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Abstract. We deal with a ertain observation mapping de�ned bymeans of weighted measurments on a dynamial system and give ne-essary and su�ient onditions, under whih this mapping is generi-ally an injetive immersion.2000 Mathematis Subjet Classi�ation: 93B07, 37C20, 37C10,94A20.Keywords and Phrases: Observability, generi, dynamial system,sampling.
1 IntroductionThe observability problem of nonlinear dynamial systems has been an inter-esting subjet and ative �eld of researh throughout the last deades. In thepresent work we onsider time invariant systems of the form∗

ẋ = f(x)

y = h(x).The �rst equation desribes a real dynami proess. Its state x(t) at time tis assumed to be element of a smooth seond ountable (hene paraompat)n-dimensional manifold M alled state spae. The dynamis of the systemis given by the vetor �eld f on M . The output funtion h is a mappingfrom the state spae into the reals and stands for a measuring devie. Theseond equation desribes the output, whih ontains partial informationof the state. The output y is the only measurable quantity. There is avery broad variety of systems, whih an be desribed in this way. We allthe triple (M, f, h) or simply the pair (f, h) a system. The system is alled
∗We use the ustomary abbreviations: Time t denotes the natural oordinate on R andthe �rst equation is identi�ed with its loal representative.
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Cr i�M , f and h are Cr. We denote the set of Cr vetor �elds onM by X
r(M).In many appliations it is of essential importane to know the state of thesystem at any time t. But measurement of the entire state (e.g. all itsoordinates) is often impossible or very di�ult. For instane beause of highosts or tehnial reasons. In most ases one has only partial information frommeasurement of the output y, mathematially being desribed by the seondequation. So the issue is to get the state (as well as distinguish di�erent states)by using only output measurement∗. If this is possible, then the system issaid to be observable. Hene, the issue of the observability problem is thefollowing. Find riteria on the system, suh that by means of informationfrom the output trajetory, it is possible to distinguish di�erent states as wellas to reonstrut the states. There is no uniform or anonial de�nition ofobservability in the literature. The weakest and most natural de�nition is thefollowing.

Definition 1.1 The system (f, h) is said to be observable (or distinguishable)if for eah (x, x′) ∈M ×M with x 6= x′ there exists a time t0 = t0(x, x
′) suhthat h(Φt0(x)) 6= h(Φt0(x

′)).However, the above de�nition is not well-suited for the treatment of theobservability problem. Therefore one seeks to establish a stonger notion of ob-servability as follows. Consider a mapping Θ (in the sequel alled observationmapping), whih maps the state spae into some �nite dimensional Eulidianspae, assigning states to data derived from the output trajetories on someobservation time interval J . Then deide the observability of the system bymeans of injetivity of Θ. Moreover the following natural question arises. Isobservability in this sense (, i.e. with respet to Θ) generi? The latter is themain issue of the present work. In the ontrol theory the noatation of observeris generally standing for another system having the output (and input in theontrolled ase) of the original system as input and generating an output whihis an asymptoti estimate of the original system state.Beside the task of reonstrution of the state, observability has also applia-tion in the theory of haos and turbulene in the following sense. Suppose anobservable system has a global attrator. Then using an observation mappingone an get a homeomorphi piture of the attrator or at least informationabout some of its harateristi properties. Examples an be found in [RT℄and [T℄. We onsider a ertain observation mapping introdued in [KE℄ and[E℄. We derive neessary and su�ient onditions for generiity of observabilityand loal observability with respet to this mapping. Basially, there are twoother well-knwon approahes to the observability task: sampling and high-gainapproah. In his lassial work [T℄, Takens proved generiity results similar to
∗It is worth to mention that often the information by output measurements underly someerrors leading to the problem of stabiliy.
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Generic Observability of Dynamical Systems 507ours for these approahes. About the same time Aeyels [Ay℄ ahieved sharperresults onerning the sampling approah. Further results on high-gain ap-proah an be found in [GK℄, [GHK℄ and [J℄. Partiularly, for a omrehensiveand intensive investigation of deterministi observation theory and applia-tions inluding many deep results onerning high-gain approah we refer to[GK℄. Our approah has the disadvantage that a suitable linear �lter has tobe onstruted. On the other side in ontrast to high-gain approah we do notneed to restrit ourselves to smooth systems. For more on our approah withappliations we refer to [N℄.
2 Main Results

Definition 2.1 Let 0 < τ < ∞, (A, b) be a stable and ontrollable m-dimensional linear �lter and (M, f, h) a Cr-system with �ow Φ. We all themapping M ∋ x 7→ Θf,h :=
∫ 0

