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Abstract. For many classical moduli spaces of orthogonal type there
are results about the Kodaira dimension. But nothing is known in the
case of dimension greater than 19. In this paper we obtain the first
results in this direction. In particular the modular variety defined
by the orthogonal group of the even unimodular lattice of signature
(2, 8m+ 2) is of general type if m ≥ 5.
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1 Modular varieties of orthogonal type

Let L be an integral indefinite lattice of signature (2, n) and ( , ) the associated
bilinear form. By DL we denote a connected component of the homogeneous
type IV complex domain of dimension n

DL = {[w] ∈ P(L⊗ C) | (w,w) = 0, (w,w) > 0}+.

O+(L) is the index 2 subgroup of the integral orthogonal group O(L) that
leaves DL invariant. Any subgroup Γ of O+(L) of finite index determines a
modular variety

FL(Γ) = Γ \ DL.
By [BB] this is a quasi-projective variety.
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2 V. Gritsenko, K. Hulek and G. K. Sankaran

For some special lattices L and subgroups Γ < O+(L) one obtains in this
way the moduli spaces of polarised abelian or Kummer surfaces (n = 3, see
[GH]), the moduli space of Enriques surfaces (n = 10, see [BHPV]), and the
moduli spaces of polarised or lattice-polarised K3 surfaces (0 < n ≤ 19, see
[Nik1, Dol]). Other interesting modular varieties of orthogonal type include
the period domains of irreducible symplectic manifolds: see [GHS3].
It is natural to ask about the birational type of FL(Γ). For many classical
moduli spaces of orthogonal type there are results about the Kodaira dimension,
but nothing is known in the case of dimension greater than 19. In this paper we
obtain the first results in this direction. We determine the Kodaira dimension
of many quasi-projective varieties associated with two series of even lattices.
To explain what these varieties are, we first introduce the stable orthogonal
group Õ(L) of a nondegenerate even lattice L. This is defined (see [Nik2] for
more details) to be the subgroup of O(L) which acts trivially on the discrim-
inant group AL = L∨/L, where L∨ is the dual lattice. If Γ < O(L) then we

write Γ̃ = Γ ∩ Õ(L). Note that if L is unimodular then Õ(L) = O(L).
The first series of varieties we want to study, which we call the modular varieties
of unimodular type, is

F (m)
II = O+(II2,8m+2)\DII2,8m+2 . (1)

F (m)
II is of dimension 8m + 2 and arises from the even unimodular lattice of

signature (2, 8m+ 2)

II2,8m+2 = 2U ⊕mE8(−1),

where U denotes the hyperbolic plane and E8(−1) is the negative definite

lattice associated to the root system E8. The variety F (2)
II is the moduli space

of elliptically fibred K3 surfaces with a section (see e.g. [CM, Section 2]). The
case m = 3 is of particular interest: it arises in the context of the fake Monster
Lie algebra [B1].
The second series, which we call the modular varieties of K3 type, is

F (m)
2d = Õ

+
(L

(m)
2d )\D

L
(m)
2d

. (2)

F (m)
2d is of dimension 8m+ 3 and arises from the lattice

L
(m)
2d = 2U ⊕mE8(−1)⊕ 〈−2d〉,

where 〈−2d〉 denotes a lattice generated by a vector of square −2d.

The first three members of the series F (m)
2d have interpretations as moduli

spaces. F (2)
2d is the moduli space of polarised K3 surfaces of degree 2d. For

m = 1 the 11-dimensional variety F (1)
2d is the moduli space of lattice-polarised

K3 surfaces, where the polarisation is defined by the hyperbolic lattice 〈2d〉 ⊕
E8(−1) (see [Nik1, Dol]). For m = 0 and d prime the 3-fold F (0)

2d is the moduli
space of polarised Kummer surfaces (see [GH]).
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Theorem 1.1 The modular varieties of unimodular and K3 type are varieties
of general type if m and d are sufficiently large. More precisely:

(i) If m ≥ 5 then the modular varieties F (m)
II and F (m)

2d (for any d ≥ 1) are
of general type.

(ii) For m = 4 the varieties F (4)
2d are of general type if d ≥ 3 and d 6= 4.

(iii) For m = 3 the varieties F (3)
2d are of general type if d ≥ 1346.

(iv) For m = 1 the varieties F (1)
2d are of general type if d ≥ 1537488.

Remark. The methods of this paper are also applicable if m = 2. Using them,

one can show that the moduli space F (2)
2d of polarised K3 surfaces of degree 2d

is of general type if d ≥ 231000. This case was studied in [GHS2], where, using
a different method involving special pull-backs of the Borcherds automorphic

form Φ12 on the domain DII2,26 , we proved that F (2)
2d is of general type if d > 61

or d = 46, 50, 54, 57, 58, 60.
The methods of [GHS2] do not appear to be applicable in the other cases
studied here. Instead, the proof of Theorem 1.1 depends on the existence of a
good toroidal compactification of FL(Γ), which was proved in [GHS2], and on
the exact formula for the Hirzebruch-Mumford volume of the orthogonal group
found in [GHS1].
We shall construct pluricanonical forms on a suitable compactification of the
modular variety FL(Γ) by means of modular forms. Let Γ < O+(L) be a
subgroup of finite index, which naturally acts on the affine cone D•L over DL.
In what follows we assume that dimDL ≥ 3.

Definition 1.2 A modular form of weight k and character χ : Γ → C∗ with
respect to the group Γ is a holomorphic function

F : D•L → C

which has the two properties

F (tz) = t−kF (z) ∀ t ∈ C∗,
F (g(z)) = χ(g)F (z) ∀ g ∈ Γ.

The space of modular forms is denoted by Mk(Γ, χ). The space of cusp forms,
i.e. modular forms vanishing on the boundary of the Baily–Borel compactifi-
cation of Γ\DL, is denoted by Sk(Γ, χ). We can reformulate the definition of
modular forms in geometric terms. Let F ∈ Mkn(Γ, detk) be a modular form,
where n is the dimension of DL. Then

F (dZ)k ∈ H0(FL(Γ)◦,Ω⊗k),

where dZ is a holomorphic volume form on DL, Ω is the sheaf of germs of
canonical n-forms on FL(Γ) and FL(Γ)◦ is the open smooth part of FL(Γ)
such that the projection π : DL → Γ\DL is unramified over FL(Γ)◦.
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4 V. Gritsenko, K. Hulek and G. K. Sankaran

The main question in the proof of Theorem 1.1 is how to extend the form
F (dZ)k to FL(Γ) and to a suitable toroidal compactification FL(Γ)tor. There
are three possible kinds of obstruction to this, which we call (as in [GHS2])
elliptic, reflective and cusp obstructions. Elliptic obstructions arise if FL(Γ)tor

has non-canonical singularities arising from fixed loci of the action of the group
Γ. Reflective obstructions arise because the projection π is branched along
divisors whose general point is smooth in FL(Γ). Cusp obstructions arise when
we extend the form from FL(Γ) to FL(Γ)tor.
The problem of elliptic obstructions was solved for n ≥ 9 in [GHS2].

Theorem 1.3 ([GHS2, Theorem 2.1]) Let L be a lattice of signature (2, n)
with n ≥ 9, and let Γ < O+(L) be a subgroup of finite index. Then there exists
a toroidal compactification FL(Γ)tor of FL(Γ) = Γ\DL such that FL(Γ)tor has
canonical singularities and there are no branch divisors in the boundary. The
branch divisors in FL(Γ) arise from the fixed divisors of reflections.

Reflective obstructions, that is branch divisors, are a special problem related
to the orthogonal group. They do not appear in the case of moduli spaces
of polarised abelian varieties of dimension greater than 2, where the modular
group is the symplectic group. There are no quasi-reflections in the symplectic
group even for g = 3.
The branch divisor is defined by special reflective vectors in the lattice L. This
description is given in §2. To estimate the reflective obstructions we use the
Hirzebruch-Mumford proportionality principle and the exact formula for the
Hirzebruch-Mumford volume of the orthogonal group found in [GHS1]. We do
the numerical estimation in §4.
We treat the cusp obstructions in §3, using special cusp forms of low weight
(the lifting of Jacobi forms) constructed in [G2] and the low-weight cusp form
trick (see [G2] and [GHS2]).

2 The branch divisors

To estimate the obstruction to extending pluricanonical forms to a smooth

projective model of FL(Õ
+

(L)) we have to determine the branch divisors of
the projection

π : DL → FL(Õ
+

(L)) = Õ
+

(L) \ DL. (3)

According to [GHS2, Corollary 2.13] these divisors are defined by reflections
σr ∈ O+(L), where

σr(l) = l − 2(l, r)

(r, r)
r,

coming from vectors r ∈ L with r2 < 0 that are stably reflective: by this we

mean that r is primitive and σr or −σr is in Õ
+

(L). By a (k)-vector for k ∈ Z
we mean a primitive vector r with r2 = k.

Documenta Mathematica 13 (2008) 1–19



Hirzebruch-Mumford Proportionality and . . . 5

Let D be the exponent of the finite abelian group AL and let the divisor
div(r) of r ∈ L be the positive generator of the ideal (l, L). We note that
r∗ = r/ div(r) is a primitive vector in L∨. In [GHS2, Propositions 3.1–3.2] we
proved the following.

Lemma 2.1 Let L be an even integral lattice of signature (2, n). If σr ∈ Õ
+

(L)

then r2 = −2. If −σr ∈ Õ
+

(L), then r2 = −2D and div(r) = D ≡ 1 mod 2 or
r2 = −D and div(r) = D or D/2.

We need also the following well-known property of the stable orthogonal group.

Lemma 2.2 For any sublattice M of an even lattice L the group Õ(M) can be

considered as a subgroup of Õ(L).

Proof. Let M⊥ be the orthogonal complement of M in L. We have as usual

M ⊕M⊥ ⊂ L ⊂ L∨ ⊂M∨ ⊕ (M⊥)∨.

We can extend g ∈ Õ(M) to M ⊕M⊥ by putting g|M⊥ ≡ id. It is clear that

g ∈ Õ(M ⊕ M⊥). For any l∨ ∈ L∨ we have g(l∨) ∈ l∨ + (M ⊕ M⊥). In

particular, g(l) ∈ L for any l ∈ L and g ∈ Õ(L). 2

We can describe the components of the branch locus in terms of homogeneous
domains. For r a stably reflective vector in L we put

Hr = {[w] ∈ P(L⊗ C) | (w, r) = 0},

and let N be the union of all hyperplane sections Hr ∩ DL over all stably
reflective vectors r.

Proposition 2.3 Let r ∈ L be a stably reflective vector: suppose that r and
L do not satisfy D = 4, r2 = −4, div(r) = 2. Let Kr be the orthogonal
complement of r in L. Then the associated component π(Hr ∩ DL) of the

branch locus N is of the form Õ
+

(Kr)\DKr .

Proof. We have Hr ∩ DL = P(Kr) ∩DL = DKr . Let

ΓKr = {ϕ ∈ Õ
+

(L) | ϕ(Kr) = Kr}. (4)

ΓKr maps to a subgroup of O+(Kr). The inclusion of Õ(Kr) in Õ(L)
(Lemma 2.2) preserves the spinor norm (see [GHS1, §3.1]), because Kr has

signature (2, n− 1) and so Õ
+

(Kr) becomes a subgroup of Õ
+

(L).

Therefore the image of ΓKr contains Õ
+

(Kr) for any r. Now we prove that

this image coincides with Õ
+

(Kr) for all r, except perhaps if D = 4, r2 = −4
and div(r) = 2.

Documenta Mathematica 13 (2008) 1–19



6 V. Gritsenko, K. Hulek and G. K. Sankaran

Let us consider the inclusions

〈r〉 ⊕Kr ⊂ L ⊂ L∨ ⊂ 〈r〉∨ ⊕K∨r .

By standard arguments (see [GHS2, Proposition 3.6]) we see that

| detKr| =
| detL| · |r2|

div(r)2
and [L : 〈r〉 ⊕Kr] =

|r2|
div(r)

= 1 or 2.

If the index is 1, then it is clear that the image of ΓKr is Õ
+

(Kr). Let us
assume that the index is equal to 2. In this case the lattice 〈r〉∨ is generated
by r∨ = −r/(r, r) = r∗/2, where r∗ = r/ div(r) is a primitive vector in L∨. In
particular r∨ represents a non-trivial class in 〈r〉∨ ⊕ K∨r modulo L∨. Let us
take k∨ ∈ K∨r such that k∨ 6∈ L∨. Then k∨ + r∨ ∈ L∨ and

ϕ(k∨)− k∨ ≡ r∨ − ϕ(r∨) mod L.

We note that if ϕ ∈ ΓKr then ϕ(r) = ±r. Hence

ϕ(k∨)− k∨ ≡
{

0 mod L if ϕ(r) = r

r∗ mod L if ϕ(r) = −r

Since ϕ(r∗) ≡ r∗ mod L, we cannot have ϕ(r) = −r unless div(r) = 1 or 2.
Therefore we have proved that ϕ(k∨) ≡ k∨ mod Kr (Kr = K∨r ∩ L), except
possibly if D = 4, r2 = −4, div(r) = 2. 2

The group Õ
+

(L) acts on N . We need to estimate the number of components

of Õ
+

(L) \ N . This will enable us to estimate the reflective obstructions to
extending pluricanonical forms which arise from these branch loci.
For the even unimodular lattice II2,8m+2 any primitive vector r has div(r) = 1.
Consequently r is stably reflective if and only if r2 = −2.

For L
(m)
2d the reflections and the corresponding branch divisors arise in two

different ways, according to Lemma 2.1. We shall classify the orbits of such
vectors.

Proposition 2.4 Suppose d is a positive integer.

(i) Any two (−2)-vectors in the lattice II2,8m+2 are equivalent modulo
O+(II2,8m+2), and the orthogonal complement of a (−2)-vector r is iso-
metric to

K
(m)
II = U ⊕mE8(−1)⊕ 〈2〉.

(ii) There is one Õ
+

(L
(m)
2d )-orbit of (−2)-vectors r in L

(m)
2d with div(r) = 1. If

d ≡ 1 mod 4 then there is a second orbit of (−2)-vectors, with div(r) = 2.

The orthogonal complement of a (−2)-vector r in L
(m)
2d is isometric to

K
(m)
2d = U ⊕mE8(−1)⊕ 〈2〉 ⊕ 〈−2d〉,

Documenta Mathematica 13 (2008) 1–19



Hirzebruch-Mumford Proportionality and . . . 7

if div(r) = 1, and to

N
(m)
2d = U ⊕mE8(−1)⊕

(
1 2

1−d
2 1

)
,

if div(r) = 2.

(iii) The orthogonal complement of a (−2d)-vector r in L
(m)
2d is isometric to

II2,8m+2 = 2U ⊕mE8(−1)

if div(r) = 2d, and to

K
(m)
2 = U⊕mE8(−1)⊕〈2〉⊕〈−2〉 or T2,8m+2 = U⊕U(2)⊕mE8(−1)

if div(r) = d.

(iv) Suppose d > 1. The number of Õ(L
(m)
2d )-orbits of (−2d)-vectors with

div(r) = 2d is 2ρ(d). The number of Õ(L
(m)
2d )-orbits of (−2d)-vectors with

div(r) = d is





2ρ(d) if d is odd or d ≡ 4 mod 8;

2ρ(d)+1 if d ≡ 0 mod 8;

2ρ(d)−1 if d ≡ 2 mod 4.

Here ρ(d) is the number of prime divisors of d.

Proof. If the lattice L contains two hyperbolic planes then according to the

well-known result of Eichler (see [E, §10]) the Õ
+

(L)-orbit of a primitive vector
l ∈ L is completely defined by two invariants: by its length (l, l) and by its
image l∗ + L in the discriminant group AL, where l∗ = l/ div(l).
i) If u is a primitive vector of an even unimodular lattice II2,8m+2 then div(u) =
1 and there is only one O(II2,8m+2)-orbit of (−2)-vectors. Therefore we can
take r to be a (−2)-vector in U , and the form of the orthogonal complement is
obvious.
ii) In the lattice L

(m)
2d we fix a generator h of its 〈−2d〉-part. Then for any

r ∈ L(m)
2d we can write r = u + xh, where u ∈ II2,8m+2 and x ∈ Z. It is clear

that div(r) divides r2. If f | div(r), where f = 2, d or 2d, then the vector u
is also divisible by f . Therefore the (−2)-vectors form two possible orbits of
vectors with divisor equal to 1 or 2. If r2 = −2 and div(r) = 2 then u = 2u0

with u0 ∈ 2U⊕mE8(−1) and we see that in this case d ≡ 1 mod 4. This gives
us two different orbits for such d. In both cases we can find a (−2)-vector r
in the sublattice U ⊕ 〈−2d〉. Elementary calculation gives us the orthogonal
complement of r.
iii) This was proved in [GHS2, Proposition 3.6] for m = 2. For general m the
proof is the same.
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8 V. Gritsenko, K. Hulek and G. K. Sankaran

iv) To find the number of orbits of (−2d)-vectors we have to consider two cases.
a) Let div(r) = 2d. Then r = 2du+ xh and r∗ ≡ (x/2d)h mod L, where u ∈
II2,8m+2 and x is modulo 2d. Moreover (r, r) = 4d2(u, u)− x22d = −2d. Thus
x2 ≡ 1 mod 4d. This congruence has 2ρ(d) solutions modulo 2d. For any such
x mod 2d we can find a vector u in 2U ⊕mE8(−1) with (u, u) = (x2 − 1)/2d.
Then r = 2du+ xh is primitive (because u is not divisible by any divisor of x)
and (r, r) = −2d.
b) Let div(r) = d. Then r = du+xh, where u is primitive, r∗ ≡ (x/d)h mod L
and x is modulo d. We have (r∗, r∗) ≡ −2x2/d mod 2Z and x2 ≡ 1 mod d.
For any solution modulo d we can find as above u ∈ 2U ⊕mE8(−1) such that
r = du+ xh is primitive and (r, r) = −2d. It is easy to see that the number of
solutions {x mod d |x2 ≡ 1 mod d} is as stated. 2

Remark. To calculate the number of the branch divisors arising from vectors
r with r2 = −2d one has to divide the corresponding number of orbits found
in Proposition 2.4(iv) by 2 if d > 2. This is because ±r determine different
orbits but the same branch divisor. For d = 2 the proof shows that there is
one divisor for each orbit given in Proposition 2.4(iv).

3 Modular forms of low weight

In this section we let L = 2U ⊕ L0 be an even lattice of signature (2, n) with
two hyperbolic planes. We choose a primitive isotropic vector c1 in L. This
vector determines a 0-dimensional cusp and a tube realisation of the domain
DL. The tube domain (see the definition of H(L1) below) is a complexification
of the positive cone of the hyperbolic lattice L1 = c⊥1 /c1. If div(c1) = 1 we call
this cusp standard (as above, by [E] there is only one standard cusp). In this
case L1 = U ⊕ L0. In [GHS2, §4] we proved that any 1-dimensional boundary

component of Õ
+

(L) \ DL contains the standard 0-dimensional cusp if every
isotropic (with respect to the discriminant form: see [Nik2, §1.3]) subgroup of
AL is cyclic.
Let us fix a 1-dimensional cusp by choosing two copies of U in L. (One has
to add to c1 a primitive isotropic vector c2 ∈ L1 with div(c2) = 1). Then
L = U ⊕ L1 = U ⊕ (U ⊕ L0) and the construction of the tube domain may be
written down simply in coordinates. We have

H(L1) = Hn = {Z = (zn, . . . , z1) ∈ H1 × Cn−2 ×H1; (ImZ, ImZ)L1 > 0},
where Z ∈ L1 ⊗ C and (zn−1, . . . , z2) ∈ L0 ⊗ C. (We represent Z as a column
vector.) An isomorphism between Hn and DL is given by

p : Hn −→ DL (5)

Z = (zn, . . . , z1) 7−→
(
− 1

2
(Z,Z)L1 : zn : · · · : z1 : 1

)
.

The action of O+(L⊗R) on Hn is given by the usual fractional linear transfor-
mations. A calculation shows that the Jacobian of the transformation of Hn
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defined by g ∈ O+(L⊗R) is equal to det(g)j(g, Z)−n, where j(g, Z) is the last
((n+2)-nd) coordinate of g

(
p(Z)

)
∈ DL. Using this we define the automorphic

factor

J : O+(L ⊗ R)×Hn+2 → C∗

(g, Z) 7→ (det g)−1 · j(g, Z)n.

The connection with pluricanonical forms is the following. Consider the form

dZ = dz1 ∧ · · · ∧ dzn ∈ Ωn(Hn).

F (dZ)k is a Γ-invariant k-fold pluricanonical form on Hn, for Γ a subgroup
of finite index of O+(L), if F

(
g(Z)

)
= J(g, Z)kF (Z) for any g ∈ Γ; in other

words if F ∈Mnk(Γ, detk) (see Definition 1.2). To prove Theorem 1.1 we need
cusp forms of weight smaller than the dimension of the corresponding modular
variety.

Proposition 3.1 For unimodular type, cusp forms of weight 12 + 4m exist:
that is

dimS12+4m(O+(II2,8m+2)) > 0.

For K3 type we have the bounds

dimS11+4m(Õ
+

(L
(m)
2d )) > 0 if d > 1;

dimS10+4m(Õ
+

(L
(m)
2d )) > 0 if d ≥ 1;

dimS7+4m(Õ
+

(L
(m)
2d )) > 0 if d ≥ 4;

dimS6+4m(Õ
+

(L
(m)
2d )) > 0 if d = 3 or d ≥ 5;

dimS5+4m(Õ
+

(L
(m)
2d )) > 0 if d = 5 or d ≥ 7;

dimS2+4m(Õ
+

(L
(m)
2d )) > 0 if d > 180.

Proof. For any F (Z) ∈ Mk(Õ
+

(L)) we can consider its Fourier-Jacobi expan-
sion at the 1-dimensional cusp fixed above

F (Z) = f0(z1) +
∑

m≥1

fm(z1; z2, . . . zn−1) exp(2πimzn).

A lifting construction of modular forms F (Z) ∈Mk(Õ
+

(L)) with trivial char-
acter by means of the first Fourier–Jacobi coefficient is given in [G1], [G2].
We note that f1(z1; z2, . . . , zn−1) ∈ Jk,1(L0), where Jk,1(L0) is the space of
the Jacobi forms of weight k and index 1. A more general construction of the
additive lifting was given in [B2] but for our purpose the construction of [G2]
is sufficient.
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The dimension of Jk,1(L0) depends only on the discriminant form and the rank
of L0 (see [G2, Lemma 2.4]). In particular, for the special cases of L = II2,8m+2

and L = L
(m)
2d we have

Jcusp
k+4m,1(mE8(−1)) ∼= Sk(SL2(Z))

and
Jcusp
k+4m,1(mE8(−1)⊕ 〈−2d〉) ∼= Jcusp

k,d ,

where Jcusp
k,d is the space of the usual Jacobi cusp forms in two variables of

weight k and index d (see [EZ]) and Sk(SL2(Z)) is the space of weight k cusp
forms for SL2(Z).
The lifting of a Jacobi cusp form of index one is a cusp form of the same weight

with respect to O+(II2,8m+2) or Õ
+

(L
(m)
2d ) with trivial character. The fact

that we get a cusp form was proved in [G2] for maximal lattices, i.e., if d is
square-free. In [GHS2, §4] we extended this to all lattices L for which the
isotropic subgroups of the discriminant AL are all cyclic, which is true in all
cases considered here.
To prove the unimodular type case of Proposition 3.1 we can take the Jacobi
form corresponding to the cusp form ∆12(τ). Using the Jacobi lifting construc-
tion we obtain a cusp form of weight 12 + 4m with respect to O+(II2,8m+2).
For the K3 type case we need the dimension formula for the space of Jacobi
cusp forms Jcusp

k,d (see [EZ]). For a positive integer l one sets

{l}12 =




⌊ l12⌋ if l 6≡ 2 mod 12

⌊ l12⌋ − 1 if l ≡ 2 mod 12.

Then if k > 2 is even

dimJ cusp
k,d =

d∑

j=0

(
{k + 2j}12 −

⌊
j2

4d

⌋)
,

and if k is odd

dimJ cusp
k,d =

d−1∑

j=1

(
{k − 1 + 2j}12 −

⌊
j2

4d

⌋)
.

This gives the bounds claimed. For k = 2, using the results of [SZ] one can
also calculate dim Jcusp

2,d : there is an extra term, ⌈σ0(d)/2⌉, where σ0(d) denotes

the number of divisors of d. This gives dimJcusp
2,d > 0 if d > 180 and for some

smaller values of d. 2

4 Kodaira dimension results

In this section we prove Theorem 1.1. We first explain the geometric back-
ground. Let FL(Γ)tor be a toroidal compactification as in Theorem 1.3. In
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particular all singularities are canonical and there is no ramification divisor
which is contained in the boundary. Then the canonical divisor (as a Q-divisor)
is given by KFL(Γ)tor = nM − V −D where M is the line bundle of modular
forms of weight 1, n is the dimension of FL(Γ), V is the branch locus (which is
given by reflections) and D is the boundary. Hence in order to construct k-fold
pluricanonical forms we must find modular forms of weight kn which vanish
of order k along the branch divisor and the boundary. This also suffices since
FL(Γ)tor has canonical singularities.

Our strategy is the following. For Γ ⊆ Õ
+

(L) we choose a cusp form Fa ∈ Sa(Γ)
of low weight a, i.e. a strictly less than the dimension. Then we consider ele-
ments F ∈ F kaMk(n−a)(Γ, detk): for simplicity we assume that k is even. Such
an F vanishes to order at least k on the boundary of any toroidal compactifi-
cation. Hence if dZ is the volume element on DL defined in §3 it follows that
F (dZ)k extends as a k-fold pluricanonical form to the general point of every
boundary component of FL(Γ)tor. Since we have chosen the toroidal compact-
ification so that all singularities are canonical and that there is no ramification
divisor which is contained in the boundary the only obstructions to extending
F (dZ)k to a smooth projective model are the reflective obstructions, coming
from the ramification divisor of the quotient map π : DL → FL(Γ) studied in
§2.
Let DK be an irreducible component of this ramification divisor. Recall from
Proposition 2.3 that DK = P(K ⊗ C) ∩ DL where K = Kr is the orthogonal
complement of a stably reflective vector r. For the lattices chosen in The-
orem 1.1 all irreducible components of the ramification divisor are given in
Proposition 2.4.

Proposition 4.1 We assume that k is even and that the dimension n ≥ 9.

For Γ ⊆ Õ
+

(L), the obstruction to extending forms F (dZ)k where F ∈
F kaMk(n−a)(Γ) to FL(Γ)tor lies in the space

B =
⊕

K

B(K) =
⊕

K

k/2−1⊕

ν=0

Mk(n−a)+2ν(Γ ∩ Õ
+

(K)),

where the direct sum is taken over all irreducible components DK of the rami-
fication divisor of the quotient map π : DL → F(Γ).

Proof. Let σ ∈ Γ be plus or minus a reflection whose fixed point locus is DK .
We can extend the differential form provided that F vanishes of order k along
every irreducible component DK of the ramification divisor.
If Fa vanishes along DK then K gives no restriction on the second factor of the
modular form F .
Now let {w = 0} be a local equation for DK . Then σ∗(w) = −w (this is
independent of whether σ or −σ is the reflection). For every modular form
F ∈ Mk(Γ) of even weight we have F

(
σ(z)

)
= F (z). This implies that if

F (z) ≡ 0 on DK , then F vanishes to even order on DK .
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We denote by M2b(Γ)(−νDK) the space of modular forms of weight 2b which
vanish of order at least ν along DK . Since the weight is even we have
M2b(Γ)(−DK) = M2b(Γ)(−2DK). For F ∈ M2b(Γ)(−2νDK) we consider
(F/w2ν) as a function on DK . From the definition of modular form (Def-
inition 1.2) it follows that this function is holomorphic, Γ ∩ ΓK-invariant
(see equation (4)) and homogeneous of degree 2b + 2ν. Thus (F/w2ν)|DK ∈
M2(b+ν)(Γ∩ ΓK). In Proposition 2.3 we saw that, ΓK contains Õ

+
(K) as sub-

group of Õ
+

(L)(with equality in almost all cases), so we may replace Γ ∩ ΓK

by Γ ∩ Õ
+

(K). In this way we obtain an exact sequence

0→M2b(Γ)(−(2 + 2ν)DK)→M2b(Γ)(−2νDK)→M2(b+ν)(Γ ∩ Õ
+

(K)),

where the last map is given by F 7→ F/w2ν . This gives the result. 2

Now we proceed with the proof of Theorem 1.1.

Let L be a lattice of signature (2, n) and Γ < Õ
+

(L): recall that k is even.
According to Proposition 4.1 we can find pluricanonical differential forms on
FL(Γ)tor if

CB(Γ) = dimMk(n−a)(Γ)−
∑

K

dimB(K) > 0, (6)

where summation is taken over all irreducible components of the ramification
divisor (see the remark at the end of §2). It now remains to estimate the
dimension of B(K) for each of the finitely many components of the ramification
locus in the cases we are interested in, namely Γ = O+(II2,8m+2) and Γ =

Õ
+

(L
(m)
2d ).

According to the Hirzebruch-Mumford proportionality principle

dimMk(Γ) =
2

n!
volHM (Γ)kn +O(kn−1).

The exact formula for the Hirzebruch-Mumford volume volHM for any indef-
inite orthogonal group was obtained in [GHS1]. It depends mainly on the
determinant and on the local densities of the lattice L. Here we simply quote
the estimates of the dimensions of certain spaces of cusp forms.
The case of II2,8m+2 is easier because the branch divisor has only one irre-
ducible component defined by any (−2)-vector r. According to Proposition 2.4

the orthogonal complement Kr is K
(m)
II . This lattice differs from the lattice

L
(m)
2 , whose Hirzebruch-Mumford volume was calculated in [GHS1, §3.5], only

by one copy of the hyperbolic plane. Therefore

volHM Õ
+

(L
(m)
2 ) = (B8m+4/(8m+ 4)) volHM Õ

+
(K

(m)
II ),

and hence, for even k,

dimMk(Õ
+

(K
(m)
II )) =

21−4m

(8m+ 1)!
· B2 . . . B8m+2

(8m+ 2)!!
k8m+1 +O(k8m),

Documenta Mathematica 13 (2008) 1–19



Hirzebruch-Mumford Proportionality and . . . 13

where the Bi are Bernoulli numbers. Assume that m ≥ 3. Let us take a cusp
form

F ∈ S4m+12(O+(II2,8m+2))

from Proposition 3.1. In this case the dimension of the obstruction space B of
Proposition 4.1 for the pluricanonical forms of order k = 2k1 is given by

k1−1∑

ν=0

dimM(4m−10)k+2ν(Õ
+

(K
(m)
II )) =

24m+2

(8m+ 2)!
· B2 . . . B8m+2

(8m+ 2)!!

((
1 +

1

4m− 10

)8m+2 − 1
)
((4m− 10)k1)8m+2

+O(k8m+1)

In [GHS1, §3.3] we computed the leading term of the dimension of the space
of modular forms for O+(II2,8m+2). Comparing these two we see that the
constant CB(O+(II2,8m+2)) in the obstruction inequality (6) is positive if and
only if

B4m+2

4m+ 2
>
(
1 +

1

4m− 10

)8m+2 − 1. (7)

Moreover F (m)
II is of general type if CB(O+(II2,8m+2)) > 0. From Stirling’s

formula
5
√
πn
( n
πe

)2n > |B2n| > 4
√
πn
( n
πe

)2n. (8)

Using this estimate we easily obtain that (7) holds if m ≥ 5. Therefore we have
proved Theorem 1.1 for the lattice II2,8m+2.

Next we consider the lattice L
(m)
2d of K3 type. For this lattice the branch divisor

of F (m)
2d is calculated in Proposition 2.4. It contains one or two (if d ≡ 1 mod 4)

components defined by (−2)-vectors and some number of components defined
by (−2d)-vectors. To estimate the obstruction constant CB(Γ) in (6) we use the
dimension formulae for the space of modular forms with respect to the group

Õ
+

(M), where M is one of the following lattices from Proposition 2.4: L
(m)
2d

(the main group); K
(m)
2d and N

(m)
2d (the (−2)-obstruction); M2,8m+2, K

(m)
2 and

T2,8m+2 (the (−2d)-obstruction). The corresponding dimension formulae were
found in [GHS1] (see §§3.5, 3.6.1–3.6.2, 3.3 and 3.4). The branch divisor of
(−2d)-type appears only if d > 1. We note that

volHM (Õ
+

(T2,8m+2)) > volHM (Õ
+

(K
(m)
2 )). (9)

Therefore in order to estimate CB(Γ) we can assume that all (−2d)-divisors de-
fined by stably reflective (−2d)-vectors r with div(r) = d (see Proposition 2.4)
are of the type T2,8m+2.
We put k = 2k1, w = n − a and n = 8m+ 3. For the obstruction constant in
(6) we obtain

CB(Õ
+

(L
(m)
2d )) > dimM2k1w(Õ

+
(L

(m)
2d ))−B(−2) −B(−2d) (10)
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where

B(−2) = dimB(K
(m)
2d ) + dimB(N

(m)
2d ),

B(−2d) = 2ρ(d)−1(dimB(M2,8m+2) + 2hd dimB(T2,8m+2))

and B(K) is the obstruction space from Proposition 4.1. By hd we denote the
sum δ0,d(8) − δ2,d(4), where d(n) is d mod n and δ is the Kronecker delta (see
Proposition 2.4 and the remark following it).
For any lattice considered above

B(K) =

k1−1∑

ν=0

dimM2(k1w+ν)(Õ
+

(K))

=
28m+3

(8m+ 3)!
Ew(8m+ 3)volHM (Õ

+
(K))(k1w)8m+3 +O(k8m+2

1 )

where Ew(8m+ 3) = (1 + 1
w )8m+3.

All terms in (10) contain a common factor. First

dimM2k1w(Õ
+

(L
(m)
2d )) = Ck1,wm,d

∣∣∣∣
B8m+4

B4m+2

∣∣∣∣
√
d+O(k8m+2

1 ), (11)

where

Ck1,wm,d =

24m+1+δ1,d

(8m+ 3)!

|B2 . . . B8m+2|
(8m+ 2)!!

|B4m+2|
4m+ 2

d4m+ 3
2

∏

p|d
(1− p−(4m+2))(k1w)8m+3.

We note that 24m+1B4m+2

4m+2 = π−(4m+2)Γ(4m+ 2)ζ(4m+ 2).
From [GHS1, (16)] it follows that

volHM (Õ
+

(K
(m)
2d )) =

2δ1,d−δ4,d(8)
B2 . . . B8m+2

(8m+ 2)!!
d4m+ 3

2 π−(4m+2)Γ(4m+ 2)L(4m+ 2,

(
4d

∗

)
).

We can use the formula for the volume of N
(m)
2d in the following form:

volHM (Õ
+

(N
(m)
2d )) =

21+δ1,d−(8m+4)d4m+ 3
2
B2 . . . B8m+2

(8m+ 2)!!
π−(4m+2)Γ(4m+ 2)L(4m+ 2,

(
d

∗

)
)

(see [GHS1, 3.6.2]). It follows that

B(−2) = Ck1,wm,d Ew(8m+3)(28m+3−δ4,d(8)PK(4m+2)+PN(4m+2))+O(k8m+2
1 )
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where

PK(n) = (1− 2−n)δ0,d(2)
L(n,

(
4d
∗
)
)

L(n, χ0,4d)

∏

p|d

1− p−n
1 + p−n

and

PN (n) =
L(n,

(
d
∗
)
)

L(n, χ0,d)

∏

p|d

1− p−n
1 + p−n

.

Here χ0,f denotes the principal Dirichlet character modulo f .
We note that |PK(n)| < 1 and |PN (n)| < 1 for any d. We conclude that

B(−2) < Ck1,wm,d Ew(8m+ 3)b(−2)

where b(−2) = 28m+3 − 1.
The (−2d)-contribution is calculated according to [GHS1, 3.3–3.4]. We note

that Õ
+

(T2,8m+2) is a subgroup of Õ
+

(M2,8m+2). We obtain

B(−2d) ≤ Ck1,wm,d Ew(8m+ 3)b(−2d)

where for d > 2

b(−2d) =
2ρ(d)

d

(
4

d

)4m+ 1
2

4(2hd(1 + 2−(4m+2) − 2−(8m+3)) + 2−(8m+3)).

As a result we see that that the obstruction constant CB(Õ
+

(L
(m)
2d )) is positive

if

β
(w)
m,d =

∣∣∣∣
B4m+2

B8m+4

∣∣∣∣Ew(8m+ 3)(b(−2) + b(−2d)) <
√
d.

Using (8) we get

∣∣∣∣
B4m+2

B8m+4

∣∣∣∣ <
5

4
√

2

(
πe

2m+ 1

)4m+2
1

28m+4
.

For m ≥ 5 we choose a cusp form Fa of weight a = 4m + 10, i.e. we take
w = 4m − 7 in Proposition 4.1. Such a cusp form exists for all d ≥ 1 by
Proposition 3.1. Using the fact that β(−2d) ≤ β(−4) for any d ≥ 2 and the value

b(−4) = 24m+ 5
2 , we see that

β
(4m−7)
m,d < (1 +

1

4m− 7
)8m+3 5

8
√

2

(
πe

2m+ 1

)4m+2
28m+3 + 24m+ 5

2 + 1

28m+3
,

which is smaller than 1 if m ≥ 5. This proves Theorem 1.1 for m ≥ 5.
For m = 4 there exists a cusp form Fa of weight 4m+ 6 if d 6= 1, 2, 4, i.e. we

take w = 4m − 3. To see that β
(13)
4,d <

√
d we need check this only for d = 3

because b(−2d) < b(−6) for d > 3. One can do it by direct calculation.
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For m ≤ 3 we choose Fa of weight 4m + 2, i.e. we take w = 4m + 1. Such
a cusp form exists if d > 180 according to Proposition 3.1. For such d we see

that β(−2d) < 1. Then the obstruction constant CB(Õ
+

(L
(m)
2d )) is positive if

∣∣∣∣
B4m+2

B8m+2

∣∣∣∣ (1 +
1

4m+ 1
)8m+3(28m+3 + 2) <

√
d.

This inequality gives us the bound on d in Theorem 1.1.
This completes the proof of Theorem 1.1.

In the proof of Theorem 1.1 above we have seen that the (−2)-part of the branch
divisor forms the most important reflective obstruction to the extension of the

Õ
+

(L
(m)
2d )-invariant differential forms to a smooth compact model of F (m)

2d . Let

us consider the double covering SF (m)
2d of F (m)

2d for d > 1 determined by the
special orthogonal group:

SF (m)
2d = S̃O

+
(L

(m)
2d ) \D

L
(m)
2d

→ F (m)
2d .

Here the branch divisor does not contain the (−2)-part. Theorem 4.2 below

shows that there are only five exceptional varieties SF (m)
2d with m > 0 and

d > 1 that are possibly not of general type.

The variety SF (2)
2d can be interpreted as the moduli space of K3 surfaces of

degree 2d with spin structure: see [GHS2, §5]. The three-fold SF (0)
2d is the

moduli space of (1, t)-polarised abelian surfaces.

Theorem 4.2 The variety SF (m)
2d is of general type for any d > 1 if m ≥ 3. If

m = 2 then SF (2)
2d is of general type if d ≥ 3. If m = 1 then SF (1)

2d is of general
type if d = 5 or d ≥ 7.

Proof. The case m = 2 is [GHS2, Theorem 5.1], and the result for m ≥ 5 is
immediate from Theorem 1.1. For m = 1, 3 and 4 we can prove more than
what follows from Theorem 1.1.
The branch divisor of SF (m)

2d is defined by the reflections in vectors r ∈ L(m)
2d

such that −σr ∈ S̃O
+

(L
(m)
2d ), because the rank of L

(m)
2d is odd. Therefore

r2 = −2d, by Proposition 2.1.

If F ∈ M2k+1(S̃O
+

(L
(m)
2d )) is a modular form (note that the character det is

trivial), d > 1 and z ∈ D•
L

(m)
2d

is such that (z, r) = 0, then

F (z) = F (−σr(z)) = F (−z) = (−1)2k+1F (z).

Therefore any modular form of odd weight for S̃O
+

(L
(m)
2d ) vanishes on the

branch divisor.

Documenta Mathematica 13 (2008) 1–19



Hirzebruch-Mumford Proportionality and . . . 17

To apply the low-weight cusp form trick used in the proof of Theorem 1.1

one needs a cusp form of weight smaller than dimSF (m)
2d = 8m + 3. By

Proposition 3.1 there exists a cusp form F11+4m ∈ S11+4m(S̃O
+

(L
(m)
2d )). For

m ≥ 3 we have that 11 + 4m < 8m + 3. Therefore the differential forms

F k11+4mF(4m−8)k(dZ)k, for arbitrary F(4m−8)k ∈ M(4m−8)k(S̃O
+

(L
(m)
2d )), ex-

tend to the toroidal compactification of SF (m)
2d constructed in Theorem 1.3.

This proves the cases m ≥ 3 of the theorem.

For the case m = 1 we use a cusp form of weight 9 with respect to S̃O
+

(L
(1)
2d )

constructed in Proposition 3.1. 2

We can obtain some information also for some of the remaining cases.

Proposition 4.3 The spaces SF (1)
8 and SF (1)

12 have non-negative Kodaira di-
mension.

Proof. By Proposition 3.1 there are cusp forms of weight 11 for S̃O
+

(L
(1)
8 )

and S̃O
+

(L
(1)
12 ). The weight of these forms is equal to the dimension. By the

well-known observation of Freitag [F, Hilfssatz 2.1, Kap. III] these cusp forms

determine canonical differential forms on the 11-dimensional varieties SF (1)
8

and SF (1)
12 . 2

These varieties may perhaps have intermediate Kodaira dimension as it seems

possible that a reflective modular form of canonical weight exists for L
(1)
8 and

L
(1)
12 .

In [GHS2] we used pull-backs of the Borcherds modular form Φ12 on DII2,26 to
show that many moduli spaces of K3 surfaces are of general type. We can also
use Borcherds products to prove results in the opposite direction.

Theorem 4.4 The Kodaira dimension of F (m)
II is −∞ for m = 0, 1 and 2.

Proof. For m = 0 we can see immediately that the quotient is rational: a

straightforward calculation gives that F (0)
II = Γ\H1×H1 where H1 is the usual

upper half plane and Γ is the degree 2 extension of SL(2,Z)× SL(2,Z) by the
involution which interchanges the two factors. Compactifying this, we obtain
the projective plane P2.
For m = 1, 2 we argue differently. There are modular forms similar to Φ12 for
the even unimodular lattices II2,10 and II2,18. They are Borcherds products
Φ252 and Φ127 of weights 252 and 127 respectively, defined by the automorphic
functions

∆(τ)−1(τ)E4(τ)2 = q−1 + 504 + q(. . . )

and

∆(τ)−1(τ)E4(τ) = q−1 + 254 + q(. . . ),
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where q = exp(2πiτ) and ∆(τ) and E4(τ) are the Ramanujan delta function
and the Eisenstein series of weight 4 (see [B1]). The divisors of Φ252 and Φ127

coincide with the branch divisors of F (1)
II and F (2)

II defined by the (−2)-vectors.
Moreover Φ252 and Φ127 each vanishes with order one along the respective divi-
sor. Therefore if F10k(dZ)k (or F18k(dZ)k) defines a pluricanonical differential

form on a smooth model of a toroidal compactification of F (1)
II or F (2)

II , then
F10k (or F18k) is divisible by Φk252 (or Φk127), since F10k or F18k must vanish
to order at least k along the branch divisor. This is not possible, because the
quotient would be a holomorphic modular form of negative weight. 2

We have already remarked that the space F (2)
II is the moduli space of K3 sur-

faces with an elliptic fibration with a section. Using the Weierstrass equations
it is then clear that this moduli space is unirational (such K3 surfaces are
parametrised by a linear system in the weighted projective space P(4, 6, 1, 1)).
In fact it is even rational: see [Le].
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Abstract. The Euler characteristic of a finite category is defined and
shown to be compatible with Euler characteristics of other types of
object, including orbifolds. A formula is proved for the cardinality of
a colimit of sets, generalizing the classical inclusion-exclusion formula.
Both rest on a generalization of Rota’s Möbius inversion from posets
to categories.
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Introduction

We first learn of Euler characteristic as ‘vertices minus edges plus faces’, and
later as an alternating sum of ranks of homology groups. But Euler character-
istic is much more fundamental than these definitions make apparent, as has
been made increasingly explicit over the last fifty years; it is something akin
to cardinality or measure. More precisely, it is the fundamental dimensionless
quantity associated with an object.

The very simplest context for Euler characteristic is that of finite sets, and
of course the fundamental way to assign a quantity to a finite set is to count
its elements. Euler characteristic of topological spaces can usefully be thought
of as a generalization of cardinality; for instance, it obeys the same laws with
respect to unions and products.

1Partially supported by a Nuffield Foundation award NUF-NAL 04 and an EPSRC Ad-
vanced Research Fellowship
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In a more sophisticated context, integral geometry, Euler characteris-
tic also emerges clearly as the fundamental dimensionless invariant. A sub-
set of Rn is polyconvex if it is a finite union of compact convex subsets.
Let Vn be the vector space of finitely additive measures, invariant under
Euclidean transformations, defined on the polyconvex subsets of Rn. Had-
wiger’s Theorem [KR] states that dimVn = n + 1. (See also [Sc2], and [MS]
for an important application to materials science.) A natural basis con-
sists of one d-dimensional measure for each d ∈ {0, . . . , n}: for instance,
{Euler characteristic, perimeter, area} when n = 2. Thus, up to scalar multipli-
cation, Euler characteristic is the unique dimensionless measure on polyconvex
sets.

Schanuel [Sc1] showed that for a certain category of polyhedra, Euler char-
acteristic is determined by a simple universal property, making its fundamental
nature transparent.

All of the above makes clear the importance of defining and understanding
Euler characteristic in new contexts. Here we do this for finite categories.

Categories are often viewed as large structures whose main purpose is
organizational. However, some different viewpoints will be useful here. A
combinatorial point of view is that a category is a directed graph (objects and
arrows) equipped with some extra structure (composition and identities). We
will concentrate on finite categories (those with only finitely many objects and
arrows), which also suits the combinatorial viewpoint, and the composition and
identities will play a surprisingly minor role.

A topological point of view is that a category can be understood through its
classifying space. This is formed by starting with one 0-cell for each object, then
gluing in one 1-cell for each arrow, one 2-cell for each commutative triangle,
and so on.

Both of these points of view will be helpful in what follows. The topological
perspective is heavily used in the sequel [BL] to this paper.

With topology in mind, one might imagine simply transporting the defini-
tion of Euler characteristic from spaces to categories via the classifying space
functor, as with other topological invariants: given a category A, define χ(A)
as the Euler characteristic of the classifying space BA. The trouble with this
is that the Euler characteristic of BA is not always defined. Below we give a
definition of the Euler characteristic of a category that agrees with the topo-
logical Euler characteristic when the latter exists, but is also valid in a range of
situations when it does not. It is a rational number, not necessarily an integer.

A version of the definition can be given very succinctly. Let A be a finite
category; totally order its objects as a1, . . . , an. Let Z be the matrix whose
(i, j)-entry is the number of arrows from ai to aj . Let M = Z−1, assuming
that Z is invertible. Then χ(A) is the sum of the entries of M . Of course, the
reader remains to be convinced that this definition is the right one.

The foundation on which this work rests is a generalization of Möbius–Rota
inversion (§1). Rota developed Möbius inversion for posets [R]; we develop it
for categories. (A poset is viewed throughout as a category in which each hom-
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set has at most one element: the objects are the elements of the poset, and
there is an arrow a - b if and only if a ≤ b.) This leads, among other
things, to a ‘representation formula’: given any functor known to be a sum of
representables, the formula tells us the representation explicitly. This in turn
can be used to solve enumeration problems, in the spirit of Rota’s paper.

However, the main application of this generalized Möbius inversion is to
the theory of the Euler characteristic of a category (§2). We actually use a dif-
ferent definition than the one just given, equivalent to it when Z is invertible,
but valid for a wider class of categories. It depends on the idea of the ‘weight’
of an object of a category. The definition is justified in two ways: by showing
that it enjoys the properties that the name would lead one to expect (behaviour
with respect to products, fibrations, etc.), and by demonstrating its compati-
bility with Euler characteristics of other types of structure (groupoids, graphs,
topological spaces, orbifolds). There is an accompanying theory of Lefschetz
number.

The technology of Möbius inversion and weights also solves another prob-
lem: what is the cardinality of a colimit? For example, the union of a family
of sets and the quotient of a set by a free action of a group are both examples
of colimits of set-valued functors, and there are simple formulas for their cardi-
nalities. (In the first case it is the inclusion-exclusion formula.) We generalize,
giving a formula valid for any shape of colimit (§3).

Rota and his school proved a large number of results on Möbius inversion
for posets. As we will see repeatedly, many are not truly order-theoretic: they
are facts about categories in general. In particular, important theorems in
Rota’s original work [R] generalize from posets to categories (§4).

(The body of work on Möbius inversion in finite lattices is not, however, so
ripe for generalization: a poset is a lattice just when the corresponding category
has products, but a finite category cannot have products unless it is, in fact, a
lattice.)

Other authors have considered different notions of Möbius inversion for cat-
egories; notably, there is that developed by Content, Lemay and Leroux [CLL]
and independently by Haigh [H]. This generalizes both Rota’s notion for posets
and Cartier and Foata’s for monoids [CF]. (Here a monoid is viewed as a one-
object category.) The relation between their approach and ours is discussed
in §4. Further approaches, not discussed here, were taken by Dür [D] and
Lück [Lü].

In the case of groupoids, our Euler characteristic of categories agrees with
Baez and Dolan’s groupoid cardinality [BD]. The cardinality of the groupoid
of finite sets and bijections is e = 2.718 . . ., and there are connections to ex-
ponential generating functions and the species of Joyal [J, BLL]. Paré has a
definition of the cardinality of an endofunctor of the category of finite sets [Pa];
I do not know whether this can be related to the definition here of the Lefschetz
number of an endofunctor.

The view of Euler characteristic as generalized cardinality is promoted
in [Sc1], [BD] and [Pr1]. The appearance of a non-integral Euler characteristic
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is nothing new: see for instance Wall [Wl], Bass [Ba] and Cohen [Co], and the
discussion of orbifolds in §2.

Ultimately it would be desirable to have the Euler characteristic of cate-
gories described by a universal property, as Schanuel did for polyhedra [Sc1].
For this, it may be necessary to relax the constraints of the present work, where
for simplicity our categories are required to be finite and the coefficients are
required to lie in the ring of rational numbers. Rather than asking, as below,
‘does this category have Euler characteristic (in Q)?’, we should perhaps ask ‘in
what rig (semiring) does the Euler characteristic of this category lie?’ However,
this is not pursued here.

Acknowledgements I thank John Baez, Andy Baker, Nick Gurski, Ieke
Moerdijk, Urs Schreiber, Ivan Smith and Stephen Watson for inspiration
and useful discussions. I am grateful to the Centre de Recerca Matemàtica,
Barcelona, for their hospitality. I also thank the very helpful referee.

1 Möbius inversion

We consider a finite category A, writing ob A for its set of objects and, when a
and b are objects, A(a, b) for the set of maps from a to b.

Definition 1.1 We denote by R(A) the Q-algebra of functions ob A ×
ob A - Q, with pointwise addition and scalar multiplication, multiplica-
tion defined by

(θφ)(a, c) =
∑

b∈A

θ(a, b)φ(b, c)

(θ, φ ∈ R(A), a, c ∈ A), and the Kronecker δ as unit.
The zeta function ζA = ζ ∈ R(A) is defined by ζ(a, b) = |A(a, b)|. If

ζ is invertible in R(A) then A is said to have Möbius inversion; its inverse
µA = µ = ζ−1 is the Möbius function of A.

If a total ordering is chosen on the n objects of A then R(A) can be
regarded as the algebra of n × n matrices over Q. The defining equations of
the Möbius function are

∑

b

µ(a, b)ζ(b, c) = δ(a, c) =
∑

b

ζ(a, b)µ(b, c)

for all a, c ∈ A. By finite-dimensionality, µζ = δ if and only if ζµ = δ.
The definitions above could be made for directed graphs rather than cat-

egories, since they do not refer to composition. However, this generality seems
to be inappropriate. For example, the definition of Möbius inversion will lead to
a definition of Euler characteristic, and if we use graphs rather than categories
then we obtain something other than ‘vertices minus edges’. Proposition 2.10
clarifies this point.

A different notion of Möbius inversion for categories has been considered;
see §4.
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Examples 1.2 a. Any finite poset A has Möbius inversion; this special case
was investigated by Rota [R] and others. We may compute µ(a, c) by
induction on the number of elements between a and c:

µ(a, c) = δ(a, c)−
∑

b:a≤b<c
µ(a, b).

In particular, µ(a, c) = 0 unless a ≤ c, and µ(a, a) = 1 for all a. See also
Theorem 1.4 and Corollary 1.5.

b. Let M be a finite monoid, regarded as a category with unique object ⋆.
(The arrows of the category are the elements of the monoid, and composi-
tion in the category is multiplication in the monoid.) Then ζ(⋆, ⋆) = |M |,
so µ(⋆, ⋆) = 1/|M |.

c. Let N ≥ 0. Write Dinj
N for the category with objects 0, . . . , N whose maps

a - b are the order-preserving injections {1, . . . , a} - {1, . . . , b}.
Then ζ(a, b) =

(
b
a

)
, and it is easily checked that µ(a, b) = (−1)b−a

(
b
a

)
. If

we use surjections instead of injections then ζ(a, b) =
(
a−1
b−1

)
and µ(a, b) =

(−1)a−b
(
a−1
b−1

)
.

A category with Möbius inversion must be skeletal (isomorphic objects
must be equal), for otherwise the matrix of ζ would have two identical rows.
The property of having Möbius inversion is not, therefore, invariant under
equivalence of categories.

In general we cannot hope to just spot the Möbius function of a category.
In 1.3–1.7 we make tools for computing Möbius functions. These cover large
classes of categories, although not every finite skeletal category has Möbius
inversion (1.11(d), (e)).

Let n ≥ 0, let A be a category or a directed graph, and let a, b ∈ A. An
n-path from a to b is a diagram

a = a0
f1- a1

f2- · · · fn- an = b (1)

in A. It is a circuit if a = b, and (when A is a category) nondegenerate if no fi
is an identity.

Lemma 1.3 The following conditions on a finite category A are equivalent:

a. every idempotent in A is an identity

b. every endomorphism in A is an automorphism

c. every circuit in A consists entirely of isomorphisms.

Proof (a) ⇒ (b) follows from the fact that if f is an element of a finite
monoid then some positive power of f is idempotent. The other implications
are straightforward. �
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Theorem 1.4 Let A be a finite skeletal category in which the only idempotents
are identities. Then A has Möbius inversion given by

µ(a, b) =
∑

(−1)n/|Aut(a0)| · · · |Aut(an)|

where Aut(a) is the automorphism group of a ∈ A and the sum runs over all
n ≥ 0 and paths (1) for which a0, . . . , an are all distinct.

Proof First observe that for a path (1) in A, if a0 6= a1 6= · · · 6= an then the
ais are all distinct. Indeed, if 0 ≤ i < j ≤ n and ai = aj then the sub-path
running from ai to aj is a circuit, so by Lemma 1.3, fi+1 is an isomorphism,
and by skeletality, ai = ai+1.

Now let a, c ∈ A and define µ by the formula above. We have

∑

b∈A

µ(a, b)ζ(b, c) = µ(a, c)ζ(c, c) +
∑

b:b6=c
µ(a, b)ζ(b, c)

= |Aut(c)|



µ(a, c) +

∑

b:b6=c, g∈A(b,c)

µ(a, b)/|Aut(c)|





= |Aut(c)|
{
µ(a, c) +

∑
(−1)n/|Aut(a0)| · · · |Aut(an)||Aut(c)|

}
,

where the last sum is over all n ≥ 0 and paths

a = a0
f1- · · · fn- an = b

g- c

such that a0 6= · · · 6= an 6= c. By definition of µ, the term in braces collapses
to 0 if a 6= c and to 1/|Aut(a)| if a = c. Hence

∑
b µ(a, b)ζ(b, c) = δ(a, c), as

required. �

Corollary 1.5 Let A be a finite skeletal category in which the only endomor-
phisms are identities. Then A has Möbius inversion given by

µ(a, b) =
∑

n≥0

(−1)n|{nondegenerate n-paths from a to b}| ∈ Z.

�

When A is a poset, this is Philip Hall’s theorem (Proposition 3.8.5 of [St]
and Proposition 6 of [R]).

An epi-mono factorization system (E ,M) on a category A consists of a
class E of epimorphisms in A and a classM of monomorphisms in A, satisfying
axioms [FK]. The axioms imply that every map f in A can be expressed as me
for some e ∈ E and m ∈ M, and that this factorization is essentially unique:
the other pairs (e′,m′) ∈ E ×M satisfying m′e′ = f are those of the form
(ie,mi−1) where i is an isomorphism. Typical examples are the categories of
sets, groups and rings, with E as all surjections and M as all injections.
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Theorem 1.6 Let A be a finite skeletal category with an epi-mono factorization
system (E ,M). Then A has Möbius inversion given by

µ(a, b) =
∑

(−1)n/|Aut(a0)| · · · |Aut(an)|

where the sum is over all n ≥ r ≥ 0 and paths (1) such that a0, . . . , ar are
distinct, ar, . . . , an are distinct, f1, . . . , fr ∈M, and fr+1, . . . , fn ∈ E.

Proof The objects of A and the arrows in E determine a subcategory of A,
also denoted E ; it satisfies the hypotheses of Theorem 1.4 and therefore has
Möbius inversion. The same is true of M.

Any element α ∈ Qob A =
∏
a∈A Q gives rise to an element of R(A), also

denoted α and defined by α(a, b) = δ(a, b)α(b). This defines a multiplication-
preserving map from Qob A to R(A), where the multiplication on Qob A is coor-
dinatewise. We have elements |Aut| and 1/|Aut| of Qob A, where, for instance,
|Aut|(a) = |Aut(a)|.

By the essentially unique factorization property, ζA = ζE · 1
|Aut| ·ζM. Hence

A has Möbius function µA = µM · |Aut| · µE . Theorem 1.4 applied to µM and
µE then gives the formula claimed. �

Example 1.7 Let N ≥ 0 and write FN for the full subcategory of Set with
objects 1, . . . , N , where n denotes a (chosen) n-element set. Let E be the set
of surjections in FN and M the set of injections; then (E ,M) is an epi-mono
factorization system. Theorem 1.6 gives a formula for the inverse of the matrix
(ij)i,j . For instance, take N = 3; then µ(1, 2) may be computed as follows:

Paths Contribution to sum

1-
2- 2 −2/1!2! = −1

1-
3- 3

6-- 2 3 · 6/1!3!2! = 3/2

1-
2- 2-

6- 3
6-- 2 −2 · 6 · 6/1!2!3!2! = −3

Here ‘1-
2- 2’ means that there are 2 monomorphisms from 1 to 2, ‘3

6-- 2’
that there are 6 epimorphisms from 3 to 2, etc. Hence µ(1, 2) = −1+3/2−3 =
−5/2.

One of the uses of the Möbius function is to calculate Euler character-
istic (§2). Another is to calculate representations. Specifically, suppose that
we have a Set-valued functor known to be familially representable, that is, a
coproduct of representables. The Yoneda Lemma tells us that the family of
representing objects is unique (up to isomorphism). But if we have Möbius
inversion, there is actually a formula for it:

Proposition 1.8 Let A be a finite category with Möbius inversion and let
X : A - Set be a functor satisfying

X ∼=
∑

a

r(a)A(a,−)
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for some natural numbers r(a) (a ∈ A). Then

r(a) =
∑

b

|X(b)|µ(b, a)

for all a ∈ A.

In the first formula,
∑

denotes coproduct of Set-valued functors.

Proof Follows from the definition of Möbius function. �

In the spirit of Rota’s programme, this can be applied to solve counting
problems, as illustrated by the following standard example.

Example 1.9 A derangement is a permutation without fixed points. We cal-
culate dn, the number of derangements of n letters.

Fix N ≥ 0. Take the category Dinj
N of Example 1.2(c) and the functor

S : Dinj
N

- Set defined as follows: S(n) is Sn, the underlying set of the nth

symmetric group, and if f ∈ Dinj
N (m,n) and τ ∈ Sm, the induced permutation

Sf (τ) ∈ Sn acts as τ on the image of f and fixes all other points. Any permu-
tation consists of a derangement together with some fixed points, so there is
an isomorphism of sets

Sn ∼=
∑

m

dmDinj
N (m,n)

where
∑

denotes disjoint union. Then by Proposition 1.8 and Example 1.2(c),

dn =
∑

m

|Sm|µ(m,n) =
∑

m

m!(−1)n−m
(
n

m

)
= n!

(
1

0!
− 1

1!
+ · · ·+ (−1)n

n!

)
.

To set up the theory of Euler characteristic we will not need the full
strength of Möbius invertibility; the following suffices.

Definition 1.10 Let A be a finite category. A weighting on A is a function
k• : ob A - Q such that for all a ∈ A,

∑

b

ζ(a, b)kb = 1.

A coweighting k• on A is a weighting on Aop.

Note that A has Möbius inversion if and only if it has a unique weighting,
if and only if it has a unique coweighting; they are given by

ka =
∑

b

µ(a, b), kb =
∑

a

µ(a, b).
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Examples 1.11 a. Let L be the category

b1

a

-

b2.
-

Then the unique weighting k• on L is (ka, kb1 , kb2) = (−1, 1, 1).

b. Let M be a finite monoid, regarded as a category with unique object ⋆.
Again there is a unique weighting k•, with k⋆ = 1/|M |.

c. If A has a terminal object 1 then δ(−, 1) is a weighting on A.

d. A finite category may admit no weighting at all. (This can happen even
when the category is Cauchy-complete, in the sense defined in the Ap-
pendix.) An example is the category A with objects and arrows

a1 a2

a3

a4

--��
HHHHHHHjHHHHHHHY ���������������*

?

@
@

@
@

@
@

@R

�
�

�
�

�
�

�	

�
�

�
�

�
�

�	

jj ��

K

�

f12,g12

f21,g21f13

f31

f23

f32

f34
f14 f24

g24

1f11 1 f22

f44=1

f33=1

where if ai
p- aj

q- ak and neither p nor q is an identity then
q ◦ p = fik.

e. A category may certainly have more than one weighting: for instance,
if A is the category consisting of two objects and a single isomorphism
between them, a weighting on A is any pair of rational numbers whose sum
is 1. But even a skeletal category may admit more than one weighting.
Indeed, the full subcategories B = {a1, a2} and C = {a1, a2, a3} of the
category A of the previous example both have a 1-dimensional space of
weightings.

In contrast to Möbius invertibility, the property of admitting at least one
weighting is invariant under equivalence:

Lemma 1.12 Let A and B be equivalent finite categories. Then A admits a
weighting if and only if B does.
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Proof Let F : A - B be an equivalence. Given a ∈ A, write Ca for the
number of objects in the isomorphism class of a. Take a weighting l• on B and
put ka = (

∑
b:b∼=F (a) l

b)/Ca. I claim that k• is a weighting on A.
To prove this, choose representatives a1, . . . , am of the isomorphism classes

of objects of A; then F (a1), . . . , F (am) are representatives of the isomorphism
classes of objects of B. Let a′ ∈ A. For any a ∈ A, the numbers ζ(a′, a) and ka

depend only on the isomorphism class of a. Hence

∑

a∈A

ζ(a′, a)ka =

m∑

i=1

∑

a:a∼=ai

ζ(a′, a)ka

=

m∑

i=1

Caiζ(a
′, ai)k

ai

=
m∑

i=1

∑

b:b∼=F (ai)

ζ(a′, ai)l
b

=
∑

b∈B

ζ(F (a′), b)lb

= 1,

as required. �

Weightings and Möbius functions are compatible with sums and products
of categories. We write

∑
i∈I Ai for the sum of a family (Ai)i∈I of categories,

also called the coproduct or disjoint union and written
∐
i∈I Ai. The following

lemma is easily verified.

Lemma 1.13 Let n ≥ 0 and let A1, . . . ,An be finite categories.

a. If each Ai has a weighting k•
i then

∑
i Ai has a weighting l• given by

la = kai whenever a ∈ Ai. If each Ai has Möbius inversion then so does∑
i Ai, where for a ∈ Ai and b ∈ Aj,

µ∑Ak
(a, b) =

{
µAi(a, b) if i = j
0 otherwise.

b. If each Ai has a weighting k•
i then

∏
i Ai has a weighting l• given by

l(a1,...,an) = ka1
1 · · · kan

n . If each Ai has Möbius inversion then so does∏
i Ai, with

µ∏Ai
((a1, . . . , an), (b1, . . . , bn)) = µA1(a1, b1) · · ·µAn(an, bn).

�

Thinking of R(A) as a matrix algebra (as described after Definition 1.1),
the part of (a) concerning Möbius inversion merely says that the inverse of a
block sum of matrices is the block sum of the inverses.
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To every Set-valued functor X there is assigned a ‘category of elements’
E (X). (See the Appendix for a review of definitions.) This is also true of
functors X taking values in Cat, the category of small categories and functors,
even when X is only a weak or ‘pseudo’ functor. We say that a Set- or Cat-
valued functor X is finite if E (X) is finite. When the domain category A is
finite, this just means that each set or category X(a) is finite.

Lemma 1.14 Let A be a finite category and X : A - Cat a finite weak
functor. Suppose that we have weightings on A and on each X(a), all written
k•. Then there is a weighting on E (X) defined by k(a,x) = kakx (a ∈ A,
x ∈ X(a)).

Proof Let a ∈ A and x ∈ X(a). Then

∑

(b,y)∈E(X)

ζ((a, x), (b, y))kbky =
∑

b

∑

f∈A(a,b)


 ∑

y∈X(b)

ζ((X(f))x, y)ky


 kb

=
∑

b

ζ(a, b)kb = 1.

�

This result will be used to show how Euler characteristic behaves with
respect to fibrations.

2 Euler characteristic

In this section, the Euler characteristic of a category is defined and its basic
properties are established. The definition is justified by a series of propositions
showing its compatibility with the Euler characteristics of other types of object:
graphs, topological spaces, and orbifolds. There follows a brief discussion of
the Lefschetz number of an endofunctor.

Lemma 2.1 Let A be a finite category, k• a weighting on A, and k• a coweight-
ing on A. Then

∑
a k

a =
∑

a ka.

Proof

∑

b

kb =
∑

b

(∑

a

kaζ(a, b)

)
kb =

∑

a

ka

(∑

b

ζ(a, b)kb

)
=
∑

a

ka.

�

If A admits a weighting but no coweighting then
∑

a k
a may depend on

the weighting k• chosen: see Example 4.8 of [BL].
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Definition 2.2 A finite category A has Euler characteristic if it admits both
a weighting and a coweighting. Its Euler characteristic is then

χ(A) =
∑

a

ka =
∑

a

ka ∈ Q

for any weighting k• and coweighting k•.

With the Gauss–Bonnet Theorem in mind, one might think of weight as
an analogue of curvature: summed over the whole structure, it yields the Euler
characteristic.

Any category A with Möbius inversion has Euler characteristic, χ(A) =∑
a,b µ(a, b), as in the Introduction.

Examples 2.3 a. If A is a finite discrete category then χ(A) = |ob A|.

b. If M is a finite monoid then χ(M) = 1/|M |. (We continue to view
monoids as one-object categories.) When M is a group, this can be
understood as follows: M acts freely on the contractible space EM , which
has Euler characteristic 1; one would therefore expect the quotient space
BM to have Euler characteristic 1/|M |. (Compare [Wl] and [Co].)

c. By Corollary 1.5, a finite poset A has Euler characteristic∑
n≥0(−1)ncn ∈ Z, where cn is the number of chains in A of length

n. (See [Pu], [Fo], [R] and [Fa] for connections with poset homology,
and §4 for further comparisons with the Rota theory.) More generally,
the results of §1 lead to formulas for the Euler characteristic of any fi-
nite category that either has no non-trivial idempotents or admits an
epi-mono factorization system.

For example, let A be a category with no non-trivial idempotents. Let
B be a skeleton of A, that is, a full subcategory containing exactly one
object from each isomorphism class of A. Theorem 1.4 tells us that B has
Möbius inversion and gives us a formula for its Möbius function, hence
for its Euler characteristic. Proposition 2.4(b) below then implies that A
has Euler characteristic, equal to that of B.

d. By 1.11(c) and its dual, if A has Euler characteristic and either an initial
or a terminal object then χ(A) = 1; moreover, if A has both an initial and
a terminal object then it does have Euler characteristic. This applies, for
instance, to the category C of 1.11(e). Hence having Möbius inversion
is a strictly stronger property than having Euler characteristic, even for
skeletal categories.

e. Euler characteristic is not invariant under Morita equivalence. Recall
that categories A and B are Morita equivalent if their presheaf categories
[Aop,Set] and [Bop,Set] are equivalent; see [Bo], for instance. Equiva-
lent categories are Morita equivalent, but not conversely. For instance,
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take A to be the two-element monoid consisting of the identity and an
idempotent, and B to be the category generated by objects and arrows

b1
i-�
s

b2

subject to si = 1. Then A and B are Morita equivalent but not equivalent.
Moreover, their Euler characteristics are different: χ(A) = 1/2 by (b), but
χ(B) = 1 by (d).

Clearly χ(Aop) = χ(A), one side being defined when the other is. The
next few propositions set out further basic properties of Euler characteristic.

Proposition 2.4 Let A and B be finite categories.

a. If there is an adjunction A -� B and both A and B have Euler charac-
teristic then χ(A) = χ(B).

b. If A ≃ B then A has Euler characteristic if and only if B does, and in
that case χ(A) = χ(B).

In (a), it may be that one category has Euler characteristic but the other
does not: consider, for instance, the unique functor from the category A
of 1.11(d) to the terminal category.

Proof

a. Suppose that A
F-�
G

B with F ⊣ G. Then ζ(F (a), b) = ζ(a,G(b)) for all

a ∈ A, b ∈ B; write ζ(a, b) for their common value. Take a coweighting k•

on A and a weighting k• on B. Then
∑

a ka =
∑
b k

b by the same proof
as that of Lemma 2.1.

b. The first statement follows from Lemma 1.12 and its dual, and the second
from (a). �

Example 2.5 If B is a category with an initial or a terminal object then
χ(AB) = χ(A) for all A, provided that both Euler characteristics exist. In-
deed, if 0 is initial in B then evaluation at 0 is right adjoint to the diagonal
functor A - AB.

Proposition 2.6 Let n ≥ 0 and let A1, . . . ,An be finite categories that all
have Euler characteristic. Then

∑
i Ai and

∏
i Ai have Euler characteristic,

with

χ

(∑

i

Ai

)
=
∑

i

χ(Ai), χ

(∏

i

Ai

)
=
∏

i

χ(Ai).

Proof Follows from Lemma 1.13. �
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Example 2.7 Let A be a finite groupoid. Choose one object ai from each
connected-component of A, and write Gi for the automorphism group of ai.
Then A ≃ ∑iGi, so by 2.3(b), 2.4(b) and 2.6, we have χ(A) =

∑
i 1/|Gi|.

This is what Baez and Dolan call the cardinality of the groupoid A [BD].

One might also ask whether χ(AB) = χ(A)χ(B). By 2.3(d), 2.5 and 2.6, the
answer is yes if every connected-component of B has an initial or a terminal
object (and all the Euler characteristics exist). But in general the answer is
no: for instance, take A to be the 2-object discrete category and B to be the
category of 3.4(b). See also Propp [Pr2], Speed [Sp], and §5, 6 of Rota [R].

An important property of topological Euler characteristic is its behaviour
with respect to fibre bundles (or more generally, fibrations). Take a space
A with connected-components A1, . . . , An, take a fibre bundle E over A, and
write Xi for the fibre in the ith component. Then under suitable hypotheses,
χ(E) =

∑
i χ(Ai)χ(Xi).

There is an analogy between topological fibrations and categorical fibra-
tions, which are functors satisfying a certain condition. (In this discussion I
will use ‘fibration’ to mean what is usually called an opfibration; the differ-
ence is inessential.) The crucial property of fibrations of categories is that for
any category A, the fibrations with codomain A correspond naturally to the
weak functors A - Cat. Given a fibration P : E - A, define a functor
X : A - Cat by taking X(a), for each a ∈ A, to be the fibre over a: the
subcategory of E whose objects e are those satisfying P (e) = a and whose
arrows f are those satisfying P (f) = 1a. Conversely, given a weak functor
X : A - Cat, the corresponding fibration is the category of elements E (X)
together with the projection functor to A. For details, see [Bo], for instance.

The formula for the Euler characteristic of a fibre bundle has a categorical
analogue. Since in general the fibres of a fibration over A vary within each
connected-component of A, the formula for categories is more complicated. We
state the result in terms of Cat-valued functors rather than fibrations; the
proof follows from Lemma 1.14.

Proposition 2.8 Let A be a finite category and X : A - Cat a finite weak
functor. Let k• be a weighting on A and suppose that E (X) and each X(a)
have Euler characteristic. Then

χ(E (X)) =
∑

a

kaχ(X(a)).

�

Examples 2.9 a. When X is a finite Set-valued functor, χ(E (X)) =∑
a k

a|X(a)|. For example, let M be a finite monoid. A finite functor
X : M - Set is a finite set S with a left M -action. Following [BD],
we write E (X) as S//M , the lax quotient of S by M . (Its objects are
the elements of S, and the arrows s - s′ are the elements m ∈ M
satisfying ms = s′.) Then χ(S//M) = |S|/|M |.
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b. Define a sequence (Sn)n≥−1 of categories inductively as follows. S−1 is
empty. Let L be the category of 1.11(a); define X : L - Cat by
X(a) = Sn−1 and X(b1) = X(b2) = 1 (the terminal category); put
Sn = E (X). Then explicitly, Sn is the poset

c0 - c1 - · · · - cn

d0
-

-

d1
-

-

- -
· · · -

-

dn.

-

(If we take the usual expression of the topological n-sphere Sn as a CW-
complex with two cells in each dimension ≤ n then Sn is the set of cells
ordered by inclusion; Sn is the classifying space of Sn.)

Each Sn is a poset, so has Euler characteristic. By Proposition 2.8,

χ(Sn) = −χ(Sn−1) + 2χ(1) = 2− χ(Sn−1)

for all n ≥ 0; also χ(S−1) = 0. Hence χ(Sn) = 1 + (−1)n.

The next three propositions show how the Euler characteristics of various
types of structure are compatible with that of categories.

First, Euler characteristic of categories extends Euler characteristic of
graphs. More precisely, let G = (G1

-- G0) be a directed graph, where
G1 is the set of edges and G0 the set of vertices. We will show that if F (G)
is the free category on G then χ(F (G)) = |G0| − |G1|. This only makes sense
if F (G) is finite, which is the case if and only if G is finite and circuit-free;
then F (G) is also circuit-free. (A directed graph is circuit-free if it contains no
circuits of non-zero length, and a category is circuit-free if every circuit consists
entirely of identities.)

Proposition 2.10 Let G be a finite circuit-free directed graph. Then χ(F (G))
is defined and equal to |G0| − |G1|.

Proof Given a, b ∈ G0, write ζG(a, b) for the number of edges from a to b
in G. Then ζF (G) =

∑
n≥0 ζ

n
G in R(F (G)), the sum being finite since G is

circuit-free. Hence µF (G) = δ − ζG, and the result follows. �

This suggests that in the present context, it is more fruitful to view a
graph as a special category (via F ) than a category as a graph with structure.
Compare the comments after Definition 1.1.

The second result compares the Euler characteristics of categories and
topological spaces. We show that under suitable hypotheses, χ(BA) = χ(A),
where BA is the classifying space of a category A (that is, the geometric re-
alization of its nerve NA). To ensure that BA has Euler characteristic, we
assume that NA contains only finitely many nondegenerate simplices; then

χ(BA) =
∑

n≥0

(−1)n|{nondegenerate n-simplices in NA}|.

Documenta Mathematica 13 (2008) 21–49



36 Tom Leinster

An n-simplex in NA is just an n-path in A, and is nondegenerate in the sense
of simplicial sets if and only if it is nondegenerate as a path, so A must contain
only finitely many nondegenerate paths. This is the case if and only if A is
circuit-free, if and only if A is skeletal and contains no endomorphisms except
identities. So by Corollary 1.5, we have:

Proposition 2.11 Let A be a finite skeletal category containing no endomor-
phisms except identities. Then χ(BA) is defined and equal to χ(A). �

For the final compatibility result, consider the following schematic dia-
grams:

{triangulated manifolds}

{posets}
?

χ
- Z

χ

-

{triangulated orbifolds}

{categories}
?

χ
- Q.

χ

-

On the left, we start with a compact manifold M equipped with a finite trian-
gulation. As shown in §3.8 of [St], the topological Euler characteristic of M is
equal to the Euler characteristic of the poset of simplices in the triangulation,
ordered by inclusion. We generalize this result from manifolds to orbifolds,
which entails replacing posets by categories and Z by Q.

Let M be a compact orbifold equipped with a finite triangulation.
(See [MP] for definitions.) The simplices in the triangulation form a poset
P , and if p ∈ P is a d-dimensional simplex then ↓ p = {q ∈ P | q ≤ p} is
isomorphic to the poset Pd+1 of nonempty subsets of {1, . . . , d+1}, with p ∈↓p
corresponding to {1, . . . , d + 1} ∈ Pd+1. Every p ∈ P has a stabilizer group
G(p), and

χ(M) =
∑

p∈P
(−1)dim p/|G(p)|.

On the other hand, the groups G(p) fit together to form a complex of finite
groups on P op, that is, a weak functor G : P op - Cat taking values in finite
groups (regarded as one-object categories) and injective homomorphisms; see §3
of [M]. This gives a finite category E (G). For example, when M is a manifold,
each group G(p) is trivial and E (G) ∼= P .

The following result is joint with Ieke Moerdijk.

Proposition 2.12 Let M be a compact orbifold equipped with a finite trian-
gulation. Let G be the resulting complex of groups. Then χ(E (G)) is defined
and equal to χ(M).

Proof Every arrow in E (G) is monic, so by Theorem 1.4, E (G) has Euler
characteristic. Moreover, P is a finite poset, so has a unique coweighting k•,
and χ(E (G)) =

∑
p kp/|G(p)| by the dual of Proposition 2.8.

The coweight of p in P is equal to the coweight of p in ↓p ∼= Pd+1, where
d = dim p. The unique coweighting k• on Pd+1 is given by kJ = (−1)|J|−1, so
kp = (−1)(d+1)−1 = (−1)dim p. The result follows. �
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We now turn to the theory of Lefschetz number. Let F : A - A be an
endofunctor of a category A. The category FixF has as objects the (strict)
fixed points of F , that is, the objects a ∈ A such that F (a) = a; a map a -
b in FixF is a map f : a - b in A such that F (f) = f .

Definition 2.13 Let F be an endofunctor of a finite category. Its Lefschetz
number L(F ) is χ(FixF ), when this exists.

The Lefschetz number is, then, the sum of the (co)weights of the fixed
points. This is analogous to the standard Lefschetz fixed point formula,
(co)weight playing the role of index. The following results further justify the
definition.

Proposition 2.14 Let A be a finite category.

a. L(1A) = χ(A), one side being defined if and only if the other is.

b. If B is another finite category and A
F-�
G

B are functors then L(GF ) =

L(FG), one side being defined if and only if the other is.

c. Let F : A - A and write BF : BA - BA for the induced map on
the classifying space of A. If A is skeletal and contains no endomorphisms
except identities then L(F ) = L(BF ), with both sides defined.

In the special case that A is a poset, part (c) is Theorem 1.1 of [BB].

Proof For (a) and (b), just note that Fix 1A
∼= A and FixGF ∼= FixFG.

For (c), recall from the proof of Proposition 2.11 that NA has only finitely
many nondegenerate simplices; then

L(BF ) =
∑

n≥0

(−1)n|{nondegenerate n-simplices in NA fixed by NF}|

=
∑

n≥0

(−1)n|{nondegenerate n-paths in FixF}|

= L(F ),

using Corollary 1.5 in the last step. �

An algebra for an endofunctor F of A is an object a ∈ A equipped with
a map h : F (a) - a. With the evident structure-preserving morphisms,
algebras for F form a category AlgF . There is a dual notion of coalgebra
(where now h : a - F (a)), giving a category CoalgF .

Proposition 2.15 Let F be an endofunctor of a finite skeletal category A
containing no endomorphisms except identities. Then χ(AlgF ) = L(F ) =
χ(CoalgF ), with all three terms defined.
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Proof First observe that A is circuit-free. Now, the inclusion FixF -
AlgF has a right adjoint R: given an algebra (a, h), circuit-freeness implies
that FN (a) is a fixed point for all sufficiently large N , and R(a, h) = FN (a).
The Euler characteristics of AlgF and FixF exist, by Corollary 1.5, and are
equal, by Proposition 2.4(a). The statement on coalgebras follows by duality.

�

For example, if f is an endomorphism of a finite poset A then the sub-
posets

{a ∈ A | f(a) ≤ a}, {a ∈ A | f(a) = a}, {a ∈ A | f(a) ≥ a}

all have the same Euler characteristic.
The theory of Euler characteristic presented here can be extended in at

least two directions.
First, we can relax the finiteness assumption. For instance, the category

of finite sets and bijections should have Euler characteristic
∑∞

n=0 1/|Sn| = e,
as observed in [BD]. See the remarks after Corollary 4.3.

Second, the Euler characteristic of categories is defined in terms of the
cardinality of finite sets, and the theory can be generalized to V-enriched cate-
gories whenever there is a suitable notion of cardinality or Euler characteristic
of objects of V . For example, V might be the category of finite-dimensional
vector spaces, with dimension playing the role of cardinality, and this leads to
an Euler characteristic for finite linear categories. For another example, a 0-
category is a set and an n-category is a category enriched in (n− 1)-categories;
iterating, we obtain an Euler characteristic for finite n-categories. In particular,
if Sn is the n-category consisting of two parallel n-cells then χ(Sn) = 1+(−1)n.

3 The cardinality of a colimit

The main theorem of this section generalizes the formulas

|X ∪ Y | = |X |+ |Y | − |X ∩ Y |, |S/G| = |S|/|G|

where X and Y are finite subsets of some larger set and S is a finite set acted
on freely by a finite group G.

Take a finite functor X : A - Set. The colimit (or direct limit, or
inductive limit) lim

−→
X can be viewed as the gluing-together of the sets X(a).

Its cardinality depends on the way in which these sets are glued together, which
in turn is determined by the action of X on arrows, so in general there is no
formula for |lim

−→
X | purely in terms of the cardinalities |X(a)| (a ∈ A).

Suppose, however, that we are in the extreme case that there are no un-
forced equations of the type (X(f))(x) = (X(f ′))(x′), where f and f ′ are
arrows in A. For pushouts, this means that the two functions along which we
are pushing out are injective; when A is a group G, so that X is a set with a
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G-action, it means that the action is free. In this extreme case, |lim
−→

X | can be

calculated as a weighted sum of the cardinalities |X(a)|.
We now make this precise. Recall from §1 that a Set-valued functor is

said to be familially representable if it is a sum of representables.

Proposition 3.1 Let A be a finite category and k• a weighting on A. If X :
A - Set is finite and familially representable then |lim

−→
X | = ∑

a k
a|X(a)|.

Proof The result holds if X is representable, since then |lim
−→

X | = 1. On the

other hand, the class of functors X for which the conclusion holds is clearly
closed under finite sums. �

To make use of this, we need a way of recognizing familially representable
functors. Carboni and Johnstone [CJ1, CJ2] show that when A satisfies certain
hypotheses, including having all limits, a functor A - Set is familially
representable if and only if it preserves connected limits. This does not help
directly, because our categories A are finite, and a finite category does not have
even all finite limits unless it is a lattice.

However, a standard philosophy applies: when A fails to have all limits of
a certain type, it is rarely useful to consider the functors A - Set preserving
limits of that type; the correct substitute is the class of functors that are suit-
ably ‘flat’. The notion of flatness appropriate here will be called nondegeneracy.
(This is unrelated to the usage of ‘nondegenerate’ in §1.)

Definition 3.2 Let A be a small category. A functor X : A - Set is
nondegenerate if E (X) has the following diagram-completion properties:

·

· ..
....

...-

·
-

·
-

.........-
· ..........- · -- ·

Explicitly, this means that

a. given arrows a
f- b �f

′

a′ in A and x ∈ X(a), x′ ∈ X(a′) satisfying

(X(f))(x) = (X(f ′))(x′), there exist arrows a �g
c

g′- a′ and z ∈
X(c) satisfying fg = f ′g′, (X(g))(z) = x, and (X(g′))(z) = x′, and

b. given arrows a
f-
f ′
- b in A and x ∈ X(a) satisfying (X(f))(x) =

(X(f ′))(x), there exist c
g- a and z ∈ X(c) satisfying fg = f ′g and

(X(g))(z) = x.

This is the most concrete form of the definition. For further explanation,
see the Appendix; for references, see [Ln]. In the Appendix (Lemma 5.2)
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it is shown that under suitable hypotheses, nondegeneracy is equivalent to
familial representability, and from this we deduce a more applicable form of
Proposition 3.1:

Theorem 3.3 Let A be a finite Cauchy-complete category and k• a weight-
ing on A. If X : A - Set is finite and nondegenerate then |lim

−→
X | =

∑
a k

a|X(a)|. �

Using the fact that lim
−→

X is the set of connected-components of E (X), this

may be rephrased as |π0(E (X))| =
∑
ka|X(a)|. On the other hand, Propo-

sition 2.8 implies that χ(E (X)) =
∑
ka|X(a)|. Indeed, under the hypotheses

of the Theorem, X is familially representable, so each connected-component of
E (X) has an initial object, so χ(E (X)) = |π0(E (X))|.

Examples 3.4 a. Let L be the category of 1.11(a). A functor X : L -
Set is nondegenerate if and only if both functions X(a) - X(bi) are
injective. In that case, Theorem 3.3 says that

|X(b1) +X(a) X(b2)| = |X(b1)|+ |X(b2)| − |X(a)|

where the set on the left-hand side is a pushout.

b. Let B be the category

(
a

f-
g
- b

)
. A functor X : B - Set is non-

degenerate if and only if the two functions X(f), X(g) are injective and
have disjoint images. The unique weighting k• on B is (ka, kb) = (−1, 1),
and

|(X(b))/ ∼ | = |X(b)| − |X(a)|
where ∼ is the equivalence relation generated by (X(f))(x) ∼ (X(g))(x)
for all x ∈ X(a).

c. Let G be a group. A functor X : G - Set is a set S equipped with
a left G-action; the functor is nondegenerate if and only if the action is
free. Theorem 3.3 then says that the number of orbits is |S|/|G|.

d. The Theorem can be viewed as a generalized inclusion-exclusion principle.
(Compare [R].) Let n ≥ 0 and let Pn be the poset of nonempty subsets
of {1, . . . , n}, ordered by inclusion. (So Pop

2 is the category L of (a).)
Its unique coweighting k• is defined by kJ = (−1)|J|−1. Given subsets
S1, . . . , Sn of some set, there is a nondegenerate functor X : Pop

n
-

Set defined on objects by X(J) =
⋂
j∈J Sj and on maps by inclusion.

Theorem 3.3 gives the inclusion-exclusion formula,

|S1 ∪ · · · ∪ Sn| =
∑

∅6=J⊆{1,...,n}
(−1)|J|−1

∣∣∣∣∣∣
⋂

j∈J
Sj

∣∣∣∣∣∣
.
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Corollary 3.5 Let A be a finite Cauchy-complete category admitting a
weighting. Let X,Y : A - Set be finite nondegenerate functors satisfy-
ing |X(a)| = |Y (a)| for all a ∈ A. Then |lim

−→
X | = |lim

−→
Y |. �

The condition that A admits a weighting cannot be dropped: consider
the category A of Example 1.11(d) and the functors X = A(a1,−) + A(a4,−),
Y = A(a2,−).

If A not only has a weighting but admits Möbius inversion then a sharper
statement can be made (Proposition 1.8).

4 Relations with Rota’s theory

In 1964, Gian-Carlo Rota published his seminal paper [R] on Möbius inversion
in posets. The name is motivated as follows: in the poset of positive integers
ordered by divisibility, µ(a, b) = µ(b/a) whenever a divides b, where the µ on
the right-hand side is the classical Möbius function. He was not the first to
define Möbius inversion in posets—Weisner, Hall, and Ward preceded him—but
Rota’s contribution was the decisive one; in particular, he realized the power
of the method in enumerative combinatorics. The history of Möbius inversion
is well described in [R], [G] and [St].

In this section we discover that some of the principal results in Rota’s the-
ory are the order-theoretic shadows of more general categorical facts. We also
examine briefly a different generalization of Möbius–Rota inversion, proposed
by other authors.

Given a poset A, Rota considered its incidence algebra I(A), which is the
subring of R(A) consisting of the integer-valued θ ∈ R(A) such that θ(a, b) = 0
whenever a 6≤ b. By Example 1.2(a) or Corollary 1.5, µ ∈ I(A).

In posets, then, ζ(a, b) = 0 ⇒ µ(a, b) = 0. More generally:

Theorem 4.1 If A is a finite category with Möbius inversion then, for a, b ∈ A,

ζ(a, b) = 0 ⇒ µ(a, b) = 0.

The proof uses a combinatorial lemma.

Lemma 4.2 Let n ≥ 2 and σ ∈ Sn−1. Then there exist k ≥ 1 and p0, . . . , pk
such that

p0 = 1, p1, . . . , pk−1 ∈ {1, . . . , n− 1}, pk = n,

and pr = σ(pr−1) + 1 for each r ∈ {1, . . . , k}.

Proof Suppose not; then there is an infinite sequence (pr)r≥0 of elements of
{1, . . . , n − 1} satisfying p0 = 1 and pr = σ(pr−1) + 1 for all r ≥ 1. Let ε be
the endomorphism of the finite set {pr | r ≥ 0} defined by ε(p) = σ(p) + 1.
Then ε is injective but not surjective (since 1 is not in its image), contradicting
finiteness. �
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Proof of Theorem 4.1 Write the objects of A as a1, . . . , an. There is an
n × n matrix Z defined by Zij = ζ(ai, aj), and Z is invertible over Q with
(Z−1)ij = µ(ai, aj). Suppose that i, j ∈ {1, . . . , n} and Zij = 0. Certainly
i 6= j, so n ≥ 2 and we may assume that (i, j) = (1, n). By the standard
formula for the inverse of a matrix, our task is to prove that the (n, 1)-minor
of Z is 0.

The (n, 1)-minor of Z is

∑

σ∈Sn−1

±Z1,σ(1)+1 · · ·Zn−1,σ(n−1)+1,

and in fact we will prove that each summand is 0. Indeed, let σ ∈ Sn−1. Take
p0, . . . , pk as in the Lemma. By hypothesis, there is no map a1

- an in A.
Categories have composition, so there is no diagram

a1 = ap0 - ap1 - · · · - apk
= an

in A. Hence ζ(apr−1 , apr ) = 0 for some r ∈ {1, . . . , k}, giving Zpr−1,σ(pr−1)+1 =
0, as required. �

Given objects a, c of a category A, let Aa,c be the full subcategory consist-
ing of those b ∈ A for which there exist arrows a - b - c. Theorem 4.1
easily implies:

Corollary 4.3 Let A be a finite category. Then A has Möbius inversion if
and only if Aa,c has Möbius inversion for all a, c ∈ A, and in that case the
Möbius function of Aa,c is the restriction of that of A. �

These results suggest a way of relaxing the finiteness assumption on our
categories. It extends to categories the local finiteness condition on posets used
in the Rota theory. Let A be a category for which each subcategory Aa,c is
finite. Then each hom-set A(a, b) has finite cardinality, ζ(a, b), and there is a
Q-algebra

R̂(A) = {θ : ob A× ob A - Q | for a, b ∈ A, ζ(a, b) = 0 ⇒ θ(a, b) = 0}

with operations defined as for R(A). Evidently ζ ∈ R̂(A), and A may be said
to have Möbius inversion if ζ has an inverse µ in R̂(A). By Theorem 4.1, this
extends the definition for finite categories. For example, the skeletal category
Dinj of finite totally ordered sets and order-preserving injections has Möbius
inversion; compare Example 1.2(c).

The main theorem in Rota’s paper [R] relates the Möbius functions of two
posets linked by a Galois connection. Viewing a poset as a special category,
a Galois connection is nothing but a (contravariant) adjunction, and Rota’s
theorem is a special case of the following result.
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Proposition 4.4 Let A and B be finite categories with Möbius inversion. Let

A
F-�
G

B be an adjunction, F ⊣ G. Then for all a ∈ A, b ∈ B,

∑

a′:F (a′)=b

µ(a, a′) =
∑

b′:G(b′)=a

µ(b′, b).

Proof Write ζ(a, b) = ζ(F (a), b) = ζ(a,G(b)). Then for all a ∈ A, b ∈ B,

∑

a′:Fa′=b

µ(a, a′) =
∑

a′∈A

µ(a, a′)δ(F (a′), b) =
∑

a′∈A, b′∈B

µ(a, a′)ζ(a′, b′)µ(b′, b).

The result follows by symmetry. �

For example, when l is an element of a finite lattice L, the inclusion of
the sub-poset {x ∈ L | x ≤ l} into L has right adjoint (−∧ l), giving Weisner’s
Theorem (p.351 of [R]).

The Euler characteristic of posets has been studied extensively; see [St] for
references. Given a finite poset A, the classifying space BA always has Euler
characteristic, which by Proposition 2.11 is equal to the Euler characteristic of
the category A. On the other hand, we may form a new poset Ã by adjoining
to A a least element 0 and a greatest element 1, and then χ(A) = µ

Ã
(0, 1) + 1:

see [R] or §3.8 of [St]. This result can be extended from posets to categories:

Proposition 4.5 Let A be a finite category. Write Ã for the category obtained
from A by freely adjoining an initial object 0 and a terminal object 1. If A has
Möbius inversion then Ã does too, and χ(A) = µ

Ã
(0, 1) + 1.

Proof Suppose that A has Möbius inversion. Let A0 be the category obtained
from A by freely adjoining an initial object 0. Extend µ ∈ R(A) to a function
µ ∈ R(A0) by defining

µ(0, b) = −
∑

a∈A

µ(a, b), µ(a, 0) = 0, µ(0, 0) = 1

(b, a ∈ A). It is easily checked that this is the Möbius function of A0.

Dually, if B is a finite category with Möbius inversion then the category
B1 obtained from B by freely adjoining a terminal object 1 also has Möbius
inversion, with µ(c, 1) = −∑b∈B µ(c, b) for all c ∈ B. Take B = A0: then

A01 = Ã has Möbius inversion, and

µ(0, 1) = −
∑

b∈A0

µ(0, b) = −
∑

b∈A

µ(0, b)− µ(0, 0) =
∑

a,b∈A

µ(a, b)− 1 = χ(A)− 1.

�
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Remark Given categories B,A and a functor M : Bop × A - Set, the
collage of M is the category C formed by taking the disjoint union of B and A
and adjoining one arrow b - a for each b ∈ B, a ∈ A and m ∈M(b, a), with
composition defined using M [CKW]. Assuming finiteness, if B and A have
Möbius inversion then so does C:

µC(b, b′) = µB(b, b′), µC(a, a′) = µA(a, a′), µC(a, b) = 0,

µC(b, a) = −
∑

b′,a′

µB(b, b′) |M(b′, a′)|µA(a′, a)

(b, b′ ∈ B, a, a′ ∈ A). In the proof above, the calculation of the Möbius function
of A0 is the special case where B is the terminal category and M has constant
value 1. The ordinal sum of posets is another special case. Moreover, one easily
deduces a formula for the Euler characteristic of a collage, which in the special
case of posets is essentially Theorem 3.1 of Walker [Wk].

Let us now look at the different generalization of Rota’s Möbius inversion pro-
posed, independently, by Content, Lemay and Leroux [CLL] and by Haigh [H].
(See also [Lr] and §4 of [La]. Haigh briefly considered the same generalization
as here, too; see 3.5 of [H].) Given a sufficiently finite category A, they take
the algebra I(A) of functions from {arrows of A} to Q (or more generally, to
some base commutative ring), with a convolution product:

(θφ)(f) =
∑

hg=f

θ(g)φ(h).

Taking ζ ∈ I(A) to have constant value 1, they call the Möbius function of A
the inverse µ = ζ−1 in I(A), if it exists. When A is a poset, this agrees with
Rota; when A is a monoid, it agrees with Cartier and Foata [CF].

They seek to solve a harder problem than we do: if a finite category
A has Möbius inversion in their sense then it does in ours (with µ(a, b) =∑

f∈A(a,b) µ(f)), but not conversely. For instance, a non-trivial finite group
never has Möbius inversion in their sense, but always does in ours.

5 Appendix: category theory

Here follows a skeletal account of some standard notions: category of elements,
flat functors, and Cauchy-completeness. Details can be found in texts such
as [Bo]. Throughout, A denotes a small category.

Let X : A - Set. The category of elements E (X) of X has as objects
all pairs (a, x) where a ∈ A and x ∈ X(a), and as maps (a, x) - (a′, x′) all
maps f : a - a′ in A such that (X(f))(x) = x′.

Similarly, let X : A - Cat, where Cat is the category of small cate-
gories and functors. Then X has a category of elements E (X); its objects are
pairs (a, x) where a ∈ A and x ∈ X(a), and its maps (a, x) - (a′, x′) are
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pairs (f, ξ) where f : a - a′ in A and ξ : (X(f))(x) - x′ in X(a′). This
definition can be made even when X is a weak functor or pseudofunctor, that
is, only preserves composition and identities up to coherent isomorphism. The
weak functors A - Cat correspond to the fibrations over Aop; see [Bo].

A set can be viewed as a discrete category (one in which the only maps are
the identities). From this point of view, Set-valued functors are special Cat-
valued functors, and the second definition of the category of elements extends
the first.

Any two functors Y : Aop - Set and X : A - Set have a tensor
product Y ⊗X , a set, defined by

Y ⊗X =

(∐

a∈A

Y (a)×X(a)

)
/ ∼

where ∼ is the equivalence relation generated by (y, (X(f))(x)) ∼
((Y (f))(y), x) whenever f : a - b, x ∈ X(a) and y ∈ Y (b). (It may be help-
ful to think of X and Y as left and right A-modules.) A functor X : A -
Set is flat if

−⊗X : [Aop,Set] - Set

preserves finite limits. An equivalent condition is that E (X) is cofiltered, that
is, every finite diagram in E (X) admits at least one cone.

Proposition 5.1 The following conditions on a functor X : A - Set are
equivalent:

a. X is nondegenerate (in the sense of 3.2)

b. every connected-component of E (X) is cofiltered

c. X is a sum of flat functors.

d. −⊗X : [Aop,Set] - Set preserves finite connected limits

Proof See [Ln] or [ABLR]. �

An idempotent e : a - a in A splits if there exist a
s-�
i

b such that

si = 1 and is = e. The category A is Cauchy-complete if every idempotent
in A splits. (This is a very weak form of completeness. Let I be the category
consisting of one object, the identity on it, and an idempotent u. Then a
splitting of e is precisely a limit of the functor I - A defined by u 7−→ e.)
All of the examples of categories in this paper are Cauchy-complete, except
that a finite monoid is Cauchy-complete if and only if it is a group.

Lemma 5.2 Let A be a Cauchy-complete category and X : A - Set a finite
functor. Then X is familially representable if and only if X is nondegenerate.
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As in §1, ‘finite’ means that E (X) is a finite category.

Proof By Proposition 5.1, it is enough to prove that a finite functor X is
representable if and only if it is flat. ‘Only if’ is immediate.

For ‘if’, suppose that X is flat. Then E (X) is cofiltered and finite, so the
identity functor 1E(X) admits a cone. Also, E (X) is Cauchy-complete since A

is. Now, if C is a Cauchy-complete category and (j
pc- c)c∈C is a cone on 1C

then pj is idempotent, and the object through which it splits is initial. Hence
E (X) has an initial object; equivalently, X is representable. �
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[CF] P. Cartier, D. Foata, Problèmes Combinatoires de Commutation et
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1 Introduction

It is well known that the eigenvalues of the one–particle Dirac operator are
in much better accordance with the spectroscopic data then the eigenvalues of
the Schrödinger operator. However, due to the presence of the negative con-
tinuum of positronic states the multiparticle Coulomb–Dirac operator has no
eigenvalues and its essential spectrum is the whole real line. Coupling with the
quantized electromagnetic field does not correct this situation. However, there
are ways to construct a semibounded operator which will take the relativistic
effects into account. Such models, although nonlocal, find their applications
in numerical studies of heavy elements and cosmology, where the relativistic
effects cannot be ignored.
The most obvious choice of the kinetic energy (sometimes called Chandrasekhar

or Herbst operator) given by
√

p2c2 +m2c4, p and m being the momentum
and mass of the particle, suffers from the lack of semiboundedness for nuclear
charges exceeding 87, as shown in [9]. Most other operators considered in the
literature are obtained by reducing the (multiparticle) Dirac operator onto some
subspace on which it becomes semibounded. One of such models, extensively
studied recently, is by Brown and Ravenhall [4], see also Bethe and Salpeter [3],
Sucher [18, 19]. In this model every particle is confined the positive spectral
subspace of the free Dirac operator. Since the multiplication by interaction
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potentials does not leave this subspace invariant, the potential energy terms
are projected back by the corresponding projector.
The mathematical study of the Brown–Ravenhall operator started from the
one–particle case in the article of Evans, Perry, and Siedentop [7]. The au-
thors have proved that the atomic Hamiltonian is semibounded from below for
nuclear charges not exceeding 124. This makes the Brown–Ravenhall model
applicable to all existing elements. It was also proved in [7] that the essential
spectrum of the one–particle atomic Brown–Ravenhall operator is [mc2,∞)
with m being the mass of the particle, and that the singular continuous spec-
trum is empty.

Further studies of the Brown–Ravenhall operator include the improved lower
bounds by Tix [21, 22] (see also Burenkov and Evans [5]) in the atomic case,
the proof that the eigenvalues of Brown–Ravenhall operator are strictly bigger
than those of the one–particle Dirac operator by Griesemer et al. [8], proofs
of stability of one-electron molecule by Balinsky and Evans [2], the proof of
stability of matter by Hoever and Siedentop [10], and the asymptotic result
on the ground state energy for large atomic charges Z (with Z/c fixed) by
Cassanas and Siedentop [6].
The essential spectrum of the multiparticle operator was characterized by
Jakubaßa–Amundsen [12, 13], and in our joint work with S. Vugalter [16] in
terms of two–cluster decompositions. This is usually referred to as HVZ theo-
rem after the well known result for the multiparticle Schrödinger operator. In
[11] an analogous result is proved in presence of the constant magnetic field. It
is also proved in [16] that the neutral atoms or positively charged atomic ions
have infinitely many bound states.
In all these previous studies the nuclei were considered as fixed sources of the
external field, the particles were assumed to be identical, and the interaction
potentials were purely Coulombic.

In this paper we generalize the HVZ theorem of [12, 13, 16] as follows: We allow
any number of (massive) particles of the system to be identical. We allow quite
general matrix interaction potentials. In particular, our result applies in the
presence of the magnetic fields if the vector potential decays at infinity in some
weak sense. Another problem we address is the reduction to any irreducible
representations of the groups of rotation–reflection symmetry and permuta-
tions of identical particles. Note that such a reduction allows to analyze the
eigenvalues of some irreducible representations even if they are embedded into
the continuous spectrum of some other representations. For some particular
models (including atoms and molecules in the Born–Oppenheimer approxima-
tion) the existence of such eigenvalues can be shown along the same lines as in
[16].

From the technical point of view, the nonlocality of the model due to the
presence of the spectral projections of the free Dirac operator is overcome with
the same ideas as in [16]. One more complication should be stressed: for the
Brown–Ravenhall operator the center of mass motion cannot be separated in
the same way as it is usually done for Schrödinger operators, where the complete
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Hamiltonian without external field can be represented in suitable coordinates
as

H = A⊗ I + I ⊗B,
where A describes the free motion of the center of mass and B is the internal
Hamiltonian of the system (see [14]). Such a decomposition appears to be
especially fruitful in the presence of rotation symmetries. Since it cannot be
obtained for pseudorelativistic operators due to the form of kinetic energy, we
have used a completely different approach based on the commutation of the
Hamiltonian with the absolute value of the total momentum of the system.
Note that the proof of the HVZ theorem for a system of particles described
by the Chandrasekhar operator was till now not known for operators reduced
to irreducible representations of the rotation–reflection symmetry group (see
the article of Lewis, Siedentop and Vugalter [15] for the case without such
reductions). Such a proof can now be obtained as a simplified modification of
the proof given in this paper.
In Section 2 we introduce the model and make the necessary assumptions. At
the end of this section we formulate the main result in Theorem 6. The rest of
the article contains the proof of this theorem.

2 Setup and Main Result

[A,B] = AB−BA is the commutator of two operators. 〈·, ·〉 and ‖ · ‖ stand for

the inner product and the norm in L2(R3d,C4d

), where d is the dimension of
the underlying configuration space. Irrelevant constants are denoted by C. IΩ
is the indicator function of the set Ω. For a selfadjoint operator A we denote its
spectrum and the corresponding sesquilinear form by σ(A) and 〈A·, ·〉 = 〈·, A·〉,
respectively. We use the conventional units ~ = c = 1. Sometimes we denote
the unitary Fourier transform by ·̂.
In the Hilbert space L2(R3,C4) the Dirac operator describing a particle of mass
m > 0 is given by

Dm = −iα · ∇+ βm,

where α := (α1, α2, α3) and β are the 4 × 4 Dirac matrices [20]. The
form domain of Dm is the Sobolev space H1/2(R3,C4) and the spectrum is
(−∞,−m] ∪ [m,+∞). Let Λm be the orthogonal projector onto the positive
spectral subspace of Dm:

Λm :=
1

2
+
−iα · ∇+ βm

2
√
−∆ +m2

. (2.1)

We consider a finite system of N particles with positive masses mn, n =
1, . . . , N . To simplify the notation we write Dn and Λn for Dmn and Λmn ,

respectively. Let HN :=
N
⊗
n=1

ΛnL2(R3,C4) be the Hilbert space with the inner

product induced by those of
N
⊗
n=1

L2(R3,C4) ∼= L2(R3N ,C4N

). In this space the

Documenta Mathematica 13 (2008) 51–79



54 Sergey Morozov

N–particle Brown–Ravenhall operator is formally given by

HN = ΛN
( N∑

n=1

(Dn + Vn) +

N∑

n<j

Unj

)
ΛN , (2.2)

with

ΛN :=
N∏

n=1

Λn =
N
⊗
n=1

Λn. (2.3)

Here and below the indices n and j indicate the particle, on whose coordinates
the corresponding operator acts. In (2.2) Vn is the external field potential
for the nth particle, i.e., the operator of multiplication by a hermitian 4 × 4
matrix–function Vn(xn), n = 1, . . . , N , and Unj is the potential energy of
the interaction between the nth and jth particles, given by the operator of
multiplication by a hermitian 16× 16 matrix–function Unj(xn − xj), n < j =
1, . . . , N . More explicitly, if we let sj ∈ {1, 2, 3, 4} be the spinor index of the
jth particle, then

(Vnψ)(x1, s1; . . . ; xn, sn; . . . ; xN , sN )

:=
∑

esn

V sn,esn
n (xn)ψ(x1, s1; . . . ; xn, s̃n; . . . ; xN , sN ),

and

(Unjψ)(x1, s1; . . . ; xn, sn; . . . ; xj , sj ; . . . ; xN , sN )

:=
∑

esn,esj

U
snsj ,esnesj

nj (xn − xj)ψ(x1, s1; . . . ; xn, s̃n; . . . ; xj , s̃j ; . . . ; xN , sN ).

Before we make other assumptions on the interaction potentials, let us consider
possible decompositions of the system into two clusters. Let Z = (Z1, Z2) be a
decomposition of the index set I := {1, . . . , N} into two disjoint subsets:

I = Z1 ∪ Z2, Z1 ∩ Z2 = ∅.

Let
Nj := #Zj , j = 1, 2 (2.4)

be the number of particles in each cluster. We will write n#j if n and j belong
to different clusters. Let

HZ,1 :=
∑

n∈Z1

(Dn + Vn) +
∑

n,j∈Z1
n<j

Unj , (2.5)

HZ,2 :=
∑

n∈Z2

Dn +
∑

n,j∈Z2
n<j

Unj . (2.6)
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We omitHZ,j if Zj = ∅, j = 1, 2. Let us introduce the operators corresponding
to noninteracting clusters, with the second cluster transferred far away from
the sources of the external field:

H̃Z,j := ΛZ,jHZ,jΛZ,j , in HZ,j := ⊗
n∈Zj

ΛnL2(R3,C4), j = 1, 2, (2.7)

where
ΛZ,j :=

∏

n∈Zj

Λn.

We make the following assumptions:

Assumption 1 There exists C > 0 such that for any Z and j = 1, 2

∣∣〈HZ,jϕ, ψ〉
∣∣ 6 C‖ϕ‖H1/2‖ψ‖H1/2 , for any ϕ, ψ ∈ ⊗

n∈Zj

H1/2(R3,C4). (2.8)

For Coulomb interaction potentials (2.8) follows from Kato’s inequality.

Assumption 2 There exist C1 > 0 and C2 ∈ R such that for any Z

〈H̃Z,jψ, ψ〉 > C1〈
∑

n∈Zj

Dnψ, ψ〉 − C2‖ψ‖2,

for any ψ ∈ ⊗
n∈Zj

ΛnH
1/2(R3,C4), j = 1, 2.

(2.9)

Remark 3 Note that for ψ ∈ ⊗
n∈Zj

ΛnH
1/2(R3,C4) the metric

〈
∑

n∈Zj

Dnψ, ψ〉1/2 =
∥∥∥
∑

n∈Zj

|Dn|1/2ψ
∥∥∥

is equivalent to the norm of ψ in ⊗
n∈Zj

H1/2(R3,C4), since

ΛnDnΛn = Λn|Dn|Λn = Λn
√
−∆ +m2

nΛn. (2.10)

An equivalent formulation of Assumption 2 is that the operator H̃Z,j is semi-
bounded from below even if we multiply all the interaction potentials by 1 + ε
with ε > 0 small enough. This is only slightly more restrictive than the semi-
boundedness of H̃Z,j .

Assumption 4 For any R > 0 there exists a finite constant CR > 0 such that

N∑

n=1

(∫

|x|6R

∣∣Vn(x)
∣∣2dx

)1/2

+

N∑

n<j

(∫

|x|6R

∣∣Unj(x)
∣∣2dx

)1/2

6 CR. (2.11)
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This means that the interaction potentials are locally square integrable.

Assumption 5 For any ε > 0 there exists R > 0 big enough such that for all
n = 1, . . . , N

‖VnI{|xn|>R}ψ‖ 6 ε
∥∥|Dn|1/2ψ

∥∥, for all ψ ∈ H1/2(R3,C4), (2.12)

and for all n < j = 1, . . . , N

‖UnjI{|xn−xj|>R}ϕ‖ 6 εmin
{∥∥|Dn|1/2ϕ

∥∥,
∥∥|Dj |1/2ϕ

∥∥
}
,

for all ϕ ∈ H1/2(R6,C16).
(2.13)

By Remark 3 this assumption is weaker then the decay of L∞ norms of the
interaction potentials at infinity.
It follows from (2.9) and Remark 3 that for any Z there exists a constant C > 0
such that for any ψ ∈ ⊗

n∈Zj

ΛnH
1/2(R3,C4)

‖ψ‖2H1/2 6 C
(
〈H̃Z,jψ, ψ〉+ ‖ψ‖2

)
, j = 1, 2. (2.14)

Hence by Assumptions 1 and 2, the quadratic forms of operators (2.7)
(and, in particular, HN ) are semibounded from below and closed on
⊗

n∈Zj

ΛnH
1/2(R3,C4). Thus these operators are well–defined in the form sense.

Some particles of the system (say, kth and lth) can be identical (in which case
mk = ml, Vk = Vl, and Ukj = Ulj for all j). Then the operator HN can be
reduced to the subspace of functions which transform in a certain way under
permutations of identical particles. The most physically motivated assumption
is that any transposition of two identical particles should change the sign of
the wave function ψ ∈ HN describing the system. This is the Pauli principle
applied to the identical fermions (the model describes spin 1/2 particles, thus
fermions).
Let Π be the subgroup of the symmetric group SN generated by transpositions
of identical particles. We denote the number of elements of Π by hΠ. Let E be
some irreducible representation of Π with dimension dE and character ξE . For
ψ ∈ HN let

PEψ :=
dE
hΠ

∑

π∈Π

ξE(π)πψ, (2.15)

where π is the operator of permutation:

(πψ)(x1, s1; . . . ; xN , sN) = ψ(xπ−1(1), sπ−1(1); . . . ; xπ−1(N), sπ−1(N)).

Here s1, . . . , sN are the spinor coordinates of the particles. The operator PE

defined in (2.15) is the projector to the subspace of functions in HN which
transform according to the representation E of Π. Since any π ∈ Π commutes
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with HN , PE reduces HN . Let HEN be the corresponding reduced selfadjoint
operator in

HEN := PEHN .

For a decomposition Z = (Z1, Z2) let ΠZ
j be the group generated by transposi-

tions of identical particles inside Zj, j = 1, 2. For any irreducible representation
Ej of ΠZ

j with dimension dEj and character ξEj the projection to the space of

functions in HZ,j transforming according to Ej under the action of ΠZ
j is given

by

PEjψ :=
dEj

hΠZ
j

∑

π∈ΠZ
j

ξEj (π)πψ, ψ ∈ HZ,j ,

where hΠZ
j

is the cardinality of ΠZ
j . Projectors PEj reduce operators H̃Z,j . We

introduce the reduced operators H̃Ej

Z,j in

H
Ej

Z,j := PEjHZ,j , j = 1, 2.

Given an irreducible representation E of Π and a decomposition Z = (Z1, Z2),
we have

HEN ⊂ ⊕
(E1,E2)

(
HE1

Z,1 ⊗ HE2

Z,2

)
, (2.16)

where E1,2 are some irreducible representations of ΠZ
1,2. We write (E1, E2) ≺

Z
E

if the corresponding term cannot be omitted on the r. h. s. of (2.16) without
violation of the inclusion.
Apart from permutations of identical particles the operator HEN can have some
rotation–reflection symmetries. Let γ be an orthogonal transform in R3: the
rotation around the axis directed along a unit vector nγ through an angle ϕγ ,
possibly combined with the reflection x 7→ −x. The corresponding unitary
operator Oγ acts on the functions ψ ∈ HN as (see [20], Chapter 2)

(Oγψ)(x1, . . . ,xN ) =

N∏

n=1

e−iϕγnγ ·Snψ(γ−1x1, . . . , γ
−1xN ).

Here Sn = − i
4αn ∧ αn is the spin operator acting on the spinor coordinates of

the nth particle. The compact group of orthogonal transformations γ such that
Oγ commutes with Vn and Unj for all n, j = 1, . . . , N (and thus with HEN ) we
denote by Γ. Further, we decompose HEN into the orthogonal sum

HEN = ⊕
α∈A

H
Dα,E
N , (2.17)

where H
Dα,E
N consists of functions which transform under Oγ according to some

irreducible representation Dα of Γ, and A is the set indexing all such irre-
ducible representations. The decomposition (2.17) reduces HEN . We denote the

selfadjoint restrictions of HEN to H
Dα,E
N by HDα,E

N . For any fixed irreducible
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representation D with dimension dD and character ζD the orthogonal projector
in HN onto the subspace of functions which transform according to D is

PD := dD

∫

Γ

ζD(γ)Oγdµ(γ),

where µ is the invariant probability measure on Γ.
For j = 1, 2 let Dj be some irreducible representations of Γ with dimensions
dDj and characters ζDj . The corresponding projectors in HZ,j are given by

PDj = dDj

∫

Γ

ζDj (γ)Oγ,jdµ(γ),

where Oγ,j is the restriction of Oγ to HZ,j :

(Oγ,jψ)(xn1 , . . . ,xnNj
) =

∏

n∈Zj

e−iϕγnγ ·Snψ(γ−1xn1 , . . . , γ
−1xnNj

).

Given representations Dj and Ej , projector PDjPEj = PEjPDj reduces H̃Z,j .
We denote the reduced operators in

H
Dj ,Ej

Z,j := PDjPEj HZ,j

by H̃Dj ,Ej

Z,j . Let

κj(Z,Dj , Ej) := inf σ(H̃Dj ,Ej

Z,j ). (2.18)

We write (D1, E1;D2, E2) ≺
Z

(D,E) if the corresponding term cannot be omit-

ted on the r. h. s. of

H
D,E
N ⊂ ⊕

(D1,E1)
(D2,E2)

(
H
D1,E1

Z,1 ⊗ H
D2,E2

Z,2

)

without violation of the inclusion. For Z2 6= ∅ let

κ(Z,D,E)

:=

{
inf
{
κ1(Z,D1, E1)+κ2(Z,D2, E2) : (D1, E1;D2, E2) ≺

Z
(D,E)

}
, Z1 6= ∅,

κ2(Z,D,E), Z1 = ∅.

(2.19)

The main result of the article is

Theorem 6 Suppose Assumptions 1, 2, 4, and 5 hold true. For N ∈ N let D
be some irreducible representation of Γ, and E some irreducible representation
of Π, such that PDPE 6= 0. Then

σess(HD,EN ) =
[
κ(D,E),∞

)
,

where
κ(D,E) = min

{
κ(Z,D,E) : Z = (Z1, Z2), Z2 6= ∅

}
. (2.20)
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Remark 7 We only need Assumption 2 for the operators H̃Dj ,Ej

Z,j which appear
in (2.18), (2.19).

3 Commutator Estimates

3.1 One Particle Commutator Estimate

Lemma 8 Let χ ∈ C2
B(R3) (i. e. a bounded twice–differentiable function with

bounded derivatives). Then for mn > 0 the commutator [χ,Λn] is a bounded
operator from L2(R3,C4) to H1(R3,C4). There exists C(m) > 0 such that

∥∥[χ,Λn]
∥∥
L2(R3,C4)→H1(R3,C4)

6 C(mn)
(
‖∇χ‖L∞ + ‖∂2χ‖L∞

)
. (3.1)

Here ‖∂2χ‖L∞ = max
z∈R3

k,l∈{1,2,3}

∣∣∂2
klχ(z)

∣∣.

Proof. In the coordinate representation for f ∈ C1
0 (R3,C4) the operator Λn

acts as

(Λnf)(x) =
f(x)

2
+
imn

2π2
lim
ε→+0

∫

|y−x|>ε

α · (x− y)

|x− y|3 K1

(
mn|x− y|

)
f(y)dy

+
m2
n

4π2

∫

R3

(
β
K1

(
mn|x− y|

)

|x− y| +
iα · (x− y)

|x− y|2 K0

(
mn|x− y|

))
f(y)dy,

where the limit on the r. h. s. is the limit in L2(R3,C4) (see Appendix B of [16],
where this formula is derived in the case mn = 1). The rest of the proof is an
obvious modification of the proof of Lemma 1 of [16], where the case mn = 1
is considered. •

Remark 9 Since we only deal with a finite number of particles with positive
masses, we will not trace the m-dependence of the constant in (3.1) any longer.

3.2 Multiparticle Commutator Estimate

Lemma 10 For any d, k ∈ N there exists C > 0 such that for any χ ∈ C1
B(Rd)

and u ∈ H1/2(Rd,Ck)

‖χu‖H1/2(Rd,Ck) 6 C
(
‖χ‖L∞(Rd) + ‖∇χ‖L∞(Rd)

)
‖u‖H1/2(Rd,Ck). (3.2)

Proof of Lemma 10. We can choose the norm in H1/2(Rd,Ck) as (see [1],
Theorem 7.48)

‖u‖2H1/2(Rd,Ck) := ‖u‖2L2(Rd,Ck) +

∫∫ ∣∣u(x)− u(y)
∣∣2

|x− y|d+1
dxdy.
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Then

‖χu‖2H1/2(Rd,Ck) = ‖χu‖2L2(Rd,Ck) +

∫∫ ∣∣χ(x)u(x) − χ(y)u(y)
∣∣2

|x− y|d+1
dxdy

6 ‖χ‖2L∞
‖u‖2L2

+

∫∫ (∣∣χ(x)
∣∣2∣∣u(x)− u(y)

∣∣2

|x− y|d+1
+

∣∣χ(x) − χ(y)
∣∣2∣∣u(y)

∣∣2

|x− y|d+1

)
dxdy

6 ‖χ‖2L∞
‖u‖2H1/2 + sup

y∈Rd

∫ ∣∣χ(x) − χ(y)
∣∣2

|x− y|d+1
dx‖u‖2L2

.

(3.3)

The supremum on the r. h. s. of (3.3) can be estimated as

sup
y∈Rd

∫ ∣∣χ(x)− χ(y)
∣∣2

|x− y|d+1
dx 6 sup

y∈Rd

∫

|x−y|61

∣∣χ(x) − χ(y)
∣∣2

|x− y|d+1
dx

+ sup
y∈Rd

∫

|x−y|>1

∣∣χ(x) − χ(y)
∣∣2

|x− y|d+1
dx 6 |Sd−1|

(
‖∇χ‖2L∞

+ 4‖χ‖2L∞

)
,

(3.4)

where |Sd−1| is the area of (d− 1)–dimensional unit sphere. Substituting (3.4)
into (3.3) we obtain (3.2). •

Lemma 11 For any χ ∈ C2
B(R3N ) the operator [χ,ΛN ] is bounded in

H1/2(R3N ,C4N

), and for any ψ ∈ H1/2(R3N ,C4N

) we have

∥∥[χ,ΛN ]ψ
∥∥
H1/2 6 C

(
‖∇χ‖L∞ + ‖∂2χ‖L∞

)(
‖χ‖L∞ + ‖∇χ‖L∞

)
‖ψ‖H1/2

(3.5)

with C depending only on N and the masses of the particles.

Proof. Successively commuting χ with Λn, n = 1, . . . , N (see (2.3)) we obtain

[χ,ΛN ] =

N∑

n=1

n−1∏

k=1

Λk[χ,Λn]

N∏

l=n+1

Λl, (3.6)

where the empty products should be replaced by identity operators. By (2.1)
the operators Λn are bounded in H1/2 for any n = 1, . . . , N . This, together
with (3.6) and Lemmata 8 and 10, implies (3.5). •

4 Lower Bound of the Essential Spectrum

In this section we prove that

inf σess(HD,EN ) > κ(D,E). (4.1)
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4.1 Partition of Unity

Lemma 12 There exists a set of nonnegative functions {χZ} indexed by possi-
ble 2–cluster decompositions Z = (Z1, Z2) satisfying

1. χZ ∈ C∞(R3N ) for all Z;

2. χZ(κX) = χZ(X) for all |X| = 1, κ > 1, Z2 6= ∅;

3.
∑

Z

χ2
Z(X) = 1, for all X ∈ R3N ; (4.2)

4.
There exists C > 0 such that for any X ∈ supp χZ

min
{
|xj − xn| : xj ∈ Z1, xn ∈ Z2; |xn| : xn ∈ Z2

}
> C|X|;

(4.3)

5.
χZ(γx1, . . . , γxN ) = χZ(x1, . . . ,xN ) for any orthogonal

transformation γ;

6. χZ is invariant under permutations of variables preserving Z1,2.

Proof. The proof is essentially based on the modification of the argument
given in [17], Lemma 2.4.

1. We first prove that for any X = (x1, . . . ,xN ) ∈ R3N with |X| = 1 there
exists a 2–cluster decomposition Z = (Z1, Z2) such that

min
{
|xj − xn| : xj ∈ Z1, xn ∈ Z2; |xn| : xn ∈ Z2

}
> N−3/2. (4.4)

Indeed, let k be such that |xk| > |xj | for all j = 1, . . . , N . Then, since |X| = 1,

|xk| > N−
1
2 . (4.5)

Choose Cartesian coordinates in R3 with the first axis passing through the
origin and xk, so that xk =

(
|xk|, 0, 0

)
. Consider N regions

R1 :=
{
x ∈ R3 : x1 6 |xk|/N

}
,

Rl :=
{
x ∈ R3 : x1 ∈

(
(l − 1)|xk|/N, l|xk|/N

]}
, l = 2, . . . , N.

At least one of these regions does not contain xj with j 6= k. Let l0 be the
maximal index of such regions. Let Z2 be the set of indices n such that xn ∈
∪
l>l0

Rl. Z2 is nonempty since xk ∈ Z2. Setting Z1 := I \ Z2 we observe that

min
{
|xj − xn| : xj ∈ Z1, xn ∈ Z2; |xn| : xn ∈ Z2

}
> |xk|/N,

which together with (4.5) implies (4.4).

2. Choose η ∈ C∞
(
R+, [0, 1]

)
so that

η(t) ≡
{

0, t ∈ [0, 1],

1, t ∈ [2,∞).
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Let

ζZ(X) :=




η
(
2|X|

) ∏

n∈Z2

η

(
2|xn|

|X|N−3/2

) ∏

j∈Z1

η

(
2|xj − xn|
|X|N−3/2

)
, Z2 6= ∅,

1− η
(
2|X|

)
, Z2 = ∅.

(4.6)
Functions (4.6) satisfy conditions 1, 2, 4 (with C = N−3/2/2), 5, and 6 of
Lemma 12. Moreover, by the first part of the proof

∑

Z

ζZ(X) > 1, for all X ∈ R3N .

Hence all the conditions are satisfied by the functions

χZ := ζ
1/2
Z

(∑

Z

ζZ

)−1/2

.

•
Let

χRZ(X) := χZ(X/R), (4.7)

where the functions χZ are defined in Lemma 12. The derivatives of χRZ decay
as R tends to infinity:

‖∇χRZ‖∞ 6 CR−1, ‖∂2χRZ‖∞ 6 CR−2. (4.8)

To simplify the notation we omit the superscript R further on.

4.2 Cluster Decomposition and Lower Bound

We now estimate from below the quadratic form of HD,EN on a function ψ from

HD,EN ∩ ΛN
N
⊗
n=1

H1/2(R3,C4), which is the form domain of HD,EN .

〈HD,EN ψ, ψ〉 = 〈
( N∑

n=1

(Dn + Vn) +

N∑

n<j

Unj

)∑

Z

χ2
Zψ, ψ〉

=
∑

Z

〈
( N∑

n=1

(Dn + Vn) +

N∑

n<j

Unj

)
χZψ, χZψ〉.

Here we have used (4.2) and the relation

∑

Z

〈f,
N∑

n=1

∇n(χ2
Zg)〉 =

∑

Z

〈χZf,
N∑

n=1

∇n(χZg)〉+
∑

Z

〈f,
N∑

n=1

∇n
(χ2

Z

2

)
g〉 (4.9)
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which holds for any f, g ∈
N
⊗
n=1

H1/2(R3,C4). The last term on the r. h. s. of

(4.9) is equal to zero due to (4.2). Thus

〈HD,EN ψ, ψ〉 =
∑

Z=(Z1,Z2)

(
〈(HZ,1 +HZ,2)ΛNχZψ,Λ

NχZψ〉

+ 〈(HZ,1 +HZ,2)[χZ ,Λ
N ]ψ,ΛNχZψ〉

+ 〈(HZ,1 +HZ,2)χZψ, [χZ ,Λ
N ]ψ〉

+ 〈
∑

n∈Z2

Vnχ
2
Zψ, ψ〉+ 〈

∑

n<j
n#j

Unjχ
2
Zψ, ψ〉

)
.

(4.10)

By (2.12), (2.13), (4.3), (4.7), and (2.14) the terms at the last line of (4.10)
can be estimated as

〈
∑

n∈Z2

Vnχ
2
Zψ, ψ〉+ 〈

∑

n<j
n#j

Unjχ
2
Zψ, ψ〉 > −ε1(R)

(
〈HD,EN ψ, ψ〉+ ‖ψ‖2

)
(4.11)

with ε1(R)→ 0 as R → ∞. The terms at the second and third lines of (4.10)
can also be estimated as

〈(HZ,1 +HZ,2)[χZ ,Λ
N ]ψ,ΛNχZψ〉+ 〈(HZ,1 +HZ,2)χZψ, [χZ ,Λ

N ]ψ〉
> −ε2(R)

(
〈HD,EN ψ, ψ〉+ ‖ψ‖2

)
, ε2(R) −→

R→∞
0,

according to (2.8), (3.2), (3.5), (4.8), and (2.14). For Z2 6= ∅ we estimate
the terms at the first line of (4.10) in the following way (recall the definitions
(2.18), (2.19) and (2.20)):

〈(HZ,1 +HZ,2)ΛNχZψ,Λ
NχZψ〉

=
∑

(D1,E1;D2,E2)≺
Z

(D,E)

〈(HZ,1PD1PE1 +HZ,2PD2PE2)ΛNχZψ,Λ
NχZψ〉

>
∑

(D1,E1;D2,E2)≺
Z

(D,E)

〈
(
κ1(Z,D1, E1)PD1PE1

+ κ2(Z,D2, E2)PD2PE2
)
ΛNχZψ,Λ

NχZψ〉
> κ(D,E)〈ΛNχZψ,ΛNχZψ〉
= κ(D,E)〈χ2

Zψ, ψ〉+ κ(D,E)〈[ΛN , χZ ]ψ, χZψ〉.
(4.12)

By (3.2), (3.5), (4.8), and (2.14) the last term on the r. h. s. of (4.12) can be
estimated as

κ(D,E)〈[ΛN , χZ ]ψ, χZψ〉 > −ε3(R)
(
〈HD,EN ψ, ψ〉+ ‖ψ‖2

)
, ε3(R) −→

R→∞
0.

(4.13)
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Substituting the estimates (4.11) — (4.13) into (4.10) we obtain

〈HD,EN ψ, ψ〉 > κ(D,E)〈
∑

Z=(Z1 ,Z2)
Z2 6=∅

χ2
Zψ, ψ〉+ 〈HD,EN ΛNχ(I,∅)ψ,Λ

Nχ(I,∅)ψ〉

− ε4(R)
(
〈HD,EN ψ, ψ〉+ ‖ψ‖2

)
, ε4(R) −→

R→∞
0.

(4.14)

4.3 Estimate Inside of the Compact Region

It remains to estimate from below the quadratic form of HD,EN on ΛNχ(I,∅)ψ.
Note that according to Lemma 12 and (4.7) suppχ(I,∅) ⊂ [−2R, 2R]3N . To
simplify the notation let

χ0 := χ(I,∅).

Lemma 13 For M > 0 let

WM :=
{
p ∈ R3N : |pi| 6 M, i = 1, . . . , 3N

}
, W̃M := R3N \WM .

There exists a finite set QM ⊂ L2(R3N ) such that for any f ∈ L2(R3N ) with
suppf ⊂ [−2R, 2R]3N , f⊥QM holds

‖f̂‖
L2(fWM )

>
1

2
‖f̂‖L2(R3N ).

The proof of Lemma 13 is analogous to the proof of Theorem 7 of [23] and is
given in Appendix C of [16].

It follows from (2.9) that for any M > 0

〈HD,EN ΛNχ0ψ,Λ
Nχ0ψ〉 > C1〈

N∑

n=1

DnIfWM
ΛNχ0ψ,Λ

Nχ0ψ〉 − C2‖χ0ψ‖2.

(4.15)

Here IfWM
is the operator of multiplication by the characteristic function of

W̃M in momentum space.
We choose

M := 8
(
κ(D,E) + C2

)
C−1

1 (4.16)

and assume henceforth that f := χ0ψ is orthogonal to the set QM defined
in Lemma 13. Since in momentum space the operator Dn acts on functions
from ΛnL2(R3,C4) as multiplication by

√
|p|2 + m2

n, by construction of W̃M

we have

〈
N∑

n=1

DnIfWM
ΛNχ0ψ,Λ

Nχ0ψ〉 > M‖IfWM
ΛNχ0ψ‖2. (4.17)
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Inequalities (4.15) and (4.17) imply

〈HD,EN ΛNχ0ψ,Λ
Nχ0ψ〉 > C1M‖IfWM

ΛNχ0ψ‖2 − C2‖χ0ψ‖2

> C1M
(
‖IfWM

χ0ψ‖ −
∥∥IfWM

[ΛN , χ0]ψ
∥∥
)2

− C2‖χ0ψ‖2

> C1M
(1

2
‖IfWM

χ0ψ‖2 −
∥∥IfWM

[ΛN , χ0]ψ
∥∥2
)
− C2‖χ0ψ‖2

> 4
(
κ(D,E) + C2

)
‖IfWM

χ0ψ‖2

− 8
(
κ(D,E) + C2

)∥∥[ΛN , χ0]ψ
∥∥2 − C2‖χ0ψ‖2.

(4.18)

At the last step we have used (4.16). The second term on the r. h. s. of (4.18)
can be estimated analogously to (4.13) as

−8
(
κ(D,E)+C2

)∥∥[ΛN , χ0]ψ
∥∥2

> −ε5(R)
(
〈HD,EN ψ, ψ〉+‖ψ‖2

)
, ε5(R) −→

R→∞
0.

For the first term on the r. h. s. of (4.18) Lemma 13 implies

4‖IfWM
χ0ψ‖2 > ‖χ0ψ‖2. (4.19)

As a consequence of (4.18) — (4.19), we have

〈HD,EN ΛNχ0ψ,Λ
Nχ0ψ〉 > κ(D,E)‖χ0ψ‖2 − ε5(R)

(
〈HD,EN ψ, ψ〉+ ‖ψ‖2

)
,

ε5(R) −→
R→∞

0.

(4.20)

4.4 Completion of the Proof

By (4.14), (4.20), and (4.2)

〈HD,EN ψ, ψ〉 > κ(D,E)‖ψ‖2 − ε6(R)
(
〈HD,EN ψ, ψ〉+ ‖ψ‖2

)
, ε6(R) −→

R→∞
0.

for any ψ in the form domain of HD,EN orthogonal to the finite set of functions
(cardinality of this set depends on R). This implies the discreteness of the

spectrum of HD,EN below κ(D,E) and thus (4.1).

5 Spectrum of the Free Cluster

In this section we characterize the spectrum of the cluster Z2 which does not
interact with the external field.

Proposition 14 For any irreducible representations D2, E2 of rotation–
reflection and permutation groups the spectrum of H̃D2,E2

Z,2 is

σ(H̃D2,E2

Z,2 ) = σess(H̃D2,E2

Z,2 ) =
[
κ2(Z,D2, E2),∞

)
,

with some κ2(Z,D2, E2) ∈ R.
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Proof. Let us introduce the new coordinates in the configuration space R3N2

of the cluster Z2 = {n1, . . . , nN2}, in the same manner as it is done in [15]. Let
M :=

∑
n∈Z2

mn be the total mass of the particles constituting the cluster.
We introduce

y0 :=
1

M

∑

n∈Z2

mnxn,

yk := xnk+1
− xn1 , k = 1, . . . , N2 − 1.

(5.1)

The Jacobian of this variable change is one. Here y0 is the coordinate of the
center of mass, whereby yk, k = 1, . . . , N2 − 1 are the internal coordinates of
the cluster. Accordingly,

xn1 = y0 −
1

M

N2−1∑

k=1

mnk+1
yk,

xnl+1
= y0 + yl −

1

M

N2−1∑

k=1

mnk+1
yk, l = 1, . . . , N2 − 1.

(5.2)

The momentum operators in the new coordinates are

pn1 := −i∇xn1
=
mn1

M
P−

N2−1∑

k=1

(−i∇yk
),

pnk
:= −i∇xnk

=
mnk

M
P + (−i∇yk−1

), k = 2, . . . , N2,

(5.3)

where P is the total momentum of the cluster:

P :=
∑

n∈Z2

−i∇xn = −i∇y0.

Let F0 be the partial Forurier transform on H
D2,E2

Z,2 defined by

(F0f)(P,y1, . . . ,yN2−1) :=
1

(2π)3/2

∫

R3

f(y0,y1, . . . ,yN2−1)e−iPy0dy0.

By (2.6) and (2.7) we have

H̃D2,E2

Z,2 = F−1
0 Λ̂Z,2ĤD2,E2

Z,2 Λ̂Z,2F0,

where in the new coordinates

ĤD2,E2

Z,2 :=
∑

n∈Z2

(αn ·pn+βnmn)+

N2−1∑

k=2

Un1nk
(yk)+

∑

1<k<l6N2−1

Unknl
(yk−yl),

(5.4)
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Λ̂Z,2 :=
∏

n∈Z2

Λ̂n, (5.5)

Λ̂n :=
1

2
+

αn · pn + βnmn

2
√

p2
n +m2

n

,

operators pn are given by (5.3), and P should now be interpreted as multiplica-
tion by the vector–function. The operators (5.4) and (5.5) obviously commute
with P := |P|. The operator F−1

0 PF0 (unlike F−1
0 PF0) is well–defined in

H
D2,E2

Z,2 , since it commutes with PD2 an PE2 in HZ,2. This implies that H̃D2,E2

Z,2

commutes with F−1
0 PF0.

Let ω := P/P ∈ S2. We decompose the Hilbert space H
D2,E2

Z,2 into the direct
integral

H
D2,E2

Z,2 =

∫ ∞

0

⊕H
D2,E2,P
Z,2 P2dP. (5.6)

The fibre space H
D2,E2,P
Z,2 can be considered as a subspace of L2(R3N2−3 ×

S2,C4N2
) with the inner product

〈f, g〉∗ :=

∫

R3(N2−1)×S2

〈f, g〉
C4N2 dy1 · · · dyN2−1dω.

For f ∈ HD2,E2

Z,2 the corresponding element of HD2,E2,P
Z,2 is given by

fP := F0f ||P|=P.

We have

‖f‖2 =

∫ ∞

0

‖fP‖2∗P2dP (5.7)

in compliance with (5.6). The form domain of H̃D2,E2,P
Z,2 is

DP := ΛP
Z,2P

D2PE2H1/2(R3(N2−1) × S2,C4N2
),

where ΛP
Z,2 is given by (5.5) with the only difference that we should replace P

by ωP in (5.3). The operators on fibres of the direct integral (5.6) are

H̃D2,E2,P
Z,2 := ΛP

Z,2HD2,E2,P
Z,2 ΛP

Z,2,

where HD2,E2,P
Z,2 is given by the r. h. s. of (5.4) with P replaced by ωP in (5.3).

We thus have

H̃D2,E2

Z,2 =

∫ ∞

0

⊕H̃D2,E2,P
Z,2 P2dP. (5.8)

The spectrum of H̃D2,E2

Z,2 can be represented as

σ(H̃D2,E2

Z,2 ) = ess
⋃

P∈R+

σ(H̃D2,E2,P
Z,2 ), (5.9)
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where the essential union is taken with respect to the Lebesgue measure in R+.

The bottom of the spectrum of H̃D2,E2,P
Z,2 is given by

µ(P) := inf
ψ∈DP

〈H̃D2,E2,P
Z,2 ψ, ψ〉∗
‖ψ‖2∗

. (5.10)

Lemma 15 Function (5.10) is continuous on R+.

Proof of Lemma 15. Let us fix P ∈ R+ and ε > 0. We will prove that∣∣µ(P + p)− µ(P)
∣∣ < ε if |p| is small enough. Choose ψ ∈ DP such that

∣∣∣∣
〈H̃D2,E2,P

Z,2 ψ, ψ〉∗
‖ψ‖2∗

− µ(P)

∣∣∣∣ 6
ε

2
. (5.11)

Let

φ := ΛP+p
Z,2 ψ ∈ DP+p.

We have

φ− ψ = (ΛP+p
Z,2 − ΛP

Z,2)ψ =

N2∑

k=1

∏

i<k

ΛP+p
ni

(ΛP+p
nk
− ΛP

nk
)
∏

j>k

ΛP
nj
ψ. (5.12)

Let F be the unitary Fourier transform in L2(R3(N2−1) × S2,C4N2
) defined by

(Fξ)(ω,q1, . . . ,qN2−1)

:= (2π)3(1−N2)/2

∫

R3(N2−1)

ξ(ω,y1, . . . ,yN2−1)e
−i

N2−1P
k=1

qk·yk

dy1 · · ·dyN2−1.

We can rewrite (5.12) as

φ− ψ = F−1
N2∑

k=1

∏

i<k

Λ̂P+p
ni

(Λ̂P+p
nk
− Λ̂P

nk
)
∏

j>k

Λ̂P
nj
Fψ, (5.13)

where Λ̂P
n , n ∈ Z2 are the operators of multiplication by the symbols

Λ̂P
n :=

1

2
+

αn · p̂n + βnmn

2
√

p̂2
n +m2

n

, (5.14)

p̂n1 :=
mn1

M
ωP−

N2−1∑

k=1

qk,

p̂nk
:=

mnk

M
ωP + qk−1, k = 2, . . . , N2.

(5.15)
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The matrix–functions (5.14) are uniformly continuous in P. Thus by (5.13)

‖φ−ψ‖
H1/2(R3(N2−1)×S2,C4N2 )

6 C

N2∑

k=1

‖Λ̂P+p
nk
−Λ̂P

nk
‖L∞‖ψ‖H1/2 −→

|p|→0
0. (5.16)

We write

〈H̃D2,E2,P+p
Z,2 φ, φ〉∗ = 〈H̃D2,E2,P

Z,2 ψ, ψ〉∗ + 〈HD2,E2,P
Z,2 (φ− ψ), ψ〉∗

+ 〈HD2,E2,P
Z,2 φ, (φ− ψ)〉∗ + 〈(H̃D2,E2,P+p

Z,2 −HD2,E2,P
Z,2 )φ, φ〉∗.

(5.17)

The second and third terms on the r. h. s. of (5.17) tend to zero as |p| → 0
according to (5.16) and (2.8). The last term also tends to zero for small |p|,
since the symbol of the difference is

F(H̃D2,E2,P+p
Z,2 −HD2,E2,P

Z,2 )F−1 =
∑

n∈Z2

mn

M
αn · ωp.

From (5.16) and (5.17) follows that

∣∣∣∣
〈H̃D2,E2,P

Z,2 ψ, ψ〉∗
‖ψ‖2∗

−
〈H̃D2,E2,P+p

Z,2 φ, φ〉∗
‖φ‖2∗

∣∣∣∣ 6
ε

2
, (5.18)

if |p| is small enough. Hence by (5.11) and (5.18) for any ε > 0
∣∣µ(P + p)− µ(P)

∣∣ < ε

for |p| small enough. •
Now we prove that µ is semibounded from below and tends to infinity as |P| →
∞. This, together with (5.9) and Lemma 15, implies that the spectrum of

H̃D2,E2

Z,2 is purely essential and is concentrated on a semi–axis. Proposition 14
will be thus proved.
According to (2.9) for j = 2 and (2.10) we have

〈H̃D2,E2

Z,2 ψ, ψ〉 > C1〈
∑

n∈Z2

√
−∆n +m2

nψ, ψ〉 − C2‖ψ‖2,

for any ψ ∈ PDPE ⊗
n∈Z2

ΛnH
1/2(R3,C4).

(5.19)

Since all the operators corresponding to the quadratic forms involved in (5.19)
commute with F−1

0 PF0, it follows from (5.8) that for almost all P the inequal-
ity

〈H̃D2,E2,P
Z,2 ψ, ψ〉∗ > C1〈

∑

n∈Z2

√
p̂2
n +m2

nFψ,Fψ〉∗ − C2‖ψ‖2∗ (5.20)

holds for every ψ ∈ DP, where p̂n are defined in (5.15). Thus µ is semibounded
from below. Since by (5.15)

P =
∣∣∣
∑

n∈Z2

p̂n

∣∣∣,
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there exists n ∈ Z2 such that

|p̂n| >
P

N2

and hence ∑

n∈Z2

√
p̂2
n +m2

n >
P

N2
.

Thus the r. h. s. of (5.20) tends to infinity as P→∞. •

6 Absence of Gaps

We are now ready to finish the proof of Theorem 6 by proving that

[
κ(D,E),∞

)
⊆ σ(HD,EN ). (6.1)

Let us first fix a decomposition Z on which the minimum is attained in (2.20).
Following the general strategy of [14], we will prove that for any irreducible
representations (D1, E1;D2, E2) ≺

Z
(D,E) any

λ > κ1(Z,D1, E1) + κ2(Z,D2, E2)

belongs to σ(HD,EN ). This will imply (6.1) according to the definition (2.19).
Let

λ1 := λ− κ1(Z,D1, E1) > κ2(Z,D2, E2). (6.2)

We will use the notation and results of Section 5. The following lemma is a
slight modification of Theorem 8.11 of [14] and is proved along the same lines:

Lemma 16 Let A be a selfadjoint operator in a Hilbert space H and U(γ) be
a continuous representation of a compact group Γ by unitary operators in H

such that U(γ) DomA ⊂ DomA and U(γ)A = AU(γ) for any γ ∈ Γ. Then
for any irreducible (matrix) representation D of Γ the corresponding subspace
PDH reduces A. For every λ ∈ σ(AD) where AD is the reduced operator and
every ε > 0 there exists a D–generating subspace G of DomA such that

‖Au− λu‖ 6 ε‖u‖, for all u ∈ G.

Remark 17 Recall that a subspace G of H is called D–generating if the op-
erator U(γ)|G is unitary in G for all γ ∈ Γ and there exists an orthonormal
base in G such that for every γ ∈ Γ the operator U(γ)|G is represented by the
matrix D(γ).

Proof of Lemma 16. Let r be the dimension of the representation D : γ 7→(
Dlk(γ)

)r
l,k=1

. Let us introduce in H the bounded operators Plk by

Plk := r

∫

Γ

Dlk(γ)U(γ)dµ(γ), l, k = 1, . . . , r,
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where µ is the invariant probability measure on Γ. It is shown in the proof of
Theorem 8.11 of [14] that Pll are orthogonal projections onto mutually orthog-
onal subspaces of H and that

PD =

r∑

l=1

Pll. (6.3)

In fact, Pll is the projection on the subspace of function which belong to the
lth row of the representation D. Moreover, Plk is a partial isometry between
PkkH and PllH. Since λ ∈ σ(AD), there exists a vector u0 ∈ DomAD such that

‖ADu0 − λu0‖ 6 ε‖u0‖.

It follows from (6.3) that there exists l ∈ {1, . . . , r} such that ‖Pllu0‖ > r−1.
We can thus define ul := Pllu0/‖Pllu0‖ and then uk := Pklul for k = 1, . . . , r.
The subspace G spanned by {uk}rk=1 satisfies the statement of the lemma. •
Let

rj := dim(Dj ⊗ Ej), j = 1, 2. (6.4)

Since κ1(Z,D1, E1) belongs to the spectrum of H̃D1,E1

Z,1 (see definition (2.18)),
by Lemma 16 we can choose a sequence of (D1 ⊗ E1)–generating subspaces

{Gq}∞q=1 of Dom(H̃D1,E1

Z,1 ) such that for all q ∈ N

∥∥H̃D1,E1

Z,1 φq − κ1(Z,D1, E1)φq
∥∥

HZ,1
6 q−1‖φq‖HZ,1 , for all φq ∈ Gq. (6.5)

Analogously, for any P > 0 we can find a sequence {GP
q }∞q=1 of (D2 ⊗ E2)–

generating subspaces of Dom H̃D2,E2,P
Z,2 such that

∥∥H̃D2,E2,P
Z,2 ψP

q − µ(P)ψP
q

∥∥
∗ 6 q−1‖ψP

q

∥∥
∗, for all ψP

q ∈ GP
q . (6.6)

Moreover, we can choose an orthonormal basis {ψP
q,l}r2l=1 in GP

q in such a way

that for every q ∈ N and l = 1, . . . , r2 ψq,l belongs to the lth row of the
representation (D2 ⊗ E2) and satisfies (6.6). By Proposition 14, Lemma 15,
and (6.2) we can choose P0 in such a way that

µ(P0) = λ1. (6.7)

We choose Rq > q so that (2.12) and (2.13) hold true for all n, j = 1, . . . , N ,
n < j with

ε := q−1(N1 + 1)−1N
−1/2
2 C

1/2
1

(
C2 + |λ1|+ 2

)−1/2
, (6.8)

where N1,2 are the numbers of elements in Z1,2, and C1,2 are the constants in
(2.9) for j = 2, and so that for some orthonormal base {φq,k}r1k=1 of Gq

∥∥∥∥
(

1−
∏

j∈Z1

I{|xj |<Rq}
)
φq,k

∥∥∥∥
L2(R3N1 ,C4N1 )

6
ν0

4d2
Er1r2

, (6.9)
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where dE is the dimension of E, r1,2 are defined in (6.4), and the constant
ν0 > 0 depending only on E,E1, E2 will be specified later in the proof of
Lemma 21.

By Assumption 4 and Lemma 15, we can choose a sequence of positive numbers
{δq}∞q=1 tending to zero in such a way that

∣∣µ(P)− λ1

∣∣ 6 q−1 for all P ∈ [P0,P0 + δq], (6.10)

1

2π2
(P0 + δq)

2δqCRq < q−2, (6.11)

where CRq is the constant in (2.11), and

1

2π2
(P0 + δq)

2δq ·
4

3
πR3

q <
ν2
0

16d4
Er

2
1r

2
2

. (6.12)

Let us choose a function fq ∈ L2(R+) with supp fq ⊂ [P0,P0 + δq] so that

∫ P0+δq

P0

∣∣fq(P)
∣∣2P2dP = 1. (6.13)

Let

ψq,l(y0, . . . ,yN2−1)

:=
1

(2π)
3
2

P0+δq∫

P0

∫

S2

eiPωy0fq(P)ψP
q,l(ω,y1, . . . ,yN2−1)P2dωdP,

(6.14)

where {y0, . . . ,yN2−1} and {xn}n∈Z2 are related by (5.1) and (5.2). It follows

from (6.13) and the choice of ψP
q,l that

‖ψq,l‖HZ,2 = 1, l = 1, . . . , N2, (6.15)

and that ψq,l belongs to the lth row of (D2 ⊗ E2). Clearly the linear subspace

G̃q spanned by {ψq,l}r2l=1 is a (D2 ⊗E2)–generating subspace of Dom H̃D2,E2

Z,2 .

Lemma 18 For any n ∈ Z2 and ψ ∈ G̃q with ‖ψ‖ = 1 the one–particle density

ρψ,n(xn) :=

∫

R3N2−3

∣∣ψ(xn1 , . . . ,xnN2
)
∣∣2(dxn1 · · ·dxnN2

)/dxn

satisfies

‖ρψ,n‖L∞(R3) 6
1

2π2
(P0 + δq)

2δq.
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Proof. By (6.14)

‖ρψ,n‖L∞(R3) 6 (2π)−3/2‖ρ̂ψ,n‖L1(R3)

=
1

(2π)6

∫

R3

∣∣∣∣
∫

R3N2

∫ P0+δq

P0

∫

S2

∫ P0+δq

P0

∫

S2

e−ip(y0+rn)e−iPωy0fq(P)

× ψP∗
q (ω,y1, . . . ,yN2−1)ei

ePeωy0fq(P̃)ψ
eP
q (ω̃,y1, . . . ,yN2−1)P2P̃2

× dω̃ dP̃ dω dP dy0 dy1 · · ·dyN2−1

∣∣∣∣dp,

(6.16)

where rn := xn−y0, see (5.2). Integrating the r. h. s. of (6.16) in y0 we obtain

(2π)3δ(p+Pω−P̃ω̃) from all the factors involving y0. Estimating the absolute
value of the integral by the integral of absolute value and taking into account
that

∫
δ(p + . . . )dp = 1 we get

‖ρψ,n‖L∞(R3) 6
1

(2π)3

∫

R3N2−3

∫ P0+δq

P0

∫

S2

∫ P0+δq

P0

∫

S2

∣∣fq(P)
∣∣∣∣fq(P̃)

∣∣

×
∣∣ψP
q (ω,y1, . . . ,yN2−1)

∣∣∣∣ψ ePq (ω̃,y1, . . . ,yN2−1)
∣∣P2P̃2

× dω̃ dP̃ dω dP dy1 · · · dyN2−1 6
1

(2π)3
4π(P0 + δq)

2δq,

(6.17)

where at the last step we have used Schwarz inequality and ‖ψ‖ = 1. The
formal calculation (6.16) — (6.17) is justified by the fact that the integral over
R3N2 can be considered as a limit of integrals over expanding finite volumes,
since ψ ∈ L2(R3N2). •

Corollary 19 For any W ∈ L2(R3), n ∈ Z2, and ψ ∈ G̃q with ‖ψ‖ = 1 we
have
∫

R3N2

∣∣W (xn)ψ(xn1 , . . . ,xnN2
)
∣∣2dxn1 · · ·dxnN2

6
1

2π2
(P0 + δq)

2δq‖W‖2.

Let Fq be the subspace of HN spanned by the functions

ϕq,k,l(x1, . . . ,xN ) := φq,k(xj : j ∈ Z1)⊗ ψq,l(xn : n ∈ Z2),

k = 1, . . . , r1, l = 1, . . . , r2,
(6.18)

where {φq,k}r1k=1 and {ψq,l}r2l=1 are orthonormal bases of Gq and G̃q, respec-
tively. We obviously have ‖ϕq,k,l‖L2(R3N ,C4N ) = 1.

Lemma 20 For any q ∈ N Fq ⊂ DomHN . For any ϕ ∈ Fq
∥∥(HN − λ)ϕ

∥∥ 6 5q−1r
1/2
1 r

1/2
2 ‖ϕ‖.
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Proof. It is enough to show that the functions (6.18) belong to DomHN and
satisfy ∥∥(HN − λ)ϕq,k,l

∥∥
L2(R3N ,C4N )

6 5q−1. (6.19)

Indeed, by triangle and Cauchy inequalities for

ϕ =

r1∑

k=1

r2∑

l=1

cklϕq,k,l (6.20)

we have

∥∥(HN − λ)ϕ
∥∥ 6

r1∑

k=1

r2∑

l=1

|ckl|
∥∥(HN − λ)ϕq,k,l

∥∥

6 sup
k,l

∥∥(HN − λ)ϕq,k,l
∥∥r1/21 r

1/2
2 ‖ϕ‖.

The operator domain of HN can be characterized as the set of functions

ξ from the form domain
N
⊗
n=1

ΛnH
1/2(R3,C4) on which the sesquilinear form

〈HN ξ, ·〉 is a bounded linear functional in HN . Functions (6.18) belong to
N
⊗
n=1

ΛnH
1/2(R3,C4) by construction. By (2.2), (2.5), and (2.6) we have

HN = HZ,1 +HZ,2 + ΛN
( ∑

n∈Z2

Vn +
∑

n<j
n#j

Unj

)
ΛN . (6.21)

The sesquilinear forms 〈(HZ,1 +HZ,2)ϕq,k,l, ·〉 are bounded linear functionals

over L2(R3N ,C4N

), since φq,k ∈ Dom(H̃D1,E1

Z,1 ) and ψq,l ∈ Dom H̃D2,E2

Z,2 . More-
over, by (6.5)

∥∥∥
(
HZ,1 − κ1(Z,D1, E1)

)
ϕq,k,l

∥∥∥ =
∥∥∥
(
H̃D1,E1

Z,1 − κ1(Z,D1, E1)
)
φq,k

∥∥∥ 6 q−1,

and by (6.6), (6.7), (6.10), (6.14), and (6.15)

∥∥(HZ,2 − λ1)ϕq,k,l
∥∥ =

∥∥(H̃D2,E2

Z,2 − λ1)ψq,l
∥∥ 6 2q−1. (6.22)

In view of (6.21)—(6.22) and (6.2), to prove that ϕq,k,l ∈ DomHN and that
(6.19) holds true it is enough to obtain that

∥∥∥∥
( ∑

n∈Z2

Vn +
∑

n<j
n#j

Unj

)
ϕq,k,l

∥∥∥∥ 6 2q−1. (6.23)
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To do this, we first note that by (2.12), (2.13), and Cauchy inequality
∥∥∥∥
( ∑

n∈Z2

VnI{|xn|>Rq} +
∑

n<j
n#j

UnjI{|xn−xj |>Rq}

)
ϕq,k,l

∥∥∥∥

6 ε(N1 + 1)
∑

n∈Z2

∥∥|Dn|
1
2ψq,l

∥∥ 6 ε(N1 + 1)N
1
2
2

( ∑

n∈Z2

∥∥|Dn|
1
2ψq,l

∥∥2
) 1

2

.

(6.24)

By (2.9), (6.15), and (6.22),

∑

n∈Z2

‖D1/2
n ψq,l‖2 6 C−1

1

(∥∥(H̃D2,E2

Z,2 − λ1)ψq,l
∥∥+ C2 + |λ1|

)

6 C−1
1

(
C2 + |λ1|+ 2q−1

)
.

(6.25)

Thus by (6.24), (6.25) and (6.8) for q > 1 we obtain
∥∥∥∥
( ∑

n∈Z2

VnI{|xn|>Rq} +
∑

n<j
n#j

UnjI{|xn−xj|>Rq}

)
ϕq,k,l

∥∥∥∥ 6 q−1. (6.26)

Now the scalar functions

Vn,q(x) :=
∣∣Vn(x)

∣∣I{|x|6Rq}(x) and Unj,q(x) :=
∣∣Unj(x)

∣∣I{|x|6Rq}(x)
(6.27)

are square integrable by (2.11). By Corollary 19, for n ∈ Z2

‖Vn,qϕq,k,l‖2 = ‖Vn,qψq,l‖2 6
1

2π2
δq(P0 + δq)

2‖Vn,q‖2L2(R3) (6.28)

and for n < j, n#j

‖Unj,qϕq,k,l‖2 6 sup
z∈R3

∥∥Unj,q(· − z)ψq,l
∥∥2

6
1

2π2
δq(P0 + δq)

2‖Unj,q‖2L2(R3).

(6.29)
Hence by (6.27), (6.28), (6.29), (2.11), and (6.11)

∥∥∥∥
( ∑

n∈Z2

VnI{|xn|6Rq} +
∑

n<j
n#j

UnjI{|xn−xj|6Rq}

)
ϕq,k,l

∥∥∥∥ 6 q−1.
(6.30)

It remains to add (6.26) and (6.30) to obtain (6.23), finishing the proof of the
lemma. •
The subspace Fq spanned by the functions (6.18) is D1 ⊗ E1 ⊗ D2 ⊗ E2–
generating. Since (D1, E1;D2, E2) ≺

Z
(D,E), Fq contains some nontrivial D–

generating subspace. Hence the subspace Kq := PDFq is not equal to {0} and
is contained in Fq.
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Lemma 21 There exists a constant CE > 0 such that for every q ∈ N

‖PEϕ‖ > CE‖ϕ‖, for all ϕ ∈ Fq. (6.31)

Proof. Projector (2.15) can be written as

PE =
dE
hΠ

∑

π∈ΠZ
1 ×ΠZ

2

ξE(π)π +
dE
hΠ

∑

π∈Π\(ΠZ
1 ×ΠZ

2 )

ξE(π)π. (6.32)

We will denote the first term in (6.32) by QE , and the second by RE. Then

‖PEϕ‖2 = 〈ϕ, PEϕ〉 = 〈ϕ,QEϕ〉+ 〈ϕ,REϕ〉. (6.33)

Relation (D1, E1;D2, E2) ≺
Z

(D,E) implies that the representation E|ΠZ
1 ×ΠZ

2

is unitarily equivalent to a sum
k
⊕
i=0
niE

(i), where ni > 0 are multiplicities of the

irreducible representations E(i) of the group ΠZ
1 × ΠZ

2 with E(0) = E1 ⊗ E2.
For the corresponding characters this gives

ξE(π) =

k∑

i=0

niξ
(i)(π), for all π ∈ ΠZ

1 ×ΠZ
2 .

Hence

QE =

k∑

i=0

νiPi,

where νi > 0 and Pi is the projector corresponding to the representation E(i).
By construction, P0ϕ = ϕ for any ϕ ∈ Fq, hence Piϕ = 0 for i = 1, . . . , k. Thus
for any ϕ ∈ Fq

〈ϕ,QEϕ〉 = ν0‖ϕ‖2, ν0 > 0. (6.34)

We will now estimate the second term on the r. h. s. of (6.33). For any n ∈ Z2

and any ψ ∈ G̃q with ‖ψ‖ = 1 by Corollary 19 and (6.12) we have

‖I{|xj|<Rq}ψ‖2 6
ν2
0

16d4
Er

2
1r

2
2

. (6.35)

For any functions (6.18) and any π ∈ Π inequality (6.9) implies that

∣∣〈ϕq,k,l, πϕq,ek,el〉
∣∣ 6 〈

∏

j∈Z1

I{|xj |<Rq}|ϕq,k,l|, π|ϕq,ek,el|〉L2(R3N ) +
ν0

4d2
Er1r2

.

Now if π ∈ Π\ (ΠZ
1 ×ΠZ

2 ), then there exists j0 ∈ Z1 such that πj0 ∈ Z2. Hence
by (6.35)

〈
∏

j∈Z1

I{|xj |<Rq}|ϕq,k,l|, π|ϕq,ek,el|〉 6 〈|ϕq,k,l|, I{|xj0 |<Rq}π|ϕq,ek,el|〉 6
ν0

4d2
Er1r2

.
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Thus ∣∣〈ϕq,k,l, πϕq,ek,el〉
∣∣ 6

ν0
2d2
Er1r2

, π ∈ Π \ (ΠZ
1 ×ΠZ

2 ). (6.36)

Any ϕ ∈ Fq can be written as (6.20). By (6.36) and Cauchy inequality for any
π ∈ Π \ (ΠZ

1 ×ΠZ
2 )

∣∣〈ϕ, πϕ〉
∣∣ 6

∑

k,l,ek,el

|ckl||cekel|
∣∣〈ϕq,k,l, πϕq,ek,el〉

∣∣ 6
ν0

2d2
E

‖ϕ‖2. (6.37)

Since the number of elements of Π\ (ΠZ
1 ×ΠZ

2 ) does not exceed dΠ and for any
π
∣∣ξE(π)

∣∣ 6 dE as a trace of unitary matrix of dimension dE , (6.37) implies
that ∣∣〈ϕ,REϕ〉

∣∣ 6 ν0‖ϕ‖2/2.
By (6.33) and (6.34) we conclude that (6.31) holds with CE =

√
ν0/2. •

Lemmata 20 and 21 imply that Lq := PEKq is a nontrivial subspace of

DomHD,EN and for every f = PEϕ ∈ Lq
∥∥(HD,EN −λ)f

∥∥ 6
∥∥(HN −λ)ϕ

∥∥ 6 5q−1r
1
2
1 r

1
2
2 ‖ϕ‖ 6 5q−1r

1
2
1 r

1
2
2 C
−1
E ‖f‖, q ∈ N.

This implies that λ ∈ σ(HD,EN ), and thus finishes the proof of Theorem 6.
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Abstract. Let M be a Chow motive over a field F . Let X be a
smooth projective variety over F and N be a direct summand of the
motive of X . Assume that over the generic point of X the motives M
and N become isomorphic to a direct sum of twisted Tate motives.
The main result of the paper says that if a morphism f : M → N
splits over the generic point of X then it splits over F , i.e., N is a
direct summand of M . We apply this result to various examples of
motives of projective homogeneous varieties.

2000 Mathematics Subject Classification:
Keywords and Phrases: Chow motive, homogeneous variety

1 Introduction

By a variety X over a field F we always mean a reduced and irreducible scheme
of finite type over F . By F (X) we denote the function field of X .

Definition 1.1. Let M be a Chow motive over F . We say M is split over F
if it is a direct sum of twisted Tate motives over F . We say a motive M is
generically split if there exists a smooth projective variety X over F and an
integer l such that M is a direct summand of the twisted motive M(X){l} of
X and M is split over F (X). In particular, a smooth projective variety X is
called generically split if its Chow motive M(X) is split over F (X).

The classical examples of such varieties are Severi-Brauer varieties, Pfister
quadrics and maximal orthogonal Grassmannians. In the present paper we
provide useful technical tool to study motivic decompositions of generically
split varieties (motives). Namely, we prove the following

1Partially supported by SFB 701, INTAS 05-1000008-8118 and DFG GI 706/1-1.
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Theorem 1.2. Let M be a Chow motive over a field F . Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume that M and N are split over F (X). Then a morphism M → N splits,
i.e. N is a direct summand of M , if it splits over F (X).

The paper is organized as follows. In section 2 we introduce the category of
Chow motives over a relative base. In section 3 we provide the version of the
Rost nilpotence theorem for generically split varieties. In section 4 we prove the
main result of this paper (see the above theorem). The last section is devoted
to various applications and examples.

2 Chow motives over a relative base

Let X be a variety over a field F . We say X is essentially smooth over F
if it is an inverse limit of smooth varieties Xi over F taken with respect to
open embeddings. Let CHm(X ; Λ) = CHm(X) ⊗Z Λ denote the Chow group
of codimension m cycles on X with coefficients in a commutative ring Λ. If X
is essentially smooth, then CHm(X ; Λ) = lim−→CHm(Xi; Λ), where the limit is
taken with respect to the pull-backs induced by open embeddings.
In the present section we introduce the category of Chow motives over an
essentially smooth variety X with Λ-coefficients. Our arguments follow the
paper [9].

I. First, we define the category of correspondences C(X ; Λ). The objects of
C(X ; Λ) are smooth projective maps Y → X . The morphisms are given by

Hom([Y → X ], [Z → X ]) = ⊕i CHdim(Zi/X)(Y ×X Zi; Λ),

where the sum is taken over all irreducible components Zi of Z of relative
dimensions dim(Zi/X). The composition of two morphisms is given by the
usual correspondence product

ψ ◦ φ = (pY,T )∗
(
(pY,Z)∗(φ) · (pZ,T )∗(ψ)

)
,

where φ ∈ Hom([Y → X ], [Z → X ]), ψ ∈ Hom([Z → X ], [T → X ]) and
pY,T , pY,Z, pZ,T are projections Y ×X Z ×X T → Y ×X T , Y ×X Z, Z ×X T .
The category C(X ; Λ) is a tensor additive category, where the direct sum is
given by [Y → X ] ⊕ [Z → X ] := [Y

∐
Z → X ] and the tensor product by

[Y → X ]⊗ [Z → X ] := [Y ×X Z → X ] (cf. [9, §2-4]). As usual we denote by
φt ∈ CH(Z ×X Y ) the transposition of a cycle φ ∈ CH(Y ×X Z).
The category of effective Chow motives Chow eff(X ; Λ) can be defined as the
pseudo-abelian completion of C(X ; Λ). Namely, the objects are pairs (U, ρ),
where U is an object of C(X ; Λ) and ρ ∈ EndC(X;Λ)(U) is a projector, i.e.
ρ ◦ ρ = ρ. The morphisms between (U1, ρ1) and (U2, ρ2) are given by the
group ρ2 ◦ HomC(X;Λ)(U1, U2) ◦ ρ1. The composition of morphisms is induced
by the correspondence product. In the case X = Spec(F ) and Λ = Z we obtain
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the usual category Chow eff(F ) of effective Chow motives over F with integral
coefficients (cf. [9, §5]).

Consider the projective line P1 over F . The projector ρ = [Spec(F ) × P1] ∈
CH1(P1 × P1) defines an object (P1, ρ) in Chow eff(F ) called the Tate motive
over F and denoted by Z{1} (cf. [9, §6]).

II. We have two types of restriction functors.

1) For any morphism f : X1 → X2 of essentially smooth varieties we have a
tensor additive functor

resX2/X1
: C(X2; Λ)→ C(X1; Λ)

given on the objects by [Y2 → X2] 7→ [Y2×X2 X1 → X1] and on the morphisms
by φ 7→ (id × f)∗(φ), where id × f : (Y2 ×X2 Z2) ×X2 X1 → Y2 ×X2 Z2 is the
natural map. It induces a functor on pseudo-abelian completions

resX2/X1
: Chow eff(X2; Λ)→ Chow eff(X1; Λ).

2) For any homomorphism of commutative rings h : Λ→ Λ′ we have a tensor
additive functor

resΛ′/Λ : C(X,Λ)→ C(X ; Λ′)

which is identical on objects and is given by id ⊗ h : CH(Y ×X Z; Λ) →
CH(Y ×X Z; Λ′) on morphisms. Again, it induces a functor on pseudo-abelian
completions

resΛ′/Λ : Chow eff(X ; Λ)→ Chow eff(X ; Λ′).

Observe that the functor resΛ′/Λ commutes with resX2/X1
. We denote by

resX2/X1,Λ′/Λ the composite resX2/X1
◦ resΛ′/Λ. To simplify the notation we

omit X2 (resp. Λ), if X2 = SpecF (resp. Λ = Z).

Let f : X → SpecF and h : Z → Λ be the structure maps. Then
resX,Λ : Chow eff(F ) → Chow eff(X ; Λ). Given a motive N over F we denote

by NX,Λ its image resX,Λ(N) in Chow eff(X ; Λ). The image Z{1}X,Λ of the
Tate motive is denoted by T and is called the Tate motive over X . Let M
be a motive from Chow eff(X ; Λ) and l ≥ 0 be an integer. The tensor product
M ⊗ T⊗l is denoted by M{l} and is called the twist of M . The trivial Tate
motive T⊗0 will be denoted Λ (thus, T⊗l = Λ{l}).
The same arguments as in the proof of [9, Lemma of §8] show that for any
motives U and V from Chow eff(X ; Λ) and l ≥ 0 the natural map

HomChoweff (X;Λ)(U, V )→ HomChoweff (X;Λ)(U{l}, V {l}) (1)

given by φ 7→ φ⊗ idT is an isomorphism.
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III. We define the category Chow (X ; Λ) of Chow motives over X with Λ-
coefficients as follows. The objects are pairs (U, l), where U is an object of
Chow eff(X ; Λ) and l is an integer. The morphisms are given by

Hom((U, l), (V,m)) := lim
N→+∞

HomChoweff (X;A)(U{N + l}, V {N +m}).

This is again a tensor additive category, where the sum and the product are
given by

(U, l)⊕ (V,m) := (U{l− n} ⊕ V {m− n}, n), where n = min(l,m),

(U, l)⊗ (V,m) := (U ⊗ V, l +m).

Observe that the Tate motive T is isomorphic to ([id : X → X ], 1) and, hence,
it is invertible in (Chow (X ; Λ),⊗). Moreover, we can say that Chow (X ; Λ) is
obtained from Chow eff(X ; Λ) by inverting T (cf. [9, §8]).

According to (1) the natural functor Chow eff(X ; Λ) → Chow (X ; Λ) given by
U 7→ (U, 0) is fully faithful and the restriction resX,Λ descend to the respective
functor resX,Λ : Chow (F )→ Chow (X ; Λ).
For a smooth projective morphism Y → X we denote by M(Y → X) its
effective motive ([Y → X ], id) considered as an object of Chow (X ; Λ). If
X = SpecF and Λ = Z, then we denote the motive M(Y → X) simply
by M(Y ). By definition there is a natural identification

HomChow(X;Λ)(M(Y → X){i},M(Z →X){j}) = CHdim(Z/X)+j−i(Y ×X Z; Λ).

IV. Let M be an object of Chow (X ; Λ). We define the Chow group with low
index CHm(M ; Λ) of M as

CHm(M ; Λ) := HomChow(X;Λ)(Λ{m},M)

and the Chow group with upper index CHm(M ; Λ) as

CHm(M ; Λ) := HomChow(X;Λ)(M,Λ{m}).

Observe that if M = M(Y → X), then we obtain the usual Chow groups

CHdim(Y/X)−m(Y ; Λ) and CHm(Y ; Λ) of a variety Y . A composite with a
morphism f : M → N induces a homomorphism between the Chow groups
Rm(f) : CHm(M) → CHm(N) and Rm(f) : CHm(N) → CHm(M) called the
realization map.

3 The Rost nilpotence

We will extensively use the following version of the Rost nilpotence (cf. [14,
Proposition 9])
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Proposition 3.1. Let N be a generically split motive over a field F . Then for
any field extension E/F and any coefficient ring Λ the kernel of the restriction

resE/F : EndF (N)→ EndE(NE)

consists of nilpotents.

To simplify the notation we denote by EndX(M) the endomorphism group
HomChow(X;Λ)(M,M), where M is a motive over a variety X .

Proof. Recall that (see Definition 1.1) a motive N over F is generically split if
there exists a smooth projective variety X and l ∈ Z such that N is a direct
summand of M(X){l} and NK = resK/F (N) is split, where K = F (X) denotes
the function field of X .
We may assume that N is a direct summand of M(X) (that is, l = 0). Since for
a split motive M and a field extension E/L, the map EndL(ML)→ EndE(ME)
is an isomorphism, we may assume that E = K.
Consider the composite of ring homomorphisms

resK/F : EndF (N)
resX/F−−−−→ EndX(NX)

resK/X−−−−−→ EndK(NK),

where the last map is induced by passing to the generic point SpecK → X .
Observe that EndK(NK) = lim−→EndU (NU ), where the limit is taken over all
open subvarieties U ⊂ X . Then ker(resK/X) = ∪U ker(resU/X) and by Lemma
3.2 the kernel of resK/X consists of nilpotents.
On the other hand, the map resX/F is injective. Indeed, since N is a direct
summand of M(X), EndF (N) is a subring of EndF (M(X)) and EndX(NX) is
a subring of EndX(M(X)X). So, it is sufficient to prove the injectivity for the
case N = M(X). The restriction resX/F : EndF (M(X)) → EndX(M(X)X)
coincides with the pull-back π∗1,2 : CH(X×X ; Λ)→ CH(X×X×X ; Λ) induced
by the projection on the first two coordinates. And π∗1,2 splits by (idX ×
∆X)∗ : CH(X ×X ×X ; Λ)→ CH(X ×X ; Λ), where ∆X : X → X ×X is the
diagonal. The proposition is proven.

Lemma 3.2. Let X be a smooth projective variety over F and Λ be a commu-
tative ring. Let U ⊂ X be an open embedding. Then for any motive M from
Chow (X ; Λ) the kernel of the restriction map

resU/X : EndX(M)→ EndU (MU )

consists of nilpotents.

Proof. If M is a direct summand of [Y → X ]{i}, then EndX(M) is a subring
of EndX(M(Y → X)) and it is sufficient to study the case M = M(Y → X).

Recall that EndX(M(Y → X)) = CHdim(Y )−dim(X)(Y ×X Y ; Λ).
Let φ be an element from the kernel of resU/X . Let j : Z → X be the reduced
closed complement to U in X . Then by the localization sequence for Chow
groups the cycle φ belongs to the image of the induced push-forward

(id(Y×XY ) × j)∗ : CH((Y ×X Y )×X Z; Λ)→ CH(Y ×X Y ; Λ).
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Let codim(Z) be the minimum of codimensions of irreducible components of Z,

and d := [ dim(X)
codim(Z) ]+1. We claim that the d-th power φ◦d of φ taken with respect

to the correspondence product is trivial. Indeed, φ◦d = (π1,d+1)∗(φ1 ·φ2 ·. . .·φd),
where φi = π∗i,i+1(φ) and the map πi,i′ : Y ×(d+1) → Y ×X Y is the projection
on the i-th and i′-th components. Since π∗i,i′ ◦ (id(Y×XY ) × j)∗ coincides with
(idY ×(d+1) × j)∗ ◦ (πi,i′ × idZ)∗, all cycles φi belong to the image of the push-
forward

(idY ×(d+1) × j)∗ : CH(Y ×(d+1) ×X Z)→ CH(Y ×(d+1)).

By Proposition 6.1 applied to the projection Y ×(d+1) → X and the closed
embedding j : Z →֒ X we obtain that the product

φ1 · . . . · φd ∈
(
(idY ×(d+1) × j)∗ CH(Y ×(d+1) ×X Z)

)d

is trivial. Therefore, φ◦d is trivial as well.

We finish this section with the following

Definition 3.3. Given motive M over a field F and a field extension L/F we
say a cycle in CH(ML) is rational if it is in the image of the restriction map
resL/F .

Observe that the rationality of cycles is preserved by push-forward and pull-
back maps. It also respects addition, intersection and correspondence product
of cycles.

4 Motivic splitting lemma

In the present section we prove the main result of this paper

Theorem 4.1. Let M be a Chow motive over a field F . Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume that M and N are split over the function field K = F (X). Then a
morphism f : M → N splits, i.e. N is a direct summand of M , if it splits over
K.

Proof. To construct a section of f we apply recursively the following procedure
starting from g = 0 and such m that CHi(NK) = 0, for i < m.

For a morphism g : N → M such that the realization morphism
Ri(fK ◦ gK) is the identity on CHi(NK) for i < m, we construct a
new morphism g′ : N → M such that Ri(fK ◦ g′K) is the identity
on CHi(NK) for i ≤ m.

Since the motive NK splits, for the corresponding projector ρN over K we may
write (ρN )K =

∑
l ωl×ω∨l for certain ωl ∈ CH∗(XK) and ω∨l ∈ CH∗(XK) such
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that deg(ωl · ω∨m) = δl,m. Elements ωl form a basis of CH∗(NK) = (ρN )K ◦
CH∗(XK) ⊂ CH∗(XK).
Consider the surjection CHm(X ×X) ։ CHm(K ×F X) = CHm(XK). Let Ωl
be a preimage of an element ωl of CHm(XK).
Consider the difference id − f ◦ g and denote it by h. Assume that over K it
sends a basis element ωj to a cycle αj . Since Ri(hK) is trivial for all i < m,
the cycle hK = hK ◦ (ρN )K can be written as

hK =
∑

codimαl=m

αl × ω∨l +
∑

codimαj>m

αj × ω∨j ∈ CHdimX(XK ×XK). (2)

From (2) we immediately see that

αl = pr1∗(Ωl,K · hK) ∈ CHm(XK) is rational. (3)

Also, αl ◦ (ρN )K = αl.
The realization Rm(fK) is a Z-linear map CHm(NK)→ CHm(MK). Let C =
(cij) be the respective matrix of coefficients, i.e.,

Rm(fK) : ωi 7→
∑

j

cjiθj ,

where {θi} is a Z-basis of CHm(MK). Let s : NK → MK be a section of
fK . The realization map Rm(s) is a left inverse to Rm(fK). Hence, for the
respective matrix of coefficients D = (dij) we have

Rm(s) : θi 7→
∑

j

djiωj

and D · C = id, i.e.,
∑
j dijcjk = δik. For each αl define the morphism ul :

N →M as
ul =

∑

i

dliΘ
∨
i ◦ (pr∗1(αl) ·∆X) ◦ pN ,

where Θ∨i is a preimage of an element θ∨i of CHm(MK) by means of the canon-
ical surjection HomF (M(X)(m)[2m],M) → CHm(MK) and pN : N → M(X)
be the morphism presenting N as a direct summand of M(X). By definition,
ul is a rational morphism and the realization Rm(ul) is given by

θi 7→ dliαl

Hence, the composite Rm(f ◦ ul) = Rm(ul) ◦Rm(f) maps ωi to δilαl.
Set g̃ = g +

∑
l ul. By construction, the realization R(f ◦ g̃) is the identity on

CHi(NK) for i ≤ m. Consider the endomorphism id− f ◦ g̃ of N . Over K its
realization Ri(id− f ◦ g̃) is trivial for each i ≤ m.
Recursion step is proven and we obtain map g′ : N →M such that (f ◦ g′)K =
idNK . Let q = id − f ◦ g′. By the Proposition 3.1, qr = 0, for some r. Set
g = g′ ◦ (id + q + q◦2 + . . . + q◦(r−1)). Then f ◦ g = idN and N is a direct
summand of M .
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5 Examples and Applications

Geometric construction of a generalized Rost motive. Let p be a
prime and F be a field of characteristic different from p. Let n be a positive
integer. To each nonzero cyclic subgroup 〈α〉 in KM

n (F )/p consisting of pure
symbols one can assign some motive Mα in the category Chow (F ; Z/pZ), which
satisfies the following property
For an arbitrary field extension E/F

α|E 6= 0 ⇐⇒ (Mα)E = resE/F (Mα) is indecomposable;
α|E = 0 ⇐⇒ (Mα)E is split.

It follows from the results of V. Voevodsky and M. Rost that for a given sub-
group such motive always exists and is unique (see [17, § 5] and [15, Prop. 5.9]).
Moreover, when split it is isomorphic to

p−1⊕

i=0

Z/pZ{i · pn−1−1
p−1 }.

Such a motive is called a generalized Rost motive with Z/pZ-coefficients.

