x ∈ D, there exist a
trivializing open coordinate neighborhood V adapted to D and a holomorphic
frame ξ = {e1, . . . , en} such that, writing h(ξ)ij = h(ei, ej), we have
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(i) The functions h(ξ)ij , det(h(ξ))−1 belong to Γ(V,E 0
X〈D〉).

(ii) The 1-forms (∂h(ξ) · h(ξ)−1)ij belong to Γ(V,E 1,0
X 〈〈D〉〉).

A vector bundle equipped with a log-singular hermitian metric will be called a
log-singular hermitian vector bundle.

Note that, if a smooth metric on E0 is log-singular, then the conditions of
definition 4.29 are satisfied in every holomorphic frame in every trivializing
open coordinate neighborhood V adapted to D.

Remark 4.30. By the very definition of log-singular metrics, the Chern forms
φ(E, h) belong to the group ⊕kD2k(EX〈〈D〉〉, k), if (E, h) is a log-singular
hermitian vector bundle. Moreover, as we will see in proposition 4.61, the form
φ(E, h) represents the Chern class φ(E) in H∗

D(X, R(∗)).

Basic properties of log-singular hermitian metrics. The following
properties are easily verified.

Proposition 4.31. Let X, D, and U be as before. Let E and F be vector
bundles on X, and let E0 and F0 be their restrictions to U . Let hE and hF be
smooth hermitian metrics on E0 and F0. Write E = (E, hE) and F = (F, hF ).

(i) The hermitian vector bundle E
⊥
⊕ F is log-singular along D, if and only

if, E and F are log-singular along D.

(ii) If E and F are log-singular along D, then the tensor product E ⊗ F , the

exterior and symmetric powers ΛnE, SnE, the dual bundle E
∨
, and the

bundle of homomorphisms Hom(E,F ), with their induced metrics, are
log-singular along D.

¤

Remark 4.32. Note however that the condition of being log-singular is not
stable under taking general quotients and subbundles. That is, if (E, h) is a
hermitian vector bundle, log-singular along a normal crossing divisor D, and
E′ is a subbundle or a quotient bundle, then the induced metric on E′ need
not be log-singular along D. For instance, let X = A2 with coordinates (t, z).
Let E = OX ⊕OX be the trivial rank two vector bundle with hermitian metric
given, in the frame {e1, e2}, by the matrix

H =

(
(log(1/|z|))−1 0

0 1

)
. (4.33)

This hermitian metric is log-singular along the divisor D = {z = 0}. But the
subbundle generated by the section e1 + te2 with the induced metric does not
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satisfy the second condition of definition 4.29. Namely, let h(t, z) = ‖e1+te2‖2.
Then, we find

h(t, z) = tt̄ + (log(1/|z|))−1,

∂h/h =
t̄ d t

tt̄ + (log(1/|z|))−1
+

d z

z(log(1/|z|))2(tt̄ + (log(1/|z|))−1)
.

But the function t̄/(tt̄ + (log(1/|z|))−1) is not log-log along D, as can be seen
by considering the set of points

t =
√

(log(1/|z|))−1.

In this concrete case, the induced metric is not far from being log-singular: If
X̃ is the blow-up of X along the point (0, 0) and D̃ is the pre-image of D, then

the metric h is log-singular along D̃. See also proposition 4.59 for a related
example.

Remark 4.34. The condition of being log-singular is also not stable under
extensions. That is, let

0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0

be a short exact sequence with h′ and h′′ the hermitian metrics induced by h.
If h′ and h′′ are log-singular, then h need not be log-singular.

Functoriality of log-singular metrics. The following result is a direct
consequence of the definition and the functoriality of log forms and log-log
forms.

Proposition 4.35. Let X, X ′ be complex manifolds and let D, D′ be normal
crossing divisors of X, X ′, respectively. If f : X ′ −→ X is a holomorphic map
such that f−1(D) ⊆ D′ and (E, h) is a log-singular hermitian vector bundle on
X, then (f∗E, f∗h) is a log-singular hermitian vector bundle on X ′. ¤

4.5 Bott-Chern forms for singular hermitian metrics

Bott-Chern forms for log-singular hermitian metrics. In order to
define characteristic classes of log-singular hermitian metrics with values in the
log-log arithmetic Chow groups, we have to show that the Bott-Chern forms
associated to a change of metric between a smooth metric and a log-singular
metric is a log-log form. By the proof of the next theorem, it is clear that, even
if we restrict ourselves to ∞-good hermitian metrics, the Bott-Chern forms are
not necessarily Poincaré singular, but log-log. Therefore, the log-log forms are
an essential ingredient of the theory and not only a technical addition to have
the Poincaré lemma.
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Theorem 4.36. Let X be a complex manifold and let D be a normal crossing
divisor. Put U = X \ D. Let E be a vector bundle on X.

(i) If h is a smooth hermitian metric on E and h′ is a smooth hermitian
metric on E|U , which is log-singular along D, then the Bott-Chern form
φ(E, h, h′) belongs to the group

⊕
k D2k−1(EX〈〈< D〉〉, k).

(ii) If h and h′ are smooth hermitian metrics on E and h′′ is a smooth hermi-
tian metric on E|U , which is log-singular along D, the iterated Bott-Chern
form φ(E, h, h′, h′′) belongs to the group

⊕
k D2k−2(EX〈〈D〉〉, k).

Proof. Let V be a trivializing coordinate subset adapted to D with coordinates
(z1, . . . , zd). Thus, D has equation z1 · · · zk = 0; we put ri = |zi|. We may also
assume that V is contained in a compact subset of X. Let ξ = {ei} be a local
holomorphic frame for E. Let g be the hermitian metric of tr1(E, h, h′). Since
the vector bundle tr1(E, h, h′) is isomorphic to p∗1E, the holomorphic frame ξ
induces a holomorphic frame (also denoted by ξ) of tr1(E, h, h′).

For the rest of the proof the frame ξ will be fixed. Therefore, we drop it from
the notation and we write

H = h(ξ), Hij = h(ξ)ij = h(ei, ej).

We use the same notation for the metrics h′ and g.

Let (x : y) be homogeneous coordinates of P1. Write t = x/y. We decompose
P1 into two closed sets

P1
+ = {(x : y) ∈ P1 | |x| ≥ |y|} and P1

− = {(x : y) ∈ P1 | |x| ≤ |y|}.

Then, we write

φ(h, h′) = φ+(h, h′) + φ−(h, h′),

with

φ±(h, h′) =
−1

4πi

∫

P1
±

φ(tr1(h, h′)) log(tt̄). (4.37)

We first show that the form φ−(h, h′) is log-log along D. One technical difficulty
that we have to solve at this point is that the differential form φ(tr1(h, h′)) is, in
general, not a log-log form along D × P1, because the vector bundle tr1(h, h′)
need not be log-singular along D × P1. This is the reason why we have to
introduce a new class of singular functions.

Definition 4.38. For any pair of subsets I, J ⊆ {1, . . . , d} and integers n,K ≥
0, we say that a smooth complex function f on (V \D)× P1

− has singularities
of type (n, α, β) of order K if there is an integer N ≥ 0 such that, for any pair
of multi-indices α, β ∈ Zd

≥0 and integers a, b ≥ 0 with |α + β| + a + b ≤ K, it
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holds the estimate

∣∣∣∣
∂|α|

∂zα

∂|β|

∂zβ

∂a

∂t

∂b

∂t̄
f(z1, . . . , zd, t)

∣∣∣∣ ≺
(

1

|t| + (
∏k

i=1 log(1/ri))−N

)n+a+b

·

·

∣∣∣
∏k

i=1 log(log(1/ri))
∣∣∣
N

r(γI+γJ+α+β)≤k(log(1/r))(γI+γJ )≤k
.

We say that f has singularities of type (n, α, β) of infinite order, if it has
singularities of type (n, α, β) of order K for all K ≥ 0.

The singularities of the differential form φ(tr1(h, h′)) are controlled by the
following result.

Lemma 4.39. Let

φ(tr1(h, h′)) =
∑

0≤a,b≤1
I,J

fI,J,a,b d zI ∧ d z̄J ∧ d ta ∧ d t̄b

be the decomposition of φ(tr1(h, h′)) into monomials over V × P1
−. Then, the

function fI,J,a,b has singularities of type (a + b, I, J) of infinite order.

Proof. On V × P1
−, the matrix of g in the holomorphic frame ξ is

G =
1

1 + tt̄
(H + tt̄ H ′).

We write G1 = H + tt̄ H ′. The differential form φ(tr1(h, h′)) is a polynomial
in the entries of the matrix ∂̄(∂GG−1). Since

∂GG−1 =
−t̄ d t

1 + tt̄
id +∂G1G

−1
1 ,

and the first summand of the right term is smooth, we are led to study the
singularities of the matrices ∂G1G

−1
1 and ∂̄(∂G1G

−1
1 ). This will be done in the

subsequent lemmas.
We write G2 = (H ′−1 + tt̄H−1). The following lemma is easy.

Lemma 4.40. The matrices H, H ′, G1 and G2 satisfy the rules

(1) HG−1
1 = G−1

2 H ′−1, (2) G−1
1 H = H ′−1G−1

2 ,

(3) H ′G−1
1 = G−1

2 H−1, (4) G−1
1 H ′ = H−1G−1

2 .

¤

In order to bound the entries of ∂G1G
−1
1 and the other matrices, we need the

following estimates.
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Lemma 4.41. (i) The entries of the matrix G−1
1 are bounded. In particular,

they have singularities of type (0, ∅, ∅) of order 0.

(ii) The entries of the matrix G−1
2 have singularities of type (2, ∅, ∅) of order 0.

Therefore, the entries of the matrices tG−1
2 and t̄ G−1

2 have singularities
of type (1, ∅, ∅) of order 0 and the entries of the matrix tt̄ G−1

2 are bounded.

