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Abstract. We extend the relation between random matrices and
free probability theory from the level of expectations to the level of
all correlation functions (which are classical cumulants of traces of
products of the matrices). We introduce the notion of “higher order
freeness” and develop a theory of corresponding free cumulants. We
show that two independent random matrix ensembles are free of arbi-
trary order if one of them is unitarily invariant. We prove R-transform
formulas for second order freeness. Much of the presented theory relies
on a detailed study of the properties of “partitioned permutations”.
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2 Collins, Mingo, Śniady, Speicher

1. Introduction

Random matrix models and their large dimension behavior have been an im-
portant subject of study in Mathematical Physics and Statistics since Wishart
and Wigner. Global fluctuations of the eigenvalues (that is, linear functionals
of the eigenvalues) of random matrices have been widely investigated in the

last decade; see, e.g., [Joh98, Dia03, Rad06, AZ06, MN04, MŚS07]. Roughly
speaking, the trend of these investigations is that for a wide class of converging
random matrix models, the non-normalized trace asymptotically behaves like
a Gaussian variable whose variance only depends on macroscopic parameters
such as moments. The philosophy of these results, together with the freeness
results of Voiculescu served as a motivation for our series of papers on second
order freeness.
One of the main achievements of the free probability theory of Voiculescu
[Voi91, VDN92] was an abstract description via the notion of “freeness” of
the expectation of these Gaussian variables for a large class of non-commuting
tuples of random matrices.
In the previous articles of this series [MS06, MŚS07] we showed that for many in-
teresting ensembles of random matrices an analogue of the results of Voiculescu
for expectations holds also true on the level of variances as well; thus pointing
in the direction that the structure of random matrices and the fine structure of
their eigenvalues can be studied in much more detail by using the new concept
of “second order freeness”. One of the main obstacles for such a detailed study
was the absence of an effective machinery for doing concrete calculations in this
framework. Within free probability theory of first order, such a machinery was
provided by Voiculescu with the concept of the R-transform, and by Speicher
with the concept of free cumulants; see, e.g., [VDN92, NSp06].
One of the main achievements of the present article is to develop a theory
of second order cumulants (and show that the original definition of second
order freeness from Part I of this series [MS06] is equivalent to the vanishing
of mixed second order cumulants) and provide the corresponding R-transform
machinery.
In Section 2 we will give a more detailed (but still quite condensed) survey of
the connection between Voiculescu’s free probability theory and random matrix
theory. We will there also provide the main motivation, notions and concepts
for our extension of this theory to the level of fluctuations (second order), as
well as the statement of our main results concerning second order cumulants
and R-transforms.
Having first and second order freeness it is, of course, a natural question
whether this theory can be generalized to higher orders. It turns out that
this is the case, most of the general theory is the same for all orders. So we
will in this paper consider freeness of all orders from the very beginning and
develop a general theory of higher order freeness and higher order cumulants.
Let us, however, emphasize that first and second order freeness seem to be
more important than the higher order ones. Actually, we can prove some of
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Fluctuations of Random Matrices 3

the most important results (e.g. the R-transform machinery) only for first and
second order, mainly because of the complexity of the underlying combinatorial
objects.
The basic combinatorial notion behind the (usual) free cumulants are non-
crossing partitions. Basically, passage to higher order free cumulants corre-
sponds to a change to multi-annular non-crossing permutations [MN04], or
more general objects which we call “partitioned permutations”. For much of
the conceptual framework there is no difference between different levels of free-
ness, however for many concrete questions it seems that increasing the order
makes some calculations much harder. This relates to the fact that n-th order
freeness is described in terms of planar permutations which connect points on n
different circles. Whereas enumeration of all non-crossing permutations in the
case of one circle is quite easy, the case of two circles gets more complicated,
but is still feasible; for the case of three or more circles, however, the answer
does not seem to be of a nice compact form.
In the present paper we develop the notion and combinatorial machinery for
freeness of all orders by a careful analysis of the main example: unitarily in-
variant random matrices. We start with the calculation of mixed correlation
functions for random matrices and use the structure which we observe there as
a motivation for our combinatorial setup. In this way the concept of partitioned
permutations and the moment–cumulant relations appear quite canonically.
We want to point out that even though our notion of second and higher order
freeness is modeled on the situation found for correlation functions of random
matrices, this notion and theory also have some far-reaching applications. Let
us mention in this respect two points.
Firstly, recently one of us [Śni06] developed a quite general theory for fluctua-
tions of characters and shapes of random Young diagrams contributing to many
natural representations of symmetric groups. The results presented there are
closely (though, not explicitly) related to combinatorics of higher order cumu-
lants. This connection will be studied in detail in the part IV of this series
where we prove that under some mild technical conditions Jucys-Murphy ele-
ments, which arise naturally in the study of symmetric groups, are examples
of free random variables of higher order.
In another direction, the description of subfactors in von Neumann algebras via
planar algebras [Jon99] relies very much on the notions of annular non-crossing
partitions and thus resembles the combinatorial objects lying at the basis of
our theory of second order freeness. This indicates that our results could have
some relevance for subfactors.

Overview of the article. In Section 2 we will give a compact survey of
the connection between Voiculescu’s free probability theory and random matrix
theory, provide the main motivation, notions and concepts for our extension of
this theory to the level of fluctuations (second order), as well as the statement
of our main results concerning second order cumulants and R-transforms. We
will also make a few general remarks about higher order freeness.

Documenta Mathematica 12 (2007) 1–70



4 Collins, Mingo, Śniady, Speicher

In Section 3 we will introduce the basic notions and relevant results on per-
mutations, partitions, classical cumulants, Haar unitary random matrices, and
the Weingarten function.
In Section 4 we study the correlation functions (classical cumulants of traces)
of random matrix models. We will see how those are related to cumulants of
entries of the matrices for unitarily invariant random matrices and we will in
particular look on the correlation functions for products of two independent
ensembles of random matrices, one of which is unitarily invariant. The limit
of those formulas if the size N of the matrices goes to infinity will be the
essence of what we are going to call “higher order freeness”. Also our main
combinatorial objects, “partitioned permutations”, will arise very naturally in
these calculations.
In Section 5 we will forget for a while random variables and just look on the
combinatorial essence of our formulas, thus dealing with multiplicative func-
tions on partitioned permutations and their convolution. The Zeta and Möbius
functions on partitioned permutations will play an important role in these con-
siderations.
In Section 6 we will derive, for the case of second order, the analogue of the
R-transform formulas.
In Section 7 we will finally come back to a (non-commutative) probabilistic
context, give the definition and work out the basic properties of “higher order
freeness”.
In Section 8 we introduce the notion of “asymptotic higher order freeness” and
show the relevance of our work for Itzykson-Zuber integrals.
In an appendix, Section 9, we provide a graphical interpretation of partitioned
permutations as a special case of “surfaced permutations”.

2. Motivation and Statement of our Main Results Concerning
Second Order Freeness and Cumulants

In this section we will first recall in a quite compact form the main connec-
tion between Voiculescu’s free probability theory and questions about random
matrices. Then we want to motivate our notion of second order freeness by
extending these questions from the level of expectations to the level of fluc-
tuations. We will recall the relevant results from the papers [MS06, MŚS07]
and state the main new results of the present paper. Even though in the later
parts of the paper our treatment will include freeness of arbitrarily high order,
we restrict ourselves in this section mainly to the second order. The reason
for this is that (apart from first order) second order freeness seems to be the
most important order for applications, so that it seems worthwhile to spell out
our general results for this case more explicitly. Furthermore, it is only there
that we have an analogue of R-transform formulas. We will make a few general
remarks about higher order freeness at the end of this section.

2.1. Moments of random matrices and asymptotic freeness. Assume
we know the eigenvalue distribution of two matrices A and B. What can we say

Documenta Mathematica 12 (2007) 1–70



Fluctuations of Random Matrices 5

about the eigenvalue distribution of the sum A+B of the matrices? Of course,
the latter is not just determined by the eigenvalues of A and the eigenvalues of
B, but also by the relation between the eigenspaces of A and of B. Actually, it
is quite a hard problem (Horn’s conjecture) — which was only solved recently
— to characterize all possible eigenvalue distributions of A + B. However, if
one is asking this question in the context of N × N -random matrices, then in
many situations the answer becomes deterministic in the limit N →∞.

Definition 2.1. Let A = (AN )N∈N be a sequence of N ×N -random matrices.
We say that A has a first order limit distribution if the limit of all moments

αn := lim
N→∞

E[tr(AnN )] (n ∈ N)

exists and for all r > 1 and all n1, . . . , nr ∈ N

lim
N→∞

kr(tr(A
n1

N ), tr(An2

N ), . . . , tr(AnrN )) = 0,

where E denotes the expectation, tr the normalized trace, and kr the rth clas-
sical cumulant.

In this language, our question becomes: Given two random matrix ensembles
of N ×N -random matrices, A = (AN )N∈N and B = (BN )N∈N, with first order
limit distribution, does also their sum C = (CN )N∈N, with CN = AN + BN ,
have a first order limit distribution, and furthermore, can we calculate the
limit moments αCn of C out of the limit moments (αAk )k≥1 of A and the limit
moments (αBk )k≥1 of B in a deterministic way. It turns out that this is the case
if the two ensembles are in generic position, and then the rule for calculating
the limit moments of C are given by Voiculescu’s concept of “freeness”. Let us
recall this fundamental result of Voiculescu.

Theorem 2.2 (Voiculescu [Voi91]). Let A and B be two random matrix en-
sembles of N × N -random matrices, A = (AN )N∈N and B = (BN )N∈N, each
of them with a first order limit distribution. Assume that A and B are in-
dependent (i.e., for each N ∈ N, all entries of AN are independent from all
entries of BN ), and that at least one of them is unitarily invariant (i.e., for
each N , the joint distribution of the entries does not change if we conjugate
the random matrix with an arbitrary unitary N × N matrix). Then A and B
are asymptotically free in the sense of the following definition.

Definition 2.3 (Voiculescu [Voi85]). Two random matrix ensembles A =
(AN )N∈N and B = (BN )N∈N with limit eigenvalue distributions are asymp-
totically free if we have for all p ≥ 1 and all n(1),m(1), . . . , n(p), m(p) ≥ 1
that

lim
N→∞

E
[
tr
{
(A

n(1)
N − αAn(1)1) · (Bm(1)

N − αBm(1)1) · · ·

· · · (An(p) − αAn(p)1) · (Bm(p) − αBm(p)1)
}]

= 0

Documenta Mathematica 12 (2007) 1–70



6 Collins, Mingo, Śniady, Speicher

One should realize that asymptotic freeness is actually a rule which allows to
calculate all mixed moments in A and B, i.e. all expressions

lim
N→∞

E[tr(An(1)Bm(1)An(2)Bm(2) · · ·An(p)Bm(p))]

out of the limit moments of A and the limit moments of B. In particular, this
means that all limit moments of A + B (which are sums of mixed moments)
exist and are actually determined in terms of the limit moments of A and the
limit moments of B. The actual calculation rule is not directly clear from
the above definition but a basic result of Voiculescu shows how this can be
achieved by going over from the moments αn to new quantities κn. In [Spe94],
the combinatorial structure behind these κn was revealed and the name “free
cumulants” was coined for them. Whereas in the later parts of this paper we
will have to rely crucially on the combinatorial description and their extensions
to higher orders, as well as on the definition of more general “mixed” cumulants,
we will here state the results in the simplest possible form in terms of generating
power series, which avoids the use of combinatorial objects.

Definition 2.4 (Voiculescu [Voi86], Speicher [Spe94]). Given the moments
(αn)n≥1 of some distribution (or limit moments of some random matrix en-
semble), we define the corresponding free cumulants (κn)n≥1 by the following
relation between their generating power series: If we put

M(x) := 1 +
∑

n≥1

αnx
n and C(x) := 1 +

∑

n≥1

κnx
n,

then we require as a relation between these formal power series that

C(xM(x)) = M(x).

Voiculescu actually formulated the relation above in a slightly different way
using the so-called R-transform R(x), which is related to C(x) by the relation

C(x) = 1 + xR(x)

and in terms of the Cauchy transform G(x) corresponding to a measure with
moments αn, which is related to M(x) by

G(x) =
M( 1

x )

x
.

In these terms the equation C(xM(x)) = M(x) says that

(1)
1

G(x)
+R(G(x)) = x,

i.e., that G(x) and K(x) := 1
x +R(x) are inverses of each other under compo-

sition.
One should also note that the relation C(xM(x)) = M(x) determines the mo-
ments uniquely in terms of the cumulants and the other way around. The
relevance of the κn and the R-transform for our problem comes from the fol-
lowing result of Voiculescu, which provides, together with (1), a very efficient

Documenta Mathematica 12 (2007) 1–70



Fluctuations of Random Matrices 7

way for calculating eigenvalue distributions of the sum of asymptotically free
random matrices.

Theorem 2.5 (Voiculescu [Voi86]). Let A and B be two random matrix ensem-
bles which are asymptotically free. Denote by κAn , κBn , κA+B

n the free cumulants
of A, B, A+B, respectively. Then one has for all n ≥ 1 that

κA+B
n = κAn + κBn .

Alternatively,

RA+B(x) = RA(x) +RB(x).

This theorem is one reason for calling the κn cumulants, but there is also
another justification for this, namely they are also the limit of classical cu-
mulants of the entries of our random matrix, in the case that this is unitarily
invariant. This description will follow from our formulas (28) and (30). We
denote the classical cumulants by kn, considered as multi-linear functionals in
n arguments.

Theorem 2.6. Let A = (AN )N∈N be a unitarily invariant random matrix en-
semble of N×N random matrices AN whose first order limit distribution exists.
Then the free cumulants of this matrix ensemble can also be expressed as the
limit of special classical cumulants of the entries of the random matrices: If

AN = (a
(N)
ij )Ni,j=1, then

κAn = lim
N→∞

Nn−1kn(a
(N)
i(1)i(2), a

(N)
i(2)i(3), . . . , a

(N)
i(n),i(1))

for any choice of distinct i(1), . . . , i(n).

2.2. Fluctuations of random matrices and asymptotic second or-
der freeness. There are many more refined questions about the limiting
eigenvalue distribution of random matrices. In particular, questions around
fluctuations have received a lot of interest in the last decade or so. The main
motivation for introducing the concept of “second order freeness” was to un-
derstand the global fluctuations of the eigenvalues, which means that we look
at the probabilistic behavior of traces of powers of our matrices. The limiting
eigenvalue distribution, as considered in the last section, gives us the limit of
the average of this traces. However, one can make more refined statements
about their distributions. Consider a random matrix A = (AN )N∈N and look
on the normalized traces tr(AkN ). Our assumption of a limit eigenvalue dis-
tribution means that the limits αk := limN→∞E[tr(AkN )] exist. It turned out
that in many cases the fluctuation around this limit,

tr(AkN )− αk
is asymptotically Gaussian of order 1/N ; i.e., the random variable

N · (tr(AkN )− αk) = Tr(AkN )−Nαk = Tr(AkN − αk1)

(where Tr denotes the unnormalized trace) converges for N → ∞ to a normal
variable. Actually, the whole family of centered unnormalized traces (Tr(AkN )−

Documenta Mathematica 12 (2007) 1–70



8 Collins, Mingo, Śniady, Speicher

Nαk)k≥1 converges to a centered Gaussian family. (One should note that we
restrict all our considerations to complex random matrices; in the case of real
random matrices there are additional complications, which will be addressed in
some future investigations.) Thus the main information about fluctuations of
our considered ensemble is contained in the covariance matrix of the limiting
Gaussian family, i.e., in the quantities

αm,n := lim
N→∞

cov(Tr(AmN ),Tr(AnN )).

Let us emphasize that the αn and the αm,n are actually limits of classical
cumulants of traces; for the first and second order, with expectation as first
and variance as second cumulant, this might not be so visible, but it will become
evident when we go over to higher orders. Nevertheless, the α’s will behave and
will also be treated like moments; accordingly we will call the αm,n ‘fluctuation
moments’. We will later define some other quantities κm,n, which take the role
of cumulants in this context.
This kind of convergence to a Gaussian family was formalized in [MS06] as
follows. Note that convergence to Gaussian means that all higher order classical
cumulants converge to zero. As before, we denote the classical cumulants by
kn; so k1 is just the expectation, and k2 the covariance.

Definition 2.7. Let A = (AN )N∈N be an ensemble of N×N random matrices
AN . We say that it has a second order limit distribution if for all m,n ≥ 1 the
limits

αn := lim
N→∞

k1(tr(A
n
N ))

and

αm,n := lim
N→∞

k2(Tr(AmN ),Tr(AnN ))

exist and if

lim
N→∞

kr
(
Tr(A

n(1)
N ), . . . ,Tr(A

n(r)
N )

)
= 0

for all r ≥ 3 and all n(1), . . . , n(r) ≥ 1.

We can now ask the same kind of question for the limit fluctuations as for the
limit moments; namely, if we have two random matrix ensembles A and B and
we know the second order limit distribution of A and the second order limit
distribution of B, does this imply that we have a second order limit distribution
for A+B, and, if so, is there an effective way for calculating it. Again, we can
only hope for a positive solution to this if A and B are in a kind of generic
position. As it turned out, the same requirements as before are sufficient for
this. The rule for calculating mixed fluctuations constitutes the essence of the
definition of the concept of second order freeness.

Theorem 2.8 (Mingo, Śniady, Speicher [MŚS07]). Let A and B be two
random matrix ensembles of N × N -random matrices, A = (AN )N∈N and
B = (BN )N∈N, each of them having a second order limit distribution. As-
sume that A and B are independent and that at least one of them is unitarily
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Fluctuations of Random Matrices 9

invariant. Then A and B are asymptotically free of second order in the sense
of the following definition.

Definition 2.9 (Mingo, Speicher [MS06]). Consider two random matrix en-
sembles A = (AN )N∈N and B = (BN )N∈N, each of them with a second order
limit distribution. Denote by

YN
(
n(1),m(1), . . . , n(p),m(p)

)

the random variable

Tr
(
(A

n(1)
N − αAn(1)1)(B

m(1)
N − αBm(1)1) · · · (An(p)

N − αAn(p)1)(B
m(p)
N − αBm(p)1)

)
.

The random matrices A = (AN )N∈N and B = (BN )N∈N are asymptotically free
of second order if for all n,m ≥ 1

lim
N→∞

k2

(
Tr(AnN − αAn 1),Tr(BmN − αBm1)

)
= 0

and for all p, q ≥ 1 and n(1), . . . , n(p),m(1), . . . ,m(p),ñ(1), . . . , ñ(q),
m̃(1), . . . , m̃(q) ≥ 1 we have

lim
N→∞

k2

(
YN
(
n(1),m(1), . . . , n(p),m(p)

)
, YN

(
ñ(1), m̃(2), . . . , ñ(q), m̃(q)

))
= 0

if p 6= q, and otherwise (where we count modulo p for the arguments of the
indices, i.e., n(i+ p) = n(i))

lim
N→∞

k2

(
YN
(
n(1),m(1), . . . , n(p),m(p)

)
, YN

(
ñ(p), m̃(p), . . . , ñ(1), m̃(1)

))

=

p∑

k=1

p∏

i=1

(
αAn(i+k)+ñ(i) − αAn(i+k)α

A
ñ(i)

)(
αBm(i+k)+m̃(i+1) − αBm(i+k)α

B
m̃(i+1)

)
.

Again, it is crucial to realize that this definition allows one (albeit in a com-
plicated way) to express every second order mixed moment, i.e., a limit of the
form

lim
N→∞

k2

(
Tr(A

n(1)
N B

m(1)
N · · ·An(p)

N B
m(p)
N ),Tr(A

ñ(1)
N B

m̃(1)
N · · ·Añ(q)

N B
m̃(q)
N )

)

in terms of the second order limits of A and the second order limits of B.
In particular, asymptotic freeness of second order also implies that the sum
A + B of our random matrix ensembles has a second order limit distribution
and allows one to express them in principle in terms of the second order limit
distribution of A and the second order limit distribution of B. As in the case of
first order freeness, it is not clear at all how this calculation of the fluctuations
of A+B out of the fluctuations of A and the fluctuations of B can be performed
effectively. It is one of the main results of the present paper to achieve such
an effective description. We are able to solve this problem by providing a
second order cumulant machinery, similar to the first order case. Again, the
idea is to go over to quantities which behave like cumulants in this setting. The
actual description of those relies on combinatorial objects (annular non-crossing
permutations), but as before this can be reformulated in terms of formal power
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10 Collins, Mingo, Śniady, Speicher

series. Let us spell out the definition here in this form. (That this is equivalent
to our actual definition of the cumulants will follow from Theorem 6.3.)

Definition 2.10. Let (αn)n≥1 and (αm,n)m,n≥1 describe the first and second
order limit moments of a random matrix ensemble. We define the corresponding
first and second order free cumulants (κn)n≥1 and (κm,n)m,n≥1 by the following
requirement in terms of the corresponding generating power series. Put

C(x) := 1 +
∑

n≥1

κnx
n, C(x, y) :=

∑

m,n≥1

κm,nx
myn

and
M(x) := 1 +

∑

n≥1

αnx
n, M(x, y) :=

∑

m,n≥1

αm,nx
myn.

Then we require as relations between these formal power series that

(2) C(xM(x)) = M(x)

and for the second order

(3) M(x, y) = H
(
xM(x), yM(y)

)
·
d
dx(xM(x))

M(x)
·
d
dy (yM(y))

M(y)
,

where

(4) H(x, y) := C(x, y)− xy ∂2

∂x∂y
log
(xC(y) − yC(x)

x− y
)
,

or equivalently,

(5) M(x, y) = C
(
xM(x), yM(y)

)
·
d
dx(xM(x))

M(x)
·
d
dy (yM(y))

M(y)

+ xy
( d
dx(xM(x)) · ddy (yM(y))

(xM(x) − yM(y))2
− 1

(x− y)2
)
.

From equation (5) one can calculate the second order version of moment-
cumulant relations.

α1,1 = κ1,1 + κ2

α2,1 = κ1,2 + 2κ1κ1,1 + 2κ3 + 2κ1κ2

α2,2 = κ2,2 + 4κ1κ2,1 + 4κ2
1κ1,1 + 4κ4 + 8κ1κ3 + 2κ2

2 + 4κ2
1κ2

α1,3 = κ1,3 + 3κ1κ2,1 + 3κ2κ1,1 + 3κ2
1κ1,1 + 3κ4 + 6κ1κ3 + 3κ2

2 + 3κ2
1κ2

α2,3 = κ2,3 + 2κ1κ1,3 + 3κ1κ2,2 + 3κ2κ1,2 + 9κ2
1κ1,2 + 6κ1κ2κ1,1 + 6κ3

1κ1,1

+ 6κ5 + 18κ1κ4 + 12κ2κ3 + 18κ2
1κ3 + 12κ1κ

2
2 + 6κ3

1κ2

α3,3 = κ3,3 + 6κ1κ2,3 + 6κ2κ1,3 + 6κ2
1κ1,3 + 9κ2

1κ2,2 + 18κ1κ2κ1,2 + 18κ3
1κ1,2

+ 9κ2
2κ1,1 + 18κ2

1κ2κ1,1 + 9κ4
1κ1,1 + 9κ6 + 36κ1κ5 + 27κ2κ4 + 54κ2

1κ4

+ 9κ2
3 + 72κ1κ2κ3 + 36κ3

1κ3 + 12κ3
2 + 36κ2

1κ
2
2 + 9κ4

1κ2

κ1,1 = α2
1 − α2 + α1,1

κ1,2 = −4α3
1 + 6α1α2 − 2α3 − 2α1α1,1 + α1,2
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κ2,2 = 18α4
1 − 36α2

1α2 + 6α2
2 + 16α1α3 − 4α4 + 4α2

1α1,1 − 4α1α1,2 + α2,2

κ1,3 = 15α4
1−30α2

1α2+6α2
2 +12α1α3−3α4 +6α2

1α1,1−3α2α1,1−3α1α1,2 +α1,3

κ2,3 = −72α5
1 + 180 α3

1 α2 − 72α1α
2
2 − 84 α2

1α3 + 24α2α3 + 30α1α4 − 6α5

− 12α3
1α1,1 + 6α1α2α1,1 + 12α2

1α1,2 − 3α2α1,2 − 2α1α1,3 − 3α1α2,2 + α2,3

κ3,3 = 300α6
1 − 900α4

1α2 + 576α2
1α

2
2 − 48α3

2 + 432α3
1α3 − 288α1α2α3 + 18α2

3

− 180α2
1α4 + 45α2α4 + 54α1α5 − 9α6 + 36α4

1α1,1 − 36α2
1α2α1,1 + 9α2

2α1,1

− 36α3
1α1,2 + 18α1α2α1,2 + 12α2

1α1,3 − 6α2α1,3 + 9α2
1α2,2 − 6α1α2,3 + α3,3

As in the first order case, instead of the moment power series M(x, y) one can
consider a kind of second order Cauchy transform, defined by

G(x, y) :=
M( 1

x ,
1
y )

xy
.

If we also define a kind of second order R transform R(x, y) by

R(x, y) :=
1

xy
C(x, y),

then the formula (5) takes on a particularly nice form:

(6) G(x, y) = G′(x)G′(y)
{
R(G(x), G(y)) +

1

(G(x) −G(y))2

}
− 1

(x− y)2 .

G(x) is here, as before, the first order Cauchy transform, G(x) = 1
xM(1/x).

The κm,n defined above deserve the name “cumulants” as they linearize the
problem of adding random matrices which are asymptotically free of second
order. Namely, as will follow from our Theorem 7.15, we have the following
theorem, which provides, together with (6), an effective machinery for calcu-
lating the fluctuations of the sum of asymptotically free random matrices.

Theorem 2.11. Let A and B be two random matrix ensembles which are
asymptotically free. Then one has for all m,n ≥ 1 that

κA+B
n = κAn + κBn and κA+B

m,n = κAm,n + κBm,n.

Alternatively,

RA+B(x) = RA(x) +RB(x)

and

RA+B(x, y) = RA(x, y) +RB(x, y).

Again, one can express the second order cumulants as limits of classical cumu-
lants of entries of a unitarily invariant matrix. In contrast to the first order
case, we have now to run over two disjoint cycles in the indices of the matrix
entries. This theorem will follow from our formulas (28) and (30).
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12 Collins, Mingo, Śniady, Speicher

Theorem 2.12. Let A = (AN )N∈N be a unitarily invariant random matrix
ensemble which has a second order limit distribution. Then the second order
free cumulants of this matrix ensemble can also be expressed as the limit of

classical cumulants of the entries of the random matrices: If AN = (a
(N)
ij )Ni,j=1,

then

κAm,n = limN→∞Nm+nkm+n(a
(N)
i(1)i(2), a

(N)
i(2)i(3), . . . , a

(N)
i(m),i(1),

a
(N)
j(1)j(2), a

(N)
j(2)j(3), . . . , a

(N)
j(n),j(1))

for any choice of distinct i(1), . . . , i(m), j(1), . . . , j(n).

This latter theorem makes it quite obvious that the second order cumulants for
Gaussian as well as for Wishart matrices vanish identically, i.e., R(x, y) = 0
and thus we obtain in these cases that the second order Cauchy transform is
totally determined in terms of the first order Cauchy transform (i.e., in terms
of the limiting eigenvalue distribution) via

(7) G(x, y) =
G′(x)G′(y)

(G(x) −G(y))2
− 1

(x− y)2 .

This formula for fluctuations of Wishart matrices was also derived by Bai and
Silverstein in [BS04].

2.3. Higher order freeness. The idea for higher order freeness is the same
as for second order one. For a random matrix ensemble A = (AN )N∈N we
define r-th order limit moments as the scaled limit of classical cumulants of r
traces of powers of our matrices,

αn1,...,nr := lim
N→∞

N r−2kr
(
Tr(A

n(1)
N ), . . . ,Tr(A

n(r)
N )

)
.

(The choice of N r−2 is motivated by the fact that this is the leading order for
many interesting random matrix ensembles, e.g. Gaussian or Wishart. Thus
our theory of higher order freeness captures the features of random matrix en-
sembles whose cumulants of traces decay in the same way as Gaussian random
matrices.) Then we look at two random matrix ensembles A and B which are
independent, and one of them unitarily invariant. The mixed moments in A
and B of order r are, in leading order in the limit N →∞, determined by the
limit moments of A up to order r and the limit moments of B up to order r.
The structure of these formulas motivates directly the definition of cumulants of
the considered order. The definition of those is in terms of a moment-cumulant
formula, which gives a moment in terms of cumulants by summing over spe-
cial combinatorial objects, which we call “partitioned permutations”. Most
of the theory we develop relies on an in depth analysis of properties of these
partitioned permutations and the corresponding convolution of multiplicative
functions on partitioned permutations. Our definition of “higher order free-
ness” is then in terms of the vanishing of mixed cumulants. It follows quite
easily that in the first and second order case this gives the same as the relations
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in Definitions 2.3 and 2.9, respectively. For higher orders, however, we are not
able to find an explicit relation of that type.
This reflects somehow the observation that our general formulas in terms of
sums over partitioned permutations are the same for all orders, but that eval-
uating or simplifying these sums (by doing partial summations) is beyond our
abilities for orders greater than 2. Reformulating the combinatorial relation
between moments and cumulants in terms of generating power series is one
prominent example for this. Whereas this is quite easy for first order, the com-
plexity of the arguments and the solution (given in Definition 2.10) is much
higher for second order, and out of reach for higher order.
One should note that an effective (analytic or symbolic) calculation of higher
order moments of a sum A+B for A and B free of higher order relies usually on
the presence of such generating power series formulas. In this sense, we have
succeeded in providing an effective machinery for dealing with fluctuations
(second order), but we were not able to do so for higher order.
Our results for higher orders are more of a theoretical nature. One of the main
problems we have to address there is the associativity of the notion of higher
order freeness. Namely, in order to be an interesting concept, our definition
that A and B are free of higher order should of course imply that any function
of A is also free of higher order from any function of B. Whereas for first
and second order this follows quite easily from the equivalent characterization
of freeness in terms of moments as in Definitions 2.3 and 2.9, the absence
of such a characterization for higher orders makes this a more complicated
matter. Namely, what we have to see is that the vanishing of mixed cumulants
in random variables implies also the vanishing of mixed cumulants in elements
from the generated algebras. This is quite a non-trivial fact and requires a
careful analysis, see section 7.

3. Preliminaries

3.1. Some general notation. For natural numbers m,n ∈ N with m < n,
we denote by [m,n] the interval of natural numbers between m and n, i.e.,

[m,n] := {m,m+ 1,m+ 2, . . . , n− 1, n}.

For a matrix A = (aij)
N
i,j=1, we denote by Tr the unnormalized and by tr the

normalized trace,

Tr(A) :=

N∑

i=1

aii, tr(A) :=
1

N
Tr(A).

3.2. Permutations. We will denote the set of permutations on n elements
by Sn. We will quite often use the cycle notation for such permutations, i.e.,
π = (i1, i2, . . . , ir) is a cycle which sends ik to ik+1 (k = 1, . . . , r), where
ir+1 = i1.
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14 Collins, Mingo, Śniady, Speicher

3.2.1. Length function. For a permutation π ∈ Sn we denote by #π the number
of cycles of π and by |π| the minimal number of transpositions needed to write
π as a product of transpositions. Note that one has

|π|+ #π = n for all π ∈ Sn.

3.2.2. Non-crossing permutations. Let us denote by γn ∈ Sn the cycle

γn = (1, 2, . . . , n).

For all π ∈ Sn one has that

|π|+ |γnπ−1| ≤ n− 1.

If we have equality then we call π non-crossing. Note that this is equivalent to

#π + #(γnπ
−1) = n+ 1.

If π is non-crossing, then so are γnπ
−1 and π−1γn; the latter is called the

(Kreweras) complement of π.
We will denote the set of non-crossing permutations in Sn by NC(n). Note
that such a non-crossing permutation can be identified with a non-crossing
partition, by forgetting the order on the cycles. There is exactly one cyclic
order on the blocks of a non-crossing partition which makes it into a non-
crossing permutation.

3.2.3. Annular non-crossing permutations. Fix m,n ∈ N and denote by γm,n
the product of the two cycles

γm,n = (1, 2, . . . ,m)(m+ 1,m+ 2, . . . ,m+ n).

More generally, we shall denote by γm1,...,mk the product of the corresponding
k cycles.
We call a π ∈ Sm+n connected if the pair π and γm,n generates a transitive
subgroup in Sm+n. A connected permutation π ∈ Sm+n always satisfies

(8) |π|+ |γm,nπ−1| ≤ m+ n.

If π is connected and if we have equality in that equation then we call π annular
non-crossing. Note that if π is annular non-crossing then γm,nπ

−1 is also
annular non-crossing. Again, we call the latter the complement of π. Of course,
all the above notations depend on the pair (m,n); if we want to emphasize
this dependency we will also speak about (m,n)-connected permutations and
(m,n)-annular non-crossing permutations.
We will denote the set of (m,n)-annular non-crossing permutations by
SNC(m,n). A cycle of a π ∈ SNC(m,n) is called a through-cycle if it con-
tains points on both cycles. Each π ∈ SNC(m,n) is connected and must thus
have at least one through-cycle. The subset of SNC(m,n) where all cycles are
through-cycles will be denoted by SallNC(m,n).
Again one can go over from annular non-crossing permutations to annular non-
crossing partitions by forgetting the cyclic orders on cycles; however, in the
annular case, the relation between non-crossing permutation and non-crossing
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Fluctuations of Random Matrices 15

partition is not one-to-one. Since we will not use the language of annular
partitions in the present paper, this is of no relevance here.
Annular non-crossing permutations and partitions were introduced in [MN04];
there, many different characterizations—in particular, the one (8) above in
terms of the length function—were given.

3.3. Partitions. We say that V = {V1, . . . , Vk} is a partition of a set [1, n] if
the sets Vi are disjoint and non–empty and their union is equal to [1, n]. We
call V1, . . . , Vk the blocks of partition V .
If V = {V1, . . . , Vk} and W = {W1, . . . ,Wl} are partitions of the same set, we
say that V ≤ W if for every block Vi there exists some block Wj such that
Vi ⊆ Wj . For a pair of partitions V ,W we denote by V ∨ W the smallest
partition U such that V ≤ U and W ≤ U . We denote by 1n =

{
[1, n]

}
the

biggest partition of the set [1, n].
If π ∈ Sn is a permutation, then we can associate to π in a natural way a
partition whose blocks consist exactly of the cycles of π; we will denote this
partition either by 0π ∈ P(n) or, if the context makes the meaning clear, just
by π ∈ P(n).
For a permutation π ∈ Sn we say that a partition V is π-invariant if π preserves
each block of V . This means that 0π ≤ V (which we will usually write just as
π ≤ V).
If V = {V1, . . . , Vk} is a partition of the set [1, n] and if, for 1 ≤ i ≤ k, πi is a
permutation of the set Vi we denote by π1 × · · · × πk ∈ Sn the concatenation
of these permutations. We say that π = π1 × · · · × πk is a cycle decomposition
if additionally every factor πi is a cycle.

3.4. Classical cumulants. Given some classical probability space (Ω, P )
we denote by E the expectation with respect to the corresponding probability
measure,

E(a) :=

∫

Ω

a(ω)dP (ω)

and by L∞−(Ω, P ) the algebra of random variables for which all moments exist.
Let us for the following put A := L∞−(Ω, P ).
We extend the linear functional E : A → C to a corresponding multiplicative
functional on all partitions by (V ∈ P(n), a1, . . . , an ∈ A)

(9) EV [a1, . . . , an] :=
∏

V ∈V
E[a1, . . . , an|V ],

where we use the notation

E[a1, . . . , an|V ] := E(ai1 · · · ais) for V = (i1 < · · · < is) ∈ V .
Then, for V ∈ P(n), we define the classical cumulants kV as multilinear func-
tionals on A by

(10) kV [a1, . . . , an] =
∑

W∈P(n)
W≤V

EW [a1, . . . , an] ·MöbP(n)(W ,V),
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16 Collins, Mingo, Śniady, Speicher

where MöbP(n) denotes the Möbius function on P(n) (see [Rot64]).
The above definition is, by Möbius inversion on P(n), equivalent to

E(a1 · · ·an) =
∑

π∈P(n)

kπ[a1, . . . , an].

The kπ are also multiplicative with respect to the blocks of V and thus deter-
mined by the values of

kn(a1, . . . , an) := k1n [a1, . . . , an].

Note that we have in particular

k1(a) = E(a) and k2(a1, a2) = E(a1a2)− E(a1)E(a2).

An important property of classical cumulants is the following formula of Leonov
and Shiryaev [LS59] for cumulants with products as arguments.
Let m,n ∈ N and 1 ≤ i(1) < i(2) < · · · < i(m) = n. Define U ∈ P(n) by

U =
{(

1, . . . , i(1)
)
,
(
i(1) + 1, . . . , i(2)

)
, . . . ,

(
i(m− 1) + 1, . . . , i(m)

)}
.

Consider now random variables a1, . . . , an ∈ A and define

A1 : = a1 · · · ai(1)
A2 : = ai(1)+1 · · · ai(2)

...

Am : = ai(m−1)+1 · · · ai(m).

Then we have

(11) km(A1, A2, . . . , Am) =
∑

V∈P(n)
V∨U=1n

kV [a1, . . . , an].

The sum on the right-hand side is running over those partitions of n elements
which satisfy V∨U = 1n, which are, informally speaking, those partitions which
connect all the arguments of the cumulant km, when written in terms of the
ai.
Here is an example for this formula; for k2(a1a2, a3a4). In order to reduce the
number of involved terms we will restrict to the special case where E(ai) = 0
(and thus also k1(ai) = 0) for all i = 1, 2, 3, 4. There are three partitions
π ∈ P(4) without singletons which satisfy

π ∨ {(1, 2), (3, 4)} = 14,

namely a1 a2 a3 a4
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and thus formula (11) gives in this case

k2(a1a2, a3a4) = k4(a1, a2, a3, a4)

+ k2(a1, a4)k2(a2, a3) + k2(a1, a3)k2(a2, a4).

As a consequence of (11) one has the following important corollary: If
{a1, . . . , an} and {b1, . . . , bn} are independent then

(12) kW [a1b1, . . . , anbn] =
∑

V,V′∈P(n)

V∨V′=W

kV [a1, . . . , an] · kV′ [b1, . . . , bn].

3.5. Haar distributed unitary random matrices and the Wein-
garten function. In the following we will be interested in the asymptotics
of special matrix integrals over the group U(N) of unitary N × N -matrices.
We always equip the compact group U(N) with its Haar probability measure.
A random matrix whose distribution is this measure will be called a Haar dis-
tributed unitary random matrix. Thus the expectation E over this ensemble is
given by integrating with respect to the Haar measure.
The expectation of products of entries of Haar distributed unitary random
matrices can be described in terms of a special function on the permutation
group. Since such considerations go back to Weingarten [Wei78], Collins [Col03]
calls this function the Weingarten function and denotes it by Wg. We will
follow his notation. In the following we just recall the relevant information
about this Weingarten function, for more details we refer to [Col03, CŚ06].
We use the following definition of the Weingarten function. For π ∈ Sn and
N ≥ n we put

Wg(N, π) = E[u11 · · ·unnu1π(1) · · ·unπ(n)],

where U = (uij)
N
i,j=1 is an N × N Haar distributed unitary random matrix.

Sometimes we will suppress the dependency on N and just write Wg(π). This
Wg(N, π) depends only on the conjugacy class of π. General matrix integrals
over the unitary group can be calculated as follows:

(13) E[ui′1j′1 · · ·ui′nj′nui1j1 · · ·uinjn ]

=
∑

α,β∈Sn
δi1i′α(1)

· · · δini′α(n)
δj1j′β(1)

· · · δjnj′β(n)
Wg(βα−1).

This formula for the calculation of moments of the entries of a Haar unitary
random matrix bears some resemblance to the Wick formula for the joint mo-
ments of the entries of Gaussian random matrices; thus we will call (13) the
Wick formula for Haar unitary matrices.
The Weingarten function is quite a complicated object, and its full understand-
ing is at the basis of questions around Itzykson-Zuber integrals. One knows
(see, e.g., [Col03, CŚ06]) that the leading order in 1/N is given by |π|+ n and
increases in steps of 2.
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18 Collins, Mingo, Śniady, Speicher

3.6. Cumulants of the Weingarten function. We will also need some
(classical) relative cumulants of the Weingarten function, which were intro-
duced in [Col03, §2.3]. As before, let MöbP(n) be the Möbius function on the
partially ordered set of partitions of [1, n] ordered by inclusion.
Let us first extend the Weingarten function by multiplicative extension, for
V ≥ π, by

Wg(V , π) :=
∏

V ∈V
Wg(π|V ),

where π|V denotes the restriction of π to the block V ∈ V (which is invariant
under π since π ≤ V).
The relative cumulant of the Weingarten function is now, for σ ≤ V ≤ W,
defined by

(14) CV,W(σ) =
∑

U∈P(n)
V≤U≤W

Möb(U ,W) ·Wg(U , σ).

Note that, by Möbius inversion, this is, for any σ ≤ V ≤ W, equivalent to

(15) Wg(W , σ) =
∑

U∈P(n)
V≤U≤W

CV,U (σ).

In [Col03, Cor. 2.9] it was shown that the order of CV,W(σ) is at most

(16) N−2n+#σ+2#W−2#V .

4. Correlation functions for random matrices

4.1. Correlation functions and partitioned permutations. Let us
consider N × N -random matrices B1, . . . , Bn : Ω → MN (C). The main infor-
mation we are interested in are the “correlation functions” ϕn of these matrices,
given by classical cumulants of their traces, i.e.,

ϕn(B1, . . . , Bn) := kn(Tr(B1), . . . ,Tr(Bn)).

Even though these correlation functions are cumulants, it is more adequate to
consider them as a kind of moments for our random matrices. Thus, we will
also call them sometimes correlation moments.
We will also need to consider traces of products which are best encoded via
permutations. Thus, for π ∈ Sn, ϕ(π)[B1, . . . , Bn] shall mean that we take
cumulants of traces of products along the cycles of π. For an n-tuple B =
(B1, . . . , Bn) of random matrices and a cycle c = (i1, i2, . . . , ik) with k ≤ n we
denote

B|c := Bi1Bi2 · · ·Bik .
(We do not distinguish between products which differ by a cyclic rotation of
the factors; however, in order to make this definition well-defined we could
normalize our cycle c = (i1, i2, . . . , ik) by the requirement that i1 is the smallest
among the appearing numbers.) For any π ∈ S(n) and any n-tuple B =
(B1, . . . , Bn) of random matrices we put

ϕ(π)[B1, . . . , Bn] := ϕr(B|c1 , . . . , B|cr ),
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where π consists of the cycles c1, . . . , cr.
Example:

ϕ((1, 3)(2, 5, 4))[B1, B2, B3, B4, B5] = ϕ2(B1B3, B2B5B4)

= k2(Tr(B1B3),Tr(B2B5B4))

Furthermore, we also need to consider more general products of such ϕ(π)’s.
In order to index such products we will use pairs (V , π) where π is, as above,
an element in Sn, and V ∈ P(n) is a partition which is compatible with the
cycle structure of π, i.e., each block of V is fixed under π, or to put it another
way, V ≥ π. In the latter inequality we use the convention that we identify a
permutation with the partition corresponding to its cycles if this identification
is obvious from the structure of the formula; we will write this partition 0π or
just 0 if no confusion will result.

Notation 4.1. A partitioned permutation is a pair (V , π) consisting of π ∈ Sn
and V ∈ P(n) with V ≥ π. We will denote the set of partitioned permutations
of n elements by PS(n). We will also put

PS :=
⋃

n∈N

PS(n).

For such a (V , π) ∈ PS we denote finally

ϕ(V , π)[B1, . . . , Bn] :=
∏

V ∈V
ϕ(π|V )[B1, . . . , Bn|V ].

Example:

ϕ
(
{1, 3, 4}{2}, (1, 3)(2)(4)

)
[B1, B2, B3, B4]

= ϕ2(B1B3, B4) · ϕ1(B2)

= k2(Tr(B1B3),Tr(B4)) · k1(Tr(B2))

Let us denote by Trσ as usual a product of traces along the cycles of σ. Then
we have the relation

E{Trσ[A1, . . . , An]} =
∑

W∈P(n)
W≥σ

ϕ(W , σ)[A1, . . . , An].

By using the formula (11) of Leonov and Shiryaev one sees that in terms of the

entries of our matrices Bk = (b
(k)
ij )Ni,j=1 our ϕ(U , γ) can also be written as

(17) ϕ(U , γ)[B1, . . . , Bn] =
∑

V≤U
V∨γ=U

N∑

i(1),...,i(n)=1

kV [b
(1)
i(1)i(γ(1)), . . . , b

(n)
i(n)i(γ(n))].

4.2. Moments of unitarily invariant random matrices. For unitarily
invariant random matrices there exists a definite relation between cumulants
of traces and cumulants of entries. We want to work out this connection in
this section. Related considerations were presented by Capitaine and Casalis
in [CC06].
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Definition 4.2. Random matrices A1, . . . , An are called unitarily invariant if
the joint distribution of all their entries does not change by global conjugation
with any unitary matrix, i.e., if, for any unitary matrix U , the matrix-valued
random variables A1, . . . , An : Ω→MN (C) have the same joint distribution as
the matrix-valued random variables UA1U

∗, . . . , UAnU∗ : Ω→MN(C).

Let A1, . . . , An be unitarily invariant random matrices. We will now try ex-
pressing the microscopic quantities “cumulants of entries of the Ai” in terms
of the macroscopic quantities “cumulants of traces of products of the Ai”.
In order to make this connection we have to use the unitary invariance of our
ensemble. By definition, this means that A1, . . . , An has the same distribution
as Ã1, . . . , Ãn where Ãi := UAiU

∗. Since this holds for any unitary U , the
same is true after averaging over such U , i.e., we can take in the definition
of the Ãi the U as Haar distributed unitary random matrices, independent
from A1, . . . , An. This reduces calculations for unitarily invariant ensembles
essentially to properties of Haar unitary random matrices; in particular, the
Wick formula for the U ’s implies that we have an analogous Wick formula for

joint moments in the entries of the Ai. Let us write Ak = (a
(k)
ij )Ni,j=1 and

Ãk = (ã
(k)
ij )Ni,j=1. Then we can calculate:

E
{
a(1)
p1r1 · · · a(n)

pnrn

}
= E

{
ã(1)
p1r1 · · · ã(n)

pnrn

}

=
∑

i,j

E{up1i1a(1)
i1j1

ur1j1 · · ·upnina(n)
injn

urnjn}

=
∑

i,j

E{up1i1ur1j1 · · ·upninurnjn} · E{a(1)
i1j1
· · · a(n)

injn
}

=
∑

i,j

∑

π,σ∈Sn
δr,p◦πδj,i◦σWg(σπ−1) · E{a(1)

i1j1
· · ·a(n)

injn
}

=
∑

π∈Sn
δr,p◦π · G(π)[A1, . . . , An],

where

G(π)[A1, . . . , An] : =
∑

σ∈Sn
Wg(σπ−1) ·

∑

i

E{a(1)
i1iσ(1)

· · · a(n)
iniσ(n)

}(18)

=
∑

σ∈Sn
Wg(σπ−1) · E{Trσ[A1, . . . , An]}.

=
∑

σ∈Sn
Wg(σπ−1) ·

∑

W∈P(n)
W≥σ

ϕ(W , σ)[A1, . . . , An]

=
∑

(W,σ)∈PS(n)

Wg(σπ−1) · ϕ(W , σ)[A1, . . . , An].

The important point here is that G(π)[A1, . . . , An] depends only on the macro-
scopic correlation moments of A.
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We can extend the above to products of expectations by

EV [ap1r1 , . . . apnrn ] =
∑

π∈Sn
π≤V

δr,p◦π · G(V , π)[A1, . . . , An],

where G(V , π) is given by multiplicative extension:

G(V , π)[A1, . . . , An] : =
∏

V ∈V
G(π|V )[A1, . . . , An|V ]

=
∑

(W,σ)∈PS(n)
W≤V

Wg(V , σπ−1) · ϕ(W , σ)[A1, . . . , An].(19)

Now we can look on the cumulants of the entries of our unitarily invariant
matrices Ai; they are given by

kV
{
a(1)
p1r1 , . . . , a

(n)
pnrn} =

∑

U∈P(n)
U≤V

MöbP(n)(U ,V) · EU [a(1)
p1r1 , . . . a

(n)
pnrn ]

=
∑

U≤V

∑

π∈Sn
π≤U

δr,p◦π ·MöbP(n)(U ,V) · G(U , π)[A1, . . . , An]

=
∑

π∈Sn
π≤V

δr,p◦π
∑

U∈P(n)
V≥U≥π

MöbP(n)(U ,V) · G(U , π)[A1, . . . , An].

With the definition

(20) κ(V , π)[A1, . . . , An] :=
∑

U∈P(n)
V≥U≥π

MöbP(n)(U ,V) · G(U , π)[A1, . . . , An].

we thereby get

(21) kV
{
a(1)
p1r1 , . . . , a

(n)
pnrn} =

∑

π∈Sn
π≤V

δr,p◦π · κ(V , π)[A1, . . . , An].

It follows that

ϕ(U , γ)[A1, . . . , An] =
∑

V≤U
V∨γ=U

N∑

i(1),...,i(n)=1

kV [a
(1)
i(1)i(γ(1)), . . . , a

(n)
i(n)i(γ(n))]

=
∑

V≤U
V∨γ=U

N∑

i(1),...,i(n)=1

∑

π∈Sn
π≤V

δi◦γ,i◦π · κ(V , π)[A1, . . . , An]

=
∑

V≤U
V∨γ=U

∑

π∈Sn
π≤V

κ(V , π)[A1, . . . , An] ·N#(γπ−1).

Since V ∨ γ = U is, under the assumption π ≤ V , equivalent to V ∨ γπ−1 = U
we can write this also as

ϕ(U , γ)[A1, . . . , An] =
∑

(V,π)∈PS(n)

V∨γπ−1=U

κ(V , π)[A1, . . . , An] ·N#(γπ−1).(22)
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Remark 4.3. 1) Note that although the quantity κ is defined by (20) in terms
of the macroscopic moments of the Ai, they have also a very concrete meaning
in terms of cumulants of entries of the Ai. Namely, if we choose π ∈ Sn
and distinct 1 ≤ i(1), . . . , i(n) ≤ N then equation (21) becomes, when we set
V = 1n,

(23) κ(1n, π)[A1, . . . , An] = kn
(
a
(1)
i(1)i(π(1)), . . . , a

(n)
i(n)i(π(n))

)

as the the only term in the sum that survives is the one for π.
2) Equation (22) should be considered as a kind of moment-cumulant formula in
our context, thus it should contain all information for defining the “cumulants”
κ in terms of the moments ϕ. Actually, we can solve this linear system of
equations for κ in terms of ϕ, by using equation (20) to define κ and equation
(19) for G.

κ(V , π)[A1, . . . , An]

=
∑

U∈P(n)
V≥U≥π

MöbP(n)(U ,V) ·
∑

(W,σ)∈PS(n)
W≤U

Wg(U , σπ−1) · ϕ(W , σ)[A1, . . . , An]

=
∑

(W,σ)∈PS(n)

ϕ(W , σ)[A1, . . . , An] ·
∑

U∈P(n)
V≥U≥π∨W

MöbP(n)(U ,V) ·Wg(U , σπ−1).

Thus, by using the relative cumulants of the Weingarten function from (14),
we get finally

(24) κ(V , π)[A1, . . . , An] =
∑

(W,σ)∈PS(n)
W≤V

ϕ(W , σ)[A1, . . . , An] · Cπ∨W,V(σπ−1).

3) One should also note that we have defined the Weingarten function only
for N ≥ n; thus in the above formulas we should always consider sufficiently
large N . This is consistent with the observation that the system of equations

(22) might not be invertible for N too small; the matrix
(
N#(σπ−1)

)
σ,π∈Sn is

invertible for N ≥ n, however, in general not for all N < n (e.g, clearly not
for N = 1). One can make sense of some formulas involving the Weingarten

function also for N < n (see [CŚ06]). However, since we are mainly interested
in the asymptotic behavior of our formulas for N → ∞, we will not elaborate
on this.

4.3. Product of two independent ensembles. Let us now calculate the
correlation functions for a product of two independent ensembles A1, . . . , An
and B1, . . . , Bn of random matrices, where we assume that one of them, let’s
say the Bi’s, is unitarily invariant. We have, by using (17) and the special
version (12) of the formula of Leonov and Shiryaev, the following:
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ϕ(U , γ)[A1B1, . . . , AnBn]

=
∑

i(1),··· ,i(n)

j(1),··· ,j(n)

∑

V,V′≤U
V∨V′∨γ=U

kV [a
(1)
j(1)i(1), . . . , a

(n)
j(n)i(n)] · kV′ [b

(1)
i(1)j(γ(1)), . . . , b

(n)
i(n)j(γ(n))]

(20)
=
∑

i,j

∑

V,V′≤U
V∨V′∨γ=U

∑

π∈Sn
π≤V

δi,j◦π · κ(V , π)[A1, . . . , An] · kV′ [b
(1)
i(1)j(γ(1)), . . . , b

(n)
i(n)j(γ(n))]

=
∑

π∈Sn

∑

V∈P(n)
U≥V≥π

κ(V , π)[A1, . . . , An]·

·
( ∑

V′≤U
V′∨V∨γ=U

∑

i

kV′ [b
(1)
i(1)i(π−1γ(1)), . . . , b

(n)
i(n)i(π−1γ(n))]

)
.

In order to evaluate the second factor we note first that, under the assumption
π ≤ V , the condition V ′ ∨V ∨ γ = U is equivalent to V ′ ∨V ∨ π−1γ = U . Next,
we rewrite the sum over all V ′ ∈ P(n) with V ′ ≤ U and V ′ ∨ V ∨ π−1γ = U
as a double sum over all W ∈ P(n) with V ∨ W = U and all V ′ ∈ P(n) with
V ′ ≤ W and V ′ ∨ π−1γ =W .

∑

V′∈P(n)

V′≤U,V′∨V∨γ=U

∑

i

kV′ [b
(1)
i(1)i(π−1γ(1)), . . . , b

(n)
i(n)i(π−1γ(n))]

=
∑

W∈P(n)
V∨W=U

∑

V′≤W

V′∨π−1γ=W

∑

i

kV′ [b
(1)
i(1)i(π−1γ(1)), . . . , b

(n)
i(n)i(π−1γ(n))]

=
∑

W∈P(n)

W≥π−1γ,V∨W=U

ϕ(W , π−1γ)[B1, . . . , Bn].

Thus we finally get

ϕ(U , γ)[A1B1, . . . , AnBn]

=
∑

π∈Sn

∑

V∈P(n)
U≥V≥π

∑

W∈P(n)

W≥π−1γ,V∨W=U

κ(V , π)[A1, . . . , An] · ϕ(W , π−1γ)[B1, . . . , Bn]

=
∑

(V,π),(W,σ)∈PS(n)
V∨W=U,πσ=γ

κ(V , π)[A1, . . . , An] · ϕ(W , π−1γ)[B1, . . . , Bn].

Let us summarize the result of our calculations in the following theorem. In
order to indicate that our main formulas are valid for any fixed N , we will
decorate the relevant quantities with a superscript (N). Note that up to now
we have not made any asymptotic consideration.

Theorem 4.4. Let MN := MN ⊗ L∞(Ω) be an ensemble of N × N -random

matrices. Define correlation functions ϕ
(N)
n on MN by (n ∈ N, D1, . . . , Dn ∈
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MN )

(25) ϕ(N)
n (D1, . . . , Dn) := kn(Tr(D1), . . . ,Tr(Dn))

and corresponding “cumulant functions” κ(N) (for n ≤ N) by
(26)

κ(N)(V , π)[D1, . . . , Dn] =
∑

W∈P(n), σ∈Sn
W≤V

ϕ(N)(W , σ)[D1, . . . , Dn] · C(N)
π∨W,V(σπ

−1),

or equivalently by the implicit system of equations

ϕ(N)(U , γ)[D1, . . . , Dn] =
∑

V,π
κ(N)(V , π)[D1, . . . , Dn] ·N#(γπ−1),(27)

where the sum is over all V ∈ P(n) all π ∈ Sn such that π ≤ V and V ∨γπ−1 =
U .
1) Let AN be an algebra of unitarily invariant random matrices inMN . Then

we have for all n ≤ N , all distinct i(1), . . . , i(n), all Ak =
(
a
(k)
ij

)N
i,j=1

∈ AN ,

and all π ∈ Sn that

(28) κ(N)(1n, π)[A1, . . . , An] = kn
(
a
(1)
i(1)i(π(1)), . . . , a

(n)
i(n)i(π(n))

)
.

2) Assume that we have two subalgebras AN and BN of MN such that
⋄ AN is a unitarily invariant ensemble,
⋄ AN and BN are independent.

Then we have for all n ∈ N with n ≤ N and all A1, . . . , An ∈ AN and
B1, . . . , Bn ∈ BN :

(29) ϕ(N)(U , γ)[A1B1, . . . , AnBn]

=
∑

V,π,W,σ
κ(N)(V , π)[A1, . . . , An] · ϕ(N)(W , σ)[B1, . . . , Bn],

where the sum is over all V ,W ∈ P(n) and all π, σ ∈ Sn such that π ≤ V,
σ ≤ W, V ∨W = U , and γ = πσ.

4.4. Large N asymptotics for moments and cumulants. Our main in-
terest in this paper will be the large N limit of formula (29). This structure
in leading order between independent ensembles of random matrices which are
randomly rotated against each other will be captured in our abstract notion of
higher order freeness.
Of course, now we must make an assumption about the asymptotic behavior
in N of our correlation functions. We will require that the cumulants of traces
of our random matrices decays in N with the same order as in the case of
Gaussian or Wishart random matrices. In these cases one has very detailed
“genus expansions” for those cumulants; see, e.g. [Oko00, MN04] and one
knows that the n-th cumulant of unnormalized traces in polynomials of those
random matrices decays like N2−n (see e.g. [MS06, Thm. 3.1 and Thm. 3.5]).
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Definition 4.5. Let, for each N ∈ N, B
(N)
1 , . . . , B

(N)
r ⊂ MN ⊗ L∞−(Ω) be

N × N -random matrices. Suppose that the leading term of the correlation

moments of B
(N)
1 , . . . , B

(N)
r are of order 2 − n, i.e., that for all n ∈ N and all

polynomials p1, . . . , pt in r non-commuting variables the limits

lim
N→∞

ϕ(N)
n (p1(B

(N)
1 , . . . , B(N)

r ), . . . , pt(B
(N)
1 , . . . , B(N)

r )) ·Nn−2

exist. Then we will say that {B(N)
1 , . . . , B

(N)
r } has limit distributions of all

orders. Let B be the free algebra generated by generators b1, . . . , br. Then we
define the limit correlation functions of B by

ϕn(p1(b1, . . . , br), . . . , pt(b1, . . . , br))

= lim
N→∞

ϕ(N)
n (p1(B

(N)
1 , . . . , B(N)

r ), . . . , pt(B
(N)
1 , . . . , B(N)

r )) ·Nn−2

Note that this assumption implies that the leading term for the quantities
ϕ(N)(V , π) is of order 2#(V) − #(π). Indeed, if V has k blocks and the ith

block of V contains ri cycles of π then ϕ(N)(V , π) = ϕr1 · · ·ϕrk and each ϕri
has order 2− ri. Then the order of ϕ(N)(V , π) is (2 − r1) + · · · + (2 − rk) =
2k − (r1 + · · ·+ rk) = 2 #(V)−#(π). Thus

ϕ(V , π)(p1(b1, . . . , br), . . . , pt(b1, . . . , br))

= lim
N→∞

ϕ(N)(V , π)(p1(B
(N)
1 , . . . , B(N)

r ), . . . , pt(B
(N)
1 , . . . , B(N)

r ))

·N−2#(V)+#(π)

From formula (27) one can deduce that the leading order of κ(N)(V , π) is given
by the term (U , γ) = (V , π) and thus must be of order

N−n+2#V−#π.

(Indeed, this also follows from equation (24) and the leading order of the relative
cumulant of the Weingarten function given in equation (16).)
Thus we can define the limiting cumulant functions to be the limit of the
leading order of the cumulants by the equation

(30) κ(V , π)[b1, . . . , bn] := lim
N→∞

Nn−2#V+#π · κ(N)(V , π)[B
(N)
1 , . . . , B(N)

n ]

When (V , π) = (1n, γn) and B1 = B2 = · · · = Bn = B equation (28) becomes

κ(N)(1n, γn)[B, . . . , B] = kn
(
b
(N)
i(1)i(2), . . . , b

(N)
i(n)i(1))

Thus to prove Theorem 2.6 we must show that κ(N)(1n, γn)[B, . . . , B] · Nn−1

converges to κbn the nth free cumulant of the limiting eigenvalue distribution of
B(N).
When (V , π) = (1m+n, γm,n) equation (28) becomes

κ(N)(1m+n, γm,n)[B, . . . , B] = km+n

(
b
(N)
i(1)i(2), . . . , b

(N)
i(m)i(1), b

(N)
j(1)j(2), . . . , b

(N)
j(n),j(1))
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Thus to prove Theorem 2.12 we must show that κ(N)(1m+n, γm,n)[B, . . . , B] ·
Nm+n converges to κbm,n the (m,n)th free cumulant of second order of the

limiting second order distribution of B(N).

4.5. Length functions. We want to understand the asymptotic behavior of
formula (29). The leading order in N of the right hand side is given by

−n+ 2#V −#π + 2#W −#σ = n+ (|π| − 2|V|) + (|σ| − 2|W|),
whereas the leading order of the left hand side is given by

2#U −#γ = 2#(V ∨W)−#(σπ) = n+ (|πσ| − 2|V ∨W|).
This suggests the introducing of the following “length functions” for permuta-
tions, partitions, and partitioned permutations.

Notation 4.6.

(1) For V ∈ P(n) and π ∈ Sn we put

|V| := n−#V
|π| := n−#π.

(2) For any (V , π) ∈ PS(n) we put

|(V , π)| := 2|V| − |π| = n− (2#V −#π).

Let us first observe that these quantities behave actually like a length. It is
clear from the definition that they are always non-negative; that they also obey
a triangle inequality is the content of the next lemma.

Lemma 4.7.

(1) For all π, σ ∈ Sn we have

|πσ| ≤ |π|+ |σ|.
(2) For all V ,W ∈ P(n) we have

|V ∨W| ≤ |V|+ |W|.
(3) For all partitioned permutations (V , π), (W , σ) ∈ PS(n) we have

|(V ∨W , πσ)| ≤ |(V , π)|+ |(W , σ)|.
Proof. (1) This is well-known, since |π| is the minimal number of factors needed
to write π as a product of transpositions.
(2) Each block B of W can glue at most #B − 1 many blocks of V together,
i.e.,W can glue at most n−#W many blocks of V together, thus the difference
between |V| and |V ∨W| cannot exceed n−#W and hence

#V −#(V ∨W) ≤ n−#W .

This is equivalent to our assertion.
(3) We prove this, for fixed π and σ by induction over |V|+ |W|. The smallest
possible value of the latter appears for |V| = |π| and |W| = |σ| (i.e., V = 0π
and W = 0σ). But then we have (since V ∨W ≥ πσ)

2|V ∨W| − |πσ| ≤ |V ∨W| ≤ |V|+ |W|,
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which is exactly our assertion for this case. For the induction step, on the
other side, one only has to observe that if one increases |V| (or |W|) by one
then |V ∨W| can also increase by at most 1. �

Remark 4.8. 1) Note that the triangle inequality for partitioned permutations
together with (29) implies the following. Given random matrices A = (AN )N∈N
and B = (BN )N∈N which have limit distributions of all orders. If A and B are
independent and at least one of them is unitarily invariant, then C = (CN )N∈N
with CN := ANBN also has limit distributions of all orders.
2) Since we know that Gaussian and Wishart random matrices have limit dis-
tributions of all orders (see e.g. [MS06, Thm. 3.1 and Thm. 3.5]), and since
they are unitarily invariant, it follows by induction from the previous part
that any polynomial in independent Gaussian and Wishart matrices has limit
distributions of all orders.

4.6. Multiplication of partitioned permutations. Suppose {B(N)
1 ,

. . . , B
(N)
n } has limit distributions of all orders. Then the left hand side of

equation (27) has order N2#(U)−#(γ) and the right hand side of equation (27)

has order N−n+2#(V)−#(π)+|γπ−1|. Thus the only terms of the right hand side
that have order N2#(U)−#(γ) are those for which

2#(U)−#(γ) = −n+ 2#(V)−#(π) + |γπ−1|

i.e. for which |(U , γ)| = |(V , π)|+ |γπ−1|. Hence

ϕ(N)(U , γ)[B(N)
1 , . . . , B(N)

n ]

=
∑

(V,π)∈PS(n)

V∨γπ−1=U
|(U,γ)|=|(V,π)|+|γπ−1 |

κ(N)(V , π)[B
(N)
1 , . . . , B(N)

n ] ·N |γπ−1|

+O(N2#(U)−#(γ)−2)

Thus after taking limits we have

(31) ϕ(U , γ)[b1, . . . , bn] =
∑

(V,π)∈PS(n)

κ(V , π)[b1, . . . , bn]

where the sum is over all (V , π) in PS(n) such that V∨γπ−1 = U and |(U , γ)| =
|(V , π)|+ |γπ−1|.
A similar analysis of equation (29) gives that for independent {A(N)

1 , . . . , A
(N)
n }

and {B(N)
1 , . . . , B

(N)
n } with the A

(N)
i ’s unitarily invariant and both having limit

distributions of all orders we have
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ϕ(N)(U , γ)[A(N)
1 B

(N)
1 , . . . , A(N)

n B(N)
n ]

=
∑

(V,π),(W,σ)∈PS(n)
V∨W=U, πσ=γ

|(V,π)|+|(W,σ)|=|(V∨W,πσ)|

κ(N)(V , π)[A
(N)
1 , . . . , A(N)

n ] · ϕ(N)(W , σ)[B
(N)
1 , . . . , B(N)

n ]

+O(N2#(U)−#(γ)−2)

and again after taking limits

(32) ϕ(U , γ)[a1b1, . . . , anbn]

=
∑

(V,π),(W,σ)∈PS(n)

κ(V , π)[a1, . . . , an] · ϕ(W , σ)[b1, . . . , bn]

where the sum is over all (V , π), (W , σ) ∈ PS(n) such that

⋄ V ∨W = U
⋄ πσ = γ
⋄ |(V , π)|+ |(W , σ)| = |(U , γ)|

In order to write this in a more compact form it is convenient to define a
multiplication for partitioned permutations (in CPS(n)) as follows.

Definition 4.9. For (V , π), (W , σ) ∈ PS(n) we define their product as follows.

(33) (V , π) · (W , σ) :=

=

{
(V ∨W, πσ) if |(V , π)|+ |(W , σ)| = |(V ∨W, πσ)|,
0 otherwise.

Proposition 4.10. The multiplication defined in Definition 4.9 is associative.

Proof. We have to check that

(34)
(
(V , π) · (W , σ)

)
· (U , τ) = (V , π) ·

(
(W , σ) · (U , τ)

)
.

Since both sides are equal to (V ∨W ∨ U , πστ) in case they do not vanish, we
have to see that the conditions for non-vanishing are for both sides the same.
The conditions for the left hand side are

|(V , π)|+ |(W , σ)| = |(V ∨W , πσ)|
and

|(V ∨W, πσ)| + |(U , τ)| = |(V ∨W ∨ U , πστ)|.
These imply

|(V , π)|+ |(W , σ)| + |(U , τ)| = |(U ∨W ∨ U , πστ)|
≤ |(V , π)|+ |(W ∨ U , στ)|,

However, the triangle inequality

|(W ∨ U , στ)| ≤ |(W , σ)| + |(U , τ)|
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yields that we have actually equality in the above inequality, thus leading to

|(W , σ)|+ |(U , τ)| = |(W ∨ U , στ)|
and

|(V , π)|+ |(W ∨U , στ)| = |(V ∨W ∨ U , πστ)|.
These are exactly the two conditions for the vanishing of the right hand side
of (34). The other direction goes analogously. �

Now we can write formulas (31) and (32) in convolution form

(35) ϕ(U , γ)[b1, . . . , bn] =
∑

(V,π)∈PS(n)

(V,π)·(0,γπ−1)=(U,γ)

κ(V , π)[b1, . . . , bn]

and

(36) ϕ(U , γ)[a1b1, . . . , anbn]

=
∑

(V,π),(W,σ)∈PS(n)
(V,π)·(W,σ)=(U,γ)

κ(V , π)[a1, . . . , an] · ϕ(W , σ)[b1, . . . , bn].

Note that both ϕ(V , π) and κ(V , π) are multiplicative in the sense that they
factor according to the decomposition of V into blocks.
The philosophy for our definition of higher order freeness will be that equation
(35) is the analogue of the moment-cumulant formula and shall be used to define
the quantities κ, which will thus take on the role of cumulants in our theory
– whereas the ϕ are the moments (see Definition 7.4). We shall define higher
order freeness by requiring the vanishing of mixed cumulants, see Definition
7.6. On the other hand, equation (36) would be another way of expressing the
fact that the a’s are free from the b’s. Of course, we will have to prove that
those two possibilities are actually equivalent (see Theorem 7.9).

5. Multiplicative functions on partitioned permutations and
their convolution

5.1. Convolution of multiplicative functions. Formulas (35) and (36)
above are a generalization of the formulas describing first order freeness in
terms of cumulants and convolution of multiplicative functions on non-crossing
partitions. Since the dependence on the random matrices is irrelevant for this
structure we will free ourselves in this section from the random matrices and
look on the combinatorial heart of the observed formulas. In Section 7, we will
return to the more general situation involving multiplicative functions which
depend also on random matrices or more generally elements from an algebra.

Definition 5.1.

(1) We denote by PS the set of partitioned permutations on an arbitrary
number of elements, i.e.,

PS =
⋃

n∈N

PS(n).
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(2) For two functions
f, g : PS → C

we define their convolution

f ∗ g : PS → C

by

(f ∗ g)(U , γ) :=
∑

(V,π),(W,σ)∈PS(n)
(V,π)·(W,σ)=(U,γ)

f(V , π) g(W , σ)

for any (U , γ) ∈ PS(n).

Definition 5.2. A function f : PS → C is called multiplicative if f(1n, π)
depends only on the conjugacy class of π and we have

f(V , π) =
∏

V ∈V
f(1V , π|V ).

Our main interest will be in multiplicative functions. It is easy to see that the
convolution of two multiplicative functions is again multiplicative. It is clear
that a multiplicative function is determined by the values of f(1n, π) for all
n ∈ N and all π ∈ Sn.
An important example of a multiplicative function is the δ-function presented
below.

Notation 5.3. The δ-function on PS is the multiplicative function determined
by

δ(1n, π) =

{
1 if n = 1,

0 otherwise.

Thus for (U , π) ∈ PS(n)

δ(U , π) =

{
1 if (U , π) =

(
0n, (1)(2) . . . (n)

)
for some n,

0 otherwise.

Proposition 5.4. The convolution of multiplicative functions on PS is com-
mutative and δ is the unit element.

Proof. It is clear that δ is the unit element. For commutativity, we note that
for multiplicative functions we have

f(V , π) = f(V , π−1),

and thus

(g ∗ f)(U , γ) = (g ∗ f)(U , γ−1) =
∑

(V,π),(W,σ)∈PS(n)

(V,π)·(W,σ)=(U,γ−1)

g(V , π)f(W , σ).

Since the condition (V , π) · (W , σ) = (U , γ−1) is equivalent to the condition
(W , σ−1) · (V , π−1) = (U , γ) we can continue with

(g ∗ f)(U , γ) =
∑

(V,π),(W,σ)∈PS(n)

(W,σ−1)·(V,π−1)=(U,γ)

f(W , σ−1)g(V , π−1) = (f ∗ g)(U , γ).

Documenta Mathematica 12 (2007) 1–70



Fluctuations of Random Matrices 31

�

5.2. Factorizations. Let us now try to characterize the non-trivial factor-
izations (U , γ) = (V , π) · (W , σ) appearing in the definition of our convolution.
Let us first observe some simple general inequalities.

Lemma 5.5.

(1) For permutations π, σ ∈ S(n) we have

|π|+ |σ|+ |πσ| ≥ 2|π ∨ σ|.
(2) For partitions V2 ≤ V1 and W2 ≤ W1 we have

|W1|+ |V1|+ |V2 ∨W2| ≥ |V1 ∨W1|+ |W2|+ |V2|
and

|V1 ∨W2|+ |V2 ∨W1| ≥ |V1 ∨W1|+ |V2 ∨W2|.
Proof. (1) By the triangle inequality for partitioned permutations we have

|(0π ∨ 0σ, πσ)| ≤ |(0π, π)|+ |(0σ, σ)|,
i.e.,

(37) 2|π ∨ σ| − |πσ| ≤ |π|+ |σ|.
(2) Consider first the special case W1 =W2 =W . Then we clearly have

#(V2 ∨W)−#(V1 ∨W) ≤ #V2 −#V1,

which leads to

|V1 ∨W| − |V2 ∨W| ≤ |V1| − |V2|.
From this the general case follows by

|V1 ∨W1| − |V2 ∨W2| = |V1 ∨W1| − |V1 ∨W2|+ |V1 ∨W2| − |V2 ∨W2|
≤ |W1| − |W2|+ |V1| − |V2|.

The second inequality follows from this as follows:

|V1 ∨W1| − |V1 ∨W2| = |V1 ∨ (V2 ∨W1)| − |V1 ∨ (V2 ∨W2)|
≤ |V2 ∨W1| − |V2 ∨W2|.

�

Theorem 5.6. For (V , π), (W , σ) ∈ PS(n) the equation

(V , π) · (W , σ) = (V ∨W , πσ)

is equivalent to the conjunction of the following four conditions:

|π|+ |σ|+ |πσ| = 2|π ∨ σ|,
|V|+ |π ∨ σ| = |π|+ |V ∨ σ|,
|W|+ |π ∨ σ| = |σ|+ |π ∨W|,

|V ∨ σ|+ |π ∨W| = |V ∨W|+ |π ∨ σ|.

Documenta Mathematica 12 (2007) 1–70



32 Collins, Mingo, Śniady, Speicher

Proof. Adding the four inequalities given by Lemma 5.5

|π|+ |σ|+ |πσ| ≥ 2|π ∨ σ|,
2|V|+ 2|π ∨ σ| ≥ 2|π|+ 2|V ∨ σ|,

2|W|+ 2|π ∨ σ| ≥ 2|σ|+ 2|π ∨W|,
2|V ∨ σ|+ 2|π ∨W| ≥ 2|V ∨W|+ 2|π ∨ σ|

gives
2|V| − |π|+ 2|W| − |σ| ≥ 2|V ∨W| − |πσ|,

i.e.,
|(V , π)|+ |(W , σ)| ≥ |(V ∨W , πσ).

Since (V , π) · (W , σ) = (V ∨W, πσ) means that we require equality in the last
inequality, this is equivalent to having equality in all the four inequalities. �

The conditions describing our factorizations have a quite geometrical meaning.
Let us elaborate on this in the following.

Definition 5.7. Let γ ∈ S(n) be a fixed permutation.

(1) A permutation π ∈ S(n) is called γ-planar if

|π|+ |π−1γ|+ |γ| = 2|π ∨ γ|.
(2) A partitioned permutation (V , π) ∈ PS(n) is called γ-minimal if

|V ∨ γ| − |π ∨ γ| = |V| − |π|.
Remark 5.8. i ) It is easy to check (for example, by calculating the Euler char-
acteristic) that γ-planarity of π corresponds indeed to a planar diagram, i.e.
one can draw a planar graph representing permutations γ and π without any
crossings. The most important cases are when γ consists of a single cycle
[Bia97] and when γ consists of two cycles [MN04].
ii ) The notion of γ-minimality of (V , π) means that V connects only blocks of
π which are not already connected by γ.
iii ) If (V , π) satisfies both (1) and (2) of Definition 5.7 then (V , π)(0, π−1γ) =
(1, γ), by Theorem 5.6.

Corollary 5.9. Assume that we have the equation

(U , γ) = (V , π) · (W , σ).

Then π and σ must be γ-planar and (V , π) and (W , σ) must be γ-minimal.

5.3. Factorizations of disc and tunnel permutations.

Notation 5.10. i ) We call (V , π) ∈ PSn a disc permutation if V = 0π; the
latter is equivalent to the condition |V| = |σ|. For π ∈ Sn, by (0, π) we will
always mean the disc permutation

(0, π) := (0π, π) ∈ PS(n).

ii ) We call (V , π) ∈ PSn a tunnel permutation if |V| = |π|+1. This means that
V is obtained from π by joining a pair of cycles; i.e. one block of V contains
exactly two cycles of π and all other blocks contain only one cycle of π.
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A motivation for those names comes from the identification between partitioned
permutations and so-called surfaced permutations; see the Appendix for more
information on this.
Our goal is now to understand more explicitly the factorizations of disc and
tunnel permutations. (It will turn out that those are the relevant ones for
first and second order freeness). For this, note that we can rewrite the crucial
condition for our product of partitioned permutations,

2|V| − |π|+ 2|W| − |σ| = 2|V ∨W| − |πσ|,
in the form

(
|V| − |π|

)
+
(
|W| − |σ|

)
+
(
|V|+ |W| − |V ∨W|

)
=
(
|V ∨W| − |πσ|

)
.

Since all terms in brackets are non-negative integers this formula can be used
to obtain explicit solutions to our factorization problem for small values of
the right hand side. Essentially, this tells us that factorizations of a disc per-
mutation can only be of the form disc × disc; and factorizations of a tunnel
permutation can only be of the form disc×disc, disc×tunnel, and tunnel×disc.
Of course, one can generalize the following arguments to higher order type per-
mutations, however, the number of possibilities grows quite quickly.

Proposition 5.11.

(1) The solutions to the equation

(1n, γn) = (0, γn) = (V , π) · (W , σ)

are exactly of the form

(1n, γn) = (0, π) · (0, π−1γn),

for some π ∈ NC(n).
(2) The solutions to the equation

(1m+n, γm,n) = (V , π) · (W , σ)

are exactly of the following three forms:
(a)

(1m+n, γm,n) = (0, π) · (0, π−1γm,n),

where π ∈ SNC(m,n);
(b)

(1m+n, γm,n) = (0, π) · (W , π−1γm,n),

where π ∈ NC(m)×NC(n), |W| = |π−1γm,n|+1, andW connects
a cycle of π−1γm,n in NC(m) with a cycle in NC(n);

(c)

(1m+n, γm,n) = (V , π) · (0, π−1γm,n),

where π ∈ NC(m)×NC(n), |V| = |π|+1, and |W| = |π−1γm,n|+
1, and V connects a cycle of π in NC(m) with a cycle in NC(n).
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Proof. (1) The correspondence between non-crossing partitions and permuta-
tions was studied in detail by Biane [Bia97]. In this case we have

(
|V| − |π|

)
+
(
|W| − |σ|

)
+
(
|V|+ |W| − |V ∨W|

)
= |1n| − |γn| = 0.

Since all three terms in brackets are greater or equal to zero, all of them must
vanish, i.e.,

|V| = |π|, thus V = 0π

|W| = |σ|, thus W = 0σ

and

|π|+ |σ| = |V|+ |W| = |V ∨W| = |γ| = n− 1.

(2) Now we have
(
|V| − |π|

)
+
(
|W| − |σ|

)
+
(
|V|+ |W| − |V ∨W|

)
=
(
|V ∨W| − |πσ|

)
= 1,

which means that two of the terms on the left-hand side must be equal to
0, and the other term must be equal to 1. Thus we have the following three
possibilities.

(a)

|V| =|π|, thus V = 0π,

|W| =|σ|, thus W = 0σ

and

|π|+ |σ| = |V|+ |W| = |V ∨W|+ 1 = m+ n.

Note that

π ∨ σ = V ∨W = 1m+n,

and thus π connects the two cycles of γm,n. This means that π is a
non-crossing (m,n)-permutation.

(b)

|V| = |π|, thus V = 0π,

|W| = |σ|+ 1,

and

|V|+ |W| = |V ∨W| = m+ n− 1.

This implies

|π|+ |γm,nπ−1| = m+ n− 2,

which means that π must be a disconnected non-crossing (m,n)-
annular permutation, i.e.,

π = π1 × π2 with π1 ∈ NC(m), π2 ∈ NC(n).
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(c)

|V| = |π|+ 1,

|W| = |σ|+ 1, , thus W = 0σ

and

|V|+ |W| = |V ∨W| = m+ n− 1.

This implies

|π|+ |γm,nπ−1| = m+ n− 2,

which means that π must be a disconnected non-crossing (m,n)-
annular permutation, i.e.,

π = π1 × π2 with π1 ∈ NC(m), π2 ∈ NC(n).

�

Example 5.12. We can now use the previous description of factorizations of
disc and tunnel permutations to write down explicit first and second order
formulas for our convolution of multiplicative functions.
1) In the first order case we have

(38) (f ∗ g)(1n, γn) = (f ∗ g)(0, γn) =
∑

π∈NC(n)

f(0, π)g(0, π−1γn).

This equation is exactly the formula for the convolution of multiplicative func-
tions on non-crossing partitions, which is the cornerstone of the combinatorial
description of first order freeness [NSp97]. (Note that π−1γn is in this case the
Kreweras complement of π.)
2) In the second order case we have

(f ∗ g)(1m+n, γm,n) =
∑

π∈SNC(m,n)

f(0, π)g(0, π−1γm,n)

+
∑

π∈NC(m)×NC(n)
|V|=|π|+1

(
f(0, γm,nπ

−1)g(V , π) + f(V , π)g(0, π−1γm,n)
)
.

We should expect that this formula is the combinatorial key for the understand-
ing of second order freeness. However, in this form it does not match exactly the
formulas appearing in [MŚS07]. Let us, however, for a multiplicative function
f put, for π ∈ NC(n),

(39) f̃1(π) := f(1n, π) (π ∈ NC(n))

and, for π1 ∈ NC(m) and π2 ∈ NC(n),

(40) f̃2(π1, π2) =
∑

V≥π1×π2,
|V|=|π|+1,

V∨(π1×π2)=1m+n

f(V , π1 × π2).

Note that in the definition of f̃2 the sum is running over all V which connect
exactly one cycle of π1 with one cycle of π2.
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Then, with h = f ∗ g, we have

h̃2(1m, 1n) =
∑

π∈SNC(m,n)

f̃1(π)g̃1(π
−1γm,n)

+
∑

π1,π2∈NC(m)×NC(n)

(
f̃2(π1, π2)g̃1(π

−1
1 × π−1

2 γm.n)

+ f̃1(π1 × π2)g̃2(π
−1
1 γm, π

−1
2 γn)

)
.

In this form we recover exactly the structure of the formula (10) from [MŚS07],
which describes second order freeness. The descriptions in terms of f and in
terms of f̃2 are equivalent. Whereas f is multiplicative, f̃2 satisfies a kind
of cocycle property. From our present perspective the description of second
(and higher) order freeness in terms of multiplicative functions seems more
natural. In any case, we see that our convolution of multiplicative functions on
partitioned permutations is a generalization of the structure underlying first
and second order freeness.

5.4. Zeta and Möbius function. In the definition of our convolution we are
running over factorizations of (U , γ) into products (V , π) · (W , σ). In the first
order case the second factor is determined if the first factor is given. In the
general case, however, we do not have such a uniqueness of the decomposition;
if we fix (V , π) there might be different choices for (W , σ). For example, this
situation was considered in Proposition 5.11 in the case (2b). However, in the
case when (W , σ) is a disc permutation, it must be of the form (0π−1γ , π

−1γ)
and is thus uniquely determined. Note that factorizations of such a special
form appear in our formula (35) and thus deserve special attention.

Notation 5.13. Let (U , γ) ∈ PS be a fixed partitioned permutation. We say
that (V , π) ∈ PS is (U , γ)–non-crossing if

(V , π) · (0π−1γ , π
−1γ) = (U , γ).

The set of (U , γ)–non-crossing partitioned permutations will be denoted by
PSNC(U , γ), see Remark 5.8.

To justify this notation we point out that (1n, γn)–non-crossing partitioned
permutations can be identified with non-crossing permutations; to be precise

PSNC(1n, γn) = {(0π, π) | π ∈ NC(n)}.
Furthermore,

PSNC(1m+n, γm,n) = {(0π, π) | π ∈ SNC(m,n)}∪
∪ {(V , π1 × π2) | π1 ∈ NC(m), π2 ∈ NC(n),V ≥ π, |V| = |π|+ 1

and V connects one cycle of π1 to a cycle of π2}.
We can now also use a special multiplicative function, which we will call Zeta-
function ζ, to single out such factorizations. It will be useful to be able to invert
formula (35), which means we need also the inverse of ζ under our convolution.
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This inverse, called the Möbius-function µ, is a key object in the theory and
contains a lot of important information.

Notation 5.14.

(1) The Zeta-function ζ is the multiplicative function on PS which is de-
termined by

ζ(1n, π) =

{
1 if (1n, π) is a disc permutation, i.e., if 1n = 0π,

0 otherwise.

(2) The Möbius function µ is the inverse of ζ under convolution, i.e., it is
determined by

ζ ∗ µ = δ = µ ∗ ζ.
Note that in general

ζ(V , π) =

{
1, if V = 0π

0, if V > 0π.

It is also quite easy to see that the Möbius function exists and is uniquely
determined as the inverse of the Zeta-function — the determining equations can
be solved recursively. Indeed letting µn = µ(1n, γn) and µm,n = µ(1m+n, γm,n)
we have

0 = µ1,1 + µ2

0 = µ1,2 + 2µ1µ1,1 + 2µ3 + 2µ1µ2

0 = µ2,2 + 4µ1µ2,1 + 4µ2
1µ1,1 + 4µ4 + 8µ1µ3 + 2µ2

2 + 4µ2
1µ2

0 = µ1,3 + 3µ1µ2,1 + 3µ2µ1,1 + 3µ4 + 6µ1µ3 + 3µ2
2 + 3µ2

1µ2

0 = µ2,3 + 2µ1µ1,3 + 3µ1µ2,2 + 3µ2µ1,2 + 9µ2
1µ1,2 + 6µ1µ2µ1,1 + 6µ3

1µ1,1

+ 6µ5 + 18µ1µ4 + 12µ2µ3 + 18µ2
1µ3 + 12µ1µ

2
2 + 6µ3

1µ2

0 = µ3,3 + 6µ1µ2,3 + 6µ2µ1,3 + 6µ2
1µ1,3 + 9µ2

1µ2,2 + 18µ1µ2µ1,2 + 18µ3
1µ1,2

+ 9µ2
2µ1,1 + 18µ2

1µ2µ1,1 + 9µ4
1µ1,1 + 9µ6 + 36µ1µ5 + 27µ2µ4 + 54µ2

1µ4

+ 9µ2
3 + 72µ1µ2µ3 + 36µ3

1µ3 + 12µ3
2 + 36µ2

1µ
2
2 + 9µ4

1µ2

This shows how, knowing the first order Möbius function µn, the second order
Möbius function µm,n can be calculated recursively.
One should observe that with these notations we have

(f ∗ ζ)(U , γ) =
∑

(V,π)∈PSNC(U ,γ)

f(V , π).

In the following we will use the notation

ζ∗p = ζ ∗ · · · ∗ ζ︸ ︷︷ ︸
p-times

.

It is clear, by definition, that ζ∗p counts factorizations into the product of p
disc permutations, thus we have the following result.

Proposition 5.15. For (U , γ) ∈ PS and p ≥ 1 we have

ζ∗p(U , γ) := #{(π1, . . . , πp) | (U , γ) = (0, π1) · · · (0, πp)}.
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Of special interest for us is the case p = 2.

Proposition 5.16. We have for all r ≥ 1 and n(1), . . . , n(r) ∈ N, n := n(1)+
· · ·+ n(r) that

(ζ ∗ ζ)(1n, γn(1),...,n(r)) = #SNC(n(1), . . . , n(r)).

Proof. As noted above, (ζ ∗ ζ)(1n, γn(1),··· ,n(r)) counts the number of factor-
izations of (1n, γn(1),...,n(r)) into a product of two disc permutations, i.e., the
number of factorizations of the form

(1n, γn(1),...,n(r)) = (0, π) · (0, π−1γn(1),...,n(r)),

with

|π|+ |π−1γ| = |γ| = n− r
and π ∨ γ = 1n. But this describes exactly connected (n(1), . . . , n(r))-annular
permutations π ∈ SNC(n(1), . . . , n(r)). �

Notation 5.17. We put

cn(1),...,n(r) := #SNC(n(1), . . . , n(r)).

Note in particular that cn counts the number of non-crossing partitions of n
elements and thus is the Catalan number

cn =
1

n+ 1

(
2n

n

)
,

and that cm,n counts the number of non-crossing (m,n)-annular permutations,
and thus [MN04]

cm,n =
2mn

m+ n

(
2m− 1

m

)(
2n− 1

n

)
.

More generally, an explicit formula for the number of factorizations into p
factors was derived by Bousquet-Mélou and Schaeffer [BMS00], namely one
has (with n := n(1) + · · ·+ n(r))

ζ∗p(1n, γn(1),··· ,n(r)) = p
[(p− 1)n− 1]!

[(p− 1)n− r + 2]!

r∏

i=1

[
n(i)

(
pn(i)− 1

n(i)

)]
,

and thus in particular

cn(1),...,n(r) = 2
(n− 1)!

(n− r + 2)!

r∏

i=1

[
n(i)

(
2n(i)− 1

n(i)

)]
.

For our purposes, however, the following recursive formula for the number of
factorizations is more interesting.
In the next theorem we will show how to reduce the problem of counting the
number of disc factorizations on [n] to counting the factorizations on [n − 1].
This will enable of to obtain a recursive formula for cn1,...,nr .
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Notation 5.18. Let (U , γ) be a partitioned permutation of [n] with γ(1) 6= 1.
Let γ̂k be the restriction of (1, k)γ(1, γ−1(k)) to the invariant subset [2, n] :=
{2, 3, 4, . . . , n}. Then

|γ̂k| =





|γ| if 1 and k are in different cycles of γ,

|γ| − 1 if k = 1 or γ(1)

|γ| − 2 if 1 and k are in the same cycle of γ,

but k 6= 1 and k 6= γ(1),

Let U = U|[2,n] be the restriction of U to [2, n], i.e. if the blocks of U are

U1, . . . , Ur and 1 ∈ U1, then the blocks of U are U1, U2, . . . , Ur where U1 =
U1 ∩ [2, n]. In the theorem below we sum over a set of partitions Pk of [2, n]
described as follows.
For k = 1, γ(1) or k not in the γ-orbit of 1, Pk = { U } i.e. Pk consists of the
single partition U .

For k in the γ-orbit of 1 but k 6= 1, γ(1), Pk = {Û | γ̂k ≤ Û , |Û | = |U| − 2, and

U = Û ∨ (k, γ−1(k))}. In words this means U1 is split into two blocks:

◦ the first containing the cycle of γ̂k containing γ−1(k) and some (possibly
none) of the other cycles of γ contained in U1

◦ the second containing the cycle of γ̂k containing k and the remaining (pos-
sibly none) cycles of γ contained in U1.

More explicitly, in the case k is in the γ-orbit of 1 but k 6= 1, γ(1), let us write
γ as as a product of cycles d1 · · ·ds where d1 = (1, γ(1), . . . , γt(1)) is the cycle
that contains 1. Let d′1 = (γ(1), γ2(1), . . . , γ−1(k)) and d′′1 = (k, . . . , γt(1)).

Then γ̂k = d′1d
′′
1d2 · · ·ds. Pk consists of all partitions Û of [2, n] such that

Û = {U ′1, U ′′1 , U2, . . . , Ur} where U ′1 ∪ U ′′1 = U1, U
′
1 ∩ U ′′1 = ∅, U ′1 contains d′1,

U ′′1 contains d′′1 , and each cycle of γ that was in U1 is now in either U ′1 or U ′′1 ,

i.e. γ̂k ≤ Û and |Û | = |U| − 2.

Theorem 5.19.

(41) ζ∗
2

(U, γ) =
n∑

k=1

∑

bU∈Pk

ζ∗
2

(Û , γ̂k)

Proof. We must show that for each factorization (0, π)·(0, σ) of (U , γ) there are

k := π(1), Û ∈ Pk, and permutations of [2, n], π̂ and σ̂ such that (0, π̂) ·(0, σ̂) =

(Û , γ̂k). Conversely we must show that given k, Û ∈ Pk and a factorization

(0, π̂) · (0, σ̂) of (Û , γ̂k) there are π and σ such that (0, π) · (0, σ) = (U , γ)
and π(1) = k. Moreover we must show that these two maps are inverses of
each other. The relation between π, σ and π̂, σ̂ is given by π̂ = (1, k)π|[2,n],

σ̂ = σ(1, γ−1(k))|[2,n]. So on the level of permutations we have a bijection.
The main work of the proof is to show that starting with π and σ we have

Û := π̂ ∨ σ̂ ∈ Pk and 2|Û | − |γ̂k| = |π̂|+ |σ̂|; and then conversely starting with

Û ∈ Pk and a factorization (0, π̂) · (0, σ̂) of (Û , γ̂k) then 2|U| − |γ| = |π| + |σ|
and π ∨ σ = U .
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Note that we have for all k

|π̂| =
{
|π| − 1 k 6= 1

|π| k = 1

|σ̂| =
{
|σ| − 1 k 6= γ(1)

|σ| k = γ(1)

It is necessary to break the proof into four cases: k is not in the γ-orbit of 1;
k is in the γ-orbit of 1 but k 6= 1, γ(1); k = 1; and k = γ(1).
Suppose we have a factorization

(U , γ) = (0, π) · (0, σ),

i.e., γ = πσ, U = π ∨ σ, and

2|U| − |γ| = |π|+ |σ|
with k := π(1) not in the γ-orbit of 1. Then|γ̂k| = |γ| and Pk contains only the

partition of [2, n] which results from U by removing 1, i.e. Û = U . Then we

have |Û | = |U| − 1. Hence |π̂|+ |σ̂| = |π|+ |σ| − 2 = 2|U|− |γ| − 2 = |Û | − |γ| =
|Û | − |γ̂k|.
Also 0π|[2,n] = 0π̂ and 0γ |[2,n] ≤ 0γ̂k . Thus Û = (π ∨ γ)|[2,n] ≤ π̂ ∨ γ̂k. On the
other hand the difference between 0γ |[2,n] and 0γ̂k is that the blocks containing
1 and k have been joined. However these points were already connected by π.

Thus π̂ ∨ γ̂k ≤ Û , and so Û = π̂ ∨ σ̂, and thus

(Û , γ̂) = (0, π̂) · (0, σ̂).

Conversely, given a factorization (0, π̂) · (0, σ̂) of (Û , γ̂k), let π = (1, k)π̂ and
σ = σ̂(1, γ−1(k)). Then π ∨ σ = U because 1 has been connected to the block

of Û containing k. Also #(π) = #(π̂) and #(σ) = #(σ̂); thus |π| = |π̂|− 1 and
|σ| = |σ̂| − 1, and so |π|+ |σ| = 2|U| − |γ|. This establishes the bijection when
k is not in the γ-orbit of 1.
Let us now consider the case that 1 and k are in the same cycle of γ, but
k 6= 1, γ(1). Again suppose that (0, π) · (0, σ) is a factorization of (U , γ) with
π(1) = k. In this case we have that |γ̂k| = |γ| − 2 and so by the triangle
inequality, Lemma 4.7

2|π̂ ∨ σ̂| − |γ|+ 2 = 2|π̂ ∨ σ̂| − |γ̂|
= |(π̂ ∨ σ̂, π̂σ̂)|
≤ |(0, π̂)|+ |(0, σ̂)|
= |π̂|+ |σ̂|
= |π|+ |σ| − 2

= 2|U| − |γ| − 2,

and thus
|π̂ ∨ σ̂| ≤ |U| − 2.
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On the other hand, let us compare

π̂ ∨ σ̂ = π̂ ∨ γ̂ with U = π ∨ γ.

Note that all our changes of the permutations affected only what happens on
the first cycle of γ. Since the transition from γ to γ̂ consists in removing the
point 1 and splitting the first cycle of γ into two cycles, we can lose at most
one block by going over from π̂ ∨ γ̂ to π ∨ γ. Thus

|π̂ ∨ σ̂| = (n− 1)−#(π̂ ∨ σ̂) ≥ (n− 1)− (#U + 1) = |U| − 2,

so that we necessarily have the equality

|π̂ ∨ σ̂| = |U| − 2.

Thus Û := π̂ ∨ σ̂ ∈ Pk and 2|π̂ ∨ σ̂| − |γ̂k| = |π̂|+ |σ̂|. Hence (0, π̂) · (0, σ̂) is a

factorization of (Û , γ̂k).
Conversely let us suppose that k is in the γ-orbit of 1 but k 6= 1 or γ(1) and

Û ∈ Pk and (0, π̂) · (0, σ̂) is a factorization of (Û , γ̂k). We must show that
π ∨ σ = U and that |π| + |σ| = 2|U| − |γ|. 1 and k are in the same orbit of

π and 1 and γ−1(k) are in the same orbit of σ. So the blocks of Û containing

d′1 and d′′1 are joined in π ∨ σ. Thus π ∨ σ = U . Also |Û | = |U| − 2, so

|π| + |σ| = |π̂| + |σ̂| + 2 = 2|Û| − |γ̂k| + 2 = |U| − |γ̂k| − 2 = 2|U| − |γ|. Thus
(0, π) · (0, σ) is a factorization of (U , γ). This establishes the bijection in the
case k is in the γ-orbit of 1 but k 6= 1 or γ(1).
Next suppose that k = 1 and (0, π) · (0, σ) is a factorization of (U , γ) with

π(1) = 1. Then |π̂|+|σ̂| = |π|+|σ|−1 = 2|U|−|γ|−1 = 2|Û|−|γ|+1 = 2|Û |−|γ̂k|.
Let U1 be the block of U containing 1 and U1 = U1∩ [2, n]. We must show that
U1 is a block of π̂ ∨ γ̂k. Since π ∨ γ = U we know that if di and dj are cycles
of γ contained in U1 then π must connect them. Since π|U1

= π̂|U1
we see

that π̂ connects the corresponding cycles of γ̂k (which are unchanged except
for the cycle containing 1). Similarly if f1 and f2 are cycles of π contained in
U1 and neither is a singleton then they are connected by γ and thus by γ̂k.

Thus (0, π̂) · (0, σ̂) is a factorization of (Û , γ̂k).
Conversely suppose that k = 1, Û ∈ Pk, and (0, π̂) · (0, σ̂) is a factorization of

(Û , γ̂k). We must show that π(1) = 1 and (0, π) · (0, σ) is a factorization of

(U , γ). Since π̂∨ γ̂k = Û and γ connects 1 to γ(1) ∈ U1, we have that π∨γ = U .

Also |π| + |σ| = |π̂| + |σ̂| + 1 = 2|Û | − |γ̂k| + 1 = 2|U| − |γ̂1| − 1 = 2|U| − |γ|.
Thus (0, π) · (0, σ) is a factorization of (U , γ). This completes the case when
k = 1. The proof in the case k = γ(1) is exactly the same except that the roles
of π and σ are reversed. �

Let us take a closer look at the meaning of Theorem 5.19 for the case (U , γ) =
(1n, γn(1),...,n(r)). To reduce the depth of subscripts we shall write c(n1, . . . , nr)
for cn(1),...,n(r).
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Proposition 5.20. We have for all r, n1, . . . , nr ∈ N the recursion

(42) c(n1, . . . , nr) =
r∑

l=2

nl · c(n1 + nl − 1, n2, . . . , nl−1, nl+1, . . . , nr)

+

n1∑

k=1

∑

A={i1,...,is}
B={j1,...,jt}

c(k − 1, ni1 , . . . , nis)c(n1 − k, nj1 , . . . , njt)

where the sum is over all pairs of subsets A,B ⊂ [2, r] such that A∩B = ∅ and
A ∪B = [2, r] including the possibility that either A or B could be empty. We
have for all m,n ≥ 1

cn =
∑

1≤k≤n
ck−1cn−k,

and

(43) cm,n =
∑

1≤k≤n

(
ck−1cm,n−k + cm,k−1cn−k

)
+mcm+n−1,

where we use the convention that c0 = 1 but c(n1, . . . , nr) = 0 if r > 1 and for
some i, ni = 0.

Proof. Let n = n1 + · · · + nr. By Proposition 5.16 c(n1, . . . , nr) = ζ∗
2

(1n,
γn1,...,nr ). So we must give the correspondence between the terms on the right

hand side of (41) and the right hand side of (42). In this case U = 1n and U =
1n−1 (in the notation of 5.18). Thus Pk = {1n−1}. Also for n1 + · · ·+ nl−1 <

k ≤ n1+ · · ·+nl, ζ∗
2

(1n−1, γ̂k) = c(n1+nl−1, n2, . . . , nl−1, nl+1, . . . , nr). Thus

n∑

k=n1+1

∑

bU∈Pk

ζ∗
2

(Û , γ̂k) =

n∑

k=n1+1

ζ∗
2

(1n−1, γ̂k)(44)

=

r∑

l=2

n1+···+nl∑

k=n1+···+nl−1+1

c(n1 + nl − 1, n2, . . . , nl−1, nl+1, . . . , nr)

=

r∑

l=2

nl · c(n1 + nl − 1, n2, . . . , nl−1, nl+1, . . . , nr)

For k ≤ n1, γ̂k = d′1d
′′
1d2 · · ·dr, with d′1 a cycle of length k−1 and d′′1 a cycle of

length n1 − k. Pk is the set of all partitions of the cycles of γ̂k into two blocks
such that d′1 and d′′1 are in different blocks. Hence

∑

bU∈Pk

ζ∗
2

(Û , γ̂k) =
∑

A={i1,...,is}
B={j1,...,jt}

c(n1 − k, ni1 , . . . , nis)c(k − 1, nj1 , . . . , njt)

where the sum is over all pairs of subsets A,B ⊂ [2, r] such that A ∩ B = ∅
and A∪B = [2, r] including the possibility that either A or B could be empty.
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Thus

(45)

n1∑

k=1

∑

bU∈Pk

ζ∗
2

(Û , γ̂k)

=

n1∑

k=1

∑

A={i1,...,is}
B={j1,...,jt}

c(n1 − k, ni1 , . . . , nis)c(k − 1, nj1 , . . . , njt)

Assembling equations (44) and (45) gives the result. �

In [OZ84], O’Brien and Zuber used a similar formula of this kind in order to
compute the asymptotics of, so called, external field matrix integral. See also
[BMS00] and Theorem 5.22.
Clearly, our notions around the convolution of functions on PS are analogous
to (and motivated by) the convolution of functions on posets. Even though we
are not able to put the above theory into the framework of posets, it seems that
this analogy goes quite far. The following description of the Möbius functions
is an instance of this—its poset analogue is due to Hall (see [Rot64]). It is
essentially the simple observation that one can expand the Möbius function in
terms of a geometric series as

µ = ζ∗−1 =
(
δ + (ζ − δ)

)∗−1
=

∞∑

k=0

(−1)k(ζ − δ)∗k.

Proposition 5.21. We have for any (U , γ) ∈ PS that

µ(U , γ) = δ(U , γ) +

∞∑

k=1

∑

(U,γ)=(0,π1)···(0,πk)

πi 6=e ∀i

(−1)k.

Proof. As noted above this is just the geometric series for

(δ + (ζ − δ))∗−1.

(Note that we are working for this in the algebra of functions on PS with the
pointwise sum and the convolution as sum and product—we are not bothering
about multiplicativity.) The only thing to check is that the sum is finite, and
this is the case because the number of factors k is bounded by |(U , γ)|, since
|(0, π)| ≥ 1 for any π 6= e. �

This description of the Möbius function allows us now to derive a recursive
formula for µ.

Theorem 5.22. Consider (U , γ) ∈ PS such that γ(1) 6= 1. Then we have

(46) µ(U , γ) = (−1)
∑

(0,(1,k))·(V,π)=(U,γ)
k 6=1

µ(V , π),

where the sum runs over all decompositions of (U , γ) into a product of a disc
transposition (0, (1, k)) (with k ≥ 2) and a (V , π) ∈ PS.
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The proof of this theorem will rely on the following lemma.

Lemma 5.23. Let (U , γ) ∈ PS such that γ(1) 6= 1. For p ∈ N, we denote by Sp
the set consisting of all tuples (π1, . . . , πp) of permutations such that πi 6= e for
all i = 1, . . . , p and

(0, π1) · · · (0, πp) = (U , γ).
We consider now the two sums

(47) S1 :=

∞∑

p=1

∑

(π1,...,πp)∈Sp
(−1)p

and

(48) S2 :=
∞∑

p=1

∑

(π1,...,πp)∈Sp
π1 = (1, k) for k 6= 1

(−1)p

where the second sum S2 is over all tuples (π1, . . . , πp) as for the first sum S1,
but now with the additional property that π1 is a transposition interchanging
the element 1 with some other element.
Then the two sums (47) and (48) are equal,

S1 = S2.

Proof. Let π = (π1, . . . , πp) ∈ Sp. Let 1 ≤ q ≤ p denote the smallest index for
which 1 is not a fixed point of πq; note that such a q necessarily exists since
γ(1) 6= 1. We shall group all factorizations into three classes: 1a), 1b) and 2).
Class 1) consists of factorizations for which πq is a transposition interchanging
1 with some other element. The subclass 1a) consists of factorizations for which
q = 1 and subclass 1b) of those for which q ≥ 2. Class 2) consists of all other
factorizations.
Let Π = (π1, . . . , πp) be a factorization from the class 1b). We define

Π′ = (π′1, . . . , π
′
p−1) = (π1, . . . , πq−2, πq−1πq, πq+1, . . . , πp).

In the following we shall prove that f : Π 7→ Π′ is a bijection between factor-
izations of class 1b) and factorizations of class 2).
Firstly, we prove that Π′ ∈ Sp and is of class 2). Clearly, π′q−1 = πq−1πq is a
permutation which does not fix 1, it is not a transposition interchanging 1 with
some other element, and we have

(0, πq−1) · (0, πq) = (0, π′q−1).

In order to show that f is a bijection we shall describe its inverse. If Π′ =
(π′1, . . . , π

′
p−1) ∈ Sp and is of class 2), we define 1 ≤ q ≤ p − 1 to be the

smallest number for which π′q−1 does not fix 1. There is a unique decomposition
π′q−1 = πq−1πq such that 1 is a fixed point of πq−1 and πq is a transposition
interchanging 1 with some other element. Thus |πq−1| + |πq| = |π′q−1|. The
assumption that the factorization Π′ is of class 2) implies that πq−1 6= e. For
1 ≤ i ≤ q − 2 we set πi = π′i and for q + 1 ≤ i ≤ p we set πi = π′i−1. In this
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way we defined Π = (π1, . . . , πp). Now it is easy to check that g : Π′ 7→ Π is a
left and right inverse of f .
Since the factorization Π and the corresponding Π′ contribute to (47) with the
opposite signs, the contribution of all factorizations of class 1b) cancels with
the contribution of factorizations of class 2). �

Proof of 5.22. In the proof we will consider all factorizations (0, π1) ·
(0, π2) · · · (0, πp) = (U , γ) with the requirement that πi 6= e for all i, i.e.
(π1, . . . , πp) ∈ Sp, as in the proof of Lemma 5.23. Sometimes we will require
in addition that π1 = (1, k) with k 6= 1. To simplify the notation we will not
explicitly state every time that πi 6= e. Since γ(1) 6= 1 we have δ(U , γ) = 0.
When γ is a transposition the right hand side of equation (46) is −1; so we
can assume that γ is not a transposition. So by Proposition 5.21 we have

µ(U , γ) =

∞∑

p=1

∑

(0,π1)···(0,πp)
=(U ,γ)

(−1)p
(5.23)
=

∞∑

p=1

∑

(0,(1,k))···(0,πp)
=(U ,γ)

(−1)p

=
∞∑

p=2

∑

(0,(1,k)),(V,π)

(0,(1,k))·(V,π)=(U ,γ)

∑

(0,π2)···(0,πp)
=(V,π)

(−1)p

= −
∑

(0,(1,k)),(V,π)

(0,(1,k))·(V,π)=(U ,γ)

∞∑

p=2

∑

(0,π2)···(0,πp)
=(V,π)

(−1)p−1

= −
∑

(0,(1,k)),(V,π)

(0,(1,k))·(V,π)=(U ,γ)

∞∑

p=2

∑

(0,π2)···(0,πp)
=(V,π)

(−1)p−1

= −
∑

(0,(1,k)),(V,π)

(0,(1,k))·(V,π)=(U ,γ)

µ(V , π)

�

One observes that the recursion formulas for the Möbius function and for ζ∗2

look very similar. However, there are some significant differences. The re-
cursion for ζ∗2 effectively expresses ζ∗2 for n points in terms of ζ∗2 for n − 1
points. The recursion for the Möbius function does not reduce the number of
points. Nevertheless, at least for first and second order one can match the two
recursions and connect the values of the Möbius function with the values of the
function ζ∗2 (i.e., with the number of non-crossing partitions and non-crossing
annular permutations). In order to see this let us first specify the meaning of
Theorem 5.22 for first and second order. In first order we get

µ(1n, γn) = −
∑

1≤k≤n−1

µ(1k, γk)µ(1n−k, γn−k),
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which shows that (−1)nµ(1n+1, γn+1) and ζ∗2(1n, γn) satisfy the same recur-
sion (namely the one for the Catalan numbers). This is, of course, just the
well-known fact [Kre72, Spe94] that the Möbius function on non-crossing par-
titions is given by the signed and shifted Catalan numbers. In second order
our recursion reads

(−1)µ(1m+n, γm,n) = m · µ(1m+n, γm+n)

+
∑

1≤k≤n−1

(
µ(1m+k, γm,k)µ(1n−k, γn−k) + µ(1m+n−k, γm,n−k)µ(1k, γk)

)
,

which we recognize — by taking into account the shifted relation between µ
and ζ∗2 on the first level — as the recursion for (−1)m+nζ∗2(1m+n, γm,n). Let
us collect these explicit results about the Möbius function in the following
theorem.

Theorem 5.24. We have for m,n ∈ N that

µ(1n, γn) = (−1)n−1 ·#NC(n− 1) = (−1)n−1 · cn−1

and

µ(1m+n, γm,n) = (−1)m+n ·#SNC(m,n) = (−1)m+n · cm,n.
For higher orders we were not able to match the values of µ with those of ζ∗2.

6. R-transform formulas

Let us consider the situation that two multiplicative functions f and h on PS
are related by h = f ∗ ζ. We want to understand what this means for the
relations between the numbers κn := f(1n, γn) and κm,n := f(1m+n, γm,n) on
one side and the numbers αn := h(1n, γn) and αm,n := h(1m+n, γm,n) on the
other side. In particular, we want to express this in terms of the generating
power series of these numbers,

C(x) := 1 +
∑

n≥1

κnx
n, C(x, y) :=

∑

m,n≥1

κm,nx
myn

and

M(x) := 1 +
∑

n≥1

αnx
n, M(x, y) :=

∑

m,n≥1

αm,nx
myn.

(Note that the above summation corresponds to putting formally

f(10, γ0) := 1 and f(10, γ0,0) := 0

for a multiplicative f . Our notation is motivated by the fact that the most
important realization of the relation h = f ∗ ζ will be the situation where the
α’s are the correlation moments and the κ’s the corresponding cumulants, thus
M is a moment series and C is a cumulant series.) On the first order level we
have

αn =
∑

π∈NC(n)

f(0π, π),
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which is the usual moment-cumulant formula of free probability theory, and it
is well-known [Spe94] that this is equivalent to

C
(
xM(x)

)
= M(x).

Our main goal now is to derive the analogue of this for the second order level.
There we have

αm,n =
∑

π∈SNC(m,n)

f(0π, π) +
∑

π1×π2∈NC(m)×NC(n)

|V|=|π1×π2|+1

f(V , π1 × π2).

It turns out that the second term, the sum over disconnected partitions, is
quite easy to deal with. The first term, the sum over connected annular per-
mutations, looks much more involved, however, one can handle this also if one
realizes that one can reduce this first term to the second one. Namely, one
can sum over all connected annular permutations by first bundling all through-
cycles into one through-cycle and secondly decomposing this through-cycle into
sub-cycles all of which are through-cycles. In this way one can reduce the prob-
lem of dealing with all annular non-crossing permutations to the problem of
considering permutations with exactly one through-cycle and the problem of
considering permutations where all cycles are through-cycles. The first prob-
lem corresponds exactly to the above sum over disconnected partitions. So we
can write

∑

π∈SNC(m,n)

f(0π, π) =
∑

π1×π2∈NC(m)×NC(n)

|V|=|π1×π2|+1

f̃(V , π1 × π2),

where f̃ is now the multiplicative function corresponding to

f̃(1n, γn) = κ̃n, f̃(1m+n, γm,n) = κ̃m,n

with

κ̃n := κn

and

κ̃m,n :=
∑

π∈SallNC(m,n)

f(0π, π).

Thus we can combine this to get finally

αm,n =
∑

π1×π2∈NC(m)×NC(n)

|V|=|π1×π2|+1

(
f(V , π1 × π2) + f̃(V , π1 × π2)

)

=
∑

π1×π2∈NC(m)×NC(n)

|V|=|π1×π2|+1

g(V , π1 × π2),

where g is the multiplicative function corresponding to

g(1n, γn) = α̃n, g(1m+n, γm,n) = α̃m,n

with

α̃n = κ̃n = κn
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and

α̃m,n = κm,n + κ̃m,n.

So we have to translate the relation between κ̃m,n and f and the relation
between αm,n and g into relations between the corresponding formal power
series.

Proposition 6.1. Let f be a multiplicative function on PS with

f(1n, γn) =: κn and C(x) := 1 +
∑

n≥1

κnx
n.

Put

κ̃m,n :=
∑

π∈SallNC(m,n)

f(0π, π),

where SallNC(m,n) denotes the permutations in SNC(m,n) for which all cycles
are through-cycles. Consider the corresponding generating power series

C̃(x, y) :=
∑

m,n≥1

κ̃m,nx
myn.

Then we have

C̃(x, y) = −xy ∂2

∂x∂y
log
(xC(y)− yC(x)

x− y ),

or equivalently

C̃(x, y) = −xy
((C(x) − xC′(x)

)(
C(y)− yC′(y)

)
(
xC(y)− yC(x)

)2 − 1

(x− y)2
)
.

Proof. Note that we can parameterize an element π ∈ SallNC(m,n) in a bijective
way by specifying the number of cycles, the number of elements on each circle
for all cycles, the position of a fixed element (let’s say 1) in its cycle and the
first element on the other circle of this cycle. Let us denote the number of
cycles by r, the number of elements of the cycles on the first circle by i1, . . . , ir
and the number of elements of those cycles on the other circle by j1, . . . , jr.
Thus the l-th cycle contains il + jl elements and makes the contribution κil+jl
in the calculation of κ̃m,n. We normalize things so that the first cycle contains
the element 1. Fixing i1, . . . , ir and j1, . . . , jr we thus have i1 possibilities for
where 1 sits in the first cycle and n possibilities for the first element of this
cycle on the other circle. This means we have

κ̃m,n =
∑

r≥1

∑

i1,...,ir≥1
i1+···+ir=m

∑

j1,...,jr≥1
j1+···+jr=n

i1nκi1+j1 · · ·κir+jr

Documenta Mathematica 12 (2007) 1–70



Fluctuations of Random Matrices 49

and thus

C̃(x, y) =
∑

r≥1

∑

i1,...,ir≥1

∑

j1,...,jr≥1

i1(j1 + · · · jr)κi1+j1 · · ·κir+jrxi1 · · ·xiryj1 · · · yjr

=
∑

r≥1

∑

i1,...,ir≥1

∑

j1,...,jr≥1

i1y
∂

∂y

(
κi1gb+j1 · · ·κir+jrxi1 · · ·xiryj1 · · · yjr

)

=
∑

r≥1

y
∂

∂y

(( ∑

i1,j1≥1

i1κi1+j1x
i1yj1

)
·
( ∑

i2,j2≥1

κi2+j2x
i2yj2

)
· · ·
( ∑

ir ,jr≥1

κir+jrx
iryjr

))

Let us now use the notation

Ĉ(x, y) :=
∑

i,j≥1

κi+jx
iyj .

Then we can continue with

C̃(x, y) =
∑

r≥1

y
∂

∂y

((
x
∂

∂x
Ĉ(x, y)

)
· Ĉ(x, y)r−1

)

=
∑

r≥1

xy
∂

∂y

(1

r

∂

∂x

(
Ĉ(x, y)r

))

= xy
∂

∂y

∂

∂x

(∑

r≥1

1

r
Ĉ(x, y)r

)

= −xy ∂
∂y

∂

∂x
log
(
1− Ĉ(x, y)

)

The assertions follow now by noting that

Ĉ(x, y) = 1− xC(y)− yC(x)

x− y
and by working out the partial derivatives. �

Proposition 6.2. Let g be a multiplicative function on PS. Put

α̃m,n := g(1m+n, γm,n)

and denote its generating power series of second order by

H(x, y) :=
∑

m,n≥1

α̃m,nx
myn.

Put

αn := (g ∗ ζ)(1n, γn)
and

αm,n :=
∑

(V,π1×π2)

|V|=|π1×π2|+1

g(V , π)

and denote the corresponding generating functions by

M(x) := 1 +
∑

n≥1

αnx
n and M(x, y) :=

∑

m,n≥1

αm,nx
myn.
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Then we have the relation

M(x, y) = H(xM(x), yM(y)) ·
(
1 + x

M ′(x)
M(x)

)
·
(
1 + y

M ′(y)
M(y)

)
.

Proof. Let us do the summation in the definition of αm,n in the way that we
first fix the two cycles V1 ∈ π1 and V2 ∈ π2 which are connected by V and sum
over all possibilities for fixed V1, V2. If V1 has k elements and V2 has l elements
then this contributes the factor α̃k,l. Furthermore, π1\V1 decomposes into k
independent non-crossing partitions and the summations over them (for fixed
V1) gives the αi for the intervals between consecutive elements from V1. (Of
course, we are counting here modulo m.) For the final summation over V1 we
have to notice that there are two different possibilities: either a fixed number
(let’s say 1) is an element of V1 - in which case we can specify the situation
by prescribing the number k of elements of V1 and the differences i1, . . . , ik
between consecutive elements in V1 - or 1 is not an element of V1, — in which
case we need an extra factor i1, because we have now i1 different possibilities
how 1 can lie between two consecutive elements of V1. Since we have the same
situation for V2 we can thus write αm,n in the form

αm,n =
∑

k,l≥1

∑

i1,...,ik≥0

k+i1+···+ik=m

∑

j1,...,jl≥0

l+j1+···+jl=n

α̃k,lαi1 · · ·αikαj1 · · ·αjl
(
1 + i1 + j1 + i1j1

)
.

Translating this into generating power series gives the assertion. �

The combination of the previous two propositions, with

H(x, y) = C(x, y) + C̃(x, y),

gives now our main result.

Theorem 6.3. Let f and h be multiplicative functions on PS which are related
by

h = f ∗ ζ.
Denote

κn := f(1n, γn), κm,n := f(1m+n, γm,n)

and

αn := h(1n, γn), αm,n := h(1m+n, γm,n)

and define the corresponding generating power series

C(x) := 1 +
∑

n≥1

κnx
n, C(x, y) :=

∑

m,n≥1

κm,nx
myn

and

M(x) := 1 +
∑

n≥1

αnx
n, M(x, y) :=

∑

m,n≥1

αm,nx
myn.

Then we have as formal power series the first order relation

(49) C(xM(x)) = M(x)
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and for the second order

(50) M(x, y) = H
(
xM(x), yM(y)

)
·
d
dx(xM(x))

M(x)
·
d
dy (yM(y))

M(y)
,

where

(51) H(x, y) := C(x, y)− xy ∂2

∂x∂y
log
(xC(y) − yC(x)

x− y
)
,

or equivalently,

(52) M(x, y) = C
(
xM(x), yM(y)

)
·
d
dx (xM(x))

M(x)
·
d
dy (yM(y))

M(y)

+ xy
( d
dx(xM(x)) · ddy (yM(y))

(xM(x) − yM(y))2
− 1

(x− y)2
)
.

Proof. The formulation (50) and (51) follows directly from a combination
of Propositions 6.1 and 6.2. In order to reformulate this to (52) one uses
the equivalence of the two formulas in Proposition 6.1 and the fact that
C(xM(x)) = M(x) yields

1− xC′(xM(x)) =
M(x)

d
dx(xM(x))

.

�

If we go over from the moment generating series M to a kind of Cauchy trans-
form like quantity G, then these formulas take on a particularly nice form.

Corollary 6.4. Consider the same situation and notations as in Theorem
6.3. In terms of

G(x) :=
1

x
M(1/x), G(x, y) :=

1

xy
M(1/x, 1/y), R(x, y) :=

1

xy
C(x, y)

the Equation (52) can be written as

(53) G(x, y) = G′(x)G′(y)
{
R(G(x), G(y)) +

1

(G(x) −G(y))2

}
− 1

(x− y)2 .

R(x, y) is the second order R-transform. Note that Voiculescu’s first order
R-transform R is defined by the relation C(x) = 1 + xR(x), and equation (49)
says for this

1

G(x)
+R(G(x)) = x,

i.e., that G(x) and K(x) := 1
x +R(x) are inverses of each other under compo-

sition.

Example 6.5. Let us apply our formulas to some examples.
1) If we put f to be the multiplicative function with κ2 = 1 and all other
κn and all κm,n vanishing, then h = f ∗ ζ counts the non-crossing pairings,
i.e., in this case M(x) is the generating function of the number of non-crossing

Documenta Mathematica 12 (2007) 1–70



52 Collins, Mingo, Śniady, Speicher

pairings (on one circle) and M(x, y) is the generating function of the number
of non-crossing annular pairings (on two circles). Let us calculate it by using
the above theorem.
We have

C(x) = 1 + x2, C(x, y) = 0

and we know that M is the generating function of number of non-crossing
pairings on a circle. In this case

Ĉ(x, y) = xy,

and thus

H(x, y) = −xy ∂2

∂x∂y
log(1 − xy) =

xy

(1− xy)2 ,

which yields the result

M(x, y) = xy ·
d
dx(xM(x)) · ddy (yM(y))
(
1− xyM(x)M(y)

)2 .

Related formulas are known in the physical literature, see, e.g, [FMP78],
[AJM90], [ACKM93] and also [BZ93], [KKP95].
2) If we put f = ζ then h = ζ ∗ ζ counts the non-crossing permutations, i.e., in
this case M(x) is the generating function of the number of non-crossing permu-
tations (which is the same as non-crossing partition) on one circle and M(x, y)
is the generating function of the number of annular non-crossing permutations
(on two circles).
We have

C(x) =
1

1− x, C(x, y) = 0.

In this case

Ĉ(x, y) =
1− x− y

(1− x)(1 − y) ,

and thus

H(x, y) = −xy ∂2

∂x∂y
log(1− xy) =

xy

(1− x− y)2 ,

which yields

M(x, y) = xy ·
d
dx(xM(x)) · ddy (yM(y))
(
1− xM(x)− yM(y)

)2 .

3) Let us finally see whether we can extract the value of the Möbius function
from our formula. Since we have δ = µ ∗ ζ, our formula with

M(x) = 1 + x, M(x, y) = 0

should allow to solve for C(x, y) which is then the generating function for the
annular Möbius function. Note that we already know M(x) in this case to be
the generating function of the disc Möbius function.
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If M(x, y) vanishes identically this implies that H(x, y) vanishes identically,
leading to the identity

C(x, y) = xy
∂2

∂x∂y
log(

xC(y)− yC(x)

x− y )

= xy
( (C(x) − xC′(x)) · (C(y)− yC′(y))

(xC(y) − yC(x))2
− 1

(x− y)2
)

7. Higher order freeness and corresponding cumulants

7.1. Abstract framework.

Definition 7.1. A higher-order (non-commutative) probability space, or briefly
HOPS, (A, ϕ) consists of a unital algebra A and a collection ϕ = (ϕn)n∈N of
maps (n ∈ N)

ϕn : A× · · · × A︸ ︷︷ ︸
n times

→ C,

which are linear and tracial in each of its n arguments and which are symmetric
under exchange of its n arguments and which satisfy

ϕ1(1) = 1

and
ϕn(1, a2, . . . , an) = 0

for all n ≥ 2 and all a2, . . . , an ∈ A.

Of course, we can include the usual (first order) non-commutative probability
space (A, ϕ1) into this framework by putting all higher ϕn equal to zero. In
the same way we recover a second order non-commutative probability space
(A, ϕ1, ϕ2) by putting ϕn = 0 for all n ≥ 3.

Definition 7.2. 1) We denote by PS(A) the set of partitioned permutations
decorated with elements from A, i.e.,

PS =
⋃

n∈N

(
PS(n)×An

)
.

2) For a function

f : PS(A)→ C

(V , π)× (a1, . . . , an) 7→ f(V , π)[a1, . . . , an]

and a function

g : PS → C
we define their convolution

f ∗ g : PS(A)→ C

by

(f ∗ g)(U , γ)[a1, . . . , an] :=
∑

(V,π),(W,σ)∈PS(n)
(V,π)·(W,σ)=(U,γ)

f(V , π)[a1, . . . , an] · g(W , σ)

Documenta Mathematica 12 (2007) 1–70



54 Collins, Mingo, Śniady, Speicher

for all (U , γ) ∈ PS(n) and all a1, . . . , an ∈ A.

Definition 7.3. A function f : PS(A)→ C is called multiplicative if we have

f(V , π)[a1, . . . , an] =
∏

B∈V
f(1B, π|B)[(a1, . . . , an)B]

and

f(1n, σ
−1πσ)[aσ(1), . . . , aσ(n)] = f(1n, π)[a1, . . . , an]

for all a1, . . . , an ∈ A and all π, σ ∈ S(n).

Note that this extension of our formalism on multiplicative functions on PS and
their convolution from the last section is not changing the results from the last
section. The structure of all formulas remains the same; one just has to insert
the a1, . . . , an as dummy variables at the right positions. Thus, in particular,
δ is still the unit for this extended convolution and f = g ∗ ζ is equivalent to
g = f ∗ µ for multiplicative f, g on PS(A). And again, the convolution of a
multiplicative function on PS(A) with a multiplicative function on PS gives a
multiplicative function on PS(A).
It is clear that a multiplicative function f on PS(A) is uniquely determined by
the values of f(1n, γn(1),...,n(r))[a1, . . . , an] (where we put n := n(1)+ · · ·+n(r))
for all r ∈ N, all n(1), . . . , n(r) ∈ N and all a1, . . . , an ∈ A.

7.2. Moment and cumulant functions. Let us now apply this formalism
to get moment and cumulant functions for higher order probability spaces. So
let a HOPS (A, ϕ) be given. We will use the ϕn to produce a multiplicative
“moment” function on PS(A), which we will also denote by ϕ. Namely, we
put

ϕ(1n, γn(1),...,n(r))[a1, . . . , an]

:= ϕr(a1 · · · an(1); . . . ; an(1)+···n(r−1)+1 · · ·an)

and extend this by multiplicativity. (Note that we need the ϕn to be tracial in
their arguments for this extension.)
Here is an example for our function ϕ.

ϕ
(
{1, 3, 4}{2}, (1, 3)(2)(4)

)
[a1, a2, a3, a4] = ϕ2(a1a3, a4) · ϕ1(a2)

Definition 7.4. For a given HOPS (A, ϕ) we define the corresponding (higher
order) free cumulants as a function on PS(A) by

κ = ϕ ∗ µ,
or more explicitly

κ(U , γ)[a1, . . . , an] :=
∑

(V,π),(W,σ)∈PS(n)
(V,π)·(W,σ)=(U,γ)

ϕ(V , π)[a1, . . . , an] · µ(W , σ),

for all n ∈ N, (U , γ) ∈ PS(n), a1, . . . , an ∈ A.
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As we noted before the definition above is equivalent to the statement ϕ = κ∗ζ,
i.e.,

ϕ(U , γ)[a1, . . . , an] =
∑

(V,π)∈PSNC(U ,γ)

κ(V , π)[a1, . . . , an]

for all (U , γ)[a1, . . . , an] ∈ PS(A).
Furthermore, as with ϕ, κ is also a multiplicative function on PS(A). Thus in
the same way as all ϕ(U , γ) are determined by the knowledge of all

ϕ(1n, γn(1),...,n(r))[a1, . . . , an]

= ϕr(a1 · · · an(1); . . . ; an(1)+···+n(r−1)+1 · · · an(1)+···+n(r))

the free cumulants κ(U , γ) are determined by the values of

κ(1n, γn(1),...,n(r))[a1, . . . , an]

=: κn(1),...,n(r)(a1, . . . , an(1); . . . ; an(1)+···+n(r−1)+1, . . . , an(1)+···+n(r)).

Remark 7.5. Note that whereas on the level of ϕ we also know (by definition)
that we can multiply elements along the cycles of π (and thus we do not need
a comma as separator for those elements along a cycle), this is not true for κ.
Thus we have, e.g.,

ϕ(13, (1, 2)(3))[a1, a2, a3] = ϕ2(a1a2; a3) = ϕ(12, (1), (2))[a1a2; a3],

but no clear relation exists among

κ(13, (1, 2)(3))[a1, a2, a3] = κ2,1(a1, a2; a3)

and
κ(12, (1), (2))[a1a2; a3] = κ1,1[a1a2; a3].

Note also that since our convolution on PS coincides on the first level with
the usual convolution of multiplicative functions on non-crossing partitions,
the above definition of cumulants reduces on the first level to the usual free
cumulants.

7.3. Higher order freeness. Equipped with the notion of cumulants we
can now define “freeness” by the requirement of vanishing of mixed cumulants.

Definition 7.6. We say that a family (Xi)i∈I of subsets of A is free (of all
orders) if we have the following vanishing of mixed cumulants: For all n ≥ 2
and all ak ∈ Xi(k) (1 ≤ k ≤ n) such that i(p) 6= i(q) for some 1 ≤ p, q ≤ n we
have

κ(1n, π)[a1, . . . , an] = 0

for all π ∈ S(n).

Example 7.7. Let us see that this definition includes the definition of
Voiculescu [VDN92] for (first order) freeness and the definition of Mingo and
Speicher [MS06] for second order freeness.
1) On the first level this follows from the fact that our cumulants reduce then
to the usual free cumulants and it is well-known that freeness is equivalent to
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the vanishing of mixed cumulants. One can see it directly as follows: Let us
consider ak ∈ Xi(k) with i(k) 6= i(k + 1) and ϕ1(ak) = 0 for all k = 1, . . . , n.
Then we have

ϕ1(a1 · · · an) = ϕ(1n, γn)[a1, . . . , an] =
∑

π∈NC(n)

κ(0π, π)[a1, . . . , an].

However the vanishing of mixed moments means now that the only π which
contribute are those which do not connect elements from different sets. Fur-
thermore, the fact that all our variables are centered excludes singletons. But
then it is easy to see that there are no such π at all, so the sum is zero.
2) Now we have to consider two cyclically alternating and centered tuples
a1, . . . , am and b1, . . . , bn. Then we have

ϕ2(a1 · · · am; b1 · · · bn) = ϕ(1m+n, γm,n)[a1, . . . , am, b1, . . . , bn]

=
∑

(V,π)∈PSNC(m,n)

κ(V , π)[a1, . . . , am, b1, . . . , bn].

Again, the vanishing of mixed moments requires that (V , π) connects only ele-
ments from the same set and the centeredness of the elements excludes single-
tons. It is then easy to see that, for n ≥ 2, the only possibilities for such (V , π)
arise form = n and they have to be disc permutations (0π, π) which are pairings
(a1, b1+s)(a2, b2+s) · · · (an, bn+s) for some s. The factors k(12, (...))[ak, bk+s] are
just ϕ1(a2b2+s), so that one finally gets, for n ≥ 2, the formula

ϕ2(a1 · · · am; b1 · · · bn) = δmn

n∑

k=1

ϕ1(a1b1+s) · · ·ϕ1(anbn+s).

For n = m = 1 one gets with

ϕ2(a1; b1) = k2(a1, a2) + k1,1(a1; b1)

the conclusion that ϕ2(a1; b1) has to vanish if a1 and b1 are from different sets.
Nothing is required if both are from the same set. We see that we get exactly
the defining properties for second order freeness from [MS06].
3) It would be nice to be able to reformulate in a similar way the definition of
higher order freeness in terms of the ϕ instead of the cumulants. However, the
situation with more than two circles is getting much more involved and we are
not aware of such a reformulation for third and higher order freeness.

As in the case of the first order freeness, one sees immediately that constants
are free from everything.

Proposition 7.8. Let (A, ϕ) be a HOPS. Then {1} is free of all orders from
every subset X ⊂ A.

Proof. We have to prove that

κ(1n, γn(1),...,n(r))[1, a2, . . . , an] = 0,
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unless n = 1. We will do this by induction on n. The case n = 2 is clear
because

κ(12, (12))[1, a2] = ϕ1(1 · a2)− ϕ1(1) · ϕ1(a2) = 0

and

κ(12, (1)(2))[1, a2] = ϕ2(1; a2) = 0.

In general, one has

ϕ(1n, γn(1),...,n(r))[1, a2, . . . , an]

=
∑

(V,π)∈PSNC(n(1),...,n(r))

κ(V , π)[1, a2, . . . , an]

= κ(1n, γn(1),...,n(r))[1, a2, . . . , an]

+
∑

(V,π)∈PSNC(n(1),...,n(r))

|(V,π)|<|(1n,γn(1),...,n(r))|

κ(V , π)[1, a2, . . . , an]

By induction hypothesis, in the later sum exactly terms of the form ({1} ∪
Ṽ , (1) ∪ π̃) with

(Ṽ , π̃) ∈ PSNC(n(1)− 1, n(2), . . . , n(r))

contribute. In the case n(1) > 1 the sum over those yields

ϕ(1n−1, γn(1)−1,n(2),...,n(r)[a2, . . . , an].

In this case, also

ϕ(1n, γn(1),...,n(r))[1, a2, . . . , an] = ϕ(1n−1, γn(1)−1,n(2),...,n(r)[a2, . . . , an],

and thus κ(1n, γn(1),...,n(r))[1, a2, . . . , an] = 0. If, on the other side, n(1) = 1
(i.e., 1 is the only element on its circle), then we have to set

PSNC(0, n(2), . . . , n(r)) = ∅,
because then the first circle cannot be connected to the others if we ask 1 to
be a cycle of its own. But this means that in this case

κ(1n, γn(1),...,n(r))[1, a2, . . . , an] = ϕ(1n, γn(1),...,n(r))[1, a2, . . . , an]

However, for n(1) = 1 and n > 1 we have

ϕ(1n, γ1,...,n(r))[1, a2, . . . , an] = 0.

�

Note that our definition of freeness behaves clearly very nicely with respect to
decompositions of our sets. For example, we have that X1,X2,X3 are free if
and only if X1 and X2∪X3 are free and X2 and X3 are free. Thus we can reduce
the investigation of freeness to the understanding of freeness for the case of two
sets. A characterization for this is given in the next theorem.

Theorem 7.9. Let (A, ϕ) be a higher order probability space and consider two
subsets of X1,X2 ⊂ A. Then the following are equivalent.

(1) The sets X1,X2 are free of all orders.
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(2) The sets X1 ∪ {1}, X2 ∪ {1} are free of all orders.
(3) We have

ϕ(U , γ)[a1b1, . . . , anbn]

=
∑

(V,π)·(W,σ)=(U ,γ)

κ(V , π)[a1, . . . , an] · ϕ(W , σ)[b1, . . . , bn]

for all n ∈ N, all (U , γ) ∈ PS(n) and all a1, . . . , an ∈ X1 ∪ {1},
b1, . . . , bn ∈ X2 ∪ {1}.

(4) We have

ϕ(U , γ)[a1b1, . . . , anbn]

=
∑

(V,π)·(W,σ)=(U ,γ)

ϕ(V , π)[a1, . . . , an] · κ(W , σ)[b1, . . . , bn]

for all n ∈ N, all (U , γ) ∈ PS(n) and all a1, . . . , an ∈ X1 ∪ {1},
b1, . . . , bn ∈ X2 ∪ {1}.

(5) We have

κ(U , γ)[a1b1, . . . , anbn]

=
∑

(V,π)·(W,σ)=(U ,γ)

κ(V , π)[a1, . . . , an] · κ(W , σ)[b1, . . . , bn]

for all n ∈ N, all (U , γ) ∈ PS(n) and all a1, . . . , an ∈ X1 ∪ {1},
b1, . . . , bn ∈ X2 ∪ {1}.

In order to prove this we would like to write ϕ(U , γ)[a1b1, . . . , anbn] in the form

ϕ(Û , γ̂)[a1, b1, . . . , an, bn]. Let us introduce the following formalism for this.
Let (U , γ) ∈ PS(n) be a partitioned permutation of the numbers 1, 2, 3, . . . , n.
Double now this set of numbers by introducing a copy 1̄, 2̄, 3̄, . . . , n̄ and inter-
leave the new and old numbers as follows:

1, 1̄, 2, 2̄, 3, 3̄, . . . , n, n̄.

If we induce now (U , γ) on 1, 2, . . . , n to (Û , γ̂) on 1, 1̄, . . . , n, n̄ by putting

γ̂(k) = k̄ and γ̂(k̄) = γ(k),

then this has exactly the desired property. The vanishing of mixed cumulants
means that in the factorizations of (Û , γ̂) in (V , π) times a disc permutation
we are only interested in (V , π) which have the property that each block of
V contains either only unbarred numbers or only barred numbers, i.e., (V , π)
must be of the form (Va ∪ Vb, πa ∪ πb) with

(Va, πa) ∈ PS(1, . . . , n) and (Vb, πb) ∈ PS(1̄, . . . , n̄).

Let us first observe some simple relations between the quantities on 1, . . . , n
and their relatives on 1, 1̄, . . . , n, n̄.
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Lemma 7.10. 1) We have

|γ̂| = n+ |γ|, |Û | = n+ |U|,
and thus

|(Û , γ̂)| = n+ |(U , γ)|.
2) We have

|πa ∪ πb| = |πa|+ |πb|, |Va ∪ Vb| = |Va|+ |Vb|,
and thus

|(Va ∪ Vb, πa ∪ πb)| = |(Va, πa)|+ |(Vb, πb)|.
3) We have that (πa ∪ πb)γ̂ maps unbarred to barred and barred to unbarred
elements and, for all k = 1, . . . , n,

[(πa ∪ πb)γ̂]2(k̄) = πbπaγ(k),

thus

|(πa ∪ πb)γ̂| = n+ |πbπaγ|
Proof. Only the third part is non-trivial. To see this observe

(πa ∪ πb)γ̂(k̄) = πa(γ(k))

and thus

[(πa ∪ πb)γ̂]2(k̄) = πbπa(γ(k)),

which is our first equation, with the identification of πb ∈ S(1̄, . . . , 1̄) with the
corresponding permutation in S(1, . . . , n). Since the mapping between barred
and unbarred elements is clear, this yields that (πa ∪ πb)γ̂ and πbπaγ have the
same number of orbits which gives the last equation. �

This lemma allows us to characterize the contributing factorizations in (Û , γ̂)
in terms of special factorizations of (U , γ).
Proposition 7.11. The statement

(Va ∪ Vb, πa ∪ πb) ∈ PSNC(Û , γ̂)
is equivalent to the statement

(Va, πa) · (Vb, πb) ∈ PSNC(U , γ),
where in the last product we identify (Vb, π) ∈ PS(1̄, . . . , n̄) with the corre-
sponding element in PS(1, . . . , n).

Proof. Note that (Va ∪ Vb, πa ∪ πb) ∈ PSNC(Û , γ̂) is equivalent to

(54) |(Va ∪ Vb, πa ∪ πb)|+ |(πa ∪ πb)−1γ̂| = |(Û , γ̂)|
and

(55) Û = (Va ∪ Vb) ∨ γ̂.
On the other hand, (Va, πa) · (Vb, πb) ∈ PSNC(U , γ), means

(Va, πa) · (Vb, πb) · (0π−1
b π−1

a γ , π
−1
b π−1

a γ) = (U , γ),
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which is equivalent to

(56) |(Va, πa)|+ |(Vb, πb)|+ |π−1
b π−1

a γ| = |(U , γ)|
and

(57) U = Va ∨ Vb ∨ γ.
Equations (54) and (56) are, by Lemma 7.10, equivalent.
The equivalence between (55) and (57) is also easily checked. �

Equipped with these tools we can now prove our main Theorem 7.9.

Proof. The equivalences between (3), (4), and (5) follow by convolving with
the ζ or the µ function. That (2) is actually the same as (1) follows from Prop.
7.8.
(1) =⇒ (3): We have

ϕ(U , γ)[a1b1, . . . , anbn] = ϕ(Û , γ̂)[a1, b1, . . . , an, bn]

=
∑

(V,π)·(W,σ)=(Û,γ̂)

κ(V , π)[a1, b1, . . . , an, bn] · ζ(W , σ)

=
∑

(V,π)∈PSNC(Û ,γ̂)

κ(V , π)[a1, b1, . . . , an, bn]

By our assumption on the vanishing of mixed cumulants, only (V , π) of the
form (V1 ∪ V2, πa ∪ πb) with

(Va, πa) ∈ PS(1, . . . , n) and (Vb, πb) ∈ PS(1̄, . . . , n̄)

contribute and, by the above Proposition 7.11,

(Va ∪ Vb, πa ∪ πb) ∈ PSNC(Û , γ̂)
is equivalent to

(Va, πa) · (Vb, πb) ∈ PSNC(U , γ).
Thus we can continue with

ϕ(U , γ)[a1b1, . . . , anbn]

=
∑

(Va∪Vb,πa∪πb)∈PSNC(Û ,γ̂)

κ(Va, πa)[a1, a2, . . . , an] · κ(Vb, πb)[b1, b2, . . . , bn]

=
∑

(Va,πa)·(Vb,πb)∈PSNC(U ,γ)

κ(Va, πa)[a1, a2, . . . , an] · κ(Vb, πb)[b1, b2, . . . , bn]

=
∑

(Va,πa)·(Vb,πb)·(W,σ)=(U ,γ)

κ(Va, πa)[a1, a2, . . . , an]·

· κ(Vb, πb)[b1, b2, . . . , bn] · ζ(W , σ)

=
∑

(Va,πa)·(V,π)=(U ,γ)

κ(Va, πa)[a1, . . . , an] · ϕ(V , π)[b1, . . . , bn].

(3) =⇒ (1): Note that (3) allows us to calculate all moments of elements from
X1 ∪X2 out of the moments of elements from X1 and the moments of elements
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from X2. (In order to do so, we also have to allow some of the a’s or b’s to be
equal to the unit 1.) Since this calculation rule is the same as for free sets, this
shows that the sets X1 and X2 must be free. �

This theorem is now the key ingredient to transfer freeness from sets to their
generated algebras.

Theorem 7.12. Let (A, ϕ) be a HOPS and consider subsets (Xi)i∈I . For each
i ∈ I, let Ai be the unital algebra generated by elements from Xi. Then the
following are equivalent.

(1) The subsets (Xi)i∈I are free of all orders.
(2) The subalgebras (Ai)i∈I are free of all orders.

Proof. Since the cumulant κ(V , π)[a1, . . . , an] is a multi-linear functional in the
n variables a1, . . . , an, it is clear that taking sums of elements within the sets Xi
preserves freeness. What we have to see is that also taking products preserves
freeness. Since we can iterate our arguments, it suffices to see the following: if
X1 and X2 are free, then also X1∪{a0a1 | a0, a1 ∈ X1} and X2 are free. Adding
one product after the other to X1 and by Theorem 7.9 it is enough to show
that

ϕ(U , γ)[a0a1b1, a2b2 . . . , anbn]

=
∑

(V,π)·(W,σ)=(U ,γ)

ϕ(V , π)[a0a1, a2 . . . , an] · κ(W , σ)[b1, . . . , bn]

for all n ∈ N, all (U , γ) ∈ PS(n) and all a0, a1, . . . , an ∈ X1 ∪ {1}, b1, . . . , bn ∈
X2 ∪ {1}. Let us induce (U , π) ∈ PS(1, . . . , n) to (Û , π̂) ∈ PS(0, 1, . . . , n) by

requiring that Ŵ and π̂ restricted to 1, . . . , n agree withW and π, respectively,
and that 0 and 1 are in the same block of Ŵ and π̂(0) = 1. Then we can
calculate

ϕ(U , γ)[a0a1b1, a2b2 . . . , anbn] = ϕ(Û , π̂)[a01, a1b1, a2b2, . . . , anbn]

=
∑

(V,π)·(W,σ)=(Û,γ̂)

ϕ(V , π)[a0, a1, a2 . . . , an] · κ(W , σ)[1, b1, . . . , bn].

By Proposition 7.8 we know that κ(W , σ)[1, b1, . . . , bn] is only different from
zero if W has 0 as a singleton, i.e., (W , σ) has to be of the form

W = {0} ∪ W̃ , σ = (0)σ̃,

with

(W̃ , σ̃) ∈ PS(1, . . . , n).

But then we must have that π(0) = 1 and 0 and 1 must be in the same block

of V . Thus there is a unique (V ′, π′) so that (V , π) = (V̂ ′, π̂′) and

(V , π) · (W , σ) = (Û , γ̂)
is equivalent to

(V ′, π′) · (W̃ , σ̃) = (U , γ).
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Note also that in this situation

κ(W , σ)[a0, a1, , . . . , an] = κ(W̃ , σ̃)[b1, b2, . . . , bn].

and

ϕ(V̂ ′, π̂′)[a0, a1, , . . . , an] = ϕ(V ′, π′)[a0a1, a2, . . . , an].

So we can continue the above calculation as follows

ϕ(U , γ)[a0a1b1, a2b2 . . . , anbn]

=
∑

(V′,π′)·(W̃,σ̃)=(U ,γ)

ϕ(V ′, π′)[a0a1, a2 . . . , an] · κ(W̃ , σ̃)[b1, . . . , bn],

which is exactly what we had to show. �

7.4. Distribution of one random variable. For the case where we restrict
our attention to just one random variable a ∈ A we introduce the following
notation.

Notation 7.13. Let (A, ϕ) be a HOPS and let a ∈ A.
1) For, (V , π) ∈ PS(n), we will write

ϕa(V , π) := ϕ(V , π) [a, . . . , a]︸ ︷︷ ︸
n-times

and

κa(V , π) := κ(V , π) [a, . . . , a]︸ ︷︷ ︸
n-times

.

2) A Young diagram is a λ = (λ1, . . . , λl) for some l ∈ N and λ1, . . . , λl ∈ N
with λ1 ≥ λ2 ≥ · · · ≥ λl. We put |λ| := λ1 + · · · + λl (the total number of
boxes of the Young diagram λ). The set of all Young diagrams will be denoted
by Y.
3) The information about the higher order moments of a can also be parame-
terized by Young diagrams as follows: for λ = (λ1, . . . , λl) we put

ϕa(λ) := ϕ(1|λ|, π) [a, . . . , a]︸ ︷︷ ︸
n-times

= ϕl(a
λ1 , . . . , aλl)

where π is any permutation whose conjugacy class corresponds to λ (i.e., π ∈
S|λ| has cycles of length λ1, . . . , λl. The collection of all higher order moments
(ϕa(λ))λ∈Y is called the (higher order) distribution of a.
4) Similarly as for moments, we put

κa(λ) := κ(1|λ|, π) [a, . . . , a]︸ ︷︷ ︸
n-times

,

where π is any permutation whose conjugacy class corresponds to λ.

Remark 7.14. For first and second order moments and cumulants, we used in
Section 2 also the following notations:

αn := ϕa(1n, γn) αam,n := ϕa(1m+n, γm,n),
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and
κan := κa(1n, γn) κm,n := κa(1m+n, γm,n),

where γn and γm,n are permutations with one cycle and two cycles, respectively.

The vanishing of mixed cumulants translates in this framework into the addi-
tivity of the cumulants for sums of free variables.

Theorem 7.15. Let (A, ϕ) be a HOPS and a, b ∈ A free of all orders. Then
we have

κa+b(λ) = κa(λ) + κb(λ)

for all λ ∈ Y.

Proof. By the multilinearity of the cumulants and the vanishing of mixed cu-
mulants for free variable, we have for any n ∈ N and π ∈ Sn:

κa+b(1n, π) = κ(1n, π)[a+ b, . . . , a+ b]

= κ(1n, π)[a, . . . , a] + κ(1n, π)[b, . . . , b]

= κa(1n, π) + κb(1n, π).

�

8. Random matrices, Itzykson-Zuber integrals and higher order
freeness

8.1. Asymptotic higher order freeness of random matrices. Let us
now come back to our original motivation for our theory – the asymptotic
behavior of random matrices. In order to reformulate our calculations from
Section 4 in our language of higher order freeness we still need to define the
notion of “asymptotic freeness”.

Definition 8.1. 1) Let (A, ϕ) and, for each N ∈ N, (AN , ϕ(N)) be HOPSs.

Let I be an index set and for each i ∈ I, ai ∈ A and a
(N)
i ∈ AN (N ∈ N).

We say that the family (a
(N)
i | i ∈ I) converges, for N → ∞, to (ai | i ∈ I),

denoted by

(a
(N)
i )i∈I → (ai)i∈I ,

if we have for all n ∈ N and all polynomials p1, . . . , pn in |I|-many non-
commuting indeterminates that

(58) limN→∞ ϕ
(N)
n

(
p1

(
(a

(N)
i )i∈I

)
, . . . , pn

(
(a

(N)
i )i∈I

))

= ϕn
(
p1

(
(ai)i∈I

)
, . . . , pn

(
(ai)i∈I

))
.

2) Let, for each N ∈ N, (AN , ϕ(N)) be HOPSs. Let I be an index set and,

for each i ∈ I and N ∈ N, a
(N)
i ∈ AN . We say that the sequence of families

(a
(N)
i )i∈I has a limit distribution of all orders if there exists a HOPS (A, ϕ)

such that
(a

(N)
i )i∈I → (ai)i∈I ,

for some ai ∈ A (i ∈ I)
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3) Let, for each N ∈ N, (AN , ϕ(N)) be HOPSs. Let I be an index set and, for

each i ∈ I and N ∈ N, a
(N)
i ∈ AN . Let I = I1∪· · ·∪Ik be a decomposition of I

into k disjoint subsets. We say that the sets {a(N)
i | i ∈ I1}, . . . , {a(N)

i | i ∈ Ik}
are asymptotically free of all orders if there exists a HOPS (A, ϕ) such that

(a
(N)
i )i∈I → (ai)i∈I ,

for some ai ∈ A (i ∈ I) and such that the sets {ai | i ∈ I1}, . . . , {ai | i ∈ Ik}
are free of all orders in (A, ϕ).

With this notation and by invoking Theorem 7.9 we can reformulate our main
result on random matrices, Theorem 4.4, in the following form.

Theorem 8.2. Let MN := MN ⊗ L∞−(Ω) be an ensemble of N ×N -random

matrices. Define rescaled correlation functions ϕ̃(N) = (ϕ̃
(N)
n )n∈N on MN by

(n ∈ N, D1, . . . , Dn ∈MN )

(59) ϕ̃(N)
n (D1, . . . , Dn) := kn(Tr(D1), . . . ,Tr(Dn)) ·N2−n.

Assume that we have, for each N ∈ N, subalgebras AN ,BN ∈ MN such that

(1) AN is a unitarily invariant ensemble,
(2) AN and BN are independent.

Let (A
(N)
i )i∈I be a family of elements in (AN , ϕ̃(N)) which has a higher or-

der limit distribution and let (B
(N)
j )j∈J (N ∈ N) be a family of elements

in (BN , ϕ̃(N)) which has a higher order limit distribution. Then the families

{A(N)
i | i ∈ I} and {B(N)

j | j ∈ J} are asymptotically free of all orders.

8.2. Itzykson-Zuber integrals.

Definition 8.3. For N ×N matrices AN , BN their Itzykson-Zuber integral is
defined as the following function in z ∈ C:

IZ(z,AN , BN ) := N−2 logE(ezNTr(ANUBNU
∗)),

where U denotes a Haar unitary N ×N -random matrix.

Consider now a sequence of such matrices AN and BN . Note that AN and BN
are non-random, thus all distributions of order higher than 1 vanish identically.
If we assume that AN and BN have a first order (eigenvalue) limit distribution
for N → ∞, then it is known (see [Col03]) that each Taylor coefficient about
zero of z → IZ(z,AN , BN ) admits a limit as N → ∞. Note that the effect
of the Haar unitary random matrix in the above Itzykson-Zuber integral was
to make AN and UBNU

∗ asymptotically free of all orders. We show now that
this kind of result extends also to the case of random matrices AN and BN ,
and that our theory allows to identify the limit of the Taylor coefficients very
precisely.

Theorem 8.4. Let A = (AN )N∈N and B = (BN )N∈N be two ensembles of
N ×N -random matrices which are asymptotically free of all orders with respect
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to the rescaled correlation functions ϕ̃(N). Denote the corresponding limit-
ing distribution of (AN )N∈N by ϕa and the corresponding limit distribution of
(BN )N∈N by ϕb. Then, as formal power series in z, we have
(60)

lim
N→∞

N−2 log E[ezNTr(ANBN )] =

∞∑

n=1

zn

n!

∑

(V,π),(W,σ)∈PS(n)
(V,π)·(W,σ)=(1n,e)

κa(V , π) · ϕb(W , σ).

Proof. Recall that the logarithm of the exponential generating series of the mo-
ments of a random variable is the exponential generating series of the classical
cumulants of that variable. Thus we have

N−2 · logE[ezNANBN ]

= N−2
∞∑

n=1

kn(NTr(ANBN ), . . . , NTr(ANBN )) · z
n

n!

=
∞∑

n=1

Nn−2 · ϕ(N)(1n, e)[ANBN , . . . , ANBN ] · z
n

n!
.

By our assumption that AN and BN are asymptotically free with respect to

ϕ̃
(N)
n = Nn−2ϕNn , this converges to

∞∑

n=1

ϕ(1n, e)[ab, . . . , ab] ·
zn

n!
,

where a and b are free of all orders with respect to ϕ. Theorem 7.9 yields then
the assertion. �

In a forthcoming work we will investigate the relevance of higher order freeness
for Itzykson-Zuber integrals more detailed, in particular, in comparison with
and extension of results of Zinn-Justin [ZJ99], Collins [Col03], and Guionnet
and Maida [GM05].

9. Appendix: Surfaced permutations

In this appendix we will present a more geometrical view on partitioned per-
mutations. As we shall see in the following, partitioned permutations are just
special cases of “surfaced permutations”; in particular the results of this article
can be equivalently formulated in the language of surfaced permutations. On
the other hand, for the purpose of this article we do not need anything more
than just partitioned permutations and the Reader not interested in surfaced
permutations may skip this Section without much harm.

9.1. Motivations. Our goal is to study factorizations of permutations, i.e.
solutions (π1, . . . , πk) of the equation

γ = π1 · · ·πk,
where γ ∈ Sn is some fixed permutation and π1, . . . , πk ∈ Sn are subject to
some additional constraints, depending on a particular context. Typically, one
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Figure 1. Example of a surfaced permutation. Its support is
equal to (1, 3)(2)(4) ∈ S4. This surfaced permutation corre-
sponds to a partitioned permutation

(
{1, 3, 4}{2}, (1, 3)(2)(4)

)

.

of these constrains concerns |π1|+ · · ·+ |πk|, the other one concerns the orbits
of the action of π1, . . . , πk.
It would be very useful to equip permutations π1, . . . , πk with some additional
structure in such a way that the product π̃1 · · · π̃k of the resulting enriched
permutations π̃1, . . . , π̃k would carry both the information about the product
π1 · · ·πk of permutations and the information about |π1| + · · · + |πk|. As we
shall see in the following, surfaced permutations provide an appropriate tool.

9.2. Definition. We say that σ = (S, j) is a surfaced permutation of some
finite set A if S is a two–dimensional surface with a fixed orientation and with
a boundary ∂S and if j : A → ∂S is a injection. We can think about the
information carried by j as follows: some of the points on the boundary ∂S are
distinguished and carry different labels from the set A. We also require that
every connected component of ∂S carries at least one distinguished point. An
example of a surfaced permutation is presented on Figure 1.
We identify surfaced permutations (S1, j1), (S2, j2) of the same set A if there
exists a orientation preserving homeomorphism f : S1 → S2 such that f ◦ j1 =
j2. The set of surfaced permutations of set {1, . . . , n} will be denoted by SSn.

9.3. Surfaced permutations and the usual permutations. Let (S, j) ∈
SSn; the boundary ∂S with the inherited orientation from S is just a collection
of oriented circles with some distinguished points labeled 1, . . . , n marked on
them. In this way we can define a permutation σ ∈ Sn, called the support of
(S, j), the cycles of which correspond to connected components of ∂S, as it can

Documenta Mathematica 12 (2007) 1–70



Fluctuations of Random Matrices 67

1

4

2

5

3

1’

1

4’
4

2’

2

5’

5

3’
3

Figure 2. Convention for splitting labels.

be seen on Figure 1. It is therefore a good idea to think that a surfaced per-
mutation is just a (usual) permutation σ ∈ Sn equipped with some additional
information carried by the surface S.
A surfaced permutation (S, j) ∈ SSn can be uniquely specified (up to the
equivalence relation) by its support σ ∈ Sn and by specifying the shape of the
connected components of S. The latter information is given by an equivalence
relation on cycles of σ (each class corresponds to a connected component of S)
and furthermore for each class of this relation we should specify the genus of
the corresponding connected component of S. Above it should be understood
that the genus of a surface S with a boundary is by definition equal to the genus
of a surface S′ without boundary obtained from S by gluing a disc to every
connected component of ∂S; for example both a disc and the lateral surface of
a cylinder have genus zero.

9.4. Surfaced permutations and partitioned permutations.
Among surfaced permutations a special class will be very important for our
purposes, namely surfaced permutations (S, j) such that each connected com-
ponent of S has genus zero. It is easy to see that there is a bijection between
such surfaced permutations (S, j) and partitioned permutations (V , σ) given as
follows: σ is the support of (S, j) and V is the partition given by connected
components of S.

9.5. Products of surfaced permutations. Let surfaced permutations
(S1, j1), (S2, j2) ∈ SSn be given. On the boundary of S2 there are marked
points labeled by numbers 1, . . . , n; let us split every marked point k into a
consecutive pair of points k and k′, as it is presented on the example from
Figure 2. In the second step, for each k ∈ {1, . . . , n} we glue a small neighbor-
hood of the vertex k ∈ ∂S1 to a small neighborhood of the vertex k′ ∈ ∂S2 in
such a way that the orientations of S1 and S2 coincide. In this way we obtain
a new surface S which has marked points on its boundary ∂S and these are
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exactly the vertices from ∂S2 labeled 1, . . . , n; we denote the resulting surfaced
permutation by (S, j) and we call it a product (S1, j1)(S2, j2) of the original
surfaced permutations. This choice of gluing surfaces S1 and S2 implies that
the support of (S1, j1)(S2, j2) is equal to the product of the support of (S1, j1)
and the support of (S2, j2).
It is not difficult to explain now the definition of the product of partitioned
permutations (Definition 4.9): we treat partitioned permutations as surfaced
permutations and compute their product; if the genus of the resulting surface
is zero we can identify it with another partitioned permutation, otherwise we
set the product to be zero.
It is not difficult to show that for surfaced permutations the product is asso-
ciative and the associativity of the product of partitioned permutations is a
simple corollary.
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[CŚ06] B. Collins and P. Śniady: Integration with respect to the Haar mea-
sure on unitary, orthogonal and symplectic groups. Comm. Math.
Phy., 264, (2006), 773 - 795.

[Dia03] P. Diaconis: Patterns in Eigenvalues: The 70th Josiah Willard Gibbs
Lecture. Bulletin of the AMS, 40: 155-178, 2003.

Documenta Mathematica 12 (2007) 1–70



Fluctuations of Random Matrices 69

[FMP78] J. B. French, P. A. Mello, A. Pandey: Statistical properties of many-
particle spectra. II. Two-point correlations and fluctuations. Ann. of
Physics, 113 (1978), no. 2, 277–293.
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Université Claude Bernard Lyon 1
43 boulevard du 11 novembre 1918
69622 Villeurbanne Cedex,
France
bcollins@uottawa.ca

James A. Mingo
Queen’s University,
Department of Mathematics

and Statistics
Jeffery Hall, Kingston, ON
K7L 3N6, Canada
mingo@mast.queensu.ca

Piotr Śniady
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1. Introduction

Let i : A → B be a closed embedding of finite CW complexes. One useful
fact is that A admits a cofinal system of neighborhoods T in B with A→ T a
deformation retract. This is often used in the case where B is a differentiable
manifold, showing for example that A has the homotopy type of the differen-
tiable manifold T . This situation occurs in algebraic geometry, for instance
in the case of the inclusion of the special fiber in a degeneration of smooth
varieties X → C over the complex numbers.
To some extent, one has been able to mimic this construction in purely algebraic
terms. The rigidity theorems of Gillet-Thomason [14], extended by Gabber
(details appearing a paper of Fujiwara [13]) indicated that, at least through
the eyes of torsion étale sheaves, the topological tubular neighborhood can be
replaced by the Hensel neighborhood. However, basic examples of non-torsion
phenomena, even in the étale topology, show that the Hensel neighborhood
cannot always be thought of as a tubular neighborhood, perhaps the simplest
example being the sheaf Gm.1

Our object in this paper is to construct an algebraic version of the tubular
neighborhood which has the basic properties of the topological construction,
at least for a reasonably large class of cohomology theories. It turns out that

1If O is a local ring with residue field k and maximal ideal m, the surjection Gm(O) →

Gm(k) has kernel (1 + m)×, which is in general non-zero, even for O Hensel
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a “homotopy invariant” version of the Hensel neighborhood does the job, at
least for theories which are themselves homotopy invariant. If one requires in
addition that the given cohomology theory has a Mayer-Vietoris property for
the Nisnevich topology, then one also has an algebraic version of the punctured
tubular neighborhood. We extend these constructions to the case of a (reduced)
strict normal crossing subscheme by a Mayer-Vietoris procedure, giving us
the tubular neighborhood and punctured tubular neighborhood of a normal
crossing subscheme of a smooth k-scheme.
Morel and Voevodsky have constructed an algebro-geometric version of homo-
topy theory, in the setting of presheaves of spaces or spectra on the category
of smooth varieties over a reasonable base scheme B; we concentrate on the
A1-homotopy category of spectra, SHA1(B). For a map f : X → Y , they
construct a pair of adjoint functors

Rf∗ : SHA1(X)→ SHA1(Y )

Lf∗ : SHA1(Y )→ SHA1(X).

If we have a closed immersion i : W → X with open complement j : U → X ,
then one has the functor

Li∗Rj∗ : SHA1(U)→ SHA1(W )

One of our main results is that, in case W is a strict normal crossing subscheme
of a smooth X , the restriction of Li∗Rj∗E to a Zariski presheaf on W can be
viewed as the evaluation of E on the punctured tubular neighborhood of W in
X .
Consider a morphism p : X → A1 and take i : W → X to be the inclusion
of p−1(0). Following earlier constructions of Spitzweck [43], Ayoub has con-
structed a “unipotent specialization functor” in the motivic setting, essentially
(in the case of a semi-stable degeneration) by evaluating Li∗Rj∗E on a cosim-
plicial version of the appropriate path space on Gm with base-point 1. Applying
the same idea to our tubular neighborhood construction gives a model for this
specialization functor, again only as a Zariski presheaf on p−1(0).
Ayoub has also defined a motivic monodromy operator and monodromy se-
quence involving the unipotent specialization functor and the functor Li∗Rj∗,
for theories with Q-coefficients that satisfy a certain additional condition (see
definition 9.2.2). We give a model for this construction by combining our
punctured tubular neighborhood with a Q-linear version of the Gm-path space
mentioned above. We conclude with an application of our constructions to the
moduli spaces of smooth curves and a construction of a specialization func-
tor for category of mixed Tate motives, which in some cases yields a purely
algebraic construction of tangential base-points. Of course, the construction
of Ayoub, when restricted to the triangulated category of Tate motives, also
gives such a specialization functor, but we hope that the explicit nature of our
construction will be useful for applications.
We have left to another paper the task of checking the compatibilities of our
constructions with others via the appropriate realization functor. As we have
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already mentioned, our punctured tubular neighborhood construction is com-
parable with the motivic version of the functor Li∗Rj∗ for the situation of a
normal crossing scheme i : D → X with open complement j : X \ D → X ;
this should imply that it is a model for the analogous functor after realization.
Similarly, our limit cohomology construction should transform after realization
to the appropriate version of the sheaf of vanishing cycles, at least in the case of
a semi-stable degeneration, and should be comparable with the constructions
of Rappaport-Zink [37] as well as the limit mixed Hodge structure of Katz [22]
and Steenbrink [44]. Our specialization functor for Tate motives should be
compatible with the Betti, étale and Hodge realizations; similarly, realization
functors applied to our limit motive should yield for example the limit mixed
Hodge structure. We hope that our rather explicit construction of the limiting
motive will be useful in giving a geometric view to the limit mixed Hodge struc-
ture of a semi-stable degeneration but we have not attempted an investigation
of these issues in this paper.
My interest in this topic began as a result of several discussions on limit mo-
tives with Spencer Bloch and Hélène Esnault, whom I would like to thank for
their encouragement and advice. I would also like to thank Hélène Esnault for
clarifying the role of the weight filtration leading to the exactness of Clemens-
Schmidt monodromy sequence (see Remark 9.3.6). An earlier version of our
constructions used an analytic (i.e. formal power series) neighborhood instead
of the Hensel version now employed; I am grateful to Fabien Morel for suggest-
ing this improvement. Finally, I want to thank Joseph Ayoub for explaining
his construction of the nearby cycles functor; his comments suggested to us
the use of the cosimplicial path space in our construction of limit cohomology.
In addition, Ayoub noticed a serious error in our first attempt at construct-
ing the monodromy sequence; the method used in this version is following his
suggestions and comments. Finally, we would like to thank the referee for giv-
ing unusually thorough and detailed comments and suggestions, which have
substantially improved this paper. In particular, the material in sections 7
comparing our construction with the categorical ones of Morel-Voevodsky, as
well as the comparison with Ayoub’s specialization functor and monodromy
sequence in section 8.3 and section 9 was added following the suggestion of the
referee, who also supplied the main ideas for the proofs.

2. Model structures and other preliminaries

2.1. Presheaves of simplicial sets. We recall some facts on the model
structures in categories of simplicial sets, spectra, associated presheaf categories
and certain localizations. For details, we refer the reader to [17] and[19].
For a small category I and category C, we will denote the category of functors
from I to C by CI .
We let Ord denote the category with objects the finite ordered sets [n] :=
{0, . . . , n} (with the standard ordering) and morphisms the order-preserving
maps of sets. For a category C, the functor categories COrd, COrdop

are the
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categories of cosimplicial objects of C, resp. simplicial objects of C. For C =

Sets, we have the category of simplicial sets, Spc := SetsOrdop

, and similarly
for C the category of pointed sets, Sets∗, the category of pointed simplicial sets

Spc∗ := SetsOrdop

∗ .
We give Spc and Spc∗ the standard model structures: cofibrations are
(pointed) monomorphisms, weak equivalences are weak homotopy equivalences
on the geometric realization, and fibrations are detemined by the right lift-
ing property (RLP) with respect to trivial cofibrations; the fibrations are then
exactly the Kan fibrations. We let |A| denote the geometric realization, and
[A,B] the homotopy classes of (pointed) maps |A| → |B|.
For an essentially small category C, we let Spc(C) be the category of presheaves
of simplicial sets on C. We give Spc(C) the so-called injective model structure,
that is, the cofibrations and weak equivalences are the pointwise ones, and the
fibrations are determined by the RLP with respect to trivial cofibrations. We
let HSpc(C) denote the associated homotopy category (see [17] for details on
these model structures for Spc and Spc(C)).

2.2. Presheaves of spectra. Let Spt denote the category of spectra. To
fix ideas, a spectrum will be a sequence of pointed simplicial sets E0, E1, . . .
together with maps of pointed simplicial sets ǫn : S1 ∧ En → En+1. Maps of
spectra are maps of the underlying simplicial sets which are compatible with
the attaching maps ǫn. The stable homotopy groups πsn(E) are defined by

πsn(E) := lim
m→∞

[Sm+n, Em].

The category Spt has the following model structure: Cofibrations are maps
f : E → F such that E0 → F0 is a cofibration, and for each n ≥ 0, the map

En+1

∐

S1∧En
S1 ∧ Fn → Fn+1

is a cofibration. Weak equivalences are the stable weak equivalences, i.e., maps
f : E → F which induce an isomorphism on πsn for all n. Fibrations are
characterized by having the RLP with respect to trivial cofibrations. We write
SH for the homotopy category of Spt.
For X ∈ Spc∗, we have the suspension spectrum Σ∞X := (X,ΣX,Σ2X, . . .)
with the identity bonding maps. Dually, for a spectrum E := (E0, E1, . . .) we
have the 0-space Ω∞E := limn ΩnEn. These operations form a Quillen pair
of adjoint functors (Σ∞,Ω∞) between Spc∗ and Spt, and thus induce adjoint
functors on the homotopy categories.
Let C be a category. A functor E : Cop → Spt is called a presheaf of spectra on
C.
We use the following model structure on the category of presheaves of spec-
tra (see [19]): Cofibrations and weak equivalences are given pointwise, and
fibrations are characterized by having the RLP with respect to trivial cofibra-
tions. We denote this model category by Spt(C), and the associated homotopy
category by HSpt(C).
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As a particular example, we have the model category of simplicial spectra

SptOrdop

= Spt(Ord). We have the total spectrum functor

Tot : Spt(Ord)→ Spt

which preserves weak equivalences. The adjoint pair (Σ∞,Ω∞) extend point-
wise to define a Quillen pair on the presheaf categories and an adjoint pair on
the homotopy categories.
Let B be a noetherian separated scheme of finite Krull dimension. We let
Sm/B denote the category of smooth B-schemes of finite type over B. We
often write Spc(B) and HSpc(B) for Spc(Sm/B) and HSpc(Sm/B), and
write Spt(B) and HSpt(B) for Spt(Sm/B) and HSpt(Sm/B).
For Y ∈ Sm/B, a subscheme U ⊂ Y of the form Y \ ∪αFα, with {Fα} a
possibly infinite set of closed subsets of Y , is called essentially smooth over B;
the category of essentially smooth B-schemes is denoted Smess.

2.3. Local model structure. If the category C has a topology, there is often
another model structure on Spc(C) or Spt(C) which takes this into account. We
consider the case of the small Nisnevich site XNis on a scheme X (assumed to
be noetherian, separated and of finite Krull dimension), and the big Nisnevich
sites Sm/BNis or Sch/BNis, as well as the Zariski versions XZar, Sm/BZar,
etc. We describe the Nisnevich version for spectra below; the definitions and
results for the Zariski topology and for spaces are exactly parallel.

Definition 2.3.1. A map f : E → F of presheaves of spectra on XNis is a local
weak equivalence if the induced map on the Nisnevich sheaf of stable homotopy
groups f∗ : πsm(E)Nis → πsm(F )Nis is an isomorphism of sheaves for all m. A
map f : E → F of presheaves of spectra on Sm/BNis or Sch/BNis is a local
weak equivalence if the restriction of f to XNis is a local weak equivalence for
all X ∈ Sm/B or X ∈ Sch/B. �

The Nisnevich local model structure on the category of presheaves of spectra
on XNis has cofibrations given pointwise, weak equivalences the local weak
equivalences and fibrations are characterized by having the RLP with re-
spect to trivial cofibrations. We write Spt(XNis) for this model category, and
HSpt(XNis) for the associated homotopy category. The Nisnevich local model
categories Spt(Sm/BNis) and Spt(Sch/BNis), with homotopy categories
HSpt(Sm/BNis) and HSpt(Sch/BNis), are defined similarly. A similar local-
ization gives model categories of presheaves of spaces Spc(XNis), Spc(XZar),
Spc(Sm/BNis), etc., and homotopy categories HSpc(XNis), HSpc(XZar),
HSpc(Sm/BNis), etc. We also have the adjoint pair (Σ∞,Ω∞) in this set-
ting. For details, we refer the reader to [19].
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Remark 2.3.2. Let E be in Spt(Sm/BNis), and let

W ′
i′ //

��

Y ′

f

��

W
i

// X

be an elementary Nisnevich square, i.e., f is étale, i : W → X is a closed
immersion, the square is cartesian, and W ′ → W is an isomorphism, with X
and X ′ in Sm/B (see [34, Definition 1.3, pg. 96]) .
If E is fibrant in Spt(Sm/BNis) then E transforms each elementary Nisnevich
square to a homotopy cartesian square in Spt. Conversely, suppose that E
transforms each elementary Nisnevich square to a homotopy cartesian square
in Spt. Then E is quasi-fibrant, i.e., for all Y ∈ Sm/B, the canonical map
E(Y )→ Efib(Y ), where Efib is the fibrant model of E, is a weak equivalence.
See [19] for details.
If we define an elementary Zariski square as above, with X ′ → X an open
immersion, the same holds in the model category Spt(Sm/BZar). More pre-
cisely, one can show (see e.g. [45]) that, if E transforms each elementary Zarisk
square to a homotopy cartesian square in Spt, then E satisfies Mayer-Vietoris
for the Zariski topology: if X ∈ Sm/B is a union of Zariski open subschemes
U and V , then the evident sequence

E(X)→ E(U)⊕ E(V )→ E(U ∩ V )

is a homotopy fiber sequence in SH. �

Remark 2.3.3. Let C be a small category with an initial object ∅ and admiting
finite coproducts over ∅, denoted X ∐ Y . A functor E : Cop → Spt is called
additive if for each X,Y in C, the canonical map

E(X ∐ Y )→ E(X)⊕ E(Y )

in SH is an isomorphism. It is easy to show that if E ∈ Spt(Sm/B) satisfies
Mayer-Vietoris for the Zariski topology, and E(∅) ∼= 0 in SH, then E is additive.
From now on, we will assume that all our presheaves of spectra E satisfy
E(∅) ∼= 0 in SH. �

2.4. A1-local structure. One can perform a Bousfield localization on
Spc(Sm/BNis) or Spt(Sm/BNis) so that the maps Σ∞X × A1

+ → Σ∞X+

induced by the projections X × A1 → X become weak equivalences. We call
the resulting model structure the Nisnevich-local A1-model structure, denoted
SpcA1(Sm/BNis) or SptA1(Sm/BNis). One has the Zariski-local versions as
well. We denote the homotopy categories for the Nisnevich version by HA1(B)
(for spaces) and SHA1(B) (for spectra). For the Zariski versions, we indicate
the topology in the notation. We also have the adjoint pair (Σ∞,Ω∞) in this
setting. For details, see [30, 31, 34].
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2.5. Additional notation. Given W ∈ Sm/S, we have restriction functors

Spc(S)→ Spc(WZar)

Spt(S)→ Spt(WZar);

we write the restriction of some E ∈ Spc(S) to Spc(WZar) as E(WZar). We
use a similar notation for the restriction of E to Spt(WZar), or for restrictions
to WNis. More generally, if p : Y → W is a morphism in Sm/S, we write
E(Y/WZar) for the presheaf U 7→ E(Y ×W U) on WZar.
For Z ⊂ Y a closed subset, Y ∈ Sm/S and for E ∈ Spc(S) or E ∈ Spt(S),
we write EZ(Y ) for the homotopy fiber of the restriction map

E(Y )→ E(Y \ Z).

We define the presheaf EZZar(Y ) by setting, for U ⊂ Z a Zariski open sub-
scheme with closed complement F ,

EZZar(Y )(U) := EU (Y \ F ).

A co-presheaf on a category C with values in A is just an A-valued preheaf on
Cop.
As usual, we let ∆n denote the algebraic n-simplex

∆n := Spec Z[t0, . . . , tn]/
∑

i

ti − 1,

and ∆∗ the cosimplicial scheme n 7→ ∆n. For a scheme X , we have ∆n
X :=

X ×∆n and the cosimplicial scheme ∆∗X .
Let B be a scheme as above. For E ∈ Spc(B) or in Spt(B), we say that E is
homotopy invariant if for allX ∈ Sm/B, the pull-back mapE(X)→ E(X×A1)
is a weak equivalence (resp., stable weak equivalence). We say that E satisfies
Nisnevich excision if E transforms elementary Nisnevich squares to homotopy
cartesian squares.

3. Tubular neighborhoods for smooth pairs

Let i : W → X be a closed immersion in Sm/k. In this section, we construct the

tubular neighborhood τ X̂ǫ (W ) of W in X as a functor from WZar to cosimplicial

pro-k-schemes. Given E ∈ Spc(k), we can evaluate E on τ X̂ǫ (W ), yielding the

presheaf of spaces E(τ X̂ǫ (W )) on WZar, which is our main object of study.

3.1. The cosimplicial pro-scheme τ X̂ǫ (W ). For a closed immersion W → T
in Sm/k, let TWNis be the category of Nisnevich neighborhoods of W in T , i.e.,
objects are étale maps p : T ′ → T of finite type, together with a section
s : W → T ′ to p over W . Morphisms are morphisms over T which respect the
sections. Note that TWNis is a left-filtering essentially small category.

Sending (p : T ′ → T, s : W → T ′) to T ′ ∈ Sm/k defines the pro-object T̂ hW of
Sm/k; the sections s : W → T ′ give rise to a map of the constant pro-scheme

W to T̂ hW , denoted

îW : W → T̂ hW .
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Given a k-morphism f : S → T , and closed immersions iV : V → S, iW : W →
T such that f ◦ iV factors through iW (by f̄ : V →W ), we have the pull-back
functor

f∗ : TWNis → SVNis,

f∗(T ′ → T, s : W → T ′) := (T ′ ×T S, (s ◦ f̄ , iV )).

This gives us the map of pro-objects fh : ŜhV → T̂ hW , so that sending W → T

to T̂ hW and f to fh becomes a pseudo-functor.

We let fh : ŜhV → T̂ hW denote the induced map on pro-schemes. If f happens
to be a Nisnevich neighborhood of W → X (so f̄ : V → W is an isomorphism)

then fh : ŜhV → T̂ hW is clearly an isomorphism.

Remark 3.1.1. The pseudo-functor (W → T ) 7→ T̂ hW can be rectified to an
honest functor by first replacing TWNis with the cofinal subcategory TWNis,0 of

neighborhoods T ′ → T , s : W → T ′ such that each connected component of T ′

has non-empty intersection with s(W ). One notes that TWNis,0 has only identity

automorphisms, so we replace TWNis,0 with a choice of a full subcategory TWNis,00

giving a set of representatives of the isomorphism classes in TWNis,0. Given a

map of pairs of closed immersions f : (V
iV−→ S) → (W

iW−−→ T ) as above,
we modify the pull-back functor f∗ defined above by passing to the connected
component of (s ◦ f̄ , iV )(V ) in T ′ ×T S. We thus have the honest functor

(W → T ) 7→ TWNis,00 which yields an equivalent pro-object T̂ hW .
As pointed out by the referee, one can also achieve strict functoriality by rec-
tifying the fiber product; in any case, we will use a strictly functorial version
from now on without comment. �

For a closed immersion i : W → X in Sm/k, set ∆̂n
X,W := (∆̂n

X)h∆n
W

. The

cosimplicial scheme

∆∗X : Ord→ Sm/k

[n] 7→ ∆n
X

thus gives rise to the cosimplicial pro-scheme

∆̂∗X,W : Ord→ Pro-Sm/k

[n] 7→ ∆̂n
X,W

The maps î∆n
W

: ∆n
W → (∆̂n

X)h∆n
W

give the closed immersion of cosimplicial

pro-schemes
îW : ∆∗W → ∆̂∗X,W .

Also, the canonical maps πn : ∆̂n
X,W → ∆n

X define the map

πX,W : ∆̂∗X,W → ∆∗X .

Let (p : X ′ → X, s : W → X ′) be a Nisnevich neighborhood of (W,X). The
map

p : ∆̂n
X′,W → ∆̂n

X,W
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is an isomorphism respecting the closed immersions îW . Thus, sending a Zariski
open subscheme U ⊂ W with complement F ⊂ W ⊂ X to ∆̂n

X\F,U defines a

co-presheaf ∆̂n
X̂,WZar

on WZar with values in pro-objects of Sm/k; we write

τ X̂ǫ (W ) for the cosimplicial object

n 7→ ∆̂n
X̂,WZar

.

We use the X̂ in the notation because the co-presheaf ∆̂n
X̂,WZar

is depends only

on the Nisnevich neighborhood of W in X .
Let ∆∗WZar

denote the co-presheaf on WZar defined by U 7→ ∆∗U . The closed

immersions îU define the natural transformation

îW : ∆∗WZar
→ τ X̂ǫ (W ).

The maps πX\F,W\F for F ⊂W a Zariski closed subset define the map

πX,W : τ X̂ǫ (W )→ ∆∗X|WZar

where X |WZar is the co-presheaf W \ F 7→ X \ F on WZar. We let

(3.1.1) π̄X,W : τ X̂ǫ (W )→ X |WZar

denote the composition of πX.W with the projection ∆∗X|WZar
→ X |WZar.

3.2. Evaluation on spaces. Let i : W → T be a closed immersion in Sm/k.

For E ∈ Spc(T ), we have the space E(T̂Wh ), defined by

E(T̂ hW ) := colim
(p:T ′→T,s:W→T ′)∈TWNis

E(T ′).

Given a Nisnevich neighborhood (p : T ′ → T, s : W → T ′), we have the
isomorphism

p∗ : E(T̂ hW )→ E(T̂ ′
h

s(W )).

Thus, for each open subscheme j : U → W , we may evaluate E on the

cosimplicial pro-scheme τ X̂ǫ (W )(U), giving us the presheaf of simplicial spectra

E(τ X̂ǫ (W )) on WZar:

E(τ X̂ǫ (W ))(U) := E(τ X̂ǫ (W )(U)).

Now suppose that E is in Spc(k). The map îW : ∆∗WZar
→ τ X̂ǫ (W )) gives us

the map of presheaves on WZar

i∗W : E(τ X̂ǫ (W ))→ E(∆∗WZar
).

Similarly, the map πX,W gives the map of presheaves on WZar

π∗X,W : E(∆∗X|WZar
)→ E(τ X̂ǫ (W )).

The main result of this section is
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Theorem 3.2.1. Let E be in Spc(k). Then the map i∗W : E(τ X̂ǫ (W )) →
E(∆∗WZar

) is a weak equivalence for the Zariski-local model structure, i.e., for
each point w ∈ W , the map i∗W,w on the stalks at w is a weak equivalence of
the associated total space.

3.3. Proof of Theorem 3.2.1. The proof relies on two lemmas.

Lemma 3.3.1. Let i : W → X be a closed immersion in Sm/k, giving the closed
immersion A1

W → A1
X . For t ∈ A1(k), we have the section it : W → A1

W ,
it(w) := (w, t). Then for each E ∈ Spc(k), the maps

i∗0, i
∗
1 : E(∆̂∗A1

X ,A
1
W

)→ E(∆̂∗X,W )

are homotopic.

Proof. This is just an adaptation of the standard triangulation argument. For
each order-preserving map g = (g1, g2) : [m]→ [1]× [n], let

Tg : ∆m → ∆1 ×∆n,

be the affine-linear extension of the map on the vertices

vi 7→ (vg1(i), vg2(i)).

idX × Tg induces the map

T̂g : ∆̂m
X,W → ( ̂∆1 ×∆n

X)h∆1×∆n
W

We note that the isomorphism (t0, t1) 7→ t0 of (∆1, v1, v0) with (A1, 0, 1) induces
an isomorphism of cosimplicial schemes

∆̂∗A1
X ,A

1
W

∼= ( ̂∆1 ×∆∗X)h∆1×∆∗
W
.

The maps

T̂ ∗g : E(∆̂n
A1
X ,A

1
W

)→ E(∆̂m
X,W )

induce a simplicial homotopy T between i∗0 and i∗1. Indeed, we have the simpli-
cial sets ∆[n] : HomOrd(−, [n]). Let (∆1 ×∆∗)∆[1] be the cosimplicial scheme

n 7→ (∆1 ×∆n)∆[1]([n]) :=
∏

s∈∆[1]([n])

∆1 ×∆n

where the product is ×Z. The inclusions δ0, δ1 : [0]→ [1] thus induce the maps
of cosimplicial schemes

δ∗0 , δ
∗
1 : (∆1 ×k ∆∗)∆[1] → ∆1 ×k ∆∗.

The maps Tg satisfy the identities necessary to define a map of cosimplicial
schemes

T : ∆∗ → (∆1 ×∆∗)∆[1].

with δ∗0 ◦ T = i0, δ
∗
1 ◦ T = i1. Applying the functor h, we see that the maps T̂g

define the map of cosimplicial schemes

T̂ : ∆̂∗X,W → (∆̂∗A1
X ,A

1
W

)∆[1],

with δ∗0 ◦ T̂ = î0, δ
∗
1 ◦ T̂ = î1; we then apply E. �
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Lemma 3.3.2. Take W ∈ Smk. Let X = AnW and let i : W → X be the

0-section. Then i∗W : E(∆̂∗X,W )→ E(∆∗W ) is a homotopy equivalence.

Proof. Let p : X →W be the projection, giving the map

p̂ : ∆̂∗X,W → ∆̂∗W,W = ∆∗W

and p̂∗ : E(∆∗W )→ E(∆̂∗X,W ). Clearly î∗W ◦ p̂∗ = id, so it suffices to show that

p̂∗ ◦ î∗W is homotopic to the identity.
For this, we use the multiplication map µ : A1 × An → An,

µ(t;x1, . . . , xn) := (tx1, . . . , txn).

The map µ× id∆∗ induces the map

µ̂ : ( ̂A1 × AnW ×∆∗)hA1×0W×∆∗ → ( ̂AnW ×∆∗)h0W×∆∗

with µ̂ ◦ î0 = îW ◦ p̂ and µ̂ ◦ î1 = id. Since î∗0 and î∗1 are homotopic by
Lemma 3.3.1, the proof is complete. �

To complete the proof of Theorem 3.2.1, take a point w ∈ W . Then replacing
X with a Zariski open neighborhood of w, we may assume there is a Nisnevich
neigborhood X ′ → X , s : W → X ′ of W in X such that W → X ′ is in
turn a Nisnevich neighborhood of the zero-section W → AnW , n = codimXW .

Since E(∆̂n
X,W ) is thus weakly equivalent to E(∆̂n

AnW ,0W
), the result follows

from Lemma 3.3.2.

Corollary 3.3.3. Suppose that E ∈ Spc(Sm/k), resp. E ∈ Spt(Sm/k) is
homotopy invariant. Then for i : W → X a closed immersion, there is a
natural isomorphism in HSpc(WZar), resp. HSpt(WZar)

E(τ X̂ǫ (W )) ∼= E(τ N̂iǫ (0W ))

Here Ni is the normal bundle of the immersion i, and 0W ⊂ Ni is the 0-section.

Proof. This follows directly from Theorem 3.2.1: Since E is homotopy invari-
ant, the canonical map

E(T )→ E(∆∗T )

is a weak equivalence for each T ∈ Sm/k. The desired isomorphism in the
respective homotopy category is constructed by composing the isomorphisms

E(τ X̂ǫ (W ))
i∗W−−→ E(∆∗WZar

)← E(WZar)

= E(0WZar)→ E(∆∗0WZar
)

i∗0W←−− E(τ N̂iǫ (0W )).

�

4. Punctured tubular neighborhoods

Our real interest is not in the tubular neighborhood τ X̂ǫ (W ), but in the punc-

tured tubular neighborhood τ X̂ǫ (W )0. In this section, we define this object and
discuss its basic properties.
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4.1. Definition of the punctured neighborhood. Let i : W → X be
a closed immersion in Sm/k. We have the closed immersion of cosimplicial
pro-schemes

î : ∆∗W → ∆̂∗X,W

giving for each n the open complement ∆̂n
X\W := ∆̂n

X,W \∆n
W . We may pass

to the cofinal subcategory of Nisnevich neighborhoods of ∆n
W in ∆n

X ,

(p : T → ∆n
X , s : ∆n

W → T )

for which the diagram

T \ s(∆n
W ) //

��

T

��

∆n
X \∆n

W
// ∆n

X

is cartesian, giving us the cosimplicial proscheme n 7→ ∆̂n
X\W and the map

ĵ : ∆̂∗X\W → ∆̂∗X,W ,

which defines the “open complement” ∆̂∗X\W of ∆∗W in ∆̂∗X,W . Extending this

construction to all open subschemes of X , we have the co-presheaf on WZar,

U = W \ F 7→ ∆̂∗(X\F )\U ,

which we denote by τ X̂ǫ (W )0.
Let ∆n

(X\W )Zar
be the constant co-presheaf on WZar with value ∆n

X\W , giving

the cosimplicial co-presheaf ∆∗(X\W )Zar
. The maps

ĵU : ∆̂∗(X\F )\U → ∆̂∗(X\F ),U

define the map ĵ : τ X̂ǫ (W )0 → τ X̂ǫ (W ). The maps ∆̂∗U\W∩U → ∆∗X\W give us

the map

π : τ X̂ǫ (W )0 → ∆∗X\W
where we view ∆∗X\W as the constant co-sheaf on WZar.

To give a really useful result on the presheaf E(τ X̂ǫ (W )0), we will need to
impose additional conditions on E. These are

(1) E is homotopy invariant
(2) E satisfies Nisnevich. excision

One important consequence of these properties is the purity theorem of Morel-
Voevodsky:

Theorem 4.1.1 (Purity [34, theorem 2.23]). Suppose E ∈ Spt(k) is homotopy
invariant and satisfies Nisnevich excision. Let i : W → X be a closed immer-
sion in Sm/k and s : W → Ni the 0-section of the normal bundle. Then there
is an isomorphism in HSpt(WZar)

EWZar(X)→ EWZar(Ni)

�
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Let E(X |WZar) be the presheaf on WZar

W \ F 7→ E(X \ F )

and E(X \W ) the constant presheaf.
Let

res : E(X |WZar)→ E(τ X̂ǫ (W ))

res0 : E(X \W )→ E(τ X̂ǫ (W )0)

be the pull-back by the natural maps τ X̂ǫ (W )(W \ F ) → X \ F , τ X̂ǫ (W )0 →
X\W . Let E∆∗

W (τ X̂ǫ (W )) ∈ Spt(WZar) be the homotopy fiber of the restriction
map

ĵ : E(τ X̂ǫ (W ))→ E(τ X̂ǫ (W )0).

The commutative diagram in Spt(WZar)

E(X |WZar)
j∗

//

res

��

E(X \W )

res0

��

E(τ X̂ǫ (W ))
ĵ∗

// E(τ X̂ǫ (W )0)

induces the map of homotopy fiber sequences

EWZar(X) //

ψ

��

E(X |WZar)
j∗

//

res

��

E(X \W )

res0

��

E∆∗
W (τ X̂ǫ (W )) // E(τ X̂ǫ (W ))

j∗
// E(τ X̂ǫ (W )0)

We can now state the main result for E(τ X̂ǫ (W )0).

Theorem 4.1.2. Suppose that E ∈ Spt(k) is homotopy invariant and satisfies
Nisnevich excision. Let i : W → X be a closed immersion in Sm/k. Then the
map ψ is a Zariski local weak equivalence.

Proof. Let i∆∗ : ∆∗W → ∆∗X be the immersion id × i. For U = W \ F ⊂ W ,

τ X̂ǫ (W )0(U) is the cosimplicial pro-scheme with n-cosimplices

τ X̂ǫ (W )0(U)n = ∆̂n
X\F,U \∆n

U

so by Nisnevich excision we have the natural isomorphism

α : E∆∗
WZar (∆∗X|WZar

)→ E∆∗
W (τ X̂ǫ (W )),

where E∆∗
WZar (∆∗X|WZar

)(W \F ) is the total spectrum of the simplicial spectrum

n 7→ E∆n
W\F (∆n

X\F ).

The homotopy invariance of E implies that the pull-back

EW\F (X \ F )→ E∆n
W\F (∆n

X\F )
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is a weak equivalence for all n, so we have the weak equivalence

β : EWZar(X)→ E∆∗
WZar (∆∗X|WZar

).

It follows from the construction that ψ = αβ, completing the proof. �

Corollary 4.1.3. There is a distinguished triangle in HSpt(WZar)

EWZar(X)→ E(WZar)→ E(τ X̂ǫ (W )0)

Proof. By Theorem 3.2.1, the map î∗ : E(τ X̂ǫ (W )) → E(∆∗WZar
) is a weak

equivalence; using homotopy invariance again, the map

E(WZar)→ E(∆∗WZar
)

is a weak equivalence. Combining this with Theorem 4.1.2 yields the result. �

For homotopy invariant E ∈ Spt(k), we let

φE : E(τ N̂iǫ (0W ))→ E(τ X̂ǫ (W )).

be the isomorphism in HSpt(WZar) given by corollary 3.3.3.

Corollary 4.1.4. Suppose that E ∈ Spt(k) is homotopy invariant and satis-
fies Nisnevich excision. Let i : W → X be a closed immersion in Sm/k and
let N0

i = Ni \ 0W .

(1) The restriction maps

res : E(Ni/WZar)→ E(τ N̂iǫ (0W ))

res0 : E(N0
i /WZar)→ E(τ N̂iǫ (0W )0)

are weak equivalences in Spt(WZar).