Definition 5.1. A motive with integral coefficients which specializes modulo
p into a generalized Rost motive and splits modulo q for every prime q different
from p will be called an integral generalized Rost motive and denoted by Rn,p.

Integral generalized Rost motives, hypothetically, should be parameterized not
by the pure cyclic subgroups of KM

n (F )/p, but by the pure symbols of KM
n (F )/p

up to a sign. The existence of integral generalized Rost motives is known for
n = 2 and arbitrary p, for p = 2 and arbitrary n, and for the pair n = 3, p = 3.
All these examples are essentially due to M. Rost.
As the first application of Theorem 4.1 we obtain the construction of the clas-
sical integral Rost motive corresponding to a Pfister form.

Corollary 5.2. (cf. [14, Theorem 17.(9) and Proposition 19]) Let X be a
hyperplane section of a n-fold Pfister quadric Y over a field F . Then M(Y ) ≃
M(X){1} ⊕Rn,2, where Rn,2 is an integral Rost motive.

Proof. In the proof we use several auxiliary facts concerning quadrics and their
motives which can be found in [5].
Let φX and φY be the quadratic forms which define X and Y . By definition
φX is a subform of codimension 1 of the Pfister form φY . According to [5,
Def.5.1.2 and Thm.5.3.4.(a)] Y becomes isotropic over K = F (X). This fact
together with [5, Prop.4.2.1] implies that both φX and φY become totally split
(hyperbolic) over K. Then by [5, E.10.8] the motives M(X)K and M(Y )K are
split over K.
Let Γe be the graph of the closed embedding e : X →֒ Y . The respective cor-
respondence cycle [Γe] ∈ CHdimX(X × Y ) induces the realization map R∗(Γe)
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which coincides with the pull-back e∗ : CH∗(Y ) → CH∗(X) (see §2.IV). It is
known that the Chow ring of a hyperbolic quadric is generated by two ele-
ments 〈h, l〉, where h is the class of a hyperplane section and l is the class of
a maximal totally isotropic subspace. In this notation the pull-back e∗K maps
hY 7→ hX and lY 7→ lX , i.e. maps the ring CH(YK) onto the ring CH(XK).
The latter means that R∗(Γe) and, therefore, the transposed correspondence
cycle [Γe]

t ∈ CHdimY−1(Y ×X) have a section over K.
Take f = [Γe]

t : M(Y ) → M(X){1} and apply Theorem 1.2. We obtain the
decomposition M(Y ) = M(X){1} ⊕N , where N is such that

NK = Z⊕ Z{2n−1 − 1}.

Let E/F be a field extension. The Pfister quadric Y corresponds to some
pure symbol α ∈ KM

n (F )/2 (see [5, §9.4]) with the property that α|E = 0
if and only if YE has a rational point. Consider the specialization NE,Z/2
with Z/2-coefficients. We have the following chain of equivalences: NE,Z/2 is
decomposable ⇔ NE,Z/2 contains Z/2 as a direct summand ⇔ M(Y ; Z/2)E
contains Z/2 as a direct summand ⇔ (see [14, §1.4]) YE has a zero-cycle of
odd degree ⇔ (Springer Theorem) YE has a rational point. At the same time,
the specialization NZ/p is split for any odd prime p, since M(Y ; Z/p) is split.
Hence, N is an integral generalized Rost motive corresponding to the symbol
α.

To provide the next application we use several auxiliary facts concerning Albert
algebras and Cayley planes which can be found in [4], [8], [11], [12]. We use
the notation of [12, §3].
Consider an Albert algebra J defined by means of the first Tits construction.
Let F4(J) and E6(J) denote the respective simple groups of types F4 and E6.
Let X be the variety of maximal parabolic subgroups of F4(J) of type P4. Let
Y be the variety of maximal parabolic subgroups of E6(J) of type P1 Here Pi
corresponds to a standard parabolic subgroup generated by the Borel subgroup
and all unipotent subgroups corresponding to linear spans of all simple roots
with no i-th terms (our enumeration of roots follows Bourbaki). The variety
Y is called a (twisted) Cayley plane.
Observe that there is a closed embedding e : X →֒ Y such that over the splitting
field K of J the class [XK ] ∈ PicYK generates the Picard group of YK . In other
words, XK is a hyperplane section of YK (see [8, 6.3]).

Corollary 5.3. Let X and Y be as above. Then M(Y ) ≃ M(X){1} ⊕ R3,3,
where R3,3 is an integral generalized Rost motive corresponding to the Serre-
Rost invariant g3(J) in KM

3 (F )/3.

Proof. We follow the previous proof step by step.
Let K denote the function field of X . Analyzing the Tits indices of F4(J)
we conclude that J becomes reduced over K. Moreover, since J is defined by
means of the first Tits construction, J becomes split over K. By definition it
implies that both groups and varieties become split over K.
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Consider now the graph Γe of the closed embedding e : X →֒ Y . As before,
the respective correspondence cycle [Γe] induces the realization map R∗(Γe)
which coincides with the pull-back e∗. The Chow rings CH(XK) and CH(YK)
are generated by 〈h, g4

1〉 (see [10, 4.10]) and 〈H,σ′4, σ8〉 (see [4, 5.1]). By the
Lefschetz hyperplane theorem the pull-back e∗ has to be an isomorphisms on
all graded components of codimensions ≤ 7. This immediately implies that e∗

maps H 7→ h and σ′4 7→ g4
1, i.e. maps the ring CH(YK) onto the ring CH(XK).

So R∗(Γe) and, therefore, the transposed cycle [Γe]
t have a section over K.

Take f = [Γe]
t : M(Y ) → M(X){1} and apply Theorem 1.2. We obtain the

decomposition M(Y ) = M(X){1} ⊕N , where the motive N is such that

NK = Z⊕ Z{4} ⊕ Z{8}.

Let E/F be a field extension. Let α = g3(J) ∈ KM
3 (F )/3 be the Serre-Rost

invariant of the Jordan algebra J (see [13]). Analyzing the Tits indices of E6(J)
we see that α|E = 0 if and only if YE has a zero-cycle of degree coprime to 3.
Consider the specialization NE,Z/3 with Z/3-coefficients. Similar to the quadric
case there is a chain of equivalences which says that NE,Z/3 is decomposable⇔
YE has a zero-cycle of degree coprime to 3. At the same time, the specialization
NZ/p is split for any prime p 6= 3, since M(Y ; Z/p) is split. Therefore, N is an
integral generalized Rost motive corresponding to the symbol α.

Remark 1. Observe that in view of the main result of [10] we obtain the
following decomposition

M(Y ) ≃
8⊕

i=0

R3,3{i}.

So from the motivic point of view the variety Y is a 3-analog of a Pfister
quadric.

Projective homogeneous varieties of type F4. As before let J be an
Albert algebra defined by means of the first Tits construction. Let F4(J) be
the respective group of type F4. Let X be the same as before, i.e. the variety
of maximal parabolic subgroups of type P4 of F4(J). Let Y be the variety
of maximal parabolic subgroups of type P3 of F4(J). Observe that Y has
dimension 20.

Corollary 5.4. Let X and Y be as above. Then the motive M(X ; Z) is
isomorphic to a direct summand of the motive M(Y ; Z).

Proof. Since the Albert algebra J splits over the function field K of X , the
motives M(X) and M(Y ) become split over K as well. By the main result of
[10] M(X) splits as

M(X) ≃
7⊕

i=0

R3,3{i},
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where R3,3 is the integral generalized Rost motive corresponding to g3(J).
Let Z be the variety of parabolic subgroups of type P3,4 of F4(J). Observe that
Z has dimension 21 and there is a map prXY = (prX , prX) : Z → X×Y , where
prX , prY are the quotient maps. For each i = 0 . . . 7 consider the composite

fαi : M(Y )
prXY ∗(αi)−−−−−−−→M(X)→R3,3{i}, where αi ∈ PicZ.

Set f =
⊕7

i=0 fαi : M(Y ) → M(X). Assume that we can choose αi ∈ PicZ
in such a way that the realization map R∗(f) becomes split injective over K.
Then by Theorem 1.2 applied f , the motive M(X) is isomorphic to a direct
summand of M(Y ).
So to prove the corollary it is enough to find αi ∈ PicZ, i = 0 . . . 7, such that
R∗(f) is split injective over K.
Observe that the restriction map resK/F : PicZ → PicZK is an isomorphism
(see [10, Lemma 4.3]). Therefore, we may assume that αi ∈ PicZK . Observe
also that the ring structures of CH(XK), CH(YK) and CH(ZK) are known.
We have R∗(fαi)K = R∗(αi)K ◦ R∗(ρi)K , where ρi is an idempotent defin-
ing R3,3{i}. Both realizations R∗(ρi)K and R∗(αi)K can be described explic-
itly on generators. Indeed, the realization R∗(αi)K is given by the composite

CH(XK)
pr∗X−−→ CH(ZK)

·αi−−→ CH(ZK)
prY ∗−−−→ CH(YK), where the maps pr∗X and

prY ∗ can be described using [10, §3]. The explicit description of the cycles
(ρi)K is provided in [10, 5.5].
Let {αi = c1ig1+c2ig2}i=0...7, c1i, c2i ∈ Z, be the presentation of the cycles αi in
terms of a fixed Z-basis 〈g1, g2〉 of PicZK . Since all realization maps R∗(αi)K ,
R∗(ρi)K are Z-linear, the question of split injectivity of R∗(f)K translates
into the problem of solving certain system of Z-linear equations in 16 variables
{c1i, c2i}i=0...7. Direct computations show that this system has a solution. This
finishes the proof of the corollary.

Twisted forms of Grassmannians. Consider a Grassmannian G(d, n) of
d-dimensional planes in a n-dimensional affine space. Its twisted form is called
a generalized Severi-Brauer variety and denoted by SBd(A), where A is the
respective central simple algebra of degree n (see [7, §1.C]). The next corollary
relates the motive of a generalized Severi-Brauer variety with the motive of
usual Severi-Brauer variety.

Corollary 5.5. Let A and B be two central division algebras of degree n with
[A] = ±d[B] in the Brauer group Br(F ), where d and n are coprime. Then the
motive of the Severi-Brauer variety SB(A) is a direct summand in the motive
of the generalized Severi-Brauer variety SBd(B).

Proof. We construct the morphism f : M(SBd(B)) → M(SB(A)) as follows.
Consider the Plücker embedding pl : SBd(B) → SB(ΛdB). It induces the
morphism M(SBd(B))→M(SB(ΛdB)), where ΛdB is the d-th lambda power
of B (see [7, II.10.A]). By [6, Cor. 1.3.2] the motive M(SB(ΛdB)) splits as a
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direct sum of shifted copies of M(SB(A)), where [A] = d[B] in Br(F ). Take f to
be the composite of the Plücker embedding and the projection M(SB(ΛdB))→
M(SB(A)).
We claim that f has a section (splits) over the generic point of SB(A). Indeed,
it is equivalent to the fact that for each m = 0, . . . , n− 1

g.c.d.
i

(c
(m)
i ) = 1

where c
(m)
i are degrees of the Schubert varieties generating CHm(G(d, n)). The

latter can be computed using explicit formulas for degrees of Schubert varieties
provided for instance in [3, Ch. 14, Ex. 14.7.11.(ii)].
Then by Theorem 1.2 the motive M(SB(A)) is a direct summand in
M(SBd(B)). Observe that the motives M(SB(A)) and M(SB(Aop)) are iso-
morphic. So replacing [A] by [Aop] = −[A] doesn’t change anything.

Compactifications of a Merkurjev-Suslin variety. Here we follow
definitions and notation of [16]. Let A be a cubic division algebra over F . Re-
call that a smooth compactification D of a Merkurjev-Suslin varietyMS(A, c)
can be identified with the smooth hyperplane section of the twisted form
X = SB3(M2(A)) of Grassmannian G(3, 6). Using Theorem 1.2 one obtains a
shortened proof of the main result of [16]

Corollary 5.6. Let D be the smooth projective variety introduced above. Then

M(D) ≃
5⊕

i=1

M(SB(A)){i} ⊕R3,3,

where R3,3 is an integral generalized Rost motive. In other words, from the
motivic point of view the variety D can be viewed as a 3-analog of a Norm
quadric.

Proof. Let i : D →֒ X denote the closed embedding. It induces the map
Γi : M(D)→M(X). The variety X is a projective homogeneous PGL6-variety
corresponding to a maximal parabolic subgroup of type P3. According to the
Tits indices for the group PGLM2(A) the parabolic subgroup P3 is defined over
F and, hence, X is isotropic. By [2, Thm. 7.5] the motive of X splits as

M(X) = Z⊕Q{1} ⊕Q{4} ⊕ Z{9},

where Q = M(SB(A) × SB(Aop)) =
⊕2

i=0M(SB(A)){i} by the projective
bundle theorem. Hence, we obtain

M(X) = Z⊕
6⊕

i=1

M(SB(A)){i} ⊕ Z{9}. (4)

We define f to be the composite of Γi and the canonical projection from M(X)

to the direct summand
⊕5

i=1M(SB(A)){i} of (4). Observe that the motive
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M(D) splits over the generic point of SB(A). The direct computations (using
multiplication tables provided in [16]) show that f has a section over F (SB(A)).
By Theorem 1.2 we conclude that

M(D) ≃
5⊕

i=1

M(SB(A)){i} ⊕N

for some motive N which splits over F (SB(A)) as Z⊕ Z{4} ⊕ Z{8}.
Note that both D and the twisted form of F4/P4 (given by the first Tits con-
struction) split the same symbol g3 in KM

3 (F )/3. This implies that there is
a morphism f : NZ/3 → R3,3 of motives with Z/3-coefficients which becomes
an isomorphism over the separable closure of F , where R3,3 is a generalized
Rost motive corresponding to g3. Since N is split over the generic point of the
twisted form of F4/P4, R3,3 is a direct summand of NZ/3 which implies that
R3,3 ≃ NZ/3. Finally observe that NZ/p splits if p 6= 3.

6 Appendix

Proposition 6.1. Let X be a smooth quasi-projective variety, π : Y → X a
smooth morphism and i : Z →֒ X a closed embedding. Consider the Cartesian
square

YZ
i′ //

πZ

��

Y

π

��
Z

i // X

Then (im i′∗)
d = 0 for d = [ dim(X)

codimX (Z) ] + 1, where codimX(Z) is the minimum

of codimensions of irreducible components of Z.

It is sufficient to prove the following:

Lemma 6.2. Let π : Y → X be a smooth morphism, with X smooth quasi-
projective, and i1 : Z1 →֒ X, i2 : Z2 →֒ X closed embeddings.
Then there exists a closed embedding i3 : Z3 →֒ X such that

codim(Z3) ≥ codim(Z1) + codim(Z2) and im(i′1)∗ · im(i′2)∗ ⊂ im(i′3)∗,

where i′l : YZl
→֒ Y , l = 1, 2, 3 is obtained from the respective Cartesian square.

Proof. We have (i′1)∗(a) · (i′2)∗(b) = ∆∗X((i′1 × i′2)∗(a × b)). The diagonal map

∆Y : Y → Y × Y is the composition Y
φ−→ Y ×X Y

fW−−→ Y × Y , where φ is the
relative diagonal and the second map is the natural embedding. By Lemma
6.3 applied to B = X ×X , V = X , f = ∆X , T = Z1×Z2 and W = Y × Y we
obtain a closed embedding h : Z →֒ X such that

codim(Z) ≥ codim(Z1) + codim(Z2) and im(f∗W ◦ (i′1 × i′2)∗) ⊂ im(hW∗).
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Consider the Cartesian square

Y
φ // Y ×X Y

YZ
φZ //

h′

OO

(Y ×X Y )Z

hW

OO

By [3, Theorem 6.2(a)], φ∗ ◦hW∗ = h′∗◦φ!. Hence, im(∆∗X ◦(i1×i2)∗) ⊂ im(h′∗)
and the lemma is proven.

Lemma 6.3. Let V
f−→ B

g← T be closed embeddings with regular f , and smooth
quasi-projective B. Let ε : W → B be a smooth morphism. Consider two
Cartesian diagrams:

WV
fW //

εV

��

W

ε

��

WT
gWoo

εT

��
V

f // B T
goo

and T
g // B

T̃
g̃ //

f̃

OO

V

f

OO

There exists a closed embedding h : Z →֒ V such that codim(h) ≥ codim(g) and
im(f∗W ◦ gW∗) ⊂ im(hW∗).

Proof. Consider the Cartesian square

WT
gW // W

WT̃

g̃W //

f̃W

OO

WV

fW

OO

By [3, Theorem 6.2(a)], f∗W ◦gW∗ = g̃W∗◦f !
W . The morphism f !

W : CH∗(WT )→
CH∗(WT̃ ) is given by the composition:

CH∗(WT )
σ−→ CH∗(CW )

ρW∗−−−→ CH∗(NW )
s∗−→ CH∗(WT̃ ),

where σ is the specialization map from [3, §5.2], CW = CWT (WT̃ ) = CT (T̃ )×B
W is the normal cone of the morphism f̃W and NW = WT̃ ×WV NfW = (T̃ ×V
Nf ) ×B W is the total space of the vector bundle g̃∗W (NfW ) = (εT̃ ◦ g̃)∗(Nf )
over WT̃ , ρW : CW →֒ NW is the closed embedding and s : WT̃ → NW is the
zero section.
Consider the Cartesian square of projective completions of CW and NW

P(CW ⊕O)
ρW // P(NW ⊕O)

CW
ρW //

eC

OO

NW

eN

OO
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By [3, Proposition 3.3] the morphism s∗ ◦ ρW∗ : CH∗(CW ) → CH∗(WT̃ ) is
given by s∗ ◦ ρW∗(x) = πW∗(cd(g̃

∗
WNfW ⊗ O(1)) · ρW∗

(y)), where e∗C(y) = x,
πW : P(NW ⊕O)→WT̃ is the projection and d = codim(fW ) = codim(f).
By Lemma 6.4, we can choose a cycle α representing cd(g̃

∗Nf ⊗O(1)) in such
a way that |α| ∩ P(C ⊕ O) has codimension d in P(C ⊕ O). Consider Z :=
π(|α| ∩ P(C ⊕ O)) and the closed embedding j : Z →֒ T̃ . Then for arbitrary
x ∈ CH∗(P(CW ⊕ O)) we have |πW∗(ε∗

T̃
(α) · ρW∗

(x))| ⊂ ε−1(Z). This implies

that im(f !
W ) ⊂ im(jW∗) and im(g̃W∗ ◦ f !

W ) ⊂ im(hW∗), where h = g̃ ◦ j. At the
same time, codim(h) ≥ codim(g), and the lemma is proven.

Lemma 6.4. Let X be a quasi-projective variety, and Zl, l = 1, . . . , n be closed
irreducible subvarieties of dimensions dl. Let V be a vector bundle over X.
Then there exists a representative αd of cd(V) such that |αd|∩Zl has dimension
≤ dl − d.

Proof. The total Chern class c•(V) is the inverse of the total Segre class s•(V),
and si(V) = π∗(c1(O(1))n−1+i), where π : PX(V) → X is the projection,
and n = dim(V). Thus, the general case of our statement follows by the
inductive application of the one with d = 1, and V - linear bundle. Indeed, since
cd([X ]) = −∑d

j=1 π∗(c1(O(1))n−1+j(π−1(cd−j([X ])))), and αd−j can be chosen
with the needed property, it is sufficient to apply the above particular case to
the set of irreducible components of π−1(Zl ∩ |αd−j |), l = 1, . . . , n; j = 1, . . . , d
inside PX(V). Finally, the case d = 1 and linear V follows from the presentation
V = L1 ⊗ L−1

2 , where Li have ”sufficiently many sections”, which is possible,
since X is quasi-projective.
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1. Results

A discrete subset D in Cn ( n ≥ 2) is called “tame” if there exists a holomorphic
automorphism φ of Cn such that φ(D) = Z×{0}n−1 (see [3]). If there exists a
linear projection π of Cn onto some Ck (0 < k < n) for which the image π(D)
is discrete, then D is tame ([3]). If D is a discrete subgroup (e.g. a lattice) of
the additive group (Cn+), then D must be tame ([1], lemma 4.4 in combination
with corollary 2.6). On the other hand there do exist discrete subsets which
are not tame (see [3], theorem 3.9).
Here we will investigate how “tameness” is related to growth conditions for D.
Slow growth implies tameness as we well see. On the other hand, rapid growth
can not imply non-tameness, since every discrete subset of Cn−1 is tame re-
garded as subset of Cn = Cn−1 × C.
The key method is to show that sufficiently slow growth implies that a generic
linear projection will have discrete image for D.
The main result is:

Theorem 1. Let n be a natural number and let vk be a sequence of elements
in V = Cn.
Assume that ∑

k

1

||vk||2n−2
<∞

Then D = {vk : k ∈ N} is tame, i.e., there exists a biholomorphic map φ :
Cn → Cn such that

φ(D) = Z× {0}n−1.

This growth condition is fulfilled for discrete subgroups of rank at most 2n−3,
implying the following well-known fact:
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Corollary 1. Let Γ be a discrete subgroup of Z-rank at most 2n − 3 of the
additive group (Cn,+).
Then Γ is a tame discrete subset of Cn.

While this is well-known (even with no condition on the Z-rank of Γ), our
approach yields the additional information that these discrete subsets remain
tame after a small deformation:

Corollary 2. Let Γ be a discrete subgroup of Z-rank at most 2n − 3 of the
additive group (Cn,+), 0 < λ < 1 and K > 0. Let D be a subset of Cn for
which there exists a bijective map ζ : Γ→ D with

||ζ(v)− v|| ≤ λ||v||+K

for all v ∈ Γ.
Then D is a tame discrete subset of Cn.

This confirms the idea that tame sets should be stable under deformation.
Similarily one would hope that the category of non-tame sets is also stable under
deformation. Here, however, one has to be careful not to be too optimistic,
because in fact the following is true:

Proposition. For every non-tame discrete subset D ⊂ Cn (n > 1) there is a
tame discrete subset D′ and a bijection α : D → D′ such that

||α(v) − v|| ≤ 1√
2
||v|| ∀v ∈ D

and
||w − α−1(w)|| ≤ ||w|| ∀w ∈ D′.

In particular, if D is a tame discrete subset and ζ : D → Cn is a bijective map
with ||ζ(v) − v|| ≤ ||v|| for all v ∈ D, it is possible that ζ(D) is not tame.
Still, one might hope for a positive answer to the following question:

Question. Let n ∈ N, n ≥ 2, let 1 > λ > 0, K > 0, let D be a tame discrete
subset of Cn and let ζ : D → Cn be a map such that

||ζ(v)− v|| ≤ λ||v||+K

for all v ∈ D. Does this imply that ζ(D) is a tame discrete subset of Cn ?

Technically, the following is the key point for the proof of our main result
(theorem 1):

Theorem 2. Let n > d > 0. Let V be a complex vector space of dimension n
and let vk be a sequence of elements in V .
Assume that ∑

k

1

||vk||2d
<∞

Then there exists a complex linear map π : V → Cd such that the set of all
π(vk) is discrete in Cd.

In a similar way on can prove such a result for real vector spaces:
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Theorem 3. Let n > d > 0. Let V be a real vector space of dimension n and
let vk be a sequence of elements in V .
Assume that ∑

k

1

||vk||d
<∞

Then there exists a real linear map π : V → Rd such that the set of all π(vk)
is discrete in Rd.

For the proof of the existence of a linear projection π with π(D) discrete we
proceed by regarding randomly chosen linear projections and verifying that the
image of D under a random projection has discrete image with probability 1 if
the above stated series converges.

2. Proofs

First we deduce an auxiliary lemma.

Lemma 1. Let k,m > 0, n = k + m and let S denote the unit sphere in
Rn = Rk ⊕ Rm. Furthermore let

Mǫ = {(v, w) ∈ Rk × Rm : ||v|| ≤ ǫ, (v, w) ∈ S}.
Then there are constants δ > 0, C1 > C2 > 0 such that for all ǫ < δ we have

C1ǫ
k ≥ λ(Mǫ) ≥ C2ǫ

k

where λ denotes the rotationally invariant probability measure on S.

Proof. For each ǫ ∈]0, 1[ there is a bijection

φǫ : B × S′ →Mǫ

where

B = {v ∈ Rk : ||v|| ≤ 1}, S′ = {w ∈ Rm : ||w|| = 1}
and

φǫ(v, w) =
(
ǫv;
√

1− ||ǫv||2w
)
.

The functional determinant for φǫ equals

ǫk
(√

1− ||ǫv||2
)m

.

It follows that

ǫk
(√

1− ǫ2
)m

volume(S′ ×B) ≤ volume(Mǫ) ≤ ǫkvolume(S′ ×B),

which in turn implies

lim
ǫ→0

ǫ−k
volume(Mǫ)

volume(S′ ×B)
= 1.

Hence the assertion. �
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Lemma 2. Let Γ be a discrete subgroup of Z-rank d in V = Rn.
Then ∑

γ∈Γ

||γ||−d−ǫ <∞

for all ǫ > 0.

Proof. Since all norms on a finite-dimensional vector space are equivalent, there
is no loss in generality if we assume that the norm is the maximum norm and
Γ = Zd × {0}n−d. Then the assertion is an easy consequence of the fact that∑

n∈N n
−s <∞ if and only if s > 1. �

Now we proceed with the proof of theorem 2:

Proof. We fix a surjective linear map L : V → W = Cd. Let K denote U(n)
(the group of unitary complex linear transformations of V ). For each g ∈ K
we define a linear map πg : V →W as follows:

πg : v 7→ L(g · v).

For k ∈ N and r ∈ R+ define

Sk,r = {g ∈ K : ||πg(vk)|| ≤ r},

MN,r = {g ∈ K : #{k ∈ N : g ∈ Sk,r} ≥ N}
and

Mr = ∩NMN,r.

Now for each g ∈ K the set {πg(vk) : k ∈ N} is discrete unless there is a number
r > 0 such that infinitely many distinct image points are contained in a ball
of radius r. By the definition of the sets Mr it follows that {πg(vk) : k ∈ N} is
discrete unless g ∈M = ∪Mr.
Let us now assume that there is no linear map L′ : V → W with L′(D) discrete.
Then K = M . In particular µ(M) > 0, where µ denotes the Haar measure on
the compact topological group K. Since the sets Mr are increasing in r, we
have

M = ∪r∈R+Mr = ∪r∈NMr

and may thus deduce that µ(Mr) > 0 for some number r. Fix such a number
r > 0 and define c = µ(Mr) > 0. Then µ(MN,r) ≥ c for all N , since Mr =
∩MN,r. However, for fixed N and r we have

Nµ(MN,r) ≤
∑

k

µ(Sk,r).

Hence ∑

k∈N

µ(Sk,r) ≥ Nµ(MN,r) ≥ Nc

for all N ∈ N. Since c > 0, it follows that
∑
k µ(Sk,r) = +∞.
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Let us now embedd Cd into Cn as the orthogonal complement of kerL. In this
way we may assume that L is simply the map which projects a vector onto its
first d coordinates, i.e.,

L(w1, . . . , wn) = (w1, . . . , wd; 0, . . . , 0).

Now g ∈ Sk,r is equivalent to the condition that g(vk) is a real multiple of an
element in Mǫ where Mǫ is defined as in lemma 1 with ǫ = r/||vk||. Using
lemma 1 we may deduce that

∑
k µ(Sk,r) converges if and only if

∑
k ||vk||−2d

converges. �

Proof of theorem 1. The growth condition allows us to employ theorem 2 in
order to deduce that there is a linear projection onto a space of complex di-
mension d − 1 which maps D onto a discrete image. By the results of Rosay
and Rudin it follows that D is tame. �

Proof of the proposition. We fix a decomposition Cn = C×Cn−1 and write D
as the union of all (ak, bk) ∈ C× Cn−1 (k ∈ N). We define

α(ak, bk) =

{
(ak, 0) if ||ak|| > ||bk||
(0, bk) if ||ak|| ≤ ||bk||

Then D′ = α(D) is tame because each of the projections to one of the two
factors C and Cn−1 maps D′ onto a discrete subset.
The other assertions follow from the triangle inequality. �

The proof of thm. 3 works in the same way as the proof of thm. 2, simply using
the group of all orthogonal transformations instead of the group of unitary
transformations.
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1 Introduction

Supersymmetric matrix models derive from superstring theory which ultimately
aims at a quantum field theoretic model of all known forces, including gravity.
Some of the basic mathematical properties of supersymmetric matrix models
are still open and pose a challenge to mathematics.
One of the key properties of supersymmetric matrix models - often assumed
for granted in physics, but difficult to prove mathematically - is the existence
of a ground state. I.e., the self-adjoint and nonnegative Hamiltonian opera-
tor H = H∗ ≥ 0 specifying the supersymmetric matrix model under consid-
eration is assumed to have an eigenvalue at 0, the bottom of its spectrum.
Since its spectrum is purely essential and covers the entire positive half axis,
σ(H) = [0,∞) (see [3, 11]), the existence of zero-energy eigenstates, i.e., the
non-triviality Ker(H) 6= 0 of the zero-energy subspace, is not a consequence of
standard methods of regular perturbation theory.
The Hamiltonian H acts on (an appropriate dense domain in) the Hilbert space

H := L2(Rd(N
2−1)) ⊗ F of square-integrable functions of coordinate variables

1Supported by the Swedish Research Council
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x ≡ (xtA)t∈D,A∈N with values in the fermion Fock space F spanned by vectors

of the form λ†α1,A1
· · ·λ†αk,Ak

|0〉, where {λ†αA}α∈S,A∈N are standard fermion
creation operators, and |0〉 is the vacuum vector. The index ranges are denoted
by D := {1, 2, . . . , d}, N := {1, 2, . . . , N2− 1}, and S := {1, 2, . . . , d− 1}. Note

that dimC F = 2(d−1)(N2−1) <∞.
On H, the Hamiltonian assumes the form

H = −∆x ⊗ 1 + V (x)⊗ 1 +HF , (1)

where ∆x is the Laplacian on Rd(N
2−1). The potential V is a homogenous,

quartic polynomial in the coordinates x,

V (x) =
1

2
fABC fAB′C′ xsB xtC xsB′ xtC′ , (2)

with (fABC)A,B,C∈N being real, antisymmetric structure constants of SU(N)
and using Einstein’s summation convention (i.e., repeated indices are summed
over). The operator HF , the fermionic part of the Hamiltonian, is linear in x,

but quadratic in the fermion creation operators λ†αA and their adjoints λαA =

(λ†αA)∗, the fermion annihilation operators,

HF = fABC

{
− 2i

( d−2∑

t=1

xt,C Γtα,β

)
λ†αA λβB (3)

+ (xd−1,C + ixd,C)λ†αA λ
†
αB − (xd−1,C − ixd,C)λαA λαB

}
,

where (Γt)d−2
t=1 are purely imaginary, antisymmetric (d − 1)× (d − 1) matrices

that represent the Clifford algebra {Γs,Γt} = 2δst · 1(d−1)×(d−1), with s, t ∈
{1, 2, . . . , d− 2} and d ∈ {2, 3, 5, 9}.
The Hamiltonian H commutes with the generators {JA}A∈N of su(N), where

JA = −i
2 fABC(2xsB∂sC+λ†αBλαC+λαCλ

†
αB) and ∂sC := ∂

∂xsC
, and the ground

state sought for is required to be SU(N)-invariant. That is, the spectral analy-
sis of H is carried out on the subspace H0 =

⋂
A∈N Ker(JA) ⊆ H. On H0, the

Hamiltonian H arises as the restriction of the square of supercharges (Qβ)β∈S .
These supercharges are selfadjoint (matrix-valued, first-order partial differen-
tial) operators on H, which we don’t describe here in detail, but we note that
the Hamiltonian H ↿H0= Q2

β ↿H0≥ 0, is manifestly nonnegative on H0.

Two main difficulties arise in the analysis of H :
(a) The quartic potential V has many vanishing directions. E.g., given

~e = (eA)A∈N ∈ RN
2−1 and denoting ~xt = (xtA)A∈N , the potential V (x) van-

ishes on all hyperplanes M(~e) = {x | ∀t ∈ D : ~xt ∈ R~e}. So, even though

the potential V grows to limη→∞ V (ηx) = ∞, for almost all x ∈ Rd(N
2−1),

this growth at infinity is not confining enough for H to have purely discrete
spectrum, as shown in [3].

Documenta Mathematica 13 (2008) 103–116



Dynamical Symmetries in Supersymmetric Matrix 105

(b) The fermionic part HF of the Hamiltonian is indefinite, so it doesn’t con-
tribute an obviously confining term to −∆+V (x). Yet, their sum H restricted
to H0 is nonnegative and is expected to yield a zero eigenvalue at the bottom
of its spectrum, for d = 9. In contrast, if d = 2 and N = 2 then zero is not an
eigenvalue of H , as was shown in [5].
A lot of effort was put into the question of existence of zero-energy states in
these SU(N)-invariant supersymmetric matrix models given by H ↿H0 . The
original formulation uses Clifford variables {Θα̂,A}α̂∈ bS,A∈N , {Θα̂,A,Θβ̂,B} =
δα̂β̂δAB rather than fermion creation and annihilation operators employed here,

where Ŝ := {1, 2, . . . , 2(d− 1)} and the relation between Clifford variables and
the fermion creation and annihilation operators is the standard one, Θα,A :=
1√
2

(
λ†αA+λαA

)
and Θα+d−1,A := −i√

2

(
λ†αA−λαA

)
, for all α ∈ S and A ∈ N . In

terms of these Clifford variables, the Hamiltonian reads H̃ = [−∆x + V (x)] ⊗
1 + H̃F , where

H̃F = i fABC xtC γ
t
α̂,β̂

Θα̂,A Θβ̂,B, (4)

and (γt)t∈D are real, symmetric 2(d− 1)× 2(d− 1) matrices given by

γt :=

(
0 iΓt

−iΓt 0

)
, γ8 :=

(
0 1

1 0

)
, γ9 :=

(
1 0
0 −1

)
, (5)

with t = 1, 2, . . . , d− 2 [6]. The matrices (γt)t∈D form a real representation of
the Clifford algebra {γs, γt} = 2δst · 1, with s, t ∈ D, of minimal dimension,
provided d = 2, 3, 5, 9.
The reason for recalling the form H̃ of the Hamiltonian is that H̃ is manifestly
Spin(d)-invariant. The fermion creation and annihilation operators leading to
(3) correspond to the particular choice (5) of (γt)t∈D. In attempts to construct
a ground state explicitly [9], fermion creation and annihilation operators are
used rather than Clifford variables. This is so, mainly because they provide
the Hilbert space on which the Hamiltonian acts irreducibly from the very
beginning. Namely, the creation and annihilation operators, λ†αA, λαA, with
α ∈ S and a ∈ N , form a representation of the canonical anticommutation
relations (CAR): {λ†αA, λ†βB} = {λαA, λβB} = 0 and {λαA, λ†βB} = δαβδAB,
where the anticommutator is {a, b} := ab + ba. The CAR have an explicit
representation as linear operators on the fermion Fock space

F =

(d−1)(N2−1)⊕

k=0

span
{
λ†α1,A1

· · ·λ†αk,Ak
|0〉
∣∣ αj ∈ S, Aj ∈ N

}
, (6)

which is a complex Hilbert space of dimension 2(d−1)(N2−1). The vectors{
λ†α1,A1

· · ·λ†αk,Ak
|0〉

∣∣ αj ∈ S, Aj ∈ N
}
⊆ F form an orthonormal basis;

|0〉 is called vacuum vector. The Hilbert space H can be viewed as a direct
integral

H =

∫ ⊕

Rd(N2−1)

F dx = L2
(
Rd(N

2−1); F
)
, (7)
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whose elements are linear combinations of the form

Ψ(x) =

(d−1)(N2−1)∑

k=0

Ψk(x), (8)

Ψk(x) =
∑

α1,...,αk∈S

∑

A1,...,Ak∈N
ψ

(k)
α1,A1...,αk,Ak

(x) λ†α1,A1
· · ·λ†αk,Ak

|0〉. (9)

While the fermion creation and annihilation operators above (and in attempts
to explicitly construct a ground state as in [9]) are chosen independently of x,
the asymptotic form of the ground state wave function was determined with
the help of space-dependent fermions [7, 6, 5]. The analysis of the asymptotic
form H∞Ψ = 0 of the solutions of HΨ = 0 leads for N = 2 and d = 2, 3, 5
to absence of a zero-energy states, as proved in [5], since these solutions are
not square-integrable at r →∞, where r > 0 is introduced in (12), below. On
the other hand, for d = 9, this asymptotic form of the wave function is square-
integrable at infinity, and it is believed that for d = 9, the supersymmetric
matrix models do possess zero enery eigenstates, for all N ∈ N. This belief is
supported by the recent existence proof for a related model [4].
Main Results: In this paper we study the asymptotic Hamiltonian H∞ de-
scribed in detail in (16)–(18). The asympotic Hamiltonian H∞ = H∞B + H∞F
splits into a bosonic part H∞B and a fermionic part H∞F , similar to the full
Hamiltonian H .
The bosonic Hamiltonian H∞B is a sum of harmonic oscillators and we first
focus our attention on the ground state subspace of H∞B with corresponding
ground state energy 2(d− 1). This leads us to study the spectral properties of
2(d − 1) + H∞F . We derive a dynamical SU(2) symmetry in (39) and observe
the formation of ‘Cooper pairs’ [e.g., in the ground state of 2(d − 1) + H∞F
computed in (46) and (48)] that arise in the SO(d)-breaking formulation when
diagonalizing certain ingredients of the fermionic part of the Hamiltonian.
Thereafter, we transform the zero energy equation on Fock space into a sys-
tem of graded equations (52) obtained by its natural grading derived from the
fermion number. We show that this system of equations can be solved by a
recursive insertion (58) of solutions, provided a certain invertibility condition
on the graded Hamiltonians hold, which is known to hold true for the first
recursion step (54). We finally observe a sum rule for the graded equations and
apply this to the asymptotic ground state of sd +H∞F (62)–(64).
To ease the reading, we carry out our analysis first in the case N = 2, i.e., for
the asymptotic SU(2) theory. In the last section we note that several features
extend to the non-asymptotic case and/or to general N ≥ 2. We mostly restrict
the dimension d to the most interesting case d = 9.

2 Asymptotic form of the Hamiltonian

The bosonic configuration space is a set of d = 2, 3, 5, or 9 traceless hermitian
matrices {Xs}ds=1 corresponding to the Lie algebra su(N) of the gauge group
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SU(N). Given selfadjoint generators ~T ≡ (TA)A∈N of su(N) with [TA, TB] =

ifABCTC , the coordinates x derive from expanding Xt = xtATA = ~xt · ~T in
these generators.
For simplicity, we start by taking N = 2 and 2~T to be the Pauli matrices
~σ ≡ (σ1, σ2, σ3), so fABC = ǫABC . The potential, which for general N ≥ 2 is
given by

V (x) := −1

2

∑

s,t∈D
Tr
(
[Xs, Xt]

2
)
, (10)

assumes the form

V (x) =
1

2

∑

s,t∈D

(
~xs ∧ ~xt

)2
, (11)

where (~x∧ ~y)A = ǫABC xB yC , as usual. Observe from (11) that V (x) vanishes
if x ∈ M :=

⋃
~e∈R3 M(~e), recalling that M(~e) are the hyperplanes M(~e) =

{x | ∀t ∈ D : ~xt ∈ R~e}. We remark that, for N = 2, the condition x ∈ M is
even equivalent to V (x) = 0, while a necessary condition for the vanishing of
the potential is more complicated for N > 2. We coordinatize x ∈ R3d by (see,
e.g., [6, 5])

~xt = r Et ~e + r−1/2 ~yt, (12)

for t = 1, . . . , d, where ~e ∈ R3 and E = (E1, . . . , Ed) ∈ Rd are unit vectors,
r > 0, and ~yt ∈ R3 are perpendicular to both E and ~e in the sense that
Es~ys = ~e · ~yt = 0, for all t = 1, . . . , d. They derive from x ∈ R3d \ {0} by the
requirement that the euclidean length of the projection x‖ of x along R ·E ⊗~e
be maximal. Indeed, ~e and E are normalized eigenvectors of (xtAxtB)3A,B=1

and (xsAxtA)ds,t=1, respectively, corresponding to the largest eigenvalue r2 > 0

which, in turn, is the square of the length r = |x‖| = 〈E ⊗ ~e, x〉 = EtxtAeA of
x‖. The component x⊥ = x−x‖ perpendicular to E⊗~e then yields ~yt = r1/2~x⊥t .

Writing E as E(Ẽ, θ, ϕ) =
(

cos θ Ẽ, sin θ cosϕ, sin θ sinϕ
)

in spherical coor-
dinates, the coordinate vectors ~xt assume the form

~xt = r cos θ Ẽt ~e + r−1/2 ~yt, (13)

for t = 1, . . . , d− 2, and

~xd−1 + i~xd = r sin θ eiϕ ~e + r−1/2 (~yd−1 + i~yd), (14)

where ~e ∈ R3 and Ẽ = (Ẽ1, Ẽ2, . . . , Ẽd−2) ∈ Rd−2 are unit vectors, θ ∈
(−π/2, π/2), ϕ ∈ (0, 2π), and r > 0.
To derive the asymptotic form of the Hamiltonian (cf. [5, 9]), we substitute
(13)–(14) (and the corresponding differentials) into H , divide by r, and obtain

1

r
H → H∞ (15)

as the resulting limit, as r → ∞. Note that, while the difference of H/r and
H∞ is of lower order in r, the limit r →∞ is formal, as this difference is an un-
bounded (differential) operator. Moreover, it ignores the question whether the

Documenta Mathematica 13 (2008) 103–116



108 V. Bach, J. Hoppe, D. Lundholm

coordinate change (13)–(14) defines a global diffeomorphism. The asymptotic
Hamiltonian H∞ in (15) is of the form

H∞ = H∞B + H∞F , (16)

where the bosonic part

H∞B := −(1− EsEt) (1− eAeB)
∂2

∂ysA ∂ytB
+ ysA ysA (17)

is a sum of harmonic oscillators in the variables ~yt in all sd = 2(d − 1) spatial
directions perpendicular to both E and ~et, with ground state energy equal to
sd = 2(d − 1) = 2, 4, 8, 16, for d = 2, 3, 5, 9, respectively, and ground state
eigenvector Φ0(~y1, . . . , ~yd) = exp[−(1− EsEt) (1− eAeB) ysA ytB].
The fermionic part H∞F of the asymptotic Hamiltonian H∞ in (16) results from
(3) by inserting (13)–(14), with ~yt = 0 and r = 1,

H∞F = 2 cos θ (−ieCǫABC) Γαβ λ
†
αA λβB (18)

+ sin θ eiϕ (eCǫABC) λ†αAλ
†
αB + sin θ e−iϕ (eCǫABC) λαBλαA,

with Γαβ :=
∑d−2

t=1 ẼtΓ
t
αβ.

We henceforth assume the unit vectors Ẽ ∈ Rd−2, ~e ∈ R3 and θ ∈ (−π/2, π/2),
ϕ ∈ (0, 2π) to be fixed. Our goal is to find an explicit unitary transformation on
Fock space F which brings H∞F into normal (i.e., particle number preserving)
form. It is a well-known fact (see, e.g., [2, 1]) that, since H∞F is quadratic in
the creation and annihilation operators, such a unitary exists and is of the form
λ†k 7→ uk,ℓλ

†
ℓ + vk,ℓλ

†
ℓ , i.e., linear. While the existence of such a unitary follows

from the diagonalizability of self-adjoint matrices, the determination of that
unitary in an explicit and managable form can be difficult and depends on the
special properties of the model (here: H∞F ) under consideration.
Note that both (MAB := −ieCǫABC)A,B=1,2,3 and (Γαβ)d−1

α,β=1 are imaginary,
antisymmetric, and thus self-adjoint matrices.
Since M~v = i~e ∧ ~v, an orthonormal basis {~e, ~n+, ~n−} ⊆ C3 of eigenvectors,
M~e = 0,

M~n± = i~e ∧ ~n± = ±~n± (19)

is given by the usual orthonormal dreibein: ~e ⊥ ~n+ ⊥ ~n−. We choose ~n± =
~n±(~e) to depend continuously on ~e and to obey ~n± = ~n∓. Hence

−ieCǫABC = (~n+)A (~n+)B − (~n−)A (~n−)B = (~n+)A (~n−)B − (~n−)A (~n+)B .
(20)

Similary, for d = 3, 5, 9, we observe that, due to Γ2 = Ẽ2 · 1 = 1 and Tr Γ = 0,
there is an orthonormal basis {ẽσj| σ = ±, j = 1, . . . , (d − 1)/2} ⊆ Cd−1 of
eigenvectors of Γ such that

Γẽ±j = ±ẽ±j, (21)
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for all j = 1, . . . , (d − 1)/2. Again we choose Ẽ 7→ ẽ±j continuous and ẽ±j =
ẽ∓j . So,

Γαβ =
∑

j

[
(ẽ+j)α (ẽ−j)β − (ẽ−j)α (ẽ+j)β

]
, (22)

where the summation ranges over j = 1, . . . , (d− 1)/2.
Using the orthonormal (eigen)vectors ẽ±j , ~n±, and ~n0 := ~e, we define space-
dependent fermion creation operators (for d = 3, 5, 9)

λ†σjτ := (ẽσj)α (~nτ )A λ
†
αA, (23)

where σ ∈ {+,−}, j = 1, . . . , (d−1)/2, and τ ∈ {+,−, 0}. Note that the matrix

U defined by Uσjτ,αA := (ẽσj)α (~nτ )A is unitary and, hence, λ†αA 7→ λ†σjτ is
implemented by a unitary conjugation on (the operators on) Fock space F .

I.e., λσjτ |0〉 = 0 and λ†σjτ , λσjτ fulfill the CAR.

Using the new creation operators λ†σjτ , we introduce

A†j := ieiϕ λ†+j+ λ
†
−j−, (24)

B†j := ie−iϕ λ†−j+ λ
†
+j−, (25)

and Aj := (A†j)
∗ and Bj := (B†j )

∗, for j = 1, . . . , (d − 1)/2, which may be
considered (Cooper) pair creation and annihilation operators. Note that these
operators obey commutation relations somewhat reminiscent to the canonical
ones, namely

[A†j , A
†
k] = [B†j , B

†
k] = [A†j , B

†
k] = [Aj , B

†
k] = 0, (26)

[Aj , A
†
k] = δkj

(
N

(A)
j − 1

)
:= δkj

(
λ†+j+ λ+j+ + λ†−j− λ−j− − 1

)
,(27)

[Bj , B
†
k] = δkj

(
N

(B)
j − 1

)
:= δkj

(
λ†−j+ λ−j+ + λ†+j− λ+j− − 1

)
.(28)

The asymptotic Hamiltonian H∞, when acting on the ground state of H∞B ,
can be written as

sd + H∞F = H∞0 + H∞+ + H∞− , (29)

where

H∞0 := sd + 2 cos θ
∑

j

(N
(A)
j −N (B)

j ), (30)

H∞+ := 2 sin θ
∑

j

(A†j +B†j ), (31)

H∞− := 2 sin θ
∑

j

(Aj +Bj ). (32)

We remark that the degrees of freedom defined by the parallel fermions λ†±j0 =
(ẽ±j)αeAλαA do not appear in H∞F and can be dropped, henceforth.
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For the d=2 case we instead of (23) define λ†± := (~n±)Aλ
†
A, and the corre-

sponding expressions for the asymptotic Hamiltonian in (29) are simply

H∞0 = 2, H∞+ = 2C†, H∞− = 2C, C† := ieiϕ λ†+ λ
†
−. (33)

3 Dynamical Symmetry

For definiteness, we restrict our attention in this and the following sections to
the most interesting case: d = 9. Denoting

J+ ⊗ 1 := A† :=
∑
j A
†
j , 1⊗ J+ := B† :=

∑
j B
†
j , (34)

J− ⊗ 1 := A :=
∑
j Aj , 1⊗ J− := B :=

∑
j Bj , (35)

J3 ⊗ 1 := 1
2 (N (A) − 4) := 1

2

(∑
j N

(A)
j − 4

)
, (36)

1⊗ J3 := 1
2 (N (B) − 4) := 1

2

(∑
j N

(B)
j − 4

)
, (37)

with

[J+, J−] = 2J3, [J3, J±] = ±J±, J± = J1 ± iJ2, (38)

Eqs. (29)–(32) can be written as

4 +
1

4
H∞F = (2 + cos θ J3 + sin θ J1)⊗ 1 + 1⊗ (2− cos θ J3 + sin θ J1), (39)

thus exhibiting the dynamical symmetry mentioned above. (We recall that a
dynamical symmetry refers to the situation that the Hamiltonian, being one of
the generators of a symmetry Lie group, has nontrivial commutation relations
with the other symmetry generators rather than commuting with them.)

The relevant SU(2) representations are the tensor product of four spin 1
2 rep-

resentations, i.e., direct sums of two singlets [note that both (A1A3 + A2A4 −
A1A4 − A2A3)|0〉 and (A1A2 + A3A4 − A1A4 − A2A3)|0〉 are annihilated by
A†, A , and 1

2 (N (A)− 4)], three spin 1 representations, and (most importantly,
as providing the zero-energy state of H) one spin 2 representation acting irre-
ducibly on the space spanned by the orthonormal states

|0〉, 1

2
A†|0〉, 1√

24
(A†)2|0〉, 1

12
(A†)3|0〉, 1

4!
(A†)4|0〉. (40)
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Restricting to that space (correspondingly for the B†’s), we can write

J+ =




0 0 0 0 0
2 0 0 0 0

0
√

6 0 0 0

0 0
√

6 0 0
0 0 0 2 0



, J− =




0 2 0 0 0

0 0
√

6 0 0

0 0 0
√

6 0
0 0 0 0 2
0 0 0 0 0



, (41)

J3 =




−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2



. (42)

Since the spectrum of sin θJ1 ± cos θJ3 is the same as that of J3, the spectrum
of 4 + 1

4H
∞
F clearly consists of all integers between zero and eight,

σ
(

4 +
1

4
H∞F

)
= {0, 1, 2, . . . , 8}. (43)

Its unique zero-energy state Ψ is most easily obtained by solving individually,
for each A†j resp. B†j degree of freedom,

(
1± cos θ σ

(j)
3 + sin θ σ

(j)
1

)
Ψ = e∓

1
2 θiσ

(j)
2
(
1± σ(j)

3

)
e±

1
2 θiσ

(j)
2 Ψ

!
= 0, (44)

where we identify

2 Jk = σk ⊗ 1⊗ 1⊗ 1 + . . .+ 1⊗ 1⊗ 1⊗ σk ≡
4∑

j=1

σ
(j)
k . (45)

In our notation σ
(j)
3 |0〉 = −|0〉 and σ

(j)
3 A†j |0〉 = +A†j |0〉, and we easily find the

solution to (44) as

Ψ =

(∏

j

e−
θ
2 iσ

(j)
2

)(∏

j

e
θ
2 iσ

(j)
2 B†j

)
|0〉 =

1

4!
e−θi(J2⊗1−1⊗J2) (B†)4|0〉. (46)

Using the nilpotency of A†j and B†j for

eα(A†
j−Aj)|0〉 = cosα etanα A†

j |0〉 and e−α(B†
j−Bj )B†j |0〉 = sinα ecotα B†

j |0〉,
(47)

the ground state can also be written as

Ψ = (48)

=
1

16
e−4iϕ (sin θ)−4

∏

j

{(
sin θ − (1− cos θ)A†j

)(
sin θ − (1 + cos θ)B†j

)}
|0〉

=
1

16
e−4iϕ (sin θ)4 exp

[
− 1− cos θ

sin θ
A† − 1 + cos θ

sin θ
B
]
|0〉 ∼ e−Cθ |0〉,
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with Cθ := 1−cos θ
sin θ (J+ ⊗ 1) + 1+cos θ

sin θ (1 ⊗ J+). Alternatively, one can solve the
2× 2 matrix eigenvector equations resulting from (44),

(
1 + cos θ (N

(A)
j − 1) + sin θ (A†j +Aj)

)
Ψ = 0, (49)

(
1 − cos θ (N

(B)
j − 1) + sin θ (B†j +Bj )

)
Ψ = 0, (50)

to obtain (48).
For d=2 the asymptotic ground state is easily found from (33),

Ψ = 1√
2
e−C

† |0〉 = 1√
2
(1 − C†)|0〉. (51)

An interesting feature of the form (46) for the ground state is that it expresses
it as a spin-rotation by an angle θ applied to some reference state (B†)4|0〉
(which itself also varies in the first d− 2 directions in space according to (13),
(23), (21)).

4 Graded chain of Hamiltonians

We henceforth drop the superscript “∞” and write H0 = H∞0 , H+ = H∞+ , and
H− = H∞− . Consider the grade- resp. fermion number-ordered equations

H0Ψ0 + H−Ψ2 = 0,
H+Ψ0 + H0Ψ2 + H−Ψ4 = 0,
H+Ψ2 + H0Ψ4 + H−Ψ8 = 0,

...
H+Ψ12 + H0Ψ14 + H−Ψ16 = 0,
H+Ψ14 + H0Ψ16 = 0,

(52)

which we obtain by writing Ψ =
∑16

n=0 Ψn, requiring (N (A)+N (B))Ψn = nΨn

and the ground state equation

(16 +H∞F )Ψ = (H0 +H+ +H−)(Ψ0 + Ψ2 + . . .+ Ψ16)
!

= 0. (53)

(Recall that we have dropped the eight non-dynamical parallel fermions λ†±j0 =
(ẽ±j)αeAλαA.)
The following method to construct the ground state we believe to be relevant
also for the fully interacting, non-asymptotic theory. We use the first equation
in (52) to express Ψ0 in terms of Ψ2,

Ψ0 = −H−1
0 H−Ψ2. (54)

H0 is certainly invertible on the zero-fermion subspace, even in the full theory
(cf. [9]). Inserting (54), the second equation in (52) can be written as

H2Ψ2 + H−Ψ4 = 0, with H2 := H0 − H+H
−1
0 H−, (55)
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which yields

Ψ2 = −H−1
2 H−Ψ4, (56)

provided H2 is invertible on H−Ψ4, resp. the two-fermion sector of Fock space.
Continuing in this manner, denoting

Ĥ2k := span
{

(A†)m(B†)n|0〉
}
m,n=0,1,2,3,4, m+n=k

(57)

for the considered 2k-fermion subspace, we find that if we assume invertibility

of H2k on Ĥ2k we can form

H2(k+1) := H0 −H+H
−1
2k H− (58)

on Ĥ2(k+1) and solve for Ψ2k in terms of Ψ2(k+1). The final equation for Ψ16

is H16Ψ16 = 0.
For concreteness, denote an orthonormal basis of Ĥ = ⊕kĤ2k by |k, l〉 :=
|k〉 ⊗ |l〉, where, as in (40),

|k〉 :=
1

k!
√(

4
k

)Jk+|0〉. (59)

Then, e.g., H+H
−1
0 H− acts on Ĥ ‘tridiagonally’ according to

1

sin2 θ
H+H

−1
0 H−|k, l〉 =

(
k(5− k)

4 + (k − l − 1) cos θ
+

l(5− l)
4 + (k − l+ 1) cos θ

)
|k, l〉

+

√
l(5− l)(k + 1)(4− k)

4 + (k − l + 1) cos θ
|k + 1, l− 1〉

+

√
k(5− k)(l + 1)(4− l)
4 + (k − l − 1) cos θ

|k − 1, l+ 1〉. (60)

Calculating the spectra of H2k on Ĥ2k (e.g., with the help of a computer)

one can verify the invertibility of all H2k on Ĥ2k for k < 8, while H16 is

identically zero on Ĥ16. Hence, one can also start with the state Ψ16 ∼ A4B4|0〉
(with correct normalization in θ) and generate the lower grade parts of the full
asymptotic ground state Ψ using the relations (54), (56), etc.

We finish this section by noting a simple consequence of the graded form (52)
of the ground state equation HΨ = 0 (for general d and N). Taking the inner
product of the grade 2k-equation with Ψ2k yields

〈Ψ2k, H−Ψ2(k+1)〉 = −〈H0〉2k − 〈Ψ2k, H+Ψ2(k−1)〉
= −〈H0〉2k − 〈Ψ2(k−1), H−Ψ2k〉, (61)
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where 〈H0〉2k := 〈Ψ2k, H0Ψ2k〉. The first equation reads 〈Ψ0, H−Ψ2〉 = −〈H0〉0
which is real. The second then becomes 〈Ψ2, H−Ψ4〉 = −〈H0〉2 + 〈H0〉0, and
so on, so that in the last step one obtains

Λ∑

k=0

(−1)k〈H0〉2k = 0, (62)

where Λ is the total number of fermions in the relevant Fock space.
It is instructive to verify (62) for the asymptotic N = 2 case studied above,
since there all relevant terms can be calculated explicitly. Using the basis (59)
and the notation α := 1− cos θ, β := 1 + cos θ, we find

Ψ ∼ e−Cθ |0〉 =
∑

k

(−1)k
√(

4
k

)

(sin θ)k
αk |k〉 ⊗

∑

l

(−1)l
√(

4
l

)

(sin θ)l
βl |l〉. (63)

Hence,

〈Ψ2n, H0Ψ2n〉 =
1

64
(sin θ)8−2n

∑

k+l=n

(
4

k

)(
4

l

)(
4+(k− l) cosθ

)
α2k β2l. (64)

5 General SU(N)

We now compute the ground state energy of

H̃F = i fABC xtC γ
t
α̂,β̂

Θα̂,A Θβ̂,B, (65)

for general N ≥ 2 and in regions of the configuration space where the poten-
tial V is zero (see eqs. (2), (3), and recalling that fABC denote the structure
constants of SU(N) in an orthonormal basis). By (10), the vanishing of the po-
tential V means that all Xs are commuting, hence can be written Xs = UDsU

†

where U is unitary and independent of s and the Ds are diagonal. If we look
into a particular direction (which corresponds to fixing ~e in the SU(2) case)
and choose a basis {TA} accordingly, we may write Xs = Ds = xsATA = xsk̃Tk̃
and xsa = 0, where k̃ = 1, . . . , N − 1 are indices in the Cartan subalgebra and
a, b = N, . . . , N2 − 1 denote the remaining indices.
Denoting the eigenvalues of Xt by µtk, i.e., Xt = diag(µt1, . . . , µ

t
N ), the eigen-

vectors {ekl}k 6=l of M t
ab := −ifabCxtC = −ifabk̃xtk̃ satisfy (cf. e.g. [8])

M tekl = (µtk − µtl)ekl =: µtklekl, (eakl)
∗ = ealk. (66)

The crucial observation is that these eigenvectors are independent of t. Now,

H̃F = −γt
α̂,β̂

M t
ab Θα̂,A Θβ̂,B, = Wα̂a,β̂b Θα̂,a Θβ̂,b, (67)

where W := −∑t γ
t ⊗M t. From the above observations we have the ansatz

Eµkl := vµ ⊗ ekl for the eigenvectors of W , yielding

W Eµkl = −
∑

t

γt v ⊗M t ekl = γ(k, l) vµ ⊗ ekl, (68)
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where γ(k, l) := −∑t µ
t
klγ

t squares to
∑
t(µ

t
kl)

2. Denoting by vµ = v±jkl the
corresponding 16 eigenvectors of γ(k, l), we find

W E±jkl = ±
√∑

t

(µtkl)
2 E±jkl, (69)

and H̃F therefore has

E0 := −16
∑

k<l

√√√√
9∑

t=1

(µtk − µtl)2 (70)

as its lowest eigenvalue.
This agrees with the following two previously known cases: [8], where only X9

is assumed to have large eigenvalues so that E0 → −16
∑
k<l |µ9

k − µ9
l |; as well

as the SU(2)-case studied above and in [7], where (13) with, e.g., eA = δA3

gives E0 = −16r. Note also [10], where the eigenvalues of H̃F are stated, with
the SU(N) symmetry fixed.
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Abstract. The equivariant main conjecture of Iwasawa theory is
shown to hold for a Galois extension K/k of totally real number fields
with Galois group an l-adic pro-l Lie group of dimension 1 containing
an abelian subgroup of index l, provided that Iwasawa’s µ-invariant
µ(K/k) vanishes.
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This note justifies a remark made in the introduction of [6] according to which
the “main conjecture” of equivariant Iwasawa theory, as formulated in [2,
p.564], holds when G = G(K/k) is a pro-l group with an abelian subgroup
G′ of index l.

We quickly repeat the general set-up and, in doing so, refer the reader to [5,§1]
for facts and notation that is taken from our earlier papers on Iwasawa theory.
Namely, l is a fixed odd prime number and K/k a Galois extension of totally
real number fields, with k/Q and K/k∞ finite, where k∞ is the cyclotomic
Zl-extension of k. Throughout it will be assumed that Iwasawa’s µ-invariant
µ(K/k) vanishes. We also fix a finite set S of primes of k containing all primes
above ∞ and all those whose ramification index in K/k is divisible by l.

In this situation it is shown in [5] that the “main conjecture” of equivariant
Iwasawa theory would follow from two kinds of hypothetical congruences bet-
ween values of Iwasawa L-functions. One of these kinds, the so-called torsion
congruences (see [5, Proposition 3.2]), stated as

ver(λKab/k)

λK/k′
≡ 1 mod T ′

1We acknowledge financial support provided by NSERC and the University of Augsburg.
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in the proof of the proposition in §2, has meanwhile been verified in [6].

The purpose of the present paper is to show that the torsion congruences al-
ready suffice to obtain the whole conjecture in the special case when G is a
pro-l group with an abelian subgroup G′ of index l. Before stating the precise
theorem we need to recall some notation (compare [5,§1]).

Λ∧G is the l-completion of the localization Λ•G which is obtained from
the Iwasawa algebra ΛG = Zl[[G]] by inverting all central elements which
are regular in ΛG/lΛG; Q∧G is the total ring of fractions of Λ∧G;

T (Q∧G) = Q∧G/[Q∧G,Q∧G] is the quotient of Q∧G by Lie commuta-
tors;

if G is a pro-l group, then (see [5,§2] 2)

(LD)

K1(Λ∧G)
L−→ T (Q∧G)

Det ↓ Tr
≃ ↓

HOM(RlG, (Λ
c
∧Γk)×)

L−→ Hom∗(RlG,Qc
∧Γk)

is the logarithmic diagram defining the logarithmic pseudomeasure

tK/k ∈ T (Q∧G) by Tr(tK/k) = L(LK/k)

where LK/k = LK/k,S ∈ HOM(RlG, (Λ
c
∧Γk)×) is the Iwasawa L-function.

Theorem. With K/k and S as at the beginning and G = G(K/k) a pro-l
group, tK/k is integral (i.e., tK/k ∈ T (Λ∧G)) whenever G has an abelian
subgroup G′ of index l.

As a corollary, by [5, Proposition 3.2] and [6, Theorem], LK/k ∈ DetK1(Λ∧G) ,
which implies the conjecture (see [3, Theorem A]), up to its uniqueness asser-
tion. However, SK1(QG) = 1 because each simple component, after tensoring
up with a suitable extension field of its centre, becomes isomorphic to a ma-
trix ring of dimension a divisor of l2 by the proof of [2, Proposition 6], as the
character degrees χ(1) all divide l. Now apply [7, p.334, Corollary].

The proof of the theorem is carried out in §2; before, in a short §1, we introduce
restriction maps

ResG
′

G : T (Q∧G)→ T (Q∧G′)
and

ResG
′

G : Hom∗(RlG,Qc
∧Γk)→ Hom∗(RlG

′,Qc
∧Γk′ )

2RlG is the ring of all (virtual) Ql
c-characters of G with open kernel; Γk =

G(k∞/k) ; Λc
∧Γk = Zl

c ⊗Zl
Λ∧Γk with Zl

c the ring of integers in a fixed algebraic clos-

ure Ql
c of Ql
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making the diagram

K1(Λ∧G)
L−→ T (Q∧G)

Tr−→ Hom∗(RlG,Qc
∧Γk)

resG
′

G ↓ ResG
′

G ↓ ResG
′

G ↓
K1(Λ∧G′)

L′

−→ T (Q∧G′) Tr′−→ Hom∗(RlG′,Qc
∧Γk′)

commute 3 for any pair of pro-l groups G = G(K/k) and G′ = G(K/k′) ≤ G

such that [G : G′] is finite. We remark that replacing ResG
′

G by the “natural”
restriction map,

(resG
′

G f)(χ′) = f(indGG′χ′) , f ∈ Hom∗(RlG,Qc
∧Γk) , χ′ ∈ RlG′ ,

does not work, because induction and Adams operations do not commute.

1 . Res

Let G = G(K/k) be a pro-l group and G′ = G(K/k′) ≤ G an open subgroup.
Recall that Ψ : Λc

∧Γk → Λc
∧Γk is the map induced by Ψ(γ) = γl for γ ∈ Γk

(compare [5,§1]) and that ψl is the lth Adams operation on Rl(−).

Definition. ResG
′

G : Hom∗(RlG,Qc
∧Γk)→ Hom∗(RlG′,Qc

∧Γk′) sends f to

ResG
′

G f =
[
χ′ 7→ f(indGG′χ′) +

∑

r≥1

Ψr

lr
(f(ψr−1

l χ))
]
,

where χ = ψl(indG
G′χ′)− indGG′(ψlχ

′) .

To justify the definition we must show that the sum
∑

r≥1 is actually a finite

sum. For this, let {t} be a set of coset representatives of G′ in G, so G = ∪̇ttG′,
and define

m(g) = min{r ≥ 0 : gl
r ∈ G′} for g ∈ G .

Then
indGG′χ′(g) =

∑

t

χ̇′(gt) =
∑

{t:m(gt)=0}
χ′(gt) ,

if, as usual, χ̇′ coincides with χ′ on G′ and vanishes on G \G′. Hence,

χ(g) = (indGG′χ′)(gl)− indGG′(ψlχ
′)(g)

=
∑
m(glt)=0 χ

′(glt)−∑m(gt)=0 χ
′(glt) =

∑
m(gt)=1 χ

′(glt) .

If r0 is such that Gl
r0 ⊂ G′, then ψr0−1

l χ = 0 and
∑
r≥1 =

∑r0−2
r=1 , because

the sum
∑

m(gt)=1 is empty when g ∈ Glr0−1

.

3For finite G, this ResG′

G , making the left square commute, appears already in [1, p.14].

For us the properties (HD),(TD) of ResG′

G shown in §1 are equally necessary for the proof of
the Theorem above.
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It remains to show that ResG
′

G f ∈ Hom∗(RlG′,Qc
∧Γk′) , i.e., ResG

′

G f is a Galois
stable homomorphism, compatible with W-twists (see [5,§1]), and taking values
in Qc

∧Γk′ . The first property is easily checked and the third follows from the
second as in [2, proof of Lemma 9]. We turn to twisting.

Let ρ′ be a type-W character of G′, so ρ′ is inflated from Γk′ , and write ρ′ =
resG

′

G ρ with ρ inflated from Γk to G. Then

f(indGG′(ρ′χ′)) = f(ρ · indGG′χ′) = ρ♯(f(indGG′χ′)) = (ρ′)♯(f(indGG′χ′))

as f(indGG′χ′) ∈ Qc
∧Γk′ . Moreover, since ψl is multiplicative,

ψl(indGG′(ρ′χ′))− indGG′(ψl(ρ
′χ′)) = ψl(ρ · indGG′χ′)− indGG′((ρ′)l ·ψlχ′) = ρl ·χ

and thus

Ψr

lr (f(ψr−1
l (ρl · χ)))) = Ψr

lr f(ρl
r · ψr−1

l χ) =
Ψr

lr ((ρl
r

)♯(f(ψr−1
l χ))) = ρ♯( Ψr

lr f(ψr−1
l χ)) = (ρ′)♯( Ψr

lr f(ψr−1
l χ)) .

Lemma 1. The diagram below commutes. In it, L and L′ are the lower hori-
zontal maps of the logarithmic diagram (LD) for G and G′, respectively.

(HD)

HOM(RlG, (Λ
c
∧Γk)×)

L−→ Hom∗(RlG,Qc
∧Γk)

resG
′

G ↓ ResG
′

G ↓
HOM(RlG

′, (Λc
∧Γk′)

×)
L′

−→ Hom∗(RlG′,Qc
∧Γk′) .

Indeed, for f ∈ HOM(RlG, (Λ
c
∧Γk)×) we get

(ResG
′

G Lf)(χ′) = (Lf)(indG
G′χ′) +

∑
r≥1

Ψr

lr [(Lf)(ψr−1
l χ)]

=̇(Lf)(indGG′χ′) +
∑

r≥1
Ψr

lr [log(f(ψr−1
l χ))− Ψ

l log(f(ψrl χ))]

= (Lf)(indGG′χ′) +
∑

r≥1
Ψr

lr log(f(ψr−1
l χ))−∑r≥2

Ψr

lr log(f(ψr−1
l χ))

= (Lf)(indGG′χ′) + Ψ
l log(f(χ)) = 1

l log f(indχ′)l

Ψ(f(ψlindχ′)) + Ψ
l log f(ψlindχ′)

f(indψlχ′)

= 1
l log f(indχ′)l·Ψf(ψlindχ′)

Ψf(ψlindχ′)·Ψf(indψlχ′) = 1
l log f(indχ′)l

Ψf(indψlχ′)

= (L′resG
′

G f)(χ′) .

The dotted equality sign, =̇, is due to the congruence f(χ)l

Ψf(ψlχ) ≡ 1 mod lΛc
∧Γk

(see [5,§1]) and to χ(1) = 0, so (ψr−1
l χ)(1) = 0 for every r. In fact, with

χ̃
def
= ψr−1

l χ, we have

f(χ̃)l ≡ Ψf(ψlχ̃) mod lΛc
∧Γk =⇒

f(χ̃)l
s ≡ Ψsf(ψsl χ̃) ≡ Ψsf(χ̃(1)1) = 1 mod lΛc

∧Γk

for big enough s. Thus (Lf)(χ̃) = log(f(χ̃))− Ψ
l log(f(ψlχ̃)) as ‘log’ converges

on an element a power of which is ≡ 1 mod lΛc
∧Γk.
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The proof of Lemma 1 is complete.

By means of the trace isomorphism Tr : T (−)→ Hom∗(−) we next transport

ResG
′

G to ResG
′

G : T (Q∧G)→ T (Q∧G′), i.e., the diagram

(TD)

T (Q∧G)
Tr−→ Hom∗(RlG,Qc

∧Γk)

ResG
′

G ↓ ResG
′

G ↓
T (Q∧G′) Tr′−→ Hom∗(RlG′,Qc

∧Γk′ )

commutes.

Lemma 2.

K1(Λ∧G)
L→ T (Q∧G)

resG
′

G ↓ ResG
′

G ↓
K1(Λ∧G′)

L′

→ T (Q∧G′)
commutes and ResG

′

G tK/k = tK/k′ .

The first claim follows from gluing together the diagrams (LD), (HD), (TD)
and applying [2, Lemma 9]; the second claim follows from resG

′

G LK/k = LK/k′
[2, Proposition 12].

The next lemma already concentrates on the case when G′ is abelian and
[G : G′] = l. We set A = G/G′ = 〈a〉 and observe that a acts on G′ by
conjugation.

Lemma 3. Let τ : Λ∧G→ T (Λ∧G) denote the canonical map and g ∈ G. If G′

is abelian 4 and of index l in G, then

ResG
′

G (τg) =

{ ∑l−1
i=0 g

ai

if g ∈ G′
gl if g /∈ G′ .

The lemma is just a special case of

Proposition A. Let H be an open subgroup of G = G(K/k). For g ∈ G set
mH
G (g) = min{r ≥ 0 : gl

r ∈ H} 5, and let t run through a set of left

representatives of H in G, i.e., G =
⋃̇
tH . Then

1. ResHG τG(g) =
∑

t τH((t−1gt)l
mH

G (t−1gt)

)/lm
H
G (t−1gt) ,

2. Res is transitive ,

3. ResHG is integral, i.e., ResHG (T (Λ∧G)) ⊂ T (Λ∧H) for H ≤ G of finite
index.

Proposition A will be shown in the Appendix.

For the purpose of this paper it is enough to know Lemma 3 which we quick-
ly prove directly on applying Tr′ to both sides and employing the formula
Tr′(τ ′g)(χ′) = χ′(g)g with g denoting the image of g ∈ G′ in Γk′ (see [5,§1]) :

4whence τ ′ : Λ∧G′ → T (Λ∧G′) is the identity map
5so mH

G (g) is the m(g) defined earlier with H = G′
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1. (Tr′ResG
′

G (τg))(χ′) = ResG
′

G (Tr(τg))(χ′) = Tr(τg)(ind G
G′χ′) +

Ψ
l Tr(τg)(χ) since Gl ⊂ G′. Now, if g ∈ G′, Tr(τg)(indG

G′χ′) =∑l−1
i=0 χ

′(ga
i

)g and χ(g) = 0. On the other hand, if g /∈ G′,
Tr(τg)(ind G

G′χ′) = 0 and Ψ
l Tr(τg)(χ) = 1

l indG
G′χ′(gl)gl = χ′(gl)gl

since we may choose a = g mod G′.

2. Tr′(
∑l−1

i=0 g
ai

)(χ′) =
∑l−1

i=0 χ
′(ga

i

)g, since ga
i

and g have the same image

in Γk and so in Γk′ . On the other hand, Tr′(gl)(χ′) = χ′(gl)gl .

The lemma is established.

We note that if Γ (≃ Zl) is a central subgroup of G contained in the abelian
subgoup G′ of index l, then the elements of T (Λ∧G) can uniquely be written
as
∑
g βgτ(g) with βg ∈ Λ∧Γ and g running through a set of preimages of

conjugacy classes of G/Γ (see [3, Lemma 5]). For each summand we have

ResG
′

G (βgτ(g)) =

{ ∑l−1
i=0 βgg

ai

if g ∈ G′
Ψ(βg)g

l if g /∈ G′ .

2 . Proof of the theorem

In this section G = G(K/k) is a pro-l group and G′ = G(K/k′) an abelian
subgroup of index l (K/k is as in the introduction). As before, A = G/G′ = 〈a〉 ,
and we set Â = 1 + a+ · · ·+ al−1 .

If G itself is abelian, the theorem holds by [4,§5, Example 1], whence we assume
that G is non-abelian.

Lemma 4. Assume that there exists an element x ∈ T (Λ∧G) such that

deflG
ab

G x = deflG
ab

G tK/k and ResG
′

G x = ResG
′

G tK/k . Then tK/k ∈ T (Λ∧G).

Denoting by Kab the fixed field of the finite group [G,G], we first obser-

ve, because of [5, Lemma 2.1] and Lemma 2, that deflG
ab

G tK/k = tKab/k and

ResG
′

G tK/k = tK/k′ are integral : indeed, a logarithmic pseudomeasure is integral
whenever the group is abelian.

From [4, Proposition 9] we obtain a power ln of l such that lntK/k ∈ T (Λ∧G).

Consider the element x̃ = ln(x − tK/k) ∈ T (Λ∧G). It satisfies deflG
ab

G x̃ =

0 = ResG
′

G x̃ . We are going to prove x̃ = 0 which implies x = tK/k because
Hom∗(RlG,Qc

∧Γk), and so T (Q∧G), is torsionfree; whence the the lemma will
be verified.

The proof of x̃ = 0 employs the commutative diagram shown in the proof of
[5, Proposition 2.2] :

1 + a∧ ֌ (Λ∧G)×
deflGab

G

։ (Λ∧Gab)×

↓̌ L ↓ Lab ↓

τ(a∧) ֌ T (Λ∧G)
deflGab

G

։ Λ∧Gab ,
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in which L is extended to (Λ∧G)× by means of the canonical surjection
(Λ∧G)× ։ K1(Λ∧G) and a∧ = ker(Λ∧G → Λ∧Gab). The diagram yields a

v ∈ (Λ∧G)× with L(v) = x̃, simply because deflG
ab

G x̃ = 0. Combining diagrams
(HD), (LD) and (TD), we arrive at

L′(resG
′

G (Det v)) = ResG
′

G (L(Det v)) = ResG
′

G (Tr L(v)) = Tr′(ResG
′

G x̃) = 0

and, with resG
′

G replaced by deflG
ab

G , at

Lab(deflG
ab

G (Det v)) = deflG
ab

G (L(Det v)) =

= deflG
ab

G (Tr L(v)) = Trab(deflG
ab

G x̃) = 0 ,

since L and Tr commute with deflation.

The first displayed formula in [3, p.46] now implies that resG
′

G (Det v)

and deflG
ab

G (Det v) are torsion elements in HOM(RlG
′, (Λc

∧Γk′)
×) and

HOM(Rl(G
ab), (Λc

∧Γk)×), respectively. Moreover, the first paragraph of
the proof of [5, Proposition 3.2] therefore shows that Det v itself is a torsion
element in HOM(RlG, (Λ

c
∧Γk)×). Consequently, for some natural number m,

(Det v)l
m

= 1, so lmL(Det v) = 0 = lmTr(Lv) = Tr(lmx̃) , and x̃ = 0 follows,
as has been claimed.

We now introduce the commutative diagram

τ(a∧) ֌ T (Λ∧G) ։ Λ∧Gab = T (Λ∧Gab)

Res ↓ ResG
′

G ↓ Res ↓
b′∧ = τ ′(b′∧) ֌Λ∧G′ = T (Λ∧G′) ։ Λ∧(G′/[G,G]) = T (Λ∧(G′/[G,G]))

with exact rows (of which the upper one has already appeared in the diagram
shown in the proof of the preceding lemma). The images of all vertical maps
are fixed elementwise by A because of Lemma 3. Thus we can turn the diagram
into

(D)

τ(a∧) ֌ T (Λ∧G) ։ Λ∧Gab

Res ↓ ResG
′

G ↓ Res ↓
b′∧

A
֌ (Λ∧G′)A → (Λ∧(G′/[G,G]))A

↓̌ ↓̌ ↓̌
Ĥ0(A, b′∧) → Ĥ0(A,Λ∧G′) → Ĥ0(A,Λ∧(G′/[G,G]))

with exact rows and canonical lower vertical maps.

Lemma 5. In (D), the left vertical column is exact and the left bottom hori-
zontal map is injective.

Proof. The ideal a∧ is (additively) generated by the elements g(c− 1) with

g ∈ G, c ∈ [G,G] ; those with g ∈ G′ generate b′∧. We compute ResG
′

G τ(g(c−1)),
using Lemma 3 :
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1. if g ∈ G′, ResG
′

G τ(g(c − 1)) =
∑l−1

i=0((gc)a
i − gai

) =
∑l−1

i=0

(
g(c− 1)

)ai

∈
trAb′∧ ,

2. if g /∈ G′, ResG
′

G τ(g(c−1)) = ResG
′

G (τ(gc)−τ(g)) = (gc)l−gl = glcÂ−gl =
0 , since

(⋆) [G,G]Â = 1

by [G,G]=̇[G,G′] and [G,G′]Â = ((G′)a−1)Â = 1 as (a − 1)Â = 0. Here,
the dotted equality sign, =̇, results from the equation

[bg′1, b
ig′2] = (g′1)−1b−1(g′2)−1b−ibg′1b

ig′2 = (g′1)−1(g′2
−1

)b(g′1)b
i

g′2 =(
(g′1)−1(g′1)b

i
)(

(g′2
−1

)bg′2
)
∈ [G′, G] · [G,G′] ≤ [G,G′]

for g′1, g
′
2 ∈ G′ and b ∈ G \G′, because G′ is abelian and normal in G.

Thus, ResG
′

G τ(a∧) = trAb′∧ , which proves the first claim of the lemma.

The second claim follows from Ĥ−1(A,Λ∧(G′/[G,G])) = 0 and this in turn from
the trivial action of A on G′/[G,G] and the torsion freeness of Λ∧(G′/[G,G]).

Lemma 5 is established.

As seen in diagram (D), there is an element x1 ∈ T (Λ∧G) with deflG
ab

G x1 =

tKab/k. We define x′1 ∈ Λ∧G′ by ResG
′

G x1 = tK/k′ + x′1. Because of [5, Lemma
3.1], x′1 is fixed by A. We want to change x1 modulo τ(a∧) so that the new x′1
becomes zero: then we have arrived at an x ∈ T (Λ∧G) as assumed in Lemma
4 and the theorem will have been confirmed.

The above change is possible if, and only if, x′1 ∈ ResG
′

G (τ(a∧)) and so, because

of Lemma 5, if x′1 is in T ′ def
= trA(Λ∧G′) , the A-trace ideal of the A-action on

Λ∧G′.

Proposition. There exists an element x1 of T (Λ∧G) with deflG
ab

G x1 = tKab/k

and x′1 ∈ T ′ .

This is seen as follows. From [5,§1] we recall the existence of pseu-
domeasures λKab/k, λK/k′ in K1(Λ∧Gab) and K1(Λ∧G′), respectively, sa-

tisfying DetλKab/k = LKab/k, Det λK/k′ = LK/k′ (so Lab(λKab/k) =
tKab/k, ,L

′(λK/k′ ) = tK/k′ ). From [5, 2. of Proposition 3.2] and [6, Theorem]
we know that

ver(λKab/k)

λK/k′
≡ 1 mod T ′

where ‘ver’ is the map induced from the transfer homomorphism Gab → G′.

Let y ∈ (Λ∧G)× have deflG
ab

G y = λKab/k and set resG
′

G y = λK/k′ · y′. Then

y′ =
resG

′

G y

λK/k′
≡ ver(λKab/k)

λK/k′
≡ 1 mod T ′
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(see the proof of [5, Proposition 3.2]). Moreover, y′ ∈ 1 + b′∧. Now, x1
def
= L(y)

has ResG
′

G x1 = ResG
′

G L(y) = tK/k′ + x′1 with x′1
def
= L′(y′), and x′1 ∈ b′∧ because

of the commutativity of

1 + b′∧ ֌ (Λ∧G′)× ։ (Λ∧(G′/[G,G]))×

L′ ↓ L′ ↓ L′ ↓
b′∧ ֌ Λ∧G′ ։ Λ∧(G′/[G,G]) .

Hence, the proposition (and therefore the theorem) will be proved, if

x′1 = L′(y′) ∈ T ′ .

However, Lemma 5 gives

y′ ∈ (1 + b′∧
A

) ∩ (1 + T ′) = 1 + (b′∧
A ∩ T ′) = 1 + trAb′∧

and as L′(y′) = 1
l log y′l

Ψ(y′) (compare [3, p.39]), we see that

(1) L′(y′) ∈ T ′ if y′l

Ψ(y′) ≡ 1 mod lT ′ .

So it suffices to show this last congruence.

Write y′ = 1 + trAβ
′ with β′ ∈ b′∧. Since (1 + trAβ

′)l ≡ 1 + (trAβ
′)l mod lT ′,

the congruence in (1) is equivalent to

(2) (trAβ
′)l ≡ Ψ(trAβ

′) mod lT ′.
On picking a central subgroup Γ (≃ Zl) of G and writing β′ =

∑
g′,c βg′,c g

′(c−
1) with elements βg′,c ∈ Λ∧Γ, g′ ∈ G′, c ∈ [G,G], we obtain

(a)

(trAβ
′)l =

(∑
g′,c βg′,ctrA(g′(c− 1))

)l

≡∑g′,c(βg′,c)
l
(

trA(g′(c− 1))
)l

≡∑g′,c Ψ(βg′,c)
(

(trA(g′c))l − (trAg
′)l
)

mod lT ′

and

(b) Ψ(trAβ
′) =

∑
g′,c Ψ(βg′,c)

(
trA((g′c)l)− trA(g′l)

)

as Ψ and trA commute. Thus congruence (2) will result from Lemma 6 below,
since then subtracting (b) from (a) yields the sum

∑
g′,c Ψ(βg′,c)

(
(trA(g′c))l − trA((g′c)l)− (trAg

′)l + trA(g′l)
)
≡

∑
g′,c Ψ(βg′,c)

(
− l(g′c)Â + lg′Â

)
≡

∑
g′,c(−l)Ψ(βg′,c)g

′Â(cÂ − 1) ≡ 0 mod lT ′ ,

by (⋆) of the proof of Lemma 5.
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Lemma 6. (trAg
′)l − trA(g′l) ≡ −lg′Â mod lT ′ for g′ ∈ G′ .

Proof. Set Ã = Z/l × A and make M = Maps(Z/l, A) into an Ã-set by

defining m(z,ai)(x) = m(x− z) · ai. Then

(trAg
′)l = (

l−1∑

i=0

g′
ai

)l =
∑

m∈M

∏

z∈Z/l

g′
m(z)

=
∑

m∈M
g′
P

z∈Z/lm(z)

with
∑

zm(z) read in Z[A].

We compute the subsums of
∑

m in which m is constrained to an Ã-orbit.

If m ∈M has stabilizer {(0, 1)} in Ã, then the Ã-orbit sum is

∑
(z,ai)∈Ã g

′
P

v∈Z/l m
(z,ai)(v)

=
∑

(z,ai)∈Ã g
′
P

v∈Z/l m(v−z)ai

=
∑

(z,ai) g
′
P

v m(v)ai

= l
∑

i(g
′
P

v m(v)
)a

i

= l · trA(g′
P

v m(v)
) ∈ lT ′ .

Note that no m ∈M is stabilized by (0, ai) with ai 6= 1 : form(z) = m(0,ai)(z) =
m(z)ai implies ai = 1. It follows that the stabilizers of the elements with
stabilizer different from {(0, 1)} must be cyclic of order l and different from
{(0, ai) : 0 ≤ i ≤ l − 1} and therefore = 〈(1, aj)〉 for a unique j mod l.

One now checks that for each j there is exactly one Ã-orbit with stabilizer
〈(1, aj)〉 and that it is represented by mj , mj(z) = ajz . Moreover, {(0, ai) :

0 ≤ i ≤ l − 1} is a transversal of the stabilizer of mj in Ã.

For each j, the sum of g′
P

z m(z)
over the Ã-orbit of mj is

∑
i g
′
P

z m
(0,ai)
j (z)

=
∑

i g
′
P

z a
jzai

. If j = 0, this is
∑

i g
′lai

= trA(g′l) , accounting for that term

in the claim. If j 6= 0, it is
∑

i g
′Â·ai

= lg′Â, and summing over j 6= 0 gives

(l − 1)l · g′Â ≡ −l · g′Â mod lT ′ because l2 · g′Â = l · trA(g′Â) ∈ lT ′.
This finishes the proof of Lemma 6.

3 . Appendix

Proof of Proposition A :

We start from the formula χ(g) =
∑

mH
G (gt)=1 χ

′(glt) which appeared in the

justification of the definition in §1 (now with H = G′). It implies χ(gl
r−1

) =∑
mH

G (t−1gt)=r χ
′((t−1gt)l

r

) for r ≥ 1. Exploiting [3, Lemma 6] for the equality
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=̇ and [3, Proposition 3] for =̈ we obtain

(ResHGTrGτG(g))(χ′)
= (TrGτG(g))(indG

Hχ
′) +

∑
r≥1

Ψr

lr [(TrGτG(g))(ψr−1
l χ)]

=̇trace(g | Vind G
Hχ

′) +
∑
r≥1

Ψr

lr [trace(g | Vψr−1
l χ)]

=̈(indGHχ
′)(g)g +

∑
r≥1

Ψr

lr [(ψr−1
l χ)(g)g]

= (indGHχ
′)(g)g +

∑
r≥1 χ(gl

r−1

) g
lr

lr

=
∑

mH
G (t−1gt)=0 χ

′(t−1gt)g +
∑

r≥1

∑
mH

G (t−1gt)=r χ
′((t−1gt)l

r

) g
lr

lr

=
∑

t χ
′((t−1gt)l

mH
G (t−1gt)

) g
l
mH

G (t−1gt)

lm
H
G

(t−1gt)
.

On the other hand, if h ∈ H , the same calculation on the H-level gives

(TrHτH(h))(χ′) = trace(h | Vχ′) = χ′(h)h ,

and therefore, with τH(
∑

t
(t−1gt)l

mH
G (t−1gt)

lm
H
G

(t−1gt)
) ∈ T (Q(H)) , we get

(TrHτH
∑

t
(t−1gt)l

mH
G (t−1gt)

lm
H
G

(t−1gt)
)(χ′)

=
∑
t

1

lm
H
G

(t−1gt)
χ′((t−1gt)l

mH
G (t−1gt)

)(t−1gt)l
mH

G
(t−1gt)

=
∑
t χ
′((t−1gt)l

mH
G (t−1gt)

) g
l
mH

G (t−1gt)

lm
H
G

(t−1gt)

via Qc(Γk′) →֒ Qc(Γk) (where k′ is the fixed field of H).

Since these formulae agree for all characters χ′ of H (with open kernel) it

follows that ResHG τG(g) = τH(
∑

t
(t−1gt)l

mH
G (t−1gt)

lm
H
G

(t−1gt)
) by the uniqueness of this

element, proving 1. of Proposition A.

For 2. we first consider the situation H ≤ G′ ≤ G with [G : G′] = l and show

ResHG = ResHG′ ◦ ResG
′

G :

Write G =
⋃̇
xxG

′ , G′ =
⋃̇
yyH , henceG =

⋃̇
x,yxyH , and recall 6 from 1. that

ResG
′

G g =

{
τG′(

∑
x x
−1gx) , g ∈ G′

τG′(gl) , g /∈ G′ .

6if g /∈ G′, then we may use {t} = {gi : 0 ≤ i ≤ l − 1}
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Then, accordingly,

ResHG′ResG
′

G τG(g)

=

{ ∑
x ResHG′τG′(x−1gx)

ResHG′τG′(gl)

=





∑
x

∑
y τH((y−1x−1gxy)l

mH
G′ (y

−1x−1gxy)

)/lm
H
G′(y

−1x−1gxy)

∑
y τH((y−1gly)l

mH
G′ (y

−1gly)

)/lm
H
G′(y

−1gly)

=

{ ∑
t τH((t−1gt)l

mH
G (t−1gt)

)/lm
H
G (t−1gt)

∑
t τH((t−1glt)l

mH
G′ (t

−1glt)

)/l · lmH
G′(t

−1glt)

=
∑

t τH((t−1gt)l
mH

G (t−1gt)/lm
H
G (t−1gt) = ResHG τG(g) ,

using G′ �G and mH
G′(xl) + 1 = mH

G (x) for x /∈ G′.
Induction on [G : H ] now proves 2., ResHG = ResHG′′ ◦ ResG

′′

G for H ≤ G′′ ≤ G.
Indeed, if G′′ 6= G, find G′ ≥ G′′ with [G : G′] = l and use

ResHG′′ResG
′′

G = ResHG′′(ResG
′′

G′ ResG
′

G ) =

= (ResHG′′ResG
′′

G′ )ResG
′

G = ResHG′ResG
′

G = ResHG .

Finally, for 3., proceed by induction on [G : H ] and use 1. if H has index l in
G and 2. when the index is bigger, in which case there is a subgroup G′ of G
with H ≤ G , [G : G′] = l.

The proof of Proposition A is complete.
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Introduction

The polylogarithm is a very powerful tool in studying special values of L-
functions and subject to many conjectures. Most notably, the Zagier conjec-
ture claims that all values of L-functions of number fields can be described by
polylogarithms. The interpretation of the polylogarithm functions in terms of
periods of variations of Hodge structures has lead to a motivic theory of the
polylog and to generalizations as the elliptic polylog by Beilinson and Levin.
Building on this work, Wildeshaus has defined polylogarithms in a more general
context and in particular for abelian schemes.
Not very much is known about the extension classes arising from these “abelian
polylogarithms”. In an earlier paper [K] we were able to show that the abelian

1Dedicated to John Coates with admiration and respect.
Editorial Remark: This article was intended to be included in Documenta Math., The
Book Series, vol. 4: John H. Coates’ Sixtieth Birthday (2006), but its publication was
unfortunately delayed for reasons not caused by the author.
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polylogarithm, is indeed of motivic origin, i.e., is in the image of the regulator
from K-theory.
It was Levin in [L], who started to investigate certain ”polylogarithmic cur-
rents” on abelian schemes, which are related to the construction by Wilde-
shaus. In [B1], Blottière could show that these currents actually represent the
polylogarithmic extension in the category of Hodge modules.
In this paper we will, following and extending ideas from the case of the elliptic
polylog treated in [HK] (which is in turn inspired by [BL]), consider the prob-
lem of the degeneration of the abelian polylog on Hilbert modular varieties.
The main result will describe this degeneration in terms of (critical) special
values of L-functions of the totally real field, which defines the Hilbert modu-
lar variety. To describe the theorem more precisely, consider the specialization
of the polylog, which gives Eisenstein classes (say in the category of mixed étale
sheaves to fix ideas)

Eisk(α) ∈ Ext2g−1
S (Qℓ, SymkH(g)),

where S is the Hilbert modular variety of dimension g and H is the locally
constant sheaf of relative Tate-modules of the universal abelian scheme. Let
j : S → S be the Baily-Borel compactification of S and i : ∂S := S \ S → S
the inclusion of the cusps. The degeneration or residue map (see 1.5.2 for the
precise definition) is then

res : Ext2g−1
S (Qℓ, SymkH(g))→ Hom∂S(Qℓ,Qℓ).

The target of this map is sitting inside a sum of copies of Qℓ and the main
result of this paper 1.7.1 describes res(Eisk(α)) in terms of special values of
(partial) L-functions of the totally real field defining S.
The same result was also obtained by Blottière in [B2] with different methods.
His computation uses the explicit description of the polylogarithm in terms of
the currents constructed by Levin.
Our method of proof is inspired by [BL] 2.4. and [HK] and follows a different
line. Instead of computing directly the degeneration on the base we work with
the polylog, which lives on the universal abelian scheme, and use the fact that
the universal abelian variety can be written in a neighborhood of the cusps as
an extension of real tori. The idea is to view the problem as of topological
nature and use the good functorial properties of the topological polylog to
compute the degeneration. In fact, we avoid computations by reducing to the
situation considered by Nori [N] and Sczech [Sc]. For the convenience of the
reader we reproduce then their computations, which lead to the relation with
the L-values.
There is a very interesting question raised by the results in this paper. In
[HK] we were able to construct extension classes related to non-critical values
of Dirichlet-L-functions, if the residue map was zero on the specialization of
the polylog. Is there an analogous result here?
The paper is organized as follows: In the first section we review the definition
of the Hilbert modular variety, define the residue or degeneration map and
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formulate our main theorem. The second section reviews the theory of the
polylog and the Eisenstein classes emphasing the topological situation, which
is not extensively covered in the literature. In the third section we give the
proof of the main theorem.

It is a pleasure to thank David Blottière for a series of interesting and stim-
ulating discussions during his stay in Regensburg. Moreover, I like to thank
Sascha Beilinson for making available some time ago his notes about his and
A. Levin’s interpretation of Nori’s work.

1 Polylogarithms and degeneration

We review the definition of a Hilbert modular variety to fix notations and
pose the problem of computing the degeneration of the specializations of the
polylogarithm at the boundary. The main theorem describes this residue in
terms of special values of L-functions.

1.1 Notation

As in [BL] we deal with three different types of sheaves simultaneously. Let
X/k be a variety and L a coefficient ring for our sheaf theory, then we consider

i) k = C the usual topology on X(C) and L any commutative ring

ii) k = R or C and L = Q or R and we work with the category of mixed
Hodge modules

iii) k = Q and L = Z/lrZ,Zl or Ql and we work with the category of étale
sheaves

1.2 Hilbert modular varieties

We recall the definition of Hilbert modular varieties following Rapoport [R].
To avoid all technicalities, we will only consider the moduli scheme over Q.
The theory works over more general base schemes without any modification.

Let F be a totally real field, g := [F : Q], O the ring of integers, D−1 the
inverse different and dF its discriminant. Fix an integer n ≥ 3. We consider
the functor, which associates to a scheme T over Spec Q the isomorphism classes
of triples (A,α, λ), where A/T is an abelian scheme of dimension g, with real
multiplication by O, α : Homet,O,sym(A,A∗) → D−1 is a D−1-polarization in
the sense of [R] 1.19, i.e., an O-module isomorphism respecting the positivity
of the totally positive elements in D−1 ⊂ F , and λ : A[n] ∼= (O/nO)2 is a level
n structure satisfying the compatibility of [R] 1.21. For n ≥ 3 this functor is

represented by a smooth scheme S := SD−1

n of finite type over Spec Q . Let

A π−→ S
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be the universal abelian scheme over S. In any of the three categories of sheaves
i)-iii) from 1.1 we let

H := HomS(R1π∗L,L)

the first homology of A/S. In the étale case and L = Zℓ, the fiber of H at a
point is the Tate module of the abelian variety over that point.

1.3 Transcendental description

For the later computation we need a description in group theoretical terms of
the complex points S(C) and of H.
Define a group scheme G/ Spec Z by the Cartesian diagram

G −−−−→ ResO/Z Gl2y
ydet

Gm −−−−→ ResO/Z Gm

and let

H
g
± := {τ ∈ F ⊗ C|Im τ totally positive or totally negative}.

Then

(
a b
c d

)
∈ G(R) acts on H

g
± by the usual formula

(
a b
c d

)
τ =

aτ + b

cτ + d

and the stabilizer of 1⊗ i ∈ H
g
± is

K∞ := (F ⊗ C)∗ ∩G(R),

so that

H
g
± ∼= G(R)/K∞.

With this notation one has

S(C) = G(Z)\(Hg± ×G(Z/nZ)).

On S(C) acts G(Z/nZ) by right multiplication. The determinant det : G→ Gm

induces

S(C)→ Gm(Z/nZ)

and the fibers are the connected components. Define a subgroup D ⊂ G iso-
morphic to Gm by D := {

(
a 0
0 1

)
∈ G : a ∈ Gm

)
. This gives a section of det.

Then the action of D(Z/nZ) by right multiplication is transitive on the set of
connected components.
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The embedding G(Z) ⊂ Gl2(O) defines an action of G(Z) on O⊕2 and in the
topological realization the local system H is given by the quotient

G(Z)\(Hg± ×O⊕2 ×G(Z/nZ)).

In particular, as a family of real (2g-dimensional) tori, the complex points A(C)
of the universal abelian scheme can be written as

G(Z)\(Hg± × (F ⊗ R/O)⊕2 ×G(Z/nZ))

and the level n structure is given by the subgroup

(
1

n
O/O)⊕2 ⊂ (F ⊗ R/O)⊕2.

The O-multiplication on A(C) is in this description given by the natural O-
module structure on F ⊗ R.

1.4 Transcendental description of the cusps

The following description of the boundary cohomology is inspired by [H]. For
further details we refer to [H] 2.1. Let B ⊂ G the subgroup of upper triangular
matrices, T ⊂ B its maximal torus and N ⊂ B its unipotent radical. We have
an exact sequence

1→ N → B
q−→ T → 1.

We denote by G1, B1 and T 1 the subgroups of determinant 1. Note that
G1 = ResO/Z Sl2. Let KB

∞ := B(R) ∩ K∞, then the Cartan decomposition
shows that H

g
± = B(R)/KB

∞. A pointed neighborhood of the set of all cusps is
given by

(1) S̃B := B(Z)\
(
B(R)/KB

∞ ×G(Z/nZ)
)
.

In particular, the set of cusps is (cf. also [R] p.305)

(2) ∂S(C) = B1(Z)\G(Z/nZ).

The fibres of the map ∂S(C)→ Gm(Z/nZ) induced by the determinant are

(3) B1(Z)\G1(Z/nZ) ∼= ΓG\P1(O),

where ΓG := ker(G1(Z) → G1(Z/nZ)). In particular, we can think of a cusp
represented by h ∈ G1(Z/nZ) as a rank 1 O-module bh, which is a quotient

(4) O2 ph−→ bh,

together with a level structure, i.e., a basis h ∈ G1(Z/nZ). Explicitly, the
fractional ideal bh is generated by any representatives u, v ∈ O of the second
row of h.
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On S̃B acts G(Z/nZ) by multiplication from the right. This action is transitive

on the connected components of S̃B. Define

(5) SB := B(Z)\
(
B(R)/KB

∞ ×B(Z/nZ)
)
,

then SB ⊂ S̃B is a union of connected components of S̃B. Let KT
∞ (respectively

T (Z)) be the image of KB
∞ (respectively B(Z)) under q : B(R)→ T (R). Define

(6) ST := T (Z)\
(
T (R)/KT

∞ × T (Z/nZ)
)
,

then the map q : B → T induces a fibration

(7) q : SB → ST ,

whose fibers are N(Z)\
(
N(R)×N(Z/nZ)

)
with N(Z) := B(Z)∩N(R). Denote

by

(8) u : ST → pt

the structure map to a point. For the study of the degeneration, one considers
the diagram

(9)

SB
q−−−−→ ST

u−−−−→ pt
y

S

In fact we are interested in the cohomology of certain local systems on these
topological spaces. For the computations it is convenient to replace SB and ST
by homotopy equivalent spaces as follows.
Define KT 1

∞ := KT
∞ ∩T 1(R) and note that this is the kernel of the determinant

KT
∞ → R∗. Then the inclusion induces an isomorphism

T 1(Z)\
(
T 1(R)/KT 1

∞ × T (Z/nZ)
) ∼= ST .

The map a 7→
(
a 0
0 a−1

)
defines isomorphisms (F⊗R)∗ ∼= T 1(R) andO∗ ∼= T 1(Z).

Note thatKT 1

∞ ⊂ (F⊗R)∗ is identified with the two torsion subgroup in (F⊗R)∗

and that KT 1

∞ ∼= (Z/2Z)g permutes the set of connected components of T 1(R).

Lemma 1.4.1. Let (F ⊗ R)1 ⊂ T 1(R) = (F ⊗ R)∗ be the subgroup of elements
of norm 1 and O∗,1 = O∗ ∩ (F ⊗ R)1. Then

S1
T := O∗,1\

(
(F ⊗ R)1/KT 1

∞ ∩ (F ⊗ R)1 × T (Z/nZ)
)

is homotopy equivalent to ST . Moreover, the inclusion of the totally positive
elements (F ⊗ R)1+ into (F ⊗ R)1 provides an identification

(F ⊗ R)1+
∼= (F ⊗ R)1/KT 1

∞ ∩ (F ⊗ R)1.
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Proof. The exact sequence

0→ (F ⊗ R)1 → (F ⊗ R)∗ → R∗ → 0

together with the fact that KT 1

∞ is the two torsion in (F ⊗R)∗ allows to identify

T 1(R)/KT 1

∞ ∼=
(
(F ⊗ R)1/KT 1

∞ ∩ (F ⊗ R)1
)
× R>0.

The last identity is clear. �

We define S1
B to be the inverse image of S1

T under q, so that we have a Cartesian
diagram

(10)

S1
B

q−−−−→ S1
Ty
y

SB
q−−−−→ ST .

Over SB the representation O2 has a filtration

0→ O → O2 p−→ O → 0,(11)

where the first map sends a ∈ O to the vector
(
a
0

)
and the second map is(

a
b

)
7→ b. This induces a filtration on the local system H

(12) 0→ N → H →M→ 0,

where N and M are the associated local systems. In particular, over S1
B one

has a filtration of topological tori

(13) 0→ TN → A(C)
p−→ TM → 0,

where TN := N ⊗R/Z and TM :=M⊗R/Z. By definition of N the fibration
in (13) and (10) are compatible, i.e., one has a commutative diagram

(14)

A(C)
p−−−−→ TM

π

y
yπM

S1
B

q−−−−→ S1
T .

1.5 The degeneration map

In this section we explain the degeneration problem we want to consider.
The polylogarithm on π : A → S defines for certain linear combinations α of
torsion sections of A an extension class

(15) Eisk(α) ∈ Ext2g−1
?,S (L, SymkH(g)),
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where ? can be MHM, et, top. The construction of this class will be given in
section 2 definition 2.4.1.
Let S be the Baily-Borel compactification of S. Denote by ∂S := S \ S the set
of cusps. We get

∂S
i−→ S

j←− S.
The adjunction map together with the edge morphism in the Leray spectral
sequence for Rj∗ gives

(16)

Ext2g−1
S (L, SymkH(g)) −−−−→ Ext2g−1

∂S (L, i∗Rj∗ SymkH(g))

ց
y

Hom∂S(L, i∗R2g−1j∗ SymkH(g)).

There are several possibilities to compute i∗R2g−1j∗ SymkH(g).

Theorem 1.5.1. Assume that Q ⊂ L. Then, in any of the categories
MHM, et, top, there is a canonical isomorphism

i∗R2g−1j∗ SymkH(g) ∼= L,

where L has the trivial Hodge structure (resp. the trivial Galois action).

Remark: J. Wildeshaus has pointed out that the determination of the weight
on the right hand side is not necessary for our main result, but follows from it.
In fact, our main result gives non-zero classes in

Hom∂S(L, i∗R2g−1j∗ SymkH(g)),

so that the rank one sheaf i∗R2g−1j∗ SymkH(g) has to be of weight zero.

Using this identification we define the residue or degeneration map:

Definition 1.5.2. The map from (16) together with the identification of 1.5.1
define the residue map

res : Ext2g−1
S (L, SymkH(g))→ Hom∂S(L,L).

The residue map is equivariant for the G(Z/nZ) action on both sides.

Proof. (of theorem 1.5.1). In the case of Hodge modules we use theorem 2.9.
in Burgos-Wildeshaus [BW] and in the étale case we use theorem 5.3.1 in
[P2]. Roughly speaking, both results asserts that the higher direct image can
be calculated using group cohomology and the “canonical construction”, which
associates to a representation of the group defining the Shimura variety a Hodge
module resp. an étale sheaf.
More precisely, from a topological point of view, the monodromy at the cusps
is exactly the cohomology of S̃B . One has

H2g−1(S̃B, SymkH(g)) ∼= Ind
G(Z/nZ)
B(Z/nZ)H

2g−1(SB, SymkH(g))
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and
H2g−1(SB , SymkH(g)) ∼=

⊕

r+s=2g−1

Hr(ST , R
sq∗ SymkH(g))).

As the cohomological dimension of ΓT is g − 1 and that of ΓN is g, one has in
fact

H2g−1(SB , SymkH(g)) ∼= Hg−1(ST , R
gq∗ SymkH(g))).

The exact sequence

0→ O → O2 p−→ O → 0

from (11) shows that Rgq∗ SymkH(g) can be identified via p with SymkO ⊗
L with the induced T (Z) action, which maps

(
a 0
0 d

)
to dk. To compute the

coinvariants, extend the coefficients to R, so that

O ⊗ R ∼=
⊕

τ :F→R

R

and
(
a 0
0 d

)
∈ T (Z) acts via τ(d) on the component indexed by τ . Thus SymkO⊗

L can only have a trivial quotient, if k ≡ 0 mod g and on this one dimensional
quotient the action is by the norm map T (Z)→ ±1. One gets:

Hg−1(ST , SymkO ⊗ L) ∼=
{
L if k ≡ 0 mod g
0 else

The above mentioned theorems imply that this topological computation gives
also the result in the categories MHM, et, top. The Hodge structure on
Hg−1(ST , SymkO ⊗ L) is the trivial one, as one sees from the explicit de-
scription of the action of T and the fact that the action of the Deligne torus S,
which defines the weight, is induced from the embedding x 7→

(
x 0
0 1

)
., hence is

trivial. The same remark and proposition 5.5.4. in [P2] show that the weight
is also zero in the étale case. �

1.6 Partial zeta functions of totally real fields

Let b, f be relatively prime integral ideals of O, ǫ : (R ⊗ F )∗ → {±1} a sign
character. This is a product of characters ǫτ : R∗ → {±1} for all embeddings
τ : F → R. Denote by |ǫ| the number of non-trivial ǫτ which occur in this
product decomposition of ǫ. Moreover let x ∈ O such that x 6≡ 0 mod b−1f

and O∗f := {a ∈ O|a totally positive and a ≡ 1 mod f}. Define

(17) F (b, f, ǫ, x, s) :=
∑

ν∈(x+fb−1)/O∗
f

ǫ(ν)

|N(ν)|s

for Re s > 1. Here N is the norm. On the other hand let Tr : F → Q be the
trace map and define

(18) L(b, f, ǫ, x, s) :=
∑

λ∈b(fD)−1/O∗
f

ǫ(λ)e2πiTr(xλ)

|N(ν)|s
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These two L-functions are related by a functional equation. To formulate it we
introduce the Γ-factor

Γǫ(s) := π−
1
2 (sg+|ǫ|)Γ

(
s+ 1

2

)|ǫ|
Γ
(s

2

)g−|ǫ|
.

The functional equation follows directly with Hecke’s method for
Grössencharacters and was first mentioned for these partial zeta functions by
Siegel:

Proposition 1.6.1 (cf.[Si] Formel (10)). The functional equation reads:

Γǫ(1− s)F (b, f, ǫ, x, 1− s) = i−|ǫ||dF |−
1
2N(f−1b)Γǫ(s)L(b, f, ǫ, x, s),

where dF is the discriminant of F/Q.

The functional equation shows that F (b, f, ǫ, x, 1− k) can be non-zero for k =
1, 2, . . . only if |ǫ| is either g or 0. Let us introduce

ζ(b, f, x, s) :=
∑

ν∈(x+fb−1)/O∗
f

1

N(ν)s
.

We get:

Corollary 1.6.2. The functional equation shows that F (b, f, ǫ, x, 1 − k) for
k = 1, 2, . . . is non-zero for |ǫ| = 0 and k even or for |ǫ| = g and k odd. In
these cases one has

ζ(b, f, x, 1 − k) = |dF |−
1
2N(f−1b)

((k − 1)!)g

(2πi)kg
L(b, f, ǫ, x, k).

1.7 The main theorem

Here we formulate our main theorem. It computes the residue map from (1.5.2)
in terms of the partial L-functions.
The transcendental description of the cusps gives

H0(∂S(C), L) = Ind
G(Z/nZ)
B1(Z) L

and H0(∂S, L) is the subgroup of elements invariant underD(Z/nZ). Similarly,
the n-torsion sections of A[n] over S(C) can be identified with functions from
G(Z/nZ) to ( 1

nO/O)2, which are equivariant with respect to the canonical
G1(Z) := ker(G(Z) → Z∗) action. The action of G(Z/nZ) on S induces via
pull-back an action on A[n](S(C)) and we have:

A[n](S(C)) = Ind
G(Z/nZ)
G1(Z) (

1

n
O/O)2.
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The group A[n](S) consists again of the elements invariant under D(Z/nZ).
Let D := A[n](S) and consider the formal linear combinations

L[D]0 :=
{∑

σ∈D
lσ(σ) : lσ ∈ L and

∑

σ∈D
lσ = 0

}
.

The G(Z/nZ) action on D carries over to an action on L[D]0. For α ∈ L[D]0

we construct in 2.4.1 a class

Eisk(α) ∈ Ext2g−1
S (L, SymkH(g)),

which depends on α in a functorial way. Thus, the resulting map

(19) L[D]0
Eisk

−−−→ Ext2g−1
S (L, SymkH(g))

res−−→ Ind
G(Z/nZ)
B1(Z) L

is equivariant for the G(Z/nZ) action.

Theorem 1.7.1. Let L ⊃ Q and α =
∑

σ∈D lσ(σ). Then res(Eism(α)) is non-
zero only for m ≡ 0(g) and for every h ∈ G(Z/nZ) and k > 0

res(Eisgk(α))(h) = (−1)g−1
∑

σ∈D
lσζ(O,O, p(hσ),−k).

To use the basis given by the coinvariants in SymgkO ⊗ L as we did in the
proof of theorem 1.5.1 is not natural. A better description is as follows: For
each h ∈ G(Z/nZ) choose an element dh ∈ D(Z/nZ) such that h̃ := hd−1

h ∈
G1(Z/nZ). Then, as in (4) we have an ideal bh̃ and a projection

O2 peh−→ beh.

Now use the identification Hg−1(ST , Symgk beh ⊗ L) ∼= L at the cusp h. With
this basis the above result reads

Corollary 1.7.2. In this basis

res(Eisgk(α))(h) = (−1)g−1Nb−k−1
eh

∑

σ∈D
lσζ(beh,O, peh(σ),−k).

The theorem and the corollary will be proved in section 3.

2 Polylogarithms

In this section we review the theory of the polylogarithm on abelian schemes.
Special emphasis is given the topological case, which will be important in the
proof of the main theorem. The elliptic polylogarithm was introduced by Beilin-
son and Levin [BL] and the generalization to higher dimensional families of

Documenta Mathematica 13 (2008) 131–159



142 Guido Kings

abelian varieties is due to Wildeshaus [W]. The idea to interprete the con-
struction by Nori in terms of the topological polylogarithm is due to Beilinson
and Nori (unpublished).

The polylogarithm can be defined in any of the categories MHM, et, top for
any abelian scheme π : A → S, with unit section e : S → A of constant relative
dimension g. If we work in top, it even suffices to assume that π : A → S is
a family of topological tori (i.e., fiberwise isomorphic to (R/Z)g). For more
details in the case of abelian schemes, see [W] chapter III part I, or [L]. In the
case of elliptic curves one can also consult [BL] or [HK].

2.1 Construction of the polylog

For simplicity we assume L ⊃ Q in this section and discuss the necessary
modifications for integral coefficients later. Define a lisse sheaf Log(1) on A,
which is an extension

0→ H→ Log(1) → L→ 0

together with a splitting s : e∗L → e∗ Log(1) in any of the three categories
MHM, et, top as follows: Consider the exact sequence

0→ Ext1S(L,H)
π∗

−→ Ext1A(L, π∗H)→ HomS(L,R1π∗π
∗H)→ 0,

which is split by e∗. Note that by the projection formula R1π∗π∗H ∼= R1π∗L⊗
H so that

HomS(L,R1π∗π
∗H) ∼= HomS(H,H).

Then Log(1) is a sheaf representing the unique extension class in Ext1A(L, π∗H),
which splits when pulled back to S via e∗ and which maps to id ∈ HomS(H,H).
Define

Log(k) := Symk Log(1) .

Definition 2.1.1. The logarithm sheaf is the pro-sheaf

Log := LogA := lim←−Log(k),

where the transition maps are induced by the map Log(1) → L. In particular,
one has exact sequences

0→ SymkH→ Log(k) → Log(k−1) → 0

and a splitting induced by s : e∗L→ e∗ Log(1)

e∗ Log ∼=
∏

k≥0

SymkH.
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Any isogeny φ : A → A of degree invertible in L induces an isomorphism Log ∼=
φ∗ Log, which is on the associated graded induced by Symk φ : SymkH →
SymkH. For every torsion point x ∈ A(S)tors one gets an isomorphism

(20) x∗ Log ∼= e∗ Log ∼=
∏

k≥0

SymkH.

The most important property of the sheaf Log is the vanishing of its higher
direct images except in the highest degree.

Theorem 2.1.2 (Wildeshaus, [W], cor. 4.4., p. 70). One has

Riπ∗ Log = 0 for i 6= 2g

and the augmentation Log→ L induces canonical isomorphisms

R2gπ∗ Log ∼= R2gπ∗L ∼= L(−g).

For the construction of the polylogarithm one considers a non-empty disjoint
union of torsion sections i : D ⊂ A, whose orders are invertible in L (more
generally, one can also consider D étale over S). Let

L[D] :=
⊕

σ∈D
L

and L[D]0 ⊂ L[D] the kernel of the augmentation map L[D] → L. Elements
α ∈ L[D] are written as formal linear combinations α =

∑
σ∈D lσ(σ). Similarly,

define
Log[D] :=

⊕

σ∈D
σ∗ Log

and
Log[D]0 := ker (Log[D]→ L)

to be the kernel of the composition of the sum of the augmentation maps
Log[D]→ L[D] and the augmentation L[D]→ L.

Corollary 2.1.3. The localization sequence for U := A \ D induces an iso-
morphism

Ext2g−1
U (L[D]0,Log(g)) ∼= HomS(L[D]0,Log[D]0).

Proof. The vanishing result 2.1.2 implies that the localization sequence is of
the form

0→ Ext2g−1
U (L[D]0,Log(g))→ HomS(L[D]0, i∗ Log)→ HomS(L[D]0, L)→ 0.

Inserting the definition of Log[D]0 gives the desired result. �
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Definition 2.1.4. The polylogarithm polD is the extension class

polD ∈ Ext2g−1
U (L[D]0,Log(g)),

which maps to the canonical inclusion L[D]0 → Log[D] under the isomorphism
in 2.1.3. In particular, for every α ∈ L[D]0 we get by pull-back an extension
class

polDα ∈ Ext2g−1
U (L,Log(g)).

2.2 Integral version of the polylogarithm, the topological case

In the topological and the étale situation it is possible to define the polylog-
arithm with integral coefficients. In this section we treat the topological case
and the étale case in the next section. The construction presented here is a
reinterpretation by Beilinson and Levin (unpublished) of results of Nori and
Sczech.
We start by defining the logarithm sheaf for any (commutative) coefficient ring
L, in particular for L = Z. In the topological situation, it is even possible to
define more generally the polylogarithm for any smooth family of real tori of
constant dimension g, which has a unit section.
Let

π : T → S

be such a family, e : S → T the unit section and let HL := HomS(R1π∗L,L)
be the local system of the homologies of the fibers with coefficients in L. Let
H̃R be the associated vector bundle of HR. Then T ∼= HZ\H̃R and we denote
by

π̃ : H̃R → T
the associated map. Let

L[HZ] := e∗π̃!L

be the local system of group rings on S, which is stalk-wise the group ring of
the stalk of the local system HZ with coefficients in L. The augmentation ideal
of L[HZ]→ L is denoted by I and we define

L[[HZ]] := lim←−
r

L[HZ]/Ir

the completion along the augmentation ideal. Note that In/In+1 ∼= SymnHL.
If L ⊃ Q, one has even a ring isomorphism

(21) L[[HZ]]
∼=−→
∏

k≥0

SymkHL,

induced by h 7→ ∑
k≥0 h

⊗k/k! for h ∈ HZ. In the special case L = Z,Q the
canonical map of group rings Z[HZ]→ Q[HZ] induces

(22) Z[[HZ]]→ Q[[HZ]]∼=
∏

k≥0

SymkHQ.
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Definition 2.2.1. The logarithm sheaf Log is the local system on T defined
by

Log := π̃!L⊗L[HZ] L[[HZ]].

As a local system of L[[HZ]]-modules, Log is of rank 1.

Any isogeny φ : T → T of order invertible in L induces an isomorphism
Log ∼= φ∗ Log, which is induced by φ : HZ → HZ. In particular, if the order of
a torsion section x : S → T is invertible in L, one has an isomorphism

x∗ Log ∼= e∗ Log = L[[HZ]].

To complete the definition of the polylogarithm, one has to compute the coho-
mology of Log. As L[[HZ]] is a flat L[HZ]-module one gets

Riπ∗ Log ∼= Riπ∗π̃!L⊗L[HZ] L[[HZ]]

and because π∗ = π! one has to consider Ri(π ◦ π̃)!L. But the fibers of

π ◦ π̃ : H̃R → S

are just g-dimensional vector spaces and the cohomology with compact support
lives only in degree g, where it is the dual of ΛmaxHL. Hence, we have proved:

Lemma 2.2.2. Denote by µ∨T the L-dual of µT := ΛmaxHL. Then the higher
direct images of Log are given by

Riπ∗ Log ∼=
{
µ∨T if i = g
0 else.

As in 2.1.3 one obtains

ExtgU (L[D]0,Log⊗µT ) ∼= HomS(L[D]0,Log[D]0)

and one defines the polylogarithm

polD ∈ Extg−1
U (L[D]0,Log⊗µT )

in the same way. For α ∈ L[D]0 one has again

polDα ∈ Extg−1
U (L,Log⊗µT ) = Hg−1(U,Log⊗µT ).

The relation to the polylog defined in 2.1.4 is as follows: If we denote the
logarithm sheaf and the polylog from this section by LogZ and polDZ and sim-
ilarly the ones from 2.1.4 by LogQ and polDQ , we get from 22 a canonical map
Q⊗Z LogZ → LogQ and hence a map

Extg−1
U (Z[D]0,LogZ⊗µT )→ Extg−1

U (Q[D]0,LogQ⊗µT ),

which maps polDZ to
polDQ .

Documenta Mathematica 13 (2008) 131–159



146 Guido Kings

2.3 Integral version of the polylogarithm, the étale case

This section will not be used in the rest of the paper and can be omitted by
any reader not interested in the integral étale case.
To define an integral étale polylogarithm, one has to modify the definition of
the logarithm sheaf as in the topological case. The situation we consider here
is again an abelian scheme

π : A → S

of constant fiber dimension g and unit section e : S → A. Let ℓ be a prime
number, L = Z/ℓkZ and assume that ℓ is invertible in OS . Then the ℓr-
multiplication [ℓr] : A → A is étale and the sheaves [ℓr]!L form a projective
system via the trace maps

[ℓr]!L→ [ℓr−1]!L.

Definition 2.3.1. The logarithm sheaf is the inverse limit

LogL := lim←−
r

[ℓr]!L

with respect to the above trace maps. The logarithm sheaf with Zℓ-coefficients
is defined by

LogZℓ
:= lim←−

k

LogZ/ℓkZ .

Let Hℓ := lim←−rA[ℓr] be the Tate-module of A/S. As ℓ is nilpotent in L, we

get that e∗ Log = L[[Hℓ]] is the Iwasawa algebra of Hℓ with coefficients in
L. Any isogeny φ : A → A of degree prime to ℓ induces an isomorphism
[ℓr]!L→ φ∗[ℓr]!L, which induces

Log ∼= φ∗ Log .

Proposition 2.3.2. Let L = Z/ℓkZ or L = Zℓ. The higher direct images of
Log are given by

Riπ∗ Log ∼=
{
L(−g) if i = 2g

0 else.

Proof. It suffices to consider the case L = Z/ℓkZ. We will show that the
transition maps Riπ∗[ℓr]!L→ Riπ∗[ℓs]!L are zero for i < 2g and every s, if r is
sufficiently big. By Poincaré duality we may consider the maps

(23) R2g−iπ![ℓ
s]∗L(g)→ R2g−iπ![ℓ

r]∗L(g).

By base change we may assume that S is the spectrum of an algebraically
closed field. Denote by As the variety A considered as covering of A via [ℓs].
Then

R1π![ℓ
s]∗L(g) = H1(A, [ℓs]∗L(g)) = Hom(π1(As), L(g)).
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With this description we see that for every f ∈ Hom(π1(As), L(g)) there is an
r, such that the restriction to π1(Ar) is trivial. This shows that the map in
(23) is zero, if r is sufficiently big and i < 2g as the cohomology in degree i is
the i-th exterior power of the first cohomology. That (23) is an isomorphism
for i = 2g is clear. �

2.4 Eisenstein classes

The Eisenstein classes are specializations of the polylogarithm. The situation
is as follows. First let α ∈ L[A[n]]0 and assume that Q ⊂ L. Then one can

pull-back the class polA[n]
α ∈ Extg−1

U (L,Log(g)) along e and gets:

e∗ polA[n]
α ∈ Ext2g−1

S (L, e∗ Log(g)) =
∏

k≥0

Ext2g−1
S (L, SymkH(g)).

Definition 2.4.1. For any α ∈ L[A[n]]0, define the k-th Eisenstein class as-
sociated to α,

Eisk(α) ∈ Ext2g−1
S (L, SymkH(g)),

to be the k-th component of e∗ polA[n]
α .

Note that by the functoriality of the polylogarithm the map

(24) L[A[n]]0
Eisk

−−−→ Ext2g−1
S (L, SymkH(g))

is equivariant for the G(Z/nZ) action on both sides.
These Eisenstein classes should be considered as analogs of Harder’s Eisenstein
classes (but observe that we have only classes in cohomological degree 2g− 1).
The advantage of the above classes is that they are defined by a universal
condition, which makes a lot of their properties easy to verify.

3 Proof of the main theorem

In this section we assume that Q ⊂ L.
The proof of the main theorem will be in several steps. First we reduce to
the case of local systems for the usual topology. The second step consists of
a trick already used in [HK]: instead of working with the Eisenstein classes
directly, we work with the polylogarithm itself. The reason is that the polylog
is characterized by a universal property and has a very good functorial behavior.
The third step reviews the computations of Nori in [N]. In the fourth step we
compute the integral over S1

T and the fifth step gives the final result.

3.1 1. Step: Reduction to the classical topology

We distinguish the MHM and the étale case. In the MHM case, the target
of the residue map from (1.5.2)

(25) res : Ext2g−1
S (L, SymkH(g))→ Hom∂S(L,L).
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is purely topological and does not depend on the Hodge structure. More pre-
cisely, the canonical map “forget the Hodge structure” denoted by rat induces
an isomorphism

rat : HomMHM,∂S(L,L) ∼= Homtop,∂S(L,L).

By [Sa] thm. 2.1 we have a commutative diagram

(26)

Ext2g−1
MHM,S(L, SymkH(g))

res−−−−→ HomMHM,∂S(L,L)
yrat ∼=

yrat

Ext2g−1
top,S(L, SymkH(g))

res−−−−→ Homtop,∂S(L,L).

This reduces the computation of the residue map for MHM to the case of local
systems in the classical topology.
In the étale case one has an injection

Homet,∂S(L,L) →֒ Homet,∂S×Q̄(L,L) ∼= Homtop,∂S(C)(L,L).

and a commutative diagram

(27)

Ext2g−1
et,S (L, SymkH(g))

res−−−−→ Homet,∂S(L,L)
y

y

Ext2g−1
top,S(C)(L, SymkH(g))

res−−−−→ Homtop,∂S(C)(L,L).

Again, this reduces the residue computation to the classical topology.

3.2 2. Step: Topological degeneration

In this section we reduce the computation of res ◦Eisk to a computation of the
polylog on TM.
We are now in the topological situation and use again the notations ∂S and S
instead of ∂S(C) and S(C).
Recall from (19) that res ◦Eisk is G(Z/nZ) equivariant. In particular,

res(Eisk(α))(h) = res(Eisk(hα))(id),

where hα denotes the action of h on α. To compute the residue it suffices to
consider the residue at id.
Recall from (14) that we have a commutative diagram of fibrations

(28)

A(C)
p−−−−→ TM

π

y
yπM

S1
B

q−−−−→ S1
T .
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The map p : H →M induces LogA → p∗ LogM. Let D = A[n] and U := A\D
be the complement. Let p(D) = TM[n] be the image of D in TM and V :=
TM \ p(D) be its complement in TM. Then p induces a map

p : U \ p−1(p(D))→ V.

We define a trace map

(29) p∗ : Ext2g−1
U (L,LogA⊗µA)→ Extg−1

V (L,LogM⊗µTM)

as the composition of the restriction to U \ p−1(p(D))

Ext2g−1
U (L,LogA⊗µA)→ Ext2g−1

U\p−1(p(D))(L,LogA⊗µA)

with the adjunction map

Ext2g−1
U\p−1(p(D))(L,LogA⊗µA)→ Extg−1

V (L,Rgp∗p
∗ LogM⊗µA).

As µA ∼= µTN ⊗ µTM , the projection formula gives

Rgp∗p
∗ LogM ∼= LogM⊗µTM.

The composition of these maps gives the desired p∗ in (29). The crucial fact is
that the polylogarithm behaves well under this trace map.

Proposition 3.2.1. With the notations above, let α ∈ L[D]0 and polDA,α ∈
Ext2g−1

U (L,LogA) be the associated polylogarithm. Denote by p(α) the image
of α under the map

p : L[D]0 → L[p(D)]0

induced by p : A(C)→ TM. Then

p∗ polDA,α = pol
p(D)
TM,p(α) .

Proof. This is a quite formal consequence of the definition and the fact that the
residue map commutes with the trace map. We use cohomological notation,
then one has a commutative diagram

H2g−1(U,LogA⊗µA) −−−−→ H2g
D (A,LogA⊗µA)

y
y

H2g−1(U \ p−1(p(D)),LogA⊗µA) −−−−→ H2g
p−1(p(D))(A,LogA⊗µA)

yp∗
yp∗

Hg−1(V,LogM⊗µTM) −−−−→ Hg
p(D)(TM,LogM⊗µTM).
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We can identify

H2g
D (A,LogA⊗µA) ∼=

⊕

σ∈D
σ∗ LogA

and
Hg
p(D)(TM,LogM⊗µTM) ∼=

⊕

σ∈p(D)

σ∗ LogTM .

With this identification the composition of the vertical arrows on the right is
induced by LogA → p∗ LogTM . The polylog polDA,α belongs to the section α ∈
L[D]0 ⊂⊕σ∈D σ

∗ LogA. This maps to p(α) ∈ L[p(D)]0 ⊂⊕σ∈p(D) σ
∗ LogTM .

Thus polDA,α is mapped under p∗ to pol
p(D)
TM,p(α). �

We want to prove the same sort of result for the Eisenstein classes themselves.
To formulate it properly, we need:

Lemma 3.2.2. Let q : S1
B → S1

T be the fibration from (28). Then

Rgq∗ SymkH ∼= SymkM⊗ µ∨TN .
Proof. Recall the exact sequence

0→ N → H →M→ 0

from (12). By definition of N(Z), the coinvariants of SymkH for N(Z) are
exactly SymkM. The lemma follows, as Rgq∗ corresponds by definition of the
fibering exactly to the coinvariants under N(Z). �

Define a trace map

q∗ : Ext2g−1
SB

(L, SymkH⊗ µA)→ Extg−1
ST

(L, SymkM⊗ µTM)

by adjunction for q, the isomorphism Rgq∗ SymkH ∼= SymkM ⊗ µ∨TN from

lemma 3.2.2 and the isomorphism µA ∼= µTN ⊗µTM . The behaviour of Eisk(α)
under q∗ is given by:

Theorem 3.2.3. Let k > 0 and α ∈ L[D]0. Then

q∗(EiskA(α)) = EiskTM(p(α)),

where p : L[D]0 → L[p(D)]0 is the map from 3.2.1.

Proof. Consider the following diagram in the derived category:

(30)

Rp∗ LogA⊗µA −−−−→ Rp∗e∗e∗ LogA⊗µAy
∥∥∥

Rp∗p∗ LogTM ⊗µA e′∗Rq∗e
∗ LogA⊗µAy
y

LogTM ⊗µTM [−g] −−−−→ e′∗e
′∗ LogTM ⊗µTM [−g]
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We will show that this diagram is commutative and thereby explain all the
maps. First consider the commutative diagram

Rp∗ LogA⊗µA −−−−→ Rp∗e∗e∗ LogA⊗µAy
y

Rp∗p∗ LogTM ⊗µA −−−−→ Rp∗e∗e∗p∗ LogTM ⊗µA,

where the horizontal arrows are induced from adjunction id → e∗e∗ and the
vertical arrows from LogA → p∗ LogTM . One has p ◦ e = e′ ◦ q and hence

Rp∗e∗e
∗p∗ LogTM ⊗µA ∼= e′∗Rq∗q

∗e′∗ LogTM ⊗µA.

The projection formula gives

e′∗Rq∗q
∗e′∗ LogTM ⊗µA ∼= e′∗e

′∗ LogTM ⊗µA ⊗Rq∗L.

Projection to the highest cohomology gives a commutative diagram

Rp∗p∗ LogTM ⊗µA −−−−→ e′∗e
′∗ LogTM ⊗µA ⊗Rq∗Ly

y

LogTM ⊗µA ⊗ µ∨TN −−−−→ e′∗e
′∗ LogTM ⊗µA ⊗ µ∨TN ,

where the horizontal maps are adjunction maps id→ e′∗e
′∗. Finally we use µA⊗

µ∨TN
∼= µTM to obtain the commutative diagram (30). Applying Ext2g−1

V (L,−)
to this diagram, where V := TM \ p(D) we get

Ext2g−1
U (L,LogA⊗µA) −−−−→ Ext2g−1

S (L, e∗ Log⊗µA)

p∗

y
yq∗

Extg−1
V (L,LogTM ⊗µTM) −−−−→ Extg−1

S (L, e′∗ LogTM ⊗µTM).

Now, as k > 0, we may assume that α ∈ L[D\e(S)]0 and p(α) ∈ L[p(D)\e′(S)]0.
The result follows then from proposition 3.2.1. �

In a similar (but simpler) way one shows:

Theorem 3.2.4. Let φ : TM → TM′ be an isogeny of tori, then φ induces a
morphism φ∗ : e∗ LogM → e∗ LogM′ and

φ∗ EiskTM(α) = EiskTM′
(φ(α)).
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3.3 3. Step: Explicit description of the polylog

In this section we follow Nori [N] to describe the polylog pol
TM[n]
β for any

β ∈ L[TM[n]\0]0 explicitly. The presentation is also influenced by unpublished
notes of Beilinson and Levin.
In fact it is useful for the connection with L-functions to consider a more general
situation and to allow arbitrary fractional ideals a instead just O.
We assume L = C. The geometric situation is this: Recall that T 1(Z) = O∗
and let a ⊂ F be a fractional ideal with the usual T 1(Z)-action. We can form
as usual the semi direct product

a ⋊ T 1(Z),

where the multiplication is given by the formula (v, t)(v′, t′) = (v + tv′, tt′).
Similarly, we can form a⊗ R ⋊ T 1(R) and we define

Ta := a ⋊ T (Z)\
(
a⊗ R ⋊ T 1(R)

)
/KT
∞.

We have
πa : Ta → S1

T

and we consider the polylog for this real torus bundle of relative dimension
g. The case TM is the one where

(
a 0
0 d

)
∈ T 1(Z) acts via d ∈ O∗ on O. Let

us describe the logarithm sheaf LogTa
in this setting. As the coefficients are

L = C, we can use the isomorphism from (21)

C[[a]]
∼=−→
∏

k≥0

Symk aC =: Û(a)(31)

v 7→ exp(v) :=

∞∑

k=0

v⊗k

k!

The action of (0, t) ∈ a ⋊ T 1(Z) on Û(a) is induced by the action of T 1(Z) on
a. The action of

(v, id) ∈ a ⋊ T 1(Z)

on Û(a) is given by multiplication with exp(v). The logarithm sheaf LogTa
is

just the local system defined by the quotient

a ⋊ T 1(Z)\
(
a⊗ R ⋊ T 1(R)× Û(a)

)
/KT
∞.

A C∞-section f of LogTa
is a function f : a ⊗ R ⋊ T 1(R) → Û(a), which has

the equivariance property

f((v, t)(v′, t′)) = (v, t)−1f(v′, t′).

In a similar way, we can describe LogTa
-valued currents. The global C∞-section

exp(−v) : (v, t) 7→
∞∑

k=0

(−v)⊗k

k!
,
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with (v, t) ∈ a ⊗ R ⋊ T 1(R) defines a trivialization of LogTa
as C∞-bundle.

Every current µ(v, t) with values in LogTa
can then be written in the form

µ(v, t) = ν(v, t) exp(−v),

where ν(v, t) is now a current with values in the constant bundle Û(a). In
particular, ν(v, t) is invariant under the action of a ⊂ a ⋊ T 1(Z).

Lemma 3.3.1. Let v : a⊗R→ Û(a) be the canonical inclusion given by a⊗R ⊂
Sym1 a⊗ C, then the canonical connection ∇ on LogTa

acts on ν by

∇ν = (d− dv)ν.

Proof. Straightforward computation. �

Following Nori [N] we describe the polylog as a LogTa
-valued current µ(v, t) on

Ta, such that

(32) ∇µ(v, t) = δβ ,

where
δβ :=

∑

σ∈D
lσδσ

and δσ are the currents defined by integration over the cycles on Ta given by
the section σ. If we write as above

µ(v, t) = ν(v, t) exp(−v)

we get the equivalent condition

(33) (d− dv)ν(v, t) = δβ .

As ν(v, t) is invariant under the a-action, we can develop ν(v, t) into a Fourier
series

(34) ν(v, t) =
∑

ρ∈a∨

νρ(t)e
2πiρ(v).

The property (33) reads for the Fourier coefficients νρ(t):

(35) (d+ 2πidρ− dv)νρ(t) = (e−2πiρ(β)) vol,

where vol is the unique constant coefficient g-form on a ⊗ R, such that the
integral

∫
a⊗R/a

vol = 1 and

e−2πiρ(β) :=
∑

σ

lσe
−2πiρ(σ).
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We do not explain in detail the method of Nori to solve this equation, we just
give the result. This suffices, because the cohomology class of the polylogarithm
is uniquely determined by the equation (32) and we just need to give a solution
for it.
Fix a positive definite quadratic form q on a⊗ R, viewed as an isomorphism

q : (a⊗ R)∨ ∼= a⊗ R.

Define a left action of t ∈ T 1(R) by qt(v, w) := q(t−1v, t−1w). Consider ρ as
element in (a ⊗ R)∨. Then qt(ρ) can be considered as a vector field and we
denote by ιρ the contraction with this vector field qt(ρ). We may also consider

qt(ρ) as element in Û(a) and denote this by qt(ρ).

Theorem 3.3.2 (Nori). With the notations above, one has for 0 6= ρ

νρ(t) =

g−1∑

m=0

(−1)m(e−2πiρ(β))

(2πiρ(qt(ρ))− qt(ρ))m+1
ιρ(d ◦ ιρ)m vol

and
ν0(t) = 0

Proof. Write Φρ for the operator multiplication by 2πidρ−dv and Ψρ := d+Φρ.
One checks that Ψρ ◦ Ψρ = 0 = ιρ ◦ ιρ and that Ψρ ◦ ιρ + ιρ ◦ Ψρ is an
isomorphism. Indeed Φρ ◦ ιρ + ιρ ◦ Φρ is multiplication by 2πiρ(qt(ρ))− qt(ρ)
and Lρ := d◦ ιρ+ ιρ◦ is the Lie derivative with respect to the vector field qt(ρ).
The formula in the theorem is just

ιρ ◦ (Ψρ ◦ ιρ + ιρ ◦Ψρ)
−1(e−2πiρ(β)) vol

and to check that

Ψρ ◦ ιρ ◦ (Ψρ ◦ ιρ + ιρ ◦Ψρ)
−1 = id

note that ιρ◦Ψρ commutes with (Ψρ◦ιρ+ιρ◦Ψρ)
−1 and ιρ◦Ψρ(e

−2πiρ(β)) vol =
0. �

Corollary 3.3.3. The polylogarithm pol
Ta[n]
β is given in the topological real-

ization by the current
µ(v, t) = ν(v, t) exp(−v)

where ν(v, t) is the current given by

g−1∑

m=0

∞∑

k=0

(
k +m

k

) ∑

ρ∈a∨\0

(−1)me2πiρ(v−β)

(2πiρ(qt(ρ)))k+m+1
qt(ρ)⊗kιρ(d ◦ ιρ)m vol .

Proof. This follows from the formula 1
(A−B)m+1 =

∑∞
k=0

Bk

Ak+m+1

(
k+m
k

)
. �
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The Eisenstein classes are obtained by pull-back of this current along the zero
section e. As for k > 0 the series over the ρ converges absolutely, this is defined
and only terms with m = g − 1 survive. We get the following formula for the
Eisenstein classes.

Corollary 3.3.4. Let β ∈ C[Ta[n]]0 and k > 0, then the topological Eisenstein
class is given by

Eisk(β) =
(k + g − 1)!

k!

∑

ρ∈a∨\0

(−1)g−1e−2πiρ(β)

(2πiρ(qt(ρ)))k+g
qt(ρ)⊗kqt(ρ)∗ιE vol .

Here, we have written E for the Euler vector field and qt(ρ) is considered as a
function qt(ρ) : ST → a⊗ R, which maps t to the vector qt(ρ).

Proof. From 3.3.3 we have to compute

e∗ιρ(d ◦ ιρ)m vol .

For this remark that the Lie derivative Lρ = d ◦ ιρ + ιρ ◦ d with respect to the
vector field qt(ρ) acts in the same way on vol as d ◦ ιρ. One sees immediately
that e∗ιρ(d◦ ιρ)m vol = 0, if m < g−1 and a direct computation in coordinates
gives that ιρ(Lρ)g−1 vol = (g − 1)!qt(ρ)∗ιE vol. �

3.4 4. Step: Computation of the integral

To finish the proof of theorem 1.7.1 we have to compute u∗ Eisk(β), where u :
S1
T → pt is the structure map. As we need only to compute the corresponding

integral for the component of S1
T corresponding to id, we let ΓT ⊂ T 1(Z) be

the stabilizer of id ∈ T (Z/nZ) and consider

uid : ΓT \
(
T 1(R)/KT 1

∞
)
→ pt.

To compute the integral, we introduce coordinates on T 1(R) ∼= (F ⊗ R)∗ and
on the torus Ta. We identify F ⊗ R ∼=

∏
τ :F→R R and denote by e1, . . . , eg the

standard basis on the right hand side and by x1, . . . , xg the dual basis. For
any element u =

∑
uiei or u =

∑
uixi we write Nu := u1 · · ·ug. Let q be the

quadratic form given by
∑
x2
i . We identify the orbit of q under T 1(R) with

(F ⊗ R)∗+ by mapping

(F ⊗ R)∗ → T 1(R)q(36)

t 7→ qt.

This map factors over (F ⊗ R)∗+ and the map is compatible with the T 1(Z)
action on both sides. We let t1, . . . , tg be coordinates on (F ⊗ R)1 so that
t21, . . . , t

2
g are coordinates on (F ⊗R)1+. If we write ρ =

∑
ρixi and ti := xi(t),

then
ρ(qt(ρ)) =

∑
t2i ρ

2
i
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and qt(ρ) has coordinates t2i ρi. More precisely, if we let e1, . . . , eg be the basis

e1, . . . , eg considered as elements of Û(a), which identifies Û(a) with the power
series ring C[[e1, . . . , eg]], then qt(ρ) =

∑
t2i ρiei. The volume form is given by

vol = |dF |−1/2Na−1dx1 ∧ . . . ∧ dxg

and we can write the Euler vector field as E =
∑
xi∂xi . One gets (observe that

Nt = 1)

qt(ρ)∗ιE vol = |dF |−1/22g−1N(ρ)Na−1

g∑

k=1

(−1)k−1tkdt1 ∧ . . . d̂tk . . . ∧ dtg.

Explicitly, the Eisenstein class is given as a current on T 1(R) by

(37) Eisk(β)(t) =

(k + g − 1)!

k!

∑

ρ∈a∨\0

(−1)g−1e−2πiρ(β)(
∑
t2i ρiei)

⊗k

(2πi
∑
ρ2
i t

2
i )
k+g

qt(ρ)∗ιE vol

Define an isomorphism (R⊗F )1×R∗ ∼= (R⊗F )∗ by mapping (t, r) 7→ y := rt.
Then we get:

(38)
dy1
y1
∧ . . . ∧ dyg

yg
=
dr

r
∧

g∑

k=1

(−1)k−1tkdt1 ∧ . . . d̂tk . . . ∧ dtg.

We use this decomposition to write Eisk(β)(t) as a Mellin transform:

(39) Eisk(β)(t) =

∑

ρ∈a∨\0
(−1)g−1e−2πiρ(β)

∫

R>0

e−u(2πi
P
ρ2i t

2
i ) (
∑
t2i ρiei)

⊗k

k!
uk+g

du

u
∧ qt(ρ)∗ιE vol .

Substitute u = r2 = N(y)2/g and use (38) to get

(40) Eisk(β)(t) =

∑

ρ∈a∨\0

(−1)g−12ge−2πiρ(β)N(ρ)

|dF |1/2Na

∫

R>0

e−2πi
P
ρ2i y

2
i

(
∑
y2
i ρiei)

⊗k

k!
N(y)dy1∧. . .∧dyg.

The application of uid,∗ amounts to integration over

ΓT \
(
T 1(R)/KT 1

∞
) ∼= O∗(n)\(F ⊗ R)1+,
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where O∗(n) are the totally positive units, which are congruent to 1 modulo the

ideal generated by (n). This gives with the usual trick

(41) uid,∗ Eisk(β) =

∑

ρ∈O∗
(n)
\
(
a∨\0

)
(−1)g−12ge−2πiρ(β)N(ρ)

|dF |1/2Na

×
∫

(F⊗R)∗+

e−2πi
P
ρ2i y

2
i

(
∑
y2
i ρiei)

⊗k

k!
N(y)dy1 ∧ . . . ∧ dyg.

The integral is a product of integrals for j = 1, . . . , g:

∫

R>0

e−2πiρ2jy
2
j ρkj

e⊗kj
k!

y2k+2
j

dyj
yj

=
e⊗kj

2ρj(2πiρj)k+1
.

We now consider Eisgk(β) instead of Eisk(β). If we consider e∗ polDβ as a

power series in the ei we are interested in the coefficient of Ne⊗k

k!g . In fact, the

integrallity properties of Eisgk(β) are better reflected if we write it in terms
of a basis a1, . . . , ag of a. Then Ne⊗k = Na−kNa⊗k, where a1, . . . ,ag denote

again the images of a1, . . . , ag in Û(a). We get:

Corollary 3.4.1. With the above basis a1, . . . ,ag, The integral over the Eisen-
stein class is given by

uid,∗ Eisgk(β) =
(−1)g−1(k!)g

(2πi)g(k+1)|dF |1/2Nak+1

∑

ρ∈O∗
(n)
\
(
a∨\0

)
e−2πiρ(β)

N(ρ)k+1

Na⊗k

k!g
.

3.5 5. Step: End of the proof

To finish the proof of the theorem 1.7.1, let α ∈ L[A[n]]0 and suppose we want
to compute res(Eisk(α))(h). Using the equivariance of res ◦Eisk from (19), this
amounts to compute res(Eisk(hα))(id). Theorem 1.5.1 shows that

res(Eisk(hα))(id) = uid,∗q∗ Eisk(hα),

where q : S1
B → S1

T and uid : ΓT \
(
T 1(R)/KT 1

∞
)
→ pt is the structure map of

the component corresponding to id ∈ T 1(Z/nZ). From theorem 3.2.3 we get

q∗ Eisk(hα) = Eisk(p(hα)).

Using corollary 3.4.1 for a = O and the formula 1.6.2 for b = f = O we get
(42)

(−1)g−1(k!)g

(2πi)gk+g |dF |1/2
∑

ρ∈O∗
(n)
\
(
O∨\0

)
e−2πiρ(p(hα))

N(ρ)k+1
= (−1)g−1

∑

σ∈D
lσζ(O,O, p(hσ),−k),
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which is the formula in the main theorem 1.7.1. To prove the corollary, we use
that the map of real tori

A(C)
p−→ TM

factors through φ : Tbeh
→ TM, where φ is induced by the inclusion beh ⊂ O.

Using corollary 3.4.1 for a = beh, we get the desired formula

res(Eisgk(α))(h) = (−1)g−1Nb−k−1
eh

∑

σ∈D
lσζ(beh,O, peh(σ),−k),

which ends the proof.
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Abstract. A covering of k-graphs (in the sense of Pask-Quigg-
Raeburn) induces an embedding of universal C∗-algebras. We show
how to build a (k + 1)-graph whose universal algebra encodes this
embedding. More generally we show how to realise a direct limit
of k-graph algebras under embeddings induced from coverings as the
universal algebra of a (k+ 1)-graph. Our main focus is on computing
the K-theory of the (k+1)-graph algebra from that of the component
k-graph algebras.

Examples of our construction include a realisation of the Kirchberg
algebra Pn whose K-theory is opposite to that of On, and a class of
AT-algebras that can naturally be regarded as higher-rank Bunce-
Deddens algebras.

2000 Mathematics Subject Classification: Primary 46L05
Keywords and Phrases: Graph algebra; k-graph; covering; K-theory;
C∗-algebra

1. Introduction

A directed graph E consists of a countable collection E0 of vertices, a count-
able collection E1 of edges, and maps r, s : E1 → E0 which give the edges
their direction; the edge e points from s(e) to r(e). Following the convention
established in [30], the associated graph algebra C∗(E) is the universal C∗-
algebra generated by partial isometries {se : e ∈ E1} together with mutually
orthogonal projections {pv : v ∈ E0} such that ps(e) = s∗ese for all e ∈ E1,

and pv ≥
∑
e∈F ses

∗
e for all v ∈ E0 and finite F ⊂ r−1(v), with equality when

F = r−1(v) is finite and nonempty.
Graph algebras, introduced in [13, 23], have been studied intensively in recent
years because much of the structure of C∗(E) can be deduced from elementary

∗This research was supported by the Australian Research Council.
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features of E. In particular, graph C∗-algebras are an excellent class of models
for Kirchberg algebras, because it is easy to tell from the graph E whether
C∗(E) is simple and purely infinite [22]. Indeed, a Kirchberg algebra can be
realised up to Morita equivalence as a graph C∗-algebra if and only if its K1-
group is torsion-free [39]. It is also true that every AF algebra can be realised
up to Morita equivalence as a graph algebra; the desired graph is a Bratteli
diagram for the AF algebra in question (see [11] or [40]). However, this is the
full extent to which graph algebras model simple classifiable C∗-algebras due
to the following dichotomy: if E is a directed graph and C∗(E) is simple, then
C∗(E) is either AF or purely infinite (see [22, Corollary 3.10], [2, Remark 5.6]).
Higher-rank graphs, or k-graphs, and their C∗-algebras were originally devel-
oped by the first two authors [20] to provide a graphical framework for the
higher-rank Cuntz-Krieger algebras of Robertson and Steger [35]. A k-graph Λ
is a kind of k-dimensional graph, which one can think of as consisting of ver-
tices Λ0 together with k collections of edges Λe1 , . . . ,Λek which we think of as
lying in k different dimensions. As an aid to visualisation, we often distinguish
the different types of edges using k different colours.
Higher-rank graphs and their C∗-algebras are generalisations of directed graphs
and their algebras. Given a directed graph E, its path category E∗ is a 1-graph,
and the 1-graph C∗-algebra C∗(E∗) as defined in [20] is canonically isomorphic
to the graph algebra C∗(E) as defined in [23]. Furthermore, every 1-graph
arises this way, so the class of graph algebras and the class of 1-graph algebras
are one and the same. For k ≥ 2, there are many k-graph algebras which do
not arise as graph algebras. For example, the original work of Robertson and
Steger on higher-rank Cuntz-Krieger algebras describes numerous 2-graphs Λ
for which C∗(Λ) is a Kirchberg algebra and K1(C∗(Λ)) contains torsion.
Recent work of Pask, Raeburn, Rørdam and Sims has shown that one can also
realise a substantial class of AT-algebras as 2-graph algebras, and that one can
tell from the 2-graph whether or not the resulting C∗-algebra is simple and
has real-rank zero [27]. The basic idea of the construction in [27] is as follows.
One takes a Bratteli diagram in which the edges are coloured red, and replaces
each vertex with a blue simple cycle (there are technical restrictions on the
relationship between the lengths of the blue cycles and the distribution of the
red edges joining them, but this is the gist of the construction). The resulting
2-graph is called a rank-2 Bratteli diagram. The associated C∗-algebra is AT

because the C∗-algebra of a simple cycle of length n is isomorphic to Mn(C(T))
[17]. The results of [27] show how to read off from a rank-2 Bratteli diagram the
K-theory, simplicity or otherwise, and real-rank of the resulting AT algebra.
The construction explored in the current paper is motivated by the following
example of a rank-2 Bratteli diagram. For each n ∈ N, let L2n be the sim-
ple directed loop graph with 2n vertices labelled 0, . . . , 2n − 1 and 2n edges
f0, . . . , f2n−1, where fi is directed from the vertex labelled i + 1 (mod 2n) to
the vertex labelled i. We specify a rank-2 Bratteli diagram Λ(2∞) as follows.
The nth level of Λ(2∞) consists of a single blue copy of L2n−1 (n = 1, 2, · · · ).
For 0 ≤ i ≤ 2n − 1, there is a single red edge from the vertex labelled i at the
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(n+1)st level to the vertex labelled i (mod 2n) at the nth level. The C∗-algebra
of the resulting 2-graph is Morita equivalent to the Bunce-Deddens algebra of
type 2∞, and this was one of the first examples of a 2-graph algebra which is
simple but neither purely infinite nor AF (see [27, Example 6.7]).

The purpose of this paper is to explore the observation that the growing blue
cycles in Λ(2∞) can be thought of as a tower of coverings of 1-graphs (roughly
speaking, a covering is a locally bijective surjection — see Definition 2.1), where
the red edges connecting levels indicate the covering maps.
In Section 2, we describe how to construct (k + 1)-graphs from coverings. In
its simplest form, our construction takes k-graphs Λ and Γ and a covering map

p : Γ → Λ, and produces a (k + 1)-graph Λ
p
↽Γ in which each edge in the

(k+ 1)st dimension points from a vertex v of Γ to the vertex p(v) of Λ which it
covers†. Building on this construction, we show how to take an infinite tower
of coverings pn : Λn+1 → Λn, n = 1, 2, . . . and construct from it an infinite
(k + 1)-graph lim

↽−(Λn, pn) with a natural inductive structure (Corollary 2.11).
The next step, achieved in Section 3, is to determine how the universal C∗-
algebra of Λ

p
↽Γ relates to those of Λ and Γ. We show that C∗(Λ

p
↽Γ) is

Morita equivalent to C∗(Γ) and contains an isomorphic copy of C∗(Λ) (Propo-
sition 3.2). We then show that given a system of coverings pn : Λn+1 → Λn,
the C∗-algebra C∗(lim

↽−(Λn, pn)) is Morita equivalent to a direct limit of the

C∗(Λn) (Theorem 3.8).
In Section 4, we use results of [34] to characterise simplicity of C∗(lim

↽−(Λn, pn)),
and we also give a sufficient condition for this C∗-algebra to be purely infinite.
In Section 5, we show how various existing methods of computing the K-theory
of the C∗(Λn) can be used to compute the K-theory of C∗(lim

↽−(Λn, pn)). Our
results boil down to checking that each of the existing K-theory computations
for the C∗(Λn) is natural in the appropriate sense. Given that K-theory for
higher-rank graph C∗-algebras has proven quite difficult to compute in general
(see [14]), our K-theory computations are an important outcome of the paper.
We conclude in Section 6 by exploring some detailed examples which illustrate
the covering-system construction, and show how to apply our K-theory calcula-
tions to the resulting higher-rank graph C∗-algebras. For integers 3 ≤ n <∞,
we obtain a 3-graph algebra realisation of Kirchberg algebra Pn whoseK-theory
is opposite to that of On (see Section 6.3). We also obtain, using 3-graphs, a
class of simple AT-algebras with real-rank zero which cannot be obtained from
the rank-2 Bratteli diagram construction of [27] (see Section 6.4), and which
we can describe in a natural fashion as higher-rank analogues of the Bunce-
Deddens algebras. These are, to our knowledge, the first explicit computations
of K-theory for infinite classes of 3-graph algebras.

†In its full generality, our construction is more complicated (see Proposition 2.14), enabling
us to recover the important example of the irrational rotation algebras discussed in [27]. To
keep technical detail in this introduction to a minimum, we discuss only the basic construction
here.
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2. Covering systems of k-graphs

For k-graphs we adopt the conventions of [20, 25, 31]; briefly, a k-graph is a
countable small category Λ equipped with a functor d : Λ→ Nk satisfying the
factorisation property: for all λ ∈ Λ and m,n ∈ Nk such that d(λ) = m + n
there exist unique µ, ν ∈ Λ such that d(µ) = m, d(ν) = n, and λ = µν. When
d(λ) = n we say λ has degree n. By abuse of notation, we will use d to denote
the degree functor in every k-graph in this paper; the domain of d is always
clear from context.
The standard generators of Nk are denoted e1, . . . , ek, and for n ∈ Nk and
1 ≤ i ≤ k we write ni for the ith coordinate of n.
If Λ is a k-graph, the vertices are the morphisms of degree 0. The factorisation
property implies that these are precisely the identity morphisms, and so can
be identified with the objects. For α ∈ Λ, the source s(α) is the domain of α,
and the range r(α) is the codomain of α (strictly speaking, s(α) and r(α) are
the identity morphisms associated to the domain and codomain of α).
For n ∈ Nk, we write Λn for d−1(n). In particular, Λ0 is the vertex set. For
u, v ∈ Λ0 and E ⊂ Λ, we write uE := E ∩ r−1(u) and Ev := E ∩ s−1(v). For
n ∈ Nk, we write

Λ≤n := {λ ∈ Λ : d(λ) ≤ n, s(λ)Λei = ∅ whenever d(λ) + ei ≤ n}.

We say that Λ is connected if the equivalence relation on Λ0 generated by
{(v, w) ∈ Λ0 × Λ0 : vΛw 6= ∅} is the whole of Λ0 × Λ0. A morphism between
k-graphs is a degree-preserving functor.
We say that Λ is row-finite if vΛn is finite for all v ∈ Λ0 and n ∈ Nk. We
say that Λ is locally convex if whenever 1 ≤ i < j ≤ k, e ∈ Λei , f ∈ Λej and
r(e) = r(f), we can extend both e and f to paths ee′ and ff ′ in Λei+ej .
We next introduce the notion of a covering of one k-graph by another. For a
more detailed treatment of coverings of k-graphs, see [25].

Definition 2.1. A covering of a k-graph Λ is a surjective k-graph morphism
p : Γ→ Λ such that for all v ∈ Γ0, p maps Γv 1-1 onto Λp(v) and vΓ 1-1 onto
p(v)Λ. A covering p : Γ→ Λ is connected if Γ, and hence also Λ, is connected.
A covering p : Γ→ Λ is finite if p−1(v) is finite for all v ∈ Λ0.

Remarks 2.2. (1) A covering p : Γ → Λ has the unique path lifting property:
for every λ ∈ Λ and v ∈ Γ0 with p(v) = s(λ) there exists a unique γ such
that p(γ) = λ and s(γ) = v; likewise, if p(v) = r(λ) there is a unique ζ such
that p(ζ) = λ and r(ζ) = v.

(2) If Λ is connected then surjectivity of p is implied by the unique path-lifting
property.
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(3) If there is a fixed integer n such that |p−1(v)| = n for all v ∈ Λ0, p is said to
be an n-fold covering. If Γ is connected, then p is automatically an n-fold
covering for some n.

Notation 2.3. For m ∈ N \ {0}, we write Sm for the group of permutations of
the set {1, . . . ,m}. We denote both composition of permutations in Sm, and the
action of a permutation in Sm on an element of {1, . . . ,m} by juxtaposition;
so for φ, ψ ∈ Sm, φψ ∈ Sm is the permutation φ ◦ ψ, and for φ ∈ Sm and
j ∈ {1, . . . ,m}, φj ∈ {1, . . . ,m} is the image of j under φ. When convenient,
we regard Sm as (the morphisms of) a category with a single object.

Definition 2.4. Fix k,m ∈ N \ {0}, and let Λ be a k-graph. A cocycle
s : Λ → Sm is a functor λ 7→ s(λ) from the category Λ to the category Sm.
That is, whenever α, β ∈ Λ satisfy s(α) = r(β) we have s(α)s(β) = s(αβ).

We are now ready to describe the data needed for our construction.

Definition 2.5. A covering system of k-graphs is a quintuple (Λ,Γ, p,m, s)
where Λ and Γ are k-graphs, p : Λ → Γ is a covering, m is a nonzero positive
integer, and s : Γ → Sm is a cocycle. We say that the covering system is row
finite if the covering map p is finite and both Λ and Γ are row finite. When
m = 1 and s is the identity cocycle, we drop references to m and s altogether,
and say that (Λ,Γ, p) is a covering system of k-graphs.

Given a covering system (Λ,Γ, p,m, s) of k-graphs, we will define a (k + 1)-

graph Λ
p,s
↽Γ which encodes the covering map. Before the formal statement

of this construction, we give an intuitive description of Λ
p,s
↽Γ. The idea is

that Λ
p,s
↽Γ is a (k + 1)-graph containing disjoint copies ı(Λ) and (Γ) of the

k-graphs Λ and Γ in the first k dimensions. The image (v) of a vertex v ∈ Γ is
connected to the image ı(p(v)) of the vertex it covers in Λ by m parallel edges

e(v, 1), . . . , e(v,m) of degree ek+1. Factorisations of paths in Λ
p,s
↽Γ involving

edges e(v, l) of degree ek+1 are determined by the unique path-lifting property
and the cocycle s.
It may be helpful on the first reading to consider the case where m = 1 so
that s is necessarily trivial. To state the result formally, we first establish some
notation.

Notation 2.6. Fix k > 0. For n ∈ Nk we denote by (n, 01) the element∑k
i=1 niei ∈ Nk+1 and for m ∈ N, we denote by (0k,m) the element

mek+1 ∈ Nk+1. We write (Nk, 01) for {(n, 01) : n ∈ Nk} and (0k,N) for
{(0k,m) : m ∈ N}.
Given a (k + 1)-graph Ξ, we write Ξ(0k,N) for {ξ ∈ Ξ : d(ξ) ∈ (0k,N)}, and

we write Ξ(Nk,01) for {ξ ∈ Ξ : d(ξ) ∈ (Nk, 01)}. When convenient, we re-

gard Ξ(0k,N) as a 1-graph and Ξ(Nk,01) as a k-graph, ignoring the distinctions
between N and (0k,N) and between Nk and (Nk, 01).

Proposition 2.7. Let (Λ,Γ, p,m, s) be a covering system of k-graphs. There

is a unique (k + 1)-graph Λ
p,s
↽Γ such that:
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(1) there are injective functors ı : Λ → Λ
p,s
↽Γ and  : Γ → Λ

p,s
↽Γ such that

d(ı(α)) = (d(α), 01) and d((β)) = (d(β), 01) for all α ∈ Λ and β ∈ Γ;

(2) ı(Λ) ∩ (Γ) = ∅ and ı(Λ) ∪ (Γ) = {τ ∈ Λ
p,s
↽Γ : d(τ)k+1 = 0};

(3) there is a bijection e : Γ0 × {1, . . . ,m} → (Λ
p,s
↽Γ)ek+1 ;

(4) s(e(v, l)) = (v) and r(e(v, l)) = ı(p(v)) for all v ∈ Γ0 and 1 ≤ l ≤ m; and
(5) e(r(λ), l)(λ) = ı(p(λ))e(s(λ), s(λ)−1l) for all λ ∈ Γ and 1 ≤ l ≤ m.

If the covering system (Λ,Γ, p,m, s) is row finite, then Λ
p,s
↽Γ is row finite.

Moreover, Λ is locally convex if and only if Γ is locally convex, and in this case

Λ
p,s
↽Γ is also locally convex.

Notation 2.8. If m = 1 so that s is necessarily trivial, we drop all reference

to s. We denote Λ
p,s
↽Γ by Λ

p
↽Γ, and write (Λ

p
↽Γ)ek+1 = {e(v) : v ∈ Γ0}. In

this case, the factorisation property is determined by the unique path-lifting
property alone.

The main ingredient in the proof of Proposition 2.7 is the following fact from
[15, Remark 2.3] (see also [31, Section 2]).

Lemma 2.9. Let E1, . . . , Ek be 1-graphs with the same vertex set E0. For
distinct i, j ∈ {1, . . . , k}, let Ei,j := {(e, f) ∈ E1

i × E1
j : s(e) = r(f)}, and

write r
(
(e, f)

)
= r(e) and s

(
(e, f)

)
= s(f). For distinct h, i, j ∈ {1, . . . , k}, let

Eh,i,j := {(e, f, g) ∈ E1
h × E1

i × E1
j : (e, f) ∈ Eh,i, (f, g) ∈ Ei,j}.

Suppose we have bijections θi,j : Ei,j → Ej,i such that r ◦ θi,j = r, s ◦ θi,j = s
and θi,j ◦ θj,i = id, and such that

(2.1) (θi,j × id)(id×θh,j)(θh,i × id) = (id×θh,i)(θh,j × id)(id×θi,j)
as bijections from Eh,i,j to Ej,i,h.
Then there is a unique k-graph Λ such that Λ0 = E0, Λei = E1

i for 1 ≤ i ≤ k,
and for distinct i, j ∈ {1, . . . , k} and (e, f) ∈ Ei,j , the pair (f ′, e′) ∈ Ej,i such
that (f ′, e′) = θi,j(e, f) satisfies ef = f ′e′ as morphisms in Λ.

Remark 2.10. Every k-graph arises in this way: Given a k-graph Λ, let E0 :=
Λ0, and E1

i := Λei for 1 ≤ i ≤ k, and define r, s : E1
i → E0 by restriction

of the range and source maps in Λ. Define bijections θi,j : Ei,j → Ej,i via
the factorisation property: θi,j(e, f) is equal to the unique pair (f ′, e′) ∈ Ej,i
such that ef = f ′e′ in Λ. Then condition (2.1) holds by the associativity of
the category Λ, and the uniqueness assertion of Lemma 2.9 implies that Λ is
isomorphic to the k-graph obtained from the Ei and the θi,j using Lemma 2.9.

Lemma 2.9 tells us how to describe a k-graph pictorially. As in [31, 27], the
skeleton of a k-graph Λ is the directed graph EΛ with vertices E0

Λ = Λ0, edges

E1
Λ =

⋃k
i=1 Λei , range and source maps inherited from Λ, and edges of different

degrees in Λ distinguished using k different colours in EΛ: in this paper, we
will often refer to edges of degree e1 as “blue” and edges of degree e2 as “red.”
Lemma 2.9 implies that the skeleton EΛ together with the factorisation rules
fg = g′f ′ where f, f ′ ∈ Λei and g, g′ ∈ Λej completely specify Λ. In practise,

Documenta Mathematica 13 (2008) 161–205



C∗-Algebras Associated to Coverings of k-Graphs 167

we draw EΛ using solid, dashed and dotted edges to distinguish the different
colours, and list the factorisation rules separately.

Proof of Proposition 2.7. The idea is to apply Lemma 2.9 to obtain the (k+1)-

graph Λ
p,s
↽Γ. We first define sets E0 and E1

i for 1 ≤ i ≤ k + 1. As a set, E0

is a copy of the disjoint union Λ0 ⊔ Γ0. We denote the copy of Λ0 in E0 by
{ı(v) : v ∈ Λ0} and the copy of Γ0 in E0 by {(w) : w ∈ Γ0} where as yet the
ı(v) and (w) are purely formal symbols. So

E0 = {ı(v) : v ∈ Λ0} ⊔ {(w) : w ∈ Γ0}.
For 1 ≤ i ≤ k, we define, in a similar fashion,

E1
i := {ı(f) : f ∈ Λei} ⊔ {(g) : g ∈ Γei}

to be a copy of the disjoint union Λei ⊔ Γei . We define E1
k+1 to be a copy

of Γ0 × {1, . . . ,m} which is disjoint from E0 and each of the other E1
i , and

use formal symbols {e(v, l) : v ∈ Γ0, 1 ≤ l ≤ m} to denote its elements.
For 1 ≤ i ≤ k, define range and source maps r, s : E1

i → E0 by r(ı(f)) :=
ı(r(f)), s(ı(f)) := ı(s(f)), r((g)) := (r(g)) and s((g)) := (s(g)). Define
r, s : E1

k+1 → E0 as in Proposition 2.7(4).
For distinct i, j ∈ {1, . . . , k+ 1}, define Ei,j as in Lemma 2.9. Define bijections
θi,j : Ei,j → Ej,i as follows:

• For 1 ≤ i, j ≤ k and (e, f) ∈ Ei,j , we must have either e = ı(a) and
f = ı(b) for some composable pair (a, b) ∈ Λei ×Λ0 Λej , or else e = (a)
and f = (b) for some composable pair (a, b) ∈ Γei ×Γ0 3Γej . If e = ı(a)
and f = ı(b), the factorisation property in Λ yields a unique pair b′ ∈ Λej ,
a′ ∈ Λei such that ab = b′a′, and we then define θi,j(e, f) = (ı(b′), ı(a′)). If
e = (a) and f = (b), we define θi,j(e, f) similarly using the factorisation
property in Γ.
• For 1 ≤ i ≤ k, and (e, f) ∈ Ek+1,i, we have f = (b) and e =
e(r(b), l) for some b ∈ Γei and 1 ≤ l ≤ m. Define θk+1,i(e, f) :=
(ı(p(b)), e(s(f), s(f)−1l)).
• For 1 ≤ i ≤ k, to define θi,k+1, first note that if (f ′, e′) = θk+1,i(e, f), then
e′ = e(w, l) for some w ∈ Γ0 and l ∈ {1, . . . ,m} such that p(w) = s(f ′),
f is the unique lift of f ′ such that s(f) = (w), and e = e(r(f), s(f)l). It
follows that θk+1,i is a bijection and we may define θi,k+1 := θ−1

k+1,i.

Since Λ and Γ are k-graphs, the maps θi,j , 1 ≤ i, j ≤ k are bijections with

θj,i = θ−1
i,j , and we have θi,k+1 = θ−1

k+1,i by definition, so to invoke Lemma 2.9,

we just need to establish equation (2.1).
Equation (2.1) holds when h, i, j ≤ k because Λ and Γ are both k-graphs.
Suppose one of h, i, j = k + 1. Fix edges fh ∈ E1

h, fi ∈ E1
i and fj ∈ E1

j . First
suppose that h = k + 1; so fh = e(r(fi), l) for some l, and fi and fj both
belong to (Γ). Apply the factorisation property for Γ to obtain f ′j and f ′i such

that f ′i ∈ E1
i , f ′j ∈ E1

j and f ′jf
′
i = fifj . We then have θi,j(fi, fj) = (f ′j , f

′
i).

If we write p̃ for the map from {(f) : f ∈ ⋃ki=1 Γei} to {ı(f) : f ∈ ⋃ki=1 Λei}
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given by p̃((λ)) := ı(p(λ)), then the properties of the covering map imply that
θi,j(p̃(fi), p̃(fj)) = (p̃(f ′j), p̃(fi)

′). Now

(θi,j × id)(id×θh,j)(θh,i × id)(fh, fi, fj)

= (θi,j × id)(id×θh,j)(p̃(fi), e(s(fi), s(fi)
−1l), fj)

= (θi,j × id)(p̃(fi), p̃(fj), e(s(fj), s(fj)
−1(s(fi)

−1)l))

= (p̃(f ′j), p̃(f
′
i), e(s(fj), s(fifj)

−1l),(2.2)

where, in the last equality, s(fj)
−1s(fi)

−1 = s(fifj)
−1 by the cocycle property.

On the other hand,

(id×θh,i)(θh,j × id)(id×θi,j)(fh, fi, fj)
= (id×θh,i)(θh,j × id)(fh, f

′
j, f
′
i)

= (id×θh,i)(p̃(f ′j), e(s(fj), s(f ′j)
−1l), f ′i)

=
(
p̃(f ′j), p̃(f

′
i), e(s(fi), s(f ′i)

−1(s(f ′j)
−1l))

)

=
(
p̃(f ′j), p̃(f

′
i), e(s(fi), s(f ′jf

′
i)
−1l)

)
.

Since f ′jf
′
i = fifj, this establishes (2.1) when h = k + 1 and 1 ≤ i, j ≤ k.

Similar calculations establish (2.1) when i = k + 1 and when j = k + 1.

By Lemma 2.9, there is a unique (k + 1)-graph Λ
p,s
↽Γ with (Λ

p,s
↽Γ)0 = E0,

(Λ
p,s
↽Γ)ei = E1

i for all i and with commuting squares determined by the θi,j .
Since the θi,j , 1 ≤ i, j ≤ k agree with the factorisation properties in Γ and Λ,
the uniqueness assertion of Lemma 2.9 applied to paths consisting of edges in
E1

1 ∪ · · · ∪ E1
k shows that ı and  extend uniquely to injective functors from Λ

and Γ to (Λ
p,s
↽Γ)(N

k,01) which satisfy Proposition 2.7(2). Assertions (3) and (4)
of Proposition 2.7 follow from the definition of E1

k+1, and the last assertion (5)

is established by factorising λ into edges from the E1
i , 1 ≤ i ≤ k and then

performing calculations like (2.2).
Now suppose that p is finite. Then Γ is row-finite if and only if Λ is, and in this

case, Λ
p,s
↽Γ is also row-finite because p is locally bijective and m <∞. That p

is locally bijective shows that Λ is locally convex if and only if Γ is. Suppose

that Γ is locally convex. Fix 1 ≤ i < j ≤ k+ 1, a ∈ (Λ
p,s
↽Γ)ei and b ∈ (Λ

p,s
↽Γ)ej

with r(a) = r(b). If j < k+ 1 then a and b can be extended to paths of degree
ei + ej because Λ and Γ are locally convex. If j = k + 1, then b = e(v, l) for
some v ∈ Γ0 and 1 ≤ l ≤ m. Let a′ be the lift of a such that r(a′) = s(v), then
ae(s(a′), l) and ba′ extend a and b to paths of degree ei + ej . It follows that

Λ
p
↽Γ is locally convex. �

Corollary 2.11. Fix N ≥ 2 in N∪ {∞}. Let (Λn,Λn+1, pn,mn, sn)N−1
n=1 be a

sequence of covering systems of k-graphs. Then there is a unique (k+1)-graph Λ

such that Λei =
⊔N
n=1 Λei

n for 1 ≤ i ≤ k, Λek+1 =
⊔N−1
n=1 (Λn

pn,sn
↽ Λn+1)ek+1 , and

such that range, source and composition are all inherited from the Λn
pn,sn
↽ Λn+1.

If each (Λn,Λn+1, pn,mn, sn) is row-finite then Λ is row-finite. If each Λn is
locally convex, so is Λ, and if each Λn is connected, so is Λ.
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Proof. For the first part we just apply Lemma 2.9; the hypotheses follow
automatically from the observation that if h, i, j are distinct elements of

{1, . . . , k + 1} then each path of degree eh + ei + ej lies in some Λn
pn,sn
↽ Λn+1,

and these are all (k + 1)-graphs by Proposition 2.7.
The arguments for row-finiteness, local convexity and connectedness are the
same as those in Proposition 2.7. �

Notation 2.12. When N is finite, the (k+1)-graph Λ of the previous lemma will

henceforth be denoted Λ1
p1,s1
↽ · · · pN−1,sN−1

↽ ΛN . If N = ∞, we instead denote
Λ by lim

↽−(Λn; pn, sn).

2.1. Matrices of covering systems. In this subsection, we generalise our
construction to allow for a different covering system (Λj ,Γi, pi,j ,mi,j , si,j) for
each pair of connected components Λj ⊂ Λ and Γi ⊂ Γ. The objective is to
recover the example of the irrational rotation algebras [27, Example 6.5].

Definition 2.13. Fix nonnegative integers cΛ, cΓ ∈ N \ {0}. A matrix of
covering systems (Λj ,Γi,mi,j , pi,j, si,j)

cΓ,cΛ
i,j=1 consists of:

(1) k-graphs Λ and Γ which decompose into connected components Λ =⊔
j=1,...,cΛ

Λj and Γ =
⊔
i=1,...,cΓ

Γi;

(2) a matrix (mi,j)
cΓ,cΛ
i,j=1 ∈McΓ,cΛ(N) with no zero rows or columns; and

(3) for each i, j such that mi,j 6= 0, a covering system (Λi,Γj , pi,j ,mi,j , si,j) of
k-graphs.

Proposition 2.14. Fix nonnegative integers cΛ, cΓ ∈ N \ {0} and a matrix of
covering systems (Λj ,Γi,mi,j , pi,j , si,j)

cΓ,cΛ
i,j=1. Then there is a unique (k + 1)-

graph
(⊔

Λj
)p,s
↽
(⊔

Γi
)

such that ((⊔
Λj
)p,s
↽
(⊔

Γi
))ek+1

=
⊔
i,j(Λj

pi,j ,si,j
↽ Γi)

ek+1 ,

each
((⊔

Λj
)p,s
↽
(⊔

Γi
))el for 1 ≤ l ≤ k is equal to Λel ⊔Γel and the commuting

squares are inherited from the Λj
pi,j ,si,j
↽ Γi.

If each (Λi,Γj, pi,j ,mi,j , si,j) is row finite then
(⊔

Λj
)p,s
↽
(⊔

Γi
)

is row finite.

If Λ and Γ are locally convex, so is
(⊔

Λj
)p,s
↽
(⊔

Γi
)
.

Proof. We apply Lemma 2.9; since the commuting squares are inherited from

the Λj
pi,j ,si,j
↽ Γi, they satisfy the associativity condition (2.1) because each

Λj
pi,j ,si,j
↽ Γi is a (k + 1)-graph. �

Corollary 2.15. Fix N ≥ 2 in N∪{∞}. Let (cn)Nn=1 ⊂ N\{0} be a sequence
of positive integers. For 1 ≤ n < N , let (Λn,j,Λn+1,i, p

n
i,j ,m

n
i,j , s

n
i,j)

cn+1,cn

i,j=1 be a

matrix of covering systems. Then there exists a unique (k + 1)-graph Λ such
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that

Λei =
⋃N
n=1

⋃cn

j=1 Λei

n,j for 1 ≤ i ≤ k,

Λek+1 =
⋃N−1
n=1

((⊔cn

j=1 Λn,j
)pn,sn

↽
(⊔cn+1

i=1 Λn+1,i

))ek+1 ,

and the range, source and composition functions are all inherited from the

(k + 1)-graphs
(⊔cn

j=1 Λn,j
)pn,sn

↽
(⊔cn+1

i=1 Λn+1,i

)
.

If each (Λn,j ,Λn+1,i, p
n
i,j,m

n
i,j , s

n
i,j) is row finite, then Λ is row finite. If each

Λn is locally convex, so is Λ.

Example 2.16 (The Irrational Rotation algebras). Fix θ ∈ [0, 1] \ Q. Let
[a1, a2, . . . ] be the simple continued fraction expansion of θ. For each n, let
cn = 2, let φn :=

(
an 1
1 0

)
, and let mn := (mn

i,j)
2
i,j=1 be the matrix product

φT (n+1) · · ·φT (n)+1 where T (n) := n(n + 1)/2 is the nth triangular number.

Of all the integers mn
i,j obtained this way, only m1

1,2 is equal to zero, so the
matrices mn have no zero rows or columns. Whenever mn

i,j 6= 0, let sni,j be the

permutation of the set {1, . . . ,mn
i,j} given by sni,j l = l + 1 if 1 ≤ l < mn

i,j , and
sni,jm

n
i,j = 1.

Let Λn,i, n ∈ N \ {0}, i = 1, 2 be mutually disjoint copies of the 1-
graph T1 whose skeleton consists of a single vertex and a single directed
edge. For each n, let Λn be the 1-graph Λn,1 ⊔ Λn,2 so that for each n,
(Λn,j ,Λn+1,i, p

n
i,j ,m

n
i,j , s

n
i,j)

2
i,j=1 is a matrix of covering systems.
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Figure 1. A tower of coverings with multiplicities

Modulo relabelling the generators of N2, the 2-graph lim
↽−
(⊔cn

j=1 Λn,j ; p
n
i,j, s

n
i,j

)

obtained from this data as in Corollary 2.15 is precisely the rank-2 Bratteli
diagram of [27, Example 6.5] whose C∗-algebra is Morita equivalent to the
irrational rotation algebraAθ. Figure 1 is an illustration of its skeleton (parallel
edges drawn as a single edge with a label indicating the multiplicity). The
factorisation rules are all of the form fg = σ(g)f ′ where f and f ′ are the
dashed loops at either end of a solid edge in the diagram, and σ is a transitive
permutation of the set of edges with the same range and source as g.
More generally, Section 7 of [27] considers in some detail the structure of the
C∗-algebras associated to rank-2 Bratteli diagrams with length-1 cycles. All
such rank-2 Bratteli diagrams can be recovered as above from Corollary 2.15.
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3. C∗-algebras associated to covering systems of k-graphs

In this section, we describe how a covering system (Λ,Γ, p,m, s) induces an
inclusion of C∗-algebras C∗(Λ) →֒Mm(C∗(Γ)) and hence a homomorphism of
K-groups K∗(C∗(Λ)) → K∗(C∗(Γ)). The main result of the section is The-
orem 3.8 which shows how to use these maps to compute the K-theory of
C∗(lim

↽−(Λn; pn, sn)) from the data in a sequence (Λn,Λn+1, pn,mn, sn)∞n=1 of
covering systems.
The following definition of the Cuntz-Krieger algebra of a row-finite locally
convex k-graph Λ is taken from [31, Definition 3.3].
Given a row-finite, locally convex k-graph (Λ, d), a Cuntz-Krieger Λ-family is
a collection {tλ : λ ∈ Λ} of partial isometries satisfying

(CK1) {tv : v ∈ Λ0} is a collection of mutually orthogonal projections;
(CK2) tλtµ = tλµ whenever s(λ) = r(µ);
(CK3) t∗λtλ = ts(λ) for all λ ∈ Λ; and

(CK4) tv =
∑

λ∈vΛ≤n tλt
∗
λ for all v ∈ Λ0 and n ∈ Nk.

The Cuntz-Krieger algebra C∗(Λ) is the C∗-algebra generated by a Cuntz-
Krieger Λ-family {sλ : λ ∈ Λ} which is universal in the sense that for every
Cuntz-Krieger Λ-family {tλ : λ ∈ Λ} there is a unique homomorphism πt of
C∗(Λ) satisfying πt(sλ) = tλ for all λ ∈ Λ.