−τ
e−Atbh(Φt(x))dt ∈ R

m the observation map-ping and the number m observation dimension. If Θf,h is injetive we all thesystem (M, f, h) Θ-observable or simply observable.Furthermore we all the system loally observable if Θf,h is an immersion.The indistinguishable subset of M ×M is given by
Ωf,h := {(x, x′) ∈M ×M \ ∆M : Θf,h(x) = Θf,h(x′)}.The time interval I := [−τ, 0] has the physial interpretation of observationinterval. We treat for simpliity of notation and in view of the physialinterpretation of the observation data as history of the output mapping, thease I ⊂ R≤0, 0 ∈ I. For unbounded intervals modi�ations are needed, whihwe give expliitly for the ase I = R≤0.The key point in the proof of the following generiity results is to show thatzero is a regular value of the observation mapping. Proving this we then applytransversality density and openness theorems to get loally our statements,whih then will be globalized to the whole state spae. A Baire argument thenyields the �nal results. Partiularly for τ < ∞ in any Cr neighborhood of thesystem there is a system whih is both observable and loally observable withrespet to Θ. An appropriate statement is also valid for τ = ∞ in the C1topology.If the state spae is not ompat, it is more suitable to onsider the so alledstrong or Whitney (Cr-)topology on Cr(M,R) and X

r(M). The reason is thatin this topology one has more ontrol on the behavior of the funtions and ve-tor �elds at in�nity. Note that density in this topology is a stronger propertythan in the ompat-open (also alled weak) topology. For instane, roughlyspeaking, a sequene of output funtions hj onverges in Whitney topology to
h i� there exists a ompat set K suh that hj = h outside of K exept for�nitely many j and all the derivatives up to order k onverge uniformly on K.
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508 Esfandiar Nava YazdaniThe ase of smooth vetor �elds is similar. The well known fat that Cr(M,R)and X
r(M) are Baire spaes in the Whitney topology (proofs an be found inin [H, 2.4.4℄ and [P℄) is of basi importane for our results. A residual subset of

Cr(M,R) or X
r(M) is dense. From now on the spaes of Cr funtions as wellas vetor �elds on M are equipped with their Cr Whitney topology, unless oth-erwise indiated. If the state spae M is ompat and r <∞, then Cr(M,Rk)and X

r(M) endowed with the ompat-open topology are Banah spaes (whilein general Fréhet spaes), their Whitney and ompat-open topology oin-ide and the �ow Φ of eah vetor �eld f ∈ X
r(M) is de�ned globally onM×R.For some pairs in X

r(M) × Cr(M,R) there is no possibility to distin-guish or loally distinguish the states. For generiity results it is an es-sential fat that the omplement of the set of suh pairs is residual. Let
Sing(f) := {x ∈ M : f(x) = 0x ∈ TxM} denote the set of singularities ofthe vetor �eld f (equilibria of the system), where 0x is the zero of TxM . Inthe sequel we shall often omit the subsript x and write simply f(x) = 0 for
x ∈ Sing(f).Reall that a singularity x0 ∈ Sing(f) is alled simple i� the prinipial partof the linearization of f at x0, i.e. the linear mapping dx0

f : Tx0
M → Tx0

M ,does not have zero as an eigenvalue.We denote the set of Cr vetor �elds, whose singularities are all simple, by
X

r
0(M). It is well known that a simple singularity is isolated and X

r
0(M) is anopen and dense subset of X

r(M) (for a proof we refer to [PD, 3.3℄).
Definition 2.2 We all x0 ∈ M a Θ-simple singularity i� there exists aotangent vetor v ∈ T ∗

x0
M suh that the linear system (Tx0

M,dx0
f, vT ) isobservable, i.e., the linear mapping

∫ 0

−τ

e−tAbvetdx0
fdt : Tx0

M → R
mis injetive. In this ase we say that vT is a Θ-oyli ovetor of dx0

f .We denote by X
r
1(M) the set of Cr vetor �elds on M , whose singularities are

Θ-simple. Moreover we set X
r
0,1(M) := X

r
0(M) ∩ X

r
1(M).In the limiting ase τ = ∞ dense orbits as well as nontrivial reurrene ausedi�ulties and speial onsiderations are neessary. We investigate this aseunder the assumption that M is ompat. Appropriate results in the nonom-pat ase an be similarly deriven if we further restrit (in order to ahievewell-de�nedness of the observation mapping) the systems to be globally Lip-shitzian. Furthermore, in order to ensure di�erentiability of the observationmapping, if τ = ∞ we restrit the vetor �elds to the open set

X
r(M,a) := {f ∈ X

r(M) : sup
x∈M

‖dj
xf‖ < a for all j = 1, ..., r}Denoting the set of ritial elements (equilibria and losed orbits) of a vetor
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Generic Observability of Dynamical Systems 509�eld f by C(f) and the union of the negative limit sets by L−(f), we set
X

r
−(M) := {f ∈ X

r(M) : L−(f) ⊂ C(f)}.We denote that some ineteresting lasses of vetor �elds like Morse-Smale �elds∗are ontained in X
r
−(M). Partiularly, sine the set onsisting of Morse-Smalevetor �elds is open and nonempty in Xr(M), the interior int(Xr