(2) There is a canonical isomorphism in HSpt(WZar)

φ0
E : E(τ N̂iǫ (0W )0)→ E(τ X̂ǫ (W )0)

(3) Consider the diagram (in HSpt(WZar)):

E0WZar(Ni) // E(Ni/WZar)

resE

��

// E(N0
i /WZar)

res0E
��

E0WZar(Ni) //

π

��

E(τ N̂iǫ (0W ))
ĵN

∗

//

φE

��

E(τ N̂iǫ (0W )0)

φ0
E

��

EWZar(X) // E(τ X̂ǫ (W ))
ĵ∗

// E(τ X̂ǫ (W )0)

EWZar(X) // E(X |WZar)

resE

OO

j∗
// E(X \W )

res0E

OO

The first and last rows are the homotopy fiber sequences defining the presheaves
E0WZar(Ni) and EWZar(X), respectively, the second row and third rows are the
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distinguished triangles of Theorem 4.1.2, and π is the Morel-Voevodsky purity
isomorphism. Then this diagram commutes and each triple of vertical maps
defines a map of distinguished triangles.

Proof. It follows directly from the weak equivalence (in Theorem 4.1.2) of the
homotopy fiber of

ĵ∗ : E(τ X̂ǫ (W ))→ E(τ X̂ǫ (W )0)

with EWZar(X) that the triple (id, resE , res
0
E) defines a map of distinguished

triangles. The same holds for the map of the first row to the second row; we
now verify that this latter map is an isomorphism of distinguished triangles.
For this, let s : W → Ni be the zero-section. We have the isomorphism

i∗W : E(τ N̂iǫ (0W ))→ E(WZar) defined as the diagram of weak equivalences

E(τ N̂iǫ (0W ))
i∗∆∗
WZar−−−−−→ E(∆∗WZar

)
ι0∗←−− E(WZar).

From this, it is easy to check that the diagram

E(Ni/WZar)
resE //

s∗
''OOOOOOOOOOOO E(τ N̂iǫ (0W ))

i∗W

��

E(WZar)

commutes in HSpt(WZar). As E is homotopy invariant, s∗ is an isomorphism,
hence resE is an isomorphism as well. This completes the proof of (1).
The proof of (2) and (3) uses the standard deformation diagram. Let µ̄ : Ȳ →
X × A1 be the blow-up of X × A1 along W , let µ̄−1[X × 0] denote the proper
transform, and let µ : Y → X × A1 be the open subscheme Ȳ \ µ̄−1[X × 0].
Let p : Y → A1 be p2 ◦ µ. Then p−1(0) = Ni, p

−1(1) = X × 1 = X , and Y
contains the proper transform µ̄−1[W × A1], which is mapped isomorphically
by µ to W × A1 ⊂ X × A1. We let ĩ : W × A1 → Y be the resulting closed
immersion. The restriction of ĩ to W × 0 is the zero-section s : W → Ni and
the restriction of ĩ to W × 1 is i : W → X . The resulting diagram is

(4.1.1) W
i0 //

s

��

W × A1

ĩ

��

W
i1oo

i

��

Ni
i0 //

p0

��

Y

p

��

X
i1oo

p1

��

0
i0

// A1 1
i1

oo
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Together with Theorem 4.1.2, diagram (4.1.1) gives us two maps of distin-
guished triangles:

[
E0W×A1Zar(Y )→ E(τ Ŷǫ (W × A1))→ E(τ Ŷǫ (W × A1)0)

]

i∗1−→
[
EWZar(X)→ E(τ X̂ǫ (W ))→ E(τ X̂ǫ (W )0)

]

and
[
E0W×A1Zar(Y )→ E(τ Ŷǫ (W × A1))→ E(τ Ŷǫ (W × A1)0)

]

i∗0−→
[
E0WZar(Ni)→ E(τ N̂iǫ (0W ))→ E(τ N̂iǫ (0W )0)

]

As above, we have the commutative diagram

E(τ Ŷǫ (W × A1))
i∗0 //

i∗
W×A1

��

E(τ N̂iǫ (0W ))

i∗W

��

E(W × A1)
i∗0

// E(W ).

As E is homotopy invariant, the maps i∗W , i∗W×A1 and i∗0 : E(W ×A1)→ E(W )
are isomorphisms, hence

i∗0 : E(τ Ŷǫ (W × A1))→ E(τ N̂iǫ (0W ))

is an isomorphism. Similarly,

i∗1 : E(τ Ŷǫ (W × A1))→ E(τ X̂ǫ (W ))

is an isomorphism. The proof of the Morel-Voevodsky purity theorem [34,
Theorem 2.23] shows that

i∗0 : E0W×A1Zar(Y )→ E0WZar(Ni)

i∗1 : E0W×A1Zar(Y )→ EWZar(X)

are weak equivalences; the purity isomorphism π is by definition i∗1 ◦ (i∗0)
−1.

Thus, both i∗0 and i∗1 define isomorphisms of distinguished triangles, and

i∗1 ◦ (i∗0)
−1 : E(τ N̂iǫ (0W ))→ E(τ X̂ǫ (W ))

is the map φE . Defining φ0
E to be the isomorphism

i∗1 ◦ (i∗0)
−1 : E(τ N̂iǫ (0W )0)→ E(τ X̂ǫ (W )0)

proves both (2) and (3). �
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Remarks 4.1.5. (1) It follows from the construction of φE and φ0
E that both of

these maps are natural in E.

(2) The maps φ0
E are natural in the closed immersion i : W → X in the

following sense: Suppose we have closed immersions ij : Wj → Xj , j = 1, 2
and a morphism f : (W1, X1) → (W2, X2) of pairs of immersions such that f
restricts to a morphism X1 \W1 → X2 \W2. Fix E and let φ0

jE be the map
corresponding to the immersions ij We have the evident maps

ι : τ X̂1
ǫ (W1)

0 → τ X̂2
ǫ (W2)

0 η : τ
N̂i1
ǫ (W1)

0 → τ
N̂i2
ǫ (W2)

0

Then the diagram

E(τ
N̂i2
ǫ (W )0)

φ2E
//

η∗

��

E(τ Ŷǫ (W )0)

ι∗

��

E(τ
N̂i1
ǫ (W )0) φ1E

// E(τ X̂ǫ (W )0)

commutes. Indeed, the map f induces a map of deformation diagrams.
�

5. The exponential map

If i : M ′ → M is a submanifold of a differentiable manifold M , there is a
diffeomorphism exp of the normal bundle NM ′/M of M ′ in M with the tubular

neighborhood τMǫ (M ′). In addition, exp restricts to a diffeomorphism exp0 of
the punctured normal bundle NM ′/M \ 0M ′ with the punctured tubular neigh-

borhood τMǫ (M ′) \M ′. Classically, this has been used to define the bound-
ary map in the Gysin sequence for M ′ → M , by using the restriction map
exp0∗ : H∗(M \M ′)→ H∗(NM ′/M \ 0M ′) followed by the Thom isomorphism

H∗(NM ′/M \ 0M ′) ∼= H∗−d(M ′).
In this section, we use our punctured tubular neighborhood to construct a
purely algebraic version of the classical exponential map, at least for the as-
sociated suspension spectra. We will use this in section 11 to define a purely
algebraic version of the gluing of Riemann surfaces along boundary compo-
nents.

5.1. Let i : W → X be a closed immersion in Sm/k with normal bundle
p : Ni →W . We have the map

exp : Ni → X

in Spc(k), defined as the composition Ni → W → X . We also have the
Morel-Voevodsky purity isomorphism

π : Th(Ni)→ X/(X \W )

in H(k). In fact:
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Lemma 5.1.1. The diagram

(5.1.1) Ni
q′

//

exp

��

Th(Ni)

π

��

X q
// X/(X \W )

commutes in H(k).

Proof. As we have already seen, the construction of the purity isomorphism π
relies on the deformation to the normal bundle; we retain the notation from the
proof of corollary 4.1.4. We have the total space Y → A1 of the deformation.
The fiber Y0 over 0 ∈ A1 is canonically isomorphic to Ni and the fiber Y1 over
1 is canonically isomorphic to X ; the inclusions W × 0 → Y0, W × 1 → Y1

are isomorphic to the zero-section s : W → Ni and the original inclusion
i : W → X , respectively. The proper transform µ−1[W × A1] is isomorphic
to W × A1, giving the closed immersion ι : W × A1 → Y . The diagram thus
induces maps in Spc(k):

ī0 : Th(Ni)→ Y/(Y \W × A1)

ī1 : X/X \W → Y/(Y \W × A1)

which are isomorphisms in H(k) (see [34, Thm. 2.23]); the purity isomorphism
is by definition π := ī−1

1 ◦ ī0.
We have the commutative diagram in Spc(k):

W

id

��i0 //

s

��

W × A1
p1

//

ι

��

W
i1

oo

i

��

Ni //

p

OO

q′

��

OO

Y

��

Xoo

q

��

Th(Ni)
ī0

// Y/(Y \W × A1) X/X \W
ī1

oo

from which the result follows directly. �

Remark 5.1.2. Since we have the homotopy cofiber sequences:

Ni \ 0W → Ni → Th(Ni)→ Σ(Ni \ 0W )+

X \W → X → X/(X \W )→ Σ(X \W )+

the diagram (5.1.1) induces a map

Σ(Ni \ 0W )+ → Σ(X \W )+

in H(k), however, this map is not uniquely determined, hence is not canonical.
�
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5.2. The construction. In this section we define a canonical map

exp0 : Σ∞(Ni \ 0W )+ → Σ∞(X \W )+

in SHA1(k) which yields the map of distinguished triangles in SHA1(k):

Σ∞(Ni \ 0W )+

exp0

��

// Σ∞Ni+ //

exp

��

Σ∞Th(Ni)

π

��

Σ∞(X \W )+ // Σ∞X+
// Σ∞X/(X \W )

To define exp0, we apply Corollary 4.1.4 with E a fibrant model of Σ∞(X\W )+.
Denote the composition

E(X \W )
res0E−−−→ E(τ X̂ǫ (W )0)(W )

(φ0
E)−1

−−−−−→ E(τ N̂iǫ (0W )0)(W )
(res0E)−1

−−−−−→ E(N0
i )

by exp0∗
E . Since E is fibrant, we have canonical isomorphisms

π0E(N0
i ) ∼= HomSH

A1(k)(Σ
∞N0

i+, E)

∼= HomSH
A1(k)(Σ

∞N0
i+,Σ

∞(X \W )+)

π0E(X \W ) ∼= HomSH
A1(k)(Σ

∞(X \W )+, E)

∼= HomSH
A1(k)(Σ

∞(X \W )+,Σ
∞(X \W )+)

so exp0∗
E induces the map

HomSH
A1 (k)(Σ

∞(X \W )+,Σ
∞(X \W )+)

exp0∗
E−−−→ HomSH

A1(k)(Σ
∞N0

i+,Σ
∞(X \W )+).

We set

exp0 := exp0∗
E (id).

To finish the construction, we show

Proposition 5.2.1. The diagram, with rows the evident homotopy cofiber se-
quences,

Σ∞(Ni \ 0W )+

exp0

��

// Σ∞Ni+ //

exp

��

Σ∞Th(Ni)

π

��

∂ // ΣΣ∞(Ni \ 0W )+

Σ exp0

��

Σ∞(X \W )+ // Σ∞X+
// Σ∞X/(X \W )

∂
// ΣΣ∞(X \W )+

commutes in SHA1(k).
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Proof. It suffices to show that, for all fibrant E ∈ Spt(k), the diagram formed
by applying HomSH

A1(k)(−, E) to our diagram commutes. This latter diagram
is the same as applying π0 to the diagram

(5.2.1) E(Ni \ 0W ) E(Ni)oo E0W (Ni)oo ΩE(Ni \ 0W ))
∂oo

E(X \W )

exp0∗

OO

E(X)

exp∗

OO

oo EW (X)

π∗

OO

oo ΩE(X \W )
∂

oo

Ωexp0∗

OO

where the rows are the evident homotopy fiber sequences. It follows by the
definition of exp0 and exp that this diagram is just the “outside” of the diagram
in Corollary 4.1.4(3), extended to make the distinguished triangles explicit.
Thus the diagram (5.2.1) commutes, which finishes the proof. �

Remark 5.2.2. The exponential maps exp and exp0 are natural with respect

to maps of closed immersions f : (W ′
i′−→ X ′) → (W

i−→ X) satisfying the
cartesian condition of remark 4.1.5(2). This follows from the naturality of the
isomorphisms φE , φ0

E described in Remark 4.1.5, and the functoriality of the
(punctured) tubular neighborhood construction. �

6. Neighborhoods of normal crossing schemes

We extend our results to the case of a strict normal crossing divisor W ⊂ X
by using a Mayer-Vietoris construction.

6.1. Normal crossing schemes. Let D be a reduced effective Cartier di-
visor on a smooth k-scheme X with irreducible components D1,. . ., Dm. For
each I ⊂ {1, . . . ,m}, we set

DI := ∩i∈IDi

We let i : D → X the inclusion. For each I 6= ∅, we let ιI : DI → D,
iI : DI → X be the inclusions; for I ⊂ J ⊂ {1, . . . ,m} we have as well the
inclusion ιI,J : DJ → DI .
Recall that D is a strict normal crossing divisor if for each I, DI is smooth
over k and codimXDI = |I|.
We extend this notion a bit: We call a closed subscheme D ⊂ X a strict normal
crossing subscheme if X is in Sm/k and, locally on X , there is a smooth locally
closed subscheme Y ⊂ X containing D such that D is a strict normal crossing
divisor on Y

6.2. The tubular neighborhood. Let D ⊂ X be a strict normal crossing
subscheme with irreducible components D1, . . . , Dm. For each I ⊂ {1, . . . ,m},
I 6= ∅, we have the tubular neighborhood co-presheaf τ X̂ǫ (DI) on DI . The
various inclusions ιI,J give us the maps of co-presheaves

ι̂I,J : ιI,J∗(τ
X̂
ǫ (DJ))→ τ X̂ǫ (DI);
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pushing forward by the maps ιI yields the diagram of co-presheaves on DZar

(with values in cosimplicial pro-objects of Sm/k)

(6.2.1) I 7→ ιI∗(τ
X̂
ǫ (DI))

indexed by the non-empty I ⊂ {1, . . . ,m}. We have as well the diagram of
identity co-presheaves

(6.2.2) I 7→ ιI∗(DIZar)

as well as the diagram

(6.2.3) I 7→ ιI∗(∆
∗
DIZar

)

We denote these diagrams by τ X̂ǫ (D), D• and ∆∗D•
, respectively. The projec-

tions pI : ∆∗DIZar
→ DIZar and the closed immersions ι̂DI : ∆∗DIZar

→ τ X̂ǫ (DI)
yield the natural transformations

D•
p•←− ∆∗D•

ι̂D•−−→ τ X̂ǫ (D).

Now take E ∈ Spt(k). Applying E to the diagram (6.2.1) yields the diagram
of presheaves on DZar

I 7→ ιI∗(E(τ X̂ǫ (DI)))

Similarly, applying E to (6.2.2) and (6.2.3) yields the diagrams of presheaves
on DZar

I 7→ ιI∗(E(DIZar))

and

I 7→ ιI∗(E(∆∗DIZar
)).

Definition 6.2.1. For D ⊂ X a strict normal crossing subscheme and E ∈
Spt(k), set

E(τ X̂ǫ (D)) := holim
I 6=∅

ιI∗(E(τ X̂ǫ (DI))).

Similarly, set

E(D•) := holim
I 6=∅

ιI∗(E(DI))

E(∆∗D•
) := holim

I 6=∅
ιI∗(E(∆∗DI ))

�

The natural transformations ι̂D and p• yield the maps of presheaves on DZar

E(D•)
p∗•−→ E(∆∗D•

)
ι̂∗D←−− E(τ X̂ǫ (D)).

Proposition 6.2.2. Suppose E ∈ Spt(Sm/k) is homotopy invariant and sat-
isfies Nisnevich excision. Then the maps ι̂∗D and p∗• are Zariski-local weak
equivalences.
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Proof. The maps p∗I are pointwise weak equivalences by homotopy invariance.
By Theorem 3.2.1, the maps ι̂DI are Zariski-local weak equivalences. Since
the homotopy limits are finite, the stalk of each homotopy limit is weakly
equivalence to the homotopy limit of the stalks. By [8] this suffices to conclude
that the map on the homotopy limits is a Zariski-local weak equivalence. �

Remark 6.2.3. One could also attempt a more direct definition of τ X̂ǫ (D) by
just using our definition in the smooth case i : W → X and replacing the
smooth W with the normal crossing scheme D, in other words, the co-presheaf
on DZar

D \ F 7→ ∆̂∗X\F,D\F .

Labeling this choice τ X̂ǫ (D)naive, and considering τ X̂ǫ (D)naive as a constant di-
agram, we have the evident map of diagrams

φ : τ X̂ǫ (D)→ τ X̂ǫ (D)naive

We were unable to determine if φ induces a weak equivalence after evaulation
on E ∈ Spt(k), even assuming that E is homotopy invariant and satisfies
Nisnevich excision. We were also unable to construct such an E for which φ
fails to be a weak equivalence. �

6.3. The punctured tubular neighborhood. To define the punctured

tubular neighborhood τ X̂ǫ (D)0, we proceed as follows: Fix a subset I ⊂
{1, . . . ,m}, I 6= ∅. Let p : X ′ → X , s : DI → X ′ be a Nisnevich neighborhood
of DI in X , and let DX′ = p−1(D). Sending X ′ → X to ∆n

DX′
gives us the

pro-scheme ∆̂n
D⊂X,DI , and the closed immersion ∆̂n

D⊂X,DI → ∆̂n
X,DI

. Varying

n, we have the cosimplicial pro-scheme ∆̂∗D⊂X,DI , and the closed immersion

∆̂∗D⊂X,DI → ∆̂∗X,DI .
Take a closed subset F ⊂ DI , and let U := DI \ F . As in the definition of the
punctured tubular neighborhood of a smooth closed subscheme in section 4.1,
we pass to the appropriate cofinal subcategory of Nisnevich neighborhoods to

show that the open complements ∆̂n
X\F,U \ ∆̂n

D\F⊂X\F,U for varying n form a

cosimplicial pro-scheme

n 7→ ∆̂n
X\F,U \ ∆̂n

D\F⊂X\F,U .

Similarly, we set

τ X̂ǫ (D,DI)
0(U) := ∆̂∗X\F,U \ ∆̂∗D\F⊂X\F,U .

This forms the co-presheaf τ X̂ǫ (D,DI)
0 on DIZar. The open immersions

ĵI(U)n : ∆̂n
X\F,U \ ∆̂n

D\F⊂X\F,U → ∆̂n
X\F,U

define the map

ĵI(U) : τ X̂ǫ (D,DI)
0(U)→ τ X̂ǫ (DI)(U),

giving the map of co-presheaves

ĵI : τ X̂ǫ (D,DI)
0 → τ X̂ǫ (DI).
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For J ⊂ I, we have the map ι̂J,I : ∆̂∗X,DI → ∆̂∗X,DJ and

ι̂−1
J,I(∆̂

∗
D⊂X,DJ ) = ∆̂∗D⊂X,DI .

Thus we have the map ι̂0J,I : τ X̂ǫ (D,DI)
0 → τ X̂ǫ (D,DJ)0 and the diagram of

co-presheaves on DZar

(6.3.1) I 7→ ιI∗(τ
X̂
ǫ (D,DI)

0)

which we denote by τ X̂ǫ (D)0. The maps ĵI define the map

ĵ : τ X̂ǫ (D)0 → τ X̂ǫ (D).

The projection maps πI : τ X̂ǫ (DI)→ X (where we consider X as the constant

co-presheaf on DIZar) restrict to maps π0
I : τ X̂ǫ (D,DI)

0 → X \D, which in turn
induce the map

π0 : τ X̂ǫ (D)0 → X \D,
where we consider X \ D the constant diagram of constant co-presheaves on
DZar.

Definition 6.3.1. For E ∈ Spt(k), let E(τ X̂ǫ (D)0) be the presheaf on DZar,

E(τ X̂ǫ (D)0) := holim
∅6=I⊂{1,...,m}

ιI∗E(τ X̂ǫ (D,DI)
0).

�

The map ĵ defines the map of presheaves

ĵ∗ : E(τ X̂ǫ (D))→ E(τ X̂ǫ (D)0).

We let EDZar(τ X̂ǫ (D)) denote the homotopy fiber of ĵ∗. Via the commutative
diagram

E(X \ F )

π∗

��

j∗
// E(X \D)

π0∗

��

E(τ X̂ǫ (D))(D \ F )
ĵ∗

// E(τ X̂ǫ (D))0(D \ F )

we have the canonical map

π∗D : EDZar(X)→ EDZar(τ X̂ǫ (D)).

We want to show that the map π∗D is a weak equivalence, assuming that E is
homotopy invariant and satisfies Nisnevich excision. We first consider a simpler
situation. We begin by noting the following

Lemma 6.3.2. Let �
n
0 denote the category of non-empty subsets of {1, . . . , n}

with maps the inclusions, let C be a small category and let F : C × �
n
0 →

SptOrdop

be a functor. Let holim�n0
F : C → SptOrdop

be the functor with
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value the simplicial spectrum m 7→ holim�n0
F (i × [m]) at i ∈ C. There is a

isomorphism

Tot(holim
�n0

F )→ holim
�n0

Tot(F ).

in HSpt(Cop).

Proof. Letting �
n be the category of all subsets of {1, . . . , n} (including the

empty set), we may extend F to F∗ : �
n → Spt(Ordop) by F ∗ (∅) = 0.

Similarly, given a functorG : �
n → Spt, we may extend G to G♮ : �

n+1
0 → Spt

by G♮(I) = 0, G♮(I∪{n+1}) = G(I) for I ⊂ {1, . . . , n}. We define the iterated
homotopy fiber of G, fibnG ∈ Spt, by

hofibn(G) := holim
�
n+1
0

G♮.

One easily checks that for a map g : A → B of spectra, considered in the
evident manner as a functor g1 : �

1 → Spt, we have hofibg = hofib1g1. More
generally, if we let i−, i+ : �

n−1 → �
n be the inclusions

i−(I) := I, i+(I) := I ∪ {n}
we have the evident natural transformation ω : i− → i+ and for G : �

n → Spt
a functor, we have a natural isomorphism

hofib(hofibn−1G ◦ i−
hofibn−1G(ω)−−−−−−−−−→ hofibn−1G ◦ i+) ∼= hofibnG,

hence the name iterated homotopy fiber. Finally, one has the natural isomor-
phism

hofibnG∗ ∼= Ω holim
�n0

G

for G : �
n
0 → Spt.

Since Tot is compatible with suspension we may replace our original functor
F with ΣF ∼= Ω−1F ; using induction on n, it suffices to show that there is a
natural isomorphism in HSpt(Cop)

Tot(hofibF )→ hofibTot(F )

for F : A→ B a map in SptC×Ordop

.
For this, note that for f : X → Y a map of spectra, there is a natural weak
equivalence

a(f) : Σhofibf → hocofibf

Since Tot commutes with suspension and preserves weak equivalences, it suffices
to define a natural weak equivalence

Tot(hocofibf)→ hocofib(Totf).

In fact, since Tot preserves cofiber squares and is compatible with the wedge

action of pointed simplicial sets on SptOrdop

and Spt, there is a natural iso-
morphism Tot(hocofibf)→ hocofib(Totf), completing the proof. �
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This lemma allows us to define a simplicial model for EDZar(τ X̂ǫ (D)), induced

by the cosimplicial structure on the co-presheaves τ X̂ǫ (DI) and τ X̂ǫ (DI)
0. In

fact, let

E(τ X̂ǫ (D))n := holim
I 6=∅

ιI∗E(∆̂n
X̂,DIZar

)

E(τ X̂ǫ (D)0)n := holim
I 6=∅

ιI∗E(∆̂n
X̂,DIZar

\ ∆̂n
D⊂X,DIZar

)

and set

EDZar(τ X̂ǫ (D))n := hofib(ĵ∗n : E(τ X̂ǫ (D))n → E(τ X̂ǫ (D)0)n).

It follows from lemma 6.3.2 that E(τ X̂ǫ (D)), E(τ X̂ǫ (D)0) and EDZar(τ X̂ǫ (D))
are isomorphic in the homotopy category to the total presheaves of spectra
associated to the simplical presheaves

n 7→ E(τ X̂ǫ (D))n

n 7→ E(τ X̂ǫ (D)0)n

n 7→ EDZar(τ X̂ǫ (D))n

respectively. The map π∗D is defined by considering EDZar(X) as a constant
simplicial object. Let

π∗D,0 : EDZar(X)→ EDZar(τ X̂ǫ (D))0

be the map of EDZar(X) to the 0-simplices of EDZar(τ X̂ǫ (D)).

Proposition 6.3.3. Suppose that E satisfies Nisnevich excision and D is a
strict normal crossing subscheme of X. Then π∗D,0 is a weak equivalence.

Before we give the proof of this result, we prove two preliminary lemmas.

Lemma 6.3.4. Let x be a point on a finite type k-scheme X, let Y = SpecOX,x
and Z and W be closed subschemes of Y . Then Ŷ hZ ×Y W ∼= Ŵh

Z∩W .

Proof. Since Y andW are local, the pro-schemes Ŷ hZ and ŴZ∩W are represented
by local Y -schemes. If Y ′ → Y, s : Z → Y ′ is a Nisnevich neighborhood
of Z in Y , and i : Z ∩ W → W is the inclusion, then Y ′ ×Y W → W ,
(s|Z∩W , i) : Z ∩W → Y ′ ×Y W is a Nisnevich neighborhood of Z ∩W in W ,
giving us the W -morphism

f : Ŵh
Z∩W → Ŷ hZ ×Y W.

As W is local, we have a co-final family in the category of all finite type étale
morphisms W ′ →W of the form W ′ = Spec (OW [T ]/F )G, i.e., the localization
of OW [T ]/F with respect to some G ∈ O[T ], where (∂F/∂T, F ) is the unit ideal
in OW [T ]G. Those W ′ →W of this form which give a Nisnevich neighborhood
of Z∩W are those for which F contains a linear factor, modulo the ideal IZ∩W
of Z ∩W . Each such pair (F,G) lifts to a pair (F̃ , G̃) of elements in OY [T ]
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such that Spec (OY [T ]/F̃ )G̃ → Y is étale, and such that the linear factor in F

mod IZ∩W lifts to a linear factor of F̃ mod IZ . This easily implies that f is an
isomorphism. �

Let i : W → Y be a closed immersion of finite type k-schemes, E ∈ Spt(YZar).
Define the functor

i! : Spt(YZar)→ Spt(WZar)

by

(i!E)(W \ F ) := hofib(E(Y \ F )→ E(Y \W ))

for each F ⊂W closed.
For each I ⊂ {1, . . . ,m}, let ιI : DI → D be the inclusion. For J ⊂ I, and
F ⊂ D closed, the diagram of restriction maps

E(D \ (DI ∩ F )) //

��

E(D \DI)

��

E(D \ (DJ ∩ F )) // E(D \DJ)

gives the map

ιI∗ι
!
IE → ιJ∗ι

!
JE

Lemma 6.3.5. Suppose E ∈ Spt(DZar) is satisfies Zariski excision. Then the
evident map

hocolim
I∈�

nop
0

ιI∗ι
!
IE → E

is a pointwise weak equivalence.

Proof. Suppose temporarily thatD is an arbitrary finite type k-scheme, written
as a union of two closed subschemes: D = D1∪D2, and take an E ∈ Spt(DZar)
which is additive. LetD12 := D1∩D2, with inclusions ιj : Dj → D, ι12 : D12 →
D, ιj,12 : D12 → Dj . We have the natural map

hocolim




ι12∗ι!12E
ι1,12∗ //

ι2,12∗

��

ι1∗ι
1!E

ι2∗ι
2!E




α−→ E

We first show that α is a pointwise weak equivalence. It suffices to show that
α is a weak equivalence on global sections, equivalently, that the diagram

ED
12

(D) //

��

ED
1

(D)

��

ED
2

(D) // E(D)

is homotopy cocartesian.
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The homotopy cofiber of ED
1

(D) → E(D) is homotopy equivalence to E(D \
D1) and the homotopy cofiber of ED

12

(D)→ ED
2

(D) is homotopy equivalent

to ED
2\D12

(D \D12). Since

D \D12 = D1 \D12 ∐D2 \D12

and E is additive, the map on the homotopy cofibers is a weak equivalence, as
desired.
The proof of the lemma now follows easily by induction on the number m of
irreducible components of D = ∪mi=1Di. Indeed, write D = D1∪D2, with D1 =
D1 and D2 = ∪mi=2Di. Note that the Zariski excision property is preserved by
the functor i! and that a presheaf that satisfies Zariski excision is additive. By
induction the maps

hocolim
∅6=I⊂{2,...,m}

ιI∗ι
!
IE → ι2∗ι

2!E

hocolim
{1}$I⊂{1,...,m}

ιI∗ι
!
IE → ι12∗ ι

12!E

are pointwise weak equivalences. Thus the map

hocolim
I∈�

nop
0

ιI∗ι
!
IE → hocolim




ι12∗ι!12E
ι1,12∗ //

ι2,12∗

��

ι1∗ι
1!E

ι2∗ι
2!E




is a pointwise weak equivalence; combined with our previous computation, this
proves the lemma. �

Proof of proposition 6.3.3. Write D as a sum, D =
∑m

i=1Di with each Di

smooth (but not necessarily irreducible), and with m minimal. We proceed by
induction on m.
For m = 1, Nisnevich excision implies that the natural map

EDZar(X)→ EDZar(X̂h
D)

is a weak equivalence in Spt(DZar). Since D is smooth, the map EDZar(X̂h
D)→

EDZar(τ X̂ǫ (D))0 is an isomorphism, which proves the result in this case.
By lemma 6.3.5 it suffices to show that ι!I(π

∗
D,0) is a weak equivalence for all I.

More generally, let ιI,J : DI → DJ be the inclusion for I ⊂ J . If E satisfies
Zariski excision onDZar, the same holds for ι!IE onDI,Zar and there is a natural
weak equivalence

ι!J,I(ι
!
IE)→ ι!JE

Thus it suffices to show that ι!i(π
∗
D,0) is a weak equivalence for all i ∈ {1, . . . ,m},

e.g., for i = m. In what follows, we will only apply ι!I to presheaves E which
satisfy Zariski excision, which suffices for the proof.
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We use the following notation: for W ⊂ DI a closed subset, we let EWZar(X)
denote the presheaf on DI

EWZar(X)(DI \ F ) := EW\F (X \ F ).

We use the same notation for the presheaf

D \ F 7→ EW\F (X \ F )

on DZar, relying on the context to make the meaning clear.
Clearly ι!mιm∗E

DmZar(X) → EDmZar(X) is a weak equivalence and the
map EDmZar(X) → EDZar(X) induces a weak equivalence ι!mE

DmZar(X) →
ι!mE

DZar(X), so we need to show that

EDmZar(X)→ ι!mE
DZar(τ X̂ǫ (D))0 = ι!m(holim

I 6=∅
EX̂DI×XDZar(X̂DI )

is a weak equivalence.
For this, we decompose the set of non-empty I ⊂ {1, . . . ,m} into three sets:

1. I = {m},
2. I with m 6∈ I,
3. I with {m} $ I.

Let

E1 := ι!mE
X̂hDm×XDZar(X̂h

Dm)

E2 := holim
m 6∈I

ι!mE
X̂hDI

×XDZar(X̂h
DI )

E3 := holim
{m}$I

ι!mE
X̂hDI

×XDZar(X̂h
DI )

We thus have the isomorphism

ι!m

(
holim
I 6=∅

EX̂
h
DI
×XDZar(X̂h

DI )

)
∼= holim




E1

��

E2
// E3




For I of type 2, lemma 6.3.4 says that the natural map

X̂h
DI∪{m}

×X Dm → X̂h
DI ×X Dm

is an isomorphism. Since the restriction map

ι!mE
X̂hDI

×XDZar(X̂h
DI )→ ι!mE

X̂hDI∪{m}
×XDZar

(X̂h
DI∪{m}

)

identifies itself with the pull-back

EX̂
h
DI
×XDmZar(X̂h

DI )→ E
X̂hDI∪{m}

×XDmZar
(X̂h

DI∪{m}
)
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the Nisnevich excision property of E implies that E2 → E3 is a weak equiva-
lence. Thus

E1 → holim




E1

��

E2
// E3




is a weak equivalence, and

EDmZar(X)→ ι!mE
DZar(τ X̂ǫ (D))0 = ι!m

(
holim
I 6=∅

EX̂
h
DI
×XDZar(X̂h

DI )

)

is identified with

EDmZar(X)→ ι!mE
X̂hDm×XDZar(X̂h

Dm) = EX̂
h
Dm
×XDmZar(X̂h

Dm),

which is a weak equivalence by Nisnevich excision. �

Proposition 6.3.6. Suppose that E is homotopy invariant and satisfies Nis-
nevich excision, and D is a strict normal crossing subscheme of X. Then

π∗D : EDZar(X)→ EDZar(τ X̂ǫ (D))

is a weak equivalence in Spt(DZar).

Proof. Let pn : ∆n
D → D be the projection. Applying Proposition 6.3.3 to the

strict normal crossing subscheme ∆n
D of ∆n

X , the map

π∆n
D,0

: pn∗E
∆n
DZar (∆n

X)→ pn∗E
∆n
DZar (τ

d∆n
X

ǫ (∆n
D))0

is a weak equivalence for each n. Thus

π∆∗
D

: p∗E
∆∗
DZar (∆∗X)→ EDZar(τ X̂ǫ (D))

is a weak equivalence. Indeed, EDZar(τ X̂ǫ (D) is a simplicial object with n-

simplices pn∗E
∆n
DZar (τ

d∆n
X

ǫ (∆n
D))0. Since E is homotopy invariant, the map

p∗ : EDZar(X)→ p∗E
∆∗
DZar (∆∗X)

is a weak equivalence, whence the result. �

We can now state and prove the main result for strict normal crossing schemes.

Theorem 6.3.7. Let D be a strict normal crossing scheme on some X ∈ Sm/k
and take E ∈ Spt(k) which is homotopy invariant and satisfies Nisnevich ex-
cision. Then there is a natural distinguished triangle in HSpt(DZar)

EDZar(X)
αD−−→ E(D•)

βD−−→ E(τ X̂ǫ (D)0)

Proof. By proposition 6.3.6, we have the weak equivalence

π∗D : EDZar(X)→ EDZar(τ X̂ǫ (D)).

By Proposition 6.2.2, we have the isomorphism

(p∗•)
−1 î∗D : E(τ X̂ǫ (D))→ E(D•).
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in HSpt(DZar). Since ED(τ X̂ǫ (D)) is by definition the homotopy fiber of the

restriction map E(τ X̂ǫ (D))→ E(τ X̂ǫ (D)0), the result is proved. �

7. Comparison isomorphisms

We give a comparison of our tubular neighborhood construction with the cat-
egorical version Li∗Rj∗ of Morel-Voevodsky.

7.1. Model structure and cross functors. Fix a noetherian separated
scheme S of finite Krull dimension, and let SchS denote the category of finite
type S-schemes (for our application, we will take S = Spec k for a field k).
Morel-Voevodsky show how to make the catgory SHA1(X) functorial in X ∈
SchS , defining an adjoint pair of exact functors Lf∗, Rf∗ for each morphism
f : Y → X in SchS . Roendigs shows in [39] how to achieve this on the model
category level and in addition that this structure extends to give cross functors
(f∗, f∗, f !, f!) as defined by Voevodsky and investigated in detail by Ayoub
[3]. We begin by describing the model structure used by Roendigs, which is
different from the one we have used up to now, and recalling his main results.
For B ∈ SchS , we denote by Spc∗mot(Sm/B) the model structure on
Spc∗(Sm/B) described by Roendigs in [39]. To describe this model structure,
we first recall the projective model structure Spc(Sm/B)proj on Spc(Sm/B).
Here the weak equivalences and fibrations are the pointwise ones and the cofi-
brations are generated by the maps

Z × ∂∆n → Z ×∆n,

with Z ∈ Sm/B. This induces a model structure Spc∗(Sm/B)proj on
Spc∗(Sm/B) by forgetting/adjoing a base-point. One has a functorial cofi-
brant replacement Ec → E defined as in [34, Lemma 1.16].
The model structure Spc∗mot(Sm/B) is defined by Bousfield localization: the
cofibrations are the same as in Spc∗(Sm/B)proj. E is fibrant if E(∅) is con-
tractible, E is a fibrant in Spc∗(Sm/B)proj, E transforms elementary Nisnevich
squares to homotopy fiber squares and transforms Z×A1 → Z to a weak equiv-
alence. A map A→ B is a weak equivalence if Hom(Bc, E)→Hom(Ac, E) is
a weak equivalence for each fibrant E. The fibrations in Spc∗mot(Sm/B) are
determined by having the right lifting property with respect to trivial cofibra-
tions.
Let f : X → Y be a morphism in SchS . We have the functor

f∗ : Spc∗(Sm/X)→ Spc∗(Sm/Y )

defined by pre-composition with the pull-back functor −×Y X , i.e.

f∗E(Y ′ → Y ) := E(Y ′ ×Y X → X).

f∗ has the left adjoint f∗ defined as the Kan extension, and characterized by
f∗(Y ′+) = Y ′ ×Y X+ for Y ′ → Y ∈ Sm/Y . In case f is a smooth morphism,
f∗ is given by precomposition with the functor

f ◦ − : Sm/X → Sm/Y,
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and thus has the left adjoint f♯ characterized by

f♯(Z
p−→ X) = Z

fp−→ Y

on the representable presheaves. We have

Proposition 7.1.1 (proposition 2.18 of [39]). Let f : X → Y be a mor-
phism in SchS. Then (f∗, f∗) is a Quillen adjoint pair Spc∗mot(Sm/X) ↔
Spc∗mot(Sm/Y ). If f is smooth, then (f♯, f

∗) is a Quillen adjoint pair
Spc∗mot(Sm/Y )↔ Spc∗mot(Sm/X).

For spectra, the projective model structure Sptmot(Sm/B)proj on Spt(Sm/B)
is defined as follows: For φ : E → F a morphism in Spt(Sm/B), φ : E → F
is a cofibration if φ0 : E0 → F0 is a cofibration in Spc∗mot(Sm/B) and if for
each n ≥ 1, the map

φn ∪Σφn−1 : En ∪ΣEn−1 ΣFn−1 → Fn

is a cofibration in Spc∗(Sm/B)proj. Weak equivalences (resp. fibrations) are
maps φ such that φn is a weak equivalence (resp. fibration) in Spc∗mot(Sm/B)
for all n. There is a functorial cofibrant replacement Ec → E.
Now for the motivic model structure Sptmot(Sm/B): The cofibrations are
the same as in Sptmot(Sm/B)proj. φ is a fibration if φn is a fibration in
Spc∗mot(Sm/B) for all n and the diagram

En //

φn

��

ΩEn+1

Ωφn+1

��

Fn // ΩFn+1

is homotopy cartesian in Spc∗mot(Sm/B) for all n. There is a fibrant replace-
ment functor E → Ef ; φ : E → F is a weak equivalence if φf : Ef → F f is a
weak equivalence in Sptmot(Sm/B)proj.
Given f : X → Y in SchS , define the functors f∗ : Spt(Sm/X)→ Spt(Sm/Y )
and f∗ : Spt(Sm/Y )→ Spt(Sm/X) by f∗(E)n := f∗(En), f∗(F )n := f∗(Fn).
If f is smooth, we have f♯ : Spt(Sm/X) → Spt(Sm/Y ) defined similarly by
f♯(E)n := f♯(En).
We have the following result from [39]:

Proposition 7.1.2 (proposition 2.23 of [39]). Let f : X → Y be a morphism in
SchS. Then (f∗, f∗) is a Quillen adjoint pair Sptmot(Sm/X)↔ Spt(Sm/Y ).
If f is smooth, then (f♯, f

∗) is a Quillen adjoint pair Sptmot(Sm/Y ) ↔
Sptmot(Sm/X). In particular:

(1) f∗ preserves cofibrations and trivial cofibration and f∗ preserves fibra-
tions and trivial fibrations.

(2) if f is smooth, then f∗ preserves fibrations and f♯ preserves cofibrations

It is clear that a cofibration in Sptmot(Sm/X) is pointwise a cofibration in Spt,
hence a cofibration in SptA1(Sm/XNis). As mentioned in [39] a fibrant object
in Sptmot(Sm/X) satisfies both Nisnevich excision and is A1-local, hence the
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weak equivalences between fibrant objects in Sptmot(Sm/X) are weak equiv-
alences in SptA1(Sm/XNis) and are in fact pointwise weak equivalences in
Spt(Sm/X); similarly one shows that each fibration in SptA1(Sm/XNis) is a
fibration in Sptmot(Sm/X) and each (trivial) cofibration in Sptmot(Sm/X) is
a (trivial) cofibration in SptA1(Sm/XNis). Thus the identity on Spt(Sm/X)
defines a (left) Quillen equivalence Sptmot(Sm/X) → SptA1(Sm/XNis). In
particular, we have the equivalence of the homotopy categories

HSptA1(Sm/XNis) ∼= HSptmot(Sm/X).

We write SHA1(X) for either HSptmot(Sm/X) or HSptA1(Sm/XNis), de-
pending on the context.
One main result of [39] is

Theorem 7.1.3 ([39, corollary 3.17]). Sending f : Y → X in SchS to
Lf∗ : SHA1(X) → SHA1(X) satisfies the conditions of [3, definition 1.4.1].
In particular, the properties of a “2-foncteur homotopique stable” described in
[3] are satisfied for X 7→ SHA1(X).

Remark 7.1.4. Let i : D → X be a closed immersion in SchS with open
complement j : U → X . We have the functor

Li∗Rj∗ : SHA1(X \D)→ SHA1(D),

We would like to view our construction E(τ X̂ǫ (D)0) as a weak version of Li∗Rj∗,
in case D is a normal crossing divisor on a smooth k scheme X , the in-

put E is the pull-back from Spt(Sm/k), and the output E(τ X̂ǫ (D)0) is in

HSpt(DZar). In particular, E(τ X̂ǫ (D)0) is only defined on Zariski open subsets
of D, rather than on all of Sm/D. In this section, we make this statement pre-

cise, defining an isomorphism of E(τ X̂ǫ (D)0) with the restriction of Li∗Rj∗(E)
to HSpt(DZar). �

7.2. The smooth case. Let i : W → X be a closed immersion in SchS with
open complement j : U → X . Let

Θ : Sptmot(Sm/U)→ Sptmot(Sm/W )

be the functor representing Li∗Rj∗, i.e.

Θ(E) := i∗(j∗(E
f )c)f .

Remark 7.2.1. Even for E ∈ Sptmot(Sm/U) bifibrant, one cannot simplify this
expression for Li∗Rj∗E beyond replacing Ef with E. The inexplicit nature of
the cofibrant and fibrant replacement functors make a concrete determination of
Li∗Rj∗E difficult, which is one advantage of our approach using the punctured
tubular neighborhood. �

Lemma 7.2.2. Let i : W → X be a closed immersion in SchS with open
complement j : U → X.
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(1) For fibrant E ∈ Sptmot(Sm/U) all the maps in the square

j∗(E)c //

��

Rj∗(E)c

��

j∗(E) // Rj∗(E)

are pointwise weak equivalences
(2) Let X ′ → X be in Sm/X, let W ′ := W ×X X ′. There is a canonical

map
ν0
X′ : Rj∗(E)c(X ′)→ ΘE(W ′)

natural in X ′.

Proof. (1) Since E is fibrant, the canonical map E → Ef is a trivial cofi-
bration of fibrant objects in Sptmot(Sm/U), hence a homotopy equivalence.
Thus j∗E → Rj∗E := j∗(Ef ) is a homotopy equivalence of fibrant objects in
Sptmot(Sm/X), hence a pointwise weak equivalence. Applying the cofibrant
replacement functor, we see that (j∗E)c → (Rj∗E)c is also a homotopy equiv-
alance and a pointwise weak equivalence. Also the cofibrant replacement maps
(j∗E)c → j∗E, (Rj∗E)c → Rj∗E are trivial fibrations between fibrant objects
of Sptmot(Sm/X), hence are both pointwise weak equivalences.
For (2), the unit id → i∗i∗ for the adjunction applied to (Rj∗E)c gives us the
map

ν0
X′ : (Rj∗E)c(X ′)→ i∗i

∗(Rj∗E)c(X ′)

natural in X ′. As i∗i∗(Rj∗E)c(X ′) = i∗(Rj∗E)c(W ′), we have the natural
transformation

ν0
X′ : (Rj∗E)c(X ′)→ i∗(Rj∗E)c(W ′)

Composing with the canonical map i∗(Rj∗E)c → (i∗(Rj∗E)c)f = Θ(E) gives
us the map we want. �

For E ∈ Spt(Sm/B) or in Spt(BNis), we let EZar denote the restriction to
Spt(BZar). Identifying SHA1(B) with the homotopy category of bifibrant
objects in Sptmot(Sm/B), we have the similarly defined restriction functor
SHA1(B)→HSpt(BZar) sending E to EZar.
Let i : W → X be a closed immersion in Sm/k with open complement j : U →
X . We note that the “evaluation” maps

E 7→ E(τ X̂ǫ (W )), E 7→ E(τ X̂ǫ (W )0)

are in fact defined for E ∈ Spt(Sm/X). Similarly, the evaluation map E 7→
E(τ X̂ǫ (W )0) is defined for E ∈ Spt(Sm/U). In addition, for E ∈ Spt(Sm/U)
we have a canonical isomorphism

(7.2.1) E(τ X̂ǫ (W )0) ∼= (j∗E)(τ X̂ǫ (W ))

since ∆̂n
X,W \∆n

W
∼= ∆̂n

X,W ×X U (as a pro-scheme).

Lemma 7.2.3. Let i : W → X be a closed immersion in Sm/k with open
complement j : U → X, and let E ∈ Sptmot(Sm/U) be fibrant.
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(1) There is a map

ηcE : (Rj∗E)c(τ X̂ǫ (W ))→ Θ(E)Zar

in HSpt(WZar), natural in E.
(2) Let

j∗(E)c(τ X̂ǫ (W )) //

��

Rj∗(E)c(τ X̂ǫ (W ))

��

E(τ X̂ǫ (W )0)
φ

∼ // j∗(E)(τ X̂ǫ (W )) // Rj∗(E)(τ X̂ǫ (W ))

be the diagram in Spt(WZar) formed by evaluating the diagram of

lemma 7.2.2(1) at τ X̂ǫ (W ), and adding the isomorphism (7.2.1). Then
all the maps in this diagram are pointwise weak equivalences.

Proof. By lemma 7.2.2, we have maps

η0
X′ : (Rj∗E)c(X ′)→ Θ(E)(X ′ ×X W )

natural in X ′ ∈ Sm/X . For each open subscheme U = D \ F ⊂ W , the maps
η∆̂n

X\F,U
define the map

η0
∆∗(U) : (Rj∗E)c(τ X̂ǫ (W )(U))→ Θ(E)(∆∗U ).

Since Θ(E) is A1-local, the canonical map Θ(E)(U) → Θ(E)(∆∗U ) is a weak
equivalence. This gives us the natural map in HSpt(WZar)

η0 : (Rj∗E)c(τ X̂ǫ (W ))→ Θ(E)Zar,

proving (1).
(2) follows immediately from lemma 7.2.2(1). �

Combining the morphism (1) with the diagram (2) gives us the canonical mor-
phism in HSpt(WZar)

η0
E : E(τ X̂ǫ (W )0)→ Θ(E)Zar.

Let i : D → X be a closed immersion in SchS . We have the exact functor
i! : SHA1(X) → SHA1(D) which is characterized by the identity for fibrant
E ∈ Sptmot(Sm/X):

i∗i
!E(X ′ → X) := hofib(E(X ′)→ E(X ′ ×X (X \D)).

In fact, this operation gives the distinguished triangle, natural in fibrant E ∈
Sptmot(Sm/X):

Ri∗i
!E → E → Rj∗j

∗E → i∗i
!E[1].

Applying Li∗ (and noting that the counit Li∗Ri∗ → id is an isomorphism [3,
definition 1.4.1]) gives the distinguished triangle in SHA1(D)

(7.2.2) i!E → Li∗E → Θ(j∗E)→ i!E[1]
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We refer the reader to [3, proposition 1.4.9] for the construction of this triangle
in the abstract setting.

Proposition 7.2.4. Let E ∈ Sptmot(Sm/k) be fibrant, let f : X → Spec k
be in Sm/k and let i : W → X be a closed immersion in Sm/k with open
complement j : U → X. Then

η0
E : E(τ X̂ǫ (W )0)→ Θ(j∗f∗E)Zar

is an isomorphism in HSpt(WZar).

Proof. Let fW : W → Spec k be the structure morphism. Since f and fi = fW
are smooth, we have Lf∗ ∼= f∗, f∗W ∼= L(fi)∗ ∼= Li∗f∗, so Li∗f∗ is isomorphic
to the restriction functor for fW ◦− : Sm/W → Sm/k. The definition of i! gives
the commutative diagram for each X ′ → X in Sm/X (with W ′ := X ′ ×X W )

EW
′

(X ′) //

φX′

��

E(X ′)

ηX′

��

i!f∗E(W ′) // Li∗f∗E(W ′) ∼ E(W ′)

where ηX′ is just the restriction map E(X ′)→ E(W ′) and φX′ is the canonical
isomorphism given by the definition of i!. Using lemma 7.2.3, this gives us the
map of distinguished triangles in SH

EW
′

(X ′) //

φX′

��

E(X ′) //

ηX′

��

E(X ′ \W ′) //

η0
X′

��

EW
′

(X ′)[1]

��

i!f∗E(W ′) // E(W ′) // Li∗Rj∗j∗f∗E(W ′) // i!f∗E(W ′)[1]

Just as for η0
E , these give rise to the natural map in HSpt(Sm/WZar)

ηE : E(τ X̂ǫ (W ))→ Li∗f∗EZar

and the commutative diagram in HSpt(WZar)

EWZar(X) //

φ

��

E(τ X̂ǫ (W )) //

η

��

E(τ X̂ǫ (W )0) //

η0

��

EWZar(X)[1]

��

i!f∗EZar
// Li∗f∗EZar

// Li∗Rj∗j∗f∗EZar
// i!f∗EZar[1]

The bottom row is the distinguished triangle (7.2.2) for f∗E, restricted to WZar,
and the top row is the distinguished triangle of corollary 4.1.3, after applying
theorem 3.2.1. Similarly, theorem 3.2.1 shows that η is an isomorphism in
HSpt(WZar). Since φ is an isomorphism in HSpt(WZar) η

0 is an isomorphism
as well. �
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7.3. The normal crossing case. We fix a reduced strict normal crossing di-
visor i : D → X on some X ∈ Sm/k. Write D =

∑m
i=1Di with the Di smooth.

For X ′ → X in Sm/X , we write D′ for X ′ ×X D and D′I for X ′ ×X DI and
for I ⊂ {1, . . . ,m}. As in the previous section, we note that our definition

of E(τ X̂ǫ (D)) extends without change to E ∈ Spt(Sm/X), and similarly, the

construction of E(τ X̂ǫ (D)0) extends without change to E ∈ Spt(Sm/X \D).
The extension of proposition 7.2.4 to the normal crossing case follows essen-
tially the same outline as before, with some additional patching results for the
operation Li∗Rj∗ that allow us give a description of Li∗Rj∗ as a homotopy

limit, matching our definition of E(τ X̂ǫ (W )0).

Lemma 7.3.1. Suppose that F ∈ Spt(Sm/D) satisfies Nisnevich excision. For
I ⊂ {1, . . . ,m}, I 6= ∅, let FI be the presheaf on Sm/X

FI(X
′) := F (X̂ ′hD′

I
×X D).

Then the canonical map
i∗F → holim

I 6=∅
FI

is a weak equivalence in Spt(Sm/X).

Proof. Let {Uj → D′ | j ∈M} be a Nisnevich cover of D′, with M a finite set.
For J ⊂ M , set UJ :=

∏
j∈J Uj, where the product is ×D′ . Since F satisfies

Nisnevich excision, the canonical map

F (D′)→ holim
J 6=∅

F (UJ)

is a weak equivalence. An argument similar to that of lemma 6.3.2 shows
that one can replace the Ui with a pro-system of Nisnevich covers (with M
fixed). Similarly, the Zariski stalk of holimI 6=∅ FI at x ∈ X ′ ∈ Sm/X is weakly

equivalent to holimI 6=∅ F (X̂ ′hx,D′
I
×XD), where X ′x = SpecOX′,x. Thus we need

only show that forX ′ → X smooth, with X ′ local, the schemes Ui := X̂ ′hD′
i
×XD

form a pro-Nisnevich cover of D′, and that
∏

i∈I
Ui ∼= X̂ ′hD′

I
×X D

for each non-empty I ⊂ {1, . . . ,m}.
In fact the pro-schemes X̂ ′hD′

i
×X D, i = 1, . . . ,m, obvioiusly form a pro-

Nisnevich cover of D′; it follows from lemma 6.3.4 that for each I ⊂ {1, . . . ,m},
I 6= ∅, we have natural isomorphisms (where

∏
is ×X′)

∏

i∈I
X̂ ′hD′

i

∼= X̂ ′hD′
I
.

Thus (with the product over D′)
∏

i∈I
X̂ ′hD′

i
×X D ∼= X̂ ′hD′

I
×X D.

�
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Lemma 7.3.2. Let i : D → X be a strict normal crossing divisor on some
f : X → Spec k in Sm/k, and let E ∈ Sptmot(Sm/U) be fibrant. Then there
is a canonical map in HSpt(DZar),

η0
E : E(τ X̂ǫ (W )0)→ Θ(E)Zar,

natural in E.

Proof. As in the smooth case, we construct η0
E using lemmas 7.2.2 and 7.3.1.

Indeed, let j : X \D → X be the inclusion. Let Θ(E)IZar denote the pull-back

of Θ(E) to Spt(X̂h
DI
×X DZar). Let Θ(E)∗IZar be the presheaf

Θ(E)∗IZar(U) := Θ(E)IZar(∆
∗
U ).

Similarly, let Θ(E)∗Zar denote the presheaf on DZar

Θ(E)∗Zar(U) := Θ(E)(∆∗U )

and let Θ(E)Zar denote the restriction of Θ(E) to DZar.
The construction of lemma 7.2.3 gives us the diagram of maps

η̃0
E,I : (Rj∗E)c(τ X̂ǫ (DI))→ Θ(E)∗IZar

and thus the map

η̃0
E : (Rj∗E)c(τ X̂ǫ (D))→ holim

I 6=∅
(I 7→ Θ(E)∗IZar)

By lemma 7.3.1 we have the canonical isomorphism in HSpt(DZar)

holim
I 6=∅

(I 7→ Θ(E)∗IZar)
∼= Θ(E)∗Zar.

Since Θ(E) is A1-homotopy invariant, the canonical map Θ(E)Zar → Θ(E)∗Zar

is a pointwise weak equivalence, giving us the map in HSpt(DZar)

η̃0
E : (Rj∗E)c(τ X̂ǫ (D))→ Θ(E)Zar

Using the diagram of lemma 7.2.3, with W = DI , and then taking the appro-
priate homotopy limit, we arrive at a canonical isomorphism in HSpt(DZar)

(Rj∗E)c(τ X̂ǫ (D)) ∼= E(τ X̂ǫ (D)0).

Combining η̃0
E with this isomorphism gives us the desired map η0

E . �

Lemma 7.3.3. Let i : W → X be a closed immersion in SchS. Suppose
W is a union of closed subschemes, W = W1 ∪ W2. Let W12 := W1 ∩ W2

and let ij : Wj → X, j = 1, 2, i12 : W12 → X be the inclusions. Then
for E ∈ SHA1(Sm/X) there is a canonical homotopy cartesian diagram in
SHA1(Sm/X)

Ri∗Li∗E //

��

Ri1∗Li∗1E

��

Ri2∗Li∗2E // Ri12∗L∗12E
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Proof. Throughout the proof we use the canonical lifting of Li∗, Ri∗, etc.,
to functors on Sptmot(Sm/−) by taking the appropriate cofibrant/fibrant re-
placement, but we use the same notation to denote these liftings.
Let ι : W1 →W be the inclusion. The unit id→ Rι∗Lι∗ gives the map

Li∗E → Rι∗Lι
∗Li∗E ∼= Rι∗Li

∗
1E

in SHA1(Sm/W ); applying Ri∗ gives the map Ri∗Li∗E → Ri1∗Li∗1E. The
other maps in the square are defined similarly; as the two compositions
Ri∗Li∗E → Ri12∗L∗12E are likewise defined by the adjoint property, these
agree and the diagram commutes.
To show that the diagram is homotopy cartesian, let j : U → X be the
complement of W , j1 : U1 → X the complement of W1 and j′ : U → U1,
i′2 : D2 ∩ U1 → U1 the inclusions.
We have the distinguished triangles (see [3, Lemme 1.4.6])

Lj!j
∗E → E → Ri∗Li

∗E → Lj!j
∗E[1]

Lj1!j
∗
1E → E → Ri1∗Li

∗
1E → Lj1!j

∗
1E[1]

Lj′!j
∗E → j∗1E → Ri′2∗Li

′∗
2 j
∗
1E → Lj′!j

∗E[1]

Applying Lj1! to the last line gives us the distinguished triangle

Lj!j
∗E → Lj1!j

∗
1E → Lj1!Ri

′
2∗Li

′∗
2 j
∗
1E → Lj!j

∗E[1]

Thus we have the distinguished triangle

Lj1!Ri
′
2∗Li

′∗
2 j
∗
1E → Ri∗Li

∗E → Ri1∗Li
∗
1E → Lj1!Ri

′
2∗Li

′∗
2 j
∗
1E[1]

The same argument applied to the complement j2 : U2 → X of W2, the map
j′′ : U2 → U ′′ := U \W12, j

′
1 : U ′′ → X and the inclusion i′′2 : D2 ∩ U1 → U ′′

gives the distinguished triangle

Lj′1!Ri
′′
2∗Li

′′∗
2 j′∗1 E → Ri2∗Li

∗
2E → Ri12∗Li

∗
12E → Lj′1!Ri

′′
2∗Li

′′∗
2 j′∗1 E[1]

Since D2 ∩ U1 is closed in U1 and in U ′′, the natural map

Lj1!Ri
′
2∗Li

′∗
2 j
∗
1E → Lj′1!Ri

′′
2∗Li

′′∗
2 j′∗1 E

is an isomorphism. This shows that the diagram is homotopy cartesian. �

Given a strict normal crossing divisor i : D → X , D =
∑m
i=1Di, we have

the inclusions ιI : DI → D, ιI,J : DJ → DI for I ⊂ J and iI : DI → X .
For E ∈ Spt(Sm/X) we thus have the presheaves i∗IE ∈ Spt(Sm/DI). The
isomorphism ι∗I,J i

∗
IE
∼= i∗JE gives us the canonical maps i∗IE → ιI,J∗i∗JE;

applying ιI∗ to this map gives us the natural maps αJ,I : ιI∗i∗IE → ιJ∗i∗JE.
For E ∈ Sptmot(Sm/X), using the cofibrant replacement of E, we see that the
same procedure gives us the functor

I 7→ ιI∗(i
∗
IE

c)f ∈ Spt(Sm/D)

together with the natural map

α : i∗(Ec)f → holim
I 6=∅

ιI∗(i
∗
IE

c)f .
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Lemma 7.3.4. The map α is an isomorphism in SHA1(D).

Proof. As the co-unit Li∗Ri∗ → id is an isomorphism, Ri∗ is faithful, so it
suffices to show that Ri∗(α) is an isomorphism in SHA1(X). This follows from
lemma 7.3.3 and induction on m. �

Recall that for E ∈ Spt(Sm/k) and i : D → X a strict normal crossing divisor,
D =

∑m
i=1Di, we have the presheaf E(DZar) on DZar defined by

E(DZar)(U) := holim
I 6=∅

E(DI ∩ U).

Proposition 7.3.5. Let E ∈ Sptmot(Sm/k) be fibrant, i : D → X a strict
normal crossing divisor on X ∈ Sm/k, f : X → Spec k the structure morphism.
Then we have a natural isomorphism in HSpt(DZar)

E(DZar) ∼= Li∗(f∗E)Zar

Proof. Let iI : DI → X be the inclusion, fI : DI → Spec k the structure
morphism. By theorem 3.2.1, the canonical map

ηE : E(τ X̂ǫ (DI))→ (f∗IE)Zar
∼= Li∗I(f

∗E)Zar

is an isomorphism in HSpt(DIZar). By lemma 7.3.4 the induced map on the
holim gives the desired isomorphism. �

Theorem 7.3.6. Let i : D → X be a strict normal crossing divisor on f : X →
Spec k in Sm/k, and let E be a fibrant object in SptA1(Sm/kNis). Then the
map

η0
E : E(τ X̂ǫ (D)0)→ Θ(f∗E)Zar = [Li∗Rj∗(f

∗E)]Zar

is an isomorphism in HSpt(DZar).

Proof. The proof is the same as the proof of proposition 7.2.4, using the dis-
tinguished triangle of theorem 6.3.7 together with the isomorphism of proposi-
tion 7.3.5 instead of the triangle of corollary 4.1.3. �

Remark 7.3.7. Fix a fibrant E ∈ Sptmot(Sm/k). Let D′ → D be in Sm/D and
suppose we have an X ′ → X in Sm/X and a D-isomorphism D′ ∼= X ′ ×X D.
Then we can replace i : D → X with i′ : D′ → X ′ and use theorem 7.3.6 to

show that our tubular neighborhood construction gives the model E(τ X̂
′

ǫ (D′)0)
for the restriction of Li∗Rj∗(f∗E) to Sm/D′Zar.
If D and D′ are affine, then the theorem of [2] gives the existence of an X ′ as
above, so our result gives at least a “local” description of the entire presheaf
Li∗Rj∗(f∗E). �

8. Limit objects

Let p : X → C be a morphism in Sm/k, with C a smooth curve. Fix a k-point
0 ∈ C(k) and a parameter t ∈ OC,0. Ayoub combines the functor Li∗Rj∗
with a cosimplicial version of the classical path space (i.e., the universal cover)
construction to define the unipotent specialization functor

sp : SH(X \ p−1(0))→ SH(p−1(0))
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Replacing Li∗Rj∗ with the punctured tubular neighborhood, the same con-
struction gives a model of this construction as a Zariski presheaf on X0. In
particular, we give a description of the “limiting values” limt→0E(Xt) for a
semi-stable degeneration X → (C, 0). As we mentioned in the introduction,
we expect that this construction, applied to a suitable version of the de Rham
complex (with weight and Hodge filtrations) as in [4] would yield the classical
limit mixed Hodge structure of a semi-stable degeneration.

Remark 8.0.8. In [3, chapter 3] Ayoub describes a general theory of special-
ization structures; we concentrate on the unipotent structure, which Ayoub
denotes Υ, and describes in [3, §3.4]. �

8.1. Path spaces. Before defining the cosimplicial models for various path
spaces and homotopy fibers, we recall some basic operations of simplicial sets
on schemes. We let Spcf denote the full subcategory of Spc consisting of
simplicial sets S with S([n]) finite for each n.
Let Y be a k-scheme. For a finite set S, let Y S :=

∏
s∈S Y , with the product

being over Spec k. This defines the contravariant functor S 7→ Y S from finite
sets to k-schemes. In particular, for S ∈ Spcf we have the cosimplicial scheme

Y S with Y S([n]) := Y S([n]), giving the functor

Y ? : Spcop
f → SchOrd

k .

Similarly, if T is a simplicial set, we have the cosimplicial-simplicial set (cosim-
plicial space) T S and the functor

T ? : Spcop → SpcOrd.

Setting Y × S := ∐s∈SY , we have the functor S 7→ Y × S from finite sets to
k-schemes; if S is a simplicial set as above, we thus have the simplicial scheme
Y × S, giving the functor

Y×? : Spcf → SchOrdop

k .

The adjunction

HomSchk(X × S, Y ) ∼= HomSchk(X,Y
S)

for S a finite set extends to S a simplicial set as above, giving the adjunction

HomSchOrdop

k
(X × S, Y ) ∼= HomSchOrd

k
(X,Y S)

where on the left, we consider Y as a constant simplicial scheme and on the
right, X as a constant cosimplicial scheme. This is an analog of the adjunction
for spaces

HomSpc(A× S, T ) ∼= HomSpcOrdop (A× S, T ) ∼= HomSpcOrd(A, T S)

where the first isomorphism is the well-known identity relating maps of bi-
simplicial sets with maps of the corresponding diagonal simplicial sets.
For E ∈ Spc(k) and Y a simplicial object in Sm/k, we have the cosimplicial
space E(Y ) with n cosimplices E(Y ([n])). For s an element of a finite set S,
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and a scheme Y ∈ Sm/k, we have the inclusion is : Y = Y × s → Y × S; the
inclusions is : Y → Y × S, s ∈ S induce the canonical natural map

E(Y × S)→ E(Y )S

which is an isomorphism if E is additive: E(Y ∐Y ′) ∼= E(Y )×E(Y ′). This iso-
morphsim extends immediately to finite simplicial sets S ∈ Spcf and additive
E.

Examples 8.1.1. (1) For a k-scheme Y , the free path space PY on Y is Y [0,1],
where [0, 1] is just the 1-simplex ∆[1] := HomOrd(−, [1]). Explicitly, PY has
n-cosimplices Y n+2, with structure maps as follows: Label the factors in Y n+2

from 0 to n+ 1. Send δni : [n]→ [n+ 1] to the diagonal

(y0, . . . , yn+1) 7→ (y0, . . . , yi−1, yi, yi, yi+1, . . . , yn+1)

and send sni : [n]→ [n− 1] to the projection

(y0, . . . , yn+1) 7→ (y0, . . . , yi−1, yi+1, . . . , yn+1).

The inclusion {0, 1} → [0, 1] gives rise to the projection Y [0,1] → Y {0,1}, i.e.
π : PY → Y ×k Y ; we thus have two structures of a cosimplicial Y -scheme on
PY : π1 : PY → Y and π2 : PY → Y , with πi := pi ◦ π.

(2) For a pointed k-scheme (Y, y : Spec k → Y ), we have the pointed
path space

PY (y) := PY ×(π2,y) Spec k.

(3) Now let p : Y → Y be a Y -scheme,, y : Spec k → Y a point. We have the
cosimplicial homotopy fiber of p over y:

PY/Y (y) := Y ×(p,π1) PY (y)

We extend this definition to cosimplicial Y -schemes in the evident manner:
if Y• → Y is a cosimplicial Y -scheme, we have the bi-cosimplicial Y -scheme
PY•/Y (y); the extension to functors from some small category to cosimplicial
Y -schemes is done in the same way. �

Denoting the pointed k-scheme (Y, y) by Y∗, we sometimes write PY∗ for PY (y)
and PY•/Y∗

for PY•/Y (y). For E ∈ Spt(k), we have the simplicial spectrum
E(PY/Y∗

).
The pointed path space PY (y) is contractible in the following sense:

Lemma 8.1.2. Let (Y, y) be a pointed smooth k-scheme, U a smooth k-scheme.
Then for E ∈ Spt(k), the projection U×PY (y)→ U induces a weak equivalence

E(U)→ E(U × PY (y)).

Proof. To prove the lemma, it suffices to show that, for E ∈ Spc(k), the
projection U × PY (y)→ U induces a homotopy equivalence

E(U)→ E(U × PY (y)).

We first show that U × PY (y)→ U induces a homotopy equivalance of cosim-
plicial schemes.
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The projection [0, 1]→ pt gives the map of cosimplicial schemes s : Y = Y pt →
Y [0,1]; composing with the k-point y → Y gives the point sy : Spec k → Y [0,1]

and thus the section (y, sy) : Spec k → PY (y) to the projection PY (y) →
Spec k. This induces the section sU : U → U × PY (y) to the projection pU :
U × PY (y)→ U .
We proceed to construct a homotopy between pU ◦ sU and the identity on
U × PY (y); it suffices to construct the homotopy for U = Spec k.
For this, let σ : Y [0,1] → Y [0,1] be the map induced by the map of simplicial
sets [0, 1]→ [0, 1] sending [0, 1] to 1. Then pSpeck ◦ sSpeck : PY (y)→ PY (y) is
the map (idSpeck, σ).

Let p0, p1 : Y [0,1]×[0,1] → Y [0,1] be the maps induced by the inclusions i0, i1 :
[0, 1]→ [0, 1]× [0, 1], i0(x) = x×0, i1(x) = x×1, and let π : Y → Y [0,1]×[0,1] be
the map induced by [0, 1]×[0, 1]→ pt. Let h : ([0, 1]×[0, 1], 1×[0, 1])→ ([0, 1], 1)
be any map of pairs of simplicial sets which is the identity on [0, 1]× 0 and the
map to 1 ∈ [0, 1] on [0, 1]× 1. Then h defines a map

H : Y [0,1] → Y [0,1]×[0,1]

with

p0 ◦H = idY [0,1]

p1 ◦H = σ

H ◦ s = π.

From these identities, it follows that (H, idy) induces a co-homotopy

Hy : PY (y)→ PY (y)[0,1]

with p0 ◦Hy = id, p1 ◦Hy = pSpeck ◦ sSpeck. Taking the adjoint of Hy, we have
the homotopy

hy : PY (y)× [0, 1]→ PY (y); hy ◦ i0 = id, hy ◦ i1 = pSpeck ◦ sSpeck,

where PY (y)× [0, 1] and PY (y) are to be considered as cosimplicial-simplicial
schemes, with PY (y) constant in the simplicial direction.
Applying E to idU × hy and composing with the canonical map

E(U × PY (y)× [0, 1])→ E(U × PY (y))[0,1]

gives us the co-homotopy

E(idU × hy) : E(U × PY (y))→ E(U × PY (y))[0,1]

between the identity and E(pU ◦ sU ). Thus E(U)→ E(U ×PY (y)) is a homo-
topy equivalence, as desired. �

8.2. Limit structures. For our purposes, a semi-stable degeneration need
not be proper, so even if this is somewhat non-standard terminology, we use
the following definition:
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Definition 8.2.1. A semi-stable degeneration is a flat morphism p : X →
(C, 0), where (C, 0) is a smooth pointed local curve over k, C = SpecOC,0, X
is a smooth irreducible k-scheme, p is smooth over C \ 0 and X0 := p−1(0) is
a reduced strict normal crossing divisor on X . �

For the rest of this section, we fix a semi-stable degeneration X → (C, 0). We
denote the open complement of X0 in X by X 0. We write Gm for the pointed
k-scheme (A1

k \ {0}, 1).
Fix a uniformizing parameter t ∈ OC,0, giving the morphism t : (C, 0) →
(A1

k, 0), which restricts to t : C\0→ Gm. Let p[t] : X → A1 be the composition
t ◦ p, and let p[t]0 : X 0 → Gm be the restriction of p[t]. Composing p[t] with

the canonical morphism τ X̂ǫ (X0)
0 → X 0 yields the map

p̂[t]0 : τ X̂ǫ (X0)
0 → Gm.

Let X1
0 , . . . , X

m
0 be the irreducible components of X0. Recalling the construc-

tion of τ X̂ǫ (X0)
0 as a diagram (see (6.3.1)), let us denote, for I ⊂ {1, . . . ,m},

the co-presheaf ιI∗(τ X̂ǫ (X0I)
0) by τ X̂ǫ (X0)

0
I . The map p̂[t]0 makes τ X̂ǫ (X0)

0 into
a diagram of co-presheaves (on X0Zar) of cosimplicial pro-schemes over Gm.
We thus have the diagram of cosimplicial co-presheaves on X0Zar:

I 7→ Pτ X̂
ǫ (X0)0I/Gm .

We denote this diagram by

(8.2.1) lim
t→0

Xt.

Now let E be in Spt(k). For each I ⊂ {1, . . . ,m}, we have the presheaf of
bisimplicial spectra on X0Zar, E(Pτ X̂

ǫ (X0)0I/Gm), giving us the functor

I 7→ Ẽ(Pτ X̂
ǫ (X0)0I/Gm).

where ˜ means fibrant model. Taking the homotopy limit over I of the asso-
ciated diagram of presheaves of total spectra gives us the fibrant presheaf of
spectra

E(lim
t→0

Xt) := holim
I 6=∅

TotẼ(Pτ X̂
ǫ (X0)0I/Gm).

Taking the global sections gives us the spectrum E(limt→0Xt)(X0), which we
denote by limt→0 E(Xt).

Remark 8.2.2. Suppose E ∈ Spt(k) is homotopy invariant and satisfies Nis-
nevich excision. We can form the homotopy limit Ē(limt→0Xt) of the diagram
of presheaves

I 7→ E(Pτ X̂
ǫ (X0)0I/Gm).

Since E is quasi-fibrant (see remark 2.3.2) the map

E(Pτ X̂
ǫ (X0)0I/Gm)→ Ẽ(Pτ X̂

ǫ (X0)0I/Gm)

is a pointwise weak equivalence, hence the map Ē(limt→0Xt)→ E(limt→0Xt)
is a pointwise weak equivalence. In particular, Ē(limt→0Xt)(X)0) →
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limt→0 E(Xt) is a weak equivalence. In short, if E is homotopy invariant and
satisfies Nisnevich excision, then it is not necessary to take the fibrant model
Ẽ in the construction of E(limt→0Xt) or limt→0E(Xt). �

We remind the reader of the presheaves E(X0•) and E(∆X0•) on X0Zar de-
scribed in definition 6.2.1.

Proposition 8.2.3. Suppose E is homotopy invariant and satisfies Nisnevich
excision. Then
(1) There is a canonical map in HSpt(X0Zar):

E(X0•)
γX−−→ E(lim

t→0
Xt).

(2) If X0 is smooth, then E(X0•) = E(X0Zar) and γX is an isomorphism.

Proof. We have the maps

E(X0•)
p∗•−→ E(∆∗X0•

)
ι̂∗←− E(τ X̂ǫ (X0)).

which by proposition 6.2.2 are Zariski-local weak equivalences. Similarly, we
have the diagram of open immersions

ĵ : τ X̂ǫ (X0)
0 → τ X̂ǫ (X0)

inducing

ĵ∗ : E(τ X̂ǫ (X0))→ E(τ X̂ǫ (X0)
0).

Thus we have the map

p∗0 : E(X0•)→ E(τ X̂ǫ (X0)
0);

p∗0 := ĵ∗(ι̂∗)−1p∗•.
Similarly, we have the projection

Pτ X̂
ǫ (X0)0/Gm → τ X̂ǫ (X0)

0,

giving the map

q∗ : E(τ X̂ǫ (X0)
0)→ E(Pτ X̂

ǫ (X0)0/Gm);

we set γX := q∗ ◦ p∗.
For (2), the diagram X• is just the identity copresheaf X0Zar, hence E(X0•) =
E(X0Zar). To show γX is an isomorphism, fix a point x ∈ X0. There is a
Zariski neighborhood U of x in X0 and a Nisnevich neighborhood X ′ → X of
U in X which is isomorphic to a Nisnevich neighborhood of U in U ×A1. Thus
it suffices to prove the result in the case X = X0 × A1, (C, 0) = (A1, 0) and
p = p2 : X → A1.
For each smooth k-scheme T , it follows from homotopy invariance and theo-

rem 3.2.1 that the canonical map p : τ X̂0×A1

ǫ (X0 × 0) → X0 × A1 induces a
weak equivalence

p∗ : E(T ×k X0Zar × A1)→ E(T ×k τ X̂0×A1

ǫ (X0 × 0))

Documenta Mathematica 12 (2007) 71–146



Motivic Tubular Neighborhoods 115

The Morel-Voevodsky purity theorem [34, theorem 2.23] plus Nisnevich excision
and the homotopy property for E implies that p induces a weak equivalence

p∗ : ET×X0Zar×0(T ×k X0Zar × A1)→ ET×∆∗
X0Zar×0(T ×k τ X̂0×A1

ǫ (X0 × 0)).

This gives us the map of homotopy fiber sequences

ET×X0Zar×0(T ×k X0Zar × A1)

��

p∗
// ET×∆∗

X0Zar×0(T ×k τ X̂0×A1

ǫ (X0 × 0))

��

E(T ×k X0Zar × A1)

j∗

��

p∗
// E(T ×k τ X̂0×A1

ǫ (X0 × 0))

ĵ∗

��

E(T ×k X0Zar ×Gm)
p0∗

// E(T ×k τ X̂0×A1

ǫ (X0 × 0)0)

with p0∗ induced by the restriction of p,

p0 : τ X̂0×A1

ǫ (X0 × 0)0 → X0 ×Gm.

Thus p0∗ is a weak equivalence.
Applying these term-by-term with respect to the cosimplicial schemes defining
the respective path spaces, we have the weak equivalence (assuming X = X0×
A1)

E(U × PGm)→ E(Pτ X̂
ǫ (X0)0/Gm)(U).

Thus we need only show that the projection U × PGm → U induces a weak
equivalence

E(U)→ E(U × PGm)

for all smooth k-schemes U . This is lemma 8.1.2 �

8.3. Comparison. We conclude this section by connecting our construction
with the specialization functor sp for the specialization structure Υ defined by
Ayoub [3, chapter 3].
Let E ∈ Sptmot(Sm/k) be fibrant, let p : X → (C, 0) be a semi-stable degen-
eration and choose a parameter t ∈ OC,0. In this setting, Ayoub’s functor sp
applied to some E ∈ Spt(Sm/X 0) is defined as follows: First form the presheaf
E(P−/Gm) on Sm/X 0 by taking the total spectrum

E(P−/Gm)(X ′ → X 0) := Tot(E(PX′/Gm)).

where we use the composition X ′ → X 0 t−→ Gm as structure morphism. Then
sp(E) ∈ SHA1(Sm/X0) is represented by the presheaf

sp(E) := i∗
(
j∗
(
E(P−/Gm)f

)c)
.

Similarly, we have the simplicial presheaf on Sm/X0 with n-simplices

sp(E)n := i∗
(
j∗
(
E(P−/Gm [n])f

)c)
.
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Let Tot(sp(E)∗) denote the presheaf formed by taking the total spectrum of
n 7→ sp(E)n.

Lemma 8.3.1. Suppose E is fibrant. Then there is a natural isomorphism in
SHA1(X0)

Tot(sp(E)∗) ∼= sp(E)

Proof. Since E(P−/Gm [n])f is fibrant, the presheaf E(P−/Gm [n])f on X 0 satis-

fies Nisnevich excision and is A1 homotopy invariant. Thus the same holds for
the total spectrum of the simplicial spectrum n 7→ E(P−/Gm [n])f , hence

Tot(n 7→ E(P−/Gm [n])f )→
(
Tot(n 7→ E(P−/Gm [n])f

)f

is a pointwise weak equivalence in SptA1(Sm/X 0), and thus we still have a
pointwise weak equivalence after applying j∗. Similarly, the evident map

(
Tot(n 7→ E(P−/Gm [n])

)f →
(
Tot(n 7→ E(P−/Gm [n])f

)f

is a pointwise weak equivalence. Taking cofibrant models and applying i∗ gives
the isomorphism in SHA1(X0)

sp(E) ∼= i∗
((

Tot(n 7→ E(P−/Gm [n])f
)c)

.

On the other hand, taking the total complex commutes with taking the
cofibrant model, and with the functor i∗, so we have the isomorphism in
Sptmot(Sm/X0)

sp(E) = i∗
((

Tot(n 7→ E(P−/Gm [n]))f
)c)

∼= Tot
(
n 7→ i∗

((
E(P−/Gm [n])f

)c))
= Tot(sp∗(E)).

�

Using the diagram of lemma 7.2.3 for the n-cosimplices τ X̂ǫ (X0)
0 × Gn

m of
Pτ X̂

ǫ (X0)0/Gm , and taking the total spectrum, we arrive at a natural map

E(lim
t→0

Xt)→ Tot(sp(E)∗)Zar

in HSpt(X0Zar); combining this with lemma 8.3.1 gives us the comparison map

θE : E(lim
t→0

Xt)→ sp(E)Zar

in HSpt(X0Zar).

Proposition 8.3.2. The map θE : E(limt→0Xt) → sp(E)Zar is an isomor-
phism in HSpt(X0Zar).

Proof. By theorem 7.3.6, the map

θE(n) : E(Pτ X̂
ǫ (X0)0/Gm([n]))→ spn(E)

is an isomorphism in HSpt(X0Zar) for each n, thus the map θE on the total
spectra is also an isomorphism in HSpt(X0Zar). �
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9. The monodromy sequence

In this section, we construct the monodromy sequence for the limit object
E(limt→0Xt) (see corollary 9.3.5). As pointed out to us by Ayoub, one needs
to restrict E quite a bit. We give here a theory valid for presheaves of complexes
of Q-vector space on Sm/k which are homotopy invariant and satisfy Nisnevich
excision, and satisfy an additional “alternating” property (definition 9.2.2).
Ayoub [3, Chap. 3] constructs the monodromy sequence in a more general
setting; our construction is based on his ideas applied to our tubular neigh-
borhood construction. In particular, our mondromy sequence agrees with the
monodromy sequence of loc. cite.

9.1. Presheaves of complexes. For a noetherian ring R, we let CR de-
note the category of (unbounded) homological complexes of R-modules, CR≥0

the full subcategory of CR consisting of complexes which are zero in strictly
negative degrees.
By the Dold-Kan equivalence, we may identify CR≥0 with the category of
simplicial R-modules SpcR. The forgetful functor SpcR → Spc∗ allows us
to use the standard model structure on Spc∗ to induce a model structure on
SpcR, i.e., cofibrations are degreewise monomorphisms, weak equivalences are
homotopy equivalences on the geometric realization and fibrations are maps
with the RLP for trivial cofibrations. This induces a model structure on CR≥0

with weak equivalence the quasi-isomorphisms; the suspension functor is the
usual (homological) shift operator: ΣC := C[1], C[1]n := Cn−1, dC[1],n =
−dC,n−1. This model structure is extended to CR by identifying CR with
the category of “spectra in CR≥0”, i.e., sequences (C0, C1, . . .) with bonding
maps ǫn : Cn[1] → Cn+1. Following Hovey [17], the model structure on Spt
induces a model structure on spectra of simplicial R-modules, and thus a model
structure on CR, with weak equivalences the quasi-isomorphisms. In particular,
the homotopy category HCR is just the unbounded derived category DR.
Similarly, for a category C, the model structure for the presheaf category Spt(C)
gives a model structure for presheaves of complexes on C, CR(C) with weak
equivalences the pointwise quasi-isomorphisms, and homotopy category the
derived category DR(C). We may introduce a topology (e.g., the Zariski or
Nisnevich topology), giving the model categories CR(XZar), CR(Sm/BZar),
CR(XNis), CR(Sm/BNis). These have homotopy categories equivalent to
the derived categories (on the small or big sites) DR(XZar), DR(Sm/SZar),
DR(XNis), DR(Sm/SNis), respectively. Finally, we may consider the A1-
localization, giving the Nisnevich-local A1-model structure CR,A1(Sm/BNis)
with homotopy category DRA1(B).
Let I be a small category, F : I → CR a functor. Since we can consider F as a
spectrum-valued functor by the various equivalences described above, we may
form the complex holimI F . Explicitly, this is the following complex: One first
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forms the cosimplicial complex holimIF with n-cosimplices

holimIF
n :=

∏

σ=(σ0→...→σn)∈N (I)n

F (σn).

For g : [m] → [n], with g(m) = m′ ≤ n, the σ-component of the map
holimIF

n(g) sends
∏
xτ to F (σm′ → σn)(xg∗(σ)). The complex holimI F is

then the total complex of the double complex n 7→ holimIF
n, with second

differential the alternating sum of the coface maps. This construction being
functorial and preserving quasi-isomorphisms, it passes to the derived category
DR(C). If I is a finite category, the construction commutes with filtered colim-
its, hence passes to the Zariski- and Nisnevich-local derived categories, as well
as the A1-local versions.

Remarks 9.1.1. (1) For a set S, let RS denote the free R-module on S. Send-
ing a pointed space (S, ∗) to the simplicial R-module RS, with RS(n) :=
RSn/R{∗} defines the R-localization functor Spc∗ → SpcR. This extends
to the spectrum categories, and gives us the exact R-localization functor on
homotopy category ⊗R : SH → DR. The R-localization functor ⊗R extends
to all the model categories we have been considering, in particular, we have the
R-localization

⊗R : SHA1(B)→ DR,A1(B),

For R = Q, we can also take the Q-localization of SH by performing a Bous-
field localization, i.e., define Z ∈ Spt to be Q-local if πn(Z) is a Q-vector space
for all n, and E → F a Q weak equivalence if HomSpt(F,Z)→ HomSpt(E,Z)
is an isomorphism for all Q-local Z. Inverting the Q-weak equivalences defines
the Q-local homotopy category SHQ, and ⊗Q : SH → DQ identifies SHQ
with DQ. This passes to the other homotopy categories we have defined, in
particular, ⊗Q : SHA1(B)→ DQ,A1(B) identifies SHA1(B)Q with DQ,A1(B).

(2) DQ,A1(k) is not the same as the (Q-localized) big category of motives
over k, DM(k)Q; the Q-localization does not give rise to transfers. �

9.2. The log complex. Let sgn : Sn → {±1} be the sign representation of
the symmetric group Sn. Consider a presheaf of Q-vector spaces E on Sm/k.
For X,Y ∈ Sm/k, let altn : E(Y × Xn) → E(Y × Xn) be the alternating
projector

altn =
1

n!

∑

σ∈Sn
sgn(σ)(idY × σ)∗,

with σ operating on Xn by permuting the factors. Let E(Y × Xn)alt ⊂
E(Y ×Xn) be the image of altn and E(Y,Xn)alt⊥ the kernel. We extend these
constructions to presheaves of complexes E by operating degreewise.
If (X, ∗) is a pointed k-scheme, we have the inclusions ij : Y ×Xn−1 → Y ×Xn

inserting the point ∗ in the jth factor. For E a presheaf of Q-vector spaces, we
let E(Y ∧X∧n) be the intersection of the kernels of the restriction maps

(idY × ij)∗ : E(Y ×Xn)→ E(Y ×Xn−1).
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Letting pj : Xn → Xn−1 be the projection omitting the jth factor, the com-
position (id− p∗ni∗n) ◦ . . . ◦ (id− p∗1i∗1) gives a splitting

πn : E(Y ×Xn)→ E(Y ∧X∧n)
to the inclusion E(Y ∧X∧n)→ E(Y ×Xn).
Clearly Sn acts on E(Y ∧X∧n) through its action on Xn; we let E(Y,X∧n)alt

and E(Y ∧X∧n)alt⊥ be the image and kernel of altn on E(Y ∧X∧n).
Let f : X → Gm be a morphism, E a presheaf of Q-vector spaces on Sm/k.
Let fn : X ×Gn

m → X ×Gn+1
m be the morphism

fn(x, t1, . . . , tn) := (x, f(x), t1, . . . , tn).

Denote the map altn ◦ πn ◦ f∗n : E(X ∧G∧n+1
m )alt → E(X ∧G∧nm )alt by

∪f : E(X ∧G∧n+1
m )alt → E(X ∧G∧nm )alt

One checks that

Lemma 9.2.1. (∪f)2 = 0.

Proof. We work in the Q-linear category QSm/k, with the same ob-
jects as Sm/k, disjoint union being direct sum, and, for X , Y con-
nected, HomQSm/k(X,Y ) is the Q-vector space freely generated by the set
HomSm/k(X,Y ). Product over k makes QSm/k a tensor category. The map

∪f is gotten by applying E to the map ∪f∨ : X×Gn
m → X×Gn+1

m in QSm/k:

(x, t1, . . . , tn−1) 7→ alt[((x, f(x)) − (x, 1))⊗ t1 − 1⊗ . . .⊗ tn − 1)]

and restricting to E(X ∧G∧nm )alt. But (∪f∨)2 is

(x, t1, . . . , tn) 7→
alt[((x, f(x), f(x)) − (x, 1, f(x))− (x, f(x), 1) + (x, 1, 1))⊗ . . .⊗ tn − 1)

which is evidently the zero map. �

Form the complex E(logf ) by

E(logf )n := E(X ∧G∧nm ))alt

with differential ∪f . Since E(logf )0 = E(X), we have the canonical map
ιX : E(X)→ E(logf ).
We extend this definition to an I-diagram of schemes over Gm, f• : X• → Gm

(with the Xn ∈ Sm/k) by

E(logf•) := holim
i∈I

E(logfi);

similarly, we extend to E a presheaf of complexes on Sm/k by taking the total
complex of the double complex n 7→ En(logf•). The map ιX extends to

ιX• : E(X•)→ E(logf•),

where

E(X•) := holim
i∈I

E(X i).
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We consider as well a truncation of E(logf ). Recall that the stupid truncation
σ≥nC of a homological complex C is the quotient complex of C with

σ≥nCm :=

{
Cm for m ≥ n
0 for m < n.

For E a presheaf of abelian groups and f : X → Gm a morphism in Sm/k, set

E(σ≥1 logf ) := σ≥1E(logf ).

We have the quotient map N : E(logf )→ E(σ≥1 logf ), natural in f and E.
We extend to I-diagrams f• : X• → Gm and to presheaves of complexes as for
E(logf ). The quotient map N defined above extends to the natural map

N : E(logf•)→ E(σ≥1 logf•).

for f• : X• → Gm an I-diagram of morphisms in Sm/k, and E ∈ CQ(Sm/k).
Finally, for E ∈ CQ(Sm/k), define E(−1) to be the presheaf of complexes

E(−1)(X) := E(X ∧Gm)[1] := ker

(
E(X ×Gm)

i∗1−→ E(X)

)
[1].

Definition 9.2.2. Let E be be in CQ(Sm/k). Call E alternating if for every
X ∈ Sm/k and every n ≥ 0, the alternating projection

altn : E(X ∧G∧nm )→ E(X ∧G∧nm )alt

is a quasi-isomorphism. �

Remarks 9.2.3. (1) Clearly, E is alternating if and only if Sn acts via the sign
representation on HpE(X ∧G∧nm ) for all X , n and p.

(2) Fix integers 1 ≤ i ≤ n. We have the split injection ιi,i+1 : E(X ∧ G∧nm ) →
E((X ×Gn−2

m ) ∧G∧2
m ) by shuffling the i, i+ 1 coordinates to position n− 1, n.

In particular, we have the injection

Hp(ιi,i+1) : HpE(X ∧G∧nm )→ HpE((X ×Gn−2
m ) ∧G∧2

m ).

Since Sn is generated by simple transpositions, this shows that E is alter-
nating if and only if the exchange of factors in Gm ∧ Gm acts by -1 on
HpE(X ∧Gm ∧Gm) for all X and p.

(3) Suppose that E ∈ CQ(Sm/k) is homotopy invariant and satisfies Nisnevich
excision. Consider P1 as pointed by ∞. Then E(X ∧ P1) is quasi-isomorphic
to the suspension E(X ∧ Gm)[−1], hence E is alternating if and only if the
exchange of factors in P1 ∧ P1 induces the identity on HpE(X ∧ P1 ∧ P1) for
all X and p.
The homotopy invariance and Nisnevich excision properties of E give a nat-
ural quasi-isomorphism of E(X ∧ P1 ∧ P1) with E(X ∧ (A2/A2 \ {0})), with
the exchange of factors in P1 ∧ P1 going over to the linear transformation
(x, y) 7→ (y, x). If the characterstic of k is different from 2, this transformation
is conjugate to (x, y) 7→ (−x, y). Thus E is alternating if and only if the map
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[−1] : P1 → P1, [−1](x0, x1) = (x0,−x1), acts by the identity on HpE(X ∧ P1)
for all X and p.

(4) Call E oriented if E is an associative graded-commutative ring:

µ : E ⊗Q E → E

and (roughly speaking) E admits a natural Chern class transformation

c1 : Pic→ H2E

satisfying the projective bundle formula: For E → X a rank r vector bundle
with associated projective space bundle P(E) → X and tautological line bun-
dle O(1), H∗E(P(E)) is a free H∗E(X)-module with basis 1, ξ, . . . , ξr−1, where
ξ = c1(O(1)) ∈ H2E(P(E)). We do not assume that c1 is a group homomor-
phism. The projective bundle formula and the fact that [−1]∗OP1(1) ∼= OP1(1)
implies that an oriented E is alternating. In particular, rational motivic co-
homology, Qℓ(∗) étale cohomlogy, Q-singular cohomology (with respect to a
chosen embedding k → C) and rational algebraic cobordism MGL∗∗Q are all
alternating.
On the other hand, rational motivic co-homotopy is alternating if −1 is a square
in k, but is not alternating for k = R. This is pointed out in [31]: if −1 = i2,
[−1] is represented by the 2 × 2 matrix with diagonal entries i and −i. As
this is a product of elementary matrices, one has an A1-homotopy connecting
[−1] and id. To see the non-triviality of [−1] for k = R, let [X,Y ] denote
the set of morphisms X → Y in HA1Spc∗(k). Morel defines a map (of sets)
[P1,P1]→ φ(k), where φ(k) is the set of isomorphism classes of quadratic forms
over k, and notes that the map [u],

[u](x0, x1) := (x0, ux1),

goes to the class of the form ux2. This map extends to a ring homomorphism

HomSHS1(k)(P
1,P1)→ GW(k),

where GW(k) is the Grothendieck-Witt ring (see also [32, Lemma 3.2.4] for
details). Identifying GW(R) with Z × Z by rank and signature, we see that
[−1] goes to the non-torsion element (1,−1).
The example of motivic (co)homotopy is in fact universal for this phenomenon,
so if [−1] vanishes in [P1,P1], then every E ∈ CQ(Sm/k) satisfying homotopy
invariance and Nisnevich excision is alternating.
We are grateful to F. Morel for explaining the computation of the transposition
action on P1∧P1 in terms of quadratic forms and the Grothendieck-Witt group.
(4) Looking at the A1-stable homotopy category of T -spectra over k, SH(k),
one can decompose the Q-linearization SH(k)Q into the symmetric part
SH(k)+ and alternating part SH(k)− with respect to the exchange of fac-
tors on Gm ∧ Gm. Morel [33] has announced a result stating that SH(k)− is
in general equivalent to Voevodsky’s big motivic category DM(k)Q, and that
SH(k)+ is zero if -1 is a sum of squares. This suggests that the alternating part
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SHS1(k) of the category of rational S1-spectra SHS1(k)Q is closely related to
the big category of effective motives (with Q-coefficients) DM eff(k)Q. �

Proposition 9.2.4. Let E be in CQ(Sm/k), f : X → Gm an I-diagram of
morphisms in Sm/k.

(1) The sequence

E(X)
ιX−−→ E(logf )

N−→ E(σ≥1 logf )

identifies E(σ≥1 logf ) with the quotient complex E(logf )/E(X).
(2) Suppose E is alternating. Then there is a natural quasi-isomorphism

alt : E(−1)(logf )→ E(σ≥1 logf ).

Proof. It suffices to prove (1) for E a presheaf of Q-vector spaces, and f : X →
Gm a morphism in Sm/k, where the assertion is obvious. Similarly, it suffices
to construct a natural map θE,X : E(−1)(logf )→ E(σ≥1 logf ) for E a presheaf
of Q-vector spaces, extend as above to a map in general, and show that θE,X
is a quasi-isomorphism for E ∈ CQ(Sm/k) alternating and f : X → Gm a
morphism in Sm/k.
In fact, for E a presheaf of Q-vector spaces and n ≥ 1,

E(−1)(logf )n = ker[(idX × i)∗ : E(X ×Gm,G∧n−1
m )alt → E(X,G∧n−1

m )alt]

so E(−1)(logf )n is a subspace of E(X,G∧nm ); thus altn defines a map
E(−1)(logf )n → E(logf )n. One easily checks that this defines a map of com-
plexes

alt∗ : E(−1)(logf )→ E(σ≥1 logf ),

as desired.
Now suppose that E is alternating, i.e., that

(a) E(X ∧G∧nm )alt → E(X ∧G∧nm )

is a quasi-isomorphism for all n and X . This implies that the maps

E(X ×Gm,G∧n−1
m )alt → E(X ×Gm,G∧n−1

m )

E(X ∧G∧n−1
m )alt → E(X ∧G∧n−1

m )

are quasi-isomorphisms, hence

(b) idX∧Gm × altn−1 : E((X ∧Gm) ∧G∧n−1
m )→ E((X ∧Gm) ∧G∧n−1

m )alt

is a quasi-isomorphism. Since E((X ∧ Gm) ∧ G∧n−1
m ) = E(X ∧ G∧nm ), (a) and

(b) imply that

idX × altn : E((X ∧Gm) ∧G∧n−1
m )alt → E(X ∧G∧nm )alt

is a quasi-isomorphism. As alt∗ : E(−1)(logf ) → E(σ≥1 logf ) is the map on
the total complex of the double complexes

n 7→ idX × altn : E((X ∧Gm) ∧G∧n−1
m )alt → E(X ∧G∧nm )alt

we see that alt∗ is a quasi-isomorphism. �

Documenta Mathematica 12 (2007) 71–146



Motivic Tubular Neighborhoods 123

9.3. The log complex and path spaces. Let f : X → Gm be a morphism
in Sm/k arising from a semi-stable degeneration X → (C, 0) and choice of
parameter in OC,0. The monodromy sequence for E(limt→0Xt) arises from
the sequence of Proposition 9.2.4 by comparing the path space E(PX/Gm) with
E(logf ).
We use the Dold-Kan correspondence to rewrite E(PX/Gm) as a complex,
namely: take for each p the associated complex Ep(P∗X/Gm) of the simplicial

abelian group n 7→ Ep(PnX/Gm), with differential the alternating sum of the

face maps, and then take the total complex of the double complex

p 7→ Ep(P∗X/Gm).

We write this complex as E(PX/Gm).
We also have the normalized subcomplex NE(PX/Gm) of E(PX/Gm), quasi-
isomorphic to E(PX/Gm) via the inclusion. Recall that, for a simplicial abelian
group n 7→ An, the normalized complex NA∗ has

NAn := ∩ni=1 kerdi : An → An−1

with differential d0 : NAn → NAn−1. We define NE(PX/Gm) by first taking
the normalized subcomplex NEp(PX/Gm) of Ep(P∗X/Gm) for each p, and then

forming the total complex of the double complex p 7→ NEp(PX/Gm).
In particular, we have the inclusion of double complexes

NE∗(P∗X/Gm) ⊂ E∗(P∗X/Gm);

which gives for each n the inclusion of single complexes

NE∗(PnX/Gm) ⊂ E∗(PnX/Gm);

Recalling that PnX/Gm = X × Gn
m, we thus have for each n the inclusion of

complexes

NE∗(PnX/Gm) ⊂ E∗(X ×Gn
m),

We may therefore apply the projections πn : E∗(X×Gn
m)→ E∗(X ∧G∧nm ) and

altn, giving the map

altn ◦ πn : NE∗(PnX/Gm)→ E∗(X ∧G∧nm )alt.

Lemma 9.3.1. Suppose that E is alternating. Then

altn ◦ πn : NE∗(PnX/Gm )→ E∗(X ∧G∧nm )alt

is a quasi-isomorphism.

Proof. The map p∗1 : E(X)→ E(X × Gm) splits i∗1 : E(X × Gm) → E(X), so
we have the natural splitting

E(X ×Gm) = E(X)⊕ E(X ∧Gm).

Extending this to E(X×Gn
m) by using the maps i∗j and p∗j , we have the natural

splitting

(9.3.1) E(X ×Gn
m) = ⊕nm=0 ⊕I⊂{1,...,n}

|I|=m
E(X ∧G∧Im ).
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To explain the notation: For I ⊂ {1, . . . , n}, E(X ∧ G∧Im ) = E(X ∧ G∧|I|m ),
included in E(X ×Gn

m) by the composition

E(X ∧G∧|I|m ) ⊂ E(X ×G|I|m )
(idX×pI )∗−−−−−−−→ E(X ×Gn

m)

where pI : Gn
m → G|I|m is the projection on the factors i1, . . . , im if I =

{i1, . . . , im} with i1 < . . . < im.
The action of Sn on E(X × Gn

m) preserves this decomposition, with σ ∈ Sn

mapping E(X ∧G∧Im ) to E(X ∧G∧σ
−1(I)

m ) in the evident manner.
Now, for a simplicial abelian group A, the inclusion NAn → An is split by uni-
versal expressions in the face and degeneracy maps. If n 7→ C∗n is a simplicial
complex, we can form the complex of normalized subgroups (with respect to the
simplicial variable) N∗2(C∗1,∗2) and take the homology Hp(N∗2(C∗1,∗2), d1), or
we can form the simplicial abelian group n 7→ Hp(C∗n) and take the normal-
ized subgroup N∗2Hp(C∗1,∗2 , d1) ⊂ Hp(C∗1,n, d1). Using the universal spitting
mentioned above, we see that the two are the same:

Hp(N∗2(C∗1,∗2), d1) = N∗2Hp(C∗1,∗2 , d1)

Since Sn acts by the sign representation on HpE(X ∧G∧nm ), it follows that, for
1 ≤ j < n, the diagonal map

δj : Gn−1
m → Gn

m

(t1, . . . , tn−1) 7→ (t1, . . . tj , tj , tj+1, . . . tn−1)

induces the zero map on HpE(X ∧G∧nm ). Similarly, the inclusion

in : Gn−1
m → Gn

m

(t1, . . . , tn−1) 7→ (t1, . . . tn−1, 1)

is the zero map on HpE(X ∧GI
m) if n ∈ I.

From this, it is not hard to see that

NHpE∗(NE∗(PnX/Gm) = HpE∗(X ∧G∧nm ),

with respect to the decomposition of E∗(PnX/Gm) = E∗(X × Gn
m) given by

(9.3.1). Indeed,

ker(Hp(dn)) = ker(i∗n : HpE∗(X ×Gn
m)→ HpE∗(X ×Gn−1

m )

= ⊕I⊂{1,...,n}
n∈I

HpE∗(X ∧G∧Im )

It is then easy to show by descending induction on i that

∩nj=i kerHp(dj) = ⊕I⊂{1,...,n}
{i,...,n}⊂I

HpE∗(X ∧G∧Im )

from which our claim follows taking i = 1. Thus the projection

pn : NE∗(PnX/Gm)→ E∗(X ∧G∧nm )

is a quasi-isomorphism for each n. As E is alternating, the alternating projec-
tion

altn : E∗(X ∧G∧nm )→ E∗(X ∧G∧nm )alt
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is a quasi-isomorphism as well, completing the proof. �

Lemma 9.3.2. Let E be in CQ(Sm/k). Let δ0 : E(X × Gn
m) → E(X × Gn−1

m )
be the map [(idX , f), idGn−1

m
]∗. Then the diagram

E(X ×Gn
m)

δ0 //

altn◦πn
��

E(X ×Gn−1
m )

altn−1◦πn−1

��

E(X ∧G∧nm )alt ∪f
// E(X ∧G∧n−1

m )alt

commutes.

Proof. This follows directly from the definition of ∪f and the fact that altn◦πn
is the identity on E(X ∧G∧nm )alt. �

Proposition 9.3.3. Let E ∈ CQ(Sm/k) be alternating. Then the maps altn ◦
πn : NE∗(PnX/Gm) → E∗(X × G∧nm )alt define a quasi-isomorphism of total

complexes

alt ◦ π : NE(PX/Gm)→ E(logf )

Proof. That the maps altn ◦ πn : NE∗(PnX/Gm) → E∗(X ∧ G∧nm )alt define a

map of total complex NE(PX/Gm) → E(logf ) follows from Lemma 9.3.2 and
the fact that, for each n, the differential d0 on NE(PnX/Gm) is the restriction

of δ0 : E(X × Gn
m) → E(X × Gn−1

m ). Lemma 9.3.1 implies that alt ◦ π is a
quasi-isomorphism. �

We collect our results in

Theorem 9.3.4. Let E ∈ CQ(Sm/k) be alternating, f• : X• → Gm an I-
diagram of morphisms in Sm/k. Consider the diagram

E(PX/Gm) E(−1)(PX/Gm)

E(X•)
ιX•

// NE(PX/Gm)

alt◦π

��

i

OO

NE(−1)(PX/Gm)

alt◦π
��

i

OO

E(−1)(logf•)

0 // E(X•)
ιX•

// E(logf•)
N

// E(σ≥1 logf•)

alt

OO

// 0

Here the maps i are the canonical inclusions and the maps ιX• are the canonical
maps given by the identities En(PXi/Gm)0 = En(logfi)0 = En(X

i). Then

(1) The diagram commutes and is natural in E and f•.
(2) All the maps in the diagram are maps of complexes.
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(3) All the vertical maps are quasi-isomorphisms
(4) The bottom sequence is termwise exact.

Proof. The first point follows by construction, the remaining assertions follow
from the Dold-Kan correspondence, Proposition 9.3.3 and Proposition 9.2.4.

�

Corollary 9.3.5 (Monodromy sequence). Let W ∈ CQ(Sm/k) be alternating,
p : X → (C, 0) a semi-stable degeneration, t ∈ OC,0 a uniformizing parameter.
Then there is a distinguished triangle in D(X0Zar)

E(τ X̂ǫ (X0)
0)→ E(lim

t→0
Xt)

N−→ E(−1)(lim
t→0

Xt)→ E(τ X̂ǫ (X0)
0)[1],

natural in (p, t) and in E.

Proof. The commutative diagram of Theorem 9.3.4 being natural in the choice
of I-diagram and in E, one can extend the diagram directly to the case of a
co-presheaf of cosimplicial I-diagrams

U 7→ f•(U) : X•(U)→ Gm.

If we take I to be finite, we can extend further to a co-presheaf of cosimplicial
I-diagrams f• : X• → Gm, with X•(U) a pro-scheme smooth over k, and still
preserve the quasi-isomorphisms and exactness. Feeding the I-diagram

t ◦ p : τ X̂ǫ (X0)
0 → Gm

to this machine and taking the distinguished triangle induced by the exact
sequence of log complexes at the bottom of the diagram completes the proof.

�

Remark 9.3.6. If we splice together the long exact homotopy sequence for the
monodromy distinguished triangle

E(τ X̂ǫ (X0)
0)→ E(lim

t→0
Xt)

N−→ E(−1)(lim
t→0

Xt)

with the localization distinguished triangle of Theorem 6.3.7

EDZar(X)
αD−−→ E(DZar)

βD−−→ E(τ X̂ǫ (D)0)

(both evaluated on D = X0), we have the complex

(9.3.2) . . .→ EX0Zar
n (X)→ En(X0Zar)→ En(lim

t→0
Xt)

N−→

E(−1)n(lim
t→0

Xt)→ EX0Zar
n−2 (X)→ En−2(X0Zar)→ . . .

If k = C and E represents singular cohomology (for the classical topology)

En(Y ) = H−n(Y (C),Q)

then Steenbrink’s theorem [44] states that the above sequence is exact. The
argument uses the mixed Hodge structure on all the terms together with a
weight argument.
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One should be able to define a natural geometric “weight filtration” on
E(limt→0Xt) by using the stratification of X0 by faces. However, for gen-
eral E, this additional structure might not suffice to force the exactness of the
above sequence. It would be interesting to give a general additional structure
on E that would imply this exactness. �

9.4. Ayoub’s monodromy sequence. The monodromy sequence of corol-
lary 9.3.5 agrees with the monodromy sequence constructed by Ayoub in [3,
section 3.6] after making the identification described in proposition 8.3.2 and
working throughout in the category of rational motives DM(k)Q. Indeed, it is
easy to check that our complexE(logf•) agrees with the contructionE⊗f∗ηLog∨
of [3, section 3.6.3], and that our isomorphism E(PX/Gm) ∼= E(logf•) agrees

with the map E ⊗ f∗ηLog∨ → E ⊗ f∗ηU induced by the map ℓ : Log∨ → U of
[3, definition 3.6.42]. From there, one can easily compare with Ayoub’s mon-
odromy sequence [3, definition 3.6.37]. We give a sketch of these comparisons.

Ayoub’s construction begins with the Kummer motive K. We denote the
object in DM(S)Q represented by a smooth S-scheme X as mS(X) and write1S for mS(S), the unit for the tensor structure in DM(S)Q; we delete the
subscript S from the notation for S = Spec k. The 1-section i1 : S → GmS

induces the splitting

mS(GmS) = 1S ⊕ 1S(1)[1]

and thus the projection π : mS(GmS)→ 1S(1)[1]
We take S = Gm. The diagonal ∆ : Gm → Gm ×k Gm = GmS induces
mS(∆) : 1S → mS(GmS); composing with π and twisting and shifting gives
the map

∪t∗ : 1Gm(−1)[−1]→ 1Gm

The Kummer motive K ∈ DM(Gm)Q is defined as the “cone” of ∪t∗: Ayoub
shows there is a canonial distinguished triangle in DM(Gm)Q1Gm(−1)[−1]

∪t∗−−→ 1Gm → K → 1Gm(−1)

Next, Ayoub defines the object Log∨ of DM(Gm)Q. Viewing K as the two-

term complex [mS(GmS)(−1)[−1]
∪t∗−−→ mS(GmS)] with mS(GmS) in degree

zero, one sees that the nth symmetric product SymnK is the complex1Gm(−n)[−n]
∪t∗−−→ 1Gm(−n+ 1)[−n+ 1]

∪t∗−−→ . . .

∪t∗−−→ 1Gm(−1)[−1]
∪t∗−−→ 1Gm ,

where we write the map ∪t∗(−i)[−i] as ∪t∗ for short. The map 1Gm → K
gives rise to the map SymnK → Symn+1K. We can take the limit Log∨ in
DM(Gm)Q

Log∨ := lim
n

SymnK
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As a complex, Log∨ is just

. . .
∪t∗−−→ 1Gm(−n)[−n]

∪t∗−−→ 1Gm(−n+ 1)[−n+ 1]
∪t∗−−→ . . .

∪t∗−−→ 1Gm(−1)[−1]
∪t∗−−→ 1Gm .

Now suppose we have a semi-stable degeneration f : X → A1 and an object
E ∈ DM(X 0)Q. Let f0 : X 0 → Gm be the restriction of f ; since f0 is smooth,
we have Lf0∗ = f∗. Let i : X0 → X , j : X 0 → X be the inclusions. The
logarithmic specialization functor logf is defined by

logf (E) := Li∗Rj∗(E ⊗ f0∗Log∨)
Remark 9.4.1. If we replace X with X ×A1 SpecOA1,0, we have the canonical
identification of X 0 with the generic fiber Xη and f0 with fη. We avoid doing
this to keep with the notation of our earlier sections. �

The first step in our comparison is

Lemma 9.4.2. Take E ∈ DM(X 0)Q, represented by a fibrant object Ẽ ∈
CQ(Sm/X 0). Then E ⊗ f0∗Log∨ is represented by Ẽ(logf•).

Proof. Note that we may assume that Ẽ is alternating, since E is a motive.
LettingHom denote the internal Hom inDM(X 0)Q. We have the distinguished
triangle

E(−1)[−1]→Hom(GmX0 , E)
i∗1−→ Hom(1, E) = E → E(−1)

Thus E(−1)[−1] is represented by the presheaf

X ′ 7→ fib[Ẽ(X ′ ×k Gm)
id×i∗1−−−→ Ẽ(X ′)]

Similarly, for n ≥ 1, E(−n)[−n] is represented by the presheaf

X ′ 7→ Ẽ(X ′ ∧G∧nm ).

SInce Ẽ is alternating, this latter presheaf is equivalent to

X ′ 7→ Ẽ(X ′,G∧nm )alt.

Finally, the map ∪f : Ẽ(X ′+ ∧ Gm) → Ẽ(X ′) is just the map induced by the
pull-back by f and f × id of the diagonal map Gm → Gm ×k Gm, hence ∪f
represents the map f0∗(∪t∗). The comparison follows easily from this. �

Next, Ayoub considers the object U of DM(Gm)Q. Interpreting his general
construction in the case of DM(Gm)Q, U is the motive associated to the sim-
plicial object

n 7→ HomDM(Gm)Q
(PnGm , 1Gm),

i.e., the homological complex which is HomDM(Gm)Q
(PnGm , 1Gm) in degree n,

and with differential the alternating sum of the maps induced by the coface
maps in PGm . Naturally, to make sense of this, we need to lift this construction
to the appropriate category of complexes. In any case, the same proof as for
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lemma 9.4.2 gives us a canonical isomorphism of E ⊗ f0∗U with E(PX 0/Gm).
Similarly, the uni-potent specialization functor Υ is given by

Υ(E) = Li∗Rj∗(E ⊗ f0∗U).

Finally, we have

HomDM(Gm)Q
(PnGm , 1Gm) ∼= (1Gm(−1)[−1]⊕ 1Gm)⊗n

and the first differential U1 → U0 is1Gm(−1)[−1]⊕ 1Gm
∪t∗+id−−−−→ 1Gm

Thus we have the evident map K → U . The diagonal map on PGm dualizes to
make U a commutive ring object in DM(Gm)Q. Ayoub notes that K → Log∨
is universal for maps of K to a commutative ring in DM(Gm)Q, hence there is
a unique ring map ℓ : Log∨ → U making

K //

""D
DD

DD
DD

DD
Log∨

ℓ

��

U
commute. It is not hard to see that our map alt ◦ π is induced by a map of
complexes in QSm/Gm which commutes with the co-multiplications dual to
the ring multiplications for U and Log∨. Since both

E ⊗ f0∗Log∨ id⊗ℓ−−−→ E ⊗ f0∗U
and

E(PX 0/Gm)
alt◦π−−−→ E(logf•)

are isomorphisms in DM(X 0)Q, it follows that these maps are inverse to each
other.
Once we have the pair of compatible isomorphisms E ⊗ f0∗Log∨ ∼= E(logf•)
and E ⊗ U ∼= E(PX 0/Gm), it is easy to see that Ayoub’s construction of the
monodromy sequence and ours are compatible: Ayoub’s construction follows
from the obvious identification of Log∨(−1) with σ≤−1Log∨ (cohomological
notation) giving the distinguished triangle1Gm → Log∨

N−→ Log∨(−1)→ 1Gm [1]

which clearly passes over to our identification E(σ≥1 logf•) ∼= E(−1) and the
monodromy distinguished triangle of corollary 9.3.5.

10. Limit motives

We use our construction of limit cohomology, slightly modified, to give a con-
struction of the limit motive of a semi-stable degeneration, as an object in the
big category of motives DM(k).
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10.1. The big category of motives. Voevodsky has defined the category
of effective motives as the full subcategory DM eff

− (k) of the derived category
of Nisnevich sheaves with transfer D−(NST(k)) consisting of those complexes
with strictly homotopy invariant cohomology sheaves.
In his thesis, Spitzweck [43] defines a “big” category of motives over a field k.
Other constructions of a big category of motives over a noetherian base scheme
S have been given by Østvar-Röndigs [40] and also by Cisinski-Deglise [9]. To
give the reader the main idea of all these constructions, we quote from a recent
letter from Röndigs [41]:
“One may construct a model category of simplicial presheaves with transfers
on Sm/k, in which the weak equivalences and fibrations are defined via the
functor forgetting transfers. Via the Dold-Kan correspondence, there is an
induced model structure on nonnegative chain complexes of presheaves with
transfers. Both may be stabilized with respect to T or P1, in the sense of [18].
The Dold-Kan correspondence extends accordingly. Since T is a suspension
already, one can then pass to a model category of Gm-spectra of integer-indexed
chain complexes as well. For k a perfect field, results from [46] show that the
homotopy category of the latter model category contains Voevodsky’s DMgm

as a full subcategory. ”
We will use the P1-spectrum model. For details, we refer the reader to [40] and
[35].

10.2. The cohomological motive. We start with the category of pre-
sheaves with transfer PST(k) on Sm/k, which is defined as in [46] as the
category of presheaves on the correspondence category Cor(k). We let
C≥0(PST(k)) denote the model category of non-negative chain complexes in
PST(k), with model structure induced from simplicial presheaves on Sm/k,
as described above. For P ∈ C≥0(PST(k)), let P (−1) denote the presheaf

Y 7→ ker[P (Y × P1)
i∗∞−−→ P (Y ×∞)][2].

where “ker” means the termwise kernel of the termwise split surjection i∗∞.
Let ZtrX denote the presheaf on Cor(k) represented by X ∈ Sm/k, and let

Z̃trP1 := coker(ZtrSpeck
i∞∗−−→ ZtrP1).

One has the adjoint isomorphism

HomC≥0(PST(k))(C ⊗ Z̃trP1 , C′) ∼= HomC≥0(PST(k))(C,C
′(−1)[−2])

so the bonding maps for P1-spectra in C≥0(PST(k)) can be just as well defined
via maps

Cn → Cn+1(−1)[−2].

We will use this normalization of the bonding morphisms from now on.
For an integer q ≥ 0, we have the (homological) Friedlander-Suslin presheaf
ZFS(q). To define this, one starts with the presheaf with transfers of quasi-
finite cycles zq.fin(Aq), with value on Y ∈ Sm/k the cycles on Y × Aq which

Documenta Mathematica 12 (2007) 71–146



Motivic Tubular Neighborhoods 131

are quasi-finite over Y . One then forms the Suslin complex C∗(zq.fin(Aq)) and
reindexes:

ZFS(q)(Y )n := Cn−2q(zq.fin(Aq))(Y ) := zq.fin(Aq)(Y ×∆n−2q).

(see [26, §2.4] for a precise definition). This represents motivic cohomology
Zariski-locally:

Hp(X,Z(q)) = Hp(XZar,ZFS(q)).

More generally, for X ∈ Sm/k, define ZXFS(q) by

ZXFS(q)(Y ) := ZFS(q)(X × Y ).

We define
δn : ZXFS(n)→ ZXFS(n+ 1)(−1)

by sending a cycle W on X × Y ×∆m × An to W ×∆, where ∆ ⊂ A1 × P1 is
the graph of the inclusion A1 ⊂ P1, and then reordering the factors to yield a
cycle on X × Y × P1 ×∆m × An+1.

Definition 10.2.1. Let X be in Sm/k. The cohomological motive of X is the
sequence

h̃(X) := (ZXFS(0),ZXFS(1)[2], . . . ,ZXFS(n)[2n], . . .)

with the bonding morphisms δn[2n]. �

Remark 10.2.2. One can also define the cohomological motive h(X) ∈
DMgm(k) as the dual of the usual (homological) motive m(X) := CSus(Ztr

X).
For X of dimension d, h(X)(n) is actually in DM eff

− (k) for all n ≥ d, and is

represented by ZXFS(n). From this, one sees that the image of h̃(X) in DM(k)
is canonically isomorphic to h(X).
Also, one can work in DM eff

− (k) if one wants to define the cohomological motive
of a diagram in Sm/k if the varieties involved have uniformly bounded dimen-
sion. Since our construction of limit cohomology uses varieties of arbitrarily
large dimension, we need to work in DM(k). �

10.3. The limit motive. It is now an easy matter to define the limit motive
for a semi-stable degeneration. Let X → (C, 0) be a semi-stable degeneration
with parameter t at 0; suppose the special fiber X0 has irreducible components
X1

0 , . . . , X
m
0 . We have the diagram (8.2.1) of cosheaves on X0Zar, limt→0Xt,

indexed by the non-empty subsets I ⊂ {1, . . . ,m}, which we write as

I 7→ [lim
t→0

Xt]I .

Taking global sections on X0 yields the diagram of cosimplicial schemes

I 7→ [lim
t→0

Xt]I(X0).

Applying h̃ gives us the diagram of P1-spectra in C≥0(PST(k))

I 7→ h̃([lim
t→0

Xt]I(X0)).

We then take the homotopy limit over this diagram forming the complex

lim
t→0

h̃(Xt) := holim
I
{I 7→ h̃([lim

t→0
Xt]I(X0))}.
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Definition 10.3.1. Let X → (C, 0) be a semi-stable degeneration with pa-
rameter t at 0. The limit cohomological motive limt→0 h(Xt) is the image of

limt→0 h̃(Xt) in DM(k). �

Using the same procedure, we have, for D ⊂ X a normal crossing scheme, the

motive of the tubular neighborhood h(τ X̂ǫ (D)) and the motive of the punc-

tured tubular neighborhood h(τ X̂ǫ (D)0). All the general results now apply for
these cohomological motives. In particular, from corollary 9.3.5 we have the
monodromy distinguished triangle (for the Q-motive)

h(τ X̂ǫ (X0)
0)Q → lim

t→0
h(Xt)Q → lim

t→0
h(Xt)Q(−1)

and theorem 6.3.7 gives the localization distinguished triangle

hX0(X )→ h(X0)→ h(τ X̂ǫ (X0)
0),

where hX0(X ) is represented by

Cone(h̃(X )
j∗−→ h̃(X \X0))[−1].

From this latter triangle, we see that h(τ X̂ǫ (X0)
0) is in DMgm(k).

11. Gluing smooth curves

We use the exponential map defined in §5 to define an algebraic version of
gluing smooth curves along boundary components. We begin by recalling the
construction of the moduli space of smooth curves with boundary components;
for details we refer the reader to the article by Hain [15].

11.1. Curves with boundary components. For a k-scheme Y , a smooth
curve over Y is a smooth proper morphism of finite type p : C → Y with
geometrically irreducible fibers of dimension one. We say that C has genus g
if all the geometric fibers of p are curves of genus g. A boundary component
of C → Y consists of a section x : Y → C together with an isomorphism v :
OY → x∗TC/Y , where TC/Y is the relative tangent bundle on C. Equivalently,
v is a nowhere vanishing section of TC/Y along x. A smooth curve with n
boundary components is (C → Y, (x1, v1), . . . , (xn, vn)) with all the xi disjoint.
One has the evident notion of isomorphism of such tuples, so we can consider
the functor Mn

g on Schk:

Mn
g (Y )

:= {smooth genus g curves over Y with n boundary components}/ ∼=
For n = 0, this is just the well-know functor of moduli of smooth curves, which
admits the coarse moduli spaceMg. For n ≥ 1 and g ≥ 1, it is easy to show that
a smooth curve over Y with n boundary components admits no non-identity
automorphisms (over Y ), from which it follows that Mn

g is representable; we
denote the representing scheme by Mn

g as well. The same holds for genus 0 if
n ≥ 2; in fact the data of a genus zero curve C with two points 0, ∞ together
with a tangent vector v 6= 0 in T0(C) has no non-identity automorphisms.
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One can form a partial compactification ofMn
g by allowing stable curves with

boundary components. As we will not require the full extent of this theory, we
restrict ourselves to connected curves C with a single singularity, this being an
ordinary double point p. We require that the boundary components are in the
smooth locus of C. If C is reducible, then C has two irreducible components
C1, C2; we also require that both C1 and C2 have at least one boundary
component. As above, such data has no non-trivial automorphisms, which
leads to the existence of a fine moduli space M̄n

g . We let Cng → Mn
g be the

universal curve with universal boundary components (x1, v1), . . . , (xn, vn), and
C̄ng → M̄n

g the extended universal curve.

The boundary ∂M̄n
g := M̄n

g \Mn
g is a disjoint union of divisors

∂M̄n
g := D(g,n) ∐

∐

(g1,g2),(n1,n2)

D(g1,g2),(n1,n2),

where D(g1,g2),(n1,n2) consists of the curves C1 ∪ C2 with g(Ci) = gi, and with
Ci having ni boundary components (we specify which component is C1 by
requiring C1 to contain the boundary component (x1, v1)) and D(g,n) is the
locus of irreducible singular curves.
Let (C, (x1, v1), . . .) be a curve in ∂M̄n

g with singular point p. By stan-

dard deformation theory, it follows that ∂M̄n
g is a smooth divisor in M̄n

g ;
let N(g1,g2),(n1,n2) denote the normal bundle of D(g1,g2),(n1,n2). Deformation
theory gives a canonical identification of the fiber of the punctured normal
bundle N0

g1,g2,n1,n2
:= N(g1,g2),(n1,n2) \ 0 at (C, (x1, v1), . . .) with Gm-torsor of

isomorphisms

Λ2TC,p ∼= k(p).

11.2. Algebraic gluing. We can now describe our algebraic construction of
gluing curves. Fix integers g1, g2, n1, n2 ≥ 1. We define the morphism

µ̄ :Mg1,n1 ×Mg2,n2 → Dg1,g2,n1−1,n2−1.

by gluing (C1, (x1, v1), . . . , (xn1 , vn1)) and (C2, (y1, w1), . . . , (yn2 , wn2)) along
xn1 and y1, forming the curve C := C1 ∪ C2 with boundary components
(x1, v1), . . . , (xn1−1, vn1−1), (y2, w2), . . . , (yn2 , wn2) and singular point p. We
lift µ̄ to

µ :Mg1,n1 ×Mg2,n2 → N0
g1,g2,n1,n2

using the isomorphism Λ2TC,p → k(p) which sends vn−1 ∧ w1 to 1 and the
identification of (N0

g1,g2,n1,n2
)C1∪C2,... described above.

We now pass to the category SHA1(k). Taking the infinite suspension, the map
µ defines the map

Σ∞µ : Σ∞Mg1,n1+ ∧Σ∞Mg2,n2+ → Σ∞N0
g1,g2,n1,n2+.

Composing with our exponential map defined in §5 gives us our gluing map

⊕ : Σ∞Mg1,n1+ ∧ Σ∞Mg2,n2+ → Σ∞Mg1+g2,n1+n2−2+.
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Remarks 11.2.1. (1) If one fixes a curve E := (E, (x1, v1), (x2, v2)) ∈M1,2, one
can form the tower under E⊕

. . .→ Σ∞Mg,n → Σ∞Mg+1,n → . . . ,

and form the homotopy colimit Σ∞M∞,n. If E is an object of SHA1(k),
one thus has the E-cohomology E∗(M∞,n). For intance, this gives a possible
definition of stable motivic cohomology or algebraicK-theory of smooth curves.
However, it is not at all clear if this limit is independent of the choice of E .
In the topological setting, one notes that the space M1,2(C) is connected, so
the limit cohomology, for example, is independent of the choice of E . On the
contrary, M1,2(R) is not connected (the number of connected components in
the real points of the curve corresponding to a real point ofM1,2 splitsM1,2(R)
into disconnected pieces), so even there, the choice of E plays a role. It is also
not clear ifM∞,n is independent of n (up to isomorphism in SHA1(k)).
(2) In the topological setting, the map ⊕ is the infinite suspension of a map

φ :Mg1,n1(C)×Mg2,n2(C)→Mg1+g2,n1+n2−2(C),

making ∐g,nMg,n+2(C) into a topological monoid; the group completion is
homotopy equivalent to the plus construction on the stable moduli space
limg→∞Mg,1(C) formed as in (1). Letting M∞(C)+ denote this group com-
pletion, the group structure induces on Σ∞M∞(C)+ the structure of a Hopf
algebra (this was pointed out to me by Fabian Morel), the co-algebra structure
being the canonical one on a suspension spectrum. The functoriality of the ex-
ponential map exp0 as described in Remark 5.2.2 shows that the maps ⊕ make∨
g,n Σ∞Mg,n+2 into a biaglebra object in SHA1(k). It is not clear if there is

an analogous “Hopf algebra completion” of
∨
g,n Σ∞Mg,n+2 in SHA1(k). �

12. Tangential base-points

Since, by work of Østvar-Röndigs [35], motivic cohomology is represented in
SHA1(k), our methods are applicable to this theory. However, one can simplify
the construction somewhat, since we are dealing with complexes of abelian
groups rather than spectra. One can also achieve a refinement incorporating
the multiplicative structure; this allows for a motivic definition of tangential
base-points for the category of mixed Tate motives from the point of view
of cycle algebras. Of course, the unipotent specialization functor of Ayoub
[3], when restricted to the triangulated category of Tate motives in DM(−)
also gives tangential base-points for mixed Tate motives, but we hope our
construction will be useful for applications of this operation.

12.1. Cubical complexes. If we work with presheaves of complexes rather
than presheaves of spectra, we can replace all our simplicial constructions with
cubical versions. This enables an easy extension to the setting of differential
graded algebras (d.g.a.’s), or even graded-commutative d.g.a.’s (c.d.g.a.’s) if we
work with complexes of Q-vector spaces. We list the main results without proof
here; the methods discussed in [26, §2.5] carry over without difficulty.
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For a commutative ring R, we denote the model category of complexes of R-
modules on the big Nisnevich site, CR(Sm/SNis) by CR,Nis(S) and the derived
category by DR,Nis(S).
The cubical category Cube has objects n, n = 0, 1, . . .. Cube is a subcategory
of the category of finite sets, with n standing for the set {0, 1}n, with morphisms
making Cube the smallest subcategory of finite sets containing the following
maps:

(1) all inclusions si,n,ǫ : {0, 1}n → {0, 1}n+1, ǫ ∈ {0, 1}, i = 1, . . ., n + 1,
where si,n,ǫ is the inclusion inserting ǫ in the ith factor.

(2) all projections pi,n : {0, 1}n → {0, 1}n−1, i = 1, . . . , n, where pi,n is the
projection deleting the ith factor.

(3) all maps qi,n : {0, 1}n → {0, 1}n−1, i = 1, . . . , n− 1, n ≥ 2, defined by

qi,n(ǫ1, . . . , ǫn) := (ǫ1, . . . , ǫi−1, δ, ǫi+2, . . . , ǫn)

with

δ :=

{
0 if (ǫi, ǫi+1) = (0, 0)

1 else.

A cubical object in a category C is a functor Cube→ C.
The basic cubical object in Sch is the sequence of n-cubes �

∗ : Cube→ Sm/k.
The operations of the projections pi,n and inclusions si,n are the evident ones;
qi,n acts by

qi,n(x1, . . . , xn) := (x1, . . . , xi−1, 1− (xi − 1)(xi+1 − 1), xi+2, . . . , xn).

Now let P : Cube → ModR be a cubical R-module. We have the cubical
realization |P |c ∈ CR with

|P |cn := P (n)/

n∑

i=1

p∗i,n(P (n− 1)).

The differential dcn : |P |cn → |P |cn−1 is

dcn :=

n∑

i=1

(−1)is∗i,1 −
n∑

i=1

(−1)is∗i,0.

| − |c is clearly a functor from the R-linear category of cubical R-modules to
C(R); in particular, if we apply | − |c to a complex of R-modules, we end up
with a double complex. For a complex C, also write |C|c for the total complex
of this double complex, letting the context make the meaning clear.

Example 12.1.1. For a presheaf of abelian groups P on Sm/k, we have cubical
presheaf Cc(P ) with

Cc(P )(Y ) := P (Y ×�
∗).

Taking the cubical realization yields the cubical Suslin complex C∗(P )c with

C∗(P )c(Y ) := |Cc(P )(Y )|c.
�
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The symmetric group Sn acts on Cn(P )c, we let Cn(P )calt denote the sub-
presheaf of alternating sections. If P is a presheaf of Q-vector spaces, Cn(P )calt
is a canonical summand of Cn(P )c, with projection given by the idempotent
Altn := 1

n!

∑
g sgn(g)g; one checks that the Cn(P )calt form a subcomplex of

C∗(P )c.
The main result on these constructions is

Proposition 12.1.2. (1) There is a canonical homotopy equivalence of functors

C∗ → Cc∗ : C(k)→ C(k)

(2) If P is a complex of presheaves of Q-vector spaces, the inclusion

C∗(P )calt → C∗(P )c

is a quasi-isomorphism

Sketch of proof; see [27, §5] for details. For (1), one uses the algebraic maps

�
n → ∆n

which collapse the faces xi = 1 to the vertex (0, . . . , 0, 1) to get a map C∗ → Cc∗.
The homotopy inverse is given by triangulating the �

n. For (2) one checks that
Sn acts by the sign representation on the homology sheaves of C∗(P )c. The
projections Altn define a map of complexes Alt∗ : C∗(P )c → C∗(P )calt which
thus gives the inverse in homology. �

12.2. Cubical tubular neightborhoods. For a closed immersion i : W →
X in Sm/k, set �̂

n
X,W := (�̂n

X)h
�nW

, giving us the cubical pro-scheme

�̂
∗
X,W : Cube→ Pro-Sm/k

We use the same notation for morphisms in the cubical setting as in the sim-
plicial version, e.g., îW : �

∗
W → �̂

∗
X,W . We have as well the co-presheaf on

WZar

�̂
n
X,WZar

(W \ F ) := �̂
n
X\,W\F

and the cubical co-presheaf

τ X̂ǫ (W )c := �̂
∗
X,WZar

.

Now let P be in C(k). We define P (τ X̂ǫ (W )c)∗ to be the complex of presheaves

P (τ X̂ǫ (W )c)∗ := |P (τ X̂ǫ (W )c)|c.
We also have the alternating subcomplex P (τ X̂ǫ (W )c)alt ⊂ P (τ X̂ǫ (W )c).
We have as well the punctured tubular neighborhood in cubical form

τ X̂ǫ (W )0c := τ X̂ǫ (W )c \�
∗
WZar

on which we can evaluate P :

P (τ X̂ǫ (W )0c)∗ := |P (τ X̂ǫ (W )0c)|c.
Let P (τ X̂ǫ (W )0c)alt ⊂ P (τ X̂ǫ (W )0c) be the alternating subcomplex.
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We let EM : C→ Spt be a choice of the Eilenberg-Maclane spectrum functor.
Our main comparison result is

Theorem 12.2.1. (1) Let i : W → X be a closed immersion in Sm/k. For
P ∈ C(k), there are natural isomorphisms in SH(WZar)

EM(P (τ X̂ǫ (W )c)) ∼= EM(P )(τ X̂ǫ (W ))

EM(P (τ X̂ǫ (W )0c)) ∼= EM(P )(τ X̂ǫ (W )0)

(2) If P is a presheaf of complexes of Q-vector spaces, then the inclusion

P (τ X̂ǫ (W )c)alt → P (τ X̂ǫ (W )c)

is a quasi-isomorphism.

Proof. Define P (τ X̂ǫ (W )) to be the total complex of the double complex asso-

ciated to the simplicial complex n 7→ P (τ X̂ǫ (W )n). The homotopy equivalence
used in Proposition 12.1.2(1) extends, by the functoriality of the Nisnevich
neighborhood, to a homotopy equivalence

P (τ X̂ǫ (W ))c ∼ P (τ X̂ǫ (W ))

This yields a weak equivalence on the associated Eilenberg-Maclane spectra.
Since the functor EM passes to the homotopy category, we have a canonical
isomorphism

EM(P )(τ X̂ǫ (W ))) ∼= EM(P (τ X̂ǫ (W ))).

Putting these isomorphisms together completes the proof of the first assertion
for the tubular neighborhood. The proof for the punctured tubular neigh-
borhood is essentially the same. The second assertion follows from Proposi-
tion 12.1.2(2). �

12.3. The motivic c.d.g.a. There are a number of different complexes which
represent motivic cohomology; we will use the strictly functorial one of
Friedlander-Suslin, ZFS(q) (see the description in §10.2) reindexed as a co-
homological complex:

ZFS(q)n := ZFS(q)−n.

We will use the cubical version ZFS(q)c:

ZFS(q)c,n(Y ) := C2q−n(zq.fin(Aq))c(Y ).

By Proposition 12.1.2, ZFS(q)c is quasi-isomorphic to ZFS(q).
Passing to Q-coefficients, we have the quasi-isomorphic alternating subcomplex
QFS(q)calt ⊂ QFS(q)c. We may also symmetrize with respect to the coordinates
in the Aq in zq.fin(Aq); it is shown in [26] that the inclusion

QFS(q)calt,sym ⊂ QFS(q)calt

is also a quasi-isomorphism.
The product map

zq.fin(Aq)(�n × Y )⊗ zq.fin(Aq
′

)(�n′ × Y )→ zq.fin(Aq+q
′

)(�n+n′ × Y )
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makes the graded complex

ÑZ := ⊕q≥0ZFS(q)c

into a presheaf of Adams-graded d.g.a.’s on Sm/k (with Adams grading q).
Passing to Q-coefficients, and following the product with the alternating and
symmetric projections makes

N := ⊕q≥0QFS(q)calt,sym

a presheaf of Adams-graded c.d.g.a.’s, the motivic c.d.g.a. on Sm/k.
We let N → N fib denote a fibrant model ofN in the model category of (Adams-
graded) c.d.g.a.’s on Sm/k, where the weak equivalences are Adams-graded
quasi-isomorphisms of c.d.g.a.’s for the Zariski topology.

Remarks 12.3.1. (1) Since N is strictly homotopy invariant [46, Theorem 4.2],
N fib is homotopy invariant.
(2) In case k admits resolution of singularities (i.e., chark = 0) the canonical
map ZFS(q) → ZFS(q)fib is a pointwise weak equivalence [46, Theorem 7.4].
Thus, in this case, we can use N instead of N fib. �

12.4. The specialization map. We consider the situation of a smooth curve
C over our base-field k with a k-point x. We let O denote the local ring of x
in C, K the quotient field of O and choose a uniformizing parameter t, which
we view as giving a map

t : SpecO → A1.

sending x to 0.
Letting ix : x→ SpecO be the inclusion, we have the restriction map

i∗x : N (O)→ N (k(x)),

which is a morphism of Adams-graded c.d.g.a.’s. In this section, we extend i∗x
to a map

spt : N (K)→ N (k(x))

in the homotopy category of Adams-graded c.d.g.a.’s over Q (denoted
H(c.d.g.a.Q)). This is essentially our construction of the tubular neighborhood,
where we use cubical constructions throughout to keep track of the multiplica-
tion.
First, if we apply N to �

∗ × Y and take the alternating projection again, we
have the presheaf of c.d.g.a.’s N (�∗alt) and the quasi-isomorphism of presheaves
of c.d.g.a.’s

ι : N → N (�∗alt).

Next, write �̂
m0
C,x for �̂

m
C,x \ �

m
x , and consider the cubical punctured tubular

neighborhood ZFS(q)c(τ Ĉǫ (x)0c). The product map

zq.fin(Aq)(�n × �̂
m0
C,x)⊗ zq.fin(Aq

′

)(�n′ × �̂
m′0
C,x ))

→ zq.fin(Aq+q
′

)(�n+n′ × �̂
m+m′0
C,x ))
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makes ⊕q≥0ZFS(q)c(τ
ˆSpecO

ǫ (x)0c) into an Adams-graded d.g.a.; taking the al-

ternating projection in both the �
n and �̂

m0
C,x variables, and the symmetric

projection in Aq and applying the fibrant model gives a presheaf of Adams-

graded c.d.g.a.’s, denoted N fib(τ
ˆSpecO

ǫ (x)0calt).
Similarly, we perform this construction using the full tubular neighborhood,

giving the presheaf N fib(τ Ĉǫ (x)calt), and the commutative diagram of Adams-
graded c.d.g.a.’s:

N (k(x))

ι

��

N (O)
res //

π∗
O

��

i∗xoo N (K)

ι

��

π∗
K

��

N fib(�∗alt)(k(x)) N fib(τ Ĉǫ (x)calt) res
//

i∗x

oo N fib(τ Ĉǫ (x)0calt)

Replacing (C, x) with (A1, 0) and using A1 and Gm instead of SpecO and
SpecK yields the commutative diagram of Adams-graded c.d.g.a.’s

N (k(0))

ι

��

N fib(A1)
res //

π∗
A1

��

i∗0oo N fib(Gm)

ι

��

π∗
Gm

��

N fib(�∗alt)(k(x)) N fib(τ Â1

ǫ (0)calt) res
//

i∗0

oo N fib(τ Â1

ǫ (0)0calt).

By Corollary 3.3.3 and Corollary 4.1.4, the maps π∗A1 and π∗Gm are quasi-
isomorphisms of complexes, hence quasi-isomorphisms of Adams-graded
c.d.g.a.’s. Since N fib is homotopy invariant, the maps ι are quasi-isomorphisms
of Adams-graded c.d.g.a.’s.
Finally, the map t induces the commutative diagram of Adams-graded c.d.g.a.’s

N (k(x)) N fib(τ Ĉǫ (x)calt)
res //

i∗xoo N fib(τ Ĉǫ (x)0calt)

N (k(0))

t∗

OO

N fib(τ Â1

ǫ (x)calt) res
//

t∗

OO

i∗0

oo N fib(τ Â1

ǫ (x)0calt).

t∗

OO

Since t : (C, x) → (A1, 0) is a Nisnevich neighborhood of 0 in A1, all three
maps t∗ are isomorphisms. Putting these diagrams together and inverting
the quasi-isomorphisms ι, t∗, π∗A1 and π∗Gm yields the commutative diagram in
H(c.d.g.a.Q):

(12.4.1) N (k(x)) N (O)
i∗xoo res //

φ∗
O

��

N (K)

φ∗
K

��

N (k(0))

t∗

OO

N fib(A1) res
//

i∗0

oo N fib(Gm)
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Definition 12.4.1. Let i1 : Spec k → Gm be the inclusion. The map spt :
N (K)→ N (k(x)) in H(c.d.g.a.Q) is defined to be the composition

N (K)
φ∗
K−−→ N fib(Gm)

i∗1−→ N fib(k) ∼= N (k) = N (k(0))
t∗−→ N (k(x)).

�

Proposition 12.4.2. The diagram in H(c.d.g.a.Q)

N (O)
res //

i∗x %%JJJJJJJJJ
N (K)

spt

��

N (k(x))

commutes.

Proof. Since N fib is homotopy invariant, the maps

i∗0, i
∗
1 : N fib(A1)→ N (k)

are equal inH(c.d.g.a.Q). The proposition follows directly from this and a chase
of the commutative diagrams defined above. �

Remark 12.4.3. In the situation we are considering, we already have the fol-
lowing diagram:

N (K)→ N (lim
t→0

SpecK) ∼= N (k(0)).

However, the above diagram is only a diagram in the homotopy category of
complexes of Q-vector spaces, which is thus equivalent to the same diagram
for cohomology of the complexes involved. We have gone to the trouble of
redoing our theory using cubes throughout because we need to keep track of
the multiplication, i.e. our construction lifts the above diagram in Db(Q) to
one in H(c.d.g.a.Q). �

12.5. The specialization functor. For a field k, we have the triangulated
category DMT(k) of mixed Tate motives over k, this being the full triangu-
lated subcategory of Voevodsky’s triangulated category of motives (with Q-
coefficients), DMgm(k)Q, generated by the Tate objects Q(n), n ∈ Z.
We will also use in this section the derived category of finite cell modules over
an Adams-graded c.d.g.a.A, DCM(A). This construction was introduced in
[23]; we refer the reader to the discussion in [26, §5] for the properties of DCM
we will be using below.
Let O be as in the previous section the local ring of a k-point x on a smooth
curve C over k, with quotient field K. The map spt : N (K)→ N (k(x)) yields
an exact tensor functor

spt : DMT(K)→ DMT(k(x))

Indeed, as discussed in [26, §5.5], Spitzweck’s representation theorem gives a
natural equivalence of DMT(k) with the derived category DCM(N (k)) of finite
cell modules over the Adams-graded c.d.g.a.N (k), as triangulated tensor Q-
tensor categories.
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The functor DCM associating to an Adams-graded Q-c.d.g.a.A the triangu-
lated tensor category DCM(A) takes quasi-isomorphisms to triangulated ten-
sor equivalences, hence DCM descends to a well-defined pseudo-functor on
H(c.d.g.a.Q). Thus, we may make the following

Definition 12.5.1. Let O be the local ring of a k-point x on a smooth
curve C over k, with quotient field K and uniformizing parameter t. Let
spt : DMT(K) → DMT(k(x)) be the exact tensor functor induced by
DCM(spt) : DCM(N (K)) → DCM(N (k(x)), using Spitzweck’s representation
theorem to identify the derived categories of cell modules with the appropriate
category of mixed Tate motives. �

Remark 12.5.2. (1) The discussion in [26, §5.5], in particular, the statement
and proof of Spitzweck’s representation theorem, is in the setting of motives
over a field. However, we now have available a reasonable triangulated category
DM(S) of motives over an arbitrary base-scheme S (see [48]), and we can thus
define the triangulated category of mixed Tate motives over S, DMT(S), as in
the case of a field.
Furthermore, if S is in Sm/k for k a field of characteristic zero, then N (S) has
the correct cohomology, i.e.

Hn(N (S)) = ⊕q≥0H
n(S,Q(q)),

and one has the isomorphism

Hn(S,Z(q)) ∼= HomDM(S)(Z,Z(q)).

This is all that is required for the argument in [26, §5.5] to go through,
yielding the equivalence of the triangulated tensor category of cell modules
DCM(N (S)) with DMT(S).

(2) Joshua [20] has defined the triangulated category of Q mixed Tate
motives over S as DCM(N (S)); the discussion in (1) shows that this agrees
with the definition as a subcategory of DM(S)Q. �

With these remarks, we can now state the main compatibility property of the
functor spt : DMT(K)→ DMT(k(x)).

Proposition 12.5.3. Let O be the local ring of a k-point x on a smooth
curve C over k, with quotient field K and uniformizing parameter t. Let
i∗x : DMT(O) → DMT(k) and j∗ : DMT(O) → DMT(K) be the functors
induced by the inclusions ix : Spec k → SpecO and j : SpecK → SpecO,
respectively. Then the diagram

DMT(O)
j∗

//

i∗x ''NNNNNNNNNNN
DMT(K)

spt

��

DMT(k(x))

commutes up to natural isomorphism.
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Proof. This follows from Proposition 12.4.2 and the functoriality (up to natural
isomorphism) of the equivalence DCM(N (S)) ∼ DMT(S). �

12.6. Compatibility with specialization on motivic cohomology. As
above, let O be the local ring of a closed point x on a smooth curve C over k,
with quotient field K and uniformizing parameter t. We have the localization
sequence for motivic cohomology

. . .→ Hn(O,Z(q))
j∗−→ Hn(K,Z(q))

∂−→ Hn−1(k(x),Z(q − 1))
ix∗−−→ . . .

In addition, the parameter t determines the element [t] ∈ H1(K,Z(1)). One
defines the specialization homomorphism

s̃pt : Hn(K,Z(q))→ Hn(k(x),Z(q))

by the formula

s̃pt(α) := ∂([t] ∪ α).

On the other hand, if k(x) = k, we have the specialization functor

spt : DMT(K)→ DMT(k(x))

and the natural identifications

Hn(K,Q(q)) ∼= HomDMT(K)(Q,Q(q)[n])

Hn(k,Q(q)) ∼= HomDMT(k)(Q,Q(q)[n]).

Thus the functor spt induces the homomorphism

spt : HomDMT(K)(Q,Q(q)[n])→ HomDMT(k)(Q,Q(q)[n])

and hence a new homomorphism

sp′t : Hn(K,Q(q))→ Hn(k,Q(q)).

Proposition 12.6.1. sp′t agrees with the Q-extension of s̃pt.

Proof. Using the equivalence DMT(K) ∼ DCM(N (K)) and the canonical iden-
tifications

HomDCM(K)(Q,Q(q)[n]) ∼= Hn(N (K)) ∼= ⊕q≥0H
n(K,Q(q))

(and similarly for k) we need to show that the Q-linear extension of s̃pt agrees
with the map

Hn(spt) : Hn(N (K))→ Hn(N (k))

induced by spt : N (K)→ N (k).
For this, take an element α ∈ Hn(K,Z(q)) and set

β̄ := ∂α ∈ Hn−1(k,Z(q − 1)).

Since ix : x→ SpecO is split by the structure morphism π : SpecO → Spec k,
we can lift β̄ to β : π∗(β̄) ∈ Hn−1(O,Z(q − 1)). Then

∂([t] ∪ β) = ∂([t]) ∪ i∗xβ = β̄,
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the first identity following from the Leibniz rule and the second from the fact
that ∂([t]) = 1 ∈ H0(k,Z(0)). Thus

∂(α− [t] ∪ β) = 0,

hence there is a class γ ∈ Hn(O,Z(q)) with

j∗γ = α− [t] ∪ β.

We consider γ as an element of Hn(N (O)).
By Proposition 12.4.2, we have

Hn(i∗x)(γ) = Hn(spt)(α − [t] ∪ β).

By the functoriality of the identification

Hn(N (−)) ∼= ⊕q≥0HomDCM(N (−))(Q,Q(q))

and Proposition 12.4.2 it follows that

s̃pt(j
∗γ) = Hn(i∗x)(γ) = Hn(spt)(j

∗γ)

so we reduce to showing

s̃pt([t] ∪ β) = 0 = Hn(spt)([t] ∪ β).

The first identity follows from [t] ∪ [t] = 0 in H2(K,Q(2)). For the second,
because spt is a morphism in H(c.d.g.a.q), the map H∗(spt) is multiplicative,

hence it suffices to show that H1(spt)([t]) = 0.
For this, it follows from the constuction of the map spt : N (K) → N (k(x))
in H(c.d.g.a.Q) that spt is natural with respect to Nisnevich neighborhoods
f : (C′, x′)→ (C, x) of x, i.e.,

spf∗(t) ◦ f∗ = spt.

Now, the map t : (C, x) → (A1, 0) is clearly a Nisnevich neighborhood of 0
(after shrinking C if necessary) and

[t] = t∗([T ])

where A1 = Spec k[T ]. Thus, we may assume that C = A1 and t = T . But
then [T ] is a well-defined element of H1(N (Gm)) hence

H1(spt)([T ]) = i∗1([T ]) = [1] = 0

by definition of spt : N (OA1,0)→ N (k). This completes the proof. �

Remark 12.6.2. Since sp′t is multiplicative, as we have already remarked, Propo-
sition 12.6.1 gives a rather long-winded re-proof of the multiplicativity of the
specialization homomorphism s̃pt �
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12.7. Tangential base-points. As shown in [29], the category DMT(k) car-
ries a canonical exact weight filtration. For an Adams-graded c.d.g.a.A, the
derived category of cell modules DCM(A) carries a natural weight filtration as
well; the equivalence DCM(N (k)) ∼ DMT(k) given by Spitzweck’s representa-
tion theorem is compatible with the weight filtrations [26, Theorem 5.24].
If A is cohomologically connected (Hn(A) = 0 for n < 0 and H0(A) = Q · id),
then DCM(A) carries a t-structure, natural among cohomologically connected
A. Finally, ifA is 1-minimal then DCM(A) is equivalent to the derived category
of the heart of this t-structure (see [26, §5]).
Thus, if N (F ) is cohomologically connected, then DMT(F ) has a t-structure;
the heart is called the category of mixed Tate motives over F , denoted MT(F ).
In fact, MT(F ) is a Tannakian category , with natural fiber functor given by
the weight filtration; let Galµ(F ) denote the pro-algebraic group scheme over
Q associated to MT(F ) by the Tannakian formalism. If N (F ) is 1-minimal,
then DMT(F ) is equivalent to Db(MT(F )), but we won’t be using this.
Now let x be a k-point on a smooth curve C over k, and t a parameter in OC,x.
The specialization functor

spt : DMT(k(C))→ DMT(k(x))

arises from the map spt : N (k(C)) → N (k(x)) in H(c.d.g.a.Q), hence spt is
compatible with the weight filtrations. When N (k(C)) and N (k(x)) are coho-
mologically connected, spt is compatible with the t-structures, hence induces
an exact functor of Tannakian categories

spt : MT(k(C))→ MT(k(x))

compatible with the fiber functors grW . By Tannakian duality, spt is equivalent
to a homomorphism

∂

∂t∗
: Galµ(k(x))→ Galµ(k(C)),

which is the tangential base-point associated to the parameter t. This gives
a purely “motivic” construction of the tangential base-point construction of
Deligne-Goncharov [10]; the construction in [10] relies on realization functors.
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odromiefiltration und verschwindende Zyklen in ungleicher Charakteristik. Invent. Math.
68 (1982), no. 1, 21–101.

[38] Roberts, J. Chow’s moving lemma. Appendix 2 to: “Motives” (Algebraic geometry,

Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), pp. 53–82, Wolters-Noordhoff,
Groningen, 1972) by Steven L. Kleiman. Algebraic geometry, Oslo 1970 (Proc. Fifth
Nordic Summer School in Math.), pp. 89–96. Wolters-Noordhoff, Groningen, 1972.
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[40] Röndigs, O., Ostvaer, P.A. Motivic spaces with transfer, in preparation.
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Abstract. Displays were introduced to classify formal p-divisible
groups over an arbitrary ring R where p is nilpotent. We define a more
general notion of display and obtain an exact tensor category. In many
examples the crystalline cohomology of a smooth and proper scheme
X over R carries a natural display structure. It is constructed from
the relative de Rham-Witt complex. For this we refine the comparison
between crystalline cohomology and de Rham-Witt cohomology of
[LZ]. In the case where R is reduced the display structure is related
to the strong divisibility condition of Fontaine [Fo].
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1 Introduction

Displays of formal p-divisible groups were introduced in [Z2]. They are one
possible extension of classical Dieudonné theory to more general ground rings.
In [LZ] we gave a direct construction of a display for an abelian scheme by the
relative de Rham-Witt complex. In the case where the p-divisible group of the
abelian scheme is local the construction leads to the display of [Z2].
We define here a more general notion of display over a ring R, where a given
prime number p is nilpotent. If R is a perfect field a display is just a finitely
generated free W (R)-module M endowed with an injective Frobenius linear
map F : M →M , while a display of [Z2] is a Dieudonné module, where V acts
topologically nilpotent. Our category of displays is an exact tensor category
which contains the displays of [Z2] as a full subcategory. There is also a good
notion of base change for displays with respect to arbitrary ring morphisms
R → R′. Neither the construction of the tensor product nor the construction
of base change is straightforward. Special types of tensor products are related
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in [Z2] to biextensions of formal groups. Other operations of linear algebra as
exterior products and duals up to Tate twist may be performed but we don’t
discuss them here, since we don’t use them essentially and their construction
requires just the same ideas. We add that the exact category of displays is
Karoubian [T] and has a derived category.
In many examples we have a display structure on the cohomology of a projective
and smooth scheme which arises as follows: Let p be a fixed prime number and
let R be a ring such that p is nilpotent in R. We denote by W (R) the ring
of Witt vectors and we set IR = VW (R). Let X be a projective and smooth
scheme over R. Let WΩ·X/R be the de Rham-Witt complex. We define for

m ≥ 0 the Nygaard complex NmWΩ·X/R of sheaves of W (R)-modules:

(WΩ0
X/R)[F ]

d→ . . .
d→ (WΩm−1

X/R )[F ]
dV→ WΩmX/R

d→WΩm+1
X/R

d→ . . . .

Here F indicates restriction of scalars with respect to the Frobenius F :
W (R) → W (R). We remark that N 0WΩ·X/R = WΩ·X/R. These complexes

were considered by Nygaard, Illusie and Raynaud [I-R], and Kato [K] if R is a
perfect field.
Let m be a nonnegative integer and consider the hypercohomology groups

Pi = Hm(X,N iWΩX/R)

for i ≥ 0. The structure of the de Rham-Witt complex gives naturally three
sets of maps (compare: Definition 2.2):

1) A chain of morphisms of W (R)-modules

. . .→ Pi+1
ιi→ Pi → . . .→ P1

ι0→ P0.

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi → Pi+1.

3) For each i ≥ 0 a Frobenius linear map

Fi : Pi → P0.

The composition of ι and α is the multiplication IR ⊗ Pi → Pi. Moreover we
have the equation:

Fi+1(αi(
V η ⊗ x)) = ηFix, η ∈ IR, x ∈ Pi (1)

We will call a set of data P = (Pi, ιi, αi, Fi) with the properties above a pre-
display. The predisplays form an abelian category. The equation (1) implies:

Fi(ιi(y)) = pFi+1(y)

i.e. the Frobenius F0 becomes more and more divisible by p if it is restricted
to the Nygaard complexes.
We are interested in predisplays, which are obtained by the following construc-
tion. We start with a set of data which are called standard:
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A sequence L0, . . . , Ld of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i = 0, . . . d:

Φi : Li → L0 ⊕ . . .⊕ Ld

We require that the map ⊕iΦi is a Frobenius linear automorphism of L0⊕ . . .⊕
Ld.
From these data one defines a predisplay P = (Pi, ιi, αi, Fi), with

Pi = (IR ⊗ L0)⊕ . . .⊕ (IR ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld

for i ∈ Z, i ≥ 0. The definition of the maps ιi, αi, Fi (compare Definition 2.2)
is not obvious, but we skip it for the moment. We should warn the reader
that the Pi for i > d are obviously isomorphic, but these isomorphisms are not
canonical, i.e. they depend on our construction and not only on the predisplay
P .

Definition: A predisplay is called a display if it is isomorphic to a predisplay
associated to standard data.

A decomposition P0 = L0 ⊕ L1 ⊕ . . . ⊕ Ld which is given by standard data is
called a normal decomposition.
If we start with standard data for d = 1 we obtain exactly the 3n-displays of
[Z2], which are called displays in [Me]. In this work we call them 1-displays.
If we assume that the Li are free the map ⊕Φi is represented by a block matrix
(Aij), where Aij is the matrix of the Frobenius linear map Lj → Li induced by
⊕Φi, where 0 ≤ i, j ≤ d. Conversely any block matrix (Aij) from GL(W (R))
defines standard data for a display. Over a local ring R it would be possible to
define the category of displays in terms of matrices.
We note that the maps ιi for a display P are generally not injective unless the
ring R is reduced. In this case the whole display is uniquely determined by the
Frobenius module (P0, F0). Indeed the display property implies that:

Pi = {x ∈ P0 | F0(x) ∈ piP0} (2)

One has Fi = (1/pi)F0. This makes sense because p is not a zero divisor in
W (R) if R is reduced. Therefore over a reduced ring a display is a special kind
of Frobenius module.
If R = k is a perfect field a display is just the same as a Frobenius module
(P0, F0). Indeed, consider the map F0 : P0⊗Q→ P0⊗Q. We obtain inclusions
of W (k)-modules:

P0 ⊂ F−1
0 P0 ⊂ P0 ⊗Q.

By the theory of elementary divisors we find a decomposition byW (R)-modules
P0 = L0 ⊕ L1 ⊕ . . .⊕ Ld, such that

F−1
0 P0 = L0 ⊕ p−1L1 ⊕ . . .⊕ p−dLd.
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Therefore the restriction of p−iF0 to Li defines a map Φi : Li → P0, for
i = 0, . . . , d. These are the standard data for the display associated to the
Frobenius module (P0, F0).
If pR = 0 Moonen and Wedhorn [MW] introduced the structure of an F -zip.
It is defined in terms of the de Rham cohomology of the scheme X/R. As one
should expect any display gives rise to an F -zip (compare the remark after
Definition 2.6.).
For an arbitrary projective and smooth variety X/R we can’t expect that the
crystalline cohomology Hm

crys(X/W (R)) has a display structure. Therefore we
consider the following assumptions: There is a compatible system of smooth
liftings X̃n/Wn(R) for n ∈ N of X/R such that the following properties hold:

(*) The cohomology groupsHj(X̃n,Ω
i
X̃n/Wn(R)

) are for each n, i and j locally

free Wn(R)-modules of finite type.

(**) The de Rham spectral sequence degenerates at E1

Eij1 = Hj(X̃n,Ω
i
X̃n/Wn(R)

)⇒ Hi+j(X̃n,Ω
·
X̃n/Wn(R)

).

Theorem: Let X be smooth and projective over a reduced ring R, such that
the assumptions (*) and (**) are satisfied. Let d be an integer 0 ≤ m < p.
Consider the Frobenius module P0 = Hm

crys(X/W (R)) and define Pi by the
formula (2).
Then the Pi form a display and Pi coincides with the hypercohomology of the
Nygaard complex N iWΩ·X/R.

It would follow from the general conjecture made below that this theorem holds
without the restriction m < p.
Finally we indicate how to proceed if the ring R is not reduced. In order to
overcome the problem with the p-torsion in W (R) we use frames [Z1]. A frame
for R is a triple (A, σ, α), where A is a p-adic ring without p-torsion, σ : A→ A
is an endomorphism which lifts the Frobenius on A/pA, and α : A → R is a
surjective ring homomorphism whose kernel has divided powers. Let us assume
that X admits a lifting to a smooth formal scheme Y over Spf A, which satisfies
assumptions analogous to (*) and (**). We define “displays” relative toA which
we call windows (see [Z1]). Theorem 5.5 says that under the conditions made
Hm
crys(X/A,OX/A) has a window structure for m < p . There is a morphism

A → W (A) → W (R) which allows to pass from windows to displays. We
remark that because of this morphism the assumptions (*) and (**) for A are
stronger than the original assumption for W (R). In equal characteristic we
obtain e.g. the following:

Theorem Let X be smooth and projective over a ring R, such that pR = 0. Let
us assume that there is a frame A → R and a smooth p-adic lifting Y/ Spf A
of X, which satisfies the conditions analogous to (*) and (**).
Then there is a canonical display structure on Hm

crys(X/W (R)) for m < p,
which does not depend on the lifting Y nor on the frame A.
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We discuss three examples where the assumptions (∗) and (∗∗) hold. In these
examples the assumptions made on X in the two preceding theorems are full-
filled.

LetX be a K3-surface overR. We assume without restriction of generality that
R is noetherian. We denote by TX/R the tangent bundle ofX . The cohomology
groupH2(X, TX/R) commutes with base change by [M] §5 Cor.3. From the case
where R is an algebraically closed field, we deduce that this cohomology group
vanishes. It follows that X has a formal lifting over SpfW (R) resp. Spf A.
From the Hodge numbers of a K3-surface over an algebraically closed field
[De1] one deduces that H1(X,OX) = 0, H0(X,Ω1

X/R) = 0, H2(X,Ω1
X/R) =

0, H1(X,Ω2
X/R) = 0. It follows that the cohomology of X commutes with

arbitrary base change and is therefore locally free [M] loc.cit.. The degeneration
of the de Rham spectral sequence follows now because the Hodge numbers
above are zero, because there is no room for non-zero differentials.

Let X be an abelian variety over R. In this case the assumptions (∗) and (∗∗)
are fullfilled by [BBM] 2.5.2.

Finally let X be a smooth relative complete intersection in a projective space
over R. Then the conditions (∗) and (∗∗) are fullfilled by [De2] Thm.1.5.

Let p be a prime number. Let R be a ring such that p is nilpotent in R. In [LZ]
Thm. 3.5 we proved a comparison between the crystalline cohomology and the
hypercohomology of the de Rham-Witt complex extending a result of Illusie [I]
if R is a perfect field. We show here a filtered version of this comparison, which
is the key to the display structure. We conjecture a more precise comparison,
which would lead to a wide generalization of the theorems above.

Let Wn(R) be the truncated Witt vectors. We set IR,n = VWn−1(R). This
ideal is 0 for n = 1.

Let X/R be a smooth and projective scheme. We consider the crystalline
site Crys(X/Wn(R)) with its structure sheaf OX/Wn(R). Let us denote by

JX/Wn(R) ⊂ OX/Wn(R) the sheaf of pd-ideals. We denote by J [m]
X/Wn(R) its

m-th divided power. Let

un : Crys(X/Wn(R))∼ −→ X∼zar

be the canonical morphism of topoi.

The comparison isomorphism [LZ] is an isomorphism in the derived category
D(Xzar) of sheaves of Wn(R)-modules on Xzar:

Run∗OX/Wn(R) −→WnΩ·X/R

We will prove a filtered version of this. Let m be a natural number. Let
ImWnΩ

·
X/R be the following subcomplex of the de Rham-Witt complex:

pm−1VWn−1Ω
0
X/R

d→ pm−2VWn−1Ω
1
X/R . . .

d→ VWn−1Ω
m−1
X/R

d→WnΩmX/R . . .
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The filtered comparison Theorem 4.6 says that for m < p we have an isomor-
phism in the derived category

Run∗J [m]
X/Wn(R) −→ ImWnΩ

·
X/R (3)

We would like to have a similar comparison theorem for the truncated Nygaard
complex NmWnΩ

·
X/R instead of ImWnΩ·X/R:

(Wn−1Ω
0
X/R)[F ]

d→ . . .
d→ (Wn−1Ω

m−1
X/R )[F ]

dV→ WnΩmX/R
d→WnΩm+1

X/R

d→ . . .

The advantage of the Nygaard complex is that the restriction of the Frobenius
from WΩ·X/R to NmWΩ·X/R is in a natural way divisible by pm even if p is a
zero divisor. For a reduced ring R the Nygaard complex NmWΩ·X/R is quasi-
isomorphic to ImWΩ·X/R. Unfortunately in general we don’t know a definition
for the Nygaard complex in terms of crystalline cohomology. Nevertheless we
make the conjecture 4.1:

Conjecture: Assume that X̃/Wn(R) is a smooth lifting of X. Then the Ny-
gaard complex is in the derived category canonically isomorphic to the following
complex FmΩ·

X̃/Wn(R)
:

IR,n ⊗Wn(R) Ω0
X̃/Wn(R)

pd→ . . .
pd→ IR,n ⊗Wn(R) Ωm−1

X̃/Wn(R)

d→ Ωm
X̃/Wn(R)

d→ . . . .

Assume that we have for varying n a compatible system of smooth liftings
X̃n/Wn(R). We obtain a formal scheme X = lim

−→
X̃n. We set:

FmΩ·X/W (R) = lim
←−
n

FmΩ·
X̃n/Wn(R)

NmWΩ·X/R = lim
←−
n

NmWnΩ·X/R

We show the following weak form of the conjecture (Corollary 4.7):

Theorem: Assume that R is reduced and that m < p. Then there is a natural
isomorphism in the derived category of W (R)-modules on Xzar:

NmWΩ·X/R ∼= FmΩ·X/W (R)

Moreover we can show in support of our conjecture, that the complexes
NmWnΩ

·
X/R and FmΩ·

X̃n/Wn(R)
are always locally quasi-isomorphic on Xzar.

The last theorem is closely related to strong divisibility in the sense of [Fo]
1.3: Assume the assumptions (∗) and (∗∗) are satisfied. By the last theorem
the splitting of the Hodge filtration of the formal scheme X defines a normal
decomposition:

Hm(X,F jΩ·X/W (R)) = IRL0 ⊕ . . .⊕ IRLj−1 ⊕ Lj ⊕ . . .⊕ Ld
It is obvious from Definition 2.2 that the Frobenius Fj : Hm(X,N jWΩ·X/R)→
Hm(X,WΩ·X/R) is bijective if j is bigger than the dimension. Therefore F0 ⊕
F1 ⊕ . . .⊕ Fd: induces a bijection:

IRL0 ⊕ . . .⊕ IRLd → L0 ⊕ . . .⊕ Ld
This is what strong divisibility asserts.
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2 The Category of Displays

LetR be a ring, and letW (R) be the ring of Witt vectors. We set IR = VW (R).
If no confusion is possible we sometimes use the abbreviation I = IR. Let
Φ : M → N a Frobenius-linear homomorphism of W (R)-modules. We define a
Frobenius-linear homomorphism Φ̃:

Φ̃ : IR ⊗W (R) M → N
V ξ ⊗m 7→ ξΦ(m)

(4)

Definition 2.1 A predisplay over R consists of the following data:

1) A chain of morphisms of W (R)-modules

. . .→ Pi+1
ιi→ Pi → . . .→ P1

ι0→ P0.

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi → Pi+1.

3) For each i ≥ 0 a Frobenius linear map

Fi : Pi → P0.

The following axioms should be fulfilled

(D1) For i ≥ 1 the diagram below is commutative and its diagonal
IR ⊗ Pi → Pi is the multiplication.

IR ⊗ Pi αi−−−−→ Pi+1

IR⊗ιi−1

y ιi

y

IR ⊗ Pi−1
αi−1−−−−→ Pi

For i = 0 the following map is the multiplication:

IR ⊗ P0
α0−−−−→ P1

ι0−−−−→ P0

(D2) Fi+1αi = F̃i : IR ⊗ Pi.→ P0

We will denote a predisplay as follows:

P = (Pi, ιi, αi, Fi), i ∈ Z≥0.

Let X be a smooth and proper scheme over a scheme S. Then we obtain a
predisplay structure on the crystalline cohomology through the Nygaard com-
plexes NmWnΩX/S which are built from the de Rham-Witt complex as follows:

(Wn−1Ω
0
X/S)[F ]

d→ . . .
d→ (Wn−1Ω

m−1
X/S )[F ]

dV→ WnΩmX/S
d→WnΩm+1

X/S . . .
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This is considered as a complex of Wn(OS)-modules. The index [F ] means
that we consider this term as a Wn(OS)-module via restriction of scalars F :
Wn(OS)→Wn−1(OS).
Let IS,n = VWn−1(OS) ⊂Wn(OS) be the sheaf of ideals. We define three sets
of maps:

α̂m : IS,n ⊗Wn(OS) NmWnΩ·X/S → Nm+1WnΩ
·
X/S

ι̂m : Nm+1WnΩ·X/S → NmWnΩ
·
X/S

F̂m : NmWnΩ·X/S → Wn−1Ω
·
X/S

(5)

These maps are given in this order by the maps between the following vertically
written procomplexes (the index n is omitted):

IS ⊗ (WΩ0
X/S)[F ] −−−−−→ (WΩ0

X/S)[F ]
p

−−−−−→ (WΩ0
X/S)[F ]

id
−−−−−→ WΩ0

X/S

IS⊗d

?

?

y

d

?

?

y

d

?

?

y

d

?

?

y

. . . . . . . . . . . .

IS ⊗ (WΩm−1
X/S )[F ] −−−−−→ (WΩm−1

X/S )[F ]
p

−−−−−→ (WΩm−1
X/S )[F ]

id
−−−−−→ WΩm−1

X/S

id⊗dV

?

?

y

d

?

?

y

dV

?

?

y

d

?

?

y

IS ⊗ (WΩm
X/S)

F̃
−−−−−→ (WΩm

X/S)[F ]
V

−−−−−→ WΩm
X/S

F
−−−−−→ WΩm

X/S

id⊗d

?

?

y

dV

?

?

y

d

?

?

y

d

?

?

y

IS ⊗ WΩm+1
X/S

mult
−−−−−→ WΩm+1

X/S

id
−−−−−→ WΩm+1

X/S

pF
−−−−−→ WΩm+1

X/S

id⊗d

?

?

y

d

?

?

y

d

?

?

y

d

?

?

y

IS ⊗ WΩm+2
X/S

mult
−−−−−→ WΩm+2

X/S

id
−−−−−→ WΩm+2

X/S

p2F
−−−−−→ WΩm+2

X/S

. . . . . . . . . . . .

The first unlabeled arrows on the left hand side denote the maps V ξ⊗ω 7→ ξω,
where the product is taken in WΩiX/S (without restriction of scalars).

Definition 2.2 Let S = SpecR be an affine scheme. Let X/S be a smooth
and proper scheme. Then we associate a predisplay. We set:

Pi = Hd(X,N iWΩX/S)

The predisplay structure on the Pi is easily obtained by taking the cohomology
of the maps (5).

Here we write NmWΩ·X/R = lim
←−
n

NmWnΩ·X/R. The Pi coincide with the coho-

mology of R lim
←−
n

RΓ(X,N iWnΩX/S) by the proof of [LZ] Prop. 1.13 (compare

[BO] Appendix).
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Remark: Let S = Spec k be the spectrum of a perfect field. Then I(k) is
isomorphic to W (k) as W (k)-module. The maps of complexes which define α̂i
and ι̂i are in this case the maps F̃ and Ṽ used by Kato in his definition of the
F -gauges GHd(X/S).

Let A/S be an abelian scheme. Then the predisplay structure on the crystalline
cohomology H1(A/W (R),OA/W (R)) is in fact a 3n-display structure in the
sense of [Z2]. We will introduce additional properties of predisplay structures
which arise in the crystalline cohomology of smooth and proper varieties.
Let P be a predisplay. Then we have a commutative diagram:

Pi
Fi−−−−→ P0

ιi

x p

x

Pi+1
Fi+1−−−−→ P0

(6)

Indeed, let y ∈ Pi+1. Then we obtain from (D1) that

αi(
V 1⊗ ιi(y)) = V 1y

If we apply Fi+1 to the last equation and use (D2), we obtain:

Fi(ιi(y)) = pFi+1(y)

Definition 2.3 A predisplay P = (Pi, ιi, αi, Fi) is called separated if the map
of Pi+1 to the fibre product induced by the commutative diagram (6) is injective.

Remark: Predisplays form obviously an abelian category. To each predisplay
P we can associate a separated predisplay Psep and a canonical surjection
P → Psep. This is defined inductively: P sep0 = P0 and P sepi+1 is the image of
Pi+1 in the fibre product of:

P sepi

F sepi−−−−→ P 0 p←−−−− P 0

The functor P 7→ Psep to the category of separated displays is left adjoint to
the forgetful functor, but it is not exact.

It is not difficult to prove that a separated predisplay has the following property:
Consider the iteration of the maps α:

I⊗k ⊗ Pi αi−−−−→ I⊗k−1 ⊗ Pi+1
αi+1−−−−→ . . .

αi+k−1−−−−−→ Pi+k (7)

Here the maps α pick up the last factor of I⊗. The following map is called the
“Verjüngung”:

ν(k) : I⊗k → I
V ξ1 ⊗ . . .⊗ V ξk 7→ V (ξ1 · . . . · ξk) (8)
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For a separated display the iteration (7) factors through the Verjüngung:

I⊗k ⊗ Pi ν(k)

−−−−→ I ⊗ Pi −−−−→ Pi+k

The last arrow will be called α
(k)
i . In particular this shows that the iteration

(7) is independent of the factors we picked up, when forming αj .
For a separated display the data αi, i ≥ 0 are uniquely determined by the
remaining data. This is seen by the following commutative diagram:

I ⊗ Pi

Pi+1

Pi P0

P0

Fi

ιi

F̃i

p

Fi+1

αi

(∗)

�
�
�
�
�
�
�
���

�
���

���������*

6 6

-

-

For a predisplay P the cokernel Ei+1 := Coker αi is annihilated by I. It is
therefore an R-module.

Definition 2.4 We say that a predisplay is of degree d (or a d-predisplay), if
the maps αi are surjective for i ≥ d.

A separated predisplay of degree d is already uniquely determined by the data:

P0, . . . Pd, ι0, . . . ιd−1, F0, . . . , Fd, α0, . . . , αd−1 (9)

For this consider the diagram (∗) above for i = d. The data already given
determine a map of I ⊗Pd to the fibre product. This map is αd and the image
is Pd+1. Thus inductively all data of the display are uniquely determined.
Conversely assume that we have data (9) which satisfy all predisplay axioms
reasonable for these data. Then we define Pd+1 by the diagram (∗) above. We
obtain also the maps αd, ιd, and Fd+1. The axioms for the extended data are
trivially satisfied, except for the requirement that

I ⊗ Pd+1 → I ⊗ Pd → Pd+1
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is the multiplication. But this follows easily by composing the diagram (∗) for
i = d, with the arrow id⊗ιd : I ⊗ Pi+1 → I ⊗ Pi. Inductively we see that a
set of data (9) satisfying the predisplay axioms may be extended uniquely to a
predisplay of degree d.

We may define the twist of a predisplay. Let

P = (Pi, ιi, αi, Fi)

be a predisplay. Then we define its Tate-twist

P(1) = (P ′i , ι
′
i, α
′
i, F
′
i ) (10)

as follows: For i ≥ 1 we set P ′i = Pi−1, ι
′
i = ιi−1, α

′
i = αi−1, F

′
i = Fi−1. We set

P ′0 = P0 = P ′1, F
′
0 = pF0, ι

′
0 = idP0 . Finally α′0 : I ⊗ P0 → P0 is defined to be

the multiplication. If we repeat this n-times we write P(n).

We define a predisplay U = (Pi, ιi, αi, Fi) called the unit display as follows:
P0 = W (R), Pi = I for i ≥ 1. The chain of the maps ι is as follows:

. . . I
p→ I . . .

p→ I →W (R), (11)

where the last map ι0 is the natural inclusion.
The maps Fi : I = Pi →W (R) for i ≥ 1 coincide with the map

V −1 : I →W (R), V ξ 7→ ξ.

The map F0 is the Frobenius on W (R). The map α0 : I ⊗W (R) → I is the
multiplication. The maps αi : I ⊗ I → I are the Verjüngung ν(2). Since the
“Verjüngung” is surjective the unit display has degree zero.

A 3n-display (P,Q, F, V −1) as defined in [Z2] gives naturally rise to data of
type (9) with P0 = P , P1 = Q, F0 = F , F1 = V −1 and therefore extends
naturally to a predisplay of degree 1 as we explained above. We will make this
explicit later on.

Let R be a reduced ring. Then the multiplication by p is injective on W (R).
Let M be a projective W (R)-module, and F : M → M be a Frobenius linear
map. Then we set:

Pi = {x ∈M | F (x) ∈ piM}
We obtain maps

Fi = (1/pi)F : Pi → P0 = M

For ιi we take the natural inclusion Pi+1 → Pi. For αi we take the maps
I ⊗ Pi → IPi ⊂ Pi+1 induced by multiplication. The data (Pi, ιi, αi, Fi) con-
structed in this way are a separated predisplay.

The predisplays we are interested in arise from a construction which we explain
now.

Definition 2.5 The following set of data we will call standard data for a dis-
play of degree d.
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A sequence L0, . . . , Ld of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i = 0, . . . d:

Φi : Li → L0 ⊕ . . .⊕ Ld

We require that the map ⊕iΦi is a Frobenius linear automorphism of L0⊕ . . .⊕
Ld

From these data we obtain a predisplay in the following manner: We set:

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld

for i ∈ Z, i ≥ 0.

We note that Pi = Pd+1 for i > d. But these identifications are not part of
the predisplay structure we are going to define. They depend on the standard
data!

We define “divided” Frobenius maps:

Fi : Pi → P0

The restriction of Fi to I ⊗Lk for k < i is Φ̃k, and to Li+j for j ≥ 0 is pjΦi+j .

The map ιi : Pi+1 → Pi is given by the following diagram:

(I ⊗ L0)⊕ . . .⊕(I ⊗ Li−1)⊕(I ⊗ Li)⊕Li+1⊕ . . .⊕Ld
p

y p

y mult

y id

y id

y

(I ⊗ L0)⊕ . . .⊕(I ⊗ Li−1)⊕ Li ⊕Li+1⊕ . . .⊕Ld

(12)

The map αi : I ⊗ Pi → Pi+1 is given by the following diagram:

I ⊗ (I ⊗ L0)⊕ . . .⊕I ⊗ (I ⊗ Li−1)⊕ I ⊗ Li ⊕I ⊗ Li+1⊕ . . .⊕I ⊗ Ld
ν

y ν

y id

y mult

y mult

y

(I ⊗ L0) ⊕ . . .⊕ (I ⊗ Li−1) ⊕(I ⊗ Li)⊕ Li+1 ⊕ . . .⊕ Ld

(13)

Here ν = ν(2) is the Verjüngung. We leave the verification that P =
(Pi, ιi, αi, Fi) is a separated predisplay to the reader.

Definition 2.6 A predisplay is called a display if it is isomorphic to a predis-
play associated to standard data.
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Remark: Let us assume that pR = 0. There is the notion of an F -zip by Moo-
nen and Wedhorn. The relation to displays is as follows. Let P = (Pi, ιi, αi, Fi)
be a display over R. We define an F -zip structure on M = P0/IRP0 by the
following two filtrations. Let Ci as the image of Pi in P0/IRP0 given by the
composite of the maps ιk. This gives the decreasing “Hodge filtration”:

. . . ⊂ Cd ⊂ Cd−1 ⊂ . . . ⊂ C1 ⊂ C0 = M.

We set Di = W (R)FiPi+IRP0/IRP0 and obtain an increasing filtration, called
the “conjugate filtration”:

0 = D−1 ⊂ D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dd ⊂ . . . ⊂M.

The morphisms Fi for i ≥ 0 induce Frobenius linear morphisms:

Fi : Ci/Ci+1 → Di/Di−1 (14)

These are Frobenius linear isomorphisms of R-modules. Indeed, if we choose a
normal decomposition {Li} we obtain identification:

Ci/Ci+1 ∼= Li/IRLi and Di/Di−1
∼= W (R)FiLi/IRW (R)FiLi

The two filtrations C· and D· together with the operators (14) form an F -zip
[MW] Def. 1.5.

Let P be the display associated to the standard data (Li,Φi) as above. Let
Q = (Qi, ιi, αi, Fi) be a predisplay. Assume we are given homomorphisms
ρi : Li → Qi. Then we define maps τi:

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld −→ Qi

On the summand (I ⊗ Li−k) the map τi is the composite:

I ⊗ Li−k
id⊗ρi−k−−−−−→ I ⊗Qi−k α(k)

−−−−→ Qk

On the summand Li+j the map τi is the composite:

Li+j
ρi+j−−−−→ Qi+j

ι(j)−−−−→ Qi,

where the last arrow is a compositions of ι′s.

Proposition 2.7 The maps τi define a homomorphism of predisplays P → Q
if and only if the following diagrams are commutative:

Li
ρi−−−−→ Qi

Φi

y Fi

y

P0
τ0−−−−→ Q0
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We omit the verification.

If P = (P,Q, F, V −1) is 3n-display in the sense of [Z2], then any normal decom-
position P = L0 ⊕ L1, Q = IL0 ⊕ L1 defines standard data, which determine
this display.

We will now define the tensor product of displays: Assume that P =
(Pi, ιi, αi, Fi) and P ′ = (P ′i , ι

′
i, α
′
i, F
′
i ) are displays over R.

A tensor product T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) may be constructed as follows. We choose

normal decompositions

P0 = ⊕
n≥0

Ln, P ′0 = ⊕
n≥0

L′n.

More precisely this means, that we fix isomorphisms of P resp. P ′ with stan-
dard displays. We obtain:

Pi = I ⊗ L0 ⊕ · · · ⊕ I ⊗ Li−1 ⊕ Li ⊕ . . .

We denote the restriction of Fi : Pi −→ P0 to the direct summand Li by Φi.

We obtain data for a standard display Kl,
◦
Φl, l ≥ 0, if we set

Kl = ⊕
n+m=l

(Ln ⊗ L′m).

Then ⊕lKl = P0 ⊗ P ′0, and we define Frobenius linear maps

◦
Φl : Kl −→ P0 ⊗ P ′0,

by
◦
Φl =

∑

n+m=l

Φn ⊗ Φ′m

From the standard data Kl,
◦
Φl we obtain a display

T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) (15)

We will show that T is up to canonical isomorphism independent of the normal
decompositions of P resp. P ′.
In order to do this we define bilinear forms of displays. Let T be an arbitrary
predisplay. A bilinear form

λ : P × P ′ −→ T .

consists of the following data.
λ is a sequence of maps of W (R)-modules

λij : Pi ⊗ P ′j −→ Ti+j .
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We require that the following diagrams are commutative:

Pi ⊗ P ′j −−−−→ Ti+j

Fi⊗F ′
j

y
y ◦
F i+j

P0 ⊗ P ′0 −−−−→
id

T0

Pi ⊗ P ′j −−−−→ Ti+j

ι⊗id

x ◦
ι

x

Pi+1 ⊗ P ′j −−−−→ Ti+j+1

Pi ⊗ P ′j −−−−→ Ti+j

id⊗ι′
x

x◦
ι

Pi ⊗ P ′j+1 −−−−→ Ti+j+1

IR ⊗ Pi ⊗ P ′j −−−−→ IR ⊗ Ti+j
αi⊗id

y
y◦
αi+j

Pi+1 ⊗ P ′j −−−−→ Ti+j+1

IR ⊗ Pi ⊗ P ′j −−−−→ I ⊗ Ti+j
id⊗α′

j

y
y◦
αi+j

Pi ⊗ P ′j+1 −−−−→ Ti+j+1.

Remark: We will consider also the maps

Pi ⊗ Pj −→ Tk, for i+ j ≥ k,

which are the compositions of λij and Ti+j −→ Tk, the iteration of ι.

If i+ j > k we obtain a commutative diagram:

Pi−1 ⊗ Pj −→ Tk
ι⊗ id ↑ ↑

Pi ⊗ Pj −→ Tk+1.
(16)

We will denote the set of bilinear forms of displays in this sense by

Bil(P × P ′, T ).

We return to the display T given by the standard data Kl,
◦
Φl. We will now

define maps λij : Pi ⊗ P ′j −→ Ti+j . For this we write Pi ⊗ P ′j according to the
normal decompositions:
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Pi ⊗ P ′j = (
⊕

n<i
m<j

I ⊗ I ⊗ Ln ⊗ L′m)⊕ (
⊕

n<i

m≥j
m+n<i+j

I ⊗ Ln ⊗ L′m)

⊕(
⊕

n≥i
m<j

n+m<i+j

(I ⊗ Ln ⊗ L′m))⊕ (
⊕

n<i

m≥j
n+m≥i+j

I ⊗ Ln ⊗ L′m)

⊕(
⊕

m≥i
m≤j

n+m≥i+j

(I ⊗ Ln ⊗ L′m)⊕ (
⊕

n≥i
m≥j

Ln ⊗ L′m).

(17)

We have six direct sums in brackets, which we denote by Zi, i = 1, . . . , 6 in the
order as above.
By definition Ti+j has the decomposition

Ti+j = (
⊕

n+m<i+j

I ⊗ Ln ⊗ L′m)⊕ (
⊕

n+m≥i+j
Ln ⊗ L′m). (18)

We define λij : Pi ⊗ P ′j −→ Ti+j as a bigraded map with respect to n,m ≥ 0,
which is on the homogeneous components as follows.
Case Z1: n < i,m < j

I ⊗ I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m
V ξ ⊗ V η ⊗ ln ⊗ l′m 7−→ V (ξη)⊗ ln ⊗ l′m

Case Z2: n < i, m ≥ j, n+m < i+ j

pm−j id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m

Case Z3: n ≥ i, m < j, n+m < i+ j

pn−i id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m

Case Z4: n < i, m ≥ j, n+m ≥ i+ j

pi−n−1 id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m
Case Z5: n ≥ i, m < j, n+m ≥ i+ j

pj−m−1 id : I ⊗ Ln ⊗ L′m −→ I ⊗ Ln ⊗ L′m

Case Z6: n ≥ i, m ≥ j

id : Ln ⊗ L′m −→ Ln ⊗ L′m.
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Proposition 2.8 The homomorphism λij : Pi⊗P ′j −→ Ti+j defined by Z1−Z6

above define a bilinear form of displays.

Proof: We omit the tedious but simple verification.

Lemma 2.9 The homomorphism

⊕i+j=kPi ⊗ P ′j −→ Tk

given by the sum of λij is surjective.

Proof: We have to show that all summand of (18) are in the image. Consider
the submodule Ln ⊗L′m ⊂ Tk where n+m ≥ k. We set i = n and j = k− i =
k − n ≤ m. By Z6 this submodule is in the image of Pi ⊗ P ′j −→ Tk. Next
we consider a submodule I ⊗ Ln ⊗ L′m ⊂ Tk, where n +m < k. We set i = n
and j = k − i = k − n > m. Thus we are in the case Z3 with factor pn−i = 1.
Again the submodule is in the image of Pi ⊗ P ′j −→ Tk. Q.E.D.

Proposition 2.10 Let P and P ′ be displays. Let T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) be the

display (15). Let Q be a separated predisplay. There is a canonical isomorphism
of abelian groups

Bil(P × P ′,Q) ∼= Hom(T ,Q).

Proof: Assume that we are given a bilinear form. We set T = P ⊗ P ′. The
maps Ti −→ Qi are constructed inductively. For i = 0 this map is λ00, where
λ denotes the bilinear form. For the induction step to i + 1 we consider the
diagram

Ti −−−−→ Qi
Fi−−−−→ Q0x p

x

Ti+1
Fi+1−−−−→ T0 −−−−→ Q0

(19)

We claim that (19) is commutative. By Lemma 2.9 it suffices to show the
commutativity if we compose the diagram with the maps Ps⊗P ′r −→ Ti+1, for
s+ r = i+ 1. This amounts to the commutativity of the following diagram
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Pr ⊗ P ′s

Qi+1

Qi Q0

Q0

Fi

ι

Fr ⊗ Fs

p

�
�
�
�
�
�
�
���

�
���

���������*

6 6

-

-

But the diagram is commutative by the definition of a bilinear form. Now the
commutativity of (19) gives a map: Ti+1 −→ Qi×Fi,Q0,pQ0. It is clear from the
diagram above and Lemma 2.9 that this map factors through Qi+1. Q.E.D.

Corollary 2.11 The display (15)

T = (Ti,
◦
ιi,
◦
αi,

◦
F i)

does not depend up to canonical isomorphism on the normal decompositions of
P and P ′. We write

T = P ⊗ P ′

This is clear because of the universal property of T proved in the last proposi-
tion. Q.E.D.
Remark: Assume that P and P ′ are given by standard data (Li,Φi) and
(L′i,Φ

′
i). Assume we are given bilinear forms of W (R)-modules:

βij : Li ⊗ L′j → Qi+j .

Composing this with the iteration of ι, Qi+j → Q0, we obtain a bilinear form

P0 ⊗ P ′0 = (⊕iLi)⊗ (⊕jL′j)→ Q0

Let us assume that the following diagrams are commutative:

Li ⊗ L′j
Φi⊗Φ′

j−−−−→ P0 ⊗ P ′0
βij

y
y

Qi+j
Fi+j−−−−→ Q0

Then the βij extend uniquely to a bilinear form

P × P ′ → Q
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In [Z2] Definition 18 the notion of a bilinear form of 1-displays was defined. It
is obvious from the formulas there, that a bilinear form on two 1-displays in
the sense of loc.cit. is the same as a bilinear form

P × P ′ → U(1),

where the right hand side is the twisted unit display (11).
Starting from the normal decomposition of a display P it is easy to write down
the standard data of a candidate for the exterior power

∧k P . It comes with

an alternating map ⊗kP → ∧k P . One proves as above that
∧k P has the

universal property.
We will now define the base change for displays. Let R −→ S be a homomor-
phism of rings. Let P = (Pi, ιi, αi, Fi) be a display over R. We will define a
display PS = (Qi, ιi, αi, Fi) over S, with the following properties. There are
W (R)-linear maps

Pi −→ Qi,

such that the following diagrams are commutative

Pi −−−−→ Qi

ιi

x
xιi

Pi+1 −−−−→ Qi+1

Qi
Fi−−−−→ Q0x

x

Pi
Fi−−−−→ P0

IR ⊗Qi αi−−−−→ Qi+1x
x

IR ⊗ Pi αi−−−−→ Pi+1

(20)

Proposition 2.12 There is a unique display PS as above which enjoys the
following universal property.
If T = (Ti, ιi, αi, Fi) is an arbitrary display over S and

Pi −→ Ti

is a set of W (R)-linear morphisms, such that the diagrams above, with Qi
replaced by Ti are commutative, then there is a unique morphism of displays
over S

PS −→ T ,
such that the following diagrams are commutative:

Qi // Ti

Pi

``AAAAAAA

??~~~~~~~
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The display PS may be constructed using a normal decomposition of P . Let
P0 = ⊕Li be such a decomposition, and let Φi : Li −→ P0 be the maps induced
by Fi. Then Li,Φi are standard data for a display over R. We can define PS
to be the display over S associated to the standard data W (S)⊗W (R) Li, with
the Frobenius linear maps F ⊗W (R) Φi = Φ′i.
We will now see that this definition is up to canonical isomorphism independent
of the normal decomposition chosen. It suffices to see that PS has the universal
property Proposition 2.12.

The obvious maps Pi −→ Qi make the diagrams (20) commutative.

Lemma 2.13 The following W (S)-module homomorphism is surjective

W (S)⊗W (R) Pi ⊕ IS ⊗W (S) Qi−1 −→ Qi.

Proof: This is clear from the definitions.

Assume that Pi −→ Ti is a set of maps as in Proposition 2.12. We construct
inductively maps Qi −→ Ti, which are compatible with Fi, ιi, αi. Therefore
we obtain the desired morphism of displays PS −→ T . Since P0 −→ T0 is
W (R)-linear, we obtain a map

Q0 = W (S)⊗W (R) P0 −→ T0.

Assume we have already constructed W (S)-module homomorphisms

Qj −→ Tj ,

which are compatible with F, ι and α for j ≤ i.
Consider the diagram

Ti
Fi−−−−→ T0x

xp

Qi+1 −−−−→ T0.

(21)

The arrow Qi+1 −→ Ti is the composition Qi+1
ι−→ Qi −→ Ti and the arrow

Qi+1 −→ T0 is the composition Qi+1
Fi+1−→ Q0 −→ T0. By Lemma 2.13 we

deduce that (21) is commutative. Thus it induces a map

Qi+1 −→ Ti ×Fi,T0,p T0. (22)

It suffices to show that the last map factors through Ti+1. This is seen easily
by composing (22) with the morphism of the lemma.

The uniqueness of the constructed morphism PS −→ T is obvious. This proves
the proposition. Q.E.D.
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3 Degeneracy of some Spectral Sequences

Proposition 3.1 Let π : X → Y be a separated and quasicompact morphism.
Let K · be a complex of of flat π−1OY -modules on X which is bounded above.
We assume that each Ki is a quasicoherent OX-module. Then for each m the
hypercohomology groups Rmπ∗K · are quasicoherent OY -modules. If M is a
quasicoherent OY -module there is a canonical isomorphism

Rπ∗(K · ⊗L
π−1(OY ) π

−1M) ∼= Rπ∗K · ⊗L
OY M (23)

Proof: We may assume that Y is affine. Let U = {Ui} be a finite affine
covering of X . Let F · = C·(U ,K ·) be the Czech complex. It is the complex of
global sections of a sheafified Czech complex on Y : F · = C·(U ,K ·). The sheaves
in this complex are acyclic with respect to π∗ because the cohomology of an
affine scheme vanishes. One concludes [EGA III] Prop. 1.4.10 that Rπ∗Km are
quasicoherent OY -modules namely the sheaves associated to the cohomology
of F ·. Since the modules and sheaves involved are flat with respect to Y the
projection formula reduces to the trivial equation:

C·(U ,K · ⊗OY M) ∼= F · ⊗Γ(Y,OY ) Γ(Y,M)

Q.E.D.
Let π : X → S be a proper morphism of schemes, such that S is affine. In
this section we consider a bounded complex K · of flat π−1(OS)-modules. We
assume that each Ki is a quasicoherent OX -module. Moreover we assume that
the following conditions are satisfied:

(i) Rjπ∗Ki is a locally free OS-module of finite type for any i and j.