Proof. Let H = T+T be the Cholesky decomposition of H, where (•)+ denotes
conjugate-transpose. Since H is smooth, the same is true for T . We can write

G−1
1 = T−1(id +tt̄(T−1)+H ′T−1)−1(T−1)+.

But for any symmetric definite positive matrix A, the entries of (id +A)−1

have absolute value less that one. Therefore, the entries of the matrix G−1
1 are

bounded. This proves the first statement.
To prove the second statement, we write

G−1
2 = T+(TH ′−1T+ + tt̄ id)−1T.

By the first condition of a log-singular metric, we can decompose

TH ′−1T+ = U+DU

with U unitary and D diagonal with all the diagonal elements bounded from
above by (

∏k
i=1 log(1/ri))

N and bounded from below by (
∏k

i=1 log(1/ri))
−N

for some integer N . Then, we find

G−1
2 = (UT )+(D + tt̄ id)−1(UT ).

Now the lemma follows from the fact that the norm of any entry of a unitary
matrix is less or equal than one.

The remainder of the proof of lemma 4.39 is based on lemma 4.41.

Lemma 4.42. Let
∑

ψI,J,a,b d zI ∧ d z̄J ∧ d ta ∧ d t̄b be the decomposition
into monomials of an entry of any of the matrices ∂G1G

−1
1 , ∂̄(∂G1G

−1
1 ),

∂(∂G1G
−1
1 ), and ∂∂̄(∂G1G

−1
1 ). Then, ψI,J,a,b has singularities of type (a +

b, I, J) of order 0.

Proof. We start with the entries of ∂G1G
−1
1 . Using lemma 4.40, we have

∂G1G
−1
1 = ∂HG−1

1 + t̄ d tH ′G−1
1 + tt̄∂H ′G−1

1

= ∂HG−1
1 + (t̄ d t + tt̄∂H ′H ′−1)G−1

2 H−1. (4.43)

Therefore, the bound of the entries of ∂G1G
−1
1 follows from lemma 4.41 and

the fact that h′ is log-singular.
The bound of the entries of ∂(∂G1G

−1
1 ) follows from the previous case and the

formula
∂(∂G1G

−1
1 ) = ∂G1G

−1
1 ∧ ∂G1G

−1
1 . (4.44)
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Before bounding ∂̄(∂G1G
−1
1 ), we compute

∂̄G−1
1 = −G−1

1 ∂̄G1G
−1
1 = −(∂G1G

−1
1 )+G−1

1

and

∂̄G−1
2 = −G−1

2 ∂̄G2G
−1
2

= −G−1
2 (∂̄H ′−1 + t d t̄H−1 + tt̄∂̄H−1)G−1

2

= G−1
2 H ′−1∂̄H ′H ′−1G−1

2 − G−1
2 (t d t̄H−1 + tt̄∂̄H−1)G−1

2

= G−1
2 (∂H ′H ′−1)+G−1

1 H − G−1
2 (t d t̄H−1 + tt̄∂̄H−1)G−1

2 .

Therefore, we get

∂̄(∂G1G
−1
1 ) =∂̄∂HG−1

1 + ∂H ∧ (∂G1G
−1
1 )+G−1

1

+ ∂̄(t̄ d t + tt̄∂H ′H ′−1)G−1
2 H−1

− (t̄ d t + tt̄∂H ′H ′−1)G−1
2 ∧ (∂H ′H ′−1)+G−1

1

+ (t̄ d t + tt̄∂H ′H ′−1)G−1
2 ∧ (t d t̄H−1 + tt̄∂̄H−1)G−1

2 H−1

− (t̄ d t + tt̄∂H ′H ′−1)G−1
2 ∧ ∂̄H−1. (4.45)

Thus, the bound for the entries of ∂̄(∂G1G
−1
1 ) follows again by lemma 4.41 and

the assumptions on H and H ′.

Finally, the case of ∂∂̄(∂G1G
−1
1 ) follows from the formula

∂∂̄(∂G1G
−1
1 ) = −∂̄(∂G1G1) ∧ ∂G1G

−1
1 + ∂G1G

−1
1 ∧ ∂̄(∂G1G1). (4.46)

As a direct consequence of the previous lemma, we obtain that the functions
fI,J,a,b of lemma 4.39 have singularities of type (a + b, I, J) of order 0. But we
have to show that they have singularities of type (a + b, I, J) of infinite order.
Thus, we have to bound all of their derivatives. As before, it is enough to bound
the derivatives of the components of the entries of the matrix ∂̄(∂G1G

−1
1 ). By

the formulas (4.43) and (4.45), it is enough to bound the derivatives of the
entries of the matrices G−1

1 and G−1
2 . The idea to accomplish this task is to

use induction, because the derivatives of these matrices can be written in terms
of the same matrices and the derivatives of H and H ′, which we can control.
The inductive step is provided by the next lemmas.

Lemma 4.47. If the entries of the matrices G−1
1 and G−1

2 have singularities of
type (0, ∅, ∅) and (2, ∅, ∅), respectively, of order K, then, for every i = 1, . . . , d,
the entries of ∂

∂zi
G1G

−1
1 have singularities of type (0, {i}, ∅) of order K and

the entries of ∂
∂tG1G

−1
1 have singularities of type (1, ∅, ∅) of order K.
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Proof. The result is a consequence of the formulas

∂

∂zi
G1G

−1
1 =

∂

∂zi
HG−1

1 + tt̄

(
∂

∂zi
H ′H ′−1

)
G−1

2 H−1, (4.48)

∂

∂t
G1G

−1
1 = t̄ d tG−1

2 H−1, (4.49)

which follow from equation (4.43).

Lemma 4.50. If the entries of the matrix G−1
1 have singularities of type (0, ∅, ∅)

of order K for all i = 1, . . . , d, the entries of the matrix ∂
∂zi

G1G
−1
1 have sin-

gularities of type (0, {i}, ∅) of order K, and the entries of the matrix ∂
∂tG1G

−1
1

have singularities of type (1, ∅, ∅) of order K, then the entries of the matrix
G−1

1 have singularities of type (0, ∅, ∅) of order K + 1.

Proof. The result follows from formulas

∂

∂zi
G−1

1 = −G−1
1

(
∂

∂zi
G1G

−1
1

)
,

∂

∂z̄i
G−1

1 = −
(

∂

∂zi
G1G

−1
1

)+

G−1
1 ,

∂

∂t
G−1

1 = −G−1
1

(
∂

∂t
G1G

−1
1

)
,

∂

∂t̄
G−1

1 = −
(

∂

∂t
G1G

−1
1

)+

G−1
1 .

Lemma 4.51. If the entries of the matrices G−1
1 and G−1

2 have singularities
of type (0, ∅, ∅) and (2, ∅, ∅), respectively, of order K, then the entries of the
matrix G−1

2 have singularities of type (2, ∅, ∅) of order K + 1.

Proof. This result is consequence of the equations

∂

∂zi
G−1

2 = −tt̄G−1
2

∂

∂zi
H−1G−1

2 + HG−1
1

(
∂

∂zi
H ′H ′−1

)
G−1

2 ,

∂

∂z̄i
G−1

2 = −tt̄G−1
2

∂

∂z̄i
H−1G−1

2 + G−1
2

(
∂

∂zi
H ′H ′−1

)+

G−1
1 H

∂

∂t
G−1

2 = −G−1
2 (t̄ d tH−1)G−1

2 ,

∂

∂t̄
G−1

2 = −G−1
2 (t d t̄H−1)G−1

2 .

Summing up lemmas 4.41, 4.42, 4.47, 4.50, 4.51 and equations (4.43), (4.44),
(4.45), (4.46), we obtain

Lemma 4.52. Let
∑

ψI,J,a,b d zI ∧ d z̄J ∧ d ta ∧ d t̄b be the decomposition
into monomials of an entry of any of the matrices ∂G1G

−1
1 , ∂̄(∂G1G

−1
1 ),

∂(∂G1G
−1
1 ), and ∂∂̄(∂G1G

−1
1 ). Then, ψI,J,a,b has singularities of type (a +

b, I, J) of infinite order. ¤
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End of proof of lemma 4.39. This finishes the proof of lemma 4.39.

Once we have bounded the components of φ(tr1(h, h′)) over V × P1
−, in order

to bound the components of φ−(h, h′), we have to estimate the integral (4.37).

Lemma 4.53. Let 0 ≤ a ≤ 1 be a real number. Then, we have

∫ 1

0

log(1/r)

r + a
d r ≤ 1 + log(1/a) +

1

2
log2(1/a),

∫ 1

0

r log(1/r)

(r + a)2
d r ≤ 1 + log(1/a) +

1

2
log2(1/a).

Proof. We have the following estimates

∫ 1

0

r log(1/r)

(r + a)2
d r ≤

∫ 1

0

log(1/r)

r + a
d r

=

∫ a

0

log(1/r)

r + a
d r +

∫ 1

a

log(1/r)

r + a
d r

≤
∫ a

0

log(1/r)

a
d r +

∫ 1

a

log(1/r)

r
d r

=
r log(1/r) + r

a

∣∣∣∣
a

0

− 1

2
log2(1/r)

∣∣∣∣
1

a

= log(1/a) + 1 +
1

2
log2(a).

We are now in position to bound the components of φ−(h, h′). Let

φ−(h, h′) =
∑

I,J

gI,J d zI ∧ d z̄J

be the decomposition of φ−(h, h′) into monomials. Then, using lemma 4.39
and lemma 4.53, we have

|gI,J | =

∣∣∣∣∣
1

4πi

∫

P1
−

fI,J,1,1 log(tt̄) d t ∧ d t̄

∣∣∣∣∣

≺

∣∣∣
∏k

i=1 log(log(1/ri))
∣∣∣
N

r(γI+γJ )≤k(log(1/r))(γI+γJ )≤k
·

·
∫

P1
−

(
1

|t| + (
∏k

i=1 log(1/ri))−N

)2

log(tt̄) d t ∧ d t̄

≺

∣∣∣
∏k

i=1 log(log(1/ri))
∣∣∣
N ′

r(γI+γJ )≤k(log(1/r))(γI+γJ )≤k
.
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The derivatives of gI,J are bounded in the same way using the theorem of
taking derivatives under the integral sign. The components of ∂φ−(h, h′) and
∂̄φ−(h, h′) and their derivatives are bounded in a similar way using that

∂φ−(h, h′) =
−1

4πi

∫

P1
−

φ(tr1(h, h′)) ∧ d t

t
,

and

∂̄φ−(h, h′) =
−1

4πi

∫

P1
−

φ(tr1(h, h′))
d t̄

t̄
.