−(M)) of
X

r
−(M) is a Baire spae (in the indued topology). Furthermore note that thelimit set of a gradient �eld onsists only of the ritial points of the potentialfuntion. Therefore X

r
−(M) also ontains the set of gradient �elds. Moreoverwe set
X

r
2(M) := X

r(M,a) ∩ int(Xr
−(M)).It is well known that on a ompat manifold C1-generially the nonwander-ing set of a smooth vetor �eld oinides with the losure of the set of itsperiodi points. This statement alled general density theorem is a onse-quene of Pugh's losing lemma, whih ensures that a nonwandering pointan be made periodi by a small C1-petrubation in a neighbourhood of thepoint. See also [Pu℄, [AR, 7.3.6℄ and the referenes given there∗. Partiularly

{f ∈ X
1(M) : L−(f) ⊂ C(f)} is a residual subset of X

1(M).We set for y ∈ Er
a,τ := {y ∈ Cr([−τ, 0],R) :

∫ 0

−τ
eat|y(t)|dt <∞}

Pτy :=

∫ 0

−τ

e−Atby(t)dtand for �xed τ simply write P instead of Pτ .
Lemma 2.1 Let r, τ ≤ ∞.Furthermore let q0 ∈ R

m and T, δ > 0. Thenthe followings hold.a) There exists a funtion y ∈ Cr(R,R) being ompatly supported in ] − δ, 0[and satisfying Pτy = q0.b) There exists a T -periodi funtion y ∈ Cr(R,R) with Pτy = q0 and
supp(y|[−(k+1)T,0]) ⊂] − (k + 1)δ, 0[ for all k ∈ Z.
Proof: Ad a) Let ǫ := min{δ, τ}. The mapping L1([−ǫ, 0]) ∋ y 7→ K(y) :=∫ 0

−ǫ
e−Atby(t)dt ∈ R

m is linear, ontinuous and beause of the ontrollabilityof (A, b) surjetive. Cr
ǫ is a dense linear subspae of L1([−ǫ, 0]). Therefore

R := K(Cr
ǫ ) is a dense linear subspae of R

m and onsequently R = R
m.Therefore there exists a funtion y0 ∈ Cr

ǫ having the property K(y0) = q0.The trivial extension of y0 on R is obviously the desired funtion.Ad b) If τ ≤ T , the assertion follows diretly from part a). We provethe result for τ > T using sampling. Assume �rst τ < ∞ and let
N := max{k ∈ N : NT ≤ τ}. Due to the stability of A the series ∑∞

k=0 e
kTA

∗Reall that Morse-Smale vetor �elds are struturally stable.
∗It is still unknown whether the Ck-losing lemma with k ≥ 2 fails in general.
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510 Esfandiar Nava Yazdanionverges to (I − eTA)−1 and SN :=
∑N

k=0 e
kTA = (I − eTA)−1(I − e(N+1)TA)is invertible. Let us write ǫ := min{τ −T, δ}. Aording to part a) there exists

ỹ0 ∈ Cr
ǫ with PT ỹ0 = S−1

N q0 (as well as (I − eTA)q0 in ase τ = ∞). Let y0denote the trivial extension of ỹ0 on [−T, 0]. Then we have PT y0 = S−1
N q0.Let y denote the T -periodi extension of y0 on R. Consequently

∫ 0

−τ

e−Atby(t)dt =

N∑

k=0

∫ −kT

−(1+k)T

e−Atby0(t+ kT )dt

=

N∑

k=0

ekTA

∫ 0

−T

e−Atby0(t)dt

= q0,whih yields immediately the desired onlusion. �Let π denote the anonial projetion of the tangent bundle TM :
π : TM →M, π(v) := x for v ∈ TxM.Let M be endowed with a Riemannian metri. Denoting the indued norm onthe tangent spaes by |.|, the unit tangent bundle T1M is given by
T1M := ∪

x∈M
{v ∈ TxM : |v| = 1}.Reall that T1M is a (2n − 1)-dimensional Cr−1 submanifold of TM . It isompat, if M is ompat.Let K be a subset ofM . We set T0K := K×K \∆K and denote the restritionof T1M to K with T1K, i.e., T1K := {v ∈ T1M : π(v) ∈ K}. Reall that if Kis an s-dimensional submanifold, then T1K has dimension n+ s− 1.