(ii) the spectral sequence of hypercohomology degenerates:

Eij1 = Rjπ∗K
i ⇒ Rnπ∗K ·

One can easily see that with these assumptions the simple complex associated
to C·(U ,K ·) as above is quasi-isomorphic to the direct sum of its cohomology
groups. It follows that Rmπ∗K · commutes with arbitrary base change for
any m. For the same reason the cohomology groups Rjπ∗Ki commute with
arbitrary base change.
The degeneration of this spectral sequence may be reformulated as follows. Let
us denote the by σ≥mK · and σ<mK · the truncated complexes with respect to
the naive truncation. Then the cohomology sequence of

0→ σ≥mK · → K · → σ<mK · → 0,

splits into short exact sequences:

0→ Rqπ∗(σ≥mK ·)→ Rqπ∗K · → Rqπ∗(σ<mK ·)→ 0. (24)
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Indeed, take a Cartan-Eilenberg resolution K · → I · by injective sheaves of
abelian groups. Let L· = π∗I ·. This complex comes with a filtration FilmL·

which is induced by the naive filtration ofK. The spectral sequence in question
is the spectral sequence of this filtered complex. The condition (24) is equivalent
to the requirement that the maps

Hq(Film+1L·)→ Hq(FilmL·)

are injective for each q and m, as one may see easily from the exact cohomology
sequence. This injectivity may be restated as follows:

d(FilmLq−1) ∩ Film+1Lq = d(Film+1Lq−1).

We conclude by [De3] Prop. 1.3.2.
The observation shows that the spectral sequences of hypercohomology of the
truncated complexes σ≥mK · and σ<mK · degenerate too.

Proposition 3.2 Let π : X → S and K · be as in Proposition 3.1. Let
. . . → M0 → M1 → M2 → . . . be a sequence of OS-modules (not necessar-
ily a complex). We consider the complex

L· : . . .→ K0 ⊗OS M0 → K1 ⊗OS M1 → K2 ⊗M2 → . . .

Then the spectral sequence

Eij1 : Rjπ∗L
i ⇒ Rp+qπ∗L·

degenerates.

Proof: We assume without loss of generality that Ki = 0 for i < 0. We
say that a sequence M0 → M1 → . . . is m-stationary if it is isomorphic to a
sequence of the form:

M0 → . . .→Mm−1 →Mm = Mm = . . .

Because K · is bounded it suffices to show the theorem for m-stationary se-
quences. We argue by induction. For m = 0 this is clear from the projection
formula (23). Assume that the proposition holds for r-stationary sequences
with r < m. For an m-stationary sequence we consider the following morphism
of complexes:

L· → I · (25)

K0 ⊗M0 . . . Km−2 ⊗Mm−2 −−−−→ Km−1 ⊗Mm−1 −−−−→ Km ⊗Mm . . .

id

y id

y
y id

y

K0 ⊗M0 . . . Km−2 ⊗Mm−2 −−−−→ Km−1 ⊗Mm −−−−→ Km ⊗Mm . . .

If we apply the induction assumption to I · we obtain an exact sequence for
each q and the given m.

0→ Rqπ∗(σ≥mI ·)→ Rqπ∗I · → Rqπ∗(σ<mI ·)→ 0. (26)
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The morphism of complexes (25) induces a commutative diagram:

Rqπ∗σ≥mL· −−−−→ Rqπ∗L·

id

y
y

Rqπ∗σ≥mI · −−−−→ Rqπ∗I ·

By our induction assumption (26) it follows that the upper horizontal arrow is
injective.
We have to prove that the following sequences are exact for arbitrary integers
q and n.

0→ Rqπ∗(σ≥nL·)→ Rqπ∗L· → Rqπ∗(σ<nL·)→ 0.

We have seen this for n = m. For n > m we have to consider the maps.

Rqπ∗(σ≥nL·)→ Rqπ∗(σ≥mL·)→ Rqπ∗L·

It suffices to show that the first arrow is injective. But this follows from the
beginning of our induction.
Finally we consider the case n < m. By the cohomology sequence it is sufficient
to see that the map

Rqπ∗L· → Rqπ∗(σ<nL·)

is surjective. But this map factors as:

Rqπ∗L· → Rqπ∗(σ<mL·)→ Rqπ∗(σ<nL·)

We need to show that the second map is surjective. But the complex σ<mL· is
the tensor product of σ<mK · with an (m− 1)-stationary sequence of modules.
Therefore the map is surjective by induction assumption and we are done.
Q.E.D.

Proposition 3.3 Let T : C → D be a left exact functor of abelian categories
such that C has enough injective objects. Let K · be a complex in C which is
bounded below. We assume that the spectral sequences in hypercohomology

Eij1 = RjTKi ⇒ Ri+jTK ·

degenerates. Let f · : K · → K · be a homomorphism of complexes. Then for each
integer m the corresponding spectral sequence of hypercohomology associated to
the complex

K(m, f) :
d→ Km−2 d→ Km−1 f

md→ Km d→ Km+1 → . . .

degenerates.

We omit the proof because it uses exactly the same arguments as above.
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4 Filtered Comparison Theorems for the de Rham-Witt complex

Let R be a ring such that p is nilpotent in R. We consider a smooth scheme X
over R. We will fix a natural number n. Assume we are given a smooth lifting
X̃/Wn(R). If X̃ admits a Witt-lift ([LZ] Def.3.3) OX̃ −→ Wn(OX) we obtain
a morphism of complexes

Ω·
X̃/Wn(R)

−→ Ω·Wn(X)/Wn(R) −→WnΩ·X/R. (27)

It is shown in [LZ] 3.2 and 3.3, that even if X̃ admits no Witt lift, there is a
natural isomorphism in the derived category D+(Xzar,Wn(R)) of sheaves of
Wn(R)-modules on X :

Ω·
X̃/Wn(R)

−→WnΩ·X/R.

The aim of this section is to prove a filtered version of this isomorphism.
For typographical reasons we use the abbreviations:

Ω̃·n = Ω·
X̃/Wn(R)

, WnΩ
· = WnΩ

·
X/R.

Let us denote by FmΩ·
X̃/W (R)

the complex

IR,n ⊗Wn(R) Ω̃0
n
pd→ . . .

pd→ IR,n ⊗Wn(R) Ω̃m−1
n

d→ Ω̃mn
d→ Ω̃m+1

n → . . . . (28)

Conjecture 4.1 There is a canonical isomorphism in the derived category
D+(Xzar,Wn(R)) between the Nygaard complex and the complex (28):

NmWnΩ·X/R ∼= FmΩ·
X̃/Wn(R)

This question is closely related to the work of Deligne and Illusie [DI]. We will
now see that the complexes in question are always locally isomorphic.
Let us assume we are given a Witt-lift. It induces a map

κ : Ω̃·n −→WnΩ·.

By composition with the Frobenius F : WnΩ· →Wn−1Ω
·
[F ] we obtain a map

F̃ :IR,n ⊗Wn(R) Ω̃·n −→Wn−1Ω[F ].
V ξ ⊗ ω 7−→ ξ Fκ(ω)

Using F̃ we obtain a morphism of complexes of FmΩ̃· −→ NmWnΩ:

IR ⊗ Ω̃0
n

pd−−−−→ . . .
pd−−−−→ IR ⊗ Ω̃m−1

n
d−−−−→ Ω̃mn

d−−−−→ . . .

F̃

y F̃

y
y

Wn−1Ω
0
[F ]

d−−−−→ . . .
d−−−−→ Wn−1Ω

m−1
[F ]

dV−−−−→ WnΩm
d−−−−→ . . .

(29)
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Let us consider the morphism (29) in the following simple situation:
Let A = R[T1, . . . , Td] and X = SpecA. We set Ã = Wn(R)[T1, . . . Td] and
X̃ = Spec Ã. We consider the Witt-lift:

Ã −→Wn(A)

Ti −→ [Ti].
(30)

It is the unique map of Wn(R)-algebras, which maps Ti to its Teichmüller
representative in Wn(A).

Proposition 4.2 For the Witt-lift (30) the induced morphism

FmΩ·
X̃/Wn(R)

−→ NmWnΩ·X/R (31)

is for any m ≥ 0 a quasi-isomorphism.

Proof: We use the Wn(R)-basis of Ωl
Ã/Wn(R)

given by p-basic differential

forms. For each weight function k : [1, d]→ Z≥0 we fix an order on the set

Supp k = {i1, . . . , ir}, such that

ordpki1 ≤ · · · ≤ ordpkir .
For any ascending partition of Supp k into disjoint intervals

P : Supp k = I0 ⊔ I1 ⊔ · · · ⊔ Il,
such that It 6= ∅ for 1 ≤ t ≤ l, we have the p-basic differential

ẽ(k,P) = T kI0
(
p−ordpkI1dT kI1

)
· · · · ·

(
p−ordpkIl dT Il

)
. (32)

The order on Supp k is fixed once for all and therefore not indicated in the
notation (compare [LZ] 2.1).
In [LZ] 2.2 we have defined the basic Witt differentials

en(ξ, k,P) ∈WnΩlA/R.

They are defined for functions k : [1, d] → Z≥0[
1
p ], and ξ ∈ V u(k)Wn−u(k)(R),

where u(k) is the minimal nonnegative integer, such that the weight pu(k)k
takes integral values.
In our case the map (27) is the unique Wn(R)-linear map given by

Ωl
Ã/Wn(R)

−→ WnΩ
l
A/R.

ẽ(k,P) 7−→ en(1, k,P).
(33)

The map F̃ looks as follows

F̃ :IR ⊗Wn(R) Ωl
Ã/Wn(R)

−→Wn−1Ω
l
A/R,[F ]

V ξ ⊗ ẽ(k,P) 7−→ en−1(ξ, pk,P).
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For each weight k : [1, d] −→ Z≥0[
1
p ], we consider the subgroup WnΩlA/R(k)

of WnΩlA/R, which is generated by basic Witt-differentials en(ξ, k,P) of fixed
weight k. The complex NmWnΩ splits into a direct sum of subcomplexes
Nm(k):

Wn−1Ω
0
[F ](pk)

d→ · · · d→Wn−1Ω
m−1
[F ] (pk)

dV→ WnΩ
m
[F ](k)→ · · · .

Similarly let Ωl
Ã/Wn(R)

(k) ⊂ Ωl
Ã/Wn(R)

the Wn(R)-submodule generated by the

p-basic differentials ẽ(k,P) of fixed integral weight k. Then FmΩ̃· is the direct
sum of the following subcomplexes Fm(k):

IR ⊗Wn(R) Ω̃0
n(k)

pd→ · · · pd→ IR ⊗Wn(R) Ω̃m−1
n (k)

d→ Ω̃mn (k)→ · · · .
It is obvious that for integral weight k the map

Fm(k) −→ Nm(k) (34)

is an isomorphism of complexes. Therefore the proposition follows if we show
that for k not integral the complexes Nm(k) are acyclic. This follows in degrees
not equal tom−1 orm from the corresponding statement for the de Rham-Witt
complex (see [LZ] Proof of thm. 3.5).
For non-integral k consider a cycle ω ∈ Wn−1Ω

m−1
[F ] (k), i.e. dV ω = 0. Because

of the relation FdV = d, it follows that ω is also a cycle in the de Rham-Witt
complex Wn−1Ω

· and consequently a boundary, because k is not integral.
Finally consider a cycle ω ∈ WnΩ

m(k). It may be uniquely written as a sum

ω =
∑

P
en(ξP , k,P).

By [LZ] Prop. 2.6 ω is a cycle, iff P = ∅ ⊔ P ′, i.e. iff the first interval I0 of the
partition P is empty, for all en(ξP , k,P) 6= 0 which appear in the sum. Since k
is not integral the coefficient ξP is of the form ξP = V τP and

d V en−1(τP , pk,P) = en(ξP , k,P).

Q.E.D.

We make n variable. We set A = R[T1, . . . , Td], An = Wn(R)[T1 . . . Td]. We
extend the Frobenius homomorphism F : Wn(R) −→Wn−1(R) to a map

φn :An −→ An−1,

Ti 7−→ T pi .
(35)

We denote δn : An −→ Wn(A) the Wn(R)-algebra homomorphism, such that
δn(Ti) = [Ti].
Assume we are given an étale homomorphism A −→ B of R-algebras. Then we
find a unique set of lifting Bn of B, which are étale over An and morphisms
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ψn : Bn −→ Bn−1 and εn : Bn −→Wn(B),

which are compatible with φn and δn, compare [LZ] Prop. 3.2.

Corollary 4.3 The map εn defines a quasi-isomorphism of complexes:

IR ⊗ Ω0
Bn/Wn(R)

pd−−−−→ . . .
pd−−−−→ IR ⊗ Ωm−1

Bn/Wn(R)

d−−−−→ ΩmBn/Wn(R) . . .

F̃

y F̃

y
y

Wn−1Ω
0
B/R,[F ]

d−−−−→ . . .
d−−−−→ Wn−1Ω

m−1
B/R,[F ]

dV−−−−→ WnΩ
m
B/R . . .

Proof: For the given number n, we find a number m such that pmWn(R) = 0.
Let us denote by φm : Am+n −→ An the composite of m morphisms of type
(35). It is clear from the definition that

dφm : Am+n −→ Ω1
An/Wn(R)

is zero. Consider the commutative diagram

Bm+n
dψm→ Ω1

Bn/Wn(R)

↑ ↑
Am+n

dφm→ Ω1
An/Wn(R).

The derivation Am+n −→ Ω1
Bn/Wn(R) is zero. Since Bm+n/Am+n is étale, the

extension dψm is zero too.
Consider the commutative diagram

Bm+n
ψm−→ Bm

↑ ↑
Am+n

φm→ An.

It induces a morphism of algebras which are étale over An:

Bm+n ⊗Am+n,φm An −→ Bn. (36)

This is an isomorphism. Indeed since An −→ A/pA has nilpotent kernel it
is enough to show that (36) becomes an isomorphism after tensoring with
⊗AnA/pA. But then we obtain the well-known isomorphism

B/pB ⊗A/pA,Frobm A/pA −→ B/pB

b⊗ a 7−→ bp
m · a.

From the isomorphism (36) we deduce an isomorphism

Bm+n ⊗Am+n,φm
Ω·An/R−̃→ Ω·Bn/R

b ⊗ ω 7−→ ψm(b) · ω.
(37)
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We note that (37) becomes an isomorphism of complexes if we take 1 ⊗ d as
a differential on the left hand side. Hence the first row of (4.3) is obtained by
tensoring the corresponding complex for Bn = An with Bn+m.
Let us consider the complex

Wn−1Ω
0
A/R,[F ]

d→ · · · d→Wn−1Ω
m−1
A/R,[F ]

dV→ WnΩmA/R
d→ · · · . (38)

We consider it as a complex of Wn+m(A)-modules via Fm : Wn+m(A) −→
Wn(A). Then all differentials become linear (compare [LZ] Remark 1.8).
This shows that we obtain the second row of diagram of Corollary 4.3 if we ten-
sorize (38) with Wn+m(B)⊗Wn+m(A),Fm . Because of the obvious isomorphism
([LZ] (3.2))

Bn+m ⊗An+m,δ Wn+m(A)→̃Wn+m(B),

the result is the same if we tensorize (38) by

Bn+m ⊗An+m,δφm .

Therefore the whole diagram of Corollary 4.3 is obtained from the correspond-
ing diagram for B = A by tensoring with Bn+m⊗An+m,φm

. Since this ten-
sor product is an exact functor we obtain the corollary from the proposition.
Q.E.D.

LetX/R be a smooth scheme. We assume that R is reduced and p·R = 0. Then
we consider still another complex derived from the de Rham-Witt complex. We
set WΩl = WΩlX/R and define ImWnΩX/R starting in degree 0.

pm−1VWn−1Ω
0 d→ pm−2VWn−1Ω

1 d→ · · · d→ VWn−1Ω
m−1 d→WnΩ . . . . (39)

We recall the relation pd V ω = V dω of [LZ] 1.17. For varying n we obtain a
procomplex ImW·ΩX/R.

Proposition 4.4 Let R be a reduced ring of char p. The procomplexes ImW·Ω
and NmW·Ω are isomorphic in the pro-category of the category of complexes
of abelian sheaves on Xzar.

Proof: We have an obvious morphism of procomplexes

NmW·Ω −→ ImW·Ω (40)

Wn−1Ω
0
[F ]

d
→ Wn−1Ω

1
[F ] . . . Wn−1Ω

m−1
[F ]

dV
→ WnΩm d

→ . . .

pm−1V ↓ pm−2V ↓ V ↓ id ↓

pm−1V Wn−1Ω
0 d

→ pm−2V Wn−1Ω
1 . . . V Wn−1Ω

m−1 d
→ WnΩm d

→ . . . .

We have to prove that this induces an isomorphism of proobjects. We set
WΩ = lim

←−
WnΩ. On WΩ the multiplication by p and the Verschiebung are

injective. Therefore we have an inverse piVWΩ
p−iV −1

−→ WΩ[F ].
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Lemma 4.5 Let n > k ≥ i + 1. Then there is a map piVWnΩ
l −→ Wn−kΩl,

which makes the following diagram commutative

piVWnΩ
l
X/R −→ Wn−kΩlX/R,[F ]

↑ ↑
piVWΩlX/R

p−iV −1

−→ WΩlX/R,[F ].

(41)

Proof of the lemma: Let n > k ≥ i. For ξ ∈ Wn(R) we denote by ξ̄ its
restriction to Wn−k(R). Then we have a well-defined map

piVWn(R) −→ Wn−k(R)

pi V ξ 7−→ ξ̄.
(42)

Indeed, write ξ = (x0, . . . , xn−1). Then

pi V ξ = (0, . . . , 0, xp
i

0 , . . . , x
pi

n−i−1) ∈ Wn+1(R).

Therefore the vector (x0, . . . , xn−i−1) ∈ Wn−i(R) is uniquely determined by
pi V ξ. We view Wn−i(R) as a Wn+1(R)-module via

Wn+1(R)
F−→Wn(R)

Res−→Wn−i(R).

Then we obtain a morphism of Wn+1(R)-modules because of the following
commutative diagram

piVW (R)
p−iV −1

−→ W (R)
↓ ↓

piVWn(R) −→ Wn−i(R).

The existence of the diagram (41) is clearly local for the Zariski-topology on
X .
We begin with the case, where X = SpecA and A = R[T1, . . . , Td] is a poly-
nomial algebra. In this case an element of piVWΩlA/R may be expressed, in
terms of basic Witt-differentials:

ω =
∑

pi V en(ξP,k, k,P), ξP,k ∈ V u(k)Wn−u(k)(R). (43)

Note that en(ξP,k, k,P) = 0, when u(k) ≥ n.
The terms of the sum (43) are uniquely determined by [LZ] Prop.2.5 because
of the direct decomposition

Wn+1Ω
l
A/R = ⊕k,PWn+1Ω

l
A/R(

k

p
,P).

Using loc. cit. we find:

pi V e(ξP,k, k,P) = pi V e(ξ′P,k, k,P), (44)
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iff pi V ξP,k = pi V ξ′P,k, except in the case where k/p is not integral and I0 = ∅.
In the latter case the equality (44) holds, iff pi+1 V ξP,k = pi+1 V ξ′P,k.
With the lemma above this shows that the following map is well-defined:

piVWnΩl −→ Wn−(i+1)Ω
l

ω 7−→
∑

en−(i+1)(ξ̄k,P , k,P).

This proves the lemma in the case of a polynomial algebra A. Assume now
that A −→ B is a étale morphism.
The image of the canonical injection

Wn+1(B)⊗Wn+1(A) p
iVWnΩA/R →Wn+1(B)⊗Wn+1(A)WnΩA/R ≃Wn+1ΩB/R

coincides with piVWnΩB/R. This follows from the following commutative dia-
gram

Wn+1(B)⊗Wn+1(A),F WnΩA/R
∼−−−−→ WnΩB/R

id⊗piV
y piV

y

Wn+1(B)⊗Wn+1(A) Wn+1ΩA/R
∼−−−−→ Wn+1ΩB/R.

The top horizontal arrow is given by ξ ⊗ ω 7→F ξω and the lower horizontal
arrow is multiplication.
Now we find the desired map by tensoring piVWnΩA/R −→Wn−(i+1)ΩA/R:

Wn+1(B) ⊗Wn+1(A) p
iVWnΩA/R −→ Wn−i(B)⊗Wn−i(A),F Wn−(i+1)ΩA/R

≀ ↓ ≀ ↓
piVWnΩB/R −→ Wn−(i+1)ΩB/R.

The composition of the last map with piV : Wn−(i+1)ΩB/R −→ Wn−iΩB/R is
just the restriction. This proves the lemma. Q.E.D.
The proposition follows immediately because we obtain an inverse to the map
(40):

pm−1V Wn−1Ω
0 d

→ pm−2V Wn−1Ω
1 . . . V Wn−1Ω

m−1 d
→ WnΩm . . .

↓ ↓ ↓ ↓Res

Wn−m−1Ω
0
[F ]

d
→ Wn−m−1Ω

1
[F ] . . . Wn−m−1Ω

m−1
[F ]

dV
→ Wn−m−1Ω

m . . .

The first m vertical maps defined by the lemma are equivariant with respect
to

Wn(R)
Res→ Wn−m(R)

F→Wn−m−1(R)
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The remaining maps are equivariant with respect to Wn(R)→ Wn−m(R). The
commutativity of the diagram follows, since it is a homomorphic image of a
corresponding diagram for WΩ without level. This proves the proposition.
Q.E.D.
Let X/R be a smooth scheme. Let us denote by JX/Wn(R) ⊂ OX/Wn(R) the

sheaf of pd-ideals. We denote by J [m]
X/Wn(R) its m-th divided power. Let

un : Crys(X/Wn(R)) −→ Xzar

be the canonical morphism of sites. We are going to define a morphism in
D(Xzar) the derived category of abelian sheaves on Xzar for m < p:

Run∗J [m]
X/Wn(R) −→ ImWnΩ

·
X/R (45)

In order to define (45) we begin with the case, where X admits an embedding
in a smooth scheme Y/R, such that Y has a Witt-lift: Ỹ /Wn(R) and OỸ −→
Wn(OY ).
The left hand side of (45) may be computed with the filtered Poincaré lemma
[BO] Theorem 7.2: Let D be the divided power hull of X in Ỹ . Let ID ⊂
OD be the pd-ideal. The pd-de Rham-complex Ω̆D/Wn(R) has the following

subcomplex FilmΩ̆D/Wn(R):

I
[m]
D Ω̆◦D/Wn(R)

d→ I
[m−1]
D Ω̆1

D/Wn(R)
d→ . . . IDΩ̆m−1

D/Wn(R)

d→ Ω̆D/Wn(R) . . . (46)

Then the left hand side of (45) is isomorphic to the hypercohomology of (46).
The Witt-lift defines a morphism

OỸ −→Wn(OY ) −→Wn(OX).

It maps the ideal sheaf of X ⊂ Ỹ to the ideal sheaf IX = VWn−1(OX) ⊂
Wn(OX). Since IX is endowed with divided powers, we obtain

OD −→Wn(OX), (47)

mapping ID to IX . The homomorphism (47) induces a map of the pd-de Rham
complexes

Ω̆D/Wn(R) −→ Ω̆Wn(X)/Wn(R) −→ WnΩX/R.

Taking into account that I
[h]
X = ph−1IX for h < p, we obtain the desired

morphism from (46) to the complex ImWnΩ if m < p:

pm−1IXWnΩ
0
X/R −→ . . . −→ IXWnΩ

m−1
X/R

d→WnΩX/R → . . . .

We note that IXWnΩlX/R = VWn−1Ω
l
X/R follows from the formula

V (ηdω1 . . . dωr) = V ηd V ω1 . . . d
V ωr.
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Hence we obtain a morphism

Run∗J [m]
X/Wn(R)→̃FilmΩ̆D/Wn(R) −→ ImWnΩX/R. (48)

The independence of the last arrow from the embedding of X into a Witt
lift (Y, Ỹ ) is proved in a standard manner: Let X →֒ Y ′ be an embedding
into a second Witt lift (Y ′, Ỹ ′). Then we obtain a Witt lift of the product
Y ×SpecR Y

′ : Indeed, Ỹ ×SpecWn(R) Ỹ
′ is a lifting of Y ×Y ′ and the two given

Witt lifts induce a morphism:

OỸ ⊗Wn(R) OỸ ′ −→Wn(OY )⊗Wn(R) Wn(OY ′) −→Wn(OY ⊗OY ′).

If P denotes the pd-hull of X in Ỹ ×SpecWn(R) Ỹ
′. We obtain a commutative

diagram

FilmΩ̆D/Wn(R)

��

((RRRRRRRRRRRRR

ImWnΩX/R

FilmΩ̆P/Wn(R)

66lllllllllllll

Since the vertical arrow induces by [BO] the identity on Run∗J [m]
X/Wn(R) the

independence of (45) of the chosen Witt lift follows.

If X admits no embedding in a smooth scheme Y which has a Witt lift, one
can proceed by simplicial methods [I] or [LZ] §3.2, but we omit the details here.

Theorem 4.6 For each m < p and n the map in D+(Xzar,Wn(R))

Run∗J [m]
X/Wn(R) −→ ImWnΩX/R (49)

is a quasi-isomorphism.

Proof: Clearly the question is local for the Zariski-topology on X . We
may therefore assume that X = SpecB, where the R-algebra B is étale over
R[T1, . . . , Td]. From the discussion above we know that any Witt-lift of B
leads to the same morphism (49). We choose a Frobenius lift {Bn}n∈N of the
algebra B as in the corollary 4.3. We begin with the reduction to the case
B = R[T1, . . . , Td]. Let J be the kernel of Bn −→ B. Then J [i] = pi−1IRBn,
where IR = VWn−1(R) ⊂ Wn(R). Hence we have to show that the following
morphism of complexes induces a quasi-isomorphism:
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pm−1IRΩ0
Bn/Wn(R)

d−−−−→ . . . IRΩm−1
Bn/Wn(R)

d−−−−→ ΩmBn/Wn(R)

d−−−−→
y

y
y

pm−1VWn−1Ω
0
B/R

d−−−−→ . . . V Wn−1Ω
m−1
B/R

d−−−−→ WnΩ
m
B/R

d−−−−→
(50)

We choose a number s, such that psWn(R) = 0. We consider the groups
in the first complex as Bn+s modules via ψs : Bn+s → Bn. As shown in
the proof of Corollary 4.3 we obtain a complex of Bn+s-modules. The same
is true if we consider the groups in the second complex as Bn+s-modules by
ψs : Bn+s → Bn →Wn(B).
We obtain the diagram above from the corresponding diagram for B = A by
tensoring with Bn+s⊗An+s . Since Bn+s is étale over An+s, we have reduced
our statement to the case where B = R[T1, . . . , Td] and where the Witt-lift is
a standard one.
In the case of a polynomial algebra we have a decomposition of the de Rham
Witt complex according to weights [LZ] 2.17.
Because the operator V is homogeneous, we have a similar decomposition
for the complex ImWnΩA/R. In fact, by [LZ] Prop. 2.5 an element of

pm−l−1VWn−1Ω
l, for l ≤ m− 1 may be uniquely written as a sum of elements

of the following types
en(p

m−l−1 V ξ, k, I0, . . . , Il) for k integral
en(p

m−l−1 V ξ, k, I0, . . . , Il) for I0 6= ∅, k not integral
en(p

m−l V ξ, k, I0, . . . , Il) for I0 = ∅, k not integral.
Here ξ ∈ Wn−1(R) for k integral and ξ ∈ V u(k)−1Wn−u(k)(R) for k nonintegral.
Clearly the elements of the first type span a subcomplex of ImWnΩA/R which
is isomorphic to the complex in the first row of (50). Indeed, the p-basic
differentials of this complex are mapped to basic Witt-differentials of the first
type above. The last two types of Witt-differentials above span an acyclic
subcomplex because of the formula

den(p
m−l−1 V ξ, k, I0, . . . , Il) = en(p

m−l−1 V ξ, k, φ, I0, . . . , Il),

for I0 6= ∅ and k not integral. The exactness of the non integral part atWnΩ
m
B/R

follows in the same way. Q.E.D.

Let Xn/Wn(R) be a compatible system of smooth liftings of X/R for n ∈ N.
The Theorem 4.6 provides an isomorphism in the derived category between
ImWnΩX/R and

pm−1IRΩ0
Xn/Wn(R) → pm−2IRΩ1

Xn/Wn(R) → . . . IRΩm−1
Xn/Wn(R) → Ωm−1

Xn/Wn(R) . . . .
(51)

We know by Proposition 4.4 that {ImWnΩX/R} is isomorphic to the procom-
plex {NmWnΩX/R}. The same argument shows that the procomplex (51) is
quasi-isomorphic to {FmΩ·Xn/Wn(R)}n∈N . Passing to the projective limit we
obtain:
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Corollary 4.7 Let R be a reduced ring. Let X/R be a smooth and proper
scheme. Assume that Xn/Wn(R) is a compatible system of smooth liftings of
X. Then there is for each number m < p a natural isomorphism in the derived
category D+(Xzar,W (R)):

NmWΩ·X/R ∼= FmΩ·X/W (R),

where X = lim
−→

Xn in the sense of EGA I Prop. 10.6.3.

This is a weak form of the Conjecture 4.1 which asserts this for every level
separately.

5 Display Structure on crystalline cohomology

Let R be a ring such that p is nilpotent in R. Let (A, σ, α) be a frame for R
[Z1]. This means that A is a torsion free a p-adic ring with an endomorphism
σ : A → A, which induces the Frobenius endomorphism A/pA → A/pA.
The map α : A → R is a surjective ring homomorphism, such that the ideal
a = Kerα has divided powers.

Definition 5.1 An A-window consists of

1) A finitely generated projective A-module P0.

2) A descending filtration of P0 by A-submodules

. . . Pi+1 ⊂ Pi ⊂ · · · ⊂ P2 ⊂ P1 ⊂ P0. (52)

3) σ-linear homomorphisms

Fi : Pi → P0.

The following conditions are required.

(i) aPi ⊂ Pi+1 and the factor module Pi+1/aPi is a finitely generated projec-
tive R-module Ei+1 for i ≥ 0. We set E0 = P0/aP0.

(ii) The inclusions Pi+1 → Pi induce injective R-module morphisms

· · · → Ei+1 → Ei → · · · → E0,

such that Ei+1 is a direct summand of Ei.

(iii) aPi = Pi+1 if i is big enough.

(iv) Fi(x) = pFi+1(x) for x ∈ Pi+1.

(v) The union of the images Fi(Pi) for i ∈ Z≥0 generate P0 as an A-module.
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A window is called standard if it arises in the following way. Let L0, . . . , Ld be
finitely generated projective A-modules. Let

Φi : Li →
d⊕

j=0

Lj

be σ-linear homomorphisms, such that the determinant of Φ0 ⊕ · · · ⊕ Φd is a
unit. Then we set for i ≥ 0

Pi = aiL0 ⊕ ai−1L1 ⊕ . . .⊕ aLi−1 ⊕ Li ⊕ · · · ⊕ Ld.
We define Fi on this direct sum as follows: The restriction of Fi to ai−kLk for
k < i resp. Lk for k ≥ i to is defined by

Fi(ax) = σ(a)
pi−k

Φk(x) for 0 ≤ k < i, x ∈ Lk, a ∈ ai−k

Fi(x) = pk−iΦk(x) for i ≤ k x ∈ Lk.

It is clear that (Pi, Fi) form a window.
Each window is isomorphic to a standard window. Indeed, let E0 = ⊕L̄j be a
splitting of the filtration (52) in the definition:

Ei = ⊕j≥iL̄j.

Let Li be a finitely generated projective A-module which lifts L̄i. We find
homomorphisms Li → Pi which make the following diagrams commutative:

L̄i −−−−→ Eix
x

Li −−−−→ Pi.

It follows from the lemma of Nakayama that ⊕Li → P0 is an isomorphism,
since it is modulo a. By induction we obtain

Pi = aiL0 ⊕ · · · ⊕ aLi−1 ⊕ Li ⊕ · · · ⊕ Ld. (53)

We set Φi = Fi|Li. The condition (v) implies that ⊕Φi : ⊕Lj → ⊕Lj is a
σ-linear epimorphism and therefore an isomorphism.
Remark: A window (Pi) is of degree d, if Pi+1 = aPi for i ≥ d. To give
a window of degree d it is enough to give only the modules P0, . . . , Pd. The
axioms may be formulated in the same way for this finite chain of modules. The
axiom (v) then requires that the union of F0(P0), F1(P1) . . . , Fd(Pd) generates
P0 as an A-module.
We will now see that an A-window induces a display over R. There is a natural
ring homomorphism δ : A → W (A), such that for the Witt-polynomials wn

there is the identity
wn(δ(a)) = σn(a), a ∈ A.
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Consider the composite ring homomorphism.

κ : A→ W (A)→W (R).

We have by [Z1] Prop. 1.5:

κ(σ(a)) = Fκ(a) for a ∈ A

κ(σ(a)
p ) = V −1

κ(a) for a ∈ a.

The last equation makes sense because κ(a) ∈ VW (R) for a ∈ a.
It is clear that a datum (Li,Φi) for a standard window over A induces the
datum (W (R)⊗W (A) Li, F ⊗ Φi) for a standard display over R. We will show
that the resulting display does not depend on the decomposition P0 = ⊕Li we
have used.
We give an invariant construction of a display (Qi, ιi, αi, Fi) from a window
(Pi, Fi). The display comes with morphisms τi : Pi → Qi such that the follow-
ing diagrams commute

Pi
τi−−−−→ Qix ιi

x

Pi+1
τi+1−−−−→ Qi+1

Pi+1
τi+1−−−−→ Qi+1x αi

x

a⊗ Pi −−−−→ IR ⊗W (R) Qi

P0
τ0−−−−→ Q0

Fi

x Fi

x

Pi+1
τi−−−−→ Qi.

(54)
We construct Qi and τi inductively, such that the diagrams (54) commute. We
set Q0 = W (R)⊗κ,A P0 and we let τ0 : P0 → Q0 be the canonical map.
Assume that τk : Pk → Qk was constructed for k ≤ i. Then we consider the
following commutative diagrams:

Pi
τi // Qi

Fi // Q0

Q0

p

OO

Pi+1

ι

OO

Fi+1 // P0

τ0

OO
Qi

Fi // Q0

IR ⊗Qi

OO

F̃i // Q0

p

OO

We obtain a morphism to the fibre product

(W (R)⊗A Pi+1)⊕ (IR ⊗Qi)→ Qi ×Fi,Q0,p Q0. (55)

We define Qi+1 as the image of (55). This gives a map Pi+1
τi+1→ Qi+1. We

define ι : Qi+1 → Qi and Fi+1 : Qi+1 → Q0 and αi : IR ⊗ Qi → Qi+1 as
the canonical maps determined by these data. A routine verification shows
that this construction gives the same result as the construction via standard
windows.
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Moreover the following universal property holds. Let (Q′i, ι
′
i, α
′
i, F
′
i ) be a display

over R and let τ ′i : Pi → Q′i be maps such that the diagrams (54) for τ ′i
commute. Then the maps τ ′i are the composition of τi and a morphism of
displays (Qi, ιi, αiFi)→ (Q′i, ι

′
i, α
′
i, F
′
i ).

Let A
α→ R, σ, a as before. Let X → SpecR be a scheme which is projective

and smooth. Let Y f→ Spf A be a smooth pA-adic formal scheme, which lifts
X . We set An = A/pn and Yn = Y ×SpfA SpecAn. For big n the map α

factors through An
αn→ R. The kernel an inherits a pd-structure. We consider

the crystalline topos (X/A)crys. Let JX/An ⊂ OX/An be the pd-ideal sheaf.
We are interested in the cohomology groups:

Hi(X,J [m]
X/A) = lim

←−
n

Hi
crys(X/An,J [m]

X/An
). (56)

Remark: It would be more accurate to consider the cohomology groups of

R lim
←−
n

RΓ(X/An,J [m]
X/An

). But under the Assumptions 5.2 and 5.3 we are going

to make these groups will coincide.

By [BO] 7.2 the groups Hi
crys(X/An,J [m]

X/An
) are the hypercohomology groups

of the following complex Fil[m]Ω·Yn/An :

a[m]
n ⊗AnΩ0

Yn/An
→ a[m−1]

n ⊗AnΩ1
Yn/An

· · · → an⊗AnΩm−1
Yn/An

→ ΩmYn/An . . . (57)

We will make the following assumptions:

Assumption 5.2 The cohomology groups Hq(Yn,Ω
p
Yn/An

) are for each n lo-

cally free An-modules of finite type.

Assumption 5.3 The de Rham spectral sequence degenerates at E1

Epq1 = Hq(Yn,Ω
p
Yn/An

)⇒ Hp+q(Yn,Ω
·
Yn/An

).

Since Yn is quasicompact and separated by assumption the cohomology sheafs
Rmfn∗Ω·Yn/An are quasicoherent. From the assumption we see that these
sheaves are locally free of finite type. Hence the complex Rfn∗Ω·Yn/An is quasi-
isomorphic to the direct sum of its cohomology groups. This implies that the
cohomology groups Rmfn∗Ω·Yn/An commute with arbitrary base change. The

same applies to the cohomology groups Rqfn∗Ω
p
Yn/An

. By Proposition 3.2 and

the projection formula (Proposition 3.1) we obtain a degenerating spectral se-
quence

Eij1 = Hj(Yn,Ω
i
Yn/An

)⊗An a[m−i] ⇒Hi+j(Yn, F il
[m]Ω·Yn/An)

‖
Hi+j
crys(X/An,J [m]

X/An
)
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If we pass to the projective limit we obtain a degenerating spectral sequence

Eij1 = a[m−i] ⊗Hj(Y,ΩiY/A)⇒ Hi+j
crys(X/A,J [m]

X/A). (58)

The groups involved have no p-torsion.
We set X̄ = X ×SpecR Spec R̄, where R̄ = R/pR. By [BO] 5.17 there is a
canonical isomorphism

Hi
crys(X/A,OX/A) ≃ Hi

crys(X̄/A,OX̄/A). (59)

The absolute Frobenius on X̄ and σ on A induce an endomorphism on the right
hand side of (59) and therefore an endomorphism

F : Hi
crys(X/A,OX/A)→ Hi

crys(X/A,OX/A).

Lemma 5.4 Let p[m] be the maximal power of p which divides pm/m! Then the
image of the following composition

Hi
crys(X/A,J [m]

X/A)→ Hi
crys(X/A),OX/A)

F→ Hi
crys(X/A,OX/A)

is contained in p[m]Hi
crys(X/A,OX/A).

Proof: The argument is well known [K], but we repeat it in the generality we
need. We may replace A by An. We embed X into a smooth and projective
An-scheme Z, such that there is an endomorphism σ : Z → Z which lifts the
absolute Frobenius modulo p and which is compatible with σ on An. We may
take for Z the projective space. Consider the pd-hull D of X in Z. It is also
the pd-hull of X̄ in Z. Therefore σ extends to D/An and to the pd-differentials
Ω̆D/An . We obtain by [BO] an isomorphism

Hi(X, Ω̆·D/An)
∼−→ Hi

crys(X/A,OX/An),

which is equivariant with respect to the action of σ on the left hand side and
F on the right hand side.
Consider the morphisms

X̄ → D → Z.

Let I(X̄) be the ideal of X̄ in Z and J̄D be the ideal of X̄ in D. Consider the
diagram

(OZ , I(X̄)) //

σ

��

κ

&&NNNNNNNNNNN
(OD, J̄D)

σD

��
(OZ , I(X̄)) // (OD, J̄D)

The composite κ maps I(X̄) to p · OD. This follows because

σ(z) ≡ zp mod p for z ∈ OZ . (60)
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If z ∈ I(X̄) the image of zp in J̄D becomes divisible by p, because we have
divided powers. Therefore the induced map σD on the divided power envelope
maps J̄D to pOD. Therefore

σ(J̄ [m]
D ) ⊂ p[m]OD.

For z ∈ OZ we find from (60) that in Ω̆1
D/An

:

dσ(z) ≡ 0 mod p.

The composite map of the lemma is induced by a map of complexes:

J [m]
D Ω̆◦D/An −−−−→ . . . −−−−→ J [m−i]

D Ω̆iD/An −−−−→ . . .

σ

y σ

y

Ω̆◦D/An −−−−→ . . . −−−−→ Ω̆iD/An −−−−→ . . . .

(61)

The image of this map lies in p[m] · Ω̆·D/An = p[m]An ⊗L
An

Ω̆D/An . The last

equality follows since by [BO] 3.32 the sheaf OD is flat over An. The hyperco-
homology of the last complex is by the projection formula

p[m]An ⊗L RΓ(X, Ω̆D/An) = p[m]An ⊗L RΓcrys(X/An,OX/An)
= p[m]An ⊗L RΓ(Yn,Ω

·
Yn/An

)

But the cohomology of the last complex is p[m]Hi(Yn,Ω
·
Yn/An

), since we as-

sumed that the cohomology is locally free. This shows that (61) factors on
the hypercohomology through p[m]Hcrys(X/An,OX/An) = p[m]Hi(Yn,Ω

·
Yn/An

).
Q.E.D.

Theorem 5.5 Let R be a ring, such that p is nilpotent in R. Let X be a
scheme which is projective and smooth over R. Let A → R be a frame. We
assume that X lifts to a projective and smooth p-adic formal scheme Y/ Spf A
such that the assumptions 5.2 and 5.3 are fullfilled. Then for each number
n < p the canonical maps

Hn
crys(X/A,J [m]

X/A)→ Hn
crys(X/A,J [m−1]

X/A )→ · · · → Hn
crys(X/A,OX/A)

are injective. The A-modules Pm = Hn
crys(X/A,J [m]

X/A) for m ≤ n together with

the maps
1

pm
F = Fm : Pm → P0

given by Lemma 5.4 form a window of degree n.

Proof: We consider a number m ≤ n. Then we have JmX/A = J [m]
X/A, a

m =

a[m]. We write Fil[m]Ω·Y/A = lim
←−
n

Fil[m]Ω·Yn/An . Then we find a canonical

isomorphism

Pm = Hn(X,Fil[m]ΩY/A)
∼
= Hn

crys(X/A,JmX/A) (62)
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From the degenerating spectral sequence (58) we obtain the injectivity of Pm →
Pm−1, since we have injectivity on the associated graded groups.
In the following considerations m,n can be arbitrary natural number, without

the restriction m ≤ n < p. Then Fil
[m]
Y/A will be the complex FilmY/A

amΩ0
Y/A → am−1Ω1

Y/A → · · · → aΩm−1
Y/A → ΩmY/A → . . .

Consider the following morphism:

a⊗Hn(X,FilmΩ·Y/A)→ Hn(X, aFilmΩ·Y/A). (63)

We have for aFilmΩ·Y/A a degenerating spectral sequence as (58). Therefore

the right hand side of (63) is a subgroup of Hn(X,FilmΩ·Y/A).
We claim that the induced inclusion is an equality

aHn(X,FilmΩ·Y/A) = Hn(X, aFilmΩ·Y/A). (64)

This equality holds for m = 0 by the projection formula. Indeed, consider the
canonical map:

FilmΩY/A → amΩ0
Y/A → 0.

The kernel is the following complex C:

0→ am−1Ω1
Y/A → · · · → aΩm−1

Y/A → ΩmY/A → . . . .

This complex C is of the same nature as FilmΩ·Y/A but with less ideals involved.
By an induction we may assume that

aHn(X,C) = Hn(X, aC).

By the projection formula we find

aHn(X, amΩ0
Y/A) = am+1Hn(X,Ω0

Y/A).

The assertion (64) follows from the diagram

Hn(X, aC) −−−−→ Hn(X, aFilmΩ·Y/A) −−−−→ Hn(X, am+1Ω0
Y/A)

‖
x ∪

x ‖
x

aHn(X,C) −−−−→ aHn(X,FilmΩ·Y/A) −−−−→ aHn(X, amΩ0
Y/A)

(65)

The upper line is a short exact sequence by a spectral sequence argument as
above. The lower line is a complex. The first arrow is injective and the second
surjective but it is a priori not exact in the middle term. One sees that the
upper and lower line in (63) must be isomorphic. This proves (65).
We have already seen that the following maps are injective

Hn(X, aFilmΩ·Y/A)→ Hn(X,Film+1Ω·Y/A)→ Hn(X,FilmΩ·Y/A).
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Therefore we obtain an exact sequence

0→ Hn(X, aFilmΩ·Y/A)→ Hn(X,Film+1Ω·Y/A)→ Hn(X,σ≥m+1Ω·X/R)→ 0.

Since by (64) the map a ⊗ Hn(X,FilmΩY/A) → Hn(X, aFilmΩ·Y/A) is surjec-
tive, we see that

Pm = Hn(X,FilmΩ·Y/A) and Em = Hn(X,σ≥mΩ·X/R)

fulfill the conditions (i)-(iii) for a window without any restriction on m and n.
We note that for fixed n we have Pm+1 = aPm for m ≥ n. As explained after
the definition of a window, we can obtain a decomposition

Pm = amL0 ⊕ am−1L1 ⊕ · · · ⊕ am−nLn,

with the convention that ak = A if k ≤ 0.
Concretely we can find the liftings Li as follows. We consider the maps:

Hn(X,FilmΩ·Y/A)→ Hn(X,σ≥mΩ·Y/A)→ H(n−m)(X,ΩmY/A)

Then Lm is obtained by splitting the last surjection. This construction gives
isomorphisms:

Lm ∼= H(n−m)(X,ΩmY/A)

We now impose the condition m ≤ n < p of the theorem. By lemma 5.4
and (62) the Frobenius endomorphism F : P0 → P0 is divisible by pm when
restricted to Pm. We set

Φm =
1

pm
F|Lm .

The assertion that {Pm} is a window is then equivalent with the condition that

⊕ni=0Φi : ⊕ni=0Li → ⊕ui=0Li

is a σ-linear isomorphism, or in other words that det(⊕ni=0Φi) is a unit inW (A).
Clearly it suffices to show that for any homomorphism R→ k to a perfect field
k the image of det(⊕Φi) by the morphism

A
κ→W (R)→W (k)→ k

is a nonzero. The compositum map A → W (k) respects the Frobenius and
induces a map on crystalline cohomology

Hn
crys(X/A,OX/A)→ Hn

crys(Xk/W (k),OXk/W (k))

which respects the Frobenius. It is induced by the base change map for de
Rham cohomology.

Hn(X,Ω·Y/A)→ Hn(Xk,Ω
·
Y⊗AW (k)/W (k)).
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The special decomposition we have chosen

Hn(X,Ω·Y/A) = ⊕Li,
induces a similar decomposition

Hn(Xk,Ω
·
YW (k)/W (k)) = Hn(X,Ω·Y/A)⊗AW (k) = ⊕Li ⊗AW (k).

Therefore we have reduced our assertion to the case R = k a perfect field and
A = W (k). This case was proved by Mazur (Compare [Fo] p.91 and Kato [K]
Prop.2.5). We give an argument in the case n < p − 2 which is based on the
comparison Corollary 4.7 but doesn’t use gauges.
For any complex A· of abelian sheaves on X consider the exact sequence in-
duced by the naive filtration.

0→ σ>iA· → A· → σ≤iA· → 0,

where i is an arbitrary integer. If n+ 1 ≤ i we obtain an isomorphism

Hn(X,A·) ∼= Hn(X,σ≤iA·).
We apply this to the Nygaard complex NmWΩ·X/k and to the de Rham-Witt

complex WΩ·X/k. For i ≤ m−1 the operator F̂m (5) induces clearly a bijection
of the truncated complexes

F̂m : σ≤iNmWΩ·X/k → σ≤iWΩ·X/k

Therefore if n+ 1 ≤ i ≤ m− 1 we obtain a bijection

Fm : Hn(X,NmWΩ·X/k)→ Hn(X,WΩ·X/k)

We set m = n + 2. Since m < p by assumption (and because k is reduced)
there are canonical isomorphisms in the derived category:

NmWΩ·X/k ∼= FmΩY/W (k)
∼= FilmΩY/W (k)

But since m > n the map Fm is identified with the linearization of ⊕Φi. This
says that the last map is a Frobenius linear isomorphism. Q.E.D.
Remark: The proof shows that Hn

DR(Y) with its Hodge filtration is strongly
divisible (compare [Fo] 1.2 Prop.) for n < p− 2. If we knew that NmWΩ·X/k
and FmΩY/W (k) are quasi-isomorphic, the last argument would imply that
Hn
DR(Y) is strongly divisible without restriction on n. We note also that the

last argument works directly over any reduced ring k.

Corollary 5.6 Let X be a smooth and projective scheme over a ring R such
that p is nilpotent in R.
Let us assume that there is a frame A→ R and a smooth and projective p-adic
lifting Y/ Spf A of X, which satisfies the conditions of the theorem.
Then we obtain for n < p by base change a display structure of degree n on
Hn
crys(X/W (R),OX/W (R)). This display structure is independent of the frame

A and the formal lifting Y we have chosen if p ·R = 0.
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Proof: For a given frame A the independence of the lifting Y is clear, because
the window structure is purely defined in terms of the crystalline cohomology
of X/A.
If we have a morphism of frames B → A and a formal lifting Z of X to B, then
we set Y = ZA. Then the window associated to Y is obtained from the window
associated to Z by base change (one should think in terms of decompositions
(53)). Therefore the induced displays are the same.
If p ·R = 0 and A′ and A′′ are 2 frames, we obtain a new frame A′×RA′′ → R.
Then σ′ × σ′′ is an endomorphism of A′ ×R A′′ because σ′ and σ′′ induce the
same endomorphism on R. If Y ′/ Spf A′ and Y ′′/ Spf A′′ are formal liftings, we
obtain a formal lifting Y ′ ×κ Y ′′ of X over A′ ×R A′′. Therefore we obtain the
same display structure by base change.

Theorem 5.7 Let R be a reduced ring of characteristic p. Let X/R be a smooth
projective scheme. Assume that there is a compatible system of smooth and
projective liftings Yn/Wn(R). We assume that the assumptions 5.2 and 5.3 are
satisfied with An = Wn(R)
Then there is a display structure on Hn

crys(X/W (R),OX/W (R)) for n < p,
where

Pm = Hn(X,NmWΩX/R) = Hn
crys(X/W (R),J [m]

X/W (R)).

Proof: The second equality is the filtered comparison theorem. If we had a
p-adic lifting Y/ Spf W (R), the theorem would follow from the last one because
W (R)→ R is a frame. The slightly more general statement follows by the same
reasoning as the last theorem. Q.E.D.
We make the following conjecture:

Conjecture 5.8 Let R be a ring such that p is nilpotent in R. Let X/R
be a smooth projective scheme. Let us assume that the crystalline cohomology
groups Hi

crys(X/Wn(R)) are locally free Wn(R)-modules for i ≥ 0 and n > 1,
and that the de Rham spectral sequence

Ep,q1 = Hq(X,ΩpX/R)⇒ Hp+q(X,Ω·X/R)

degenerates.
Then the canonical predisplay structure on Pm = Hn(X,NmWΩX/R) is a dis-
play structure.
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Mathematics 340, Springer 1973.
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1. Introduction

In this article, we propose a description of a class of Calabi-Yau categories using
the formalism of DG-categories and the notion of ‘stabilization’, as used for the
description of triangulated orbit categories in section 7 of [21]. For d ≥ 2, let C
be an algebraic d-Calabi-Yau triangulated category endowed with a d-cluster
tilting subcategory T , cf. [23] [18] [19], see also [3] [13] [14]. Such categories
occur for example,

- in the representation-theoretic approach to Fomin-Zelevinsky’s cluster
algebras [12], cf. [6] [9] [15] and the references given there,

- in the study of Cohen-Macaulay modules over certain isolated singu-
larities, cf. [17] [23] [16], and the study of non commutative crepant
resolutions [36], cf. [17].

From C and T we construct an exact dg category B, which is perfectly (d+1)-
Calabi-Yau, and a non-degenerate aisle U , cf. [25], in H0(B) whose heart has
enough projectives. We prove, in theorem 7.1, how to recover the category C
from B and U using a general procedure of stabilization defined in section 7.
This extends previous results of [24] to a more general framework.
It follows from [30] that for d = 2, up to derived equivalence, the category
B only depends on C (with its enhancement) and not on the choice of T . In
the appendix, we show how to naturally extend a t-structure, cf. [2], on the
compact objects of a triangulated category to the whole category.

Example Let k be a field, A a finite-dimensional hereditary k-algebra and C =
CA the cluster category of A, see [7] [8], i.e. the quotient of the bounded derived
category of finitely generated modules over A by the functor F = τ−1[1], where
τ denotes the AR-translation and [1] denotes the shift functor.
Then B is given by the dg algebra, see section 7 of [21],

B = A⊕ (DA)[−3]

and theorem 7.1 reduces to the equivalence

Db(B)/per(B)
∼−→ CA

of section 7.1 of [21].

2. Acknowledgments

This article is part of my Ph. D. thesis under the supervision of Prof. B. Keller.
I deeply thank him for countless useful discussions and for his perfect guidance
and generous patience. This work was supported by FCT-Portugal, scholarship
SFRH/BD/14035/2003.

3. Preliminaries

Let k be a field. Let E be a k-linear Frobenius category with split idempotents.
Suppose that its stable category C = E , with suspension functor S, has finite-
dimensional Hom-spaces and admits a Serre functor Σ, see [4]. Let d ≥ 2 be
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an integer. We suppose that C is Calabi-Yau of CY-dimension d, i.e. [27] there
is an isomorphism of triangle functors

Sd
∼→ Σ .

We fix such an isomorphism once and for all. See section 4 of [23] for several
examples of the above situation.
For X,Y ∈ C and n ∈ Z, we put

Extn(X,Y ) = HomC(X,S
nY ) .

We suppose that C is endowed with a d-cluster tilting subcategory T ⊂ C, i.e.

a) T is a k-linear subcategory,
b) T is functorially finite in C, i.e. the functors HomC(?, X)|T and

HomC(X, ?)|T are finitely generated for all X ∈ C,
c) we have Exti(T, T ′) = 0 for all T, T ′ ∈ T and all 0 < i < d and

d) if X ∈ C satisfies Exti(T,X) = 0 for all 0 < i < d and all T ∈ T , then
T belongs to T .

Let M ⊂ E be the preimage of T under the projection functor. In particular,
M contains the subcategory P of the projective-injective objects in M. Note
that T equals the quotientM ofM by the ideal of morphisms factoring through
a projective-injective.
We dispose of the following commutative square:

M
� � //

����

E

����
T

� � // E = C .

We use the notations of [20]. In particular, for an additive category A, we de-
note by C(A) (resp. C−(A), Cb(A), . . .) the category of unbounded (resp. right
bounded, resp. bounded, . . .) complexes over A and by H(A) (resp. H−(A),
Hb(A), . . .) its quotient modulo the ideal of nullhomotopic morphisms. By [26],
cf. also [31], the projection functor E → E extends to a canonical triangle func-
tor Hb(E)/Hb(P) → E . This induces a triangle functor Hb(M)/Hb(P) → E .
It is shown in [30] that this functor is a localization functor. Moreover, the
projection functor Hb(M) → Hb(M)/Hb(P) induces an equivalence from the
subcategory HbE-ac(M) of bounded E-acyclic complexes with components inM
onto its kernel. Thus, we have a short exact sequence of triangulated categories

0 −→ HbE-ac(M) −→ Hb(M)/Hb(P) −→ C −→ 0 .

Let B be the dg (=differential graded) subcategory of the category Cb(M)dg
of bounded complexes overM whose objects are the E-acyclic complexes. We
denote by G : H−(M) → D(Bop)op the functor which takes a right bounded
complex X overM to the dg module

B 7→ Hom•M(X,B) ,

where B is in B.
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Remark 3.1. By construction, the functor G restricted to HbE-ac(M) establishes
an equivalence

G : HbE-ac(M)
∼−→ per(Bop)op .

Recall that if P is a right bounded complex of projectives and A is an acyclic
complex, then each morphism from P to A is nullhomotopic. In particular, the
complex Hom•M(P,A) is nullhomotopic for each P in H−(P). Thus G takes
H−(P ) to zero, and induces a well defined functor (still denoted by G)

G : Hb(M)/Hb(P) −→ D(Bop)op .

4. Embedding

Proposition 4.1. The functor G is fully faithful.

For the proof, we need a number of lemmas.
It is well-known that the category H−(E) admits a semiorthogonal decompo-
sition, cf. [5], formed by H−(P) and its right orthogonal H−E-ac(E), the full
subcategory of the right bounded E-acyclic complexes. For X in H−(E), we
write

pX → X → apX → SpX

for the corresponding triangle, where pX is in H−(P) and apX is in H−E-ac(E).
If X lies in H−(M), then clearly apX lies in H−E-ac(M) so that we have an
induced semiorthogonal decomposition of H−(M).

Lemma 4.1. The functor Υ : Hb(M)/Hb(P) −→ H−E-ac(M) which takes X to
apX is fully faithful.

Proof. By the semiorthogonal decomposition ofH−(M), the functorX 7→ apX
induces a right adjoint of the localization functor

H−(M) −→ H−(M)/H−(P)

and an equivalence of the quotient category with the right orthogonal
H−E-ac(M).

H−(P)
_�

��

H−(M)

��

OO

H−E-ac(M) = H(P)⊥? _oo

Hb(M)/Hb(P)
� � // H−(M)/H−(P)

� ?

OO
∼

66lllllll

.

Moreover, it is easy to see that the canonical functor

Hb(M)/Hb(P) −→ H−(M)/H−(P)
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is fully faithful so that we obtain a fully faithful functor

Hb(M)/Hb(P) −→ H−E-ac(M)

taking X to apX .
√

Remark 4.1. Since the functor G is triangulated and takes H−(P) to zero, for
X in Hb(M), the adjunction morphism X → apX yields an isomorphism

G(X)
∼−→ G(apX) = G(ΥX) .

Let D−M(M) be the full subcategory of the derived category D(M) formed by

the right bounded complexes whose homology modules lie in the subcategory
ModM of ModM. The Yoneda functor M→ ModM, M 7→ M∧, induces a
full embedding

Ψ : H−E-ac(M) →֒ D−M(M) .

We write V for its essential image. Under Ψ, the category HbE-ac(M) is identi-
fied with perM(M). Let Φ : D−M(M) → D(Bop)op be the functor which takes

X to the dg module

B 7→ Hom•(Xc,Ψ(B)) ,

where B is in HbE-ac(M) and Xc is a cofibrant replacement of X for the pro-
jective model structure on C(M). Since for each right bounded complex M
with components in M, the complex M∧ is cofibrant in C(M), it is clear that
the functor G : Hb(M)/Hb(P) → D(Bop)op is isomorphic to the composition
Φ ◦Ψ ◦Υ. We dispose of the following commutative diagram

Hb(M)/Hb(P)
� � Υ // H−

E-ac(M)
Ψ //

∼

$$H
HH

HH
HH

HH
H

D−

M
(M)

Φ // D(Bop)op

V
, �

::uuuuuuuuuu�&

44hhhhhhhhhhhh

Hb
E-ac(M)

?�

OO

Hb
E-ac(M)

?�

OO

∼ // perM(M)
R2

ccHHHHHHHHH
?�

OO

∼ // per(Bop)op
?�

OO

Lemma 4.2. Let Y be an object of D−M(M).

a) Y lies in perM(M) iff Hp(Y ) is a finitely presented M-module for all
p ∈ Z and vanishes for all but finitely many p.

b) Y lies in V iff Hp(Y ) is a finitely presented M-module for all p ∈ Z
and vanishes for all p≫ 0.

Proof. a) Clearly the condition is necessary. For the converse, suppose first
that Y is a finitely presentedM-module. Then, as anM-module, Y admits a
resolution of length d+ 1 by finitely generated projective modules by theorem
5.4 b) of [23]. It follows that Y belongs to perM(M). Since perM(M) is
triangulated, it also contains all shifts of finitely presentedM-modules and all
extensions of shifts. This proves the converse.
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b) Clearly the condition is necessary. For the converse, we can suppose without
loss of generality that Y n = 0, for all n ≥ 1 and that Y n belongs to projM,
for n ≤ 0. We now construct a sequence

· · · → Pn → · · · → P1 → P0

of complexes of finitely generated projectiveM-modules such that Pn is quasi-
isomorphic to τ≥−nY for each n and that, for each p ∈ Z, the sequence ofM-

modules P pn becomes stationary. By our assumptions, we have τ≥0Y
∼→ H0(Y ).

Since H0(Y ) belongs to modM, we know by theorem 5.4 c) of [23] that it
belongs to per(M) as an M-module. We define P0 to be a finite resolution of
H0(Y ) by finitely generated M-modules. For the induction step, consider the
following truncation triangle associated with Y

Si+1H−i−1(Y )→ τ≥−i−1Y → τ≥−iY → Si+2H−i−1(Y ) ,

for i ≥ 0. By the induction hypothesis, we have constructed P0, . . . , Pi and we
dispose of a quasi-isomorphism Pi

∼→ τ≥−iY . Let Qi+1 be a finite resolution
of Si+2H−i−1(Y ) by finitely presented projectiveM-modules. We dispose of a
morphism fi : Pi → Qi+1 and we define Pi+1 as the cylinder of fi. We define
P as the limit of the Pi in the category of complexes. We remark that Y is
quasi-isomorphic to P and that P belongs to V . This proves the converse.

√

Let X be in H−E-ac(M).

Remark 4.2. Lemma 4.2 shows that the natural t-structure of D(M) restricts
to a t-structure on V . This allows us to express Ψ(X) as

Ψ(X)
∼−→ holim

i
τ≥−iΨ(X) ,

where τ≥−iΨ(X) is in perM(M).

Lemma 4.3. We dispose of the following isomorphism

Φ(Ψ(X)) = Φ(holim
i

τ≥−iΨ(X))
∼−→ holim

i
Φ(τ≥−iΨ(X)) .

Proof. It is enough to show that the canonical morphism induces a quasi-
isomorphism when evaluated at any object B of B. We have

Φ(holim
i

τ≥−iΨ(X))(B) = Hom•(holim
i

τ≥−iΨ(X), B) ,

but since B is a bounded complex, for each n ∈ Z, the sequence

i 7→ Homn(τ≥−iΨ(X), B)

stabilizes as i goes to infinity. This implies that

Hom•(holim
i

τ≥−iΨ(X), B)
∼←− holim

i
Φ(τ≥−iΨ(X))(B) .

√

Lemma 4.4. The functor Φ restricted to the category V is fully faithful.
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Proof. Let X,Y be in H−E-ac(M). The following are canonically isomorphic :

HomD(Bop)op(ΦΨX,ΦΨY )

HomD(Bop)(ΦΨY,ΦΨX)

HomD(Bop)(hocolim
i

Φτ≥−iΨY, hocolim
j

Φτ≥−jΨX)(4.1)

holim
i

HomD(Bop)(Φτ≥−iΨY, hocolim
j

Φτ≥−jΨX)

holim
i

hocolim
j

HomD(Bop)(Φτ≥−iΨY,Φτ≥−jΨX)(4.2)

holim
i

hocolim
j

HomperM(M)(τ≥−jΨX, τ≥−iΨY )

holim
i

HomV(holim
j

τ≥−jΨX, τ≥−iΨY )(4.3)

HomV(Ψ(X),Ψ(Y )) .

Here (4.1) is by the lemma 4.3 seen inD(Bop), (4.2) is by the fact that Φτ≥−iΨY
is compact and (4.3) is by the fact that τ≥−iΨY is bounded.

√

It is clear now that lemmas 4.1, 4.3 and 4.4 imply the proposition 4.1.

5. Determination of the image of G

Let Lρ : D−(M)→ D−M(M) be the restriction functor induced by the projec-

tion functor M→M. Lρ admits a left adjoint L : D−M(M)→ D−(M) which

takes Y to Y ⊗L
MM. Let B− be the dg subcategory of C−(ModM)dg formed

by the objects of D−M(M) that are in the essential image of the restriction

of Ψ to HbE-ac(M). Let B′ be the DG quotient, cf. [11], of B− by its quasi-
isomorphisms. It is clear that the dg categories B′ and B are quasi-equivalent,
cf. [22], and that the natural dg functor M→ C−(ModM)dg factors through
B−. Let R′ : D(Bop)op → D(Mop)op be the restriction functor induced by the
dg functorM→ B′. Let Φ′ : D−M(M)→ D(B′op)op be the functor which takes

X to the dg module

B′ 7→ Hom•(Xc, B
′) ,

where B′ is in B′ and Xc is a cofibrant replacement of X for the projective
model structure on C(ModM). Finally let Γ : D(M) → D(Mop)op be the
functor that sends Y to

M 7→ Hom•(Yc,M(?,M)) ,

where Yc is a cofibrant replacement of Y for the projective model structure on
C(ModM) and M is in M.
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We dispose of the following diagram :

D(Bop)op B

��
Hb(M)/Hb(P)

� � Υ // H−E-ac(M)
Ψ // D−M(M)

L

��

Φ′
//

Φ

88rrrrrrrrrr

D(B′op)op

R′

��

∼

OO

B′

D−(M)
Γ

// D(Mop)op M

OO

Lemma 5.1. The following square

D−M(M)
Φ′

//

L

��

D(B′op)op

R′

��

B′

D−(M)
Γ

// D(Mop)op M

OO

is commutative.

Proof. By definition (R′ ◦ Φ′)(X)(M) equals Hom•(Xc,M(?,M)). Since
M(?,M) identifies with LρM

∧ and by adjunction, we have

Hom•(Xc,M(?,M))
∼−→ Hom•(Xc, LρM

∧)
∼−→ Hom•((LX)c,M(?,M)) ,

where the last member equals (Γ ◦ L)(X)(M).
√

Lemma 5.2. The functor L reflects isomorphisms .

Proof. Since L is a triangulated functor, it is enough to show that if L(Y ) = 0,
then Y = 0. Let Y be in D−M(M) such that L(Y ) = 0. We can suppose,

without loss of generality, that Hp(Y ) = 0 for all p > 0. Let us show that
H0(Y ) = 0. Indeed, since H0(Y ) is anM-module, we have H0(Y ) ∼= L0H0(Y ),
where L0 : ModM → ModM is the left adjoint of the inclusion ModM →
ModM. Since Hp(Y ) vanishes in degrees p > 0, we have

L0H0(Y ) = H0(LY ) .

By induction, one concludes that Hp(Y ) = 0 for all p ≤ 0.
√

Proposition 5.1. An object Y of D−M(M) lies in the essential image of the

functor Ψ ◦ Υ : Hb(M)/Hb(P) → D−M(M) iff τ≥−nY is in perM(M), for all

n ∈ Z and L(Y ) belongs to per(M).

Proof. Let X be in Hb(M)/Hb(P). By lemma 4.2 a), τ≥−nΨΥ(X) is in
perM(M), for all n ∈ Z. Since X is a bounded complex, there exists an

s ≪ 0 such that for all m < s the m-components of Υ(X) are in P , which
implies that LΨΥ(X) belongs to per(M).
Conversely, suppose that Y is an object of D−M(M) which satisfies the condi-

tions. By lemma 4.2, Y belongs to V . Thus we have Y = Ψ(Y ′) for some Y ′
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in H−E-ac(M). We now consider Y ′ as an object of H−(M) and also write Ψ
for the functor H−(M) → D−(M) induced by the Yoneda functor. We can
express Y ′ as

Y ′
∼←− hocolim

i
σ≥−iY

′ ,

where the σ≥−i are the naive truncations. By our assumptions on Y ′, σ≥−iY ′

belongs to Hb(M)/Hb(P), for all i ∈ Z. The functors Ψ and L clearly commute
with the naive truncations σ≥−i and so we have

L(Y ) = L(ΨY ′)
∼←− hocolim

i
L(σ≥−iΨY

′)
∼−→ hocolim

i
σ≥−iL(ΨY ′) .

By our hypotheses, L(Y ) belongs to per(M) and so there exists an m≫ 0 such
that

L(Y ) = L(ΨY ′)
∼←− σ≥−mL(ΨY ′) = L(σ≥−mΨY ′) .

By lemma 5.2, the inclusion

Ψ(σ≥−mY )′ = σ≥−mΨY ′ −→ Ψ(Y ′) = Y

is an isomorphism. But since σ≥−mY ′ belongs to Hb(M)/Hb(P), Y identifies
with Ψ(σ≥−mY ′).

√

Remark 5.1. It is clear that if X belongs to per(M), then Γ(X) belongs to
per(Mop)op. We also have the following partial converse.

Lemma 5.3. Let X be in D−modM(M) such that Γ(X) belongs to per(Mop)op.

Then X is in per(M).

Proof. By lemma 4.2 b) we can suppose, without loss of generality, that X is
a right bounded complex with finitely generated projective components. Ap-
plying Γ, we get a perfect complex Γ(X). In particular Γ(X) is homotopic to
zero in high degrees. But since Γ is an equivalence

projM ∼−→ (projMop)op ,

it follows that X is already homotopic to zero in high degrees.
√

Remark 5.2. The natural right aisle on D(M) is the full subcategory of the
objects X such that Hn(X) = 0 for all n < 0. The associated truncation
functor τ≥0 takes perM(M) to itself. Therefore, the natural right aisle on

D(M) restricts to a natural right aisle Uop on perM(M).

Definition 5.1. Let U be the natural left aisle in perM(M)op associated with
Uop.
Lemma 5.4. The natural left aisle U on perM(M)op

∼→ per(Bop) satisfies the

conditions of proposition A.1 b).

Proof. Clearly the natural left aisle U in perM(M)op is non-degenerate. We

need to show that for each C ∈ perM(M)op, there is an integer N such that

Hom(C, SNU) = 0 for each U ∈ U . We dispose of the following isomorphism

HomperM(M)op(C, S
NU)

∼→ HomperM(M)(S
−NUop, C) ,

Documenta Mathematica 12 (2007) 193–213
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where Uop denotes the natural right aisle on perM(M). Since by theorem 5.4

c) of [23] an M-module admits a projective resolution of length d + 1 as an
M-module and C is a bounded complex, we conclude that for N ≫ 0

HomperM(M)(S
−NUop, C) = 0 .

This proves the lemma.
√

We denote by τ≤n and τ≥n, n ∈ Z, the associated truncation functors on
D(Bop)op.
Lemma 5.5. The functor Φ : D−M(M)→ D(Bop)op restricted to the category V
is exact with respect to the given t-structures.

Proof. We first prove that Φ(V≤0) ⊂ D(Bop)op≤0. Let X be in V≤0. We need to

show that Φ(X) belongs to D(Bop)op≤0. The following have the same classes of
objects :

D(Bop)op≤0

D(Bop)>0

(per(Bop)≤0)
⊥(5.1)

⊥(per(Bop)op)>0 ,(5.2)

where in (5.1) we consider the right orthogonal in D(Bop) and in (5.2) we
consider the left orthogonal in D(Bop)op. These isomorphisms show us that
Φ(X) belongs to D(Bop)op≤0 iff

HomD(Bop)op(Φ(X),Φ(P )) = 0 ,

for all P ∈ perM(M)>0. Now, by lemma 4.4 the functor Φ is fully faithful and
so

HomD(Bop)op(Φ(X),Φ(P ))
∼−→ HomperM(M)(X,P ) .

Since X belongs to V≤0 and P belongs to perM(M)>0, we conclude that

HomperM(M)(X,P ) = 0 ,

which implies that Φ(X) ∈ D(Bop)op≤0. Let us now consider X in V . We dispose
of the truncation triangle

τ≤0X → X → τ>0X → Sτ≤0X .

The functor Φ is triangulated and so we dispose of the triangle

Φτ≤0X → X → Φτ>0X → SΦτ≤0X ,

where Φτ≤0X belongs to D(Bop)op≤0. Since Φ induces an equivalence between

perM(M) and per(Bop)op and Hom(P, τ>0X) = 0, for all P in V≤0, we conclude

that Φτ>0X belongs to D(Bop)op>0. This implies the lemma.
√

Definition 5.2. Let D(Bop)opf denote the full triangulated subcategory of

D(Bop)op formed by the objects Y such that τ≥−nY is in per(Bop)op, for all
n ∈ Z, and R(Y ) belongs to per(Mop)op.
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Proposition 5.2. An object Y of D(Bop)op lies in the essential image of the
functor G : Hb(M)/Hb(P)→ D(Bop)op iff it belongs to D(Bop)opf .

Proof. Let X be in Hb(M)/Hb(P). It is clear that the τ≥−nG(X) are in
per(Bop)op for all n ∈ Z. By proposition 5.1 we know that LΨΥ(X) belongs
to per(M). By lemma 5.1 and remark 5.1 we conclude that RG(X) belongs
to per(Mop)op. Let now Y be in D(Bop)opf . We can express it, by the dual of
lemma A.2 as the homotopy limit of the following diagram

· · · → τ≥−n−1Y → τ≥−nY → τ≥−n+1Y → · · · ,
where τ≥−nY belongs to per(Bop)op, for all n ∈ Z. But since Φ induces an
equivalence between perM(M) and per(Bop)op, this last diagram corresponds
to a diagram

· · · →M−n−1 →M−n →M−n+1 → · · ·
in perM(M). Let p ∈ Z. The relations among the truncation functors imply
that the image of the above diagram under each homology functor Hp, p ∈ Z,
is stationary as n goes to +∞. This implies that

Hp holim
n

M−n
∼−→ lim

n
HpM−n ∼= HpMj ,

for all j < p. We dispose of the following commutative diagram

holim
n

M−n //

��

holim
n

τ≥−iM−n ∼= M−i

τ≥−i holim
n

M−n

∼
55kkkkkkkkkkkkkk

which implies that

τ≥−i holim
n

M−n
∼−→M−i ,

for all i ∈ Z. Since holim
n

M−n belongs to V , lemma 4.3 allows us to conclude

that Φ(holim
n

M−n) ∼= Y . We now show that holim
n

M−n satisfies the conditions

of proposition 5.1. We know that τ≥−i holim
n

M−n belongs to perM(M), for

all i ∈ Z. By lemma 5.1 (Γ ◦ L)(holim
n

M−n) identifies with R(Y ), which is in

per(Mop)op. Since holim
n

M−n belongs to V , its homologies lie in modM and

so we are in the conditions of lemma 5.1, which implies that L(holim
n

M−n)

belongs to perM(M). This finishes the proof.
√

6. Alternative description

In this section, we present another characterization of the image ofG, which was
identified asD(Bop)opf in proposition 5.2. LetM denote an object ofM and also

the naturally associated complex in Hb(M). Since the categoryHb(M)/Hb(P)
is generated by the objects M ∈ M and the functor G is fully faithful, we re-
mark that D(Bop)opf equals the triangulated subcategory of D(Bop)op generated

by the objects G(M), M ∈ M. The rest of this section is concerned with the
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problem of characterizing the objects G(M), M ∈ M. We denote by PM the
projectiveM-moduleM(?,M) associated with M ∈M and by XM the image
of M under Ψ ◦Υ.

Lemma 6.1. We dispose of the following isomorphism

HomD−
M(M)(XM , Y )

∼←− HommodM(PM ,H
0(Y )) ,

for all Y ∈ D−M(M).

Proof. Clearly XM belongs to DM(M)≤0 and is of the form

· · · → P∧n → · · · → P∧1 → P∧0 →M∧ → 0 ,

where Pn ∈ P , n ≥ 0. Now Yoneda’s lemma and the fact that Hm(Y )(Pn) = 0,
for all m ∈ Z, n ≥ 0, imply the lemma.

√

Remark 6.1. Since the functor Φ restricted to V is fully faithful and exact, we
have

HomD(Bop)op(G(M),Φ(Y ))
∼←− Homper(Bop)op(Φ(PM ),H0(Φ(Y ))) ,

for all Y ∈ V .

We now characterize the objects G(M) = Φ(XM ), M ∈ M, in the triangulated
category D(Bop). More precisely, we give a description of the functor

RM := HomD(Bop)(?,Φ(XM )) : D(Bop)op → Mod k

using an idea of M. Van den Bergh, cf. lemma 2.13 of [10]. Consider the
following functor

FM := Homper(Bop)(H
0(?),Φ(PM )) : per(Bop)op → mod k .

Remark 6.2. Remark 6.1 shows that the functor RM when restricted to
per(Bop) coincides with FM .

Let DFM be the composition of FM with the duality functor D = Hom(?, k).
Note that DFM is homological.

Lemma 6.2. We dispose of the following isomorphism of functors on per(Bop)
DFM

∼−→ HomD(Bop)(Φ(XM ), ?[d+ 1]) .

Proof. The following functors are canonically isomorphic to DFΦ :

DHomper(Bop)(H
0Φ(?),Φ(PM ))

DHomper(Bop)(ΦH0(?),Φ(PM ))(6.1)

DHomperM(M)(PM ,H
0(?))(6.2)

DHomD−
M(M)(XM , ?)(6.3)

HomD−
M(M)(?[−d− 1], XM )(6.4)

HomD(Bop)op(Φ(?)[−d− 1],Φ(XM ))(6.5)

HomD(Bop)op(Φ(XM ),Φ(?)[d + 1])(6.6)
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Step (6.1) follows from the fact that Φ is exact. Step (6.2) follows from the fact
that Φ is fully faithful and we are considering the opposite category. Step (6.3)
is a consequence of lemma 6.1. Step (6.4) follows from the (d+ 1)-Calabi-Yau
property and remark 4.2. Step (6.5) is a consequence of Φ being fully faithful
and step (6.6) is a consequence of working in the opposite category. Since the
functor Φop establish an equivalence between perM(M)op and per(Bop) the

lemma is proven.
√

Now, since the category Mod k is cocomplete, we can consider the left Kan
extension, cf. [28], EM of DFM along the inclusion per(Bop) →֒ D(Bop). We
dispose of the following commutative square :

per(Bop) DFM //
� _

��

mod k� _

��
D(Bop)

EM

//_______ Mod k .

For each X of D(Bop), the comma-category of morphisms P → X from a
perfect object P to X is filtered. Therefore, the functor EM is homological.
Moreover, it preserves coproducts and soDEM is cohomological and transforms
coproducts into products. Since D(Bop) is a compactly generated triangulated
category, the Brown representability theorem, cf. [29], implies that there is a
ZM ∈ D(Bop) such that

DEM
∼−→ HomD(Bop)(?, ZM ) .

Remark 6.3. Since the duality functor D establishes and anti-equivalence in
mod k, the functor DEM restricted to per(Bop) is isomorphic to FM .

Theorem 6.1. We dispose of an isomorphism

G(M)
∼−→ ZM .

Proof. We now construct a morphism of functors from RM to DEM . Since
RM is representable, by Yoneda’s lemma it is enough to construct an element
in DEM (Φ(XM )). Let C be the category per(Bop) ↓ Φ(XM ), whose objects
are the morphisms Y ′ → Φ(XM ) and let C′ be the category XM ↓ perM(M),

whose objects are the morphisms XM → X ′. The following are canonically
isomorphic :

DEM (Φ(XM ))

D colim
C

HomD(Bop)(Φ(XM ), Y ′[d+ 1])(6.7)

D colim
C′

HomD−
M(M)(X

′[−d− 1], XM )(6.8)

D colim
i

HomD−
M(M)((τ≥−iXM )[−d− 1], XM )(6.9)

lim
i

DHomD−
M(M)((τ≥−iXM )[−d− 1], XM )

lim
i

HomD−
M(M)(XM , τ≥−iXM )(6.10)
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Step (6.7) is a consequence of the definition of the left Kan extension and
lemma 6.2. Step (6.8) is obtained by considering the opposite category. Step
(6.9) follows from the fact that the system (τ≥−iXM )i∈Z forms a cofinal system
for the index system of the colimit. Step (6.10) follows from the (d+1)-Calabi-
Yau property. Now, the image of the identity by the canonical morphism

HomD−
M(M)(XM , XM ) −→ lim

i
HomD−

M(M)(XM , τ≥−iXM ) ,

gives us an element of (DEM )(Φ(XM )) and so a morphism of functors from RM
to DEM . We remark that this morphism is an isomorphism when evaluated at
the objects of per(Bop). Since both functors RM and DEM are cohomological,
transform coproducts into products and D(Bop) is compactly generated, we
conclude that we dispose of an isomorphism

G(M)
∼−→ ZM .

√

7. The main theorem

Consider the following commutative square as in section 3:

M � � //

����

E

����
T � � // E = C .

In the previous sections we have constructed, from the above data, a dg category
B and a left aisle U ⊂ H0(B), see [25], satisfying the following conditions :

- B is an exact dg category over k such that H0(B) has finite-dimensional
Hom-spaces and is Calabi-Yau of CY-dimension d+ 1,

- U ⊂ H0(B) is a non-degenerate left aisle such that :
- for all B ∈ B, there is an integer N such that

HomH0(B)(B,S
NU) = 0 for each U ∈ U ,

- the heart H of the t-structure on H0(B) associated with U has
enough projectives.

Let now A be a dg category and W ⊂ H0(A) a left aisle satisfying the above
conditions. We can consider the following general construction : Let Q denote
the category of projectives of the heartH of the t-structure on H0(A) associated
with W . We claim that the following inclusion

Q →֒ H →֒ H0(A) ,

lifts to a morphism Q j→ A in the homotopy category of small dg categories,
cf. [20] [32] [33] [34] [35]. Indeed, recall the following argument from section 7

of [22]: Let Q̃ be the full dg subcategory of A whose objects are the same as

those of Q. Let τ≤0Q̃ denote the dg category obtained from Q̃ by applying
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the truncation functor τ≤0 of complexes to each Hom-space. We dispose of the
following diagram in the category of small dg categories

Q̃ � � // A

τ≤0Q̃

OO

��
Q H0(Q̃) .

Let X , Y be objects of Q. Since X and Y belong to the heart of a t-structure
in H0(A), we have

HomH0(A)(X,Y [−n]) = 0 ,

for n ≥ 1. The dg category A is exact, which implies that

H−nHom•Q̃(X,Y )
∼−→ HomH0(A)(X,Y [−n]) = 0 ,

for n ≥ 1. This shows that the dg functor τ≤0Q̃ → H0(Q̃) is a quasi-equivalence

and so we dispose of a morphism Q j→ A in the homotopy category of small
dg categories. We dispose of a triangle functor j∗ : D(A) → D(Q) given by
restriction. By proposition A.1, the left aisle W ⊂ H0(A) admits a smallest
extension to a left aisle D(Aop)op≤0 on D(Aop)op. Let D(Aop)opf denote the full

triangulated subcategory ofD(Aop)op formed by the objects Y such that τ≥−nY
is in per(Aop)op, for all n ∈ Z, and j∗(Y ) belongs to per(Qop)op.
Definition 7.1. The stable category of A with respect to W is the triangle
quotient

stab(A,W) = D(Aop)opf /per(Aop)op .
We are now able to formulate the main theorem. Let B be the dg category and
U ⊂ H0(B) the left aisle constructed in sections 1 to 5.

Theorem 7.1. The functor G induces an equivalence of categories

G̃ : C ∼−→ stab(B,U) .

Proof. We dispose of the following commutative diagram :

C G̃
∼

//_________ stab(B,U)

Hb(M)/Hb(P)

OO

G
∼

// D(Bop)opf

OO

HbE-ac(M)

OO

∼
// per(Bop)op .

OO
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The functor G is an equivalence since it is fully faithful by proposition 4.1 and
essentially surjective by proposition 5.2. Since we dispose of an equivalence
HbE-ac(M)

∼−→ per(Bop)op by construction of B and the columns of the above
diagram are short exact sequences of triangulated categories, the theorem is
proved.

√

Appendix A. Extension of t-structures

Let T be a compactly generated triangulated category with suspension functor
S. We denote by Tc the full triangulated sub-category of T formed by the
compact objects, see [29]. We use the terminology of [25]. Let U ⊆ Tc be a left
aisle on Tc, i.e. a full additive subcategory U of Tc which satisfies:

a) SU ⊂ U ,
b) U is stable under extensions, i.e. for each triangle

X → Y → Z → SX

of Tc, we have Y ∈ U whenever X,Z ∈ U and
c) the inclusion functor U →֒ Tc admits a right adjoint.

As shown in [25], the concept of aisle is equivalent to that of t-structure.

Proposition A.1. a) The left aisle U admits a smallest extension to a
left aisle T≤0 on T .

b) If U ⊆ Tc is non-degenerate ( i.e., f : X → Y is invertible iff Hp(f)
is invertible for all p ∈ Z) and for each X ∈ Tc, there is an integer
N such that Hom(X,SNU) = 0 for each U ∈ U , then T≤0 is also
non-degenerate.

Proof. a) Let T≤0 be the smallest full subcategory of T that contains U and is
stable under infinite sums and extensions. It is clear that T≤0 is stable by S
since U is. We need to show that the inclusion functor T≤0 →֒ T admits a right
adjoint. For completeness, we include the following proof, which is a variant of
the ‘small object argument’, cf. also [1]. We dispose of the following recursive
procedure. Let X = X0 be an object in T . For the initial step consider all
morphisms from any object P in U to X0. This forms a set I0 since T is
compactly generated and so we dispose of the following triangle

∐
f∈I0

P // X0
// X1

///o/o/o

∐
f∈I0

P .

For the induction step consider the above construction with Xn, n ≥ 1, in the
place of Xn−1 and In in the place of In−1. We dispose of the following diagram

X = X0
// X1

//

{{ {;
{;

{;
{;

{;
X2

//

|| |<
|<

|<
|<

|<
X3

//

|| |<
|<

|<
|<

|<
· · · // X ′

∐
f∈I0

P

OO

∐
f∈I1

P

OO

∐
f∈I2

P

OO

∐
f∈I3

P

OO

,

Documenta Mathematica 12 (2007) 193–213



On The Structure of Calabi-Yau Categories 209

where X ′ denotes the homotopy colimit of the diagram (Xi)i∈Z. Consider now
the following triangle

S−1X ′ → X ′′ → X → X ′ ,

where the morphism X → X ′ is the transfinite composition in our diagram.
Let P be in U . We remark that since P is compact, HomT (P,X ′) = 0. This
also implies, by construction of T≤0, that HomT (R,X ′) = 0, for all R in T≤0.
The long exact sequence obtained by applying the functor HomT (R, ?) to the
triangle above shows that

Hom(R,X ′′)
∼−→ Hom(R,X) .

Let X ′′n−1, n ≥ 1, be an object as in the following triangle

X = X0 → Xn → X ′′n−1 → S(X) .

A recursive application of the octahedron axiom implies that X ′′n−1 belongs to
S(T≤0), for all n ≥ 1. We dispose of the isomorphism

hocolim
n

X ′′n−1
∼−→ S(X ′′) .

Since hocolim
n

X ′′n−1 belongs to S(T≤0), we conclude that X ′′ belongs to T≤0.

This shows that the functor that sends X to X ′′ is the right adjoint of the
inclusion functor T≤0 →֒ T . This proves that T≤0 is a left aisle on T . We now
show that the t-structure associated to T≤0, cf. [25], extends, from Tc to T , the
one associated with U . Let X be in Tc. We dispose of the following truncation
triangle associated with U

XU → X → XU
⊥ → SXU .

Clearly XU belongs to T≤0. We remark that U⊥ = T ⊥≤0, and so XU
⊥

belongs

to T>0 := T ⊥≤0.
We now show that T≤0 is the smallest extension of the left aisle U . Let V be
an aisle containing U . The inclusion functor V →֒ T commutes with sums,
because it admits a right adjoint. Since V is stable under extensions and
suspensions, it contains T≤0.

b) Let X be in T . We need to show that X = 0 iff Hp(X) = 0 for all p ∈ Z.
Clearly the condition is necessary. For the converse, suppose that Hp(X) = 0
for all p ∈ Z. Let n be an integer. Consider the following truncation triangle

Hn+1(X)→ τ>nX → τ>n+1X → SHn+1(X) .

Since Hn+1(X) = 0 we conclude that

τ>nX ∈
⋂

m∈Z

T>m ,

for all n ∈ Z. Now, let C be a compact object of T . We know that there is a
k ∈ Z such that C ∈ T≤k. This implies that

HomT (C, τ>nX) = 0
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for all n ∈ Z, since τ>nX belongs to (T≤k)⊥. The category T is compactly
generated and so we conclude that τ>nX = 0, for all n ∈ Z. The following
truncation triangle

τ≤nX → X → τ>nX → Sτ≤nX ,

implies that τ≤nX is isomorphic to X for all n ∈ Z. This can be rephrased as
saying that

X ∈
⋂

n∈N

T≤−n .

Now by our hypothesis there is an integer N such that

HomT (C,U≤−N ) = 0 .

Since C is compact and by construction of T≤−N , we have

HomT (C, T≤−N ) = 0 .

This implies that HomT (C,X) = 0, for all compact objects C of T . Since T is
compactly generated, we conclude that X = 0. This proves the converse.

√

Lemma A.1. Let (Yp)p∈Z be in T . We dispose of the following isomorphism

Hn (
∐

p

Yp)
∼←−
∐

p

Hn(Yp) ,

for all n ∈ Z.

Proof. By definition Hn := τ≥n τ≤n , n ∈ Z. Since τ≥n admits a right adjoint,
it is enough to show that τ≤n commute with infinite sums. We consider the
following triangle

∐

p

τ≤nYp →
∐

p

Yp →
∐

p

τ>nYp → S(
∐

p

τ≤nYp) .

Here
∐
p
τ≤nYp belongs to T≤n since T≤n is stable under infinite sums. Let P

be an object of SnU . Since P is compact, we have

HomT (P,
∐

p

τ>nYp)
∼←−
∐

p

HomT (P, τ>nYp) = 0 .

Since T≤n is generated by SnU ,
∐
i

τ>nYp belongs to T>n. Since the truncation

triangle of
∐
p
Yp is unique, this implies the following isomorphism

∐

p

τ≤nYp
∼−→ τ≤n(

∐

p

Yp) .

This proves the lemma.
√

Proposition A.2. Let X be an object of T . Suppose that we are in the con-
ditions of proposition A.1 b). We dispose of the following isomorphism

hocolim
i

τ≤iX
∼−→ X .
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Proof. We need only show that

Hn(hocolim
i

τ≤iX)
∼−→ Hn(X) ,

for all n ∈ Z. We dispose of the following triangle, cf. [29],
∐

p

τ≤pX →
∐

q

τ≤qX → hocolim
i

τ≤iX → S(
∐

p

τ≤pX) .

Since the functor Hn is homological, for all n ∈ Z and it commutes with infinite
sums by lemma A.1, we obtain a long exact sequence

· · · →
∐

p

Hn(τ≤pX)→
∐

q

Hn(τ≤qX)→ Hn (hocolim
i

τ≤iX)→

→
∐

p

Hn S(τ≤pX)→
∐

q

Hn S(τ≤qX)→ · · ·

We remark that the morphism
∐
p

Hn S(τ≤pX) → ∐
q

Hn S(τ≤qX) is a split

monomorphism and so we obtain

Hn(X) = colim
i

Hn(τ≤iX)
∼−→ Hn(hocolim

i
τ≤iX) .

√
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Abstract. In this paper we derive an explicit formula for the
Hirzebruch-Mumford volume of an indefinite lattice L of rank ≥ 3.
If Γ ⊂ O(L) is an arithmetic subgroup and L has signature (2, n),
then an application of Hirzebruch-Mumford proportionality allows us
to determine the leading term of the growth of the dimension of the
spaces Sk(Γ) of cusp forms of weight k, as k goes to infinity. We com-
pute this in a number of examples, which are important for geometric
applications.

2000 Mathematics Subject Classification: 11F55, 32N15, 14G35

0 Introduction

In [Hi1] and [Hi2] Hirzebruch considered compact quotients of a homogeneous
domain by an arithmetic group. He observed that the Chern numbers of such
quotients are proportional to the Chern numbers of the compact duals of the
homogeneous domains, and he also showed how the proportionality factor can
be used to compute the dimension of spaces of automorphic forms. Later Mum-
ford [Mum] extended Hirzebruch’s approach to the case where the quotient is
no longer compact, but only of finite volume. In this case the space of cusp
forms of weight k with respect to some arithmetic group Γ grows asymptoti-
cally proportional to the dimension of the space of sections of the (1 − k)-th
power of the canonical bundle of the compact dual (for a precise formulation see
Theorem 1.1). We call the proportionality constant the Hirzebruch-Mumford
volume. Thus a computation of the Hirzebruch-Mumford volume for a given
group Γ gives the leading term of the Hilbert polynomial of forms of weight k
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with respect to Γ. Knowledge of this term is essential for many geometric ap-
plications, in particular when one considers the Kodaira dimension of modular
varieties.
The subject starts with the seminal work of Siegel [Sie1] on the volume of the
orthogonal group. Very many authors have taken up his theory and generalised
it in many different directions, including Harder [Ha], Serre [Se], Prasad [Pr]
and many others. Our specific interest lies in indefinite orthogonal groups (see
the work by Shimura [Sh], Gross [Gr], Gan, Hanke and Yu [GHY], as well
as Belolipetsky and Gan [BG], to name some important recent work in this
direction). Motivated by possible applications (cf. [GHS1], [GHS2]) concern-
ing moduli spaces of K3 surfaces and similar modular varieties we started to
investigate the volume of certain arithmetic subgroups of orthogonal groups
O(L) of even indefinite lattices of signature (2, n). All our groups are defined
over the rational numbers, but for the applications we have in mind we can-
not restrict ourselves to unimodular or maximal lattices. To our knowledge
there exist no results in the literature that allow an easy calculation of the
Hirzebruch-Mumford volume for the groups we treat in this paper.
In order to compute these volumes we therefore decided to return to Siegel’s
work. Let L be an even indefinite lattice of signature (2, n) and let O(L) be its
group of isometries. The lattice L defines a domain

ΩL = {[w] ∈ P(L⊗ C); (w,w)L = 0, (w,w)L > 0}.
This domain has two connected components DL and D′L, which are inter-
changed by complex conjugation, where DL = O(2, n)/O(2)×O(n). Let O+(L)
be the index 2 subgroup of O(L) which fixes DL. The fundamental problem of
our paper is to determine the Hirzebruch-Mumford volume of this group. For
this one has to compare the volume of the quotient O+(L)\DL to the volume

of the compact dual D(c)
L = O(2 + n)/O(2) × O(n). To do so correctly, one

has to choose volume forms on the domain DL and the compact dual D(c)
L that

coincide at the common point of both domains given by a maximal compact
subgroup. This is in fact a problem which does not depend on the complex
structure of the domains, but can be considered in greater generality for in-
definite lattices of signature (r, s). We use the volume form on DL which was
introduced by Siegel. It then turns out that this must be compared to the

volume form on D(c)
L which is given by 1/2 of the volume form induced by

the Killing form on the Lie algebra of the group SO(r + s). Comparing these
two volumes gives us the main formula for the Hirzebruch-Mumford volume
of O+(L). This formula involves the Tamagawa (Haar) measure of the group
O(L). However, again using a result of Siegel, the computation of the Tam-
agawa measure can be reduced to computing the local densities αp(L) of the
lattice L over the p-adic integers. Our main formula for any indefinite lattice
L of rank ρ ≥ 3 is

volHM (O(L)) =
2

g+
sp
| detL|(ρ+1)/2

ρ∏

k=1

π−k/2Γ(k/2)
∏

p

αp(L)−1
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where g+
sp is the number of the proper spinor genera in the genus of L (see The-

orem 2.1). Since everything is defined over the rationals, one can use Kitaoka’s
book [Ki] on quadratic forms to compute the local densities in question.
In order to illustrate our results, and particularly in view of applications, we
compute the Hirzebruch-Mumford volume for several examples. The lattices
and the groups which we consider are mostly related to moduli problems. We
start with a series of even unimodular lattices, namely the lattices II2,2m+8 =
2U ⊕mE8(−1), where U denotes the hyperbolic plane and E8 is the positive
definite root lattice associated to E8. The next series of examples consists of

the lattices L
(m)
2d = 2U ⊕mE8(−1) ⊕ 〈−2d〉, which are closely related to well

known moduli problems. Let

F (m)
2d = Õ

+
(L

(m)
2d )\D

L
(m)
2d

where Õ
+
(L

(m)
2d ) is the subgroup of O+(L

(m)
2d ) which acts trivially on the dis-

criminant group. For m = 0 and d a prime number, F (0)
2d is a moduli space

of Kummer surfaces (see [GH]). The spaces F (1)
2d parametrise certain lattice-

polarised K3 surfaces and if m = 2, then F2d = F (2)
2d is the moduli space of

K3 surfaces of degree 2d. We compute the Hirzebruch-Mumford volumes of

the groups O+(L
(m)
2d ) and Õ

+
(L

(m)
2d ) and obtain as a corollary the leading term

controlling the growth behaviour of the dimension of the spaces of cusp forms
for these groups. As a specialisation of this example we recover known for-
mulae for the Siegel modular group in genus 2 and the paramodular group.
Other series of examples considered in this paper, namely the even indefinite
unimodular lattices (Section 3.3), their sublattices T (Section 3.4) and some
lattices of signature (2, 8m+ 2) (Section 3.6), are closely related to moduli of
K3 surfaces and related quotients of homogeneous varieties of type IV. The
volumes of these lattices determine the part of the obstruction for extending

pluricanonical differential forms on F (m)
2d to a smooth compactification of this

variety which comes from the ramification divisor.
In [GHS2] we use these results to obtain information about the Kodaira di-
mension of two series of modular varieties, including effective bounds on the

degree d which guarantee that the varieties F (m)
2d are of general type. The case

of polarised K3 surfaces is considered in [GHS1].
The paper is organised as follows: in Section 1 we recall Hirzebruch-Mumford
proportionality and the Hirzebruch-Mumford volume in the form in which we
need it (see Theorem 1.1 and Corollary 1.2). In Section 2 we perform the
necessary volume computations and derive the main formula (see Theorem 2.1).
In Section 3 we treat in some detail several lattices which appear naturally in
moduli problems.

Acknowledgements

We are grateful to various organisations that have supported us during the preparation

Documenta Mathematica 12 (2007) 215–241



218 V. Gritsenko, K. Hulek and G. K. Sankaran

of this work. The DFG Schwerpunktprogramm SPP 1084 “Globale Methoden in der

komplexen Geometrie”, grant HU 337/5-2, has enabled VAG and GKS to visit the

University of Hannover for extended stays. VAG would like to thank the Max-Planck-

Institut für Mathematik in Bonn for hospitality in 2005. KH is grateful to the Fields

Institute in Toronto and the Graduate School of Mathematics of Nagoya University,

in particular to Professors N. Yui and S. Kondo. GKS is grateful to Tokyo University

and to the Royal Society. All these institutions provided excellent working conditions.

We should like to thank M. Belolipetsky and R. Schulze-Pillot for useful discussions

on the mass formula.

1 Hirzebruch-Mumford proportionality

In this section we consider an indefinite even lattice L of signature (2, n). Let
O(L) be its group of isometries. We denote by ( , )L the form defined on L,
extended bilinearly to L⊗ R and L⊗ C. The domain

ΩL = {[w] ∈ P(L⊗ C); (w,w)L = 0, (w,w)L > 0}

has two connected components, say ΩL = DL ∪D′L, which are interchanged by
complex conjugation. By D•L we denote the affine cone over DL in L⊗ C. Let
Γ ⊂ O(L) be an arithmetic group which leaves the domain DL invariant. A
modular form of weight k with respect to the group Γ and with a (finite order)
character χ : Γ→ C∗ is a holomorphic map

f : D•L → C

which has the two properties

f(tz) = t−kf(z) for t ∈ C∗,
f(g(z)) = χ(g)f(z) for g ∈ Γ.

If n ≤ 2 the function f(z) must also be required to be holomorphic at infinity.
A cusp form is a modular form which vanishes on the boundary.
We denote the spaces of modular forms and of cusp forms of weight k, with
respect to the group Γ and character χ, by Mk(Γ, χ) and Sk(Γ, χ) respectively.
These are finite dimensional vector spaces. Note that if − id ∈ Γ and (−1)k 6=
χ(− id) then obviously Mk(Γ, χ) = 0.
Modular forms can be interpreted as sections of suitable line bundles. For this,
we first assume that the group Γ is neat, in which case it acts freely on DL,
and we also assume that the character χ is trivial. Then the transformation
rules of modular forms of weight 1 define a line bundle L on the quotient Γ\DL
and modular forms of weight k with trivial character become sections in L⊗k.
The line bundle L, and its sections, extend to the Baily-Borel compactification
Γ\DL. In fact, the Baily-Borel compactification is the normal projective variety
associated to Proj

(⊕
kH

0(L⊗k)
)
. In general, modular forms of weight k and

with a character χ define sections of a line bundle Lk,χ which differs from L⊗k
only by torsion.
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Every toroidal compactification (Γ\DL)tor has a morphism (Γ\DL)tor → Γ\DL
which is the identity on Γ\DL. Via this morphism, we shall also consider L and
Lk,χ as line bundles on (Γ\DL)tor, using the same symbol by abuse of notation.
If Γ is not neat then the above remains true, as long as we consider L and Lk,χ
as Q-line bundles or only consider weights k that are sufficiently divisible.
The connection with pluricanonical forms is as follows. There is an n-form dZ
on DL such that if f is a modular form of weight n = dimDL with character
det, then ω = fdZ is a Γ-invariant n-form on DL. Hence, if the action of Γ
on DL is free, ω descends to an n-form on Γ\DL. Similarly, modular forms
of weight kn with character detk define k-fold pluricanonical forms on Γ\DL.
If Γ does not act freely, then this is still true outside the ramification locus
of the quotient map DL → Γ\DL. These forms will, in general, not extend
to compactifications of Γ\DL. If Γ is a neat group, then let (Γ\DL)tor be a
smooth toroidal compactification (which always exists by [AMRT]). Let D be
the boundary of such a toroidal compactification. If Ln,det is the line bundle
of modular forms of weight n and character det, then the canonical bundle
is given by ω(Γ\DL)tor = Ln,det ⊗ O(Γ\DL)tor(−D). Hence, if f is a weight n
form with character det, not vanishing at the boundary, then fdZ defines an
n-form on (Γ\DL)tor with poles along the boundary. However, if f is a cusp
form, then fdZ does define an n-form on (Γ\DL)tor, and similarly forms of
weight kn and character detk that vanish along the boundary of order k define
k-fold pluricanonical forms on (Γ\DL)tor. It should be pointed out that some
authors define automorphic forms a priori as those functions that give rise to
pluricanonical forms. In our context, this means a restriction to forms of weight
kn. Moreover, the weight of these forms is sometimes defined as k. We shall
refer to the latter as the geometric weight, in contrast to the arithmetic weight
of our definition. This difference accounts for the fact that some of our formulae
differ from corresponding formulae in the literature by powers of n.
The Hirzebruch-Mumford proportionality principle, which works very generally
for quotients of a homogeneous domain D by an arithmetic group Γ, allows us
to estimate the growth behaviour of spaces of cusp forms as a function of
the weight k in terms of a suitably defined volume. This was first discovered
by Hirzebruch [Hi1], [Hi2] in the case where the quotient Γ\D is compact,
and was generalised by Mumford [Mum] to the case where Γ\D has finite
volume. We denote the compact dual of D by D(c). Let X be the Baily-
Borel compactification of X = Γ\D and let Xtor be some smooth toroidal
compactification of X .

Theorem 1.1 Let Γ be a neat arithmetic group which acts on a bounded
symmetric domain D. Let Sgeom

k (Γ) = Snk(Γ, detk) be the space of cusp forms
of geometric weight k with respect to Γ. Then

dimSgeom
k (Γ) = volHM (Γ)h0(ω

(1−k)
D(c) ) + P1(k)

where P1(k) is a polynomial whose degree is at most the dimension of X\X .
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Proof. This is [Mum, Corollary 3.5]. 2

Here volHM (Γ\D) denotes a suitably normalised volume of the quotient Γ\D,
which we shall refer to as the Hirzebruch-Mumford volume. If Γ acts freely,
then the Hirzebruch-Mumford volume is a quotient of Euler numbers

volHM (Γ) = volHM (Γ\D) =
e(Γ\D)

e(D(c))
.

If Γ does not act freely, then choose a normal subgroup Γ′ � Γ of finite index
which does act freely. Then

volHM (Γ) =
volHM (Γ′)
[PΓ : Γ′]

where PΓ is the image of Γ in Aut(D), i.e. the group Γ modulo its centre. This
value is independent of the choice of the subgroup Γ′.
Hirzebruch [Hi1] first formulated his result in the case where the group is co-
compact, i.e., where the quotient X = Γ\D is compact. Since the Chern
numbers of X and that of the compact dual are proportional and the factor of
proportionality is given by the volume, one can use Riemann-Roch to compute
the exact dimension of the space of modular foms (in this case it does not make
sense to talk about cusp forms).
We shall now apply this to orthogonal groups.

Proposition 1.2 Let L be an indefinite even lattice of signature (2, n) and
let Γ be an arithmetic subgroup which acts on the domain DL. Fix a positive
integer k and a character χ. If − id ∈ Γ, then we restrict to those k for which
(−1)k = χ(− id). Then the dimension of the space Sk(Γ, χ) of cusp forms of
arithmetic weight k grows as

dimSk(Γ, χ) =
2

n!
volHM (Γ\DL)kn +O(kn−1).

Proof. We shall first assume that Γ is neat (in which case automatically
− id /∈ Γ) and that χ is trivial. We consider L as a line bundle on a smooth
toroidal compactification Xtor of X = Γ\DL. It follows from the definition
of cusp forms that H0(Xtor,L⊗k(−D)) = Sk(Γ). Since L is big and nef
and KXtor = L⊗n(−D), it follows from Kawamata-Viehweg vanishing that
hi(Xtor,L⊗k(−D)) = 0 for i ≥ 1 and k ≫ 0 and hence χ(Xtor,L⊗k(−D)) =
h0(Xtor,L⊗k(−D)) for k ≫ 0. The leading term of the Riemann-Roch polyno-
mial as a function of k is given by cn1 (L)/n!. The same argument goes through
for Lk,χ. Since L⊗k and Lk,χ only differ by torsion they have the same leading
coefficients.
In order to apply Theorem 1.1 we consider the line bundle Ln,det of modular
forms of weight n and character det. Note that Lkn,det = Lnk for suitably

divisible k. Also recall that in the orthogonal case the compact dual D(c)
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is the complex n-dimensional quadric Qn ⊂ Pn+1 whose canonical bundle is
ωQn = OQn(−n) and it follows from the exact sequence

0→ OPn+1(n(k − 1)− 2)→ OPn+1(n(k − 1))→ ω
(1−k)
Qn

→ 0

that the leading term of h0(ω
(1−k)
D(c) ) is equal to 2nn/n!. It then follows from

Hirzebruch-Mumford proportionality that

cn1 (Lnn,det)

n!
=

2nn

n!
volHM (X)

and hence
cn1 (L)

n!
=

2

n!
volHM (X)

which gives the claim in the case of a neat group.
We now consider a group Γ which is not necessarily neat and choose Γ′ � Γ
neat and of finite index. The group Γ acts on the total space of the line bundle
L, and if − id ∈ Γ then it follows from our assumptions on k that this element
acts trivially. We can now apply the Lefschetz fixed point formula (cf. [T,
Appendix to §2]), from which we obtain

dimSk(Γ) = dimSk(Γ
′)Γ

=
1

[PΓ : Γ′]
·
∑

γ∈PΓ/Γ′

tr
(
γ|Sk(Γ′)

)

=
1

[PΓ : Γ′]
dimSk(Γ

′) +O(kn−1)

=
1

[PΓ : Γ′]
volHM (Γ′\DL)

2

n!
kn +O(kn−1)

=
2

n!
volHM (Γ\DL)kn +O(kn−1).

2

Note that the growth behaviour of the space of modular forms of weight k
and that of the space of cusp forms are the same. This follows from the exact
sequence

0→ L⊗k(−D)→ L⊗k → L⊗k|D → 0.

2 Computation of volumes

In order to compute the leading coefficient that determines the growth of the
dimension of spaces of cusp forms, we have to compare the volume of a funda-
mental domain of an arithmetic group Γ to the volume of the compact dual.
For this, the complex structure is not important and we therefore consider,
more generally, an indefinite integral lattice L of signature (r, s).
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As before, we denote the group of isometries of the lattice L by O(L). The
lattice L defines a homogeneous domain Drs. In terms of groups the domain
Drs is the quotient of the orthogonal group O(L ⊗ R) by a maximal compact
subgroup, i.e.,

Drs = DL = O(r, s)/O(r) ×O(s) = SO(r, s)0/ SO(r) × SO(s)

where all groups are real Lie groups and SO(r, s)0 is the connected component
of the identity of SO(r, s).

The domain Drs can be realised as a bounded domain in the form

Drs = {X ∈Matr×s(R) ; Ir −XtX > 0}

where Ir ∈ Matr×r(R) is the identity matrix and the action of the orthogonal
group is given in the usual form, namely by

M(X) = (AX +B)(CX +D)−1

for

M =

(
A B
C D

)
∈ O(r, s), A ∈Matr×r(R), D ∈ Mats×s(R).

We consider the O(r, s)-invariant metric given by

ds2 = tr
(
(Ir −XtX)−1 dX (Is − tXX)−1 dtX

)
.

Since

det((Ir −XtX)−1)s · det((Is − tXX)−1)r = det((Ir −XtX)−1)r+s

the corresponding volume form is given by

dV = (det(Ir −XtX)−1)
r+s
2

∏

i,j

dxij .

Siegel computed the volume of Drs with respect to this volume form in [Sie2]
(see also [Sie3, Theorem 7, p. 155]). His result is

volS(O(L)) = volS(O(L)\Drs) = 2α∞(L)| detL|(r+s+1)/2 γ−1
r γ−1

s , (1)

where

γm =

m∏

k=1

πk/2 Γ(k/2)−1 (2)

and α∞(L) is the real Tamagawa (Haar) measure of the lattice L. Formula (1)
is valid for any indefinite lattice L of rank ≥ 3. As indicated by the subscript,
we shall refer to this volume as the Siegel volume of the group O(L).
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We want to understand the Siegel metric in terms of Lie algebras. Let g and t

be the Lie algebras of the indefinite orthogonal group O(r, s) and its maximal
compact subgroup O(r) ×O(s) respectively. Then

g = t⊕ p

where p is the orthogonal complement of t with respect to the Killing form. By
[He, p. 239] this is isomorphic to

p =

{(
0 U
tU 0

)
; U ∈Matr×s(R)

}
.

The space p is isomorphic to the tangent space of Drs at 0. A straightforward
calculation shows that the O(r, s)-invariant metric ds2 is induced by the Killing
functional tr(U1

tU2) on the tangent space at 0.
We now want to compare this to a suitable volume form on the compact dual.
Recall that the general situation is as follows. Let H be a bounded homoge-
neous domain and G = Aut(H)0 be the connected component of the identity
of the group of automorphisms of H . In particular, H = G/K where K = Gz0
is the stabiliser of some point z0. There exists a unique compact real form Gu
of the complex group GC such that G ∩ Gu = K and the symmetric domain
H = G/K can be embedded into the compact manifold D(c) = Gu/K as an
open submanifold. In our situation

D(c)
rs = SO(r + s)/ SO(r) × SO(s).

Again by [He, p.239] the tangent space of D(c)
rs at the point Ir+s is given by the

subspace

p′ =

{(
0 U
−tU 0

)
; U ∈ Matr×s(R)

}

of the Lie algebra of SO(r+ s). The Killing form tr(W1
tW2) of the Lie algebra

of the compact group SO(r + s) induces the form 2 tr(U1
tU2) on the tangent

space p′. In order to compare the volumes of Drs and its compact dual D(c)
rs

we have to normalise this form in such a way that it coincides with the Siegel

metric in the common base point K ∈ Drs ⊂ D(c)
rs , i.e. we have to use the

form 1
2 tr(W1

tW2). Since the dimension of SO(n) is 1
2n(n− 1), we get a factor

2−(r+s)(r+s−1)/4 in front of the volume of the compact group, calculated in
terms of the volume form induced by the Killing functional on SO(r+ s). The
latter volume is computed in [Hua, §3.7]. Taking the above normalisation into
account we find

volS(SO(m)) = 2m−1 γm (3)

and we shall again refer to this volume as the Siegel volume. For the compact
dual this gives

volS(D(c)
rs ) = 2 γr+sγ

−1
r γ−1

s . (4)
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Our aim is to compute the Hirzebruch-Mumford volume

volHM (O(L)) =
volS(O(L)\Drs)

volS(D(c)
rs )

. (5)

To make the above equation effective, we have to determine the Tamagawa
measure

α∞(L) = α∞(O(L)\O(L ⊗ R)) = α∞(SO(L)\ SO(L ⊗ R)).

The genus of the indefinite lattice L contains a finite number g+
sp(L) of (proper)

spinor genera (for a definition see [Ki, §6.3]). (We consider only proper classes
and proper spinor genera.) This number is always a power of two and can be
calculated effectively. It is well known that the spinor genus of an indefinite
lattice of rank ≥ 3 coincides with the class. As was proved by M. Kneser (see
[Kn]) the weight of the representations of a given number m by a spinor genus
is the same for all genera in the genus of L. The same arguments show that all
spinor genera in the genus have the same mass. (We are grateful to R. Schulze-
Pillot for drawing our attention to this fact.) It is easy to see this in adelic
terms. A spinor genus corresponds to a double class SO(V ) SO′A(V ) b SOA(L)
in the adelic group SOA(V ), where V = L ⊗Q is the rational quadratic space
and

SO′A(V ) = ker sn: SOA(V )→ Q×A /(Q
×
A )2

is the kernel of the spinor norm. We note that the genus of L is given by
SOA(V )L. It follows from the definition that the group SO′A(V ) contains the
commutator of SOA(V ), therefore

SO(V ) SO′A(V ) b SOA(L) = SO(V ) SO′A(V ) SOA(L) b.

The mass of a spinor genus

τ(SO(V ) \ SO(V ) SO′A(V )b SOA(L)) = τ(SO(V ) \ SO(V ) SO′A(V ) SOA(L))

depends only on the genus, since the Tamagawa measure is invariant. The
Tamagawa number of the orthogonal group is 2 (see [Sie1], [W], [Sh]), i.e.,
τ(SO(V )\SOA(V )) = 2. Then the Tamagawa measure α∞(L) can be computed
via the local densities of the lattices L ⊗ Zp over the p-adic integers Zp (the
local Tamagawa measures). More precisely,

α∞(L) = α∞(SO(L) \ SO(L ⊗ R)) =
2

g+
sp(L)

∏

p

αp(L)−1, (6)

where p runs through all prime numbers and g+
sp(L) is the number of spinor

genera in the genus of L. The local densities can be computed, at least for
quadratic forms over Q and its quadratic extensions: see [Ki]. In order to find
αp(L) it is enough to know the Jordan decomposition of L over the p-adic
integers.
We can now summarise our results as follows.
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Theorem 2.1 (Main formula) Let L be an indefinite lattice of rank ρ ≥ 3.
Then the Hirzebruch-Mumford volume of O(L) equals

volHM (O(L)) =
2

g+
sp(L)

· | detL|(ρ+1)/2

ρ∏

k=1

π−k/2Γ(k/2)
∏

p

αp(L)−1 (7)

where the αp(L) are the local densities of the lattice L and g+
sp(L) is the number

of spinor genera in the genus of L.

Proof. This follows immediately from formulae (1), (2), (5) and (6). 2

3 Applications

In this section we want to apply the above results to compute the asymptotic
behaviour of the dimension of spaces of cusp forms for a number of specific
groups. The main applications have to do with locally symmetric varieties. In
[GHS1] we prove general type results for the moduli spaces F2d of K3 surfaces
of degree 2d, but in that special case we can use a different method. The results
we have here are used in [GHS2] to prove similar results in greater generality.

3.1 Groups

We first have to clarify the various groups which will play a role. In this section,
L will be an even indefinite lattice of signature (2, n), containing at least one
hyperbolic plane as a direct summand. By a classical result of Kneser we know
that if the genus of an indefinite lattice L contains more than one class, then
there is a prime p such that the quadratic form of L can be diagonalised over
the p-adic numbers and the diagonal entries all involve distinct powers of p
(see [CS, Chapter 15]). Therefore the genus of any indefinite lattice with one
hyperbolic plane contains only one class.
As an immediate corollary of Theorem 2.1 we obtain

Theorem 3.1 Let L be a lattice of signature (2, n) (n ≥ 1) containing at least
one hyperbolic plane. Let Γ be an arithmetic subgroup of O(L). Then

volHM (Γ) = 2 · [PO(L) : PΓ]| detL|(n+3)/2
n+2∏

k=1

π−k/2Γ(k/2)
∏

p

αp(L)−1. (8)

Remark. In many interesting cases a subgroup Γ is given in terms of the
orthogonal group of some sublattice L1 of L. In this case one can use the
volume in order to calculate the index (see Section 3.4 below).
We shall now discuss the various groups which are of importance to us and
compute their indices in O(L). The group O(L) interchanges the two connected
components of the domain ΩL and we define O+(L) as the index 2 subgroup
which fixes each of these components (as sets). This group can also be described
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using the (−1)-spinor norm on the group O(L⊗R) which is defined as follows.
Every element g can be represented as a product of reflections

g = σv1 · · · · · σvm

and, following Brieskorn [Br], we define

sn−1(g) =

{
+1 if (vk, vk) > 0 for an even number of vk
−1 otherwise.

This is independent of the representation of g as a product of reflections. It is
well known that

O+(L) = Ker(sn−1) ∩O(L).

To see this, note that any reflection with respect to a vector of negative square
has (−1)-spinor norm equal to 1, and any reflection with respect to a vector
of positive square has (−1)-spinor norm equal to −1 and interchanges the two
components. The Hirzebruch–Mumford volume of O+(L) is twice that of O(L).
Let L∨ = Hom(L,Z) be the dual lattice and AL = L∨/L. The finite group
AL carries a discriminant quadratic form qL with values in Q/2Z [Ni, 1.3]. By

O(qL) we denote the corresponding group of isometries and the group Õ(L),
called the stable orthogonal group, is defined as the kernel of the natural ho-
momorphism O(L) → O(qL). Since L contains a hyperbolic plane, it follows
from [Ni, Theorem 1.14.2] that this map is surjective. Set

Õ
+

(L) = Õ(L) ∩O+(L).

Finally the groups SO+(L) and S̃O
+
(L) are defined as the corresponding groups

of isometries of determinant 1.

Lemma 3.2 Let D = |O(qL)|. Then we have the following diagram of groups
with indices as indicated:

Õ(L)
D:1⊂ O(L)⋃

2:1
⋃

2:1

Õ
+
(L)

D:1⊂ O+(L)⋃
2:1

⋃
2:1

S̃O
+
(L)

D:1⊂ SO+(L).

Proof. We shall first prove that the indices of the vertical inclusions are all 2.
To do this, we choose a hyperbolic plane U in L, which exists by assumption.
Let e1, e2 be a basis of U with e21 = e22 = 0 and e1.e2 = 1. If u = e1 − e2,
v = e1 + e2, then u2 = −2, v2 = 2 and the two reflections σu and σv belong to
Õ(L), since they act trivially on the orthogonal complement of U . Moreover
sn−1(σv) = −1 and sn−1(σu) = 1. Hence we can use σv to conclude that the
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top two vertical inclusions are of index 2, whereas σu shows the same for the
bottom two vertical inclusions.
We have already observed that the natural map O(L) → O(qL) is surjective,
which shows that the top horizontal inclusion has index D. Taking into account
that the reflections σu and σv act trivially on the discriminant form, we obtain
that

D = [O(L) : Õ(L)] = [O+(L) : Õ
+
(L)] = [SO+(L) : S̃O

+
(L)].

2

Finally, we want to consider the projective groups PO(L), PO+(L) and

PÕ
+
(L), i.e., the corresponding groups modulo their centres. It follows im-

mediately from the above diagram that

[PO(L) : PÕ
+
(L)] =

{
D if − id 6∈ Õ

+
(L)

2D if − id ∈ Õ
+
(L).

(9)

Note that − id ∈ Õ
+
(L) if and only if AL is a 2-group.

3.2 Local densities

Siegel’s definition of local densities of a quadratic form over a number field K
given by a matrix S ∈ Matn×n(K) is

αp(S) =
1

2
lim
r→∞

p−
rn(n−1)

2 |
{
X ∈ Matn×n(Zp)mod pr; tXSX ≡ Smod pr

}
|.

The local densities can be calculated explicitly, at least in the cases where
K = Q or a quadratic extension of Q (see chapter 5 of the book [Ki] and
references there). For the convenience of the reader we include the formulae
over Q in the present paper. To calculate αp(L) one should know the Jordan
decomposition of the lattice L over the local ring Zp of p-adic integers. The
main difficulties arise for p = 2: see [Ki, Theorem 5.6.3].
Let us introduce some notation. Let L be a Zp-lattice in a regular (i.e. non-
degenerate) quadratic space over Qp of rank n, and let (vi) be a basis of L.
There are two invariants of L: the scale

scale(L) = {(x,y)L ; x,y ∈ L}

and the norm

norm(L) = {∑ax(x,x)L ; x ∈ L, ax ∈ Zp }.

We have 2 scale(L) ⊂ norm(L) ⊂ scale(L). In fact, over Zp (p 6= 2) we have
norm(L) = scale(L), whereas over Z2 we have either norm(L) = scale(L) or
norm(L) = 2 scale(L).
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L is called pr-modular, for r ∈ Z, if the matrix p−r(vi,vj)L belongs to GLn(Zp).
In this case we can write L as the scaling N(pr) of a unimodular lattice N . By
a hyperbolic space we mean a (possibly empty) orthogonal sum of hyperbolic
planes.
A regular lattice L decomposes as the orthogonal sum of lattices

⊕
j∈Z Lj ,

where Lj is a pj-modular lattice of rank nj ∈ Z≥0. Put

w =
∑

j

jnj
(
(nj + 1)/2 +

∑

k>j

nk
)

and

Pp(n) =

n∏

i=1

(1− p−2i).

For a regular quadratic space W over the finite field Z/pZ one puts

χ(W ) =





0 if dimW is odd,

1 if W is a hyperbolic space,

−1 otherwise.

For a unimodular lattice N over Z2 with norm(N) = 2 scale(N) we define
χ(N) = χ(N/2N), where N/2N is given the structure of a regular quadratic
space over Z/2Z via the quadratic form Q(x) = 1

2 (x,x)N mod 2.

For the local density αp(L) for p 6= 2 we have the formula

αp(L) = 2s−1pwPp(L)Ep(L) (10)

where s is the number of non-zero pj-modular terms Lj in the orthogonal
decomposition of L, and

Pp(L) =
∏

j

Pp([nj/2]), Ep(L) =
∏

j, Lj 6=0

(
1 + χ(Nj)p

−nj/2)−1

where Lj is the pj-scaling of the unimodular lattice Nj and [nj/2] denotes the
integer part.

The local density α2(L) is given by

α2(L) = 2n−1+w−qP2(L)E2(L). (11)

In this formula q =
∑

j qj where

qj =





0 if Nj is even,

nj if Nj is odd and Nj+1 is even,

nj + 1 if Nj and Nj+1 are odd.
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A unimodular lattice N over Z2 is even if it is trivial or if norm(N) = 2Z2, and
odd otherwise. Any unimodular lattice can be represented as the orthogonal
sum N = N even ⊕Nodd of even and odd sublattices such that rankNodd ≤ 2.
Then we put

P2(L) =
∏

j

P2(rankN even
j /2).

The second factor is E2(L) =
∏
j E
−1
j , where Ej is defined by

Ej =
1

2
(1 + χ(N even

j )2− rankNeven
j /2)

if both Nj−1 and Nj+1 are even, unless Nodd
j
∼= 〈ǫ1〉⊕〈ǫ2〉 with ǫ1 ≡ ǫ2 mod 4:

in all other cases we put Ej = 1/2.
We note that Ej depends on Nj−1, Nj and Nj+1 and Ej = 1 if all of them are
trivial. Also qj depends on Nj and Nj+1 and qj = 0 if Nj is trivial.

3.3 The even unimodular lattices II2,8m+2

We start with the example

II2,8m+2 = 2U ⊕mE8(−1), where m ≥ 0

which is a natural series of even unimodular lattices of signature (2, 8m + 2).
Note that II2,26

∼= 2U ⊕ Λ, where Λ is the Leech lattice.
The local densities are easy to calculate, since for every prime p the lattice
II2,8m+2 ⊗ Zp over the p-adic integers is a direct sum of hyperbolic planes.
Then using (10) and (11) we obtain

αp(II2,8m+2) = 2δ2,p(8m+4)Pp(4m+ 2)(1 + p−(4m+2))−1

where δ2,p is the Kronecker delta. By our main formula (8) from Theorem 3.1
we obtain

volHM (O+(II2,8m+2)) = 2−(8m+2)γ−1
8m+4ζ(2)ζ(4) · . . . · ζ(8m+ 2)ζ(4m+ 2)

where γ8m+4 is as in formula (2). In order to simplify this expression we use
the ζ-identity

π−
1
2−2kΓ(k)Γ

(
k +

1

2

)
ζ(2k) = (−1)kζ(1− 2k) = (−1)k+1B2k

2k
. (12)

Together with

π−(4m+2)Γ(4m+ 2)ζ(4m+ 2)

= 24m+1π−
1
2−(4m+2)Γ(2m+ 1)Γ(

4m+ 3

2
)ζ(4m+ 2)

= 24m+1 B4m+2

4m+ 2
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where the first equality comes from the Legendre duplication formula of the
Γ-function, and the second equality is again a consequence of the ζ-identity, we
obtain

volHM (O+(II2,8m+2)) = 2−(4m+1)B2 · B4 · . . . · B8m+2

(8m+ 2)!!
· B4m+2

4m+ 2
.

Here (2n)!! = 2 ·4 · . . . ·2n. Since the discriminant group of the lattice II2,8m+2

is trivial, we have the equality

volHM (Õ
+
(II2,8m+2)) = volHM (O+(II2,8m+2)).

In a similar way one can derive a formula for any indefinite unimodular lattice
of signature (r, s). For example, for the odd unimodular lattice M defined by
x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
r+s we have to take into account that the even

(M ⊗Z2)
even and odd (M ⊗Z2)

odd parts of the lattice M over 2-adic numbers
depend on r+ s mod 2 and r− s mod 8 (see [BG] for a different approach in
this special case).
We can now use this to compute dimensions of cusp forms for this group and
we obtain

dimSk(Õ
+
(II2,8m+2), det ε) =

2−4m

(8m+ 2)!
· B2 · B4 · . . . · B8m+2

(8m+ 2)!!
· B4m+2

4m+ 2
k8m+2 +O(k8m+1).

Here ε = ±1 and we must assume that k is even, since otherwise there are no
forms for trivial reasons.

3.4 The lattices T2,8m+2

The orthogonal group of the lattice II2,8m+2 for m = 2 defines an irreducible

component of the branch divisor of the modular variety F (m)
2d . The same branch

divisor contains another component defined by the lattice

T2,8m+2 = U ⊕ U(2)⊕mE8(−1)

of discriminant 4. We note that this lattice is not maximal. For a prime number
p 6= 2 the p-local densities of the lattices T and M coincide. Let us calculate
α2(T ). Over the 2-adic ring we have T2,8m+2 ⊗ Z2

∼= (4m + 1)U ⊕ U(2). We
have (see (11))

N0 = N even
0 = (4m+ 1)U, N1 = N even

1 = U, w = 3, q = 0,

E0 =
1

2
(1 + 2−(4m+1)), E1 =

1

2
(1 + 2−1).

Thus

α2(T2,8m+2) = 28m+7(1− 2−2) · · · · · (1− 2−8m)(1− 2−(4m+1)).
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We note that [PO+(T2,8m+2) : PÕ
+
(T2,8m+2)] = 2 since the finite orthogonal

discriminant group of T2,8m+2 is isomorphic to Z/2Z. As a result we get

volMH(Õ
+
(T2,8m+2)) =

2 γ−1
8m+4ζ(2) · · · · · ζ(8m+ 2)ζ(4m+ 2)(1 + 2−(4m+1))(1 − 2−(4m+2)).

Using the formula for the volume of II2,8m+2 we see that

volMH Õ
+
(T2,8m+2)

volMH Õ
+

(II2,8m+2)
= (24m+1 + 1)(24m+2 − 1). (13)

If L1 is a sublattice of finite index of a lattice L then Õ
+
(L) is a subgroup

of Õ
+
(L1). One can use the formula of Theorem 2.1 to calculate easily the

index [Õ
+
(L1) : Õ

+
(L)]. For example, formula (13) above gives the index of

Õ
+
(II2,8m+2) in Õ

+
(T2,8m+2). This method is much shorter than the calcula-

tion in terms of finite geometry over Z/2Z.

3.5 The lattices L
(m)
2d

We consider the lattice

L
(m)
2d = 2U ⊕mE8(−1)⊕ 〈−2d〉

of signature (2, 8m + 3). The lattice L
(m)
2d is not maximal if d is not square

free. This lattice is of particular interest, as the lattice L
(2)
2d is closely related

to the moduli space of polarised K3 surfaces of degree 2d. More precisely, the
quotient space

F2d = Õ
+
(L

(2)
2d )\D

L
(2)
2d

is the moduli space of K3 sufaces of degree 2d. As we shall see, there is
also a relation to Siegel modular forms for both the group Sp(2,Z) and the
paramodular group.

Again, the lattices over the p-adic integers are easy to understand, since
E8(−1) ⊗ Zp is the direct sum of four copies of a hyperbolic plane. By (10)
and (11) we find

αp(L
(m)
2d ) = Pp(4m+ 2) if p 6 | 2d

αp(L
(m)
2d ) = 2psPp(4m+ 2)(1 + p−(4m+2))−1 if p is odd, ps‖d

α2(L
(m)
2d ) = 28m+6P2(4m+ 2) if d is odd

α2(L
(m)
2d ) = 28m+7+sP2(4m+ 2)(1 + 2−(4m+2))−1 if d is even, 2s‖d
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where the expression ps‖d means that ps is the highest power of p which divides
d. Therefore

∏

p

αp(L
(m)
2d )−1 = ζ(2)ζ(4) . . . ζ(8m+ 4) (2d)−12−ρ(d)−8m−5

∏

p|d
(1 + p−(4m+2))

where ρ(d) denotes the number of prime divisors of d.
We shall need the following.

Lemma 3.3 Let R = 〈−2d〉. Then the order of the discriminant group O(qR)
is 2ρ(d).

Proof. Let g be the standard generator of AR = Z/2dZ, given by the equiva-
lence class of 1. Then qR(g) = −1/2d mod 2Z. If ϕ ∈ O(qR), then ϕ(g) = xg
for some x with (x, 2d) = 1. Hence ϕ is orthogonal if and only if

−x
2

2d
≡ − 1

2d
mod 2Z,

or equivalently

x2 ≡ 1 mod 4dZ.

This equation has 2ρ(d)+1 solutions modulo 4dZ, and hence 2ρ(d) solutions
modulo 2dZ. 2

From this it follows also that the discriminant group of the lattice L
(m)
2d also

has order 2ρ(d).
From (9) it follows that

[PO(L
(m)
2d ) : PÕ

+
(L

(m)
2d )] = 2ρ(d) if d > 1

and 2 if d = 1. We first assume that d > 1. We put n = 8m+ 3, which is the
dimension of the homogeneous domain. It follows from Corollary 3.1 that

volHM (Õ
+
(L

(m)
2d )) = 2ρ(d)+1(2d)

n+3
2 γ−1

n+2

∏

p

αp(L
(m)
2d )−1.

If d = 1 we have to multiply the right hand side by a factor 2. Using the ζ
identity, a straightforward calculation gives (again for d > 1 and n = 8m+ 3)

volHM (Õ
+
(L

(m)
2d )) =

(
d

2

)n+1
2 ∏

p|d
(1 + p−

n+1
2 ) · |B2 ·B4 · · · · ·Bn+1|

(n+ 1)!!
.

We want to apply this to the moduli space of K3 surfaces of degree 2d. This
is the case m = 2: the dimension of the domain is n = 19. Using Hirzebruch-
Mumford proportionality and specialising the above volume computation to
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this case, we compute the dimension of the spaces of cusp forms:

dimSk(Õ
+
(L

(2)
2d ), det ε) =

2−9

19!
d10 ·

∏

p|d
(1 + p−10)

|B2 ·B4 · . . . ·B20 |
20!!

· k19 +O(k18)

which holds for d > 1, with an additional factor 2 for d = 1. In the latter
case we must assume that k and ε have the same parity. For d > 1 there is no

restriction since − id /∈ Õ
+

(L
(2)
2d ). This should be compared to Kondo’s formula

[Ko] where, however, the Hirzebruch-Mumford volume has not been computed
explicitly. It should also be noted that Kondo uses the geometric, rather than
the arithmetic, weight.

3.5.1 Siegel modular forms

The case m = 0 gives applications to Siegel modular forms. We shall first
consider the case d = 1. Recall that

S̃O
+
(L

(0)
2 ) ∼= Õ

+
(L

(0)
2 )/{± id} ∼= Sp(2,Z)/{± id}.

From our previous computation we obtain that

volHM (S̃O
+
(L

(0)
2 )) = volHM (Õ

+
(L

(0)
2 )) = 2−4|B2B4|

and by Hirzebruch-Mumford proportionality this gives

dimSk(Sp(2,Z)) = 2−43−1|B2B4|k3 +O(k2).

Note that this coincides with [T, p. 428], taking into account that Tai’s formula
refers to modular forms of weight 3k. Tai uses Siegel’s computation of the
volume of the group Sp(2,Z), rather than the orthogonal group.

3.5.2 The paramodular group

Finally, we consider the case m = 0 and d > 1. This is closely related to

the so-called paramodular group Γ
(Sp)
d , which gives rise to the moduli space of

(1, d)-polarised abelian surfaces. In fact

S̃O
+
(L

(0)
2d ) ∼= PΓ

(Sp)
d

by [GH, Proposition 1.2]. We note that in this case

[Õ
+

(L
(0)
2d ) : S̃O

+
(L

(0)
2d )] = 2

and that − id is in neither of these groups. Hence

volHM (S̃O
+
(L

(0)
2d )) = 2 volHM (Õ

+
(L

(0)
2d ))

= 2−4d2
∏

p|d
(1 + p−2)|B2B4|
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and by Hirzebruch-Mumford proportionality

dimSk(Γ
(Sp)
d ) =

d2

3 · 24

∏

p|d
(1 + p−2)|B2B4|k3 +O(k2).

This agrees with [Sa, Proposition 2.2], where this formula was derived for d a
prime.

3.6 Lattices associated to Heegner divisors

We shall conclude this section by computing the volume of two lattices of rank

8m + 4. Both of these lattices K
(m)
2d and N

(m)
2d arise from the (−2)-reflective

part of the ramification divisor of the quotient map

D
L

(m)
2d

→ Õ
+

L
(m)
2d
\D

L
(m)
2d

= F (m)
2d .

For m = 2 this is the moduli space of K3 surfaces of degree 2d. For m = 0
and a prime d we get the moduli of Kummer surfaces associated to (1, d)-
polarised abelian surfaces (see [GH]). Since the branch locus of the quotient
map gives rise to obstructions for extending pluricanonical forms defined by
modular forms, knowledge of their volumes is important for the computation

of the Kodaira dimension of F (m)
2d (see [GHS2]).

3.6.1 The lattices K
(m)
2d

We consider the lattice

K
(m)
2d = U ⊕mE8(−1)⊕ 〈2〉 ⊕ 〈−2d〉

where d is a positive integer. We first have to determine the local densities for

this lattice. Since det(K
(m)
2d ) = 4d, this lattice is equivalent to the following

lattices over the p-adic integers for odd primes p:

K
(m)
2d ⊗ Zp ∼= (4m+ 1)U ⊕




U if

(
4d
p

)
= 1

x2 − 4dy2 if
(

4d
p

)
= −1.

For the local densities we obtain from equations (10) and (11)

αp(K
(m)
2d ) = Pp(4m+ 1)(1−

(
4d

p

)
p−(4m+2)) if p 6 |d

αp(K
(m)
2d ) = 2psPp(4m+ 1) if ps‖d

α2(K
(m)
2d ) = 28m+v(d)P2(4m+ 1)

where v(d) = 6 if d ≡ 1 mod 4, v(d) = 7 if d ≡ −1 mod 4, v(d) = 8 if d ≡ 2
mod 4, and v(d) = 8 + s if d ≡ 0 mod 4 and 2s‖d.
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From this we obtain that

∏

p

αp(K
(m)
2d )−1 = A2(d)d

−1ζ(2)ζ(4) . . . ζ(8m+ 2)L(4m+ 2,

(
4d

∗

)
), (14)

where

A2(d) =

{
2−ρ(d)−8m−6 if d ≡ 1, 2 mod 4

2−ρ(d)−8m−7 if d ≡ 0, 3 mod 4.

Application of our main formula (7) then gives

volHM (O+(K
(m)
2d )) = 4 · (4d) 8m+5

2 ·
8m+4∏

k=1

π−
k
2 Γ(

k

2
) ·
∏

p

αp(K2d)
−1. (15)

Combining formulae (14) and (15) and the ζ-identity (12) leads to

volHM (O+(K
(m)
2d )) =

C2(d)d
8m+3

2 π−(4m+2)Γ(4m+ 2)L(4m+ 2,

(
4d

∗

)
)
B2B4 . . . B8m+2

(8m+ 2)!!

where

C2(d) =

{
2−ρ(d)+1 if d ≡ 1, 2 mod 4

2−ρ(d) if d ≡ 0, 3 mod 4.

For applications it is also important to compute the volume with respect to

the group Õ
+
(K

(m)
2d ). For this, we have to know the order of the group of

isometries of the discriminant group.

Lemma 3.4 Let S = 〈2〉 ⊕ 〈−2d〉. The order of the discriminant group is

|O(qS)| =
{

21+ρ(d) if d ≡ −1 mod 4 or d is divisible by 8
2ρ(d) for all other d.

Proof. We denote the standard generators of Z/2dZ and Z/2Z by g and h
respectively. We shall first consider automorphisms ϕ with ϕ(g) = xg. Then
orthogonality implies x2 ≡ 1 mod 4dZ which means, in particular, that x is
odd and (x, 2d) = 1. We then have ϕ(dg) = dg. We cannot have ϕ(h) = dg+h,
because orthogonality implies that for the bilinear form Bq, defined by the
quadratic form q = qS , we have Bq(xg, dg + h) = Bq(g, h) = 0 and hence
−x/2 ≡ 0 mod Z, which shows that x is even, a contradiction. Hence ϕ(h) = h
and ϕ = ϕ′ × id where ϕ′ ∈ O(qR) (with R = 〈−2d〉). In this way we obtain
2ρ(d) elements in O(qS).
We shall now investigate automorphisms with ϕ(g) = xg + h. Then q(g) =
q(ϕ(g)) implies the condition

x2 ≡ 1 + d mod 4dZ.
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It is not hard to check that this only has solutions if either d ≡ −1 mod 4 or d
is divisible by 8. We shall distinguish between the cases d even and d odd. In
the first case x must be odd and (x, 2d) = 1. Moreover ϕ(dg) = dg and the only
possibility for an orthogonal automorphism is ϕ(h) = dg + h and indeed this
gives rise to another 2ρ(d) orthogonal automorphisms. Now assume d is odd.
Then x is even and (x, d) = 1. In this case ϕ(dg) = h and the only possibility
to obtain an orthogonal automorphism is ϕ(h) = dg. Once more, this gives
another 2ρ(d) orthogonal automorphisms and this proves the lemma. 2

By formula (9) it then follows that

[PO(K
(m)
2d ) : PÕ

+
(K

(m)
2d )] =





2 if d = 1

2ρ(d) if d ≡ 1, 2 mod 4, d > 1

2ρ(d)+1 if d ≡ 3 mod 4.

Therefore

volHM (Õ
+

(K
(m)
2d )) = 2δ1,d−δ4,d(8)

B2B4 . . . B8m+2

(8m+ 2)!!

·d 8m+3
2 π−(4m+2)Γ(4m+ 2)L(4m+ 2,

(
4d

∗

)
) (16)

where d(8) denotes d mod 8 and δ∗,∗ is the Kronecker symbol.
We want to reformulate this result in terms of generalised Bernoulli numbers.
In order to avoid too many different cases, we restrict here to d 6≡ 0 mod 4
(but it is clear how to remove this restriction). If d = d0t

2, with d0 a positive
and square-free integer, then the discriminant of the real quadratic field Q(

√
d)

is equal to

D =

{
d0 if d ≡ 1 mod 4

4d0 if d ≡ 2, 3 mod 4.

Note that

d
8m+3

2 = t8m+3D
8m+3

2 ·
{

1 if d ≡ 1 mod 4

2−(8m+3) if d ≡ 2, 3 mod 4.
(17)

Let χD be the quadratic character of this field. Then

L(s,

(
4d

∗

)
) = L(s, χD)

∏

p|2t
(1− χD(p)p−s). (18)

The character χD is an even primitive character modulo D, and the Dirichlet
L-function L(s, χD) satisfies the functional equation

π−
s
2 Γ(

s

2
)DsL(s, χD) = π−

1−s
2 Γ(

1− s
2

)D
1
2L(1− s, χD). (19)
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Moreover

L(1− k, χD) = −Bk,χD
k

where Bk,χD is the corresponding generalised Bernoulli number. Using the
functional equation (19) we obtain

π−(4m+2)Γ(4m+ 2)D
8m+3

2 L(4m+ 2, χD) = −24m+1L(1− (4m+ 2), χD)

= 24m+1B4m+2,χD

4m+ 2
. (20)

Combining (16), (17), (18), (20) and the result of Lemma 3.4 then gives the
result

volHM (Õ
+
(K

(m)
2d )) =

F2(d)t
8m+3 B2B4 . . . B8m+2

(8m+ 2)!!

B4m+2,χD

4m+ 2

∏

p|2t
(1− χD(p)p−(4m+2)) (21)

where

F2(d) =

{
24m+2 if d ≡ 1 mod 4

2−4m−1 if d ≡ 2, 3 mod 4.

Using this, together with Hirzebruch-Mumford proportionality, we finally find

that dimSk(Õ
+
(K

(m)
2d )) grows as

G2(d)

(8m+ 2)!

B2 ·B4 . . . B8m+2

(8m+ 2)!!
· B4m+2,χD

4m+ 2
t8m+3

∏

p|2t
(1− χD(p)p−(4m+2)) k8m+2

where

G2(d) =

{
24m+2+δ1,d if d ≡ 1 mod 4,

2−(4m+1) if d ≡ 2, 3 mod 4.

3.6.2 The lattices N
(m)
2d

We assume that d ≡ 1 mod 4 and consider the even lattice

N
(m)
2d = U ⊕mE8(−1)⊕

(
2 1
1 1−d

2

)
.

We first have to understand this lattice over the p-adic integers. If p > 2 then 2
is a p-adic integer and we have the following equality for the anisotropic binary

form in N
(m)
2d :

1− d
2

x2 + 2xy + 2y2 = −d
2
x2 + 2(y +

x

2
)2.
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Depending on whether d is a square in Z∗p or not, we then obtain from the
classification theory of quadratic forms over Zp that

N
(m)
2d ⊗ Zp ∼= (4m+ 1)U ⊕




U if

(
d
p

)
= 1

−dx2 + y2 if
(
d
p

)
= −1.

We now turn to p = 2. Recall that there are only two even unimodular binary
forms over Z2, namely the hyperbolic plane and the form given by the matrix(

2 1
1 2

)
. This implies that

N
(m)
2d ⊗ Z2

∼= (4m+ 1)U ⊕





U if d ≡ 1 mod 8(
2 1

1 2

)
if d ≡ 5 mod 8.

Once again by (10) and (11) we find for the local densities that

αp(N
(m)
2d ) = Pp(4m+ 1)(1−

(
d

p

)
p−(4m+2)) if p 6 |d

αp(N
(m)
2d ) = 2psPp(4m+ 1) if ps‖d

α2(N
(m)
2d ) = 28m+4P2(4m+ 1)(1−

(
d

2

)
2−(4m+2)).

We are interested mainly in the group Õ
+

(N
(m)
2d ). For this we need the next

lemma.

Lemma 3.5 Let

T =

(
2 1
1 1−d

2

)

Then AT ∼= Z/2dZ and
|O(qT )| = 2ρ(d).

Proof. Since det(T ) = −d, the discriminant group has order d. In fact, it is
cyclic of order d. To see this, let e and f be the basis with respect to which
the form is given by the matrix T . Then (e− 2f)/d is in the dual lattice and
its class, say h, generates the group AT . Every homomorphism of AT is of the
form ϕ(h) = xh, and it is an isometry if and only if x2 ≡ 1 mod 2d. This
equation has 2ρ(d) solutions modulo dZ. 2

It now follows from (9) that

[PO(N
(m)
2d ) : PÕ

+
(N

(m)
2d )] =

{
2ρ(d) if d ≡ 1 mod 4 and d 6= 1

2 if d = 1.
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By the same calculation as in the preceding example we find now that

volHM (Õ
+
(N

(m)
2d )) = 2δ1,d−8m−3B2B4 . . . B8m+2

(8m+ 2)!!
·

d
8m+3

2 π−(4m+2)Γ(4m+ 2)L(4m+ 2,

(
d

∗

)
). (22)

As above we can use generalised Bernoulli numbers. Hence by Hirzebruch-

Mumford proportionality we obtain for d > 1 that dimSk(Õ
+
(N

(m)
2d )) grows

as

2−4m−1

(8m+ 2)!

B2 ·B4 . . . B8m+2

(8m+ 2)!!
· B4m+2,χD

4m+ 2
t8m+3

∏

p|t
(1− χD(p)p−(4m+2)) k8m+2.

Here, as before, d = d0t
2, with d0 square-free, and D = d0 is the discriminant

of the quadratic extension Q(
√
d). For d = 1 we have an extra factor 2, t = 1,

χD ≡ 1 and B4m+2,χD = B4m+2. In this case the lattice N
(m)
2d is unimodular

and the formula again agrees with our previous computations in Section 3.3.
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0. Introduction

(0.0) Let F,L be number fields contained in a fixed algebraic closure Q of Q; let
M be a motive over F with coefficients in L. The L-function of M (assuming it
is well-defined) is a Dirichlet series

∑
n≥1 ann

−s with coefficients in L. For each

embedding ι : Q →֒ C, the complex-valued L-function

L(ιM, s) =
∑

n≥1

ι(an)n−s

is absolutely convergent for Re(s) >> 0. It is expected to admit a meromorphic
continuation to C and a functional equation of the form

(CFE) (L · L∞)(ιM, s)
?
= ε(ιM, s) (L · L∞)(ιM∗(1),−s),

where

L∞(ιM, s) =
∏

v|∞
Lv(ιM, s)

is a product of appropriate Γ-factors (independent of ι) and

ε(ιM, s) = ι(ε(M)) cond(M)−s, ε(M) ∈ Q
∗
.
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244 Jan Nekovář

(0.1) Let p be a prime number and p | p a prime of L above p. The p-adic realiza-
tion Mp of M is a finite-dimensional Lp-vector space equipped with a continuous
action of the Galois group GF,S = Gal(FS/F ), where FS ⊂ Q is the maximal
extension of F unramified outside a suitable finite set S ⊃ Sp∪S∞ of primes of F .
According to the conjectures of Bloch and Kato [Bl-Ka] (generalized by Fontaine
and Perrin-Riou [Fo-PR]),

(CBK)
ords=0L(ιM, s)

?
= dimLp

H1
f (F,M

∗
p (1))− dimLp

H0(F,M∗p (1)) =

= h1
f (F,M

∗
p (1))− h0(F,M∗p (1)),

where H1
f (F, V ) ⊆ H1(GF,S , V ) is the generalized Selmer group defined in [Bl-

Ka].

(0.2) Consider the special case when the motive M is self-dual (i.e., when
there exists a skew-symmetric isomorphism M

∼−→M∗(1)) and pure (necessarily
of weight −1). In this caseH0(F,Mp) = 0 and ords=0L∞(ιM, s) = 0, which means
that the global ε-factor ε(M) determines the parity of ords=0L(ιM, s) (assuming
the validity of (CFE)):

(−1)ords=0L(ιM,s) = ε(M). (0.2.1)

In this article we concentrate on the parity conjecture for Selmer groups,
namely on the conjecture

(CBK (mod 2)) ords=0L(ιM, s)
?≡ h1

f (F,Mp) (mod 2).

In view of (0.2.1), this conjecture can be reformulated (assuming (CFE)) as follows:

(−1)h
1
f (F,Mp) ?

= ε(M) (0.2.2)

(0.3) The advantage of the formulation (0.2.2) is that the global ε-factor

ε(M) =
∏

v

εv(M), εv(M) = εv(Mp)

is a product of local ε-factors, which can be expressed in terms of the Galois repre-
sentation Mp alone: for v ∤ p∞ (resp., v | p), εv(M) is the local ε-factor of the rep-
resentation of the Weil-Deligne group of Fv attached to the action of Gal(F v/Fv)
on Mp (resp., attached to the corresponding Fontaine module Dpst(Mp) over Fv).
For v | ∞, εv(M) depends on the Hodge numbers of the de Rham realization MdR

of M , which can be read off from DdR(Mp) over Fv, for any v | p.
It makes sense, therefore, to rewrite the conjecture (0.2.2) as

(−1)h
1
f (F,V ) ?

= ε(V ) =
∏

v

εv(V ), (0.3.1)
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for any symplectically self-dual (V
∼−→ V ∗(1)) representation of GF,S which is

geometric (= potentially semistable at all primes above p) and pure (of weight
−1).

In the present article we consider the following question: is the conjecture (0.3.1)
invariant under deformation in p-adic families of representations of GF,S? In other
words, if V, V ′ are two representations of GF,S (self-dual, geometric and pure)
belonging to the same p-adic family (say, in one parameter) of representations of
GF,S , is it true that

(−1)h
1
f (F,V )/ ε(V )

?
= (−1)h

1
f (F,V

′)/ ε(V ′) ? (0.3.2)

The main result of this article (Thm. 5.3.1) implies that (0.3.2) holds for families
satisfying the Pančǐskin condition at all primes v | p. The proof follows the strategy
employed in [Ne 2, ch. 12] in the context of Hilbert modular forms (1) : multiplying
both sides of (0.3.1) by a common sign (the contribution of the “trivial zeros”),
we rewrite (0.3.1) as

(−1)̃h
1
f (F,V ) ?

= ε̃(V ) =
∏

v

ε̃v(V ), (0.3.3)

where h̃1
f (F, V ) = dimLp

H̃1
f (F, V ) is the dimension of the extended Selmer group

(defined in 4.2 below) and ε̃v(V ) = εv(V ), unless v | p and the local Euler factor
at v admits a “trivial zero”. The goal is to show that both sides of (0.3.3) remain
constant in the family (2).

The variation of H̃1
f (F, V ) in the family is controlled by the torsion submodule of

a suitable H̃2
f . The generalized Cassels-Tate pairing constructed in [Ne 2, ch. 10]

defines a skew-symmetric form on this torsion submodule, which implies that the
parity of h̃1

f (F, V ) is constant in family:

(−1)̃h
1
f (F,V ) = (−1)̃h

1
f (F,V

′).

The Pančǐskin condition allows us to compute explicitly the local terms ε̃v(V ) for
all v | p, which yields

∏

v|p∞
ε̃v(V ) =

∏

v|p∞
ε̃v(V

′).

Finally, it follows from general principles (and the purity assumption) that

∀v ∤ p∞ εv(V ) = εv(V
′),

hence ε̃(V ) = ε̃(V ′).

(1) In [loc. cit.] we worked with automorphic ε-factors, but they coincide with the
Galois-theoretical ε-factors ([Ne 2], 12.4.3, 12.5.4(iii)).
(2) Morally, ε̃(V ) should be the sign in the functional equation of a p-adic L-
function attached to the family.
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1. Representations of the Weil-Deligne group

(1.1) The general setup ([De 1, §8], [De 2, 3.1], [Fo-PR, I.1.1-2])

(1.1.1) We use the notation of [Fo-PR, ch.I]. For a field L, denote by Lsep a
separable closure of L and by GL = Gal(Lsep/L) the absolute Galois group of L.
Throughout this article, K will be a complete discrete valuation field of character-
istic zero with finite residue field k of cardinality q = qk; denote by f = fk ∈ Gk
the geometric Frobenius element (f(x) = x1/q). We identify Gk

∼−→ Ẑ via

f 7→ 1 and denote by ν : GK
can−−→Gk ∼−→ Ẑ the canonical surjection whose

kernel Ker(ν) = IK = I is the inertia group of K. The Weil group (of K)

WK = ν−1(Z) =
∐
n∈Z f̃

nI (f̃ ∈ ν−1(1)) is equipped with the topology of a
disjoint union of countably many pro-finite sets. The homomorphism

| · | : WK −→ qZ, |w| = q−ν(w)

corresponds to the normalized valuation |·| : K∗ −→ qZ via the reciprocity isomor-
phism recK : K∗

∼−→W ab
K (normalized using the geometric Frobenius element).

(1.1.2) Let E be a field of characteristic zero.

An object of RepE(WK) (= a representation of the Weil group of K over E) is a
finite-dimensional E-vector space ∆ equipped with a continuous homomorphism
ρ = ρ∆ : WK −→ AutE(∆) (with respect to the discrete topology on the target).
As Ker(ρ) is open, ρ(I) is finite and ρ|I is semi-simple.

An object of RepE(′WK) (= a representation of the Weil-Deligne group of K over
E) is a pair (ρ,N), where ρ = ρ∆ ∈ RepE(WK) and N ∈ EndE(∆) is a nilpotent
endomorphism satisfying

∀w ∈WK ρ(w)Nρ(w)−1 = |w|N.
Morphisms in RepE(WK) (resp., in RepE(′WK)) are E-linear maps commut-
ing with the action of WK (resp., with the action of WK and N). We con-
sider RepE(WK) as a full subcategory of RepE(′WK) via the full embedding
ρ 7→ (ρ, 0). Tensor products and duals in RepE(′WK) are defined in the usual way:
N∆⊗∆′ = N∆ ⊗ 1 + 1⊗N∆′, N∆∗ = −(N∆)∗. The Tate twist of ∆ ∈ RepE(′WK)
by an integer m ∈ Z is defined as ∆| · |m = ∆ ⊗ E| · |m, where w ∈ WK acts on
the one-dimensional representation E| · |m ∈ RepE(WK) by |w|m.

The Frobenius semi-simplification

∆ = (ρ,N) 7→ ∆f−ss = (ρss, N)

is an exact tensor functor RepE(′WK) −→ RepE(′WK). The “forget the mon-
odromy” functor

∆ = (ρ,N) 7→ ∆N−ss = (ρ, 0)

is an exact tensor functor RepE(′WK) −→ RepE(WK).

Following [Fo-PR, I.1.2.1], we put, for each ∆ ∈ RepE(′WK),
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∆g = ∆ρ(I), ∆f = Ker(N)ρ(I) ⊂ ∆g, PK(∆, u) = det(1−fu | ∆f ) ∈ E[u].

We also set

H0(∆) = Ker (∆f
f−1−−→∆f ) .

(1.1.3) In the special case when E is a finite extension of Qp (p 6= char(k))
and when V ∈ RepE(GK) is a representation of GK over E (finite-dimensional
and continuous with respect to the topology on E defined by the p-adic valuation),
then V gives rise to a representationWD(V ) = ∆ = (ρ∆, N) ∈ RepE(′WK) acting
on V , which is defined as follows ([De 1, 8.4]): there exists an open subgroup J
of I which acts on V unipotently, and through the map J →֒ I ։ I(p), where
I(p) is the maximal pro-p-quotient of I (isomorphic to Zp). Fixing a topological
generator t of I(p) and an integer a ≥ 1 such that ta lies in the image of J , the
nilpotent endomorphism

N =
1

a
log ρV (ta) ∈ EndE(V )

(where ρV : GK −→ AutE(V ) denotes the action of GK on V ) is independent of

a. Fix a lift f̃ ∈ ν−1(1) ⊂WK of f and define

ρ∆ : WK −→ AutE(V )

by

ρ∆(f̃nu) := ρV (f̃nu) exp(−bN) (n ∈ Z, u ∈ I),
where b ∈ Zp is such that the image of u in I(p) is equal to tb. The pair (ρ∆, N)
defines an object ∆ = WD(V ) of RepE(′WK), the isomorphism class of which is

independent of the choices of f̃ and t ([De 1], Lemma 8.4.3), and which satisfies

∆f = V ρV (I), H0(∆) = V ρV (GK).

(1.2) Self-dual representations

(1.2.1) Definition. Let ω : WK −→ E∗ be a one-dimensional object of
RepE(WK). We say that ∆ ∈ RepE(′WK) is ω-orthogonal (resp., ω-
symplectic) if there exists a morphism in RepE(′WK) ∆ ⊗ ∆ −→ ω which is
non-degenerate (i.e., which induces an isomorphism ∆

∼−→ ∆∗⊗ω) and symmet-
ric (resp., skew-symmetric). If ω = 1, we say that ∆ is orthogonal (resp.,
symplectic).

(1.2.2) (1) If ∆ is ω-orthogonal, then det(∆)2 = ωdim(∆).
(2) If ∆ is ω-symplectic, then 2 | dim(∆) and det(∆) = ωdim(∆)/2.

(1.2.3) Example: For m ≥ 1, define sp(m) ∈ RepE(′WK) by
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sp(m) =

m−1⊕

i=0

Eei, N(ei) = ei+1, ∀w ∈ WK w(ei) = |w|iei.

Up to a scalar multiple, there is a unique non-degenerate morphism sp(m) ⊗
sp(m) −→ E| · |m−1 in RepE(′WK), namely

sp(m)⊗ sp(m) −→ E| · |m−1, ei ⊗ ej 7→
{

(−1)i, i+ j = m− 1
0, i+ j 6= m− 1.

This morphism is | · |m−1-symplectic (resp., | · |m−1-orthogonal) if 2 | m (resp., if
2 ∤ m).

(1.2.4) According to [De 2, 3.1.3(ii)], indecomposable f -semi-simple objects of
RepE(′WK) are of the form ρ ⊗ sp(m), where ρ ∈ RepE(WK) is irreducible and
m ≥ 1. This implies that, for each | · |-symplectic representation ∆

∼−→ ∆∗| · | ∈
RepE(′WK), the f -semi-simplification ∆f−ss is a direct sum of | · |-symplectic
representations of the following type:

(1) X ⊕X∗| · | (X ∈ RepE(′WK)) with the standard symplectic form (x, x∗)⊗
(y, y∗) 7→ x∗(y)− y∗(x);

(2) ρ⊗sp(m), where m ≥ 1, ρ ∈ RepE(WK) is irreducible and | · |2−m-symplectic
(resp., | · |2−m-orthogonal) if 2 ∤ m (resp., if 2 | m).

(1.3) The monodromy filtration

(1.3.1) For each ∆ = (ρ,N) ∈ RepE(′WK), the monodromy filtration

Mn∆ :=
∑

i−j=n+1

ker(N i) ∩ Im(N j) (n ∈ Z)

is the unique increasing filtration of ∆ by E-vector subspaces satisfying

⋂

n

Mn∆ = 0,
⋃

n

Mn∆ = ∆, N(Mn∆) ⊆Mn−2∆,

∀r ≥ 0 N r : grMr ∆
∼−→ grM−r∆.

(1.3.2) Examples: (1) N = 0 ⇐⇒ M−1∆ = 0, M0∆ = ∆.
(2) If N r 6= 0 = N r+1 (r ≥ 0), then M−r−1∆ = 0, M−r∆ = Im(N r) 6= 0,
Mr−1∆ = Ker(N r) 6= ∆, Mr∆ = ∆.

(1.3.3) More precisely, the endomorphism N ∈ EndE(∆) defines a morphism in
RepE(WK)

N : ∆ −→ ∆| · |−1,

which implies that each Mn∆ is a sub-object of ∆N−ss in RepE(WK),
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N : Mn∆ −→ (Mn−2∆)| · |−1

and, for each r ≥ 0, the endomorphism N r induces an isomorphism in RepE(WK)

N r : grMr ∆
∼−→ (grM−r∆)| · |−r.

(1.3.4) The monodromy filtration on the dual representation ∆∗ = (ρ∗,−N∗)
satisfies Mn∆

∗ = (M−1−n∆)⊥ (n ∈ Z), which yields canonical isomorphisms in
RepE(WK)

∀m ≤ n Mn∆
∗/Mm∆∗

∼−→ (M−1−m∆/M−1−n∆)∗.

(1.3.5) If 〈 , 〉 : ∆ ⊗ ∆ −→ E ⊗ ω is an ω-symplectic form on ∆, then, for
each r ≥ 0, the formula 〈x, y〉r = 〈N rx, y〉 defines an ω| · |−r-symplectic (resp.,
ω| · |−r-orthogonal) form on grMr ∆ ∈ RepE(WK) if 2 | r (resp., if 2 ∤ r).

(1.3.6) Dimensions. The dimensions

dr = dr(∆) = dim grMr ∆ = d−r (r ∈ Z)

can be interpreted as follows. By the Jacobson-Morozov theorem, there exists a
(non-unique) representation

ρ : sl(2) = sl(2, E) −→ EndE(∆)

such that ρ(

(
0 0
1 0

)
) = N . Putting H = ρ(

(
1 0
0 −1

)
) and ∆m = {x ∈ ∆ |

Hx = mx} (m ∈ Z), then

Mn∆ =
∑

m≤n
∆m.

Decomposing ∆ as a representation of sl(2)

∆
∼−→
⊕

j≥0

(
SjE2

)⊕mj(∆)
,

then the multiplicities mj = mj(∆) are related to other numerical invariants of ∆
as follows:

dim(∆) =
∑

j≥0

(j + 1)mj , (∀r ≥ 0) d−r =
∑

i≥0

mr+2i, mr = d−r − d−r−2,

dim Im(N r) = dr + 2
∑

j>r

dj , dim Ker(N r+1) = d0 + 2

r∑

j=1

dj + dr+1.

(1.3.6.1)
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(1.4) Purity

(1.4.1) Definition. Let E′ be a field containingE and a ∈ Z. We say that α ∈ E′
is a qa-Weil number of weight n ∈ Z if α is algebraic over Q, there exists
N ∈ Z such that qNα is integral over Z, and for each embedding σ : Q(α) →֒ C,
the usual archimedean absolute value of σ(α) is equal to |σ(α)|∞ = qan/2.

(1.4.2) Definition. We say that ∆ ∈ RepE(′WK) is strictly pure of weight
n ∈ Z if ∆ = ρ ∈ RepE(WK) and if for each w ∈ WK all eigenvalues of ρ(w) are
qν(w)-Weil numbers of weight n ∈ Z.

(1.4.3) Definition. We say that ∆ ∈ RepE(′WK) is pure of weight n ∈ Z if,
for each r ∈ Z, grMr ∆ ∈ RepE(WK) is strictly pure of weight n+ r.

(1.4.4) (1) Each representation ρ ∈ RepE(WK) with finite image is strictly pure
of weight 0.
(2) If ∆,∆′ ∈ RepE(′WK) are (strictly) pure of weights n and n′, respectively,
then ∆⊗∆′ is (strictly) pure of weight n+ n′, and ∆∗ is (strictly) pure of weight
−n.
(3) For each m ∈ Z, E| · |m is strictly pure of weight −2m.
(4) For each ρ ∈ RepE(WK) and m ≥ 1,

∆ = ρ⊗ sp(m) is pure of weight n ⇐⇒ ρ is strictly pure of weight n+m− 1

=⇒ ∆f = ρI | · |m−1 is strictly pure of weight n+ 1−m.

(5) If ∆ ∈ RepE(′WK) is pure of weight n < 0, then all eigenvalues of ρ(f̃) (for

any f̃ ∈ ν−1(1)) on Ker(N) ⊆M0∆ are q-Weil numbers of weights ≤ n < 0, hence
H0(∆) = 0.
(6) If ∆ ∈ RepE(′WK) is pure of weight n (but not necessarily f -semi-simple),
then ∆

∼−→⊕
ρj ⊗ sp(mj), where each ρj ∈ RepE(WK) is strictly pure of weight

n+mj − 1.

(1.4.5) Definition. In the situation of 1.1.3, we say that V ∈ RepE(GK) is pure
of weight n ∈ Z if WD(V ) ∈ RepE(′WK) is pure of weight n ∈ Z in the sense
of 1.4.3.

(1.5) Specialization of representations of the Weil-Deligne group

(1.5.1) Let O be a discrete valuation ring containing Q; denote by E (resp., kO)
the field of fractions (resp., the residue field) of O.

(1.5.2) An object of RepO(′WK) (= a representation of the Weil-Deligne group of
K overO) consists of a freeO-module of finite type T , a continuous homomorphism
ρ = ρT : WK −→ AutO(T ) (with respect to the discrete topology on the target)
and a nilpotent endomorphism N = NT ∈ EndO(T ) satisfying

∀w ∈WK ρ(w)Nρ(w)−1 = |w|N.
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The generic fibre (resp., the special fibre) of T is the representation Tη =
T ⊗O E ∈ RepE(′WK) (resp., the representation Ts = T ⊗O kO ∈ RepkO (′WK)).
We denote by Nη (resp., Ns) the monodromy operator NT ⊗ 1 on Tη (resp., on
Ts).

(1.5.3) For T ∈ RepO(′WK), we denote by T ∗ the representation T ∗ =
HomO(T,O) (equipped with the dual action of WK and the monodromy op-
erator NT∗ = −(NT )∗). Given a representation ω : WK −→ O∗, we say
that T is ω-orthogonal (resp., ω-symplectic) if there exists an isomorphism
j : T

∼−→ T ∗ ⊗ ω in RepO(′WK) satisfying j∗ ⊗ ω = j (resp., j∗ ⊗ ω = −j).
(1.5.4) Proposition. Assume that T ∈ RepO(′WK) is | · |-symplectic (hence so
are Tη and Ts) and that Ts ∈ RepkO (′WK) is pure (necessarily of weight −1).
Then:
(1) ∀j ≥ 0 mj(Tη) = mj(Ts).
(2) ∀j ≥ 0 dimE Ker(N j

η ) = dimkO Ker(N j
s ).

(3) For each j ≥ 0, the natural injective map
(
Ker(N j

η ) ∩ T
)
⊗O kO −→ Ker(N j

s )
is an isomorphism.

Proof. It is enough to prove (1), since (2) is a consequence of (1) and the formulas
(1.3.6.1), and (2) is equivalent to (3) for trivial reasons. We prove (1) by induction
on r = min{j ≥ 0 | N j+1

T = 0}. If r = 0, then there is nothing to prove. Assume
that r ≥ 1 and that (1) holds whenever N r

T = 0. Recall from 1.3.2(2) and 1.3.5
that

M−r−1(Tη) = 0 6= M−r(Tη) = Im(N r
η ), Mr−1(Tη) = Ker(N r

η ) 6= Tη = Mr(Tη),

M−r−1(Ts) = 0, M−r(Ts) = Im(N r
s ), Mr−1(Ts) = Ker(N r

s ), Mr(Ts) = Ts

and that M−r(Tη) is | · |r+1-symplectic (resp., | · |r+1-orthogonal) if 2 | r (resp.,
if 2 ∤ r). The latter property implies that, for any eigenvalue α ∈ kO of any lift

f̃ ∈ ν−1(1) of f acting on (M−r(Tη)∩T )⊗O kO there exists another eigenvalue α′

such that αα′ = q−r−1. On the other hand, (M−r(Tη) ∩ T )⊗O kO ∈ RepkO (WK)

is a sub-object of Ts in RepkO (′WK), and all eigenvalues of f̃ on Ts are q-Weil
numbers of weights contained in {−r − 1,−r, . . . , r − 1}; thus both α and α′

are q-Weil numbers of weight −r − 1. In other words, (Im(N r
η ) ∩ T ) ⊗O kO =

(M−r(Tη) ∩ T ) ⊗O kO is strictly pure of weight −r − 1, hence is contained in
M−r(Ts) = Im(N r

s ) = (Im(N r
T )) ⊗O kO. The opposite inclusion being trivial, we

deduce that Im(N r
T ) is equal to Im(N r

η ) ∩ T , hence is a direct summand of T (as
an O-module); it follows that

mr(Ts) = dimkO Im(N r
s ) = dimE Im(N r

η ) = mr(Tη).

The representation T ′ = (Mr−1(Tη) ∩ T )/(M−r(Tη) ∩ T ) ∈ RepO(′WK) is also
| · |-symplectic, satisfies N r

T ′ = 0, and T ′s is pure of weight −1. By induction
hypothesis, we have

∀j ≥ 0 mj(T
′
s) = mj(T

′
η).
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The relations

mj(T
′
?) =




mj(T?), j 6= r, r − 2
mr−2(T?) +mr(T?), j = r − 2 ≥ 0
0, otherwise

(? = η, s)

then imply

∀j ≥ 0 mj(Ts) = mj(Tη).

2. Local ε-factors

(2.1) General facts

(2.1.1) Fix an algebraically closed field E′ ⊃ E. Let ψ : K −→ E′∗ be a
non-trivial continuous homomorphism (with respect to the discrete topology on
the target); it always exists. If ψ′ : K −→ E′∗ is another non-trivial continuous
homomorphism, then there exists unique a ∈ K∗ such that ψ′ = ψa, where ψa(y) =
ψ(ay). Denote by µψ the unique E′-valued Haar measure on K which is self-dual
with respect to ψ; then

∀a ∈ K∗ µψa = |a|1/2 µψ, (2.1.1.1)

and every non-zero E′-valued Haar measure µ on K is a scalar multiple of µψ:
µ = b µψ, for some b ∈ E′∗.
(2.1.2) Deligne [De 1] associated to each triple (∆, ψ, µ), where ∆ ∈ RepE(′WK)
and ψ, µ are as in 2.1.1, the local ε-factor ε(∆, ψ, µ) ∈ E′∗ satisfying the following
properties.

(2.1.2.1) ε(∆, ψ, µ) = ε(∆f−ss, ψ, µ).
(2.1.2.2) If 0 −→ ρ′ −→ ρ −→ ρ′′ −→ 0 is an exact sequence in RepE(WK), then

ε(ρ, ψ, µ) = ε(ρ′, ψ, µ)ε(ρ′′, ψ, µ).
(2.1.2.3) ε0(∆, ψ, µ) = ε(∆, ψ, µ) det(−f | ∆f ) depends only on ∆N−ss ∈

RepE(WK). As (∆N−ss)f = ∆g, it follows that

ε(∆, ψ, µ) = ε(∆N−ss, ψ, µ) det(−f | ∆g/∆f).

(2.1.2.4) ∀a ∈ K∗ ε(∆, ψa, µ) = (det ∆)(a) |a|− dim(∆) ε(∆, ψ, µ).
(2.1.2.5) ∀b ∈ E′∗ ε(∆, ψ, b µ) = bdim(∆) ε(∆, ψ, µ).
(2.1.2.6) If ∆ = ρ ∈ RepE(WK), then ε(ρ, ψ, µ) ε(ρ∗| · |, ψ−1, µ

∗) = 1 (where µ∗

is the measure dual to µ with respect to ψ).
(2.1.2.7) If ∆ = ρ ∈ RepE(WK), and if χ : WK/I −→ E∗ is an unramified

one-dimensional representation, then

ε(ρ⊗ χ, ψ, µ) = ε(ρ, ψ, µ)χ(π)a(ρ)+dim(ρ)n(ψ),
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where π is a prime element of OK and a(ρ) (resp., n(ψ)) is the conductor
exponent of ρ (resp., of ψ).

(2.1.2.8) ([Fo-PR, I.1.2.3]) For an exact sequence in RepE(′WK)

(β) 0 −→ ∆′ −→ ∆ −→ ∆′′ −→ 0,

set PK(β) = PK(∆, u)/PK(∆′, u)PK(∆′′, u), a(β) = dim ∆′f + dim ∆′′f−
dim ∆f , ε(β) = ε(∆, ψ, µ)/ε(∆′, ψ, µ) ε(∆′′, ψ, µ), and similarly for the
dual exact sequence

(β∗| · |) 0 −→ ∆′′∗| · | −→ ∆∗| · | −→ ∆′∗| · | −→ 0;

then
PK(β∗| · |, u−1) = ε(β)ua(β) PK(β, u).

(2.1.3) Lemma. If ∆ ∈ RepE(′WK), then ε(∆, ψ, µ) ε(∆∗| · |, ψ−1, µ
∗) = 1 (where

µ∗ is the measure dual to µ with respect to ψ).

Proof. Thanks to (2.1.2.1-2), we can assume that ∆ is f -semi-simple and inde-
composable: ∆ = ρ⊗ sp(m), ρ ∈ RepE(WK), m ≥ 1. In this case

∆g =

m−1⊕

j=0

ρI | · |j , ∆g/∆f =

m−2⊕

j=0

ρI | · |j , ∆∗| · | = ρ∗ ⊗ sp(m)| · |2−m

(∆∗| · |)g/(∆∗| · |)f =

m−2⊕

j=0

(ρ∗)I | · |2−m+j = (∆g/∆f)
∗

(as ρ(I) is finite, we have (ρ∗)I = (ρI)∗), hence

det(−f | ∆g/∆f ) det(−f | (∆∗| · |)g/(∆∗| · |)f ) = 1;

we deduce that

ε(∆, ψ, µ) ε(∆∗| · |, ψ−1, µ
∗) = ε(∆N−ss, ψ, µ) ε((∆∗| · |)N−ss, ψ−1, µ

∗),

which is equal to 1, by (2.1.2.6).

(2.2) | · |-symplectic representations

(2.2.1) Proposition. Let ∆
∼−→ ∆∗| · | ∈ RepE(′WK) be | · |-symplectic. Then:

(1) ε(∆) := ε(∆, ψ, µψ) does not depend on ψ.
(2) ε(∆) = ±1; more precisely:
(3) If ρ

∼−→ ρ∗| · | ∈ RepE(WK) is | · |-symplectic, then ε(ρ) = ±1.
(4) If ∆ = X ⊕X∗| · | is as in 1.2.4(1), then ε(∆) = ε(∆N−ss) = (detX)(−1).
(5) If ∆ = ρ ⊗ sp(2n+ 1) (ρ ∈ RepE(WK), n ≥ 0), then ρ| · |n ∈ RepE(WK) is
| · |-symplectic and ε(∆) = ε(∆N−ss) = ε(ρ| · |n).
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(6) If ∆ = ρ ⊗ sp(2n) (ρ ∈ RepE(WK), n ≥ 1), then ρ| · |n−1 ∈ RepE(WK) is
orthogonal, there is an exact sequence in RepE(′WK)

0 −→ ∆+ −→ ∆ −→ ∆− −→ 0

∆+ = ρ⊗ sp(n)| · |n, ∆− = ρ⊗ sp(n),

H0(∆−) = H0(ρ| · |n−1) and

ε(∆) = (−1)dimE H0(∆−)(det ∆+)(−1), ε(∆N−ss) = (det∆+)(−1).

Proof. (1) For each a ∈ K∗,

ε(∆, ψa, µψa) = ε(∆, ψa, |a|1/2µψ) (by (2.1.1.1))

= |a|dim(∆)/2 ε(∆, ψa, µψ) (by (2.1.2.5))

= (det∆)(a) |a|− dim(∆)/2 ε(∆, ψ, µψ) (by (2.1.2.4))

= ε(∆, ψ, µψ). (by 1.2.2(2))

(2) Writing ∆f−ss as a direct sum of | · |-symplectic representations of the form
1.2.4(1) or 1.2.4(2), the statement follows from the explicit formulas (4)-(6) and
(3), proved below.
(3) Combining (2.1.2.6), (2.1.2.4) and 1.2.2(2), we obtain

ε(ρ, ψ, µψ)2 = ε(ρ, ψ, µψ) (det ρ)(−1)ε(ρ, ψ, µψ) = ε(ρ, ψ, µψ) ε(ρ, ψ−1, µψ) =

= ε(ρ, ψ, µψ) ε(ρ∗| · |, ψ−1, µψ) = 1.

(4) As in the proof of (3), Lemma 2.1.3 together with (2.1.2.4) yield

ε(∆) = ε(X,ψ, µψ) ε(X∗| · |, ψ, µψ) = (detX)(−1) ε(X,ψ−1, µψ) ε(X∗| · |, ψ, µψ) =

= (detX)(−1).

Replacing X by XN−ss, we obtain ε(∆N−ss) = (detXN−ss)(−1) =
(detX)(−1) = ε(∆).
(5) As ∆ = ρ ⊗ sp(2n + 1) is | · |-symplectic, the representation ρ| · |n is also
| · |-symplectic, by 1.2.3-4 (in particular, det(ρ) = | · |(1−2n) dim(ρ)/2). The same
calculation as in the proof of Lemma 2.1.3 yields

∆g/∆f =

2n−1⊕

j=0

ρI | · |j , (ρI | · |j)∗ = (ρ∗| · |−j)I = ρI | · |2n−1−j ,

∆g/∆f =

n−1⊕

j=0

ρI | · |j ⊕
(
ρI | · |j

)∗
,
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which implies that det (−f | ∆g/∆f) = 1, hence

ε(∆) = ε(∆N−ss) =

2n∏

j=0

ε(ρ|·|j, ψ, µψ) = ε(ρ|·|n)
n−1∏

j=0

ε(ρ|·|j⊕(ρ|·|j)∗|·|) (4)
= ε(ρ|·|n).

(6) As ∆ = ρ⊗ sp(2n) is | · |-symplectic, the representation ρ| · |n−1 is orthogonal,
by 1.2.3. The same calculation as in the proof of (5) shows that

ε(∆N−ss) =

n−1∏

j=0

ε(ρ| · |j ⊕ (ρ| · |j)∗| · |) (4)
=

n−1∏

j=0

det(ρ| · |j)(−1) = (det ∆+)(−1)

and

∆g/∆f = ρI |·|n−1⊕
n−2⊕

j=0

ρI |·|j⊕
(
ρI | · |j

)∗
, det (−f | ∆g/∆f) =

(
−f | ρI | · |n−1

)
.

As ρ(I) acts semi-simply, the (unramified) representation V = ρI | · |n−1 ∈
RepE(WK) is also orthogonal; applying Lemma 2.2.2 below to u = f acting on V ,
we obtain

ε(∆)/ε(∆N−ss) = det (−f | ∆g/∆f ) = (−1)dimE Ker(f−1:V−→V ).

Finally,

Ker(V
f−1−−→V ) = H0(ρ| · |n−1) = H0(ρ⊗ sp(n)) = H0(∆−).

(2.2.2) Lemma. Let (V, q) be a non-degenerate quadratic space over a field L of
characteristic not equal to 2. If u ∈ O(V, q), then

det(−u) = (−1)dimL Ker(u−1), det(u) = (−1)dimL Im(u−1).

Proof. The following short argument is due to J. Oesterlé. The two formulas being
equivalent, it is enough to prove the second one. Let a ∈ V , q(a) 6= 0; denote by
s ∈ O−(V, q) the reflection with respect to the hyperplane Ker(s − 1) = a⊥. A
short calculation shows that

Ker(su− 1) =

{
Ker(u − 1)⊕ Lb, a = (u− 1)b, b ∈ V
Ker(u − 1) ∩ a⊥ ( Ker(u − 1), a 6∈ Im(u− 1),

hence

dimL Im(su− 1) = dimL Im(u− 1)∓ 1. (2.2.2.1)

Writing u as a product of r ≥ 1 reflections, we deduce from (2.2.2.1), by induction,
that dimL Im(u− 1) ≡ r (mod 2), as claimed.
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(2.2.3) Proposition. Let ∆
∼−→ ∆∗| · | ∈ RepE(′WK) be | · |-symplectic and pure

(of weight −1). Assume that there exists an exact sequence in RepE(′WK)

(β) 0 −→ ∆+ −→ ∆ −→ ∆− −→ 0

such that the isomorphism ∆
∼−→ ∆∗| · | induces isomorphisms ∆±

∼−→ (∆∓)∗| · |.
Assume, in addition, that there exists a direct sum decomposition ∆ = ∆1⊕∆2 in
RepE(′WK) compatible with the isomorphism ∆

∼−→ ∆∗| · | and the exact sequence
(β), and such that H0(∆−2 ) = 0, while

(β1) 0 −→ ∆+
1 −→ ∆1 −→ ∆−1 −→ 0

is a direct sum of exact sequences of the type considered in Proposition 2.2.1(6).
Then

ε(∆) = (−1)dimE H0(∆−)(det ∆+)(−1), ε(∆N−ss) = (det∆+)(−1).

Proof. It is enough to treat separately ∆1 and ∆2. For ∆ = ∆1, the statement
follows from Proposition 2.2.1(6). For ∆ = ∆2, the assumption H0(∆−) = 0
implies that PK(∆−, 1) 6= 0. As ∆ is pure of weight −1 < 0, we also have
H0(∆+) ⊆ H0(∆) = 0, by 1.4.4(5), hence PK(∆+, 1)PK(∆, 1) 6= 0. Letting
u −→ 1 in (2.1.2.8), we obtain ε(β) = 1, hence

ε(∆) = ε(∆+, ψ, µψ) ε(∆−, ψ, µψ) = ε(∆+ ⊕ (∆+)∗| · |) = (det∆+)(−1).

Finally,

ε(∆N−ss) = ε((∆+)N−ss, ψ, µψ) ε((∆−)N−ss, ψ, µψ) =

= ε((∆+)N−ss ⊕ ((∆+)N−ss)∗| · |) = (det(∆+)N−ss)(−1) = (det∆+)(−1).

(2.2.4) Proposition. In the situation of 1.5.4, ε(Ts) = ε(Tη) ∈ {±1}.

Proof. For any O-module X , denote by red : X −→ X ⊗O kO the canonical
surjection. Proposition 1.5.4 implies that

red

(
T ∩ (Tη)g
T ∩ (Tη)f

)
= (Ts)g/(Ts)f ,

hence

red
(
ε(Tη)/ε(T

N−ss
η )

)
= red (det (−f | (Tη)g/(Tη)f )) =

= (det (−f | (Ts)g/(Ts)f ) = ε(Ts)/ε(T
N−ss
s ).

As ε(Tη), ε(T
N−ss
η ), ε(Ts), ε(T

N−ss
s ) ∈ {±1}, we are reduced to showing that
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red
(
ε(TN−ssη )

) ?
= ε(TN−sss ).

The following argument is based on a suggestion of T. Saito. We can replace
(ρT , NT ) by (ρT , 0) and assume that NT = 0. Furthermore, after replacing E by
a finite extension, we can assume (see [De 1, 4.10]) that

T f−ssη =
⊕

α

ρα ⊗ ωα,

where ρα ∈ RepL(WK) for a subfield L ⊂ O of finite degree over Q, and ωα :
WK/I −→ O∗ is an unramified representation of rank 1. We have

∀w ∈ WK Tr(w | Ts) = red (Tr(w | Tη)) ,
hence

T f−sss =
⊕

α

ρα ⊗ red(ωα).

Applying (2.1.2.7) to each direct summand, we obtain

red (ε(Tη)) =
∏

α

red (ε(ρα ⊗ ωα, ψ, µψ)) =
∏

α

ε(ρα⊗ red(ωα), red ◦ψ, red ◦µψ) =

= ε(Ts).

(2.3) The archimedean case

Let L = R or C. If H is a pure R-Hodge structure over L ([Fo-PR, III.1]) of
weight −1, then

H =
⊕

r>0

Hr(r)
⊕mr ,

where Hr is a two-dimensional pure R-Hodge structure over L of Hodge type
(2r − 1, 0), (0, 2r − 1). The standard formulas ([De 3, 5.3], [Fo-PR, III.1.1.10,
III.1.2.7]) yield

ε(Hr(r)) = (−1)[L:R] r ×
{

1, L = R
−1, L = C.

As

∀p < 0 hp,−1−p(H) = m−p,

we obtain

ε(H) = (−1)[L:R]d−(H) ×
{

1, L = R
(−1)(dimRH)/2, L = C,

d−(H) =
∑

p<0

p hp,q(H).

(2.3.1)
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3. Local p-adic Galois representations

(3.1) General facts

(3.1.1) Notation. Let p be the characteristic of the residue field k of K; then
q = ph and K is a finite extension of Qp. Denote by σ ∈ Gal(Qur

p /Qp)
∼−→ GFp

the lift of the arithmetic Frobenius element x 7→ xp. Let L be another finite
extension of Qp.

We use the standard notation

Repcris,L(GK) ⊂ Repst,L(GK) ⊂ Reppst,L(GK) = RepdR,L(GK) ⊂ RepL(GK)

for Fontaine’s hiearchy of (finite-dimensional, L-linear) representations of GK
([Fo]), and

Dcris(V ) = (V ⊗Qp Bcris)
GK , Dst(V ) = (V ⊗Qp Bst)

GK ,

Dpst(V ) = lim−→K′
(V ⊗Qp Bst)

GK′ ,

Di
dR(V ) = (V ⊗Qp t

iB+
dR)GK ⊂ DdR(V ) = (V ⊗Qp BdR)GK

for various Fontaine’s functors (above, V ∈ RepL(GK), and K ′ runs through all fi-
nite extensions ofK contained inK). As in [Bl-Ka], putH i(K,−) = Hi

cont(GK ,−)
and, for ∗ = e, f, st, g,

H1
∗ (K,V ) = Ker

(
H1(K,V ) −→ H1(K,V ⊗Qp B∗)

)
,

Be = Bϕ=1
cris , Bf = Bcris, Bg = BdR.

If K ′/K is a finite Galois extension, then

H1
∗ (K,V ) = H1

∗ (K
′, V )Gal(K′/K), (∗ = ∅, e, f, st, g) (3.1.1.1)

(as both H1(−, V ) and H1(−, V ⊗Qp B∗) satisfy Galois descent w.r.t. the exten-
sion K ′/K, and the functor of Gal(K ′/K)-invariants is exact on the category of
Q[Gal(K ′/K)]-modules).

(3.1.2) For V ∈ RepdR,L(GK) and i ∈ Z, define

diL(V ) := dimL

(
Di
dR(V )/Di+1

dR (V )
)
, d−L (V ) :=

∑

i<0

i diL(V ),

dL(V ) :=
∑

i∈Z
i diL(V ).
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(3.1.3) If V ∈ Reppst,L(GK), then D = Dpst(V ) is a free (Qur
p ⊗Qp L)-module

of rank equal to dimL(V ), which is equipped (among others) with the following
structure ([Fo], [Fo-PR, I.2.2]):

(1) An L-linear action ρsl : WK −→ AutL(D), which is Qur
p -semi-linear in the

following sense:

∀w ∈WK ∀λ ∈ Qur
p ∀x ∈ D ρsl(w)(λx) = f

ν(w)
k (λ) ρsl(w)(x).

(2) An L-linear, σ-semi-linear map ϕ : D −→ D commuting with ρsl(w) (for all
w ∈ WK):

∀w ∈ WK ∀λ ∈ Qur
p ∀x ∈ D ϕ(λx) = σ(λ)ϕ(x).

(3) A (Qur
p ⊗Qp L)-linear nilpotent endomorphism N : D −→ D commuting with

ρsl(w) (for all w ∈WK) and satisfying Nϕ = pϕN .
(4) An isomorphism of (K ⊗Qp L)-modules

(D ⊗Qur
p
K)GK

∼−→ DdR(V ).

(3.2) Potentially semistable representations and representations of
the Weil-Deligne group

We recall how, for each V ∈ Reppst,L(GK), the structure 3.1.3(1)-(3) can be used
to define a representation of the Weil-Deligne group of K ([Fo], [Fo-PR, I.1.3.2]).

(3.2.1) Fix a field E ⊃ Qur
p for which there exists an embedding τ : L →֒ E, and

define

WDτ (V ) := Dpst(V )⊗Qur
p ⊗QpL,id⊗τ E,

which is an E-vector space of dimension dimE(WDτ (V )) = dimL(V ). We define
an E-linear action of WK on WDτ (V ) by

ρ(w) := ρsl(w) ◦ ϕhν(w) ⊗ id (w ∈ WK)

and a monodromy operator N = N ⊗ id ∈ EndE(WDτ (V )). This defines a
representation

WDτ (V ) = (ρ,N) ∈ RepE(′WK),

whose isomorphism class does not depend on τ . Furthermore,

WDτ : Reppst,L(GK) −→ RepE(′WK)

is an exact tensor functor.

(3.2.2) Examples: (1) If V is potentially unramified, then WDτ (V ) = V ⊗L,τ
E ∈ RepE(WK).
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(2) If V is semistable, then WD(V ) = Dst(V )⊗K0⊗QpL,id⊗τ E (K0 = K ∩Qur
p ),

with ρ(I) acting trivially, N = N ⊗ id and ρ(fk) = ϕh ⊗ id. Conversely, if ρ(I)
acts trivially, then V is semistable.
(3) If V = L(n) = L⊗Qp Qp(n) (n ∈ Z), then WDτ (V ) = E| · |n = E ⊗ | · |n.
(4) (Lubin-Tate theory) Fix a prime element π ∈ OK . The reciprocity map
recK : K∗ −→ GabK (normalized using the geometric Frobenius element) defines a
one-dimensional representation Vπ ∈ Repcris,K(GK)

χπ : GK −→ GabK
∼−→ K̂∗ = πẐ ×O∗K ։ O∗K →֒ K∗,

which arises in the π-adic Tate module of any Lubin-Tate group over K associated
to π. In this case

Dpst(Vπ) = (Qur
p ⊗Qp K)u, ϕh(u) = (1⊗ π)−1u, Nu = 0,

∀w ∈ WK ρsl(w)(u) = u.

If E ⊃ Qur
p is a field and τ : K →֒ E an embedding of fields, then WDτ (Vπ) ∈

RepE(WK) is an unramified one-dimensional representation of WK , on which f =
fk acts by τ(π)−1. For K = Qp and π = p we recover Example (3) for n = 1.

(3.2.3) Definition. We say that V ∈ Reppst,L(GK) is pure of weight n ∈ Z
if WDτ (V ) ∈ RepE(′WK) is pure of weight n, in the sense of 1.4.3.

(3.2.4) Lemma. For each V ∈ Reppst,L(GK) and each τ : L →֒ E ⊃ Qur
p ,

WDτ (V )fk=1
g = Dst(V )ϕ=1 ⊗L,τ E, H0(WDτ (V )) = Dcris(V )ϕ=1 ⊗L,τ E.

Proof. As Dcris(V ) = Dst(V )N=0, it is enough to prove the first equality. As both
sides satisfy Galois descent with respect to finite Galois extensions K ′/K, we can
assume that V is semistable. In this case, 3.2.2(2) implies that

WDτ (V )fk=1
g = WDτ (V )fk=1 = Dst(V )ϕ

h=1⊗K0⊗QpL,id⊗τE (K0 = K∩Qur
p ).

As

Dst(V )ϕ
h=1 = Dst(V )ϕ=1 ⊗Qp K0

(thanks to Hilbert’s Theorem 90 for H1(K0/Qp, GLn(K0))), it follows that

WDτ (V )fk=1
g = Dst(V )ϕ=1 ⊗L,τ E.

(3.2.5) Corollary. If V ∈ Reppst,L(GK) is pure of weight n < 0, then
Dcris(V )ϕ=1 = 0.

(3.2.6) Proposition. For each V ∈ Reppst,L(GK),

(detE(WDτ (V )))(−1) = (−1)dL(V ) (detLV )(−1).
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Proof. As WDτ is a tensor functor and dL(V ) = dL(detL(V )), we can replace
V by detL(V ), hence assume that dim(V ) = 1; denote by χV : GK −→ K∗ the
character by which GK acts on V . After replacing L by a finite extension, we
can assume that L contains the Galois closure of K over Qp. As V is potentially
semistable, there exists a one-dimensional representation

χ : GK −→ L∗

with finite image and integers nσ (σ : K →֒ L) such that

χV = χ
∏

σ:K →֒L
(σ ◦ χπ)−nσ ,

where χπ : GK −→ K∗ is as in 3.2.2(4). It follows from 3.2.2 that WDτ (V ) =
(τ ◦χ)α, where α : WK/I −→ E∗ is the one-dimensional unramified representation
satisfying

α(f) =
∏

σ:K →֒L
τ(σ(π))nσ .

This implies that

(detE(WDτ (V )))(−1) = χ(−1), (detLV )(−1) = (−1)n χ(−1), n =
∑

σ:K →֒L
nσ.

On the other hand,

diL(V ) = |{σ : K →֒ L | nσ = i}|,
hence n = dL(V ).

(3.3) Representations satisfying Pančǐskin’s condition

We recall a few basic facts from [Ne 1].

(3.3.1) Definition. We say that V ∈ RepL(GK) satisfies Pančǐskin’s condi-
tion if there exists an exact sequence in RepL(GK)

0 −→ V + −→ V −→ V − −→ 0

such that V ± ∈ Reppst,L(GK) and D0
dR(V +) = 0 = DdR(V −)/D0

dR(V −). If this is
the case, then V ± are uniquely determined ([Ne 1], 6.7), V ∈ Reppst,L(GK) ([Ne 1],
1.28) and V ∗(1) also satisfies Pančǐskin’s condition (with (V ∗(1))± = (V ∓)∗(1)).

(3.3.2) Proposition. If V satisfies Pančǐskin’s condition, then:
(1) H0(K,V −) = Dcris(V

−)ϕ=1 = Dst(V
−)ϕ=1.