To bound the components of φ+(h, h′), ∂φ+(h, h′) and ∂̄φ+(h, h′) and their
derivatives, we will use the same technique. Let s = 1/t be a local coordinate
in P1

+. In these coordinates, we have

G =
1

1 + ss̄
(H ′ + ss̄H).

We write
G3 = (H ′ + ss̄H), G4 = (H−1 + ss̄H ′−1).

In this case, using the adequate variant of definition 4.38, the analogue of
lemma 4.41 is

Lemma 4.54. (i) The entries of the matrix G−1
3 have singularities of type

(2, ∅, ∅) of order 0. Therefore, the entries of the matrices sG−1
3 and

s̄ G−1
3 have singularities of type (1, ∅, ∅) of order 0 and the entries of the

matrix ts̄ G−1
3 are bounded.

(ii) The entries of the matrix G−1
4 are bounded. In particular, they have

singularities of type (0, ∅, ∅) of order 0.
¤

Note that the bounds for G−1
3 and G−1

4 are not the same as the bounds for
G−1

1 and G−1
2 , but they are switched. To bound the entries of ∂G3G

−1
3 , we use

∂G3G
−1
3 = ∂H ′H ′−1G−1

4 H−1 + s̄d sHG−1
3 + ss̄∂HG−1

3 .

We leave the remaining details to the reader.
Finally, to bound ∂∂̄φ(h, h′), we use equation (4.12). This completes the proof
of the first statement.
We now prove the second statement. By definition, we have

tr2(h, h′, h′′) = tr1(0 −→ tr1(h, h′) −→ tr1(h
′′, h′′)).

But tr1(h, h′) is a smooth hermitian vector bundle on X×P1 and tr1(h
′′, h′′) is

isometric to p∗1(E, h′′) and, in consequence, log-singular along D × P1. There-
fore, we can apply lemma 4.39 to φ(tr2(h, h′, h′′)); by lemma 4.53, the form
φ(h, h′, h′′) has log-log growth of infinite order. To conclude that it is a log-log
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form we still have to control ∂φ(h, h′, h′′), ∂̄φ(h, h′, h′′), and ∂∂̄φ(h, h′, h′′). A
residue computation shows

∂φ(h, h′, h′′) =
1

2
(φ(h, h′) + φ(h′, h′′) + φ(h′′, h))

+
2

(4πi)2

∫

P1×P1

φ(tr2(h, h′, h′′)) ∧ d t1
t1

∧ d t2
t2

− 1

(4πi)2

∫

P1×P1

φ(tr2(h, h′, h′′)) ∧
(

d t̄1
t̄1

∧ d t2
t2

+
d t1
t1

∧ d t̄2
t̄2

)
,

and

∂̄φ(h, h′, h′′) =
1

2
(φ(h, h′) + φ(h′, h′′) + φ(h′′, h))

− 2

(4πi)2

∫

P1×P1

φ(tr2(h, h′, h′′)) ∧ d t̄1
t̄1

∧ d t̄2
t̄2

+
1

(4πi)2

∫

P1×P1

φ(tr2(h, h′, h′′)) ∧
(

d t̄1
t̄1

∧ d t2
t2

+
d t1
t1

∧ d t̄2
t̄2

)
.

Hence, again by lemma 4.53, the forms ∂φ(h, h′, h′′) and ∂̄φ(h, h′, h′′) have
log-log growth of infinite order. Finally, since

∂∂̄φ(h, h′, h′′) = (∂ − ∂̄)(φ(h, h′) + φ(h′, h′′) + φ(h′′, h))

by the first statement, the form ∂∂̄φ(h, h′, h′′) also has log-log growth of infinite
order; therefore, φ(h, h′, h′′) is a log-log form.

End of proof of theorem 4.36. This finishes the proof of theorem 4.36.

Bott-Chern forms for good hermitian metrics. All the theory we
have developed so far is also valid for good hermitian vector bundles with the
obvious changes. For instance, if the hermitian vector bundle is good instead
of log-singular, we obtain that the Bott-Chern forms are pre-log-log instead of
log-log.

Theorem 4.55. Let X be a complex manifold and let D be a normal crossing
divisor. Put U = X \ D. Let E be a vector bundle on X. If h and h′ are
smooth hermitian metrics on E and h′′ is a smooth hermitian metric on E|U ,
which is good along D, then the Bott-Chern form φ(E, h, h′′) and the iterated
Bott-Chern form φ(E, h, h′, h′′) are pre-log-log forms.

Proof. Observe that lemma 4.40, lemma 4.41, and lemma 4.42 are true in the
case of good hermitian metrics by lemma 4.26, and these results are enough
to prove that φ(E, h, h′) and φ(E, h, h′, h′′) are pre-log-log forms by the same
arguments as before.
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The singularities of the first transgression bundle. With the no-
tation of theorem 4.36, observe that the hermitian vector bundle tr1(E, h, h′)
need not be log-singular along the divisor D×P1 (see remark 4.32). Neverthe-
less, as we will see in the following results, it is close to be log-singular. For
instance, it is log-singular along D × P1 ∪ X × {(0 : 1), (1 : 0)}, or it can be
made a log-singular hermitian vector bundle after some blow-ups. This sec-
ond statement will be useful in the axiomatic characterization of Bott-Chern
classes.

Lemma 4.56. Let a, b be real numbers with a > 0 and b > e1/e. Then, we have

log(a)

log(b)
< 1 +

a

b
.

Proof. If b ≥ a, then the statement is obvious. If a > b, we write a = cb with
c > 1. Then, the inequality of the lemma is equivalent to

log(c)

c
< log(b).

But the function log(c)/c is a bounded function that has a maximum at c = e
with value 1/e. Therefore, the result is a consequence of the condition on b.

Corollary 4.57. With the notation of theorem 4.36, the first transgression
hermitian vector bundle tr1(E, h, h′) is log-singular along the divisor

D × P1 ∪ X × {(0 : 1), (1 : 0)}.

Proof. The first condition of definition 4.29 is easy to prove. We will prove the
second condition. Lemma 4.56 implies that, for a, b ≫ 0, the inequality

1

1/a + 1/b
<

log(b)

(1/a) log(a)
(4.58)

holds. Applying this equation to a = 1/|t| and b = (
∏k

i=1 log(1/ri))
N , we

obtain

1

|t| + (
∏k

i=1 log(1/ri))−N
<

log((
∏k

i=1 log(1/ri))
N )

|t| log(1/|t|) ≺
∑k

i=1 log(log(1/ri))

|t| log(1/|t|) .

Therefore, lemma 4.52 implies that on V ×P1
− the entries of ∂GG−1 are log-log

along D × P1 ∪ X × {(0 : 1), (1 : 0)}. The proof for the bound on V × P1
+ is

analogous.

Proposition 4.59. With the same hypothesis of theorem 4.36, let D =
D1 ∪ . . . ∪ Dn be the decomposition of D in smooth irreducible components.
Let Z̃ be the variety obtained from X × P1 by blowing-up D1 × (1 : 0) and
then, successively, the strict transforms of D2 × (1 : 0), . . . ,Dn × (1 : 0),D1 ×
(0 : 1), . . . ,Dn × (0 : 1). Let π : Z̃ −→ X × P1 be the morphism induced by the

blow-ups and let C ⊆ Z̃ be the pre-image by π of D × P1. Then, we have
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(i) C is a normal crossing divisor.

(ii) The closed immersions i0, i∞ : X −→ X × P1, given by

i0(p) = (p, (0 : 1)), i∞(p) = (p, (1 : 0)),

can be lifted to closed immersions j0, j∞ : X −→ Z̃.

(iii) The hermitian vector bundle π∗ tr1(E, h, h′) is log-singular along the di-
visor C.

Proof. The first statement is obvious and the second is a direct consequence
of the universal property of the blow-up and the fact that the intersection of
the center of every blow-up with the transform of X × (1 : 0) or X × (0 : 1) is
either empty or a divisor.
To prove the third statement, we will use the same notations as in the proof of
theorem 4.36. Let U be the subset of V ×P1

−, where |t| < 1/ee. For simplicity,
we assume that the components of D meeting V are D1, . . . ,Dk and that the
component Di has equation zi = 0. Then, U , with coordinates (z1, . . . , zd, t),
is a coordinate neighborhood adapted to D×P1. The open subset π−1(U) can

be covered by k + 1 coordinate neighborhoods, denoted by Ũ1, . . . , Ũk+1. The
coordinates of these subsets, the expression of π and the equation of C in these
coordinates are given in the following table:

Subset Coordinates π

U1 (u, x1, . . . , xn)

t = u

z1 = ux1

zi = xi (i 6= 1)

ux1 · · ·xk = 0

Uj

(1 < j < k + 1)
(u, x1, . . . , xn)

t = ux1 · · ·xj−1

zj = uxj

zi = xi (i 6= j)

ux1 · · ·xk = 0

Uk+1 (u, x1, . . . , xn)
t = ux1 · · ·xk

zi = xi (i = 1, . . . , d)
x1 · · ·xk = 0

Since, for j = 1, . . . , k, we have

π−1(D × P1 ∪ X × {(0 : 1), (1 : 0)}) ∩ Uj = C ∩ Uj ,

we know by corollary 4.57 and the functoriality of log-singular metrics that
the hermitian vector bundle π∗ tr1(E, h, h′)|Uj

is log-singular. Hence, we only
have to prove that π∗ tr1(E, h, h′)|Uk+1

is log-singular. The first condition of
definition 4.29 follows easily from the definition of the metric g. To prove
the second condition of definition 4.29, we can proceed in two ways. The first
method is to derive this result directly from lemma 4.52 applying the chain rule.
But, since we have to bound all derivatives, this is a notational nightmare. The
second method is to bound the derivatives inductively mimicking the proof of
lemma 4.53. To this end, instead of lemma 4.41, we use the following substitute.
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Lemma 4.60. (i) The entries of the matrix π∗G−1
1 |Uk+1

are bounded in ev-
ery compact subset of Uk+1. In particular, they are (∅, ∅)-log-log growth
functions of order 0 (see definition 2.21).