Definition 2.3 We de�ne the τ -history of K by the �ow Φ of the ve-tor �eld f to be the losure of
Φ(K; τ) := {Φt(x) : −τ < t ≤ 0, x ∈ K}.We denote

∆Θf,h(x, x′) := Θf,h(x) − Θf,h(x′) for x, x′ ∈M .Let V be an open subset of M ontaining the τ -history of K and L be thelosure of V . Then we denote
H0(L;K) := {h ∈ Cr(L,R) : zero is a regular value of ∆Θf,h|Λ0K},and

H1(L;K) := {h ∈ Cr+1(L,R) : zero is a regular value of dΘf,h|Λ1K}.
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Generic Observability of Dynamical Systems 511In the sequel we set i = 0, 1 as well as Hi(K) := Hi(M ;K) and Hi := Hi(M).If K ′ ⊂ K and for an output funtion h, zero is a regular value of themapping ∆Θf,h on Λ0K, then it is also a regular value of the restrited map-ping ∆Θf,h|Λ0K′ , that is, H0(K) ⊂ H0(K
′). Similarly H1(K) ⊂ H1(K

′) holds.In the following, if f ∈ X
r
0,1(M), then H0(L) stands for the set of outputfuntions h ∈ Cr(L,R) suh that

h(x0) 6= h(x′0) for all (x0, x
′
0) ∈ Λ0(L ∩ Sing(f)),and H1(L) for those h ∈ Cr+1(L,R) suh that

dx0
h is a Θ-oyli ovetor of dx0

f for all x0 ∈ L ∩ Sing(f).Note that if L is ompat, then the number of singularities of f in L is �niteand for �nite r, as an immediate appliation of the transversality opennessand density theorems, it follows that Hi(L) is an open and dense subset of theBanah spae Cr+i(L,R).
Lemma 2.2 Assume that i < r < ∞ and f ∈ X

r
0,1(M) is omplete. Let

S be a Cr submanifold of M suh that the τ -history of S is ontained in anopen subset V of M with ompat losure L := V̄ . Consider the mappings
F i : Hi(L) × ΛiS → R

m de�ned by
F 0(h, x, x′) := ∆Θf,h(x, x′)and
F 1(h, v) := dπ(v)Θf,h(v).Then the following holds.a) Zero is a regular value of F 0.b) Zero is a regular value of F 1.Suppose moreover that f ∈ Xr

2 (M). Then the assertions also hold for τ = ∞.
Proof: Ad a) Let W0 := {(h, x, x′) ∈ H0(L) × T0S : F 0(h, x, x′) = 0}.We have to show that the funtion F 0 is submersive on W0. Sine
R

m is �nite dimensional, it su�ies to prove that the linear mapping
d(h,x,x′)F

0 : T(h,x,x′)(H0(L) × T0S) → R
m is surjetive for all (h, x, x′) ∈ W0.Fix (h, x, x′) ∈W0 and q0 ∈ R

m. Aording to the ondition h ∈ H0(L) we seethat x and x′ annot be both equilibrium points. Therefore we assume withoutloss of generality that x is not an equilibrium point. Sine H0(L) is open and
d
ds
|s=0F

0(h + sg, x, x′) = ∆Θf,g(x, x
′) = F 0(g, x, x′), it is su�ient to showthe existene of an output funtion g ∈ Cr(L,R) satisfying F 0(g, x, x′) = q0.We use the fat that the �ow through a point of the state spae M maps eahlosed �nite time interval on a losed subset ofM and de�ne a suitable mapping

g on an appropriate losed subset of the state spae and then extend it to L.
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512 Esfandiar Nava YazdaniLet γ and γ′ denote the τ -histories of the points x and x′ respetively and
Z := γ ∪ γ′. We de�ne g on Z. We �rst treat the ase τ <∞.Case 1: Both orbits are ritial elements. Let T denote the period of x. In viewof lemma 2.1 there exists a T -periodi funtion y ∈ Ck(R,R), whih satis�esthe ondition Pτy = q0. We set g(Φt+kT (x)) = y(t) for 0 ≤ t ≤ T, k ∈ Z and
g = 0 else.Case 2: One of the integral urves, say Φ(x), is injetive and the other one isperiodi or an equilibrium point. Aording to Lemma 2.1 there is a funtion
y ∈ Ck([−τ, 0],R) with ompat support suh that Pτy = q0. We de�ne g on γby g(Φt(x)) = y(t) for −τ ≤ t ≤ 0 and g = 0 else. If Φ(x′) is injetive and x isperiodi, we just set g = 0 on γ and de�ne g on γ′ suh that Pτ (g ◦ Φ(x′))) =
−q0.Case 3: Both integral urves are injetive. In this ase we de�ne g on γ as inase 2 and on γ′ by g = 0.If τ = ∞, then beause of eventual presene of dense orbits g annot be simplyde�ned on a part of Z and then trivially extended. Hene the onstrutionof g beomes a little more deliate. Assuming f ∈ X2 ensures then that thereurrene is trivial and the previous proedure also works. If both orbitsare ritial elements, i.e. in ase 1, then everything remains the same as for�nite observation time. Problems ould arise in ase 2 or 3 if at least oneof the integral urves is injetive and the past half of one of the orbits, saythe one through x′, belongs to the negative limit set of the other orbit oritself, i.e., {Φt(x