(2) Assume that there exists a finite Galois extensionK ′/K over which V becomes
semistable and such that Dcris(V |GK′ )

ϕ=1 = Dcris(V
∗(1)|GK′ )

ϕ=1 = 0 (the latter
condition holds, e.g., if V is pure of weight −1, by 3.2.5). Then

H1
e (K,V ) = H1

f (K,V ) = H1
st(K,V ) = H1

g (K,V )
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and there is an exact sequence

0 −→ H0(K,V −) −→ H1(K,V +) −→ H1
f (K,V ) −→ 0,

in which H1(K,V +) = H1
st(K,V

+).

Proof. (1) This is proved in [Ne 1, 1.28(3)] under the tacit assumption that V −

is semistable. The general case follows by passing to a finite Galois extension over
which V − becomes semistable and taking Galois invariants.
(2) Over K ′, the statement is proved in [Ne 1, 1.32]; the general case follows by
applying (3.1.1.1).

(3.3.3) Proposition. Assume that V satisfies Pančǐskin’s condition, is pure (of
weight −1) and that there exists an isomorphism j : V

∼−→ V ∗(1) in RepL(GK)
satisfying j∗(1) = −j. Then:
(1) j induces isomorphisms V ±

∼−→ (V ∓)∗(1).
(2) Fix an embedding of fields τ : L →֒ E ⊃ Qur

p and put ∆ = WDτ (V ),
∆± = WDτ (V

±). Then ∆ ∈ RepE(′WK) is | · |-symplectic and the exact sequence
in RepE(′WK)

0 −→ ∆+ −→ ∆ −→ ∆− −→ 0

satisfies the assumptions of Proposition 2.2.3.

(3) (detE∆+)(−1)/(detLV
+)(−1) = (−1)dL(V +) = (−1)d

−
L

(V ).
(4) The ε-factors of ∆ and ∆N−ss are equal to

ε(∆) = (−1)dimL H0(K,V −) (−1)d
−
L

(V ) (detLV
+)(−1),

ε(∆N−ss) = (−1)d
−
L

(V ) (detLV
+)(−1).

Proof. (1) This follows from the remarks made in 3.3.1.
(2) ∆ is | · |-symplectic, since WDτ is a tensor functor. In order to verify the
assumptions of Proposition 2.2.3, we are going to decompose ∆ into several com-
ponents. Firstly, the functor

RepE(′WK) −→ RepE(′WK), X 7→ Xρ(I)

is exact and commutes with duals. In addition, Xρ(I) is a direct summand of
X , with a functorial complement X ′. Secondly, for each λ ∈ E, the minimal
polynomial p[λ](T ) of λ over E depends only on the GE-orbit [λ] of λ. We define

∆1 =
⊕

λ∈qZ

⋃

n≥1

Ker
(
(f − λ)n : ∆ρ(I) −→ ∆ρ(I)

)
,

∆2 = ∆′ ⊕
⊕

λ6∈qZ

⋃

n≥1

Ker
(
p[λ](f)n : ∆ρ(I) −→ ∆ρ(I)

)
.

The direct sum decomposition ∆ = ∆1 ⊕ ∆2 in RepE(′WK) is compatible with
the isomorphism ∆

∼−→ ∆∗| · | and the exact sequence
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0 −→ ∆+ −→ ∆ −→ ∆− −→ 0.

By construction, every subquotient of ∆2 in RepE(′WK) has trivial H0, hence
H0(∆−2 ) = 0. As ∆ is pure of weight −1, it follows that

∆1 =
⊕

m≥1

σm ⊗ sp(2m),

where each σm ∈ RepE(′WK) is an unramified representation of WK on which
q1−mf acts unipotently.
As V satisfies the Pančǐskin condition, weak admissibility of V ± implies that all
eigenvalues of f on ∆+

1 = ∆+ ∩∆1 (resp., on ∆−1 = ∆1/∆
+
1 ) are of the form qn

with n < 0 (resp., with n ≥ 0). It follows that

∆+
1 =

⊕

m≥1

σm ⊗ sp(m)| · |m, ∆−1 =
⊕

m≥1

σm ⊗ sp(m),

which proves (2).
(3) This follows from Proposition 3.2.6 applied to V +.
(4) We combine Proposition 2.2.3 (which applies to ∆, thanks to (2)) with the
formula (3) and the fact that

H0(∆−) = Dcris(V
−)ϕ=1 ⊗L,τ E = (Dcris(V

−)ϕ=1 ∩D0
dR(V −))⊗L,τ E =

= H0(K,V −)⊗L,τ E.

4. Global p-adic Galois representations

(4.1) Generalities

(4.1.1) Notation. Let F be a number field. For each prime l of Q, let Sl be the
set of primes of F above l. Fix a prime number p, a finite extension Lp of Qp and
a finite set S ⊃ S∞ ∪ Sp of primes of F . Let FS be the maximal extension of F
(contained in F ) unramified outside S; putGF,S = Gal(FS/F ). For each prime v of
F fix an embedding F →֒ F v; this defines a morphism GFv −→ GF −→ GF,S . For
each Galois representation V ∈ RepLp

(GF,S) (continuous and finite-dimensional
over Lp), denote by Vv ∈ RepLp

(GFv ) the local Galois representation induced by
the map GFv −→ GF,S . For each v 6∈ S∞∪Sp, denote by WD(Vv) ∈ RepLp

(′WFv )
the associated representation of the Weil-Deligne group of Fv (see 1.1.3). As in
[Bl-Ka], we put

∀v 6∈ S∞ ∪ Sp H1
f (Fv, V ) = H1

ur(Fv, V ) = Ker
(
H1(Fv, V ) −→ H1(Furv , V )

)

H1
f (F, V ) = Ker

(
H1(GF,S , V ) −→

⊕

v∈S−S∞

H1(Fv, V )/H1
f (Fv, V )

)
.
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The Lp-vector space H1
f (F, V ) does not change if we enlarge S.

(4.1.2) Throughout §4, assume that V satisfies the following conditions.

(1) There exists an isomorphism j : V
∼−→ V ∗(1) in RepLp

(GF,S) satisfying
j∗(1) = −j.

(2) For each v ∈ Sp, Vv ∈ RepLp
(GFv ) satisfies the Pančǐskin condition 3.3.1:

0 −→ V +
v −→ Vv −→ V −v −→ 0

(in particular, Vv ∈ Reppst,Lp
(GFv )).

(3) For each v 6∈ S∞ ∪ Sp (resp., v ∈ Sp), Vv is pure (necessarily of weight −1) in
the sense of 1.4.5 (resp., in the sense of 3.2.3).

(4) For each i ∈ Z, the integer

di(V ) := dimLp

(
Di
dR(Vv)/D

i+1
dR (Vv)

)
/[Fv : Qp]

does not depend on v ∈ Sp. This condition is satisfied if V = Mp is the p-adic
realization of a motive (pure of weight −1) M over F with coefficients in a
number field L (of which Lp is a completion), as

di(V ) = dimL

(
F iMdR/F

i+1MdR

)

in this case.

Example: F = Q and V = (S2m−1V (f))(mk −m + 1 − k/2), where m ≥ 1 and
V (f) is the Galois representation (pure of weight k−1) associated to a potentially
p-ordinary Hecke eigenform f ∈ Sk(Γ0(N)) of (even) weight k and trivial character.

(4.1.3) ε-factors. We define

d−(V ) =
∑

i<0

i di(V ), (4.1.3.1)

∀v ∈ S∞ ε(Vv) = (−1)[Fv :R]d−(V ) ×
{

1, Fv = R
(−1)dimLp (V )/2, Fv = C

(4.1.3.2)
(in view of (2.3.1), this is the correct archimedean local ε-factor if V = Mp is as
in 4.1.2(4)) and

∀v 6∈ S∞ ε(Vv) = ε(WD(Vv)). (4.1.3.3)

For any prime v of F , let

ε̃(Vv) = ε(Vv)×
{

(−1)h
0(Fv ,V

−
v ), v ∈ Sp

1, v 6∈ Sp,
(4.1.3.4)

where

hi(Fv, X) = dimLp
Hi(Fv, X) (X ∈ RepLp

(GFv )).
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Finally, define

ε(V ) =
∏

v

ε(Vv), ε̃(V ) =
∏

v

ε̃(Vv) (4.1.3.5)

(this makes sense, as ε(Vv) = 1 for all but finitely many v). It follows from
Proposition 3.3.3 that

∀v ∈ Sp ε̃(Vv) = (−1)[Fv:Qp] d
−(V ) (det V +

v )(−1) = ε(WD(Vv)
N−ss),

(4.1.3.6)
hence

∏

v∈Sp
ε̃(Vv) = (−1)[F :Q] d−(V )

∏

v∈Sp
(detV +

v )(−1).

As

∏

v∈S∞

ε(Vv) = (−1)[F :Q] d−(V ),

it follows that

∏

v∈Sp∪S∞

ε̃(Vv) =
∏

v∈Sp
(det V +

v )(−1). (4.1.3.7)

(4.2) Selmer complexes and extended Selmer groups

(4.2.1) For a pro-finite group G and a representation X ∈ RepLp
(G) (con-

tinuous, finite-dimensional), denote by C•(G,X) the standard complex of (non-
homogeneous) continuous cochains of G with values in X . Fix a set Sp ⊂ Σ ⊂ S
and define, for each v ∈ S − S∞, the complex

U+
v (V ) =




C•(GFv , V

+
v ), v ∈ Sp

0, v ∈ Σ− Sp
C•
ur(GFv , Vv) = C•(GFv/Iv, V

Iv
v ), v ∈ S − Σ,

where Iv ⊂ GFv is the inertia group. As in ([Ne 2], 12.5.9.1), define the Selmer
complex of V associated to the local conditions ∆Σ(V ) = (U+

v (V ))v∈S−S∞ as

C̃•

f (GF,S , V ; ∆Σ(V )) =

= Cone

(
C•(GF,S , V )⊕

⊕

v∈S−S∞

U+
v (V ) −→

⊕

v∈S−S∞

C•(GFv , V )

)
[−1].

(4.2.2) Proposition. (1) For each v 6∈ S∞ ∪Sp, the complexes C•(GFv , V ) and
C•
ur(GFv , V ) are acyclic.

(2) Up to a canonical isomorphism, the image of C̃•
f (GF,S , V ; ∆Σ(V )) in the
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derived category Db
ft(Lp −Mod) does not depend on Σ and S; denote it by

R̃Γf (F, V ) and its cohomology by H̃i
f (F, V ) (as Lp is a field, R̃Γf (F, V ) =⊕

i∈Z H̃
i
f (F, V )[−i]).

(3) There is an exact sequence

0 −→
⊕

v∈Sp
H0(Fv, V

−
v ) −→ H̃1

f (F, V ) −→ H1
f (F, V ) −→ 0.

(4) If we put h1
f (F, V ) = dimLp

H1
f (F, V ), h̃1

f(F, V ) = dimLp
H̃1
f (F, V ), then

(−1)h
1
f (F,V )/ ε(V ) = (−1)̃h

1
f (F,V )/ ε̃(V ).

Proof. (cf. [Ne 2, 12.5.9.2]) (1) The cohomology group H0(Fv, V ) = 0 van-
ishes by purity (1.4.4(5)), H2(Fv, V )

∼−→ H0(Fv , V
∗(1))∗

∼−→ H0(Fv, V )∗ =
0 by duality and H1(Fv , V ) = 0 by the local Euler characteristic formula∑2

i=0(−1)i hi(Fv, V ) = 0. Finally, dimLp
H1
ur(Fv, V ) = h0(Fv, V ) = 0.

(2) Independence of Σ follows from (1), independence of S is a general fact ([Ne
2], Prop. 7.8.8).
(3) It follows from (1) and [Ne 2, Lemma 9.6.3] that there is an exact sequence

0−→ H̃0
f (F, V ) −→ H0(GF,S , V )−→

⊕

v∈Sp
H0(Fv, V

−
v ) −→ H̃1

f (F, V ) −→ H−→ 0,

where

H = Ker

(
H1(GF,S , V ) −→

⊕

v∈S−S∞

H1(Fv, V )/Im(H1(U+
v (V )))

)
.

As

Im(H1(U+
v (V ))) =

{
0 = H1

f (Fv, V ), v 6∈ Sp
H1
f (Fv , V ), v ∈ Sp

by (1) and Proposition 3.3.2(2), respectively, we deduce that H = H1
f (F, V ).

Finally, H0(GF,S , V ) = 0 by purity.
(4) This is a consequence of (3) and (4.1.3.4).

5. p-Adic families of global p-adic Galois representations

(5.1) The general setup

(5.1.1) Fix a number field F , a prime number p and a finite set S ⊃ Sp ∪ S∞ of
primes of F .
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(5.1.2) Assume that we are given the following data.

(1) A complete local noetherian domainR of dimension dim(R) = 2, whose residue
field is a finite extension of Fp and whose fraction field L is of characteristic
zero.

(2) An R-module of finite type T equipped with an R-linear continuous action of
GF,S (with respect to the pro-finite topology of T ). Set V = T ⊗R L .

(3) A skew-symmetric morphism of R[GF,S ]-modules

( , ) : T ⊗R T −→ R(1) = R⊗Zp Zp(1)

inducing an isomorphism of L [GF,S ]-modules

V ∼−→ V∗(1) = HomL (V ,L )(1).

(4) For each v ∈ Sp an R[GFv ]-submodule T +
v ⊂ Tv such that the isomorphism

V ∼−→ V∗(1) induces isomorphisms of L [GFv ]-modules

V±v
∼−→ (V∓v )∗(1) = HomL (V∓v ,L )(1),

where V+
v = T +

v ⊗R L , V−v = Vv/V+
v .

(5) A prime ideal P ∈ Spec(R) of height ht(P ) = 1, which does not contain p
and such that RP is a discrete valuation ring. Fix a prime element ̟P of RP .
The residue field κ(P ) = RP /̟PRP is a finite extension of Qp. Define

TP = T ⊗R RP ⊂ V , V = TP /̟PTP ∈ Repκ(P )(GF,S)

and, for each v ∈ Sp,

(TP )+v = TP ∩ V+
v , (TP )−v = TP /(TP )+v , V +

v = (TP )+v /̟P (TP )+v ⊂ Vv,
V −v = Vv/V

+
v (V ±v ∈ Repκ(P )(GFv )).

(6) We assume that there exists u ∈ L ∗ such that u·( , ) induces an isomorphism
of RP [GF,S ]-modules

TP ∼−→ T ∗P (1) = HomRP (TP , RP )(1).

This implies that, for each v ∈ Sp, u ·( , ) induces an isomorphism of RP [GFv ]-

modules (TP )±v
∼−→ ((TP )∓v )∗(1). Reducing u·( , ) modulo P , we obtain a non-

degenerate skew-symmetric morphism of κ(P )[GF,S ]-modules V ⊗κ(P ) V −→
κ(P )(1) which induces, for each v ∈ Sp, isomorphisms V ±v

∼−→ (V ∓v )∗(1) in
Repκ(P )(GFv ).

(7) We assume that, for each v ∈ Sp, the exact sequence

0 −→ V +
v −→ Vv −→ V −v −→ 0

satisfies the Pančǐskin condition: V ±v ∈ Reppst,κ(P )(GFv ) and D0
dR(V +

v ) = 0 =

DdR(V −v )/D0
dR(V −v ).
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(8) We assume that, for each v 6∈ S∞, Vv is pure of weight −1 (in the sense of
1.4.5 and 3.2.3, respectively).

(9) We assume that, for each i ∈ Z, the integer

di(V ) := dimκ(P )

(
Di
dR(Vv)/D

i+1
dR (Vv)

)
/[Fv : Qp]

does not depend on v ∈ Sp; put

d−(V ) =
∑

i<0

i di(V ).

(5.1.3) This implies, in particular, that V satisfies the assumptions 4.1.2(1)-(4).

(5.1.4) Fix v 6∈ Sp ∪ S∞. As AutR(T ) is a pro-finite group containing a pro-p
open subgroup, there exists an open subgroup J of the inertia group I = Iv =
Gal(F v/F

ur
v ) such that J acts on T through the map J →֒ I ։ I(p), where I(p) is

the maximal pro-p-quotient of I (isomorphic to Zp). Fixing a topological generator
t of I(p) and an integer a ≥ 1 such that ta lies in the image of J , then the set
of eigenvalues of ta acting on V is stable under the map λ 7→ λNv, which implies
that there exists an integer c ≥ 1 divisible by a such that tc acts unipotently on
V . Defining

N =
1

c
log ρT (tc) ∈ EndR(T )⊗Q

(where ρT : GK −→ AutR(T ) denotes the action of GFv on T ) and (fixing a lift

f̃ ∈ ν−1(1) ⊂WK of f)

ρT (f̃nu) := ρT (f̃nu) exp(−bN) ∈ AutR⊗Q(T ⊗Q) ⊂ AutRP (TP ) (n ∈ Z, u ∈ I)

(where b ∈ Zp is such that the image of u in I(p) is equal to tb), the pair (ρT , N) de-
fines an object T = (ρT , N) of RepRP (′WFv ) in the sense of 1.5.2, the isomorphism

class of which is independent of the choice of f̃ ([De 1], 8.4.3). By construction,
the special fibre of T is isomorphic to

Ts
∼−→WD(Vv) ∈ Repκ(P )(

′WFv ).

We define

WD(Vv) := Tη = T ⊗RP L ∈ RepL (′WFv )

ε(Vv) := ε(WD(Vv)).
(5.1.4.1)

If we choose another generator of I(p), then N is multiplied by a scalar λ ∈ Z∗p,
which does not change the isomorphism class of WD(Vv) ([De 1], 8.4.3).

(5.2) Selmer complexes and extended Selmer groups

(5.2.1) We equip each R-module Y = T , T +
v , T

Iv
v with the pro-finite topology

and we denote by C•(G, Y ) the corresponding complex of continuous cochains (for
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G = GF,S , GFv , GFv/Iv, respectively). For R′ = RP ,L , define C•(G, Y ⊗R R′) =
C•(G, Y ) ⊗R R′. As in 4.2.1, fix a set Sp ⊂ Σ ⊂ S and define, for X = TP ,V ,
RX = RP ,L and each v ∈ S − S∞, complexes of RX -modules

U+
v (X) =




C•(GFv , X

+
v ), v ∈ Sp

0, v ∈ Σ− Sp
C•
ur(GFv , X) = C•(GFv/Iv, X

Iv), v ∈ S − Σ,

and

C̃•

f (GF,S , X ; ∆Σ(X)) =

= Cone

(
C•(GF,S , X)⊕

⊕

v∈S−S∞

U+
v (X) −→

⊕

v∈S−S∞

C•(GFv , X)

)
[−1].

(5.2.2) Proposition. (1) For each X = TP ,V and each v 6∈ S∞ ∪ Sp, the com-
plexes C•(GFv , X) and C•

ur(GFv , X) are acyclic.

(2) Up to a canonical isomorphism, the image of C̃•
f (GF,S , X ; ∆Σ(X)) in

Db
ft(RX −Mod) does not depend on Σ and S; denote it by R̃Γf (F,X) and its

cohomology by H̃i
f (F,X) (as L is a field, R̃Γf (F,V) =

⊕
i∈Z H̃

i
f (F,V)[−i]).

(3) There is an exact triangle in Db
ft(RP −Mod)

R̃Γf (F, TP )
̟P−−→R̃Γf (F, TP ) −→ R̃Γf (F, V ) −→ R̃Γf (F, TP )[1]

giving rise to exact sequences

0 −→ H̃i
f (F, TP )/̟P H̃

i
f (F, TP ) −→ H̃i

f (F, V ) −→ H̃i+1
f (F, TP )[̟P ] −→ 0,

and an isomorphism R̃Γf (F, TP )
L
⊗RPL

∼−→ R̃Γf (F,V) in Db
ft(L −Mod).

(4) There exists a skew-symmetric isomorphism in Db
ft(RP −Mod)

R̃Γf (F, TP )
∼−→ RHomRP (R̃Γf (F, TP ), RP )[−3]

inducing a skew-symmetric non-degenerate pairing

H̃2
f (F, TP )RP−tors × H̃2

f (F, TP )RP−tors −→ L /RP .

(5) There exists an RP -module Z of finite length such that H̃2
f (F, TP )RP−tors

∼−→
Z ⊕ Z.
(6) H̃1

f (F, TP ) is a free RP -module of rank h̃1
f (F,V) := dimL H̃1

f (F,V).

(7) h̃1
f(F, V ) ≡ h̃1

f (F,V) (mod 2).

Proof. (cf. [Ne 2, 12.7.13.4]) (1) It is enough to prove the statement for X = TP .
By ([Ne 2], Prop. 3.4.2 and 3.4.4), there is an exact sequence of complexes

Documenta Mathematica 12 (2007) 243–274



270 Jan Nekovář

0 −→ C•(GFv , TP )
̟P−−→C•(GFv , TP ) −→ C•(GFv , V ) −→ 0,

which induces injections

Hi(GFv , TP )/̟PH
i(GFv , TP ) →֒ Hi(Fv, V ).

As Hi(Fv, V ) = 0 by Proposition 4.2.2(1), and H i(GFv , TP ) = Hi(GFv , T )⊗RRP
is an RP -module of finite type (by [Ne 2], Prop. 4.2.3), it follows that
Hi(GFv , TP ) = 0. Finally, the unramified cohomology H1

ur = H1
ur(GFv , TP ) =

T IvP /(fv − 1)T IvP is an RP -module of finite type and H1
ur/̟PH

1
ur is a subquotient

of V Iv/̟PV
Iv = H1

ur(GFv , V ) = 0; thus H1
ur = 0.

(2) This follows from (1), as in the proof of 4.2.2(2).
(3) According to (2), we can take Σ = S, in which case the exact triangle in
question follows from the exact sequences

0 −→ C•(G, TP )
̟P−−→C•(G, TP ) −→ C•(G, V ) −→ 0 (G = GF,S , GFv ).

The isomorphism R̃Γf (F, TP )
L
⊗RPL

∼−→ R̃Γf (F,V) is a direct consequence of
the definitions.
(4) Take again Σ = S. According to a localized version of ([Ne 2], 7.8.4.4), there
exists an exact triangle in Db

ft(RP −Mod)

R̃Γf (F, TP )
γ−−→RHomRP (R̃Γf (F, TP ), RP )[−3] −→

⊕

v∈S−S∞

Errv,

in which the error terms Errv vanish for v ∈ Sp (as (TP )±
∼−→ ((TP )∓)∗(1)), as

well as for v 6∈ Sp (by (1) and [Ne 2], Prop. 6.7.6(iv)). The map γ (which is
an isomorphism, by the previous discussion) is skew-symmetric, by ([Ne 2], Prop.
6.6.2 and 7.7.3). The skew-symmetric non-degenerate pairing

H̃2
f (F, TP )RP−tors × H̃2

f (F, TP )RP−tors −→ L /RP .

is constructed from γ in ([Ne 2], Prop. 10.2.5).
(5) This follows from (4) and the structure theory of symplectic modules of finite
length over discrete valuation rings (note that 2 is invertible in RP ).

(6) It is enough to show that H̃1
f (F, TP ) has noRP -torsion, which si a consequence

of the exact sequence from (3) (for i = 0).
(7) In the exact sequence from (3) for i = 1, the term on the left (resp., on

the right), is a κ(P )-vector space of dimension h̃1
f (F,V), by (6) (resp., of even

dimension, by (5)); thus the dimension of the middle term (= h̃1
f (F, V )) has the

same parity as h̃1
f (F,V).

(5.3) The parity conjecture in p-adic families
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(5.3.1) Theorem. Under the assumptions 5.1.2(1)-(9), the quantity

(−1)h
1
f (F,V )/ ε(V ) = (−1)̃h

1
f (F,V )/ ε̃(V ) =

= (−1)̃h
1
f (F,V)

∏

v∈Sp
(detV+

v )(−1)
∏

v 6∈Sp∪S∞

ε(Vv)

depends only on V and V+
v (v ∈ Sp).

Proof. We combine the equalities

(−1)h
1
f (F,V )/ ε(V ) = (−1)̃h

1
f(F,V )/ ε̃(V ) (Prop. 4.2.2(4))

(−1)̃h
1
f (F,V ) = (−1)̃h

1
f (F,V) (Prop. 5.2.2(7))

ε̃(V ) =
∏

v∈Sp∪S∞

ε̃(Vv)
∏

v 6∈Sp∪S∞

ε(Vv) =
∏

v∈Sp
(det V +

v )(−1)
∏

v 6∈S∞∪Sp
ε(Vv)

(by 4.1.3.7)

∀v 6∈ S∞ ∪ Sp ε(Vv) = ε(Vv) (Prop. 2.2.4)

∀v ∈ Sp (det V +
v )(−1) = (detV+

v )(−1)

(both sides are equal to ±1, and the L.H.S. is the reduction of the R.H.S. modulo
P ).

(5.3.2) Corollary. Under the assumptions 5.1.2(1)-(4), if P, P ′ ∈ Spec(R) are
prime ideals satisfying 5.1.2(5)-(9), then the Galois representations V = TP /PTP
and V ′ = TP ′/P ′TP ′ satisfy

(−1)h
1
f (F,V )/ ε(V ) = (−1)h

1
f (F,V

′)/ ε(V ′).

(5.3.3) Open questions. It would be of interest to generalize Corollary 5.3.2
to self-dual families of Galois representations that do not satisfy the Pančǐskin
condition. Is it true, in general, that

(−1)[Fv:Qp] d
−(V ) ε(WD(Vv)

N−ss) (v ∈ Sp)

depends only on Vv, and that

(−1)h
1
f (F,V )

∏

v∈Sp

ε(WD(Vv))

ε(WD(Vv)N−ss)

depends only on V?
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(5.3.4) Example (dihedral Iwasawa theory). Assume that F0 ⊂ F∞ are
Galois extension of F such that [F0 : F ] = 2, Γ = Gal(F∞/F0)

∼−→ Zp and
Γ+ = Gal(F∞/F ) = Γ ⋊ {1, τ} is dihedral:

τ ∈ Γ+ − Γ, τ2 = 1, ∀g ∈ Γ τgτ−1 = g−1.

Let V ∈ RepLp
(GF,S) be a Galois representation satisfying 4.1.2(1)-(4); fix a GF,S-

stableOp-lattice T ⊂ V (Op = OLp
) such that the pairing ( , )V : V ×V −→ Lp(1)

induced by j maps T×T into Op(1). After enlarging S if necessary, we can assume
that S contains all primes that ramify in F0/F ; then F∞ ⊂ FS . We define the
following data of the type considered in 5.1.2:

(1) Let R = Op[[Γ]] be the Iwasawa algebra of Γ (isomorphic to the power series
ring Op[[X ]]). The Iwasawa algebra of Γ+ is a free (both left and right) R-
module of rank 2:

Op[[Γ
+]] = R⊕Rτ = R⊕ τR.

Denote by ι the standard Op-linear involution on Op[[Γ
+]] (ι(σ) = σ−1 for all

σ ∈ Γ+).
(2) Let T = T ⊗Op

Op[[Γ
+]], considered as a left R[GF,S]-module with the action

given by

r(x⊗a) = x⊗ra, g(x⊗a) = g(x)⊗a(g)−1 (r ∈ R, x ∈ T, a ∈ Op[[Γ
+]]),

where we have denoted by g the image of g ∈ GF,S in Γ+ (cf., [Ne 2], 10.3.5.3).
(3) As in ([Ne 2], 10.3.5.10), the formula

(x⊗ (a1 + τa2), y ⊗ (b1 + τb2)) = (x, y)V (a1ι(b2) + ι(a2)b1)

defines a skew-symmetric R-bilinear pairing ( , ) : T × T −→ R(1), which
induces an isomorphism

T ⊗Q
∼−→ HomR(T , R(1))⊗Q

(hence satisfies 5.1.2(3)).
(4) For each v ∈ Sp, define T +

v = T+
v ⊗Op

Op[[Γ
+]] (where T+

v = T ∩ V +
v ).

(5) Let β : Γ −→ Lp(β)∗ be a homomorphism with finite image (where Lp(β) is a
field generated over Lp by the values of β); then P = Ker(β : R −→ Lp(β)) ∈
Spec(R) is as in 5.1.2(5), with κ(P ) = Lp(β). It follows from ([Ne 2], Lemma
10.3.5.4) that

TP /̟PTP = Ind
GF,S
GF0,S

(V ⊗ β),

where we have denoted by V ⊗β ∈ RepLp(β)(GF0,S) the GF0,S-module V ⊗Lp

Lp(β) on which g ∈ GF0,S acts by g⊗β(g), where g is the image of g in Γ. The
discussion in ([Ne 2], 10.3.5.10) implies that 5.1.2(6) holds with u = 1. The
conditions 5.1.2(7)-(9) for TP /̟PTP follow from the corresponding conditions
4.1.2(2)-(4) for V .
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(5.3.5) In the situation of 5.3.4, putting Fβ = F
Ker(β)
∞ and, for each

Lp[Γ]-module M ,

M (β) = {x ∈M ⊗Lp
Lp(β) | ∀σ ∈ Γ σ(x) = β(σ)x},

then we have

H1
f (F, TP /̟PTP ) = H1

f (F0, V ⊗ β) =
(
H1
f (Fβ , V )⊗ β

)Gal(Fβ/F0)
=

= H1
f (Fβ , V )(β

−1),

and the action of τ induces an isomorphism of Lp(β)-vector spaces

τ : H1
f (Fβ , V )(β

−1) ∼−→ H1
f (Fβ , V )(β).

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order
β, β′ : Γ −→ L

∗
p, that

(−1)h
1
f (F0,V⊗β)/ ε(F0, V ⊗ β) = (−1)h

1
f (F0,V⊗β′)/ ε(F0, V ⊗ β′). (5.3.5.1)

In this special case one can prove Proposition 2.2.4 directly (at least if p 6= 2) by
using (2.1.2.7).

It would be of interest to generalize (5.3.5.1) to more general dihedral characters,
as in [Ma-Ru].
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Boston, 1993, pp. 127–202.
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276 Jean Fasel

1 IntroductionLet A be a ommutative noetherian ring of Krull dimension n and P a projetive
A-module of rank d. One an ask the following question: does P admit a freefator of rank one? Serre proved a long time ago that the answer is alwayspositive when d > n. So in fat the �rst interesting ase is when P is projetiveof rank equal to the dimension of A. Suppose now that X is an integral smoothsheme over a �eld k of harateristi not 2. To deal with the above question,Barge and Morel introdued the Chow-Witt groups C̃Hj

(X) of X (alled atthat time groupes de Chow des yles orientés, see [BM℄) and assoiated to eahvetor bundle E of rank n an Euler lass c̃n(E) in C̃H
n
(X). It was provedreently that if X = Spe(A) we have c̃n(P ) = 0 if and only if P ≃ Q ⊕ A(see [Mo℄ for n ≥ 4, [FS℄ for n = 3 and [BM℄ or [Fa℄ for the ase n = 2). Itis therefore important to provide more tools, suh as a ring struture and apull-bak for regular embeddings, to ompute the Chow-Witt groups and theEuler lasses.To de�ne C̃Hp

(X) onsider the �bre produt of the omplex in Milnor K-theory
0 // KM

p (k(X)) //
⊕

x1∈X(1)

KM
p−1(k(x1)) // . . . //

⊕

xn∈X(n)

KM
p−n(k(xn)) // 0and the Gersten-Witt omplex restrited to the fundamental ideals

0 // Ip(k(X)) //
⊕

x1∈X(1)

Ip−1(OX,x1) // . . . //
⊕

xn∈X(n)

Ip−n(OX,xn) // 0over the quotient omplex
0 // Ip/Ip+1(k(X)) // . . . //

⊕

xn∈X(n)

Ip−n/Ip+1−n(OX,xn) // 0.The group C̃Hp
(X) is de�ned as the p-th ohomology group of this �bre prod-ut. Roughly speaking, an element of C̃Hp

(X) is the lass of a sum of varietiesof odimension p with a quadrati form de�ned on eah variety. We oviouslyhave a map C̃Hp
(X)→ CHp(X).Using the funtoriality of the two omplexes we see that the Chow-Witt groupssatisfy good funtorial properties (see [Fa℄). For example, we have a pull-bak morphism f∗ : C̃H

j
(X) → C̃H

j
(Y ) assoiated to eah �at morphism

f : Y → X and a push-forward morphism g∗ : C̃H
j
(Y, L) → C̃H

j+r
(X)assoiated to eah proper morphism g : Y → X , where r = dim(X)− dim(Y )and L is a suitable line bundle over Y . Using this funtorial behaviour, it ispossible to produe a good intersetion theory. This is what we do in this paper
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The Chow-Witt ring 277using the lassial strategy (see for example [Fu℄ or [Ro℄). First we de�ne anexterior produt
C̃H

j
(X)× C̃Hi

(Y )→ C̃H
i+j

(X × Y )and then a Gysin-like homomorphism i! : C̃H
d
(X)→ C̃H

d
(Y ) assoiated to alosed embedding i : Y → X of smooth shemes. The produt is then de�nedas the omposition

C̃H
j
(X)× C̃Hi

(X) // C̃H
i+j

(X ×X)
△!

// C̃H
i+j

(X)where △ : X → X × X is the diagonal embedding. To de�ne the exteriorprodut, we �rst note that Rost already de�ned an exterior produt on thehomology of the omplex in Milnor K-theory ([Ro℄). Thus it is enough tode�ne an exterior produt on the homology of the Gersten-Witt omplex andshow that both exterior produts oinide over the quotient omplex. We usethe usual produt on derived Witt groups ([GN℄) and show that this produtpasses to homology using the Leibnitz rule proved by Balmer (see [Ba2℄).The de�nition of the Gysin-like map is done by following the ideas of Rost([Ro℄). It uses the deformation to the normal one to modi�y any losed em-bedding to a nier losed embedding and uses also the long exat sequeneassoiated to a triple (Z,X,U) where Z is a losed subset of X and U = X \Z.The produt that we obtain has the meaning of interseting varieties withquadrati forms de�ned on them. It is therefore not a surprise that the naturalmap C̃Htot
(X) → CHtot(X) turns out to be a ring homomorphism. There ishowever a surprise: the produt that we obtain is a priori neither ommutativenor antiommutative. This omes from the fat that the produt of triangu-lated Grothendiek-Witt groups GW i ×GW j → GW i+j does not satisfy anyommutativity property.The organization of this paper is as follows: In setion 2, we reall some ba-si results on triangular Witt groups. This inludes the onstrution of theGersten-Witt omplex, and some results on produts and onsanguinity. Insetion 3, we onstrut the Chow-Witt groups, reall some results and provesome basi fats. The de�nition of the exterior produt takes plae in setion4 and the de�nition of the Gysin-Witt map in setion 5. In this part, we alsoprove the funtoriality of this map. Finally we put all the piees together insetion 6 and prove some basi results in setion 7.I would like to thank Paul Balmer, Stefan Gille and Ivo Dell'Ambrogio forseveral areful readings of earlier versions of this work. I also would like tothank the referee for some useful omments. This researh was supported bySwiss National Siene Foundation, grant PP002-112579.
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1.1 ConventionsAll shemes are smooth and integral over a �eld k of harateristi di�erentfrom 2, or are loalizations of suh shemes. For any two shemes X and Y wewill always denote by X × Y the �bre produt X ×Spe(k) Y .
2 Preliminaries

2.1 Witt groupsWe reall here some basi fats on Witt groups of triangulated ategories fol-lowing the exposition of [Ba2℄. We suppose that for any triangulated ategory
C and any objets A,B of C the group Hom(A,B) is uniquely 2-divisible. Wealso suppose that all triangulated ategories are essentially small.
Definition 2.1. Let C be a triangulated ategory. A duality on C is a triple
(D, δ,̟) where δ = ±1, D : C → C is a δ-exat ontravariant funtor and
̟ : 1 ≃ D2 is an isomorphism of funtors satisfying D(̟A) ◦ ̟DA = idDAand T (̟A) = ̟TA for all A ∈ C. A triangulated ategory C with a duality
(D, δ,̟) is written (C, D, δ,̟).Example 2.2. Let X be a regular sheme and P(X) the ategory of loally freeoherent OX -modules. Let Db(P(X)) be the triangulated ategory of boundedomplexes of objets of P(X). Then the usual duality ∨ on P(X) de�ned by
P∨ = HomOX (P,OX) indues a 1-exat duality on Db(P(X)). We also denotethis derived duality by ∨. Moreover, the anonial isomorphism ev : P → P∨∨for any loally free module P indues a anonial isomorphism ̟ : 1 →∨∨in Db(P(X)). More generally, if L is any invertible module over X , then theduality HomOX (_, L) on P(X) also indues a duality on Db(P(X)).
Definition 2.3. Let (C, D, δ,̟) be a triangulated ategory with duality. Forany i ∈ Z, de�ne (D(i), δ(i), ̟(i)) by D(i) = T i ◦D, δ(i) = (−1)iδ and ̟(i) =
δi(−1)i(i+1)/2̟. It is easy to hek that (D(i), δ(i), ̟(i)) is a duality on C. Itis alled the ith-shifted duality of (D, δ,̟).
Definition 2.4. Let (C, D, δ,̟) be a triangulated ategory with duality, A ∈ Cand i ∈ Z. A morphism ϕ : A→ D(i)A is i-symmetri if the following diagramommutes:

A
ϕ //

̟
(i)
A

��

D(i)A

(D(i))2(A)
D(i)ϕ

// D(i)A.The ouple (A,ϕ) is alled an i-symmetri pair.
Definition 2.5. We denote by Symmi(C) the monoid of isometry lasses of
i-symmetri pairs, equipped with the orthogonal sum.
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The Chow-Witt ring 279
Definition 2.6. An i-symmetri form is an i-symmetri pair (A,ϕ) where ϕis an isomorphism.
Theorem 2.7. Let (C, D, δ,̟) be a triangulated ategory with duality and let
(A, φ) be an i-symmetri pair. Choose an exat triangle ontaining φ

A
φ // D(i)A

α // C
β // TA.Then there exists an (i + 1)-symmetri isomorphism ψ : C → D(i+1)C suhthat the following diagram ommutes

A
φ //

̟(i)

��

D(i)A
α // C

β //

ψ

���
�
� TA

T̟(i)

��
D(i)(D(i)A)

D(i)φ

// D(i)A
δ(i+1)D(i+1)β

// D(i+1)C
D(i+1)α

// T (D(i)(D(i)A))where the rows are exat triangles and the seond one is the dual of the �rst.Moreover, the (i + 1)-symmetri form (C,ψ) is unique up to isometry. It isdenoted by one(A, φ).Proof. See [Ba1℄, Theorem 1.6.Example 2.8. Let A ∈ C. For any i, the morphism 0 : A→ D(i)A is symmetriand then one(A, 0) is well de�ned.
Corollary 2.9. The above onstrution gives a well de�ned homomorphismof monoids di : Symm(i)(C)→ Symm(i+1)(C) suh that di+1di = 0.
Definition 2.10. Let (C, D, δ,̟) be a triangulated ategory with duality. TheWitt groupW i(C) is de�ned as Ker(di)/Im(di+1). Remark that Ker(di) is justthe monoid of isometry lasses of i-symmetri forms.
Definition 2.11. Let (C, D, δ,̟) be a triangulated ategory with duality. TheGrothendiek-Witt group GW i(C) is de�ned as the quotient of Ker(di) by thesubmonoid generated by the elements one(A, φ)− one(A, 0) where A ∈ C and
φ is (i− 1)-symmetri (0 is also seen as an (i− 1)-symmetri morphism).Example 2.12. Let (Db(P(X)),∨ , 1, ̟) be the triangulated ategory with du-ality de�ned in Example 2.2. Its Witt groups are the Witt groups W i(X) ofthe sheme X as de�ned in [Ba1℄.
2.2 ProductsGiven a pairing ⊗ : C × D → M of triangulated ategories with duality andassuming that this pairing satis�es some nie onditions, the authors of [GN℄de�ne a pairing of Witt groups. We brie�y reall some de�nitions (see 1.2 and1.11 in [GN℄):
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Definition 2.13. Let C,D and M be triangulated ategories. A produtbetween C and D with odomainM is a ovariant bi-funtor
⊗ : C × D →Mexat in both variables and satisfying the following ondition: the funtorialisomorphisms rA,B : A⊗TB ≃ T (A⊗B) and lA,B : TA⊗B ≃ T (A⊗B) makethe diagram

TA⊗ TB
lA,TB //

rTA,B

��

T (A⊗ TB)

T (rA,B)

��
T (TA⊗B)

T (lA,B)
// T 2(A⊗B)skew-ommutative.

Definition 2.14. Let C,D and M be triangulated ategories with dualities.Where there is no possible onfusion, we drop the subsripts for D, δ and ̟.A dualizing pairing between C and D with odomain M is a produt ⊗ withisomorphisms
ηA,B : DA⊗DB ≃ D(A⊗B)natural in A and B whih make the following diagrams ommute1.
A⊗B ̟A⊗̟B //

̟A⊗B

��

D2A⊗D2B

ηDA,DB

��
D2(A⊗B)

D(ηA,B)
// D(DA⊗DB)2.

T (DTA⊗DB)

δCδMT (ηTA,B)

��

DA⊗DB
lDTA,DBoo

ηA,B

��

rDA,DTB // T (DA⊗DTB)

δLδMT (ηA,TB)

��
TD(TA⊗B) D(A⊗B)

TD(lA,B)
oo

TD(rA,B)
// TD(A⊗ TB).

Theorem 2.15. Let C,D and M be triangulated ategories with duality. Let
⊗ : C × D → M be a dualizing pairing between C and D with odomain M.Then ⊗ indues for all i, j ∈ Z a pairing

⋆ : W i(C)×W j(D)→W i+j(M).
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The Chow-Witt ring 281Proof. See [GN℄, Theorem 2.9.Example 2.16. Let (Db(P(X)),∨ , 1, ̟) be the triangulated ategory with dual-ity de�ned in Example 2.2. The usual tensor produt indues a dualizing pair-ing of triangulated ategories and then a produtW i(X)×W j(X)→W i+j(X).Suppose that L and N are invertible modules over X . Then HomOX (_, L),HomOX (_, N) and HomOX (_, L ⊗ N) give dualities ♯, ♮ and ♭ on Db(P(X)).The tensor produt gives a dualizing pairing
⊗ : (Db(P(X)),♯ , 1, ̟)× (Db(P(X)),♮ , 1, ̟)→ (Db(P(X)),♭ , 1, ̟).

2.3 SupportsWe brie�y reall the notion of triangulated ategory with supports following[Ba2℄.
Definition 2.17. Let X be a topologial spae. A triangulated ategory de-�ned over X is a pair (C, Supp) where C is a triangulated ategory and Suppassigns to eah objet A ∈ C a losed subset Supp(A) of X suh that thefollowing rules are satis�ed:(S1) Supp(A) = ∅ ⇐⇒ A ≃ 0.(S2) Supp(A⊕B) = Supp(A) ∪ Supp(B).(S3) Supp(A) = Supp(TA).(S4) For every distinguished triangle

A // B // C // TAwe have Supp(C) ⊂ Supp(A) ∪ Supp(B).When I is a saturated triangulated subategory of C and S is the multipliativesystem of morphisms whose one is in I, then we an onstrut a support onthe ategory S−1C := C/I. This is done in [Ba3℄ when C has a tensor produt.However we will only need some basi fats, so we prove the following lemma:
Lemma 2.18. let C be a triangulated ategory de�ned over a topologialspae X. Let I be a saturated triangulated subategory of C and let Supp(I) =
∪A∈ISupp(A). Suppose that Supp(A) ⊂ Supp(I) implies A ∈ I. Let S be themultipliative system in C of morphisms f suh that one(f) ∈ I and let

I // C // C/Ibe the exat sequene of triangulated ategories obtained by inverting S. Then
C/I is a triangulated ategory de�ned over X ′ = X \Supp(I) (with the induedtopology).
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282 Jean FaselProof. We de�ne SuppS(A) := Supp(A)∩X ′ for any objet A ∈ C/I and showthat SuppS satis�es the properties of De�nition 2.17. It is easy to see that therules (S1), (S2) and (S3) are satis�ed. We only have to prove (S4).First observe that if s : A→ B is a morphism in S and
A

s // B // C // TAis an exat triangle in C ontaining s, then SuppS(A) = SuppS(B) (use (S4)for the ategory C). This shows that SuppS(A) = SuppS(A′) if A ≃ A′ in C/I.By de�nition of the triangulation of C/I, any exat triangle
A

α // B // C // TAin C/I is isomorphi to the loalization of an exat triangle in C. This showsthat SuppS(C) ⊂ SuppS(A) ∪ SuppS(B).Example 2.19. Let Db(P(X)) be the usual triangulated ategory. De�ne thesupport of an objet P ∈ Db(P(X)) as the union of the support of all theohomology groups of P , i.eSupp(P ) =
⋃

i

Supp(Hi(P )).Then it is easy to see that (Db(P(X)), Supp) is a triangulated ategory withsupport. Denote by Db(P(X))(k) the full subategory of Db(P(X)) of objetswhose support is of odimension ≥ k. Then Db(P(X))(k) is a saturated trian-gulated ategory and the following sequene
Db(P(X))(k) → Db(P(X))→ Db(P(X))/Db(P(X))(k)satis�es the onditions of Lemma 2.18. So Db(P(X))/Db(P(X))(k) is a trian-gulated ategory over X ′ = {x ∈ X | odim(x) ≤ k − 1}.The following de�nitions are also due to Balmer (see [Ba2℄):

Definition 2.20. Let (C, Supp) be a triangulated ategory over X and assumethat C has a struture of triangulated ategory with duality (C, D, δ,̟). Thenwe say that C is a triangulated ategory with duality de�ned over X if(S5) Supp(A) = Supp(DA) for every objet A.
Definition 2.21. Let (C, SuppC), (D, SuppD) and (M, SuppM) be triangu-lated ategories de�ned over X . Suppose that

⊗ : C × D →Mis a pairing of triangulated ategories. The pairing ⊗ is de�ned over X if(S6) SuppM(A⊗B) = SuppC(A) ∩ SuppD(B).
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The Chow-Witt ring 283Example 2.22. The triangulated ategory Db(P(X)) with the support de�nedin Example 2.19 and the pairing of Example 2.16 satisfy the ondition (S5) and(S6).
Definition 2.23. The degeneray lous of a symmetri pair (A,α) is de�nedto be the support of the one of α:DegLo(α) = Supp(one(α)).

Definition 2.24. Let (C, Supp) be a triangulated ategory with duality de�nedover X . The onsanguinity of two symmetri pairs α and β is de�ned to bethe following subset of X :Cons(α, β) = (Supp(α) ∩DegLo(β)) ∪ (DegLo(α) ∩ Supp(β)).We are now ready to state the Leibnitz formula:
Theorem 2.25 (Leibnitz formula). Assume that we have a dualizing pairing
⊗ : C × D → F of triangulated ategories with dualities over X. Let α and βbe two symmetri pairs suh that DegLo(α) ∩ DegLo(β) = ∅. Then we havean isometry

δF · d(α ⋆ β) = δC · d(α) ⋆ β + δD · α ⋆ d(β)where δC , δD, δF are the signs involved in the dualities of C,D and F .Proof. See [Ba2℄, Theorem 5.2.
3 Chow-Witt groupsLet (Db(P(X)),∨ , 1, ̟) be the triangulated ategory with the usual dualityof Example 2.2 and onsider its full subategory Db(P(X))(i) of objets withsupports of odimension ≥ i (here we use the support de�ned in Example2.19). Then the duality on Db(P(X)) indues dualities on Db(P(X))(i) for any
i ([Ba1℄). It is also lear that Db(P(X))(i+1) ⊂ Db(P(X))(i) for any i.
Definition 3.1. For all i ∈ N, denote by Db

i (X) the triangulated ategory
Db(P(X))(i)/Db(P(X))(i+1).Suppose that (A,α) is an i-symmetri form in Db

i (X). Then there exists an
i-symmetri pair (B, β) suh that the loalization of (B, β) is (A,α) (by loal-ization we mean the map Symmi(Db(P(X))(i))→ Symmi(Db

i (X)) indued bythe funtor Db(P(X))(i) → Db
i (X)). Applying 2.7, we get an (i+1)-symmetriform (C,ψ). By onstrution, C ∈ Db(P(X))(i+1). Loalizing this form we geta form (C,ψ) in W i+1(Db

i+1(X)). At �rst sight, this onstrution depends onsome hoies but in fat this is not the ase (see [Ba1℄, Corollary 4.16). Henewe get a well de�ned homomorphism
di : W i(Db

i (X))→W i+1(Db
i+1(X)).
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Theorem 3.2. Let X be a regular sheme of dimension n. Then we have aomplex
0 // W 0(Db

0(X))
d0 // W 1(Db

1(X))
d1 // . . . dn // Wn(Db

n(X)) // 0.Proof. See [BW℄, Theorem 3.1 and Paragraph 8.Let A be a regular loal ring. We denote by W fl(A) the Witt group of �nitelength modules over A (see [QSS℄ for more informations about Witt groups of�nite length modules). The following proposition holds:
Proposition 3.3. We have isomorphisms

W i(Db
i (X)) ≃

⊕

x∈X(i)

W fl(OX,x).Proof. See [BW℄, Theorem 6.1 and Theorem 6.2.Remark 3.4. Sine we use the isomorphism of the above proposition, we brie�yreall how to obtain a symmetri omplex from a �nite length module. For moredetails, see [BW℄ or [Fa℄, Chapter 3. Choose a point x ∈ X(i), a �nite length
OX,x-module M and a symmetri isomorphism φ : M → ExtiOX,x(M,OX,x).Let P• be a resolution of M by loally free oherent OX,x-modules. Then P•an be hosen of the form

0 // Pi // . . . // P0
// M // 0.Dualizing this omplex and shifting i times gives the following diagram

0 // Pi //

∃
���
�
�

. . . // P0
//

∃
���
�
� M //

φ

��

0

0 // P∨0 // . . . // P∨i // ExtiOX,x(M,OX,x) // 0.Using φ we get a symmetri morphism ϕ : P• → (P•)∨. Thus we have on-struted an i-symmetri pair in the ategoryDb(P(OX,x)) from the pair (M,φ).SineDb
i (X) ≃

∐

x∈X(i)

Db(P(OX,x)) ([BW℄, Proposition 7.1), we an see the pair
(P•, ϕ) as a symmetri pair in Db

i (X).
Definition 3.5. The omplex
0 // W fl(k(X)) //

⊕

x1∈X(1)

W fl(OX,x1) // . . . //
⊕

xn∈X(n)

W fl(OX,xn) // 0is alled the Gersten-Witt omplex of X . We denote it by C(X,W ).
Documenta Mathematica 12 (2007) 275–312



The Chow-Witt ring 285This omplex is obtained by using the usual duality ∨ on the triangulatedategory Db(P(X)) (Example 2.2). For any invertible module L over X , wehave a duality derived from the funtor ♯ = HomOX,x(_, L) and we an applythe same onstrution to get a Gersten-Witt omplex.
Definition 3.6. Let X be a regular sheme and L an invertible OX -module.We denote by C(X,W,L) the Gersten-Witt omplex obtained from the dual-ity ♯.
Theorem 3.7. Let A be a regular loal k-algebra and X = Spe(A). Then forany i > 0 we have Hi(C(X,W )) = 0.Proof. See [BGPW℄, Theorem 6.1.Let A be a regular loal ring of dimension n. Denote by F the residue �eldof A. Then any hoie of a generator ξ ∈ ExtnA(F,A) gives an isomorphism
αξ : W (F ) → W fl(A). Reall that I(F ) is the fundamental ideal of W (F ). If
n ≤ 0, put In(F ) = W (F ).
Definition 3.8. For any n ∈ Z let Infl(A) be the image of In(F ) by αξ.Remark 3.9. It is easily seen that Infl(A) does not depend on the hoie of thegenerator ξ ∈ ExtnA(F,A).
Proposition 3.10. The di�erential d of the Gersten-Witt omplex satis�es
d(Imfl (OX,x)) ⊂ Im−1

fl (OX,y) for any m ∈ Z, x ∈ X(i) and y ∈ X(i−1).Proof. See [Gi3℄, Theorem 6.4 or [Fa℄, Theorem 9.2.4.
Definition 3.11. Let L be an invertible OX -module. We denote by
C(X, Id, L) the omplex
0 // Idfl(k(X)) //

⊕

x1∈X(1)

Id−1
fl (OX,x1) // . . . //

⊕

xn∈X(n)

Id−nfl (OX,xn) // 0.Remark 3.12. In partiular, we have C(X, I0, L) = C(X,W,L).
Theorem 3.13. Let A be an essentially smooth loal k-algebra. Then for any
i > 0 we have Hi(C(X, Id)) = 0.Proof. See [Gi3℄, Corollary 7.7.Of ourse, there is an inlusion C(X, Id+1, L)→ C(X, Id, L) and therefore weget a quotient omplex.
Definition 3.14. Denote by C(X, I

d
) the omplex C(X, Id, L)/C(X, Id+1, L).Remark 3.15. For any invertible module L the omplexes C(X, Id)/C(X, Id+1)and C(X, Id, L)/C(X, Id+1, L) are anonially isomorphi (see [Fa℄, CorollaryE.1.3), so we an drop the L in C(X, I
d
).
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286 Jean FaselRemark 3.16. The omplex C(X, I
d
) is of the form

0 // Idfl(k(X))/Id+1
fl (k(X)) //

⊕

x1∈X(1)

Id−1
fl (OX,x1)/I

d
fl(OX,x1) // . . . .Remark 3.17. As a onsequene of Theorem 3.13, we immediately see that

Hi(C(X, I
d
)) = 0 for i > 0 if X = Spe(A) where A is an essentially smoothloal k-algebra.Let F be a �eld and denote by KM

i (F ) the i-th Milnor K-theory group of F .If i < 0 it is onvenient to put KM
i (F ) = 0.

Definition 3.18. Let X be a sheme. Then for any d we have a omplex
0 // KM

d (k(X)) //
⊕

x1∈X(1)

KM
d−1(k(x1)) // . . . //

⊕

xn∈X(n)

KM
d−n(k(xn)) // 0.We denote it by C(X,KM

d ).Proof. See [Ka℄, Proposition 1 or [Ro℄, Paragraph 3.We also have the exatness of this omplex when X is the spetrum of a smoothloal k-algebra:
Theorem 3.19. Let A be a smooth loal k-algebra. Then for all i > 0 we have
Hi(C(X,KM

d )) = 0.Proof. See [Ro℄, Theorem 6.1.If F is a �eld, reall that we have a homomorphism due to Milnor
s : KM

j (F )→ Ij(F )/Ij+1(F )given by s({a1, . . . , aj}) =< 1,−a1 > ⊗ . . .⊗ < 1,−aj >. The following istrue:
Lemma 3.20. The homomorphisms s indue a morphism of omplexes

s : C(X,KM
d )→ C(X, I

d
).Proof. See [Fa℄, Proposition 10.2.5.

Definition 3.21. Let C(X,Gd, L) be the �bre produt of C(X,KM
d ) and

C(X, Id, L) over C(X, I
d
):
C(X,Gd, L) //

��

C(X, Id, L)

π

��
C(X,KM

d ) s
// C(X, I

d
).
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Definition 3.22. Let X be a smooth sheme and L an invertible OX -module. The j-th Chow-Witt group C̃H

j
(X,L) of X twisted by L is thegroup Hj(C(X,Gj , L)).Remark 3.23. Denote by GW j(Db

j(X), L) the j-th Grothendiek-Witt group ofthe ategoryDb
j(X) with the duality derived from HomOX (_, L) (see De�nition2.11). It is not hard to see that C(X,Gj , L) is isomorphi to GW j(Db

j(X), L)and therefore the omplex C(X,Gj , L) is
. . . // C(X,Gj , L)j−1

// GW j(Db
j(X), L)

dj // W j+1(Db
j+1(X), L) // . . .Hene C̃H

j
(X,L) is a quotient of Ker(dj) and a subquotient of

GW j(Db
j(X), L).We also have the exatness of the omplex C(X,Gd, L) in the loal ase:

Theorem 3.24. Let A be a smooth loal k-algebra and X = Spe(A). Then
Hi(C(X,Gj)) = 0 for all j and all i > 0.Proof. As C(X,Gj) is the �bre produt of the omplexes C(X,KM

j ) and
C(X, Ij) over C(X, I

j
), we have an exat sequene of omplexes

0 // C(X,Gj) // C(X, Ij)⊕ C(X,KM
j ) // C(X, I

j
) // 0induing a long exat sequene in ohomology. It follows then from Theorem3.13 and Theorem 3.19 that Hi(C(X,Gj)) = 0 if i > 1. For i = 1, we have anexat sequene

H0(C(X, Ij))⊕H0(C(X,KM
j )) // H0(C(X, I

j
)) // H1(C(X,Gj)) // 0.The exat sequene of omplexes

0 // C(X, Ij+1) // C(X, Ij) // C(X, I
j
) // 0shows that H0(C(X, Ij)) maps onto H0(C(X, I

j
)).

Definition 3.25. Let X be a smooth sheme and L an invertible OX -module.We de�ne the sheaf GjL on X by GjL(U) = H0(C(U,Gj , L)).We have:
Theorem 3.26. Let X be a smooth sheme of dimension n. Then for any iwe have

Hi
Zar(X,GjL) ≃ Hi(C(X,Gj , L)).
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288 Jean FaselProof. De�ne sheaves Cl by Cl(U) = C(U,Gj , L)l for any l ≥ 0. It is lear thatthe Cl are �asque sheaves. We have a omplex of sheaves over X
0 // GjL // C0 // C1 // . . . // Cn // 0.Theorem 3.24 shows that this omplex is a �asque resolution of GjL. Thus thetheorem is proved.Suppose that f : X → Y is a �at morphism. Sine it preserves odimensions,it indues a morphism of omplexes

f∗ : C(Y,Gj , L)→ C(X,Gj , f∗L)for any j ∈ N and any line bundle L over Y ([Fa℄, Corollary 10.4.2). Hene wehave:
Theorem 3.27. Let f : X → Y be a �at morphism and L a line bundle over
Y . Then, for any i, j we have homomorphisms

f∗ : Hi(C(Y,Gj , L))→ Hi(C(X,Gj , f∗L)).In partiular, if E is a vetor bundle over Y and π : E → Y is the projetion,we have isomorphisms
π∗ : Hi(C(Y,Gj , L))→ Hi(C(E,Gj , π∗L)).Proof. We have a morphism of omplexes f∗ : C(Y,Gj , L) → C(X,Gj , f∗L)whih gives the indued homomorphisms in ohomology. For the proof of ho-motopy invariane, see Corollary 11.3.2 in [Fa℄.

Proposition 3.28. Let f : X → Y and g : Y → Z be �at morphisms. Then
(gf)∗ = f∗g∗.Proof. See [Fa℄, Proposition 3.4.9.Suppose that f : X → Y is a �nite morphism with dim(Y ) − dim(X) = r.Consider the morphism of loally ringed spaes f : (X,OX) → (Y, f∗OX)indued by f . If X is smooth, then L = f

∗ExtrOY (f∗OX ,OY ) is an invertiblemodule over Y ([Gi2℄, Corollary 6.6) and we get a morphism of omplexes (ofdegree r)
f∗ : C(X,Gj−r , L⊗ f∗N)→ C(Y,Gj , N)for any invertible module N over Y ([Fa℄, Corollary 5.3.7).
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Proposition 3.29. Let f : X → Y be a �nite morphism between smoothshemes. Let dim(Y ) − dim(X) = r and N be an invertible module over Y .Then the morphism of omplexes f∗ indues a homomorphism

f∗ : Hi−r(C(X,Gj−r , L⊗ f∗N))→ Hi(C(Y,Gj , N)).In partiular, we have ([Fa℄, Remark 9.3.5):
Proposition 3.30. Let f : X → Y be a losed immersion of odimension rbetween smooth shemes. Then f indues an isomorphism

f∗ : Hi−r(C(X,Gj−r , L⊗ f∗N))→ Hi
X(C(Y,Gj , N))for any i, j and any invertible module N over Y .Important remark 3.31. If f : X → Y is a losed immersion, then f∗ will alwaysbe the map with support:

f∗ : Hi−r(C(X,Gj−r , L⊗ f∗N))→ Hi
X(C(Y,Gj , N))The transfer for �nite morphisms is funtorial ([Fa℄, proposition 5.3.8):

Proposition 3.32. Let f : X → Y and g : Y → Z be �nite morphisms. Then
g∗f∗ = (gf)∗.Remark 3.33. Let X be a smooth sheme and D be a smooth e�etive Cartierdivisor on X . Let i : D → X be the inlusion and L(D) be the line bundleover X assoiated to D. Then there is a anonial setion s ∈ L(D) (see [Fu℄,Appendix B.4.5) and an exat sequene

0 // OX s // L(D) // i∗OD // 0.Applying HomOX (_, L(D)) and shifting, we obtain the following diagram
0 // OX s //

≃
��

L(D) //

≃
��

i∗OD //

���
�
� 0

0 // HomOX (L(D), L(D))
s
// HomOX (OX , L(D)) // Ext1OX (i∗OD, L(D)) // 0whih shows that Ext1OX (i∗OD,OX) ⊗ L(D) ≃ i∗OD. Proposition 3.30 showsthat we then have an isomorphism

i∗ : Hi−1(C(D,Gj−1, i∗L(D)))→ Hi
D(C(X,Gj)).

Lemma 3.34. Let g : X → Y be a �at morphism and f : Z → Y a �nitemorphism. Consider the following �bre produt
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V
f ′

//

g′

��

X

g

��
Z

f
// Y.Then (f ′)∗(g′)∗ = g∗f∗.Proof. See [Fa℄, Corollary 12.2.8.Remark 3.35. Of ourse, in the above �bre produt we suppose that V is alsosmooth and integral. Suh a strong assumption is not neessary in general, butthis ase is su�ient for our purposes.Remark 3.36. It is possible to de�ne a map f∗ when the morphism f is proper(see [Fa℄) but we don't use this fat here.

4 The exterior productLet X and Y be two shemes. The �bre produt X × Y omes equipped withtwo projetions p1 : X × Y → X and p2 : X × Y → Y .
Lemma 4.1. For any i, j ∈ N, the pairing

⊠ : Db
i (X)×Db

j(Y )→ Db
i+j(X × Y )given by P ⊠ Q = p∗1P ⊗ p∗2Q is a dualizing pairing of triangulated ategorieswith duality.Proof. Straight veri�ation.

Corollary 4.2. For any i, j ∈ N, the pairing
⊠ : Db

i (X)×Db
j(Y )→ Db

i+j(X × Y )indues a pairing
⋆ : W i(Db

i (X))×W j(Db
j(Y ))→W i+j(Db

i+j(X × Y )).Proof. Clear by Theorem 2.15.
Corollary 4.3. Let ψ ∈ W j(Db

j(Y )). Then we have a homomorphism
µψ : W i(Db

i (X))→W i+j(Db
i+j(X × Y ))given by µψ(ϕ) = ϕ ⋆ ψ.Reall that we have isomorphisms W i(Db

i (X)) ≃
⊕

x∈X(i)

W fl(OX,x) (Proposi-tion 3.3).
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Definition 4.4. For any s ∈ Z, denote by Is(Db

i (X)) the preimage of⊕

x∈X(i)

Isfl(OX,x) under the above isomorphism.
Proposition 4.5. For any m, p ∈ N the produt

⋆ : W i(Db
i (X))×W j(Db

j(Y ))→W i+j(Db
i+j(X × Y ))indues a produt

⋆ : Im(Db
i (X))× In(Db

j(Y ))→ Im+n(Db
i+j(X × Y )).Proof. Let x ∈ X(i) and y ∈ Y (j). It is lear that the produt an be omputedloally (use [GN℄, Theorem 3.2). So we an suppose that X = Spe(A) and

Y = Spe(B) where A and B are loal in x and y respetively. Reall that wehave the following diagram
X × Y p2 //

p1

��

Y

��
X // Spe(k).Let P be an A-projetive resolution of k(x) and Q be a B-projetive resolutionof k(y). Consider a symmetri form ρ : k(x) → ExtiA(k(x), A) and a symmet-ri form µ : k(y) → ExtjB(k(y), B). Then p∗1(ρ) is a symmetri isomorphismsupported by the omplex P ⊗k B and p∗2(µ) is a symmetri isomorphism sup-ported by the omplex A⊗kQ. The omplex (P ⊗kB)⊗A⊗kB (A⊗kQ) (whihis isomorphi to P ⊗k Q) has its homology onentrated in degree 0, and thishomology is isomorphi to k(x)⊗k k(y). Let u be a point of Spe(k(x)⊗k k(y)).Then the restrition of p∗1ρ⊗p∗2µ to u is a �nite length moduleM whose supportis on u with a symmetri form

M → Exti+j(A⊗B)u
(M, (A⊗B)u).Taking its lass in the Witt group, we obtain a k(u)-vetor spae V with asymmetri form ψ : V → Exti+j(A⊗B)u

(V, (A ⊗ B)u). Now hoose a unit a ∈
k(x)×. Consider the image au of a under the homomorphism k(x) → k(u).The lass of p∗1(aρ)⊗ p∗2(µ) is the symmetri form

auψ : V → Exti+j(A⊗B)u
(V, (A ⊗B)u).As the same property holds for any unit b ∈ k(y)×, we onlude that

p∗1(< 1,−a1 > ⊗ . . .⊗ < 1,−an > ρ)⊗ p∗2(< 1,−b1 > ⊗ . . .⊗ < 1,−bm > µ)is equal to < 1,−(a1)u > ⊗ . . .⊗ < 1,−(bm)u > ψ.
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292 Jean FaselReall that for any sheme X we have a Gersten-Witt omplex (De�nition 3.5)
C(X,W ) : . . . // W r(Db

r(X))
drX // W r+1(Db

r+1(X)) // . . .and a omplex C(X, Id):
. . . //

⊕

xr∈X(r)

Id−rfl (OX,xr) //
⊕

xr+1∈X(r+1)

Id−r−1
fl (OX,xr+1) // . . . .The above proposition gives:

Corollary 4.6. The produt
⋆ : C(X,W )× C(Y,W )→ C(X × Y,W )indues for any r, s ∈ N a produt
⋆ : C(X, Ir)× C(Y, Is)→ C(X × Y, Ir+s).Now we investigate the relations between ⋆ and the di�erentials of the om-plexes.

Proposition 4.7. Let ψ ∈ W j(Db
j(Y )) be suh that djY (ψ) = 0. Then thefollowing diagram ommutes

W i(Db
i (X))

diX //

(−1)jµψ

��

W i+1(Db
i+1(X))

µψ

��
W i+j(Db

i+j(X × Y ))
di+jX×Y

// W i+j+1(Db
i+j+1(X × Y )).Proof. Let ϕ ∈ W i(Db

i (X)). Let X(≥i+1) be the set of points of X of odimen-sion≥ i+1, Y (≥j+1) the points of Y of odimension≥ j+1 and (X×Y )(≥i+j+1)the set of points of X × Y of odimension ≥ i + j + 1. By Lemma 2.18, thetriangulated ategories Db
i (X), Db

j(Y ) and Db
i+j(X × Y ) are de�ned over thetopologial spaes X \X(≥i+1), Y \Y (≥j+1) and (X×Y )\(X×Y )(≥i+j+1). Let

α ∈ Symmi(Db(P(X))(i)) and β ∈ Symmj(Db(P(Y ))(j)) be symmetri pairsrepresenting ϕ and ψ. By de�nition, DegLo(α) is of odimension ≥ i + 1,DegLo(β) is of odimension ≥ j + 1 and dβ is neutral. It is easily seen thatSupp(dp∗1α)∩Supp(dp∗2β) = ∅ in the topologial spae (X×Y )\(X×Y )(≥i+j+1).Theorem 2.25 implies that
(−1)i+jd(p∗1α ⋆ p

∗
2β) = (−1)idp∗1α ⋆ p

∗
2β + (−1)jp∗1α ⋆ dp

∗
2β.
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The Chow-Witt ring 293Using Theorem 2.15, we see that we have in W i+j(Db
i+j(X × Y )) the equality

(−1)jdi+jX×Y (p∗1ϕ ⋆ p
∗
2ψ) = p∗1d

i
X(ϕ) ⋆ p∗2ψ.The following orollary is obvious.

Corollary 4.8. Let ψ ∈ Im(Db
j(Y )) be suh that dYj (ψ) = 0. Then thefollowing diagram ommutes

Ip(Db
i (X))

diX //

(−1)jµψ

��

Ip−1(Db
i+1(X))

µψ

��
Ip+m(Db

i+j(X × Y ))
di+jX×Y

// Ip+m−1(Db
i+j+1(X × Y )).We now have to deal with the omplex in Milnor K-theory. Let C(X,KM

r ),
C(Y,KM

s ) and C(X×Y,KM
r+s) be the omplexes in Milnor K-theory assoiatedto X,Y and X × Y . In [Ro℄, Rost de�nes a produt

⊙ : C(X,KM
r )i × C(Y,KM

s )j → C(X × Y,KM
r+s)

i+jas follows: Let u ∈ (X×Y )(i+j), x ∈ X(i), y ∈ Y (j) be suh that x and y are theprojetions of u. Let ρ = {a1, . . . , ar−i} ∈ KM
r−i(k(x)) and µ = {b1, . . . , bs−j} ∈

KM
s−j(k(y)). Then

(ρ⊙ µ)u = l((k(x)⊗k k(y))u){(a1)u, . . . , (ar−i)u, (b1)u, . . . , (bs−j)u}where the (al)u and (bt)u are the images of the al and bt under the inlusions
k(x) → k(u) and k(y) → k(u), and l((k(x) ⊗k k(y))u) is the length of themodule k(x)⊗k k(y) loalized in u.
Lemma 4.9. For any ρ ∈ C(X,KM

r )i and µ ∈ C(Y,KM
s )j we have

d(ρ⊙ µ) = d(ρ)⊙ µ+ (−1)jρ⊙ d(µ).Proof. See [Ro℄, Paragraph 14.4.
Corollary 4.10. Let µ ∈ C(Y,KM

s )j be suh that dµ = 0. Then the followingdiagram ommutes:
C(X,KM

r )i
diX //

⊙µ
��

C(X,KM
r )i+1

⊙µ
��

C(X × Y,KM
r+s)

i+j

di+jX×Y

// C(X × Y,KM
r+s)

i+j+1.
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294 Jean FaselProof. Obvious.Now we ompare the produts ⋆ and ⊙.
Proposition 4.11. The following diagram ommutes:

C(X,KM
r )i × C(Y,KM

s )j
⊙ //

s(r−i)×s(s−j)
��

C(X × Y,KM
r+s)

i+j

s(r+s−i−j)

��
C(X, I

r
)i × C(Y, I

s
)j ⋆

// C(X × Y, Ir+s)i+j .Proof. Let {a1, . . . , ar−i} ∈ KM
r−i(k(x)) and {b1, . . . , bs−j} ∈ KM

s−j(k(y)). Let
ρ′ be a symmetri isomorphism

ρ′ : k(x)→ ExtiOX,x(k(x),OX,x)and µ′ a symmetri isomorphism
µ′ : k(y)→ ExtjOY,y(k(y),OY,y).We then have ρ := s(r−i)({a1, . . . , ar−i}) =< 1,−a1 > ⊗ . . .⊗ < 1,−ar−i > ρ′and µ := s(s−j)({b1, . . . , bs−j}) =< 1,−b1 > ⊗ . . .⊗ < 1,−bs−j > µ′. Choosea point u in (X × Y )(i+j) lying over x and y. The proof of Proposition 4.5shows that

(ρ ⋆ µ)u = s(r+s−i−j)({(a1)u, . . . , (ar−i)u, (b1)u, . . . , (bs−j)u})ϕwhere ϕ : M → Exti+jOX×Y,u
(M,OX×Y,u) is a symmetri isomorphism and Mis a k(u)-vetor spae. But dimk(u)M ≡ l((k(x) ⊗ k(y))u) (mod 2) where ldenotes the length. So we have in C(X × Y, Ir+s)i+j the equality

(ρ ⋆ µ)u = s(r+s−i−j)({(a1)u, . . . , (ar−i)u, (b1)u, . . . , (bs−j)u})l((k(x)⊗ k(y))u).The right hand term is equal to s(r+s−i−j)({a1, . . . , ar−i} ⊙ {b1, . . . , bs−j}) byde�nition.
Corollary 4.12. The produts

⋆ : C(X, Ir)× C(Y, Is)→ C(X × Y, Ir+s)and
⊙ : C(X,KM

r )× C(Y,KM
s )→ C(X × Y,KM

r+s)give a produt
⋄ : C(X,Gr)× C(Y,Gs)→ C(X × Y,Gr+s).
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Corollary 4.13. Let µ ∈ C(Y,Gs)j suh that djY µ = 0. Then µ indues aprodut _ ⋄ µ : Hi(C(X,Gr))→ Hi+j(C(X × Y,Gr+s)).Proof. This a diret onsequene of Proposition 4.11, Corollary 4.8 and Corol-lary 4.10.Next we have to hek that _ ⋄ µ is well de�ned on the ohomolgy lass of µ.
Lemma 4.14. Let γ ∈ C(Y,Gs)j−1 and µ = dj−1

Y γ. Then _ ⋄ µ = 0.Proof. Suppose that α is suh that diXα = 0. By Corollary 4.8 and Corollary4.10 we have up to signs di+j−1
X×Y (α ⋄ γ) = α ⋄ dj−1γ = α ⋄ µ. So α ⋄ µ is trivialin Hi+j(C(X × Y,Gr+s)).Finally:

Theorem 4.15. Let X and Y be smooth shemes. Then for any i, j, r, s ∈ Nthe produt
⋄ : C(X,Gr)× C(Y,Gs)→ C(X × Y,Gr+s)indues an exterior produt

× : Hi(C(X,Gr))×Hj(C(Y,Gs))→ Hi+j(C(X × Y,Gr+s)).This exterior produt an also be de�ned with omplexes twisted by invertiblemodules.
Theorem 4.16. Let X and Y be smooth shemes. Let L and N be invertiblemodules over X and Y respetively. For any i, j, r, s ∈ N, the pairing

⋄ : C(X,Gr, L)× C(Y,Gs, N)→ C(X × Y,Gr+s, p∗1L⊗ p∗2N)indues an exterior produt
× : Hi(C(X,Gr , L))×Hj(C(Y,Gs, N))→ Hi+j(C(X ×Y,Gr+s, p∗1L⊗ p∗2N)).Proof. Left to the reader.If i = r and j = s, we obtain the following orollary:
Corollary 4.17. Let X and Y be smooth shemes. Then for any i, j ∈ N theprodut

⋄ : C(X,Gi)× C(Y,Gj)→ C(X × Y,Gi+j)gives an exterior produt
× : C̃H

i
(X)× C̃Hj

(Y )→ C̃H
i+j

(X × Y ).
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296 Jean FaselNext we prove some properties of this exterior produt:
Proposition 4.18. The exterior produt × is assoiative.Proof. It learly su�es to prove that the exterior produts ⋆ and ⊙ are asso-iative. For ⋆ this is lear beause of the assoiativity of the tensor produt(up to isomorphism). For the seond, see (14.2) in [Ro℄.Now we deal with the ommutativity. Let X and Y be smooth shemes andlet τ : X × Y → Y ×X be the �ip. We have:
Lemma 4.19. Let µ ∈ Hi(C(X,KM

r )) and η ∈ Hj(C(Y,KM
s )). Then we have

τ∗(η ⊙ µ) = (−1)(r−i)(s−j)(µ⊙ η).Proof. This is lear from the de�nition.
Lemma 4.20. Let µ ∈ Hi(C(X, Ir)) and η ∈ Hj(C(Y, Is)). Then we have
τ∗(η ⋆ µ) = (−1)ij(µ ⋆ η).Proof. It is lear by the skew-ommutativity of the produt of Witt groups([GN℄, Theorem 3.1).Remark 4.21. Of ourse, the assoiativity and the antiommutativity of theexterior produt are also true for the twisted produt of Theorem 4.16.
5 Intersection with a smooth subscheme

5.1 The Gysin-Witt mapThe goal of this setion is to de�ne for any losed embedding i : Y → X ofsmooth shemes a Gysin-Witt map i! : Hr(C(X,Gj)) → Hr(C(Y,Gj)). Inorder to de�ne suh a map, we adapt the ideas of Rost ([Ro℄, Paragraph 11).First we brie�y reall the properties of the deformation to the normal one.For more details, see [Fu℄ (Chapter 5) or [Ro℄ (Chapter 10). Let Y be a losedsubsheme of a smooth sheme X . Then there is a smooth sheme D(X,Y ), alosed imbedding j : Y ×A1 →֒ D(X,Y ) and a �at morphism ρ : D(X,Y )→ A1suh that the following diagram ommutes
Y × A1

j //

pr
%%LLLLLLLLLLL

D(X,Y )

ρ

��
A1and(1) ρ−1(A1−0) = X× (A1−0) and the restrition of j is the losed imbedding

i× Id : Y × (A1 − 0) →֒ X × (A1 − 0).
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The Chow-Witt ring 297(2) ρ−1(0) = NYX , where NYX is the normal one to Y in X and the restri-tion of j is the embedding as the zero setion s0 : Y → NYX .The sheme D(X,Y ) an be obtained as follows: Consider the blow-up M of
X × A1 along Y × 0 and the blow-up X̃ of X × 0 along Y × 0. Then de�ne
D(X,Y ) to be M \ X̃.If Y is smooth in a smooth sheme X , then it is loally of omplete intersetionand NYX is a vetor bundle over Y of rank dim(X) − dim(Y ). Moreover,
NYX is Cartier divisor on D(X,Y ). If A1 = Spe(k[t]), then the projetion
ρ : D(X,Y ) → A1 gives a homomorphism k[t] → OD(X,Y )(D(X,Y )). Westill denote by t the image of t under this homomorphism. We have an exatsequene

0 // OD(X,Y )
t // OD(X,Y ) // κ∗ONYX // 0where κ : NYX → D(X,Y ) is the inlusion. Remark 3.33 shows thatExt1OD(X,Y )

(κ∗ONYX ,OD(X,Y )) ≃ κ∗ONYX with generator the Koszul omplexassoiated to the global setion t.Let U = A1 − 0 and onsider the form
< 1,−t >: O2

U → O2
Uin W 0(Db(U)). Now let X be a smooth sheme and onsider the projetion

η : X × U → U . Then η∗(< 1,−t >) ∈ W 0(Db(X × U)) and we also denoteit by < 1,−t >. Sine the support of this form is X × U , the tensor produtgives a funtor
< 1,−t > ⊗_ : Db

i (X × U)→ Db
i (X × U).Using the fat that < 1,−t > is symmetri, we see that this funtor is dualitypreserving (see [GN℄, De�nition 1.8 and Lemma 1.14) and therefore indues forany i a homomorphism

< 1,−t > ⊗_ : W i(Db
i (X × U))→W i(Db

i (X × U)).For some sign reasons that will be made learer in Lemma 5.10, we will in fatonsider for any i the homomorphism
mt : W i(Db

i (X × U))→W i(Db
i (X × U))de�ned by mt(α) = (−1)i+1 < 1,−t > ⊗α.

Lemma 5.1. For any i, j ∈ N the homomorphism mt indues a homomorphism
Ij(Db

i (X × U))→ Ij+1(Db
i (X × U))and the following diagram ommutes
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Ij(Db
i (X × U))

di //

−mt
��

Ij−1(Db
i+1(X × U))

mt

��
Ij+1(Db

i (X × U))
di

// Ij(Db
i+1(X × U)).Proof. The �rst assertion is lear. Now < 1,−t > is a global isomorphism andwe an use Theorem 2.10 in [GN℄ (or Theorem 2.25 in the present paper) tosee that

di(< 1,−t > ⊗α) =< 1,−t > ⊗diαfor any α ∈ Ij(Db
i (X×U)). The �rst term is (−1)i+1di(mt(α)) and the seondone is (−1)i+2mt(d
iα).Now onsider t ∈ O∗X×U . For any i and any x ∈ X×U , we have a multipliationby t:

nt : KM
i (k(x))→ KM

i+1(k(x))de�ned by nt({a1, . . . , ai}) = {t, a1, . . . , ai}.
Lemma 5.2. For any i, j ∈ N the following diagram ommutes

C(X × U,KM
j )i

di //

−nt
��

C(X × U,KM
j )i+1

nt

��
C(X × U,KM

j+1)
i

di
// C(X × U,KM

j+1)
i+1.Proof. See [Ro℄, Proposition 4.6.

Corollary-Definition 5.3. The homomorphisms mt and nt indue for any
i, j ∈ N a homomorphism

{t} : Hi(C(X × U,Gj))→ Hi(C(X × U,Gj+1)).We all this homomorphism multipliation by t.Proof. It su�es to show that mt and nt give the same operation on the om-plex C(X × U, Ij). It is straightforward.We will need the following lemma:
Lemma 5.4. Let f : X → Y be a �at morphism of smooth shemes. Then forany i, j the following diagram ommutes
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Hi(C(Y × U,Gj)) {t} //

(f×Id)∗
��

Hi(C(Y × U,Gj+1))

(f×Id)∗
��

Hi(C(X × U,Gj)) {t}
// Hi(C(X × U,Gj+1)).Proof. First observe that (f × Id)∗(< 1,−t >) =< 1,−t > by de�nition. Thenfor any α ∈ Ir(Db

i (X×U)) we have (f×Id)∗(mtα) = mt((f×Id)∗α) (use [GN℄,Theorem 3.4). On the other hand, we have (f × Id)∗(nt(α)) = nt((f × Id)∗α)for any α ∈ KM
r (k(y)) ([Ro℄, Lemma 4.3). Putting this together, we get theonlusion.Let Y → X be a losed embedding of smooth shemes and onsider the defor-mation to the normal one spae D(X,Y ). Then NYX is a Cartier divisor andits omplement in D(X,Y ) is X×U . We have a long exat sequene assoiatedto this triple ([Fa℄, Corollary 10.4.9):

Hi(C(D(X,Y ), Gj+1)) // Hi(C(X × U,Gj+1))
∂ // Hi+1

NYX
(C(D(X,Y ), Gj+1))Combining the isomorphism of Proposition 3.30 and the isomorphism

ONYX → κ∗Ext1OD(X,Y )
(κ∗ONYX ,OD(X,Y ))mapping 1 to the Koszul omplex assoiated to the global setion t of OD(X,Y ),we �nally get an isomorphism

κ∗ : Hi(C(NYX,G
j))→ Hi+1

NYX
(C(D(X,Y ), Gj+1)).Let q : NYX → Y and π : X × U → X be the projetions and onsider thefollowing omposition:

Hi(C(X,Gj))

π∗

��

//_________________ Hi(C(Y,Gj))

Hi(C(X × U,Gj)) {t}
// Hi(C(X × U,Gj+1))

(κ∗)−1∂

// Hi(C(NYX,G
j)).

(q∗)−1

OO

Definition 5.5. Let Y be a smooth subsheme of a smooth sheme X withinlusion i : Y → X . We denote by i! : Hr(C(X,Gj)) → Hr(C(Y,Gj)) andall Gysin-Witt map the omposition (q∗)−1(κ∗)−1∂{t}π∗.Remark 5.6. Let i : Y → X be a losed immersion of smooth shemes and let Lbe an invertible OX -module. Then we have a twisted version of the Gysin-Wittmap:
i! : Hr(C(X,Gj , L))→ Hr(C(Y,Gj , i∗L)).
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5.2 FunctorialityThe goal of this setion is to prove that for any inlusions of smooth shemes
Z

i // Y
j // X we have (ji)! = i!j!. The strategy is not new. We followthe exposition of the setions 11, 12 and 13 in [Ro℄. First we prove somelemmas:

Lemma 5.7. Let i : Y → X be a losed immersion and g : V → X be a �atmorphism. Consider the following �bre produt
W

i′ //

g′

��

V

g

��
Y

i
// X.Then we have (g′)∗i! = (i′)!g∗.Proof. Let D(X,Y ) be the deformation to the normal one assoiated to theinlusion i : Y →֒ X andD(V,W ) be the deformation assoiated to i′ : W →֒ V .Let U = A1 − 0. Beause of the universal properties of blow-ups, we see that

g and g′ give a morphism D(g) : D(V,W ) → D(X,Y ) suh that the followingdiagram ommutes:
D(V,W )

D(g)

��

V × U
g×1

��

ι′oo

D(X,Y ) X × Uιoowhere ι and ι′ are the inlusions of the respetive open subsets. We also get amorphism N(g) : NWV → NYX suh that these diagrams ommute:
NWV

q′ //

N(g)

��

W

g′

��
NYX q

// Y

NWV
κ′

//

N(g)

��

D(V,W )

D(g)

��
NYX κ

// D(X,Y ).Now use Propositions 3.28 and 3.34, Lemma 5.4, the naturality of the onnet-ing homomorphism ∂ and the diagram
W

g′

��

NWV
κ′

//

N(g)

��

q′oo D(V,W )

D(g)

��

V × U
g×1

��

ι′oo π′
// V

g

��
Y NYX κ

//
q

oo D(X,Y ) X × Uι
oo

π
// X
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The Chow-Witt ring 301to onlude (observe that D(g) and N(g) are �at beause of [Ro℄, Remark10.1).
Lemma 5.8. Let Z

i // Y
j // X be inlusions of smooth shemes. Then wehave inlusions a : NZY → NZX, c : i∗NYX → NYX and isomorphisms

N(i∗NYX)(NYX) ≃ NZY ⊕ i∗NYX ≃ N(NZY )(NZX).Proof. The �rst two assertions are straight omputations (see also [Ne℄). Therelation (2.1) in [Ne℄ shows that we have anonial isomorphisms
N(i∗NYX)(NYX) ≃ NZY ⊕ i∗NYX ≃ N(NZY )(NZX).

Lemma 5.9. Let Z
i // Y

j // X be inlusions of smooth shemes. Let a :
NZY → NZX, c : i∗NYX → NYX be the inlusions and q : NYX → Y ,
r : NZX → Z, s1 : N(i∗NYX)(NYX) → i∗NYX, s2 : N(NZY )(NZX) → NZYthe projetions. Then we have (s1)

∗c!q∗j! = (s2)
∗a!r∗(ji)!Proof. Consider the deformation to the normal one spaes D(Y, Z) and

D(X,Z). Using the universal property of blow-ups, we get a map D(Y, Z) →
D(X,Z) suh that the following diagram ommutes

NZY
a //

��

NZX

��
D(Y, Z) // D(X,Z)

Y × U
j×1

//

OO

X × U

OOwhere the top vertial maps are inlusions of the exeptional �ber in the de-formation to the normal spae and the bottom vertial maps are inlusions ofopen subsets. It is easy to hek that the map D(Y, Z)→ D(X,Z) is a losedimmersion. Let D(X,Y, Z) be the deformation to the normal one spae assoi-ated to this losed immersion. Using again the universal property of blow-ups,we see that the above diagram gives a sequene
D(NZX,NZY ) // D(X,Y, Z) D(X,Y )× Uoowhere the �rst map is a losed immersion and the seond one is an open im-mersion. Consider now the spae D(X,Y, Z). We have an open immersion

D(X,Z) × U → D(X,Y, Z) and a losed immersion (as the speial �ber)
ND(Y,Z)D(X,Z) → D(X,Y, Z). In fat, this exeptional �ber is isomorphito D(NYX, i

∗NYX) (see [Ne℄, paragraph 3.2). So we get a diagram
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NYX
κ // D(X,Y ) X × Uιoo π // X

NYX × U κ //

π

OO

ι

��

D(X,Y )× U

π

OO

ι

��

X × U × U π //ιoo

π

OO

ι

��

X × U

π

OO

ι

��
D(NYX, i

∗NYX)
κ // D(X,Y, Z) D(X,Z)× Uιoo π // D(X,Z)

N(i∗NYX)NYX

κ

OO

κ
// D(NZX,NZY )

κ

OO

NZX × U

κ

OO

π
//

ι
oo NZX

κ

OO

where all the lines are deformations to the normal one, the �rst and fourtholumns are also deformations to the normal one. This diagram is ommuta-tive (see [Ne℄, paragraph 3.2). The maps κ denote inlusions of speial �bers, ιdenote the inlusions of the omplement of these speial �bers and π denote therelevant projetions. The map q∗j! is obtained by omposing the operations(in ohomology) of the top row and s∗1b! is obtained by working with the leftolumn. Similarly, r∗(ji)! and s∗2a! are dedued from the right olumn and thebottom row. Now all the squares appearing in this diagram are ommutativeand give ommutative diagrams in ohomology (Proposition 3.28, Proposition3.32, Lemma 3.34 and the naturality of the residual homomorphism ∂). Usingthis and Lemma 5.4, we get the result.
Lemma 5.10. Let V,X and W be smooth shemes. Consider the followingommutative diagram

W
i //

p′   B
BB

BB
BB

B V

p

��
Xwhere p, p′ are �at and i is a losed immersion. Suppose that the omposition

NWV →W → X is of the same relative dimension as p. Then i!p∗ = (p′)∗.Proof. Let D(V,W ) be the deformation to the normal one assoiated to i and
b : D(V,W )→ V ×A1 be the blow-down map. We have a ommutative diagram
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W NVW

κ //qoo D(V,W )
b // V × A1

p×Id // X × A1

V × U

ι

OO

V × U
p×Id

//

ι

OO

π

��

X × U
π′

��

ι

OO

V p
// X.By de�nition, i!p∗ = (q∗)−1(κ∗)−1∂{t}π∗p∗. Using Proposition 3.28, we get

i!p∗ = (q∗)−1(κ∗)−1∂{t}(p× Id)∗(π′)∗. By Lemma 5.4, this gives
(q∗)−1(κ∗)

−1∂{t}(p× Id)∗(π′)∗ = (q∗)−1(κ∗)
−1∂(p× Id)∗{t}(π′)∗.Using Remark 10.1 in [Ro℄, we see that f := (p × Id)b is �at beause theomposition NWV →W → X is of the same relative dimension as p. We havea ommutative diagram

Hi(C(X × A1, Gj)) //

f∗

��

Hi(C(X × U,Gj)) ∂′
//

(p×Id)∗

��

Hi+1
X (C(X × A1, Gj)) //

f∗

��
Hi(C(D(V,W ), Gj)) // Hi(C(V × U,Gj))

∂
// Hi+1

NVW
(C(D(V,W ), Gj)) //where the �rst line is the loalization long exat sequene assoiated to thetriple (X × U,X × A1, X × 0) and the seond line is the one assoiated to thetriple (V × U,D(V,W ), NVW ). Then

(q∗)−1(κ∗)
−1∂(p× Id)∗{t}(π′)∗ = (q∗)−1(κ∗)

−1f∗∂′{t}(π′)∗.Consider next the �bre produt
NVW

κ //

p′q

��

D(V,W )

f

��
X

i0
// X × A1where i0 : X → X×A1 is the inlusion in 0. Using Lemma 3.34, we �nally �nd

i!p∗ = (p′)∗(i0)−1
∗ ∂′{t}(π′)∗. It remains to show that (i0)

−1
∗ ∂′{t}(π′)∗ = Id to�nish the proof. At the level of Milnor K-theory, this is Lemma 4.5 in [Ro℄.Thus we only have to prove this result at the level of Witt groups. Let α ∈

W i(Db
i (X)) be suh that dα = 0 ∈ W i+1(Db

i+1(X)). Now DegLo((π′)∗α) ∩DegLo(< 1,−t >) is a losed subset of X × A1 of odimension ≥ i + 2.Therefore we an use 2.25 to ompute
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(−1)id(< 1,−t > ⊗α) = d(< 1,−t >)⊗ α+ (−1)i < 1,−t > ⊗dα.By assumption we have dα = 0 in W i+1(Db
i+1(X)) and then

(−1)id(< 1,−t > ⊗α) = d(< 1,−t >)⊗ α = −dt⊗ αin W i+1(Db
i+1(X)). By de�nition of mt, we �nd d(mt(α)) = dt⊗α. The latteris preisely (i0)∗α (see [GH℄, Lemma 2.8).Now we have all the tools to prove the following theorem:

Theorem 5.11. Let Z
i // Y

j // X be inlusions of smooth shemes. Then
(ji)! = i!j!.Proof. Let q : NYX → Y , p : NZY → Z and r : NZX → Z be theprojetions. Consider also the projetions s1 : N(i∗NYX)(NYX) → i∗NYXand s2 : N(NZY )(NZX) → NZY . Denote by a : NZY → NZX and
c : i∗NYX → NYX the inlusions. We also have a �bre produt

i∗NYX
c //

q′

��

NYX

q

��
Z

i
// Y.Then

(s1)
∗(q′)∗i!j! = (s1)

∗c!q∗j! = (s2)
∗a!r∗(ji)! = (s2)

∗p∗(ji)!where the �rst equality is due to Lemma 5.7, the seond is due to Lemma 5.9and the third to Lemma 5.10. As (s2)
∗p∗ indues an isomorphism in ohomol-ogy and q′s1 = ps2, we get the result.

6 The ring structureLet X be a smooth sheme and let △ : X → X ×X be the diagonal inlusion.For any i, j, r, s we have an exterior produt (Theorem 4.15)
× : Hi(C(X,Gr))×Hj(C(X,Gs))→ Hi+j(C(X ×X,Gr+s))and a Gysin-Witt map (De�nition 5.5)

△! : Hi+j(C(X ×X,Gr+s))→ Hi+j(C(X,Gr+s)).

Definition 6.1. We denote by · the omposition △! ◦ ×.
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The Chow-Witt ring 305Remark 6.2. If X is a smooth sheme and L,N are invertible OX -modules,then using Theorem 4.16 and Remark 5.6 we see that there is a produt
· : Hi(C(X,Gi, L))×Hj(C(X,Gj , N))→ Hi+j(C(X,Gi+j , L⊗OX N)).Remark 6.3. In partiular, we have for any i, j ∈ N a produt

· : Hi(C(X,Gi))×Hj(C(X,Gj))→ Hi+j(C(X,Gi+j))whih by de�nition is a produt C̃Hi
(X)× C̃Hj

(X)→ C̃H
i+j

(X).Remark 6.4. It is lear from our onstrution that we also an de�ne a produt
· : Hi(C(X,KM

r ))×Hj(C(X,KM
s ))→ Hi+j(C(X,KM

r+s)).This produt oinide with the one de�ned by Rost ([Ro℄, Chapter 14) and thenatural projetions π : C(X,Gp)→ C(X,KM
p ) give a ommutative diagram

Hi(C(X,Gr))×Hj(C(X,Gs))
· //

π×π
��

Hi+j(C(X,Gr+s))

π

��
Hi(C(X,KM

r ))×Hj(C(X,KM
s )) ·

// Hi+j(C(X,KM
r+s)).Remark 6.5. Our tehnique provides also a produt on the ohomology of theGersten-Witt omplex of a sheme. That is, we have a produt

· : Hi(C(X,W ))×Hj(C(X,W ))→ Hi+j(C(X,W )).Now we prove the assoiativity of the produt we have de�ned.
Proposition 6.6. The produt · is assoiative.Proof. First note that the exterior produt is assoiative (Proposition 4.18).We onsider the following �bre produt diagram

X
△ //

△
��

X ×X
Id×△
��

X ×X △×Id
// X ×X ×X.We see that ((Id ×△)△)! = ((△× Id)△)!. Theorem 5.11 shows that we havein fat △!(Id × △)! = △!(△ × Id)!. Sine (Id × △)! is learly Id × △! and

(△× Id)! = △! × Id, the assoiativity is proved.
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306 Jean FaselRemark 6.7. In general, the produt does not satisfy any ommutativity prop-erty. This is due to the fat that × and ⋆ do not ommute with the �ip
τ : X ×X → X ×X (see 4.19 and 4.20). Moreover, the produt is not anti-ommutative beause the signs in 4.19 and 4.20 are not ompatible. However,let α ∈ C̃Hi

(X) and β ∈ C̃Hj
(X). Then α ·β is an element of C̃Hi+j

(X) andis therefore represented by a sum ∑
(Ps, ψs) ∈ Ker(di+j) where

di+j : GW i+j(Db
i+j(X))→ W i+j+1(Db

i+j+1(X))(see Remark 3.23). Using 4.19 and 4.20, we see that β · α =
∑

(Ps, (−1)ijψs).For a more preise statement, the reader is referred to Theorem 7.6.Now remark that there is a anonial lass 1X in C̃H0
(X) given by the sym-metri form < 1 > in GW (k(X)).

Proposition 6.8. The lass 1X is a left and right unit for the produt ·.Proof. Let p2 : X×X → X be the seond projetion and onsider the followingommutative diagram
X

△ //

Id ##G
GG

GG
GG

GG
X ×X

p2

��
X.By Lemma 5.10, we see that △!(p2)

∗ = (Id)∗ = Id. Consider now
µ ∈ Hi(C(X,Gj)). It is lear that 1X × µ = (p2)

∗(µ) and then 1X · µ = µ.Replaing p2 by p1 shows that 1X is also a right unit.Hene we have:
Theorem 6.9. Let X be a smooth sheme and let C̃H∗(X) be the total Chow-Witt group of X. Then the produt · turns C̃H∗(X) into a graded assoiativering with unit.Taking the twists into aount, we get the following theorem:
Theorem 6.10. Let X be a smooth sheme and let ⊕

L∈Pi(X)/2

C̃H
∗
(X,L) bethe total twisted Chow-Witt group of X. Then the produt · turns this groupinto a graded assoiative ring with unit.

Definition 6.11. Let X be a smooth sheme. We all Chow-Witt ring thering C̃H∗(X) and twisted Chow-Witt ring the ring ⊕

L∈Pi(X)/2

C̃H
∗
(X,L).The following proposition is obvious:
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The Chow-Witt ring 307
Proposition 6.12. Let X be a smooth sheme. Then the natural homomor-phism C̃H

∗
(X)→ CH∗(X) is a ring homomorphism.Remark 6.13. The same methods show that the produt of Remark 6.5 givesa graded assoiative antiommutative ring struture on the total ohomologygroup H∗(C(X,W )) of the Gersten-Witt omplex assoiated to X .

7 Basic propertiesWe �rst show that the Chow-Witt ring is a funtorial onstrution.
Definition 7.1. Let X and Y be smooth shemes and f : X → Y a morphism.Consider the graph morphism γf : X → X × Y . We de�ne

f ! : C̃H
∗
(Y )→ C̃H

∗
(X)by f !(y) = γ!

f (1X × y) for any y ∈ C̃H∗(Y ).
Proposition 7.2. The map f ! : C̃H

∗
(Y ) → C̃H

∗
(X) is a ring homomor-phism.Proof. We only have to hek that f !(y·z) = f !(y)·f !(z) for any y, z ∈ C̃H∗(Y ).Consider the following ommutative diagram:

X
γf //

△X
��

X × Y
△X×Y

��
X ×X

γf×γf
// (X × Y )× (X × Y ).Theorem 5.11 shows that γ!

f△!
X×Y = △!

X(γf ×γf )!. Applying this to the yle
1X × y × 1X × z, we obtain the result.Remark 7.3. The proposition shows that C̃H∗(_) is a funtor from the ategoryof smooth shemes to the ategory of rings. It is lear that the homomorphisms
C̃H

∗
(X)→ CH∗(X) give a natural transformation C̃H∗(_)→ CH∗(_).In the ase where f : X → Y is a �at morphism, we an identify f ! morepreisely.

Proposition 7.4. Let f : X → Y be a �at morphism. Then f ! = f∗.Proof. Consider the following ommutative diagram:
X

γf //

f
##G

GG
GGGGG

G X × Y
p

��
Y
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308 Jean Faselwhere p : X × Y → Y is the projetion. Sine NX(X × Y ) is of rank equalto the dimension of Y , we see that the relative dimension of the omposition
NX(X×Y )→ X → Y is the same as the relative dimension of p : X×Y → Y .Therefore we an use Lemma 5.10 to get γ!

fp
∗ = f∗. Sine p∗β = 1X × β forany yle on Y , the result is proved.Let Z ⊂ X be a losed subset of pure odimension i. As Db

Z(X) ⊂ Db(X)(i),we have a homomorphism GW i
Z(X) → GW i(Db(X)(i)). Composing with theloalization, we obtain a homomorphism GW i

Z(X) → GW i(Db
i (X)). As theomposition GW i(Db(X)(i)) → GW i(Db

i (X)) → W i+1(Db(X)(i+1)) is zero(see [Ba1℄), we �nally obtain a homomorphism (Remark 3.23):
αZ : GW i

Z (X)→ C̃H
i
(X).Remark 7.5. Let f : X → Y be a �at morphism and Z ⊂ Y be a losed subsetof pure odimension i. The de�nitions of f∗ for the Grothendiek-Witt groupsand the de�nition of f∗ for the Chow-Witt groups show that the followingdiagram ommutes ([Fa℄, Theorem 3.2.2 and Corollary 10.4.2):

GW i
Z(Y )

αZ //

f∗

��

C̃H
i
(Y )

f∗

��
GW i

f−1Z(X)
α(f−1Z)

// C̃H
i
(X).The next theorem shows that our intersetion produt is the expeted one:

Theorem 7.6. Let Z, T ⊂ X be losed subshemes of respetive pure odi-mension i and j. Suppose that Z ∩ T is of pure odimension i + j. Then thefollowing diagram ommutes
GW i

Z(X)×GW j
T (X)

αZ×αT
��

⋆ // GW i+j
Z∩T (X)

αZ∩T

��

C̃H
i
(X)× C̃Hj

(X) ·
// C̃H

i+j
(X).Proof. Let γ ∈ GW i

Z(X) and δ ∈ GW j
T (X). Consider the deformation to thenormal one spae D(X ×X,X) and the blow down map b : D(X ×X,X)→

X ×X × A1. We have the following ommutative diagram
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X X

△
��

NX(X ×X)
b′ //

q

OO

κ

��

X ×X
i0

��
D(X ×X,X)

b
// X ×X × A1 π′

// X ×X (1)

X ×X × U

ι

OO

X ×X × U

ι

OO

π

88pppppppppppwhere i0 is the inlusion in 0, q is the projetion and the two bottom squaresare �bre produts. By de�nition, we have
αZ(γ) · αT (δ) = (q∗)−1(κ∗)

−1∂{t}π∗(αZ(γ)× αT (δ)).Let F = b−1(π′)−1(p−1
1 Z ∩ p−1

2 T ) in D(X × X,X) (where p1 and p2 are theprojetions of X ×X onto X). Observe that ι−1F = F ∩ (X ×X × U) is nonempty and of pure odimension i+ j in X ×X × U . Diagram (1) gives
F ∩NX(X ×X) = κ−1F = κ−1b−1(π′)−1(p−1

1 Z ∩ p−1
2 T ) = q−1(Z ∩ T ).As Z ∩ T is of odimension i + j in X and q is �at, q−1(Z ∩ T ) is also ofodimension i + j in NX(X × X) and hene is of odimension i + j + 1 in

D(X ×X,X). Therefore F itself is of pure odimension i+ j in D(X ×X,X).By ommutativity of the above diagram and Remark 7.5, we have (note that
b∗ is de�ned at the level of the Grothendiek-Witt groups, but not at the levelof the Chow-Witt groups):
π∗(αZ(γ)× αT (δ)) = αι−1F (ι∗b∗(π′)∗(p∗1γ ⊗ p∗2δ)) = ι∗αF (b∗(π′)∗(p∗1γ ⊗ p∗2δ)).We have to ompute (κ∗)−1∂{t}π∗(αZ(γ)×αT (δ)). By de�nition of ∂, we haveto onsider any element ν ∈ C(D(X ×X,X), Gi+j+1)i+j having the propertythat ι∗ν = {t}π∗(αZ(γ)× αT (δ)) and then ompute dG(ν) where

dG : C(D(X ×X,X), Gi+j+1)i+j → C(D(X ×X,X), Gi+j+1)i+j+1is the di�erential of the omplex C(D(X ×X,X), Gi+j+1). Consider the om-mutative diagram
D(X ×X,X)

b // X ×X × A1
pr // A1

X ×X × U

ι

OO

X ×X × U

ι

OO

η

99sssssssssss
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310 Jean Faseland reall that NX(X × X) is the prinipal Cartier divisor in D(X × X,X)de�ned by f := b∗pr∗(t).Consider the form b∗(π′)∗(p∗1γ ⊗ p∗2δ). Its support is F . Loalizing at thegeneri points of F (whih are on X × X × U), we obtain a form ν0 in
W i+j(Db

i+j(D(X ×X,X))). We also obtain an element ν1 in ⊕

x∈F (0)

K0(k(x)).The above omputation shows that f is a unit in k(x) for any generi point xof F . We get an element
ν := ((−1)i+j+1 < 1,−f > ⊗ν0, {f} · ν1) ∈ C(D(X ×X,X), Gi+j+1)i+jwhih satisfy ι∗ν = {t}π∗(αZ(γ)×αT (δ)). A straightforward omputation (useTheorem 2.25 again) shows that dG(ν) = df ⊗ b∗(π′)∗(p∗1γ ⊗ p∗2δ) in the group

GW i+j+1(Db
i+j+1(D(X ×X,X))). But df = b∗dt and
b∗dt⊗ b∗(π′)∗(p∗1γ ⊗ p∗2δ) = b∗(dt⊗ (π′)∗(p∗1γ ⊗ p∗2δ))([GN℄, Theorem 3.2). Sine dt ⊗ (π′)∗(p∗1γ ⊗ p∗2δ) = (i0)∗(p∗1γ ⊗ p∗2δ) ([GH℄,Lemma 2.8), we �nally obtain

(κ∗)
−1∂{t}π∗(αZ(γ)× αT (δ)) = αF∩NX(X×X)((b

′)∗(p∗1γ ⊗ p∗2δ)).We have a ommutative diagram
NX(X ×X)

b′ //

q

��

X ×X

X.

△

88ppppppppppppNow △−1(p−1
1 Z ∩ p−1

2 T ) = Z ∩ T and using the diagram, we see that
αZ(γ) · αT (β) = αZ∩T (△∗(p∗1γ ⊗ p∗2δ)).Hene it only remains to show that △∗(p∗1γ ⊗ p∗2δ) = γ ⋆ δ to �nish the proof.This is lear by [GN℄, Theorem 3.2.
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Abstract. We define and study equivariant analytic and local
cyclic homology for smooth actions of totally disconnected groups
on bornological algebras. Our approach contains equivariant entire
cyclic cohomology in the sense of Klimek, Kondracki and Lesniewski
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1. Introduction

Cyclic homology can be viewed as an analogue of de Rham cohomology in the
framework of noncommutative geometry [1], [3]. In this framework geomet-
ric questions are studied by means of associative algebras which need not be
commutative. An important feature of cyclic homology is the fact that the
theory can easily be defined on a large class of algebras, including Fréchet
algebras as well as algebras without additional structure. In many cases ex-
plicit calculations are possible using standard tools from homological algebra.
The connection to de Rham theory is provided by a fundamental result due to
Connes [1] showing that the periodic cyclic homology of the Fréchet algebra
C∞(M) of smooth functions on a compact manifold M is equal to the de Rham
cohomology of M .
However, in general the theory does not yield good results for Banach algebras
or C∗-algebras. Most notably, the periodic cyclic cohomology of the algebra
C(M) of continuous functions on a compact manifold M is different from de
Rham cohomology. An intuitive explanation of this phenomenon is that C(M)
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only encodes the information of M as a topological space, whereas it is the
differentiable structure that is needed to define de Rham cohomology.
Puschnigg introduced a variant of cyclic homology which behaves nicely on the
category of C∗-algebras [33]. The resulting theory, called local cyclic homology,
allows for the construction of a general Chern-Connes character for bivariant
K-theory. Using the machinery of local cyclic homology, Puschnigg proved
the Kadison-Kaplansky idempotent conjecture for hyperbolic groups [32]. Un-
fortunately, the construction of the local theory is quite involved. Already the
objects for which the theory is defined in [33], inductive systems of nice Fréchet
algebras, are rather complicated.
There is an alternative approach to local cyclic homology due to Meyer [24].
Based on the theory of bornological vector spaces, some features of local
cyclic homology become more transparent in this approach. It is known that
bornological vector spaces provide a very natural framework to study analytic
and entire cyclic cohomology [21]. Originally, entire cyclic cohomology was in-
troduced by Connes [2] in order to define the Chern character of θ-summable
Fredholm modules. The analytic theory for bornological algebras contains en-
tire cyclic cohomology as a special case. Moreover, from a conceptual point of
view it is closely related to the local theory. Roughly speaking, the passage
from analytic to local cyclic homology consists in the passage to a certain de-
rived category.
An important concept in local cyclic homology is the notion of a smooth sub-
algebra introduced by Puschnigg [29], [33]. The corresponding concept of an
isoradial subalgebra [24], [26] plays a central role in the bornological account
to the local theory by Meyer. One of the main results in [24] is that local cyclic
homology is invariant under the passage to isoradial subalgebras. In fact, an
inspection of the proof of this theorem already reveals the essential ideas behind
the definition of the local theory. A basic example of an isoradial subalgebra
is the inclusion of C∞(M) into C(M) for a compact manifold as above. In
particular, the natural homomorphism C∞(M)→ C(M) induces an invertible
element in the bivariant local cyclic homology group HL∗(C∞(M), C(M)).
Hence, in contrast to periodic cyclic cohomology, the local theory does not dis-
tinguish between C(M) and C∞(M). Let us also remark that invariance under
isoradial subalgebras is responsible for the nice homological properties of the
local theory.
In this paper we define and study analytic and local cyclic homology in the
equivariant setting. This is based on the general framework for equivariant
cyclic homology developped in [35] and relies on the work of Meyer in the
nonequivariant case. In particular, a large part of the necessary analytical con-
siderations is already contained in [26]. In addition some of the material from
[24] will be reproduced for the convenience of the reader. On the other hand,
as far as homological algebra is concerned, the framework of exact categories
used by Meyer is not appropriate in the equivariant situation. This is due to
the fact that equivariant cyclic homology is constructed using paracomplexes
[35].
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We should point out that we restrict ourselves to actions of totally discon-
nected groups in this paper. In fact, one meets certain technical difficulties in
the construction of the local theory if one moves beyond totally disconnected
groups. For simplicity we have thus avoided to consider a more general setting.
Moreover, our original motivation to study equivariant local cyclic homology
and the equivariant Chern-Connes character comes from totally disconnected
groups anyway.
Noncommutative Chern characters constitute one of the cornerstones of non-
commutative geometry. The first contributions in this direction are due to
Karoubi and Connes, see [14] for an overview. In fact, the construction of the
Chern character in K-homology was the motivation for Connes to introduce
cyclic cohomology [1]. Bivariant Chern characters have been studied by several
authors including Kassel, Wang, Nistor, Puschnigg and Cuntz [17], [37], [28],
[33], [4]. As already explained above, our character is closely related to the
work of Puschnigg.
Let us now describe how the paper is organized. In section 2 we review some
facts about smooth representation of totally disconnected groups and anti-
Yetter-Drinfeld modules. These concepts are basic ingredients in the construc-
tion of equivariant cyclic homology. For later reference we also discuss the
notion of an essential module over an idempotented algebra. We remark that
anti-Yetter-Drinfeld modules are called covariant modules in [35], [36]. The
terminology used here was originally introduced in [10] in the context of Hopf
algebras. In section 3 we discuss the concept of a primitive module over an
idempotented algebra and exhibit the relation between inductive systems of
primitive modules and arbitrary essential modules. This is needed for the def-
inition of the local derived category given in section 4. From the point of view
of homological algebra the local derived category is the main ingredient in the
construction of local cyclic homology. In section 5 we recall the definition of
the analytic tensor algebra and related material from [21]. Moreover we review
properties of the spectral radius for bornological algebras and discuss locally
multiplicative algebras [26]. Section 6 contains the definition of the equivari-
ant X-complex of a G-algebra and the definition of equivariant analytic and
local cyclic homology. This generalizes the constructions in [21], [24] as well
as the definition of entire cyclic cohomology for finite groups given by Klimek,
Kondracki and Lesniewski [19]. We also discuss briefly the connection to the
original approach to local cyclic homology due to Puschnigg. In section 7 we
prove homotopy invariance, stability and excision for equivariant analytic and
local cyclic homology. The arguments for the analytic and the local theory are
analogous since both theories are constructed in a similar way. In section 8
we study a special situation where analytic and local cyclic homology are in
fact isomorphic. Section 9 is devoted to the proof of the isoradial subalgebra
theorem. As in the non-equivariant case this theorem is the key to establish
some nice features of the local theory. In particular, using the isoradial subal-
gebra theorem we study in section 10 how local cyclic homology behaves with
respect to continuous homotopies and stability in the sense of C∗-algebras. As
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a preparation for the definition of the Chern-Connes character in the odd case
we consider in section 11 the equivariant X-complex of tensor products. In
section 12 we recall the general approach to bivariant K-theories developped
by Cuntz [4], [5]. Based on the resulting picture of equivariant KK-theory we
define the equivariant Chern-Connes character in section 13. In the even case
the existence of this transformation is an immediate consequence of the uni-
versal property of equivariant KK-theory [34], [22]. As in the non-equivariant
case the equivariant Chern-Connes character is multiplicative with respect to
the Kasparov product and the composition product, respectively. Finally, we
describe an elementary calculation of the Chern-Connes character in the case
of profinite groups. More detailed computations together with applications will
be discussed in a separate paper.
Throughout the paper G will be a second countable totally disconnected locally
compact group. All bornological vector spaces are assumed to be separated and
convex.
I am indebted to R. Meyer for providing me his preprint [24] and answering
several questions related to local cyclic homology.

2. Smooth representations and anti-Yetter-Drinfeld modules

In this section we recall the basic theory of smooth representations of totally dis-
connected groups and the concept of an anti-Yetter-Drinfeld module. Smooth
representations of locally compact groups on bornological vector spaces were
studied by Meyer in [25]. The only difference in our discussion here is that we
allow for representations on possibly incomplete spaces. Apart from smooth
representations, anti-Yetter-Drinfeld modules play a central role in equivariant
cyclic homology. These modules were called covariant modules in [35], [36].
Smooth representations and anti-Yetter-Drinfeld modules for totally discon-
nected groups can be viewed as essential modules over certain idempotented
algebras in the following sense.

Definition 2.1. An algebra H with the fine bornology is called idempotented
if for every small subset S ⊂ H there exists an idempotent e ∈ H such that
e · x = x = x · e for all x ∈ S.

In other words, for every finite set F of elements in H there exists an idempo-
tent e ∈ H which acts like a unit on every element of F . We call a separated
H-module V essential if the natural mapH⊗HV → V is a bornological isomor-
phism. Since H carries the fine bornology, the completion V c of an essential
H-module is again essential, and our notion is compatible with the concept of
an essential module over a bornological algebra with approximate identity [25].
Clearly an idempotented algebra is a bornological algebra with approximate
identity.
Let us now consider smooth representations. A representation of G on a sepa-
rated bornological vector space V is a group homomorphism π : G → Aut(V )
where Aut(V ) denotes the group of bounded linear automorphisms of V . A
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bounded linear map between representations ofG is called equivariant if it com-
mutes with the action of G. We write HomG(V,W ) for the space of equivariant
bounded linear maps between the representations V and W . Let F (G, V ) be
the space of all functions from G to V . The adjoint of a representation π is
the bounded linear map [π] : V → F (G, V ) given by [π](v)(t) = π(t)(v). In the
sequel we write simply t · v instead of π(t)(v).
We write D(G) for the space of smooth functions on G with compact support
equipped with the fine bornology. Smoothness of a function f on a totally dis-
connected group is equivalent to f being locally constant. If V is a bornological
vector space then D(G) ⊗ V = D(G, V ) is the space of compactly supported
smooth functions on G with values in V . The space E(G, V ) consists of all
smooth functions on G with values in V .

Definition 2.2. Let G be a totally disconnected group and let V be a separated
(complete) bornological vector space. A representation π of G on V is smooth if
[π] defines a bounded linear map from V into E(G, V ). A smooth representation
is also called a separated (complete) G-module.

Let V be a separated G-module. Then for every small subset S ⊂ V the
pointwise stabilizer GS of S is an open subgroup of G. Conversely, if π is a
representation of G on a bornological vector space V such that GS is open for
every small subset S ⊂ V then π is smooth. In particular, if V carries the
fine bornology the above definition reduces to the usual definition of a smooth
representation on a complex vector space. Every representation of a discrete
group is smooth. Note that a representation π of G on a separated bornological
vector space V determines a representation πc of G on the completion V c. If
V is a separated G-module then V c becomes a complete G-module in this way.
As already mentioned in the beginning, smooth representations can be iden-
tified with essential modules over a certain idempotented algebra. The Hecke
algebra of a totally disconnected group G is the space D(G) equipped with the
convolution product

(f ∗ g)(t) =

∫

G

f(s)g(s−1t)ds

where ds denotes a fixed left Haar measure on G. Since G is totally discon-
nected this algebra is idempotented. Every separated G-module V becomes
an essential D(G)-module by integration, and conversely, every essential D(G)-
module is obtained in this way. This yields a natural isomorphism between
the category of separated (complete) G-modules and the category of separated
(complete) essential D(G)-modules.
A separated (complete) G-algebra is a separated (complete) bornological al-
gebra which is also a G-module such that the multiplication A ⊗ A → A is
equivariant. For every separated G-algebra A the (smooth) crossed product
A⋊G is the space D(G,A) with the convolution multiplication

(f ∗ g)(t) =

∫

G

f(s)s · g(s−1t)ds.
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Note in particular that the crossed product associated to the trivial action of
G on C is the Hecke algebra of G.
In connection with actions on C∗-algebras we will have to consider represen-
tations of G which are not smooth. For an arbitrary representation of G on a
bornological vector space V the smoothing SmoothG(V ) is defined by

SmoothG(V ) = {f ∈ E(G, V )|f(t) = t · f(e) for all t ∈ G}
equipped with the subspace bornology and the right regular representation.
We will usually simply write Smooth instead of SmoothG in the sequel. The
smoothing Smooth(V ) is always a smooth representation ofG. If V is complete,
then Smooth(V ) is a complete G-module. There is an injective equivariant
bounded linear map ιV : Smooth(V )→ V given by ιV (f) = f(e).

Proposition 2.3. Let G be a totally disconnected group and π be a representa-
tion of G on a separated bornological vector space V . The equivariant bounded
linear map ιV : Smooth(V )→ V induces a natural isomorphism

HomG(W,V ) ∼= HomG(W,Smooth(V ))

for all separated G-modules W .

Hence the smoothing functor Smooth is right adjoint to the forgetful functor
from the category of smooth representations to the category of arbitrary rep-
resentations.
Assume that A is a separated bornological algebra which is at the same time
equipped with a representation of G such that the multiplication A⊗A→ A is
equivariant. Then Smooth(A) is a separated G-algebra in a natural way. This
applies in particular to actions on C∗-algebras. When C∗-algebras are viewed
as bornological algebras we always work with the precompact bornology. If A is
a G-C∗-algebra we use the smoothing functor to obtain a complete G-algebra
Smooth(A). We will study properties of this construction in more detail in
section 10.
Next we discuss the concept of an anti-Yetter-Drinfeld module. Let OG be
the commutative algebra of compactly supported smooth functions on G with
pointwise multiplication equipped with the action of G by conjugation.

Definition 2.4. Let G be a totally disconnected group. A separated (com-
plete) G-anti-Yetter-Drinfeld module is a separated (complete) bornological vec-
tor space M which is both an essential OG-module and a G-module such that

s · (f ·m) = (s · f) · (s ·m)

for all s ∈ G, f ∈ OG and m ∈M .

A morphism φ : M → N between anti-Yetter-Drinfeld modules is a bounded
linear map which is OG-linear and equivariant. In the sequel we will use the
terminology AYD-module and AYD-map for anti-Yetter-Drinfeld modules and
their morphisms. Moreover we denote by HomG(M,N) the space of AYD-maps
between AYD-modules M and N . Note that the completion M c of a separated
AYD-module M is a complete AYD-module.
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We write A(G) for the crossed product OG ⋊ G. The algebra A(G) is idem-
potented and plays the same role as the Hecke algebra D(G) in the context of
smooth representations. More precisely, there is an isomorphism of categories
between the category of separated (complete) AYD-modules and the category
of separated (complete) essential modules over A(G). In particular, A(G) itself
is an AYD-module in a natural way. We may view elements of A(G) as smooth
functions with compact support on G×G where the first variable corresponds
to OG and the second variable corresponds to D(G). The multiplication in
A(G) becomes

(f · g)(s, t) =

∫

G

f(s, r)g(r−1sr, r−1t)dr

in this picture. An important feature of this crossed product is that there exists
an isomorphism T : A(G)→ A(G) of A(G)-bimodules given by

T (f)(s, t) = f(s, st)

for f ∈ A(G). More generally, if M is an arbitrary separated AYD-module we
obtain an automorphism ofM ∼= A(G)⊗A(G)M by applying T to the first tensor
factor. By slight abuse of language, the resulting map is again denoted by T .
This construction is natural in the sense that Tφ = φT for every AYD-map
φ : M → N .

3. Primitive modules and inductive systems

In this section we introduce primitive anti-Yetter-Drinfeld-modules and discuss
the relation between inductive systems of primitive modules and general anti-
Yetter-Drinfeld-modules for totally disconnected groups. This is needed for the
definition of equivariant local cyclic homology.
Recall from section 2 that anti-Yetter-Drinfeld modules for a totally discon-
nected group G can be viewed as essential modules over the idempotented
algebra A(G). Since it creates no difficulties we shall work in the more general
setting of essential modules over an arbitrary idempotented algebra H in this
section. We let C be either the category of separated or complete essential
modules over H . Morphisms are the bounded H-module maps in both cases.
Moreover we let ind(C) be the associated ind-category. The objects of ind(C)
are inductive systems of objects in C and the morphisms between M = (Mi)i∈I
and (Nj)j∈J are given by

Hom ind(C)(M,N) = lim←−
i∈I

lim−→
j∈J

HomC(Mi, Nj)

where the limits are taken in the category of vector spaces. There is a canon-
ical functor lim−→ from ind(C) to C which associates to an inductive system its
separated inductive limit.
If S is a small disk in a bornological vector space we write 〈S〉 for the associated
normed space. There is a functor which associates to a (complete) bornological
vector space V the inductive system of (complete) normed spaces 〈S〉 where S
runs over the (completant) small disks in V . We need a similar construction
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in the context of H-modules. Let M be a separated (complete) essential H-
module and let S ⊂ M be a (completant) small disk. We write H〈S〉 for the
image of the natural map H ⊗〈S〉 →M equipped with the quotient bornology
and the induced H-module structure. By slight abuse of language we call this
module the submodule generated by S and write H〈S〉 ⊂M .

Definition 3.1. An object of C is called primitive if it is generated by a single
small disk.

In other words, a separated (complete) essential H-module P is primitive iff
there exists a (completant) small disk S ⊂ P such that the natural map
H〈S〉 → P is an isomorphism. Note that in the special case H = C the
primitive objects are precisely the (complete) normed spaces.
Let us write ind(P (C)) for the full subcategory of ind(C) consisting of induc-
tive systems of primitive modules. For every M ∈ C we obtain an inductive
system of primitive modules over the directed set of (completant) small disks
in M by associating to every disk S the primitive module generated by S. This
construction yields a functor dis from C to ind(P (C)) which will be called the
dissection functor. Note that the inductive system dis(M) has injective struc-
ture maps for every M ∈ C. By definition, an injective inductive system is an
inductive system whose structure maps are all injective. An inductive system is
called essentially injective if it is isomorphic in ind(C) to an injective inductive
system.
The following assertion is proved in the same way as the corresponding result
for bornological vector spaces [21].

Proposition 3.2. The direct limit functor lim−→ is left adjoint to the dissection
functor dis. More precisely, there is a natural isomorphism

HomC(lim−→(Mj)j∈J , N) ∼= Hom ind(P (C))((Mj)j∈J , dis(N))

for every inductive system (Mj)j∈J of primitive objects and every N ∈ C.
Moreover lim−→ dis is naturally equivalent to the identity and the functor dis is
fully faithful.

In addition we have that dis lim−→(Mi)i∈I is isomorphic to (Mi)i∈I provided the

system (Mi)i∈I is essentially injective. It follows that the dissection functor
dis induces an equivalence between C and the full subcategory of ind(P (C))
consisting of all injective inductive systems of primitive modules.

4. Paracomplexes and the local derived category

In this section we review the notion of a paracomplex and discuss some related
constructions in homological algebra. In particular, in the setting of anti-
Yetter-Drinfeld modules over a totally disconnected group, we define locally
contractible paracomplexes and introduce the local derived category, following
[24].
Let us begin with the definition of a para-additive category [35].
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Definition 4.1. A para-additive category is an additive category C together
with a natural isomorphism T of the identity functor id : C → C.
It is explained in section 2 that every AYD-module is equipped with a natural
automorphism denoted by T . Together with these automorphisms the category
of AYD-modules becomes a para-additive category in a natural way. In fact,
for our purposes this is the main example of a para-additive category.

Definition 4.2. Let C be a para-additive category. A paracomplex C = C0⊕C1

in C is a given by objects C0 and C1 together with morphisms ∂0 : C0 → C1

and ∂1 : C1 → C0 such that
∂2 = id−T.

A chain map φ : C → D between two paracomplexes is a morphism from C to
D that commutes with the differentials.

The morphism ∂ in a paracomplex is called a differential although this con-
tradicts the classical definition of a differential. We point out that it does not
make sense to speak about the homology of a paracomplex in general.
However, one can define homotopies, mapping cones and suspensions as usual.
Moreover, due to naturality of T , the space HomC(P,Q) of all morphisms be-
tween paracomplexes P and Q with the standard differential is an ordinary
chain complex. We write H(C) for the homotopy category of paracomplexes
associated to a para-additive category C. The morphisms in H(C) are homo-
topy classes of chain maps. The supension of paracomplexes yields a translation
functor on H(C). By definition, a triangle

C // X // Y // C[1]

in H(C) is called distinguished if it is isomorphic to a mapping cone triangle.
As for ordinary chain complexes one proves the following fact.

Proposition 4.3. Let C be a para-additive category. Then the homotopy cat-
egory of paracomplexes H(C) is triangulated.

Let us now specialize to the case where C is the category of separated (complete)
AYD-modules. Hence in the sequel H(C) will denote the homotopy category of
paracomplexes of AYD-modules. We may also consider the homotopy category
associated to the corresponding ind-category of paracomplexes. There is a
direct limit functor lim−→ and a dissection functor dis between these categories
having the same properties as the corresponding functors for AYD-modules.
A paracomplex P of separated (complete) AYD-modules is called primitive
if its underlying AYD-module is primitive. By slight abuse of language, if
P is a primitive paracomplex and ι : P → C is an injective chain map of
paracomplexes we will also write P for the image ι(P ) ⊂ C with the bornology
induced from P . Moreover we call P ⊂ C a primitive subparacomplex of C in
this case.

Definition 4.4. A paracomplex C is called locally contractible if for every
primitive subparacomplex P of C the inclusion map ι : P → C is homotopic to
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zero. A chain map f : C → D between paracomplexes is called a local homotopy
equivalence if its mapping cone Cf is locally contractible.

The class of locally contractible paracomplexes forms a null system in H(C).
We have the following characterization of locally contractible paracomplexes.

Lemma 4.5. A paracomplex C is locally contractible iff H∗(HomC(P,C)) = 0
for every primitive paracomplex P .

Proof. Let P ⊂ C be a primitive subparacomplex. If H∗(HomC(P,C)) = 0
then the inclusion map ι : P → C is homotopic to zero. It follows that C
is locally contractible. Conversely, assume that C is locally contractible. If
P is a primitive paracomplex and f : P → C is a chain map let f(P ) ⊂ C
be the primitive subparacomplex corresponding to the image of f . Since C is
locally contractible the inclusion map f(P ) → C is homotopic to zero. Hence
the same is true for f and we deduce H0(HomC(P,C)) = 0. Similarly one
obtains H1(HomC(P,C)) = 0 since suspensions of primitive paracomplexes are
primitive. �

We shall next construct projective resolutions with respect to the class of locally
projective paracomplexes. Let us introduce the following terminology.

Definition 4.6. A paracomplex P is locally projective if H∗(HomC(P,C)) = 0
for all locally contractible paracomplexes C.

All primitive paracomplexes are locally projective according to lemma 4.5. Ob-
serve moreover that the class of locally projective paracomplexes is closed under
direct sums.
By definition, a locally projective resolution of C ∈ H(C) is a locally projec-
tive paracomplex P together with a local homotopy equivalence P → C. We
say that a functor P : H(C) → H(C) together with a natural transformation
π : P → id is a projective resolution functor if π(C) : P (C) → C is a locally
projective resolution for all C ∈ H(C). In order to construct such a functor we
proceed as follows.
Let I be a directed set. We view I as a category with objects the elements of I
and morphisms the relations i ≤ j. More precisely, there is a morphism i→ j
from i to j in this category iff i ≤ j. Now consider a functor F : I → C. Such a
functor is also called an I-diagram in C. We define a new diagram L(F ) : I → C
as follows. Set

L(F )(j) =
⊕

i→j
F (i)

where the sum runs over all morphisms i→ j in I. The map L(F )(k)→ L(F )(l)
induced by a morphism k → l sends the summand over i → k identically
to the summand over i → l in L(F )(l). We have a natural transformation
π(F ) : L(F ) → F sending the summand F (i) over i → j to F (j) using the
map F (i→ j). The identical inclusion of the summand F (j) over the identity
j → j defines a section σ(F ) for π(F ). Remark that this section is not a natural
transformation of I-diagrams in general.
Now let H : I → C be another diagram and let (φ(i) : F (i) → H(i))i∈I be
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an arbitrary family of AYD-maps. Then there exists a unique natural trans-
formation of I-diagrams ψ : L(F ) → H such that φ(j) = ψ(j)σ(F )(j) for all
j. Namely, the summand F (i) over i → j in L(F )(j) is mapped under ψ(j)
to H(j) by the map H(i → j)φ(i). We can rephrase this property as follows.
Consider the inclusion I(0) ⊂ I of all identity morphisms in the category I.
There is a forgetful functor from the category of I-diagrams to the category of
I(0)-diagrams in C induced by the inclusion I(0) → I and a natural isomorphism

HomI(L(F ), H) ∼= HomI(0)(F,H)

where HomI and HomI(0) denote the morphism sets in the categories of I-
diagrams and I(0)-diagrams, respectively. This means that the previous con-
struction defines a left adjoint functor L to the natural forgetful functor.
For every j ∈ I we have a split extension of AYD-modules

J(F )(j) //ι(F )(j) // L(F )(j)
π(F )(j)// // F (j)

where by definition J(F )(j) is the kernel of the AYD-map π(F )(j) and ι(F )(j)
is the inclusion. The AYD-modules J(F )(j) assemble to an I-diagram and we
obtain an extension

J(F ) // ι(F ) // L(F )
π(F ) // // F

of I-diagrams which splits as an extension of I(0)-diagrams. We apply the
functor L to the diagram J(F ) and obtain a diagram denoted by LJ(F ) and a
corresponding extension as before. Iterating this procedure yields a family of
diagrams LJn(F ). More precisely, we obtain extensions

Jn+1(F ) //ι(J
n(F ))// LJn(F )

π(Jn(F ))// // Jn(F )

for all n ≥ 0 where J0(F ) = F , J1(F ) = J(F ) and LJ0(F ) = L(F ). In addition
we set LJ−1(F ) = F and ι(J−1(F )) = id. By construction there are natural
transformations LJn(F )→ LJn−1(F ) for all n given by ι(Jn−1(F ))π(Jn(F )).
In this way we obtain a complex

· · · → LJ3(F )→ LJ2(F )→ LJ1(F )→ LJ0(F )→ F → 0

of I-diagrams. Moreover, this complex is split exact as a complex of I(0)-
diagrams, that is, LJ•(F )(j) is a split exact complex of AYD-modules for all
j ∈ I.
Assume now that F is an I-diagram of paracomplexes in C. We view F as a pair
of I-diagrams F0 and F1 of AYD-modules together with natural transformations
∂0 : F0 → F1 and ∂1 : F1 → F0 such that ∂2 = id−T . Let us construct a family
of I-diagrams (LJ(F ), dh, dv) as follows. Using the same notation as above we
set

LJ(F )pq = LJq(Fp)

for q ≥ 0 and define the horizontal differential dhpq : LJ(F )pq → LJ(F )p−1,q by

dhpq = (−1)qLJq(∂p).
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The vertical differential dvpq : LJ(F )pq → LJ(F )p,q−1 is given by

dvpq = ι(Jq−1(Fp))π(Jq(Fp)).

Then the relations (dv)2 = 0, (dh)2 = id−T as well as dvdh + dhdv = 0 hold.
Hence, if we define Tot(LJ(F )) by

(TotLJ(F ))n =
⊕

p+q=n

LJ(F )pq

and equip it with the boundary dh + dv we obtain an I-diagram of paracom-
plexes. We write ho- lim−→(F ) for the inductive limit of the diagram TotLJ(F )
and call this paracomplex the homotopy colimit of the diagram F . There is a
canonical chain map ho- lim−→(F )→ lim−→(F ) and a natural filtration on ho- lim−→(F )
given by

ho- lim−→(F )≤kn =
⊕

p+q=n
q≤k

lim−→LJ(F )pq

for k ≥ 0. Observe that the natural inclusion ιk : ho- lim−→(F )≤k → ho- lim−→(F )

is a chain map and that there is an obvious retraction πk : ho- lim−→(F ) →
ho- lim−→(F )≤k for ιk. However, this retraction is not a chain map.

Proposition 4.7. Let F = (Fi)i∈I be a directed system of paracomplexes. If
the paracomplexes Fj are locally projective then the homotopy colimit ho- lim−→(F )

is locally projective as well. If the system (Fi)i∈I is essentially injective then
ho- lim−→(F )→ lim−→(F ) is a local homotopy equivalence.

Proof. Assume first that the paracomplexes Fj are locally projective. In order
to prove that ho- lim−→(F ) is locally projective let φ : ho- lim−→(F )→ C be a chain
map where C is a locally contractible paracomplex. We have to show that φ
is homotopic to zero. The composition of the natural map ι0 : ho- lim−→(F )≤0 →
ho- lim−→(F ) with φ yields a chain map ψ0 = φι0 : lim−→LJ0(F ) → C. By con-

struction of LJ0(F ) we have isomorphisms

HomC(lim−→LJ0(F ), C) ∼= HomI(LJ
0(F ), C) ∼= HomI(0)(F,C)

where we use the notation introduced above and C is viewed as a constant
diagram of paracomplexes. Hence, since the paracomplexes Fj are locally pro-
jective, there exists a morphism h0 of degree one such that ∂h0 + h0∂ = ψ0.
This yields a chain homotopy between ψ0 and 0. Using the retraction
π0 : ho- lim−→(F ) → ho- lim−→(F )≤0 we obtain a chain map φ1 = φ − [∂, h0π0]

from ho- lim−→(F ) to C. This map is clearly homotopic to φ and by construction

we have φ1ι0 = 0. Consider next the map ψ1 given by the composition

lim−→LJ1(F )→ ho- lim−→(F )→ C

where the first arrow is the natural one and the second map is φ1. Since φ1

vanishes on ho- lim−→(F )≤0 we see that ψ1 is a chain map. Observe moreover

that J1(F ) is a locally projective paracomplex. The same argument as before
yields a homotopy h1 : lim−→LJ1(F )→ C such that ∂h1 + h1∂ = ψ1. We define

Documenta Mathematica 12 (2007) 313–359



Equivariant Local Cyclic Homology 325

a chain map φ2 by φ2 = φ1− [∂, h1π1] = φ− [∂, h1π1 +h0π0] and get φ2ι1 = 0.
Continuing this process we obtain a family of AYD-maps hn : lim−→LJn(F )→ C
which assembles to a homotopy between φ and zero.
Let C(π) be the mapping cone of the natural map π : ho- lim−→(F ) → lim−→(F ).

Moreover we write C(j) for the mapping cone of TotLJ(F )(j) → F (j). It
follows immediately from the constructions that C(j) is contractible for every
j ∈ I. Now let P ⊂ C(π) be a primitive subparacomplex. If the system F
is essentially injective then there exists an index j ∈ I such that P ⊂ C(j).
Consequently, the map P → C(π) is homotopic to zero in this case, and we
conclude that π is a local homotopy equivalence. �

Using the previous proposition we can construct a projective resolution functor
with respect to the class of locally projective paracomplexes. More precisely,
one obtains a functor P : H(C)→ H(C) by setting

P (C) = ho- lim−→ dis(C)

for every paracomplex C. In addition, there is a natural transformation P → id
induced by the canonical chain map ho- lim−→(F ) → lim−→(F ) for every inductive

system F . Since dis(C) is an injective inductive system of locally projective
paracomplexes for C ∈ H(C) it follows from proposition 4.7 that this yields a
projective resolution functor as desired.
Let us now define the local derived category of paracomplexes.

Definition 4.8. The local derived category D(C) is the localization of H(C)
with respect to the class of locally contractible paracomplexes.

By construction, there is a canonical functor H(C) → D(C) which sends lo-
cal homotopy equivalences to isomorphisms. Using the projective resolution
functor P one can describe the morphism sets in the derived category by

HomD(C)(C,D) ∼= HomH(C)(P (C), D) ∼= HomH(C)(P (C), P (D))

for all paracomplexes C and D.
For the purposes of local cyclic homology we consider the left derived functor
of the completion functor. This functor is called the derived completion and is
given by

XLc = P (X)c

for every paracomplex X of separated AYD-modules. Inspecting the construc-
tion of the homotopy colimit shows that XLc ∼= ho- lim−→(dis(X)c) where the
completion of an inductive system is defined entrywise.

5. The analytic tensor algebra and the spectral radius

In this section we discuss the definition of the analytic tensor algebra as well as
analytically nilpotent algebras and locally multiplicative algebras. The spectral
radius of a small subset in a bornological algebra is defined and some of its basic
properties are established. We refer to [21], [24], [26] for more details.
Let G be a totally disconnected group and let A be a separated G-algebra. We
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write Ωn(A) for the space of (uncompleted) noncommutative n-forms over A.
As a bornological vector space one has Ω0(A) = A and

Ωn(A) = A+ ⊗A⊗n

for n > 0 where A+ denotes the unitarization of A. Simple tensors in Ωn(A)
are usually written in the form a0da1 · · · dan where a0 ∈ A+ and aj ∈ A for
j > 0. Clearly Ωn(A) is a separated G-module with the diagonal action. We
denote by Ω(A) the direct sum of the spaces Ωn(A). The differential d on Ω(A)
and the multiplication of forms are defined in an obvious way such that the
graded Leibniz rule holds.
For the purpose of analytic and local cyclic homology it is crucial to consider
a bornology on Ω(A) which is coarser than the standard bornology for a direct
sum. By definition, the analytic bornology on Ω(A) is the bornology generated
by the sets

[S](dS)∞ = S ∪
∞⋃

n=1

S(dS)n ∪ (dS)n

where S ⊂ A is small. Here and in the sequel the notation [S] is used to denote
the union of the subset S ⊂ A with the unit element 1 ∈ A+. Equipped with
this bornology Ω(A) is again a separated G-module. Moreover the differential
d and the multiplication of forms are bounded with respect to the analytic
bornology. It follows that the Fedosov product defined by

ω ◦ η = ωη − (−1)|ω|dωdη

for homogenous forms ω and η is bounded as well. By definition, the analytic
tensor algebra T A of A is the even part of Ω(A) equipped with the Fedosov
product and the analytic bornology. It is a separated G-algebra in a natural
way. Unless explicitly stated otherwise, we will always equip Ω(A) and T A
with the analytic bornology in the sequel.
The underlying abstract algebra of T A can be identified with the tensor alge-
bra of A. This relationship between tensor algebras and differential forms is
a central idea in the approach to cyclic homology developped by Cuntz and
Quillen [6], [7], [8]. However, since the analytic bornology is different from the
direct sum bornology, the analytic tensor algebra T A is no longer universal for
all equivariant bounded linear maps from A into separatedG-algebras. In order
to formulate its universal property correctly we need some more terminology.
The curvature of an equivariant bounded linear map f : A→ B between sepa-
rated G-algebras is the equivariant linear map ωf : A⊗A→ B given by

ωf (x, y) = f(xy)− f(x)f(y).

By definition, the map f has analytically nilpotent curvature if

ωf (S, S)∞ =

∞⋃

n=1

ωf (S, S)n

is a small subset ofB for all small subsets S ⊂ A. An equivariant bounded linear
map f : A → B with analytically nilpotent curvature is called an equivariant
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lanilcur. The analytic bornology is defined in such a way that the equivariant
homomorphism [[f ]] : T A → B associated to an equivariant bounded linear
map f : A→ B is bounded iff f is a lanilcur.
It is clear that every bounded homomorphism f : A → B is a lanilcur. In
particular, the identity map of A corresponds to the bounded homomorphism
τA : T A→ A given by the canonical projection onto differential forms of degree
zero. The kernel of the map τA is denoted by JA, and we obtain an extension

JA // // T A // // A

of separated G-algebras. This extension has an equivariant bounded linear
splitting σA given by the inclusion of A as differential forms of degree zero.
The algebras JA and T A have important properties that we shall discuss
next.
A separated G-algebra N is called analytically nilpotent if

S∞ =
⋃

n∈N

Sn

is small for all small subsets S ⊂ N . For instance, every nilpotent bornological
algebra is analytically nilpotent. The ideal JA in the analytic tensor algebra of
a bornological A is an important example of an analytically nilpotent algebra.
A separated G-algebra R is called equivariantly analytically quasifree provided
the following condition is satisfied. If K is an analytically nilpotent G-algebra
and

K // // E // // Q

is an extension of complete G-algebras with equivariant bounded linear split-
ting then for every bounded equivariant homomorphism f : R→ Q there exists
a bounded equivariant lifting homomorphism F : R→ E. The analytic tensor
algebra T A of a G-algebra A is a basic example of an equivariantly analytically
quasifree G-algebra. Another fundamental example is given by the algebra C
with the trivial action. Every equivariantly analytically quasifree G-algebra is
in particular equivariantly quasifree in the sense of [35].
We shall next discuss the concept of a locally multiplicative G-algebra. If A
is a bornological algebra then a disk T ⊂ A is called multiplicatively closed
provided T ·T ⊂ T . A separated bornological algebra A is called locally multi-
plicative if for every small subset S ⊂ A there exists a positive real number λ
and a small multiplicatively closed disk T ⊂ A such that S ⊂ λT . It is easy to
show that a separated (complete) bornological algebra is locally multiplicative
iff it is a direct limit of (complete) normed algebras. We point out that the
group action on a G-algebra usually does not leave multiplicatively closed disks
invariant. In particular, a locally multiplicative G-algebra can not be written
as a direct limit of normed G-algebras in general.
It is clear from the definitions that analytically nilpotent algebras are locally
multiplicative. In fact, locally multiplicatively algebras and analytically nilpo-
tent algebras can be characterized in a concise way using the notion of spectral
radius.
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Definition 5.1. Let A be a separated bornological algebra and let S ⊂ A be a
small subset. The spectral radius ρ(S) = ρ(S;A) is the infimum of all positive
real numbers r such that

(r−1S)∞ =
∞⋃

n=1

(r−1S)n

is small. If no such number r exists set ρ(S) =∞.

A bornological algebra A is locally multiplicative iff ρ(S) < ∞ for all small
subsets S ⊂ A. Similarly, a bornological algebra is analytically nilpotent iff
ρ(S) = 0 for all small subsets S of A.
Let us collect some elementary properties of the spectral radius. If λ is a
positive real number then ρ(λS) = λρ(S) for every small subset S. Moreover
one has ρ(Sn) = ρ(S)n for all n > 0. Remark also that the spectral radius does
not distinguish between a small set and its disked hull. Finally, let f : A→ B
be a bounded homomorphism and let S ⊂ A be small. Then the spectral radius
is contractive in the sense that

ρ(f(S);B) ≤ ρ(S;A)

since f((r−1S)∞) = (r−1f(S))∞ ⊂ B is small provided (r−1S)∞ is small.

6. Equivariant analytic and local cyclic homology

In this section we recall the definition of equivariant differential forms and the
equivariant X-complex and define equivariant analytic and local cyclic homol-
ogy. In addition we discuss the relation to equivariant entire cyclic homology
for finite groups in the sense of Klimek, Kondracki and Lesniewski and the
original definition of local cyclic homology due to Puschnigg.
First we review basic properties of equivariant differential forms. The equivari-
ant n-forms over a separated G-algebra A are defined by ΩnG(A) = OG⊗Ωn(A)
where Ωn(A) is the space of uncompleted differential n-forms over A. The
group G acts diagonally on ΩnG(A) and we have an obvious OG-module struc-
ture given by multiplication on the first tensor factor. In this way the space
ΩnG(A) becomes a separated AYD-module.
On equivariant differential forms we consider the following operators. We have
the differential d : ΩnG(A)→ Ωn+1

G (A) given by

d(f(s)⊗ x0dx1 · · ·dxn) = f(s)⊗ dx0dx1 · · · dxn
and the equivariant Hochschild boundary b : ΩnG(A)→ Ωn−1

G (A) defined by

b(f(s)⊗x0dx1 · · ·dxn) = f(s)⊗ x0x1dx2 · · · dxn

+

n−1∑

j=1

(−1)jf(s)⊗ x0dx1 · · · d(xjxj+1) · · ·dxn

+ (−1)nf(s)⊗ (s−1 · xn)x0dx1 · · · dxn−1.
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Moreover there is the equivariant Karoubi operator κ : ΩnG(A) → ΩnG(A) and

the equivariant Connes operator B : ΩnG(A)→ Ωn+1
G (A) which are given by the

formulas

κ(f(s)⊗ x0dx1 · · · dxn) = (−1)n−1f(s)⊗ (s−1 · dxn)x0dx1 · · · dxn−1

and

B(f(s)⊗x0dx1 · · · dxn) =

n∑

i=0

(−1)nif(s)⊗s−1 · (dxn+1−i · · · dxn)dx0 · · · dxn−i,

respectively. All these operators are AYD-maps, and the natural symmetry
operator T for AYD-modules is of the form

T (f(s)⊗ ω) = f(s)⊗ s−1 · ω
on equivariant differential forms. We shall write ΩG(A) for the direct sum of
the spaces ΩnG(A) in the sequel. The analytic bornology on ΩG(A) is defined
using the identification ΩG(A) = OG ⊗ Ω(A).
Together with the operators b and B the space ΩG(A) of equivariant differen-
tial forms may be viewed as a paramixed complex [35] which means that the
relations b2 = 0, B2 = 0 and [b, B] = bB + Bb = id−T hold. An important
purpose for which equivariant differential forms are needed is the definition of
the equivariant X-complex of a G-algebra.

Definition 6.1. Let A be a separated G-algebra. The equivariant X-complex
XG(A) of A is the paracomplex

XG(A) : Ω0
G(A)

d //
Ω1
G(A)/b(Ω2

G(A)).
b

oo

Remark in particular that if ∂ denotes the boundary operator in XG(A) then
the relation ∂2 = id−T follows from the fact that equivariant differential forms
are a paramixed complex.
After these preparations we come to the definition of equivariant analytic cyclic
homology.

Definition 6.2. Let G be a totally disconnected group and let A and B be
separated G-algebras. The bivariant equivariant analytic cyclic homology of A
and B is

HAG∗ (A,B) = H∗(HomG(XG(T (A⊗KG))c, XG(T (B ⊗KG))c)).

The algebra KG occuring in this definition is the subalgebra of the algebra of
compact operators K(L2(G)) on the Hilbert space L2(G) obtained as the linear
span of all rank-one operators |ξ〉〈η| with ξ, η ∈ D(G). This algebra is equipped
with the fine bornology and the action induced from K(L2(G)). An important
property of the G-algebra KG is that it is projective as a G-module.
We point out that the Hom-complex on the right hand side of the definition,
equipped with the usual boundary operator, is an ordinary chain complex al-
though both entries are only paracomplexes. Remark also that for the trivial
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group one reobtains the definition of analytic cyclic homology given in [21].
It is frequently convenient to replace the paracomplex XG(T (A⊗ KG)) in the
definition of the analytic theory with another paracomplex construced using the
standard boundary B + b in cyclic homology. For every separated G-algebra
A there is a natural isomorphism XG(T A) ∼= Ωtan

G (A) of AYD-modules where
Ωtan
G (A) is the space ΩG(A) equipped with the transposed analytic bornology.

The transposed analytic bornology is the bornology generated by the sets

D ⊗ S ∪D ⊗ [S]dS ∪
∞⋃

n=1

n!D ⊗ [S][dS](dS)2n

where D ⊂ OG and S ⊂ A are small. The operators b and B are bounded with
respect to the transposed analytic bornology. It follows that Ωtan

G (A) becomes
a paracomplex with the differential B + b. We remark that rescaling with the
constants n! in degree 2n and 2n+ 1 yields an isomorphism between Ωtan

G (A)
and the space ΩG(A) equipped with the analytic bornology.

Theorem 6.3. Let G be a totally disconnected group. For every separated
G-algebra A there exists a bornological homotopy equivalence between the para-
complexes XG(T A) and Ωtan

G (A).

Proof. The proof follows the one for the equivariant periodic theory [35] and the
corresponding assertion in the nonequivariant situation [21]. LetQn : ΩG(A)→
ΩnG(A) ⊂ ΩG(A) be the canonical projection. Using the explicit formula for
the Karoubi operator one checks that the set {CnκjQn| 0 ≤ j ≤ n, n ≥ 0 } of
operators is equibounded on ΩG(A) with respect to the analytic bornology for
every C ∈ R. Similarly, the set {κnQn|n ≥ 0} is equibounded with respect to
the analytic bornology and hence {CnκjQn| 0 ≤ j ≤ kn, n ≥ 0 } is equibounded
as well for each k ∈ N. Thus an operator on ΩG(A) of the form

∑∞
j=0Qnhn(κ)

is bounded with respect to the analytic bornology if (hn)n∈N is a sequence of
polynomials whose degrees grow at most linearly and whose absolut coefficient
sums grow at most exponentially. By definition, the absolute coefficient sum

of
∑k

j=0 ajx
j is

∑k
j=0 |aj |. The polynomials fn and gn occuring in the proof

of theorem 8.6 in [35] satisfy these conditions. Based on this observation, a
direct inspection shows that the maps involved in the definition of the desired
homotopy equivalence in the periodic case induce bounded maps on ΩG(A)
with respect to the analytic bornology. This yields the assertion. �

Let G be a finite group and let A be a unital Banach algebra on which G acts
by bounded automorphisms. Klimek, Kondracki and Lesniewski defined the
equivariant entire cyclic cohomology of A in this situation [19]. We may also
view A as a bornological algebra with the bounded bornology and consider the
equivariant analytic theory of the resulting G-algebra.

Proposition 6.4. Let G be a finite group acting on a unital Banach algebra A
by bounded automorphisms. Then the equivariant entire cyclic cohomology of
A coincides with the equivariant analytic cyclic cohomology HAG∗ (A,C) where
A is viewed as a G-algebra with the bounded bornology.
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Proof. It will be shown in proposition 7.5 below that tensoring with the algebra
KG is not needed in the definition of HAG∗ for finite groups. Let us write C(G)
for the space of functions on the finite group G. Using theorem 6.3 we see
that the analytic cyclic cohomology HAG∗ (A,C) is computed by the complex
consisting of families (φn)n≥0 of n+1-linear maps φn : A+×An → C(G) which
are equivariant in the sense that

φn(t · a0, t · a1, . . . , t · an)(s) = φn(a0, a1, . . . , an)(t
−1st)

and satisfy the entire growth condition

[n/2]! max
t∈G
|φn(a0, a1, . . . , an)(t)| ≤ cS

for a0 ∈ [S], a1, . . . , an ∈ S and all small sets S in A. Here [n/2] = k for n = 2k
or n = 2k + 1 and cS is a constant depending on S. The boundary operator
is induced by B + b. An argument analogous to the one due to Khalkhali in
the non-equivariant case [18] shows that this complex is homotopy equivalent
to the complex used by Klimek, Kondracki and Lesniewski. �

Definition 6.5. Let G be a totally disconnected group and let A and B be sep-
arated G-algebras. The bivariant equivariant local cyclic homology HLG∗ (A,B)
of A and B is given by

H∗(HomG(XG(T (A⊗KG))Lc, XG(T (B ⊗KG))Lc)).

Recall that the derived completion XLc of a paracomplex X was introduced
in section 4. In terms of the local derived category of paracomplexes defini-
nition 6.5 can be reformulated in the following way. The construction of the
derived completion shows together with proposition 4.7 that the paracomplex
XG(T (A ⊗ KG))Lc is locally projective for every separated G-algebra A. It
follows that the local cyclic homology group HLG0 (A,B) is equal to the space
of morphisms in the local derived category between XG(T (A ⊗ KG))Lc and
XG(T (B ⊗KG))Lc. Consequently, the passage from the analytic theory to the
local theory consists in passing from the homotopy category of paracomplexes
to the local derived category and replacing the completion functor by the de-
rived completion.
Both equivariant analytic and local cyclic homology are equipped with an
obvious composition product. Every bounded equivariant homomorphism
f : A → B induces an element [f ] in HAG∗ (A,B) and in HLG∗ (A,B), re-
spectively. In particular, the identity map id : A → A defines an element in
these theories which acts as a unit with respect to the composition product.
If G is the trivial group then definition 6.5 reduces to the local cyclic theory
defined by Meyer in [24]. Let us briefly explain how this definition of local
cyclic homology is related to the original approach by Puschnigg. In [33] a
Fréchet algebra A is called nice if there is a neighborhood of the origin U such
that S∞ is precompact for all compact sets S ⊂ U . This condition is equivalent
local multiplicativity if A is viewed as a bornological algebra with the precom-
pact bornology [21]. Hence the class of nice Fréchet algebras can be viewed as
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a particular class of locally multiplicative bornological algebras. One has the
following result [24].

Proposition 6.6. Let (Ai)i∈I and (Bj)j∈J be inductive systems of nice Fréchet
algebras and let A and B denote their direct limits, respectively. If the systems
(Ai)i∈I and (Bj)j∈J have injective structure maps then HL∗(A,B) is naturally
isomorphic to the bivariant local cyclic homology for (Ai)i∈I and (Bj)j∈J as
defined by Puschnigg.

Proof. According to the assumptions the inductive system dis(X(T A)) is iso-
morphic to the formal inductive limit of dis(X(T Ai))i∈I in the category of
inductive systems of complexes. The completion of the latter is equivalent to
the inductive system that is used in [33] to define the local theory. Comparing
the construction of the local derived category with the definition of the derived
ind-category given by Puschnigg yields the assertion. �

Consequently, the main difference between the approaches is that Meyer works
explicitly in the setting of bornological vector spaces whereas Puschnigg uses
inductive systems and considers bornologies only implicitly.

7. Homotopy invariance, stability and excision

In this section we show that equivariant analytic and local cyclic homology are
invariant under smooth equivariant homotopies, stable and satisfy excision in
both variables.
For the proof of homotopy invariance and stability of the local theory we need
some information about partial completions. A subset V of a bornological
vector space V is called locally dense if for any small subset S ⊂ V there is a
small disk T ⊂ V such that any v ∈ S is the limit of a T -convergent sequence
with entries in V ∩ T . If V is a metrizable locally convex vector space endowed
with the precompact bornology then a subset V ⊂ V is locally dense iff it is
dense in V in the topological sense [26]. Let V be a bornological vector space
and let i : V → V be a bounded linear map into a separated bornological vector
space V . Then V together with the map i is called a partial completion of V if
i is a bornological embedding and has locally dense range.
We will need the following property of partial completions.

Lemma 7.1. Let i : A → A be a partial completion of separated G-algebras.
Then the induced chain map XG(T A)Lc → XG(T A)Lc is an isomorphism. If
the derived completion is replaced by the ordinary completion the corresponding
chain map is an isomorphism as well.

Proof. Let us abbreviate C = XG(T A) and D = XG(T A). It suffices to show
that the natural map dis(C)c → dis(D)c is an isomorphism of inductive sys-
tems. Since i : A → A is a partial completion the same holds true for the
induced chain map C → D. By local density, for any small disk S ⊂ D
there exists a small disk T ⊂ D such that any point in S is the limit of a T -
convergent sequence with entries in C ∩ T . Observe that C ∩ T is a small disk
in C since the inclusion is a bornological embedding. Consider the isometry
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〈C ∩ T 〉 → 〈T 〉. By construction, the space 〈S〉 is contained in the range of
the isometry 〈C ∩ T 〉c → 〈T 〉c obtained by applying the completion functor.
Since 〈C∩T 〉c maps naturally into (A(G)〈C∩T 〉)c we get an induced AYD-map
A(G)〈S〉 → (A(G)〈C ∩ T 〉)c. Using this observation one checks easily that the
completions of the inductive systems dis(C) and dis(D) are isomorphic. �

We refer to [26] for the definition of smooth functions with values in a bornolog-
ical vector space. For metrizable locally convex vector spaces with the precom-
pact bornology one reobtains the usual notion. Let B be a separated G-algebra
and denote by C∞([0, 1], B) the G-algebra of smooth functions on the inter-
val [0, 1] with values in B. The group G acts pointwise on functions, and if
B is complete there is a natural isomorphism C∞([0, 1], B) ∼= C∞[0, 1]⊗̂B.
A smooth equivariant homotopy is a bounded equivariant homomorphism
Φ : A → C∞([0, 1], B). Evaluation at t ∈ [0, 1] yields an equivariant homo-
morphism Φt : A → B. Two equivariant homomorphisms from A to B are
called equivariantly homotopic if they can be connected by an equivariant ho-
motopy.

Proposition 7.2 (Homotopy invariance). Let A and B be separated G-algebras
and let Φ : A→ C∞([0, 1], B) be a smooth equivariant homotopy. Then the in-
duced elements [Φ0] and [Φ1] in HLG∗ (A,B) are equal. An analogous statement
holds for the analytic theory. Hence HAG∗ and HLG∗ are homotopy invariant
in both variables with respect to smooth equivariant homotopies.

Proof. For notational simplicity we shall suppress occurences of the algebra KG
in our notation. Assume first that the homotopy Φ is a map from A into C[t]⊗B
where C[t] is viewed as a subalgebra of C∞[0, 1] with the subspace bornology.
The map Φ induces a bounded equivariant homomorphism T A → C[t] ⊗ T B
since the algebra C∞[0, 1] is locally multiplicative. As in the proof of homotopy
invariance for equivariant periodic cyclic homology [35] we see that the chain
maps XG(T A)→ XG(T B) induced by Φ0 and Φ1 are homotopic. Consider in
particular the equivariant homotopy Φ : C[x]⊗B → C[t]⊗C[x]⊗B defined by
Φ(p(x)⊗b) = p(tx)⊗b. We deduce that the map B → C[x]⊗B that sends b to
b⊗1 induces a homotopy equivalence between XG(T (C[x]⊗B)) and XG(T B).
It follows in particular that the chain maps XG(T (C[x]⊗B))→ XG(T B) given
by evaluation at 0 and 1, respectively, are homotopic.
Let us show that C[t] ⊗ B → C∞([0, 1], B) is a partial completion. It suffices
to consider the corresponding map for a normed subspace V ⊂ B since source
and target of this map are direct limits of the associated inductive systems
with injective structure maps. For a normed space V the assertion follows
from Grothendieck’s description of bounded subsets of the projective tensor
product C∞[0, 1]⊗̂πV .
Due to lemma 7.1 the chain map XG(T (C[t]⊗B))Lc → XG(T C∞([0, 1], B))Lc

is an isomorphism. Hence the chain maps XG(T C∞([0, 1], B))Lc → XG(T B)Lc

induced by evalution at 0 and 1 are homotopic as well. Now let Φ : A →
C∞([0, 1], B) be an arbitrary homotopy. According to our previous argument,
composing the induced chain map XG(T A)Lc → XG(T C∞([0, 1], B))Lc with
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the evaluation maps at 0 and 1 yields the claim for the local theory. The
assertion for the analytic theory are obtained in the same way. �

Next we study stability. Let V and W be separated G-modules and let b :
W × V → C be an equivariant bounded bilinear map. Then l(b) = V ⊗W is a
separated G-algebra with multiplication

(x1 ⊗ y1) · (x2 ⊗ y2) = x1 ⊗ b(y1, x2)y2

and the diagonal G-action. A particular example is the algebra KG which is
obtained using the left regular representation V = W = D(G) and the pairing

b(f, g) =

∫

G

f(s)g(s)ds

with respect to left Haar measure.
Let V and W be separated G-modules and let b : W × V be an equivariant
bounded bilinear map. The pairing b is called admissible if there exists nonzero
G-invariant vectors v ∈ V and w ∈ W such that b(w, v) = 1. In this case
p = v⊗w is an invariant idempotent element in l(b) and there is an equivariant
homomorphism ιA : A→ A⊗ l(b) given by ιA(a) = a⊗ p.
Proposition 7.3. Let A be a separated G-algebra and let b : W × V → C
be an admissible pairing. Then the map ιA induces a homotopy equivalence
XG(T A)Lc ≃ XG(T (A ⊗ l(b)))Lc. If the derived completion is replaced by the
ordinary completion the corresponding map is a homotopy equivalence as well.

This result is proved in the same way as in [35] using homotopy invariance.
As a consequence we obtain the following stability properties of equivariant
analytic and local cyclic homology.

Proposition 7.4 (Stability). Let A be a separated G-algebra and let b : W ×
V → C be a nonzero equivariant bounded bilinear map. Moreover let l(b, A)
be any partial completion of A ⊗ l(b). Then there exist invertible elements in
HLG0 (A, l(b, A)) and HAG0 (A, l(b, A)).

Proof. For the uncompleted stabilization A⊗ l(b) the argument for the periodic
theory in [35] carries over. If l(b, A) is a partial completion of A ⊗ l(b) the
natural chain map XG(T (A⊗ l(b)⊗KG))→ XG(T (l(b, A)⊗KG)) becomes an
isomorphism after applying the (left derived) completion functor according to
lemma 7.1. �

An application of theorem 7.3 yields a simpler description of HAG∗ and HLG∗ in
the case that G is a profinite group. If G is compact the trivial one-dimensional
representation is contained in D(G). Hence the pairing used to define the
algebra KG is admissible in this case. This implies immediately the following
assertion.

Proposition 7.5. Let G be a compact group. Then we have a natural isomor-
phism

HLG∗ (A,B) ∼= H∗(HomG(XG(T A)Lc, XG(T B)Lc))

for all separated G-algebras A and B. An analogous statement holds for the
analytic theory.
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To conclude this section we show that equivariant analytic and local cyclic
homology satisfy excision in both variables.

Theorem 7.6 (Excision). Let A be a separated G-algebra and let E : 0 →
K → E → Q→ 0 be an extension of separated G-algebras with bounded linear
splitting. Then there are two natural exact sequences

HLG0 (A,K) //
OO

HLG0 (A,E) // HLG0 (A,Q)

��
HLG1 (A,Q) oo HLG1 (A,E) oo HLG1 (A,K)

and

HLG0 (Q,A) //
OO

HLG0 (E,A) // HLG0 (K,A)

��
HLG1 (K,A) oo HLG1 (E,A) oo HLG1 (Q,A)

The horizontal maps in these diagrams are induced by the maps in E and the
vertical maps are, up to a sign, given by composition product with an element
ch(E) in HLG1 (Q,K) naturally associated to the extension. Analogous state-
ments hold for the analytic theory.

Upon tensoring the given extension E with KG we obtain an extension of sepa-
rated G-algebras with equivariant bounded linear splitting. As in [35] we may
suppress the algebra KG from our notation and assume that we are given an
extension

K // ι // E
π // // Q

of separated G-algebras together with an equivariant bounded linear splitting
σ : Q→ E for the quotient map π : E → Q.
We denote by XG(T E : T Q) the kernel of the map XG(T π) : XG(T E) →
XG(T Q)) induced by π. The splitting σ yields a direct sum decomposition
XG(T E) = XG(T E : T Q) ⊕ XG(T Q) of AYD-modules. Moreover there is a
natural chain map ρ : XG(TK)→ XG(T E : T Q).
Theorem 7.6 is a consequence of the following result.

Theorem 7.7. The map ρ : XG(TK) → XG(T E : T Q) is a homotopy equiv-
alence.

Proof. The proof follows the arguments given in [21], [35]. Let L ⊂ T E be
the left ideal generated by K ⊂ T E. Then L is a separated G-algebra and we
obtain an extension

N // // L
τ // // K

of separatedG-algebras where τ : L→ K is induced by the canonical projection
τE : T E → E. As in [35] one shows that the inclusion L ⊂ T E induces a
homotopy equivalence ψ : XG(L) → XG(T E : T Q). The inclusion TK → L

induces a morphism of extensions from 0 → JK → T K → K → 0 to 0 →
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N → L → K → 0. The algebra N is analytically nilpotent and the splitting
homomorphism v : L→ T L for the canonical projection constructed by Meyer
in [21] is easily seen to be equivariant. Using homotopy invariance it follows
that the induced chain map XG(T K) → XG(L) is a homotopy equivalence.
This yields the assertion. �

8. Comparison between analytic and local cyclic homology

In this section we study the relation between equivariant analytic and local
cyclic homology. We exhibit a special case in which the analytic and local
theories agree. This allows to do some elementary calculations in equivariant
local cyclic homology. Our discussion follows closely the treatment by Meyer,
for the convenience of the reader we reproduce some results in [24].
A bornological vector space V is called subcomplete if the canonical map V →
V c is a bornological embedding with locally dense range.

Proposition 8.1. Let V be a separated bornological vector space. The following
conditions are equivalent:

a) V is subcomplete.
b) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such

that every S-Cauchy sequence that converges in V is already T -convergent.
c) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such

that every S-Cauchy sequence which is a null sequence in V is already a
T -null sequence.

d) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such
that

ker(〈S〉c → 〈T 〉c) = ker(〈S〉c → 〈U〉c)
for all small disks U containing T .

e) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such
that

ker(〈S〉c → 〈T 〉c) = ker(〈S〉c → V c).

Proof. a) ⇒ b) Let S ⊂ V be a small disk. Then there exists a small disk
R ⊂ V c such that every S-Cauchy sequence is R-convergent. Since V → V c is
a bornological embedding the disk T = R∩V is small in V . By construction, ev-
ery S-Cauchy sequence that converges in V is already T -convergent. b)⇒ c) is
clear since V is separated. c)⇔ d) Let U be a small disk containing S. Then the
kernel of the map 〈S〉c → 〈U〉c consists of all S-Cauchy sequences which are U -
null sequences. Since a null sequence in V is a null sequence in U for some small
disk U the claim follows. d)⇒ e) Let dis(V ) be the inductive system of normed
spaces obtained as the dissection of the bornological vector space V . Condition
d) implies that the direct limit of dis(V )c is automatically separated. That is,
V c = lim−→ dis(V )c is equal to the vector space direct limit of the system dis(V )c

with the quotient bornology. Hence ker(〈S〉 → V c) =
⋃

ker(〈S〉c → 〈U〉c)
where the union is taken over all small disks U containing S. e)⇒ a) For each
small disk S in V let us define 〈〈S〉〉 = 〈S〉c/ ker(〈S〉c → V c). According to
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e) the resulting inductive system is isomorphic to dis(V )c and lim−→〈〈S〉〉
∼= V c.

Assume that x ∈ ker(〈S〉 → 〈〈S〉〉). Then x ∈ ker(〈S〉 → 〈T 〉c) for some small
disk T containing S. This implies x = 0 since the maps 〈S〉 → 〈T 〉 → 〈T 〉c are
injective. Hence 〈S〉 → 〈〈S〉〉 is injective for all small disks S. It follows that
ι : V → V c is a bornological embedding with locally dense range. �

We are interested in conditions which imply that the space Ω(A) for a sepa-
rated bornological algebra A is subcomplete. As usual, we consider Ω(A) as a
bornological vector space with the analytic bornology. Given a small set S ⊂ A
we shall write Ω(S) for the disked hull of

S ∪
∞⋃

n=1

S⊗n+1 ∪ S⊗n

inside Ω(A) where we use the canonical identification Ωn(A) = A⊗n+1 ⊕ A⊗n
for the space of differential forms. Remark that the sets Ω(S) generate the
analytic bornology.

Definition 8.2. A separated bornological algebra A is called tensor subcomplete
if the space Ω(A) is subcomplete.

Let us call the tensor powers V ⊗n for n ∈ N of a bornological vector space
V uniformly subcomplete provided the following condition is satisfied. For
every small disk S ⊂ V there is a small disk T ⊂ V containing S such that,
independent of n ∈ N, any S⊗n-Cauchy sequence which is a null sequence
in V ⊗n is already a T⊗n-null sequence. In particular, the spaces V ⊗n are
subcomplete for all n in this case.

Lemma 8.3. A separated bornological algebra A is tensor subcomplete iff the
tensor powers A⊗n for n ∈ N are uniformly subcomplete.

Proof. Assume first that the space Ω(A) is subcomplete. Let S ⊂ A be a small
disk and let (xk)k∈N be a S⊗n-Cauchy sequence which is a null sequence in
A⊗n. We write in : A⊗n → Ω(A) and pn : Ω(A) → A⊗n for the natural inclu-
sion and projection onto one of the direct summands A⊗n in Ω(A). The maps
in and pn are clearly bounded. In particular, the image of (xk)k∈N under in is a
Ω(S)-Cauchy sequence which is a null sequence in Ω(A). Hence it is a Ω(T )-null
sequence for some T ⊂ A. Since pn(Ω(T )) = T⊗n and xk = pnin(xk) it follows
that the sequence (xk)k∈N is a T⊗n-null sequence. Moreover the choice of T
does not depend on n. This shows that the tensor powers A⊗n are uniformly
subcomplete.
Conversely, assume that the tensor powersA⊗n are uniformly subcomplete. Let
S ⊂ A be a small disk and let T ⊂ A be a small disk such that S⊗n-Cauchy
which are null sequences in A⊗n are T⊗n-null sequences. In addition we may
assume 2S ⊂ T . Let us write Pn : Ω(A) → Ω(A) for the natural projection
onto the direct summand

⊕n
j=1 A

⊗j ⊕ A⊗j . Then Pn(Ω(S)) is contained in

Ω(S) and the projections Pn are equibounded. Moreover Pn converges to the
identity uniformly on Ω(S) since id−Pn has norm ≤ 2−n as a map from 〈Ω(S)〉
into 〈Ω(2S)〉 ⊂ 〈Ω(T )〉. Now let (xk)k∈N be a null sequence in Ω(A) which is
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Ω(S)-Cauchy. The components of Pn(xk) are S⊗k-Cauchy sequences which
are null sequences in A⊗k and hence T⊗k-null sequences by hypothesis. Hence
(Pn(xk))n∈N is a Ω(T )-null sequence for all n. Moreover (Pn(xk))n∈N converges
to xk for every k, and this convergence is uniform in k. If follows that (xk)n∈N
is a Ω(T )-null sequence, and we deduce that Ω(A) is tensor subcomplete. �

Our next aim is to exhibit certain analytical conditions which are sufficient for
tensor subcompleteness. Recall that a subset S of a complete bornological vec-
tor space V is called (relatively) compact if it is a (relatively) compact subset
of the Banach space 〈T 〉 for some small completant disk T ⊂ V . A complete
bornological vector space V is a Schwartz space if every small subset of V is
relatively compact. Every Fréchet space with the precompact bornology is a
Schwartz space.
Let V be a normed space and let W be an arbitrary bornological vector space.
By definition, a sequence (fn)n∈N of bounded linear maps fn : V → W con-
verges uniformly to f : V →W if there exists a small disk T ⊂W such that all
fn and f are bounded linear maps V → 〈T 〉 and the sequence (fn)n∈N converges
to f in Hom(V, 〈T 〉) in operator norm. A bounded linear map f : V →W can
be approximated uniformly on compact subsets by finite rank operators if for
every compact disk S ⊂ V there exists a sequence (fn)n∈N of finite rank oper-
ators fn : V →W such that fn converges uniformly to f in Hom(〈S〉,W ). An
operator f : V →W is of finite rank if it is contained in the image of the natu-
ral map from the uncompleted tensor product W ⊗ V ′ into Hom(V,W ) where
V ′ = Hom(V,C) is the dual space of V . By definition, a complete bornologi-
cal vector space V satisfies the (global) approximation property if the identity
map on V can be approximated uniformly on compact subsets by finite rank
operators.
We recall that a bornological vector space V is regular if the bounded linear
functionals on V separate the points of V . Let us remark that there is also a
local version of the approximation property which is equivalent to the global
one if we restrict attention to regular spaces. Finally, we point out that for a
Fréchet space with the precompact bornology the bornological approximation
property is equivalent to Grothendieck’s approximation property [26].

Proposition 8.4. Let A be a bornological algebra whose underlying bornological
vector space is a Schwartz space satisfying the approximation property. Then
A is tensor subcomplete.

Proof. According to lemma 8.3 it suffices to show that the tensor powers of A
are uniformly subcomplete. Let S ⊂ A be a small disk. We may assume S is
compact and that there is a completant small disk T ⊂ A containing S such that
the inclusion 〈S〉 → 〈T 〉 can be approximated uniformly by finite rank operators

on A. We will show that ker(〈S〉⊗̂n → 〈U〉⊗̂n) = ker(〈S〉⊗̂n → 〈T 〉⊗̂n) for
every completant small disk U containing T . As in the proof of proposition
8.1 this statement easily implies that the tensor powers A⊗n are uniformly
subcomplete.

Take an element x ∈ ker(〈S〉⊗̂n → 〈U〉⊗̂n). Then there is a compact disk
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K ⊂ 〈S〉 such that x ∈ K⊗̂n. Since A is regular we find a sequence (fk)k∈N of
finite rank operators fk : A→ 〈T 〉 approximating the inclusion map uniformly

on K. The uniform convergence of the operators fk on K implies that f ⊗̂nk
converges uniformly towards the canonical map 〈K〉⊗̂n → 〈T 〉⊗̂n. In particular,

the image of x in 〈T 〉⊗̂n is the limit of f ⊗̂nk (x). Since the finite rank maps fk
are restrictions of maps defined on 〈U〉 and x is in the kernel of 〈S〉⊗̂n → 〈U〉⊗̂n
we have f ⊗̂nk (x) = 0 for all k. Hence x ∈ ker(〈S〉⊗̂n → 〈T 〉⊗̂n) as desired. �

It follows in particular that the algebra A⊗KG is tensor subcomplete provided
A is a Schwartz space satisfying the approximation property.

Proposition 8.5. Let G be a totally disconnected group and let A be a G-
algebra whose underlying bornological vector space is a Schwartz space satisfying
the approximation property. Then the canonical chain map

XG(T (A⊗KG))Lc → XG(T (A⊗KG))c

induces an isomorphism in the local derived category.

Proof. Let us abbreviate X = XG(T (A ⊗ KG)) and remark that the AYD-
moduleX can be written in the formX = A(G)⊗V for a separated bornological
vector space V . Using this observation and proposition 8.4 one checks easily
that the inductive system dis(X)c is essentially injective. Due to proposition 4.7
it follows that the natural map XLc ∼= ho- lim−→(dis(X)c) → lim−→(dis(X)c) = Xc

is a local homotopy equivalence. This yields the claim. �

An analogous argument shows thatXG(T C)Lc → XG(T C)c is a local homotopy
equivalence. It follows that there is a chain of canonical isomorphisms

XG(T C)Lc ∼= XG(T C)c ∼= XG(C) = OG[0]

in the local derived category. In fact, the seond isomorphism is a consequence
of the fact that C is analytically quasifree combined with homotopy invariance.
The last equality is established in [35].
Consider in particular the case that G is a compact group. Then the paracom-
plex OG[0] is primitive. Taking into account stability, this yields

HLG∗ (C, B) = H∗(HomG(OG[0], XG(T B)Lc)),

and analogously we have

HAG∗ (C, B) = H∗(HomG(OG[0], XG(T B)c))

for every G-algebra B. We conclude that there exists a natural transforma-
tion HLG∗ (C, B) → HAG∗ (C, B) between equivariant local and analytic cyclic
homology if the group is compact.

Proposition 8.6. Let G be compact and let B be a G-algebra whose underly-
ing bornological vector space is a Schwartz space satisfying the approximation
property. Then the natural map

HLG∗ (C, B)→ HAG∗ (C, B)
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is an isomorphism. In particular, there is a canonical isomorphism

HLG∗ (C,C) ∼= HAG∗ (C,C) = R(G)

where R(G) is the algebra of conjugation invariant smooth functions on G.

Proof. Using stability, the first assertion follows from proposition 8.5 and the
fact that OG[0] is primitive. For the second claim observe that R(G) = (OG)G

is the invariant part of OG. �

9. The isoradial subalgebra theorem

In this section we discuss the notion of an isoradial subalgebra and prove the
isoradial subalgebra theorem which states that equivariant local cyclic homol-
ogy is invariant under the passage to isoradial subalgebras.
Recall that a subset V of a bornological vector space V is called locally dense
if for any small subset S ⊂ V there exists a small disk T ⊂ V such that any
v ∈ S is the limit of a T -convergent sequence with entries in V ∩ T . Moreover
recall that a separated (complete) bornological algebra A is locally multiplica-
tive iff it is isomorphic to an inductive limit of (complete) normed algebras.
The following definition is taken from [26].

Definition 9.1. Let A and A be complete locally multiplicative bornological
algebra. A bounded homomorphism ι : A → A between bornological algebras is
called isoradial if it has locally dense range and

ρ(ι(S);A) = ρ(S;A)

for all small subsets S ⊂ A. If in addition ι is injective we say that A is an
isoradial subalgebra of A.

We will frequently identify A with its image ι(A) ⊂ A provided ι : A → A is
an injective bounded homomorphism. However, note that the bornology of A
is usually finer than the subspace bornology on ι(A). Remark in addition that
the inequality ρ(ι(S);A) ≤ ρ(S;A) is automatic for every small subset S ⊂ A.
If A and A are G-algebras and ι : A → A is an equivariant homomorphism
defining an isoradial subalgebra we say that A is an isoradial G-subalgebra of
A .
Assume that ι : A → A is an equivariant homomorphism and consider the
equivariant homomorphism i : A⊗KG → A⊗KG obtained by tensoring ι with
the identity map on KG. It is shown in [26] that isoradial homomorphisms
are preserved under tensoring with nuclear locally multiplicative algebras. In
particular, this yields the following statement.

Proposition 9.2. If ι : A → A is an isoradial G-subalgebra then i : A⊗KG →
A⊗KG is an isoradial G-subalgebra as well.

Note that the algebra KG carries the fine bornology which implies that tensor
products of KG with complete spaces are automatically complete.
Let us now formulate and prove the isoradial subalgebra theorem.
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Theorem 9.3. Let ι : A → A be an isoradial G-subalgebra. Suppose that there
exists a sequence (σn)n∈I of bounded linear maps σn : A → A such that for
each completant small disk S ⊂ A the maps ισn converge uniformly towards
the inclusion map 〈S〉 → A. Then the class [ι] ∈ HLG∗ (A, A) is invertible.

Note that the existence of bounded linear maps σn : A → A with these prop-
erties already implies that A ⊂ A is locally dense. We point out that the maps
σn in theorem 9.3 are not assumed to be equivariant.
In fact, as a first step in the proof we shall modify these maps in order to ob-
tain equivariant approximations. Explicitly, let us define equivariant bounded
linear maps sn : A⊗KG → A⊗KG by

sn(a⊗ k)(r, t) = t · σn(t−1 · a)k(r, t)
where we view elements in A⊗KG as smooth function on G×G with values in
A. As above we write i for the equivariant homomorphism A⊗KG → A⊗KG
induced by ι. Since the maps ισn converge to the identity uniformly on small
subsets of A by assumption, the maps isn converge to the identity uniformly
on small subsets of A⊗KG.
We deduce that theorem 9.3 is a consequence of the following theorem.

Theorem 9.4. Let ι : A → A be an isoradial G-subalgebra. Suppose that there
exists a sequence (σn)n∈I of equivariant bounded linear maps σn : A→ A such
that for each completant small disk S ⊂ A the maps ισn converge uniformly
towards the inclusion map 〈S〉 → A. Then the chain map XG(T A)→ XG(T A)
induced by ι is a local homotopy equivalence.

The proof of theorem 9.4 is divided into several steps. Let S ⊂ A be a small
completant multiplicatively closed disk. By the definition of uniform conver-
gence, there exists a small completant disk T ⊂ A containing S such that ισn
defines a bounded linear map 〈S〉 → 〈T 〉 for every n and the sequence (ισn)n∈N
converges to the natural inclusion map in Hom(〈S〉, 〈T 〉) in operator norm.
Hence there exists a null sequence (ǫn)n∈N of positive real numbers such that
ισn(x)− x ∈ ǫnT for all x ∈ S. After rescaling with a positive scalar λ we may
assume that T is multiplicatively closed and that S ⊂ λT . Using the formula

ωισn(x, y) = ισn(xy)− ισn(x)ισn(y)

= (ισn(xy)− xy)− (ισn(x)− x)(ισn(y)− y)− x(ισn(y)− y)− (ισn(x)− x)y
for x, y ∈ S and that T is multiplicatively closed we see that for any given ǫ > 0
we find N ∈ N such that ωισn(S, S) ⊂ ǫT for n ≥ N . Remark that we have
ωισn = ιωσn since ι is a homomorphism. We deduce

lim
n→∞

ρ(ιωσn(S, S);A) = 0

using again that T is multiplicatively closed. This in turn implies

lim
n→∞

ρ(ωσn(S, S);A) = 0

since A ⊂ A is an isoradial subalgebra. This estimate will be used to obtain
local inverses for the chain map induced by ι.
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We need some preparations. Let B and C be arbitrary separated G-algebras.
Any equivariant bounded linear map f : B → C extends to an equivariant
homomorphism T f : T B → T C. This homomorphism is bounded iff f has
analytically nilpotent curvature.

Lemma 9.5. Let C be a separated bornological algebra and let S ⊂ T C be small.
Then

ρ(τC(S);C) = ρ(S; T C)

where τC : T C → C is the quotient homomorphism.

Proof. Taking into account that τC is a bounded homomorphism it suffices to
show that ρ(τC(S);C) < 1 implies ρ(S; T C) ≤ 1. We may assume that the set
S is of the form

S = R+ [T ](dTdT )∞

where R ⊂ C and T ⊂ C are small disks. If ρ(τC(S);C) < 1 we find λ > 1
such that (λR)∞ ⊂ C is small. Let us choose µ such that λ−1 + µ−1 < 1
and consider the small disk P = µ(λR)∞ in C. By construction we have
R · [P ] ⊂ λ−1P as well as dRd[P ] ⊂ µ−1dPdP . Moreover the disked hull I
of P ∪ [P ](dPdP )∞ is a small subset of T C which contains R. Now consider
x ∈ R and [y0]dy1 · · · dy2n ∈ [P ](dPdP )n. Since

x ◦ [y0]dy1 · · · dy2n = x[y0]dy1 · · · dy2n + dxd[y0]dy1 · · · dy2n
the previous relations yield νR ◦ I ⊂ I for some ν > 1. By induction we see
that the multiplicative closure Q of νR in T C is small. Choose η such that
ν−1 + 2η−1 < 1, set

K = η[T ](dTdT )∞

and let L be the multiplicative closure of [Q] ◦K ◦ [Q]. By construction, the
set [Q] ◦ K ◦ [Q] is contained in the analytically nilpotent algebra JC which
implies that L ⊂ T C is small. Let J ⊂ T C be the disked hull of the set Q+L.
Then J is small and we have S ⊂ J . In addition, it is straightforward to check
R◦J ⊂ ν−1J and [T ](dTdT )∞◦J ⊂ 2η−1J which shows S◦J ⊂ J . In the same
way as above it follows that S∞ ⊂ T C is small and deduce ρ(S; T C) ≤ 1. �

Lemma 9.6. Let f : B → C be an equivariant bounded linear map between
separated G-algebras. Consider the induced chain map XG(T f) : XG(T B) →
XG(T C). Given a small subset S ⊂ XG(T B) there exists a small subset T ⊂
B such that XG(T f) is bounded on the primitive submodule generated by S
provided ωf(T, T )∞ is small.

Proof. It suffices to show that, given a small set S ⊂ T B, there exists a small
set T ⊂ B such that T f(S) ⊂ T C is small provided ωf (T, T )∞ is small. We
may assume that S is of the form [R](dRdR)∞ for some small set R ⊂ B.
Let F : B → T C be the bounded linear map obtained by composing f with
the canonical bounded linear splitting σC : C → T C. The homomorphism
T f : T B → T C is given by

T f([x0]dx1 · · · dx2n) = [F (x0)]ωF (x1, x2) · · ·ωF (x2n−1, x2n)
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which shows that T f(S) is small provided ωF (R,R)∞ is small. Consider the
natural projection τC : T C → C. According to lemma 9.5 the homomorphism
τC preserves the spectral radii of all small subsets in T C. Using τC(ωF (R,R)) =
ωf (R,R) we see that ωF (R,R)∞ is small provided ρ(ωf (R,R)) < 1. Setting
T = λR for some λ > 1 yields the assertion. �

Let us come back to the proof of theorem 9.4. If P ⊂ XG(T A) is a primitive
subparacomplex then lemma 9.6 shows that σn induces a bounded chain map
P → XG(T A) provided n is large enough. In fact, we will prove that the maps
σn can be used to define bounded local homotopy inverses to the chain map
ι∗ : XG(T A)→ XG(T A) induced by ι.
More precisely, let kn : A → A ⊗ C[t] be the equivariant bounded linear map
given by kn(x)(t) = (1 − t)(ισn)(x) + tx. Here C[t] is equipped with the
bornology induced from C∞[0, 1]. Observe that the maps kn converge to the
homomorphism sending x to x⊗ 1 uniformly on small subsets of A. The same
reasoning as for the maps ισn above shows

lim
n→∞

ρ(ωkn(S, S);A⊗ C[t]) = 0

for all small subsets S ⊂ A. Now assume that P ⊂ XG(T A) is a primitive
subparacomplex. According to lemma 9.6 there exists N ∈ N such that the
induced chain map XG(T A) → XG(T (A ⊗ C[t])) is bounded on P for all
n > N . We compose this map with the chain homotopy between the evaluation
maps at 0 and 1 arising from homotopy invariance to get a bounded AYD-map
Kn : P → XG(T A) of degree one which satisfies ∂Kn +Kn∂ = id−(ισn)∗ on
P .
Similarly, consider the equivariant bounded linear map hn : A → A⊗C[t] given
by hn(x)(t) = (1 − t)(σnι)(x) + tx and observe that (ι ⊗ id)hn = knι. Since
the algebra C∞[0, 1] is nuclear the inclusion A⊗C[t]→ A⊗C[t] preserves the
spectral radii of small subsets [26]. Hence the above spectral radius estimate
for kn implies

lim
n→∞

ρ(ωhn(S, S);A⊗ C[t]) = 0

for all small subsets S ⊂ A. Now let Q ⊂ XG(T A) be a primitive subparacom-
plex. For n sufficiently large we obtain in the same way as above a bounded
AYD-map Hn : Q → XG(T A) of degree 1 such that ∂Hn +Hn∂ = id−(σnι)∗
on Q.
Using these considerations it is easy to construct bounded local contracting
homotopies for the mapping cone of the chain map ι∗ : XG(T A) → XG(T A).
This shows that ι∗ is a local homotopy equivalence and completes the proof of
theorem 9.4.

10. Applications of the isoradial subalgebra theorem

In this section we study some consequences of the isoradial subalgebra theorem
in connection with C∗-algebras. This is needed to show that equivariant local
cyclic homology is a continuously and C∗-stable functor on the category of G-
C∗-algebras. Moreover, we discuss isoradial subalgebras arising from regular
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smooth functions on simplicial complexes [36].
In the sequel we write A ⊗ B for the (maximal) tensor product of two C∗-
algebras A and B. We will only consider such tensor products when one of the
involved C∗-algebras is nuclear, hence the C∗-tensor product is in fact uniquely
defined in these situations. Moreover, our notation should not lead to confusion
with the algebraic tensor product since we will not have to work with algebraic
tensor products of C∗-algebras at all. All C∗-algebras are equipped with the
precompact bornology when they are considered as bornological algebras.
As a technical preparation we have to examine how the smoothing of G-C∗-
algebras is compatible with isoradial homomorphisms. Let us recall from [25]
that a representation π of G on a complete bornological vector space V is con-
tinuous if the adjoint of π defines a bounded linear map [π] : V → C(G, V )
where C(G, V ) is the space of continuous functions on G with values in V in
the bornological sense. For our purposes it suffices to remark that the repre-
sentation of G on a G-C∗-algebra equipped with the precompact bornology is
continuous in the bornological sense. We need the following special cases of
results obtained by Meyer in [26].

Lemma 10.1. Let A and A be complete locally multiplicative bornological alge-
bras on which G acts continuously. If ι : A → A is an equivariant isoradial
homomorphism then

Smooth(ι) : Smooth(A)→ Smooth(A)

is an isoradial homomorphism as well. Moreover, if C is a complete nuclear
locally multiplicative G-algebra then the natural homomorphism

Smooth(A)⊗̂C → Smooth(A⊗̂C)

is isoradial.

Proof. It is shown in [26] that the inclusion Smooth(B) → B is an isoradial
subalgebra for every complete locally multiplicative bornological algebra B on
which G acts continuously. This yields easily the first claim. In addition, the
homomorphism Smooth(A)⊗̂C → A⊗̂C is isoradial because C is nuclear [26].
Since the action on C is already smooth it follows that

Smooth(A)⊗̂C ∼= Smooth(Smooth(A)⊗̂C)→ Smooth(A⊗̂C)

is isoradial according to the first part of the lemma. �

Let A be a G-C∗-algebra and consider the natural equivariant homomorphism
A⊗̂C∞[0, 1] → C([0, 1], A) = A ⊗ C[0, 1]. This map induces a bounded equi-
variant homomorphism

Smooth(A)⊗̂C∞[0, 1] ∼= Smooth(A⊗̂C∞[0, 1])→ Smooth(C([0, 1], A))

and we have the following result.

Proposition 10.2. The map Smooth(A)⊗̂C∞[0, 1]→ Smooth(A⊗C[0, 1]) is
an isoradial G-subalgebra and defines an invertible element in

HLG0 (Smooth(A)⊗̂C∞[0, 1],Smooth(A⊗ C[0, 1]))
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for every G-C∗-algebra A.

Proof. It is shown in [26] that the natural inclusion ι : A⊗̂C∞[0, 1] →
C([0, 1], A) is isoradial. Hence the homomorphism Smooth(A)⊗̂C∞[0, 1] →
Smooth(C([0, 1], A)) is isoradial according to lemma 10.1.
We choose a family σn : C([0, 1], A) → A⊗̂C∞[0, 1] of equivariant smoothing
operators such that the maps ισn are uniformly bounded and converge to the
identity pointwise. It follows that the maps ισn converge towards the identity
uniformly on precompact subsets of C([0, 1], A). The maps σn induce equivari-
ant bounded linear maps σn : Smooth(C([0, 1], A)) → Smooth(A)⊗̂C∞[0, 1]
satisfying the condition of the isoradial subalgebra theorem 9.3. This yields
the assertion. �

Let KG = K(L2(G)) be the algebra of compact operators on the Hilbert space
L2(G). The C∗-algebra KG is equipped with the action of G induced by the
regular representation. For every G-C∗-algebra A we have a natural bounded
equivariant homomorphism A⊗̂KG → A ⊗ KG. This gives rise to equivariant
homomorphisms

Smooth(A)⊗̂KG → Smooth(A⊗̂KG)→ Smooth(A⊗KG).

Similarly, let K = K(l2(N)) be the algebra of compact operators on an infinite
dimensional separable Hilbert space with the trivial G-action. If M∞(C) de-
notes the direct limit of the finite dimensional matrix algebras Mn(C) we have
a canonical bounded homomorphism Smooth(A)⊗̂M∞(C)→ Smooth(A⊗K).

Proposition 10.3. The homomorphism Smooth(A)⊗̂KG → Smooth(A⊗KG)
is an isoradial G-subalgebra and defines an invertible element in

HLG0 (Smooth(A)⊗̂KG,Smooth(A⊗KG))

for every G-C∗-algebra A. An analogous assertion holds for the homomorphism
Smooth(A)⊗̂M∞(C)→ Smooth(A⊗K).

Proof. We will only treat the map Smooth(A)⊗̂KG → Smooth(A ⊗KG) since
the claim concerning the compact operators with the trivial action is obtained
in a similar way.
Observe that a small subset of KG is contained in a finite dimensional subal-
gebra of the form Mn(C). Since A ⊗Mn(C) is a bornological subalgebra of
A ⊗ KG it follows that the homomorphism ι : A⊗̂KG → A ⊗ KG is isoradial.
Due to lemma 10.1 the same is true for the induced map Smooth(A)⊗̂KG →
Smooth(A⊗KG). Since G is second countable and D(G) ⊂ L2(G) is dense we
find a countable orthonormal basis (en)n∈N of L2(G) contained in D(G). Pro-
jecting to the linear subspace Cn ⊂ L2(G) generated by the vectors e1, . . . , en
defines a bounded linear map σn : A ⊗ KG → A⊗̂KG. The maps ισn are
uniformly bounded and converge towards the identity on A ⊗ KG pointwise.
Hence they converge towards the identity uniformly on small subsets of A⊗KG.
Explicitly, if pn ∈ A+⊗̂KG denotes the element given by

pn =

n∑

j=1

1⊗ |ej〉〈ej |
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then σn can be written as σn(T ) = pnTpn. Since the vectors ej are smooth
we conclude that σn induces a bounded linear map Smooth(A ⊗ KG) →
Smooth(A)⊗̂KG which will again be denoted by σn. The maps ισn converge
towards the identity uniformly on small subsets of Smooth(A ⊗ KG) as well.
Hence the claim follows from the isoradial subalgebra theorem 9.3. �

We conclude this section with another application of the isoradial subalgebra
theorem. Recall from [36] that a G-simplicial complex is a simplicial complex
X with a type-preserving smooth simplicial action of the totally disconnected
group G. We will assume in the sequel that all G-simplicial complexes have at
most countably many simplices. A regular smooth function on X is a function
whose restriction to each simplex σ of X is smooth in the usual sense and which
is constant in the direction orthogonal to the boundary ∂σ in a neighborhood
of ∂σ. The algebra C∞c (X) of regular smooth functions on X with compact
support is a G-algebra in a natural way.

