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1 Modular varieties of orthogonal type

Let L be an integral indefinite lattice of signature (2, n) and ( , ) the associated
bilinear form. By DL we denote a connected component of the homogeneous
type IV complex domain of dimension n

DL = {[w] ∈ P(L ⊗ C) | (w, w) = 0, (w, w) > 0}+.

O+(L) is the index 2 subgroup of the integral orthogonal group O(L) that
leaves DL invariant. Any subgroup Γ of O+(L) of finite index determines a
modular variety

FL(Γ) = Γ \ DL.

By [BB] this is a quasi-projective variety.
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For some special lattices L and subgroups Γ < O+(L) one obtains in this
way the moduli spaces of polarised abelian or Kummer surfaces (n = 3, see
[GH]), the moduli space of Enriques surfaces (n = 10, see [BHPV]), and the
moduli spaces of polarised or lattice-polarised K3 surfaces (0 < n ≤ 19, see
[Nik1, Dol]). Other interesting modular varieties of orthogonal type include
the period domains of irreducible symplectic manifolds: see [GHS3].
It is natural to ask about the birational type of FL(Γ). For many classical
moduli spaces of orthogonal type there are results about the Kodaira dimension,
but nothing is known in the case of dimension greater than 19. In this paper we
obtain the first results in this direction. We determine the Kodaira dimension
of many quasi-projective varieties associated with two series of even lattices.
To explain what these varieties are, we first introduce the stable orthogonal
group Õ(L) of a nondegenerate even lattice L. This is defined (see [Nik2] for
more details) to be the subgroup of O(L) which acts trivially on the discrim-
inant group AL = L∨/L, where L∨ is the dual lattice. If Γ < O(L) then we

write Γ̃ = Γ ∩ Õ(L). Note that if L is unimodular then Õ(L) = O(L).
The first series of varieties we want to study, which we call the modular varieties
of unimodular type, is

F (m)
II = O+(II2,8m+2)\DII2,8m+2 . (1)

F (m)
II is of dimension 8m + 2 and arises from the even unimodular lattice of

signature (2, 8m + 2)

II2,8m+2 = 2U ⊕ mE8(−1),

where U denotes the hyperbolic plane and E8(−1) is the negative definite

lattice associated to the root system E8. The variety F (2)
II is the moduli space

of elliptically fibred K3 surfaces with a section (see e.g. [CM, Section 2]). The
case m = 3 is of particular interest: it arises in the context of the fake Monster
Lie algebra [B1].
The second series, which we call the modular varieties of K3 type, is

F (m)
2d = Õ

+
(L

(m)
2d )\D

L
(m)
2d

. (2)

F (m)
2d is of dimension 8m + 3 and arises from the lattice

L
(m)
2d = 2U ⊕ mE8(−1) ⊕ 〈−2d〉,

where 〈−2d〉 denotes a lattice generated by a vector of square −2d.

The first three members of the series F (m)
2d have interpretations as moduli

spaces. F (2)
2d is the moduli space of polarised K3 surfaces of degree 2d. For

m = 1 the 11-dimensional variety F (1)
2d is the moduli space of lattice-polarised

K3 surfaces, where the polarisation is defined by the hyperbolic lattice 〈2d〉 ⊕
E8(−1) (see [Nik1, Dol]). For m = 0 and d prime the 3-fold F (0)

2d is the moduli
space of polarised Kummer surfaces (see [GH]).
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Theorem 1.1 The modular varieties of unimodular and K3 type are varieties
of general type if m and d are sufficiently large. More precisely:

(i) If m ≥ 5 then the modular varieties F (m)
II and F (m)

2d (for any d ≥ 1) are
of general type.

(ii) For m = 4 the varieties F (4)
2d are of general type if d ≥ 3 and d 6= 4.

(iii) For m = 3 the varieties F (3)
2d are of general type if d ≥ 1346.

(iv) For m = 1 the varieties F (1)
2d are of general type if d ≥ 1537488.

Remark. The methods of this paper are also applicable if m = 2. Using them,

one can show that the moduli space F (2)
2d of polarised K3 surfaces of degree 2d

is of general type if d ≥ 231000. This case was studied in [GHS2], where, using
a different method involving special pull-backs of the Borcherds automorphic

form Φ12 on the domain DII2,26 , we proved that F (2)
2d is of general type if d > 61

or d = 46, 50, 54, 57, 58, 60.
The methods of [GHS2] do not appear to be applicable in the other cases
studied here. Instead, the proof of Theorem 1.1 depends on the existence of a
good toroidal compactification of FL(Γ), which was proved in [GHS2], and on
the exact formula for the Hirzebruch-Mumford volume of the orthogonal group
found in [GHS1].
We shall construct pluricanonical forms on a suitable compactification of the
modular variety FL(Γ) by means of modular forms. Let Γ < O+(L) be a
subgroup of finite index, which naturally acts on the affine cone D•

L over DL.
In what follows we assume that dimDL ≥ 3.

Definition 1.2 A modular form of weight k and character χ : Γ → C∗ with
respect to the group Γ is a holomorphic function

F : D•
L → C

which has the two properties

F (tz) = t−kF (z) ∀ t ∈ C∗,
F (g(z)) = χ(g)F (z) ∀ g ∈ Γ.