′) : t ≤ 0} ⊂ α(x) ∪ α(x′). But this an aording to theassumption f ∈ X
r
2(M) only our if x′ is periodi or an equilibrium point. Weproeed as in ase 2 of �nite τ and �nd again in view of Lemma 2.1 a funtion

y ∈ Cr(R,R) ompatly supported in an interval [−ǫ, 0] with ǫ > 0 and set
g(Φt(x)) := y(t) for all t and g = 0 else.In all ases we have de�ned a Cr funtion on the losed subset Z of the statespae M with the property that Z ⊂ L and Pτ (g ◦ Φ(x) − g ◦ Φ(x′)) = q0.Aording to the smooth Tietze extension theorem, there exists a Cr extensionof the funtion g to L. This funtion denoted again by g is obviously thedesired funtion, whih satis�es F 0(g, x, x′) = q0.Ad b) Denote W1 := {(h, v) ∈ H1(L) × T1S : F 1(h, v) = 0}. We �x
(h, v) ∈ W1, set x0 := π(v) and show that F 1 is submersive at (h, v). Fix
q0 ∈ R

m. Sine d
ds
|s=0F

1(h + sg, v) = F 1(g, v) for arbitrary g ∈ Cr(M,R), itsu�es to prove the existene of a funtion g ∈ Cr(L,R) with F 1(g, v) = q0loally and extend it L. If x0 would be an equilibrium point, then in viewof the assumption h ∈ H1(L), the linear system (Tx0
M,dx0

f, dx0
h) would be

Θ-observable and onsequently F 1(h, v) 6= 0 in ontradition to the assumption
(h, v) ∈ W1. Therefore we may assume that x0 is not an equilibrium point.Hene, in view of the straightening-out theorem there is a loal hart (U,ψ)at x0 suh that ψ(U) = U ′×] − ǫ,−ǫ[ with ǫ > 0, U ′ an open subset of R

n−1,
ψ(x0) = 0 and the vetor �eld f has the loal representative (z, t) 7→ en. Here
en denotes the nth standard base vetor in R

n. Denote the indued oordinate
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Generic Observability of Dynamical Systems 513funtion on T1M at v by ψ̂. Sine v 6= 0 we an and do assume that v hasthe loal representative η = (η1, η2)
T with η1 ∈ R

n−1, η2 ∈ R, η 6= 0, i.e.
v = ∂

∂z
(x0)η1 + ∂

∂t
(x0)η2. Furthermore for t ∈]− ǫ,−ǫ[, the loal representativeof dx0

Φt reads as [
Id 0
0 1

] and subsequently that of dx0
h ◦ Φtv as ∇h(0, t)η.By shrinking U if neessary, we an (in the ase τ = ∞ on aount of theassumption that f ∈ X

r
2(M) if the point x0 is reurrent, then it is periodi)and do assume that the intersetion of U and the τ -history of x0 is onneted.Aording to lemma 2.1 there exists a funtion ŷ ∈ Cr+1(R,R) with derivative

y being supported (on eah period, if x0 has period > τ) in [−ǫ, 0] suhthat Pǫy(t)dt = q0. Obviously there exists a funtion g ∈ Cr(U ′×] − ǫ, ǫ[,R)being ompatly supported, with ∇g(0, t)η = y(t). For instane de�ne
g̃(z, t) = |η|−2(zT η1y(t) + η2ŷ(t)). The trivial extension of g̃ ◦ ψ to L is thedesired funtion g. �Sometimes in appliations one is interested in or limited to observation re-strited to a subset of the state spae. It an be for instane beause of tehnialor physial reasons, or if it happens that all the information needed an be eval-uated from measurements on a ertain subset. The latter ase being perhapsthe most important one, ours if the subset under observation is an attrator.Other subsets invariant under the �ow an also be of interest. Therefore westate our generiity results for observations of subsets of the state spae as well.
Lemma 2.3 Suppose that K is a subset of an s-dimensional Cr submani-fold of M denoted by S, τ < ∞ and f ∈ X

r
0,1(M) is omplete. Then thefollowing holds.a) Assume that m ≥ n + s − r and r ≥ 2. Then H1(K) is residual. If K islosed, then H1(K) is also open.b) Assume that m ≥ n + s + 1 − r. Then H0(K) is residual. If K is losed,then H0(K) ontains an open set.Suppose moreover that M is ompat and f ∈ X

r
2(M). Then the assertionshold also in the ase τ = ∞.