Remarks 3.1. If Λ has no sources (that is vΛn 6= ∅ for all v ∈ Λ0 and n ∈ Nk),
then Λ is automatically locally convex, and the definition of C∗(Λ) given above
reduces to the original definition [20, Definition 1.5].
By [31, Theorem 3.15] there is a Cuntz-Krieger Λ-family {tλ : λ ∈ Λ} such that
tλ 6= 0 for all λ ∈ Λ. The universal property of C∗(Λ) therefore implies that
the generating partial isometries {sλ : λ ∈ Λ} ⊂ C∗(Λ) are all nonzero.

Let Ξ be a k-graph. The universal property of C∗(Ξ) gives rise to an action γ
of Tk on C∗(Ξ), called the gauge-action (see, for example [31, §4.1]), such that
γz(sξ) = zd(ξ)sξ for all z ∈ Tk and ξ ∈ Ξ.

Proposition 3.2. Let (Λ,Γ, p,m, s) be a row-finite covering system of locally
convex k-graphs. Let γΛ and γΓ denote the gauge actions of Tk on C∗(Λ) and

C∗(Γ), and let γ denote the gauge action of Tk+1 on C∗(Λ
p,s
↽Γ).

(1) The inclusions ı : Λ→ Λ
p,s
↽Γ and  : Γ→ Λ

p,s
↽Γ induce embeddings of C∗(Λ)

and C∗(Γ) in C∗(Λ
p,s
↽Γ) characterised by

ı∗(sα) = sı(α) and ∗(sβ) = s(β) for α ∈ Λ and β ∈ Γ.

(2) The sum
∑

v∈(Γ0) sv converges in the strict topology to a full projection

Q ∈ M(C∗(Λ
p,s
↽Γ)), and the range of ∗ is QC∗(Λ

p,s
↽Γ)Q.

(3) For 1 ≤ i ≤ m, the sum
∑
v∈Γ0 se(v,i) converges strictly to a partial isome-

try Vi ∈ M(C∗(Λ
p,s
↽Γ)). The sum

∑
v∈ı(Λ0) sv, converges strictly to the full

projection P :=
∑m

i=1 ViV
∗
i ∈ M(C∗(Λ

p,s
↽Γ)). Moreover, ı∗ is a nondegen-

erate homomorphism into PC∗(Λ
p,s
↽Γ)P .

Documenta Mathematica 13 (2008) 161–205



172 Alex Kumjian, David Pask, Aidan Sims

(4) There is an isomorphism φ : Mm(C∗(Γ))→ PC∗(Λ
p,s
↽Γ)P such that

φ
(
(ai,j)

m
i,j=1

)
=

m∑

i,j=1

Vi∗(ai,j)V
∗
j .

(5) There is an embedding ιp,s : C∗(Λ) → Mm(C∗(Γ)) such that φ ◦ ιp,s = ı∗.
The embedding ιp,s is equivariant in γΛ and the action idm⊗γΓ of Tk on
Mm(C∗(Γ)) by coordinate-wise application of γΓ.

(6) If we identify K∗(C∗(Γ)) with K∗(Mm(C∗(Γ))), then the induced homo-
morphism (ιp,s)∗ may be viewed as a map from K∗(C∗(Λ)) → K∗(C∗(Γ)).
When applied to K0-classes of vertex projections, this map satisfies

(ιp,s)∗([sv]) =
∑

p(u)=v

m · [su] ∈ K0(C∗(Γ)).

The proofs of the last three statements require the following general Lemma.
This is surely well-known but we include it for completeness.

Lemma 3.3. Let A be a C∗-algebra, let q ∈M(A) be a projection, and suppose
that v1, . . . , vn ∈ M(A) satisfy v∗i vj = δi,jq for 1 ≤ i, j ≤ n. Then p =∑n

i=1 viv
∗
i is a projection and pAp ∼= Mn(qAq).

Proof. That v∗i vj = δi,jq implies that the vi are partial isometries with mutually
orthogonal range projections viv

∗
i . Hence p is a projection in M(A). Define

a map φ from pAp to Mn(qAq) as follows: for a ∈ pAp and 1 ≤ i, j ≤ n, let
ai,j := v∗i avj , and define φ(a) to be the matrix φ(a) = (ai,j)

n
i,j=1.

It is straightforward to check using the properties of the vi that φ is a
C∗-homomorphism. It is an isomorphism because the homomorphism ψ :
Mn(qAq)→ pAp defined by

ψ
(
(ai,j)

n
i,j=1

)
:=

n∑

i,j=1

viaijv
∗
j ∈ qAq

is an inverse for φ. �

Proof of Proposition 3.2. (1) The collection {sı(λ) : λ ∈ Λ} forms a Cuntz-

Krieger Λ-family in C∗(Λ
p,s
↽Γ), and so by the universal property of C∗(Λ) in-

duces a homomorphism ı∗ : C∗(Λ) → C∗(Λ
p,s
↽Γ). For z ∈ Tk, write (z, 1) for

the element (z1, . . . , zk, 1) ∈ Tk+1. Recall that γ denotes the gauge action of

Tk+1 on C∗(Λ
p,s
↽Γ). Then the action z 7→ γ(z,1) of Tk on C∗(Λ

p,s
↽Γ) satisfies

ı∗((γΛ)z(a)) = γ(z,1)(ı∗(a))

for all a ∈ C∗(Λ) and z ∈ Tk. Since ı∗(sv) = sı(v) 6= 0 for all v ∈ Λ0 it
follows from the gauge-invariant uniqueness theorem [20, Theorem 2.1] that ı∗
is injective. A similar argument applies to ∗.
(2) As the projections sv, v ∈ (Γ0) are mutually orthogonal, a standard argu-
ment shows that the sum

∑
v∈(Γ0) sv converges to a projection Q in the mul-

tiplier algebra (see [30, Lemma 2.1]). The range of ∗ is equal to QC∗(Λ
p,s
↽Γ)Q
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because (Γ0)(Λ
p,s
↽Γ)(Γ0) = (Γ). To see that Q is full, it suffices to show

that every generator of C∗(Λ
p,s
↽Γ) belongs to the ideal I(Q) generated by Q.

So let α ∈ Λ
p,s
↽Γ. Either s(α) ∈ (Γ0) or s(α) ∈ ı(Λ0). If s(α) ∈ (Γ0), then

sα = sαQ ∈ I(Q). On the other hand, if s(α) ∈ ı(Λ0), the Cuntz-Krieger
relation ensures that

sα =
∑

p(w)=s(α)

∑m
i=1 sαse(w,i)Qs

∗
e(w,i),

which also belongs to I(Q).
(3) For fixed i, the partial isometries se(v,i) have mutually orthogonal range
projections and mutually orthogonal source projections. Hence an argument
similar that of [30, Lemma 2.1] shows that

∑
v∈Γ0 se(v,i) converges strictly to a

multiplier Vi ∈ M(C∗(Λ
p,s
↽Γ)). A simple calculation shows that V ∗i Vj = δi,jQ

for all i, j. Hence each Vi is a partial isometry, and P is full because Q is full.
The homomorphism ı∗ is nondegenerate because the net(

ı∗
(∑

v∈F sv
))
F⊂Λ0 finite

converges strictly to P ∈M(C∗(Λ
p,s
↽Γ)).

(4) This follows directly from Part (3) and Lemma 3.3.
(5) We define ιp,s := φ−1◦ı∗. For the gauge-equivariance, recall that ı∗ (respec-
tively ∗) are equivariant in γ|(Tk,1) and γΛ (respectively γΓ). By definition, φ
is equivariant in (id⊗γ) and γ(Tk,1) ◦ ∗. The equivariance of ιp,s follows.

(6) By (CK4), for v ∈ Λ0 we have sı(v) =
∑

f∈v(Λp,s
↽Γ)ek+1

sfs
∗
f , so the K0-

class [sı(v)] is equal to
∑
f∈v(Λp,s

↽Γ)ek+1
[sfs

∗
f ]. We can write v(Λ

p,s
↽Γ)ek+1 as the

disjoint union

v(Λ
p,s
↽Γ)ek+1 =

⊔

p(u)=v

{e(u, i) : 1 ≤ i ≤ m}.

In K0(C∗(Λ
p,s
↽Γ)), we have [se(u,i)s

∗
e(u,i)] = [s∗e(u,i)se(u,i)] = [s(u)], and the

result follows. �

Notation 3.4. As in Notation 2.8, when m = 1 so that s is trivial, we continue
to drop references to s at the level of C∗-algebras. So Proposition 3.2(5) gives
an inclusion ιp : C∗(Λ)→ C∗(Γ) and the induced homomorphism of K-groups
obtained from Proposition 3.2(6) is denoted (ιp)∗ : K∗(C∗(Λ)) → K∗(C∗(Γ)).
This homomorphism satisfies

(ιp)∗([sv]) =
∑

p(u)=v

[su].

When no confusion is likely to occur, we will suppress the maps ı, , ı∗ and ∗
and regard Λ and Γ as subsets of Λ

p,s
↽Γ and C∗(Λ) and C∗(Γ) as C∗-subalgebras

of C∗(Λ
p,s
↽Γ).

Remark 3.5. (1) The isomorphism φ of Proposition 3.2(4) extends to an iso-

morphism φ̃ : Mm+1(C∗(Γ)) → C∗(Λ
p,s
↽Γ) which takes the block diagonal
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matrix
(

0m×m 0m×1

01×m a

)
to ∗(a). To see this, let V, . . . , Vm be as in Proposi-

tion 2.7(3), let Vm+1 = Q, and apply Lemma 3.3.

(2) If m = 1 then φ is an isomorphism of C∗(Γ) onto PC∗(Λ
p
↽Γ)P , and ιp :

C∗(Λ) →֒ C∗(Γ) satisfies

ιp(sλ) =
∑
p(λ̃)=λ sλ̃.

Fix N ≥ 2 in N. Let (Λn,Λn+1, pn,mn, sn)N−1
n=1 be a sequence of row-finite

covering systems of locally convex k-graphs. Recall that in Corollary 2.11 we

obtained from such data a (k + 1)-graph Λ1
p1,s1
↽ · · · pN−1,sN−1

↽ ΛN , which for
convenience we will denote ΛN (the subscript is unnecessary here, but will be
needed in Proposition 3.7). We now examine the structure of C∗(ΛN ) using
Proposition 3.2.

Proposition 3.6. Continue with the notation established in the previous para-

graph. For each v ∈ Λ0
N , list Λ

Nek+1

N v as {α(v, i) : 1 ≤ i ≤ M} where
M = m1m2 · · ·mN−1.

(1) For 1 ≤ n ≤ N , the sum
∑
v∈Λ0

n
sv converges strictly to a full projection

Pn ∈M(C∗(ΛN )).
(2) For 1 ≤ i ≤M , the sum

∑
v∈Λ0

N
sα(v,i) converges strictly to a partial isom-

etry Vi ∈ M(C∗(ΛN )) such that V ∗i Vi = PN .

(3) We have
∑M

i=1 ViV
∗
i = P1, and there is an isomorphism

φ : MM (C∗(ΛN ))→ P1C
∗(ΛN )P1

such that φ((ai,j)
M
i,j=1) =

∑M
i,j=1 Viai,jV

∗
j .

Proof. Calculations like those in parts (2) and (3) of Proposition 3.2 show
that the sums defining the Pn and the Vi converge in the multiplier algebra of
C∗(ΛN ) and that each Pn is full.

Since distinct paths in Λ
Nek+1

N have orthogonal range projections and since

paths in Λ
Nek+1

N with distinct sources have orthogonal source projections, each

V ∗i Vi = PN , and
∑M

i=1 ViV
∗
i = P1.

One checks as in Proposition 3.2(1) that the inclusions ın : Λn →֒ ΛN induce
inclusions (ın)∗ : C∗(Λn) →֒ PnC

∗(ΛN )Pn, and in particular that (ıN )∗ :
C∗(ΛN ) → PNC

∗(ΛN )PN is an isomorphism. The final statement follows
from Lemma 3.3. �

We now describe the inclusions of the corners determined by P1 as N increases.
To do this, we first need some notation. Given a C∗-algebra A, and positive
integers m,n, we denote by πm,n⊗ idA : Mm(Mn(A))→Mmn(A) the canonical

isomorphism which takes the matrix a =
(
(ai,j,j′,i′)

n
j,j′=1

)m
i,i′=1

to the matrix

π(a) satisfying

π(a)j+n(i−1),j′+n(i′−1) = ai,j,j′,i′ for 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n.
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Given C∗-algebras A and B, a positive integer m, and a C∗-homomorphism
ψ : A→ B, we write idm⊗ψ : Mm(A)→Mm(B) for the C∗-homomorphism

(idm⊗ψ)
(
(ai,j)

m
i,j=1

)
=
(
ψ(ai,j)

)m
i,j=1

.

Finally, given a matrix algebra Mm(A) over a C∗-algebra A, and given 1 ≤
i, i′ ≤ m and a ∈ A, we write θi,i′a for the matrix

(
θi,i′a)j,j′ =

{
a if j = i and j′ = i′

0 otherwise.

Proposition 3.7. Fix N ≥ 2 in N. Let (Λn,Λn+1, pn,mn, sn)Nn=1 be
a sequence of row-finite covering systems of locally convex k-graphs. We

view the (k + 1)-graph ΛN := Λ1
p1,s1
↽ · · · pN−1,sN−1

↽ ΛN as a subcategory of

ΛN+1 := Λ1
p1,s1
↽ · · · pN ,sN

↽ ΛN+1 and likewise regard C∗(ΛN ) as a C∗-subalgebra
of C∗(ΛN+1). In particular, we view P1 =

∑
v∈Λ0

1
sv as a projection in both

M(C∗(ΛN )) and M(C∗(ΛN+1)).
Let M := m1m2 . . .mN−1, and let φN : MM (C∗(ΛN )) → P1(C∗(ΛN )P1 and
φN+1 : MMmN (C∗(ΛN+1)) → P1C

∗(ΛN+1)P1 be the isomorphisms obtained
from Proposition 3.6. Then the following diagram commutes.

P1C
∗(ΛN )P1 P1C

∗(ΛN+1)P1

MM (C∗(ΛN )) MMmN (C∗(ΛN+1))
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....................
................

φN

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................

................

φN+1

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ..........................
.........
.. ⊆

................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................
(πM,mN ⊗ idC∗(ΛN+1)) ◦ (idM ⊗ιpN ,sN )

Proof. As in Proposition 3.6, write Λ
Nek+1

N = {α(v, i) : v ∈ Λ0
N , i ∈

{1, · · · ,M}}. For i = 1, . . . ,M , let Vi :=
∑

v∈Λ0
N
sα(v,i). For j = 1, . . . ,mN ,

let

Wj :=
∑

w∈Λ0
N+1

M∑

i=1

sα(pN (w),i)se(w,j).

For (i, j) in the cartesian product {1, . . . ,M}×{1, . . . ,mN}, let Uj+mN (i−1) :=∑
u∈Λ0

N+1
sα(pN (u),i)e(u,j). In what follows, we suppress canonical inclusion

maps, and regard C∗(ΛN ) as a subalgebra of C∗(ΛN ), and both C∗(ΛN ) and
C∗(ΛN+1) as subalgebras of C∗(ΛN+1). The corner P1C

∗(ΛN )P1 is equal
to the closed span of elements of the form ViaV

∗
i′ where a ∈ C∗(ΛN ) and

i, i′ ∈ {1, . . . ,M}, and P1C
∗(ΛN+1)P1 is equal to the closed span of elements

of the form UlbU
∗
l′ where b ∈ C∗(ΛN+1), l, l′ ∈ {1, . . . ,MmN}.

We have φN
(
(ai,i′ )

M
i,i′=1

)
=
∑M

i,i′=1 Viai,i′V
∗
i′ by definition. The isomorphism

φN+1 from MMmN (C∗(ΛN+1)) to P1C
∗(ΛN+1)P1 described in Proposition 3.6

satisfies

φN+1

(∑MmN

l,l′=1 Ulbl,l′U
∗
l′

)
=
(
bl,l′
)MmN

l,l′=1
.
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The Cuntz-Krieger relations show that

ViV
∗
i′WjW

∗
j′ = Uj+mN (i−1)U

∗
j′+mN (i′−1) = WjW

∗
j′ViV

∗
i′

for 1 ≤ i, i′ ≤ M , 1 ≤ j, j′ ≤ mN , and this decomposition of the matrix units
UlU

∗
l′ implements πM,mN . Hence φN+1 ◦ (πM,mN ⊗ idC∗(ΛN+1)) satisfies

φN+1 ◦ (πM,mN ⊗ idC∗(ΛN+1))
(((

bi,j,j′,i′
)mN

j,j′=1

)M
i,i′=1

)

=
∑M

i,i′=1

∑mN

j,j′=1 Uj+mN (i−1)bi,j,j′,i′U
∗
j′+mN (i′−1).

(3.1)

The Cuntz-Krieger relations also show that Vi =
∑mN

j=1WjW
∗
j Vi for all i, and

hence ViaV
∗
i′ =

∑
j Uj+mN (i−1)W

∗
j aWjU

∗
j+mN (i′−1) for all a ∈ P1C

∗(ΛN )P1.

One now checks that for λ ∈ ΛN , we have

W ∗j sλWj =
∑

pN (λ′)=λ s
∗
e(r(λ′),j)se(r(λ),sN (λ′)j)sλ′ ,

and hence that VisλV
∗
i′ =

∑
j

∑
pN (λ′)=λ UsN (λ′)j+mN (i−1)sλ′U∗j+mN (i′−1). Re-

call that θi,i′sλ ∈MM (C∗(ΛN )) denotes the matrix

(
θi,i′sλ)j,j′ =

{
sλ if j = i and j′ = i′

0 otherwise.

Then VisλV
∗
i′ = φN

(
θi,i′sλ) by definition of φN , so

φN (θi,i′sλ) =
∑

j

∑
pN (λ′)=λ UsN (λ′)j+mN (i−1)sλ′U∗j+mN (i′−1).

Since (idM ⊗ιpN ,sN )(θi,i′sλ) = θi,i′
∑
pN (λ′)=λ sλ′ , we may therefore apply (3.1)

to see that

φN (θi,i′sλ) = φN+1 ◦ (πM,mN ⊗ idC∗(ΛN+1)) ◦ (idM ⊗ιpN ,sN )(θi,i′sλ).

Since elements of the form θi,i′sλ generate MM (C∗(ΛN )) this proves the result.
�

Theorem 3.8. Let (Λn,Λn+1, pn,mn, sn)∞n=1 be a sequence of row-finite cov-

erings of locally convex k-graphs. For each n, let Λn := Λ1
p1,s1
↽ · · · pn−1,sn−1

↽ Λn,
identify Λn with the corresponding subset of lim

↽−(Λn; pn, sn), and likewise iden-

tify C∗(Λn) with the corresponding C∗-subalgebra of C∗(lim
↽−(Λn; pn, sn)). Then

(3.2) C∗(lim
↽−(Λn; pn, sn)) =

⋃∞
n=1 C

∗(Λn).

Let P1 :=
∑

v∈Λ0
1
sv, and for each n, let Mn := m1m2 · · ·mn−1. Then P1 is a

full projection in each M(C∗(Λn)), and we have

(3.3) P1C
∗(lim
↽−(Λn; pn, sn))P1

∼= lim−→
(
MMn(C∗(Λn)), idMn ⊗ιpn,sn

)
.

In particular,

K∗(C
∗(lim
↽−(Λn; pn, sn))) = K∗(P1C

∗(lim
↽−(Λn; pn, sn))P1)

∼= lim−→(K∗(C
∗(Λn)), (ιpn ,sn)∗).
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Proof. For the duration of the proof, let Λ := lim
↽−(Λn; pn, sn). We have

C∗(Λ) = span{sµs∗ν : µ, ν ∈ Λ}, so for the first statement, we need only
show that

span{sµs∗ν : µ, ν ∈ Λ} ⊂ ⋃∞n=1 C
∗(Λn).

To see this we simply note that for any finite F ⊂ Λ, the integer N := max{n ∈
N : s(F ) ∩ Λ0

n 6= ∅} satisfies F ⊂ ΛN .
Since P1 is full in eachC∗(Λn) by Proposition 3.2(3), it is full in C∗(Λ) by (3.2).
Equation 3.3 follows from Proposition 3.7. The final statement then follows
from continuity of the K-functor. �

Remark 3.9. Note that if we let γ denote the restriction of the gauge action to
P1C

∗(lim
↽−(Λn; pn, sn))P1 then γ(1,··· ,1,z) is trivial for all z ∈ T. Indeed, if sµs

∗
ν

is a nonzero element P1C
∗(lim
↽−(Λn; pn, sn))P1, then d(µ)n+1 = d(ν)n+1. So γ

may be regarded as an action by Tk rather than Tk+1.

We can extend Theorem 3.8 to the situation of matrices of covering systems as
discussed in Section 2.1 as follows.

Proposition 3.10. Resume the notation of Corollary 2.15. Each C∗(Λn) is
canonically isomorphic to

⊕cn

j=1 C
∗(Λn,j). There are homomorphisms (ιn)∗ :

K∗(C∗(Λn))→ K∗(C∗(Λn+1)) such that the partial homomorphism which maps
the jth summand in K∗(C∗(Λn)) to the ith summand in K∗(C∗(Λn+1)) is equal
to 0 if mn

i,j = 0, and is equal to (ιpn
i,j ,s

n
i,j

)∗ otherwise. The sum
∑

v∈Λ0
1
sv

converges strictly to a full projection P1 ∈ M(C∗(Λ)). Furthermore,

K∗(P1C
∗(Λ)P1) ∼= lim−→

( cn⊕

j=1

K∗(C
∗(Λn,j)), (ιn)∗

)
.

Proof. For each λ ∈ Λn =
⊔cn

j=1 Λn,j , define a partial isometry tλ ∈⊕cn

j=1 C
∗(Λn,j) by tλ := (0, . . . , 0, sλ, 0, . . . , 0) (the nonzero term is in the jth

coordinate when λ ∈ Λn,j). These nonzero partial isometries form a Cuntz-
Krieger Λn-family consisting of nonzero partial isometries. The universal prop-
erty of C∗(Λn) gives a homomorphism πnt : C∗(Λn) → ⊕cn

j=1 C
∗(Λn,j) which

intertwines the direct sum of the gauge actions on the C∗(Λn,j) and the gauge
action on C∗(Λn). The gauge-invariant uniqueness theorem [20, Theorem 3.4],
and the observation that each generator of each summand in

⊕cn

j=1 C
∗(Λn,j) is

nonzero and belongs to the image of πnt therefore shows that πnt is an isomor-
phism.
The individual covering systems (Λn,j ,Λn+1,i, p

n,mn, sn) induce inclusions
ιpn

i,j ,s
n
i,j

: C∗(Λn,j)→Mmn
i,j

(C∗(Λn+1,i)) as in Proposition 3.2(5). We therefore

obtain homomorphisms (ιpn
i,j ,s

n
i,j

)∗ : K∗(C∗(Λn,j)) → K∗(C∗(Λn+1,i)). The

statement about the partial homomorphisms of K-groups then follows from
the properties of the isomorphism K∗(

⊕
iAi)

∼=
⊕

iK∗(Ai) for C∗-algebras
Ai.
The final statement can then be deduced from arguments similar to those of
Theorem 3.8. �
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4. Simplicity and pure infiniteness

Theorem 3.1 of [34] gives a necessary and sufficient condition for simplicity of
the C∗-algebra of a row-finite k-graph with no sources. Specifically, C∗(Λ) is
simple if and only if Λ is cofinal and every vertex of Λ receives an aperiodic
infinite path (see below for the definitions of cofinality and aperiodicity). In
this section we present some means of deciding whether lim

↽−(Λn; pn, sn) is cofi-

nal (Lemma 4.7), and whether an infinite path in lim
↽−(Λn; pn, sn) is aperiodic

(Lemma 4.3). We also present a condition under which C∗(lim
↽−(Λn; pn, sn)) is

purely infinite (Proposition 4.8).
We begin by recalling the notation and definitions required to make sense of
the hypotheses of [34, Theorem 3.1]. For more detail, see Section 2 of [31].

Notation 4.1. We write Ωk for the k-graph such that Ωqk := {(m,n) ∈ Nk×Nk :

n−m = q} for each q ∈ Nk, with r(m,n) = (m,m) and s(m,n) = (n, n). We
identify Ω0

k = {(m,m) : m ∈ Nk} with Nk. An infinite path in a k-graph Ξ
is a graph morphism x : Ωk → Ξ, and we denote the image x(0) of the vertex
0 ∈ Ω0

k by r(x). We write Ξ∞ for the collection of all infinite paths in Ξ,
and for v ∈ Ξ0 we denote by vΞ∞ the collection {x ∈ Ξ∞ : r(x) = v}. For
x ∈ Ξ∞ and q ∈ Nk, there is a unique infinite path σq(x) ∈ Ξ∞ such that
σq(x)(m,n) = x(m+ q, n+ q) for all m ≤ n ∈ Nk.

Definition 4.2. We say that a row-finite k-graph Ξ with no sources is aperiodic
if for each vertex v ∈ Ξ0 there is an infinite path x ∈ vΞ∞ such that σq(x) 6=
σq

′

(x) for all q 6= q′ ∈ Nk. We say that Ξ is cofinal if for each v ∈ Ξ0 and
x ∈ Ξ∞ there exists m ∈ Nk such that vΞx(m) 6= ∅.
We continue to make use in the following of the notation established earlier
(see Notation 2.6) for the embeddings of Nk and of N in Nk+1.
If y is an infinite path in the (k+1)-graph Ξ, we write αy for the infinite path in

Ξ(0k,N) defined by αy(p, q) := y((0k, p), (0k, q)) for p ≤ q ∈ N, and we write xy

for the infinite path in Ξ(Nk,01) defined by xy(p, q) := y((p, 01), (q, 01)) where
p ≤ q ∈ Nk.

Proposition 4.3. Let (Λn,Λn+1, pn,mn, sn)∞n=1 be a sequence of row-finite
covering systems of k-graphs with no sources. For a, b ∈ Nk+1, an infinite path
y ∈

(
lim
↽−(Λn; pn, sn)

)∞
satisfies σa(y) = σb(y) if and only if xσa(y) = xσb(y)

and ασa(y) = ασb(y).

Proof. The “only if” implication is trivial. For the “if” implication, note that
the factorisation property implies that an infinite path z of lim

↽−(Λn; pn, sn) is

uniquely determined by xz and the paths ασ(n,01)(z), n ∈ Nk. So it suffices

to show that each ασ(n,01)(z) is uniquely determined by xz(0k, n) and αz . Fix

n ∈ Nk and let λ := xz(0k, n) = z(0k+1, (n, 01)). Fix i ∈ N. We will show that
ασ(n,01)(z)(01, i) is uniquely determined by αz(01, i) and λ. Let v = r(z), and let

N ∈ N be the element such that v ∈ Λ0
N . For 1 ≤ j ≤ i, let wj = αz(i) ∈ Λ0

N+j ,

and let 1 ≤ lj ≤ mN+j−1 be the integer such that αz(j − 1, j) = e(wi, lj). We
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have pN(w1) = v, and pN+j−1(wj) = wj−1 for 2 ≤ j ≤ i. For each j, let λj be
the unique lift of λ such that r(λj) = wj . By definition of the (k + 1)-graph
lim
↽−(Λn; pn, sn), the path

λe(s(λ1), s(λ1)−1l1)e(s(λ2), s(λ2)−1l2) . . . e(s(λi), s(λi)
−1li) = αz(01, i)λi

is the unique minimal common extension of λ and αz(01, i) in lim
↽−(Λn; pn, sn).

Hence

ασ(n,01)(z)(01, i) = e(s(λ1), s(λ1)−1l1)e(s(λ2), s(λ2)−1l2) . . . e(s(λi), s(λi)
−1li)

which is uniquely determined by λ and αz(01, i). �

Corollary 4.4. Let (Λn,Λn+1, pn,mn, sn)∞n=1 be a sequence of row-finite cov-
ering systems of k-graphs with no sources. Suppose that Λn is aperiodic for
some n. Then so is lim

↽−(Λn; pn, sn).

Proof. Since each vertex in Λn receives an aperiodic path in Λn, Proposition 4.3,
guarantees that each vertex in Λn receives an aperiodic path in lim

↽−(Λn; pn, sn).

Since the pn are coverings, it follows that every vertex of lim
↽−(Λn; pn, sn) receives

an infinite path of the form λy or of the form σp(y) where y is an aperiodic
path with range in Λn. If y is aperiodic, then λy is aperiodic for any λ and
σa(y) is aperiodic for any a and the result follows. �

Lemma 4.5. Let (Λn,Λn+1, pn,mn, sn)∞n=1 be a sequence of row-finite covering

systems of k-graphs with no sources. Fix y ∈
(
lim
↽−(Λn; pn, sn)

)∞
, with y(0) ∈

Λn and a, b ∈ Nk+1. Let ã and b̃ denote the elements of Nk determined by the
first k coordinates of a and b. For each m ≥ n, let vm and im be the unique
pair such that αy(m,m + 1) = e(vm, im). For each m ≥ n, let µm and νm be

the unique lifts of xy(0, ã) and xy(0, b̃) such that r(µm) = r(νm) = vm. Then
ασa(y) = ασb(y) if and only if the following three conditions hold:

(1) ak+1 = bk+1;
(2) s(µm) = s(νm) for all m ≥ n; and
(3) sm(µm)im = sm(νm)im for all m ≥ n.
Proof. We have ασa(y)(m,m+1) = e(s(µm+ak+1

), sm(µm+ak+1
)im+ak+1

) for all
m, and likewise for b and ν. �

Remark 4.6. Lemma 5.4 of [27] implies that an infinite path in a rank-2 Bratteli
diagram Λ is aperiodic if and only if the factorisation permutations of its red
coordinate-paths are of unbounded order. Lemma 4.5 is the analogue of this
result for general systems of coverings. To see the analogy, note that in a rank-2
Bratteli diagram, every xy is of the form λλλ . . . for some blue cycle Λ, so that
condition (3) fails for all a 6= b precisely when the orders of the permutations
sm(µm) grow arbitrarily large with m.

Lemma 4.7. Let (Λn,Λn+1, pn,mn, sn)∞n=1 be a sequence of row-finite coverings
of k-graphs with no sources. If infinitely many of the Λn are cofinal, then
lim
↽−(Λn; pn, sn) is also cofinal.
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Proof. Fix a vertex v and an infinite path z ∈ (lim
↽−(Λn; pn, sn))∞. Let n1, n2 ∈

N be the elements such that v ∈ Λ0
n1

and r(z) ∈ Λ0
n2

. Choose N ≥ n1, n2

such that ΛN is cofinal. Fix w ∈ Λ0
N such that pn ◦ pn+1 ◦ · · · ◦ pN−1(w) = v;

so v(lim
↽−(Λn; pn, sn))w 6= ∅. We have xσ(0k,N−n2)(z) ∈ Λ∞N , and since ΛN is

cofinal, it follows that wΛNxσ(0k,N−n2)(z)(q) 6= ∅ for some q ∈ Nk. Since

xσ(0k,N−n2)(z)(q) = z(q,N − n2), this completes the proof. �

As in [38], we say that a path λ in a k-graph Λ is a cycle with an entrance if
s(λ) = r(λ), and there exists µ ∈ r(λ)Λ with d(µ) ≤ d(λ) and λ(0, d(µ)) 6= µ.

Proposition 4.8. Let (Λn,Λn+1, pn,mn, sn)∞n=1 be a sequence of row-finite
coverings of k-graphs with no sources. There exists n such that Λn contains a
cycle with an entrance if and only if every Λn contains a cycle with an entrance.
Moreover, if C∗(lim

↽−(Λn; pn, sn)) is simple and Λ1 contains a cycle with an

entrance, then C∗(Λ) is purely infinite.

Proof. That the presence of a cycle with an entrance in Λ1 is equivalent to the
presence of a cycle with an entrance in every Λn follows from the properties of
covering maps. Now the result follows from [38, Proposition 8.8] �

5. K-Theory

In this section, we consider the K-theory of C∗(Λ
p,s
↽Γ). Specifically, we show

how the homomorphism from K∗(C∗(Λ)) to K∗(C∗(Γ)) obtained from Propo-
sition 3.2 behaves with respect to existing calculations of K-theory for various
classes of higher-rank graph C∗-algebras. We will use these results later to com-
pute the K-theory of C∗(lim

↽−(Λn; pn, sn)) for a number of sequences of covering
systems.
Throughout this section, given a k-graph Λ, we view the ring ZΛ0 as the
collection of finitely supported functions f : Λ0 → Z. For v ∈ Λ0, we denote
the point-mass at v by δv. Given a finite covering p : Γ → Λ of row-finite
k-graphs, we define p∗ : ZΛ0 → ZΓ0 by p∗(δv) =

∑
p(u)=v δw; equivalently,

p∗(f)(w) = f(p(w)).

5.1. Coverings of 1-graphs and the Pimsner-Voiculescu exact se-
quence. It is shown in [26, 32] how to compute the K-theory of a graph
C∗-algebra using the Pimsner-Voiculescu exact sequence. In this subsection,
we show how this calculation interacts with the inclusion of C∗-algebras arising
from a covering of 1-graphs.
The K-theory computations for arbitrary graph C∗-algebras [12, 1] are some-
what more complicated than for the C∗-algebras of row-finite graphs with no
sources. Moreover, every graph C∗-algebra is Morita equivalent to the C∗-
algebra of a row-finite graph with no sources [12]. We therefore restrict out
attention here to the simpler setting.

Theorem 5.1. Let (E∗, F ∗, p,m, s) be a row-finite covering system of 1-graphs
with no sources. Let A,B be the vertex connectivity matrices of the underlying
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graphs E and F respectively. Then the diagram

(5.1)

0 K1(C∗(E∗)) ZE0 ZE0 K0(C∗(E∗)) 0

0K0(C∗(F ∗))ZF 0ZF 0K1(C∗(F ∗))0

1−At

1−Bt

(ιp,s)∗ m·p∗ m·p∗ (ιp,s)∗





.......................................................................

.......

.....

.......

.......

.....

.......................................................................

.......

.....

.......

.......

.....

.......................................................................

.......

.....

.......

.......

.....

.......................................................................

.......

.....

.......

.......

.....

commutes and the rows are exact.

The proof of this theorem occupies the remainder of Section 5.1. We fix, for the
duration, a finite covering p : F ∗ → E∗ of row-finite 1-graphs with no sources,
a multiplicity m and a cocycle s : F ∗ → Sm.
It is relatively straightforward to prove that the right-hand two squares of (5.1)
commute and that the rows are exact.

Lemma 5.2. Resume the notation of Theorem 5.1. We have (1 − Bt)p∗ =
p∗(1 − At), the right-hand two squares of (5.1) commute, and the rows are
exact.

Proof. For the first statement, consider a generator δv ∈ ZE0. We have
(
p∗ ◦ (1−At)

)
(δv) = p∗(δv −

∑

e∈vE1

δs(e)) =
∑

p(u)=v

δu −
∑

e∈vE1

∑

p(f)=e

δs(f).

On the other hand,
(
(1−Bt) ◦ p∗

)
(δv) = (1−Bt)

∑

p(u)=v

δu =
∑

p(u)=v

(
δu −

∑

f∈uF 1

δs(f)

)
.

Since p is a covering the double-sums occurring in these two equations each
contain exactly one term for each edge f ∈ F 1 such that p(r(f)) = v, and it
follows that the two are equal.
Multiplying by m throughout the above calculation shows that the middle
square of (5.1) commutes.
The identification of K0(C∗(E∗)) with coker(1 − At) takes the class of the
projection sv ∈ C∗(E∗) to the class of the corresponding generator δv ∈ ZE0

(see [30]). That the right-hand square commutes then follows from Proposi-
tion 3.2(6).
Exactness of the rows is precisely the computation of K-theory for 1-graph
C∗-algebras [8, 26, 32]. �

It remains to prove that the left-hand square of (5.1) commutes. The strategy
is to assemble the eight-term commuting diagrams which describe the K-theory
of each of C∗(E∗) and C∗(F ∗) (see equation (5.3) below) into a sixteen-term
diagram, one face of which is the left-hand square of (5.1). We then focus on
the cube in the sixteen-term diagram which contains left-hand square of (5.1)
as one of its faces, and show that the remaining five faces of this cube commute.
A diagram-chase then establishes that the sixth face commutes as well. The
majority of the work involved goes into defining the connecting maps needed
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to write down the sixteen-term diagram in the first place. The proof that the
various squares in it commute is then relatively straightforward.
To begin, we recall how one shows that the rows of (5.1) are exact. Let E∗×dZ
be the skew-product of E∗ by the length functor d (see [20, Section 5]). Let γ be
the gauge action of T on C∗(E∗) satisfying γz(se) = zse for e ∈ E1 and z ∈ T.
Let (iT, iC∗(E∗)) be the universal covariant representation of (C∗(E∗),T, γ) in
the crossed product C∗(E∗)×γT. By [32, Lemma 3.1], there is an isomorphism

(5.2) ψE : C∗(E∗ ×d Z)→ C∗(E∗)×γ T

satisfying ψE(s(λ,n)) = iT(z)niC∗(E∗)(sλ).

The C∗-algebra C∗(E∗ ×d Z) is AF with K0-group lim−→(ZE0, At) (see [26, 32]).

Hence one may apply the dual Pimsner-Voiculescu sequence [4, Section 10.6]
to the crossed product algebra C∗(E∗)×γ T to show that the top row of (5.1)
is exact (the bottom row is the same after replacing E with F ).
From the point of view of coverings, the skew-product graphE∗×dZ and its C∗-
algebra are more natural to work with than the crossed product C∗(E∗)×γ T.
Before proving that the final square of (5.1) commutes, we therefore detail first
how coverings p : F ∗ → E∗ interact with the isomorphisms ψE : C∗(E∗×dZ)→
C∗(E∗)×γ T.

Lemma 5.3. With the above notation, let E∗ ×d Z and F ∗ ×d Z be the skew-
product graphs by the length functors d, and let ψE and ψF be the isomorphisms
described in (5.2). Let γE and γF denote the gauge actions of T on C∗(E∗)
and C∗(F ∗).

(1) the formulae p̃(λ, n) := (p(λ), n) and s̃(λ, n) := s(λ) determine a covering
p̃ : F ∗ ×d Z→ E∗ ×d Z and a cocycle s̃ : F ∗ ×d Z→ Sm.

(2) the inclusion ιp,s : C∗(E∗) → Mm(C∗(F ∗)) is equivariant in the ac-
tions γE and idm⊗γF , and induces an inclusion ι̃p,s : C∗(E∗) ×γE T →
Mm(C∗(F ∗))×idm ⊗γF T.

(3) The following diagram commutes.

C∗(E∗ ×d Z) Mm(C∗(F ∗ ×d Z))

C∗(E∗)×γE T Mm(C∗(F ∗))×idm ⊗γF T

..............................................

.......

..
.......
.......
..ψE

..............................................

.......
..
.......
.......
..idm ⊗ψF

.......................................................................... ................

....................................................................................................................... ................
ιp̃,s̃

gιp,s

Proof. (1) It is straightforward to check that p̃ is a covering. To see that s̃

is a cocycle, note that (µ,m) and (ν, n) are composable in the skew-product
precisely when µ and ν are composable, and n = m−d(ν). So for i ∈ {1, . . . ,m}
we may calculate

s̃(µ,m)(s̃(ν,m− d(ν))i) = s(µ)(s(ν)i) = s(µν)i = s̃(µν,m− d(ν))i.

(2) That ιp,s is equivariant in γE and idm⊗γF follows from Proposition 3.2(5).
That it induces the desired inclusion ι̃p,s of crossed-products follows from the
universal properties of the crossed-product algebras.
(3) That the diagram commutes follows from a simple calculation using the
definitions of the maps involved. �
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Proof of Theorem 5.1. Lemma 5.2 establishes everything except that the left-
hand square in the diagram (5.1) commutes. To establish this last claim, recall
from [32, Theorem 3.2] (see also [26]) that there is a homomorphism φE :
ZE0 → K0(C∗(E∗) ×γE T) satisfying φE(δv) = [iT(1)iC∗(E∗)(sv)]. Moreover,
the rows of the following commutative diagram are exact and the left- and
right-most vertical maps are isomorphisms (see [30, Lemma 7.15], [26]).

(5.3)

0.................................... ............... ker(1 − At)................................................................................................... ............... ZE0......................................................................................................................................................................................................... ...............
1−At

ZE0..................................................................................... ............... coker(1 − At).................................. ............... 0

0.................................. ............... K1(C
∗(E∗))................................ ............... K0(C

∗(E∗)×γET) .............................................................. ...............
1−γ̂−1

∗ K0(C
∗(E∗)×γET) ................................ ............... K0(C

∗(E∗)).............................................. ............... 0

...............................................................

.......
.
.......
.......
.
∼=

...............................................................

.......
.
.......
.......
.
φE

...............................................................

.......
.
.......
.......
.
φE

...............................................................

.......
.
.......
.......
.
∼=

A similar commutative diagram holds for F ∗, and using the standard isomor-
phism of K∗(Mm(C∗(F ∗))) with K∗(C∗(F ∗)), we may assemble these two di-
agrams can into a single three-dimensional diagram by connecting each term
in the diagram for E∗ to the corresponding term in the diagram for F ∗ using
the appropriate maps induced from (p, s). The map connecting the K0-groups
of the skew-product graph algebras is induced from the connecting map in
the bottom row of the commuting diagram in Lemma 5.3(3) by applying the
K-functor and using the canonical isomorphisms

K∗(Mm(C∗(F ∗)×γF T)) ∼= K∗(C
∗(F ∗)×γF T) and

Mm(C∗(F ∗)×γF T) ∼= Mm(C∗(F ∗))×idm ⊗γF T.

Let η denote the unlabelled inclusion K1(C∗(F ∗)) →֒ K0(C∗(F ∗) ×γF T)) in
the bottom row of the diagram of the form (5.3) for F ∗. Notice that injectivity
of the map m ·p∗ : ZE0 → ZF 0 together with the first statement of Lemma 5.2
ensures that m · p∗ restricts to a map from ker(1−At) to ker(1−Bt); abusing
notation, we denote this map m · p∗ too. With this notation the diagram (5.4)
below is the left-hand cube of the three-dimensional diagram described in the
previous paragraph.

(5.4)

ker(1−At)
........................................................................................................................................................

....
................

m·p∗

ker(1−Bt)

K1(C∗(E∗))
........................................................................................................................................................

....
................

(ιp,s)∗

K1(C∗(F ∗))

....................................................................................................................................................................

.......
..
.......
.......
..

∼=
....................................................................................................................................................................
.......
..
.......
.......
..

∼=

............................................................................................................................................................................................................................... ..........................

............................................................................................................................................................................. ................

............................................................................................................................................................................................................................... .........................

.

............................................................................................................................................................................. ................
η

ZE0
........................................................................................................................................................

....
................

m·p∗

ZF 0

K0(C∗(E∗)×γE T)
........................................................................................................................................................

....
................

(gιp,s)∗

K0(C∗(F ∗)×γF T)

....................................................................................................................................................................

.......

..
.......
.......
..

φE

....................................................................................................................................................................

.......
..
.......
.......
..

φE

We have shown the whole cube because we prove that the left-hand face —
which is none other than the left-hand square of (5.1) — commutes by showing
that the other five faces commute.
To see why this suffices, suppose that the other five faces do indeed commute.
Since η is an injection by the exactness of the rows of (5.3), we just need to
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show that the two maps from ker(1 − At) into K0(C∗(F ∗) ×γ T)) obtained
from the maps in the left-hand face of the cube followed by η agree. A diagram
chase shows that this is the case.
It therefore remains only to show that the top, bottom, front, back and right-
hand faces of (5.4) commute. The top square commutes by definition. The
bottom square commutes by the naturality of the dual Pimsner-Voiculescu
exact sequence (see the argument at the beginning of [32, Section 3]). The
back and front faces commute because (5.3) commutes.
To see that the right-hand face commutes, recall that C∗(E∗ ×d Z) is AF
with K0-group lim−→(ZE0, 1 − At). Hence there is an inclusion εE : ZE0 →
K0(C∗(E∗×dZ)) which takes δv to the K0-class of the vertex projection s(v,0),
and likewise for F . Consider the map ψE defined in (5.2) and the map φE
appearing in (5.3). It is clear that φE = (ψE)∗ ◦ εE and similarly for F . So it
suffices to show that the following diagram commutes.

(5.5)

ZE0 ZF 0

K0(C∗(E∗ ×d Z)) K0(C∗(F ∗ ×d Z))

K0(C∗(E∗)×γE T) K0(C∗(F ∗)×γF T)

..........................................................

.......

..
.......
.......
..

εE

..........................................................

.......

..
.......
.......
..

εF

..........................................................

.......

..
.......
.......
..

(ψE)∗

...................................................

.......

..
.......
.......
..(ψF )∗

.................................................................................................................................................................................................................................................................................................... ................
m·p∗

.................................................................................................................................................... ................
(ιp̃,s̃)∗

.............................................................................................................................................. ................
(gιp,s)∗

If one applies the K-functor to all terms and maps in the diagram of
Lemma 5.3(3), and then applies the natural isomorphism

K∗(Mm(C∗(E∗)×γE T)) ∼= K∗(C
∗(E∗)×γE T)

to the terms on the right, one obtains precisely the bottom rectangle of (5.5).
The bottom rectangle of (5.5) therefore commutes by naturality of the K-
functor together with Lemma 5.3(3).
To see that the top rectangle of (5.5) commutes, recall that εE takes the image
of the point-mass δv in the direct limit lim−→(ZE0, At) to the class of the projec-
tion s(v,0). The image of s(v,0) under the homomorphism ιp̃,s̃ is the diagonal ma-
trix in Mm(C∗(F ∗×dZ)) whose diagonal entries are all equal to

∑
p(w)=v s(w,0).

Under the standard isomorphism K0(Mm(C∗(F ∗ ×d Z))) ∼= K0(C∗(F ∗ ×d Z)),
we therefore obtain the following equality in K0(C∗(F ∗ ×d Z)):

[ιp̃,s̃(s(v,0))] =
∑

p(w)=v

m · [s(w,0)] = m ·
( ∑

p(w)=v

[s(w,0)]
)
.

Using once again the characterisation of the maps εE and εF , we see that this
is precisely the statement that the bottom rectangle of (5.5) commutes. �

5.2. Coverings of higher-rank graphs and Kasparov’s spectral se-
quence theorem. We turn to the case where k > 1. We invoke the K-theory
computations of [14] which are based on Kasparov’s spectral sequence theorem
for the computation of the K-theory of crossed products by groups for which
the Baum-Connes conjecture holds (see [18, Theorem 6.10], [14, Lemma 3.3]
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and [35]). We are grateful to Gennadi Kasparov for pointing out that the
spectral sequence is natural.
The standard notation for spectral sequences is that a spectral sequence
(Er, dr) has terms Erp,q and differentials dr : Erp,q → Erp−r,q+r−1 where r > 0
and p, q ∈ Z. This however is problematic in the current situation because p
clashes with our notation for a covering map. To avoid this, we replace the
indexing variables p, q in the spectral sequence with a, b. That is, our spectral
sequences have terms Era,b and differentials dr : Era,b → Era−r,b+r−1 where r > 0
and a, b ∈ Z.
Since each higher rank graphC∗-algebraC∗(Λ) is Morita equivalent to a crossed
product by Zk [21, Theorem 5.6], Kasparov’s result applies to give a spectral
sequence which converges to K∗(C∗(Λ)) with E2 terms given by the homology
of Zk with appropriately chosen coefficients. In [14] Evans computes these
homology groups using a resolution related to the Koszul complex. It follows
that the above spectral sequence may be extended so that the terms of the
resolution become the terms E1

a,b for b even.
The main result of this subsection is to show that given a finite covering p :
Γ → Λ of row-finite k-graphs with no sources, a multiplicity m and a cocycle
s : Γ → Sm, there is a natural morphism of spectral sequences defined on E1

terms using m · p∗ : ZΛ0 → ZΓ0 which is compatible (see [41, p. 126]) with
(ιp,s)∗ the induced map on K-theory. This result is specialised to the case
k = 2 with a view to applications in Section 6.
The following is an immediate Corollary of [18, Theorem 6.10] (see [14,
Lemma 3.3] and [35]). For more detail on spectral sequences used in this
context, see [35, 14].

Proposition 5.4. Let F be a C∗-algebra and let α : Zk → AutF be an
action of Zk on F . Then there is a spectral sequence (Er , dr) with dif-
ferentials dr : Era,b → Era−r,b+r−1 which converges to K∗(F ×α Zk) with

E2
a,b = Ha(Zk,Kb(F)). Moreover, the spectral sequence is natural with respect

to equivariant maps of C∗-algebras.

Proof. As noted in the proof of [14, Lemma 3.3] this follows immediately from
[18, Theorem 6.10] since Zk is amenable and the Baum-Connes conjecture
is known to hold for amenable groups [16, Theorem 1.1], so the γ part of
K∗(F ×α Zk) exhausts. The naturality of the spectral sequence with respect
to equivariant maps follows from the construction in the proof of [18, Theorem
6.10], since every step is functorial. �

Naturality means that given Zk actions αi on Fi, a Zk-equivariant map ϕ :
F1 → F2 induces a morphism of spectral sequences and this morphism is
compatible with

ϕ̂∗ : K∗(F1 ×α1 Zk)→ K∗(F2 ×α2 Zk)

where ϕ̂ : F1 ×α1 Zk → F2 ×α2 Zk is the natural map.
Evans applies this when F = FΛ is the crossed product C∗(Λ)×γ Tk of C∗(Λ)
by the gauge action, and α is the dual action γ̂ of Zk. Hence, by Takai duality
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we have K∗(C∗(Λ)) = K∗(FΛ×αZk). In this case we have more specific results
(see [14, Lemma 3.3]):

E2
a,b =

{
Ha(Zk,K0(FΛ)) if 0 ≤ a ≤ k and b is even,

0 otherwise.

In [14, Theorem 3.14]), Evans shows that these homology groups may be
computed as the homology of the complex DΛ

∗ =
∧∗

Zk ⊗ ZΛ0. That is,
DΛ
a =

∧a
Zk ⊗ZΛ0 for 0 ≤ a ≤ k and DΛ

a = 0 for a > k. For 1 ≤ j ≤ k let Mj

denote the vertex connectivity matrix of the coordinate graph (Λ0,Λej , r, s).
For 1 ≤ a ≤ k define the differential ∂a : DΛ

a → DΛ
a−1 by

∂a(ǫi1 ∧ · · · ∧ ǫia ⊗ ev) =

a∑

j=1

(−1)j+1ǫi1 ∧ · · · ∧ ǫ̂ij ∧ · · · ∧ ǫia ⊗ (1−M t
j )ev

where ǫ1, . . . , ǫk constitute the canonical basis for Zk, 1 ≤ i1 < · · · < ia ≤ k
and v ∈ Λ0. It is straightforward to verify that DΛ

∗ is a complex. The first part
of the following theorem is a restatement of [14, Theorem 3.15]).

Theorem 5.5. Fix k > 1. Let Λ be a row-finite k-graph with no sources.
With notation as above there is a spectral sequence (Er, dr) with differentials
dr : Era,b → Era−r,b+r−1 which converges to K∗(C∗(Λ)) = K∗(FΛ ×α Zk) with

E1
a,b = DΛ

a :=
∧a

Zk ⊗ ZΛ0,

if 0 ≤ a ≤ k and b is even, and 0 otherwise. The differential d1 : E1
a,b → E1

a−1,b

is given by ∂a if b is even.
Let (Λ,Γ, p,m, s) be a row-finite covering system of k-graphs with no sources.
There is a morphism f of spectral sequences which is compatible with (ιp,s)∗ :
K∗(C∗(Λ))→ K∗(C∗(Γ)) such that f1 : DΛ

a → DΓ
a is given by id⊗(m · p∗).

Proof. Evans computes the homology groups using a Koszul complex (see [41,
§4.5]). Set G = Zk = 〈s1, . . . sk〉, R = ZG and let I be the ideal in R generated
by {1− s−1

a : 1 ≤ a ≤ k}. Let ǫ1, . . . , ǫk constitute the canonical basis for Rk.

For each a, define ∂a :
∧aRk → ∧a−1Rk as follows: for 1 ≤ i1 < · · · < ia ≤ k

so that ǫi1 ∧ · · · ∧ ǫia ∈
∧a

Rk, define

∂a(ǫi1 ∧ · · · ∧ ǫia) =
a∑

j=1

(−1)j+1(1− sj−1)ǫi1 ∧ · · · ∧ ǫ̂ij ∧ · · · ∧ ǫia

where the symbol “ ·̂ ” denotes deletion of an element (note that ∂1(ǫi) =
1− s−1

i ).
Then R/I ∼= Z and the following sequence of R-modules is exact (see [41,
Corollary 4.5.5])

0→
∧k

Rk → · · · →
∧1

Rk →
∧0

Rk → Z→ 0.

Note that
∧0

Rk = R and
∧a

Rk is a free R-module with basis

{ǫi1 ∧ · · · ∧ ǫia : 1 ≤ i1 < · · · < ia ≤ k}.
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Hence,
∧∗

Rk yields a projective resolution of Z. Thus, by [6, §III.1] we have

H∗(G,K0(FΛ)) ∼= H∗(
∧∗

Rk ⊗G K0(FΛ)).

We follow Evans here but have adopted slightly different notation to make
naturality more apparent (see [14, Definition 3.11] and following). Under the
isomorphism

∧aRk ⊗G K0(FΛ) ∼=
∧a

Zk ⊗ K0(FΛ) (as abelian groups), the

boundary map ∂a :
∧a

Zk ⊗K0(FΛ)→ ∧a−1
Zk ⊗K0(FΛ) is given by

∂a(ǫi1 ∧ · · · ∧ ǫia ⊗ x) =

a∑

j=1

(−1)a+1ǫi1 ∧ · · · ∧ ǫ̂ij ∧ · · · ∧ ǫia ⊗ (1− sj)x

where 1 ≤ i1 < · · · < ia ≤ k and x ∈ K0(FΛ).
Let DΛ

a be given as above. There is a natural map εΛ : C0(Λ0) →֒ FΛ which
induces a map εΛ∗ : ZΛ0 → K0(FΛ). Moreover (see [14, Theorem 3.14]) the
natural map

id⊗εΛ∗ :
∧∗

Zk ⊗ ZΛ0 →
∧∗

Zk ⊗K0(FΛ)

is a map of complexes which induces an isomorphism on homology and hence

H∗(G,K0(FΛ)) ∼= H∗(
∧∗

Zk ⊗ ZΛ0).

Therefore, setting

E1
a,b =

{∧a
Zk ⊗ ZΛ0 if 0 ≤ a ≤ k and b is even,

0 otherwise

and defining d1 : E1
a,b → E1

a−1,b to be ∂a if b is even (and 0 otherwise), yields

E2
a,b
∼=
{
Hp(G,K0(FΛ)) if 0 ≤ a ≤ k and b is even,

0 otherwise.

It follows by [14, Lemma 3.3] that the spectral sequence converges to
K∗(C∗(Λ)) = K∗(FΛ ×α Zk) as required.
For the second part of the theorem, fix (Λ,Γ, p,m, s). The embedding ιp,s :
C∗(Λ)→Mm(C∗(Γ)) induces an embedding ι̃p,s : FΛ →Mm(FΓ). Functorial-
ity yields a map of complexes

id⊗(ι̃p,s)∗ :
∧∗

Zk ⊗K0(FΛ)→
∧∗

Zk ⊗K0(FΓ).

Since group homology is a covariant functor of its coefficient module we obtain
the functorial maps for each n = 0, 1, . . . , k

Hn((ι̃p,s)∗) : Hn(Zk,K0(FΛ))→ Hn(Zk,K0(FΓ)).

Then arguing as in Lemma 5.2 with p∗ : ZΛ0 → ZΓ0 defined as above we see
that

(1 − (MΓ
j )t)(m · p∗) = (m · p∗)(1− (MΛ

j )t)

for all j = 1, . . . , k. It follows that the natural map

id⊗(m · p∗) :
∧∗

Zk ⊗ ZΛ0 →
∧∗

Zk ⊗ ZΓ0
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is a map of complexes.
Arguing as in the proof of Theorem 5.1, we see that (ι̃p,s)∗ ◦ εΛ∗ = εΓ∗ ◦ (m · p∗),
so the map on homology induced by id⊗(m · p∗) coincides with the functorial
map above (under the identifications of the homology groups induced by id⊗εΛ∗
and id⊗εΓ∗ ). This combined with the naturality of Proposition 5.4 yields a
morphism f of spectral sequences compatible with the map

( ̂̃ιp,s
)
∗ : K∗(FΛ ×α Zk)→ K∗(FΓ ×α Zk)

such that f1 : DΛ
a → DΓ

a is given by id⊗(m · p∗). Under the identifications

K∗(C∗(Λ)) = K∗(FΛ×αZk) andK∗(C∗(Γ)) = K∗(FΓ×αZk), we have
( ̂̃ιp,s

)
∗ =

(ιp,s)∗. �

The following corollary is an immediate consequence of the above theorem
restricted to the case k = 2; for the first assertion see [14, Proposition 3.16]
and its proof (see also [35]).
Given a 2-graph Λ, recall that M1 and M2 denote the vertex connectivity
matrices of the coordinate graphs (Λ0,Λe1 , r, s) and (Λ0,Λe2 , r, s).

Corollary 5.6. Suppose that (Λ,Γ, p,m, s) is a row-finite covering system
of 2-graphs with no sources. With the notation of Theorem 5.5, the complex
DΛ
a =

∧a
Z2 ⊗ ZΛ0 may be written as follows:

(5.6) 0← ZΛ0 ∂1←− ZΛ0 ⊕ ZΛ0 ∂2←− ZΛ0 ← 0

where ∂1 = (1−M t
1, 1−M t

2) and ∂2 =

(
M t

2 − 1
1−M t

1

)
. We have E2

a,b = E∞a,b, and

K0(C∗(Λ)) ∼= coker∂1 ⊕ ker ∂2

K1(C∗(Λ)) ∼= ker ∂1/ Im∂2
∼= H1(Zk,K0(FΛ)).

(5.7)

Moreover, the following diagram commutes

(5.8)

0 ←−−−− ZΛ0 ∂Λ
1←−−−− ZΛ0 ⊕ ZΛ0 ∂Λ

2←−−−− ZΛ0 ←−−−− 0
ym·p∗

ym·p∗⊕m·p∗
ym·p∗

0 ←−−−− ZΓ0 ∂Γ
1←−−−− ZΓ0 ⊕ ZΓ0 ∂Γ

2←−−−− ZΓ0 ←−−−− 0

and by naturality induces (ιp,s)∗ : K∗(C∗(Λ))→ K∗(C∗(Γ)).

The inclusion of coker∂1 into K0(C∗(Λ)) obtained from (5.7) takes the equiva-
lence class (in the quotient group coker∂1 = ZΛ0/ Im(∂1)) of the generator δv
of ZΛ0 to the K0-class of the vertex projection [sv] in C∗(Λ). The proof of this
fact can be obtained from the proof of [14, Proposition 4.4]. We thank Gwion
Evans for pointing this out to us.
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5.3. Product coverings and the Künneth formula. In this section we
consider covering systems (Λn, pn) in which each k-graph Λn is a cartesian
product of two lower-dimensional graphs, and the covering maps pn respect
the product decomposition.
Recall from [20, Proposition 1.8] that given a k-graph (Λ, d) and a k′-
graph (Λ′, d′), the cartesian-product category Λ × Λ′ becomes a (k + k′)-
graph when we endow it with the degree functor d × d′ : (λ, λ′) 7→
(d(λ)1, . . . , d(λ)k, d

′(λ′)1, . . . , d′(λ′)k′ ).

Proposition 5.7. Fix k, k′ ∈ N \ {0}. Let (Λ,Γ, p,m, s) and (Λ′,Γ′, p′,m′, s′)
be row-finite covering systems of k- and k′-graphs with no sources. Then

p× p′ : Γ× Γ′ → Λ× Λ′

is a finite covering of row-finite (k + k′)-graphs with no sources. Let f :
{1, . . . ,m} × {1 . . . ,m′} → {1, . . . ,mm′} denote the bijection f(j, j′) :=
j + (j′ − 1)m. There is a cocycle s × s′ : Γ × Γ′ → Smm′ determined by(
(s × s′)(α, α′)

)
f(j, j′) := f

(
s(α)j, s′(α′)j′

)
. Moreover, the following diagram

commutes.

C∗(Λ× Λ′)
∼=−−−−→ C∗(Λ)⊗ C∗(Λ′)

yιp×p′,s×s′

yιp,s⊗ιp′,s′

Mmm′(C∗(Γ× Γ′))
∼=−−−−→ Mm(C∗(Γ))⊗Mm′(C∗(Γ′))

Suppose that at least one of K∗(C∗(Λ)), K∗(C∗(Λ′)) and at least one of
K∗(C∗(Γ)), K∗(C∗(Γ′)) are torsion-free. Then the following diagram com-
mutes and the horizontal connecting maps are zero-graded isomorphisms:

K∗(C∗(Λ))⊗K∗(C∗(Λ′))
∼=−−−−→ K∗(C∗(Λ× Λ′))

y(ιp,s)∗⊗(ιp′,s′ )∗

y(ιp×p′,s×s′ )∗

K∗(C∗(Γ))⊗K∗(C∗(Γ′))
∼=−−−−→ K∗(C∗(Γ× Γ′))

If Γ0 and (Γ′)0 (and hence also Λ0 and (Λ′)0) are finite then the C∗-algebras
are unital, and the horizontal isomorphisms take [1]⊗ [1] to [1].

Proof. It is straightforward to check that p×p′ is a covering using the properties
of the covering maps p and p′ and the definition of the cartesian-product graph.
A simple calculation shows that s× s′ defines a cocycle.
Theorem 5.5 of [20] shows that C∗(Λ), C∗(Λ′), C∗(Γ) and C∗(Γ′) are nuclear,
and so there is just one tensor-product C∗-algebra C∗(Λ) ⊗ C∗(Λ′). Corol-
lary 3.5(iv) of [20] shows that the map s(λ,µ) 7→ sλ ⊗ sµ is an isomorphism of
C∗(Λ×Λ′) onto C∗(Λ)⊗C∗(Λ′), and similarly for C∗(Γ) and C∗(Γ′). It is easy
to check using the formulae for the maps ιp,s, ιp′,s′ , and ιp×p′,s×s′ and using
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the chain of isomorphisms

Mmm′(C∗(Γ× Γ′)) ∼= Mmm′(C)⊗ C∗(Γ× Γ′)
∼= Mm(C)⊗ C∗(Γ)⊗Mm′(C)⊗ C∗(Γ′)
∼= Mm(C∗(Γ))⊗Mm′(C∗(Γ′))

that the first diagram commutes.
In the presence of the additional hypothesis concerning torsion-free K-groups,
the Künneth Theorem of [37] (see also Theorem 23.1.3 of [4]) implies: (1) that

K∗(C
∗(Λ))⊗K∗(C∗(Λ′)) ∼= K∗(C

∗(Λ)⊗ C∗(Λ′))
and similarly for Γ,Γ′; (2) that these isomorphisms are natural and are zero-
graded; and (3) that these isomorphisms take [1]⊗[1] to [1]. The result therefore
follows from the naturality of the K-functor. �

Note that in general when no assumption is made about torsion, the Künneth
Theorem of [37] gives a short exact sequence which is still natural. The ana-
logue of Proposition 5.7 still holds and gives a (fairly complicated) commuting
diagram in which the rows are short exact sequences.

6. Examples

In this section we discuss a number of examples. A recurring theme will be
supernatural numbers and the associated dimension groups, so we pause here
to establish some notation.
We will think of a supernatural number as an infinite product α =

∏∞
n=1 αn

where each αn is an integer greater than 1. Any two such expressions in which
the same prime factors occur with the same cardinality correspond to the same
supernatural number. Given supernatural numbers α, β, we will abuse notation
and write αβ for the supernatural number

∏∞
n=1 αnβn. We write α[1, n] for

the product
∏n
i=1 αi of the first n terms in α.

For z1, . . . , zn ∈ C, we write Z[z1, . . . , zn] for the ring obtained by adjoining
z1, . . . , zn to Z; we regard Z[z1, . . . , zn] as a group under addition. Abusing
notation, for a supernatural number α, we write Z

[
1
α

]
for the dimension group

lim−→(Z,×αn) which we identify with the group

∞⋃

n=1

Z
[ 1

α[1, n]

]
⊂ Q

consisting of all fractions p/q where p, q ∈ Z, and q is a divisor of some α[1, n].

6.1. Rank-2 Bratteli diagrams. A rank-2 Bratteli diagram is a 2-graph
in which the blue edges form a Bratteli diagram and the red edges determine
simple cycles so that every vertex lies on precisely one red cycle, and all vertices
on a given red cycle are at the same level in the blue Bratteli diagram.
The C∗-algebras of these 2-graphs were studied in [27] and provided the initial
motivation for the covering construction. A rank-2 Bratteli diagram Λ can be
constructed using Proposition 2.14 and Corollary 2.15 precisely when the length
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of each red cycle at level n of Λ is divisible by the lengths of all the cycles at
level n− 1 to which it connects. In particular, the 2-graphs whose C∗-algebras
are Morita equivalent to the Bunce-Deddens algebras [27, Example 6.7] and
the irrational rotation algebras [27, Example 6.5] arise in this fashion.

6.2. Coverings of dihedral graphs Dn. For n ∈ N \ {0}, let Dn be the
directed graph with n vertices {v0, . . . , vn−1} and edges {xi, yi : 0 ≤ i ≤ n− 1}
where r(xi) = vi = s(yi) and s(xi) = vi+1 = r(yi) (throughout this section,
addition in the subscripts is understood to be evaluated modulo n). More
descriptively, Dn is a ring of n vertices, each of which connects to both of its
neighbours (see Figure 2). Let D∗n be the path-category of Dn, regarded as a
1-graph. Note that for n ∈ N \ {0}, the graph D2n is the Cayley graph for the
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Figure 2. The 1-graph Dn

dihedral group with 2n elements.

Example 6.1. For n,m ≥ 1 there are m-fold covering maps pn,mn : D∗mn → D∗n
as follows: for 0 ≤ i ≤ mn− 1 let i′ = i mod n and define

pn,mn(vi) := vi′ , pn,mn(xi) := xi′ and pn,mn(yi) := yi′ .

Hence for each pair of positive integers n,m, we obtain a row-finite covering
system (D∗n, D

∗
mn, pn,mn) of 1-graphs with no sources (see Notation 2.8).

Fix an infinite supernatural number α =
∏∞
i=1 αi. Consider the sequence of

covering systems (D∗6α[1,n], D
∗
6α[1,n+1], p6α[1,n],6α[1,n+1])

∞
n=1 as in Notation 2.8.

Applying Corollary 2.11, we obtain a 2-graph

D := lim
↽−(D∗6α[1,n], p6α[1,n],6α[1,n+1]).

Proposition 6.2. Consider the situation discussed in Example 6.1. We have
K0(C∗(D)) = Z[ 1

α ] ⊕ Z[ 1
α ] and K1(C∗(D)) = Z ⊕ Z. Let P1 :=

∑
v∈D0

6
sv.

Then [P1] is the 0 element of K0(P1C
∗(D)P1). Moreover, C∗(D) is simple

and purely infinite.

Before proving the proposition, we describe the K-theory of C∗(D∗n) in general.

Lemma 6.3. (1) K0(C∗(D∗n)) is generated by [sv0 ] and [sv1 ], and for each i, we
have [svi ] = −[svi+3 ] in K0(C∗(D∗n)).

(2) K1(C∗(D∗n)) ∼= {(a1, . . . , an) ∈ Zn : ai+2 = ai+1 − ai for all i}.
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(3) the following table describes the K-theory of each C∗(D∗n).

n mod 6 K0(C∗(D∗n)) K1(C∗(D∗n))

0 Z2 Z2

1 0 0
2 Z/3Z 0
3 Z/2Z⊕ Z/2Z 0
4 Z/3Z 0
5 0 0

Proof. (1) The K0 group is generated by the classes [sv0 ], . . . , [svn−1 ] subject to
the relations [svi ] = [svi+1 ]+ [svi−1]. This relation forces [svi+2 ] = [svi+1 ]− [svi ],
from which we conclude first that K0 is generated by [sv0 ] and [sv1 ] and second
that

[svi+3 ] = [svi+2 ]− [svi+1 ] = ([svi+1 ]− [svi ])− [svi+1 ] = −[svi ].

(2) Let An denote the vertex connectivity matrix of Dn; so An(i, j) = 1
when i = j ± 1 (mod n) and zero otherwise. As in Theorem 5.1, we have
K1(C∗(D∗n)) ∼= ker(1−Atn). For m ∈ Zn, ((1−Atn)m)i = −mi−1 +mi −mi+1

by definition of An, and this establishes (2).
(3) If E is a finite 1-graph with no sinks or sources, then C∗(E) is isomorphic to
the Cuntz-Krieger algebra of the adjacency matrix AE of E [23]. In particular,
K1(C∗(E)) is torsion-free and has the same rank as K0(C∗(E)) [9]. Hence it
suffices to verify that the first column of the table is correct. To calculate K0,
we use (1) to check by hand that the cases n = 1, 2, . . . 6 are as claimed. If
n > 6, then applying the relations we find that [svi+6 ] = [svi ] for all i which
accounts for all remaining cases. �

Proof of Proposition 6.2. Lemma 6.3(1) shows that K0(C∗(D∗6α[1,n]) is gener-

ated by [svn
0

] and [svn
1

] where the vni are the vertices of D∗6α[1,n]. Fix i ∈ {1, 2}.
We have

(6.1) (ιpn )∗[svn
i

] = [svn+1
i

] + [svn+1
i+6α[1,n]

] + · · ·+ [svn+1
i+6(αn+1−1)α[1,n]

].

By Lemma 6.3(1), each [svn+1
i +6k] = [svn+1

i
] in K0(C∗(D∗6α[1,n+1])), so (6.1)

implies (ιpn )∗[svn
i

] = αn · [svn+1
i

]. Hence K0(ιpn ) : Z2 → Z2 is multiplication

by αn.
Fix m ∈ N \ {0}. By Lemma 6.3(2), K1(C∗(D∗6m)) is identified with the
set of sequences (a1, . . . , a6m) which satisfy ai+2 = ai+1 − ai for all i. By
Lemma 6.3(2), this forces ai+2 = ai+1 − ai for all i. Consequently, the map
a = (a1, . . . , a6m) 7→ (a1, a2) yields an isomorphism ζm : K1(C∗(D∗6m)) → Z2.
As ζα[1,n+1] ◦K1(ιp6α[1,n],6α[1,n+1]

) = ζα[1,n], it follows that K1(ιpn ) : Z2 → Z2

is the identity map.
Recall that D denotes lim

↽−(D∗6α[1,n], p6α[1,n],6α[1,n+1]). By Theorem 5.1 the K-

groups of C∗(D) are as claimed. To compute the class of the identity, let
P1 ∈ C∗(D) be the sum of the six vertex projections in the bottom level. The
final statement of Lemma 6.3(1) shows that the classes of the vertex projections
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in K0(C∗(D∗6)) cancel, so that the class of the identity in K0(C∗(D∗6)) is the
zero element. It follows that the class of the identity P1 in K0(P1C

∗(D)P1) is
also the zero element.
Each D∗n is aperiodic and cofinal (see Definition 4.2), so we may conclude
from Corollary 4.4 and Lemma 4.7 that D is aperiodic and cofinal. Hence
Proposition 4.8 of [20] implies that C∗(D) is simple. The path x1y1 is a cycle
with an entrance (namely y0) in D∗1 . Proposition 4.8 now shows that C∗(D) is
purely infinite. �

6.3. Direct limits of On ⊗ C(T).

Example 6.4. Fix n ≥ 3, and let Bn be the bouquet of n loops. For m ≥ 1,
let Lm denote the loop with m vertices, and let Λm be the cartesian-product
2-graph Λm = L∗(n−1)m ×B∗n obtained from the path categories of L(n−1)m and

Bn.
For each m, Let pm denote the obvious (n − 1)-fold covering of L∗(n−1)m by

L∗(n−1)m+1 , and let p′ be the identity covering of Bn by Bn.

Proposition 6.5. Consider the situation of Example 6.4. Let v be a vertex of
Λ1. Then svC

∗(lim
↽−(Λm, pm × p′))sv is isomorphic to the Kirchberg algebra Pn

(see [5]) whose K-theory is opposite to that of On.
Proof. Since C∗(Bn) is generated by n isometries whose range projections sum
to the identity, C∗(Bn) is canonically isomorphic to On [7]. Hence

C∗(Λm) ∼= C∗(L∗(n−1)m)⊗On
by [20, Corollary 3.5(iv)]. As in [17, Lemma 2.4], there is an isomor-
phism C∗(L∗(n−1)m) ∼= M(n−1)m(C(T)) for each m, and in particular we have

K∗(C∗(L∗(n−1)m)) ∼= (Z,Z). Since K∗(On) = (Z/(n− 1)Z, 0) [9], the Künneth

theorem implies that K∗(C∗(Λm)) ∼= (Z/(n− 1)Z,Z/(n− 1)Z).
A special case of [27, Equation (4.7)] implies that the covering map pm induces
multiplication by n− 1 from K0(C∗(L∗(n−1)m)) to K0(C∗(L∗(n−1)m+1)), and the

identity homomorphism fromK1(C∗(L∗(n−1)m)) to K1(C∗(L∗(n−1)m+1)). Clearly

p′ induces the identity map on K∗(On).
Let Λ = lim

↽−(Λm, pm × p′). Theorem 3.8 and Proposition 5.7 combine to show
that

K∗(C
∗(Λ)) ∼= lim−→((Z/(n− 1)Z,Z/(n− 1)Z), (×(n− 1), id)).

Since multiplication by n − 1 is the 0 homomorphism from Z/(n − 1)Z to
Z/(n− 1)Z, it follows that K∗(C∗(Λ)) ∼= (0,Z/(n− 1)Z).
Lemma 4.7 proves that Λ is cofinal. For an infinite path y ∈ Λ∞, Lemma 4.5
combined with the observation that the cycles in the L∗(n−1)m grow with m

shows that if a, b ∈ N3 and σa(y) = σb(y), then a and b differ only in their
first coordinates. It follows from Proposition 4.3 that the aperiodicity of Λ
is implied by the well-known aperiodicity of Bn. Hence C∗(Λ) is simple by
[20, Proposition 4.8]. Moreover, since every vertex of Λ hosts a cycle with an
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entrance, C∗(Λ) is also purely infinite (see [20, Proposition 4.9], [38, Proposi-
tion 8.8]). The result therefore follows from the Kirchberg-Phillips classification
theorem [28]. �

6.4. Higher-rank Bunce-Deddens algebras. In this subsection we de-
scribe a class of simple AT algebras with real-rank 0 which arise from sequences
of covering systems of 2-graphs and which cannot in general be obtained from
the construction of [27] (see Example 6.6 and Theorem 6.7). We indicate in
Remark 6.12 why we think of these algebras as higher-rank analogues of the
Bunce-Deddens algebras.
For k ≥ 1, let ∆k be the k-graph with vertices Zk, morphisms {(m,n) ∈
Zk×Zk : m ≤ n} where r(m,n) = m, s(m,n) = n and d(m,n) = n−m. There
is a free action of Zk on ∆k given by translation; that is m·(p, q) = (p+m, q+m)
for m ∈ Zk and (p, q) ∈ ∆k.
Given a finite-index subgroup H of Zk, we denote by ∆k/H the quotient of ∆k

by the action of H . That is, for q ∈ Nk, (∆k/H)q = {[g, g + q] : g ∈ Zk}; in
particular, (∆k/H)0 = {[g, g] : g ∈ Zk}, and we henceforth identify (∆k/H)0

with Zk/H via the map [g, g] 7→ [g] where [g] denotes the class g + H of g in
Zk/H . The range and source maps in ∆k/H are then given by r([g, g+q]) = [g]
and s([g, g + q]) = [g + q]. If H ′ ⊂ H is a finite-index subgroup of H , then it
also has finite index in Zk, and there is a natural surjection p : Zk/H ′ → Zk/H
which induces a finite covering map, also denoted p of ∆k/H by ∆k/H

′.
Most of the remainder of this section is concerned with the following example
of a sequence of covering systems.

Example 6.6. Let H1 ⊃ H2 ⊃ H3 ⊃ . . . be a chain of finite-index sub-
groups of Z2. For each n, let pn : ∆2/Hn+1 → ∆2/Hn be the canonical
covering induced by the quotient maps described above, let mn = 1, and let
sn : ∆2/Hn+1 → S1 be the trivial cocycle. This data specifies a sequence
(∆2/Hn,∆2/Hn+1, pn)∞n=1 of row-finite covering systems of 2-graphs with no
sources. Applying Corollary 2.11, we obtain a 3-graph lim

↽−(∆2/Hn; pn)). As

always, P1 denotes
∑

v∈(∆2/H1)0 sv ∈ C∗(∆2/H1) ⊂ C∗(lim
↽−(∆2/Hn; pn)).

Theorem 6.7. Consider the situation of Example 6.6.

(1) We have

K0(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼= lim−→(Z,×[Hn : Hn+1])⊕ Z,

and this isomorphism takes [P1] to (g, 0) where g is the image of [Z2 : H1]
in the direct limit lim−→(Z,×[Hn : Hn+1]).

(2) For each n the homomorphism from Z2 to Z2 determined by coordinate-
wise multiplication by the integer [Hn : Hn+1] restricts to a homomorphism
mHn,Hn+1 : Hn → Hn+1. Moreover,

K1(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼= lim−→(Hn,mHn,Hn+1).

(3) C∗(lim
↽−(∆2/Hn; pn)) is simple if and only if

⋂∞
n=1Hn = {0}, and is an AT

algebra with real-rank 0 when it is simple.
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The proof of this result will occupy the bulk of this section. Before presenting
it, we state a Corollary and use it to formulate some concrete examples.

Corollary 6.8. Consider the situation of Example 6.6. There are sequences
(hn1 )∞n=1 and (hn2 )∞n=1 in Z2 such that: (1) for each n, the elements hn1 and

hn2 generate Hn; and (2) the matrix Mn =
(
mn

1,1 m
n
1,2

mn
2,1 m

n
2,2

)
satisfying hn+1

1 =

mn
1,1h

n
1 + mn

1,2h
n
2 and hn+1

2 = mn
2,1h

n
1 + mn

2,2h
n
2 has positive determinant for

all n. Moreover, if M ca
n denotes the classical adjoint

(
mn

2,2 −mn
1,2

−mn
2,1 mn

1,1

)
of Mn for

each n, and if we regard these matrices as homomorphisms of Z2, then

(6.2) K1(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼= lim−→(Z2,M ca

n ).

Proof. That we can choose the hni so that the matrices Mn all have positive
determinant follows from an inductive argument based on the observation that
replacing hn+1

i with −hn+1
i reverses the sign of det(Mn).

For each n, let ψn be the isomorphism of Z2 onto Hn satisfying ψn(ei) = hni ,
and let mHn,Hn+1 : Hn → Hn+1 be the homomorphism described in Theo-
rem 6.7(2). We claim that ψn+1 ◦M ca

n = mHn,Hn+1 ◦ ψn.
To see this, observe that mHn,Hn+1 is multiplication by the determinant of Mn.

Hence, as rational transformations, m−1
Hn,Hn+1

◦M ca
n = M−1

n . Since mHn,Hn+1

commutes with ψn+1, the desired equality ψn+1 ◦ M ca
n = mHn,Hn+1 ◦ ψn is

therefore equivalent to ψn+1 = ψn ◦Mn, which follows from the definitions of
the maps involved. This establishes the claim.
The claim guarantees that lim−→(Hn,mHn,Hn+1) ∼= lim−→(Z2,M ca

n ), and (6.2) then

follows from Theorem 6.7(2). �

Examples 6.9. (1) Let α and β be supernatural numbers. For n ∈ N \ {0},
let φn be the homomorphism of Z2 determined by the diagonal matrix
Mn :=

( αn 0
0 βn

)
.

For each n, let

Hn := α[1, n]Z× β[1, n]Z = φn(Z2) ⊂ Z2.

We deduce from Theorem 6.7 that

K∗(P1C
∗(lim
↽−(∆2/Hn; pn))P1) =

(
Z
[

1
αβ

]
⊕ Z, Z

[
1
α

]
⊕ Z

[
1
β

])
,

that the position of the unit in K0 corresponds to the element (α1, 0), and
that P1C

∗(lim
↽−(∆2/Hn; pn))P1 is a simple AT algebra of real-rank 0.

We claim that this is an example of an AT algebra which cannot be
realised using a rank-2 Bratteli diagram as in [27]. To see this, suppose
otherwise. Then [27, Theorem 6.1] implies that there exists an injective
homomorphism φ : Z

[
1
α

]
⊕ Z

[
1
β

]
→ Z

[
1
αβ

]
⊕ Z such that each element of

coker(φ) has finite order. Hence there exists (x, y) ∈ Z
[

1
α

]
⊕Z

[
1
β

]
such that

φ(x, y) = (z,m) with m 6= 0. Since Z
[

1
α

]
⊕Z
[

1
β

]
is generated by elements of

the form (x, 0) and (0, y), we may in fact assume without loss of generality
that there is an element x ∈ Z

[
1
α

]
such that φ(x, 0) = (z,m). Since α is
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infinite, there exist n > m and x′ ∈ Z
[

1
α

]
such that n · x′ = x, and this

forces n · φ(x′, 0) = (z,m) which is impossible by our choice of n.
Since each ∆2/Hn

∼= L∗α[1,n] ×L∗β[1,n], the K-theory calculations for this

example can also be verified using the Künneth formula (Theorem 3.8 and
Proposition 5.7).

(2) Let φ be the homomorphism of Z2 determined by the integer matrix M :=(
a b
c d

)
. Suppose that M is diagonalisable as a real 2 × 2 matrix, and that

its eigenvalues are greater than 1 in modulus. Let D := ad − bc be the
determinant of M . For n ≥ 1, let Hn := MnZ2 and Λn := ∆2/Hn. Our
assumption regarding the eigenvalues of M ensures that

⋂∞
n=1Hn = {0}, so

Theorem 6.7 and Corollary 6.8 imply that C∗(lim
↽−(∆2/Hn; pn)) is a simple

AT algebra of real rank zero with

K∗(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼=

(
Z
[

1
D

]
⊕ Z, lim−→

(
Z2,

(
d −b
−c a

)) )
.

In particular, let M =
(
a −b
b a

)
with a2 + b2 > 1. We may identify Z2 with

the group of Gaussian integers Z[i] by (m,n) 7→ m+ in, and then the group
homomorphism of Z2 obtained from multiplication by M coincides with
the group homomorphism of Z[i] obtained from multiplication by a + ib.
Likewise M ca implements multiplication by the conjugate a − ib. With
D := a2 + b2 and ζ := 1

a−ib = a+ib
a2+b2 , we have

K∗(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼=

(
Z
[

1
D

]
⊕ Z, Z

[
i, 1
ζ

])
.

by Theorem 6.7.
(3) More generally, a sequence of Gaussian integers ζj := aj + bji with |ζj | > 1

for all j gives rise to a natural notion of a Gaussian supernatural number
ζ =

∏∞
j=1 ζj . Generalising the construction of the latter part of example (2)

above, let Hn := (
∏n
j=1 ζj)Z[i] for each n, and identify Z[i] with Z2 as a

group to obtain a decreasing chain of subgroups of Hn of Z2 with trivial
intersection.

Let α be the supernatural number α =
∏∞
j=1 |ζj |2. Then

K∗(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼=

(
Z
[

1
α

]
⊕ Z, Z

[
i, 1
ζ

])
.

by Theorem 6.7 and Corollary 6.8.

We now turn to the proof of Theorem 6.7; in particular, we adopt the notation
and conventions of Example 6.6. Our first step is to describe explicitly the
K-theory of C∗(∆2/Hn) for a fixed n ∈ N \ {0}. We do this using the results
of Section 5.2.
For q ∈ Zk we write q+ and q− for the positive and negative parts of q. That
is to say that q+ and q− are the unique elements of Nk whose coordinate-wise
minimum q+ ∧ q− is equal to 0, and which satisfy q = q+ − q−.
For q ∈ Zk, a cycle of degree q in a k-graph Λ is a pair (µ, ν) where µ ∈ Λq+

and ν ∈ Λq− such that r(µ) = r(ν) and s(µ) = s(ν). When q ∈ Nk, q = q+

Documenta Mathematica 13 (2008) 161–205



C∗-Algebras Associated to Coverings of k-Graphs 197

and q− = 0, so ν is a vertex, and µ is a cycle in the usual sense: a path whose
range and source coincide.
Let H ⊂ Z2 be a finite-index subgroup of Z2. Let G = Z2/H . We view the
ring ZG as the collection of functions f : G → Z. For X ⊆ G we denote the
indicator function of X by 1X . We denote the point-mass at g ∈ G by δg.
Let Λ := ∆2/H . Let E be the skeleton of Λ. That is E is the directed graph
with the same vertices as Λ, and edges Λe1∪Λe2 , with range and source inherited
from Λ. The degree map from Λ restricts to a map from E1 to {e1, e2}. As in
[31, 27] we call edges in E blue when they are of degree e1 in Λ, and red when
they are of degree e2. We often blur the distinction between concatenation of
edges in E and the corresponding factorisation of a path in Λ.
Recall that we are identifying Λ0 with G = Z2/H . Hence, given a path α =
a0a1 · · · an in E, we define functions f bα and f rα in ZG by

f bα(g) = #{0 ≤ j ≤ n : r(aj) = g, d(aj) = e1}
f rα(h) = #{0 ≤ k ≤ n : r(ak) = h, d(ak) = e2}.

The idea is that f bα(g) counts the number of blue edges in α whose range is g,
and f rα(g) does the same thing for red edges.
We define fα ∈ ZG⊕ZG by fα = f bα⊕ f rα. For a vertex g ∈ Λ0 = G, we define
f bg and f rg to be the zero element of ZG, and fg = f bg ⊕ f rg is then the zero
element of ZG ⊕ ZG.
As Λ = ∆2/H , for each g ∈ Λ0 = G there is a unique path [g, g + (1, 1)] of
degree (1, 1) with range g. Using the factorisation property, we can express this
path as bgrg+[e1] = rgbg+[e2] where rg and bg denote the unique red and blue

edges in E with range g (for n ∈ Z2, [n] denotes the class of n in the quotient
group G = Z2/H). We write zg for the function (δg+[e2] − δg) ⊕ (δg − δg+[e1])
in ZG⊕ ZG.
Given paths α = a0 · · · am and β = b0 · · · bn in the skeleton E of Λ such that
r(a0) = r(b0) and s(am) = s(bn), let fα,β := fα − fβ ∈ ZG ⊕ ZG. Fix
generators h1, h2 for H ; so [hi] = [0] in G. By definition of Λ, there are unique
paths µ+

1 ∈ Λ(h1)+ and µ−1 ∈ Λ(h1)− with r(µ±1 ) = 0. Fix factorisations α±1 of
µ±1 into edges from the skeleton E. Since

s(µ+
1 ) = [(h1)+] = [(h1)−] = s(µ−1 )

in G, the pair (µ+
1 , µ

−
1 ) is a cycle of degree h1 in Λ with range [0]. The same

construction for h2 gives a cycle (µ+
2 , µ

−
2 ) of degree h2 with range [0] and fixed

factorisations α±2 of µ±2 into edges from the skeleton E.

Lemma 6.10. With the notation established in the preceding paragraphs, the
chain complex (5.6) can be described as follows:

(1) for each g ∈ G, ∂1(δg ⊕ 0) = δg − δg+[e1], ∂1(0⊕ δg) = δg − δg+[e2], and

∂2(δg) = (δg+[e2] − δg)⊕ (δg − δg+[e1]) = zg.

(2) coker(∂1) ∼= Z is generated by δ0 + Im(∂1);
(3) ker(∂2) ∼= Z is generated by 1G;
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(4) For each h ∈ G, the set {zg : g ∈ G \ {h}} is a basis for Im(∂2) ∼= Z|G|−1.
(5) Fix any two factorisations α and β of a path µ in Λ into edges from E.

Then fα − fβ ∈ Im(∂2), and ∂1(fα) = ∂1(fβ) = δr(α) − δs(α).
(6) ker(∂1) is the subgroup of ZG ⊕ ZG generated by the elements fα,β where

α and β are paths in the skeleton E with r(α) = r(β) and s(α) = s(β).
(7) There is an isomorphism ψ of H onto ker(∂1)/ Im(∂2) which takes d(µ) −

d(ν) to fα,β + Im(∂2) for each cycle (µ, ν) in Λ and pair of factorisations
α of µ and β of ν. In particular, for any basis B for Im(∂2), the set
B ∪ {fα+

1 ,α
−
1
, fα+

2 ,α
−
2
} is a basis for ker(∂1) ∼= Z|G|+1 (where α±i are the

fixed factorisations of the paths µ±i of degree (hi)± described above).

In particular, K∗(C∗(Λ)) ∼= (Z2, H) where the class of the identity in K0 is
identified with the element (|G|, 0) of Z2.

Proof. (1) The adjacency matrix M1 associated to (Λ0,Λe1 , r, s) is the permu-
tation matrix determined by translation by [e1] in G and similarly for M2. The
first statement then follows from the formulae for ∂1 and ∂2 in terms of M1

and M2.
(2) The formulae for ∂1(δg⊕0) and ∂1(0⊕δg) show that δg+Im(∂1) = δg+[ei] +

Im(∂1) in coker(∂1) for i = 1, 2 and g ∈ G. Since the action of Z2 on G by
translation is transitive, this establishes (2).
(3) Using the formula for ∂2 established in (1), one can see that for f ∈ ZG,
∂2(f) = f1 ⊕ f2 where

f1(g) = −f(g) + f(g − [e1]) and f2(g) = f(g)− f(g − [e2])).

Hence f ∈ ker(∂2) if and only if f(g) = f(g − [e1]) = f(g − [e2]) for all g ∈ G,
and since the action of Z2 on G is transitive, this establishes (3).
(4) Part (1) establishes that Im(∂2) is generated by {zg : g ∈ G}. A simple
calculation shows that

∑
g∈G zg = 0 in ZG ⊕ ZG, and it follows that for any

h ∈ G, the set {zg : g ∈ G \ {h}} generates Im(∂2) ∼= Z|G|−1. Since ker(∂2) has
rank 1, the rank of its image is |G| − 1, establishing (4).
(5) By part (4), the image of ∂2 is generated by elements of the form fα − fβ
where α and β are the two possible factorisations of a path in Λ(1,1). Since
fαβ = fα + fβ when α and β are paths in E which can be concatenated, this
establishes the first claim. The second statement follows from a straightforward
calculation using that

(6.3) ∂1(f b ⊕ f r)(g) = f b(g)− f b(g − [e1]) + f r(g)− f r(g − [e2]).

(6) If α, β are paths in the skeleton with r(α) = r(β) and s(α) = s(β) then
fα,β belongs to ker(∂1) by (5).
We must show that every f ∈ ker(∂1) can be written as a Z-linear combination
of elements of the form fα,β. First note that it suffices to treat the case where f
takes only nonnegative values (this is because 1G⊕1G can be so expressed). So
suppose that f takes nonnegative values, and write f = f b⊕f r. Let Ef be the
directed graph with vertices G and which contains f b(g) parallel copies of the
blue edge in E with range g and f r(g) copies of the red edge in E with range
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g. If Ef contains a terminal vertex g which receives at least one edge but emits
no edges at all, then f b(g) + f r(g) 6= 0, but f b(g − [e1]) = f r(g − [e2]) = 0,
and (6.3) shows that ∂1(f)(g) 6= 0. Hence Ef contains no such vertex, and
therefore must either contain a cycle α or contain no edges at all. In the latter
case, the claim is trivial, and in the former case, f ≥ fα, and removing the cycle
α from Ef produces the graph Ef−fα for the function f − fα. After finitely
many such steps, we must obtain a forest with no terminal vertex. The only
such forest is the empty graph which corresponds to the function 0 ⊕ 0. That
is f −∑α∈L fα = 0⊕ 0 for some collection L of cycles, and this proves (6).
(7) Suppose that (µ, ν) is a cycle in Λ. Then

s(µ)− [d(µ)] = r(µ) = r(ν) = s(ν)− [d(ν)] = s(µ)− [d(ν)]

in G = Λ0 = Z2/H , so d(µ) − d(ν) ∈ H . It is clear from the definition of Λ
that each element of H arises as d(µ)− d(ν) for some cycle (µ, ν) in Λ.
To see that the assignment d(µ) − d(ν) 7→ fα,β + Im(∂2) is well defined, we
must show two things. First that for distinct factorisations α and α′ of µ and
distinct factorisations β and β′ of ν, the difference fα,β−fα′,β′ lies in the image
of ∂2. This follows from (5). Second, we must show that if (µ, ν) and (µ′, ν′) are
cycles in Λ with d(µ)−d(ν) = d(µ′)−d(ν′), then there exist factorisations α of
µ, β of ν, α′ of µ′, and β′ of ν′ such that fα,β − fα′,β′ is in Im(∂2). To see this,
first note that by factorising µ = µ′τ and ν = ν′τ where d(τ) = d(µ) ∧ d(ν),
we can reduce to the case where d(µ)∧d(ν) = 0. Next we claim that it suffices
to consider the case where r(µ) = r(ν) = r(µ′) = r(ν′) = [0]. To see this, fix
η in [0]Λr(µ) and note that the cycle (ηµ, ην) corresponds to the same class as
(µ, ν) in ker(∂1)/ Im(∂2). Factorise ηµ = ξρ and ην = ωσ where d(ξ) = d(µ),
d(ω) = d(ν) and d(ρ) = d(σ) = d(η). Since each gΛn is a singleton and
since Z2 acts on Λ by translation, (ξ, ω) is a cycle with range [0], and ρ = σ.
Hence the cycle (ξ, ω) corresponds to the same class in ker(∂1)/ Im(∂2) as (µ, ν).
After shifting (µ′, ν′) in a similar way we may assume that both cycles have
range [0]. We now have cycles (µ, ν) and (µ′, ν′) with range [0] and such that
d(µ)− d(ν) = d(µ′)− d(ν′) and d(µ) ∧ d(ν) = 0 = d(µ′) ∧ d(ν′). Since [0]Λn is
a singleton for any n ∈ Z2, this forces µ = µ′ and ν = ν′. This completes the
proof that d(µ)− d(ν) 7→ fα,β + Im(∂2) is well defined.
That fαβ = fα+fβ ensures that ψ(g+h) = ψ(g)+ψ(h), and that fβ,α = −fα,β
shows that ψ(−g) = −ψ(g). Hence ψ is a homomorphism. By part (6), to see
that ψ is surjective, we just need to show that each fα,β+Im(∂2) is in the range
of ψ. This is clear because fα,β + Im(∂2) is precisely ψ(d(µ) − d(ν)) where µ
factorises as α and ν factorises as β. Finally, to see that ψ is injective, note that
if fα,β ∈ Im(∂2), then d(µ) = d(ν) where µ factorises as α and ν factorises as
β. This completes the proof that ψ : H → ker(∂1)/ Im(∂2) is an isomorphism.
The remaining statement follows from (4) and that (µ+

1 , µ
−
1 ) and (µ+

2 , µ
−
2 ) are

cycles whose degrees form a basis for H . This proves (7).
The final statement of the Lemma follows from (5.7). �
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We now consider two consecutive graphs in the sequence of covering systems
described in Example 6.6, and describe the homomorphism of K-invariants
obtained from Proposition 3.2(6).

Theorem 6.11. Consider the situation described in Example 6.6, and fix n ∈
N \ {0}. For i = n, n + 1, let Λi := ∆2/Hi, and consider the commuting
diagram

0 ←−−−− ZΛ0
n

∂Λn
1←−−−− ZΛ0

n ⊕ ZΛ0
n

∂Λn
2←−−−− ZΛ0

n ←−−−− 0
yp∗n

yp∗n⊕p∗n
yp∗n

0 ←−−−− ZΛ0
n+1

∂
Λn+1
1←−−−− ZΛ0

n+1 ⊕ ZΛ0
n+1

∂
Λn+1
2←−−−− ZΛ0

n+1 ←−−−− 0

(1) The right-hand vertical map p∗n : ZΛ0
n → ZΛ0

n+1 restricts to a homo-

morphism p∗n|ker(∂Λn
2 ) : ker(∂Λn

2 ) → ker(∂
Λn+1

2 ) which is characterised by

p∗n|ker(∂Λn
2 )(1Gn) = 1Gn+1.

(2) The left-hand vertical map p∗n : ZΛ0
n → ZΛ0

n+1 induces a homomorphism

p̃∗n : coker(∂Λn
1 )→ coker(∂

Λn+1

1 ) characterised by

p̃∗n(δ0 + Im(∂Λn
1 )) = [Hn : Hn+1] · δ0 + Im(∂

Λn+1

1 ).

(3) The middle vertical map p∗n⊕p∗n : ZΛ0
n⊕ZΛ0

n → ZΛ0
n+1⊕ZΛ0

n+1 induces a

homomorphism (p∗n ⊕ p∗n)∼ : ker(∂Λn
1 )/ Im(∂Λn

2 ) → ker(∂
Λn+1

1 )/ Im(∂
Λn+1

2 )
such that the following diagram commutes.

Hn
ψn−−−−→ ker(∂Λn

1 )/ Im(∂Λn
2 )

ymHn,Hn+1

y(p∗n⊕p∗n)∼

Hn+1
ψn+1−−−−→ ker(∂

Λn+1

1 )/ Im(∂
Λn+1

2 )

where ψn and ψn+1 are the isomorphisms obtained from Lemma 6.10(7),
and mHn,Hn+1 is as in Theorem 6.7(2).

Under the isomorphism

K∗(C
∗(Λi)) ∼=

(
coker(∂Λi

1 )⊕ ker(∂Λi
2 ), ker(∂Λi

1 )/ Im(∂Λi
2 )
)

obtained from Corollary 5.6, the maps described in (1), (2) and (3) deter-
mine the map (ιpn )∗ : K∗(C∗(Λn)) → K∗(C∗(Λn+1)) obtained from Proposi-
tion 3.2(6).

Proof. Lemma 6.10(3) ensures that 1Gi generates ker(∂Λi
2 ) for i = n, n+1. The

formula for p∗n shows that p∗n(1Gn) = 1Gn+1, which gives (1). Statement (2)
follows from the formula for p∗n combined with the observation that for i =

n, n+ 1, the δg, g ∈ Gi are all equivalent modulo Im(∂Λi
1 ).

It remains only to prove (3). We first consider the case where Hn = Z2, so
Gn = {0} and Λn is a copy of the 2-graph T2

∼= N2 (as a category) with one
vertex and one morphism λm of each degree m ∈ N2. In this case, ψn is just
the identity map from Z2 to Z⊕Z. Let h1, h2 be a pair of generators for Hn+1.

Documenta Mathematica 13 (2008) 161–205



C∗-Algebras Associated to Coverings of k-Graphs 201

Since Hn+1 has finite index in Z2, the assignments (1, 0) 7→ h1 and (0, 1) 7→ h2

determine an endomorphism of Hn which is a rational isomorphism. Hence it
suffices to show that (p∗n⊕p∗n)∼◦ψn(hi) = ψn+1([Z2 : Hn+1]·hi) for i = 1, 2. We
just argue that this happens for i = 1 (the case i = 2 follows from a symmetric
argument).
Writing h1 = (x, y) where x, y ∈ Z, the formula for p∗n ensures that (p∗n ⊕ p∗n)∼

takes ψn(h1) to the class of x1Gn+1 ⊕ y1Gn+1. To see that this is ψn+1([Z2 :
Hn+1] · h1), let f := fα+

1 ,α
−
1

= ψn+1(h1) be the function in ZGn+1 ⊕ ZGn+1

obtained from Lemma 6.10(7). By definition of f , we have f = fb ⊕ fr where
the entries of fb sum to x and the entries of fr sum to y. For g ∈ Gn+1, let
g · fb be the function determined by g · fb(h) = fb(h− g), and similarly for fr.
Since Gn+1 acts freely and transitively on Λ0

n+1 = Gn+1, it follows that

(6.4)
∑

g∈Gn+1
g · f = x1Gn+1 ⊕ y1Gn+1 = (p∗n ⊕ p∗n)∼ ◦ ψn(h1).

The proof of statement (7) in Lemma 6.10 shows that each g ·f := g ·fb⊕ g ·fr
represents the same class as f in ker(∂

Λn+1

1 )/ Im(∂
Λn+1

2 ). Hence the left-hand

side of (6.4) has the same class in ker(∂
Λn+1

1 )/ Im(∂
Λn+1

2 ) as ψn+1(|Gn+1| · h1)
as required.
For the general case, first note that we may assume without loss of generality
that H1 = Z2 so that Λ1 = T2. Let p[1,n] := p1 ◦ · · · ◦ pn−1 and p[1,n+1] :=
p1 ◦· · ·◦pn be the coverings of Λ1 = T2 by Λn and Λn+1 obtained by composing
the first n and n+ 1 levels of the covering system; we may apply the argument
of the previous paragraph to these coverings. Then p[1,n+1] = p[1,n] ◦ pn, so
p∗[1,n+1] ⊕ p∗[1,n+1] = (p∗[1,n] ⊕ p∗[1,n]) ◦ (p∗n ⊕ p∗n), and since these maps induce

homomorphisms between ker(∂T2
1 )/ Im(∂T2

2 ) and ker(∂
Λn+1

1 )/ Im(∂
Λn+1

2 ) which
are rational isomorphisms, it follows that (p∗n ⊕ p∗n)∼ behaves as claimed.
The final statement follows from Corollary 5.6. �

We are now ready to prove Theorem 6.7.

Proof of Theorem 6.7. Proposition 3.2 shows that P1 is full so that compression
by P1 induces an isomorphism on K-theory. The formulae for the K-groups
in statements (1) and (2) follow from Lemma 6.10 and Theorem 6.11 and the
continuity of the K-functor.
Since v(∆2/Hn)w 6= ∅ for all n ∈ N \ {0}, and v, w ∈ ∆0

2/Hn, the 3-graph
lim
↽−(∆2/Hn, pn) is cofinal. Moreover a given infinite path x in lim

↽−(∆2/Hn, pn) is

periodic with period m ∈ Z2 if and only if every infinite path in lim
↽−(∆2/Hn, pn)

is periodic with period m, which in turn is equivalent to the condition that
m ∈ ⋂∞n=1Hn. It follows from Lemma 4.5 that lim

↽−(∆2/Hn, pn) is simple if and

only if
⋂
Hn = {0}; moreover, in this case, the argument of the second part of

[27, Section 5] shows that C∗(lim
↽−(∆2/Hn, pn)) has unique trace.

We next claim that each C∗(∆2/Hn) ∼= M[Z2:Hn](C(T2)). To verify this,
one first checks that h 7→ s[(0,h+)]s

∗
[(0,h−)] is a group isomorphism Hn →

U(s[0]C
∗(∆2/Hn)s[0]) for each n. The standard argument used in [27,

Lemma 3.9] shows that each s[(0,h+)]s
∗
[(0,h−)] has full spectrum. One can

Documenta Mathematica 13 (2008) 161–205



202 Alex Kumjian, David Pask, Aidan Sims

then deduce that s[0]C
∗(∆2/Hn)s[0] ∼= C∗(Hn) ∼= C∗(Z2) ∼= C(T2). For

m ∈ Z2/Hn, define Vm := s∗[0,m] ∈ C∗(∆2/Hn). Applying Lemma 3.3

to these partial isometries with p = s[0] and q = 1C∗(∆2/Hn)proves that

C∗(∆2/Hn) ∼= M[Z2:Hn](C(T2)).
It now follows from [3, Theorem 1.3] that C∗(lim

↽−(∆2/Hn; pn)) has real-rank

0. The classification of such algebras of Dădărlat-Elliott-Gong (see [36, Theo-
rem 3.3.1]), and the K-theory calculations above complete the proof. �

Remark 6.12. Higher-rank Bunce-Deddens algebras and generalised odometer
actions. We consider a slightly more general version of the situation described
in Example 6.6. Let H1 ⊃ H2 ⊃ H3 ⊃ . . . be a chain of finite-index sub-
groups of Zk such that

⋂
nHn = {0}. For each n, let pn : ∆k/Hn+1 → ∆k/Hn

be the canonical covering induced by the quotient maps described above, let
mn = 1, and let sn : ∆k/Hn+1 → S1 be the trivial cocycle. This data spec-
ifies a sequence (∆k/Hn,∆k/Hn+1, pn)∞n=1 of row-finite covering systems of
k-graphs with no sources. Applying Corollary 2.11, we obtain a (k + 1)-graph
lim
↽−(∆k/Hn; pn).

We claim that the corner P1C
∗(lim
↽−(∆k/Hn; pn))P1 can be thought of as a

higher-rank Bunce-Deddens algebra. We justify this by giving a description
of P1C

∗(lim
↽−(∆k/Hn; pn))P1 as a crossed product by a generalised odometer

action. We assume here that H1 = Zk so that ∆k/H1 is a copy of the k-graph
Tk ∼= Nk (as a category) with one vertex and one morphism λm of each degree
m ∈ Nk.
One way to realise the Bunce-Deddens algebras is as crossed products of alge-
bras of continuous functions on Cantor sets by generalised odometer actions.
Given a supernatural number α = α1α2 · · · , let Gn := Z/α[1, n]Z for all n.
Then for each n, since α[1, n+1]Z ⊃ α[1, n]Z, there is a natural surjective group
homomorphism from Gn+1 to Gn. Hence, we may form the projective limit
group lim←−(Gn, pn). The automorphism τ(g1, g2, . . . ) = (g1 + [1], g2 + [1], . . . )

for (g1, g2, . . . ) ∈ lim←−(Gn, pn) can then naturally be regarded as an odometer

action on lim←−(Gn, pn). The Bunce-Deddens algebra of type α is the crossed

product C(lim←−(Gn, pn)) ⋊τ̃ Z where τ̃ is the automorphism of C(lim←−(Gn, pn))

induced by τ (see [33, Examples 1(3)]).
There is an analogous realisation of P1C

∗(lim
↽−(∆k/Hn, pn))P1 as follows. Let

Λ := lim
↽−(∆k/Hn, pn). Let F denote the fixed-point algebra of C∗(Λ) for the

gauge action γ of Tk+1. Note that by Remark 3.9, the restriction of the gauge
action to P1C

∗(Λ)P1 is trivial on the last coordinate of Tk+1 and therefore
becomes an action by Tk denoted γ̃. Recall that Λ∞ denotes the collection
of infinite paths in Λ (see Notation 4.1). It is not hard to see that P1FP1 is
canonically isomorphic to C(vΛ∞) where v is the unique vertex of ∆k/H1

∼= Tk.
Let Gn := Zk/Hn for each n, and let pn : Gn+1 → Gn be the induced map
pn(m+Hn+1) := m+Hn. Observe that G = lim←−(Gn, pn) is a compact abelian

group. By functoriality of the projective limit the quotient maps Zk → Zk/Hn

induce a homomorphism j : Zk → G; injectivity of j follows from the fact
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that
⋂
nHn = {0}. There is an action τ of Zk on G given by τm(g1, g2, . . . ) =

(g1 +[m], g2 +[m], . . . ), which generalises the odometer action discussed above.
Since there is just one infinite path in Tk, the arguments of Section 4 show that
vΛ∞ ∼= G as a topological space. Note that for every m ∈ Nk, the generator
sλm associated to the unique path λm ∈ Tmk is a unitary in P1C

∗(Λ)P1 and
that under the identification of P1FP1 with C(vΛ∞) = C(G) conjugation by
sλm implements the automorphism induced by the homeomorphism τm of G.
It follows that the reduction of the path groupoid (see [20, Section 2]) of Λ to
vΛ∞ is isomorphic to the semidirect product groupoid G ⋊τ Zk. Therefore,
standard arguments show that

P1C
∗(Λ)P1

∼= C(G) ⋊τ̃ Zk

where τ̃ is the action induced by τ . Note that under this identification the

restricted gauge action γ̃ coincides with the dual action of Tk = Ẑk.
The action of G on C(G) induced by translation in G yields an action of G on

C(G)⋊τ̃ Zk which commutes with the dual action of Tk = Ẑk. Thus we obtain
an action α by the compact abelian group G × Tk with fixed point algebra
isomorphic to C. Hence, C(G)⋊τ̃ Zk (and thus P1C

∗(Λ)P1) admits an ergodic
action of a compact abelian group. Such ergodic actions have been classified in

[24, 4.5, 6.1]; the invariant is a symplectic bicharacter χα on Ĝ×Zk, the dual
of G×Tk. This gives rise to an alternative description of the C∗-algebra as a

twisted group C∗-algebra with the group Ĝ×Zk and a 2-cocycle associated to
the bicharacter χα (only its cohomology class is determined by the bicharacter).
It follows that

C(G) ⋊τ̃ Zk ∼= C(Tk) ⋊ Ĝ

where the action of Ĝ on C(Tk) arises by translation from the embedding

Ĝ→ Tk dual to j : Zk → G.
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Abstract. The aim of the paper is to calculate face numbers
of simple generalized permutohedra, and study their f -, h- and γ-
vectors. These polytopes include permutohedra, associahedra, graph-
associahedra, simple graphic zonotopes, nestohedra, and other inter-
esting polytopes.

We give several explicit formulas for h-vectors and γ-vectors involv-
ing descent statistics. This includes a combinatorial interpretation
for γ-vectors of a large class of generalized permutohedra which are
flag simple polytopes, and confirms for them Gal’s conjecture on the
nonnegativity of γ-vectors.

We calculate explicit generating functions and formulae for h-
polynomials of various families of graph-associahedra, including those
corresponding to all Dynkin diagrams of finite and affine types. We
also discuss relations with Narayana numbers and with Simon New-
comb’s problem.

We give (and conjecture) upper and lower bounds for f -, h-, and
γ-vectors within several classes of generalized permutohedra.

An appendix discusses the equivalence of various notions of deforma-
tions of simple polytopes.
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1 Introduction

Generalized permutohedra are a very well-behaved class of convex polytopes
studied in [Post’05], as generalizations of the classical permutohedra, associ-
ahedra, cyclohedra, etc. That work explored their wonderful properties from
the point of view of valuations such as volumes, mixed volumes, and number of
lattice points. This paper focuses on their further good behavior with respect
to face enumeration in the case when they are simple polytopes.
Simple generalized permutohedra include as an important subclass (the duals
of) the nested set complexes considered by DeConcini and Procesi in their
work on wonderful compactifications of hyperplane arrangements; see [DP’95,
FS’05]. In particular, when the arrangement comes from a Coxeter system, one
obtains interesting flag simple polytopes studied by Davis, Januszkiewicz, and
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Scott [DJS’03]. These polytopes can be combinatorially described in terms of
the corresponding Coxeter graph. Carr and Devadoss [CD’06] studied these
polytopes for arbitrary graphs and called them graph-associahedra.
We mention here two other recent papers in which generalized permutohedra
have appeared. Morton, Pachter, Shiu, Sturmfels, and Wienand [M–W’06]
considered generalized permutohedra from the point of view of rank tests on
ordinal data in statistics. The normal fans of generalized permutohedra are
what they called submodular rank tests. Agnarsson and Morris [AM’06] in-
vestigated closely the 1-skeleton (vertices and edges) in the special case where
generalized permutohedra are Minkowski sums of standard simplices.

Let us formulate several results of the present paper. A few definitions are
required. A connected building set B on [n] := {1, . . . , n} is a collection of
nonempty subsets in [n] such that

1. if I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B,

2. B contains all singletons {i} and the whole set [n];

see Definition 6.1. An interesting subclass of graphical building sets B(G) comes
from connected graphs G on [n]. The building set B(G) contains all nonempty
subsets of vertices I ⊆ [n] such that the induced graph G|I is connected.
The nestohedron PB is defined (see Definition 6.3) as the Minkowski sum

PB =
∑

I∈B
∆I

of the coordinate simplices ∆I := ConvexHull(ei | i ∈ I), where the ei are the
endpoints of the coordinate vectors in Rn. According to [Post’05, Theorem 7.4]
and [FS’05, Theorem 3.14] (see Theorem 6.5 below), the nestohedron PB is a
simple polytope which is dual to a simplicial nested set complex. For a graphical
building set B(G), the nestohedron PB(G) is called the graph-associahedron. In
the case when G is the n-path, PB(G) is the usual associahedron; and in the
case when G = Kn is the complete graph, PB(G) is the usual permutohedron.
Recall that the f -vector and the h-vector of a simple d-dimensional polytope P
are (f0, f1, . . . , fd) and (h0, h1, . . . , hd), where fi is the number of i-dimensional
faces of P and

∑
hi (t+1)i =

∑
fi t

i. It is known that the h-vector of a simple
polytope is positive and symmetric. Since the h-vector is symmetric, one can
define another vector called the γ-vector (γ1, γ2, . . . , γ⌊d/2⌋) by the relation

d∑

i=0

hi t
i =

⌊ d
2 ⌋∑

i=0

γi t
i(1 + t)d−2i.

A simplicial complex ∆ is called a flag complex (or a clique complex ) if its
simplices are cliques (i.e., subsets of vertices with complete induced subgraphs)
of some graph (1-skeleton of ∆). Say that a simple polytope is flag if its dual
simplicial complex is flag.
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Gal conjectured [Gal’05] that the γ-vector has nonnegative entries for any flag
simple polytope.
Let us that say a connected building set B is chordal if, for any of the sets
I = {i1 < · · · < ir} in B, all subsets {is, is+1, . . . , ir} also belong to B; see
Definition 9.2. By Proposition 9.4, graphical chordal building sets B(G) are
exactly building sets coming from chordal graphs. By Proposition 9.7, all
nestohedra PB for chordal building sets are flag simple polytopes. So Gal’s
conjecture applies to this class of chordal nestohedra, which include graph-
associahedra for chordal graphs and, in particular, for trees.
For a building set B on [n], define (see Definition 8.7) the set Sn(B) of B-
permutations as the set of permutations w of size n such that, for any i =
1, . . . , n, there exists I ∈ B such that I ⊆ {w(1), . . . , w(i)}, and I contains
both w(i) and max{w(1), w(2), . . . , w(i)}. It turns out that B-permutations
are in bijection with vertices of the nestohedron PB; see Proposition 8.10.
Let des(w) = #{i | w(i) > w(i + 1)} denote the number of descents in a

permutation w. Let Ŝn be the subset of permutations w of size n without two
consecutive descents and without final descent, i.e., there is no i ∈ [n− 1] such
that w(i) > w(i + 1) > w(i + 2), assuming that w(n+ 1) = 0.

Theorem 1.1. (Corollary 9.6 and Theorem 11.6) Let B be a connected chordal
building set on [n]. Then the h-vector of the nestohedron PB is given by

∑

i

hi t
i =

∑

w∈Sn(B)

tdes(w),

and the γ-vector of the nestohedron PB is given by
∑

i

γi t
i =

∑

w∈Sn(B)∩bSn

tdes(w).

This result shows that Gal’s conjecture is true for chordal nestohedra.

The paper is structured as follows. Sections 2, 3, and 4 give some background
on face numbers and general results about generalized permutohedra. More
specifically, Section 2 reviews polytopes, cones, fans, and gives basic terminol-
ogy of face enumeration for polytopes (f -vectors), simple polytopes (h-vectors),
and flag simple polytopes (γ-vectors).
Section 3 reviews the definition of generalized permutohedra, and recasts this
definition equivalently in terms of their normal fans. It then sets up the dic-
tionary between preposets, and cones and fans coming from the braid arrange-
ment. In particular, one finds that each vertex in a generalized associahedron
has associated to it a poset that describes its normal cone. This is used to
characterize when the polytope is simple, namely when the associated posets
have Hasse diagrams which are trees. In Section 4 this leads to a combinatorial
formula for the h-vector in terms of descent statistics on these tree-posets.
The remainder of the paper deals with subclasses of simple generalized permu-
tohedra. Section 5 dispenses quickly with the very restrictive class of simple
zonotopal generalized permutohedra, namely the simple graphic zonotopes.
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Sections 6 through 11 deal with the very interesting class of nestohedra, cul-
minating with a proof of Gal’s conjecture for chordal nestohedra. More specif-
ically, Section 6 discusses nestohedra PB coming from a building set B, where
the posets associated to each vertex are rooted trees. These include graph-
associahedra. Section 7 characterizes the flag nestohedra.

Section 8 discusses B-trees and B-permutations. These trees and permuta-
tions are in bijection with each other and with vertices of the nestohedron PB.
The h-polynomial of a nestohedron is the descent-generating function for B-
trees. Then Section 9 introduces the class of chordal building sets and shows
that h-polynomials of their nestohedra are descent-generating functions for B-
permutations.

Section 10 illustrates these formulas for h-polynomials by several examples: the
classical permutohedron and associahedron, the cyclohedron, the stellohedron
(the graph-associahedron for the star graph), and the Stanley-Pitman polytope.

Section 11 gives a combinatorial formula for the γ-vector of all chordal nestohe-
dra as a descent-generating function (or peak-generating function) for a subset
of B-permutations. This result implies Gal’s nonnegativity conjecture for this
class of polytopes. The warm-up example here is the classical permutohedron,
and the section concludes with the examples of the associahedron and cyclohe-
dron.

Sections 12 through 14 give some graph-associahedra calculations as well as
conjectures. Specifically, Section 12 calculates the generating functions for f -
polynomials of the graph-associahedra for all trees with one branching point
and discusses a relation with Simon Newcomb’s problem. Section 13 deals
with graphs that are formed by a path with two small fixed graphs attached to
the ends. It turns out that the h-vectors of graph-associahedra for such path-
like graphs can be expressed in terms of h-vectors of classical associahedra.
The section includes explicit formulas for graph-associahedra for the Dynkin
diagrams of all finite and affine Coxeter groups. Section 14 gives some bounds
and monotonicity conjectures for face numbers of generalized permutohedra.

The paper ends with an Appendix which clarifies the equivalence between var-
ious kinds of deformations of a simple polytope.

Acknowledgments: The authors thank Federico Ardila, Richard Ehren-
borg, Ira Gessel, Sangwook Kim, Jason Morton, Margaret Readdy, Anne Shiu,
Richard Stanley, John Stembridge, Bernd Sturmfels, Oliver Wienand, and An-
drei Zelevinsky for helpful conversations.

2 Face numbers

This section recalls some standard definitions from the theory of convex poly-
topes and formulates Gal’s extension of the Charney-Davis conjecture.
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2.1 Polytopes, cones, and fans

A convex polytope P is the convex hull of a finite collection of points in Rn.
The dimension of a polytope (or any other subset in Rn) is the dimension of
its affine span.
A polyhedral cone in Rn is a subset defined by a conjunction of weak inequalities
of the form λ(x) ≥ 0 for linear forms λ ∈ (Rn)∗. A face of a polyhedral cone
is a subset of the cone given by replacing some of the inequalities λ(x) ≥ 0 by
the equalities λ(x) = 0.
Two polyhedral cones σ1, σ2 intersect properly if their intersection is a face of
each. A complete fan of cones F in Rn is a collection of distinct nonempty
polyhedral cones covering Rn such that (1) every nonempty face of a cone in
F is also a cone in F , and (2) any two cones in F intersect properly. Cones in
a fan F are also called faces of F .
Note that fans can be alternatively defined only in terms of their top di-
mensional faces, as collections of distinct pairwise properly intersecting n-
dimensional cones covering Rn.
A face F of a convex polytope P is the set of points in P where some linear
functional λ ∈ (Rn)∗ achieves its maximum on P , i.e.,

F = {x ∈ P | λ(x) = max{λ(y) | y ∈ P}}.

Faces that consist of a single point are called vertices and 1-dimensional faces
are called edges of P .
Given any convex polytope P in Rn and a face F of P , the normal cone to
P at F , denoted NF (P ), is the subset of linear functionals λ ∈ (Rn)∗ whose
maximum on P is achieved on all of the points in the face F , i.e.,

NF (P ) := {λ ∈ (Rn)∗ | λ(x) = max{λ(y) | y ∈ P} for all x ∈ F}.

Then NF (P ) is a polyhedral cone in (Rn)∗, and the collection of all such cones
NF (P ) as one ranges through all faces F of P gives a complete fan in (Rn)∗

called the normal fan N (P ). A fan of the form N (P ) for some polytope P is
called a polytopal fan.
The combinatorial structure of faces of P can be encoded by the lattice of faces
of P ordered via inclusion. This structure is also encoded by the normal fan
N (P ). Indeed, the map F 7→ NF (P ) is an inclusion-reversing bijection between
the faces of P and the faces of N (P ).
A cone is called pointed if it contains no lines (1-dimensional linear subspaces),
or equivalently, if it can be defined by a conjunction of inequalities λi(x) ≥ 0
in which the λi span (Rn)∗. A fan is called pointed if all its faces are pointed.
If the polytope P ⊂ Rn is full-dimensional, that is dimP = n, then the normal
fan N (P ) is pointed. For polytopes P of lower dimension d, define the (n− d)-
dimensional subspace P⊥ ⊂ (Rn)∗ of linear functionals that are constant on P .
Then all cones in the normal fan N (P ) contain the subspace P⊥. Thus N (P )
can be reduced to a pointed fan in the space (Rn)∗/P⊥.
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A polytope P is called simple if any vertex of P is incident to exactly d = dimP
edges. A cone is called simplicial if it can be given by a conjunction of linear
inequalities λi(x) ≥ 0 and linear equations µj(x) = 0 where the covectors λi
and µj form a basis in (Rn)∗. A fan is called simplicial if all its faces are
simplicial. Clearly, simplicial cones and fans are pointed. A convex polytope
P ⊂ Rn is simple if and only if its (reduced) normal fan N (P )/P⊥ is simplicial.
The dual simplicial complex ∆P of a simple polytope P is the simplicial complex
obtained by intersecting the (reduced) normal fan N (P )/P⊥ with the unit
sphere. Note that i-simplices of ∆P correspond to faces of P of codimension
i+ 1.

2.2 f-vectors and h-vectors

For a d-dimensional polytope P , the face number fi(P ) is the number of i-
dimensional faces of P . The vector (f0(P ), . . . , fd(P )) is called the f -vector ,

and the polynomial fP (t) =
∑d
i=0 fi(P ) ti is called the f -polynomial of P .

Similarly, for a d-dimensional fan F , fi(F) is the number of i-dimensional faces

of F , and fF(t) =
∑d
i=0 fi(F) ti. Note that face numbers of a polytope P and

its (reduced) normal cone F = N (P )/P⊥ are related as fi(P ) = fd−i(F), or
equivalently, fP (t) = td fF (t−1).
We will most often deal with the case where P is a simple polytope, or equiv-
alently, when F is a simplicial fan. In these situations, there is a more
compact encoding of the face numbers fi(P ) or fi(F) by smaller nonnega-
tive integers. One defines the h-vector (h0(P ), . . . , hd(P )) and h-polynomial

hP (t) =
∑d
i=0 hi(P ) ti uniquely by the relation

fP (t) = hP (t+ 1), or equivalently, fj(P ) =
∑

i

(
i

j

)
hi(P ), j = 0, . . . , d.

(1)
For a simplicial fan F , the h-vector (h0(F), . . . , hd(F)) and the h-polynomial

hF (t) =
∑d

i=0 hi(F) ti are defined by the relation td fF(t−1) = hF(t + 1), or

equivalently, fj(F) =
∑

i

(
i

d−j
)
hi(F), for j = 0, . . . , d. Thus the h-vector of a

simple polytope coincides with the h-vector of its normal fan.
The nonnegativity of hi(P ) for a simple polytope P comes from its well-known
combinatorial interpretation [Zieg’94, §8.2] in terms of the 1-skeleton of the
simple polytope P . Let us extend this interpretation to arbitrary complete
simplicial fans.
For a simplicial fan F in Rd, construct the graph GF with vertices correspond-
ing to d-dimensional cones and edges corresponding to (d−1)-dimensional cones
of F , where two vertices of GF are connected by an edge whenever the cor-
responding cones share a (d − 1)-dimensional face. Pick a vector g ∈ Rd that
does not belong to any (d − 1)-dimensional face of F and orient edges of GF ,
as follows. Orient an edge {σ1, σ2} corresponding to two cones σ1 and σ2 in F
as (σ1, σ2) if the vector g points from σ1 to σ2 (in a small neighborhood of the
common face of these cones).
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Proposition 2.1. For a simplicial fan F , the ith entry hi(F) of its h-vector
equals the number of vertices with outdegree i in the oriented graph GF . These
numbers satisfy the Dehn-Sommerville symmetry: hi(F) = hd−i(F).

Corollary 2.2. (cf. [Zieg’94, §8.2]) Let P ∈ Rn be a simple polytope. Pick
a generic linear form λ ∈ (Rn)∗. Let GP be the 1-skeleton of P with edges
directed so that λ increases on each edge. Then hi(P ) is the number of vertices
in GP of outdegree i.

Proof of Proposition 2.1. The graph GF has a unique vertex of outdegree 0.
Indeed, this is the vertex corresponding to the cone in F containing the vector
g. For any face F of F (of an arbitrary dimension), let GF (F ) be the induced
subgraph on the set of d-dimensional cones of F containing F as a face. Then
GF (F ) ≃ GF ′ , where F ′ is the link of the face F in the fan F , which is also a
simplicial fan of smaller dimension. Thus the subgraph GF (F ) also contains a
unique vertex of outdegree 0 (in this subgraph).
There is a surjective map φ : F 7→ σ from all faces of F to vertices of GF (i.e.,
d-dimensional faces of F) that sends a face F to the vertex σ of outdegree 0 in
the subgraph GF (F ). Now, for a vertex σ of GF of outdegree i, the preimage
φ−1(σ) contains exactly

(
d−i
d−j
)

faces of dimension j. Indeed, φ−1(σ) is formed by

taking all possible intersections of σ with some subset of its (d−1)-dimensional
faces {F1, . . . , Fd−i} on which the vector g is directed towards the interior of σ;
there are exactly d− i such faces because σ has indegree i in GF . Thus a face
of dimension j in φ−1(σ) has the form Fi1 ∩ · · · ∩ Fid−j

for a (d − j)-element
subset {i1, . . . , id−j} ⊆ [d− i].
Let h̃i be the number of vertices of GF of outdegree i. Counting j-dimensional
faces in preimages φ−1(σ) one obtains the relation fj(F) =

∑
i

(
d−i
d−j
)
h̃i. Com-

paring this with the definition of hi(F), one deduces that hi(F) = h̃d−i.
Note that the numbers hi(F) do not depend upon the choice of the vector g.
It follows that the numbers h̃i of vertices with given outdegrees also do not
depend on g. Replacing the vector g with −g reverses the orientation of all
edges in the d-regular graph GF , implying the the symmetry h̃i = h̃d−i.

The Dehn-Sommerville symmetry means that h-polynomials are palindromic
polynomials: td hF (1

t ) = hF (t). In this sense the h-vector encoding is
more compact, since it is determined by roughly half of its entries, namely
h0, h1, . . . , h⌊ d

2 ⌋.
Whenever possible, we will try to either give further explicit combinatorial
interpretations or generating functions for the f - and h-polynomials of simple
generalized permutohedra.

2.3 Flag simple polytopes and γ-vectors

A simplicial complex ∆ is called a flag simplicial complex or clique complex if
it has the following property: a collection C of vertices of ∆ forms a simplex
in ∆ if and only if there is an edge in the 1-skeleton of ∆ between any two
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vertices in C. Thus flag simplicial complexes can be uniquely recovered from
their 1-skeleta.
We call a simple polytope P is a flag polytope if its dual simplicial complex ∆P

is a flag simplicial complex.
We next discuss γ-vectors of flag simple polytopes, as introduced by Gal
[Gal’05] and independently in a slightly different context by Bränden [Brä’04,
Brä’06]; see also the discussion in [Stem’07, §1D]. A conjecture of Charney and
Davis [ChD’95] led Gal [Gal’05] to define the following equivalent encoding of
the f -vector or h-vector of a simple polytope P , in terms of smaller integers,
which are conjecturally nonnegative when P is flag. Every palindromic poly-
nomial h(t) of degree d has a unique expansion in terms of centered binomials
ti(1+ t)d−2i for 0 ≤ i ≤ d/2, and so one can define the entries γi = γi(P ) of the

γ-vector (γ0, γ1, . . . , γ⌊ d
2 ⌋) and the γ-polynomial γP (t) :=

∑⌊ d
2 ⌋
i=0 γit

i uniquely

by

hP (t) =

⌊ d
2 ⌋∑

i=0

γi t
i(1 + t)d−2i = (1 + t)dγP

(
t

(1 + t)2

)
.

Conjecture 2.3. [Gal’05] The γ-vector has nonnegative entries for any flag
simple polytope. More generally, the nonnegativity of the γ-vector holds for
every flag simplicial homology sphere.

Thus we will try to give explicit combinatorial interpretations, where possible,
for the γ-vectors of flag simple generalized permutohedra. As will be seen in
Section 7.1, any graph-associahedron is a flag simple polytope.

3 Generalized permutohedra and the cone-preposet dictionary

This section reviews the definition of generalized permutohedra from [Post’05].
It then records some observations about the relation between cones and fans
coming from the braid arrangement and preposets. (Normal fans of generalized
permutohedra are examples of such fans.) This leads to a characterization for
when generalized permutohedra are simple, an interpretation for their h-vector
in this situation, and a corollary about when the associated toric variety is
smooth.
The material in this section and in the Appendix (Section 15) has substantial
overlap with recent work on rank tests of non-parametric statistics [M–W’06].
We have tried to indicate in places the corresponding terminology used in that
paper.

3.1 Generalized permutohedra

Recall that a usual permutohedron in Rn is the convex hull of n! points obtained
by permuting the coordinates of any vector (a1, . . . , an) with strictly increasing
coordinates a1 < · · · < an. So the vertices of a usual permutohedron can be
labelled vw = (aw−1(1), . . . , aw−1(n)) by the permutations w in the symmetric
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group Sn. The edges of this permutohedron are [vw, vwsi ], where si = (i, i+ 1)
is an adjacent transposition. Then, for any w ∈ Sn and any si, one has

vw − vwsi = kw,i(ew(i) − ew(i+1)) (2)

where the kw,i are some strictly positive real scalars, and e1, . . . , en are the
standard basis vectors in Rn.
Note that a usual permutohedron in Rn has dimension d = n− 1, because it is
contained in an affine hyperplane where the sum of coordinates x1 + · · · + xn
is constant.

Definition 3.1. [Post’05, Definition 6.1] A generalized permutohedron P is
the convex hull of n! points vw in Rn labelled by the permutations w in the
symmetric group Sn, such that for any w ∈ Sn and any adjacent transposition
si, one still has equation (2), but with kw,i assumed only to be nonnegative,
that is, kw,i can vanish.

The Appendix shows that all n! points vw in a generalized permutohedron P
are actually vertices of P (possibly with repetitions); see Theorem 15.3. Thus
a generalized permutohedron P comes naturally equipped with the surjective
map ΨP : Sn → Vertices(P ) given by ΨP : w 7→ vw, for w ∈ Sm.
Definition 3.1 says that a generalized permutohedron is obtained by moving the
vertices of the usual permutohedron in such a way that directions of edges are
preserved, but some edges (and higher dimensional faces) may degenerate. In
the Appendix such deformations of a simple polytope are shown to be equivalent
to various other notions of deformation; see Proposition 3.2 below and the more
general Theorem 15.3.

3.2 Braid arrangement

Let x1, . . . , xn be the usual coordinates in Rn. Let Rn/(1, . . . , 1)R ≃ Rn−1

denote the quotient space modulo the 1-dimensional subspace generated by
the vector (1, . . . , 1). The braid arrangement is the arrangement of hyperplanes
{xi−xj = 0}1≤i<j≤n in the space Rn/(1, . . . , 1)R. These hyperplanes subdivide
the space into the polyhedral cones

Cw := {xw(1) ≤ xw(2) ≤ · · · ≤ xw(n)}

labelled by permutations w ∈ Sn, called Weyl chambers (of type A). The
Weyl chambers and their lower dimensional faces form a complete simplicial
fan, sometimes called the braid arrangement fan.
Note that a usual permutohedron P has dimension d = n − 1, so one can
reduce its normal fan modulo the 1-dimensional subspace P⊥ = (1, . . . , 1)R.
The braid arrangement fan is exactly the (reduced) normal fan N (P )/P⊥ for a
usual permutohedron P ⊂ Rn. Indeed, the (reduced) normal cone Nvw (P )/P⊥

of P at vertex vw is exactly the Weyl chamber Cw. (Here one identifies Rn

with (Rn)∗ via the standard inner product.)
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Recall that the Minkowski sum P + Q of two polytopes P,Q ⊂ Rn is the
polytope P +Q := {x+y | x ∈ P, y ∈ Q}. Say that P is a Minkowski summand
of R, if there is a polytope Q such that P +Q = R. Say that a fan F is refined
by a fan F ′ if any cone in F is a union of cones in F ′. The following proposition
is a special case of Theorem 15.3.

Proposition 3.2. A polytope P in Rn is a generalized permutohedron if and
only if its normal fan (reduced by (1, . . . , 1)R) is refined by the braid arrange-
ment fan.
Also, generalized permutohedra are exactly the polytopes arising as Minkowski
summands of usual permutohedra.

This proposition shows that generalized permutohedra lead to the study of
cones given by some inequalities of the form xi − xj ≥ 0 and fans formed by
such cones. Such cones are naturally related to posets and preposets.

3.3 Preposets, equivalence relations, and posets

Recall that a binary relation R on a set X is a subset of R ⊆ X×X . A preposet
is a reflexive and transitive binary relation R, that is (x, x) ∈ R for all x ∈ X ,
and whenever (x, y), (y, z) ∈ R one has (x, z) ∈ R. In this case we will often use
the notation x �R y instead of (x, y) ∈ R. Let us also write x ≺R y whenever
x �R y and x 6= y.
An equivalence relation ≡ is the special case of a preposet whose binary relation
is also symmetric. Every preposet Q gives rise to an equivalence relation ≡Q
defined by x ≡Q y if and only if both x �Q y and y �Q x. A poset is the
special case of a preposet Q whose associated equivalence relation ≡Q is the
trivial partition, having only singleton equivalence classes.
Every preposet Q gives rise to the poset Q/≡Q on the equivalence classes
X/≡Q. A preposet Q is uniquely determined by ≡Q and Q/≡Q, that is, a
preposet is just an equivalence relation together with a poset structure on the
equivalence classes.
A preposet Q on X is connected if the undirected graph having vertices X and
edges {x, y} for all x �Q y is connected.
A covering relation x⋖Q y in a poset Q is a pair of elements x ≺Q y such that
there is no z such that x ≺Q z ≺Q y. The Hasse diagram of a poset Q on X is
the directed graph on X with edges (x, y) for covering relations x⋖Q y.
We call a poset Q a tree-poset if its Hasse diagram is a spanning tree on X .
Thus tree-posets correspond to directed trees on the vertex set X .
A linear extension of a poset Q on X is a linear ordering (y1, . . . , yn) of all
elements in X such that y1 ≺Q y2 ≺Q · · · ≺Q yn. Let L(Q) denote the set of
all linear extensions of Q.
The union R1 ∪R2 of two binary relations R1, R2 on X is just their union as
two subsets of X × X . Given any reflexive binary relation Q, denote by Q
the preposet which is its transitive closure. Note that if Q1 and Q2 are two
preposets on the same set X , then the binary relation Q1∪Q2 is not necessarily
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a preposet. However, we can obtain a preposet by taking its transitive closure
Q1 ∪Q2.
Let R ⊆ Q denote containment of binary relations on the same set, meaning
containment as subsets of X×X . Also let Rop be the opposite binary relation,
that is (x, y) ∈ Rop if and only if (y, x) ∈ R.
For two preposets P and Q on the same set, let us say that Q is a contraction
of P if there is a binary relation R ⊆ P such that Q = P ∪Rop. In other words,
the equivalence classes of ≡Q are obtained by merging some equivalence classes
of ≡P along relations in P and the poset structure on equivalence classes of
≡Q is induced from the poset structure on classes of ≡P .
For example, the preposet 1 < {2, 3} < 4 (where {2, 3} is an equivalence class)
is a contraction of the poset P = (1 < 3, 2 < 3, 1 < 4, 2 < 4). However, the
preposet ({1, 2} < 3, {1, 2} < 4) is not a contraction of P because 1 and 2 are
incomparable in P .

Definition 3.3. We say that two preposets Q1 and Q2 on the same set intersect
properly if the preposet Q1 ∪Q2 is both a contraction of Q1 and of Q2. A
complete fan of posets4 on X is a collection of distinct posets on X which
pairwise intersect properly, and whose linear extensions (disjointly) cover all
linear orders on X.

Compare Definition 3.3 to the definitions of properly intersecting cones and
complete fans of cones in Section 2.1. Proposition 3.5 will elucidate this con-
nection.

Example 3.4. The two posets P1 := 1 < 2 and P2 := 2 < 1 on the set {1, 2}
intersect properly. Here P1 ∪ P2 is equal to {1 < 2, 2 < 1}. These P1 and
P2 form a complete fan of posets. However, the two posets Q1 := 2 < 3 and
Q2 := 1 < 2 < 3 on the set {1, 2, 3} do not intersect properly. In this case
Q1 ∪Q2 = Q2, which is not a contraction of Q1.

3.4 The dictionary

Let us say that a braid cone is a polyhedral cone in the space Rn/(1, . . . , 1)R ≃
Rn−1 given by a conjunction of inequalities of the form xi − xj ≥ 0. In other
words, braid cones are polyhedral cones formed by unions of Weyl chambers or
their lower dimensional faces.
There is an obvious bijection between preposets and braid cones. For a preposet
Q on the set [n], let σQ be the braid cone in the space Rn/(1, . . . , 1)R defined
by the conjunction of the inequalities xi ≤ xj for all i �Q j. Conversely, one
can always reconstruct the preposet Q from the cone σQ by saying that i �Q j
whenever xi ≤ xj for all points in σQ.

Proposition 3.5. Let the cones σ, σ′ correspond to the preposets Q,Q′ under
the above bijection. Then

4In [M–W’06], this is called a convex rank test.
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(1) The preposet Q ∪Q′ corresponds to the cone σ ∩ σ′.

(2) The preposet Q is a contraction of Q′ if and only if the cone σ is a face
σ′.

(3) The preposets Q,Q′ intersect properly if and only if the cones σ, σ′ do.

(4) Q is a poset if and only if σ is a full-dimensional cone, i.e., dimσ = n−1.

(5) The equivalence relation ≡Q corresponds to the linear span Span(σ) of σ.

(6) The poset Q/≡Q corresponds to a full-dimensional cone inside Span(σQ).

(7) The preposet Q is connected if and only if the cone σ is pointed.

(8) If Q is a poset, then the minimal set of inequalities describing the cone
σ is {xi ≤ xj | i ⋖Q j}. (These inequalities associated with covering
relations in Q are exactly the facet inequalities for σ.)

(9) Q is a tree-poset if and only if σ is a full-dimensional simplicial cone.

(10) For w ∈ Sn, the cone σ contains the Weyl chamber Cw if and only if Q
is a poset and w is its linear extension, that is w(1) ≺Q w(2) ≺Q · · · ≺Q
w(n).

Proof. (1) The cone σ ∩ σ′ is given by conjunction of all inequalities for σ
and σ′. The corresponding preposet is obtained by adding all inequalities that
follow from these, i.e., by taking the transitive closure of Q ∪Q′.
(2) Faces of σ′ are obtained by replacing some inequalities xi ≤ xj defining
σ′ with equalities xi = xj , or equivalently, by adding the opposite inequalities
xi ≥ xj .
(3) follows from (1) and (2).
(4) σ is full-dimensional if its defining relations do not include any equalities
xi = xj , that is ≡Q has only singleton equivalence classes.
(5) The cone associated with the equivalence relation ≡Q is given by the equa-
tions xi = xj for i ≡Q j, which is exactly Span(σ).
(6) Follows from (4) and (5).
(7) The maximal subspace contained in the half-space {xi ≤ xj} is given by
xi = xj . Thus the maximal subspace contained in the cone σ is given by the
conjunction of equations xi = xj for i ≤Q j. If Q is disconnected then this
subspace has a positive dimension. If Q is connected then this subspace is given
by x1 = · · · = xn, which is just the origin in the space Rn/(1, . . . , 1)R.
(8) The inequalities for the covering relations i⋖Q j imply all other inequalities
for σ and they cannot be reduced to a smaller set of inequalities.
(9) By (4) and (7) full-dimensional pointed cones correspond to connected
posets. These cones will be simplicial if they are given by exactly n − 1 in-
equalities. By (8) this means that the corresponding poset should have exactly
n− 1 covering relations, i.e., it is a tree-poset.
(10) Follows from (4) and definitions.
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According to Proposition 3.5, a full-dimensional braid cone σ associated with
a poset Q can be described in three different ways (via all relations in Q, via
covering relations in Q, and via linear extensions L(Q) of Q) as

σ = {xi ≤ xj | i �Q j} = {xi ≤ xj | i⋖Q j} =
⋃

w∈L(Q)

Cw.

Let F be a family of d-cones in Rd which intersect properly. Since they have
disjoint interiors, they will correspond to a complete fan if and only if their
closures cover Rd, or equivalently, their spherical volumes sum to the volume
of the full (d− 1)-sphere.
A braid cone corresponding to a poset Q is the union of the Weyl chambers
Cw for all linear extensions w ∈ L(Q), and every Weyl chamber has the same
spherical volume ( 1

n! of the sphere) due to the transitive Weyl group action.
Therefore, a collection of properly intersecting posets {Q1, . . . , Qt} on [n] cor-
respond to a complete fan on braid cones if and only if

t⋃

i=1

L(Qi) = Sn(disjoint union), or equivalently, if and only if

t∑

i=1

|L(Qi)| = n!,

cf. Definition 3.3.

Corollary 3.6. A complete fan of braid cones (resp., pointed braid cones, sim-
plicial braid cones) in Rn/(1, . . . , 1)R corresponds to a complete fan of posets
(resp., connected posets, tree-posets) on [n].

Using Proposition 3.2, we can relate Proposition 3.5 and Corollary 3.6 to gen-
eralized permutohedra. Indeed, normal cones of a generalized permutohedron
(reduced modulo (1, . . . , 1)R) are braid cones.
For a generalized permutohedron P , define the vertex poset Qv at a ver-
tex v ∈ Vertices(P ) as the poset on [n] associated with the normal cone
Nv(P )/(1, . . . , 1)R at the vertex v, as above.

Corollary 3.7. For a generalized permutohedron (resp., simple generalized
permutohedron) P , the collection of vertex posets {Qv | v ∈ Vertices(P )} is a
complete fan of posets (resp., tree-posets).

Thus normal fans of generalized permutohedra correspond to certain complete
fans of posets, which we call polytopal. In [M–W’06], the authors call such fans
submodular rank tests, since they are in bijection with the faces of the cone of
submodular functions. That cone is precisely the deformation cone we discuss
in the Appendix.

Example 3.8. In [M–W’06], the authors modify an example of Studený
[Stud’05] to exhibit a non-polytopal complete fan of posets. They also kindly
provided us with the following further nonpolytopal example, having 16 posets
Qv, all of them tree-posets: (1, 2 < 3 < 4) (which means that 1 < 3 and
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2 < 3), (1, 2 < 4 < 3), (3, 4 < 1 < 2), (3, 4 < 2 < 1), (1 < 4 < 2, 3),
(4 < 1 < 2, 3), (2 < 3 < 1, 4), (3 < 2 < 1, 4), (1 < 3 < 2 < 4), (1 < 3 < 4 < 2),
(3 < 1 < 2 < 4), (3 < 1 < 4 < 2), (2 < 4 < 1 < 3), (2 < 4 < 3 < 1),
(4 < 2 < 1 < 3), (4 < 2 < 3 < 1). This gives a complete fan of simplicial
cones, but does not correspond to a (simple) generalized permutohedron.

Recall that ΨP : Sn → Vertices(P ) is the surjective map ΨP : w 7→ vw;
see Definition 3.1. The previous discussion immediately implies the following
corollary.

Corollary 3.9. Let P be a generalized permutohedron in Rn, and v ∈
Vertices(P ) be a vertex. For w ∈ Sn, one has ΨP (w) = v whenever the normal
cone Nv(P ) contains the Weyl chamber Cw. The preimage Ψ−1

P (v) ⊆ Sn of a
vertex v ∈ Vertices(P ) is the set L(Qv) of all linear extensions of the vertex
poset Qv.

We remark on the significance of this cone-preposet dictionary for toric varieties
associated to generalized permutohedra or their normal fans; see Fulton [Ful’93]
for further background.
A complete fan F of polyhedral cones in Rd whose cones are rational with
respect to Zd gives rise to a toric variety XF , which is normal, complete and
of complex dimension d.
This toric variety is projective if and only if F is the normal fan N (P ) for some
polytope P , in which case one also denotes XF by XP .
The toric varietyXF is quasi-smooth or orbifold if and only if F is a complete fan
of simplicial cones; in the projective case, where F = N (P ), this corresponds
to P being a simple polytope.
In this situation, the h-numbers of F (or of P ) have the auxiliary geometric
meaning as the (singular cohomology) Betti numbers hi = dimHi(XF ,C). The
symmetry hi = hd−i reflects Poincaré duality for this quasi-smooth variety.
The toric variety XF is smooth exactly when every top-dimensional cone of F is
not only simplicial but unimodular, that is, the primitive vectors on its extreme
rays form a Z-basis for Zd. Equivalently, the facet inequalities ℓ1, . . . , ℓd can
be chosen to form a Z-basis for (Zd)∗ = Hom(Zd,Z) inside (Rd)∗. One has XF
both smooth and projective if and only if F = N (P ) for a Delzant polytope P ,
that is, one which is simple and has every vertex normal cone unimodular.

Corollary 3.10. (cf. [Zel’06, §5]) A complete fan F of posets gives rise to a
complete toric variety XF , which will be projective if and only if F is associated
with the normal fan N (P ) for a generalized permutohedron.
A complete fan F of tree-posets gives rise to a (smooth, not just orbifold)
toric variety XF , which will be projective if and only F is associated with
the normal fan N (P ) of a simple generalized permutohedron. In other words,
simple generalized permutohedra are always Delzant.

Proof. All the assertions should be clear from the above discussion, except for
the last one about simple generalized permutohedra being Delzant. However, a
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tree-poset Q corresponds to a set of functionals xi−xj for the edges {i, j} of a
tree, which are well-known to give a Z-basis for (Zd)∗, cf. [Post’05, Proposition
7.10].

4 Simple generalized permutohedra

The goal of this section is to combinatorially interpret the h-vector of any
simple generalized permutohedron.

4.1 Descents of tree-posets and h-vectors

Definition 4.1. Given a poset Q on [n], define the descent set Des(Q) to be
the set of ordered pairs (i, j) for which i⋖Q j is a covering relation in Q with
i >Z j, and define the statistic number of descents des(Q) := |Des(Q)|.
Theorem 4.2. Let P be a simple generalized permutohedron, with vertex posets
{Qv}v∈Vertices(P ). Then one has the following expression for its h-polynomial:

hP (t) =
∑

v∈Vertices(P )

tdes(Qv). (3)

More generally, for a complete fan F = {Qv} of tree-posets (see Definition 3.3),
one also has hF (t) =

∑
v t

des(Qv).

Proof. (cf. proof of Proposition 7.10 in [Post’05]) Let us prove the more general
claim about fans of tree-posets, that is, simplicial fans coarsening the braid
arrangement fan.
Pick a generic vector g = (g1, . . . , gn) ∈ Rn such that g1 < · · · < gn and
construct the directed graph GF , as in Proposition 2.1. Let σ = {xi ≤ xj |
i⋖Qv j} be the cone of F associated with poset Qv; see Proposition 3.5(8). Let
σ′ be an adjacent cone separated from σ by the facet xi = xj , i ⋖Qv j. The
vector g points from σ to σ′ if and only if gi >R gj, or equivalently, i >Z j.
Thus the outdegree of σ in the graph GF is exactly the descent number des(Q).
The claim now follows from Proposition 2.1.

For a usual permutohedron P in Rn, the vertex posets Qv are just all linear
orders on [n]. So hP (t) is the classical Eulerian polynomial5

An(t) :=
∑

w∈Sn

tdes(w), (4)

where des(w) := #{i | w(i) > w(i+1)} is the descent number of a permutation
w.
Any element w in the Weyl group Sn sends a complete fan F = {Qi} of tree-
posets to another such complete fan wF = {wQi}, by relabelling all of the
posets. Since wF is an isomorphic simplicial complex, with the same h-vector,
this leads to a curious corollary.

5Note that a more standard convention is to call tAn(t) the Eulerian polynomial.
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Definition 4.3. Given a tree-poset Q on [n], define its generalized Eulerian
polynomial

AQ(t) :=
∑

w∈Sn

tdes(wQ).

Note that AQ depends upon Q only as an unlabelled poset.

When Q is a linear order, AQ(t) is the usual Eulerian polynomial An(t).

Corollary 4.4. The h-polynomial hP (t) of a simple generalized permutohe-
dron P is the “average” of the generalized Eulerian polynomials of its vertex
tree-posets Qv:

hP (t) =
1

n!

∑

v∈Vertices(P )

AQv (t).

See Example 5.5 below for an illustration of Theorem 4.2 and Corollary 4.4.

4.2 Bounds on the h-vector and monotonicity

It is natural to ask for upper and lower bounds on the h-vectors of simple
generalized permutohedra. Some of these follow immediately from an h-vector
monotonicity result of Stanley [Stan’92] that applies to complete simplicial
fans.

Definition 4.5. A simplicial complex ∆′ is a geometric subdivision of a sim-
plicial complex ∆ if they have geometric realizations that are topological spaces
on the same underlying set, and every face of ∆′ is contained in a single face
of ∆.

Theorem 4.6. (see [Stan’92, Theorem 4.1]) If ∆′ is a geometric subdivision of
a Cohen-Macaulay simplicial complex ∆, then the h-vector of ∆′ is componen-
twise weakly larger than that of ∆. In particular this holds when ∆,∆′ come
from two complete simplicial fans and ∆′ refines ∆, e.g., the normal fans of
two simple polytopes P, P ′ in which P is a Minkowski summand of P .

Corollary 4.7. A simple generalized permutohedron P in Rn has h-
polynomial coefficientwise smaller than that of the permutohedron, namely the
Eulerian polynomial An(t).

Proof. Proposition 3.2 tells us that the normal fan of P is refined by that of
the permutohedron, so the above theorem applies.

Question 4.8. Does the permutohedron also provide an upper bound for the
f -vectors, flag f - and flag h-vectors, generalized h-vectors, and cd-indices of
generalized permutohedra also in the non-simple case? Is there also a mono-
tonicity result for these other forms of face and flag number data when one
has two generalized permutohedra P, P ′ in which P is a Minkowski summand
of P ′?
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The answer is “Yes” for f -vectors and flag f -vectors, which clearly increase
under subdivision. The answer is also “Yes” for generalized h-vectors, which
Stanley also showed [Stan’92, Corollary 7.11] can only increase under geometric
subdivisions of rational convex polytopes. But for flag h-vectors and cd-indices,
this is not so clear.

Later on (Example 6.11, Section 7.2, and Section 14) we will say more about
lower bounds for h-vectors of simple generalized permutohedra within various
classes.

5 The case of zonotopes

This section illustrates some of the foregoing results in the case where the simple
generalized permutohedron is a zonotope; see also [Post’05, §8.6]. Zonotopal
generalized permutohedra are exactly the graphic zonotopes, and those that
are simple correspond to a very restrictive class of graphs that are easily dealt
with.
A zonotope is a convex polytope Z which is the Minkowski sum of one-
dimensional polytopes (line segments), or equivalently, a polytope whose nor-
mal fan N (Z) coincides with chambers and cones of a hyperplane arrangement.
Under this equivalence, the line segments which are the Minkowski summands
of Z lie in the directions of the normal vectors to the hyperplanes in the ar-
rangement. Given a graph G = (V,E) without loops or multiple edges, on node
set V = [n] and with edge set E, define the associated graphic zonotope ZG to
be the Minkowski sum of line segments in the directions {ei − ej}ij∈E .
Proposition 3.2 then immediately implies the following.

Proposition 5.1. The zonotopal generalized permutohedra are exactly the
graphic zonotopes ZG.

Simple zonotopes are very special among all zonotopes, and simple graphic
zonotopes have been observed [Kim’06] to correspond to a very restrictive class
of graphic zonotopes, namely those whose biconnected components are all com-
plete graphs.
Recall that for a graphG = (V,E), there is an equivalence relation on E defined
by saying e ∼ e′ if there is some circuit (i.e., cycle which is minimal with respect
to inclusion of edges) of G containing both e, e′. The ∼-equivalence classes are
then called biconnected components of G.

Proposition 5.2. [Kim’06, Remark 5.2] The graphic zonotope ZG correspond-
ing to a graph G = (V,E) is a simple polytope if and only if every biconnected
component of G is the set of edges of a complete subgraph some subset of the
vertices V .
In this case, if V1, . . . , Vr ⊆ V are the node sets for these complete subgraphs,
then ZG is isomorphic to the Cartesian product of usual permutohedra of di-
mensions |Vj | − 1 for j = 1, 2, . . . , r.
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Let us give another description for this class of graphs. For a graph F with n
edges e1, . . . , en, the line graph Line(F ) of F is the graph on the vertex set [n]
where {i, j} is an edge in Line(F ) if and only if the edges ei and ej of F have
a common vertex. The following claim is left as an exercise for the reader.

Remark 5.3. For a graph G, all biconnected components of G are edge sets
of complete graphs if and only if G is isomorphic to the line graph Line(F )
of some forest F . Biconnected components of Line(F ) correspond to non-leaf
vertices of F .

For the sake of completeness, we include a proof of Proposition 5.2.

Proof of Proposition 5.2. If the biconnected components ofG induce subgraphs
isomorphic to graphs G1, . . . , Gr then one can easily check that ZG is the
Cartesian product of the zonotopes ZGi . Since a Cartesian product of polytopes
is simple if and only if each factor is simple, this reduces to the case where
r = 1. Also note that when r = 1 and G is a complete graph, then ZG is the
permutohedron, which is well-known to be simple.
For the reverse implication, assume G is biconnected but not a complete graph,
and it will suffice, by Proposition 3.5(9), to construct a vertex v of ZG whose
poset Qv is not a tree-poset. One uses the fact [GZ’83] that a vertex v in
the graphic zonotope ZG corresponds to an acyclic orientation of G, and the
associated poset Qv on V is simply the transitive closure of this orientation.
Thus it suffices to produce an acyclic orientation of G whose transitive closure
has Hasse diagram which is not a tree.
Since G is biconnected but not complete, there must be two vertices {x, y} that
do not span an edge in E, but which lie in some circuit C. Traverse this circuit
C in some cyclic order, starting at the node x, passing through some nonempty
set of vertices V1 before passing through y, and then through a nonempty set
of vertices V2 before returning to x. One can then choose arbitrarily a total
order on the node set V so that these sets appear as segments in this order:

V1, x, y, V2, V − (V1 ∪ V2 ∪ {x, y}).

It is then easily checked that if one orients the edges of G consistently with
this total order, then the associated poset has a non-tree Hasse diagram: for
any v1 ∈ V1 and v2 ∈ V2, one has v1 < x, y < v2 with x, y incomparable.

Corollary 5.4. Let ZG be a simple graphic zonotope, with notation as in
Proposition 5.2. Then ZG is flag, and its f -polynomial, h-polynomial, and
γ-polynomial are all equal to products for j = 1, 2, . . . , r of the f -, h-, or γ-
polynomials of (|Vj | − 1)-dimensional permutohedra.

Proof. Use Proposition 5.2 along with the fact that a Cartesian product of
simple polytopes is flag if and only if each factor is flag, and has f -, h- and
γ-polynomial equal to the product of the same polynomials for each factor.
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Example 5.5. Consider the graph G = (V,E) with V = [4] := {1, 2, 3, 4} and
E = {12, 13, 23, 14}, whose biconnected components are the triangle 123 and
the edge 14, which are both complete subgraphs on node sets V1 = {1, 2, 3} and
V2 = {1, 4}. Hence the graphic zonotope ZG is simple and flag, equal to the
Cartesian product of a hexagon with a line segment, that is, ZG is a hexagonal
prism.
Its f -, h- and γ-polynomials are

fZG(t) = (2 + t)(6 + 6t+ t2) = 12 + 18t+ 8t2 + t3

hZG(t) = A2(t)A3(t) = (1 + t)(1 + 4t+ t2) = 1 + 5t+ 5t2 + t3

γZG(t) = (1)(1 + 2t) = 1 + 2t.

One can arrive at the same h-polynomial using Theorem 4.2. One lists the
tree-posets Qv for each of the 12 vertices v of the hexagonal prism ZG, coming
in 5 isomorphism types, along with the number of descents for each:

type poset Qv des

chain: 2 < 3 < 1 < 4 1
3 < 2 < 1 < 4 2
4 < 1 < 2 < 3 1
4 < 1 < 3 < 2 2

vee: 1 < 2 < 3 and 1 < 4 0
1 < 3 < 2 and 1 < 4 1

type poset Qv des

wedge: 2 < 3 < 1 and 4 < 1 2
3 < 2 < 1 and 4 < 1 3

wye: 2 < 1 < 3 and 1 < 4 1
3 < 1 < 2 and 1 < 4 1

lambda: 3 < 1 < 2 and 4 < 1 2
2 < 1 < 3 and 4 < 1 2

and finds that
∑
v t

des(Qv) = 1 + 5t+ 5t2 + t3.
Lastly one can get this h-polynomial from Corollary 4.4, by calculating directly
that

Achain(t) = 1 + 11t+ 11t2 + t3 = A4(t)

Avee(t) = 3 + 10t+ 8t2 + 3t3

Awedge(t) = 3 + 8t+ 10t2 + 3t3

Awye(t) = Alambda(t) = 2 + 10t+ 10t2 + 2t3

and then the h-polynomial is

1

4!
[4Achain(t) + 2Avee(t) + 2Awedge(t) + 2Awye(t) + 2Alambda(t)]

== 1 + 5t+ 5t2 + t3.

6 Building sets and nestohedra

This section reviews some results from [FS’05], [Post’05], and [Zel’06] regarding
the important special case of generalized permutohedra that arise from building
sets. These generalized permutohedra, which we call nestohedra, turn out to
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always be simple, and they include the graph-associahedra, which in turn gen-
eralize the associahedron, cyclohedron, and permutohedron; this will be fleshed
out in Section 10. Their dual simplicial complexes, the nested set complexes,
are defined, and several tools are given for calculating their f - and h-vectors.
The notion of nested sets goes back to work of Fulton and MacPherson [FM’94],
and DeConcini and Procesi [DP’95] defined building sets and nested set com-
plexes. However, our exposition mostly follows [Post’05] and [Zel’06].

6.1 Building sets, nestohedra, and nested set complexes

Definition 6.1. [Post’05, Definition 7.1] A collection B of nonempty subsets
of a finite set S is a building set if it satisfies the conditions:

(B1) If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

(B2) B contains all singletons {i}, for i ∈ S.

For a building set B on S and a subset I ⊆ S, define the restriction of B to
I as B|I := {J ∈ B | J ⊆ I}. Let Bmax ⊂ B denote the inclusion-maximal
subsets of a building B. Then elements of Bmax are pairwise disjoint subsets
that partition the set S. Call the restrictions B|I , for I ∈ Bmax, the connected
components of B. Say that a building set is connected if Bmax has only one
element: Bmax = {S}.

Example 6.2. Let G be a graph (with no loops nor multiple edges) on the node
set S. The graphical building B(G) is the set of nonempty subsets J ⊆ S such
that the induced graph G|J on node set J is connected. Then B(G) is a building
set.
The graphical building set B(G) is connected if and only if the graph G is con-
nected. The connected components of the graphical B(G) building set correspond
to connected components of the graph G. Also each restriction B(G)|I is the
graphical building set B(G|I) for the induced subgraph G|I .

Definition 6.3. Let B be a building set on [n] := {1, . . . , n}. Faces of the
standard coordinate simplex in Rn are the simplices ∆I := ConvexHull(ei | i ∈
I), for I ⊆ [n], where the ei are the endpoints of the coordinate vectors in Rn.
Define the nestohedron6 PB as the Minkowski sum of these simplices

PB :=
∑

I∈B
yI∆I , (5)

where yI are strictly positive real parameters; see [Post’05, Section 6].

Note that since each of the normal fans N (∆I) is refined by the braid arrange-
ment fan, the same holds for their Minkowski sum [Zieg’94, Prop. 7.12], and
hence the nestohedra PB are generalized permutohedra by Proposition 3.2.

6Called the nested set polytope in [Zel’06].
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It turns out that PB is always a simple polytope, whose poset of faces does
not depend upon the choice of the positive parameters yI . To describe this
combinatorial structure it is convenient to describe the dual simplicial complex
of PB.

Definition 6.4. [Post’05, Definition 7.3] For a building set B, let us say that
a subset N ⊆ B \ Bmax is a nested set if it satisfies the conditions:

(N1) For any I, J ∈ N one has either I ⊆ J , J ⊆ I, or I and J are disjoint.

(N2) For any collection of k ≥ 2 disjoint subsets J1, . . . , Jk ∈ N , their union
J1 ∪ · · · ∪ Jk is not in B.

Define the nested set complex ∆B as the collection of all nested sets for B.

It is immediate from the definition that the nested set complex ∆B is an ab-
stract simplicial complex on node set B. Note that this slightly modifies the
definition of a nested set from [Post’05], following [Zel’06], in that one does not
include elements of Bmax in nested sets.

Theorem 6.5. [Post’05, Theorem 7.4], [FS’05, Theorem 3.14] Let B be a
building set on [n]. The nestohedron PB is a simple polytope of dimension
n− |Bmax|. Its dual simplicial complex is isomorphic to the nested set complex
∆B.

An explicit correspondence between faces of PB and nested sets in ∆B is de-
scribed in [Post’05, Proposition 7.5]. The dimension of the face of PB associated
with a nested set N ∈ ∆B equals n − |N | − |Bmax|. Thus vertices of PB cor-
respond to inclusion-maximal nested sets in ∆B, and all maximal nested sets
contain exactly n− |Bmax| elements.

Remark 6.6. For a building set B on [n], it is known [FY’04, Theorem 4]
that one can obtain the nested set complex ∆B (resp., the nestohedron PB)
via the following stellar subdivision (resp., shaving) construction, a common
generalization of

• the barycentric subdivision of a simplex as the dual of the permutohedron,

• Lee’s construction of the associahedron [Lee’89, §3].
Start with an (n − 1)-simplex whose vertices (resp., facets) have been labelled
by the singletons i for i ∈ [n], which are all in B. Then proceed through each of
the non-singleton sets I in B, in any order that reverses inclusion (i.e., where
larger sets come before smaller sets), performing a stellar subdivision on the
face with vertices (resp., shave off the face which is the intersection of facets)
indexed by the singletons in I.

Remark 6.7. Note that if B1, . . . ,Bk are the connected components of a
building set B, then PB is isomorphic to the direct product of polytopes PB1 ×
· · · × PBk

. Thus it is enough to investigate generalized permutohedra PB and
nested set complexes ∆B only for connected buildings.
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Remark 6.8. The definition (5) of the nestohedron PB as a Minkowski sum
should make it clear that whenever one has two building sets B ⊆ B′, then PB
is a Minkowski summand of PB′ . Hence Theorem 4.6 implies the h-vector of
PB′ is componentwise weakly larger than that of PB.

Remark 6.9. Nestohedra PB(G) associated with graphical building sets B(G)
are called graph-associahedra, and have been studied in [CD’06, Post’05, Tol’05,
Zel’06]. In [CD’06], the sets in B(G) are called tubes, and the nested sets are
called tubings.
In particular, the h-vector monotonicity discussed in Remark 6.8 applies to
graph-associahedra PB(G), PB(G′) associated to graphs G,G′ where G is an edge-
subgraph of G′.

Example 6.10. (Upper bound for nestohedra: the permutohedron) see [Post’05,
Sect. 8.1] For the complete graph Kn, the building set B(Kn) = 2[n] \ {∅}
consists of all nonempty subsets in [n]. Let us call it the complete building set.
The corresponding nestohedron (the graph-associahedron of the complete graph)
is the usual (n−1)-dimensional permutohedron in Rn. The k-th component hk
of its h-vector is the Eulerian number, that is the number of permutations in
Sn with k descents; and its h-polynomial is the Eulerian polynomial An(t);
see (4).
This h-vector gives the componentwise upper bound on h-vectors for all (d−1)-
dimensional nestohedra. This also implies that the f -vector of the permutohe-
dron gives the componentwise upper bound on f -vectors of nestohedra.

Example 6.11. (Lower bound for nestohedra: the simplex) The smallest pos-
sible connected building set B = {{1}, {2}, . . . , {n}, [n]} gives rise to the nesto-
hedron PB which is the (n− 1)-simplex in Rn. In this case

f(t) =

n∑

i=1

(
n

i

)
ti−1 =

(1 + t)n − 1

t
and h(t) = 1 + t+ t2 + · · ·+ tn−1

give trivial componentwise lower bounds on the f -, h-vectors of nestohedra.

6.2 Two recurrences for f-polynomials of nestohedra

There are two useful recurrences for f -polynomials of nestohedra and nested
set complexes.
Let fB(t) be the f -polynomial of the nestohedron PB:

fB(t) :=
∑

fi t
i =

∑

N∈∆B

t|S|−|Bmax|−|N |,

where fi = fi(PB) is the number of i-dimensional faces of PB. As usual, it is
related to the h-polynomial as fB(t) = hB(t+ 1).

Theorem 6.12. [Post’05, Theorem 7.11] The f -polynomial fB(t) is determined
by the following recurrence relations:
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1. If B consists of a single singleton, then fB(t) = 1.

2. If B has connected components B1, . . . ,Bk, then

fB(t) = fB1(t) · · · fBk
(t).

3. If B is a connected building set on S, then

fB(t) =
∑

I(S

t|S|−|I|−1fB|I (t).

Another recurrence relation for f -polynomials was derived in [Zel’06], and will
be used in Section 12.4 below. It will be more convenient to work with the
f -polynomial of nested set complexes

f̃B(t) :=
∑

N∈∆B

t|N | = t|S|−|Bmax|fB(t−1),

where B is a building set on S.
For a building set B on S and a subset I ⊂ S, recall that the restriction of B
to I is defined as B|I = {J ∈ B | J ⊆ I}. Also define the contraction of I from
B as the building set on S \ I given by

B/I := {J ∈ S \ I | J ∈ B or J ∪ I ∈ B},

see [Zel’06, Definition 3.1]. A link decomposition of nested set complexes was
constructed in [Zel’06]. It implies the following recurrence relation for the
f -vector.

Theorem 6.13. [Zel’06, Proposition 4.7] For a building set B on a nonempty
set S, one has

d

dt
f̃B(t) =

∑

I∈B\Bmax

f̃B|I (t) · f̃B/I(t) and f̃B(0) = 1.

Let G be a simple graph on S and let I ∈ B(G), i.e., I is a connected subset
of nodes of G. It has already been mentioned that B(G)|I = B(G|I); see
Example 6.2. Let G/I be the graph on the node set S \ I such that two nodes
i, j ∈ S \ I are connected by an edge in G/I if and only if

1. i and j are connected by an edge in G, or

2. there are two edges (i, k) and (j, l) in G with k, l ∈ I.

Then the contraction of I from the graphical building set B(G) is the graphical
building set associated with the graph G/I, that is B(G)/I = B(G/I).
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7 Flag nestohedra

This section characterizes the flag nested set complexes and nestohedra, and
then identifies those which are “smallest”.

7.1 When is the nested set complex flag?

For a graphical building set B(G) it has been observed ([Post’05, §8,4], [Zel’06,
Corollary 7.4]) that one can replace condition (N2) in Definition 6.4 with a
weaker condition:

(N2’) For a disjoint pair of subsets I, J ∈ N , one has I ∪ J 6∈ B.

This implies that nested set complexes associated to graphical buildings are
flag complexes. More generally, one has the following characterization of the
nested set complexes which are flag.

Proposition 7.1. For a building set B, the following are equivalent.

(i) The nested set complex ∆B (or equivalently, the nestohedron PB) is flag.

(ii) The nested sets for B are the subsets N ⊆ B\Bmax which satisfy conditions
(N1) and (N2’).

(iii) If J1, . . . , Jℓ ∈ B with ℓ ≥ 2 are pairwise disjoint and their union J1 ∪
· · ·∪Jℓ is in B, then one can reindex so that for some k with 1 ≤ k ≤ ℓ−1
one has both J1 ∪ · · · ∪ Jk and Jk+1 ∪ · · · ∪ Jℓ in B.

Proof. The equivalence of (i) and (ii) essentially follows from the definitions.
We will show here the equivalence of (i) and (iii).
Assume that (iii) fails, and let J1, . . . , Jℓ provide such a failure with ℓ minimal.
Note that this means ℓ ≥ 3, and minimality of ℓ forces Jr ∪ Js 6∈ B for each
r 6= s; otherwise one could replace the two sets Jr, Js on the list with the set
Jr ∪ Js to obtain a counterexample of size ℓ − 1. Therefore all of the pairs
{Jr, Js} index edges of ∆B, although {J1, . . . , Jℓ} does not. Hence ∆B is not
flag, i.e., (i) fails.
Now assume (i) fails, i.e., ∆B is not flag. Let J1, . . . , Jℓ be subsets in B, for
which each pair {Jr, Js} with r 6= s is a nested set, but the whole collection
M := {J1, . . . , Jℓ} is not, and assume that this violation has ℓ minimal. Because
{Jr, Js} are nested for r 6= s, it must be that M does satisfy condition (N1),
and so M must fail condition (N2). By minimality of ℓ, it must be that the
J1, . . . , Jℓ are pairwise disjoint and their union J1 ∪ · · · ∪ Jℓ is in B. Bearing
in mind that Jr ∪ Js 6∈ B for r 6= s, it must be that ℓ ≥ 3. But then M must
give a violation of property (iii), else one could use property (iii) to produce
a violation of (i) either of size k or of size ℓ − k, which are both smaller than
ℓ.

Corollary 7.2. For graphical buildings B(G), the graph-associahedron PB(G)

and nested set complex ∆B(G) are flag.
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7.2 Stanley-Pitman polytopes and their relatives

One can now use Proposition 7.1 to characterize the inclusion-minimal con-
nected building sets B for which ∆B and PB are flag.
For any building set B on [n] with ∆B flag, one can apply Proposition 7.1(iii)
with {J1, . . . , Jℓ} equal to the collection of singletons {{1}, . . . , {n}}, since they
are disjoint and their union [n] is also in B. Thus after reindexing, some initial
segment [k] and some final segment [n] \ [k] must also be in B. Iterating this,
one can assume after reindexing that there is a plane binary tree τ with these
properties

• the singletons {{1}, . . . , {n}} label the leaves of τ ,

• each internal node of τ is labelled by the set I which is the union of the
singletons labelling the leaves of the subtree below it (so [n] labels the
root node), and

• the building set B contains of all of the sets labelling nodes in this tree.

It is not hard to see that these sets labelling the nodes of τ already comprise a
building set Bτ which satisfies Proposition 7.1(iii), and therefore give rise to a
nested set complex ∆Bτ and nestohedron PBτ which are flag. See Figure 1.

{1}

{4}

{3,4}

{2}

{3}

{1,2}

{1} {3}

{3,4}

{4}{2}

{1,2}

{1,2,3,4}

{2}

{3,4}{1,2}

{1} {3} {4}

Figure 1: A binary tree τ and building set Bτ , along with its complex of nested
sets ∆Bτ , drawn first as in the construction of Remark 6.6, and then redrawn
as the boundary of an octahedron.

The previous discussion shows the following.

Proposition 7.3. The building sets Bτ parametrized by plane binary trees τ
are exactly the inclusion-minimal building sets among those which are connected
and have the nested set complex and nestohedron flag.
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As a special case, when τ is the plane binary tree having leaves labelled by the
singletons and internal nodes labelled by all initial segments [k], one obtains
the building set Bτ whose nestohedron PBτ is the Stanley-Pitman polytope from
[StPi’02]; see [Post’05, §8.5]. The Stanley-Pitman polytope is shown there to be
combinatorially (but not affinely) isomorphic to an (n− 1)-cube; the argument
given there generalizes to prove the following.

Proposition 7.4. For any plane binary tree τ with n leaves, the nested set
complex ∆Bτ is isomorphic to the boundary of a (n − 1)-dimensional cross-
polytope (hyperoctahedron), and PBτ is combinatorially isomorphic to an (n−
1)-cube.

Proof. Note that the sets labelling the non-root nodes of τ can be grouped
into n − 1 pairs {I1, J1}, . . . , {In−1, Jn−1} of siblings, meaning that Ik, Jk are
nodes with a common parent in τ . One then checks that the nested sets for
Bτ are exactly the collections N containing at most one set from each pair
{Ik, Jk}. As a simplicial complex, this is the boundary complex of an (n− 1)-
dimensional cross-polytope in which each pair {Ik, Jk} indexes an antipodal
pair of vertices.

Note that in this case,

fBτ (t) = (2 + t)n−1, hBτ (t) = (1 + t)n−1, γBτ (t) = 1 = 1 + 0 · t+ 0 · t2 + · · · .

which gives a lower bound for the f - and h-vectors of flag nestohedra by Re-
mark 6.8. If one assumes Conjecture 2.3, then it would also give a lower bound
for γ-vectors of flag nestohedra (and for flag simplicial polytopes in general).
Note that the permutohedron is a graph-associahedron (and hence a flag nesto-
hedra). Therefore, Corollary 4.7 implies that the permutohedron provides the
upper bound on the f - and h-vectors among the flag nestohedra.

8 B-trees and B-permutations

This section discusses B-trees and B-permutations, which are two types of
combinatorial objects associated with vertices of the nestohedron PB. The
h-polynomial of PB equals the descent-generating function for B-trees.

8.1 B-trees and h-polynomials

This section gives a combinatorial interpretation of the h-polynomials of nesto-
hedra. Since nestohedra PB are always simple, one should expect some descrip-
tion of their vertex tree-posets Qv (see Corollaries 3.7 and 3.9) in terms of the
building set B.
Recall that a rooted tree is a tree with a distinguished node, called its root. One
can view a rooted tree T as a partial order on its nodes in which i <T j if j lies
on the unique path from i to the root. One can also view it as a directed graph
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in which all edges are directed towards the root; we will use both viewpoints
here.
For a node i in a rooted tree T , let T≤i denote the set of all descendants of i,
that is j ∈ T≤i if there is a directed path from the node j to the node i. Note
that i ∈ T≤i. Nodes i and j in a rooted tree are called incomparable if neither
i is a descendant of j, nor j is a descendant of i.

Definition 8.1. [Post’05, Definition 7.7], cf. [FS’05] For a connected building
set B on [n], let us define a B-tree as a rooted tree T on the node set [n] such
that

(T1) For any i ∈ [n], one has T≤i ∈ B.

(T2) For k ≥ 2 incomparable nodes i1, . . . , ik ∈ [n], one has
⋃k
j=1 T≤ij 6∈ B.

Note that, when the nested set complex ∆B is flag, that is when B satisfies
any of the conditions of Proposition 7.1, one can define a B-tree by requiring
condition (T2) only for k = 2.

Proposition 8.2. [Post’05, Proposition 7.8], [FS’05, Proposition 3.17] For
a connected building set B, the map sending a rooted tree T to the collection
of sets {T≤i |i is a nonroot vertex} ⊂ B gives a bijection between B-trees and
maximal nested sets. (Recall that maximal nested sets correspond to the facets
of the nested set complex ∆B and to the vertices of the nestohedron PB.)
Furthermore, if the B-tree T corresponds to the vertex v of PB then T = Qv,
that is, T is the vertex tree-poset for v in the notation of Corollary 3.7.

Question 8.3. Does a simple (indecomposable) generalized permutohedron P
come from a (connected) building set if and only if every poset Qv is a rooted
tree, i.e. has a unique maximal element?

Proposition 8.2 and Theorem 4.2 yield the following corollary.

Corollary 8.4. For a connected building set B on [n], the h-polynomial of
the generalized permutohedron PB is given by

hB(t) =
∑

T

tdes(T ),

where the sum is over B-trees T .

The following description of B-trees is straightforward from the definition.

Proposition 8.5. [Post’05, Section 7] Let B be a connected building set on
S and let i ∈ S. Let B1, . . . ,Br be the connected components of the restriction
B|S\{i}. Then all B-trees with root at i are obtained by picking a Bj-tree Tj, for
each component Bj, j = 1, . . . , r, and connecting the roots of T1, . . . , Tr with
the node i by edges.
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In other words, each B-tree is obtained by picking a root i ∈ S, splitting
the restriction B|S\{i} into connected components, then picking nodes in all
connected components, splitting corresponding restrictions into components,
etc.
Recall Definition 3.1 of the surjection ΨB := ΨPB

ΨB : Sn −→ Vertices(PB) = {B-trees},
Here and below one identifies vertices of the nestohedron PB with B-trees via
Proposition 8.2. By Corollary 3.9, for a B-tree T , one has ΨB(w) = T if and
only if w is a linear extension of T .
Proposition 8.5 leads to an explicit recursive description of the surjection ΨB.

Proposition 8.6. Let B be a connected building set on [n]. Given a permuta-
tion w = (w(1), . . . , w(n)) ∈ Sn, one recursively constructs a B-tree T = T (w),
as follows.
The root of T is the node w(n). Let B1, . . . ,Br be the connected components of
the restriction B|{w(1),...,w(n−1)}. Restricting w to each of the sets Bi gives a
subword of w, to which one can recursively apply the construction and obtain
a Bi-tree Ti. Then attach these T1, . . . , Tr as subtrees of the root node w(n) in
T . This association w 7→ T (w) is the map ΨB.

8.2 B-permutations

It is natural to ask for a nice section of the surjection ΨB; these are the B-
permutations defined next.

Definition 8.7. Let B be a building set on [n]. Define the set Sn(B) ⊂ Sn

of B-permutations as the set of permutations w ∈ Sn such that for any i ∈
[n], the elements w(i) and max{w(1), w(2), . . . , w(i)} lie in the same connected
component of the restricted building set B|{w(1),...,w(i)}.

The following construction of B-permutations is immediate from the definition.

Lemma 8.8. A permutation w ∈ Sn is a B-permutation if and only if it can be
constructed via the following procedure.
Pick w(n) from the connected component of B that contains n; then pick
w(n− 1) from the connected component of B|[n]\{w(n)} that contains the maxi-
mal element of [n]\{w(n)}; then pick w(n−2) from the connected component of
B|[n]\{w(n),w(n−1)} that contains the maximal element of [n] \ {w(n), w(n− 1)},
etc. Continue in this manner until w(1) has been chosen.

Let T be a rooted tree on [n] viewed as a tree-poset where the root is the
unique maximal element. The lexicographically minimal linear extension of T
is the permutation w ∈ Sn such that w(1) is the minimal leaf of T (in the
usual order on Z), w(2) is the minimal leaf of T − {w(1)} (the tree T with the
vertex w(1) removed), w(3) is the minimal leaf of T −{w(1), w(2)}, etc. There
is the following alternative “backward” construction for the lexicographically
minimal linear extension of T .
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Lemma 8.9. Let w be the lexicographically minimal linear extension of a rooted
tree T on [n]. Then the permutation w can be constructed from T , as follows:
w(n) is the root of T ; w(n − 1) is the root of the connected component of
T − {w(n)} that contains the maximal vertex of this forest (in the usual order
on Z); w(n−2) is the root of the connected component of T −{w(n), w(n−1)}
that contains the maximal vertex of this forest, etc.

In general, w(i) is the root of the connected component of the forest

T − {w(n), . . . , w(i + 1)}

that contains the vertex max(w(1), . . . , w(i)).

Proof. The proof is by induction on the number of vertices in T . Let T ′ be
the rooted tree obtained from T by removing the minimal leaf l. Then the
lexicographically minimal linear extension w of T is w = (l, w′), where w′ is the
lexicographically minimal linear extension of T ′, and both w and w′ are written
in list notation. By induction, w′ can be constructed from T ′ backwards. When
one performs the backward construction for T , the vertex l can never be the
root of the connected component of T − {w(n), . . . , w(i + 1)} containing the
maximal vertex, for i > 1. So the backward procedure for T produces the same
permutation w = (l, w′).