The space of modular forms is denoted by Mk(Γ, χ). The space of cusp forms,
i.e. modular forms vanishing on the boundary of the Baily–Borel compactifi-
cation of Γ\DL, is denoted by Sk(Γ, χ). We can reformulate the definition of
modular forms in geometric terms. Let F ∈ Mkn(Γ, detk) be a modular form,
where n is the dimension of DL. Then

F (dZ)k ∈ H0(FL(Γ)◦, Ω⊗k),

where dZ is a holomorphic volume form on DL, Ω is the sheaf of germs of
canonical n-forms on FL(Γ) and FL(Γ)◦ is the open smooth part of FL(Γ)
such that the projection π : DL → Γ\DL is unramified over FL(Γ)◦.
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The main question in the proof of Theorem 1.1 is how to extend the form
F (dZ)k to FL(Γ) and to a suitable toroidal compactification FL(Γ)tor. There
are three possible kinds of obstruction to this, which we call (as in [GHS2])
elliptic, reflective and cusp obstructions. Elliptic obstructions arise if FL(Γ)tor

has non-canonical singularities arising from fixed loci of the action of the group
Γ. Reflective obstructions arise because the projection π is branched along
divisors whose general point is smooth in FL(Γ). Cusp obstructions arise when
we extend the form from FL(Γ) to FL(Γ)tor.
The problem of elliptic obstructions was solved for n ≥ 9 in [GHS2].

Theorem 1.3 ([GHS2, Theorem 2.1]) Let L be a lattice of signature (2, n)
with n ≥ 9, and let Γ < O+(L) be a subgroup of finite index. Then there exists
a toroidal compactification FL(Γ)tor of FL(Γ) = Γ\DL such that FL(Γ)tor has
canonical singularities and there are no branch divisors in the boundary. The
branch divisors in FL(Γ) arise from the fixed divisors of reflections.

Reflective obstructions, that is branch divisors, are a special problem related
to the orthogonal group. They do not appear in the case of moduli spaces
of polarised abelian varieties of dimension greater than 2, where the modular
group is the symplectic group. There are no quasi-reflections in the symplectic
group even for g = 3.
The branch divisor is defined by special reflective vectors in the lattice L. This
description is given in §2. To estimate the reflective obstructions we use the
Hirzebruch-Mumford proportionality principle and the exact formula for the
Hirzebruch-Mumford volume of the orthogonal group found in [GHS1]. We do
the numerical estimation in §4.
We treat the cusp obstructions in §3, using special cusp forms of low weight
(the lifting of Jacobi forms) constructed in [G2] and the low-weight cusp form
trick (see [G2] and [GHS2]).

2 The branch divisors

To estimate the obstruction to extending pluricanonical forms to a smooth

projective model of FL(Õ
+
(L)) we have to determine the branch divisors of

the projection

π : DL → FL(Õ
+
(L)) = Õ

+
(L) \ DL. (3)

According to [GHS2, Corollary 2.13] these divisors are defined by reflections
σr ∈ O+(L), where

σr(l) = l − 2(l, r)

(r, r)
r,

coming from vectors r ∈ L with r2 < 0 that are stably reflective: by this we

mean that r is primitive and σr or −σr is in Õ
+
(L). By a (k)-vector for k ∈ Z

we mean a primitive vector r with r2 = k.
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Let D be the exponent of the finite abelian group AL and let the divisor
div(r) of r ∈ L be the positive generator of the ideal (l, L). We note that
r∗ = r/ div(r) is a primitive vector in L∨. In [GHS2, Propositions 3.1–3.2] we
proved the following.

Lemma 2.1 Let L be an even integral lattice of signature (2, n). If σr ∈ Õ
+
(L)

then r2 = −2. If −σr ∈ Õ
+

(L), then r2 = −2D and div(r) = D ≡ 1 mod 2 or
r2 = −D and div(r) = D or D/2.

We need also the following well-known property of the stable orthogonal group.

Lemma 2.2 For any sublattice M of an even lattice L the group Õ(M) can be

considered as a subgroup of Õ(L).

Proof. Let M⊥ be the orthogonal complement of M in L. We have as usual

M ⊕ M⊥ ⊂ L ⊂ L∨ ⊂ M∨ ⊕ (M⊥)∨.

We can extend g ∈ Õ(M) to M ⊕ M⊥ by putting g|M⊥ ≡ id. It is clear that

g ∈ Õ(M ⊕ M⊥). For any l∨ ∈ L∨ we have g(l∨) ∈ l∨ + (M ⊕ M⊥). In

particular, g(l) ∈ L for any l ∈ L and g ∈ Õ(L). 2

We can describe the components of the branch locus in terms of homogeneous
domains. For r a stably reflective vector in L we put

Hr = {[w] ∈ P(L ⊗ C) | (w, r) = 0},

and let N be the union of all hyperplane sections Hr ∩ DL over all stably
reflective vectors r.

Proposition 2.3 Let r ∈ L be a stably reflective vector: suppose that r and
L do not satisfy D = 4, r2 = −4, div(r) = 2. Let Kr be the orthogonal
complement of r in L. Then the associated component π(Hr ∩ DL) of the

branch locus N is of the form Õ
+
(Kr)\DKr

.

Proof. We have Hr ∩ DL = P(Kr) ∩DL = DKr
. Let

ΓKr
= {ϕ ∈ Õ

+
(L) | ϕ(Kr) = Kr}. (4)

ΓKr
maps to a subgroup of O+(Kr). The inclusion of Õ(Kr) in Õ(L)

(Lemma 2.2) preserves the spinor norm (see [GHS1, §3.1]), because Kr has

signature (2, n − 1) and so Õ
+
(Kr) becomes a subgroup of Õ

+
(L).

Therefore the image of ΓKr
contains Õ

+
(Kr) for any r. Now we prove that

this image coincides with Õ
+
(Kr) for all r, except perhaps if D = 4, r2 = −4

and div(r) = 2.
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Let us consider the inclusions

〈r〉 ⊕ Kr ⊂ L ⊂ L∨ ⊂ 〈r〉∨ ⊕ K∨
r .