Proof: Assume �rst r < ∞, K is ompat, U is a hart domain of S,whih ontains K and has ompat losure. By ompatness of U and �nite-ness of τ in ase of �nite observation time and beause of ompatness of Min ase τ = ∞, the τ -history of U is ompat. By loal ompatness there isan open set V ⊂ M with ompat losure L := V suh that V ontains the
τ -history of U .Loal density: We prove residuality with respet to Hi(L). Sine the latteris open and dense in Cr(L,R), density of Hi(L;U) is also then shown withrespet to Cr(L,R).Aording to the previous lemma zero is a regular value of the evaluation map-
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514 Esfandiar Nava Yazdaniping F i : Hi(L) × TiU → R
m de�ned by

F 0(h, x, x′) := ∆Θf,h(x, x′)and
F 1(h, v) := dπ(v)Θf,h(v).Therefore aording to the transversality density theorem (see for instane [AR,19.1℄) Hi(L;U) is a residual subset of Hi(L), and hene dense in Cr(L,R).Loal Openness: Compatness of K implies that T1K is also ompat in T1U .Aording to the transversality openness theorem H1(L;K) is open (with re-spet to the ompat-open and by ompatness of L also with respet to theWhitney topology) in Cr(L,R). These onlusions do not work for H0(L;K).Instead let Λ be a ompat subset of T0U . Then in view of transversalityopenness theorem

H ′
0(L; Λ) := {h ∈ Cr(L,R) : zero is a regular value of ∆Θf,h on Λ}is open in Cr(L,R).Sine the assertions are proved for r �nite and su�iently large, they also holdfor r = ∞. Hene we assume from now on that r ≤ ∞.Globalization: This part of the proof is basily standard. Therefore wegive an outline and refer to [H, 2.2℄ for details. Sine K ⊂ U , we have

H1(L;U) ⊂ H1(L;K). Hene H1(L;K) is also dense in Cr(L,R). Likewise onegets density of H
′
0(L; Λ) in Cr(L,R) from density of H0(L;U), sine Λ ⊂ T0Uand subsequently H0(L;U) ⊂ H

′
0(L; Λ). Using a bump funtion we now provethat H1(K) is dense in Cr(M,R). Fix g0 ∈ Cr(M,R). Sine H1(L;K) is densein Cr(L,R), there is a sequene {hj} in H1(L;K) onverging in the ompat-open topology to g0|L. Sine K ⊂ U , there is a Cr-funtion ρ : M → [0, 1] withompat support in L, suh that ρ = 1 on an open neighborhood of K. Thesequene ρhj +(1−ρ)g0 onverges to g0 with respet to the Whitney topology.Therefore H1(K) is a dense subset of Cr(M,R). A similar argument showsthat H

′
0(Λ) is a dense subset of Cr(M,R).We now drop the assumption that K ⊂ U . Let J be a ountable indexing set,

{Uj} with j ∈ J be a overing of S with hart domains Uj . Furthermore let
{Kj} be a subordinate family of ompat sets suh thatK = ∪

J
Kj andKj ⊂ Uj .We an and do assume that there is a ompat overing ofM denoted by {Lj}suh that the interior of Lj ontains the τ -history of Uj .Openness statements: Suppose that K is losed. Then it is also paraompatand the overing an be assumed to be loally �nite. Sine {Lj} overs M , itholds that H1(K) = {h ∈ Cr(M,R) : h|Lj

∈ H1(Lj ;Kj) for allj ∈ J}. Heneloal �niteness of the overing implies that H1(K) is open. Simliarily it followsthat the set {h ∈ Cr(M,R) : zero is a regular value of ∆Θf,h on K × K} isopen. The latter is ontained in H0(K).Residuality statements: We now drop the assumption that K is losed. By thepreeding arguments H1(Kj) is open and dense. Therefore H1(K) = ∩
j
H1(Kj)
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Generic Observability of Dynamical Systems 515is residual (and in view of the Baire property of Cr(M,R) also dense). Takinga ompat overing {Λj} of T0K a similar argument yields the results on
H0(K). �The openness results in the preeding lemma an also be proved (withoutapplying the transversality openness theorem) as follows. For instane, byompatness of L the mapping H0(U) ∋ h 7→ F 0(h, .)) ∈ Cr(T0U,R

m) is ontin-uous in the Whitney topology. This fat and openness of {F ∈ Cr(T0U,R
m) :zero is a regular value of F} (this fat follows, for instane, from the lowersemiontinuity of the mapping Cr(L,R)×T0U ∋ (h, x, x′) 7→ rank(d(h,x,x′)F