The next claim gives a correspondence between B-trees and B-permutations.

Proposition 8.10. Let B be a connected building set on [n]. The set Sn(B) of
B-permutations is exactly the set of lexicographically minimal linear extensions
of the B-trees. (Equivalently, Sn(B) is the set of lexicographically minimal
representatives of fibers of the map ΨB.)
In particular, the map ΨB induces a bijection between B-permutations and B-
trees, and Sn(B) is a section of the map ΨB.

Proof. Let w ∈ Sn be a permutation and let T = T (w) be the corresponding B-
tree constructed as in Proposition 8.6. Note that, for i = n−1, n−2, . . . , 1, the
connected components of the forest T |{w(1),...,w(i)} = T − {w(n), . . . , w(i+ 1)}
correspond to the connected components of the building set B|{w(1),...,w(i)}, and
corresponding components have the same vertex sets. According to Lemma 8.9,
the permutation w is the lexicographically minimal linear extension of T if and
only if w is a B-permutation as described in Lemma 8.8.

9 Chordal building sets and their nestohedra

This section describes an important class of building sets B, for which the de-
scent numbers of B-trees are equal to the descent numbers of B-permutations.
In this case, the h-polynomial of the nestohedron PB equals the descent-
generating function of the corresponding B-permutations.
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9.1 Descents in posets vs. descents in permutations

A descent of a permutation w ∈ Sn is a pair7 (w(i), w(i+ 1)) such that w(i) >
w(i+1). Let Des(w) be the set of all descents in w. Also recall that the descent
set Des(Q) of a poset Q is the set of pairs (a, b) such that a⋖Q b and a >Z b;
see Definition 4.1.

Lemma 9.1. Let Q be any poset on [n], and let w = w(Q) be the lexicographi-
cally minimal linear extension of Q. Then one has Des(w) ⊆ Des(Q).

Proof. One must show that any descent (a, b) (with a >Z b) in w must come
from a covering relation a ⋖Q b in the poset Q. Indeed, if a and b are incom-
parable in Q, then the permutation obtained from w by transposing a and b
would be a linear extension of P which is lexicographically smaller than w. On
the other hand, if a and b are comparable but not adjacent elements in Q, then
they can never be adjacent elements in a linear extension of Q.

In particular, this lemma implies that, for a B-tree T and the corresponding
B-permutation w (i.e., w is the lexicographically minimal linear extension of
T ), one has Des(w) ⊆ Des(T ). The rest of this section discusses a special class
of building sets for which one always has Des(w) = Des(T ).

9.2 Chordal building sets

Definition 9.2. A building set B on [n] is chordal if it satisfies the following
condition: for any I = {i1 < · · · < ir} ∈ B and s = 1, . . . , r, the subset
{is, is+1, . . . , ir} also belongs to B.

Recall that a graph is called chordal if it has no induced k-cycles for k ≥ 4. It
is well known [FG’65] that chordal graphs are exactly the graphs that admit a
perfect elimination ordering, which is an ordering of vertices such that, for each
vertex v, the neighbors of v that occur later than v in the order form a clique.
Equivalently, a graph G is chordal if its vertices can be labelled by numbers in
[n] so that G has no induced subgraph G|{i<j<k} with the edges (i, j), (i, k)
but without the edge (j, k). Let us call such graphs on [n] perfectly labelled
chordal graphs.8

Example 9.3. A tree on [n] is called decreasing if the labels decrease in the
shortest path from the vertex n (the root) to another vertex. It is easy to see
that decreasing trees are exactly the trees which are perfectly labelled chordal
graphs. Clearly, any unlabelled tree has such a decreasing labelling of vertices.

The following claim justifies the name “chordal building set.”

7A more standard convention is say that a descent is an index i such that w(i) > w(i+1).
8We can also call them 312-avoiding graphs because they are exactly the graphs that have

no induced 3-path a—b—c with the relative order of the vertices a, b, c as in the permutation
312. Note that, unlike the pattern avoidance in permutations, a 312-avoiding graph is the
same thing as a 213-avoiding graph.
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Proposition 9.4. A graphical building set B(G) is chordal if and only if G is
a perfectly labelled chordal graph.

Proof. Suppose that G contains an induced subgraph G|{i<j<k} with exactly
two edges (i, j), (i, k). Then {i, j, k} ∈ B(G) but {j, k} 6∈ B(G). Thus B(G) is
not a chordal building set.
On the other hand, suppose that B(G) is not chordal. Then one can find
an s and a connected subset I = {i1 < · · · < ir} of vertices in G such that
{is, is+1, . . . , ir} 6∈ B(G). In other words, the induced graph G′ = G|{is,...,ik}
is disconnected. Let us pick a shortest path P in G|{i1,...,ir} that connects two
different components of G′. Let i be the minimal vertex in P and let j and k
be the two vertices adjacent of i in the path P . Clearly, j > i and k > i. It
is also clear that (i, j) is not an edge of G. Otherwise there is a shorter path
obtained from P by replacing the edges (i, j) and (i, k) with the edge (j, k). So
one has found a forbidden induced subgraph G|{i,j,k}. Thus G is not a perfectly
labelled chordal graph.

Proposition 9.5. Let B be a connected chordal building set. Then, for any
B-tree T and the corresponding B-permutation w, one has Des(w) = Des(T ).

Proof. Let T be a B-tree and let w be the corresponding B-permutation, which
can be constructed backward from T as described in Lemma 8.9. Let us fix
i ∈ {n−1, n−2, . . . , 1}. Let T1, . . . , Tr, T

′
1, . . . , T

′
s be the connected components

of the forest T−{w(n), w(n−1), . . . , w(i+1)}, where T1, . . . , Tr are the subtrees
whose roots are the children of the vertex w(i + 1), and T ′1, . . . , T

′
s are the

remaining subtrees. Let I = T≤w(i+1) ⊂ [n] be the set of all descendants of
w(i + 1) in T . By Definition 8.1(T1), one has I ∈ B.
Suppose that the vertex m = max(w(1), . . . , w(i)) appears in one of the sub-
trees T1, . . . , Tr, say, in the tree T1. Then, by Lemma 8.9, w(i) should be the
root of T1. We claim that all vertices in T2, . . . , Tr are less than w(i + 1). In-
deed, this is clear if w(i + 1) is the maximal element in I. Otherwise, the set
I ′ = I ∩ {w(i + 1) + 1, . . . , n− 1, n} is nonempty, I ′ ∈ B because B is chordal,
and I ′ contains the maximal vertex m. Since the vertex set J of T1 should be
an element of B, it follows that I ′ ⊆ J . So all vertices of T2, . . . , Tr are less
than w(i + 1).
Thus none of the edges of T joining the vertex w(i + 1) with the roots of
T2, T3, . . . , Tr can be a descent edge. The only potential descent edge is the
edge (w(i), w(i+1)) that attaches the subtree T1 to w(i+1). This edge will be a
descent edge in T if and only if w(i) > w(i+1), i.e., exactly when (w(i), w(i+1))
is a descent in the permutation w.
Now suppose that the maximal vertex m = max(w(1), . . . , w(i)) appears in
one of the remaining subtrees T ′1, . . . , T

′
s, which are not attached to the vertex

w(i+1), say, in T ′1. In this casew(i+1) should be greater than all w(1), . . . , w(i).
(Otherwise, if w(i + 1) < m, then at the previous step of the backward con-
struction for w, T ′1 is the connected component of T −{w(n), . . . , w(i+1)} that
contains the vertex max(w(1), . . . , w(i+1)) = m. So w(i+1) should have been
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the root of T ′1.) In this case, none of the edges joining the vertex w(i+ 1) with
the components T1, . . . , Tr can be a descent edge and (w(i), w(i + 1)) cannot
be a descent in w.

This proves that descent edges of T are in bijection with descents in w.

Corollary 8.4 and Proposition 9.5 imply the following formula.

Corollary 9.6. For a connected chordal building set B, the h-polynomial of
the nestohedron PB equals

hB(t) =
∑

w∈Sn(B)

tdes(w),

where des(w) is the usual descent number of a permutation w ∈ Sn(B).

Let us give an additional nice property of nestohedra for chordal building sets.

Proposition 9.7. For a chordal building set B, the nestohedron PB is a flag
simple polytope.

Proof. Let us check that a chordal building set B satisfies the condition in
Proposition 7.1(iii). Using the notation of that proposition, let J1 ∪ · · · ∪ Jℓ =
{i1 < · · · < ir}. Let Us be the union of those subsets J1, ..., Jℓ that have
a nonempty intersection with {is, is+1, . . . , ir}. Since {is, is+1, . . . , in} is in B
(because B is chordal), the subset Us should also be in B (by Definition 6.1(B1)).
Clearly, U1 is the union of all Ji’s and Ur consists of a single Ji. It is also clear
that Uj+1 either equals Uj or is obtained from Uj by removing a single subset
Ji. It follows that there exists an index s such that Us = (J1 ∪ · · · ∪ Jℓ) \ Ji.
This gives an index i such that (J1 ∪ · · · ∪ Jℓ) \ Ji and Ji are both in B, as
needed.

10 Examples of nestohedra

Let us give several examples that illustrate Corollary 8.4 and Corollary 9.6. The
f - and h-numbers for the permutohedron and associahedron are well-known.

10.1 The permutohedron

For the complete building set B = B(Kn) the nestohedron PB is the usual
permutohedron; see Example 6.10 and [Post’05, Sect. 8.1]. In this case B-trees
are linear orders on [n] and B-permutations are all permutations Sn(B) = Sn.
Thus, as noted before in Example 6.10, the h-polynomial is the usual Eulerian
polynomial An(t), and the h-numbers are the Eulerian numbers hk(PB) =
A(n, k) := #{w ∈ Sn | des(w) = k}.
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10.2 The associahedron

Let G = Pathn denote the graph which is a path having n nodes labelled
consecutively 1, . . . , n. The graphical building set B = B(Pathn) consists of all
intervals [i, j], for 1 ≤ i ≤ j ≤ n. The corresponding nestohedron PB(Pathn) is
the usual Stasheff associahedron; see [CD’06, Post’05].
In this case, the B-trees correspond to unlabelled plane binary trees on n nodes,
as follows; see [Post’05, Sect. 8.2] for more details. A plane binary tree is
a rooted tree with two types of edges (left and right) such that every node
has at most one left and at most one right edge descending from it. From
Proposition 8.5, one can see that a B-tree is a binary tree with n nodes labelled
1, 2, . . . , n so that, for any node, all nodes in its left (resp., right) branch have
smaller (resp., bigger) labels. Conversely, given an unlabelled plane binary tree,
there is a unique way to label its nodes 1, 2, . . . , n to create a B-tree, namely
in the order of traversal of a depth-first search. Furthermore, note that descent
edges correspond to right edges.
It is well-known that the number of unlabelled binary trees on n nodes is equal
to the Catalan number Cn = 1

n+1

(
2n
n

)
, and the number of binary trees on n

nodes with k − 1 right edges is the Narayana number N(n, k) = 1
n

(
n
k

)(
n
k−1

)
;

see [Stan’99, Exer. 6.19c and Exer. 6.36]. Therefore, the h-numbers of the
associahedron PB(Pathn) are the Narayana numbers: hk(PB(Pathn

)) = N(n, k+
1), for k = 0, . . . , n− 1.
It is also well-known that the f -numbers of the associahedron are
fk(PB(Pathn

)) = 1
n+1

(
n−1
k

)(
2n−k
n

)
. This follows from a classical Kirkman-

Cayley formula [Cay’1890] for the number of ways to draw k noncrossing
diagonals in an n-gon.
In this case, the B-permutations are exactly 312-avoiding permutations w ∈ Sn.
Recall that a permutation w is 312-avoiding if there is no triple of indices
i < j < k such that w(j) < w(k) < w(i). Thus Corollary 9.6 says that the
h-polynomial of the associahedron PB(Pathn) is

∑
w t

des(w) where the sum runs
over all 312-avoiding permutations in Sn. This is consistent with the known
fact that the Narayana numbers count 312-avoiding permutations according
to their number of descents; see Simion [Sim’94, Theorem 5.4] for a stronger
statement.

10.3 The cyclohedron

If G = Cyclen is the n-cycle, then the nestohedron PB(Cyclen) is the cyclohe-
dron or Bott-Taubes polytope; see [CD’06, Post’05]. The h-polynomial of the
cyclohedron was computed by Simion [Sim’03, Corollary 1]:

hB(Cyclen)(t) =

n∑

k=0

(
n

k

)2

tk. (6)

Note that the n-cycle (for n > 3) is not a chordal graph, so Corollary 9.6 does
not apply to this case.
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10.4 The stellohedron

Let m = n−1. Let G = K1,m be the m-star graph with the central node m+1
connected to the nodes 1, . . . ,m. Let us call the associated polytope PB(K1,m)

the stellohedron.
From Proposition 8.5 one sees that B(K1,m)-trees are in bijection with partial
permutations of [m], which are ordered sequences u = (u1, . . . , ur) of distinct
numbers in [m], where r = 0, . . . ,m. The tree T associated to a partial permu-
tation u = (u1, . . . , ur) has the edges

(ur, ur−1), . . . , (u2, u1), (u1,m+ 1), (m+ 1, i1), . . . , (m+ 1, im−r)

where i1, . . . , im−r are the elements of [m] \ {u1, . . . , ur}. The root of T is ur
if r ≥ 1, or m+ 1 if r = 0. For r ≥ 1, one has des(T ) = des(u) + 1, where the
descent number of a partial permutation is

des(u) := #{i = 1, . . . , r − 1 | ui > ui+1}.

Also for the tree T associated with the empty partial permutation (for r = 0)
one has des(T ) = 0. Corollary 8.4 then says that

hB(K1,m)(t) = 1 +
∑

u

tdes(u)+1 = 1 +

m∑

r=1

(
m

r

) r∑

k=1

A(r, k) tk, (7)

where the first sum is over nonempty partial permutations w of [m]. In partic-
ular, the total number of vertices of the stellohedron PB(K1,m) equals

f0(PB(K1,m)) =

m∑

r=0

(
m

r

)
· r! =

m∑

r=0

m!

r!
.

This sequence appears in [Sloa] as A000522.
In this case, B(K1,m)-permutations are permutations w ∈ Sm+1 such that
m + 1 appears before the first descent. Such permutations w are in bijection
with partial permutations u of [m]. Indeed, u is the part of w after the entry
m + 1. Since our labelling of K1,m (with the central node labelled m + 1) is
decreasing (see Example 9.3), Corollary 9.6 implies that the h-polynomial of
the stellohedron PB(K1,m) is h(t) =

∑
w t

des(w), where the sum runs over all
such permutations w ∈ Sm+1. This agrees with the above expression in terms
of partial permutations.

10.5 The Stanley-Pitman polytope

Let BPS = {[i, n], {i} | i = 1, . . . , n}, the collection of all intervals [i, n] and sin-
gletons {i}. This (non-graphical) building set is chordal. According to [Post’05,
§8.5], the corresponding nestohedron PBPS is the Stanley-Pitman polytope from
[StPi’02].

Documenta Mathematica 13 (2008) 207–273



242 Alex Postnikov, Victor Reiner, Lauren Williams

By Proposition 8.5, BPS-trees have the following form T (I). For an increasing
sequence I of positive integers i1 < i2 < · · · < ik = n, construct the tree T (I)
on [n] with the root at i1 and the chain of edges (i1, i2), (i2, i3), . . . , (ik−1, ik);
also, for each j ∈ [n]\I, one has the edge (il, j) where il is the minimal element
of I such that il > j.
In this case, BPS-permutations are permutations w ∈ Sn such that w(1) <
w(2) < · · · < w(k) > w(k + 1) > · · · > w(n), for some k = 1, . . . , n.
Using BPS-trees or BPS-permutations one can easily deduce that the h-
polynomial of the Stanley-Pitman polytope is hBPS(t) = (1+ t)n−1. This is not
surprising since PBPS is combinatorially isomorphic to the (n− 1)-dimensional
cube.

11 γ-vectors of nestohedra

Recall that the γ-vector (γ0, γ1, . . . , γ⌊d/2⌋) of a d-dimensional simple polytope

is defined via its h-polynomial as h(t) =
∑
γi t

i(1+t)d−2i; and the γ-polynomial
is γ(t) =

∑
γi t

i; see Section 2.3. The main result of this section is a formula
for the γ-polynomial of a chordal nestohedron as a descent-generating function
(or peak-generating function) for some set of permutations. This implies that
Gal’s conjecture (Conjecture 2.3) holds for this class of flag simple polytopes.
To prove this, we will employ a certain combinatorial approach that goes back
to work of Shapiro, Woan, and Getu [SWG’83], also used by Foata and Strehl,
and more recently by Bränden; see [Brä’06] for a thorough discussion.
Suppose P is a simple polytope and one has a combinatorial formula for the
h-polynomial hP (t) =

∑
a∈A t

f(a), where f(a) is some statistic on the set A.
Suppose further that one has a partition of A into f -symmetric Boolean classes,
i.e. such that the f -generating function for each class is tr(1 + t)2n−r for some

r. Let Â ⊂ A be the set of representatives of the classes where f(a) takes its
minimal value. Then the γ-polynomial equals γP (t) =

∑
a∈ bA t

f(a). Call f(a) a
“generalized descent-statistic.” Additionally, define

peak(a) = min{f(b) | a and b in the same class}+ 1

and call it a “generalized peak statistic.”

11.1 A warm up: γ-vector for the permutohedron

We review here the beautiful construction of Shapiro, Woan, and Getu
[SWG’83] that leads to a nonnegative formula for the γ-vector of the usual
permutohedron. This subsection also serves as a warm-up for a more general
construction in the following subsection.
Some notation is necessary. Recall that a descent in a permutation w ∈ Sn is
a pair (w(i), w(i + 1)) such that w(i) > w(i + 1), where i ∈ [n − 1]. A final
descent is when w(n− 1) > w(n), and a double descent is a pair of consecutive
descents, i.e. a triple w(i) > w(i + 1) > w(i + 2).
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Additionally, define a peak of w to be an entry w(i) for 1 ≤ i ≤ n such that
w(i− 1) < w(i) > w(i + 1). Here (and below) set w(0) = w(n+ 1) = 0 and so
a peak can occur in positions 1 or n. On the other hand, a valley of w is an
entry w(i) for 1 < i < n such that w(i− 1) > w(i) < w(i+ 1). The peak-valley
sequence of w is the subsequence in w formed by all peaks and valleys.
Let Ŝn denote the set of permutations in Sn which do not contain any final
descents or double descents. Let peak(w) denote the number of peaks in a

permutation w. It is clear that peak(w)−1 = des(w), for permutations w ∈ Ŝn

(and only for these permutations).

Theorem 11.1. (cf. [SWG’83, Proposition 4]) The γ-polynomial of the usual
permutohedron PB(Kn) is

∑

w∈bSn

tpeak(w)−1 =
∑

w∈bSn

tdes(w).

Example 11.2. Let us calculate the γ-polynomial of the two dimensional per-
mutohedron PB(K3). One has Ŝ3 = {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. Of these,
(1, 2, 3) has one peak (and no descents), and (2, 1, 3) and (3, 1, 2) have two
peaks (and one descent). Therefore, the γ-polynomial is 1 + 2t.

Say that an entry w(i) of w is an intermediary entry if w(i) is not a peak or
a valley. Say that w(i) is an ascent-intermediary entry if w(i − 1) < w(i) <
w(i+1) and that it is a descent-intermediary entry if w(i−1) > w(i) > w(i+1).

(Here again one should assume that w(0) = w(n+1) = 0.) Note that the set Ŝn

is exactly the set of permutations in Sn without descent-intermediary entries.
It is convenient to graphically represent a permutation w ∈ Sn by a piece-
wise linear “mountain range” Mw obtained by connecting the points (x0, 0),
(x1, w(1)), (x2, w(2)), . . . , (xn, w(n)), (xn+1, 0) on R2 by straight line inter-
vals, for some x0 < x1 < · · · < xn+1; see Figure 2. Then peaks in w cor-
respond to local maxima of Mw, valleys correspond to local minima of Mw,
ascent-intermediary entries correspond to nodes on ascending slopes of Mw,
and descent-intermediary entries correspond to nodes on descending slopes of
Mw. For example, the permutation w = (6, 5, 4, 10, 8, 2, 1, 7, 9, 3) shown in Fig-
ure 2 has three peaks 6, 10, 9, two valleys 4, 1, one ascent-intermediary entry
7, and four descent-intermediary entries 5, 8, 2, 3. Its peak-valley sequence is
(6, 4, 10, 1, 9).
As noted in Section 4.1, the h-polynomial of the permutohedron is the descent-
generating function for permutations in Sn (the Eulerian polynomial). In
order to prove Theorem 11.1, one constructs an appropriate partitioning of Sn

into equivalence classes, where each class has exactly one element from Ŝn.
To describe the equivalence classes of permutations, one must introduce some
operations on permutations.

Definition 11.3. Let us define the leap operations La and L−1
a that act on

permutations. Informally, the permutation La(w) is obtained from w by moving
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Figure 2: Mountain range Mw for w = (6, 5, 4, 10, 8, 2, 1, 7, 9, 3)

an intermediary node a on the mountain range Mw directly to the right until
it hits the next slope of Mw. The permutation L−1

a (w) is obtained from w by
moving a directly to the left until it hits the next slope of Mw.
More formally, for an intermediary entry a = w(i) in w, the permutation
La(w) is obtained from w by removing a from the i-th position and inserting a
in the position between w(j) and w(j + 1), where j is the minimal index such
that j > i and a is between w(j) and w(j + 1), i.e., w(j) < a < w(j + 1)
or w(j) > a > w(j + 1). The leap operation La is not defined if all entries
following a in w are less than a.
Similarly, the inverse operation L−1

a (w) is given by removing a from the i-
th position in w and inserting a between w(k) and w(k + 1), where k is the
maximum index such that k < i and a is between w(k) and w(k + 1). The
operation L−1

a is is not defined if all entries preceding a in w are less than a.

For example, for the permutation w shown on Figure 2, one has L2(w) =
(6, 5, 4, 10, 8, 1, 2, 7, 9, 3) and L−1

2 (w) = (2, 6, 5, 4, 10, 8, 1, 7, 9, 3).
Clearly, if a is an ascent-intermediary entry in w then a is a descent-
intermediary entry in L±1

a (w), and vice versa. Note that if a is an ascent-
intermediary entry in w, then La(w) is always defined, and if a is a decent-
intermediary entry, then L−1

a (w) is always defined.

Definition 11.4. Let us also define the hop operations Ha on permutations.
For an ascent-intermediary entry a in w, define Ha(w) = La(w); and, for a
descent-intermediary entry a in w, define Ha(w) = L−1

a (w).

For example, for the permutation w shown on Figure 2, the permuta-
tion H2(w) = (2, 6, 5, 4, 10, 8, 1, 7, 9, 3) is obtained by moving the descent-
intermediary entry 2 to the left to the first ascending slope, and H7(w) =
(6, 5, 4, 10, 8, 2, 1, 9, 7, 3) is obtained by moving the ascent-intermediary entry 7
to the right to the last descending slope.
Note that leaps and hops never change the shape of the mountain range Mw,
that is, they never change the peak-valley sequence of w. They just move
intermediary nodes from one slope of Mw to another. It is quite clear from the
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definition that all leap and hop operations pairwise commute with each other.
It is also clear that two hops Ha get us back to the original permutation.

Lemma 11.5. For intermediary entries a and b in w, one has (Ha)2(w) = w
and Ha(Hb(w)) = Hb(Ha(w)).

Thus the hop operations Ha generate the action of the group (Z/2Z)m on the
set of permutations with a given peak-valley sequence, where m is the number
of intermediary entries in such permutations.

We say that two permutations are hop-equivalent if they can be obtained from
each other by the hop operations Ha for various a’s. The partitioning of Sn

into hop-equivalence classes allows us to prove Theorem 11.1.

Proof of Theorem 11.1. The number des(w) of descents in w equals the num-
ber of peaks in w plus the number of descent-intermediary entries in w minus 1
(because the last entry is either a peak or a descent-intermediary entry, but it
does not contribute a descent). Notice that if a is an ascent-intermediary (resp.,
descent-intermediary) entry in w then the number of descent-intermediary en-
tries in Ha(w) increases (resp., decreases) by 1 and the number of peaks does
not change.

If w ∈ Sn has p = peak(w) peaks then it has p − 1 valleys and n − 2p + 1
intermediary entries. Lemma 11.5 implies that the hop-equivalence class C of
w involves 2n−2p+1 permutations. Moreover, the descent-generating function
for these permutations is

∑
u∈C t

des(u) = tp(t+1)n−2p+1. Each hop-equivalence
class has exactly one representative u without descent-intermediary entries,
that is u ∈ Ŝn. Thus, summing the contributions of hop-equivalence classes,
one can write the h-polynomial of the permutohedron as

h(t) =
∑

w∈Sn

tdes(w) =
∑

w∈bSn

tpeak(w)−1(t+ 1)n+1−2 peak(w).

Comparing this to the definition of the γ-polynomial, one derives the theorem.

11.2 γ-vectors of chordal nestohedra

According to Proposition 9.7, nestohedra for chordal building sets are flag
simple polytopes. Thus Gal’s conjecture (Conjecture 2.3) applies. This section
proves this conjecture and presents a nonnegative combinatorial formula for γ-
polynomials of such nestohedra as peak-generating functions for some subsets
of permutations.

Let B be a connected chordal building set on [n]. Recall that Sn(B) is the set

of B-permutations; see Definition 8.7. Let Ŝn(B) := Sn(B)∩ Ŝn be the subset
of B-permutations which have no final descent or double descent.

The following theorem is the main result of this section.
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Theorem 11.6. For a connected chordal building B on [n], the γ-polynomial
of the nestohedron PB is the peak-generating function for the permutations in
Ŝn(B):

γB(t) =
∑

w∈bSn(B)

tpeak(w)−1 =
∑

w∈bSn(B)

tdes(w).

As noted earlier, peak(w) − 1 = des(w) for w ∈ Ŝn.
The proof of Theorem 11.6 will be an extension of the proof given for the
γ-vector of the permutohedron in Section 11.1. Recall that Corollary 9.6
interprets the h-polynomial of PB as the descent-generating function for B-
permutations w ∈ Sn(B). Theorem 11.6 will be proven by constructing an
appropriate partitioning of the set Sn(B) into equivalence classes, where each

equivalence class has exactly one representative from Ŝn(B). As before, one
uses (suitably generalized) hop operations to describe equivalence classes of
elements of Sn(B).
One needs powers of the leap operations Lra := (La)r, for r ≥ 0, and Lra :=
(L−1

a )−r, for r ≤ 0; see Definition 11.3. In other words, for r > 0, Lra(w) is
obtained from w by moving the intermediary entry a to the right until it hits
the r-th slope from its original location; and, for r < 0, by moving a to the left
until it hits (−r)-th slope from its original location. Clearly, Lra(w) is defined
whenever r is in a certain integer interval r ∈ [rmin, rmax]. It is also clear that,
if a is an ascent-intermediary entry in w, then a is ascent-intermediary in Lra(w)
for even r and a is descent-intermediary in Lra(w) for odd r, and vice versa if
a is descent-intermediary in w.
Note that for a B-permutation w ∈ Sn(B), the permutations Lra(w) may no
longer be B-permutations. The next lemma ensures that at least some of them
will be B-permutations.

Lemma 11.7. Let B be a chordal building on [n]. Suppose that w ∈ Sn(B) is a
B-permutation.
(1) If a is an ascent-intermediary letter in w, then there exists an odd positive
integer r > 0 such that Lra(w) ∈ Sn(B) and Lsa(w) 6∈ Sn(B), for all 0 < s < r.
(2) If a is a descent-intermediary letter in w, then there exists an odd negative
integer r < 0 such that Lra(w) ∈ Sn(B) and Lsa(w) 6∈ Sn(B), for all 0 > s > r.

The proof of Lemma 11.7 will require some preparatory notation and observa-
tions.
For a permutation w ∈ Sn and a ∈ [n] such that w(i) = a, let

{wտa} := {w(j) | j ≤ i, w(j) ≥ a}

be the set of all entries in w which are located to the left of a and are greater
than or equal to a (including the entry a itself). The arrow in this notation
refers to our graphical representation of a permutation as a mountain range
Mw: the set {wտa} is the set of entries in w located to the North-West of the
entry a.
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According to Definition 8.7, the set Sn(B) is the set of permutations w
such that, for i = 1, . . . , n, there exists I ∈ B such that both w(i) and
max(w(1), . . . , w(i)) are in I and I ⊂ {w(1), . . . , w(i)}. If B is chordal, then
I ′ := I ∩ [w(i),∞] also belongs to B (see Definition 9.2) and satisfies the same
properties. Clearly max(w(1), . . . , w(i)) = max{wտw(i)}. Thus, for a chordal
building set, one can reformulate Definition 8.7 of B-permutations as follows.

Lemma 11.8. Let B be a chordal building set. Then Sn(B) is the set of permu-
tations w ∈ Sn such that for any a ∈ [n], the elements a and max{wտa} are
in the same connected component of B|{wտa}. Equivalently, there exists I ∈ B
such that a ∈ I, max{wտa} ∈ I, and I ⊂ {wտa}.

Let us now return to the setup of Lemma 11.7. There are 2 possible reasons
why the permutation u = Lra(w) may no longer be a B-permutation, that is,
fail to satisfy the conditions in Lemma 11.8:

(A) It is possible that the entry a and the entry max{uտa} are in different
connected components of B|{uտa}.

(B) It is also possible that another entry b 6= a in u and max{uտb} are in
different connected components of B|{uտb}.

Let us call these two types of failure A-failure and B-failure. The following
auxiliary result is needed.

Lemma 11.9. Let us use the notation of Lemma 11.7.
(1) For left leaps u = Lra(w), r < 0, one can never have a B-failure.
(2) For the maximal left leap u = Lrmin

a (w), where the entry a goes all the way
to the left, one cannot have an A-failure.
(3) For the maximal right leap u = Lrmax

a (w), where the entry a goes all the
way to the right, one cannot have an A-failure.
(4) Let u = Lra(w) and u′ = Lr+1

a (w), for r ∈ Z, be two adjacent leaps such
that a is descent-intermediary in u (and, thus, a is ascent-intermediary in u′).
Then there is an A-failure in u if and and only if there is an A-failure in u′.

Proof. (1) Since w ∈ Sn(B), there is a subset I ∈ B that contains both b and
max{wտb} and such that I ⊂ {wտb}. The same subset I works for u because
{uտb} = {wտb} or {uտb} = {wտb} ∪ {a}.
(2) In this case, a is greater than all preceding entries in u, so a = max{uտa}.
(3) In this case, a is greater than all following entries in u. The interval I =
[a, n] contains both a and max{uտa}, I ⊂ {uտa}, and I ∈ B because B is
chordal.
(4) In this case, all entries between the position of a in u and the position of
a in u′ are less than a. Thus {uտa} = {u′տa}. So u has an A-failure if and
only if u′ has an A-failure.

Proof of Lemma 11.7. It is easier to prove the second part of the lemma.
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(2) By parts (1) and (2) of Lemma 11.9, there exists a negative r such that
Lra(w) ∈ Sn(B). Let us pick such an r with minimal possible absolute value.
Then r should be odd, by part (4) of Lemma 11.9, which proves (2).
(1) Suppose that there is an entry b 6= a in the permutation w such that b
and m = max{wտb} are in different connected components of B|{wտb}\{a}.
In this case, a ∈ {wտb}, that is b < a and b is located to the right of a in w.
(Otherwise, b and m are in different connected components of B|{wտb}, which
is impossible because w is a B-permutation.) Let us pick the leftmost entry
b in w that satisfies this condition. Then the permutation u = Lra(w) has a
B-failure if the letter a moves to the right of this entry b; and u has no B-failure
if a stays to the left of b. By our assumptions, a stays to the left of b in L1

a(w),
so such a u exists.
Let u = Lra(w) be the maximal right leap (i.e., with maximal r > 0) such that
the entry a stays to the left of b. Then all entries in u between the positions
of a and b should be less than a. Thus m = max{uտa} = max{wտb}. Since
w ∈ Sn(B), there is an I ∈ B such that b,m ∈ I and I ⊂ {wտb}. This
subset I should also contain the entry a. (Otherwise, b and m would be in the
same connected component B|{wտb}\{a}, contrary to our choice of b.) Thus
I ′ := I ∩ [a,+∞] ∈ B contains both a and m and I ′ ⊂ {uտa}. This means
that there is no A-failure in u. Thus u ∈ Sn(B).
If there is no entry b in w as above, then none of the permutations Lra(w) has
a B-failure. In this case Lrmax

a (w) ∈ Sn(B) by part (3) of Lemma 11.9.
In all cases, there exists a positive r such that Lra(w) ∈ Sn(B) and only A-
failures are possible in Lsa(w), for 0 < s < r. Let us pick the minimal such r.
Then r should be odd by part (4) of Lemma 11.9, as needed.

Definition 11.10. Let us define the B-hop operations BHa. For a B-
permutation w with an ascent-intermediary (resp., descent-intermediary) entry
a, the permutation BHa(w) is the right leap u = Lra(w), r > 0 (resp., the left
leap u = Lra(w), r < 0) with minimal possible |r| such that u is a B-permutation.
Informally, BHa(w) is obtained from w by moving the node a on its mountain
range Mw directly to the right if a is ascent-intermediary in w, or directly left
if a is descent-intermediary in w (possibly passing through several slopes) until
one hits a slope and obtain a B-permutation.

Lemma 11.7 says that the B-hop BHa(w) is well-defined for any intermediary
entry a in w. It also says that if a is ascent-intermediary in w then a is descent-
intermediary in BHa(w), and vice versa. Moreover, according to that lemma,
(BHa)2(w) = w.

Example 11.11. Let G be the decreasing tree shown on Figure 3. Then the
graphical building B = B(G) is chordal; see Example 9.3. Figure 3 shows several
B-hops of the B-permutation w = (1, 10, 8, 3, 6, 9, 7, 4, 12, 11, 5, 2):

BH1(w) = L1(w) = (10, 8, 3, 6, 9, 7, 4, 12, 11, 5, 2, 1),
BH5(w) = (L5)−5(w) = (1, 5, 10, 8, 3, 6, 9, 7, 4, 12, 11, 2),
BH6(w) = L6(w) = (1, 10, 8, 3, 9, 7, 6, 4, 12, 11, 5, 2).
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Figure 3: A B(G)-permutation w and some B-hops

Let us now show that the B-hop operations pairwise commute with each other.

Lemma 11.12. Let a and b be two intermediary entries in a B-permutation w.
Then BHa(BHb(w)) = BHb(BHa(w)).

Proof. Let us first assume that both a and b are descent-intermediary entries in
w. Without loss of generality assume that a > b. In this case BHa(w) = Lra(w)
and BHb(w) = Lsb(w) for some negative odd r and s, that is the entries a and
b of w are moved to the left. According to Lemma 11.9(1), in this case one
does not need to worry about B-failures. In other words, BHa(w) is the first
left leap Lra(w) (i.e., with minimal −r > 0) that has no A-failure. Similarly,
BHb(w) is the first left leap Lsb(w) without A-failures (where A-failures concern
the entry b).
Since A-failures for permutations u = Lta(w), t < 0, are described in terms of
the set {uտa} ⊂ [a,∞], moving the entry b < a in w will have no effect on these
A-failures. Thus, for the permutationw′ = BHb(w), one has BHa(w

′) = Lra(w
′)

with exactly the same r as in BHa(w) = Lra(w).
However, for permutations u = Ltb(w), t < 0, the sets {uտb} might change
if one first performs the operation BHa to w. Namely, let w̃ = BHa(w) and
ũ = Ltb(w̃) = Ltb(L

r
a(w)). Then {ũտb} = {uտb} ∪ {a} if a is located to the

left of b in ũ and a is located to the right of b in u (and {ũտb} = {uտb}
otherwise). Notice that one always has m = max{uտb} = max{ũտb}, since
this maximum is the maximal peak preceding b in u (or in ũ), and leaps and
hops have no affect on the peaks.
If b and m are in the same connected component of B|{uտb} then they are also
in the same connected component of B|{ũտb}, that is if there is no A-failure
for u then there is no A-failure for ũ.
Suppose that there is no A-failure for ũ but there is an A-failure for u. Then
the sets {uտb} and {ũտb} have to be different. That means that a is located
to the left of b in ũ and a is located to the right of b in u. Let I be the element
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I ∈ B such that b,m ∈ I and I ⊂ {ũտb}. Then I should contain the entry a.
(Otherwise, I ⊂ {uտb} and there would be no A-failure for u.)

Let ŵ = Lt̂a(w) be the left leap with maximal possible −t̂ ≥ 0 such that the
position of a in ŵ is located to the right of the position of b in ũ. Since
ũ = Ltb(L

r
a(w)), it follows that |t̂| < |r|. In other words, if one starts moving

to the right from the node b along the mountain range Mũ, the (ascending)
slope that first crosses the level a is the place where the entry a is located in
ŵ. Note that t̂ is odd because a should be an ascent-intermediary entry in ŵ;
in particular t̂ < 0.
Since all entries in ŵ located between the position of b in ũ and the position
of a in ŵ are less than a, one deduces that {ũտb} ∩ [a,∞] = {ŵտa}. Thus
the subset Î = I ∩ [a,∞] has three important properties: it lies in B (because
B is chordal); it contains both a and m = max{ŵտa}; and it is a subset of
{ŵտa}. It follows that there is no A-failure in ŵ. This contradicts the fact

that Lra(w) 6= Lt̂a(w) is the first left leap that has no A-failure.
Thus u has an A-failure if and only if ũ has an A-failure. It follows that
BHb(w̃) = Lsb(w̃) with exactly the same s as in BHb(w) = Lsb(w).
This proves that BHa(BHb(w)) = Lra(Lsb(w)) = Lsb(L

r
a(w)) = BHb(BHa(w)),

in the case when both a and b are descent-intermediary in w.
Let us now show that the general case easily follows. Suppose that, say, a
is ascent-intermediary and b is descent-intermediary in w. Then, for w′′ =
BHa(w) both a and b are descent-intermediary. One has BHa(BHb(w

′′)) =
BHb(BHa(w

′′)). Thus BHa(BHb(BHa(w))) = BHb(BHa(BHa(w))) =
BHb(w). Applying BHa to both sides, one deduces BHb(BHa(w)) =
BHa(BHb(w)). The other cases are similar.

Thus the B-hop operations BHa generate the action of the group (Z/2Z)m on
the set of B-permutations with a given peak-valley sequence, where m is the
number of intermediary entries in such permutations.
We say that two B-permutation are B-hop-equivalent if they can be obtained
from each other by the B-hop operations BHa for various a’s. This gives the
partitioning of the set of B-permutations into B-hop-equivalence classes.
One can now prove Theorem 11.6 by literally repeating the argument in the
proof of Theorem 11.1.

Proof of Theorem 11.6. For a B-permutation w ∈ Sn(B) with p = peak(w),
the descent-generating function of the B-hop-equivalence class C of w is∑

u∈C t
des(u) = tp(t+ 1)n−2p+1. Each B-hop-equivalence class has exactly one

representative without descent-intermediary entries, that is, in the set Ŝn(B).
Thus the h-polynomial of the nestohedron PB (see Corollary 9.6) is

hPB (t) =
∑

w∈Sn(B)

tdes(w) =
∑

w∈bSn(B)

tpeak(w)−1(t+ 1)n+1−2 peak(w).

Comparing this to the definition of the γ-polynomial, one derives the theorem.
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Corollary 11.13. Gal’s conjecture holds for all graph-associahedra corre-
sponding to chordal graphs.

11.3 γ-vectors for the associahedron and cyclohedron

In Propositions 11.14 and 11.15 we give two explicit formulas which can be
derived from the expressions for the corresponding h-polynomials (see Sections
10.2 and 10.3) using standard quadratic transformations of hypergeometric
series; e.g., see [RSW’03, Lemma 4.1].

Proposition 11.14. The γ-polynomial of the associahedron PB(Pathn) is

γ(t) =

⌊n−1
2 ⌋∑

r=0

Cr

(
n− 1

2r

)
tr,

where Cr = 1
r+1

(
2r
r

)
is the r-th Catalan number.

Proposition 11.15. The γ-polynomial of the cyclohedron PB(Cyclen) is

γ(t) =

⌊n
2 ⌋∑

r=0

(
n

r, r, n− 2r

)
tr,

We now give three combinatorial proofs of Proposition 11.14 as an alternative
to using hypergeometric series.

First proof of Proposition 11.14. It is known that the Narayana polynomial
which is the h-polynomial of PB(Pathn) is also the rank generating function for
the well-studied lattice of noncrossing partitions NC(n). An explicit symmet-
ric chain decomposition for NC(n) was given by Simion and Ullman [SU’91],
who actually produced a much stronger decomposition of NC(n) into disjoint
Boolean intervals placed symmetrically about the middle rank(s) of NC(n).
Their decomposition contains exactly Cr

(
n−1
2r

)
such Boolean intervals of rank

n− (2r+ 1) for each r = 0, 1, . . . , n−1
2 , which immediately implies the formula

for the γ-polynomial; see [SU’91, Corollary 3.2].

Second proof of Proposition 11.14. By Section 10.2, the h-polynomial of
PB(Pathn) counts plane binary trees on n nodes according to their number of
right edges. There is a natural map from binary trees to full binary trees,
i.e., those in which each node has zero or two children: if a node has a unique
child, contract this edge from the node to its child. If the original binary tree
T has n nodes, then the resulting full binary tree T ′ will have 2r+ 1 nodes, 2r
edges and r right edges for some r = 0, 1, . . . , ⌊(n − 1)/2⌋. There are Cr such
full binary trees for each r. Given such a full binary tree T ′, one can produce
all of the binary trees in its preimage by inserting n − (2r + 1) more nodes
and deciding if they create left or right edges. One chooses the locations of
these nodes from 2r + 1 choices, either an edge of the full binary tree they
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will subdivide or located above the root, giving
(n−(2r+1)+(2r+1)−1

n−(2r+1)

)
=
(
n−1
2r

)

possible locations. Thus the generating function with respect to the number
of right edges for the preimage of T ′ is

(
n−1
2r

)
tr(t+ 1)n−(2r+1), where the term

tr(t + 1)n−(2r+1) comes from choosing whether each of the new nodes creates
a left or a right edge. It follows that the generating function for all binary
trees on n nodes is hPathn

(t) =
∑

r Cr
(
n−1
2r

)
tr(t+ 1)n−(2r+1), where Cr counts

full binary trees. This implies the needed expression for the γ-vector of the
associahedron PB(Pathn).
Equivalently, one can describe the subdivision of all binary trees into classes
where two binary trees are in the same class if they can be obtained from
each other by switches of left and right edges coming from single child nodes.
Then one gets exactly Cr

(
n−1
2r

)
classes having tr(t+1)n−(2r+1) as its generating

function counting number of right edges, for each r = 0, 1, . . . , ⌊(n− 1)/2⌋.

Third proof of Proposition 11.14. This proof is based on our general approach
to γ-vectors of chordal nestohedra. According to Section 10.2, B-permutations
for the associahedron are 312-avoiding permutations and h-polynomial is equal
to the sum hPB(Pathn)

(t) =
∑

w q
peak(w)−1 over all 312-avoiding permutations

w ∈ Sn. By Theorem 11.6, γr(PB(Pathn)) equals the number of 312-avoiding
permutations with no descent-intermediary elements and r + 1 peaks. The
(flattenings of) peak-valley sequences of such permutations are exactly 312-
avoiding alternating permutations in S2r+1, that is 312-avoiding permutations
w′ such that w′1 > w′2 < w′3 > · · · < w′2r+1. It is known that the number of such
permutations equals the Catalan number Cr; see [Man’02, Theorem 2.2]. Then
there are

(
n−1
2r

)
ways to insert the remaining n− (2r+ 1) descent-intermediary

elements.

12 Graph-associahedra for single branched trees

Our goal in this section is to compute a generating function that computes the
h-polynomials of all graph-associahedra in which the graph is a tree having at
most one branched vertex (i.e., a vertex of valence 3 or more).

12.1 Associahedra and Narayana polynomials

First recall (see Section 10.2) that the h-numbers of the associahedron PB(Pathn)

are the Narayana numbers hk(PB(Pathn)) = N(n, k) := 1
n

(
n
k

)(
n
k−1

)
, and the h-

polynomial of the associahedron is the Narayana polynomial:

hB(Pathn)(t) = Cn(t) :=
n∑

k=1

N(n, k) tk−1. (8)

Recall the well-known recurrence and generating function for the Narayana
polynomials Cn(t). The recurrence in Theorem 6.12 for the f -polynomials
fB(Pathn)(t) = hB(Pathn)(t + 1) = Cn(t + 1) can be written as follows. When
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one removes k vertices from the n-path, it splits into k + 1 (possibly empty)
paths. So one obtains

Cn(t) =
∑

k≥1

(t− 1)k−1
∑

m1+···+mk+1=n−k
Cm1(t) · · ·Cmk+1

(t), for n ≥ 1, (9)

where the sum is over m1, . . . ,mk+1 ≥ 0 such that
∑
mi = n − k. Here one

assumes that C0(t) = 1.
Let C(t, x) be the generating function for the Narayana polynomials:

C(t, x) :=
∑

n≥1

Cn(t)xn = x+ (1 + t)x2 + (1 + 3t+ t2)x3 + · · · (10)

=
1− x− tx−

√
(1 − x− tx)2 − 4tx2

2tx
.

The recurrence relation (9) is equivalent to the following well-known functional
equation:

C = txC2 + (1 + t)xC + x, (11)

see [Stan’99, Exer. 6.36b].

12.2 Generating function for single branched trees

Trees with at most one branched vertex have the following form. For
a1, . . . , ak ≥ 0, let Ta1,...,ak

be the graph obtained by attaching k chains of
lengths a1, . . . , ak to one central node. For example, T0,...,0 is the graph with a
single node and T1,...,1 is the k-star graph K1,k.

Theorem 12.1. One has the following generating function for the h-
polynomials of graph-associahedra PB(Ta1,...,ak

) for the graphs Ta1,...,ak
:

T (t, x1, . . . , xk) :=
∑

a1,...,ak≥0

hTa1,...,ak
(t)xa1+1

1 · · ·xak+1
k

=
(t− 1)φ1 · · ·φk

t−∏k
i=1(1 + (t− 1)φi)

where φi = xi(1 + t C(t, xi)), and C(t, x) is the generating function for the
Narayana polynomials from (10).

This theorem immediately implies the following formula from [Post’05].

Corollary 12.2. [Post’05, Proposition 8.7] The generating function for the
number of vertices in the graph-associahedron PB(Ta1,...,ak

) is

∑

a1,...,ak

f0(PB(Ta1,...,ak
))x

a1
1 · · ·xak

k =
C̄(x1) · · · C̄(xk)

1− x1 C̄(x1)− · · · − xk C̄(xk)
,

where C̄(x) =
∑

n≥0 Cn x
n = 1−√1−4x

2x is the generating function for the Cata-
lan numbers.
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Proof. The claim is obtained from Theorem 12.1 in the limit t → 1. Note
however that one needs to use l’Hôpital’s rule before plugging in t = 1.

The first proof of Theorem 12.1 is fairly direct, using Corollary 8.4 and the
solution to Simon Newcomb’s problem. The second uses Theorem 6.13 to
set up and then solve a system of PDE’s; it has the advantage of producing
a generating function for the h-polynomials of one further family of graph-
associahedra.

12.3 Theorem 12.1 via Simon Newcomb’s problem

Let us first review Simon Newcomb’s problem and its solution.
Let w = (w(1), . . . , wm) be a permutation of the multiset {1c1, . . . , kck}, that
is, each i appears in w exactly ci times, for i = 1, . . . , k. A descent in w is an
index i such that w(i) > w(i + 1). Let des(w) denote the number of descents
in w. Simon Newcomb’s Problem is the problem of counting permutations
of a multiset with a given number of descents, see [Mac’17, Sec. IV, Ch. IV]
and [GJ’83, Sec. 4.2.13]. Let us define the multiset Eulerian polynomial as

Ac1,...,ck
(t) :=

∑

w

tdes(w),

where the sum is over all permutations w of the multiset {1c1, . . . , kck}. By
convention, set A0,...,0(t) = 1.
In particular, the polynomial A1,...,1(t) is the usual Eulerian polynomial. It is
clear that Ac1,...,ck

(1) =
(

m
c1,...,ck

)
, the total number of multiset permutations.

A solution to Simon Newcomb’s problem can be expressed by the following
generating function for the Ac1,...,ck

(t).

Proposition 12.3. [GJ’83, Sec. 4.2.13] One has

∑

c1,...,ck≥0

Ac1,...,ck
(t) yc11 · · · yck

k =
t− 1

t−∏k
i=1(1 + (t− 1) yi)

.

Theorem 12.1 then immediately follows from Proposition 12.3 and the following
proposition.

Proposition 12.4. The generating function for the h-polynomials of the poly-
topes PB(Ta1,...,ak

) equals

T (t, x1, . . . , xk) =
∑

c1,...,ck≥0

Ac1,...,ck
(t)φc1+1

1 · · ·φck+1
k .

Proof. Let us label nodes of the graph Ta1,...,ak
by integers in [n], where n =

a1 + · · · + ak + 1, so that the first chain is labelled by 1, . . . , a1, the second
chain is labelled by a1 + 1, . . . , a1 + a2, etc., with all labels increasing towards
the central node, and finally the central node has the maximal label n.
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Let T be a Ta1,...,ak
-tree. Suppose that the root r of T belongs to the w(1)-st

chain of the graph Ta1,...,ak
. If one removes the node r from the graph Ta1,...,ak

,
then the graph decomposes into 2 connected components, one of which is a chain
Pathb1 and the other is Ta1,...,a′w(1)

,...,ak
, where a′w(1) = aw(1) − b1 − 1 and all

other indices are the same as before. (The first component is empty if b1 = 0.)
According to Proposition 8.5, the tree T is obtained by attaching a Pathb1 -tree
T1 and a Ta1,...,a′w(1)

,...,ak
-tree T ′ to the root r. (Here one assumes that there is

one empty Path0-tree T1, for b1 = 0.) Let us repeat the same procedure with
the tree T ′. Assume that its root belongs to the w(2)-nd chain and split it into
a Pathb2 -tree T2 and a tree T ′′. Then repeat this procedure with T ′′, etc. Keep
on doing this until one gets a tree T

′···′ with the root at the central node n.
Finally, if one removes the central node n from T

′···′ , then it splits into k trees
T̃1, . . . , T̃k such that T̃j is a Pathdj -tree, for j = 1, . . . , k.
So each Ta1,...,ak

-tree T gives us the following data:

1. a sequence (w(1), . . . , wm) ∈ [k]m;

2. a Pathbi -tree Ti, for i = 1, . . . ,m;

3. a Pathdj -tree T̃j, for j = 1, . . . , k.

This data satisfies the following conditions:

1. m, b1, . . . , bm, d1, . . . , dk ≥ 0, and

2. (b1 + 1)ew(1) + · · ·+ (bm + 1)ewm + (d1, . . . , dk) = (a1, . . . , ak),

where e1, . . . , ek are the standard basis vectors in Rk. Conversely, data of this
form gives us a unique Ta1,...,ak

-tree T . The number of descents in the tree T
is

des(T ) =

m∑

i=1

des(Ti) +

k∑

j=1

des(T̃j) + l + des(w),

where l is the number of nonempty trees among T1, . . . , Tm, T̃1, . . . , T̃k. Indeed,
all descents in trees Ti and T̃j correspond to descents in T , each nonempty tree

Ti or T̃j gives an additional descent for the edge that attaches this tree, and
descents in w correspond to descent edges that attach trees T ′, T ′′, . . . .
Let us fix a sequence w = w(1), . . . , w(m). For i ∈ [k], let ci be the num-
ber of times the integer i appears in w. In other words, w is a permuta-
tion of the multiset {1c1 , . . . , kck}. Then the total contribution to the gen-
erating function T (t, x1, . . . , xk) of trees T whose data involve w is equal to
tdes(w) φc1+1

1 · · ·φck+1
k . Indeed, the term 1 in φi = xi(1 + t · C(t, xi)) corre-

sponds to an empty tree, and the term t · C(t, xi) corresponds to nonempty
trees, which contribute one additional descent. The term φci

i comes from the
ci trees Tj1 , . . . , Tjci

, where wj1 , . . . , wjci
are all occurrences of i in w. Finally,

additional 1’s in the exponents of φi’s come from the trees T̃1, . . . , T̃k. Summing
this expression over all permutations w of the multiset {1c1 , . . . , kck} and then
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over all c1, . . . , ck ≥ 0, one obtains the needed expression for the generating
function T (t, x1, . . . , xk).

Remark 12.5. One can dualize all definitions, statements, and arguments in
this section, as follows. An equivalent dual formulation to Theorem 12.1 says

T (t, x1, . . . , xk) =
(1 − t)ψ1 · · ·ψk

1− t ∏k
i=1(1 + (1− t)ψi)

where ψi = xi(1 +C(t, xi)). The equivalence to Theorem 12.1 follows from the
relation φi · ψi = (t − 1)(φi − ψi), which is a reformulation of the functional
equation (11).
The dual multiset Eulerian polynomial is Āc1,...,ck

(t) :=
∑

w t
wdes(w)+1, where

the sum is over permutations w of the multiset M = {1c1 , . . . , kck}, m =
c1 + · · · + ck, and wdes(w) is the number of weak descents in the multiset
permutation w, that is, the number of indices i for which w(i) ≥ w(i+ 1). The
bijection which reverses the word w shows that Āc1,...,ck

(t) = tmAc1,...,ck
(t−1)

and consequently one has an equivalent formulation of the solution to Simon
Newcomb’s problem:

∑

c1,...,ck≥0

Āc1,...,ck
(t) yc11 · · · yck

k =
1− t

1− t∏k
i=1(1 + (1− t) yi)

.

Then one can modify the proof of Proposition 12.4, by switching the labels i
with n+ 1− i in the graph Ta1,...,ak

, and applying a similar argument to show

T (t, x1, . . . , xk) =
∑

c1,...,ck≥0

Āc1,...,ck
(t)ψc1+1

1 · · ·ψck+1
k .

12.4 Proof of Theorem 12.1 via PDE

This section rederives Theorem 12.1 using Theorem 6.13. It also calculates the
generating function for f -polynomials of graph-associahedra corresponding to
another class of graphs, the hedgehog graphs defined below.
Recall that Pathn is the path with n nodes, and Ta1,...,ak

is the graph obtained
by attaching the paths Patha1 , . . . , Pathak

to a central node. Let us also
define the hedgehog graph Ha1,...,ak

as the graph obtained from the disjoint
union of the chains Patha1 , . . . , Pathak

by adding edges of the complete graph
between the first vertices of all chains. For example, H0,...,0 is the empty graph,
H1,...,1 = Kk, andH2,...,2 is a graph with 2k vertices obtained from the complete
graph Kk by adding a “leaf” edge hanging from each of the k original nodes.
By convention, for the empty graph, one has f̃H0,...,0(t) = 0.
Theorem 6.13 gives the following recurrence relation for f -polynomials of path
graphs:

d

dt
f̃Pathn

(t) =
n−1∑

r=1

(n− r + 1) · f̃Pathr
(t) · f̃Pathn−r

(t).

Documenta Mathematica 13 (2008) 207–273



Faces of Generalized Permutohedra 257

Indeed, there are n − r + 1 connected r-element subsets I of nodes of Pathn,
the deletion Pathn|I is isomorphic to Pathr, and the contraction Pathn/I is
isomorphic to Pathn−r.

For graphs Ta1,...,ak
, Theorem 6.13 gives the following recurrence relation:

d

dt
f̃Ta1,...,ak

(t) =
k∑

i=1

ai∑

r=1

f̃Pathr
(t) · f̃Ta1,...,ai−r,...,ak

(t) · (ai − r + 1)

+
∑

f̃Tb1,...,bk
(t) · f̃Ha1−b1,...,ak−bk

(t),

where the second sum is over b1, . . . , bk such that 0 ≤ bi ≤ ai, for i = 1, . . . , k.
Indeed, a connected subset I of vertices of G = Ta1,...,ak

either belongs to one of
the chains Pathai , or contains the central node. In the first case, the restriction
is G|I = Pathr and the contraction is G/I = Ta1,...,ai−r,...,ak

, where r = |I|. In
the second case, the restriction G|I has the form Tb1,...,bk

and the contraction
is G/I = Ha1−b1,...,ak−bk

. Similarly, for hedgehog graphs Ha1,...,ak
, one obtains

the recurrence relation

d

dt
f̃Ha1,...,ak

(t) =

k∑

i=1

ai∑

r=1

f̃Pathr
(t) · f̃Ha1,...,ai−r,...,ak

(t) · (ai − r)

+
∑

f̃Hb1,...,bk
(t) · f̃Ha1−b1,...,ak−bk

(t),

where the second sum is over b1, . . . , bk such that 0 ≤ bi ≤ ai, for i =
1, . . . , k. In all cases one has the initial conditions f̃Pathn(0) = f̃Ta1,...,ak

(0) =

f̃Ha1,...,ak
(0) = 1, except f̃Path0(t) = f̃H0,...,0(t) = 0.

The above recurrence relations can be written in a more compact form using
these generating functions:

FA(t, x) :=
∑

n≥1

f̃Pathn
(t)xn+1 = x2 + (1 + 2t)x3 + (1 + 5t+ 5t2)x4 + · · · ,

FT (t, x1, . . . , xk) :=
∑

a1,...,ak≥0

f̃Ta1,...,ak
(t)xa1+1

1 · · ·xak+1
k ,

FH(t, x1, . . . , xk) :=
∑

a1,...,ak≥0

f̃Ha1,...,ak
(t)xa1

1 · · ·xak

k .

Note that FA and FT are related to generating functions from Section
12: FA(t, x) = t−1xC(t−1 + 1, tx), and FT (t, x1, . . . , xk) = t−k T (t−1 +
1, tx1, . . . , txk).

The above recurrence relations can be expressed as the following partial differ-
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ential equations with initial conditions at t = 0:

∂FA
∂t

= FA ·
∂FA
∂x

, FA|t=0 =
x2

1− x, (12)

∂FT
∂t

=

k∑

i=1

FA(t, xi)
∂FT
∂xi

+ FT · FH , FT |t=0 =
x1 · · ·xk∏k
i=1(1− xi)

, (13)

∂FH
∂t

=

k∑

i=1

FA(t, xi)
∂FH
∂xi

+ (FH)2, FH |t=0 =
1−∏k

i=1(1− xi)∏k
i=1(1 − xi)

.(14)

One can actually solve these partial differential equations for arbitrary initial
conditions, as follows.

Proposition 12.6. The solutions F (t, x), G(t, x1, . . . , xk), H(t, x1, . . . , xk),
and R(t, x1, . . . , xk) to the following system of partial differential equations with
initial conditions

∂F

∂t
= F · ∂F

∂x
, F |t=0 = f0(x), (15)

∂G

∂t
=

k∑

i=1

F (t, xi)
∂G

∂xi
, G|t=0 = g0(x1, . . . , xk), (16)

∂H

∂t
=

k∑

i=1

F (t, xi)
∂H

∂xi
+H2, H |t=0 = h0(x1, . . . , xk), (17)

∂R

∂t
=

k∑

i=1

F (t, xi)
∂R

∂xi
+R ·H, R|t=0 = r0(x1, . . . , xk) (18)

are given by

f0(x+ t · F ) = F (implicit form)

G = g0(ξ1, . . . , ξk)

H = −(t+ (h0(ξ1, . . . , ξk))−1)−1

R = −r0(ξ1, . . . , ξk) · (1 + t · h0(ξ1, · · · , ξk))−1

where ξi = xi + t · F (t, xi), for i = 1, . . . , k.

Proof. Let us first solve (15). For a constant C, consider the function x(t) given
implicitly as F (t, x) = C, i.e., the graph of x(t) is a level curve for F (t, x). The
tangent vector to the graph of x(t) at some point (t0, x0) such that F (t0, x0) =

C is (1, dx(t0)dt ). The derivative of the function F (t, x) at the point (t0, x0) in

the direction of this vector should be 0, i.e., 1 · ∂F (t0,x0)
∂t + dx(t0)

dt ·
∂F (t0,x0)

∂x = 0.
This equation, together with the differential equation (15) for F , implies that
d
dt x(t) = −C. Solving this trivial differential equation for x(t) one deduces
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that x(t) = −C · t + B(C), where B is a function that depends only on the
constant C. Since C can be an arbitrary constant, one deduces that

x = −F (t, x) · t+B(F (t, x)), or, equivalently, B〈−1〉(x+ t · F (t, x)) = F (t, x).

Plugging the initial condition F |t=0 = f0(x) in the last expression, one gets

B〈−1〉(x) = f0(x).

Thus the solution F (t, x) is given by f0(x+ t · F ) = F , as needed.
Direct verification shows that the function G = R(F (t, x1), . . . , F (t, xk))
satisfies the differential equation (16), for an arbitrary R(y1, . . . , yk). The
initial condition for t = 0 gives R(f0(x1), . . . , f0(xk)) = g0(x1, . . . , xk).

Thus R(y1, . . . , yk) = g0(B(y1), . . . , B(yk)), where B = f
〈−1〉
0 , as

above. Since B(F (t, x)) = x + t · F (t, x), one deduces that G =
g0(B(F (t, x1)), . . . , B(F (t, xk))) = g0(ξ1, . . . , ξk), as needed.
Making the substitution H = −(t+G(t, x1, . . . , xk))−1 in differential equation
(17) for H , one obtains equation (17) for G with g0 = −(h0)−1. By the
previous calculation, one has G = −(h0(ξ1, . . . , ξk))−1. Thus the solution for
(17) is H = −(t+ (h0(ξ1, . . . , ξk))−1)−1.
Making the substitution R = H · G in equation (17) for R, where H is the
solution to (17), one obtains equation (16) for G with g0 = r0/h0. By the
above calculation, one has G = r0(ξ1, . . . , xk)/h0(ξ1, . . . , ξk). Thus,

R = − 1

t+ (h0(ξ1, . . . , ξk))−1
· r0(ξ1, . . . , xk)

h0(ξ1, . . . , ξk)
= − r0(ξ1, . . . , xk)

1 + t · h0(ξ1, · · · , ξk)
,

as needed.

Applying Proposition 12.6 to differential equation (12) for FA(t, x), one obtains
the implicit solution:

(x+ t · FA)2

1− x− t · FA
= FA.

This is equivalent to the quadratic equation (11) for C(t, x). Explicitly, one
gets

FA(t, x) =
(1− x− 2tx)−

√
(1− x− 2tx)2 − 4t(t+ 1)x2

2t(t+ 1)
. (19)

Applying Proposition 12.6 to differential equations (13) and (14) for the gen-
erating functions FT and FH , one obtains the following result.

Theorem 12.7. The generating functions FT (t, x1, . . . , xk) and
FH(t, x1, . . . , xk) are given by the following expressions

FT (t, x1, . . . , xk) =
ξ1 · · · ξn

(t+ 1)(1− ξ1) · · · (1− ξn)− t ,

FH(t, x1, . . . , xk) =
1− (1− ξ1) · · · (1 − ξk)

(t+ 1)(1− ξ1) · · · (1− ξn)− t ,

where ξi = xi + t · FA(t, xi) and FA is given by (19).
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Note that the above expression for FT is equivalent to Theorem 12.1, using (1).

13 Graph-associahedra for path-like graphs

The goal of this section is to use Theorem 6.12 to compute the h-polynomials
of the graph-associahedra of a fairly general infinite family of graphs, including
all Dynkin diagrams of finite and affine Coxeter groups.
Let A and B be two connected graphs with a marked vertex in each, and let
n0 be the total number of unmarked vertices in A and B. For n > n0, let
Gn = Gn(A,B) be the graph obtained by connecting the marked vertices in A
and B by the path Pathn−n0 so that the total number of vertices in Gn is n.
Call graphs of the form Gn path-like graphs because, for large n, they look like
paths with some “small” graphs attached to their ends.
The following claim shows that the h-polynomials of the graph-associahedra
PB(Gn) can be expressed as linear combinations (with polynomial coefficients)
of the h-polynomials Cn(t) of usual associahedra; see (8).

Theorem 13.1. There exist unique polynomials g0(t), g1(t), . . . , gn0(t) ∈ Z[t]
of degrees deg gi(t) ≤ i such that, for any n > n0 one has

hGn(t) = g0(t)Cn(t) + g1(t)Cn−1(t) + · · ·+ gn0(t)Cn−n0 (t).

The polynomial gi(t) is a palindromic polynomial, that is gi(t) = ti gi(t
−1), for

i = 0, . . . , n0.

Similarly, one can express the f -polynomials of PB(Gn) as a linear combination
of the f -polynomials of usual associahedra, because fG(t) = hG(t+ 1).
One can rewrite this theorem in terms the generating function C(t, x) for the
Narayana numbers; see (10).

Corollary 13.2. There exists a unique polynomial g(t, x) ∈ Z[t, x] such that
for any n > n0, hGn(t) is the coefficient of xn in g(t, x)C(t, x). The polynomial
g(t, x) has degree at most n0 with respect to x, and satisfies g(t, x) = g(t−1, tx).

Proof. This follows from Theorem 13.1, by setting g(t, x) = g0(t) + g1(t)x +
· · ·+ gn0(t)xn0 .

Proof of Theorem 13.1. Let us first prove the existence of the linear expan-
sion. The recurrence from Theorem 6.12 will be used to prove this claim
by induction on the total number of vertices in A and B. Suppose that
A or B is disconnected, say, A is a disjoint union of graphs A1 and A2

where A1 contains the marked vertex. Let G̃n := Gn(A1, B) and let r
be the number of vertices in A2. Then hGn(t) = hG̃n−r

(t)hA2(t), where

deg hA2(t) ≤ r − 1. By induction, hG̃n−r
(t) can be expressed as a linear

combination of Cn−r(t), Cn−r−1(t), . . . , Cn−n0(t), which produces the needed
expression for hGn(t).
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Now assume that both A and B are connected graphs. Theorem 6.12(3)
gives the expression for the h-polynomial as the sum hGn(t) =

∑
L(t −

1)|L|−1hGn\L(t) over nonempty subsets L of vertices of Gn, where Gn \ L de-
notes the graphGn with removed vertices in L. (Here one has shifted t by −1 to
transform f -polynomials into h-polynomials.) Let us write L as a disjoint union
L = I ∪ J ∪K, where I is a subset of unmarked vertices of A, J is a subset of
unmarked vertices of B, and K is a subset of vertices in the path connecting the
marked vertices. The contribution of the terms with K = ∅ to the above sum
is
∑

I,J(t−1)|I|+|J|−1hGn\(I∪J)(t). Note that Gn \(I∪J) = Gn−r(A\I, B \J),
where r = |I|+ |J |. By induction, one can express each term hGn\(I∪J)(t) as a
combination of Cn−r(t), . . . , Cn−n0(t).
The remaining terms involve a nonempty subset K of vertices in the path
Pathn−n0 . When one removes these k = |K| vertices from the path, it splits
into k + 1 smaller paths Pathm1 , . . . ,Pathmk+1

with mi ≥ 0; cf. paragraph
before (9). Thus the remaining contribution to hGn(t) can be written as

∑

I,J

∑

m1,...,mk+1≥0

(t− 1)|I|+|J|+k−1 hGp(A\I,◦)(t)Cm2(t) · · ·Cmk
(t)hGq(◦,B\J)(t),

where ◦ is the graph with a single vertex,

p = m1 + |A \ I| − 1,

q = mk+1 + |B \ J | − 1, and

k +
∑

mi = n− n0.

By induction, one can express hGp(A\I,◦)(t) and hGq(◦,B\J)(t) as linear combi-
nations of the Cm′(t). So the remaining contribution to hGn(t) can be written
as a sum of several expressions of the form

s(t)
∑

k≥1

∑

m′
1,m2,...,mk,m′

k+1

(t− 1)k−1Cm′
1
(t)Cm2(t) · · ·Cmk

(t)Cm′
k+1

(t),

where the sum is overm′1,m2, . . . ,mk,m
′
k+1 such that m′1 ≥ a, m2, . . . ,mk ≥ 0,

m′k+1 ≥ b, m′1 +m2 + · · ·+ mk + m′k+1 + k = n− c. This expression depends
on nonnegative integers a, b, c such that a + b + c = n0 and a polynomial s(t)
of degree deg s(t) ≤ c. If one extends the summation to all m′1,m

′
k+1 ≥ 0,

one obtains the expansion (9) for Cn−c(t) times s(t). Applying the inclusion-
exclusion principle and equation (9), one deduces that the previous sum equals

s(t)


Cn−c(t)−

a−1∑

m′
1=0

t Cm′
1
(t)Cn−c−m′

1−1(t)− · · ·


 ,

which is a combination of Cn(t), . . . , Cn−n0(t) as needed.
It remains to show the uniqueness of the linear expansion and show that the
gi(t) are palindromic polynomials. (Here one assumes that the graphs A and
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B are connected.) According to Corollary 13.2, the polynomial H(t, x) :=∑
n>n0

hGn(t)xn can be written as H(t, x) = g(t, x)C(t, x) + r(t, x), where
g(t, x), r(t, x) ∈ Z[t, x]. IfH(t, x) = g̃(t, x)C(t, x)+r̃(t, x) with g̃(t, x) 6= g(t, x),
then this would imply that C(t, x) is a rational function, which contradicts the
formula (10) involving a square root. This proves the uniqueness claim.
One has H(t, x) = H(t−1, tx)/t and C(t, x) = C(t−1, tx)/t because h-
polynomials are palindromic. Thus

H(t, x) = g(t, x)C(t, x) + r(t, x) = g(t−1, tx)C(t, x) +
1

t
r(t−1, tx).

This implies that g(t, x) = g(t−1, tx). Otherwise, C(t, x) would be a rational
function. The equation g(t, x) = g(t−1, tx) says that the coefficients gi(t) of
g(t, x) =

∑
i gi(t)x

i are palindromic.

Let us illustrate Theorem 13.1 by several examples. For a series of path-like
graphs Gn, let g{Gn} denote the polynomial g(t, x) that appears in the gen-
erating functions

∑
n≥n0

hGn(t)xn = g(t, x)C(t, x) + r(t, x). For instance, the

expression g{Dn} = 2− (t+ 1)x− tx2 (see the example below) is equivalent to
the expression hDn(t) = 2Cn(t)− (t+ 1)Cn−1(t)− t Cn−2(t), for n > 2.

Examples 13.3. Define daisy graphs as Daisyn,k := Tn−k−1,1k ; see Section 12.

(Here 1k means a sequence of k ones.) They include type D Dynkin diagrams
Dn := Daisyn,2. For fixed k, the Daisyn,k form the series of path-like graphs
for A = K1,k (the k-star with marked central vertex) and B = ◦ (the graph
with a single vertex). Also define kite graphs as Kiten,k := Hn−k+1,1k−1 ; see
Section 12.4. They are path-like graphs for A = Kk and B = ◦. The affine
Dynkin diagram of type D̃n−1 is the nth path-like graph in the case when both
A and B are 3-paths with marked central vertices.
Here are the polynomials g{Gn} for several series of such graphs:

g{Dn} = 2− (t+ 1)x− t x2,

g{D̃n−1} = 4− 4(t+ 1)x+ (t− 1)2 x2 + 2 t(t+ 1)x3 + t2 x4,

g{Kiten,3} = 2− (t+ 1)x,

g{Daisyn,3} = 6− 6(t+ 1)x+ (1− 5 t+ t2)x2 − t(t+ 1)x3,

g{Daisyn,4} = 24− 36(t+ 1)x+ (14− 16 t+ 14 t2)x2 +

+ (−1 + 3 t+ 3 t2 − t3)x3 − (t+ t2 + t3)x4.

The formulas for Dn, Kiten,k, and Daisyn,k were derived from Theorems 12.1

and 12.7. The formula for the affine Dynkin diagram D̃n−1 was obtained using
the inductive procedure given in the proof of Theorem 13.1.

Remark 13.4. The induction from the proof of Theorem 13.1 is quite involved.
It is very difficult to calculate by hand other examples for bigger graphs A and
B. It would be interesting to find a simpler procedure for finding the polynomials
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g{Gn}. Also it would be interesting to find explicit formulas for the polynomials
g{Gn} for all daisy graphs, kite graphs, and other “natural” series of path-like
graphs.

14 Bounds and monotonicity for face numbers of graph-
associahedra

Section 7.2 showed that the f - and h-vectors of flag nestohedra coming from
connected building sets are bounded below by those of hypercubes and bounded
above by those of permutohedra. It is natural to ask for the bounds within the
subclass of graph-associahedra corresponding to connected graphs.
Permutohedra are graph-associahedra corresponding to complete graphs, and
so they still provide the upper bound for the f - and h-vectors. For lower
bounds on f - and h-vectors, the monotonicity discussed in Remark 6.9 implies
that the f - and h-vector of any graph-associahedron PB(G) for a connected
graph G is bounded below by the graph-associahedron for any spanning tree
inside G. Thus it is of interest to look at bounds for f -, h- and γ-vectors of
graph-associahedra for trees.
A glance at Figure 4 suggests that, roughly speaking, trees which are more
branched and forked (that is, farther from being a path) tend to have higher
entries componentwise in their γ-vectors, and hence also in their f - and h-
vectors. In fact, in that figure, which shows all trees on 7 vertices grouped by
their degree sequences, one sees several (perhaps misleading) features:

(i) The degree sequences are ordered linearly under the majorization (or
dominance) partial ordering on partitions of 2(n− 1) (= 2 · (7 − 1) = 12
here).

(ii) The γ-vectors of these trees are linearly ordered under the componentwise
partial order.

(iii) Trees whose degree sequence are lower in the majorization order have
componentwise smaller γ-vectors.

(iv) The trees are distinguished up to isomorphism by their γ-vectors.

Additionally, it seems that the Wiener index [Wie’47] for graphs has some
correlation with the γ-vector. The Wiener index W (G) of a graph G is defined
as the sum of distances d(i, j) over unordered pairs i, j of vertices in G, where
d(i, j) is the number of edges in the shortest path from i to j. The Wiener
index W (T ) of a tree is equal to the number of forbidden 312 patterns (see
the remarks following Definition 9.2) provided by the tree T (plus the constant(
n
2

)
). Thus, for two trees on n vertices, if one has W (T ) < W (T ′), then

roughly speaking one might expect that the generalized permutohedron PB(T )

has a larger gamma vector than PB(T ′).
This is exactly the case for trees on 7 vertices, as shown in Figure 4. It shows
that as the γ-vectors decrease, the Wiener indices (weakly) increase. Note that
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Wiener indextree

Figure 4: The γ-vectors (γ0, γ1, γ2, γ3) for graph-associahedra of all trees on 7
vertices, grouped by degree sequence.

in this case, the Wiener index together with the degree sequence completely
distinguish all equivalence classes of trees.
For trees on n vertices, the maximum and minimum values of the Wiener index
are, respectively,

∑n−1
i=1 i(n−i) = n(n2−1)/6 for Pathn, and (n−1)2 for K1,n−1.

None of the properties (i)-(iv) persist for all trees. For example, when looking
at trees on n = 8 nodes, one finds that

(i) the degree sequences are only partially ordered by the majorization order
on partitions of 2(n− 1) = 14:

22222211 < 32222111

< 33221111 < 33311111, 42221111

< 43211111 < 44111111, 52211111

< 53111111 < 62111111 < 71111111

(ii) there are trees, such as the two shown in Figure 5(a) and (b), whose
γ-vectors are incomparable componentwise,

(iii) there are trees, such as the two shown in Figure 5(d) and (c), where
the degree sequence of one strictly majorizes that of the other, but its
γ-vector is strictly smaller, and

(iv) there are nonisomorphic trees, such as the two shown in Figure 5(d) and
(e), having the same γ-vector.
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32222111

(1,33,135,76)
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(1,42,201,126)

33221111 42221111 33221111

(1,38,174,108)

(a) (b) (c) (d) (e)

Figure 5: The γ-vectors of the graph-associahedra of some trees on 8 nodes.

Nevertheless, we do make some monotonicity conjectures about the face num-
bers for graph-associahedra.

Conjecture 14.1. There exists a partial order ≺ on the set of (unlabelled,
isomorphism classes of) trees with n nodes, having these properties:

• Pathn is the unique ≺-minimum element,

• K1,n−1 is the unique ≺-maximum element, and

• T ≺ T ′ implies γPB(T )
≤ γPB(T ′)

componentwise.

We suspect that such a partial order ≺ can be defined so that T, T ′ will, in
particular, be comparable whenever T, T ′ are related by one of the flossing
moves considered in [BR’04, §4.2].
Assuming Conjecture 14.1, the γ-vectors (and hence also the f -, h-vectors) of
graph-associahedra for trees on n nodes would have the associahedron PB(Pathn)

and the stellohedron PB(K1,n−1) giving their lower and upper bounds. This
would also imply that the f -, h-vectors of graph-associahedra for connected
graphs on n nodes would have associahedra and permutohedra giving their
lower and upper bounds. To make a similar assertion for γ-vectors it would
be nice to have the following analogue of Stanley’s monotonicity result (Theo-
rem 4.6).

Conjecture 14.2. When ∆,∆′ are two flag simplicial complexes and ∆′ is a
geometric subdivision of ∆, the γ-vector of ∆′ is componentwise weakly larger
than that of ∆. In particular, when B,B′ are building sets giving rise to flag
nestohedra and B ⊂ B′, (such as graphical buildings B(G) ⊂ B(G′) for an edge-
subgraph G ⊂ G′) then the γ-vector of PB′ is componentwise weakly larger than
that of PB.

We close with a question suggested by the sets of permutations Sn(B) and

Ŝn(B) for a chordal building set B which appeared in Corollary 9.6 and The-
orem 11.6.

Question 14.3. Given a (non-chordal) building set B, is there a way to define

two sets of permutations S′n(B) and Ŝ′n(B) such that:

• the h-polynomial for the nestohedron PB is given by the descent generating
function for S′n(B), and
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• the γ-polynomial is given by the peak generating function for Ŝ′n(B)?

15 Appendix: Deformations of a simple polytope

The goal of this section is to clarify the equivalence between various definitions
of the deformations of a simple polytope, either by

• deforming vertex positions, keeping edges in the same parallelism class,
or

• deforming edge lengths, keeping them nonnegative, or

• altering level sets of facet inequalities, but not allowing facets to move
past any vertices.

There will be defined below three cones of such deformations which are all lin-
early isomorphic. This discussion is essentially implicit in [Post’05, Definition
6.1 and §19], but we hope the explication here clarifies this relationship.
Let P be a simple d-dimensional polytope in Rd. Let V be its set of vertices.
Let E ⊆

(
V
2

)
be its set of edge pairs. Let F be an indexing set for its facets, so

that P is defined by facet inequalities hf (x) ≤ αf for f ∈ F , in which each hf
is a linear functional in (Rd)∗, and (αf )f∈F ∈ RF .

Definition 15.1. (1) The vertex deformation cone DV
P of P is the set of points

(xv)v∈V ∈ (Rd)V such that

xu − xv ∈ R≥0(u− v), for every edge uv ∈ E. (20)

(2) The edge length deformation cone DE
P of P is the set of points (ye)e∈E ∈ RE

such that all ye ≥ 0, and, for any 2-dimensional face of P with edges e1 = v1v2,
e2 = v2v3, . . . , ek−1 = vk−1vk, ek = vkv1, one has

ye1(v1 − v2) + ye2(v2 − v3) + · · ·+ yek
(vk − v1) = 0.

(3) For β = (βf )f∈F ∈ RF , let Pβ := {x ∈ Rd | hf (x) ≤ βf , for f ∈ F} be the
polytope obtained from P by parallel translations of the facets. In particular,
Pα = P . The open facet deformation cone9 DF,open

P for P is the set of β ∈ RF

for which the polytopes Pβ and P have the same normal fan N (Pβ) = N (P ).
(Equivalently, Pβ and P have the same combinatorial structure.) The (closed)

facet deformation cone is the closure DF
P of DF,open

P inside RF .

It is clear that the definitions of DV
P and DE

P translate into linear equations
and weak linear inequalities. Thus DV

P and DE
P are (closed) polyhedral cones

in the spaces (Rd)V and RE , correspondingly. The following lemma shows that
DF
P is also a polyhedral cone.

9This is linearly isomorphic to the type-cone of P described by McMullen [McM’73, §2,
p. 88].
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Lemma 15.2. For a simple polytope P , the facet deformation cone DF,open
P is a

full |F |-dimensional open polyhedral cone inside RF , that is a nonempty subset
in RF given by strict linear inequalities. Thus DF

P is the closed polyhedral cone
in RF given by replacing the strict inequalities with the corresponding weak
inequalities.

Proof. Since every polytope Pβ has facet normals in directions which are a
subset of those for P , the rays (=1-dimensional normal cones) in N (Pβ) are a
subset of those in N (P ). Therefore, one will have N (Pβ) = N (P ) if and only if
Pβ , P have the same face lattices, or equivalently, the same collection of vertex-

facet incidences (v, f). This means that one can define the set DF,open
P inside

RF by a collection of strict linear inequalities on the coordinates β = (βf )f∈F .
It is next explained how to produce one such inequality for each pair (v0, f0)
of a vertex v0 and facet f0 of P such that v0 6∈ f0.
If v0 lies on the d facets f1, . . . , fd in P , then v0 is the unique solution to
the linear system hfj (x) = αfj for j = 1, ..., d. Its corresponding vertex x0

in Pβ is then the unique solution to hfj (x) = βfj for j = 1, ..., d. Note that
this implies x0 has coordinates given by linear expressions in the coefficients β.
Then the inequality corresponding to the vertex-facet pair (v0, f0) asserts that
hf0(x0) < βf0 .
Lastly, note that this system of strict linear inequalities has at least one so-
lution, namely the α for which Pα = P . Hence this open polyhedral cone is
nonempty.

Theorem 15.3 gives several ways to describe deformations of a simple polytope.

Theorem 15.3. Let P be a d-dimensional simple polytope in Rd, with notation
as above. Then the following are equivalent for a polytope P ′ in Rd:

(i) The normal fan N (P ) refines the normal fan N (P ′).

(ii) The vertices of P ′ can be (possibly redundantly) labelled xv, v ∈ V , so
that (xv)v∈V is a point in the vertex deformation cone DV

P , i.e., the xv
satisfy conditions (20).

(iii) The polytope P ′ is the convex hull of points xv, v ∈ V , such that (xv)v∈V
is in the vertex deformation cone DV

P .

(iv) P ′ = Pβ for some β in the closed facet deformation cone DF
P .

(v) P ′ is a Minkowski summand of a dilated polytope rP , that is there exist
a polytope Q ⊂ Rd and a real number r > 0 such that P ′ +Q = rP .

Proof. One proceeds by proving the following implications (i)⇒ (ii) ⇒ (iii) ⇒
(i) ⇒ (iv) ⇒ (iii), (iv) ⇒ (v) ⇒ (i).
(i) implies (ii). The refinement of normal fans gives rise to the redundant
labelling of vertices (xv)v∈P as follows: given a vertex x of P ′, label it by
xv for every vertex v in P having its normal cone Nv(P ) contained in the
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normal cone Nx(P ′). There are then two possibilities for an edge uv ∈ E of
P : either xu = xv, in which case (20) is trivially satisfied, or else xu 6= xv so
that Nu(P ),Nv(P ) lie in different normal cones Nxu(P ′) 6= Nxv (P ′). But then
since N (P ) refines N (P ′), these latter two cones must share a codimension one
subcone lying in the same hyperplane that separates Nu(P ) and Nv(P ). As
this hyperplane has normal vector u − v, this forces xu − xv to be a positive
multiple of this vector, as desired.

(ii) implies (iii). Trivial.

(iii) implies (i). Let P ′ be the convex hull of the points xv. Fix a vertex u ∈ V .
Let λ ∈ (Rd)∗ be a generic linear functional that belongs to the normal cone
Nu(P ) of P at the vertex u. Then the maximum of λ on P is achieved at the
point u and nowhere else. Let us orient the 1-skeleton of P so that λ increases
on each directed edge. This connected graph has a unique vertex of outdegree
0, namely the vertex u. Thus, for any other vertex v ∈ V , there is a directed
path (v1, . . . , vl) from v1 = v to vl = u in this directed graph. According to
the conditions of the lemma, one has have λ(xv1 ) ≤ λ(xv2 ) ≤ · · · ≤ λ(xvl

), so
λ(xv) ≤ λ(xu). Thus the maximum of λ on the polytope P ′ is achieved at the
point xu. This implies that xu is a vertex of P ′ and the normal cone Nxu(P ′)
of P ′ at this point contains the normal cone Nu(P ) of P at u. Since the same
statement is true for any vertex of P , one deduces that N (P ) refines N (P ′).
(i) implies (iv). First, note that if N (P ′) = N (P ) then P ′ = Pβ for some

β in the open facet deformation cone DF,open
P . Indeed, the facets of P ′ are

orthogonal to the 1-dimensional cones in N (P ′), thus they should be parallel
to the corresponding facets of P .

Now assume that N (P ) refines N (P ′). Recall the standard fact [Zieg’94, Prop.
7.12] that the normal fan N (Q1 + Q2) of a Minkowski sum Q1 + Q2 is the
common refinement of the normal fans N (Q1) and N (Q2). Thus, for any ǫ > 0,
the normal fan of the Minkowski sum P ′ + ǫP coincides with N (P ). By the

previous observation, one should have P ′+ǫP = Pβ(ǫ) for some β(ǫ) ∈ DF,open
P .

Since all coordinates of β(ǫ) linearly depend on ǫ, one obtain P ′ = Pβ for
β = limǫ→0 β(ǫ) ∈ DF

P .

(iv) implies (iii). Given β ∈ DF
P , it is the limit point for some family

{β(ǫ)} ⊂ DF,open
P . One may assume that β(ǫ) linearly depends on ǫ > 0

and limǫ→0 β(ǫ) = β. Hence P ′ = Pβ is the limit of the polytopes Pβ(ǫ),
which each have N (Pβ(ǫ)) = N (P ). In particular, the vertices of Pβ(ǫ) can
be labelled by xv(ǫ), v ∈ V . These vertices linearly depend on ǫ and satisfy
xu(ǫ)− xv(ǫ) = R≥0(u − v) for any edge uv ∈ E. Taking the limit ǫ → 0, one
obtains that P ′ is the convex hull of points xv = limǫ→0 xv(ǫ) satisfying (20).

(iv) implies (v). Note that Pγ + Pδ = Pγ+δ, for γ, δ ∈ DF
P . Let P ′ = Pβ for

β ∈ DF
P . The point α (such that P = Pα) belongs to the open cone DF,open

P .
Thus, for sufficiently large r, the point γ = rα − β also belongs to the open
cone DF,open

P . Let Q = Pγ . Then one has P ′ + Q = Pβ + Prα−β = Prα = rP ,
as needed.

(v) implies (i). This follows from the standard fact [Zieg’94, Prop. 7.12] on
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normal fans of Minkowski sums mentioned above.

Remark 15.4. We are being somewhat careful here, since Theorem 15.3 can
fail when one allows a broader interpretation for a simple polytope P to deform
into a polytope P ′ by parallel translations of its facets, e.g. if one allows facets
to translate past vertices. For example, letting P ′ be a regular tetrahedron in
R3, and P the result of “shaving off an edge” from P ′ with a generically tilted
plane in R3, one finds that N (P ) does not refine N (P ′).

Let us now describe the relationship between the three deformation cones DV
P ,

DE
P , and DF

P . Let H be the linear subspace in (Rd)V given by

H := {(xv)v∈V ∈ (Rd)V | xu − xv ∈ R(u− v) for any edge uv ∈ E}.

Clearly, the cone DV
P belongs to the subspace H . Let us define two linear maps

φ : H → RE and ψ : RF → H.

The map φ sends (xv)v∈V ∈ H to (ye)e∈E ∈ RE , where xu−xv = ye(u−v), for
any edge e = uv ∈ E. The map ψ sends β = (βf )f∈F to (xv)v∈V , where, for
each vertex v of P given as the intersection of the facets of P indexed f1, . . . , fd,
the point xv ∈ Rd is the unique solution of the linear system {hfj (x) = βfj |
j = 1, . . . , d}. For β ∈ DF,open

P , ψ(β) = (xv)v∈V , where the xv are the vertices
of the polytope Pβ . One can easily check that ψ(β) ∈ H . Indeed, this is clear

for β ∈ DF,open
P and thus this extends to all β ∈ RF by linearity.

Note that the kernel of the map φ is the subspace ∆(Rd) ≃ Rd embedded
diagonally into (Rd)V . This comes from the fact that the 1-skeleton of P
is connected. The vertex deformation cone DV

P can be reduced modulo the
subspace ∆(Rd) of parallel translations of polytopes. Similarly, the facet defor-
mation cone can be reduced modulo the subspace ∆′(Rd) = ψ−1(∆(Rd)) ≃ Rd,
where ∆′(x) := (hf (x))f∈F for x ∈ Rd.

Theorem 15.5. The map ψ gives a linear isomorphism between the cones
DF
P and DV

P . The map φ induces a linear isomorphism between the cones
DV
P /∆(Rd) and DE

P . Thus one has

DE
P ≃ DV

P /∆(Rd) ≃ DF
P /∆

′(Rd).

In particular, dimDE
P = dimDV

P − d = dimDF
P − d = |F | − d.

Proof. The claim about the map ψ follows immediately from Theorem 15.3.
Let us prove the claim about φ. Note that, for (xv)v∈V ∈ DV

P , the point
(ye)e∈E = φ((xv)v∈V ) satisfies the condition of Definition 15.1(2) because

ye1(v1 − v2) + ye2(v2 − v3) + · · ·+ yek
(vk − v1)

= (xv1 − xv2 ) + (xv2 − xv3 ) + · · ·+ (xvk
− xv1)

= 0.
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It remains to show that for any (ye)e∈E ∈ DE
P there exists a unique (modulo

diagonal translations) element (xv)v∈V ∈ H such that xu − xv = ye(u − v)
for any edge e = uv ∈ E. Let us construct the points xv ∈ Rd, as follows.
Pick a vertex v0 ∈ V and pick any point xv0 ∈ Rd. For any other v ∈ V ,
find a path (v0, v1, . . . , vl) from v0 to vl = v in the 1-skeleton of P and define
xv = xv0 − yv0v1(v0 − v1)− yv1v2(v1 − v2)− · · · − yvl−1vl

(vl−1 − vl). This point
xv does not depend on a choice of path from v0 to v, because any other path
in the 1-skeleton can be obtained by switches along 2-dimensional faces of P .
These (xv)v∈V satisfy the needed conditions.
Finally, note that dimDF

P = |F | because DF
P is a full-dimensional cone.

References

[AK’06] F. Ardila, C. Klivans: The Bergman complex of a matroid and
phylogenetic trees, J. Comb. Th. B 96 (2006), 38–49.

[AKW’06] F. Ardila, C. Klivans, L. Williams: The positive Bergman
complex of an oriented matroid, European Journal of Combina-
torics 27 (2006), no. 4, 577–591.

[AM’06] G. Agnarsson, W. Morris: On Minkowski Sums of Simplices,
arXiv: math.CO/ 0605564.

[ARW’05] F. Ardila, V. Reiner, L. Williams: Bergman complexes, Cox-
eter arrangements, and graph associahedra, Sém. Lothar. Combin.
54a (2006), B54Aj (electronic).

[BR’04] E. Babson, V. Reiner: Coxeter-like complexes, Discrete Math.
Theor. Comput. Sci. 6 (2004), no. 2, 223–251 (electronic).
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Abstract. A Fréchet algebra endowed with a multiplicatively con-
vex topology has two types of invariants: homotopy invariants (topo-
logical K-theory and periodic cyclic homology) and secondary in-
variants (multiplicative K-theory and the non-periodic versions of
cyclic homology). The aim of this paper is to establish a Riemann-
Roch-Grothendieck theorem relating direct images for homotopy and
secondary invariants of Fréchet m-algebras under finitely summable
quasihomomorphisms.
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1 Introduction

For a noncommutative space described by an associative Fréchet algebra A
over C, we distinguish two types of invariants. The first type are (smooth)
homotopy invariants, for example topological K-theory [27] and periodic cyclic
homology [5]. The other type are secondary invariants; they are no longer
stable under homotopy and carry a finer information about the “geometry”
of the space A . Typical examples of secondary invariants are algebraic
K-theory [29] (which will not be used here), multiplicative K-theory [17] and
the unstable versions of cyclic homology [18]. The aim of this paper is to
define push-forward maps for homotopy and secondary invariants between two
Fréchet algebras A and B, induced by a smooth finitely summable quasiho-
momorphism [8]. The compatibility between the different types of invariants
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is expressed through a noncommutative Riemann-Roch-Grothendieck theorem
(Theorem 6.3). The present p aper is the first part of a series on secondary
characteristic classes. In the second part we will show how to obtain local
formulas for push-forward maps, following a general principle inspired by
renormalization which establishes the link with chiral anomalies in quan-
tum field theory [25]; in order to keep a reasonable size to the present paper,
these methods will be published in a separate survey with further examples [26].

We deal with Fréchet algebras endowed with a multiplicatively convex topology,
or Fréchetm-algebras for short. These algebras can be presented as inverse lim-
its of sequences of Banach algebras, and as a consequence many constructions
valid for Banach algebras carry over Fréchet m-algebras. In particular Phillips
[27] defines topological K-theory groups Ktop

n (A ) for any such algebra A and
n ∈ Z. The fundamental properties of interest for us are (smooth) homotopy
invariance and Bott periodicity, i.e. Ktop

n+2(A ) ∼= Ktop
n (A ). Hence there are es-

sentially two topological K-theory groups for any Fréchet m-algebra, Ktop
0 (A )

whose elements are roughly represented by idempotents in the stabilization of
A by the algebra K of ”smooth compact operators”, and Ktop

1 (A ) whose
elements are represented by invertibles. Fréchet m-algebras naturally arise in
many situations related to differential geometry, commutative or not, and the
formulation of index problems. In the latter situation one usually encounters
an algebra I of ”finitely summable operators”, for us a Fréchet m-algebra
provided with a continuous trace on its p-th power for some p ≥ 1. A typ-
ical example is the Schatten class I = L p(H) of p-summable operators on
an infinite-dimensional separable Hilbert space H . A can be stabilized by
the completed projective tensor product I ⊗̂A and its topological K-theory
Ktop
n (I ⊗̂A ) is the natural receptacle for indices. Other important topolog-

ical invariants of A (as a locally convex algebra) are provided by the peri-
odic cyclic homology groups HPn(A ), which is the correct version sharing the
properties of smooth homotopy invariance and periodicity mod 2 with topolog-
ical K-theory [5]. For any finitely summable algebra I the Chern character
Ktop
n (I ⊗̂A )→ HPn(A ) allows to obtain cohomological formulations of index

theorems.
If one wants to go beyond differential topology and detect secondary invari-
ants as well, which are no longer stable under homotopy, one has to deal with
algebraic K-theory [29] and the unstable versions of cyclic homology [18]. In
principle the algebraic K-theory groups Kalg

n (A ) defined for any n ∈ Z pro-
vide interesting secondary invariants for any ring A , but are very hard to
calculate. It is also unclear if algebraic K-theory can be linked to index theory
in a way consistent with topological K-theory, and in particular if it is possible
to construct direct images of algebraic K-theory classes in a reasonable con-
text. Instead, we will generalize slightly an idea of Karoubi [16, 17] and define
for any Fréchet m-algebra A the multiplicative K-theory groups MKI

n (A ),
n ∈ Z, indexed by a given finitely summable Fréchet m-algebra I . Depend-
ing on the parity of the degree n, multiplicative K-theory classe s are repre-
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sented by idempotents or invertibles in certain extensions of I ⊗̂A , together
with a transgression of their Chern character in certain quotient complexes.
Multiplicative K-theory is by definition a mixture of the topological K-theory
Ktop
n (I ⊗̂A ) and the non-periodic cyclic homology HCn(A ). It provides a

“good” approximation of algebraic K-theory but is much more tractable. In
addition, the Jones-Goodwillie Chern character in negative cyclic homology
Kalg
n (A ) → HNn(A ) factors through multiplicative K-theory. The precise

relations between topological, multiplicative K-theory and the various versions
of cyclic homology are encoded in a commutative diagram whose rows are long
exact sequences of abelian groups

Ktop
n+1(I ⊗̂A ) //

��

HCn−1(A )
δ // MKI

n (A ) //

��

Ktop
n (I ⊗̂A )

��
HPn+1(A )

S // HCn−1(A )
eB // HNn(A )

I // HPn(A )

(1)

The particular case I = C was already considered by Karoubi [16, 17] after the
construction by Connes and Karoubi of regulator maps on algebraic K-theory
[6]. The incorporation of a finitely summable algebra I is rather straightfor-
ward. This diagram describes the primary and secondary invariants associated
to the noncommutative “manifold” A . We mention that the restriction to
Fréchet m-algebras is mainly for convenience. In principle these constructions
could be extended to all locally convex algebras over C, however the subsequent
results, in particular the proof of the Riemann-Roch-Grothendieck theorem
would become much more involved.

If now A and B are two Fréchet m-algebras, it is natural to consider the ad-
equate “morphisms” mapping the primary and secondary invariants from A
to B. Let I be a p-summable Fréchet m-algebra. By analogy with Cuntz’
description of bivariant K-theory for C∗-algebras [8], if E ⊲ I ⊗̂B denotes a
Fréchet m-algebra containing I ⊗̂B as a (not necessarily closed) two-sided
ideal, we define a p-summable quasihomomorphism from A to B as a contin-
uous homomorphism

ρ : A → E s ⊲I s⊗̂B ,

where E s and I s are certain Z2-graded algebras obtained from E and I by a
standard procedure. Quasihomomorphisms come equipped with a parity (even
or odd) depending on the construction of E s and I s. In general, we may
suppose that the parity is p mod 2. We say that I is multiplicative if it is
provided with a homomorphism ⊠ : I ⊗̂I → I , possibly defined up to adjoint
action of multipliers on I , and compatible with the trace. A basic example of
multiplicative p-summable algebra is, once again, the Schatten class L p(H).
Then it is easy to show that such a quasihomomorphism induces a pushforward
map in topological K-theory ρ! : Ktop

n (I ⊗̂A )→ Ktop
n−p(I ⊗̂B), whose degree

coincides with the parity of the quasihomomorphism. This is what one expects
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from bivariant K-theory and is not really new. Our goal is to extend this
map to the entire diagram (1). Direct images for the unstable versions of cyclic
homology are necessarily induced by a bivariant non-periodic cyclic cohomology
class chp(ρ) ∈ HCp(A ,B). This bivariant Chern character exists only under
certain admissibility properties about the algebra E (note that it is sufficient for
I to be (p+ 1)-summable instead of p-summable). In particular, the bivariant
Chern caracter constructed by Cuntz for any quasihomomorphism in [9, 10]
cannot be used here because it provides a bivariant periodic cyclic cohomology
class, which does not detect the secondary invariants of A and B. We give
the precise definition of an admissible quasihomomorphism and construct the
bivariant Chern character chp(ρ) in section 3, on the basis of previous works
[23]. An analogous construction was obtained by Nistor [20, 21] or by Cuntz
and Quillen [12]. However the bivariant Chern character of [23] is related to
other constructions involv ing the heat operator and can be used concretely for
establishing local index theorems, see for example [24]. The pushforward map
in topological K-theory combined with the bivariant Chern character leads to
a pushforward map in multiplicative K-theory ρ! : MKI

n (A )→ MKI
n−p(B).

Our first main result is the following non-commutative version of the Riemann-
Roch-Grothendieck theorem (see Theorem 6.3 for a precise statement):

Theorem 1.1 Let ρ : A → E s ⊲I s⊗̂B be an admissible quasihomomorphism
of parity p mod 2. Suppose that I is (p + 1)-summable in the even case and
p-summable in the odd case. Then one has a graded-commutative diagram

Ktop
n+1(I ⊗̂A ) //

ρ!

��

HCn−1(A ) //

chp(ρ)

��

MKI
n (A ) //

ρ!

��

Ktop
n (I ⊗̂A )

ρ!

��
Ktop
n+1−p(I ⊗̂B) // HCn−1−p(B) // MKI

n−p(B) // Ktop
n−p(I ⊗̂B)

compatible with the cyclic homology SBI exact sequences after taking the Chern
characters Ktop

∗ (I ⊗̂·)→ HP∗ and MKI
∗ → HN∗.

At this point it is interesting to note that the pushforward maps ρ! and
the bivariant Chern character chp(ρ) enjoy some invariance properties with
respect to equivalence relations among quasihomomorphisms. Two types
of equivalence relations are defined: smooth homotopy and conjugation by
invertibles. The second relation corresponds to “compact perturbation” in
Kasparov KK-theory for C∗-algebras [2]. In the latter situation, the M2-
stable version of conjugation essentially coincide with homotopy, at least
for separable A and σ-unital B. For Fréchet algebras however, M2-stable
conjugation is strictly stronger than homotopy as an equivalence relation.
This is indeed in the context of Fréchet algebras that secondary invariants
appear. The pushforward maps in topological K-theory and periodic cyclic
homology are invariant under homotopy of quasihomomorphisms. The maps
in multiplicative K-theory and the non-perio dic versions of cyclic homology
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HC∗ and HN∗ are only invariant under conjugation and not homotopy. Also
note that in contrast with the C∗-algebra situation, the Kasparov product of
two quasihomomorphisms ρ : A → E s ⊲ I s⊗̂B and ρ′ : B → F s ⊲ I s⊗̂C
is not defined as a quasihomomorphism from A to C . The various bivariant
K-theories constructed for m-algebras [9, 10] or even for general bornological
algebras [11] cannot be used here, again because they are homotopy invariant
by construction. We leave the construction of a bivariant K-theory compatible
with secondary invariants as an open problem.

In the last part of the paper we illustrate the Riemann-Roch-Grothendieck
theorem by constructing assembly maps for certain crossed product algebras. If
Γ is a discrete group acting on a Fréchet m-algebra A , under certain conditions
the crossed product A ⋊ Γ is again a Fréchet m-algebra and one would like
to obtain multiplicative K-theory classes out of a geometric model inspired

by the Baum-Connes construction [1]. Thus let P
Γ→ M be a principal Γ-

bundle over a compact manifold M , and denote by AP the algebra of smooth
sections of the associated A -bundle. If D is a K-cycle for M represented by
a pseudodifferential operator, we obtain a quasihomomorphism from AP to
A ⋊ Γ and hence a map

MKI
n (AP )→MKI

n−p(A ⋊ Γ)

for suitable p and Schatten ideal I . In general this map cannot exhaust
the entire multiplicative K-theory of the crossed product but nevertheless
interesting secondary invariants arise in this way. In the case where A is the
algebra of smooth functions on a compact manifold, AP is commutative and its
secondary invaiants are closely related to (smooth) Deligne cohomology. From
this point of view the pushforward map in multiplicative K-theory should be
considered as a non-commutative version of “integrating Deligne classes along
the fibers” of a submersion. We perform the computations for the simple
example provided by the noncommutative torus.

The paper is organized as follows. In section 2 we review the Cuntz-Quillen
formulation of (bivariant) cyclic cohomology [12] in terms of quasi-free exten-
sions for m-algebras. Nothing is new but we take the opportunity to fix the
notations and recall a proof of generalized Goodwillie theorem. In section 3 we
define quasihomomorphisms and construct the bivariant Chern character. The
formulas are identical to those found in [23] but in addition we carefully es-
tablish their adic properties and conjugation invariance. In section 4 we recall
Phillips’ topological K-theory for Fréchet m-algebras, and introduce the peri-
odic Chern character Ktop

n (I ⊗̂A )→ HPn(A ) when I is a finitely summable
algebra. The essential point here is to give explicit and simple formulas for
subsequent use. Section 5 is devoted to the definition of the multiplicative
K-theory groups MKI

n (A ) and the proof of the long exact seque nce relating
them with topological K-theory and cyclic homology. We also construct the
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negative Chern character MKI
n (A ) → HNn(A ) and show the compatibility

with the SBI exact sequence. Direct images of topological and multiplica-
tive K-theory under quasihomomorphisms are constructed in section 6 and
the Riemann-Roch-Grothendieck theorem is proved. The example of assembly
maps and crossed products is treated in section 7.

2 Cyclic homology

Cyclic homology can be defined for various classes of associative algebras over
C, in particular complete locally convex algebras. For us, a locally convex
algebra A has a topology induced by a family of continuous seminorms p :
A → R+, for which the multiplication A × A → A is jointly continuous.
Hence for any seminorm p there exists a seminorm q such that p(a1a2) ≤
q(a1)q(a2), ∀ai ∈ A . For technical reasons however we shall restrict ourselves
to multiplicatively convex algebras [5], whose topology is generated by a family
of submultiplicative seminorms

p(a1a2) ≤ p(a1)p(a2) ∀ai ∈ A .

A complete multiplicatively convex algebra is called m-algebra, and may equiv-
alently be described as a projective limit of Banach algebras. The unitalization
A + = C ⊕ A of an m-algebra A is again an m-algebra, for the seminorms
p̃(λ1 + a) = |λ| + p(a), ∀λ ∈ C, a ∈ A . In the same way, if B is another
m-algebra, the direct sum A ⊕B is an m-algebra for the topology generated
by the seminorms (p⊕q)(a, b) = p(a)+q(b), where p is a seminorm on A and q
a seminorm on B. Also, the algebraic tensor product A ⊗B may be endowed
with the projective topology induced by the seminorms

(p⊗ q)(c) = inf
{ n∑

i=1

p(ai)q(bi) such that c =

n∑

i=1

ai ⊗ bi ∈ A ⊗B
}
. (2)

The completion A ⊗̂B = A ⊗̂πB of the algebraic tensor product under this
family of seminorms is the projective tensor product of Grothendieck [14], and
is again an m-algebra.
Cyclic homology, cohomology and bivariant cyclic cohomology for m-algebras
can be defined either within the cyclic bicomplex formalism of Connes [5], or
the X-complex of Cuntz and Quillen [12]. We will make an extensive use of
both formalisms throughout this paper. In general, we suppose that all linear
maps or homomorphims between m-algebras are continuous, tensor products
are completed projective tensor products, and extensions of m-algebras 0 →
I → R → A → 0 always admit a continuous linear splitting σ : A → R.

2.1 Cyclic bicomplex

Non-commutative differential forms. Let A be an m-algebra. The
space of non-commutative differential forms over A is the algebraic direct sum
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ΩA =
⊕

n≥0 ΩnA of the n-forms subspaces ΩnA = A +⊗̂A ⊗̂n for n ≥ 1

and Ω0A = A , where A + is the unitalization of A . Each of the subspaces
ΩnA is complete but we do not complete the direct sum. It is customary
to use the differential notation a0da1 . . . dan (resp. da1 . . . dan) for the string
a0 ⊗ a1 . . . ⊗ an (resp. 1 ⊗ a1 . . . ⊗ an). A continuous differential d : ΩnA →
Ωn+1A is uniquely specified by d(a0da1 . . . dan) = da0da1 . . . dan and d2 = 0.
A continuous and associative product ΩnA × ΩmA → Ωn+mA is defined as
usual and fulfills the Leibniz rule d(ω1ω2) = dω1ω2 + (−)|ω1|ω1dω2, where |ω1|
is the degree of ω1. This tu rns ΩA into a differential graded (DG) algebra.
On ΩA are defined various operators. First of all, the Hochschild boundary
map b : Ωn+1A → ΩnA reads b(ωda) = (−)n[ω, a] for ω ∈ ΩnA , and b = 0
on Ω0A = A . One easily shows that b is continuous and b2 = 0, hence ΩA is
a complex graded over N. The Hochschild homology of A (with coefficients in
the bimodule A ) is the homology of this complex:

HHn(A ) = Hn(ΩA , b) , ∀n ∈ N . (3)

Then the Karoubi operator κ : ΩnA → ΩnA is defined by 1 − κ = db + bd.
Therefore κ is continuous and commutes with b and d. One has κ(ω da) =
(−)ndaω for any ω ∈ ΩnA and a ∈ A . The last operator is Connes’ B :
ΩnA → Ωn+1A , equal to (1 + κ + . . . + κn)d on ΩnA . It is also continuous
and verifies B2 = 0 = Bb+bB and Bκ = κB = B. Thus ΩA endowed with the
two anticommuting differentials (b, B) becomes a bicomplex. It splits as a direct
sum ΩA = ΩA + ⊕ΩA − of even and odd degree differential forms, hence is a
Z2-graded complex for the total boundary map b + B. However its homology
is trivial [18]. The various versions of cyclic homology are defined using the
natural filtrations on ΩA . Following Cuntz and Quillen [12], we define the
Hodge filtration on ΩA as the decreasing family of Z2-graded subcomplexes
for the total boundary b+B

FnΩA = bΩn+1A ⊕
⊕

k>n

ΩkA , ∀n ∈ Z ,

with the convention that FnΩA = ΩA for n < 0. The completion of ΩA is
defined as the projective limit of Z2-graded complexes

Ω̂A = lim←−
n

ΩA /FnΩA =
∏

n≥0

ΩnA . (4)

Hence Ω̂A = Ω̂+A ⊕ Ω̂−A is a Z2-graded complex endowed with the total
boundary map b+B. It is itself filtered by the decreasing family of Z2-graded
subcomplexes FnΩ̂A = Ker(Ω̂A → ΩA /FnΩA ), which may be written

FnΩ̂A = bΩn+1A ⊕
∏

k>n

ΩkA , ∀n ∈ Z . (5)
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In particular the quotient Ω̂A /FnΩ̂A is a Z2-graded complex isomorphic to
ΩA /FnΩA , explicitly

Ω̂A /FnΩ̂A =

n−1⊕

k=0

ΩkA ⊕ ΩnA /b(Ωn+1A ) , (6)

and it vanishes for n < 0. As a topological vector space, Ω̂A /FnΩ̂A may fail
to be separated because the image b(Ωn+1A ) is not closed in general.

Definition 2.1 In any degree n ∈ Z, the periodic, non-periodic and negative
cyclic homologies are respectively the (b +B)-homologies

HPn(A ) = Hn+2Z(Ω̂A ) ,

HCn(A ) = Hn+2Z(Ω̂A /FnΩ̂A ) , (7)

HNn(A ) = Hn+2Z(Fn−1Ω̂A ) .

Hence HPn(A ) ∼= HPn+2(A ) is 2-periodic, HCn(A ) = 0 for n < 0 and
HNn(A ) ∼= HPn(A ) for n ≤ 0. By construction these cyclic homology groups
fit into a long exact sequence

. . . −→ HPn+1(A )
S−→ HCn−1(A )

B−→ HNn(A )
I−→ HPn(A ) −→ . . . (8)

where S is induced by projection, I by inclusion, and the connecting map cor-
responds to the operator B. The link between cyclic and Hochshild homology
may be obtained through non-commutative de Rham homology [16], defined as

HDn(A ) := Hn+2Z(Ω̂A /Fn+1Ω̂A ) , ∀n ∈ Z . (9)

This yields for any n ∈ Z a short exact sequence of Z2-graded complexes

0 −→ Gn(A ) −→ Ω̂A /FnΩ̂A −→ Ω̂A /Fn−1Ω̂A −→ 0 ,

where Gn is ΩnA /bΩn+1A in degree n mod 2, and bΩnA in degree n − 1
mod 2. One has Hn+2Z(Gn) = HHn(A ) and Hn−1+2Z(Gn) = 0, so that the
associated six-term cyclic exact sequence in homology reduces to

0→ HDn−1(A )→ HCn−1(A )→ HHn(A )→ HCn(A )→ HDn−2(A )→ 0 ,

and Connes’s SBI exact sequence [4] for cyclic homology is actually obtained
by splicing together the above sequences for all n ∈ Z:

. . . −→ HCn+1(A )
S−→ HCn−1(A )

B−→ HHn(A )
I−→ HCn(A ) −→ . . . (10)

Hence the non-commutative de Rham homology group HDn(A ) may be
identified with the image of the periodicity shift S : HCn+2(A ) → HCn(A ).
Clearly the exact sequence (8) can be transformed to (10) by taking the
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natural maps HPn(A )→ HCn(A ) and HNn(A )→ HHn(A ).

Passing to the dual theory, let Hom(Ω̂A ,C) be the Z2-graded complex of linear

maps Ω̂A → C which are continuous for the adic topology on Ω̂A induced by
the Hodge filtration. It is concretely described as the direct sum

Hom(Ω̂A ,C) =
⊕

n≥0

Hom(ΩnA ,C) ,

where Hom(ΩnA ,C) is the space of continuous linear maps ΩnA → C. The

space Hom(Ω̂A ,C) is endowed with the transposed of the boundary operator

b+B on Ω̂A . Then the periodic cyclic cohomology of A is the cohomology of
this complex:

HPn(A ) = Hn+2Z(Hom(Ω̂A ,C)) . (11)

One defines analogously the non-periodic and negative cyclic cohomologies
which fit into an IBS long exact sequence.

2.2 X-complex and quasi-free algebras

We now turn to the description of the X-complex. It first appeared in the
coalgebra context in Quillen’s work [28], and subsequently was used by Cuntz
and Quillen in their formulation of cyclic homology [12]. Here we recall the
X-complex construction for m-algebras.
Let R be an m-algebra. The space of non-commutative one-forms Ω1R is a R-
bimodule, hence we can take its quotient Ω1R♮ by the subspace of commutators
[R,Ω1R] = bΩ2R. Ω1R♮ may fail to be separated in general. However, it is
automatically separated when R is quasi-free, see below. In order to avoid
confusions in the subsequent notations, we always write a one-form x0dx1 ∈
Ω1R with a bold d when dealing with the X-complex of R. The latter is the
Z2-graded complex [12]

X(R) : R
♮d

⇄
b

Ω1R♮ , (12)

where R = X+(R) is located in even degree and Ω1R♮ = X−(R) in odd
degree. The class of the generic element (x0dx1 mod [, ]) ∈ Ω1R♮ is usually
denoted by ♮x0dx1. The map ♮d : R → Ω1R♮ thus sends x ∈ R to ♮dx. Also,
the Hochschild boundary b : Ω1R → R vanishes on the commutator subspace
[R,Ω1R], hence passes to a well-defined map b : Ω1R♮ → R. Explicitly the im-
age of ♮x0dx1 by b is the commutator [x0, x1]. These maps are continuous and
satisfy ♮d◦b = 0 and b◦♮d = 0, so that (X(R), ♮d⊕b) indeed defines a Z2-graded
complex. We mention that everything can be formulated when R itself is a
Z2-graded algebra: we just have to replace everywhere the ordinary commuta-
tors by graded commutators, and the differentials anticommute with elements
of odd degree. In particular one gets b♮xdy = (−)|x|[x, y], where |x| is the
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degree of x and [x, y] is the graded commutator. The X-complex is obviously a
functor from m-algebras to Z2-graded complexes: if ρ : R → S is a continuous
homomorphism, it induces a chain map of even degree X(ρ) : X(R)→ X(S ),
by setting X(ρ)(x) = ρ(x) and X(ρ)(♮x0dx1) = ♮ ρ(x0)dρ(x1).
In fact the X-complex may be identified with the quotient of the (b + B)-

complex Ω̂R by the subcomplex F 1Ω̂R = bΩ2R ⊕∏k≥2 ΩkR of the Hodge
filtration, i.e. there is an exact sequence

0→ F 1Ω̂R → Ω̂R → X(R)→ 0 .

It turns out that the X-complex is especially designed to compute the cyclic
homology of algebras for which the subcomplex F 1Ω̂R is contractible. This
led Cuntz and Quillen to the following definition:

Definition 2.2 ([12]) An m-algebra R is called quasi-free if there exists a
continuous linear map φ : R → Ω2R with property

φ(xy) = φ(x)y + xφ(y) + dxdy , ∀x, y ∈ R . (13)

We refer to [12, 19] for many other equivalent definitions of quasi-free algebras.
Let us just observe that a quasi-free algebra has dimension ≤ 1 with respect to
Hochschild cohomology. Indeed, the map φ allows to contract the Hochschild
complex of R in dimensions > 1, and this contraction carries over to the cyclic
bicomplex. First, the linear map

σ : Ω1R♮ → Ω1R , ♮xdy 7→ xdy + b(xφ(y))

is well-defined because it vanishes on the commutator subspace [R,Ω1R] =
bΩ2R by the algebraic property of φ. Hence σ is a continuous linear splitting
of the exact sequence 0 → bΩ2R → Ω1R → Ω1R♮ → 0. By the way, this
implies that for a quasi-free algebra R, the topological vector space Ω1R splits
into the direct sum of two closed subspaces bΩ2R and Ω1R♮. Then, we extend
φ to a continuous linear map φ : ΩnR → Ωn+2R in all degrees n ≥ 1 by the
formula

φ(x0dx1 . . .dxn) =

n∑

i=0

(−)niφ(xi)dxi+1 . . .dxndx0 . . .dxi−1 .

The following proposition gives a chain map γ : X(R)→ Ω̂R which is inverse

to the natural projection π : Ω̂R → X(R) up to homotopy. Remark that the

infinite sum (1− φ)−1 :=
∑∞

n=0 φ
n makes sense as a linear map R → Ω̂+R or

Ω1R → Ω̂−R.

Proposition 2.3 Let R be a quasi-free m-algebra. Then
i) The map γ : X(R)→ Ω̂R defined for x, y ∈ R by

γ(x) = (1− φ)−1(x) (14)

γ(♮xdy) = (1− φ)−1(xdy + b(xφ(y)))
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is a chain map of even degree from the X-complex to the (b+B)-complex.

ii) Let π : Ω̂R → X(R) be the natural projection. There is a contracting

homotopy of odd degree h : Ω̂R → Ω̂R such that

π ◦ γ = Id on X(R) ,

γ ◦ π = Id + [b+B, h] on Ω̂R .

Hence X(R) and Ω̂R are homotopy equivalent.

Proof: See the proof of [22], Proposition 4.2. There the result was stated in
the particular case of a tensor algebra R = TA , but the general case of a
quasi-free algebra is strictly identical (with the tensor algebra the image of γ

actually lands in the subcomplex ΩTA ⊂ Ω̂TA for a judicious choice of φ,
but for generic quasi-free algebras it is necessary to take the completion Ω̂R
of ΩR).

Extensions. Let A be an m-algebra. By an extension of A we mean an exact
sequence of m-algebras 0 → I → R → A → 0 provided with a continuous
linear splitting A → R, and the topology of the ideal I is induced by its
inclusion in R. Hence as a topological vector space R is the direct sum of
the closed subspaces I and A . By convention, the powers I n of the ideal
I will always denote the image in R of the n-th tensor power I ⊗̂ . . . ⊗̂I by
the multiplication map. For n ≤ 0, we define I 0 as the algebra R. Now let
us suppose that all the powers I n are closed and direct summands in R (this
is automatically satisfied if R is quasi-free). Then the quotients R/I n are
m-algebras and give rise to an inverse system with surjective homomorphisms

0← A = R/I ← R/I 2 ← . . .← R/I n ← . . .

We denote by R̂ = lim←−n R/I n the projective limit and view it as a pro-

algebra indexed by the directed set Z (see [19]). Since the bicomplex of non-

commutative differential forms Ω̂R and the X-complex X(R) are functorial in

R, we can define Ω̂R̂ and X(R̂) as the Z2-graded pro-complexes

Ω̂R̂ = lim←−
n

Ω̂(R/I n) = lim←−
m,n

Ω(R/I n)/FmΩ(R/I n) ,

X(R̂) = lim←−
n

X(R/I n) ,

endowed respectively with the total boundary maps b + B and ∂ = ♮d ⊕ b.
When R is quasi-free, a refinement of Proposition 2.3 yields a chain map γ :
X(R̂)→ Ω̂R̂ inverse to the projection π : Ω̂R̂ → X(R̂) up to homotopy, which
we call a generalized Goodwillie equivalence:

Proposition 2.4 Let 0 → I → R → A → 0 be an extension of m-algebras,
with R quasi-free. Then the chain map γ : X(R)→ Ω̂R extends to a homotopy

equivalence of pro-complexes X(R̂)→ Ω̂R̂.
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Proof: We recall the proof because it will be useful for establishing Proposition
3.10. Let us introduce the following decreasing filtration of the space ΩmR by
the subspaces HkΩmR, k ∈ Z:

HkΩmR =
∑

k0+...+km≥k
I k0dI k1 . . .dI km .

Clearly Hk+1ΩmR ⊂ HkΩmR, and for k ≤ 0 HkΩmR = ΩmR. Morally,
HkΩmR contains at least k powers of the ideal I . The direct sum⊕

mH
kΩmR is stable by the operators d, b, κ, B for any k. We have to

establish how k changes when the linear map φ : ΩmR → Ωm+2R is applied.
First consider φ : R → Ω2R. If x1, . . . , xk denote k elements in R, one has by
the algebraic property of φ (see [12])

φ(x1 . . . xk) =

k∑

i=1

x1 . . . xi−1φ(xi)xi+1 . . . xk

+
∑

1≤i<j≤k
x1 . . . xi−1dxixi+1 . . . xj−1dxjxj+1 . . . xk .

Taking the elements xi in the ideal I and using that φ(I ) ⊂ Ω2R yields

φ(I k) ⊂
k∑

i=1

I i−1dRdRI k−i +
∑

1≤i<j≤k
I i−1dI I j−i−1dI I k−j .

Therefore φ(I k) ⊂ Hk−1Ω2R for any k. Now from the definition of φ on
ΩmR, one has

φ(I k0dI k1 . . .dI km) ⊂
m∑

l=0

φ(I kl)dI kl+1 . . .dI kl−1 ⊂ Hk−1Ωm+2R

whenever k = k0 + . . . + km, hence φ(HkΩmR) ⊂ Hk−1Ωm+2R. Now let us

evaluate the even part of the chain map γ : R → Ω̂+R. The part of γ landing
in Ω2mR is the m-th power φm. One gets φm(I k) ⊂ Hk−mΩ2mR, hence φm

sends the quotient algebra R/I k to Ω2m(R/I n) provided (1+2m)n ≤ k−m
(indeed 1 + 2m is the maximal number of factors R in the tensor product
Ω2mR). Passing to the projective limits, φm induces a well-defined map

R̂ → Ω2mR̂, and summing over all degrees 2m yields γ : R̂ → Ω̂+R̂.
Let us turn to the odd part of the chain map γ : Ω1R♮ → Ω̂−R. By con-
struction, it is the composition of the linear map σ : Ω1R♮ → Ω1R with
all the powers φm : Ω1R → Ω2m+1R. One has ♮(I kdR + Rd(I k)) ⊂
♮(I kdR + I k−1dI ), and by the definition of σ,

σ ♮(I kdR + I k−1dI ) ⊂ I kdR + I k−1dI + b(I kφ(R) + I k−1φ(I ))

⊂ HkΩ1R + bHk−1Ω2R ⊂ Hk−1Ω1R .
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Therefore (φm ◦ σ)♮(I kdR + I k−1dI ) ⊂ Hk−m−1Ω2m+1R. Since R is
the direct sum of R/I k and I k as a topological vector space, the quo-
tient Ω1(R/I k)♮ coincides with Ω1R/(I kdR + Rd(I k) + [R,Ω1R]), and
the map φm ◦ σ : Ω1(R/I k)♮ → Ω2m+1(R/I n) is well-defined provided
(2m + 2)n ≤ k −m − 1. Thus passing to the projective limits induces a map

Ω1R̂♮ → Ω2m+1R̂, and summing over m yields γ : Ω1R̂♮ → Ω̂−R̂.
Finally, the contracting homotopy h of Proposition 2.3 is also constructed
from φ (see [22] Proposition 4.2), hence extends to a contracting homotopy

h : Ω̂R̂ → Ω̂R̂. The relations π ◦ γ = Id on X(R̂) and γ ◦ π = Id + [b + B, h]

on Ω̂R̂ follow immediately.

Adic filtration. Suppose that I is a (not necessarily closed) two-sided ideal
in R, provided with its own topology of m-algebra for which the inclusion
I → R is continuous and the multiplication map R+ × I × R+ → I is
jointly continuous. As usual we define the powers I n as the two-sided ideals
corresponding to the image in R of the n-fold tensor products I ⊗̂ . . . ⊗̂I
under multiplication. Following [12], we introduce the adic filtration of X(R)
by the subcomplexes

F 2n
I X(R) : I n+1 + [I n,R] ⇄ ♮I ndR (15)

F 2n+1
I X(R) : I n+1 ⇄ ♮(I n+1dR + I ndI ) ,

where the commutator [I n,R] is by definition the image of I ndR under the
Hochschild operator b, and I n is defined as the unitalized algebra R+ for
n ≤ 0. This is a decreasing filtration because Fn+1

I X(R) ⊂ FnIX(R), and for
n < 0 one has FnIX(R) = X(R). Denote by Xn(R,I ) = X(R)/FnIX(R)
the quotient complex. It is generally not separated. One gets in this way an
inverse system of Z2-graded complexes {Xn(R,I )}n∈Z with projective limit

X̂(R,I ).

Now suppose that we start from an extension of m-algebras 0 → I → R →
A → 0 with continuous linear splitting, and assume that any power I n is
a direct summand in R. Then, the sequence Xn(R,I ) is related to the X-
complexes of the quotient m-algebras R/I n:

0← X0(R,I ) = A /[A ,A ]← X1(R,I ) = X(A )← . . .

. . .← X(R/I n−1)← X2n−1(R,I )← X2n(R,I )← X(R/I n)← . . .

Hence the projective limit of the system {Xn(R,I )}n∈Z is isomorphic to the

X-complex of the pro-algebra R̂:

X̂(R,I ) = lim←−
n

Xn(R,I ) = lim←−
n

X(R/I n) = X(R̂) . (16)

The pro-complex X̂(R,I ) is naturally filtered by the family of subcomplexes

FnX̂(R,I ) = Ker(X̂ → Xn). If 0→J → S → B → 0 is another extension
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of m-algebras with continuous linear splitting, then the space of linear maps
between the two pro-complexes X̂(R,I ) and X̂(S ,J ), or between X̂ and

X̂ ′ for short, is given by

Hom(X̂, X̂ ′) = lim←−
m

(
lim−→
n

Hom(Xn, X
′
m)
)
, (17)

where Hom(Xn, X
′
m) is the space of continuous linear maps between the Z2-

graded complexes Xn(R,I ) and Xm(S ,J ). Thus Hom(X̂, X̂ ′) is a Z2-

graded complex. It corresponds to the space of linear maps {f : X̂ →
X̂ ′ | ∀k, ∃n : f(FnX̂) ⊂ F kX̂ ′}; the boundary of an element f of parity
|f | is given by the graded commutator ∂ ◦ f − (−)|f |f ◦ ∂ with the bounary

maps ∂ = ♮d⊕b on X̂ and X̂ ′. Hom(X̂, X̂ ′) itself is filtered by the subcomplexes
of linear maps of order ≤ n for any n ∈ N:

Homn(X̂, X̂ ′) = {f : X̂ → X̂ ′ | ∀k, f(F k+nX̂) ⊂ F kX̂ ′} . (18)

These Hom-complexes will be used in the various definitions of bivariant cyclic
cohomology, once the relation between the adic filtration over the X-complex
of a quasi-free algebra R and the Hodge filtration of the cyclic bicomplex over
the quotient algebra A = R/I is established.

2.3 The tensor algebra

Taking R as the tensor algebra of an m-algebra A provides the link with cyclic
homology [9, 12]. The (non-unital) tensor algebra TA is the completion of the

algebraic direct sum
⊕

n≥1 A ⊗̂n with respect to the family of seminorms

p̂ =
⊕

n≥1

p⊗n = p⊕ (p⊗ p)⊕ (p⊗ p⊗ p)⊕ . . . ,

where p runs through all the submultiplicative seminorms on A . Of course p⊗n

is the projective seminorm on A ⊗n defined by a generalization of (2). These

seminorms are submultiplicative with respect to the tensor product A ⊗̂n ×
A ⊗̂m → A ⊗̂n+m and therefore the completion TA is an m-algebra. It is free,
hence quasi-free: a linear map φ : TA → Ω2TA with the property φ(xy) =
φ(x)y + xφ(y) + dxdy may be canonically constructed by setting φ(a) = 0
on the generators a ∈ A ⊂ TA , and then recursively φ(a1 ⊗ a2) = da1da2,
φ(a1 ⊗ a2 ⊗ a3) = (da1da2)a3 + d(a1 ⊗ a2)da3, and so on...
The multiplication map TA → A , sending a1⊗. . .⊗an to the product a1 . . . an,
is continuous and we denote by JA its kernel. Since the inclusion σA : A →
TA is a continuous linear splitting of the multiplication map, the two-sided
ideal JA is a direct summand in TA . This implies a linearly split quasi-free
extension 0 → JA → TA → A → 0. It is the universal free extension of
A in the following sense: let 0 → I → R → A → 0 be any other extension
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(R is not necessarily quasi-free), provided with a continuous linear splitting
σ : A → R. Then one gets a commutative diagram

0 // JA //

ρ∗

��

TA //

ρ∗

��

A // 0

0 // I // R // A //
σ

uu
0

where ρ∗ : TA → R is the continuous algebra homomorphism obtained by
setting ρ∗(a) = σ(a) on the generators a ∈ A ⊂ TA . Moreover, the homomor-
phism ρ∗ is independent of the linear splitting σ up to homotopy (two splittings
can always be connected by a linear homotopy).
As remarked by Cuntz and Quillen [12], the tensor algebra is closely related to
a deformation of the algebra of even-degree noncommutative differential forms
Ω+A . Endow the space Ω+A with the Fedosov product

ω1 ⊙ ω2 := ω1ω2 − dω1dω2 , ωi ∈ Ω+A . (19)

Then (Ω+A ,⊙) is a dense subalgebra of TA , with the explicit correspondence

Ω+A ∋ a0da1 . . . da2n ←→ a0 ⊗ ω(a1, a2)⊗ . . .⊗ ω(a2n−1, a2n) ∈ TA .

It turns out that the Fedosov product ⊙ extends to the projective limit Ω̂+A
and the latter is isomorphic to the pro-algebra

T̂A = lim
←−
n

TA /(JA )n . (20)

Moreover, Ω̂A and X(T̂A ) = X̂(TA , JA ) are isomorphic as Z2-graded pro-

vector spaces [12], and this isomorphism identifies the Hodge filtration FnΩ̂A

with the adic filtration FnX̂(TA , JA ). By a fundamental result of Cuntz and
Quillen, all these identifications are homotopy equivalences of pro-complexes,
i.e. the boundary b + B on Ω̂A corresponds to the boundary ♮d ⊕ b on
X̂(TA , JA ) up to homotopy and rescaling (see [12]). Hence the periodic and

negative cyclic homologies of A may be computed respectively by X̂(TA , JA )

and FnX̂(TA , JA ). Also, the non-periodic cyclic homology of A may be
computed by the quotient complex Xn(TA , JA ) which is homotopy equiv-

alent to the complex Ω̂A /FnΩ̂A . More generally the same result holds if
tensor algebra TA is replaced by any quasi-free extension of A . Indeed if
0 → I → R → A → 0 is a quasi-free extension with c ontinuous linear
splitting, the classifying homomorphism ρ∗ : TA → R induces a map of
pro-complexes X(ρ∗) : X̂(TA , JA ) → X̂(R,I ) compatible with the adic
filtrations induced by the ideals JA and I . It turns out to be a homotopy
equivalence, irrespective to the choice of R:
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Theorem 2.5 (Cuntz-Quillen [12]) For any linearly split extension of m-
algebras 0→ I → R → A → 0 with R quasi-free, one has isomorphisms

HPn(A ) = Hn+2Z(X̂(R,I )) ,

HCn(A ) = Hn+2Z(Xn(R,I )) , (21)

HDn(A ) = Hn+2Z(Xn+1(R,I )) ,

HNn(A ) = Hn+2Z(Fn−1X̂(R,I )) .

These filtrations also allow to define various versions of bivariant cyclic coho-
mology, which may be formulated either within the X-complex framework or
by means of the (b +B)-complex of differential forms.

Definition 2.6 ([12]) Let A and B be m-algebras, and choose arbitrary (lin-
early split) quasi-free extensions 0→ I → R → A → 0 and 0→J → S →
B → 0. The bivariant periodic cyclic cohomology of A and B is the homol-
ogy of the Z2-graded complex (17) of linear maps between the pro-complexes

X̂(R,I ) and X̂(S ,J ):

HPn(A ,B) = Hn+2Z

(
Hom(X̂(R,I ), X̂(S ,J ))

)
, ∀n ∈ Z . (22)

For any n ∈ Z, the non-periodic cyclic cohomology group HCn(A ,B) of degree
n is the homology, in degree n mod 2, of the Z2-graded subcomplex (18) of linear
maps of order ≤ n:

HCn(A ,B) = Hn+2Z

(
Homn(X̂(R,I ), X̂(S ,J ))

)
. (23)

The embedding Homn →֒ Homn+2 induces, for any n, the S-operation in bivari-
ant cyclic cohomology S : HCn(A ,B) → HCn+2(A ,B), and Homn →֒ Hom
yields a natural map HCn(A ,B)→ HPn(A ,B).

Of course the bivariant periodic theory has period two: HPn+2 = HPn. Let
us look at particular cases. The algebra C is quasi-free hence X̂(TC, JC) is
homotopically equivalent to X(C) : C ⇄ 0, and the periodic cyclic homology
of C is simply HP0(C) = C and HP1(C) = 0. This implies that for any
m-algebra A , we get the usual isomorphisms HPn(C,A ) ∼= HP−n(A ) and
HPn(A ,C) ∼= HPn(A ) in any degree n. For the non-periodic theory, one has
the isomorphism HCn(C,A ) ∼= HN−n(A ) with negative cyclic homology, and
HCn(A ,C) ∼= HCn(A ) is the non-periodic cyclic cohomology of Connes [4].
Finally, since any class ϕ ∈ HCp(A ,B) is represented by a chain map sending

the subcomplex FnX̂(TA , JA ) to Fn−pX̂(TB, JB) for any n ∈ Z, it is not
difficult to check that ϕ induces a transformation of degree −p between the
SBI exact sequences for A and B, i.e. a graded-commutative diagram

HPn+1(A )
S //

ϕ

��

HCn−1(A )
B //

ϕ

��

HNn(A )
I //

ϕ

��

HPn(A )

ϕ

��
HPn−p+1(B)

S // HCn−p−1(B)
B // HNn−p(B)

I // HPn−p(B)
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The graded-commutativity comes from the fact that the middle square is actu-
ally anticommutative when ϕ is of odd degree, for in this case the connecting
morphism B anticommutes with the chain map representing ϕ.

3 Quasihomomorphisms and Chern character

In this section we define quasihomomorphisms for metrizable (or Fréchet) m-
algebras and construct a bivariant Chern character. The topology of a Fréchet
m-algebra is defined by a countable family of submultiplicative seminorms, and
can alternatively be considered as the projective limit of a sequence of Banach
algebras [27]. In particular, the projective tensor product of two Fréchet m-
algebras is again a Fréchet m-algebra.
We say that a Fréchet m-algebra I is p-summable (with p ≥ 1 an integer),
if there is a continuous trace Tr : I p → C on the pth power of I . Recall
that by definition, I p is the image in I of the p-th completed tensor product
I ⊗̂ . . . ⊗̂I under the multiplication map. Hence the trace is understood as a
continuous linear map I ⊗̂ . . . ⊗̂I → C, and the tracial property means that
it vanishes on the image of 1− λ, where the operator λ is the backward cyclic
permutation λ(i1 ⊗ . . . ⊗ ip) = ip ⊗ i1 . . . ⊗ ip−1. In the low degree p = 1 we
interpret the trace just as a linear map I → C vanishing on the subspace of
commutators [I ,I ] := bΩ1I .
Now consider any Fréchet m-algebra B and form the completed tensor product
I ⊗̂B. Suppose that E is a Fréchet m-algebra containing I ⊗̂B as a (not
necessarily closed) two-sided ideal, in the sense that the inclusion I ⊗̂B → E is
continuous. The left and right multiplication maps E ×I ⊗̂B×E → I ⊗̂B are
then automatically jointly continuous (see [7]). As in [13], we define the semi-
direct sum E ⋉ I ⊗̂B as the algebra modeled on the vector space E ⊕I ⊗̂B,
where the product is such that as many elements as possible are put in the
summand I ⊗̂B. The semi-direct sum is a Fréchet algebra but it may fail
to be multiplicatively convex in general. The situation when E ⋉ I ⊗̂B is a
Fréchet m-algebra will be depicted as

E ⊲I ⊗̂B (24)

to stress the analogy with [8]. The definition of quasihomomorphisms involves
a Z2-graded version of E ⊲I ⊗̂B, depending only on a choice of parity (even
or odd). It is constructed as follows:

1) Even case: Define E s
+ as the Fréchet m-algebra E ⋉ I ⊗̂B. It is endowed

with a linear action of the group Z2 by automorphisms: the image of an element
(a, b) ∈ E ⊕I ⊗̂B under the generator F of the group is (a+ b,−b). We define
the Z2-graded algebra E s as the crossed product E s

+ ⋊ Z2. Hence E s splits as
the direct sum E s

+ ⊕ E s
− where E s

+ is the subalgebra of even degree elements
and E s

− = FE s
+ is the odd subspace.

This definition is rather abstract but there is a concrete description of E s
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in terms of 2 × 2 matrices. Consider M2(E ) = M2(C)⊗̂E as a Z2-graded
algebra with grading operator

(
1 0
0 −1

)
. Thus diagonal elements are of even

degree and off-diagonal elements are odd. E s can be identified with a (non-
closed) subalgebra of M2(C)⊗̂E in the following way. Any element x+Fy ∈ E s

may be decomposed to its even and odd parts x, y ∈ E ⊕I ⊗̂B, with x = (a, b)
and y = (c, d). Then x+ Fy is represented by the matrix

x+ Fy =

(
a+ b c
c+ d a

)
with a, c ∈ E , b, d ∈ I ⊗̂B .

The action of Z2 on E s
+ is implemented by the adjoint action of the following

odd-degree multiplier of M2(E ):

F =

(
0 1
1 0

)
∈M2(C) , F 2 = 1 . (25)

Denote by I s = I s
+ ⊕ I s

− the Z2-graded algebra M2(C)⊗̂I , with I s
+ the

subalgebra of diagonal elements and I s
− the off-diagonal subspace. We thus

have an inclusion of I s⊗̂B as a (non-closed) two-sided ideal in E s, with E s ⊲
I s⊗̂B. The commutator [F,E s

+] is contained in I s
−⊗̂B. Finally, we denote

by trs the supertrace of even degree on M2(C):

trs : M2(C)→ C , trs

(
a′ c
c′ a

)
= a′ − a .

2) Odd case: Now regard M2(E ) as a trivially graded algebra and define E s
+

as the (non-closed) subalgebra

E s
+ =

(
E I ⊗̂B

I ⊗̂B E

)
(26)

provided with its own topology of complete m-algebra. Let C1 = C ⊕ εC be
the complex Clifford algebra of the one-dimensional euclidian space. C1 is the
Z2-graded algebra generated by the unit 1 ∈ C in degree zero and ε in degree
one with ε2 = 1. We define the Z2-graded algebra E s as the tensor product
C1⊗̂E s

+. Hence E s = E s
+ ⊕ E s

− where E s
+ is the subalgebra of even degree and

E s
− = εE s+ is the odd subspace. Similarly, define I s = M2(C1)⊗̂I = I s

+⊕I s
−.

Then I s⊗̂B is a (non-closed) two-sided ideal of E s and one has E s ⊲I s⊗̂B.
The matrix

F = ε

(
1 0
0 −1

)
∈M2(C1) , F 2 = 1 (27)

is an odd multiplier of E s and the commutator [F,E s
+] is contained in I s

−⊗̂B.
Finally, we define a supertrace trs of odd degree onC1 by sending the generators
1 to 0 and ε to ±

√
2i. The normalization ±

√
2i is chosen for compatibility with

Bott periodicity, see [22]. We will choose conventionally the “sign” as −
√

2i in
order to simplify the subsequent formulas. One thus has

trs : M2(C1)→ C , trs

(
a+ εa′ b + εb′

c+ εc′ d+ εd′

)
= −
√

2i (a′ + d′) .

Documenta Mathematica 13 (2008) 275–363



Secondary Invariants for Frechet Algebras. . . 293

The objects F , E s and I s are defined in such a way that we can handle the
even and odd case simultaneously. This allows to give the following synthetic
definition of quasihomomorphisms.

Definition 3.1 Let A , B, I , E be Fréchet m-algebras. Assume that I
is p-summable and E ⊲ I ⊗̂B. A quasihomomorphism from A to B is a
continuous homomorphism

ρ : A → E s ⊲I s⊗̂B (28)

sending A to the even degree subalgebra E s
+. The quasihomomorphism comes

equipped with a degree (even or odd) depending on the degree chosen for the
above construction of E s. In particular, the linear map a ∈ A 7→ [F, ρ(a)] ∈
I s
−⊗̂B is continuous.

In other words, a quasihomomorphism of even degree ρ =
( ρ+ 0

0 ρ−

)
is a pair of

homomorphisms (ρ+, ρ−) : A ⇉ E such that the difference ρ+(a)− ρ−(a) lies
in the ideal I ⊗̂B for any a ∈ A . A quasihomomorphism of odd degree is a
homomorphism ρ : A → M2(E ) such that the off-diagonal elements land in
I ⊗̂B.

The Cuntz-Quillen formalism for bivariant cyclic cohomology HCn(A ,B) re-
quires to work with quasi-free extensions of A and B. Hence let us suppose
that we choose such extensions of m-algebras

0→ G → F → A → 0 , 0→J → R → B → 0 ,

with F and R quasi-free. We always take F = TA as the universal free
extension of A , but we leave the possibility to take any quasi-free extension
R for B since the tensor algebra TB will not be an optimal choice in general.
The first step toward the bivariant Chern character is to lift a given quasiho-
momorphism ρ : A → E s ⊲ I s⊗̂B to a quasihomomorphism from F to R,
compatible with the filtrations by the ideals G ⊂ F , J ⊂ R. This requires
to fix some admissibility conditions on the intermediate algebra E :

Definition 3.2 Let 0 → J → R → B → 0 be a quasi-free extension of B,
and let I be p-summable with trace Tr : I p → C. We say that E ⊲ I ⊗̂B is
provided with an R-admissible extension if there are algebras M ⊲I ⊗̂R and
N ⊲I ⊗̂J and a commutative diagram of extensions

0 // N // M // E // 0

0 // I ⊗̂J //

OO

I ⊗̂R //

OO

I ⊗̂B //

OO

0

(29)

with the following properties:
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i) Any power N n is a direct summand in M (as a topological vector space);

ii) For any degree n ≥ max(1, p−1), the linear map (I ⊗̂R)nd(I ⊗̂R)→ Ω1R♮

induced by the trace I n+1 → C factors through the quotient

♮(I ⊗̂R)nd(I ⊗̂R) = (I ⊗̂R)nd(I ⊗̂R) mod [M ,Ω1M ] ,

and the chain map Tr : F 2n+1
I ⊗̂R

X(M ) → X(R) thus obtained is of order zero

with respect to the adic filtration induced by the ideals N ⊂M and J ⊂ R.

In the following we will say that E is R-admissible, keeping in mind that the
extension M is given. Condition i) is automatically satisfied for example if
M is a quasi-free algebra (this will not always be the case). The chain map
Tr of condition ii) is constructed as follows. For n ≥ 1 one has the inclusion
♮(I ⊗̂R)n+1dM ⊂ ♮(I ⊗̂R)nd(I ⊗̂R), so that the subcomplex of the I ⊗̂R-
adic filtration reads

F 2n+1
I ⊗̂R

X(M ) : (I ⊗̂R)n+1 ⇄ ♮(I ⊗̂R)nd(I ⊗̂R) .

Then, the trace I n+1 → C induces a partial trace (I ⊗̂R)n+1 → R. The
latter combined with ♮(I ⊗̂R)nd(I ⊗̂R) → Ω1R♮ yields a linear map in any
degree n ≥ max(1, p− 1)

Tr : F 2n+1
I ⊗̂R

X(M )→ X(R) , (30)

compatible with the inclusions F 2n+3
I ⊗̂R

X(M ) ⊂ F 2n+1
I ⊗̂R

X(M ). The trace over

I n+1 ensures that (30) is a chain map. It is not obvious, however, that it is au-
tomatically of degree zero with respect to the N -adic and J -adic filtrations,
i.e. that the intersection F 2n+1

I ⊗̂R
X(M )∩F kN X(M ) is mapped to F kJX(R) for

any k ∈ Z. This should be imposed as a condition.
Remark that the case p = 1, n = 0 is pathological, since there is no canoni-
cal way to map the space ♮((I ⊗̂R)dM + M +d(I ⊗̂R)) to Ω1R♮ using only
the trace over I . In this situation, it seems preferable to impose directly
the existence of a chain map Tr : F 1

I ⊗̂R
X(M ) → X(R) in the definition of

admissibility.

Example 3.3 When A is arbitrary and B = C, a p-summable quasihomo-
morphism represents a K-homology class of A in the sense of [4, 5]. Here we
take I = L p(H) as the Schatten ideal of p-summable operators on a sepa-
rable infinite-dimensional Hilbert space H . Recall that I is a two-sided ideal
in the algebra of all bounded operators L = L (H). I is a Banach algebra
for the norm ‖x‖p = (Tr(|x|p))1/p, L is provided with the operator norm, and
the products I ×L × I → I are jointly continuous. Since L and I are
Banach algebras, the semi-direct sum L ⋉I is automatically a Banach algebra
and we can write L ⊲ I . A p-summable K-homology class of even degree is
represented by a pair of continuous homomorphisms (ρ+, ρ−) : A ⇉ L such
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that the difference ρ+ − ρ− lands to I . We get in this way an even degree
quasihomomorph ism ρ : A → L s ⊲ I s. Here it is important to note that
by a slight modification of the intermediate algebra L , it is always possible to
consider I as a closed ideal [13]. Indeed if we define E as the Banach algebra

E = L ⋉ I

then one clearly has E ⊲ I and I is closed in E by construction. The
pair of homomorphisms (ρ+, ρ−) : A ⇉ L may be replaced with a new
pair (ρ′+, ρ

′
−) : A ⇉ E by setting ρ′+(a) = (ρ−(a), ρ+(a) − ρ−(a)) and

ρ′−(a) = (ρ−(a), 0) in L ⊕ I . The above K-homology class is then repre-
sented by the new quasihomomorphism ρ′ : A → E s ⊲I s.
In the odd case, a p-summable K-homology class is represented by a continu-
ous homomorphism ρ : A →

(
L I
I L

)
, which can be equivalently described as a

homomorphism ρ′ : A →M2(E ) with off-diagonal elements in I .
Concerning cyclic homology, the algebra C is quasi-free, hence the quasi-free
extension R = C and J = 0 computes the cyclic homology of C. Therefore
by choosing M = E and N = 0, the algebra E ⊲I is C-admissible (condition
ii) is trivial since Ω1C♮ = 0).

Example 3.4 More generally, if I is a p-summable Fréchet m-algebra con-
tained as a (not necessarily closed) two-sided ideal in a unital Fréchetm-algebra
L , with L ⊲ I , a p-summable quasihomomorphism from A to B could be
constructed from the generic intermediate algebra E = L ⊗̂B, provided that
the map I ⊗̂B → E is injective. If 0 → J → R → B → 0 is a quasi-free
extension of B, the choice M = L ⊗̂R and N = L ⊗̂J shows that E is
R-admissible provided that the maps I ⊗̂R → M and I ⊗̂J → N are in-
jective. In fact it is easy to get rid of these injectivity conditions by redefining
the algebra

E = (L ⋉ I )⊗̂B ,

which contains I ⊗̂B as a closed ideal. Then E becomes automatically R-
admissible by taking M = (L ⋉ I )⊗̂R and N = (L ⋉ I )⊗̂J (remark that
(L ⋉ I )n = L ⋉ I for any n because L is unital, hence N n is a direct
summand in M ). The chain map Tr : F 2n+1

I ⊗̂R
X(M ) → X(R) is obtained

by multiplying all the factors in L and I , and taking the trace on I n+1,
while the compatibility between the N -adic and J -adic filtrations is obvious.
Although interesting examples arise under this form (see section 7), the algebra
E cannot be decomposed into a tensor product with B in all situations.

Example 3.5 An important example where E cannot be taken in the previous
form is provided by the Bott element of the real line. Here A = C and
B = C∞(0, 1) is the algebra of smooth functions f : [0, 1] → C such that
f and all its derivatives vanish at the endpoints 0 and 1. Take I = C as
a 1-summable algebra, and E = C∞[0, 1] is the algebra of smooth functions
f : [0, 1] → C with the derivatives vanishing at the endpoints, while f itself
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takes arbitrary values at 0 and 1. B and E provided with their usual Fréchet
topology are m-algebras, and one has E ⊲B. The Bott element is represented
by the quasihomomorphism of odd degree

ρ : C→ E s ⊲I s⊗̂B ,

where I s = M2(C1) and E s ⊂ M2(C1)⊗̂E by construction. The homomor-
phism ρ : C → E s

+ is built from an arbitrary real-valued function ξ ∈ E such
that ξ(0) = 0, ξ(1) = π/2, and sends the unit e ∈ C to the matrix

ρ(e) = R−1

(
e 0
0 0

)
R , R =

(
cos ξ sin ξ
− sin ξ cos ξ

)
.

The algebra B is quasi-free hence we can choose R = B, J = 0 as quasi-
free extension. The cyclic homology of B is therefore computed by X(B).
Moreover, setting M = E and N = 0 shows that E is B-admissible. Indeed,
Ω1B♮ is contained in the space Ω1(0, 1) of ordinary (commutative) complex-
valued smooth one-forms over [0, 1] vanishing at the endpoints with all their
derivatives. The chain map Tr : F 2n+1

B X(E ) → X(B) is thus well-defined
for any n ≥ 1, and just amounts to project noncommutative forms over E to
ordinary (commutative) differential forms over [0, 1].

We shall now construct the bivariant Chern character of a given p-summable
quasihomomorphism ρ : A → E s⊲I s⊗̂B. We take the universal free extension
0 → JA → TA → A → 0 for A , and choose some quasi-free extension
0 → J → R → B → 0 for B with the property that the algebra E ⊲I ⊗̂B
is R-admissible. The bivariant Chern character should be represented by a
chain map between the complexes X(TA ) and X(R), compatible with the
adic filtrations induced by the ideals JA and J (section 2). Our task is thus
to lift the quasihomomorphism to the quasi-free algebras TA and R. First, the
admissibility condition provides a diagram of extensions (29). From M ⊲I ⊗̂R
define the Z2-graded algebra M s in complete analogy with E s: depending on
the degree of the quasihomomorphism, M s is a subalgebra of M2(C)⊗̂M (even
case) or M2(C1)⊗̂M (odd case), with commutator property [F,M s

+] ⊂ I s
−⊗̂R.

Also, from N ⊲I ⊗̂J define N s as the Z2-graded subalgebra of M2(C)⊗̂N
or M2(C1)⊗̂N with commutator [F,N s

+ ] ⊂ I s
−⊗̂J . The algebras E s, M s

and N s are gifted with a differential of odd degree induced by the graded
commutator [F, ] (its square vanishes because F 2 = 1). Then we get an
extension of Z2-graded differential algebras

0→ N s →M s → E s → 0 .

The restriction to the even-degree subalgebras yields an extension of trivially
graded algebras 0 → N s

+ →M s
+ → E s

+ → 0, split by a continuous linear map
σ : E s

+ →M s
+ (recall the splitting is our basic hypothesis about extensions of

m-algebras). The universal properties of the tensor algebra TA then allows
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to extend the homomorphism ρ : A → E s
+ to a continuous homomorphism

ρ∗ : TA →M s
+ by setting ρ∗(a1 ⊗ . . .⊗ an) = σρ(a1)⊗ . . .⊗ σρ(an):

0 // JA //

ρ∗

��

TA //

ρ∗

��

A //

ρ

��

0

0 // N s
+

// M s
+

// E s
+

//
σss

0

(31)

A priori ρ∗ depends on the choice of linear splitting σ, but in a way which
will not affect the cohomology class of the bivariant Chern character. This
construction may be depicted in terms of a p-summable quasihomomorphism
ρ∗ : TA → M s ⊲ I s⊗̂R, compatible with the adic filtration by the ideals
in the sense that JA is mapped to N s ⊲ I s⊗̂J . Hence, ρ∗ extends to a
quasihomomorphism of pro-algebras

ρ∗ : T̂A → M̂ s ⊲I s⊗̂R̂ , (32)

where T̂A , M̂ s and R̂ are the adic completions of TA , M s and R with
respect to the ideals JA , N s and J . Next, depending on the degree of
the quasihomomorphism, the even supertrace trs : M2(C) → C or the odd
supertrace trs : M2(C1)→ C yields a chain map X(M s)→ X(M ) by setting
αx 7→ trs(α)x and ♮ αxd(βy) 7→ ±trs(αβ)♮xdy for any x, y ∈ M and α, β ∈
M2(C) or M2(C1). The sign ± is the parity of the matrix β, which has to
move across the differential d. Hence composing with the chain map Tr :
F 2n+1

I ⊗̂R
X(M ) → X(R) guaranteed by the admissibility condition, we obtain

for any integer n ≥ max(1, p− 1) a supertrace chain map

τ : F 2n+1
I s⊗̂R

X(M s)
trs→ F 2n+1

I ⊗̂R
X(M )

Tr→ X(R) , (33)

of order zero with respect to the N s-adic filtration on X(M s) and the J -
adic filtration on X(R). The parity of τ corresponds to the parity of the

quasihomomorphism. This allows to construct a chain map χ̂n : Ω̂M s
+ → X(R)

from the (b + B)-complex of the algebra M s
+, in any degree n ≥ p having the

same parity as the supertrace τ . Observe that the linear map x ∈ M s
+ 7→

[F, x] ∈ I s
−⊗̂R is continuous by construction.

Proposition 3.6 Let ρ : A → E s ⊲I s⊗̂B be a p-summable quasihomomor-
phism of parity p mod 2, with R-admissible algebra E . Given any integer
n ≥ p of the same parity, consider two linear maps χ̂n0 : ΩnM s

+ → R and
χ̂n1 : Ωn+1M s

+ → Ω1R♮ defined by

χ̂n0 (x0dx1 . . .dxn) = (−)n
Γ(1 + n

2 )

(n+ 1)!

∑

λ∈Sn+1

ε(λ) τ(xλ(0)[F, xλ(1)] . . . [F, xλ(n)])

(34)
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χ̂n1 (x0dx1 . . .dxn+1) = (−)n
Γ(1 + n

2 )

(n+ 1)!

n+1∑

i=1

τ♮(x0[F, x1] . . .dxi . . . [F, xn+1])

where Sn+1 is the cyclic permutation group of n + 1 elements and ε is the

signature. Then χ̂n0 and χ̂n1 define together a chain map χ̂n : Ω̂M s
+ → X(R)

of parity n mod 2, i.e. fulfill the relations

χ̂n0B = 0 , ♮dχ̂n0 − (−)nχ̂n1B = 0 , bχ̂n1 − (−)nχ̂n0 b = 0 , χ̂n1 b = 0 . (35)

Moreover χ̂n is invariant under the Karoubi operator κ acting on ΩnM s
+ and

Ωn+1M s
+.

Proof: This follows from purely algebraic manipulations, using the following
general properties:
- The graded commutator [F, ] is a differential and τ([F, ]) = 0;
- dF = 0 so that [F, ] and d are anticommuting differentials;
- τ♮ is a supertrace.
The computation is lengthy but straightforward.

Thus we have attached to a p-summable quasihomomorphism ρ : A → E s ⊲
I s⊗̂B of parity pmod 2 a sequence of cocycles χ̂n (n ≥ p) of the same parity in

the Z2-graded complex Hom(Ω̂M s
+, X(R)). They are in fact all cohomologous,

and the proposition below gives an explicit transgression formula in terms of
the eta-cochain:

Proposition 3.7 Let ρ : A → E s ⊲I s⊗̂B be a p-summable quasihomomor-
phism of parity p mod 2, with R-admissible algebra E . Given any integer
n ≥ p + 1 of parity opposite to p, consider two linar maps η̂n0 : ΩnM s

+ → R
and η̂n1 : Ωn+1M s

+ → Ω1R♮ defined by

η̂n0 (x0dx1 . . .dxn) =
Γ(n+1

2 )

(n+ 1)!

1

2
τ
(
Fx0[F, x1] . . . [F, xn] +

n∑

i=1

(−)ni[F, xi] . . . [F, xn]Fx0[F, x1] . . . [F, xi−1]
)

η̂n1 (x0dx1 . . .dxn+1) = (36)

Γ(n+1
2 )

(n+ 2)!

n+1∑

i=1

1

2
τ♮(ix0F + (n+ 2− i)Fx0)[F, x1] . . .dxi . . . [F, xn+1] .

Then η̂n0 and η̂n1 define together a cochain η̂n ∈ Hom(Ω̂M s
+, X(R)) of parity

n mod 2, whose coboundary equals the difference of cocycles

χ̂n−1 − χ̂n+1 = (♮d⊕ b)η̂n − (−)nη̂n(b +B) .
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Expressed in terms of components this amounts to the identities

χ̂n−1
0 = −(−)nη̂n0B , bη̂n1 − (−)n(η̂n0 b+ η̂n+2

0 B) = 0 , (37)

χ̂n−1
1 = ♮dη̂n0 − (−)nη̂n1B , ♮dη̂n+2

0 − (−)n(η̂n1 b+ η̂n+2
1 B) = 0 .

Proof: Direct computation.

Remark 3.8 Using a trick of Connes [4], we may replace the chain map τ by
τ ′ = 1

2τ(F [F, ]). This allows to improve the summability condition by requiring
the quasihomomorphism to be only (p+ 1)-summable instead of p-summable,
while the condition on the degree remains n ≥ p for χ̂n and n ≥ p + 1 for
η̂n. It is traightforward to write down the new formulas for χ̂n and observe
that it involves exactly n+1 commutators [F, x]. These formulas were actually
obtained in [23] in a more general setting where we allow dF 6= 0.

Definition 3.9 The bivariant Chern character of the quasihomomorphism ρ :
A → E s ⊲ I s⊗̂B is represented in any degree n ≥ p by the composition of
chain maps

chn(ρ) : X(TA )
γ−→ Ω̂TA

ρ∗−→ Ω̂M s
+

bχn

−→ X(R) , (38)

where γ : X(TA )→ Ω̂TA is the Goodwillie equivalence constructed in section
2 for any quasi-free algebra and ρ∗ : TA → M s

+ is the classifying homomor-
phism. In the same way, define a transgressed cochain in Hom(X(TA ), X(R))
by means of the eta-cochain in any degree:

/chn(ρ) : X(TA )
γ−→ Ω̂TA

ρ∗−→ Ω̂M s
+

bηn

−→ X(R) . (39)

It fulfills the transgression property chn(ρ)− chn+2(ρ) = [∂, /ch
n+1

(ρ)] where ∂
is the X-complex boundary map.

Recall that γ(x) = (1 − φ)−1(x) and γ(♮xdy) = (1− φ)−1(xdy + b(xφ(y))) for
any x, y ∈ TA , where the map φ : ΩnTA → Ωn+2TA is uniquely defined from
its restriction to zero-forms. Its existence is guaranteed by the fact that TA
is a free algebra. Several choices are possible, but conventionally we always
take φ : TA → Ω2TA as the canonical map obtained by setting φ(a) = 0 on
the generators a ∈ A ⊂ TA , and then extended to all TA by the algebraic
property φ(xy) = φ(x)y + xφ(y) + dxdy.
Of course chn(ρ) and /ch

n
(ρ) are not very interesting a priori, because the X-

complex of the non-completed tensor algebra TA is contractible. However,
taking into account the adic filtrations induced by the ideals JA ⊂ TA and
J ⊂ R yields non-trivial bivariant objects. By virtue of Remark 3.8 we
suppose from now on that I is (p+ 1)-summable.
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Proposition 3.10 Let ρ : A → E s ⊲I s⊗̂B be a (p + 1)-summable quasiho-
momorphism of parity p mod 2 with R-admissible extension E , and let n ≥ p
be an integer of the same parity. The composites χ̂nρ∗γ and η̂n+1ρ∗γ are linear
maps X(TA )→ X(R) verifying the adic properties

χ̂nρ∗γ : F kJAX(TA )→ F k−nJ X(R) ,

η̂n+1ρ∗γ : F kJAX(TA )→ F k−n−2
J X(R) ,

for any k ∈ Z. Consequently the composite chn(ρ) = χ̂nρ∗γ defines a cocycle of

parity n mod 2 in the complex Homn(X̂(TA , JA ), X̂(R,J )) and the Chern
character is a bivariant cyclic cohomology class of degree n:

chn(ρ) ∈ HCn(A ,B) , ∀n ≥ p . (40)

Moreover, the transgression relation chn(ρ)− chn+2(ρ) = [∂, /ch
n+1

(ρ)] holds in

the complex Homn+2(X̂(TA , JA ), X̂(R,J )), which implies

chn+2(ρ) ≡ Schn(ρ) in HCn+2(A ,B) . (41)

In particular the cocycles chn(ρ) for different n define the same periodic cyclic
cohomology class ch(ρ) ∈ HPn(A ,B).

Proof: Let us denote by 0 → G → F → A → 0 the universal extension
0 → JA → TA → A → 0. Recall that M s and its ideal N s are Z2-
graded differential algebras on which the graded commutator [F, ] acts as a
differential of odd degree. Moreover the commutation relations [F,M s

+] ⊂
I s
−⊗̂R and [F,N s

+ ] ⊂ I s
−⊗̂J hold. Now, we have to investigate the adic

behaviour of the Goodwillie equivalence γ : X(F ) → Ω̂F with respect to the
filtration F kGX(F ). The first step in that direction was actually done in the
proof of Proposition 2.4, where the following filtration of the subspaces ΩnF
was introduced:

HkΩnF =
∑

k0+...+kn≥k
G k0dG k1 . . .dG kn ⊂ ΩnF .

Let us look at the image of the latter filtration under the maps χ̂nρ∗ and
η̂nρ∗ : Ω̂F → X(R) given by Eqs. (34, 36). We know that the homomorphism
ρ∗ : F → M s

+ respects the ideals G and N s
+ . Hence if x0, . . . , xn denote

n + 1 elements in G k0 , . . . ,G kn respectively, with k0 + . . . + kn ≥ k, then
xλ(0)[F, xλ(1)] . . . [F, xλ(n)] ∈ (N s)k for any permutation λ ∈ Sn+1. Hence
applying the supertrace τ , which is a chain map of order zero with respect to
the N s-adic and J -adic filtrations on X(M s) and X(R), yields (from now
on we omit to write the homomorphism ρ∗)

χ̂n0 (HkΩnF ) ⊂J k . (42)

In the same way, for n + 1 elements x0, . . . , xn+1 in G k0 , . . . ,G kn+1 , the one-
form ♮x0[F, x1] . . .dxi . . . [F, xn+1] involves k0 + . . . + kn+1 ≥ k powers of the
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ideal N s, hence lies in the subspace ♮((N s)kdM s + (N s)k−1dN s). Thus
applying the supertrace τ one gets

χ̂n1 (HkΩn+1F ) ⊂ ♮(J kdR + J k−1dJ ) . (43)

Proceeding in exactly the same fashion with the maps η̂n0 : ΩnF → R and
η̂n1 : Ωn+1F → Ω1R♮, it is clear that

η̂n0 (HkΩnF ) ⊂ J k . (44)

η̂n1 (HkΩn+1F ) ⊂ ♮(J kdR + J k−1dJ ) . (45)

However these estimates are not optimal concerning the component χ̂n1 . We
need a refinement of the H-filtration. For any k ∈ Z, n ≥ 0, let us define the
subspaces

GkΩnF =
∑

k0+...+kn≥k
G k0(dF )G k1(dF ) . . .G kn−1(dF )G kn +Hk+1ΩnF .

Then for fixed n, G∗ΩnF is a decreasing filtration of ΩnF , and by convention
GkΩnF = ΩnF for k ≤ 0. One has GkΩnF ⊂ HkΩnF . Now observe the
following. Since [F, ] and d are derivations, the map x0dx1 . . .dxi . . .dxn+1 7→
♮x0[F, x1] . . .dxi . . . [F, xn+1] has the property that

G k0(dF )G k1(dF ) . . . (dF )G ki . . . (dF )G kn+1 →
♮(N s)k0 [F,M s](N s)k1 [F,M s] . . . (dM s)(N s)ki . . . [F,M s](N s)kn+1

⊂ ♮(N s)kdM s ,

and because χ̂n1 (Hk+1Ωn+1F ) ⊂ ♮(J k+1dR + J kdJ ) ⊂ ♮J kdR, one gets
the crucial estimate

χ̂n1 (GkΩn+1F ) ⊂ ♮J kdR . (46)

Now we have to understand the way γ sends the X-complex filtration

F 2k
G X(F ) : G k+1 + [G k,F ] ⇄ ♮G kdF

F 2k+1
G X(F ) : G k+1 ⇄ ♮(G k+1dF + G kdG ) ,

to the filtration G∗ΩnF , in all degrees n. Recall that γ(x)|Ω2nF = φn(x)
and γ(♮xdy)|Ω2n+1F = φn(xdy + b(xφ(y))) for any x, y ∈ F , where the map
φ : ΩnF → Ωn+2F is obtained from its restriction to zero-forms as

φ(x0dx1 . . .dxn) =

n∑

i=0

(−)niφ(xi)dxi+1 . . .dxndx0 . . .dxi−1 .

Note the following important properties of φ. Firstly, it is invariant under the
Karoubi operator κ : ΩnF → ΩnF in the sense that φ ◦ κ = φ, and vanishes
on the image of the boudaries d,B : ΩnF → Ωn+1F . Secondly, the relation
φb − bφ = B holds on ΩnF whenever n ≥ 1 (see [22] §4). Since we have
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to apply successive powers of φ on the filtration GkΩnF , the computation
will be greatly simplified by exploiting κ-invariance. Define the linear map
φ̃ : ΩnF → Ωn+2F by

φ̃(x0dx1 . . .dxn) =

n∑

i=0

(−)idx0 . . .dxi−1φ(xi)dxi+1 . . .dxn .

Then φ̃ coincides with φ modulo the image of 1− κ. In particular the relation
φn = φ ◦ φ̃n−1 holds. The advantage of the map φ̃ stems from the fact that
it does not involve cyclic permutations of the elements xi, and verifies the
following optimal compatibility with the G-filtration

φ̃(GkΩnF ) ⊂ Gk−1Ωn+2F ∀k, n ≥ 0 ,

whereas the map φ is only compatible with the (coarser) H-filtration:

φ(HkΩnF ) ⊂ Hk−1Ωn+2F ∀k, n ≥ 0 .

We shall now evaluate the image of the filtration F kGX(F ) under the map

γ : X(F )→ Ω̂F . Firstly, one has γ(G k+1)∩Ω2nF = φn(G k+1). But G k+1 ⊂
Gk+1Ω0F and φn = φ ◦ φ̃n−1, hence

γ(G k+1) ∩ Ω2nF ⊂ φ(Gk−n+2Ω2n−2F ) . (47)

Secondly, the image of ♮G kdF in Ω2n+1F is given by φn(G kdF +b(G kφ(F ))).
One has b(G kφ(F )) ⊂ [G kdF ,F ] ⊂ G kdF , hence we only need to compute
φn(G kdF ) ⊂ φn(GkΩ1F ), and

γ(♮G kdF ) ∩Ω2n+1F ⊂ φ(Gk−n+1Ω2n−1F ) . (48)

Thirdly, [G k,F ] = b♮G kdF so that γ([G k,F ]) = (b+B)γ(♮G kdF ) because γ
is a chain map. Therefore, the image of [G k,F ] restricted to Ω2nF is contained
in Bφn−1(G kdF ) + bφn(G kdF ). We may estimate coarsly the first term as
Bφn−1(G kdF ) ⊂ Bφn−1(HkΩ1F ) ⊂ Hk−n+1Ω2nF , and the second term as

bφφ̃n−1(G kdF ) ⊂ bφ(Gk−n+1Ω2n−1F ). Hence

γ([G k,F ]) ∩ Ω2nF ⊂ Hk−n+1Ω2nF + bφ(Gk−n+1Ω2n−1F ) . (49)

Fourthly, the image of ♮G kdG in Ω2n+1F is given by φn(G kdG + b(G kφ(G ))).
We estimate coarsly φn(G kdG ) ⊂ φn(Hk+1Ω1F ) ⊂ Hk−n+1Ω2n+1F . Then,
one has G kφ(G ) ⊂ G kdFdF ⊂ GkΩ2F , and using repeatedly the relations
φb− bφ = B, φB = 0 gives φnb(G kφ(G )) ⊂ bφn(GkΩ2F ) +Bφn−1(GkΩ2F ) ⊂
bφ(Gk−n+1Ω2nF ) +BHk−n+1Ω2nF . Thus

γ(♮G kdG ) ∩Ω2n+1F ⊂ Hk−n+1Ω2n+1F + bφ(Gk−n+1Ω2nF ) . (50)

Now everything is set to evaluate the adic behaviour of the composites χ̂nγ
and η̂nγ. We shall deal only with even degrees, the odd case is similar.
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Hence let us start with the map χ̂2n
0 γ : F → R. For any k ∈ Z, Eq. (47)

gives χ̂2n
0 γ(G k+1) ⊂ χ̂2n

0 ◦ φ(Gk−n+2Ω2n−2F ). But χ̂2n
0 is κ-invariant, hence

χ̂2n
0 ◦ φ = χ̂2n

0 ◦ φ̃. Therefore, χ̂2n
0 γ(G k+1) ⊂ χ̂2n

0 (Gk−n+1Ω2nF ) ⊂ J k−n+1

using Gk−n+1Ω ⊂ Hk−n+1Ω and (42). Now we look at its companion χ̂2n
1 γ :

Ω1F♮ → Ω1R♮. From (48) one gets χ̂2n
1 (♮G kdF ) ⊂ χ̂2n

1 ◦ φ(Gk−n+1Ω2n−1F ).

But χ̂2n
1 is also κ-invariant and χ̂2n

1 ◦ φ = χ̂2n
1 ◦ φ̃, thus χ̂2n

1 γ(♮G kdF ) ⊂
χ̂2n

1 (Gk−nΩ2n+1F ) ⊂ ♮J k−ndR by (46). This allows to estimate the image
of [G k,F ] = b♮G kdF under the chain map χ̂2nγ. Indeed χ̂2n

0 γ(b♮G kdF ) =
bχ̂2n

1 γ(♮G kdF ) ⊂ b♮J k−ndR, so that χ̂2n
0 γ([G k,F ]) ⊂ [J k−n,R]. Collect-

ing these results shows the effect of the map χ̂2nγ on the adic filtration in even
degree:

{
χ̂2n

0 γ : G k+1 + [G k,F ] −→ J k−n+1 + [J k−n,R]
χ̂2n

1 γ : ♮G kdF −→ ♮J k−ndR

hence χ̂2nγ : F 2k
G X(F ) → F 2k−2n

J X(R). To understand the effect on the fil-

tration in odd degree, one has to evaluate χ̂2n
1 γ on ♮G kdG . From (50), one gets

χ̂2n
1 γ(♮G kdG ) ⊂ χ̂2n

1 (Hk−n+1Ω2n+1F + bφ(Gk−n+1Ω2nF )). But (35) shows
χ̂2n

1 ◦ b = 0, and (43) implies χ̂2n
1 γ(♮G kdG ) ⊂ ♮(J k−n+1dR + J k−ndJ ).

One thus gets the adic behaviour of the chain map χ̂2nγ on the filtration of
odd degree:

{
χ̂2n

0 γ : G k+1 −→ J k−n+1

χ̂2n
1 γ : ♮(G k+1dF + G kdG ) −→ ♮(J k−n+1dR + J k−ndJ )

hence χ̂2nγ : F 2k+1
G X(F ) → F 2k−2n+1

J X(R) and χ̂2nγ is a map of order 2n.

Using similar methods, one shows that χ̂2n+1γ is of order 2n+ 1.
Now we investigate the eta-cochain. Consider η̂2n

0 γ : F → R.
(47) gives η̂2n

0 γ(G k+1) ⊂ η̂2n
0 φ(Gk−n+2Ω2n−2F ). However η̂2n is

not κ-invariant, so that we cannot replace φ by φ̃. We are forced
to consider φ(Gk−n+2Ω2n−2F ) ⊂ Hk−n+1Ω2nF and consequently
η̂2n
0 γ(G k+1) ⊂ J k−n+1 by (44). Similarly, (49) implies η̂2n

0 γ([G k,F ]) ⊂
η̂2n
0 (Hk−n+1Ω2nF ) + η̂2n

0 bφ(Gk−n+1Ω2n−1F ) ⊂ η̂2n
0 (Hk−nΩ2nF ) hence

η̂2n
0 γ([G k,F ]) ⊂ J k−n. Its companion η̂2n

1 γ : Ω1F♮ → Ω1R♮ evaluated on
♮G kdF uses equation (48) again with φ(Gk−n+1Ω2n−1F ) ⊂ Hk−nΩ2n+1F ,
so that η̂2n

1 γ(♮G kdF ) ⊂ η̂2n
1 (Hk−nΩ2n+1F ) ⊂ ♮(J k−ndR + J k−n−1dJ )

by (45). This shows the effect of η̂2nγ on the filtration of even degree

{
η̂2n
0 γ : G k+1 + [G k,F ] −→ J k−n

η̂2n
1 γ : ♮G kdF −→ ♮(J k−ndR + J k−n−1dJ )

hence η̂2nγ : F 2k
G X(F )→ F 2k−2n−1

J X(R). For the odd filtration, let us com-

pute from (50) η̂2n
1 γ(♮G kdG ) ⊂ η̂2n

1 (Hk−n+1Ω2n+1F ) + η̂2n
1 bφ(Gk−n+1Ω2nF ).

But the identities (37) show that η̂2n
1 b = χ̂2n+1

1 , hence using κ-invariance one

gets η̂2n
1 bφ(Gk−n+1Ω2nF ) ⊂ χ̂2n+1

1 φ̃(Gk−n+1Ω2nF ) ⊂ χ̂2n+1
1 (Gk−nΩ2n+2F ).
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Therefore, (45) and (46) imply η̂2n
1 γ(♮G kdG ) ⊂ ♮J k−ndR. These results give

the adic behaviour of η̂2nγ with respect to the odd filtration

{
η̂2n
0 γ : G k+1 −→ J k−n+1

η̂2n
1 γ : ♮(G k+1dF + G kdG ) −→ ♮J k−ndR

hence η̂2nγ : F 2k+1
G X(F )→ F 2k−2n

J X(R) and η̂2nγ is a map of order 2n+ 1.

Similarly, one shows that η̂2n+1γ is of order 2n+ 2.

Note that the chain maps γ and χ̂n extend to the adic completions of all the al-
gebras involved, so that from now on we will consider the bivariant Chern char-
acter chn(ρ) ∈ Homn(X̂(TA , JA ), X̂(R,J )) as a chain map of pro-complexes

chn(ρ) : X(T̂A )
γ−→ Ω̂T̂A

ρ∗−→ Ω̂M̂ s
+

bχn

−→ X(R̂) . (51)

We would like to introduce some equivalence relations among quasihomomor-
phisms, and discuss the corresponding invariance properties of the Chern char-
acter. The first equivalence relation is (smooth) homotopy. It involves the
algebra C∞[0, 1] of smooth functions f : [0, 1] → C, such that all the deriva-
tives of order ≥ 1 vanish at the enpoints 0 and 1, while the values of f itself
remain arbitrary. We have already seen that C∞[0, 1] endowed with its usual
Fréchet topology is an m-algebra. It is moreover nuclear [14], so that its pro-
jective tensor product A ⊗̂C∞[0, 1] with any m-algebra A is isomorphic to
the algebra of smooth A -valued functions over [0, 1], with all derivatives of
order ≥ 1 vanishing at the endpoints. We will usually denote by A [0, 1] this
m-algebra. The second equivalence relation of interest among quasihomomor-
phisms is conjugation by an invertible element of the unitalized algebra (E s

+)+.

Definition 3.11 Let ρ0 : A → E s ⊲ I s⊗̂B and ρ1 : A → E s ⊲ I s⊗̂B be
two quasihomomorphisms with same parity. They are called

i) homotopic if there exists a quasihomomorphism ρ : A → E [0, 1]s ⊲
I s⊗̂B[0, 1] such that evaluation at the endpoints gives ρ0 and ρ1;

ii) conjugate if there exists an invertible element in the unitalized algebra
U ∈ (E s

+)+ with U − 1 ∈ E s
+, such that ρ1 = U−1ρ0U as a homomorphism

A → E s
+.

Remark that the commutators [F,U ] and [F,U−1] always lie in the ideal
I s⊗̂B ⊂ E s. When the algebra I is M2-stable (i.e. M2(I ) ∼= I ), two
conjugate quasihomomorphisms are also homotopic, but the converse is not
true. Hence conjugation is strictly stronger than homotopy as an equivalence
relation. The former is an analogue of “compact perturbation” of quasihomo-
morphisms in Kasparov’s bivariant K-theory for C∗-algebras, see [2].
The proposition below describes the compatibility between these equivalence
relations and the bivariant Chern character.
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Proposition 3.12 Let ρ0 : A → E s ⊲ I s⊗̂B and ρ1 : A → E s ⊲ I s⊗̂B
be two (p + 1)-summable quasihomomorphisms of parity p mod 2, with E
admissible with respect to a quasi-free extension R of B. Let n ≥ p be any
integer of the same parity.

i) If ρ0 and ρ1 are homotopic, then Schn(ρ0) ≡ Schn(ρ1) in HCn+2(A ,B).
In particular chn(ρ0) ≡ chn(ρ1) whenever n ≥ p+ 2.

ii) If ρ0 and ρ1 are conjugate, then chn(ρ0) ≡ chn(ρ1) in HCn(A ,B) for all
n ≥ p.

Proof: First observe that if ρ : A → E s ⊲I s⊗̂B is a quasihomomorphism with
R-admissible algebra E , the lifting homomorphism ρ∗ : TA → M s

+ factors
through the tensor algebra TE s+ by virtue of the commutative diagram

0 // JA //

ϕ

��

TA //

ϕ

��

A //

ρ

��

0

0 // JE s
+

//

��

TE s+ //

��

E s
+

// 0

0 // N s
+

// M s
+

// E s
+

//
σss

0

where the homomorphism ϕ : TA → TE s+ is ϕ(a1 ⊗ . . .⊗ an) = ρ(a1)⊗ . . .⊗
ρ(an), and the arrow TE s+ →M s

+ maps a tensor product e1⊗ . . .⊗en ∈ TE s+ to
the product σ(e1) . . . σ(en). By the naturality of the Goodwillie equivalences

γA : X(TA )→ Ω̂TA and γE s
+

: X(TE s+)→ Ω̂TE s+, one immediately sees that
the bivariant Chern character coincides with the composition of chain maps

chn(ρ) : X(TA )
X(ϕ)−→ X(TE s+)

γEs
+−→ Ω̂TE s+

bχn

−→ X(R) .