By standard arguments (see [GHS2, Proposition 3.6]) we see that

| detKr| =
| detL| · |r2|

div(r)2
and [L : 〈r〉 ⊕ Kr] =

|r2|
div(r)

= 1 or 2.

If the index is 1, then it is clear that the image of ΓKr
is Õ

+
(Kr). Let us

assume that the index is equal to 2. In this case the lattice 〈r〉∨ is generated
by r∨ = −r/(r, r) = r∗/2, where r∗ = r/ div(r) is a primitive vector in L∨. In
particular r∨ represents a non-trivial class in 〈r〉∨ ⊕ K∨

r modulo L∨. Let us
take k∨ ∈ K∨

r such that k∨ 6∈ L∨. Then k∨ + r∨ ∈ L∨ and

ϕ(k∨) − k∨ ≡ r∨ − ϕ(r∨) mod L.

We note that if ϕ ∈ ΓKr
then ϕ(r) = ±r. Hence

ϕ(k∨) − k∨ ≡
{

0 mod L if ϕ(r) = r

r∗ mod L if ϕ(r) = −r

Since ϕ(r∗) ≡ r∗ mod L, we cannot have ϕ(r) = −r unless div(r) = 1 or 2.
Therefore we have proved that ϕ(k∨) ≡ k∨ mod Kr (Kr = K∨

r ∩ L), except
possibly if D = 4, r2 = −4, div(r) = 2. 2

The group Õ
+
(L) acts on N . We need to estimate the number of components

of Õ
+
(L) \ N . This will enable us to estimate the reflective obstructions to

extending pluricanonical forms which arise from these branch loci.
For the even unimodular lattice II2,8m+2 any primitive vector r has div(r) = 1.
Consequently r is stably reflective if and only if r2 = −2.

For L
(m)
2d the reflections and the corresponding branch divisors arise in two

different ways, according to Lemma 2.1. We shall classify the orbits of such
vectors.

Proposition 2.4 Suppose d is a positive integer.

(i) Any two (−2)-vectors in the lattice II2,8m+2 are equivalent modulo
O+(II2,8m+2), and the orthogonal complement of a (−2)-vector r is iso-
metric to

K
(m)
II = U ⊕ mE8(−1) ⊕ 〈2〉.

(ii) There is one Õ
+
(L

(m)
2d )-orbit of (−2)-vectors r in L

(m)
2d with div(r) = 1. If

d ≡ 1 mod 4 then there is a second orbit of (−2)-vectors, with div(r) = 2.

The orthogonal complement of a (−2)-vector r in L
(m)
2d is isometric to

K
(m)
2d = U ⊕ mE8(−1) ⊕ 〈2〉 ⊕ 〈−2d〉,
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if div(r) = 1, and to

N
(m)
2d = U ⊕ mE8(−1) ⊕

(
1 2

1−d
2 1

)
,

if div(r) = 2.

(iii) The orthogonal complement of a (−2d)-vector r in L
(m)
2d is isometric to

II2,8m+2 = 2U ⊕ mE8(−1)

if div(r) = 2d, and to

K
(m)
2 = U ⊕mE8(−1)⊕〈2〉⊕〈−2〉 or T2,8m+2 = U ⊕U(2)⊕mE8(−1)

if div(r) = d.

(iv) Suppose d > 1. The number of Õ(L
(m)
2d )-orbits of (−2d)-vectors with

div(r) = 2d is 2ρ(d). The number of Õ(L
(m)
2d )-orbits of (−2d)-vectors with

div(r) = d is





2ρ(d) if d is odd or d ≡ 4 mod 8;

2ρ(d)+1 if d ≡ 0 mod 8;

2ρ(d)−1 if d ≡ 2 mod 4.

Here ρ(d) is the number of prime divisors of d.

Proof. If the lattice L contains two hyperbolic planes then according to the

well-known result of Eichler (see [E, §10]) the Õ
+
(L)-orbit of a primitive vector

l ∈ L is completely defined by two invariants: by its length (l, l) and by its
image l∗ + L in the discriminant group AL, where l∗ = l/ div(l).
i) If u is a primitive vector of an even unimodular lattice II2,8m+2 then div(u) =
1 and there is only one O(II2,8m+2)-orbit of (−2)-vectors. Therefore we can
take r to be a (−2)-vector in U , and the form of the orthogonal complement is
obvious.
ii) In the lattice L

(m)
2d we fix a generator h of its 〈−2d〉-part. Then for any

r ∈ L
(m)
2d we can write r = u + xh, where u ∈ II2,8m+2 and x ∈ Z. It is clear

that div(r) divides r2. If f | div(r), where f = 2, d or 2d, then the vector u
is also divisible by f . Therefore the (−2)-vectors form two possible orbits of
vectors with divisor equal to 1 or 2. If r2 = −2 and div(r) = 2 then u = 2u0