(ii) If ψ is an entry of the matrix G−1
2 , then we have

|(π∗ψ|Uk+1
)(x1, . . . , xd, u)| ≺

∣∣∣∣∣
k∏

i=1

log(1/|xi|)
∣∣∣∣∣

N

for some integer N . Therefore, π∗(tψ) and π∗(t̄ψ) are bounded in any
compact subset of Uk+1 and, for i = 1, . . . , k, the function

∏

j 6=i

|xj |π∗ψ

is a ({i}, ∅)-log-log growth function of order 0.
¤

We leave it to the reader to make explicit the analogues of lemmas 4.47, 4.50,
and 4.51 in this case.
The proof that it is also log-singular in the pre-image of an open subset of P1

+

is analogous.

Chern forms for log-singular hermitian bundles.

Proposition 4.61. Let X be a complex projective manifold, D a normal cross-
ing divisor of X, (E, h) a hermitian vector bundle log-singular along D. Let φ
be any symmetric power series. Then, the Chern form φ(E, h) represents the
Chern class φ(E) in H∗

D(X, R(∗)).

Proof. By theorem 2.42 and theorem 3.5, the inclusion

D∗(EX , ∗) −→ D∗(EX〈〈D〉〉, ∗)

is a quasi-isomorphism. Moreover, if h′ is a smooth hermitian metric on E,
then, in the complex D∗(EX〈〈D〉〉, ∗), we have

φ(E, h) − φ(E, h′) = dD φ(E, h′, h).

Therefore, both forms represent the same class.

Bott-Chern classes.

Definition 4.62. Let X be a complex manifold and D a normal crossing
divisor. Let

E : 0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0
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be an exact sequence of hermitian vector bundles log-singular along D. Let h′
s,

hs, and h′′
s be smooth hermitian metrics on E′, E, and E′′, respectively. We

denote by Es the corresponding exact sequence of smooth vector bundles. Let
φ be a symmetric power series. Then, the Bott-Chern class associated to E is
the class represented by

φ(Es) + φ(E′ ⊕ E′′, h′
s ⊕ h′′

s , h′ ⊕ h′) − φ(E, hs, h)

in the group

⊕

k

D̃2k−1(EX〈〈D〉〉, k) =
⊕

k

D2k−1(EX〈〈D〉〉, k)
/
dD D2k−2(EX〈〈D〉〉, k) .

This class is denoted by φ̃(E).

Proposition 4.63. The Bott-Chern classes are well defined.

Proof. The fact that the Bott-Chern forms belong to the group

⊕

k

D2k−1(EX〈〈D〉〉)

is proven in theorem 4.36.
Let h′

sa, hsa and h′′
sa be another choice of smooth hermitian metrics and let

Esa be the corresponding exact sequence. We denote by C the exact square of
smooth hermitian vector bundles

0 −→ 0 −→ Esa −→ Es −→ 0.

Then, we have

φ(Es) + φ(E′ ⊕ E′′, h′
s ⊕ h′′

s , h′ ⊕ h′) − φ(E, hs, h)

− φ(Esa) − φ(E′ ⊕ E′′, h′
sa ⊕ h′′

sa, h′ ⊕ h′) + φ(E, hsa, h) =

dD φ(C) − dD φ(E′ ⊕ E′′, h′
s ⊕ h′′

s , h′
sa ⊕ h′′

sa, h′ ⊕ h′′) + dD φ(E, hs, hsa, h).

Therefore, the Bott-Chern classes do not depend on the choice of the smooth
metrics.

Axiomatic characterization of Bott-Chern classes.

Theorem 4.64. The Bott-Chern classes satisfy the following properties. If X
is a complex manifold, D is a normal crossing divisor, and

E : 0 −→ (E′, h′) −→ (E, h) −→ (E′′, h′′) −→ 0

is a short exact sequence of hermitian vector bundles, log-singular along D,
then we have
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(i) dD φ̃(E) = φ(E′ ⊕ E′′, h′ ⊕ h′′) − φ(E, h).

(ii) If (E, h) = (E′ ⊕ E′′, h′ ⊕ h′′), then φ̃(E) = 0.

(iii) If X ′ is another complex manifold, D′ is a normal crossing divisor in X ′,
and f : X ′ −→ X is a holomorphic map such that f−1(D) ⊆ D′, then

φ̃(f∗E) = f∗φ̃(E).

(iv) If F is a hermitian exact square of vector bundles on X, log-singular
along D, then

φ̃(∂−1
1 F ⊕ ∂1

1F) − φ̃(∂0
1F) − φ̃(∂−1

2 F ⊕ ∂1
2F) + φ̃(∂0

2F) = 0.

Moreover, these properties determine the Bott-Chern classes.

Proof. First we prove the unicity. By [17], 1.3.2 (see also [36], IV.3.1) prop-
erties (1) to (3) characterize the Bott-Chern classes in the case D = ∅. By
functoriality, the Bott-Chern classes are determined for short exact sequences,
when the three metrics are smooth. Let E be a vector bundle, h a smooth her-
mitian metric on E and h′ a hermitian metric log-singular along D. The vector
bundle Ẽ = tr1(E, h, h′) over X × P1 is isomorphic (as a vector bundle) to

p∗1E. Let h1 be the hermitian metric on Ẽ induced by h and this isomorphism.
Then, h1 is a smooth hermitian metric. Let h2 be the metric of definition 4.4.
Let π : Z −→ X × P1 and C be as in proposition 4.59. By this proposition
π∗(Ẽ, h2) is log-singular along C. Therefore, we can assume the existence of

the Bott-Chern class φ̃(Ẽ, h1, h2). Write π′ = p1 ◦ π. We consider the integral

I = − 1

2πi

∫

π′

−2∂∂̄φ̃(Ẽ, h1, h2)π
∗(

1

2
log(tt̄)).

By property (1), we have

I = − 1

2πi

∫

π′

φ(Ẽ, h2)π
∗(

1

2
log(tt̄)) +

1

2πi

∫

π′

φ(Ẽ, h1)π
∗(

1

2
log(tt̄))

= − 1

2πi

∫

P1

φ(tr1(E, h, h′))
1

2
log(tt̄),

because the second integral vanishes. But using Stokes theorem and properties
(2) and (3) as in [17], 1.3.2, or [36], IV.3.1, we get

I ∼ j∗∞φ̃(Ẽ, h1, h2) − j∗0 φ̃(Ẽ, h1, h2)

= φ̃(E, h, h′) − φ̃(E, h, h)

= φ̃(E, h, h′),

where the symbol ∼ means equality up to the image of dD. Therefore, the class
φ̃(E, h, h′) is also determined by properties (1) to (3). Finally, for an arbitrary
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exact sequence E of hermitian vector bundles log-singular along D, property
(4) implies that φ̃(E) is given by definition 4.62.
Next we prove the existence. By proposition 4.63 it only remains to show that
the Bott-Chern classes defined by 4.62 satisfy properties (1) to (4). Property
(1) is known for smooth metrics. If E is a vector bundle, h is a smooth her-
mitian metric and h′ a hermitian metric log-singular along D, then, since two
differential forms that agree in an open dense subset are equal, by the smooth
case

dD φ̃(E, h, h′) = φ(E, h′) − φ(E, h).

The general case follows from these two cases. Property (2) follows directly
from the case of smooth metrics and definition 4.62. Property (3) is obvious

from the functoriality of the definition. To prove property (4), we consider F ′
,

an exact square with the same vector bundles as F , but with smooth metrics.
Then, if we use the definition of Bott-Chern classes in the expression

φ̃(∂−1
1 F ⊕ ∂1

1F) − φ̃(∂0
1F) − φ̃(∂−1

2 F ⊕ ∂1
2F) + φ̃(∂0

2F) = 0,

all the change of metric terms appear twice with opposite sign. Therefore, this
property follows from the smooth case.

Real varieties. The following result follows easily.

Proposition 4.65. Let XR = (X,F∞) be a real variety, D a normal crossing
divisor on XR, E a complex vector bundle defined over R, h, h′ (resp. h”)
smooth hermitian metrics (resp. log-singular hermitian metric) on E invari-

ant under complex conjugation. Then, the forms φ(E, h′′), φ̃1(E, h, h′′) and

φ̃2(E, h, h′, h′′) belong to the group
⊕

k

D2k−1(EXR
〈〈D〉〉, k) =

⊕

k

D2k−1(EXR
〈〈D〉〉, k)σ,

where σ is the involution that acts as complex conjugation on the space and on
the coefficients. ¤

5 Arithmetic K-theory of log-singular hermitian vector bundles

The arithmetic intersection theory of Gillet and Soulé is complemented by
an arithmetic K-theory and a theory of characteristic classes. In this section
we will generalize both theories to cover the kind of singular hermitian metrics
that appear naturally when considering (fully decomposed) automorphic vector
bundles. If E be a vector bundle over a quasi-projective complex manifold
X, then a hermitian metric h on E may have arbitrary singularities near the
boundary of X. Therefore, the associated Chern forms will also have arbitrary
singularities “at infinity”. Thus, in order to define arithmetic characteristic
classes for this kind of hermitian vector bundles, we are led to use the complex
Dl,ll,a.
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5.1 Arithmetic Chern classes of log-singular herm. vector bun-
dles

Arithmetic Chow groups with coefficients. Let A be an arithmetic
ring. Let X̂ = (X, C) be a Dlog-arithmetic variety over A. Let B be a subring

of R. We will define the arithmetic Chow groups of X̂ with coefficients in B
using the same method as in [3]. We follow the notations of [10], §4.2.
For an integer p ≥ 0, let Zp(X)B = Zp(X)⊗B be the group of algebraic cycles
of X with coefficients in B. Then, the group of p-codimensional arithmetic
cycles of X̂ = (X, C) with coefficients in B is given by

Ẑp
B(X, C) =

{
(y, gy) ∈ Zp

B(X) ⊕ Ĥ2p
C,Zp(X, p)

∣∣∣ cl(y) = cl(gy)
}

.