Hence, all the information about the homomorphism ρ : A → E s
+ is con-

centrated in the chain map X(ϕ) : X(TA ) → X(TE s+). This will simplify
the comparison of Chern characters associated to homotopic or conjugate
quasihomomorphisms.

i) Homotopy: the cocycles chn(ρ0) and chn(ρ1) differ only by the chain maps
X(ϕi) : X(TA ) → X(TE s+), i = 0, 1. We view ρ : A → E s

+[0, 1] as a smooth
family of homomorphisms ρt : A → E s

+ parametrized by t ∈ [0, 1], giving a
homotopy between the two endpoints ρ0 and ρ1. Cuntz and Quillen prove in
[12] a Cartan homotopy formula which provides a transgression between the
chain maps X(ϕi). At any point t ∈ [0, 1], denote by ϕ̇ = d

dtϕ : TA → TE s+
the derivative of the homomorphism ϕt with respect to t, and define a linear
map ι : ΩmTA → Ωm−1TE s+ by

ι(x0dx1 . . .dxm) = (ϕx0)(ϕ̇x1)d(ϕx2) . . .d(ϕxm) .
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The tensor algebra TA is quasi-free, hence consider any φ : TA → Ω2TA
verifying φ(xy) = φ(x)y + xφ(y) + dxdy, and let h : X(TA ) → X(TE s+) be
the linear map of odd degree

h(x) = ♮ιφ(x) , h(♮xdy) = ι(xdy + b(xφ(y)))

(the latter is well-defined on ♮xdy). Then Cuntz and Quillen show the following
adic properties of h for any k ∈ Z,

h(F kJAX(TA )) ⊂ F k−1
JE s

+
X(TE s+) if ϕ̇(JA ) ⊂ JE s

+ ,

h(F kJAX(TA )) ⊂ F kJE s
+
X(TE s+) if ϕ̇(TA ) ⊂ JE s

+ ,

and moreover the transgression formula d
dtX(ϕ) = [∂, h] holds. Hence if we

define by integration over [0, 1] the odd chain H =
∫ 1

0 dt h, one has

X(ϕ1)−X(ϕ0) = [∂,H ]

in the complex Hom1(X̂(TA , JA ), X̂(TE s+, JE s
+)) in case ϕ̇(JA ) ⊂ JE s

+, or

in the complex Hom0(X̂(TA , JA ), X̂(TE s+, JE s
+)) in case ϕ̇(TA ) ⊂ JE s

+. For
a general homotopy we are in the first case ϕ̇(JA ) ⊂ JE s

+. After composition

by the chain map χ̂nγE s
+
∈ Homn(X̂(TE s+, JE s

+), X̂(R,J )), this shows the
transgression relation

chn(ρ1)− chn(ρ0) = (−)n[∂, χ̂nγE s
+
H ] ∈ Homn+1(X̂(TA , JA ), X̂(R,J )) ,

whence Schn(ρ1) ≡ Schn(ρ0) in HCn+2(A ,B). The sign (−)n comes from
the parity of the chain map χ̂nγE s

+
.

ii) Conjugation: now ϕ0, ϕ1 : TA → TE s+ are the homomorphism lifts of ρ0

and ρ1 = U−1ρ0U . Introduce the pro-algebra T̂E s
+ = lim←−k TE s+/(JE s

+)k ∼=∏
k≥0 Ω2kE s

+, and consider the invertible U ∈ (E s
+)+ as an element Û of the

unitalization (T̂E s
+)+, via the linear inclusion of zero-forms E s

+ →֒ T̂E s
+. By

proceeding as in [12], it turns out that Û is invertible, with inverse given by
the series

Û−1 =
∑

k≥0

U−1(dU dU−1)k ∈ (T̂E s
+)+ .

Of course the image of Û−1 under the multiplication map (T̂E s
+)+ → (E s

+)+

is U−1. We will show that ϕ1, viewed as a homomorphism TA → T̂E s
+, is

homotopic to the homomorphism Û−1ϕ0Û . For any t ∈ [0, 1] define a linear

map σt : A → T̂E s
+ by

σt(a) = (1 − t)ρ1(a) + t Û−1ρ0(a)Û , ∀a ∈ A ,

where ρ0(a) and ρ1(a) are considered as elements of the subspace of zero-

forms E s
+ →֒ T̂E s

+. Thus σt is a linear lifting of the constant homomorphism
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ρ1 : A → E s
+. Then use the universal property of the tensor algebra TA to

build a smooth family of homomorphisms ϕ(t) : TA → T̂E s
+ by means of the

commutative diagram with exact rows

0 // JA //

ϕ(t)

��

TA //

ϕ(t)

��

A //

ρ1

��

σt

}}

0

0 // ĴE s
+

// T̂E s
+

// E s
+

// 0

By construction one has ϕ(0) = ϕ1, ϕ(1) = Û−1ϕ0Û and the derivative ϕ̇

sends TA to the ideal ĴE s
+. Hence from the Cartan homotopy formula of part

i) we deduce that the chain maps X(ϕ1) and X(Û−1ϕ0Û) are cohomologous in

the complex Hom0(X̂(TA , JA ), X̂(TE s+, JE s
+)). Then we have to show that

X(Û−1ϕ0Û) and X(ϕ0) are cohomologous. Consider the following linear map

of odd degree h : X(TA )→ X(T̂E s
+) ∼= X̂(TE s

+, JE s
+) defined by

h(x) = ♮(Û−1ϕ0(x)dÛ) , h(♮xdy) = 0 .

It is easy to see that h defines a cochain of order zero, i.e. lies in the complex
Hom0(X̂(TA , JA ), X̂(TE s+, JE s

+)). Moreover, one has the transgression rela-

tion X(Û−1ϕ0Û)−X(ϕ0) = [∂, h]. Indeed (we replace ϕ0(x) by x for notational
simplicity)

X(Û−1ϕ0Û)(x) −X(ϕ0)(x) = Û−1xÛ − x = [Û−1x, Û ]

= b♮(Û−1xdÛ ) = bh(x) ,

X(Û−1ϕ0Û)(♮xdy) −X(ϕ0)(♮xdy) = ♮Û−1xÛd(Û−1yÛ)− ♮xdy
= ♮(Û−1xÛdÛ−1yÛ + Û−1xdyÛ + Û−1xydÛ − xdy)

= ♮(−yxdÛ Û−1 + xydÛÛ−1) = ♮Û−1[x, y]dÛ

= h(b♮xdy) ,

where in the second computation we use the identity dÛ−1 = −Û−1dÛ Û−1

deduced from d1 = 0. This shows the equality of bivariant cyclic cohomology
classes

X(ϕ1) ≡ X(ϕ0) ∈ HC0(A ,E s
+) ,

so that after composition with χ̂nγE s
+
∈ HCn(E s

+,B), the equality

chn(ρ1) ≡ chn(ρ0) holds in HCn(A ,B).

Part ii) of the above proof also shows the independence of the cohomology
class chn(ρ) ∈ HCn(A ,B) with respect to the choice of linear splitting
σ : E s

+ → M s
+ used to lift the homomorphism ρ, two such splittings being al-

ways homotopic. Then, from section 2 we know that any class in HCn(A ,B)
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induces linear maps of degree −n between the cyclic homologies of A and B,
compatible with the SBI exact sequence. Hence, if the quasihomomorphism
is (p+ 1)-summable and with parity p mod 2, the lowest degree representative
of the Chern character chp(ρ) ∈ HCp(A ,B) carries the maximal information.
We collect these results in a theorem:

Theorem 3.13 Let ρ : A → E s
+ ⊲ I s

+⊗̂B be a (p + 1)-summable quasihomo-
morphism of parity p mod 2, with E admissible with respect to a quasi-free
extension of B. The bivariant Chern character chp(ρ) ∈ HCp(A ,B) induces
a graded-commutative diagram

HPn+1(A )
S //

chp(ρ)

��

HCn−1(A )
B //

chp(ρ)

��

HNn(A )
I //

chp(ρ)

��

HPn(A )

chp(ρ)

��
HPn−p+1(B)

S // HCn−p−1(B)
B // HNn−p(B)

I // HPn−p(B)

invariant under conjugation of quasihomomorphisms. Moreover the arrow in
periodic cyclic homology HPn(A )→ HPn−p(B) is invariant under homotopy
of quasihomomorphisms.

Proof: The fact that Schp(ρ) ∈ HCp+2(A ,B) is homotopy invariant shows its
image in the periodic theory HP p(A ,B) is homotopy invariant.

Example 3.14 When A is arbitrary and B = C, we saw in Example 3.3
that a (p + 1)-summable quasihomomorphism ρ : A → L s ⊲ I s, represents
a K-homology class of A . By hypothesis, the degree of the quasihomomor-
phism is p mod 2. The Chern character chp(ρ) ∈ HCp(A ,C) ∼= HCp(A )
is a cyclic cohomology class of degree p over A , represented by a chain map
X̂(TA , JA ) → C vanishing on the subcomplex F pX̂(TA , JA ). Using the

pro-vector space isomorphism X̂(TA , JA ) ∼= Ω̂A , one finds that chp(ρ) is
non-zero only on the subspace of p-forms ΩpA , explicitly

chp(ρ)(a0da1 . . . dap) =
cp
2

Trs(F [F, a0] . . . [F, ap]) ,

where Trs : (I s)p+1 → C is the supertrace of the (p+ 1)-summable algebra I
and cp is a constant depending on the degree. One has cp = (−)n(n!)2/p! when

p = 2n is even, and cp =
√

2πi (−)n/2p when p = 2n+ 1 is odd. This coincides
with the Chern-Connes character [4, 5], up to a scaling factor accounting for the

homotopy equivalence between the X-complex X̂(TA , JA ) and the (b + B)-

complex Ω̂A .

Example 3.15 When A = C and B = C∞(0, 1), the Bott element (Example
3.5) represented by the odd 1-summable quasihomomorphism ρ : C → E s ⊲
I s⊗̂B with B-admissible extension E = C∞[0, 1], has a Chern character in
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HC1(C,B) ∼= HP1(B). The periodic cyclic homology of B is isomorphic to
the de Rham cohomology of the open interval (0, 1), hence HP0(B) = 0 and
HP1(B) = C. Consequently, the Chern character ch1(ρ) may be represented
by a smooth one-form over [0, 1] vanishing at the endpoints. It involves a real-
valued function ξ ∈ E , with ξ(0) = 0 and ξ(1) = π/2, used in the construction
of the homomorphism ρ : C→ E s

+. One explicitly finds

ch(ρ) =
√

2πid(sin2 ξ) ,

so that its integral over the interval [0, 1] is normalized to
√

2πi, and of course
does no depend on the chosen function ξ. This is due to the fact that quasiho-
momorphisms associated to different choices of ξ are homotopic.

4 Topological K-theory

We review here the topological K-theory of Fréchet m-algebras following
Phillips [27], and construct various Chern character maps with value in cyclic
homology. Topological K-theory for Fréchet m-algebras is defined in analogy
with Banach algebras and fulfills the same properties of homotopy invariance,
Bott periodicity and excision [27]. For our purposes, only homotopy invariance
and Bott periodicity are needed. A basic example of Fréchet m-algebra is pro-
vided by the algebra K of “smooth compact operators”. K is the space of
infinite matrices (Aij)i,j∈N with entries in C and rapid decay, endowed with
the family of submultiplicative norms

‖A‖n = sup
(i,j)∈N2

(1 + i+ j)nAij <∞ ∀n ∈ N .

The multiplication of matrices makes K a Fréchet m-algebra. Moreover K is
nuclear as a locally convex vector space [14]. If A is any Fréchet m-algebra,
the completed tensor product K ⊗̂A is the smooth stabilization of A . Other
important examples are the algebras C∞[0, 1], resp. C∞(0, 1), of smooth C-
valued functions over the interval, with all derivatives of order ≥ 1, resp. ≥
0, vanishing at the endpoints. As already mentioned in section 3, these are
again nuclear Fréchet m-algebras and the completed tensor products A [0, 1] =
A ⊗̂C∞[0, 1] and A (0, 1) = A ⊗̂C∞(0, 1) are isomorphic to the algebras of
smooth A -valued functions over the interval, with the appropriate vanishing
boundary conditions. In particular SA := A (0, 1) is the smooth suspension
of A . We say that two idempotents e0, e1 of an algebra A are smoothly
homotopic if there exists an id empotent e ∈ A [0, 1] whose evaluation at the
endpoints gives e0 and e1. Similarly for invertible elements.
The definition of topological K-theory involves idempotents and invertibles of
the unitalized algebra (K ⊗̂A )+. Choosing an isomorphism M2(K ) ∼= K
makes (K ⊗̂A )+ a semigroup for the direct sum a⊕ b =

(
a 0
0 b

)
. We denote by

p0 the idempotent
(

1 0
0 0

)
of the matrix algebra M2(K ⊗̂A )+.
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Definition 4.1 (Phillips [27]) Let A be a Fréchet m-algebra. The topolog-
ical K-theory of A in degree zero and one is defined by

Ktop
0 (A ) = {set of smooth homotopy classes of idempotents e ∈M2(K ⊗̂A )+

such that e− p0 ∈M2(K ⊗̂A ) }
Ktop

1 (A ) = {set of smooth homotopy classes of invertibles g ∈ (K ⊗̂A )+

such that g − 1 ∈ K ⊗̂A }
Ktop

0 (A ) and Ktop
1 (A ) are semigroups for the direct sum of idempotents and

invertibles; in the case of idempotents, the direct sum e ⊕ e′ ∈ M4(K ⊗̂A )+

has to be conjugated by the invertible matrix

c =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ∈M4(K ⊗̂A )+ , c−1 = c , (52)

in order to preserve the condition c(e ⊕ e′)c − p̃0 ∈ M4(K ⊗̂A ), with p̃0 the
diagonal matrix diag(1, 1, 0, 0). The proof that Ktop

0 (A ) and Ktop
1 (A ) are

actually abelian groups will be recalled in Lemma 5.2. The unit of Ktop
0 (A ) is

the class of the idempotent p0 ∈ M2(K ⊗̂A )+, whereas the unit of Ktop
1 (A )

is represented by 1 ∈ (K ⊗̂A )+.
The fundamental property of topological K-theory is Bott periodicity [27]. Let
SA = A (0, 1) be the smooth suspension of A . Define two additive maps

α : Ktop
1 (A )→ Ktop

0 (SA ) , β : Ktop
0 (A )→ Ktop

1 (SA ) (53)

as follows. First choose a real-valued function ξ ∈ C∞[0, 1] such that ξ(0) = 0
and ξ(1) = π/2 (we recall that all the derivatives of ξ vanish at the endpoints).
Let g ∈ (K ⊗̂A )+ represent an element of Ktop

1 (A ). Then the idempotent

α(g) = G−1p0G , α(g) − p0 ∈M2(K ⊗̂SA )

defines an element of Ktop
0 (SA ), where G : [0, 1]→M2(K ⊗̂A )+ is the matrix

function over [0, 1]

G = R−1

(
1 0
0 g

)
R with R =

(
cos ξ sin ξ
− sin ξ cos ξ

)
.

Now z = exp(4iξ) is a complex-valued invertible function over [0, 1] with wind-
ing number 1. The functions z − 1 and z−1 − 1 lie in C∞(0, 1). Then for any
idempotent e ∈ M2(K ⊗̂A )+ representing a class in Ktop

0 (A ), we define the
invertible element

β(e) = (1 + (z − 1)e)(1 + (z − 1)p0)−1 .

One has (1 + (z − 1)p0)−1 = (1 + (z−1 − 1)p0), and the idempotent relations
e2 = e, p2

0 = p0 imply β(e) = 1 + (z − 1)e(e− p0) + (z−1 − 1)(p0 − e)p0, which
shows that β(e) − 1 is an element of the algebra M2(K ⊗̂SA ) ∼= K ⊗̂SA ,
hence β(e) defines a class in Ktop

1 (SA ).

Documenta Mathematica 13 (2008) 275–363



Secondary Invariants for Frechet Algebras. . . 311

Proposition 4.2 (Bott periodicity [27]) The two maps defined above α :
Ktop

1 (A ) → Ktop
0 (SA ) and β : Ktop

0 (A ) → Ktop
1 (SA ) are isomophisms of

abelian groups.

Hence Bott periodicity implies Ktop
i (S2A ) = Ktop

i (A ) for i = 0, 1, so that we
may define topological K-theory groups in any degree n ∈ Z:

Ktop
n (A ) =

{
Ktop

0 (A ) n even

Ktop
1 (A ) n odd .

(54)

Following Cuntz and Quillen [12], we construct Chern characters with values
in periodic cyclic homology Ktop

n (A ) → HPn(A ). Recall (section 2) that
periodic cyclic homology is computed from any quasi-free extension 0→J →
R → A → 0 by the pro-complex

X̂(R,J ) = X(R̂) : R̂ ⇄ Ω1R̂♮ ,

where the pro-algebra R̂ = lim←−n R/J n is the J -adic completion of the quasi-
free algebra R. In particular, the universal free extension 0 → JA → TA →
A → 0 is quasi-free and the universal property of the tensor algebra leads to
a classifying homomorphism TA → R compatible with the ideals JA and J
by means of the commutative diagram

0 // JA //

��

TA //

��

A // 0

0 // J // R // A //
σ

uu
0

for any choice of continuous linear section σ : A → R. The homomorphism
TA → R thus extends to a homomorphism of pro-algebras T̂A → R̂ and the
induced morphism of complexes X(T̂A ) → X(R̂) is a homotopy equivalence.
The Chern character on topological K-theory requires to lift idempotents and
invertible elements from the algebra K ⊗̂A to the pro-algebra

K ⊗̂R̂ = lim←−
n

K ⊗̂(R/J n) .

If e ∈ M2(K ⊗̂A )+ is an idempotent such that e − p0 ∈ M2(K ⊗̂A ), there

always exists an idempotent lift ê ∈ M2(K ⊗̂R̂)+ with ê − p0 ∈ M2(K ⊗̂R̂),
and two such liftings are always conjugate [12]. A concrete way to construct an
idempotent lift is to work first with the tensor algebra and then push forward by
the homomorphism K ⊗̂T̂A → K ⊗̂R̂. Using the isomorphism of pro-vector
spaces T̂A ∼= Ω̂+A , the following differential form of even degree defines an
idempotent [12]

ê = e+
∑

k≥1

(2k)!

(k!)2
(e− 1

2
)(dede)k ∈M2(K ⊗̂T̂A )+ , (55)
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where concatenation products over M2(K ) are taken. We will refer to (55) as
the canonical lift of e, but it should be stressed that other choices are possible.
Denoting also by ê its image in M2(K ⊗̂R̂)+, the Chern character of e is
represented by the cycle of even degree

ch0(ê) = Tr(ê− p0) ∈ R̂ , (56)

where the partial trace Tr : M2(K ⊗̂R̂) → R̂ comes from the usual trace of
matrices with rapid decay. We will show below that the cyclic homology class of
ch0(ê) is invariant under smooth homotopies of ê. Moreover, the invariance of
the trace under similarity implies that ch0 is additive. Next, if g ∈ (K ⊗̂A )+

is an invertible element such that g − 1 ∈ K ⊗̂A , we have again to choose
an invertible lift ĝ ∈ (K ⊗̂R̂)+ with ĝ − 1 ∈ K ⊗̂R̂. It turns out that any
lifting of g is invertible, and two such liftings are always homotopic [12]. A
concrete way to construct an invertible lift is to use the linear inclusion of
zero-forms K ⊗̂A →֒ K ⊗̂T̂A ∼= K ⊗̂Ω̂+A and consider g as an element
ĝ = g ∈ (K ⊗̂T̂A )+. A simple computation shows that it is invertible, with
inverse

ĝ−1 =
∑

k≥0

g−1(dg dg−1)k ∈ (K ⊗̂T̂A )+ . (57)

Here again we shall refer to the above ĝ as the canonical lift of g, but other
choices are possible. Then denoting also by ĝ its image in (K ⊗̂R̂)+, the Chern
character of g is represented by the cycle of odd degree

ch1(ĝ) =
1√
2πi

Tr♮ĝ−1dĝ ∈ Ω1R̂♮ , (58)

with the trace map Tr : Ω1(K ⊗̂R̂)♮ → Ω1R̂♮. In this case also we will show
that the cyclic homology class of ch1(ĝ) is invariant under smooth homotopies
of ĝ. Clearly ch1 is additive. The factor 1/

√
2πi is chosen for consistency with

the bivariant Chern character.
Note the following important property of idempotents and invertibles: two
idempotents ê0, ê1 ∈ M2(K ⊗̂R̂)+ are homotopic if and only if their projec-
tions e0, e1 ∈ M2(K ⊗̂A )+ are homotopic, and similarly with invertibles [12].
Since the cyclic homology classes of the Chern characters ch0(ê) and ch1(ĝ) are
homotopy invariant with respect to ê and ĝ, one gets well-defined additive maps
ch0 : Ktop

0 (A ) → HP0(A ) and ch1 : Ktop
1 (A ) → HP1(A ) on the topological

K-theory groups. They do not depend on the quasi-free extension R since
we know that the classifying homomorphism T̂A → R̂ induces a homotopy
equivalence of pro-complexes X(T̂A )

∼→ X(R̂).
To show the homotopy invariance of the Chern characters, we introduce the
Cherns-Simons transgressions. Let R̂[0, 1] be the tensor product R̂⊗̂C∞[0, 1],

and let ê be any idempotent ofM2(K ⊗̂R̂[0, 1])+ with ê−p0 ∈M2(K ⊗̂R̂[0, 1]).
Denote by s : C∞[0, 1] → Ω1[0, 1] the de Rham coboundary map with values
in ordinary (commutative) one-forms over the interval. We then define the
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Chern-Simons form associated to ê as the chain of odd degree

cs1(ê) =

∫ 1

0

Tr♮(−2ê+ 1) sêdê ∈ Ω1R̂♮ , (59)

with obvious notations. Now let ĝ ∈ (K ⊗̂R̂[0, 1])+ be any invertible element

such that ĝ − 1 ∈ K ⊗̂R̂[0, 1]. The Chern-Simons form associated to ĝ is the
chain of even degree

cs0(ĝ) =
1√
2πi

∫ 1

0

Tr(ĝ−1sĝ) ∈ R̂ . (60)

Lemma 4.3 Let ê be an idempotent of the algebra M2(K ⊗̂R̂[0, 1])+ with ê−
p0 ∈ M2(K ⊗̂R̂[0, 1]). Denote by ê0 and ê1 the idempotents of M2(K ⊗̂R̂)+

obtained by evaluation at 0 and 1. Then one has

bcs1(ê) = ch0(ê1)− ch0(ê0) ∈ R̂ . (61)

Let ĝ ∈ (K ⊗̂R̂[0, 1])+ be an invertible element such that ĝ − 1 ∈ K ⊗̂R̂[0, 1].

Denote by ĝ0 and ĝ1 the invertibles of (K ⊗̂R̂)+ obtained by evaluation at 0
and 1. Then one has

♮dcs0(ĝ) = ch1(ĝ1)− ch1(ĝ0) ∈ Ω1R̂♮ . (62)

Proof: First notice that the current
∫ 1

0 is odd, so that

bcs1(ê) = −
∫ 1

0

bTr♮(−2ê+ 1) sêdê ,

and taking into account the fact that sê is also odd, one has

bTr♮(−2ê+ 1) sêdê = −Tr[(−2ê+ 1) sê, ê] = Tr((2ê− 1)sê ê− êsê) ,

where we use the idempotent property ê2 = ê for the last equality. Since s is a
derivation, one has sê = s(ê2) = sê ê+ êsê and êsê ê = 0, whence

bcs1(e) =

∫ 1

0

Tr(sê ê+ êsê) =

∫ 1

0

sTrê = Tr(ê1 − ê0) = ch0(ê1)− ch0(ê0) ,

because ê0 and ê1 are the evaluations of ê respectively at 0 and 1. Let us
proceed now with invertibles:

♮dcs0(ĝ) =
−1√
2πi

∫ 1

0

Tr♮d(ĝ−1sĝ) ,

and because d is an odd derivation anticommuting with s, one has

Tr♮d(ĝ−1sĝ) = Tr♮(dĝ−1sĝ − ĝ−1sdĝ) .
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Then, d1 = 0 = s1 implies dĝ−1 = −ĝ−1dĝĝ−1 and sĝ−1 = −ĝ−1sĝĝ−1. But
Tr♮ is a supertrace, hence

Tr♮(−ĝ−1dĝĝ−1sĝ − ĝ−1sdĝ) = Tr♮(ĝ−1sĝĝ−1dĝ − ĝ−1sdĝ) = −sTr♮(ĝ−1dĝ) .

By integration over the interval [0, 1], one gets

♮dcs0(ĝ) =
1√
2πi

Tr♮(ĝ−1
1 dĝ1 − ĝ−1

0 dĝ0) = ch1(ĝ1)− ch1(ĝ0)

as wanted.

Hence the cyclic homology classes of the Chern characters are homotopy in-
variant as claimed. There is another consequence of the above lemma. Ob-
serve that the suspensions SA = A (0, 1) and SR̂ = R̂(0, 1) are subalgebras

of A [0, 1] and R̂[0, 1]. If e ∈ M2(K ⊗̂SA )+ is an idempotent representing
a class in Ktop

0 (SA ), and g ∈ (K ⊗̂SA )+ an invertible representing a class

in Ktop
1 (SA ), we choose some lifts ê ∈ M2(K ⊗̂SR̂)+ and ĝ ∈ (K ⊗̂SR̂)+.

Then cs1(ê) and cs0(ĝ) are closed and define homology classes in HP1(A ) and
HP0(A ) respectively. The following lemma shows the compatibility with Bott
periodicity:

Lemma 4.4 The Chern-Simons forms define additive maps cs1 : Ktop
0 (SA )→

HP1(A ) and cs0 : Ktop
1 (SA ) → HP0(A ). Moreover they are compatible

with the Bott isomorphisms α : Ktop
1 (A ) → Ktop

0 (SA ) and β : Ktop
0 (A ) →

Ktop
1 (SA ) and Chern characters, up to multiplication by a factor

√
2πi:

cs1 ◦ α ≡
√

2πi ch1 : Ktop
1 (A )→ HP1(A ) ,

cs0 ◦ β ≡
√

2πi ch0 : Ktop
0 (A )→ HP0(A ) .

Proof: Let ê be any idempotent of the pro-algebra M2(K ⊗̂SR̂)+. We have to
prove the homotopy invariance of the cyclic homology class determined by the
cycle

cs1(ê) =

∫ 1

0

Tr♮(−2ê+ 1) sêdê .

To this end, consider a smooth family of idempotents êt ∈ M2(K ⊗̂SR̂)+

parametrized by t ∈ R, such that êt − p0 ∈ M2(K ⊗̂SR̂), ∀t. Denote by ˙̂e the
derivative ∂ê/∂t. The idempotent property of the family ê implies the following
identity:

∂

∂t
Tr♮(−2ê+ 1)sêdê = −♮dTr(ê( ˙̂esê− sê ˙̂e))− sTr♮ê( ˙̂edê− dê ˙̂e) .

Since for any fixed t, the idempotent êt equals p0 at the boundaries of the

suspended algebra M2(K ⊗̂SR̂)+, one gets
∫ 1

0 sTr♮ê( ˙̂edê− dê ˙̂e) = 0 and

∂

∂t

∫ 1

0

Tr♮(−2ê+ 1) sêdê = ♮d

∫ 1

0

Tr(ê( ˙̂esê− sê ˙̂e)) .
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This implies that the cyclic homology class of cs1(ê) is a homotopy invariant
of ê. Hence if ê lifts an idempotent e ∈ M2(K ⊗̂SA )+, the cyclic homology
class of cs1(ê) only depends on the homotopy class of e, and the map cs1 :
Ktop

0 (SA )→ HP1(A ) is well-defined. We now have to show the compatibility
with Bott periodicity. Thus let g ∈ (K ⊗̂A )+ be an invertible such that
g − 1 ∈ K ⊗̂A , and let α(g) be the idempotent G−1p0G ∈ M2(K ⊗̂SA )+

constructed by means of a rotation matrix

R =

(
cos ξ sin ξ
− sin ξ cos ξ

)
, G = R−1

(
1 0
0 g

)
R ,

where ξ ∈ C∞[0, 1] is a real function with ξ(0) = 0 and ξ(1) = π/2. Then, it

is clear that the idempotent ê = Ĝ−1p0Ĝ ∈M2(K ⊗̂SR̂)+ is a lifting of α(g),

where the matrix Ĝ = R−1
(

1 0
0 ĝ

)
R is built from any lifting ĝ ∈ (K ⊗̂R̂)+ of g.

Hence, the cyclic homology class of cs1(α̂(g)) is represented by cs1(ê). A direct
computation shows the equality

Tr♮(−2ê+ 1) sêdê = s(cos ξ)Tr♮(−ĝ−1dĝ +
1

2
dĝ − 1

2
dĝ−1) ,

so that after integration over [0, 1] one gets, modulo boundaries ♮d(·)

cs1(α̂(g)) ≡ Tr♮(ĝ−1dĝ) mod ♮d ≡
√

2πi ch1(ĝ) mod ♮d .

Next, we turn to the map cs0. If ĝ ∈ (K ⊗̂SR̂)+ is any invertible, one has

cs0(ĝ) =
1√
2πi

∫ 1

0

Tr(ĝ−1sĝ) .

We have to show that the cyclic homology class of cs0(ĝ) is a homotopy invariant
of ĝ. To this end, consider a smooth one-parameter family of invertibles ĝt ∈
(K ⊗̂SR̂)+. One has, with ˙̂g = ∂ĝ/∂t,

∂

∂t
(ĝ−1sĝ) = −ĝ−1 ˙̂gĝ−1sĝ + ĝ−1s ˙̂g = [ĝ−1sĝ, ĝ−1 ˙̂g] + s(ĝ−1 ˙̂g) .

Since Tr[ĝ−1sĝ, ĝ−1 ˙̂g] = −bTr♮ĝ−1sĝd(ĝ−1 ˙̂g), we get

∂

∂t

∫ 1

0

Tr(ĝ−1sĝ) = b

∫ 1

0

Tr♮ĝ−1sĝd(ĝ−1 ˙̂g) .

Hence the cyclic homology class of cs0(ĝ) is homotopy invariant. In particular
if ĝ lifts an invertible g ∈ (K ⊗̂SA )+, the cyclic homology class of cs0(ĝ)
is a homotopy invariant of g and the map cs0 : Ktop

1 (SA ) → HP0(A ) is
well-defined. Now let e ∈ M2(K ⊗̂A )+ be an idempotent, with e − p0 ∈
M2(K ⊗̂A ). Its image under the Bott map β is the invertible element β(e) ∈
(K ⊗̂SA )+ given by

β(e) = (1 + (z − 1)e)(1 + (z − 1)p0)−1 ,
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where z = exp(4iξ). If ê ∈ M2(K ⊗̂R̂)+ is any idempotent lift of e, it is clear
that the invertible

ĝ = (1 + (z − 1)ê)(1 + (z − 1)p0)−1 ∈ (K ⊗̂SR̂)+

is a lifting of β(e). Hence the cyclic homology class of cs0(β̂(e)) is represented
by cs0(ĝ). Let us compute explicitly Tr(ĝ−1sĝ):

Tr
(
(1 + (z − 1)p0)(1 + (z − 1)ê)−1s

(
(1 + (z − 1)ê)(1 + (z − 1)p0)−1

))

= Tr
(
(1 + (z−1 − 1)ê)sz ê− (1 + (z−1 − 1)p0)sz p0

)

= Tr(ê− p0) z−1sz .

Since the integration of z−1sz over the interval [0, 1] yields a factor 2πi, one is
left with equivalences modulo boundaries b(·)

cs0(β̂(e)) ≡
√

2πiTr(ê− p0) mod b ≡
√

2πi ch0(ê) mod b

as wanted.

Since our main motivation is index theory we will have to consider the stabiliza-
tion of A by a p-summable Fréchet m-algebra I , that is, I is provided with
a continuous trace Tr : I p → C as in section 3. Hence it will be convenient to
define a Chern character Ktop

n (I ⊗̂A )→ HPn(A ). The difficulty of course is
that the trace is not defined on the algebra K ⊗̂I but only on its p-th power.
To cope with this problem, we shall construct higher analogues of the Chern
characters and Chern-Simons forms associated to idempotents and invertibles.
Consider the following p-summable quasihomomorphism of even degree, from
the algebra I A := I ⊗̂A to A :

ρ : I A → E s ⊲I sA , E = I +⊗̂A , (63)

where I + is the unitalization of I . Because ρ is of even degree, it is entirely
specified by a pair of homomorphisms (ρ+, ρ−) : I A ⇉ E which agree modulo
the ideal I A ⊂ E . Equivalently if we represent E s in the Z2-graded matrix
algebra M2(E ) we can write ρ =

( ρ+ 0
0 ρ−

)
. By definition we set

ρ+ = Id : I A → I A ⊂ E , ρ− = 0 .

Let 0→J → R → A → 0 be any quasi-free extension of A , with continuous
linear splitting σ : A → R. Then choosing M = I +⊗̂R and N = I +⊗̂J ,
one gets a commutative diagram

0 // N // M // E // 0

0 // I J //

OO

I R //

OO

I A //

OO

0
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Since (I +)n = I + for any integer n, one sees that N n = I +⊗̂J n is a direct
summand in M . Moreover, there is an obvious chain map Tr : F 2n+1

I R X(M )→
X(R) for any n ≥ p − 1, obtained by taking the trace I n+1 → C. It follows
that the algebra E ⊲ I A is R-admissible (Definition 3.2), hence in all de-
grees 2n + 1 ≥ p the bivariant Chern characters ch2n(ρ) ∈ HC2n(I A ,A )
are defined and related by the S-operation in bivariant cyclic cohomology
ch2n+2(ρ) ≡ Sch2n(ρ). We recall briefly the construction of ch2n(ρ). By
the universal properties of the tensor algebra T (I A ), the homomorphism
ρ : I A →

(
I A 0

0 0

)
⊂ E s

+ lifts to a classifying homomorphism ρ∗ through the
commutative diagram (31)

0 // J(I A ) //

ρ∗

��

T (I A ) //

ρ∗

��

I A //

ρ

��

0

0 // N s
+

// M s
+

// E s
+

//
Id⊗σ

ss
0

induced by the linear splitting. It extends to a homomorphism of pro-algebras

ρ∗ : T̂ (I A ) →
(

I bR 0
0 0

)
⊂ M̂ s

+. The bivariant Chern character ch2n(ρ) is

the composite of the Goodwillie equivalence γ : X(T̂ (I A ))→ Ω̂T̂ (I A ) with

the chain maps ρ∗ : Ω̂T̂ (I A ) → Ω̂M̂ s
+ and χ̂2n : Ω̂M̂ s

+ → X(R̂). The two
non-zero components of χ̂2n are given by Eqs. (34) and defined on 2n and
(2n+ 1)-forms respectively:

χ̂2n
0 : Ω2nM̂ s

+ → R̂ , χ̂2n
1 : Ω2n+1M̂ s

+ → Ω1R̂♮ .

The bivariant Chern character is designed to improve the summability degree
and can be used to define the higher Chern characters of idempotents and
invertibles via the composition

ch2n
i : Ktop

i (I ⊗̂A )→ HPi(I ⊗̂A )
ch2n

i (ρ)−−−−−→ HPi(A ) , i = 0, 1 . (64)

We shall now establish very explicit formulas for these higher characters.
Let ê be an idempotent of the algebra M2(K ⊗̂I R̂)+, such that ê − p0 ∈
M2(K ⊗̂I R̂). It is well-known (see for example [5]) that the differential forms

ch2n(ê) = (−)n
(2n)!

n!
Tr
(
(ê− 1

2
)(dêdê)n

)
∈ Ω2n(I R̂) for n ≥ 1

ch0(ê) = Tr(ê− p0) ∈ Ω0(I R̂) (65)

are the components of a (b + B)-cycle of even degree over I R̂, i.e. fulfill the
relations Bch2n(ê) + bch2n+2(ê) = 0 for any n. Here Tr is the trace over K . In

the odd case, any invertible element ĝ ∈ (K ⊗̂I R̂)+ such that ĝ−1 ∈ K ⊗̂I R̂
gives rise to a (b +B)-cycle of odd degree with components

ch2n+1(ĝ) =
(−)n√

2πi
n! Tr

(
ĝ−1dĝ(dĝ−1dĝ)n

)
∈ Ω2n+1(I R̂) . (66)
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The homology classes of these cycles are of course homotopy invariant. If ê ∈
M2(K ⊗̂I R̂[0, 1])+ is a smooth path of idempotents, we define the components
of the associated Chern-Simons form as

cs2n+1(ê) = (−)n
(2n)!

n!

∫ 1

0

Tr
(
(−2ê+ 1)

2n∑

i=0

(dê)isê(dê)2n+1−i) (67)

in Ω2n+1(I R̂). Similarly if ĝ ∈ (K ⊗̂I R̂[0, 1])+ is a smooth path of invert-
ibles, the components of the Chern-Simons form are for n ≥ 1

cs2n(ĝ) =
(−)n√

2πi
(n− 1)!

∫ 1

0

Tr
(
ĝ−1dĝ

n−1∑

i=0

(dĝ−1dĝ)idω(dĝ−1dĝ)n−1−i) (68)

in Ω2n(I R̂), where ω = ĝ−1sĝ, and for n = 0 we set as before cs0(ĝ) =
1√
2πi

∫ 1

0
Tr(ω). Simple algebraic manipulations show that the (b + B)-

boundaries of the Chern-Simons forms yield the difference of evaluations of
the Chern characters at the endpoints:

Bcs2n−1(ê) + bcs2n+1(ê) = ch2n(ê1)− ch2n(ê0) , (69)

Bcs2n(ĝ) + bcs2n+2(ĝ) = ch2n+1(ĝ1)− ch2n+1(ĝ0) .

The higher Chern characters (64) and their associated Chern-Simons forms are
obtained by evaluation of these (b+B)-chains on the inclusion homomorphism

ι∗ : I R̂ →֒
(

I bR 0
0 0

)
⊂ M̂ s

+ followed by the chain map χ̂2n whenever 2n+1 ≥ p.

Lemma 4.5 Let I be p-summable and 2n + 1 ≥ p. For any idempotent
ê ∈ M2(K ⊗̂I R̂)+ such that ê − p0 ∈ M2(K ⊗̂I R̂), and any invertible

ĝ ∈ (K ⊗̂I R̂)+ such that ĝ − 1 ∈ K ⊗̂I R̂, we define the higher Chern
characters by the explicit formulas

ch2n
0 (ê) = Tr (ê− p0)2n+1 , (70)

ch2n
1 (ĝ) =

1√
2πi

(n!)2

(2n)!
Tr♮ ĝ−1[(ĝ − 1)(ĝ−1 − 1)]ndĝ ,

where we take concatenation products over I and Tr is the trace over the
p-th power of K ⊗̂I . Then one has ch2n

0 (ê) = χ̂2n
0 ι∗ch2n(ê) in R̂ and

ch2n
1 (ĝ) = χ̂2n

1 ι∗ch2n+1(ĝ) in Ω1R̂♮.

Similarly, for any idempotent ê ∈ M2(K ⊗̂I R̂[0, 1])+ and any invertible

ĝ ∈ (K ⊗̂I R̂[0, 1])+, we define the higher Chern-Simons forms by the explicit
formulas

cs2n1 (ê) =

∫ 1

0

Tr♮(−2ê+ 1)

n∑

i=0

(ê− p0)2isê(ê− p0)2(n−i)dê , (71)

cs2n0 (ĝ) =
1√
2πi

(n!)2

(2n)!

∫ 1

0

Tr ĝ−1[(ĝ − 1)(ĝ−1 − 1)]nsĝ
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Then cs2n1 (ê) = χ̂2n
1 ι∗cs2n+1(ê) in Ω1R̂♮ and cs2n0 (ĝ) ≡ χ̂2n

0 ι∗cs2n(ĝ) mod b in

R̂. Moreover the transgression relations hold:

bcs2n1 (ê) = ch2n
0 (ê1)− ch2n

0 (ê0) , ♮dcs2n0 (ĝ) = ch2n
1 (ĝ1)− ch2n

1 (ĝ0) .

Proof: Let us brielfy explain the computation of the cycles χ̂2n
0 ι∗ch2n(ê) and

χ̂2n
1 ι∗ch2n+1(ĝ) associated to idempotents ê ∈ M2(K ⊗̂I R̂)+ and invertibles

ĝ ∈ (K ⊗̂I R̂)+. The upper left corner inclusion ι∗ : I R̂ →֒ M̂ s
+ canonically

extends to a unital homomorphism (K ⊗̂I R̂)+ → (K ⊗̂M̂ s
+)+, and in matrix

form we can write

ι∗ê =

(
ê 0
0 p0

)
, ι∗ĝ =

(
ĝ 0
0 1

)
.

Consequently the commutators with the odd multiplier F =
(

0 1
1 0

)
read

[F, ι∗ ê] =

(
0 p0 − ê

ê− p0 0

)
, [F, ι∗ĝ] =

(
0 1− ĝ

ĝ − 1 0

)
.

It is therefore straightforward to evaluate the differential forms ch2n(ê) and
ch2n+1(ĝ) on the chain map χ̂2n given by (34). One finds χ̂2n

0 ι∗ch2n(ê) =
ch2n

0 (ê) and χ̂2n
1 ι∗ch2n+1(ĝ) = ch2n

1 (ĝ). Similarly with the Chern-Simons forms
one finds χ̂2n

1 ι∗cs2n+1(ê) = cs2n1 (ê), whereas by setting ω = ĝ−1sĝ

χ̂2n
0 ι∗cs2n(ĝ) =

1√
2πi

(n!)2

(2n+ 1)!

∫ 1

0

Tr
(
ω[(ĝ−1 − 1)(ĝ − 1)]n+

(ĝ − 1)ω[(ĝ−1 − 1)(ĝ − 1)]n−1(ĝ−1 − 1) + . . .+ [(ĝ−1 − 1)(ĝ − 1)]nω
)

coincides with cs2n0 (ĝ) only modulo commutators.
Finally, the transgression relations are an immediate consequence of Eqs. (69)

and the fact that χ̂2n is a chain map from the (b + B)-complex over M̂ s
+ to

the complex X(R̂).

In any degree 2n+ 1 ≥ p the Chern characters ch2n
0 : Ktop

0 (I ⊗̂A )→ HP0(A )
and ch2n

1 : Ktop
1 (I ⊗̂A ) → HP1(A ) are thus obtained by first lifting idem-

potents e ∈ M2(K ⊗̂I A )+ and invertibles g ∈ (K ⊗̂I A )+ to some ê ∈
M2(K ⊗̂I R̂)+ and ĝ ∈ (K ⊗̂I R̂)+, and then taking the cyclic homology

classes of ch2n
0 (ê) ∈ R̂ and ch2n

1 (ĝ) ∈ Ω1R̂♮. Although ê and ĝ are only defined
up to homotopy, the above lemma shows these higher Chern characters are
well-defined, and moreover independent of the degree 2n because the cocycles
χ̂2n are all related by the transgression relations

χ̂2n − χ̂2n+2 = [∂, η̂2n+1] ∈ Hom(Ω̂M̂ s
+, X(R̂)) .

Passing to suspensions, lifting any idempotent e ∈M2(K ⊗̂I SA )+ or invert-

ible g ∈ (K ⊗̂I SA )+ gives rise to an odd cycle cs2n1 (ê) ∈ Ω1R̂♮ or an even

cycle cs2n0 (ĝ) ∈ R̂. As expected, this is well-defined at the K-theory level and
compatible with Bott periodicity:
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Lemma 4.6 Let I be p-summable. In any degre 2n + 1 ≥ p, the Chern-
Simons forms define additive maps cs2n1 : Ktop

0 (I ⊗̂SA )→ HP1(A ) and cs2n0 :
Ktop

1 (I ⊗̂SA ) → HP0(A ), independent of n, and compatible with the Bott
isomorphisms:

cs2n1 ◦ α ≡
√

2πi ch2n
1 : Ktop

1 (I ⊗̂A )→ HP1(A ) ,

cs2n0 ◦ β ≡
√

2πi ch2n
0 : Ktop

0 (I ⊗̂A )→ HP0(A ) .

Proof: Consider an idempotent ê ∈ M2(K ⊗̂I SR̂)+. We have to show the
homotopy invariance of the cyclic homology class cs2n1 (ê) with respect to ê.
This can be shown by direct computation from Formulas (71). Define the

matrix idempotent f̂ =
(
ê 0
0 p0

)
. Then one has sf̂ =

(
sê 0
0 0

)
and df̂ =

(
dê 0
0 0

)
,

and cs2n1 (ê) can be rewritten by means of the operator F =
(

0 1
1 0

)
and the

supertrace τ :

cs2n1 (ê) = (−)n
∫ 1

0

τ♮(−2f̂ + 1)

n∑

i=0

[F, f̂ ]2isf̂ [F, f̂ ]2(n−i)df̂ .

Now suppose that ê depends smoothly on an additional parameter t. The above
integrand may be expressed in terms of the odd differential δ = s+ d + dt ∂∂t +
[F, ] as

τ♮(−2f̂ + 1)

n∑

i=0

[F, f̂ ]2isf̂ [F, f̂ ]2(n−i)df̂ =
−1

n+ 1
τ♮ f̂(δf̂)2n+1|s,d

where |s,d means that we select the terms containing only s, d and not dt.

Because τ♮ is a supertrace, the cocycle property (s+ d + dt ∂∂t )τ♮ f̂ (δf̂)2n+1 =

τ♮ (δf̂ )2n+2 = 0 holds, and projecting this relation on s,d, dt yields

s τ♮ f̂ (δf̂)2n+1|d,dt + τ♮d(f̂ (δf̂)2n+1)|s,dt + dt
∂

∂t
τ♮ f̂(δf̂)2n+1|s,d = 0 .

This may be rephrased as

∂

∂t

(
Tr♮(−2ê+ 1)

n∑

i=0

(ê− p0)2isê(ê− p0)2(n−i)dê
)

≡ s
(
Tr♮(−2ê+ 1)

n∑

i=0

(ê− p0)2i
∂ê

∂t
(ê− p0)2(n−i)dê

)
mod ♮d ,

and integration over the current
∫ 1

0 shows the homotopy invariance of the

class cs2n1 (ê). Hence the map cs2n1 : Ktop
0 (I ⊗̂SA ) → HP1(A ) is well-

defined. Its compatibility with Bott periodicity can be established, without
computation, as follows. Let g ∈ (K ⊗̂I A )+ be an invertible element and
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e = α(g) ∈ M2(K ⊗̂I SA )+ its idempotent image under the Bott isomor-

phism. Choose an invertible lift g̃ ∈ (K ⊗̂ST̂ (I A ))+ of g and an idempo-

tent lift ẽ ∈ M2(K ⊗̂ST̂ (I A ))+ of e. The differential forms ch2n+1(g̃) and

cs2n+1(ẽ) in Ω2n+1T̂ (I A ) defined by (66) and (67) are the components of
two (b+B)-cycles ch∗(g̃) and cs∗(ẽ), whose projections on the odd part of the

complex X(T̂ (I A )) are

♮ch1(g̃) =
1√
2πi

Tr♮g̃−1dg̃ , ♮cs1(ẽ) =

∫ 1

0

Tr♮(−2ẽ+ 1)sẽdẽ) .

By Lemma 4.4, the cycles
√

2πi♮ch1(g̃) and ♮cs1(ẽ) are homologous. But we

know that the projection Ω̂T̂ (I A )→ X(T̂ (I A )) is a homotopy equivalence,
with inverse the Goodwillie map γ. Hence

√
2πi ch∗(g̃) and cs∗(ẽ) are (b+B)-

homologous in Ω̂T̂ (I A ). Finally, it remains to observe that under the homo-

morphism ρ∗ : T̂A →M s
+, the invertible ρ∗g̃ =

(
ĝ 0
0 1

)
gives a choice of lifting

ĝ ∈ (K ⊗̂I R̂)+ and the idempotent ρ∗(ẽ) =
(
ê 0
0 p0

)
gives a choice of lifting

ê ∈M2(K ⊗̂I R̂)+. Because the cycles
√

2πi χ̂2nρ∗ch∗(g̃) and χ̂2nρ∗cs∗(ẽ) are

homologous in X(R̂), we have
√

2πi ch2n
1 (ĝ) ≡ cs2n1 (ê) in HP1(A ).

We proceed similarly with the map cs2n0 . Let ĝ ∈ (K ⊗̂I SR̂)+ be an invert-
ible. We have to show the homotopy invariance of the cyclic homology class
cs2n0 (ĝ). Define the invertible matrix û =

(
ĝ 0
0 1

)
. Then sû =

(
sĝ 0
0 0

)
and one has

cs2n0 (ĝ) =
(−)n√

2πi

(n!)2

(2n)!

∫ 1

0

τ(û−1([F, û][F, û−1])nsû) .

Now suppose that ĝ is a smooth family of invertibles depending on an addi-
tional parameter t. The above integrand may be expressed in terms of the odd
derivation δ = s+ dt ∂∂t + [F, ] as

τ û−1([F, û][F, û−1])nsû ≡ (−)n

2n+ 1
τ(û−1δû)2n+1|s mod b .

One has the relation (s + dt ∂∂t )τ(û−1δû)2n+1 = −τ(û−1δû)2n+2 ≡ 0 mod b,
hence by projection on s, dt

s τ(û−1δû)2n+1|dt + dt
∂

∂t
τ(û−1δû)2n+1|s ≡ 0 mod b .

This may be rephrased as

∂

∂t

(
Tr ĝ−1[(ĝ − 1)(ĝ−1 − 1)]nsĝ

)
≡ s
(
Tr ĝ−1[(ĝ − 1)(ĝ−1 − 1)]n

∂ĝ

∂t

)
mod b ,

and integration over the current
∫ 1

0 shows the homotopy invariance of the class

cs2n0 (ĝ). Hence the map cs2n0 : Ktop
1 (I ⊗̂SA ) → HP0(A ) is well-defined.

Its compatibility with Bott periodicity is be established as before, replacing
invertibles by idempotents and conversely.
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5 Multiplicative K-theory

Let A and I be Fréchet m-algebras, I being p-summable. We shall define
the multiplicative K-theory groups MKI

n (A ) in any degree n ∈ Z. They
are intermediate between the topological K-theory Ktop

n (I ⊗̂A ) and the non-
periodic cyclic homology HCn(A ). Recall from section 2 that if 0 → J →
R → A → 0 is any quasi-free extension, HCn(A ) is computed by the quotient
complex Xn(R,J ) = X(R)/FnJX(R) induced by the J -adic filtration:

HCn(A ) = Hn+2Z(Xn(R,J )) , ∀n ∈ Z .

Of course HCn(A ) vanishes whenever n < 0. Multiplicative K-theory classes
are represented by idempotents or invertibles whose higher Chern characters
(Lemma 4.5) can be transgressed up to a certain order. As before we adopt the

notation I A = I ⊗̂A and I R̂ = I ⊗̂R̂, where R̂ is the I -adic completion
of R.

Definition 5.1 Let 0 → J → R → A → 0 be any quasi-free exten-
sion of Fréchet m-algebras, and let I be a p-summable Fréchet m-algebra.
Choose an integer q such that 2q + 1 ≥ p. We define the multiplicative K-
theory MKI

n (A ), in any even degree n = 2k ∈ Z, as the set of equiva-

lence classes of pairs (ê, θ) such that ê ∈ M2(K ⊗̂I R̂)+ is an idempotent
and θ ∈ Xn−1(R,J ) is a chain of odd degree related by the transgression
formula

ch2q
0 (ê) = bθ ∈ Xn−1(R,J ) .

Two pairs (ê0, θ0) and (ê1, θ1) are equivalent if and only if there exists an

idempotent ê ∈ M2(K ⊗̂I R̂[0, 1])+ whose evaluation yields ê0 and ê1 at the
endpoints, and a chain λ ∈ Xn−1(R,J ) of even degree such that

θ1 − θ0 = cs2q1 (ê) + ♮dλ ∈ Xn−1(R,J ) .

In the same way, we define the multiplicative K-theory MKI
n (A ), in any odd

degree n = 2k + 1 ∈ Z, as the set of equivalence classes of pairs (ĝ, θ) such

that ĝ ∈ (K ⊗̂I R̂)+ is an invertible and θ ∈ Xn−1(R,J ) is a chain of even
degree related by the transgression formula

ch2q
1 (ĝ) = ♮dθ ∈ Xn−1(R,J ) .

Two pairs (ĝ0, θ0) and (ĝ1, θ1) are equivalent if and only if there exists an invert-

ible ĝ ∈ (K ⊗̂I R̂[0, 1])+ whose evaluation yields ĝ0 and ĝ1 at the endpoints,
and a chain λ ∈ Xn−1(R,J ) of odd degree such that

θ1 − θ0 = cs2q0 (ĝ) + bλ ∈ Xn−1(R,J ) .

We will prove in Proposition 5.4 that for any n ∈ Z the set MKI
n (A ) depends

neither on the degree 2q + 1 ≥ p chosen to represent the Chern characters nor
on the quasi-free extension R.
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Recall from section 2 that the homology Hn−1+2Z(Xn(R,J )) is the non-
commutative de Rham homology HDn−1(A ). Hence the transgression relation
ch2q

0 (ê) = bθ ∈ Xn−1(R,J ) exactly means that the class of ch2q
0 (ê) vanishes

in HDn−2(A ). Similarly in the odd case, ch2q
1 (ĝ) = ♮dθ ∈ Xn−1(R,J ) is

equivalent to ch2q
1 (ĝ) ≡ 0 in HDn−2(A ). Since the complexes Xn−1(R,J )

vanish for n ≤ 0, we immediately deduce that MKI
n (A ) coincides with the

topological K-theory Ktop
n (I ⊗̂A ) whenever n ≤ 0.

As in the case of topological K-theory, define an addition on MKI
n (A ) by di-

rect sum of idempotents and invertibles as follows (c is the permutation matrix
(52)):

even case: (ê, θ) + (ê′, θ′) = (c(ê⊕ ê′)c, θ + θ′) ,

odd case: (ĝ, θ) + (ĝ′, θ′) = (ĝ ⊕ ĝ′, θ + θ′) .

This turns MKI
n (A ) into a semigroup, the unit being represented by (p0, 0)

in the even case and (1, 0) in the odd case.

Lemma 5.2 MKI
n (A ) is an abelian group for any n ∈ Z.

Proof: We first need to recall the proof that Ktop
0 (I ⊗̂A ) is a group. Let

e ∈ M2(K ⊗̂I A )+ be an idempotent, with e − p0 ∈ M2(K ⊗̂I A ). The
idempotent 1− e is orthogonal to e, as e(1− e) = (1 − e)e = 0. If X ∈M2(C)
is the permutation matrix

(
0 1
1 0

)
, we claim that the idempotent

X(1− e)X ∈M2(K ⊗̂I A )+ , with X(1− e)X − p0 ∈M2(K ⊗̂I A ) ,

represents the inverse class of e. Indeed, we shall construct a homotopy between
the direct sum c(e⊕X(1− e)X)c ∈M4(K ⊗̂I A )+ and the unit

p̃0 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ∈M4(K ⊗̂I A )+ .

Choose a smooth real-valued function ξ ∈ C∞[0, 1] ranging from ξ(0) = 0 to
ξ(1) = π/2, and consider the paths of invertible matrices

R23 =




1 0 0 0
0 cos ξ sin ξ 0
0 sin ξ − cos ξ 0
0 0 0 1


 , R14 =




cos ξ 0 0 sin ξ
0 1 0 0
0 0 1 0

sin ξ 0 0 − cos ξ


 .

A direct computation shows that the idempotents R23(t)−1
(
e 0
0 0

)
R23(t) and

R14(t)−1
(

1−e 0
0 0

)
R14(t) are orthogonal for any t ∈ [0, 1]. Hence the sum

f = R−1
23

(
e 0
0 0

)
R23 +R−1

14

(
1− e 0

0 0

)
R14 ∈M4(K ⊗̂I A [0, 1])+
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is an idempotent path such that f − p̃0 ∈M4(K ⊗̂I A [0, 1]), and interpolates
f0 = p̃0 and f1 = c(e⊕X(1− e)X)c. This shows that Ktop

0 (I ⊗̂A ) is a group.
It is abelian because a direct sum e ⊕ e′ can be connected via a smooth path
(by conjugation with respect to rotation matrices) to e′ ⊕ e.
Now fix an integer 2q+ 1 ≥ p and let (ê, θ) represent an element of MKI

n (A )

of even degree n = 2k. Hence ê ∈ M2(K ⊗̂I R̂)+ is an idempotent such
that ch2q

0 (ê) = bθ in the quotient complex Xn−1(R,J ). Consider the smooth

idempotent path f̂ ∈ M4(K ⊗̂I R̂[0, 1])+ constructed as above replacing A

by its extension R̂ and e by ê. It provides an interpolation between f̂0 = p̃0

and f̂1 = c(ê⊕X(1− ê)X)c. We guess that the inverse of (ê, θ) is represented

by the pair (X(1− ê)X, cs2q1 (f̂)− θ). Indeed, one has

bcs2q1 (f̂) = ch2q
0 (f̂1)− ch2q

0 (f̂0) = ch2q
0 (ê) + ch2q

0 (X(1− ê)X) ,

so that ch2q
0 (X(1− ê)X) = b(cs2q1 (f̂)− θ) in the complex Xn−1(R,J ) and the

pair (X(1 − ê)X, cs2q1 (f̂) − θ) represents a class in MKI
n (A ). Moreover, the

sum

(ê, θ) + (X(1− ê)X, cs2q1 (f̂)− θ) = (c(ê⊕X(1− ê)X)c, cs2q1 (f̂))

is equivalent to the unit (p̃0, 0) because f̂ provides the interpolating idempotent.
Hence MKI

n (A ), n = 2k is a group. Abelianity is shown as for topological
K-theory, by means of another interpolation between the idempotents c(ê⊕ ê′)c
and c(ê′ ⊕ ê)c with the property that its Chern-Simons form cs1 vanishes.
One proceeds similarly in the odd case. Let (ĝ, θ) represent an element of
MKI

n (A ) of odd degree n = 2k + 1. Hence ch2q
1 (ĝ) = ♮dθ in Xn−1(R,J ).

Define an invertible path û ∈ M2(K ⊗̂I R̂[0, 1])+ by means of the rotation
matrix R =

( cos ξ sin ξ
− sin ξ cos ξ

)
:

û =

(
ĝ 0
0 1

)
R−1

(
ĝ−1 0
0 1

)
R .

Then û − 1 ∈ M2(K ⊗̂I R̂[0, 1]), and û provides a smooth homotopy be-

tween the invertibles û0 = 1 and û1 =
( ĝ 0

0 ĝ−1

)
(the same argument shows that

Ktop
1 (I ⊗̂A ) is an abelian group). We guess that the inverse class of (ĝ, θ) is

represented by the pair (ĝ−1, cs2q0 (û)− θ). Indeed, one has

♮dcs2q0 (û) = ch2q
1 (û1)− ch2q

1 (û0) = ch2q
1 (ĝ) + ch2q

1 (ĝ−1)

so that ch2q
1 (ĝ−1) = ♮d(cs2q0 (û) − θ) in Xn−1(R,J ) and (ĝ−1, cs2q0 (û) − θ)

represents a class in MKI
n (A ). Moreover, the sum

(ĝ, θ) + (ĝ−1, cs2q0 (û)− θ) = (ĝ ⊕ ĝ−1, cs2q0 (û))

is equivalent to the unit (1, 0) through the interpolating invertible û. Hence
MKI

n (A ), n = 2k + 1 is a group as claimed. Abelianity is shown once again
by means of rotation matrices.
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Remark 5.3 We know that two different liftings of a given idempotent e ∈
M2(K ⊗̂I A )+ are always homotopic in M2(K ⊗̂I R̂)+. Hence choosing the
universal free extension R = TA allows to represent any multiplicative K-
theory class of even degree by a pair (ê, θ) where ê ∈ M2(K ⊗̂I T̂A )+ is the
canonical lift of some idempotent e. Moreover, the transgression formula es-
tablished in the proof of Lemma 4.6 shows that two such pairs (ê0, θ0) and
(ê1, θ1) are equivalent if and only if e0 and e1 can be joined by an idem-
potent e ∈ M2(K ⊗̂I A [0, 1])+ such that θ1 − θ0 ≡ cs2q1 (ê) mod ♮d, where

ê ∈ M2(K ⊗̂I T̂A [0, 1])+ is the canonical lift of e. The same is true with in-
vertibles: any multiplicative K-theory class of odd degree may be represented
by a pair (ĝ, θ) where ĝ ∈ (K ⊗̂I T̂A )+ is the canonical lift of some invertible
g ∈ (K ⊗̂I A )+. Two such pairs (ĝ0, θ0) and (ĝ1, θ1) are equivalent if and
only if g0 and g1 can be joined by an invertible g ∈ (K ⊗̂I A [0, 1])+ such that

θ1 − θ0 ≡ cs2q0 (ĝ) mod b, where ĝ ∈ (K ⊗̂I T̂A [0, 1])+ is the canonical lift of
g.

The particular case I = C is essentially equivalent Karoubi’s definition of
multiplicative K-theory [16, 17]. The groups MKI

n (A ) are designed to fit in
a long exact sequence

Ktop
n+1(I ⊗̂A )→ HCn−1(A )

δ→MKI
n (A )→ Ktop

n (I ⊗̂A )→ HCn−2(A )
(72)

The map Ktop
n (I ⊗̂A ) → HCn−2(A ) corresponds to the composition of the

Chern character Ktop
n (I ⊗̂A ) → HPn(A ) with the natural map HPn(A ) →

HCn−2(A ) induced by the projection X̂(R,J ) → Xn−2(R,J ). The map
MKI

n (A )→ Ktop
n (A ) is the forgetful map, which sends a pair (ê, θ) or (ĝ, θ)

respectively on its image e or g under the projection homomorphism R̂ →
A . The connecting map δ : HCn−1(A ) → MKI

n (A ) sends a cycle θ ∈
Xn−1(R,J ) to

δ(θ) =

{
(p0,
√

2πi θ) n even,

(1,
√

2πi θ) n odd.
(73)

There is also an additive Chern character map chn : MKI
n (A ) → HNn(A )

defined in all degrees n ∈ Z, with values in negative cyclic homology. Re-
call that the latter is the homology in degree n mod 2 of the subcomplex
Fn−1X̂(R,J ) = Ker(X̂(R,J )→ Xn−1(R,J )):

HNn(A ) = Hn+2Z(Fn−1X̂(R,J )) .

Hence in particular HNn(A ) = HPn(A ) whenever n ≤ 0, and HP∗, HC∗
HN∗ are related by the SBI long exact sequence (section 2). To define the
Chern character chn : MKI

n (A ) → HNn(A ) in even degree n = 2k, we first
have to choose an integer 2q + 1 ≥ p. Then, a multiplicative K-theory class
of degree n is represented by a pair (ê, θ), such that the transgression formula

ch2q
0 (ê) = bθ holds in Xn−1(R,J ). Choose an arbitrary lifting θ̃ ∈ X̂(R,J )
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of θ, and define the negative Chern character as

chn(ê, θ) = ch2q
0 (ê)− bθ̃ ∈ Fn−1X̂(R,J ) . (74)

It is clearly closed, and its negative cyclic homology class does not depend
on the choice of lifting θ̃, since the difference of two such liftings lies in the
subcomplex Fn−1X̂(R,J ). We will show in the proposition below that it does
not depend on the representative (ê, θ) of the K-theory class, nor on the integer
2q + 1 ≥ p. In odd degree n = 2k+ 1, the Chern character chn : MKI

n (A )→
HNn(A ) is defined exactly in the same way: take a representative (ĝ, θ) of
a multiplicative K-theory class, with ch2q

1 (ĝ) = ♮dθ in Xn−1(R,J ). Then if

θ̃ ∈ X̂(R,J ) denotes an arbitrary lifting of θ, the cycle

chn(ĝ, θ) = ch2q
1 (ĝ)− ♮dθ̃ ∈ Fn−1X̂(R,J ) (75)

defines a negative cyclic homology class. The following proposition shows the
compatibility between the K-theory exact sequence (72) and the SBI exact
sequence (8), through the various Chern character maps.

Proposition 5.4 Let A and I be Fréchet m-algebras, such that I is p-
summable. Then one has a commutative diagram with long exact rows

Ktop
n+1(I ⊗̂A ) //

��

HCn−1(A )
δ // MKI

n (A ) //

��

Ktop
n (I ⊗̂A )

��
HPn+1(A )

S // HCn−1(A )
eB // HNn(A )

I // HPn(A )

(76)

where B̃ is the connecting map of the SBI sequence rescaled by a factor −
√

2πi.

Proof: We show the exactness of the sequence (72) in the case of even degree
n = 2k (the odd case is completely similar):

Ktop
1 (I ⊗̂A )

ch1−→ HCn−1(A )
δ→MKI

n (A )
ι→ Ktop

0 (I ⊗̂A )
ch0−→ HCn−2(A ) .

Fix once and for all an integer 2q + 1 ≥ p to represent the Chern characters.
We first have to check that the maps δ and ι are well-defined. Let θ0 and
θ1 = θ0 + ♮dλ be two homologous odd cycles in Xn−1(R,J ) representing
the same cyclic homology class [θ] ∈ HCn−1(A ). Their images by δ are
respectively (p0,

√
2πi θ0) and (p0,

√
2πi θ1), which obviously represent the

same class in MKI
n (A ) by virtue of the equivalence relation θ1 − θ0 = ♮dλ

(take the constant idempotent p0 ∈M2(K ⊗̂I R̂[0, 1])+ as interpolation, with
cs2q1 (p0) = 0). Hence δ is well-defined.
Now take two equivalent pairs (ê0, θ0) and (ê1, θ1) representing the same
element in MKI

n (A ). In particular, the idempotents ê0 and ê1 are smoothly
homotopic and their projections e0, e1 ∈ M2(K ⊗̂I A )+ define the same
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class in Ktop
0 (I ⊗̂A ). Since ι(ê0, θ0) = e0 and ι(ê1, θ1) = e1, the map ι is

well-defined.

Exactness at HCn−1(A ): Let [g] ∈ Ktop
1 (I ⊗̂A ) be a class represented by

an invertible element g ∈ (K ⊗̂I A )+, and consider its idempotent image
α(g) ∈ M2(K ⊗̂I SA )+ under the Bott isomorphism α : Ktop

1 (I ⊗̂A ) →
Ktop

0 (I ⊗̂SA ). Choose any invertible lift ĝ ∈ (K ⊗̂I R̂)+ and any idempotent

lift α̂(g) ∈ M2(K ⊗̂I SR̂)+. By Lemma 4.6, we have the equality of periodic
cyclic homology classes

ch2q
1 (ĝ) ≡ 1√

2πi
cs2q1 (α̂(g)) ∈ HP1(A ) ,

hence this equality also holds in HCn−1(A ). It follows that δ(ch1(g)) is repre-
sented by

δ
( 1√

2πi
cs2q1 (α̂(g))

)
=
(
p0, cs2q1 (α̂(g))

)
.

But the idempotent path α̂(g) evaluated at the endpoints is p0, so that the

pairs (p0, cs2q1 (α̂(g))) and (p0, 0) are equivalent in MKI
n (A ). Hence δ◦ch1 = 0.

Now let a class [θ] ∈ HCn−1(A ) be in the kernel of δ. It means that the pair
δ(θ) = (p0,

√
2πi θ) is equivalent to (p0, 0). Hence there exists an idempotent

ê ∈ M2(K ⊗̂I SR̂)+ and a chain λ such that
√

2πi θ = cs2q1 (ê) + ♮dλ in
Xn−1(R,J ). By Bott periodicity, there exists an element [g] ∈ Ktop

1 (I ⊗̂A )

such that cs2q1 (ê) ≡
√

2πi ch2q
1 (ĝ) in HCn−1(A ), where ĝ ∈ (K ⊗̂I R̂)+ is any

invertible lift of g. Whence the equality of cylic homology classes [θ] ≡ ch2q
1 (ĝ).

It follows that Ker δ = Im ch1.

Exactness at MKI
n (A ): Let [θ] ∈ HCn−1(A ) be any cyclic homology class.

Then δ(θ) = (p0,
√

2πi θ), and ι(δ(θ)) = p0 is the zero-class in topological K-
theory. Therefore ι ◦ δ = 0.
Now let (ê, θ) ∈ MKI

n (A ) be in the kernel of ι: it means that ê is smoothly

homotopic to p0. Hence there exists an idempotent f̂ ∈ M2(K ⊗̂I R̂[0, 1])+,

with evaluations f̂0 = ê and f̂1 = p0, and the pair (ê, θ) is equivalent to

(p0, θ + cs2q1 (f̂)). Remark that the odd chain θ + cs2q1 (f̂) ∈ Xn−1(R,J ) is

closed (indeed, bθ = ch2q
0 (ê) and bcs2q1 (f̂) = −ch2q

0 (ê)), and we can write

(p0, θ + cs2q1 (f̂)) = δ
( 1√

2πi
(θ + cs2q1 (f̂))

)
.

It follows that Ker ι = Im δ.

Exactness at Ktop
0 (I ⊗̂A ): Let (ê, θ) ∈ MKI

n (A ) represent any multiplica-
tive K-theory class. Then ch2q

0 (ê) ≡ 0 in non-commutative de Rham homology
HDn−2(A ), and therefore also in HCn−2(A ). Thus, the Chern character of
ι(ê, θ) = e vanishes and ch0 ◦ ι = 0.

Documenta Mathematica 13 (2008) 275–363



328 Denis Perrot

Now let [e] ∈ Ktop
0 (I ⊗̂A ) be in the kernel of ch0. We know from section 2 that

the natural map HDn−2(A ) → HCn−2(A ) is injective, so that ch2q
0 (ê) ≡ 0

in HDn−2(A ) for any idempotent lift ê ∈ M2(K ⊗̂I R̂)+. Hence there exists
an odd chain θ ∈ Xn−1(R,J ) such that ch2q

0 (ê) = bθ, and e = ι(ê, θ). This
shows that Ker ch0 = Im ι.

Let us now show the independence of multiplicative K-theory upon the choice
of degree 2q+1 ≥ p. To this end, write (ê, θ)q ∈MKI

n (A )q for a representative
of a class obtained using the higher Chern character ch2q

0 (ê) = bθ of degree 2q.
We shall construct a map MKI

n (A )q → MKI
n (A )q+1 which turns out to

be an isomorphism. Let ρ : I A → E s ⊲ I sA be the canonical p-summable
quasihomomorphism of even degree considered in section 4, for the construction
of the higher Chern characters. Recall that E = I +⊗̂A with extension M =

I +⊗̂R. From Proposition 3.10, we know that the chain maps χ2q : Ω̂(M̂ s
+)→

X(R̂) associated to ρ are related in successive degrees by the transgression
formula involving the eta-cochain χ̂2q − χ̂2q+2 = [∂, η̂2q+1]. More precisely:

χ̂2q
0 − χ̂2q+2

0 = bη̂2q+1
1 + η̂2q+1

0 (b +B) ,

χ̂2q
1 − χ̂2q+2

1 = ♮dη̂2q+1
0 + η̂2q+1

1 (b+B) .

The evaluation of the first equation on the (b + B)-cycle ch∗(ê) ∈ Ω̂+(I R̂)
yields (see section 4; we also omit reference to the inclusion homomorphism

ι∗ : I R̂ →֒
(

I bR 0
0 0

)
⊂ M̂ s

+)

ch2q
0 (ê)− ch2q+2

0 (ê) = b
(
η̂2q+1
1 ch2q+2(ê)

)
,

with ch2q
0 (ê) = χ̂2q

0 ch2q(ê) by Lemma 4.5. Therefore, we guess that the map
MKI

n (A )q → MKI
n (A )q+1 should send a pair (ê, θ)q to the pair (ê, θ′)q+1

with θ′ = θ− η̂2q+1
1 ch2q+2(ê). Indeed, one has the correct transgression relation

ch2q+2
0 (ê) = ch2q

0 (ê)− b(η̂2q+1
1 ch2q+2(ê)) = bθ′

in the complex Xn−1(R,J ). Moreover, this map is well-defined at the level
of equivalence classes: let (ê0, θ0)q and (ê1, θ1)q be two equivalent pairs. Then

there exists an interpolating idempotent ê ∈ M2(K ⊗̂I R̂[0, 1])+ and a chain
λ such that θ1 − θ0 = cs2q1 (ê) + ♮dλ. Hence the respective images (ê0, θ

′
0)q+1

and (ê1, θ
′
1)q+1 verify

θ′1 − θ′0 = θ1 − θ0 − η̂2q+1
1 (ch2q+2(ê1)− ch2q+2(ê0)) .

But we know the transgression relation (69)

ch2q+2(ê1)− ch2q+2(ê0) = Bcs2q+1(ê) + bcs2q+3(ê) ,

Documenta Mathematica 13 (2008) 275–363



Secondary Invariants for Frechet Algebras. . . 329

so that, using the identities χ̂2q
1 cs2q+1(ê) = (♮dη̂2q+1

0 + η̂2q+1
1 B)cs2q+1(ê) and

−χ̂2q+2
1 cs2q+3(ê) = η̂2q+1

1 bcs2q+3(ê) one gets (recall cs2q1 (ê) = χ̂2q
1 cs2q+1(ê))

θ′1 − θ′0 = cs2q1 (ê) + ♮dλ

−χ̂2q
1 cs2q+1(ê) + χ̂2q+2

1 cs2q+3(ê) + ♮d
(
η̂2q+1
0 cs2q+1(ê)

)

= cs2q+2
1 (ê) + ♮d

(
λ+ η̂2q+1

0 cs2q+1(ê)
)
.

Hence (ê0, θ
′
0)q+1 and (ê1, θ

′
1)q+1 are equivalent in MKI

n (A )q+1. It remains to
show that the map MKI

n (A )q →MKI
n (A )q+1 is an isomorphism. Consider

the following diagram:

HCn−1(A )
δ // MKI

n (A )q //

��

Ktop
0 (I ⊗̂A )

HCn−1(A )
δ // MKI

n (A )q+1 // Ktop
0 (I ⊗̂A )

For any cyclic homology class [θ] ∈ HCn−1(A ) represented by a
closed chain θ, one has δ(θ) = (p0,

√
2πi θ)q in MKI

n (A )q. But ob-
serve that η̂2q+1

1 ch2q+2(p0) = 0, so that (p0,
√

2πi θ)q is mapped to

(p0,
√

2πi θ)q+1 in MKI
n (A )q+1. Hence the left square is commutative.

Moreover the right square is obviously commutative. The isomorphism
MKI

n (A )q ∼= MKI
n (A )q+1 then follows from the five-lemma.

The negative Chern character chn : MKI
n (A )q → HNn(A ) is also indepen-

dent of q, and compatible with the SBI exact sequence. Indeed if (ê, θ)q is a
representative of a class in MKI

n (A )q, one has by definition

chn(ê, θ)q = ch2q
0 (ê)− bθ̃ ,

where θ̃ ∈ X̂(R,J ) is an arbitrary lifting of θ. First remark that chn is
well-defined at the level of equivalence classes: if (ê0, θ0)q and (ê1, θ1)q are

equivalent, there exists an interpolation ê ∈M2(K ⊗̂I R̂[0, 1])+ and a chain λ
such that θ1−θ0 = cs2q1 (ê)+♮dλ in Xn−1(R,J ). Let θ̃0, θ̃1 and λ̃ be arbitrary

liftings; then there exists a chain µ ∈ Fn−1X̂(R,J ) such that θ̃1 − θ̃0 =

cs2q1 (ê) + ♮dλ̃+ µ in X̂(R,J ). Hence the difference

chn(ê1, θ1)q − chn(ê0, θ0)q = ch2q
0 (ê1)− ch2q

0 (ê0)− b(θ̃1 − θ̃0)

= bcs2q1 (ê)− b(cs2q1 (ê) + ♮dλ̃+ µ) = −bµ

is a coboundary of the subcomplex Fn−1X̂(R,J ), and the Chern character
chn : MKI

n (A )q → HNn(A ) is well-defined. Now if (ê, θ)q ∈ MKI
n (A )q

is any class, its image in MKI
n (A )q+1 is represented by (ê, θ′)q+1 with θ′ =
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θ − η̂2q+1
1 ch2q+2(ê). One has

chn(ê, θ′)q+1 = ch2q+2
0 (ê)− b(θ̃ − η̂2q+1

1 ch2q+2(ê))

= ch2q+2
0 (ê)− b(θ̃) + χ̂2q

0 ch2q(ê)− χ̂2q+2
0 ch2q+2(ê)

= ch2q
0 (ê)− b(θ̃) = chn(ê, θ)q ,

and the negative Chern character does not depend on the degree q. Finally, for
any cyclic homology class [θ] ∈ HCn−1(A ), one has

chn(δ(θ)) = chn(p0,
√

2πi θ) = −
√

2πi b(θ̃) ,

which shows the commutativity of the middle square (76). The compatibility
between the negative Chern character and the periodic Chern character on
topological K-theory is obvious, whence the commutativity of the right square
(76).

Concerning the independence of MKI
n (A ) with respect to the choice

of quasi-free extension R, it suffices to consider the universal extension
0 → JA → TA → A → 0 together with the classifying homomorphisms
TA → R and JA → J . The various Chern characters and Chern-Simons

forms constructed in X̂(R,J ) are obtained from the universal ones in

X̂(TA , JA ) by applying the chain map X̂(TA , JA )→ X̂(R,J ), which we
know is a homotopy equivalence compatible with the adic filtrations. Once
again the conclusion follows from the five-lemma.
The case of odd degree n = 2k+1 is established along the same lines, replacing
idempotents by invertibles.

Before ending this section we need to establish the invariance of topological
and multiplicative K-theory with respect to adjoint actions of multipliers on
the p-summable Fréchetm-algebra I . We say that U is a multiplier if it defines
continuous linear maps (left and right multiplications) x 7→ Ux and x 7→ xU
on I , which commute and fulfill

i) U(xy) = (Ux)y , (xU)y = x(Uy) , (xy)U = x(yU) ∀x, y ∈ I ,

ii) Tr([U,I p]) = 0 .

U is invertible if there exists a multiplier U−1 such that the compositions
UU−1 and U−1U induce the identity on I , while left and right multiplications
by U and U−1 commute. In this case the adjoint action of U defined by
AdU(x) = U−1xU is a continuous automorphism of I preserving the trace
on I p. If A is any Fréchet m-algebra, the adjoint action of U extends to
the tensor product K ⊗̂I A by acting trivially on the factors K and A , thus
defines an automorphism of Ktop

n (I ⊗̂A ). Similarly if 0→J → R → A → 0
is a quasi-free extension, and (ê, θ) (resp. (ĝ, θ)) represents a multiplicative
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K-theory class of even (resp. odd) degree, the adjoint action of U extends to

an automorphism of the pro-algebra K ⊗̂I R̂ and define maps

AdU : (ê, θ) 7→ (U−1êU, θ) , (ĝ, θ) 7→ (U−1ĝU, θ) . (77)

The images represent multiplicative K-theory classes because the invariance of
the trace implies ch2q

0 (U−1êU) = ch2q
0 (ê) = bθ and ch2q

0 (U−1ĝU) = ch2q
0 (ĝ) =

♮dθ. The adjoint action is actually well-defined at the level of K-theory:

Lemma 5.5 Let U be an invertible multiplier of I . Then the adjoint action
AdU induces the identity on Ktop

n (I ⊗̂A ) and MKI
n (A ).

Proof: First we show that an idempotent e ∈ M2(K ⊗̂I A )+, with e − p0 ∈
M2(K ⊗̂I A ), is smoothly homotopic to its adjoint U−1eU . Introduce the
idempotent f0 =

(
e 0
0 p0

)
∈ M4(K ⊗̂I A )+, and choose a smooth real-valued

function ξ ∈ C∞[0, 1] such that ξ(0) = 0 and ξ(1) = π/2. We define a path W
of invertible multipliers of M4(K ⊗̂I A ) by means of the formula

W = R−1

(
1 0
0 U

)
R , R =

(
cos ξ sin ξ
− sin ξ cos ξ

)
,

where each entry should be viewed as a 2×2 block matrix. Hence, W commutes
with the matrix p̃0 =

( p0 0
0 p0

)
. The smooth path of idempotents f = W−1f0W

thus provides an interpolation between f0 and f1 =
(
U−1eU 0

0 p0

)
. Put in another

way, cfc interpolates the K-theoretic sums e+p0 and U−1eU +p0. This shows
that e and U−1eU define the same topological K-theory class.
Now suppose that (ê, θ) ∈ MKI

n (A ) represents a multiplicative K-theory

class, with ê ∈M2(K ⊗̂I R̂)+, θ ∈ Xn−1(R,J ) and ch2q
0 (ê) = bθ. We define

as before f̂0 =
(
ê 0
0 p0

)
, and f̂ = W−1f̂0W provides an interpolation between f̂0

and f̂1 =
(
U−1 êU 0

0 p0

)
. If s : C∞[0, 1] → Ω1[0, 1] denotes the differential over

[0, 1] and d : R̂ → Ω1R̂ the noncommutative differential, the Chern-Simons

form (71) associated to cf̂c reads

cs2q1 (cf̂c) =

∫ 1

0

Tr♮(−2f̂ + 1)

q∑

i=0

(f̂ − p̃0)2isf̂(f̂ − p̃0)2(q−i)df̂ .

One has df̂ = W−1df̂0W and sf̂ = W−1(−sWW−1f̂0 + f̂0sWW−1)W , hence

Tr♮(−2f̂ + 1)

q∑

i=0

(f̂ − p̃0)2isf̂(f̂ − p̃0)2(q−i)df̂

= −Tr♮(−2f̂0 + 1)

q∑

i=0

(f̂0 − p̃0)2isWW−1f̂0(f̂0 − p̃0)2(q−i)df̂0

+Tr♮(−2f̂0 + 1)

q∑

i=0

(f̂0 − p̃0)2if̂0sWW−1(f̂0 − p̃0)2(q−i)df̂0

Documenta Mathematica 13 (2008) 275–363



332 Denis Perrot

Observe that Tr♮ is a trace. In the first term of the r.h.s., we can use the identity
f̂0(f̂0 − p̃0)2(q−i) = (f̂0 − p̃0)2(q−i)f̂0 which holds for any two idempotents f̂0
and p̃0, and then f̂0df̂0(−2f̂0 +1) = f̂0df̂0. In the second term of the r.h.s., we

simply write (−2f̂0+1)(f̂0− p̃0)2if̂0 = (−2f̂0+1)f̂0(f̂0− p̃0)2i = −f̂0(f̂0− p̃0)2i.
Hence we arrive at

Tr♮(−2f̂ + 1)

q∑

i=0

(f̂ − p̃0)2isf̂(f̂ − p̃0)2(q−i)df̂

= −
q∑

i=0

Tr♮ (f̂0 − p̃0)2isWW−1(f̂0 − p̃0)2(q−i)f̂0df̂0

−
q∑

i=0

Tr♮ (f̂0 − p̃0)2isWW−1(f̂0 − p̃0)2(q−i)df̂0 f̂0

= −
q∑

i=0

Tr♮ sWW−1(f̂0 − p̃0)2idf̂0(f̂0 − p̃0)2(q−i)

by the idempotent property f̂0df̂0 +df̂0 f̂0 = df̂0. It remains to show that the
latter sum is a boundary:

−
q∑

i=0

Tr♮ sWW−1(f̂0− p̃0)2idf̂0(f̂0− p̃0)2(q−i) = ♮d
(
Tr sWW−1(f̂0− p̃0)2q+1

)
.

Indeed d anticommutes with sWW−1, and d(f̂0 − p̃0) = df̂0. Hence if we

can show that the terms Tr♮ sWW−1(f̂0 − p̃0)2i+1df̂0(f̂0 − p̃0)2j+1 vanish, the

conclusion follows. Since f̂0df̂0f̂0 = 0, we can write

Tr♮ sWW−1(f̂0 − p̃0)2i+1df̂0(f̂0 − p̃0)2j+1

= Tr♮ sWW−1(f̂0 − p̃0)2i(−f̂0df̂0p̃0 − p̃0df̂0f̂0 + p̃0df̂0p̃0)(f̂0 − p̃0)2j

= Tr♮ sWW−1(f̂0 − p̃0)2i(−f̂0df̂0p̃0 − df̂0f̂0p̃0 + df̂0p̃0)(f̂0 − p̃0)2j

= 0 ,

where we used the fact that p̃0 commutes with sWW−1 and the even powers
of f̂0 − p̃0. Hence cs2q1 (cf̂c) ≡ 0 mod ♮d, which shows that the pairs (ê, θ) and

(Û−1êU, θ) are equivalent. The adjoint action of U on multiplicative K-theory
groups in even degrees is thus the identity.
One proceeds in the same fashion with odd groups. Let g ∈ (K ⊗̂I A )+

be an invertible such that g − 1 ∈ K ⊗̂I A . Introduce u0 =
(
g 0
0 1

)
and the

invertible path u = W−1u0W , where W = R−1
(

1 0
0 U

)
R is now viewed as a path

of invertible multipliers of M2(K ⊗̂I A ). Hence u interpolates between u0 and
u1 =

(
U−1gU 0

0 1

)
. This shows that g and U−1gU define the same topological

K-theory class.
Now suppose that (ĝ, θ) ∈ MKI

n (A ) represents a multiplicative K-theory
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class, with ĝ ∈ (K ⊗̂I R̂)+, θ ∈ Xn−1(R,J ) and ch2q
1 (ĝ) = ♮dθ. We define

û0 =
(
ĝ 0
0 1

)
, and û = W−1û0W provides an interpolation between û0 and

û1 =
(
U−1ĝU 0

0 1

)
. The Chern-Simons form (71) associated to û reads

cs2q0 (û) =
1√
2πi

(q!)2

(2q)!

∫ 1

0

Tr û−1[(û − 1)(û−1 − 1)]qsû .

Using sû = W−1(−sWW−1û0 + û0sWW−1)W , one gets

Tr û−1[(û− 1)(û−1 − 1)]qsû = −Tr û−1
0 [(û0 − 1)(û−1

0 − 1)]qsWW−1û0

+Tr û−1
0 [(û0 − 1)(û−1

0 − 1)]qû0sWW−1

≡ 0 mod b

Hence cs2q0 (û) ≡ 0 mod b and the pair (Û−1ĝU, θ) is equivalent to (ĝ, θ). The
adjoint action of U on the odd multiplicative K-theory groups is therefore the
identity.

Example 5.6 Take A = C and I = L p(H) a Schatten ideal. It is known that
Ktop

0 (I ) = Z and Ktop
1 (I ) = 0. Furthermore HCn(C) = C for n = 2k ≥ 0

and vanishes otherwise. Hence the exact sequence yields

MKI
n (C) =





Z n ≤ 0 even
C× n > 0 odd
0 otherwise

The multiplicative K-theory of C is the natural target for index maps in even
degree, and for regulator maps in odd degree (see [6] and Example 6.4).

Multiplicative K-theory has close connections with higher algebraic K-theory
[16, 29]. In fact there exists a morphism Kalg

n (A ) → MKI
n (A ) in all de-

grees, and composition with the negative Chern character coincides with the
Jones-Goodwillie map Kalg

n (A )→ HNn(A ) [15]. See [7] for an exact sequence
relating topological and algebraic K-theories of locally convex algebras stabi-
lized by operator ideals.

6 Riemann-Roch-Grothendieck theorem

In this section we construct direct images of topological and multiplicative K-
theory under quasihomomorphisms and show their compatibility with the K-
theory and cyclic homology exact sequences. This provides a noncommutative
version of the Riemann-Roch-Grothendieck theorem. If I is a p-summable
Fréchet m-algebra, with trace Tr : I p → C, the tensor product I ⊗̂I is in
a natural way a p-sumable algebra with trace Tr⊗̂Tr. We demand that I is
provided with an external product as follows.
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Definition 6.1 A p-summable Fréchet m-algebra I is multiplicative if there
exists a continuous algebra homomorphism (external product)

⊠ : I ⊗̂I → I

such that the composition Tr ◦⊠ coincides with the trace Tr⊗̂Tr on (I ⊗̂I )p.
Two external products ⊠ and ⊠′ are equivalent if there exists an invertible
multiplier U of I such that ⊠′ = AdU ◦⊠ on I ⊗̂I .

Hence if I is multiplicative the homomorphism ⊠ induces additive maps
Ktop
n (I ⊗̂I ⊗̂A ) → Ktop

n (I ⊗̂A ) and MKI ⊗̂I
n (A ) → MKI

n (A ), clearly
compatible with the commutative diagram of Proposition 5.4. Moreover two
equivalent products induce the same maps, the adjoint action AdU being triv-
ial on K-theory by Lemma 5.5. In practice the algebra I often arises with
external products defined only modulo equivalence:

Example 6.2 Let I = L p(H) be the Schatten ideal of p-summable operators
on a separable infinite-dimensional Hilbert space H , provided with the operator
trace. The tensor product L p(H)⊗̂L p(H) is naturally mapped to the algebra
L p(H⊗H), and choosing an isomorphism of Hilbert spaces H⊗H ∼= H allows
to identify L p(H ⊗ H) with L p(H) modulo the adjoint action of unitary
operators U ∈ L (H). The product ⊠ : L p(H)⊗̂L p(H) → L p(H) is thus
compatible with the traces, and canonically defined modulo the adjoint action
of unitary operators.

Let A and B be any Fréchet m-algebras. Let ρ : A → E s ⊲I s⊗̂B be a quasi-
homomorphism of parity p mod 2, and suppose that I is finitely summable
(the exact summability degree is irrelevant for the moment). We want to show
that ρ induces an additive map

ρ! : Ktop
n (I ⊗̂A )→ Ktop

n−p(I ⊗̂B) ∀n ∈ Z (78)

provided I is multiplicative. This is has nothing to do with cyclic homol-
ogy and we don’t need to assume E admissible. Thanks to Bott periodic-
ity, it is sufficient to define ρ! on Ktop

1 (I ⊗̂A ), where it is given by very
explicit formulas. Suppose first that p is even. Then ρ is described by a
pair of homomorphisms (ρ+, ρ−) : A ⇉ E which coincide modulo I ⊗̂B.
For any invertible element g ∈ (K ⊗̂I ⊗̂A )+ with g − 1 ∈ K ⊗̂I ⊗̂A repre-
senting a K-theory class in Ktop

1 (I ⊗̂A ), one has ρ±(g) ∈ (K ⊗̂I ⊗̂E )+ and
ρ+(g)− ρ−(g) ∈K ⊗̂I ⊗̂I ⊗̂B, where the homomorphisms ρ+ and ρ− are ex-
tended to the unitalized algebra (K ⊗̂I ⊗̂A )+ by acting trivially on the factor
K ⊗̂I and preserving the unit. set

ρ!(g) = ρ+(g)ρ−(g)−1 ∈ (K ⊗̂I ⊗̂I ⊗̂B)+ . (79)

Using the homomorphism ⊠ : I ⊗̂I → I , we may therefore consider ρ!(g) as
an invertible element of (K ⊗̂I ⊗̂B)+ such that ρ!(g) − 1 ∈ K ⊗̂I ⊗̂B. It is
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clear that the homotopy class of ρ!(g) only depends on the homotopy class of
g, hence the map ρ! : Ktop

1 (I ⊗̂A )→ Ktop
1 (I ⊗̂B) is well-defined.

When p is odd, ρ is a homomorphism A → M2(E ) such that the off-diagonal
terms lie in I ⊗̂B. For any invertible element g ∈ (K ⊗̂I ⊗̂A )+ as above, one
has ρ(g) ∈M2(K ⊗̂I ⊗̂E )+ with off-diagonal elements in K ⊗̂I ⊗̂I ⊗̂B. Set

ρ!(g) = ρ(g)−1p0ρ(g) ∈M2(K ⊗̂I ⊗̂I ⊗̂B)+ , (80)

where p0 =
(

1 0
0 0

)
is the trivial matrix idempotent. Again applying the external

product ⊠ we may consider ρ!(g) as an idempotent of M2(K ⊗̂I ⊗̂B)+ such
that ρ!(g) − p0 ∈ M2(K ⊗̂I ⊗̂B). The homotopy class only depends on the
homotopy class of g and we thus obtain ρ! : Ktop

1 (I ⊗̂A )→ Ktop
0 (I ⊗̂B).

To define ρ! onKtop
0 (I ⊗̂A ) it suffices to pass to the suspensions SA = A (0, 1)

and SB = B(0, 1), then apply the pushforward map constructed above ρ! :
Ktop

1 (I ⊗̂SA ) → Ktop
1−p(I ⊗̂SB) with trivial action on the factor C∞(0, 1).

The Bott isomorphisms Ktop
n (I ⊗̂·) ∼= Ktop

n+1(I ⊗̂S·) allow to define ρ! for the
original algebras through a graded -commutative diagram

Ktop
0 (I ⊗̂A )

∼ //

ρ!

��

Ktop
1 (I ⊗̂SA )

ρ!

��
Ktop
−p (I ⊗̂B)

∼ // Ktop
1−p(I ⊗̂SB)

(81)

Note the following subtlety concerning graduations: since Ktop
n has parity n

mod 2 by definition, the Bott isomorphisms are odd. As a consequence, when p
is also odd, the above diagram must be anti-commutative. These conventions
are necessary if we want to avoid sign problems with the theorem below.

Now choose a quasi-free extension 0→J → R → B → 0 for B, and suppose
that the algebra E ⊲I ⊗̂B is R-admissible. We impose the following compat-
ibility between the parity of the quasihomomorphism ρ and the summability
degree of I : in the even case I is (p + 1)-summable with p even, and in
the odd case I is p-summable with p odd (this complicated choice is dic-
tated by the theorem below). In both cases the bivariant Chern character
chp(ρ) ∈ HCp(A ,B) constructed in section 3 induces a map

chp(ρ) : HCn(A )→ HCn−p(B) ∀n ∈ Z . (82)

Combining ρ! with the bivariant Chern character yields a transformation in
multiplicative K-theory, compatible with the diagram (76) of Proposition 5.4.
This will be detailed in the proof of the following noncommutative version of
the Riemann-Roch-Grothendieck theorem:

Theorem 6.3 Let A , B be Fréchet m-algebras, and choose a quasi-free ex-
tension 0 → J → R → B → 0. Let ρ : A → E s ⊲ I s⊗̂B be a quasihomo-
morphism of parity p mod 2, where I is multiplicative and (p+ 1)-summable
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in the even case, p-summable in the odd case. Suppose that E ⊲ I ⊗̂B is
R-admissible. Then ρ defines a transformation in multiplicative K-theory
ρ! : MKI

n (A ) → MKI
n−p(B) compatible with the K-theory exact sequences

for A and B, whence a graded-commutative diagram

Ktop
n+1(I ⊗̂A ) //

ρ!

��

HCn−1(A ) //

chp(ρ)

��

MKI
n (A ) //

ρ!

��

Ktop
n (I ⊗̂A )

ρ!

��
Ktop
n+1−p(I ⊗̂B) // HCn−1−p(B) // MKI

n−p(B) // Ktop
n−p(I ⊗̂B)

(83)
The vertical arrows are invariant under conjugation of quasihomomorphisms;
the arrow in topological K-theory Ktop

n (I ⊗̂A ) → Ktop
n−p(I ⊗̂B) is also in-

variant under homotopy of quasihomomorphisms. Moreover (83) is compati-
ble with the commutative diagram of Theorem 3.13 (with connecting map B
rescaled by a factor −

√
2πi) after taking the Chern characters MKI

n → HNn
and Ktop

n (I ⊗̂ . )→ HPn.

Proof: As a general rule, the bivariant cyclic cohomomology HCp(A ,B) is

described as the cohomology of the complex Homp(X̂(TA , JA ), X̂(R,J ))
of linear maps of order ≤ p, where we choose the universal free extension
0 → JA → TA → A → 0 for A and the quasi-free extension 0 → J →
R → B → 0 for B. By hypothesis, the algebra E ⊲ I ⊗̂B is R-admissible
(Definition 3.2), i.e. one has a commutative diagram

0 // N // M // E // 0

0 // I ⊗̂J //

OO

I ⊗̂R //

OO

I ⊗̂B //

OO

0

verifying adequate properties with respect to the trace over I . The de-
tailed construction of the pushforward map in multiplicative K-theory
ρ! : MKI

n (A )→MKI
n−p(B) depends on the respective parities of n and p.

i) n = 2k+ 1 is odd and p = 2q is even. Our first task is to understand the
composition of the topological Chern character chp1 : Ktop

1 (I ⊗̂A )→ HP1(A )
with the bivariant Chern character chp(ρ) ∈ HCp(A ,B). For notational
simplicity, we write as usual I A for the tensor product I ⊗̂A . Without
loss of generality, we may suppose that an element of Ktop

1 (I A ) is repre-
sented by an invertible g ∈ (I A )+ such that g − 1 ∈ I A (indeed the al-
gebra K of smooth compact operators plays a trivial role in what follows).
Since the universal free extension TA is chosen, we can take the canonical lift
ĝ ∈ (I T̂A )+ which corresponds to the image of g under the canonical linear

inclusion A →֒ Ω̂+A ∼= T̂A as the the subspace of zero-forms. Its inverse
is given by the series (57), with K replaced by I . The p-th higher Chern
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character of ĝ is then represented by the cycle (70)

chp1(ĝ) =
1√
2πi

(q!)2

p!
Tr♮ĝ−1[(ĝ − 1)(ĝ−1 − 1)]qdĝ ∈ Ω1T̂A♮ ,

Observe that (p+ 1) powers of I appear in the products of (ĝ − 1), (ĝ−1 − 1)
and dĝ hence the trace Tr : I p+1 → C is well-defined. On the other hand, the
bivariant Chern character of the quasihomomorphism ρ (section 3) is repre-

sented by the composition of chain maps chp(ρ) = χ̂pρ∗γ : X(T̂A )→ Ω̂T̂A →
Ω̂M̂ s

+ → X(R̂), hence the composite chp(ρ) · chp1(ĝ) requires to compute first

the image of chp1(ĝ) under the Goodwillie equivalence γ : X(T̂A ) → Ω̂T̂A .
This tricky computation can be simplified as follows. We use the isomorphism
I A ∼= C⊗̂I A to identify ĝ with the invertible element

û = 1 + e⊗ (ĝ − 1) ∈ (C⊗̂I A )+ →֒ (T̂C⊗̂I T̂A )+ ,

where e is the unit of C. As usual we regard C⊗̂I A as the subspace of zero-
forms of the algebra T̂C⊗̂I T̂A ∼= Ω̂+C⊗̂I Ω̂+A . It is not hard to calculate
that the inverse of û is given by the series

û−1 =
∑

i≥0

(
(dede)i⊗ [(ĝ−1−1)(ĝ−1)]i+e(dede)i⊗ [(ĝ−1−1)(ĝ−1)]i(ĝ−1−1)

)

with the convention (dede)0 = 1. Observe that the power of I is equal to the
power of e in each term of this series. Also, recall that the canonical lift of e is
the idempotent

ê = e +
∑

i≥1

(2i)!

(i!)2
(e− 1

2
)(dede)i ∈ T̂C .

We define the fundamental class of degree p = 2q as the trace [2q] : T̂C → C
vanishing on all the differential forms e(dede)i and (dede)i except e(dede)q, and
normalized so that [2q] ê = 1. One thus have

[2q] e(dede)q =
(q!)2

p!
, [2q] (anything else) = 0 .

Of course, [2q] is the generator in degree p of the cyclic cohomology of C. The

fact that it is a trace over T̂C is crucial. Indeed, one finds the identity

Tr♮[2q] û−1dû =
(q!)2

p!
Tr♮ĝ−1[(ĝ − 1)(ĝ−1 − 1)]qdĝ ∈ Ω1T̂A♮ ,

so that the Chern character chp1(ĝ) is exactly the cycle 1√
2πi

Tr♮[2q] û−1dû. This

simplifies drastically the computation of γchp1(ĝ). The Goodwillie equivalence

γ is explicitly constructed in section 2; it is based on the linear map φ : T̂A →
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Ω2T̂A verifying the properties φ(xy) = φ(x)y+xφ(y)+dxdy for all x, y ∈ T̂A ,
and φ(a) = 0 whenever a ∈ A . We extend φ to a linear map

φ : (T̂C⊗̂I T̂A )+ → T̂C⊗̂I Ω2T̂A

acting by the identity on the factor T̂C⊗̂I and setting φ(1) = 0. This implies
φ(ûû−1) = 0 = φ(û)û−1 + ûφ(û−1) + dûdû−1. Moreover û lies in (C⊗̂I A )+

so that φ(û) = 0, and one gets

φ(û−1) = −û−1dûdû−1 .

Now, extending φ in all degrees as in section 2 one gets a linear map φ :
T̂C⊗̂I ΩiT̂A → T̂C⊗̂I Ωi+2T̂A for any i ∈ N. The following computation is
then straightforward (remark that Tr[2q] is a trace hence cyclic permutations
are allowed; moreover the fundamental class [2q] selects (p + 1) powers of e,
hence of I , so that Tr is well-defined):

γ(Tr♮[2q] û−1dû) =
∑

i≥0

Tr[2q]φi(û−1dû) =
∑

i≥0

(−)ii! Tr[2q] û−1dû(dû−1dû)i .

Hence γchp1(ĝ) is equal to this (b+B)-cycle over T̂A , divided by a factor
√

2πi.

It remains to apply the chain map χpρ∗ : Ω̂T̂A → X(R̂) associated to the
quasihomomorphism ρ : A → E s ⊲I sB. In 2× 2 matrix notation, the image

of any x ∈ T̂A under the lifted quasihomomorphism ρ∗ : T̂A → M̂ s ⊲ I sR̂
and the odd multiplier F read

ρ∗x =

(
x+ 0
0 x−

)
∈ M̂ s

+ , F =

(
0 1
1 0

)
,

and the difference x+ − x− is therefore an element of the pro-algebra I R̂.
On the other hand, the odd component of the chain map χ̂pρ∗ evaluated on a
(p+ 1)-form x0dx1 . . .dxp+1 is given by Eqs. (34):

q!

(p+ 1)!

p+1∑

i=1

τ ′♮(ρ∗x0[F, ρ∗x1] . . .d(ρ∗xi) . . . [F, ρ∗xp+1])

where τ ′ = 1
2τ(F [F, ]) is the modified supertrace of even degree. Then

we extend canonically ρ∗ to a unital homomorphism (T̂C⊗̂I T̂A )+ →
(T̂C⊗̂I M̂ s

+)+ by taking the identity on the factor T̂C⊗̂I . One thus has

ρ∗û =
( û+ 0

0 û−

)
with û+ − û− ∈ T̂C⊗̂I I R̂. A direct computation gives

chp(ρ) (Tr♮[2q] û−1dû) = (−)qq! χ̂p1ρ∗ Tr[2q](û−1dû(dû−1dû)q)

=
(q!)2

p!
Tr♮[2q] ũ−1[(ũ − 1)(ũ−1 − 1)]qdũ ,
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where ũ = û+û
−1
− ∈ (T̂C⊗̂I I R̂)+ may be considered as an invertible element

of the pro-algebra (T̂C⊗̂I R̂)+ after applying the homomorphism ⊠ : I ⊗̂I →
I . Dividing by a factor

√
2πi, the right-hand-side should be defined as the

Chern character chp1(ũ), cf. (70). One thus gets the identity

chp(ρ) · chp1(ĝ) = chp1(ũ)

at the level of cycles in X(R̂). Now, observe that the projection of ũ onto
the quotient algebra (C⊗̂I B)+ is u+u

−1
− = 1 + e⊗̂(ρ+(g)ρ−(g)−1 − 1). It

corresponds to the direct image ρ+(g)ρ−(g)−1 = ρ!(g) by virtue of the isomor-
phism (C⊗̂I B)+ ∼= (I B)+. Hence we expect that chp1(ũ) is homologous to

the Chern character of any invertible lift ρ̂!(g) ∈ (I R̂)+. To see this, consider

an invertible path v̂ ∈ (T̂C⊗̂I R̂[0, 1])+ connecting homotopically v̂0 = ũ to

v̂1 = 1+ ê⊗ (ρ̂!(g)−1), and such that its projection onto (C⊗̂I B[0, 1])+ is the
constant invertible function 1 + e⊗ (ρ!(g)− 1) over [0, 1]. Such a path always
exists, for example the linear interpolation

v̂t = t
(
1 + ê⊗ (ρ̂!(g)− 1)

)
+ (1− t)ũ , t ∈ [0, 1] (84)

works. Since the evaluation of the fundamental class [2q] on the canonical
idempotent lift ê is the unit, a little computation shows the equality

chp1(v̂1) = chp1
(
ρ̂!(g)

)
∈ Ω1R̂♮

at the level of cycles. Moreover, the Chern-Simons form associated to v̂, defined
in analogy with formulas (71)

csp0(v̂) =
1√
2πi

(q!)2

p!

∫ 1

0

dtTr[2q] v̂−1[(v̂ − 1)(v̂−1 − 1)]q
∂v̂

∂t

fulfills the transgression relation in the complex X(R̂)

♮dcsp0(v̂) = chp1(v̂1)− chp1(v̂0) = chp1(ρ̂!(g))− chp1(ũ)

as wanted. We are now in a position to define the map ρ! on multiplicative K-
theory. Let a pair (ĝ, θ) represent a class in MKI

n (A ) of odd degree n = 2k+1.

From Remark 5.3, we know that ĝ ∈ (I T̂A )+ can be taken as the canonical
lift of some invertible element g ∈ (I A )+. Then, the transgression θ is a
chain of even degree in the quotient complex Xn−1(TA , JA ), and the relation
chp1(ĝ) = ♮dθ holds in Xn−1(TA , JA ). We set

ρ!(ĝ, θ) =
(
ρ̂!(g) , chp(ρ) · θ + csp0(v̂)

)
∈MKI

n−p(B) (85)

where ρ̂!(g) ∈ (I R̂)+ is any invertible lift of ρ!(g) and v̂ is an invertible
path constructed as above. Let us explain why this defines a multiplicative K-
theory class. First, the bivariant Chern character chp(ρ) ∈ HCp(A ,B) induces
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a morphism of quotient complexes Xn−1(TA , JA ) → Xn−p−1(R,J ), hence
chp(ρ) · θ is a well-defined chain of even degree in Xn−p−1(R,J ). Regarding
also csp0(v̂) as an element of Xn−p−1(R,J ), we see that the relation

♮d(chp(ρ) · θ + csp0(v̂)) = chp(ρ) · chp1(ĝ) + chp1
(
ρ̂!(g)

)
− chp1(ũ) = chp1

(
ρ̂!(g)

)

holds in this quotient complex, hence ρ!(ĝ, θ) represents a class in MKI
n−p(B).

In fact, the latter does not depend on the choice of lifting ρ̂!(g), nor on the in-
vertible path v̂. This can be proved simultaneously with the fact that the equiv-
alence class of ρ!(ĝ, θ) depends only on the equivalence class of (ĝ, θ). To show
this, consider two equivalent pairs (ĝ0, θ0) and (ĝ1, θ1) representing the same

element of MKI
n (A ). It means there exists a homotopy ĝ ∈ (I T̂A [0, 1]x)+

between ĝ0 and ĝ1 (we denote by x the variable of this homotopy, which should
not be confused with the variable t used in the definition of the interpolation
(84)), and a chain λ ∈ Xn−1(TA , JA ) such that θ1 − θ0 = csp0(ĝ) + bλ. From
Remark 5.3, we may suppose that ĝ0, ĝ1 and ĝ are respectively the canonical
lifts of invertibles g0, g1 ∈ (I A )+ and g ∈ (I A [0, 1]x)+. By definition one
has

ρ!(ĝi, θi) =
(
ρ̂!(gi) , chp(ρ) · θi + csp0(v̂(gi))

)
, i = 0, 1 ,

where v̂(gi) ∈ (T̂C⊗̂I R̂[0, 1]t)
+ is a choice of invertible path associated to

gi, for example by Eq. (84). Choose an invertible path ρ̂!(g) ∈ (I R̂[0, 1]x)+

interpolating ρ̂!(g0) and ρ̂!(g1): it can be chosen as a lift of the path ρ!(g) =
ρ+(g)ρ−(g)−1. Our goal is to show that the relation

chp(ρ) · (θ1 − θ0) + csp0(v̂(g1))− csp0(v̂(g0)) ≡ csp0(ρ̂!(g)) mod b

holds in Xn−p−1(R,J ). As before we identify the canonical lift ĝ of g with
the invertible element

û = 1 + e⊗ (ĝ − 1) ∈ (C⊗̂I A [0, 1]x)+ →֒ (T̂C⊗̂I T̂A [0, 1]x)+ ,

and we remark that the higher Chern-Simons form csp0(ĝ) given by Lemma 4.5,
Eqs. (71), can be written as

csp0(ĝ) =
1√
2πi

∫ 1

0

Tr[2q] û−1sû

where s = dx ∂
∂x is the de Rham coboundary acting on the space of differential

forms Ω[0, 1]x. It follows that the computation of chp(ρ) · csp0(ĝ) requires first
to evaluate the Goodwillie equivalence γ on the one-form ω̂ = û−1sû. To this
end, we extend φ to a linear map

φ : T̂C⊗̂I ΩiT̂A ⊗̂Ω[0, 1]x → T̂C⊗̂I Ωi+2T̂A ⊗̂Ω[0, 1]x
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acting by the identity on the factors T̂C⊗̂I and Ω[0, 1]x. The algebraic
property of φ implies φ(û−1sû) = φ(û−1)sû + û−1sφ(û) + dû−1d(sû). From
φ(û) = 0, φ(û−1) = −û−1dûdû−1 and dû−1 = −û−1dûû−1 we deduce

φ(ω̂) = −û−1dûdω̂ .

Then the image of [2q] ω̂ under the Goodwillie equivalence is a straightforward
computation, taking into account the tracial property of the fundamental class
Tr[2q] and the fact that Ω[0, 1]x is a commutative algebra:

γ(Tr[2q] ω̂) =
∑

i≥0

Tr[2q]φi(ω̂) =

Tr[2q] ω̂ +
∑

i≥1

(−)i(i− 1)!

i−1∑

j=0

Tr[2q] û−1dû(dû−1dû)jdω̂(dû−1dû)i−j−1 .

This is a chain in the bicomplex Ω̂T̂A ⊗̂Ω[0, 1]x endowed with the boundary
maps (b + B) and s. Its is related to the (b + B)-cocycle γ(Tr♮[2q]û−1dû) via
the descent equation

(b+B)γ(Tr[2q]ω̂) + sγ(Tr♮[2q]û−1dû) = 0 ,

which can be shown either by direct computation, or simply by observing that
♮d(Tr[2q]ω)+s(Tr♮[2q]û−1dû) = 0 and γ♮d = (b+B)γ, γs = sγ. Next we have

to evaluate the image of γ(Tr[2q] ω̂) by the chain map χ̂pρ∗ : Ω̂T̂A → X(R̂),

whose even component evaluated on a p-form x0dx1 . . .dxp over T̂A reads

q!

(p+ 1)!

∑

λ∈Sp+1

ε(λ)τ ′(ρ∗xλ(0)[F, ρ∗xλ(1)] . . . [F, ρ∗xλ(p)]) .

Denote as before ũ = û+û
−1
− ∈ (T̂C⊗̂I R̂[0, 1]x)+, and ω̃ = ũ−1sũ. One finds:

chp(ρ) (Tr[2q] ω̂) =
(q!)2

(p+ 1)!
Tr[2q]

(
û−1
− ω̃[(ũ−1 − 1)(ũ− 1)]qû−+

(ũ− 1)ω̃[(ũ−1 − 1)(ũ − 1)]q−1(ũ−1 − 1) + . . .+ û−1
− [(ũ−1 − 1)(ũ− 1)]qω̃û−

)

After evaluation on the current 1√
2πi

∫ 1

x=0, the right-hand-side may be iden-

tified, modulo commutators, with the Chern-Simons form csp0(ũ) defined in
analogy with (71). One thus gets

chp(ρ) · csp0(ĝ) ≡ csp0(ũ) mod b .

Now, introduce a parameter t ∈ [0, 1] and choose an invertible interpolation

v̂ ∈ (T̂C⊗̂I R̂[0, 1]x[0, 1]t)
+ between v̂t=0 = ũ and v̂t=1 = 1 + ê⊗ (ρ̂!(g)− 1),

with the property that it restricts to v̂(g0) for x = 0 and to v̂(g1) for x = 1. The
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projection of v̂ on the algebra (C⊗̂I B[0, 1]x[0, 1]t)
+ may be chosen constant

with respect to t. In the proof of Lemma 4.6 we established at any point
(x, t) ∈ [0, 1]2 the identity

∂

∂t

(
Tr[2q] v̂−1[(v̂−1)(v̂−1−1)]qsv̂

)
≡ s
(
Tr[2q] v̂−1[(v̂−1)(v̂−1−1)]q

∂v̂

∂t

)
mod b ,

and integrating over [0, 1]2 this implies

csp0(v̂t=1)− csp0(v̂t=0) ≡ csp0(v̂x=1)− csp0(v̂x=0) mod b .

Taking into account that v̂x=0 = v̂(g0) and v̂x=1 = v̂(g1), we calculate mod b
in the complex Xn−p−1(R,J )

chp(ρ) · (θ1 − θ0) + csp0(v̂(g1))− csp0(v̂(g0))

≡ chp(ρ) · csp0(ĝ) + csp0(v̂t=1)− csp0(v̂t=0) mod b

≡ csp0(ũ) + csp0(1 + ê⊗ (ρ̂!(g)− 1))− csp0(ũ) mod b

≡ csp0(ρ̂!(g)) mod b .

Hence the direct images ρ!(ĝ0, θ0) and ρ!(ĝ1, θ1) are equivalent and the map
ρ! : MKI

n (A ) → MKI
n−p(B) for n = 2k + 1 and p = 2q is well-defined. It

is obviously compatible with the push-forward map in topological K-theory
ρ! : Ktop

1 (I A ) → Ktop
1 (I B). The compatibility with the push-forward map

in cyclic homology chp(ρ) : HCn−1(A ) → HCn−p−1(B) is clear once we re-

mark that the Chern-Simons form cs2q0 (v̂) vanish whenever v̂ = 1. Hence the
diagram (83) is commutative.
We have to check the invariance of ρ! with respect to conjugation of quasi-
homomorphisms. Let ρ0 and ρ1 be two conjugate quasihomomorphisms
A → E s ⊲ I sB. Hence there exists an invertible element U ∈ (E s

+)+ such
that ρ1 = U−1ρ0U . We follow the proof of Proposition 3.12 and remark that
the lifting homomorphisms ρ0∗, ρ1∗ : T̂A → M s

+ factor through homomor-

phisms ϕ0, ϕ1 : T̂A → T̂E s
+. The maps ρ0!, ρ1! : MKI

n (A ) → MKI
n−p(B)

are obtained by composition of the pushforward maps ϕ0!, ϕ1! : MKI
n (A ) →

MKI
n (E s

+) induced by the homomorphisms

ϕi!(ĝ, θ) = (ϕi(ĝ), ϕi(θ))

with the map MKI
n (E s

+) → MKI
n−p(B) associated with the natural (p + 1)-

summable quasihomomorphism of even degree E s
+ → E s ⊲ I sB. Hence it is

sufficient to check that the maps ϕ0! and ϕ1! : MKI
n (A ) → MKI

n (E s
+) co-

incide. From the proof of 3.12 we know that ϕ1 is smoothly homotopic to
Û−1ϕ0Û , where Û ∈ (T̂E s

+)+ is a lifting of U , and the interpolating homomor-

phism ϕ : T̂A → T̂E s
+[0, 1] is constant modulo the ideal ĴE s

+. Consequently

the morphisms X(ϕ1) and X(Û−1ϕ0Û) : X(T̂A )→ X(T̂E s
+) are homotopic,

X(ϕ1)−X(Û−1ϕ0Û) = [∂,H ]
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with H ∈ Hom0(X(TA , JA ), X(TE s+, JE s
+)) a cochain of order zero. Let us

now compare the images of (ĝ, θ) ∈ MKI
n (A ) under the pushworwards ϕ1!

and (Û−1ϕ0Û)!. The images ϕ1(ĝ) and Û−1ϕ0(ĝ)Û are smoothly homotopic,

with interpolation ϕ(ĝ) ∈ (I T̂E s
+[0, 1])+. If moreover ĝ is the canonical lift of

an invertible element g ∈ (I A )+, Chern-Simons form associated to ϕ(ĝ) can
be written as

csp0(ϕ(ĝ)) =
1√
2πi

(q!)2

p!

∫ 1

0

Trϕ(ĝ−1)ϕ[(ĝ − 1)(ĝ−1 − 1)]qsϕ(ĝ)

=
1√
2πi

∫ 1

0

Tr[2q]ϕ(û−1)sϕ(û) ,

where as usual û = 1 + e ⊗ (ĝ − 1) is the invertible associated to ĝ, with

ϕ(û) = 1 + e⊗ (ϕ(ĝ)− 1) ∈ (T̂C⊗̂I T̂E s
+[0, 1])+. By construction (Proposition

3.12 i)), the r.h.s. coincides with the evaluation of H on the Chern character
chp1(ĝ) = 1√

2πi
Tr♮[2q] û−1dû, and because H is of order zero one has

csp0(ϕ(ĝ)) = Hchp1(ĝ) = H(♮dθ) ≡ ϕ1(θ)− (Û−1ϕ0Û)(θ) mod b

in the complex Xn−1(TE s+, JE s
+). This proves that ϕ1!(ĝ, θ) is equivalent to

(Û−1ϕ0Û)!(ĝ, θ). Now it remains to show that the image (Û−1ϕ0Û)!(ĝ, θ) =

(Û−1ϕ0(ĝ)Û , Û−1ϕ0(θ)Û ) is equivalent to ϕ0!(ĝ, θ) = (ϕ0(ĝ), ϕ0(θ)). Here we
mimic the proof of Lemma 5.5 and construct a homotopy between the invertible
matrices

(
ϕ0(ĝ) 0

0 1

)
and

( bU−1ϕ0(ĝ)bU 0
0 1

)
, whose associated Chern-Simons form is

a b-boundary. Since Û−1ϕ0(θ)Û ≡ ϕ0(θ) mod b, we conclude that ρ0! and ρ1!

agree on topological and multiplicative K-theories.
Finally we have to check the compatibility with the negative Chern character
MKI

∗ → HN∗. For any pair (ĝ, θ) ∈MKI
n (A ), one has

chn(ĝ, θ) = chp1(ĝ)− ♮dθ̃ ∈ Fn−1X̂(TA , JA ),

where θ̃ is any lift of θ in X̂(TA , JA ). On the other hand, if ĝ is the canonical
lift of some g ∈ (I A )+, its image ρ!(ĝ, θ) ∈MKI

n−p(B) is represented by the

pair (ρ̂!(g), chp(ρ) · θ + csp0(v̂)) constructed above, so that

chn−p
(
ρ!(ĝ, θ)

)
= chp1

(
ρ̂!(g)

)
− ♮d(chp(ρ) · θ̃ + csp0(v̂)) ∈ Fn−p−1X̂(R,J ) .

But we know that the relation chp1
(
ρ̂!(g)

)
− ♮dcsp0(v̂) = chp(ρ) · chp1(ĝ) actually

holds in the complex X̂(R,J ) = X(R̂). Therefore

chn−p
(
ρ!(ĝ, θ)

)
= chp(ρ) · (chp1(ĝ)− ♮dθ̃) = chp(ρ) · chn(ĝ, θ) ,

and (83) is compatible with the diagram of Theorem 3.13.
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ii) n = 2k is even and p = 2q is even. As in the case of topological K-theory
we pass to the suspensions of A and B. We shall only sketch the procedure.
The multiplicative K-theory group of even degree MKI

n (A ) has an alternative
description in terms of the set MK ′In (A ) of equivalence classes of pairs (ĝ, θ),

where ĝ ∈ (K ⊗̂I ST̂A )+ is an invertible and θ ∈ Xn−1(TA , JA ) is a chain
of odd degree such that csp0(ĝ) = bθ. The equivalence relation is based on a
higher transgression of the Chern-Simons form: (ĝ0, θ0) is equivalent to (ĝ1, θ1)

iff there exists an invertible interpolation ĝ ∈ (K ⊗̂I ST̂A [0, 1])+ and a chain
of even degree λ such that

θ1 − θ0 = cs′p1 (ĝ) + ♮dλ ∈ Xn−1(TA , JA ) ,

where the odd chain cs′p1 (ĝ) ∈ X(T̂A ) is defined modulo ♮d by the higher
transgression formula (see the proof of Lemma 4.6)

bcs′p1 (ĝ) = csp0(ĝ1)− csp0(ĝ0) .

Like MK, one can show that MK ′In (A ) is an abelian group inserted between

HC∗(A ) and Ktop
∗ (I SA ) in an exact sequence. More precisely there is a

commutative diagram with exact rows:

Ktop
1 (I A )

ch1 //

α

��

HCn−1(A )
δ //

×
√

2πi

��

MKI
n (A ) //

��

Ktop
0 (I A )

ch0 //

β

��

HCn−2(A )

×
√

2πi

��
Ktop

0 (I SA )
cs1 // HCn−1(A )

δ // MK′I
n (A ) // Ktop

1 (I SA )
cs0 // HCn−2(A )

Because for even n the group MK ′n is constructed from invertibles, it has odd
parity by convention. The (odd) map MKI

n (A ) → MK ′In (A ) sends a pair
(ê, θ) to (β(ê),

√
2πiθ + lp1(ê)), where β(ê) = (1 + (z − 1)ê)(1 + (z − 1)p0)−1

is the invertible image of ê under the Bott map, and lp1(ê) is the trans-
gressed cochain defined modulo ♮d by b(lp1(ê)) = csp0(β(ê))−

√
2πi chp0(ê). The

map MK ′In (A ) → Ktop
1 (I SA ) is the forgetful map, and HCn−1(A ) →

MK ′In (A ) sends a cycle θ to (1,
√

2πi θ). By the five lemma, MK ′In (A )
is thus isomorphic to MKI

n (A ). One easily checks that the negative Chern
character chn : MK ′In (A ) → HNn(A ) given by chn(ĝ, θ) = csp0(ĝ) − bθ̃ coin-
cides with the negative Chern character on MKI

n (A ) up to a factor
√

2πi.
Hence it suffices to constru ct the pushforward morphism ρ! for the groups
MK ′n, whose elements are represented by invertibles of the suspended alge-
bras:

Ktop
0 (I SA ) //

ρ!

��

HCn−1(A ) //

chp(ρ)

��

MK ′In (A ) //

ρ!

��

Ktop
1 (I SA )

ρ!

��
Ktop
−p (I SB) // HCn−1−p(B) // MK ′In−p(B) // Ktop

1−p(I SB)
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This can be done explicitly as in case i), with the only difference that the Chern
character chp1 and Chern-Simons transgression csp0 are now replaced respectively
by csp0 and the higher transgression cs′p1 . The needed formulas were already
established in i): let g ∈ (I SA )+ be any invertible with canonical lift ĝ ∈
(I ST̂A )+. One can write

chp(ρ) · csp0(ĝ) = csp0(ũ)− bkp1(û)

with the invertibles û = 1 + e ⊗ (ĝ − 1) ∈ (T̂C⊗̂I ST̂A )+ and ũ = û+û
−1
− ∈

(T̂C⊗̂I SR̂)+, and kp1(û) is a chain defined mod ♮d. Let ρ̂!(g) ∈ (I SR̂)+ be

any invertible lift of ρ!(g) = ρ+(g)ρ−(g)−1, and v̂ ∈ (T̂C⊗̂I SR̂[0, 1])+ be an

invertible interpolation between v̂0 = ũ and v̂1 = 1 + ê⊗ (ρ̂!(g)− 1). Then one
has

bcs′p1 (v̂) = csp0(ρ̂!(g))− csp0(ũ) .

Therefore if (ĝ, θ) represents a class in MK ′In (A ) we define its pushforward as
the multiplicative K-theory class over B

ρ!(ĝ, θ) =
(
ρ̂!(g) , chp(ρ) · θ + kp1(û) + cs′p1 (v̂)

)
∈MK ′In−p(B) (86)

with the odd chain chp(ρ) · θ + kp1(û) + cs′p1 (v̂) sitting in Xn−p−1(R,J ). One
shows the consistency of ρ! with the various equivalence relations using the
properties of higher Chern-Simons transgressions. Details are left to the reader.

iii) n = 2k + 1 is odd and p = 2q + 1 is odd. We first establish
an explicit formula for the composition of the topological Chern character
ch2q

1 : Ktop
1 (I A ) → HP1(A ) with the bivariant Chern character chp(ρ) ∈

HCp(A ,B). Remark that I is (2q + 1)-summable by hypothesis hence ch2q
1

is well-defined. As in case i) let g ∈ (I A )+ be an invertible, ĝ ∈ (I T̂A )+ its

canonical lift and û = 1+e⊗ (ĝ−1) ∈ (T̂C⊗̂I T̂A )+ the associated invertible.
Recall that

ch2q
1 (ĝ) =

1√
2πi

Tr♮[2q] û−1dû ∈ Ω1T̂A♮ ,

and the image of Tr♮[2q] û−1dû under the Goodwillie equivalence is the (b+B)-

cycle over T̂A

γ(Tr♮[2q] û−1dû) =
∑

i≥0

(−)ii! Tr[2q] û−1dû(dû−1dû)i .

Now the quasihomomorphism ρ : A → E s ⊲I sB is of odd degree. Hence, the
image of an element x ∈ T̂A under the lifted quasihomomorphism ρ∗ : T̂A →
M̂ s ⊲ I sR̂ is a 2 × 2 matrix over M̂ whose off-diagonal entries lie in I R̂.
Moreover the multiplier F is given by the matrix

F = ε

(
1 0
0 −1

)
= ε(2p0 − 1)
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where ε is the odd generator of the Clifford algebra C1. Thus the commutator
[p0, ρ∗x] lies in the matrix algebra M2(I R̂) for any x ∈ T̂A . On the other

hand, the component of the chain map χ̂pρ∗ : Ω̂T̂A → X(R̂) evaluated on a
p-form x0dx1 . . .dxp reads

−Γ(q + 3
2 )

(p+ 1)!

∑

λ∈Sp+1

ε(λ)τ(ρ∗xλ(0)[F, ρ∗xλ(1)] . . . [F, ρ∗xλ(p)]) ,

where τ(ε·) = −
√

2iTr(·) is the odd supertrace (see section 3). As in case i),

let us extend ρ∗ to a unital homomorphism (T̂C⊗̂I T̂A )+ → (T̂C⊗̂I M̂ s
+)+.

Using Γ(q+ 3
2 ) =

√
π p!/(2pq!) with p = 2q+ 1, one gets by direct computation

chp(ρ) · ch2q
1 (ĝ) =

1

2
Tr[2q] (ũ−1[p0, ũ])p +

1

2
Tr[2q] ([p0, ũ]ũ−1)p

= Tr[2q] (ũ−1[p0, ũ])p − b1

2
Tr♮[2q] (ũ−1[p0, ũ])pũ−1dũ

where ũ = ρ∗û is an invertible element of the algebra (T̂C⊗̂I M̂ s
+)+, and

the commutator [p0, ũ] ∈ M2(T̂C⊗̂I I R̂)+ may be considered as an ele-

ment of M2(T̂C⊗̂I R̂)+ after applying the homomorphism ⊠ : I ⊗̂I → I .
The first term of the r.h.s. is recognized as the higher Chern character
ch2q

0 (f̃) = Tr[2q](f̃ − p0)p given by (70) for the idempotent f̃ = ũ−1p0ũ ∈
M2(T̂C⊗̂I I R̂)+ (or M2(T̂C⊗̂I R̂)+), whence the equality

chp(ρ) · ch2q
1 (ĝ) = ch2q

0 (f̃)− b 1

2
Tr♮[2q] (f̃ − p0)pũ−1dũ

of cycles in X(R̂). Then, observe that the projection of f̃ to the algebra
M2(C⊗̂I B)+ is the idempotent p0 + e ⊗ (ρ(g)−1p0ρ(g) − p0). Using the iso-
morphism (C⊗̂I B)+ ∼= (I B)+, this idempotent may be identified with the

direct image ρ!(g) = ρ(g)−1p0ρ(g). Hence, it is possible to relate ch2q
0 (f̃) with

the Chern character of a given idempotent lift ρ̂!(g) ∈M2(I R̂)+, via a homo-

topy with parameter t ∈ [0, 1]. Let f̂ ∈M2(T̂C⊗̂I R̂[0, 1])+ be an idempotent
path lifting the constant family p0 + e ⊗ (ρ!(g) − p0) and connecting the two
endpoints

f̂0 = f̃ , f̂1 = p0 + ê⊗ (ρ̂!(g)− p0) .

ê ∈ T̂C is the canonical idempotent lift of the unit e ∈ C as in case i). The

lifting f̂ is thus defined up to homotopy (at least after stabilization by the
matrix algebra K ). The property [2q] ê = 1 implies the equality

ch2q
0 (f̂1) = ch2q

0

(
ρ̂!(g)

)
∈ R̂

at the level of cycles. Furthermore, in analogy with Eqs. (71) the Chern-Simons

form associated to the idempotent f̂ is defined by

cs2q1 (f̂) =

∫ 1

0

dtTr♮[2q] (−2f̂ + 1)

q∑

i=0

(f̂ − p0)2i
∂f̂

∂t
(f̂ − p0)2(q−i)df̂ ,
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and fulfills the transgression relation in X(R̂)

bcs2q1 (f̂) = ch2q
0 (f̂1)− ch2q

0 (f̂0) = ch2q
0 (ρ̂!(g))− ch2q

0 (f̃) .

This leads to the definition of the map ρ! on multiplicative K-theory. Let (ĝ, θ)
represent a class in MKI

n (A ) of odd degree n = 2k + 1. By Remark 5.3 we
may suppose that ĝ is the canonical lift of some invertible g ∈ (I A )+, and
θ ∈ Xn−1(TA , JA ) is a transgression of the Chern character ch2q

1 (ĝ) = ♮dθ.
We set

ρ!(ĝ, θ) =
(
ρ̂!(g) , −chp(ρ) · θ + h2q

1 (ũ) + cs2q1 (f̂)
)
∈MKI

n−p(B) (87)

where ρ̂!(g) ∈ M2(I R̂)+ is any idempotent lift of ρ!(g), h2q
1 (ũ) is the chain

1
2Tr♮[2q] (f̃ − p0)pũ−1dũ, and f̂ is an idempotent path constructed as above.
The minus sign in front of chp(ρ) · θ is necessary because the bivariant Chern
character chp(ρ) is of odd degree p = 2q + 1. This ensures the correct trans-
gression relation

b(−chp(ρ) · θ + h2q
1 (ũ) + cs2q1 (f̂))

= chp(ρ) · ch2q
1 (ĝ) + b

1

2
Tr♮[2q] (f̃ − p0)pũ−1dũ + ch2q

0 (ρ̂!(g))− ch2q
0 (f̃)

= ch2q
0 (ρ̂!(g))

in the quotient complex Xn−p−1(R,J ), which shows that ρ!(ĝ, θ) indeed de-
fines an element of MKI

n−p(B). Its class does not dependent on the chosen

idempotent lift ρ̂!(g) nor on the path f̂ , and moreover ρ! is compatible with
the equivalence relation on multiplicative K-theory. We proceed as in case
i) and let (ĝ0, θ0) and (ĝ1, θ1) be two equivalent representatives of a class in

MKI
n (A ), provided with an interpolation ĝ ∈ (I T̂A [0, 1]x)+ and a chain

λ ∈ Xn−1(TA , JA ) such that θ1 − θ0 = cs2q0 (ĝ) + bλ. From Remark 5.3 the
elements ĝ0, ĝ1 and ĝ can be taken as the canonical lifts of g0, g1 ∈ (I A )+

and g ∈ (I A [0, 1]x)+. Denoting by ρ∗û(gi) = ũ(gi) ∈ (T̂C⊗̂I M̂ s
+)+ the

invertible and f̂(gi) ∈M2(T̂C⊗̂I R̂[0, 1]t)
+ the idempotent path associated to

gi, we have to establish the relation

−chp(ρ) · (θ1 − θ0) + h2q
1 (ũ(g1))− h2q

1 (ũ(g0)) + cs2q1 (f̂(g1))− cs2q1 (f̂(g0))

≡ cs2q1
(
ρ̂!(g)

)
mod ♮d

in the complex Xn−p−1(R,J ), where ρ̂!(g) ∈ M2(I R̂[0, 1]x)+ is a choice

of idempotent interpolation between the liftings ρ̂!(gi)’s. As usual, let û =

1 + e ⊗ (ĝ − 1) ∈ (C⊗̂I A [0, 1]x)+ →֒ (T̂C⊗̂I T̂A [0, 1]x)+ be the invertible
identification with ĝ. We know the equality

cs2q0 (ĝ) =
1√
2πi

∫ 1

0

Tr[2q] û−1sû ,
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where s is the de Rham differential on Ω[0, 1]x. Set ω̂ = û−1sû. The computa-
tion of chp(ρ) · cs2q0 (ĝ) involves the formula

γ(Tr[2q] ω̂) =

Tr[2q] ω̂ +
∑

i≥1

(−)i(i− 1)!

i−1∑

j=0

Tr[2q] û−1dû(dû−1dû)jdω̂(dû−1dû)i−j−1 ,

as well as the component of the chain map χ̂pρ∗ evaluated on a (p + 1)-form

x0dx1 . . .dxp+1 over T̂A :

−Γ(q + 3
2 )

(p+ 1)!

p+1∑

i=1

τ♮(ρ∗x0[F, ρ∗x1] . . .d(ρ∗xi) . . . [F, ρ∗xp+1])

Denote as before ũ = ρ∗û the invertible image in (T̂C⊗̂I M̂ s
+[0, 1]x)+, the

associated idempotent f̃ = ũ−1p0ũ ∈ M2(T̂C⊗̂I R̂[0, 1]x)+, and the Maurer-
Cartan form ω̃ = ũ−1sũ. One gets

chp(ρ) (Tr[2q] ω̂) =

−
√

2πi

2
Tr♮[2q]

( 2q∑

i=0

(f̃ − p0)i[p0, ω̃](f̃ − p0)2q−iũ−1dũ+ (f̃ − p0)pdω̃
)
.

Now observe that ũx=0 = ũ(g0) and ũx=1 = ũ(g1), so that after integration

over the current 1√
2πi

∫ 1

x=0
we get the identity (recall chp(ρ) is odd)

−chp(ρ) · cs2q0 (ĝ) + h2q
1 (ũ(g1))− h2q

1 (ũ(g0))

=
1√
2πi

∫ 1

0

chp(ρ) (Tr[2q] ω̂) +
1

2

∫ 1

0

sTr♮[2q] (f̃ − p0)pũ−1dũ

=

∫ 1

0

Tr♮[2q]
( q∑

i=1

(f̃ − p0)2i−1[p0, ω̃](f̃ − p0)2(q−i)+1ũ−1dũ− (f̃ − p0)pdω̃
)

On the other hand, let us calculate the Chern-Simons form associated to the
idempotent f̃ ,

cs2q1 (f̃) =

∫ 1

0

Tr♮[2q] (−2f̃ + 1)

q∑

i=0

(f̃ − p0)2isf̃(f̃ − p0)2(q−i)df̃ ,

in terms of ω̃. Since by definition f̃ = ũ−1p0ũ, the structure equation sf̃ =
[f̃ , ω̃] follows and one finds

cs2q1 (f̃) = −♮d
∫ 1

0

Tr[2q] (f̃ − p0)pω̃

+

∫ 1

0

Tr♮[2q]
( q∑

i=1

(f̃ − p0)2i−1[p0, ω̃](f̃ − p0)2(q−i)+1ũ−1dũ− (f̃ − p0)pdω̃
)
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Thus holds the fundamental relation

−chp(ρ) · cs2q0 (ĝ) + h2q
1 (ũ(g1))− h2q

1 (ũ(g0)) ≡ cs2q1 (f̃) mod ♮d .

Now let f̂ ∈ M2(T̂C⊗̂I R̂[0, 1]x[0, 1]t)
+ be an idempotent interpolation be-

tween f̂t=0 = f̃ and f̂t=1 = p0 + ê ⊗ (ρ̂!(g) − p0), with the property that it

restricts to f̂(g0) for x = 0 and to f̂(g1) for x = 1. The projection of f̂ to
the algebra M2(C⊗̂I B[0, 1]x[0, 1]t)

+ may be chosen constant with respect to
t. In the proof of Lemma 4.6 we established the following identity at any point
(x, t) ∈ [0, 1]2:

∂

∂t

(
Tr♮[2q] (−2f̂ + 1)

q∑

i=0

(f̂ − p0)2isf̂(f̂ − p0)2(q−i)df̂
)

≡ s
(
Tr♮[2q] (−2f̂ + 1)

q∑

i=0

(f̂ − p0)2i
∂f̂

∂t
(f̂ − p0)2(q−i)df̂

)
mod ♮d ,

and integration over the square [0, 1]2 yields

cs2q1 (f̂t=1)− cs2q1 (f̂t=0) ≡ cs2q1 (f̂x=1)− cs2q1 (f̂x=0) mod ♮d .

Since f̂x=0 = f̂(g0) and f̂x=1 = f̂(g1) we calculate, modulo ♮d in the complex
Xn−p−1(R,J )

−chp(ρ) · (θ1 − θ0) + h2q
1 (ũ(g1))− h2q

1 (ũ(g0)) + cs2q1 (f̂(g1))− cs2q1 (f̂(g0))

≡ −chp(ρ) · cs2q0 (ĝ) + h2q
1 (ũ(g1))− h2q

1 (ũ(g0)) + cs2q1 (f̂t=1)− cs2q1 (f̂t=0)

≡ cs2q1 (f̃) + cs2q1 (p0 + ê⊗ (ρ̂!(g)− p0))− cs2q1 (f̃)

≡ cs2q1 (ρ̂!(g)) mod ♮d

as wanted. Hence ρ!(ĝ0, θ0) and ρ!(ĝ1, θ1) are equivalent and the map
ρ! : MKI

n (A )→MKI
n−p(B) for n = 2k+1 and p = 2q+1 is well-defined. Its

compatibility with the map ρ! on topological K-theory is obvious. Concerning
its compatibility with the map chp(ρ) : HCn−1(A ) → HCn−p−1(B), we
should take care of a minus sign which shows that the middle square of (83) is
actually anticommutative; this has to be so because all the maps involved in
this square are of odd degree. Hence the diagram (83) is graded commutative.
The invariance of ρ! with respect to conjugation of quasihomomorphisms
is proved exactly as in case i), by decomposing ρ! as the pushforward map

ϕ! : MKI
n (A )→MKI

n (E s
+) induced by the homomorphism ϕ : T̂A → T̂E s

+,
followed by the map MKI

n (E s
+) → MKI

n−p(B) associated with the natural
p-summable quasihomomorphism of odd degree E s

+ → E s ⊲ I sB. Also the
compatibility with the negative Chern character is easily established.

iv) n = 2k is even and p = 2q + 1 is odd. As in case ii) we pass to
the suspensions of A and B and work with the group MK ′In (A ). Hence a
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multiplicative K-theory class of degree n over A is represented by a pair (ĝ, θ)

of an invertible ĝ ∈ (K ⊗̂I ST̂A )+ and an odd chain θ ∈ Xn−1(TA , JA )
such that cs2q0 (ĝ) = bθ. We are thus led to build a morphism

ρ! : MK ′In (A )→MK ′In−p(B) ,

where the group MK ′In−p(B), for n − p odd, is represented by pairs (ê, θ) of

idempotent ê ∈M2(K ⊗̂I SR̂)+ and chain of even degree θ ∈ Xn−p−1(R,J )

such that cs2q1 (ê) = ♮dθ. Note that the parity of MK ′In−p(B) is even. We
already established the needed formulas in case iii): let g ∈ (I SA )+ be any

invertible with canonical lift ĝ ∈ (I ST̂A )+. One can write

−chp(ρ) · cs2q0 (ĝ) = cs2q1 (f̃)− ♮dk2q
0 (û)

with the invertible û = 1 + e ⊗ (ĝ − 1) ∈ (T̂C⊗̂I ST̂A )+, the idempotent

f̃ = ũ−1p0ũ ∈ M2(T̂C⊗̂I SR̂)+ where ũ = ρ∗û, and the chain k2q
0 (û) =

−
∫ 1

0
Tr[2q] (f̃ − p0)pω̃ where ω̃ = ũ−1sũ. Let ρ̂!(g) ∈ M2(I SR̂)+ be any

idempotent lift of ρ!(g) = ρ(g)−1p0ρ(g), and f̂ ∈ M2(T̂C⊗̂I SR̂[0, 1])+ be an

idempotent interpolation between f̂0 = f̃ and f̂1 = p0 + ê⊗ (ρ̂!(g)− p0). Then
one has by means of the higher transgressions (see the proof of Lemma 4.6)

♮dcs′2q0 (f̂) = cs2q1 (ρ̂!(g))− cs2q1 (f̃) ,

with cs′2q0 (f̂) defined modulo b. Therefore if (ĝ, θ) represents a class in
MK ′In (A ) we define its pushforward as the multiplicative K-theory class over
B

ρ!(ĝ, θ) =
(
ρ̂!(g) , chp(ρ) · θ + k2q

0 (û) + cs′2q0 (f̂)
)
∈MK ′In−p(B) (88)

with the chain chp(ρ) ·θ+k2q
0 (û)+cs′2q0 (f̂) of even degree sitting in the quotient

complex Xn−p−1(R,J ).

Example 6.4 For B = C a quasihomomorphism A → E s ⊲I s induces a map
MKI

n (A ) → MKI
n−p(C). Thus if I is a Schatten ideal on a Hilbert space,

Example 5.6 yields index maps or regulators, depending on the degrees:

MKI
n (A ) → Z if n ≤ p , n ≡ p mod 2 ,

MKI
n (A ) → C× if n > p , n ≡ p+ 1 mod 2 .

7 Assembly maps and crossed products

In this section we illustrate the general theory of secondary characteristic
classes with the specific example of crossed product algebras, and build an
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”assembly map” for multiplicative K-theory modelled on the Baum-Connes
construction [1].

Let A be a unital Fréchet m-algebra and Γ a countable discrete group acting
on A from the right by automorphisms. The action of an element γ ∈ Γ on
a ∈ A reads aγ . We impose the action to be almost isometric in the following
sense: for each submultiplicative seminorm ‖ · ‖α on A there exists a constant
Cα such that

‖aγ‖α ≤ Cα‖a‖α ∀ a ∈ A , γ ∈ Γ . (89)

The algebraic tensor product A ⊗CΓ is identified with the space of A -valued
functions with finite support over Γ. Thus any element of A ⊗ CΓ is a finite
linear combination of symbols aγ∗ with aγ ∈ A and γ ∈ Γ. The star refers to
a contravariant notation. We endow A ⊗CΓ with the crossed product defined
in terms of symbols by

(a1γ
∗
1)(a2γ

∗
2 ) = a1(a2)γ1(γ2γ1)∗ ∀ ai ∈ A , γi ∈ Γ .

The crossed product algebra A ⋊Γ is an adequate completion of the above space
consisting of A -valued functions with “rapid decay” over Γ. This requires to
fix once and for all a right-invariant distance function d : Γ× Γ→ R+. Endow
the space A ⊗ CΓ with the seminorms

‖b‖α,β = Cα
∑

γ∈Γ

σβ(γ)‖b(γ)‖α ∀ b ∈ A ⊗ CΓ ,

where the R+-valued function σβ(γ) := (1 + d(γ, 1))β , for β ≥ 0, fulfills the
property σβ(γ1γ2) ≤ σβ(γ1)σβ(γ2). One easily checks that ‖ · ‖α,β is submulti-
plicative with respect to the crossed product, hence the completion of A ⊗CΓ
for the family of seminorms (‖ · ‖α,β) yields a Fréchet m-algebra A ⋊ Γ.
Multiplicative K-theory classes of A ⋊ Γ may be obtained by adapting the
assembly map construction of [1]. The idea is to replace the noncommutative
space A ⋊ Γ by a more classical space, for which the secondary invariants are
presumably easier to describe. Consider a compact Riemannian manifold M

without boundary, and let P
Γ−→M be a Γ-covering. Γ acts on P from the left

by deck transformations. Denote by

AP := C∞(P ; A )Γ

the algebra of Γ-invariant smooth A -valued functions over P : any function
a ∈ AP verifies a(γ−1 · x) = (a(x))γ , ∀x ∈ P, γ ∈ Γ. Thus AP is the algebra
of smooth sections of a non-trivial bundle with fibre A over M . It can be
represented as a subalgebra of matrices overC∞(M)⊗̂(A ⋊Γ) = C∞(M ; A ⋊Γ)
as follows. Let (Ui), i = 1, . . . ,m be a finite open covering of M trivializing
the bundle P , via a set of sections si : Ui → P and locally constant transition
functions γij : Ui ∩ Uj → Γ:

γijγjk = γik over Ui ∩ Uj ∩ Uk , si(x) = γij · sj(x) ∀x ∈ Ui ∩ Uj .
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Choose a partition of unity ci ∈ C∞(M) relative to this covering: supp ci ⊂ Ui
and

∑m
i=1 ci(x)2 = 1. From these data consider the homomorphism ρ : AP →

Mm(C∞(M)⊗̂(A ⋊ Γ)) sending an element a ∈ AP to the m×m matrix ρ(a)
whose components, as (A ⋊ Γ)-valued functions over M , read

ρ(a)ij(x) := ci(x)cj(x)a(si(x))γ∗ji ∀ i, j = 1, . . . ,m , ∀x ∈M .

Of course ρ depends on the choice of trivialization (Ui, si) and partition of unity
(ci), but different choices are related by conjugation in a suitably large matrix
algebra. Indeed, if (U ′α, s

′
α), α = 1, . . . , µ denotes another trivialization with

transition functions γ′αβ and partition of unity (c′α), we get a corresponding

homomorphism ρ′ : AP → Mµ(C∞(M)⊗̂(A ⋊ Γ)). Introduce the rectangular
matrices u, v over C∞(M)⊗̂(A ⋊ Γ) with components

uiα(x) = ci(x)c′α(x)γ∗αi , vαi(x) = c′α(x)ci(x)γ∗iα ,

(recall A is unital by hypothesis hence CΓ ⊂ A ⋊ Γ), where the mixed transi-
tion functions γiα, γαi are defined by si(x) = γiα · s′α(x) and s′α(x) = γαi · si(x)
for any x ∈ Ui ∩U ′α. Then uv and vu are idempotent square matrices, and for
any element a ∈ AP one has ρ(a) = uρ′(a)v and ρ′(a) = vρ(a)u. Moreover,
the invertible square matrix of size m+ µ

W =

(
1− uv −u
v 1− vu

)
, W−1 =

(
1− uv u
−v 1− vu

)

verifies W−1
(
ρ(a) 0

0 0

)
W =

( 0 0
0 ρ′(a)

)
, which shows that the homomorphisms ρ

and ρ′ are stably conjugate.
In order to get a quasihomomorphism from AP to A ⋊ Γ, we need a K-cycle
for the Fréchet algebra C∞(M) (see Example 3.3). By a standard procedure
[4, 5], such a K-cycle D may be constructed from an elliptic pseudodifferential
operator or a Toeplitz operator over M . We shall suppose that D is of parity p
mod 2, and of summability degree p+1 (even case) or p (odd case). Hence (see
Example 3.3) in the even case one has an infinite-dimensional separable Hilbert
space H with two continuous representations C∞(M) ⇉ L = L (H) which
agree modulo the Schatten ideal I = L p+1(H), whereas in the odd case the
algebra C∞(M) is represented in the matrix algebra

(
L I
I L

)
with I = L p(H).

Therefore, upon choosing an isomorphism H ∼= H⊗̂Cm the composition of
ρ : AP →Mm(C∞(M)⊗̂(A ⋊Γ)) with the Hilbert space representation induced
by the K-cycle D leads to a quasihomomorphism of parity p mod 2

ρD : AP → E s ⊲I s⊗̂(A ⋊ Γ) ,

with intermediate algebra E = L ⊗̂(A ⋊Γ) (or (L ⋉I )⊗̂(A ⋊Γ), see Example
3.4). Note that L and I may be replaced by other suitable operator algebras,
if needed. From the discussion above we see that ρD depends only on D up
to conjugation by an invertible element W ∈ E s

+. Taking into account the
Chern characters in negative and periodic cyclic homology, the Riemann-Roch-
Grothendieck Theorem 6.3 thus yields cube diagrams of the following kind:
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Corollary 7.1 A K-cycle D over C∞(M) as above yields for any integer
n ∈ Z a commutative diagram

Ktop
n (I AP ) //

��

Ktop
n−p(I (A ⋊ Γ))

��

MKI
n (AP )

??��������
//

��

MKI
n−p(A ⋊ Γ)

??��������

��

HPn(AP ) // HPn−p(A ⋊ Γ)

HNn(AP )

??���������
// HNn−p(A ⋊ Γ)

??��������

where the horizontal arrows are induced by the quasihomomorphism ρD : AP →
E s ⊲I s⊗̂(A ⋊ Γ).

The background square describes the topological side of the Riemann-Roch-
Grothendieck theorem, namely the compatibility between the push-forward
in topological K-theory and the bivariant Chern character in periodic cyclic
homology. One may choose D as a representative of the fundamental class in
the K-homology of M . If moreover M is a model for the classifying space BΓ,
one may choose P as the universal bundle EΓ. For torsion-free groups Γ the
morphism Ktop

n (I AP ) → Ktop
n−p(I (A ⋊ Γ)) thus obtained is related to the

Baum-Connes assembly map [1] and exhausts many (in some cases, all the)
interesting topological K-theory classes of A ⋊ Γ.
The foreground square provides a lifting of the topological situation at the
level of multiplicative K-theory and negative cyclic homology, i.e. secondary
characteristic classes. Hence a part of MKI

∗ (A ⋊ Γ) may be obtained by
direct images of multiplicative K-theory over AP . Note that in contrast to the
topological situation, the push-forward map in multiplicative K-theory does
not exhaust all the interesting classes over A ⋊ Γ.

Let us now deal with the case A = C∞(N), for a compact smooth Riemannian
manifold N , endowed with a left action of Γ by diffeomorphisms. We provide
A with its usual Fréchet topology, and condition (89) forces the Γ-action be
”almost isometric” on N . The crossed product A ⋊ Γ is then isomorphic to a
certain convolution algebra of functions over the smooth étale groupoid Γ⋉N ,
describing a highly noncommutative space when the action of Γ is not proper.
The commutative algebra AP is the subalgebra of smooth Γ-invariant func-
tions a ∈ C∞(P × N), a(γ · x, γ · y) = a(x, y) for any (x, y) ∈ P × N , and is
thus isomorphic to the algebra of smooth functions over the (compact) quotient
manifold Q = Γ\(P ×N).
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The problem is therefore reduced to the computation of secondary invariants
for the classical space Q. The cyclic homology of AP = C∞(Q) has been de-
termined by Connes [4] and is computable from the de Rham complex of differ-
ential forms over Q. We will see that the multiplicative K-theory MKI

∗ (AP )
is closely related (though not isomorphic) to Deligne cohomology. We first
recall some definitions. Let Ωn(Q) denote the space of complex, smooth dif-
ferential n-forms over Q, d the de Rham coboundary, ZndR(Q) = Ker(d : Ωn →
Ωn+1) the space of closed n-forms and BndR(Q) = Im(d : Ωn−1 → Ωn) the
space of exact n-forms. By de Rham’s theorem, the de Rham cohomology
Hn

dR(Q) = ZndR(Q)/BndR(Q) is isomorphic to the Čech cohomology of Q with
complex coefficients Ȟn(Q; C). For any half-integer q we define the additive
group Z(q) := (2πi)qZ ⊂ C (the square root of 2πi must be chosen consistentl
y with the Chern character on Ktop

1 ). Let Ωk denote the sheaf of differential
k-forms over Q and consider for any n ∈ N the complex of sheaves

0 −→ Z(n/2) −→ Ω0 d−→ Ω1 d−→ . . .
d−→ Ωn−1 −→ 0 (90)

where the constant sheaf Z(n/2) sits in degree 0 and Ωk in degree k +
1. The map Z(n/2) → Ω0 is induced by the natural inclusion of con-
stant functions into complex-valued functions. By definition the (smooth)
Deligne cohomology Hn

D(Q; Z(n/2)) is the hyperhomology of (90) in degree
n. The natural projection onto the constant sheaf Z(n/2) yields a well-
defined map from Hn

D(Q; Z(n/2)) to the Čech cohomology with integral co-
efficients Ȟn(Q; Z(n/2)). On the other extreme, the de Rham coboundary
d : Ωn−1 → Ωn sends a Deligne n-cocycle to a globally defined closed n-form
over Q, called its curvature, which only depends on the Deligne cohomology
class. It follows from the definitions that the image of the curvature in de Rham
cohomology coincides with the complexification of the Čech cohomology class
of the Deligne cocycle. One thus gets a commutative diagram in any degree n

Hn
D(Q; Z(n/2)) //

d

��

Ȟn(Q; Z(n/2))

⊗C

��
ZndR(Q) // Hn

dR(Q)

(91)

This has to be compared with the commutative square involving the multi-
plicative and topological K-theories of the algebra AP = C∞(Q), with their
Chern characters:

MKI
n (AP ) //

��

Ktop
n (I AP )

��
HNn(AP ) // HPn(AP )

(92)

In fact one can construct, at least in low degrees n, an explicit transformation
from Deligne cohomology to multiplicative K-theory, and the curvature mor-
phism captures the lowest degree part of the negative Chern character. Let
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us explain this with some details. Firstly, it is well-known that the bottom
line of (91) is included as a direct summand in the bottom line of (92). Since
we deal essentially with the X-complex description of cyclic homology (sec-
tion 2), we recall how the latter is related to the de Rham cohomology of Q.
Choose the universal free extension 0→ JAP → TAP → AP → 0. The cyclic
homology of AP is computed by the X-complex X(T̂AP ) of the pro-algebra

T̂AP = lim←−n TAP/(JAP )n, together with its filtration by the subcomplexes

FnX̂(TAP , JAP ). As a pro-vector space, X(T̂AP ) is isomorphic to the com-

pleted space of noncommutative differential forms Ω̂AP , and the JAP -adic
filtration coincides with the Hodge filtration FnΩ̂AP . A canonical chain map
X(T̂AP )→ Ω∗(Q) is given by projecting noncommutative differential forms to
commutative ones, up to a rescaling:

ΩnAP ∋ a0da1 . . . dan → λna0da1 . . . dan ∈ Ωn(Q)

with λn = (−)k k!
(2k)! if n = 2k and λn = (−)k k!

(2k+1)! if n = 2k + 1. These

factors are fixed in order to get exactly a chain map. Clearly it sends the
Hodge filtration of Ω̂AP onto the natural filtration by degree on Ω∗(Q). The
following proposition is a reformulation of Connes’ version of the Hochschild-
Kostant-Rosenberg theorem [4].

Proposition 7.2 The chain map X(T̂AP ) → Ω∗(Q) is a homotopy equiva-
lence compatible with the filtrations. Hence follow the isomorphisms

HPn(AP ) =
⊕

k∈Z

Hn+2k
dR (Q) ,

HCn(AP ) =
Ωn(Q)

BndR(Q)
⊕
⊕

k<0

Hn+2k
dR (Q) , (93)

HNn(AP ) = ZndR(Q)⊕
⊕

k>0

Hn+2k
dR (Q) .

Of course the injections ZndR(Q) → HNn(AP ) and Hn
dR(Q) → HPn(AP ) are

compatible with the forgetful maps ZndR(Q) → Hn
dR(Q) and HNn(AP ) →

HPn(AP ). It is useful to calculate the image of the Chern character of

idempotents and invertibles under the chain map X(T̂AP ) → Ω∗(Q). Let
e ∈ M2(K ⊗̂AP )+ be an idempotent such that e− p0 ∈ M2(K ⊗̂AP ), and let

ê ∈ M2(K ⊗̂T̂AP )+ be its canonical lift. The image of the Chern character

ch0(ê) = Tr(ê− p0) ∈ X(T̂AP ) is the differential form of even degree

chdR(e) = Tr(e− p0) +
∑

k≥1

(−)k

k!
Tr((e− 1

2
)(dede)k) ∈ Ω+(Q) .

Let g ∈ (K ⊗̂AP )+ be an invertible such that g − 1 ∈ K ⊗̂AP , and let ĝ ∈
(K ⊗̂T̂AP )+ be its canonical lift. The image of the Chern character ch1(ĝ) =
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1√
2πi
♮ĝ−1dĝ ∈ X(T̂AP ) is the differential form of odd degree

chdR(g) =
1√
2πi

∑

k≥0

(−)k
k!

(2k + 1)!
Tr(g−1dg(dg−1dg)k) ∈ Ω−(Q) .

We now construct explicit morphisms Hn
D(Q; Z(n/2))→MKI

n (AP ) in degrees
n = 0, 1, 2. In fact the ideal I is irrelevant and the previous morphisms factor
through the multiplicative group MKn(AP ) := MKC

n (AP ) associated to the
1-summable algebra C. Then choosing any rank one injection C→ I induces
a unique map MKn(AP )→MKI

n (AP ) by virtue of Lemma 5.5.

n = 0: Then Z(0) = Z and the complex 0 → Z(0) → 0 calculates the Čech
cohomology of Q with coefficients in Z. Hence H0

D(Q; Z(0)) = Ȟ0(Q; Z) is the
additive group of Z-valued locally constant functions over Q. The map

H0
D(Q; Z(0))→MK0(AP ) ∼= Ktop

0 (AP ) (94)

associates to such a function f the K-theory class of the trivial complex vector
bundle of rank f over Q.

n = 1: Then Z(1/2) =
√

2πiZ and H1
D(Q; Z(1/2)) is the hyperhomology in

degree 1 of the complex 0 → Z(1/2)→ Ω0 → 0. Choose a good covering (Ui)
of Q. A Deligne 1-cocycle is given by a collection (fi, nij) of smooth functions
fi : Ui → C and locally constant functions nij : Ui ∩ Uj → Z related by the
descent equations

fi − fj =
√

2πi nij over Ui ∩ Uj , njk − nik + nij = 0 over Ui ∩ Uj ∩ Uk .

The cocycle is trivial if the fi’s are Z(1/2)-valued. Taking the exponentials
gi = exp(

√
2πifi) one gets invertible smooth functions which agree on the

overlaps Ui ∩Uj , hence define a global invertible function g over Q. The latter
is equal to 1 exactly when the cocycle (fi, nij) is trivial. Hence H1

D(Q; Z(1/2))
is the multiplicative group C∞(Q)× of complex-valued invertible functions over
Q. On the other hand, the elements of MK1(AP ) are represented by pairs (ĝ, θ)

of an invertible ĝ ∈ (K ⊗̂T̂AP )+ and a cochain θ ∈ X0(TAP , JAP ) ∼= C∞(Q).
We get a map

H1
D(Q; Z(1/2)) ∼= C∞(Q)× →MK1(AP ) (95)

by sending an invertible g ∈ C∞(Q)× to the multiplicative K-theory class
of (ĝ, 0), with ĝ the canonical lift of g (to be precise one should replace g
by 1 + (g − 1AP ) ∈ (AP )+). This map identifies the curvature morphism
H1

D(Q; Z(1/2)) → Z1
dR(Q) with the lowest degree part of the negative Chern

character ch1 : MK1(AP ) → HN1(AP ). Indeed the curvature of an element
g ∈ C∞(Q)× is by definition the closed one-form

dfi =
1√
2πi

g−1
i dgi =

1√
2πi

g−1dg ∀i ,
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globally defined over Q. But this coincides with the Z1
dR(Q)-component of the

negative Chern character ch1(ĝ, 0).

n = 2: Then Z(1) = 2πiZ and H2
D(Q; Z(1)) is the hyperhomology in degree 2

of the complex 0 → Z(1) → Ω0 → Ω1 → 0. A Deligne cocycle relative to the
finite good covering (Ui), i = 1, . . . ,m is a collection (Ai, fij , nijk) of one-forms
Ai over Ui, smooth functions fij : Ui ∩ Uj → C and locally constant functions
nijk : Ui ∩ Uj ∩ Uk → Z, subject to the descent equations

Ai −Aj = dfij , −fjk + fik − fij = 2πi nijk , njkl − nikl + nijl − nijk = 0 .

Equivalently, passing to the exponentials gij = exp fij a cocycle is a collection
(Ai, gij) such that Ai −Aj = g−1

ij dgij and gijgjk = gik. Two cocycles (Ai, gij)
and (A′i, g

′
ij) are cohomologous iff there exists a collection of smooth invertible

functions (gauge transformations) αi : Ui → C× such that

A′i = Ai + α−1
i dαi , g′ij = αigijα

−1
j .

One sees that a Deligne cohomology class is nothing else but a complex line
bundle over Q, described by the smooth transition functions gij : Ui∩Uj → C×,
together with a connection given locally by the one-forms Ai, up to gauge
transformation. Hence

H2
D(Q; Z(1)) ={isomorphism classes of complex line bundles with connection}

The group law is the tensor product of line bundles with connections. The
curvature morphism H2

D(Q; Z(1)) → Z2
dR(Q) maps a cocycle (Ai, gij) to the

globally defined closed two-form dAi ∀i, i.e. the curvature of the connection of
the corresponding line bundle. The construction of the morphism from Deligne
cohomology to multiplicative K-theory requires to fix a partition of unity (ci)
relative to the finite covering: supp ci ⊂ Ui and

∑
i ci(x)2 = 1 ∀x ∈ Q. Given

a Deligne cocycle (Ai, gij), we construct the idempotent e+ ∈ Mm(C∞(Q)) of
rank 1 whose matrix elements are the functions

(e+)ij = cigijcj ∈ C∞c (Ui ∩ Uj) ,

and let e− = 1AP be the unit of C∞(Q) (the constant function 1 over Q).

Define e ∈ M2(AP )+ as the idempotent matrix
( 1−e− 0

0 e+

)
. The 0th degree of

the Chern character chdR(e) is Tr(e − p0) = Tr(e+) − 1AP = 0, so that the
class of e in Ktop

0 (AP ) is a virtual bundle of rank 0. To get a multiplicative
K-theory class (ê, θ) ∈MK2(AP ), we must adjoin to the canonical idempotent

lift ê ∈ M2(T̂AP )+ an odd cochain θ ∈ X1(TAP , JAP ) ∼= X(AP ). Since AP

is the commutative algebra of smooth functions over a compact manifold, its
X-complex reduces to the de Rham complex of Q truncated in degrees ≥ 2,

X(AP ) : C∞(Q)
d→ Ω1(Q). The fact that e is of virtual rank zero insures that

Documenta Mathematica 13 (2008) 275–363



358 Denis Perrot

any choice of one-form θ ∈ Ω1(Q) satisfies the correct transgression relation
ch0(ê) = bθ = 0 in the complex X(AP ). We s et

θ = −
∑

i

c2iAi ∈ Ω1(Q) .

Lemma 7.3 The assignement (Ai, gij) 7→ (ê, θ) yields a well-defined morphism

H2
D(Q; Z(1))→MK2(AP ) , (96)

and the curvature of (Ai, gij) corresponds to the Z2
dR(Q) component of the

negative Chern character ch2(ê, θ) ∈ HN2(AP ).

Proof: We have to show that the multiplicative K-theory class of (ê, θ) only
depends on the Deligne cohomology class of (Ai, gij). Thus let (A′i, g

′
ij) be

another representative, with A′i = Ai+α−1
i dαi and g′ij = αigijα

−1
j . This yields

a new pair (ê′, θ′) with (e′+)ij = cig
′
ijcj and θ′ = −∑i c

2
iA
′
i. We show that

(ê, θ) and (ê′, θ′) represent the same class in MK2(AP ) by using the following
general fact: if e and e′ = W−1eW are conjugate by an invertible W , then
(ê, θ) is equivalent to (ê′, θ + cs1(f)), where f is the idempotent interpolation
between the matrices

(
e 0
0 p0

)
and

(
W−1eW 0

0 p0

)
constructed as in Lemma 5.5.

One has
cs1(f) ≡ Tr(W−1(e− p0)dW ) mod d in Ω1(Q) ,

so that finally (ê, θ) is equivalent to (ê′, θ+Tr(W−1(e−p0)dW )). In the present
situation g′ij = αigijα

−1
j , hence the idempotent e′+ is conjugate to e+ via the

diagonal matrix W+ = diag (α−1
1 . . . , α−1

m ), and of course e′− = e− = 1AP so
one can choose W− = 1. One calculates

Tr(W−1(e− p0)dW ) = Tr(W−1
+ e+dW+) =

∑

i

αic
2
i d(α−1

i )

= −
∑

i

c2i (A
′
i −Ai) = θ′ − θ ,

hence (ê, θ) and (ê′, θ′) represent the same multiplicative K-theory class.
Now we leave the cocycle (Ai, gij) fixed and change the partition of unity (ci) to
(c′i),

∑
i(c
′
i)

2 = 1, whence a new idempotent (e′+)ij = c′igijc
′
j and a new cochain

θ′ = −∑i(c
′
i)

2Ai. Introduce the matrices uij = cigijc
′
j and vij = c′igijcj . Then

one has e+ = uv, e′+ = vu, and the invertible matrix W+ =
(

1−uv −u
v 1−vu

)
stably

conjugates e+ and e′+ in the sense that W−1
+

(
e+ 0
0 0

)
W+ =

( 0 0
0 e′+

)
. A direct

computation yields

Tr(W−1
+

(
e+ 0
0 0

)
dW+) =

∑

i,j

(c′i)
2c2jgijdgji =

∑

i,j

(c′i)
2c2j(Aj −Ai) = θ′ − θ ,

hence the multiplicative K-theory class of (ê, θ) does not depend on the choice
of partition of unity. A similar argument shows that it does not depend on the
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good covering (Ui).
It remains to calulate the lowest component of the negative Chern character.
By definition ch2(ê, θ) is the cycle of even degree in X(T̂AP ) given by Tr(ê−
p0) − bθ̃, where θ̃ is an arbitrary lifting of θ ∈ X(AP ). Thus, the image of

ch2(ê, θ) under the chain map X(T̂AP ) → Ω∗(Q) has a component of degree
two given by

−Tr((e− 1

2
)dede)− dθ = −

∑

i

d(c2i )Ai + d
∑

i

c2iAi =
∑

i

c2i dAi = dAi ,

and coincides with the curvature of the line bundle (Ai, gij).

If one forgets the connection Ai, the morphism H2
D(Q; Z(1))→MK2(AP ) just

reduces to the elementary map Ȟ2(Q; Z(1)) → Ktop
2 (AP ) which associates to

an isomorphism class of line bundles over Q its topological K-theory class.

Example 7.4 The simplest non-trivial example is provided by the celebrated
non-commutative torus [3]. Here A is the algebra of smooth functions over the
circle N = S1 = Z\R. Conventionnally we parametrize the points of N by the
variable y. The group Γ = Z acts on N by rotations of angle α ∈ R:

y 7→ y + nα ∀ y ∈ N , n ∈ Z .

When Z is provided with its natural distance, the crossed product A ⋊Z is iso-
morphic to the algebra Aα of the non-commutative torus, presented for example
in [3] by generators and relations: let V1 ∈ A be the function V1(y) = e2πiy

over N and V2 = 1∗ ∈ CZ be the element corresponding to the generator 1 ∈ Z.
Then V1 and V2 are invertible elements of Aα and fulfill the noncommutativity
relation

V2V1 = e2πiαV1V2 . (97)

Moreover any element of Aα is a power series
∑

(n1,n2)∈Z2 an1n2V
n1
1 V n2

2 with
coefficients an1n2 ∈ C of rapid decay. For α ∈ Q this algebra is Morita equiv-
alent to the smooth functions over an ordinary (commutative) 2-torus, and its
multiplicative K-theory in any degree turns out to be completely determined by
Deligne cohomology in this case. The situation is more interesting for α /∈ Q.
Following the discussion above we introduce the universal principal Z-bundle
P = EZ = R over the classifying space M = BZ = Z\R. Conventionnally we
parametrize the points of P by the variable x. Thus, AP = C∞(P ; A )Z is the
mapping torus algebra

AP = {a ∈ C∞(P ×N) | a(x+ 1, y + α) = a(x, y) , ∀ x ∈ P , y ∈ N} .

Equivalently it is the algebra of smooth functions over the commutative 2-torus
Q = Z\(P × N), quotient of R2 by the lattice generated by the vectors (1, α)
and (0, 1). Now to get a quasihomomorphism from AP to Aα we need a K-cycle

Documenta Mathematica 13 (2008) 275–363



360 Denis Perrot

D for the circle manifold M . Let H = L2(M) be the Hilbert space of square-
integrable complex-valued functions. The algebra C∞(M) is represented in
the algebra of bounded operators L (H) by pointwise multiplication. D will
be represented by the Toeplitz operator in L (H) which projects H onto the
Hardy space H+ ⊂ H :

D(e2πi nx) =

{
e2πinx if n ≥ 0
0 if n < 0

One thus obtains a polarization of the Hilbert space H = H+ ⊕ H−, with
H− the kernel of D. In the Fourier basis e2πinx of H , the representation
C∞(M)→ L (H) is easily seen to factor through the matrix subalgebra

(
T K
K T

)
⊂
(

L (H+) L (H−, H+)
L (H+, H−) L (H−)

)
= L (H) ,

where T is the smooth Toeplitz algebra (the elementary non-trivial extension of
C∞(S1) by th ealgebra K of smooth compact operators, see [9] ). The induced
quasihomomorphism ρD : AP → E s ⊲K s⊗̂Aα, with E = T ⊗̂Aα, is therefore
1-summable and of odd parity. Theorem 6.3 yields a graded-commutative dia-
gram (remark that MKK

n
∼= MKn)

Ktop
n+1(AP ) //

��

HCn−1(AP ) //

ch1(ρD)

��

MKn(AP ) //

��

Ktop
n (AP )

��
Ktop
n (Aα) // HCn−2(Aα) // MKn−1(Aα) // Ktop

n−1(Aα)

(98)

in any degree n ∈ Z. The group Ktop
n (AP ) is isomorphic to the topological K-

theory of the 2-torus Q. Hence in even degree, Ktop
0 (AP ) = Z⊕Z is generated

by the trivial line bundle over Q together with the Bott class, whereas in odd
degree Ktop

1 (AP ) = Z ⊕ Z is generated by the invertible functions g1(x, y) =
e2πi x and g2(x, y) = e2πi(αx−y). The pushforward mapKtop

n (AP )→ Ktop
n−1(Aα)

is known to be an isomorphism (Baum-Connes). In particular the Bott class
and the trivial line bundle over Q are mapped respectively to the classes of the
invertible elements V1 and V2 in Ktop

1 (Aα). For multiplicative K-theory the
situation is more involved. In degree n = 1 the map

MK1(AP ) ∼= H1
D(Q; Z(1/2)) ∼= C∞(Q)× →MK0(Aα) ∼= Ktop

0 (Aα)

simply factors through the topological K-theory group Ktop
1 (AP ). In degree

n = 2 one still has an isomorphism MK2(AP ) ∼= H2
D(Q; Z(1)), and (98)

amounts to

Ktop
1 (AP )

ch1 //

��

Ω1(Q)
dΩ0(Q)

//

ch1(ρD)

��

H2
D(Q; Z(1)) //

��

Ktop
0 (AP )

��
Ktop

0 (Aα) // HC0(Aα) // MK1(Aα) // Ktop
1 (Aα) // 0

(99)
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The map Ω1/dΩ0 → H2
D(Q; Z(1)) associates to a one-form 1√

2πi
A over Q the

isomorphism class of the trivial line bundle with connection −A, while the
range of H2

D(Q; Z(1))→ Ktop
0 (AP ) is generated by the Bott class. For generic

values of α /∈ Q the commutator subspace [Aα,Aα] may not be closed in
Aα, therefore the quotient HC0(Aα) = HH0(Aα) = Aα/[Aα,Aα] may not be
separated. However the quotient HC0(Aα) by the closure of the commutator
subspace turns out to be isomorphic to C, via the canonical trace

Aα → C , V n1
1 V n2

2 7→
{

1 if n1 = n2 = 0 ,
0 otherwise .

With these identifications the evaluation of the Chern character ch1(ρD) :
Ω1/dΩ0 → HC0(Aα) ∼= C on a one-form A = Axdx+Aydy is easily performed
and one finds

ch1(ρD)

(
A√
2πi

)
=

1

2πi

∫ 1

0

dy

∫ 1

0

dxAx(x, y) .

In particular ch1(ρD) · ch1(g1) = 1 and ch1(ρD) · ch1(g2) = α, and one recovers
the well-known fact ([4]) that the image of Ktop

0 (Aα) in HC0(Aα) is the sub-
group Z + αZ ⊂ C.
We may analogously define a new multiplicative K-theory group MK1(Aα)
whose elements are represented by pairs (ĝ, θ) with θ ∈ C instead of θ ∈
Aα/[Aα,Aα]. Because Ktop

1 (Aα) is generated by the invertibles V1 and V2 any
class in MK1(Aθ) is represented by a pair (V n1

1 V n2
2 , θ) for some integers n1, n2

and a complex number θ. Using a homotopy one shows that this pair is equiv-

alent to (e−
√

2πiθV n1
1 V n2

2 , 0), and by exactness MK1(Aα) is the quotient of
the multiplicative group C×〈V1〉〈V2〉 ⊂ GL1(Aα) by its commutator subgroup
〈e2πiα〉 ⊂ C×, or equivalently the abelianization

MK1(Aα) = (C×〈V1〉〈V2〉)ab . (100)

Since the Bott class of K0(AP ) is sent to [V1] ∈ Ktop
1 (Aα), one sees that the

range of H2
D(Q; Z(1))→MK1(Aα) coincides with the subgroup C×〈V1〉.
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Abstract. Let E be aW ∗-
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e over a von Neumann alge-braM and let H∞(E) be the asso
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1 IntroductionLet M be a W ∗-algebra and let E be a W ∗-
orresponden
e overM . In [31℄ webuilt an operator algebra from this data that we 
alled the Hardy algebra of Eand whi
h we denoted H∞(E). If M = E = C - the 
omplex numbers, then
H∞(E) is the 
lassi
al Hardy algebra 
onsisting of all bounded analyti
 fun
-tions on the open unit dis
, D (see Example 2.4 below.) If M = C again, but
E = Cn, then H∞(E) is the free semigroup algebra Ln studied by Davidsonand Pitts [17℄, Popes
u [32℄ and others (see Example 2.5.) One of the prin
ipaldis
overies made in [31℄, and the sour
e of inspiration for the present paper, isthat atta
hed to ea
h faithful normal representation σ ofM there is a dual 
or-responden
e Eσ, whi
h is a W ∗-
orresponden
e over the 
ommutant of σ(M),
σ(M)′, and the elements of H∞(E) de�ne fun
tions on the open unit ball of
Eσ, D(Eσ). Further, the value distribution theory of these fun
tions turns outto be linked through our generalization of the Nevanlinna-Pi
k interpolationtheorem [31, Theorem 5.3℄ with the positivity properties of 
ertain Pi
k-likekernels of mappings between operator spa
es.In the setting where M = E = C and σ is the 1-dimensional representation of
C on itself, then Eσ is C again. The representation of H∞(E) in terms of fun
-tions on D(Eσ) = D is just the usual way we think of H∞(E). In this setting,our Nevanlinna-Pi
k theorem is exa
tly the 
lassi
al theorem. If, however, σis a representation of C on a Hilbert spa
e H , dim(H) > 1, then Eσ may beidenti�ed with B(H) and then D(Eσ) be
omes the spa
e of stri
t 
ontra
tionson H , i.e., all those operators of norm stri
tly less than 1. In this 
ase, thevalue of an f ∈ H∞(E) at a T ∈ D(E

σ
) is simply f(T ), de�ned through theusual holomorphi
 fun
tional 
al
ulus. Our Nevanlinna-Pi
k theorem gives asolution to problems su
h as this: given k operators T1, T2, . . . , Tk all of normless than 1 and k operators, A1, A2, . . . , Ak, determine the 
ir
umstan
es underwhi
h one 
an �nd a bounded analyti
 fun
tion f on the open unit dis
 of supnorm at most 1 su
h that f(Ti) = Ai, i = 1, 2, . . . , k (See [31, Theorem 6.1℄.)On the other hand, when M = C, E = Cn, and σ is one dimensional, thespa
e Eσ is Cn and D(Eσ) is the unit ball Bn. Elements in H∞(E) = Lnare realized as holomorphi
 fun
tions on Bn that lie in a multiplier spa
e stud-ied in detail by Arveson [5℄. More a

urately, the fun
tional representation of

H∞(E) = Ln in terms of these fun
tions expresses this spa
e as a quotient of
H∞(E) = Ln. The Nevanlinna-Pi
k theorem of [31℄ 
ontains those of David-son and Pitts [18℄, Popes
u [34℄, and Arias and Popes
u [4℄, whi
h deal withinterpolation problems for these spa
es of fun
tions (possibly tensored with thebounded operators on an auxiliary Hilbert spa
e). It also 
ontains some of theresults of Constanines
u and Johnson in [16℄ whi
h treats elements of Ln asfun
tions on the ball of stri
t row 
ontra
tions with values in the operators ona Hilbert spa
e. (See their Theorem 3.4 in parti
ular.) This situation ariseswhen one takes M = C and E = Cn, but takes σ to be s
alar multipli
ationon an auxiliary Hilbert spa
e.Our obje
tive in the present note is basi
ally two fold. First, we wish to identify
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Schur Class Operator Functions . . . 367those fun
tions on D(E
σ
) that arise from evaluating elements of H∞(E). Forthis purpose, we introdu
e a family of fun
tions on D(E

σ
) that we 
all S
hur
lass operator fun
tions (see De�nition 3.1). Roughly speaking, these fun
tionsare de�ned so that a Pi
k-like kernel that one may atta
h to ea
h one is 
om-pletely positive de�nite in the sense of Barreto, Bhat, Liebs
her and Skeide[14℄. In Theorem 3.3 we use their Theorem 3.2.3 to give a Kolmogorov-typerepresentation of the kernel, from whi
h we derive an analogue of a unitarysystem matrix ( A B

C D

) whose transfer fun
tion
A+B(I − L∗ηD)−1L∗ηCturns out to be the given S
hur 
lass operator fun
tion. We then prove inTheorem 3.6 that ea
h su
h transfer fun
tion arises by evaluating an elementin H∞(E) at points of D(Eσ) and 
onversely, ea
h fun
tion in H∞(E) has arepresentation in terms of a transfer fun
tion. The meaning of the notation willbe made pre
ise below, but we use it here to highlight the 
onne
tion betweenour analysis and realization theory as it 
omes from mathemati
al systemstheory. The point to keep in mind is that fun
tions on D(Eσ) that 
ome fromelements of H∞(E) are not, a priori, analyti
 in any ordinary sense and it isnot at all 
lear what analyti
 features they have. Our Theorems 3.1 and 3.6together with [31, Theorem 5.3℄ show that the S
hur 
lass operator fun
tionsare pre
isely the fun
tions one obtains when evaluating fun
tions in H∞(E)(of norm at most 1) at points of D(Eσ). The fa
t that ea
h su
h fun
tion maybe realized as a transfer fun
tion exhibits a surprising level of analyti
ity thatis not evident in the de�nition of H∞(E).Our se
ond obje
tive is to 
onne
t the usual holomorphi
 properties of D(Eσ)with the automorphisms of H∞(E). As a spa
e, D(Eσ) is the unit ball of a

J∗-triple system. Consequently, every holomorphi
 automorphism of D(Eσ) isthe 
omposition of a Möbius transformation and a linear isometry [20℄. Ea
hof these implements an automorphism of the algebra of all bounded, 
omplex-valued analyti
 fun
tions on D(Eσ), but in our setting only 
ertain of themimplement automorphisms of H∞(E) - those for whi
h the Möbius part isdetermined by a �
entral� element of Eσ (see Theorem 4.21). Our proof requiresthe fa
t that the evaluation of fun
tions inH∞(E) (of norm at most 1) at pointsof D(Eσ) are pre
isely the S
hur 
lass operator fun
tions on D(Eσ). Indeed, thewhole analysis is an intri
ate �point - 
ounterpoint� interplay among elementsof H∞(E), S
hur 
lass fun
tions, transfer fun
tions and �
lassi
al� fun
tiontheory on D(Eσ). In the last se
tion, we apply our general analysis of theautomorphisms of H∞(E) to the spe
ial 
ase of H∞-algebras 
oming fromdire
ted graphs.In 
on
luding this introdu
tion, we want to note that a preprint of the presentpaper was posted on the arXiv on June 27, 2006. Re
ently, inspired in partby our preprint, Ball, Biswas, Fang and ter Horst [8℄ were able to realize theFo
k spa
e that we des
ribe here in terms of the theory of 
ompletely positivede�nite kernels advan
ed by Barreto, Bhat, Liebs
her and Skeide [14℄ that we
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368 Paul S. Muhly and Baruch Solelalso use (See Se
tion 3 and, in parti
ular, the proof of Theorem 3.3.) Theanalysis of Ball et al. makes additional ties between the theory of abstra
tHardy algebras that we develop here and 
lassi
al fun
tion theory on the unitdis
.
2 PreliminariesWe start by introdu
ing the basi
 de�nitions and 
onstru
tions. We shall followLan
e [24℄ for the general theory of Hilbert C∗-modules that we shall use. Let
A be a C∗-algebra and E be a right module over A endowed with a bi-additivemap 〈·, ·〉 : E × E → A (referred to as an A-valued inner produ
t) su
h that,for ξ, η ∈ E and a ∈ A, 〈ξ, ηa〉 = 〈ξ, η〉a, 〈ξ, η〉∗ = 〈η, ξ〉, and 〈ξ, ξ〉 ≥ 0, with
〈ξ, ξ〉 = 0 only when ξ = 0. Also, E is assumed to be 
omplete in the norm
‖ξ‖ := ‖〈ξ, ξ〉‖1/2. We write L(E) for the spa
e of 
ontinuous, adjointable,
A-module maps on E. It is known to be a C∗-algebra. If M is a von Neumannalgebra and if E is a Hilbert C∗-module overM , then E is said to be self-dual in
ase every 
ontinuousM -module map from E toM is given by an inner produ
twith an element of E. Let A and B be C∗-algebras. A C∗-
orresponden
e from
A to B is a Hilbert C∗-module E over B endowed with a stru
ture of a leftmodule over A via a nondegenerate ∗-homomorphism ϕ : A→ L(E).When dealing with a spe
i�
 C∗-
orresponden
e, E, from a C∗-algebra A to a
C∗-algebra B, it will be 
onvenient sometimes to suppress the ϕ in formulasinvolving the left a
tion and simply write aξ or a · ξ for ϕ(a)ξ. This should
ause no 
onfusion in 
ontext.If E is a C∗-
orresponden
e from A to B and if F is a 
orresponden
e from
B to C, then the balan
ed tensor produ
t, E ⊗B F is an A,C-bimodule that
arries the inner produ
t de�ned by the formula

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉E⊗BF := 〈η1, ϕ(〈ξ1, ξ2〉E)η2〉FThe Hausdor� 
ompletion of this bimodule is again denoted by E ⊗B F .In this paper we deal mostly with 
orresponden
es over von Neumann algebrasthat satisfy some natural additional properties as indi
ated in the followingde�nition. (For examples and more details see [31℄).
Definition 2.1 LetM and N be von Neumann algebras and let E be a Hilbert
C∗-module over N . Then E is 
alled a Hilbert W ∗-module over N in 
ase E isself-dual. The module E is 
alled a W ∗-
orresponden
e fromM to N in 
ase Eis a self-dual C∗-
orresponden
e from M to N su
h that the ∗-homomorphism
ϕ : M → L(E), giving the left module stru
ture on E, is normal. If M = Nwe shall say that E is a W ∗-
orresponden
e over M .We note that if E is a Hilbert W ∗-module over a von Neumann algebra, then
L(E) is not only a C∗-algebra, but is also a W ∗-algebra. Thus it makes senseto talk about normal homomorphisms into L(E).
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Schur Class Operator Functions . . . 369
Definition 2.2 An isomorphism of a W ∗-
orresponden
e E1 over M1 anda W ∗-
orresponden
e E2 over M2 is a pair (σ,Ψ) where σ : M1 → M2 isan isomorphism of von Neumann algebras, Ψ : E1 → E2 is a ve
tor spa
eisomorphism preserving the σ-topology and for e, f ∈ E1 and a, b ∈ M1, wehave Ψ(aeb) = σ(a)Ψ(e)σ(b) and 〈Ψ(e),Ψ(f)〉 = σ(〈e, f〉).When 
onsidering the tensor produ
t E ⊗M F of two W ∗-
orresponden
es,one needs to take the 
losure of the C∗-tensor produ
t in the σ-topology of[6℄ in order to get a W ∗-
orresponden
e. However, we will not distinguishnotationally between the C∗-tensor produ
t and the W ∗-tensor produ
t. Notealso that given aW ∗-
orresponden
e E overM and a Hilbert spa
eH equippedwith a normal representation σ of M , we 
an form the Hilbert spa
e E ⊗σ Hby de�ning 〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉)h2〉. Thus, H is viewed as a
orresponden
e from M to C via σ and E ⊗σ H is just the tensor produ
t of
E and H as W ∗-
orresponden
es.Note also that, given an operator X ∈ L(E) and an operator S ∈ σ(M)′, themap ξ ⊗ h 7→ Xξ ⊗ Sh de�nes a bounded operator on E ⊗σ H denoted by
X ⊗ S. The representation of L(E) that results when one lets S = I, is 
alledthe representation of L(E) indu
ed by σ and is often denoted by σE . The
omposition, σE ◦ϕ is a representation ofM whi
h we shall also say is indu
edby σ, but we shall usually denote it by ϕ(·)⊗ I.Observe that if E is a W ∗-
orresponden
e over a von Neumann algebra M ,then we may form the tensor powers E⊗n, n ≥ 0, where E⊗0 is simply Mviewed as the identity 
orresponden
e over M , and we may form the W ∗-dire
t sum of the tensor powers, F(E) := E⊗0 ⊕ E⊗1 ⊕ E⊗2 ⊕ · · · to obtaina W ∗-
orresponden
e over M 
alled the (full) Fo
k spa
e over E. The a
tionsof M on the left and right of F(E) are the diagonal a
tions and, when it is
onvenient to do so, we make expli
it the left a
tion by writing ϕ∞ for it.That is, for a ∈ M , ϕ∞(a) := diag{a, ϕ(a), ϕ(2)(a), ϕ(3)(a), · · · }, where for all
n, ϕ(n)(a)(ξ1 ⊗ ξ2 ⊗ · · · ξn) = (ϕ(a)ξ1) ⊗ ξ2 ⊗ · · · ξn, ξ1 ⊗ ξ2 ⊗ · · · ξn ∈ E⊗n.The tensor algebra over E, denoted T+(E), is de�ned to be the norm-
losedsubalgebra of L(F(E)) generated by ϕ∞(M) and the 
reation operators Tξ,
ξ ∈ E, de�ned by the formula Tξη = ξ ⊗ η, η ∈ F(E). We refer the reader to[28℄ for the basi
 fa
ts about T+(E).
Definition 2.3 ([31℄) Given a W ∗-
orresponden
e E over the von NeumannalgebraM , the ultraweak 
losure of the tensor algebra of E, T+(E), in L(F(E)),is 
alled the Hardy Algebra of E, and is denoted H∞(E).
Example 2.4 If M = E = C, then F(E) 
an be identi�ed with ℓ2(Z+) or,through the Fourier transform, H2(T). The tensor algebra then is isomorphi
to the dis
 algebra A(D) viewed as multipli
ation operators on H2(T) and theHardy algebra is realized as the 
lassi
al Hardy algebra H∞(T).
Example 2.5 If M = C and E = Cn, then F(E) 
an be identi�ed with thespa
e l2(F+

n ), where F+
n is the free semigroup on n generators. The tensor
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370 Paul S. Muhly and Baruch Solelalgebra then is what Popes
u refers to as the �non 
ommutative dis
 algebra�
An and the Hardy algebra is its w∗-
losure. It was studied by Popes
u [32℄ andby Davidson and Pitts who denoted it by Ln [17℄.We need to review some basi
 fa
ts about the representation theory of H∞(E)and of T+(E). See [28, 31℄ for more details.
Definition 2.6 Let E be a W ∗-
orresponden
e over a von Neumann algebra
M . Then:1. A 
ompletely 
ontra
tive 
ovariant representation of E on a Hilbert spa
e

H is a pair (T, σ), where(a) σ is a normal ∗-representation of M in B(H).(b) T is a linear, 
ompletely 
ontra
tive map from E to B(H) that is
ontinuous in the σ-topology of [6℄ on E and the ultraweak topologyon B(H).(
) T is a bimodule map in the sense that T (SξR) = σ(S)T (ξ)σ(R),
ξ ∈ E, and S,R ∈M .2. A 
ompletely 
ontra
tive 
ovariant representation (T, σ) of E in B(H) is
alled isometri
 in 
ase

T (ξ)∗T (η) = σ(〈ξ, η〉) (1)for all ξ, η ∈ E.It should be noted that the operator spa
e stru
ture on E to whi
h De�nition2.6 refers is that whi
h E inherits when viewed as a subspa
e of its linkingalgebra.As we showed in [28, Lemmas 3.4�3.6℄ and in [31℄, if a 
ompletely 
ontra
tive
ovariant representation, (T, σ), of E in B(H) is given, then it determines a
ontra
tion T̃ : E ⊗σ H → H de�ned by the formula T̃ (η ⊗ h) := T (η)h,
η ⊗ h ∈ E ⊗σ H . The operator T̃ intertwines the representation σ on H andthe indu
ed representation σE ◦ ϕ = ϕ(·)⊗ IH on E ⊗σ H ; i.e.