with u0 ∈ 2U ⊕mE8(−1) and we see that in this case d ≡ 1 mod 4. This gives
us two different orbits for such d. In both cases we can find a (−2)-vector r
in the sublattice U ⊕ 〈−2d〉. Elementary calculation gives us the orthogonal
complement of r.
iii) This was proved in [GHS2, Proposition 3.6] for m = 2. For general m the
proof is the same.
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iv) To find the number of orbits of (−2d)-vectors we have to consider two cases.
a) Let div(r) = 2d. Then r = 2du + xh and r∗ ≡ (x/2d)h mod L, where u ∈
II2,8m+2 and x is modulo 2d. Moreover (r, r) = 4d2(u, u)− x22d = −2d. Thus
x2 ≡ 1 mod 4d. This congruence has 2ρ(d) solutions modulo 2d. For any such
x mod 2d we can find a vector u in 2U ⊕mE8(−1) with (u, u) = (x2 − 1)/2d.
Then r = 2du + xh is primitive (because u is not divisible by any divisor of x)
and (r, r) = −2d.
b) Let div(r) = d. Then r = du+xh, where u is primitive, r∗ ≡ (x/d)h mod L
and x is modulo d. We have (r∗, r∗) ≡ −2x2/d mod 2Z and x2 ≡ 1 mod d.
For any solution modulo d we can find as above u ∈ 2U ⊕ mE8(−1) such that
r = du + xh is primitive and (r, r) = −2d. It is easy to see that the number of
solutions {x mod d |x2 ≡ 1 mod d} is as stated. 2

Remark. To calculate the number of the branch divisors arising from vectors
r with r2 = −2d one has to divide the corresponding number of orbits found
in Proposition 2.4(iv) by 2 if d > 2. This is because ±r determine different
orbits but the same branch divisor. For d = 2 the proof shows that there is
one divisor for each orbit given in Proposition 2.4(iv).

3 Modular forms of low weight

In this section we let L = 2U ⊕ L0 be an even lattice of signature (2, n) with
two hyperbolic planes. We choose a primitive isotropic vector c1 in L. This
vector determines a 0-dimensional cusp and a tube realisation of the domain
DL. The tube domain (see the definition of H(L1) below) is a complexification
of the positive cone of the hyperbolic lattice L1 = c⊥1 /c1. If div(c1) = 1 we call
this cusp standard (as above, by [E] there is only one standard cusp). In this
case L1 = U ⊕ L0. In [GHS2, §4] we proved that any 1-dimensional boundary

component of Õ
+
(L) \ DL contains the standard 0-dimensional cusp if every

isotropic (with respect to the discriminant form: see [Nik2, §1.3]) subgroup of
AL is cyclic.
Let us fix a 1-dimensional cusp by choosing two copies of U in L. (One has
to add to c1 a primitive isotropic vector c2 ∈ L1 with div(c2) = 1). Then
L = U ⊕ L1 = U ⊕ (U ⊕ L0) and the construction of the tube domain may be
written down simply in coordinates. We have

H(L1) = Hn = {Z = (zn, . . . , z1) ∈ H1 × Cn−2 × H1; (Im Z, Im Z)L1 > 0},
where Z ∈ L1 ⊗ C and (zn−1, . . . , z2) ∈ L0 ⊗ C. (We represent Z as a column
vector.) An isomorphism between Hn and DL is given by

p : Hn −→ DL (5)

Z = (zn, . . . , z1) 7−→
(
− 1

2
(Z, Z)L1 : zn : · · · : z1 : 1

)
.

The action of O+(L⊗R) on Hn is given by the usual fractional linear transfor-
mations. A calculation shows that the Jacobian of the transformation of Hn
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defined by g ∈ O+(L⊗R) is equal to det(g)j(g, Z)−n, where j(g, Z) is the last
((n+2)-nd) coordinate of g

(
p(Z)

)
∈ DL. Using this we define the automorphic

factor

J : O+(L ⊗ R) ×Hn+2 → C∗

(g, Z) 7→ (det g)−1 · j(g, Z)n.

The connection with pluricanonical forms is the following. Consider the form

dZ = dz1 ∧ · · · ∧ dzn ∈ Ωn(Hn).

F (dZ)k is a Γ-invariant k-fold pluricanonical form on Hn, for Γ a subgroup
of finite index of O+(L), if F

(
g(Z)

)
= J(g, Z)kF (Z) for any g ∈ Γ; in other

words if F ∈ Mnk(Γ, detk) (see Definition 1.2). To prove Theorem 1.1 we need
cusp forms of weight smaller than the dimension of the corresponding modular
variety.

Proposition 3.1 For unimodular type, cusp forms of weight 12 + 4m exist:
that is

dimS12+4m(O+(II2,8m+2)) > 0.

For K3 type we have the bounds

dimS11+4m(Õ
+
(L

(m)
2d )) > 0 if d > 1;

dimS10+4m(Õ
+
(L

(m)
2d )) > 0 if d ≥ 1;

dim S7+4m(Õ
+
(L

(m)
2d )) > 0 if d ≥ 4;

dim S6+4m(Õ
+
(L

(m)
2d )) > 0 if d = 3 or d ≥ 5;

dim S5+4m(Õ
+
(L

(m)
2d )) > 0 if d = 5 or d ≥ 7;

dim S2+4m(Õ
+
(L

(m)
2d )) > 0 if d > 180.

Proof. For any F (Z) ∈ Mk(Õ
+
(L)) we can consider its Fourier-Jacobi expan-

sion at the 1-dimensional cusp fixed above

F (Z) = f0(z1) +
∑

m≥1

fm(z1; z2, . . . zn−1) exp(2πimzn).