Proposition 10.4. Let X be a finite dimensional and locally finite G-simplicial
complex. Then the natural map ι : C∞c (X) → C0(X) is an isoradial G-
subalgebra and defines an invertible element in

HLG0 (C∞c (X),Smooth(C0(X))).

Proof. As for smooth manifolds one checks that the inclusion homomomor-
phism ι : C∞c (X)→ C0(X) is isoradial. By induction over the dimension of X
we shall construct a sequence of bounded linear maps σn : C0(X) → C∞c (X)
such that ισn converges to the identity uniformly on small sets. For k = 0
this is easily achieved by restriction of functions to finite subsets and extension
by zero. Assume that the maps σn are constructed for all (k − 1)-dimensional
G-simplicial complexes and assume that X is k-dimensional. If Xk−1 denotes
the (k − 1)-skeleton of X we have a commutative diagram

C∞(X,Xk−1) // //

��

C∞c (X) // //

��

C∞c (Xk−1)

��
C(X,Xk−1) // // C0(X) // // C0(X

k−1)

where C∞(X,Xk−1) and C(X,Xk−1) denote the kernels of the canonical re-
striction homomorphisms and the vertical arrows are natural inclusions. It
is shown in [36] that the upper extension has a bounded linear splitting,
and the lower extension has a bounded linear splitting as well. Note that
the C(X,Xk−1) is a C∗-direct sum of algebras of the form C0(∆

k \ ∂∆k)
where ∆k denotes the standard k-simplex and ∂∆k is its boundary. Simi-
larly, C∞c (X,Xk−1) is the bornological direct sum of corresponding subalgebras
C∞c (∆k \∂∆k). Hence, by applying suitable cutoff functions, we are reduced to
construct approximate inverses to the inclusion C∞c (∆k\∂∆k)→ C0(∆

k\∂∆k).
This is easily achieved using smoothing operators. Taking into account the iso-
radial subalgebra theorem 9.3 yields the assertion. �
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11. Tensor products

In this section we study the equivariant X-complex for the analytic tensor
algebra of the tensor product of two G-algebras. This will be used in the
construction of the equivariant Chern-Connes character in the odd case.
Let us first recall the definition of the tensor product of paracomplexes of AYD-
modules [35]. If C and D are paracomplexes of separated AYD-modules then
the tensor product C ⊠D is given by

(C⊠D)0 = C0⊗OGD0⊕C1⊗OGD1, (C⊠D)1 = C1⊗OGD0⊕C0⊗OGD1

where the group G acts diagonally and OG acts by multiplication. Using that
OG is commutative one checks that the tensor product C ⊠D becomes a sep-
arated AYD-module in this way. The boundary operator ∂ in C ⊠D is defined
by

∂0 =

(
∂ ⊗ id − id⊗∂
id⊗∂ ∂ ⊗ T

)
∂1 =

(
∂ ⊗ T id⊗∂
− id⊗∂ ∂ ⊗ id

)

and turns C ⊠ D into a paracomplex. Remark that the formula for ∂ does
not agree with the usual definition of the differential in a tensor product of
complexes.
Now let A and B be separated bornological algebras. As it is explained in [6],
the unital free product A+ ∗B+ of A+ and B+ can be written as

A+ ∗B+ = A+ ⊗B+ ⊕
⊕

j>0

Ωj(A)⊗ Ωj(B)

with the direct sum bornology and multiplication given by the Fedosov product

(x1 ⊗ y1) ◦ (x2 ⊗ y2) = x1x2 ⊗ y1y2 − (−1)|x1|x1dx2 ⊗ dy1y2.
An element a0da1 · · · dan ⊗ b0db1 · · · dbn corresponds to a0b0[a1, b1] · · · [an, bn]
in the free product under this identification where [x, y] = xy − yx denotes
the ordinary commutator. Note that if A and B are G-algebras then the free
product is again a separated G-algebra in a natural way.
Consider the extension

I // // A+ ∗B+ π // // A+ ⊗B+

where I is the kernel of the canonical homomorphism π : A+ ∗B+ → A+⊗B+.
Using the description of the free product in terms of differential forms one has

Ik =
⊕

j≥k
Ωj(A) ⊗ Ωj(B)

for the powers of the ideal I.
Analogous to the analytic bornology on tensor algebras we consider an analytic
bornology on free products. By definition, the analytic bornology on A+ ∗B+

is the bornology generated by the sets

S ⊗ T ∪
∞⋃

n=1

(S(dS)n ∪ (dS)n)⊗ (T (dT )n ∪ (dT )n)

Documenta Mathematica 12 (2007) 313–359



348 Christian Voigt

for all small sets S ⊂ A and T ⊂ B. This bornology turns A+ ∗ B+ into
a separated bornological algebra. We write A+ ⋆ B+ for the free product of
A+ and B+ equipped with the analytic bornology. Clearly the identity map
A+ ∗B+ → A+ ⋆ B+ is a bounded homomorphism. Consequently the natural
homomorphisms ιA : A+ → A+ ⋆ B+ and ιB : B+ → A+ ⋆ B+ are bounded.
Every unital homomorphism f : A+⋆B+ → C into a unital bornological algebra
C is determined by a pair of homomorphisms fA : A → C and fB : B → C.
Define a linear map cf : A ⊗ B → C by cf (a, b) = [fA(a), fB(b)]. Let us call
fA and fB almost commuting if

cf (S)∞ =

∞⋃

n=1

cf (S)n

is small for every small subset S ⊂ A⊗B. Clearly, cf = 0 iff the images of fA
and fB commute. The following property of A+ ⋆ B+ is a direct consequence
of the definition of the analytic bornology.

Lemma 11.1. Let A and B be separated bornological algebras. For a pair of
bounded equivariant homomorphisms fA : A→ C and fB : B → C into a unital
bornological algebra C the corresponding unital homomorphism f : A+ ⋆B+ →
C is bounded iff fA and fB are almost commuting.

In particular, the canonical homomorphism π : A+⋆B+ → A+⊗B+ is bounded
and we obtain a corresponding extension

I // // A+ ⋆ B+ π // // A+ ⊗B+

of bornological algebras with bounded linear splitting. It is straightforward
to verify that the ideal I with the induced bornology is analytically nilpotent.
Remark that if A and B are G-algebras then all the previous constructions are
compatible with the group action.
Let I be a G-invariant ideal in a separated G-algebra R and define the para-
complex H2

G(R, I) by

H2
G(R, I)0 = OG ⊗R/(OG ⊗ I2 + b(OG ⊗ IdR))

in degree zero and by

H2
G(R, I)1 = OG ⊗ Ω1(R)/(b(Ω2

G(R)) +OG ⊗ IΩ1(R))

in degree one with boundary operators induced from XG(R).
Now let A and B be separated G-algebras. We abbreviate R = A+ ⋆ B+ and
define an AYD-map φ : XG(A+) ⊠XG(B+)→H2

G(R, I) by

φ(f(t) ⊗ x⊗ y) = f(t)⊗ xy
φ(f(t) ⊗ x0dx1 ⊗ y0dy1) = f(t)⊗ x0(t

−1 · y0)[x1, t
−1 · y1]

φ(f(t) ⊗ x⊗ y0dy1) = f(t)⊗ xy0dy1
φ(f(t) ⊗ x0dx1 ⊗ y) = f(t)⊗ x0dx1y
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where [x, y] = xy − yx denotes the commutator. The following result for the
analytic free product R = A+ ⋆ B+ is obtained in the same way as the corre-
sponding assertion in [35] for the ordinary free product.

Proposition 11.2. The map φ : XG(A+)⊠XG(B+)→H2
G(R, I) defined above

is an isomorphism of paracomplexes for all separated G-algebras A and B.

After these preparations we shall prove the following assertion.

Proposition 11.3. Let A and B be separated locally multiplicative G-algebras.
Then there exists a natural chain map

XG(T (A+ ⊗B+))Lc → (XG((T A)+)Lc
⊠XG((T B)+)Lc)Lc

of paracomplexes. There is an analogous chain map if the derived completion
is replaced by the ordinary completion.

Proof. Let us abbreviate Q = (T A)+ ⊗ (T B)+. The canonical homomor-
phism τ : Q → A+ ⊗ B+ induces a bounded equivariant homomorphism
T Q → T (A+ ⊗ B+). Conversely, the obvious splitting for τ is a lanilcur
since the algebras A and B are locally multiplicative. It follows that there is
a canonical bounded equivariant homomorphism T (A+ ⊗ B+) → T Q as well.
As a consequence we obtain a natural homotopy equivalence

XG(T Q) ≃ XG(T (A+ ⊗B+))

using homotopy invariance.
We have another analytically nilpotent extension of Q defined as follows. Since
commutators in the unital free product (T A)+ ∗ (T B)+ are mapped to zero
under the natural map (T A)+ ∗ (T B)+ → Q we have the extension

I // // R
π // // Q

where R = (T A)+ ⋆ (T B)+ is the analytic free product of (T A)+ and (T B)+

and I is the kernel of the bounded homomorphism π : R → Q. Since the
G-algebra I is analytically nilpotent the natural equivariant homomorphism
T Q→ R is bounded and induces a chain map XG(T Q)→ XG(R).
Next we have an obvious chain map

p : XG(R)→H2
G(R, I)

and by proposition 11.2 there exists a natural isomorphism

XG((T A)+) ⊠XG((T B)+) ∼= H2
G(R, I)

of paracomplexes. Assembling these maps and homotopy equivalences yields
a chain map XG(T (A+ ⊗ B+)) → XG((T A)+) ⊠XG((T B)+). Inspecting the
construction of the derived completion we get in addition a natural chain map

(XG((T A)+) ⊠XG((T B)+))Lc → (XG((T A)+)Lc
⊠XG((T B)+)Lc)Lc

which immediately yields the assertion for the derived completion. For the
ordinary completion the argument is essentially the same. �
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Corollary 11.4. Let A and B be separated locally multiplicative G-algebras.
Then there exists a natural chain map

XG(T (A⊗B))Lc → (XG(T A)Lc
⊠XG(T B)Lc)Lc.

An analogous assertion holds if the derived completion is replaced by the ordi-
nary completion.

Proof. The claim follows easily from proposition 11.3 by applying the excision
theorem 7.7 to tensor products of the extensions 0 → A → A+ → C → 0 and
0→ B → B+ → C→ 0. �

Proposition 11.5. Let A be a separated locally multiplicative G-algebra. Then
the natural chain map

XG(T (C⊗A))Lc → (XG(T C)Lc
⊠XG(T A)Lc)Lc

is a homotopy equivalence. Similarly, one obtains a homotopy equivalence if
the derived completion is replaced by the ordinary completion.

Proof. Recall that the natural mapXG(T C)Lc → XG(T C)c is a local homotopy
equivalence and that XG(T C)c ≃ XG(C) = OG[0] using the projection homo-
morphism T C → C. As a consequence we obtain a natural homotopy equiva-
lence (XG(T C)Lc

⊠XG(T A)Lc)Lc → (OG[0] ⊠XG(T A)Lc)Lc. The composition
of the latter with the chain mapXG(T (C⊗A))Lc → (XG(T C)Lc

⊠XG(T A)Lc)Lc

obtained in corollary 11.4 can be identified with the canonical homotopy equiv-
alence XG(T (C⊗A))Lc ∼= XG(T A)Lc ≃ (XG(T A)Lc)Lc. This proves the claim
for the derived completion. For the ordinary completion the argument is anal-
ogous. �

We remark that using the perturbation lemma one may proceed in a similar
way as for the periodic theory [35] in order to construct a candidate for the
homotopy inverse to the map XG(R)c → H2

G(R)c induced by the projection
p occuring in the proof of proposition 11.3. The problem is that the formula
thus obtained does not yield a bounded map in general. However, a more re-
fined construction might yield a bounded homotopy inverse. For our purposes
proposition 11.5 is sufficient.

12. Algebraic description of equivariant Kaspararov theory

In this section we review the description of equivariant KK-theory arising
from the approach developped by Cuntz [4], [5]. This approach to KK-theory
is based on extensions and will be used in the definition of the equivariant
Chern-Connes character below.
One of the virtues of the framework in [4] is that it allows to construct bivariant
versions of K-theory in very general circumstances. Moreover, one can adapt
the setup to treat equivariant versions of such theories as well. The main
ingredient in the definition is a class of extensions in the underlying category
of algebras which contains certain fundamental extensions. In particular one
needs a suspension extension, a Toeplitz extension and a universal extension.
In addition one has to specify a tensor product which preserves the given class
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of extensions.
For equivariant KK-theory the underlying category of algebras is the category
G-C∗-Alg of separable G-C∗-algebras. By definition, morphisms in G-C∗-Alg
are the equivariant ∗-homomorphisms. The correct choice of extensions is the
class E of extensions of G-C∗-algebras with equivariant completely positive
splitting. As a tensor product one uses the maximal C∗-tensor product.
The suspension extension of a G-C∗-algebra A is

Es(A) : A(0, 1) // // A(0, 1] // // A

where A(0, 1) denotes the tensor product A ⊗ C0(0, 1), and accordingly the
algebras A(0, 1] and A[0, 1] are defined. The group action on these algebras is
given by the pointwise action on A.
The Toeplitz extension is defined by

Et(A) : K⊗A // // T⊗A // // C(S1)⊗A

where T is the Toeplitz algebra, that is, the universal C∗-algebra generated by
an isometry. As usual K is the algebra of compact operators, and K and T are
equipped with the trivial G-action.
Finally, one needs an appropriate universal extension [5]. Given an algebra
A in G-C∗-Alg there exists a tensor algebra TA in G-C∗-Alg together with a
canonical surjective equivariant ∗-homomorphism τA : TA → A such that the
extension

Eu(A) : JA // // TA // // A

is contained in E where JA denotes the kernel of τA. Moreover, this extension is
universal in the following sense. Given any extension E : 0→ K → E → A→ 0
in E there exists a commutative diagram

JA // //

��

TA // //

��

A

K // // E // // A

The left vertical map JA → K in this diagram is called the classifying map
of E . One should not confuse TA with the analytic tensor algebra used in the
construction of analytic and local cyclic homology.
One defines J2A = J(JA) and recursively JnA = J(Jn−1A) for n ∈ N as
well as J0A = A. Let us denote by φA : JA → C(S1) ⊗ A the equivariant
∗-homomorphism obtained by composing the classifying map JA→ A(0, 1) of
the suspension extension with the inclusion map A(0, 1)→ C(S1)⊗A given by
viewing A(0, 1) as the ideal of functions vanishing in the point 1. This yields
an equivariant ∗-homomorphism ǫA : J2A → K ⊗ A as the left vertical arrow
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in the commutative diagram

J2A // //

ǫA

��

TJA // //

��

JA

φA
��

K⊗A // // T⊗A // // C(S1)⊗A
where the bottom row is the Toeplitz extension Et(A). The classifying map
ǫA plays an important role in the theory. If [A,B]G denotes the set of equi-
variant homotopy classes of morphisms between A and B then the previous
construction induces a map S : [JkA,K ⊗ B] → [Jk+2A,K ⊗ B] by setting
S[f ] = [(K⊗ f) ◦ ǫJk+2A]. Here one uses the identification K⊗K⊗B ∼= K⊗B.
We write KG for the algebra of compact operators on the regular representation
L2(G) equipped with its natural G-action. The equivariant stabilization AG of
a G-C∗-algebra A is defined by AG = A ⊗ K ⊗ KG. It has the property that
AG ⊗K(H) ∼= AG as G-C∗-algebras for every separable G-Hilbert space H.
Using this notation the equivariant bivariantK-group obtained in the approach
of Cuntz can be written as

kkG∗ (A,B) ∼= lim−→
j

[J∗+2j(AG),K⊗BG]

where the direct limit is taken using the maps S defined above. It follows
from the results in [5] that kkG∗ (A,B) is a graded abelian group and that there
exists an associative bilinear product for kkG∗ . Let us remark that we have
inserted the algebra J∗+2j(KG⊗K⊗A) in the formula defining kkG∗ instead of
KG ⊗ K ⊗ J∗+2jA as in [5]. Otherwise the construction of the product seems
to be unclear.
We need some more terminology. A functor F defined on the category of G-C∗-
algebras with values in an additive category is called (continuously) homotopy
invariant if F (f0) = F (f1) whenever f0 and f1 are equivariantly homotopic
∗-homomorphisms. It is called C∗-stable if there exists a natural isomorphism
F (A) ∼= F (A ⊗ K ⊗ KG) for all G-C∗-algebras A. Finally, F is called split
exact if the sequence 0→ F (K)→ F (E)→ F (Q)→ 0 is split exact for every
extension 0→ K → E → Q→ 0 of G-C∗-algebras that splits by an equivariant
∗-homomorpism σ : Q→ E.
Equivariant KK-theory [16] can be viewed as an additive category KKG with
separable G-C∗-algebras as objects and KKG

0 (A,B) as the set of morphisms
between two objects A and B. Composition of morphisms is given by the Kas-
parov product. There is a canonical functor ι : G-C∗-Alg → KKG which is
the identity on objects and sends equivariant ∗-homomorphisms to the corre-
sponding KK-elements. Equivariant KK-theory satisfies the following univer-
sal property [34], [22].

Theorem 12.1. An additive functor F from G-C∗-Alg into an additive category
C factorizes uniquely over KKG iff it is continuously homotopy invariant, C∗-
stable and split exact. That is, given such a functor F there exists a unique
functor chF : KKG → C such that F = chF ι.
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It follows from the theory developped in [4] that the functor kkG is homotopy
invariant, C∗-stable and split exact. In fact, it is universal with respect to these
properties. As a consequence one obtains the following theorem.

Theorem 12.2. For all separable G-C∗-algebras A and B there is a natural
isomorphism KKG

∗ (A,B) ∼= kkG∗ (A,B).

As already indicated above we will work with the description of equivariant
KK-theory provided by kkG∗ in the sequel. In other words, for our purposes we
could as well take the definition of kkG∗ as definition of equivariant KK-theory.

13. The equivariant Chern-Connes character

In this section we construct the equivariant Chern-Connes character from equi-
variant KK-theory into equivariant local cyclic homology. Moreover we calcu-
late the character in a simple special case.
First let us extend the definition of equivariant local cyclic homology HLG∗ to
bornological algebras that are equipped with a not necessarily smooth action of
the group G. This is done by first applying the smoothing functor Smooth in
order to obtain separated G-algebras. In particular, we may view equivariant
local cyclic homology as an additive category HLG with the same objects as
G-C∗-Alg and HLG0 (A,B) as the set of morphisms between two objects A and
B. By construction, there is a canonical functor from G-C∗-Alg to HLG.

Theorem 13.1. Let G be a totally disconnected group. The canonical functor
from G-C∗-Alg to HLG is continuously homotopy invariant, C∗-stable and split
exact.

Proof. Proposition 10.2 shows together with proposition 7.2 that HLG is con-
tinuously homotopy invariant. We obtain C∗-stability from proposition 10.3
together with proposition 7.4. Finally, if 0 → K → E → Q → 0 is a split
exact extension of G-C∗-algebras then 0 → Smooth(K) → Smooth(E) →
Smooth(Q)→ 0 is a split exact extension of G-algebras. Hence split exactness
follows from the excision theorem 7.6. �

Having established this result, the existence of the equivariant Chern-Connes
character in the even case is an immediate consequence of the universal prop-
erty of equivariant Kasparov theory. More precisely, according to theorem 13.1
and theorem 12.1 we obtain an additive map

chG0 : KKG
0 (A,B)→ HLG0 (A,B)

for all separable G-C∗-algebras A and B. The resulting transformation is mul-
tiplicative with respect to the Kasparov product and the composition product,
respectively. Remark that the equivariant Chern-Connes character chG0 is de-
termined by the property that it maps KK-elements induced by equivariant
∗-homomorphisms to the corresponding HL-elements.
Before we extend this character to a multiplicative transformation on KKG

∗
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we shall describe chG0 more concretely using the theory explained in sec-
tion 12. Let us fix some notation. If f : A → B is an equivariant ho-
momorphism between G-algebras we denote by ch(f) the associated class in
H0(HomG(XG(T A)Lc, XG(T B)Lc)). By slight abuse of notation we will also
write ch(f) for the corresponding element in HLG0 (A,B). Similarly, assume
that E : 0→ K → E → Q → 0 is an extension of G-algebras with equivariant
bounded linear splitting. We denote by ch(E) the element −δ(idK) where

δ : H0(HomG(XG(T K)Lc, XG(T K)Lc))→ H1(HomG(XG(T Q)Lc, XG(T K)Lc))

is the boundary map in the six-term exact sequence in bivariant homology
obtained from the generalized excision theorem 7.7. Again, by slight abuse of
notation we will also write ch(E) for the corresponding element in HLG1 (Q,K).
If f : A → B is an equivariant ∗-homomorphism between G-C∗-algebras we
write simply ch(f) instead of ch(Smooth(f)) for the element associated to the
corresponding homomorphism of G-algebras. In a similar way we proceed for
extensions of G-C∗-algebras with equivariant completely positive splitting.
Using theorem 13.1 one shows that ch(ǫA) ∈ HLG∗ (J2A,K ⊗ A) is invertible.
The same holds true for the iterated morphisms ch(ǫnA) ∈ HLG∗ (J2nA,K⊗A).
Remark also that ch(ιA) ∈ HLG∗ (A,K ⊗A) is invertible.
Now assume that x ∈ KKG

0 (A,B) is represented by f : J2nAG → K ⊗ BG.

Then the class chG0 (f) is corresponds to

ch(ιAG) · ch(ǫnAG)−1 · ch(f) · ch(ιBG)−1

inHLG0 (AG, BG), and the latter group is canonically isomorphic toHLG0 (A,B).

For the definition of chG1 we follow the discussion in [4]. We denote by j :
C0(0, 1) → C(S1) the inclusion homomorphism obtained by viewing elements
of C0(0, 1) as functions on the circle vanishing in 1. Moreover let K be the
algebra of compact operators on l2(N) and let ι : C→ K be the homomorphism
determined by sending 1 to the minimal projection onto the first basis vector in
the canonical orthonormal basis. If A is any G-C∗-algebra we write ιA : A →
A⊗K for the homomorphism obtained by tensoring ι with the identity on A.
In the sequel we write Es instead of Es(C) and similarly Et instead of Et(C) for
the Toeplitz extension of C.

Proposition 13.2. With the notation as above one has

ch(Es) · ch(j) · ch(Et) =
1

2πi
ch(ι)

in H0(HomG(XG(T C)Lc, XG(T K)Lc)).

Proof. First observe that the same argument as in the proof of proposition
10.3 shows that the element ch(ι) is invertible. Let us write z for the element
in H0(HomG(XG(T C)Lc, XG(T C)Lc)) given by of (2πi) ch(Es) · ch(j) · ch(Et) ·
ch(ι)−1. It suffices to show that z is equal to the identity.
We consider the smooth analogues of the extensions Es and Et used in [4]. The
smooth version of the suspension extension is

C∞(0, 1) // // C∞(0, 1] // // C
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where C∞(0, 1) denotes the algebra of smooth functions on [0, 1] vanishing with
all derivatives in both endpoints. Similarly, C∞(0, 1] is the algebra of all smooth
functions f vanishing with all derivatives in 0 and vanishing derivatives in 1,
but arbitrary value f(1). The smooth Toeplitz extension is

K∞ // // T∞ // // C∞(S1)

where K∞ is the algebra of smooth compact operators and T∞ is the smooth
Toeplitz algebra defined in [4]. We obtain another endomorphism z∞ of
XG(T C)Lc by repeating the construction of z using the smooth supension and
Toeplitz extensions. By naturality one has in fact z∞ = z, hence it suffices to
show that z∞ is equal to the identity.
Recall that we have a local homotopy equivalence XG(T C)Lc → XG(T C)c ≃
XG(C). Using the fact that the G-action is trivial on all algebras under consid-
eration the same argument as in [4] yields that z∞ is equal to the identity. �

We shall use the abbreviation xA = ch(Eu(A)) for the element arising from the
universal extension of the G-C∗-algebra A.

Proposition 13.3. Let A be a G-C∗-algebra and let ǫA : J2(A) → K ⊗ A be
the canonical map. Then we have the relation

xA · xJA · ch(ǫA) =
1

2πi
ch(ιA)

in H0(HomG(XG(T (Smooth(A)⊗̂KG))Lc, XG(T (Smooth(A⊗K)⊗̂KG))Lc)).

Proof. For an arbitrary G-C∗-algebra A consider the commutative diagram

XG(T (Smooth(A)⊗̂KG))Lc ∼= //

xA

��

XG(T (Smooth(C⊗A)⊗̂KG))Lc

��
XG(T (Smooth(JA)⊗̂KG))Lc //

xJA

��

XG(T (Smooth(JC⊗A)⊗̂KG))Lc

��
XG(T (Smooth(J2A)⊗̂KG))Lc //

ch(ǫA)

��

XG(T (Smooth(J2C⊗A)⊗̂KG))Lc

ch(ǫC⊗id)

��
XG(T (Smooth(K ⊗A)⊗̂KG))Lc //

ch(ιA)−1

��

XG(T (Smooth(K⊗A)⊗̂KG))Lc

ch(ιC⊗id)−1

��
XG(T (Smooth(A)⊗̂KG))Lc ∼= // XG(T (Smooth(C⊗A)⊗̂KG))Lc

where the upper part is obtain from the morphism of extensions

JA // //

��

TA // //

��

A

∼=
��

A⊗ JC // // A⊗ TC // // A⊗ C

Documenta Mathematica 12 (2007) 313–359



356 Christian Voigt

and a corresponding diagram with A replaced by JA. Observe that there is a
natural homomorphism D⊗̂Smooth(A)⊗̂KG → Smooth(D⊗A)⊗̂KG for every
trivial G-C∗-algebra D. For simplicity we will write Smooth(A) instead of
Smooth(A)⊗̂KG in the following commutative diagram

XG(T (C⊗̂Smooth(A)))Lc //

��

(XG(T C)Lc
⊠XG(T Smooth(A))Lc)Lc

xC⊠id

��
XG(T (JC⊗̂Smooth(A)))Lc //

��

(XG(T (JC))Lc
⊠XG(T Smooth(A))Lc)Lc

xJC⊠id

��
XG(T (J2C⊗̂Smooth(A)))Lc //

ch(ǫC⊗̂ id)

��

(XG(T (J2C))Lc
⊠XG(T Smooth(A))Lc)Lc

ch(ǫC)⊠id

��
XG(T (K⊗̂Smooth(A)))Lc //

ch(ιA)−1

��

(XG(T K)Lc
⊠XG(T Smooth(A))Lc)Lc

ch(ι)−1⊠id

��
XG(T (C⊗̂Smooth(A)))Lc // (XG(T C)Lc

⊠XG(T Smooth(A))Lc)Lc

obtained using corollary 11.4. According to proposition 11.5 the first and the
last horizontal map in this diagram are homotopy equivalences. Moreover,
we may connect the right column of the first diagram with the left column
of the previous diagram. Using these observations the assertion follows from
proposition 13.2 in the same way as in [4]. �

After these preparations we shall now define the Chern-Connes character in
the odd case. For notational simplicity we assume that all G-C∗-algebras A
are replaced by their equivariant stabilizations AG. We may then use the
identification

KKG
∗ (A,B) ∼= lim−→

j

[J∗+2j(A),K ⊗B]

and obtain a canonical isomorphism KKG
1 (A,B) ∼= KKG

0 (JA,B). Consider
an element u ∈ KKG

1 (A,B) and denote by u0 the element in KKG
0 (JA,B)

corresponding to u. Then the element chG1 (u) ∈ HLG1 (A,B) is defined by

chG1 (u) =
√

2πi xA · chG0 (u0)

in terms of the character in the even case obtained before. Using proposition
13.3 one concludes in the same way as in [4] that the formula

chGi+j(x · y) = chGi (x) · chGj (y)

holds for all elements x ∈ KKG
i (A,B) and y ∈ KKG

j (B,C).
We have now completed the construction of the equivariant Chern-Connes char-
acter and summarize the result in the following theorem.
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Theorem 13.4. Let G be a second countable totally disconnected locally com-
pact group and let A and B be separable G-C∗-algebras. Then there exists a
transformation

chG∗ : KKG
∗ (A,B)→ HLG∗ (A,B)

which is multiplicative with respect to the Kasparov product in KKG
∗ and

the composition product in HLG∗ . Under this transformation elements in
KKG

0 (A,B) induced by equivariant ∗-homomorphisms from A to B are mapped
to the corresponding elements in HLG0 (A,B).

The transformation obtained in this way will be called the equivariant Chern-
Connes character. One shows as in nonequivariant case that, up to possibly a
sign and a factor

√
2πi, the equivariant Chern-Connes character is compatible

with the boundary maps in the six-term exact sequences associated to an ex-
tension in E.
At this point it is not clear wether the equivariant Chern-Connes character is
a useful tool to detect information contained in equivariant KK-theory. As a
matter of fact, equivariant local cyclic homology groups are not easy to cal-
culate in general. In a separate paper we will exhibit interesting situations in
which chG∗ becomes in fact an isomorphism after tensoring the left hand side
with the complex numbers. At the same time a convenient description of the
right hand side of the character will be obtained.
Here we shall at least illustrate the nontriviality of the equivariant Chern-
Connes character in a simple special case. Assume that G is a profinite group.
The character of a finite dimensional representation of G defines an element in
the algebra R(G) = (OG)G of conjugation invariant smooth functions on G.
As usual we denote by R(G) the representation ring of G.

Proposition 13.5. Let G be a profinite group. Then the equivariant Chern-
Connes character

chG∗ : KKG
∗ (C,C)→ HLG∗ (C,C)

can be identified with the character map R(G) → R(G). This identification is
compatible with the products.

Proof. Let V be a finite dimensional representation of G. Then K(V ) is a
unital G-algebra and the element in R(G) = KKG

0 (C,C) corresponding to
V is given by the class of the equivariant homomorphism pV : C → K(V )
in KKG

0 (C,K(V )) ∼= KKG
0 (C,C) where pV is defined by pV (1) = idV . Us-

ing stability of HLG∗ and proposition 8.6 we see that the class of chG0 (pV ) in
HLG0 (C,K(V )) ∼= HLG0 (C,C) = R(G) corresponds to the character of the
representation V . The claim follows easily from these observations. �
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Abstract. Some corrections are given for the manuscript “Slope
Filtrations Revisited”, Documenta Math., Vol. 10 (2005), 447-525

2000 Mathematics Subject Classification: 14F30.

Laurent Berger has pointed out that the construction of Teichmüller presen-
tations in [3, Definition 2.5.1] is not valid: it fails to properly account for the
nonlinearity of the Teichmüller map. This would appear to invalidate those
results of [3] depending on the use of Teichmüller presentations, or on plus-
minus-zero presentations. Fortunately, these can be corrected by adapting the
technique of strong semiunit decompositions from [2], as follows.
Retain notation as in [3, § 2.5]. A strong semiunit presentation of x ∈ ΓI is a
convergent sum x =

∑
i∈Z uiπ

i in which:

(a) each nonzero ui belongs to Γ and satisfies vn(ui) = v0(ui) for all n ≥ 0;

(b) if i > j and ui, uj are both nonzero, then v0(ui) < v0(uj).

Such a presentation always exists by the same proof as in [2, Proposition 3.14],
but there is no uniqueness property. Nonetheless, in each of [3, Proposi-
tion 3.3.7(c), Proposition 4.2.2, Lemma 4.3.2], one may safely replace all ref-
erences to Teichmüller presentations (including implicit references via plus-
minus-zero presentations) with strong semiunit presentations. (One should
also disregard the parenthetical remark about canonicality in the proof of [3,
Proposition 4.2.2].)
This substitution does not suffice for the proof of surjectivity in [3,
Lemma 4.3.1], which uses the uniqueness property of Teichmüller presenta-
tions. This is harmless for the rest of the paper, because this lemma is used
nowhere. For completeness, we point out that the lemma is an immediate con-
sequence of a result of Fourquaux [1, Corollaire 3.9.19] (applied with a = 1).
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Ruochuan Liu points out that the proof of [3, Lemma 2.9.1] is incomplete: it is
only valid in case f has no slopes in [s′, s), as otherwise we cannot choose the
unit u in the first sentence of the proof. To complete the proof in general, first
note that the existence of g satisfying (a) and (b) follows from [3, Lemma 2.6.7].
To prove (c), choose s′′ with s′ < s′′ < s such that f has no slopes in [s′′, s). By
the proof of [3, Lemma 2.9.1] as written, f is divisible by g in Γ[s′′,r]. However,
since g has no slopes less than s, g is a unit in Γ[s′,s′′], so f is also divisible by
g in that ring. Since the intersection Γ[s′,s′′] ∩ Γ[s′′,r] inside Γ[s′′,s′′] is equal to
Γ[s′,r] by [3, Corollary 2.5.7], f is divisible by g in Γ[s′,r] as desired.
Liu also notes a gap in the proof of [3, Lemma 2.9.3]: it is necessary to ensure
that xi+1 ∈ Γr[π

−1]. To fix this, we must replace gi+1−xi wherever it appears
by some yi ∈ Γr such that gi+1 − xi − yi is divisible by hi+1 in Γi+1; this can
be carried out by an argument similar to [3, Lemma 2.9.2].
We also take this opportunity to point out two errata to [2]. First (as noted by
Kevin Buzzard), in the introduction (p. 95), it is incorrectly asserted that “Γcon

consists of series which take integral values on some open annulus with outer
radius 1.” In fact, an element of Γcon acquires this property only after multi-
plication by a large power of u (and conversely). Second, in [2, Lemma 2.3], R
should be taken to be a Bézout domain, not merely a Bézout ring.
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Abstract. We study low order terms of Emerton’s spectral sequence
for simply connected, simple groups. As a result, for real rank 1
groups, we show that Emerton’s method for constructing eigenva-
rieties is successful in cohomological dimension 1. For real rank 2
groups, we show that a slight modification of Emerton’s method al-
lows one to construct eigenvarieties in cohomological dimension 2.

2000 Mathematics Subject Classification: 11F33

Throughout this paper we shall use the following standard notation:

• k is an algebraic number field, fixed throughout.

• p, q denote finite primes of k, and kp, kq the corresponding local fields.

• k∞ = k ⊗Q R is the product of the archimedean completions of k.

• A is the adèle ring of k.

• Af is the ring of finite adèles of k.

• For a finite set S of places of k, we let

kS =
∏

v∈S
kv, AS =

∏

v/∈S

′
kv.
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1 Introduction and Statements of Results

1.1 Interpolation of classical automorphic representations

Let G be a connected, algebraically simply connected, semi-simple group over
a number field k. We fix once and for all a maximal compact subgroup
K∞ ⊂ G(k∞). Our assumptions on G imply that K∞ is connected in the
archimedean topology. This paper is concerned with the cohomology of the
following “Shimura manifolds”:

Y (Kf ) = G(k)\G(A)/K∞Kf ,

where Kf is a compact open subgroup of G(Af ). Let W be an irreducible finite
dimensional algebraic representation of G over a field extension E/k. Such a
representation gives rise to a local system VW on Y (Kf). We shall refer to the
cohomology groups of this local system as the “classical cohomology groups”:

H•class.(Kf ,W ) := H•(Y (Kf ),VW ).

It is convenient to consider the direct limit over all levels Kf of these cohomol-
ogy groups:

H•class.(G,W ) = lim−→
Kf

H•class.(Kf ,W ).

There is a smooth action of G(Af ) on H•class.(G,W ). Since W is a represen-
tation over a field E of characteristic zero, we may recover the finite level
cohomology groups as spaces of Kf -invariants:

H•class.(Kf ,W ) = H•class.(G,W )Kf .

It has become clear that only a very restricted class of smooth representations
of G(Af ) may occur as subquotients of the classical cohomology Hn

class.(G,W ).
For example, in the case E = C, Ramanujan’s Conjecture (Deligne’s Theorem)
gives an archimedian bound on the eigenvalues of the Hecke operators. We shall
be concerned here with the case that E is an extension of a non-archimedean
completion of k.
Fix once and for all a finite prime p of k over which G is quasi-split. Fix a
Borel subgroup B of G ×k kp and a maximal torus T ⊂ B. We let E be a
finite extension of kp, large enough so that G splits over E. It follows that
the irreducible algebraic representations of G over E are absolutely irreducible
(§24.5 of [8]). By the highest weight theorem (§24.3 of [8]), an irreducible
representation W of G over E is determined by its highest weight ψW , which
is an algebraic character ψW : T×kp

E → GL1/E.
By a tame level we shall mean a compact open subgroup Kp ⊂ G(Ap

f ). Fix a
tame level Kp, and consider the spaces of Kp-invariants:

H•class.(K
p,W ) = H•class.(G,W )K

p

.
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The group G(kp) acts smoothly on H•class.(K
p,W ). We also have commuting

actions of the level Kp Hecke algebra:

H(Kp) :=
{
f : Kp\G(Ap

f )/K
p → E : f has compact support

}
.

In order to describe the representations of H(Kp), recall the tensor product
decomposition:

H(Kp) = H(Kp)ramified ⊗H(Kp)sph, (1)

where H(Kp)sph is commutative but infinitely generated, and H(Kp)ramified is
non-commutative but finitely generated. Consequently the irreducible repre-
sentations of H(Kp) are finite-dimensional.
Let q 6= p be a finite prime of k. We shall say that q is unramified in Kp if

(a) G is quasi-split over kq, and splits over an unramified extension of kq,
and

(b) Kp ∩ G(kq) is a hyper-special maximal compact subgroup of G(kq) (see
[38]).

Let S be the set of finite primes q 6= p, which are ramified in Kp. This is a
finite set, and we have

Kp = KS ×
∏

q unramified

Kq, KS = Kp ∩G(kS), Kq = Kp ∩G(kq).

This gives the tensor product decomposition (1), where we take

H(Kp)ramified = H(KS), H(Kp)sph =
⊗

q unramified

′
H(Kp).

For each unramified prime q, the Satake isomorphism (Theorem 4.1 of [12])
shows that H(Kq) is finitely generated and commutative. Hence the irreducible
representations of H(Kp)sph over Ē are 1-dimensional, and may be identified
with elements of (Spec H(Kp)sph)(Ē). Since the global Hecke algebra is in-
finitely generated, Spec H(Kp)sph is an infinite dimensional space. One might
expect that the representations which occur as subquotients of H•class.(K

p,W )
are evenly spread around this space. There is an increasing body of evidence
[1, 2, 3, 10, 11, 13, 14, 15, 18, 21, 22] that this is not the case, and that
in fact these representations are contained in a finite dimensional subset of
Spec H(Kp)sph, independent of W .
More precisely, let π be an irreducible representation of G(kp)×H(Kp), which
occurs as a subquotient of Hn

class.(K
p,W ) ⊗E Ē. We may decompose π as a

tensor product:
π = πp ⊗ πramified ⊗ πsph,

where πsph is a character of H(Kp)sph; πramified is an irreducible representation
of H(Kp)ramified and πp is an irreducible smooth representation of G(kp). We
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can say very little about the pair (W,π) in this generality, so we shall make
another restriction. We shall write JacqB(πp) for the Jacquet module of πp,
with respect to B(kp). The Jacquet module is a smooth, finite dimensional
representation of T(kp). It seems possible to say something about those pairs
(π,W ) for which πp has non-zero Jacquet module. Such representations πp

are also said to have finite slope. Classically for GL2/Q, representations of
finite slope correspond to Hecke eigenforms for which the eigenvalue of Up is
non-zero. By Frobenius reciprocity, such a πp is a submodule of a smoothly

induced representation ind
G(kp)

B(kp)θ, where θ : T(kp)→ Ē× is a smooth character.

In order to combine the highest weight ψW , which is an algebraic character
of T, and the smooth character θ of T(kp), we introduce the following rigid
analytic space (see [32] for background in rigid analytic geometry):

T̂ (A) = Homkp−loc.an.(T(kp), A×),
A a commutative

Banach algebra over E.

Emerton defined the classical point corresponding to π to be the pair

(θψW , π
sph) ∈

(
T̂ × Spec H(Kp)sph

)
(Ē).

We let E(n,Kp)class. denote the set of all classical points. Emerton defined the
eigenvariety E(n,Kp) to be the rigid analytic Zariski closure of E(n,Kp)class.
in T̂ × Spec H(Kp)sph.
Concretely, this means that for every unramified prime q and each generator T iq
for the Hecke algebra H(Kq), there is a holomorphic function tiq on E(n,Kp)

such that for every representation π in Hn
class.(K

p,W ) ⊗ Ē of finite slope at
p, the action of T iq on π is by scalar multiplication by tiq(x), where x is the
corresponding classical point.
One also obtains a description of the action of the ramified part of the Hecke
algebra. This description is different, since irreducible representations of
H(Kp)ramified are finite dimensional rather than 1-dimensional. Instead one
finds that there is a coherent sheaf M of H(Kp)ramified-modules over E(n,Kp),
such that, roughly speaking, the action of H(Kp)ramified on the fibre of a clas-
sical point describes the action of H(Kp)ramified on the corresponding part of
the classical cohomology. A precise statement is given in Theorem 1 below.
Emerton introduced a criterion (Definition 1 below), according to which the
Eigencurve E(n,Kp) is finite dimensional. More precisely, he was able to prove
that the projection E(n,Kp) → T̂ is finite. If we let t denote the Lie algebra
of T(Ē), then there is a map given by differentiation at the identity element:

T̂ → ť,

where ť is the dual space of t. It is worth noting that the image in ť of a classical
point depends only on the highest weight ψW , since smooth characters have zero
derivative. Emerton also proved, assuming his criterion, that the projection
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E(n,Kp)→ ť has discrete fibres. As a result, one knows that the dimension of
the eigencurve is at most the absolute rank of G.
The purpose of this paper is to investigate Emerton’s criterion for connected,
simply connected, simple groups. Specifically, we show that Emerton’s criterion
holds for all such groups in dimension n = 1. Emerton’s criterion typically fails
in dimension n = 2. However we prove a weaker form of the criterion for n = 2,
and we show that the weaker criterion is sufficient for most purposes.

1.2 Emerton’s Criterion

Let p be the rational prime below p. In [18] Emerton introduced the following
p-adic Banach spaces:

H̃•(Kp,Qp) =

(
lim←−s

lim−→
Kp

H•(Y (KpK
p),Z/ps)

)
⊗Zp Qp.

For convenience, we also consider the direct limits of these spaces over all tame
levels Kp:

H̃•(G,Qp) = lim−→
Kp

H̃•(Kp,Qp).

We have the following actions on these spaces:

• The group G(Ap
f ) acts smoothly on H̃•(G,Qp); the subspace H̃•(Kp,Qp)

may be recovered as the Kp-invariants:

H̃•(Kp,Qp) = H̃•(G,Qp)
Kp

.

• The Hecke algebra H(Kp) acts on H̃•(Kp,Qp)⊗ E.

• The group G(kp) acts continuously, but not usually smoothly on the Ba-

nach space H̃•(Kp,Qp). This is an admissible continuous representation
of G(kp) in the sense of [33] (or [16], Definition 7.2.1).

• Recall that we have fixed a finite extension E/kp, over which G splits.
We let

H̃•(Kp, E) = H̃•(Kp,Qp)⊗Qp E.

The group G(kp) is a p-adic analytic group. Hence, we may define the

subspace of kp-locally analytic vectors in H̃•(Kp, E) (see [16]):

H̃•(Kp, E)loc.an..

This subspace is G(kp)-invariant, and is an admissible locally analytic
representation of G(kp) (in the sense of [16], Definition 7.2.7). The Lie

algebra g of G also acts on the subspace H̃•(Kp, E)loc.an..
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For an irreducible algebraic representation W of G over E, we shall write W̌ be
the contragredient representation. Emerton showed (Theorem 2.2.11 of [18])
that there is a spectral sequence:

Ep,q2 = Extpg(W̌ , H̃q(Kp, E)loc.an.) =⇒ Hp+q
class.(K

p,W ). (2)

Taking the direct limit over the tame levelsKp, there is also a spectral sequence
(Theorem 0.5 of [18]):

Extpg(W̌ , H̃q(G, E)loc.an.) =⇒ Hp+q
class.(G,W ). (3)

In particular, there is an edge map

Hn
class.(G,W )→ Homg(W̌ , H̃n(G, E)loc.an.). (4)

Definition 1. We shall say that G satisfies Emerton’s criterion in dimension
n if the following holds:

For every W , the edge map (4) is an isomorphism.

This is equivalent to the edge maps from Hn
class.(K

p,W ) to

Homg(W̌ , H̃n(Kp, E)loc.an.) being isomorphisms for every W and every
tame level Kp.

Theorem 1 (Theorem 0.7 of [18]). Suppose Emerton’s criterion holds for G
in dimension n. Then we have:

1. Projection onto the first factor induces a finite map E(n,Kp)→ T̂ .

2. The map E(n,Kp)→ ť has discrete fibres.

3. If (χ, λ) is a point of the Eigencurve such that χ is locally algebraic and
of non-critical slope (in the sense of [17], Definition 4.4.3), then (χ, λ) is
a classical point.

4. There is a coherent sheaf M of H(Kp)ramified-modules over E(n,Kp) with
the following property. For any classical point (θψW , λ) ∈ E(n,Kp) of
non-critical slope, the fibre of M over the point (θψW , λ) is isomorphic
(as a H(Kp)ramified-module) to the dual of the (θψW , λ)-eigenspace of the
Jacquet module of Hn

class.(K
p, W̌ ).

In fact Emerton proved this theorem for all reductive groups G/k. He verified
his criterion in the case G = GL2/Q, n = 1. He also pointed out that the
criterion always holds for n = 0, since the edge map at (0, 0) for any first
quadrant E•,•2 spectral sequence is an isomorphism. Of course the cohomology
of G is usually uninteresting in dimension 0, but his argument can be applied
in the case where the derived subgroup of G has real rank zero. This is the
case, for example, when G is a torus, or the multiplicative group of a definite
quaternion algebra.
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1.3 Our Main Results

For our main results, G is connected, simple and algebraically simply connected.
We shall also assume that G(k∞) is not compact. We do not need to assume
that G is absolutely simple. We shall prove the following.

Theorem 2. Emerton’s criterion holds in dimension 1.

For cohomological dimensions 2 and higher, Emerton’s criterion is quite rare.
We shall instead use the following criterion.

Definition 2. We shall say that G satisfies the weak Emerton criterion in
dimension n if

(a) for every non-trivial irreducible W , the edge map (4) is an isomorphism,
and

(b) for the trivial representation W , the edge map (4) is injective, and its
cokernel is a finite dimensional trivial representation of G(Af ).

By simple modifications to Emerton’s proof of Theorem 1, we shall prove the
following in §4.

Theorem 3. If the weak Emerton criterion holds for G in dimension n, then

1. Projection onto the first factor induces a finite map E(n,Kp)→ T̂ .

2. The map E(n,Kp)→ ť has discrete fibres.

3. If (χ, λ) is a point of the Eigencurve such that χ is locally algebraic and
of non-critical slope, then either (χ, λ) is a classical point or (χ, λ) is the
trivial representation of T(kp)×H(Kp)sph.

In order to state our next theorems, we recall the definition of the congruence
kernel. As before, G/k is simple, connected and simply connected and G(k∞)
is not compact. By a congruence subgroup of G(k), we shall mean a subgroup
of the form

Γ(Kf ) = G(k) ∩ (G(k∞)×Kf ),

where Kf ⊂ G(Af ) is compact and open. Any two congruence subgroups are
commensurable.
An arithmetic subgroup is a subgroup of G(k), which is commensurable with a
congruence subgroup. In particular, every congruence subgroup is arithmetic.
The congruence subgroup problem (see the survey articles [30, 31]) is the prob-
lem of determining the difference between arithmetic subgroups and congruence
subgroups. In particular, one could naively ask whether every arithmetic sub-
group of G is a congruence subgroup. In order to study this question more
precisely, Serre introduced two completions of G(k):

Ĝ(k) = lim←−
Kf

G(k)/Γ(Kf),
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G̃(k) = lim←−−−−−−−−
Γ arithmetic

G(k)/Γ.

There is a continuous surjective group homomorphism G̃(k) → Ĝ(k). The
congruence kernel Cong(G) is defined to be the kernel of this map. Recall the
following:

Theorem 4 (Strong Approximation Theorem [23, 24, 25, 28, 29]). Suppose
G/k is connected, simple, and algebraically simply connected. Let S be a set
of places of k, such that G(kS) is not compact. Then G(k)G(kS) is dense in
G(A).

Under our assumptions on G, the strong approximation theorem implies that
Ĝ(k) = G(Af ), and we have the following extension of topological groups:

1→ Cong(G)→ G̃(k)→ G(Af )→ 1.

By the real rank of G, we shall mean the sum

m =
∑

ν|∞
rankkνG.

It follows from the non-compactness of G(k∞), that the real rank of G is at
least 1. Serre [37] has conjectured that for G simple, simply connected and
of real rank at least 2, the congruence kernel is finite; for real rank 1 groups
he conjectured that the congruence kernel is infinite. These conjectures have
been proved in many cases and there are no proven counterexamples (see the
surveys [30, 31]).
Our next result is the following.

Theorem 5. If the congruence kernel of G is finite then the weak Emerton
criterion holds in dimension 2.

Theorems 2 and 5 follow from our main auxiliary results:

Theorem 6. Let G be as described above. Then H̃0(G, E) = E, with the trivial
action of G(Af ).

Theorem 7. Let G be as described above. Then

H̃1(G, E) = Homcts(Cong(G), E)G(Ap

f )−smooth,

where Cong(G) denotes the congruence kernel of G.

The reduction of Theorem 2 to Theorem 6 is given in §2, and the reduction
of Theorem 5 to Theorem 7 is given in §3. Theorem 6 is proved in §6 and
Theorem 7 is proved in §8.
Before going on, we point out that in some cases these cohomology spaces
are uninteresting. In the case E = C, the cohomology groups are related,
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via generalizations of the Eichler–Shimura isomorphism, to certain spaces of
automorphic forms. More precisely, Franke [19] has shown that

H•class.(Kf ,W ) = H•rel.Lie(g,K∞,W ⊗A(Kf )),

where A(Kf ) is the space of automorphic forms φ : G(k)\G(A)/K∞Kf → C.
The right hand side is relative Lie algebra cohomology (see for example [9]).
Since the constant functions form a subspace of A(Kf ), we have a (g,K∞)-
submodule W ⊂W ⊗A(Kf ). This gives us a map:

Hn
rel.Lie(g,K∞,W )→ Hn

class.(G,W ). (5)

We shall say that the cohomology of G is given by constants in dimension n if
the map (5) is surjective. For example the cohomology of SL2/Q is given by
constants in dimensions 0 and 2, although (5) is only bijective in dimension 0.
On the other hand, if G(k)\G(A) is compact then (5) is injective.
It is known that the cohomology of G is given by constants in dimensions
n < m and in dimensions n > d−m, where d is the common dimension of the
spaces Y (Kf ) and m is the real rank of G. One shows this by proving that the
relative Lie algebra cohomology of any other irreducible (g,K∞)-subquotient
of W ⊗A(Kf) vanishes in such dimensions (see for example Corollary II.8.4 of
[9]).
If the cohomology is given by constants in dimension n, then Hn

class.(G,W ) is
a finite dimensional vector space, equipped with the trivial action of G(Af).
From the point of view of this paper, cohomology groups given by constants
are uninteresting. Thus Theorem 2 is interesting only for groups of real rank
1, whereas Theorem 5 is interesting, roughly speaking, for groups of real rank
2.
In fact we can often do a little better than Theorem 3. We shall prove the
following in §5:

Theorem 8. Let G/k be connected, semi-simple and algebraically simply con-
nected and assume that the weak Emerton criterion holds in dimension n. As-
sume also that at least one of the following two conditions holds:

(a) Hp
class.(G,C) is given by constants in dimensions p < n and

Hn+1
rel.Lie(g,K∞,C) = 0; or

(b) G(k) is cocompact in G(A).

Then all conclusions of Theorem 1 hold for the eigenvariety E(n,Kp).

The theorem is valid, for example, in the following cases where Emerton’s
criterion fails:

• SL3/Q in dimension 2;

• Sp4/Q in dimension 2;
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• Spin groups of quadratic forms over Q of signature (2, l) with l ≥ 3 in
dimension 2;

• Special unitary groups SU(2, l) with l ≥ 3 in dimension 2;

• SL2/k, where k is a real quadratic field, in dimension 2.

Our results generalize easily to simply connected, semi-simple groups as follows.
Suppose G/k is a direct sum of simply connected simple groups Gi/k. Assume
also that the tame level Kp decomposes as a direct sum of tame levels Kp

i

in Gi(A
p
f ). By the Künneth formula, we have a decomposition of the sets of

classical points:

E(n,Kp)class. =
⋃

n1+···+ns=n

s∏

i=1

E(ni,K
p
i )class..

1.4 Some History

Coleman and Mazur constructed the first “eigencurve” in [15]. In our cur-
rent notation, they constructed the H1-eigencurve for GL2/Q. In fact they
showed that the points of their eigencurve parametrize overconvergent eigen-
forms. Their arguments were based on earlier work of Hida [20] and Coleman
[14] on families of modular forms. Similar results were subsequently obtained
by Buzzard [10] for the groups GL1/k, and for the multiplicative group of a
definite quaternion algebra over Q, and later more generally for totally definite
quaternion algebras over totally real fields in [11]. Kassaei [21] treated the case
that G is a form of GL2/k, where k is totally real and G is split at exactly one
archimedean place. Kissin and Lei in [22] treated the case G = GL2/k for a
totally real field k, in dimension n = [k : Q].

Ash and Stevens [2, 3] obtained similar results for GLn/Q by quite differ-
ent methods. More recently, Chenevier [13] constructed eigenvarieties for any
twisted form of GLn/Q which is compact at infinity. Emerton’s construction is
apparently much more general, as his criterion is formulated for any reductive
group over a number field. However, it seems to be quite rare for his crite-
rion to hold. One might expect the weak criterion to hold more generally; in
particular one might optimistically ask the following:

Question. For G/k connected, simple, algebraically simply connected and of
real rank m, does the weak Emerton criterion always hold in dimension m?
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2 Proof of Theorem 2

Let G/k be simple, algebraically simply connected, and assume that G(k∞) is
not compact. We shall prove in §6 that H̃0(G, E) = E, with the trivial action of
G(Af ). As a consequence of this, the terms Ep,02 in Emerton’s spectral sequence
(3) are Lie-algebra cohomology groups of finite dimensional representations:

Ep,02 = Hp
Lie(g,W ).

Such cohomology groups are completely understood. We recall some relevant
results:

Theorem 9 (Theorem 7.8.9 of [39]). Let g be a semi-simple Lie algebra over
a field of characteristic zero, and let W be a finite-dimensional representation
of g, which does not contain the trivial representation. Then we have for all
n ≥ 0,

Hn
Lie(g,W ) = 0.

Theorem 10 (Whitehead’s first lemma (Corollary 7.8.10 of [39])). Let g be
a semi-simple Lie algebra over a field of characteristic zero, and let W be a
finite-dimensional representation of g. Then we have

H1
Lie(g,W ) = 0.

Theorem 11 (Whitehead’s second lemma (Corollary 7.8.12 of [39])). Let g be
a semi-simple Lie algebra over a field of characteristic zero, and let W be a
finite-dimensional representation of g. Then we have

H2
Lie(g,W ) = 0.

We shall use these results to verify Emerton’s criterion in dimension 1, thus
proving Theorem 2. We must verify that the edge map 4 is an isomorphism
for n = 1 and for every irreducible algebraic representation W of G. The small
terms of the spectral sequence are:

E•,•2 :
Homg(W̌ , H̃1(G, E))

H0
Lie(g,W ) H1

Lie(g,W ) H2
Lie(g,W )

We therefore have an exact sequence:

0→ H1
Lie(g,W )→ H1

class.(G,W )→ Homg(W̌ , H̃1(G, E))→ H2
Lie(g,W ).

By Theorems 10 and 11 we know that the first and last terms are zero. There-
fore the edge map is an isomorphism.

�
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3 Proof of Theorem 5

Let G/k be connected, simple and simply connected, and assume that G(k∞)
is not compact. In §8 we shall prove the isomorphism

H̃1(G,Qp) = Homcts(Cong(G),Qp)G(Ap

f )−smooth.

As a consequence, we have:

Corollary 1. If the congruence kernel of G is finite then H̃1(G,Qp) = 0.

In this context, it is worth noting that the following may be proved by a similar
method.

Theorem 12. If the congruence kernel of G is finite then H̃d−1(G,Qp) = 0,
where d is the dimension of the symmetric space G(k∞)/K∞.

We shall use the corollary to verify the weak Emerton criterion in dimension
2. Suppose first that W is a non-trivial irreducible algebraic representation of
G. We must show that the edge map (4) is an isomorphism. By Theorem 9 we
know that the bottom row of the spectral sequence is zero, and by the corollary
we know that the first row is zero. The small terms of the spectral sequence
are as follows:

E•,•2 :

Homg(W̌ , H̃2(G, E)loc.an.)

0 0 0

0 0 0 0

Hence in this case the edge map is an isomorphism.
In the case that W is the trivial representation, we must only verify that
the edge map is injective and that its cokernel is a finite dimensional trivial
representation of G(Af ). We still know in this case that the first row of the
spectral sequence is zero. For the bottom row, Theorems 10 and 11 tell us that
the spectral sequence is as follows:

E•,•2 :

Homg(E, H̃2(G, E)loc.an.)

0 0 0

E 0 0 H3
Lie(g, E)

It follows that we have an exact sequence

0→ H2
class.(G, E)→ Homg(E, H̃

2(G, E)loc.an.)→ H3
Lie(g, E). (6)

The action of G(Af) on H3
Lie(g, E) is trivial, since this action is defined by the

(trivial) action on H̃0(G, E) = E.
�
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Remark. It is interesting to calculate the cokernel of the edge map in (6). In
fact it is known that for any simple Lie algebra g over a field E of characteristic
zero, H3

Lie(g, E) = E. We therefore have by the Künneth formula:

H3
Lie(g, E) = Ed,

where d is the number of simple factors of G×k k̄. In particular, this is never
zero. The exact sequence (6) can be continued for another term as follows:

0→ H2
class.(G, E)→ H̃2(G, E)g

loc.an. → H3
Lie(g, E)→ H3

class.(G, E)G(Af ).

In order to calculate the last term, we first choose an embedding of E in C,
and tensor with C. There is a map

H3
rel.Lie(g,K∞,C)→ H3

class.(G,C)G(Af ).

If the k-rank of G is zero, then this map is an isomorphism. In other cases,
it is often surjective, although the author does not know how to prove this
statement in general. The groups H•rel.Lie(g,K∞,C) are the cohomology groups
of compact symmetric spaces (see §I.1.6 of [9]) and are completely understood.
In particular, it is often the case that H3

rel.Lie(g,K∞,C) = 0. This implies that
the edge map in (6) often has a non-trivial cokernel.

4 Proof of Theorem 3

Theorem 3 is a variation on Theorem 1. In order to prove it, we recall some of
the intermediate steps in Emerton’s proof of Theorem 1.
In [17], Emerton introduced a new kind of Jacquet functor, JacqB, from the
category of essentially admissible (in the sense of Definition 6.4.9 of [16]) lo-
cally analytic representations of G(kp) to the category of essentially admissible
locally analytic representations of T(kp). This functor is left exact, and its
restriction to the full subcategory of smooth representations is exact. Indeed,
its restriction to smooth representations is the usual Jacquet functor of coin-
variants.
Applying the Jacquet functor to the space H̃n(Kp, E)loc.an., one obtains an
essentially admissible locally analytic representation of T(kp). On the other
hand, the category of essentially admissible locally analytic representations of
T(kp) is anti-equivalent to the category of coherent rigid analytic sheaves on

T̂ (Proposition 2.3.2 of [18]). We therefore have a coherent sheaf E on T̂ .
Since the action of H(Kp) on H̃n(Kp, E)loc.an. commutes with that of G(kp),
it follows that H(Kp) acts on E. Let A be the image of H(Kp)sph in the sheaf
of endomorphisms of E. Thus A is a coherent sheaf of commutative rings on
T̂ . Writing Spec A for the relative spec of A over T̂ , we have a Zariski-closed
embedding Spec A→ T̂ × Spec H(Kp)sph. Since A acts as endomorphisms of
E, we may localize E to a coherent sheaf M on Spec A.
Theorem 1 may be deduced from the following two results.
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Theorem 13 (2.3.3 of [18]). (i) The natural projection Spec A → T̂ is a
finite morphism.

(ii) The map Spec A→ ť has discrete fibres.

(iii) The fibre of M over a point (χ, λ) of T̂ × Spec H(Kp)sph is dual to the
(T(kp) = χ,H(Kp)sph = λ)-eigenspace of JacqB(H̃n(Kp, E)loc.an.). In
particular, the point (χ, λ) lies in Spec A if and only if this eigenspace is
non-zero.

For any representation V of G(kp) over E, we shall write VW−loc.alg. for the sub-
space of W -locally algebraic vectors in V . Note that under Emerton’s criterion,
we have

Hn
class.(K

p,W )⊗ W̌ = H̃n(Kp, E)W̌−loc.alg.. (7)

Hence Hn
class.(K

p,W ) ⊗ W̌ is a closed subspace of H̃n(Kp, E)loc.an.. By left-
exactness of JacqB we have an injective map

JacqB(Hn
class.(K

p,W )⊗ W̌ )→ JacqB(H̃n(Kp, E)loc.an.)

There are actions of T(kp) and H(Kp) on these spaces, so we may restrict this
map to eigenspaces:

JacqB(Hn
class.(K

p,W )⊗ W̌ )(χ,λ) → JacqB(H̃n(Kp, E)loc.an.)
(χ,λ),

(χ, λ) ∈ T̂ × Spec H(Kp)sph.

The next result tells us that this restriction is often an isomorphism.

Theorem 14 (Theorem 4.4.5 of [17]). Let V be an admissible continuous rep-
resentation of G(kp) on a Banach space. If χ := θψW ∈ T̂ (Ē) is of non-critical
slope, then the closed embedding

JacqB(VW−loc.alg.)→ JacqB(Vloc.an.)

induces an isomorphism on χ-eigenspaces.

We recall Theorem 3.

Theorem. If the weak Emerton criterion holds for G in dimension n, then

1. Projection onto the first factor induces a finite map E(n,Kp)→ T̂ .

2. The map E(n,Kp)→ ť has discrete fibres.

3. If (χ, λ) is a point of the Eigencurve such that χ is locally algebraic and
of non-critical slope, then either (χ, λ) is a classical point or (χ, λ) is the
trivial representation of T(kp)×H(Kp)sph.
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Proof. To prove the first two parts of the theorem, it is sufficient to show that
E(Kp, n) is a closed subspace of Spec A. Since E(n,Kp) is defined to be the
closure of the set of classical points, it suffices to show that each classical point
is in Spec A.
Suppose π is a representation appearing in Hn

class.(K
p,W ) and let (θψW , λ)

be the corresponding classical point. This means that the (θ, λ)-eigenspace
in the JacqB(π) is non-zero. By exactness of the Jacquet functor on smooth
representations, it follows that the (θ, λ) eigenspace in the Jacquet module of
Hn

class.(K
p,W ) is non-zero. Hence by Proposition 4.3.6 of [17], the (θψW , λ)-

eigenspace in the Jacquet module of Hn
class.(K

p,W )⊗ W̌ is non-zero. By left-
exactness of the Jacquet functor, it follows that the (θψW , λ) eigenspace in the
Jacquet module of H̃n(G, E)loc.an. is non-zero. Hence by Theorem 13 (iii) it
follows that the classical point is in Spec A.
If (θψ, λ) is of non-critical slope then Theorem 14 shows that the converse also
holds. �

5 Proof of Theorem 8

We first recall the statement:

Theorem. Let G/k be connected, semi-simple and algebraically simply con-
nected and assume that the weak Emerton criterion holds in dimension n. As-
sume also, that at least one of the following two conditions holds:

(a) Hp
class.(G,C) is given by constants in dimensions p < n and

Hn+1
rel.Lie(g,K∞,C) = 0; or

(b) G(k) is cocompact in G(A).

Then all the conclusions of Theorem 1 hold for the eigenvariety E(n,Kp).

Proof. To prove the theorem, we shall find a continuous admissible Banach
space representation V , such that for every irreducible algebraic representation
W , there is an isomorphism of smooth G(Af )-modules

Hn
class.(G,W ) ∼= Homg(W̌ , Vloc.an.). (8)

Recall that by the weak Emerton criterion, we have an exact sequence of smooth
G(Af )-modules

0→ Hn
class.(G, E)→ H̃n(G, E)g

loc.an. → Er → 0, r ≥ 0. (9)

It follows, either from Lemma 1 or from Lemma 2 below, that all such sequences
split. We therefore have a subspace Er ⊂ H̃n(G, E), on which G(Af ) acts
trivially. We define V to be the quotient, so that there is an exact sequence of
admissible continuous representations of G(Af ) on E-Banach spaces.

0→ Er → H̃n(G, E)→ V → 0. (10)
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Taking g-invariants of (10) and applying Whitehead’s first lemma (Theorem
10), we have an exact sequence:

0→ Er → H̃n(G, E)g
loc.an. → V g

loc.an. → 0. (11)

On the other hand, Er is a direct summand of H̃n(G, E)g
loc.an., so this sequence

also splits. Comparing (9) and (11), we obtain

Hn
class.(G, E) = V g

loc.an. = Homg(E, Vloc.an.).

This verifies (8) in the case that W is the trivial representation.
Now taking W to be a non-trivial irreducible representation, and applying
Homg(W̌ ,−loc.an.) to (10), we obtain a long exact sequence:

0→ Homg(W̌ , H̃n(G, E)loc.an.)→ Homg(W̌ , Vloc.an.)→ Ext1g(W̌ , Er).

By Whitehead’s first lemma, the final term above is zero. Hence, by the weak
Emerton criterion, we have:

H2
class.(G,W ) = Homg(W̌ , H̃n(G, E)loc.an.) = Homg(W̌ , Vloc.an.).

�

Lemma 1. Assume that Hq
class.(G,C) is given by constants in dimensions q < n

and Hn+1
rel.Lie(g,K∞,C) = 0. Then

Ext1G(Af )(E,H
n
class.(G, E)) = 0,

where the Ext-group is calculated from the category of smooth representations
of G(Af ) over E.

Proof. Since we are dealing with smooth representations, the topology of E
plays no role, so it is sufficient to prove that

Ext1G(Af )(C, H
n
class.(G,C)) = 0,

To prove this, it is sufficient to show that for every sufficiently large finite set
S of finite primes of k, we have

Ext1G(kS)(C, H
n
class.(G,C)) = 0.

For this, we shall use the spectral sequence of Borel (§3.9 of [7]; see also §2 of
[6]):

ExtpG(kS)(E,H
q
class.(G,C)) =⇒ Hp+q

S−class.(G,C),

where H•S−class.(G,−) denotes the direct limit over all S-congruence subgroups:

H•S−class.(G,−) = lim−→
KS

H•Group(ΓS(KS),−),
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ΓS(KS) = G(k) ∩
(
G(k∞∪S)×KS

)
.

By Proposition X.4.7 of [9], we know that

ExtpG(kS)(C,C) = 0, p ≥ 1.

Since Hq
class.(G,C) is a trivial representation of G(Af ) in dimensions q < n,

it follows from Borel’s spectral sequence that Ext1G(kS)(C, H
n
class.(G,C)) injects

into Hn+1
S−class.(G,C). On the other hand, it is shown in Theorem 1 of [6], that

for S sufficiently large, Hn+1
S−class.(G,C) is isomorphic to Hn+1

rel.Lie(g,K∞,C).

Under the hypothesis that Hn+1
rel.Lie(g,K∞,C) = 0, it follows that for S suffi-

ciently large, Ext1G(kS)(C, H
n
class.(G,C)) = 0. �

Lemma 2. Assume that G(k) is cocompact in G(A). Then

Ext1G(Af )(E,H
n
class.(G, E)) = 0,

where the Ext-group is calculated from the category of smooth representations
of G(Af ) over E.

(The argument in fact shows that ExtpG(Af )(E,H
q
class.(G, E)) = 0 for all p > 0.)

Proof. As in the proof of the previous lemma, we shall show that for S suffi-
ciently large,

Ext1G(kS)(C, H
n
class.(G,C)) = 0.

Recall that we have a decomposition:

L2(G(k)\G(A)) =
⊕̂

π

m(π) · π,

with finite multiplicities m(π) and automorphic representations π. Here the ⊕̂
denotes a Hilbert space direct sum. We shall write π = π∞ ⊗ πf , where π∞ is
an irreducible unitary representation of G(k∞) and πf is a smooth irreducible
unitary representation of G(Af ). This decomposition may by used to calculate
the classical cohomology (Theorem VII.6.1 of [9]):

H•class.(G,C) =
⊕

π

m(π) ·H•rel.Lie(g,K∞, π∞)⊗ πf .

It is therefore sufficient to show that for each automorphic representation π, we
have (for S sufficiently large) Ext1G(kS)(C, πf ) = 0. The smooth representation
πf decomposes as a tensor product of representations of G(kq) for q ∈ S,
together with a representation of G(ASf ):

πf =


⊗

q∈S
πq


⊗ πSf .
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This gives a decomposition of the cohomology:

Ext•G(kS)(C, πf ) =


⊗

q∈S
Ext•G(kq)(C, πq)


⊗ πSf . (12)

There are two cases to consider.
Case 1. Suppose π is the trivial representation, consisting of the constant
functions on G(k)\G(A). Then by Proposition X.4.7 of [9], we have

ExtnG(kq)(C,C) = 0, n ≥ 1.

This implies by (12) that Ext1G(kS)(C,C) = 0.
Case 2. Suppose π is non-trivial, and hence contains no non-zero constant
functions. If q is a prime for which no factor of G(kq) is compact, then it
follows from the strong approximation theorem that the local representation
πq is non-trivial. This implies that

Ext0G(kq)(C, πq) = HomG(kq)(C, πq) = 0.

If S contains at least two such primes, then we have by (12)

Ext1G(kS)(C, πf ) = 0.

�

Remark. At first sight, it might appear that Ext1G(Af )(C, H
n
class.(G,C)) should

always be zero; however this is not the case. For example, if G = SL2/Q then

Ext1SL2(Af )(C, H
1
class.(SL2/Q,C)) = C.

This may be verified using the spectral sequence of Borel cited above, together
with the fact that H2

rel.Lie(sl2, SO(2),C) = C.

6 Proof of Theorem 6

We assume in this section that G/k is connected, simple and algebraically
simply connected, and that G(k∞) is not compact.

Proposition 1. As topological spaces, we have Y (Kf ) = Γ(Kf )\G(k∞)/K∞.

Proof. By the strong approximation theorem (Theorem 4), G(k)G(k∞) is a
dense subgroup of G(A). Since G(k∞)Kf is open in G(A), this implies that
G(k)G(k∞)Kf is a dense, open subgroup of G(A). Since open subgroups are
closed it follows that

G(k)G(k∞)Kf = G(A).

Quotienting out on the left by G(k), we have (as coset spaces):

(G(k) ∩G(k∞)Kf)\(G(k∞)Kf ) = G(k)\G(A).
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Substituting the definition of Γ(Kf ), we have:

Γ(Kf )\G(k∞)Kf = G(k)\G(A).

Quotienting out on the right by K∞Kf , we get:

Γ(Kf )\G(k∞)/K∞ = Y (Kf ).

�

In particular, this implies:

Corollary 2. Y (Kf ) is connected.

Proof. G(k∞) is connected. �

If Kf is sufficiently small then the group Γ(Kf ) is torsion-free. We shall assume
that this is the case. Hence Y (Kf ) is a manifold. Its universal cover is G(R)/K,
and its fundamental group is Γ(Kf ).

Corollary 3. If Γ(Kf) is torsion-free then H•(Y (Kf ),−) =
H•Group(Γ(Kf ),−).

Proof. This follows because Γ(Kf) is the fundamental group of Y (Kf ), and
the universal cover G(k∞)/K∞ is contractible. See for example [36]. �

Corollary 4. Let G/k be connected, simple, simply connected and assume
G(k∞) is not compact. Then as G(Af )-modules,

H̃0(G, E)loc.an. = H̃0(G, E) = E.

Proof. Since every Y (Kf ) is connected, we have a canonical isomorphism:

H0(Y (KpK
p),Z/ps) = Z/ps.

Furthermore, the pull-back maps

H0(Y (KpK
p),Z/ps)→ H0(Y (K ′pK

p),Z/ps) (K ′p ⊂ Kp)

are all the identity on Z/ps. It follows that

lim−→
Kp

H0(Y (KpKp),Z/ps) = Z/ps.

Since the pull-back maps are all the identity, it follows that the action of G(kp)
on this group is trivial. Taking the projective limit over s and tensoring with
E we find that

H̃0(Kp, E) = E.

The action of G(kp) is clearly still trivial, and hence every vector is locally

analytic. The groups H̃0(Kp, E) for varying tame levelKp form a direct system
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with respect to the pullback maps. These pullback maps are all the identity
on E. Taking the direct limit over the tame levels, we obtain:

H̃0(G, E) = E.

Since the pullback maps are all the identity, it follows that the action of G(Ap
f )

on H̃0(G, E) is trivial. �

7 Some Cohomology Theories

In this section we introduce some notation and recall some results, which will
be needed in the proof of Theorem 7. It is worth mentioning that the theorem
is much easier to prove in the case that G has finite congruence kernel. In
that case one quite easily shows that H̃1 = 0 by truncating the proof given
in §8 shortly after the end of “step 1” of the proof. Furthermore, our main
application (Theorem 5) requires only this easier case.

7.1 Discrete cohomology

Let G be a profinite group acting on an abelian group A. We say that the
action is smooth if every element of A has open stabilizer in G. For a smooth
G-module A, we define H•disc.(G,A) to be the cohomology of the complex of
smooth cochains on G with values in A. Due to compactness, cochains take
only finitely many values, so we have

H•disc.(G,A) = lim−→
U

H•Group(G/U,AU ).

Here the limit is taken over the open normal subgroups U of G, and the coho-
mology groups on the right hand side are those of finite groups.

Theorem 15 (Hochschild–Serre spectral sequence (§2.6b of [35])). Let G be a
profinite group and A a discrete G-module on which G acts smoothly. Let H
be a closed, normal subgroup. Then there is a spectral sequence:

Hp
disc.(G/H,H

q
disc.(H,A)) =⇒ Hp+q

disc.(G,A).

For calculations with adèle groups, we need the following result on countable
products of groups.

Proposition 2 (see §2.2 of [35]). Let

G =
∏

i∈N

Gi

be a countable product of profinite groups and let A be a discrete G-module.
For any finite subset S ⊂ N we let

GS =
∏

i∈S
Gi.
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Then
Hn

disc.(G,A) = lim−→
S

Hn
disc.(GS , A).

Here the limit is taken over all finite subsets with respect to the inflation maps.

Corollary 5. Let G and A be as in the previous proposition, and assume that
the action of G on A is trivial. Assume also that for a fixed n, we have:

Hr
disc.(Gi, A) = 0, r = 1, . . . , n− 1, i ∈ N.

Then
Hn

disc.(G,A) =
⊕

i∈N

Hn
disc.(Gi, A).

Proof. Let S ⊂ N be a finite set and let i /∈ S. We have a direct sum decom-
position

GS∪{i} = GS ⊕Gi.
Regarding this as a (trivial) group extension, we have a spectral sequence:

Hp
disc.(GS , H

q(Gi, A)) =⇒ Hp+q
disc.(GS∪{i}, A).

since the sum is direct, it follows that all the maps in the spectral sequence are
zero, and we have

Hn
disc.(GS∪{i}, A) =

n⊕

r=0

Hn−r
disc.(GS , H

r
disc.(Gi, A)).

By our hypothesis, most of these terms vanish, and we are left with:

Hn
disc.(GS∪{i}, A) = Hn

disc.(GS , A)⊕Hn
disc.(Gi, A).

By induction on the size of S, we deduce that

Hn
disc.(GS , A) =

⊕

i∈S
Hn

disc.(Gi, A).

The result follows from the previous proposition. �

7.2 Continuous cohomology

Again suppose that G is a profinite group, acting on an abelian topological
group A. We call A a continuousG-module if the map G×A→ A is continuous.
For a continuous G-module A, we define the continuous cohomology groups
H•cts(G,A) to be the cohomology of the complex of continuous cochains. If the
topology on A is actually discrete then continuous cochains are in fact smooth,
so we have

H•cts(G,A) = H•disc.(G,A).
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7.3 Derived functors of inverse limit

Let Ab be the category of abelian groups. By a projective system in Ab, we
shall mean a collection of objects As (s ∈ N) and morphisms φ : As+1 → As.
We shall write AbN for the category of projective systems in Ab. There is a
functor

lim←−s
: AbN → Ab.

This functor is left-exact. It has right derived functors
(

lim←−s

)•
: AbN → Ab.

It turns out that

(
lim←−s

)n
is zero for n ≥ 2. The first derived functor has the

following simple description due to Eilenberg. We define a homomorphism

∆ :
∏

s

As →
∏

s

As,
(
∆(a•)

)
s

= as − φ(as+1).

With this notation we have

lim←−s
As = ker∆.

Eilenberg showed that
lim←−s

1As = coker ∆.

A projective system As is said to satisfy the Mittag–Leffler condition if for
every s ∈ N there is a t ≥ s such that for every u ≥ t the image of Au in As is
equal to the image of At in As.

Proposition 3 (Proposition 3.5.7 of [39]). If As satisfies the Mittag–Leffler
condition then lim←−s

1As = 0.

This immediately implies:

Corollary 6 (Exercise 3.5.2 of [39]). If As is a projective system of finite
abelian groups then lim←−s

1As = 0.

We shall use the derived functor lim←−s
1 to pass between discrete and continuous

cohomology:

Theorem 16 (Eilenberg–Moore Sequence (Theorem 2.3.4 of [27])). Let G be a
profinite group and A a projective limit of finite discrete continuous G-modules

A = lim←−s
As.

Then there is an exact sequence:

0→ lim←−s
1Hn−1

disc.(G,As)→ Hn
cts(G,A)→ lim←−s

Hn
disc.(G,As)→ 0.
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7.4 Stable Cohomology

For a continuous representation V of G(kp) over E, we shall write Vst for the
set of smooth vectors. The functor V 7→ Vst is left exact from the category
of continuous admissible representations of G(kp) (in the sense of [33]) to the
category of smooth representations. We shall write H•st(G(kp),−) for the right-
derived functors. This is called “stable cohomology” by Emerton (Definition
1.1.5 of [18]). It turns out that stable cohomology may be expressed in terms
of continuous group cohomology as follows (Proposition 1.1.6 of [18]):

H•st(G(kp), V ) = lim−→
Kp

H•cts(Kp, V ).

There is an alternative description of these derived functors which we shall also
use. Let Vloc.an. denote the subspace of locally analytic vectors in V . There is
an action of the Lie algebra g on Vloc.an.. Stable cohomology may be expressed
in terms of Lie algebra cohomology as follows (Theorem 1.1.13 of [18]):

H•st(G(kp), V ) = H•Lie(g, Vloc.an.). (13)

8 Proof of Theorem 7

In this section, we shall assume that G/k is connected, simply connected
and simple, and that G(k∞) is not connected. We regard the vector space
Homcts(Cong(G),Qp) as a p-adic Banach space with the supremum norm:

||φ|| = sup
x∈Cong(G)

|φ(x)|p.

We regard Homcts(Cong(G),Z/ps) as a discrete abelian group. The group
G(Af ) acts on these spaces as follows:

(gφ)(x) = φ(g−1xg), g ∈ G(Af ), x ∈ Cong(G).

Lemma 3. The action of G(Af ) on Homcts(Cong(G),Z/ps) is smooth.

Proof. One may prove this directly; however it is implicit in the Hochschild–
Serre spectral sequence. It is sufficient to show that the action of some open
subgroup is smooth. Let Kf be a compact open subgroup of G(Af ), and write

write K̃f for the preimage of Kf in G̃(k). We therefore have an extension of
profinite groups:

1→ Cong(G)→ K̃f → Kf → 1.

We shall regard Z/ps as a trivial, and hence smooth, K̃f -module. It follows
that each Hq

disc.(Cong(G),Z/ps) is a smooth Kf -module. On the other hand
we have

Homcts(Cong(G),Z/ps) = H1
disc.(Cong(G),Z/ps).

�
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Lemma 4. The action of G(Af ) on the p-adic Banach space
Homcts(Cong(G),Qp) is continuous.

Proof. It is sufficient to prove this for the open submodule
Homcts(Cong(G),Zp). We have, as topological G(Af )-modules:

Homcts(Cong(G),Zp) = lim←−s
Homcts(Cong(G),Z/ps).

Continuity follows from the previous Lemma. �

We shall say that a vector v ∈ Homcts(Cong(G),Qp) is G(Ap
f )-smooth if its

stabilizer in G(Ap
f ) is open. The set of such vectors will be written

Homcts(Cong(G),Qp)G(Ap

f
)−smooth.

Theorem. Assume G/k is connected, simple and simply connected, and that
G(k∞) is not compact. Then we have an isomorphism of G(Af )-modules:

H̃1(G,Qp) = Homcts(Cong(G),Qp)G(Ap)−smooth.

Proof. Choose a level Kf small enough so that Γ(Kf ) is torsion-free. By Corol-
lary 3, we have:

H1(Y (Kf),Z/ps) = H1
Group(Γ(Kf ),Z/ps).

Elements of H1
Group(Γ(Kf ),Z/ps) are group homomorphisms Γ(Kf) → Z/ps.

Let K̃f be the preimage of Kf in G̃(k); this is equal to the profinite completion
of Γ(Kf ). It follows that homomorphisms Γ(Kf)→ Z/ps correspond bijectively

to continuous homomorphisms K̃f → Z/ps. We therefore have:

H1(Y (Kf ),Z/ps) = H1
disc.(K̃f ,Z/ps).

We have an extension of profinite groups:

1→ Cong(G)→ K̃f → Kf → 1.

This gives rise to a Hochschild–Serre spectral sequence (Theorem 15):

Hp
disc.(Kf , H

q
disc.(Cong(G),Z/ps)) =⇒ Hp+q

disc.(K̃f ,Z/ps).

From this we have an inflation-restriction sequence containing the following
terms:

0→ H1
disc.(Kf ,Z/ps)→ H1(Y (Kf ),Z/ps)→

→ H1
disc.(Cong(G),Z/ps)Kf → H2

disc.(Kf ,Z/ps)
(14)

The proof of the theorem consists of applying the functors lim−→
Kp

, lim←−s
, −⊗Zp Qp

and lim−→
Kp

to the sequence (14).
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Step 1. We first substitute Kf = KpK
p, and apply the functor lim−→

Kp

to (14).

We have by the Künneth formula:

lim−→
Kp

H1
disc.(KpK

p,Z/ps) = H1
disc.(K

p,Z/ps),

lim−→
Kp

H2
disc.(KpK

p,Z/ps) = H2
disc.(K

p,Z/ps).

By Lemma 3 we have:

lim−→
Kp

H1
disc.(Cong(G),Z/ps)KpK

p

= H1
disc.(Cong(G),Z/ps)K

p

.

Since the functor lim−→
Kp

is exact, the sequence remains exact:

0→ H1
disc.(K

p,Z/ps)→ lim−→
Kp

H1(Y (KpKp),Z/ps)→

→ H1
disc.(Cong(G),Z/ps)K

p → H2
disc.(K

p,Z/ps).
(15)

Interlude. Before going on, we make some restrictions on the tame level Kp,
and investigate the first and last terms in the sequence (15).
We shall assume that the tame level Kp is a product of local factors:

Kp =
∏

q6=p

Kq,

where each Kq is a compact open subgroup of G(kq). Consider the following
sets of finite primes of k:

S = {q : q|p and q 6= p},

T = {q : q 6 |p and Kq 6= [Kq,Kq]}.
Both these sets are finite. We shall also assume from now on that for each
prime q ∈ T , the group Kq is chosen small enough so that it is a pro-q group,
where q is the rational prime below q. In particular, for each q ∈ T we have
for n ≥ 1,

Hn
disc.(Kq,Z/ps) = 0. (16)

We have a decomposition of Kp:

Kp = KS ×KT ×KS∪T∪{p}, (17)

where we are using the notation:

KS =
∏

q∈S
Kq, KS =

∏

q6∈S
Kq.
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By the Künneth formula and (16), (17), we have:

H•disc.(K
p,Z/ps) = H•disc.(KSK

S∪T∪{p},Z/ps). (18)

By assumption, the group KS∪T∪{p} is perfect, so we have

H1
disc.(K

S∪T∪{p},Z/ps) = 0. (19)

Again by the Künneth formula together with (18), (19), we have:

H1
disc.(K

p,Z/ps) = H1
disc.(KS ,Z/ps). (20)

H2
disc.(K

p,Z/ps) = H2
disc.(KS ,Z/ps)⊕H2

disc.(K
S∪T∪{p},Z/ps). (21)

For each prime q /∈ S ∪ T ∪ {p}, there is an open normal pro-q subgroup
Lq ⊂ Kq. We shall write G(q) for the (finite) quotient group. We therefore
have a Hochschild–Serre spectral sequence:

Hp
Group(G(q), Hq

disc.(Lq,Z/ps)) =⇒ Hp+q
disc.(Kq,Z/ps).

This spectral sequence degenerates: for n ≥ 1 we have

Hn(Lq,Z/ps) = 0.

Hence,

H•disc.(Kq,Z/ps) = H•Group(G(q),Z/ps), q /∈ S ∪ T ∪ {p}. (22)

Since G(q) is a finite perfect group, it has a universal central extension. We
shall write π1(G(q)) for the kernel of this extension, i.e. the Schur multiplier
of G(q). By (22) we have:

H2
disc.(Kq,Z/ps) = HomGroup(π1(G(q)),Z/ps). (23)

By Corollary 5 and (23) we have:

H2
disc.(K

S∪T∪{p},Z/ps) =
⊕

q/∈S∪T∪{p}
HomGroup(π1(G(q)),Z/ps). (24)

From (21) and (24) we have:

H2
disc.(K

p,Z/ps) = H2(KS ,Z/ps)⊕Homcts(π
S∪T∪{p}
1 ,Z/ps), (25)

where we are using the notation

π
S∪T∪{p}
1 =

∏

q/∈S∪T∪{p}
π1(G(q)).

The only property of π
S∪T∪{p}
1 which we require, is that it is a product of finite

groups, not depending on s.
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Step 2. We are now ready to apply the functor lim←−s
to the sequence (15). To

keep track of the exactness, we splice the sequence (15) into two:

0→ H1
disc.(KS ,Z/ps)→ lim−→

Kp

H1(Y (KpKp),Z/ps)→ A(s)→ 0, (26)

0→ A(s)→ H1
disc.(Cong(G),Z/ps)K

p → H2
disc.(K

p,Z/ps). (27)

Step 2a. Applying the functor lim←−s
to (26), we have a long exact sequence:

0→ lim←−s
H1

disc.(KS ,Z/ps)→ lim←−s
lim−→
Kp

H1(Y (KpKp),Z/ps)→

→ lim←−s
A(s)→ lim←−s

1H1
disc.(KS,Z/ps).

(28)

In order to calculate the individual terms in (28), we shall use the Eilenberg–
Moore sequence (see Theorem 16):

0→ lim←−s
1Hn−1

disc.(KS ,Z/ps)→ Hn
cts(KS ,Zp)→ lim←−s

Hn
disc.(KS,Z/ps)→ 0. (29)

Taking n = 1 in (29) we have

lim←−s
H1

disc.(KS ,Z/ps) = H1
cts(KS,Zp).

Since [KS ,KS] is open in KS, it follows that:

lim←−s
H1

disc.(KS ,Z/ps) = 0. (30)

Also, since the groups H1
disc.(KS ,Z/ps) are all finite, it follows by Corollary 6

that
lim←−s

1H1
cts(KS,Z/ps) = 0. (31)

Substituting (30) and (31) into (28), we get

lim←−s
lim−→
Kp

H1(Y (KpKp),Z/ps) = lim←−s
A(s). (32)

Step 2b. Applying the left-exact functor lim←−s
to (27) and substituting (32) we

obtain the following exact sequence:

0→ lim←−s
lim−→
Kp

H1(Y (KpKp),Z/ps)→ lim←−s

(
H1

disc.(Cong(G),Z/ps)K
p
)

→ lim←−s
H2

disc.(K
p,Z/ps).

(33)
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We shall investigate the second and third terms in this sequence further.
The functors lim←−s

and −Kp

commute, so we have

lim←−s

(
H1

disc.(Cong(G),Z/ps)K
p
)

=

(
lim←−s

H1
disc.(Cong(G),Z/ps)

)Kp

. (34)

Again by the Eilenberg–Moore sequence (29) we have by (34):

lim←−s

(
H1

disc.(Cong(G),Z/ps)K
p
)

= H1
cts(Cong(G),Zp)K

p

. (35)

To calculate the third term in (33) we shall use (25). This shows that

lim←−s
H2

disc.(K
p,Z/ps) = lim←−s

H2
disc.(KS ,Z/ps)⊕ lim←−s

Homcts(π
S∪T∪{p}
1 ,Z/ps).

(36)

Since π
S∪T∪{p}
1 is a product of finite groups, it follows that

lim←−s
Homcts(π

S∪T∪p
1 ,Z/ps) = 0.

Substituting this into (36), we obtain:

lim←−s
H2

disc.(K
p,Z/ps) = lim←−s

H2
disc.(KS ,Z/ps). (37)

Substituting (31) into the Eilenberg–Moore sequence (29), we have:

lim←−s
H2

cts(KS ,Z/ps) = H2
cts(KS ,Zp). (38)

Substituting (38) into (37) we have:

lim←−s
H2

cts(K
p,Z/ps) = H2

cts(KS ,Zp).

The sequence (33) is therefore

0→ lim←−s
lim−→
Kp

H1(Y (KpKp),Z/ps)→ H1
cts(Cong(G),Zp)K

p → H2
cts(KS ,Zp).

(39)

Step 3. We next apply the exact functor −⊗Zp Qp to (39). Note that since Kp

and Cong(G) are compact, we have

C•cts(K
p,Zp)⊗Zp Qp = C•cts(K

p,Qp),

C•cts(Cong(G),Zp)⊗Zp Qp = C•cts(Cong(G),Qp).

Furthermore, since Qp is flat over Zp, we have

H•cts(K
p,Zp)⊗Zp Qp = H•cts(K

p,Qp),
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H•cts(Cong(G),Zp)⊗Zp Qp = H•cts(Cong(G),Qp).

Since H1
cts(Cong(G),Zp) is torsion-free, we have

(
H1

cts(Cong(G),Zp)K
p
)
⊗Zp Qp = H1

cts(Cong(G),Qp)
Kp

.

Again, since Qp is flat over Zp, we have an exact sequence:

0→ H̃1(Kp,Qp)→ H1
cts(Cong(G),Qp)

Kp → H2
cts(KS ,Qp). (40)

Step 4. Applying the exact functor lim−→
Kp

to (40), we have an exact sequence

0→ H̃1(G,Qp)→ H1
cts(Cong(G),Qp)G(Ap)−smooth → H2

st(G(kS),Qp). (41)

As G(kS) is a Qp-analytic group, the stable cohomology may be expressed in
terms of Lie algebra cohomology (using (13)):

H2
st(G(kS),Qp) = H2

Lie(g⊗k kS ,Qp),

where we are regarding g ⊗k kS as a Lie algebra over Qp. By Whitehead’s
second lemma (Theorem 11) we have

H2
st(G(kS),Qp) = 0.

Hence
H̃1(G,Qp) = H1

cts(Cong(G),Qp)G(Ap)−smooth.

�

9 Some Examples

9.1 SL2/Q

Let G = SL2/Q. Since g is 3-dimensional, the spectral sequence has non-
zero terms only in columns 0 to 3. Since arithmetic subgroups have virtual
cohomological dimension 1, it follows that H̃n = 0 for n > 1. Taking W to be
the trivial representation, the E2 sheet of the spectral sequence is as follows:

E•,•2 :
H̃1(G, E)g

loc.an. E 0 0

E 0 0 E

The connection map E1,1
2 → E3,0

2 is an isomorphism, and the spectral sequence
stabilizes at E3 as follows:

E•,•3 :
H̃1(G, E)g

loc.an. 0 0 0

E 0 0 0
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9.2 SL1(D) for an indefinite quaternion algebra D

Let k be a totally real field and let D be a quaternion algebra over k, which is
indefinite at exactly one real place of k. We shall consider the group G(−) =
SL1(D ⊗k −) over k. Arithmetic subgroups of G have virtual cohomological
dimension 2, so we have classical cohomology groups in dimensions 0, 1 and
2. In dimensions 0 and 2 these are given by constants, and are 1-dimensional.
On the other hand it is easy to show that H̃2(G,Qp) = 0. The E2 sheet of the
spectral sequence is as follows:

E•,•2 :
H̃1(G, E)g

loc.an. E2 0 0

E 0 0 E

The connection map E1,1
2 → E3,0

2 is surjective, and the spectral sequence sta-
bilizes at E3 as follows:

E•,•3 :
H̃1(G, E)g

loc.an. E 0 0

E 0 0 0

9.3 SL2/k for k real quadratic

Let k be a real quadratic field and consider the group G = SL2/k. The non-zero
classical cohomology groups are the following:

H0
class.(G,W ) = WG,

H2
class.(G,W ) infinite dimensional.

It is known in this case (see [37]) that the congruence kernel of G is trivial.
We therefore have H̃1(G, E) = 0, and we can also show that H̃3(G, E) = 0.
Therefore the weak Emerton criterion holds in dimension 2. We also have
H3(g,K∞,C) = 0. Therefore we may apply Theorem 8 to the eigenvariety
E(2,Kp). The E2-sheet of the spectral sequence is as follows:

E•,•2 :

H̃2(G, E)g
loc.an. 0 0 0

0 0 0 0

E 0 0 E

The map H̃2(G, E)g
loc.an. → E in the E3-sheet is surjective, and the spectral

sequence stabilizes at the E4-sheet:

E•,•4 :

H2
class.(G, E) 0 0 0

0 0 0 0

E 0 0 0
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9.4 SL3/Q

Arithmetic subgroups of SL3(Q) have virtual cohomological dimension 4, as
the symmetric space is 5-dimensional. We have the following non-zero classical
cohomology groups:

H0
class.(G,W ) = WG,

H2
class.(G,W ) = infinite dimensional,

H3
class.(G,W ) = infinite dimensional.

It was shown in [4] that the congruence kernel is trivial. Hence the weak
Emerton criterion holds in dimension 2, and in fact the only non-zero Banach
space representations are:

H̃0(G, E) = E,

H̃2(G, E) = infinite dimensional,

H̃3(G, E) = infinite dimensional.

Furthermore, H3
rel.Lie(g,K∞,C) = 0. We may therefore apply Theorem 8 to

the eigenvariety E(2,Kp). One can use Poincaré duality to construct an eigen-
variety interpolating H3

class..
The author has not been able to calculate all of the terms of the spectral
sequence. However the E2-sheet is as follows:

E•,•2 :

H̃3(G, E)g
loc.an. ? ? ? ? ? ? 0 0

H̃2(G, E)g
loc.an. Ext1g(E, H̃

2(G, E)loc.an.) ? ? ? ? ? ? ?

0 0 0 0 0 0 0 0 0

E 0 0 E 0 E 0 0 E

This is stable by the E5-sheet, and most things are known:

E•,•5 :

? 0 0 0 0 0 0 0 0

H2
class.(G, E) ? 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0

9.5 Sp4/Q

Arithmetic subgroups of Sp4(Q) have cohomological dimension 5, as the sym-
metric space is 6-dimensional. It was shown in [5] that the congruence kernel
is trivial. Furthermore H3(g,K∞,C) = 0. We may therefore apply Theorem
8 to give a construction of the H2-eigencurve. By Poincaré duality, it is also
possible to construct a reasonable H4-eigenvariety.
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9.6 Spin(2, l) (l ≥ 3)

Let L be a Z-lattice equipped with a quadratic form of signature (2, l) with
l ≥ 3. We let G/Q be the corresponding Spin group. This has real rank 2, and
the corresponding symmetric space has dimension 2l. The congruence kernel
was shown to be trivial for such groups by Kneser [26]. Hence G satisfies the
weak Emerton criterion in dimension 2. It turns out that H3(g,K∞,C) = 0,
so we may apply Theorem 8 to E(2,Kp).
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Abstract. In this paper, we study the tannakian properties of the
Fontaine-Laffaille functor Vcris thanks to the theory of Wach’s mo-
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Introduction

Dans tout ce travail, p est un nombre premier impair, K un corps de ca-
ractéristique 0, complet pour une valuation discrète, absolument non ramifié
et de corps résiduel k parfait de caractéristique p. Nous noterons W l’anneau
des vecteurs de Witt à coefficients dans k, c’est donc l’anneau des entiers de K.
Tous trois sont munis d’une action de Frobenius, notée σ. Fixons K une cloture
algébrique de K, et posons ΓK = Gal(K,K). Nous noterons C le complété de
K et X : ΓK → Z∗p désignera le caractère cyclotomique de ΓK (c’est-à-dire que

g(z) = zX (g) pour tout g ∈ ΓK et pour toute racine de l’unité z ∈ K d’ordre
une puissance de p). Nous allons étudier les représentations continues de ΓK
dans des Qp-espaces vectoriels de dimension finie.
Nous nous restreindrons aux représentations cristallines, condition vérifiée dans
bien des cas issus de la géométrie (par exemple, pour le module de Tate ou la
cohomologie étale à coefficients dans Qp d’une variété abélienne ayant bonne
réduction). L’avantage de ces représentations est que J.-M. Fontaine et P. Col-
mez ont montré dans [Fon94b] et [CF00] qu’elles forment une catégorie tanna-
kienne, qui est ⊗-équivalente à la catégorie tannakienne des ϕ-modules filtrés
sur K faiblement admissibles (c’est à dire ceux qui ont des réseaux fortement
divisibles).
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Le foncteur qui induit cette équivalence de catégories se décrit de la manière
suivante : si V est une représentation p-adique cristalline, le ϕ-module filtré
associé est Dcris,p(V ) = (V ⊗Qp Bcris)

ΓK (le quasi-inverse est donné par : pour

D un ϕ-module filtré faiblement admissible, Vcris,p(D) = Fil0(D ⊗K Bcris)ϕ).
De plus, l’application

Vcris,p(D)⊗Qp Bcris → D ⊗K Bcris

issue de la multiplication de Bcris est un isomorphisme (préservant l’action de
ΓK, la filtration, et le morphisme ϕ). Cela peut se traduire de la façon suivante :
en notant wV le foncteur oubli qui à la Qp-représentation cristalline V associe
le Qp-espace vectoriel sous-jacent à V , et wD celui qui associe le K-espace
vectoriel sous-jacent à Dcris,p(V ), alors les ⊗-isomorphismes du foncteur fibre
wV ⊗Qp K sur le foncteur fibre wD, Isom(wV ⊗Qp K, wD), forment un torseur
sous Aut⊗(wV )|K et sous Aut⊗(wD), qui est non vide sur Bcris.

Du côté des ϕ-modules filtrés sur K, nous disposons de la notion de réseaux
fortement divisibles (dont l’existence est une condition nécessaire et suffisante
pour que le module soit faiblement admissible), qui sont des ϕ-modules filtrés
sur W (cf. paragraphe 1.3). J.-M. Fontaine et G. Laffaille ont montré dans
[FL82] que, si la longueur de la filtration est strictement plus petite que p −
1, il existe une équivalence de catégories abéliennes entre réseaux fortement
divisibles d’un module filtré faiblement admissible, et les réseaux stables de la
représentation cristalline associée.

Plus précisément, à M un ϕ-module filtré sur W vérifiant Fil1(M) = {0}
et Fil2−p(M) = M , ils associent le réseau Vcris(M) = Fil0(M ⊗W Acris)

ϕ0

,
et cette construction induit un foncteur exact, pleinement fidèle (dont nous
noterons Dcris un quasi-inverse). Deux problèmes apparaissent : la condition
sur la filtration n’est pas stable par produit tensoriel, et l’application naturelle

Vcris(M)⊗Zp Acris →M ⊗W Acris

n’est pas un isomorphisme (le déterminant est une puissance de t, non inversible
dans Acris). De plus, une question naturelle se pose : est-ce qu’il existe un
point f de Isom(wV ⊗Qp K, wD) qui envoie un réseau galoisien sur celui qui
lui correpond d’après la correspondance de Fontaine-Laffaille ? Répondre à ces
questions revient à étudier les propriétés tannakiennes de Vcris.

L’idée va être d’introduire la théorie des modules de Wach de L. Berger (voir
[Ber04]), qui à un réseau d’une Qp-représentation cristalline associe un (ϕ,Γ)-
module dont un quotient redonne le ϕ-module filtré sur W correspondant à la
théorie de Fontaine-Laffaille. L’intérêt des modules de Wach est leur compati-
bilité avec le produit tensoriel (le module de Wach d’un produit tensoriel est
le produit tensoriel des modules de Wach). Le problème se ramène alors à :
pouvons-nous à partir d’un ϕ-module filtré sur W reconstruire le module de
Wach correspondant ? Pouvons-nous le faire de manière à ce que cette construc-
tion soit fonctorielle ?

Documenta Mathematica 12 (2007) 399–440



G-Structures Entières et Modules de Wach 401

Le résultat technique principal de cet article est la construction à partir des
idées de N. Wach d’un foncteur de la catégorie des modules de Fontaine-
Laffaille vers la catégorie des modules de Wach. Plus précisément, notons
MF−h

W la catégorie des ϕ-modules filtrésN libres surW tels que Fil−h(N) = N ,
Fil1(N) = {0} (cf. paragraphe 1.3 pour plus de détails) et MFW < −h >
la catégorie engendrée par MF−h

W pour les opérations de sous-objets, objets
quotients, produit tensoriel et somme directe, Vcris le foncteur de Fontaine-
Laffaille, ΓΦM−h

S la catégories des duaux des modules de Wach de hauteur h
(ce qui correspond à des modules de Wach d’après la définition de [Ber04]), et
ΓΦM−

S la réunion sur h ≥ 0 des ΓΦM−h
S , N le foncteur ”module de Wach”,

VOE le foncteur de Fontaine pour les (ϕ,Γ)-module sur OE , Vcris,p le foncteur
de Fontaine pour les ϕ-modules filtrés sur K admissibles, et j : S → OE qui in-
duit le foncteur extension des scalaires j∗ de la catégorie des modules de Wach
vers la catégorie des (ϕ,Γ)-modules sur OE .

Théorème 1. Soit h un entier compris entre 0 et p − 2, alors il existe un
foncteur F− exact, préservant le produit tensoriel, fidèle et pleinement fidèle
de MFW < −h > vers ΓΦM−

S . Restreint à MF−h
W , ce foncteur est essentiel-

lement surjectif sur ΓΦM−h
S . De plus, pour tout objet M de MF−h

W , F−(M)
est fonctoriellement isomorphe à N(Vcris(M)). Dans le cas général, F−(M)
s’interprète encore comme le module de Wach du réseau galoisien correspon-
dant au (ϕ,Γ)-module sur OE engendré par F−(M). En outre, VOE ◦j∗◦F− est
isomorphe (comme foncteur) à Vcris,p une fois p rendu inversible, et à Vcris

une fois restreint à la catégorie MF−h
W .

Remarque 1. Ce théorème est optimal, dans le sens où nous ne pouvons
espérer que F− soit essentiellement surjectif sans la restriction sur h.

Pour illuster, le théorème nous dit essentiellement que le diagramme suivant
est commutatif (où bien sûr il faut resteindre la catégorie des réseaux des
représentations cristallines à ceux à poids de Hodge-Tate dans [[0, h]]) :

Repcris,h
Zp

(ΓK)
Dcris //

DOE

�� N
**UUUUUUUUUUUUUUUUUU
MF−h

W

F−

��

Vcris

oo

ΓΦMet
OE

VOE

OO

ΓΦM−h
S

j∗
oo

modπ

OO

et, une fois p rendu inversible,

Repcris
Qp

(ΓK)

DE

��
N

++VVVVVVVVVVVVVVVVVVVVVV
MFW < −h >⊗K

F−

��

Vcris,p

oo

ΓΦMet
E

VE

OO

ΓΦM−
S[ 1

p
]

j∗
oo

modπ

OO
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où F− est fidèle, pleinement fidèle, préserve le produit tensoriel, et suivant
les cas, peut être essentiellement surjectif (et MFW < −h >⊗K représente
juste la catégorie formée des objets de MFW < −h > où nous avons rendu p
inversible, c’est à dire la catégorie engendrée pour les opérations de produit
tensoriel, somme directe, sous-objet et objet quotient, par les modules filtrés
sur K admissibles à pente compris entre 0 et −h).

Remarque 2. Dans l’article nous étudierons aussi le cas plus général des ϕ-
modules filtrés de type fini sur W (donc ayant éventuellement de la p-torsion).

De ce théorème, nous en déduisons le corollaire voulu :

Théorème 2. Il existe un point du torseur Isom(wV ⊗Qp K, wD) à coefficient

dans le corps Ênr qui préserve les réseaux de Fontaine-Laffaille, c’est à dire qui
identifie les réseaux stables par Galois des représentations cristallines à poids
de Hodge-Tate dans [[0, p−2

2 ]] au W -module filtré correspondant par la théorie
de Fontaine-Laffaille.

Pour obtenir un résultat sur K plutôt que sur Ênr, il faut modifier le problème.
ConsidéronsG un groupe algébrique lisse sur Zp et une représentation ρ : ΓK →
G(Zp). Supposons donnée une immersion fermée α de G dans GLU , pour U
un Zp-module libre de rang fini, telle que la représentation α ◦ ρ de ΓK (dans
GL(U⊗ZpQp)) soit cristalline à poids de Hodge-Tate dans [[0, h]] avec h un entier

compris entre 0 et p−2
2 . Notons V = U⊗ZpQp. Par un théorème de Chevalley, il

existe un Qp-espace vectoriel VG dans
⊕

i End(V )⊗i (en faisant agir GLV natu-
rellement sur V ∗ et trivialement sur V , dans End(V ) = V ⊗V ∗) tel queG×ZpQp

soit le groupe algébrique formé de l’ensemble des éléments de GLV qui laissent
stable VG. Alors, par le foncteur de Fontaine-Laffaille, nous pouvons définir na-
turellement un groupe GD sur D = Dcris,p(V ) comme l’ensemble des éléments
de GLD laissant stable Dcris,p(VG). Un corollaire de la proposition 6.3.3 de
[Fon79] nous donne l’existence d’un élément de Isom(wV ⊗Qp K, wD)(K), donc
en particulier d’un isomorphisme de K-modules

f : V ⊗Qp K → D

qui identifie G ×Zp K à GD. Le comportement de f vis-à-vis des réseaux est
à priori inconnu. Pour l’étudier, nous introduisons un G-torseur Isom défini
sur W , qui est heuristiquement le G-torseur obtenu à partir de Isom(wV ⊗Qp
K, wD) (c’est à dire une forme sur W du G ×W K torseur obtenu à partir de
Isom(wV ⊗Qp K, wD)). Le résultat suivant se montre alors en montrant que
Isom est un G-torseur trivial sur W :

Théorème 3. Sous les hypothèses précédentes, si M = Dcris(U), il existe un
sous-groupe algébrique GM de GLM sur W , avec GM ×W K = GD, et il existe
f un isomorphisme de W -modules de U ⊗Zp W sur M , qui identifie G à GM .

f : U ⊗Zp W →M
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De plus, si U ′ est un réseau de U ⊗Zp Qp laissé stable par l’action de G, alors
f [ 1p ] envoie U ′ ⊗Zp W sur Dcris(U

′).

Remarque 3. Ce théorème nous donne en particulier que les réseaux U et M
ont la même position vis à vis du groupe G.

Avec des hypothèses plus fortes sur α, nous pouvons affaiblir l’hypothèse sur
h. Une application directe de ce résultat concerne la semi-simplifiée d’une
représentation cristalline à poids de Hodge-Tate petits : le groupe algébrique
H engendré par l’image de Galois sur Qp est alors connexe et réductif, donc
en appliquant les résultats cités dans [Tit79] (paragraphe 3.2 et 3.4.1), il existe
un groupe algébrique lisse G défini sur Zp, tel que G(Zp) contienne l’image de
Galois, et dont la fibre générique est H . Le Théorème 3 s’applique alors.
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1 Rappels

1.1 Rappels sur les (ϕ,Γ)-modules

1.1.1 Définition de OE
Soit R l’ensemble des suites x = (x(n))n∈N formées d’éléments de OK̄/pOK̄
vérifiant (x(n+1))p = x(n) pour tout n (cf. [Fon82], p. 535). C’est un anneau
parfait de caractéristique p, muni d’une valuation ; son corps résiduel s’iden-
tifie à k. Son corps des fractions FrR est un corps algébriquement clos de
caractéristique p, et R est intégralement clos dans FrR.

Si A est une k-algèbre, W (A) désigne l’anneau des vecteurs de Witt à coeffi-
cients dans A. Notons Zps = W (Fps), Znrp = W (Fp), W = W (k), WK(A) =

K ⊗W W (A) = W (A)[ 1p ] et si a ∈ A, [a] = (a, 0, · · · , 0, · · · ) le représentant de

Teichmüller de a dans W (A). Le Frobenius x ∈ A 7→ xp ∈ A s’étend à W (A) en
ϕ (encore appelé l’endomorphisme de Frobenius) par fonctorialité, ainsi qu’à
WK(A) ; nous noterons σ le Frobenius sur W et sur K (si λ ∈ W , σ(λ) := ϕ(λ)).
En particulier ceci s’applique à W (R), W (FrR) et WK(FrR).

D’autre part, le groupe ΓK opère par fonctorialité sur R, FrR et W (Fr(R)),
et les anneaux W (R), W (FrR) et WK(R) s’identifient à des sous-anneaux de
WK(FrR) stables par ϕ et ΓK.

Notons Zp(1) = lim←−
n∈N

µpn(K̄) le module de Tate du groupe multiplicatif et pour

tout i ∈ N, Zp(i) = Zp(1)⊗i et Zp(−i) son dual. Pour tout Zp-module T , et
pour tout i ∈ Z, posons T (i) = T ⊗Zp Zp(i).
Le module de Tate Zp(1) = Tp(Gm) s’identifie au sous Zp-module du groupe
multiplicatif des unités de R congrues à 1 modulo l’idéal maximal, formé des
x tels que x(0) = 1. Choisisons un générateur de ce module, c’est-à-dire un
élément ε = (ε(n))n∈N ∈ R tel que ε(0) = 1 et ε(1) 6= 1, et considérons l’élément
π = [ε] − 1 dans W (R). Alors l’adhérence S de la sous W -algèbre de W (R)
engendrée par π s’identifie à l’algèbre W [[π]] des séries formelles en π à coeffi-
cients dans W ; de plus S est stable par ϕ et ΓK, et nous avons les relations
suivantes :

ϕ(π) = (1 + π)p − 1

g(π) = (1 + π)X (g) − 1

pour g ∈ ΓK.

Soit Kn le sous corps de K̄ engendré sur K par les racines pn-ièmes de l’unité,
et K∞ = ∪

n∈N
Kn. Notons Γ = Gal(K∞/K) et HK le noyau de la projection de

ΓK sur Γ. Le groupe HK agit trivialement sur S. Si Γf est le sous-groupe de
torsion de Γ, posons S0 = SΓf ainsi que Γ0 = Γ/Γf ; J.-M. Fontaine a montré
(cf. [Fon90], p. 268-273) que S0 = W [[π0]], où π0 = −p +

∑
a∈Fp

[ε][a]. Notons

q = p+ π0. S0 est munie d’une action naturelle de Γ0.

Documenta Mathematica 12 (2007) 399–440



G-Structures Entières et Modules de Wach 405

Notons OE le complété pour la topologie p-adique de S[ 1
π ]. C’est l’anneau

des entiers d’un corps complet pour une valuation discrète, absolument non
ramifié, noté E . Comme π est inversible dans W (FrR), l’inclusion de S dans
W (R) se prolonge en un plongement de S[ 1

π ] dans W (FrR), et OE s’identifie
à l’adhérence de S[ 1

π ] dans W (FrR) pour la topologie p-adique, tandis que
E = OE [ 1p ] s’identfie à un sous-corps de WK(FrR). Alors si E = OE/p, OE =

S/pS = k[[π̃]], où π̃ est la réduction modulo p de π.
De plus, si Ênr désigne l’adhérence dans WK(FrR) de l’extension maximale
non ramifiée Enr de E contenue dans WK(FrR) et OÊnr son anneau des entiers,
OÊnr/p est une clôture séparable Esep de E, avec une identification des groupes
de Galois

HK = Gal(Esep/E) = Gal(Enr/E).

1.1.2 (ϕ,Γ)-modules et représentations galoisiennes

Nous ne considérerons des (ϕ,Γ)-modules que sur S ou OE (nous considérerons
aussi des (ϕ,Γ0)-modules définis sur S0). Soit A l’un des anneaux précédent.
Un (ϕ,Γ)-module sur A est un A-module muni d’un endomorphisme ϕ, semi-
linéaire par rapport à σ muni en plus d’une action continue de Γ, semi-linéaire
par rapport à l’action de Γ surA, cette action commutant avec l’endomorphisme
ϕ. Nous les supposerons toujours étale, c’est à dire de type fini sur A et tels que
l’application linéaire ϕ : Mσ → M , déduite de ϕ en posant ϕ(λ ⊗ x) = λϕ(x)
pour λ ∈ A et x ∈ M est bijective. Les (ϕ,Γ)-modules étales (avec comme
morphismes les morphismes A-linéaires commutants à ϕ et à Γ) définissent une
⊗-catégorie abélienne notée ΓΦMét

A (cf. [Fon90] p.273).
Appelons représentation Zp-adique de ΓK la donnée d’un Zp-module de type
fini muni d’une action linéaire et continue de ΓK. Un morphisme sera une
application Zp-linéaire commutant à l’action de ΓK. Notons RepZp

(ΓK) la
catégorie des représentations Zp-adique de ΓK. La catégorie RepQp

(ΓK) est
défini de même.
J.-M. Fontaine a montré dans [Fon90] (p. 274) qu’il existait une équivalence
de catégories entre ΓΦMét

OE
et RepZp

(ΓK) induite par le foncteur DOE (T ) =

(ObEnr ⊗Zp T )HK pour T une Zp-représentation de ΓK, et son quasi inverse

VOE (N ) = (ObEnr ⊗OE N )ϕ=1. La multiplication dans ObEnr induit alors une
application naturelle et fonctorielle :

VOE (N )⊗Zp ObEnr
ψN

// N ⊗OE ObEnr

pour N un objet de la catégorie ΓΦMét
OE

.

1.2 Représentations cristallines

1.2.1 Représentations cristallines

Pour la définition de Acris et de t := log([ε]), nous renvoyons à [Fon94a]
par exemple. Nous noterons Bcris = Acris[

1
t ]. Soit V un Qp-espace vectoriel
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de dimension finie, et ρ : ΓK → GL(V ) une représentation continue de ΓK.
Définissons Dcris,p par

Dcris,p(V ) = (V ⊗Qp Bcris)
ΓK

Alors Dcris,p(V ) est un K-espace vectoriel, et dimKDcris,p(V ) ≤ dimQp V .

Définition 4. La représentation (ρ, V ) est cristalline si dimKDcris,p(V ) =
dimQp V .

Notons RepQp,cris(ΓK) la sous-catégorie pleine de RepQp
(ΓK) formée par les

représentations cristallines. Définissons MFK la catégorie des ϕ-modules filtrés
sur K : un objet D de MFK est un K-espace vectoriel de dimension finie muni
d’une filtration (Fili(D))i∈Z formée de sous-espaces vectoriels, fitration qui est
décroissante, exhaustive séparée, et muni d’une application σ-semi-linéaire bi-
jective ϕ : D → D. Dcris,p(V ) est alors naturellement un ϕ-module filtré. Un
élément de l”image essentiel du foncteur Dcris,p(V ) restreint à RepQp,cris(ΓK)
est appelé admissible. Notons MFad

K la sous-catégorie pleine de MFK formée
des modules admissibles.
RepQp,cris(ΓK) et MFad

K sont deux catégories tannakiennes, le foncteur Dcris,p

induit une équivalence de ⊗-catégories entre ces deux catégories, et un quasi-
inverse est donné par le foncteur Vcris,p(D) =

(
Fil0(D ⊗K Bcris)

)ϕ=1
. L’ap-

plication naturelle (provenant de la multiplication dans Bcris)

Vcris,p(D)⊗Qp Bcris → D ⊗K Bcris (5)

est alors une bijection.

1.2.2 Poids de Hodge-Tate

Rappelons que pour ρ : ΓK → GLQp(V ) une représentation continue sur un
Qp-espace vectoriel de dimension finie, l’action de ΓK peut s’étendre à VC =
V ⊗Qp C via g(v ⊗ x) = ρ(g)(v)⊗ g(x). Notons alors pour i ∈ Z, VC{i} = {v ∈
VC|∀g ∈ ΓK, g(v) = X (g)iv}. VC{i} est un K-sous espace vectoriel de VC tel
que l’injection VC{i} → VC s’étend en une injection C-linéaire

⊕

i∈Z

VC{i} ⊗K C→ VC

Alors V est dit de Hodge-Tate si cette injection est une bijection. Les poids de
Hodge-Tate sont alors les i ∈ Z tels que dimK VC{i} 6= 0. Si V est cristalline,
alors elle est de Hodge-Tate, et ses poids de Hodge-Tate sont les opposées des
sauts de la filtration de Dcris,p(V ).

1.3 Rappels sur les ϕ-modules

La catégorie qui va nous interesser est la catégorie MFW,tf dite des ϕ-modules
filtrés sur W , dont les objets sont les W -modules N de type fini, muni
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– d’une filtration décroissante exhaustive et séparée formée de sous-modules
(Fili(N))i∈Z ;

– pour tout i ∈ Z, d’une application σ-semi-linéaire ϕi : Fili(N) → N telle
que ϕi|Fili+1(N) = pϕi+1 ;

– il existe i ∈ Z avec Fili(N) = {0} ;
– les Fili(N) sont des facteurs directs dans N ;
–
∑
i∈Z

ϕi(Fili(N)) = N .

Les morphismes de cette catégorie sont donnés par les applications W -linéaires
compatibles aux filtrations et commutants aux ϕi. C’est une ⊗-catégorie qui
est abélienne, Zp-linéaire, qui possède des Hom internes (cf. [Win84]).
Soit X (respectivement Xs pour s ∈ N∗) le groupe additif des applications
périodiques (respectivement ayant s pour période) de Z dans Z. Le Frobenius
σ agit sur X par ∀ξ ∈ X, ∀i ∈ Z, σ(ξ)(i) = ξ(i + 1), et laisse donc stable les
Xs.
Pour tout objet N de MFW,tf , si (Ni)i∈Z est un scindage de (Fili(N))i∈Z,
posons pour x ∈ N tel que x =

∑
i

xi avec xi ∈ Ni, fN(x) =
∑
i

ϕiN (xi). Soit

pour tout ξ ∈ X , le W -module N{ξ} := {x ∈ N |f jN(x) ∈ Nξ(j) pour tout
j ∈ Z}. Le ϕ-module filtré N est dit élémentaire si N = ⊕ξ∈XN{ξ}.

Lemme 6. Si N est un module élémentaire, dont le module sous-jacent est libre
sur W ou sur k, alors il existe une base (eiξ)ξ∈X, 1≤i≤rg(N{ξ}) de N telle que

pour tout ξ, (eiξ)1≤i≤rg(N{ξ}) soit une base de N{ξ} et de plus ϕξ(0)(eiξ) = eiσ(ξ).

J.-P. Wintenberger a montré dans [Win84] :

Théorème 7. Pour tout objet N de MFW,tf , il existe un et un seul scindage
de la filtration de N tel que
– il existe un (unique) uN ∈ AutW (N) tel que le ϕ-module filtré (N, (Ni), u

−1
N ◦

fN ) soit élémentaire ;
– N/pN ait une suite de composition dont les quotients successifs sont des

modules élémentaires.
Ce scindage vérifie les propriétés de fonctorialité attendues.

Posons enfin MF
[a,b]
W,tf (resp. MF

[a,b]
W ) la sous-catégorie pleine de MFW,tf

formée des W -modules M (resp. modules libres) tels que Fila(M) = M et

Filb+1(M) = {0}. Notons MF−h
W,tf = MF

[−h,0]
W,tf , MFh

W,tf = MF
[0,h]
W,tf et

MF±h
W,tf = MF

[−h,h]
W,tf (de même sans le symbole tf). Pour terminer, nous

désignerons par MFW,tf < h > la catégorie engendrée par MFh
W dans la

catégorie MFW,tf pour les opérations de sous-objet, objet quotient, somme
directe et produit tensoriel.
Soit D un ϕ-module filtré sur K admissible. Alors il possède des sous-réseaux
fortement divisible, M , c’est-à-dire un réseau M vérifiant

∑
i∈Z

p−iϕ(Fili(D) ∩

M) = M . En posant Fili(M) = Fili(D) ∩M , ϕi = p−iϕ|Fili(M), M devient
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un ϕ-module filtré sur W . Réciproquement, si M est un objet de MFW,tf

libre sur W , en posant D := K ⊗W M , Fili(D) := K ⊗W Fili(M), et pour
xi ∈ Fili(M), ϕ(xi) := piϕi(xi), l’objet D ainsi construit est un ϕ-module
filtré sur K faiblement admissible (et donc en fait admissible) dont M est un
réseau fortement divisible. Par contre, différents M peuvent donner le même
D. Nous noterons DM ce ϕ-module filtré sur K faiblement admissible construit
à partir de M .

1.4 Le théorème de Fontaine-Laffaille

Définition 8. Pour tout objet M de MFW,tf tel que Fil1(M) = {0}, soit
Vcris(M) la représentation galoisienne définie par :

Vcris(M) =
(
Fil0(M ⊗W Acris)

)ϕ0

Si M est libre comme W -module, Vcris(M) est un Zp-module libre (c’est un
sous-réseau de Vcris,p(DM )).

Théorème 9 (Théorème de Fontaine-Laffaille). Si nous nous restreignons à la
sous-catégorie pleine des M vérifiant Fil2−p(M) = M et Fil1(M) = {0}, alors
le foncteur Vcris ainsi défini est exact et pleinement fidèle. De plus si M est
libre sur W , Vcris(M) est un réseau de la représentation galoisienne associée
à DM (c’est-à-dire que rgZp(Vcris(M)) = rgW (M)).

Nous noterons Dcris un quasi-inverse à Vcris (Il est donc défini sur la catégorie
formée par les réseaux des représentations cristallines sur Qp de ΓK à poids de

Hodge-Tate dans [[0, p− 2]], et leurs quotients, à valeurs dans MF2−p
W,tf ).

2 Construction du foncteur

2.1 Rappels sur Γ0ΦMh
S0

Notons Γ0ΦMh
S0

(ΓΦMh
S se définit de la même façon) la sous-catégorie pleine

de la catégorie des (ϕ,Γ0)-modules sur S0 (cf. paragraphe 1.1) formée des objets
N vérifiant :

– le S0-module sous-jacent est de type fini et sans p′-torsion (i.e. pour tout
élément irréductible λ de S0 non associé à p, N est sans λ-torsion),

– le S0-module N/ϕ(N ⊗σ S0) est annulé par qh (où q = π0 + p),
– le groupe Γ0 agit trivialement sur N/π0N .

Elle est abélienne si 0 ≤ h ≤ p − 2, et l’inclusion j : S0 → OE induit un
foncteur j∗ : Γ0ΦMh

S0
→ ΓΦMét

OE
pleinement fidèle qui est une équivalence de

catégorie pour 0 ≤ h ≤ p − 2 sur son image essentielle (cf. [Fon90], p.301). Si
N est un objet de Γ0ΦMh

S0
, alors j∗(N ) a pour espace sous-jacent N ⊗S0 OE .

Nous ferons souvent l’abus de notation de n’écrire que l’espace sous-jacent pour
désigner j∗(N ).
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Si 0 ≤ h ≤ p − 2 et N un objet de Γ0ΦMh
S0

, N. Wach a montré qu’il est
possible de munir N = N/π0N d’une structure de ϕ-module filtré sur W en
posant

Filr N = {x ∈ N tels qu’il existe un relèvement x̂ ∈ N de x avec ϕ(x̂) ∈ qrN}

et pour tout x ∈ Filr N , ϕr(x) égal à l’image de ϕ(bx)
qr dans N . Elle a alors

démontré le théorème suivant (cf. [Wac97], p.231) :

Théorème 10. Soit 0 ≤ h ≤ p − 2. Pour tout objet N de Γ0ΦMh
S0

, le ϕ-

module filtré i∗(N ) = N/π0N est un objet de MFh
W,tf ; le foncteur i∗ ainsi

défini est exact et fidèle.

2.2 Foncteur entre MFh
W et Γ0ΦMh

S0

N. Wach a donné les idées pour construire un quasi-inverse à i∗ : à partir d’un
objet N de MFh

W avec 0 ≤ h ≤ p − 2 et d’une base adaptée à la filtration,
elle a construit un objet N tel que i∗(N ) = N . Nous allons montrer qu’en se
fixant un scindage fonctoriel de la filtration, nous rendons cette construction
fonctorielle.

Proposition 11. Soit MF+
W,tf la sous-catégorie pleine formée de la réunion

des MFh
W,tf (définition analogue pour Γ0ΦM+

S0
). A tout scindage fonctoriel

de la filtration des objets de MF+
W,tf nous pouvons associer un foncteur de

MF+
W,tf vers ΦMét

S0
(la catégorie des ϕ-modules sur S0 dont l’extension à

OE donne un ϕ-module étale), qui soit fidèle, additif, exact, et qui préserve le
produit tensoriel.

Démonstration. Si N est un objet de MF+
W,tf , et N = ⊕Ni le scindage de la

filtration, il suffit de construire sur N ⊗W S0 une structure de ϕ-module par :
l’application ϕi étant défini sur Fili(N), elle se restreint à Ni, permettant de
poser ϕN égal à qiϕi sur Ni, c’est-à-dire

∀x ∈ Ni, ϕN (x) = qiϕi(x)

Nous prolongeons cette définition à N ⊗W S0 tout entier en utilisant la semi-
linéarité de ϕN . Les propriétés de fonctorialité découlent alors de celles du
scindage de la filtration. Au niveau des flèches, ce foncteur est construit de la
manière suivante : si f : N → N ′ est un morphisme de ϕ-modules filtrés, le
foncteur lui associe f ⊗ Id.

Remarque 12. Le fait qu’il existe un scindage de la filtration fonctoriel (no-
tamment préservant le produit tensoriel) nous est donné par le théorème 7.

Remarque 13. Nous pouvons étendre ce foncteur de la même façon en un
foncteur de la catégorie des ϕ-modules filtrés libres sur W vers ΦMét

OE
, qui

préserve sous-objet, objet quotient, somme directe, produit tensoriel et dual.
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N. Wach a montré la proposition suivante (cf. le lemme 3.1.6 p.233 de [Wac97]) :

Proposition 14. Supposons 0 ≤ h ≤ p−2. Alors pour tout objet N de MFh
W,

il existe une unique action de Γ0 sur N⊗W S0 triviale modulo π0 et commutant
au ϕN construit comme dans la proposition 11. Le module N ⊗W S0 est alors
muni d’une structure de (ϕ,Γ0)-module sur S0 et devient un objet de Γ0ΦMh

S0
..

C’est le point de départ pour montrer le théorème suivant :

Théorème 15. Supposons 0 ≤ h ≤ p − 2. Il existe un ⊗-foncteur F additif,
exact, fidèle et pleinement fidèle de MFW,tf < h > dans Γ0ΦM+

S0
, qui com-

posé avec le foncteur oubli donne juste le foncteur extension des scalaires de
W à S0. De plus, il induit une équivalence de catégories entre MFh

W,tf et

Γ0ΦMh
S0

, dont un quasi-inverse est i∗.

Démonstration. La première étape consiste à construire F sur MFh
W. Soit N

un objet de MFh
W (donc libre comme W -module). Considérons N ⊗W S0 :

comme 0 ≤ h ≤ p − 2, il existe une unique action de Γ0 sur N ⊗W S0 qui
commute à ϕ et est triviale modulo π0 (c’est le lemme 3.1.6 p.233 de [Wac97]).
Le (ϕ,Γ0) module ainsi défini, noté F(N), est bien un objet de Γ0ΦMh

S0
. Il

faut voir que nous définissons bien ainsi un foncteur. Comme la structure de ϕ-
module provient d’un scindage de la filtration qui préserve le produit tensoriel,
l’unicité de l’action de Γ0 nous donnera bien que F préserve le produit tensoriel
(tant que celui-ci reste dans MFh

W). L’exactitude provient de la même raison.
N. Wach a montré (lemme 3.1.1.2 de [Wac97]) qu’il existe un unique générateur

topologique g0 de Γ0 tel que g0(q)−q
qπ0

= 1 modulo qS0. Il suffit donc d’étudier

l’action de g0. Choisissons une base adaptée à la graduation (ei)1≤ i≤ d (c’est-
à-dire : si ri est le plus grand entier tel que ei ∈ Filri(N), alors pour tout r,
(ei)ri=r est une base de Nr), et si (ai,j) est la matrice des applications ϕr dans
cette base, l’action de ϕ est donné par :

ϕ(ej) = qrj
∑

1≤ i≤ d
ai,jei

Avant de montrer que F préserve les sous objets, nous allons étudier plus en
détail l’action de g0.
N. Wach construit l’action de g0 sur N ⊗W S0 par récurrence modulo πn0 . Nous
avons besoin de voir cette action d’une autre façon : soit G = (gi,j) la matrice
dans GLrg(N)(S0) définie par g0(ej) =

∑
i

gi,jei, et A = (ai,j) ∈ GLrg(N)(W )

donnant l’action de ϕj sur ej . Alors, en écrivant ϕ◦g0(ej) =
∑
i,k

ϕ(gi,j)ak,iq
riek

et g0◦ϕ(ej) =
∑
i,k

g(ai,j)gk,ig(q)
rjek, la commutativité ϕ◦g0 = g0◦ϕ nous donne

pour G l’équation AQϕ(G) = Gg0(A)g0(Q) avec Q la matrice correspondant à
Q(ej) = qrjej (et g0(A) = A puisque A est à coefficients dans W ). Donc G est
un point fixe de l’application f : H 7→ AQϕ(H)g0(Q

−1)g0(A
−1) (et le lemme

3.1.6 p.233 de [Wac97] affirme juste l’unicité d’un tel point fixe à coefficients
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dans S0, qui soit congru à Id modulo π0). Notons I la matrice identité dans
GLrg(N) et Gn = f (n)(I) (c’est-à-dire la composée n fois de f appliquée à I).
Alors, en utilisant que G− I ∈ π0Mrg(N)(S0), nous allons montrer :

Lemme 16. La matrice G est la limite de la suite Gn.

Démonstration. Notons ϕ(n) la composée n fois de ϕ et introduisons alors
Bn = AQϕ(A)ϕ(Q) · · ·ϕ(n−1)(A)ϕ(n−1)(Q) qui est une matrice à coefficients
dans S0. Nous avons Gn = Bnϕ

(n)(I)g0(B
−1
n ), et comme G est un point fixe

de f , G = Bnϕ
(n)(G)g0(B

−1
n ), d’où l’égalité Gn−G = Bnϕ

(n)(I −G)g0(B
−1
n ).

Notons G = I − π0H avec H ∈ Mrg(N)(S0), alors nous avons Gn − G =

ϕ(n)(π0)Bnϕ
(n)(H)g0(B

−1
n ). Or, comme A est inversible (dans GLrg(N)(W )),

les seuls dénominateurs possibles sont les puissances de g0(q)
ri , et comme

0 ≤ ri ≤ p − 2, nous pouvons écrire Gn − G = ϕ(n)(π0)

g0

(
qϕ(q)···ϕn−1(q)

)p−2G
′
n

avec G′n = Bnϕ
(n)(H)g0

(
ϕ(n−1)(qp−2Q−1)ϕ(n−1)(A−1) · · · qp−2Q−1A−1

)
qui

est une matrice à coefficients dans S0.

Donc tout revient à montrer que ϕ(n)(π0)

g0

(
qϕ(q)···ϕn−1(q)

)p−2 tend vers 0. Nous avons

g0(q) = vgq avec vg inversible dans S0, par conséquent le fait que ϕ et g0
commutent nous donne l’égalité

ϕ(n)(π0)

g0
(
qϕ(q) · · ·ϕn−1(q)

)p−2 =
(vgϕ(vg) · · ·ϕ(n−1)(vg))

2−p

(qϕ(q) · · ·ϕn−1(q))p−2
ϕ(n)(π0)

En utilisant que ϕ(π0) = uπ0q
p−1 pour u un certain inversible dans S0, nous

obtenons que ϕ(n)(π0) = (qϕ(q) · · ·ϕn−1(q))p−1π0uϕ(u) · · ·ϕ(n−1)(u). Donc,

ϕ(n)(π0)

g0
(
qϕ(q) · · ·ϕn−1(q)

)p−2 = π0
uϕ(u) · · ·ϕ(n−1)(u)

(vgϕ(vg) · · ·ϕ(n−1)(vg))p−2
qϕ(q) · · ·ϕ(n−1)(q)

et, puisque qϕ(q) · · ·ϕ(n−1)(q) tend vers 0 dans S0 (q est dans l’idéal maximal de

S0, idéal qui est stable par ϕ), nous pouvons conclure que ϕ(n)(π0)

g0

(
qϕ(q)···ϕn−1(q)

)p−2

tend vers 0 dans S0, c’est à dire que Gn tend vers G.

Montrons alors la proposition suivante (qui est le point technique clé de cet
article) :

Proposition 17. Soit Ni,j des objets de MFh
W avec 0 ≤ h ≤ p − 2, L

un sous-objet (dans MF+
W) de M :=

⊕

i

⊗jNi,j, alors l’action de Γ0 sur

⊕

i

⊗j F(Ni,j) = M ⊗W S0 laisse stable L⊗W S0.
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Démonstration. Il suffit de le montrer pour l’action du générateur g0 de Γ0.

Fixons pour chaqueNi,j une base (e
(i,j)
k ) adaptée à la graduation. Notons G(i,j)

la matrice de l’action de g0 sur cette base et C(i,j) la matrice donnant l’action de
ϕ sur Ni,j⊗W S0 (avec les notations précédentes, C = AQ). Alors, par le lemme

précédent nous avons lim
n→+∞

G
(i,j)
n = G(i,j) avec C(i,j)ϕ(G

(i,j)
n )g0(C

(i,j))−1 =

G
(i,j)
n+1 et G

(i,j)
0 = I(i,j).

Prenons (u[l])l une base de L, et notons (u[l]
(i,j)
k ) les coordonnées de u[l] dans la

base (e
(i,j)
k ). Nous voulons montrer (par récurrence) que

⊕
i⊗jG

(i,j)
n+1g0(u

(i,j)
k )

est une combinaison linéaire (à coefficients dans S0) des (u[l]
(i,j)
k ), pour u

élément quelconque de L ⊗W S (et (u
(i,j)
k ) ses coordonnées). Remarquons que

par linéarité, il suffit de le montrer pour u égal aux u[l].
Comme L est un sous-objet de M , nous avons L ⊗W S0 qui est stable par
ϕ. Or ϕ induit une bijection de L ⊗W S0[

1
q ]. Cela se traduit alors en disant

⊕
i⊗jC(i,j)ϕ(u[l′](i,j)k ) est une combinaison linéaire (à coefficients dans S0)

des (u[l]
(i,j)
k ), et qu’il existe N ∈ N tel que qN

(
⊗j C(i,j)

)−1
(u[l′](i,j)k ) est une

combinaison linéaire (à coefficients dans S0) des ϕ(u[l]
(i,j)
k ).

Par conséquent, g0(q)
Ng0

(
⊗j C(i,j)

)−1(
g0(u[l

′](i,j)k )
)

s’écrit comme une com-

binaison linéaire (à coefficients dans S0) des
(
g0(ϕ(u[l]

(i,j)
k ))

)
, ceci pour tout

l′.
Puis,

⊕
i⊗jϕ(G

(i,j)
n )g0

(
ϕ(u[l′](i,j)k )

)
= ϕ

(⊕
i⊗jG

(i,j)
n g0(u[l

′](i,j)k )
)

est pour

tout l′ une combinaison linéaire (à coefficients dans S0) des
(
ϕ(u[l]

(i,j)
k )

)
, cela

provient de notre hypothèse de récurrence.

En reprenant que
⊕

i⊗jC(i,j)ϕ(u[l′](i,j)k ) est une combinaison linéaire (à co-

efficients dans S0) des (u[l]
(i,j)
k ) pour tout l′, et en mettant bout à bout ces

affirmations, nous obtenons que

g0(q)
N
⊕

i

⊗jG(i,j)
n+1g0(u[l

′](i,j)k ) =

g0(q)
N
⊕

i

⊗C(i,j) ⊗ ϕ(G(i,j)
n )g0

(
⊗ C(i,j)

)−1
(g0(u[l

′](i,j)k ))

est pour tout l′ une combinaison linéaire (à coefficients dans S0) des (u[l]
(i,j)
k ).

Par conséquent, si g[n] désigne l’application g0-linéaire construite à partir de

la matrice
⊕

i⊗jG
(i,j)
n (l’hypothèse de récurrence se traduisant par : L⊗W S0

est stable par g[n]), alors g[n+1](L ⊗W S0) ⊂ 1
g0(q)N L ⊗W S0 = 1

qN L ⊗W S0.

Considérons alors (fr)1≤r≤rgW (M) une base de M telle qu’il existe nr ∈ N ∪
{+∞} avec (pnrfr) base de L. Alors g[n+1](pnrfr) =

∑
s
αs
qN
pnsfs avec αs ∈ S0

(qui dépend de r). Mais, par construction, g[n+1](M ⊗W S0) ⊂ M ⊗W S0,
alors g[n+1](pnrfr) =

∑
s p

nrβsfs avec βs ∈ S0 (qui dépend aussi de r). D’où
pnrβs = αs

qN p
ns , ce qui implique que qN divise αs dans S0, donc que g[n+1](L⊗W

S0) ⊂ L⊗W S0, ce qui montre bien la récurrence.
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Pour initialiser la récurrence (n = 0) nous avons G
(i,j)
0 = I(i,j) (où I est la

matrice identité), donc
⊕

i⊗jG
(i,j)
0 g0(u

(i,j)
k ) = u

(i,j)
k pour tout u dans L. D’où

par récurrence la propriété est vraie pour tout n. En passant à la limite, la
propriété est vrai pour

⊕
i⊗jG(i,j). Donc l’action de g0 sur M ⊗W S0 laisse

stable L⊗W S0.

Cette proposition est le coeur du théorème. Elle nous donne en particulier que
si N ′ est un sous-objet de N dans MFh

W, alors l’action de g0 sur N ⊗W S0

laisse stable N ′ ⊗W S0. Elle est triviale modulo π0 : si (ei) est une base de
N , telle qu’il existe (αi) ∈ N ∪ {+∞} avec (pαiei) base de N ′, alors il existe
des coefficients xi,j et yi,j dans S0 tels que g0(ei) = ei + π

∑
j 6=i xi,jej et

g0(p
αiei) =

∑
j yi,jp

αjej. En identifiant les coordonnées, nous avons yi,i = 1
et yi,jp

αj = pαixi,jπ si j 6= i, donc π divise bien yi,j dans S0 pour j 6= i.
Donc l’action de g0 sur F(N) se restreint en une action triviale modulo π0 sur
N ′ ⊗W S0 qui commute à ϕ, donc par unicité cette action est celle de F(N ′).
La deuxième étape consiste alors à définir F sur tout MFW,tf < h >. Le point
important est que pour tout objet M de MFW,tf < h >, il existe des objets
Ni,j dans MFh

W et L un sous-objet de
⊕

i⊗jNi,j tels que M est isomorphe à
un quotient M ′ de L. Considérons alors N un sous-objet de M , et supposons
que sur M ⊗W S0 nous ayons une structure de (ϕ,Γ0)-module qui le rende
isomorphe à M ′⊗W S0 muni de la structure de (ϕ,Γ0)-module obtenu à partir
de celle de L ⊗W S0 donnée par la proposition 17. Il faut voir que N ′ ⊗W S0

(où N ′ est l’image de N dans M ′) est stable par Γ0. En notant π : L → M ′

la projection naturelle, π−1(N ′) est un sous-objet de L (car c’est le noyau du
morphisme L→ M ′/N ′, donc par la remarque 1.4.2 et la proposition 1.4.1 de
[Win84], c’est bien un sous-objet de L), donc la proposition 17 nous donne bien
que π−1(N ′)⊗W S0 est stable par l’action de Γ0. Par conséquent, N⊗W S0 sera
bien laissé stable par l’action de Γ0 de M ⊗W S0, donc sera un sous-(ϕ,Γ0)-
module de M ⊗W S0.
Puis, F se construit par itération : notons MFn la sous-catégorie pleine de
MFW,tf , construite en disant qu’un objet de MFn+1 est soit le sous-objet ou
le quotient d’un objet de MFn, soit la somme directe de deux objets de MFn,
soit le produit tensoriel de deux objets de MFn, soit un objet de MFn, et
posons (pour initialiser la récurrence) MF0 = MFh

W. Alors, MFW,tf < h > =⋃
MFn, et si F est construit sur MFn, alors il s’étend naturellement à la somme

directe ou le produit tensoriel de deux objets de MFn, et l’étude précédente
montre qu’il s’étend au cas d’un sous-objet, et donc d’un objet quotient, d’un
objet de MFn. Nous pouvons donc donner naturellement une structure de
(ϕ,Γ0)-module à tout M ⊗W S0, pour M un objet de MFW,tf < h >.
La troisième étape s’occupe des morphismes. Pour M et M ′ deux objets de
MFW,tf < h >, et f : M → M ′ un morphisme, nous posons F(f) = f ⊗ Id
(En particulier, le foncteur sera exact (car S0 est plat sur W ) et fidèle). C’est
un morphisme de (ϕ,Γ0) module : par construction, c’est un morphisme de
ϕ-modules. Puis, f ⊕ Id : M ⊕M ′ →M ′⊕M ′ est un morphisme de ϕ-modules
filtrés, donc par la proposition 1.4.1 de [Win84], Ker(f⊕Id) = {x−y|x ∈M, y ∈
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M ′, y = f(x)} est naturellement un ϕ-module filtré, sous-objet deM⊕M ′, donc
par la proposition 17, Ker(f ⊕ Id)⊗W S0 est laissé stable par l’action naturelle
de Γ0 sur (M⊕M ′)⊗W S0 (obtenue à partir de celle sur M⊗W S0 et M ′⊗W S0),
donc f commute à l’action de Γ0, car si x − y ∈ Ker(f ⊕ Id) ⊗W S0, dire que
g(x)− g(y) ∈ Ker(f ⊕ Id)⊗W S0, c’est dire que f(g(y)) = g(x) = g(f(y)).

Montrons la pleine fidélité. Remarquons que si nous munissons M ⊗W S0 de la
structure de ϕ-module filtré donnée par Fili(M⊗W S0) = {x ∈M⊗W S0|ϕ(x) ∈
qiM⊗W S0}, et ϕi = 1

qiϕ, alors la restriction modulo π0 est un morphisme de ϕ-

module filtré. Par conséquent, si f : M⊗WS0 →M ′⊗W S0 est un morphisme de
(ϕ,Γ0)-module, alors la réduction modulo π0 induit f̄ : M →M ′ un morphisme
de ϕ-modules filtrés. Donc f̄ ⊗ Id : M ⊗W S0 →M ′ ⊗W S0 est un morphisme
de (ϕ,Γ0)-module par le résultat précédent, donc g = f − f̄ ⊗ Id aussi, et il
se réduit modulo π0 sur l’application nulle. Notons M′′ le noyau de g, c’est
un sous (ϕ,Γ0)-module de M ⊗W S0. Nous avons π0M′′ =M′′ ∩ π0M ⊗W S0

car M ′ ⊗W S0 est sans π0-torsion. Donc M′′/π0M′′ ⊂M , et par le lemme du
serpent, nous avons égalité, car :

0 //M′′ //

u1

��

M ⊗W S0
g

//

u2

��

M ⊗W S0
//

u3

��

0

0 // M // M
ḡ

// M // 0

les lignes horizontales sont exactes, u1 est la réduction modulo π0 composée
avec l’inclusion M′′/π0M′′ ⊂ M , u2 et u3 sont la réduction modulo π0, u2

est surjectif (u3 aussi), et l’application naturelle Ker(u2) = π0M ⊗W S0 →
Ker(u3) = π0M ⊗W S0 est surjective. Donc, nous avons M ⊗W S0 = M′′ +
π0M⊗W S0, l’idéal engendré par π0 est inclus dans le radical de Jacobson de S0,
M ⊗W S0 est de type fini sur S0, donc par le lemme de Nakayama, nous avons
M ⊗W S0 =M′′, donc f = f̄ ⊗ Id. Par conséquent le foncteur est pleinement
fidèle.

La quatrième étape est l’étude du foncteur restreint à MFh
W,tf . Par construc-

tion, nous avons i∗ F(N) = N pour tout objet N de MFh
W,tf . Montrons :

Lemme 18. Pour tout objet N de Γ0ΦMh
S0

, libre comme S0-module, si N =
i∗(N ), il existe un unique isomorphisme de (ϕ,Γ0)-module F(N)→ N (qui se
réduit modulo π0 sur l’égalité N = i∗(N )).

Démonstration. Présentons ici une démonstration de ce fait due à N. Wach.
Pour cela, considérons une base (ei)1≤ i≤ d de N , adaptée à la graduation, et
(ai,j) la matrice des applications ϕr dans cette base (donc l’action de ϕ est
donnée sur F(N) par ϕ(ej) = qrj

∑
1≤ i≤ d

ai,jei). Il faut alors prouver l’existence

et l’unicité d’une base (fi) dans N vérifiant ϕ(fj) = qrj
∑

1≤ i≤ d
ai,jfi avec ei =

fi modulo π0. Ce sera suffisant car en posant h(ei) = fi, nous aurons un
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morphisme de ϕ-module, qui fera commuter l’action de Γ0 par unicité de celle-
ci, et qui modulo π0 redonnera l’identité.
Par construction du ϕ-module filtré N , la base (ei) se relève en une famille (êi)
de N avec ϕ(êi) ∈ qriN . De plus, N est complet pour la topologie π0-adique
(car S0 l’est), et modulo π0, (ei) est une base, donc N étant sans torsion, (êi)
est une base de N (nous pourrions aussi invoquer le lemme de Nakayama).
Donc, il existe âi,j ∈ S0 tels que :

ϕ(êj) = qrj
∑

1≤i≤d
âi,j êi

et âi,j = ai,j modulo π0. Posons αi,j ∈ S0 l’unique élément tel que âi,j =
ai,j + π0αi,j . Nous cherchons à modifier la base (êi) pour obtenir la base (fi).
Cherchons fj sous la forme fj = êj + π0cj , et posons bj =

∑
1≤i≤d

αi,j êi. Alors,

puisque ϕ(π0) = uqp−1π0,

ϕ(êj + π0cj) = ϕ(êj) + uπ0q
p−1ϕ(cj), et en faisant apparâıtre

d∑
i=1

qrjai,jπ0ci,

nous obtenons

ϕ(êj + π0cj) =
d∑
i=1

qrjai,j(êi + π0ci) + π0q
rjbj + uπ0q

p−1ϕ(cj)−
d∑
i=1

qrjai,jπ0ci

autrement dit, nous cherchons les cj ∈ N tels que

bj + uqp−1−rjϕ(cj)−
∑

1≤i≤d
ai,jci = 0

Nous résolvons ce système de manière unique par récurrence modulo πn0 . A
chaque étape, le système se résout en faisant une récurrence modulo pk, en
utilisant que p − 1 − rj ≥ 1 (par hypothèse), donc que qp−1−rj = 0 modulo
(p, π0), et que la matrice (ai,j) est inversible modulo p.

Pour terminer la démonstration du théorème (c’est à dire prouver le lemme
précédent sans l’hypothèse sur la liberté de N), nous aurons besoin de résultats
sur les modules de Wach, qui apparaitront plus loin dans l’article. La fin de la
démonstration sera faite à la section 4.

Pour la suite, nous aurons besoin de faire intervenir un foncteur légèrement
différent. Si N est un objet de MF−h

W , son dual N∗ = HomZp(N,Zp) est un
objet de MFh

W, donc F(N∗) est bien défini.

Définition 19. Le foncteur F− est défini sur MF−h
W pour h ≤ p− 2 par :

F−(N) =
(
F(N∗)⊗S0 OE

)∗
= N ⊗W OE

pour tout objet N de MF−h
W . Il donne bien un (ϕ,Γ)-module étale sur OE (donc

est à valeurs dans ΓΦMét
OE

). Il s’étend de même à MFW < −h >.
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Remarque 20. Le foncteur F consiste à munir N ⊗W S0 (pour N objet de
MFW < h >) d’une structure de (ϕ,Γ0)-module, et pour avoir un foncteur
défini sur MF−h

W , nous prenons le dual. Pour retrouver exactement les résultats
du théorème 1 cité dans l’introduction, il faudrait définir F− par F−(N) =

F(N∗)∗. Cet objet est le dual d’un (ϕ,Γ0)-module sur S0 de hauteur h, ce n’est
donc pas un (ϕ,Γ0)-module, car l’action de ϕ construite par dualité ne le laisse
pas stable (de manière générale, le dual d’un ϕ-module sur S0 n’est pas un ϕ-
module). Mais nous verrons plus tard que c’est un module de Wach, au sens de
[Ber04]. En étendant les scalaires à OE , nous retrouvons le foncteur donné dans
la définition précédente. Pour éviter d’avoir à introduire la catégorie des duaux
des (ϕ,Γ0)-module sur S0 de hauteur h, nous n’utilise rons que la définition 19
(le théorème 1 se déduira alors directement du théorème 15, des propositions
31 et 35, de la remarque 39 et des propriétés des modules de Wach montrées
par L. Berger).

Remarquons que F− peut être défini sur MF−h
W,tf (puis sur MFW,tf < −h >)

en prenant pour un module de p-torsion le dual de Pontriaguine, et en passant
à la limite projective pour le cas général.

Remarque 21. Nous pouvons définir F̃ sur MF±h
W pour h ≤ p−2

2 en po-

sant F̃(N) = F(N ⊗W W [h]) ⊗S0 OE [−h] avec OE [−h] = F(W [h])∗ et W [−h]
l’objet de MF−h

W dont le W -module sous-jacent est W , avec Fili(W [−h]) ={
W si i ≤ −h
0 si i > −h et ϕ−h(x) = σ(x). Alors, F̃(N∗) est canoniquement iso-

morphe à F̃(N)∗ (cela se voit à l’aide de l’unicité de l’action de Γ0 agissant
trivialement modulo π0, et commutant à ϕ, d’après le lemme 3.1.6 de [Wac97]),

et F̃ s’étend alors en un foncteur sur MFW < ±h > qui a des propriétés si-
milaires à celles de F, et qui préserve le dual.

3 Lien entre le foncteur et les modules de Wach

3.1 Fonctorialité de gN

Rappelons le Théorème 1’ de N. Wach (cf. [Wac97]) :

Théorème 1’. Si N est un objet de Γ0ΦMh
S0

avec 0 ≤ h ≤ p − 2, alors
HomMFW

(i∗(N ), Acris) est isomorphe (en tant que représentation galoisienne)
à HomΦMS0

(N ,ObEnr).

Enoncé dans le cadre (et avec les notations) qui nous intéresse, il devient :

Théorème 1’. Si N est un objet de MF−h
W,tf avec 0 ≤ h ≤ p−2, alors il existe

un isomorphisme gN : VOE (F−(N)) → Vcris(N) de représentations galoi-
siennes. Si en plus N est libre, en passant au dual, cela donne un isomorphisme
de représentations galoisiennes tg−1

N : VOE

(
F(N∗)⊗S0 OE

)
→ Vcris(N)∗.

Nous allons vérifier que cet isomorphisme est fonctoriel :
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Théorème 22. Pour tout objet N de MF−h
W,tf avec 0 ≤ h ≤ p−2, l’application

gN construite par N. Wach vérifie les propriétés de fonctorialité suivante :

1. pour tout morphisme f : N → N ′ entre deux objets N et N ′ de MF−h
W,tf ,

nous avons Vcris(f) ◦ gN = gN ′ ◦VOE (F−(f)) (cela s’applique en parti-
culier pour l’injection d’un sous-objet, ou pour la projection sur un objet
quotient).

2. pour tout objet N et N ′ de MF−h
W,tf , gN⊕N ′ = gN ⊕ gN ′ ;

3. pour tout objet N et N ′ de MF−h
W,tf , pour tout sous-objet L de N ⊗ N ′

tel que L soit un objet de MF−h
W,tf , l’application gN ⊗ gN ′ restreinte à

VOE (F−(L)) est égale à gL. En particulier, si N ⊗ N ′ est un objet de
MF−h

W,tf , alors gN⊗N ′ = gN ⊗ gN ′ ;

Remarque 23. Le point (3) montre en particulier que Vcris(N ⊗N ′) est égal
à Vcris(N)⊗Zp Vcris(N

′) dès que N , N ′ et N ⊗N ′ sont des objets de MF−h
W,tf

avec 0 ≤ h ≤ p− 2.

Rappelons la construction de gN : N. Wach construit l’isomorphisme modulo
pn pour tout n à partir des morphismes d’anneaux (avec A+

S = W (R)∩ObEnr) :

A+
S /p

n → Wn(R)/π0 et Acris/p
n → Wn(R)/π0. Notons N := F−(N). Nous

avons la bijection VA
+
S
(N/pn) := (N ⊗S0 A

+
S /p

n)ϕ → (N ⊗S0 OEnr/pn)ϕ (cf

[Fon90], p.296, où c’est exprimé pour le foncteur contravariant). Or, N. Wach
a montré que pour N objet de MF−h

W avec 0 ≤ h ≤ p− 2, le schéma suivant

N/pn ⊗W Acris/p
n kN // N/pn ⊗W Wn(R)/π0 N/pn ⊗S0 A

+
S /p

n
jN

oo

Vcris(N/p
n)

?�

k

OO

VA
+
S
(N/pn)
?�

j

OO

induit un isomorphisme de représentations galoisiennes de VA
+
S
(N/pn) sur

Vcris(N/p
n), c’est-à-dire que KN = kN ◦ k et JN = jN ◦ j sont toutes les deux

injectives, et ont même image dans N/pn ⊗W Wn(R)/π0.
Tout ceci passe à la limite projective, et nous obtenons l’application gN bijec-
tive :

N ⊗W Acris
kN // N ⊗W W (R)/π0 N ⊗S0 A

+
S

jN
oo

Vcris(N)
?�

k

OO

KN

66nnnnnnnnnnnnn
VA

+
S
(N )

?�

j

OO

JN

ggPPPPPPPPPPPP

gN
oo

où VA
+
S
(N ) = lim←−n∈N

VA
+
S
(N/pn) = (N ⊗S0 A

+
S )ϕ=1 = VOE (N ⊗S0 OE).

Démonstration du théorème 22. Pour la fonctorialité au niveau des flèches, il
suffit de remarquer que le diagramme suivant est commutatif (car VOE (F−(f))
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est juste f ⊗ Id) :

VOE (F−(N))
VOE

(F
−(f))

//
� _

��

VOE (F−(N ′))� _

��

N ⊗A+
S

jL

��

f⊗Id
// N ′ ⊗A+

S

jL′

��

N ⊗W (R)/π0
f⊗Id

// N ′ ⊗W (R)/π0

N ⊗Acris

kL

OO

f⊗Id
// N ′ ⊗Acris

kL′

OO

Vcris(N)
� ?

OO

Vcris(f)
// Vcris(N

′)
� ?

OO

Le fait que gN⊕N ′ = gN ⊕ gN ′ se montre de la même façon. Il reste donc à
voir le cas du produit tensoriel : considérons N et N ′ deux objets de MF−h

W,tf

avec h ≤ p− 2. Soit L un sous-objet de N ⊗N ′ qui est dans MF−h
W,tf , posons

L = L⊗W S0. Le diagramme suivant est alors commutatif :

L⊗W Acris

kL

��

� � // (N ⊗W Acris)⊗Acris (N ′ ⊗W Acris)

kN⊗kN′

��

L⊗W W (R)/π0
� � //

(
N ⊗W W (R)/π0

)
⊗W (R)/π0

(
N ′ ⊗W W (R)/π0

)

L ⊗S0 A
+
S

jL

OO

� � // (N ⊗S0 A
+
S )⊗A+

S
(N ′ ⊗S0 A

+
S )

jN⊗jN′

OO

Par conséquent, l’application KN ⊗KN ′ restreinte à Vcris(L) est égale à KL,
et l’application JN ⊗ JN ′ restreinte à VA

+
S
(L) est égale à JL.

Le point important est que L étant un objet de MF−h
W,tf (par hypothèse), ce

sont bien des bijections, et ce sont celles qui permettent de construire gL.

Donc gN ⊗ gN ′ envoie VA
+
S
(L) sur Vcris(L) si L est un sous-objet de N ⊗N ′

qui soit dans MF−h
W,tf , et plus exactement, l’application gN ⊗ gN ′ restreinte à

VA
+
S
(L) est égale à gL.

Si N ⊗ N ′ est un objet de MF−h
W,tf , le résultat précédent avec L = N ⊗ N ′

nous donne gN⊗N ′ = gN ⊗ gN ′ .
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Remarque 24. Nous montrons de même que pour (Ni,j)1≤j≤n, 1≤i≤nj objets

de MF−h
W,tf avec 0 ≤ h ≤ p − 2, et pour L un sous-objet de

n⊕

j=1

⊗nji=1Ni,j qui

soit dans MF−h
W,tf , alors

⊕⊗gF−(Ni,j) restreinte à VOE (F−(L)) est égale à
gL.

Nous pouvons traduire ces résultats en disant :

Théorème 25. Soit 0 ≤ h ≤ p−2, et notons G le foncteur exact de la catégorie
MF−h

W,tf vers la catégorie des représentations continues de ΓK sur les Zp-

modules de rang fini, défini par : si N objet de MF−h
W,tf , G(N) = VOE (F−(N)).

Alors il existe g un isomorphisme de foncteurs entre G et Vcris. De plus, nous
pouvons supposer que :
– pour tous objet N et N ′ de MF−h

W,tf , tel que N ⊗N ′ soit encore un objet de

MF−h
W,tf , nous avons gN⊗N ′ = gN ⊗ gN ′ ;

– pour tout uplet d’objets (Ni,j)1≤j≤n, 1≤i≤nj de MF−h
W,tf , pour tout sous-

objet L (dans MF−h
W,tf ) de

n⊕

j=1

⊗nji=1Ni,j, l’application
⊕⊗gNi,j restreinte

à VO bE
(F−(L)) est égale à gL.

3.2 Lien entre Γ0ΦMh
S0

et ΓΦMh
S

Avant de parler de modules de Wach (qui sont des S-modules), il faut com-
prendre l’extension des scalaires S0 → S.

Lemme 26. S =
⊕

0≤i≤p−2

Si, où si x ∈ Si et g ∈ Γf est [α] (le relèvement de

Teichmuller de α ∈ F∗p), alors g agit sur x par g(x) = [α]ix.

Démonstration. L’application pi = 1
|Γf |

∑
g∈Γf

X (g)−ig est un projecteur dont

l’image est Si, et les pi vérifient
∑

0≤i≤p−2

pi = Id.

Lemme 27. S a une base normale sur S0, c’est à dire qu’il existe e ∈ S tel que
(g(e))g∈Γf soit une base de S sur S0. De plus, p ne divise aucun pi(e).

Démonstration. En effet, il suffit de le montrer modulo p (et ensuite de relever
une base normale de k[[π]] sur k[[π0]], puisque S0 est complet pour la topologie
p-adique). Or, Fontaine a montré dans [Fon90], page 270, que le corps des
fractions de k[[π]], k((π)), est une extension galoisienne cyclique de degré p− 1
(donc modérément ramifiée) de k((π0)), dont le groupe de Galois est donné par
Γf . Donc, par un théorème de E. Noether, il existe une base normale pour les
anneaux d’entiers correspondants. Enfin, si e est cette base (modulo p), alors

pi(e) =
∑
g
X (g)−i

|Γf | g(e) est non nul (puisque chaque coordonnée suivant la base

(g(e)) est non nulle (même modulo p)), donc pi(e) sera bien non divisible par
p si e relève e.
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En particulier, nous avons Si = pi(e)S0 (car pi(e)S0 ⊂ Si, puis e ∈ ⊕ipi(e)S0,
⊕ipi(e)S0 est donc un S0-module contenant e et stable par Γf , donc S =
⊕ipi(e)S0 ⊂ ⊕iSi = S). Puis, remarquons que pi ◦ pj = 0 pour i 6= j, donc
pourM un objet de ΓΦMh

S, nous avons les pi(M) en somme directe dansM.
Enfin, pi(e)MΓf ⊂ pi(M), et pi(e)MΓf est isomorphe comme S0-module à
MΓf carM est sans p′-torsion, et p ne divise pas pi(e). Donc, nous avons que
pourM un objet de ΓΦMh

S, MΓf ⊗S0 S = ⊕iMΓf ⊗S0 S0pi(e) s’injecte dans
M.

Proposition 28. Soit M un objet de ΓΦMh
S, alors MΓf est un objet de

Γ0ΦMh
S0

, et M = MΓf ⊗S0 S. De plus, MΓf /π0 = M/π. Enfin, si M est

S-libre, alors MΓf est S0-libre.

Démonstration. Nous avons que p0(M) =MΓf . Or, comme l’action de Γf est
triviale modulo π, nous avons que pour tout x ∈ M, x− p0(x) ∈ πM, donc si
N est le S-module engendré parMΓf (c’est à dire que N =MΓf ⊗S0 S d’après
la remarque précédent la proposition), alors M = N + πM, donc comme M
est de type fini sur S, et que l’idéal engendré par π est dans le radical de S, le
lemme de Nakayama nous donne que M = N .
Puis, M est de type fini sur S, donc sur S0 (car S est un S0-module libre de
rang fini par le lemme 27), donc engendré sur S0 par exemple par la famille
finie (mi). Alors, p0(M) = MΓf est engendré par la famille (p0(mi)) (car p0

est un morphisme de S0-modules), donc est de type fini. De plus, MΓf étant
inclus dansM, il est sans p′-torsion.
Ensuite, nous avons que πM∩MΓf = π0MΓf : pour S, l’égalité πS∩S0 = π0S0

provient juste de ce que π0 est un multiple de π, donc π0S0 ⊂ πS∩S0, et pour la
réciproque, que S0 = W [[π0]]. Cela se traduit par la suite exacte de S0-modules

0 // π0S0
// S // S/πS ⊕ S/S0

// 0

(la surjectivité vient juste de ce que S/π = W , et queW ⊂ S0), et en tensorisant
parMΓf au dessus de S0, nous avons la suite exacte de S0-modules

0 // π0MΓf //M //M/π ⊕M/MΓf // 0

ce qui traduit bien πM∩MΓf = π0MΓf . Par conséquent, MΓf /π0 s’injecte
dans M/π, et l’action de Γ0 provient de celle sur M/π, qui est triviale par
définition. De plus, nous avons vu que pour tout x ∈ M, x − p0(x) ∈ πM,
donc comme p0(x) ∈ MΓf , l’application naturelle MΓf /π0 → M/π (dont
nous avons vu l’injectivité) est surjective. Par conséquent, si M est S-libre,
MΓf /π0 est W -libre et MΓf est sans π0-torsion, et donc S0 étant complet
pour la topologie π0-adique, une W -base de MΓf /π0 se relève en une S0-base
de MΓf .
Enfin, ϕ commute à Γ, donc laisse stable MΓf , donc induit un morphisme
ϕ0 : MΓf ⊗σ S0 → MΓf . Pour étudier le conoyau, remarquons d’abord que
x ⊗ y ∈ S0 ⊗σ S0 7→ ϕ(x)y ∈ S0 et x ⊗ y ∈ S ⊗σ S 7→ ϕ(x)y ∈ S sont des
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isomorphismes (préservant l’action naturelle de Γf ), donc S0 ⊗σ(S0) S0[
1
q ] ≃

S0[
1
q ] et S⊗σ(S)S[ 1q ] ≃ S[ 1q ] (puisque S[ 1q ] est plat sur S et S0[

1
q ] est plat sur S0).

Par conséquent, S0⊗σ(S0) S ≃ S⊗σ(S) S et S0⊗σ(S0) S[ 1q ] ≃ S⊗σ(S) S[ 1q ] ; plus

présicément, si yi ∈ S⊗σ(S)S s’envoye dans S sur pi(e) (nous pouvons supposer
que y0 = 1 car p0(e) est inversible dans S0), alors S⊗σ(S)S = ⊕iS0⊗σ(S0)S0yi
et S ⊗σ(S) S[ 1q ] = ⊕iS0 ⊗σ(S0) S0[

1
q ]yi (c’est bien le même yi, car S ⊗σ(S) S

s’injecte dans S ⊗σ(S) S[ 1q ], puisque S ⊗σ(S) S est sans q-torsion). Et l’action

naturelle de Γf sur S⊗σ(S)S[ 1q ] revient à dire que g(yi) = X (g)iyi pour g ∈ Γf .

PuisqueM =MΓf ⊗S0 S, nous avons queM⊗σ(S) S[ 1q ] =MΓf ⊗σ(S0) S[ 1q ] =

⊕iMΓf ⊗σ(S0) S0[
1
q ]yi. Donc, MΓf ⊗σ(S0) S0[

1
q ] s’injecte naturellement dans

M⊗σ(S) S[ 1q ], et (M⊗σ(S) S[ 1q ])
Γf =MΓf ⊗σ(S0) S0[

1
q ].

Ensuite, ϕ :M⊗σS →M est injective, de conoyau tué par qh (par définition),
donc comme S[ 1q ] est plat sur S, ϕ induit une bijection ϕ : M⊗σ(S) S[ 1q ] →
M⊗S S[ 1q ]. Puis, S[ 1q ] = ⊕iS0[

1
q ]pi(e), donc M⊗S S[ 1q ] = MΓf ⊗S0 S[ 1q ] =

⊕iMΓf⊗S0S0[
1
q ]pi(e), doncMΓf⊗S0S0[

1
q ] s’injecte dansM⊗SS[ 1q ] etMΓf⊗S0

S[ 1q ] = (M⊗S S[ 1q ])
Γf . Par conséquent, le diagramme

M⊗σ(S) S[ 1q ]
ϕ

//M⊗S S[ 1q ]

MΓf ⊗σ(S0) S0[
1
q ]

ϕ0
//

?�

i

OO

MΓf ⊗S0 S0[
1
q ]

?�

j

OO

est commutatif, avec ϕ bijective, i et j injective, et ϕ (qui commute à l’action
de Γf ) qui identifie (M⊗σ(S) S[ 1q ])

Γf à (M⊗S S[ 1q ])
Γf , donc ϕ0 est bijective

(donc MΓf /ϕ0(MΓf ⊗σ S0) est de q-torsion, donc tué par une puissance de q
carMΓf est de type fini sur S0).
Soit alors x ∈ MΓf . Par définition, il existe y ∈ M⊗σ(S)S = ⊕iMΓf⊗σ(S0)S0yi
tel que ϕ(y) = qhx. La commutativité du diagramme et la bijectivité de ϕ0 nous
donne que y ∈MΓf⊗σ(S0)S0[

1
q ]. Donc nous avons y ∈

(
MΓf⊗σ(S0)S0[

1
q ]
)
∩
(
⊕i

MΓf ⊗σ(S0) S0yi
)

=
(
MΓf ⊗σ(S0) S0[

1
q ]
)
∩
(
MΓf ⊗σ(S0) S0

)
=MΓf ⊗σ(S0) S0.

En définitive, nous avons bien que MΓf /ϕ0(MΓf ⊗σ S0) est tué par qh.
Finalement, nous avons bien queMΓf est un objet de Γ0ΦMh

S0
.

Remarque 29. De la même façon que pour Si, nous montrons pour M un
objet de ΓΦMh

S que pi(M) =MΓf ⊗S0 Si = pi(e)MΓf .

Théorème 30. L’extension des scalaires de S0 à S induit une équivalence
de catégories entre Γ0ΦMh

S0
et ΓΦMh

S, préservant suites exactes et produit
tensoriel (si ce dernier est encore dans la catégorie). Un quasi-inverse est donné
par les points fixes par Γf .

Démonstration. L’essentielle surjectivité se prouve en remarquant que si f :
M→ N est un morphisme de ΓΦMh

S, alors comme il commute à l’action de
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Γf , f induit bien un morphisme de (ϕ,Γ0)-modules entre MΓf et NΓf (qui
redonne f en étendant les scalaires de S0 à S). Le reste est immédiat à partir
des résultats précédents.

3.3 Modules de Wach

L. Berger a défini dans [Ber04] le module de Wach N(T ) d’un réseau T d’une
Qp-représentation cristalline V à poids de Hodge-Tate négatifs comme l’unique
S-sous-module de D+(T ) := (A+

S⊗ZpT )HK (avecA+
S = W (R)∩ObEnr ) vérifiant :

– N(T ) est un S-module libre de rang la dimension de V ;
– l’action de Γ préserve N(T ) et est triviale sur N(T )/πN(T ) ;
– il existe un entier r ≥ 0 tel que πr D+(T ) ⊂ N(T ).
Il définit de même le module de Wach N(V ) d’une représentation cristalline
V à poids de Hodge-Tate négatifs. L’unicité donne en particulier que N va
préserver somme directe et produit tensoriel, ce qui nous intéressera tout par-
ticulièrement.
Donnons un résultat plus précis que le Théorème 1’ de N. Wach :

Proposition 31. Si N est un objet de MF−h
W avec 0 ≤ h ≤ p − 2, DOE (gN )

(qui identifie F−(N) = N ⊗W OE à DOE (Vcris(N))) envoie N ⊗W S sur

N(Vcris(N)) (le module de Wach associé à Vcris(N)).

Démonstration. En passant au dual, cela revient à dire que F(N∗) ⊗S0 S est
isomorphe à N(Vcris(N)∗) par fonctorialité du module de Wach envers le
dual. Appelons T = Vcris(N)∗ et r ≤ p − 2 l’entier tel que Filr(N∗) 6= {0},
Filr+1(N∗) = {0}. Remarquons que la structure de (ϕ,Γ0)-module de F(N∗)
induit une structure de (ϕ,Γ)-module sur N∗ ⊗W S, et que N∗ ⊗W 1

πrS
est le dual (au sens généralisé des modules de Wach) d’un (ϕ,Γ)-module de
hauteur finie (puisque égale à r) sur S, donc par le résultat de J.-M. Fon-
taine (cf [Fon90], p.296), les périodes de N∗ ⊗W 1

πr S sont dans A+
S . Par

conséquent, VOE

(
(N∗ ⊗W 1

πrS) ⊗S OE
)

= VOE (F(N∗) ⊗S0 OE) = T =

((N∗ ⊗W 1
πrS)⊗S A+

S )ϕ ⊂ N∗ ⊗W 1
πrA

+
S .

Puis, l’identification de N avec DOE (VOE (N )) pour N un (ϕ,Γ)-module sur
OE est induite par la multiplication dans ObEnr . Donc, comme T ⊂ N∗ ⊗W
1
πrA

+
S , nous avons D+(T ) ⊂ ((N∗ ⊗W 1

πrA
+
S ) ⊗ A+

S )HK qui est identifié à

(N∗ ⊗W 1
πrA

+
S )HK = N∗ ⊗W 1

πr S. Donc la dernière condition de la définition
d’un module de Wach, πr D+(T ) ⊂ N∗ ⊗W S, est vérifiée.

Lemme 32. Sous les notations précédentes, nous avons l’inclusion N(T ) ⊂
N∗ ⊗W S.

Remarque 33. La démonstration donnée ci-dessous est exactement l’idée prin-
cipale de la démonstration de l’unicité du module de Wach (cf. proposition
II.1.1 de [Ber04])

Démonstration. Notons N1 = N(T ) et N2 = N∗ ⊗W S. N1 ⊂ D+(T ) par
définition, donc nous avons l’inclusion πrN1 ⊂ N2. Soit x ∈ N1 et s l’entier
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tel que πsx ∈ N2, mais πsx /∈ πN2. Choisisons x /∈ πN1 tel qu’en plus s
soit maximal, ce qui fait que πsN1 ⊂ N2. Comme πsx ∈ N2 et que Γ agit
trivialement sur N2/πN2, nous avons pour tout g ∈ Γ que (g − 1)(πsx) ∈
πN2, et nous pouvons écrire (g − 1)(πsx) = g(πs)(g(x) − x) + (g(πs) − πs)x.
Comme Γ agit trivialement sur N1/πN1, et que πsN1 ⊂ N2, nous avons que
g(πs)(g(x) − x) ∈ πN2, et donc que (g(πs) − πs)x ∈ πN2, ce qui est une
contradiction si s ≥ 1, parce qu’alors g(πs)− πs = (X (g)s − 1)πs + · · · . Donc
nous avons bien N1 ⊂ N2, autrement dit N(T ) ⊂ N∗ ⊗W S.

L’étude du paragraphe précédent nous donne que le S0-module N = N(T )Γf

est libre et N(T ) = N(T )Γf ⊗S0 S. Utilisons alors le fait que le foncteur F est
essentiellement surjectif (à cause de l’hypothèse sur h) pour dire que N est
isomorphe en tant que (ϕ,Γ0)-module à F(N∗), donc N(T ) est isomorphe au
(ϕ,Γ)-module N∗ ⊗W S. Notons i cet isomorphisme.
Remarquons que N(T )⊗SOE = DOE (T ) = N∗⊗W OE , car une représentation
cristalline est de hauteur finie. Par conséquent, i induit un isomorphisme de
DOE (T ) qui envoye N(T ) sur N∗ ⊗W S, et comme il préserve D+(T ), nous
obtenons bien N∗ ⊗W S ⊂ D+(T ), donc N∗ ⊗W S = N(T ) car il vérifie toutes
les conditions de la définition du module de Wach.

Nous pouvons alors en déduire la proposition qui nous intéresse :

Proposition 34. Soit Ni,j des objets de MFh
W avec 0 ≤ h ≤ p−2, L un sous-

objet (dans MF+
W) de M =

⊕

i

⊗jNi,j. Alors les isomorphismes de modules

de Wach
tDOE (gN∗

i,j
) : N(Vcris(N

∗
i,j)
∗)→ Ni,j ⊗W S

identifient L⊗W S à un module de Wach.

Démonstration. Les isomorphismes tDOE (gN∗
i,j

) induisent un isomorphisme

n⊕

i=1

⊗mij=1
tDOE (gN∗

i,j
) : N(

n⊕

i=1

⊗mij=1 Vcris(N
∗
i,j)
∗)→M ⊗W S

(puisque le module de Wach préserve le produit tensoriel). Nous utiliserons cet
isomorphisme pour identifier ces deux espaces.
Notons (ei) une base de M telle que (pαiei) soit une base de L, avec αi ∈
N ∪ {+∞}. Notons aussi n = rgW (M).
La proposition 17 affirme que L⊗W S est stable par l’action de Γ. Considérons

alors la sous-représentation galoisienne T de UM :=
n⊕

i=1

⊗mij=1 Vcris(N
∗
i,j)
∗

définie par T = VOE (L ⊗W OE). Montrons que N(T ) = L ⊗W S, c’est-à-dire
vérifions les conditions qui caractérisent un module de Wach :
– L ⊗W S ⊂ T ⊗Zp ObEnr ∩ (UM ⊗Zp A

+
S )HK = D+(T ) : l’inclusion provient

de ce que T ⊗Zp ObEnr = L ⊗W ObEnr et N(UM ) = M ⊗W S via l’iso-

morphisme (et donc M ⊗W S ⊂ D+(UM ) = (UM ⊗Zp A
+
S )HK) ; l’égalité
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se montre en considérant les coordonnées suivant la base (ei), car si x ∈
T ⊗Zp ObEnr ∩ (UM ⊗Zp A

+
S )HK , alors il existe (βi) ∈ (A+

S )n et (δi) ∈ OnbEnr
avec x =

∑
i βiei =

∑
i p
αiδiei, donc βi = pαiδi pour tout i, donc βi ∈ pαiA+

S

pour tout i, ce qui donne T ⊗ZpObEnr ∩(UM ⊗ZpA
+
S )HK ⊂ D+(T ) (l’inclusion

réciproque étant immédiate) ;
– L⊗W S est un S-module libre de rang égal à celui de T sur Zp (qui est celui

de L⊗W OE sur OE , donc celui de L sur W ) ;
– l’action de Γ laisse stable L ⊗W S (c’est la proposition 17) et est triviale

modulo π : l’action de Γ surM⊗WS étant triviale modulo π par construction,
pour γ ∈ Γ, pour i fixé, il existe (xj) ∈ Sn−1 et (yj) ∈ Sn tels que γ(ei) =
ei + π

∑
j 6=i xjej et γ(pαiei) =

∑
j yjp

αjej ; donc yi = 1 et pαjyj = πxjp
αi

pour j 6= i, donc π divise yj dans S pour j 6= i.
– il existe r un entier positif tel que πr D+(UM ) ⊂M ⊗W S, donc ce r donne
πr D+(T ) ⊂M⊗W S∩L⊗WObEnr = L⊗W S. En effet, si x ∈M⊗W S∩L⊗W
ObEnr , alors il existe (βi) ∈ Sn et (δi) ∈ OnbEnr avec x =

∑
i βiei =

∑
i p
αiδiei,

donc βi = pαiδi pour tout i, donc βi ∈ pαiS pour tout i, ce qui donne
M ⊗W S ∩ L⊗W ObEnr ⊂ L⊗W S (l’inclusion réciproque étant immédiate).

D’où, nous avons bien N(T ) = L⊗W S.

Ce qui nous intéressera tout particulièrement, c’est le corollaire suivant :

Proposition 35. Soit Ni,j des objets de MF−h
W avec 0 ≤ h ≤ p − 2, L un

sous-objet (dans MF−W) facteur direct (comme W -module) de M =
⊕

i

⊗jNi,j.

Alors les isomorphismes de modules de Wach

DOE (gNi,j ) : Ni,j ⊗W S → N(Vcris(Ni,j))

induisent un isomorphisme de module de Wach

L⊗W S → N(Vcris(L))

où Vcris(L):= Vcris,p(DL) ∩
n⊕

i=1

⊗mij=1 Vcris(Ni,j).

Démonstration. Les isomorphismes DOE (gNi,j) induisent un isomorphisme

DOE (gM ) :=

n⊕

i=1

⊗mij=1 DOE (gNi,j ) : M ⊗W S → N(Vcris(M))

Par dualité, il suffit de voir que si L0 = M/L, alors DOE (gM ) induit un isomor-
phisme de Vcris(L

∗
0) sur L∗0⊗W S. Posons T = VOE (L∗0⊗WOE). La proposition

précédente nous donne bien que N(T ) = L∗0 ⊗W S (via DOE (gM )).
Puis, une propriété du module de Wach nous permet de conclure : N(T [ 1p ])/π

s’identifie à Dcris,p(T ⊗Zp Qp) (par le théorème III.4.4 de [Ber04]), et l’applica-
tion gM envoie N(T )/π sur L∗0, donc nous avons bien que Dcris,p(T ⊗Zp Qp) =

L∗0 ⊗W K, donc que T = Vcris(L
∗
0).
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Remarque 36. Si M ′ est le quotient du L considéré dans la proposition 35 par
le sous-objet L′ (facteur direct comme W -module), alors DOE (gM ) : L⊗W S →
N(Vcris(L)) (qui induit aussi un isomorphisme L′ ⊗W S → N(Vcris(L

′)))
induit par passage au quotient un isomorphisme M ′ ⊗W S → N(Vcris(M

′)).

Corollaire 37. Soit 0 ≤ h ≤ p−2. Soit M et M ′ deux objets de MFW < h >,
et f : M → M ′ un morphisme de ϕ-modules filtrés. Alors VE(F(f) ⊗ IdE) =
Vcris,p(f).

Démonstration. Soient Ni,j et N ′i,j des objets de MFh
W, L un sous-objet de

⊕⊗Ni,j et L0 un sous-objet facteur direct de L, tel que M = L/L0, L
′ un sous-

objet de ⊕⊗N ′i,j et L′0 un sous-objet facteur direct de L′, tel que M ′ = L′/L′0.
Nous allons montrer que les isomorphismes ⊕⊗DOE (gNi,j ) et ⊕⊗DOE (gN ′

i,j
)

identifient f ⊗ Id à DE(Vcris,p(f)).
Pour cela, il suffit d’utiliser la fidélité et la pleine fidélité de F combiné au
théorème 30 (pour pouvoir dire que la réduction modulo π est injective sur
les morphismes de (ϕ,Γ)-module entre M ⊗W S et M ′ ⊗W S), plus le fait que
DE(Vcris,p(f)) modulo π redonne f (d’après les résultats de L. Berger dans
[Ber04]).

Corollaire 38. Soit M et M ′ deux objets de MFW < h >, et f : M → M ′

un morphisme ϕ-modules filtrés. Alors Vcris,p(f) envoye VOE (M⊗WOE) dans
VOE (M ′⊗WOE). En particulier, en passant au dual, Vcris devient un foncteur
en posant Vcris(f) = Vcris,p(f).

Démonstration. C’est une conséquence immédiate du corollaire précédent, et de
ce que si T et T ′ sont deux Zp-représentations cristallines, alors un morphisme
de (ϕ,Γ)-modules g : N(T ) → N(T ′) induit VOE (g) : T = VOE (N(T ) ⊗S
OE)→ T ′ = VOE (N(T ′)⊗S OE).

Remarque 39. D’après ce qui précède, le foncteur Vcris et le foncteur
VOE ◦F−, tous deux définis sur MFW < −h > et à valeurs dans Repcris

Zp
(ΓK),

sont isomorphes (l’isomorphisme est donné par la transformation naturelle g).

4 Fin de la démonstration du théorème 15

Théorème 40. Pour 0 ≤ h ≤ p− 2, le foncteur F de MFh
W,tf vers Γ0ΦMh

S0

a pour image essentielle Γ0ΦMh
S0

.

Pour montrer ce résultat, nous allons utiliser le théorème 31 qui nous dit que
pour N objet de MFh

W, F(N) ⊗S0 S est le module de Wach de Vcris(N
∗)∗.

Commençons par montrer :

Proposition 41. Soit M un objet de Γ0ΦMh
S0

(avec 0 ≤ h ≤ p − 2) de p-
torsion, et T ′ = VOE (M⊗S0 OE) la Zp-représentation galoisienne correspon-
dant au (ϕ,Γ)-module sur OE obtenu à partir deM. Alors il existe T ′′ ⊂ T deux
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Zp-représentations galoisiennes cristallines (c’est à dire que le module sous-
jacent est libre sur Zp, et en rendant p inversible nous avons une représentation
cristalline) à poids de Hodge-Tate dans [[−h, 0]] telles que T ′ s’identifie au quo-
tient de T par T ′′.

Démonstration. Le Théorème 1’ de [Wac97] (et la proposition 31) donne que
T ′ = HomZp

(
Vcris

(
HomW (i∗(M), lim−→W/pn)

)
, lim−→Zp/pn

)
. En notant X∗ le

dual de Pontriaguine d’un module de torsion X , cela s’écrit plus simplement
en T ′ = Vcris

(
(M/π0)

∗)∗. Puis, puisque (M/π0)
∗ est un objet de la catégorie

MF−h
W,tf , la proposition 1.6.3 de [Win84] nous donne qu’il existe M1 ∈MF−h

W

et un épimorphisme M1 → (M/π0)
∗. Le foncteur Vcris étant exact, il existe

donc une Zp-repésentation cristalline T1 (T1 = Vcris(M1)) dont les poids de
Hodge-Tate sont dans [[0, h]] et un épimorphisme T1 → Vcris

(
(M/π0)

∗).
Comme M est supposé de p-torsion, Vcris

(
(M/π0)

∗) est de p-torsion et

de type fini, donc il existe un entier n tel que pnVcris

(
(M/π0)

∗) =

{0}. Alors T1/p
n se surjecte toujours sur Vcris

(
(M/π0)

∗), et en passant

au dual de Pontriaguine, T ′ s’injecte dans HomZp
(
T1/p

n, lim−→Zp/pn
)

=
HomZp(T1,Zp)/pn (car T1 est un Zp-module libre). Si f est la projection cano-
nique HomZp

(
T1,Zp)→ HomZp

(
T1,Zp)/pn, alors T = f−1(T ′) convient (et il

suffit de prendre T ′′ égal au noyau de la projection f |T ).

Proposition 42. Soit M un objet de Γ0ΦMh
S0

(avec 0 ≤ h ≤ p − 2) de p-
torsion, T ′ = VOE (M⊗S0 OE) et T ′′ ⊂ T les représentations données par la
proposition ci-dessus. Alors M⊗S0 S s’identifie à N(T )/N(T ′′).

Démonstration. NotonsM1 =M⊗S0 S etM2 = N(T )/N(T ′′) (tous les deux
vus dans le (ϕ,Γ)-moduleM⊗S0OE , car N(T )∩DOE (T ”) = N(T ′′) : en effet,
notons N = N(T )∩DOE (T ”) = N(T )∩T ′′⊗ZpOÊnr qui est stable par l’action
de Γ, nous avons que N ∩ πN(T ) = πN puisque π est inversible dans OÊnr ,
donc N/π s’injecte dans N(T )/π, donc Γ agit bien trivialement sur N . Puis,
T ′′ ⊗Zp OÊnr ∩ (T ⊗Zp A

+
S )HK = D+(T ′′), car si (ei) est une base de T telle

que (pαiei) est une base de T ′′ (avec αi ∈ N ∪ {+∞}), alors un élément x de
l’intersection s’écrit x =

∑
i xiei =

∑
i p
αiyiei avec xi ∈ A+

S et yi ∈ OÊnr ; donc

yi ∈ p−aiA+
S ∩ OÊnr = A+

S si αi 6= +∞, et {0} sinon, donc x ∈ T ′′ ⊗Zp A
+
S

et est fixé par HK, donc T ′′ ⊗Zp OÊnr ∩ (T ⊗Zp A
+
S )HK ⊂ D+(T ′′) (l’inclusion

réciproque étant immédiate). Donc nous avons N ⊂ D+(T ′′) puisque N(T ) ⊂
(T ⊗Zp A

+
S )HK = D+(T ). Enfin, πhD+(T ) ⊂ N(T ), donc πhD+(T ′′) ⊂N(T ),

et comme πh D+(T ′′) ⊂ T ′′ ⊗Zp OÊnr , nous avons bien que πhD+(T ′′) ⊂ N .
Ces conditions caractérisent le module de Wach de T ′′, donc N(T )∩DOE (T ”) =

N(T ′′)).
D’après les résultats p.296 de [Fon90] (l’égalité entre D∗S et j∗ ◦D∗E) (ou bien le
lemme III.5 de [Col99]), nous avonsM1 ⊂ D+(T ′) et M2 ⊂ D+(T ′), puisque
tout deux sont des S-modules de type fini stables par ϕ et p-étales (puisque
de q-hauteur finie). Puis, l’action de Γ est triviale modulo π dans les deux cas
(puisque c’est le cas par définition sur N(T ), et que l’action de Γ0 est triviale
modulo π0 surM).
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D’après le Théorème III.3.1 de [Ber04], nous avons l’inclusion πhT ⊗Zp A
+
S ⊂

N(T )⊗S A+
S . Par conséquent, en projetant nous obtenons que πhT ′⊗Zp A

+
S ⊂

M2⊗S A+
S . Par définition, nous avons que D+(T ′) ⊂ D+(T ′)⊗S A+

S ⊂ T ′⊗Zp
A+
S , donc en prenant les points fixes sous l’action de HK, nous avons D+(T ′) ⊂(
D+(T ′)⊗S A+

S

)HK ⊂
(
T ′ ⊗Zp A

+
S

)HK
= D+(T ′). Donc, en prenant les points

fixes sous HK dans l’inclusion πhT ′ ⊗Zp A
+
S ⊂ M2 ⊗S A+

S , nous obtenons que

πhD+(T ′) ⊂
(
M2 ⊗S A+

S

)HK
. Donc nous avons πhD+(T ′) ⊂M2 en vertu du

lemme :

Lemme 43. Soit N un S-module de type fini sans p′-torsion, alors
(
N ⊗S

A+
S

)HK
= N .

Démonstration. C’est une conséquence de la proposition 1.2.7 de [Fon90], qui
nous donne (sous les hypothèses du lemme) une filtration décroissanteNi de N ,
telle queNi/Ni+1 est soit S/p-libre, soit S-libre. La propriété cherchée est stable
par suite exacte, c’est à dire vérifie que si 0→ N ′′ → N → N ′ → 0 est une suite

exacte de S-modules, et que
(
N ′′⊗SA+

S

)HK
= N ′′,

(
N ′⊗SA+

S

)HK
= N ′, alors(

N ⊗S A+
S

)HK
= N . Donc il suffit de montrer le lemme pour N qui est S-libre

ou S/p-libre, ce qui provient de ce que (A+
S )HK = S et (A+

S /p)
HK = S/p.

Puis 1
πhM1 est le dual (de Pontriaguine) d’un (ϕ,Γ)-module sur S de hauteur

inférieure ou égale à h, sans p′-torsion, donc T ′ = VOE ( 1
πh
M⊗S0 OE) vérifie

T ′ = ( 1
πh
M⊗S0 A

+
S )ϕ (cf [Fon90], p.296) puisque 0 ≤ h. Donc T ′ ⊗Zp A

+
S ⊂

1
πhM⊗S0A

+
S , et en prenant les points fixes sousHK (et par le lemme précédent),

nous obtenons D+(T ′) ⊂ 1
πh
M1, donc πhD+(T ′) ⊂M1.

Ces conditions impliquent que la démonstration du lemme 32 s’applique ici (car
h ≤ p−2, pour que nous ayons si 0 ≤ s ≤ h, X (g)s−1 inversible dans Zp (c’est
à dire X (g)s − 1 6= 0 modulo p) pour un g ∈ Γ), et doncM1 =M2.

Remarque 44. L’unicité d’un tel module n’est plus vrai en général : dans
S/pS, S/pS et πp−1S/pS sont deux S-modules de type fini, avec action de Γ
triviale modulo π, et si T = VOE (OE/p) (c’est à dire Fp avec l’action triviale),
alors D+(T ) = S/pS, donc la dernière condition est aussi vérifiée.

Il ne reste donc plus qu’à passer d’un module sur S à un module sur S0, ce qui
est donné par le lemme suivant (qui est une conséquence immédiate de l’égalité
S =

⊕
0≤i≤p−2

Si) :

Lemme 45. Soit M un S0-module, alors
(
M⊗S0 S

)Γf =M.

Ces propositions et ces lemmes mis bout à bout nous donnent le théorème
dans le cas d’un objet de Γ0ΦMh

S0
de p-torsion. C’est à dire que si M est

un objet de Γ0ΦMh
S0

(avec 0 ≤ h ≤ p − 2) de p-torsion, alors il existe M

un objet de MFh
W,tf tel que M = F(M). Et plus précisément, nous avons
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M = i∗(M) =M/π. Donc, dans le cas où M n’est pas supposé de p-torsion,
nous avons que M/pn = F(i∗(M/pn)) pour tout n, donc en passant à la
limite projective, nous obtenons bien que M = F(i∗(M)), ce qui donne bien
l’essentielle surjectivité de F, et donc termine la démonstration du théorème
40 (et donc du théorème 15).

5 Le point du torseur

5.1 Conséquence des théorèmes précédents

Pour tout objet N de MF−h
W avec 0 ≤ h ≤ p − 2, construisons fN comme la

composée :

Vcris(N)⊗Zp ObEnr
g−1
N // VO bE

(F−(N))⊗Zp ObEnr
ψF−(N)

// F−(N)⊗OE ObEnr

N ⊗W ObEnr

où ψ est l’isomorphisme de Fontaine (cf. paragaraphe 1.1.2), gN l’isomorphisme
de N. Wach (cf. paragraphe 3.1), et F− est le foncteur construit à la fin de la
partie 2.
De la proposition 35 nous déduisons (toujours à 0 ≤ h ≤ p− 2 fixé) :

Proposition 46. Pour tout uplet d’objets (Ni,j)1≤j≤n, 1≤i≤nj de MF−h
W , pour

tout sous-ϕ-module filtré L facteur direct (comme W -module) de

n⊕

j=1

⊗nji=1Ni,j,

l’application
⊕⊗fNi,j envoie Vcris(L)⊗Zp ObEnr bijectivement sur L⊗W ObEnr .

Démonstration. Rappelons que Vcris(L) = Vcris,p(DL)∩
n⊕

j=1

⊗nji=1 Vcris(Ni,j).