T̃ (ϕ(·) ⊗ I) = σ(·)T̃ . (2)In fa
t we have the following lemma from [31, Lemma 2.16℄.
Lemma 2.7 The map (T, σ)→ T̃ is a bije
tion between all 
ompletely 
ontra
-tive 
ovariant representations (T, σ) of E on the Hilbert spa
e H and 
ontra
tiveoperators T̃ : E⊗σH → H that satisfy equation (2). Given su
h a T̃ satisfyingthis equation, T , de�ned by the formula T (ξ)h := T̃ (ξ ⊗ h), together with σ isa 
ompletely 
ontra
tive 
ovariant representation of E on H. Further, (T, σ)is isometri
 if and only if T̃ is an isometry.
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Schur Class Operator Functions . . . 371The importan
e of the 
ompletely 
ontra
tive 
ovariant representations of E(or, equivalently, the intertwining 
ontra
tions T̃ as above) is that they yieldall 
ompletely 
ontra
tive representations of the tensor algebra. More pre
isely,we have the following.
Theorem 2.8 Let E be a W ∗-
orresponden
e over a von Neumann algebra M .To every 
ompletely 
ontra
tive 
ovariant representation, (T, σ), of E there isa unique 
ompletely 
ontra
tive representation ρ of the tensor algebra T+(E)that satis�es

ρ(Tξ) = T (ξ) ξ ∈ Eand
ρ(ϕ∞(a)) = σ(a) a ∈M.The map (T, σ) 7→ ρ is a bije
tion between the set of all 
ompletely 
ontra
tive
ovariant representations of E and all 
ompletely 
ontra
tive (algebra) repre-sentations of T+(E) whose restri
tions to ϕ∞(M) are 
ontinuous with respe
tto the ultraweak topology on L(F(E)).

Definition 2.9 If (T, σ) is a 
ompletely 
ontra
tive 
ovariant representationof a W ∗-
orresponden
e E over a von Neumann algebra M , we 
all the repre-sentation ρ of T+(E) des
ribed in Theorem 2.8 the integrated form of (T, σ)and write ρ = σ × T .
Remark 2.10 One of the prin
ipal di�
ulties one fa
es in dealing with T+(E)and H∞(E) is to de
ide when the integrated form, σ × T , of a 
ompletely 
on-tra
tive 
ovariant representation (T, σ) extends from T+(E) to H∞(E). Thisproblem arises already in the simplest situation, vis. when M = C = E. In thissetting, T is given by a single 
ontra
tion operator on a Hilbert spa
e, T+(E)�is� the dis
 algebra and H∞(E) �is� the spa
e of bounded analyti
 fun
tionson the dis
. The representation σ×T extends from the dis
 algebra to H∞(E)pre
isely when there is no singular part to the spe
tral measure of the minimalunitary dilation of T . We are not aware of a 
omparable result in our general
ontext but we have some su�
ient 
onditions. One of them is given in thefollowing lemma. It is not a ne
essary 
ondition in general.
Lemma 2.11 [31, Corollary 2.14℄ If ‖T̃‖ < 1 then σ × T extends to a ultra-weakly 
ontinuous representation of H∞(E).In [31℄ we introdu
ed and studied the 
on
epts of duality and of point evaluation(for elements of H∞(E)). These play a 
entral role in our analysis here.
Definition 2.12 Let E be a W ∗-
orresponden
e over a von Neumann algebra
M and let σ : M → B(H) be a faithful normal representation ofM on a Hilbertspa
e H. Then the σ-dual of E, denoted Eσ, is de�ned to be

{η ∈ B(H,E ⊗σ H) | ησ(a) = (ϕ(a)⊗ I)η, a ∈M}.
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372 Paul S. Muhly and Baruch SolelAn important feature of the dual Eσ is that it is a W ∗-
orresponden
e, butover the 
ommutant of σ(M), σ(M)′.
Proposition 2.13 With respe
t to the a
tion of σ(M)′ and the σ(M)′-valuedinner produ
t de�ned as follows, Eσ be
omes a W ∗-
orresponden
e over σ(M)′:For Y and X in σ(M)′, and η ∈ Eσ, X ·η·Y := (I⊗X)ηY , and for η1, η2 ∈ Eσ,
〈η1, η2〉σ(M)′ := η∗1η2.In the following remark we explain what we mean by �evaluating an element of
H∞(E) at a point in the open unit ball of the dual�.
Remark 2.14 The importan
e of this dual spa
e, Eσ, is that it is 
losely re-lated to the representations of E. In fa
t, the operators in Eσ whose norm doesnot ex
eed 1 are pre
isely the adjoints of the operators of the form T̃ for a 
o-variant pair (T, σ). In parti
ular, every η in the open unit ball of Eσ (written
D(Eσ)) gives rise to a 
ovariant pair (T, σ) (with η = T̃ ∗) su
h that σ × Textends to a representation of H∞(E).Given X ∈ H∞(E) we 
an apply the representation asso
iated to η to it. Theresulting operator in B(H) will be denoted by X̂(η∗). Thus

X̂(η∗) = (σ × η∗)(X).In this way, we view every element in the Hardy algebra as a B(H)-valuedfun
tion
X̂ : D(Eσ)∗ → B(H)on the open unit ball of (Eσ)∗. One of our primary obje
tives is to understandthe range of the transform X → X̂ , X ∈ H∞(E).

Example 2.15 Suppose M = E = C and σ the representation of C on someHilbert spa
e H. Then it is easy to 
he
k that Eσ is isomorphi
 to B(H). Fix an
X ∈ H∞(E). As we mentioned above, this Hardy algebra is the 
lassi
al H∞(T)and we 
an identify X with a fun
tion f ∈ H∞(T). Given S ∈ D(Eσ) = B(H),it is not hard to 
he
k that X̂(S∗), as de�ned above, is the operator f(S∗)de�ned through the usual holomorphi
 fun
tional 
al
ulus.
Example 2.16 In [17℄ Davidson and Pitts asso
iate to every element of thefree semigroup algebra Ln (see Example 2.5) a fun
tion on the open unit ball of
Cn. This is a spe
ial 
ase of our analysis when M = C, E = Cn and σ is a onedimensional representation of C. In this 
ase σ(M)′ = C and Eσ = Cn. Note,however, that our de�nition allows us to take σ to be the representation of C onan arbitrary Hilbert spa
e H. If we do so, then Eσ is isomorphi
 to B(H)(n),the nth 
olumn spa
e over B(H), and elements of Ln de�ne fun
tions on theopen unit ball of this spa
e viewed as a 
orresponden
e over B(H) with valuesin B(H). This is the perspe
tive adopted by Constantines
u and Johnson in[16℄. In the analysis of [17℄ it is possible that a non zero element of Ln willgive rise to the zero fun
tion. We shall show in Lemma 3.8 that, by 
hoosingan appropriate H we 
an insure that this does not happen.
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Example 2.17 Part of the re
ent work of Popes
u in [35℄ may be 
ast in ourframework. We will follow his notation. Fix a Hilbert spa
e K, and let E bethe 
olumn spa
e B(K)n. Take, also, a Hilbert spa
e H and let σ : B(K) →
B(K ⊗ H) be the representation whi
h sends a ∈ B(K) to a ⊗ IH . Then,sin
e the 
ommutant of σ(B(K)) is naturally isomorphi
 to B(H), it is easy tosee that Eσ is the 
olumn spa
e over B(H), B(H)n. It follows that D(Eσ) isthe open unit ball in B(H)n. A free formal power series with 
oe�
ients from
B(K) is a formal series F =

∑
α∈F+

n
Aα ⊗ Zα where F+

n is the free semigroupon n generators, the Aα are elements of B(K) and where Zα is the monomialin non
ommuting indeterminates Z1, Z2, . . . , Zn determined by α. If F hasradius of 
onvergen
e equal to 1, then one may evaluate F at points of D(Eσ)∗to get a fun
tion on D(Eσ)∗ with values in B(K⊗H), vis., F ((S1, S2, · · ·Sn)) =∑
α∈F+

n
Aα ⊗ Sα. See [35, Theorem 1.1℄. In fa
t, under additional restri
tionson the 
oe�
ients Aα, F may be viewed as a fun
tion X in H∞(B(K)n) in su
ha way that F ((S1, S2, · · ·Sn)) = X̂(S1, S2, · · ·Sn) in the sense de�ned in [31, p.384℄ and dis
ussed above in Remark 2.14. The spa
e that Popes
u denotes by

H∞(B(X )n1 ) arises when K = C, and is naturally isometri
ally isomorphi
 to
Ln [35, Theorem 3.1℄. We noted in the pre
eding example that Ln is H∞(Cn).The point of [35℄, at least in part, is to study H∞(B(X )

n
1 ) ≃ Ln = H∞(Cn)through all the representations σ of C on Hilbert spa
es H, that is, throughevaluating fun
tions in H∞(B(X )

n
1 ) at points the unit ball of B(H)n for allpossible H's. The spa
e B(K)n is Morita equivalent to Cn in the sense of [30℄,at least when dim(K) < ∞, and, in that 
ase the tensor algebras T+(B(K)n)and T+(Cn) are Morita equivalent in the sense des
ribed by [15℄. The tensoralgebra T+(Cn), in turn, is naturally isometri
ally isomorphi
 to Popes
u'snon
ommutative dis
 algebra An [33℄. The analysis in [15℄ suggests a sensein whi
h Cn and B(K)n are Morita equivalent even when dim(K) = ∞, andthat together with [30℄ suggests that H∞(B(K)n) should be Morita equivalent to

H∞(B(X )
n
1 ) ≃ H∞(Cn). This would suggest an even 
loser 
onne
tion betweenPopes
u's free power series, and all that goes with them, and the perspe
tivewe have taken in this paper, whi
h, as we shall see, involves generalized S
hurfun
tions and transfer fun
tions. The 
onne
tion seems like a promising avenueto explore.In [31℄ we exploited the perspe
tive of viewing elements of the Hardy algebraas B(H)-valued fun
tions on the open unit ball of the dual 
orresponden
eto prove a Nevanlinna-Pi
k type interpolation theorem. In order to state itwe introdu
e some notation: For operators B1 and B2 in B(H), we write

Ad(B1, B2) for the map from B(H) to itself that sends S to B1SB
∗
2 . Also, givenelements η1, η2 in D(Eσ), we let θη1,η2 denote the map, from σ(M)′ to itselfthat sends a to 〈η1, aη2〉. That is, θη1,η2(a) := 〈η1, aη2〉 = η∗1aη2, a ∈ σ(M)′.

Theorem 2.18 ([31, Theorem 5.3℄) Let E be a W ∗-
orresponden
e over a vonNeumann algebra M and let σ : M → B(H) be a faithful normal representationof M on a Hilbert spa
e H. Fix k points η1, . . . ηk in the disk D(Eσ) and 
hoose
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2k operators B1, . . . Bk, C1, . . . Ck in B(H). Then there exists an X in H∞(E)su
h that ‖X‖ ≤ 1 and
BiX̂(η∗i ) = Cifor i = 1, 2, . . . , k, if and only if the map from Mk(σ(M)′) into Mk(B(H))de�ned by the k × k matrix

(
(Ad(Bi, Bj)−Ad(Ci, Cj)) ◦ (id− θηi,ηj )−1

) (3)is 
ompletely positive.That is, the map T , say, given by the matrix (3) is 
omputed by the formula
T ((aij)) = (bij),where

bij = Bi((id− θηi,ηj )−1(aij)B
∗
j − Ci((id− θηi,ηj )−1(aij)C

∗
jand

(id− θηi,ηj )−1(aij) = aij + θηi,ηj (aij) + θηi,ηj (θηi,ηj (aij)) + · · ·We 
lose this se
tion with two te
hni
al lemmas that will be needed in ouranalysis. Let M and N be W ∗-algebras and let E be a W ∗-
orresponden
efrom M to N . Given a σ-
losed sub
orresponden
e E0 of E we know thatthe orthogonal proje
tion P of E onto E0 is a right module map. (See [6,Consequen
es 1.8 (ii)℄). In the following lemma we show that P also preservesthe left a
tion.
Lemma 2.19 Let E be a W ∗-
orresponden
e from the von Neumann algebra
M to the von Neumann algebra N , and let E0 be a sub W ∗-
orresponden
e
E0 of E that is 
losed in the σ-topology of [6, Consequen
es 1.8 (ii)℄. If Pis the orthogonal proje
tion from E onto E0, then P is a bimodule map; i.e.,
P (aξb) = aP (ξ)b for all a ∈M and b ∈ N .
Proof. It su�
es to 
he
k that P (eξ) = eP (ξ) for all ξ ∈ E and proje
tions
e ∈M . For ξ, η ∈ E and a proje
tion e ∈M , we have
‖eξ + fη‖2 = ‖〈eξ, eξ〉+ 〈fη, fη〉‖ ≤ ‖〈eξ, eξ〉‖+ ‖〈fη, fη〉‖ = ‖eξ‖2 + ‖fη‖2,where f = 1− e. So, for every λ ∈ R we have

(λ+ 1)2‖fP (eξ)‖2 = ‖fP (eξ + λfP (eξ))‖2 ≤ ‖eξ + λfP (eξ)‖2

≤ ‖eξ‖2 + λ2‖fP (eξ)‖2.Hen
e, for every λ ∈ R,
(2λ+ 1)‖fP (eξ)‖2 ≤ ‖eξ‖2
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Schur Class Operator Functions . . . 375and, thus,
(I − e)P (eξ) = fP (eξ) = 0.Repla
ing e by f = I − e we get eP ((I − e)ξ) = 0 and, therefore,
P (eξ) = eP (eξ) = eP (ξ).Sin
e M is spanned by its proje
tions, we are done. �

Lemma 2.20 Let E be a W ∗-
orresponden
e over M , let σ be a faithful normalrepresentation of M on the Hilbert spa
e E, and let Eσ be the σ-dual 
orrespon-den
e over N := σ(M)′. Then(i) The left a
tion of N on Eσ is faithful if and only if E is full (i.e. ifand only if the ultraweakly 
losed ideal generated by the inner produ
ts
〈ξ1, ξ2〉, ξ1, ξ2 ∈ E, is all of M).(ii) The left a
tion of M on E is faithful if and only if Eσ is full.

Proof. We shall prove (i). Part (ii) then follows by duality (using [31,Theorem 3.6℄). Given S ∈ N , Sη = 0 for every η ∈ Eσ if and only if forall η ∈ Eσ and g ∈ E , (I ⊗ S)η(g) = 0. Sin
e the 
losed subspa
e spannedby the ranges of all η ∈ Eσ is all of E ⊗M E ([31℄), this is equivalent to theequation ξ ⊗ Sg = 0 holding for all g ∈ E and ξ ∈ E. Sin
e 〈ξ ⊗ Sg, ξ ⊗ Sg〉 =
〈g, S∗〈ξ, ξ〉Sg〉, we �nd that SEσ = 0 if and only if σ(〈E,E〉)S = 0, where
〈E,E〉 is the ultraweakly 
losed ideal generated by all inner produ
ts. If thisideal is all of M we �nd that the equation SEσ = 0 implies that S = 0. In theother dire
tion, if this is not the 
ase, then this ideal is of the form (I − q)Mfor some 
entral nonzero proje
tion q and then S = σ(q) is di�erent from 0 butvanishes on Eσ. �

3 Schur class operator functions and realizationThroughout this se
tion, E will be a �xed W ∗-
orresponden
e over the vonNeumann algebra M and σ will be a faithful representation of M on a Hilbertspa
e E . We then form the σ-dual of E, Eσ, whi
h is a 
orresponden
e over
N := σ(M)′, and we write D(Eσ) for its open unit ball. Further, we write
D(Eσ)∗ for {η∗ | η ∈ D(Eσ)}.The following de�nition is 
learly motivated by the 
ondition appearing inTheorem 2.18 and S
hur's theorem from 
lassi
al fun
tion theory.
Definition 3.1 Let Ω be a subset of D(Eσ) and let Ω∗ = {ω∗ | ω ∈ Ω}. Afun
tion Z : Ω∗ → B(E) will be 
alled a S
hur 
lass operator fun
tion (withvalues in B(E)) if, for every k and every 
hoi
e of elements η1, η2, . . . , ηk in Ω,the map from Mk(N) to Mk(B(E)) de�ned by the k × k matrix of maps,

((id−Ad(Z(η∗i ), Z(η∗j ))) ◦ (id− θηi,ηj )−1),is 
ompletely positive.
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376 Paul S. Muhly and Baruch SolelNote that, when M = E = B(E) and σ is the identity representation of B(E)on E , σ(M)′ is CIE , Eσ is isomorphi
 to C and D(Eσ)∗ 
an be identi�ed withthe open unit dis
 D of C. In this 
ase our de�nition re
overs the 
lassi
alS
hur 
lass fun
tions. More pre
isely, these fun
tions are usually de�ned asanalyti
 fun
tions Z from an open subset Ω of D into the 
losed unit ball of
B(E) but it is known that su
h fun
tions are pre
isely those for whi
h the Pi
kkernel kZ(z, w) = (I − Z(z)Z(w)∗)(1 − zw̄)−1 is positive semi-de�nite on Ω.The argument of [31, Remark 5.4℄ shows that the positivity of this kernel isequivalent, in our 
ase, to the 
ondition of De�nition 3.1. This 
ondition, inturn, is the same as asserting that the kernel

kZ(ζ∗, ω∗) := (id− Ad(Z(ζ∗), Z(ω∗)) ◦ (id− θζ,ω)−1 (4)is a 
ompletely positive de�nite kernel on Ω∗ in the sense of De�nition 3.2.2 of[14℄.For the sake of 
ompleteness, we re
ord the fa
t that every element of H∞(E)of norm at most one gives rise to a S
hur 
lass operator fun
tion.
Theorem 3.2 Let E be a W ∗-
orresponden
e over a von Neumann algebra Mand let σ be a faithful normal representation of M in B(H) for some Hilbertspa
e H. If X is an element of H∞(E) of norm at most one, then the fun
tion
η∗ → X̂(η∗) de�ned in Remark 2.14 is a S
hur 
lass operator fun
tion on
D((Eσ))∗ with values in B(H).
Proof. One simply takes Bi = I for all i and Ci = X̂(η∗i ) in Theorem 2.18.
�

Theorem 3.3 Let E be a W ∗-
orresponden
e over a von Neumann algebra M .Suppose also that σ a faithful normal representation of M on a Hilbert spa
e
E and that q1 and q2 are proje
tions in σ(M). Finally, suppose that Ω is asubset of D((Eσ)) and that Z is a S
hur 
lass operator fun
tion on Ω∗ withvalues in q2B(E)q1. Then there is a Hilbert spa
e H, a normal representation
τ of N := σ(M)′ on H and operators A,B,C and D ful�lling the following
onditions:(i) The operator A lies in q2σ(M)q1.(ii) The operators C, B, and D, are in the spa
es B(E1, Eσ⊗τ H), B(H, E2),and B(H,Eσ⊗τH), respe
tively, and ea
h intertwines the representationsof N = σ(M)′ on the relevant spa
es (i.e. , for every S ∈ N , CS =

(S ⊗ IH)C, Bτ(S) = SB and Dτ(S) = (S ⊗ IH)D).(iii) The operator matrix
V =

(
A B
C D

)
, (5)viewed as an operator from E1 ⊕H to E2 ⊕ (Eσ ⊗τ H), is a 
oisometry,whi
h is unitary if E is full.
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Schur Class Operator Functions . . . 377(iv) For every η∗ in Ω∗,
Z(η∗) = A+ B(I − L∗ηD)−1L∗ηC (6)where Lη : H → Eσ ⊗ H is de�ned by the formula Lηh = η ⊗ h (so

L∗η(θ ⊗ h) = τ(〈η, θ〉)h).
Remark 3.4 Before giving the proof of Theorem 3.3, we want to note that theresult bears a strong resemblan
e to standard results in the literature. We 
allspe
ial attention to [1, 2, 7, 9, 10, 11, 12, 13℄. Indeed, we re
ommend [7℄,whi
h is a survey that explains the general strategy for proving the theorem.What is novel in our approa
h is the adaptation of the results in the literatureto a

ommodate 
ompletely positive de�nite kernels.Sin
e the matrix in equation (5) and the fun
tion in equation (6) are familiar
onstru
ts in mathemati
al systems theory, more parti
ularly from H∞-
ontroltheory (see, e.g., [38℄), we adopt the following terminology.
Definition 3.5 Let E be a W ∗-
orresponden
e over a von Neumann algebra
M . Suppose that σ is a faithful normal representation of M on a Hilbert spa
e
E and that q1 and q2 are proje
tions in σ(M). Then an operator matrix V =(
A B
C D

), where the entries A, B, C, and D, satisfy 
onditions (i) and (ii)of Theorem 3.3 for some normal representation τ of σ(M)′ on a Hilbert spa
e
H, is 
alled a system matrix provided V is a 
oisometry (that is unitary, if Eis full). If V is a system matrix, then the fun
tion A + B(I − L∗ηD)−1L∗ηC,
η∗ ∈ D(Eσ)∗ is 
alled the transfer fun
tion determined by V .
Proof. As we just remarked, the hypothesis that Z is a S
hur 
lass fun
tionon Ω∗ means that the kernel kZ in equation (4) is 
ompletely positive de�nitein the sense of [14℄. Consequently, we may apply Theorem 3.2.3 of [14℄, whi
h isa lovely extension of Kolmogorov's representation theorem for positive de�nitekernels, to �nd an N -B(E) W ∗-
orresponden
e F and a fun
tion ι from Ω∗ to
F su
h that F is spanned by Nι(Ω∗)B(E) and su
h that for every η1 and η2 in
Ω∗ and every a ∈ N ,

(id−Ad(Z(η∗1), Z(η∗2))) ◦ (id− θη1,η2)−1(a) = 〈ι(η1), aι(η2)〉.It follows that for every b ∈ N and every η1, η2 in Ω∗,
b− Z(η∗1)bZ(η∗2)∗ = 〈ι(η1), bι(η2)〉 − 〈ι(η1), 〈η1, bη2〉ι(η2)〉

= 〈ι(η1), bι(η2)〉 − 〈η1 ⊗ ι(η1), bη2 ⊗ ι(η2)〉.Thus,
b+ 〈η1 ⊗ ι(η1), bη2 ⊗ ι(η2)〉 = 〈ι(η1), bι(η2)〉+ Z(η∗1)bZ(η∗2)∗. (7)
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378 Paul S. Muhly and Baruch SolelSet
G1 := span{bZ(η∗)∗q2T ⊕ bι(η)q2T | b ∈ N, η ∈ Ω∗, T ∈ B(E) }and
G2 := span{bq2T ⊕ (bη ⊗ ι(η)q2T ) | b ∈ N, η ∈ Ω∗, T ∈ B(E) }.Then G1 is a sub N -B(E) W ∗-
orresponden
e of B(E) ⊕ F (where we usethe assumption that q2Z(η∗) = q2Z(η∗)q1) and G2 is a sub N -B(E) W ∗-
orresponden
e of B(E)⊕(Eσ⊗NF ) . (The 
losure in the de�nitions ofG1, G2 isin the σ-topology of [6℄. It then follows that G1 and G2 areW ∗-
orresponden
es[6, Consequen
es 1.8 (i)℄). De�ne v : G1 → G2 by the equation

v(bZ(η∗)∗q2T ⊕ bι(η)q2T ) = bq2T ⊕ (bη ⊗ ι(η)q2T ).It follows from (7) that v is an isometry. It is also 
lear that it is a bimodulemap. We write Pi for the orthogonal proje
tion onto Gi, i = 1, 2 and Ṽ for themap
Ṽ := P2vP1 : q1B(E) ⊕ F → q2B(E)⊕ (Eσ ⊗N F ).Then Ṽ is a partial isometry and, sin
e P1, v and P2 are all bimodule maps(see Lemma 2.19), so is Ṽ . We write Ṽ matri
ially:

Ṽ =

(
α β
γ δ

)
,where α : q1B(E) → q2B(E), β : F → q2B(E), γ : q1B(E) → Eσ ⊗ F and

δ : F → Eσ ⊗ F and all these maps are bimodule maps. Let H0 be theHilbert spa
e F ⊗B(E) E and note that B(E) ⊗B(E) E is isomorphi
 to E (andthe isomorphism preserves the left N -a
tion). Tensoring on the right by E (over
B(E)) we obtain a partial isometry

V0 :=

(
A0 B0

C0 D0

)
:

(
E1
H0

)
→
(

E2
Eσ ⊗H0

)
.Here A0 = α ⊗ IE , B0 = β ⊗ IE , C0 = γ ⊗ IE and D0 = δ ⊗ IE . These mapsare well de�ned be
ause the maps α, β, γ and δ are right B(E)-module maps.Sin
e these maps are also left N -module maps, so are A0, B0, C0 and D0.By the de�nition of V0, its initial spa
e is G1 ⊗ E and its �nal spa
e is G2 ⊗ E .In fa
t, V0 indu
es an equivalen
e of the representations of N on G1 ⊗ E andon G2 ⊗ E .It will be 
onvenient to use the notationK1 �N K2 if the Hilbert spa
esK1 and

K2 are both leftN -modules and the representation ofN onK1 is equivalent to asubrepresentation of the representation of N onK2. This means, of 
ourse, thatthere is an isometry from K1 into K2 that intertwines the two representations.If the two representations are equivalent we write K1 ≃N K2.
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Schur Class Operator Functions . . . 379Using this notation, we 
an write G1⊗E ≃N G2⊗E . FormM2 := (E2⊕ (Eσ⊗
H0)) ⊖ (G2 ⊗ E), whi
h is a left N -module, and note that L := F(Eσ) ⊗M2also is a left N -module, where the representation of N on L is the indu
edrepresentation. Sin
e L = F(Eσ)⊗M2 =

⊕∞
n=0((Eσ)⊗n⊗(M2)), it is evidentthat (Eσ⊗L)⊕M2 ≃N L. Indeed, the isomorphisms are just the natural onesthat give the asso
iativity of the tensor produ
ts involved. Thus, E2 ⊕ (Eσ ⊗

(H0⊕L)) = E2⊕(Eσ⊗H0)⊕(Eσ⊗L) = G2⊗E⊕M2⊕Eσ⊗L ≃N G2⊗E⊕L ≃N
G1⊗E ⊕L �N E1⊕ (H0⊕L). Consequently, we obtain a 
oisometri
 operator
V : E1 ⊕ (H0 ⊕ L)→ E2 ⊕ Eσ ⊗ (H0 ⊕ L) that intertwines the representationsof N and extends V0. Note that, if V0 were known to be an isometry (so that
G2 ⊗ E ≃N G1 ⊗ E = E1 ⊕H0 ), then we would have equivalen
e above and V
an be 
hosen to be unitary.Assume that E is full. We also writeM1 for (E1 ⊕H0) ⊖G1 ⊗ E . Sin
e E isfull, the representation ρ of N on Eσ⊗E is faithful (Lemma 2.20) and it followsthat every representation of N is quasiequivalent to a subrepresentation of ρ.Write E∞ for the dire
t sum of in�nitely many 
opies of E . Then Eσ⊗E∞ is thedire
t sum of in�nitely many 
opies of Eσ⊗E and, thus, every representation of
N is equivalent to a subrepresentation of the representation of N on Eσ ⊗E∞.In parti
ular, we 
an write M1 ⊕ E∞ �N Eσ ⊗ E∞. Thus E1 ⊕ (H0 ⊕ E∞) =
(G1⊗E)⊕M1⊕E∞ �N E2⊕ (Eσ⊗H0)⊕ (Eσ⊗E∞) = E2⊕ (Eσ⊗ (H0⊕E∞)).So, repla
ing H0 by H0⊕E∞, we 
an repla
e V0 by an isometry and, using theargument just presented, we 
on
lude that the resulting V is a unitary operatorintertwining the representations of N and extending V0.So we let V be the 
oisometry just 
onstru
ted (and treat it as unitary when
E is full). Writing H := H0 ⊕ L, we 
an express V in the matri
ial form as inpart (iii) of the statement of the theorem. Conditions (i) and (ii) then followfrom the fa
t that V intertwines the indi
ated representations of N . It is leftto prove (iv).Setting b = T = I in the de�nition of v above and writing v in a matri
ial formwe see that (

α β
γ δ

)(
Z(η∗)∗q2
ι(η)q2

)
=

(
q2

η ⊗ ι(η)q2

)
.Tensoring by IE on the right and identifying B(E)⊗B(E) E with E as above, we�nd that (

A0 B0

C0 D0

)(
Z(η∗)∗g
ι(η)⊗ g

)
=

(
g

η ⊗ (ι(η) ⊗ g)

)
,for g ∈ E2. Sin
e A,B,C and D extend A0, B0, C0 and D0 respe
tively, we
an drop the subs
ript 0. We also use the fa
t that the matrix we obtain is a
oisometry, and thus its adjoint equals its inverse on its range. We 
on
ludethat (

A∗ C∗

B∗ D∗

)(
g

η ⊗ (ι(η) ⊗ g)

)
=

(
Z(η∗)∗g
ι(η) ⊗ g

)
. (8)Thus ι(η) ⊗ g = B∗g +D∗(η ⊗ (ι(η) ⊗ g)) = B∗g +D∗Lη(ι(η) ⊗ g) and

ι(η) ⊗ g = (I −D∗Lη)−1B∗g.
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380 Paul S. Muhly and Baruch SolelCombining this equality with the other equation that we get from (8), we have
Z(η∗)∗g = A∗g + C∗Lη(I −D∗Lη)−1B∗g , g ∈ E .Taking adjoints yields (iv). �Thus, Theorem 3.3 asserts that every S
hur 
lass fun
tion determines a systemmatrix whose transfer fun
tion represents the fun
tion. The system matrix isnot unique in general, but as the proof of Theorem 3.3 shows, it arises througha series of natural 
hoi
es. Of 
ourse, equation (6) suggests that every S
hur
lass fun
tion represents an element in H∞(E). This is indeed the 
ase, as thefollowing 
onverse shows.

Theorem 3.6 Let E be a W ∗-
orresponden
e over a W ∗-algebra M , and let
σ be a faithful normal representation of M on a Hilbert spa
e E. If V =(
A B
C D

) is a system matrix determined by a normal representation τ of
N := σ(M)′ on a Hilbert spa
e H, then there is an X ∈ H∞(E), ‖X‖ ≤ 1,su
h that

X̂(η∗) = A+B(I − L∗ηD)−1L∗ηC,for all η∗ ∈ D(Eσ)∗ and, 
onversely, every X ∈ H∞(E), ‖X‖ ≤ 1, may berepresented in this fashion for a suitable system matrix V =

(
A B
C D

).
Proof. For every n ≥ 0 we de�ne an operator Kn from E to (Eσ)⊗n ⊗ E asfollows. For n = 0, we set K0 = A - an operator in B(E). For n = 1, we de�ne
K1, mapping E to Eσ ⊗E , to be (I1⊗B)C, where for all k ≥ 1, Ik denotes theidentity operator on (Eσ)⊗k. For n ≥ 2, we set

Kn := (In ⊗B)(In−1 ⊗D) · · · (I1 ⊗D)C.Note, �rst, that it follows from the properties of A,B,C and D that, for every
n ≥ 0 and every a ∈ N , Kna = (ϕn(a) ⊗ IE)Kn where ϕn de�nes the leftmultipli
ation on (Eσ)⊗n. Thus, writing ι for the identity representation of Non E , Kn lies in the ι-dual of (Eσ)⊗n whi
h, by Theorem 3.6 and Lemma 3.7of [31℄, is isomorphi
 to E⊗n. Hen
e, for every n ≥ 0, Kn de�nes a uniqueelement ξn in E⊗n.For every n ≥ 0 and η ∈ Eσ we shall write Ln(η) for the operator from
(Eσ)⊗n ⊗ E to (Eσ)⊗(n+1) ⊗ E given by tensoring on the left by η. Alsonote that, for k ≥ 1 and n ≥ 0, Ik ⊗ Kn is an operator from (Eσ)⊗k ⊗ Eto (Eσ)⊗(k+n) ⊗ E . With this notation, it is easy to see that, for all k ≥ 1 and
n ≥ 0,

(Ik+1 ⊗Kn)Lk(η) = Lk+n(η)(Ik ⊗Kn). (9)Note, too, that we 
an write
F(Eσ)⊗ E = E ⊕ (Eσ ⊗ E)⊕ · · · ⊕ ((Eσ)⊗m ⊗ E)⊕ · · ·
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Schur Class Operator Functions . . . 381and every operator on F(Eσ)⊗E 
an be written in a matri
ial form with respe
tto this de
omposition (with indi
es starting at 0). For every m, 0 ≤ m ≤ ∞,we let Sm be the operator de�ned by the matrix whose i, j entry is Ij ⊗Ki−j ,if 0 ≤ j ≤ i ≤ m, and is 0 otherwise. (For m = ∞, it is not 
lear yet that thematrix so 
onstru
ted represents a bounded operator, but this will be veri�edlater).So far we have not used the assumption that V is a 
oisometry. But if we takethis into a

ount, form the produ
t V V ∗, and set it equal to IE⊕(Eσ⊗H), we�nd that
IE −AA∗ = BB∗ (10)

CC∗ = IEσ⊗τH −DD∗ (11)
AC∗ = −BD∗ (12)We 
laim that, for 1 ≤ j ≤ i ≤ m, the following equations hold,

(I − SmS∗m)i,j = (Ii ⊗B)(Ii−1 ⊗D) · · ·DD∗ · · · (Ij−1 ⊗D∗)(Ij ⊗B∗); (13)that for 0 < i ≤ m,
(I − SmS∗m)i,0 = (Ii ⊗B)(Ii−1 ⊗D) · · ·DB∗, (14)and that for i = j = 0,

(I − SmS∗m)0,0 = BB∗. (15)Equation (15) follows immediately from (10) sin
e (Sm)0,0 = A. For 0 < i ≤ mwe 
ompute (I − SmS∗m)i,0 = −(Sm)i,0(Sm)∗0,0 = −(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗
D)CA∗ = (Ii ⊗ B)(Ii−1 ⊗ D) · · · (I1 ⊗ D)DB∗ where, in the last equality weused (12). It is left to prove (13). Let us write Ri,j for the left hand side of(13). (For j = 0 < i we have Ri,0 = (Ii ⊗ B)(Ii−1 ⊗ D) · · ·DB∗ and whenboth are 0, R0,0 = BB∗). We have K0K

∗
0 = AA∗ = I − BB∗ = I − R0,0R

∗
0,0.For 0 = j < i ≤ m we have KiK

∗
0 = (Ii ⊗ B)(Ii−1 ⊗ D) · · · (I1 ⊗ D)CA∗ =

−(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗D)DB∗ = −Ri,0 and for 0 < j ≤ i ≤ m, KiK
∗
j =

(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗D)CC∗(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = (Ii ⊗
B)(Ii−1 ⊗D) · · · (I1 ⊗D)(I −DD∗)(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = (Ii ⊗
B)(Ii−1 ⊗D) · · · (I1 ⊗D)(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗)− (Ii ⊗B)(Ii−1 ⊗
D) · · · (I1 ⊗D)DD∗(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = I1 ⊗Ri−1,j−1 −Ri,j .We have
(SmS

∗
m)i,j =

j∑

k=0

(Sm)i,k(Sm)j,k =

j∑

k=0

Ik ⊗Ki−kK
∗
j−k =

j∑

l=0

Ij−l ⊗Ki−j+lK
∗
l .Using the 
omputation above, we get, for i = j ≤ m,

(SmS
∗
m)i,i = Ii⊗ (I−R0,0R

∗
0,0) +

i∑

l=1

(Ii−l+1⊗Rl−1,l−1− Ii−l⊗Rl,l) = I−Ri,i
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382 Paul S. Muhly and Baruch Soleland, for j < i ≤ m,
(SmS

∗
m)i,j = −Ij⊗Ri−j,0+

j∑

l=1

(Ij−l+1⊗Ri−j+l−1,l−1−Ij−l⊗Ri−j+l,l) = −Ri,j .This 
ompletes the proof of the 
laim. If we let R be the operator whose matrixis (Ri,j) (letting Ri,j = 0 if i or j is larger than m) then we get R = I−SmS∗m.But it is easy to verify that R is a positive operator and, thus, ‖Sm‖ ≤ 1. Thisholds for everym and, therefore, we 
an �nd a weak limit point of the sequen
e
{Sm}. But this limit point it 
learly equal to S∞, showing that S∞ is indeeda bounded operator, with norm at most 1.Re
all that the indu
ed representation of H∞(E) on F(E) ⊗σ E is the repre-sentation that maps X ∈ H∞(E) to σF(E)(X) := X ⊗ IE . The representationis faithful and is a homeomorphism with respe
t to the ultraweak topologies.Its image is the ultraweakly 
losed subalgebra of B(F(E) ⊗ E) generated bythe operators Tξ ⊗ IE and ϕ∞(a) ⊗ IE for ξ ∈ E and a ∈ M . Similarly onede�nes the indu
ed representation ιF(Eσ) of H∞(Eσ) on F(Eσ) ⊗ E and itsimage is generated by the operators Tη ⊗ I and ϕ∞(b) ⊗ I for η ∈ Eσ and
b ∈ N . Re
all also, from [31, Theorem 3.9℄, that there is a unitary operator
U : F(Eσ)⊗ E → F(E)⊗ E su
h that

(ιF(Eσ)(H∞(Eσ)))′ = U∗σF(E)(H∞(E))U.That is, U gives an expli
it representation of H∞(Eσ) as the 
ommutant ofthe indu
ed algebra σF(E)(H∞(E)). Thus, to show that S∞ = U∗(X ⊗ I)Ufor an X ∈ H∞(E), we need only show that S∞ lies in the 
ommutant of
ιF(Eσ)(H∞(Eσ)). And for this, we only have to show that it 
ommutes withthe operators ϕ∞(b) ⊗ I, b ∈ N , and Tη ⊗ I, η ∈ Eσ. Note that, matri
ially,
ϕ∞(b)⊗ I is a diagonal operator whose i, i entry is ϕi(b). For S∞ to 
ommutewith it we should have, for all j ≤ i,

(Ij ⊗Ki−j)(ϕj(b)⊗ I) = (ϕi(b)⊗ I)(Ij ⊗Ki−j).This equality is obvious for j > 0. For j = 0 it amounts to the equality
Kib = (ϕi(b)⊗ IE)Kiand, this, as was mentioned above, follows immediately from the propertiesof A,B,C and D. To show that S∞ 
ommutes with every Tη ⊗ I, η ∈ Eσ,note that, matri
ially, the i, j entry of Tη ⊗ I vanishes unless i = j + 1 and,in this 
ase the entry is Lj(η). Equation (9) then ensures that S∞ and Tη ⊗ I
ommute.Thus, by [31, Theorem 3.9℄, there is an element X ∈ H∞(E) su
h that S∞ =

U∗(X ⊗ I)U (= U∗σF(E)(X)U). Sin
e S∞ has norm at most one, so does X .It remains to show that X is given by the transfer fun
tion built from V . Tothis end, �x ξ ∈ E and re
all that ξ de�nes a map W (ξ) : E → Eσ ⊗ E
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Schur Class Operator Functions . . . 383via the formula W (ξ)∗(η ⊗ h) = L∗ξη(h), η ⊗ h ∈ Eσ ⊗ E (See [31, Theorem3.6℄.), and that W maps E onto the ι-dual of Eσ. The desired propertiesfollow easily from the de�nition of W . For every k ≥ 0, Ik ⊗W (ξ)∗ is a mapfrom (Eσ)⊗k+1 ⊗ E into (Eσ)⊗k ⊗ E . An easy 
omputation shows that it isequal to the restri
tion of U∗(T ∗ξ ⊗ IE )U to (Eσ)⊗k+1 ⊗ E . (Re
all from [31,Lemma 3.8℄ that the restri
tion of U to (Eσ)⊗k+1⊗E is de�ned by the equation
U(η1 ⊗ · · · ⊗ ηk+1 ⊗ h) = (Ik ⊗ η1) · · · (I1 ⊗ ηk)ηk+1(h).)It then follows that the i, j entry of the matrix asso
iated with U∗(Tξ ⊗ IE )Uvanishes unless i = j + 1 and

(U∗(Tξ ⊗ IE)U)j+1,j = Ij ⊗W (ξ).Similarly one 
an show that, for ξ ∈ E⊗k, the i, j entry of the matrix asso
iatedwith U∗(Tξ ⊗ IE)U vanishes unless i = j + k and
(U∗(Tξ ⊗ IE)U)j+k,j = Ij ⊗W (ξ).In the last equation, W (ξ), ξ ∈ E⊗k, is a map from E to (Eσ)⊗k ⊗ E .Re
all that we de�ned ξn to be the ve
tors in E⊗n with W (ξn) = Kn. Thuswe see that the nth lower diagonal in the matri
ial form of S∞ is the matri
ialform of U∗(Tξn ⊗ IE )U .Re
all from the dis
ussion at the end of Se
tion 2 in [31℄ that S∞ is the ultra-weak limit of the sequen
e Σk where

Σk =

k−1∑

j=0

(1− j

k
)U∗(Tξj ⊗ I)U.Hen
e X is the ultraweak limit of Xk where

Xk =

k−1∑

j=0

(1− j

k
)Tξjand, for η ∈ Eσ, X̂(η∗) is the ultraweak limit of X̂k(η∗) =

∑k−1
j=0 (1− j

k )T̂ξj (η∗).Fix η ∈ Eσ and k ≥ 1. Then it is easy to 
he
k that, in the notation of thetheorem, L∗η(Ik ⊗ B) = (Ik−1 ⊗ B)L∗η and L∗η(Ik ⊗D) = (Ik−1 ⊗D)L∗η, all asoperators on (Eσ)⊗k ⊗H . It then follows that for n ≥ 1,
(L∗η)nW (ξn) = (L∗η)nKn = B(L∗ηD)n−1L∗ηCand

A+B(I − L∗ηD)−1L∗ηC = A+

∞∑

n=1

B(L∗ηD)n−1L∗ηC =

∞∑

n=0

(L∗η)nW (ξn).(Note that the last series 
onverges in norm). It follows from [31, Proposition5.1℄ that T̂ξn(η∗) = (L∗η)nW (ξn) and, thus, we �nally 
on
lude that X̂(η∗) =
A+B(I − L∗ηD)−1L∗ηC.The `
onverse' portion of the Theorem is immediate from Theorems 3.2 and3.3. �
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Corollary 3.7 Every S
hur 
lass operator fun
tion de�ned on a subset Ω∗of D(Eσ)∗ with values in some B(E) 
an be extended to a S
hur 
lass operatorfun
tion de�ned on all of D(Eσ)∗.
Proof. Let Z be a S
hur 
lass fun
tion on Ω∗ and apply Theorem 3.3 torepresent Z as the restri
tion to Ω∗ of a transfer fun
tion. The result thenfollows from the evident 
ombination of Theorems 3.6 and 3.2. �Re
all that every element X in H∞(E) with ‖X‖ ≤ 1 de�nes a S
hur 
lassoperator fun
tion by evaluation at η∗ for η ∈ D(Eσ) (where σ is a suitablepres
ribed faithful normal representation ofM) . We usually suppress referen
eto σ and write X̂ for this S
hur 
lass operator fun
tion. In general, however,the map X → X̂ is not one-to-one, and whether it is or not depends on the
hoi
e of σ. Indeed, in the parti
ular 
ase when M = C and E = Cn, so
H∞(E) is Ln, and when σ is the identity representation of C, Davidson andPitts showed that the kernel of the map X 7→ X̂ is pre
isely the 
ommutatorideal in Ln [17℄. We shall show in the next lemma that given E, if σ is 
hosen tobe faithful and have in�nite uniform multipli
ity, meaning that σ is an in�nitemultiple of another faithful normal representation of M , then the map X 7→ X̂will be one-to-one. It will be 
onvenient to write K(σ) for the kernel of themap determined by σ, so that

K(σ) = {X ∈ H∞(E) : X̂(η∗) = 0, η ∈ D(Eσ)} (16)
= {X ∈ H∞(E) : σ × η∗(X) = 0, η ∈ D(Eσ)}.

Lemma 3.8 If σ is a faithful normal representation of M on a Hilbert spa
e Hof in�nite multipli
ity, then K(σ) = 0. Moreover, if {Xβ} is a bounded net in
H∞(E) and if there is an element X ∈ H∞(E) su
h that for every η ∈ D(Eσ),
X̂β(η∗)→ X̂(η∗) in the weak operator topology, then Xβ → X ultraweakly.
Proof. It follows from the stru
ture of isomorphisms of von Neumannalgebras that any two in�nite multiples of faithful representations of a vonNeumann algebra are unitarily equivalent. It follows, therefore, that to provethe lemma, we 
an pi
k a spe
ial representation with this property that is
onvenient for our purposes. So let π be the representation ofM on F(E)⊗σHde�ned by π = ϕ∞ ⊗ IH . We shall see that K(π) = {0}. For ξ ∈ E let V (ξ) =
Tξ ⊗ IH . Then (V, π) is a representation of E on F(E) ⊗σ H . The integratedform of this representation is the indu
ed representation πF(E) restri
ted to
H∞(E). It is a faithful representation of H∞(E). For 0 ≤ r ≤ 1, (rV, π) isalso a representation of E. It follows from [31, Lemma 7.11℄ that, for every
X ∈ H∞(E), the limit in the strong operator topology of (π × rV )(X), as
r → 1, is (π × V )(X). Thus, for X 6= 0 in H∞(E), there is an r, 0 ≤ r < 1,su
h that (π × rV )(X) 6= 0. Sin
e for su
h r the inequality ‖rV ‖ < 1 holds,and we 
on
lude that K(π) = {0}.For the se
ond assertion of the lemma, suppose a bounded net {Xβ} in H∞(E)has the property that for every η ∈ D(Eπ), X̂β(η∗) → 0. Sin
e the net is
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Schur Class Operator Functions . . . 385bounded, it has a ultraweak limit point X0 in H∞(E). Sin
e �evaluation at
η∗� is the same as applying a ultraweakly 
ontinuous representation, we seethat X̂β(η∗) → X̂0(η∗) for every η ∈ D(Eπ). But then, X̂0(η∗) = 0 for every
η ∈ D(Eπ) and, 
onsequently, X0 = 0 by the �rst assertion of the lemma. �With this lemma in hand, we summarize the results of this se
tion for futurereferen
e in the following 
orollary.
Corollary 3.9 Let E be a W ∗-
orresponden
e over the W ∗-algebra M , let
σ be a faithful normal representation of M on the Hilbert spa
e E and assumethat σ has in�nite multipli
ity. Then the map X → X̂ is a bije
tion from the
losed unit ball of H∞(E) onto the spa
e of S
hur 
lass B(E)-valued fun
tionson D(Eσ)∗. Further, for ea
h X in the 
losed unit ball of H∞(E), X̂ is thetransfer fun
tion asso
iated with a system matrix V =

(
A B
C D

) de�ned interms of a suitable auxiliary normal representation τ of σ(M)′ on a Hilbertspa
e H, and 
onversely, ea
h su
h transfer fun
tion on D(Eσ)∗,
η∗ → A+B(I − L∗ηD)−1L∗ηC,is of the form X̂ for a uniquely determined X ∈ H∞(E): X̂(η∗) = A+B(I −

L∗ηD)−1L∗ηC for all η ∈ D(Eσ).
Proof. The proof is just the evident 
ombination of Lemma 3.8 and Theo-rems 3.2, 3.3, and 3.6. �

Remark 3.10 One may well wonder why not stipulate at the outset that all
σ's have uniform in�nite multipli
ity. It turns out that in many interesting ex-amples, su
h as those 
oming from graphs, whi
h we dis
uss in the last se
tion,the prin
ipal σ's one wants to 
onsider fail to have this property.
4 Applications to automorphisms of the Hardy algebraIn this se
tion we apply the analysis of S
hur 
lass fun
tions to study au-tomorphisms of H∞(E). Our �rst goal is to show that under very generalassumptions, the automorphisms are obtained by 
omposition with (
ertain)biholomorphi
 automorphisms of the open unit ball of the dual 
orresponden
e.For the 
ase were E = Cn , so that H∞(E) is the algebra Ln studied by David-son and Pitts and by Popes
u, this was shown for the dual 
orresponden
easso
iated with the one dimensional representation σ of C by Davidson andPitts in [17℄.Throughout this se
tion we will fo
us on automorphisms α of H∞(E) that are
ompletely isometri
 and w∗-homeomorphisms. Also, we shall usually assumethat the restri
tion of α to ϕ∞(M) is the identity.It is known that, in various settings, one 
an assume mu
h less. In [17℄, theauthors begin by assuming that α is simply an algebrai
 automorphism but,to get the one-to-one 
orresponden
e with automorphisms of the unit ball of
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386 Paul S. Muhly and Baruch Solelthe dual, they need to impose also the assumption that the automorphism is
ontra
tive. It then follows from their results that it is, in fa
t, 
ompletelyisometri
 and a w∗-homeomorphism. In [22℄, Katsoulis and Kribs show thatin the setting when E is determined by a dire
ted graph, G say, so H∞(E)is the algebra they denote by LG, an algebrai
 automorphism is always norm-
ontinuous and w∗-
ontinuous.As for the assumption that the restri
tion of α to ϕ∞(M) is the identity, weshall see that for many purposes this is no signi�
ant restri
tion. However,in some situations, it 
an be a signi�
ant te
hni
al heada
he to sort out whathappens if we don't impose the assumption. We will 
omment on this further,as we pro
eed. (See, in parti
ular, Remark 4.10).So, for the remainder of this se
tion, unless spe
i�ed otherwise, E will be a �xed
W ∗-
orresponden
e over a W ∗-algebraM and α will be a �xed automorphismof H∞(E) that is 
ompletely isometri
, w∗-homeomorphi
 and �xes ϕ∞(M)element-wise. Also, σ will be a faithful normal ∗-representation of M on aHilbert spa
e H .We think about elements of H∞(E) as fun
tions on D(Eσ)∗ via the fun
tionalrepresentation developed in the pre
eding se
tion and we want to study thetransposed a
tion of α on D(Eσ)∗. For every η ∈ D(Eσ), let τ(η) : H → E⊗σHbe de�ned by the equation

τ(η)∗(ξ ⊗ h) = α̂(Tξ)(η
∗)h (= (σ × η∗)(α(Tξ))h ), (17)

ξ⊗h ∈ E⊗σH . (Observe that if α is the identity automorphism ofH∞(E), thenthis equation implies that τ is the identity map, as it should.) The next lemmashows that τ(η) is well de�ned and is an element in the 
losed unit ball of Eσ.Thus τ is a map from D(Eσ) into D(Eσ). What we would really like to show,however, is that τ 
arries D(Eσ) into D(Eσ), not the 
losure. At this stage,we 
an only arrange for this under spe
ial 
ir
umstan
es: Theorem 4.7 below.The restri
tion on 
ir
umstan
es, however, is not so limiting as to eliminatemany interesting examples. We also want to show that τ is holomorphi
 on
D(Eσ) in the usual sense of in�nite dimensional holomorphy [21℄.
Lemma 4.1 For ea
h η ∈ D(Eσ), τ(η) is well de�ned and lies in the 
losedunit ball of Eσ.
Proof. For ξ ∈ E, let S(ξ) := (σ × η∗)(α(Tξ)). For every a, b ∈ M ,
S(aξb) = (σ×η∗)(α(Taξb)) = (σ×η∗)(α(ϕ∞(a)Tξϕ∞(b))) = (σ◦α)(ϕ∞(a))(σ×
η∗)(α(Tξ))(σ ◦ α)(ϕ∞(b)). By our assumption, σ ◦ α ◦ϕ∞ = σ ◦ ϕ∞ and, thus,
(S, σ) is a 
ovariant pair. Also, S is a 
ompletely 
ontra
tive map of E into
B(H) as a 
omposition of three 
ompletely 
ontra
tive maps. Thus S̃∗ = τ(η)lies in the 
losed unit ball of Eσ. �To determine 
ir
umstan
es under whi
h τ maps D(Eσ) into D(Eσ), we �x
η ∈ D(Eσ) and determine 
ir
umstan
es under whi
h τ(zη) ∈ D(Eσ), for every
z ∈ D := {z ∈ C | |z| < 1}. This will prove that τ maps D(Eσ) into itself.
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Schur Class Operator Functions . . . 387So for z ∈ D, we de�ne
F (z) := τ(z̄η)∗. (18)Thus, F (z)(ξ ⊗ h) = (σ × zη∗)(α(Tξ))h for ξ ∈ E and h ∈ H .

Lemma 4.2 F is an analyti
 fun
tion from D into B(E ⊗H,H).
Proof. Fix ξ ⊗ h ∈ E ⊗ H with ‖ξ‖ ≤ 1 and k ∈ H , and 
onsider theexpression

〈F (z)(ξ ⊗ h), k〉 = 〈α̂(Tξ)(zη
∗)h, k〉.Sin
e α(Tξ) ∈ H∞(E) and ‖α(Tξ)‖ ≤ 1, we know from Theorem 3.6 that we
an write α̂(Tξ)(zη

∗) = A + B(I − zL∗ηD)−1zL∗ηC for some system matrix.Thus
α̂(Tξ)(zη

∗) = A+ zBL∗ηC +
∞∑

k=2

zkB(L∗η)k−1L∗ηC.Hen
e, for every ξ ⊗ h ∈ E ⊗H (even when ‖ξ‖ > 1) and k ∈ H , the fun
tion
z 7→ 〈F (z)(ξ⊗h), k〉 is analyti
. Sin
e ‖F (z)‖ ≤ 1 by Lemma 4.1, |〈F (z)g, k〉| ≤
‖g‖‖k‖ for every g ∈ E ⊗H and k ∈ H and it follows that, for ea
h su
h g, k,the fun
tion fg,k(z) := 〈F (z)g, k〉 is analyti
 in D and |fg,k(z)| ≤ ‖g‖‖k‖. We
an then write fg,k as a 
onvergent power series fg,k(z) =

∑∞
k=0 an(g, k)znand, for every n ≥ 0, |an(g, k)| ≤ ‖g‖‖k‖. But then there are operators An ∈

B(E ⊗ H,H) with ‖An‖ ≤ 1 su
h that an(g, k) = 〈Ang, k〉 for g ∈ E ⊗ Hand k ∈ H . Hen
e F (z) =
∑∞

k=0 z
nAn where the sum 
onverges in the weakoperator topology. Sin
e |z| < 1 and the norms of {An} are bounded by 1, theseries 
onverges to F (z), for z ∈ D, in the norm topology. We 
on
lude that

F (z) is analyti
. �If we were dealing with s
alar-valued fun
tions, we would be able to assert that
|F (z)| < 1 for all z ∈ D, unless F is 
onstant, by the maximum modulus the-orem. Unfortunately, an unalloyed version of the maximum modulus theoremdoes not hold in our setting. This is what leads to the spe
ial hypotheseson τ in Theorem 4.7. The next few results, then, whi
h lead up to Theorem4.7 
ome out of our e�orts to �nd a servi
eable repla
ement for the maximummodulus theorem. Our �rst theorem in this dire
tion, Theorem 4.4, is 
loselyrelated to [36, Proposition V.2.1℄. It does not seem to follow dire
tly from thisresult, however. Instead, we appeal to the following lemma, whi
h in turn isan immediate appli
ation of an operator form of the 
lassi
al Pi
k 
riterionfor interpolating operators at pre-assigned points by operator-valued analyti
fun
tions. As su
h, it may be tra
ed ba
k to Sz.-Nagy and Koranyi's in�uentialpaper [37℄. It also is a 
onsequen
e of Theorem 6.2 in [31℄, where it is presentedas a 
orollary of our Nevanlinna-Pi
k Theorem.
Lemma 4.3 If K,H are Hilbert spa
es and if F : D→ B(K,H) is an analyti
fun
tion satisfying ‖F (z)‖ ≤ 1 for all z ∈ D, then, for every z1, z2 ∈ D, thematrix (

IH−F (z1)F (z1)
∗

1−|z1|2
IH−F (z1)F (z2)

∗

1−z1z̄2
IH−F (z2)F (z1)

∗

1−z2z̄1
IH−F (z2)F (z2)

∗

1−|z2|2

)
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388 Paul S. Muhly and Baruch Solelis positive. In parti
ular (setting z1 = z and z2 = 0), for every z ∈ D,
(

IH−F (z)F (z)∗

1−|z|2 IH − F (z)F (0)∗

IH − F (0)F (z)∗ IH − F (0)F (0)∗

)
≥ 0. (19)

Theorem 4.4 Suppose H and K are Hilbert spa
es and suppose F : D →
B(K,H) is an analyti
 fun
tion that satis�es the following 
onditions:(1) ‖F (z)‖ ≤ 1 for all z ∈ D.(2) There are proje
tions P1, P2 in B(H) that sum to IH and proje
tions

Q1, Q2 in B(K) that sum to IK and satisfy:(i) P1F (0)Q2 = 0 and P2F (0)Q1 = 0.(ii) P1F (0)F (0)∗P1 = P1.(iii) P2F (0)F (0)∗P2 ≤ rP2 for some 0 < r < 1.Then, for every z ∈ D,(1) P1F (z)Q2 = 0.(2) P1F (z)Q1 = P1F (0)Q1.(3) There is a fun
tion q0(z) on D, su
h that 0 < q0(z) < 1 for all z ∈ D,and su
h that P2F (z)F (z)∗P2 ≤ q0(z)P2.
Proof. It will be 
onvenient to use the proje
tions P1, P2 and Q1, Q2 towrite F (z) matri
ially as

F (z) =

(
A(z) B(z)
C(z) D(z)

)so that, by assumption,
F (0) =

(
A(0) 0

0 D(0)

)where A(0)A(0)∗ = P1 and D(0)D(0)∗ ≤ rP2.Sin
e F satis�es the 
onditions of Lemma 4.3, Equation 19 holds for all z ∈ D.Compressing ea
h entry of the matrix in (19) to the range of P1 and using thefa
t that A(0)A(0)∗ = P1 and that P1F (0)Q2 = 0, we get
(

P1−P1F (z)F (z)∗P1

1−|z|2 P1 − P1F (z)Q1A(0)∗

P1 −A(0)Q1F (z)∗P1 0

)
≥ 0. (20)It follows that P1 = P1F (z)Q1A(0)∗. Thus 0 ≤ (P1F (z)Q1 −

A(0))(Q1F (z)∗P1 − A(0)∗) = P1F (z)Q1F (z)∗P1 + A(0)A(0)∗ −
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Schur Class Operator Functions . . . 389
P1F (z)Q1A(0)∗ − A(0)Q1F (z)∗P1 ≤ 0. Consequently, A(0) = P1F (z)Q1(for every z ∈ D).But then P1F (z)Q1F (z)∗P1 = P1 and, sin
e P1F (z)F (z)∗P1 ≤
P1, P1F (z)Q2 = 0. This proves (1) and (2).Compress ea
h entry of (19) to the range of P2 to get

(
P2−P2F (z)F (z)∗P2

1−|z|2 P2 − P2F (z)Q2D(0)∗

P2 −D(0)Q2F (z)∗P2 P2 −D(0)D(0)∗

)
≥ 0. (21)Write ∆ for the positive square root of P2 − D(0)D(0)∗ and note that ∆ isinvertible as an operator on the range of P2. Equation (21) implies that

(P2 −D(0)D(z)∗)∆−2(P2 −D(z)D(0)∗) ≤ (
P2 − P2F (z)F (z)∗P2

1− |z|2 ).Sin
e D(0)D(z)∗ lies in B(P2(H)) and has norm stri
tly less than 1 (as
‖D(0)‖ < 1), P2 − D(0)D(z)∗ is invertible in B(P2(H)) and so, therefore, is
(P2−D(0)D(z)∗)∆−2(P2−D(z)D(0)∗). Hen
e, for ea
h z ∈ D there is a q(z) >

0, su
h that P2−P2F (z)F (z)∗P2

1−|z|2 ≥ (P2 − D(0)D(z)∗)∆−2(P2 − D(z)D(0)∗) ≥
q(z)P2. Thus,

P2 − P2F (z)F (z)∗P2 ≥ (1 − |z|2)q(z)P2,whi
h yields P2F (z)F (z)∗P2 ≤ (1 − q(z)(1 − |z|2))P2. So, if we set q0(z) =
(1− q(z)(1 − |z|2)), we obtain a fun
tion with the desired properties. �We return to our analysis of the spe
ial fun
tion F : D→ B(E⊗σH,H) de�nedin equation (18).
Lemma 4.5 The fun
tion F de�ned by equation (18) satis�es:(1) For every z ∈ D and a ∈ M , F (z)(ϕE(a) ⊗ IH) = σ(a)F (z) and

F (z)F (z)∗ 
ommutes with σ(M).(2) For every b ∈ σ(M)′, bF (0) = F (0)(IE ⊗ b) and F (0)F (0)∗ ∈ Z(σ(M)).
Proof. Sin
e F (z)∗ ∈ Eσ by Lemma 4.1, (1) holds. For (2), simply note that
bF (0)(ξ⊗h) = bα(Tξ)(0)h = α(Tξ)(0)bh = F (0)(ξ⊗ bh) = F (0)(IE⊗ b)(ξ⊗h),where we used the fa
t that for every X ∈ H∞(E), X(0) ∈ σ(M). �

Definition 4.6 Let τ be the map de�ned by equation (17). We say that τ(0)splits if there are proje
tions P1, P2 in σ(M)′ su
h that(i) P1 + P2 = I,(ii) P1τ(0)∗τ(0)P1 = P1 and(iii) P2τ(0)∗τ(0)P2 ≤ rP2 for some r < 1.
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390 Paul S. Muhly and Baruch SolelNote that τ(0) = F (0)∗ so that, although F depends on a 
hoi
e of η ∈ D(Eσ),
F (0) does not. It follows from Lemma 4.5, therefore, that τ(0)∗τ(0) lies in the
enter of σ(M), Z(σ(M)) = σ(Z(M)).Note also that, if the 
enter of M , Z(M), is an atomi
 abelian von Neumannalgebra, then τ(0) always splits. This is the 
ase, in parti
ular, if M is a fa
toror if M = Cn. It is also the 
ase, therefore, when E is the 
orresponden
easso
iated with a (
ountable) dire
ted graph.When τ(0) splits we have the following.
Theorem 4.7 Assume that the left a
tion map of M on E, ϕE , is inje
tiveand that τ(0) splits. Then the map τ de�ned in equation (17)) maps D(Eσ)into itself and satis�es the following equation

(α̂(X))(η∗) = X̂(τ(η)∗),for every X ∈ H∞(E) and η ∈ D(Eσ).
Proof. Fix η ∈ D(Eσ) and let F be the map de�ned in (18). Sin
e τ(0) =
F (0)∗ splits, there are proje
tions P1, P2 as in De�nition 4.6. Using Lemma 4.5,we see that the 
onditions of Theorem 4.4 are satis�ed with K = E ⊗H and
Qi = IE ⊗ Pi, i = 1, 2. Thus,

P1F (z) = P1F (z)(IE ⊗ P1) = P1F (0)(IE ⊗ P1) = P1F (0)for all z ∈ D. Consequently, for all ξ ∈ E, P1(σ × zη∗)(α(Tξ)) = P1σ(α(Tξ)0)where, forX ∈ H∞(E), X0 is the image ofX under the 
onditional expe
tationonto ϕ∞(M). Sin
e the representation σ × zη∗ is w∗-
ontinuous and α issurje
tive, we have for all X ∈ H∞(E),
P1(σ × zη∗)(X) = P1σ(X0).In parti
ular, letting X = Tξ, we see that P1(σ × zη∗)(Tξ) = 0. Sin
e, for

h ∈ H , (σ × zη∗)(Tξ)h = P1η
∗(ξ ⊗ h) = 0 we have ηP1 = 0. (Re
all that

P1 ∈ σ(M)′ and, thus, ηP1 is well de�ned sin
e Eσ is a right module over
σ(M)′).Sin
e η is arbitrary in D(Eσ), EσP1 = 0. If P1 6= 0, it follows that Eσ is notfull and, using Lemma 2.20, the map ϕE is not inje
tive, 
ontradi
ting ourassumption. Thus P1 = 0 and it follows from Theorem 4.4 that ‖F (z)‖ < 1for every z. sin
e this holds for all η ∈ D(Eσ), the 
on
lusion of the theoremfollows. �Next we show that the map τ is holomorphi
 on D(Eσ). We view it as amap into B(H,E ⊗ H). To be holomorphi
 is the same as being Fre
het-di�erentiable. If we use [21, Theorem 3.17.1℄ and the fa
t, proved in Lemma 4.1,that τ is bounded, it su�
es to show that τ is (G)-di�erentiable in the sense of[21, De�nition 3.16.2℄. But if we apply [21, Theorem 3.16.1℄, this means thatwe have to show that for every η0, η ∈ D(Eσ), the fun
tion G(z) := τ(η0 + zη),
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Schur Class Operator Functions . . . 391de�ned on D(η, η0) := {z ∈ C||z| < (1−‖η0‖)/‖η‖} is holomorphi
 in the senseof [21, De�nition 3.10.1℄.Sin
e the set of all fun
tionals on B(H,E ⊗ H) that are w∗-
ontinuous is adetermining manifold for B(H,E ⊗ H) in the sense of [21, De�nition 2.8.2℄,it su�
es to show that for every w∗-
ontinuous fun
tional w, the map z 7→
w(τ(η0 + zη)) is holomorphi
 on D(η, η0). It is enough, in fa
t, to 
onsider allfun
tionals of the form T 7→ 〈Th, ξ ⊗ k〉 for h, k ∈ H and ξ in the unit ball of
E.So we �x η0, η ∈ Eσ, h, k ∈ H and ξ ∈ E with ‖ξ‖ < 1 and write f(z) =
〈τ(η0 + zη)h, ξ ⊗ k〉 for z ∈ D(η, η0). We have

f(z) = 〈h, τ(η0 + zη)∗(ξ ⊗ k)〉 = 〈h, α̂(Tξ)(η
∗
0 + z̄η∗)k〉.Note that by Theorem 3.6, we 
an write

α̂(Tξ)(η
∗
0 + zη∗) = A+

∞∑

m=1

B((L∗η0 + z̄L∗η)D)m−1(L∗η0 + z̄L∗η)Cwhere A,B,C,D are from some system matrix and the sum 
onverges in norm.Thus
f(z) = 〈A∗h, k〉+

∞∑

m=1

〈C∗(Lη0 + zLη)(D∗(Lη0 + zLη))m−1B∗h, k〉and this fun
tion is 
learly holomorphi
.We 
an 
on
lude:
Corollary 4.8 The fun
tion τ is a holomorphi
 map from D(Eσ) to its 
lo-sure.
Theorem 4.9 Let E be a faithful W ∗-
orresponden
e over M , let α be anautomorphism of H∞(E) that is 
ompletely isometri
, is a w∗-homeomorphismand leaves ϕ∞(M) elementwise �xed, and let σ be a faithful representationof M . Write τ for the transpose of α de�ned in equation (17) and write θfor the map asso
iated similarly with α−1. If both τ(0) and θ(0) split (as inDe�nition 4.6) then τ is a biholomorphi
 map of the open unit ball of Eσ,
τ−1 = θ, and, for every X ∈ H∞(E),

(α̂(X))(η∗) = X̂(τ(η)∗) , η ∈ D(Eσ). (22)
Proof. We already know that, under the 
onditions of the theorem, both
τ and θ are holomorphi
 maps of the open unit ball. It follows from equation(17) that, for every ξ ∈ E, h ∈ H and η ∈ D(Eσ), α̂(Tξ)(η

∗) = τ(η)∗(ξ ⊗ h).But τ(η)∗(ξ ⊗ h) = T̂ξ(τ(η)∗), so that equation (22) holds for Tξ. It also holdsfor ϕ∞(a), a ∈ M , sin
e α(ϕ∞(a)) = ϕ∞(a). Therefore it holds for every Xin a w∗-dense subalgebra of H∞(E). By the w∗-
ontinuity of α, equation (22)
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392 Paul S. Muhly and Baruch Solelholds for every X ∈ H∞(E). Sin
e a similar 
laim holds for α−1 and θ, we
on
lude that for all X ∈ H∞(E), X̂(η∗) = ̂α−1(α(X))(η∗) = α̂(X)(θ(η)∗) =

X̂(τ(θ(η))∗). Thus τ−1 = θ. �A biholomorphi
 map τ is said to implement α if equation (22) holds.
Remark 4.10 If α is implemented by τ in the sense of equation (22), then,writing this equation when X = ϕ∞(a), a ∈ M , shows that α leaves ϕ∞(M)elementwise �xed. Also, inspe
ting the proof of Lemma 4.1, one sees that, if αdoes not have this property, the map τ, de�ned in equation (17) would map theunit ball of Eσ into the unit ball of Eπ where π = σ ◦ ϕ−1

∞ ◦ α ◦ ϕ∞. One 
anstudy su
h automorphisms by studying these maps but the situation be
omesquite 
ompli
ated, unless one makes a global assumption to begin with, vis.,that σ has uniform in�nite multipli
ity. In that event, by properties of normalrepresentations of von Neumann algebras, σ and π are unitarily equivalent. Say
π(·) = uσ(·)u∗ for some Hilbert spa
e isomorphism from the Hilbert spa
e of σto the Hilbert spa
e of π. Then it is a straightforward 
al
ulation to see that
Eπ = (I ⊗ u)Eσu∗. It is then a straightforward matter to in
orporate u intoour formulas.As we have remarked before, D(Eσ) is the unit ball of a J∗-triple system. Itresults, therefore, from well-known theory [20℄ that the biholomorphi
 mapsof D(Eσ) are determined by Möbius transformations (and �isometri
 multipli-ers�). As we shall, however, the Möbius transformations of D(Eσ) that im-plement automorphisms of H∞(E) have to have a spe
ial form: They mustbe parametrized by �
entral� elements of D(Eσ) in the sense of the followingde�nition. (See also Remark 2.1.3 of [14℄).
Definition 4.11 Let E be a W ∗-
orresponden
e over a W ∗-algebra M . The
enter of E, denoted Z(E), is the set of ξ ∈ E su
h that aξ = ξa for all a ∈M .
Lemma 4.12 (1) The 
enter Z(E) of a W ∗-
orresponden
e E over M is a

W ∗-
orresponden
e over the 
enter Z(M) of M .(2) Let σ be a faithful normal representation of M on the Hilbert spa
e E, andfor ξ ∈ E, de�ne Φ(ξ) := Lξ where Lξ maps E to E ⊗ E via the formula
Lξ(h) = ξ⊗h. Then the pair (σ,Φ) de�nes an isomorphism of Z(E) onto
Z(Eσ) in the sense of De�nition 2.2. (Here, Z(E) is a 
orresponden
eover Z(M) and Z(Eσ) is a 
orresponden
e over Z(σ(M)′) = Z(σ(M)) =
σ(Z(M))).(3) Given a faithful representation σ of M on the Hilbert spa
e E and γ ∈
D(Eσ), then γ lies in the 
enter of Eσ if and only if the representation
σ × γ∗ maps H∞(E) into σ(M).

Proof. It is 
lear that Z(E) is a bimodule over Z(M) and, to prove (1), weneed only show that the inner produ
t of two elements in Z(E) lies in Z(M).
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Schur Class Operator Functions . . . 393For a ∈M , ξ1, ξ2 ∈ Z(E) we have
a〈ξ1, ξ2〉 = 〈ξ1a∗, ξ2〉 = 〈a∗ξ1, ξ2〉 = 〈ξ1, aξ2〉 = 〈ξ1, ξ2a〉 = 〈ξ1, ξ2〉a.Hen
e the inner produ
t lies in the 
enter of M , proving (1). We �x a faithfulrepresentation σ of M on E . For ξ ∈ Z(E), a ∈ M and h ∈ E we have

Lξσ(a)h = ξ⊗σ σ(a)h = ξa⊗h = aξ⊗h = (a⊗ I)Lξh. Hen
e, Lξ ∈ Eσ. Given
b ∈ σ(M)′ and h ∈ E we have Lξbh = ξ ⊗ bh = (IE ⊗ b)Lξh. Thus Lξ lies in
Z(Eσ).For ξ ∈ Z(E), a, b ∈ Z(M), and h ∈ E , Laξbh = aξb ⊗ h = ξab ⊗ h = ξ ⊗
σ(a)σ(b)h = (I ⊗ σ(a))Lξσ(b)h hen
e

Φ(aξb) = σ(a)Φ(ξ)σ(b).For ξ1, ξ2 ∈ Z(E) we have L∗ξ1Lξ2 = σ(〈ξ1, ξ2〉). Therefore the pair (σ,Φ) is anisomorphism of Z(E) into Z(Eσ).To prove that the map Φ is onto, �x an η ∈ Z(Eσ). Then, η is a map from Eto E ⊗σ E satisfying
ησ(a) = (a⊗ I)η (23)and
ηb = (I ⊗ b)η, (24)for a ∈ M and b ∈ σ(M)′. De�ne the map ψ : E → B(E) by ψ(ζ) = η∗Lζand note that for b ∈ σ(M)′ and h ∈ E , η∗Lζbh = η∗(ζ ⊗ bh) = η∗(I ⊗ b)Lζh.Using (24) the latter is equal to bη∗Lζh. Hen
e ψ(ζ) lies in σ(M). Also

ψ(ζa) = ψ(ζ)σ(a) for all a ∈ M and it then follows from the self dualityof E that there is an ξ ∈ E with 〈ξ, ζ〉 = σ−1(ψ(ζ)). Thus, for all ζ ∈ E,
L∗ξLζ = σ(〈ξ, ζ〉) = η∗Lζ and we 
on
lude that η = Lξ.It follows from (23) that, for all a ∈M , Lξa = ησ(a) = (a⊗I)η = Laξ, showingthat ξ lies in Z(E).Finally, to prove (3), �x an η ∈ D(Eσ) and write (T, σ) for the 
ovariant pairasso
iated with σ×η∗ (so that, T̃ = η∗). Then the representation mapsH∞(E)into σ(M) if and only if, for ea
h ξ ∈ E, T (ξ) ∈ σ(M). This holds i�, for all
b ∈ σ(M)′, ξ ∈ E and h ∈ E , T̃ (IE ⊗ b)(ξ⊗ h) = T (ξ)bh = bT (ξ)h = bT̃ (ξ⊗ h);that is, if and only if T̃ (IE⊗b) = bT̃ for every b ∈ σ(M)′. But the last statementsays that η lies in the 
enter of Eσ. �The following example may help to show that the 
enter of a 
orresponden
eis mu
h less �inert� than the 
enter of a von Neumann algebra.
Example 4.13 Let M be a von Neumann algebra and let α be an endomor-phism of M . Then we obtain a W ∗-
orresponden
e over M , denoted αM , bytaking M with its usual right a
tion and inner produ
t give by the formula,
〈ξ, η〉 = ξ∗η and by letting α implement the left a
tion. Then an element ξ in
αM lies in the 
enter of αM if and only if ξ intertwines α and the identity en-domorphism; i.e., ξ ∈ Z(αM) if and only if α(a)ξ = ξa for all a ∈M . Z(αM)is a mu
h studied obje
t in the literature and the pre
eding lemma spells outsome of its important elementary properties.

Documenta Mathematica 13 (2008) 365–411



394 Paul S. Muhly and Baruch SolelOur goal now is to develop the properties of Möbius transformations of D(Eσ)and to identify those that implement automorphisms of H∞(E). To this end,�x a faithful representation σ of M on a Hilbert spa
e E . Set N = σ(M)′,write K = E ⊕ (E ⊗σ E), and de�ne the (ne
essarily faithful) representation ρof N on K by the formula
ρ(S) =

(
S 0
0 I ⊗ S

)
, S ∈ N.For γ ∈ D(Eσ) we set ∆γ := (IE − γ∗γ)1/2 - an element in B(E) - and ∆γ∗ :=

(IE⊗E − γγ∗)1/2 - an element in B(E ⊗ E). When γ is understood, then weshall simply write ∆ for ∆γ and ∆∗ for ∆γ∗ . Given γ ∈ D(Eσ) we de�ne themap gγ on D(Eσ)∗ by the formula,
gγ(z∗) = ∆γ(I − z∗γ)−1(γ∗ − z∗)∆−1

γ∗ , (25)
z ∈ D(Eσ). Then gγ is a biholomorphi
 automorphism of D(Eσ)∗ that maps 0to γ∗ and γ∗ to 0. Further, g2

γ = id, and every biholomorphi
 map g of D(Eσ)∗is of the form
g = w ◦ gγwhere w is an isometry on (Eσ)∗ and γ∗ = w−1g(0) [20℄. When γ lies in the
enter of Eσ, we see that gγ maps the 
enter onto itself and it follows that everybiholomorphi
 automorphism of the open unit ball of (Eσ)∗ that preserves the
enter is of the form
g = w ◦ gγwhere γ lies in the 
enter and w is an isometry on (Eσ)∗ that preserves the
enter.If z ∈ D(Eσ), then the series ∑∞n=0(z∗γ)n 
onverges in norm to the operatorin N , (I − z∗γ)−1 =

∑∞
n=0(z∗γ)n. One easily 
al
ulates, then, that

gγ(z∗) = ∆γ∗∆−1
∗ −∆(I − z∗γ)−1z∗∆∗.Re
all that the equation U(z ⊗ h) = z(h) de�nes a Hilbert spa
e isomorphism

U : Eσ ⊗ E → E ⊗ E [31, p. 369℄. Consequently, as maps on E , ULz = z and
z∗ = L∗zU

∗. Thus we may write
gγ(z∗) = ∆γ∗∆−1

∗ −∆(I − L∗zU∗γ)−1L∗zU
∗∆∗.We write K1 = E ⊗σ E for the se
ond summand in K = E ⊕ (E ⊗σ E) and welet q1 denote the proje
tion from K onto K1. Likewise, we set K2 = E withproje
tion q2. Corresponding to the dire
t sum de
omposition, we de�ne V bythe formula

V :=

(
∆γ∗∆−1

∗ −∆
U∗∆∗ U∗γ

)
:

(
K1

E

)
→
(

K2

Eσ ⊗ E

)
. (26)
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Schur Class Operator Functions . . . 395If we 
al
ulate V V ∗, we �nd that the o� diagonal terms vanish and the terms onthe diagonal are ∆γ∗∆−2
∗ γ∆+∆2 and U∗(∆2

∗+γγ
∗)U . Sin
e ∆2

∗+γγ
∗ = IE⊗E ,the latter expression is U∗U = IEσ⊗E = q2. For the �rst expression, we notethat γ∗∆−2

∗ γ = γ∗(I − γγ∗)−1γ = (I − γ∗γ)−1 − 1 and ∆γ∗∆−2
∗ γ∆ + ∆2 =

∆((I − γ∗γ)−1 − I)∆ + ∆2 = IE . This shows that V is a 
oisometry. Similar
omputations show that it is, in fa
t, a unitary operator. Thus V is a transferoperator.We want to apply Theorem 3.6 to obtain an elementX ∈ H∞(E) with X̂(η∗) =
gγ(η∗), for η ∈ D(Eσ). To do this, we �rst let F be the 
orresponden
e Eσand then F ρ is a 
orresponden
e over ρ(N)′. In order to apply Theorem 3.6we let M , in that theorem, be the von Neumann algebra ρ(N)′ and let σ therebe the identity representation of ρ(N)′ on K (so that E there is K). E in thattheorem will be F ρ and N there (the 
ommutant of σ(M)) will be ρ(N). Therepresentation τ of N then will be the map ρ−1 of ρ(N) on E (so that E willplay the role of H there). Also, q1 will be as above. We set A = ∆γ∗∆−1

∗ ,
B = −∆, C = U∗∆∗ and D = U∗γ. These A,B,C and D give rise to thematri
ial operator V of equation (26). In order to show that the assumptionsof Theorem 3.6 are satis�ed, we have to show that these operators (A,B,C and
D) all have the required intertwining properties. (Note that we have already
he
ked that V is a unitary operator).The required intertwining properties are:(a) A = ∆γ∗∆−1

∗ lies in q2ρ(N)′q1.(b) B = −∆ lies in N ′.(
) For every S ∈ N , U∗∆∗(IE ⊗ S) = (S ⊗ IE )U∗∆∗ on E ⊗ E .(d) For every S ∈ N , U∗γS = (IE ⊗ S)U∗γ on E .Indeed, re
all that γ lies in the 
enter of Eσ and, thus, for S ∈ N , γS = (I⊗S)γ.Therefore ∆ 
ommutes with N and ∆∗ 
ommutes with I ⊗ S for S ∈ N .This implies (a) and (b). Re
all that, for h ∈ E , U∗γh = γ ⊗ h and, thus,
U∗γSh = γ ⊗ Sh = (I ⊗ S)(γ ⊗ h) = (I ⊗ S)U∗γh proving (d). For (
), itsu�
es to note that U(S ⊗ I)U∗ = I ⊗ S and ∆∗ 
ommutes with I ⊗ S for all
S ∈ N .We 
an now apply Theorem 3.6. Sin
e F ρ plays the role of E in that theoremand the identity representation of ρ(N)′, id, plays the role of σ, Eσ in thattheorem is repla
ed by (F ρ)id whi
h, by the duality theorem [31, Theorem 3.6℄ is isomorphi
 to F = Eσ. We therefore 
on
lude:
Lemma 4.14 For every γ ∈ D(Z(Eσ)), there is an X in H∞(F ρ) with ‖X‖ ≤ 1su
h that, for all z ∈ D(Eσ), X̂(z∗) = gγ(z∗).Note that gγ(z∗) is an operator from E ⊗ E into E and 
an be viewed as anoperator in B(K) whi
h is where the values of X , as an element of H∞(F ρ),lie.We 
an now use [31, Theorem 5.3℄ to prove the following.
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396 Paul S. Muhly and Baruch Solel

Corollary 4.15 Fix γ ∈ D(Z(Eσ)) as above. Then, for every z1, z2, . . . , zkin D(Eσ), the map on Mk(σ(M)′) de�ned by the k × k matrix
((id− θgγ (z∗i )∗,gγ(z∗j )∗) ◦ (id− θzi,zj )−1)is 
ompletely positive.

Proof. Applying [31, Theorem 5.3℄ to X of Lemma 4.14, we get the 
ompletepositivity of the map de�ned by the matrix
((I −Ad(gγ(z∗i ), gγ(z∗j ))) ◦ (id− θzi,zj )−1).But note that, for every b ∈ σ(M)′, Ad(gγ(z∗i ), gγ(z∗j ))(ρ(b)) =

gγ(z∗i )ρ(b)gγ(z∗j )∗ = 〈gγ(z∗i )∗, bgγ(z∗j )∗〉 = θgγ(z∗i )∗,gγ(z∗j )∗(b). �

Corollary 4.16 Let Z : D(Eσ)∗ → B(E) be a S
hur 
lass operator fun
tionand let γ be in D(Z(Eσ)). Then the fun
tion Zγ : D((Eσ)∗)→ B(E) de�ned by
Zγ(η∗) = Z(gγ(η∗))is also a S
hur 
lass operator fun
tion.

Proof. For every ηi, ηj in D(Eσ) we have (id−Ad(Z(gγ(η∗i )), Z(gγ(η∗j )))) ◦
(id− θηi,ηj )−1 = ((id− Ad(Z(gγ(η∗i )), Z(gγ(η∗j )))) ◦ (id− θgγ (η∗i )∗,gγ(η∗j )∗)−1) ◦
(id − θgγ(η∗i )∗,gγ(η∗j )∗) ◦ (id − θηi,ηj )−1). Hen
e the map asso
iated with Zγ isa 
omposition of two 
ompletely positive maps and is, therefore, 
ompletelypositive. �For the statement of the next lemma, re
all from [31, end of Se
tion 2℄ thatevery X ∈ H∞(E) has a �Fourier series" expansion given by a sequen
e of�Fourier 
oe�
ient operators" {Ej}. (In [31℄ we wrote {Φj} for this sequen
e).Ea
h map Ej is 
ompletely 
ontra
tive, w∗-
ontinuous and Ej(Tξ1Tξ2 · · ·Tξk

) =
Tξ1Tξ2 · · ·Tξk

if j = k and is zero otherwise. The Cesaro means of the �Fourierseries" of X 
onverge to X in the w∗-topology.
Lemma 4.17 Let σ be a normal, faithful, representation of M on a Hilbertspa
e H and let K(σ) denote the kernel of the map X → X̂ de�ned in equation(16).(i) K(σ) ⊆ {X ∈ H∞(E) | E0(X) = E1(X) = 0}.(ii) If, for every k ∈ N, ∨{(η⊗k)(H) | η ∈ D(Eσ)} = E⊗k ⊗H, then K(σ) =

{0}.(iii) Every 
ompletely isometri
 automorphism α of H∞(E) that is a w∗-homeomorphism and is implemented by a biholomorphi
 map of D(Eσ) inthe sense of (22) leaves K(σ) invariant. In parti
ular, K(σ) is invariantunder the a
tion of the gauge group and, thus, under the maps Ek, k ≥ 0.
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Schur Class Operator Functions . . . 397
Proof. Write C1 for {X ∈ H∞(E) | E0(X) = E1(X) = 0}. Then for every
X ∈ H∞(E), X = E0(X) + E1(X) + X1 where X1 ∈ C1. Note that for every
η ∈ D(Eσ), every 0 < t ≤ 1 and every k ≥ 0, Ek(X)((tη)∗) = tkE(X)(η∗).Thus, for X ∈ K(σ), 0 = X((tη)∗) = E0(X)(η∗) + tE1(X)(η∗) + t2S where
S is some bounded operator on H . Sin
e this holds for every 0 < t ≤ 1, wehave (by di�erentiation) E0(X) = 0 and E1(X)(η∗) = 0 for all η ∈ D(Eσ).Write E1(X) = Tξ (for some ξ ∈ E). Then, for all h ∈ H and η ∈ D(Eσ),
0 = E1(X)(η∗)h = η∗(ξ ⊗ h). Sin
e ∨{η(H)| η ∈ D(Eσ)} = E ⊗ H ([31,Lemma 3.5℄), we �nd that ξ ⊗ h = 0 for all h ∈ H . Sin
e E is faithful, thisimplies that ξ = 0, 
ompleting the proof of (i).We 
an also write 0 = X((tη)∗) = E0(X)(η∗)+tE1(X)(η∗)+· · ·+tkEk(X)(η∗)+
tk+1S and 
on
lude that Ej(X)(η∗) = 0 for all j ≤ k. We 
an then 
ontinueas above but to be able to 
on
lude that Ek(X) = 0 we need the 
ondition inpart (ii) (to repla
e the use of [31, Lemma 3.5℄ in the argument above).To prove (iii), note that the invarian
e of K(σ) under an automorphism α asin (iii) follows from (22). The invarian
e under the gauge group (and under
Ek) is then immediate. �The following proposition is obvious if K(σ) = {0}. But, in fa
t, it holds forevery faithful, normal representation σ. The argument uses an idea from [17,Proof of Theorem 4.11℄.
Proposition 4.18 Let σ be a faithful, normal representation of M and let
α, β be two homomorphisms of H∞(E) into itself su
h that β is 
ompletely iso-metri
, surje
tive and a w∗-homeomorphism, while α is 
ompletely 
ontra
tiveand w∗-
ontinuous. Suppose they satisfy the equation

α̂(X)(η∗) = β̂(X)(η∗)for all X ∈ H∞(E) and η ∈ D(Eσ). Then α = β.
Proof. It is 
learly enough to assume β = id and α̂(X)(η∗) = X̂(η∗). Notethat α, viewed as a representation of H∞(E) on F(E)⊗σH (whose restri
tionto ϕ∞(M) is ϕ∞(·) ⊗ IH), 
an be written as (ϕ∞(·) ⊗ IH)× ζ∗ for some ζ inthe 
losed unit ball of the ϕ∞(·) ⊗ IH -dual of E. Thus, for k ∈ F(E) ⊗σ H ,
α(Tξ)k = (ζ∗)(ξ ⊗ k) and ‖α(Tξ)k‖ ≤ ‖ξ ⊗ k‖ = ‖Tξk‖.Fix h ∈ H viewed as the zeroth summand of F(E)⊗σH . Then for every ξ ∈ E,

‖α(Tξ)h‖ ≤ ‖Tξh‖.By 
onstru
tion α(Tξ) − Tξ ∈ K(σ). But also, by Lemma 4.17(i), for every
X ∈ K(σ), Xh is orthogonal to Tξh. Thus

‖α(Tξ)h‖2 = ‖(α(Tξ)− Tξ)h‖2 + ‖Tξh‖2 ≥ ‖Tξh‖2.We 
on
lude that for every h ∈ H , (α(Tξ)−Tξ)h = 0. It follows that α(Tξ) = Tξfor all ξ ∈ E. Sin
e α is a w∗-
ontinuous homomorphism, α(X) = X for all
X ∈ H∞(E). �
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398 Paul S. Muhly and Baruch SolelThe following lemma will prove very useful when we deal with a representation
σ for whi
h K(σ) 6= {0}. It relates the σ-dual with the π-dual where π is therepresentation de�ned in the proof of Lemma 3.8 (for whi
h K(π) = {0}).
Lemma 4.19 Let σ be a faithful representation of M on H and π be the repre-sentation ϕ∞⊗ IH of M on K := F(E)⊗H. Let ψ : σ(M)′ → (ϕ∞(M)⊗ IH)′be de�ned by ψ(b) = IE⊗b and let Ψ : Eσ → Eπ be de�ned by Ψ(η) = IF(E)⊗η.Then we have the following.(1) The pair (ψ,Ψ) is an isomorphism of Eσ into (not ne
essarily onto) Eπsatisfying

Ψ(η)PH = PE⊗HΨ(η) = η , η ∈ Eσwhere PH is the proje
tion from K to H (viewed as a subspa
e) and PE⊗His the proje
tion of E ⊗K onto E ⊗H.(2) For every X ∈ H∞(E) and ζ ∈ Eπ that satis�es ζPH = PE⊗Hζ, we have
ζ|H ∈ Eσ and the restri
tion of X̂(ζ∗) to H (viewed as a summand of
F(E)⊗H = H ⊕ E ⊗H ⊕ · · · ) is X̂((ζ|H)∗).(3) There is an isomorphism Φ of Z(Eσ) onto Z(Eπ) satisfying

Φ(γ)PH = PE⊗HΦ(γ) = γ , γ ∈ Z(Eσ).(4) For η ∈ Eσ and γ ∈ Z(Eσ),
gΦ(γ)(Ψ(η)∗)PE⊗H = PHgΦ(γ)(Ψ(η)∗) = gγ(η∗).

Proof. It is 
lear that ψ is indeed an isomorphism into (ϕ∞(M) ⊗ IH)′.Note that it follows from the intertwining property of η ∈ Eσ that Ψ(η) is awell de�ned bounded operator. To show that Ψ maps Eσ into Eπ, �x η ∈ Eσ,
θ⊗ h ∈ F(E)⊗H and a ∈M and 
ompute (IF(E) ⊗ η)π(a)(θ ⊗ h) = (IF(E) ⊗
η)(ϕ∞(a)θ⊗ h) = ϕ∞(a)θ⊗ η(h), where we view F(E)⊗E as the subspa
e of
F(E) 
onsisting of all the positive tensor powers of E. But the last expressionis equal to (ϕ∞(a)⊗ IH)(IF(E) ⊗ η)(θ ⊗ h), showing that Ψ(η) ∈ Eπ.To show that the map is a bimodule map, �x η ∈ Eσ, b, c ∈ σ(M)′ and
θ ⊗ h ∈ F(E) ⊗ H . Then Ψ(cηb)(θ ⊗ h) = θ ⊗ (cηb)h = θ ⊗ (IE ⊗ c)ηbh =
ψ(c)(θ ⊗ ηbh) = ψ(c)Ψ(η)(θ ⊗ bh) = ψ(c)Ψ(η)ψ(b)(θ ⊗ h), proving that theimage of Ψ lies in Eπ. Regarding the inner produ
t, we have: 〈Ψ(η1),Ψ(η2)〉 =
Ψ(η1)∗Ψ(η2) = (IF(E) ⊗ η1)∗(IF(E)⊗ η2) = (IF(E) ⊗ η∗1η2) = ψ(〈η1, η2〉) for all
η1, η2 ∈ Eσ. Thus (ψ,Ψ) is an isomorphism of Eσ into Eπ. The proof of theequation Ψ(η)PH = PE⊗HΨ(η) = η for η ∈ Eσ is easy. This proves (1).To prove (2), let ζ ∈ Eπ satisfy ζPH = PE⊗Hζ and �x a ∈M and h ∈ H . Then
(ζ|H)σ(a)h = ζ(ϕ∞(a)⊗IH)h = (ϕE(a)⊗IK)PE⊗Hζh = (ϕE(a)⊗IH)(ζ|H)h.Thus, ζ|H ∈ Eσ. To prove that X̂((ζ|H)∗) = X̂(ζ∗)|H , let, �rst, 
onsider X =

ϕ∞(a) for a ∈ M . Then X̂(ζ∗) = ϕ∞(a)⊗ IH and X̂((η|H)∗) = σ(a) and (2)
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ase. Take X = Tξ for some ξ ∈ E. Then, for h ∈ H ⊆ F(E)⊗H ,
X̂(ζ∗)h = ζ∗(ξ ⊗ h) = (ζ|H)∗(ξ ⊗ h) = X̂((ζ|H)∗)h. In parti
ular, we see that
H is invariant for all X̂(ζ∗) where X runs over a set of generators. Thus, His invariant under X̂(ζ∗) for all X ∈ H∞(E) and (2) holds for all X 's in a
w∗-dense subalgebra of H∞(E). Sin
e the map X 7→ X̂(ζ∗) is w∗-
ontinuous,we are done.To prove (3), re
all from Lemma 4.12 (2) that both Z(Eσ) and Z(Eπ) areisomorphi
 to Z(E). Combining these two isomorphisms, we get Φ. Morepre
isely, every η ∈ Z(Eσ) is equal to Lξ for some ξ ∈ Z(E) (that is, η(h) =
ξ ⊗ h, h ∈ H). Then we set Φ(η)k = ξ ⊗ k for k ∈ K = F(E) ⊗ H . Theequation Φ(γ)PH = PE⊗HΦ(γ) = γ , γ ∈ Z(Eσ) follows easily.Part (4) follows from (1) and (3). �Fix X ∈ H∞(E) with ‖X‖ ≤ 1, let π = ϕ∞ ⊗ IH , as in Lemma 3.8, and let γbe an element of D(Z(Eπ)). Then if X̂ is the S
hur 
lass operator fun
tion on
D((Eπ)∗) determined by X then by Corollary 4.16, X̂ ◦ gγ also is a S
hur 
lassoperator fun
tion on D((Eπ)∗). By Corollary 3.9 there is an element αγ(X) in
H∞(E), whose norm does not ex
eed 1, su
h that α̂γ(X) = X̂ ◦gγ. Further, byLemma 3.8, this element is uniquely de�ned. We 
an, of 
ourse, extend this toa map, αγ , from H∞(E) to itself su
h that, for X ∈ H∞(E) and η ∈ D((Eπ)∗),

α̂γ(X)(η∗) = X̂(gγ(η∗)). (27)
Lemma 4.20 Let σ and π be as in Lemma 4.19. Then:(i) For every γ ∈ D(Z(Eπ)), αγ , de�ned by equation (27) is an automorphismof the algebra H∞(E) that is 
ompletely isometri
 and is a homeomor-phism with respe
t to the ultraweak topology.(ii) For every γ ∈ D(Z(Eσ)) let αγ be de�ned to be αΦ(γ) (with Φ as inLemma 4.19). Then, for every X ∈ H∞(E) and η ∈ Eσ,

α̂γ(X)(η∗) = X̂(gγ(η∗)). (28)
Proof. We �rst prove (i). Linearity and multipli
ativity of αγ are easyto 
he
k. Sin
e g2

γ = id, αγ is invertible (with α−1
γ = αγ). So it is an auto-morphism. Sin
e αγ maps the 
losed unit ball of H∞(E) into itself (as doesthe inverse map), αγ is isometri
. It is, in fa
t, 
ompletely isometri
. Tosee this, 
onsider, for n ∈ N, the algebra H∞(Mn(E)), asso
iated with the

W ∗-
orresponden
e Mn(E) over the von Neumann algebra Mn(M). The 
or-responding Fo
k spa
e is Mn(F(E)) and the algebra 
an be identi�ed with
Mn(H∞(E)). The representation σ of M gives rise to a representation σn of
Mn(M) on H(n) = Cn ⊗H (with σn(Mn(M))′ = ICn ⊗ σ(M)′ ∼= σ(M)′). One
an 
he
k that Eσ ∼= (Mn(E))σn . For γ ∈ Z(Eσ), write γ′ for the 
orrespondingelement of Z(Mn(Eσ)). Then αγ′ a
ts on Mn(H∞(E)) by applying αγ to ea
h
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400 Paul S. Muhly and Baruch Solelentry. Sin
e we know that αγ′ is an isometry, it follows that αγ is a 
ompleteisometry.It is left to show that αγ is 
ontinuous with respe
t to the ultraweak topology.For this, let {Xβ} be a net in the 
losed unit ball of H∞(E) that 
onvergesultraweakly to X . Sin
e evaluating at η∗ (for η in the open unit ball) amountsto applying a ultraweakly 
ontinuous representation , we have, for every su
h
η, X̂β(η∗)→ X̂(η∗) in the weak operator topology. Sin
e this holds for gγ(η∗)in pla
e of η, we see that, for every η in the open unit ball of Eσ,

α̂γ(Xβ)(η∗)→ α̂γ(X)(η∗).Using Lemma 3.8, we �nd that αγ(Xβ) → αγ(X) in the ultraweak topology.This proves (i).Part (ii) of the lemma results from the following 
omputation
α̂γ(X)(η∗) = ̂αΦ(γ)(X)(Ψ(η)∗)|H = X̂(gΦ(γ)(Ψ(η)∗))|H

= X̂(gΦ(γ)(Ψ(η)∗)|E ⊗H) = X̂(gγ(η)∗),where we used equation (27) and Lemma 4.19. �Note that we needed to use the representation π in order to de�ne, for every
X ∈ H∞(E), the element αγ(X) in H∞(E) satisfying (27). That is, we usedthe fa
t that K(π) = 0. On
e we de�ned it, it may be more 
onvenient to workwith the original representation σ (whi
h 
an be 
hosen to be an arbitraryfaithful representation) and invoke (28). Note that, using Proposition 4.18, wesee that there is only one automorphism that satis�es (28).
Theorem 4.21 Let E be a W ∗-
orresponden
e over M and let σ be a faithfulnormal representation of M on a Hilbert spa
e H. Let α be an isometri
 auto-morphism of H∞(E) and assume that g : D(Eσ)∗ → D(Eσ)∗ is a biholomorphi
automorphism of D(Eσ)∗ su
h that

α̂(X)(η∗) = X̂(g(η∗)),for all X ∈ H∞(E) and all η ∈ Eσ. Then:(i) g(DZ((Eσ)∗)) ⊆ DZ((Eσ)∗).(ii) There is a γ ∈ DZ((Eσ)) and a unitary operator u in L(E) su
h that
u(Z(E)) = Z(E) and su
h that

g(η∗) = gγ(η∗) ◦ (u⊗ IE)(as a map from E ⊗σ H to H).(iii) With u as in (ii), there is an automorphism αu of H∞(E) su
h that
αu(Tξ) = Tuξ for every ξ ∈ E.
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Schur Class Operator Functions . . . 401(iv) With u and γ as in (ii),
α = αγ ◦ αuwhere αγ is the automorphism de�ned in equation (27) (and satis�es(28)).(v) For every η1, η2, . . . , ηk in the open unit ball of Eσ, the map de�ned bythe k × k matrix

((id− θg(η∗i )∗,g(η∗j )∗) ◦ (id− θηi,ηj )−1)is 
ompletely positive.
Proof. Note �rst that, sin
e α is an isometri
 automorphism, it maps ϕ∞(M)onto itself.Suppose η lies in D(Z(Eσ)∗). Then, by part (3) of Lemma 4.12, X̂(η∗) ∈ σ(M)for every X ∈ H∞(E). But then, for every X , X̂(g(η∗)) lies in σ(M), showingthat g(η∗) ∈ Z(Eσ). This proves (i).The dis
ussion following Lemma 4.12 shows that we 
an write g = w ◦ gγ forsome γ in DZ((Eσ)) and an isometry w on (Eσ)∗ that preserves the 
enter. Let
αγ be the automorphism des
ribed in Lemma 4.20(ii) and write β = α−1

γ ◦ α.Then it follows that
β̂(X)(η∗) = X̂(wη∗)for X ∈ H∞(E) and η ∈ D(Eσ).For η = 0 and Y ∈ H∞(E) we have Ŷ (0) = σ(E0(Y )) where E0 is the 
ondi-tional expe
tation of H∞(E) ontoM (whereM is viewed as the �zeroth term�).Thus, σ(E0(β(X))) = β̂(X)(0) = X̂(0) = σ(E0(X)) for every X ∈ H∞(E).Sin
e σ is faithful, E0(β(X)) = E0(X). Thus, for every ξ ∈ E, E0(β(Tξ)) = 0and we 
an write
β(Tξ) = Tθ + Y (29)where Y lies in (TE)2H∞(E). Write C for (TE)2H∞(E). Sin
e (29) holds forall ξ ∈ E, β(C) ⊆ C. We 
an apply the same arguments to β−1, in pla
e of β,and �nd that β−1(C) ⊆ C. Applying β−1 to (29), we �nd that
β−1(Tθ) = Tξ + Z (30)for some Z ∈ C.Arguing as in the proof of Proposition 4.18, we �nd that, for every h ∈ H ,

‖β(Tξ)h‖ ≤ ‖Tξh‖ and ‖β(Tξ)‖2 = ‖Y h‖2 + ‖Tθh‖2 ≥ ‖Tθh‖2. Thus ‖Tξh‖ ≥
‖Tθh‖. Applying the same arguments to β−1 (using (30) in pla
e of (29))we �nd that ‖Tθh‖ ≥ ‖Tξh‖ and, thus, ‖Tξh‖ = ‖Tθh‖ and, 
onsequently,
Y h = 0 for all h ∈ H . Thus Y = 0 and β(Tξ) = Tθ. Sin
e β is isometri
,
‖Tξ‖ = ‖Tθ‖. It follows that ‖ξ‖ = ‖θ‖. If we write θ = uξ (and re
all thatthen β(Tξ) = Tuξ) then u is a linear isometry. We also have, for a ∈ M ,
Tu(ξa) = β(Tξa) = β(Tξa) = β(Tξ)a = Tu(ξ)a = Tu(ξ)a. Hen
e u is an isometri
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402 Paul S. Muhly and Baruch Solel(right) module map and, therefore, u lies in L(E). Sin
e β is an automorphism,
u is a unitary operator. We also have β(Tξ) = Tuξ, so β = αu (in the notationof (iii)). This proves (iii) and (iv).Re
all that β̂(X)(η∗) = X̂(wη∗) and set X = Tξ to get T̂uξ(η∗) = β̂(Tξ)(η

∗) =

T̂ξ(wη
∗). Hen
e η∗Luξ = (wη∗)Lξ. Applying this to h ∈ E we get η∗(uξ⊗h) =

(wη∗)(ξ ⊗ h). Hen
e wη∗ = η∗ ◦ (u ⊗ I), proving g(η∗) = gγ(η∗) ◦ (u ⊗ IE).To prove (ii) we need only to show that u preserves the 
enter of E. So �x
ξ ∈ Z(E). By Lemma 4.12, L∗ξ lies in the 
enter of (Eσ)∗. Thus wL∗ξ lies in
Z((Eσ)∗). But wL∗ξ = L∗ξ ◦ (u⊗ I) = Lu∗ξ. Thus Lu∗ξ lies in Z((Eτ )∗). UsingLemma 4.12 again we get u∗ξ ∈ Z(E). This shows that u∗Z(E) ⊆ Z(E) and,applying the same argument to β−1, we 
omplete the proof of (ii).To prove (v), �x b ∈ σ(M)′ and ηi, ηj in D(Eσ) and 
ompute 〈g(η∗i ), b ·g(η∗j )〉 =
g(η∗i )(IE ⊗ b)g(η∗j )∗ = gγ(η∗i )(u ⊗ IE )(IE ⊗ b)(u∗ ⊗ IE)gγ(ηj)

∗ = gγ(η∗i )(IE ⊗
b)gγ(η∗j )∗ = 〈gγ(η∗i ), b · gγ(η∗j )〉. Thus (v) follows from Corollary 4.15. �Combining Theorem 4.21 with Theorem 4.9, we get the following.
Theorem 4.22 Let E be a faithful W ∗-
orresponden
e over M where Z(M)is atomi
. Let α be an automorphism of H∞(E) that is 
ompletely isometri
and a w∗-homeomorphism and leaves ϕ∞(M) elementwise �xed and let σ be afaithful representation of M .Then there is a γ ∈ DZ((Eσ)) and a unitary operator u in L(E), satisfying
u(Z(E)) = Z(E), su
h that

α = αγ ◦ αu,where αγ is the automorphism de�ned in Lemma 4.20 and αu(Tξ) = Tuξ forevery ξ ∈ E.In parti
ular, if Z(E) = {0}, every su
h automorphism is αu for some unitaryoperator u ∈ L(E).Theorem 4.22 provides another perspe
tive on the results from [26, 27℄. Theanalyti
 
rossed produ
ts dis
ussed there are of the form H∞(E), where Eis the 
orresponden
e αM asso
iated with a von Neumann algebra M and anautomorphism α that is properly outer. This means that Z(E) = {0}. Theorem4.22 implies that all automorphisms of H∞(E) are given by automorphisms of
Ṁ .
5 Examples : Graph AlgebrasIn this se
tion we 
onsider some examples that 
ome from dire
ted graphs.We shall assume for simpli
ity that our graphs have �nitely many verti
es andedges. We write Q both for the graph and for its set of edges. The spa
e ofverti
es will be denoted V . We shall write s and r for the sour
e and range mapson Q, mapping Q to V , and we shall think of an edge e in Q as �pointing� from
s(e) to r(e). For simpli
ity, we shall also assume that r is surje
tive, i.e., weshall assume that Q is without sour
es. Write Q∗ for the set of all �nite paths
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Schur Class Operator Functions . . . 403in Q, i.e., the path 
ategory generated by Q. An element in Q will be written
α = e1e2 · · · ek, where s(ei) = r(ei+1). We set s(α) = s(ek), r(α) = r(e1), and
|α| = k, the length of α. We will also view vertex v ∈ V as a �path of length
0", and we extend r and s to V simply by setting r(v) = s(v) = v.Let M be C(V ), the set of 
omplex-valued fun
tions on V . Of 
ourse, Mis a �nite dimensional 
ommutative von Neumann algebra. Likewise, we let
E be C(Q), the set of 
omplex-valued fun
tions on Q. Then we de�ne an
M -bimodule stru
ture on E as follows: for f ∈ E, ψ ∈M and e ∈ Q,

(fψ)(e) := f(e)ψ(s(e)),and
(ψf)(e) := ψ(r(e))f(e).Note that the �no sour
es" assumption implies that the left a
tion of M isfaithful. An M -valued inner produ
t on E will be given by the formula
〈f, g〉(v) =

∑

s(e)=v

f(e)g(e),for f, g ∈ E and v ∈ V . With these operations, E be
omes a W ∗-
orresponden
e over M . The algebra H∞(E) in this 
ase will be written
H∞(Q). In the literature, H∞(Q) is sometimes denoted LQ. It is the ul-traweak 
losure of the tensor algebra T+(E(Q)) a
ting on the Fo
k spa
e of
F(E(Q)). For e ∈ Q, let δe be the δ-fun
tion at e, i.e., δe(e′) = 1 if e = e′ andis zero otherwise. Then Tδe is a partial isometry that we denote by Se. Also,for v ∈ V , Pv is de�ned to be ϕ∞(δv). Then ea
h Pv is a proje
tion and it isan easy matter to see that the families {Se : e ∈ Q} and {Pv : v ∈ V } form aCuntz-Toeplitz family in the sense that the following 
onditions are satis�ed:(i) PvPu = 0 if u 6= v,(ii) S∗eSf = 0 if e 6= f(iii) S∗eSe = Ps(e) and(iv) ∑r(e)=v SeS

∗
e ≤ Pv for all v ∈ V .In fa
t, these parti
ular families yield a faithful representation of the Cuntz-Toeplitz algebra T (E(Q)) [19℄. The algebra T+(E(Q)) is the norm-
losed (un-starred) algebra that they generate inside T (E(Q)) and H∞(Q) is the ultra-weak 
losure of T+(E(Q)). The algebra T+(E(Q)) was �rst de�ned and studiedin [25℄, providing examples of the theory developed in [28℄. It was 
alled a quiveralgebra there be
ause in pure algebra, graphs of the form Q are 
alled quivers.(Hen
e the notation we use here.) The properties of quiver algebras were fur-ther developed in [29℄. In [23℄, the fo
us was on H∞(Q) and the authors 
alledthis algebra a free semigroupoid algebras. Both algebras are often representedas algebras of operators on l2(Q∗), and it will be helpful to understand how
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404 Paul S. Muhly and Baruch Solelfrom the perspe
tive of this note. Let H0 be a Hilbert spa
e whose dimensionequals the number of verti
es, let {ev| v ∈ V } be a �xed orthonormal basis for
H0 and let σ0 be the diagonal representation ofM = C(V ) on H0. Then l2(Q∗)is isomorphi
 to F(E(Q))⊗σ0H0 where the isomorphism maps an element ξα ofthe standard orthonormal basis of l2(Q∗) to δα⊗es(e) (where, for α = e1 · · · ek,
δα = δe1 ⊗ · · · ⊗ δek

∈ E⊗k). The partial isometries Se 
an then be viewedas the shift operators Seξα = ξeα. Thus, the representations of T+(E(Q)) and
H∞(Q) on l2(Q∗) are just the representations indu
ed by σ0.Quite generally, a 
ompletely 
ontra
tive 
ovariant representation of E(Q) ona Hilbert spa
e H is given by a representation σ of M = C(V ) on H and by a
ontra
tive map T̃ : E ⊗σ H → H satisfying equation (2). The representation
σ is given by the proje
tions Qv = σ(δv) whose sum is I. Also, from T̃ we mayde�ne maps T (e) ∈ B(H) by the equation T (e)h = T̃ (δe ⊗ h) and it is easyto 
he
k that T̃ T̃ ∗ =

∑
e T (e)T (e)∗ and T (e) = Qr(e)T (e)Qs(e). Thus to every
ompletely 
ontra
tive representation of the quiver algebra T+(E(Q)) we asso-
iate a family {T (e)|e ∈ Q} of maps on H that satisfy ∑e T (e)T (e)∗ ≤ I and

T (e) = Qr(e)T (e)Qs(e). Conversely, every su
h family de�nes a representation,written σ×T (or σ× T̃ ), satisfying (σ×T )(Se) = T (e) and (σ×T )(Pv) = Qv.We �x σ to be σ0 and write H in pla
e of H0. So that, in this 
ase, ea
hproje
tion Qv is one dimensional (with range equal to Cev). Then obviously
σ(M)′ = σ(M). To des
ribe the σ-dual of E, write Q−1 for the dire
ted graphobtained from Q by reversing all arrows, so that s(e−1) = r(e) and r(e−1) =
s(e). Sometimes Q−1 is denoted Qop and is 
alled the opposite graph. Notethat the Hilbert spa
e E⊗σH0 is spanned by the orthonormal basis {δe⊗es(α)}.Fix η ∈ Eσ and note that its 
ovarian
e property implies that, for every e ∈ Q,
η∗(δe ⊗ es(e)) = η∗(δr(e)δe ⊗ es(e)) = Qr(e)η

∗(δe ⊗ es(e)) = η(e−1)er(e) for some
η(e−1) ∈ C. The reason for the �strange" way of writing that s
alar is that we
an view η as an element of E(Q−1) and the 
orresponden
e stru
ture on Eσ,as des
ribed in Proposition 2.13, �ts the 
orresponden
e stru
ture of E(Q−1).Consequently, we 
an identify the two and write

Eσ = E(Q−1).(See Example 4.3 in [31℄ for a des
ription of the stru
ture of the dual 
orre-sponden
e for more general representations σ ). It will also be 
onvenient towrite η matri
ially with respe
t to the orthonormal bases {δv | v ∈ V } of H0and {δe ⊗ es(e)}e∈Q of E ⊗H0 as
(η)e,r(e) = η(e−1). (31)Suppose η ∈ D(Eσ). For every X ∈ H∞(Q), we have de�ned X(η∗) as anelement of B(H) in Remark 2.14. For the generators of H∞(Q), the de�nitionyields the equations,

P̂v(η∗) = θv,v , v ∈ V (32)and
Ŝe(η

∗) = η(e−1)θr(e),s(e) , e ∈ Q (33)
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Schur Class Operator Functions . . . 405where θv,w is the partial isometry operator on H that maps ew to ev andvanishes on (ew)⊥. For a general X ∈ H∞(Q), X̂(η∗) is obtained by using thelinearity, multipli
ativity and w∗-
ontinuity of the map X 7→ X̂(η∗).The proof of the next lemma is straightforward and is omitted.
Lemma 5.1 The 
enters of the 
orresponden
es E(Q) and E(Q−1) are givenby the formulae

Z(E(Q)) = span{δe | s(e) = r(e)}and
Z(E(Q−1)) = span{δe−1 | s(e) = r(e)}.The following proposition is immediate from Theorem 4.22.

Proposition 5.2 If there is no e ∈ Q with s(e) = r(e), then every automor-phism α of H∞(Q) that is 
ompletely isometri
, w∗-homeomorphi
 and leaves
ϕ∞(C(V )) elementwise �xed (that is, does not permute the verti
es) is of theform αu for some unitary u ∈ L(E(Q)). That is,

α(Se) =
∑

s(f)=s(e)

uf,eSfwhere the s
alars uf,e are given by uf,e = (u(δe))(f). (Note that this is zero if
s(f) 6= s(e), sin
e u(δe) = u(δeδs(e)) = u(δe)δs(e)).We note, as we did at the beginning of Se
tion 4, that the assumptions madeon the automorphism 
an be weakened using arguments of [22℄ but we shallnot elaborate on this here.
Example 5.3 Let Q be an n-
y
le (for n > 1) ; that is V = {v1, v2, . . . , vn}and Q = {e1, . . . , en} where ei is the arrow from v1 to vi+1 (or to v1 when
i = n). Then, for every α as in Proposition 5.2, there are {λ1, λ2, . . . , λn} with
|λi| = 1, su
h that α(Sei ) = λiSei for all i.The rest of this se
tion will be devoted to the study of the following example,whi
h is very simple, yet provides a full array of the stru
tures we have beenstudying.
Example 5.4 Let the vertex set of the graph have two elements: V = {v, w}.Suppose the edge set 
onsists of three elements Q = {e, f, g}, where e is thearrow from v to w, so s(e) = v, r(e) = w; f is an arrow from w to v; and g isa loop based at w, s(g) = r(g) = w.Then by Lemma 5.1, Z(E(Q)) = Cδg. We know from Theorem 4.22 that everyautomorphism α is the 
omposition of an automorphism, written αu asso
iatedwith a unitary in L(E(Q)) that maps δg into λ3δg (with |λ3| = 1) and anautomorphism asso
iated with a �Möbius transformation".
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406 Paul S. Muhly and Baruch SolelAs noted in Proposition 5.2, (u(δe′))(f
′) = 0 unless s(e′) = s(f ′), so that

u(δe) ∈ Cδe and u(δf ) ∈ span{δf , δg}. Sin
e u∗ is unitary, we have that
u(δf ) = λfδf . Thus

αu(Se) = λeSe, αu(Sf ) = λfSf (34)and
αu(Sg) = λgSgfor λe, λf , λg with absolute value 1.It is left to analyze the Möbius transformations and the 
orresponding auto-morphisms. Sin
e the 
enter of Eσ are s
alar multiples of δg−1 , the Möbiustransformations are asso
iated with s
alars λ ∈ D (in fa
t, with λδg−1 ) and willbe denoted τλ, λ ∈ D. We have

τλ(η∗) = ∆λ(I − η∗(λδg−1 ))−1(λ̄δg−1 − η∗)∆−1
λ∗ (35)where ∆λ = (IH−(λδg−1)∗(λδg−1))1/2 and ∆λ∗ = (IE⊗H−(λδg−1)(λδg−1 )∗)1/2.It will be 
onvenient to write τλ(η∗) matri
ially as a map from E⊗H , with theordered orthonormal basis {δe ⊗ δv, δf ⊗ δw, δg ⊗ δw}, to H , with the orderedorthonormal basis {δv, δw}. Using the formula (31), we see that

η =




0 η(e−1)
η(f−1) 0

0 η(g−1)


and

λδg−1 =




0 0
0 0
0 λ


 .The 
omputation of the expression in (35) yields

τλ(η∗) =

(
0 −η(f−1) 0

−η(e−1)(1−|λ|2)1/2

1−λη(g−1)
0 λ̄−η(g−1)

1−λη(g−1)

)
.Thus

τλ(η∗)∗(e−1) =
−η(e−1)(1 − |λ|2)1/2

1− λη(g−1)
= −η(e−1)(1− |λ|2)1/2

∞∑

k=0

(λη(g−1))k,

τλ(η∗)∗(f−1) = −η(f−1),and
τλ(η∗)∗(g−1) =

λ̄− η(g−1)

1− λη(g−1)
= (λ̄− η(g−1))

∞∑

k=0

(λη(g−1))k.

Documenta Mathematica 13 (2008) 365–411



Schur Class Operator Functions . . . 407This suggests setting
T (e) = −(1− |λ|2)1/2

∞∑

k=0

(λSg)kSe,

T (f) = −Sfand
T (g) = −(λ̄Pw − Sg)

∞∑

k=0

(λSg)k.Using (32), (33) and the fa
t that the map X 7→ X̂(η∗) is a 
ontinuous homo-morphism, we get
T̂ (e)(η∗) = τλ(η∗)∗(e−1)θw,v,
T̂ (f)(η∗) = τλ(η∗)∗(f−1)θv,wand
T̂ (g)(η∗) = τλ(η∗)∗(g−1)θw,w.Using Theorem 4.9, Theorem 4.22, Equation (34) and Theorem 4.18, we 
on-
lude the following.

Theorem 5.5 (1) For every λ ∈ D, there is a unique automorphism αλ of
H∞(Q) su
h that, for every e′ ∈ {e, f, g}, αλ(Se′)− T (e′) ∈ K(σ).(2) Every 
ompletely isometri
, w∗-homeomorphi
 automorphism α of
H∞(Q) 
an be written

α = αu ◦ αλwhere λ ∈ D and αu(Se′ ) = λe′Se′ for every e′ ∈ {e, f, g} (where λe, λfand λg are 
omplex numbers of absolute value 1).
Proof. The only thing that we need to 
larify here is that, in part (2),we do not have to require that α �xes Pv and Pw. Indeed, assume that
α satis�es α(Pv) = Pw and α(Pw) = Pv. Then α(Se) = Pvα(Se)Pw and,thus, E0(α(Se)) = 0 and E1(α(Se)) ∈ CSf . Similarly, we get E0(α(Sf )) =
E1(α(Sg)) = 0, E1(α(Sf )) ∈ CSe and E0(α(Sg)) ∈ CPv. Thus, Sg is not in therange of α, 
ontradi
ting the surje
tivity of α. �Finally, we note the following.
Proposition 5.6 In this example, K(σ) is the ideal generated by the 
ommu-tator [Sg, SeSf ].
Proof. Sin
e we shall not use this result, we only sket
h the idea of theproof. It follows from Lemma 4.17 that it su�
es to analyze Ek(K(σ)) fora given k. Sin
e K(σ) is an ideal, it su�
es to 
onsider Pv′Ek(K(σ))Pv′′ for�xed v′, v′′ ∈ {v, w}. Evaluating an element of Pv′Ek(K(σ))Pv′′ in η∗ yields a
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408 Paul S. Muhly and Baruch Solelpolynomial in three the variables z1 = η(e−1), z2 = η(f−1) and z3 = η(f−1).This polynomial is de�ned on a small enough neighborhood of 0 and, from thede�nition of K(σ), it vanishes there. It follows that its 
oe�
ients are all 0.This shows that an element in Pv′Ek(K(σ))Pv′′ is a linear 
ombination of sumsof the form ∑
aiSαi (for some paths αi) where ∑ ai = 0 and for every i, j,the paths αi and αj satisfy s(αi) = s(αj) = v′′, r(αi) = r(αj) = v′ and bothpaths 
ontain the same edges (with the same multipli
ities) but in a di�erentorder. A moment's re�e
tion shows that this 
an happen only if the two pathsare identi
al ex
ept that, at some points, one path travels along g and thenalong ef while the other path �
hooses" to travel �rst along ef and then along

g. This shows that the element in Pv′Ek(K(σ))Pv′′ lies in the ideal generatedby [Sg, SeSf ]. �
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Abstract. In this paper we introduce the 2-typical de Rham-Witt
complex for arbitrary commutative, unital rings and log-rings. We de-
scribe this complex for the rings Z and Z(2), for the log-ring (Z(2),M)
with the canonical log-structure, and we describe its behaviour under
polynomial extensions. In an appendix we also describe the p-typical
de Rham-Witt complex of (Z(p),M) for p odd.
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1. Introduction

The p-typical de Rham-Witt complex was introduced by Bloch, Deligne, and
Illusie for Fp-algebras (see [1], [6]). The definition was generalized by Hes-
selholt and Madsen to Z(p)-algebras, for p odd (see [4], [5], [3]). Hesselholt
and Madsen’s construction was motivated by the effort to understand TR, an
object that appears in algebraic topology and is related to topological cyclic
homology and to higher algebraic K-theory. More precisely, for a fixed prime
p and a Z(p)-algebra A, one defines:

TRn
q (A; p) = πq(T (A)Cpn−1 ),

where T (A) is the topological Hochschild spectrum associated to A, and Cr ⊂
S1 is the cyclic group of order r. As n and q vary these groups are related by
certain operators F, V,R, d, ι which satisfy several relations. One notes that ι is
induced by the multiplication with the element η ∈ πs1S0 from stable homotopy.
This element has order 2, so the operator ι is trivial if 2 is invertible. This is
the case if A is a Z(p)-algebra with p odd, and this explains why the case p = 2
is different from p odd.
A first step in understanding TR is to understand the universal example of an
object that has the same algebraic structure as TR . The algebraic structure of
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414 Viorel Costeanu

TR is captured by the notion of a Witt complex, that we will give shortly. The
fact that TR is a Witt complex was proved by Hesselholt in [3]. Before giving
the definition we make precise what we mean by a pro-object and a strict map
of pro-objects. We let Z be the category associated with the poset (Z,≥); a
pro-object in a category C is a covariant functor X : Z → C, in other words
a sequence of objects {Xn}n∈Z and of morphisms R : Xn → Xn−1. A strict
map of pro-objects is a natural transformation of functors, that is a sequence
of maps fn : Xn → Yn that commutes with the maps R.

Definition 1.1. A 2-typical Witt complex over a commutative ring A consists
of:

(i) a graded-commutative pro-graded ring {E∗n, R : E∗n → E∗n−1}n∈Z, such
that E∗n = 0 for all n ≤ 0. The index n is called the level.

(ii) a strict map of pro-rings λ : W•(A)→ E0
• from the pro-ring of 2-typical

Witt vectors of A.
(iii) a strict map of pro-graded rings

F : E∗• → E∗•−1,

such that λF = Fλ.
(iv) a strict map of pro-graded E∗• -modules

V : F∗E
∗
• → E∗•+1

such that λV = V λ and FV = 2. The linearity of V means that
V (x)y = V (xF (y)), ∀x ∈ E∗n, y ∈ E∗n+1.

(vi) a strict map of pro-graded abelian groups d : E∗• → E∗+1
• , which is a

derivation, in the sense that

d(xy) = d(x)y + (−1)deg(x)xd(y)

The operator ι : E∗• → E∗+1
• is by definition multiplication by the el-

ement dλ[−1]n
λ[−1]n

, where [a]n = (a, 0, . . . , 0) ∈ Wn(A) is the multiplicative

representative.
The operators F, V, d, and ι are required to satisfy the following

relations:

FdV = d+ ι,

dd = dι = ιd,

Fdλ([a]n) = λ([a]n−1)dλ([a]n−1]), for all a ∈ A.

2ι = 0

Visually, a Witt complex is a two dimensional array:
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W2(A)

R

��

λ //

F

��

E0
2

R

��

ι
//

d //

F

��

E1
2

R

��

ι
//

d //

F

��

E2
2

R

��

F

��
A

[−]n

CC����������������������

;;vvvvvvvvvvvvv [−]1 // W1(A)
λ //

V

TT

E0
1 ι

//
d //

V

TT

E1
1 ι

//
d //

V

TT

E2
1

V

TT

A map of 2-typical Witt complexes is a map f : E∗• → E′∗• of pro-graded rings
such that λ′ = fλ, fd = df, F ′f = fF, and V ′f = fV.
The paper is organized as follows. In Section 2 we discuss Witt vectors, the
de Rham complex, and Witt complexes in general. We also derive the identity
that expresses the Teichmüller representative of an integer as a combination of
a system of generators:

[a]n = a[1]n +

n−1∑

i=1

a2i − a2i−1

2i
V i[1]n−i.

In the third section we prove, using category theory, that the category of 2-
typical Witt complexes over a given ring admits an initial object, and that is
the de Rham-Witt complex of the ring. A similar result holds for the more
general notion of a log-ring.
Section 4 contains several calculations. The first result of this section is the
structure theorem of the de Rham-Witt complex of the ring of rational integers
Z. It states that in degree zero it is the pro-ring of Witt vectors of the integers,
in degree one it is generated by the elements dV i(1), and in degrees above one
it vanishes:

WnΩ0
Z
∼=

n−1⊕

i=0

Z · V i(1),(1)

WnΩ1
Z
∼=

n−1⊕

i=1

Z/2iZ · dV i(1),(2)

WnΩiZ = 0, for i ≥ 2.(3)

The product rule and the action of the operators are given in Theorem 4.1
below. We note that, additively, the formula for the 2-typical de Rham-Witt
complex is similar to the one for the p-typical de Rham-Witt complex for p
odd. Differences appear in the product rule and the action of the operators d,
F, and, of course, ι. In a remark at the end of the section we note that a very
similar result holds for the de Rham-Witt complex of the ring Z(2).
In Section 4 we also describe the behaviour of the de Rham-Witt complex under
polynomial extensions. Again the result is similar to the one in the p-typical
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case, for p odd, which is found in Section 4.2 in [3]. The de Rham-Witt complex
of the ring A[X ] consists of formal sums of four types of elements:

• Type 1: elements of the form a[X ]j, where a ∈ WnΩqA,

• Type 2: elements of the form b[X ]k−1d[X ], where b ∈ WnΩq−1
A ,

• Type 3: elements of the form V r(c[X ]l), where r > 0, c ∈ Wn−rΩ
q
A,

and l is odd,
• Type 4: elements of the form dV s(e[X ]m), where s > 0, e ∈Wn−sΩ

q−1
A ,

and m is odd.

The product rule and the action of the operators are given explicitely.
In the last part of the fourth section we define the notion of a Witt complex for
log-rings and we compute the 2-typical de Rham-Witt complex of the log-ring
(Z(2),M), where M = Q∗ ∩ Z(2) →֒ Z(2) is the canonical log-structure. The
difference from the 2-typical de Rham-Witt complex of Z(2) and of (Z(2),M)
is the element d log[2] :

WnΩ0
(Z(2),M)

∼= WnΩ0
Z(2)

∼= Wn(Z(2)),(4)

WnΩ1
(Z(2),M)

∼= WnΩ1
Z(2)
⊕ Z/2nZd log[2]n,(5)

WnΩi(Z(2),M) = 0, for all i ≥ 2.(6)

An interesting formula in this context is:

V (d log[2]n) = 2d log[2]n+1 + dV [1]n − dV 2[1]n−1 + 4dV 3[1]n−2.

The paper has two appendices. In the first one we describe the structure of the
p-typical de Rham-Witt complex of the log ring (Z(p),M), with p odd. This
result is very similar to the one for p = 2, the difference being in the product
formulas and the action of the operator V. We note here that there are two
distinct cases for p odd, namely p = 3 and p ≥ 5. For example, the mentioned
formula becomes:

V (d log[p]n) =

{
3d log[3]n+1 + dV [1]n + 3dV [1]n−1, if p = 3,

p d log[p]n+1 + dV [1]n, if p ≥ 5.

In the second appendix, which is rather technical, we verify the associativity
of the multiplication defined in Section 4, subsection 4.2.
In this paper all rings are associative, commutative, and unital. Graded rings
are graded commutative, or anti-symmetric, meaning that, for every two ele-
ments x, y of degrees |x|, |y|, respectively, one has

xy = (−1)|x||y|yx.

Acknowledgement. This paper is based on the author’s Ph.D. dissertation
written under the direction of Lars Hesselholt at MIT. The author wants to
thank Lars Hesselholt for his enthusiasm and inspiring guidance.
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2. Generalities: Witt vectors, the de Rham complex, and Witt
complexes

In this section we recall the Witt vectors and the de Rham complex. The
standard references for these are [12], [11], respectively. Then we derive some
elementary results for Witt vectors and Witt complexes.
The de Rham complex of a ring A is the exterior algebra on the module of
Kähler differentials over A. More precisely, if I is the kernel of the multiplica-
tion A⊗A→ A, the module of Kahler differentials is defined to be Ω1

A = I/I2;
the map d : A→ Ω1

A defined by da = a⊗1−1⊗a+I2 is the universal derivation
from A to an A-module. The de Rham-complex is the exterior algebra

Ω∗A = Λ∗AΩ1
A

with differential

d(a0da1 . . . dan) = da0da1 . . . dan,

where the exterior algebra of an A-module M is

Λ∗(M) = TA(M)/〈m⊗m | m ∈M〉.
In this paper we will need a related construction, that of a universal anti-
symmetric differential graded algebra over the ringA. By this we mean a graded
algebra over A which is commutative in the graded sense and is endowed with
a Z-linear differential of degree 1, which is also a derivation. We will denote
this by Ω̃∗A. Explicitly,

Ω̃∗A = Λ̃∗AΩ1
A,

where:

Λ̃∗(M) = T (M)/〈m⊗ n+ n⊗m | m,n ∈M〉
is the universal anti-symmetric graded A-algebra generated by the A-module
M . When 2 is invertible in A the two constructions give the same result as the
ideals 〈m ⊗m | m ∈ M〉 and 〈m ⊗ n + n ⊗m | m,n ∈ M〉 are the same. In
this paper we cannot assume that 2 is invertible and this is why we need the
second construction.
The ring Wn(A) of Witt vectors of length n in A is the set of n-tuples in A
with the following ring structure. One defines the “ghost” map

w : Wn(A)→ An

with components:

wi(a0, . . . , an) = a2i

0 + 2a2i−1

1 + . . . 2iai.

To add or multiply two vectors a and b one maps them via w in An, adds or
multiplies them componentwise, then uses w−1 to map them back in Wn(A).
Of course one has to check that the sum or product of w(a) and w(b) are in
the image of the ghost map and that their preimage is unique. That they are
in the image follows from a lemma of Dwork; the uniqueness of the preimage
is true only when A has no 2-torsion, which will be the case for the rings
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considered in this paper. When A has 2-torsion one has to give a canonical
element in the preimage, and this is done requiring that the ghost map be a
natural transformation of functors from rings to rings.
The projection onto the first n− 1 factors is a ring homomorphism

R : Wn(A)→Wn−1(A),

called restriction, and this makes W•(A) a pro-ring. There is a second ring
homomorphism, the Frobenius,

F : Wn(A)→Wn−1(A),

such that F satisfies the following relation with respect to the ”ghost” map:

w(F (a0, . . . , an−1)) = (w1(a), . . . , wn−1(a)),

and a Wn(A)-linear map, Verschiebung,

V : F∗Wn−1(A)→Wn(A)

V (a0, . . . , an−2) = (0, a0, . . . , an−2)

The notation F∗Wn−1(A) indicates that Wn−1(A) is considered a Wn(A)-
module via the Frobenius map F : Wn(A) → Wn−1(A). The linearity of V
means therefore that xV (y) = V (F (x)y), for all x ∈Wn(A) and y ∈Wn−1(A),
a formula known as Frobenius reciprocity. Both Frobenius and Verschiebung
commute with the restriction maps. The Teichmüller map is the multiplicative
map

[ ]n : A→Wn(A),

[a]n = (a, 0, . . . , 0).

We list now a few numerical results, some of which are not available in the odd
prime case.

Proposition 2.1. In the ring of 2-typical Witt vectors of length n, Wn(A),

[−1]n = −[1]n + V ([1]n−1).

Proof. It is enough to prove this relation for A = Z. In ghost coordinates,

w([−1]n) = (−1, 1, . . . , 1),

w([1]n) = (1, 1, . . . , 1),

w(V [1]n−1) = (0, 2, . . . , 2).

The relation follows from the fact that addition is done component-wise in
these coordinates and the ghost map is injective for A = Z. �

Proposition 2.2. In the ring of 2-typical Witt vectors of length n, Wn(Z),
there are 4 square roots of unity, [1]n, [−1]n,−[1]n,−[−1]n.

Proof. Let a = (a0, . . . , an−1) ∈ Wn(A) be a square root of unity. Let
(w0, . . . , wn−1) be its ghost coordinates. Then (w2

0 , . . . , w
2
n−1) = (1, . . . , 1).

From w2
0 = 1 we get a2

0 = 1, hence a0 = ±1. Equating the second ghost coor-
dinate we obtain: (a2

0 + 2a1)2 = 1⇒ (1 + 2a1)2 = 1⇒ a1 = 0 or a1 = −1. We
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will prove by induction that for s ≥ 1, as = a1. Assume this is true for s− 1.
We have two cases, a1 = 0 and a1 = −1.

(i) a1 = 0: w2
s = (a2s

0 + · · · + 2s−1a2
s−1 + 2sas)

2 = 1, so (1 + 2sas)
2 = 1

and the unique integral solution is as = 0.
(ii) a1 = −1: w2

s = (a2s

0 +· · ·+2s−1a2
s−1+2sas)

2 = 1⇒ (1+2+· · ·+2s−1+
2sas)

2 = 1 ⇒ (2s − 1 + 2sas)
2 = 1 and the unique integral solution is

as = −1.

Therefore the solutions of the equation a2 = 1 are the vectors (±1, 0, . . . , 0)
and (±1,−1, · · · ,−1). An examination of these vectors shows that they are
exactly those listed in the statement. �

Proposition 2.3. In the ring of p-typical Witt vectors of length n, Wn(Z),
the vectors {[1]n, V ([1]n−1), . . . , V n−1([1]1)} form a Z-basis. A vector a =
(a0, . . . , an−1) ∈ Wn(Z) with ghost coordinates (w0, . . . , wn−1) can be written
in this basis as:

a =

n−1∑

s=0

csV
s([1]n−s),

where

cs =

{
w0 if s = 0

p−s(ws − ws−1) if 1 ≤ s ≤ n− 1.

The multiplication in this basis is given by the rule:

V i([1]n−i)V
j([1]n−j) = piV j([1]n−j), if i ≤ j.

Proof. In ghost coordinates, V s[1]n−s = (0, . . . , 0, ps, . . . , ps), the first s coor-
dinates being zero. Since the addition is component-wise it follows that these
vectors are linearly independent. The multiplication is also component-wise
and the product formula follows.
We show that they form a system of generators. For a vector a =
(a0, . . . , an−1) ∈ Wn(Z) with ghost coordinates (w0, . . . , wn−1) we find the
coefficients ci by induction. Equating the first ghost coordinate we get
c0 = w0 = a0. Assume we have found c0, . . . , cs1 . We equate the s-th ghost
coordinate

ws =

s∑

i=0

cip
i =

s−1∑

i=0

cip
i + csp

s = ws−1 + pscs

and therefore, cs = p−s(ws − ws−1). These numbers are a priori rational. To
finish the proof we need to show that they are integers.
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cs = p−s(ws − ws−1)

= p−s(
s∑

i=0

piap
s−i

i −
s−1∑

i=0

piap
s−1−i

i )

= p−s(psas +

s−1∑

i=0

pi(ap
s−i

i − ap
s−1−i

i ))

= as +

s−1∑

i=0

pi−sap
s−1−i

i (ap
s−i−ps−1−i

i − 1)

It remains to show that for every integer a and every non-negative integer n:

ap
n−1

(ap
n−pn−1 − 1) ≡ 0 (mod pn)

There are two cases. If vp(a) ≥ 1, then vp(a
pn−1

) ≥ pn−1 ≥ n, and if vp(a) = 0,

then ap
n−pn−1 − 1 = aφ(pn) − 1 ≡ 0 (mod pn). �

Corollary 2.4. In the ring of 2-typical Witt vectors of length n, Wn(Z), for
every integer a, one has:

[a]n = c0[1]n + c1V [1]n−1 + · · ·+ cn−1V
n−1[1]1,

where c0 = a and ci = 2−i(a2i − a2i−1

).

Proposition 2.5. In every 2-typical Witt complex E∗• the following relations
hold:

V d = 2dV,

dF = 2Fd,

V (x)dV (y) = V (xdy) + ιV (xy).

Proof. We will use the relations from the definition of a Witt complex:

V (xF (y)) = V (x)y, FdV = d+ ι, FV = 2.
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We have:

V d(x) = V (d+ ι+ ι)(x) = V (FdV + ι)(x)

= V (1)dV (x) + V ι(x)

= d(V (1)V (x))− dV (1)V (x) + V ι(x)

= d(V (FV (1)x))− V (FdV (1)x) + V ι(x)

= dV (2x)− V ((d + ι)(1)x) + V ι(x)

= 2dV (x)− V (d(1)x) − V (ιx) + V (ιx)

= 2dV.

dF (x) = (d+ ι)F (x) − ιF (x) = FdV F (x) − ιF (x)

= Fd(V (1)x)− Fι(x) = F (dV (1)x+ V (1)d(x)) − Fι(x)

= FdV (1)F (x) + FV (1Fdx)− Fι(x)

= (d+ ι)(1)F (x) + FV Fdx− Fι(x)

= F (2dx) = 2Fdx.

V (x)dV (y) = V (xFdV (y))

= V (x(d + ι)y) = V (xdy) + ιV (xy).

�

Proposition 2.6. In every 2-typical Witt complex E∗• we have:

ι([1]n) =

n−1∑

s=1

2s−1dV s([1]n−s).

Proof. Since 2ι([1]n) = 0, we we’ll prove that ι([1]n) =

−∑n−1
s=1 2s−1dV s([1]n−s). The proof is by induction on n, starting with

the case n = 1 which is trivial. Assume the statement for n − 1. We will use
the relations d([1]n) = 0 and ([−1]n)2 = [1]n.

[−1]n = −[1]n + V ([1]n−1),

d([−1]n) = dV ([1]n−1),

d([−1]n)

[−1]n
=

dV ([1]n−1)

[−1]n
= [−1]ndV ([1]n−1),

ι([1]n) = [−1]ndV ([1]n−1)

= (−[1]n + V ([1]n−1))dV ([1]n−1)

= −dV ([1]n−1) + V (FdV ([1]n−1))

= −dV ([1]n−1) + V ((d+ ι)([1]n−1))

= −dV ([1]n−1) + V (ι([1]n−1))

= −dV ([1]n−1)−
n−2∑

s=1

2s−1V dV s([1]n−1−s).
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The statement now follows from V d = 2dV . �

Proposition 2.7. ι2 = 0.

Proof. Again it is enough to prove ι2([1]n) = 0. We do this by induction. The
case n = 1 is trivial. Assume the statement for n− 1.

ι2([1]n) =
d([−1]n)

[−1]n

d([−1]n)

[−1]n

= (d([−1]n))2

= (d(−[1]n + V ([1]n−1))2

= dV ([1]n−1)dV ([1]n−1)

= d(V ([1]n−1)dV ([1]n−1))− V ([1]n−1)ddV ([1]n−1)

= d(V (FdV ([1]n−1)))− V (FdV ι([1]n−1))

= d(V ((d + ι)([1]n−1))) − V ((d+ ι)ι([1]n−1)))

= dV ι([1]n−1))− V (ι([1]n−1)ι([1]n−1)).

The second summand is zero by induction. We show that the first summand is
also zero. For this we will use the previous lemma and the relations V d = 2dV,
2ι = 0, and dd = dι:

dV ι([1]n−1)) = dV (

n−2∑

s=1

2s−1dV s([1]n−s−1)

=

n−2∑

s=1

2sddV s+1([1]n−s−1)

=

n−2∑

s=1

(2sι)dV s+1([1]n−s−1) = 0.

This completes the proof. �

3. The de Rham-Witt complex

3.1. Existence. The Witt complexes over a ring A form a category WA. We
will prove that this category has an initial object. We call this object the de
Rham-Witt complex of A and denote it W•Ω∗A. To prove the existence of an
initial object we use the Freyd adjoint functor theorem [10, p.116].

Theorem 3.1. The categoryWA of Witt complexes over A has an initial object.

Proof. The category WA has all small limits, so we need to prove that the
solution set condition is verified. First we note that at each level a Witt complex
is also a DG-ring. The differential is defined as follows:

D : En• → En+1
• , D =

{
d, if n = even;

d+ ι, if n = odd.
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Proposition 3.2. The operator D is both a differential and a derivation.

Proof. We show first that D is a differential, that is D2 : En• → En+2
• is zero.

If n is even, D2 = (d+ ι)d = dd+ dι = 2dι = 0, the same if n is odd. Let’s see
that D is a derivation, that is D(xy) = D(x)y + (−1)deg(x)xD(y). There are
three cases.

(1) Both deg(x) and deg(y) even:

D(xy) = d(xy) = d(x)y + xd(y) = D(x)y + xD(y)

(2) deg(x) even, deg(y) odd:

D(xy) = (d+ ι)(xy) = d(xy) + ιxy

= (d(x)y + xd(y)) + ιxy = d(x)y + (xd(y) + ιxy)

= D(x)y + xD(y)

(3) Both deg(x) and deg(y) odd:

D(xy) = d(xy) = d(x)y + xd(y) = d(x)y + xd(y) + 2ιxy

= (d(x)y + ιxy) + (xd(y) + ιxy)

= D(x)y + xD(y).

For the last case we used the relation 2ι = 0. �

To prove that the category WA has an initial object we have to show that
the solution set condition is satisfied. That means we have to find a set of
objects {Oi}i∈I , such that for any other object X in the category, there is an
index i ∈ I and a map φ : Oi → X , not necessarily unique. Since at each
level, a Witt complex E = E∗• is also a differential graded ring, there is a map

λ : Ω̃∗W•(A) → E∗• which in degree zero is the map λ : W•(A)→ E0
• prescribed

in the definition of a Witt complex. We prove that the image of λ is a sub-
Witt complex of E∗• . Since the isomorphisms classes of such objects form a set

(they are all quotients of Ω̃∗W•(A)), the solution set condition is satisfied and

the proposition is proved.
First of all we have to see that ι([1]n) ∈ Im(λ). But this is so because

ι([1]n) =
d(λ[−1]n)

λ[−1]n
=
D(λ[−1]n)

λ[−1]n

=
λd[−1]n
λ[−1]n

∈ Im(λ).

Since ι([1]n) ∈ Im(λ) we see that Im(λ) is closed under ι. It is also closed
under d because it is closed under D and d = D or d = D− ι depending on the
degree. It remains to see that it is closed under F and V .
We start with F . The Frobenius operator is multiplicative and each element in
the image of λ is of the form λ(a0da1 . . . dan) = λ(a0)d(λ(a1)) . . . d(λan), so it
suffices to show that F (λ(a)) and F (d(λ(a)) are in the image of the canonical
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map. Part of the definition of a Witt complex is that λF = Fλ for all a ∈ A. So
F (λ(a)) ∈ Im(λ). Let us prove that F (d(λ(a))) ∈ Im(λ). We use the formula:

a = [a0]n + V ([a1]n−1) + · · ·+ V n−1([an−1]1),

which shows that

F (dλ(a)) = F (dλ([a0]n)) + F (dλ(V ([a1]n−1))) + · · ·+ F (dλ(V n−1([an−1]1))).

Recall from the definition of a Witt complex that Fdλ([a]n) =
λ([a]n−1)dλ([a]n−1]). and that both F and V commute with λ in degree
0.

F (dλ(a)) = F (dλ([a0]n)) + F (dV λ([a1]n−1)) + · · ·+ F (d(V n−1λ([an−1]1))

= λ([a0]n−1)dλ([a0]n−1]) + (d+ ι)(λ([a1]n−1) + · · ·+
(d+ ι)V n−2λ([an−1]1);

and this sum clearly is in the image of λ.
The fact that Imλ is closed under V follows from Proposition 2.5. �

Definition 3.3. The initial object in the category WA of Witt complexes over
A is called the de Rham Witt complex of A and is denoted W•Ω∗A.

Proposition 3.4. For every ring A the following assertions hold:

(i) the canonical map Ω̃∗W•(A) →W•Ω∗A is surjective,

(ii) the canonical map λ : W•(A)→W•Ω0
A is an isomorphism.

Proof. Denote for the moment by E∗• the image of the map λ : Ω̃∗W•(A) →
W•Ω∗A. It is a sub-Witt complex of W•Ω∗A, in particular it is an object of the
category WA. Therefore it admits a unique map from the initial object. We
consider the composition:

W•Ω
∗
A → E∗• →W•Ω

∗
A.

Being an endomorphism of the initial object, it has to be the identity map.
So the second map is surjective, which amounts to the same thing as the map
Ω̃∗W•(A) →W•Ω∗A being surjective.

In degree zero this means that the map W•(A) → W•Ω0
A is surjective. To

prove that it is also injective, we consider the Witt complex E∗• defined by
E0
n = Wn(A) and Ein = 0, for all i ≥ 1. As W•Ω∗A is initial in the categoryWA,

there is a morphism µ : W•Ω∗A → E∗• . The fact that µ is a morphism means
among other conditions that the diagram

WnΩ0
A

µ0

��

Wn(A)

λ

::uuuuuuuuu

λ

$$I
II

III
II

II

E0
n
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commutes. By the definition of E∗• the corresponding λ is the identity mor-
phism, so µ0 ◦ λ = 1 and it follows that λ is injective. �

3.2. The standard filtration. On every Witt complex E∗• there is a stan-
dard filtration by graded abelian groups (see also [6]):

Fils Eqn = V sEqn−s + dV sEq−1
n−s.

This filtration can be used to set up inductive arguments when computing de
Rham-Witt complexes. The important result that allows this is the following.

Lemma 3.5. The following sequence is exact:

0→ FilsWnΩqA → WnΩqA
Rn−s

−−−→WsΩ
q
A → 0

Proof. First we show that the composition of the two morphisms is zero. Ac-
tually the composition is zero for all Witt complexes. This is so because R
commutes with the other operators and any Witt complex is by definition zero
in levels zero and below:

Rn−s(FilsEqn) = Rn−s(V sEqn−s + dV sEq−1
n−s)

= V sRn−sEqn−s + dV sRn−sEq−1
n−s

⊂ V sEi0 + dV sEq−i0 = 0

Once we know that this composition is zero it follows that Rn−s induces a
morphism

Eqn/Fils(Eqn) −→ Rn−sEqn.

To end the proof of the lemma we need to show that this morphism is an
isomorphism for E∗• = W•Ω∗. Fix a value of n− s and define

W ′sΩ
i
A = WnΩqA/FilsWnΩqA.

We prove that this is a Witt complex over A. We only need to check that the
operators are well defined, then the relations are automatically satisfied. To
show that R and F induce operators R,F : W ′sΩ

q
A →W ′s−1ΩqA we need to show

R(FilsWnΩqA) ⊂ Fils−1Wn−1ΩqA and F (FilsWnΩqA) ⊂ Fils−1Wn−1ΩqA. The
first relation follows from V R = RV and dR = Rd and the second from FV = 2
and FdV = d+ι. Similarly V induces an operator on W ′•Ω

∗
A if V (FilsWnΩqA) ⊂

Fils+1Wn+1ΩqA and this follows from V d = 2dV . ι and d induce operators if

ι(FilsWnΩqA) ⊂ FilsWnΩq+1
A and d(FilsWnΩqA) ⊂ FilsWnΩq+1

A . The first
follows from ιV = V ι and ιd = dι and the second from dd = dι.
We show now that W ′•Ω

∗
R is an initial object in the category of 2-typical Witt

complexes over A and hence the morphism induced by Rn−s, W ′•Ω
∗
R →W•Ω∗R

is an isomorphism and hence the sequence is exact.
Consider E∗• a 2-typical Witt complex over A. We construct a morphism
W ′•Ω

∗
A → E∗• and show that it is unique. Since the standard filtration is

natural we have maps:

W ′sΩ
i
A = WnΩiA/FilsWnΩqA → Ein/FilsEin

Rn−s

−−−→ Eis.
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To show that this homomorphism of Witt complexes is unique we first show
that the map Ω̃iWs(A) → W ′sΩ

i
A is surjective. This is immediate from the

diagram

Ω̃iWn(A)

����

// // WnΩiA

����
Ω̃iWs(A)

// W ′sΩ
i
A

Now in the diagram

Ω̃∗W•(A)
//

����

E∗•

W ′•Ω
∗
A

<<yyyyyyyyy

considered in the category of pro-differential-graded-rings the top map is
unique, therefore the oblique map is unique. �

3.3. An additivity result. As far as we know, the relations in the defini-
tion of a 2-typical Witt complex are independent. However, one relation can
be partially deduced from the others. We make this precise in the following
Lemma.

Lemma 3.6. Let A be an arbitrary ring, and E∗• a pro-graded ring. Assume
that E∗• is endowed with all the operators in the definition of a 2-typical Witt
complex, and all the relations are sastisfied with the exception of the last re-
lation. Assume that this relation holds for two given elements f, g ∈ A, that
is

Fdλ([f ]n) = λ([f ]n−1)dλ([f ]n−1),

Fdλ([g]n) = λ([g]n−1)dλ([g]n−1).

Then it also holds for their sum, f + g ∈ A :

Fdλ([f + g]n) = λ([f + g]n−1)dλ([f + g]n−1).

Proof. The proof is inspired by the proof of Proposition 1.3 in [9].
Since there is no danger of confusion, we omit λ.
We prove the statement by induction on the level n. If n = 1 the relation holds
trivially. Assume we have proved the Lemma for n− 1. We know that

Fd[f ]n = [f ]n−1d[f ]n−1,

Fd[g]n = [g]n−1d[g]n−1,

and if we apply R to these relations we obtain

Fd[f ]n−1 = [f ]n−2d[f ]n−2,

Fd[g]n−1 = [g]n−2d[g]n−2.

By the induction hypothesis, we have

Fd[f + g]n−1 = [f + g]n−2d[f + g]n−2.
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We define τ ∈Wn−1(A) by the formula:

[f + g]n = [f ]n + [g]n + V τ.

We apply R to both sides of this identity:

[f + g]n−1 = [f ]n−1 + [g]n−1 + V Rτ.

We square both sides:

[f + g]2n−1 = [f ]2n−1 + [g]2n−1 + (V Rτ)2 + 2([f ]n−1 + [g]n−1)V Rτ + 2[fg]n−1,

and, since (V Rτ)2 = V (RτFV Rτ) = 2V R(τ2), we get:

F ([f + g]n − [f ]n − [g]n) = 2(V R(τ2) + [fg]n−1 + ([f ]n−1 + [g]n−1)V Rτ).

The left hand side of this identity is F (V τ) = 2τ , thus we obtain:

2τ = 2(V R(τ2) + [fg]n−1 + ([f ]n−1 + [g]n−1)V Rτ).

This identity is true in the ring Wn−1(R) for any ring R, in particular for the
ring of polynomials in two variables R = Z[f, g]. For this ring the multiplication
by 2 in Wn−1(R) is injective, therefore the following identity is true for this
particular ring:

τ = V R(τ2) + [fg]n−1 + ([f ]n−1 + [g]n−1)V Rτ.

Taking Witt vectors of length n−1 is functorial, and it follows that the identity
is true for arbitrary rings R and elements f and g.
Once we proved this formula we return to the identity we want to prove:

Fd[f + g]n = [f + g]n−1d[f + g]n−1,

or equivalently:

Fd([f ]n + [g]n + V τ) = ([f ]n−1 + [g]n−1 + V Rτ)(d[f ]n−1 + d[g]n−1 + dV Rτ).

We expand the right hand side:

Fd[f ]n + Fd[g]n+FdV τ = [f ]n−1d[f ]n−1 + [g]n−1d[g]n−1

+ d([fg]n−1 + ([f ]n−1 + [g]n−1)V Rτ) + (V Rτ)(dV Rτ).

Using the hypothesis that Fd[f ]n = [f ]n−1d[f ]n−1 and Fd[g]n = [g]n−1d[g]n−1,
and the formula for τ , the previous identity becomes equivalent to:

FdV τ = d(τ − V R(τ2)) + (V Rτ)(dV Rτ)

or:

dτ + ιτ = dτ − dV R(τ2) + (V Rτ)(dV Rτ).

We reduced the problem to proving the following formula:

ιτ = −dV R(τ2) + (V Rτ)(dV Rτ).

We prove this separately in the next Lemma. �

Lemma 3.7. For every ring A and every element τ ∈ Wk(A), the following
identity holds:

dV R(τ2) = (V Rτ)(dV Rτ) + ιτ
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Remark: This lemma says that ι measures the failure of d to be a PD-
derivation. To explain this we need to recall what a PD-structure on a ring is
and what a PD-derivation is.
If A is a commutative and unital ring and I is and ideal, a PD-structure on
(A, I) is a family of maps γn : I → A, n ∈ N which morally behave like dividing
the n’th power by n!. More precisely they are required to satisfy five conditions:

(i) γ0(x) = 1, γ1(x) = x, γn(x) ∈ I, ∀x ∈ I,
(ii) γn(x+ y) =

∑n
i=0 γi(x)γn−i(y), ∀x, y ∈ I,

(iii) γn(ax) = anγn(x), ∀a ∈ A, x ∈ I,
(iv) γp(x)γq(x) =

(
p+q
p

)
γp+q(x), ∀p, q ∈ N, x ∈ I,

(v) γp(γq(x)) = (pq)!
p!(q!)p γpq(x), ∀p, q ∈ N, x ∈ I.

If A is a Z(p)-algebra, there is a canonical PD-structure on
(Wn(A), V Wn−1(A)), namely:

γm : VWn−1(A)→Wn(A)

γm(V x) =

{
1, if m = 0,
pm−1

m! V (xm), if m ≥ 1

If (A, I) is a ring with a PD-structure and d : A→M is a derivation of A into an
A-module M , then d is called a PD-derivation if d(γn(x)) = γn−1(x)dx, for all
x ∈ I. If we consider W (A), the inverse limit of the pro-ring W•(A), elements in
it are sequences of elements xn ∈ Wn(A), and R : W (A)→W (A) becomes the
identity morphism. So the identity in the lemma reads: if x ∈ VW (A) ⊆W (A),
x = V τ, then:

d(γ2(x)) = γ1(x)dx + ιτ.

If we did not have ιτ in this relation, then Lemma 1.2 of Langer, Zink [9] would
show that d is a PD-derivation. We will now prove the lemma.

Proof. The proof is in three steps. First we show that the identity holds for
all elements τ = [φ]k, for φ ∈ A. Then we show that once it holds for τ it also
holds for V τ. Finally we show that if the identity holds for two elements τ1, τ2
it also holds for their sum τ1 + τ2.
We begin with τ = [φ]k for some φ ∈ A. We manipulate the left hand side of
the identity that we want to prove:

dV [φ]2k−1 = dV (F ([φ]k)) = d(V ([1]k−1)[φ]k)

= dV ([1]k−1)[φ]k + V ([1]k−1)d[φ]k

= dV ([1]k−1)[φ]k + V (Fd[φ]k),

and using the induction hypothesis that Fd[φ]k = [φ]k−1d[φ]k−1 for k ≤ n−1 :

dV [φ]2k−1 = (dV [1]k−1)[φ]k + V ([φ]k−1d[φ]k−1).
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The right hand side of the identity is

V [φ]k−1dV [φ]k−1 + ι[φ]k = V ([φ]k−1FdV [φ]k−1) + ι[φ]k

= V ([φ]k−1d[φ]k−1) + V (ι[φ]2n−1) + ι[φ]k.

Therefore the equality of the two terms is equivalent to the equality

dV [1]k−1[φ]k = V (ι[1]k−1)[φ]n + ι[φ]k,

which is certainly true if

dV [1]k−1 = V (ι[1]k−1) + ι[1]k.

This last identity follows from Lemma 2.6 which gives the formula for ι[1]k.
Now we assume we know the relation for τ and we want to prove it for V (τ).
We know:

dV R(τ2) = (V Rτ)(dV Rτ) + ιτ,

we apply V to this:

V (dV R(τ2)) = V ((V Rτ)(dV Rτ)) + V (ιτ);

The left hand side of this equation is:

V (dV R(τ2)) = 2dV 2R(τ2) = dV 2(RτFV Rτ)

= dV (V (Rτ)V (Rτ)) = dV R(V (τ)2)

We want to prove:

dV R(V (τ)2) = V RV τdV RV τ + ιV τ.

We notice that the left hand side of this equation is equal to the left hand side
of the previous equation, so it is sufficient for us to prove:

V ((V Rτ)(dV Rτ)) + V (ιτ) = V RV τdV RV τ + ιV τ,

or:

V ((V Rτ)(dV Rτ)) = V RV τdV RV τ

V ((V Rτ)(dV Rτ)) = V ((RV τ)FdV RV τ)

V ((V Rτ)(dV Rτ)) = V ((RV τ)dRV τ) + V ((RV τ)ι(RV τ))

0 = ι(V ((V Rτ)2))

0 = ι(V (RτFV Rτ))

which is true since FV = 2 and 2ι = 0.
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Finally we want to prove that if the relation holds for τ1 and τ2, it also holds
for τ1 + τ2. We know:

RdV τ2
1 = RV τ1dRV τ1 + ιτ1,

RdV τ2
2 = RV τ2dRV τ2 + ιτ2

and we want:

RdV (τ1 + τ2)2 = RV (τ1 + τ2)dRV (τ1 + τ2) + ι(τ1 + τ2),

or equivalently:

RdV τ2
1 +RdV τ2

2 + 2RdV (τ1τ2) = RV τ1dRV τ1 +RV τ2dRV τ2

+ d(RV τ1RV τ2) + ιτ1 + ιτ2.

After cancelling six terms the equation reduces to:

2RdV τ1τ2 = RdV τ1V τ2,

2RdV τ1τ2 = RdV (τ1FV τ2),

which is true since FV = 2. �

4. Computations

4.1. The 2-typical de Rham-Witt vectors of the integers. Before
we state the structure theorem for W•Ω∗Z we introduce a bit of notation. We
denote by V i(1) ∈WnΩ0

A the element V i([1]n−i).

Theorem 4.1. The structure of W•Ω∗Z is as follows

(i) As abelian groups

WnΩ0
Z =

n−1⊕

i=0

Z · V i(1),(7)

WnΩ1
Z =

n−1⊕

i=1

Z/2iZ · dV i(1),(8)

WnΩiZ = 0, for i ≥ 2.(9)

(ii) The product is given by

V i(1) · V j(1) = 2iV j(1), if i ≤ j,(10)

V i(1) · dV j(1) =

{
2idV j(1) +

∑n−1
s=j+1 2s−1dV s(1), if 1 ≤ i < j∑n−1

s=i+1 2s−1dV s(1), if 1 ≤ j ≤ i.(11)

(12)

(iii) The operator V acts as follows

V (V i(1)) = V i+1(1),(13)

V (dV i(1)) = 2dV i+1(1).(14)
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(iv) The operator F acts as follows

F (V i(1)) = 2V i−1(1),(15)

F (dV i(1)) = dV i−1(1) +

n−2∑

s=i

2s−1dV s(1).(16)

(v) The operator d acts by d(V i(1)) = dV i(1) when i ≥ 1 and d(1) = 0,
and the action of the operator ι is given by

ι(V i(1)) =

n−1∑

s=i+1

2s−1dV s(1).(17)

(vi) The operator R : WnΩ∗Z →Wn−1Ω∗Z acts as follows

RV i(1) =

{
V i(1) if i ≤ n− 2

0 if i = n− 1
(18)

RdV i(1) =

{
dV i(1) if i ≤ n− 2

0 if i = n− 1.
(19)

Proof. We begin with the fifth assertion and then we prove the others in the
stated order.
(v) We already know the formula (see 2.6):

ι[1]n =

n−1∑

s=1

2s−1dV s(1),

which is the particular case for the relation we want to prove when i = 0. For
other i we have:

ιV i([1]n−i) = V i(ι[1]n−i)

= V i(

n−i−1∑

s=1

2s−1dV s([1]n−i−s−1)

=

n−i−1∑

s=1

2s+i−1dV s+i([1]n−i−s−1)

=

n−2∑

s=i+1

2s−1dV s([1]n−s−1).

(i),(ii)The isomorphism described in the first relation follows from the previous

theorem. The second relation follows from the fact that the map λ : Ω̃∗W•(A) →
W•Ω∗A is surjective and from the product relations that we now prove. The
vanishing of the de Rham-Witt complex in higher degrees will be proven after
verifying (iii) and (iv).
The first product relation is the product rule described in 2.3 in the case p = 2.
The second product relation:
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• If 1 ≤ i ≤ j:
V i(1) · dV j(1) = V i(F idV j(1)) = V i((d + ι)V j−i(1))

= V idV j−i(1) + V j(ι(1))

= 2idV j(1) + V j(

n−j−1∑

s=1

2s−1dV s(1))

= 2idV j(1) +

n−j−1∑

s=1

2s+j−1dV j+s(1)

= 2idV j(1) +

n−1∑

s=j+1

2s−1dV s(1).

• If 1 ≤ j ≤ i:

V i(1) · dV j(1) = d(V i(1)V j(1))− dV i(1)V j(1)

= d(2jV i(1))− V j(1)dV i(1)

= 2jdV i(1)− 2jdV i(1)−
n−1∑

s=i+1

2s−1dV s(1)

=
n−1∑

s=i+1

2s−1dV s(1).

We note here that one can give a unified product relation for V i(1) · dV j(1),
namely:

V i(1) · dV j(1) = 2idV j(1) +

n−1∑

s=max(i,j)+1

2s−1dV s(1)

(iii) The first relation is trivial and the second follows from V d = 2dV .
(iv) The first relation follows from FV = 2. The second relation:

F (dV i(1)) = (d+ ι)V i−1(1)

= dV i−1(1) + ι(V i−1(1)

= dV i−1(1) +

n−2∑

s=i−1

2sdV s+1(1).

Once we have these relations and the fact that 2idV i(1) = V id(1) = 0, it

follows that λ factors through a surjective map
⊕n−1

i=1 Z/2iZ ·dV i(1)→W•Ω1
Z.

We prove now that W•ΩiZ = 0, for i ≥ 2. We will prove this by induction on
the level using the standard filtration. The first step of the induction, that
W1ΩqZ = 0, forall q ≥ 2 follows from the surjectivity of the map λ : ΩqW1(Z) =

ΩqZ → W1ΩqZ, and fact that the domain of the map is zero whenever q ≥ 1.
Assuming that WnΩqZ = 0 for all q ≥ 2 we prove that Wn+1ΩqZ = 0, for all
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q ≥ 2. This is so because in the short exact sequence

0→ Filn−1WnΩqZ →WnΩqZ
R−→Wn−1ΩqZ → 0

the right term is zero by induction and the left term is zero because
Filn−1WnΩqZ = V n−1W1Ω2

Z + dV n−1W1Ω1
Z and both W1Ω1

Z and W1Ω2
Z are

zero as seen above.
To finish the description of the groups that form the de Rham-Witt complex
W•Ω∗Z we consider the pro-graded ring G∗• defined by the groups on the right
hand side of the relations (1)− (3), that is:

G0
n =

n−1⊕

i=0

Z · V i(1),

G1
N =

n−1⊕

i=1

Z/2iZ · dV i(1),

Gin = 0, for i ≥ 2.

The product is defined by the relations in (ii) , the operators F, V, d, ι, R are
given by the relations in (iii)- (vi). We check that with these definitions G∗• is
indeed a Witt complex.
The only non-trivial relation to verify is that Fdλ([a]n) = λ([a]n−1)dλ([a]n−1]),
for all integers a. Using the additivity result 3.6, we see that we need to check
this relation only for the integers a = 1 and a = −1. It is trivially satisfied
in the first case, and easy to see in the second, once we recall from 2.1 that
[−1]n = −[1]n + V [1]n−1 :

Fd[−1]n = Fd(−[1]n + V [1]n−1) = FdV [1]n−1

= (d+ ι)[1]n−1 = ι[1]n−1

= [−1]n−1d[−1]n−1.

To prove now that W•Ω∗Z ∼= G∗• we define a morphism of Witt complexes

G∗• −→W•Ω
∗
Z

V i(1) 7−→ V i(1)

dV i(1) 7−→ dV i(1)

The composition W•Ω∗Z → G∗• → W•Ω∗Z is an endomorphism of the initial
object in the category WA and as so it is the identity. The composition G∗• →
W•Ω∗Z → G∗• is an endomorphism of G∗•; it is not hard to see that the only
endomorphism of G∗• is the identity: being a morphism of pro-rings it maps
[1]n to itself, and since it commutes with V and d it will also map V i(1) and
dV i(1) to themselves. �

Remark: The same proof works to give us the structure of W•Ω∗Z(2)
:
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(i) As abelian groups:

WnΩ0
Z(2)

=

n−1⊕

i=0

Z(2) · V i(1),(20)

WnΩ1
Z(2)

=

n−1⊕

i=1

Z/2iZ · dV i(1),(21)

WnΩiZ(2) = 0, for i ≥ 2.(22)

(ii) The product formulas and the actions of the various operators are the
same as in Theorem 4.1.

Indeed, the only thing we have to check is that ΩiZ(2)
= 0 for all i ≥ 2. To see

this we need to prove that d( 1
m ) = 0 for all m ∈ Z odd. This follows from

0 = d(1) = d(m 1
m ) = md( 1

m ), since m ∈ Z(2) is a unit.

4.2. The 2-typical de Rham-Witt complex for polynomial exten-
sions. In this subsection we describe the relationship between the 2-typical
de Rham-Witt complex of the ring of polynomials in one variable over a Z(2)-
algebra A and the 2-typical de Rham-Witt complex of the ring A. In order to
do that we will identify the left adjoint of the forgetful functor WA[X] →WA.
We call this functor P :WA →WA[X], and since it commutes with colimits, it
will carry W•Ω∗A into W•Ω∗A[X].

In order to define the functor P we first analyze the Witt complex W•Ω∗A[X].

Inside it we find the image of the map W•Ω∗A → W•Ω∗A[X] induced by the

inclusion A→ A[X ]. Besides this image we can certainly identify the elements
[X ]in. If we play with the multiplication and with the operators R, F , V , d,
and ι we will find new elements, but because of the relations that hold in every
Witt complex, we will see that all these elements can be classified in four types.
The first obvious type is the elements of the form a[X ]in, where a ∈ Im(W•Ω∗A),
i ∈ N, and n ≥ 1. When there is no danger of confusion, we omit the subscript
n, and also write a ∈W•Ω∗A. This type is closed under multiplication and also
under the action of R, F , and ι. If we apply d and V we will get two new types:
elements of the form b[X ]k−1d[X ] and elements of the form V r(c[X ]l), where
b, c ∈ W•Ω∗A, and k, r, l > 0. Special attention has to be paid to the latter
type, as some elements of that form were already listed as elements of the first
type. An example is V (c[X ]2) = V (cF ([X ])) = V (c)[X ]. The restriction that
we have to impose is l be odd. Finally, if we apply V and then d we obtain a
new type, of elements of the form dV s(e[X ]m), where s > 0, e ∈ W•Ω∗A, and
m is odd. If we multiply elements of any of these two types together we will
get a sum of elemtents of these types. The key observation is the following:

Lemma 4.2. In any Witt complex over A[X ] the following relation holds:

d[X ]d[X ] = ι([1])[X ]d[X ].
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Proof.

d[X ]d[X ] = d([X ]d[X ])− [X ]dd[X ] = d(Fd[X ])− [X ]dι[X ]

= 2Fdd[X ] + ι([1])[X ]d[X ] = 2Fdι[X ] + ι([1])[X ]d[X ]

= ι([1])[X ]d[X ].

�

Using this observation we can see for example that the product of two elements
of the second type is again an element of second type:

b[X ]k−1d[X ]b′[X ]k
′−1d[X ] = ι(bb′)[X ]k+k

′−1d[X ].

The other products and the action of the different operators on the elements
can also be derived. The formulas that we obtain will be exactly the formulas
that we plug in the definition of the functor P .
Before we define the functor P we need to recall a result of Hesselholt, Madsen
that describes the ring of p-typical Witt vectors over the ring A[X ]: every
element f ∈Wn(A[X ]) can be written uniquely as a sum:

f =
∑

j∈N

a0,j [X ]jn +
n−1∑

s=1

∑

(j,p)=1

V s(as,j [X ]jn−s),

with as,j ∈ Wn−s(A) and all but finitely many as,j zero (see Lemma 4.1.1 in
[3]). In the case p = 2 these results read: every element f ∈ Wn(A[X ]) can be
written uniquely as a finite sum of elements of two types, that we will call type
1 and type 3, for reasons that will soon become clear:

• Type 1: elements of the form a[X ]j, where a ∈ Wn(A),
• Type 3: elements of the form V r(c[X ]l), where r > 0, c ∈ Wn−r(A),

and l is odd.

Now we are ready to define the functor P : WA → WA[X]. On objects it is
defined as follows: for a Witt complex E∗• ∈ WA, P (E)qn consists of formal
sums of four types of elements:

• Type 1: elements of the form a[X ]j, where a ∈ Eqn,
• Type 2: elements of the form b[X ]k−1d[X ], where b ∈ Eq−1

n ,
• Type 3: elements of the form V r(c[X ]l), where r > 0, c ∈ Eqn−r, and l

is odd,
• Type 4: elements of the form dV s(e[X ]m), where s > 0, e ∈ Eq−1

n−s, and
m is odd.

The product is graded commutative, and is given by the following ten formulas:

P1.1: a[X ]ja′[X ]j
′

= aa′[X ]j+j
′

,
P1.2: a[X ]jb[X ]k−1d[X ] = ab[X ]j+k−1d[X ],
P1.3: a[X ]jV r(c[X ]l) = V r(F r(a)c[X ]2

rj+l),
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P1.4:

a[X ]jdV s(e[X ]m) =(−1)|a|
m

2sj +m
dV s(F s(a)e[X ]2

sj+m)

− (−1)|a|V s((F s(da)e− j

2sj +m
d(F s(a)e))[X ]2

sj+m),

P2.2: b[X ]k−1d[X ]b′[X ]k
′−1d[X ] = ι(bb′)[X ]k+k

′−1d[X ],
P2.3:

b[X ]k−1d[X ]V r(c[X ]l) =− (−1)|b|
1

2rk + l
V r(d(F r(b)c)[X ]2

rk+l)

+ (−1)|b|
2r

2rk + l
dV r(F r(b)c[X ]2

rk+l),

P2.4:

b[X ]k−1d[X ]dV s(e[X ]m) =− (−1)|b|
1

2sk + m
V s(F s(db + kι(b))de[X ]2

sk+m)

+ (−1)|b|
1

2sk + m
dV s(F s(b)de[X ]2

sk+m),

P3.3:

V r(c[X ]l)V r
′

(c′[X ]l
′

) =

=





2r
′

V r(cF r−r
′

(c′)[X ]2
r−r′ l′+l), if r > r′,

2rV r−v(V v(cc′)[X ]2
−v(l+l′)), if r = r′ and v = v2(l + l′), v ≤ r,

2rV r(cc′)[X ]2
−r(l+l′)

, if r = r′ and v > r,

P3.4:

V r(c[X ]l)dV s(e[X ]m) =

=





(−1)|c|
2rm

2s−rl+m
dV s(F s−r(c)e[X ]2

s−rl+m), if r < s,

V r−v(V v(c(d+ ι)(e))[X ]2
−v(l+m))

+(−1)|c| 2
rm
l+mdV

r(ce[X ]2
−v(l+m)

−(−1)|c| 2
vm
l+mV

r−v(dV v(ce)[X ]2
−v(l+m)), if r = s, v = v2(l +m) < r,

V r((c(d+ ι)(e))[X ]2
−r(l+m))

+(−1)|e|mV r(ce)[X ]2
−r(l+m)−1d[X ], if r = s, v = v2(l +m) ≥ r,

V r(cF r−s((d+ ι)(e))[X ]2
r−sm+l)

+(−1)|c|
2rm

2r−sm+ l
dV r(cF r−s(e)[X ]2

r−sm+l)

−(−1)|c|
m

2r−sm+ l
V r(d(cF r−s(e))[X ]2

r−sm+l), if r > s,
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P4.4:

dV s(e[X]m)dV s′(e′[X]m
′

) =

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

−(−1)|e|dV s′((F s′−s((d + ι)(e)e′) +
m

2s′−sm + m′ d(F s′−s(e)e′))[X]2
s′−sm+m′

)

+V s′((F s′−s(de)ι(e′) + F s′−s(e)dι(e′))[X]2
s′−sm+m′

), if s < s′,

V s−v((V v(edι(e′)) + dV v(eι(e′)))[X]2
−v(m+m′))

+dV s−v((V v(e(d + ι)(e′)) + dV v(ee′))[X]2
−v(m+m′)),

if s = s′, v = v2(l + m) < s,

(V s(eι(e′)) + (−1)e′m′dV s(ee′)[X]2
−s(m+m′)−1d[X])

+V s(edι(e′)[X]2
−s(m+m′))

+dV s(e(d + ι)(e′)[X]2
−s(m+m′)),

if s = s′, v = v2(l + m) ≥ s.