A lifting construction of modular forms F (Z) ∈ Mk(Õ
+
(L)) with trivial char-

acter by means of the first Fourier–Jacobi coefficient is given in [G1], [G2].
We note that f1(z1; z2, . . . , zn−1) ∈ Jk,1(L0), where Jk,1(L0) is the space of
the Jacobi forms of weight k and index 1. A more general construction of the
additive lifting was given in [B2] but for our purpose the construction of [G2]
is sufficient.
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The dimension of Jk,1(L0) depends only on the discriminant form and the rank
of L0 (see [G2, Lemma 2.4]). In particular, for the special cases of L = II2,8m+2

and L = L
(m)
2d we have

Jcusp
k+4m,1(mE8(−1)) ∼= Sk(SL2(Z))

and
Jcusp

k+4m,1(mE8(−1) ⊕ 〈−2d〉) ∼= Jcusp
k,d ,

where Jcusp
k,d is the space of the usual Jacobi cusp forms in two variables of

weight k and index d (see [EZ]) and Sk(SL2(Z)) is the space of weight k cusp
forms for SL2(Z).
The lifting of a Jacobi cusp form of index one is a cusp form of the same weight

with respect to O+(II2,8m+2) or Õ
+
(L

(m)
2d ) with trivial character. The fact

that we get a cusp form was proved in [G2] for maximal lattices, i.e., if d is
square-free. In [GHS2, §4] we extended this to all lattices L for which the
isotropic subgroups of the discriminant AL are all cyclic, which is true in all
cases considered here.
To prove the unimodular type case of Proposition 3.1 we can take the Jacobi
form corresponding to the cusp form ∆12(τ). Using the Jacobi lifting construc-
tion we obtain a cusp form of weight 12 + 4m with respect to O+(II2,8m+2).
For the K3 type case we need the dimension formula for the space of Jacobi
cusp forms Jcusp

k,d (see [EZ]). For a positive integer l one sets

{l}12 =





⌊ l
12⌋ if l 6≡ 2 mod 12

⌊ l
12⌋ − 1 if l ≡ 2 mod 12.

Then if k > 2 is even

dimJ cusp
k,d =

d∑

j=0

(
{k + 2j}12 −

⌊
j2

4d

⌋)
,

and if k is odd

dimJ cusp
k,d =

d−1∑

j=1

(
{k − 1 + 2j}12 −

⌊
j2

4d

⌋)
.

This gives the bounds claimed. For k = 2, using the results of [SZ] one can
also calculate dim Jcusp

2,d : there is an extra term, ⌈σ0(d)/2⌉, where σ0(d) denotes

the number of divisors of d. This gives dimJcusp
2,d > 0 if d > 180 and for some

smaller values of d. 2

4 Kodaira dimension results

In this section we prove Theorem 1.1. We first explain the geometric back-
ground. Let FL(Γ)tor be a toroidal compactification as in Theorem 1.3. In
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particular all singularities are canonical and there is no ramification divisor
which is contained in the boundary. Then the canonical divisor (as a Q-divisor)
is given by KFL(Γ)tor = nM − V − D where M is the line bundle of modular
forms of weight 1, n is the dimension of FL(Γ), V is the branch locus (which is
given by reflections) and D is the boundary. Hence in order to construct k-fold
pluricanonical forms we must find modular forms of weight kn which vanish
of order k along the branch divisor and the boundary. This also suffices since
FL(Γ)tor has canonical singularities.

Our strategy is the following. For Γ ⊆ Õ
+

(L) we choose a cusp form Fa ∈ Sa(Γ)
of low weight a, i.e. a strictly less than the dimension. Then we consider ele-
ments F ∈ F k

a Mk(n−a)(Γ, detk): for simplicity we assume that k is even. Such
an F vanishes to order at least k on the boundary of any toroidal compactifi-
cation. Hence if dZ is the volume element on DL defined in §3 it follows that
F (dZ)k extends as a k-fold pluricanonical form to the general point of every
boundary component of FL(Γ)tor. Since we have chosen the toroidal compact-
ification so that all singularities are canonical and that there is no ramification
divisor which is contained in the boundary the only obstructions to extending
F (dZ)k to a smooth projective model are the reflective obstructions, coming
from the ramification divisor of the quotient map π : DL → FL(Γ) studied in
§2.
Let DK be an irreducible component of this ramification divisor. Recall from
Proposition 2.3 that DK = P(K ⊗ C) ∩ DL where K = Kr is the orthogonal
complement of a stably reflective vector r. For the lattices chosen in The-
orem 1.1 all irreducible components of the ramification divisor are given in
Proposition 2.4.

Proposition 4.1 We assume that k is even and that the dimension n ≥ 9.

For Γ ⊆ Õ
+
(L), the obstruction to extending forms F (dZ)k where F ∈

F k
a Mk(n−a)(Γ) to FL(Γ)tor lies in the space

B =
⊕

K

B(K) =
⊕

K

k/2−1⊕

ν=0

Mk(n−a)+2ν(Γ ∩ Õ
+
(K)),

where the direct sum is taken over all irreducible components DK of the rami-
fication divisor of the quotient map π : DL → F(Γ).

Proof. Let σ ∈ Γ be plus or minus a reflection whose fixed point locus is DK .
We can extend the differential form provided that F vanishes of order k along
every irreducible component DK of the ramification divisor.
If Fa vanishes along DK then K gives no restriction on the second factor of the
modular form F .
Now let {w = 0} be a local equation for DK . Then σ∗(w) = −w (this is
independent of whether σ or −σ is the reflection). For every modular form
F ∈ Mk(Γ) of even weight we have F

(
σ(z)

)
= F (z). This implies that if

F (z) ≡ 0 on DK , then F vanishes to even order on DK .
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We denote by M2b(Γ)(−νDK) the space of modular forms of weight 2b which
vanish of order at least ν along DK . Since the weight is even we have
M2b(Γ)(−DK) = M2b(Γ)(−2DK). For F ∈ M2b(Γ)(−2νDK) we consider
(F/w2ν) as a function on DK . From the definition of modular form (Def-
inition 1.2) it follows that this function is holomorphic, Γ ∩ ΓK-invariant
(see equation (4)) and homogeneous of degree 2b + 2ν. Thus (F/w2ν)|DK