Comme corollaire de la proposition 35, l’inverse de la fonction ψ−1
DOE

(Vcris(N)) ◦(
DOE (gN )⊗Id

)
vérifie la propriété recherchée, car DOE (gN ) envoie L⊗W S sur

N(Vcris(L)), donc L⊗WOE sur DOE (Vcris(L)). Il suffit alors de remarquer que
fN = ψF−(N)◦

(
g−1
N ⊗Id

)
=
(
DOE (g−1

N )⊗Id
)
◦ψDOE

(Vcris(N)) par commutativité
du diagramme suivant :

Vcris(N)⊗Zp ObEnr
g−1
N ⊗Id

//

ψDOE
(Vcris(N))

��

VOE (F−(N))⊗Zp ObEnr

ψ
F−(N)

��

DOE (Vcris(N))⊗OE ObEnr
DOE

(g−1
N )⊗Id

// F−(N)⊗OE ObEnr

car DOE et VOE sont des foncteurs quasi-inverses l’un de l’autre.
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En combinant ce résultat et celui de la remarque 24, nous obtenons

Proposition 47. Si L est un sous-objet dans MF−h
W de

⊕

i

⊗jNi,j avec Ni,j

des objets de MF−h
W avec 0 ≤ h ≤ p− 2, alors Vcris(L) ⊂

⊕

i

⊗j Vcris(N)i,j .

Remarque 48. Cette propriété peut être montré directement, en utilisant les
propriétés des périodes des Lubin-Tate (qui donnent par produit les périodes des
modules élémentaires) et le fait qu’un ϕ-module filtré simple est élémentaire,
donc que (par Jordan-Hölder) tout ϕ-module filtré tué par p a une filtration
dont le gradué associé est somme directe de modules élémentaires.

Combiné avec le Théorème 1’, et en introduisant F1 et F2 les foncteurs exacts
de la catégorie MF−h

W vers la catégorie des ObEnr -modules libres de rang fini,

définis par : si M objet de MF−h
W , F1(M) = Vcris(M) ⊗Zp ObEnr et F2(M) =

M ⊗W ObEnr , nous obtenons :

Théorème 49. Pour 0 ≤ h ≤ p−2 fixé, il existe f un isomorphisme de foncteur
entre F1 et F2. De plus, vis à vis du produit tensoriel, l’isomorphisme peut être
choisi de telle sorte que :

– pour tous objets M et N de MF−h
W tels que M ⊗ N est encore un objet de

MF−h
W , alors le diagramme suivant est commutatif :

Vcris(N ⊗M)⊗ObEnr

��

fN⊗M
// (N ⊗M)⊗ObEnr

��

(Vcris(M)⊗ObEnr)⊗ (Vcris(N)⊗ObEnr) fM⊗fN

// (N ⊗ObEnr)⊗ (M ⊗ObEnr)

– pour tout uplet d’objets (Ni,j)1≤j≤n, 1≤i≤nj de MF−h
W , pour tout sous-objet

L de

n⊕

j=1

⊗nji=1Ni,j dans MF−h
W , l’application

⊕⊗fNi,j restreinte à Vcris(L)

est égale à fL ;
– pour tout uplet d’objets (Ni,j)1≤j≤n, 1≤i≤nj de MF−h

W , pour tout sous-ϕ-

module filtré L facteur direct (comme W -module) de

n⊕

j=1

⊗nji=1Ni,j, l’applica-

tion
⊕⊗fNi,j envoie

(
Vcris,p(DL) ∩

n⊕

j=1

⊗nji=1 Vcris(Ni,j)
)
⊗Zp ObEnr bijecti-

vement sur L⊗W ObEnr .

Il faut juste regarder le comportement de f vis à vis du dual pour pouvoir
déduire du théorème 49 le théorème 2 de l’introduction.
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5.2 f et le dual

Pour la suite, nous aurons besoin de définir fN pour N ayant des poids à la fois
positifs et négatifs (par exemple si N = End(M) pour M un objet de MF−h

W ).

Rappelons que W [−h] est l’objet de MF−h
W dont le W -module sous-jacent

est W , avec Fili(W [−h]) =

{
W si i ≤ −h
0 si i > −h et ϕ−h(x) = σ(x). Rappelons

que Zp(h) est la représentation galoisienne Zp(1)⊗h pour h ≥ 0 (et Zp(h) =
Zp(−h)∗ si h ≤ 0), et que ObEnr(h) = ObEnr ⊗Zp Zp(h). Nous pouvons alors
définir :

Définition 50. Supposons 0 ≤ h ≤ p−2
2 . Posons Ṽcris(N) = Vcris(N ⊗

W [−h])⊗ZpZp(−h) pour N objet de MF±h
W , et Ṽcris(f) = Vcris,p(f) restreinte

à Ṽcris(N) pour f : N → N ′ flèche de MF±h
W . Pour tout objet N de MF±h

W

nous pouvons définir fN de la façon suivante : remarquons que Ṽcris(N) ⊗
ObEnr =

(
Vcris(N ⊗ W [−h]) ⊗ Zp(−h)

)
⊗Zp ObEnr =

(
Vcris(N ⊗ W [−h]) ⊗

ObEnr
)
⊗O bEnr

ObEnr(−h), et notons fh = tf−1
O bEnr [−h], alors fN est l’isomorphisme

Ṽcris(N)⊗ObEnr
fN⊗W [−h]⊗fh

//
(
(N ⊗W [−h])⊗ObEnr

)
⊗ObEnr [h]

��

N ⊗W ObEnr

Nous avons bien que Ṽcris(N) ≃ Vcris(N) ⊗Zp Vcris(W [−h]) ⊗Zp Zp(−h) ≃
Vcris(N) de manière naturelle pour N un objet de MF−h

W , car N ⊗W [−h] est

un objet de MF−2h
W , et comme 2h ≤ p−2, nous pouvons appliquer la remarque

23.
Un quasi-inverse de Ṽcris est donné par D̃cris(V ) = Dcris(V ⊗Zp(h))⊗WW [h].

Une façon naturelle de voir Ṽcris(N) dans N ⊗W Acris est de dire que

Ṽcris(N) = Fil0(N ⊗W t−hAcris)
ϕt−h

Avant de continuer de regarder les propriétés de Ṽcris, introduisons gN pour
N un objet de MF±h

W si 0 ≤ h ≤ p−2
2 de la même façon que précédemment. De

la proposition 35 et de la remarque 36, nous déduisons :

Corollaire 51. Pour tout uplet d’objets (Ni,j)1≤j≤n, 1≤i≤m de MF±h
W avec

0 ≤ h ≤ p−2
2 , pour tout sous-objet L facteur direct (comme W -module) de

n⊕

j=1

⊗mi=1Ni,j et pour tout quotient M de L, les applications gNi,j induisent

un isomorphisme de représentations de ΓK, de VO bE
(F−(M ⊗ W [−mh])) ⊗

Zp(−mh) sur un réseau de Vcris,p(DM ) (qui est l’image de Vcris,p(DL) ∩
n⊕

j=1

⊗nji=1 Ṽcris(Ni,j) par l’application projection).
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Puis, pour l’étude vis à vis du dual, montrons d’abord le lemme suivant :

Lemme 52. Pour tout objet N de MF±h
W avec 0 ≤ h ≤ p−2

2 , l’application
surjective naturelle

N ⊗N∗ π // W

induit un isomorphisme

Ṽcris(N
∗) ≃ Ṽcris(N)∗

dont le crochet de dualité correspond à Vcris,p(π).

Démonstration. Soient l ∈ N et l′ ∈ N tels que N⊗W [−l] et N∗⊗W [−l′] soient
des objets de MF−2h

W . Puis,W désigne l’objet trivial de MF±h
W , et donc π induit

une application F−(π) : F−(N⊗W [−l]))⊗OE F−(N∗⊗W [−l′])→ OE [−(l+l′)],
dont l’application linéaire sous-jacente est toujours celle obtenue par le crochet
de dualité (c’est juste π ⊗ Id), donc induit un isomorphisme entre le dual de

F−(N ⊗W [−l]))⊗OE OEel et F−(N∗ ⊗W [−l′])) ⊗OE OEel′ (où ϕ(er) = qrer

et g(er) = X (g)−rπ−r

g(π−r) pour g ∈ Γ). Cet isomorphisme de OE -modules est en

fait un isomorphisme de (ϕ,Γ)-module, car F−(π) est un morphisme de (ϕ,Γ)-

modules. Comme VOE préserve le dual, en notant ṼOE (N) = VOE (F−(N ⊗
W [−l])) ⊗Zp Zp(−l) = VOE

(
F−(N ⊗ W [−l]) ⊗OE OEel

)
et ṼOE (N∗) =

VOE (F−(N ⊗ W [−l′])) ⊗Zp Zp(−l′) = VOE

(
F−(N∗ ⊗ W [−l′]) ⊗OE OEel′

)
,

nous avons que l’application ṼOE (F−(π)) identifie le dual de ṼOE (N) (comme

représentation de ΓK) à ṼOE (N)∗.
Or, ṼOE (N) est isomorphe à Ṽcris(N) (via gN ) et ṼOE (N∗) est isomorphe à

Ṽcris(N
∗) (via gN∗). Pour conclure, il suffit d’invoquer la commutativité du

diagramme suivant (d’après le corollaire 37) :

ṼOE (N)⊗ ṼOE (N∗)

eVOE
(F

−(π))

��

gN⊗gN∗

// Ṽcris(N)⊗ Ṽcris(N
∗)

Vcris,p(π)

��

VOE (F−(W ))
gW

// Ṽcris(W )

Nous en déduisons alors :

Lemme 53. Sous les conditions du lemme 52, l’application fN est fonctorielle
vis à vis du dual, c’est-à-dire que le diagramme suivant commute :

Ṽcris(N)∗ ⊗Zp ObEnr

��

(tfN )−1

// N∗ ⊗W ObEnr

��

Ṽcris(N
∗)⊗Zp ObEnr

fN∗
// N∗ ⊗W ObEnr
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D’où, en rassemblant tout ceci, nous obtenons le théorème suivant :

Théorème 54. Soit 0 ≤ h ≤ p−2
2 , et notons F̃1 le foncteur exact de la catégorie

MF±h
W vers la catégorie des ObEnr -modules libres de rang fini, défini par : si N

objet de MF±h
W , F̃1(N) = Ṽcris(N)⊗ZpObEnr . Alors il existe f un isomorphisme

de foncteurs entre F̃1 et F2, préservant le dual. Nous pouvons supposer de plus :
– pour tous objet N et N ′ de MF±h

W , tel que N ⊗ N ′ soit encore un objet de

MF±h
W , fN⊗N ′ = fN ⊗ fN ′ ;

– pour tout uplet d’objets (Ni,j)1≤j≤n, 1≤i≤nj de MF±h
W , pour tout sous-ϕ-

module filtré L facteur direct (comme W -module) de

n⊕

j=1

⊗nji=1Ni,j, l’applica-

tion
⊕⊗fNi,j envoie (Vcris,p(DL) ∩

n⊕

j=1

⊗nji=1 Ṽcris(Ni,j)) ⊗Zp ObEnr bijecti-

vement sur L⊗W ObEnr .

6 Position des réseaux

Pour tout ce paragraphe, nous supposerons donnés ρ : ΓK → G(Zp) une
représentation cristalline à valeurs dans les point sur Zp d’un groupe algébrique
lisse sur Zp, G, et U un Zp-module libre de rang n, avec α : G → GLU une
immersion fermée.

6.1 Description des groupes plats sur Zp

Notons UW = U ⊗Zp W . Identifions G avec son image dans GLU . Nous al-
lons donner une définition plus exploitable de GW = G ×Zp W dans un cas
particulier :
Prenons une base de U et supposons que l’immersion de G dans GLU induise
une immersion dans EndU (c’est-à-dire G = Spec(Zp[Xi,j ]1≤i,j≤n/I)).
Notons Zp[Xi,j ]≤d les polynômes de degré total inférieur ou égal à d. Le groupe
GLU agit sur Zp[Xi,j ] par : pour toute Zp-algèbre R, si f ∈ R[Xi,j], et s ∈
GLU (R), alors ηs(f) est le polynôme défini par ηs(f)(y) = f(s−1y). Cette
action est linéaire et laisse stable Zp[Xi,j ]≤d.

Proposition 55. Soit G = Spec(Zp[Xi,j ]1≤i,j≤n/I) un groupe algébrique plat
sur Zp, soient (f1, · · · , fr) des générateurs de l’idéal I, et si d est le maximum
des degrés totaux des fi, posons E = I ∩Zp[Xi,j ]≤d. Alors E est facteur direct,
et pour toute Zp-algèbre R, si ER = E⊗Zp R, G(R) = {g ∈ GLU (R)|ηg(ER) =
ER}.

Remarque 56. Si α : G→ GLU n’induit pas une immersion fermée de G dans
EndU , il suffit de composer α avec une immersion fermée β : GLU → GLU ′

tel que β induise une immersion fermée de GLU dans EndU ′ . Par exemple,
U ′ = U ⊕ Zp avec β = Id⊕ 1

det , ou bien U ′ = U ⊕ U∗ (où U∗ est le dual de U)
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avec β(g) = (g, tg−1). Par contre, le E donné par la proposition 55 dépendra
du morphisme β considéré.

Démonstration. Commençons par le lemme suivant :

Lemme 57. Pour toute Zp-algèbre R, le module I⊗Zp R s’injecte dans R[Xi,j].

Démonstration. Pour tout k, notons Ek = I∩Zp[Xi,j ]≤k. Le module Zp[Xi,j ]≤k
est un Zp-module libre de type fini, et Zp[Xi,j ]≤k/Ek est sans p-torsion car il
s’injecte dans Zp[Xi,j ]1≤i,j≤n/I qui est plat sur Zp (par hypothèse). Donc le
module Ek est un Zp-module libre facteur direct dans Zp[Xi,j ]≤k. Donc Ek est
un facteur direct de Zp[Xi,j ], par conséquent Ek ⊗Zp R s’injecte dans R[Xi,j ].
Or, I est la réunion des Ek, donc I ⊗Zp R s’injecte dans R[Xi,j ].

Au passage, nous avons démontré une assertion de la proposition, à savoir que
E := Ed est facteur direct.
Notons H le groupe algébrique défini par H(R) = {g ∈ GLU (R)|ηg(ER) =
ER}. L’application naturelle H → GLU est une immersion fermée et H(R) =
{g ∈ GLU (R)|ηg(ER) ⊂ ER} car E est facteur direct. Nous voulons montrer
que H = G. Si s ∈ GLU (R) vérifie ηg(ER) = ER, alors pour tout i, η(s)(fi) ∈
ER ⊂ I ⊗Zp R, donc η(s)(fi)(Id) = 0 car Id ∈ G(R). Donc, par définition
de l’action, fi(s

−1) = 0 pour tout i, donc la famille (fi) étant une famille de
générateurs de l’idéal I sur Zp, nous obtenons s−1 ∈ G(R), or G est un groupe,
donc s ∈ G(R), ce qui montre l’inclusion H(R) ⊂ G(R). Donc il existe un
monomorphisme H → G.
Montrons que c’est une immersion fermée : le morphisme H → GLU est
une immersion fermée, et α est par hypothèse une immersion fermée de G
dans GLU . Donc, en notant A[K] l’algèbre affine d’un groupe K, les flèches
A[GLU ] → A[G] et A[GLU ] → A[H ] sont surjectives, et nous avons le dia-
gramme commutatif suivant :

A[G]

��

A[GLU ]oooo

zzzzuuuuuuuuu

A[H ]

par conséquent, la flèche A[G] → A[H ] est surjective, donc H → G est bien
une immersion fermée.
Nous allons maintenant montrer que G et H ont même fibre générique. Pour
cela, donnons une description de G semblable à celle de H :

Lemme 58. Pour toute Zp-algèbre R, nous avons

G(R) = {g ∈ GLU (R)|ηg
(
(I ⊗Zp R) ∩R[Xi,j ]≤d

)
= (I ⊗Zp R) ∩R[Xi,j ]≤d}

Démonstration. Fixons R, et posonsM = (I⊗ZpR)∩R[Xi,j ]≤d. Si s ∈ GLU (R)
vérifie ηg(M) = M , alors pour tout i, η(s)(fi) ∈ M ⊂ I ⊗Zp R, donc
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η(s)(fi)(Id) = 0 car Id ∈ G(R). Donc, par définition de l’action, fi(s
−1) = 0

pour tout i, donc la famille (fi) étant une famille de générateurs de l’idéal I
sur Zp, nous obtenons s−1 ∈ G(R), or G est un groupe, donc s ∈ G(R), ce qui
montre une inclusion.
L’inclusion réciproque sera un corollaire du lemme de Yoneda : d’abord, il suffit
de montrer que ηs(M) ⊂M , car η est une action de groupe. Puis, si s ∈ G(R)
et f ∈ M , notons P = η(s)(f). Pour toute R-algèbre B, pour tout g ∈ G(B),
nous avons P (g) = f(s−1g) = 0 car s−1g ∈ G(B) et f ∈ I ⊗Zp R, donc P est
dans I ⊗Zp R (et de bon degré, donc P ∈M) par la remarque suivante :
Soit G = Spec(A/I) un groupe algébrique au dessus d’un anneau R, alors
si J = {f ∈ A| pour toute R-algebre B, ∀g ∈ G(B), f(g) = 0}, nous avons
I = J . En effet, si K = Spec(A/J), alors K(B) ⊂ G(B) car I ⊂ J , puis la
définition de J nous dit que pour tout ϕ : A/I → B, J est inclus dans Ker(ϕ),
d’où se factorise en ϕ : A/J → B, J , donc G(B) ⊂ K(B). Le lemme de Yoneda
donne alors G = K, donc I = J .

Lemme 59. Soit S/R une extension d’anneau, supposons que S est plat sur R.
Alors, ((I ⊗Zp R) ∩R[Xi,j]≤d)⊗R S = (I ⊗Zp S) ∩ S[Xi,j ]≤d.

Démonstration. En effet, notons M1 = I ⊗Zp R, M2 = R[Xi,j ]≤d et M3 =
R[Xi,j ], alors nous voulons voir que (M1∩M2)⊗RS = (M1⊗RS)∩(M2⊗RS).
Or, nous avons la suite exacte courte de R-modules

0 // M1 ∩M2
// M3

// M3/M1 ⊕M3/M2

et nous avons supposé que S est plat sur R, donc en tensorisant par S au dessus
de R, nous obtenons que

0 // (M1 ∩M2)⊗ S // M3 ⊗ S // (M3/M1)⊗ S ⊕ (M3/M2)⊗ S

est une suite exacte, ce qui conclut car (M3/Mi)⊗RS = M3⊗RS/Mi⊗RS.

Puis, G et H ont même fibre générique, par application directe des deux lemmes
précédents.
Il ne reste plus qu’à voir que si H → G est une immersion fermée telle que G et
H ont même fibre générique, et G plat, alorsH = G. Nous voulons montrer que
la flèche surjective A[G]→ A[H ] est aussi injective. G étant plat, l’application
naturelle iG : A[G] → A[G] ⊗Zp Qp est injective. H et G ayant même fibre
générique, la flèche f : A[G]→ A[H ] donnée par l’immersion fermée induit une
bijection fp : A[G] ⊗Zp Qp → A[H ] ⊗Zp Qp. De plus le diagramme suivant est
commutatif :

A[G]
f

//
� _

iG

��

A[H ]

iH

��

A[G]⊗Zp Qp
� � fp

// // A[H ]⊗Zp Qp

donc f est bien injective, donc H = G.
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En fait, lors de l’identification de GLU avec GLn,Zp , nous avons identifié la
représentation de GLU que sont les polynômes homogènes de degré i (noté
Zip[Xi,j ]) avec Symi(EndU ) qui est un sous-objet de End⊗iU , ou bien, dit autre-

ment, Zp[Xi,j ]≤d a été identifié à un sous-objet de ⊕0≤i≤d End⊗iU . L’action de
GLU sur Zip[Xi,j ] est le produit tensoriel de l’action naturelle de GLU sur U∗

par l’action triviale de GLU sur U dans End⊗iU = (U⊗ZpU
∗)⊗i ; par conséquent

E est un sous-module de
⊕

0≤i≤d
(U∗ ⊕ · · · ⊕ U∗︸ ︷︷ ︸

n fois

)⊗i (où n = rg(U)).

Appliquons ceci non pas au plongement α, mais à α∗ : G → GLU∗ , défini par

α∗(g) = tα(g)−1. Il existe alors E∗ =
⊕

0≤i≤k
(U ⊕ · · · ⊕ U︸ ︷︷ ︸

n fois

)⊗i ∩ I∗ un sous Zp-

module (libre facteur direct) tel que s ∈ α(G)(R) ⇔ s(E∗R) = E∗R (où I∗ est
l’idéal définissant α∗(G)).
Rassemblons tout ceci dans le lemme suivant :

Proposition 60. Soit G un groupe plat sur Zp, U un Zp-module libre de rang
n et α : G → GLU une représentation qui induit une immersion fermée dans
EndU . Identifions G avec son image. Alors, il existe un entier k et un sous

Zp-module E (facteur direct) de
⊕

0≤i≤k
(U ⊕ · · · ⊕ U︸ ︷︷ ︸

n fois

)⊗i laissé stable par l’action

naturelle de G(Zp) (provenant de celle de GLU , notée η) tels que G(R) = {g ∈
GL(R)|ηg(ER) = ER} pour toute Zp-algèbre R.

Nous pouvons alors définir sur M = Dcris(U) (ou sur D̃cris(U) suivant les cas)
un groupe algébrique sur W , GM , par : si η est l’action naturelle de GLM sur⊕

0≤i≤k
(M ⊕ · · · ⊕M︸ ︷︷ ︸

n fois

)⊗i, alors GM (R) = {g ∈ GLM (R)|ηg(ER) = ER} pour

toute W -algèbre R. Il ne reste qu’à bien choisir E en liaison avec E, ce qui
nous conduit au théorème suivant :

Théorème 61. Supposons G lisse sur Zp. Si α : G→ GLU induit une immer-
sion fermée dans EndU et si la représentation de ΓK induite sur U par α (et
par ρ : ΓK → G(Zp)) vérifie
– soit elle est à poids de Hodge-Tate dans [[0, h]] avec 0 ≤ h ≤ p− 2
– soit elle est à poids de Hodge-Tate dans [[−h, h]] avec 0 ≤ h ≤ p−2

2
alors, en prenant

E = Dcris,p(E ⊗Zp Qp) ∩
⊕

0≤i≤k
(Dcris(U)⊕ · · · ⊕Dcris(U)︸ ︷︷ ︸

n fois

)⊗i

dans le premier cas, ou

E = Dcris,p(E ⊗Zp Qp) ∩
⊕

0≤i≤k
(D̃cris(U)⊕ · · · ⊕ D̃cris(U)︸ ︷︷ ︸

n fois

)⊗i

dans le deuxième cas, il existe une bijection Ψ : U ⊗Zp W → M qui identifie
G×Zp W et GM .
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Remarque 62. Pour qu’une application Ψ bijective identifie G×ZpW et GM ,
il suffit de montrer que l’application naturelle induite par Ψ envoie E ⊗Zp W

bijectivement sur E.

6.2 Demonstration du théorème 61

Soit h : UR = U ⊗Zp R ≃ MR = M ⊗W R un isomorphisme de R-modules,

alors h induit s(h) de
⊕

0≤i≤k
(UR ⊕ · · · ⊕ UR︸ ︷︷ ︸

n fois

)⊗i sur
⊕

0≤i≤k
(MR ⊕ · · · ⊕MR︸ ︷︷ ︸

n fois

)⊗i,

qui est aussi un isomorphisme.
Considérons alors

Isom(R) = {h : U ⊗Zp R ≃M ⊗W R|s(h)(ER) = ER}
pour R une W -algèbre. C’est un sous-W -schéma de IsomW(U ⊗Zp W,M) (les
W -isomorphismes de U ⊗Zp W sur M).
Il est non vide, car fDcris(U) (ou f̄eDcris(U) suivant les conditions sur les poids

de Hodge-Tate) induit un élément de Isom(ObEnr). C’est une retraduction du
théorème 49 (ou du théorème 54)

Lemme 63. Le schéma Isom×WObEnr est un torseur trivial sous G×W ObEnr .

Démonstration. G agit naturellement et fidèlement à gauche sur Isom : si
f ∈ Isom(R) et g ∈ G(R),

U ⊗Zp R
g

// U ⊗Zp R
f

// M ⊗W R

est bien un isomorphisme.
Puis, l’application naturelle

⊕

0≤i≤k
(U ⊕ · · · ⊕ U︸ ︷︷ ︸

n fois

)⊗i ⊗Zp R ηg
//

⊕

0≤i≤k
(U ⊕ · · · ⊕ U︸ ︷︷ ︸

n fois

)⊗i ⊗Zp R

s(f)

��⊕

0≤i≤k
(M ⊕ · · · ⊕M︸ ︷︷ ︸

n fois

)⊗i ⊗W R

s’identifie naturellement à s(f ◦ g).
Enfin, la définition de Isom, la proposition 60 et le fait que s(f ◦ g) = s(f) ◦ ηg
donnent bien s(f ◦ g)(ER) = ER, donc que f ◦ g ∈ Isom(R). Le groupe G agit
donc sur Isom par (g, f) 7→ f ◦ g−1.
La fidélité provient de ce qu’un élément de Isom est un isomorphisme de mo-
dules.
Pour finir, il reste à montrer que pour f, f ′ ∈ Isom(R), il existe g ∈ G(R) avec
f ′ = f ◦ g−1. Autrement dit, il faut voir que g = f ′−1 ◦ f est bien un élément
de G(R). Cela se montre de la même façon que précédement. C’est la propriété
60 qui est le point essentiel.
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Nous venons donc de montrer que Isom×WObEnr est un G ×W ObEnr -espace
homogène ayant un point sur ObEnr , or G ×W ObEnr est un groupe lisse, donc
Isom×WObEnr est lisse, donc Isom aussi (car la flèche Spec(ObEnr )→ Spec(W )
est fidèlement plate et quasi-compact, donc c’est une application directe du
corollaire 17.7.3 de EGA IV).

Isom est lisse, donc par le lemme de Hensel (cf. théorème 18.5.11 b de EGA IV),
Isom(W ) se surjecte (par la réduction modulo p) sur Isom(k). Si ce dernier est
non vide, nous aurons bien montré que Isom(W ) est non vide, ce qui prouvera
le théorème.

Isom×WObEnr est lisse, donc, toujours par le lemme de Hensel, Isom(ObEnr )
se surjecte sur Isom(ObEnr/p), donc le k-schéma Isom× Spec(k) est non vide
(car ObEnr/p est une k-algèbre), donc par le théorème des zéros de Hilbert,
Isom× Spec(k)(k) est non vide (car k est algébriquement clos).

Remarquons qu’en nous donnant un Zp-moduleN ⊂M qui engendreM comme
W -module (c’est à dire N ⊗Zp W = M), et tel que le Zp-module N ′ = E ∩⊕

0≤i≤k
(N ⊕ · · · ⊕N︸ ︷︷ ︸

n fois

)⊗i engendre E comme W -module (par exemple, avec les

notations du paragraphe 1.3, N = MfM (et alors N ′ = E
fE ) ou N = M

u−1
N fM

Zp

(et alors N ′ = E
u−1

E
fE

Zp )), nous pouvons définir Isom sur Zp par

Isom(R) = {h : U ⊗Zp R ≃ N ⊗Zp R|s(h)(ER) = N ′R}

pour R une Zp-algèbre. Alors, par un théorème de Lang (tout H-torseur défini
sur Fp est trivial si H est un groupe algébrique sur Fp connexe) , en supposant
que G est à fibre spéciale connexe, nous avons Isom(Fp) non vide, donc par
lissité, Isom(Zp) est non vide, et donc sous cette hypothèse, nous pouvons
supposer que Ψ(U) = N . De plus, Ψ identifie G à une forme sur Zp de GM
(celle qui est définie à l’aide de N ′).

Corollaire 64. Sous les hypothèses et notations précédentes, si U ′ est un
réseau de U ⊗Zp Qp laissé stable par l’action de G, alors Ψ[ 1p ] = Ψ ⊗W K
envoie U ′⊗Zp W sur Dcris(U

′) si les poids de Hodge-Tate sont positifs, ou sur

D̃cris(U
′) sinon.

Démonstration. Notons M = Dcris(U) (ou M = D̃cris(U) si les poids de
Hodge-Tate ne sont pas tous positifs). Tout d’abord, quitte à multiplier par une
certaine puissance de p, nous pouvons supposer U ′ ⊂ U . Puis, Ψ ∈ Isom(W ) ⊂
Isom(ObEnr ) et fM ∈ Isom(ObEnr) (respectivement, fM ∈ Isom(ObEnr )), donc,
comme Isom est un G×Zp W -espace homogène, il existe g ∈ G(ObEnr) tel que

Ψ = fM ◦ g (respectivement Ψ = fM ◦ g). Il suffit donc (puisque U ′ est stable
par G) de vérifier la propriété pour fM (ou fM ), or ceci provient juste de la
fonctorialité de fM (et de fM ) pour les sous-objets.
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6.3 Exemples

Remarquons que GLU se plonge naturellement par une immersion fermée β
dans GLU⊕U∗ où l’action sur U est l’action naturelle, et l’action sur le dual U∗

est donnée par la transposée de l’inverse. De plus, β provient d’une immersion
fermée de GLU dans EndU⊕U∗ , car l’image de β est un sous-groupe fermé de
SLU⊕U∗ . Donc, si la représentation galoisienne U est à poids de Hodge-Tate
dans [[0, h]] avec h ≤ p−2

2 , ou dans [[−h, h]] avec h ≤ p−2
4 , alors l’immersion

α′ = β ◦α vérifie en partie les hypothèses du théorème 61. Soit alors E le sous-
module définissant G dans U ⊕ U∗ (de la manière décrite dans le paragraphe

6.1). Nous définissons de même sur D̃cris(U)⊕D̃cris(U)∗ un groupe GM à l’aide
de

E = Dcris,p(E ⊗Zp Qp) ∩
⊕

0≤i≤k
(D̃cris(U)⊕ · · · ⊕ D̃cris(U)︸ ︷︷ ︸

n fois

)⊗i

Théorème 65. Si la représentation de ΓK induite sur U par α (et par ρ) vérifie
– soit elle est à poids de Hodge-Tate dans [[0, h]] avec 0 ≤ h ≤ p−2

2

– soit elle est à poids de Hodge-Tate dans [[−h, h]] avec 0 ≤ h ≤ p−2
4

alors, avec les notations précédentes, il existe un isomorphisme de W -module
Ψ : U ⊗Zp W → M qui induit une bijection Ψ ⊕ tΨ−1 : (U ⊕ U∗) ⊗Zp W →
M ⊕ M∗ identifiant G ×Zp W et GM . En particulier, le groupe GM (plongé
dans GLM⊕M∗) laisse stable M et M∗.

Démonstration. Considérons le schéma Isom(R) = {h : U ⊗Zp R ≃ M ⊗W
R|s(h)(ER) = ER} (ce n’est à priori pas le même que celui considéré dans
la démonstration du théorème 61, qui considère des morphismes définis sur
U ⊗ U∗). C’est un G ×Zp W espace homogène, qui a un point sur W (cela se
montre de la même façon que lors de la démonstration du théorème 61).

6.4 Données initiales pour un ϕ-module filtré

Formulons ici comment les idées introduites précédemment se traduisent dans
le formalisme introduit par Rapoport et Zink (cf. [RZ96]). Soit G un groupe
algébrique lisse sur Zp et ρ un morphisme de groupe de ΓK dans G(Zp),
µ : Gm → G un cocaractère défini sur W , et b ∈ G(W ). Alors, à toute
représentation β : G → GLU où U est un Zp-module libre de rang fini, nous
pouvons associer un objet I(U) (qui aura vocation à être un ϕ-module filtré) :
– le W -module sous-jacent est U ⊗Zp W = M ;

– une filtration Fili(M) =
⊕

j≥i
Mj où Mj est l’espace propre de poids j corres-

pondant à µ ;
– des applications ϕi : Fili(M) → M [ 1p ] définies par ϕi = p−ib ◦ (Id ⊗ σ) sur

Fili(M), c’est-à-dire si v =
∑
k

vk ⊗ xk ∈ Fili(M) avec vk ∈ U et xk ∈ W ,

ϕi(v) = p−i
∑
k

σ(xk)β(b)(vk).
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Définition 66. Le triplet (µ, b, β) est dit admissible si I(U) est un objet de
MFW,tf .

Si G est supposé lisse, si β induit une immersion fermée de G dans EndU ,
et I(U) est un objet de MF−h

W avec 0 ≤ h ≤ p − 2, nous pouvons faire de
même qu’au paragraphe 6.1 : G est défini par E un Zp-module bien choisi

de
⊕

0≤i≤k
(U ⊕ · · · ⊕ U︸ ︷︷ ︸

n fois

)⊗i (alors E ⊗Zp W sera un objet de MFW,tf ), et sur

Vcris(I(U)) nous construisons GVcris(I(U)) sur Zp par son foncteur des points
(si R est une Zp-algèbre,GVcris(I(U))(R) est le sous-groupe de GLVcris(I(U))(R)
formée des éléments qui laissent stable

(
Vcris,p(E ⊗Zp K) ∩

⊕

0≤i≤k
(Vcris(M)⊕ · · · ⊕Vcris(M)︸ ︷︷ ︸

n fois

)⊗i
)
⊗Zp R

Théorème 67. Sous les conditions précédentes, avec

– soit M est un objet de MF−h
W avec 0 ≤ h ≤ p− 2 et β induit une immersion

fermée de G dans EndU ,
– soit M est un objet de MF−h

W avec 0 ≤ h ≤ p−2
2 ,

– soit M est un objet de MF±h
W avec 0 ≤ h ≤ p−2

2 et β induit une immersion
fermée de G dans EndU ,

– soit M est un objet de MF±h
W avec 0 ≤ h ≤ p−2

4 ,

alors il existe une bijection Ψ : M → Vcris(I(U)) ⊗Zp W qui identifie G ×Zp
W et GVcris(I(U)) ×Zp W . De plus, la représentation galoisienne associée à
Vcris(I(U)) est à valeurs dans GVcris(I(U))(Zp).

Démonstration. L’existence de la bijection se montre de la même façon que
pour le théorème 61 : nous introduisons un G-espace homogène Isom défini sur
Zp, nous montrons qu’il est lisse sur Zp, Isom(k) est non vide par le théorème
des zéros de Hilbert, et le lemme de Hensel conclut. La définition même de
GVcris(I(U)) implique que la représentation galoisienne associée à Vcris(I(U))
est à valeurs dans GVcris(I(U))(Zp).

Remarque 68. Le théorème de Lang à propos des torseurs définis sur les
corps finis implique que si la fibre spéciale de G est connexe, alors le torseur
Isom est trivial sur Fp. Autrement dit, il a un point sur Fp, que nous pouvons
relever à Zp par le lemme de Hensel. Par conséquent, si la fibre spéciale de G
est connexe, l’isomorphisme Ψ est défini sur Zp, c’est à dire qu’il induit une
bijection Ψ : U → Vcris(I(U)).
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1 Introduction

We call a connected locally noetherian scheme Y a ‘K(π, 1)’ for a prime num-

ber p if the higher homotopy groups of the p-completion Y
(p)
et of its étale ho-

motopy type Yet vanish. In this paper we consider the case of an arithmetic
curve, where the K(π, 1)-property is linked with open questions in the theory
of Galois groups with restricted ramification of number fields:

Let k be a number field, S a finite set of nonarchimedean primes of k and p
a prime number. For simplicity, we assume that p is odd or that k is totally
imaginary. By a p-extension we understand a Galois extension whose Galois
group is a (pro-) p-group. Let kS(p) denote the maximal p-extension of k
unramified outside S and put GS(p) = Gal(kS(p)|k). A systematic study of
this group had been started by Šafarevič, and was continued by Koch, Kuz’min,
Wingberg and many others; see [NSW], VIII, §7 for basic properties of GS(p).
In geometric terms (and omitting the base point), we have

GS(p) ∼= π1

(
(Spec(Ok) rS)

(p)
et

)
.

As is well known to the experts, if S contains the set Sp of primes dividing p,
then Spec(Ok) rS is a K(π, 1) for p (see Proposition 2.3 below). In particular,
if S ⊃ Sp, then GS(p) is of cohomological dimension less or equal to 2.
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The group GS(p) is most mysterious in the tame case, i.e. when S∩Sp = ∅. In
this case, examples when Spec(Ok) rS is not a K(π, 1) are easily constructed.
On the contrary, until recently not a single K(π, 1)-example was known. The
following properties of the group GS(p) were known so far:

• GS(p) is a ‘fab-group’, i.e. Uab is finite for each open subgroup U ⊂ G.
• GS(p) can be infinite (Golod-Šafarevič).
• GS(p) is a finitely presented pro-p-group (Koch).

A conjecture of Fontaine and Mazur [FM] asserts that GS(p) has no infinite
p-adic analytic quotients.

In 2005, Labute considered the case k = Q and found finite sets S of prime
numbers (called strictly circular sets) with p /∈ S such that GS(p) has cohomo-
logical dimension 2. In [S1] the author showed that, in the examples given by
Labute, Spec(Z) rS is a K(π, 1) for p.
The objective of this paper is a systematic study of the K(π, 1)-property. Our
focus is on the tame case, where we conjecture that rings of integers of type
K(π, 1) are cofinal in the following sense:

Conjecture 1. Let k be a number field and let p be a prime number. Assume
that p 6= 2 or that k is totally imaginary. Let S be a finite set of primes of k with
S∩Sp = ∅. Let, in addition, a set T of primes of Dirichlet density δ(T ) = 1 be
given. Then there exists a finite subset T1 ⊂ T such that Spec(Ok) r (S ∪ T1)
is a K(π, 1) for p.

Of course we may assume that T ∩ Sp = ∅ in the conjecture. Our main result
is the following

Theorem 1. Conjecture 1 is true if the number field k does not contain a
primitive p-th root of unity and the class number of k is prime to p.

Explicit examples of rings of integers of type K(π, 1) can be found in [La], [S1]
(for k = Q) and in [Vo] (for k imaginary quadratic).

The K(π, 1)-property has strong consequences. We write X = Spec(Ok) and
assume in all results that p 6= 2 or that k is totally imaginary. Primes p ∈ SrSp
with µp 6⊂ kp are redundant in the sense that removing these primes from S

does not change (X rS)
(p)
et , see section 4. In the tame case, we may therefore

restrict our considerations to sets of primes whose norms are congruent to 1
modulo p. These are the results.

Theorem 2. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. If X rS is a K(π, 1) for p and GS(p) 6= 1, then the
following hold.

(i) cdGS(p) = 2, scdGS(p) = 3.

(ii) GS(p) is a duality group.
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The dualizing module D of GS(p) is given by D = torpCS(kS(p)), i.e. it is the
subgroup of p-torsion elements in the S-idèle class group of kS(p).

Remarks: 1. If X rS is a K(π, 1) for p and GS(p) = 1, then k is imaginary
quadratic, #S = 1 and p = 2 or 3. See Proposition 7.4 for a more precise
statement.

2. We have a natural exact sequence

0→ µp∞(kS(p))→
⊕

p∈S
Ind

Gp(kS(p)|k)
Gal(kS(p)|k) µp∞(kS(p)p)→

torpCS(kS(p))→ O×kS(p),S ⊗Qp/Zp → 0 ,

where O×kS(p),S is the group of S-units of kS(p) and µp∞(K) denotes the group

of all p-power roots of unity in a field K. Note that µp∞(kS(p)) is finite, while,
by Theorem 3 below, for p ∈ S the field kS(p)p contains all p-power roots of
unity.

3. In the wild case S ⊃ Sp, where X rS is always a K(π, 1) for p, GS(p)
is of cohomological dimension 1 or 2. The strict cohomological dimension is
conjecturally equal to 2 (=Leopoldt’s conjecture for each finite subextension of
k in kS(p)). In the wild case, GS(p) is often, but not always a duality group,
cf. [NSW] Prop. 10.7.13.

Allowing ramification at a prime p does not mean that the ramification is
realized globally. Therefore it is a natural and interesting question how far we
get locally at the primes in S when going up to kS(p). See [NSW] X, §3 for
results in the wild case. In the tame case, we have the following

Theorem 3. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. If X rS is a K(π, 1) for p and GS(p) 6= 1, then

kS(p)p = kp(p)

for all primes p ∈ S, i.e. kS(p) realizes the maximal p-extension of the local
field kp.

Remark: Under the assumptions of the theorem, let q /∈ S. Then either q

splits completely in kS(p), or kS(p) realizes the maximal unramified p-extension
knr

q (p). We do not know whether the completely split case actually occurs.

The next result addresses the question of enlarging the set S without destroying
the K(π, 1)-property.

Theorem 4. Let S′ be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p and let S ⊂ S′ be a nonempty subset. Assume that
X rS is a K(π, 1) for p and that GS(p) 6= 1. If each q ∈ S′rS does not
split completely in kS(p), then X rS′ is a K(π, 1) for p. Furthermore, in this
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case, the arithmetic form of Riemann’s existence theorem holds: the natural
homomorphism

∗
p∈S′\S(kS(p))

Tp(kS′(p)|kS(p)) −→ Gal(kS′(p)|kS(p))

is an isomorphism, i.e. Gal(kS′(p)|kS(p)) is the free pro-p product of a bundle
of inertia groups.

Finally, we deduce a statement on universal norms of unit groups.

Theorem 5. Let S be a finite non-empty set of primes of k whose norms
are congruent to 1 modulo p. Assume that X rS is a K(π, 1) for p and that
GS(p) 6= 1. Then

lim←−
K⊂kS(p)

O×K ⊗ Zp = 0 = lim←−
K⊂kS(p)

O×K,S ⊗ Zp,

where K runs through all finite subextensions of k in kS(p), O×K and O×K,S are
the groups of units and S-units of K, respectively, and the transition maps are
the norm maps.

The structure of this paper is as follows. First we give the necessary definitions
and make some calculations of étale cohomology groups for which we couldn’t
find an appropriate reference. In section 4, we deal with the first obstruction
against the K(π, 1)-property, the h2-defect. Then we recall Labute’s results on
mild pro-p-groups, which we use in the proof of Theorem 1 given in section 6.
In the last three sections we prove Theorems 2–5.

The author thanks Denis Vogel for valuable comments on a preliminary version
of this paper.

2 First observations

We tacitly assume all schemes to be connected and omit base points from the
notation. Let Y be a locally noetherian scheme and let p be a prime number.

We denote by Y
(p)
et the p-completion of the étale homotopy type of Y , see [AM],

[Fr]. By Ỹ (p) we denote the universal pro-p-covering of Y . The projection

Ỹ (p) → Y is Galois with group πet
1 (Y )(p) = π1(Y

(p)
et ), cf. [AM], (3.7). Any

discrete p-torsion πet
1 (Y )(p)-module M defines a locally constant sheaf on Yet,

which we denote by the same letter. The Hochschild-Serre spectral sequence
defines natural homomorphisms

φM,i : Hi(πet
1 (Y )(p),M) −→ Hi

et(Y,M), i ≥ 0.

Since H1
et(Ỹ (p),M) = 0, the map φM,i is an isomorphism for i = 0 and 1, and

is injective for i = 2. For a pro-p-group G we denote by K(G, 1) the associated
Eilenberg-MacLane space ([AM], (2.6)).
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Proposition 2.1. The following conditions are equivalent:

(i) The classifying map Y
(p)
et −→ K(πet

1 (Y )(p), 1) is a weak equivalence.

(ii) πi(Y
(p)
et ) = 0 for all i ≥ 2.

(iii) Hi
et(Ỹ (p),Z/pZ) = 0 for all i ≥ 1.

(iv) φZ/pZ,i : Hi(πet
1 (Y )(p),Z/pZ) −→ Hi

et(Y,Z/pZ) is an isomorphism for
all i ≥ 0.

(v) φM,i : Hi(πet
1 (Y )(p),M) −→ Hi

et(Y,M) is an isomorphism for all i ≥ 0
and any discrete p-torsion πet

1 (Y )(p)-module M .

Proof. The equivalences (i)⇔(ii)⇔(v) are the content of [AM], (4.3), (4.4). The
equivalence (iii)⇔(iv) follows in a straightforward manner from the Hochschild-
Serre spectral sequence. The implication (v)⇒(iv) is trivial.

Assume that (iv) holds. As πet
1 (Y )(p) is a pro-p-group, any finite p-primary

πet
1 (Y )(p)-module M has a composition series with graded pieces isomorphic

to Z/pZ with trivial πet
1 (Y )(p)-action ([NSW], Corollary 1.7.4). Hence, if M

is finite, the five-lemma implies that φM,i is an isomorphism for all i. An ar-
bitrary discrete p-primary πet

1 (Y )(p)-module is the filtered inductive limit of
finite p-primary πet

1 (Y )(p)-modules. Since group cohomology ([NSW], Propo-
sition 1.5.1) and étale cohomology ([AGV], VII, 3.3) commute with filtered
inductive limits, φM,i is an isomorphism for all i and all discrete p-torsion
πet

1 (Y )(p)-modules M . This implies (v) and completes the proof.

Definition. We say that Y is a ‘K(π, 1) for p’ if the equivalent conditions of
Proposition 2.1 are satisfied.

Now let k be a number field, S a finite set of nonarchimedean primes of k
and p a prime number. We put X = Spec(Ok). The following observation is
straightforward.

Corollary 2.2. Let k′ be a finite subextension of k in kS(p) and let X ′ =
Spec(Ok′ ), S′ = S(k′). Then the following are equivalent.

(i) X rS is a K(π, 1) for p,

(ii) X ′rS′ is a K(π, 1) for p.

Proof. Both schemes have the same universal pro-p-covering.

We denote by Sp and S∞ the set of primes of k dividing p and the set of
archimedean primes of k, respectively. For a set S of primes (which may contain
archimedean places), let kS(p) be the maximal p-extension of k unramified

Documenta Mathematica 12 (2007) 441–471



446 Alexander Schmidt

outside S and GS(p) = Gal(kS(p)|k). For a finite set S of nonarchimedean
primes of k we have the identification

πet
1 ((X rS)

(p)
et ) = GS∪S∞(p).

If p is odd or k is totally imaginary, then GS(p) = GS∪S∞(p). The following
proposition is given for sake of completeness. It deals with the ‘wild’ case
S ⊃ Sp, and is well known.

Proposition 2.3. If S contains Sp, then X rS is a K(π, 1) for p.

Proof. We verify condition (v) of Proposition 2.1. Let kS∪S∞ be the maximal
extension of k unramified outside S∪S∞ and put GS∪S∞ = Gal(kS∪S∞ |k). For
any p-primary discrete GS∪S∞(p)-module M the homomorphism φM,i factors
as

Hi(GS∪S∞(p),M)→ Hi(GS∪S∞ ,M)→ Hi
et(X rS,M).

By [NSW], Cor. 10.4.8, the left map is an isomorphism. That also the right map
is an isomorphism follows in a straightforward manner by using the Kummer
sequence, the Principal Ideal Theorem and known properties of the Brauer
group, see for example [Zi], Prop. 3.3.1. or [Mi], II Prop. 2.9.

Remark: If p = 2 and k has real places it is useful to work with the modified
étale site defined by T. Zink [Zi], which takes the real archimedean places of k
into account. Proposition 2.3 holds true also for the modified étale site, see
[S2], Thm. 6.

3 Calculation of étale cohomology groups

As a basis of our investigations, we need the calculation of the étale cohomology
groups of open subschemes of Spec(Ok) with values in the constant sheaf Z/pZ.
Let p be a fixed prime number. All cohomology groups are taken with respect
to the constant sheaf Z/pZ, which we omit from the notation. Furthermore,
we use the notation

hi(−) = dimFp H
i
et(−) (= dimFp H

i
et(−,Z/pZ) )

for the occurring cohomology groups. We start with some well-known local
computations.

Proposition 3.1. Let k be a nonarchimedean local field of characteristic zero
and residue characteristic ℓ. Let X = Spec(Ok) and let x be the closed point
of X. Then the étale local cohomology groups Hi

x(X) vanish for i ≤ 1 and
i ≥ 4, and

h2
x(X) =

{
δ, if ℓ 6= p,

δ + [k : Qp], if ℓ = p,
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where δ = 1 if µp ⊂ k and zero otherwise. Furthermore, h3
x(X) = δ. In

particular, we have the Euler-Poincaré characteristic formula

3∑

i=0

(−1)ihix(X) =

{
0, if ℓ 6= p,

[k : Qp], if ℓ = p.

Proof. As X is henselian, we have isomorphisms Hi
et(X) ∼= Hi

et(x) for all i, and
therefore

hi(X) =

{
1 for i = 0, 1,
0 for i ≥ 2.

Furthermore, X r {x} = Spec(k), hence H i
et(X r {x}) ∼= Hi(k). The local

duality theorem (cf. [NSW], Theorem 7.2.15) shows h2(X r {x}) = δ, and by
[NSW], Corollary 7.3.9, we have

h1(X r {x}) =

{
1 + δ if ℓ 6= p,

1 + δ + [k : Qp] if ℓ = p.

Furthermore, the natural homomorphism H1
et(X)→ H1

et(X r {x}) is injective.
Therefore the result of the proposition follows from the exact excision sequence

· · · → Hi
x(X)→ Hi

et(X)→ Hi
et(X r {x})→ Hi+1

x (X)→ · · · .

Now let k be a number field, S a finite set of nonarchimedean primes of k and
X = Spec(Ok). We assume for simplicity that p is odd or that k is totally
imaginary, so that we can ignore the archimedean places of k for cohomological
considerations. We introduce the following notation

r1 the number of real places of k
r2 the number of complex places of k
r = r1 + r2, the number of archimedean places of k
Sp the set of places of k dividing p
δ equal to 1 if µp ⊂ k and zero otherwise
δp equal to 1 if µp ⊂ kp and zero otherwise
Cl(k) the ideal class group of k
ClS(k) the S-ideal class group of k
hk = #Cl(k), the class number of k

nA = ker(A
·n→ A), where A is an abelian group and n ∈ N

A/n = coker(A
·n→ A), where A is an abelian group and n ∈ N.

Proposition 3.2. Assume that p 6= 2 or that k is totally imaginary. Then
Hi

et(X rS) = 0 for i ≥ 4, and

χ(X rS) :=

3∑

i=0

(−1)ihi(X rS) = r −
∑

p∈S∩Sp
[kp : Qp] .
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In particular,

χ(X rS) =

{
r, if S ∩ Sp = ∅ ,
−r2, if S ⊃ Sp .

Proof. The assertion for S = Sp is well known, see [Mi], II Theorem 2.13 (a).
Consider the exact excision sequence

· · · →
⊕

p∈S
Hi

p(Xp)→ Hi
et(X)→ Hi

et(X rS)→
⊕

p∈S
Hi+1

p (Xp)→ · · · ,

where Xp = Spec(Ok,p) is the spectrum of the completion of Ok at p. Using
this excision sequence for S = Sp, Proposition 3.1 implies the result for S =
∅, noting that

∑
p∈Sp [kp : Qp] − r2 = [k : Q] − r2 = r. The result for

arbitrary S follows from the case S = ∅, the above excision sequence and from
Proposition 3.1.

In order to give formulae for the individual cohomology groups, we consider
the Kummer group (cf. [NSW], VIII, §6)

VS(k) := {a ∈ k× | a ∈ k×pp for p ∈ S and a ∈ Upk
×p
p for p /∈ S}/k×p,

where Up denotes the unit group of the local field kp (convention: Up = k×p if p

is archimedean).1 VS(k) is a finite group. More precisely, we have the following

Proposition 3.3. There exists a natural exact sequence

0 −→ O×k /p −→ V∅(k) −→ pCl(k) −→ 0 .

In particular,

dimFp V∅(k) = dimFp pCl(k) + dimFp O×k /p = dimFp pCl(k) + r − 1 + δ.

If S is arbitrary and p /∈ S is an additional prime of k, then we have a natural
exact sequence

0 −→ VS∪{p}(k)
φ−→ VS(k) −→ Upk

×p
p /k×pp .

For p /∈ Sp, we have dimFp coker(φ) ≤ δp.
Proof. Sending an a ∈ V∅(k) to the class in Cl(k) of the fractional ideal a

with (a) = ap yields a surjective homomorphism V∅(k) → pCl(k) with kernel
O×k /p. This, together with Dirichlet’s Unit Theorem, shows the first statement.
The second exact sequence follows immediately from the definitions. There are
natural isomorphisms

Upk
×p
p /k×pp

∼= Up/Up ∩ k×pp = Up/U
p
p .

For p /∈ Sp we have dimFp Up/U
p
p = δp, showing the last statement.

1In terms of flat cohomology, we have VS(k) = ker
`

H1
fl

(X rS, µp) →
L

p∈S H1(kp , µp)
´

.
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The étale cohomology groups of X rS have the following dimensions.

Theorem 3.4. Let S be a finite set of nonarchimedean primes of k. Assume
p 6= 2 or that k is totally imaginary. Then H i

et(X rS) = 0 for i ≥ 4 and

h0(X rS) = 1 ,

h1(X rS) = 1 +
∑

p∈S
δp − δ + dimFp VS +

∑

p∈S∩Sp
[kp : Qp]− r,

h2(X rS) =
∑

p∈S
δp − δ + dimFp VS + θ ,

h3(X rS) = θ .

Here θ is equal to 1 if δ = 1 and S = ∅, and zero in all other cases.

Proof. The statement on h0 is trivial and the vanishing of Hi for i ≥ 4 was
already part of Proposition 3.2. Artin-Verdier duality (see [Ma], 2.4 or [Mi],
Theorem 3.1) shows

H3
et(X)∨ ∼= HomX(Z/pZ,Gm) = µp(k).

Consider the exact excision sequence

⊕

p∈S
H3

p(Xp)
α→ H3

et(X)
β→ H3

et(X rS)→
⊕

p∈S
H4

p(Xp).

By Proposition 3.1, the right hand group is zero, hence β is surjective. By the
local duality theorem (see [Ma], 2.4, [Mi], II Corollary 1.10), the dual map to
α is the natural inclusion

µp(k)→
⊕

p∈S
µp(kp),

which is injective, unless δ = 1 and S = ∅. Therefore h3(X rS) = 1 if
δ = 1 and S = ∅, and zero otherwise. Using the isomorphism H1(GS(p))

∼→
H1

et(X rS), the statement on h1 follows from the corresponding formula for the
first cohomology of GS(p), see [NSW], Theorem 8.7.11. Finally, the result for
h2 follows by using the Euler-Poincaré characteristic formula in Proposition 3.2.

Corollary 3.5. Assume that δ = 0 or S 6= ∅. Then X rS is a K(π, 1) for
p if and only if the following conditions (i) and (ii) are satisfied.

(i) φ2 : H2(GS(p)) →֒ H2
et(X rS) is an isomorphism,

(ii) cdGS(p) ≤ 2.
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Proof. The given conditions are obviously necessary. Furthermore, φ0 and φ1

are isomorphisms and Hi
et(X rS) = 0 for i ≥ 3 by Theorem 3.4. Therefore

(i) and (ii) imply that φi is an isomorphism for all i. Hence condition (iv) of
Proposition 2.1 is satisfied for X rS and p.

Let F be a locally constant sheaf on (X rS)et. For each prime p the composite
map Ok,S → k → kp induces natural maps Hi

et(X rS, F ) → Hi(kp, F ) for all
i ≥ 0.

Definition. For any locally constant sheaf F on (X rS)et we put

X
i(k, S, F ) := ker

(
Hi

et(X rS, F ) −→
∏

p∈S
Hi(kp, F )

)
.

Assume a prime number p is fixed. Then we write X
i(k, S) := X

i(k, S,Z/pZ)
and, following historical notation, we put BS(k) := VS(k)∨, where ∨ denotes
the Pontryagin dual.

The next theorem is sharper than [NSW], Thm. 8.7.4, as the group X
2(GS),

which was considered there, is a subgroup of X
2(k, S). If p = 2 and k has real

places, then Theorem 3.6 remains true after replacing étale cohomology with
its modified version.

Theorem 3.6. Assume p 6= 2 or that k is totally imaginary. Then there exists
a natural isomorphism

X
2(k, S)

∼−→ BS(k).

Proof. The proof of [NSW], Thm. 8.7.4 can be adapted to show also the
stronger statement here. However, we decided to take the short cut by us-
ing flat duality. For any prime p of k one easily computes the local cohomology
groups for the flat topology as H1

fl ,p(X,µp) = 0 and H2
fl ,p(X,µp)

∼= k×p /Upk
×p
p .

Therefore excision and Kummer theory imply an exact sequence

0→ H1
fl (X,µp)→ k×/k×p →

⊕

p

k×p /Upk
×p
p .

As H1
fl (Xh

p , µp)
∼= Up/p, we obtain the exact sequence

(∗) 0→ VS(k)→ H1
fl (X,µp)→

⊕

p∈S
H1

fl (Xh
p , µp).

By excision, and noting H3
p(X,Z/pZ) ∼= H2(kp,Z/pZ), we have an exact se-

quence

(∗∗)
⊕

p∈S
H2

p(X,Z/pZ)→ H2
et(X,Z/pZ)→X

2(k, S)→ 0.

Comparing sequences (∗) and (∗∗) via local and global flat duality, we obtain
the asserted isomorphism.
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We provide the following lemma for further use.

Lemma 3.7. Let K ⊂ kS(p) be an extension of k inside kS(p) and let (X rS)K
be the normalization of X rS in K. If δ = 0, or S 6= ∅ or K|k is infinite,
then

H3
et((X rS)K) = 0.

Proof. We denote the normalization of X rS in any algebraic extension field k′

of k by (X rS)k′ . Étale cohomology commutes with inverse limits of schemes
if the transition maps are affine (see [AGV], VII, 5.8). Therefore

H3((X rS)K) = lim−→
k′⊂K

H3((X rS)k′),

where k′ runs through all finite subextensions of k in K. If δ = 0 or S 6= ∅,
then, by Theorem 3.4, H3

et((X rS)k′ ) = 0 for all k′ and the limit is obviously
zero. Assume δ = 1 and S = ∅. Then, by Artin-Verdier duality,

H3
et(Xk′) ∼= µp(k

′)∨.

For k′ ⊂ k′′ ⊂ K, the transition map

H3
et(Xk′)→ H3

et(Xk′′ )

is the dual of the norm map Nk′′|k′ : µp(k
′′) → µp(k

′), hence the zero map if
k′ 6= k′′. As K|k is infinite, the limit vanishes.

4 Removing the h2-defect

We start by extending the notions introduced before to infinite sets of primes S.
Let k be a number field and S a set of nonarchimedean primes of k. We set
X = Spec(Ok) and

X rS = Spec(Ok,S),

which makes sense also if S is infinite. Let F be a sheaf on X rS which
comes by restriction from X rT for some finite subset T ⊂ S. As each open
subscheme of X is affine, we have

Hi
et(X rS, F ) ∼= lim−→

T⊂S′⊂S
S′ finite

Hi
et(X rS′, F )

for all i ≥ 0.

We fix a prime number p and put the running assumption that k is totally
imaginary if p = 2. Hence we may ignore archimedean primes for cohomological
considerations. The notion of being a K(π, 1) for p extends in an obvious
manner to the case when S is infinite. Also the isomorphism

X
2(k, S)

∼−→ BS(k)
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generalizes to infinite S by passing to the limit over all finite subsets S′ ⊂ S.
In particular, X

2(k, S) is finite.

For the remainder of this paper, we assume that S ∩Sp = ∅. We also keep the
running assumption p 6= 2 or k is totally imaginary.

For shorter notation, we drop p wherever possible. We write GS instead
of GS(p), kS for kS(p), and so on. Unless mentioned otherwise, all co-
homology groups are taken with values in Z/pZ. We keep this notational
convention for the rest of this paper.

If p ∤ p is a prime with µp 6⊂ kp, then every p-extension of the local field kp

is unramified (see [NSW], Proposition 7.5.1). Therefore primes p /∈ Sp with
N(p) 6≡ 1 mod p cannot ramify in a p-extension. Removing all these redundant
primes from S, we obtain a subset Smin ⊂ S which has the property that
GS = GSmin . Moreover, we have the

Lemma 4.1. The natural map

(X rS)
(p)
et −→ (X rSmin)

(p)
et

is a weak homotopy equivalence.

Proof. By [AM], (4.3), it suffices to show that for every discrete p-primary
GS-module M the natural maps Hi

et(X rSmin,M) → Hi
et(X rS,M) are iso-

morphisms for all i. By the same argument, as in the proof of Proposition 2.1,
(iv)⇒(v), we may suppose that M = Z/pZ. Using the excision sequence, it
therefore suffices to show that the group Hi

p(X rSmin,Z/pZ) vanishes for all
p ∈ SrSmin. This follows from Proposition 3.1.

Therefore we can replace S by Smin and make the following notational conven-
tion for the rest of this paper.

The word ‘prime’ means nonarchimedean prime with norm ≡ 1 mod p.

At this point it is useful to redefine the notion of Dirichlet density.

Definition. Let S be a set of primes of k (of norm ≡ 1 mod p). The p-density
∆p(S) is defined by

∆p(S) = δk(µp)
(
S(k(µp))

)
,

where S(k(µp)) is the set of prolongations of primes in S to k(µp) and δk(µp)
denotes the Dirichlet density on the level k(µp). In other words,

∆p(S) = d · δk(S), where d = [k(µp) : k].

The set of all primes (of norm ≡ 1 mod p) has p-density equal to 1.
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Proposition 4.2. Let S be a set of primes of p-density ∆p(S) = 1. Then
there exists a finite subset T ⊂ S with BT (k) = 0. In particular, BS(k) = 0 =
X

2(k, S).

Proof. By the Hasse principle for the module µp, see [NSW], Thm. 9.1.3 (ii),
and Kummer theory, the natural map

k×/k×p −→
∏

p∈S
k×p /k

×p
p

is injective, hence VS(k) = 0. Furthermore V∅(k) is finite. Choosing to each
nonzero element α of V∅(k) a prime p ∈ S with α /∈ k×pp , we obtain a finite
subset T ⊂ S with VT (k) = 0.

Theorem 4.3. Let k be a number field and let S be a set of primes of k of
p-density ∆p(S) = 1. Then X rS is a K(π, 1) for p.

Proof. Let T ⊂ S be a finite subset. By [NSW], Thm. 9.2.2 (ii), the natural
map

H1
et(X r (S ∪ Sp)) −→

∏

p∈T∪Sp
H1(kp)

is surjective. A class in H1
et(X r (S ∪ Sp)) which maps to zero in H1(kp) for

all p | p is contained in H1
et(X rS). Therefore, also the map

H1
et(X rS) −→

∏

p∈T
H1(kp)

is surjective. Hence the maximal elementary abelian extension of k in kS re-
alizes the maximal elementary abelian extension of kp in kp(p) for all p ∈ S.
Applying the same argument to each finite subextension of k in kS , we conclude
that kS realizes kp(p) for all p ∈ S. In particular,

∏

p∈S(kS)

H2((kS)p) = 0.

Furthermore, by Proposition 4.2, X
2(K,S(K)) = 0 for all finite subextensions

K of k in kS . We obtain

H2
et((X rS)kS ) = 0.

As there is no cohomology in dimension greater or equal 3, condition (iii) of
Proposition 2.1 is satisfied.

In order to proceed, we make the following definitions.

Definition. Let S be a finite set of primes (of norm ≡ 1 mod p).

(i) We say that S is p-large if BS(k, p) = 0.
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(ii) We put
δ2S(k) = h2(X rS)− h2(GS)

and call this number the h2-defect of S (with respect to p).

(iii) We denote by kelS the maximal elementary abelian p-extension of k in-
side kS .

If S is p-large, then X
2(k, S) = 0, and so, for any set T ⊃ S, the natural maps

H2(GS)→ H2(GT ) and H2
et(X rS)→ H2

et(X rT ) are injective.

Lemma 4.4. Let S be p-large and let p be a prime (of norm ≡ 1 mod p) which
does not split completely in kelS |k. Then

δ2S∪{p}(k) ≤ δ2S(k).

Furthermore, the natural map H2(GS∪{p}) −→ H2(kp) is surjective.

Proof. Put S′ = S ∪{p}. By Theorem 3.4, the extension kelS′ |k is ramified at p.
Therefore kelS′ realizes the maximal elementary abelian p-extension kelp of the
local field kp, i.e. the map

H1(GS′(p)) −→ H1(kp)

is surjective. As the cup-product H1(kp)×H1(kp)→ H2(kp) is surjective, the
natural map

H2(GS′) −→ H2(kp)

is also surjective. The statement of the lemma now follows from the commu-
tative and exact diagram

0 −→ H2(GS) −→ H2
et(X rS)

?

∩

?

∩

0 −→ H2(GS′) −→ H2
et(X rS′)

↓
y

H2(kp).

Lemma 4.5. Let S be p-large and let p be a prime. Let T be a set of primes of
p-density ∆p(T ) = 1. Then there exists a prime p′ ∈ T such that

(i) p′ does not split completely in kelS |k.

(ii) p does not split completely in kelS∪{p′}|k.

In particular, δ2S∪{p,p′}(k) ≤ δ2S(k).
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Proof. If p does not split completely in kelS |k, then condition (ii) is void. By
assumption, ∆p(T ) = δk(µp)(T (k(µp)) = 1. By Čebotarev’s density theo-
rem, we can find a prime P′ ∈ T (k(µp)) which does not split completely in
kelS (µp)|k(µp). Then p′ = P′|k satisfies (i). Therefore we may assume that p

splits completely in kelS |k. By class field theory, there exists an s ∈ k× with

(a) vp(s) ≡ 1 mod p,
(b) vq(s) ≡ 0 mod p for all q /∈ S, q 6= p, and
(c) s ∈ k×pq for all q ∈ S.

Since S is p-large, s is well-defined as an element in k×/k×p. Now consider
the extensions k(µp, p

√
s) and kelS∪{p}(µp) of k(µp). The first one might be

contained in the second (only if ζp ∈ k) but this does not matter. Using
Čebotarev’s density theorem, we find P′ ∈ T (k(µp)) such that FrobP′ is non-
zero in Gal(k(µp, p

√
s)|k(µp)) and non-zero in Gal(kelS∪{p}(µp)|k(µp)). We put

p′ = P′|k. Then p′ does not split completely in kelS |k and s /∈ k×pp′ = k(µp)
×p
P′ .

We claim that p does not split completely in kelS∪{p′}|k: Otherwise there would

exist a t ∈ k× satisfying conditions (a) – (c) above and with t ∈ k×pp′ . Since

s/t ∈ BS(k) = 0, we obtain s/t ∈ k×p. Hence s ∈ k×pp′ giving a contradiction.
Hence condition (i) and (ii) are satisfied.

Lemma 4.6. Let S be a finite set of primes and let T be a set of primes of
p-density ∆p(T ) = 1. Then there exists a finite subset T1 ⊂ T such that S ∪T1

is p-large and such that the natural inclusion

H2(GS∪T1(k)) −֒→ H2
et(X r (S ∪ T1))

is an isomorphism.

Proof. We first move finitely many primes from T to S to achieve that S is
p-large. If δ2S(k) is zero, we are ready. Otherwise, consider the commutative
diagram

H2(GS) −֒→ H2(GS∪T )

?

∩ y≀

H2
et(X rS) −֒→ H2

et(X r (S ∪ T ))

in which the right hand isomorphism follows from Theorem 4.3. Let x ∈
H2

et(X rS) but x /∈ H2(GS). Then there exists a finite subset T0 ⊂ T such that
x ∈ H2(GS∪T0). Let T0 = {p1, . . . , pn}. We choose p′1, . . . , p

′
n ∈ T according to

Lemma 4.5 and put T1 = {p1, . . . , pn, p
′
1, . . . , p

′
n}. Then the natural map

H2(GS∪T1)
φ−→

n∏

i=1

H2(kpi)×
n∏

i=1

H2(kp′
i
)

is surjective. We haveH2(GS) ⊂ ker(φ) and also x ∈ ker(φ). Hence δ2S∪T1
(k) <

δ2S(k). Iterating this process, we obtain a set with trivial h2-defect.
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5 Review of mild pro-p-groups

In the following we recall definitions and results from J. Labute’s paper [La].
Only interested in our application, we are slightly less general than Labute.

Let R be a principal ideal domain and let L be the free R-Lie algebra over
ξ1, . . . , ξn, n ≥ 1. We view L as graded algebra where the degree of ξi is 1. Let
ρ1, . . . , ρm, m ≥ 1, be homogeneous elements in L with ρi of degree hi and let
r = (ρ1, . . . , ρm) be the ideal of L generated by ρ1, . . . , ρm. Let g = L/r and
Ug be the universal enveloping algebra of g. Then M = r/[r, r] is a Ug-module
via the adjoint representation.

Definition. The sequence ρ1, . . . , ρm is called strongly free if Ug is a free
R-module and M = r/[r, r] is the free Ug-module on the images of ρ1, . . . , ρm
in M .

Let us consider the special case when R = k[π] is the polynomial ring in one
variable π over a field k. Then L̄ = L/π is a free k-Lie algebra and the next
theorem shows that we can detect strong freeness by reduction. We denote the
image in L̄ of an element ρ ∈ L by ρ̄.

Theorem 5.1. ([La], Th. 3.10) The sequence ρ1, . . . , ρm in L is strongly free if
and only if the sequence ρ̄1, . . . , ρ̄m is strongly free in L̄.

Over fields, we have the following criterion for strong freeness. Let R = k be a
field, X a finite set and S ⊂ X a subset. Let L(X) be the free Lie algebra over
X and let a be the ideal of L(X) generated by the elements ξ ∈ X rS. Put

T = { [ξ, ξ′] | ξ ∈ X rS, ξ′ ∈ S} ⊂ a.

Theorem 5.2. ([La], Th. 3.3, Cor. 3.5) If ρ1, . . . , ρm are homogeneous elements
of a which lie in the k-span of T modulo [a, a] and which are linearly indepen-
dent over k modulo [a, a] then the sequence ρ1, . . . , ρm is strongly free in L.

Let p be an odd prime number and let G be a pro-p-group. We consider the
descending p-central series (Gn)n≥1, which is defined recursively by

G1 = G, Gn+1 = Gpn[G,Gn].

The quotients grn(G) = Gn/Gn+1, denoted additively, are Fp-vector spaces.
The graded vector space

gr(G) =
⊕

n≥1

grn(G)

has a Lie algebra structure over the polynomial ring Fp[π], where multiplication
by π is induced by x 7→ xp and the bracket operation for homogeneous elements
is induced by the commutator operation in G, see [NSW], III, §8. For g ∈ G,
g 6= 1, let the natural number h(g) be defined by

g ∈ Gh(G), g /∈ Gh(G)+1.
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This definition makes sense because
⋂
nGn = {1}, see [NSW], Prop. 3.8.2. The

image ω(g) of g in grh(g)(G) is called the initial form of g.

Let F be the free pro-p-group over elements x1, . . . , xn, n ≥ 1. Then h(xi) = 1,
i = 1, . . . , n, and

L = gr(F )

is the free Fp[π]-Lie algebra over ξ1, . . . , ξn, where ξi = ω(xi), i = 1, . . . , n, see
[Lz]. Let r1, . . . , rm, m ≥ 1, be a sequence of elements in F2 = F p[F, F ] ⊂ F
and let R = (r1, . . . , rm)F be the closed normal subgroup of F generated by
r1, . . . , rm. Put ρi = ω(ri) ∈ L.

Definition. A pro-p-group G is called mild if there exists a presentation

1 −→ R −→ F −→ G −→ 1

with F a free pro-p-group on generators x1, . . . , xn and R = (r1, . . . , rm)F such
that the associated sequence ρ1, . . . , ρm is strongly free in L = gr(F ).

Essential for our application is the following property of mild pro-p-groups.

Theorem 5.3. ([La], Th. 1.2(c)) If G is a mild pro-p-group, then cdG = 2.

Now let G be a finitely presented pro-p-group and let

1 −→ R −→ F −→ G −→ 1

be a minimal presentation, i.e. F is the free pro-p-group on generators
x1, . . . , xn where n = dimFp H

1(G) and R = (r1, . . . , rm)F with m =
dimFp H

2(G), cf. [NSW], (3.9.5). Then the images ξi = ω(xi), i = 1, . . . , n, of
x1, . . . , xn are a basis of the Fp-vector space F/F2 = H1(F ) = H1(G) = G/G2.
For y ∈ Fn and a ∈ Zp the class of ya modulo Fn+1 only depends on the residue
class ā ∈ Fp of a. Every element r ∈ R ⊂ F2 has a representation

r ≡
n∏

j=1

(xpj )
aj ·

∏

1≤k<l≤n
[xk, xl]

akl mod F3,

where aj , ak,l ∈ Fp. These coefficients are uniquely defined and can be calcu-
lated as follows. As F is free, we have an isomorphism H2(G) = Rab

G /p. Let
r̄ ∈ H2(G) be the image of r and let χ1, . . . , χn ∈ H1(G) be the dual Fp-basis
of ξ1, . . . , ξn.

Theorem 5.4. akl = −r̄(χk ∪ χl) for k < l.

For a proof see [NSW], Prop. 3.9.13, which also gives a description of the aj
using the Bockstein operator.

Using the results above, we obtain a criterion for mildness.
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Theorem 5.5. Let G be a finitely presented pro-p-group. Assume there exists
a basis χ1, . . . , χn of H1(G), a basis r̄1, . . . , r̄m of H2(G) and a natural number
a, 1 ≤ a < n, such that the following conditions are satisfied

(i) r̄i(χk ∪ χl) = 0 for a < k < l ≤ n and i = 1, . . . ,m.

(ii) The m×a(n− a) matrix
(
r̄i(χk ∪ χl)

)
i,(k,l)

, 1 ≤ i ≤ m, 1 ≤ k ≤ a < l ≤ n

has rank m.

Then G is a mild pro-p-group.

Proof. Let ξ1, . . . , ξn ∈ H1(G) be the dual basis of χ1, . . . , χn. We choose a
minimal presentation

(∗) 1 −→ R −→ F −→ G −→ 1

and generators x1, . . . , xn ∈ F mapping to ξ1, . . . , ξn ∈ H1(F ) = H1(G). Then
we choose elements r1, . . . , rm ∈ R mapping to r̄1, . . . , r̄m ∈ Rab

G /p = H2(G).
Let X = {ξ1, . . . , ξn}. Then L = gr(F ) is the free Fp[π]-Lie algebra over X and
L̄ = L/π is the free Fp-Lie algebra over X . In order to show that G is mild,
we have to show that the initial forms ρ1, . . . , ρm of r1, . . . , rm are a strongly
free sequence in L. By Theorem 5.1 it suffices to show that ρ̄1, . . . , ρ̄m ⊂ L̄
are a strongly free sequence. By condition (ii) and Theorem 5.4, we have
ρ̄1, . . . , ρ̄m ∈ gr2(L̄) = F2/F3F

p.
Now we apply Theorem 5.2 with S = {ξa+1, . . . , ξn} ⊂ X . In the notation of
this theorem, a is the ideal generated by ξ1, . . . , ξa in L̄ and

T = {[ξi, ξj ] | 1 ≤ i ≤ a, a+ 1 ≤ j ≤ n}.
By condition (i) and Theorem 5.4, we have ρ̄i in the Fp-span H of T mod-
ulo [a, a]. The elements of T are a basis of H and the coefficient matrix of
ρ̄1, . . . , ρ̄m is up to sign the transpose of the matrix written in condition (ii).
Hence ρ̄1, . . . , ρ̄m are linearly independent and, by Theorem 5.2, a strongly free
sequence. This concludes the proof.

6 Existence of K(π, 1)’s

Let k be a number field and let p be a prime number with µp 6⊂ k and assume
that Cl(k)(p) = 0. The exact sequence

0 −→ O×k −→ k×
(vq)q−→

⊕

q

Z −→ Cl(k) −→ 0

implies the exactness of

0 −→ O×k /p −→ k×/k×p −→
⊕

q

Z/pZ −→ 0.
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Let S = {p1, . . . , pm} be a finite set of primes of norm ≡ 1 mod p. We choose
for i = 1, . . . ,m elements si ∈ k×/k×p with vpi(si) ≡ 1 mod p and vq(si) ≡
0 mod p for all primes q 6= pi of k. Let furthermore, e1, . . . , er, r = r1 + r2 − 1,
be a basis of O×k /p.
Consider the field

K = k(µp, p
√
s1, . . . , p

√
sm, p
√
e1, . . . , p

√
er).

An inspection of the ramification behaviour shows that Gal(K|k(µp)) has the
Galois group (Z/pZ)m+r : Indeed, k(µp, p

√
e1, . . . , p

√
er)|k(µp) is unramified out-

side Sp and has Galois group (Z/pZ)r by Kummer theory. Adjoining p
√
si,

i = 1, . . . ,m, yields a cyclic extension of degree p which is unramified outside
Sp ∪ {pi} and ramified at pi.
Since µp 6⊂ k, the extensions kelS (µp)|k(µp) and K|k(µp) lie in different
eigenspaces for the action of Gal(k(µp)|k). Therefore KkelS |k(µp) has Galois
group (Z/pZ)m+r+n, with n = dimFp Gal(k

el
S |k) = dimFp H

1(GS).

Assume now that we are given

• a set of primes T of k with T ∩ S = ∅ and with p-density ∆p
k(T ) = 1,

• a nonzero element F ∈ Gal(kelS |k) = Gal(kelS (µp)|k(µp)),
• to each pi, i = 1, . . . ,m, a condition Ci which says “split” or “inert”.

By Čebotarev’s density theorem applied to the extension KkelS (µp)|k(µp), we
find a prime P ∈ T (KkelS (µp)) such that

• the image of FrobP in Gal(k(µp, p
√
e1, . . . , p

√
er)|k(µp)) is trivial,

• the image of FrobP in Gal(k(µp, p
√
si)|k(µp)) is trivial if Ci is “split” and

nontrivial otherwise, and
• the image of FrobP in Gal(kelS (µp)|k(µp)) is equal to F .

Let p ∈ T be the restriction of P to k. Then the natural map O×k /p→ k×p /k
×p
p

is the zero map. Since pCl(k) = 0, we obtain O×k /p
∼→ V∅(k) = V{p}(k). By

Theorem 3.4, kel{p}|k is cyclic of order p and p is ramified in this extension.

Recall that H1
nr (Gp) is defined as the exact annihilator of the inertia group

Tp(k
el
p |kp) ⊂ H1(Gp) in the natural pairing

H1(Gp)×H1(Gp) −→ Fp.

Dually, Tp(k
el
p |kp) is the exact annihilator of H1

nr (Gp). The equation

Tp(k
el
{p}|k) = Gal(kel{p}|k) yields an isomorphism

H1(G{p})
∼−→ H1(Gp)/H1

nr (Gp).

By class field theory, pi splits in kel{p}|k if and only if there exists an element

s′i ∈ k×/k×p with vpi(s
′
i) ≡ 1 mod p, vq(s

′
i) ≡ 0 mod p for all q 6= pi and

s′i ∈ k×pp . Then s′i/si lies in O×k /p, and therefore si ∈ k×pp . Hence pi splits
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in kel{p}|k if and only if si is a p-th power in kp. On the other hand, by our
choice of P, si is a p-th power in kp if and only if Ci is “split”. Therefore the
following holds:

• the natural map O×k /p→ k×p /k
×p
p is the zero map,

• Frobp = F ∈ Gal(kelS |k),
• kel{p}|k is cyclic of order p,

• each pi, i = 1, . . . ,m, satisfies condition Ci in kel{p}|k.
Now assume that BSr {q}(k) = 0 for all q ∈ S, in particular, S is p-large.

Then all pi ∈ S ramify in kelS |k and the 1-dimensional subspaces Tpi(k
el
S |k),

i = 1, . . . ,m, in H1(GS) are pairwise different and generate H1(GS). Fur-
thermore assume that δ2S(k) = 0. As p does not split completely in kelS |k,
Lemma 4.4 implies δ2S∪{p}(k) = 0. Since µp 6⊂ k and by Theorem 3.4, the

natural maps H2(GS)→∏
q∈S H

2(Gq) and H2(GS∪{p})→
∏

q∈S∪{p}H
2(Gq)

are isomorphisms. We denote the q-component of a global cohomology class α
by αq.

Next we fix a primitive p-th root of unity in k(µp) and to each p1, . . . , pm
a prolongation to k(µp). After this choice we have identifications µp(kp) =
µp((Kk

el
S )P) ∼= Fp and µp(kpi)

∼= Fp, i = 1, . . . ,m. In particular, we have an
isomorphism H2(Gp) = H2(Gp, µp) = Fp, and similarly for the pi. Via these
isomorphisms we consider the q-component αq of a class α ∈ H2(GS∪{p}) as
an element in Fp. Let

πp ∈ H1(Gp)/H
1
nr (Gp) = H1(Gp, µp)/H

1
nr (Gp, µp) = k×p /Upk

×p
p

be the image of a uniformizer and let χp ∈ H1(G{p}) be the unique pre-image.
We denote the image of χp in H1(GS∪{p}) by the same letter. Thus χp maps
to πp under the natural map H1(GS∪{p}) → H1(Gp)/H

1
nr (Gp). Consider the

exact pairing

H1
nr (Gp)×H1(Gp)/H

1
nr (Gp)→ H2(Gp) = Fp,

which is induced by local Tate duality, see [NSW], Thm. 7.2.15. Let δ :
k×p /k

×p
p
∼→ H1(Gp) be the boundary isomorphism of the Kummer sequence and

let rec : k×p /k
×p
p

∼→ H1(Gp) be the mod-p reciprocity map. Put ϕ = rec ◦ δ−1.
Then the image of χp under the composition

H1(GS) −→ H1(Gp)
φ−→ H1(Gp) −→ H1(GS)

is Frobp, the Frobenius automorphism of the unramified prime p in kelS |k. By
[NSW], Prop. 7.2.13 2), the diagram

H1(Gp) × H1(Gp)
∪−→ H2(Gp)∥∥∥

y≀ ϕ
y≀ inv

H1(Gp) × H1(Gp)
can−→ Fp

2This proposition contains a sign error, see the errata file on the author’s homepage.
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commutes. We obtain for any χ ∈ H1(GS) ⊂ H1(GS∪{p}) the following formula
for the p-component of χ ∪ χp ∈ H2(GS∪{p}):

(χ ∪ χp)p = χ(Frobp).

The image of χp in H1(Gpi) obviously lies in the subgroup H1
nr (Gpi). By the

same argument, noting that the cup-product is anti-symmetric, we obtain the
equality

(χ ∪ χp)pi = −χp(Frobpi),

for any χ ∈ H1(GS) mapping to πpi ∈ H1(Gpi)/H
1
nr (Gpi), where Frobpi is

the Frobenius automorphism of the unramified prime pi in kel{p}|k. As χp is

unramified at pi, the element (χ ∪ χp)pi depends only on the image of χ in
the one-dimensional Fp-vector space H1(Gpi)/H

1
nr(Gpi). Since pi ramifies in

kelS |k, the map H1(GS) → Fp, χ 7→ (χ ∪ χp)pi is the linear form associated to
an element ti ∈ Tpi(k

el
S |k) ⊂ H1(GS).

Summing up and using the notation and choices above, we obtain the

Lemma 6.1. Let k be a number field and let p be a prime number with µp 6⊂ k
and Cl(k)(p) = 0. Let S = {p1, . . . , pm} be a finite p-large set of primes and
assume δ2S(k) = 0. Let for i = 1, . . . ,m elements εi ∈ {0, 1} and for i = 1, . . . , n
elements di ∈ Fp be given, where not all di are zero. Let χ1, . . . , χn be a basis
of H1(GS). Furthermore, let T be a set of primes of p-density ∆p(T ) = 1 and
with T ∩ S = ∅.
Then there exists a prime p ∈ T such that the following conditions hold with
respect to the identifications H2(Gpi) = Fp, i = 1, . . . ,m, and H2(Gp) = Fp.

• p does not split completely in kelS |k,
• kel{p}|k is cyclic of order p,

• χ1, . . . , χn, χp is a basis of H1(GS∪{p}),
• (χi ∪ χp)p = di for i = 1, . . . , n,
• For i = 1, . . . ,m we have ci = 0 if and only if εi = 0, where ci ∈
Tpi(k

el
S |k) ⊂ H1(GS) represents the map H1(GS)→ Fp, χ 7→ (χ ∪ χp)pi .

Now we are able to prove the following result, which is unessentially sharper
than Theorem 1 of the introduction.

Theorem 6.2. Let k be a number field and let p be a prime number such that

µp 6⊂ k and Cl(k)(p) = 0.

Let S be a finite set of primes of k and let T be a set of primes of p-density
∆p(T ) = 1. Then there exists a finite subset T1 ⊂ T such that Spec(Ok) r (S ∪
T1) is a K(π, 1) for p.

Proof. We may suppose that T ∩S = ∅. After moving finitely many primes of
T to S, we may assume that the following conditions hold:
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• BSr {p}(k) = 0 for all p ∈ S,

• δ2S(k) = 0.

Now let S = {p1, . . . , pm}. Then m = h2(GS). Let n = m − r = h1(GS). We
will achieve the K(π, 1)-situation by adding m further primes to S.
We choose any basis χ1, . . . , χn of H1(GS). Let t1, . . . , tm be generators of the
inertia groups Tpi(k

el
S |k) ⊂ H1(GS). Now we add a prime pm+1 in the following

way:
Let i1 ∈ {1, . . . , n} be an index such that χi1(t1) 6= 0, and let i′1 ∈ {1, . . . , n},
i′1 6= i1, be any other index. Now, according to Lemma 6.1, we put the condi-
tions

ε1 = 1 and εi = 0 for i ∈ {2, . . . ,m},
di′1 = 1 and di = 0 for i ∈ {1, . . . , n}, i 6= i′1

to choose a prime pm+1 ∈ T such that for i = 1, . . . , n

(χi ∪ χpm+1)p1 = λ1χi(t1), λ1 ∈ F×p , (χi ∪ χpm+1)pj = 0, j = 2, . . . ,m

and (χi ∪ χpm+1)pm+1 = di.

Then in the matrix (
(χi ∪ χpm+1)pj

)
i=1,...,n

j=1,...,m+1

the i1-line has entry 6= 0 at (i1, 1) and all other entries zero, while the i′1-line
has some entry at (i′1, 1), the entry 1 at (i′1,m+ 1) and all other entries zero.
In order to proceed, we put χn+1 = χpm+1 and choose an index i2 ∈ {1, . . . , n}
with χi2(t2) 6= 0 and any i′2 ∈ {1, . . . , n} with i′2 6= i2. We choose conditions as
before, completed by εm+1 = 0 and dn+1 = 0. Then we choose pm+2 according
to Lemma 6.1 and such that in the matrix

(
(χi ∪ χpm+2)pj

)
i=1,...,n

j=1,...,m+2

the i2-line has entry 6= 0 at (i2, 2) and all other entries zero, while the i′2-line
has some entry at (i′2, 2), the entry 1 at (i′2,m+ 2) and all other entries zero.
In addition, our choice implies

(χpm+1 ∪ χpm+2)pm+1 = 0 = (χpm+1 ∪ χpm+2)pm+2

As χpm+1 and χpm+2 are unramified at p1, . . . , pm by construction, we have
furthermore (χpm+1 ∪ χpm+2)pi = 0 for i = 1, . . . ,m.

Now we proceed to construct pm+3, . . . , p2m in a similar way, and apply The-
orem 5.5 with a = m. For each j, the j-th of the m-steps in the construction
produced the two lines ((ij , j),−) and ((i′j , j),−) in the nm×2m-matrix

(
(χi ∪ χpj )pk

)
i=1,...,n,j=m+1,...,2m

k=1,...,2m
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According to our choices these 2m lines are linearly independent, hence the ma-
trix has rank 2m. Putting T1 = {pm+1, . . . , p2m}, we conclude by Theorem 5.5
that GS∪T1 is a mild pro-p-group. Hence cd GS∪T1 = 2 by Theorem 5.3. By
Lemma 4.4, we didn’t produce new h2-defect during our construction, hence
δ2S∪T1

(k) = 0. As the étale cohomology is trivial in dimension ≥ 3, we conclude
that the homomorphisms

φi : Hi(GS∪T1 ,Z/pZ) −→ Hi
et(Spec(Ok) r (S ∪ T1),Z/pZ)

are isomorphisms for all i ≥ 0. Hence condition (v) of Proposition 2.1 is
satisfied.

7 Consequences of the K(π, 1)-property

In this section we assume that S is finite and we exclude the case S = ∅ from
our considerations. Keeping all conventions made before, we assume

p 6= 2 or k is totally imaginary and S is a non-empty finite set of nonar-
chimedean primes p with norm N(p) ≡ 1 mod p.

Lemma 7.1. GS is a fab-group, i.e. the abelianization Uab of every open sub-
group U of GS is finite.

Proof. Let U ⊂ GS be an open subgroup. The abelianization Uab of U is
a finitely generated abelian pro-p-group. If Uab were infinite, it would have
a quotient isomorphic to Zp, which by Galois theory corresponds to a Zp-
extension K∞ of the number field K = kUS inside kS . By [NSW], Theorem
10.3.20 (ii), a Zp-extension of a number field is ramified at at least one prime
dividing p. This contradicts K∞ ⊂ kS and we conclude that Uab is finite.

The group theoretical structure of the local Galois groups is well known.

Proposition 7.2. Let p ∈ S. Then Gal(kp(p)|kp) is the pro-p-group on two
generators σ, τ subject to the relation στσ−1 = τq. The element τ is a generator
of the inertia group, σ is a Frobenius lift and q = N(p).

Proof. This follows from [NSW], Thm. 7.5.2 by passing to the maximal pro-p-
factor group.

We obtain the following corollary.

Corollary 7.3. Assume that GS is infinite. Then, for each p ∈ S, the de-
composition group Gp of p in GS has infinite index.

Proof. The decomposition group Gp is a quotient of the local Galois group
Gal(kp(p)|kp). If Gp ⊂ GS would have finite index, it would be an infinite fab-
group by Lemma 7.1. By Proposition 7.2, each infinite quotient of Gal(kp(p)|kp)
has a surjection to Zp and is therefore not a fab-group. This contradiction shows
that Gp has infinite index in GS .
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The next proposition classifies the degenerate K(π, 1)-case.

Proposition 7.4. X rS is a K(π, 1) and GS = 1 if and only if S = {p}
consists of a single prime and one of the following cases occurs.

(a) p = 2, k 6= Q(
√
−1) is imaginary quadratic, 2 ∤ hk and N(p) 6≡ 1 mod 4,

(b) p = 2, k = Q(
√
−1) and N(p) 6≡ 1 mod 8,

(c) p = 3, k = (Q
√
−3) and N(p) 6≡ 1 mod 9.

Proof. Assume GS = 1 and that X rS is a K(π, 1). Then H i
et(X rS) = 0 for

all i ≥ 1. In particular, p ∤ hk. By Theorem 3.4, h2(X rS) = 0 implies δ = 1,
#S = 1 and VS = 0. Then, using h1(X rS) = 0, we obtain r = 1. As δ = 1,
the following possibilities remain

(a) p = 2, k 6= Q(
√
−1) is imaginary quadratic and 2 ∤ hk,

(b) p = 2, k = Q(
√
−1),

(c) p = 3, k = (Q
√
−3).

In all cases, Proposition 3.3 yields an isomorphism O×k /p
∼→ V∅. The second

exact sequence of Proposition 3.3 and the isomorphism Up/p ∼= Upk
×p
p /k×pp

imply
0 = VS = ker

(
O×k /p→ Up/p

)
.

Note that O×k /p is one-dimensional. In case (a), the unit −1 is a generator of
O×k /2 which must not be a square in Up, implying N(p) 6≡ 1 mod 4. In case (b),√
−1 is a generator, and in case (c), a generator is given by ζ3 = 1

2 (−1+
√
−3).

The assertions in the cases (b) and (c) follow similarly. Conversely, assume we
are in case (a), (b) or (c). Then we can reverse the given arguments and obtain
hi(X rS) = 0 for all i ≥ 1.

Theorem 7.5. Assume GS 6= 1 and that X rS is a K(π, 1). Then the follow-
ing hold.

(i) cdGS = 2, scdGS = 3.

(ii) GS is a duality group (of dimension 2).

Proof. By Lemma 7.1 and Corollary 3.5, GS is a fab-group and cd GS ≤ 2.
Now the assertions follow in a purely group-theoretical way:
As GS 6= 1 and Gab

S is finite, GS is not free, and we obtain cd GS = 2. By
[NSW], Proposition 3.3.3, it follows that scdGS ∈ {2, 3}. Assume scd G = 2.
We consider the GS-module

D2(Z) := lim−→
U

Uab,
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where the limit runs over all open normal subgroups U�GS and for V ⊂ U the
transition map is the transfer Ver : Uab → V ab, i.e. the dual of the corestriction
map cor: H2(V,Z) → H2(U,Z) (see [NSW], I, §5). By [NSW], Theorem 3.6.4
(iv), we obtain Gab

S = D2(Z)GS . On the other hand, Uab is finite for all U
and the group theoretical version of the Principal Ideal Theorem (see [Ne],
VI, Theorem 7.6) implies D2(Z) = 0. Hence Gab

S = 0 which implies GS = 1
producing a contradiction. Hence scdGS = 3.
It remains to show that GS is a duality group. By [NSW], Theorem 3.4.6, it
suffices to show that the terms

Di(GS ,Z/pZ) := lim−→
U

Hi(U,Z/pZ)∨

are zero for i = 0, 1. Here U runs through the open subgroups of GS , ∨ denotes
the Pontryagin dual and the transition maps are the duals of the corestriction
maps. For i = 0, and V $ U , the transition map

cor∨ : Z/pZ = H0(V,Z/pZ)∨ → H0(U,Z/pZ)∨ = Z/pZ

is multiplication by (U : V ), hence zero. Therefore D0(GS ,Z/pZ) = 0, as GS
is infinite. Furthermore,

D1(GS ,Z/pZ) = lim−→
U

Uab/p = 0

by the Principal Ideal Theorem. This finishes the proof.

In order to proceed, we introduce some notation in order to deal with the case
of infinite extensions. For a (possibly infinite) algebraic extension K of k we
denote by S(K) the set of prolongations of primes in S to K. The set S(K)
carries a profinite topology in a natural way. Now assume that M |K|k is a
tower of Galois extensions. We denote the inertia group of a prime p ∈ S(K)
in the extension M |K by Tp(M |K). For i ≥ 0 we write

⊕′

p∈S(K)

Hi(Tp(M |K),Z/pZ)
df
= lim−→

k′⊂K

⊕

p∈S(k′)

Hi(Tp(M |k′),Z/pZ),

where the limit on the right hand side runs through all finite subextensions k′ of
k in K. The Gal(K|k)-module

⊕′
p∈S(K)H

i(Tp(M |K),Z/pZ) is the maximal

discrete submodule of the product
∏

p∈S(K)H
i(Tp(M |K),Z/pZ).

Whenever we deal with local terms associated to the elements of S(K) (e.g.
étale cohomology groups) we use restricted sums, which are, in the same manner
as above, defined as the inductive limit over the similar terms associated to all
finite subextensions of k in K.

A natural question is how far we get locally at the primes in S when going up
to kS .
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Proposition 7.6. Assume that X rS is a K(π, 1) and that GS 6= 1. Then kS
realizes the maximal unramified p-extension of kp for all p ∈ S, i.e.

knrp (p) ⊂ (kS)p for all p ∈ S.

If p ∈ S ramifies in kS, then (kS)p = kp(p), i.e. kS realizes the maximal
p-extension of kp.

Proof. For an integral normal scheme Y we write YL for the normalization of Y
in an algebraic extension L of its function field. Then (X rS)kS is the universal
pro-p covering ofX rS. We consider the following part of the excision sequence
for the pair (XkS , (X rS)kS )

H2
et((X rS)kS )→

⊕′

p∈S(kS)

H3
p((XkS )p)→ H3

et(XkS ).

As GS is infinite, Lemma 3.7 implies H3
et(XkS ) = 0. By condition (iii) of

Proposition 2.1 we have H2
et((X rS)kS ) = 0. Hence H3

p((XkS )p) = 0 for all

p ∈ S(kS). As Hi
et((XkS )p) = 0 for i ≥ 2, we obtain

H3
p((XkS )p) ∼= H2((kS)p),

where the group on the right hand side is Galois cohomology with values
in Z/pZ. As µp ⊂ kp by assumption, the vanishing of H2((kS)p) implies
p∞ | [(kS)p : kp]. In other words, the decomposition group Gp(kS |k) of each
p ∈ S is infinite. As a subgroup of GS , it has cohomological dimension ≤ 2.
Furthermore, Gp(kS |k) is a factor group of the local Galois group Gal(kp(p)|kp),
which, by Proposition 7.2, has only three quotients of cohomological dimension
less or equal to 2: itself, the trivial group and the Galois group of the maximal
unramified p-extension of kp. Hence knrp (p) ⊆ (kS)p and (kS)p = kp(p) if p

ramifies in kS .

In order to deduce Theorem 3, it remains to show that each p ∈ S ramifies in
kS . The following lemma provides a first step.

Lemma 7.7. Let p ∈ S be a prime and let S′ = Sr {p}. Assume that the
natural injection VS →֒ VS′ is an isomorphism. Then p ramifies in kS .

Proof. Since the map H1(GS)→ H1
et(X rS) is an isomorphism, Theorem 3.4

implies
dimFp H

1(GS) = 1 + #S − δ + dimFp VS − r,
and the same formula holds with S replaced by S′. Hence

dimFp H
1(GS) = dimFp H

1(GS′ ) + 1 .

In particular, GS′ is a proper quotient of GS and therefore p ramifies in kS .
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Corollary 7.8. Assume that X rS is a K(π, 1) and that GS 6= 1. Let p ∈ S
be a prime and let S′ = Sr {p}. Assume that VS′ = 0. Then (kS)p = kp(p).

Remark: If V∅ = 0, then the given criterion applies to any set S and each
p ∈ S. This was used in [S1] for k = Q and in [Vo] for imaginary quadratic
number fields. If the unit rank of k is non-zero, then V∅ 6= 0 and the criterion
applies only to sufficiently large sets S.

8 Enlarging the set of primes

Next we consider the problem of enlarging the set S.

Proposition 8.1. Let S ⊂ S′ be finite sets of primes of norm congruent to 1
modulo p. Assume that X rS is a K(π, 1) and that GS 6= 1. Further assume
that each q ∈ S′rS does not split completely in kS. Then the following holds.

(i) X rS′ is a K(π, 1).

(ii) (kS′)q = kq(p) for all q ∈ S′rS.

Furthermore, Hi(Gal(kS′ |kS)) = 0 for i ≥ 2. For i = 1 we have a natural
isomorphism

H1(Gal(kS′ |kS)) ∼=
⊕′

p∈S′ rS(kS))

H1(Tp(kS′ |kS)),

In particular, Gal(kS′ |kS) is a free pro-p-group.

Proof. Let q ∈ S′rS. Since q does not split completely in kS and since
cd GS = 2, the decomposition group of q in kS |k is a non-trivial and torsion-
free quotient of Zp ∼= G(knrq (p)|kq). Therefore (kS)q is the maximal unramified
p-extension of kq. We denote the normalization of an integral normal scheme
Y in an algebraic extension L of its function field by YL. Then (X rS)kS is
the universal pro-p covering of X rS. We consider the étale excision sequence
for the pair ((X rS)kS , (X rS′)kS ). By assumption, X rS is a K(π, 1), hence
Hi

et((X rS)kS ) = 0 for i ≥ 1 by condition (iii) of Proposition 2.1. This implies
isomorphisms

Hi
et

(
(X rS′)kS

) ∼→
⊕′

p∈S′ rS(kS)

Hi+1
p

(
((X rS)kS )p

)

for i ≥ 1. As kS realizes the maximal unramified p-extension of kq for all
q ∈ S′rS, the schemes ((X rS)kS )p, p ∈ S′rS(kS) have trivial cohomology
with values in Z/pZ and we obtain isomorphisms

Hi((kS)p)
∼→ Hi+1

p

(
((X rS)kS )p

)
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for i ≥ 1. These groups vanish for i ≥ 2. This implies

Hi
et((X rS′)kS ) = 0

for i ≥ 2. The scheme (X rS′)kS′ is the universal pro-p covering of (X rS′)kS .
The Hochschild-Serre spectral sequence yields an inclusion

H2(Gal(kS′ |kS)) →֒ H2
et((X rS′)kS ) = 0.

Hence Gal(kS′ |kS) is a free pro-p-group and

H1(Gal(kS′ |kS))
∼→ H1

et((X rS′)kS ) ∼=
⊕′

p∈S′ rS(kS)

H1((kS)p).

This shows that each p ∈ S′rS(kS) ramifies in kS′ |kS , and since the Galois
group is free, kS′ realizes the maximal p-extension of (kS)p. In particular,

H1(Tp(kS′ |kS)) ∼= H1((kS)p)

for all p ∈ S′rS(kS). Using that Gal(kS′ |kS) is free, the Hochschild-Serre
spectral sequence induces an isomorphism

0 = H2
et((X rS′)kS )

∼−→ H2
et((X rS′)kS′ )

Gal(kS′ |kS).

Hence H2
et((X rS′)kS′ ) = 0, since Gal(kS′ |kS) is a pro-p-group. Condition (iii)

of Proposition 2.1 implies that X rS′ is a K(π, 1).

Corollary 8.2. Assume that X rS is a K(π, 1), and let S ⊂ S′ be a finite
set of primes of norm ≡ 1 mod p. Assume that each q ∈ S′rS does not split
completely in kS. Then the arithmetic form of Riemann’s existence theorem
holds, i.e. the natural homomorphism

∗
p∈S′\S(kS)

Tp(kS′ |kS) −→ Gal(kS′ |kS)

is an isomorphism. Here Tp is the inertia group and ∗ denotes the free pro-p-
product of a bundle of pro-p-groups, cf. [NSW], Ch. IV, §3.

Proof. By Proposition 8.1 and by the calculation of the cohomology of a free
product ([NSW], 4.3.10 and 4.1.4), φ is a homomorphism between free pro-p-
groups which induces an isomorphism on mod p cohomology. Therefore φ is
an isomorphism.

9 Proof of Theorems 3 and 5

Theorem 9.1. Assume that X rS is a K(π, 1) and GS 6= 1. Then kS realizes
the maximal p-extension kp(p) of the local field kp for all p ∈ S.
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Proof. The decomposition groups of primes in S have infinite index by Corol-
lary 7.3. By Corollary 2.2, we may replace k by a finite subextension in kS ,
and therefore assume that #S ≥ 2.
By Proposition 7.6, it suffices to show that each p ∈ S ramifies in kS . Let p ∈ S
be a prime which does not ramify in kS and put S′ = Sr {p}. By Lemma 7.7,
the natural injection φ : VS →֒ VS′ is not an isomorphism. By Proposition 3.3,
the cokernel of φ is one-dimensional. By Theorem 3.4, we obtain

h2(X rS′) = h2(X rS).

As GS = GS′ , we have cdGS′ = 2 and

h2(GS) = h2(GS′) ≤ h2(X rS′) = h2(X rS).

As X rS is a K(π, 1), equality holds. Therefore the injection H2(GS′) →֒
H2

et(X rS′) is an isomorphism. By Corollary 3.5, X rS′ is a K(π, 1). By
Proposition 7.6, p does not split completely in kS′ = kS . By Proposition 8.1,
kS realizes the maximal p-extension of kp. This yields a contradiction.

Now we are in the position to show Theorem 5.

Proof of Theorem 5. We have H2
et((X rS)kS ) = 0 by condition (iii) of Propo-

sition 2.1. By Theorem 9.1, the local cohomology groups H2
p((XkS )p) van-

ish for all p ∈ S(kS). Therefore the excision sequence yields H2
et(XkS ) = 0.

By the flat duality theorem of Artin-Mazur ([Mi], III Corollary 3.2) we have
H2

et(XK)∨ ∼= H1
fl (XK , µp) for each finite subextension K of k in kS . Hence

lim←−
K⊂kS

H1
fl (XK , µp) = 0.

The flat Kummer sequence 0→ µp → Gm
·p→ Gm → 0 implies compatible exact

sequences
0→ O×K/p→ H1

fl (XK , µp)→ pH
1
fl (XK ,Gm)

for all K. We obtain
lim←−
K⊂kS

O×K/p = 0 .

The topological Nakayama-Lemma (see [NSW], Corollary 5.2.8) for the com-
pact Zp-module lim←−O

×
K ⊗ Zp therefore implies

lim←−
K⊂kS

O×K ⊗ Zp = 0 .

Tensoring the exact sequences (cf. [NSW], Lemma 10.3.11)

0→ O×K → O×K,S →
⊕

p∈S(K)

(K×p /Up)→ Cl(K)→ ClS(K)→ 0
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by (the flat Z-algebra) Zp, we obtain exact sequences of finitely generated,
hence compact, Zp-modules. The field kS admits no unramified p-extensions.
Therefore class field theory implies lim←−K Cl(K)(p) = 0, where K runs through
all finite subextensions of k in kS . Thus, passing to the projective limit over
K, we obtain the exact sequence

0→ lim←−
K⊂kS

O×K ⊗ Zp → lim←−
K⊂kS

O×K,S ⊗ Zp → lim←−
K⊂kS

⊕

p∈S(K)

(K×p /Up)⊗ Zp → 0.

As kS realizes the maximal unramified p-extension of kp for all p ∈ S, local
class field theory implies the vanishing of the right hand limit. Therefore the
result for the S-units follows from the corresponding result for the units.

We have proven all assertions but the statement on the dualizing module in
Theorem 2. In [S1], Th. 5.2 we showed this statement under the assumption
that kS realizes the maximal p-extension kp(p) of kp for all p ∈ S. This as-
sumption has been shown above, hence the result follows.

Added in proof. As pointed out by K. Wingberg, the proof of Proposition 8.1
does not use that S and S′ are disjoint from Sp. Hence Theorem 1 also holds
if S ∩ Sp 6= ∅, i.e. the result extends to the mixed case.
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1 Introduction

A quadratic space over a field F is a pair (V, q) of a vector space V over F
together with a map q : V −→ F such that

• q(λx) = λ2q(x) for all λ ∈ F , x ∈ V , and

• the map bq : V × V −→ F defined by bq(x, y) = q(x + y) − q(x) − q(y)
(x, y ∈ V ) is F -bilinear.

If dimV = n < ∞, one may identify (after fixing a basis of V ) the quadratic
space (V, q) with a form (a homogeneous polynomial) of degree 2 in n variables.
Via this identification, a finite-dimensional quadratic space over F will also be
referred to as quadratic form over F . Recall that a quadratic space (V, q) is
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said to be isotropic, if there exists x ∈ V \ {0} such that q(x) = 0; otherwise,
(V, q) is said to be anisotropic.
Questions about isotropy are at the core of the algebraic theory of quadratic
forms over fields. A natural and much studied field invariant in this context is
the so-called u-invariant of a field F . If F is of characteristic not 2 and nonreal
(i.e. −1 is a sum of squares in F ), then u(F ) is defined to be the supremum of
the dimensions of anisotropic finite-dimensional quadratic forms over F . See
Section 2 for the general definition of the u-invariant. The main purpose of the
present article is to give examples of fields having infinite u-invariant but not
admitting any anisotropic infinite-dimensional quadratic space.
Assume now that the quadratic space (V, q) over F is anisotropic. For any
positive integer n ≤ dim(V ), let Vn be any n-dimensional subspace of V and
consider the restriction qn = q|Vn . Clearly, the n-dimensional quadratic form
(Vn, qn) is again anisotropic. This simple argument shows that if there is
an anisotropic quadratic space over F of infinite dimension, then there exist
anisotropic quadratic forms over F of dimension n for all n ∈ N.
While this observation is rather trivial, it motivates us to examine the con-
verse statement. If we assume that the field F has anisotropic quadratic forms
of arbitrarily large finite dimensions, does this imply the existence of some
anisotropic quadratic space (V, q) over F of infinite dimension? As already
mentioned, this is generally not so.
It appears that originally this question has been formulated by Herbert
Gross. He concludes the introduction to his book ‘Quadratic forms in infinite-
dimensional vector spaces’ [12] (published in 1979) by the following sample of
‘a number of pretty and unsolved problems’ in this area, which we state in his
words (cf. [12], p. 3):

1.1 Question (Gross). Is there any commutative field which admits no
anisotropic ℵ0-form but which has infinite u-invariant, i.e. admits, for each
n ∈ N, some anisotropic form in n variables?

Note that implicitly, Gross is looking for a nonreal field, because anisotropic
quadratic spaces of infinite dimension always exist over real fields. (We use
the term ‘real field’ for what is often called ‘formally real field’.) Indeed, one
observes that the field F is real if and only if the infinite-dimensional quadratic
space (V, q) given by V = F (N) and q : V −→ F, (xi) 7−→

∑
x2
i is anisotropic.

By restricting to those quadratic spaces that are totally indefinite, i.e. indefinite
with respect to every field ordering, one can formulate a meaningful analogue
of the Gross Question also for real fields, to which we will provide a solution
as well.
We also study the Gross Question in characteristic 2 where one has to distin-
guish between bilinear forms and quadratic forms. For quadratic forms, one
furthermore has to distinguish the cases of nonsingular quadratic forms and of
arbitrary quadratic forms. The analogue to the Gross Question for nonsingular
quadratic forms in characteristic 2 can be treated in more or less the same way
as in characteristic not 2, simply by invoking suitable analogues of the results
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that we use in our proofs in the case of characteristic different from 2. Yet, if
translated to bilinear forms or to arbitrary quadratic forms (possibly singular)
in characteristic 2, it is not difficult to show that the Gross Question has in
fact a negative answer, in other words, the ‘bilinear’ resp. ‘general quadratic’
u-invariant is infinite if and only if there exist infinite-dimensional anisotropic
bilinear resp. quadratic spaces.

The paper is structured as follows. In the next section, we are going to discuss
in more detail the u-invariant of a field and some related concepts. In Section 3
we will give two different constructions of nonreal fields, each giving a positive
answer to the Gross Question.

All our constructions will be based on Merkurjev’s method where one starts
with an arbitrary field and then uses iterated extensions obtained by composing
function fields of quadrics to produce an extension with the desired properties.
Our first construction will show the following:

1.2 Theorem I. Let F be a field of characteristic different from 2. There
exists a field extension K/F with the following properties:

(i) K has no finite extensions of odd degree.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K that contain β.

(iii) For any k ∈ N, there is an anisotropic k-fold Pfister form over K.

In particular, K is a perfect, nonreal field of infinite u-invariant, IkK 6= 0 for
all k ∈ N, and any infinite-dimensional quadratic space over K is isotropic.

Here and in the sequel, IkF stands for the kth power of IF , the fundamental
ideal consisting of classes of even-dimensional forms in the Witt ring WF of F .
The proof of this theorem only uses some basic properties of Pfister forms
and standard techniques from the theory of function fields of quadratic forms.
Varying this construction and using this time products of quaternion algebras
and Merkurjev’s index reduction criterion (see [24] or [38], Théorème 1), we
will then show the following:

1.3 Theorem II. Let F be a field of characteristic different from 2. There
exists a field extension K/F with the following properties:

(i) K has no finite extensions of odd degree and I3K = 0.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K that contain β.

(iii) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.
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In particular, K is a nonreal field of infinite u-invariant, and any infinite-
dimensional quadratic space over K is isotropic. Furthermore, K is perfect
and of cohomological dimension 2.

In Section 4, we will show two analogous theorems for real fields.

1.4 Theorem III. Assume that F is real. Then there exists a field extension
K/F with the following properties:

(i) K has a unique ordering.

(ii) K has no finite extensions of odd degree and I3K is torsion free.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that con-
tain β.

(iv) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

In particular, K is a real field of infinite u-invariant, and any totally indef-
inite quadratic space of infinite dimension over K is isotropic; moreover, the
cohomological dimension of K(

√
−1) is 2.

While this can be seen as a counterpart to Theorem II for real fields, we can
also prove an analogue of Theorem I in this situation.

1.5 Theorem IV. Assume that F is real. Then there exists a field extension
K/F with the following properties:

(i) K has a unique ordering.

(ii) K has no finite extensions of odd degree.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that con-
tain β.

(iv) for any k ∈ N, there is an element a ∈ K× which is a sum of squares in
K, but not a sum of k squares.

In particular, K is a real field for which the Pythagoras number, the Hasse
number, and the u-invariant are all infinite, the torsion part of IkK is nonzero
for all k ∈ N, and any totally indefinite quadratic space of infinite dimension
over K is isotropic.

In Section 5, we will discuss the Gross Question for quadratic, nonsingular
quadratic, and symmetric bilinear forms in characteristic 2. As already men-
tioned, for nonsingular quadratic forms, we obtain similar results as in char-
acteristic different from 2, whereas for arbitrary quadratic forms and for sym-
metric bilinear forms the answer turns out to be negative.
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In the final Section 6, we discuss an abstract version of the Gross Question,
formulated for an arbitrary monöıd together with two subsets satisfying some
requirements. We give examples of such monöıds whose elements are well
known objects associated to an arbitrary field, such as central simple algebras
or symbols in Milnor K-theory modulo a prime p. In some of the cases that
we shall discuss, the answer to (the analogue of) the Gross Question will be
positive, in others it will be negative.

For all prerequisites from quadratic form theory in characteristic different from
2 needed in the sequel, we refer to the books of Lam and Scharlau (see [20], [21]
and [34]). In general, we use the standard notations introduced there. However,
we use a different sign convention for Pfister forms: Given a1, . . . , ar ∈ F×, we
write 〈〈a1, . . . , ar〉〉 for the r-fold Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉. If ϕ is
a quadratic form over F and n ∈ N, we denote by n× ϕ the n-fold orthogonal
sum ϕ ⊥ · · · ⊥ ϕ.
A quadratic space (V, q) is said to be nonsingular if the radical

Rad(V, q) = {x ∈ V | bq(x, y) = 0 for all y ∈ V }
is reduced to 0. Anisotropic quadratic spaces in characteristic different from 2
are obviously always nonsingular, but this need not be so in characteristic 2.
Given two quadratic spaces (resp. forms) ϕ and ψ over F . We say that ψ is a
subspace (resp. subform) of ϕ if ψ is isometric to the restriction of ϕ to some
subspace of the underlying vector space of ϕ. We write ψ ⊂ ϕ if there exists
a quadratic space τ over F such that ϕ ∼= ψ ⊥ τ . If ϕ, ψ are quadratic forms
over F with ψ nonsingular, then ψ ⊂ ϕ if and only if ψ is a subform of ϕ.
Unless stated otherwise, the terms ‘form’ or ‘quadratic form’ will always stand
for ‘nonsingular quadratic form’. A binary form is a 2-dimensional quadratic
form.
We recall the definition of the function field F (ϕ) associated to a nonsingular
quadratic form ϕ over F in characteristic different from 2. If dim(ϕ) ≥ 3
or if dim(ϕ) = 2 and ϕ is anisotropic, then F (ϕ) is the function field of the
projective quadric given by the equation ϕ = 0. We put F (ϕ) = F if ϕ is the
hyperbolic plane or if dim(ϕ) ≤ 1. We refer to [34], Chapter 4, §5, or [21],
Chapter X, for the crucial properties of function field extensions. They will
play a prominent rôle in all our constructions.
Let K/F be an arbitrary field extension. If ϕ is a quadratic form over F ,
then we denote by ϕK the quadratic form over K obtained by scalar extension
from F to K. Similarly, given an F -algebra A, we write AK for the K-algebra
A⊗FK. Central simple algebras are by definition finite-dimensional. A central
simple algebra without zero-divisors will be called a ‘division algebra’ for short.
For the basics about central simple algebras and the Brauer group of a field,
the reader is referred to [34], Chapter 8, or [31], Chapters 12-13.

2 The derived u-invariant

In this section, all fields are assumed to be of characteristic different from 2.
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The question about the existence of an anisotropic infinite-dimensional quad-
ratic space over the field F can be rephrased within the framework of finite-
dimensional quadratic form theory, as we shall see now.
We call a sequence of quadratic forms (ϕn)n∈N over F a chain of quadratic
forms over F if, for any n ∈ N, we have dim(ϕn) = n and ϕn ⊂ ϕn+1. Given
such a chain (ϕn)n∈N over F , the direct limit over the quadratic spaces ϕn
with the appropriate inclusions has itself a natural structure of a nonsingular
quadratic space over F of dimension ℵ0 (countably infinite). We denote this
quadratic space over F by limn∈N(ϕn) and observe that it is anisotropic if and
only if ϕn is anisotropic for all n ∈ N. Moreover, any infinite-dimensional
nonsingular quadratic space over F contains a subspace isometric to the direct
limit limn∈N(ϕn) for some chain (ϕn)n∈N and we thus get:

2.1 Proposition. There exists an anisotropic quadratic space of infinite di-
mension over F if and only if there exists a chain of anisotropic quadratic
forms (ϕn)n∈N over F .

Recall that a form ϕ is torsion if its Witt class is a torsion element in the Witt
ring WF . In [9], Elman and Lam defined the u-invariant of F as

u(F ) = sup {dim(ϕ) | ϕ is an anisotropic torsion form over F} .

It is well known that if F is nonreal, then any form over F is torsion, in which
case the above supremum is actually taken over all anisotropic forms over F .
If F is real, then Pfister’s Local-Global Principle says that torsion forms are
exactly those forms that have signature zero with respect to each ordering of
F (i.e. that are hyperbolic over each real closure of F ). In the remainder of
this section, we are mainly concerned with nonreal fields.

It will be convenient to consider also the following relative u-invariants. Given
an anisotropic quadratic form ϕ over F , we define

u(ϕ, F ) = sup {dim(ψ) | ψ anisotropic form over F with ϕ ⊂ ψ} .

Note that, trivially, dim(ϕ) ≤ u(ϕ, F ). If F is nonreal, we further have that
u(ϕ, F ) ≤ u(F ) with equality if dimϕ = 1. Moreover, if ϕ1 and ϕ2 are
anisotropic forms over F such that ϕ1 ⊂ ϕ2, then u(ϕ1, F ) ≥ u(ϕ2, F ).
We introduce now the derived u-invariant of F as

u′(F ) = sup {dim(ϕ) | ϕ anisotropic form over F with u(ϕ, F ) =∞}.

Whenever there exists an anisotropic form ϕ over F with u(ϕ, F ) = ∞, we
have u′(F ) > 0; if no such forms exist, we put u′(F ) = sup ∅ = 0.

2.2 Proposition. If there exists an infinite-dimensional quadratic space over
F , then u′(F ) =∞.

Proof. Assume that there exists an anisotropic infinite-dimensional quadratic
space over F . Then there is also a chain (ϕn)n∈N of anisotropic forms over F .
Obviously, u(ϕn, F ) =∞ for any n ∈ N, and therefore u′(F ) =∞.
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In particular, the proposition shows that u′(F ) = ∞ if F is a real field. Cer-
tainly, one could modify the definition of u′ to make this invariant more inter-
esting for real fields, but we will not pursue this matter here.

2.3 Proposition. Assume that F is nonreal. Then u(F ) is finite if and only
if u′(F ) = 0.

Proof. If u(F ) = ∞, then u(〈1〉, F ) = u(F ) = ∞ and thus u′(F ) ≥ 1. On the
other hand, if u(F ) <∞, then there is no anisotropic form ϕ over F such that
u(ϕ, F ) =∞, and therefore u′(F ) = 0.

By the previous two propositions, any nonreal field F with 0 < u′(F ) <∞
will yield an example that answers the Gross Question in the positive. Now
Theorem I and Theorem II each say that nonreal fields K with u′(K) = 1 do
exist.

2.4 Lemma. For the field F ((t)) of Laurent series in the variable t over F , one
has

u′(F ((t)) ) = 2 u′(F ) .

The proof of this lemma is straightforward and based on the well known rela-
tionship between quadratic forms over F and over F ((t)) (see [20], Chapter VI,
Proposition 1.9). Details are left to the reader.

2.5 Corollary. Let m ∈ N. Then there exists a nonreal field L such that
u′(L) = 2m. Moreover, L can be constructed such that in addition Im+3L = 0,
or IrL 6= 0 for all r ∈ N, respectively.

Proof. Theorem I and Theorem II, respectively, assert the existence of such
fields for m = 0. The induction step from m to m + 1 is clear from the
preceding lemma.

This raises the following question.

2.6 Question. Does there exist a nonreal field F with u′(F ) = ∞ such that
every infinite-dimensional quadratic space over F is isotropic?

3 Nonreal fields with infinite u-invariant

We are going to give a construction, in several variants, which allows us to prove
the theorems formulated in the introduction. The proof that the field obtained
by this construction has infinite u-invariant will be based on known facts about
the preservation of properties such as anisotropy of a fixed quadratic form, or
absence of zero-divisors in a central simple algebra, under certain types of field
extensions.

First, we consider a finite field extension K/F of odd degree. Springer’s The-
orem (see [20], Chapter VII, Theorem 2.3) says that any anisotropic quadratic
form over F stays anisotropic after scalar extension from F to K.
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Springer’s Theorem has an analogue in the theory of central simple algebras.
It says that if D is a (central) division algebra over F with exponent equal
to a power of 2 and if K/F is a finite field extension of odd degree, then the
K-algebra DK = D ⊗F K is also a division algebra (see [31], Section 13.4,
Proposition (vi)).
Both statements also hold in characteristic 2. One can immediately generalise
them to ‘odd’ algebraic extensions that are not necessarily finite.
An algebraic extension L/F is called an odd closure of F if L is F -isomorphic
to MG, where M is an algebraic (resp. separable) closure of F if char(F ) 6= 2
(resp. char(F ) = 2), and G is a 2-Sylow subgroup of the Galois group of M/F .
Then L itself has no odd degree extension and all finite subextensions of F
inside L are of odd degree. In particular, L is perfect if char(F ) 6= 2. We call a
field extension K/F an odd extension if it can be embedded into an odd closure
of F . In this case, K/F is algebraic, thus equal to the direct limit of its finite
subextensions, which are all of odd degree.
We thus get immediately the following (where we do not make any assumption
on the characteristic).

3.1 Lemma. Let K/F be an odd extension.

(i) Any anisotropic quadratic form over F stays anisotropic over K.

(ii) Any central division algebra of exponent 2 over F remains a division
algebra over K.

For the remainder of this section, all fields are assumed to be of characteristic
different from 2.
We now consider extensions of the type F (ϕ)/F , where F (ϕ) is the function
field of a quadratic form ϕ over F .

3.2 Lemma. Let π be an anisotropic Pfister form over F and ϕ a form over
F with dim(ϕ) > dim(π). Then π stays anisotropic over F (ϕ).

Proof. By the assumption on the dimensions, ϕ is certainly not similar to any
subform of π. Therefore, by [34], Theorem 4.5.4 (ii), πF (ϕ) is not hyperbolic.
Hence πF (ϕ) is anisotropic as it is a Pfister form (see [34], Lemma 2.10.4).

3.3 Remark. The statement of the last lemma is actually a special case of a
more general phenomenon. Let ϕ and π be anisotropic forms over F such that,
for some n ∈ N, one has dim(π) ≤ 2n < dim(ϕ). Then π stays anisotropic over
F (ϕ) (see [14]). In the particular situation where π is an n-fold Pfister form,
we immediately recover (3.2).

The next statement was the key in Merkurjev’s construction of fields of arbi-
trary even u-invariant (see [24]). It is readily derived from [38], Théorème 1.

3.4 Theorem (Merkurjev). Let D be a division algebra over F of exponent
2 and degree 2m, where m > 0. Let ϕ be a quadratic form over F such that
dim(ϕ) > 2m+ 2 or ϕ ∈ I3F . Then DF (ϕ) is a division algebra.
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3.5 Remark. It is also well known that if K/F is a purely transcendental ex-
tension, then anisotropic forms (resp. division algebras) over F stay anisotropic
(resp. division) over K. We will use this fact repeatedly, especially when
K = F (ϕ) is the function field of an isotropic quadratic form ϕ over F , in which
case F (ϕ)/F is purely transcendental of transcendence degree dim(ϕ)− 2 (see
[34], 4.5.2 (vi)).

3.6 Proof of Theorem I.

Recall that F is an arbitrary field of characteristic different from 2. We define
recursively a tower of fields (Fn)n∈N, starting with F0 = F . Suppose that for

a certain n ≥ 1 the field Fn−1 has already been defined. Let F#
n−1 be an odd

closure of Fn−1 and let

F
(n)
n−1 = F#

n−1(X
(n)
1 , . . . , X(n)

n )

where X
(n)
1 , . . . , X

(n)
n are indeterminates over F#

n−1. We define Fn as the free

compositum1 of all function fields F
(n)
n−1(ϕ) where ϕ ranges over all anisotropic

forms defined over Fn−1 such that, for some j < n, dim(ϕ) = 2j + 1 and ϕ
contains a binary form defined over Fj .
Let K be the direct limit of the tower of fields (Fn)n∈N. We are going to show
that the field K has the following properties:

(i) K has no finite extensions of odd degree.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K that contain β.

(iii) For any k ∈ N, there is an anisotropic k-fold Pfister form over K.

Once these are established the remaining claims in Theorem I will follow. In-
deed, (ii) implies that every infinite-dimensional quadratic space over K is
isotropic and that K is nonreal, whereas (iii) implies that u(K) =∞ and that
IkK 6= 0 for all k ∈ N. Finally, since char(K) = char(F ) 6= 2, it follows from
(i) that K is perfect.

(i) Consider an irreducible polynomial f over K of odd degree. Then f is
defined over Fn for some n ∈ N. Since K contains Fn+1 which in turn contains
an odd closure of Fn, it follows that f has degree one. This shows that K is
equal to its odd closure.
(ii) Consider an anisotropic binary form β over K. There is some j ∈ N
such that β is defined over Fj . Let ϕ be a form of dimension 2j + 1 over K
containing β. Let n > j be an integer such that ϕ is defined over Fn−1. Then

by construction, Fn contains F
(n)
n−1(ϕ) and ϕ is therefore isotropic over Fn and

1See [21], p. 333, for a precise description of the notion of ‘free compositum’ of a family
of function fields of quadratic forms.
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thus over K. This shows that u(β,K) ≤ 2j. Here, j depends on the binary
form β, but in any case we have that u(β,K) is finite, proving (ii).
(iii) Given positive integers n and j, we write Fn,j for the compositum of Fn
with the algebraic closure of Fj inside a fixed algebraic closure of K. Similarly,

we write F#
n−1,j and F

(n)
n−1,j , for the compositum of F#

n−1, F
(n)
n−1, respectively,

with the algebraic closure of Fj .

Fn,j

kkkkkkkkkkkkkkkkkkkkk

Fn

compositum

F
(n)
n−1,j

kkkkkkkkkkkkkkkkkk

F
(n)
n−1

purely transc.

F #
n−1,j

kkkkkkkkkkkkkkkkkk

F #
n−1

odd

Fn−1,j

jjjjjjjjjjjjjjjjjj

Fn−1

From now on, let n > j. Note that F
(n)
n−1,j = F#

n−1,j(X
(n)
1 , . . . , X

(n)
n ) is a purely

transcendental extension of F#
n−1,j . Further, F#

n−1,j is an odd extension of
Fn−1,j . Using (3.1), it follows that every anisotropic form over Fn−1,j stays

anisotropic over F#
n−1,j , hence also over F

(n)
n−1,j . Moreover, Fn,j is obtained

from F
(n)
n−1,j as a free compositum of certain function fields F

(n)
n−1,j(ϕ) where ϕ

is a form defined over the subfield Fn−1 of F
(n)
n−1,j , either dim(ϕ) ≥ 2j+1 + 1,

or dim(ϕ) = 2ℓ + 1 with ℓ ≤ j in which case ϕ contains a binary subform

defined over Fℓ ⊂ Fj . But in this latter case, ϕ is isotropic over F
(n)
n−1,j and

thus F
(n)
n−1,j(ϕ)/F

(n)
n−1,j is purely transcendental.

Consider now an anisotropic m-fold Pfister form π defined over F
(n)
n−1,j , where

m ≤ j + 1. Since, by the above, Fn,j is obtained from F
(n)
n−1,j as a compositum

of function fields of forms of dimension at least 2j+1 + 1 and of purely tran-
scendental extensions, (3.2) and (3.5) imply that π stays anisotropic over Fn,j .

But then π stays anisotropic over F
(n+1)
n,j as well. Repeating this, we see that

π stays anisotropic over all the fields Fm,j for all m ≥ n.
Let now k be any positive integer. Let π denote the k-fold Pfister form

〈〈X(k)
1 , . . . , X

(k)
k 〉〉. This form is defined over F

(k)
k−1. Since X

(k)
1 , . . . , X

(k)
k are

algebraically independent over Fk−1, hence also over its algebraic closure
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Fk−1,k−1 = F#
k−1,k−1, we know that π is still anisotropic when considered

as a form over the field F
(k)
k−1,k−1 = F#

k−1,k−1(X
(k)
1 , . . . , X

(k)
n ). Now the above

argument shows that, for any n ≥ k, the form π is anisotropic over Fn,k−1 and,
thus, over Fn. This implies that π is anisotropic over K, the direct limit of the
fields Fn.
Hence we showed that for any k ∈ N, there exists an anisotropic k-fold Pfister
form over K.

3.7 Proof of Theorem II.

Again, we define recursively a tower of fields (Fn)n∈N, starting with F0 = F .

Suppose that for a certain n ≥ 1, the field Fn−1 is defined. As before, let F#
n−1

denote an odd closure of Fn−1. This time we define

F
(n)
n−1 = F#

n−1(X
(n)
1 , Y

(n)
1 , . . . , X(n)

n , Y (n)
n )

where X
(n)
1 , Y

(n)
1 , . . . , X

(n)
n , Y

(n)
n are indeterminates over F#

n−1. Let Fn denote

the free compositum of the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic

form over Fn−1 such that

• ϕ is a 3-fold Pfister form, or

• dim(ϕ) = 2j+ 3 for some j < n and ϕ contains a binary subform defined
over Fj .

Let K be the direct limit of the tower of fields (Fn)n∈N. We want to show that
K has the following properties:

(i) K has no finite extensions of odd degree and I3K = 0.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K which contain β.

(iii) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

Note that (iii) implies that u(K) = ∞ (see [24] or [28], Lemma 1.1(d)), while
(ii) prohibits the existence of infinite-dimensional anisotropic quadratic spaces
over K. Now the field K is perfect and nonreal by (i). Furthermore, (i) and
(iii) together imply that the cohomological dimension of K is exactly 2 (see
[24]).

(i) As in the proof of Theorem I, we see that K has no finite extensions of odd
degree.
Let π be an arbitrary 3-fold Pfister form overK. It is defined as a 3-fold Pfister
form over Fn−1 for some n ≥ 1. By the construction of the field Fn, π becomes
isotropic over Fn and thus over K. Hence, every 3-fold Pfister form over K is
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isotropic and therefore hyperbolic. Since I3K is additively generated by the
3-fold Pfister forms over K (see [34], p. 156), we conclude that I3K = 0.
(ii) Let β be an anisotropic binary form over K. There is an integer j ∈ N
such that β is defined over Fj . Let ϕ be any form of dimension 2j + 3 over K
containing β. There is some integer n > j such that ϕ is defined over Fn−1.
Since F#

n−1(ϕ) is part of the compositum Fn, ϕ becomes isotropic over Fn and
thus over K. Therefore u(β,K) ≤ 2j + 2, establishing (ii).

(iii) For positive integers n and j, we denote by Fn,j , F
#
n−1,j , F

(n)
n−1,j the compo-

sita of the fields Fn, F
#
n−1, F

(n)
n−1, respectively, with the algebraic closure of Fj

inside a fixed algebraic closure of K.
Assume from now on that n > j. Similarly as in the proof of Theorem I,

we have that F
(n)
n−1,j is equal to F#

n−1,j(X
(n)
1 , Y

(n)
1 , . . . , X

(n)
n , Y

(n)
n ), a purely

transcendental extension of F#
n−1,j , which in turn is an odd extension of Fn−1,j .

Using (3.1) and (3.5), it follows that every division algebra of exponent 2 over

Fn−1,j remains a division algebra after scalar extension to F
(n)
n−1,j .

Moreover, Fn,j is obtained from F
(n)
n−1,j as a free compositum of certain function

fields F
(n)
n−1,j(ϕ) where ϕ is a form defined over F

(n)
n−1,j which is either a 3-fold

Pfister form, or which has dimension at least 2j+3, or which contains a binary

form defined over Fj and thus is isotropic over F
(n)
n−1,j . Hence, by (3.4) and

(3.5), any division algebra over F
(n)
n−1,j of exponent 2 and of degree at most 2j

remains a division algebra after scalar extension to the field Fn,j .

Consider now a central simple algebra D of exponent 2 and degree 2j over F
(j)
j−1

for some j ∈ N. Assume that for some n > j, the algebra D will stay a division

algebra after extending scalars to F
(n)
n−1,j . Combining the observations above,

we see that D also remains a division algebra when we extend scalars to Fn,j ,

or even to F
(n+1)
n,j . Repeating this argument shows that D will stay a division

algebra after scalar extension to F
(N)
N−1,j for any N ≥ n.

Let now k be a positive integer and let D denote the tensor product of

quaternion algebras (X
(k)
1 , Y

(k)
1 )⊗ · · · ⊗ (X

(k)
k , Y

(k)
k ) over the field F

(k)
k−1. This

is a division algebra over F
(k)
k−1 of degree 2k and of exponent 2. Since

X
(k)
1 , Y

(k)
1 , . . . , X

(k)
k , Y

(k)
k are algebraically independent over the field Fk−1,

hence also over its algebraic closure Fk−1,k−1 = F#
k−1,k−1, it follows that

D
F

(k)
k−1,k−1

is a division algebra over the field F
(k)
k−1,k−1. Now the argument

above applies, showing that DFn,k−1
is a division algebra over Fn,k−1 for any

n ≥ k. But then DFn is a division algebra for any n ≥ k, implying that the
tensor product of k quaternion algebras DK is a division algebra over K.

3.8 Remark. At first glance, it may seem that the fields K constructed in
the proofs of the theorems are horrendously big. However, a closer inspection
of the proofs reveals that if the field F we start with is infinite, the field K
obtained by the construction will have the same cardinality as F . For example,
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if we start with F = Q, then the field K will be countable and thus can be
embedded into C.

4 Real fields and totally indefinite spaces

In our answer to the Gross Question, we had to construct a field F which in
particular has the property that all infinite-dimensional quadratic spaces over
F are isotropic. A real such field cannot exist as mentioned previously. In
fact, for a quadratic space ϕ (of finite or infinite dimension) over a real field
F to be isotropic, a necessary condition is that ϕ be totally indefinite, i.e.
indefinite with respect to each ordering. To get a meaningful analogue to the
Gross Question in the case of real fields, it is therefore reasonable to restrict our
attention to quadratic spaces that are totally indefinite. We start this section
with the definition of this notion and some general observations before proving
the ‘real’ analogues to the constructions that answer the Gross Question.

Let F be real and let P be an ordering on F with corresponding order relation
<P . A quadratic space (V, q) over F is said to be indefinite at P , if there exist
elements v1, v2 ∈ V such that q(v1) <P 0 <P q(v2). If (V, q) is indefinite at
every ordering of F , then we say that (V, q) is totally indefinite. Note that
this definition of (total) indefiniteness extends the common one for quadratic
forms. (By definition, if F is nonreal, every form over F is totally indefinite.)
The Hasse number ũ of F is defined by

ũ(F ) = sup {dim(ϕ) | ϕ anisotropic, totally indefinite form over F} .

Since any nontrivial torsion form is obviously totally indefinite, one has u(F ) ≤
ũ(F ). On the other hand, there are examples of real fields F where u(F ) <∞
while ũ(F ) =∞. For a survey on the possible pairs of values (u(F ), ũ(F )), we
refer to [15].
Recall that the Pythagoras number p(F ) of F is the least integer m ≥ 1 such
that every sum of squares is a sum of m squares in F if such an m exists,
otherwise p(F ) =∞. It is well known and not difficult to see that if p(F ) =∞,
then also u(F ) = ũ(F ) =∞, and if u(F ) > 0 then p(F ) ≤ u(F ).
The following observation is useful when dealing with infinite-dimensional to-
tally indefinite quadratic spaces.

4.1 Proposition. Every totally indefinite quadratic space over a real field
F contains a finite-dimensional, nonsingular, totally indefinite quadratic sub-
space.

Proof. Let (V, q) be a totally indefinite quadratic space over F . We may assume
(V, q) nonsingular. If (V, q) is isotropic then it contains a hyperbolic plane which
yields the desired subspace. Hence, we may assume that (V, q) is anisotropic.
In particular, any subspace of (V, q) is nonsingular. After scaling we may
furthermore assume that there exists a vector v0 ∈ V with q(v0) = 1. Since
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(V, q) is totally indefinite, for each ordering P there exists a vector vP ∈ V
such that q(vP ) <P 0.
Recall that the set of all orderings of F , denoted byXF , is a compact topological
space that has as a subbasis the clopen sets

H(a) = {P ∈ XF | a ∈ P}

(see [32], Theorem 6.5). We put aP = q(vP ) for every P ∈ XF . Clearly,
P ∈ H(−aP ) and hence XF =

⋃
P∈XF H(−aP ). The compactness of XF thus

yields that there are finitely many orderings P1, . . . , Pn ∈ XF such that

XF = H(−aP1) ∪ · · · ∪H(−aPn).

We put vi = vPi for 1 ≤ i ≤ n. By the last equality, for each ordering P of F
we have q(vi) <P 0 for at least one i ∈ {1, . . . , n}.
Let W be the subspace of V generated by the vectors v0, v1, . . . , vn. Then
it follows that (W, q) is an anisotropic, finite-dimensional, totally indefinite
subspace of (V, q).

Recall that any ordering P of F can be extended to the odd closure of F as
well as to any purely transcendental extension of F . From [10], Theorem 3.5,
Remark 3.6, we cite the following simple criterion for when an ordering can be
extended to the function field of a given quadratic form.

4.2 Lemma. Let P be an ordering of F and let {ϕi} be any family of quadratic
forms over F of dimension at least 2. Then P can be extended to the free
compositum of the F (ϕi) if and only if each ϕi is indefinite at P .

We are now going to modify the constructions presented in the last section and
prove the remaining two theorems formulated in the introduction.

4.3 Proof of Theorem III.

This time, starting with the real field F = F0 and any ordering P0 on it, we
construct a tower of fields with orderings (Fn, Pn)n∈N, where the ordering Pn+1

on Fn+1 extends the ordering Pn on Fn for all n. Suppose now that the pair
(Fn−1, Pn−1) has been defined for a certain n ≥ 1. Let F#

n−1 denote an odd

closure of Fn−1 and let P#
n−1 be any ordering on F#

n−1 extending Pn−1. Let

F
(n)
n−1 = F#

n−1(X
(n)
1 , Y

(n)
1 , . . . , X(n)

n , Y (n)
n )

where X
(n)
1 , Y

(n)
1 , . . . , X

(n)
n , Y

(n)
n are indeterminates over F#

n−1. Let P
(n)
n−1 be

any ordering on F
(n)
n−1 extending P#

n−1. Let now Fn be the free compositum of

the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic form over Fn−1 such that

• ϕ is a 3-fold Pfister form and indefinite at Pn−1, or

• dim(ϕ) = 2j + 3 for some j < n, and ϕ contains a binary form defined
over Fj and indefinite at Pj .
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Note that considered as forms over F
(n)
n−1 and by the construction of our order-

ings, all the above forms are in fact totally indefinite at P
(n)
n−1. By (4.2), the

ordering P
(n)
n−1 extends to an ordering Pn on Fn. In particular, Fn is a real

field.
Note that, for any 2-fold Pfister form ρ over Fn−1 and any a ∈ Fn−1, at least
one of the 3-fold Pfister forms ρ⊗〈〈a〉〉 and ρ⊗ 〈〈−a〉〉 is indefinite at Pn−1 and
thus becomes hyperbolic over Fn by the construction of this field.
Let K be the direct limit of the tower of fields (Fn)n∈N. We will show that K
has the following properties:

(i) K has a unique ordering which is given by P =
⋃
n∈N Pn.

(ii) K has no finite extensions of odd degree and I3K is torsion free.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that
contain β.

(iv) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

Once these properties of K are established, the remaining claims in Theorem
III are immediate consequences:

• K is a real field and by (iii) and (4.1), every infinite-dimensional aniso-
tropic quadratic space over K is definite with respect to the unique or-
dering.

• (i) implies thatK is SAP (see, e.g., [32], § 9, for the definition of and some
facts about SAP), I3K is torsion free, and (iv) implies that the symbol
length λ(K) of K is infinite. (Recall that the symbol length λ(K) is
the smallest m ∈ N such that each central simple algebra of exponent 2
over K is Brauer equivalent to a tensor product of at most m quaternion
algebras provided such an integer exists, otherwise λ(K) =∞.) It follows
from [15], Theorem 1.5, that u(K) =∞.

• (i) and (ii) yield that the cohomological dimension of K(
√
−1) is at most

2. (iv) then implies that it is exactly 2.

We now proceed to the proof of (i)–(iv).

(i) Since all the fields Fn (n ∈ N) are real, the same holds for K. It follows
from what we observed during the construction above that, for any a ∈ K×,
one of the forms 〈〈−1,−1, a〉〉 and 〈〈−1,−1,−a〉〉 is hyperbolic over K, which
means that either a or −a is a sum of four squares in K. This shows that
K is uniquely ordered. It is clear that the unique ordering on K is given by⋃
n∈N Pn.

(ii) There is no change — compared to the previous constructions — in the
argument that K has no finite extensions of odd degree.
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The torsion subgroup of I3K is generated by those 3-fold Pfister forms over K
that are torsion. Indeed, this is a general fact (see [2], Corollary 2.7) which,
however, could be proven very easily in our particular situation where K is
uniquely ordered.

Let π be any torsion 3-fold Pfister form over K. Then π is defined as a 3-fold
Pfister form over Fn−1 for some n ≥ 1. Since the unique ordering on K extends
the ordering Pn−1 on Fn−1, it follows that π (considered as 3-fold Pfister form
over Fn−1) is indefinite at Pn−1. The construction of Fn then yields that π
becomes isotropic and hence hyperbolic over Fn. Therefore, π is hyperbolic
over K. This shows that I3K is torsion free.

(iii) Since K has a unique ordering, every (totally) indefinite form over K
contains an indefinite binary subform. Hence, (iii) needs only to be proven for
binary indefinite forms β. The proof goes along the same lines as that of (ii)
in Theorem II.

(iv) This part is identical to the corresponding part (iii) in the proof of The-
orem II.

4.4 Proof of Theorem IV.

Again, starting with the real field F = F0 and any ordering P0 on it, we define
a tower of ordered fields (Fn, Pn)n∈N where the ordering Pn+1 on Fn+1 extends
the ordering Pn on Fn for all n.
Suppose that for a certain n ≥ 1 the pair (Fn−1, Pn−1) is already defined. Let

F#
n−1 be an odd closure of Fn−1 and let F

(n)
n−1 be the rational function field

F#
n−1(X

(n)). As before, Pn−1 extends to some ordering P#
n−1 of F#

n−1 which

in turn extends to an ordering P
(n)
n−1 on F

(n)
n−1 = F#

n−1(X
(n)) at which X(n) is

positive.

We define Fn to be the free compositum of all function fields F
(n)
n−1(ϕ) where

ϕ is an anisotropic form defined over Fn−1 such that, for some j < n, we have
dim(ϕ) = 2j + 1 and ϕ contains an binary form which is defined over Fj and

indefinite at Pj . By (4.2), P
(n)
n−1 extends to an ordering Pn of Fn.

Let K be the direct limit of the tower (Fn)n∈N. We are going to establish the
following properties:

(i) K has a unique ordering which is given by P =
⋃
n∈N Pn.

(ii) K has no finite extensions of odd degree.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K which
contain β.

(iv) for any k ∈ N, there is an element a ∈ K× which is a sum of squares in
K, but not a sum of k squares.
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Note that (iv) implies that the Pythagoras number of K is infinite, which in
turn forces the Hasse number and the u-invariant of K to be infinite as well. As
before, (iii) implies that every infinite-dimensional anisotropic quadratic space
over K is definite with respect to the unique ordering of K.

(i) Since each Fn is real, so is the direct limit K. Consider an arbitrary element
a ∈ K×. Then a ∈ Fn for some n ∈ N. Now either 〈1,−a〉 or 〈1, a〉 is indefinite
at Pn. Therefore, by construction, either 2n × 〈1〉 ⊥ 〈−a〉 or 2n × 〈1〉 ⊥ 〈a〉
becomes isotropic over the field Fn+1. Hence, a or −a is a sum of 2n squares
in K. It readily follows that K has a unique ordering given by

⋃
n∈N Pn.

(ii) K is equal to its odd closure, by the same arguments as before.

(iii) The argument here is the same as for (iii) in the last proof.

(iv) We denote by Fn−1,j , F
#
n−1,j , and F

(n)
n−1,j , the composita of Fn−1, F

#
n−1,

and F
(n)
n−1, respectively, with the real closure of Fj at the ordering Pj . Assume

now that n > j. Then we observe as before that every anisotropic quadratic

form defined over Fn−1,j stays anisotropic over F
(n)
n−1,j . Note that Fn,j is ob-

tained from F
(n)
n−1,j as a compositum of function fields F

(n)
n−1,j(ϕ) where ϕ is

a form defined over F
(n)
n−1,j which is either of dimension at least 2j+1 + 1, or

which contains a binary form defined over Fj and indefinite at Pj and which

is therefore isotropic over F
(n)
n−1,j . As in part (iii) of the proof of Theorem I,

we conclude that if π is an anisotropic m-fold Pfister form over F
(n)
n−1,j with

m ≤ j + 1, then π stays anisotropic over Fn,j .

Let now k ∈ N. Then the (k + 1)-fold Pfister form 2k × 〈〈X(k)〉〉 is defined

over F
(k)
k−1 and is still anisotropic over F

(k)
k−1,k−1. It follows now from the above

arguments that this form stays anisotropic over Fn,k−1, for all n > k. In
particular, 2k × 〈〈X(k)〉〉 is anisotropic over all fields Fn for n ≥ k, thus also
over K. This shows that the element X(k) is not a sum of 2k squares in K. On
the other hand, by the construction we have X(k) ∈ P , so that X(k) is a sum
of squares in K, by (i).

5 Fields of characteristic 2

Throughout this section, all fields considered will be of characteristic 2. To
translate the Gross Question into this setting, we have to take into account
the different types of objects for which analogous problems might be formu-
lated: quadratic, nonsingular quadratic, and symmetric bilinear spaces. We
maintain the convention to use the term ‘form(s)’ for finite-dimensional spaces.
For nonsingular quadratic forms we shall obtain analogues to Theorems I and
II stated in the introduction, thus obtaining a positive answer to (the corre-
sponding formulation of) the Gross Question in this case, too. On the other
hand, for arbitrary quadratic forms as well as for symmetric bilinear forms, the
corresponding answer turns out to be negative. In fact, this is relatively easy
to prove, so we treat these types of forms first.
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We refer the reader to [3], [30], or [16] for further details on notation, termi-
nology and basic results on quadratic and bilinear forms in characteristic 2.
Let (V, q) be a quadratic space over a field F of characteristic 2 and bq : V ×V →
F its associated bilinear form given by bq(x, y) = q(x+ y)+ q(x)+ q(y). Recall
that the radical of (q, V ) is the F -subspace

V ⊥ = Rad(q, V ) = {x ∈ V | bq(x, y) = 0 for all y ∈ V } .

The quadratic space (V, q) is said to be

• nonsingular if V ⊥ = 0;

• singular if V ⊥ 6= 0;

• totally singular if V ⊥ = V .

If we write V = V0⊕V ⊥ and we put q0 = q|V0 and qts = q|V ⊥ , then q ∼= q0 ⊥ qts
with q0 nonsingular and qts totally singular. If we also have q ∼= ϕ0 ⊥ ϕts with
ϕ0 nonsingular and ϕts totally singular, then qts ∼= ϕts (any isometry maps
radicals bijectively to radicals), but q0 and ϕ0 might not be isometric. Note
that (V, q) is totally singular if and only if q(x+y) = q(x)+q(y) for all x, y ∈ V .
For a, b ∈ F , the 2-dimensional quadratic form aX2+XY +bY 2 is nonsingular,
and we will denote it by [a, b]. The hyperbolic plane is then the form H =
[0, 0] = XY . For a1, . . . , as ∈ F , the s-dimensional quadratic form

∑s
i=1 aiX

2
i

is totally singular, and it will be denoted by 〈a1, . . . , as〉.
Let now q be a quadratic form over F and let n = dim(q). Then there exist
r, s ∈ N with 2r + s = n and a1, b1, . . . , ar, br, c1, . . . , cs ∈ F such that

q ∼= [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, . . . , cs〉 ,

and we clearly have qts ∼= 〈c1, . . . , cs〉. In particular, nonsingular quadratic
forms are always of even dimension.

There are two versions of the u-invariant in characteristic 2, referring to the
different types of quadratic forms, denoted by u and û, respectively. They are
defined as follows:

u(F ) = sup{dim(q) | q anisotropic nonsingular quadratic form over F}
û(F ) = sup{dim(q) | q anisotropic quadratic form over F}

Clearly, we have u(F ) ≤ û(F ), and u(F ) is always even if finite.
One could define corresponding u-invariants also for the classes of anisotropic
symmetric bilinear forms, and of anisotropic totally singular quadratic forms,
respectively, but (5.3) below will show that both suprema thus obtained coin-
cide with [F : F 2], the degree of inseparability of F .

We will now concentrate for a moment on totally singular quadratic spaces, a
case that is very easy to treat.
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For a field F of characteristic 2 we fix an algebraic closure F and put
√
F =

{x ∈ F | x2 ∈ F}. Note that
√
F/F is a purely inseparable algebraic field

extension of degree [F : F 2]. Hence the squaring map sq : x 7→ x2 yields a
quadratic map sqF :

√
F → F over F , and the quadratic space (

√
F , sqF ) is

clearly of dimension [F : F 2].

5.1 Proposition. Let F be a field of characteristic 2. The quadratic space
(
√
F , sqF ) is anisotropic, totally singular, and of dimension [F : F 2]. Any

anisotropic totally singular quadratic space over F is isometric to a subspace
of (
√
F , sqF ).

Proof. The first part is obvious. Consider now a totally singular quadratic
space (V, q) over F and assume that it is anisotropic. We define

ρ : V −→
√
F , v 7−→

√
q(v) .

Since q is totally singular, ρ is F -linear and we have sqF ◦ ρ = q. Since
furthermore q is anisotropic, ρ is injective and thus (V, q) is isometric to the
subspace (ρ(V ), sqF |ρ(V )) of (

√
F , sqF).

We will now briefly look at symmetric bilinear spaces (V, b) over a field F of
characteristic 2. A symmetric bilinear space (V, b) is said to be isotropic if
there exists x ∈ V \ {0} such that b(x, x) = 0, anisotropic otherwise. In other
words, (V, b) is anisotropic if and only if (V, qb) is so, where qb : V → F is the
induced quadratic map defined by qb(x) = b(x, x).

5.2 Lemma. Let F be a field of characteristic 2 and V an F -vector space.
There exists an anisotropic symmetric bilinear map b : V × V → F if and only
if there exists an anisotropic totally singular quadratic map q : V → F .

Proof. By definition, a symmetric bilinear map b : V × V → F is anisotropic
if and only if the associated totally singular quadratic map qb : V → F is so.
Now, given an anisotropic totally singular quadratic map q : V → F , it is not
difficult to construct a symmetric bilinear map b : V ×V → F such that q = qb.
In fact, picking some F -basis (ei)i∈I of V , we can define b by b(ei, ej) = δijq(ei)
for i, j ∈ I. All this implies the claim.

The previous two statements readily imply the following.

5.3 Corollary. Let F be a field of characteristic 2. Then [F : F 2] =∞ if and
only if there exist anisotropic totally singular quadratic spaces and anisotropic
symmetric bilinear spaces of infinite dimension over F . Moreover, if [F : F 2] <
∞, then

[F : F 2] = sup {dim(q) | q anisotr. tot. singular quadratic form over F}
= sup {dim(b) | b anisotr. symmetric bilinear form over F}
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We next consider general quadratic forms in characteristic 2 and the corre-
sponding û-invariant. The second part of the following statement is [22], Corol-
lary 1.

5.4 Proposition. Let F be a field of characteristic 2. Then û(F ) <∞ if and
only if [F : F 2] <∞, in which case

[F : F 2] ≤ û(F ) ≤ 2[F : F 2] .

Proof. If [F : F 2] =∞ then the last corollary readily implies that û(F ) =∞.
Now suppose [F : F 2] < ∞. Then [F : F 2] ≤ û(F ) also follows from the
corollary. To prove the second inequality, consider an anisotropic quadratic
form q over F , say,

q = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, . . . , cs〉 , a1, b1, . . . , ar, br, c1, . . . , cs ∈ F.

Then the totally singular subform 〈a1, . . . , ar, c1, . . . , cs〉 is anisotropic as well,
hence r + s ≤ [F : F 2] and thus dim(q) ≤ 2 [F : F 2]. It follows that û(F ) ≤
2 [F : F 2].

So far we have shown in this section that the Gross Question (1.1) has actually
a negative answer when it is reformulated for general quadratic forms, for
totally singular quadratic forms, or for symmetric bilinear forms over a field of
characteristic 2.
Let us now return to the case of nonsingular quadratic forms and spaces. To
motivate the Gross Question (1.1), we first shall show that the existence of an
infinite-dimensional anisotropic nonsingular quadratic space implies the exis-
tence of such spaces in every finite even dimension. Again, for quadratic forms
ϕ and ψ over F we write ϕ ⊂ ψ if there exists a quadratic form τ such that
ψ ∼= ϕ ⊥ τ . It is clear that if any two of the quadratic forms ϕ, ψ, τ are
nonsingular, then so is the third.
We call a sequence of nonsingular quadratic forms (ϕn)n∈N over F a chain of
nonsingular quadratic forms over F if, for any n ∈ N, we have dim(ϕn) = 2n
and ϕn ⊂ ϕn+1. Note that we need even dimension for nonsingularity. Given
such a chain (ϕn)n∈N over F , the direct limit over the quadratic spaces ϕn
with the appropriate inclusions is again a nonsingular quadratic space over F
of countably infinite dimension. We denote this quadratic space over F by
limn∈N(ϕn) and observe that it is anisotropic if and only if ϕn is anisotropic
for all n ∈ N.

5.5 Lemma. Any infinite-dimensional nonsingular quadratic space over F has
a subspace isometric to limn∈N(ϕn) for some chain (ϕn)n∈N of nonsingular
quadratic forms.

Proof. Let (V, q) be nonsingular with dim(V ) =∞ and let b = bq.
(i) Let x ∈ V \ {0}. The nonsingularity implies the existence of y ∈ V such
that b(x, y) 6= 0. Clearly, x and y are linearly independent as b(x, x) = 0. Let
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U1 ⊂ V be the subspace spanned by x and y. Let ϕ1 = q|U1 . One readily sees
that ϕ1 is nonsingular.
(ii) If U ⊂ V is any finite-dimensional subspace with q|U nonsingular, then the
usual argument shows that V = U ⊕ U⊥, where U⊥ = {v ∈ V | b(v, U) = 0}
(see, e.g., [34], Chapter 1, Lemma 3.4). Note that in this situation, the non-
singularity of (q, V ) implies that of q|U⊥ .
Using (i) and (ii), the lemma follows immediately by induction.

As a direct consequence, we obtain the following:

5.6 Proposition. There exists an anisotropic nonsingular quadratic space of
infinite dimension over F if and only if there exists a chain of anisotropic
nonsingular quadratic forms (ϕn)n∈N over F .

Before we state the analogues of Theorems I and II in characteristic 2, we have
to recall a few more definitions and facts.
Let WF denote the Witt ring of nonsingular bilinear forms over F , and WqF
the Witt group of nonsingular quadratic forms, which is in fact a WF -module.
The fundamental ideal of classes of even-dimensional bilinear forms in WF will
be denoted by IF , and its nth power by InF . We put Inq F = In−1F ·WqF .
Then Inq F is the submodule of WqF generated (as a group) by the n-fold
quadratic Pfister forms

〈〈a1, . . . , an]] = 〈1, a1〉b ⊗ · · · ⊗ 〈1, an−1〉b ⊗ [1, an] ,

with a1, . . . , an−1 ∈ F× and an ∈ F ; here, we denote a diagonal bilinear form
with c1, . . . , cm in the diagonal by 〈c1, . . . , cm〉b.
Quadratic Pfister forms in characteristic 2 have properties quite analogous to
those in characteristic different from 2. For example they are either anisotropic
or hyperbolic (i.e. isometric to an orthogonal sum of hyperbolic planes).
Function fields of nonsingular quadratic forms are defined as in characteristic
different from 2, again with the convention that F (H) = F . If q is a nonsingular
quadratic form of dimension 2m > 0, then F (q)/F can be realized as a purely
transcendental extension of F of transcendence degree 2m − 2 followed by a
separable quadratic extension, and F (q)/F is purely transcendental if and only
if q is isotropic.
Recall that (3.1) and (3.5) remain true in characteristic 2: anisotropic quadratic
forms (resp. division algebras of exponent a 2-power) over F stay anisotropic
(resp. division) over any odd extension of F and equally over any purely
transcendental extension of F .
Also, (3.2) stays true in characteristic 2 for nonsingular forms: if π is an
anisotropic n-fold quadratic Pfister form and q is any nonsingular form with
dim(q) > 2n, then πF (q) is anisotropic. This follows simply by invoking the
characteristic 2 analogues of the facts referred to in the proof of (3.2) (see, e.g.
[16], Theorem 4.2(i), 4.4).
The characteristic 2 version of Theorem I reads as follows.
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5.7 Theorem I(2). Let F be a field with char(F ) = 2. There exists a field
extension K/F with the following properties:

(i) K has no finite extensions of odd degree.

(ii) For any binary nonsingular quadratic form β over K, there is an upper
bound on the dimensions of anisotropic nonsingular quadratic forms over
K that contain β.

(iii) For any k ∈ N, there is an anisotropic k-fold quadratic Pfister form
over K.

In particular, K has infinite u-invariant, IkqK 6= 0 for all k ∈ N, and any
infinite-dimensional nonsingular quadratic space over K is isotropic.

Note that we cannot possibly expect K to be perfect. Indeed, u(F ) = ∞
implies û(F ) =∞ and thus [K : K2] =∞ by (5.4).
Using the above mentioned facts on nonsingular forms, quadratic Pfister forms
and function fields of nonsingular forms, the proof of Theorem I now easily
adapts to become a proof of Theorem I(2). Indeed, it suffices to add the
adjective ‘nonsingular’ whenever a quadratic form is mentioned in the proof
and to replace ‘Pfister form’ by ‘quadratic Pfister form’ (with the appropriate
notation). Also, expressions of type 2j +1 referring to the dimension of a form
must be replaced by 2j+2 as nonsingularity requires even dimension. We leave
the details to the reader.
To treat the characteristic 2 version of Theorem II, we need a few more facts
about quaternion algebras and their products over fields of characteristic 2.
A quaternion algebra (a, b]F , with a ∈ F× and b ∈ F , is a 4-dimensional central
simple F -algebra generated by two elements x, y subject to the relations x2 = a,
y2 + y = b, xy = (y + 1)x.
We now list some relevant facts that allow us to carry over the proofs from
characteristic different from 2 to characteristic 2.

5.8 Proposition. Let a1 . . . , an ∈ F× and b1, . . . , bn ∈ F be such that
A = (a1, b1]F ⊗ · · · ⊗ (an, bn]F is a division algebra. Then the following hold:

(i) The nonsingular (2n+ 2)-dimensional quadratic form

ϕ = [1, b1 + · · ·+ bn] ⊥ a1[1, b1] ⊥ · · · ⊥ an[1, bn]

is anisotropic.

(ii) For any field extension K/F of one of the following types, the K-algebra
AK = A⊗F K is a division algebra and ϕK is anisotropic:

• K/F is an odd extension;

• K = F (q) where q is a nonsingular quadratic form q such that
dim q ≥ 2n+ 4 or q ∈ I3

qF ;
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• K/F is purely transcendental.

Proof. (i) This is [23], Proposition 6.
(ii) By Part (i) it suffices to prove in each case that AK is a division algebra.
For a purely transcendental extension K/F this is obvious, and for an odd
extension it is also clear as the index of A is a 2-power. In the case K = F (q),
this follows from [23], Theorems 3 and 4.

5.9 Corollary. Suppose that for every n ∈ N there exist a1, . . . , an ∈ F×

and b1, . . . , bn ∈ F such that (a1, b1]F ⊗ · · · ⊗ (an, bn]F is a division algebra.
Then u(F ) =∞.

The characteristic 2 version of Theorem II reads as follows.

5.10 Theorem II(2). Let F be a field with char(F ) = 2. There exists a field
extension K/F with the following properties:

(i) K has no finite extensions of odd degree and I3
qK = 0.

(ii) For any binary nonsingular quadratic form β over K, there is an upper
bound on the dimensions of anisotropic nonsingular quadratic forms over
K that contain β.

(iii) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

In particular, K has infinite u-invariant and every infinite-dimensional non-
singular quadratic space over K is isotropic.

Using (5.8) and (5.9), it is now straightforward to obtain a proof of Theorem
II(2) by applying the appropriate changes to the proof of Theorem II, in a
similar fashion as was done in the case of Theorem I(2). This time, it is
expressions of type 2j + 3 in the proof of Theorem II which must be replaced
by 2j + 4 because of the nonsingularity of the forms considered. Again, we
leave the details to the reader.

5.11 Remark. In Theorem II (where char(K) 6= 2), the facts that K has no
odd degree extensions and that I3K = 0 but I2K 6= 0 together imply that K
has cohomological dimension cd(K) = 2.
In Theorem II(2) (where char(K) = 2) we have again that K has no odd
degree extension. This implies in particular that any finite separable extension
L/K also has this property, and therefore H1(L, µp) = L×/L×p vanishes for
every finite separable extension L/K and every odd prime p. This implies that
cdp(K) = 0 for the cohomological p-dimension of K for any odd prime p (see
[37], II.1.2 and II.2.3).
On the other hand, cd2(F ) ≤ 1 holds for any field F of characteristic 2
(see [37], II.2.2). In our case, there exist anisotropic nonsingular forms of
dimension at least 2 over K, thus there certainly are separable quadratic
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extensions over K. This readily implies that cd2(K) = 1 and therefore
cd(K) = sup{cdp(K) | p prime} = 1.
However, rather than considering cd2(F ) for a field F with char(F ) = 2, it
is perhaps more meaningful to ask for the separable 2-dimension dimsep

2 (F ) as
defined by P. Gille [11]:

dimsep
2 (F ) = sup{r ≥ 0 |Hr

2 (E) 6= 0 for some finite separable ext. E/F} ,

where the Hn
2 (F ) (n ≥ 0) are Kato’s cohomology groups for a field F with

char(F ) = 2 (see, e.g., [19]).
In the situation of Theorem II(2), we have a field K of characteristic 2 with no
odd degree extension and I3

qK = 0. By Kato’s proof of the Milnor conjecture
in characteristic 2 in [19], we have H3

2 (K) = 0. Furthermore, by Galois theory,
if L/K is a finite separable extension then [L : K] is a 2-power and L/K can
be obtained as a tower of separable quadratic extensions. But for any field F
of characteristic 2 and any separable quadratic extension E/F , we have that
Hn

2 (F ) = 0 implies Hn
2 (E) = 0 (see, e.g., [4], 6.6). All this together implies that

H3
2 (L) = 0 for every finite separable extension L of K, therefore dimsep

2 (K) = 2
(note that I2

qK 6= 0).

6 Analogues of the Gross Question

Let (M, ∗, ε) be a monöıd (associative semi-group) with neutral element ε. Let
A and S be nonempty subsets of M with ε /∈ S ⊂ A ⊂ M. Denoting by
〈S〉 the submonöıd of M generated by S, we furthermore assume that for any
a, b ∈ 〈S〉, if a ∗ b ∈ A then a, b ∈ A.
We now define a U -invariant for this triple (M,A,S) by

UM(A,S) = sup {m ∈ N | ∃s1, . . . , sm ∈ S with s1 ∗ · · · ∗ sm ∈ A} .

These definitions have of course been motivated by our investigations of
quadratic forms. More precisely, let F be a field with char(F ) 6= 2. Then
we takeM to be the set of nonsingular quadratic forms (up to isometry) over
F , the operation ∗ the orthogonal sum, ε the trivial (0-dimensional) quadratic
form, A the set of anisotropic forms over F , and S the set of 1-dimensional
(nonzero) quadratic forms over F . In this setting, UM(A,S) is nothing else
but u(F ).
The Gross Question has now an obvious reformulation in this more abstract
setting.

6.1 Question. Suppose that UM(A,S) = ∞. Does there exist a sequence
(sn)n∈N ⊂ S such that s1 ∗ · · · ∗ sn belongs to A for every n ∈ N?

We proved that this does not always hold for anisotropy of quadratic forms over
a field F . We will now pass from quadratic forms to other types of algebraic
objects defined over a field that also naturally give rise to a triple (M,A,S),
and we will sketch answers to the above question in these new contexts.
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Symbol algebras

Let F be a field and n ≥ 2 be an integer. We assume that char(F ) does not
divide n, and that F contains a primitive nth root of unity ζ which we fix.
An F -algebra generated by two elements x, y subject to the relations xn = a,
yn = b, xy = ζyx, where a, b ∈ F×, is denoted by (a, b)n and called an n-
symbol algebra over F . Note that (a, b)n is a central simple F -algebra of degree
n. For n = 2, we recover the case of quaternion algebras. For basic properties
of symbol algebras, we refer to [7], §11 (there, such algebras are called ‘power
norm residue algebras’). In the sequel, we will concentrate on the case where
n = p is a prime number.
With F as above, let M be the set of isomorphism classes of central simple
algebras over F . The tensor product ⊗, taken over F , endowsM with a monöıd
structure, where the neutral element is given by the class of F . Let A ⊂M be
the subset of (finite dimensional) central division algebras over F . Further, let
Sp ⊂ A be the subset given by the non-split p-symbol algebras over F .
The Gross Question in this context now becomes the following:

6.2 Question. Suppose that UM(A,Sp) = ∞, i.e. suppose that to every
n ∈ N there exist p-symbol algebras Q1, . . . , Qn such that

⊗n
i=1Qi is a division

algebra. Does there exist a sequence (Ai)i∈N of p-symbol algebras Ai over F
such that

⊗n
i=1Ai is a division algebra for all n ∈ N?

Let us first consider the case p = 2. If we take F = K to be the field constructed
in the proof of Theorem II, then we have in fact shown there that UM(A,S2) =
∞, while for any sequence (An)n∈N of quaternion algebras over K, the product
A1⊗· · ·⊗An fails to be a division algebra for n ∈ N sufficiently large. Actually,
these two facts do not only follow from the way in which K was constructed,
but already from the properties (i)–(iii). We omit the details.
Hence, for p = 2, the answer to (6.2) is negative in general. In the sequel,
we will sketch how to obtain counterexamples for an arbitrary prime p. Our
construction is to some extent similar to the one in the proof of Theorem II,
but function fields of quadratic forms will now have to be replaced by function
fields of generic partial splitting varieties, also called generalized Severi-Brauer
(or Brauer-Severi) varieties, and the special case in (3.4) of Merkurjev’s index
reduction results for function fields of quadratic forms will have to be replaced
by an appropriate version concerning index reduction for function fields of
generic partial splitting varieties.
Such generic partial splitting varieties have been studied systematically perhaps
for the first time by Heuser [13], and then later by Schofield and Van den
Bergh [35], [36], and Blanchet [5]. Blanchet derives in particular an index
reduction formula for central simple algebras over function fields of generic
partial splitting varieties. This formula has been simplified by Wadsworth [39],
and it is that simpler formula which we will use. The reader interested in
the most general results on index reduction of central simple algebras over
function fields of varieties is referred to the two papers by Merkurjev, Panin
and Wadsworth [25], [26].
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Let A be a central simple algebra over F of degree n, and let s be a divisor
of n. To A we can now associate a generalized Severi-Brauer variety X =
SB(A, n, s) such that for any field exension L/F , the L-points X(L) are the
sn-dimensional right ideals in AL = A ⊗F L. If L is a splitting field, so that
A ⊗F L ∼= EndL(V ) for an n-dimensional L-vector space V , then X(L) is
isomorphic to the Grassmannian Gr(V, s) of s-dimensional subspaces of V .
The function field F (X) has the property that ind(AF (X)) divides s, and it is
generic for that property in the following sense: If L is any field extension such
that ind(AL) divides s, then there exists an F -place F (X) −→ L ∪ {∞} (see
[13]). More precisely, we have the following (see [5], Proposition 3):

6.3 Lemma. Let A, n, s, X = SB(A, n, s) be as above and let L/F be a field
extension. Then the following statements are equivalent:

(i) X has an L-rational point.

(ii) ind(AL) divides s.

(iii) The free compositum L · F (X) is a purely transcendental extension of L.

We now have the following index reduction formula for function fields of generic
partial splitting varieties, see [39], Theorem 2:

6.4 Theorem. Let A, n, s, X = SB(A, n, s) be as above, let K = F (X) and
let D be a central simple algebra over F . Then

ind(DK) = gcd

{
s

gcd(i, s)
ind(D ⊗F A−i)

∣∣∣∣ 1 ≤ i ≤ n
}
.

6.5 Corollary. Let p be a prime, let D be a central division algebra of index
pr over F , and let A be a central simple algebra of degree pm over F (m ≥ 1)
and of exponent dividing p. Let X = SB(A, pm, pm−1). If A is not a division
algebra, or if m > r, then DF (X) is a division algebra.

Proof. If A is not a division algebra, then ind(A) divides pm−1 and F (X)/F is
purely transcendental by (6.3). This clearly implies that D will stay a division
algebra over F (X).
Now assume that m > r. We apply the above index reduction formula with
n = pm and s = pm−1. Let i ∈ {1, . . . , n}.
If p | i, then A−i is split, because exp(A) divides p, and it follows immediately
that s

gcd(i,s) ind(D ⊗F A−i) is divisible by ind(D ⊗F A−i) = ind(D). Further-

more, for i = pm we have s
gcd(i,s) ind(D ⊗F A−i) = ind(D).

If p 6 | i then gcd(i, s) = 1. Therefore,

s

gcd(i, s)
ind(D ⊗F A−i) = pm−1 · ind(D ⊗F A−i) ,

and this number is divisible by pm−1 and thus by ind(D) = pr ≤ pm−1.

Documenta Mathematica 12 (2007) 473–504



Isotropy of Quadratic Spaces 499

We conclude that

ind(DF (X)) = gcd

{
s

gcd(i, s)
ind(D ⊗F A−i)

∣∣∣∣ 1 ≤ i ≤ n
}

= ind(D) ,

in other words, D stays a division algebra over F (X).

6.6 Theorem. Let p be a prime and let F be a field with char(F ) 6= p. Then
there exists a field extension K/F containing a primitive pth root of unity ζ
such that the following holds:

(i) Given a0 ∈ K×. Then there exists an ℓ ∈ N depending on a0 such that

for any a1, . . . , aℓ, b0, . . . , bℓ ∈ K×, the product
⊗ℓ

i=0(ai, bi)p is not a
division algebra.

(ii) For every n ∈ N there exist p-symbol algebras A1, . . . , An over K such
that

⊗n
i=1Ai is a division algebra.

Proof. Let F0 = F (ζ) where ζ is a primitive pth root of unity in an algebraic
closure of F . Let n ≥ 1 and suppose we have have constructed Fn−1. Let now

F
(n)
n−1 = Fn−1(X

(n)
1 , Y

(n)
1 , . . . , X(n)

n , Y (n)
n )

where X
(n)
1 , Y

(n)
1 , . . . , X

(n)
n , Y

(n)
n are indeterminates over Fn−1. Let Fn denote

the free compositum of function fields F
(n)
n−1(SB(A, pj+1, pj)) for all central

simple algebras A over Fn−1 of type A ∼= (a0, b0)p ⊗ (a1, b1)p ⊗ · · · ⊗ (aj , bj)p
with j < n and a0 ∈ F×j and a1, . . . , aj , b0, . . . , bj ∈ F×n−1.

Finally, we define K =
⋃∞
i=0 Fn and claim that K has the desired properties.

(i) Let a0 ∈ K×. Then there exists an integer ℓ > 0 such that a0 ∈ Fℓ.

Let a1, . . . , aℓ, b0, . . . , bℓ ∈ K× and consider B =
⊗ℓ

i=0(ai, bi)p. It suffices
to show that B is not a division algebra over K. Now there exists n > ℓ
such that a1, . . . , aℓ, b0, . . . , bℓ ∈ F×n−1, so B is defined over Fn−1, and since

F
(n)
n−1(SB(B, pℓ+1, pℓ)) is part of the compositum Fn, we have that ind(BFn)

divides pℓ, which implies that B is not a division algebra over Fn and thus also
not over K.

(ii) For n ≥ 1, consider over Fn the algebra

Cn = (X
(n)
1 , Y

(n)
1 )p ⊗ · · · ⊗ (X(n)

n , Y (n)
n )p .

It is well known that Cn is a division algebra over Fn (see, e.g., [25], Corollary
5.2). Part (ii) now follows if we can show that Cn will stay a division algebra
over K. This can be achieved by mimicking the argument in part (iii) of
the proof of Theorem II, this time by invoking (6.3) and (6.5). We omit the
details.
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Symbols in Milnor K-theory

Recall the definition of the Milnor K-groups KnF of a field F (see [27]). By
definition, K0F = Z, and K1F is the multiplicative group F×, written addi-
tively with the elements denoted by {a}, a ∈ F×, so that {ab} = {a}+ {b} for
a, b ∈ F×. For n ≥ 2, KnF is then defined to be the quotient of the tensor
product (K1F )⊗n by the subgroup generated by all {a1}⊗· · ·⊗{an} satisfying
ai + ai+1 = 1 for some i. The image of an element {a1} ⊗ · · · ⊗ {an} in the
quotient group KnF is denoted by {a1, . . . , an} and called a symbol. We then
define the Milnor K-ring as the graded Z-algebraK∗F =

⊕∞
n=0KnF with mul-

tiplication defined on symbols in the obvious way: {a1, . . . , an} ·{b1, . . . , bm} =
{a1, . . . , an, b1, . . . , bm}.
We are interested in KnF/p, the Milnor K-groups modulo p for some prime p.
The image of a symbol {a1, . . . , an} in KnF/p will again be called a symbol
and denoted in the same way.
For p = 2, these groups are linked to quadratic form theory through the Milnor
Conjecture (now a theorem due to Orlov, Vishik, and Voevodsky [29]) which
asserts that if char(F ) 6= 2 then KnF/2 is isomorphic to InF/In+1F , via an
isomorphism that maps {a1, . . . , an} to the class of 〈〈a1, . . . , an〉〉modulo In+1F .
We now consider the abstract version of the Gross Question (6.1) in the fol-
lowing setting, where we assume F× 6= F×p because otherwise KnF/p = 0 for
all n ≥ 1. Let M = K∗F/p, S = {{a} | a ∈ F× \ F×p} (this is nonempty
by assumption), A = {{a1, . . . , an} 6= 0 |n ∈ N, ai ∈ F×}. It is obvious that
for n ≥ 1 we have KnF/p 6= 0 if and only if there exist a1, . . . , an ∈ F× with
{a1, . . . , an} 6= 0. In this setting, Question (6.1) becomes:

6.7 Question. Suppose that UM(A,S) = ∞, i.e. KnF/p 6= 0 for all n ∈ N.
Does there exist a sequence (an)n∈N ⊂ F× such that {a1, . . . , an} 6= 0 for every
n ∈ N?

Let us first consider the case where char(F ) = p. Then the answer to the above
question is positive by the following:

6.8 Proposition. Let F be a field of characteristic p > 0. Then the following
are equivalent:

(i) [F : F p] =∞.

(ii) KnF/p 6= 0 for all n ∈ N.

(iii) There exists a sequence (an)n∈N ⊂ F× such that {a1, . . . , an} 6= 0 for
every n ∈ N.

For p = 2, the above statements are further equivalent to any of the following:

(iv) û(F ) =∞.

(v) sup {dim(b) | b anisotropic symmetric bilinear form over F} =∞.
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(vi) There exists an infinite-dimensional anisotropic quadratic space over F .

(vii) There exists an infinite-dimensional anisotropic symmetric bilinear
space over F .

Proof. Recall that a subset T ⊂ F is called p-independent if, for any finite
subset {a1, . . . , an} ⊂ T , one has [F p(a1, . . . , an) : F p] = pn, and that T ⊂ F
is called a p-basis of F if T is a minimal generating set of the extension F/F p,
i.e. F = F p(T ) and T is p-independent.
The key observation here is the fact that for a1, . . . , an ∈ F× we have that
{a1, . . . , an} 6= 0 if and only if a1, . . . , an are p-independent, in other words
[F p(a1, . . . , an) : F p] = pn. This is an immediate consequence of the Bloch-
Kato-Gabber Theorem (see [6], Theorem 2.1, or [17], Appendix A2). The
equivalence of the first three statements is now immediate and we leave the
details to the reader.
For p = 2 it readily follows from (5.3) and (5.4) that (i) is equivalent to any of
the statements (iv) to (vii).

Let us now turn to the case char(F ) 6= p. For p = 2, the answer to the above
question will be negative in general, i.e. there are fields such that KnF/2 6= 0
for all n ∈ N, but for any sequence (an)n∈N ⊂ F× one has {a1, · · · , am} = 0
for sufficiently large m.
Indeed, any field as constructed in Theorem I will do. To see this, it suffices to
note that the map from the set of isometry classes of n-fold Pfister forms over
F into KnF/2 given by 〈〈a1, . . . , an〉〉 7→ {a1, . . . , an} is well-defined, injective,
and sends the hyperbolic Pfister form to zero, see [8], Main Theorem 3.2 (here,
we do not need the full thrust of the Milnor Conjecture). We leave the details
to the reader.
Now if p 6= 2 (and char(F ) 6= p), we believe (but have not checked) that
in general the answer to the above question should be negative as well. To
construct counterexamples, it seems reasonable to try a similar approach as in
our other constructions using a tower of iterated function fields. Candidates
for these functions fields will naturally be function fields of (generic) splitting
varieties of symbols in Milnor K-theory modulo p. The norm varieties as
constructed by Rost (see [33], also [18]) provide examples for such splitting
varieties.
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Birkhäuser, Boston/Basel/Stuttgart, 1979.

[13] A. Heuser, Partielle Zerfällung einfacher Algebren. PhD thesis, Universität
Regensburg, 1976.

[14] D.W. Hoffmann, Isotropy of quadratic forms over the function field of a
quadric. Math. Z. 220 (1995), 461–476.

[15] D.W. Hoffmann, Dimensions of Anisotropic Indefinite Quadratic Forms, I.
Documenta Math., Extra Volume, Quadratic Forms LSU (2001), 183–200.

[16] D.W. Hoffmann, A. Laghribi, Quadratic forms and Pfister neighbors in
characteristic 2. Transactions Amer. Math. Soc. 356 (2004), 4019–4053.

Documenta Mathematica 12 (2007) 473–504



Isotropy of Quadratic Spaces 503

[17] O. Izhboldin, p-primary part of the Milnor K-groups and Galois cohomolo-
gies of fields of characteristic p. With an appendix by Masato Kurihara,
Ivan Fesenko. Invitation to higher local fields (Münster, 1999), 19–41.
Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000.

[18] S. Joukhovitski, A. Suslin, Norm varieties. J. Pure Appl. Algebra 206
(2006), 245–276.

[19] K. Kato, Symmetric bilinear forms, quadratic forms and Milnor K-theory
in characteristic two. Invent. math. 66 (1982), 493–510.

[20] T.Y. Lam, The algebraic theory of quadratic forms. W. A. Benjamin,
Inc., Reading, MA, 1973.

[21] T.Y. Lam, Introduction to Quadratic Forms over Fields. Graduate Studies
in Mathematics 67, Amer. Math. Soc., Providence, RI, 2005.

[22] P. Mammone, R. Moresi, A.R. Wadsworth, u-invariants of fields of char-
acteristic 2. Math. Z. 208 (1991), 335–347.

[23] P. Mammone, J.-P. Tignol, A.R. Wadsworth, Fields of characteristic 2
with prescribed u-invariants. Math. Ann. 290 (1991), 109–128.

[24] A.S. Merkurjev, Simple algebras and quadratic forms. Izv. Akad. Nauk
SSSR Ser. Mat. 55 (1991), 218–224; English translation in: Math. USSR-
Izv. 38 (1992), 215–221

[25] A.S. Merkurjev, I.A. Panin, A.R. Wadsworth, Index reduction formulas
for twisted flag varieties. I. K-theory 10 (1996), 517–596.

[26] A.S. Merkurjev, I.A. Panin, A.R. Wadsworth, Index reduction formulas
for twisted flag varieties. II. K-theory 14 (1998), 101–196.

[27] J. Milnor, Algebraic K-theory and quadratic forms. Invent. Math. 9
(1970), 318–344.
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Abstract. We deal with a ertain observation mapping de�ned bymeans of weighted measurments on a dynamial system and give ne-essary and su�ient onditions, under whih this mapping is generi-ally an injetive immersion.2000 Mathematis Subjet Classi�ation: 93B07, 37C20, 37C10,94A20.Keywords and Phrases: Observability, generi, dynamial system,sampling.
1 IntroductionThe observability problem of nonlinear dynamial systems has been an inter-esting subjet and ative �eld of researh throughout the last deades. In thepresent work we onsider time invariant systems of the form∗

ẋ = f(x)

y = h(x).The �rst equation desribes a real dynami proess. Its state x(t) at time tis assumed to be element of a smooth seond ountable (hene paraompat)n-dimensional manifold M alled state spae. The dynamis of the systemis given by the vetor �eld f on M . The output funtion h is a mappingfrom the state spae into the reals and stands for a measuring devie. Theseond equation desribes the output, whih ontains partial informationof the state. The output y is the only measurable quantity. There is avery broad variety of systems, whih an be desribed in this way. We allthe triple (M, f, h) or simply the pair (f, h) a system. The system is alled
∗We use the ustomary abbreviations: Time t denotes the natural oordinate on R andthe �rst equation is identi�ed with its loal representative.
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506 Esfandiar Nava Yazdani

Cr i�M , f and h are Cr. We denote the set of Cr vetor �elds onM by Xr(M).In many appliations it is of essential importane to know the state of thesystem at any time t. But measurement of the entire state (e.g. all itsoordinates) is often impossible or very di�ult. For instane beause of highosts or tehnial reasons. In most ases one has only partial information frommeasurement of the output y, mathematially being desribed by the seondequation. So the issue is to get the state (as well as distinguish di�erent states)by using only output measurement∗. If this is possible, then the system issaid to be observable. Hene, the issue of the observability problem is thefollowing. Find riteria on the system, suh that by means of informationfrom the output trajetory, it is possible to distinguish di�erent states as wellas to reonstrut the states. There is no uniform or anonial de�nition ofobservability in the literature. The weakest and most natural de�nition is thefollowing.
Definition 1.1 The system (f, h) is said to be observable (or distinguishable)if for eah (x, x′) ∈M ×M with x 6= x′ there exists a time t0 = t0(x, x

′) suhthat h(Φt0(x)) 6= h(Φt0(x
′)).However, the above de�nition is not well-suited for the treatment of theobservability problem. Therefore one seeks to establish a stonger notion of ob-servability as follows. Consider a mapping Θ (in the sequel alled observationmapping), whih maps the state spae into some �nite dimensional Eulidianspae, assigning states to data derived from the output trajetories on someobservation time interval J . Then deide the observability of the system bymeans of injetivity of Θ. Moreover the following natural question arises. Isobservability in this sense (, i.e. with respet to Θ) generi? The latter is themain issue of the present work. In the ontrol theory the noatation of observeris generally standing for another system having the output (and input in theontrolled ase) of the original system as input and generating an output whihis an asymptoti estimate of the original system state.Beside the task of reonstrution of the state, observability has also applia-tion in the theory of haos and turbulene in the following sense. Suppose anobservable system has a global attrator. Then using an observation mappingone an get a homeomorphi piture of the attrator or at least informationabout some of its harateristi properties. Examples an be found in [RT℄and [T℄. We onsider a ertain observation mapping introdued in [KE℄ and[E℄. We derive neessary and su�ient onditions for generiity of observabilityand loal observability with respet to this mapping. Basially, there are twoother well-knwon approahes to the observability task: sampling and high-gainapproah. In his lassial work [T℄, Takens proved generiity results similar to

∗It is worth to mention that often the information by output measurements underly someerrors leading to the problem of stabiliy.
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Generic Observability of Dynamical Systems 507ours for these approahes. About the same time Aeyels [Ay℄ ahieved sharperresults onerning the sampling approah. Further results on high-gain ap-proah an be found in [GK℄, [GHK℄ and [J℄. Partiularly, for a omrehensiveand intensive investigation of deterministi observation theory and applia-tions inluding many deep results onerning high-gain approah we refer to[GK℄. Our approah has the disadvantage that a suitable linear �lter has tobe onstruted. On the other side in ontrast to high-gain approah we do notneed to restrit ourselves to smooth systems. For more on our approah withappliations we refer to [N℄.
2 Main Results

Definition 2.1 Let 0 < τ < ∞, (A, b) be a stable and ontrollable m-dimensional linear �lter and (M, f, h) a Cr-system with �ow Φ. We all themapping M ∋ x 7→ Θf,h :=
∫ 0

−τ e
−Atbh(Φt(x))dt ∈ Rm the observation map-ping and the number m observation dimension. If Θf,h is injetive we all thesystem (M, f, h) Θ-observable or simply observable.Furthermore we all the system loally observable if Θf,h is an immersion.The indistinguishable subset of M ×M is given by

Ωf,h := {(x, x′) ∈M ×M \∆M : Θf,h(x) = Θf,h(x
′)}.The time interval I := [−τ, 0] has the physial interpretation of observationinterval. We treat for simpliity of notation and in view of the physialinterpretation of the observation data as history of the output mapping, thease I ⊂ R≤0, 0 ∈ I. For unbounded intervals modi�ations are needed, whihwe give expliitly for the ase I = R≤0.The key point in the proof of the following generiity results is to show thatzero is a regular value of the observation mapping. Proving this we then applytransversality density and openness theorems to get loally our statements,whih then will be globalized to the whole state spae. A Baire argument thenyields the �nal results. Partiularly for τ <∞ in any Cr neighborhood of thesystem there is a system whih is both observable and loally observable withrespet to Θ. An appropriate statement is also valid for τ = ∞ in the C1topology.If the state spae is not ompat, it is more suitable to onsider the so alledstrong or Whitney (Cr-)topology on Cr(M,R) and Xr(M). The reason is thatin this topology one has more ontrol on the behavior of the funtions and ve-tor �elds at in�nity. Note that density in this topology is a stronger propertythan in the ompat-open (also alled weak) topology. For instane, roughlyspeaking, a sequene of output funtions hj onverges in Whitney topology to

h i� there exists a ompat set K suh that hj = h outside of K exept for�nitely many j and all the derivatives up to order k onverge uniformly on K.
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508 Esfandiar Nava YazdaniThe ase of smooth vetor �elds is similar. The well known fat that Cr(M,R)and Xr(M) are Baire spaes in the Whitney topology (proofs an be found inin [H, 2.4.4℄ and [P℄) is of basi importane for our results. A residual subset of
Cr(M,R) or Xr(M) is dense. From now on the spaes of Cr funtions as wellas vetor �elds on M are equipped with their Cr Whitney topology, unless oth-erwise indiated. If the state spae M is ompat and r <∞, then Cr(M,Rk)and Xr(M) endowed with the ompat-open topology are Banah spaes (whilein general Fréhet spaes), their Whitney and ompat-open topology oin-ide and the �ow Φ of eah vetor �eld f ∈ Xr(M) is de�ned globally onM×R.For some pairs in Xr(M) × Cr(M,R) there is no possibility to distin-guish or loally distinguish the states. For generiity results it is an es-sential fat that the omplement of the set of suh pairs is residual. Let
Sing(f) := {x ∈ M : f(x) = 0x ∈ TxM} denote the set of singularities ofthe vetor �eld f (equilibria of the system), where 0x is the zero of TxM . Inthe sequel we shall often omit the subsript x and write simply f(x) = 0 for
x ∈ Sing(f).Reall that a singularity x0 ∈ Sing(f) is alled simple i� the prinipial partof the linearization of f at x0, i.e. the linear mapping dx0f : Tx0M → Tx0M ,does not have zero as an eigenvalue.We denote the set of Cr vetor �elds, whose singularities are all simple, by
Xr0(M). It is well known that a simple singularity is isolated and Xr0(M) is anopen and dense subset of Xr(M) (for a proof we refer to [PD, 3.3℄).
Definition 2.2 We all x0 ∈ M a Θ-simple singularity i� there exists aotangent vetor v ∈ T ∗x0

M suh that the linear system (Tx0M,dx0f, v
T ) isobservable, i.e., the linear mapping

∫ 0

−τ
e−tAbvetdx0fdt : Tx0M → Rmis injetive. In this ase we say that vT is a Θ-oyli ovetor of dx0f .We denote by Xr1(M) the set of Cr vetor �elds on M , whose singularities are

Θ-simple. Moreover we set Xr0,1(M) := Xr0(M) ∩Xr1(M).In the limiting ase τ = ∞ dense orbits as well as nontrivial reurrene ausedi�ulties and speial onsiderations are neessary. We investigate this aseunder the assumption that M is ompat. Appropriate results in the nonom-pat ase an be similarly deriven if we further restrit (in order to ahievewell-de�nedness of the observation mapping) the systems to be globally Lip-shitzian. Furthermore, in order to ensure di�erentiability of the observationmapping, if τ =∞ we restrit the vetor �elds to the open set
Xr(M,a) := {f ∈ Xr(M) : sup

x∈M
‖djxf‖ < a for all j = 1, ..., r}Denoting the set of ritial elements (equilibria and losed orbits) of a vetor
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Generic Observability of Dynamical Systems 509�eld f by C(f) and the union of the negative limit sets by L−(f), we set
Xr−(M) := {f ∈ Xr(M) : L−(f) ⊂ C(f)}.We denote that some ineteresting lasses of vetor �elds like Morse-Smale �elds∗are ontained in Xr−(M). Partiularly, sine the set onsisting of Morse-Smalevetor �elds is open and nonempty in Xr(M), the interior int(Xr−(M)) of

Xr−(M) is a Baire spae (in the indued topology). Furthermore note that thelimit set of a gradient �eld onsists only of the ritial points of the potentialfuntion. Therefore Xr−(M) also ontains the set of gradient �elds. Moreoverwe set
Xr2(M) := Xr(M,a) ∩ int(Xr−(M)).It is well known that on a ompat manifold C1-generially the nonwander-ing set of a smooth vetor �eld oinides with the losure of the set of itsperiodi points. This statement alled general density theorem is a onse-quene of Pugh's losing lemma, whih ensures that a nonwandering pointan be made periodi by a small C1-petrubation in a neighbourhood of thepoint. See also [Pu℄, [AR, 7.3.6℄ and the referenes given there∗. Partiularly

{f ∈ X1(M) : L−(f) ⊂ C(f)} is a residual subset of X1(M).We set for y ∈ Era,τ := {y ∈ Cr([−τ, 0],R) :
∫ 0

−τ e
at|y(t)|dt <∞}

Pτy :=

∫ 0

−τ
e−Atby(t)dtand for �xed τ simply write P instead of Pτ .

Lemma 2.1 Let r, τ ≤ ∞.Furthermore let q0 ∈ Rm and T, δ > 0. Thenthe followings hold.a) There exists a funtion y ∈ Cr(R,R) being ompatly supported in ]− δ, 0[and satisfying Pτy = q0.b) There exists a T -periodi funtion y ∈ Cr(R,R) with Pτy = q0 and
supp(y|[−(k+1)T,0]) ⊂]− (k + 1)δ, 0[ for all k ∈ Z.
Proof: Ad a) Let ǫ := min{δ, τ}. The mapping L1([−ǫ, 0]) ∋ y 7→ K(y) :=∫ 0

−ǫ e
−Atby(t)dt ∈ Rm is linear, ontinuous and beause of the ontrollabilityof (A, b) surjetive. Crǫ is a dense linear subspae of L1([−ǫ, 0]). Therefore

R := K(Crǫ ) is a dense linear subspae of Rm and onsequently R = Rm.Therefore there exists a funtion y0 ∈ Crǫ having the property K(y0) = q0.The trivial extension of y0 on R is obviously the desired funtion.Ad b) If τ ≤ T , the assertion follows diretly from part a). We provethe result for τ > T using sampling. Assume �rst τ < ∞ and let
N := max{k ∈ N : NT ≤ τ}. Due to the stability of A the series ∑∞k=0 e

kTA

∗Reall that Morse-Smale vetor �elds are struturally stable.
∗It is still unknown whether the Ck-losing lemma with k ≥ 2 fails in general.
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510 Esfandiar Nava Yazdanionverges to (I − eTA)−1 and SN :=
∑N
k=0 e

kTA = (I − eTA)−1(I − e(N+1)TA)is invertible. Let us write ǫ := min{τ −T, δ}. Aording to part a) there exists
ỹ0 ∈ Crǫ with PT ỹ0 = S−1

N q0 (as well as (I − eTA)q0 in ase τ = ∞). Let y0denote the trivial extension of ỹ0 on [−T, 0]. Then we have PT y0 = S−1
N q0.Let y denote the T -periodi extension of y0 on R. Consequently

∫ 0

−τ
e−Atby(t)dt =

N∑

k=0

∫ −kT

−(1+k)T

e−Atby0(t+ kT )dt

=

N∑

k=0

ekTA
∫ 0

−T
e−Atby0(t)dt

= q0,whih yields immediately the desired onlusion. �Let π denote the anonial projetion of the tangent bundle TM :
π : TM →M, π(v) := x for v ∈ TxM.Let M be endowed with a Riemannian metri. Denoting the indued norm onthe tangent spaes by |.|, the unit tangent bundle T1M is given by
T1M := ∪

x∈M
{v ∈ TxM : |v| = 1}.Reall that T1M is a (2n − 1)-dimensional Cr−1 submanifold of TM . It isompat, if M is ompat.Let K be a subset ofM . We set T0K := K×K \∆K and denote the restritionof T1M to K with T1K, i.e., T1K := {v ∈ T1M : π(v) ∈ K}. Reall that if Kis an s-dimensional submanifold, then T1K has dimension n+ s− 1.