0)and ompatness of L) in the Whitney topology implies that H0(L;U) isopen in the Whitney topology and by ompatness of L also open in theompat-open topology of Cr(L,R). Other parts follow likewise.In light of the preeding lemmas we an now prove the generiity results onoutput funtions just by omparing dimensions.
Theorem 2.1 Suppose that K is ontained in an s-dimensional Cr sub-manifold of M and f ∈ X

r
0,1(M) is omplete. Then the following assertionshold.a) Assume that r ≥ 2 and m ≥ n+ s. Then funtions h belonging to Cr(M,R)suh that Θf,h is immersive at eah point of K, onstitute a residual set. Thisset is also open, if K is losed.b) Assume that m ≥ 2s+1. Then the set of funtions h belonging to Cr(M,R)suh that Θf,h is injetive (respetively an injetive immersion) on K, isresidual (respetively, if r ≥ 2). It ontains an open set, if K is losed.Supposing m ≤ 2s and r > 2s−m the same results hold for the set of funtions

h belonging to Cr(M,R) suh that the Θ-unobservable points of K×K belongto a submanifold of dimension 2s−m.Suppose moreover that M is ompat and f ∈ X
r
2(M). Then the assertionsalso hold for τ = ∞.

Proof: Ad a) Sine m ≥ n + s, the set of funtions h belonging to
Cr(M,R) suh that Θf,h is an immersion at eah point of K, oinides with
H1(K), i.e., dΘf,h|T1K is transversal to {0} ∈ R

m. Therefore the assertionfollows immediately from the previous lemma.Ad b) Aording to the previous lemma H0(K) is residual and ontains anopen set, if K is losed. If m ≥ 2s + 1, then the set of funtions h belongingto Cr(M,R) suh that the restrition of Θf,h to K is injetive (respetively aninjetive immersion), is preisely H0(K) (respetively H0(K) ∩ H1(K)). Thestatement on the indistinguishable set follows from the preimage theorem. �

Remark 2.2 As it an easily be seen from the proof of lemma 2.2, thedimension ondition m ≥ n + s in part a) of the preeding theorem an beweakend to m ≥ 2s, if immersivity is replaed by immersivity on TS.
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516 Esfandiar Nava YazdaniIf the state spae is ompat, we get sharper results. In partiular the followingtheorem is important, sine embedding of the state spae gives information onlimit behavior of the system.
Theorem 2.2 Suppose that m ≥ 2n + 1, f ∈ X

r
0,1(M) and M is om-pat. Then output funtions h ∈ Cr(M,R) suh that Θf,h is an embeddingonstitute an open and dense set.If we further assume that f ∈ X

r
2(M), then the assertion remains true in thease τ = ∞.

Proof: Reall that by ompatness of M an injetive immersion is alsoan embedding (ase 2 ≤ r ≤ ∞ in Theorem 2.1) and an injetive mappingis also a topologial embedding (ase r = 1). Hene density follows fromTheorem 2.1. Openness is a onsequene of the fat that by ompatness ofMthe mapping Cr(M,R) × T0M ∋ h 7→ ∆Θf,h ∈ Cr(M,Rm) is ontinuous andthe set of embeddings Embr(M,Rm) := {F ∈ Cr(M,Rm) : F is embedding}is open. �Next we shall prove residuality of X
r
0,1(M) by using the haraterization of sim-pliity and Θ-simpliity of a singularity, in terms of transversal nonintersetion.

Lemma 2.4 Assume that m ≥ n. Then X
r
0,1(M) is open and dense in

X
r(M). Moreover, the assertion holds also for τ = ∞, if we restrit the vetor�elds to Xr(M,a).

Proof: We give a proof for τ < ∞. The arguments for τ = ∞ aresimilar. It su�ies to show that X
r
1(M) is open and dense. Let O resp.

U denote the set of n-dimensional Θ-observable resp. unobservable linearsystems. Let f ∈ X
r
1(M), x0 ∈ Sing(f) and dx0

f denote the prinipial part ofthe linearization of f .Note that f ∈ X
r
1(M) if and only if there exists a v ∈ Tx0

M suh that thesystem (dx0
f, v) avoids the set of Θ-unobservable linear systems on Tx0

M .We now give a loal haraterization. Let ψ : U → R
n be a loal hartsuh that U has ompat losure and ψ(x0) = 0. The tangent mapping

dψ : TU → R
n × R

n de�ned by dψ(v) = (ψ(x), dxψv) with x = π(v) is a loalhart for TM . Let Pr
2
denote the projetion R

n ×R
n ∋ (x,w) 7→ w. Considerthe mapping ξf := Pr

2
dψf ◦ψ−1 on ψ(U). Hene d0ξf = dx0

ψdx0
fd0ψ

−1. Thesingularity x0 is Θ-simple if and only if (d0ξf , dx0
v) /∈ U for some v ∈ Tx0