Let R̂at
p

B(X, C) be the B-submodule of Ẑp
B(X, C) generated by R̂at

p
(X, C). We

define the p-th arithmetic Chow group of X̂ = (X, C) with coefficients in B by

ĈH
p

B(X, C) = Ẑp
B(X, C)

/
R̂at

p

B(X, C).

There is a canonical morphism

ĈH
p

B(X, C) −→ ĈH
p
(X, C) ⊗ B.

For instance, if B = Q, this morphism an isomorphism, but in general, if
B = R, it is not an isomorphism.

The main theorem. Let X be a regular scheme, flat and quasi-projective
over Spec(A). Let D be a normal crossing divisor on XR. Write X = (X,D).
Then, (X,Dl,ll,a,X) is a quasi-projective Dlog-arithmetic variety over A. A log-
singular hermitian vector bundle over X is a vector bundle E over X together
with a metric on E∞, which is smooth over X∞ \D∞, log-singular along D∞,
and invariant under complex conjugation.

Theorem 5.1. Let φ ∈ B[[T1, . . . , Tn]] be a symmetric power series with coef-
ficients in a subring B of R. Then, there is a unique way to attach to every
log-singular hermitian vector bundle E = (E, h) of rank n over X = (X,D) a
characteristic class

φ̂(E) ∈ ĈH
∗

B(X,Dl,ll,a)

having the following properties:

(i) Functoriality. When f : Y −→ X is a morphism of regular schemes,
flat and quasi-projective over A, D′ a normal crossing divisor on YR with
f−1(D) ⊆ D′, and E a log-singular hermitian vector bundle on X, then

f∗(φ̂(E)) = φ̂(f∗E).
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(ii) Normalization. When E = L1 ⊕ . . . ⊕ Ln is an orthogonal direct sum of
hermitian line bundles, then

φ̂(E) = φ(ĉ1(L1), . . . , ĉ1(Ln)).

(iii) Twist by a line bundle. Let

φ(T1 + T, . . . , Tn + T ) =
∑

i≥0

φi(T1, . . . , Tn)T i.

Let L be a log-singular hermitian line bundle, then

φ̂(E ⊗ L) =
∑

i

φ̂i(E) ĉ1(L).

(iv) Compatibility with characteristic forms.

ω(φ̂(E)) = φ(E, h).

(v) Compatibility with the change of metrics. If h′ is another log-singular
hermitian metric, then

φ̂(E, h) = φ̂(E, h′) + a(φ̃1(E, h′, h)).

(vi) Compatibility with the definition of Gillet and Soulé. If D is empty, let

ψ be the isomorphism ĈH
∗
(X,Dl,ll,a) −→ ĈH

∗
(X) of theorem 3.33 and

let φ̂GS(E) ∈ ĈH
∗
(X) be the characteristic class defined in [17]. Then

ψ(φ̂(E)) = φ̂GS(E).

Proof. If D is empty, we define φ̂(E) = ψ−1(φ̂GS(E)). If D is not empty, but h

is smooth on the whole of XR, then we define φ̂(E) by functoriality, using the
tautological morphism (X,D) −→ (X, ∅).
If D is not empty and E = (E, h) is a log-singular hermitian vector bundle, we
choose any smooth metric h′, invariant under F∞. Then, we define

φ̂(E) = φ̂(E, h′) + a(φ̃(E, h′, h)).

This definition is independent of the choice of the metric h′, because, if h′′ is
another smooth F∞-invariant metric, then

φ̂(E, h′)+ a(φ̃(E, h′, h)) − φ̂(E, h′′) − a(φ̃(E, h′′, h))

= a(φ̃(E, h′′, h′)) + a(φ̃(E, h′, h)) + a(φ̃(E, h, h′′))

= a(dD(E, h′′, h′, h))

= 0.

All the properties stated in the theorem can be checked as in [17].
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Remark 5.2. If X is projective, the groups ĈH
∗
(X,Dl,ll) and ĈH

∗
(X,Dl,ll,a)

agree. Therefore, the arithmetic characteristic classes also belong to the former
group. When X is quasi-projective, in order to define characteristic classes in

the group ĈH
∗
(X,Dl,ll), we have to impose conditions on the behavior of the

hermitian metrics at infinity. For instance, one may consider smooth at infinity
hermitian metrics (see [11]).

Remark 5.3. If we replace good hermitian vector bundle by log hermitian
vector bundle and pre-log-log forms by log-log forms (implicit in the definition
of Dl,ll,a) in theorem 5.1, the result remains true.

5.2 Arithmetic K-theory of log-singular hermitian vector bun-
dles

Log-singular arithmetic K-theory. We want to generalize the definition
of arithmetic K-theory given by Gillet and Soulé in [17] to cover log-singular
hermitian metrics.
We write

D̃l,ll,a(X) =
⊕

p

D̃2p−1
l,ll,a (X, p),

ZDl,ll,a(X) =
⊕

p

ZD2p
l,ll,a(X, p).

Let ch be the power series associated with the Chern character. In particular,
it induces Bott-Chern forms c̃h and arithmetic characteristic classes ĉh.

Definition 5.4. Let X be as in theorem 5.1. Then, the group K̂0(X,Dl,ll,a) is
the group generated by pairs (E, η), where E is a log-singular hermitian metric

on X and η ∈ D̃l,ll,a(X) satisfying the relations

(S, η′) + (Q, η′′) = (E, η′ + η′′ + c̃h(E))

for every η′, η′′ ∈ D̃l,ll,a(X) and every short exact sequence of log-singular
hermitian vector bundles

E : 0 −→ S −→ E −→ Q −→ 0.

If D is empty, then this definition agrees with the definition of Gillet and Soulé
in [17].

Basic properties. The following theorem summarizes the basic properties of
the arithmetic K-theory groups. They are a consequence of the corresponding
results of [17] together with theorem 5.1.

Theorem 5.5. Let X = (X,D) be an arithmetic variety over A with a fixed
normal crossing divisor. Then, we have
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(i) There are natural maps

a : D̃l,ll,a(X) −→ K̂0(X,Dl,ll,a),

ch : K̂0(X,Dl,ll,a) −→ ZDl,ll,a(X),

v : K̂0(X,Dl,ll,a) −→ K0(X),

ĉh : K̂0(X,Dl,ll,a) −→
⊕

ĈH
p

Q(X,Dl,ll,a),

given by

a(η) = (0, η),

ch([E, η]) = ch(E) + dD η,

v([E, η]) = [E],

ĉh([E, η]) = ĉh(E) + a(η).

(ii) The product

(E, η) ⊗ (E
′
, η′) =

(
E ⊗ E

′
, (ch(E) + dD η) • η′ + η • ch(E

′
)
)

induces a commutative and associative ring structure on K̂0(X,Dl,ll,a).

The maps v, ch, and ĉh are compatible with this ring structure.

(iii) If Y = (Y,D′) is another arithmetic variety over A with a fixed normal
crossing divisor and f : X −→ Y is a morphism such that f−1(D′) ⊆ D,
then there is a pull-back morphism

f∗ : K̂0(Y,Dl,ll,a) −→ K̂0(X,Dl,ll,a),

compatible with the maps a, ch, v and ĉh.

(iv) There are exact sequences

K1(X)
ρ→ D̃l,ll,a(X)

a→ K̂0(X,Dl,ll,a)
v→ K0(X) → 0, (5.6)

and

K1(X)
ρ→

⊕

p

H2p−1
Dl,ll,a

(X, p)
a→ K̂0(X,Dl,ll,a)

v + ch−→

K0(X) ⊕ ZDl,ll,a(X) →
⊕

p

H2p
Dl,ll,a

(X, p) → 0. (5.7)

In these exact sequences the map ρ is the composition

K1(X) →
⊕

p

H2p−1
D (XR, R(p)) →

⊕

p

H2p−1
Dl,ll,a

(X, p) ⊆ D̃l,ll,a(X),

where the first map is Beilinson’s regulator.
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(v) The Chern character

ĉh : K̂0(X,Dl,ll,a) ⊗ Q −→
⊕

ĈH
p

Q(X,Dl,ll,a)

is a ring isomorphism. ¤

5.3 Variant for non regular arithmetic varieties

Since there is no general theorem of resolution of singularities, it is useful
to extend the theory of arithmetic Chow groups to the case of non regular
arithmetic varieties.

Arithmetic Chow groups for non regular arithmetic varieties. Let
(A,Σ, F∞) be an arithmetic ring with fraction field F . We will assume that A
is equidimensional and Jacobson. In contrast to the rest of the paper, in this
section, an arithmetic variety over A will be a scheme X that is quasi-projective
and flat over Spec(A), and such that the generic fiber XF is smooth, but that
not need be regular. Since XF is smooth, the analytic variety XΣ is a disjoint
union of connected components Xi that are equidimensional of dimension di.
For every cohomological complex of sheaves F∗(∗) on XΣ we write

Fn(p)(U) =
⊕

i

F2di−n(di − p)(U ∩ Xi).