∈
M2(b+ν)(Γ∩ ΓK). In Proposition 2.3 we saw that, ΓK contains Õ

+
(K) as sub-

group of Õ
+
(L)(with equality in almost all cases), so we may replace Γ ∩ ΓK

by Γ ∩ Õ
+
(K). In this way we obtain an exact sequence

0 → M2b(Γ)(−(2 + 2ν)DK) → M2b(Γ)(−2νDK) → M2(b+ν)(Γ ∩ Õ
+

(K)),

where the last map is given by F 7→ F/w2ν . This gives the result. 2

Now we proceed with the proof of Theorem 1.1.

Let L be a lattice of signature (2, n) and Γ < Õ
+
(L): recall that k is even.

According to Proposition 4.1 we can find pluricanonical differential forms on
FL(Γ)tor if

CB(Γ) = dim Mk(n−a)(Γ) −
∑

K

dimB(K) > 0, (6)

where summation is taken over all irreducible components of the ramification
divisor (see the remark at the end of §2). It now remains to estimate the
dimension of B(K) for each of the finitely many components of the ramification
locus in the cases we are interested in, namely Γ = O+(II2,8m+2) and Γ =

Õ
+
(L

(m)
2d ).

According to the Hirzebruch-Mumford proportionality principle

dim Mk(Γ) =
2

n!
volHM (Γ)kn + O(kn−1).

The exact formula for the Hirzebruch-Mumford volume volHM for any indef-
inite orthogonal group was obtained in [GHS1]. It depends mainly on the
determinant and on the local densities of the lattice L. Here we simply quote
the estimates of the dimensions of certain spaces of cusp forms.
The case of II2,8m+2 is easier because the branch divisor has only one irre-
ducible component defined by any (−2)-vector r. According to Proposition 2.4

the orthogonal complement Kr is K
(m)
II . This lattice differs from the lattice

L
(m)
2 , whose Hirzebruch-Mumford volume was calculated in [GHS1, §3.5], only

by one copy of the hyperbolic plane. Therefore

volHM Õ
+
(L

(m)
2 ) = (B8m+4/(8m + 4)) volHM Õ

+
(K

(m)
II ),

and hence, for even k,

dimMk(Õ
+
(K

(m)
II )) =

21−4m

(8m + 1)!
· B2 . . . B8m+2

(8m + 2)!!
k8m+1 + O(k8m),
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where the Bi are Bernoulli numbers. Assume that m ≥ 3. Let us take a cusp
form

F ∈ S4m+12(O
+(II2,8m+2))

from Proposition 3.1. In this case the dimension of the obstruction space B of
Proposition 4.1 for the pluricanonical forms of order k = 2k1 is given by

k1−1∑

ν=0

dimM(4m−10)k+2ν(Õ
+
(K

(m)
II )) =

24m+2

(8m + 2)!
· B2 . . . B8m+2

(8m + 2)!!

((
1 +

1

4m − 10

)8m+2 − 1
)
((4m − 10)k1)

8m+2

+O(k8m+1)

In [GHS1, §3.3] we computed the leading term of the dimension of the space
of modular forms for O+(II2,8m+2). Comparing these two we see that the
constant CB(O+(II2,8m+2)) in the obstruction inequality (6) is positive if and
only if

B4m+2

4m + 2
>

(
1 +

1

4m − 10

)8m+2 − 1. (7)

Moreover F (m)
II is of general type if CB(O+(II2,8m+2)) > 0. From Stirling’s

formula
5
√

πn
( n

πe
)2n > |B2n| > 4

√
πn

( n

πe
)2n. (8)

Using this estimate we easily obtain that (7) holds if m ≥ 5. Therefore we have
proved Theorem 1.1 for the lattice II2,8m+2.

Next we consider the lattice L
(m)
2d of K3 type. For this lattice the branch divisor

of F (m)
2d is calculated in Proposition 2.4. It contains one or two (if d ≡ 1 mod 4)

components defined by (−2)-vectors and some number of components defined
by (−2d)-vectors. To estimate the obstruction constant CB(Γ) in (6) we use the
dimension formulae for the space of modular forms with respect to the group

Õ
+
(M), where M is one of the following lattices from Proposition 2.4: L

(m)
2d

(the main group); K
(m)
2d and N

(m)
2d (the (−2)-obstruction); M2,8m+2, K

(m)
2 and

T2,8m+2 (the (−2d)-obstruction). The corresponding dimension formulae were
found in [GHS1] (see §§3.5, 3.6.1–3.6.2, 3.3 and 3.4). The branch divisor of
(−2d)-type appears only if d > 1. We note that

volHM (Õ
+
(T2,8m+2)) > volHM (Õ

+
(K

(m)
2 )). (9)

Therefore in order to estimate CB(Γ) we can assume that all (−2d)-divisors de-
fined by stably reflective (−2d)-vectors r with div(r) = d (see Proposition 2.4)
are of the type T2,8m+2.
We put k = 2k1, w = n − a and n = 8m + 3. For the obstruction constant in
(6) we obtain

CB(Õ
+
(L

(m)
2d )) > dimM2k1w(Õ

+
(L

(m)
2d )) − B(−2) − B(−2d) (10)
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where

B(−2) = dimB(K
(m)
2d ) + dim B(N

(m)
2d ),

B(−2d) = 2ρ(d)−1(dimB(M2,8m+2) + 2hd dimB(T2,8m+2))

and B(K) is the obstruction space from Proposition 4.1. By hd we denote the
sum δ0,d(8) − δ2,d(4), where d(n) is d mod n and δ is the Kronecker delta (see
Proposition 2.4 and the remark following it).
For any lattice considered above

B(K) =

k1−1∑

ν=0

dimM2(k1w+ν)(Õ
+
(K))

=
28m+3

(8m + 3)!
Ew(8m + 3)volHM (Õ

+
(K))(k1w)8m+3 + O(k8m+2

1 )

where Ew(8m + 3) = (1 + 1
w )8m+3.