M .Obviously U is losed, analyti and 6= End(Rn) × R
n, hene �nite union oflosed positive odimensional real analyti submanifold of End(Rn) × R

n.Given a pair (G,w) ∈ O, obviously there exists a vetor �eld g ∈ X
r(M) suhthat g and f oinide on M \ U , x0 ∈ Sing(g) and dx0

ξg = G. An immediateappliation (details are similar to those in the proof of lemma 2.3) of thetransversality density and openness theorems ompletes the proof. �
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Generic Observability of Dynamical Systems 517We an now prove the main result on generi observability with respet to themapping Θ.
Theorem 2.3 Suppose that m ≥ 2n + 1 and M is ompat. Then pairs
(f, h) in X

r(M) × Cr(M,R) suh that Θf,h is an embedding onstitute anopen and dense subset of X
r(M) × Cr(M,R). Restriing the vetor �elds to

X
r
2(M), the assertion remains valid for τ = ∞ as well.

Proof: Reall that X
r
0,1(M) is open and dense. Furthermore X

r
2(M) isopen in X

r(M,a). The assertions follow immediately from this fats andtheorem 2.2. �Similarily, generiity results for nonompat state spaes an be deriven, if werestrit ourself to the set of omplete vetor �elds, replae open and dense byresidual and embedding by injetive immersion. We remark also that onsid-ering the observation mapping
Θg,h(x) :=

0∑

k=−N

e−kAbh(gk(x))for x ∈M and (g, h) ∈ Diff r(M)×Cr(M,R) with gk := g ◦gk−1, orrespond-ing results for disrete dynamial systems an be proved likewise.
3 Concluding Remarks

Remark 3.1 Sine the set of m-dimensional ontrollable linear �lters is openand dense in End(Rm)×R
m, all generiity results of the last setion hold alsogenerially with respet to the linear �lters.The following examples show that the onditions on the observation dimensionare also neessary, thus m ≥ 2n for generi loal observability and m ≥ 2n+ 1for generi observability an not be weakend.

Example 3.1 Let M = S1 and f(ϕ) = 1, where ϕ denotes the standardangular oordinate of the irle. Furthermore onsider the pair (λ, b) with
λ < 0 and b 6= 0. Taking τ = 2π and the output funtion h(ϕ) = cosϕ leads to
Θf,h(ϕ) = 1−e2λπ

1+λ2 (λcos ϕ − sin ϕ), whih is not an immersion. Moreover thezero of dΘf,h at ϕ0 = −arctan 1
λ
is transversal. Hene the nonimmersivity of

Θf,h is preserved under small perturbations of the output funtion, the vetor�eld and the linear �lter.
Example 3.2 LetM , f , ϕ and τ be as in the preeding example. Furthermorelet A = diag(−1,−2), b = (1 − e−2π)−1(1, 1)T and h(ϕ) = 2cos ϕ + 5cos 2ϕ.
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518 Esfandiar Nava YazdaniThen a straightforward omputation yields
Θf,h(ϕ) =

[
cos ϕ+ sin ϕ+ cos 2ϕ+ 2sin 2ϕ

(e−2π + 1)(2
5 (2cos ϕ+ sin ϕ) + 5

4 (cos 2ϕ+ sin 2ϕ))

] .The following �gure shows the image of S1 by Θf,h.
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Image of S1 by the ontinuous linear �lter mapping given by
ϕ 7→ (cosϕ+sinϕ+cos2ϕ+2sin2ϕ, (e−2π +1)( 2

5
(2cosϕ+sinϕ)+ 5

4
(cos2ϕ+sin2ϕ))Tin the XY -planeThe sel�ntersetion of the image is transversal. Hene the noninjetiveness of

Θf,h is persistent under small perturbations of the output funtion, the vetor�eld and the linear �lter.For instane, small perturbations of h do not result in injetivity, i.e., there isan ǫ > 0 suh that for eah output funtion h̃, whih is Cr near to h within ǫ,the mapping Θf,h̃ is not injetive.Note that the onsidered system is also unobservable with respet to the high-gain mapping given by ϕ 7→ (2cos ϕ+ 5cos 2ϕ, 2sin ϕ − 10sin 2ϕ)T as well assampling mapping ϕ 7→ (2cos(ϕ+ t1)+5cos(2ϕ+2t1, 2cos(ϕ+ t2)+5cos(2ϕ+
2t2))

T with sampling times t1, t2. The following �gure shows the image of thestate spae by the sampling mapping with sampling times 0 and π
2 .
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ϕ 7→ (2cos ϕ + 5cos 2ϕ,−2sin ϕ − 5cos 2ϕ)Tin the XY -plane
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