Then, the definition of Green objects and of arithmetic Chow groups of [10]
can easily be adapted to the grading by dimension.
In this way we can define, for X regular, homological Chow groups with respect
to any Dlog-complex C. These homological Chow groups will be denoted by

ĈH∗(X, C). In particular, we are interested in the groups ĈH∗(X,Dl,ll,a). But
now we can proceed as in [18] and we can extend the definition to the case of
non regular arithmetic varieties.

Basic properties of homological Chow groups. Following [18], we can
extend some of the properties of the arithmetic Chow groups to the non regular
case. The proof of the next results are as in [18], 2.2.7, 2.3.1, and 2.4.2 for the
algebraic cycles, but using the techniques of [10] for the Green objects.

Theorem 5.8. Let f : X −→ Y be a morphism of irreducible arithmetic vari-
eties over A which is flat or l.c.i. Let DY be a normal crossing divisor on YR

and DX a normal crossing divisor on XR such that f−1(DY ) ⊆ DX . Write
X = (XR,DX) and Y = (YR,DY ). Then, there is defined an inverse image
morphism

f∗ : ĈHp(Y,Dl,ll,a) −→ ĈHp+d(X,Dl,ll,a),

where d is the relative dimension. ¤

Theorem 5.9. Let f : X −→ Y be a map of arithmetic varieties with Y regular.
Let DY be a normal crossing divisor on YR and DX a normal crossing divisor
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on XR such that f−1(DY ) ⊆ DX . Write X = (XR,DX) and Y = (YR,DY ).
Then, there is a cap product

ĈH
p
(Y,Dl,ll,a) ⊗ ĈHq(X,Dl,ll,a) −→ ĈHq−p(X,Dl,ll,a);

for x ∈ ĈH
p
(Y,Dl,ll,a) and y ∈ ĈHq(X,Dl,ll,a) we denote it by x.fy. This cap

product turns ĈH∗(X,Dl,ll,a) into a graded ĈH
∗
(Y,Dl,ll,a)-module. Moreover,

it is compatible with inverse images (when defined). ¤

Arithmetic K-theory. The definition of arithmetic K-theory carries over
to the case of non regular arithmetic varieties without modification (see [18],

2.4.2). Thus, we obtain a contravariant functor (X,D) 7−→ K̂0(X,Dl,ll,a) from
arithmetic varieties with a fixed normal crossing divisor to rings.

Theorem 5.10. Let X be an arithmetic variety. Let DX a normal crossing
divisor on XR. Write X = (XR,DX). Then, there is a biadditive pairing

K̂0(X,Dl,ll,a) ⊗ ĈH∗(X,Dl,ll,a) −→ ĈH∗(X,Dl,ll,a)Q,

which we write as α ⊗ x 7→ ĉh(α) ∩ x, with the following properties

(i) Let f : X −→ Y be a morphism of arithmetic varieties, with Y regular.
Let DY be a normal crossing divisor on YR such that f−1(DY ) ⊆ DX .

Write Y = (YR,DY ). If α ∈ K̂0(Y,Dl,ll,a) and x ∈ ĈH∗(X,Dl,ll,a), then

ĉh(f∗α) ∩ x = ĉh(α).fx.

(ii) If (0, η) ∈ K̂0(X,Dl,ll,a) and x ∈ ĈH
∗
(X,Dl,ll,a), then

ĉh((0, η)) ∩ x = a(ηω(x)).

(iii) If α ∈ K̂0(X,Dl,ll,a) and x ∈ ĈH∗(X,Dl,ll,a), then

ω(ĉh(α) ∩ x) = ch(α) ∧ ω(x).

(iv) The pairing makes ĈH∗(X,Dl,ll,a)Q into a K̂0(X,Dl,ll,a)-module, i.e., for

all α, β ∈ K̂0(X), and x ∈ ĈH
∗
(X), we have

ĉh(α) ∩ (ĉh(β) ∩ x) = ĉh(αβ) ∩ x.

(v) If f : X −→ Y is a flat or l.c.i. morphism of arithmetic varieties, let

α ∈ K̂0(X,Dl,ll,a) and x ∈ ĈH
∗
(X,Dl,ll,a). Then

ĉh(f∗α) ∩ f∗x = f∗(ĉh(α) ∩ x).

Proof. Follow [18], 2.4.2, but using theorem 4.64 to prove the independence of
the choices.
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5.4 Some remarks on the properties of ĈH
∗
(X,Dl,ll,a)

In [31], V. Maillot and D. Roessler have announced a preliminary version of the
theory developed in this paper. The final theory has some minor differences
that do not affect the heart of [31]. The aim of this section is to compare both
theories.
We fix an arithmetic ring (A,Σ, F∞), and we consider pairs X = (X,D), where
X is an arithmetic variety over A and D is a normal crossing divisor of XΣ,
invariant under F∞.
A log-singular hermitian vector bundle E is a pair (E, h), where E is a vector
bundle over X and h is a hermitian metric on EΣ, invariant under F∞ and log-
singular along D. Observe that the notion of log-singular hermitian metric is
not the same as the notion of good hermitian metric. This is not important by
two reasons. First, as we will see in the next section, the main examples of good
hermitian vector bundles, the fully decomposed automorphic vector bundles,
are good and log-singular. Second, if one insists in using good hermitian vector
bundles, one can replace pre-log and pre-log-log forms by log and log-log forms
to obtain an analogous theory. This alternative theory has worse cohomological
properties (we have not proven the Poincaré lemma for pre-log and pre-log-log
forms), but the arithmetic intersection numbers computed by both theories
agree.
To each pair X = (X,D), we have assigned an N-graded abelian group

ĈH
∗
(X,Dl,ll,a) that satisfies, among others, the following properties:

(i) The group ĈH
∗
(X,Dl,ll,a) is equipped with an associative, commutative

and unitary ring structure, compatible with the grading.

(ii) If X is proper over SpecA, there is a direct image group homomorphism

f∗ : ĈH
d+1

(X,Dl,ll,a) −→ ĈH
1
(SpecA), where d is the relative dimension.

(iii) For every integer r ≥ 0 and every log-singular hermitian vector bundle

there is defined the arithmetic r-th Chern class ĉr(E) ∈ ĈH
r
(X,Dl,ll,a).

(iv) Let g : X −→ Y be a morphism of arithmetic varieties over A, and let
D and E be normal crossing divisors on XR and YR, respectively, such
that g−1(E) ⊆ D. Write X = (XR,D) and Y = (YR, E). Then, there is
defined an inverse image morphism

g∗ : ĈH
∗
(Y,Dl,ll,a) −→ ĈH

∗
(X,Dl,ll,a).

Moreover, it is a morphism of rings after tensoring with Q.

(v) For every r ≥ 0, it holds the equality g∗(ĉr(E)) = ĉr(g
∗(E)).

(vi) There is a forgetful morphism ζ : ĈH
∗
(X,Dl,ll,a) −→ CH∗(X), compatible

with inverse images and Chern classes.
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(vii) There is a complex of groups

H2p−1
D (XR, R(p))

a−→ ĈH
p
(X,Dl,ll,a)

(ζ,ω)−→ CHp(X) ⊕ ZD2p
l,ll,a(X, p)

that is an exact sequence when XΣ is projective. Observe that the group
ZD2p

l,ll,a(X, p) does not agree with the group denoted by Zp,p(X(C),D) in
[31], §1 (7). The former is made of forms that are log-log along D and
the latter by forms that are good along D. Again, this is not important
by two reasons. First, the image by ω of the arithmetic Chern classes of
fully decomposed automorphic vector bundles lies in the intersection of
the good and log-log forms. Second, the complex of log-log forms shares
all the important properties of the complex of good forms (see proposition
2.26).

(viii) The morphism (ζ, ω) is a ring homomorphism; the image of a is a square
zero ideal. Moreover, it holds the equality

a(x) · y = a(x · cl(ζ(y))),

where x ∈ H2p−1
D (XR, R(p)), y ∈ ĈH

p
(X,Dl,ll,a), cl is the class map,

the product on the left hand side is the product in the arithmetic Chow
groups and the product on the right hand side is the product in Deligne-
Beilinson cohomology.

(ix) When D is empty, there is a canonical isomorphism ĈH
∗
(X,Dl,ll,a) −→

ĈH
∗
(X), compatible with the previously discussed structures. Note that

we have dropped the projectivity assumption in [31], §1 (9). Observe,
moreover, that, if we use the alternative theory with pre-log-log forms,
then this property is not established.

6 Automorphic vector bundles

6.1 Automorphic bundles and log-singular hermitian metrics

Fully decomposed automorphic vector bundles. Let B be a bounded,
hermitian, symmetric domain. Then, by definition B = G/K, where G is a
semi-simple adjoint group and K is a maximal compact subgroup. Inside the
complexification GC of G, there is a suitable parabolic subgroup of the form
P+ · KC, with P+ its unipotent radical and such that K = G ∩ P+ · KC and
G · (P+ · KC) are open in GC. This induces an open G-equivariant immersion

B
Â

Ä ι // B̌

G/K
Â

Ä // GC/P+ · KC.
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Here, B̌ = GC/P+ · KC is a projective rational variety, and the immersion ι is
compatible with the complex structure of B.

Let σ : K −→ GL(n, C) be a representation of K. Then, σ defines a G-
equivariant vector bundle E0 on B. We complexify σ and extend it trivially to
P+ · KC by letting it kill P+. Then, σ defines a holomorphic GC-equivariant
vector bundle Ě0 on B̌ with E0 = ι∗(Ě0). This induces a holomorphic structure
on E0. Observe that different extensions of σ to P+ · KC will define different
holomorphic structures on E0.

Let Γ be a neat arithmetic subgroup of G acting on B. Then, X = Γ\B is a
smooth quasi-projective complex variety, and E0 defines a holomorphic vector
bundle E on X. Following [24], the vector bundles obtained in this way (with σ
extended trivially) will be called fully decomposed automorphic vector bundles.
Since we will not treat more general automorphic vector bundles in this paper,
we will just call them automorphic vector bundles.