The definition of λ, R, and ι are obvious, the action of V is given by the
following four formulas:

V1:

V (a[X ]j) =

{
V (a[X ]j), if j odd,

V (a)[X ]j/2, if j even,

V2:

V (b[X ]k−1d[X ]) =

{
(−1)|b| 1kV ((db)[X ]k)− (−1)|b| 2kdV (b[X ]k), if k odd,

V (b)[X ]k/2−1d[X ], if k even,

V3: V (V r(c[X ]l)) = V r+1(c[X ]l)),
V4: V (dV s(e[X ]m)) = 2dV s+1(e[X ]m)).

The action of F is given by:

F1: F (a[X ]j) = F (a)[X ]2j ,
F2: F (b[X ]k−1d[X ]) = F (b)[X ]2k−1d[X ],
F3: F (V r(c[X ]l)) = 2V r−1(c[X ]l),
F4: F (dV s(e[X ]m)) = dV s−1(e[X ]m) + V s−1(ι(e)[X ]m.

The action of d is given by:

d1: d(a[X ]j) = d(a)[X ]j + (−1)|a|ja[X ]j−1d[X ],
d2: d(b[X ]k−1d[X ]) = d(b)[X ]k−1d[X ] + kι(b)[X ]k−1d[X ],
d3: d(V r(c[X ]l) = dV r(c[X ]l,
d4: d(dV s(e[X ]m)) = dV s(ι(e)[X ]m).

On morphisms the functor P is defined in the obvious way: if θ : E∗• → F ∗• is a
morphisms of Witt complexes over A, then P (θ) : P (E∗•) → P (F ∗• ) is defined
on elements of type 1 by the formula P (θ)(a[X ]i) = θ(a)[X ]i and similarly for
elements of the other three types.

Theorem 4.3. The functor P : WA → WA[X] is well defined and is a left
adjoint of the forgetful functor WA[X] →WA.
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Proof. The fact that the functor P is well defined means that for any Witt com-
plex E over the ring A, the complex P (E) is indeed a Witt complex over A[X ].
We need to prove that the six conditions in the definition of a Witt complex are
satisfied. Only two of these conditions and relations are hard to verify, the asso-
ciativity and the relation Fdλ([f ]n) = λ([f ]n−1)dλ([f ]n−1]), for all f ∈ A[X ].
The associativity requires a straightforward verification, that we will do in an
appendix.
We will prove the relation Fdλ([f ]n) = λ([f ]n−1)dλ([f ]n−1]), for all f ∈ A[X ]
using induction by the level. For the level n = 1 the identity is trivial, as
both sides are equal to zero. Assume we know that the identity is true for the
level n− 1. We notice that the relation is easily verified for monomials, that is
elements of the form f = aXm ∈ A[X ].

Lemma 4.4. The relation

Fdλ([aXm]n) = λ([aXm]n−1)dλ([aXm]n−1)

holds for all aXm ∈ A[X ].

Proof. Because there is no danger of confusion we will drop λ and the subscript
index indicating the level.

Fd[aXm] = Fd([a][X ]m) = F ((d[a])[X ]m + [a]d[X ]m)

= F (d[a])F ([X ]m) + F ([a])F (d[X ]m)

= ([a]d[a])[X ]2m +m[a]2F ([X ]m−1d[X ])

and using the formula F2:

Fd[aXm] = [a][X ]2md[a] +m[a]2[X ]2m−1d[X ]

= [a][X ]m([X ]md[a] + [a]d[X ]m) = [aXm]d[aXm],

which is what we wanted to prove. �

The relation follows for arbitrary polynomials from the additivity result 3.6.
With this we proved that P : WA → WA[X] is well defined. To prove that it
is the left adjoint of the forgetful functor U : WA[X] → WA we need to show
that:

HomWA[X]
(P (E), E′) ∼= HomWA(E,U(E′)).

The morphism from left to right takes a map f : P (E)→ E′ to its restriction
to E ֌ U(P (E)). The morphism from right to left takes g : E → U(E′) to
its unique extension g̃ : P (E)→ E′ defined such that g([X ]n) = λ′([X ]n). The
two morphisms are inverse to each other. �

4.3. The 2-typical de Rham-Witt complex of the log-ring Z(2) with
the canonical log-structure. In this section we define the notion of a
2-typical de Rham-Witt complex associated to a log-ring and we compute this
complex for the ring Z(2) with the canonical log-structure. We first recall
the notions of log-rings and of differentials with log-structures. The standard
reference is [8].
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Definition 4.5. A log-ring is a ring R together with a map of monoids

α : M → R,

where R is considered a monoid under the multiplication. We will denote this
log-ring by (R,M).

The map α itself is called a “pre-log structure”.

Definition 4.6. A derivation of a log-ring (R,M) into an R-module E is a
pair of maps

(D,D log) : (R,M)→ E,

where D : R → E is a derivation and D log : M → E is a map of monoids
such that for all a ∈M ,

α(a)D log(a) = Dα(a).

There is a universal example of a derivation of a log-ring (R,M) given by the
R-module

Ω1
(R,M) = (Ω1

R ⊕ (R ⊗Z M
gp))/ < dα(a)− α(a) ⊗ a >,

where Mgp is the group completion of the monoid M . The structure maps are
:

d : R→ Ω1
(R,M), da = da⊕ 0,

d log : M → Ω1
(R,M), d log a = 0⊕ (1⊗ a).

Definition 4.7. A log-differential graded ring (E∗,M) consists of a differential
graded ring E∗, a pre-log structure α : M → E0, and a derivation (D,D log) :
(E0,M) → E1 such that D is equal to the differential d : E0 → E1 and such
that d ◦D log = 0.

The universal example of an anti-symmetric log-differential graded ring is:

Ω̃∗(R,M) = Λ̃∗R(Ω1
(R,M)).

Here Λ̃∗R(N) = TR(N)/〈m ⊗ n + n ⊗ m | m,n ∈ N〉 is the universal anti-
symmetric graded R-algebra generated by the R-module N .
If (R,M) is a log-ring, then for each n ∈ N the ring of length-n Witt vectors,
Wn(R) over R becomes part of the data that gives a log-ring (Wn(R),M): the
map of monoids M → Wn(R) is just the composition of the map α : M → R
and the Teichmüller map [−]n : R→Wn(R).

Definition 4.8. A Witt complex (E∗• ,ME) over a log-ring (R,M) is a Witt
complex E∗• over R together with pre-log structures αn : ME → E0

n, an exten-
sion of λ : W•(R) → E0

• to a strict map of pro-log-rings λ : (W•(R),M) →
(E0
• ,ME),, and a derivation (E0

• ,ME)→ E1
• such that:

(i) d ◦ d log[a]n = 0, for all a ∈M ,
(ii) F d log[a]n = d log[a]n−1, for all a ∈M.
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Proposition 4.9. The category of (2-typical) Witt complexes over a log-ring
(R,M) has an initial object W•Ω∗(R,M), called the (2-typical) de Rham-Witt

complex of (R,M).

Proof. The proof is an application of the Freyd’s adjoint functor theorem, en-
tirely similar to the proof of Theorem 3.1 that asserts the existence of an initial
object in the category of 2-typical Witt complexes over a ring. �

Remark: We note that if M is the trivial monoid, then the 2-typical de
Rham-Witt complex associated to (R,M) is the 2-typical de Rham-Witt com-
plex associated to R, so the notion of a 2-typical de Rham-Witt complex over
a log-ring is a generalization of the notion of a 2-typical de Rham-Witt complex.

In this section we will describe the 2-typical de Rham-Witt complex of
(Z(2),M), where M = Q∗ ∩ Z(2) →֒ Z(2) is the canonical log-structure. The
strategy is the same as in the previous calculations of de Rham-Witt complexes:
we find a candidate G∗• described explicitely by generators and relations and
by formulas for the product and the actions of the various operators, and we
prove that this candidate is isomorphic to W•Ω∗(R,M).

In degree zero the de Rham-Witt complex is again the Witt vectors of the ring
R, this following from a proof similar to the proof of Proposition 3.4. In degree
one, the only new generator that we have in the de Rham-Witt complex of
(Z(2),M), which is not in the de Rham-Witt complex of Z(2) is d log[2]. The
product formulas are the same for the elements that already existed in the
de Rham-Witt complex of Z(2), so the only product formulas that we have to

derive are V i(1)d log[2].

Proposition 4.10. i)The element d log[2]n ∈ WnΩ1
(Z(2),M) is annihilated by

2n.
ii) V [1]n−1d log[2]n ≡ 2d log[2]n (mod dV (Wn−1Ω0

(Z(2),M))).

Proof. The proof of both assertions is by induction. i)The case n = 1 :
2d log[2]1 = d(2) = 0. Assuming 2id log[2]i = 0 for all i ≤ n we will prove
that 2n+1d log[2]n+1 = 0. We use the formula [2]n+1d log[2]n+1 = d[2]n+1 and
the Corollary 2.4 which says that

[2]n+1 =

n∑

i=0

ciV
i(1),

where ci = 2−i(22i − 22i−1

).
We have:

n∑

i=0

ciV
i(1)d log[2]n+1 =

n∑

i=1

cidV
i(1)

We use that V i(1)d log[2]n+1 = V i(F i(d log[2]n+1)) = V i(d log[2]n+1−i) :

2d log[2]n+1 =

n∑

i=1

(−V i(d log[2]n+1−i) + cidV
i(1)).
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Now if we multiply this relation by 2n we obtain:

2n+1d log[2]n+1 =
n∑

i=1

(−V i(2n+1d log[2]n+1−i) + 2n+1cidV
i(1)),

which is zero by the induction hypothesis and the fact that 2idV i(1) = 0.
ii) For n = 1 the congruence is trivial as both members are zero. Assuming
that the congruence holds for n, we want to prove that it holds for n+ 1. First,
by an easy induction, we see that:

V i[1]n−id log[2]n ≡ 2id log[2]n (mod dV )

Then we use the formula [2]n+1d log[2]n+1 = d[2]n+1 combined with Corollary
2.4:

2d log[2]n+1 +

n∑

i=1

ciV
i[1]n+ 1− id log[2]n+1 =

n∑

i=1

cidV
i[1]n+1−i ≡ 0(mod dV ).

This gives:

2d log[2]n+1 +

n∑

i=1

V (ciV
i−1[1]n− (i− 1)d log[2]n) ≡ 0 (mod dV ),

or, using the formula described above for V i−1[1]n− (i− 1)d log[2]n :

2d log[2]n+1 + V (

n∑

i=1

ci2
i−1d log[2]n) ≡ 0 (mod dV ),

2d log[2]n+1 + V ((22n−1 − 1)d log[2]n) ≡ 0 (mod dV ).

Since 22n−1

is always divisible by 2n, which annihilates d log[2]n, we get the
desired result.

�

The second part of this Proposition together with Proposition 2.3, which de-
scribes a basis of Wn(Z), tell us that the product formula we are trying to
derive is of the form:

V [1]n−1d log[2]n = 2d log[2]n+a1dV [1]n−1+a2dV
2[1]n−2+· · ·+an−1dV

n−1[1]1.

We note that the coefficients ai, don’t depend on n, as we can apply R to the
relation in level n+ 1 to obtain the relation in level n.

Lemma 4.11. Assuming the previous product formula, the following formulas
hold:

V i(1)d logn(2) = 2id logn(2) + 2i−1(a1 + · · ·+ ai)dV
i(1) + · · ·

+2i−1(an−i + · · ·+ an−1)dV n−1(1).
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Proof. The proof is by induction. The case i = 1 is obvious. We prove that if
the formula is true for i then it must be true for i+ 1.

V i+1(1)d logn(2) = V (V i(1)d logn−1(2))

= V (2id logn−1(2) + 2i−1(a1 + · · ·+ ai)dV
i(1) + · · ·

· · ·+ 2i−1(an−i−1 + · · ·+ an−2)dV n−2(1))

= 2iV (1)d logn(2) + 2i−1(a1 + · · ·+ ai)V dV
i(1)+

· · ·+ 2i−1(an−i−1 + · · ·+ an−2)V dV n−2(1)

= 2i+1d logn(2) + 2ia1dV (1) + · · ·+ 2iaidV
i(1) + 2iai+1dV

i+1(1) + · · ·
· · ·+ 2ian−1dV

n−1(1) + 2i(a1 + · · ·+ ai)dV
i+1(1) + · · ·

· · ·+ 2i(an−i−1 + · · ·+ an−2)dV n−1(1)

= 2i+1d logn(2)2i(a1 + · · ·+ ai+1)dV i+1(1) + · · ·
· · ·+ 2i(an−i−1 + · · ·+ an−1)dV n−1(1).

We used the fact that 2idV (1) = · · · = 2idV i(1) = 0, which follows from
2dV = V d and d(1) = 0. �

We will now compute the coefficients ai. We start with the relation

[2]nd log[2]n = d[2]n

This gives:
n−1∑

i=0

ci(V
i(1)d logn(2)) =

n−1∑

i=1

cidV
i(1),

and we use the formula that we just derived for V i(1)d logn(2):

c0d logn(2) +

n−1∑

i=0

ci(2
id logn(2) +

n−1∑

j=i

(

j∑

k=j−i+1

ak)dV j(1)) =

n−1∑

i=1

cidV
i(1).

We regroup the sums and we obtain:

(

n−1∑

i=0

2ici)d logn(2) +

n−1∑

j=1

j∑

i=1

(2ici

j∑

k=j−i+1

ak)dV j(1) =

n−1∑

j=1

cjdV
j(1).

The first term in the left hand side member is zero because
∑n−1

i=0 2ici = 22n−1

and d logn(2) is annihilated by 2n. We equate the coefficients of dV j(1) modulo
2j and obtain:

j∑

i=1

(2ici

j∑

k=j−i+1

ak) ≡ cj (mod 2j),

or:
j∑

k=1

(

j∑

i=j−k+1

2i−1ci)ak ≡ cj (mod 2j).

Documenta Mathematica 13 (2008) 413–452



On the 2-Typical De Rham-Witt Complex 443

Let us call Bjk =
∑j
i=j−k+1 2i−1ci, if j ≥ k, and Bjk = 0, ifj < k. We obtain

therefore a system of equations:

j∑

k=1

Bjkak ≡ cj (mod 2j).

We need to make a comment about this system. A priori the unknowns ak
are in different rings, namely ak ∈ Z/2kZ. So the system as it stands doesn’t
really make sense. However we can think of 2j−kak as an element of Z/2jZ,

and we notice that Bjk is divisible by 2j−k, because Bjk =
∑j

i=j−k+1 2i−1ci =

22j−1 − 22j−k−1, if j ≥ k, and Bjk = 0, ifj < k. To solve this system, we lift
it to a system over the ring of integers Z, we solve that system, and then take
classes of congruence modulo the corresponding power of 2.

We observe that Bjk = 22j−1−22j−k−1 ≡ −22j−k−1 (mod 2j), and that c1 = 1,
c2 ≡ −1 (mod 22), c3 ≡ −2 (mod 23), and ci ≡ 0 (mod 2i), for i > 3. We find
thus convenient to lift the previous system of equation to the following system
over Z:

j∑

k=1

bjkak = c′j ,

with bjk = −22j−k−1 for j ≥ k, bjk = 0 for j < k, c′1 = 1, c′2 = −1, c′3 = −2,
and ci = 0, for i > 3.
The matrix of the system is lower triangular and it has only −1 on the diagonal.
We can invert it using, for example, Gauss-Jordan’s method. The inverse
matrix F is also lower triangular and it has entries:

fij =





0, if i < j,

−1, if i = j,∑
i=i0>i1>···>is=j bi0i1bi1i2 · · · bis−1is , if i > j.

A direct computation shows that b21 = b32 = b43 = −2, b31 = b42 = −23, and
using this that f21 = f32 = f43 = 2 and f31 = f42 = −22. These entries of the
matrix F are all we need to compute the first three coeficients in the product
formula. We obtain: a1 ≡ 1 (mod 2), a2 ≡ −1 (mod 4), a3 ≡ 4 (mod 8). We
will prove that all the other coefficients are zero.
For all i ≥ 3 we have:

ai ≡ fi1c′1 + fi2c
′
2 + fi3c

′
3 = fi1 − fi2 − 2fi3 (mod 2i)

We remark first that v2(bij) ≥ i−j, with equality if and only if i = j+1. Using
this observation we see that all the terms that add up to give fi1 are divisible
by 2i−1, and the only one that is not divisible by 2i is bii−1bi−1i−2 · · · b21 =
(−1)i−12i−1. Therefore fi1 ≡ (−1)i−12i−1 (mod 2i). Similarly, fi2 is divisible
by 2i−2 and the terms in the sum that makes up fi2 that are not divisible by
2i are of two forms:

– one product bii−1bi−1i−2 · · · b32 = (−1)i−22i−2,
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– (i−3) products of the form bii−1bi−1i−2 · · · bk+1kbkk−2bk−2k−3 · · · b32 =
(−1)i−32i−1.

We obtain fi2 ≡ (−1)i−22i−2 + (i− 3)(−1)i−32i−1 (mod 2i).
We treat fi3 in the same way:

2fi3 ≡ 2(bii−1bi−1i−2 · · · b32 +
∑

k

bii−1bi−1i−2 · · · bk+1kbkk−2bk−2k−3 · · · b32

= 2[(−1)i−32i−3 + (i− 4)2i−2] (mod 2i)

With these formulas we can compute ai for i > 3:

ai = fi1 − fi2 − 2fi3

≡ (−1)i−12i−1 − (−1)i−22i−2

− (i− 3)(−1)i−32i−1 − 2[(−1)i−32i−3 + (i− 4)2i−2]

≡ 0 (mod 2i)

We have therefore proved:

Lemma 4.12. The following product formula holds for all n:

V [1]n−1d log[2]n = 2d log[2]n + dV [1]n−1 − dV 2[1]n−2 + 4dV 3[1]n−3.

Now we can state the structure theorem for the 2-typical de Rham-Witt com-
plex of (Z(2),M), where M = Z∗(2).

Theorem 4.13. The structure of W•Ω∗(Z(2),M) is:

(i) As abelian groups

WnΩ0
(Z(2),M) =

n−1⊕

i=0

Z(2) · V i(1),(23)

WnΩ1
(Z(2),M) = Z/2nZ d log[2]n ⊕

n−1⊕

i=1

Z/2iZ · dV i(1),(24)

WnΩi(Z(2),M) = 0, for all i ≥ 2.(25)

The product relations and the actions of the various operators are
the ones from Theorem 4.1, in addition to which we also have:

(ii) the product formulas:

V [1]n−1d log[2]n = 2d log[2]n + dV [1]n−1 − dV 2[1]n−2 + 4dV 3[1]n−3,

V i[1]n−id log[2]n = 2id log[2]n − 2i−1dV i+1[1]n−i−1 + 2i+1dV i+2[1]n−i−2,

(iii) the action of the operator V :

V (d log[2]n) = 2d log[2]n+1 + dV [1]n − dV 2[1]n−1 + 4dV 3[1]n−2,

(iv) the action of the operator F :

F (d log[2]n) = d log[2]n−1.
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Proof. The proof is similar to the proof of Theorem 4.1, which describes the
structure of the 2-typical de Rham-Witt complex of the integers. More precisely
we define the pro-graded ring G∗• to be:

G0
n =

n−1⊕

i=0

Z(2) · V i(1),(26)

G1
n = Z/2nZ d log[2]n ⊕

n−1⊕

i=1

Z/2iZ · dV i(1),(27)

Gin = 0, for all i ≥ 2,(28)

with the product rule and the action of the operators as in the theorem. We
want to prove that W•Ω∗(Z(2),M)

∼= G∗•. We will show that we have morphisms

φ : W•Ω
∗
(Z(2),M) → G∗•,

ψ : G∗• →W•Ω
∗
(Z(2),M),

and that they are inverse to each other.
The existence (and uniqueness) of the morphism φ follows from the fact that G∗•
is a 2-typical Witt complex. The definition of ψ is forced by the requirements
that it is a morphism of 2-typical Witt complexes: [1]n 7→ [1]n (since ψ is a
morphism of rings), V i[1]n−i 7→ V i[1]n−i, dV i[1]n−i 7→ dV i[1]n−i (ψ commutes

with V and d), [2]n 7→ [2]n (because [2]n =
∑n−1

i=0 ciV
i[1]n−i by Prop 2.4 and

ψ is additive), d log[2]n 7→ d log[2]n (because ψ commutes with d log).
In order to see that ψ is well defined we need to show that WnΩi(Z(2),M) = 0

for i ≥ 2. This is proven by induction on n. The first step of the iduction,
that W1Ωi(Z(2),M) = 0 follows from the fact that Ωi(Z(2),M) = 0 for all i ≥ 2

(which follows from d ◦ d log = 0) and the fact that Ωi(Z(2),M) →W1Ωi(Z(2),M) is

surjective.
Assuming that Wn−1Ωi(Z(2),M) = 0 for i ≥ 2, we want to prove that

WnΩi(Z(2),M) = 0 for i ≥ 2. We use the standard filtration:

FilsWnΩi(Z(2),M) = V sWn−iΩ
i
(Z(2),M) + dV sWnΩi−1

(Z(2),M).

The sequence:

0→ Filn−1WnΩi(Z(2),M) →WnΩi(Z(2),M) →Wn−1Ωi(Z(2),M) → 0

is exact by exactly the same argument used to prove Lemma 3.5. For i ≥ 2 the
last term in this short exact sequence is zero by the induction hypothesis. The
first term is:

Filn−1WnΩi(Z(2),M) = V n−1Wn−iΩ
i
(Z(2),M) + dV n−1WnΩi−1

(Z(2),M)

= V n−1(0) + dV n−1(Z/2Z d log[2]1).
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This is zero if dV n−1(d log[2]1) = 0. We have:

dV n−1(d log[2]1) = d(V n−1([1]1)d log[2]n)

= d(2n−1d log[2]n + dV (x))

= 2n−1d ◦ d log[2]n + ddV (x)

= ddV (x),

where x ∈Wn−1Ωi−2
(Z(2),M). Too see that ddV (x) = 0 we use the following trick:

W•Ω∗(Z(2),M) is a Witt complex over the log-ring (Z(2),M), so in particular it

is a Witt complex over the ring Z(2), and as such it is the target of a unique
homomorphism from the de Rham-Witt complex W•Ω∗Z(2)

. The element ddV (x)

is in the image of this homomorphism, but W•ΩiZ(2)
= 0 for i ≥ 2, therefore

ddV (x) = 0. This finishes the proof that WnΩi(Z(2),M) = 0 if i ≥ 2, and thus ψ

is well defined.
Too see that φ and ψ are inverse to each other we check that φ ◦ ψ = 1
and ψ ◦ φ = 1. The first follows from the fact that φ ◦ ψ is a morphism of
Witt complexes, and therefore [1]n 7→ [1]n, V

i[1]n−i 7→ V i[1]n−i, dV i[1]n−i 7→
dV i[1]n−i, [2]n 7→ [2]n, and d log[2]n 7→ d log[2]n, and the second from the fact
that ψ ◦ φ is an endomorphism of an initial object in a category. �

5. Appendix A: The p-typical de Rham-Witt complex of Z(p) with
the canonical log-structure, p odd

In this appendix we give the structure of the p-typical de Rham-Witt complex
of the log-ring (Z(p),M), for p odd. Here M = Q∗∩Z(p) →֒ Z(p) is the canonical
log-structure on Z(p). The computations are exactly the same as for the case
p = 2, but the results are a little different. We first recall the structure of the
p-typical de Rham-Witt complex of Z(p) from Example 1.2.4 of [2].

Proposition 5.1. The structure of W•Ω∗Z(p)
for p odd is:

(i) As abelian groups:

WnΩ0
Z(p)

=

n−1⊕

i=0

Z(p) · V i(1),(29)

WnΩ1
Z(p)

=

n−1⊕

i=1

Z/piZ · dV i(1),(30)

WnΩiZ(p) = 0, for i ≥ 2.(31)

(ii) The product is given by:

V i(1)V j(1) = piV j(1), if i ≤ j,(32)

V i(1)dV j(1) =

{
pidV j(1), if i < j,

0, if i ≥ j.(33)
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(ii) The action of the operators F and V is given by:

FV i(1) = pV i−1(1),(34)

FdV i(1) = dV i−1(1),(35)

V (V i(1)) = V i+1(1),(36)

V (dV i(1)) = pdV i+1(1).(37)

The structure of W•Ω∗(Z(p),M) is different for p = 3 and p ≥ 5.

Theorem 5.2. The structure of W•Ω∗(Z(p),M) with p odd is:

(i) As additive groups:

WnΩ0
(Z(p),M) = WnΩ0

Z(p)

∼= Wn(Z(p)),(38)

WnΩ1
(Z(p),M) = WnΩ1

Z(p)
⊕ Z/pnZd log[p]n,(39)

WnΩi(Z(p),M) = 0, for all i ≥ 2.(40)

(ii) The product is given by the formulas in the previous theorem and the
following formula that involves d log[p]:

V i[1]n−id log[p]n =

{
3id log[3]n + 3i−1dV i[1]n−i + 3idV i+1[1]n−i−1, if p = 3,

pi log[p]n + pi−1dV i[1]n−i, if p ≥ 5.

(ii) The action of F and V on d log[p]n is:

F (d log[p]n) = d log[p]n−1,(41)

V (d log[p]n) =

{
3d log[3]n+1 + dV [1]n + 3dV [1]n−1, if p = 3,

p d log[p]n+1 + dV [1]n, if p ≥ 5.
(42)

The proof of this theorem is entirely similar to the proof of the structure the-
orem for W•Ω∗(Z(2),M).

6. Appendix B: Associativity

In this appendix we discuss the associativity of the multiplication rule defined
in Section 4. We recall that the functor P :WA →WA[X] is defined on objects
as follows: for a a Witt complex E∗• ∈ WA, P (E)qn consists of formal sums of
four types of elements:

• Type 1: elements of the form a[X ]j, where a ∈ Eqn,
• Type 2: elements of the form b[X ]k−1d[X ], where b ∈ Eq−1

n ,
• Type 3: elements of the form V r(c[X ]l), where r > 0, c ∈ Eqn−r, and l

is odd,
• Type 4: elements of the form dV s(e[X ]m), where s > 0, e ∈ Eq−1

n−s, and
m is odd.

The product is given by ten formulas, from P1.1 to P1.4.
We make now the convention that, for example, A1.3.4 means the statement
that says that (xy)z = x(yz), where x is an element of the first type, y an
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element of the third type, and z an element of the fourth type. In order to
prove the associativity one has to check twenty relations like this, from A1.1.1
to A4.4.4 .
Since there are three product formulas given in “cases” format, the associativity
relations involving these formulas will be a little more tedious to verify. Ten out
of the twenty relations that we want to check contain at least a product given
in cases format. Out of the remaining ten, five are more or less trivial, namely
A1.1.1, A1.1.2, A1.1.3, A1.2.2, and A2.2.2 . The five formulas that don’t involve
products with the cases format are A1.1.4, A1.2.3, A1.2.4, A2.2.3, and A2.2.4 .
The hardest seems to be the first, even if it doesn’t involve the operator ι.
We will show how it is derived, and then we will also show A1.2.4 , where ι is
involved.
Among the ten cases where at least one product is in the cases format, one is
almost trivial, A1.3.3 . The other nine require all some extensive computations.
The most dificult of them are A3.3.4 and A3.4.4 .We will show how A3.3.4 is
derived.
We start with the relation A1.1.4 . Let x = aXj , y = a′Xj′ , and z =
dV s(eXm). Then:

(xy)z = aa′Xj+j′dV s(eXm)

= (−1)|aa
′| m

2s(j + j′) +m
dV s(F s(aa′)eX2s(j+j′)+m)

− (−1)|aa
′|V s((F s(d(aa′))e− j + j′

2s(j + j′) +m
d(F s(aa′)e))X2s(j+j′)+m).

On the other hand:

x(yz) =aXj{(−1)|a
′| m

2sj′ +m
dV s(F s(a′)eX2sj′+m)

− (−1)|a
′|V s((F s(da′)e− j′

2sj′ +m
d(F s(a′)e))X2sj′+m)}.

If we denote E = F s(a′)e, M = 2sj′ +m, and P = 2s(j + j′) +m, we obtain:

x(yz) =aXj{(−1)|a
′| m
M
dV s(EXM )− (−1)|a

′|V s((E − j′

M
d(F s(a′)e))XM )}

=(−1)|a
′| m
M
{(−1)|a|

M

P
dV s(F s(a)EXP )

− (−1)|a|V s((F s(da)E − j

P
d(F s(a)E))XP )}

− (−1)|a
′|V s((F s(ada′)e− j′

M
F s(a)d(F s(a′)e))XP )

=(−1)|aa
′|m
P
dV s(F s(aa′)eXP ) + V s(UXP ),
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where U is the expression:

U =(−1)|aa
′| m
M
F s(da a′)e+ (−1)|aa

′| m
M

j

P
d(F s(aa′)e)

− (−1)|a
′|F s(ada′)e+ (−1)|a

′|F s(a)d(F s(a′)e)).

Using the fact that d is a derivation and that dF s = 2sF sd, we obtain:

U =− (−1)|aa
′|m
P
F s(da a′)e− (−1)|a

′|m
P
F s(ada′)e

+
j + j′

P
F s(aa′)de,

which agrees with the expression we find inside V s for the elemtent (xy)z.
We prove now A1.2.4 . Let x = aXj, y = bXk−1dX, and z = dV s(eXm). We
have:

(xy)z =(abXj+k−1dX)dV s(eXm)

=− (−1)|ab|
1

2s(j + k) +m
V s(F s(d(ab) + (j + k)ι(ab)deX2s(j+k)+m))

+ (−1)|ab|
1

2s(j + k) +m
dV s(F s(ab)deX2s(j+k)+m).

On the other hand:

x(yz) =aXj{−(−1)|b|
1

2sk +m
V s(F s(db + (j + k)ι(b)deX2sk+m))

+ (−1)|b|
1

2sk +m
dV s(F s(b)deX2sk+m)}.

We denote by M = 2sk +m, and P = 2s(j + k) +m, we obtain:

x(yz) =− (−1)|b|
1

M
V s(F s(a db+ kι(ab))deXP )

+ (−1)|b|
1

M
{(−1)|a|

M

P
dV s(F s(ab)deXP )

− (−1)|a|V s((F s(da)F s(b)de− j

P
d(F s(ab)de))XP )}

=(−1)|ab|
1

P
dV s(F s(ab)deXP ) + V s(WXP ).

We compute separately the expression W :

W =− (−1)|b|
1

M
F s(a db)de + kF s(ι(ab))de

− (−1)|ab|
1

M
F s(da b)de+ (−1)|ab|

j

MP
d(F s(ab)de)

=− (−1)|ab|
1

M
F s(d(ab))de + F s(kι(ab))de

+ (−1)|ab|
2sj

MP
F s(d(ab))de +

j

MP
F s(ab)dde.
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The last term in this sum is j
MP F

s(ab)dde = j
MP F

s(ι(ab))de. We make the

observation that for any odd number m ∈ Z we have 1
m ι = ι, so the last term

in the sum becomes simply jF s(ι(ab))de. Therefore:

W =− (−1)|ab|
1

P
F s(d(ab))de + F s((j + k)ι(ab))de

=− (−1)|ab|
1

P
F s(d(ab) + (j + k)ι(ab))de,

which agrees with the expression we find inside V s in the product (xy)z.
We show now how to derive the associativity relation A3.3.4 . Let x = V r(cX l),

y = V r
′

(c′X l′), and z = dV s(eXm). Since the product formulas depend on the
ordering of the exponents r, r′, and s, it follows that verifying this relation
involves checking 13 different cases, from r < r′ < s to s < r′ < r. We will
verify the case s < r′ < r.
We make the notations C = cF r−r

′

(c′), C′ = c′F r
′−s((d + ι)(e)), E =

c′F r
′−s(e), L = 2r−r

′

l′+ l, M = 2r
′−sm+ l′, and P = 2r−sm+ 2r−r

′

l′+ l. We
have:

(xy)z =(V r(cX l)V r
′

(c′X l′))dV s(eXm)

=2r
′

V r(cF r−r
′

(c′)X2r−r′ l′+l)dV s(eXm)

=2r
′

V r(CXL)dV s(eXm)

=2r
′{V r(CF r−s((d+ ι)(e))XP ) + (−1)|cc

′| 2
rm

P
dV r(CF r−s(e)XP )

− (−1)|cc
′|m
P
V r(d(CF r−s(e))XP )}

=(−1)|cc
′| 2

r+r′m

P
dV r(cF r−r

′

(c′)F r−s(e)XP ) + V (UXP ),

where the expression U is:

U =2r
′{cF r−r′(c′)F r−s((d+ ι)(e)) − (−1)|cc

′|m
P
d(cF r−r

′

(c′)F r−s(e))}
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On the other hand:

x(yz) =V r(cX l)(V r
′

(c′X l′)dV s(eXm))

=V r(cX l){V r′(c′F r′−s((d + ι)(e))X2r′−s+l′)

+ (−1)|c
′| 2r

′

m

2r′−sm+ l′
dV r

′

(c′F r
′−s(e)X2r′−s+l′)

− (−1)|c
′| m

2r′−sm+ l′
V r

′

(d(c′F r
′−s(e))X2r′−s+l′)}

=V r(cX l){V r′(C′XM ) + (−1)|c
′| 2

r′m

M
dV r

′

(EXM )

− (−1)|c
′| m
M
V r

′

(dE XM )}

=2r
′

V r(cF r−r
′

(C′)XP ) + (−1)|c
′| 2

r′m

M
{V r(cF r−r′((d+ ι)E)XP )

+ (−1)|c|
2rM

P
dV r(cF r−r

′

(E)XP )− (−1)|c|
M

P
V r(d(cF r−r

′

(E))XP )}

− (−1)|c
′| m
M

2r
′

V r(cF r−r
′

(dE)XP ).

The second and the fifth term in this sum cancel each other, since 2r
′

ι = 0. We
have:

x(yz) = (−1)|cc
′| 2

r+r′m

P
dV r(cF r−r

′

(c′)F r−s(e)XP ) + V (WXP ),

where the expression W is:

W =2r
′{cF r−r′(c′)F r−s(d(e)) + (−1)|c

′| 2
r′m

M
cF r−r

′

(d(c′F r
′−s(e)))

− (−1)|cc
′|m
P
d(cF r−r

′

(c′F r
′−s(e))) − (−1)|c

′| 2
r′m

M
cF r−r

′

(d(c′F r
′−s(e))).

The second and the fourth term cancel, and we see that W = U , hence (xy)z =
x(yz).
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ent. Éc. Norm. Sup. 12 (1979), 501-661.
[7] L.Illusie, M. Raynaud, Les suites spectrales associeés au complexe de de

Rham-Witt, Publ. Math. IHES 57, 1983, 73-212.
[8] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic Analysis,

Geometry, and Number Theory, Proc. JAMI Inaugural Conference (Balti-
more, 1988), Johns Hopkins Univ. Press, Baltimore, 1989, 191-224.

[9] A. Langer, T. Zink, De Rham-Witt Cohomology for a Proper and Smooth
Morphism, Journal of the Inst. of Math. Jussieu (2004) 3(2), 231-314.

[10] S. MacLane, Categories for the working mathematician, Graduate Texts
in Mathematics, vol. 5, Springer-Verlag, 1971.

[11] H. Matsumura, Commutative ring theory, Cambridge studies in advanced
mathematics, vol. 8, Cambridge Uniersity Press.

[12] D. Mumford, Lectures on curves on an algebraic surface, Annals of Math-
ematics Studies, vol. 59, Princeton University Press, Princeton, 1966.

[13] J. Stienstra, Operations in the higher K-theory of endomorphisms, Current
Trends in Algebraic Topology, Part 1 (London, Ontario, 1981), 59-115,
CMS Conf. Proc., 2. Amer. Math. Soc., Providence, RI, 1982.

Viorel Costeanu
50 Columbus Drive
Jersey City, NJ 07302
Viorel.Costeanu@gmail.com

Documenta Mathematica 13 (2008) 413–452



Documenta Math. 453

Andreotti–Mayer Loci and the Schottky Problem

Ciro Ciliberto, Gerard van der Geer

Received: July 4, 2007

Revised: May 27, 2008

Communicated by Thomas Peternell

Abstract. We prove a lower bound for the codimension of the
Andreotti-Mayer locus Ng,1 and show that the lower bound is reached
only for the hyperelliptic locus in genus 4 and the Jacobian locus in
genus 5. In relation with the intersection of the Andreotti-Mayer loci
with the boundary of the moduli space Ag we study subvarieties of
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such that Ξ and the translate Ξb are tangentially degenerate along a
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1. Introduction

The Schottky problem asks for a characterization of Jacobian varieties among
all principally polarized abelian varieties. In other words, it asks for a descrip-
tion of the Jacobian locus Jg in the moduli space Ag of all principally polarized
abelian varieties of given dimension g. In the 1960’s Andreotti and Mayer (see
[2]) pioneered an approach based on the fact that the Jacobian variety of a
non-hyperelliptic (resp. hyperelliptic) curve of genus g ≥ 3 has a singular locus
of dimension g − 4 (resp. g − 3). They introduced the loci Ng,k of principally
polarized abelian varieties (X,ΘX) of dimension g with a singular locus of ΘX

of dimension ≥ k and showed that Jg (resp. the hyperelliptic locus Hg) is an
irreducible component of Ng,g−4 (resp. Ng,g−3). However, in general there are
more irreducible components of Ng,g−4 so that the dimension of the singular
locus of ΘX does not suffice to characterize Jacobians or hyperelliptic Jaco-
bians. The locus Ng,0 of abelian varieties with a singular theta divisor has
codimension 1 in Ag and in a beautiful paper (see [27]) Mumford calculated
its class. But in general not much is known about these Andreotti-Mayer loci
Ng,k. In particular, we do not even know their codimension. In this paper we
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give estimates for the codimension of these loci. These estimates are in general
not sharp, but we think that the following conjecture gives the sharp bound.

Conjecture 1.1. If 1 ≤ k ≤ g − 3 and if N is an irreducible component of
Ng,k whose general point corresponds to an abelian variety with endomorphism

ring Z then codimAg (N) ≥
(
k+2
2

)
. Moreover, equality holds if and only if one

of the following happens:

(i) g = k + 3 and N = Hg;
(ii) g = k + 4 and N = Jg.

We give some evidence for this conjecture by proving the case k = 1. In our
approach we need to study the behaviour of the Andreotti-Mayer loci at the
boundary of the compactified moduli space. A principally polarized (g − 1)-
dimensional abelian variety (B,Ξ) parametrizes semi-abelian varieties that are
extensions of B by the multiplicative group Gm. This means that B maps
to a part of the boundary of the compactified moduli space Ãg and we can
intersect B with the Andreotti-Mayer loci. This motivates the definition of loci
Nk(B,Ξ) ⊂ B for a principally polarized (g − 1)-dimensional abelian variety
(B,Ξ). They are formed by the points b in B such that Ξ and its translate
Ξb are ‘tangentially degenerate’ (see Section 11 below) along a subvariety of
dimension k. These intrinsically defined subvarieties of an abelian variety are
interesting in their own right and deserve further study. The conjecture above
then leads to a boundary version that gives a new conjectural answer to the
Schottky problem for simple abelian varieties.

Conjecture 1.2. Let k ∈ Z≥1. Suppose that (B,Ξ) is a simple principally
polarized abelian variety of dimension g not contained in Ng,i for all i ≥ k.
Then there is an irreducible component Z of Nk(B,Ξ) with codimB(Z) = k+1
if and only if one of the following happens:

(i) either g ≥ 2, k = g − 2 and B is a hyperelliptic Jacobian,
(ii) or g ≥ 3, k = g − 3 and B is a Jacobian.

In our approach we will use a special compactification Ãg of Ag (see [29, 28, 5]).

The points of the boundary ∂Ãg = Ãg −Ag correspond to suitable compacti-
fications of g-dimensional semi-abelian varieties. We prove Conjecture 1.1 for
k = 1 by intersecting with the boundary. For higher values of k the intersection
with the boundary looks very complicated.

2. The universal theta divisor

Let π : Xg → Ag be the universal principally polarized abelian variety of
relative dimension g over the moduli space Ag of principally polarized abelian
varieties of dimension g over C. In this paper we will work with orbifolds and
we shall identify Xg (resp. Ag) with the orbifold Sp(2g,Z)⋉Z2g\Hg×Cg (resp.
with Sp(2g,Z)\Hg), where

Hg = {(τij) ∈Mat(g × g,C) : τ = τ t, Im(τ) > 0}
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is the usual Siegel upper-half space of degree g. The τij with 1 ≤ i ≤ j ≤ g are
coordinates on Hg and we let z1, ..., zg be coordinates on Cg.
The Riemann theta function ϑ(τ, z), given on Hg × Cg by

ϑ(τ, z) =
∑

m∈Zg

eπi[m
tτm+2mtz],

is a holomorphic function and its zero locus is an effective divisor Θ̃ on Hg×Cg

which descends to a divisor Θ on Xg. If the abelian variety X is a fibre of π,
then we let ΘX be the restriction of Θ to X . Note that since θ(τ, z) satisfies
θ(τ,−z) = θ(τ, z), the divisor ΘX is symmetric, i.e., ι∗(ΘX) = ΘX , where
ι = −1X : X → X is multiplication by −1 on X . The divisor ΘX defines
the line bundle OX(ΘX), which yields the principal polarization on X . The
isomorphism class of the pair (X,ΘX) represents a point ζ of Ag and we will
write ζ = (X,ΘX). Similarly, it will be convenient to identify a point ξ of Θ
with the isomorphism class of a representative triple (X,ΘX , x), where ζ =
(X,ΘX) represents π(ξ) ∈ Ag and x ∈ ΘX .
The tangent space to Xg at a point ξ, with π(ξ) = ζ, will be identified with the

tangent space TX,x⊕TAg,ζ
∼= TX,0⊕Sym2(TX,0). If ξ = (X,ΘX , x) corresponds

to the Sp(2g,Z) ⋉ Z2g-orbit of a point (τ0, z0) ∈ Hg × Cg, then the tangent
space TXg,ξ to Xg at ξ can be identified with the tangent space to Hg × Cg at

(τ0, z0), which in turn is naturally isomorphic to Cg(g+1)/2+g , with coordinates
(aij , bℓ) for 1 ≤ i, j ≤ g and 1 ≤ ℓ ≤ g that satisfy aij = aji. We thus view the
aij ’s as coordinates on the tangent space to Hg at τ0 and the bℓ’s as coordinates
on the tangent space to X or its universal cover.
An important remark is that by identifying the tangent space to Ag at

ζ = (X,ΘX) with Sym2(TX,0), we can view the projectivized tangent space

P(TAg,ζ)
∼= P(Sym2(TX,0)) as the linear system of all quadrics in the dual of

Pg−1 = P(TX,0). In particular, the matrix (aij) can be interpreted as the
matrix defining a dual quadric in the space Pg−1 with homogeneous coordi-
nates (b1 : . . . : bg). Quite naturally, we will often use (z1 : . . . : zg) for the
homogeneous coordinates in Pg−1.
Recall that the Riemann theta function ϑ satisfies the heat equations

∂

∂zi

∂

∂zj
ϑ = 2π

√
−1(1 + δij)

∂

∂τij
ϑ

for 1 ≤ i, j ≤ g, where δij is the Kronecker delta. We shall abbreviate this
equation as

∂i∂jϑ = 2π
√
−1(1 + δij)∂τijϑ,

where ∂j means the partial derivative ∂/∂zj and ∂τij the partial derivative
∂/∂τij . One easily checks that also all derivatives of θ verify the heat equations.
We refer to [39] for an algebraic interpretation of the heat equations in terms
of deformation theory.
If ξ = (X,ΘX , x) ∈ Θ corresponds to the Sp(2g,Z) ⋉ Z2g-orbit of a point
(τ0, z0), then the Zariski tangent space TΘ,ξ to Θ at ξ is the subspace of TXg,ξ ≃
Cg(g+1)/2+g defined, with the above conventions, by the linear equation
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(1)
∑

1≤i≤j≤g

1

2π
√
−1(1 + δij)

aij ∂i∂jϑ(τ0, z0) +
∑

1≤ℓ≤g
bℓ ∂ℓϑ(τ0, z0) = 0

in the variables (aij , bℓ), 1 ≤ i, j ≤ g, 1 ≤ ℓ ≤ g. As an immediate consequence
we get the result (see [36], Lemma (1.2)):

Lemma 2.1. The point ξ = (X,ΘX , x) is a singular point of Θ if and only if x
is a point of multiplicity at least 3 for ΘX .

3. The locus Sg

We begin by defining a suborbifold of Θ supported on the set of points where
π|Θ fails to be of maximal rank.

Definition 3.1. The closed suborbifold Sg of Θ is defined on the universal
cover Hg × Cg by the g + 1 equations

(2) ϑ(τ, z) = 0, ∂jϑ(τ, z) = 0, j = 1, . . . , g.

Lemma 2.1 implies that the support of Sg is the union of Sing(Θ) and of the set
of smooth points of Θ where π|Θ fails to be of maximal rank. Set-theoretically
one has

Sg = {(X,ΘX , x) ∈ Θ : x ∈ Sing(ΘX)}
and codimXg (Sg) ≤ g+ 1. It turns out that every irreducible component of Sg
has codimension g + 1 in Xg (see [8] and an unpublished preprint by Debarre
[9]). We will come back to this later in §7 and §8.
With the above identification, the Zariski tangent space to Sg at a given point
(X,ΘX , x) of Xg, corresponding to the Sp(2g,Z)-orbit of a point (τ0, z0) ∈
Hg × Cg, is given by the g + 1 equations

(3)

∑

1≤i≤j≤g
aij∂τijϑ(τ0, z0) = 0,

∑

1≤i≤j≤g
aij∂τij∂kϑ(τ0, z0) +

∑

1≤ℓ≤g
bℓ∂ℓ∂kϑ(τ0, z0) = 0, 1 ≤ k ≤ g

in the variables (aij , bℓ) with 1 ≤ i, j, ℓ ≤ g. We will use the following notation:

(a) q is the row vector of length g(g + 1)/2, given by (∂τijθ(τ0, z0)), with
lexicographically ordered entries;

(b) qk is the row vector of length g(g + 1)/2, given by (∂τij∂kθ(τ0, z0)),
with lexicographically ordered entries;

(c) M is the g × g-matrix (∂i∂jϑ(τ0, z0))1≤i,j≤g .

Then we can rewrite the equations (3) as

(4) a · qt = 0, a · qtk + b ·M t
k = 0, (k = 1, . . . , g),

where a is the vector (aij) of length g(g + 1)/2, with lexicographically ordered
entries, b is a vector in Cg and Mj the j-th row of the matrix M .
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In this setting, the equation (1) for the tangent space to TΘ,ξ can be written
as:

(5) a · qt + b · ∂ϑ(τ0, z0)t = 0

where ∂ denotes the gradient.
Suppose now the point ξ = (X,ΘX , x) in Sg, corresponding to (τ0, z0) ∈ Hg×Cg

is not a point of Sing(Θ). By Lemma 2.1 the matrix M is not zero and therefore
we can associate to ξ a quadric Qξ in the projective space P(TX,x) ≃ P(TX,0) ≃
Pg−1, namely the one defined by the equation

b ·M · bt = 0.

Recall that b = (b1, . . . , bg) is a coordinate vector on TX,0 and therefore (b1 :
. . . : bg) are homogeneous coordinates on P(TX,0). We will say that Qξ is
indeterminate if ξ ∈ Sing(Θ).
The vector q naturally lives in Sym2(TX,0)∨ and therefore, if q is not zero, the

point [q] ∈ P(Sym2(TX,0)∨) determines a quadric in Pg−1 = P(TX,0). The heat
equations imply that this quadric coincides with Qξ.
Consider the matrix defining the Zariski tangent space to Sg at a point ξ =
(X,ΘX , x). We denote by r := rξ the corank of the quadric Qξ, with the
convention that rξ = g if ξ ∈ Sing(Θ), i.e., if Qξ is indeterminate. If we choose
coordinates on Cg such that the first r basis vectors generate the kernel of q
then the shape of the matrix A of the system (3) is

(6) A =




q 0g
q1 0g

...
qr 0g
∗ B



,

where q and qk are as above and B is a (g − r) × g-matrix with the first r
columns equal to zero and the remaining (g− r)× (g− r) matrix symmetric of
maximal rank.
Next, we characterize the smooth points ξ = (X,ΘX , x) of Sg. Before stating
the result, we need one more piece of notation. Given a non-zero vector b =
(b1, . . . , bg) ∈ TX,0, we set ∂b =

∑g
ℓ=1 bℓ∂ℓ. Define the matrix ∂bM as the

g × g-matrix (∂i∂j∂bϑ(τ0, z0))1≤i,j≤g . Then define the quadric ∂bQξ = Qξ,b of
P(TX,0) by the equation

z · ∂bM · zt = 0.

If z = ei is the i-th vector of the standard basis, one writes ∂iQξ = Qξ,i
instead of Qξ,ei for i = 1, . . . , g. We will use similar notation for higher order
derivatives or even for differential operators applied to a quadric.

Definition 3.2. We let Qξ be the linear system of quadrics in P(TX,0) spanned
by Qξ and by all quadrics Qξ,b with b ∈ ker(Qξ).
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Since Qξ has corank r, the system Qξ is spanned by r+1 elements and therefore
dim(Qξ) ≤ r. This system may happen to be empty, but then Qξ is indeter-
minate, i.e., ξ lies in Sing(Θ). Sometimes we will use the lower suffix x instead
of ξ to denote quadrics and linear systems, e.g. we will sometimes write Qx
instead of Qξ, etc. By the heat equations, the linear system Qξ is the image of

the vector subspace of Sym2(TX,0)∨ spanned by the vectors q, q1, . . . , qr.

Proposition 3.3. The subscheme Sg is smooth of codimension g+ 1 in Xg at
the point ξ = (X,ΘX , x) of Sg if and only if the following conditions hold:

(i) ξ /∈ Sing(Θ), i.e., Qξ is not indeterminate and of corank r < g;
(ii) the linear system Qξ has maximal dimension r; in particular, if

b1, . . . , br span the kernel of Qξ, then the r + 1 quadrics Qξ,
Qξ,b1 , . . . , Qξ,br are linearly independent.

Proof. The subscheme Sg is smooth of codimension g+1 in Xg at ξ if and only
if the matrix A appearing in (6) has maximal rank g + 1. Since the submatrix
B of A has rank g − r, the assertion follows. �

Corollary 3.4. If Qξ is a smooth quadric, then Sg is smooth at ξ =
(X,ΘX , x).

4. Quadrics and Cornormal Spaces

Next we study the differential of the restriction to Sg of the map π : Xg → Ag at
a point ξ = (X,ΘX , x) ∈ Sg. We are interested in the kernel and the image of
dπ|Sg,ξ. We can view these spaces in terms of the geometry of Pg−1 = P(TX,0)
as follows:

Πξ = P(ker(dπ|Sg,ξ)) ⊆ P(TX,0)

is a linear subspace of P(TX,0) and

Σξ = P(Im(dπ|Sg,ξ)
⊥) ⊆ P(Sym2(TX,0)∨)

is a linear system of quadrics in P(TX,0).
The following proposition is the key to our approach; we use it to view the
quadrics as elements of the conormal space to our loci in the moduli space.

Proposition 4.1. Let ξ = (X,ΘX , x) be a point of Sg. Then:

(i) Πξ is the vertex of the quadric Qξ. In particular, if ξ is a singular point
of Θ, then Πξ is the whole space P(TX,0);

(ii) Σξ contains the linear system Qξ.

Proof. The assertions follow from the shape of the matrix A in (6). �

This proposition tells us that, given a point ξ = (X,ΘX , x) ∈ Sg, the map
dπ|Sg,ξ is not injective if and only if the quadric Qξ is singular.
The orbifold Sg is stratified by the corank of the matrix (∂i∂jθ).
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Definition 4.2. For 0 ≤ k ≤ g we define Sg,k as the closed suborbifold of Sg
defined by the equations on Hg × Cg

(7)
ϑ(τ, z) = 0, ∂jϑ(τ, z) = 0, (j = 1, . . . , g),

rk
(
(∂i∂jϑ(τ, z))1≤i,j≤g

)
≤ g − k.

Geometrically this means that ξ ∈ Sg,k if and only if dim(Πξ) ≥ k − 1 or
equivalently Qξ has corank at least k. We have the inclusions

Sg = Sg,0 ⊇ Sg,1 ⊇ . . . ⊇ Sg,g = Sg ∩ Sing(Θ)

and Sg,1 is the locus where the map dπ|Sg,ξ is not injective. The loci Sg,k have
been considered also in [16].
We have the following dimension estimate for the Sg,k.

Proposition 4.3. Let 1 ≤ k ≤ g − 1 and let Z be an irreducible component of
Sg,k not contained in Sg,k+1. Then we have

codimSg (Z) ≤
(
k + 1

2

)
.

Proof. Locally, in a neighborhood U in Sg of a point z of Z\Sg,k+1 we have
a morphism f : U → Q, where Q is the linear system of all quadrics in Pg−1.
The map f sends ξ = (X,ΘX , x) ∈ U to Qξ. The scheme Sg,k is the pull-
back of the subscheme Qk of Q formed by all quadrics of corank k. Since
codimQ(Qk) =

(
k+1
2

)
, the assertion follows. �

Using the equations (7) it is possible to make a local analysis of the schemes
Sg,k, e.g. it is possible to write down equations for their Zariski tangent spaces
(see §6 for the case k = g). This is however not particularly illuminating, and
we will not dwell on this here.
It is useful to give an interpretation of the points ξ = (X,ΘX , x) ∈ Sg,k in
terms of singularities of the theta divisor ΘX . Suppose that ξ is such that
Sing(ΘX) contains a subscheme isomorphic to Spec(C[ǫ]/(ǫ2)) supported at x.
This subscheme of X is given by a homomorphism

OX,x → C[ǫ]/(ǫ2), f 7→ f(x) + ∆(1)f(x) · ǫ,
where ∆(1) is a non-zero differential operator of order ≤ 1, hence ∆(1) = ∂b, for
some non-zero vector b ∈ Cg. Then the condition Spec(C[ǫ]/(ǫ2)) ⊂ Sing(ΘX)
is equivalent to saying that ϑ and ∂bϑ satisfy the equations

(8) f(τ0, z0) = 0, ∂jf(τ0, z0) = 0, 1 ≤ j ≤ g,
and this, in turn, is equivalent to the fact that the quadric Qξ is singular at
the point [b].
More generally, we have the following proposition, which explains the nature
of the points in Sg,k for k < g.

Proposition 4.4. Suppose that x ∈ Sing(ΘX) does not lie on Sing(Θ). Then
Sing(ΘX) contains a scheme isomorphic to Spec(C[ǫ1, . . . , ǫk]/(ǫiǫj : 1 ≤ i, j ≤
k < g)) supported at x if and only if the quadric Qξ has corank r ≥ k. Moreover,
the Zariski tangent space to Sing(ΘX) at x is the kernel space of Qξ.
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Proof. With a suitable choice of coordinates in X , the condition that the
scheme Spec(C[ǫ1, . . . , ǫk]/(ǫiǫj : 1 ≤ i, j ≤ k < g)) is contained in Sing(ΘX)
is equivalent to the fact that the functions ϑ and ∂iϑ for i = 1, . . . , k satisfy
(8). But this the same as saying that ∂i∂jϑ(τ0, z0) is zero for i = 1, . . . , k,
j = 1, . . . , g, and the vectors ei, i = 1, . . . , k, belong to the kernel of Qξ. This
settles the first assertion.
The scheme Sing(ΘX) is defined by the equations (2), where τ is now fixed
and z is the variable. By differentiating, and using the same notation as above,
we see that the equations for the Zariski tangent space to Sing(ΘX) at x are∑g

i=1 bi∂i∂jϑ(τ0, z0), j = 1, . . . , g i.e., b · M = 0, which proves the second
assertion. �

5. Curvi-linear subschemes in the singular locus of theta

A 0-dimensional curvi-linear subscheme Spec(C[t]/(tN+1)) ⊂ X of length N+1
supported at x is given by a homomorphism

(9) δ : OX,x → C[t]/(tN+1), f 7→
N∑

j=0

∆(j)f(x) · tj ,

with ∆(j) a differential operator of order ≤ j, j = 1, . . . , N , with ∆(N) non-
zero, and ∆(0)(f) = f(x). The condition that the map δ is a homomorphism
is equivalent to saying that

(10) ∆(k)(fg) =
k∑

r=0

∆(r) f ·∆(k−r) g, k = 0, . . . , N

for any pair (f, g) of elements of OX,x. Two such homomorphisms δ and δ′

define the same subscheme if and only if they differ by composition with a
automorphism of C[t]/(tN+1).

Lemma 5.1. The map δ defined in (9) is a homomorphism if and only if there
exist translation invariant vector fields D1, . . . , DN on X such that for every
k = 1, . . . , N one has

(11) ∆(k) =
∑

h1+2h2+...+khk=k>0

1

h1! · · ·hk!
Dh1

1 · · ·Dhk

k .

Moreover, two N -tuples of vector fields (D1, . . . , DN ) and (D′1, . . . , D
′
N) de-

termine the same 0-dimensional curvi-linear subscheme of X of length N + 1
supported at a given point x ∈ X if and only if there are constants c1, . . . , cN ,
with c1 6= 0, such that

D′i =

i∑

j=1

ci−j+1
j Dj, i = 1, . . . , N.

Proof. If the differential operators ∆(k), k = 1, . . . , N , are as in (11), one
computes that (10) holds, hence δ is a homomorphism.
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As for the converse, the assertion trivially holds for k = 1. So we proceed by

induction on k. Write ∆(k) =
∑k

i=1D
(k)
i , where D

(k)
i is the homogeneous part

of degree i, and write Dk instead of D
(k)
1 . Using (10) one verifies that for every

k = 1, . . . , N and every positive i ≤ k one has

iD
(k)
i =

k−i+1∑

j=1

DjD
(k−j)
i−1 .

Formula (11) follows by induction and easy combinatorics.
To prove the final assertion, use the fact that an automorphism of C[t]/(tN+1)
is determined by the image c1t+ c2t

2 + . . .+ cN t
N of t, where c1 6= 0. �

In formula (11) one has hk ≤ 1. If ∆(1) = D1 then ∆(2) = 1
2D

2
1 + D2, ∆(3) =

(1/3!)D3
1 + (1/2)D1D2 +D3 etc.

Each non-zero summand in (11) is of the form (1/hi1 ! · · ·hiℓ !)D
hi1

i1
· · ·Dhiℓ

iℓ
,

where 1 ≤ i1 < . . . < iℓ ≤ k, i1hi1 + . . .+ iℓhiℓ = k and hi1 , . . . , hiℓ are positive
integers. Thus formula (11) can be written as

(12) ∆(k) =
∑

{hi1 ,...,hiℓ
}

1

hi1 ! · · ·hiℓ !
D
hi1

i1
· · ·Dhiℓ

iℓ
,

where the subscript {hi1 , . . . , hiℓ} means that the sum is taken over all ℓ-tuples
of positive integers (hi1 , . . . , hiℓ) with 1 ≤ i1 < · · · < iℓ ≤ k and i1hi1 + · · · +
iℓhiℓ = k.

Remark 5.2. Let x ∈ X correspond to the pair (τ0, z0). The differential
operators ∆(k), k = 1, . . . , N , defined as in (11) or (12) have the following
property: if f is a regular function such that ∆(i) f satisfies (8) for all i =
0, . . . , k − 1, then one has ∆(k)f(τ0, z0) = 0.

We want now to express the conditions in order that a 0-dimensional curvi-
linear subscheme of X of length N + 1 supported at a given point x ∈ X
corresponding to the pair (τ0, z0) and determined by a given N -tuple of vec-
tor fields (D1, . . . , DN ) lies in Sing(ΘX). To do so, we keep the notation we
introduced above.
Let us write Di =

∑g
ℓ=1 ηiℓ∂ℓ, so that Di corresponds to the vector ηi =

(ηi1, . . . , ηig). As before we denote by M the matrix (∂i∂jθ(τ0, z0)).

Proposition 5.3. The 0-dimensional curvi-linear subscheme R of X of length
N + 1, supported at the point x ∈ X corresponding to the pair (τ0, z0) and
determined by the N -tuple of vector fields (D1, . . . , DN) lies in Sing(ΘX) if
and only if x ∈ Sing(ΘX) and moreover for each k = 1, . . . , N one has

(13)
∑

{hi1 ,...,hiℓ
}

1

hi1 ! · · ·hiℓ !
ηiℓ · ∂

hi1
ηi1
· · · ∂hiℓ

−1
ηiℓ

M = 0,

where the sum is taken over all ℓ-tuples of positive integers (hi1 , . . . , hiℓ) with
1 ≤ i1 < · · · < iℓ ≤ k and i1hi1 + · · ·+ iℓhiℓ = k.
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Proof. The scheme R is contained in Sing(ΘX) if and only if one has

∆(k)θ(τ0, z0) = 0, ∂j∆
(k)θ(τ0, z0) = 0 k = 0, . . . , N, j = 1, . . . , g.

By Remark 5.2 this is equivalent to

θ(τ0, z0) = 0, ∂j∆
(k)θ(τ0, z0) = 0 k = 0, . . . , N, j = 1, . . . , g.

The assertion follows by the expression (12) of the operators ∆(k). �

For instance, consider the scheme R1, supported at x ∈ Sing(ΘX), correspond-
ing to the vector field D1. Then R1 is contained in Sing(ΘX) if and only
if

(14) η1 ·M = 0.

This agrees with Proposition 4.4. If R2 is the scheme supported at x and
corresponding to the pair of vector fields (D1, D2), then R2 is contained in
Sing(ΘX) if and only if, besides (14) one has also

(15) (1/2)η1 · ∂η1M + η2 ·M = 0.

Next, consider the scheme R3 supported at x and corresponding to the triple
of vector fields (D1, D2, D3). Then R3 is contained in Sing(ΘX) if and only if,
besides (14) and (15) one has also

(16) (1/3!)η1 · ∂2
η1M + (1/2)η2 · ∂η1M + η3 ·M = 0

and so on. Observe that (13) can be written in more than one way. For example
η2 · ∂η1M = η1 · ∂η2M so that (16) could also be written as

(1/3!)η1 · ∂2
η1M + (1/2)η1 · ∂η2M + η3 ·M = 0.

So far we have been working in a fixed abelian variety X . One can remove
this restriction by working on Sg and by letting the vector fields D1, . . . , DN

vary with X , which means that we let the vectors ηi depend on the variables
τij . Then the equations (13) define a subscheme Sg(D) of Sing(Θ) which, as a
set, is the locus of all points ξ = (X,ΘX , x) ∈ Sg such that Sing(ΘX) contains
a curvi-linear scheme of length N + 1 supported at x, corresponding to the
N -tuple of vector fields D = (D1, . . . , DN), computed on X .
One can compute the Zariski tangent space to Sg(D) at a point ξ = (X,ΘX , x)
in the same way, and with the same notation, as in §3. This gives in general a
complicated set of equations. However we indicate one case in which one can
draw substantial information from such a computation. Consider indeed the
case in which D1 = . . . = DN 6= 0, and call b the corresponding tangent vector
to X at the origin, depending on the the variables τij . In this case we use
the notation Db,N = (D1, . . . , DN) and we denote by Rx,b,N the corresponding
curvi-linear scheme supported at x. For a given such D = (D1, . . . , DN),
consider the linear system of quadrics

Σξ(D) = P(Im(dπ|Sg(D),ξ)
⊥)

in P(TX,0). One has again an interpretation of these quadrics in terms of the
normal space:

Documenta Mathematica 13 (2008) 453–504



Andreotti–Mayer Loci and the Schottky Problem 463

Proposition 5.4. In the above setting, the space Σξ(Db,N ) contains the
quadrics Qξ, ∂bQξ, . . . , ∂

N
b Qξ.

Proof. The equations (13) take now the form

θ(τ, z) = 0, ∂iθ(τ, z) = 0, i = 1, . . . , g

b ·M = b · ∂bM = · · · = b · ∂N−1
b M = 0.

By differentiating the assertion immediately follows. �

6. Higher multiplicity points of the theta divisor

We now study the case of higher order singularities on the theta divisor. For
a multi-index I = (i1, . . . , ig) with i1, . . . , ig non-negative integers we set zI =

zi11 · · · z
ig
g and denote by ∂I the operator ∂i11 · · · ∂

ig
g . Moreover, we let |I| =∑g

ℓ=1 iℓ, which is the length of I and equals the order of the operator ∂I .

Definition 6.1. For a positive integer r we let S
(r)
g be the subscheme of Xg

which is defined on Hg × Cg by the equations

(17) ∂Iϑ(τ, z) = 0, |I| = 0, . . . , r − 1.

One has the chain of subschemes

. . . ⊆ S(r)
g ⊆ . . . ⊆ S(3)

g ⊆ S(2)
g = Sg ⊂ S(1)

g = Θ

and as a set S
(r)
g = {(X,ΘX , x) ∈ Θ : x has multiplicity ≥ r for ΘX}. One

denotes by Sing(r)(ΘX) the subscheme of Sing(ΘX) formed by all points of

multiplicity at least r. One knows that S
(r)
g = ∅ as soon as r > g (see [37]).

We can compute the Zariski tangent space to S
(r)
g at a point ξ = (X,ΘX , x)

in the same vein, and with the same notation, as in §3. Taking into account
that θ and all its derivatives verify the heat equations, we find the equations
by replacing in (3) the term θ(τ0, z0) by ∂Iθ(τ0, z0).
As in §3, we wish to give some geometrical interpretation. For instance, we
have the following lemma which partially extends Lemma 2.1 or 3.3.

Lemma 6.2. For every positive integer r the scheme S
(r+2)
g is contained in the

singular locus of S
(r)
g .

Next we are interested in the differential of the restriction of the map π : Xg →
Ag to S

(r)
g at a point ξ = (X,ΘX , x) which does not belong to S

(r+1)
g . This

means that ΘX has a point of multiplicity exactly r at x. If we assume, as we
may, that x is the origin of X , i.e. z0 = 0, then the Taylor expansion of θ has
the form

ϑ =
∞∑

i=r

ϑi,

where ϑi is a homogeneous polynomial of degree i in the variables z1, . . . , zg
and

θr =
∑

I=(i1,...,ig),|I|=r

1

i1! · · · ig!
∂Iθ(τ0, z0)zI
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is not identically zero. The equation θr = 0 defines a hypersurface TCξ of
degree r in Pg−1 = P(TX,0), which is the tangent cone to ΘX at x.
We will denote by Vert(TCξ) the vertex of TCξ, i.e., the subspace of Pg−1

which is the locus of points of multiplicity r of TCξ. Note that it may be
empty. In case r = 2, the tangent cone TCξ is the quadric Qξ introduced in §3
and Vert(TCξ) is its vertex Πξ.

More generally, for every s ≥ r, one can define the subscheme TC
(s)
ξ = TC

(s)
x

of Pg−1 = P(TX,0) defined by the equations

θr = . . . = θs = 0,

which is called the asymptotic cone of order s to ΘX at x.
Fix a multi-index J = (j1, . . . , jg) of length r − 2. For any pair (h, k) with
1 ≤ h, k ≤ g, let J(h,k) be the multi-index of length r obtained from J by first
increasing by 1 the index jh and then by 1 the index jk (that is, by 2 if they
coincide). Consider then the quadric QJξ in Pg−1 = P(TX,0) defined by the
equation

qJξ (z) :=
∑

1≤h,k≤g
∂J(h,k)

θ(τ0, z0)zhzk = 0

with the usual convention that the quadric is indeterminate if the left-hand-side
is identically zero. This is a polar quadric of TCξ, namely it is obtained from
TCξ by iterated operations of polarization. Moreover all polar quadrics are in

the span 〈QJξ , |J | = r−2〉. We will denote by Q(r)
ξ the span of all quadrics QJξ ,

|J | = r − 2 and ∂bQ
J
ξ , |J | = r − 2, with equation

∑

1≤i,j≤g
∂b∂J(h,k)

θ(τ0, z0)zizj = 0,

for every non-zero vector b ∈ Cg such that [b] ∈ Vert(TCξ).
We are now interested in the kernel and the image of dπ|S(r)

g ,ξ
. Equivalently we

may consider the linear system of quadrics Σ
(r)
ξ = P(Im(dπ|S(r)

g ,ξ
)⊥), and the

subspace Π
(r)
ξ = P(ker(dπ|S(r)

g ,ξ
)) of P(TX,0). The following proposition partly

extends Proposition 4.1 and 4.4 and its proof is similar.

Proposition 6.3. Let ξ = (X,ΘX , x) be a point of S
(r)
g . Then:

(i) Π
(r)
ξ = Vert(TCξ). In particular, if ξ ∈ S(r+1)

g , then Π
(r)
ξ is the whole

space P(TX,0);

(ii) Σ
(r)
ξ contains the linear system Q(r)

ξ .

Remark 6.4. As a consequence, just like in Proposition 4.4, one sees that for

ξ = (X,ΘX , x) the Zariski tangent space to Sing(r)(ΘX) at x is contained in
Vert(TCξ).

As an application, we have:
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Proposition 6.5. Let ξ = (X,ΘX , x) be a point of a component Z of S
(3)
g such

that TCξ is not a cone. Then dim(Q(3)
ξ ) = g− 1 and therefore the codimension

of the image of Z in Ag is at least g.

Proof. Since TCξ is a not a cone its polar quadrics are linearly independent. �

The following example shows that the above bound is sharp for g = 5.

Example 6.6. Consider the locus C of intermediate Jacobians of cubic three-
folds in A5. Note that dim(A5) = 15 and dim(C) = 10. These have (at least) an
isolated triple point on their theta divisor whose tangent cone gives back the cu-

bic threefold. The locus C is dominated by an irreducible component of S
(3)
5 for

which the estimate given in Proposition 6.5 is sharp. Cf. [6] where Casalaina-
Martin proves that the locus of intermediate Jacobians of cubic threefolds is
an irreducible component of the locus of principally polarized abelian varieties
of dimension 5 with a point of multiplicity ≥ 3.

7. The Andreotti–Mayer loci

Andreotti and Mayer consider in Ag the algebraic sets of principally polarized
abelian varieties X with a locus of singular points on ΘX of dimension at least
k. More generally, we are interested in the locus of principally polarized abelian
varieties possessing a k-dimensional locus of singular points of multiplicity r
on the theta divisor. To define these loci scheme-theoretically we consider the
morphism π : Xg → Ag and the quasi-coherent sheaf on Ag

F (r)
k =

g−2⊕

i=k

Riπ∗OS(r)
g
.

Definition 7.1. For integers k and r with 0 ≤ k ≤ g − 2 and 2 ≤ r ≤ g

we define Ng,k,r as the support of F (r)
k . We also set Mg,k,r = π−1(Ng,k,r),

a subscheme of both Sg,k and S
(r)
g . We write Ng,k and Mg,k for Ng,k,2 and

Mg,k,2.

The schemes Ng,k are the so-called Andreotti–Mayer loci in Ag, which were
introduced in a somewhat different way in [2].
Note that Ng,k,r is locally defined by an annihilator ideal and so carries the
structure of subscheme. Corollary 8.12 below and results by Debarre [11] (see
§19) imply that the scheme structure at a general point of Ng,0 defined above
coincides with the one considered by Mumford in [27].
We now want to see that as a set Ng,k,r is the locus of points corresponding to
(X,ΘX) such that Sing(ΘX) has an irreducible component of dimension ≥ k
of points of multiplicity ≥ r for ΘX .

Lemma 7.2. Let X be an abelian variety of dimension g and W ⊂ X an
irreducible reduced subvariety of dimension n and let ωW be its dualizing sheaf.
Then H0(W,ωW ) 6= (0).
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Proof. Let f : W ′ → W be the normalization of W . We first claim the
inequality h0(W ′, ωW ′) ≤ h0(W,ωW ). To see this, note that by [24], p.
48 ff (see also [17], Exerc. 6.10, p. 239, 7.2, p. 249), there exists a map
f∗ωW ′ → Hom(f∗OW ′ , ωW ), hence a map

H0(W ′, ωW ′)→ H0(W,Hom(f∗OW ′ , ωW )).

Now OW → f∗OW ′ is an injection and therefore H0(W,Hom(f∗OW ′ , ωW )
maps to H0(W,Hom(OW , ωW )) and we thus get a map H0(W ′, ωW ′) →
H0(W,ωW ) which is injective as one sees by looking at the smooth part of
W .
Let W̃ be a desingularization of W ′. According to [22] we have h0(W̃ ,Ωn

W̃
) ≤

h0(W ′, ωW ′). Since W̃ maps to X we have h0(W̃ ,Ω1
W̃

) ≥ n. If h0(W̃ ,Ωn
W̃

) were

0 then ∧nH0(W̃ ,Ω1
W̃

)→ H0(W̃ ,Ωn
W̃

) would be the zero map contradicting the
fact that W has dimension n. �

Corollary 7.3. We have (X,ΘX) ∈ Ng,k,r if and only if dim(Sing(r)(ΘX)) ≥
k.

Proof. By the previous lemma and Serre duality for a reduced irreducible sub-
variety W of dimension m in X it follows that Hm(W,OW ) 6= (0) and we know
Hk(W,OW ) = (0) for k > m. This implies the corollary. �

There are the inclusions

Ng,k,r ⊆ Ng,k,r−1, Ng,k,r ⊆ Ng,k−1,r.

If p = (n1, . . . , nr) with 1 ≤ n1 ≤ . . . ≤ nr < g and n1 + . . . + nr = g is a
partition of g we write Ag,p for the suborbifold (or substack) of Ag correspond-
ing to principally polarized abelian varieties that are a product of r principally
polarized abelian varieties of dimensions n1, . . . , nr. We write r(p) = r for the
length of the partition and write Ag,[r] for the suborbifold ∪r(p)=rAg,p of Ag
corresponding to pairs (X,ΘX) isomorphic as a polarized abelian variety to the
product of r principally polarized abelian varieties. One has the stratification

Ag,[g] ⊂ Ag,[g−1] ⊂ · · · ⊂ Ag,[2].
We will denote by:
i) Πg = ∪r≥2Ag,r = Ag,[2] the locus of decomposable principally polarized
abelian varieties;

ii) A(ns)
g the locus of classes of non-simple abelian varieties, i.e., of principally

polarized abelian varieties of dimension g which are isogenous to a product of
abelian varieties of dimension smaller that g;
iii) AEnd6=Z

g the locus of classes of singular abelian varieties, i.e., of principally
polarized abelian varieties whose endomorphism ring is larger than Z.

Remark 7.4. Note the inclusions Πg ⊂ A(ns)
g ⊂ AEnd 6=Z

g . The locus Πg is re-
ducible with irreducible components Ag,p with p running through the partitions
g = (i, g− i) of g for 1 ≤ i ≤ g/2 and we have codimAg (Ag,(i,g−i)) = i(g− i). In

contrast to this AEnd6=Z
g and A(ns)

g are the union of infinitely countably many
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irreducible closed subsets of Ag of codimension at least g − 1, the minimum
codimension being achieved for families of abelian varieties that are isogenous
to products of an elliptic curve with an abelian variety of dimension g − 1
(compare with [7]).

We recall a result from [20] and the main result from [12].

Theorem 7.5. For every integer r with 2 ≤ r ≤ g one has:

(i) Ng,k,r = ∅ if k > g − r;
(ii) Ng,g−r,r = Ag,[r], i.e., (X,ΘX) ∈ Ng,g−r,r is an r-fold product.

Hence, for every integer r such that 2 ≤ r ≤ g, one has the stratification

Ng,0,r ⊃ Ng,1,r ⊃ . . . ⊃ Ng,k,r ⊃ . . . ⊃ Ng,g−r,r = Ag,[r],
whereas for every integer k such that 0 ≤ k ≤ g − 2, one has the stratification

Ng,k,2 ⊃ Ng,k,3 ⊃ . . . ⊃ Ng,k,r ⊃ . . . ⊃ Ng,k,g−k = Ag,[g−k].

8. Lower bounds for the codimension of Andreotti-Mayer loci

The results in the previous sections give information about the Zariski tangent
spaces to these loci and this will allow us to prove bounds on the dimension of
the Andreotti–Mayer loci, which is our main objective in this paper.
We start with the results on tangent spaces. We need some notation.

Definition 8.1. Let ζ = (X,ΘX) represent a point in Ng,k,r. By Lg,k,r(ζ) we
denote the linear system of quadrics P(T⊥Ng,k,r ,ζ

), where TNg,k,r ,ζ is the Zariski

tangent space and where we view P(TAg,ζ
) as a space of quadrics as in Section

2. As usual, we may drop the index r if r = 2 and write Lg,k(ζ) for Lg,k,2(ζ).

Notice that

dimζ(Ng,k,r) ≤
(
g + 1

2

)
− dim(Lg,k(ζ)) + 1.

Definition 8.2. For ζ = (X,ΘX) ∈ Ng,k,r we denote by Sing(k,r)(ΘX) the
locally closed subset

Sing(k,r)(ΘX) = {x ∈ Sing(ΘX) : dimx(Sing(r)(ΘX)) ≥ k}.
Moreover, we defineQ(k,r)

ζ to be the linear system of quadrics in Pg−1 = P(TX,0)

spanned by the union of all linear systems Q(r)
ξ with ξ = (X,ΘX , x) and x ∈

Sing(k,r)(ΘX).

Propositions 4.1 and 6.3 imply the following basic tool for giving upper bounds
on the dimension of the Andreotti–Mayer loci.

Proposition 8.3. Let N be an irreducible component of Ng,k,r with its re-
duced structure. If ζ = (X,ΘX) is a general point of N then the projectivized
conormal space to N at ζ, viewed as a subspace of P(Sym2(T∨X,0)), contains the

linear system Q(k,r)
ζ .
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Proof. Let M be an irreducible component of π∗N in S
(r)
g,k. If ξ is smooth

point of M then the image of the Zariski tangent space to M at ξ under dπ is

orthogonal to Q(r)
ξ for all x ∈ Singk,r(ΘX). Since we work in characteristic 0

the map dπ is surjective on the tangent spaces for general points m ∈ M and
π(m) ∈ N . Therefore the result follows from Propositions 4.1 and 6.3. �

We need a couple of preliminary results. First we state a well-known fact,
which can be proved easily by a dimension count.

Lemma 8.4. Every hypersurface of degree d ≤ 2n−3 in Pn with n ≥ 2 contains
a line.

Next we prove the following:

Lemma 8.5. Let V in Ps be a hypersurface of degree d ≥ 3. If all polar quadrics
of V coincide, then V is a hyperplane H counted with multiplicity d, and the
polar quadrics coincide with 2H.

Proof. If d = 3 the assertion follows from general properties of duality (see [41],
p. 215) or from an easy calculation.
If d > 3, then the result, applied to the cubic polars of V , tells us that all these
cubic polars are equal to 3H , where H is a fixed hyperplane. This immediately
implies the assertion. �

The next result has been announced in [8].

Theorem 8.6. Let g ≥ 4 and let N be an irreducible component of Ng,k not
contained in Ng,k+1. Then:

(i) for every positive integer k ≤ g − 3, one has codimAg (N) ≥ k + 2,
whereas codimAg (N) = g − 1 if k = g − 2;

(ii) if N is contained in Ng,k,r with r ≥ 3, then codimAg (N) ≥ k + 3;
(iii) if g − 4 ≥ k ≥ g/3, then codimAg (N) ≥ k + 3.

Proof. By Theorem 7.5 and Remark 7.4, we may assume k < g − 2. By def-
inition, there is some irreducible component M of π−1

Sg
(N) with dim(M) =

dim(N)+k which dominates N via π. We can take a general point (X,ΘX , z) ∈
M so that ζ = (X,ΘX) is a general point in N . By Remark 7.4 we may assume
X is simple.
Let R be the unique k-dimensional component of π−1

|Sg
(ζ) containing (X,ΘX , z).

Its general point is of the form ξ = (X,ΘX , x) with x the general point of the
unique k-dimensional component of Sing(ΘX) containing z, and x has multi-
plicity r on ΘX . By abusing notation, we may still denote this component by
R. Proposition 6.3 implies that the linear system of quadrics P(T⊥N,ζ) contains

all polar quadrics of TCξ with ξ = (X,ΘX , x) ∈ R.
Thus we have a rational map

φ : (Pg−1)r−2 × R 99K Q(r)
ζ

which sends the general point (b, ξ) := (b1, . . . , br−2, ξ) to the polar quadric
Qb,ξ of TCξ with respect to b1, . . . , br−2. It is useful to remark that the quadric

Documenta Mathematica 13 (2008) 453–504



Andreotti–Mayer Loci and the Schottky Problem 469

Qb,ξ is a cone with vertex containing the projectivized Zariski tangent space to
R at x (see Remark 6.4).

Claim 8.7 (The finiteness property). For each b ∈ (Pg−1)r−2 the map φ re-
stricted to {b} ×R has finite fibres.

Proof of the claim. Suppose the assertion is not true. Then there is an irre-
ducible curve Z ⊆ R such that, for ξ = (X,ΘX , x) corresponding to the general
point in Z, one has Qb,ξ = Q. Set Π = Vert(Q), which is a proper subspace of
Pg−1.
Consider the Gauss map

γ = γZ : Z 99K Pg−1 = P(TX,0)

which associates to a smooth point of Z its projectivized tangent space. Then
Proposition 6.3 implies that γ(ξ) ∈ R ⊆ Vert(Qξ) = Π. Thus γ(Z) is degener-
ate in Pg−1 and this yields that X is non-simple, cf. [31]. This is a contradiction
which proves the claim. �

Claim 8.7 implies that the image of the map φ has dimension at least k, hence
codimAg (Ng,k) ≥ k + 1. To do better we need the following information.

Claim 8.8 (The non-degeneracy property). The image of the map φ does not
contain any line.

Proof of the claim. Suppose the claim is false. Take a line L in the image of
the map φ, and let L be the corresponding pencil of quadrics. By Proposition
6.3 and Remark 6.4, the general quadric in L has rank ρ ≤ g − k. Then part
(i) of Segre’s Theorem 21.2 in §21 below implies that the Gauss image γ(Z) of
any irreducible component of the curve Z = φ−1(L) is degenerate. This again
leads to a contradiction. This proves the claim. �

Claim 8.8 now implies that the image of φ spans a linear space of dimension at
least k + 1, hence (i) follows.

To prove part (ii) we now want to prove that dim(Q(r)
ζ ) > k + 1. Remember

that the image of φ has dimension at least k by Claim 8.7. If the image has
dimension at least k+ 1, then by Claim 8.8 it cannot be a projective space and

therefore dim(Q(r)
ζ ) > k + 1. So we can assume that the image has dimension

k. Therefore each component of the fibre FQ over a general point Q in the
image has dimension (g − 1)(r − 2).
Consider now the projection of FQ to R. If the image is positive-dimensional
then there is a curve Z in R such that the image of the Gauss map of Z is
contained in the vertex of Q. Then X is non-simple, a contradiction (see the
proof of Claim 8.7).
Therefore the image of FQ on R is constant, equal to a point ξ, hence FQ =
(Pg−1)r−2×{ξ}. By Lemma 8.5 there is a hyperplane Hξ such that TCξ = rHξ,
and Q = 2Hξ. Therefore we have a rational map

ψ : R 99K Pg−1∨
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sending ξ to Hξ. We notice that the image of φ is then equal to the 2-Veronese
image if the image of ψ.
By Claim 8.7, the map ψ has finite fibres. By an argument as in Claim 8.8,
we see that the image of ψ does not contain a line, hence is not a linear space.
Thus it spans a space of dimension s ≥ k+1. Then its 2-Veronese image, which
is the image of φ spans a space of dimension at least 2s ≥ 2k + 2 > k + 2.
To prove part (iii), by part (ii), we can assume r = 2. It suffices to show that

dim(Qζ) > k + 1, where Qζ := Q(2)
ζ . Suppose instead that dim(Qζ) = k + 1

and set Σ = φ(R). We have to distinguish two cases:

(a) not every quadric in Qζ is singular;
(b) the general quadric in Qζ is singular, of rank g − ρ < g.

In case (a), consider the discriminant ∆ ⊂ Qζ , i.e. the scheme of singular
quadrics in Qζ. This is a hypersurface of degree g, which, by Proposition 4.4,
contains Σ with multiplicity at least k. Thus deg(Σ) ≤ g/k ≤ 3 and Σ contains
some line, so that we have the corresponding pencil L of singular quadrics. By
Claim 8.8, one arrives at a contradiction.
Now we treat case (b). Let g− h be the rank of the general quadric in Σ. One
has g − h ≤ g − k, hence k ≤ h. Moreover one has g − h ≤ g − ρ, i.e. ρ ≤ h.
Suppose first ρ = h, hence ρ ≥ k. Let s be the dimension of the subspace

Π :=
⋂

Q∈Qζ ,rk(Q)=g−ρ
Vert(Q).

By applying part (iii) of Segre’s Theorem 21.2 to a general pencil contained in
Qζ , we deduce that

(18) 3ρ ≤ g + 2s+ 2.

Claim 8.9. One has s < r − k.
Proof. Suppose s ≥ ρ− k. If Π′ is a general subspace of Π of dimension ρ− k,
then its intersection with P(TR,x), where x ∈ R is a general point, is not empty.
Since ρ− k < g − k and X is simple, this is a contradiction (see [31], Lemma
II.12). �

By (18) and Claim 8.9 we deduce that ρ + 2k ≤ g and therefore 3k ≤ g, a
contradiction.
Suppose now ρ < h. Then part (iv) of Segre’s Theorem 21.2 yields

deg(Σ) ≤ g − 2− ρ
h− ρ .

The right-hand-side is an increasing function of ρ, thus deg(Σ) ≤ g − h − 1 ≤
2k − 1 because g ≤ 3k ≤ 2k + h. By Lemma 8.4 the locus Σ contains a line,
and we can conclude as in the proof of the non-degeneracy property 8.8.

�

The following corollary was proved independently by Debarre [9] and includes
a basic result by Mumford [27].
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Corollary 8.10. Let g ≥ 4. Then:

(i) every irreducible component S of Sg has codimension g+1 in Xg, hence
Sg is locally a complete intersection in Xg;

(ii) if ξ = (X,ΘX , x) is a general point of S, then either ΘX has isolated
singularities or (X,ΘX) is a product of an elliptic curve with a princi-
pally polarized abelian variety of dimension g − 1;

(iii) every irreducible component N of Ng,0 has codimension 1 in Ag;
(iv) if (X,ΘX) ∈ N is a general element of an irreducible component N

of Ng,0, then ΘX has isolated singularities. Moreover for every point
x ∈ Sing(ΘX), the quadric Qx is smooth and independent of x.

Proof. Take an irreducible component S of Sg and let N be its image via the
map π : Xg → Ag. Then there is a maximal integer k ≤ g − 2 such that N is
contained in Ng,k. Suppose first that 1 ≤ k ≤ g− 3. Then by Theorem 8.6 the
codimension of N in Ag is at least k+ 2. This implies that the codimension of
S in Xg is at least g + 2, which is impossible because Sg is locally defined in
Xg by g + 1 equations.
Then either k = 0 or k = g − 2. In the former case S maps to an irreducible
component N of Ng,0 which is a proper subvariety of codimension 1 in Ag.
If k = g − 2, then by Theorem 7.5 the polarized abelian variety (X,ΘX) is a
product of principally polarized abelian varieties. The resulting abelian variety
has a vanishing thetanull and so N is contained in the divisor of a modular
form (a product of thetanulls, cf. e.g. [27], p. 370) which is a component of
Ng,0. Assertions (i)–(iii) follow by a dimension count (see Remark 7.4). Part
(iv) follows by Propositions 4.1 and 8.3. �

Finally, we show a basic property of Sg.

Theorem 8.11. The locus Sg is reduced.

Proof. The assertion is well-known for g ≤ 3, using the theory of curves. We
may assume g ≥ 4.
Let S be an irreducible component of Sg, let N = π(S) and k ≤ g − 2 the
maximal integer such that N is contained in Ng,k. As in the proof of Corollary
8.10, one has either k = 0 or k = g − 2. Assume first k = 0, and let ξ =
(X,ΘX , x) ∈ S be a general point. We are going to prove that Sing(ΘX) is
reduced of dimension 0.
First we prove that x has multiplicity 2 for ΘX . Suppose this is not the
case and x has multiplicity r ≥ 3. Since Ng,0 has codimension 1 all polar
quadrics of TCξ are the same quadric, say Q (see Proposition 6.3 and 8.3).
By Lemma 8.5 the tangent cone TCξ is a hyperplane H with multiplicity r.
Again by Proposition 6.3 all the derivatives of Q with respect to points b ∈
H coincide with Q. By Proposition 5.3 the scheme Db,2 supported at x is
contained in Sing(ΘX). By taking into account Proposition 5.4 and repeating
the same argument we see that this subscheme can be indefinitely extended
to a 1-dimensional subscheme, containing x and contained in Sing(ΘX). This
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implies that the corresponding component of Ng,0 is contained in Ng,1, which
is not possible since the codimension of Ng,1 is at least 3.
If x has multiplicity 2 the same argument shows that the quadric Qξ is smooth.
By Corollary 3.4, ξ is a smooth point of Sg and this proves the assertion.
Suppose now that k = g− 2. Then by Theorem 7.5 N is contained in the locus
of products Ag,(1,g−1), and for dimension reasons it is equal to it and then the
result follows from a local analysis with theta functions. �

The following corollary is due to Debarre ([11]).

Corollary 8.12. If (X,ΘX) is a general point in a component of Ng,0 then
ΘX has finitely many double points with the same tangent cone which is a
smooth quadric.

9. A conjecture

As shown in [8], part (i) of Theorem 8.6 is sharp for k = 1 and g = 4 and
5. However, as indicated in [8], it is never sharp for k = 1 and g ≥ 6, or for
k ≥ 2. In [8] we made the following conjecture, which is somehow a natural
completion of Andreotti–Mayer’s viewpoint in [2] on the Schottky problem.
Recall the Torelli morphism tg :Mg → Ag which maps the isomorphism class
of a curve C to the isomorphism class of its principally polarized Jacobian
(J(C),ΘC). As a map of orbifolds it is of degree 2 for g ≥ 3 since the general
abelian variety has an automorphism group of order 2 and the general curve
one of order 1. We denote by Jg the jacobian locus in Ag, i.e., the Zariski
closure of tg(Mg) in Ag and by Hg the hyperelliptic locus in Ag, that is, the
Zariski closure in Ag of tg(Hg), where Hg is the closed subset ofMg consisting
of the isomorphism classes of the hyperelliptic curves. By Torelli’s theorem we
have dim(Jg) = 3g − 3 and dim(Hg) = 2g − 1 for g ≥ 2.

Conjecture 9.1. If 1 ≤ k ≤ g − 3 and if N is an irreducible component of
Ng,k not contained in AEnd 6=Z

g , then codimAg (N) ≥
(
k+2
2

)
. Moreover, equality

holds if and only if one of the following happens:

(i) g = k + 3 and N = Hg;
(ii) g = k + 4 and N = Jg.

By work of Beauville [4] and Debarre [11] the conjecture is true for g = 4 and
g = 5. Debarre [10, 11] gave examples of components of Ng,k for which the
bound in Conjecture 9.1 for the codimension in Ag fails, but they are contained
in AEnd 6=Z

g , since the corresponding abelian varieties are isogenous to products.
Our main objective in this paper will be to prove the conjecture for k = 1.

Remark 9.2. The question about the dimension of the Andreotti–Mayer loci
is related to the one about the loci Sg,k introduced in §3. Note that Mg,k =
π∗(Ng,k) is a subscheme of Sg,k. Let N be an irreducible component of Ng,k not
contained in Ng,k+1, let M be the irreducible component of Mg,k dominating
N and let Z be an irreducible component of Sg,k containing M . We now
give a heuristic argument. Recalling Proposition 4.3, we can consider Z to be
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well-behaved if codimSg(Z) =
(
k+1
2

)
. Since M is contained in Z, one has also

codimSg (M) ≥
(
k+1
2

)
and therefore codimAg (N) ≥

(
k+2
2

)
, which is the first

assertion in Conjecture 9.1. In this setting, the equality holds if and only if Z
is well-behaved and M = Z.
On the other hand, since M is got from Z by imposing further restrictions, one
could expect that M is, in general, strictly contained in Z and therefore that
codimAg (N) >

(
k+2
2

)
.

In this circle of ideas, it is natural to ask if Jg [resp. Hg] is dominated by a
well-behaved component of Sg,g−4 [resp. Sg,g−3]. This is clearly the case if
g = 4.
A second, related, question is whether Jg [resp. Hg] is contained in some irre-

ducible subvariety of codimension c <
(
g−2
2

)
[resp. c <

(
g−1
2

)
] in Ag, whose gen-

eral point corresponds to a principally polarized abelian variety (X,ΘX) with
Sing(ΘX) containing a subscheme isomorphic to Spec(C[ǫ1, . . . , ǫk]/(ǫiǫj : 1 ≤
i, j ≤ k)) with k = g − 4 [resp. k = g − 3].
One might be tempted to believe that an affirmative answer to the first question
implies a negative answer to the second. This is not the case. Indeed H4

is contained in the locus of Jacobians of curves with an effective even theta
characteristic. In this case S4,1 has two well-behaved irreducible components
of dimension 8, one dominating H4 with fibres of dimension 1, the other one
dominating J4 ∩ θ4,0, where θ4,0 is the theta-null locus, see §19 and §10 below
and [16]. These two components intersect along a 7-dimensional locus in S4

which dominates H4.
Note that it is not always the case that a component of Sg,k is well-behaved.
For example, there is an irreducible component of Sg,g−2, the one dominating
Ag,(1,g−1), which is also an irreducible component of Sg.

10. An Example for Genus g = 4

In this section we illustrate the fact that the quadrics associated to the singu-
larities of the theta divisor may provide more information than obtained above.
The locus S4 in the universal family X4 consists of three irreducible compo-
nents: i) one dominating θ0,4, the locus of abelian varieties with a vanishing
theta-null; we call it A; ii) one dominating the Jacobian locus J4; we call it
B; iii) one dominating A4,(3,1), the locus of products of an elliptic curve with a
principally polarized abelian variety of dimension 3.
The components A and B have codimension 5 in X4 and they intersect along a
locus C of codimension 6. The image of C in A4 is the locus of Jacobians with a
half-canonical g1

3 . The quadric associated to the singular point of order 2 of X
in ΘX has corank 1 at a general point. We refer to [16] for a characterization
of the intersection θ0,4 ∩ J4.

Proposition 10.1. If ξ = (X,ΘX , x) is a point of C then Sing(ΘX) contains
a scheme of length 3 at x.

Proof. The scheme Sing(ΘX) contains a scheme Spec(C[ǫ]) at x, say corre-
sponding to the tangent vector D1 ∈ ker qx, cf. Section 5. In order that ξ be a
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singular point of S4, the quadrics q and q1 associated to x and D1 (cf. equation
(6) and Proposition 3.3) must be linearly dependent. By Proposition 5.3 this
implies that Sing(ΘX) contains a scheme of length 3 at x. �

Proposition 10.2. The two components θ0,4 and J4 of N4,0 in A4 are smooth
at a non-empty open subset of their intersection and are tangent there.

Proof. Let ξ = (X,ΘX , x) be a general point of C so that the singular point x of
ΘX defines a quadric qx of rank 3. Set η = (X,ΘX) ∈ A4. From the equations
(3) and (6), one deduces that the tangent cone to N4,0 at η is supported on q⊥x .
Suppose, as we may by applying a suitable translation, that x is the origin 0
in X . Then θ0,4 is locally defined by the equation θ(τ, 0) in A4 (see [16], §2).
Hence θ0,4 is smooth at η with tangent space q⊥x . Now the jacobian locus J4

is also smooth at η by the injectivity of the differential of Torelli’s morphism
at non-hyperelliptic curves (see [15]) and the assertion follows. �

11. The Gauss map and tangencies of theta divisors

In this section we shall study the situation where a number of translates of
the theta divisor of a principally polarized abelian variety are ‘tangentially
degenerate,’ that is, are smooth but with linearly dependent tangent spaces or
singular at prescribed points.
Let (B,Ξ) be a polarized abelian variety of dimension g, where Ξ is an effective
divisor on B. As usual we let B = Cg/Λ, with Λ a 2g-dimensional lattice, and
p : Cg → B be the projection. So we have coordinates z = (z1, . . . , zg) in Cg

and therefore on B, and we can keep part of the conventions and the notation
used so far. Let ξ = ξ(z) be the Riemann theta function whose divisor on Cg

descends to Ξ via p.
If Ξ is reduced, then the Gauss map of (B,Ξ) is the morphism

γ = γΞ : Ξ− Sing(Ξ)→ P(T∨B,0), x 7→ P(t−x(TΞ,ξ)),

where t−x(TΞ,x) is the tangent space to Ξ at ξ translated to the origin. If
Ξb = tb(Ξ) is the translate of Ξ by the point b ∈ B defined by the equation
ξ(z − b) = 0 then for x ∈ Ξ− Sing(Ξ) the origin is a smooth point for Ξ−x and
γ(x) = P(TΞ−x,0).
As usual we have natural homogeneous coordinates (z1 : . . . : zg) in P(TB,0) =
Pg−1 and therefore dual coordinates in the dual projective space P(T∨B,0) =

Pg−1∨. Then the expression of γ in coordinates equals γ(p(z)) = (∂1ξ(z) : . . . :
∂gξ(z)) with ∂i = ∂/∂zi.
The following lemma is well-known.

Lemma 11.1. Let (B,Ξ) be a simple abelian variety of dimension g and Ξ an
irreducible effective divisor on B. Then the map γΞ has finite fibres. Moreover,
for a smooth point x ∈ Ξ there are only finitely many b ∈ B such that Ξb is
smooth at x and tangent to Ξ there.

Proof. Suppose γΞ does not have finite fibres. Then there is an irreducible
curve C of positive geometric genus contained in the smooth locus of Ξ which is
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contracted by γΞ to a point of Pg−1∨ corresponding to a hyperplane Π ⊂ Pg−1.
Then the image of the Gauss map γC of C lies in Π. This implies that C does
not generate B and contradicts the fact that B is simple. As to the second
statement, if it does not hold there exists an irreducible curve C such that for
all b ∈ C the divisor Ξb is smooth at x and tangent to Ξ. Then the curve
C′ = {x− b : b ∈ C} is contained in Ξ and contracted by γΞ. This contradicts
the fact that γΞ has finite fibres as we just proved. �

Definition 11.2. Let h be a natural number with 1 ≤ h ≤ g − 1. The
subscheme Th(B,Ξ) of B × Bh is defined in Cg × (Cg)h with coordinates
(z, u1, . . . , uh) by the equations

(19)

ξ(z) = 0, ξ(z − u1) = 0, . . . , ξ(z − uh) = 0,

rk




∂1ξ(z) · · · ∂gξ(z)
∂1ξ(z − u1) · · · ∂gξ(z − u1)

...
∂1ξ(z − uh) · · · ∂gξ(z − uh)


 ≤ h.

The projection to the first factor induces a morphism p1 : Th(B,Ξ)→ Ξ. Note
that for i = 1, . . . , h the variety Ei of codimension h+ 1 ≤ g in B×Bh defined
by the equations

ξ(z) = 0, ξ(z − uj) = 0 (j 6= i), and ui = 0,

is contained in Th(B,Ξ). Moreover, the expected codimension of the irreducible
components of Th(B,Ξ) is g + 1. We will say that an irreducible component T
of Th(B,Ξ) is regular if:

(i) T 6= Ei for i = 1, . . . , h;
(ii) on a non-empty open subset of T all the rows of the matrix in (19) are

non-zero.

In particular, if T is regular then p1(T ) 6⊆ Sing(Ξ).

Proposition 11.3. If B is simple each regular component of Th(B,Ξ) has
dimension hg − 1.

Proof. Let us first assume h = 1 and denote a component of Th(B,Ξ) by
T . By composing p1 with the Gauss map γ = γΞ, we obtain a rational map
φ : T 99K P(T∨B,0). We shall prove that φ has finite fibres. Let v be a point in
the image of φ coming from a point in the open subset as in Definition 11.2,
(ii). By Lemma 11.1 there are only finitely many smooth points z1, . . . , za ∈ Ξ
such that γ(zi) = v for i = 1, . . . , a. For each 1 ≤ i ≤ a we consider the theta
divisor defined by ξ(zi − u) = 0. Again by Lemma 11.1 there are only finitely
many points ui1, . . . , uiℓi in it such that (zi, uij) may give rise to a point on T .
So φ has finite fibres. Thus it is dominant and T has dimension g − 1.
Now we prove the assertion by induction on h. Consider the projection q : T →
B ×Bh−1 by forgetting the last factor B. If the image T ′ of T is contained in
Th−1(B,Ξ), then it is contained in a regular component of Th−1(B,Ξ), hence
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by induction the codimension of T is at least g + 1, while we know from the
equations that it is at most g + 1, and the assertion follows.
Suppose T ′ is not contained in Th−1(B,Ξ). Let U(h− 1, g− 1)→ G(h− 1, g−
1) be the universal bundle over the Grassmannian of (h − 1)-planes in Pg−1.
Then we define a rational map ψ : T 99K U(h − 1, g − 1) in the following
way. If (z, u1, . . . , uh) is a general point in T , then by the assumption that
T ′ 6⊆ Th−1(B,Ξ) the hyperplanes γ(z), γ(z − u1), . . . , γ(z − uh−1) are linearly
independent and we define

ψ(z, u1, . . . , uh) = (〈γ(z), γ(z − u1), . . . , γ(z − uh−1)〉, γ(z − uh)).

We claim that Lemma 11.1 implies that the general fibre of ψ has dimension
≤ h(h− 1). Indeed, in a fibre of ψ the points γ(z), γ(z − u1), . . . , γ(z − uh−1)
vary in a (h− 1)-dimensional space giving at most h(h− 1) parameters and if
γ(z), γ(z− u1), . . . , γ(z− uh) are fixed there are for (z, u1, . . . , uh) only finitely
many possibilities. Thus dim(T ) is bounded from above by

dim(U(h− 1, g − 1)) + h(h− 1) = h(g − h) + (h− 1) + h(h− 1) = hg − 1,

and this proves the assertion. �

We will also consider the closed subscheme T 0
h (B,Ξ) of Th(B,Ξ) which is de-

fined in Cg × (Cg)h by the equations

ξ(z) = 0, ξ(z − ui) = 0, i = 1, . . . , h

and

rk




∂1ξ(z) · · · ∂gξ(z)
∂1ξ(z − u1) · · · ∂gξ(z − u1)

...
∂1ξ(z − uh) · · · ∂gξ(z − uh)


 = 0.

Finally we will consider the closed subset Th(X,B) which is the union of
T 0
h(X,B) and of all regular components of Th(B,Ξ). Look at the projection

p = p2 : T (X,B)→ Bh.

Definition 11.4. We define N0,h(B,Ξ) to be the image of Th(X,B) under the
map p. More generally, for each integer k we define

Nk,h(B,Ξ) := {u = (u1, . . . , uh) ∈ Bh : u1, . . . , uh 6= 0, dim(p−1
2 (u)) ≥ k}.

Roughly speaking, Nk,h(B,Ξ) is the closure of the set of all (u1, . . . , uh) ∈ Bh
such that Ξ contains an irreducible subvariety V of dimension n ≥ k and for
all z ∈ V either:

(a) z, z−u1, . . . , z−uh are smooth points of Ξ and γ(z), γ(z−u1), . . . , γ(z−
uh) are linearly dependent, or

(b) all the points z, z − u1, . . . , z − uh are contained in Sing(Ξ).

In case (a) we say that the divisors Ξ,Ξu1 , . . . ,Ξuh
, all passing through z with

multiplicity one, are tangentially degenerate at z.
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In case h = 1 we have only two divisors which are just tangent at z. We will
drop the index h if h = 1. Thus, N0(B,Ξ) is the set of all u such that Ξ and Ξu
are either tangent, or both singular, somewhere. Note that, if Ξ is symmetric,
i.e., if ξ(z) is even, as happens for the Riemann theta function, then N0(B,Ξ)
contains the divisorial component 2Ξ := {2ξ : ξ ∈ Ξ}, since γ(ξ) = γ(−ξ) for
all smooth points ξ ∈ Ξ.
One has the following result by Mumford (see [27], Proposition 3.2).

Theorem 11.5. If (B,Ξ) is a principally polarized abelian variety of dimension
g with Ξ smooth, then N0(B,Ξ) is a divisor on B algebraically equivalent to
(g+2)!

6 Ξ.

As we will see later, the following result is related to Conjecture 9.1.

Proposition 11.6. Suppose that (B,Ξ) is a simple principally polarized abelian
variety of dimension g. Assume that (B,Ξ) /∈ Ng,k. Then for k ≥ 0 and
1 ≤ h ≤ g − 1 and for every irreducible component Z of Nk,h(B,Ξ) one has
codimBh(Z) ≥ k + 1.

Proof. By the definition of Nk,h(B,Ξ) and by the fact that Sing(Ξ) has dimen-
sion < k an irreducible component of Nk,h(B,Ξ) can only be contained in the
image of a regular component of Th(B,Ξ). The assertion follows by Proposition
11.3 and the fact that the fibres of p2 on a regular component have dimension
≥ k. �

12. Properties of the loci Nk,h(B,Ξ)

We will prove now a more precise result in the spirit of Proposition 11.6.

Proposition 12.1. Suppose that (B,Ξ) is a simple, principally polarized
abelian variety of dimension g. Assume that Nk,h(B,Ξ) is positive-dimensional
for some h ≥ 1 and k ≥ 1. Then (B,Ξ) ∈ Ng,k−1.

Proof. We may assume (B,Ξ) 6∈ Ng,k, otherwise there is nothing to prove. We
may also assume h ≥ 1 is minimal under the hypothesis that Nk,h(B,Ξ) has
positive dimension.
Let (u1, . . . , uh) be a point in Nk,h(B,Ξ), so that Ξ0 := Ξ and Ξi := Ξui , i =
1, . . . , h, are tangentially degenerate along a non-empty subset V 0 of an irre-
ducible subvariety V of B of dimension k such that Ξi for i = 0, . . . , h are
smooth at all points v ∈ V 0.

For j = 0, . . . , h the element s
(i)
j := ∂iξ(z − uj) (with the convention that

u0 = 0) is a section of O(Ξj) when restricted to V since Ξj contains V . We

know that for given j not all s
(i)
j are identically zero on V 0. Our assumptions on

the tangential degenerateness and minimality tell us that there exist non-zero
rational functions aj such that we have a non-trivial relation

(20)

h∑

j=0

ajs
(i)
j = 0 for i = 1, . . . , g.
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Suppose that the aj are regular on all of a desingularization f : W → V of V .

Then they are constant and the relation
∑
ajs

(i)
j = 0 holds on the whole of W .

By writing relation (20) in different patches which trivialize the involved line
bundles, and comparing them, we see that, if the transition functions are not
all proportional, then we can shorten the original relation by subtracting two of
them. This would contradict the minimality assumption. Therefore, we have
that all of the divisors f∗(Ξ − Ξuj )|V with j = 1, . . . h are linearly equivalent.
Since u = (u1, . . . , uh) varies in a subvariety of positive dimension this implies
that the map Pic0(B)→ Pic(W ) has a positive-dimensional kernel, and this is
impossible since B is simple. So there exists an index j such that the function
aj has poles on a divisor Zj of W . Note now that a point which is non-singular
for all the divisors Ξj , j = 1, . . . , h, is certainly not a pole for the functions
aj . Therefore, for each j = 1, . . . , h, there an ℓ depending of j such that Zj
is contained in the divisorial part of the scheme f∗(Sing(Ξℓ)). Moreover, since
Zj moves in a linear system on W , it cannot be contracted by the birational
morphism f . This proves that Ξℓ is singular along a variety of dimension k− 1
contained in V , which proves the assertion. �

Corollary 12.2. Suppose that (B,Ξ) is a simple, principally polarized abelian
variety of dimension g. Assume that (B,Ξ) /∈ Ng,0, that is, Ξ is smooth. Then
every irreducible component Z of N0,h(B,Ξ) is a divisor of Bh.

Proof. Each irreducible component Z of N0,h(B,Ξ) is dominated by a regular
component T of Th(B,Ξ), which has dimension hg − 1 by Proposition 11.3.
The map p : T → Z is finite by Corollary 11.1. The assertion follows. �

Remark 12.3. If we have two divisors Ξ0,Ξ1 which are tangentially degenerate
along an irreducible k-dimensional variety V whose general point is smooth for
both Ξ0,Ξ1, then Ξ0,Ξ1 are both singular along some (k−1)-dimensional variety
contained in V . This can be easily proved by looking at the relation (20) in
this case, and noting that the polar divisor Zj is contained in f∗(Sing(Ξj)),
j = 0, 1.

Remark 12.4. Suppose (B,Ξ) /∈ Ng,0. Then N0(B,Ξ) is described by all
differences of pairs of points of Ξ having the same Gauss image.
Suppose (B,Ξ) ∈ Ng,0−Ng,1 and assume {x,−x} = Sing(Ξ) have multiplicity
2 and the quadric Qx = Q−x is smooth. It may or may not be the case that
b = −2x ∈ N1(B,Ξ). In any case, we claim that N1(B,Ξ)−{−2x} is contained
in the set of all differences of points in γ−1

Ξ (Q∗x) with x. Let us give a sketch of
this assertion, which provides, in this case, a different argument for the proof
of Proposition 11.6.
If b ∈ N1(B,Ξ) − {−2x}, there is a curve C ⊂ Ξ such that for t ∈ C general
γΞ(t) = γΞ(t+ b). Along C the divisors Ξ and Ξb are tangent, hence the curve
contains x (see Remark 12.3). Note that the curve C is smooth at x. Indeed,
locally at x, the divisor Ξ is a quadric cone of rank g − 1 in Cg with vertex x,
whereas Ξb is a hyperplane through x, and they can only be tangent along a
line.
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Thus it makes sense to consider the image of x for γC , which is a point on Qx.
The point x+ b ∈ C + b ⊂ Ξ is smooth for Ξ and γ(x+ b) is clearly tangent to
Qx at γC(x).

13. On Ng−2 and Ng−3 for Jacobians

The following result shows that the bound in Proposition 11.6 is sharp in the
case h = 1. Recall that a curve C is called bielliptic if it is a double cover of
an elliptic curve.

Proposition 13.1. Let C be a smooth, irreducible projective curve of genus g
and let (J = J(C),ΘC) be its principally polarized Jacobian. Then one has:

(i) {OC(p− q) ∈ J : p, q ∈ C} ⊆ Ng−3(J,ΘC);
(ii) either C is bielliptic or the equality holds in (i);

(iii) if C is hyperelliptic, then

{OC(p− q) ∈ J : p, q ∈ C, h0(C,OC(p+ q)) = 2} = Ng−2(J,ΘC).

Proof. We begin with (i). We assume that C is not hyperelliptic; the hy-
perelliptic case is similar and can be left to the reader. We may identify C
with its canonical image in Pg−1. Moreover, we identify J with Picg−1(C) and
ΘC ⊂ Picg−1(C) with the set of effective divisor classes of degree g−1. Then the
Gauss map γC := γΘC can be geometrically described as the map which sends
the class of an effective divisor D of degree g − 1 such that h0(C,OC(D)) = 1
to the hyperplane in Pg−1 spanned by D (see [15], p. 360).
Take two distinct points p1, p2 on C. Then |ωC(−p1 − p2)| is a linear series of
degree 2g − 4 and dimension g − 3. For i = 1, 2 we let Vi be the subvariety
of ΘC which is the Zariski closure of the set of all divisor classes of the type
E + pi, where E is a divisor of degree g − 2 contained in some divisor of
|ωC(−p1−p2)|. Clearly dim(Vi) = g−3, hence Vi is not contained in Sing(ΘC)
which is of dimension g−4. If u denotes the divisor class p2−p1 then x 7→ x+u
defines an isomorphism V1

∼= V2. Moreover, for x in an non-empty open subset
of V1 we have γC(x) = γC(x+ u). This proves (i).
Conversely, assume there is a point u ∈ Pic0(C)−{0}, and a pair of irreducible
subvarieties V1, V2 of ΘC of dimension g − 3 such that x 7→ x + u gives a
birational map from V1 to V2. For x in a non-empty open subset U ⊂ V1 we
have γC(x) = γC(x+ u). If D and D′ are the effective divisors of degree g − 1
on C corresponding to x and x+ u and if E is the greatest common divisor of
D and D′ then by the geometric interpretation of the Gauss map γC there is
an effective divisor F with deg(E) = deg(F ) such that D+D′ −E +F ≡ KC .
Thus (2D − E) + F ≡ KC − u.

Consider the linear series |KC − u|, which is a gg−2
2g−2. If this linear series has

a base point q, then there is a point p such that KC − u − q ≡ KC − p, i.e.
D′ − D ≡ u ≡ p − q, proving (ii). So we may assume that |KC − u| has no
base point. If C is not bielliptic, then |KC − u| determines a birational map of
C to a curve in Pg−2. On the other hand it contains the (g − 3)-dimensional
family of divisors of the form (2D−E)+F , which are singular along the divisor
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D−E. This is only possible if deg(D−E) = 1, i.e., u ≡ D′ −D ≡ p− q, with
p, q ∈ C. But in this case |KC − u| has the base point q, a contradiction. This
proves (ii).
Assume now C is hyperelliptic. Let p1 + p2 be an effective divisor of the g1

2

on C with p1 6= p2. Then |ωC(−p1 − p2)| is a linear series of degree 2g − 4
and dimension g − 2. For i = 1, 2 we let Vi be the subvariety of ΘC which is
the Zariski closure of the set of all divisors classes of the type E + pi, where
E is a divisor of degree g − 2 contained in a divisor of |ωC(−p1 − p2)|. The
variety Vi has dimension g − 2 and is not contained in Sing(ΘC), which is of
dimension g − 3. The translation over u induces an isomorphism V1

∼= V2 and
for x in a non-empty subset U of V1 we have γC(x) = γC(x + u). Hence the
left-hand-side in (iii) is contained in Ng−2(J,ΘC).

Finally, assume there is a point u ∈ Pic0(C) − {0}, and a pair of irreducible
subvarieties V , V ′ of ΘC of dimension g − 2 such that translation by u gives a
rational map V 99K V ′ with γC(x) = γC(x+ u) on a non-empty open subset of
V . Let D, D′ be the effective divisors of degree g− 1 on C corresponding to x
and x + u. As in the proof of part (ii), let E be the greatest common divisor
of D and D′. In the present situation the linear series |KC − u| of dimension
g − 2 contains the (g − 2)-dimensional family of divisors of the form 2D − E,
which are singular along the divisor D − E. This means that 2(D − E) is in
the base locus of |KC − u|. This is only possible if D = E + q for some point
q ∈ C, and KC − u− 2q ≡ (g− 2)(p+ q), where p is conjugated to q under the
hyperelliptic involution. In conclusion, we have u ≡ p− q and the equality in
(iii) follows. �

Remark 13.2. The hypothesis that C is not bielliptic is essential in (ii) of
Proposition 13.1. Let in fact C be a non-hyperelliptic bielliptic curve which is
canonically embedded in Pg−1. Let f : C → E be the bielliptic covering. One
has f∗OC ≃ OE ⊕ ξ∨, with ξ⊕2 ≃ OE(B), where B is the branch divisor of f .
Let u ∈ Pic0(E) − {0} be a general point, which we can consider as a non-
trivial element in Pic0(C) via the inclusion f∗ : Pic0(E)→ Pic0(C) Note that
f is ramified, hence f∗ is injective. We want to show that u ∈ Ng−3(J,ΘC),
proving that equality does not hold in (i) in this case.
The canonical image of C is contained in a cone X with vertex a point v ∈ Pg−1

over the curve E embedded in Pg−2 as a curve of degree g − 1 via the linear
system |ξ|. Let us consider the subvariety W of |ξ| consisting of all divisors
M ∈ |ξ| such that there is a subdivisor p+ q of M with p, q ∈ E and p− q ≡ u.
It is easily seen that W is irreducible of dimension g − 3.
Notice that for M general in W one has M = p + q + N , with N effective of
degree g − 3. Therefore we may write KC ≡ f∗(M) ≡ f∗(p) + f∗(q) + F + F ′,
where F, F ′ are disjoint, effective divisors of degree g − 3 which are exchanged
by the bielliptic involution.
We let V be the (g − 3)-dimensional subvariety of ΘC described by all classes
of divisors D of degree g − 1 on C of the form D = f∗(p) + F , as M varies in
W . Then D + u ≡ D′ := f∗(q) + F and D and D′ span the same hyperplane
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through v in Pg−1. Therefore, if x ∈ V is the point corresponding to D, one
has γC(x) = γC(x+ u). This proves that u ∈ Ng−3(J,ΘC).

14. A boundary version of the Conjecture

We will now formulate a conjecture. As we will see later, it can be considered
as a boundary version of Conjecture 9.1 (see also Proposition 11.6).

Conjecture 14.1. Suppose that (B,Ξ) is a simple principally polarized abelian
variety of dimension g. Assume that (B,Ξ) /∈ Ng,i for all i ≥ k ≥ 1. Then
there is an irreducible component Z of Nk(B,Ξ) with codimB(Z) = k + 1 if
and only if one of the following happens:

(i) either g ≥ 2, k = g − 2 and B is a hyperelliptic Jacobian,
(ii) or g ≥ 3, k = g − 3 and B is a Jacobian.

One implication in this conjecture holds by Proposition 13.1. Note that the
conjecture would give an answer for simple abelian varieties to the Schottky
problem that asks for a characterization of Jacobian varieties among all prin-
cipally polarized abelian varieties. For related interesting questions, see [30].

15. Semi-abelian Varieties of Torus Rank One

Let (B,Ξ) be a principally polarized abelian variety of dimension g − 1. The
polarization Ξ gives rise to the isomorphism

φΞ : B → B̂ = Pic0(B), b→ OB(Ξ− Ξb).

and we shall identify B and B̂ via this isomorphism. Thus an element b ∈
B̂ ∼= B determines a line bundle L = Lb = OB(Ξ−Ξb) with trivial first Chern
class. We can associate to L a semi-abelian variety X = XB,b, namely the Gm-
bundle over B defined by L which is an algebraic group since it coincides with
the theta group Gb := G(L) of L (cf. [25], p. 221). This gives the well-known

equivalence between B̂ and Ext(B,Gm), the group of extension classes of B
with Gm in the category of algebraic groups (see [35], p. 184).
Both the line bundle L and the Gm-bundle X determine a P1-bundle P =
P(L ⊕OB) over B with projection π : P→ B and two sections over B, say s0
and s∞ given by the projections L ⊕ OB → L and L ⊕ OB → OB. If we set
P0 = s0(B) and P∞ = s∞(B) then we can identify P − P0 − P∞ with X . By
[17], Proposition 2.6 on page 371 we have OP(1) ∼= OP(P0). We can complete
X by considering the non-normal variety X = XB,b obtained by glueing P0

and P∞ by a translation over b ∈ B ∼= B̂. On P we have the linear equivalence
P0−P∞ ≡ π−1(Ξ−Ξb). We set E := P∞+π−1(Ξ) and put MP = OP(E). This
line bundle restricts to OB(Ξ) on P0 and to OB(Ξb) on P∞, and thus descends
to a line bundle M = MX on X . We have π∗(OP(E)) = OB(Ξ) ⊕ OB(Ξb)
and H0(P,MP) is generated by two sections with divisors P∞ + π−1(Ξ) and
P0 + π−1(Ξb). One concludes that H0(X,M) corresponds to the sections of
MP such that translation over b carries its restriction to P0 to the restriction
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to P∞. It follows that h0(X,M) = 1 with effective divisor Ξ, which is called
the generalized theta divisor on X.
Analytically we can describe a section ofOX̄(Ξ) on the universal cover C×Cg−1

by a function

ξ(τ, z) + u ξ(τ, z − ω),

where ω ∈ Cg−1 represents b ∈ B = Cg−1/Zg−1 + τZg−1, ξ(τ, z) is Riemann’s
theta function for B and u = exp(2πiζ) is the coordinate on C∗. This is called
the generalized theta function of X .
Let D be the Weil divisor on X that is the image of P0 (or, what is the same, of
P∞). We consider a locally free subsheaf Tvert of the tangent sheaf to X, namely
the dual of the sheaf Ω1(logD) of rank g. If d ∈ D is a point such that on the
normalization P near the two preimages z1, . . . , zg−1, u and z1+b, . . . , zg−1+b, v
are local coordinates such that u = 0 defines P0 (resp. v = 0 defines P∞)
with uv = 1 then Tvert is generated by ∂/∂z1, . . . , ∂/∂zg−1, u∂/∂u − v∂/∂v.
Here z1, . . . , zg−1 are coordinates on B. We interpret local sections of Tvert

as derivations. In particular, if an effective Cartier divisor Y of X has local
equation f = 0, then for each local section ∂ of Tvert, the restriction to Y of
∂f is a local section of OX(Y )/OX . Then the subscheme Singvert(Ξ) of Ξ is
locally defined by the g equations

(21) ∂if = 0 modulo f in OX(Ξ)/OX
with f = 0 a local equation of Ξ and ∂i local generators of Tvert.
The equations for Singvert(Ξ) on X are thus given by

ξ(τ, z) + u ξ(τ, z − ω) =0,

ξ(τ, z − ω) =0,

∂iξ(τ, z) + u∂iξ(τ, z − ω) =0, (1 ≤ i ≤ g − 1).

The points in Singvert(Ξ) are of two sorts depending on whether they lie on the
double locus D of X or not. The singular points of Sing(Ξ) on X = X − D
are the points (z, u), with u 6= 0, which are zeros of ξ(τ, z) and ξ(τ, z − ω) and
such that γ(τ, z) = −uγ(τ, z − ω). That is, geometrically, these correspond
under the projection on B to the points on B where Ξ and Ξb are tangent to
each other. To describe the singular points of Sing(Ξ) on D, we consider the
composition

φ : B ∼= P0 → P
ν−→X,

where ν is the normalisation. Then we have φ−1(Singvert(Ξ)) = Sing(Ξ) and
the same if we identify B with P∞.
Points of Singvert(Ξ) determine again quadrics in Pg−1 as follows. Note that
the projective space P(TX,0) contains a point Pb corresponding to the tangent
space TGm ⊂ TX of the algebraic torus Gm at the origin. Recall that we write
γ(τ, z) for the row vector

γ(τ, z) = (∂1ξ, . . . , ∂g−1ξ)(τ, z).
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Then a singular point determines a, possibly indeterminate, quadric defined by
the matrix

(22)

(
0 γ(τ, z − ω)

γ(τ, z − ω)t M

)

with M the (g− 1)× (g − 1) matrix (∂/∂τijξ(τ, z) + u∂/∂τijξ(τ, z −ω)). Note
that we have γ(τ, z) = −uγ(τ, z − ω). The quadric passes through the point
Pb. For a point on D the quadric is a cone with vertex Pb over a quadric in
Pg−2 given by M .

Remark 15.1. The above considerations show that a point in Singvert(Ξ) has
to be regarded as a point of multiplicity larger than 2 if the matrix (22) vanishes
identically. This can happen only if z and z + ω are both singular for Ξ.

16. Standard Compactifications of Semi-Abelian Varieties

Let (B,Ξ) be a principally polarized abelian variety. We assume now that
dim(B) = g − r with r ≥ 1 and extend the considerations of the previous
section.
The extensions of B by Gr

m are parametrized by Ext1(B,Gr
m) ∼= B̂r. To a

point (b1, . . . , br) ∈ B̂r one associates the Gr
m-extension X = Xb obtained as

the fibre product of theta groups Gb1 ×B · · · ×B Gbr .
One of the type of degenerations of abelian varieties that we shall encounter are
special compactifications of semi-abelian varieties. We shall call them standard
compactifications of torus rank r. Let b = (b1, . . . , br) ∈ B̂r. The algebraic
group X = Xb sits in a P1 ×B · · · ×B P1-bundle π : P→ B that is obtained as
the fibre product over B of the P1-bundles Pbi = P(Lbi⊕OB). The complement

P−X is a union of 2r divisors
∑r

i=1 Π
(i)
0 +Π

(i)
∞ , where Π

(i)
0 (resp. Π

(i)
∞ ) is given

by taking 0 (resp. ∞) in the i-th fibre coordinate, with projections πi,0, πi,∞
to B.
We now define a non-normal variety obtained from P by glueing Π

(i)
0 with Π

(i)
∞

for i = 1, . . . , r. This identification depends on a r × r-matrix T = (tij) with

entries from Gm such that tii = 1 and tij = t−1
ji . Let s

(i)
0 : B → Pbi (resp. s

(i)
∞ )

be the zero-section (infinity section) of Pbi . We glue the point

(β, x1, . . . , xi−1, s
(i)
0 (β), xi+1, . . . , xr)

on Π
(i)
0 with the point

(β + bi, ti,1x1, . . . , ti,i−1xi−1, s
(i)
∞ (β), ti,i+1xi+1, . . . , ti,rxr)

on Π
(i)
∞ . We denote the resulting variety by X. It depends on the parameters

b ∈ B̂r and t ∈ Mat(r × r,Gm).

We have the linear equivalences Π
(i)
0 − Π

(i)
∞ ≡ π∗(Ξ − Ξbi). We set E = Π∞ +

π∗(Ξ) =
∑

Π
(i)
∞ + π∗(Ξ) and Ei = Π∞ − Π

(i)
∞ and M := MP = OP(E). This

line bundle restricts to O
Π

(i)
0

(Ei+π∗i,0(Ξ)) on Π
(i)
0 and to O

Π
(i)
∞

(Ei+π∗i,∞(Ξbi))
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on Π
(i)
∞ . Thus, by the definition of the glueing, M descends to a line bundle

M := MX on X. We have

π∗(M) =
(
⊗ri=1 (OB ⊕ L−1

i )
)
⊗OB(Ξ)

∼= ⊕rk=1

(
⊕0≤i1<...<ik≤r OB(Ξbi1+...+bik

)
)
.

Hence we have h0(P,M) = 2r. As in the preceding section one sees that
only a 1-dimensional space of sections descends to sections of M on X. In
terms of coordinates (ζ1, . . . , ζr, z1, . . . , zg−r) on the universal cover of X , where
(z1, . . . , zg−r) ∈ Cg−r are coordinates on the universal cover of B, a non-zero

section of M is given by
∑

I⊆{1,...,r}
uI tI ξ(τ, z − ωI),

where I runs through the subsets of {1, . . . , r}, uI =
∏
i∈I ui with ui =

exp(2πζi), tI =
∏
i,j∈I,i<j tij , bI =

∑
i∈I bi and ωI ∈ Cg−r represents bI ∈ B.

This is the generalized theta function of X, whose zero locus is the generalized
theta divisor Ξ of X.
Next we look at the singular points of Ξ. All points in Ξ∩D are singular points
of Ξ. However, just as in the rank one case in the preceding section we will in
general disregard these singularities of Ξ, and we will only look at the so-called
vertical singularities, which we are going to define now (cf. [27], §2).
The locally free subsheaf Tvert of rank g of the tangent sheaf TX is the dual
of Ω1(logD). Its pull back to P is generated, in the (u, z)-coordinates, by
the differential operators ui∂/∂ui − vi∂/∂vi with uivi = 1 for i = 1, . . . , r
and ∂j = ∂/∂zj with j = 1, . . . , g − r. We interpret local sections of Tvert

as derivations as above and define the scheme Singvert(Ξ) of vertical singular
points of Ξ as the subscheme of Ξ defined by the equations (21) with f = 0 a
local equation of Ξ for all local sections ∂ ∈ Tvert. This is independent of the
choice of a local equation.

Lemma 16.1. Let (X,Ξ) be a standard compactification of a semi-abelian va-
riety X of torus rank r with abelian part (B,Ξ). If dim(Singvert(Ξ)) ≥ 1 then
(B,Ξ) ∈ Ng−r,0.
Proof. The compactification X is a stratified space and the (closed) strata are
(standard) compactifications of semi-abelian extensions of (B,Ξ) of torus rank
s with 0 ≤ s ≤ r. In view of the relations

∑
I uItI∂iξ(z − ωI) = 0 the vertical

singularities of Ξ correspond to points where 2s translates of Ξ are tangentially
degenerate. Therefore we have dim(N1,h(B,Ξ)) ≥ 1 with h = 2s. By Lemma
12.1 it follows that (B,Ξ) ∈ Ng−r,0. �

17. Semi-abelian varieties of torus rank two

In the compactification of the moduli space of principally polarized abelian
varieties of dimension g we shall encounter two types of degenerations of torus
rank 2. The first of these is a standard compactification introduced above
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and its normalization is a P1 × P1-bundle over a principally polarized abelian
variety of dimension g− 2. For such a standard compactification the equations
for Singvert(Ξ) are given in terms of the (u, z)-coordinates by the system (we
write t instead of t1,2; note that t 6= 0)

ξ(z)− tu1u2ξ(z − ω1 − ω2) =0,

u1ξ(z − ω1) + tu1u2ξ(z − ω1 − ω2) =0,

u2ξ(z − ω2) + tu1u2ξ(z − ω1 − ω2) =0,

∂iξ(z) + u1∂iξ(z − ω1) + u2∂iξ(z − ω2) + tu1u2∂iξ(z − ω1 − ω2) =0,

i = 1, . . . , g − 2.

From this and the analogous equations in the v-coordinates (with uivi = 1) we
see that the vertical singular points of Ξ are essentially of three types:
(i) A point x ∈ D that is the image via ϕ : X → X of a point in Π1,0∩Π2,0

∼= B,
(i.e. in the (u, z) coordinates one has u1 = u2 = 0) is a vertical singular point
of Ξ if and only if it corresponds to a singular point of Ξ on Π1,0 ∩ Π2,0

∼= B
and to a singular point of Ξb1+b2 on Π1,∞ ∩Π2,∞ ∼= B.
(ii) A point x ∈ D which is the image via ϕ of a point in Πj,0 but not of a
point in Π3−j,0, (i.e., in the (u, z) coordinates one has ui = 0, u3−j 6= 0, for a

j = 1, 2) is a vertical singular point of Ξ if and only if

ξ(τ, z) = 0, ξ(τ, z − ω3−j) =0,

∂iξ(τ, z) + u3−j∂iξ(τ, z − ω3−j) =0, i = 1, . . . , g − 2.

i.e. if and only if z and z − b are in Ξ and γΞ(z) = γΞ(z − b).
(iii) A point x /∈ D, (i.e. in the (u, z) coordinates one has u1 6= 0 6= u2) is a
vertical singularity if and only if z is a singular point of the divisorH ∈ |2Ξb1+b2 |
defined by the equation

ξ(τ, z − ω1)ξ(τ, z − ω2) = t ξ(τ, z)ξ(τ, z − ω1 − ω2).

By the way, this occurs even in case (ii) above. Note also that, by the above
equations, the existence of a vertical singularity implies that the theta divisors
Ξ, Ξb1 , Ξb2 and Ξb1+b2 are tangentially degenerate at some point x of B, i.e.,
z ∈ N0,3(B,Ξ).

We call of type (i), (ii) or (iii) the singular points of Ξ according to whether
cases (i), (ii) or case (iii) occur.

Remark 17.1. A point x in Singvert(Ξ) again determines a quadric Qx in Pg−1.
It is useful to remark that:
(a) in case (i) the quadric Qx is a cone with vertex the line Lb := 〈Pb1 , Pb2〉
given by the tangent space to the Gm-part over the quadric Qz in Pg−3 which
corresponds to the singular point z of Ξ;
(b) in case (ii), say we are at a point with u1 = 0, u2 6= 0. Then Qx is a cone
with vertex Pb1 over the quadric in the hyperplane u1 = 0 with matrix

(
0 −γ(τ, z)t

−γ(τ, z) M

)
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with γ(τ, z) = (∂1ξ, . . . , ∂g−2ξ)(τ, z) and the matrix M is given by

M = (∂/∂τijξ(τ, z) + u∂/∂τijξ(τ, z − ω))1≤i,j≤g−2.

In §15 we saw that all rank 1 compactifications of Gm-extensions of a principally
polarized abelian variety B form a compact family B̂. This is no longer the case
in the higher rank case. This is where semi-abelian varieties of non-standard
type come into the picture. This will depend on choices. It is good to see this
in some detail in the rank 2 case.
Given a principally polarized abelian variety (B,Ξ) of dimension g − 2, all
standard rank 2 compactifications of (B,Ξ) are of the form (X,Ξ) with X =
XB,b,t with b = (b1, b2) ∈ B × B and t ∈ C∗. Thus the parameter space
may be identified (up to dividing by automorphisms) with the total space of
the Poincaré bundle P → B × B minus the 0-section P0. It is then natural
to compactify this by looking at the associated P1-bundle and by glueing on
it the 0-section P0 with the infinity section P∞. This in fact works and it is
explained in [26], §7, and in [29]. We describe next the new objects that arise.
We denote by Li the line bundle associated to bi, for i = 1, 2. We consider again
the P1×P1-bundle P on B as in §16 and in the glueing operation described in
§16, we let t = t12 tend to 0 (or equivalently to ∞). Letting t → ∞, one con-
tracts Π1,0 and Π2,0 to the section A = Π1,∞ ∩Π2,∞ ∼= B, and Π1,∞ and Π2,∞
to the section ∆ = Π1,0 ∩Π2,0

∼= B. In order to properly describe the glueing
process, we have first to blow up the two sections A and ∆ in P . Let us do
that. Let w : P̃ → P be the blow-up, on which we have the following divisors:
α is the exceptional divisor over A and δ is the exceptional divisor over ∆;
β, γ, ǫ, ζ are the proper transforms on P̃ of Π1,∞,Π2,0,Π1,0,Π2,∞, respectively.
We will abuse notation and denote by the same letters the restrictions of these
divisors on the general fibre Φ of P̃ over B, which is a P1 × P1 blown up at
two points, hence a P2 blown up at three points. Note that α, β, γ, δ, ǫ, ζ are
P1-bundles over B and one has

(23)
α ∼= P(L∨1 ⊕ L∨2 ), γ ∼= P(L2 ⊕OB), ǫ ∼= P(L1 ⊕OB),
δ ∼= P(L1 ⊕ L2), ζ ∼= P((L1 ⊗ L2)⊕ L2), β ∼= P((L1 ⊗ L2)⊕ L1).

At this point one could be tempted to suitably glue α with γ and ǫ and δ with
β and ζ. This however, as (23) shows, does not work. The right construction
is instead the following.

One considers two P2-bundles φi : P ♯i → B, i = 1, 2, associated to the vector
bundles L1 ⊕ L2 and L∨1 ⊕ L∨2 on B, i.e.,

P ♯1 = P(L∨1 ⊕ L∨2 ⊕OB), P ♯2 = P(L1 ⊕ L2 ⊕OB).

There are three relevant P1-subbundles of the bundles P ♯i , i = 1, 2, namely

(24)
ᾱ = P(L∨1 ⊕ L∨2 ), γ̄ = P(L∨2 ⊕OB), ǭ = P(L∨1 ⊕OB) in P ♯1
δ̄ = P(L1 ⊕ L2), ζ̄ = P(L1 ⊕OB), β̄ = P(L2 ⊕OB) in P ♯2 .

As (23) and (24) show, we can glue P with P ♯1 and P ♯2 in such a way that α
and δ are respectively glued to ᾱ and δ̄; ǫ is glued to ǭ and β to β̄ with a shift
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by −b1, and ζ to ζ̄ and γ to γ̄ with a shift by −b2. The resulting variety is
denoted by X = XB,b. As usual, we will denote by D its singular locus. On P̃
we have the line bundle

M̃ = w∗OP (Π1,∞ + Π2,∞)⊗OP̃ (Ξ− α),

where we write L instead of w∗(π∗(L)) for a line bundle, or divisor, L on B.
With similar notation, one has

(25)
M̃ ∼= OP̃ (α+ β + ζ + Ξ) ∼= OP̃ (δ + ǫ + ζ + Ξb1 )

∼= OP̃ (δ + γ + β + Ξb2).

One has OP ♯
1
(1) = OP ♯

1
(ᾱ) and the following linear equivalences

(26) ᾱ− γ̄ ≡ L∨2 , ᾱ− ǭ ≡ L∨1
where again we write L instead of φ∗i (L), i = 1, 2, for a line bundle, or divisor, L
on B (see again [17], Proposition 2.6, p. 371). From (25) and (26) one deduces

that M̃ glues with the line bundle M ♯
1 = OP ♯

1
(ᾱ+ Ξ) and with the line bundle

M ♯
2 = OP ♯

2
(Ξ), to give a line bundle M on X . In the obvious coordinates

(u, z) = ((u1, u2), (z1, . . . , zg−2)), which can be considered as coordinates on

P̃ − (α ∪ · · · ∪ ζ), the sections of M̃ can be expressed as

a ξ(τ, z) + a1u1 ξ(τ, z − ω1) + a2u2 ξ(τ, z − ω2)

with a, a1, a2 complex numbers. By taking into account the glueing conditions,
one sees that only a 1-dimensional subspace V of H0(P̃ , M̃) gives rise to a
space of sections of H0(X,M); V is generated by

(27) ξ(τ, z) + u1ξ(τ, z − ω1) + u2ξ(τ, z − ω2).

in the (u, z)-coordinates. Note that (27) is just obtained from the generalized
theta function in 16 by letting t = t12 tend to 0.
In conclusion, one has h0(X,M) = 1, hence there is a unique effective divisor
Ξ = Ξ which is the zero locus of a non-zero section of H0(X,M).
As in the standard case, we parametrize an open subset of Pic0(Ξ) with points

in the union of P −⋃i=1,2;h=1∞ Πi,h with P ♯1 − (ᾱ∪ γ̄ ∪ ǭ) and P ♯1 − (δ̄ ∪ ζ̄ ∪ β̄).

We can define the vertical singularities of the divisor Ξ, whose equations, in
the (u, z) coordinates, take the form
(28)

ξ(τ, z) = 0, u1ξ(τ, z − ω1) = 0, u2ξ(τ, z − ω2) =0,

∂iξ(τ, z) + u1∂iξ(τ, z − ω1) + u2∂iξ(τ, z − ω2) =0, i = 1, . . . , g − 2.

Again the vertical singular points of Ξ are essentially of three types:
(i) Consider a point x ∈ D which is the image via ϕ : X → X of a point in
Π1,0 ∩Π2,0

∼= B, i.e. in the (u, z) coordinates one has u1 = u2 = 0. Then this

is a vertical singular point of Ξ if and only if it corresponds to a singular point
of Ξ on Π1,0 ∩Π2,0

∼= B and to a singular point of Ξb1+b2 on Π1,∞ ∩Π2,∞ ∼= B.
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(ii) Consider a point x ∈ D which is the image via ϕ of a point in Πi,0 but not
of a point in Π3−i,0, i.e. in the (u, z) coordinates one has ui = 0, u3−i 6= 0, for

an i = 1, 2. If i = 1, this is a vertical singular point of Ξ if and only if

ξ(τ, z) = 0, ξ(τ, z − ω2) =0,

∂iξ(τ, z) + u2 ∂iξ(τ, z − ω2) =0, i = 1, . . . , g − 2.

i.e., if and only if z and z− b2 are in Ξ and γΞ(z) = γΞ(z− b2). Thus points of
this type correspond to points in N0(B,Ξ).
(iii) Consider a point x /∈ D, i.e., in the (u, z) coordinates one has u1 6= 0 6= u2.
Then equations (28) mean that z corresponds to a point in Ξ ∩ Ξb1 ∩ Ξb2
where Ξ,Ξb1 ,Ξb2 are tangentially degenerate. In other words points of this
type correspond to points in N0,2(B,Ξ).

Remark 17.2. A point x in Singvert(Ξ) determines a quadric Qx in Pg−1.
Remark 17.1 is still valid here.

A variant of this second type of rank-2 degeneration is obtained as follows.
Given a G2

m-extension X = Xb of B determined by a point b = (b1, b2) ∈ B̂2

we consider two P2-bundles P and P′ over B:

P = P(OB ⊕ L1 ⊕ L2) and P′ = P(L2 ⊕ L1 ⊕ (L1 ⊗ L2)),

where we write as before Li for Lbi . We can glue these over the common P1-
subbundle P(L1 ⊕ L2). Then we glue the P1-subbundle P(OB ⊕ L1) of P with
the P1-subbundle P(L2⊕ (L1⊗L2)) of P′ via a shift over b2. Similarly, we glue
the P1-subbundle P(OB ⊕ L2) of P with the P1-subbundle P(L1 ⊕ (L1 ⊗ L2))
of P′ via a shift over b1. In this way we obtain a non-normal variety over B.
Both P and P′ come with a relatively ample bundle OP(1) and OP′(1). On P
we have the linear equivalences

Π1 + π∗(Ξb1) ≡ Π2 + π∗(Ξb2) ≡ Π3 + π∗(Ξb1+b2).

with Πi = P(OB ⊕Li) for i = 1, 2 and Π3 = P(L1⊕L2). We let M be the line
bundle O(Π3 + π∗(Ξb1+b2)) on P and M ′ the line bundle O(Π′3 + π∗(Ξb1+b2))
on P′, where Π′3 is the bundle P(L1 ⊕ L2). This descends to a line bundle M
on X . This line bundle has a 1-dimensional space of sections generated by

θ(τ, z) = ξ(τ, z) + u1 ξ(τ, z1 − ω1) + u2 ξ(τ, z − ω2)

in suitable affine coordinates (u1, u2) on P2. Again the vertical singular points
of Ξ are essentially of three types:
(i) A point x ∈ D which is the image via ϕ : X → X of a point in Π1 ∩Π2 =
P(OB) ∼= B is a vertical singularity if it corresponds to a singularity on Ξ, to a
singularity on Ξb1 on Π1 ∩Π3 and a singularity on Ξb2 on Π2 ∩Π3;
(ii) A point x ∈ D which is the image via ϕ of a point on one Π3 but not of a
point in Π1 or Π2 is a vertical singular point of Ξ if and only if x ∈ Ξb1∩Ξb2 and
γΞb1

(x) = γΞb2
(x). Thus points of this type correspond to points in N0(B,Ξ).

Something similar happens for the points on exactly one of Π1 or Π2.
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(iii) A point x /∈ D is a vertical singularity if x ∈ Ξ ∩ Ξb1 ∩ Ξb2 and Ξ,Ξb1 ,Ξb2
are tangentially degenerate at x. In other words points of this type correspond
to points in N0,2(B,Ξ).
We see that the compactification depends on a choice, but in both cases we
can deal explicitly with the singularities of the theta divisors.

Remark 17.3. The variant just given corresponds to a tesselation of R2 given
by the lines x = a, y = b and x + y = c with a, b, c ∈ Z. To a triangle with
integral vertices (n,m), (n+1,m) and (n,m+1) (resp. (n−1,m), (n,m−1) and
(n,m)) we associate the P2-bundle P(Lnb1+mb2 ⊕L(n+1)b1+mb2 ⊕Lnb1+(m+1)b2)
(resp. P(L(n−1)b1+mb2 ⊕ Lnb1+(m−1)b2 ⊕ Lnb1+mb2) and we glue the bundles

belonging to adjacent triangles over the P1-bundle defined by the common
edge. Then the generator τ1 (resp. τ2) of Z2 acts by glueing the P1-bundle
associated to an edge to the P1-bundle associated to the translate by x 7→ x+1
(resp. y 7→ y + 1) of this edge using a translation over b2 (resp. b1). The
quotient under Z2 is the non-normal variety we just constructed. Also the
earlier compactifications thus correspond to tesselations (see [26], §7).

18. Compactification of Ag
In order to study the Andreotti-Mayer loci we need to compactifyAg. The mod-
uli space Ag admits a ‘minimal’ compactification, the Satake compactification
constructed by Satake and Baily-Borel in characteristic 0 and by Faltings-Chai
over the integers (see [32], [13]). This compactification A∗g is an orbifold or
stack which admits a stratification

A∗g = ⊔gi=0Ai
and the closure of Am in A∗g is A∗m = ⊔mi=0Ai. This compactification is highly
singular for g ≥ 2. Smooth compactifications can be constructed by the theory
developed by Mumford and his co-workers in characteristic 0 and by Faltings-
Chai in general. These compactifications depend on combinatorial data. We
shall use the Voronoi compactification Ãg = ÃVor

g as described by Namikawa,
Nakamura and Alexeev (see [29, 28, 5]). This compactification is a smooth

orbifold with a natural map q : Ãg → A∗g. It has the stratification induced by
that of A∗g: the stratum

A(r)
g = q−1(Ag−r)

is called the stratum of quasi-abelian varieties of torus rank r.
In §20 we also shall use another compactification, the perfect cone compactifi-
cation, cf. [29, 34]. It also has a map to the Satake compactification denoted by

q : Ãpc
g → A∗g ; sometimes we shall denote Ãpc

g simply by Ãg in order to avoid
introducing more notation. It has the following properties: i) the boundary is
an irreducible Q-Cartier divisor, ii) the general point of the boundary is smooth,

iii) the codimension of A(r)
g = q−1(Ag−r) equals r, iv) there is a dense open

subset U of A(≤4)
g and a family of compactified semi-abelian varieties X → U

extending the universal compactified semi-abelian variety over A≤1
g such that
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the standard compactifications of §16 form a dense open subset of A(r)
g . We

point out that in this case for r ≤ 4 the general fibre of q : A(r)
g → Ag−r has

dimension gr − r(r + 1)/2, thus dim(A(r))
g ) = g(g + 1)/2− r.

We define for our chosen compactification Ãg the boundary as ∂Ãg := A(≥1)
g .

Moreover we set A(≤r)
g := Ãg −A(≥r+1)

g .

For the Voronoi compactification the fibres of the map q : A(≤r)
g → A∗g are

well-behaved if r ≤ 4. Indeed, the points of A′g := A(≤4)
g correspond to so-

called stable quasi-abelian varieties which are compactifications of semi-abelian
varieties, which can be explicitely described (see [29, 28, 5] and §§15, 17 for
torus ranks 1 and 2). Thus one can define the vertical singular locus and
the Andreotti-Mayer loci on the partial compactification A′g (see Remark 18.1
below). For higher torus rank the situation is more complicated. For instance

the fibres of q : A(≥r)
g → A∗g−r might be non-reduced. However we will not

need r > 4 here.
An alternative approach might be to use the idea of Alexeev and Nakamura (cf.
[1], [28], [5]) who have constructed canonical limits for 1-dimensional families
of abelian varieties equipped with principal theta divisors.
The stable quasi-abelian varieties that occur inA′g for torus rank 1 and 2 are ex-
actly those described in Section 15 and 17. For torus rank 3 these are described
by the tesselations of R3 occuring on p. 188 of [28], cf. also Remark 17.3. The

open stratum of A(3)
g over Ag−3 corresponds to the standard compactifications

(see §16), obtained by glueing six P3-bundles over a (g−3)-dimensional abelian
variety B generalizing the construction for torus rank 2 where two P2-bundles
were glued. These closed strata correspond to degenerations of the matrix T
of the glueing data on which the standard compactifications depend (see §16).
For instance the codimension 3 stratum corresponds to the fact that in T two
of the three elements above the main diagonal tend to zero (or to ∞).

Remark 18.1. As we remarked before, for stable quasi-abelian varieties cor-
responding to points (X,Ξ) of A′g one can define the vertical singularities

Singvert(Ξ) using Ω1(logD) as in the previous sections. One checks that for
these compactifications the analogue of Lemma 16.1 still holds.

We will need the following result from [14].

Theorem 18.2. Let Z be an irreducible, closed subvariety of Ãg. Then Z∩∂Ãg
is not empty as soon as codimÃg

(Z) < g.

19. The Andreotti–Mayer loci and the boundary

We are working with a fixed compactification Ãg = ÃVor
g and, as indicated in

§18 above, we can define the Andreotti–Mayer loci over the part A′g = A(≤4)
g of

Ãg. We have Ng,k as a subscheme of Ag and we define Ñg,k as the schematic

closure. The support of Ñg,k contains the set of points corresponding to pairs

(X,Ξ) such that Singvert(X) has a component of dimension at least k (see [27]).
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It is interesting to look at the case k = 0, which has been worked out by
Mumford [27] and Debarre [11]. In this case Ñg,0 is a divisor and by Theorem

18.2, every irreducible component N of this divisor intersects ∂Ãg. Let M be

an irreducible component of N ∩ ∂Ãg, which has dimension
(
g+1
2

)
− 2.

First of all, notice that M cannot be equal to A(≥2)
g . This follows by the results

in §17 and by Propositions 11.6 and 12.1. More generally, in the same way, one

proves that M cannot contain A(r)
g for any r = 2, 3 and 4.

Hence M intersects A(1)
g in a non-empty open set of M , i.e., the intersection

with the boundary has points corresponding to semi-abelian varieties of torus
rank 1. If M does not dominate Ag−1 via the map q, then each fibre must have
dimension g − 1. By Proposition 11.6 this implies that M dominates N0,g−1.
If M dominates Ag−1 via q, the fibre of q|M over a general point (B,Ξ) ∈ Ag−1

is N0(B,Ξ).
Recall now that Debarre proves in [11] that N0,g has two irreducible com-
ponents, one of which is the so-called theta-null component θ0,g: the general
abelian variety (X,ΘX) in θ0,g, with ΘX symmetric, is such that ΘX has a
unique double point which is a 2-torsion point of X lying on ΘX .
Let M0,g be the other component. The general abelian variety (X,ΘX) in M0,g,
with ΘX symmetric, is such that ΘX has exactly two double points x and −x.
It is useful to recall that, by Corollary 8.12, at a general point of either one of
these component of Ng,0, the tangent cone to the theta divisor at the singular
points is a smooth quadric.
The component θ0,g intersects the boundary in two components, θ′0,g, θ

′′
0,g, one

dominating θ0,g−1, the other dominating Ag−1 with fibre over the general point
(B,Ξ) ∈ Ag−1 given by the component 2Ξ of N0(B,Ξ) (see §11). Also M0,g

intersects the boundary in two irreducible divisors M ′0,g,M
′′
0,g. The former is

irreducible and dominates M0,g−1, the latter dominates Ag−1 with fibre over
the general point (B,Ξ) ∈ Ag−1 given by the components of N0(B,Ξ) different
from 2Ξ.
The main ingredient for Debarre’s proof of the irreducibility of M0,g is a mon-
odromy argument which implies that, if (B,Ξ) is a general principally polarized
abelian variety of dimension g, then N0(B,Ξ) consists of only two irreducible
components.

Remark 19.1. Let (B,ΘB) be a general element in θ0,g and let (X,Ξ) be a
semi-abelian variety of torus rank one with abelian part B. Then there are no
points in Singvert(Ξ) with multiplicity larger than 2. This follows from the fact
that ΘB has a unique singular point and by Remark 15.1.

We finish this section with the following result which will be useful later on. It
uses the notion of asymptotic cone given in §6.

Proposition 19.2. One has:

(i) let g ≥ 3, let (B,Ξ) be a general point of θ0,g and let x be the singular

point of Ξ. Then the asymptotic cone TC
(4)
ξ is strictly contained in the

quadric tangent cone Qx;
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(ii) let g ≥ 4, let (B,Ξ) be a general point of M0,g and let x,−x be the sin-

gular points of Ξ. Then the asymptotic cone TC
(3)
ξ is strictly contained

in the quadric tangent cone Qx = Q−x.

Proof. Degenerate to the jacobian locus and apply the results from [18, 19]. �

20. The Conjecture for N1,g

In this section we prove Conjecture 9.1 for k = 1. We consider an irreducible
component N of Ñg,1 which is of codimension 3. The first observation is that
the assumption about the codimension of N implies that the generic princi-
pally polarized abelian variety is simple since by Remark 7.4 every irreducible

component of A(ns)
g has codimension ≥ g − 1 > 3 if we assume g ≥ 5.

Proposition 20.1. Let g ≥ 6 and let N be an irreducible component of Ñg,1

which is of codimension 3 in Ãg. Then N intersects the stratum A(1)
g .

Proof. We begin by remarking that N cannot be complete in Ag in view of

Theorem 18.2. Therefore N intersects ∂Ãg. Here we shall use the perfect

cone compactification, see §18. Since ∂Ãg is a divisor in Ãg it intersects N in

codimension one. Let M be an irreducible component of N ∩ ∂Ãg. It is our

intention to prove that M has a non-empty intersection with A(1)
g .

Suppose that M ⊆ A(≥4)
g . For dimension reasons we haveM = A(≥4)

g . Since we

are using a compactification Ãg such that the general point of A(4)
g corresponds

to a standard compactification (X,Ξ) of torus rank 4 with abelian part (B,Ξ) ∈
Ag−4 we deduce from Lemma 16.1 and Remark 18.1 that if dim(Singvert(Ξ)) ≥
1 then (B,Ξ) ∈ Ng−4,0. But for g ≥ 5 the locus Ng−4,0 is a divisor in Ag−4

and we obtain the inequality codim∂Ãg
(M) ≥ codim∂Ãg

(A(4)
g ) + 1 ≥ 5, a

contradiction. Therefore we can assume that M ∩ A(≤3)
g 6= ∅.

Suppose that M ∩A(3)
g has codimension 1 in A(3)

g . Then either M maps dom-

inantly to Ãg−3 via the map q : A(3)
g 99K Ãg−3 and M intersects the general

fibre F of q in a divisor, or M maps to a divisor in Ag−3 under q with full
fibres F contained in M .
The former case is impossible by Proposition 12.1. In the latter case for a
general (B,Ξ) in q(M) all the quasi-abelian varieties (X,Ξ) in the fibre F
over (B,Ξ) must have a 1-dimensional vertical singular locus of Ξ. Note that
(X,Ξ) corresponds to a standard compactification as considered in §16. By the
discussion given in §16 and by Proposition 11.6, we see that q(M) has to be

contained in Ng−3,1, against Theorem 8.6. We thus conclude that M ∩A(≤2)
g 6=

∅.
Suppose that M ∩ A(≥2)

g 6= ∅. Then M ∩ A(2)
g has codimension 2 in A(2)

g . As
above we have that q(M) is contained in Ng−2,0.
Suppose first q(M) is dense in a component of Ng−2,0. If (B,Ξ) is a general

element of q(M), then M intersects the fibre of q : A(2)
g 99K Ãg−2 over (B,Ξ) in
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codimension one. This gives a contradiction by the analysis §17 and Proposition
11.6.
Suppose that q(M) is not dense in a component of Ng−2,0. If (B,Ξ) is a general

element of q(M), then M contains the full fibre of q : A(2)
g → Ag−2 over (B,Ξ).

By taking into account the analysis §17 and Proposition 11.6, this implies q(M)
contained in Ng−2,1, giving again a contradiction.

This proves that M ∩ A(≤1)
g 6= ∅. �

From now on we use again the Voronoi compactification. Let g ≥ 4 and let
N be an irreducible component of Ng,1 of codimension 3 in Ag. As in the
proof above we denote by M an irreducible component of the intersection of
the closure of N in Ãg with the boundary ∂Ãg. According to Lemma 20.1 the

morphism q : Ãg → A∗g induces a rational map α : M 99K Ãg−1, whose image

is not contained in ∂Ãg−1.

Lemma 20.2. In the above setting, the Zariski closure of q(M) in Ãg−1 is:

(i) either an irreducible component N1 of Ñg−1,1 of codimension 3 in Ãg−1;

(ii) or an irreducible component N0 of Ñg−1,0 and in this case:
(a) if η = (B,Ξ) ∈ N0 is a general point, then the closure of q−1(η)

in B is an irreducible component of N1(B,Ξ) of codimension 2 in
B;

(b) if ξ = (X,Ξ) ∈ M is a general point, then Singvert(Ξ) meets
the singular locus D of X in one or two points, whose associated
quadric has corank 1.

Proof. If q(M) ⊆ Ng−1,1, then Theorem 8.6 implies 3 ≤ codimAg−1(q(M)) ≤
codim∂Ãg

(M) = 3 and the closure of q(M) must an irreducible component

of Ñg−1,1. If q(M) 6⊆ Ng−1,1 then by Proposition 12.1 we have that q(M) ⊆
Ng−1,0 and the fibre q−1(B,Ξ) ⊆ N1(B,Ξ). By Proposition 11.6 we have
codimB(N1(B,Ξ)) ≥ 2 and since Ng−1,0 is a divisor in Ag−1 we see that (iia)
follows. The last statement (iib) follows from Remark 12.3, the analysis in
Section 17, the description of Ng,0 by Mumford and Debarre (see [27], [11], and
§19) and Corollary 8.12. �

We are now ready for the proof of the conjecture for Ng,1.

Theorem 20.3. Let g ≥ 4. Then the codimension of an irreducible component
N of Ng,1 in Ag is at least 3 with equality if and only if:

(i) g = 4 and either N = H4 is the hyperelliptic locus or N = A4,(1,3);
(ii) g = 5 and N = J5 is the jacobian locus.

Proof. By Theorem 8.6, the codimension of N is at least 3. Suppose that N
has codimension 3. It is well-known that the assertion holds true for g = 4 and
5 (see [4], [10], [8]). We may thus assume g ≥ 6 and proceed by induction.
Let ζ = (X,ΘX) be a general point of N , so that X is simple (see Remark 7.4).
Let S be a 1-dimensional component of Sing(ΘX). We can assume that the
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class of S in X is a multiple mγX of the minimal class γX = Θg−1
X /(g − 1)! ∈

H2(X,Z). If not so, then End(X) 6= Z and this implies that codimAg (N) ≥
g − 1 (see Remark 7.4).
By Theorem 8.6, the general point in S is a double point for ΘX . We let R be
the curve in Sg whose general point is ξ = (X,ΘX , x), with x ∈ S a general
point. Note that R is birationally equivalent to S. Let Q be the linear system
of all quadrics in P(TX,0). One has the map

φ : ξ ∈ R 99K Qξ ∈ Q.
As in the proof of Theorem 8.6, the map φ is not constant. Let QR be the
span of the image of φ. As in the proof of Theorem 8.6, one has dim(QR) ≥ 2.
By Proposition 8.3, QR is contained in the linear system Ng,1(ζ) (see §7 for
the definition), which has dimension at most 2 since codimAg (N) = 3. Thus
QR = Ng,1(ζ) has dimension 2.

By Lemma 20.1, the closure of N in A(≤1)
g has non-empty intersection with

the boundary. As in the proof of Lemma 20.1, we let M be an irreducible

component of the intersection of the closure of N in A(≤1)
g with the boundary.

Consider the rational map α : M 99K Ag−1 and the closure of the image α(M),
for which we have the possibilities described in Lemma 20.2.

Claim 20.4. Possibility (i) in Lemma 20.2 does not occur.

Proof of the claim. By induction, one reduces to the case g = 6 and α(M) =
J5. Let (X,Ξ) ∈ M be a general point. Then (X,Ξ) is a general rank one
extension of the Jacobian (J(C),ΘC) of a general curve C of genus 5. Note
that if x ∈ J(C) corresponds to the extension, then ΘC and x + ΘC are not
tangentially degenerate (see [17], Thm. 10.8, p. 273). Then the analysis of
§15 implies that the vertical singular locus S0 of Ξ sits on the singular locus
D ∼= J(C) of X and it is isomorphic to SC = Sing(ΘC) with cohomology class
Θ4/12 (see [3]). Thus Ξ · S0 = ΘC · SC = 10. Hence, if ζ = (X,ΘX) is a
general point of N , then Sing(ΘX) is a curve S such that ΘX · S = 10. On
the other hand S is homologous to mγX and one has 10 = mΘX · γX = 6m, a
contradiction. �

Claim 20.4 shows that only possibility (ii) in Lemma 20.2 can occur. In par-
ticular, by (iib) of Lemma 20.2, for ξ = (X,ΘX , x) general in R, the quadric
Qξ has corank 1. Let vξ ∈ Pg−1 be the vertex of Qξ. Remember that R is
birational to S. Hence, by Proposition 4.4, the map

γ : ξ ∈ R 99K vξ ∈ Pg−1

can be regarded as the Gauss map γS of S.

Claim 20.5. If the general quadric in the linear system QR is singular, then for
ξ = (X,ΘX , x) general in R, the vertex vξ of Qξ is contained in the asymptotic

cone TC
(4)
ξ .
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Proof of the claim. Suppose the general quadric in QR is singular. Then the
general quadric in QR has corank 1 (see Lemma 20.2, (iib)) and, by Bertini’s
theorem, its vertex lies in the base locus ofQR. In particular, for ξ = (X,ΘX , x)
general in R, the vertex vξ of the quadric Qξ lies in all the quadrics of QR.
Choose a local parametrization x = x(t) of S around a general point of it, with
t varying in a disc ∆. Then ξ(t) = (X,ΘX , x(t)) ∈ R and we set Qξ(t) := Qt,
its equation being ∑

ij

∂i∂jθ(x(t))zizj = 0,

where we set θ(z) := θ(τ, z) for the theta function of X . The main remark is
that all the subsequent derivatives of Qt with respect to t lie in QR and actually
Qt and its first two derivatives Q′t and Q′′t span QR, because dim(QR) = 2.
Hence Bertini’s theorem implies that x′ := x′(s) sits on all these quadrics for t
and s general in ∆. The equations of Q′t and Q′′t are respectively

∑

ijh

∂i∂j∂hθ(x(t))x′h(t)zizj = 0

∑

ijhk

∂i∂j∂h∂kθ(x(t))x′h(t)x′k(t)zizj +
∑

ijh

∂i∂j∂hθ(x(t))x′′h(t)zizj = 0

Thus we have the relations
(29)

X

ij

∂i∂jθ(x(t))x′
i(s)x

′
j(t) = 0,

X

ijh

∂i∂j∂hθ(x(t))x′
h(t)x′

i(s)x
′
j(s) = 0

X

ijhk

∂i∂j∂h∂kθ(x(t))x′
h(t)x′

k(t)x′
i(s)x

′
j(s) +

X

ijh

∂i∂j∂hθ(x(t))x′′
h(t)x′

i(s)x
′
j(s) = 0

identically in s, t ∈ ∆. The first of these relations says that the tangent
hyperplane to Qt at x′(t) contains the vertex x′(s). From the second relation
we have

(30)
∑

ijh

∂i∂j∂hθ(x(t))x′h(t)x′i(t)x
′
j(t) = 0

which shows that vξ is contained in the asymptotic cone TC
(3)
ξ . By differenti-

ating (30), one finds
X

ijhk

∂i∂j∂h∂kθ(x(t))x′
h(t)x′

k(t)x′
i(t)x

′
j(t) + 3

X

ijh

∂i∂j∂hθ(x(t))x′′
h(t)x′

i(t)x
′
j(t) = 0.

By comparing with (29) for s = t, we deduce that
∑

ijhk

∂i∂j∂h∂kθ(x(t))x′h(t)x′k(t)x′i(t)x
′
j(t) = 0

which proves that vξ ∈ TC(4)
ξ . �

The crucial step in our proof is the following claim.

Claim 20.6. The general quadric in the linear system QR is non singular.
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Proof of the claim. Suppose this is not the case. Again we consider an irre-
ducible component M of N̄ ∩ ∂Ã′g and let (X,Ξ) be a general point of M .

By Claim 20.4 and Lemma 20.2, (X,Ξ) is a rank 1 extension of (B,Ξ) corre-
sponding to a general point in a component of Ng−1,0, with extension datum b
varying in a codimension 2 component of N1(B,Ξ). We let S0 be the vertical
singular locus of Ξ. By the analysis of §15, this corresponds to a contact curve
C := Cb of Ξ with Ξb, which contains the singular points of both Ξ and Ξb
(see Remark 12.3). This means that we have a point on S0, corresponding to a
singular point x of Ξ, where the tangent cone is the cone over Qx with vertex
the point of Pg−1 corresponding to b (see S 15).
Now we note that C is smooth at x. Indeed locally around x, the divisor Ξ
looks like a quadric cone of corank 1 in Pg−2 and Ξb looks like a hyperplane,
which touches it along a curve. This implies that C locally at x looks like a
line along which a hyperplane touches a quadric cone of corank 1 (see Remark
12.4).
Hence, the Gauss image xb := γCb

(x) lies in Qx and actually, by Claim 20.5,

the point xb lies in the asymptotic cone TC
(4)
x .

The Gauss map γΞ : Ξ 99K Pg−2 of Ξ has an indeterminacy point at x and −x,
which can be resolved by blowing up x and −x, since we may assume Ξ to be
symmetric. Let p : Ξ̃ → Ξ be the blow-up and let γ̃Ξ be the morphism which
coincides with γΞ ◦ p : Ξ̃ 99K Pg−2 on an open subset. The exceptional divisor
at x and −x is isomorphic to Qx and γ̃Ξ(xb) is the tangent hyperplane to Qx
at xb. The tangency property of Ξ and Ξb along C implies that the tangent
hyperplane to Qx at xb coincides with γΞb

(x).
Now we let b vary in a component Z of N1(B,Ξ) of dimension g − 3, so that
we have a rational map

f : Z 99K Qx, b 7→ xb.

Note that Qx also has dimension g − 3 and we claim that f has finite fibres,
hence it is dominant. If not, we would have an irreducible curve Γ in Z such
that for all b ∈ Γ, xb stays fixed. But then for the general b ∈ Γ, the divisor Ξb
has a fixed tangent hyperplane at x, a contradiction by Lemma 11.1.
On the other hand, by Claim 20.5 and by part (i) of Proposition 19.2, one has
that f cannot be dominant, a contradiction. �

By Lemma 20.6, the curve φ(R) := Σ is an irreducible component of the
discriminant ∆ ⊂ QR of singular quadrics in QR ∼= P2. Note that ∆ has
degree g in P2. The map φ has degree at least 2 since we may assume ΘX to
be symmetric, hence it factors through the multiplication by −1X on X .

Claim 20.7. The map φ : R→ Σ has degree 2.

Proof. Let d ≥ 2 be the degree of the map. Then for ξ = (X,ΘX , x) general in
R, we have distinct points ξi = (X,ΘX , xi) ∈ R, with ξ = ξ1, such that all the
quadrics Qξi , i = 1, . . . , d, coincide with the quadric Q = Qξ. If for i = 1, . . . , d
we let ηi be the tangent vector to S at xi, we have that η1 = · · · = ηd and
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∂ηiQξi , for i = 1, . . . , d, coincide with the quadric Q1 = ∂η1Q, which is linearly
independent from Q. The analysis we made in §3 shows that Sg is smooth at
each of the points ξi, i = 1, . . . , d, and the tangent space there is determined by
Q and Qη1 . This implies that a general deformation of ξ = (X,ΘX , x) inside
Sg carries with it a deformation of each of the points ξi (i = 1, . . . , d) in Sg,
because the involved quadrics are the same at these points. This yields that a
general element of an irreducible component of Ng,0 containing N has at least
d singular points. By Debarre’s result in [11] (see §19), one has d = 2, proving
our claim. �

Claim 20.8. The map φ is a morphism.

Proof. To prove the claim, it suffices to show that N is not contained in Ng,0,r,

with r ≥ 3. In order to prove this, one verifies that, for a general point (X,Ξ)
in a component M of the intersection of N with the boundary, there are no
points of multiplicity r ≥ 3 in Singvert(Ξ). Recall that, by Proposition 20.1, we
may assume that (X,Ξ) is a semi-abelian variety of torus rank 1, with abelian
part η = (B,Ξ). Moreover, by Claim 20.4, only case (ii) of Lemma 20.2 can
occur. Therefore we may assume that η is either a general point of θ0,g−1 or a
general point of M0,g−1 and the extension corresponds to a general point in an
irreducible component of N1(B,Ξ) which has dimension g−3 > 0. By Remark
15.1 we see that no triple points can occur on Singvert(Ξ). �

Note now that the morphism φ is defined on R ∼= S by sections of OS(ΘX),
since the points of S verify the equations (2) and, if ξ = (X,ΘX , x) ∈ R,
the entries of the matrix of Qξ are ∂i∂jθ(τ, z), where z corresponds to x. We
deduce from deg(∆) = g and from Claim 20.7, that

(31) S ·ΘX ≤ 2g.

As we assumed at the beginning of the proof, the class of S in X is a multiple
mγX of the minimal class. In view of (31), we find m ≤ 2. The Matsusaka-
Ran criterion [31] and a result of Welters [40] imply that (X,ΘX) is either a
Jacobian or a Prym variety or depends on less than 3g parameters. Since g ≥ 6
this is not possible in view of the dimensions. This ends the proof. �

Remark 20.9. A. Verra communicated to us an interesting example of an
irreducible component M of codimension 6 of N6,1 contained in the Prym
locus. We briefly sketch, without entering in any detail, its construction and
properties. Let C be the normalization of a general curve of type (4, 4) on
P1 × P1 with two nodes on a line of type (0, 1), so that C has genus g = 7.
Let d, t be the linear series formed by pull-back divisors on C of the rulings of
type (1, 0), (0, 1) respectively. Consider a non trivial, unramified double cover

f : C̃ → C of C and let (P,Ξ) be the corresponding Prym variety. Then Ξ has
a 1-dimensional unstable singular locus R (see [23]), homologically equivalent

to twice the minimal class, described by all classes in Pic12(C̃) of divisors of
the form f∗(d) + M , with f∗(M) ∈ t. One proves that the map φ described
in the proof of Theorem 20.3 sends R to a plane sextic of genus 7 which is
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tetragonally associated to C (see [23] for the tetragonal construction). The
divisor Ξ has 24 further isolated singular points, which are pairwise exchanged
by the multiplication by −1. One shows that the corresponding 12 tangent
cones span the same linear system Q of dimension 2 spanned by φ(R). The
linear system Q is the tangent space to the Prym locus P6 at (P,Ξ), which is
therefore a smooth point for P6. By contrast, M is a non-reduced component
of N6,1 of codimension 6 such that the projectivized normal space Q at a
general point has dimension 2 rather than 5. This shows that the hypotheses
of Theorem 20.3 cannot be relaxed by assuming only that the projectivized
normal space to M at a general point has dimension 2.

21. Appendix: A Result on Pencils of Quadrics

One of the ingredients of the proof Theorem 8.6 is a classical result of Corrado
Segre from [33] on pencils of quadrics.
First we recall the following:

Proposition 21.1. Let L be a pencil of quadrics in Pn with n ≥ 1 whose
general member is smooth. Then:

(i) the number of singular quadrics Q ∈ L is n+1, where each such quadric
Q has to be counted with a suitable multiplicity µ(Q) ≥ n+ 1− rk(Q);

(ii) for a singular quadric Q ∈ L one has µ(Q) ≥ 2 if and only if either
rk(Q) < n or the singular point of Q is also a base point of L;

(iii) for a singular quadric Q ∈ L with rank n one has µ(Q) = 2 if and only
if any other quadric Q′ ∈ L is smooth at p and the tangent hyperplane
to Q′ at p is not tangent to Q along a line.

Proof. Consider the linear system Qn of dimension n(n+ 3)/2 all quadrics in
Pn. Inside Qn we have the discriminant locus ∆n of singular quadrics, which is
a hypersurface of degree n+ 1, defined by setting the determinant of a general
quadric equal to zero. The differentiation rule for determinants implies that
the locus ∆n,r of quadrics of rank r < n+ 1 has multiplicity n+ 1− r for ∆n.
By intersecting ∆n with the line corresponding to L we have (i).
As for assertion (ii), we may assume rk(Q) = n, so that Q has a unique double
point p, which we may suppose to be the point (1, 0, . . . , 0). Thus the matrix
of Q is of the form (

0 0n
0tn A

)

where 0n ∈ Cn is the zero vector and A is a symmetric matrix of order n and
maximal rank. Let Q′ be another quadric in L, with matrix

(
β b
bt B

)

with β ∈ C, b = (b1, . . . , bn) ∈ Cn and B is a symmetrix matrix of order n. By
intersecting L with ∆n, we find the equation
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(32) det

(
tβ tb
tbt A+ tB

)
= 0.

The constant term in the left-hand-side is 0. The coefficient of the linear term
is

det

(
β b
0tn A

)
= β det(A)

which proves (ii).
Let us prove (iii). Suppose rk(Q) = n, so that Q has a unique double point p,
which is a base point of L. Again we may suppose p is the point (1 : 0 : . . . : 0)
and we can keep the above notation and continue the above analysis. The
left-hand-side in (32) is

t2 det

(
0 b
bt A+ tB

)
= 0

hence the coefficient of the third order term is

(33) det

(
0 b
bt A

)
.

One has µ(Q) = 2 if and only if this determinant is not zero, hence b 6= 0,
which is equivalent to saying that all quadrics in the pencil different from Q
are smooth at p. Note that there is a vector c = (c1, . . . , cn) ∈ Cn such that
b = c · A. Now the determinant in (33) vanishes if and only if c · bt = 0, i.e.
c · A · ct = 0. This means that the line L joining p with (0 : c1 : . . . : cn)
sits on Q and that the tangent hyperplane to Q′ at p, which has equation
b1x1 + ·+ bnxn = 0, is tangent to Q along r. �

Next we prove Segre’s theorem.

Theorem 21.2. Let L be a linear pencil of singular quadrics in Pn with n ≥ 2
whose general member Q has rank n+ 1− r, i.e. Vert(Q) ∼= Pr−1. We assume
that Vert(Q) is not constant when Q varies in L with rank n+ 1− r. Then:

(i) the Zariski closure

VL =
( ⋃

Q∈L, rk(Q)=n+1−r
Vert(Q)

)

is a variety of dimension r spanning a linear subspace Π of dimension
m in Pn with r ≤ m ≤ (n+ r − 1)/2;

(ii) VL is a variety of minimal degree m− r + 1 in Π;
(iii) if

dim
( ⋂

Q∈L, rk(Q)=n+1−r
Vert(Q)

)
= s

then r ≤ (n+ 2s+ 3)/3;
(iv) the number of quadrics Q ∈ L of rank rk(Q) < n + 1 − r is n + r −

2m− 1 ≤ n− r − 1, where each such quadric Q has to be counted with
a suitable multiplicity ν(Q) ≥ n+ 1− r − rk(Q).
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Proof. We start with the proof of part (i). Notice that, by iteratedly restricting
to a general hyperplane, we can reduce to the case r = 1.
In this case VL is a rational curve which, by Bertini’s theorem, is contained in
the base locus B of L. Let p, q be general points on it and let L be the line
joining them. There is a quadric Qp ∈ L with vertex at p. Hence Qp contains
L. Similarly there is a different quadric Qq with vertex at q, and it also contains
L. Since Qp and Qq span L, we see that L is contained in B, i.e., the secant
variety to VL is contained in B. Take now three general points p, q, r on VL.
Since the lines pq, pr, qr are contained in B also the plane spanned by p, q, r is
contained in B. Continuing this way, we see that Π = 〈VL〉 is contained in B.
Since the general quadric in L has rank n (recall we are assuming r = 1 now),
the maximal dimension of subspaces on it is n/2. Thus dim(Π) ≤ n/2 which
proves part (i).
Also for (ii) we can reduce ourselves to the case r = 1, in which we have to
prove that VL is a rational normal curve in Π = 〈VL〉. Set dim(Π) = m.
Let p ∈ VL be a general point. The polar hyperplane πp of p with respect to
Q ∈ L does not depend on Q, since there is a quadric in L which is singular at
p (see the proof of Proposition 21.1). Note that πp has to contain all vertices
of the quadrics in L, hence it contains Π. By the linearity of polarity, we have
that polarity with respect to all quadrics in L is constant along Π and for a
general point x ∈ Π, the polar hyperplane πx with respect to all quadrics in L
contains Π. Furthermore the linear system of hyperplanes P = {πx}x∈Π has
dimension m− 1.
Now, let p ∈ VL be a general point and let Qp be the unique quadric in L
with a double point at p. We denote by Star(p) the Pm−1 of all lines in Π
containing p. Let π ∈ P be a general hyperplane, which is tangent to Qp along
a line L containing p. Moreover L sits in Π, because this is the case if π = πq
with q another general point on VL, in which case L is the line 〈p, q〉. Thus we
have a linear map φp : P → Star(p), which is clearly injective and therefore an
isomorphism.
Fix now another general point q on VL. The two maps φp and φq determine a
linear isomorphism φ : Star(p)→ Star(q). Note that L meets φ(L) if and only
if L∩ φ(L) is a point of VL. This implies that VL is a rational normal curve in
Π, proving part (ii).
Let us prove part (iii). It suffices to prove the assertion if s = −1. The variety
VL is swept out by a 1-dimensional family of projective spaces of dimension
r − 1, i.e., the vertices of the quadrics in L. Under the assumption s = −1 no
two of these vertices can intersect. Thus we must have 2(r − 1) < m. Using
part (i), the assertion follows.
Finally we come to part (iv). Let us restrict L to a general subspace Λ of
dimension n− r. We get a pencil L̄ of quadrics in Λ whose general member is
smooth.
We get a singular quadric in L̄ when we intersect Λ with a quadric in L whose
vertex intersects Λ. We claim that this is the only possibility for getting a
singular quadric in L̄. Indeed, let Q ∈ L and suppose that its intersection
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Q̄ ∈ L̄ with Λ is singular at p ∈ Λ, but Q is not singular at p. Then Λ is
tangent to Q at p and therefore also intersects the vertex of Q.
In conclusion we have only two possibilities for getting singular quadrics in L̄:

(a) there is quadric of rank n+ 1− r in L whose vertex intersects Λ;
(b) there is quadric of rank n + 1 − h < n + 1 − r in L giving rise to a

quadric of rank n− h in L̄.

Case (a) occurs as many times as the degree of VL, that is, m − r + 1 times.
According to part (ii) of Proposition 21.1, each quadricQ in case (a) contributes
with multiplicity at least 2 in the counting of singular quadrics in L̄. We claim
that, because of the generality of Λ, this multiplicity is exactly 2. To prove
this, by part (iii) of Proposition 21.1, we will prove that for each quadric Q
in case (a), with vertex p ∈ Λ and for any other quadric Q′ ∈ L, the tangent
hyperplane π to Q′ at p is not tangent to Q along a line contained in Λ. To
see this we can, by first cutting with a general subspace of dimension n− r+ 1
through Λ, reduce ourselves to the case r = 1, in which VL is a rational normal
curve. Choose then a general point q ∈ VL and let Q′ = Qq be the unique
quadric in L with a double point at q. The hyperplane π is tangent to Qq
along the line 〈p, q〉. This implies that π is tangent to Q only along the tangent
line Lp to VL at p (see the proof of part ii)). By the generality assumption, Λ
is not tangent to VL at p. Thus the assertion follows.
As for quadrics in case (b), again by part (i) of Proposition 21.1, each such
quadric contributes to the same count with multiplicity h − r. Since, by part
(i) of Proposition 21.1, the number of singular quadrics in L̄, counted with
appropriate multiplicity, is n− r + 1, the assertion follows. �

One has the following consequence:

Corollary 21.3. Let L be a linear pencil of quadrics in Pn with n ≥ 2. Then
the general member Q ∈ L has rank n + 1 − r (i.e., Vert(Q) ∼= Pr−1) if and
only if the base locus of L contains a linear subspace Π of dimension m with
r ≤ m ≤ (n + r − 1)/2, along which all the quadrics in L have a common
tangent subspace of dimension n+ r−m− 1. In this case Π is the span of the
variety VL.