All terms in (10) contain a common factor. First

dim M2k1w(Õ
+
(L

(m)
2d )) = Ck1,w

m,d

∣∣∣∣
B8m+4

B4m+2

∣∣∣∣
√

d + O(k8m+2
1 ), (11)

where

Ck1,w
m,d =

24m+1+δ1,d

(8m + 3)!

|B2 . . . B8m+2|
(8m + 2)!!

|B4m+2|
4m + 2

d4m+ 3
2

∏

p|d

(1 − p−(4m+2))(k1w)8m+3.

We note that 24m+1 B4m+2

4m+2 = π−(4m+2)Γ(4m + 2)ζ(4m + 2).
From [GHS1, (16)] it follows that

volHM (Õ
+
(K

(m)
2d )) =

2δ1,d−δ4,d(8)
B2 . . . B8m+2

(8m + 2)!!
d4m+ 3

2 π−(4m+2)Γ(4m + 2)L(4m + 2,

(
4d

∗

)
).

We can use the formula for the volume of N
(m)
2d in the following form:

volHM (Õ
+
(N

(m)
2d )) =

21+δ1,d−(8m+4)d4m+ 3
2
B2 . . . B8m+2

(8m + 2)!!
π−(4m+2)Γ(4m + 2)L(4m + 2,

(
d

∗

)
)

(see [GHS1, 3.6.2]). It follows that

B(−2) = Ck1,w
m,d Ew(8m+3)(28m+3−δ4,d(8)PK(4m+2)+PN(4m+2))+O(k8m+2

1 )
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where

PK(n) = (1 − 2−n)δ0,d(2)
L(n,

(
4d
∗

)
)

L(n, χ0,4d)

∏

p|d

1 − p−n

1 + p−n

and

PN (n) =
L(n,

(
d
∗

)
)

L(n, χ0,d)

∏

p|d

1 − p−n

1 + p−n
.

Here χ0,f denotes the principal Dirichlet character modulo f .
We note that |PK(n)| < 1 and |PN (n)| < 1 for any d. We conclude that

B(−2) < Ck1,w
m,d Ew(8m + 3)b(−2)

where b(−2) = 28m+3 − 1.
The (−2d)-contribution is calculated according to [GHS1, 3.3–3.4]. We note

that Õ
+
(T2,8m+2) is a subgroup of Õ

+
(M2,8m+2). We obtain

B(−2d) ≤ Ck1,w
m,d Ew(8m + 3)b(−2d)

where for d > 2

b(−2d) =
2ρ(d)

d

(
4

d

)4m+ 1
2

4(2hd(1 + 2−(4m+2) − 2−(8m+3)) + 2−(8m+3)).

As a result we see that that the obstruction constant CB(Õ
+
(L

(m)
2d )) is positive

if

β
(w)
m,d =

∣∣∣∣
B4m+2

B8m+4

∣∣∣∣ Ew(8m + 3)(b(−2) + b(−2d)) <
√

d.

Using (8) we get

∣∣∣∣
B4m+2

B8m+4

∣∣∣∣ <
5

4
√

2

(
πe

2m + 1

)4m+2
1

28m+4
.

For m ≥ 5 we choose a cusp form Fa of weight a = 4m + 10, i.e. we take
w = 4m − 7 in Proposition 4.1. Such a cusp form exists for all d ≥ 1 by
Proposition 3.1. Using the fact that β(−2d) ≤ β(−4) for any d ≥ 2 and the value

b(−4) = 24m+ 5
2 , we see that

β
(4m−7)
m,d < (1 +

1

4m − 7
)8m+3 5

8
√

2

(
πe

2m + 1

)4m+2
28m+3 + 24m+ 5

2 + 1

28m+3
,

which is smaller than 1 if m ≥ 5. This proves Theorem 1.1 for m ≥ 5.
For m = 4 there exists a cusp form Fa of weight 4m + 6 if d 6= 1, 2, 4, i.e. we

take w = 4m − 3. To see that β
(13)
4,d <

√
d we need check this only for d = 3

because b(−2d) < b(−6) for d > 3. One can do it by direct calculation.
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For m ≤ 3 we choose Fa of weight 4m + 2, i.e. we take w = 4m + 1. Such
a cusp form exists if d > 180 according to Proposition 3.1. For such d we see

that β(−2d) < 1. Then the obstruction constant CB(Õ
+
(L

(m)
2d )) is positive if

∣∣∣∣
B4m+2

B8m+2

∣∣∣∣ (1 +
1

4m + 1
)8m+3(28m+3 + 2) <

√
d.

This inequality gives us the bound on d in Theorem 1.1.
This completes the proof of Theorem 1.1.

In the proof of Theorem 1.1 above we have seen that the (−2)-part of the branch
divisor forms the most important reflective obstruction to the extension of the

Õ
+
(L

(m)
2d )-invariant differential forms to a smooth compact model of F (m)

2d . Let

us consider the double covering SF (m)
2d of F (m)

2d for d > 1 determined by the
special orthogonal group:

SF (m)
2d = S̃O

+
(L

(m)
2d ) \D

L
(m)
2d

→ F (m)
2d .