Let h0 be a G-equivariant hermitian metric on E0. Such metrics exist by the
compactness of K. Then, h0 determines a hermitian metric h on E.

Definition 6.1. A hermitian vector bundle (E, h) as above will be called an
automorphic hermitian vector bundle.

Let X be a smooth toroidal compactification of X with D = X \ X a normal
crossing divisor. We recall the following result of Mumford (see [34], theorem
3.1).

Theorem 6.2. The automorphic vector bundle E admits a unique extension
to a vector bundle E1 over X such that h is a singular hermitian metric which
is good along D. ¤

By abuse of notation, the extension (E1, h) will also be called an automorphic
hermitian vector bundle.

Our task now is to improve slightly Mumford’s theorem.

Theorem 6.3. The automorphic hermitian vector bundle (E1, h) is a ∞-good
hermitian vector bundle; therefore, it is log-singular along D.

Proof. The proof of this result will take the rest of this section. The technique of
proof used follows closely the proof of theorem 3.1 in [34]. Instead of repeating
the whole proof of Mumford, we will only point out the results needed to bound
all the derivatives of the functions involved.

Cones and Jordan algebras. Let V be a real vector space and let C ⊆ V be
a homogeneous self-adjoint cone. We refer to [1] for the theory of homogeneous
self-adjoint cones and their relationship with Jordan algebras. We will recall
here only some basic facts.

Let G ⊆ GL(V ) be the group of linear maps that preserve C. Since C is
homogeneous, G acts transitively on C. We will denote by g the Lie algebra of
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G. For any point x ∈ C, let Kx = Stab(x). It is a maximal compact subgroup
of G. Let kx be the Lie algebra of Kx and let

g = kx ⊕ px

be the associated Cartan decomposition. Let σx be the Cartan involution. Let
us choose a point e ∈ C. Let 〈 , 〉 = 〈 , 〉e be a positive definite scalar product
such that σe(g) = tg−1 for all g ∈ G. Then, C is self-adjoint with respect to
this inner product. For any point x ∈ C, let us choose g ∈ G such that x = ge.
We will identify V with TC,x. For t1, t2 ∈ V , we will write

〈t1, t2〉x = 〈g−1t1, g
−1t2〉e.

The right hand side is independent of g because 〈 , 〉e is Ke-invariant. These
products define a G-invariant Riemannian metric on C, which is denoted by
ds2

C .
The elements of g act on V by endomorphisms. This action can be seen as the
differential of the G action at e ∈ V , or given by the inclusion g ⊆ gl(V ). For
any x ∈ C there are isomorphisms

px

∼=−→ px.x = V and Px = exp(px)
∼=−→ Px.x = C.

The elements of px act on V by self-adjoint endomorphisms with respect to
〈 , 〉x.
Every px has a structure of Jordan algebra defined by

(π.π′).x = π.(π′.x).

The isomorphism px −→ V defines a Jordan algebra structure on V , which we
denote by t1 .

x
t2. Observe that x is the unit element for this Jordan algebra

structure.
We summarize the compatibility relations between the objects defined so far
and the action of the group. Let x = g.e :

Kx = Ad(g)Ke = gKeg
−1,

kx = ad(g)ke = gkeg
−1,

px = ad(g)pe = gpeg
−1.

There is a commutative diagram

pe
ad(g)−−−−→ px

.e

y
y.x

V
g.−−−−→ V

The horizontal arrows in the above diagram are morphisms of Jordan algebras.
In particular

g.(t1 .
e
t2) = gt1 .

x
gt2.
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When a unit element e is chosen, we will write t1.t2 and 〈 , 〉 instead of t1 .
e
t2

and 〈 , 〉e.

Derivatives with respect to the base point. We now study the deriva-
tives of the scalar product and the Jordan algebra product when we move the
base point.

Lemma 6.4. Let t1, t2, t3 ∈ V . Then, we have

(i) Dt1(〈t2, x−1〉e) = −〈t2, t1〉x.

(ii) Dt3〈t1, t2〉x = −(〈t3 .
x
t1, t2〉x + 〈t1, t3 .

x
t2〉x) = −2〈t1, t3 .

x
t2〉x.

(iii) Dt3(t1 .
x
t2) = −((t3 .

x
t1) .

x
t2 + t1 .

x
(t3 .

x
t2)).

Proof. The proof of 1 is in [34], p. 244. To prove 2, write t3 = M.x with
M ∈ px. Then, α(δ) = exp(δM).x is a curve with α(0) = x and α′(0) = t3.
Therefore, we find

Dt3〈t1, t2〉x =
d

d δ
〈t1, t2〉exp(δM).x|δ=0

=
d

d δ
〈exp(δM)−1.t1, exp(δM)−1.t2〉x|δ=0

= −(〈M.t1, t2〉x + 〈t1,M.t2〉x)

= −(〈t3.t1, t2〉x + 〈t1, t3.t2〉x).

The second equality of 2 follows from the fact that M acts by an endomorphism
which is self-adjoint with respect to 〈 , 〉x.
The proof of 3 is completely analogous.

We will denote by ‖ ‖x the norm associated to the inner product 〈 , 〉x.

Lemma 6.5. There is a constant K > 0 such that, for all x ∈ C and t1, t2 ∈ V ,

‖t1 .
x
t2‖x ≤ K‖t1‖x‖t2‖x.

Proof. On pe we may define the norm

‖M‖′e = sup
t∈V

‖M.t‖e

‖t‖e
.

Via the isomorphism pe −→ V it induces a norm on V given by

‖t1‖′e = sup
t∈V

‖t1 .
e
t‖e

‖t‖e
.

Since any two norms in a finite dimensional vector space are equivalent, there
is a constant K > 0 such that

‖t‖′e ≤ K‖t‖e
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for all t. Therefore, we get

‖t1 .
e
t2‖e ≤ ‖t1‖′e‖t2‖e ≤ K‖t1‖e‖t2‖e.

But for any x = ge, we have

‖t1 .
x
t2‖x = ‖g−1t1 .

e
g−1t2‖e ≤ K‖g−1t1‖e‖g−1t2‖e = K‖t1‖x‖t2‖x.

Maximal R-split torus. We fix a unit element e ∈ C. This fixes also the
Jordan algebra structure of V , and we write K = Ke and p = pe. Let A ⊆
exp(p) be a maximal R-split torus with A = exp(a). Then, exp(p) = K.A.K−1

and C = K.A.e. A useful result, which is proven in [1], II, §3, is the following

Proposition 6.6. There exist a maximal set of mutually orthogonal idempo-
tents ǫ1, . . . , ǫr of V with e = ǫ1 + . . . + ǫr such that

a.e =
r∑

i=1

Rǫi and A.e =
r∑

i=1

R+ǫi.

Moreover, C ∩ a.e = A.e. ¤

On A, we can introduce the coordinates given by

A ∼= A.e =

r∑

i=1

R+ǫi
∼= (R+)r.

As an application of the previous result we prove a bound for the norm of x−1.

Lemma 6.7. Let σ ∈ C. There exists a constant K such that ‖x−1‖ ≤ K for
all x ∈ σ + C.

Proof. Since
⋃

λ>0(λe + C) = C, we may assume that σ = λe for some λ > 0.
Since K is compact and

λe + C = K(λe + A.e),

it is enough to bound x−1 for x ∈ λe+A.e. If x ∈ λe+A.e, then we can write,
using the above coordinates of A, x = a.e with a = (a1, . . . , ar) and all ai ≥ λ.
Then, x−1 = a−1.e. Since on a finite dimensional vector space any two norms
are equivalent, we obtain

‖x−1‖2 ≤ K1(a
−2
1 + . . . + a−2

k ) ≤ K2/λ2.
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equivariant symmetric representations. Let Cn be the cone of positive
definite n× n hermitian matrices. An equivariant symmetric representation of
dimension n is a pair (ρ,H), where ρ : G −→ GL(n, C) is a representation and
H : C −→ Cn is a map such that

(i) (Equivariance) H(gx) = ρ(g)H(x)tρ(g) for all x ∈ C, g ∈ G.

(ii) (Symmetry) ρ(g∗) = H(e).tρ(g)
−1

.H(e)−1 for all g ∈ G.

We will consider an equivariant symmetric representation (ρ,Ht) with Ht de-
pending differentiably on a parameter t ∈ T with T compact as in [34], pp.
245, 246.

Bounds of H and det H−1. The first step is to bound the entries of Ht and
det H(t)−1. This is done in [34], proposition 2.3.

Proposition 6.8. For all σ ∈ C, there is a constant K > 0 and an integer N
such that

‖Ht(x)‖, |det Ht(x)|−1 ≤ K〈x, x〉N for all x ∈ σ + C.

¤

The following results of Mumford (see [34], propositions 2.4 and 2.5) are the
starting point to bound the entries of DvHt.H

−1
t ; they will also be used to

bound the derivatives of Ht.

Proposition 6.9. Let ξ ∈ V . For all 1 ≤ α, β ≤ n, let (DξHt.H
−1
t )α,β be the

(α, β)-th entry of this matrix. There is a linear map

Cαβ,t : V −→ V

depending differentiably on t such that

(DξHt.H
−1)αβ(x) = 〈Cαβ,t(ξ), x

−1〉.

Moreover, Cαβ,t has the property

ξ, η ∈ C
〈ξ, η〉 = 0

}
⇒ 〈Cαβ,t(ξ), η〉 = 0.