Definition 2.3 We de�ne the τ -history of K by the �ow Φ of the ve-tor �eld f to be the losure of
Φ(K; τ) := {Φt(x) : −τ < t ≤ 0, x ∈ K}.We denote

∆Θf,h(x, x
′) := Θf,h(x)−Θf,h(x

′) for x, x′ ∈M .Let V be an open subset of M ontaining the τ -history of K and L be thelosure of V . Then we denote
H0(L;K) := {h ∈ Cr(L,R) : zero is a regular value of ∆Θf,h|Λ0K},and

H1(L;K) := {h ∈ Cr+1(L,R) : zero is a regular value of dΘf,h|Λ1K}.
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Generic Observability of Dynamical Systems 511In the sequel we set i = 0, 1 as well as Hi(K) := Hi(M ;K) and Hi := Hi(M).If K ′ ⊂ K and for an output funtion h, zero is a regular value of themapping ∆Θf,h on Λ0K, then it is also a regular value of the restrited map-ping ∆Θf,h|Λ0K′ , that is, H0(K) ⊂ H0(K
′). Similarly H1(K) ⊂ H1(K

′) holds.In the following, if f ∈ Xr0,1(M), then H0(L) stands for the set of outputfuntions h ∈ Cr(L,R) suh that
h(x0) 6= h(x′0) for all (x0, x

′
0) ∈ Λ0(L ∩ Sing(f)),and H1(L) for those h ∈ Cr+1(L,R) suh that

dx0h is a Θ-oyli ovetor of dx0f for all x0 ∈ L ∩ Sing(f).Note that if L is ompat, then the number of singularities of f in L is �niteand for �nite r, as an immediate appliation of the transversality opennessand density theorems, it follows that Hi(L) is an open and dense subset of theBanah spae Cr+i(L,R).
Lemma 2.2 Assume that i < r < ∞ and f ∈ Xr0,1(M) is omplete. Let
S be a Cr submanifold of M suh that the τ -history of S is ontained in anopen subset V of M with ompat losure L := V̄ . Consider the mappings
F i : Hi(L)× ΛiS → Rm de�ned by

F 0(h, x, x′) := ∆Θf,h(x, x
′)and

F 1(h, v) := dπ(v)Θf,h(v).Then the following holds.a) Zero is a regular value of F 0.b) Zero is a regular value of F 1.Suppose moreover that f ∈ Xr
2 (M). Then the assertions also hold for τ =∞.

Proof: Ad a) Let W0 := {(h, x, x′) ∈ H0(L) × T0S : F 0(h, x, x′) = 0}.We have to show that the funtion F 0 is submersive on W0. Sine
Rm is �nite dimensional, it su�ies to prove that the linear mapping
d(h,x,x′)F

0 : T(h,x,x′)(H0(L) × T0S) → Rm is surjetive for all (h, x, x′) ∈ W0.Fix (h, x, x′) ∈W0 and q0 ∈ Rm. Aording to the ondition h ∈ H0(L) we seethat x and x′ annot be both equilibrium points. Therefore we assume withoutloss of generality that x is not an equilibrium point. Sine H0(L) is open and
d
ds |s=0F

0(h + sg, x, x′) = ∆Θf,g(x, x
′) = F 0(g, x, x′), it is su�ient to showthe existene of an output funtion g ∈ Cr(L,R) satisfying F 0(g, x, x′) = q0.We use the fat that the �ow through a point of the state spae M maps eahlosed �nite time interval on a losed subset ofM and de�ne a suitable mapping

g on an appropriate losed subset of the state spae and then extend it to L.
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512 Esfandiar Nava YazdaniLet γ and γ′ denote the τ -histories of the points x and x′ respetively and
Z := γ ∪ γ′. We de�ne g on Z. We �rst treat the ase τ <∞.Case 1: Both orbits are ritial elements. Let T denote the period of x. In viewof lemma 2.1 there exists a T -periodi funtion y ∈ Ck(R,R), whih satis�esthe ondition Pτy = q0. We set g(Φt+kT (x)) = y(t) for 0 ≤ t ≤ T, k ∈ Z and
g = 0 else.Case 2: One of the integral urves, say Φ(x), is injetive and the other one isperiodi or an equilibrium point. Aording to Lemma 2.1 there is a funtion
y ∈ Ck([−τ, 0],R) with ompat support suh that Pτy = q0. We de�ne g on γby g(Φt(x)) = y(t) for −τ ≤ t ≤ 0 and g = 0 else. If Φ(x′) is injetive and x isperiodi, we just set g = 0 on γ and de�ne g on γ′ suh that Pτ (g ◦ Φ(x′))) =
−q0.Case 3: Both integral urves are injetive. In this ase we de�ne g on γ as inase 2 and on γ′ by g = 0.If τ =∞, then beause of eventual presene of dense orbits g annot be simplyde�ned on a part of Z and then trivially extended. Hene the onstrutionof g beomes a little more deliate. Assuming f ∈ X2 ensures then that thereurrene is trivial and the previous proedure also works. If both orbitsare ritial elements, i.e. in ase 1, then everything remains the same as for�nite observation time. Problems ould arise in ase 2 or 3 if at least oneof the integral urves is injetive and the past half of one of the orbits, saythe one through x′, belongs to the negative limit set of the other orbit oritself, i.e., {Φt(x′) : t ≤ 0} ⊂ α(x) ∪ α(x′). But this an aording to theassumption f ∈ Xr2(M) only our if x′ is periodi or an equilibrium point. Weproeed as in ase 2 of �nite τ and �nd again in view of Lemma 2.1 a funtion
y ∈ Cr(R,R) ompatly supported in an interval [−ǫ, 0] with ǫ > 0 and set
g(Φt(x)) := y(t) for all t and g = 0 else.In all ases we have de�ned a Cr funtion on the losed subset Z of the statespae M with the property that Z ⊂ L and Pτ (g ◦ Φ(x) − g ◦ Φ(x′)) = q0.Aording to the smooth Tietze extension theorem, there exists a Cr extensionof the funtion g to L. This funtion denoted again by g is obviously thedesired funtion, whih satis�es F 0(g, x, x′) = q0.Ad b) Denote W1 := {(h, v) ∈ H1(L) × T1S : F 1(h, v) = 0}. We �x
(h, v) ∈ W1, set x0 := π(v) and show that F 1 is submersive at (h, v). Fix
q0 ∈ Rm. Sine d

ds |s=0F
1(h + sg, v) = F 1(g, v) for arbitrary g ∈ Cr(M,R), itsu�es to prove the existene of a funtion g ∈ Cr(L,R) with F 1(g, v) = q0loally and extend it L. If x0 would be an equilibrium point, then in viewof the assumption h ∈ H1(L), the linear system (Tx0M,dx0f, dx0h) would be

Θ-observable and onsequently F 1(h, v) 6= 0 in ontradition to the assumption
(h, v) ∈ W1. Therefore we may assume that x0 is not an equilibrium point.Hene, in view of the straightening-out theorem there is a loal hart (U,ψ)at x0 suh that ψ(U) = U ′×]− ǫ,−ǫ[ with ǫ > 0, U ′ an open subset of Rn−1,
ψ(x0) = 0 and the vetor �eld f has the loal representative (z, t) 7→ en. Here
en denotes the nth standard base vetor in Rn. Denote the indued oordinate
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Generic Observability of Dynamical Systems 513funtion on T1M at v by ψ̂. Sine v 6= 0 we an and do assume that v hasthe loal representative η = (η1, η2)
T with η1 ∈ Rn−1, η2 ∈ R, η 6= 0, i.e.

v = ∂
∂z (x0)η1 + ∂

∂t (x0)η2. Furthermore for t ∈]− ǫ,−ǫ[, the loal representativeof dx0Φt reads as [Id 0
0 1

] and subsequently that of dx0h ◦ Φtv as ∇h(0, t)η.By shrinking U if neessary, we an (in the ase τ = ∞ on aount of theassumption that f ∈ Xr2(M) if the point x0 is reurrent, then it is periodi)and do assume that the intersetion of U and the τ -history of x0 is onneted.Aording to lemma 2.1 there exists a funtion ŷ ∈ Cr+1(R,R) with derivative
y being supported (on eah period, if x0 has period > τ) in [−ǫ, 0] suhthat Pǫy(t)dt = q0. Obviously there exists a funtion g ∈ Cr(U ′×] − ǫ, ǫ[,R)being ompatly supported, with ∇g(0, t)η = y(t). For instane de�ne
g̃(z, t) = |η|−2(zT η1y(t) + η2ŷ(t)). The trivial extension of g̃ ◦ ψ to L is thedesired funtion g. �Sometimes in appliations one is interested in or limited to observation re-strited to a subset of the state spae. It an be for instane beause of tehnialor physial reasons, or if it happens that all the information needed an be eval-uated from measurements on a ertain subset. The latter ase being perhapsthe most important one, ours if the subset under observation is an attrator.Other subsets invariant under the �ow an also be of interest. Therefore westate our generiity results for observations of subsets of the state spae as well.
Lemma 2.3 Suppose that K is a subset of an s-dimensional Cr submani-fold of M denoted by S, τ < ∞ and f ∈ Xr0,1(M) is omplete. Then thefollowing holds.a) Assume that m ≥ n + s − r and r ≥ 2. Then H1(K) is residual. If K islosed, then H1(K) is also open.b) Assume that m ≥ n + s + 1 − r. Then H0(K) is residual. If K is losed,then H0(K) ontains an open set.Suppose moreover that M is ompat and f ∈ Xr2(M). Then the assertionshold also in the ase τ =∞.
Proof: Assume �rst r < ∞, K is ompat, U is a hart domain of S,whih ontains K and has ompat losure. By ompatness of U and �nite-ness of τ in ase of �nite observation time and beause of ompatness of Min ase τ = ∞, the τ -history of U is ompat. By loal ompatness there isan open set V ⊂ M with ompat losure L := V suh that V ontains the
τ -history of U .Loal density: We prove residuality with respet to Hi(L). Sine the latteris open and dense in Cr(L,R), density of Hi(L;U) is also then shown withrespet to Cr(L,R).Aording to the previous lemma zero is a regular value of the evaluation map-
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514 Esfandiar Nava Yazdaniping F i : Hi(L)× TiU → Rm de�ned by
F 0(h, x, x′) := ∆Θf,h(x, x

′)and
F 1(h, v) := dπ(v)Θf,h(v).Therefore aording to the transversality density theorem (see for instane [AR,19.1℄) Hi(L;U) is a residual subset of Hi(L), and hene dense in Cr(L,R).Loal Openness: Compatness of K implies that T1K is also ompat in T1U .Aording to the transversality openness theorem H1(L;K) is open (with re-spet to the ompat-open and by ompatness of L also with respet to theWhitney topology) in Cr(L,R). These onlusions do not work for H0(L;K).Instead let Λ be a ompat subset of T0U . Then in view of transversalityopenness theorem

H ′0(L; Λ) := {h ∈ Cr(L,R) : zero is a regular value of ∆Θf,h on Λ}is open in Cr(L,R).Sine the assertions are proved for r �nite and su�iently large, they also holdfor r =∞. Hene we assume from now on that r ≤ ∞.Globalization: This part of the proof is basily standard. Therefore wegive an outline and refer to [H, 2.2℄ for details. Sine K ⊂ U , we have
H1(L;U) ⊂ H1(L;K). Hene H1(L;K) is also dense in Cr(L,R). Likewise onegets density of H′0(L; Λ) in Cr(L,R) from density of H0(L;U), sine Λ ⊂ T0Uand subsequently H0(L;U) ⊂ H′0(L; Λ). Using a bump funtion we now provethat H1(K) is dense in Cr(M,R). Fix g0 ∈ Cr(M,R). Sine H1(L;K) is densein Cr(L,R), there is a sequene {hj} in H1(L;K) onverging in the ompat-open topology to g0|L. Sine K ⊂ U , there is a Cr-funtion ρ : M → [0, 1] withompat support in L, suh that ρ = 1 on an open neighborhood of K. Thesequene ρhj +(1−ρ)g0 onverges to g0 with respet to the Whitney topology.Therefore H1(K) is a dense subset of Cr(M,R). A similar argument showsthat H′0(Λ) is a dense subset of Cr(M,R).We now drop the assumption that K ⊂ U . Let J be a ountable indexing set,
{Uj} with j ∈ J be a overing of S with hart domains Uj . Furthermore let
{Kj} be a subordinate family of ompat sets suh thatK = ∪

J
Kj andKj ⊂ Uj .We an and do assume that there is a ompat overing ofM denoted by {Lj}suh that the interior of Lj ontains the τ -history of Uj .Openness statements: Suppose that K is losed. Then it is also paraompatand the overing an be assumed to be loally �nite. Sine {Lj} overs M , itholds that H1(K) = {h ∈ Cr(M,R) : h|Lj ∈ H1(Lj ;Kj) for allj ∈ J}. Heneloal �niteness of the overing implies that H1(K) is open. Simliarily it followsthat the set {h ∈ Cr(M,R) : zero is a regular value of ∆Θf,h on K × K} isopen. The latter is ontained in H0(K).Residuality statements: We now drop the assumption that K is losed. By thepreeding arguments H1(Kj) is open and dense. Therefore H1(K) = ∩

j
H1(Kj)
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Generic Observability of Dynamical Systems 515is residual (and in view of the Baire property of Cr(M,R) also dense). Takinga ompat overing {Λj} of T0K a similar argument yields the results on
H0(K). �The openness results in the preeding lemma an also be proved (withoutapplying the transversality openness theorem) as follows. For instane, byompatness of L the mapping H0(U) ∋ h 7→ F 0(h, .)) ∈ Cr(T0U,Rm) is ontin-uous in the Whitney topology. This fat and openness of {F ∈ Cr(T0U,Rm) :zero is a regular value of F} (this fat follows, for instane, from the lowersemiontinuity of the mapping Cr(L,R)×T0U ∋ (h, x, x′) 7→ rank(d(h,x,x′)F

0)and ompatness of L) in the Whitney topology implies that H0(L;U) isopen in the Whitney topology and by ompatness of L also open in theompat-open topology of Cr(L,R). Other parts follow likewise.In light of the preeding lemmas we an now prove the generiity results onoutput funtions just by omparing dimensions.
Theorem 2.1 Suppose that K is ontained in an s-dimensional Cr sub-manifold of M and f ∈ Xr0,1(M) is omplete. Then the following assertionshold.a) Assume that r ≥ 2 and m ≥ n+ s. Then funtions h belonging to Cr(M,R)suh that Θf,h is immersive at eah point of K, onstitute a residual set. Thisset is also open, if K is losed.b) Assume that m ≥ 2s+1. Then the set of funtions h belonging to Cr(M,R)suh that Θf,h is injetive (respetively an injetive immersion) on K, isresidual (respetively, if r ≥ 2). It ontains an open set, if K is losed.Supposing m ≤ 2s and r > 2s−m the same results hold for the set of funtions
h belonging to Cr(M,R) suh that the Θ-unobservable points of K×K belongto a submanifold of dimension 2s−m.Suppose moreover that M is ompat and f ∈ Xr2(M). Then the assertionsalso hold for τ =∞.
Proof: Ad a) Sine m ≥ n + s, the set of funtions h belonging to
Cr(M,R) suh that Θf,h is an immersion at eah point of K, oinides with
H1(K), i.e., dΘf,h|T1K is transversal to {0} ∈ Rm. Therefore the assertionfollows immediately from the previous lemma.Ad b) Aording to the previous lemma H0(K) is residual and ontains anopen set, if K is losed. If m ≥ 2s + 1, then the set of funtions h belongingto Cr(M,R) suh that the restrition of Θf,h to K is injetive (respetively aninjetive immersion), is preisely H0(K) (respetively H0(K) ∩H1(K)). Thestatement on the indistinguishable set follows from the preimage theorem. �

Remark 2.2 As it an easily be seen from the proof of lemma 2.2, thedimension ondition m ≥ n + s in part a) of the preeding theorem an beweakend to m ≥ 2s, if immersivity is replaed by immersivity on TS.
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516 Esfandiar Nava YazdaniIf the state spae is ompat, we get sharper results. In partiular the followingtheorem is important, sine embedding of the state spae gives information onlimit behavior of the system.
Theorem 2.2 Suppose that m ≥ 2n + 1, f ∈ Xr0,1(M) and M is om-pat. Then output funtions h ∈ Cr(M,R) suh that Θf,h is an embeddingonstitute an open and dense set.If we further assume that f ∈ Xr2(M), then the assertion remains true in thease τ =∞.
Proof: Reall that by ompatness of M an injetive immersion is alsoan embedding (ase 2 ≤ r ≤ ∞ in Theorem 2.1) and an injetive mappingis also a topologial embedding (ase r = 1). Hene density follows fromTheorem 2.1. Openness is a onsequene of the fat that by ompatness ofMthe mapping Cr(M,R) × T0M ∋ h 7→ ∆Θf,h ∈ Cr(M,Rm) is ontinuous andthe set of embeddings Embr(M,Rm) := {F ∈ Cr(M,Rm) : F is embedding}is open. �Next we shall prove residuality of Xr0,1(M) by using the haraterization of sim-pliity and Θ-simpliity of a singularity, in terms of transversal nonintersetion.
Lemma 2.4 Assume that m ≥ n. Then Xr0,1(M) is open and dense in
Xr(M). Moreover, the assertion holds also for τ =∞, if we restrit the vetor�elds to Xr(M,a).
Proof: We give a proof for τ < ∞. The arguments for τ = ∞ aresimilar. It su�ies to show that Xr1(M) is open and dense. Let O resp.
U denote the set of n-dimensional Θ-observable resp. unobservable linearsystems. Let f ∈ Xr1(M), x0 ∈ Sing(f) and dx0f denote the prinipial part ofthe linearization of f .Note that f ∈ Xr1(M) if and only if there exists a v ∈ Tx0M suh that thesystem (dx0f, v) avoids the set of Θ-unobservable linear systems on Tx0M .We now give a loal haraterization. Let ψ : U → Rn be a loal hartsuh that U has ompat losure and ψ(x0) = 0. The tangent mapping
dψ : TU → Rn × Rn de�ned by dψ(v) = (ψ(x), dxψv) with x = π(v) is a loalhart for TM . Let Pr

2
denote the projetion Rn×Rn ∋ (x,w) 7→ w. Considerthe mapping ξf := Pr

2
dψf ◦ψ−1 on ψ(U). Hene d0ξf = dx0ψdx0fd0ψ

−1. Thesingularity x0 is Θ-simple if and only if (d0ξf , dx0v) /∈ U for some v ∈ Tx0M .Obviously U is losed, analyti and 6= End(Rn) × Rn, hene �nite union oflosed positive odimensional real analyti submanifold of End(Rn) × Rn.Given a pair (G,w) ∈ O, obviously there exists a vetor �eld g ∈ Xr(M) suhthat g and f oinide on M \ U , x0 ∈ Sing(g) and dx0ξg = G. An immediateappliation (details are similar to those in the proof of lemma 2.3) of thetransversality density and openness theorems ompletes the proof. �
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Generic Observability of Dynamical Systems 517We an now prove the main result on generi observability with respet to themapping Θ.
Theorem 2.3 Suppose that m ≥ 2n + 1 and M is ompat. Then pairs
(f, h) in Xr(M) × Cr(M,R) suh that Θf,h is an embedding onstitute anopen and dense subset of Xr(M) × Cr(M,R). Restriing the vetor �elds to
Xr2(M), the assertion remains valid for τ =∞ as well.
Proof: Reall that Xr0,1(M) is open and dense. Furthermore Xr2(M) isopen in Xr(M,a). The assertions follow immediately from this fats andtheorem 2.2. �Similarily, generiity results for nonompat state spaes an be deriven, if werestrit ourself to the set of omplete vetor �elds, replae open and dense byresidual and embedding by injetive immersion. We remark also that onsid-ering the observation mapping

Θg,h(x) :=
0∑

k=−N
e−kAbh(gk(x))for x ∈M and (g, h) ∈ Diff r(M)×Cr(M,R) with gk := g ◦gk−1, orrespond-ing results for disrete dynamial systems an be proved likewise.

3 Concluding Remarks

Remark 3.1 Sine the set of m-dimensional ontrollable linear �lters is openand dense in End(Rm)×Rm, all generiity results of the last setion hold alsogenerially with respet to the linear �lters.The following examples show that the onditions on the observation dimensionare also neessary, thus m ≥ 2n for generi loal observability and m ≥ 2n+ 1for generi observability an not be weakend.
Example 3.1 Let M = S1 and f(ϕ) = 1, where ϕ denotes the standardangular oordinate of the irle. Furthermore onsider the pair (λ, b) with
λ < 0 and b 6= 0. Taking τ = 2π and the output funtion h(ϕ) = cosϕ leads to
Θf,h(ϕ) = 1−e2λπ

1+λ2 (λcos ϕ − sin ϕ), whih is not an immersion. Moreover thezero of dΘf,h at ϕ0 = −arctan 1
λ is transversal. Hene the nonimmersivity of

Θf,h is preserved under small perturbations of the output funtion, the vetor�eld and the linear �lter.
Example 3.2 LetM , f , ϕ and τ be as in the preeding example. Furthermorelet A = diag(−1,−2), b = (1 − e−2π)−1(1, 1)T and h(ϕ) = 2cos ϕ + 5cos 2ϕ.
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518 Esfandiar Nava YazdaniThen a straightforward omputation yields
Θf,h(ϕ) =

[
cos ϕ+ sin ϕ+ cos 2ϕ+ 2sin 2ϕ

(e−2π + 1)(2
5 (2cos ϕ+ sin ϕ) + 5

4 (cos 2ϕ+ sin 2ϕ))

] .The following �gure shows the image of S1 by Θf,h.
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Image of S1 by the ontinuous linear �lter mapping given by
ϕ 7→ (cosϕ+sinϕ+cos2ϕ+2sin2ϕ, (e−2π +1)( 2

5
(2cosϕ+sinϕ)+ 5

4
(cos2ϕ+sin2ϕ))Tin the XY -planeThe sel�ntersetion of the image is transversal. Hene the noninjetiveness of

Θf,h is persistent under small perturbations of the output funtion, the vetor�eld and the linear �lter.For instane, small perturbations of h do not result in injetivity, i.e., there isan ǫ > 0 suh that for eah output funtion h̃, whih is Cr near to h within ǫ,the mapping Θf,h̃ is not injetive.Note that the onsidered system is also unobservable with respet to the high-gain mapping given by ϕ 7→ (2cos ϕ+ 5cos 2ϕ, 2sin ϕ − 10sin 2ϕ)T as well assampling mapping ϕ 7→ (2cos(ϕ+ t1)+5cos(2ϕ+2t1, 2cos(ϕ+ t2)+5cos(2ϕ+
2t2))

T with sampling times t1, t2. The following �gure shows the image of thestate spae by the sampling mapping with sampling times 0 and π
2 .
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Generic Observability of Dynamical Systems 519
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Abstract. We explain how to exploit Rost’s theory of Chow groups
with coefficients to carry some computations of cohomological invari-
ants. In particular, we use the idea of the “stratification method”
introduced by Vezzosi.

We recover a number of known results, with very different proofs. We
obtain some new information on spin groups.

Keywords and Phrases: cohomological invariants, algebraic cycles.

§1. Introduction

In what follows, k is a base field, and all other fields considered in this paper
will be assumed to contain k. We fix a prime number p which is different from
char(k), and for any field K/k, we write H i(K) for Hi(Gal(Ks/K),Z/p(i)).
Here Ks is a separable closure of K, and Z/p(i) is the i-th Tate twist of Z/p,
that is Z/p ⊗ µ

⊗i
p . (See the end of this introduction for more information on

our choice of coefficients.)

1.1. Cohomological invariants

Given a functor A(−) from fields over k to the category of pointed sets, the
(mod p) cohomological invariants of A are all transformations of functors

a : A(−)→ H∗(−).

Typical examples for A include

A(K) = isomorphism classes of nondegenerate quadratic forms over K,
A(K) = isomorphism classes of octonions algebras over K,
etc...
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522 Pierre Guillot

For more examples and a very good introduction to the subject, see [5].
We are mostly interested in the situation where A(K) is the set of isomorphism
classes over K of some type of ”algebraic object”, especially when all such ob-
jects become isomorphic over algebraically closed fields. In this case, if we write
XK for the base point in A(K), then we obtain a group scheme G over k by
setting G(K) = AutK(XK), assuming AutK is appropriately defined. More-
over, by associating to each object YK ∈ A(K) the variety of isomorphisms
(in a suitable sense) from YK to the base point XK , we obtain a 1 : 1 corre-
spondence between A(K) and H1(K,G). Recall that this is the (pointed) set
of all G-torsors over K, i.e. varieties acted on by G which become isomorphic
to G with its translation action on itself when the scalars are extended to the
algebraic closure K̄.
For example, in the case of quadratic forms, resp. of octonion algebras, we
have A(K) = H1(K,On), resp. A(K) = H1(K,G2).
In more geometric terms, a G-torsor over K is a principal G-bundle over
Spec(K). In this way we see that cohomological invariants

H1(−, G)→ H∗(−)

are analogous to characteristic classes in topology. We shall call them the mod
p cohomological invariants of G. They form a graded H∗(k)-algebra which we
denote by Inv(G) (the prime p being implicit).

1.2. Versal torsors and classifying spaces

A simple way of constructing a G-torsor is to start with a G-principal bundle
E → X and take the fibre over a point Spec(K) → X . As it turns out, there
always exist bundles π : E → X with the particularly nice feature that any G-
torsor is obtained, up to isomorphism, as a fibre of π. In this case, the generic
torsor Tκ over κ = k(X) is called versal. We shall also say that π is a versal
bundle.
A strong result of Rost (presented in [5]) asserts that an invariant a ∈ Inv(G)
is entirely determined by its value a(Tκ) on a versal torsor. It follows that
Inv(G) ⊂ H∗(κ), and more precisely one can show that

Inv(G) ⊂ A0(X,H∗).

The right hand side refers to the cohomology classes in H∗(κ) which are un-
ramified at all divisors of X (see loc. cit.). (The notation comes from Rost’s
theory of Chow groups with coefficients, see below and section 2.)
There are two well-known constructions of versal bundles. One can embed G
in a “special” group S (eg S = GLn, S = SLn or Spn) and take E = S,
X = S/G. Alternatively, one can pick a representation V of G such that the
action is free on a nonempty open subset U ⊂ V , and take E = U , X = U/G.
In either situation, there are favorable cases when we actually have

Inv(G) = A0(X,H∗).
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Geometric Methods for Cohomological Invariants 523

For versal bundles of the first type, this happens when S is simply connected
(see Merkurjev [8]). For versal bundles of the second type, this happens when
the complement of U has codimension ≥ 2 ([5], letter by Totaro).
In this paper we shall restrict our attention exclusively to the second type of
versal torsors, for reasons which we shall explain in a second. We shall view
U/G as an approximation to the classifying space of G (see [13]). It will not
cause any confusion, hopefully, to call this variety BG (see §2.3).

1.3. Rost’s Chow groups with coefficients

The group A0(X,H∗), for any variety X , is the first in a sequence of groups
An(X,H∗), Rost’s Chow groups with coefficients. They even form a (bigraded)
ring when X is smooth. The term “Chow groups” is used since the usual mod
p Chow groups of X may be recovered as CHnX ⊗Z Z/p = An(X,H0).
Rost’s groups have extremely good properties: homotopy invariance, long exact
sequence associated to an open subset, and so on. There is even a spectral
sequence for fibrations.
Our aim in this paper, very briefly, is to use these geometric properties in order
to get at A0(BG,H∗) = Inv(G).
To achieve this, we shall be led to introduce the equivariant Chow groups
AnG(X,H∗), defined when X is acted on by the algebraic group G. The def-
inition of these is in perfect analogy with the case of equivariant, ordinary
Chow groups as in [3], [13], where “Borel constructions” are used. When
X = Spec(k), we have AnG(Spec(k), H∗) = An(BG,H∗) where BG is a classi-
fying space “of the second type” as above.
The key observation for us will be that A0

G(V,H∗) = Inv(G) when V is a rep-
resentation of G (thus a variety which is equivariantly homotopic to Spec(k),
so to speak). This allows us to cut out V into smaller pieces, do some ge-
ometry, and eventually implement the “stratification method”, which was first
introduced by Vezzosi in [14] in the context of ordinary Chow groups.

1.4. Results

A large number of the results that we shall obtain in this paper are already
known, although we provide a completely different approach for these. Occa-
sionally we refine the results and sometimes we even get something new.
In this introduction we may quote the following theorem (3.2.1 in the text):

Theorem – Let p = 2 and n ≥ 2. There are exact sequences:

0 −−−−−→ Inv(On) −−−−−→ Inv(Z/2 × On−1)
r

−−−−−→ Inv(On−2)

0 −−−−−→ Inv(SO2n) −−−−−→ Inv(Z/2 × SO2n−1)
r

−−−−−→ Inv(SO2n−2)

0 −−−−−→ Inv(Spin2n) −−−−−→ Inv(Z/2 × Spin2n−1)
r

−−−−−→ Inv(Spin2n−2)

Moreover, the image of the map r contains the image of the restriction map Inv(On) →
Inv(On−2), resp. Inv(SO2n) → Inv(SO2n−2), resp. Inv(Spin2n) → Inv(Spin2n−2).
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In each of the three cases the existence of the map r was not known, as far as I
am aware, while the other half of the exact sequence is described by Garibaldi in
[4]. Of course the computation of Inv(On) and Inv(SOn) has been completed
(see [5] again), and indeed we shall derive it from the theorem. This affords a
new construction of an invariant first defined by Serre (and written originally
b1). On the other hand the invariants of Spinn are not known in general: they
have been computed for n ≤ 12 only ([4]), so our theorem might be of some
help.
In any case, our emphasis in this paper is with methods rather than specific
results, and the point that we are trying to make is that the stratification
method is a powerful one. It provides us with a place to start when trying
to tackle the computation of Inv(G), whatever G may be. It is much more
mechanical than any other approach that I am aware of.
Still, the reader will find in what follows a number of examples of computations
of Inv(G) for various G’s: products of copies of µp in 2.2.3, the group Spin7

in 4.2.2, the wreath product Gm ≀Z/2 in 4.2.1, the dihedral group D8 in 5.2.3,
etc.

1.5. Organization of the paper

We start by presenting Rost’s definition of Chow groups with coefficients in
section 2. We also indicate how to construct the equivariant Chow groups, and
we mention a number of basic tools such as the Künneth formula.
In section 3 we introduce the stratification method, and prove the above results
on orthogonal groups. We compute Inv(On) and Inv(SOn) completely.
In section 4 we explain how one could use the stratification method with projec-
tive representations rather than ordinary ones. We recover a result (corollary
4.1.3) which was proved and exploited fruitfully in [4].
We proceed to introduce the Bloch & Ogus spectral sequence in section 5.
As we have mentioned already, the stratification method has been used by
many authors (including, Vezzosi, Vistoli and myself) to compute CH∗BG
and H∗BG, and to study the cycle map CH∗BG→ H∗BG. It turns out that
the spectral sequence shows, roughly speaking, that cohomological invariants
measure the failure of this cycle map to be an isomorphism (in small degrees this
is strictly true). This was the motivation to try and extend the stratification
method to cohomological invariants.
We conclude in section 6 with some easy remarks on invariants with values in
other cycle modules, particularly algebraic K-theory.

Notations & Conventions. We insist on the assumptions that we have made
at the beginning of this introduction: p is a fixed prime, k is a fixed base
field, p 6= char(k), and H∗(K) means mod p Galois cohomology as defined
more precisely above. Our particular choice of twisting for the coefficients has
been dictated by the desire to obtain a ”cycle module” in the sense described
in section 2, and at the same time keep things as simple as possible. There
are more general cycle modules, including Galois cohomology simply with some
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more general coefficients (see [11]). In most applications, we have p = 2 anyway,
in which case the twisting does not interfere.
We will say that G is an algebraic group to indicate that G is a smooth, affine
group scheme over k [in alternative terminology: G is a linear algebraic group
over k̄ defined over k]. Subgroups will always be assumed to be closed and
smooth. We shall encounter many times the stabilizer of an element under an
action of G: in each case, it will be trivially true that the scheme-theoretic
stablizer is closed and smooth. [Alternatively: subgroups are always defined
over k. So will all stabilizers we encounter.]
We write Inv(G) for the mod p cohomological invariants of G, even though the
letter p does not appear in the notation. We caution that in [4], these would be
called the invariants of G with values in µp (for p = 2 there is no difference).

Acknowledgements. I would like to thank Burt Totaro and Skip Garibaldi for
their many suggestions.

§2. Rost’s Chow groups with coefficients

2.1. Definitions

In [11], Rost defines a cycle module to be a functor M : F 7→M(F ) from fields
containing k to graded abelian groups, equipped with structural data. Quoting
Rost, these divide into ”the even ones”, namely restriction and corestriction
maps, and ”the odd ones”: it is required thatM(F ) should have the structure of
a module over K∗(F ) (Milnor’s K-theory of F ), and there should exist residue
maps for discrete valuations. The fundamental example for us is M(F ) =
H∗(F ) (mod p Galois cohomology as defined in the introduction). Another
example is Milnor’s K-theory itself, M(F ) = K∗(F ).
Given a cycle module M , Rost defines for any variety X over k the Chow
groups with coefficients in M , written Ai(X,M) (i ≥ 0). These are bigraded;
for the cycle modules above, we have the summands Ai(X,H

j) and Ai(X,Kj).
Moreover, the classical and mod p Chow groups can be recovered as CHiX =
Ai(X,K0) and CHiX ⊗Z Z/p = Ai(X,H

0).
When X is of pure dimension n, we shall reindex the Chow groups by putting
Ai(X,Hj) = An−i(X,Hj). Our interest in the theory of Chow groups with
coefficients stems from the concrete description of A0(X,Hj) when X is irre-
ducible: it is the subgroup of Hj(k(X)) comprised of those cohomology classes
in degree j which are unramified at all divisors of X . Hence, when X is a classi-
fying space for an algebraic group G (as in 1.2), we have A0(X,Hj) = Invj(G).
Rost’s Chow groups have all the properties of ordinary Chow groups, and more:
in fact they were designed to be more flexible than ordinary Chow groups,
particularly in fibred situations. For the time being, we shall be content to list
the following list of properties; we will introduce more as we go along. Here X
will denote an equidimensional variety.

1. When X is smooth, A∗(X,H∗) is a graded-commutative ring.
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2. A map f : X → Y induces f∗ : A∗(Y,H∗) → A∗(X,H∗) whenever Y is
smooth or f is flat.

3. A proper map f : X → Y induces f∗ : A∗(X,H∗)→ A∗(Y,H∗).

4. There is a projection formula: f∗(xf∗(y)) = f∗(x)y (here f : X → Y is
proper, and X and Y are smooth).

5. Let i : C → X be the inclusion of a closed subvariety, and let j : U → X
denote the inclusion of the open complement of C. Then there is a long
exact sequence:

· · · −−−−→ Am(C,Hn)
i∗−−−−→ Am(X,Hn)

j∗−−−−→

Am(U,Hn)
r−−−−→ Am−1(C,H

n−1) −−−−→ · · ·
Moreover the residue map r, or connecting homomorphism, satisfies

r(xj∗(y)) = r(x)i∗(y).

6. If π : E → X is the projection map of a vector bundle or an affine bundle,
then π∗ is an isomorphism.

There are particular cases when we can say more about the exact sequence
in property (5). When n = 0 for instance, we recover the usual localisation
sequence:

CHmC ⊗Z Z/p −−−−→ CHmX ⊗Z Z/p −−−−→ CHmU ⊗Z Z/p −−−−→ 0.

Also, when X is equidimensional and C has codimension ≥ 1 (for example
when X is irreducible and U is nonempty), then the following portion of the
sequence is exact:

0 −−−−→ A0(X,Hn)
j∗−−−−→ A0(U,Hn).

Example 2.1.1. Let us compute A0(Gm, H
∗), where Gm = GL1 is the punc-

tured affine line. The inclusion of the origin in A1 yields the exact sequence:

0 −−−−→ A0(A1, H∗) −−−−→ A0(Gm, H
∗) −−−−→

A0(Spec(k), H∗−1) −−−−→ A1(A1, H∗−1) .

Now, A1 can be seen as a (trivial) vector bundle over Spec(k), so Ai(A1, H∗) =
Ai(Spec(k), H∗). From the definitions, we see directly that Ai(Spec(k), H∗) =
0 when i > 0, and A0(Spec(k), H∗) = H∗(k).
So we have the exact sequence of H∗(k)-modules:

0 −−−−→ H∗(k) −−−−→ A0(Gm, H
∗) −−−−→ H∗−1(k) −−−−→ 0.
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It follows that A0(Gm, H
∗) is a free H∗(k)-module on two generators, one in

degree 0, the other in degree 1. In fact, if we write k(Gm) = k(t), it is not
difficult to see that the element (t) ∈ H1(k(t)) = k(t)×/(k(t)×)p can be taken
as the generator in degree 1. For this one only has to unwind the definition of
r as a residue map: see [5], chap. II and III. Essentially the reason is that the
divisor of the function t on A1 is the origin.
In any case, we shall use the letter t for this generator. When k is algebraically
closed, so that the ringH∗(k) can be seen as the field Fp concentrated in degree
0, then we can write A0(Gm, H

∗) = Fp[t]/(t
2), an exterior algebra.

Remark 2.1.2 – Let X be smooth, and suppose that X has a k-rational point
Spec(k)→ X . The induced map on Chow groups gives a splitting for the map
H∗(k)→ A0(X,H∗) coming from the projection X → Spec(k). It follows that
we can write

A0(X,H∗) = H∗(k)⊕A0(X,H∗)norm.

The elements in the second summand are said to be normalised. Note that the
splitting may a priori depend on the choice of a k-rational ”base point” for X .
There is an analogous notion for cohomological invariants. Namely, an invariant
n ∈ Inv(G) is called normalised when it is 0 on the trivial torsor; an invariant
c ∈ Inv(G) is called constant when there is an α ∈ H∗(k) such that for any
torsor T over a field K, the value c(T ) is the image of α under the natural map
H∗(k)→ H∗(K). Any invariant a ∈ Inv(G) may be written a = n+ c with n
normalised and c constant, and we may write

Inv(G) = H∗(k)⊕ Inv(G)norm

where the second summand consists of normalised elements.
Whenever X is a classifying space of the types considered in the introduction,
there is a canonical choice of a point Spec(k) → X such that the pullback of
the versal torsor over X is the trivial torsor. It follows that A0(X,H∗)norm =
Inv(G)norm.
Let us give an application. The group µp acts freely on Gm, and the quotient
is again Gm. Since Gm is special, it follows from the introduction that the
torsor Gm → Gm is versal, so Inv(µp) ⊂ A0(Gm, H

∗). It is not immediate
that this inclusion is an equality, as Gm is not a classifying space: Gm is not
simply-connected, and the origin has only codimension 1 in A1, so we are in
neither of the two favorable cases.
To show that it is indeed an equality, we remark that A0(Gm, H

∗)norm is a free
H∗(k)-module on one generator of degree 1, from the previous example. As a
result, if we can find a non-zero, normalised invariant of µp in degree 1, then
the map of H∗(k)-modules Inv(µp)norm → A0(Gm, H

∗)norm will certainly
be surjective. Such an invariant is easy to find. Indeed, take the identity
H1(K,µp)→ H1(K). (Should you try to compute the mod p invariants of µℓ,
where ℓ is a prime different from p, you would find no normalized invariants at
all. It is an easy exercise to prove this using the techniques to be introduced
in this paper).
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2.2. Spectral sequences and Künneth formula

Apart from Milnor K-theory and Galois cohomology, there is one extra type of
cycle module which we shall consider in this paper. In the presence of a map
f : X → Y , and having picked a primary cycle module M , there is for each
n ≥ 0 a new cycle module written An[f ;M ], see [11],§7. These are functors
from fields κ ”over Y ”, that is fields with a map Spec(κ)→ Y , to graded abelian
groups – which turns out to be enough to define A∗(Y,An[f ;M ]). Quite simply,
if we write Xκ = Spec(κ)×Y X , the definition is:

An[f ;M ](κ) = An(Xκ,M).

When f and M are understood, we shall write An for An[f ;M ]. Also, when
f is flat, so that the fibres all have the same dimension d, we may change the
grading to follow the codimension, thus defining An = Ad−n.
Theorem 2.2.1 – Let f : X → Y be a flat map, and suppose that Y is
equidimensional. Let An = An[f ;M ] for a cycle module M . Then there exists
a convergent spectral sequence:

Ar(Y,As)⇒ Ar+s(X,M).

See [11],§8, for a proof.

Corollary 2.2.2 – Let X be a scheme (over k), and write Xκ for the scheme
obtained by extending the scalars to the field κ. Assume that A0(X,H∗) is a
free H∗(k)-module of finite rank, and that

A0(Xκ, H
∗) = A0(X,H∗)⊗H∗(k) H

∗(κ).

Then there is a Künneth isomorphism:

A0(X × Y,H∗) = A0(X,H∗)⊗H∗(k) A
0(Y,H∗)

for any equidimensional Y .

The hypotheses of this corollary should be compared with [5], 16.5.

Proof. Let f : X × Y → Y be the projection. By the theorem, we know that
A0(X × Y,H∗) = A0(Y,A0).
However, for any field Spec(κ)→ Y , the fibre of f above Spec(k) is Xκ as in the
statement of the corollary. Our hypothesis is then that A0(κ) = A0(Xκ, H

∗)
is a direct sum of copies of H∗(κ), and more precisely that A0 splits up as the
direct sum of several copies of the cycle module H∗. The result follows.

As an illustration, we have the following proposition.

Proposition 2.2.3 – There are invariants t(i) ∈ Inv((µp)n) for 1 ≤ i ≤ n,
each of degree 1, such that Inv((µp)

n) is a free H∗(k)-module on the products

t(i1)t(i2) · · · t(ik), for all sequences 1 ≤ i1 < i2 < · · · < ik ≤ n.
When k is algebraically closed, Inv((Z/p)n) is an exterior algebra Λ(t(1), . . . , t(n))
over Fp.
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Proof. The case n = 1 has been dealt with in remark 2.1.2. The general case
follows from corollary 2.2.2.

2.3. Equivariant Chow groups

The good properties of Chow groups with coefficients will allow us to define
the equivariant Chow groups of a variety acted on by an algebraic group. This
will be in strict analogy with [3] and [13], to which we will refer for details.
So let G be a linear algebraic group over k. There exists a representation V of
G such that the action is free outside of a closed subset S; moreover, we can
make our choices so that the codimension of S is arbitrarily large (loc. cit.).
Put U = V − S.
Let X be any equidimensional scheme over k with an action of G. Define

XG =
U ×X
G

.

We shall restrict our attention to those pairs (X,U) for which XG is a scheme
rather than just an algebraic space. Lemma 9 and Proposition 23 in [3] provide
simple conditions on X under which an appropriate U may be found. This will
be amply sufficient for the examples that we need to study in this paper.1

The notation XG hides the dependence on U because, as it turns out, the
Chow groups Ai(XG, H

∗) do not depend on the choice of V or S, as long as
the codimension of S is large enough (depending on i). One may prove this
using the ”double fibration argument” as in [13]. We write AiG(X,H∗) for this
group (or the limit taken over all good pairs (V, S), if you want).
A map f : X → Y induces a map fG : XG → YG (the notation XG will mean
that a choice of V and S has been made). It follows that the equivariant Chow
groups with coefficients A∗G(−, H∗) are functorial, and indeed they have all the
properties listed in §2.1. The proof of this uses that if f is flat, proper, an open
immersion, a vector bundle projection, etc, then fG is respectively flat, proper,
an open immsersion, or a vector bundle projection (see [3]). It may be useful to
spell out that a G-invariant open subset U in an equidimensional G-variety X ,
whose complement C has codimension c, gives rise to a long exact sequence:

· · · → AmG (C,Hn)→ Am+c
G (X,Hn)→ Am+c

G (U,Hn)→ Am+1
G (C,Hn−1)→ · · · .

We shall refer to it as the equivariant long exact sequence associated to U .

Example 2.3.1. We shall write BG for Spec(k)G. It follows from the results
above and from the introduction that

A0
G(Spec(k), H∗) = A0(BG,H∗) = Inv(G).

1I am grateful to the referee for pointing out this technical difficulty. I also agree with him
or her that it would be desirable to extend Rost’s theory of Chow groups with coefficients to
algebraic spaces. This is certainly not the place to do so.
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Example 2.3.2. Suppose that the action of G on X is free, and that the
quotient X/G exists as a scheme. Then there is a natural map XG → X/G.
Moreover XG is an open subset in (V ×X)/G, which in turn is (the total space
of) a vector bundle over X/G. The complement of XG in (V ×X)/G can be
taken to have an arbitrarily large codimension (namely, it is that of S). In a
given degree i, we may thus choose V and S appropriately and obtain:

AiG(X,H∗) = Ai(XG, H
∗) = Ai((V ×X)/G,H∗) = Ai(X/G,H∗).

(The second equality coming from the long exact sequence as in §2.1, property
(5).)
Thus when the action is free, the equivariant Chow groups are just the Chow
groups of the quotient.

Notations 2.3.3 – As we have already done in this section, we shall write
XG to signify that we have chosen V and S with the codimension of S large
enough for the computation at hand. Thus we can and will write indifferently
A∗G(X,H∗) or A∗(XG, H

∗).
Moreover, we shall write EG for U = V − S, with the same convention. The
quotient EG/G is written BG, and we write A∗(BG,H∗) much more often
than A∗G(Spec(k), H∗).

Remark 2.3.4 – Whenever we have a theory at hand which has the properties
listed in §2.1, we can define the equivariant analog exactly as above. Apart
from Chow groups with coefficients, we shall have to consider at one point the
étale cohomology of schemes, namely the groupsHi

et(X,Z/p(i)), which we shall
write simply Hi

et(X), the coefficients being understood. In fact we shall only
encounter the expression Hi

et(BG).
When k = C, we have H∗et(BG) = H∗(BG,Fp), where on the right hand
side we use topological cohomology and a model for the classifying space BG
in the classical, topological sense of the word. To see this, note first that
H∗et((V − S)/G) = H∗((V − S)/G,Fp) since we are using finite coefficients.
Moreover, we can arrange V and S so that V − S is a Stiefel variety (see
[13]), and this provides sufficiently many V ’s and S’s (that is, the codimension
of S can be arbitrarily large, with V − S a Stiefel variety). As a result, we
can restrict attention to these particular pairs (V, S) when forming the limit
H∗et(BG) = limH∗((V − S)/G,Fp) without changing the result, which is then
clearly H∗(E/G,Fp) where E is the infinite Stiefel variety. This space E is
contractible, so E/G is a topological model for BG.

§3. The stratification method

3.1. The idea of the method

Let G be a linear algebraic group. The stratification method is a procedure to
compute A0(BG,H∗) = Inv(G). We shall not try to present it as a mechanical
algorithm, but rather as a heuristic recipe. This being said, one of the virtues
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of the method is that it is closer to a systematic treatment of the question than
any other approach that the author is aware of.
The stratification method rests on two very elementary facts.

1. If K is a closed subgroup of G, then the equivariant Chow groups of the
variety G/K have an easy description: indeed there is an isomorphism of
varieties:

(G/K)G =
EG×G/K

G
=
EG

K
= BK.

Thus A∗G(G/K,H∗) = A∗(BK,H∗).

2. Suppose that V is a representation of G. Then it is a G-equivariant
vector bundle over a point, and therefore VG → Spec(k)G = BG is a
vector bundle, too. As a result, A∗G(V,H∗) = A∗(BG,H∗).

Things are put together in the following way. One starts with a well-chosen
representation V , and then cuts V into smaller pieces. These smaller pieces
would ideally be orbits or families of orbits parametrized in a simple manner.
Using (1), and hoping that the stabilizer groups K showing up are easy enough
to understand, one computes the Chow groups of the small pieces. Applying
then repeatedly the equivariant long exact sequence from §2.3, one gets at
A0
G(V,H∗). By (2), this is A0(BG,H∗).

Any particular application of the method will require the use of ad hoc geomet-
ric arguments. Before giving an example however, we propose to add a couple
of lemmas to our toolkit.

Lemma 3.1.1 – Suppose that G and K are algebraic groups acting on the left
on X, and suppose that the actions commute. Assume further that the action
of K alone gives a K-principal bundle X → X/K = Y . Then

A∗G(Y,H∗) = A∗G×K(X,H∗).

Proof. This is simply an elaboration on example 2.3.2.

We shall have very often the occasion of using this lemma in the following guise:

Lemma 3.1.2 – Suppose that G contains a subgroup G′ which is an extension

1→ N → G′ → K → 1.

Let G×K act on G/N by (σ, τ) · [g] = [σgτ−1]. Assume moreover that K acts
on a variety X, and that there is a K-principal bundle G/N ×X → Y.
Then

A∗G(Y,H∗) = A∗G′(X,H∗).

If the product N ×K is direct, we have XN ×K = BN ×XK .

Here the variety Y is an example of what we call ”a family of orbits (of G)
parametrized in a simple manner”. Note that when K is the trivial group and
X = Spec(k), we recover property (1) above.
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Proof. By lemma 3.1.1, we have

A∗G(Y,H∗) = A∗G×K(G/N ×X,H∗).

Now let E1 be an open subset in a representation of G, on which the action
is free, and suppose that the codimension of the complement of E1 is large
enough. Similarly, pick E2 for K; then E1 × E2 can be chosen for the group
G×K. We regard E1 as a trivial K-space and E2 as a trivial G-space. Finally,
G′ has natural maps to both G and K, and we combine these to see E1 × E2

as a G′-space, with non-trivial action on each factor.
We write:

G/N ×XG ×K = (E1 × E2 × G
N ×X)/G×K

= (E1×G/N
G × E2 ×X)/K

.

By property (1) above, we may identify E1×G/N
G with E1/N = BN . Moreover

we have arranged things so that, under this identification, the action of K on
E1×G/N

G translates into its natural action on E1/N (that is, the action induced
from that which G′ possesses as a subgroup of G normalising N). We proceed:

G/N ×XG ×K = (E1/N × E2 ×X)/K
= (E1 × E2 ×X)/G′

.

When the product is direct, the action of K on E1/N is trivial. This concludes
the proof.

As an example, we may apply this to actions of G on disjoint unions:

Lemma 3.1.3 – Suppose that G acts on Y and that Y is the disjoint union of
varieties Y1

∐
. . .
∐
Yn. Let X = Y1, and suppose that X contains a point in

each orbit, that is, suppose that the natural map

f : G×X → Y

is surjective. Let K be the subgroup of G leaving X invariant. Then there is
an identification:

A0
G(Y,H∗) = A0

K(X,H∗).

Proof. This is immediate from the previous lemma, with N the trivial group.

3.2. The example of On, SOn, and Spinn

For this example we take p = 2 (so that char(k) 6= 2).
Let q be a non-degenerate quadratic form on a k-vector space V of dimension
n. Assume moreover that q has maximal Witt index. Then its automorphism
group, which we will denote by On, is split. Similarly one has the groups SOn

and Spinn, which are also split.
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Theorem 3.2.1 – Let p = 2 and n ≥ 2. There are exact sequences:

0 −−−−→ Inv(On) −−−−→ Inv(Z/2×On−1)
r−−−−→ Inv(On−2)

0 −−−−→ Inv(SO2n) −−−−→ Inv(Z/2× SO2n−1)
r−−−−→ Inv(SO2n−2)

0 −−−−→ Inv(Spin2n) −−−−→ Inv(Z/2× Spin2n−1)
r−−−−→ Inv(Spin2n−2)

Moreover, the image of the map r contains the image of the restriction map
Inv(On)→ Inv(On−2), resp. Inv(SO2n)→ Inv(SO2n−2), resp. Inv(Spin2n)→
Inv(Spin2n−2).

Proof. Step 1. Let Gn denote either of On, SOn, or Spinn. Then Gn has the
canonical representation V . Let V ′ denote V − {0}. We write U for the open
subset in V ′ on which q is non-zero, and we write C for its complement.
The codimension of {0} in V is n. Consider the long exact sequence:

0→ A0
Gn(V,H∗)→ A0

Gn(V ′, H∗)→

0 = A1−n
Gn

({0}, H∗−1)→ A1
Gn(V,H∗−1)→ A1

Gn(V ′, H∗−1).

It follows that A0
Gn

(V,H∗) = A0
Gn

(V ′, H∗) = Inv(Gn). Moreover the last map
above is surjective when ∗ = 1 (cf §2.1), so that A1

Gn
(V,H0) = A1

Gn
(V ′, H0) =

CH1BGn ⊗Z Z/2.
Turning to the equivariant long exact sequence associated to the open set U in
V ′, we finally get:

0 −−−−→ Inv(Gn) −−−−→ A0
Gn

(U,H∗) −−−−→ A0
Gn

(C,H∗−1). (†)

When ∗ = 1 we have:
0→ Inv1(Gn)→ A0

Gn(U,H
1)→

A0(C,H0)→ CH1BGn ⊗Z Z/2→ CH1
GnU ⊗Z Z/2→ 0. (††)

Step 2. Let Q = q−1(1). We shall use the following result.

Lemma 3.2.2 – The action of Gn on Q is transitive. Moreover the stabilizer
of a k-rational point is isomorphic to Gn−1, and we get an isomorphism of
k-varieties Q = Gn/Gn−1.
The action of Gn on C is transitive. Moreover the stabilizer of a k-rational
point is isomorphic to a semi-direct product H⋊Gn−2, where H is an algebraic
group isomorphic to affine space as a variety, and we get an isomorphism of
k-varieties C = Gn/H ⋊ Gn−2. Finally, the map B(H ⋊ Gn−2) → BGn−2 is
an affine bundle.

For a proof, see [10].
From this we can at once identify the last term in the exact sequence (†).
Indeed, if S = H ⋊Gn−2 as in the lemma, then A0

Gn
(C,H∗) = A0(BS,H∗) as

explained at the beginning of this §. However, since BS → BGn−2 is an affine
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bundle, we draw from §2.1, property (6), thatA0(BS,H∗) = A0(BGn−2, H
∗) =

Inv(Gn−2).

Step 3. We turn to the term A0
Gn

(U,H∗). Extend the action of Gn on Q to an
action on Q×Gm which is trivial on the second factor. The group Z/2 = {1, τ}
also acts on Q×Gm by τ(x, t) = (−x,−t). The two actions commute. Finally,
there is a map Q×Gm → U defined by (x, t) 7→ tx. It is Gn-equivariant, and
a Z/2-principal bundle.
We wish to apply lemma 3.1.2 with N = Gn−1, K = Z/2, and G′ = N ×K.
This is of course the time when we need to assume that n is even if Gn is SOn

or Spinn. Then the element −Id generates the copy of Z/2 that we need. We
conclude:

A0
Gn(U,H∗) = A0(BGn−1 × (Gm)Z/2, H

∗).

We may easily compute A0((Gm)Z/2, H
∗). Indeed, using that the action is

free, with quotient Gm, this is A0(Gm, H
∗) from example 2.3.2. As observed

in remark 2.1.2, this happens to equal A0(BZ/2, H∗) = Inv(Z/2).
Now, by the Künneth formula (corollary 2.2.2), which we may use as Inv(Z/2)
is a free H∗(k)-module, we draw

A0(BGn−1×(Gm)Z/2, H
∗) = Inv(Gn−1)⊗H∗(k) Inv(Z/2) = Inv(Z/2×Gn−1).

Step 4. We need to prove the last sentence in the theorem. We claim that
there is an x ∈ Inv(Z/2 × Gn−1) such that r(x) = 1 ∈ Inv(Gn−2). Granted
this, the theorem follows from the formula r(xj∗(y)) = r(x)i∗(y) = i∗(y) (see
§2.1), applied here with i∗ denoting the restriction Inv(Gn)→ Inv(Gn−2) and
j∗ denoting the restriction Inv(Gn)→ Inv(Z/2×Gn−1).
To prove the claim we start by computing CH1

Gn
U (in the rest of this proof

we shall write simply CH for the mod 2 Chow groups). As above this is
CH1BGn−1 × (Gm)Z/2. Arguing as in example 2.3.2, we see that we may
replace (Gm)Z/2 by Gm/Z/2 = Gm, as far as computing the Chow groups
goes. Now, Gm being an open set in affine space, it has a trivial Chow ring
and there is a Künneth formula, so:

CH1BGn−1 × (Gm)Z/2 = CH1BGn−1.

Therefore the last map in (††) is the restriction map CH1BGn → CH1BGn−1.
When Gn = Spinn, which is simply-connected, we have CH1BGn = 0. In [10],
the reader will find a proof that CH1BSO2n = 0 also and that CH1BOn →
CH1BOn−1 is an isomorphism. The claim follows from the exact sequence
(††).

3.3. End of the computation for On

The main novelty in theorem 3.2.1 is with the spin groups (specifically, with
the second half of the exact sequence presented, as the first half was obtained
by Garibaldi in [4]). The invariants of On and SOn are completely known, see
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[5]. In this section and the next, however, we show how to recover these results
from theorem 3.2.1. In the case of On this is so close to the proof given in
loc. cit.that we shall omit most of the details. In the case of SOn on the other
hand, our method is considerably different, so we have thought it worthwhile
to present it. We continue with p = 2.
A major role will be played by Stiefel-Whitney classes. Recall that H1(K,On)
is the set of isomorphism classes of non-degenerate quadratic forms on Kn.
Given such a form q, the classes wi(q) ∈ H∗(K), for i ≥ 0, have been defined
by Milnor [9] (originally they were defined in mod 2 Milnor K-theory). They
are 0 for i > n and if wt(q) =

∑
wi(q)t

i, then one has

wt(q ⊕ q′) = wt(q)wt(q
′).

Each wi can be seen as a cohomological invariant in Inv(On). In fact one has

Proposition 3.3.1 – The H∗(k)-module Inv(On) is free with a basis given by
the classes wi, for 0 ≤ i ≤ n. Moreover, the following multiplicative formula
holds:

w1wi−1 = wi (i odd),
= (−1)wi−1 (i even).

In the formula, (−1) stands for the image of −1 ∈ k in H1(k) = k×/(k×)2.

Sketch proof. From theorem 3.2.1, we have an injection

0→ Inv(On)→ Inv(Z/2 ×On−1)

where Z/2×On−1 is seen as a subgroup of On, the nonzero element in the copy
of Z/2 corresponding to the −Id matrix. An immediate induction then shows
that Inv(On) injects into Inv((Z/2)n), the invariants of the elementary abelian
2-group comprised of the diagonal matrices in On with ±1 as entries. (This
could be seen as a consequence of the surjection H1(K, (Z/2)n)→ H1(K,On),
which in turns expresses the fact that quadratic forms may be diagonalized).
We have computed Inv(Z/2) in remark 2.1.2, and we may apply corollary
2.2.2 to obtain Inv((Z/2)n). The symmetric group Sn acts on this ring, and
the image of Inv(On) must certainly lie in the subring fixed by this action.
The latter is easily seen to be a free H∗(k)-module on the images of the Stiefel-
Whitney classes.
The multiplicative formula is obtained by direct computation.

3.4. End of the computation for SOn

Since SOn is a subgroup of On, the restriction map Inv(On) → Inv(SOn)
defines Stiefel-Whitney classes for SOn.
Now, as we have defined it, the group SOn has the following interpretation for
its torsors: H1(K,SOn) is the set of isomorphism classes of non-degenerate
quadratic forms on Kn whose discriminant is 1. Recall that the discriminant
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is the determinant of any matrix representing the bilinear form associated to
q, viewed as an element of K×/(K×)2. As it turns out, the discriminant of q
is precisely w1(q) when seen as a class in the additive group H1(K). So we
have w1 = 0 in Inv(SOn). From the formula w1w2i = w2i+1, we have in fact
w2i+1 = 0 in Inv(SOn).

Proposition 3.4.1 – When n = 2m + 1 is odd, Inv(SOn) is a free H∗(k)-
module with basis {w0, w2, w4, . . . , w2m}.
When n = 2m is even, Inv(SOn) is a free H∗(k)-module with basis

{w0, w2, w4, . . . , w2m−2, b
(1)
n−1},

where b
(1)
n−1 is an invariant of degree n− 1.

The invariant b
(1)
n−1 was introduced by Serre [5]. It was originally denoted by

b1, but we try to keep lowerscripts for the degree whenever possible.

Proof. The odd case is easy, for we have an isomorphism

Z/2× SO2m+1 = O2m+1.

From the Künneth formula (corollary 2.2.2), it follows that Inv(SO2m+1) is
the quotient of Inv(O2m+1) by the ideal generated by w1. From the formula in
proposition 3.3.1, this is the submodule generated by the odd Stiefel-Whitney
classes. The result follows.
Turning to the even case, we use the exact sequence from theorem 3.2.1:

0 −−−−→ Inv(SO2m) −−−−→ Inv(Z/2× SO2m−1)
r−−−−→ Inv(SO2m−2)

We proceed by induction, assuming the result for n− 2.
The group Z/2 × SO2m−1 is seen as a subgroup of SO2m, were again the
copy of Z/2 is identified with {±Id}. However, there is also a canonical iso-
morphism of Z/2× SO2m−1 with O2m−1, as above. The corresponding injec-
tive map O2m−1 → SO2m thus obtained induces the map H1(K,O2m−1) →
H1(K,SO2m) which sends a quadratic form q to q̃ = (q ⊗ det(q)) ⊕ det(q).
Here det(q) is the 1-dimensional quadratic form with corresponding 1× 1 ma-
trix given by the discriminant of q.
We havew2i+1(q̃) = 0 as explained above. To compute the even Stiefel-Whitney
classes, we note that wi(q̃) = wi((q ⊕ 〈1〉) ⊗ det(q)) = wi(q ⊗ det(q)), and we
recall that if we factorise formally

∑
wi(q)t

i =
∏

(1 + ait
i),

then ∑
wi(q ⊗ det(q))ti =

∏
(1 + (ai + w1(q))t

i).

It follows that w2i(q̃) = w2i(q)+w1(q)Ri(q), and the remainder w1(q)Ri(q) can
thus be written as a linear combination over H∗(k) of the classes wj(q) with
j < 2i. Moreover w2m(q̃) = 0.
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Now, write wi, resp w′i, resp w′′i , for the Stiefel-Whitney classes in Inv(SO2m),
resp Inv(O2m−1), resp Inv(SO2m−2), and regard Inv(SO2m) as a subring of
Inv(O2m−1). Thus we have w2i+1 = 0 and w2i = w′2i + w′1Ri.
Let M , resp N , denote the H∗(k)-submodule of Inv(O2m−1) generated by
the classes w′2i+1 for 0 ≤ i ≤ m − 2, resp by the classes w2i for 0 ≤ i ≤
m − 1 together with b

(1)
n−1 = w′2m+1 + (−1)w′1Rm. Then M and N are free

modules, and Inv(O2m−1) = M ⊕ N . We claim (i) that the residue map r

is 0 on N (ie r(b
(1)
n−1) = 0), and (ii) that r maps M injectively onto a free

submodule in Inv(SO2m−2). This will complete the induction step, as we will
have Inv(SO2m) = ker(r) = N .
Both parts of the claim are proved by the same computation. We first note
from theorem 3.2.1 that r(w′1) = 1, and we compute:

r(w′2i+1) = r(w′1w
′
2i)

= r(w′1w2i)− r((w′1)2R′i)
= w′′2i − r((−1)w′1Ri)
= w′′2i − (−1)r(w′1Ri)

.

Take i = m− 1 to obtain (i) (since w′′2m−2 = 0). Property (ii) is clear.
It remains to start the induction. The group SO2 is a torus, so Inv(SO2) =
H∗(k). One gets the result for SO4 from this and theorem 3.2.1. This is very
similar to the induction step (but easier), and will be left to the reader.

§4. Projective variants

4.1. Projective bundles

Consider the n-th projective space Pn. It has an open subset isomorphic to An,
and from the long exact sequence of §2.1, (5), we draw at once A0(Pn, H∗) =
H∗(k).
Now, if V → X is a vector bundle, we may form the associated projective
bundle π : P(V ) → X . The fibre of π over Spec(κ) → X is Pn−1

κ , where n is
the rank of V . Thus we see that the induced cycle module A0 = A0[π,H∗] on
X is isomorphic to H∗, and from theorem 2.2.1 we have:

Lemma 4.1.1 – Let π : P(V ) → X denote the projective bundle associated to
the vector bundle V → X. Then

A0(P(V ), H∗) = A0(X,H∗).

Remark 4.1.2 – It should be kept in mind that the above argument, which
rests on the spectral sequence of theorem 2.2.1, has been used for the sake of
concision only. The result is a consequence of the following general statement:

A∗(P(V ), H∗) = A∗(X,H∗)[ζ]/(ζn)

with ζ ∈ A1(P(V ), H0). This is perfectly analogous to the usual statement for
ordinary Chow groups, and is no harder to prove. We shall have no use for the
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complete statement in the sequel, however, and therefore we omit the lengthy
argument.

Corollary 4.1.3 – Let V be a representation of the linear algebraic group G.
Form the projective representation P(V ), and assume that there is a k-rational
point in P(V ) whose orbit is open, and isomorphic to G/S. Then there is an
injection

0→ Inv(G)→ Inv(S).

Proof. We have a vector bundle VG → BG and the associated projective bundle
is P(V )G → BG. From the lemma,

Inv(G) = A0(BG,H∗) = A0(P(V )G, H
∗) = A0

G(P(V ), H∗).

We may view G/S as an open subset in P(V ), and from the equivariant long
exact sequence we have

0→ Inv(G)→ A0
G(G/S,H∗).

As noted in §3.1, we have A0
G(G/S,H∗) = Inv(S).

4.2. Applications

Example 4.2.1. As a very simple illustration, we may compute the invariants
of a wreath product Gm ≀ Z/2, that is a semi-direct product G2

m ⋊ Z/2 where
Z/2 permutes the two copies of the multiplicative group.
Indeed, this group may be seen as the normalizer of a maximal torus in GL2,
and thus it has a canonical representation W of dimension 2. The space P(W )
is just two orbits, and that of [1, 1] is open with stabilizer Gm × Z/2. From
corollary 4.1.3 (and corollary 2.2.2), we know that the restriction map from
Inv(G2

m ⋊ Z/2) to Inv(Z/2) is injective. It is also certainly surjective, since
the inclusion Z/2→ G2

m⋊Z/2 is a section for the projection G2
m⋊Z/2→ Z/2.

Finally, we conclude that Inv(G2
m⋊Z/2) = Inv(Z/2) (regardless of the choice

of p).

Example 4.2.2. In [4], Garibaldi gives many examples of applications of corol-
lary 4.1.3. It is possible to recover a good number of his results using the
techniques of this paper. Let us illustrates this with Spin7 at p = 2.
If ∆ denotes the spin representation of Spin7, one can show that there exists
an open orbit U in P(∆) with stabilizer G2×Z/2 (G2 is the split group of that
type). Hence an injection

0→ Inv(Spin7)→ Inv(G2 × Z/2).

Garibaldi computes the image of this, creating invariants of Spin7 by restrict-
ing invariants of Spin8, and exploiting the fact that further restriction from
Inv(Spin7) to Inv(Z/2) is zero, since it factors through the invariants of a
maximal torus.
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Our version of this computation is to study the complement of U in P(∆). It
consists of a single orbit with stabilizer K, and there is an affine bundle map
BK → B(SL3 × Z/2). Therefore we have an exact sequence

0→ Invd(Spin7)→ Invd(G2 × Z/2)→ Invd−1(SL3 × Z/2).

This seems to be typical of the stratification method when projective represen-
tations are used: one can obtain some results very rapidly, but they are not
always as accurate as one may wish.
Instead, if we proceed exactly as in the proof of theorem 3.2.1, we obtain:

0→ Invd(Spin7)→ Invd(G2 × Z/2)→ Invd−1(SL3)→ 0.

Since SL3 is special, Inv(SL3) = H∗(k). From [5] we have that Inv(G2) is
a free H∗(k)-module on two generators of degree 0 and 3. By corollary 2.2.2,
Inv(G2 ×Z/2) is a free H∗(k)-modules with 4 generators of degree 0, 1, 3 and
4. It follows that Inv(Spin7) is a free H∗(k)-module on 3 generators of degree
0, 3 and 4.

§5. The Bloch & Ogus spectral sequence

5.1. The spectral sequence

In this section, we assume that k is algebraically closed. The prime p being fixed
as always, we shall write Hi

et(X) for the étale cohomology group Hi
et(X,Z/p).

Theorem 5.1.1 (Rost, Bloch, Ogus) – Let k = k̄, and let X be equidimen-
sional. Then there is a spectral sequence

Er,s2 = Ar(X,Hs−r)⇒ Hr+s
et (X).

In particular the E2 page is zero under the first diagonal, and the resulting map

An(X,H0) = CHnX ⊗Z Z/p→ Hn
et(X)

is the usual cycle map.

A word of explanation on the authorship of the spectral sequence. To start
with, there is the well-known coniveau spectral sequence, which converges to
Hn

et(X) and for which there is a description of the E1 term. In [2] Bloch and
Ogus prove that the E2 term can be identified with Hr

Zar(X,Hs), where Hs is
the sheafification of U 7→ Hs

et(U). They deduce that the groups are 0 under the
diagonal, and prove the statement about the cycle map. More than 20 years
later, in [11], corollary 6.5, Rost proves that the E2 term can also be described
using his Chow groups with coefficients as in the theorem. The sequence seems
to be usually refered to as the Bloch & Ogus spectral sequence.
Given an algebraic group G, we may take a model for BG to play the role of
X , and obtain:
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Corollary 5.1.2 – There is a map

H∗et(BG)→ Inv(G)

which vanishes (when ∗ > 0) on the image of the cycle map

CH∗BG⊗Z Z/p→ H2∗
et (BG).

Example 5.1.3. The Stiefel-Whitney classes as in 3.3 can be defined as the
images of the elements with the same name in the cohomology of BOn. The
corollary explains why they square to zero in Inv(On), since they square to
Chern classes in cohomology, and these come from the Chow ring (see [13] for
details).

Remark 5.1.4 – When G is a finite group, viewed as a 0-dimensional algebraic
group, there is a natural map

H∗(G,Fp)→ H∗et(BG),

where H∗(G,Fp) is the usual cohomology of G as a discrete group. Indeed,
there is a Galois covering EG → BG with group G, so we may see this map
as coming from the corresponding Hoschild-Serre spectral sequence. Since we
assume in this section that k is algebraically closed, it follows easily that the
map is an isomorphism.
Composing this with the map from the previous corollary, we obtain the ho-
momorphism

H∗(G,Fp)→ Inv(G)

which was considered in [5]. Of course the direct definition given in loc. cit. is
much preferable.

Corollary 5.1.5 (to theorem 5.1.1) – There are natural isomorphisms:

Inv1(G) = H1
et(BG)

and

Inv2(G) =
H2

et(BG)

CH1BG⊗Z Z/p
.

The denominator in the second isomorphism is really the image of CH1BG⊗Z

Z/p in étale cohomology via the cycle map. When k = C, the cycle map is in-
jective in degree 1 and in fact CH1BG = H2(BG,Z) (topological cohomology),
see [13].

Corollary 5.1.6 (to theorem 5.1.1) – Any class x in the kernel of the
cycle map

CH2BG⊗Z Z/p→ H4
et(BG)

determines an invariant rx ∈ Inv3(BG), which is well-defined up to the image
of H3

et(BG)→ Inv3(BG). If x is nonzero, neither is rx.
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We think of rx as a simplified version of the Rost invariant.

Proof. Our assumption implies that the class x, viewed as an element of bide-
gree (2, 2) on the E2 page of the spectral sequence under discussion, must be
hit by a differential. Let rx ∈ E0,3

2 = Inv3(G) be such that d2(rx) = x. This
element is well-defined up to the kernel of d2. Since further differentials dr
for r > 2 are zero on E0,3

r , we see that rx is defined up to elements which
survive to the E∞ page. These are, by definition, the elements in the image of
H3

et(BG)→ Inv3(BG).

5.2. Applications

For simplicity, we shall take k = C, the complex numbers, in the applications.
In this case according to remark 2.3.4, the étale cohomology of BG as above
coincides with the topological cohomology of a topological classifying space (i.e.
a quotient EG/G of a contractible space EG endowed with a free G-action).
We start with a proposition which should be compared with statements 31.15
and 31.20 in [7], for which there is no proof available as far as I am aware.

Proposition 5.2.1 – Over the complex numbers, there are isomorphisms

Inv1(G) = Hom(π0(G),Z/p)

and
Inv2(G) = p-torsion in H3(BG,Z).

In particular, if G is connected then Inv1(G) = 0, and if G is 1-connected then
Inv2(G) = 0.

Proof. From corollary 5.1.5, we have Inv1(G) = H1(BG,Fp), and of course
this is Hom(π1(BG),Z/p). However π1(BG) = π0(G).
As noted above, the cycle map is injective in degree 1 over the complex numbers,
and CH1BG = H2(BG,Z). From corollary 5.1.5 again, we see that

Inv2(G) =
H2(BG,Fp)

H2(BG,Z)⊗ Z/p
,

and it is elementary to show that this maps injectively onto the p-torsion in
H3(BG,Z) via the Bockstein.
The statement about connected groups is trivial. When G is 1-connected, it is
automatically 2-connected, since any real Lie group has π2(G) = 0. Thus BG
is 3-connected and we draw H3(BG,Z) = 0 from Hurewicz’s theorem.

Example 5.2.2. Consider the case of the exceptional group G2, for k = C
and p = 2. It is reductive and 1-connected, so by the proposition we have
Invi(G2) = 0 for i = 1, 2. Moreover, the Chow ring of G2 has been computed
over the complex numbers, see [6]. It turns out that the map CH2BG2 ⊗Z

Z/2 → H4(BG2,F2) has exactly one nonzero element. From corollary 5.1.6,
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we know that there is a nonzero invariant e3 ∈ Inv3(G2). It is uniquely defined
as H3(BG2,F2) = 0.
It is proved in [5] that for any field k of characteristic 6= 2, Inv(G2) is in fact
a free H∗(k)-module on the generators 1 and e3.

Example 5.2.3. We take k = C, p = 2, and G = D8 = Z/4 ⋊ Z/2, the
dihedral group. We shall completely compute Inv(G) by showing first that
things reduce to corollary 5.1.5.
Let t be a generator of Z/4 in G, and let τ be the second generator, so that
τ(t) = τtτ−1 = t−1. We let G act on V = A2 via

t 7→
(
t 0
0 t−1

)

and

τ 7→
(

0 1
1 0

)
.

The corresponding map G → GL2 is an embedding, so G acts freely outside
of a finite number of lines. Let U denote the open complement. We have an
injection

0→ A0
G(V,H∗) = Inv(G)→ A0

G(U,H∗) = A0(U/G,H0),

by example 2.3.2. Now, U/G is a variety of dimension 2 over an algebraically
closed field, so H∗(k(U)) = 0 for ∗ > 2. It follows that Inv(G) is concentrated
in degrees ≤ 2.
Since we are working over C, we have H∗et(BG) = H∗(BG,F2) = H∗(G,F2).
The cohomology of G is well-known, see for example [1]:

H∗(G,F2) = F2[x1, y1, w2]/(x1y1 = 0).

More precisely, G can be presented as an ”extraspecial group”, ie as a central
extension

0→ Z/2→ G→ E → 0

where E ≈ Z/2×Z/2. If we choose x1 and y1 so that H∗(E,F2) = F2[x1, y1],
then we can pullback these classes to the cohomology of G where they will
give the classes with the same name in the description above. (Besides, the
cohomology class of the extention is x1y1.)
We have immediately, by corollary 5.1.5, that Inv1(G) = F2 · x1 ⊕ F2 · y1. In
degree 2, we note that H2(G,F2) is generated additively by the classes x2

1, y
2
1 ,

and w2. The Chow ring of BE is CH∗BE⊗Z Z/2 = F2[x
2
1, y

2
1 ], from which we

know that the classes x2
1 and y2

1 in the cohomology of BG certainly come from
the Chow ring of BG.
On the other hand, Sq1w2 = w2(x1 + y1) 6= 0 (loc. cit.), while the Steenrod
operation Sq1 is zero on classes coming from the integral cohomology, and a
fortiori it is zero on the classes coming from the Chow ring.
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As a result, we have finally Inv2(G) = F2 · w2.
Over a general field, we could reach a similar conclusion by studying the ge-
ometric situation a bit more carefully. The variety U/G, for example, can be
shown to be the open subset in A2 obtained by removing the axis Y = 0 and
the two parabolae X ± 2Y 2 = 0. Alternatively, you might want to use that D8

is a 2-Sylow in S4, and exploit the double coset formula as in [5], chap. V.

§6. Other cycle modules

We shall conclude with a few simple remarks on other possible cycle modules.
Given any cycle module M as in §2, we may define the invariants Inv(G,M)
of G with values in M to be the natural transformations of functors

H1(−, G)→M(−).

It is straightforward to establish the inclusion

Inv(G,M) ⊂ A0(BG,M)

for any BG which is the base of a versal G-principal bundle. Indeed, the
arguments in [5] hold verbatim (and in fact in loc. cit. the reader will find a
similar inclusion even for invariants with values in the Witt ring, even though
the Witt ring satisfies weaker properties than cycle modules do.)
We may also define the equivariant Chow groups A∗G(X,M) for varieties X
acted on by G, exactly as we have done for M = H∗. When this is done, we
may take BG to be Spec(k)G (as in the rest of this paper), and we have an
equality

Inv(G,M) = A0(BG,M) = A0
G(Spec(k),M)

by Totaro’s arguments as in [5].
The techniques we have used for Galois cohomology may be used for any cy-
cle module. Let us illustrate this for M = K∗, the algebraic K-theory of
fields (Milnor or Quillen, it will not affect the sequel). In this case we have
A∗(X,K0) = CH∗X , and the parallel with our previous computations becomes
even more obvious.
Arguing as in example 2.1.1, we obtain that A0(Gm,K∗) is a free K∗-module
on two generators, one in dimension 0, the other in dimension 1. If p is a prime
number, we may use this to compute the invariants of µp.
The group µp has a 1-dimensional representation V , and Gm sits in V as a
µp-invariant open subset whose complement is a point Spec(k). We obtain the
exact sequence (where G = µp):

0→ A0
G(V,K∗)→ A0

G(Gm,K∗)→ A0
G(Spec(k),K∗−1)→ A1

G(V,K∗−1).

The action on Gm is free with quotient Gm, so as in example 2.3.2 we draw
A0
G(Gm,K∗) = A0(Gm,K∗). Thus we may rewrite the exact sequence:

0 −−−−→ Inv(G,K∗) −−−−→ A0(Gm,K∗) −−−−→ Inv(G,K∗−1),
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and for ∗ = 1 it is worth writing the extra term:

0→ Inv(G,K1)→ A0(Gm,K1)→ Inv(G,K0)
s∗−→ CH1BG→ 0.

Let us explain the notation s∗ and what this map looks like. We call s the zero
section s : BG→ VG of the vector bundle π : VG → BG, and s∗ is the induced
pushforward map. We know that π∗ is an isomorphism, and that there is a
projection formula s∗(π∗(x)y) = xs∗(y). If we use π∗ as an identification, it
follows that s∗(x) = c1(V )x where c1(V ) = s∗(1) is the first Chern class of V .
Finally the map s∗ : Inv(G,K0) → CH1BG is simply the surjective map
Z → CH1BG sending 1 to c1(V ). Now, CH1BG is p-torsion by a transfer
argument (or see [13], example 13.1, which shows that CH1BG may well be 0
depending on k). In any case, s∗ has a kernel isomorphic to Z.
We conclude that the 1-dimensional generator for A0(Gm,K∗) must map to a
generator for this kernel. As a result, Inv(G,K∗) is reduced to K∗, i.e. the
group µp has no nonconstant invariants in algebraic K-theory at all.
For p = 2 for example, assuming that char(k) 6= 2, we may use the sur-
jection H1(K, (Z/2)n) → H1(K,On) for fields containing k to deduce that
Inv(On,K∗) injects into Inv((Z/2)n,K∗). Thus, after an obvious Künneth ar-
gument, we see that On has no nonconstant invariants in algebraic K-theory,
either. In particular, there is no natural way of lifting the Siefel-Whitney classes
to integral Milnor K-theory.
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1. The correct statement of Lemma 4.1 is: for every a > 0,

NΛ(t) =
π

d
t2 −

√
t

dπ

∑

~k∈Λ∗\{0}
|~k|≤
√
N

cos
(
2πt|~k|+ π

4

)

|~k| 32
+O(Na) +O

(
t3

δΛ(t2)
√
N

)
,

provided that
δΛ(y) < 1 (1)

for all y > 0.

The proof of this lemma proceeds exactly as the proof of the correct
statement corresponding to lemma 4.1 of [W] (see the erratum to [W]).

2. In the course of ”unsmoothing” (that is, the proof of lemma 4.2), we
invoke lemma 4.1 with δΛ(y) = c1

yK0
and δΛ∗(y) = c2

yK0
, where c1, c2 are

constants. We choose N = TH , with

H := 8 + 4K0,

and proceed as in the original text.
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model. We prove that they admit exactly one rational real algebraic
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1 Introduction

Let X be a rational nonsingular projective real algebraic surface. Then the
setX(R) of real points ofX is a compact connected topological surface. Comes-
satti showed that X(R) cannot be an orientable surface of genus bigger than 1.
To put it otherwise, X(R) is either nonorientable, or it is orientable and dif-
feomorphic to the sphere S2 or the torus S1 × S1 [Co2, p. 257].
Conversely, each of these topological surfaces admits a rational real algebraic
model, or rational model for short. In other words, if S is a compact connected
topological surface which is either nonorientable, or orientable and diffeomor-
phic to the sphere or the torus, then there is a nonsingular rational projective
real algebraic surface X such that X(R) is diffeomorphic to S. Indeed, this
is clear for the sphere, the torus and the real projective plane: the real pro-
jective surface defined by the affine equation x2 + y2 + z2 = 1 is a rational
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model of the sphere S2, the real algebraic surface P1 × P1 is a rational model
of the torus S1×S1, and the real projective plane P2 is a rational model of the
topological real projective plane P2(R). If S is any of the remaining topolog-
ical surfaces, then S is diffeomorphic to the n-fold connected sum of the real
projective plane, where n ≥ 2. A rational model of such a topological surface
is the real surface obtained from P2 by blowing up n−1 real points. Therefore,
any compact connected topological surface which is either nonorientable, or
orientable and diffeomorphic to the sphere or the torus, admits at least one
rational model.
Now, if S is a compact connected topological surface admitting a rational
model X , then one can construct many other rational models of S. To see
this, let P and P be a pair of complex conjugate complex points on X . The
blow-up X̃ of X at P and P is again a rational model of S. Indeed, since P
and P are nonreal points of X , there are open subsets U of X and V of X̃ such
that

• X(R) ⊆ U(R), X̃(R) ⊆ V (R), and

• U and V are isomorphic.

In particular, X(R) and X̃(R) are diffeomorphic. This means that X̃ is a
rational model of S if X is so. Iterating the process, one can construct many
nonisomorphic rational models of S. We would like to consider all such models
of S to be equivalent. Therefore, we introduce the following equivalence relation
on the collection of all rational models of a topological surface S.

Definition 1.1. LetX and Y be two rational models of a topological surface S.
We say that X and Y are isomorphic as rational models of S if there is a
sequence

X1

zzvvvvv
vvv

v

!!B
BB

BB
BB

B X3

~~||
||

||
||

  B
BB

BB
BB

B
X2n−1

{{xx
xx

xx
xx

x

%%KKKKKKKKKK

X = X0 X2 · · · X2n = Y

where each morphism is a blowing-up at a pair of nonreal complex conjugate
points.

We note that the equivalence relation, in Definition 1.1, on the collection of all
rational models of a given surface S is the smallest one for which the rational
models X and X̃ mentioned above are equivalent.
Let X and Y be rational models of a topological surface S. If X and Y
are isomorphic models of S, then the above sequence of blowing-ups defines a
rational map

f : X 99K Y

having the following property. There are open subsets U of X and V of Y such
that
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• the restriction of f to U is an isomorphism of real algebraic varieties from
U onto V , and

• X(R) ⊆ U(R) and Y (R) ⊆ V (R).

It follows, in particular, that the restriction of f to X(R) is an algebraic diffeo-
morphism from X(R) onto Y (R), or in other words, it is a biregular map from
X(R) onto Y (R) in the sense of [BCR].
Let us recall the notion of an algebraic diffeomorphism. Let X and Y be
smooth projective real algebraic varieties. Then X(R) and Y (R) are compact
manifolds, not necessarily connected or nonempty. Let

f : X(R) −→ Y (R) (1)

be a map. Choose affine open subsets U of X and V of Y such that X(R) ⊆
U(R) and Y (R) ⊆ V (R). Since U and V are affine, we may assume that they
are closed subvarieties of Am and An, respectively. Then X(R) is a closed
submanifold of Rm, and Y (R) is a closed submanifold of Rn. The map f
in (1) is algebraic or regular if there are real polynomials p1, . . . , pn, q1, . . . , qn
in the variables x1, . . . , xm such that none of the polynomials q1, . . . , qn vanishes
on X(R), and

f(x) =

(
p1(x)

q1(x)
, . . . ,

pn(x)

qn(x)

)

for all x ∈ X(R).
One can check that the algebraicity of f depends neither on the choice of the
affine open subsets U and V nor on the choice of the embeddings of U and V
in affine space. Note that the algebraicity of f immediately implies that f is a
C∞-map.
The map f in (1) is an algebraic diffeomorphism if f is algebraic, bijective, and
f−1 is algebraic.
Again let X and Y be rational models of a topological surface S. As observed
above, if X and Y are isomorphic models of S, then there is an algebraic
diffeomorphism

f : X(R) −→ Y (R) .

Conversely, if there is an algebraic diffeomorphism f : X(R) −→ Y (R), then
X and Y are isomorphic models of S, as it follows from the well known
Weak Factorization Theorem for birational maps between real algebraic sur-
faces(see [BPV, Theorem III.6.3] for the WFT over C, from which the WFT
over R follows).
Here we address the following question. Given a compact connected topological
surface S, what is the number of nonisomorphic rational models of S?
By Comessatti’s Theorem, an orientable surface of genus bigger than 1 does
not have any rational model. It is known that the topological surfaces S2,
S1 × S1 and P2(R) have exactly one rational model, up to isomorphism (see
also Remark 3.2). Mangolte has shown that the same holds for the Klein
bottle [Ma, Theorem 1.3] (see again Remark 3.2).
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Mangolte asked how large n should be so that the n-fold connected sum of the
real projective plane admits more than one rational model, up to isomorphism;
see the comments following Theorem 1.3 in [Ma]. The following theorem shows
that there is no such integer n.

Theorem 1.2. Let S be a compact connected real two-manifold.

1. If S is orientable of genus greater than 1, then S does not admit any
rational model.

2. If S is either nonorientable, or it is diffeomorphic to one of S2 and S1×
S1, then there is exactly one rational model of S, up to isomorphism. In
other words, any two rational models of S are isomorphic.

Of course, statement 1 is nothing but Comessatti’s Theorem referred to above.
Our proof of statement 2 is based on the Minimal Model Program for real
algebraic surfaces developed by János Kollár in [Ko1]. Using this Program,
we show that a rational model X of a nonorientable topological surface S is
obtained from P2 by blowing it up successively in a finite number of real points
(Theorem 3.1). The next step of the proof of Theorem 1.2 involves showing
that the model X is isomorphic to a model X ′ obtained from P2 by blowing
up P2 at real points P1, . . . , Pn of P2. At that point, the proof of Theorem 1.2
would have been finished if we were able to prove that the group Diffalg(P2(R))
of algebraic diffeomorphisms of P2(R) acts n-transitively on P2(R). However,
we were unable to prove such a statement. Nevertheless, a statement we were
able to prove is the following.

Theorem 1.3. Let n be a natural integer. The group Diffalg(S
1 × S1) acts

n-transitively on S1 × S1.

We conjecture, however, the following.

Conjecture 1.4. Let X be a smooth projective rational surface. Let n be a
natural integer. Then the group Diffalg(X(R)) acts n-transitively on X(R).1

The only true evidence we have for the above conjecture is that it holds for X =
P1 × P1 according to Theorem 1.3.
Now, coming back to the idea of the proof of Theorem 1.2, we know that any
rational model of S is isomorphic to one obtained from P2 by blowing up P2

at real points P1, . . . , Pn. Since we have established n-transitivity of the group
of algebraic diffeomorphisms of S1×S1, we need to realize X ′ as a blowing-up
of P1 × P1 at a finite number of real points.
Let L be the real projective line in P2 containing P1 and P2. Applying a
nontrivial algebraic diffeomorphism of P2 into itself, if necessary, we may as-
sume that Pi 6∈ L for i ≥ 3. Then we can do the usual transformation of P2

into P1 × P1 by first blowing-up P1 and P2, and then contracting the strict

1This conjecture is now proved [HM].
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transform of L. This realizes X ′ as a surface obtained from P1×P1 by blowing-
up P1 × P1 at n − 1 distinct real points. Theorem 1.2 then follows from the
(n− 1)-transitivity of Diffalg(S

1 × S1).

We will also address the question of uniqueness of geometrically rational models
of a topological surface. By yet another result of Comessatti, a geometrically ra-
tional real surface X is rational if X(R) is nonempty and connected. Therefore,
Theorem 1.2 also holds when one replaces “rational models” by “geometrically
rational models”. Since the set of real points of a geometrically rational surface
is not neccesarily connected, it is natural to study geometrically rational mod-
els of not necessarily connected topological surfaces. We will show that such a
surface has an infinite number of geometrically rational models, in general.

The paper is organized as follows. In Section 2 we show that a real Hirze-
bruch surface is either isomorphic to the standard model P1 × P1 of the real
torus S1 × S1, or isomorphic to the standard model of the Klein bottle. The
standard model of the Klein bottle is the real algebraic surface BP (P2) obtained
from the projective plane P2 by blowing up one real point P . In Section 3, we
use the Minimal Model Program for real algebraic surfaces in order to prove
that any rational model of any topological surface is obtained by blowing up one
of the following three real algebraic surfaces: P2, S2 and P1×P1 (Theorem 3.1).
Here S2 is the real algebraic surface defined by the equation x2 + y2 + z2 = 1.
As a consequence, we get new proofs of the known facts that the sphere, the
torus, the real projective plane and the Klein bottle admit exactly one rational
model, up to isomorphism of course. In Section 4 we prove a lemma that will
have two applications. Firstly, it allows us to conclude the uniqueness of a
rational model for the “next” topological surface, the 3-fold connected sum of
the real projective plane. Secondly, it also allows us to conclude that a rational
model of a nonorientable topological surface is isomorphic to a model obtained
from P2 by blowing up a finite number of distinct real points P1, . . . , Pn of P2.
In Section 5 we prove n-transitivity of the group of algebraic diffeomorphisms
of the torus S1 × S1. In Section 6 we construct a nontrivial algebraic diffeo-
morphism f of P2(R) such that the real points f(Pi), for i = 3, . . . , n, are not
on the real projective line through f(P1) and f(P2). In Section 7 we put all the
pieces together and complete the proof of Theorem 1.2. In Section 8 we show
by an example that the uniqueness does not hold for geometrically rational
models of nonconnected topological surfaces.

Acknowledgement. The second author thanks the Tata Institute of Fun-
damental Research for its hospitality.

2 Real Hirzebruch surfaces

The set of real points of the rational real algebraic surface P1 × P1 is the
torus S1×S1. We call this model the standard model of the real torus. Fix a real
point O of the projective plane P2. The rational real algebraic surface BO(P2)
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obtained from P2 by blowing up the real point O is a model of the Klein
bottle K. We call this model the standard model of the Klein bottle.
Let d be a natural integer. Let Fd be the real Hirzebruch surface of degree d.
Therefore, Fd is the compactification P(OP1(d)⊕OP1) of the line bundle OP1(d)
over P1. Recall that the real algebraic surface Fd is isomorphic to Fe if and
only if d = e. The restriction of the line bundle OP1(d) to the set of real
points P1(R) of P1 is topologically trivial if and only if d is even. Consequently,
Fd is a rational model of the torus S1 × S1 if d is even, and it is a rational
model of the Klein bottle K if d is odd (see [Si, Proposition VI.1.3] for a
different proof).
The following statement is probably well known, and is an easy consequence
of known techniques (compare the proof of Theorem 6.1 in [Ma]). We have
chosen to include the statement and a proof for two reasons: the statement is
used in the proof of Theorem 3.1, and the idea of the proof turns out also to
be useful in Lemma 4.1.

Proposition 2.1. Let d be a natural integer.

1. If d is even, then Fd is isomorphic to the standard model P1 × P1 of
S1 × S1.

2. If d is odd, then Fd is isomorphic to the standard model BO(P2) of the
Klein bottle K.

(All isomorphisms are in the sense of Definition 1.1.)

Proof. Observe that

• the real algebraic surface P1 × P1 is isomorphic to F0, and

• that the real algebraic surface BO(P2) is isomorphic to F1.

Therefore, the proposition follows from the following lemma.

Lemma 2.2. Let d and e be natural integers. Then the two models Fd and Fe
are isomorphic if and only if d ≡ e (mod 2).

Proof. Since the torus is not diffeomorphic to the Klein bottle, the rational
models Fd and Fe are not isomorphic if d 6≡ e (mod 2). Conversely, if d ≡ e
(mod 2), then Fd and Fe are isomorphic models, as follows from the following
lemma using induction.

Lemma 2.3. Let d be a natural integer. The two rational models Fd and Fd+2

are isomorphic.

Proof. Let E be the section at infinity of Fd. The self-intersection of E is equal
to −d. Choose nonreal complex conjugate points P and P on E. Let F and F
be the fibers of the fibration of Fd over P1 that contain P and P , respectively.
Let X be the real algebraic surface obtained from Fd by blowing up P and P .
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Denote again by E the strict transform of E in X . The self-intersection of E
is equal to −d− 2. The strict transforms of F and F , again denoted by F and
F respectively; they are disjoint smooth rational curves of self-intersection −1,
and they do not intersect E. The real algebraic surface Y obtained from X
by contracting F and F is a smooth P1-bundle over P1. The image of E in Y
has self-intersection −d − 2. It follows that Y is isomorphic to Fd+2 as a real
algebraic surface. Therefore, we conclude that Fd and Fd+2 are isomorphic
models.

3 Rational models

Let Y be a real algebraic surface. A real algebraic surface X is said to be ob-
tained from Y by blowing up if there is a nonnegative integer n, and a sequence
of morphisms

X = Xn
fn // Xn−1

fn−1 // · · · f1 // X0 = Y ,

such that for each i = 1, . . . , n, the morphism fi is either the blow up of Xi−1 at
a real point, or it is the blow up of Xi−1 at a pair of distinct complex conjugate
points.
The surface X is said to be obtained from Y by blowing up at real points only
if for each i = 1, . . . , n, the morphism fi is a blow up of Xi−1 at a real point
of Xi−1.
One defines, similarly, the notion of a real algebraic surface obtained from Y
by blowing up at nonreal points only.
The real algebraic surface defined by the affine equation

x2 + y2 + z2 = 1

will be denoted by S2. Its set of real points is the two-sphere S2. The real
Hirzebruch surface F1 will be simply denoted by F. Its set of real points is the
Klein bottle K.
Thanks to the Minimal Model Program for real algebraic surfaces due to János
Kollár [Ko1, p. 206, Theorem 30], one has the following statement:

Theorem 3.1. Let S be a compact connected topological surface. Let X be a
rational model of S.

1. If S is not orientable then X is isomorphic to a rational model of S
obtained from P2 by blowing up at real points only.

2. If S is orientable then X is isomorphic to S2 or P1 × P1, as a model.

Proof. Apply the Minimal Model Program to X in order to obtain a sequence
of blowing-ups as above, where Y is one of the following:

1. a minimal surface,
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2. a conic bundle over a smooth real algebraic curve,

3. a Del Pezzo surface of degree 1 or 2, and

4. P2 or S2.

(See [Ko1, p. 206, Theorem 30].) The surface X being rational, we know that
X is not birational to a minimal surface. This rules out the case of Y being
a minimal surface. Since X(R) is connected, it can be shown that X is not
birational to a Del Pezzo surface of degree 1 or 2. Indeed, such Del Pezzo
surfaces have disconnected sets of real points [Ko1, p. 207, Theorem 33(D)(c–
d)]. This rules out the case of Y being a Del Pezzo surface of degree 1 or 2. It
follows that

• either Y is a conic bundle, or

• Y is isomorphic to P2, or

• Y is isomorphic to S2.

We will show that the statement of the theorem holds in all these three cases.
If Y is isomorphic to P2, then Y (R) is not orientable. Since X is obtained
from Y by blowing up, it follows that X(R) is not orientable either. Therefore,
the surface S is not orientable, and also X is isomorphic to a rational model
of S obtained from P2 by blowing up. Moreover, it is easy to see that X is
then isomorphic to a rational model of S obtained from P2 by blowing up at
real points only. This settles the case when Y is isomorphic to P2.
If Y is isomorphic to S2, then there are two cases to consider: (1) the case of S
being orientable, (2) and the case of S being nonorientable. If S is orientable,
then X(R) is orientable too, andX is obtained from Y by blowing up at nonreal
points only. It follows that X is isomorphic to S2 as a model.
If S is nonorientable, thenX(R) is nonorientable too, andX is obtained from S2

by blowing up a nonempty set of real points. Therefore, the map X −→ Y
factors through a blow up S̃2 of S2 at a real point. Now, S̃2 contains two smooth
disjoint complex conjugated rational curves of self-intersection −1. When we
contract them, we obtain a real algebraic surface isomorphic to P2. Therefore,
X is obtained from P2 by blowing up. It follows again that X is isomorphic to
a rational model of S obtained from P2 by blowing up at real points only. This
settles the case when Y is isomorphic to S2.
The final case to consider is the one where Y is a conic bundle over a smooth
real algebraic curve B. Since X is rational, B is rational. Moreover, B has real
points because X has real points. Hence, the curve B is isomorphic to P1.
The singular fibers of the the conic bundle Y over B are real, and moreover,
the number of singular fibers is even. Since X(R) is connected, we conclude
that Y (R) is connected too. it follows that the conic bundle Y over B has
either no singular fibers or exactly 2 singular fibers. If it has exactly 2 singular
fibers, then Y is isomorphic to S2 [Ko2, Lemma 3.2.4], a case we have already
dealt with.
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Therefore, we may assume that Y is a smooth P1-bundle over P1. Therefore,
Y is a real Hirzebruch surface. By Proposition 2.1, we may suppose that Y =
P1 × P1, or that Y = F. Since F is obtained from P2 by blowing up one real
point, the case Y = F follows from the case of Y = P2 which we have already
dealt with above.
Therefore, we may assume that Y = P1 × P1. Again, two cases are to be
considered: (1) the case of S being orientable, and (2) the case of S being
nonorientable. If S is orientable, X(R) is orientable, and X is obtained from Y
by blowing up at non real points only. It follows that X is isomorphic as a
model to P1 × P1. If S is not orientable, X is obtained from Y by blowing up,
at least, one real point. Since Y = P1 × P1, a blow-up of Y at one real point
is isomorphic to a blow-up of P2 at two real points. We conclude again by the
case of Y = P2 dealt with above.

Note that Theorem 3.1 implies Comessatti’s Theorem referred to in the intro-
duction, i.e., the statement to the effect that any orientable compact connected
topological surface of genus greater than 1 does not admit a rational model
(Theorem 1.2.1).

Remark 3.2. For sake of completeness let us show how Theorem 3.1 implies
that the surfaces S2, S1 × S1,P2(R) and the Klein bottle K admit exactly one
rational model. First, this is clear for the orientable surfaces S2 and S1 × S1.
Let X be a rational model of P2(R). From Theorem 3.1, we know that X is
isomorphic to a rational model of P2(R) obtained from P2 by blowing up at real
points only. Therefore, we may assume that X itself is obtained from P2 by
blowing up at real points only. Since X(R) is diffeomorphic to P2(R), it follows
that X is isomorphic to P2. Thus any rational model of P2(R) is isomorphic
to P2 as a model.
Let X be a rational model of the Klein bottle K. Using Theorem 3.1 one
may assume that X is a blowing up of P2 at real points only. Since X(R) is
diffeomorphic to the 2-fold connected sum of P2(R), the surface X is a blowing
up of P2 at exactly one real point. It follows that X is isomorphic to F.
Therefore, any rational model of the Klein bottle K is isomorphic to F, as a
model; compare with [Ma, Theorem 1.3].

One can wonder whether the case where S is a 3-fold connected sum of real
projective planes can be treated similarly. The first difficulty is as follows. It
is, a priori, not clear why the following two rational models of #3P2(R) are
isomorphic. The first one is obtained from P2 by blowing up two real points
of P2. The second one is obtained by a successive blow-up of P2: first blow
up P2 at a real point, and then blow up a real point of the exceptional divisor.
In the next section we prove that these two models are isomorphic.

4 The 3-fold connected sum of the real projective plane

We start with a lemma.

Documenta Mathematica 12 (2007) 549–567



558 Indranil Biswas and Johannes Huisman

Lemma 4.1. Let P be a real point of P2, and let BP (P2) be the surface obtained
from P2 by blowing up P . Let E be the exceptional divisor of BP (P2) over P .
Let L be any real projective line of P2 not containing P . Consider L as a curve
in BP (P2). Then there is a birational map

f : BP (P2) 99K BP (P2)

whose restriction to the set of real points is an algebraic diffeomorphism such
that f(L(R)) = E(R).

Proof. The real algebraic surface BP (P2) is isomorphic to the real Hirze-
bruch surface F = F1, and any isomorphism between them takes the excep-
tional divisor of BP (P2) to the section at infinity of the conic bundle F/P1 =
P(OP1(1)⊕OP1). The line L in BP (P2) is given by a unique section of OP1(1)
over P1; this section of OP1(1) will also be denoted by L. We denote again
by E the section at infinity of F.
We have to show that there is a birational self-map f of F such that the equality
f(L(R)) = E(R) holds. Let R be a nonreal point of L. Let F be the fiber of
the conic bundle F passing through R. The blowing-up of F at the pair of
points R and R is a real algebraic surface in which we can contract the strict
transforms of F and F . The real algebraic surface one obtains after these two
contractions is again isomorphic to F.
Therefore, we have a birational self-map f of F whose restriction to the set
of real points is an algebraic diffeomorphism. The image, by f , of the strict
transform of L in F has self-intersection −1. Therefore, the image, by f , of
the strict transform of L coincides with E. In particular, we have f(L(R)) =
E(R).

Proposition 4.2. Let S be the 3-fold connected sum of P2(R). Then S admits
exactly 1 rational model.

Proof. Fix two real points O1, O2 of P2, and let BO1,O2(P
2) be the real algebraic

surface obtained from P2 by blowing up O1 and O2. The surface BO1,O2(P
2) is

a rational model of the 3-fold connected sum S of P2(R).
Let X be a rational model of S. We prove that X is isomorphic to BO1,O2(P

2),
as a model. By Theorem 3.1, we may assume that X is obtained from P2 by
blowing up real points only. Since X(R) is diffeomorphic to a 3-fold connected
sum of the real projective plane, the surface X is obtained from P2 by blowing
up twice real points. More precisely, there is a real point P of P2 and a real
point Q of the blow-up BP (P2) of P2 at P , such that X is isomorphic to the
blow-up BQ(BP (P2)) of BP (P2) at Q.
Choose any real projective line L in P2 not containing P . Then, L is also a
real curve in BP (P2). We may assume that Q 6∈ L. By Lemma 4.1, there is
a birational map f from BP (P2) into itself whose restriction to the set of real
points is an algebraic diffeomorphism, and such that

f(L(R)) = E(R) ,
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where E is the exceptional divisor on BP (P2). Let R = f(Q). Then R 6∈ E,
and f induces a birational isomorphism

f̃ : BQ(BP (P2)) −→ BR(BP (P2))

whose restriction to the set of real points is an algebraic diffeomorphism.
Since R 6∈ E, the point R is a real point of P2 distinct from P , and the
blow-up BR(BP (P2)) is equal to the blow up BP,R(P2) of P2 at the real points
P,R of P2. It is clear that BP,R(P2) is isomorphic to BO1,O2(P

2). It follows
that X is isomorphic to BO1,O2(P

2) as rational models of the 3-fold connected
sum of P2(R).

Lemma 4.3. Let S be a nonorientable surface and let X be a rational model
of S. Then, there are distinct real points P1, . . . , Pn of P2 such that X is
isomorphic to the blowing-up of P2 at P1, . . . , Pn, as a model.

Proof. By Theorem 3.1, we may assume that X is obtained from P2 by blowing
up at real points only. Let

X = Xn
fn // Xn−1

fn−1 // · · · f1 // X0 = P2. (2)

be a sequence of blowing ups, where for each i = 1, . . . , n, the map fi is a
blowing up of Xi−1 at a real point Pi of Xi−1.
To a sequence of blowing-ups as in (2) is associated a forest F of trees. The
vertices of F are the centers Pi of the blow-ups fi. For i > j, there is an edge
between the points Pi and Pj in F if

• the composition fj+1 ◦ · · · ◦ fi−1 is an isomorphism at a neighborhood
of Pi, and

• maps Pi to a point belonging to the exceptional divisor f−1
j (Pj) of Pj in

Xj .

Let ℓ be the sum of the lengths of the trees belonging to F . We will show by
induction on ℓ that X is isomorphic, as a model, to the blowing-up of P2 at a
finite number of distinct real points of P2.
This is obvious if ℓ = 0. If ℓ 6= 0, let Pj be the root of a tree of nonzero length,
and let Pi be the vertex of that tree lying immediately above Pj . By changing
the order of the blowing-ups fi, we may assume that j = 1 and i = 2.
Choose a real projective line L in P2 which does not contain any of the roots
of the trees of F . By Lemma 4.1, there is a birational map g1 from X1 =
BP1(P

2) into itself whose restriction to the set of real points is an algebraic
diffeomorphism and satisfies the condition g1(L(R)) = E(R), where E is the
exceptional divisor of X1.
Put X ′0 = P2, X ′1 = X1, and f ′1 = f1. We consider g1 as a birational map
from X1 into X ′1. Put P ′2 = g1(P2). Let X ′2 be the blowing-up of X ′1 at P ′2,
and let

f ′2 : X ′2 −→ X ′1
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be the blowing-up morphism. Then, g1 induces a birational map g2 from X2

into X ′2 which is an algebraic diffeomorphism on the set of real points.

By iterating this construction, one gets a sequence of blowing ups

f ′i : X
′
i −→ X ′i−1 ,

where i = 1, . . . , n, and birational morphisms gi from Xi into X ′i whose restric-
tions to the sets of real points are algebraic diffeomorphisms. In particular, the
rational models X = Xn and X ′ = X ′n of S are isomorphic.

Let F ′ be the forest of the trees of centers of X ′. Then the sum of the lengths ℓ′

of the trees of F ′ is equal to ℓ− 1. Indeed, one obtains F ′ from F by replacing
the tree T of F rooted at P1 by the disjoint union of the tree T \ P1 and the
tree {P1}. This follows from the fact that P ′2 does not belong to the exceptional
divisor of f ′1, and that, no root of the other trees of F belongs to the exceptional
divisor of f ′1 either.

As observed in the Introduction, if we are able to prove the n-transitivity of the
action of the group Diffalg(P2(R)) on P2(R), then the statement of Theorem 1.2
would follow from Lemma 4.3. However, we did not succeed in proving so.
Nevertheless, we will prove the n-transitivity of Diff(S1 × S1), which is the
subject of the next section.

Now that we know that the topological surfaces S1, S1 × S1 and #nP2(R), for
n = 1, 2, 3, admit exactly one rational model, one may also wonder whether
Lemma 4.3 allows us to tackle the “next” surface, which is the 4-fold connected
sum of P2(R). We note that Theorem 1.2 and Lemma 4.3 imply that a rational
model of such a surface is isomorphic to a surface obtained from P2 by blowing
up 3 distinct real points. However, it it is not clear why the two surfaces of
the following type are isomorphic as models. Take three distinct non-collinear
real points P1, P2, P3, and three distinct collinear real points Q1, Q2, Q3 of P2.
Then the surfaces X = BP1,P2,P3(P

2) and Y = BQ1,Q2,Q3(P
2) are rational

models of #4P2(R) (the 4-fold connected sum of P2(R)), but it is not clear why
they should be isomorphic. One really seems to need some nontrivial algebraic
diffeomorphism of P2(R), that maps Pi to Qi for i = 1, 2, 3, in order to show
that X and Y are isomorphic models. We will come back to this in Section 6
(Lemma 6.1).

5 Algebraic diffeomorphisms of S1 × S1 and n-transitivity

The following statement is a variation on classical polynomial interpolation.

Lemma 5.1. Let m be a positive integer. Let x1, . . . , xm be distinct real num-
bers, and let y1 . . . , ym be positive real numbers. Then there is a real poly-
nomial p of degree 2m that does not have real zeros, and satisfies the condi-
tion p(xi) = yi for all i.
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Proof. Set

p(ζ) :=

m∑

j=1

∏

k 6=j

(ζ − xk)2
(xj − xk)2

· yj .

Then p is of degree 2m, and p does not have real zeros. Furthermore, we have
p(xi) = yi for all i.

Corollary 5.2. Let m be a positive integer. Let x1, . . . , xm be distinct real
numbers, and let y1 . . . , ym, z1, . . . , zm be positive real numbers. Then there are
real polynomials p and q without any real zeros such that degree(p) = degree(q),
and

p(xi)

q(xi)
=
yi
zi

for all 1 ≤ i ≤ m.

The interest in the rational functions p/q of the above type lies in the following
fact.

Lemma 5.3. Let p and q be two real polynomials of same degree that do not
have any real zeros. Define the rational map f : P1 × P1

99K P1 × P1 by

f(x, y) =

(
x,
p(x)

q(x)
· y
)
.

Then f is a birational map of P1× P1 into itself whose restriction to the set of
real points is an algebraic diffeomorphism.

Theorem 5.4. Let n be a natural integer. The group Diffalg(P1 × P1) acts
n-transitively on P1(R)× P1(R).

Proof. Choose n distinct real points P1, . . . , Pn and n distinct real points
Q1, . . . , Qn of P1 × P1. We need to show that there is a birational map f
from P1 × P1 into itself, whose restriction to (P1 × P1)(R) is an algebraic dif-
feomorphism, such that f(Pi) = Qi, for i = 1, . . . , n.
First of all, we may assume that P1, . . . , Pn, Q1, . . . , Qn are contained in the
first open quadrant of P1(R) × P1(R). In other words, the coordinates of Pi
and Qi are strictly positive real numbers. Moreover, it suffices to prove the
statement for the case where Qi = (i, i) for all i.
By the hypothesis above, there are positive real numbers xi, yi such that Pi =
(xi, yi) for all i. By Corollary 5.2, there are real polynomials p and q without
any real zeros such that degree(p) = degree(q), and such that the real numbers

p(xi)

q(xi)
· yi

are positive and distinct for all i. Define f : P1 × P1
99K P1 × P1 by

f(x, y) :=

(
x,
p(x)

q(x)
· y
)
.
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By Lemma 5.3, f is birational, and its restriction to (P1 × P1)(R) is an alge-
braic diffeomorphism. By construction, the points f(Pi) have distinct second
coordinates. Therefore, replacing Pi by f(Pi) if necessary, we may assume that
the points Pi have distinct second coordinates, which implies that y1, . . . , ym
are distinct positive real numbers.
By Corollary 5.2, there are real polynomials p, q without any real zeros such
that degree(p) = degree(q), and

p(yi)

q(yi)
· xi = i.

Define f : P1 × P1
99K P1 × P1 by

f(x, y) =

(
p(y)

q(y)
· x, y

)
.

By Lemma 5.3, f is birational and its restriction to the set of real points is
an algebraic diffeomorphism. By construction, one has f(Pi) = (i, yi) for all i.
Therefore, we may assume that Pi = (i, yi) for all i.
Now, again by Corollary 5.2, there are two real polynomials p and q without
any real zeros such that degree(p) = degree(q), and

p(i)

q(i)
· yi = i

for all i. Define f : P1 × P1
99K P1 × P1 by

f(x, y) =

(
x,
p(x)

q(x)
· y
)
.

By Lemma 5.3, f is birational, and its restriction to the set of real points is an
algebraic diffeomorphism. By construction f(Pi) = Qi for all i.

Remark 5.5. One may wonder whether Theorem 5.4 implies that the group
Diffalg(P2(R)) acts n-transitively on P2(R). We will explain the implication of
Theorem 5.4 in that direction. Let P1, . . . , Pn be distinct real points of P2, and
let Q1, . . . , Qn be distinct real points of P2. Choose a real projective line L
in P2 not containing any of the points P1, . . . , Pn, Q1, . . . , Qn. Let O1 and O2

be distinct real points of L. Identify P1×P1 with the surface obtained from P2

by, first, blowing up O1, O2 and, then, contracting the strict transform of L.
Denote by E1 and E2 the images of the exceptional divisors over O1 and O2

in P1 × P1, respectively. We denote again by P1, . . . , Pn, Q1, . . . , Qn the real
points of P1 × P1 that correspond to the real points P1, . . . , Pn, Q1, . . . , Qn
of P2.
Now, the construction in the proof of Theorem 5.4 gives rise to a birational
map f from P1 × P1 into itself which is an algebraic diffeomorphism on (P1 ×
P1)(R) and which maps Pi ontoQi, for i = 1, . . . , n. Moreover, if one carries out
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carefully the construction of f , one has that f(E1(R)) = E1(R) and f(E2(R)) =
E2(R) and that the real intersection point O of E1 and E2 in P1×P1 is a fixed
point of f .
Note that one obtains back P2 from P1 × P1 by blowing up O and contracting
the strict transforms of E1 and E2. Therefore, the birational map f of P1×P1

into itself induces a birational map g of P2 into itself. Moreover, g(Pi) = Qi.
One may think that g is an algebraic diffeomorphism on P2(R). However,
the restriction of g to the set of real points is not necessarily an algebraic
diffeomorphism! In fact, g is an algebraic diffeomorphism on P2(R) \ {O1, O2}.
The restriction of g to P2(R) \ {O1, O2} does admit a continuous extension g̃
to P2(R), and g̃ is obviously a homeomorphism. One may call g̃ an algebraic
homeomorphism, but g̃ is not necessarily an algebraic diffeomorphism. It is not
difficult to find explicit examples of such algebraic homeomorphisms that are
not diffeomorphisms.
That is the reason why we do not claim to have proven n-transitivity
of Diffalg(P2(R). The only statement about P2(R) the above arguments prove is
the n-transitivity of the group Homeoalg(P2(R)) of algebraic homeomorphisms.

6 A nontrivial algebraic diffeomorphism of P2(R)

The nontrivial diffeomorphisms we have in mind are the following. They have
been studied in another recent paper as well [RV].
Let Q1, . . . , Q6 be six pairwise distinct complex points of P2 satisfying the
following conditions:

1. the subset {Q1, · · · , Q6} is closed under complex conjugation,

2. the subset {Q1, · · · , Q6} does not lie on a complex conic,

3. the complex conic passing through any 5 of these six points is nonsingular.

Denote by C1, . . . , C6 the nonsingular complex conics one thus obtains. These
conics are pairwise complex conjugate. Consider the real Cremona transfor-
mation f = fQ of P2 defined by first blowing-up P2 at Q1, . . . , Q6 and then
contracting the strict transforms of C1, . . . , C6. Let R1, . . . , R6 denote the
points of P2 that correspond to the contractions of the conics C1, . . . , C6.
The restriction to P2(R) of the birational map f from P2 into itself is obviously
an algebraic diffeomorphism.
The Cremona transformation f maps a real projective line, not containing any
of the points Q1, . . . , Q6, to a real rational quintic curve having 6 distinct non-
real double points at the points R1, . . . , R6. Moreover, it maps a real rational
quintic curve in P2 having double points at Q1, . . . , Q6 to a real projective line
in P2 that does not contain any of the points R1, . . . , R6.
Observe that the inverse of the Cremona transformation fQ is the Cremona
transformation fR. It follows that f = fQ induces a bijection from the set of
real rational quintics having double points at Q1, . . . , Q6 onto the set of real
projective lines in P2 that do not contain any of R1, . . . , R6.
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This section is devoted to the proof of following lemma.

Lemma 6.1. Let n be a natural integer bigger than 1. Let P1, . . . , Pn be dis-
tinct real points of P2. Then there is a birational map of P2 into itself, whose
restriction to the set of real points is an algebraic diffeomorphism, such that
the image points f(P3), . . . , f(Pn) are not contained in the real projective line
through f(P1) and f(P2).

Proof. Choose complex points Q1, . . . , Q6 of P2 as above. As observed before,
the Cremona transformation f = fQ induces a bijection from the set of real
rational quintic curves having double points at Q1, . . . , Q6 onto the set of real
projective lines of P2 not containing any of the above points R1, . . . , Rn. In
particular, there is a real rational quintic curve C in P2 having 6 nonreal double
points at Q1, . . . , Q6.
We show that there is a real projectively linear transformation α of P2 such
that α(C) contains P1 and P2, and does not contain any of the points
P3, . . . , Pn. The Cremona transformation fα(Q) will then be a birational map
of P2 into itself that has the required properties.
First of all, let us prove that there is α ∈ PGL3(R) such that P1, P2 ∈ α(C).
This is easy. Since C is a quintic curve, C(R) is infinite. In particular,
C contains two distinct real points. It follows that there is α ∈ PGL3(R)
such that P1, P2 ∈ α(C). Replacing C by α(C) if necessary, we may suppose
that P1, P2 ∈ C.
We need to show that there is α ∈ PGL3(R) such that α(P1) = P1, α(P2) = P2

and α(C) does not contain any of the points P3, . . . , Pn.
To prove the existence of α by contradiction, assume that there is no such
automorphism of P2. Therefore, for all α ∈ PGL3(R) having P1 and P2 as
fixed points, the image α(C) contains at least one of the points of P3, . . . , Pn.
Let G be the stabilizer of the pair (P1, P2) for the diagonal action of PGL3

on P2×P2. It is easy to see that G is a geometrically irreducible real algebraic
group. Let

ρ : C ×G −→ P2

be the morphism defined by ρ(P, α) = α(P ). Let

Xi := ρ−1(Pi)

be the inverse image, where i = 3, . . . , n. Therefore, Xi is a real algebraic
subvariety of C ×G. By hypothesis, for every α ∈ G(R), there is an integer i
such that α(C) contains Pi. Denoting by p the projection on the second factor
from C ×G onto G, this means that

n⋃

i=3

p(Xi(R)) = G(R).

Since G(R) is irreducible, there is an integer i0 ∈ [3, n] such that the semi-
algebraic subset p(Xi0(R)) is Zariski dense in G(R). Since G is irreducible and p
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is proper, one has p(Xi0) = G. In particular, Pi0 ∈ α(C) for all α ∈ G(C). To
put it otherwise, α−1(Pi0 ) ∈ C for all α ∈ G(C), which means that the orbit
of Pi0 under the action of G is contained in C. In particular, the dimension
of the orbit of Pi0 is at most one. It follows that P1, P2 and Pi0 are collinear.
Let L be the projective line through P1, P2. Then the orbit of Pi0 coincides
with L \ {P1, P2}. It now follows that L ⊆ C. This is in contradiction with the
fact that C is irreducible.

7 Proof of Theorem 1.2.2

Let S be a topological surface, either nonorientable or of genus less than 2. We
need to show that any two rational models of S are isomorphic. By Remark 3.2,
we may assume that S is the n-fold connected sum of P2(R), where n ≥ 3.

Let O1, . . . , On−2 be fixed pairwise distinct real points of P1 × P1, and
let Bn−2(P1 × P1) be the surface obtained from P1 × P1 by blowing up the
points O1, . . . , On−2. It is clear that Bn−2(P1 × P1) is a rational model of S.

Now, it suffices to show that any rational model of S is isomorphic to Bn−2(P1×
P1), as a model. Let X be any rational model of S. By Lemma 4.3, we may
assume that there are distinct real points P1, . . . , Pm of P2 such that X is the
surface obtained from P2 by blowing up P1, . . . , Pm. SinceX is a rational model
of an n-fold connected sum of P2(R), one has m = n− 1. In particular, m ≥ 2.
By Lemma 6.1, we may assume that the points P3, . . . , Pm are not contained
in the real projective line L through P1 and P2.

The blow-up morphismX −→ P2 factors through the blow up P̃2 = BP1,P2(P
2).

The strict transform L̃ of L has self-intersection −1 in P̃2. If we contract L̃,
then we obtain a surface isomorphic to P1 × P1. Therefore, X is isomorphic
to a model obtained from P1 × P1 by blowing up m − 1 = n − 2 distinct
real points of P1 × P1. It follows from Theorem 5.4 that X is isomorphic
to Bn−2(P1 × P1).

8 Geometrically rational models

Recall that a nonsingular projective real algebraic surface X is geometrically
rational if the complex surface XC = X ×R C is rational. Comessatti showed
that, if X is a geometrically rational real algebraic surface with X(R) con-
nected, then X is rational; see Theorem IV of [Co1] and the remarks thereafter
(see also [Si, Corollary VI.6.5]). Therefore, the main result, namely Theo-
rem 1.2, also applies to geometrically rational models. More precisely, we have
the following consequence.

Corollary 8.1. Let S be a compact connected real two-manifold.

1. If S is orientable and the genus of S is greater than 1, then S does not
admit a geometrically rational real algebraic model.
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2. If S is either nonorientable, or it is diffeomorphic to one of S2 and S1×
S1, then there is exactly one geometrically rational model of S, up to
isomorphism. In other words, any two geometrically rational models of S
are isomorphic.

Now, the interesting aspect about geometrically rational real surfaces is that
their set of real points can have an arbitrary finite number of connected compo-
nents. More precisely, Comessati proved the following statement [Co2, p. 263
and further] (see also [Si, Proposition VI.6.1]).

Theorem 8.2. Let X be a geometrically rational real algebraic surface such
that X(R) is not connected. Then each connected component of X(R) is either
nonorientable or diffeomorphic to S2. Conversely, if S is a nonconnected com-
pact topological surface each of whose connected components is either nonori-
entable or diffeomorphic to S2, then there is a geometrically rational real alge-
braic surface X such that X(R) is diffeomorphic to S.

Let S be a nonconnected topological surface. One may wonder whether the
geometrically rational model of S whose existence is claimed above, is unique
up to isomorphism of models. The answer is negative, as shown by the following
example.

Example 8.3. Let S be the disjoint union of a real projective plane and 4 copies
of S2. Then, any minimal real Del Pezzo surface of degree 1 is a geometrically
rational model of S [Ko2, Theorem 2.2(D)]. Minimal real Del Pezzo surfaces of
degree 1 are rigid; this means that any birational map between two minimal real
Del Pezzo surfaces of degree 1 is an isomorphism of real algebraic surfaces [Is,
Theorem 1.6]. Now, the set of isomorphism classes of minimal real Del Pezzo
surfaces of degree 1 is in one-to-one correspondence with an open dense subset of
the quotient P2(R)8/PGL3(R) for the diagonal action of the group PGL3(R). It
follows that the topological surface S admits a 8-dimensional continuous family
of nonisomorphic geometrically rational models. In particular, the number of
nonisomorphic geometrically rational models of S is infinite.
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1 Introduction

1.1 Preliminaries

The Landau Hamiltonian describes a charged particle confined to a plane in a
constant magnetic field. The Landau Hamiltonian is one of the earliest explic-
itly solvable quantum mechanical models. Its spectrum consists of the Landau
levels,1 infinitely degenerate eigenvalues placed at the points of an arithmetic
progression.
In [7], the Landau Hamiltonian was considered in the exterior of a compact
obstacle. Introducing the obstacle produces clusters of eigenvalues of finite
multiplicity around the Landau levels. Various asymptotics (high energy, semi-
classical) of these eigenvalue clusters were studied in [7]. In this paper we focus

1It is a little known fact that this was worked out by Fock two years before Landau; see
[4, 9].
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on a different aspect of the spectral analysis of this model: for a fixed eigen-
value cluster, we consider the rate of accumulation of eigenvalues in this cluster
to the Landau level. We describe this rate of accumulation rather precisely in
terms of the logarithmic capacity of the obstacle.
Our construction is motivated by the recent progress in the study of the Landau
Hamiltonian on the whole plane perturbed by a compactly supported or fast
decaying electric or magnetic field, see [15, 13, 3, 16]. In particular, we use
some operator theoretic constructions from [15] and [13] and some concrete
analysis (related to logarithmic capacity) from [3].

1.2 The Landau Hamiltonian

We will write x = (x1, x2) ∈ R2 and identify R2 with C in the standard way,
setting z = x1 + ix2 ∈ C. The Lebesgue measure in R2 will be denoted by
dx and in C by dm(z). The derivatives with respect to x1, x2 are denoted by
∂k = ∂xk ; we set, as usual, ∂̄ = (∂1 + i∂2)/2, ∂ = (∂1 − i∂2)/2.
We denote by B > 0 the magnitude of the constant magnetic field in R2. We
choose the gauge A(x) = (A1(x), A2(x)) = (− 1

2Bx2,
1
2Bx1) for the magnetic

vector potential associated with this field. The magnetic Hamiltonian on the
whole plane is defined as

X0 = −(∇− iA)2 in L2(R2). (1)

More precisely, for u ∈ C∞0 (R2) we set

‖u‖2H1
A

=

∫

R2

|i∇u(x) +A(x)u(x)|2 dx (2)

and define X0 as the selfadjoint operator which corresponds to the closure of
the quadratic form ‖u‖2

H1
A
, u ∈ C∞0 (R2).

It is well known (see [4, 9] or [10]) that the spectrum of X0 consists of the
eigenvalues Λq = (2q + 1)B, q = 0, 1, . . . , of infinite multiplicity. In particular,
we have

‖u‖2H1
A
≥ B‖u‖2L2, u ∈ C∞0 (R2). (3)

We will denote by Lq the eigenspace of X0 corresponding to Λq and by Pq the
operator of orthogonal projection onto Lq in L2(R2). Later on, we will need
an explicit description of Lq; this will be discussed in section 4.2.
Let Ω ⊂ R2 be an open set. In order to define the magnetic Hamiltonian in
Ω, it is convenient to consider the associated quadratic form. Following [12],
we denote by H1

A(Ω) the closure of C∞0 (Ω) with respect to the norm ‖u‖H1
A
.

The quadratic form ‖u‖2
H1
A

is closed in L2(Ω) and (by (3)) positively definite.

This form defines a self-adjoint operator in R2 which we denote by X(Ω). If
Ω is bounded by a smooth curve, then the usual computations show that this
definition of X(Ω) corresponds to setting the Dirichlet boundary condition on
∂Ω. The operator X0 corresponds to taking Ω = R2 in the above definitions.
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Note that for a bounded Ω, the norm in H1
A(Ω) is equivalent to the standard

Sobolev norm H1(Ω); in particular, in this case the embedding H1
A(Ω) ⊂ L2(Ω)

is compact.

1.3 Main results

LetK ⊂ R2 be a compact set andKc its complement. Our main results concern
the spectrum of the operator X(Kc). First we state a preliminary result which
gives a general description of the spectrum of X(Kc). This result is already
known (see [7]) but as part of our construction, we provide a simple proof in
Section 1.4.

Proposition 1.1. Let K ⊂ R2 be a compact set. Then

σess(X(Kc)) = σess(X0) = ∪∞q=0{Λq}, Λq = (2q + 1)B.

Moreover, for all q and all λ ∈ (Λq−1,Λq) the number of eigenvalues of X(Kc)
in (λ,Λq) is finite.

In other words, the last statement means that the eigenvalues of X(Kc) can
accumulate to the Landau levels only from above.
For all q ≥ 0, we enumerate the eigenvalues of X(Kc) in (Λq,Λq+1):

λq1 ≥ λq2 ≥ . . .

Proposition 1.1 ensures that λqn → Λq as n → ∞. Below we describe the rate
of this convergence. Roughly speaking, we will see that for large n,

an

n!
≤ λqn − Λq ≤

bn

n!
(4)

with some a, b depending on K. In order to discuss the dependence of a, b on
the domain K, let us introduce the following notation:

∆q(K) = lim sup
n→∞

[n!(λqn − Λq)]
1/n,

δq(K) = lim inf
n→∞

[n!(λqn − Λq)]
1/n.

(5)

The estimates for these spectral characteristics will be given in terms of the
logarithmic capacity of K, which is denoted by Cap (K). Below we recall the
definition and basic properties of logarithmic capacity; for the details, see e.g.
[11] or [18]. For a measure µ ≥ 0 in R2, its logarithmic energy is defined by

I(µ) =

∫ ∫
log

1

|z − t|dµ(z)dµ(t).

For a compact set K ⊂ R2, its logarithmic capacity is defined by

Cap (K) = e−V (K),

V (K) = inf{I(µ) | µ ≥ 0 is a measure in R2, suppµ ⊂ K, µ(K) = 1}.
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The logarithmic capacity of compact sets in R2 has the following properties:
(i) if K1 ⊂ K2 then Cap K1 ≤ Cap K2;
(ii) the logarithmic capacity of a disc of radius r is r;
(iii) if K2 = {αx | x ∈ K1}, α > 0, then Cap K2 = αCap K1;
(iv) Cap K coincides with the logarithmic capacity of the polynomial convex
hull Pc (K) of K (=the complement of the unbounded connected component
of Kc).
(v) Continuity of capacity: if Kε = {x ∈ R2 | dist (x,K) ≤ ε}, then Cap Kε →
Cap K as ε→ +0.
To extend the notion of capacity to arbitrary Borel sets E, one defines the
inner and outer capacities

Cap i(E) = sup{Cap (K) | K ⊂ E, K compact}
Cap o(E) = inf{Cap i(U) | E ⊂ U, U open}.

Then every Borel set E is capacitable in the sense that Cap i(E) = Cap o(E)
and one can simply write Cap (E) for this common value. We will also need
another version of inner capacity, which we denote by Cap−(K) and define by

sup{Cap S | S ⊂ K is a compact set with a Lipschitz boundary}.

Theorem 1.2. Let K ⊂ R2 be a compact set; then for all q ≥ 0 one has

∆q(K) ≤ B

2
(Cap (K))2,

δq(K) ≥ B

2
(Cap−(Pc (K)))2.

In particular, if K is a compact set with a Lipschitz boundary, then ∆q(K) =
δq(K) = B

2 (Cap (K))2 for all q ≥ 0.

The lower bound in the above theorem is strictly positive if and only if Pc (K)
has a non-empty interior. In particular, for such compacts the number of
eigenvalues λq1, λ

q
2, . . . is infinite for each q. However, even for some compacts

without interior points, lower spectral bounds can be obtained. In particular,
this can be done for the compact K being a smooth (not necessarily closed)
curve.

Theorem 1.3. Let K ⊂ R2 be a C∞ smooth simple curve of a finite length.
Then for all q ≥ 0, one has

∆q(K) = δq(K) =
B

2
(Cap (K))2.

Remark. 1. One can prove that

if Cap (K) = 0, then C∞0 (Kc) is dense in H1
A(R2). (6)
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It follows that for K of zero capacity, H1
A(Kc) = H1

A(R2) and therefore
X(Kc) = X0. Thus, for such K the spectrum of X(Kc) consists of
Landau levels Λq.

The statement (6) seems to be well known to the experts in the field
although it is difficult to pinpoint the exact reference. One can use the
argument of [1], Theorem 9.9.1; this argument applies to the usual H1

Sobolev norm, but it is very easy to modify it for the norm H1
A. In this

theorem the Bessel capacity rather than the logarithmic capacity is used;
however, the Bessel capacity of a compact set vanishes if and only if its
logarithmic capacity vanishes. In order to prove the latter fact (again,
well known to experts) one has to combine Theorem 2.2.7 in [1] and
Sect.II.4 in [11].

2. We do not know whether it possible for Λq to remain eigenvalues ofX(Kc)
of infinite multiplicity if Cap (K) > 0.

3. Following the proof of Theorem 1.2 and using the results of [3], it is easy
to show that for q = 0, the lower bound in this theorem can be replaced
by the following one:

δ0(K) ≥ B

2
(Cap (K−))2,

K− = {z ∈ C | lim sup
r→+0

logm(Pc(K) ∩Dr(z))

log r
<∞},

where Dr(z) = {ζ ∈ C | |ζ − z| ≤ r}, and m(·) is the Lebesgue measure.

4. Analysing the proof of Theorem 1.3, it is easy to see that if we are only
interested in its statement for finitely many q, it suffices to require some
finite smoothness of the curve K.

1.4 Outline of the proof

Let us write L2(R2) = L2(Kc)⊕L2(K). (If the Lebesgue measure ofK vanishes
then, of course, L2(K) = {0}.) With respect to this decomposition, let us define

R(Kc) = X(Kc)−1 ⊕ 0 in L2(R2) = L2(Kc)⊕ L2(K). (7)

Clearly, for any λ 6= 0 we have

λ ∈ σ(X(Kc))⇔ λ−1 ∈ σ(R(Kc)) (8)

with the same multiplicity. Thus, it suffices for our purposes to study the
spectrum of the operator R(Kc).
First note that in the “free” case K = ∅ we have R(R2) = X−1

0 and the
spectrum of X−1

0 consists of the eigenvalues Λ−1
q of infinite multiplicity and

their point of accumulation, zero.
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Next, it turns out (see section 3) that

R(Kc) = X−1
0 −W, where W ≥ 0 is compact. (9)

Thus, the Weyl’s theorem on the invariance of the essential spectrum under
compact perturbations ensures that σess(R(Kc)) = σess(X

−1
0 ). Moreover, a

simple operator theoretic argument (see e.g. [2, Theorem 9.4.7]) shows that the
eigenvalues of R(Kc) do not accumulate to the inverse Landau levels Λ−1

q from
above. Thus, the spectrum of R(Kc) consists of zero and the eigenvalue clusters
{(λq1)−1, (λq2)

−1, . . . } with the eigenvalues in the q’th cluster accumulating to
Λ−1
q . In section 2.3 we show that the rate of accumulation of (λqn)−1 to Λ−1

q

can be described in terms of the spectral asymptotics of the Toeplitz type
operator PqWPq; here W is defined by (9) and Pq is the projection onto Lq =
Ker (X0 − Λq) = Ker (X−1

0 − Λ−1
q ).

The spectrum of PqWPq is studied in sections 4 and 5, using the results of [3].
The fact that the logarithmic capacity of the domain appears in this problem
probably deserves some explanation. In [3], the spectral asymptotics of PqWPq
was related to the asymptotics of the singular numbers of the embedding of
the Segal-Bargmann space F2 (see section 4.2 below) into an L2 space with
the weight related to W . Following the technique of [14], in [3] the analysis of
this asymptotics is then reduced to the analysis of the sequence of polynomials
of a complex variable, orthogonal with respect to the relevant weight. After
this, the results of [18] ensure that the asymptotics of these polynomials is
determined by the logarithmic capacity of the support of the weight.
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2 Some abstract results

Here we collect some general operator theoretic statements that are used in
the proof. The statements themselves, with the exception of the last one, are
almost obvious, but spelling them out explicitly helps explain the main ideas
of our construction.

2.1 Quadratic forms

Our arguments can be stated most succinctly if we are allowed to deal with
quadratic forms whose domains are not necessarily dense in the Hilbert space.
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Here is the corresponding abstract framework; related constructions appeared
before in the literature; see e.g. [17].
Let a be a closed positive definite quadratic form in a Hilbert space H with
the domain d[a]. Let the closure of d[a] in H be Ha. Then the form a defines
a self-adjoint operator A in Ha. Let Ja : Ha → H be the natural embedding
operator; its adjoint J∗a : H → Ha acts as the orthogonal projection onto the
subspace Ha of H. The operator JaA

−1J∗a in H can be considered as the direct
sum

JaA
−1J∗a = A−1 ⊕ 0 in the decomposition H = Ha ⊕H⊥a ;

here we have in mind (7). Now let b be another closed positive definite form
in H and let B, d[b], Hb, Jb be the corresponding objects constructed for this
form.

Proposition 2.1. Suppose that d[b] ⊂ d[a] and b[x, y] = a[x, y] for all x, y ∈
d[b]. Then:
(i) JbB

−1J∗b ≤ JaA−1J∗a on H;
(ii) if x ∈ d[b] ∩ Dom(A), then x ∈ Dom(B), Bx = Ax, and JbB

−1J∗bAx =
JaA

−1J∗aAx.

Proof. It suffices to consider the case Ha = H.
(i) The hypothesis implies

b[x, x] = a[Jbx, Jbx] for all x ∈ d[b].

This can be recast as ‖B1/2x‖ = ‖A1/2Jbx‖, x ∈ d[b]. It follows that the
operator A1/2JbB

−1/2 is an isometry on Hb and therefore A1/2JbB
−1/2J∗b is a

contraction on H. By conjugation, we get that ‖JbB−1/2J∗bA
1/2z‖ ≤ ‖z‖ for

all z ∈ d[a]. The last statement is equivalent to ‖JbB−1/2J∗b u‖ ≤ ‖A−1/2u‖ for
all u ∈ H, and so JbB

−1J∗b ≤ A−1 as required.
(ii) Let y ∈ d[b]; then

b[x, y] = a[x, y] = (Ax, y),

and so x ∈ Dom(B) and Bx = Ax. Next, JaA
−1J∗aAx = A−1Ax = x, and

JbB
−1J∗bAx = JbB

−1J∗bBx = JbB
−1Bx = Jbx = x,

which proves the required statement.

2.2 Shift in enumeration

The asymptotics of the type discussed in Theorems 1.2 and 1.3 is independent
of a shift in the enumeration of eigenvalues. This is a consequence of the
following elementary fact. Let b1 ≥ b2 ≥ . . . be a sequence of positive numbers
such that lim supn→∞[n!bn]

1/n <∞. Then for all ℓ ∈ Z,

lim
n→∞

{
sup

inf

}
[n!bn+ℓ]

1/n = lim
n→∞

{
sup

inf

}
[n!bn]

1/n. (10)
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2.3 Accumulation of eigenvalues

Having in mind (9), let us consider the following general situation. Let T
be a self-adjoint operator and let Λ be an isolated eigenvalue of T of infinite
multiplicity with the corresponding eigenprojection PΛ. Let τ > 0 be such that

((Λ− 2τ,Λ + 2τ) \ {Λ}) ∩ σ(T ) = ∅.

Next, let W ≥ 0 be a compact operator; consider the spectrum of T − W .
The Weyl’s theorem on the invariance of the essential spectrum under compact
perturbations ensures that

((Λ− 2τ,Λ + 2τ) \ {Λ}) ∩ σess(T −W ) = ∅.

Moreover, a simple argument (see e.g. [2, Theorem 9.4.7]) shows that the
eigenvalues of T −W do not accumulate to Λ from above (i.e. (Λ,Λ + ǫ) ∩
σ(T −W ) = ∅ for some ǫ > 0).
We will need a description of the eigenvalues of T −W below Λ in terms of
the eigenvalues of the Toeplitz operator PΛWPΛ. Let µ1 ≥ µ2 ≥ · · · be the
eigenvalues of PΛWPΛ; in order to exclude degenerate cases, let us assume that
this operator has infinite rank. Let λ1 ≤ λ2 ≤ · · · be the eigenvalues of T −W
in the interval (Λ− τ,Λ).

Proposition 2.2. Under the above assumptions, for any ǫ > 0 there exists
ℓ ∈ Z such that for all sufficiently large n, one has

(1− ǫ)µn+ℓ ≤ Λ− λn ≤ (1 + ǫ)µn−ℓ.

The proof borrows its key element from [8, Lemma 1.1]. An alternative proof
can be found in [15, Proposition 4.1].

Proof. 1. We denote S = T −W and QΛ = I − PΛ and consider the operators

R± = ǫPΛWPΛ +
1

ǫ
QΛWQΛ ± (PΛWQΛ +QΛWPΛ).

and

S± = PΛ(T − (1 ± ǫ)W )PΛ +QΛ(T − (1 ± 1

ǫ
)W )QΛ.

We have
S = S+ +R− = S− −R+.

2. Since W is compact, the operators R± are also compact. Since R± can be
represented as

R± = (
√
ǫPΛ ±

1√
ǫ
QΛ)W (

√
ǫPΛ ±

1√
ǫ
QΛ)

and W ≥ 0, we see that R± ≥ 0.
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3. Let us discuss the spectrum of S± in (Λ − τ,Λ). Clearly, the spectrum
of PΛ(T − (1 ± ǫ)W )PΛ = ΛPΛ − (1 ± ǫ)PΛWPΛ consists of the eigenvalues
Λ − (1 ± ǫ)µn. Next, since by assumption, T |RanQΛ

has no spectrum in

(Λ− 2τ,Λ + 2τ) and W is compact, we see that QΛ(T − (1± 1
ǫ )W )QΛ |RanQΛ

has only finitely many eigenvalues in the interval (Λ − τ,Λ + τ). Since the
operators PΛ(T − (1 ± ǫ)W )PΛ and QΛ(T − (1 ± 1

ǫ )W )QΛ act in orthogonal
subspaces of our Hilbert space, the spectrum of S± is the union of the spectra
of these operators.
So we arrive at the following conclusion. Let ν±1 ≤ ν±2 ≤ · · · denote the
eigenvalues of S± in (Λ− τ,Λ). Then

ν+
n = Λ− (1 + ǫ)µn−i, ν−n = Λ− (1− ǫ)µn−j , (11)

for some integers i, j and all sufficiently large n.
4. Let us prove that λn ≤ ν−n+k for some integer k and all sufficiently large n.

Denote δ = (λ1−Λ+τ)/2 and let us write R+ = R
(1)
+ +R

(2)
+ , where 0 ≤ R(1)

+ ≤
δI and rankR

(2)
− <∞. Denote by NS(α, β) the number of eigenvalues of S in

the interval (α, β). Writing S = S− −R(1)
+ −R(2)

+ , we get for any λ ∈ (λ1,Λ):

NS(Λ− τ, λ) = NS(λ1 − 2δ, λ)

≥ N
S−−R(1)

+

(λ1 − 2δ, λ)− rankR
(2)
− ≥ NS−(λ1 − δ, λ)− rankR

(2)
− .

The second inequality above follows from σ(R
(1)
+ ) ⊂ [0, δ] (see [2,

Lemma 9.4.3]). These inequalities for the eigenvalue counting functions
can be rewritten as λn ≤ ν−n+k with some integer k.

In the same way, one proves that λn ≥ ν+
n−k for large n and some integer k.

Taken together with (11), this yields the required result.

3 Preliminaries and reduction to Toeplitz operators

Let K ⊂ R2 be a compact set; we return to the discussion of the spectrum of
X(Kc) and start with some general remarks.
First we would like to point out that the spectral asymptotics that we are
interested in is independent of the “holes” in the domain K:

δq(K) = δq(Pc(K)), ∆q(K) = ∆q(Pc(K)). (12)

Indeed, let us write Kc = Ω∪Σ, where Ω is the unbounded connected compo-
nent of Kc and Ω and Σ are disjoint. With respect to the direct sum decom-
position L2(Kc) = L2(Ω) ⊕ L2(Σ), we have X(Kc) = X(Ω) ⊕ X(Σ). By the
compactness of the embedding H1

A(Σ) ⊂ L2(Σ), the operator X(Σ) has a com-
pact resolvent. Thus, on any bounded interval of the real line the spectrum of
X(Kc) differs from the spectrum of X(Ω) by at most finitely many eigenvalues.
By (10), this yields (12).
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Next, we apply the abstract reasoning of section 2.1 to the quadratic form
a[u] = ‖u‖2

H1
A(Kc)

with domain d[a] = H1
A(Kc), considering L2(R2) as the

main Hilbert space H. We consider the operator R(Kc) (see (7)) and write
R(Kc) = X−1

0 −W . Proposition 2.2 suggests that in order to find the rate
of accumulation of the eigenvalues of R(Kc) to Λ−1

q , one should study the
spectrum of the Toeplitz type operators PqWPq. This is done in the next
section. Denote by µq1 ≥ µq2 ≥ . . . the eigenvalues of PqWPq. We will prove

Proposition 3.1. Let K ⊂ R2 be a compact set and q ≥ 0. Then

lim sup
n→∞

(n!µqn)
1/n ≤ B

2
(Cap (K))2,

lim inf
n→∞

(n!µqn)
1/n ≥ B

2
(Cap−(K))2.

If K is a C∞ smooth curve, then one has

lim
n→∞

(n!µqn)1/n =
B

2
(Cap (K))2.

Now we can prove our main statements.

Proof of Theorem 1.1 and Theorem 1.2. Combining Proposition 3.1, Proposi-
tion 2.2 and (12), we get the estimates for the quantities

lim
n→∞

sup[n!(Λ−1
q − (λqn)−1)]1/n ≤ B

2
(Cap (K))2,

lim
n→∞

inf[n!(Λ−1
q − (λqn)−1)]1/n ≥ B

2
(Cap−(Pc(K))2

for any compact K. If K is a C∞ smooth curve, we get

lim
n→∞

[n!(Λ−1
q − (λqn)−1)]1/n =

B

2
(Cap (K))2.

An elementary argument shows that

lim
n→∞

{
sup

inf

}
[n!(Λ−1

q − (λqn)−1)]1/n = lim
n→∞

{
sup

inf

}
[n!(λqn − Λq)]

1/n.

This yields the required statements.

Proof of (9). Let D be a disc such that K ⊂ D. By Proposition 2.1(i), we get

Dc ⊂ Kc ⊂ R2 ⇒ R(Dc) ≤ R(Kc) ≤ X−1
0

and so
0 ≤ X−1

0 −R(Kc) ≤ X−1
0 −R(Dc). (13)

Thus, W = X−1
0 −R(Kc) is non-negative; let us address compactness.
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It is well known that if 0 ≤ V1 ≤ V2 are self-adjoint operators and V2 is compact,
then V1 is also compact. Thus, by (13), in order to prove the compactness of
W , it suffices to check that X−1

0 −R(Dc) is compact.
Let Γ = ∂D. Employing the same arguments as in the proof of (12), we see
that X(Γc)−1 −R(Dc) is the inverse of the magnetic operator on the disc and
hence a compact operator. Thus, it suffices to prove that the difference

X−1
0 −X(Γc)−1 = (X−1

0 −R(Dc))− (X(Γc)−1 −R(Dc))

is compact.
Let us compute the quadratic form of this difference. Let f, g ∈ L2(R2),
X−1

0 f = u, X(Γc)−1g = v. We have

((X−1
0 −X(Γc)−1)f, g) = (u,X(Γc)v)− (X0u, v).

Integrating by parts and noting that v ∈ Dom(X(Γc)) vanishes on Γ, we get

(u,X(Γc)v)− (X0u, v) =

∫

Γ

(nAv(s)
+ + nAv(s)

−)u(s)ds (14)

where nAv(s) = (∇ − iA(s))v · n(s), n(s) is the exterior normal to Γ at the
point s and the superscripts + and − indicate that the limits of the functions
are taken on the circle Γ by approaching it from the outside or inside.
Take a smooth cut-off function ω ∈ C∞0 (R2) such that ω(x) = 1 in the neigh-
borhood of D. Then we can replace u, v by u1 = ωu, v1 = ωv in the r.h.s. of
(14). By the local elliptic regularity we have u1 ∈ H2(R2), v1 ∈ H2(Γc), and
the corresponding Sobolev norms of u1, v1 can be estimated via the L2-norms
of f, g. Now it remains to notice that the trace mapping u1 7→ u1|Γ is com-
pact as considered from H2(R2) to L2(Γ), and the mappings v1 7→ (nAv1)

±

are compact as considered from H2(Γc) to L2(Γ). It follows that the difference
X−1

0 −X(Γc)−1 is compact, as required.

4 The spectrum of Toeplitz operators

4.1 Restriction operators and the associated Toeplitz operators

Let µ be a finite measure in R2 with a compact support. Consider the restriction
operator

γ0 : C∞0 (R2) ∋ u 7→ u |supp(µ)∈ L2(µ).

We are interested in two special cases, namely when µ is the restriction of
the Lebesgue measure to a set with Lipschitz boundary and when µ is the arc
length measure on a simple smooth curve. In both cases γ0 can be extended
by continuity to a bounded and compact operator γ : H1

A(R2)→ L2(µ).
Next, let J : H1

A(R2) → L2(R2) be the embedding operator, J : u 7→ u. Then

the adjoint J∗ : L2(R2)→ H1
A(R2) acts as J∗ : u 7→ X0

−1/2u.
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For q ≥ 0, consider the operators Tq(µ) in L2(R2) defined by the quadratic
form

(Tq(µ)u, u)L2(R2) =

∫

suppµ
|(Pqu)(x)|2dµ(x), u ∈ L2(R2).

This operator can be represented as

Tq(µ) = (γJ∗X0
1/2Pq)

∗(γJ∗X0
1/2Pq) = Λq(γJ

∗Pq)
∗(γJ∗Pq).

Since γ is compact by assumption, the operator Tq(µ) is also compact.
Fix q ≥ 0; let sq1 ≥ sq2 ≥ . . . be the eigenvalues of Tq(µ) in L2(R2).

Proposition 4.1. (i) Let µ be the restriction of the Lebesgue measure onto a
bounded domain K ⊂ R2 with a Lipschitz boundary. Then

lim
n→∞

(n!sqn)
1/n =

B

2
(Cap (K))2.

(ii) Let µ be the arc length measure of a C∞ smooth simple curve of a finite
length. Then

lim
n→∞

(n!sqn)1/n =
B

2
(Cap (suppµ))2.

Before proving this proposition, we need to recall the description of the sub-
spaces Lq.

4.2 The structure of subspaces Lq
Denote Ψ(z) = 1

4B|z|2. Let us define the creation and annihilation operators
(first introduced in this context by Fock [5])

Q = −2ie−Ψ∂eΨ = −2i∂ − B

2
iz

Q∗ = −2ieΨ∂e−Ψ = −2i∂ +
B

2
iz.

The Landau Hamiltonian can be expressed as

X0 = Q∗Q +B = QQ∗ −B. (15)

The spectrum and spectral subspaces of X0 can be described in the following
way. The equation (X0 −B)u = 0 is equivalent to

Qu = −2ie−Ψ∂̄(eΨu) = 0.

This means that f = eΨu is an entire analytic function such that e−Ψf ∈ L2(C).
The space of such functions f is called Fock or Segal-Bargmann space F2 (see
[6] for an extensive discussion). So L0 = e−ΨF2. Further eigenspaces Lq,
q = 1, 2, . . . , are obtained as Lq = (Q∗)qL0. The operators Q∗,Q act between
the subspaces Lq as

Q∗ : Lq 7→ Lq+1, Q : Lq 7→ Lq−1, Q : L0 7→ {0}, (16)
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and are, up to constant factors, isometries on Lq. In particular, the substitution

Lq ∋ u = C−1
q (Q∗)qe−Ψf, f ∈ F2, Cq =

√
q!(2B)q (17)

gives a unitary equivalence of spaces Lq and F2.

4.3 Proof of Proposition 4.1

(i) The proof is given in [3, Lemma 3.1] for q = 0 and [3, Lemma 3.2] for q ≥ 0.
(ii) For q = 0 the result again follows from Lemma 3.1 in [3]. Although the
reasoning there concerns the operators Tq(v) = (vPq)

∗(vPq) where the function
v is separated from zero on a compact, it goes through for Tq(µ). Only nota-
tional changes are required; one simply has to replace the measure v(z)dm(z)
by dµ(z).
For q ≥ 1 below we apply the reduction to the lowest Landau level similar to
the proof of Lemma 3.2 in [3].
Denote dµ̃(z) = e−Ψ(z)dµ(z). Applying the unitary equivalence (17), we get
for u ∈ Lq

(Tq(µ)u, u)L2(R2) = C−2
q ‖(2∂ −Bz)qf‖2L2(µ̃). (18)

In particular, for q = 0

(T0(µ)u, u)L2(R2) = C−2
0 ‖f‖2L2(µ̃). (19)

Below we separately prove the upper and lower bound for the quadratic form
(18).
1. Upper bound. Consider the open δ-neighborhood Uδ ⊂ C1 of the curve Γ.
As it follows from the Cauchy integral formula, for some constant C1(q, δ), the
inequality

‖∂kf‖2L2(µ̃) ≤ C1(q, δ)

∫

Uδ

|f(z)|2dm(z).

holds for all functions f ∈ F2. Thus, we have the estimate

‖(2∂ −Bz)qf‖2L2(µ̃) ≤ C2(q, δ)

∫

Uδ

|f(z)|2dm(z).

Using (18), (19), we arrive at the estimate

Tq(µ) ≤ CT0(χUδ (x)dx), (20)

where χ
Uδ

is the characteristic function of the set Uδ. Now we can again
apply the estimate of [3, Lemma 3.1] to the eigenvalues s1(δ) ≥ s2(δ) ≥ . . . of
T0(χUδ (x)dx). This estimate together with (20) yields

lim
n→∞

(n!sn)
1/n ≤ lim

n→∞
(n!sn(δ))

1/n ≤ B

2
(Cap (Uδ))

2.
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Finally, by the continuity of capacity, Cap (Uδ) → Cap (Γ) as δ → 0, and this
proves the upper bound.
2. Lower bound. The lower bound for the spectrum of Tq(µ) requires a little
more work. Let σ : [0, s]→ C be the parameterization of Γ by the arc length.
Since f is analytic, we have

(∂f)(σ(t)) = ρ(t)
d

dt
f(σ(t)) (21)

with some smooth factor ρ(t), |ρ(t)| = 1.
Next, due to the compactness of the embedding H1(0, s) ⊂ L2(0, s), for any
β > 0 there exists a subspace of H1(0, s) of a finite codimension such that for
any u in this subspace,

∫ s

0

|u(t)|2dt ≤ β2

∫ s

0

|u′(t)|2dt. (22)

It follows from (21) and (22) that for any β > 0 there exists a subspace of F2

of a finite codimension such that for any f in this subspace
∫

Γ

|f(z)|2dµ̃(z) ≤ β2

∫

Γ

|∂f(z)|2dµ̃(z).

Arguing by induction, we obtain that for any β > 0 there exists a subspace
N = N(β, q) ⊂ F2 of finite codimension such that for all f ∈ N(β, q)

∫

Γ

|∂kf(z)|2dµ̃(z) ≤ β2

∫

Γ

|∂qf(z)|2dµ̃(z), ∀k = 0, 1, . . . , q − 1. (23)

Using (23) and choosing β sufficiently small, we can estimate the form (18)
from below as follows:

‖(2∂ −Bz)qf‖2L2(µ̃) ≥ (‖(2∂)qf‖L2(µ̃) −
q−1∑

k=0

Cq,k‖∂kf‖L2(µ̃))
2

≥ ‖(2∂)qf‖2L2(µ̃)(1−
q−1∑

k=0

Cq,kβ)2 = C1‖∂qf‖2L2(µ̃) ≥ C2‖f‖2L2(µ̃)

for all f ∈ N(β, q). Using (18) and (19), we arrive at the lower bound

Tq(µ) ≥ CT0(µ) + F

where F is a finite rank operator. For the eigenvalues of T0(µ) the required
lower estimates are already obtained by reference to [3, Lemma 3.1]; this com-
pletes the proof of the lower bound.

5 Proof of Proposition 3.1

We will prove separately upper and lower bounds.
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5.1 Proof of the upper bound

1. Let U ⊂ R2 be an open bounded set with a Lipschitz boundary, K ⊂ U ,
and let ω ∈ C∞0 (R2) be such that ω|K = 1 and ω|Uc = 0. Denote ω̃ = 1 − ω.
Note that for any ψ ∈ H, the function ω̃Pqψ belongs both to Dom (X0) and
to the form domain of X(Kc). Thus, by Proposition 2.1(ii) (with A = X0 and
B = X(Kc)), we have WX0ω̃Pqψ = 0. Thus, we have

(WPqψ, Pqψ) =
1

Λ2
q

(WX0Pqψ,X0Pqψ)

=
1

Λ2
q

(WX0(ω + ω̃)Pqψ,X0(ω + ω̃)Pqψ) =
1

Λ2
q

(WX0ωPqψ,X0ωPqψ).

Since W = X−1
0 −R(Kc) ≤ X−1

0 , we have

(WX0ωPqψ,X0ωPqψ) ≤ (X−1
0 X0ωPqψ,X0ωPqψ) = ‖ωPqψ‖2H1

A
.

Using (15), we get

‖ωPqψ‖2H1
A

= ‖Q∗ωPqψ‖2 −B‖ωPqψ‖2 ≤ ‖Q∗ωPqψ‖2

= ‖ωQ∗Pqψ − 2i(∂ω)Pqψ‖2 ≤ 2‖Q∗Pqψ‖2L2(U) + C1‖Pqψ‖2L2(U).

2. Due to the compactness of the embedding H1
0 (U) ⊂ L2(U), for any β > 0

there exists a subspace of H1
0 (U) of a finite codimension such that for all

elements u of this subspace,

∫

U

|u(x)|2dx ≤ β2

∫

U

|∇u(x)|2dx = β2

∫

U

|2∂u(x)|2dx.

Taking β sufficiently small, we obtain

‖Q∗u‖L2(U) ≥ ‖2∂u‖L2(U) −
B

2
‖zu‖L2(U) ≥ ‖2∂u‖L2(U) −

B

2
sup
U
|z|‖u‖L2(U)

≥ (1− B

2
β sup

U
|z|)‖2∂u‖L2(U) ≥

1

2
‖2∂u‖L2(U) ≥

1

2β
‖u‖L2(U)

for all u in our subspace. It follows that on a subspace of ψ ∈ L2(R2) of a finite
codimension,

(WPqψ, Pqψ)L2(R2) ≤ 2‖Q∗Pqψ‖2L2(U) + 4β2‖Q∗Pqψ‖2L2(U) ≤ C‖Pq+1ψ‖2L2(U);

the last inequality holds true by (16).
Thus, we have

PqWPq ≤ C3Pq+1χUPq+1 + F,

where χU is the characteristic function of U , and F is a finite rank operator.
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3. From Proposition 4.1 we get

lim sup
n→∞

(n!µn)
1/n ≤ 1

2
B(Cap U)2.

Since U can be chosen such that Cap U is arbitrarily close to Cap K, by the
continuity property of capacity, we get the required upper bound.

5.2 Proof of the lower bound

1. Let γ, J , µ be as in section 4.1. Consider the quadratic form in L2(R2)

‖u‖2H1
A(R2) +

∫

suppµ
|u(x)|2dµ(x) = ‖X1/2

0 u‖2L2(R2) + ‖γJ∗X1/2
0 u‖2L2(R2)

defined for u ∈ H1
A(R2). This form is closed and positively defined on L2(R2).

Denote by X̃ the corresponding self-adjoint operator in L2(R2). We have

X̃ = X0 +X
1/2
0 Jγ∗γJ∗X1/2

0 = X
1/2
0 (I + Jγ∗γJ∗)X1/2

0

and therefore

X−1
0 − X̃−1 = X

−1/2
0 [Jγ∗γJ∗(I + Jγ∗γJ∗)−1]X

−1/2
0 .

Since γ is compact by assumption, we have Jγ∗γJ∗ ≤ I on a subspace of a
finite codimension. Thus,

X−1
0 − X̃−1 ≥ 1

2
X0
−1/2Jγ∗γJ∗X−1/2

0

on a subspace of finite codimension, and so

Pq(X
−1
0 − X̃−1)Pq ≥

1

2Λq
(γJ∗Pq)

∗(γJ∗Pq) + F (24)

where F is a finite rank operator.

2. Now let K ⊂ R2 be a compact with a non-empty interior. Let K1 ⊂ K be a
set with a Lipschitz boundary. Let µ be the restriction of the Lebesgue measure
on K1. By Proposition 2.1(i), we have X−1

0 ≥ X̃−1 ≥ R(Kc). It follows that

Pq(X
−1
0 −R(Kc))Pq ≥ Pq(X−1

0 − X̃−1)Pq. (25)

From here, using (24) and Proposition 4.1(i), we get the required lower bound in
the first part of Proposition 3.1. Finally, consider the case of K being a smooth
curve. Let µ be the arc measure of the curve. Then, again by (24) and (25),
and applying Proposition 4.1(ii), we get the second part of Proposition 3.1.
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Abstract. We introduce a notion of visibility for Mordell-Weil
groups, make a conjecture about visibility, and support it with theo-
retical evidence and data. These results shed new light on relations
between Mordell-Weil and Shafarevich-Tate groups.
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1 Introduction

Consider an exact sequence 0 → C → B → A → 0 of abelian varieties over a
number field K. We say that the covering B → A is optimal since its kernel C
is connected. As introduced in [LT58], there is a corresponding long exact
sequence of Galois cohomology

0→ C(K)→ B(K)→ A(K)
δ−→ H1(K,C)→ H1(K,B)→ H1(K,A)→ · · ·

The study of the Mordell-Weil groupA(K) is central in arithmetic geometry.
For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture) of
[Bir71, Tat66]), which is one of the Clay Math Problems [Wil00], asserts that
the rank r of A(K) equals the ordering vanishing of L(A, s) at s = 1, and also
gives a conjectural formula for L(r)(A, 1) in terms of the invariants of A.

The group H1(K,A) is also of interest in connection with the BSD conjec-
ture, because it contains the Shafarevich-Tate group

X(A/K) = Ker

(
H1(K,A)→

⊕

v

H1(Kv, A)

)
,

which is the most mysterious object appearing in the BSD conjecture.

1This material is based upon work supported by the National Science Foundation under
Grant No. 0555776.
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Definition 1.0.1 (Visibility). The visible subgroup of H1(K,C) relative to the
embedding C →֒ B is

VisB H1(K,C) = Ker(H1(K,C)→ H1(K,B))
∼= Coker(B(K)→ A(K)).

The visible quotient of A(K) relative to the optimal covering B → A is

VisB(A(K)) = Coker(B(K)→ A(K))

∼= VisB H1(K,C).

We say an abelian variety over Q is modular if it is a quotient of the modular
Jacobian J1(N) = Jac(X1(N)), for some N . For example, every elliptic curve
over Q is modular [BCDT01].

This paper gives evidence toward the following conjecture that Mordell-Weil
groups should give rise to many visible Shafarevich-Tate groups.

Conjecture 1.0.2. Let A be an abelian variety over a number field K. For
every integer m, there is an exact sequence 0→ C → B → A→ 0 such that:

1. The image of B(K) in A(K) is contained in mA(K), so A(K)/mA(K)
is a quotient of VisB(A(K)).

2. If K = Q and A is modular, then B is modular.

3. The rank of C is zero.

4. We have Coker(B(K) → A(K)) ⊂ X(C/K), via the connecting homo-
morphism.

In [Ste04] we give the following computational evidence for this conjecture.

Theorem 1.0.3. Let E be the rank 1 elliptic curve y2+y = x3−x of conductor
37. Then Conjecture 1.0.2 is true for all primes m = p < 25000 with p 6= 2, 37.

Let f =
∑
anq

n be the newform associated to the elliptic curve E of The-
orem 1.0.3. Suppose p is one of the primes in the theorem. Then there is an
ℓ ≡ 1 (mod p) and a surjective Dirichlet character χ : (Z/ℓZ)∗ → µp such that
L(f ⊗ χ, 1) 6= 0. The C of the theorem belongs to the isogeny class of abelian
varieties associated to fχ and C has dimension p− 1.

In general, we expect the construction of [Ste04] to work for any elliptic
curve and any odd prime p of good reduction. The main obstruction to proving
that it does work is proving a nonvanishing result for the special values L(fχ, 1).
In [Ste04], we verified this hypothesis using modular symbols for p < 25000.

A surprising observation that comes out of the construction of [Ste04] is
that #X(C) = p ·n2, where n2 is an integer square. We thus obtained the first
ever examples of abelian varieties whose Shafarevich-Tate groups have order
neither a square nor twice a square.
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1.1 Contents

In Section 2, we give a brief review of results about visibility of Shafarevich-
Tate groups. In Section 3, we give evidence for Conjecture 1.0.2 using results
of Kato, Lichtenbaum and Mazur. Section 4 is about bounding the dimension
of the abelian varieties in which Mordell-Weil groups are visible. We prove that
every Mordell-Weil group is 2-visible relative to an abelian surface. In Section 5,
we describe how to construct visible quotients of Mordell-Weil groups, and carry
out a computational study of relations between Mordell-Weil groups of elliptic
curves and the arithmetic of rank 0 factors of J0(N).

1.2 Acknowledgement

The author had extremely helpful conversations with Barry Mazur and Grigor
Grigorov. Proposition 3.0.3 was proved jointly with Ken Ribet. The author
was supported by NSF grant DMS-0400386. He used Magma [BCP97] and
SAGE [Sage07] for computing the data in Section 5.

2 Review of Visibility of Galois Cohomology

In this section, we briefly review visibility of elements of H1(K,A), as first
introduced by Mazur in [CM00, Maz99], and later developed by Agashe and
Stein in [Aga99a, AS05, AS02]. We describe two basic results about visibility,
and in Section 2.2 we discuss modularity of elements of H1(K,A).

Consider an exact sequence of abelian varieties

0→ A→ B → C → 0

over a number field K. Elements of H0(K,C) are points, so they are relatively
easy to “visualize”, but elements of H1(K,A) are mysterious.

There is a geometric way to view elements of H1(K,A). The Weil-Chatalet
group WC(A/K) of A over K is the group of isomorphism classes of principal
homogeneous spaces for A, where a principal homogeneous space is a variety X
and a simply-transitive action A×X → X . Thus X is a twist of A as a variety,
but X(K) = ∅, unless X is isomorphic to A. Also, the elements of X(A)
correspond to the classes of X that have a Kv-rational point for all places v.
By [LT58, Prop. 4], there is an isomorphism between H1(K,A) and WC(A/K).

In [CM00], Mazur introduced the visible subgroup of H1 as in Defini-
tion 1.0.1 in order to help unify diverse constructions of principal homoge-
neous spaces. Many papers were subsequently written about visibility, includ-
ing [Aga99b, Maz99, Kle01, AS02, MO03, DWS03, AS05, Dum01].

Remark 2.0.1. Note that VisB H1(K,A) depends on the embedding ofA into B.
For example, if B = B1 ×A, then there could be nonzero visible elements if A
is embedded into the first factor, but there will be no nonzero visible elements
if A is embedded into the second factor.
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A connection between visibility and WC(A/K) is as follows. Suppose

0→ A→ B
π−→ C → 0

is an exact sequence of abelian varieties and that c ∈ H1(K,A) is visible in B.
Thus there exists x ∈ C(K) such that δ(x) = c, where δ : C(K) → H1(K,A)
is the connecting homomorphism. Then X = π−1(x) ⊂ B is a translate of A
in B, so the group law on B gives X the structure of principal homogeneous
space for A, and this homogeneous space in WC(A/K) corresponds to c.

2.1 Basic Facts

Two basic facts about visibility are that the visible subgroup of H1(K,A) in B
is finite, and that each element of H1(K,A) is visible in some B.

Lemma 2.1.1. The group VisB H1(K,A) is finite.

Proof. Let C = B/A. By the Mordell-Weil theorem C(K) is finitely generated.
The group VisB H1(K,A) is a homomorphic image of C(K) so it is finitely
generated. On the other hand, it is a subgroup of H1(K,A), so it is a torsion
group. But a finitely generated torsion abelian group is finite.

Proposition 2.1.2. Let c ∈ H1(K,A). Then there exists an abelian variety B
and an embedding A →֒ B such that c is visible in B. Moreover, B can be
chosen to be a twist of a power of A.

Proof. See [AS02, Prop. 1.3] for a cohomological proof or [JS05, §5] for an
equivalent geometric proof. Johan de Jong also proved that everything is visible
somewhere in the special case dim(A) = 1 using Azumaya algebras, Néron
models, and étale cohomology, as explained in [CM00, pg. 17–18], but his proof
gives no (obvious) specific information about the structure of B.

2.2 Modularity

Usually one focuses on visibility of elements in X(A) ⊂ H1(K,A). The papers
[CM00, AS02, AS05] contain a number of results about visibility in various
special cases, and tables involving elliptic curves and modular abelian varieties.

For example, if A ⊂ J0(389) is the 20-dimensional simple newform abelian
variety, then we show that

Z/5Z× Z/5Z ∼= E(Q)/5E(Q) ⊂X(A),

where E is the elliptic curve of conductor 389. The divisibility 52 | #X(A) is
as predicted by the BSD conjecture. The paper [AS05] contains a few dozen
other examples like this; in most cases, explicit computational construction of
the Shafarevich-Tate group seems hopeless using any other known techniques.

The author has conjectured that if A is a modular abelian variety, then
every element of X(A) is modular, i.e., visible in a modular abelian variety.
It is a theorem that if c ∈ X(A) has order either 2 or 3 and A is an elliptic
curve, then c is modular (see [JS05]).
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3 Results Toward Conjecture 1.0.2

The main result of this section is a proof of parts 1 and 2 of Conjecture 1.0.2
for elliptic curves over Q. We prove more generally that Mazur’s conjecture on
finite generatedness of Mordell-Weil groups over cyclotomic Zp-extensions im-
plies part 1 of Conjecture 1.0.2. Then we observe that for elliptic curves over Q,
Mazur’s conjecture is known, and prove that the abelian varieties that appear
in our visibility construction are modular, so parts 1 and 2 of Conjecture 1.0.2
are true for elliptic curves over Q.

For a prime p, the cyclotomic Zp-extension of Q is an extension Qp∞ of Q
with Galois group Zp; also Qp∞ is contained in the cyclotomic field Q(µp∞).
We let Qpn denote the unique subfield of Qp∞ of degree pn over Q. If K is an
arbitrary number field, the cyclotomic Zp-extension ofK isKp∞ = K ·Qp∞ . We
denote by Kpn the unique subfield of Kp∞ of degree pn over K. The extension
Kp∞ of K decomposes as a tower

K = Kp0 ⊂ Kp1 ⊂ · · · ⊂ Kpn ⊂ · · · ⊂ Kp∞ =
∞⋃

n=0

Kpn .

Mazur hints at the following conjecture in [Maz78] and [RM05, §3]:

Conjecture 3.0.1 (Mazur). If A is an abelian variety over a number field K
and p is a prime, then A(Kp∞) is a finitely generated abelian group.

Let L/K be a finite extension of number fields and A an abelian variety
over K. In much of the rest of this paper we will use the restriction of scalars
R = ResL/K(AL) of A viewed as an abelian variety over L. Thus R is an
abelian variety over K of dimension [L : K], and R represents the following
functor on the category of K-schemes:

S 7→ EL(SL).

If L/K is Galois, then we have an isomorphism of Gal(Q/K)-modules

R(Q) = A(Q)⊗Z Z[Gal(L/K)],

where τ ∈ Gal(Q/K) acts on
∑
Pσ ⊗ σ by

τ
(∑

Pσ ⊗ σ
)

=
∑

τ(Pσ)⊗ τ|L · σ,

where τ|L is the image of τ in Gal(L/K).

Theorem 3.0.2. Conjecture 3.0.1 implies part 1 of Conjecture 1.0.2. More
precisely, if A/K is an abelian variety, m is a positive integer, and A(Kp∞) is
finitely generated for each p | m, then there is an optimal covering of the form
B = ResL/K(AL) → A such that L is abelian over K and the image of B(K)
in A(K) is contained in mA(K).
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Proof. Fix a prime p | m. Let M = Kp∞ . Because A(M) is finitely generated,
some finite set of generators must be in a single sufficiently large A(Kpn), and
for this n we have A(M) = A(Kpn). For any integer j > 0 let

Rj = ResK
pj
/K(AK

pj
).

Then, as explained in [Ste04], the trace map induces an exact sequence

0→ Bj → Rj
πj−→ A→ 0,

with Bj an abelian variety. Then for any j ≥ n, A(Kpj ) = A(Kpn), so

VisBj (A(K)) ∼= A(K)/πj(Rj(K))

= A(K)/TrKpj/K(A(Kpj ))

= A(K)/TrKpn/K(TrKpj /Kpn (A(Kpj )))

= A(K)/TrKpn/K(TrKpj /Kpn (A(Kpn)))

= A(K)/TrKpn/K(pj−nA(Kpn))

= A(K)/pj−n TrKpn/K(A(Kpn))

→ A(K)/pj−nA(K),

where the last map is surjective since

TrKpn/K(A(Kpn)) ⊂ A(K).

Arguing as above, for each prime p | m, we find an extension Lp of K of
degree a power of p such that TrLp/K(A(Lp)) ⊂ pνpA(K), where νp = ordp(m).
Let L be the compositum of the fields Lp. Then for each p | m,

TrL/K(A(L)) = TrLp/K(TrL/Lp(A(L))) ⊂ TrLp/K(A(Lp)) ⊂ pνpA(K).

Thus
TrL/K(A(L)) ⊂

⋂

p|m
pνpA(K) = mA(K), (1)

where for the last equality we view A(K) as a finite direct sum of cyclic groups.
Let R = ResL/K(AL). Then trace induces an optimal cover R → A, and

(1) implies that we have the required surjective map

VisR(A(K)) = A(K)/TrL/K(A(L))→→ A(K)/mA(K).

We will next prove parts 1 and 2 of Conjecture 1.0.2 for elliptic curves
over Q by observing that Conjecture 3.0.1 is a theorem of Kato in this case.
We first prove a modularity property for restriction of scalars. Recall that a
modular abelian variety is a quotient of J1(N).
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Proposition 3.0.3. If A is a modular abelian variety over Q and K is an
abelian extension of Q, then ResK/Q(AK) is also a modular abelian variety.

Proof. Since A is modular, A is isogenous to a product of abelian varieties Af
attached to newforms in S2(Γ1(N)), for various N . Since the formation of re-
striction of scalars commutes with products, it suffices to prove the proposition
under the hypothesis that A = Af for some newform f . Let R = ResK/Q(Af ).
As discussed in [Mil72, pg. 178], for any prime p there is an isomorphism of
Qp-adic Tate modules

Vp(R) ∼= Ind
GQ

GK
Vp(AK).

The induced representation on the right is the direct sum of twists of Vp(AK)
by characters of Gal(K/Q). This is isomorphic to the Qp-adic Tate module
of some abelian variety P =

∏
χAgχ , where χ runs through certain Dirichlet

characters corresponding to the abelian extension K/Q, and g runs through
certain Gal(Q/Q)-conjugates of f , and gχ denotes the twist of g by χ. Falting’s
theorem (see e.g., [Fal86, §5]) then gives us the desired isogeny R→ P.

It is not necessary to use the full power of Falting’s theorem to prove this
proposition, since Ribet [Rib80] gave a more elementary proof of Falting’s the-
orem in the case of modular abelian varieties. However, we must work some to
apply Ribet’s theorem, since we do not know yet that R is modular.

Let R and P be as above. Over Q, the abelian variety A is isogenous to
a power of a simple abelian variety B, since if more than one non-isogenous
simple occurred in the decomposition of A/Q, then End(A/Q) would not be a
matrix ring over a (possibly skew) field (see [Rib92, §5]). For any character χ,
by the (3) =⇒ (2) assertion of [Rib80, Thm. 4.7], the abelian varieties Af
and Afχ are isogenous over Q to powers of the same abelian variety A′, hence
to powers of the simple B. A basic property of restriction of scalars is that
RK is isomorphic to a power of (Af )K , hence RK is isogenous over Q to a
power of B. Thus R and P are both isogenous over Q to a power of B, so R
is isogenous to P over Q, since they have the same dimension, as their Tate
modules are isomorphic. Let L be a Galois number field over which such an
isogeny is defined. Consider the natural Gal(Q/Q)-equivariant inclusion

Hom(RQ, PQ)⊗Qp →֒ HomGal(Q/Q)(Vp(R), Vp(P )). (2)

By Ribet’s proof of the Tate conjecture for modular abelian varieties [Rib80],
the inclusion

Hom(RL, PL)⊗Qp →֒ HomGal(Q/L)(Vp(R), Vp(P )) (3)

is an isomorphism, since there is an isogeny PL → RL and P is modular.
But then (2) must also be an isomorphism, since (2) is the result of taking
Gal(L/Q)-invariants of both sides of (3).

By construction of P , there is an isomorphism Vp(R) ∼= Vp(P ) of Gal(Q/Q)-
modules, so by (2) there is an isomorphism in Hom(RQ, PQ)⊗Qp. Thus there is
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a Qp-linear combination of elements of Hom(RQ, PQ) that has nonzero determi-
nant. However, if a Qp-linear combination of matrices has nonzero determinant,
then some Q-linear combination does, since the determinant is a polynomial
function of the coefficients and Q is dense in Qp. Thus there is an isogeny
R→ P defined over Q, so R is modular.

Corollary 3.0.4. Parts 1 and 2 of Conjecture 1.0.2 are true for every elliptic
curve E over Q.

Proof. Suppose p is a prime, and let Qp∞ be the cyclotomic Zp extension of Q.
By [BCDT01], E is a modular elliptic curve, so work of Rohrlich [Roh84], Kato
[Kat04, Sch98], and Serre [Ser72] implies that E(Qp∞) is finitely generated
(see [Rub98, Cor. 8.2]). Theorem 3.0.2 implies that if x ∈ E(Q) and m |
order(x), then x is m-visible relative to an optimal cover of E by a restriction
of scalars B from an abelian extension. Then Proposition 3.0.3 implies that B
is modular.

4 The Visibility Dimension

The visibility dimension is analogous to the visibility dimension for elements of
H1(K,A) introduced in [AS02, §2]. We prove below that elements of order 2 in
Mordell-Weil groups of elliptic curves over Q are 2-visible relative to an abelian
surface. Along the way, we make a general conjecture about stability of rank
and show that it implies a general bound on the visibility dimension.

Definition 4.0.5 (Visibility Dimension). Let A be an abelian variety over a
number field K and suppose m is an integer. Then A has m-visibility dimen-
sion n if there is an optimal cover B → A with n = dim(B) and the image
of B(K) in A(K) is contained in mA(K), so A(K)/mA(K) is a quotient of
VisB(A(K)).

The following rank-stability conjecture is motivated by its usefulness for
proving a result about m-visibility.

Conjecture 4.0.6. Suppose A is an abelian variety over a number field K,
that L is a finite extension of K, and m > 0 is an integer. Then there is
an extension M of K of degree m such that rank(A(K)) = rank(A(M)) and
M ∩ L = K.

The following proposition describes how Conjecture 4.0.6 can be used to
find an extension where the index of A(K) in A(M) is coprime to m.

Proposition 4.0.7. Let A be an abelian variety over a number field K and
suppose m is a positive integer. If Conjecture 4.0.6 is true for A and m, then
there is an extension M of K of degree m such that A(M)/A(K) is of order
coprime to m.
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Proof. Choose a finite set P1, . . . , Pn of generators for A(K). Let

L = K

(
1

m
P1, . . . ,

1

m
Pn

)

be the extension of K generated by all mth roots of each Pi. Since the set of
mth roots of a point is closed under the action of Gal(K/K), the extension
L/K is Galois. Note also that the m torsion of A is defined over L, since the
differences of conjugates of a given 1

mPi are exactly the elements of A[m]. Let S
be the set of primes of K that ramify in L.

By our hypothesis that Conjecture 4.0.6 is true for A and m, there is an
extension M of K of degree m such that

rank(A(K)) = rank(A(M))

and M ∩ L = K. In particular, C = A(M)/A(K) is a finite group. Suppose,
for the sake of contradiction, that gcd(m,#C) 6= 1, so there is some prime
divisor p | m and an element [Q] ∈ C of exact order p. Here Q ∈ A(M) is
such that pQ ∈ A(K) but Q 6∈ A(K). Because P1, . . . , Pn generate A(K) and
pQ ∈ A(K), there are integers a1, . . . an such that

pQ =

n∑

i=1

aiPi.

Then for any fixed choice of the 1
pPi, we have

Q−
n∑

i=1

ai ·
1

p
Pi ∈ A[p],

since

p

(
Q−

n∑

i=1

ai ·
1

p
Pi

)
= pQ−

n∑

i=1

ai · Pi = 0.

Thus Q ∈ A(L). But then since L∩M = K, so we obtain a contradiction from

Q ∈ A(L) ∩A(M) = A(K).

With Proposition 4.0.7 in hand, we show that Conjecture 4.0.6 bounds
the visibility dimension of Mordell-Weil groups. In particular, we see that
Conjecture 4.0.6 implies that for any abelian variety A over a number field K,
and any m, there is an embedding A(K)/mA(K) →֒ H1(K,C) coming from
a δ map, where C is an abelian variety over K of rank 0.

Theorem 4.0.8. Let A be an abelian variety over a number field K and suppose
m is a positive integer. If Conjecture 4.0.6 is true for A and m, then there is
an optimal covering B → A with B of dimension m such that

VisB(A(K)) ∼= A(K)/mA(K).
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Proof. By Proposition 4.0.7, there is an extension M of K of degree m such
that the quotient A(M)/A(K) is finite of order coprime to m. Then, as in
[Ste04], the restriction of scalars B = ResM/K(AM ) is an optimal cover of A
and

VisB(A(K)) ∼= A(K)/Tr(A(M)).

However, there is also an inclusion A →֒ B from which one sees that

mA(K) ⊂ Tr(A(M)),

so VisB(A(K)) is an m-torsion group.
We have

[Tr(A(M)) : Tr(A(K))]
∣∣∣ [A(M) : A(K)].

We showed above that gcd([A(M) : A(K)],m) = 1, so since

Tr(A(M))/Tr(A(K))

is killed by m, it follows that Tr(A(M)) = Tr(A(K)). We conclude that

VisB(A(K)) = A(K)/mA(K).

Proposition 4.0.9. If E is an elliptic curve over Q and m = 2, then Conjec-
ture 4.0.6 is true for E and m.

Proof. Let L be as in Conjecture 4.0.6, so L is an extension of Q of possibly
large degree. Let D be the discriminant of L. By [MM97, BFH90] there are
infinitely many quadratic imaginary extensionsM of Q such that L(EM , 1) 6= 0,
where EM is the quadratic twist of E by M . By [Kol91, Kol88] all these curves
have rank 0. Since there are only finitely many quadratic fields ramified only
at the primes that divide D, there must be some field M that is ramified at
a prime p ∤ D. If M is contained in L, then all the primes that ramify in M
divide D, so M is not contained in L. Since M is quadratic, it follows that
M ∩L = Q, as required. Since the image of E(Q)+EM (Q) in E(M) has finite
index, it follows that E(M)/E(Q) is finite.

Corollary 4.0.10. If E is an elliptic curve over Q, then there is an optimal
cover B → E, with B a 2-dimension modular abelian variety, such that

VisB(E(Q)) ∼= E(Q)/2E(Q).

Proof. Combine Proposition 4.0.9 with Theorem 4.0.8. Also B is modular since
it is isogenous to E × E′, where E′ is a quadratic twist of E.

Note that the B of Corollary 4.0.10 is isomorphic to (E × ED)/Φ, where
ED is a rank 0 quadratic imaginary twist of E and Φ ∼= E[2] is embedded
antidiagonally in E ×ED. Note that ED also has analytic rank 0, since it was
constructed using the theorems of [Kol91, Kol88] and [MM97, BFH90]. Thus
our construction is compatible with the one of Proposition 5.1.1 below.
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5 Some Data About Visibility and Modularity

This section contains a computational investigation of modularity of Mordell-
Weil groups of elliptic curves relative to abelian varieties that are quotients
of J0(N). One reason that we restrict to J0(N) is so that computations are
more tractable. Also, for m > 2, the twisting constructions that we have
given in previous sections are no longer allowed since they take place in J1(N).
Furthermore, the work of [KL89] suggests that we understand the arithmetic
of J0(N) better than that of J1(N).

5.1 A Visibility Construction for Mordell-Weil Groups

The following proposition is an analogue of [AS02, Thm. 3.1] but for visibility
of Mordell-Weil groups (compare also [CM00, pg. 19]).

Proposition 5.1.1. Let E be an elliptic curve over a number field K, and let
Φ = E[m] as a Gal(K/K)-module. Suppose A is an abelian variety over K
such that Φ ⊂ A, as GQ-modules. Let B = (A × E)/Φ, where Φ is embedded
anti-diagonally. Then there is an exact sequence

0→ B(K)/(A(K) + E(K))→ E(K)/mE(K)→ VisB(E(K))→ 0.

Moreover, if (A/E[m])(K) is finite of order coprime to m, then the first term
of the sequence is 0, so

VisB(E(K)) ∼= E(K)/mE(K).

Proof. Using the definition of B and multiplication by m on E, we obtain the
following commutative diagram, whose rows and columns are exact:

0

��

0

��

0

��
0 // E[m] //

��

E
m //

��

E

∼=
��

// 0

0 // A //

��

B //

��

E //

��

0

0 // A/E[m]
∼= //

��

B/E //

��

0

0 0

Taking K-rational points we arrive at the following diagram with exact rows
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and columns:

0 // E(K)/E(K)[m]
m //

��

E(K) //

∼=
��

E(K)/mE(K) //

��

0

0 // B(K)/A(K) //

��

E(K) //

��

VisB(E(K)) // 0

B(K)/(A(K) + E(K)) 0

The snake lemma and the fact that the middle vertical map is an isomorphism
implies that the right vertical map is a surjection with kernel isomorphic to
B(K)/(A(K) + E(K)). Thus we obtain an exact sequence

0→ B(K)/(A(K) + E(K))→ E(K)/mE(K)→ VisB(E(K))→ 0.

This proves the first statement of the proposition. For the second, note
that we have an exact sequence 0 → E → B → A/E[m] → 0. Taking Galois
cohomology yields an exact sequence

0→ E(K)→ B(K)→ (A/E[m])(K)→ · · · ,

so #(B(K)/E(K)) | #(A/E[m])(K). If (A/E[m])(K) is finite of order coprime
to m, then B(K)/(A(K) + E(K)) has order dividing #(A/E[m])(K), so the
quotient B(K)/(A(K) + E(K)) is trivial, since it injects into E(K)/mE(K).

5.2 Tables

The data in this section suggests the following conjecture.

Conjecture 5.2.1. Suppose E is an elliptic curve over Q and p is a prime
such that E[p] is irreducible. Then there exists infinitely many newforms g ∈
S2(Γ0(N)), for various integers N , such that L(g, 1) 6= 0 and E[p] ⊂ Ag and

VisB(E(Q)) = E(Q)/pE(Q), where B = (Ag × E)/E[p].

Let E be the elliptic curve y2 + y = x3 − x. This curve has conductor 37
and Mordell-Weil group free of rank 1. According to [Cre97], E is isolated in
its isogeny class, so each E[p] is irreducible.

Table 1 gives for each N the odd primes p such that there is a mod p
congruence between fE and some newform g in S2(Γ0(37N)) such that Ag has
rank 0 and the isogeny class of Ag contains no abelian variety with rational p
torsion. The first time a p occurs, it is in bold. We bound the torsion in the
isogeny class using the algorithm from [AS05, §3.5] with primes up to 17. Thus
by Proposition 5.1.1, the Mordell-Weil group of E is p-modular of level 37N . A
− means there are no such p. Table 2, which was derived directly from Table 1,
gives for a prime p, all integers N such that E(Q) is p-modular of level 37N .
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Table 1: Visibility of Mordell-Weil for y2 + y = x3 − x

N p′s

2 5

3 7

4 −
5 −
6 −
7 3

8 −
9 −
10 −
11 17

12 −
13 −
14 −
15 −
16 −
17 3
18 −

N p′s

19 5
20 −
21 7
22 −
23 11

24 −
25 −
26 −
27 3
28 −
29 3
30 −
31 3
32 −
33 7
34 −
35 −

N p′s

36 −
37 −
38 5
39 −
40 −
41 3, 17
42 −
43 7
44 −
45 −
46 −
47 3
48 −
49 −
50 5
51 −
52 −

N p′s

53 53

54 −
55 −
56 −
57 −
58 −
59 13

60 −
61 5, 7
62 −
63 3
64 −
65 −
66 −
67 3, 5
68 −
69 −

N p′s

70 −
71 3, 7
72 −
73 3, 5
74 −
75 −
76 −
77 −
78 −
79 −
80 −
81 3
82 −
83 3, 11
84 −
85 −
86 −

N p′s

87 −
88 −
89 43

90 −
91 3
92 −
93 7
94 −
95 −
96 −
97 47

98 −
99 −
100 −
101 3, 11
102 −
103 43

N p′s

104 −
105 −
106 5
107 3, 5
108 −
109 3, 7
110 −
111 −
112 −
113 3, 11
114 −
115 −
116 −
117 −
118 −
119 3
120 −

N p′s

121 −
122 −
123 −
124 −
125 5
126 −
127 127

128 −
129 −
130 −
131 3
132 −
133 −
134 −
135 −
136 −
137 3

N p′s

138 −
139 17
140 −
141 −
142 −
143 −
144 −
145 −
146 −
147 7
148 −
149 5, 31
150 −
151 17
152 −
153 3
154 −

N p′s

155 −
156 −
157 3, 5
158 −
159 −
160 −
161 −
162 −
163 7, 13
164 −
165 −
166 −
167 3, 5
168 −
169 −
170 −
171 −

N p′s

172 −
173 3, 5, 11
174 −
175 −
176 −
177 −
178 −
179 3
180 −
181 3, 59
182 −
183 −
184 −
185 −
186 −
187 −
188 −

N p′s

189 3
190 −
191 7
192 −
193 5, 11
194 −
195 −
196 −
197 3, 5, 13
198 −
199 3, 11
200 −
201 −
202 5
203 3
204 −
205 −

N p′s

206 −
207 −
208 −
209 −
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Table 2: Levels Where Mordell-Weil is p-Visible for y2 + y = x3 − x

p N such that 37N is a level of p-modularity of E(Q)

3
7, 17, 27, 29, 31, 41, 47, 63, 67, 71, 73, 81, 83, 91, 101, 107,
109, 113, 119, 131, 137, 153, 157, 167, 173, 179, 181, 189,
197, 199, 203

5
2, 19, 38, 50, 61, 67, 73, 106, 107, 125, 149, 157, 167, 173,
193, 197, 202

7 3, 21, 33, 43, 61, 71, 93, 109, 147, 163, 191

11 23, 83, 101, 113, 173, 193, 199

13 59, 163, 197

17 11, 41, 139, 151

19− 29 -

31 149
37− 41 -

43 89, 103

47 97
53 53
59 181

61− 113 -

127 127
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Ribet’s level raising theorem [Rib90] gives necessary and sufficient condi-
tions on a prime N for there to be a newform g of level 37N that is congruent
to fE modulo p. Note that the form g is new rather than just p-new since 37 is
prime and there are no modular forms of level 1 and weight 2. If, moreover, we
impose the condition L(g, 1) 6= 0, then Ribet’s condition requires that p divides
N + 1 + εaN , where ε is the root number of E. Since E has odd analytic rank,
in this case ε = −1. For each primes p ≤ 127 and each N ≤ 203, we find
the levels of such g. If f is a newform, the torsion multiple of f is a positive
integer that is a multiple of the order of the rational torsion subgroup of any
abelian variety attached to f , as computed by the algorithm in [AS05]. The
only cases in which we don’t already find a congruence level already listed in
Table 2 corresponding to a newform with torsion multiple coprime to p are

p = 3, N = 43 and p = 19, N = 47, 79.

In all other cases in which Ribet’s theorem produces a congruent g with
ords=1 L(g, s) even (hence possibly 0), we actually find a g with L(g, 1) 6= 0
and can show that #Ag(Q)tor is coprime to p.

For p = 3 and N = 43 we find a unique newform g ∈ S2(Γ0(1591)) that is
congruent to fE modulo 3. This form is attached to the elliptic curve y2 + y =
x3− 71x+ 552 of conductor 1591, which has Mordell-Weil groups Z⊕Z. Thus
this is an example of a congruence relating a rank 1 curve to a rank 2 curve.
For p = 19 and N = 47, the newform g has degree 43, so Ag has dimension 43,
we have L(g, 1) 6= 0, but the torsion multiple is 76 = 19 · 4, which is divisible
by 19. For p = 19 and N = 79, the Ag has dimension 57, we have L(g, 1) 6= 0,
but the torsion multiple is 76 again.

Tables 3–4 are the analogues of Tables 1–2 but for the elliptic curve y2+y =
x3 + x2 of conductor 43. This elliptic curve also has rank 1 and all mod p
representations are irreducible. The primes p and N such that Ribet’s theorem
produces a congruent g with ords=1 L(g, s) even, yet we do not find one with
L(g, 1) 6= 0 and the torsion multiple coprime to p are

p = 3, N = 31, 61 and p = 11, N = 19, 31, 47, 79.