Here the branch divisor does not contain the (−2)-part. Theorem 4.2 below

shows that there are only five exceptional varieties SF (m)
2d with m > 0 and

d > 1 that are possibly not of general type.

The variety SF (2)
2d can be interpreted as the moduli space of K3 surfaces of

degree 2d with spin structure: see [GHS2, §5]. The three-fold SF (0)
2d is the

moduli space of (1, t)-polarised abelian surfaces.

Theorem 4.2 The variety SF (m)
2d is of general type for any d > 1 if m ≥ 3. If

m = 2 then SF (2)
2d is of general type if d ≥ 3. If m = 1 then SF (1)

2d is of general
type if d = 5 or d ≥ 7.

Proof. The case m = 2 is [GHS2, Theorem 5.1], and the result for m ≥ 5 is
immediate from Theorem 1.1. For m = 1, 3 and 4 we can prove more than
what follows from Theorem 1.1.
The branch divisor of SF (m)

2d is defined by the reflections in vectors r ∈ L
(m)
2d

such that −σr ∈ S̃O
+
(L

(m)
2d ), because the rank of L

(m)
2d is odd. Therefore

r2 = −2d, by Proposition 2.1.

If F ∈ M2k+1(S̃O
+
(L

(m)
2d )) is a modular form (note that the character det is

trivial), d > 1 and z ∈ D•

L
(m)
2d

is such that (z, r) = 0, then

F (z) = F (−σr(z)) = F (−z) = (−1)2k+1F (z).

Therefore any modular form of odd weight for S̃O
+
(L

(m)
2d ) vanishes on the

branch divisor.
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To apply the low-weight cusp form trick used in the proof of Theorem 1.1

one needs a cusp form of weight smaller than dimSF (m)
2d = 8m + 3. By

Proposition 3.1 there exists a cusp form F11+4m ∈ S11+4m(S̃O
+
(L

(m)
2d )). For

m ≥ 3 we have that 11 + 4m < 8m + 3. Therefore the differential forms

F k
11+4mF(4m−8)k(dZ)k, for arbitrary F(4m−8)k ∈ M(4m−8)k(S̃O

+
(L

(m)
2d )), ex-

tend to the toroidal compactification of SF (m)
2d constructed in Theorem 1.3.

This proves the cases m ≥ 3 of the theorem.

For the case m = 1 we use a cusp form of weight 9 with respect to S̃O
+
(L

(1)
2d )

constructed in Proposition 3.1. 2

We can obtain some information also for some of the remaining cases.

Proposition 4.3 The spaces SF (1)
8 and SF (1)

12 have non-negative Kodaira di-
mension.

Proof. By Proposition 3.1 there are cusp forms of weight 11 for S̃O
+
(L

(1)
8 )

and S̃O
+
(L

(1)
12 ). The weight of these forms is equal to the dimension. By the

well-known observation of Freitag [F, Hilfssatz 2.1, Kap. III] these cusp forms

determine canonical differential forms on the 11-dimensional varieties SF (1)
8

and SF (1)
12 . 2

These varieties may perhaps have intermediate Kodaira dimension as it seems

possible that a reflective modular form of canonical weight exists for L
(1)
8 and

L
(1)
12 .

In [GHS2] we used pull-backs of the Borcherds modular form Φ12 on DII2,26 to
show that many moduli spaces of K3 surfaces are of general type. We can also
use Borcherds products to prove results in the opposite direction.

Theorem 4.4 The Kodaira dimension of F (m)
II is −∞ for m = 0, 1 and 2.

Proof. For m = 0 we can see immediately that the quotient is rational: a

straightforward calculation gives that F (0)
II = Γ\H1×H1 where H1 is the usual

upper half plane and Γ is the degree 2 extension of SL(2, Z) × SL(2, Z) by the
involution which interchanges the two factors. Compactifying this, we obtain
the projective plane P2.
For m = 1, 2 we argue differently. There are modular forms similar to Φ12 for
the even unimodular lattices II2,10 and II2,18. They are Borcherds products
Φ252 and Φ127 of weights 252 and 127 respectively, defined by the automorphic
functions

∆(τ)−1(τ)E4(τ)2 = q−1 + 504 + q(. . . )

and

∆(τ)−1(τ)E4(τ) = q−1 + 254 + q(. . . ),
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18 V. Gritsenko, K. Hulek and G. K. Sankaran

where q = exp(2πiτ) and ∆(τ) and E4(τ) are the Ramanujan delta function
and the Eisenstein series of weight 4 (see [B1]). The divisors of Φ252 and Φ127

coincide with the branch divisors of F (1)
II and F (2)

II defined by the (−2)-vectors.
Moreover Φ252 and Φ127 each vanishes with order one along the respective divi-
sor. Therefore if F10k(dZ)k (or F18k(dZ)k) defines a pluricanonical differential

form on a smooth model of a toroidal compactification of F (1)
II or F (2)

II , then
F10k (or F18k) is divisible by Φk

252 (or Φk
127), since F10k or F18k must vanish

to order at least k along the branch divisor. This is not possible, because the
quotient would be a holomorphic modular form of negative weight. 2

We have already remarked that the space F (2)
II is the moduli space of K3 sur-

faces with an elliptic fibration with a section. Using the Weierstrass equations
it is then clear that this moduli space is unirational (such K3 surfaces are
parametrised by a linear system in the weighted projective space P(4, 6, 1, 1)).
In fact it is even rational: see [Le].
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