¤

Proposition 6.10. For all vector fields δ on T , δHt.H
−1
t (x) is independent of

x. ¤

Proposition 6.11. Let σ ∈ C, let P be a differential operator on T and let
ξ1, . . . , ξd ∈ V . Then, there is a constant K > 0 and an integer N such that

‖Dξ1
. . . Dξd

PHt(x)‖, |Dξ1
. . . Dξd

P det Ht(x)| ≤ K〈x, x〉N (x ∈ σ + C).
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Proof. In view of proposition 6.10 and since T is compact, it is enough to
consider the case P = id. Now, by proposition 6.9 and the fact that

Dξi
x−1 = −x−1.(x−1.ξi),

we can prove by induction that

Dξ1
. . . Dξd

Ht(x) = M(C(ξ1, . . . , ξd, x)).Ht(x),

where M : V −→ Mn(C) is linear and C : V −→ V is linear on ξ1, . . . , ξd and
polynomial in x−1.
Then, the proposition follows from proposition 6.8 and lemma 6.7.

Bounds of δH.H−1. Let e = ǫ1 + . . . + ǫr be a maximal set of orthogonal
idempotents, and let A be the corresponding R-split maximal torus. Let Ci

be the boundary component containing ǫi+1 + . . . + ǫr (see [1], II, §3). Let

C̃ = C ∪ C1 ∪ . . . ∪ Cr ∪ 0 and let P be the parabolic subgroup stabilizing the
flag {Ci}.
In order to be able to use proposition 6.9 to bound DvHt.H

−1
t and its deriva-

tives, we will need the following result (see [34], proposition 2.6).

Proposition 6.12. Let ξ1, ξ2 ∈ C̃, and let ξ′1 ∈ V satisfy

η ∈ C
〈ξ1, η〉 = 0

}
⇒ 〈ξ′1, η〉 = 0.

Then, for every compact subset ω ⊆ P , there is a constant K > 0 such that

(i) |〈ξ′1, x−1〉| ≤ K‖ξ1‖x for all x ∈ ω.A.e.

(ii) |〈ξ′1, ξ2〉| ≤ K‖ξ1‖x‖ξ2‖x for all x ∈ ω.A.e.

Now we can bound the derivatives of DvHt.H
−1
t in terms of the Riemannian

metric ds2
C . Let N = dim V and let ξ1, . . . , ξN ∈ C̃ span V .

Proposition 6.13. Let δ be a vector field in T , let P be a differential opera-
tor, which is a product of vector fields in T , let (ji)

n
i=1 be a finite sequence of

elements of {1, . . . , N}, and let ω be a compact subset of P . Then, there is a
constant K > 0 such that

‖Dξj1
. . . Dξjn

P (DδHt.H
−1
t )‖ ≤ K‖ξj1‖x . . . ‖ξjn

‖x,

‖Dξj1
. . . Dξjn−1

P (Dξjn
Ht.H

−1
t )‖ ≤ K‖ξj1‖x . . . ‖ξjn

‖x

for all x ∈ ω.A.e.

Proof. Since T is compact and in view of proposition 6.10, it is enough to
prove the second inequality for P = id. In this case, the lemma follows from
propositions 6.12 and 6.9, and lemmas 6.4 and 6.5.
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Let σ ⊆ C be the simplicial cone

σ =

N∑

i=1

R+ξi.

Let {li} be the dual basis of {ξi}.
Proposition 6.14. Let δ be a vector field in T , let P be a differential operator,
which is a product of vector fields in T , let (ij)

n
j=1 be a finite sequence of

elements of {1, . . . , N}, and let a ∈ C. Then, there is a constant K > 0 such
that

∣∣∣∣∣∣

r∏

j=2

Dξij
P (Dξi1

Ht.H
−1
t (x))α,β

∣∣∣∣∣∣
≤ K∏r

j=1 lij
(x) − lij

(a)
,

∣∣∣∣∣∣

r∏

j=1

Dξij
P (δHt.H

−1
t (x))α,β

∣∣∣∣∣∣
≤ K

for all integers 1 ≤ α, β ≤ n and x ∈ Int(σ + a).

Proof. The proof is as in [34], proposition 2.7, but using proposition 6.13 to
estimate the higher derivatives.

End of the proof. Now the proof of theorem 6.3 goes exactly as the proof
of [34], theorem 3.1, but using propositions 6.11 and 6.14 to bound the higher
derivatives.

Remark 6.15. Observe that we really have proven that, if {e1, . . . , er} is a
holomorphic frame of E1 and H = (hei,ej

) is the matrix of h in this frame, then
the entries of H and detH−1 are of polynomial growth in the local universal
cover (which, by theorem 2.13, is equivalent of being log forms) and that the
entries of ∂H ·H−1 are of logarithmic growth in the local universal cover (which,
by theorem 2.30, is stronger than being log-log forms).

6.2 Shimura varieties and automorphic vector bundles

A wealth of examples where the theory developed in this paper can be applied
is provided by non-compact Shimura varieties. In fact, the concrete examples
developed so far are modular curves (see [30]) and Hilbert modular surfaces
(see [6]), which are examples of Shimura varieties of non-compact type.
For an algebraic group G, G(R)+ is the identity component of the topological
group G(R) and G(R)+ is the inverse image of Gad(R)+ in G(R); also G(Q)+ =
G(Q) ∩ G(R))+ and G(Q)+ = G(Q) ∩ G(R))+.

Definition of Shimura varieties. Let S be the real algebraic torus
ResC/R Gm. Following Deligne [13] (see also [32]) one considers the data:
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712 J. I. Burgos Gil, J. Kramer, U. Kühn

(1) G a connected reductive group defined over Q,

(2) X a G(R)-conjugacy class of morphisms hx : S −→ GR of real algebraic
groups (x ∈ X),

satisfying the properties:

(a) The Hodge structure on LieGR defined by Ad ◦hx is of type

{(−1, 1), (0, 0), (1,−1)}.

(b) The involution inthx(i) induces a Cartan involution on the adjoint group
Gad(R).

(c) Let w : Gm,R −→ S be the canonical conorm map. The weight map hx◦w
(whose image is central by (a)) is defined over Q.

(d) Let Z ′
G be the maximal Q-split torus of ZG, the center of G. Then,

ZG(R)/Z ′
G(R) is compact.

Under the above assumptions X is a product of hermitian symmetric domains
corresponding to the simple non-compact factors of Gad(R). Denote by Af the
finite adèles of Q and let K ⊆ G(Af ) be a neat (see, e.g., [35] for the definition
of neat) open compact subgroup. With these data the Shimura variety MK(C)
is defined by

MK(C) = MK(G,X)(C) := G(Q)\X × G(Af )/K.

Connected components of Shimura varieties. Let X+ be a connected
component of X, and for each x ∈ X+, let h′

x be the composite of hx with
GR −→ Gad

R . Then, x 7−→ h′
x, identifies X+ with a Gad(R)+-conjugacy class of

morphisms S −→ Gad
R that satisfy the axioms of a connected Shimura variety.

In particular, X+ is a bounded symmetric domain and X is a finite disjoint
union of bounded symmetric domains (indexed by G(R)/G(R)+).
Let C be a set of representatives of the finite set G(R)+\G(Af )/K and, for each
g ∈ C, let Γg be the image in Gad(R)+ of the subgroup Γ′

g = gKg−1∩G(Q)+ of

G(Q)+. Then, Γg is a torsion free arithmetic subgroup of Gad(R)+ and MK(C)
is a finite disjoint union

MK(C) =
∐

g∈C

Γg\X+.

The connected component Γg\X+ will be denoted by MΓg
.

Algebraic models of Shimura varieties. Every Shimura variety is a
quasi-projective variety. It has a “minimal” compactification, the Baily-Borel
compactification, which is highly singular. The theory of toroidal compact-
ifications provides us with various other compactifications; among them we
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can choose non-singular ones whose boundaries are normal crossing divisors.
Moreover, it has a model over a number field E, called the reflex field, and the
toroidal compactifications are also defined over E (see [35]). This model can
be extended to a proper regular model defined over OE [N−1], where OE is the
ring of integers of E and N is a suitable natural number.

Automorphic vector bundles. Let Kx be the subgroup of G(R) stabilizing
a point x ∈ X and let Px be the parabolic subgroup of G(C) arising from the
Cartan decomposition of Lie(G) associated to Kx. Let λ : Kx −→ GLn be
a finite dimensional representation of Kx. It can be extended trivially to a
representation of Px and defines a G(C)-equivariant vector bundle V̌ on the
compact dual M̌(C) = G(C)/Px. Let β : X −→ M̌(C) be the Borel embedding,
then V = β∗(V̌) is a G(R)-equivariant vector bundle on X. For any neat open
compact subgroup K ⊆ G(Af ) it defines a vector bundle

VK = G(Q)\V × G(Af )/K

on the Shimura variety MK . This vector bundle is algebraic and it is defined
over the reflex field E. Following [23], the vector bundles obtained in this way,
will be called fully decomposed automorphic vector bundles.
The restriction to any component MΓg

will be denoted by VΓg
. It is a fully

decomposed automorphic vector bundle in the sense of the previous section.

Canonical extensions. Let MK,Σ be a smooth toroidal compactification of
MK and let VK be an automorphic vector bundle on MK . Then, there exists
a canonical extension of VK to a vector bundle VK,Σ over MK,Σ (see [34], [32],
[21]). This canonical extension can be characterized in terms of an invariant
hermitian metric on V .

Let MK be a Shimura variety defined over the reflex field E. Let MK,Σ be
a smooth toroidal compactification of MK defined over E such that DE =
MK,Σ \ MK is a normal crossing divisor. Let VK be an automorphic vector
bundle defined over E with canonical extension VK,Σ. Let h be a Gder(R)-
invariant hermitian metric on V ; it induces a hermitian metric on VK , also
denoted by h. We denote again by h the singular hermitian metric induced
on VK,Σ. Let MK,Σ be a regular model of MK,Σ over OE [N−1]. Assume that
VK,Σ can be extended to a vector bundle VK,Σ over MK,Σ. Then, theorem 6.3
implies

Theorem 6.16. The pair (VK,Σ, h) is a log-singular hermitian vector bundle
on MK,Σ. ¤
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