The situation for p = 11 is interesting since in this case all the g with
ords=1 L(g, s) even fail to satisfy our hypothesis. At level 19 · 43 we find that g
has degree 18 and L(g, 1) 6= 0, but the torsion multiple is divisible by 11.

Let E be the elliptic curve y2 + y = x3 + x2 − 2x of conductor 389. This
curve has Mordell-Weil group free of rank 2. Tables 5–6 are the analogues of
Tables 1–2 but for E. The primes p and N such that Ribet’s theorem produces
a congruent g with ords=1 L(g, s) even, yet we do not find one with L(g, 1) 6= 0
and the torsion multiple coprime to p are

p = 3, N = 17 and p = 5, N = 19.

For p = 3, there is a unique g of level 6613 = 37 · 17 with ords=1 L(g, s) even
and E[3] ⊂ Ag. This form has degree 5 and L(g, 1) = 0, so this is another
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Table 3: Visibility of Mordell-Weil for y2 + y = x3 + x2

N p′s
2 5
3 3
4 −
5 5
6 −
7 −
8 −
9 −
10 −
11 3
12 −
13 19
14 −
15 −
16 −

N p′s
17 3,7
18 −
19 −
20 −
21 −
22 5
23 5
24 −
25 −
26 −
27 3
28 −
29 3
30 −
31 −

N p′s
32 −
33 3
34 5
35 −
36 −
37 19
38 −
39 3
40 −
41 37
42 −
43 −
44 −
45 −
46 −

N p′s
47 −
48 −
49 −
50 5
51 3
52 −
53 59
54 −
55 5
56 −
57 3
58 −
59 3
60 −
61 5

N p′s
62 −
63 −
64 −
65 −
66 −
67 71
68 −
69 −
70 −
71 5, 7
72 −
73 3
74 −
75 −
76 −

N p′s
77 −
78 −
79 −
80 −
81 3
82 −
83 3,23
84 −
85 5
86 −
87 3
88 −
89 47
90 −
91 −

N p′s
92 −
93 −
94 −
95 −
96 −
97 7,13
98 −
99 3
100 −

Table 4: Levels Where Mordell-Weil is p-Visible for y2 + y = x3 + x2

p N such that 43N is a level of p-modularity of E(Q)

3 3, 11, 17, 27, 29, 33, 39, 51, 57, 59, 73, 81, 83, 87, 99

5 2, 5, 22, 23, 34, 50, 55, 61, 71, 85

7 17, 71, 97

11 -

13 97
17 -

19 13, 37

23 83
29, 31 -

37 41
41, 43 -

47 89
53 -

59 53
61, 67 -

71 67
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Table 5: Visibility of Mordell-Weil for y2 + y = x3 + x2 − 2x

N p′s
1 5
2 −
3 −
4 −
5 3
6 −

N p′s
7 3
8 −
9 3
10 −
11 −
12 −

N p′s
13 11
14 −
15 3
16 −
17 −
18 −

N p′s
19 −
20 −
21 −
22 −
23 5
24 −

N p′s
25 −
26 −
27 3
28 −
29 3

Table 6: Levels Where Mordell-Weil is p-Visible for y2 + y = x3 + x2 − 2x

p N such that 389N is a level of p-modularity of E(Q)

3 5, 7, 9, 15, 27, 29

5 1, 23

7 -

11 13

example where the rank 0 hypothesis of Proposition 5.1.1 is not satisfied. Note
that the torsion multiple in this case is 1. For p = 5, there is a unique g of level
7391 = 37 · 19, with ords=1 L(g, s) even and E[5] ⊂ Ag. This form has degree 4
and L(g, 1) 6= 0, but the torsion multiple is divisible by 5.
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Abstract. In this work, we provide an integral ℓ-adic realization
functor for Voevodsky’s triangulated category of geometrical motives
over a noetherian separated scheme. Our approach to the realization
problem is to study finite correspondences from the Nisnevich and
étale local point of view. We set the existence of a local decompo-
sition for finite correspondences which implies the existence of local
transfers. This result allows us to provide canonical transfers on the
Godement resolution of a Nisnevich sheaf with transfers and then to
carry out the construction of the ℓ-adic realization functor. We also
give a moderate ℓ-adic realization functor in some geometrical situa-
tions.
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Introduction

Nous nous intéressons dans cet article à la réalisation des motifs triangulés
géométriques de V. Voevodsky sur un schéma noethérien séparé S dans la
catégorie des coefficients ℓ-adiques de T. Ekedahl [11] 1. M. Levine a construit
dans [25] une catégorie triangulée de motifs munie de foncteurs de réalisation
très généraux. Ce travail fournit indirectement des foncteurs de réalisations
pour les motifs triangulés de Voevodsky dans les cas où les catégories de [29] et
[25] sont équivalentes à savoir essentiellement le cas d’un corps parfait [25, 22].
Dans [18, 19] A. Huber fait directement le lien pour un corps de caractéristique

1Nous renvoyons à l’appendice A pour un rappel sur la construction de cette catégorie et
pour de plus amples précisions sur les notations utilisées dans le cadre ℓ-adique.
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nulle entre les motifs triangulés de Voevodsky et la catégorie des réalisations
mixtes de [16] en construisant un foncteur de réalisation mixte.

Nous commençons ce travail en remarquant que la construction de la catégorie
triangulée des motifs mixtes géométriques de [29] se généralise au schéma de
base S, ce qui nous permet d’obtenir une catégorie triangulée tensorielle que
nous notons DMgm(S). L’approche faisceautique sur une base régulière fait
l’objet d’un travail en cours de D-C. Cisinski et F. Déglise commencé dans
[6]. En convenant de désigner par D+(S,Zℓ) la catégorie des coefficients ℓ-
adiques définie par T. Ekedahl [11], notre résultat principal — le théorème
4.3 — s’énonce alors comme suit :

Théorème. Le foncteur de réalisation ℓ-adique des S-schémas lisses de type
fini

Rℓ : Smop
S → D+(S,Zℓ)

X 7→ RπX∗π
∗
XZS/ℓ∗.

se prolonge canoniquement en un foncteur triangulé quasi-tensoriel 2

DMgm(S)op → D+(S,Zℓ). (1)

(a) Lorsque S est de type fini sur un schéma noethérien régulier de dimen-
sion ≤ 1, le foncteur (1) prend ses valeurs dans Db

c (S,Zℓ) sous-catégorie
triangulée pleine formée des coefficients constructibles.

(b) Lorsque S est de type fini sur un corps fini, le foncteur (1) induit un
foncteur triangulé tensoriel

DMgm(S)op → Db
m(S,Qℓ)

où le second membre désigne la catégorie des coefficients ℓ-adiques mixtes
de P. Deligne [8, 5].

L’approche des réalisations que nous adoptons repose essentiellement sur une
étude locale pour les topologies de Nisnevich et étale des correspondances finies.
Le résultat fondamental à ce sujet — la proposition 2.1 — consiste en un
raffinement de la proposition 3.1.3 de [29] et assure l’existence d’une homotopie
canonique pour certains complexes de C̆ech associés à la décomposition locale
d’un schéma pour la topologie de Nisnevich. Dans l’article [9] P. Deligne et A.
Goncharov ont utilisé une approche similaire pour construire certains foncteurs
de réalisation. Nous renvoyons à [21] pour le lien entre le travail de A. Huber
[18, 19] et le présent article.

Dans certaines situations géométriques nous raffinons également la construction
précédente en un foncteur de réalisation ℓ-adique modérée — corollaire 4.17.

Les résultats contenus dans cet article ainsi que dans [21] proviennent de la
thèse de doctorat de l’auteur [20].

2Nous renvoyons à la définition B.1 pour ce qui concerne la terminologie utilisée dans cet
article.
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Conventions

Tout au long de ce travail, nous adoptons la convention suivante.

S désigne un schéma noethérien séparé et ℓ un nombre premier
inversible sur S. Tous les schémas considérés sont supposés
noethériens et séparés.

Nous sortirons parfois, de manière anodine, de ce cadre en considérant des
réunions disjointes, non nécessairement finies, de schémas pris au sens de la
convention précédente. Cela sera notamment le cas dans la section 2. Nous
notons SchS (resp. VarS) la catégorie des S-schémas (resp. des S-schémas de
type fini) et nous désignons par SmS la catégorie des S-schémas lisses de type
fini. Le morphisme structural d’un S-schéma X est noté πX .

1 Motifs mixtes géométriques

Rappelons que sur un corps 3 Voevodsky définit DM eff
gm à partir de la catégorie

homotopique de la catégorie des complexes de variétés lisses munies des corres-
pondances finies, modulo les relations :
– Mayer-Vietoris pour la topologie de Zariski
– invariance par homotopie.
La construction que nous donnons ici est exactement la même (en se fondant
sur la théorie des correspondances finies sur S de Suslin-Voevodsky), à une
différence près : nous remplaçons les relations de Mayer-Vietoris pour la to-
pologie de Zariski par leurs analogues en topologie de Nisnevich. Il y a donc
a priori plus de relations, mais il résulte de la proposition 4.1.23 de [20] et
du théorème 3.1.12 de [29] que les deux constructions cöıncident sur un corps
parfait.

Avant d’introduire les correspondances finies sur une base quelconque, nous
rappelons pour la commodité du lecteur quelques constructions tirées de [28],
référence à laquelle nous renvoyons pour un exposé complet.

1.1 Quelques rappels sur les cycles relatifs

Soient K un corps, s un K-point de S. Un épaississement de s est la donnée
d’un trait O et d’une factorisation de s sous la forme

SpecO τ // S

SpecK

s

<<xxxxxxxxx
σ

OO

3Dans le texte de référence [29], le schéma de base considéré est un corps et pour les
besoins de la démonstration de la conjecture de Bloch-Kato, les constructions sont étendues
à des schémas simpliciaux lisses sur un corps dans [31].
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où σ est le point fermé de O et τ un morphisme birationnel de O sur une
composante irréductible de S contenant le lieu s de s. Le point s est épais
lorsqu’il admet un épaississement. Soit Z un schéma équidimensionnel sur S
de dimension n dominant la même composante irréductible que O. Le schéma
O ×S Z possède une unique composante irréductible Z dominant O et cette
dernière est plate et équidimensionnelle surO de dimension n. Supposons donné
un cycle α de la forme

α =
∑

Z

αZ [Z]

la somme étant prise sur les sous-schémas fermés intègres Z de X qui sont
équidimensionnels sur S de dimension n, les αZ non nuls étant en nombre fini.
On peut associer à α le cycle

(O, τ, σ)⊛α :=
∑

Z

αZ [Spec(K)×O Z] (2)

la somme étant restreinte aux sous-schémas fermés qui dominent la même com-
posante irréductible de S que O. On prendra garde néanmoins que pour un
K-point épais s de S, le choix de l’épaississement n’est pas unique et qu’en
toute généralité rien n’assure que les cycles (2) pour des épaississements dis-
tincts soient égaux. Ceci explique l’introduction dans [28, Definition 3.1.3] du
groupe abélien PropCyclequi(X/S, n) formé des cycles

α =

r∑

i=1

αi[Zi]

vérifiant les deux conditions suivantes :
– Les Zi sont des sous-schémas fermés intègres de X équidimensionnels et

propres sur S de dimension n 4.
– Pour tout K-point épais s de S, le cycle (O, τ, σ)⊛α est indépendant de

l’épaississement (O, τ, σ) choisi.
L’opération essentielle sur les cycles relatifs est l’opération de changement de
base

θ⊛ : PropCyclequi(X/S, n)Q → PropCyclequi(XT /T, n)Q

pour un morphisme de schémas θ : T → S qui est construite de sorte que l’on
ait

s⊛α = (O, τ, σ)⊛α

pour un K-point épais s et un épaississement (O, τ, σ) de ce dernier. En général
un cycle obtenu par changement de base n’est pas nécessairement à coefficients
entiers, en revanche par construction les dénominateurs pouvant apparâıtre ne
peuvent avoir comme facteurs premiers que les caractéristiques résiduelles de
S aux points images des points génériques des composantes irréductibles de T .

4Dans le cas n = 0 cela revient à dire que les Zi sont finis et dominants sur une composante
irréductible de S.
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Finalement on introduit le sous-groupe cequi(X/S, n) de PropCyclequi(X/S, n)
formé des cycles universellement entiers c’est à dire des cycles α tels que θ⊛α
soit à coefficients entiers pour tout morphisme de schéma θ : T → S.

Le changement de base permet alors de définir l’opération Cor. Soient X un
S-schéma et Y un X-schéma. Supposons donnés un cycle α ∈ cequi(Y/X, n) et
un cycle β ∈ cequi(X/S,m) que l’on écrit

β =
∑

Z

βZ [Z]

la somme étant prise sur les sous-schémas fermés intègres de X propres et
équidimensionnels sur S de dimension m. Pour un tel sous-schéma, on a le
carré cartésien

Y ×X Z
(ιZ)Y //

��
�

Y

��
Z

ιZ // X

et on peut considérer le cycle

Cor(α, β) =
∑

Z

βZ(ιZ)Y ∗ι
⊛
Zα

qui appartient à cequi(Y/S, n + m) d’après le corollaire 3.7.5 de [28]. Nous
utilisons dans la suite le lemme suivant.

Lemme 1.1. Soient X un S-schéma et p : Y → Y ′ un morphisme de X-
schémas. Pour tout cycle α ∈ cequi(Y/X, n) et β ∈ cequi(X/S,m), on a

Cor(p∗α, β) = p∗Cor(α, β)

dans cequi(Y
′/S, n+m).

Démonstration. Par linéarité on peut supposer β = [Z] où Z est un sous-
schéma fermé intègre de X . Notons ι l’immersion fermée correspondante, en
utilisant les notations du diagramme commutatif suivant

Y ′ ×X Z
ιY ′ //

��

Y ′

����
��
��
��
��

Y ×X Z

pZ
44jjjjjjjjj ιY //

$$J
JJJJJ Y

  @
@@

@@

p
77oooooooooo

Z
ι // X

la proposition 3.6.2 de [28] assure que

Cor(p∗α, β) = ιY ′∗ι
⊛p∗α = ιY ′∗pZ∗ι

⊛α

= p∗ιY ∗ι
⊛α = p∗Cor(α, β).
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1.2 Correspondances finies

Hormis un survol dans [26, Appendix 1A], cette notion n’est disponible dans
la littérature que dans le cas des corps. L’extension aux schémas de base quel-
conques 5 ne présente aucune difficulté et s’avère une application de la théorie
générale des cycles relatifs de [28]. Nous énonçons sans démonstration certaines
propriétés élémentaires des correspondances finies : on trouvera plus de détails
dans la thèse de l’auteur [20, §2.1].

Définition 1.2. Soient X et Y deux S-schémas. Les S-correspondances finies
de X dans Y sont les éléments du groupe abélien

cS(X,Y ) := cequi(X ×S Y/X, 0).

La composition des correspondances finies est fournie par la relation

β ◦ α := pXY ZXZ∗ Cor(p
XY ⊛
X β, α) (3)

dans laquelle α ∈ cS(X,Y ) et β ∈ cS(Y, Z).

Remarque 1.3. Dans la formule (3) donnant la composition pXY ZXZ désigne la
projection de X ×S Y ×S Z sur X ×S Z et pXYX la projection de X ×S Y sur
X . Nous utilisons ce type de notation pour les projections dans le reste de ce
travail.

Dans la suite nous utilisons la notation suivante.

Notation 1.4. Nous désignons par ∆p l’immersion ferméeX →֒ X×SY associée
à un morphisme de S-schémas p : X → Y et par Γp le graphe de ce dernier.
Celui-ci définit une correspondance finie de X dans Y que nous notons [p].

Lemme 1.5. Soient X,Y, Z et W des S-schémas.

(a) Étant données des correspondances finies α ∈ cS(X,Y ), β ∈ cS(Y, Z) et
γ ∈ cS(Z,W ) on a

γ ◦ (β ◦ α) = (γ ◦ β) ◦ α.
(b) Pour tout morphisme de S-schémas p : X → Y et toute correspondance

finie α ∈ cS(Y, Z) on a
α ◦ [p] = p⊛α.

(c) Pour tout morphisme de S-schémas p : Y → Z et toute correspondance
finie α ∈ cS(X,Y ) on a

[p] ◦ α = (idX ×S p)∗α.

(d) Pour tout morphisme de S-schémas p : X → Y et q : Y → Z on a

[q] ◦ [p] = [q ◦ p].
5Le cas plus restreint des schémas lisses de type fini sur une base réguliere est traité dans

[6] en utilisant les multiplicités d’intersection de Serre. Nous renvoyons à la proposition 1.8
pour le lien entre ces deux approches.

Documenta Mathematica 12 (2007) 607–671
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En particulier le lemme 1.5 assure qu’en prenant pour objets les S-schémas et
pour morphismes les correspondances finies, on obtient une catégorie SchCorS
munie d’un foncteur pleinement fidèle

[−] : SchS → SchCorS . (4)

qui à un morphisme de schémas associe son graphe. La définition suivante est
donc licite :

Définition 1.6. Nous désignons par SchCorS la catégorie des S-schémas mu-
nis des correspondances finies ayant pour objet les S-schémas et dont les mor-
phismes sont donnés par

HomSchCorS ([X ], [Y ]) := cS(X,Y )

pour des S-schémasX et Y . La notation VarCorS (resp. SmCorS) fait référence
à la sous-categorie strictement pleine obtenue en restreignant les objets aux
seuls schémas de type fini sur S (resp. lisses de type fini sur S).

L’opération (( correspondance )) de [28] permet de définir un produit associatif
et commutatif sur les cycles relatifs via la composition

cequi(X/S, 0)
⊗

cequi(Y/S, 0)

GF ED

×S

��π⊛

Y/S
⊗id
//
cequi(X ×S Y/Y, 0)

⊗
cequi(Y/S, 0)

Cor // cequi(X ×S Y/S, 0).

Ce produit est compatible aux morphismes de changement de base. En posant
pour α ∈ cS(X,Y ) et β ∈ cS(X ′, Y ′)

α⊗ β := (pXX
′⊛

X α)×X×SX′ (pXX
′

X′ β)

on définit sur la catégorie additive SchCorS une structure tensorielle naturelle
compatible via le foncteur (4) avec la structure monöıdale symétrique induite
par le produit fibré sur SchS .

Remarque 1.7. Étant donnés des S-schémas X,Y et une correspondance finie
α ∈ cS(X,Y ), le carré

X
[∆X ] //

α

��

X ×S X
α⊗α
��

Y
[∆Y ] // Y ×S Y

n’est pas nécessairement commutatif lorsque α n’est pas une correspondance
finie obtenue à partir d’un morphisme de S-schémas.
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La proposition suivante montre que la composition définie par les relations
(3) cöıncident avec la composition des correspondances finies pour les schémas
lisses de type fini sur une base régulière obtenue via la théorie de l’intersection
et considérée dans [29, 6].

Proposition 1.8. Supposons que S soit régulier et que X,Y, Z soient des S-
schémas lisses de type fini. Alors pour toute correspondance finie α ∈ cS(X,Y )
et β ∈ cS(Y, Z)

(a) les cycles pXY Z∗XY α et pXY Z∗Y Z β s’intersectent proprement,

(b) la composition des correspondances α et β est donnée par

β ◦ α = pXY ZXZ∗
(
pXY Z∗XY α a pXY Z∗Y Z β

)

où a désigne le produit d’intersection.

Nous utiliserons dans la suite l’extension aux schémas munis des correspon-
dances finies de l’opération classique de changement de base. Étant donnés
un morphisme de schémas θ : T → S et des S-schémas X,Y , nous pouvons
considérer le morphisme de changement de base induit par le morphisme θX

θ⊛
X : cequi(X ×S Y/X, 0)→ cequi((T ×S X)×S (X ×S Y )/T ×S X, 0).

Sachant que l’on a les isomorphismes

(T ×S X)×S (X ×S Y ) = T ×S (X ×S Y ) = (T ×S X)×T (T ×S Y )

ce dernier nous donne en fait un morphisme de changement de base

T ×S − : cS(X,Y )→ cT (T ×S X,T ×S Y ).

Nous noterons souvent αT la T -correspondance finie obtenue par changement
de base à partir d’une S-correspondance finie α. Les propriétés élémentaires du
changement de base sont rassemblées dans le lemme ci-dessous.

Lemme 1.9. Soient θ : T → S un morphisme de schémas et X,X ′, Y, Y ′, Z des
S-schémas.

(a) Étant données α ∈ cS(X,Y ) et β ∈ cS(Y, Z), on a

βT ◦ αT = (β ◦ α)T .

(b) Étant données α ∈ cS(X,Y ) et β ∈ cS(Y, Y ′), on a

αT ⊗ βT = (α⊗ β)T .

(c) Si p : X → Y est un morphisme de S-schémas alors [p]T = [pT ].
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Le lemme 1.9 assure que le morphisme de changement de base T ×S − est
fonctoriel, tensoriel et qu’en outre le carré suivant est commutatif

SchS

[−]

��

T×S− // SchT

[−]

��
SchCorS

T×S−
// SchCorT .

Définition 1.10. Soit S = SchS ,VarS , SmS . Un préfaisceau avec transferts
sur S est un préfaisceau additif de groupes abéliens sur la catégorie SCorS . Un
faisceau Nisnevich (étale) avec transferts est un préfaisceau avec transferts dont
la restriction à S est un faisceau Nisnevich (resp. étale). Nous notons Shtr

Nis(S)
(resp. Shtr

Et(S)) la catégorie des faisceaux Nisnevich (resp. étales) avec transferts
sur S.

1.3 Motifs mixtes géométriques

La topologie de Nisnevich intervient dans cette sous-section via la définition
suivante.

Définition 1.11. On appelle carré distingué élémentaire pour la topologie de
Nisnevich, un carré cartésien excisif de SmS

U ×X V //

��
�

V

p

��
U

e // X

(5)

dans lequel e est une immersion ouverte et p un morphisme étale.

Définition 1.12. La catégorieDMeff
gm(S) est la catégorie triangulée tensorielle

DM eff
gm(S) = Kb(SmCorS)/Egm(S)

obtenue par passage au quotient par la sous-catégorie triangulée épaisseEgm(S)
de Kb(SmCorS) engendrée par les complexes :
– Homotopie :

[A1
X ]

[π]−−→ [X ] (6)

où X est un S-schéma lisse de type fini et π la projection de A1
X sur X .

– Mayer-Vietoris pour la topologie de Nisnevich :

[U ×S X ] −→ [U ]⊕ [V ]
[e]⊕(−[p])−−−−−−→ [X ] (7)

pour tout carré distingué élémentaire pour la topologie de Nisnevich de la
forme (5).
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Remarque 1.13. Sachant que le complexe (6) est le cône dans Cb(SmCorS) du
morphisme [A1

X ] → [X ] induit par la projection et que le complexe (7) est le
cône du morphisme canonique entre le cône du morphisme de [U ×X V ] dans
[U ]⊕ [V ] et [X ], un foncteur triangulé

F : Kb(SmCorS)→ T

se prolonge à la catégorie DM eff
gm(S) si et seulement si les deux conditions

suivantes sont vérifiées.

(a) Le morphisme F (A1
X) → F (X) induit par la projection est un isomor-

phisme.

(b) Le triangle de Mayer-Vietoris

F (U ×X V )→ F (U)⊕ F (V )→ F (X)→ F (U ×X V )[1]

est distingué.

Définition 1.14. La catégorie des motifs géométriques effectifs que nous no-
terons

DM eff
gm(S)

est l’enveloppe pseudo-abélienne de la catégorie triangulée DMeff
gm(S).

Remarque 1.15. La catégorie introduite à la définition 1.14 possède une struc-
ture naturelle de catégorie triangulée d’après le théorème 1.5 de [4].

Nous notons M le foncteur canonique

M : SmS → DM eff
gm(S)

qui à un S-schéma lisse de type fini X associe son motif géométrique
M(X) image de l’objet [X ] de SmCorS dans la catégorie des motifs mixtes
géométriques effectifs.

En posant DM eff
gm(S)(n) := DM eff

gm(S), on dispose d’un 2-système inductif,
indexé par l’ensemble ordonné Z, de catégories triangulées tensorielles

n 7→ DM eff
gm(S)(n)

avec pour foncteurs de transition si m ≥ n

−⊗ Z(m− n) : DM eff
gm(S)(n)→ DM eff

gm(S)(m)

Par définition les catégories des motifs mixtes non effectifs sont données par les
2-colimites de ces systèmes

DMgm(S) := 2-colim
n

DM eff
gm(S)(n).

Ces catégories DMgm(S) héritent d’une structure tensorielle. En effet il s’agit
de voir que la permutation cyclique des facteurs du motif Z(1) ⊗ Z(1) ⊗ Z(1)
est l’identité dans DM eff

gm(S) et cette propriété résulte du lemme 3.13 de [24].
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2 Localisation des correspondances finies

Dans cette section nous donnons deux résultats de décomposition locale des
correspondances finies pour la topologie de Nisnevich. Nous utilisons de manière
cruciale les propriétés des anneaux locaux henséliens lors de la construction de
ces décompositions, en particulier ces dernières ne possèdent pas d’analogue en
topologie de Zariski.

L’existence de ces décompositions locales est aussi valable lorsque l’on remplace
la topologie de Nisnevich par la topologie étale. Les démonstrations sont iden-
tiques à condition de substituer les anneaux locaux strictement henséliens aux
anneaux locaux henséliens et nous avons choisi pour simplifier la présentation
de ne donner les détails que pour la topologie de Nisnevich. Les modifications
mineures à effectuer lorsque l’on considère la topologie étale sont données dans
la sous-section 2.4.

2.1 Schémas décomposés

Nous dirons qu’un S-schéma est décomposé pour la topologie de Nisnevich
lorsqu’il est une réunion disjointe non nécessairement finie de S-schémas locaux
henséliens. À un S-schéma X on peut associer fonctoriellement un S-schéma
décomposé pour la topologie de Nisnevich

Xh :=
∐

x∈X
Xh
x

réunion disjointe sur les points de X des schémas locaux henséliens Xh
x spectre

de l’anneau local hensélien OhX,x dont on notera le point fermé abusivement
par x. Pour tout point x de X on dispose du morphisme canonique

Xh
x

//

l
h

X,x

&&
Spec (OX,x) // X

nous donnant un morphisme de schémas lhX : Xh → X .

La propriété universelle des hensélisés se traduit par le fait que la composition
par l

h
X induit un isomorphisme

HomSchS (D,Xh) = HomSchS (D,X) (8)

pour tout S-schéma D décomposé pour la topologie de Nisnevich. On remar-
quera que le morphisme

lh
Xh : (Xh)h → Xh

n’est pas un isomorphisme en général, mais qu’il admet cependant une section
canonique sh

X identifiant Xh à un sous-schéma fermé de (Xh)h et provenant du
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fait que l’anneau local hensélien de Xh
x en son point fermé est canoniquement

isomorphe à OhX,x :

Xh
s

h
X //

id
Xh

(Xh)h
l
h

Xh // Xh
l
h
X // X

Autrement dit dans (Xh)h apparaissent des facteurs supplémentaires corres-
pondant aux points non fermés des Xh

x .

2.2 Une homotopie canonique

Étant donnés un S-schémaX et un X-schéma U , nous notons ČX(U) le schéma
simplicial de C̆ech dont les n-simplexes sont donnés par le produit fibré sur X
de n+ 1-copies de U

ČX(U)n = Un+1
X = U ×X · · · ×X U︸ ︷︷ ︸

n+ 1 termes

la i-ème dégénérescence δni étant le morphisme de projection sur chaque facteur
sauf le i-ème et la i-ème face σni le morphisme induit par l’immersion diagonale

sur le i-ème facteur. Ce schéma simplicial nous définit un complexe de C̆ech
augmenté dans la catégorie des faisceaux Nisnevich avec transferts 6

ČU/X : · · · → Ztr[ČX(U)n]
dn→ Ztr[ČX(U)n−1]→ · · · → Ztr[X ]. (9)

dont la différentielle est donnée par la somme alternée des morphismes induits
par les dégénérescences

dn =

n∑

i=0

(−1)i(δni )∗.

Dans la suite nous nous intéressons dans un premier temps aux sections de (9)
sur les schémas locaux henséliens puis nous raffinons les résultats obtenus en
considérant cette fois les fibres pour la topologie de Nisnevich.

2.2.1 Cas des sections sur les schémas locaux henséliens

Étant donné un S-schéma O, en prenant les sections sur O du complexe de
C̆ech précédent on obtient un complexe de groupes abéliens

ČU/X(O) : · · · → Ztr

[
U2
X

]
(O)→ Ztr[U ](O)→ Ztr[X ](O)→ 0→ · · · .

6Nous renvoyons à définition 1.10 pour la notion de faisceau Nisnevich avec trans-
ferts. Ztr[X] désigne selon les conventions usuelles le faisceau Nisnevich avec transferts
représentable associé à X.
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Le résultat essentiel assurant l’existence d’une décomposition locale canonique
des correspondances finies consiste en un raffinement de la proposition 3.1.3 de
[29]. Cette dernière assure que lorsque U est un recouvrement Nisnevich de X
et O est un schéma local hensélien, le complexe ČU/X(O) est exact. Lorsque

l’on remplace le recouvrement Nisnevich U par le schéma décomposé Xh le
complexe

ČXh/X(O) : · · · → Ztr

[
(Xh)2X

]
(O)→ Ztr[X

h](O)→ Ztr[X ](O)→ 0→ · · ·
(10)

est non seulement exact mais devient en fait canoniquement homotope à zéro.
Plus précisément :

Proposition 2.1. Soient X un S-schéma et O un S-schéma local hensélien.
Il existe des morphismes canoniques

σh
O,X,n : Ztr

[
(Xh)nX

]
(O)→ Ztr

[
(Xh)n+1

X

]
(O) n ≥ 0

satisfaisant aux deux propriétés suivantes.

(a) (Homotopie) On a pour tout n les relations

dn+1 ◦ σh
O,X,n + σh

O,X,n−1 ◦ dn = id. (11)

(b) (Fonctorialité) Étant donnés un S-schéma local hensélien O′ et une cor-
respondance finie α ∈ cS(O′,O), on a un carré commutatif

Ztr

[
(Xh)nX

]
(O)

Ztr[(Xh)nX ](α)
//

σh

O′,X,n

��

Ztr

[
(Xh)nX

]
(O′)

σh

O,X,n

��
Ztr

[
(Xh)n+1

X

]
(O)

Ztr[(Xh)n+1
X ](α)

// Ztr

[
(Xh)n+1

X

]
(O′).

(12)

Remarque 2.2. En pratique pour les applications — [21, 22] et section 4 du
présent article — seuls les cas n = 0 des propositions 2.1 et 2.7 nous seront
utiles.

Démonstration. Étant donné un sous-schéma fermé Z de O ×S X fini et
équidimensionnel sur O, on note W le sous-schéma fermé de O ×S Xh défini
par le carré cartésien

W
r //

�

��

Z

��
O ×S Xh // O ×S X.
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Sachant que dans le carré précédent les morphismes verticaux sont des immer-
sions fermées et que

O ×S (Xh)nX = O ×S


Xh ×X · · · ×X Xh

︸ ︷︷ ︸
n+ 1 termes




= (O ×S Xh)×(O×SX) · · · ×(O×SX) (O ×S Xh)
︸ ︷︷ ︸

n+ 1 termes

= (O ×S Xh)nO×SX

on voit que Wn
Z est un sous-schéma fermé de O×S (Xh)nX . En particulier on a

des sous-groupes

cequi(W
n
Z/O, 0) ⊂ Ztr

[
(Xh)nX

]
(O)

définissant un sous-complexe de (10)

· · · → cequi(W
2
Z/O, 0)→ cequi(W

1
Z/O, 0)→ cequi(Z/O, 0)→ 0 · · · . (13)

Les complexes (13) sont fonctoriels pour l’inclusion des sous-schémas fermés Z
finis et équidimensionnels sur O et on voit que le complexe (10) est la colimite
sur de tels sous-schémas fermés de ces complexes. En effet il s’agit de voir que
pour tout n

colim
Z

cequi(W
n
Z ,O, 0) = Ztr

[
(Xh)nX

]
(O) (14)

la colimite étant prise sur les sous-schémas fermés de O×SX équidimensionnels
et finis sur O. Soit W un sous-schéma fermé intègre de O ×S (Xh)nX
équidimensionnel et fini sur O. Comme les images de W par les morphismes

O ×S (Xh)nX

morphisme
induit par

la i-ème
projection

// O ×S Xh
O×Sl

h

X // O ×S X

sont des sous-schémas fermés intègres de O ×S X finis et équidimensionnels
sur O, il existe un sous-schéma fermé Z fini et équidimensionnel sur O qui les
contient toutes. Pour un tel Z notre W est un sous-schéma fermé de Wn

Z ce qui
prouve la relation (14).

Nous allons construire pour chacun des complexes (13) une homotopie cano-
nique. Comme Z est fini sur le schéma local hensélien O, il est lui même semi-
local hensélien 7 donc décomposé pour la topologie de Nisnevich de la forme

Z =
∐

z point fermé
de Z

Spec (OZ,z) .

7Cette propriété des anneaux henséliens est cruciale, un raisonnement analogue ne peut
donc s’appliquer à la topologie de Zariski.
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En particulier la propriété universelle (8) nous assure l’existence d’un unique
morphisme θZ factorisant la projection πZ de Z sur X sous la forme

Z
θZ

//

πZ

""
Xh

l
h

X

// X.

La propriété universelle des produits fibrés nous fournit alors une section ca-
nonique σh

Z du morphisme r via le diagramme

Z

idZ

&&

θZ

##

σh
Z // W

r //

��
�

Z

��
πZ

��

O ×S Xh //

��
�

O ×S X

��
Xh

l
h

X

// X.

(15)

On peut alors considérer les morphismes de schémas

σh
Z,n = σh

Z ×Z idWn
Z

: Wn
Z →Wn+1

Z .

Ces derniers vérifient les relations pour i = 0, . . . , n

δn+1
i+1 ◦ σh

Z,n = σh
Z,n−1 ◦ δni δn+1

0 ◦ σh
Z,n = id

ce qui assure que les morphismes induits sur les cycles équidimensionnels

σh
O,X,Z,n := (σh

Z,n)∗ : cequi(W
n
Z /O, 0)→ cequi(W

n+1
Z /O, 0)

définissent une homotopie entre l’identité du complexe (13) et le morphisme
nul.

Lorsque Z ′ est un sous-schéma fermé de O ×S X fini et équidimensionnel sur
O contenant Z, les factorisations précédemment obtenues sont compatibles

Z πZ

  

��

θZ !!B
BB

BB
BB

B

Xh
l
h
X // X

Z ′
πZ′

>>

θZ′

==||||||||
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et en particulier la construction de la section σh
Z assure que le carré

Z
σh
Z //

��

W

��
Z ′

σh

Z′ // W ′

est commutatif et donc que le diagramme obtenu au niveau des cycles
algébriques

cequi(W
n
Z /O, 0)

σh

O,X,Z,n //

��

cequi(W
n+1
Z /O, 0)

**VVVVVVVVVVV

��

Ztr

[
(Xh)n+1

X

]
(O)

cequi ((W
′)nZ′/O, 0)

σh

O,X,Z′,n// cequi

(
(W ′)n+1

Z′ /O, 0
)

44hhhhhhhhhhh

l’est aussi. En passant à la colimite sur les sous-schémas fermés Z on obtient
ainsi un morphisme

σh
O,X,n : Ztr

[
(Xh)nX

]
(O)→ Ztr

[
(Xh)n+1

X

]
(O)

et ces derniers nous donnent une homotopie canonique du complexe (10).

Montrons maintenant que le carré (12) est commutatif autrement dit que l’on
a l’égalité

σh
O′,X,n(β ◦ α) = σh

O,X,n(β) ◦ α
pour toute correspondance finie β ∈ cS

(
O, (Xh)nX

)
. Fixons pour cela un sous-

schéma fermé Z de O×SX fini et équidimensionnel sur O de sorte qu’en notant
ιn l’immersion fermée de Wn

Z dans O ×S (Xh)nX on ait

β = (ιn)∗β β ∈ cequi(W
n
Z/O, 0).

De même fixons un sous-schéma fermé Z de O′ ×S O fini et équidimensionnel
sur O′ de sorte qu’en notant ι l’immersion fermée de Z dans O′ ×S O on ait

α = ι∗α α ∈ cequi(Z/O′, 0).

Notons alors Z ′′ le sous-schéma fermé de O′ ×S O ×S X défini par le carré
cartésien

Z ′′

fini

��

fini

��

//

�

Z

fini

��
Z //

fini

��

O

O′.
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Fixons d’autre part un sous-schéma fermé Z ′ de O′×SX fini équidimensionnel
sur O′ tel que l’on ait le carré commutatif

Z ′′ //

��
fini

��

O′ ×S O ×S X

��
Z ′ //

fini

��

O′ ×S X

wwooooooooo

O′

et convenons de noter W ′′ le schéma défini par le carré cartésien

W ′′
r′′ //

��
�

Z ′′

��
O′ ×S O ×S Xh // O′ ×S O ×S X.

Par définition Z ′′ est fini sur le schéma local hensélien O′, autrement dit semi-
local hensélien et donc décomposé pour la topologie de Nisnevich de la forme

Z ′′ =
∐

z′′ point fermé
de Z′′

Spec (OZ′′,z′′) .

La propriété universelle (8) nous assure comme précédemment l’existence d’un
unique morphisme θZ′′ factorisant la projection πZ′′ de Z ′′ sur X sous la forme

Z ′′
θZ′′

//

πZ′′

##
Xh

l
h

X

// X.

La propriété universelle des produits fibrés nous fournit une section canonique
σh
Z′′ du morphisme r′′ via le diagramme

Z ′′

idZ′′

$$

θZ′′

((

σh

Z′′ // W
r′′ //

�� �

Z ′′

��
πZ′′

vv

O′ ×S O ×S Xh //

�� �

O′ ×S O ×S X

��
Xh

l
h

X

// X.
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On a par ailleurs le diagramme commutatif

Z ′′
ED

BC

πZ′′

oo

~~}}
}}

}}
}}

!!B
BB

BB
BB

B

θZ′′

��
Z

θZ //

πZ
  A

AA
AA

AA
A Xh

l
h

X

��

Z ′
θZ′oo

πZ′
}}||

||
||

||

X

ce qui assure que les carrés suivants sont commutatifs

Z

σh

Z

��

Z ′′ //oo

σh

Z′′

��

Z ′

σh

Z′

��
W W ′′ //oo W ′.

On obtient ainsi que le diagramme suivant dans lequel pn et qn désignent res-
pectivement les projections induites par les projections de Z ′′ sur Z et Z ′

(W ′′)n+1
Z′′

pn+1

&&MMMMMM

qn+1

����
��

��
��

��
��

�
(W ′′)nZ′′

pn

%%LL
LLL

LL

qn

����
��

��
��

��
��

σh

Z′′,noo

(W ′)n+1
Z′ (W ′)nZ′

σh

Z′,noo

Wn+1
Z

Wn
Z

σh

Z,noo

est commutatif. D’autre part on a un carré cartésien

(W ′′)nZ′′
//

��
�

Wn
Z

��
Z // O.

Cela donne ainsi

σh
O′,X,n(β ◦ α) = σh

O′,X,n

[(
pO

′×SO×SX
O′×SX

)
∗
CorO′×SO/O′

((
pO

′×SO
O

)⊛

β, α

)]

= σh
O′,X,n

[
(ι′n)∗(pn)∗CorZ/O′

((
pZ
O
)⊛
β, α

)]

= (ι′n+1)∗(σ
h
Z′,n)∗(pn)∗CorZ/O′

((
pZ
O
)⊛
β, α

)

= (ι′n+1)∗(pn+1)∗(σ
h
Z′′,n)∗CorZ/O′

((
pZ
O
)⊛
β, α

)
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D’autre part en utilisant la proposition 3.6.2 de [28] et le lemme 1.1, on voit
que

(σh
Z′′,n)∗CorZ/O′

((
pZ
O
)⊛
β, α

)
= CorZ/O′

(
(σh
Z′′,n)∗

(
pZ
O
)⊛
β, α

)

= CorZ/O′

((
pZ
O
)⊛

(σh
Z,n)∗β, α

)

ce qui assure finalement que

σh
O′,X,n(β ◦ α) = (ι′n+1)∗(pn+1)∗CorZ/O′

((
pZ
O
)⊛

(σh
Z,n)∗β, α

)

=
[
p
O×SO′×S(Xh)n+1

X

O′×S(Xh)n+1
X

]
∗
CorO′×SO/O′

((
pO

′×SO
O

)⊛

σh
O,X,n(β), α

)

= σh
O,X,n(β) ◦ α.

2.2.2 Cas des fibres pour la topologie de Nisnevich

Considérons maintenant les fibres Nisnevich du complexe (9). Rappelons que
pour un point x ∈ X on dispose d’un isomorphisme canonique

Xh
x = lim

U∈(VhX,x)op
U

où VhX,x désigne la catégorie des voisinages Nisnevich affines de x. La fibre
Nisnevich d’un préfaisceau F au point x est alors donnée par

Fx = colim
U∈(VhX,x)op

F (U).

Plus généralement considérons la définition suivante.

Définition 2.3. Soit O un S-schéma. On appelle présentation de O la donnée
d’un triplet (Λ, U, u) vérifiant les conditions suivantes.
– Λ est une catégorie cofiltrante.
– U : Λ→ SchS ;λ 7→ Uλ est un système projectif de S-schémas indexé par Λop

tel que pour tout morphisme λ→ µ de Λ le morphisme induit Uλ → Uµ soit
plat et affine.

– u est un isomorphisme de S-schémas O → limλ∈Λop Uλ.

Exemple 2.4. La catégorie VhX,x des voisinages Nisnevich affines de x fournit

une présentation naturelle du schéma local hensélien Xh
x . De même pour un

point y ∈ Xh
x en remarquant que l’on a un isomorphisme canonique

(Xh
x)h
y = lim

U∈(VhX,x)op,V ∈(VhU,z)
op
V

on obtient une présention naturelle du S-schéma local hensélien (Xh
x)h
y . On

remarquera que lorsqueX est (lisse) de type fini sur S les schémas apparaissant
dans les systèmes projectifs précédemment décrit sont tous (lisses) de type fini
sur S.
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Notation 2.5. Étant donnés un S-schéma X et une présentation d’un S-schéma
O′ il sera commode de disposer des groupes abéliens 8

cS{O, X} := colim
λ∈Λop

cS(Uλ, X)

cS(O′,O} := lim
λ∈Λop

cS(O′, Uλ) cS{O′,O} := lim
λ∈Λop

cS{O′, Uλ)

Lorsque F est un préfaisceau (avec transferts) on pose également

F{O} := colim
λ∈Λop

F (Uλ)

de sorte que Ztr[X ]{O} = cS{O, X) avec les notations précédentes.

On dispose via u d’un morphisme naturel F{O} → F (O) et les transferts
induisent des morphismes naturels s’inscrivant dans un diagramme commutatif

cS{O′,O)⊗ F{O} //

��

cS{O′,O)⊗ F (O)

��
cS{O′,O} ⊗ F{O} //

��

F{O′}

��
cS(O′,O} ⊗ F{O} // F (O′)

cS(O′,O)⊗ F{O}

OO

// cS(O′,O)⊗ F (O).

OO

(16)

Étant donné un élément α ∈ cS{O′,O) ou plus généralement un élément α ∈
cS{O′,O} nous désignerons dans la suite par

F{α} : F{O} → F{O′}

le morphisme induit. On remarquera que si β ∈ cS{O′′,O′) et α désigne l’image
de α dans cS(O′,O) on a la relation

F{α ◦ β} = F{β} ◦ F{α}.

Nous noterons également F{α} : F{O} → F (O′) le morphisme induit par un
élément α ∈ cS(O′,O}. Le lemme suivant nous sera très utile dans la suite :

Lemme 2.6. Étant donnés un S-schéma X et une présentation d’un S-schéma
O. Le morphisme canonique

Ztr[X ]{O} → Ztr[X ](O)

est injectif.

8Ces notations peuvent sembler ambiguës à priori puisque l’on néglige de préciser
la présentation choisie. Néanmoins dans la suite cela n’entrainera aucune confusion, la
présentation étant clairement définie par le contexte. Dans le cas des hensélisés nous uti-
liserons les présentations décrites dans l’exemple 2.4.
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Démonstration. Pour tout λ ∈ Λ, le morphisme O → Uλ est plat et ainsi

cS(Uλ, X) = cequi(Uλ ×S X/Uλ, 0)→ cS(O, X) = cequi(O ×S X/O, 0)

est donné par un simple changement de base plat. Soit α ∈ cS(Uλ, X) une
correspondance dont l’image dans cS(O, X) soit nulle. Étant donné µ ∈ Λ/λ,
si Zµ désigne le support de l’image αµ dans cS(Uµ, X) de α, il s’ensuit que
la limite projective du système µ 7→ Zµ est vide. Le théorème 8.10.5 de [14]
assure alors que Zµ est vide pour µ suffisamment grand et donc que αµ = 0.
L’injectivité en résulte.

Dans la situation précédente il est possible de raffiner la proposition 2.1 sous
la forme suivante.

Proposition 2.7. Étant donnés un S-schéma X et une présentation d’un S-
schéma local hensélien O. Il existe d’uniques morphismes

{σ}hO,X,n : Ztr

[
(Xh)nX

]
{O} → Ztr

[
(Xh)n+1

X

]
{O} n ≥ 0

satisfaisant aux deux propriétés suivantes.

(a) (Homotopie) On a pour tout n les relations

dn+1 ◦ {σ}hO,X,n + {σ}hO,X,n−1 ◦ dn = id. (17)

(b) (Compatibilité) Le carré suivant est commutatif

Ztr

[
(Xh)nX

]
{O}

{σ}h

O,X,n //

��

Ztr

[
(Xh)n+1

X

]
{O}

��
Ztr

[
(Xh)nX

]
(O)

σh

O,X,n // Ztr

[
(Xh)n+1

X

]
(O).

(18)

Démonstration. L’unicité de tels morphismes découle immédiatement de la
commutativité de (18) et du lemme 2.6. Il suffit donc de donner une construc-
tion de ces morphismes en raffinant la preuve de la proposition 2.1. Introduisons
la catégorie C dont les objets sont les couples (λ, Z) où λ ∈ Λ et Z est un sous-
schéma fermé de Uλ ×S X fini et équidimensionnel sur Uλ. L’ensemble des
morphismes de (λ, Z) dans (λ′, Z ′) étant réduit à un élément si le schéma ZO
est contenu dans Z ′O et vide dans le cas contraire. Étant donné (λ, Z) ∈ C, on
note W le sous-schéma fermé de V ×S Xh défini par le carré cartésien

W
r //

�

��

Z

��
Uλ ×S Xh // Uλ ×S X
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ce qui fournit le complexe

· · · → colim
µ∈(Λ/λ)op

cequi((WUµ )n+1
ZUµ

/Uµ, 0)→ colim
µ∈(Λ/λ)op

cequi((WUµ )nZUµ /Uµ, 0)→ · · · .
(19)

Ces complexes sont fonctoriels par rapport aux morphismes dans C et en re-
marquant que

colim
(λ,Z)∈C

colim
µ∈(Λ/λ)op

cequi((WUµ )nZUµ /Uµ, 0) = Ztr(X
h)nX{O}

on voit que le complexe ČXh/X{O} est la colimite sur C des complexes (19).
Nous allons construire comme précédemment une homotopie canonique pour
chacun de ces complexes. Il résulte de la preuve de la proposition 2.1 que le
morphisme rO : WO → ZO possède une section canonique

σh
ZO

: ZO →WO.

En particulier quitte à remplacer (λ, Z) par (µ,ZUµ) pour un certain élément
µ ∈ (Λ/λ)op cette section se relève en une section du morphisme r

σh
Z : Z →W.

On peut alors considérer pour tout µ ∈ (Λ/λ)op les morphismes de schémas

σh
ZUµ ,n

= σh
ZUµ
×ZUµ id(WUµ )nZUµ

: (WUµ )nZUµ → (WUµ)
n+1
ZUµ

.

Ces derniers vérifient les relations pour i = 0, . . . , n

δn+1
i+1 ◦ σh

ZUµ ,n
= σh

ZUµ ,n−1 ◦ δni δn+1
0 ◦ σh

ZUµ ,n
= id

ce qui assure que les morphismes induits sur les cycles équidimensionnels

{σ}hO,X,(λ,Z),n :=

colimµ∈(Λ/λ)op cequi((WUµ )nZUµ /Uµ, 0)

colimµ∈(Λ/λ)op (σh

ZUµ
,n)∗

��
colimµ∈(Λ/λ)op cequi((WUµ )n+1

ZUµ
/Uµ, 0)

définissent une homotopie entre l’identité du complexe (19) et le morphisme
nul.

Supposons donné un morphisme (λ, Z)→ (λ′, Z ′) dans C. Il résulte de la preuve
de la proposition 2.1 que le carré

ZO
σh

ZO //

��

WO

��
Z ′O

σh

Z′
O // W ′O
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commute. Il existe donc µ ∈ Λ et des morphismes λ← µ→ λ′ tels que le carré

ZUµ

σh
ZUµ //

��

WUµ

��
Z ′Uµ

σh

Z′
Uµ // W ′Uµ

soit commutatif. Cela entrâıne que le carré

colim
µ∈(Λ/λ)op

cequi((WUµ )nZUµ /Uµ, 0)

{σ}h

O,X,(λ,Z),n

//

��

colim
µ∈(Λ/λ)op

cequi((WUµ )n+1
ZUµ

/Uµ, 0)

��
colim

µ∈(Λ/λ′)op
cequi((W

′
Uµ )nZ′

Uµ
/Uµ, 0)

{σ}h

O,X,(λ′,Z′),n

// colim
µ∈(Λ/λ′)op

cequi((W
′
Uµ)

n
Z′
Uµ
/Uµ, 0)

l’est aussi et en passant à la colimite sur C on obtient ainsi des morphismes

{σ}hO,X,n : Ztr

[
(Xh)nX

]
{O} → Ztr

[
(Xh)n+1

X

]
{O}

fournissant une homotopie canonique du complexe ČXh/X{O}. Il résulte
immédiatement de la construction que le carré (18) est commutatif.

Par application du lemme 2.6, la commutativité du carré supérieur de (16)
ainsi que celle du carré (12) assurent que les morphismes construits dans la
proposition précédente satisfont également le lemme suivant.

Lemme 2.8. (Fonctorialité) Étant donnés une présentation d’un S-schéma local
hensélien O′ et un élément α ∈ Ztr[O]{O′}, on a un carré commutatif

Ztr

[
(Xh)nX

]
{O}

Ztr[(Xh)nX ]{α}
//

{σ}h

O′,X,n

��

Ztr

[
(Xh)nX

]
{O′}

{σ}h

O,X,n

��
Ztr

[
(Xh)n+1

X

]
{O}

Ztr[(Xh)n+1
X ]{α}

// Ztr

[
(Xh)n+1

X

]
{O′}.

Corollaire 2.9. Soit X un S-schéma. Le complexe de faisceaux Nisnevich
avec transferts ČXh/X est universellement exact au sens de Grayson [12].

Démonstration. Il suffit de vérifier que pour toute présentation d’un S-schéma
local hensélien O le complexe

ČXh/X{O} : · · · → Ztr

[
(Xh)2X

]
{O} → Ztr[X

h]{O} → Ztr[X ]{O} → 0→ · · ·
est universellement exact au sens de Grayson. Ceci découle de la proposition
2.1 puisque cette dernière assure que ČXh/X{O} est en fait homotope à zéro
donc à fortiori universellement exact au sens de Grayson .
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Remarque 2.10. En dépit de la fonctorialité — lemme 2.8 — des homotopies
construites dans la proposition 2.7, ces dernières ne peuvent généralement pas
se relever en des morphismes de faisceaux avec transferts. En particulier le
complexe de faisceaux Nisnevich avec transferts

ČXh/X : · · · → Ztr

[
(Xh)2X

]
→ Ztr[X

h]→ Ztr[X ]→ 0→ · · ·

bien qu’exact d’après le corollaire 2.9 n’est pas homotope à zéro en général.

2.3 Décomposition locale

2.3.1 Première décomposition locale

Nous abordons maintenant la décomposition locale d’une correspondance finie
pour la topologie de Nisnevich. Les morphismes de schémas lhX,x nous donnent
un morphisme naturel

⊕

x∈X
cS
(
O, Xh

x

) P
x∈X [lhX,x]◦−−−−−−−−−−→ cS(O, X). (20)

La remarque suivante résulte immédiatement de la définition des correspon-
dances finies.

Remarque 2.11. On a un isomorphisme naturel cS(O, Xh) =
⊕

x∈X cS
(
O, Xh

x

)

s’insérant dans le triangle commutatif

⊕
x∈X cS

(
O, Xh

x

) P
x∈X [lhX,x]◦−

// cS(O, X)

cS(O, Xh).

[lhX ]◦−

44iiiiiiiiiiiiiiiiiii

Lorsque O est hensélien, la proposition précédente nous permet d’écrire une
correspondance finie α ∈ cS(O, X) sous la forme d’une somme de contributions
locales

α =
∑

x

[lhX,x] ◦ αx αx ∈ cS
(
O, Xh

x

)

la correspondance αx étant canoniquement déterminée par α. Plus précisément
on peut déduire de la proposition 2.1 l’énoncé suivant.

Corollaire 2.12. Soient X un S-schéma et O un S-schéma local hensélien.
Il existe un morphisme canonique

cS (O, X)
σh

O,X−−−→
⊕

x∈X
cS
(
O, Xh

x

)
(21)

satisfaisant les propriétés suivantes.

Documenta Mathematica 12 (2007) 607–671
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(a) σh
O,X est une section du morphisme (20) telle que le carré

cS (O, X)
σh
O,X //

cS(α,X)

��

⊕
x∈X cS

(
O, Xh

x

)

cS(α,Xh
x )

��
cS (O′, X)

σh

O′,X //⊕
x∈X cS

(
O′, Xh

x

)
(22)

soit commutatif pour tout schéma local hensélien O′ et toute correspon-
dance finie α ∈ cS(O′,O).

(b) Pour un S-morphisme g : O → X la composante suivant le point x de
l’image de [g] par (21) est donnée par

σh
O,X([g])x =

{
[g] si x = τ

0 sinon

τ étant l’image du point fermé de O et g le morphisme déduit de g

Spec(O)
g //

g

$$
Xh
x

l
h
X,x // X.

Démonstration. Le premier point est une conséquence immédiate de la propo-
sition 2.1. En effet le morphisme

cS(O, X)
σh

O,X,0//

σh

O,X

))
cS(O, Xh)

⊕
x∈X cS

(
O, Xh

x

)

est une section du morphisme (20) d’après la relation d’homotopie (11), et la
commutativité du diagramme (22) n’est autre que celle du diagramme (12).

Considérons donc la seconde assertion. Pour reprendre les notations utilisées
dans la démonstration de la proposition 2.1, nous désignons par Z le sous-
schéma fermé de O ×S X graphe du morphisme g et par W le schéma défini
par le carré cartésien

W
r //

��
�

Z

��
O ×S Xh // O ×S X.

Le sous-schéma fermé Z s’identifie à l’immersion fermée ∆g : O → O ×S X
et l’on voit que le morphisme θZ de la démonstration de la proposition 2.1
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s’identifie à la composée de g et du morphisme d’inclusion ι : Xh
x → Xh. Dans

ce cas le diagramme (15) est donc de la forme

O

idO

&&

ι◦g

##

σh
Z // W

r //

��
�

O
∆g

��
g

��

O ×S Xh //

��
�

O ×S X

��
Xh

l
h

X // X

ce qui prouve que (σh
Z)∗([g]) = [g]. Par construction du morphisme σh

O,X cela
se traduit par

σO,X([g])x =

{
[g] si x = τ

0 sinon

qui n’est autre que l’égalité souhaitée.

Remarque 2.13. Supposons que X soit lui même un schéma local hensélien de
point fermé s. On a vu que pour une correspondance finie α ∈ cS(O, X) on
avait une décomposition locale

α =
∑

x∈X\{s}
[lhX,x] ◦ αx

︸ ︷︷ ︸
contribution des points

non fermés

+αs.

En général les correspondances α et αs ne sont pas égales, autrement dit les
points non fermés de X ont une contribution non nulle dans la décomposition
locale. Prenons par exemple le cas où α est la correspondance finie associée à
un morphisme de schéma. On voit d’après la seconde assertion du corollaire
2.12 que

αs =

{
α si le morphisme est local

0 sinon.

et que de plus lorsque le morphisme est local non seulement la contribution
globale des points non fermés est nulle mais encore chaque correspondance αx
associée à un point non fermé est nulle.

Compte tenu de la remarque 2.11, le morphisme donnant la décomposition
locale peut être vu comme un morphisme

σh
O,X : cS(O, X)→ cS(O, Xh). (23)

Documenta Mathematica 12 (2007) 607–671
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On dispose d’un morphisme d’inclusion

[sh
X ] ◦ − : cS(O, Xh)→ cS(O, (Xh)h)

et d’un morphisme de localisation

σh

O,Xh : cS(O, Xh)→ cS(O, (Xh)h).

Ces morphismes ne cöıncident naturellement pas comme on le voit déjà avec
la remarque 2.13. Sachant que le morphisme l

h

Xh n’est pas un isomorphisme en
général, il est légitime de se demander si l’on obtient plus d’informations en
localisant à nouveau le résultat fourni par le morphisme (23). Le lemme suivant
montre qu’il n’en est rien.

Lemme 2.14. Soient X un S-schéma et O un S-schéma local hensélien. Le
diagramme suivant est commutatif

cS(O, X)
σh

O,X //

σh
O,X

��

cS
(
O, Xh

)

σh

O,Xh

��
cS
(
O, Xh

) [sh

X ]◦−
// cS
(
O, (Xh)h

)
.

(24)

Démonstration. Fixons une correspondance finie α ∈ cS(O, X) et désignons par
Z son support qui est un sous-schéma fermé de O×SX fini et équidimensionnel
sur O. Notons Z le support de la correspondance finie

σh
O,X(α) ∈ cS

(
O, Xh

)

qui est un sous-schéma fermé de O ×S Xh fini et équidimensionnel sur O. On
a alors un diagramme commutatif

Z //

idZ

''

��
�

W //

��
�

Z

��
W //

��
�

Y //

��
�

W //

ι

��
�

Z

��
O ×S Xh //

idO×SX
h

66O ×S (Xh)h // O ×S Xh // O ×S X.

Le schéma Z est semi-local hensélien donc de la forme

Z =
∐

z point fermé
de Z

Spec (OZ,z) .
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Notons z1, . . . , zn ses points fermés et désignons par x1, . . . , xn leur projection
sur X . Par construction de la section σh

Z , le diagramme (15) est commutatif et

σh
O,X(α) = ι∗(σ

h
Z)∗(α).

En particulier on voit que les points fermés du schéma semi-local Z se projettent
nécessairement sur x1, . . . , xn. Cela entrâıne que σh

Z
est en fait le morphisme

d’inclusion de Z dans W et donc que

σh

O,Xh

[
σh
O,X(α)

]
= σh

O,X(α)

dans cS
(
O, (Xh)h

)
. Ce qui prouve la commutativité du diagramme (24).

En particulier lorsque l’on se donne une correspondance finie α ∈ cS(X,Y ), on
peut associer à un point x de X et un point y de Y une correspondance finie
αx,y du schéma Xh

x dans le schéma Y h
y donnée par

αx,y := σh

Xh
x ,Y

(α ◦ [lhX,x])y

On obtient ainsi une décomposition locale pour la topologie de Nisnevich de la
correspondance α de la forme

α ◦ [lhX,x] =
∑

y∈Y
[lhY,y] ◦ αx,y.

Notation 2.15. Pour un morphisme de S-schéma g : X → Y et un point x nous
notons gh

x le morphisme de schémas locaux henséliens déduit de g

X
g // Y

Xh
x

l
h

X,x

OO

gh
x // Y h

g(x).

l
h

Y,g(x)

OO

La proposition suivante explicite le comportement par composition et itération
de cette décomposition ainsi que la nature de la décomposition obtenue dans
le cas d’un morphisme de schémas.

Proposition 2.16. Soient X,Y et Z des S-schémas.

(a) Étant données des correspondances finies α ∈ cS(X,Y ) et β ∈ cS(Y, Z),
on a pour tout point x ∈ X et z ∈ Z l’égalité

(β ◦ α)x,z =
∑

y∈Y
βy,z ◦ αx,y. (25)

(b) Étant donné un morphisme g : X → Y de S-schémas on a

[g]x,y =

{[
gh
x

]
si y = g(x)

0 sinon.
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(c) Étant donnée une correspondance finie α ∈ cS(X,Y ), on a l’égalité dans
cS
(
Xh
x , (Y

h
y )h

z

)

(αx,y)x,z =

{
αx,y si z = y

0 sinon

pour tout point x de X et tout point z du schéma local hensélien Y h
y .

Démonstration. Le second point est une conséquence immédiate du corollaire
2.12. La formule de composition (25), se déduit des égalités

(β ◦ α)x,z = σh

Xh
x ,Z

(
β ◦ α ◦ [lhX,x]

)
z

= σh

Xh
x ,Z


∑

y∈Y
β ◦ [lhY,y] ◦ αx,y



z

=
∑

y∈Y
σh

Y h
y ,Z

(
β ◦ [lhY,y]

)
z
◦ αx,y

=
∑

y∈Y
βy,z ◦ αx,y

dans lesquelles nous avons utilisé la commutativité du diagramme (22). La
dernière assertion est quant à elle un corollaire du lemme 2.14.

Nous donnons maintenant le lien entre la décomposition locale du produit ten-
soriel de deux correspondances finies et le produit tensoriel des décompositions
locales. Étant donnés deux S-schémas X et Y , la propriété universelle (8) nous
donne un morphisme

(X ×S Y )h
m

h

X,Y //

l
h

X×SY ((PPPPPPPPPPPP
Xh ×S Y h

(lhX )×S(lhY )

��
X ×S Y.

Ces morphismes font du foncteur (−)h un foncteur quasi-monöıdal symétrique.
Lorsque l’on se fixe un point e du produit X ×S Y se projetant sur x et y on a
une factorisation

(X ×S Y )h
e

��

m
h

X,Y,e // (Xh
x)×S (Y h

y )

��
(X ×S Y )h

m
h
X,Y // X ×S Y.

Le comportement des décompositions locales par rapport au produit tensoriel
des correspondances finies est donné par le résultat suivant.
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Proposition 2.17. Soient X,Y,X ′, Y ′ des S-schémas, α ∈ cS(X,X ′) et β ∈
cS(Y, Y ′) des correspondances finies. Pour tout point e de X×S Y et tout point
x′ de X ′ et y′ de Y ′, on a l’égalité
(
αx,x′ ⊗ βy,y′

)
◦
[
m

h
X,Y,e

]
=

∑

e′ point de X′ ×S Y ′

se projetant sur x′ et y′

[
m

h
X′,Y ′,e′

]
◦
(
α⊗ β

)
e,e′

dans cS

(
(X ×S Y )h

e , (X
′)h
x′ ×S (Y ′)h

y′

)
.

Démonstration. Pour simplifier convenons de noter E le produit X ×S Y , E′

le produit X ′ ×S Y ′ et de désigner par E′x′y′ l’ensemble des points de E′ se
projetant sur x′ et y′. Le lemme sera démontré lorsque nous aurons vérifié la
formule

[mh
X′,Y ′ ] ◦ σh

Eh
e ,E′

((
α⊗ β

)
◦ [lhE,e]

)

=
[
σh

Xh
x ,X′

(
α ◦ [lhX,x]

)
⊗ σh

Y h,Y ′

(
β ◦ [lhY,y]

)]
◦ [mh

X,Y,e].
(26)

En effet on a d’une part

[mh
X′,Y ′ ] ◦ σh

Eh
e ,E′

((
α⊗ β

)
◦ [lhE,e]

)
=
∑

x′∈X′

y′∈Y ′

∑

e′∈E′
x′y′

[
mh
X′,Y ′,e′

]
◦
(
α⊗ β

)
e,e′

et d’autre part
[
σh

Xh
x ,X′

(
α ◦ [lhX,x]

)
⊗ σh

Y h,Y ′

(
β ◦ [lhY,y]

)]
◦ [mh

X,Y,e]

=
∑

x′∈X′

y′∈Y ′

(
αx,x′ ⊗ βy,y′

)
◦
[
m

h
X,Y,e

]
.

Il suffit alors d’identifier facteur direct par facteur direct pour voir que l’égalité
(26) n’est qu’une reformulation du résultat cherché.

Fixons un sous-schéma fermé Zα de Xh
x ×S X ′ fini et équidimensionnel sur

le schéma local hensélien Xh
x de sorte qu’en notant ιZα l’immersion fermée

associée à ce dernier on ait

α ◦ [lhX,x] = (ιZα )∗α

pour un unique élément α de cequi(Zα/X
h
x , 0).

Choisissons de même un sous-schéma fermé Zβ de Y h
y ×S Y ′ équidimensionnel

fini sur Y h
y de sorte qu’en notant ιZβ l’immersion fermée associée à ce dernier

on ait
β ◦ [lhY,y] = (ιZβ )∗β

pour un unique élément β de cequi(Zβ/X
h
x , 0).
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Notons comme précédemment Wα et Wβ les schémas définis par les carrés
cartésiens

Wα
//

ιWα

��
�

Zα

ιZα

��
Xh
x ×S (X ′)h // Xh

x ×S X ′

Wβ //

ιWβ

��
�

Zβ

ιZβ

��
Y h
y ×S (Y ′)h // Y h

y ×S Y ′

et posons Z = Zα×SZβ et W = Wα×SWβ . Nous avons alors un carré cartésien

W

�

//

ιW
��

Z

ιZ
��

Xh
x ×S Y h

y ×S (X ′)h ×S (Y ′)h // Xh
x ×S Y h

y ×S E′.

Considérons par ailleurs les schémas définis par les carrés cartésiens

W

��
W′

θ //

ιW′

��
�

W //

ιW

��
�

GF
//

Z //

�

ιZ

��
�

Z

ιZ

��
Eh
e ×S (E′)h // Eh

e ×S (X ′)h ×S (Y ′)h // Eh
e ×S E′ //

��
�

Xh
x ×S Y h

y ×S E′

��
Eh
e

m
h

X,Y,e

// Xh
x ×S Y h

y .

Notons p et q les projections de Xh
x ×S Y h

y sur le premier et le second facteur.
Par définition du produit tensoriel des correspondances, on a

(
α ◦ [lhX,x]

)
⊗
(
β ◦ [lhY,y]

)
=
[
p⊛
(
α ◦ [lhX,x]

)]
×Xh

x×SY h
y

[
q⊛
(
β ◦ [lhY,y]

)]

=
[
p⊛(ιZα)∗α

]
×Xh

x×SY h
y

[
q⊛(ιZβ )∗β

]

= (ιZ)∗
[(
p⊛α

)
×Xh

x×SY h
y

(
q⊛β

)]
.

Convenons de noter γ le cycle algébrique

γ =
(
p⊛α

)
×Xh

x×SY h
y

(
q⊛β

)
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appartenant à cequi(Z/X
h
x ×S Y h

y , 0). Cela nous donne

[mh
X′,Y ′ ]◦ σh

Eh
e ,E′

((
α⊗ β

)
◦ [lhE,e]

)
= (idEh

e
×Sm

h
X′,Y ′)∗

[
(ιW′)∗(σ

h
Z
)∗
(
m

h⊛

X,Y,eγ
)]

= (ιW)∗θ∗(σ
h
Z
)∗
[
m

h⊛

X,Y,eγ
]

= mh⊛

X,Y,e

[
(ιW )∗(σ

h
Zα
×S σh

Zβ
)∗γ
]
.

On a par ailleurs l’égalité

(ιW )∗(σ
h
Zα
×S σh

Zβ
)∗γ =

[
p⊛
(
(ιWα )∗(σ

h
Zα

)∗α
)]
×Xh

x×SY h
y

[
q⊛
(
(ιWβ

)∗(σ
h
Zβ

)∗β
)]

=
[
σh

Xh
x ,X′

(
α ◦ [lhX,x]

)]
⊗
[
σh

Y h
y ,Y ′

(
β ◦ [lhY,y]

)]

On obtient ainsi

[mh
X′,Y ′ ] ◦ σh

Eh
e ,E′

((
α⊗ β

)
◦ [lhE,e]

)

= mh⊛

X,Y,e

(
σh

Xh
x ,X′

(
α ◦ [lhX,x]

)
⊗ σh

Y h
y ,Y ′

(
β ◦ [lhY,y]

))

=
[
σh

Xh
x ,X′

(
α ◦ [lhX,x]

)
⊗ σh

Y h
y ,Y ′

(
β ◦ [lhY,y]

)]
◦ [mh

X,Y,e]

ce qui prouve la formule (26).

2.3.2 Décomposition locale raffinée

Supposons donnés une présentation d’un S-schéma local hensélienO ainsi qu’un
élément α de cS{O, X). On peut alors constater en utilisant le cas n = 0 de
la proposition 2.7 que la correspondance αx précédemment construite provient
en fait d’un unique élément {α}x de cS

{
O, Xh

x

)
vérifiant

α =
∑

x

[lhX,x] ◦ {α}x

dans cS {O, X). Désignons par {l}hX,x l’élément de cS
{
Xh
x , X

)
induit par les

morphismes U → X pour U parcourant VhX,x. Une correspondance finie α ∈
cS(X,Y ) possède alors une décomposition locale raffinée de la forme

α ◦ {l}hX,x =
∑

y∈Y
[lhY,y] ◦ {α}x,y {α}x,y ∈ cS

{
Xh
x , Y

h
y

)

{α}x,y ayant pour image αx,y dans cS
(
Xh
x , Y

h
y

)
.

Notation 2.18. Soient g : X → Y un morphisme et x un point de X . Pour tout
V ∈ VhY,g(x) le morphisme g définit un élément dans cS

{
Xh
x , V

)
et la collection

de ces éléments définit un élément

{g}hx ∈ cS
{
Xh
x , Y

h
y

}
.
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Les propriétés de ces décompositions locales raffinées se déduisent directement
du lemme 2.6 et de la proposition 2.16.

Proposition 2.19. Soient X,Y et Z des S-schémas.

(a) Étant données des correspondances finies α ∈ cS(X,Y ) et β ∈ cS(Y, Z),
on a pour tout point x ∈ X et z ∈ Z l’égalité

{β ◦ α}x,z =
∑

y∈Y
βy,z ◦ {α}x,y. (27)

(b) Étant donné un morphisme g : X → Y de S-schémas on a

{[g]}x,y =

{
{g}hx si y = g(x)

0 sinon

dans cS
{
Xh
x , Y

h
y

}
.

(c) Étant donnée une correspondance finie α ∈ cS(X,Y ), on a l’égalité dans
cS
{
Xh
x , (Y

h
y )h

z

)

{{α}x,y}x,z =

{
{α}x,y si z = y

0 sinon

pour tout point x de X et tout point z du schéma local hensélien Y h
y .

Soient X,Y deux S-schémas et e un point de X ×S Y se projetant sur x et y.
L’identité de X ×S Y induit pour tout U ∈ VhX,x, V ∈ VhY,y un élément dans

cS
{
(X ×S Y )h

e , U ×S V
)

et la collection de ces éléments donne un élément de

{m}hX,Y,e ∈ cS
{
(X ×S Y )h

e , X
h
x ×S Y h

y

}

ayant même image que [mh
X,Y,e] dans cS

(
(X ×S Y )h

e , X
h
x ×S Y h

y

}
.

Proposition 2.20. Soient X,Y,X ′, Y ′ des S-schémas, α ∈ cS(X,X ′) et β ∈
cS(Y, Y ′) des correspondances finies. Pour tout point e de X×S Y et tout point
x′ de X ′ et y′ de Y ′, on a l’égalité

(
{α}x,x′ ⊗ {β}y,y′

)
◦ {m}hX,Y,e =

∑

e′ point de X′ ×S Y ′

se projetant sur x′ et y′

[
m

h
X′,Y ′,e′

]
◦
{
α⊗ β

}
e,e′

dans cS

{
(X ×S Y )h

e , (X
′)h
x′ ×S (Y ′)h

y′

)
.
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2.4 Cas de la topologie étale

Les démonstrations données dans la section précédente s’adaptent parfaitement
au cas de la topologie étale, il suffit pratiquement pour cela de remplacer les
anneaux locaux henséliens par les anneaux locaux strictement henséliens. Dans
cette sous-section nous avons rassemblé les énoncés des résultats obtenus pour
la topologie étale tout en précisant les modifications mineures à effectuer.

Nous fixons pour tout point s de S une clôture algébrique κ(s) de κ(s) et nous
désignons par s le point géométrique de S défini par la clôture algébrique κ(s).

Définition 2.21. Un bon point géométrique x est la donnée d’un point x ∈ X
et d’un plongement κ(x)→ κ(s) le point s étant l’image de x dans S.

Lemme 2.22. Les bons points géométriques possèdent les proprétés suivantes.

(a) L’image par un morphisme de S-schémas d’un bon point géométrique est
un bon point géométrique.

(b) Les bons points géométriques forment un ensemble conservatif de points 9

pour la topologie étale sur VarS .

Démonstration. La première assertion est immédiate, quant à la seconde
d’après la remarque 3.13.b de l’exposé VIII de [2], il suffit de voir que les
points d’un S-schéma de type fini X fermés dans leur fibre sont le lieu d’un
point bon géométrique. Or pour un point x de X fermé dans sa fibre, l’exten-
sion κ(x)/κ(s) est finie et il existe bien un morphisme de corps de κ(x) dans la
clôture algébrique

Nous appellerons bon S-schéma local strictement hensélien la donnée d’un S-
schéma strictement hénsélien O et d’un isomorphisme ω : κ → κ(s) de κ(s)-
extensions où k est le corps résiduel de O et s est l’image dans S du point fermé
de O. Les hensélisés stricts d’un S-schéma en un bon point géométrique sont
canoniquement des bons S-schémas strictement henséliens. Étant donné un
bon S-schéma strictement hensélien (O, ω), on remarquera pour l’adaptation
des démonstrations précédentes au cas de la topologie étale que les O-schémas
finis sont canoniquement des réunions disjointes de bons S-schémas locaux
strictement henséliens.

A un S-schéma X , on peut associer fonctoriellement le S-schéma Xsh

Xsh :=
∐

x bon point
géométrique

Xsh
x .

Ce dernier est la réunion disjointe, sur les bons points géométriques de X , des
schémas locaux strictement henséliensXsh

x spectre de l’anneau local strictement
hensélien OshX,x dont on notera le point fermé abusivement par x.

9Pour un schéma qui n’est pas de type fini sur S on prendra garde que l’ensemble des
bons points géométriques peut être vide.
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Pour tout bon point géométrique x de X on dispose du morphisme canonique

Xsh
x

//

l
sh

X,x

&&
Spec (OX,x) // X

nous donnant un morphisme de schémas lsh
X : Xsh → X . Comme dans le cas

hensélien, le morphisme

lsh

Xsh : (Xsh)sh → Xsh

n’est pas un isomorphisme en général mais admet cependant une section cano-
nique ssh

X identifiant Xsh à un sous-schéma fermé de (Xsh)sh et provenant du

fait que l’anneau local strictement hensélien de Xsh
x en son point fermé x est

canoniquement isomorphe à OshX,x :

Xsh
s

sh

X //

id
Xsh

(Xsh)sh
l
sh

Xsh // Xsh
l
sh

X // X

Autrement dit dans (Xsh)sh apparaissent des facteurs supplémentaires corres-

pondants aux bons points géométriques distincts des points fermés des Xsh
x .

Dans le cas étale, le complexe considéré est le complexe de C̆ech associé au
X-schéma Xsh

ČXsh/X(O) : · · · → Ztr

[
(Xsh)2X

]
(O)→ Ztr[X

sh](O)→ Ztr[X ](O)→ 0.

On a alors l’analogue de la proposition 2.1.

Proposition 2.23. Soient X un S-schéma et O un bon S-schéma local stric-
tement hensélien. Il existe des morphismes canoniques

σsh
O,X,n : Ztr

[
(Xsh)nX

]
(O)→ Ztr

[
(Xsh)n+1

X

]
(O) n ≥ 0

satisfaisant aux deux propriétés suivantes.

(a) (Homotopie) On a pour tout n les relations

dn+1 ◦ σsh
O,X,n + σsh

O,X,n−1 ◦ dn = id.

(b) (Fonctorialité) Étant donnés un bon S-schéma local strictement hensélien
O′ et une correspondance finie α ∈ cS(O′,O) on a un carré commutatif

Ztr

[
(Xsh)nX

]
(O′)

Ztr[(Xsh)nX](α)
//

σsh

O′,X,n

��

Ztr

[
(Xsh)nX

]
(O)

σsh

O,X,n

��
Ztr

[
(Xsh)n+1

X

]
(O′)

Ztr[(Xsh)n+1
X ](α)

// Ztr

[
(Xsh)n+1

X

]
(O).
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De même on dispose également de l’analogue de la proposition 2.7.

Proposition 2.24. Soient X un S-schéma et une présentation V d’un bon
S-schéma local strictement hensélien O. Il existe d’uniques morphismes

{σ}sh
O,X,n : Ztr

[
(Xsh)nX

]
{O} → Ztr

[
(Xsh)n+1

X

]
{O} n ≥ 0

satisfaisant aux deux propriétés suivantes.

(a) (Homotopie) On a pour tout n les relations

dn+1 ◦ {σ}sh
O,X,n + {σ}sh

O,X,n−1 ◦ dn = id. (28)

(b) (Compatibilité) Le carré suivant est commutatif

Ztr

[
(Xsh)nX

]
{O}

{σ}sh

O,X,n //

��

Ztr

[
(Xsh)n+1

X

]
{O}

��
Ztr

[
(Xsh)nX

]
(O)

σsh
O,X,n // Ztr

[
(Xsh)n+1

X

]
(O).

(29)

Sachant d’après le lemme 2.22 que les bons points géométriques fournissent une
famille conservative de points pour la topologie étale, on obtient le corollaire
suivant.

Corollaire 2.25. Soit X un S-schéma de type fini. La restriction à la
catégorie VarCorS du complexe de faisceaux étales avec transferts ČXsh/X est
universellement exact au sens de Grayson [12].

Lorsque l’on se donne une correspondance finie α ∈ cS(X,Y ) et des bons points
géométriques x, y de X et Y , le cas n = 0 de la proposition 2.23 fournit une
décomposition locale pour la topologie étale de la correspondance α de la forme

α ◦ [lsh
X,x] =

∑

y bon point
géométrique

[lsh
Y,y] ◦ αx,y. (30)

En utilisant le cas n = 0 de la proposition 2.24 on voit finalement que la
décomposition locale précédente se raffine en

α ◦ {l}sh
X,x =

∑

y bon point
géométrique

[lsh
Y,y] ◦ {α}x,y

où {l}sh
X,x ∈ cS{Xsh

x , X) est induit par les morphismes U → X pour U ∈ VshX,x.

Soient g : X → Y un morphisme et x un point de X . Pour tout V ∈ VshY,g◦x le

morphisme g définit un élément dans cS{Xsh
x , V ) et la collection de ces éléments

définit un élément
{g}sh

x ∈ cS{Xsh
x , Y

sh
y }.
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Réalisation ℓ-Adique I 643

Proposition 2.26. Soient X,Y et Z des S-schémas.

(a) Étant données des correspondances finies α ∈ cS(X,Y ) et β ∈ cS(Y, Z),
on a pour tout point bon point géométrique x de X et tout bon point
géométrique z de Z l’égalité

{β ◦ α}x,z =
∑

y bon point
géométrique

βy,z ◦ {α}x,y.

(b) Étant donné un morphisme g : X → Y de S-schémas on a

{[g]}x,y =

{
{g}sh

x si y = g ◦ x
0 sinon

dans cS{Xsh
x , Y

sh
y }.

(c) Étant donnée une correspondance finie α ∈ cS(X,Y ), on a l’égalité dans

cS{Xsh
x , (Y

sh
y )sh

z )

{{α}x,y}x,z =

{
{α}x,y si z = y

0 sinon

pour tout bon point géométrique x de X et tout bon point géométrique z
du schéma local strictement hensélien Y sh

y .

Comme dans le cas de la topologie Nisnevich, ces décompositions locales se
comportent bien par produit tensoriel. Étant donnés deux S-schémas X et Y
ainsi qu’un bon point géométrique e de X ×S Y se projetant sur x et y nous
avons un diagramme naturel

(X ×S Y )sh
e

��

m
sh
X,Y,e // (Xsh

x )×S (Y sh
y )

��
(X ×S Y )sh

m
sh
X,Y // X ×S Y.

L’identité deX×SY induit par ailleurs un élément dans cS{(X×SY )sh
e , U×SV )

pour tout U ∈ VshX,x, V ∈ VshY,y. La collection de ces éléments donne un élément

{m}sh
X,Y,e ∈ cS{(X ×S Y )sh

e , X
sh
x ×S Y sh

y }

ayant même image que [msh
X,Y,e] dans cS((X ×S Y )sh

e , X
sh
x ×S Y sh

y }.
Proposition 2.27. Soient X,Y,X ′, Y ′ des S-schémas, α ∈ cS(X,X ′) et β ∈
cS(Y, Y ′) des correspondances finies. Pour tout bon point géométrique e de
X ×S Y et tout bon point géométrique e’ de X ′ ×S Y ′, on a l’égalité

(
{α}x,x′ ⊗ {β}y,y′

)
◦ {m}sh

X,Y,e =
[
msh
X′,Y ′,e′

]
◦
{
α⊗ β

}
e,e′

dans cS{(X ×S Y )sh
e , (X

′)sh
x′ ×S (Y ′)sh

y′ ).
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3 Résolution de Godement et transferts

Rappelons qu’une monade dans une catégorie C est la donnée d’un endofoncteur
M de C et de transformations naturelles µ : MM → M et η : id → M pour
lesquelles les diagrammes

M
ηM //

id ""E
EE

EE
EEE

MM

µ

��

M
Mηoo

id||yy
yy

yy
yy

M

MMM
Mµ //

µM

��

MM

µ

��
MM

µ // M

sont commutatifs. Étant donnée une monade (M,µ, η), l’un des nombreux ava-
tars de la construction bar permet d’associer à un objet C de C un objet
cosimplicial B∗(M,C) de C muni d’une coaugmentation de C dans ce dernier.
Les n-cosimplexes sont donnés par l’objet Mn+1C de C, les codégénérescences
par les morphismes

σni := M iµMn−1−i : Mn+1C →MnC i = 0, . . . , n− 1

et les cofaces par les morphismes

δn−1
i := M iηMn−i : MnC →Mn+1C i = 0, . . . , n.

Dans la suite de cette section nous fixons une catégorie S = SchS ,VarS ou SmS ,
tous les préfaisceaux sont définis sur S et nous renvoyons à la définition 1.10
pour la notion de faisceaux avec transferts.

3.1 Cas de la topologie de Nisnevich

Nous allons maintenant appliquer les résultats concernant la localisation Nis-
nevich des correspondances finies que nous avons obtenus dans la sous-section
2.3. Rappelons que S désigne l’une des catégories suivantes SchS ,VarS ou SmS .

Dans la suite, nous désignons par sx la composante suivant le point x d’un
élément s du produit ∏

x∈X
F{Xh

x}.

Par définition F{Xh
x} correspond à la fibre Nisnevich de F au point x.

Désignons par GNis la monade de la catégorie des faisceaux Nisnevich définissant
la résolution cosimpliciale de Godement. Étant donné un faisceau Nisnevich F ,
cette dernière se caractérise de la manière suivante.

(a) Les sections sur X du faisceau Nisnevich GNisF sont données par

GNisF (X) =
∏

x∈X
F{Xh

x}
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les morphismes structuraux étant déterminés par les égalités

[
GNisF (p)(s)

]
x

= F
{
{p}hx

}
(sp(x))

dans lesquelles x est un point de X , p : X → Y un morphisme de S-
schémas et s un élément de GNisF (Y ).

(b) Le morphisme structural ηF se trouve donné par

[
ηF (s)

]
x

= F
{
{l}hX,x

}
(s)

pour un élément s de F (X).

(c) Le morphisme structural µF cöıncide avec la projection sur les compo-
santes associées aux points fermés des Xh

x via le morphisme naturel

(GNisGNisF )(X)→
∏

x∈X

∏

z∈Xh
x

F
{(
Xh
x

)h
z

}
.

Nous notons sx,z la composante suivant x, z de l’image d’une section s
par le morphisme précédent de sorte que µF (s)x = sx,x.

La résolution cosimpliciale de Godement d’un faisceau Nisnevich F est par
définition le faisceau Nisnevich cosimplicial

G∗NisF = B∗(GNis, F ).

Ce dernier nous fournit un complexe G∗NisF de faisceaux Nisnevich de termes
GnNisF = GnNisF et dont les différentielles sont données par la somme alternée
des morphismes cofaces.

Remarque 3.1. La famille formée de ces foncteurs fibres F 7→ F{Xh
x} étant

conservative, l’augmentation canonique

F → G∗NisF

est un quasi-isomorphisme 10 de complexes de faisceaux Nisnevich.

Proposition 3.2. Il existe une monade canonique Gtr
Nis de la catégorie Shtr

Nis(S)
rendant le carré suivant commutatif

Shtr
Nis(S) //

G
tr
Nis

��

ShNis(S)

GNis

��
Shtr

Nis(S) // ShNis(S).

10Il s’agit d’une propriété classique de la résolution de Godement prouvée par exemple
dans [25, Part II, Ch. IV, lemma 2.2.2].
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Démonstration. Il suffit de montrer que pour un faisceau Nisnevich avec trans-
ferts F , le faisceau Nisnevich GNisF est canoniquement muni de transferts et
que les morphismes

ηF : F → GNisF µF : GNisGNisF → GNisF

sont des morphismes de faisceaux Nisnevich avec transferts. Étant donnée une
correspondance finie α ∈ cS(X,Y ), on peut associer à une section s de GNisF (Y )
la section de GNisF (X) donnée par

GNisF (α)(s)x =
∑

y∈Y
F
{
{α}x,y

}
(sy).

On obtient ainsi un morphisme de groupes abéliens GNisF (α). Lorsque l’on se
donne une correspondance finie β ∈ cS(Y, Z), la formule de composition (27)
de la proposition 2.19 nous assure que pour un point x de X

GNisF (β ◦ α)(s)x =
∑

z∈Z
F{{β ◦ α}x,z}(sz) =

∑

z∈Z

∑

y∈Y
F{βy,z ◦ {α}x,y}(sz)

=
∑

z∈Z

∑

y∈Y
F{{α}x,y}

[
F{{β}y,z}(sz)

]
=
∑

y∈Y
F{{α}x,y}

[
GNisF (β)(s)y

]

= GNisF (α)
[
GNisF (β)(s)

]
x

et donc que cette définition est fonctorielle :

GNisF (β ◦ α) = GNisF (α) ◦ GNisF (β).

Par ailleurs pour un morphisme p : X → Y de S-schémas, la seconde assertion
de la proposition 2.19 nous donne

GNisF ([p])(s)x = F{{p}hx}(sp(x)) = GNisF (p)(s)x.

Les morphismes GNisF (α) étendent donc la structure usuelle de préfaisceau en
une structure de préfaisceau avec transferts. La construction des germes de
correspondances locaux utilisés assure que

F (α)(s)x = F{α ◦ {l}hX,x}(s) =
∑

y

F{[lhY,y] ◦ {α}x,y}(s) =
∑

y

F{{α}x,y}(sy)

= GNisF (α)(ηF (s))x

autrement dit que ηF est un morphisme de faisceaux avec transferts. Il reste
à montrer que µF est aussi un morphisme de faisceaux Nisnevich avec trans-
ferts. Pour une section s appartenant à GNisGNisF (X) on obtient en utilisant
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la troisième assertion de la proposition 2.19

µF (GNisGNisF (α)(s))x =
∑

y∈Y
µF

[
GNisF{{α}x,y}(sy)

]
x

=
∑

y∈Y

∑

z∈Y h
y

F
{
{{α}x,y}x,z

}
(sy,z)

=
∑

y∈Y
F{{α}x,y}(sy,y) = GNisF (α)(µF (s)).

Ce qui achève la démonstration.

La proposition 3.2 assure en particulier que la résolution cosimpliciale de Go-
dement G∗NisF d’un faisceau Nisnevich avec transferts est canoniquement munie
de transferts et qu’à fortiori le complexe G∗NisF est un complexe de faisceaux
Nisnevich avec transferts quasi-isomorphe à F dans la catégorie des complexes
de faisceaux Nisnevich avec transferts. Cela entrâıne en particulier que les
préfaisceaux de cohomologie Nisnevich

X 7→ Hj
Nis(X,F )

d’un faisceau Nisnevich avec transferts sont canoniquement munis de transferts,
résultat se déduisant par ailleurs de la proposition 3.1.8 de [29, chapter 5].

Nous allons maintenant voir que les tranferts (( naturels )) précédemment
construits sur la résolution de Godement sont en outre compatibles avec la
structure tensorielle de cette dernière.

Définition 3.3. Nous appelons faisceau Nisnevich (resp. avec transferts)
quasi-monöıdal symétrique la donnée d’un faisceau Nisnevich (resp. d’un fais-
ceau Nisnevich avec transferts) F et pour tout S-schéma X,Y d’un morphisme
associatif symétrique

⊠
F
X,Y : F (X)⊗ F (Y )→ F (X ×S Y )

fonctoriel par rapport aux morphismes de schémas (resp. aux correspondances
finies).

Ces derniers sont les objets d’une catégorie ShNis,⊗(S) (resp. une catégorie
Shtr

Nis,⊗(S)) munie d’un foncteur fidèle vers ShNis(S) (resp. vers Shtr
Nis(S)).

Remarque 3.4. La monade de Godement GNis induit une monade sur la
catégorie des faisceaux Nisnevich quasi-monöıdaux symétriques. Étant donné
un faisceau Nisnevich quasi-monöıdal symétrique (F,⊠F

X,Y ), on voit en effet
que GNisF est canoniquement un faisceau Nisnevich quasi-monöıdal symétrique
pour les morphismes

⊠
GNisF
X,Y : GNisF (X)⊗ GNisF (Y )→ GNisF (X ×S Y )
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donnés par les relations

[
⊠

GNisF
X,Y (s⊗ t)

]
e

= F
{
{m}hX,Y,e

}[
⊠
F
Xh
x ,Y

h
y

(sx ⊗ ty)
]

dans lesquelles s ∈ GNisF (X), t ∈ GNisF (Y ) et e désigne un point du produit
X ×S Y de projection x et y. Avec cette définition il est aisé de voir que les
morphismes structuraux ηF et µF de la monade GNis sont bien des morphismes
de faisceaux Nisnevich quasi-monöıdaux symétriques.

Nous sommes maintenant en mesure d’énoncer le résultat suivant.

Proposition 3.5. La monade Gtr
Nis induit une monade sur la catégorie

Shtr
Nis,⊗(S) compatible avec la monade GNis via le foncteur d’oubli. Autrement

dit le carré suivant est commutatif

Shtr
Nis,⊗(S) //

G
tr
Nis

��

ShNis,⊗(S)

GNis

��
Shtr

Nis,⊗(S) // ShNis,⊗(S).

Démonstration. Supposons que (F,⊠F
X,Y ) soit un faisceau Nisnevich avec trans-

ferts quasi-monöıdal symétrique. En utilisant la proposition 3.2, il suffit de
montrer que le carré

GNisF (X ′)⊗ GNisF (Y ′)
⊠

GNisF

X′,Y ′
//

GNisF (α)⊗GNisF (β)

��

GNisF (X ′ ×S Y ′)
GNisF (α⊗β)

��
GNisF (X)⊗ GNisF (Y )

⊠
GNisF

X,Y // GNisF (X ×S Y )

(31)

est commutatif pour toute correspondance finie α ∈ cS(X,X ′) et β ∈ cS(Y, Y ′).
Notons E le produit X ×S Y et E′ le produit X ′ ×S Y ′. Considérons un point
e de E de projection x et y ainsi que des sections s ∈ GNis(X

′), t ∈ GNis(Y
′).

En utilisant la remarque 3.4 nous avons

GNisF (α⊗ β)
[

⊠
GNisF
X′,Y ′ (s⊗ t)

]
e

=
∑

e′∈E′

F
{
{α⊗ β}e,e′

}[
⊠

GNisF
X′,Y ′ (s⊗ t)

]
e′

=
∑

e′∈E′

F
{
{α⊗ β}e,e′

}
F
{
{m}hX′,Y ′,e′

}[
⊠
F
(X′)h

x′
,(Y ′)h

y′
(sx′ ⊗ ty′)

]

=
∑

x′∈X′

y′∈Y ′

F





∑

e′∈E′
x′y′

[mh
X′,Y ′,e′ ] ◦ {α⊗ β}e,e′





[
⊠
F
(X′)h

x′
,(Y ′)h

y′
(sx′ ⊗ ty′)

]
.
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En utilisant la proposition 2.20, cette dernière égalité peut se réécrire sous la
forme

GNisF (α⊗ β)
[

⊠
GNisF
X′,Y ′ (s⊗ t)

]
e

=
∑

x′∈X′

y′∈Y ′

F
{(
{α}x,x′ ⊗ {β}y,y′

)
◦ {m}hX,Y,e

}[
⊠
F
(X′)h

x′
,(Y ′)h

y′
(sx′ ⊗ ty′)

]

=
∑

x′∈X′

y′∈Y ′

F
{
{m}hX,Y,e

}[
⊠
F
Xh
x ,Y

h
y

(
F{{α}x,x′}(sx′)⊗ F{{β}y,y′}(ty′

)]

= F
{
{m}hX,Y,e

}[
⊠Xh

x ,Y
h
y

(
GNisF (α)(s)x ⊗ GNisF (β)(t)y

)]
.

Ce qui donne finalement

GNisF (α⊗ β)
[

⊠
GNisF
X′,Y ′ (s⊗ t)

]
e

= ⊠
GNisF
X,Y

[
GNisF (α)(s) ⊗ GNisF (β)(t)

]
e

et prouve la commutativité du carré (31).

La remarque 3.4 assure que la cohomologie d’un faisceau Nisnevich quasi-
monöıdal symétrique est munie d’un produit associatif et commutatif

Hp(X,F )⊗Hq(Y, F )
⊗FX,Y−−−→ Hp+q(X ×S Y, F ) (32)

induit par la structure quasi-monöıdale symétrique sur la résolution de Gode-
ment. Ce produit est commutatif au sens gradué, autrement dit tel que

a⊗FX,Y b = (−1)p+qb⊗FY,X a

pour un élément a de Hp(X,F ) et un élément b de Hq(X,F ) et compatible
au produit induit par F sur le H0. En particulier on dispose d’un cup-produit
associatif et commutatif

Hp(X,F )⊗Hq(X,F )

`FX

++

⊗FX,X
// Hp+q(X ×S X,F )

∆∗
X

// Hp+q(X,F ) (33)

munissant H∗(X,F ) d’une structure d’algèbre graduée commutative. Lorsque
F est en outre un faisceau Nisnevich avec transferts quasi-monöıdal symétrique,
la proposition 3.5 assure que les produits (32) sont compatibles aux transferts
i.e. que les carrés

Hp(X ′, F )⊗Hq(Y ′, F )

Hp(α,F )⊗Hq(β,F )

��

⊗F
X′,Y ′

// Hp+q(X ′ ×S Y ′, F )

Hp+q(α⊗β,F )

��
Hp(X,F )⊗Hq(Y, F )

⊗FX,Y // Hp+q(X ×S Y, F )

sont commutatifs pour toute correspondance α ∈ cS(X,X ′) et β ∈ cS(Y, Y ′).
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Remarque 3.6. On prendra garde que pour une correspondance finie α ∈
cS(X,Y ), les carrés

Hp(Y, F )⊗Hq(Y, F )

Hp(α,F )⊗Hq(α,F )

��

`FY // Hp+q(Y, F )

Hp+q(α,F )

��
Hp(X,F )⊗Hq(X,F )

`FX // Hp+q(X,F )

ne sont pas nécessairement commutatifs — nous renvoyons d’ailleurs à la re-
marque 1.7 à ce propos. Les cup-produits (33) ne sont donc pas à priori com-
patibles aux transferts.

3.2 Cas de la topologie étale

Nous nous contentons dans cette sous-section d’énoncer les résultats dans le
cas de la topologie étale : les démonstrations étant identiques à celles données
pour la topologie de Nisnevich. Nous supposons ici que S = VarS ou SmS .

Dans la suite, nous désignons par sx la composante suivant x d’un élément s
du produit ∏

x bon point
géométrique de X

F{Xsh
x }.

Par définition F{Xsh
x } est la fibre étale de F au point géométrique x. Pour

définir la résolution de Godement dans le cadre étale, nous partons de la monade
GEt de la catégorie des faisceaux étales caractérisée pour un faisceau étale F
par les propriétés suivantes.

(a) Les sections sur X du faisceau étale GEtF sont données par

GEtF (X) =
∏

x bon point
géométrique de X

F{Xsh
x }

les morphismes structuraux étant déterminés par les égalités

[
GEtF (p)(s)

]
x

= F
{
{p}sh

x

}
(sp◦x)

dans lesquelles x est un bon point géométrique de X , p : X → Y un
morphisme de S-schémas et s un élément de GEtF (Y ).

(b) Le morphisme structural ηF se trouve donné par

[
ηF (s)

]
x

= F{{l}sh
X,x}(s)

pour un élément s de F (X).
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(c) Le morphisme structural µF cöıncide avec la projection sur les compo-

santes associées aux points fermés des Xsh
x via le morphisme naturel

(GEtGEt)F (X)→
∏

x bon point
géométrique de X

∏

z bon point

géométrique de Xsh
x

F

{(
Xsh
x

)sh

z

}
.

La résolution cosimpliciale de Godement d’un faisceau étale F est par définition
le faisceau étale cosimplicial

G∗EtF = B∗(GEt, F ).

Ce dernier nous fournit un complexe G∗EtF de faisceaux étales de termes
GnEtF = GnEtF et dont les différentielles sont données par la somme alternée
des morphismes cofaces.

Remarque 3.7. La famille formée des foncteurs fibres F 7→ F{Xsh
x } étant

conservative sur VarS d’après le lemme 2.22, l’augmentation canonique

F → G∗EtF

est un quasi-isomorphisme 11 de complexes de faisceaux étales sur VarS .

Proposition 3.8. Il existe une monade canonique Gtr
Et de la catégorie Shtr

Et(S)
rendant le carré suivant commutatif

Shtr
Et(S) //

G
tr
Et

��

ShEt(S)

GEt

��
Shtr

Et(S) // ShEt(S).

Comme précédemment les tranferts (( naturels )) sur la résolution de Godement
étale sont compatibles avec la structure tensorielle de cette dernière.

Définition 3.9. Nous appelons faisceau étale (resp. avec transferts) quasi-
monöıdal symétrique la donnée d’un faisceau étale (resp. d’un faisceau étale
avec transferts) F et pour tout S-schéma X,Y d’un morphisme associatif
symétrique

⊠
F
X,Y : F (X)⊗ F (Y )→ F (X ×S Y )

fonctoriel par rapport aux morphismes de schémas (resp. aux correspondances
finies).

Ces derniers sont les objets d’une catégorie ShEt,⊗(S) (resp. une catégorie
Shtr

Et,⊗(S)) munie d’un foncteur fidèle vers ShEt(S) (resp. vers Shtr
Et(S)).

11Il s’agit d’une propriété classique de la résolution de Godement prouvée par exemple
dans [25, Part II, Ch. IV, lemma 2.2.2].
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Remarque 3.10. La monade de Godement GEt induit une monade sur la
catégorie des faisceaux étales quasi-monöıdaux symétriques. Étant donné un
faisceau étale quasi-monöıdal symétrique (F,⊠F

X,Y ), on voit en effet que GEtF
est canoniquement un faisceau étale quasi-monöıdal symétrique pour les mor-
phismes

⊠
GEtF
X,Y : GEtF (X)⊗ GEtF (Y )→ GEtF (X ×S Y )

donnés par les relations
[

⊠
GEtF
X,Y (s⊗ t)

]
e

= F
{
{m}sh

X,Y,e

}[
⊠
F
Xsh

x ,Y sh

y

(sx ⊗ ty)
]

dans lesquelles s ∈ GEtF (X), t ∈ GEtF (Y ) et e désigne un bon point géomérique
du produit X ×S Y de projection x et y. Avec cette définition il est aisé de
voir que les morphismes structuraux ηF et µF de la monade GEt sont bien des
morphismes de faisceaux Nisnevich quasi-monöıdaux symétriques.

Nous sommes maintenant en mesure d’énoncer le résultat suivant.

Proposition 3.11. La monade Gtr
Et induit une monade sur la catégorie

Shtr
Et,⊗(S) compatible avec la monade GEt via le foncteur d’oubli. Autrement

dit le carré suivant est commutatif

Shtr
Et,⊗(S) //

G
tr
Et

��

ShEt,⊗(S)

GEt

��
Shtr

Et,⊗(S) // ShEt,⊗(S).

4 Réalisation ℓ-adique des motifs mixtes

Nous allons montrer que le foncteur de réalisation ℓ-adique des S-schémas lisses
de type fini 12

Rℓ : Smop
S → D+(S,Zℓ)
X 7→ RπX∗π∗XZS/ℓ∗

(34)

se prolonge canoniquement en un foncteur triangulé quasi-tensoriel sur la
catégorie des motifs mixtes géométriques DMgm(S). Avant d’aborder le
résultat principal, nous tenons à donner quelques précisions quant à la catégorie
dans laquelle le foncteur de réalisation ℓ-adique prend ses valeurs.

Lemme 4.1. Lorsque le foncteur (34) prend ses valeurs dans une sous-catégorie
triangulée pleine C de D+(S,Zℓ), il est en est de même d’un prolongement de
(34) aux motifs mixtes géométriques.

Démonstration. Cela résulte du fait que la catégorie triangulée des motifs
mixtes géométriques est engendrée par les motifs des S-schémas lisses de type
fini.

12La notation D+(S, Zℓ) désigne la catégorie des coefficients ℓ-adiques construite par T.
Ekedahl dans [11]. Nous renvoyons le lecteur à l’appendice A.
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Dans la construction qui suit nous utilisons la proposition suivante que nous
tirons de [27, 28].

Proposition 4.2. Les h-faisceaux en groupes abéliens ont une structure ca-
nonique de préfaisceau avec transferts. En particulier les faisceaux de groupes
abéliens localements constants pour la topologie étale sont canoniquement munis
d’une structure de préfaisceau avec transferts et de plus les faisceaux d’anneaux
localement constants sont canoniquement munis d’une structure de préfaisceau
avec transferts quasi-monöıdal symétrique.

4.1 Construction

Nous consacrons cette sous-section à la construction du foncteur de réalisation
ℓ-adique des motifs mixtes géométriques. L’ingrédient essentiel réside dans les
propriétés de la résolution de Godement que nous prouvées dans la section 3.
Nous allons donc prouver le

Théorème 4.3. Le foncteur symétrique monöıdal (34) se prolonge canonique-
ment en un foncteur triangulé quasi-tensoriel

DMgm(S)op → D+(S,Zℓ). (35)

(a) Lorsque S est de type fini sur un schéma noethérien régulier de dimen-
sion ≤ 1, le foncteur (35) prend ses valeurs dans Db

c (S,Zℓ) sous-catégorie
triangulée pleine formée des coefficients constructibles.

(b) Lorsque S est de type fini sur un corps fini, le foncteur (35) induit un
foncteur triangulé tensoriel

DMgm(S)op → Db
m(S,Qℓ)

où le second membre désigne la catégorie des coefficients ℓ-adiques mixtes
de P. Deligne [8, 5].

Avant de donner la démonstration de ce résultat, il y a lieu de préciser la termi-
nologie que nous employons. On peut considérer le topos NopSEt des systèmes
projectifs de grands faisceaux étales 13 sur S ainsi que le faisceau d’anneaux
sur ce dernier

ZS,Et/ℓ
∗ : · · · → ZS,Et/ℓ

r+1 → ZS,Et/ℓ
r → · · · → ZS,Et/ℓ

et la catégorie de modules associée Mod(ZS,Et/ℓ
∗). Un système projectif de

faisceaux étales avec transferts

F : r 7→ Fr

dont les composantes Fr sont des ZS,Et/ℓ
r+1-modules sera appelé un ZS,Et/ℓ

∗-
module avec transferts. En prenant pour morphismes, les morphismes de

13Il s’agit des faisceaux sur VarS munie de la topologie étale.
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systèmes projectifs de faisceaux étales avec transferts, on obtient une catégorie
munie d’un foncteur d’oubli fidèle. Nous dirons qu’un ZS,Et-module (resp. un
ZS,Et-module avec transferts) F est quasi-monöıdal symétrique lorsque ses com-
posantes Fr sont des ZS,Et/ℓ

r+1-modules (resp. ZS,Et/ℓ
r+1-modules avec trans-

ferts) quasi-monöıdaux symétriques et que les morphismes de transition sont
compatibles avec ces structures.

Preuve du théorème 4.3. On sait d’après la proposition 4.2 que le grand fais-
ceau étale ZS,Et/ℓ

r se trouve canoniquement muni de transferts, les morphismes
de transition ZS,Et/ℓ

r → ZS,Et/ℓ
r+1 étant des morphismes de faisceaux étales

avec transferts. On peut donc voir que ZS,Et/ℓ
∗ est canoniquement un ZS,Et/ℓ

∗-
module avec transferts. En prenant la résolution cosimpliciale de Godement de
ce dernier, on obtient un ZS,Et/ℓ

∗-module cosimplicial

G∗Et

[
ZS,Et/ℓ

∗] ∈ ∆Mod(ZS,Et/ℓ
∗)

qui d’après le lemme 3.8 est en fait canoniquement un ZS,Et/ℓ
∗-module avec

transferts cosimplicial. Supposons que X soit un S-schéma de type fini, on
dispose alors de deux morphismes de topos

Xet

ιX //
SEt

pX
oo pX ◦ ιX = id

la restriction d’un faisceau F au petit site étale de X étant donnée par ι∗XF .
Ces morphismes s’étendent naturellement aux topos NopXet

14 et NopSEt et
sachant que ι∗XZS,Et/ℓ

∗ = ZX/ℓ∗, ils induisent un foncteur exact

ι∗X = pX∗ : Mod(ZS,Et/ℓ
∗)→ Mod(ZX/ℓ∗).

En désignant par πX le morphisme structural de X dans S, cela permet d’as-
socier au S-schéma de type fini X le ZS/ℓ∗-module cosimplicial

Rℓ(X) := πX∗i
∗
XG∗Et

[
ZS,Et/ℓ

∗]. (36)

En prenant le complexe de châıne associé, on obtient un objet

Rℓ(X) := CRℓ(X) = πX∗i
∗
XG
∗
Et

[
ZS,Et/ℓ

∗] (37)

appartenant à C+(S,Z/ℓ∗).

Remarque 4.4. Par construction de la résolution de Godement, on peut voir
que

Rℓ(X) = πX∗G
X,∗
Et

[
ZX/ℓ∗

]
.

Le passage par les grands faisceaux étales ne sert en fait que dans la mesure
où il permet de mettre des transferts.

14Il s’agit des systèmes projectifs de faisceaux sur le schéma X muni de la topologie étale,
ainsi Xet désigne le petit topos étale de X.
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Pour la définition des complexes normalisés apparaissant dans le lemme suivant,
nous renvoyons à la remarque A.3.

Lemme 4.5. Les objets (36) et (37) sont fonctoriels par rapport aux correspon-
dances finies, autrement dit on dispose de foncteurs additifs

Rℓ : VarCoropS → ∆Mod(ZS/ℓ∗)

Rℓ : VarCoropS → C+(S,ZS/ℓ∗).

De plus le foncteur Rℓ est à valeurs dans la sous-catégorie formée des systèmes
projectifs (( normalisés )) et on a un isomorphisme de foncteurs canonique θ

SmCoropS
Rℓ // D+(S,Zℓ)

θ +3

Smop
S

OO

BC

Rℓ

OO

Démonstration. Supposons plus généralement que F soit un ZS,Et/ℓ
∗-module

avec transferts cosimplicial. En posant pour un S-schéma X

F̃ (X) := πX∗ι
∗
XF

on obtient un préfaisceau avec transferts prenant ses valeurs dans la catégorie
∆Mod(ZS/ℓ∗). En effet lorsque l’on se donne une S-correspondance finie α de
X dans Y et un S-schéma étale U , on a un morphisme naturel de Z/ℓ∗-modules
cosimpliciaux

F̃ (Y )(U) := F (YU )
F (αU )−−−−→ F (XU ) =: F̃ (X)(U)

induit par les correspondances αU construites dans la sous-section 1.2. Ces
morphismes nous fournissent un morphisme dans la catégorie de ZS/ℓ∗-modules
cosimpliciaux

F̃ (α) : F̃ (Y )→ F̃ (X).

La compatibilité avec la composition démontrée au lemme 1.9 assure que pour
des correspondances finies α ∈ cS(X,Y ) et β ∈ cS(Y, Z) on a (β◦α)U = βU ◦αU
et donc que

F̃ (α) ◦ F̃ (β) = F̃ (β ◦ α).

En particulier ceci assure que les objets (36) et (37) sont fonctoriels par rapport
aux correspondances finies. Pour la seconde assertion, il suffit de remarquer
que pour un ZS,Et/ℓ

∗-module F , la résolution de Godement F → G∗EtF est
une résolution flasque. En particulier si X est un S-schéma de type fini, les
morphismes naturels

RπX∗i∗XF // RπX∗i∗XG
∗
EtF

πX∗i∗XG
∗
EtF

OO
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sont des quasi-isomorphismes. En prenant F = ZS,Et/ℓ
∗, on obtient un isomor-

phisme de foncteurs

SmCoropS
Rℓ // D+(S,Z/ℓ∗)

θ +3

Smop
S

OO

BC

Rℓ

OO

Pour un ZS,Et/ℓ
∗-module plat F , les composantes de sa résolution de Godement

GnEtF sont des ZS,Et/ℓ
∗-modules plats 15 ce qui assure que G∗EtF est normalisé

lorsque F est ℓ-adique. En particulier ceci entrâıne que le foncteur considéré
prend bien ses valeurs dans les complexes normalisés — voir remarque A.3.

On a donc un foncteur

Rℓ : Cb(SmCorS)op
CbRℓ−−−→ Cb

[
C+(S,Z/ℓ∗)

] Tot−−→ C+(S,Z/ℓ∗)

et donc un foncteur triangulé

Rℓ : Kb(SmCorS)op → D+(S,Z/ℓ∗)

prenant en fait ces valeurs dans D+(S,Zℓ). En utilisant l’invariance par homo-
topie dans le cadre ℓ-adique, la localisation Nisnevich, on obtient un foncteur
triangulé

Rℓ : DM eff
gm(S)op → D+(S,Zℓ).

Comme la catégorie triangulée D+(S,Zℓ) est pseudo-abélienne — il s’agit d’une
conséquence du lemme 2.4 de [4] — ce dernier nous donne un foncteur

Rℓ : DM eff
gm(S)→ D+(S,Zℓ). (38)

Il reste à vérifier que ce foncteur est bien compatible aux structures tensorielles
de part et d’autre.

Lemme 4.6. Le foncteur triangulé (38) est quasi-tensoriel 16 et pour tout S-
schémas X,Y le morphisme induit

⊠X,Y : Rℓ(X)⊗Rℓ(Y )→ Rℓ(X ×S Y )

cöıncide avec le morphisme de Künneth.

15On trouvera une preuve de cette propriété classique par exemple dans [25, Part II, Ch.
IV, proposition 2.4.3].

16Nous renvoyons à la définition B.1 pour ce qui concerne la terminologie utilisée dans cet
article.
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Démonstration. D’après la proposition 4.2, ZS,Et/ℓ
∗ est un ZS,Et/ℓ

∗-module
avec transferts quasi-monöıdal symétrique. Le lemme 3.11 assure alors que
G∗EtZS,Et/ℓ

∗ est en fait un ZS,Et/ℓ
∗-module avec transferts quasi-monöıdal

symétrique cosimplicial. Cela entrâıne que le foncteur

Rℓ : SmCoropS → ∆Mod(ZS/ℓ∗)

du lemme 4.5 est quasi-monöıdal symétrique, autrement dit que l’on dispose
d’un morphisme canonique de foncteurs sur SmCorS ⊗ SmCorS

⊠ : Rℓ(−)⊗ Rℓ(−)→ Rℓ(−×S −)

associatif et commutatif. Ce dernier nous fournit des morphismes de foncteurs
associatifs et commutatifs

CRℓ(−)⊗ CRℓ(−) C
[
Rℓ(−)⊗ Rℓ(−)

] C⊠ //⊠
EML

oo CRℓ(− ×S −)

Rℓ(−)⊗ Rℓ(−) Rℓ(−×S −)

où ⊠
EML désigne la transformation d’Eilenberg Mac Lane [10]. On a donc des

morphismes de bifoncteurs associatifs et commutatifs

Cb
[
CRℓ(−)⊗ CRℓ(−)

]
Cb
[
C
[
Rℓ(−)⊗ Rℓ(−)

]] CbC⊠//Cb
⊠
EML

oo Cb
[
CRℓ(−×S −)

]

Rℓ(−)⊗Rℓ(−) Rℓ(−×S −)

Par ailleurs l’augmentation

ZS/ℓ∗ → Rℓ(S)

est un quasi-isomorphisme qui rend le diagramme suivant commutatif

Rℓ(S)⊗Rℓ(−) Cb
[
C
[
Rℓ(S)⊗ Rℓ(−)

]] CbC⊠ //Cb⊠EML
oo Rℓ(S ×S −)

vvlllllllllllllll

ZS/ℓ∗ ⊗Rℓ(−)

OO

Rℓ(−).

Cela nous assure que le foncteur (38) est bien quasi-tensoriel.

En remarquant que le motif de P1 a pour image l’objet Zℓ ⊕ Zℓ(−1)[−2] de
Db

c (S,Zℓ), on déduit immédiatement de la définition du motif de Tate le résultat
suivant.
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Lemme 4.7. Il existe un isomorphisme

ϑ : Rℓ(Z(1))
∼→ Zℓ(−1).

Comme Zℓ(−1) est inversible dans D+(S,Zℓ), il résulte du lemme 4.7 que
le foncteur (38) se prolonge en un foncteur triangulé quasi-tensoriel sur la
catégorie des motifs mixtes géométriques DMgm(S).

Les assertions (a) et (b) du théorème 4.3 découlent du lemme 4.1 compte tenu
respectivement du théorème de finitude de P. Deligne [1] et des résultats de P.
Deligne sur les conjectures de Weil [7, 8].

Remarque 4.8. Lorsque S est de type fini sur un corps, il résulte de [3, exposé
III] que la flèche de Künneth

⊠X,Y : Rℓ(X)⊗Rℓ(Y )→ Rℓ(X ×S Y )

du lemme 4.6 est un isomorphisme pour tout S-schéma lisse de type fini X,Y .
Cela entrâıne que le foncteur de réalisation du théorème 4.3 est en fait tensoriel
autrement dit que le morphisme

⊠M,N : Rℓ(M)⊗Rℓ(N)→ Rℓ(M ⊗N)

est un isomorphisme pour tout M,N ∈ DMgm(S).

Remarque 4.9. Soit T un schéma noethérien séparé et θ : T → S un morphisme
lisse de schémas. Pour tout S-schéma lisse de type fini X , le théorème de
changement de base lisse appliqué au carré cartésien

XT
θX //

πXT /T

��
�

X

πX/S

��
T

θ // S

nous donne un isomorphisme canonique

θ∗Rℓ(X) = θ∗RπX/S∗π
∗
X/SZS/ℓ∗ = RπXT /T∗θ

∗
Xπ
∗
X/SZS/ℓ∗

= RπXT /T∗π
∗
XT /T

ZT /ℓ∗ = Rℓ(XT ).

Il résulte alors de la construction donnée dans la preuve du théorème 4.3 que
l’on a un isomorphisme canonique de foncteurs φ

DMgm(S)

��

Rℓ // D+(S,Zℓ/ℓ∗)

θ∗

��

φ +3

DMgm(T )
Rℓ // D+(T,Zℓ).

Documenta Mathematica 12 (2007) 607–671
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4.2 Une variante modérée

La généralité correspondant au théorème 4.3 permet de construire dans
différentes situations géométriques des variantes modérées du foncteur de
réalisation ℓ-adique.

Le résultat essentiel à cet égard réside dans la proposition 4.16 du paragraphe
suivant dans lequel nous détaillons le comportement des catégories de motifs
mixtes géométriques par rapport à certaines limites projectives.

4.2.1 Commutation aux limites projectives

Les systèmes projectifs de schémas que nous considérons sont les systèmes
projectifs de schémas λ 7→ Sλ indexés par un ensemble ordonné filtrant Λ et
nous notons uλ,µ : Sµ → Sλ les morphismes de transition. Notre hypothèse est
la suivante.

Le schéma S est régulier et limite projective d’un système pro-
jectif de schémas réguliers λ 7→ Sλ dont les morphismes de
transition sont plats et affines.

Comme S et les Sλ sont réguliers, leurs composantes irréductibles cöıncident
avec leurs composantes connexes. Pour un élément λ de Λ, nous notons dans
la suite

uλ : S → Sλ

le morphisme canonique. Il résulte de notre hypothèse que ce morphisme est
plat. Si Xλ0 est un Sλ0 -schéma, nous posons

Xλ = Sλ ×Sλ0
Xλ0 X = S ×Sλ0

Xλ0 .

Proposition 4.10. Soit Xλ0 un Sλ0-schéma de type fini. Les morphismes de
changement de base associés aux morphismes de transition induisent un iso-
morphisme

colim
λ≥λ0

cequi(Xλ/Sλ, 0) = cequi(X/S, 0).

Démonstration. Il s’agit de voir que le morphisme

colim
λ≥λ0

cequi(Xλ/Sλ, 0)
colimλ≥λ0

u⊛

λ−−−−−−−−−→ cequi(X/S, 0)

est un isomorphisme. On remarquera que nos hypothèses entrâınent que tous les
changements de base considérés sont plats. Montrons tout d’abord que le mor-
phisme est surjectif. On sait d’après le corollaire 3.4.6 de [28] que le membre de
droite est le groupe abélien libre engendré par les sous-schémas fermés intègres
Z de X finis et surjectifs sur une composante connexe de S. Soit Z un tel sous-
schéma fermé de X . En utilisant les théorèmes 8.8.2 et 8.10.5 de [14], on peut
supposer, quitte à prendre λ0 un peu plus grand, qu’il existe un sous-schéma
fermé Zλ0 de Xλ0 tel que

Z = S ×Sλ0
Zλ0 .
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Une nouvelle application du théorème 8.10.5 de loc.cit. nous assure, quitte à
prendre λ0 un peu plus grand, que Zλ0 est fini sur Sλ0 . Soit C la composante
connexe de S dominée par Z. Comme le morphisme uλ est plat, C domine
une composante connexe Cλ de Sλ. Le système projectif λ 7→ Cλ étant à mor-
phismes de transition affines dominants, la proposition 8.4.4 de loc.cit. assure
que la limite projective C′ de C est connexe. Par ailleurs, il résulte du théorème
8.10.5 de loc.cit. qu’il d’agit d’un ouvert de S. On voit donc que C′ est un ou-
vert connexe de S contenant C, ce qui permet de conclure que C est la limite
projective des Cλ. Quitte à prendre λ0 un peu plus grand, une nouvelle applica-
tion du théorème 8.10.5 de loc.cit. permet de conclure que Zλ0 est surjectif sur
la composante connexe Cλ0 . Sachant que nous avons supposé les Sλ réguliers,
le corollaire 3.4.6 de [28] assure alors que [Zλ0 ] appartient à cequi(Xλ0/Sλ0 , 0)
et la surjectivité résulte de l’égalité

u⊛
λ0

[Zλ0 ] = [S ×Sλ0
Zλ0 ] = [Z].

Montrons maintenant l’injectivité. Soit λ ≥ λ0 un élément de Λ et αλ un
élément de cequi(Xλ/Sλ, 0) dont l’image par u⊛

λ est nulle. En notant Zµ le
support du cycle αµ = u⊛

λ,µα, il s’ensuit que la limite projective du système
µ 7→ Zµ est vide. Le théorème 8.10.5 de [14] assure alors que Zµ est vide
pour µ suffisamment grand et donc que αµ = 0. Cela achève la preuve de la
proposition.

En appliquant le lemme précédent aux correspondances finies entre schémas
lisses de type fini, on obtient alors le corollaire suivant.

Corollaire 4.11. Soient λ0 ∈ Λ et Xλ0 , Yλ0 des Sλ0-schémas lisses de type
fini. Le morphisme canonique

colim
λ≥λ0

cSλ(Xλ, Yλ)→ cS(X,Y )

est un isomorphisme.

Démonstration. Comme les Xλ et Yλ sont des schémas lisses sur un schéma
régulier, ils sont eux-mêmes réguliers. La proposition 4.10 nous donne alors

colim
λ≥λ0

cSλ(Xλ, Yλ) = colim
λ≥λ0

cequi(Xλ ×Sλ Yλ/Xλ, 0)

= cequi(X ×S Y/X, 0) = cS(X,Y )

ce qui justifie le corollaire.

Ce résultat nous donne la propriété de commutation à certaines limites pro-
jectives des catégories de schémas lisses munis des correspondances finies. Son
énoncé est la reformulation ci-dessous du corollaire 4.11.

Corollaire 4.12. Le foncteur canonique

2-colim
λ

SmCorSλ → SmCorS (39)

est une équivalence de catégories.
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Démonstration. Compte tenu du corollaire 4.11, notre assertion est une
conséquence des théorèmes 8.8.2 et 8.10.5 de [14] qui assurent que pour tout
S-schéma de type fini X , il existe un λ0 tel que X provienne d’un Sλ0 -schéma
de type fini Xλ0 , et de la proposition 17.7.8 de [15] qui assure que Xλ0 peut-être
choisi lisse sur Sλ0 lorsque X est lisse sur S.

Supposons donné un 2-foncteur

C− : Λ→ Cat ; λ 7→ Cλ

où Cat désigne la 2-catégorie des catégories essentiellement petites et notons
Fλ,µ : Cλ → Cµ le foncteur de transition pour µ ≥ λ.
Remarque 4.13. Dans la suite il est utile de noter que la 2-colimite C des Cλ
admet la description élémentaire suivante.
– Un objet de C est la donnée (C, λ) d’un élément λ ∈ Λ et d’un objet C de

Cλ.
– Les morphismes entre deux objets (C, λ) et (C′, λ′) de C sont donnés par

HomC((C, λ), (C′, λ′)) = colim
µ≥λ,λ′

HomCµ(Fλ,µ(C), Fλ′,µ(C
′)).

Lorsque les Cλ sont des catégories additives et que les foncteurs Fλ,µ sont
additifs, la catégorie C est naturellement une catégorie additive et il s’agit
aussi de la 2-colimite de Cλ dans la 2-catégorie Add des catégories additives.

On dispose du lemme suivant. On remarquera la nécessité dans ce dernier de
se restreindre aux complexes bornés.

Lemme 4.14. Supposons donné un 2-foncteur

C− : Λ→ Add ; λ 7→ Cλ

et notons C la 2-colimite des Cλ. Le foncteur canonique

2-colim
λ

Kb(Cλ)→ Kb(C)

est une équivalence de catégories triangulées.

Démonstration. Notons Fλ le foncteur additif canonique de Cλ dans C. De la
description précédente des 2-colimites, il résulte que le foncteur

2-colim
λ

Cb(Cλ)→ Cb(C)

est une équivalence de catégories. Un morphisme c : C → C′ de complexes
d’objets de C est donc l’image d’un morphisme cλ : Cλ → C′λ de complexes
d’objets de Cλ par le foncteur Cb(Fλ). Il suffit alors juste de remarquer que
c est une équivalence d’homotopie si et seulement si il existe µ ≥ λ tel que
Cb(Fλ,µ)(cλ) soit une équivalence d’homotopie dans Cb(Cµ).

Documenta Mathematica 12 (2007) 607–671



662 Florian Ivorra

En utilisant le corollaire 4.12, le lemme précédent nous donne le résultat suivant.

Corollaire 4.15. Le foncteur canonique

2-colim
λ

Kb(SmCorSλ)→ Kb(SmCorS) (40)

est une équivalence de catégories triangulées.

Démonstration. Le lemme 4.14 entrâıne que le foncteur canonique

2-colim
λ

Kb(SmCorSλ)→ Kb(2-colim
λ

SmCorSλ)

est une équivalence de catégories. Le fait que le foncteur (40) soit une
équivalence de catégories découle du corollaire 4.12 via le diagramme com-
mutatif

2-colimλKb(SmCorSλ)
//

(40)
33

Kb(2-colimλ SmCorSλ)
Kb(39)// Kb(SmCorS).

Proposition 4.16. La sous-catégorie épaisse Egm(S) est la 2-colimite des
sous-catégories Egm(Sλ) et les foncteurs canoniques

2-colim
λ

DM eff
gm(Sλ) → DM eff

gm(S) (41)

2-colim
λ

DM eff
gm(Sλ) → DM eff

gm(S) (42)

2-colim
λ

DMgm(Sλ) → DMgm(S) (43)

sont des équivalences de catégories.

Démonstration. Remarquons tout d’abord que pour tout carré distingué
élémentaire pour la topologie de Nisnevich sur Sλ

Uλ ×Xλ Vλ //

��
�

Vλ

��
Uλ // Xλ

(44)

le carré obtenu par changement de base

(S ×Sλ Uλ)×(S×SλXλ) (S ×Sλ Vλ) //

��
�

S ×Sλ Vλ

��
S ×Sλ Uλ // S ×Sλ Xλ

(45)
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est distingué élémentaire pour la topologie de Nisnevich sur S. La définition
des catégories épaisses Egm(Sλ) et Egm(S) entrâıne donc que le foncteur (40)
induit un foncteur

2-colim
λ

Egm(Sλ)→ Egm(S). (46)

D’après le corollaire 4.15 le foncteur (46) est pleinement fidèle, en ce qui
concerne la première assertion, il suffit donc de voir que les objets de
Kb(SmCorS) de la forme

[A1
X ]→ [X ] [U ×X V ]→ [U ]⊕ [V ]→ [X ]

où X est un S-schéma lisse de type fini et

U ×X V //

��
�

V

��
U // X

(47)

un carré distingué élémentaire pour la topologie de Nisnevich sur S proviennent
à isomorphisme près d’éléments de la 2-colimite des Egm(Sλ). Pour le premier
complexe, il s’agit d’une conséquence immédiate de l’assertion (ii) du théorème
8.2.2 de [14]. Pour le second complexe, il suffit de remarquer que le théorème
8.10.5 de loc.cit. entrâıne l’existence d’un λ ∈ Λ et d’un carré distingué pour la
topologie Nisnevich de Sλ de la forme (44) tel que le carré (47) soit isomorphe
au carré (45) obtenu par changement de base.

Montrons maintenant que le foncteur (41) est une équivalence de catégories
triangulées. On sait déjà grâce au corollaire 4.15 que ce dernier est essentiel-
lement surjectif. Il suffit donc de prouver sa pleine fidélité. Pour simplifier les
notations nous posons

Kλ = Kb(SmCorSλ) K = Kb(SmCorS)

Dλ := DM eff
gm(Sλ) D := DM eff

gm(S)

ainsi que
E := 2-colim

λ
DM eff

gm(λ).

Convenons en outre de noter par Sλ (resp. S) la sous-catégorie de Kλ (resp.
K) ayant les mêmes objets mais dont les morphismes sont les morphismes de
Kλ (resp. K) qui deviennent des isomorphismes dans Dλ (resp. D). On peut
reformuler l’assertion que nous venons de prouver concernant les catégories
Egm en disant que pour tout objet M ∈ Kλ et tout objet M ′ ∈ Kλ′ on a un
isomorphisme naturel

colim
µ≥λ,λ′

Sµ(Fλ,µ(M), Fλ′,µ(M
′)) = S(Φ(M,λ),Φ(M ′, λ′)) (48)

où Φ désigne l’isomorphisme (40).
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Notons Ψ le morphisme (41) et fixons des objets (M,λ) et (M ′, λ′) de D. En
utilisant la description de la remarque 4.13 on obtient

HomE((M,λ), (M ′, λ′)) = colim
µ

HomKµ(Fλ,µ(M), Fλ′,µ(M
′))

= colim
µ

colim
L∈Kµ

s∈Sµ(Fλ′,µ(M ′),L)

HomKµ(Fλ,µ(M), L).

D’autre part en utilisant le corollaire 4.15 ainsi que les isomorphismes (48) on
voit que

HomD(Ψ(M,λ),Ψ(M ′, λ′)) = colim
K∈K

σ∈S(Φ(M ′,λ′),K)

HomK(Φ(M,λ),K)

= colim
µ

colim
K∈Kµ

σ∈(Φ(M ′,λ′),Φ(K,µ))

HomK(Φ(M,λ),Φ(K,µ))

= colim
µ

colim
K∈Kµ

σ∈Sµ(Fλ′,µ(M ′),K)

HomKµ(Fλ,µ(M),K).

Ce qui prouve la pleine fidélité recherchée.

Désignons par (−)♮ le 2-foncteur qui à une catégorie associe son enveloppe
pseudo-abélienne. Le morphisme canonique

2-colim
λ

(C♮λ)→ C♮

est une équivalence de catégories comme on le voit à partir de la propriété
universelle des 2-colimites et de la pseudo-abélianisation. En particulier le dia-
gramme commutatif

2-colimλDM
eff
gm(Sλ)

♮ equiv.//
[
2-colimλDM

eff
gm(Sλ)

]♮ (41)♮ // DMeff
gm(S)♮

2-colimλDM
eff
gm(Sλ)

(42)
// DM eff

gm(S)

entrâıne que (42) est aussi une équivalence de catégories.

Quant à la dernière assertion, il suffit de remarquer que

2-colim
λ

DMgm(Sλ) = 2-colim
λ

2-colim
n

[
DM eff

gm(Sλ)(n)
]

= 2-colim
n

2-colim
λ

[
DM eff

gm(Sλ)(n)
]

= 2-colim
n

[
2-colim

λ
DM eff

gm(Sλ)

]
(n)

= 2-colim
n

DM eff
gm(S)(n) = DMgm(S).

Ce qui achève la preuve de la proposition.
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4.2.2 Réalisation modérée

Dans ce qui suit, nos hypothèses sont légèrement plus restrictives que dans le
paragraphe 4.2.1.

Le schéma S est régulier et limite projective d’un système pro-
jectif de schémas réguliers λ 7→ Sλ dont les morphismes de
transition sont lisses et affines.

Il résulte des théorèmes 8.8.2 et 8.10.5 de [14] et de la proposition 17.7.6 de [15]
que la catégorie des S-schémas lisses de type fini admet la description suivante

2-colim
λ

SmSλ = SmS .

En passant à la 2-colimite sur Λ, les foncteurs de réalisation ℓ-adique

Smop
Sλ
→ D+(Sλ,Zℓ) λ ∈ Λ

fournissent donc un foncteur

Smop
S → D+(S,Zℓ)md. (49)

La conjonction du théorème 4.3 et de la description de la catégorie des motifs
géométriques de la proposition 4.16 nous donne le corollaire suivant.

Corollaire 4.17. Le foncteur de réalisation ℓ-adique modérée (49) se pro-
longe canoniquement en un foncteur triangulé quasi-tensoriel

Rmd,ℓ : DMgm(S)op → D+(S,Zℓ)md. (50)

(a) Lorsque λ 7→ Sλ est un système projectif de schémas de type fini sur un
schéma nothérien régulier de dimension ≤ 1, le foncteur (50) prend ses
valeurs dans Db

c (S,Zℓ)md.
(b) Lorsque S lisse de type fini sur un corps de nombres, le foncteur (50)

induit un foncteur triangulé tensoriel

DMgm(S)op → Db
m(S,Qℓ)md

où le second membre désigne la catégorie des coefficients ℓ-adiques mixtes
modérés de [17, Definition 3.1].

Démonstration. D’après le théorème 4.3 on a des foncteurs triangulés quasi-
tensoriels

DMgm(Sλ)
op → D(Sλ,Zℓ) λ ∈ Λ.

Compte tenu de la proposition 4.16 et de la remarque 4.9, en passant à la
2-colimite sur Λ on obtient un foncteur triangulé quasi-tensoriel

2-colimλDMgm(Sλ)
op // 2-colimλD(Sλ,Zℓ)

DMgm(S)op
Rmd,ℓ // D(S,Zℓ)md.
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Lorsque λ 7→ Sλ est un système projectif de schémas de type fini sur un schéma
nothérien régulier de dimension ≤ 1, le théorème 4.3 entrâıne également que ce
foncteur prend ses valeurs dans Db

c (X,Zℓ)md.

On peut appliquer ce résultat au cas où Λ est l’ensemble des ouverts affines
non vides d’un schéma intègre régulier S de corps des fonctions F . Cela permet
pour tout F -schéma lisse de type fini X d’obtenir une réalisation ℓ-adique

DMgm(X)→ Db
c (X,Zℓ)md

la catégorie de droite étant étudiée dans [17] dans le cas où F est un corps de
nombres. En outre les résultats de [7, 8] et le lemme 4.1 assurent que le foncteur
précédent induit un foncteur triangulé tensoriel

DMgm(S)op → Db
m(S,Qℓ)md

lorsque F est un corps de nombres.

A La catégorie des coefficients ℓ-adiques de T. Ekedahl

Avec cet appendice nous précisons la nature des coefficients ℓ-adiques que nous
utilisons pour réaliser les motifs mixtes sur S. Nous en profitons pour fixer les
notations que nous utilisons dans la cadre ℓ-adique. Dans son article [8], P.
Deligne propose de considérer la catégorie

2-limDb
ctf(S,Z/ℓ

r)

2-limite projective du système projectif r 7→ Db
ctf(S,Z/ℓ

r) dans lequel
– les morphismes de transition sont fournis par les produits tensoriels

Db
ctf(S,Z/ℓ

s)
ZS/ℓr⊗LZS/ℓs−−−−−−−−−−→ Db

ctf(S,Z/ℓ
r) r ≥ s ;

– Db
ctf(S,Z/ℓ

r) désigne la sous-catégorie triangulée de la catégorie dérivée
Db(ZS/ℓr) formée des objets de tor dimension finie et à cohomologie
constructible.

Mais cette construction ne fournit pas en toute généralité une catégorie trian-
gulée. En effet la 2-limite projective d’un système projectif de catégories tri-
angulées à morphismes de transition triangulés n’est pas à priori munie d’une
structure triangulée. En revanche d’après la proposition 2.2.15 de [5], cette
construction devient tout à fait raisonnable lorsque le groupe abélien

HomDb
ctf (S,Z/ℓr)

(F,G)

est fini pour tout objet F,G de Db
ctf(S,Z/ℓ

r).

En pratique on sait que cette hypothèse est satisfaite par exemple lorsque S est
de type fini sur Z ou sur le spectre d’un corps k tel que, pour toute extension
finie séparable de E de k, les groupes de cohomologie Galoisienne H i(GE ,Z/ℓ)
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sont finis — ceci inclut notamment le cas où k est un corps fini ou un corps
algébriquement clos.

La construction de P. Deligne recouvre donc un grand nombre de situations
arithmético-géométriques mais présente un inconvénient majeur relativement
à notre approche : il est extrêmement malaisé de travailler (( à homotopie près ))

dans une limite projective de catégories triangulées même lorsque chacune
d’entre elle est la catégorie dérivée d’une catégorie abélienne.

A.1 La catégorie de T. Ekedahl

La construction inconditionnelle des catégories D+(S,Zℓ) donnée par T. Eke-
dahl dans [11] ne présente pas cet inconvénient. Cela tient au fait que le passage
àla limite projective n’est pas effectuée au niveau des catégories triangulées mais
au niveau des complexes. Naturellement lorsque l’hypothèse de finitude n’est
plus satisfaite, le foncteur lim n’est plus exact, et la cohomologie ℓ-adique n’est
pas donnée par la simple limite

lim
r
Hi(X,Z/ℓr)

mais par la cohomologie étale continue de U. Jannsen [23] : en d’autres termes
il y a lieu de dériver aussi le foncteur limite projective pour obtenir un résultat
raisonnable. Le passage à la limite projective au niveau des complexes permet
justement de dériver ce foncteur et la catégorie de T. Ekedahl fournit le (( for-
malisme dérivé )) correspondant à la cohomologie étale continue de U. Jannsen.

Nous rappelons maintenant la construction de la catégorie de T. Ekedahl. On
peut considérer le topos NopSet des systèmes projectifs de faisceaux étales sur
S ainsi que le faisceau d’anneaux sur ce dernier

ZS/ℓ∗ : · · · → ZS/ℓr+1 → ZS/ℓr → · · · → ZS/ℓ.

La catégorie des Z/ℓ∗-modules est une catégorie abélienne de Grothendieck
dont on note D(S,Z/ℓ∗) la catégorie dérivée. Pour un objet F ∈ D(S,Z/ℓ∗),
on pose suivant [11]

F̂ := Lπ∗Rπ∗F.

où π : NopSet → Set désigne le morphisme naturel de topos. D’après la propo-
sition 2.2 de loc.cit. on dispose du lemme suivant.

Lemme A.1. Soit F un objet de D(X,Z/ℓ∗). Les conditions suivantes sont
équivalentes

(a) Le morphisme naturel F̂ → F est un isomorphisme.

(b) Les morphismes induits par les morphismes de transition

ZS/ℓs+1 ⊗LZS/ℓr+1 Fr → Fs r ≥ s

sont des isomorphismes dans D(S,Z/ℓs+1).
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Définition A.2. Soit † ∈ {b,+,−,∅}. La catégorie triangulée D†(S,Zℓ) des
coefficients ℓ-adiques est la sous-catégorie pleine de D†(ZS/ℓ∗) engendrée par les
complexes F satisfaisant les conditions équivalentes du lemme A.1. La catégorie
des coefficients constructibles Db

c (S,Zℓ) est donnée par la sous-catégorie trian-
gulée de Db(S,Zℓ) formée des objets à cohomologie constructible.

Remarque A.3. Dans [11] les complexes vérifiant les conditions équivalentes du
lemme A.1 sont appelés complexes normalisés.

A.2 Coefficients ℓ-adiques modérés

Dans cette section nous donnons la définition de la catégorie des coefficients
ℓ-adiques que nous appelons modérés. Nous nous fixons un ensemble ordonné
filtrant Λ et nous supposons que S est limite projective d’un système projectif
de schémas λ 7→ Sλ dont les morphismes de transition sont des morphismes
plats affines.

Définition A.4. Nous appellerons catégorie des coefficients ℓ-adiques modérés
relativement au système projectif des Sλ la catégorie triangulée

D(S,Zℓ)md := 2-colim
λ

D(Sλ,Zℓ).

On pose de même

D+(S,Zℓ)md := 2-colim
λ

D+(Sλ,Zℓ) Db
c (S,Zℓ)md := 2-colim

λ
Db

c (Sλ,Zℓ).

B Foncteurs monöıdaux

La terminologie concernant les catégories symétriques monöıdales n’étant pas
entièrement fixée dans la littérature, nous précisons les conventions valables
dans cet article avec la définition ci-dessous.

Définition B.1. Soient A et B deux catégories monöıdales symétriques. Un
foncteur quasi-monöıdal symétrique consiste en les données suivantes.
– Un foncteur F : A→ B.
– Une transformation naturelle ⊠ : F (−) ⊗ F (−) → F (− ⊗ −) vérifiant les

conditions ci-dessous.

(a) (Associativité) Pour tout objet A,A′, A′′ de A, le diagramme

F (A)⊗ F (A′)⊗ F (A′′)
F (A)⊗⊠A′,A′′

//

⊠A,A′⊗F (A′′)

��

F (A)⊗ F (A′ ⊗A′′)
⊠A,A′⊗A′′

��
F (A⊗A′)⊗ F (A′′)

⊠A⊗A′,A′′

// F (A⊗A′ ⊗A′′)

est commutatif.
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(b) (Commutativité) Pour tout objet A,A′ de A, le diagramme

F (A)⊗ F (A′) //

⊠A,A′

��

F (A′)⊗ F (A)

⊠A′,A

��
F (A⊗A′) // F (A′ ⊗A)

est commutatif.

– Une transformation naturelle 1B → F (1A) telle que l’on ait le diagramme
commutatif

1B ⊗ F (A) //

��

F (A)

F (1A)⊗ F (A)
⊠1A,A

// F (1A ⊗A)

OO

pour tout objet A de A.

Nous dirons que le foncteur est monöıdal symétrique lorsque le morphisme
1B → F (1A) est un isomorphisme et que pour tout objet A,A′ de A′ le mor-
phisme

⊠A,A′ : F (A) ⊗ F (A′)→ F (A⊗A′)
est un isomorphisme. Lorsque les catégories A,B sont additives i.e. tensorielles
nous parlerons plutôt de foncteur quasi-tensoriel que de foncteur quasi-
monöıdal symétrique, et de même de foncteur tensoriel plutôt que de foncteur
monöıdal symétrique.
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que nous avons eus au sujet des résultats contenus dans [21] et dans le présent
article ainsi que Joël Riou pour les remarques dont il m’a fait part. Je souhaite
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1 Introduction

1.1 Motivation

Mazur originally suggested that the Shafarevich–Tate group X(A/K) of an
abelian variety A over a number field K could be studied via a collection of
finite subgroups (the visible subgroups) corresponding to different embeddings
of the variety into other abelian varieties C over K (see [Maz99] and [CM00]).
The advantage of this approach is that the isomorphism classes of principal
homogeneous spaces, for which one has a priori little geometric information,
can be given a much more explicit description as K-rational points on the
quotient abelian variety C/A (the reason why they are called visible elements).

Agashe, Cremona, Klenke and the second author built upon the ideas of
Mazur and proved many results about visibility of Shafarevich–Tate groups of
abelian varieties over number fields (see [Aga99b, AS02, AS05, CM00, Kle01,
Ste00]). More precisely, Agashe and Stein provided sufficient conditions for the
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existence of visible subgroups of certain order in the Shafarevich–Tate group
and applied their general theory to the case of newform subvarieties Af /Q of

the Jacobian J0(N)/Q of the modular curve X0(N)/Q (here, f is a newform of
level N and weight 2 which is an eigenform for the Hecke operators acting on
the space S2(Γ0(N)) of cuspforms of level N and weight 2). They gave many
examples of nontrivial elements of X(Af/Q) that are visible with respect to the
embedding Af →֒ J0(N), along with many examples that are not, assuming the
Birch and Swinnerton-Dyer conjecture. The results of the present paper allow
us in some cases to remove this dependence on the Birch and Swinnerton-Dyer
conjecture.

In this paper we consider the case of modular abelian varieties over Q
and make use of the algebraic and arithmetic properties of the corresponding
newforms to provide sufficient conditions for the existence of visible elements of
X(Af/Q) in Jacobians of modular curves of levels multiples of the base levelN .

More precisely, we consider morphisms of the form Af →֒ J0(N)
φ−→ J0(MN),

where φ is a suitable linear combination of degeneracy maps whose kernel is
2-torsion. For specific examples, the sufficient conditions can be verified explic-
itly. We also provide a table of examples where certain elements of X(Af/Q)
which are not visible in J0(N) become visible at a suitably chosen higher level.
At the end, we state a conjecture inspired by our results.

1.2 Organization of the paper

Section 2 discusses the basic definitions and notation for modular abelian va-
rieties, modular forms, Hecke algebras, the Shimura construction and modular
degrees. Section 3 is a brief introduction to visibility theory for Shafarevich–
Tate groups. In Section 4 we state and prove a refinement of a theorem of
Agashe-Stein (see [AS05, Thm 3.1]) which guarantees existence of visible el-
ements. The result is stronger since it makes use of the Hecke action on the
Jacobian J0(N).

In Section 5 we introduce the notion of strong visibility which is relevant for
visualizing cohomology classes in Jacobians of modular curves whose level is a
multiple of the level of the original abelian variety. Theorem 5.1.3 guarantees
existence of strongly visible elements of the Shafarevich–Tate group under a
hypothesis on the component groups, a congruence condition between modular
forms, and irreducibility of the Galois representation. In Section 5.4 we prove
a variant of the same theorem (Theorem 5.4.2) with hypotheses that are easier
to verify.

Section 6 discusses in detail two computational examples for which strongly
visible elements of certain order exist. These examples provide evidence for the
Birch and Swinnerton-Dyer conjecture. We state a general conjecture (Conjec-
ture 7.1.1) in Section 7 according to which every element of the Shafarevich–
Tate group of a modular abelian variety becomes visible at higher level. We
provide evidence for the conjecture in Section 7.2 and a table of computational
data in Section 7.4.
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2 Notation

1. Abelian varieties. For a number field K, A/K denotes an abelian variety over
K. We denote the dual of A by A∨/K . If ϕ : A→ B is an isogeny of degree n,

we denote the complementary isogeny by ϕ′; this is the isogeny φ′ : B → A,
such that ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = [n], the multiplication-by-n map on A. Unless
otherwise specified, Néron models of abelian varieties will be denoted by the
corresponding caligraphic letters, e.g., A denotes the Néron model of A over
the ring of integers of K.

2. Galois cohomology. For a fixed algebraic closure K of K, GK will be the
Galois group Gal(K/K). If v is any non-archimedean place of K, we let Kv and
kv denote the completion and the residue field of K at v, respectively. By Kur

v

we denote the maximal unramified extension of the completion Kv. Given a
GK-module M , we let H1(K,M) be the Galois cohomology group H1(GK ,M).

3. Component groups. The component group of A at v is the finite group
ΦA,v = Akv/A0

kv
which also has the structure of a finite group scheme over

kv. The Tamagawa number of A at v is cA,v = #ΦA,v(kv), and the component
group order of A at v is cA,v = #ΦA,v(kv).

4. Modular abelian varieties. Let h = 0 or 1. A Jh-modular abelian variety
is an abelian variety A/K which is a quotient of Jh(N) for some N , i.e. there
exists a surjective morphism Jh(N) ։ A defined over K. We define the level of
a modular abelian variety A to be the minimal N , such that A is a quotient of
Jh(N). The modularity theorem of Wiles et al. (see [BCDT01]) implies that all
elliptic curves over Q are modular. Serre’s modularity theorem (see [KhW07])
implies that the modular abelian varieties over Q are precisely the abelian
varieties over Q of GL2-type (see [Rib92, §4]).

5. Shimura construction. Let f =

∞∑

n=1

anq
n ∈ S2(Γ0(N)) be a newform of level

N and weight 2 for Γ0(N) which is an eigenform for all Hecke operators in
the Hecke algebra T(N) generated by all Hecke operators Tn for all integers n.
Shimura (see [Shi94, Thm. 7.14]) associated to f an abelian subvariety Af /Q
of J0(N), simple over Q, of dimension d = [K : Q], where K = Q(. . . , an, . . . )
is the Hecke eigenvalue field. More precisely, if If = AnnT(N)(f) then Af is
the connected component containing the identity of the If -torsion subgroup of
J0(N), i.e. Af = J0(N)[If ]

0 ⊂ J0(N). The quotient T(N)/If of the Hecke
algebra T(N) is a subalgebra of the endomorphism ring EndQ(A/Q). Also
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L(Af , s) =
d∏

i=1

L(fi, s), where the fi are the GQ-conjugates of f . We also

consider the dual abelian variety A∨f which is a quotient variety of J0(N).

6. I-torsion submodules. If M is a module over a commutative ring R and I
is an ideal of R, let

M [I] = {x ∈M : mx = 0 all m ∈ I}
be the I-torsion submodule of M .

7. Hecke algebras. Let S2(Γ) denote the space of cusp forms of weight 2 for
any congruence subgroup Γ of SL2(Z). Let

T(N) = Z[. . . , Tn, . . .] ⊆ EndQ(J0(N))

be the Hecke algebra, where Tn is the nth Hecke operator. T(N) also acts on
S2(Γ0(N)) and the integral homology H1(X0(N),Z).

8. Modular degree. If A is an abelian subvariety of J0(N), let

θ : A →֒ J0(N) ∼= J0(N)∨ → A∨

be the induced polarization. The modular degree of A is

mA =

√
#Ker(A

θ−→ A∨).

See [AS02] for why mA is an integer and for an algorithm to compute it.

3 Visible Subgroups of Shafarevich–Tate Groups

Let K be a number field and ι : A/K →֒ C/K be an embedding of an abelian
variety into another abelian variety over K.

Definition 3.0.1. The visible subgroup of H1(K,A) relative to ι is

VisC H1(K,A) = Ker
(
ι∗ : H1(K,A)→ H1(K,C)

)
.

The visible subgroup of X(A/K) relative to the embedding ι is

VisC X(A/K) = X(A/K) ∩VisC H1(K,A)

= Ker (X(A/K)→X(C/K))

Let Q be the abelian variety C/ι(A), which is defined over K. The Galois
cohomology exact sequence associated to 0→ A→ C → Q→ 0 gives rise to

0→ A(K)→ C(K)→ Q(K)→ VisC H1(K,A)→ 0.

Surjectivity of the last map implies that the cohomology classes of
VisC H1(K,A) are exactly the images of K-rational points on Q, which is why
Mazur called these classes visible. The group VisC H1(K,A) is finite since it is
torsion and since Q(K) is finitely generated.
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Remark 3.0.2. If A/K is an abelian variety and c ∈ H1(K,A) is any cohomol-
ogy class, there exists an abelian variety C/K and an embedding ι : A →֒ C

defined over K, such that c ∈ VisC H1(K,A), i.e. c is visible in C (see [AS02,
Prop. 1.3]). The C of [AS02, Prop. 1.3] is the restriction of scalars of
AL = A×K L down to K, where L is any finite extension of K such that c has
trivial image in H1(L,A).

4 Refined Visibility

Let K be a number field, let A/K and B/K be abelian subvarieties of an abelian
variety C/K , such that C = A + B and A ∩ B is finite. Let Q/K denotes the
quotient C/B. Let N be a positive integer divisible by all primes of bad
reduction for C.

Let ℓ be a prime such that B[ℓ] ⊂ A and e < ℓ − 1, where e is the largest
ramification index of any prime of K lying over ℓ. Suppose that

ℓ ∤ N ·#B(K)tor ·#Q(K)tor ·
∏

v|N
cA,vcB,v.

Under these conditions, Agashe and Stein (see [AS02, Thm. 3.1]) constructed
a homomorphism B(K)/ℓB(K)→X(A/K)[ℓ] whose kernel has Fℓ-dimension
bounded by the rank of A(K).

We refine the above theorem by taking into account the algebraic structure
coming from the endomorphism ring EndK(C). In particular, when we apply
the theory to modular abelian varieties, we would like to use the additional
structure coming from the Hecke algebra. There are examples (see [AS05])
where the theorem of Agashe and Stein does not apply, but nevertheless, we
can use our refinement to prove existence of visible elements of X(Af/Q) at
higher level (e.g., see Propositions 6.1.3 and 6.2.1 below).

4.1 The main theorem

Let A/K , B/K , C/K , Q/K , N and ℓ be as above. Let R be a commutative
subring of EndK(C) that leaves A and B stable, and let m be a maximal ideal
of R of residue characteristic ℓ. By the Néron mapping property, the subgroups
ΦA,v(kv) and ΦB,v(kv) of kv-points of the corresponding component groups can
be viewed as R-modules.

Theorem 4.1.1 (Refined Visibility Theorem). Suppose that A(K) has rank
zero and that the groups Q(K)[m], B(K)[m], ΦA,v(kv)[m] and ΦB,v(kv)[ℓ] are
all trivial for all nonarchimedean places v of K. Then there is an injective
homomorphism of R/m-vector spaces

(B(K)/ℓB(K))[m] →֒ VisC(X(A/K))[m]. (1)

Remark 4.1.2. Applying the above result for R = Z, we recover the result of
Agashe and Stein in the case when A(K) has rank zero. We could relax the
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hypothesis that A(K) is finite and instead give a bound on the dimension of
the kernel of (1) in terms of the rank of A(K) similar to the bound in [AS02,
Thm. 3.1]. We will not need this stronger result in our paper.

4.2 Some commutative algebra

Before proving Theorem 4.1.1 we recall some well-known lemmas from commu-
tative algebra. Let M be a module over a commutative ring R and let m be a
finitely generated prime ideal of R.

Lemma 4.2.1. If Mm is Artinian, then Mm 6= 0 ⇐⇒ M [m] 6= 0.

Proof. We first prove that Mm = 0 implies M [m] = 0 by a slight modification
of the proof of [AM69, Prop. I.3.8]. Suppose Mm = 0, yet there is a nonzero
x ∈ M [m]. Let I = AnnR(x). Then I 6= (1) is an ideal that contains m, so
I = m. Consider x/1 ∈ Mm. Since Mm = 0, we have x/1 = 0 and hence, x is
killed by some element of the set-theoretic difference R−m. But AnnR(x) = m,
a contradiction, so M [m] = 0.

Conversely, we will show that Mm 6= 0 implies M [m] 6= 0. Since Mm is
Artinian over Rm, by [AM69, Prop. 6.8], Mm has a composition series:

Mm = M0 ⊃M1 ⊃ · · · ⊃Mn−1 ⊃Mn = 0,

where each quotient Mi/Mi+1 is a simple Rm-module. In particular, Mn−1 is
a simple Rm-module. Suppose x ∈ Mn−1 is nonzero, and let I = AnnRm

(x).
Then

Rm/I ∼= Rm · x ⊂Mn−1,

so by simplicity Rm/I ∼= Mn−1 is simple. Thus I = m, otherwise Rm/I would
have m/I as a proper submodule. Thus x ∈Mn−1[m] is nonzero.

Write x = y/a with y ∈ M and a ∈ R − m. Since a ∈ R − m, the element
a acts as a unit on Mm, hence ax = y/1 ∈ Mn−1 is nonzero and also still
annihilated by m (by commutativity).

To say that y/1 is annihilated by m means that for all α ∈ m there exists
t ∈ R−m such that tαy = 0 in M . Since m is finitely generated, we can write
m = (α1, . . . , αn) and for each αi we get corresponding elements t1, . . . , tn and
a product t = t1 · · · tn. Also t 6∈ m since m is a prime ideal and each ti 6∈ m.
Let z = ty. Then for all α ∈ m we have αz = tαy = 0. Also z 6= 0 since t acts
as a unit on Mn−1. Thus z ∈M [m], and is nonzero, which completes the proof
of the lemma.

Lemma 4.2.2. Suppose 0 → M1 → N → M2 → 0 is an exact sequence of
R-modules, such that (M1)m, Nm and (M2)m are all Artinian. Then

N [m] 6= 0 ⇐⇒ (M1 ⊕M2)[m] 6= 0.
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Proof. By Lemma 4.2.1 we have N [m] 6= 0 if and only if Nm 6= 0. By Proposi-
tion 3.3 on page 39 of [AM69], the localized sequence

0→ (M1)m → Nm → (M2)m → 0

is exact. Thus Nm 6= 0 if and only if at least one of (M1)m or (M2)m is nonzero.
Again by Lemma 4.2.1, at least one of (M1)m or (M2)m is nonzero if and only
if at least one of M1[m] or M2[m] is nonzero. The latter is the case if and only
if (M1 ⊕M2)[m] 6= 0.

Remark 4.2.3. One could also prove the lemmas by using that M [m] ∼=
HomR(R/m,M) and the exactness properties of Hom, but many of the same
details have to be checked.

Lemma 4.2.4. Let G be a finite cyclic group, M be a finite G-module that is
also a module over a commutative ring R such that the action of G and R
commute (i.e., M is an R[G]-module). Suppose p is a finitely-generated prime
ideal of R, and H0(G,M)[p] = 0. Then H1(G,M)[p] = 0.

Proof. The proof is exactly the same as [Se79, Prop. VIII.4.8], but we note that
all modules are modules over R and all maps are morphisms of R-modules.

4.3 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. The proof is very similar to the proof of [AS02,
Thm. 3.1], except that [ℓ] is replaced by [m] and we apply the above lemmas
to verify properties of various maps between m-torsion modules.

We now give the details of the proof, for the benefit of the reader who is
not convinced by the above brief sketch. The construction of [AS02, Lem. 3.6]
yields the following commutative diagram with exact rows and columns:

M0

��

M1

��

M2

��
0 // B(K)/(B(K)[ℓ])

ℓ //

��

B(K)

π

''NNNNNNNNNNN
//

��

B(K)/ℓB(K) //

ϕ

��

0

0 // C(K)/A(K) //

��

Q(K) // VisC(H1(K,A)) // 0

M3.

Here, M0, M1 and M2 denote the kernels of the corresponding vertical maps
and M3 denotes the cokernel of the first map. Since R preserves A, B, and
B[ℓ], all objects in the diagram are R-module and the morphisms of abelian
varieties are also R-module homomorphisms.
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The snake lemma yields an exact sequence

0→M0 →M1 →M2 →M3.

By hypothesis, B(K)[m] = 0, so N0 = Ker(B(K) → C(K)/A(K)) has no m

torsion. Noting that B(K)[ℓ] ⊂ N0, it follows that M0 = N0/(B(K)[ℓ]) has
no m torsion either, by Lemma 4.2.2. Also,M1[m] = 0 again since B(K)[m] = 0.

By the long exact sequence on Galois cohomology, the quotient C(K)/B(K)
is isomorphic to a subgroup of Q(K) and by hypothesis Q(K)[m] = 0, so
(C(K)/B(K))[m] = 0. Since Q is isogenous to A and A(K) is finite and
C(K)/B(K) →֒ Q(K), we see that C(K)/B(K) is finite. Thus M3 is a quotient
of the finite R-module C(K)/B(K) that has no m-torsion, so Lemma 4.2.2
implies that M3[m] = 0. The same lemma implies that M1/M0 has no m-
torsion, since it is a quotient of the finite module M1 which has no m-torsion.
Thus, we have an exact sequence

0→M1/M0 →M2 →M3 → 0,

and both of M1/M0 and M3 have trivial m-torsion. It follows by Lemma 4.2.2,
that M2[m] = 0. Therefore, we have an injective morphism of R/m-vector
spaces

ϕ : (B(K)/ℓB(K))[m] →֒ VisC(H1(K,A))[m].

It remains to show that for any x ∈ B(K), we have ϕ(x) ∈ VisC(X(A/K)),
i.e., that ϕ(x) is locally trivial.

We proceed exactly as in Section 3.5 of [AS05]. In both cases char(v) 6= ℓ
and char(v) = ℓ we arrive at the conclusion that the restriction of ϕ(x) to
H1(Kv, A) is an element c ∈ H1(Kur

v /Kv, A(Kur
v )). (Note that in the case

char(v) 6= ℓ the proof uses that ℓ ∤ #ΦB,v(kv).) By [Mil86, Prop I.3.8], there is
an isomorphism

H1(Kur
v /Kv, A(Kur

v )) ∼= H1(kv/kv,ΦA,v(kv)). (2)

We will use our hypothesis that

ΦA,v(kv)[m] = ΦB,v(kv)[ℓ] = 0

for all places v of bad reduction to deduce that the image of ϕ lies in
VisC(X(A/K))[m]. Let d denote the image of c in H1(kv/kv,ΦA,v(kv)). The
construction of d is compatible with the action of R on Galois cohomology,
since (as is explained in the proof of [Mil86, Prop. I.3.8]) the isomorphism (2)
is induced from the exact sequence of Gal(Kur

v /Kv)-modules

0→ A0(Kur
v )→ A(Kur

v )→ ΦA,v(kv)→ 0,

where A is the Néron model of A and A0 is the subgroup scheme whose generic
fiber is A and whose closed fiber is the identity component of Akv . Since
ϕ(x) ∈ H1(K,A)[m], it follows that

d ∈ H1(kv/kv,ΦA,v(kv))[m].
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Lemma 4.2.4, our hypothesis that ΦA,v(kv)[m] = 0, and that

H1(kv/kv,ΦA,v(kv)) = lim−→H1(Gal(k′v/kv),ΦA,v(k
′
v))),

together imply that H1(kv/kv,ΦA,v(kv))[m] = 0, hence d = 0. Thus c = 0, so
ϕ(x) is locally trivial, which completes the proof.

5 Strong Visibility at Higher Level

5.1 Strongly visible subgroups

Let A/Q be an abelian subvariety of J0(N)/Q and let p ∤ N be a prime. Let

ϕ = δ∗1 + δ∗p : J0(N)→ J0(pN), (3)

where δ∗1 and δ∗p are the pullback maps on equivalence classes of degree-zero

divisors of the degeneracy maps δ1, δp : X0(pN) → X0(N). Let H1(Q, A)odd

be the prime-to-2-part of the group H1(Q, A).

Definition 5.1.1 (Strong Visibility). The strongly visible subgroup of
H1(Q, A) for J0(pN) is

VispN H1(Q, A) = Ker
(
H1(Q, A)odd ϕ∗−−→ H1(Q, J0(pN))

)
⊂ H1(Q, A).

Also,
VispN X(A/Q) = X(A/Q) ∩VispN H1(Q, A).

The reason we replace H1(Q, A) by H1(Q, A)odd is that the kernel of ϕ is 2-
torsion (see [Rib90b]).

Remark 5.1.2. We could obtain more visible subgroups by considering the map
δ∗1 − δ∗p in Definition 5.1.1. However, the methods of this paper do not apply
to this map.

For a positive integer N , let

ν(N) =
1

6
·
∏

qr‖N
(qr + qr−1)

1

6
· [SL2(Z) : Γ0(N)].,

where each qr exactly divides N .
We refer to ν(N) as the Sturm bound (see [Stu87]).

Theorem 5.1.3. Let A = Af be a newform abelian subvariety of J0(N) for
which L(A/Q, 1) 6= 0 and let p ∤ N be a prime. Suppose that there is a maxi-
mal ideal λ ⊂ T(N) and an elliptic curve E/Q of conductor pN such that the
following properties are satisfied:

1. [Nondivisibility] The residue characteristic ℓ of λ satisfies

ℓ ∤ 2 ·N · p ·
∏

q|N
cE,q.
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2. [Component Groups] For each prime q | N ,

ΦA,q(Fq)[λ] = 0.

3. [Fourier Coefficients] Let an(E) be the n-th Fourier coefficient of the
modular form attached to E, and an(f) the n-th Fourier coefficient of f .
We have ap(E) = −1,

ap(f) ≡ −(p+ 1) (mod λ) and aq(f) ≡ aq(E) (mod λ),

for all primes q 6= p with q ≤ ν(pN).

4. [Irreducibility] The mod ℓ representation ρE,ℓ is irreducible.

Then there is an injective homomorphism

E(Q)/ℓE(Q) →֒ VispN (X(Af/Q))[λ].

Remark 5.1.4. In fact, we have

E(Q)/ℓE(Q) →֒ Ker(X(Af/Q)→X(C/Q))[λ] ⊂ VispN (X(Af/Q))[λ],

where C ⊂ J0(pN) is isogenous to Af × E.

5.2 Some auxiliary lemmas

We will use the following lemmas in the proof of Theorem 5.1.3. The notation
is as in the previous section. In addition, if f ∈ S2(Γ0(N)), we denote by an(f)
the n-th Fourier coefficient of f and by Kf and Of the Hecke eigenvalue field
and its ring of integers, respectively.

Lemma 5.2.1. Suppose Af ⊂ J0(N) and Ag ⊂ J0(pN) are attached to new-
forms f and g of level N and pN , respectively, with p ∤ N . Suppose that there is
a prime ideal λ of residue characteristic ℓ ∤ 2pN of an integrally closed subgroup
O of Q that contains the ring of integers of the composite field K = KfKg such
that for q ≤ ν(pN),

aq(f) ≡
{
aq(g) (mod λ) if q 6= p,

(p+ 1)ap(g) (mod λ) if q = p.

Assume that ap(g) = −1. Let λf = Of ∩ λ and λg = Og ∩ λ and assume that
Af [λf ] is an irreducible GQ-module. Then we have an equality

ϕ(Af [λf ]) = Ag[λg]

of subgroups of J0(pN), where ϕ is the morphism of equation (3) from Sec-
tion 5.1.
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Proof. Our hypothesis that ap(f) ≡ −(p+ 1) (mod λf ) implies, by the proofs
in [Rib90b], that

ϕ(Af [λf ]) ⊂ ϕ(Af ) ∩ J0(pN)p-new,

where J0(pN)p-new is the p-new abelian subvariety of J0(N).

By [Rib90b, Lem. 1], the operator Up = Tp on J0(pN) acts as −1 on
ϕ(Af [λf ]). Consider the action of Up on the 2-dimensional vector space spanned
by {f(q), f(qp)}. The matrix of Up with respect to this basis is

Up =

(
ap(f) p
−1 0

)
.

In particular, neither of f(q) and f(qp) is an eigenvector for Up. The character-
istic polynomial of Up acting on the span of f(q) and f(qp) is x2 − ap(f)x+ p.
Using our hypothesis on ap(f) again, we have

x2 − ap(f)x+ p ≡ x2 + (p+ 1)x+ p ≡ (x+ 1)(x+ p) (mod λ).

Thus we can choose an algebraic integer α such that

f1(q) = f(q) + αf(qp)

is an eigenvector of Up with eigenvalue congruent to −1 modulo λ. (It does not
matter whether x2 + ap(f)x + p has distinct roots; nonetheless, since p ∤ N ,
[CV92, Thm. 2.1] implies that it does have distinct roots.) The cusp form f1
has the same prime-indexed Fourier coefficients as f at primes other than p.
If necessary, replace O by O[α] so that α ∈ O. The p-th coefficient of f1 is
congruent modulo λ to −1 and f1 is an eigenvector for the full Hecke algebra.
It follows from the recurrence relation for coefficients of the eigenforms that

an(g) ≡ an(f1) (mod λ)

for all integers n ≤ ν(pN).

By [Stu87], we have g ≡ f1 (mod λ), so aq(g) ≡ aq(f) (mod λ) for all
primes q 6= p. Thus by the Brauer-Nesbitt theorem [CR62, page. 215], the
2-dimensional GQ-representations ϕ(Af [λf ]) and Ag[λg] are isomorphic.

BecauseAg[λg] is irreducible as a Galois module, the annihilator m of Ag[λg]
in the Hecke algebra T(pN) is a maximal ideal. Thus m gives rise to an irre-
ducible Galois representation ρm : GQ → GL2(T(pN)/m) isomorphic to Ag[λg].
Finally, we apply [Wil95, Thm. 2.1(i)] for H = (Z/NZ)× (i.e., JH = J0(N)) to
conclude that J0(N)(Q)[m] ∼= (T(pN)/m)2, i.e., the representation ρm occurs
with multiplicity one in J0(pN). Thus

Ag[λg] = ϕ(Af [λf ]).
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Lemma 5.2.2. Suppose ϕ : A → B and ψ : B → C are homomorphisms of
abelian varieties over a number field K, with ϕ an isogeny and ψ injective.
Suppose n is an integer that is relatively prime to the degree of ϕ. If G =
VisC(X(B/Q))[n∞], then there is some injective homomorphism

f : G →֒ Ker {(ψ ◦ ϕ)∗ : X(A/Q) −→X(C/Q)} ,

such that ϕ∗(f(G)) = G.

Proof. Let m be the degree of the isogeny ϕ : A → B. Consider the com-
plementary isogeny ϕ′ : B → A, which satisfies ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = [m]. By
hypothesis m is coprime to n, so gcd(m,#G) = gcd(m,n∞) = 1, hence

ϕ∗(ϕ
′
∗(G)) = [m]G = G.

Thus ϕ′∗(G) maps, via ϕ∗, to G ⊂ X(B/Q), which in turn maps to 0 in
X(C/Q).

Lemma 5.2.3. Let M be an odd integer coprime to N and let R be the subring
of T(N) generated by all Hecke operators Tn with gcd(n,M) = 1. Then R =
T(N).

Proof. See the lemma on page 491 of [Wil95]. (The condition that M is odd is
necessary, as there is a counterexample when N = 23 and M = 2.)

Lemma 5.2.4. Suppose λ is a maximal ideal of T(N) with generators a prime
ℓ ∈ Z and Tn− an, with an ∈ Z. For each integer p ∤ N , and let λp be the ideal
in T(N) generated by ℓ and all Tn − an with with p ∤ n. Then λ = λp.

Proof. Since λp ⊂ λ and λ is maximal, it suffices to prove that λp is maximal.
Let R be the subring of T(N) generated by Hecke operators Tn with p ∤ n.
The quotient R/λp is a quotient of Z since each generator Tn is equivalent to
an integer. Also, ℓ ∈ λp, so R/λp = Fℓ. But by Lemma 5.2.3, R = T(N), so
T(N)/λp = Fℓ, hence λp is a maximal ideal.

Lemma 5.2.5. Suppose that A is an abelian variety over a field K. Let R be a
commutative subring of End(A) and I an ideal of R. Then

(A/A[I])[I] ∼= A[I2]/A[I],

where the isomorphism is an isomorphism of R[GK ]-modules.

Proof. Let a + A[I] for some a ∈ A be an I-torsion element of A/A[I]. Then
by definition, xa ∈ A[I] for each x ∈ I. Therefore, a ∈ A[I2]. Thus a+A[I] 7→
a+A[I] determines a well-defined homomorphism of R[GK ]-modules

ϕ : (A/A[I])[I]→ A[I2]/A[I].

Clearly this homomorphism is injective. It is also surjective as every element
a + A[I] ∈ A[I2]/A[I] is I-torsion as an element of A/A[I], as Ia ∈ A[I].
Therefore, ϕ is an isomorphism of R[GK ]-modules.
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Lemma 5.2.6. Suppose ℓ is a prime and φ : E → E′ is an isogeny of degree
coprime to ℓ over a number field K between two elliptic curve over K. If v is
any place of K then ℓ | cE,v if and only if ℓ | cE′,v.

Proof. Consider the complementary isogeny φ′ : E′ → E. Both φ and φ′ induce
homomorphisms φ : ΦE,v(kv) → ΦE′,v(kv) and φ′ : ΦE′,v(kv) → ΦE,v(kv) and
φ ◦ φ′ and φ′ ◦ φ are multiplication-by-n maps. Since (n, ℓ) = 1 then #kerφ
and #kerφ′ must be coprime to ℓ which implies the statement.

5.3 Proof of Theorem 5.1.3

Proof of Theorem 5.1.3. By [BCDT01] E is modular, so there is a rational
newform f ∈ Snew

2 (pN) which is an eigenform for the Hecke operators and an
isogeny E → Ef defined over Q, which by Hypothesis 4 can be chosen to have
degree coprime to ℓ. Indeed, every cyclic rational isogeny is a composition of
rational isogenies of prime degree, and E admits no rational ℓ-isogeny since
ρE,ℓ is irreducible.

By Hypothesis 1 the Tamagawa numbers of E are coprime to ℓ. Since E
and Ef are related by an isogeny of degree coprime to ℓ, the Tamagawa numbers
of Ef are also not divisible by ℓ by Lemma 5.2.6. Moreover, note that

E(Q)⊗ Fℓ ∼= Ef (Q)⊗ Fℓ.

Let m be the ideal of T(pN) generated by ℓ and Tn − an(E) for all integers
n coprime to p. Note that m is maximal by Lemma 5.2.4.

Let ϕ be as in (3), and let A = ϕ(Af ). Note that if Tn ∈ T(pN) then
Tn(Ef ) ⊂ Ef since Ef is attached to a newform, and if, moreover p ∤ n, then
Tn(A) ⊂ A since the Hecke operators with index coprime to p commute with
the degeneracy maps. Lemma 5.2.1 implies that

Ef [ℓ] = Ef [m] = ϕ(Af [λ]) ⊂ A,

so Ψ = Ef [ℓ] is a subgroup of A as a GQ-module. Let

C = (A× Ef )/Ψ,

where we embed Ψ in A × Ef anti-diagonally, i.e., by the map x 7→ (x,−x).
The antidiagonal map Ψ→ A×Ef commutes with the Hecke operators Tn for
p ∤ n, so (A × Ef )/Ψ is preserved by the Tn with p ∤ n. Let R be the subring
of End(C) generated by the action of all Hecke operators Tn, with p ∤ n. Also
note that Tp ∈ End(J0(pN)) acts by Hypothesis 3 as −1 on Ef , but Tp need
not preserve A.

Suppose for the moment that we have verified that the hypothesis of Theo-
rem 4.1.1 are satisfied with A, B = Ef , C, Q = C/B, R as above and K = Q.
Then we obtain an injective homomorphism

E(Q)/ℓE(Q) ∼= Ef (Q)/ℓEf(Q) →֒ Ker(X(A/Q)→X(C/Q))[m].
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We then apply Lemma 5.2.2 with n = ℓ, Af , A, and C, respectively, to see
that

Ef (Q)/ℓEf(Q) ⊂ Ker(X(Af/Q)→X(C/Q))[λ].

That Ef (Q)/ℓEf(Q) lands in the λ-torsion is because the subgroup of
VisC(X(Ef/Q)) that we constructed is m-torsion.

Finally, consider A × Ef → J0(pN) given by (x, y) 7→ x + y. Note that Ψ
maps to 0, since (x,−x) 7→ 0 and the elements of Ψ are of the form (x,−x).
We have a (not-exact!) sequence of maps

X(Af/Q)→X(C/Q)→X(J0(pN)/Q),

hence inclusions

Ef (Q)/ℓEf (Q) ⊆ Ker(X(Af/Q)→X(C/Q))

⊆ Ker(X(Af/Q)→X(J0(pN)/Q)),

which gives the conclusion of the theorem.
It remains to verify the hypotheses of Theorem 4.1.1. That C = A + B

is clear from the definition of C. Also, A ∩ Ef = Ef [ℓ], which is finite. We
explained above when defining R that each of A and Ef is preserved by R.
Since K = Q and ℓ is odd the condition 1 = e < ℓ− 1 is satisfied. That A(Q)
is finite follows from our hypothesis that L(Af , 1) 6= 0 (by [KL89]).

It remains is to verify that the groups

Q(Q)[m], Ef (Q)[m], ΦA,q(Fq)[m], and ΦEf ,q(Fq)[ℓ],

are 0 for all primes q | pN . Since ℓ ∈ m, we have by Hypothesis 4 that

Ef (Q)[m] = Ef (Q)[ℓ] = 0.

We will now verify that Q(Q)[m] = 0. From the definition of C and Ψ we
have Q ∼= A/Ψ. Let λp be as in Lemma 5.2.4 with an = an(E). The map ϕ
induces an isogeny of 2-power degree

Af/(Af [λ])→ A/Ψ.

Thus there is λp-torsion in (Af/(Af [λ]))(Q) if and only if there is m-torsion in
(A/Ψ)(Q). (Note that λp and m are both ideals generated by ℓ and Tn−an for
all n coprime to p, but for λp the Tn ∈ T(N), and for m they are in T(pN).)
Thus it suffices to prove that (Af/Af [λ])(Q)[λp] = 0.

By Lemma 5.2.4, we have λp = λ, and by Lemma 5.2.5,

(Af/Af [λ])[λ] ∼= Af [λ
2]/Af [λ].

By [Maz77, §II.14], the quotient Af [λ
2]/Af [λ] injects into a direct sum of

copies of Af [λ] as Galois modules. But Af [λ] ∼= E[ℓ] is irreducible, so
(Af [λ

2]/Af [λ])(Q) = 0, as required.
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By Hypothesis 2, we have ΦAf ,q(Fq)[λ] = 0 for each prime divisor q | N .
Since A is 2-power isogenous to Af and ℓ is odd, this verifies the Tamagawa
number hypothesis for A. Our hypothesis that ap(E) = −1 implies that Frobp
on ΦEf ,p(Fp) acts as −1. Thus ΦEf ,p(Fp)[ℓ] = 0 since ℓ is odd. This completes
the proof.

Remark 5.3.1. An essential ingrediant in the proof of the above theorem is the
multiplicity one result used in the paper of Wiles (see [Wil95, Thm. 2.1.]). Since
this result holds for Jacobians JH of the curves XH(N) that are intermediate
covers for the covering X1(N) → X0(N) corresponding to subgroups H ⊆
(Z/NZ)× (i.e., the Galois group of X1(N) → XH is H), one should be able
to give a generalization of Theorem 5.1.3 which holds for newform subvarieties
of JH . This would likely require generalizing some of [Rib90b] to the case of
arbitrary H .

5.4 A Variant of Theorem 5.1.3 with Simpler Hypothesis

Proposition 5.4.1. Suppose A = Af ⊂ J0(N) is a newform abelian variety
and q is a prime that exactly divides N . Suppose m ⊂ T(N) is a non-Eisenstein
maximal ideal of residue characteristic ℓ and that ℓ ∤ mA, where mA is the
modular degree of A. Then ΦA,q(Fq)[m] = 0.

Proof. The component group of ΦJ0(N),q(Fq) is Eisenstein by [Rib87], so

ΦJ0(N),q(Fq)[m] = 0.

By Lemma 4.2.2, the image of ΦJ0(N),q(Fq) in ΦA∨,q(Fq) has no m torsion.

By the main theorem of [CS01], the cokernel ΦJ0(N),q(Fq) in ΦA∨,q(Fq) has
order that divides mA. Since ℓ ∤ mA, it follows that the cokernel also has
no m torsion. Thus Lemma 4.2.2 implies that ΦA∨,q(Fq)[m] = 0. Finally, the
modular polarization A → A∨ has degree coprime to ℓ, so the induced map
ΦA,q(Fq) → ΦA∨,q(Fq) is an isomorphism on ℓ primary parts. In particular,
that ΦA∨,q(Fq)[m] = 0 implies that ΦA,q(Fq)[m] = 0.

If E is a semistable elliptic curve over Q with discriminant ∆, then we see
using Tate curves that cp = ordp(∆).

Theorem 5.4.2. Suppose A = Af ⊂ J0(N) is a newform abelian variety with
L(A/Q, 1) 6= 0 and N square free, and let ℓ be a prime. Suppose that p ∤ N is
a prime, and that there is an elliptic curve E of conductor pN such that:

1. [Rank] The rank of E(Q) is positive.

2. [Divisibility] We have ℓ | cE,p but ℓ ∤ 2 ·N · p · cE,p ·
∏

q|N
cE,q.

3. [Irreducibility] The mod ℓ representation ρE,ℓ is irreducible.
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4. [Noncongruence] The representation ρE,ℓ is not isomorphic to any repre-
sentation ρg,λ where g ∈ S2(Γ0(N)) is a newform of level dividing N that
is not conjugate to f .

Then there is an element of order ℓ in X(Af/Q) that is not visible in J0(N)
but is strongly visible in J0(pN). More precisely, there is an inclusion

E(Q)/ℓE(Q) →֒ Ker(X(Af/Q)→X(C/Q))[λ] ⊂ VispN (X(Af/Q))[λ],

where C ⊂ J0(pN) is isogenous to Af × E, the homomorphism Af → C has
degree a power of 2, and λ is the maximal ideal of T(N) corresponding to ρE,ℓ.

Proof. The divisibility assumptions of Hypothesis 2 on the cE,q imply that the
Serre level of ρE,ℓ is N and since ℓ ∤ N , the Serre weight is 2 (see [RS01,
Thm. 2.10]). We have cE,p 6= cE,p since one is divisible by ℓ and the other is
not, so E has nonsplit multiplicative reduction, hence ap(E) = −1. Since ℓ is
odd, Ribet’s level lowering theorem [Rib91] implies that there is some newform
h =

∑
bnq

n ∈ S2(Γ0(N)) and a maximal ideal λ over ℓ such that aq(E) ≡ bq
(mod λ) for all primes q 6= p. By our non-congruence hypothesis, the only
possibility is that h is a GQ-conjugate of f . Since we can replace f by any
Galois conjugate of f without changing Af , we may assume that f = h. Also
ap(f) ≡ −(p+ 1) (mod λ), as explained in [Rib83, pg. 506].

Hypothesis 3 implies that λ is not Eisenstein, and by assumption ℓ ∤ mA,
so Proposition 5.4.1 implies that ΦA,q(Fq)[λ] = 0 for each q | N .

The theorem now follows from Theorem 5.1.3.

Remark 5.4.3. The non-congruence hypothesis of Theorem 5.4.2 can be verified
using modular symbols as follows. Let W ⊂ H1(X0(N),Z)new be the saturated
submodule of H1(X0(N),Z) that corresponds to all newforms in S2(Γ0(N))
that are not Galois conjugate to f . Let W = W ⊗ Fℓ. We require that the
intersection of the kernels of Tq|W − aq(E), for q 6= p, has dimension 0.

6 Computational Examples

In this section we give examples that illustrate how to use Theorem 5.4.2 to
prove existence of elements of the Shafarevich–Tate group of a newform sub-
variety of J0(N) (for 767 and 959) which are invisible at the base level, but
become visible in a modular Jacobian of higher level.

Hypothesis 6.0.4. The statements in this section all make the hypothesis that
certain commands of various computer algebra systems such as Magma [BCP97]
produced correct output.

The main point of the examples below is to clearly illustrate how the theo-
retical quantities elsewhere in this paper behave in practice.
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6.1 Level 767

Consider the modular Jacobian J0(767). Using the modular symbols package in
Magma, one decomposes J0(767) (up to isogeny) into a product of six optimal
quotients of dimensions 2, 3, 4, 10, 17 and 23. The duals of these quotients
are subvarieties A2, A3, A4, A10, A17 and A23 defined over Q, where Ad has
dimension d. Consider the subvariety A23.

We first show that the Birch and Swinnerton-Dyer conjectural formula pre-
dicts that the orders of the groups X(A23/Q) and X(A∨23/Q) are both divisible
by 9.

Proposition 6.1.1. Assume [AS05, Conj. 2.2]. Then

32 | #X(A23/Q) and 32 | #X(A∨23/Q).

Proof. Let A = A∨23. We use [AS05, §3.5 and §3.6] (see also [Ka81]) to com-
pute a multiple of the order of the torsion subgroup A(Q)tor. This multiple is
obtained by injecting the torsion subgroup into the group of Fp-rational points
on the reduction of A for odd primes p of good reduction and then computing
the order of that group. Hence, the multiple is an isogeny invariant, so one gets
the same multiple for A∨(Q)tor. For producing a divisor of #A(Q)tor, we use
the injection of the subgroup of rational cuspidal divisor classes of degree 0 into
A(Q)tor. Using the implementation in Magma we obtain 120 | #A(Q)tor | 240.
To compute a divisor of A∨(Q)tor, we use the algorithm described in [AS05,
§3.3] to find that the modular degree mA = 234, which is not divisible by any
odd primes, hence 15 | #A∨(Q)tor | 240.

Next, we use [AS05, §4] to compute the ratio of the special value of
the L-function of A/Q at 1 over the real Néron period ΩA. We obtain
L(A/Q, 1)

ΩA
= cA ·

29 · 3
5

, where cA ∈ Z is the Manin constant. Since cA | 2dim(A)

by [ARS06] then

L(A/Q, 1)

ΩA
=

2n+2 · 3
5

,

for some 0 ≤ n ≤ 23. In particular, the modular abelian variety A/Q has rank
zero over Q.

Next, using the algorithms from [CS01, KS00] we compute the Tamagawa
number cA,13 = 1920 = 23 ·3 ·5. We also find that cA,59 is a power of 2 because
W23 acts as 1 on A, and on the component group Frob = −W23, so the fixed
subgroup ΦA,59(F59) of Frobenius is a 2-group (for more details, see [Rib90a,
Prop.3.7–8]).

Finally, the Birch and Swinnerton-Dyer conjectural formula for abelian va-
rieties of rank zero (see [AS05, Conj. 2.2]) asserts that

L(A/Q, 1)

ΩA
=

#X(A/Q) · cA,13 · cA,59
#A(Q)tor ·#A∨(Q)tor

.
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By substituting what we computed above, we obtain 32 | #X(A/Q). Since
L(A/Q, 1) 6= 0, [KL89] implies that X(A/Q) is finite. By the nondegeneracy
of the Cassels-Tate pairing, #X(A/Q) = #X(A∨/Q). Thus, if the BSD
conjectural formula is true then 32 | #X(A/Q) = #X(A∨/Q).

We next observe that there are no visible elements of odd order for the
embedding A23/Q →֒ J0(767)/Q.

Lemma 6.1.2. Any element of X(A23/Q) which is visible in J0(767) has order
a power of 2.

Proof. Since mA23 = 234, [AS05, Prop. 3.15] implies that any element of
X(A23/Q) that is visible in J0(767) has order a power of 2.

Finally, we use Theorem 5.4.2 to prove the existence of non-trivial elements
of order 3 in X(A23/Q) which are invisible at level 767, but become visible
at higher level. In particular, we prove unconditionally that 3 | #X(A23/Q)
which provides evidence for the Birch and Swinnerton-Dyer conjectural for-
mula.

Proposition 6.1.3. There is an element of order 3 in X(A23Q) which is not
visible in J0(767) but is strongly visible in J0(2 · 767).

Proof. Let A = A23, and note that A has rank 0, since L(A/Q, 1) 6= 0. Using
[Cre] or [Sage] we find that the elliptic curve

E : y2 + xy = x3 − x2 + 5x+ 37

has conductor 2 · 767 and E(Q) = Z⊕ Z. Also

c2 = 2, c13 = 2, c59 = 1, c2 = 6, c13 = 2, c59 = 1.

We apply Theorem 5.4.2 with ℓ = 3 and p = 2. Since E does not admit any
rational 3-isogeny (by [Cre]), Hypothesis 3 is satisfied. The level is square free
and the modular degree of A is a power of 2, so Hypothesis 2 is satisfied.

We have a3(E) = −3. Using Magma we find

det(T3|W − (−3)) ≡ 1 (mod 3),

where W is as in Remark 5.4.3. This verifies the noncongruence hypothesis
and completes the proof.

6.2 Level 959

We do similar computations for a 24-dimensional abelian subvariety of J0(959).
We have 959 = 7 · 137, which is square free. There are five newform abelian
subvarieties of the Jacobian, A2, A7, A10, A24 and A26, whose dimensions are
the corresponding subscripts. Let Af = A24 be the 24-dimensional newform
abelian subvariety.
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Proposition 6.2.1. There is an element of order 3 in X(Af/Q) which is not
visible in J0(959) but is strongly visible in J0(2 · 959).

Proof. Using Magma we find that mA = 232 · 583673, which is coprime to 3.
Thus we apply Theorem 5.4.2 with ℓ = 3 and p = 2. Consulting [Cre] we find
the curve E=1918C1, with Weierstrass equation

y2 + xy + y = x3 − 22x− 24,

with E(Q) ∼= Z⊕ Z⊕ (Z/2Z), and

c2 = 2, c7 = 2, c137 = 1, c2 = 6, c7 = 2, c137 = 1.

Using [Cre] we find that E has no rational 3-isogeny. The modular form at-
tached to E is

g = q − q2 − 2q3 + q4 − 2q5 + · · · ,
and we have

det(T2|W − (−2)) = 2177734400≡ 2 (mod 3),

where W is as in Remark 5.4.3.

7 Conjecture, evidence and more computational data

We state a conjecture, provide some evidence and finally, provide a table that
we computed using similar techniques to those in Section 6

7.1 The conjecture

The two examples computed in Section 6 show that for an abelian subvariety
A of J0(N) an invisible element of X(A/Q) at the base level N might become
visible at a multiple level NM . We state a general conjecture according to
which any element of X(A/Q) should have such a property.

Conjecture 7.1.1. Let h = 0 or 1. Suppose A is a Jh-modular abelian vari-
ety and c ∈ X(A/Q). Then there is a Jh-modular abelian variety C and an
inclusion ι : A→ C such that ι∗c = 0.

Remark 7.1.2. For any prime ℓ, the Jacobian Jh(N) comes equipped with two
morphisms α∗, β∗ : Jh(N) → Jh(Nℓ) induced by the two degeneracy maps
α, β : Xh(ℓN) → Xh(N) between the modular curves of levels ℓN and N ,
and it is natural to consider visibility of X(A/Q) in Jh(Nℓ) via morphisms ι
constructed from these degeneracy maps.

Remark 7.1.3. It would be interesting to understand the set of all levels N of
Jh-modular abelian varieties C that satisfy the conclusion of the conjecture.
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7.2 Theoretical Evidence for the Conjecture

The first piece of theoretical evidence for Conjecture 7.1.1 is Remark 3.0.2,
according to which any cohomology class c ∈ H1(K,A) is visible in some abelian
variety C/K .

The next proposition gives evidence for elements of X(E/Q) for an elliptic
curve E and elements of order 2 or 3.

Proposition 7.2.1. Suppose E is an elliptic curve over Q. Then Conjec-
ture 7.1.1 for h = 0 is true for all elements of order 2 and 3 in X(E/Q).

Proof. We first show that there is an abelian variety C of dimension 2 and an
injective homomorphism i : E →֒ C such that c ∈ VisC(X(E/Q)). If c has
order 2, this follows from [AS02, Prop. 2.4] or [Kle01], and if c has order 3, this
follows from [Maz99, Cor. pg. 224]. The quotient C/E is an elliptic curve, so
C is isogenous to a product of two elliptic curves. Thus by [BCDT01], C is a
quotient of J0(N), for some N .

We also prove that Conjecture 7.1.1 is true with h = 1 for all elements of
X(A/Q) which split over abelian extensions.

Proposition 7.2.2. Suppose A/Q is a J1-modular abelian variety over Q and
c ∈ X(A/Q) splits over an abelian extension of Q. Then Conjecture 7.1.1 is
true for c with h = 1.

Proof. Suppose K is an abelian extension such that resK(c) = 0 and let C =
ResK/Q(AK). Then c is visible in C (see Section 3.0.2). It remains to verify
that C is modular. As discussed in [Mil72, pg. 178], for any abelian variety B
over K, we have an isomorphism of Tate modules

Tateℓ(ResK/Q(BK)) ∼= Ind
GQ

GK
Tateℓ(BK),

and by Faltings’s isogeny theorem [Fal86], the Tate module determines an
abelian variety up to isogeny. Thus if B = Af is an abelian variety attached
to a newform, then ResK/Q(BK) is isogenous to a product of abelian varieties
Afχ , where χ runs through Dirichlet characters attached to the abelian exten-
sion K/Q. Since A is isogenous to a product of abelian varieties of the form
Af (for various f), it follows that the restriction of scalars C is modular.

Remark 7.2.3. Suppose that E is an elliptic curve and c ∈X(E/Q). Is there
an abelian extension K/Q such that resK(c) = 0? The answer is “yes” if
and only if there is a K-rational point (with K-abelian) on the locally trivial
principal homogeneous space corresponding to c (this homogeneous space is
a genus one curve). Recently, M. Ciperiani and A. Wiles proved that any
genus one curve over Q which has local points everywhere and whose Jacobian
is a semistable elliptic curve admits a point over a solvable extension of Q
(see [CW06]). Unfortunately, this paper does not answer our question about
the existence of abelian points.
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Remark 7.2.4. As explained in [Ste04], if K/Q is an abelian extension of prime
degree then there is an exact sequence

0→ A→ ResK/Q(EK)
Tr−→ E → 0,

where A is an abelian variety with L(A/Q, s) =
∏
L(fi, s) (here, the fi’s are the

GQ-conjugates of the twist of the newform fE attached to E by the Dirichlet
character associated to K/Q). Thus one could investigate the question in the
previous remark by investigating whether or not L(fE, χ, 1) = 0 which one
could do using modular symbols (see [CFK06]). The authors expect that L-
functions of twists of degree larger than three are very unlikely to vanish at
s = 1 (see [CFK06]), which suggests that in general, the question might have
a negative answer for cohomology classes of order larger than 3.

7.3 Visibility of Kolyvagin cohomology classes

It would also be interesting to study visibility at higher level of Kolyvagin
cohomology classes. The following is a first “test question” in this direction.

Question 7.3.1. Suppose E ⊂ J0(N) is an elliptic curve with conductor N ,
and fix a prime ℓ such that ρE,ℓ is surjective. Fix a quadratic imaginary field
K that satisfies the Heegner hypothesis for E. For any prime p satisfying
the conditions of [Rub89, Prop. 5], let cp ∈ H1(Q, E)[ℓ] be the corresponding
Kolyvagin cohomology class. There are two natural homomorphisms δ∗1 , δ

∗
p :

E → J0(Np). When is

(δ∗1 ± δ∗ℓ )∗(cℓ) = 0 ∈ H1(Q, J0(Np))?

When is
resv((δ

∗
1 ± δ∗ℓ )∗(cℓ)) = 0 ∈ H1(Qv, J0(Np))?

7.4 Table of Strong Visibility at Higher Level

The following is a table that gives the known examples of Af /Q with square

free conductor N ≤ 1339, such that the Birch and Swinnerton-Dyer conjectural
formula predicts an odd prime divisor ℓ of X(Af/Q), but ℓ does not divide the
modular degree of Af . These were taken from [AS05]. If there is an entry in the
fourth column, this means we have verified the hypothesis of Theorem 5.4.2,
hence there really is a nonzero element in X(Af/Q) that is not visible in
J0(N), but is strongly visible in J0(pN). The notation in the fourth column
is (p,E, q), where p is the prime used in Theorem 5.4.2, E is an elliptic curve,
denoted using a Cremona label, and q 6= p is a prime such that

⋂

q′≤q
Ker(T ′q|W − aq′(E)) = 0.
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Af dim ℓ | X(Af )? moddeg (p,E, q)’s

551H 18 3 2? · 132 (2, 1102A1, -)

767E 23 3 234 (2, 1534B1, 3)

959D 24 3 232 · 583673 (2, 1918C1, 5), (7, 5369A1,2)

1337E 33 3 259 · 71 (2, 2674A1, 5)

1339G 30 3 248 · 5776049 (2, 2678B1, 3), (11, 14729A1,2)
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