Proof. As usual it suffices to prove the assertion for r = 1. If the general
quadric Q ∈ L has rank rk(Q) = n, the assertion follows from the proof of
Theorem 21.2. The converse is trivial, since a smooth quadric in Pn has a
tangent subspace of dimension n−m− 1, and not larger, along a subspace of
dimension m. �

These results imply the existence of canonical forms for pencils of singular
quadrics, originally due to Weierstrass [38] and Kronecker [21]. This is ex-
plained in some detail in [33], §§20-25, and we will not dwell on this here.
It would be desirable to have an extension of the results in this Appendix to
higher-dimensional linear families of quadrics.
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1. Introduction

The purpose of this paper is to set down some basic facts about the algebraic
and topological K-theory of log-schemes. Log-schemes come equipped with
several natural topologies. The main two are the Kummer log-étale topology,
well suited to study l-adic phenomena, and the Kummer log-flat topology (to-
gether with its derivative – the Kummer log-syntomic topology) reasonably
well-suited to study p-adic phenomena. These topologies are often enhanced
by adding log-blow-ups as coverings, a procedure that yields better behaved
topoi.
The investigation of coherent and locally free sheaves in these topologies as
well as of the related descent questions was initiated by Kato in [24]. In par-
ticular, Kato was able to compute the Picard groups of strictly local rings. A
foundational study of the algebraic K-theory of the Kummer log-étale topos
(i.e., the Quillen K-theory of locally free sheaves in that topos) was done by
Hagihara in [14]. He has shown that over a separably closed field Kummer
log-étale K-theory satisfies devissage, localization as well as Poincaré duality
for log-regular regular schemes. Using these facts and an equivariant K-theory
computation of the Kummer log-étale K ′-theory of log-points (fields equipped
with log-structure) he obtained a structure theorem (see Theorem 4.13 below)
for Kummer log-étale K-theory of a certain class of log-schemes including those
coming from a smooth variety with a divisor with strict normal crossings.
This paper builts on the results of Kato and Hagihara. In section 2 we fo-
cus on some basic properties of the topologies we will use. In section 3 we
study coherent and locally free sheaves in these topologies. Since Kato’s paper
remains unfinished and unpublished, for the convenience of the reader (and
the author), this section contains some of Kato’s proofs as well as supplies
proofs of the results only announced in [24]. In section 4 we study algebraic
K-theory. We generalize Hagihara’s work to schemes over fields with Kummer
log-étale topology and to arbitrary schemes with Kummer log-flat topology.
This is rather straightforward and is done by studying equivariant K-theory
of finite flat group schemes instead of just finite groups as in Hagihara. The
following structure theorem follows. Let X be a regular, log-regular scheme
with the log-structure associated to a divisor D with strict normal crossing.
Let {Di|i ∈ I} be the set of the irreducible (regular) components of D. For an
index set J ⊂ I denote by DJ the intersection of irreducible components in-
dexed by J and by Λ|J| (resp. Λ′|J|) the free abelian groups generated by the set

{(a1, . . . , a|J|)|ai ∈ Q/Z\{0}} (resp. the set {(a1, . . . , a|J|)|ai ∈ (Q/Z)′\{0}}).
Theorem 1.1. For any q ≥ 0 we have the canonical isomorphism

Kq(Xkfl) ≃
⊕

J⊂I
Kq(DJ)⊗ Λ|J|

Moreover, if D is equicharacteristic then canonically

Kq(Xkét) ≃
⊕

J⊂I
Kq(DJ)⊗ Λ′|J|
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Section 5 is devoted to topological K-theory. By definition this is K-cohomology
of the various sites considered in this paper. The main theorem (Theorem 5.14
and Corollary 5.17) states that l-adic log-étale K-theory of a log-regular scheme
computes the étale K-theory of the largest open set on which the log-structure
is trivial.

Theorem 1.2. Let X be a log-regular scheme satisfying condition (*) from
section 5. Let n be a natural number invertible on X. Then the open immersion
j : U →֒ X, where U = Xtr is the maximal open set of X on which the log-
structure is trivial, induces an isomorphism

j∗ : Kvkét
m (X,Z/n)

∼→ K ét
m(U,Z/n), m ≥ 0.

This follows from the fact that we can resolve singularities of log-regular
schemes by log-blow-ups and that the étale sheaves of nearby cycles can be
killed by coverings that are étale where the log-structure is trivial and tamely
ramified at infinity.

Acknowledgments. Parts of this paper were written during my visits to
Strasbourg University, Cambridge University, and Tokyo University. I would
like to thank these institutions for their hospitality and support.

For a log-scheme X , MX will always denote the log-structure of X . Unless
otherwise stated all the log-structures on schemes are fine and saturated (in
short: fs) and come from the étale topology, and all the operations on monoids
are performed in the fine and saturated category.

2. Topologies on log-schemes

In this section we collect some very basic facts about topologies on log-schemes.

2.1. The Kummer log-flat and the Kummer log-syntomic topology.

2.1.1. The log-étale, log-syntomic, and log-flat morphisms. The notion of the
log-étale and the log-flat morphism recalled below is the one of Kato [23, 3.1.2].
The notion of log-syntomic morphism we introduce is modeled on that. Our
main reason for introducing it is the local lifting property it satisfies (see Lemma
2.9).

Definition 2.1. Let f : Y → X be a morphism of log-schemes. We say that
f is log-étale (resp. log-flat, resp. log-syntomic) if locally on X and Y for
the (classical) étale (resp. fppf, resp. syntomic) topology, there exists a chart
(P →MX , Q→MY , P → Q) of f such that the induced morphisms of schemes

• Y → X ×Spec(Z[P ]) Spec(Z[Q]),
• Spec(OY [Qgp])→ Spec(OY [P gp])

are classically étale (resp. flat, resp. syntomic).

Recall the definition of (classical) syntomic morphism.
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Definition 2.2. Let f : Y → X be a morphism of schemes. We say that
f is syntomic if locally on X and Y for the classical étale topology f can
be written as f : Spec(B) → Spec(A), with B = A[X1, . . . , Xr]/(f1, . . . , fs),
where the sequence (f1, . . . , fs) is regular in A[X1, . . . , Xr] and the algebras
A[X1, . . . , Xr]/(f1, . . . , fi) are flat over A, for all i.

Syntomic morphisms are stable under composition and base change.

Remark 2.3. We should mention that, a priori, in the Definition 2.1 we have
used (after Kato [23, 3.1]) the following meaning of property being local on
X and Y : there exist coverings (Xi → X)i and (Yij → Xi ×X Y )j , for each
i, for the corresponding topology such that each morphism Yij → Xi has
the required property. By Lemma 2.8 below, this is equivalent for log-étale,
log-flat, and log-syntomic morphisms, to the more usual meaning: for every
point y ∈ Y and its image x ∈ X , there exist neighbourhoods U and V of
y and x respectively (for the corresponding topology) such that U maps to
V and the morphism U → V has the required property. In particular, in
the Definition 2.1 we may use the second meaning of “locally” and change
the second condition to “Spec(OX [Qgp]) → Spec(OX [P gp]) is classically étale
(resp. flat, resp. syntomic).”

Remark 2.4. The notion of log-syntomic morphism presented here is not the
same as the one used by Kato [21, 2.5]. Recall that Kato defines an integral
morphism f : Y → Z of fine log-schemes to be log-syntomic if étale locally Y
(over Z) embeds into a log-smooth Z-scheme via an exact classically regular
embedding over Z. In particular, Kato’s log-syntomic morphisms are classically
flat while ours are not necessarily so.

Lemma 2.5. Let S be a nonempty scheme and let h : G → H be a homomor-
phism of finitely generated abelian groups. Then the morphism OS [G]→ OS [H ]
is étale (resp. flat or syntomic) if and only if the kernel and the cokernel of h
are finite groups whose orders are invertible on S (resp. if the kernel of h is a
finite group whose order is invertible on S).

Proof. The étale case follow from [22, 3.4]. The “if” part of the flat case follows
from [22, 4.1]. We will now show that if the induced morphism f : k[G]→ k[H ],
where k is a field is flat, then the kernel N of h is torsion of order invertible in k.
Take an element g from N . It is easy to see that the kernel of the multiplication
by g− 1 on k[G] is generated, as an ideal, by elements 1 + g+ . . .+ gn−1, such
that gn = 1. By the flatness of f , the images of these elements in k[H ] generate
as an ideal the whole of k[H ]. In particular, the element g has to be of finite
order d and the ideal of the multiplication by g− 1 on k[G] is generated by the
element 1 + g+ . . .+ gd−1. But f(1 + g+ . . .+ gd−1) = d. Hence d is invertible
in k, as wanted. The syntomic case follows from Lemma 2.6 below. �

Lemma 2.6. With the notation as in the above lemma, the morphism OS [G]→
OS [H ] is flat if and only if it is syntomic.
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Proof. Since syntomic morphism is flat, we have to show that if the morphism
OS [G] → OS [H ] is flat it is already syntomic. Let N = ker(G → H). Our
morphism OS [G]→ OS [H ] factors as OS [G]→ OS [G/N ]→ OS [H ]. Since the
morphism OS [G] → OS [H ] is flat, the group N is torsion of order invertible
on S (see the previous lemma). This yields that the first morphism in our
factorization is étale hence syntomic. This allows us to reduce the question to
proving that if the morphism h : G→ H is injective then the induced morphism
Z[G]→ Z[H ] is syntomic.
Write H = H1/G1, for H1 = G ⊕ Zr1 ⊕ . . . ⊕ Zrn and a subgroup G1 of
H1. Since H1,tor = Gtor and the map G → H is injective, the group G1 is
finitely generated and torsion-free. Write G1 = Za1⊕ . . .⊕Zak. We claim that
Z[H ] ≃ Z[H1]/(a1−1, . . . , ak−1) and the sequence {a1−1, . . . , ak−1} is regular.
SetH1,l := H1/Za1⊕. . .⊕Zal. Note that, since the group Za1⊕. . .⊕Zal⊕Zal+1

is torsion free, the element al+1 is not torsion in H1,l. This easily implies (cf. [5,
2.1.6]) that al+1−1 is not a zero-divisor in Z[H1,l]. To finish, it suffices to check
that the natural map Z[H1,l]/(al+1 − 1) → Z[H1,l/Zal+1] is an isomorphism.
But this is clear since we have the inverse induced by x 7→ x, for x ∈ H1,l. �

Lemma 2.7. (1) Log-étale, log-flat, log-syntomic morphisms are stable un-
der compositions and under base changes.

(2) Let f : Y → X be a strict morphism of log-schemes, i.e., a morphism

such that f∗MX
≃→ MY . Then f is log-étale (resp. log-flat, resp.

log- syntomic) if and only if the underlying morphism of schemes is
(classically) étale (resp. flat, resp. syntomic).

(3) Let S be a scheme and let P → Q be a morphism of monoids. Then the
induced morphism of log-schemes Spec(OS [Q]) → Spec(OS [P ]) is log-
étale (resp. log-flat, resp. log-syntomic) if and only if the morphism of
schemes Spec(OS [Qgp]) → Spec(OS [P gp]) is (classically) étale (resp.
flat, resp. syntomic).

Proof. The only nonobvious statement is the one concerning compositions,
which follow easily from Lemma 2.8 below. �

Lemma 2.8. Let f : Y → X be a morphism of log-schemes and let β : P →MX

be a chart. Assume that f is log-étale (resp. log-flat, resp. log-syntomic). Then,
étale (resp. flat, resp. syntomic) locally on X and on Y in the classical sense,
there exists a chart (P → MX , Q → MY , P → Q) including β satisfying the
conditions in Definition 2.1. We can require further P gp → Qgp to be injective.

Proof. For the log-étale and the log-flat topology this is Lemma 3.1.6 from [23].
We will argue in a similar fashion for the log-syntomic case taking into account
that (unlike in [23]) our monoids are always saturated.
Let (P ′ → MX , Q

′ → MY , P
′ → Q′) be a chart satisfying the conditions in

Definition 2.1. Fix y ∈ Y, x = f(y) ∈ X . By replacing P ′ with the inverse
image P1 (which is always saturated) of MX,x under the map

P gp ⊕ (P ′)gp →Mgp
X,x; (a, b) 7→ ab,
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and by replacing Q′ with the pushout P1 ← P ′ → Q′, we may assume that
β : P →MX factors as P → P ′ →MX . By (Zariski) localization we may also
assume that P ′/(P ′)∗ ≃MX,x/O∗X,x and Q′/(Q′)∗ ≃MY,y/O∗Y,y.
Assume for the moment that the morphism (P ′)gp → (Q′)gp is injective. Con-
sider the pushout diagrams with exact rows

0 −−−−→ P gp −−−−→ H −−−−→ W −−−−→ 0
y

y
∥∥∥

0 −−−−→ (P ′)gp −−−−→ (Q′)gp −−−−→ W −−−−→ 0
y

y
∥∥∥

0 −−−−→ G −−−−→ T −−−−→ W −−−−→ 0,

where the group G is the cokernel of the map P gp → (P ′)gp. We want to
construct the group H . For that, it suffices to show that the map T →W has
a section. Consider a direct summond Z/nZ of W . Let t ∈ T be a preimage
of a generator of Z/nZ. Then tn = b, b ∈ G. Take b′ ∈ (P ′)∗ in the preimage
of b. Since P ′/(P ′)∗ ≃ MX,x/O∗X,x and P gp maps onto Mgp

X,x/O∗X,x such a

b′ exists. Define the group G1 by adjoining the n’th root of b′ to (P ′)∗. By
localizing in the classical syntomic topology, we can now change P ′ and Q′ into
the pushouts P ′ ← (P ′)∗ → G1 and Q′ ← (P ′)∗ → G1. Note that we can
do that since the morphism (P ′)∗ → G1 is injective with finite cokernel, hence
the induced morphism Spec(Z[G1])→ Spec(Z[(P ′)∗]) is syntomic (Lemma 2.5)
and surjective. Moreover, the above pushouts taken in the category of monoids
are already fine and saturated. Now, b = an for some a ∈ G. Changing t to
t/a gives us an element in the preimage of our generator of Z/nZ whose n’th
power is one, hence the section we wanted.
Let now Q be the inverse image of MY,y under the map H → Mgp

Y,y (it is

saturated). Since P ′/(P ′)∗ ≃ MX,x/O∗X,x and Q′/(Q′)∗ ≃ MY,y/O∗Y,y this
gives a local chart at y. We claim that the natural morphism P → Q gives
us the chart we wanted. The map P gp → Qgp is clearly injective. Let Q1

be the pushout P ′ ← P → Q. There is a natural morphism Q1 → Q′. By
Zariski localizing on Y , we may assume that Q1/Q

∗
1
∼→ Q′/(Q′)∗. Since the

map Qgp1 → (Q′)gp is an isomorphism, this yields that Q1
∼→ Q′. Hence the

morphism P → Q is indeed the chart we wanted.
Let now (P → MX , Q → MY , P → Q) be a chart satisfying the conditions
in Definition 2.1. It remains to show that we may assume P gp → Qgp to be
injective. Indeed, let N be the kernel of P gp → Qgp. Consider the pushout
diagram with exact rows

0 −−−−→ P gp −−−−→ H −−−−→ W −−−−→ 0
y

y
∥∥∥

0 −−−−→ P gp/N −−−−→ Qgp −−−−→ W −−−−→ 0.
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It is easy to construct the group H . Let now Q′ be the inverse image of MY,y

under the map H → Mgp
Y,y (it is saturated). Q′ gives a local chart at y. Since

N is the kernel of the map (Q′)gp → Qgp and N is a finite group of order
invertible on Y , there exists an open set U ⊂ X ×Spec(Z[P ]) Spec(Z[Q′]) such
that the order of N is invertible on U . Then the morphism U → X ×Spec(Z[P ])

Spec(Z[Q′]) is log-étale. On the other hand this morphism is (perhaps after
Zariski localization) strict. Hence it is étale. This shows that (P →MX , Q

′ →
MY , P → Q′) is a chart satisfying the conditions in Definition 2.1 such that
the map P gp → (Q′)gp is injective. �

Lemma 2.9. Let Y →֒ X be a exact closed immersion defined by a nilideal.
Étale locally log-syntomic morphisms over Y can be lifted to log-syntomic mor-
phisms over X.

Proof. Immediate from Lemma 2.8 (note that it suffices to localize in the étale
topology on Y ) and the well-known lifting property for classical syntomic mor-
phisms that we recall below. �

Lemma 2.10. Let A be a commutative ring, B → A a closed immersion defined
by a nilideal, and C = A[X1, . . . , Xn]/(G1, . . . , Gr) an A-algebra such that the
sequence (G1, . . . , Gr) is regular and each A[X1, . . . , Xn]/(G1, . . . , Gi), i ≤ r, is
flat over A. Let (Ǧ1, . . . , Ǧr) be liftings of (G1, . . . , Gr) to B[X1, . . . , Xn]. Then
the sequence (Ǧ1, . . . , Ǧr) is regular and each B[X1, . . . , Xn]/(Ǧ1, . . . , Ǧi), i ≤
r, is flat over B.

2.1.2. Kummer topologies. Recall first the definition of Kummer morphisms.

Definition 2.11. (1) A homomorphism of monoids h : P → Q is said to
be of Kummer type if it is injective and, for any a ∈ Q, there exists
n ≥ 1 such that an ∈ h(P ).

(2) A morphism f : X → Y of log-schemes is of Kummer type if for
any x ∈ X , the induced homomorphism of monoids (M/O∗)Y,f(x) →
(M/O∗)X,x is of Kummer type in the sense of (1).

One checks [27, 2.1.2] that Kummer morphisms are stable under base changes
and compositions.

Remark 2.12. Note that if the morphism P → Q is Kummer, then by Lemma
2.6 the associated morphism Spec(Z[Q]) → Spec(Z[P ]) is both log-flat and
log-syntomic.

Definition 2.13. Let X be a log-scheme. A morphism Y → X is called
Kummer log-étale (resp. log-flat, log-syntomic) if it is log-étale (resp. log-flat,
log-syntomic) and of Kummer type and the underlying morphism of schemes
is locally of finite presentation. The log-étale (resp. log-flat, log-syntomic)
topology on the category of Kummer log-étale (resp. log-flat, log-syntomic)
morphisms over X is defined by taking as coverings families of morphisms
{fi : Ui → T }i such that each fi is log-étale (resp. log-flat, log-syntomic) and
T =

⋃
i fi(Ui) (set theoretically).
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This defines a Grothendieck topology by the following result of Nakayama [27,
2.2.2].

Lemma 2.14. Let f : Y → X be a morphism of log-schemes that is Kummer and
surjective. Then, for any log-scheme X ′ → X, the morphism Y ×X X ′ → X ′

is surjective. In fact, for any y ∈ Y and x ∈ X ′ having the same image in X,
there exists z ∈ Y ×X X ′ mapping to x and to y.

The following proposition describes a very useful cofinal system of coverings
for the Kummer log- étale, log-flat and log-syntomic sites.

Proposition 2.15. Let f : Y → T be a Kummer log-étale (resp. log-flat, log-
syntomic) morphism. Let y ∈ Y, t = f(y), and P → MT be a chart such that
P ∗ ≃ {1}. Then there exists a commutative diagram

X
h−−−−→ Tn

g

y
y

Y
f−−−−→ T,

where y is in the image of g, h is classically étale (resp. flat, syntomic), g is
Kummer log-étale (resp. log-flat, log-syntomic), and n is invertible on X (resp.
any, any).

Proof. We will argue the case of Kummer log-flat topology. The other cases
are similar. By Lemma 2.8 localizing on Y (but keeping y ∈ Y ) for the flat
topology, we get a chart (P → MT , Q → MY , P → Q) as in Definition 2.1
such that P gp → Qgp is injective. Note that localizing on T is not necessary.
Arguing further as in the proof of Proposition A.2 in [28] we may assume that Q
is torsion free. Hence P gp ≃ Qgp as abelian groups. Write n : P → Q→ P 1/n

for some n, where P 1/n is a P -monoid such that P → P 1/n is isomorphic to
n : P → P . Set X = Y ×TQTn, where Tn = T⊗Z[P ]Z[P 1/n], TQ = T⊗Z[P ]Z[Q].

By definition the map h : X → Tn is classically flat and, since Qgp →֒ P 1/n,gp,
the induced map g : X → Y is surjective and Kummer log-flat. �

Corollary 2.16. Let f : Y → T be a Kummer log-flat (resp. log-syntomic)
morphism. Let P → MT be a chart such that P ∗ ≃ {1}. Then there exists a
Kummer log-flat (resp. log-syntomic) covering V → Y such that for some n
the map V ×T Tn → Tn is classically flat (resp.syntomic).

Proof. We will treat the flat case. The syntomic case is similar. By Proposition
2.15, there exists n such that for a flat covering V → Y the induced map V → T
factors as V → Tn → T , where the map V → Tn is classically flat. We have
the following cartesian diagram

Vn = V ×Tn Tn ×T Tn −−−−→ Tn ×T Tn p2−−−−→ Tny p1

y
y

V −−−−→ Tn −−−−→ T,
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Since p1, p2 are classicaly flat, so is the map Vn → Tn, as wanted. �

Similarly one proves the following

Corollary 2.17. Let f : Y → T be a Kummer log-étale covering. Let P →
MT be a chart such that P ∗ ≃ {1}. Then, Zariski locally on T , there exists a
Kummer log-étale covering V → T refining f such that, for some n invertible
on T , the map V ×T Tn → Tn is classically étale.

For a log-scheme X , we will denote by Xkét (resp. Xkfl, Xksyn) the site defined
above. In what follows, I will denote sites and the associated topoi in the same
way. I hope that this does not lead to a confusion.
We will need to know that certain presheaves are sheaves for the Kummer
topologies.

Proposition 2.18. Let X be a log-scheme. Then the presheaf (Y → X) 7→
Γ(Y,OY ) is a sheaf on all Kummer sites.

Proof. It is clearly enough to show this for the Kummer log-flat site. In that
case it follows from a Kummer descent argument (see Lemma 3.28 below). �

More generally

Proposition 2.19. Let X be a log-scheme. Let F be a quasi-coherent sheaf on
XZar. Then the presheaf

(f : T → X) 7→ Γ(T, f∗F)

is a sheaf on all Kummer sites.

Proof. It is clearly enough to show this for the Kummer log-flat site. In that
case it follows from the proof of the Kummer descent argument below via
exhibiting an explicite contracting homotopy (see Lemma 3.28). �

And in a different direction, we have the following theorem. The proof pre-
sented here is that of Kato [24, 3.1].

Theorem 2.20. Let X be a log-scheme, and let Y be a log-scheme over X.
Then the functor

MorX( , Y ) : T 7→ MorX(T, Y )

on (fs/X) is a sheaf for all the Kummer topologies.

Proof. We claim that it suffices to show that the functors

(2.1) T 7→ Γ(T,OT ), T 7→ Γ(T,MT ).

are sheaves for the Kummer log-flat topology. To see that assume that X =
Spec(Z) with the trivial log-structure, Y is an affine scheme with a chart P →
Γ(Y,MY ). Let F,G,H be the following functors from (fs)/ Spec(Z) to (Sets)

F (T ) = {ring homomorphisms Γ(Y,OY )→ Γ(T,OT )},
G(T ) = {monoid homomorphisms P → Γ(T,MT )},
H(T ) = {monoid homomorphisms P → Γ(T,OT )}.
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The functor MorX( , Y ) : T 7→ MorX(T, Y ) is the fiber product F → H ← G,
where the first arrow is induced by P → Γ(Y,OY ) and the second one by
Γ(T,MT ) → Γ(T,OT ). It follows that it suffices to show that the functors
F,G,H are sheaves.
Take now a presentation

Γ(Y,OY ) = Z[Ti; i ∈ I]/(fj; j ∈ J),

Nr ⇉ Ns → P.

We get that F (T ) is the kernel of Γ(T,OT )I → Γ(T,OT )J and G(T ) and H(T )
are the equalizers of Γ(T,MT )s ⇉ Γ(T,MT )t and Γ(T,OT )s ⇉ Γ(T,OT )t,
respectively. Thus it suffices to show that the functors in (2.1) are sheaves.
For the functor T 7→ Γ(T,OT ) this follows from Lemma 3.28. For the functor
T 7→ Γ(T,MT ) we first show that it is a sheaf for the classical flat topology. If
T ′ → T is a fppf covering, then we know that the sequence

Γ(T,O∗T )→ Γ(T ′,O∗T ′) ⇉ Γ(T ′′,O∗T ′′)

where T ′ = T ′ ×T T ′, is exact. Since MT ′/O∗T ′ and MT ′′/O∗T ′′ are pulbacks of
MT /O∗T , the sequence

Γ(T,MT /O∗T )→ Γ(T ′,MT ′/O∗T ′) ⇉ Γ(T ′′,MT ′′/O∗T ′′)

is exact as well. Next we treat Kummer coverings

Lemma 2.21. Take T = Spec(A) for a local ring A equipped with a chart
P → Γ(T,MT ), P ≃ (MT /O∗T )t, where t is the closed point of T . Let Q be
a monoid with no torsion. Let P → Q be a homomorphism of Kummer type.
Let T ′ = T ⊗Z[P ] Z[Q] endowed with the log-structure associated to Q. Let
T ′′ = T ′ ×T T ′. Then

Γ(T,MT )→ Γ(T ′,MT ′) ⇉ Γ(T ′′,MT ′′)

is exact.

Proof. Set A′ = Γ(T ′,OT ′) = A ⊗Z[P ] Z[Q], A′′ = Γ(T ′′,OT ′′) = A ⊗Z[P ]

Z[Q ⊕ (Qgp/P gp)]. By Lemma 3.28 the sequence A → A′ ⇉ A′′ is exact.
Let I, I ′, I ′′ be the ideals of A,A′, A′′, respectively, generated by the images
of P \ {1}, Q \ {1}, Q \ {1}, respectively. Let V, V ′, V ′′ be the subgroups of
A∗, (A′)∗, (A′′)∗, respectively, consisting of elements that are congruent to 1
modulo I, I ′, I ′′, respectively. Since A/I ≃ A′/I ′ the sequence V → V ′ ⇉ V ′′

is exact. It remains to show that the sequence

Γ(T,MT )/V → Γ(T ′,MT ′)/V ′ ⇉ Γ(T ′′,MT ′′)/V ′′

is exact. This sequence is isomorphic to

P ⊕ (A/I)∗ → Q⊕ (A/I)∗ ⇉ Q⊕ {(A/I)[Qgp/P gp]}∗,
where the two arrows in the middle are β1 : (q, u) 7→ (q, u), β2 : (q, u) 7→ (q, qu).
The exactness of the last sequence follows from the exactness of P → Q →
Q⊕ (Qgp/P gp). �

�

Documenta Mathematica 13 (2008) 505–551



K-Theory of Log-Schemes I 515

Denote by G×m the functor T 7→ Γ(T,Mgp
T ) on (fs/X). The above theorem

yields

Corollary 2.22. ([24, 3.6]) The functor G×m is a sheaf for all the Kummer
topologies.

Proof. This argument is also due to Kato [24, 3.6]. It suffices to show that
G×m is a sheaf for the Kummer log-flat topology. Let T ′ → T be a Kummer
log-flat covering equipped with a chart P → Γ(T,MT ). Set T ′′ = T ′×T T ′. We
have Γ(T,Mgp

T ) = inj lima Γ(T, a−1MT ), where a ranges over all elements of P .
Since both T ′ and T ′′ are of Kummer type over T , we also have Γ(T ′,Mgp

T ′ ) =
inj lima Γ(T ′, a−1MT ′) and Γ(T ′′,Mgp

T ′′) = inj lima Γ(T ′′, a−1MT ′′). It follows
that the exactness of the sequence

Γ(T,Mgp
T )→ Γ(T ′,Mgp

T ′ ) ⇉ Γ(T ′′,Mgp
T ′′)

is reduced to the exactness of the sequence

Γ(T,MT )→ Γ(T ′,MT ′) ⇉ Γ(T ′′,MT ′′)

that was proved above. �

2.2. The valuative topologies. The valuative topologies refine Kummer
topologies with log-blow-up coverings. That makes them slightly pathological
(blow-ups do not change the global sections of sheaves) but also allows for
better functorial properties [15].

Definition 2.23. Let X be a log-scheme. A morphism Y → X is called Zariski
(resp. étale, log-étale, log-flat, log-syntomic) valuative if it is a composition of
Zariski open (resp. étale, Kummer log-étale, Kummer log-flat, Kummer log-
syntomic) morphisms and log-blow-ups. The Zariski (resp. étale, log-étale,
log-flat, log-syntomic) valuative topology on this category of morphisms over
X is defined by taking as coverings families of morphisms {fi : Ui → T }i such
that each fi is Zariski (resp. étale, log-étale, log-flat, log-syntomic) valuative
and T =

⋃
i fi(Ui) universally (i.e., this equality is valid after any base change

by a map S → T of log-schemes). We will denote the corresponding site by
Xval (resp. Xvét, Xvkét, Xvkfl, Xvksyn).

Note that, since any base change of a log-blow-up is a log-blow-up [30, Cor.4.8],
the above definition makes sense. We have the following commutative diagram
of continuous maps of sites

Xvkfl −−−−→ Xvksyn −−−−→ Xvkét −−−−→ Xvét −−−−→ Xvaly
y

y
y

y

Xkfl −−−−→ Xksyn −−−−→ Xkét −−−−→ Xét −−−−→ XZar.

Remark 2.24. Note that the site Xvkét is the same as the full log-étale site
[15].
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Denote by OX∗ (or by OX if there is no risk of confusion) the structure sheaf of
the topos on X induced by one of the above topologies, i.e., the sheaf associated
to the presheaf (Y → X) 7→ Γ(Y,OY ).
We will now describe points of the topoi associated to some of the above sites.
Recall [27, 2.4] that a log-geometric point is a scheme Spec(k), for a separably
closed field k, equipped with a saturated monoid M such that the map a 7→ an

on P = M/k∗ is bijective for any integer n prime to the characteristic of k. Log-
geometric points form a conservative system for the Kummer log-étale topos
[27, 2.5]. We get enough points of the full log-étale topos by taking (valuative)
log-geometric points, i.e., log-geometric points with M/k∗ valuative (recall that
a saturated monoid P is called valuative if for any a ∈ P gp, either a or a−1 is
in P ). There is an alternative way of describing a conservative family of points
for the log-étale topos. For x ∈ X , choose a chart x ∈ U , U → Spec Z[P ]. For
each finitely generated and nonempty ideal J ⊂ P , let UJ be the log-blow-up
of U along J . These UJ ’s form an inverse system indexed by the set of finitely
generated and nonempty ideals J partially ordered by divisibility. Take now a
compatible system of log-geometric points of the U ′Js lying above x.
A conservative family of points ofXval (resp. Xvét) can be described in a similar
fashion by taking compatible systems of Zariski (resp. geometric) points. Recall
[23, 1.3.5] that in the case of Xval and a chart X → Spec Z[P ] there is a
canonical bijection between this set of points and all pairs (V, p) such that V is a
valuative submonoid of P gp containing P and p is a point of XV = X⊗Z[P ]Z[V ]
satisfying the following condition: If a ∈ V and the image of a in OXV ,p is
invertible, then a ∈ V ∗. We have then the following description of stalks of the
structure sheaf: OXval,(V,p) ≃ OXV ,p.

Lemma 2.25. Let Y → X be a log-flat valuative morphism. Then there is a
log-blow-up Y ′ → Y (hence necessarily a covering) such that the morphism
Y ′ → X can be written as a composition Y ′ → T → X, where Y ′ → T is
Kummer log-flat and T → X is a log-blow-up.

Proof. Since composition of log-blow-ups is a log-blow-up [30, Cor.4.11], it is
enough to show this for a composition Y → Z → X of a log-blow-up Y → Z
with a Kummer log-flat morphism Z → X . Recall that by [20, 3.13] we can
find a log-blow-up B → X such that the base change Y ′ := Y ×X B → B
is exact. Here a morphism of log-schemes f : T → S is called exact if, for
every t ∈ T , the morphism f : MS,s/O∗S,s →MT,t/O∗T,t, s = f(t), is exact, i.e.,

(fgp)−1(MT,t/O∗T,t) = MS,s/O∗S,s. Consider now the following commutative

diagram
Y −−−−→ Z −−−−→ X
x

x
x

Y ′
∼−−−−→ Z ×X B −−−−→ B.

Since base change of a log-blow-up is a log-blow-up [30, Cor.4.8] the morphisms
Y ′ → Y , Z ×X B → Z and Y ′ → Z ×X B are log-blow-ups. But because the
composition Y ′ → B is exact, the morphism Z ×X B → B is Kummer, and
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the log-schemes are saturated, the morphism Y ′ → Z ×X B is actually an
isomorphism. Hence Y ′ → B is Kummer log-flat as wanted. �

For a general scheme X , the presheaf (Y → X) 7→ Γ(Y,OY ) on Xval is not
always a sheaf (see [12, 2.5]). Let, for example, X = Spec(k[T1, T2]/(T 2

1 , T
2
2 ))

with the log-structure N2 → OX ; ei 7→ Ti, and let Y → X be the log-blow-up
of the ideal generated by e1 and e2. Then the map Γ(X,OX) → Γ(Y,OY ) is
not injective. On the other hand, since Y covers X and Y ×X Y ≃ Y , the map
Γ(X,OXval

) → Γ(Y,OYval
) is necessarily an isomorphism. We have however

the proposition below. But first we need to recall the notion of a log-regular
scheme.

Definition 2.26. A log-scheme X is called log-regular at x ∈ X
if OX,x/IxOX,x is regular and dim(OX,x) = dim(OX,x/IxOX,x) +
rankZ((Mgp

X /O∗X)x), where Ix = MX,x \ O∗X,x. We say that X is log-regular if
X is log-regular at every point x ∈ X .

Proposition 2.27. Let X be a log-regular log-scheme. Then the presheaf (Y →
X) 7→ Γ(Y,OY ) is a sheaf on all valuative sites.

Proof. It is clearly enough to show this for the log-flat valuative site. Since
this presheaf is a sheaf on the Kummer log-flat site, by Lemma 2.25, it suffices
to show that if π : B → T is a log-blow-up of a log-scheme T → X , log-flat
valuative over X , then Γ(T,OT )→ Γ(B,OB) is an isomorphism. We will show

that OT ∼→ Rπ∗OB. Assume for the moment that T is log-regular. Then T
behaves like a toric variety, and this is a well-known result. As the argument
in [30] shows the key-point is that (flat) locally there is a chart P → OT , with
a torsion free monoid P , such that

(2.2) for injective morphism P → Q, Tor
Z[P ]
i (OT ,Z[Q]) = 0, i ≥ 1.

We will show that this is also the case for our (general now) T . By induction,
assume that a log-scheme Z → X , log-flat valuative over X satisfies the con-
dition (2.2). We have to show that any log-scheme T → Z, Kummer log-flat
or log-blow-up over Z, also satisfies this condition. We will show the argument
in the case when T → Z is Kummer log-flat. The argument for log-blow-up is
similar but simpler.
Consider a “good” chart

T −−−−→ Spec(Z[Q])
y

y

Y −−−−→ Spec(Z[P ]),

where the monoid P has no torsion, the morphism P → Q is injective, and the
morphism T → Y1, Y1 := Y ×Spec(Z[P ]) Spec(Z[Q]) is flat. A slight modification
of an argument of Nakayama in [28, A.2.], yields that, modulo a flat localization,
we may assume Q to be torsion free as well. Since the morphism T → Y1 is

flat, we just need to show that Tor
Z[Q]
i (OY1 ,Z[Q1]) = 0, i ≥ 1, for any injection
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Q→ Q1. But this follows from the fact that Tor
Z[P ]
i (OY ,Z[P1]) = 0, i ≥ 1, for

any injection P → P1. �

3. Coherent and locally free sheaves on log-schemes

Let us first collect some basic facts about coherent and locally free sheaves in the
various topologies on log-schemes discussed above. Let F(X)∗ be the category
of OX -modules, where ∗ stands for one of the considered here topologies. It is
an abelian category. Let P(X)∗ denote the category of OX -modules that are
locally a direct factor of a free module of finite type. By [3, I.2.15.1.ii] this is the
same as the category of locally free sheaves of finite type. Let M(X)∗ denote
the category of coherent OX -modules, i.e., OX -modules that are of finite type
and precoherent. Recall that an OX -module F is called precoherent [3, I.3.1]

if for every object Y → X in X∗ and for every map E f→ F|Y∗ from a locally
free finite type OY -module E , the kernel of f is of finite type.

Lemma 3.1. (1) The category M(X)∗ is abelian and closed under exten-
sions.

(2) The category P(X)∗ is additive and when embedded in F(X)∗ with the
induced notion of a short exact sequence, it is exact.

Proof. The first statement follows from [3, I.3.3]. For the second one it suffices
to check that P(X)∗ is closed under extensions in F(X)∗. That follows from
the fact that OX∗ -modules of finite type are closed under extensions [3, I.3.3]
and that all epimorphisms M1 → M2, M2 ∈ P(X)∗, locally admit a section
[3, I.1.3.1]. �

The simplest coherent sheaves come from the Zariski topology. Let X∗ de-
note one of the Kummer topologies and let εX : X∗ → XZar be the natural
projection. We have

Lemma 3.2. The pullback functor ε∗X : QM(XZar)→ F(X∗) (from the category
of quasicoherent Zariski sheaves) is fully faithful.

Proof. Immediate from Proposition 2.19. �

Proposition 3.3. Let X∗ satisfy the following property

(3.1) ε∗ is exact for a cofinal system of coverings in X∗

Then the structure sheaf OX∗ is coherent on all Kummer sites.

Proof. We need to check that for any object Y → X in the Kummer site X∗
the kernel of any morphism f : OmY∗

→ OY∗ is of finite type. But f comes from
a Zariski morphism f ′ : OmYZar

→ OYZar and by exactness ε∗Y ker f ′ = ker f .
Since ker f ′ is of finite type so is ker f . �

Corollary 3.4. If X has property (3.1) then the F is coherent if and only if
there exists a covering Xi → X of X such that F|Xi is isomorphic to ε∗Xi

F ′i
for some coherent sheaf F ′i on Xi,Zar.
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Example 3.5. A log-scheme X such that (MX/O∗X)x ≃ Nr(x) has property
(3.1). In particular, X can be a strict closed subscheme of a regular, log-regular
scheme.

Definition 3.6. The coherent sheaves or locally free sheaves in the (essential)
image of the functor ε∗ are called classical.

Lemma 3.7. Let X be a log-regular log-scheme. Let Y → X be a log-blow-up.
Then the restrictions

r : F(X)∗ → F(Y )∗, r :M(X)∗ →M(Y )∗, r : P(X)val∗ → P(Y )∗

are equivalences of categories for ∗ any of the valuative topologies.

Proof. Let M ∈ F(Y )∗. Consider the functor π : F(X)∗ → F(Y )∗ given by
π(M) : (T → X) 7→ Γ(T ×X Y,M). Since Y ×X Y ≃ Y , the compositions rπ
and πr are naturally equivalent to the identity. Hence the restriction induces
an equivalence of categories F . The remaining equivalences follow since the
map Y → X is covering. �

Lemma 3.8. Let X be a log-regular quasi-compact log-scheme. Let F ∈
P(X)vkfl be a locally free sheaf of rank n. Then, for some log-blow-up T → X,
F|Tvkfl is isomorphic to a pullback of a locally free sheaf of rank n from Tkfl.

Proof. By Lemma 2.25 we can restrict our attention to trivializing coverings
of the form Y → T → X , where Y → T is a Kummer log-flat covering and
T → X is a log-blow-up. Since the isomorphism classes of locally free sheaves
of rank n are classified by the first Čech cohomology groups of the sheaf GLn,
the statement of the lemma follows now easily from the following commutative
diagram

GLn(Y ) −−−−→ GLn(Y ×X Y ) −−−−→ GLn(Y ×X Y ×X Y )
y≀

y≀
y≀

GLn(Y ) −−−−→ GLn(Y ×T Y ) −−−−→ GLn(Y ×T Y ×T Y ),

where the equalities hold already on the level of schemes (since T ×X T ≃
T ). �

Corollary 3.9. Let X be a log-regular quasi-compact log-scheme. Then the
pullback functor

inj lim
Y
P(Ykfl)→ P(Xvkfl)

is an equivalence of categories, where the limit is over log-blow-ups Y → X.

Lemma 3.10. Let X be a log-regular log-scheme. The the pullback functor
P(Xvksyn)→ P(Xvkfl) is an equivalence of categories.

Proof. Let E be a locally free sheaf on Xvkfl. Denote by E ′ its restriction to
Xvksyn. It is a sheaf. We claim that E ′ is actually a locally free sheaf and that

ε∗E ′ ∼→ E , where ε : Xvkfl → Xvksyn is the natural map. By Corollary 2.16 and
Lemma 2.25, E can be trivialized by a covering of the form U → T → Y → X ,
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where U → T is a (classical) flat covering, T → X is a Kummer log-syntomic
covering, and Y → X is a log-blow-up. The restriction of E to T , E|T , comes
from flat topology hence by faithfully flat descent from a Zariski locally free
sheaf. This allows us to show that (ε∗E ′)|T ∼→ E|T , as wanted. �

Basically the same argument gives the following

Lemma 3.11. For any Noetherian log-scheme X, the pullback functors

P(Xksyn)→ P(Xkfl), M(Xksyn)→M(Xkfl)

are equivalences of categories.

3.1. Invertible sheaves. We will compute now the groups H1(X∗,Gm) of
isomorphism classes of invertible sheaves for X local and equipped with one
of the Kummer topologies. The main ideas here are due to Kato [24]. Let
X be a log-scheme. We have the following Kummer exact sequences on Xkfl,
respectively Xkét,

0→Z/n(1)→ G×m
n→ G×m → 0,

0→Z/n(1)→ G×m
n→ G×m → 0,

for any nonzero integer n, respectively for any integer n which is invertible on
X . Here Z/n(1) is by definition the kernel of the multiplication by n on the
multiplicative group Gm.
The following theorem was basically proved by Kato in [24, Theorem 4.1]. We
supplied the missing arguments.

Theorem 3.12. Let X be a log-scheme and assume X to be locally Noetherian.
Let ε : Xkfl → Xfl be the canonical map. Let G be a commutative group scheme
over the underlying scheme of X satisfying one of the following two conditions

(1) G is finite flat over the underlying scheme of X;
(2) G is smooth and affine over the underlying scheme of X.

We endow G with the inverse image of the log-structure of X. Then we have
a canonical isomorphism

R1ε∗G ≃ inj lim
n6=0

Hom(Z/n(1), G)⊗Z (G×m/Gm).

Proof. Let X be a log-scheme and let G be a sheaf of abelian groups on Xkfl.
Define a canonical homomorphism of sheaves on Xkfl

µ : inj lim
n6=0

Hom(Z/n(1), G)⊗Z (G×m/Gm)→ R1ε∗G

as follows. Let h be a local section of Hom(Z/n(1), G). The Kummer exact
sequence on Xkfl

0→ Z/n(1)→ G×m
n→ G×m → 0

yields the composition

G×m = ε∗G
×
m

∂→ R1ε∗(Z/n(1))
h→ R1ε∗G,
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where ∂ is the connecting morphism. Since multiplication by n on Gm on the
site Xfl is surjective, the map ∂ kills Gm. That gives us the definition of the
map µ.
It is easy to see now that the first case of the theorem follows from the second.
Indeed, if G is a finite flat commutative group scheme on X we can take its
(see [26, A.5]) smooth resolution, i.e., an exact sequence of sheaves on Xfl

0→ G→ L→ L′ → 0,

where both L and L′ are smooth and affine group schemes over the underlying
scheme of X . We endow both L and L′ with the inverse image log-structure.
By applying the pushforward ε∗ to the above exact sequence and using the fact
that L = ε∗L→ L′ = ε∗L′ is surjective on Xfl we get an exact sequence

0→ R1ε∗G→ R1ε∗L→ R1ε∗L
′.

Hence bijectivity of the map µ for G is reduced to the bijectivity of this map
for L and L′.
It suffices now to prove the following proposition

Proposition 3.13. Assume X = Spec(A), where A is strictly local, and as-
sume that G is represented by a smooth commutative group scheme over X
endowed with the induced log-structure. Assume that P

∼→ (MX/O∗X)x, where
x is the closed point of X. Then the map

inj lim
n

Hom(Z/n(1), G)⊗Z P
gp µ→ H1(Xkfl, G),

is an isomorphism.

Proof. For n ≥ 1, consider Xn = X ⊗Z[P ] Z[P 1/n], with the induced log-

structure. Here P 1/n is a P -monoid such that P → P 1/n is isomorphic to
n : P → P . The map Xn → X is a covering in Xkfl. Denote by Xn,i the fiber
product of i + 1 copies of Xn over X . For any sheaf of abelian groups G on
Xkfl, we have a Čech complex

C·G,n : Γ(Xn,0, G)→ Γ(Xn,1, G)→ Γ(Xn,2, G)→ . . .

Assume that A is Noetherian and complete. Then our proposition is proved in
two steps via the following two lemmas

Lemma 3.14. Assume X = Spec(A), where A is strictly local, and assume that
G is represented by a smooth commutative group scheme over X endowed with
the induced log-structure. Then

inj lim
n

H1(C·G,n)
∼→ H1(Xkfl, G).

Proof. From Čech cohomology we know that the map inj limnH
1(CG,n) →

H1(Xkfl, G) is injective and its cokernel injects into inj limnH
1((Xn)kfl, G).

Hence it suffices to show that inj limnH
1((Xn)kfl, G) = 0. Take an element α

of H1((Xn)kfl, G). Let T → Xn be a log-flat Kummer covering such that α
dies in H1(Tkfl, G). By Corollary 2.16, we may assume that for some m, we
have a factorization T → Xmn → Xn, where T → Xmn is a classically flat
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covering. It follows that the class α on Xmn is trivialised by a classically flat
cover. Thus the class of α in H1((Xmn)kfl, G) comes from H1((Xmn)fl, G). But
the group scheme G being smooth, H1((Xmn)fl, G) ≃ H1((Xmn)ét, G). Finally,
since Xmn is a disjoint union of a finite number of Spec of strictly local rings,
we have H1((Xmn)ét, G) = 0, as wanted. �

Before stating the second lemma, we would like to show that the com-
position of the structure map P gp → H0(Xkfl,G

×
m) with the map µh :

H0(Xkfl,G
×
m) → H1(Xkfl, G) induced by a section h ∈ Hom(Z/n(1), G) fac-

tors through H1(C·G,n). For that, consider the classical commutative group

scheme Hn = Spec(Z[P gp/(P gp)n]) over Spec(Z). It defines the sheaf T 7→
Hom(P gp/(P gp)n,Γ(T,Z/n(1))) on Xkfl. The group scheme Hn acts on Xn

over X , and we have Hn ×Z Xn ≃ Xn ×X Xn. Hence, Xn,i ≃ (Hn)×i ×Z Xn.
For a sheaf of abelian groups G on Xkfl, let Gn be the sheaf of abelian groups
on Xkfl defined by Gn(T ) = Γ(T ×X Xn, G). The sheaf Hn acts on Gn. The
Čech complex C·G,n can now be written as

C·G,n : Mor(1, Gn)
∂0→ Mor(Hn, Gn)

∂1→ Mor(H×2
n , Gn)

∂2→ . . . ,

where Mor refers to morphisms of sheaves of sets, and

∂0(x) = (σ 7→ σx− x), ∂1(x) = ((σ, τ) 7→ σx(τ) − x(στ) + x(σ)), . . .

Note that the above complex is the standard complex that computes the coho-
mology of the Hn-module Gn (see [6, II.3]).
Consider now G with the trivial action of Hn. Note that

H1(Hn, G) = Hom(Hn, G) = Hom(Z/n(1), G)⊗Z P
gp.

It can be easily checked that the map

Hom(Z/n(1), G) ⊗Z P gp
≃ H1(Hn, G) → H1(Hn, Gn) ≃ H1(C·

G,n) → H1(Xkfl, G)

maps h⊗ a to the image of a under the above composition. We can now state
the second lemma.

Lemma 3.15. Assume X = Spec(A), where A is a Noetherian complete local
ring with separably closed residue field, and assume that G is represented by
a smooth commutative group scheme over X endowed with the induced log-
structure. Assume that P

∼→ (MX/O∗X)x, where x is the closed point of X.
Then, for any n 6= 0,

µ : Hom(Z/n(1), G)⊗Z P
gp ∼→ H1(C·G,n).

Proof. Let’s treat first the case when A is Artinian. Let I (resp. J) be the
ideal of A (resp. OXn ) generated by the image of P \ {1} (resp. P 1/n \ {1}).
Then I (resp. J) is a nilpotent ideal. Define a descending filtration Gi on the
Hn-module G and Gin on the Hn-module Gn by

Gi(T ) = ker(G(T )→ G(T ×X Spec(OX/Ii)));
Gin(T ) = ker(Gn(T )→ G(T ×X Spec(OXn/J

i))).
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Since I and J are nilpotent, we have that Gi(T ) = Gin(T ) = 0 for a large
enough i. Since the group scheme G is smooth, for i ≥ 1 we get

gri(G)(T ) ≃ Lie(G)⊗A Γ(T, IiOT /Ii+1OT ),

gri(Gn)(T ) ≃ Lie(G)⊗A Γ(T, J iOT /J i+1OT ).

Also, since OX/I ∼→ OXn/J , we have that gr0(G)(T )
∼→ gr0(Gn)(T ). We will

prove now the following lemma

Lemma 3.16. For any i ≥ 1 and any m ≥ 1, the groups Hm(Hn, gri(G)) and
Hm(Hn, gri(Gn)) are zero.

Proof. Let i ≥ 1 and consider the standard complex C·(Hn, gri(G)) that com-
putes the cohomology of the Hn-module gri(G). Then for m ≥ 0, since Hn is
flat over Z and G is smooth over X , for a certain number k we have

Cm(Hn, gri(G)) = Mor(H×mn , gri(G))

= gri(G)(H×mn ×Z X)

= Lie(G)⊗A Γ(H×mn ×Z X, I
iO/Ii+1O)

= Lie(G)⊗A OH×m
n ×ZX

⊗A Ii/Ii+1

= Gk
a(H×mn ×Z X)⊗A Ii/Ii+1

= Mor(H×mn ,Gk
a)⊗A Ii/Ii+1 = Cm(Hn,G

k
a)⊗A Ii/Ii+1.

Similarly, for the standard complex C·(Hn, gri(Gn)) that computes the coho-
mology of the Hn-module gri(Gn), we get

Cm(Hn, gri(Gn)) = Mor(H×mn , gri(Gn)) = Mor(H×mn ,Gk
a)⊗A J i/J i+1

= Cm(Hn,G
k
a)⊗A J i/J i+1,

Since Hn is diagonalizable and it acts trivially on Gk
a, we know that

Hm(Hn,G
k
a) = 0 for m ≥ 1 [33, Exp.I, Theorem 5.3.3]. Moreover, Gk

a embeds
into Mor(Hn,G

k
a) with an Hn-equivariant section [33, Exp.I, Prop. 4.7.4].

Hence
Mor(Hn,G

k
a) ≃Gk

a ⊕Mor(Hn,G
k
a)/Gk

a

as Hn-modules. That gives us that

C·(Hn,Mor(Hn,G
k
a)) ≃ C·(Hn,G

k
a)⊕ C·(Hn,Mor(Hn,G

k
a)/Gk

a).

Now, C·(Hn,Mor(Hn,G
k
a)) has an A-linear contracting homotopy [33, Exp.I,

Lemma 5.2.]. It follows that C·(Hn,Mor(Hn,G
k
a))⊗A Ii/Ii+1 also has a con-

tracting homotopy. Hence Hm(C·(Hn,Mor(Hn,G
k
a)) ⊗A Ii/Ii+1) = 0, for

m ≥ 1, and by the above splitting Hm(C·(Hn,G
k
a)⊗A Ii/Ii+1) = 0, as wanted.

Similarly, Hm(Hn, gri(Gn))) = Hm(C·(Hn,G
k
a) ⊗A J i/J i+1) = 0, for m ≥

1. �

Using the above lemma, we get

Hom(Z/n(1), G)⊗Z P
gp = H1(Hn, G)

∼→ H1(Hn, gr0(G))
∼→ H1(Hn, gr0(Gn))

∼← H1(Hn, Gn) = H1(C·G,n),
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as wanted.
Let’s turn now to the general case of A complete. We will basically “go to the
limit over the argument for A Artinian”. Denote the maximal ideal of A by mA.
Note that G(A)

∼→ proj limiG(A/mi
A) and G(Xn,k)

∼→ proj limiG(Xn,k ⊗A
A/mi

A). Moreover, since G is smooth, we have that the maps

G(A/mi+1
A )→ G(A/mi

A), G(Xn,k ⊗A A/mi+1
A )→ G(Xn,k ⊗A A/mi

A)

are surjective. Hence we get the following exact sequences

0→G(A)→ G(Xn,0)→ D → 0,

0→E → G(Xn,1)→ G(Xn,2),

where E = proj limi Ei and D = proj limiDi, and Ei and Di are defined by
the following exact sequences

0→G(A/mi
A)→ G(Xn,0 ⊗A A/mi

A)→ Di → 0,

0→Ei → G(Xn,1 ⊗A A/mi
A)→ G(Xn,2 ⊗A A/mi

A).

We have Di ⊂ Ei and Ei/Di is H1 of the complex C·G,n for Spec(A/mi
A).

Also E/D ≃ H1(C·G,n) and, since the maps Di+1 → Di are surjective, E/D ≃
proj limi(Ei/Di). On the other hand, let Hom(Z/n(1), G)i denote the group
Hom(Z/n(1), G) over Spec(A/mi

A). Since Hom(Z/n(1), G) is representable
by an étale scheme [1, Exp.XI, Prop. 3.12], [2, Exp.XV, Prop.16], we have
Hom(Z/n(1), G) ≃ Hom(Z/n(1), G)i, i ≥ 1. The proof of our lemma for A
Artinian gives that

Hom(Z/n(1), G)i ⊗Z P
gp ∼→ Ei/Di.

Hence taking limits

Hom(Z/n(1), G)⊗Z P
gp ∼→ E/D ≃ H1(C·G,n),

as wanted. �

In the general case we have to argue a little bit more. Let X̂ = Spec(Â), where

Â is the completion of A. Endow X̂ with the inverse image log-structure. Since

Hom(Z/n(1), G) is represented by an étale scheme and the morphism A → Â
is a covering for the fpqc topology, Hom(Z/n(1), G) does not change when we

pass to the completion. It suffice thus to show that H1(Xkfl, G)→ H1(X̂kfl, G)

is injective. Let α ∈ H1(Xkfl, G) be a class that dies in H1(X̂kfl, G). By
fpqc descent, α is a class of a representable smooth affine G-torsor Y over X
(equipped with the inverse image log-structure). Since X is strictly local, Y
has an X-rational point. Hence α = 0. �

�

Corollary 3.17. Let X = Spec(A) be a log-scheme such that A is Noetherian
and strictly local. We have the following isomorphisms

H1(Xkfl,Gm) ≃ (Mgp
X /O∗X)x ⊗ (Q/Z),

H1(Xkét,Gm) ≃ (Mgp
X /O∗X)x ⊗ (Q/Z)′,
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where x denotes the closed point of X and (Q/Z)′ = ⊕l 6=char(x)Ql/Zl.

Proof. The case of Xkfl follows from Proposition 3.13. Inspecting its proof
we see that together with Corollary 2.17 it actually proves the statement for
H1(Xkét,Gm) as well. �

Corollary 3.18. Let X = Spec(A) be a log-scheme equipped with a Zariski
log-structure such that A is Noetherian and local. We have the following iso-
morphisms

H1(Xkfl,Gm) ≃ (Mgp
X /O∗X)x ⊗ (Q/Z),

H1(Xkét,Gm) ≃ (Mgp
X /O∗X)x ⊗ (Q/Z)′.

Proof. The proof of Proposition 3.13 goes through with few small changes. In
Lemma 3.14 we have to use the fact that Xmn is a product of a finite number of
Spec of local rings and we have H1((Xmn)ét,Gm) = H1((Xmn)Zar,Gm) = 0.
Similarly, at the very end of the proof of the proposition we get that, since X
is local, and Y is a Gm-torsor, it has a rational point. �

Example 3.19. We can obtain invertible sheaves on the Kummer log-flat site
in the following way. Take a log-scheme X with a chart P → MX . Consider
the covering Y = X ⊗Z[P ] Z[Q] associated to a Kummer map P → Q. The
OX -module f∗OY on Xkfl, f : Y → X , has an action of the group scheme
H = Spec(Z[Qgp/P gp]). It decomposes under this action into a direct sum of
invertible sheaves f∗OY ≃ ⊕aOX(a), a ∈ Qgp/P gp. Here OX(a) is the part of
f∗OY on which H acts via the character H → Gm corresponding to a. More
specifically,

f∗OY (Y ) ≃ OY×XY ≃ OX ⊗Z[P ] Z[Q⊕Qgp/P gp] = ⊕a∈Qgp/P gpaOY
and OX(a)|Ykfl = ε∗aOY . The element of H1(Xkfl,Gm) corresponding to the
invertible sheaf OX(a) is given by the image of am under

H0(Xkfl,G
×
m)→ H1(Xkfl,Z/m(1))→ H1(Xkfl,Gm),

where the first arrow is the connecting map of the Kummer sequence

0→ Z/m(1)→ G×m
m→ G×m → 0

Here m is a number such that am ∈ P gp and the above image is independent
of m chosen. If X and x are as in the above corollary then this element
corresponds to a⊗m−1 of (Mgp

X /O∗X)x ⊗ (Q/Z).
To get nontrivial Kummer log-flat coherent sheaves note that, for a ∈ Q and
for the natural map α : Q→MY , the element a⊗ α(a) ∈ f∗OY (Y ) is a global
section of OX(a). Define OX{a} to be the image of the map α(a) : OX →
OX(a).

As the next corollary we get the following log-version of Hilbert 90.

Theorem 3.20. (Hilbert 90) Let X be a log-scheme whose underlying scheme
is locally Noetherian. Then the canonical maps

H1(Xfl,G
×
m)

∼→ H1(Xkfl,G
×
m), H1(Xét,G

×
m)

∼→ H1(Xkét,G
×
m)
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are isomorphisms.

Proof. We have the short exact sequence

0→ Gm → G×m → G×m/Gm → 0

of sheaves on Xfl. For X = Spec(A), where A is a Noetherian strictly lo-
cal ring, this yields H1(Xfl,G

×
m) = 0. Indeed, we have H1(Xfl,Gm) = 0.

And, since G×m/Gm = ε∗(G×m/Gm), where ε : Xfl → Xét is the natural map,
H1(Xfl,G

×
m/Gm) = H1(Xét,G

×
m/Gm) = 0 (cf., [25, II.3]).

The above implies that this theorem is equivalent to the following local form.
�

Corollary 3.21. Let X be a log-scheme whose underlying scheme is Spec of
a Noetherian strictly local ring. Then the groups H1(Xkfl,G

×
m), H1(Xkét,G

×
m)

and H1(Xét,G
×
m) are zero.

Proof. Let X = Spec(A), where A is a Noetherian strictly local ring. As-

sume that P
∼→ (MX/O∗X)x, where x is the closed point of X . We will show

that H1(Xkfl,G
×
m) = 0 (the proof for the Kummer log-étale site is almost the

same and the case of the étale site is obvious). From Čech cohomology we
know that the map inj limn Ȟ

1(Xn/X,G
×
m) → H1(Xkfl,G

×
m) is injective and

its cokernel injects into inj limnH
1((Xn)kfl,G

×
m). Hence it suffices to show

that inj limnH
1((Xn)kfl,G

×
m) = 0 and Ȟ1(Xn/X,G

×
m) = 0. Here the covering

Xn = X ⊗Z[P ] Z[Q], Q = P 1/n.

First, let’s show that inj limnH
1((Xn)kfl,G

×
m) = 0. Take an element α of

H1((Xn)kfl,G
×
m). Let T → Xn be a log-flat Kummer covering such that α

comes from Ȟ1(T/Xn,G
×
m). By Corollary 2.16, for some m, we may assume

that we have a factorization T → Xmn → Xn, where T → Xmn is clas-
sically flat and surjective. It follows that the class α on Xmn comes from
Ȟ1(T ×Xn Xmn/Xmn,G

×
m). Thus the class of α in H1((Xmn)kfl,G

×
m) comes

from H1((Xmn)fl,G
×
m). Since Xmn is a disjoint union of a finite number of

Spec of strictly local rings, the last group is trivial as we have shown above.
Now, let’s show that Ȟ1(Xn/X,G

×
m) = 0. Consider the exact sequence of

presheaves (!) on Xkfl

0→ Gm → G×m → G×m/Gm → 0.

It gives us the exact sequence of Čech cohomology groups

→ Ȟ0(Xn/X,G
×
m/Gm)

∂→ Ȟ1(Xn/X,Gm)

→ Ȟ1(Xn/X,G
×
m)→ Ȟ1(Xn/X,G

×
m/Gm)→

By Proposition 3.13 the connecting morphism ∂ is surjective. Indeed, consider
an element a ⊗ n−1 ∈ Ȟ1(Xn/X,Gm) ≃ P gp ⊗ Z/n, a ∈ P gp. Choose an
element b ∈ Qgp such that bn = a. It belongs to Ȟ0(Xn/X,G

×
m/Gm). To see

that recall that the exact sequence of the covering Xn/X

0→ Γ(X,OX)→ Γ(Xn,OXn )→ Γ(Xn ×X Xn,OXn×XXn )
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is isomorphic to

0→ A→ A⊗Z[P ] Z[Q]
β1−β2−→ A⊗Z[P ] Z[Q⊕Qgp/P gp],

where β1(x) = 1⊗ x, x ∈ Q, β2(x) = 1⊗ (x, x mod P gp). Hence

(β∗1 − β∗2)(b) = 1⊗ b − 1⊗ (b, b mod P gp) = 1⊗ b− 1⊗ b = 0

and b ∈ Ȟ0(Xn/X,G
×
m/Gm), as wanted. One easily now checks that ∂(b) =

a⊗ n−1.
It remains to show that Ȟ1(Xn/X,G

×
m/Gm) = 0. Or that the sequence

G×m/Gm(Xn)
d0→ G×m/Gm(Xn ×X Xn)

d1→ G×m/Gm(Xn ×X Xn ×X Xn)

is exact. By Lemma 3.28 this sequence is isomorphic to

Qgp
d0→ Qgp

d1→ Qgp,

where d0 = 0 and d1 = 1. Hence it is exact, as wanted. �

3.2. Locally free sheaves of higher rank. For isomorphism classes of
locally free sheaves of arbitrary rank we have the following theorem stated
already by Kato [24, Cor. 6.4].

Theorem 3.22. Let X = Spec(A) be a log-scheme such that A is Noetherian
and strictly local. The map

n∏
Ȟ1(Xkfl,Gm)→ Ȟ1(Xkfl,GLn)

given by the diagonal embedding
∏n

Gm →֒ GLn induces an isomorphism

Ȟ1(Xkfl,GLn) ≃ Sn\(
n∏

(Mgp
X /O∗X)x ⊗ (Q/Z)),

where Sn\ denotes the quotient by the action of the symmetric group of degree
n on the product of n copies. Similarly, we have an isomorphism

Ȟ1(Xkét,GLn) ≃ Sn\(
n∏

(Mgp
X /O∗X)x ⊗ (Q/Z)′).

Proof. Assume that P
∼→ (MX/O∗X)x. For m ≥ 1, let Xm = X ⊗Z[P ] Z[P 1/m],

with the induced log-structure.

Lemma 3.23. We have

inj lim
m

Ȟ1(Xm/X,GLn)
∼→ Ȟ1(Xkfl,GLn).

Proof. The injectivity is obvious. For the surjectivity, consider a class α ∈
Ȟ1(Xkfl,GLn). Let T → X be a log-flat Kummer covering such that α ∈
Ȟ1(T/X,GLn). By Corollary 2.16, we may assume that for some m, we have
a factorization T → Xm → X , where T → Xm is classically flat and surjective.
Since Xm is a disjoint union of a finite number of Spec of strictly local rings
we have Ȟ1(Xm,fl,GLn) = 0. It follows that α is trivialised on Xm hence

α ∈ Ȟ1(Xm/X,GLn), as wanted. �
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Lemma 3.24. Assume X = Spec(A), where A is a Noetherian complete local
ring with separably closed residue field. Then, for any n 6= 0,

(Hom(Hm,GLn)/ ≡)
∼→ Ȟ1(Xm/X,GLn),

where Hm is the group scheme Spec(Z[P gp/(P gp)m]) and / ≡ means the quo-
tient set by the inner conjugation by elements of GLn(A).

Proof. We proceed as in the proof of Lemma 3.15 and keep its notation. Note
that

(Hom(Hm,GLn)/ ≡) = H1(Hm,GLn)

Let’s treat first the case when A is Artinian. Consider the corresponding filtra-
tions GLin, GLin,m of GLn and GLn,m. The computation of the graded pieces

goes through and, since Lie(GLn) ≃ Gn2

a , so does the proof of Lemma 3.16.
Hence

Hk(Hn, gri(GLn)) = Hk(Hn, gri(GLn,m)) = 0, i ≥ 1, k ≥ 1.

Using now the exact sequences

0→ GLi−1
n /GLin → GLn/GLin → GLn/GLi−1

n → 0

(starting from i such that GLin = 0) we get that H1(Hn,GLn)
∼→

H1(Hn, gr0(GLn)). Similarly, H1(Hn,GLn,m)
∼→ H1(Hn, gr0(GLn,m)). Since

gr0(GLn)
∼→ gr0(GLn,m), we are done.

Let’s turn now to the general case of A complete. We compute

(Hom(Hm,GLn)/ ≡) = Sn\Hom(Hm,

n∏
Gm) = Sn\

n∏
Hom(Hm,Gm)

= Sn\
n∏

Hom(Z/m(1),Gm)⊗ P gp = Sn\
n∏

Z/m⊗ P gp.

The same computation works over each A/mi
A. Passing now to the limit over

i it suffices to show that the natural map

Ȟ1(Xm,GLn)→ proj lim
i

Ȟ1(Xm,i,GLn),

where Xm,i is the base change of Xm to A/mi
A, is injective. By straightforward

computation this follows from the fact that GLn defines a sheaf for the Kummer
log-flat topology. �

In the general case we have to argue a little bit more. Let X̂ = Spec(Â), where

Â is the completion of A. Endow X̂ with the inverse image log-structure. Since
Hom(Hm,GLn)/ ≡ does not change when we pass to the completion (see

above), it suffice to show that Ȟ1(Xkfl,GLn) → Ȟ1(X̂kfl,GLn) is injective.
This is proved exactly like the corresponding fact in the proof of Lemma 3.15.
The proof for Xkét is analogous (using Corollary 2.17). �

Corollary 3.25. In the above theorem we may take X = Spec(A) to be a
log-scheme equipped with a Zariski log-structure such that A is Noetherian and
local.
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Proof. The proof of Theorem 3.22 goes through with few small changes. In
Lemma 3.23 we have to use the fact that Xm is a product of a finite number
of Spec of local rings and we have Ȟ1((Xm)fl,GLn) = 0. Similarly, at the
very end of the proof of the theorem we get that, since X is local, and Y is a
GLn-torsor, it has a rational point. �

Corollary 3.26. Let X = Spec(A) be a log-scheme such that A is Noetherian
and strictly local. Let F be a locally free finite type OX-module on Xkfl (resp.
Xkét). Then F is a direct sum of invertible sheaves on Xkfl (resp. Xkét).
Similarly for A local and equipped with a Zariski log-structure.

The following proposition will be useful in computing K-theory groups. It was
originally stated by Kato [24, Prop. 6.5].

Proposition 3.27. Let X be an affine log-scheme. Let F be an OX -module
on Xkfl such that for some Kummer log-flat covering Y → X the restriction
F|Y is isomorphic to the inverse image of a quasi-coherent sheaf on the small
Zariski site of Y . Then Hn(Xkfl,F) = 0 for any n ≥ 1. Similar statement
holds for Xkét.

Proof. Consider the case of Xkfl. Assume first that F is isomorphic to the
inverse image of a quasi-coherent sheaf on the small Zariski site of X . Since
Hn(XZar,F) = 0, n ≥ 1, we may assume that X is equipped with a chart
P → MX , P ∗ = {1}. We may work on the small site of the Kummer log-flat
site built from affine maps. It suffices now to show that our sheaf F is flasque.
We will show that for every covering Y → X from some cofinal system of
coverings the Čech cohomology groups Ȟn(Y/X,F) = Hn(C·(Y/X)), n ≥ 1,
are trivial. Since our coverings are log-flat and of Kummer type, by Corollary
2.16 we may assume that there exists a factorization of Y → X into f : Y → Y1

and g : Y1 → X , where f is affine, strictly flat and a covering and Y1 =
Y ×Spec(Z[P ]) Spec(Z[Q]), for a Kummer morphism u : P → Q.
We will show now that the complex C·(Y/X) has trivial cohomology in de-

grees higher than 0. Assume first that the augmentation Γ(X,F)
g∗→ C·(Y1/X)

is a quasi-isomorphism. We will check that this implies that the augmenta-

tion Γ(X,F)
(gf)∗→ C·(Y/X) is a quasi–isomorphism as well. The reader will

note that because the schemes Y , Y1, and X are assumed to be affine, all
the schemes appearing in the argument below are affine as well. Consider the
double complex

C·(Y, Y1, X) : (i, j) 7→ Γ(Y (i+1) ×X Y
(j+1)
1 ,F),

where, for any n ≥ 1, Y n = (Y/X)×n, and Y n1 = (Y1/X)×n. Consider the

natural maps C·(Y/X)
f∗
1→ C·(Y, Y1, X) and C·(Y1/X)

g∗1→ C·(Y, Y1, X). First,
we claim that f∗1 is a quasi-isomorphism. For that, it suffices to show that, for

any n ≥ 1, the map Γ(Y n,F)
f∗
1→ C·(Y n ×X Y1/Y

n) is a quasi-isomorphism.

Since the projection Y n ×X Y1 → Y n admits a section Y n
sn→ Y n ×X Y1, this

is clear. Next, we will show that g∗1 is a quasi-isomorphism. It suffices to show
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that the augmentation Γ(Y n1 ,F)
g∗1→ C·(Y n1 ×X Y/Y n1 ) is a quasi-isomorphism.

Consider the composition Y n
fn−1×s1→ Y n1 ×X Y → Y n1 . It is equal to the map

fn, which is faithfully flat. By faithfully flat descent, since the base-change of
the augmentation g∗1 by fn is a quasi-isomorphism Γ(Y n,F)→ C·(Y (n+1)/Y n)
(the morphism Y (n+1) = Y n ×Y n

1
Y n1 ×X Y → Y n admitting a section), so is

the augmentation g∗1 .
Finally, we have that

f∗1 (gf)∗ = g∗1g
∗ : Γ(X,F)→ C·(Y, Y1, X).

Since f∗1 , g∗1 , and g∗ are quasi-isomorphisms, so is (gf)∗.

Lemma 3.28. Let A = Γ(X,OX). Then the augmentation

(3.2) A
e∗→ C·(Y1/X)

is a quasi-isomorphism.

Proof. The essential point is that the morphism of monoids u : P → Q is exact,
i.e., P = (ugp)−1(Q) in P gp, where ugp : P gp → Qgp. Set G = Qgp/P gp. The
augmentation e∗ is isomorphic to

A
e∗→ A⊗Z[P ] Z[Q]

d0→ A⊗Z[P ] Z[Q⊕G]
d1→ A⊗Z[P ] Z[Q⊕G⊕2]

d2→ . . .

Here the A-linear morphism dn : A⊗Z[P ] Z[Q⊕G⊕n]→ A⊗Z[P ] Z[Q⊕G⊕n+1]
is equal to the alternating sum of maps β1, β2, . . . , βn+2, where

βk(b1, b2, . . . , bn+1) =

{
(b1, b1b

−1
2 · · · b−1

n+1, b2, . . . , bn+1) if k = 1

(b1, b2, . . . , bk−1, 1, bk+1, . . . , bn+1) if k 6= 1,

for b1 ∈ Q, b2, . . . , bn+1 ∈ G. Consider now the following A-module homomor-
phisms hn+1 : A⊗Z[P ] Z[Q⊕G⊕n]→ A⊗Z[P ] Z[Q⊕G⊕n−1] for n ≥ 1,

hn+1(b1, b2, . . . , bn+1) =

{
(−1)n(b1, b2, . . . , bn) if bn+1 = 1

0 if bn+1 6= 1

We claim that hn’s together with the morphism h1 : A⊗Z[P ] Z[Q]→ A sending
1 ⊗ b to b if b ∈ P and to 0 if b /∈ P (h1 is well-defined since u is exact),
form a contracting homotopy, i.e., that h1e

∗ = Id, h2d0 + e∗h1 = Id, and
hn+2dn + dn−1hn+1 = Id, n ≥ 1. We compute that

(h2d0 + e∗h1)(b1) =

{
h2((b1, 1)− (b1, 1)) + 1⊗ b1 if b1 ∈ P
h2((b1, b1)− (b1, 1)) if b1 /∈ P

= 1⊗ b1
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(use that u is exact), and that, for n ≥ 1,

hn+2dn(b1, b2, . . . , bn+1)

= hn+2[(b1, b1b
−1
2 · · · b−1

n+1, b2, . . . , bn+1)− (b1, 1, b3, . . . , bn+1) + . . .

+ (−1)n+1(b1, b2, b3, . . . , bn+1, 1)]

=





(−1)n+1(b1, b1b
−1
2 · · · b−1

n+1, b2, . . . , bn)

−(−1)n+1(b1, 1, b3, . . . , bn) + . . .

−(b1, b2, b3, . . . , bn, 1) + (b1, b2, b3, . . . , bn+1) if bn+1 = 1

(b1, b2, b3, . . . , bn+1) if bn+1 6= 1

dn−1hn+1(b1, b2, . . . , bn+1)

=

{
(−1)ndn−1(b1, b2, . . . , bn) if bn+1 = 1

0 if bn+1 6= 1

=





(−1)n(b1, b1b
−1
2 · · · b−1

n , b2, . . . , bn)

−(−1)n(b1, 1, b3, . . . , bn) + . . .

+(b1, b2, b3, . . . , bn, 1) if bn+1 = 1

0 if bn+1 6= 1

Hence we get that

(hn+2dn + dn−1hn+1)(b1, b2, . . . , bn+1) =

{
(b1, b2, . . . , bn, 1) if bn+1 = 1

(b1, b2, b3, . . . , bn+1) if bn+1 6= 1,

as wanted. �

This proves the vanishing of cohomology for F = OX . For general F , the

complex Γ(X,F)
e∗→ C·(Y1/X) is isomorphic to the tensor product (over A)

of the complex (3.2) with Γ(X,F). Since the contracting homotopy we have
constructed above is A-linear, this complex is clearly exact.
Let us turn now to the case of general Y . By Corollary 2.16 and faithfully flat
descent we may assume that Y = Spec(A ⊗Z[P ] Z[P 1/m]) for some m. Then
(see the proof of Proposition 3.13)

Ȟn(Y/X,F) = Hn(Hm, f∗F)

where Hm is the group scheme Spec(Z[P gp/(P gp)m]). Since Hm is diagonal-
izable, we know that Hn(Hm, f∗F) = 0 for n ≥ 1 [33, Exp. I, Thm. 5.3.3].
This finishes our proof for the Kummer log-flat topology. The proof for the
Kummer log-étale topology is analogous (replace Corollary 2.16 with Corollary
2.17). �

The above proposition implies the following

Proposition 3.29. Let X be a log-scheme and let

0→ F ′ → F → F ′′ → 0
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be an exact sequence of locally free finite rank OX -sheaves on Xkfl or Xkét.
Then

(1) if X is affine, this exact sequence splits;
(2) F is classical if and only if so is F ′ and F ′′.

Proof. Consider the following exact sequence of sheaves on Xkfl

0→ HomOX (F ′′,F ′)→ HomOX (F ′′,F)→ HomOX (F ′′,F ′′)→ 0.

Since, by Proposition 3.27, H1(Xkfl,HomOX (F ′′,F)) = 0, (1) follows. To
prove (2) reduce to the case of X affine and use (1). Treat the case of Xkét

similarly. �

4. Algebraic K-theory of log-schemes

We present in this section basic properties and some examples of calculations of
algebraic (Quillen) K-theory of log-schemes for the topologies discussed earlier.
Hagihara [14] was the first one to study algebraic K-theory of Kummer log-
étale topos. Most of his results hold for log-schemes over (separably) closed
fields. Working with equivariant K-theory for finite flat group schemes instead
of finite groups and using some of the results from earlier sections we show that
they hold in greater generality. In particular, for the Kummer log-flat site.
Let X be a Noetherian log-scheme. Let K(X∗) = K(P(X)∗) denote the higher
K-theory groups of the exact category P(X)∗ as defined by Quillen [32]. Sim-
ilarly, let K ′(X∗) = K(M(X)∗) be the Quillen’s K-theory of the abelian cat-
egory M(X)∗. Denote by K(X∗),K′(X∗) the Waldhausen spectra [35, 1.5.3]
corresponding respectively to the categories P(X)∗,M(X)∗. Recall that they
are functorial with respect to exact functors. We have

πi(K(X∗)) = Ki(X∗), πi(K
′(X∗)) = K ′i(X∗)

Let K/n(X∗),K′/n(X∗) be the associated mod-n spectra. Set

Ki(X∗,Z/n) = πi(K/n(X∗)), K ′i(X∗,Z/n) = πi(K
′/n(X∗)).

4.1. Basic properties. We easily check that we have the following morphisms

• K(X∗)→ K ′(X∗) if OX∗ is a coherent sheaf;
• f∗ : K(X∗)→ K(Y∗), for any morphism f : Y → X ;
• f∗ : K ′(X∗)→ K ′(Y∗) for any object f : Y → X in X∗ or f classically

flat and ∗ any Kummer site.

Less obvious is the existence of pushforward for exact closed immersions.

Lemma 4.1. The pushforward functor i∗ : K ′(Y∗)→ K ′(X∗) exists for an exact
closed immersion i : Y →֒ X, X such that (MX/O∗X)x ≃Nr(x) for every point
x ∈ X, and ∗ any Kummer topology.

Proof. This follows easily for the Kummer étale topology from the exactness
of i∗ on all abelian sheaves (check on stalks at log-geometric points of X). We
present here the argument for the Kummer log-flat topology (the log-syntomic
case is analogous). In that case it can be reduced to the exactness of i∗ for
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the Zariski topology. Let f : F1 → F2 be a surjective morphism of Kummer
log-flat coherent sheaves on Y . Cover X with étale open sets U that are affine
and equipped with charts P → MU , P ≃ Nr. For each U , by Corollary 2.16
and faithfully flat descent, there exists an n such that the map f |U comes from
a Zariski map fZar : F1,Zar → F2,Zar on UY,n = YU ×U Un. Since ε∗ : UY,n,kfl →
UY,n,Zar is exact and faithful, the map fZar is surjective as well. It follows
that the pushforward i∗fZar : i∗F1,Zar → i∗F2,Zar is a surjection on Xn. Since
ε∗i∗ ≃ i∗ε∗ (easy to check), we are done. �

The following two propositions follow from Corollary 3.9, Lemma 3.10, and
Lemma 3.11.

Proposition 4.2. Let X be a log-regular quasi-compact log-scheme. Then

(1) inj limY K∗(Ykfl)
∼→ K∗(Xvkfl), where the limit is over log-blow-ups

Y → X;
(2) K∗(Xvksyn)

∼→ K∗(Xvkfl).

Proposition 4.3. For any Noetherian log-scheme X, the pullback functors
induce isomorphisms

K∗(Xksyn)
∼→ K∗(Xkfl), K ′∗(Xksyn)

∼→ K ′∗(Xkfl).

The following two propositions are proved in a similar way to their classical
versions.

Proposition 4.4. Let X be a Noetherian, log-scheme satisfying property
(3.1). Then the natural immersion i : Xred →֒ X induces an isomorphism

i∗ : K ′q(Xred,∗)
∼→ K ′q(X∗), for any Kummer topology.

Proposition 4.5. Let {Xi} be a filtered system of Noetherian log-schemes.
Assume that all the schemes Xi satisfy property (3.1) and the transition maps
αij : Xj → Xi are affine and classically flat. Then, for any Kummer site ∗,

inj lim
i

K ′q(Xi,∗) ≃ K ′q((proj lim
i

Xi)∗).

We have the following versions of the localization exact sequence. Their proofs
are analogous to the proof of their classical version and the interested reader
will find the details of the Kummer log-étale case in Hagihara [14, Theorem
4.5].

Proposition 4.6. Let X be a Noetherian, equicharacteristic log-scheme, Y a
strictly closed subscheme and U its complement. Assume that (MX/O∗X)x ≃
Nr(x) for every point x ∈ X. Then we have the canonical long exact sequence

→ K ′i(Ykét)→ K ′i(Xkét)→ K ′i(Ukét)→ K ′i−1(Ykét)→
Proposition 4.7. Let X be a Noetherian log-scheme, Y a strictly closed sub-
scheme and U its complement. Assume that (MX/O∗X)x ≃ Nr(x) for every
point x ∈ X. Then we have the canonical long exact sequence

→ K ′i(Ykfl)→ K ′i(Xkfl)→ K ′i(Ukfl)→ K ′i−1(Ykfl)→
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Recall Hagihara’s notion of an M -framed log-scheme. Let M ≃ Nr be
a monoid. An M -framed log-scheme is a pair (X, θ), where θ : M →
Γ(X,MX/O∗X) is a frame such that for all points x ∈ X the composite
M → Γ(X,MX/O∗X) → (MX/O∗X)x is isomorphic to a projection Nr → Nm,
r ≥ m. Note that the log-structure on X is Zariski. A standard example is
given by a regular scheme with the log-structure coming from a strict normal
crossing divisor (generate M from the irreducible components of the divisor at
infinity).

Proposition 4.8. (Poincaré isomorphism) Let X be a log-regular, regu-
lar quasi-compact log-scheme with a frame M . Then the natural morphism
Ki(X∗)→ K ′i(X∗) is an isomorphism for all i and any Kummer topology.

Proof. We will argue the case of the Kummer log-flat topology. Assume that
X has dimension n. Let F be a log-flat coherent sheaf. By the lemma below
we can find a resolution

0→ P → En−1 → . . . E0 → F → 0,

where each Ei is a locally free sheaf and P is coherent. Zariski localize
now on X and take Y = Spec(OX,x) for a point x ∈ X with a chart
P → MY , P ≃ (MX/O∗X)x ≃ Nr. We may assume that the above long
exact sequence pullbacked to Ykfl comes from a Zariski long exact sequence on
B = OX,x ⊗Z[P ] Z[P 1/m], for some m. Note that B is log-regular and regular.
Hence P| Spec(B)kfl is locally free. This suffices to exhibit a covering U → X
for the Kummer log-flat topology such that P|Ukfl is locally free, as wanted. �

Lemma 4.9. For any Kummer log-flat or log-étale coherent sheaf F there exists
a locally free sheaf E that surjects onto F .

Proof. Take a point x ∈ X . By interpreting kfl-modules as equivariant mod-
ules, we can construct a surjection: fx : Ex → Fx on Spec(OX,x)kfl. Note that,
by Corollary 3.25, Ex is a sum of invertible sheaves.
Consider now the following commutative diagram

Mdiv θ−−−−→ Γ(Xkfl,MX/O∗X)
∂−−−−→ Pic(Xkfl)

∥∥∥
y

y

Mdiv θx−−−−→ Γ(OX,x,kfl,MX/O∗X)
∂−−−−→ Pic(OX,x,kfl),

where Mdiv = inj limnM
1/n or Mdiv = inj lim(n,p)=1M

1/n, p = char(x). By
Corollary 3.18, the map ∂θx is surjective. Hence there exists a locally free sheaf
E on Xkfl that restricts to Ex. By [14, Lemma 4.11] , there exists an invertible
sheaf L on Xkfl such that the map Ex → Fx extends to a map f : E ⊗ L → F .
The map f is surjective in a neighbourhood Ux of x. We finish by covering X
with a finite number of such Ux’s and taking a direct sum of the corresponding
maps f . �

Remark 4.10. It is easy to see that all of the above holds for the K-theory
groups with coefficients: K∗(X∗,Z/n) and K ′∗(X∗,Z/n).
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4.2. Calculations.

Proposition 4.11. Let X = Spec(A) be a log-scheme such that A is Noether-
ian and strictly local. We have the following isomorphisms

Pic(Xkfl) ≃ (Mgp
X /O∗X)x ⊗ (Q/Z), Pic(Xkét) ≃ (Mgp

X /O∗X)x ⊗ (Q/Z)′,

K0(Xkfl) ≃ Z[(Mgp
X /O∗X)x ⊗Q/Z], K0(Xkét) ≃ Z[(Mgp

X /O∗X)x ⊗ (Q/Z)′]

where x denotes the closed point of X.

Proof. The statement about the Picard groups is simply a reformulation of
Corollary 3.17. Since, by Theorem 3.22, every locally free sheaf is a sum of
invertible sheaves and, by Proposition 3.29, there are no nontrivial relations we
get the statement about K0-groups. �

Proposition 4.12. Let X = Spec(K), for a field K, be a log-scheme with a
chart P →MX, P ≃MX/O∗X ≃ Nr. Then

K ′∗(Kkfl) ≃ K ′∗(KZar)⊗Z Z[P gp ⊗Q/Z],

K ′∗(Kkét) ≃ K ′∗(KZar)⊗Z Z[P gp ⊗ (Q/Z)′].

Proof. For any m, denote by FmM(Xkfl) the full subcategory of the cate-
gory of Kummer log-flat coherent sheaves that become classical on the cov-
ering Xm of X . We have FmM(Xkfl) ≃ M(Xm,Zar, Hm), where the group

scheme Hm = Spec(Z[P 1/m,gp/P gp]). Here the right hand side denotes the
category of Hm-equivariant Zariski coherent sheaves on Xm. By devissage, the
natural functor M(XZar, Hm) →M(Xm,Zar, Hm) induces an isomorphism on
K ′-theory groups. Here Hm acts trivially on K.
Consider now the functor⊕

ξ∈P 1/m,gp/P gp

M(XZar)→M(XZar, Hm); {Fξ} 7→ ⊕Fξ ⊗ Lξ,

where Lξ is the invertible sheaf corresponding to the mapK → K[P 1/n,gp/P gp],
a 7→ aξ. Since Hm is diagonalizable this is an equivalence of categories (cf. [33,

Exp.I,Prop.4.7.3]). This yields the isomorphism
⊕

ξ∈P 1/m,gp/P gp K ′(KZar)
∼→

K(FmM(Xkfl)) and, by passing to the limit with respect to m, our proposition.
�

For a framed log-scheme (X,M) and a prime ideal p ofM , we write V (p) = {x ∈
X |p ⊂ θx((MX/O∗X)x\{1})}, where θx : M

θ→ Γ(X,MX)→ (MX/O∗X)x. V (p)
is a closed subset of X and we equip it with the reduced subscheme structure.
We write M(p) for the unique face of M such that M(p)⊕ (M \ p) = M , and
set

Λ[p] = Z[(M(p)gp ⊗Q/Z) \ ∪q(p(M(q)gp ⊗Q/Z)].

We will denote by Λ′[p] the same group as Λ[p] but defined using (Q/Z)′ instead
of Q/Z.

Theorem 4.13. Let X be a Noetherian M -framed log-scheme. Then
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(1) if X is equicharacteristic then there is a natural isomorphism

β :
⊕

p, prime of M

K ′∗(V (p)Zar)⊗ Λ′[p]→ K ′∗(Xkét);

(2) there is a natural isomorphism

β :
⊕

p, prime of M

K ′∗(V (p)Zar)⊗ Λ[p]→ K ′∗(Xkfl).

Proof. Let us define the map β (in the second case). We fix ξ ∈M(p)gp⊗Q/Z.
The corresponding map βξ : K ′∗(V (p)Zar)→ K ′∗(Xkfl) is induced by the functor

βξ :M(V (p)Zar)→M(Xkfl), F 7→ i∗(ε
∗F ⊗OV (p){ξ}),

where i : V (p) →֒ X is the natural closed immersion and OV (p){ξ} is the
coherent sheaf on V (p)kfl (see Example 3.19) associated to the locally free
sheaf OV (p)(ξ) on V (p)kfl obtained as the image of ξ (or rather of the minimal
lifting of ξ) by the following map

M(p)div →Mdiv → Γ(XZar, (MX/O∗X)div)

→ Γ(V (p)Zar, (M/O∗)div)
∂→ Pic(V (p)kfl).

Note here that using OV (p)(ξ) instead of OV (p){ξ} would tend to give a zero
map.
The functor βξ is exact (follow [14, 6.2] replacing Spec(k) by Spec(Z)). The
rest of the argument goes as follows. One proves that the map β is compatible
with localization sequences and by a limit argument reduces the proof to the
case of a field. Then it suffices to evoke Proposition 4.12, and we are done.
Compatibility with localization sequences requires the following lemma
(Lemma 9.4 in [14]) that we have to reprove in our setting.

Lemma 4.14. Let N be a face of M and U an M -framed log-scheme. Assume
that the frame of U comes from a chart M → MU that maps N \ {1} to zero
in Γ(U,OU ). Then for any exact closed immersion i : V →֒ U with the induced
M -frame and ξ ∈ Ndiv we have i∗OU{ξ} ≃ OV {ξ}.
Proof. Write M ≃ Nm, N ≃ Nk,M = N ⊕ Q for a face Q. Let ξ ∈ N1/n.
Set M ′ = N1/n ⊕ Q. We have U ′ = U ⊗Z[M ] Z[M ′] = U ×Spec(Z) S, where

S = Spec(Z ⊗Z[N ] Z[N1/n]). Similarly, V ′ = V ⊗Z[M ] Z[M ′] = V ×Spec(Z) S.
One easily computes

S = Spec(Z[x1, . . . , xk]/(xn1 , . . . , x
n
k ));

OS(xI)(S) = x−1
I (⊕JxJZ), xI = xi11 . . . xikk , xJ = xj11 . . . xjkk , 0 ≤ jl ≤ k − 1;

OS{xI}(S) = x−1
I (⊕JxJZ), xI = xi11 . . . xikk , xJ = xj11 . . . xjkk , il ≤ jl ≤ k − 1.

Hence, if we write ξ = xI , then OS{xI} is a direct factor of OS(xI) and the
cokernel is a free Z-module. It follows that

OU ′{xI} = OS{xI} ⊗Z OU , OV ′{xI} = OS{xI} ⊗Z OV .
Thus OV ′{xI} = i∗OU ′{xI}, as wanted. �
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�

Example 4.15. Let A be a complete discrete valuation ring with residue field
k and the log-structure coming from the closed point. Then, by Theorem 4.13
(see the argument below), we have

K∗(Akfl) ≃ K∗(A)⊕K∗(k)⊗ Z[Q/Z \ {0}],
K∗(Akét) ≃ K∗(A)⊕K∗(k)⊗ Z[(Q/Z)′ \ {0}].

When comparing this with Proposition 4.11 we get that [A(a)] = [k{a}] + [A]
in K∗(A)⊕K∗(k)⊗ Z[Q/Z \ {0}].
Example 4.16. More generally, let X be a regular, log-regular scheme with
the log-structure associated to a divisor D with strict normal crossing. Let
{Di|i ∈ I} be the set of the irreducible (regular) components of D. For an index
set J ⊂ I denote by DJ the intersection of irreducible components indexed
by J and by Λ|J| (resp. Λ′|J|) the free abelian groups generated by the set

{(a1, . . . , a|J|)|ai ∈ Q/Z\{0}} (resp. the set {(a1, . . . , a|J|)|ai ∈ (Q/Z)′\{0}}).
Corollary 4.17. For any q ≥ 0 we have the canonical isomorphism

Kq(Xkfl) ≃
⊕

J⊂I
Kq(DJ)⊗ Λ|J|

Moreover, if D is equicharacteristic then canonically

Kq(Xkét) ≃
⊕

J⊂I
Kq(DJ)⊗ Λ′|J|

Proof. The Kummer log-flat statement follows from Theorem 4.13. For the
Kummer log-étale note that we do have a localization sequence

→ K ′q(Dkét)→ K ′q(Xkét)→ K ′q(Ukét)→ K ′q−1(Dkét)→
where U = Xtr. This follows just like in the classical situation using the fact
that Kummer log-étale coherent sheaves on U are simply the Zariski coherent
sheaves and those can be extended to the whole of X . Now the proof of
Theorem 4.13 goes through. �

Example 4.18. Again, all of the above holds for the K-theory groups with
coefficients. For example, let A be a complete discrete valuation ring of mixed
characteristic (0, p). Let X be a smooth A-scheme equipped with the log-
structure coming from the special fiber X0. Then

K∗(Xkfl,Z/p
k) ≃ K∗(X0,Z/p

k)⊗ Z[N \ {0}]⊕K∗(X,Z/pk)

Since, by Geisser-Levine [13], Ki(X0,Z/p
k) = 0, for i ≥ dimX0, we get

Ki(Xkfl,Z/p
k) ≃ Ki(X,Z/p

k) ≃ Ki(X [1/p],Z/pk), i ≥ dimX0.

5. Topological K-theory of log-schemes

In this section we initiate the study of topological K-theory of log-schemes.
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5.1. Homotopy theory of simplicial presheaves and sheaves. The for-
malism of cohomologies of simplicial presheaves we use here is based on the
closed model structures for the category of simplicial presheaves and sheaves
on an arbitrary Grothendieck site developed by Jardine [16], [17], [18], [19].
We begin by recalling basic facts about cohomology of simplicial presheaves.
Let us start with some definitions. A closed model category is a category M
equipped with three classes of maps called cofibrations, fibrations and weak
equivalences, such that the following axioms are satisfied:

(1) M is closed under all finite limits and colimits.
(2) Given f : X → Y and g : Y → Z, if any of the two of f, g or gf are

weak equivalences, then so is the third.
(3) If f is a retract of g and g is a weak equivalence, fibration or cofibration,

then so is f .
(4) Given any commutative diagram

U −−−−→ X

i

y p

y

V −−−−→ Y

inM, where i is a cofibration and p is a fibration, then an arrow V → X
exists making this diagram commute assuming that either i or p is a
weak equivalence.

(5) Any map f : X → Y may be factored
• f = pi, where p is a fibration and i is a trivial cofibration, and
• f = qj, where q is a trivial fibration and j is a cofibration.

A trivial fibration is a map that is a fibration and a weak equivalence and a
trivial cofibration is a map that is a cofibration and a weak equivalence. A
basic example of a closed model category is the category S of simplicial sets:
the cofibrations of S are the monomorphisms, the weak equivalences are the
maps which induce isomorphisms on all possible homotopy groups of associated
realizations, and the fibrations are the Kan fibrations.
A closed simplicial model category is a closed model category M which has a
natural function complex Hom(U,X) in the category S of simplicial sets for
each pair of objects U,X inM. This simplicial set is supposed to satisfy some
adjointness properties as well as the following axiom:

• If i : A → B is a cofibration and p : X → Y is a fibration, then the
induced map of simplicial sets

Hom(B,X)
(i∗,p∗)−−−−→ Hom(A,X)×Hom(A,Y ) Hom(B,X)

is a Kan fibration, which is trivial if either i or p is trivial.

A closed model categoryM is called proper if it satisifes the following additional
axiom:

• Given a commutative diagram
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A
f−−−−→ C

i

y j

y

B
g−−−−→ D

(1) if the square is a pullback, j is a fibration and g is a weak equiv-
alence, then f is a weak equivalence.

(2) if the square is a push out, i is a cofibration and f is a weak
equivalence, then g is a weak equivalence.

The category S of simplicial sets is a proper closed simplicial model category.
Let C be a site and let T be the Grothendieck topos of sheaves on C. Denote
by pT (resp. sT ) the category of presheaves (resp. sheaves) of simplicial sets
on C. When X is a presheaf, we denote by π0(X) the sheaf on T associated to
the presheaf

U 7→ π0(X(U)).

For an object U in C, we let X |U be the image of X in the site C|U . When
n > 0 is an integer and x ∈ X0(U), we denote by πn(X |U, x) the sheaf on C|U
associated to the preasheaf

V 7→ πn(X(V ), x).

Here, for a simplicial set S, we take πn(S) = πn(|S|), where |S| is the geometric
realization of S.

Definition 5.1. Let f : X → Y be a map of presheaves. Then

• f is called a weak equivalence if the induced map f∗ : π0(X)→ π0(Y )
is an isomorphism, and for all n > 0, all objects U in C, and all
x ∈ X0(U), the natural maps

f∗ : πn(X |U, x)→ πn(Y |U, f(x))

are isomorphisms;

• f is called a cofibration if, for any object U from C, the induced map
f(U) : X(U)→ Y (U) is injective;

• f is called a fibration if it satisfies the following lifting property: for
any commutative diagram

A −−−−→ X

i

y
yf

B −−−−→ Y,

where i is a trivial cofibration, there exists a map B → X such that
the resulting diagram commutes.
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For two simplicial presheaves X and Y , the simplicial set Hom(X,Y ) is defined
by

n 7→ HompT (X ×∆n, Y ),

where ∆n is the standard n-simplex. We also have the simplicial presheaf
Hom(X,Y ) defined by

U 7→ (n 7→ Homp(T |U)(X |U ×∆n, Y |U)).

Jardine proves (see Prop. 1.4 in [17]) the following

Theorem 5.2. With the above definitions the categories sT and pT are proper
closed simplicial model categories.

We can associate to sT and pT the homotopy categories Ho(sT ) and Ho(pT )
by formally inverting all weak equvalences. We have (Prop. 2.8 from [16])

Theorem 5.3. The associated sheaf functor induces an equivalence

Ho(pT ) ≃ Ho(sT )

between the associated homotopy categories.

For simplicial presheaves X and Y , we denote by [X,Y ] the set of morphisms
from X to Y in the homotopy category. A simplicial presheaf X is called
fibrant if the unique map X → ∗C is a fibration. Here ∗C is the final object of
the category of presheaves on C. For any simplicial presheaf X the canonical
map X → ∗C admits a factorization X → Xf → ∗C , where X → Xf is a
trivial cofibration and Xf is fibrant. Such a map X → Xf is called a fibrant
replacement of X . For two simplicial presheaves X and Y , we have

[X,Y ] = [X,Y f ] = π0 Hom(X,Y f ),

where Y → Y f is a fibrant replacement of Y . That is, the set [X,Y f ] is given
by morphisms X → Y f modulo simplicial homotopy.

5.1.1. Cohomology of simplicial presheaves. Let F be a pointed simplicial
presheaf . Define cohomology of C with coefficients in F (see [16, 3]) by

H−m(C,F ) = [∗C ,ΩmF ] for m ≥ 0.

In the case the site C has a final object X we will write H−m(X,F ) for
H−m(C,F ). Note that H−m(C,F ) ≃ [Sm, F ]∗, where the subscript ∗ refers
to morphisms in the pointed homotopy category. Here Sm is the simplicial
m-sphere ∆m/∂∆m. H−m(C,F ) is a pointed set for m = 0, a group for m > 0,
and an abelian group for m > 1.

5.1.2. Change of sites. This section is based on [19]. Let f : C → D be a
morphism of sites given by a functor f : D → C that preserves finite limits and
sends covers to covers. We have the associated presheaf functors

f∗ : C∧ → D∧, fp : D∧ → C∧,

where C∧ denotes the category of presheaves on C. The functor fp is left ad-
joint to f∗. Both functors are exact and f∗ maps sheaves to sheaves. Both fp
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and f∗ preserve cofibrations and f∗ preserves fibrations. In particular, the func-
tor F 7→ F (U) preserves fibrations. Thus a fibration is a pointwise fibration.
The functor fp also preserves weak equivalences.
Jardine proves the following

Theorem 5.4. Let f : C → D be a morphism of sites. Let F be a pointed
simplicial presheaf on the site C. Take a fibrant replacement F → F f of F .
Then we have an isomorphism

Hm(C,F ) ≃ Hm(D, f∗F
f ),

for all m ≤ 0.

Proof. We start with the following lemma.

Lemma 5.5. Suppose that F is a fibrant simplicial presheaf on C. Then there
is an adjointness isomorphism

[∗D, f∗F ] ≃ [∗C , F ].

Proof. We know that f∗F is also fibrant. Hence we have the following sequence
of isomorphisms

[∗D, f∗F ] ≃ π0 Hom(∗D, f∗F ) ≃ π0 Hom(fp∗D, F ) ≃ π0 Hom(∗C , F ) ≃ [∗C , F ],

as wanted. �

Since fibrant objects are preserved by the loop functor (Corollary 3.2 from [16]),
the above lemma gives us the following isomorphisms

Hm(C,F ) ≃ [∗C ,ΩmF ] ≃ [∗C ,ΩmF f ] ≃ [∗D, f∗ΩmF f ].

Since the loop functor commutes with the direct image functor, we also get

[∗D, f∗ΩmF f ] ≃ [∗D,Ωmf∗F f ].

This proves our theorem. �

It will be useful for us to identify the homotopy group presheaves of the presheaf
f∗F f from the above theorem.

Proposition 5.6. We have

πkf∗F
f (V ) ≃ H−k(f(V ), F |f(V )).

Proof. This follows from the following sequence of isomorphisms

πkf∗F
f (V ) = πkF

f (f(V )) ≃ [∗f(V ),Ω
kF f |f(V )] ≃ [∗f(V ),Ω

kF |f(V )].

�

Documenta Mathematica 13 (2008) 505–551



542 Wies lawa Nizio l

5.2. Topological K-theory. We base this section on Gillet and Soulé [9,
3.1]. Let (C,OC) be a ringed site with enough points. We assume that OC is
unitary and commutative. For any n ≥ 1, we consider the following presheaves

GLn : U 7→ GLn(Γ(U,OU )), BGLn : U 7→ BGLn(Γ(U,OU )).

Here BGLn(Γ(U,OU )) is the classifying space of GLn(Γ(U,OU )).
Let F be a simplicial presheaf such that π0(F ) = ∗. We define its Bousfield-
Kan integral completion Z∞F to be the simplicial presheaf U 7→ Z∞F (U).
The functor Z∞ for simplicial sets is defined in [4]. Its basic property gives
us that if a map of simplicial presheaves f : F → G induces an isomorphism
of presheaves of integral homology groups f : Hn(F,Z) → Hn(G,Z), then the
map Z∞f : Z∞F → Z∞G is a weak equivalence. We setBGL = inj limnBGLn
and

K = Z× Z∞BGL,

where the constant presheaf Z is concentrated in degree zero and pointed by
zero.
To compare the above definition with Quillen’s K-theory, take, for any ringed
site (C,OC), the functor U 7→ PC(U), where PC(U) is the category of lo-
cally free OC |U -modules of finite rank. Consider the simplicial presheaf
ΩBQPC : U 7→ ΩBQPC(U). Here Q is the Quillen Q-construction. Con-
sider also a related simplicial presheaf ΩBQP : U 7→ ΩBQP (OC(U)), where
P (OC(U)) is the category of finitely generated projective OC(U)-modules.
There is a natural map ΩBQP → ΩBQPC and, by [8, 2.15], a natural map (in
the homotopy category) Z × Z∞BGL → ΩBQPC . Gillet and Soulé [9, 3.2.1]
prove the following

Lemma 5.7. If C is locally ringed, then the natural maps of pointed simplicial
presheaves

Z× Z∞BGL→ ΩBQP → ΩBQPC

are weak equivalences.

Let C be now the Zariski site of some scheme X . Choose a fibrant replace-
ment Kf of ΩBQPZar. It defines a map Km(X) = πm(ΩBQPZar(X)) →
H−m(XZar,K). Gillet and Soulé show [9, 3.2.2] that the Mayer-Vietoris prop-
erty implies the following

Proposition 5.8. Suppose that X is a Noetherian regular scheme of finite
Krull dimension. Then the above map gives an isomorphism

Km(X)
∼→ H−m(XZar,K), m ≥ 0

5.2.1. Topological K/n-theory. For a scheme X , write

K(X) = K(XZar) = {K0(X),K1(X), . . . , }
for the Waldhausen spectrum associated to the category of Zariski locally free
sheaves (cf. [35, 1.5.2]). Write

K/n(X) = K/n(XZar) = {K0/n(X),K1/n(X), . . .}
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for the corresponding mod-n spectrum. Both spectra are connective and
contravariant in X . For a site C built from schemes, denote by K and
K/n the pointed simplicial presheaves K : X 7→ K0(X) and K/n : X 7→
K0/n(X). Since, by the + = Q theorem, the map (of simplicial presheaves)
Z × Z∞BGL → ΩBQP is a weak equivalence and there exists a (local) weak
equivalence ΩBQP → (U 7→ K0(U)) [35, 1.11.2] this notation is compatible
with the one used above.
Set

KC
m(X) := H−m(XC ,K), KC

m(X,Z/n) := H−m(XC ,K/n), m ≥ 0.

Corollary 5.9. Suppose that X is a Noetherian regular scheme of finite Krull
dimension. Then we have a natural isomorphism

Km(X,Z/n)
∼→ KZar

m (X,Z/n) = H−m(XZar,K/n), m ≥ 0

Proof. The fibration sequence

K0/n→ K1 n→ K1

gives compatible long exact sequences

H−m(XZar,K)
n

−−−−−→H−m(XZar,K)−−−−−→H−m(XZar,K/n)−−−−−→H−m+1(XZar,K)
x

?

?

≀
x

?

?

≀
x

?

?

x

?

?

≀

Km(X)
n

−−−−−→ Km(X) −−−−−→ Km(X,Z/n) −−−−−→ Km−1(X)

Our corollary easily follows. �

5.3. Topological log-étale K/n-theory. We show in this section that
l-adic topological log-étale K-theory of a log-regular scheme computes étale
K-theory of the largest open set on which the log-structure is trivial. As the
reader will see the log-étale story presented here is very similar to the story of
étale K-theory. We will mainly work with schemes S such that

(*) S is separated, Noetherian and regular. The natural number n is invertible
on S and

√
(−1) ∈ OX if n is even. S has finite Krull dimension and a uniform

bound on n-torsion étale cohomological dimension of all residue fields. Each
residue field of S has a Tate-Tsen filtration.

We quote from Jardine (Theorem 3.9 in [16])

Theorem 5.10. Suppose that X satisfies the above condition. Then, for n ≥ 0,
we have an isomorphism

[∗Xét
,ΩmK1/n] ≃ KDF

m−1(X,Z/n), m ≥ 0,

where KDF
∗ (X,Z/n) is the étale K-theory.

This yields the following
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Corollary 5.11. Suppose that X satisfies the above condition. Then there is
an isomorphism

K ét
m(X,Z/n) ≃ KDF

m (X,Z/n), m ≥ 0.

Proof. The above theorem and the weak equivalence K0/n ≃ ΩK1/n give the
following isomorphisms

H−m(Xét,K/n) = [∗Xét
,ΩmK0/n] ≃ [∗Xét

,Ωm+1K1/n] ≃ KDF
m (X,Z/n),

as wanted. �

We will now compute the homotopy groups of K-presheaves. Recall [36, 2.7,
2.7.2] that, for a scheme Y satisfying condition (*) such that Γ(Y,OY ) contains
a primitive n’th root of unity, there are compatible functorial Bott element
homomorphisms

βn : µn(Y )→ K2(Y,Z/n),

where µn(Y ) denotes the group of n’th roots of unity in Γ(Y,OY ).

Proposition 5.12. Suppose that X satisfies condition (*) and that for all
x ∈ X, MX,x/O∗X,x is isomorphic to a direct sum of N. Let n be invertible

on X. Then the sheaves of homotopy groups of K/n in the Kummer log-étale
topology are given by

π̃q(K/n) ≃
{

Z/n(i) for q = 2i ≥ 0

0 for q ≥ 0, odd.

Proof. We have a map of sheaves

Z/n(i)→ π̃2i(K/n)

induced locally by taking the product of the map βn → π2(K/n(Y )).
It suffices to show that this map is an isomorphism and that, for q odd, the sheaf
π̃q(K/n) is trivial. For that we need to compute the stalks of the presheaves
K/n. For any point x ∈ X , consider the natural chart P → OX,x, where
P = MX,x/O∗X,x. By assumption P ≃ Nr, for some r. We have

K/nx(log) = inj lim
U

K/n(U) = inj lim
k

K/n(OX,x,k),

where the first limit is over the Kummer log-étale neighbourhoods U of the
log geometric point x(log) in X , and the second limit is over the base changes
OX,x,k = OX,x ⊗Z[P ] Z[P ] of OX,x by the k-power map k : P → P , k being
invertible in OX,x. Since P ≃Nr, the ring OX,x,k is local.
By Gabber’s rigidity [7] we have the following commutative diagram

πq(K/n(OX,x))
∼−−−−→ πq(K/n(k))

y
y∼

πq(K/n(OX,x,k))
∼−−−−→ πq(K/n(k)).

Hence, inj limk πq(K/n(OX,x,k))
∼→ πq(K/n(k)). The proposition now follows

from the computations of K-theory of separably closed fields. �
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The above computation yields the following

Proposition 5.13. Suppose that X satisfies condition (*) and that, for all
x ∈ X, MX,x/O∗X,x is isomorphic to a direct sum of N. Let n be invertible on
X. Then there exists a cohomological spectral sequence Ep,qr , r ≥ 2, such that

Ep,q2 =

{
Hp(Xkét,Z/n(q/2)) for q − p ≥ 0 and q even

0 for q − p ≥ 0 and q odd.

This spectral sequence converges strongly to Kkét
q−p(X,Z/n) for q − p ≥ 1. The

differential dr in the above spectral sequence maps Ep,qr to Ep+r,q+r−1
r .

Theorem 5.14. Let X be a log-regular, regular scheme satisfying condition
(*). Let n be a natural number invertible on X. Then the open immersion
j : U →֒ X, where U = Xtr is the maximal open set of X on which the log-
structure is trivial, induces an isomorphism

j∗ : Kkét
m (X,Z/n)

∼→ K ét
m(U,Z/n), m ≥ 0.

Proof. Let K/n→ Kf/n be a fibrant replacement. By Theorem 5.4,

H−m(Uét,Z/n) ≃ H−m(Ukét,Z/n) ≃ H−m(Xkét, j∗K
f/n).

It suffices to show that the natural map of presheaves on Xkét,

K/n→ j∗(K
f/n)

is a weak equivalence. Or that the induced map on all the log-geometric stalks
is a weak equivalence. By Proposition 5.13, πq(K/nx(log)) is trivial for q odd
and isomorphic to Z/n(i) for q = 2i. From Proposition 5.6,

πq((j∗(K/n))x(log)) ≃ inj lim
Y

K ét
q (YU ,Z/n),

where the limit is over the Kummer log-étale neighbourhoods Y of x(log) in
X . Consider now the composition

πq((K
f/n)x(log)) = inj lim

Y
Kq(Y,Z/n)

j∗≃ inj lim
Y

Kq(YU ,Z/n)

ρ→ inj lim
Y

K ét
q (YU ,Z/n) ≃ πq((j∗(Kf/n))x(log)).

By Proposition 5.15 below, the map j∗ is an isomorphism. By Thomason [34,
11.5], the map ρ is an isomorphism after inverting the Bott element. This yields
the isomorphism

π∗((K/n)x(log))[β
−1
n ]

∼→ π∗((j∗(K
f/n))x(log))[β

−1
n ].

Since the Bott element is invertible on both sides, we get the isomorphism

πq((K/n)x(log))
∼→ πq((j∗(K

f/n))x(log)),

as wanted. �
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Proposition 5.15. Let X be a log-regular, regular scheme. Let n be a natural
number invertible on X. For any point x ∈ X, the natural map

inj lim
Y

Kq(Y,Z/n)→ inj lim
Y

Kq(YU ,Z/n)

is an isomorphism. Here, the limit is taken over the Kummer log-étale neigh-
bourhoods of x(log) in X.

Proof. Looking étale locally, we may assume that X = Spec(OX,x) (abusing
notation a bit), and we have a chart P → OX,x, for P = MX,x/O∗X,x ≃ Nk.
Consider the closed subscheme of X

Z = X ⊗Z[X1,...,Xk] Z[X1, . . . , Xk]/(X1 . . .Xk).

Up to reindexing, Z can be covered by closed subschemes

Zi = X ⊗Z[X1,...,Xk] Z[X1, . . . , Xk]/(X1, . . . , Xi).

We will need the following lemma

Lemma 5.16. Consider the cartesian diagram

Z ′i −−−−→ Spec(Z[X1, . . . , Xk]/(Xr
1 , . . . , X

r
i ))

ymr

ymr

Zi −−−−→ Spec(Z[X1, . . . , Xk]/(X1, . . . , Xi)),

where the map mr is defined by sending Xl to Xr
l . The pullback map m∗r :

K ′∗(Zi,Z/n)→ K ′∗(Z
′
i,Z/n) is trivial for r large enough and invertible on X.

Proof. We can filter the ring Z[X1, . . . , Xk]/(Xr
1 , . . . , X

r
i )) (as an

Z[X1, . . . , Xk]/(X1, . . . , Xi) module) with ri graded pieces isomorphic to
Z[X1, . . . , Xk]/(X1, . . . , Xi) ≃ Z[Xi+1, . . . , Xk]. Now, we can do the same for
the ring OZ′

i
assuming that there is enough flatness, i.e., that

Tor
Z[X1,...,Xk]/(X1,...,Xi)
j (OZi ,Z[X1, . . . , Xk]/(Xa1

1 , . . . , Xai

i )) = 0,

j > 0, a1, . . . , ai ≥ 1.

But that follows from the results of Kato [22, 6.1] in the following way

Tor
Z[X1,...,Xk]/(X1,...,Xi)
j (OZi ,Z[X1, . . . , Xk]/(Xa1

1 , . . . , Xai

i ))

= Tor
Z[X1,...,Xk]/(X1,...,Xi)
j (OX
⊗Z[X1,...,Xk] Z[X1, . . . , Xk]/(X1, . . . , Xi),Z[X1, . . . , Xk]/(Xa1

1 , . . . , Xai

i ))

∼→ Tor
Z[X1,...,Xk]
j (OX ,Z[X1, . . . , Xk]/(Xa1

1 , . . . , Xai

i )) = 0.

Hence we have a filtration of OZ′
i

by OZi modules. This filtration has length

ri and the graded pieces are isomorphic to OZi ⊗Z[Xi+1,...,Xk] Z[Xi+1, . . . , Xk],
where the tensor product is over the mapmr (sending Xl to Xr

l ). Since the map
mr is flat, this yields (by devissage) that the map K ′∗(Zi,Z/n)→ K ′∗(Z

′
i,Z/n)

is zero for ri ≥ n. Clearly r = n will do. �
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Mayer-Vietoris for K ′-theory and the above lemma yield that the map mr :
X → X defined by Xl 7→ Xr

l kills K ′∗(Z,Z/n) for some r = nj. Since mr is
Kummer log-étale, this gives the isomorphism in our proposition (note that we
can assume all the schemes Y in the limits to be regular). �

Corollary 5.17. Let X be a log-regular scheme satisfying condition (*). Let
n be a natural number invertible on X. Then the open immersion j : U →֒ X,
where U = Xtr is the maximal open set of X on which the log-structure is
trivial, induces an isomorphism

j∗ : Kvkét
m (X,Z/n)

∼→ K ét
m(U,Z/n), m ≥ 0.

Proof. By Theorem 5.4,

H−m(Uét,Z/n) ≃ H−m(Uvkét,Z/n) ≃ H−m(Xvkét, j∗K
f/n).

It suffices to show that the natural map of presheaves on Xvkét,

K/n→ j∗(K
f/n)

induces a weak equivalence on the stalks at a conservative family of valuative
log-geometric points. Recall (section 2.2) that, for x ∈ U , U → Spec(Z[P ]), a
valuative log-geometric point over x can be described as a compatible system
of log-geometric points of certain log-blow-ups UJ of U . Since X is log-regular,
all the log-blow-ups UJ can be assumed to be regular (see [30, Thm 5.5]). On
each UJ , the computations in the proof of Theorem 5.14, show that the map

πq(K/nx(log))→ πq((j∗(K
f/n))x(log))

is an isomorphism. This finishes our proof. �

Similarly, Proposition 5.12 implies the following two corollaries.

Corollary 5.18. Suppose that X is log-regular and satisfies condition (*).
Let n be invertible on X. Then the sheaves of homotopy groups of K/n in the
log-étale topology are given by

π̃q(K/n) ≃
{

Z/n(i) for q = 2i ≥ 0

0 for q ≥ 0, odd.

Corollary 5.19. Suppose that X is log-regular and satisfies condition (*).
Let n be invertible on X. Then there exists a cohomological spectral sequence
Ep,qr , r ≥ 2, such that

Ep,q2 =

{
Hp(Xvkét,Z/n(q/2)) for q − p ≥ 0 and q even

0 for q − p ≥ 0 and q odd.

This spectral sequence converges strongly to Kvkét
q−p (X,Z/n) for q − p ≥ 1.

Remark 5.20. Let X∗ be one of the Kummer sites studied in this paper. Con-
sider the presheaves K0

∗ : X 7→ K0(X∗) and K0
∗/n : X 7→ K0/n(X∗). They
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are weakly equivalent to the presheaves K and K/n. Choose their fibrant res-
olutions Kf ,Kf/n. For m ≥ 0 they define functorial maps from the algebraic
K-theory to topological K-theory

ρm : Km(X∗) = πm(K0
∗(X))→ πm(Kf (X)) = K∗m(X),

ρm : Km(X∗,Z/n) = πm(K0
∗/n(X))→ πm(Kf/n(X)) = K∗m(X,Z/n)

The above yields that for a log-regular regular scheme X satisfying condition
(*), a number n invertible on X , and m ≥ 0, the map

ρm : Km(Xkét,Z/n)→ Kkét
m (X,Z/n)

factors through the projection

π : Km(Xkét,Z/n)→ Km(Xkét,Z/n)/K ′m(Zkét,Z/n),

where Z is the divisor at infinity. Indeed, we have the following commutative
diagram

Km(Xkét,Z/n)
j∗−−−−→ Km(Uét,Z/n) = Km(U,Z/n)

yρm

yρm

Kkét
m (X,Z/n)

j∗−−−−→
∼

Kkét
m (U,Z/n),

where j : U = Xtr →֒ X is the natural immersion. And our claim follows now
from the localization sequence and Theorem 5.14.

Remark 5.21. Corollary 5.17 is closely related to the following absolute log-
purity conjecture (see [15, 3.4.2]).

Conjecture 5.22. Let X be a log-scheme, locally Noetherian. Assume that X
is log-regular and let j : U →֒ X be the open set of triviality of the log-structure
of X. Assume that n is invertible on X. Then the adjunction map

Z/n(q)→ Rj∗j
∗Z/n(q)

is an isomorphism for any q.

Indeed, the log-purity conjecture coupled with the spectral sequences 5.19 for
X and U implies Corollary 5.17. On the other hand, the usual computation
with Adams operations on the spectral sequences 5.19 for X and U should
imply their degeneration up to small torsion. Hence the absolute log-purity
conjecture (up to small torsion).
Since log-regular schemes can be desingularized by a log-blow-up, the absolute
log-purity conjecture follows easily from the following absolute purity conjec-
ture in étale cohomology.

Conjecture 5.23. Let i : Y →֒ X be a closed immersion of Noetherian,
regular schemes of pure codimension d. Let n be an integer invertible on X.
Then

HqY (Xét,Z/n) ≃
{

0 for q 6= 2d

Z/n(−d) for q = 2d
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This conjecture was proved by Gabber [11]. Thus to prove Corollary 5.17, we
could have used spectral sequences 5.19 and evoke the purity conjecture in étale
cohomology.
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1 Introduction

1.1 Young’s inequality in the context of ordinary Lebesgue in-
tegration

In this paper, we shall extend the class of generalized Young’s inequalities
known as Brascamp-Lieb inequalities (B-L inequalities) to an operator algebra
setting entailing non-commutative integration.
The original Young’s inequality [40] states that for non negative measur-
able functions f1, f2 and f3 on R, and 1 ≤ p1, p2, p3 ≤ ∞, with
1/p1 + 1/p2 + 1/p3 = 2,

∫

R2

f1(x)f2(x− y)f3(y)dxdy

≤
(∫

R

fp11 (t)dt

)1/p1 (∫

R

fp22 (t)dt

)1/p2 (∫

R

fp33 (t)dt

)1/p3

. (1.1)
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Thus, it provides an estimate of the integral of a product of functions in terms
of a product of Lp norms of these functions. The crucial difference with a
Hölder type inequality is that the integrals on the right are integrals over only
R, while the integral on the left is an integral over R2, and none of the three
factors in the product on the left – f(x), g(x− y) or h(y) – are integrable (to
any power) on R2.
To frame the inequality in terms that are more amenable to the generalizations
considered here, define the maps φj : R2 → R, j = 1, 2, 3, by

φ1(x, y) = x φ2(x, y) = x− y and φ3(x, y) = y .

Then (1.1) can be rewritten as

∫

R2




3∏

j=1

fj ◦ φj


d2x ≤

3∏

j=1

(∫

R

f
pj

j (t)dt

)1/pj

. (1.2)

There is now no particular reason to limit ourselves to products of only three
functions, or to integrals over R2 and R, or even any Euclidean space for that
matter:

1.1 DEFINITION. Given measure spaces (Ω,S, µ) and (Mj ,Mj, νj), j =
1, . . . , N , not necessarily distinct, together with measurable functions φj : Ω→
Mj and numbers p1, . . . , pN with 1 ≤ pj ≤ ∞, 1 ≤ j ≤ N , we say that a
B-L inequality holds for {φ1, . . . , φN} and {p1, . . . , pN} in case there is a finite
constant C such that

∫

Ω

N∏

j=1

fj ◦ φjdµ ≤ C
N∏

j=1

‖fj‖Lpj (νj) (1.3)

holds whenever each fj is non-negative and measurable on Mj, j = 1, . . . , N .
There are by now many examples. One of the oldest is the original discrete
Young’s inequality. In the current notation, this concerns the case in which
Ω = Z2 equipped with counting measure, N = 3, and each Mj is Z, equipped
with counting measure. Then with

φ1(m,n) = m φ2(m,n) = m− n and φ3(m,n) = n ,

(1.2) holds for any three non-negative functions fj : Z → R+ under the same
conditions on the pj as in the continuous case; i.e., 1/p1 + 1/p2 + 1/p3 = 2.
There is a significant difference: In the discrete case, the constant C = 1 is
sharp, and there is equality if and only if one of the fj is identically zero, or else
f1 vanishes except at some m0, f3 vanishes except at some n0, and f2 vanishes
except at m0 − n0. This discrete inequality is also due to Young [40], while
the statement about cases of equality is proved in [20], where the authors also
consider extensions to more than three functions.
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In the continuous case, a much wider generalization to more than three func-
tions was made by B-L in [5], where the sharp constant in Young’s inequality
– which is strictly less than 1 unless p1 = p2 = 1 – was obtained, with a proof
that the only non-negative functions yielding equality are certain Gaussian
functions. (This best constant was also obtained at the same time by Beckner
[4], for three functions.)
These inequalities generalize from R to Rn. The complete generalization to
the case in which the Mj are all Euclidean spaces, but of different dimension,
and the φj are linear transformations from Rn to Mj , was proved by Lieb [23].
Again, the maximizers are Gaussians. Another proof of this generalized version,
together with a reverse form, was obtained by Barthe [1], who also provided a
detailed analysis of the cases of equality in the original B-L inequality from [5].
The cases of equality in the higher dimensional generalization from [23] were
analyzed in detail in [7, 8].
Examples in which Ω is the sphere SN−1 or the permutation group SN were
proved in [13, 14], and the above definition of B-L inequalities in arbitrary
measure spaces is taken from [10], where a duality between B-L inequalities
and subadditivity of entropy inequalities is proved.

1.2 A generalized Young’s inequality in the context of non-
commutative integration

In non-commutative integration theory, as developed by Irving Segal [31, 32,
33], the basic framework is a triple (H,A, λ) where H is a Hilbert space, A is
a W ∗ algebra (a von Neumann algebra) of operators on H, and λ is a positive
linear functional on the finite rank operators in A. In Segal’s picture, the
algebra A corresponds to the algebra of bounded measurable functions, and
applying the positive linear functional λ to a positive operator corresponds to
taking the integral of a positive function. That is,

A 7→ λ(A) corresponds to f 7→
∫

M

fdν .

Such a triple (H,A, λ) is called a non-commutative integration space. Certain
natural regularity properties must be imposed on λ if one is to get a well-
behaved non-commutative integration theory, but we shall not go into these
here as the examples that we consider are all based on the case in which λ
is the trace on operators on H, or some closely related functional, for which
discussion of these extra conditions would be a digression.
In this operator algebra setting there are natural non-commutative analogs of
the usual Lp spaces: If A is a finite rank operator in A, and 1 ≤ q <∞, define

‖A‖q,λ =
(
λ(A∗A)q/2

)1/q

.

This defines a norm (under appropriate conditions on λ that are obvious for
the trace), and the completion of the space of finite rank operators in A under
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this norm defines a non-commutative Lp space. (The completion may contain
unbounded operators “affiliated” to A.) For more on the general theory of
non-commutative integration, see the early papers [15, 31, 33, 34] and the
more recent work in [16, 19, 21, 25].
To frame an analog of (1.3) in an operator algebra setting, we replace the
measure spaces by non-commutative integration spaces:

(Ω,S, µ) −→ (H,A, λ) and (Mj ,Mj, νj) −→ (Hj ,Aj, λj) j = 1, . . . , N .

The right hand side of (1.3) has an obvious generalization to the operator
algebra setting in terms of the non-commutative Lp norms introduced above.
As for the left hand side of (1.3), regard fj 7→ fj ◦ φj as a W ∗ algebra homo-
morphism (which, restricted to the W ∗ algebra L∞(Mj), it is), and suppose
we are given W ∗ homomorphisms

φj : Aj → A .

Then each φj(Aj) belongs to A. However in the non-commutative case, the
product of the φj(Aj) depends on their order in the product, and need not be
self-adjoint even – let alone positive – even if each of the Aj are positive.
Therefore, let us return to the left side of (1.3) and suppose that each fj is
strictly positive. Then defining

hj = ln(fj) so that fj ◦ φj = eh◦φj ,

we can then rewrite (1.3) as

∫

Ω

exp




N∑

j=1

hj ◦ φj


dµ ≤ C

N∏

j=1

‖ehj‖Lpj (νj) , (1.4)

We can now formulate our operator algebra analog of (1.3):

1.2 DEFINITION. Given non-commutative integration spaces (H,A, λ) and
(Hj ,Aj, λj), j = 1, . . . , N , together with W ∗ algebra homomorphisms φj :
Aj → A, j = 1, . . . , N , and indices 1 ≤ pj ≤ ∞, j = 1, . . . , N , a non-
commutative B-L inequality holds for {φ1, . . . , φN} and {p1, . . . , pN} if there
is a finite constant C so that

λ


exp



N∑

j=1

φj(Hj)




 ≤ C

N∏

j=1

(λj exp [pjHj ])
1/pj (1.5)

whenever Hj is self-adjoint in Aj, j = 1, . . . , N .

In this paper, we are concerned with determining the indices and the best
constant C for which such an inequality holds, and shall focus on two examples:
The first concerns operators on tensor products of Hilbert spaces, and the second
concerns Clifford algebras.
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1.3 A generalized Young’s inequality for tensor products

1.3 EXAMPLE. Let Hj , j = 1, . . . , n be separable Hilbert spaces, and let Let
K denote the tensor product

K = H1 ⊗ · · · ⊗ Hn .
Define A to be B(K), the algebra of bounded operators on K, and define λ to
be Tr, the trace Tr on K, so that (H,A, λ) = (K,B(K),Tr).
For any non-empty subset J of {1, . . . , n}, let KJ denote the tensor product

KJ =
⊗

j∈J
Hj .

Define AJ to be B(KJ ), the algebra of bounded operators on KJ , and define
λJ to be TrJ , the trace on KJ , so that (HJ ,AJ , λJ) = (KJ ,B(KJ ),TrJ ).
There are natural homomorphisms φJ embedding the 2n − 1 algebras AJ into
A. For instance, if J = {1, 2},

φ{1,2}(A1 ⊗A2) = A1 ⊗ A2 ⊗ IH3 ⊗ · · · ⊗ IHN , (1.6)

and φ{1,2} is extended linearly.
It is obvious that in case J ∩ K = ∅ and J ∪ K = {1, . . . , n}, then for all
HJ ∈ AJ and HK ∈ AK ,

Tr
(
eHJ+HK

)
= TrJ

(
eHJ

)
TrK

(
eHK

)
, (1.7)

but things are more interesting when J ∩K 6= ∅ and J and K are both proper
subsets of {1, . . . , n}. If HJ and HK do not commute, which is the typical
situation for J ∩ K 6= ∅, one can estimate the left hand side of (1.7) by first
applying the Golden–Thompson inequality [17, 36], which says that for self-
adjoint operators HJ and HK ,

Tr
(
eHJ+HK

)
≤ Tr

(
eHJ eHK

)
.

One might then apply Hölder’s inequality – but if J and K are proper subsets
of {1, . . . , n}, this will yield a finite bound if and only if all of the Hilbert
spaces whose indices are not included in both J and K are finite dimensional.
Even then, the bound depends on the dimension in an unpleasant way. The
non-commutative B-L Inequalities provided by the next theorem do not have
this defect.

1.4 THEOREM. Let J1, . . . , JN be N non-empty subsets of {1, . . . , n} For
each i ∈ {1, . . . , n}, let p(i) denote the number of the sets J1, . . . , JN that
contain i, and let p denote the minimum of the p(i). Then, for self-adjoint
operators Hj on KJj , j = 1, . . . , N ,

Tr


exp



N∑

j=1

φJj (Hj)




 ≤

N∏

j=1

(
TrJj e

qHj
)1/q

(1.8)
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for q = p (and hence all 1 ≤ q ≤ p), while for all q > p, it is possible for the
left hand side to be infinite, while the right hand side is finite.

Note that in Theorem 1.4, the constant C in Definition (1.2) is 1. The fact
that the constant C = 1 is best possible, and that the inequality cannot hold
for q > p = min{p(1), . . . , p(N)} is easy to see by considering the case that
each Hj has finite dimension dj , and Hj = 0 for each j. Then

Tr


exp



N∑

j=1

φJj (Hj)




 =

n∏

j=1

dj

and
N∏

j=1

(
TrJje

qHj
)1/q

=

N∏

j=1

∏

k∈Jj

d
1/q
k =

n∏

j=1

d
p(j)/q
j .

We will prove inequality (1.8) for q = p in Section 3.
As an example, consider the case in which n = 6, N = 3 and

J1 = {1, 2, 3} J2 = {3, 4, 5} and J3 = {5, 6, 1} .

Here, p = 1, and hence

Tr


exp




3∑

j=1

φJj (Hj)




 ≤

3∏

j=1

(
TrJj e

Hj
)
. (1.9)

Theorem 1.4 says that the inequality (1.9) can be extended to larger tensor
products, and this obviously has an statistical mechanical interpretation as a
bound on the partition function of a collection of interacting spins in terms of
a product of partition functions of simple constituent sub-systems. For more
background on this, see Thirring’s book [35].
To estimate the left side of (1.9) without using Theorem 1.4, one might use the
Golden-Thompson inequality and then Schwarz’s inequality to write

Tr


exp




3∑

j=1

φJj (Hj)




 ≤ Tr

(
eφ1(H1)+φ3(H3)eφ2(H2)

)

≤
(

Tr e2[φ1(H1)+φ3(H3)]
)1/2 (

Tr e2φ2(H2)
)1/2

.

While the L2 norms are an improvement over the L1 norms in (1.9), the traces
are now over the entire tensor product space. Thus, for example,

(
Tr e2φ2(H2)

)1/2

= (d1d2d6)1/2
(
TrJ2 e

2H2
)1/2

where dj is the dimension of Hilbert space Hj . This dimension dependence
may be unfavorable if any of the dimensions is large.
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1.4 A generalized Young’s inequality in Clifford algebras

Our next example concerns Clifford algebras, which, as Segal emphasized [32],
allow one to represent fermion Fock space as an L2 space – albeit a non-
commutative L2 space, but still with many of the advantages of having a Hilbert
space represented as a function space, as in the usual Schrödinger representation
in quantum mechanics.

In the finite dimensional setting, with n degrees of freedom, one starts with
n operators Q1, . . . , Qn on some Hilbert space H that satisfy the canonical
anticommutation relations

QiQj +QjQi = 2δi,jI .

One can concretely construct such operators acting on H = (C2)⊗n, the n–fold
tensor product of C2 with itself; see [6]. The Clifford algebra C is the operator
algebra on H that is generated by Q1, . . . , Qn.

The Clifford algebra C itself is 2n dimensional. In fact, let α = (α1, . . . , αn)
be a fermionic multi-index, which means that each αj is either 0 or 1. Then
define

Qα = Qα1

1 Qα2

2 · · ·Qαn
n . (1.10)

it is easy to see that the 2n operators Qα are a basis for the Clifford algebra,
so that any operator A in C has a unique expression

A =
∑

α

xαQ
α .

The linear functional τ on C is defined by

τ

(∑

α

xαQ
α

)
= x(0,...,0) . (1.11)

That is, τ acting on A picks out the coefficient of the identity in A =
∑

α xαQ
α.

It turns out that when the Clifford algebra is constructed in the way described
here, as an algebra operators on the 2n dimensional space H = (C2)⊗n, τ is
nothing other than the normalized trace:

τ(A) =
1

2n
TrH(A) .

Hence τ is a positive linear functional, and ((C2)⊗n,C, τ) is a non-commutative
integration space in the sense of Segal.

Clifford algebras have infinitely many subalgebras that are also Clifford algebras
of lower dimension. This is in contrast to the setting described in Example 1.3,
in which the only natural subalgebras are the 2n−1 subalgebras corresponding
to the 2n − 1 non-empty subsets of the index set {1, . . . , n}.
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To describe these subalgebras, let J be the canonical injection of Rn into C,
which is given by

J ((x1, . . . , xn)) =

n∑

j=1

xjQj . (1.12)

If x and y are any two vectors in Rn, it is easy to see from the canonical
anticommutation relations that

(J (x))(J (y)) = 2(x · y)I .

Hence if V is any m dimensional subspace of Rn, and {u1, . . . , um} is any
orthonormal basis for V , the m operators

J (u1), . . . ,J (um)

again satisfy the canonical anticommutation relations, and generate a subalge-
bra of C that is denoted by C(V ), and referred to as the Clifford algebra over
V . In the same vein, it is convenient to refer to C itself as the Clifford algebra
over Rn. Obviously, C(V ) is naturally isomorphic to C(Rm), and for A ∈ C(V )
one may compute τ(A) using either the normalized trace τ inherited from C,
or the normalized trace τV induced by the identification of C(V ) with C(Rm).

As Segal emphasized, ((C2)⊗n,C, τ) is, in many ways, a non-commutative ana-
log of the Gaussian measure space (Rn, γ(x)dx) where

γ(x) =
1

(2π)n/2
e−|x|

2/2 . (1.13)

In fact, just as orthogonality implies independence in (Rn, γ(x)dx), if V and
W are two orthogonal subspaces of Rn, and if A ∈ C(V ) and B ∈ C(W ), then

τ(AB) = τ(A)τ(B) .

The results we prove here reinforce this analogy. We are now ready to introduce
our next example:

1.5 EXAMPLE. For some n > 1, let A be the Clifford algebra over Rn with
its usual inner product, and let A be equipped with its unique tracial state τ ,
which is simply the normalized trace.

For each j = 1, . . . , N , let Vj be a subspace of Rn, and let Aj be C(Vj), the
Clifford algebra over Vj with the inner product that Vj inherits from Rn. Let
Aj be equipped with its unique tracial state τj . The natural embedding of Vj
into Rn induces a homomorphism of Aj into A, and we define this to be φj . In
this setting, we shall prove

1.6 THEOREM. Let V1, . . . , VN be N subspaces of Rn, and let Aj be the Clif-
ford algebra over Vj with the inner product that Vj inherits from Rn, and let Aj
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be equipped with its unique tracial state τj. Let φj be the natural homomorphism
of Aj into A induced by the natural embedding of Vj into Rn. Then

τ


exp



N∑

j=1

φj(Hj)




 ≤

N∏

j=1

(
τj e

pjHj
)1/pj

(1.14)

for all self-adjoint operators Hj ∈ Aj if and only if

N∑

j=1

1

pj
Pj ≤ IRn . (1.15)

where Pj is the orthogonal projection onto Vj in Rn.

In the special case in which dim(Vj) = 1 for each j, (1.14) reduces to an
interesting inequality for the hyperbolic cosine. Indeed, let uj be one of the
two unit vectors in Vj .
Then, with uj ⊗ uj denoting the orthogonal projection onto the span of uj ,
(1.15) reduces to

N∑

j=1

1

pj
uj ⊗ uj ≤ IRn . (1.16)

The greater simplification, however, is that in this case, the space of self-adjoint
operators in each Aj is just two dimensional, and, with J denoting the canon-
ical injection defined in (1.12),

Hj = ajI + bjJ (uj)

for some real numbers aj and bj . Then

N∑

j=1

Hj =




N∑

j=1

aj


 I + J




N∑

j=1

bjuj


 .

This operator has exactly two eigenvalues,



N∑

j=1

aj


±

∣∣∣∣∣∣

N∑

j=1

bjuj

∣∣∣∣∣∣

with equal multiplicities.
Likewise, pjHj has exactly two eigenvalues pjaj±pjbj with equal multiplicities.
Hence, in this case, (1.14) reduces to

cosh
(∣∣∣
∑N

j=1 bjuj

∣∣∣
)
≤

N∏

j=1

(cosh(pjbj))
1/pj for all (b1, . . . , bN ) ∈ RN ,

(1.17)
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which, according to Theorem 1.6, must hold whenever (1.16) is satisfied. (The
aj ’s make the same contribution to both sides, and may be cancelled away.)
Taking the logarithm of both sides, this can be rewritten as

ln cosh
(∣∣∣
∑N

j=1 bjuj

∣∣∣
)
≤

N∑

j=1

1

pj
ln cosh(pjbj) for all (b1, . . . , bN) ∈ RN ,

(1.18)
and this inequality must hold whenever the unit vectors {u1, . . . , uN} and the
positive numbers {p1, . . . , pN} satisfy (1.16).
Later on, we shall give an elementary proof of this inequality, and hence an
elementary proof of Theorem 1.6 when each Vj is one dimensional. Our proof
of the other cases is less than elementary, and even our elementary proof of
(1.18) is less than direct.

2 Subadditivty of Entropy and Generalized Young’s Inequalities

In the examples we have introduced in the previous section, the positive lin-
ear functionals λ under consideration are either traces or normalized traces.
Throughout this section, we assume that our non-commutative integration
spaces (H,A, λ) are based on tracial positive linear functionals λ. That is,
we require that for all A,B ∈ A,

λ(AB) = λ(BA) .

In such a non-commutative integration space (H,A, λ), a probability density is
a non-negative element ρ of A such that λ(ρ) = 1. Indeed, the tracial property
of λ ensures that

λ(ρA) = λ(Aρ) = λ(ρ1/2Aρ1/2)

so that A 7→ λ(ρA) is a positive linear functional that equals 1 on the identity.
Now suppose we have N non-commutative integration spaces (Hj ,Aj , λj) and
W ∗ homomorphisms φj : Aj → A. Then these homomorphisms induce maps
from the space of probability densities on A to the spaces of probability densities
on the Aj :
For any probability density ρ on (A, λ), let ρj be the probability density on
(Aj , λj) defined by

λj(ρjA) = λ(ρφj(A))

for all A ∈ Aj .
For example, in the setting of Example 1.3, ρJj is just the partial trace of ρ over⊗

k∈Jc
j
Hk, leaving an operator on

⊗
k∈Jj

Hk. In the Clifford algebra setting

of Example 1.5, ρj is simply the orthogonal projection of ρ in L2(C, τ) onto
C(Vj), which is also known as the conditional expectation [38] of ρ given C(Vj).
In this section, we are concerned with the relations between the entropies of ρ
and the ρ1, . . . , ρN . The entropy of a probability density ρ, S(ρ), is defined by

S(ρ) = −λ(ρ ln ρ) .
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Evidently, the entropy functional is concave on the set of probability densities.

2.1 DEFINITION. Given tracial non-commutative integration spaces
(H,A, λ) and (Hj ,Aj , λj), j = 1, . . . , N , together with W ∗ algebra ho-
momorphisms φj : Aj → A, j = 1, . . . , N , and numbers 1 ≤ pj ≤ ∞,
j = 1, . . . , N , a generalized subadditivity of entropy inequality holds if there is
a finite constant C so that

N∑

j=1

1

pj
S(ρj) ≥ S(ρ)− lnC (2.1)

for all probability densities ρ in A.

It turns out that for tracial non-commutative integration spaces, generalized
subadditivity of entropy inequalities and B-L inequalities are dual to one an-
other, just as they are in the commutative case [10], so that if one holds, so
does the other, with the same values of p1, . . . , pN and C. The following is, in
fact, a direct non-commutative analog of the main theorem of [10].

2.2 THEOREM. Let (H,A, λ) and (HjAj, λj), j = 1, . . . , N , be tracial non-
commutative integration spaces. Let φj : Aj → A, j = 1, . . . , N be W ∗ algebra
homomorphisms. Then for any numbers 1 ≤ pj ≤ ∞, j = 1, . . . , N , and any
finite constant C, the generalized subadditivity of entropy inequality (2.1) is
true for all probability densities ρ on A if and only if the non-commutative B-L
inequality (1.5) is true for all self-adjoint Hj ∈ Aj, j = 1, . . . , N , with the same
p1, . . . , pN and the same C.

As a consequence of Theorem 2.2, one strategy for proving a non-commutative
B-L inequality is to prove the corresponding generalized subadditivity of en-
tropy inequality. We shall see in our examples that this is an effective strategy;
indeed, this is how we prove Theorems 1.4 and 1.6.
In the current tracial context, the proof of Theorem 2.2 is a direct adaptation
of the proof of the corresponding result in the context of Lebesgue integration
given in [10]. It turns on a well–known formula for the Legendre transform
of the entropy. For completeness, we give this formula in Lemma 2.3 below.
Except for the S(A) = −∞ case in (2.2) below, it is the same as [26, Prop.
1.10]. The Legendre transform is usually defined for functions on a dual pair
of real linear spaces. Therefore, it is convenient to extend the definition of S to
all of Ah,1, the (real) subspace of self-adjoint elements A of A with λ(|A|) <∞.
as follows:

S(A) =

{
−λ(A lnA) if A ≥ 0 and λ(A) = 1,

−∞ otherwise.
(2.2)

2.3 LEMMA. Let A be B(H), the algebra of bounded operators on a separable
Hilbert space H. Let λ denote either the trace Tr on H, or, if H is finite
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dimensional, the normalized trace τ . Then for all A ∈ Ah,1,

−S(A) = sup
H self adjoint, semibounded above

{
λ(AH) − ln

(
λ
(
eH
))}

. (2.3)

The supremum is an attained maximum if and only if A is a strictly positive
probability density, in which case it is attained at H if and only if H = lnA+cI
for some c ∈ R. Consequently, for all self adjoint H with H semibounded above,

ln
(
λ
(
eH
))

= sup
A∈Ah,1

{λ(AH) + S(A)} . (2.4)

The supremum is a maximum at all points of the domain of ln
(
λ
(
eH
))

, in
which case it is attained only at the single point A = eH/(λ(eH)).

Proof: We consider first the case that λ = Tr, and H has finite dimension d.
To see that the supremum is ∞ unless 0 ≤ A ≤ I, let c be any real number,
and let u be any unit vector. Then let H be c times the orthogonal projection
onto u. For this choice of H ,

λ(AH)− ln
(
λ
(
eH
))

= c〈u,Au〉 − ln(ec + (d− 1)) .

If 〈u,Au〉 < 0, this tends to ∞ as c tends to −∞. If 〈u,Au〉 > 1, this tends
to ∞ as c tends to ∞. Hence we need only consider 0 ≤ A ≤ I. Next, taking
H = cI, c ∈ R,

λ(AH) − ln
(
λ
(
eH
))

= cλ(A)− c− ln(d) .

Unless λ(A) = 1, this tends to∞ as c tends to∞. Hence we need only consider
the case that A is a density matrix ρ.
Let ρ be any density matrix on H and let H be any self-adjoint operator such
that Tr(eH) <∞, and define the density matrix σ by

σ =
eH

Tr(eH)
.

Then, by the positivity of the relative entropy,

Tr(ρ ln ρ− ρ lnσ) ≥ 0 ,

with equality if and only if σ = ρ. But by the definition of σ, this reduces to

Tr(ρ ln ρ) ≥ Tr(ρH)− ln
(
Tr
(
eH
))

,

with equality if and only if H = ln ρ. From here, the rest is very simple,
including the treatment of the normalized trace.

Petz [27] has shown how to extend Lemma 2.3 to a much more general context,
and his result can be used to extend the validity Theorem 2.2 beyond the
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tracial case. However, since the examples in which we prove the generalized
subadditivity inequality here are tracial, we shall not go into this.

Proof of Theorem 2.2: Suppose, first, that the non-commutative B-L in-
equality (1.5) holds. Then, for any probability density ρ in A, and any self-

adjoint Hj ∈ Aj, j = 1, . . . , N , apply (2.3) with A = ρ and H =
∑N

j=1 φj(Hj)
to obtain

−S(ρ) ≥ λ


ρ



N∑

j=1

φj(Hj)




− ln


λ


exp



N∑

j=1

φj(Hj)








=

N∑

j=1

λj(ρjHj)− ln


λ


exp



N∑

j=1

φj(Hj)








≥
N∑

j=1

λj(ρjHj)− ln


C

N∏

j=1

λj
(
epjHj

)1/pj




=
N∑

j=1

1

pj

[
λj(ρj [pjHj ])− ln

(
λj

(
e[pjHj ]

))]
− lnC .

(2.5)

The first inequality here is (2.3), and the second is the non-commutative B-L
inequality (1.5).

Now choosing pjHj to maximize λj(ρj [pjHj ]) − ln
(
λj
(
e[pjHj ]

))
, we get from

(2.3) once more that

λj(ρj [pjHj ])− ln
(
λj

(
e[pjHj ]

))
= −S(ρj) = λj(ρj ln ρj) .

Thus, we have proved (2.1) with the same p1, . . . , pN and C that we had in
(1.5).

Next, suppose that (2.1) is true. We shall show that in this case the non-
commutative B-L inequality (1.5) holds with the same p1, . . . , pN and C. To
do this, let the self-sadjoint operators H1, . . . , HN be given, and define

ρ =


λ


exp



N∑

j=1

φj(Hj)







−1

exp



N∑

j=1

φj(Hj)


 .

Documenta Mathematica 13 (2008) 553–584



566 Eric A. Carlen and Elliott H. Lieb

Then by Lemma 2.3,

ln


λ


exp



N∑

j=1

φj(Hj)






 = λ


ρ



N∑

j=1

φj(Hj)




+ S(ρ)

=

N∑

j=1

λj [ρjHj ] + S(ρ)

≤
N∑

j=1

1

pj
[λj [ρj(pjHj)] + S(ρj)] + lnC

≤
N∑

j=1

1

pj
ln [λj (exp(pjHj))] + lnC

(2.6)

The first inequality is the generalized subadditivity of entropy inequality (2.1),
and the second is (2.4).
Exponentiating both sides of (2.6), we obtain (1.5) with the same p1, . . . , pN
and C that we had in (2.1).

3 Proof of the generalized subadditivity of entropy inequality
for tensor products of Hilbert spaces

The crucial tool that we use in this section is the strong subadditivity of entropy
[24], which we now recall in a formulation that is suited to our purposes.
Suppose, as in Example 1.3, that we are given n separable Hilbert spaces
H1, . . . ,Hn. As before, let K denote their tensor product, and for any non-
empty subset J of {1, . . . , n}, let KJ denote

⊗
j∈J Hj .

For a density matrix ρ on K, and any non-empty subset J of {1, . . . , n}, define
ρJ = TrJcρ to be the density matrix on KJ induced by the natural injection of
B(KJ ) into B(K). As noted above, ρJ is nothing other than the partial trace
of ρ over the complementary product of Hilbert spaces,

⊗
j /∈J Hj .

The strong subadditivity of entropy is expressed by the inequality stating that
for all nonempty J,K ⊂ {1, . . . , n},

S(ρJ) + S(ρK) ≥ S(ρJ∪K) + S(ρJ∩K) . (3.1)

In case J ∩K = ∅, it reduce to the ordinary subadditivity of entropy, which is
the elementary inequality

S(ρJ) + S(ρK) ≥ S(ρJ∪K) for J ∩K = ∅ . (3.2)

Combining these, we have

S(ρ{1,2}) + S(ρ{2,3}) + S(ρ{3,1}) ≥ S(ρ{1,2,3}) + S(ρ{2}) + S(ρ{1,3})

≥ 2S(ρ{1,2,3}) ,

(3.3)
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where the first inequality is the strong subadditivity (3.1) and the second is
the ordinary subadditivity (3.2). Thus, for n = 3 and J1 = {1, 2}, J2 = {2, 3}
and J3 = {3, 1}, we obtain

1

2

N∑

j=1

S(ρJj ) ≥ S(ρ) .

In this example, each index i ∈ {1, 1, 3} belonged to exactly two of the set J1,
J2 and J3, and this is the source of the factor of 1/2 in the inequality. The
same procedure leads to the following result:

3.1 THEOREM. Let J1, . . . , JN be N non-empty subsets of {1, . . . , n} For
each i ∈ {1, . . . , n}, let p(i) denote the number of the sets J1, . . . , JN that
contain i, and let p denote the minimum of the p(i). Then

1

p

N∑

j=1

S(ρJj ) ≥ S(ρ) (3.4)

for all density matrices ρ on K = H1 ⊗ · · · ⊗ Hn.

Proof: Simply use strong subadditivty to combine overlapping sets to produce
as many “complete” sets as possible, as in the example above. Clearly, there
can be no more than p of these. If p(i) > p for some indices i, there will be
“left over” partial sets. The entropy is always non-negative, and therefore,
discarding the corresponding entropies gives us

∑N
j=1 S(ρJj ) ≥ pS(ρ), and

hence the inequality.
It is now a very simple matter to prove Theorem 1.4:
Proof of Theorem 1.4: By the remarks made after the statement of the the-
orem, all that remains to be proved is the inequality (1.8) for q = p. However,
this follows directly from Theorem 2.2 and Theorem 3.4.

4 On the generalized Young’s inequality with a Gaussian refer-
ence measure

Before turning to the proof of our non-commutative B-L inequality in Clifford
algebras, we discuss the commutative case in which the reference measures is
Gaussian. We do this here for two reasons: First, as noted, a Clifford algebra C

with its normalized trace τ is a non-commutative analog of a Gaussian measure
space. This analogy is strong enough that we shall be able to pattern our
analysis in the Clifford algebra case on an analysis of the Gaussian case.
Second, the Gaussian inequality is of interest in itself, and seems not to have
been fully studied before. Suppose that V1, . . . , VN are N non-zero subspaces
of Rn, and for each j, define φj = Pj to be the orthogonal projection of Rn

onto Vj . Equip Rn and equip each Vj with Lebesgue measure. Then the
problem of determining for which sets of indices {p1, . . . , pN} there exists a
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finite constant C so that (1.3) holds for all non-negative measurable functions
fj on Vj , j = 1, . . . , N is highly non trivial, and has only recently been fully
solved [7, 8]. Moreover, determining the value of the best constant C for
those choices of {p1, . . . , pN} is still a challenging finite dimensional variational
problem for which there is no general explicit solution.
In contrast, suppose we are given a non-degenerate Gaussian measure on Rn.
It will be convenient to take the covariance matrix of the Gaussian to define
the inner product, so that the Gaussian becomes a unit Gaussian. For each
positive integer m, define γm(x) = (2π)−m/2e−|x|

2/2 on Rm. Then equipping
Rn with the measure γn(x)dx and equipping each Vj with the γdj (x)dx, dj
being the dimension of Vj , it turns out that there is a very simple necessary
and sufficient condition on the indices {p1, . . . , pN} for the constant C to be
finite, and better yet, the best constant C is always 1 whenever it is finite:

4.1 THEOREM. Let V1, . . . , VN be N non-zero subspaces of Rn, and for each
j, and let dj denote the dimension of Vj . Define Pj to be the orthogonal pro-
jection of Rn onto Vj . Given the numbers pj, 1 ≤ pj < ∞ for j = 1, . . . , N ,
there exists a finite constant C such that

∫

Rn

N∏

j=1

fj ◦ Pj(x)γn(x)dx ≤ C
N∏

j=1

(∫

Vj

f
pj

j (y)γdj (y)dy

)1/pj

(4.1)

holds for all non-negative fj on Vj, j = 1, . . . , N , if and only if

N∑

j=1

1

pj
Pj ≤ IdRn (4.2)

and in this case, C = 1.

We hasten to point out that this theorem is partially known. In the special
case that each of the subspaces Vj is one dimensional, Barthe and Cordero-
Erausquin [2], have proved that it is sufficient to have equality in (4.2); in this
one dimensional context, their sufficient condition then is

N∑

j=1

1

pj
uj ⊗ uj = IdRn (4.3)

with each uj being a unit vector spanning Vj . They did this as an intermediate
step in a short proof of the Lebesgue measure version of the B-L inequality
under the condition (4.3) – the so-called geometric case. Perhaps because their
main focus was the Lebesgue measure case, in which (4.3) is not a necessary
condition for finiteness of the constant C, they did not address the necessity of
this condition in the Gaussian case.
Indeed, under the condition that equality holds in (4.2), the inequality (4.1)
is equivalent to its Lebesgue measure analog, which is known to hold with the
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constant C = 1 under this same condition [7, 8]. To see this, define g1, . . . , gN
by

gj(y) = fj(y)(γj(y))1/dj j = 1, . . . , N .

As noted in [2] for the one dimensional case, this change of variable allows one
to pass back and forth between the Gaussian and Lebesgue measure version of
the B-L inequality – under the condition (1.15).
It is also perhaps worth remarking that once one has proved the sufficiency of
equality in (4.2), the inequality case follows easily: By the spectral theorem,
one can write

I −
N∑

j=1

1

pj
Pj =

n∑

k=1

νkQk

where the Qk are rank one projections, and each νk satisfies 0 ≤ νk ≤ 1. For
each k such that νk > 0, define qk = 1/νk, and augment the sets of pj’s and
Pj ’s by adding in all such qk’s and Qk’s. The augmented sets now satisfy (4.2)
with equality, but the augmentation is “invisible” in the augmented version of
(4.1) if we specialize to fk = 1 identically for each index k in the augmentation.
Hence, the equality case discussed in [2] really is the heart of the matter.
Nonetheless, it is worthwhile to give a proof of Theorem 4.1 here for two rea-
sons: First, it may be surprising that the condition (1.15) is necessary for the
inequality to hold with any finite constant at all. Second, the proof we will
give of sufficiency of the condition (1.15) serves as a model for the proof of the
corresponding theorem in the Clifford algebra case that we consider in the next
section.
In proving Theorem 4.1, our first step is to pass to the problem of proving
a generalized subadditivity inequality. Because the commutative version of
Theorem 2.2 has been proved in [10], Theorem 4.2 below on subbadditivity of
entropy with respect to a Gaussian reference measure is equivalent to Theo-
rem 4.1. Hence, it suffices to prove one or the other.
Before stating and proving the subadditivty theorem, we first recall that for
any probability density ρ on (Rm, dγm), the entropy of ρ, is defined by

S(ρ) = −
∫

Rm

ρ(y) ln ρ(y)γm(y)dy .

Note that the relative entropy of ρ(y)γm(y)dy to γm(y)dy is −S(ρ); in the
convention employed here, the entropy S is concave, and the relative entropy
is convex.

4.2 THEOREM. Let V1, . . . , VN be N non-zero subspaces of Rn, and for each
j, let dj denote the dimension of Vj . Define Pj to be the orthogonal projection
of Rn onto Vj . For any probability density ρ on (Rn, dγn), let ρVj denote the
marginal density on (Vj , dγdj ). Then, given the numbers pj, 1 ≤ pj < ∞ for
j = 1, . . . , N , there exists a finite constant C such that

N∑

j=1

1

pj
S(ρVj ) ≥ S(ρ)− ln(C) (4.4)
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holds for all probability densities ρ on (Rn, dγn), if and only if

N∑

j=1

1

pj
Pj ≤ I (4.5)

and in this case, ln(C) = 0.

We first prove necessity of the condition (4.5):

4.3 LEMMA. The condition (4.5) in Theorem 4.2 is necessary.

Proof: It suffices to consider densities of the form

ρ(x) = exp(b · x− |b|2/2) ,

for b ∈ Rn. Then
ρVj (x) = exp(Pjb · y − |Pjb|2/2) ,

and we compute:

S(ρ) = −|b|
2

2
and S(ρVj ) = −|Pjb|

2

2
.

Thus
N∑

j=1

1

pj
S(ρVj )− S(ρ) = b ·


IdRn −

N∑

j=1

1

pj
Pj


 b ,

and evidently this is bounded below if and only if (4.5) is satisfied.

4.1 Proof of sufficiency

The sufficiency of the condition (4.5) will be proved using an interpolation
between an arbitrary density ρ and the uniform density that is provided by the
Mehler semigroup. (Indeed, Barthe and Coredero-Erausquin used the Mehler
semigroup in their work [2] mentioned above, but used it in a direct proof of
the Gaussian B-L inequality inspired by the heat-flow method introduced in
[13]. The heat flow approach to prove subadditivity inequalities was developed
in [3] and [10].)
The Mehler semigroup is the strongly continuous semigroup of positivity pre-
serving contractions on L2(Rn, γn(x)dx) whose generator −N is given by the
Dirichlet form

E(f, g) =

∫

Rn

∇f∗(x) · ∇g(x)γn(x)dx (4.6)

through 〈f,N g〉L2(γn) = E(f, g), where f∗ is the complex conjugate of f . Inte-
grating by parts, one finds

N = −(∆− x · ∇) ,
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The eigenvalues of N are the non-negative integers, and the eigenfunctions are
the Hermite polynomials. (In certain physical contexts, the eigenvalues count
occupancy of a quantum state and N is called the Boson number operator.)
There is a simple explicit formula for the e−tN :

e−tN f(x) =

∫

Rn

f
(
e−tx+

√
1− e2ty

)
γn(y)dy , (4.7)

which is easily checked.
Since evidently N1 = 0, and e−tN is self-adjoint, it also preserves integrals
against γn(x)dx, and hence, if ρ is any probability density, so is each ρt := e−tN .
As one sees from (4.7),

lim
t→∞

e−tNρ(x) = 1 , (4.8)

the uniform probability density on (Rn, γn(x)dx), and thus the Mehler semi-
group provides us with an interpolation between any probability density ρ and
the uniform density 1.
This interpolation is well-behaved with respect to the operation of taking
marginals: Consider any probability density ρ on (Rn, γn(x)dx), and any m
dimensional subspace V of Rn. Let ρV be the marginal density of ρ as in
Theorem 4.2. Then of course, we may regard ρV as a probability density on
(Rn, γn(x)dx) that is constant along directions in V ⊥. (Simply compose ρV
with PV .) Interpreted this way, so that both ρ and ρV are functions on RN ,

(
e−tNρ

)
V

= e−tN (ρV ) . (4.9)

That is, the process of taking marginals commutes with the action of the Mehler
semigroup.
The next point to note is that the entropy is monotone increasing along this
interpolation: Differentiating, with ρt = e−tNρ,

d

dt
S(ρt) = −

∫

Rn

ln(ρt)(∆−x·∇)ρtγndx =

∫

Rn

∇ ln ρt ·∇ρtγndx = E(ln ρt, ρt) .

For any smooth density ρ, E(ln ρ, ρ) =
∫

Rn ∇ ln ρ·∇ργndx =
∫

Rn |∇ ln ρ|2ργndx,
and hence S(ρt) is strictly increasing for all t. Moreover, since (x, t) 7→ |x|2/t
is jointly convex on Rn×R+, ρ 7→ E(ln ρ, ρ) has a unique extension as a convex
functional on the set of all probability densities on (Rn, γn(x)dx).

4.4 DEFINITION (Entropy Production). The entropy production functional
is the convex functional D(ρ) on probability densities on (Rn, γn(x)dx) given
by

D(ρ) =

∫

Rn

ln ρ(x)Nρ(x)γn(x)dx = E(ln ρ, ρ) . (4.10)

With this definition,
d

dt
S(e−tNρ) = D(e−tNρ) .
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Now because of (4.9), for any subspace V of Rn,

d

dt
S([e−tNρ]V ) = D([e−tNρ]V ) .

Since [e−tNρ]V is constant along directions orthogonal to V , the derivatives in
those directions that figure in D([e−tNρ]V ) are irrelevant; we need only take
derivatives along directions in V . This consideration leads to the definitions of
the restricted number operator, and the restricted entropy production:

Given an m dimensional subspace V of Rn, let PV be the orthogonal projection
onto V . The restricted number operator NV is the self-adjoint operator on
L2(Rn, γn(x)dx) defined through

〈f,NV g〉L2(γn) =

∫

Rn

∇f∗(x) · PV∇g(x)γn(x)dx , (4.11)

and the restricted entropy production functional DV (ρ) is the convex functional
given by

DV (ρ) =

∫

Rn

(NV ln ρ(x)) ρ(x)γn(x)dx . (4.12)

With this definition, D(ρV ) = DV (ρV ). However, there is a crucial difference
between DV (ρ) and D(ρV ):

4.5 LEMMA. For any smooth probability density ρ on (Rn, γn(x)dx), and any
m dimensional subspace V of Rn, let ρV be the corresponding marginal density
regarded as a probability density on (Rn, γn(x)dx). Then

D(ρV ) ≤ DV (ρ) . (4.13)

Proof: Regard ρV as a function on Rn (by composing it with PV ). Assume
that ρ is smooth and bounded above and below by strictly positive numbers.
Notice that since ρV is constant along directions in V ⊥,

N ln ρV = NV ln ρV .

Then, integrating by parts, and using the definition of ρV and the Schwarz
inequality, we obtain:

D(ρV ) =

∫

Rn

[NV ln ρV (x)] ρV (x)γn(x)dx =

∫

Rn

[NV ln ρV (x)] ρ(x)γn(x)dx ,

where we have used the definition of ρV to replace the second ρV by ρ itself.
Then, by the definition of NV , and the Schwarz inequality,
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D(ρV ) =

∫

Rn

(∇ ln ρV (x)) · PV∇ρ(x)γndx

=

∫

Rn

(∇ ln ρV (x)) · PV (∇ ln ρ(x)) ρ(x)γn(x)dx

≤
(∫

Rn

|∇ ln ρV (x)|2 ρ(x)γn(x)dx

)1/2(∫

Rn

|PV∇ ln ρ(x)|2 ργndx

)1/2

(4.14)

In the first factor in the last line, we may replace ρ by ρV since |∇ ln ρV (x)|2
depends on x only through PV x. Hence this factor is simply

√
D(ρV ), and the

second factor is
√
DV (ρ).

The proof we have just given is patterned on the proof of an analogous result in
the Lebesgue measure case in [10], which in turn is based on similar arguments
in [9] and [3]. It is somewhat more complicated to adapt the argument to the
Clifford algebra setting, but this is what we shall do in the next section. We
are now ready to prove the sufficiency of condition (4.5):

4.6 LEMMA. The condition (4.5) in Theorem 4.2 is sufficient.

Proof: For a probability density ρ on (Rn, dγn) with S(ρ) > −∞, it is easy
to see that

lim
t→∞

S(e−tNρ) = S(1) = 0

and hence, limt→∞ S(e−tN (ρVj )) = 0 for each j = 1, . . . , N . Therefore, it
suffices to show that

a(t) :=



N∑

j=1

1

pj
S(e−tNρVj )− S(e−tNρ)




is monotone decreasing in t.
Differentiating, and using (4.9), and then Lemma 4.5,

d

dt
a(t) =



N∑

j=1

1

pj
D((e−tNρ)Vj )−D(e−tNρ)




≤



N∑

j=1

1

pj
DVj (e−tNρ)−D(e−tNρ)




(4.15)

Now note that by (4.12), whenever (4.5) is satisfied,

N∑

j=1

1

pj
DVj (σ) ≤ D(σ)
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for any smooth density σ. Hence the derivative of α(t) is negative for all t > 0.

5 Generalized subadditivity of entropy in Clifford algebras

In this section we shall prove

5.1 THEOREM. Let V1, . . . , VN be N subspaces of Rn, and let Aj be the
Clifford algebra over Vj with the inner product that Vj inherits from Rn, and
let Aj be equipped with its unique tracial state τj. For any probability density
ρ ∈ A, let ρVj be the induced probability density in Aj. Let S(ρ) = −τ(ρ ln ρ)
and S(ρVj ) = −τj(ρVj ln ρVj )
Then

N∑

j=1

1

pj
S(ρVj ) ≥ S(ρ) (5.1)

for all probability densities ρ ∈ A if and only if

N∑

j=1

1

pj
Pj ≤ IRn . (5.2)

where Pj is the orthogonal projection onto Vj in Rn.

Granted this result, we have:
Proof of Theorem 1.6: Theorem 2.2 and Theorem 5.1 together prove The-
orem 1.6.
We shall now prove Theorem 5.1. As before, we begin by proving the necessity
of (5.2).

5.2 LEMMA. The condition (5.2) in Theorem 5.1 is necessary.

Proof: For any vector a = (a1, . . . , an) ∈ Rn, define

ρa = I +
n∑

j=1

ajQj = I + a ·Q .

Then ρa is a probability density if and only if |a| ≤ 1. Indeed, ρa has only two
eigenvalues, 1± |a|, with equal multiplicity.
Then (ρa)Vj = I + (Pja) ·Q, and so (ρa)Vj has only two eigenvalues, 1± |Pja|,
with equal multiplicity. Therefore,

S(ρa) = −ψ(|a|) and S((ρa)Vj ) = −ψ(|Pja|) . (5.3)

where ψ(x) is the convex function defined by

ψ(x) =

{
1
2 [(1 + x) ln(1 + x) + (1− x) ln(1− x)] if |x| ≤ 1.

∞ otherwise,
(5.4)
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Thus, for (5.1) to hold for each ρa, |a| ≤ 1, it must be the case that

N∑

j=1

1

pj
ψ(|Pja|) ≤ ψ(|a|) for all a with |a| ≤ 1 . (5.5)

Then, since ψ(x) = x2 +O(x4), replacing a by ta, 0 < t < 1, we see that (5.2)
must hold.
Because of (5.3), once we have proved Theorem 5.1, we will have a proof of
(5.5). However, it is of interest to prove this inequality directly, and we do that
next.

5.3 PROPOSITION. The inequality (5.5) holds whenever (5.2) is satisfied.

Proof: An easy calculation of derivatives shows that

ψ′(x) = arctanh(x) and ψ′′(x) =
1

1− x2

for |x| < 1.
Now fix any a with |a| < 1. Then, for t > 0, define

η(t) = ψ(e−t|a|)−
N∑

j=1

1

pj
ψ(e−t|Pja|) .

We have to show that η(t) > 0 for all t > 0. Since evidently limt→∞ η(t) = 0,
it suffices to show that η′(t) < 0 for all t > 0.
Differentiating, we find

η′(t) = −e−t

|a| arctanh(e−t|a|)−

N∑

j=1

1

pj
|Pja| arctanh(e−t|Pja|)


 := e−tθ(t).

Hence, it suffices to show that θ(t) ≥ 0 for all t > 0. Once again, since
limt→∞ θ(t) = 0, it suffices to show that θ′(t) < 0 for all t > 0. Differentiating,
we find

θ′(t) = −e−t

 |a|2

1− e−2t|a|2 −
N∑

j=1

1

pj

|Pja|2
1− e−2t|Pja|2


 .

Multiplying through by e−t, and absorbing a factor of e−t into a, it suffices to
show that

|a|2
1− |a|2 ≥

N∑

j=1

1

pj

|Pja|2
1− |Pja|2

(5.6)

for all |a| ≤ 1. However, since |a| ≥ |Pja|,

|Pja|2
1− |a|2 ≥

|Pja|2
1− |Pja|2

,
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and thus (5.6) follows from (5.2).
We are now in a position to give an elementary proof of Theorem 1.6 in the
special case that each Vj is one dimensional. As explained in Example 1.5, it
suffices in this case to prove the following:

5.4 PROPOSITION. Suppose {u1, . . . , uN} is any set of N unit vectors in
Rn, and {p1, . . . , pN} is any set of N positive numbers such that

N∑

j=1

cjuj ⊗ uj = IRn . (5.7)

Then for any b = (b1, . . . , bN ) inRN ,

ln cosh
(∣∣∣
∑N
j=1 bjuj

∣∣∣
)
≤

N∑

j=1

1

pj
ln cosh(pjbj) . (5.8)

Proof: Let ψ∗ denote the function ψ∗(x) = ln cosh(x), x ∈ R. The notation is
meant to indicate the well known fact, easily checked, that ψ∗ is the Legendre
transform of the function ψ defined in (5.4).
Now, given a set of N orthogonal projections {P1, . . . , PN} satisfying (5.2), we
may make any choice of a unit vector uj from the range of Pj , and then the
N unit vectors {u1, . . . , uN} will satisfy (5.7). Conversely, given any set of N
unit vectors {u1, . . . , uN} that satisfy (5.7), we may take Pj = uj ⊗ uj , and
then (5.2) is satisfied. Hence, we suppose we are given a set of N orthogonal
projections {P1, . . . , PN} satisfying (5.2), and for each j, uj is a unit vector in
the range of Pj .
Then for any b ∈ Rn,

ψ∗
(∣∣∣
∑N

j=1 bjuj

∣∣∣
)

= sup
a∈Rn



a ·

N∑

j=1

bjuj − ψ(|a|)





= sup
|a|≤1





N∑

j=1

Pja · bjuj − ψ(|a|)





≤ sup
|a|≤1





N∑

j=1

Pja · bjuj −
N∑

j=1

1

pj
ψ(|Pja|)





≤ sup
|a|≤1





N∑

j=1

|Pja||bj | −
N∑

j=1

1

pj
ψ(|Pja|)





= sup
|a|≤1





N∑

j=1

1

pj

[
|Pja|pj |bj | − ψ(|Pja|)

]


 ,

(5.9)
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where the first inequality is from (5.5), and the second is from Schwarz. Then,
by the definition of the Legendre transform, for any a,

ψ∗(pjbj) ≥ |Pja|(pj |bj|)− ψ(|Pja|) ,

we obtain

ψ∗
(∣∣∣
∑N
j=1 bjuj

∣∣∣
)
≤

N∑

j=1

1

pj
ψ∗(pjbj) ,

which is (5.8).
We now prove Theorem 5.1 in full generality. This gives another proof of the
last two propositions, but by less elementary means. The proof will follow the
basic pattern of the proof of Theorem 4.2 and use the Clifford algebra analog of
the Mehler semigroup. This is the so-called Clifford–Mehler semigroup, about
which we now recall a few relevant facts.

5.1 About the Clifford–Mehler semigroup

There is also a differential calculus in the Clifford algebra. Let Q1, . . . , Qn be
any set of n generators for the Clifford algebra C over Rn. For A ∈ C, define

∇i(A) =
1

2
[QiA− Γ(A)Qi] ,

where Γ is the grading operator on C: That is, using the notation in (1.10),

Γ(Qα) = (−1)|α|Qα .

One computes that ∇i(Qα) = 0 if α(i) = 0, and otherwise, ∇i(Qα) is what
one gets by anti-commuting the factor of Qi through to the left, and then
removing it. In this sense it is like a differentiation operator, and what is
more, it is a skew derivation on C, which means that for all and A and B in C,
∇j(AB) = ∇j(A)B + Γ(A)∇j(B).
The Clifford algebra analog of the Gaussian energy integral (4.6) is given by

E(A,B) = τ




n∑

j=1

∇jA∗∇jB


 , (5.10)

for all A,B ∈ C. This is the Clifford Dirichlet form studied by Gross [18].
Then, the fermionic number operator, also denoted N , is defined by

E(A,B) = τ(A∗N (B)) .

It is easy to see that the spectrum of N consists of the non negative integers
{0, 1, . . . , n} and that

NQα = |α|Qα . (5.11)
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The Clifford Mehler semigroup is then given by e−tN . It is clear from this
definition, (1.11) and (5.11) that for any A ∈ C, limt→∞ e−tN (A) = τ(A)I.
Thus for any probability density ρ in C,

t 7→ ρt = e−tN (ρ)

provides an interpolation between ρ and I, and each ρt is a probability density.
This corresponds exactly to the Mehler semigroup interpolation that was used
to prove Theorem 4.2, and we shall use it here in the same way, though some
additional complications shall arise.
The operator N does not depend on the choice of the set of generators
Q1, . . . , Qn. Indeed, if {u1, . . . , un} is any orthonormal basis of Rn, and we

define Q̃j = uj · Q for j = 1, . . . , n, then the Clifford Dirichlet form that one
obtains using this basis to define the derivatives is the same as the original.
In particular, given an m dimensional subspace V of Rn, we may choose
{u1, . . . , un} so that {u1, . . . , um} is an orthonormal basis for V , and then
the first m generators will be a set of generators for CV . We then define the
reduced Clifford Dirichlet form EV by

EV (A,B) = τ




m∑

i,j=1

∇iA∗[PV ]i,j∇jB


 , (5.12)

where [PV ]i,j is the i, jth entry of the n × n matrix for PV . The restricted
number operator NV is then the self-adjoint operator on L2(C) given by
τ(A∗NV (B)) = EV (A,B).
Now, for any probability density ρ in C let ρV be the corresponding marginal
density regarded as an operator in C by identifying it with φV (ρV ), where φV
is the canonical embedding of C(V ) into C(Rn). Then it is an easy consequence
of the definitions that

(
e−tNρ

)
V

= e−tN (ρV ) = e−tNV (ρV ) . (5.13)

Also, under the condition (5.2), it is easy to see that

N∑

j=1

1

pj
NVj ≤ N . (5.14)

Finally, we introduce entropy production D(ρ): With ρt := e−tNρ, we differen-
tiate and find

d

dt
S (ρt) = τ (ln(ρt)N (ρt)) = E(ln(ρt), ρt) .

5.5 DEFINITION (Entropy Production). The entropy production functional
at a probability density ρ is the functional defined by

D(ρ) = τ (ln(ρ)N (ρ)) = E(ln(ρ), ρ) . (5.15)
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Given an m dimensional subspace V of Rn, the restricted entropy production
functional at a probability density ρ is the functional defined by

DV (ρ) = τ (ln(ρ)NV (ρ)) = EV (ln(ρ), ρ) . (5.16)

The following lemma is the basis of our proof of the sufficiency of (5.2). In
the course of proving it, we shall see that both D(ρ) and DV (ρ) are convex
functionals, which is somewhat less obvious than in the Gaussian case.

5.6 LEMMA. For any any probability density ρ in C(Rn), and any m di-
mensional subspace V of Rn, let ρV be the corresponding marginal probability
density regarded as a probability density in C(Rn). Then

D(ρV ) ≤ DV (ρ) .

Proof: We choose an orthonormal basis {u1, . . . , un} for Rn such that
{u1, . . . , um} is an orthonormal basis for V . Without loss of generality, we
may suppose that {u1, . . . , un} is the standard basis so that {Q1, . . . , Qm} is a
set of generators for C(V ). Then,

E(A,B) = τ




n∑

j=1

∇jA∗∇jB


 and EV (A,B) = τ




m∑

j=1

∇jA∗∇jB


 .

(5.17)
It will be convenient to define Nj = ∇∗j∇j j = 1, . . . , n. Then we have

N =

n∑

j=1

Nj and NV =

m∑

j=1

Nj , (5.18)

and so

DV (ρ) =

m∑

j=1

τ (ln ρ,Njρ) . (5.19)

Since NjQα =

{
Qα if α(j) = 1,

0 α(j) = 0
, each Nj is an orthogonal projection, and so

(5.19) can be rewritten as

DV (ρ) =

m∑

j=1

τ (Nj(ln ρ),Njρ) . (5.20)

To proceed, we use a formula of Gross [18] for Njf(A) where A ∈ C(Rn),
and f is a continuous function. To write down Gross’s formula, first write
A = B + QjC where both B and C are linear combinations of the Qα with

α(j) = 0. Then define Â = B −QjC. Notice that if ρ is a probability density,
then ρ̂ is again a probability density. Gross’s formula is

Njf(A) =
1

2

[
f(A)− f(Â )

]
.
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To prove this formula, notice that there is a unitary operator U such that
Â = UAU∗. (If the dimension n is odd, one can take U to be the product, in
some order, of all of the Qk for k 6= j; if the dimension is even, one can add
another generator.) Therefore,

f̂(A) = Uf(A)U∗ = f(UAU∗) = f(Â ) .

Using this together with the fact that for any A ∈ A, NjA = (1/2)[A− Â], we
obtain Gross’s formula, which we now apply as follows:

τ (Nj(ln ρ)Njρ) =
1

4
τ ([ln(ρ)− ln(ρ̂)] [ρ− ρ̂])

=
1

4
τ (ln(ρ) [ρ− ρ̂]) +

1

4
τ (ln(ρ̂) [ρ̂− ρ])

=
1

4
H [ρ|ρ̂ ] +

1

4
H [ρ̂ |ρ]

(5.21)

where H [ρ|σ] = τρ( lnρ − lnσ) is the relative entropy of ρ with respect to σ.
As is well known, (ρ, σ) 7→ H(ρ|σ) is jointly convex, and hence

ρ 7→ τ ((ln ρ)Njρ)

is convex. Furthermore, by the fundamental monotonicity property of the
relative entropy under conditional expectations [37],

H(ρV |σV ) ≤ H(ρ|σ)

for any two probability densities ρ and σ. It follows that τ ((ln ρV )NjρV ) ≤
τ ((ln ρ)Njρ). Summing on j from 1 to m, we find

D(ρV ) = DV (ρV ) =
m∑

j=1

τ ((ln ρV )NjρV ) ≤
m∑

j=1

τ ((ln ρ)Njρ) = DV (ρ) .

5.2 Proof of the sufficiency

5.7 LEMMA. The condition (4.5) in Theorem 4.2 is sufficient.

Proof: For a probability density ρ in C(Rn) it is easy to see that

lim
t→∞

S(e−tNρ) = S(1) = 0

and hence, limt→∞ S(e−tN (ρVj )) = 0 for each j = 1, . . . , N . Therefore, it
suffices to show that

a(t) :=



N∑

j=1

1

pj
S(e−tNρVj )− S(e−tNρ)



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is monotone decreasing in t.
Differentiating, and using (5.13), and then Lemma 5.6,

d

dt
a(t) =



N∑

j=1

1

pj
D((e−tNρ)Vj )−D(e−tNρ)




≤



N∑

j=1

1

pj
DVj (e−tNρ)−D(e−tNρ)




(5.22)

Now note that by (4.12), whenever (4.5) is satisfied,

N∑

j=1

1

pj
DVj (σ) ≤ D(σ) for

any smooth density σ. Hence the derivative of α(t) is negative for all t > 0.
Notice that the proof is almost identical, symbol for symbol, with that of the
corresponding proof in the Gaussian case. The main difference of course is that
the proof of the main lemma, Lemma 5.6, is considerably more intricate than
that of its Gaussian counterpart.
Proof of Theorem 5.1: This now follows immediately from Lemma 5.2 and
5.7.
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summing maps Astérisque, 247, Math. Soc. of France, Paris, 1998.

[29] T. Rockafellar: Conjugate duality and optimization, Vol. 16, Regional con-
ference series in applied mathematics, SIAM, Philadelphia, 1974

[30] M.B. Ruskai, Inequalities for quantum entropy: A review with conditions
for equality, J. Math. Phys. 43, 2005, pp. 4358-4375 (2002). Erratum ibid
46, pp. 019901

[31] I.E. Segal: A non-commutative extension of abstract integration, Annals
of Math., 57, 1953, pp. 401–457

[32] I.E. Segal.: Tensor algebras over Hilbert spaces II, Annals of Math., 63,
1956, pp. 160–175

[33] I.E. Segal.: Algebraic integration theory, Bull. Am. Math. Soc.., 71, 1965,
no. 3, pp. 419-489

[34] W. Stinespring: Integration theorems for gages and duality for unimodular
groups, Trans. Am. Math. Soc., ., 90, 1958, pp. 15-26

[35] W. Thirring: Quantum Mechanics of Large Systems, Volume IV of A
Course in Mathematical Physics Springer, New York (1983)

[36] C. Thompson: Inequality with application in statistical mechanics J. Math.
Phys. 6, 1812–1813 (1965)

[37] A. Uhlmann: Relative entropy and the Wigner-Yanase-Dyson-Lieb con-
cavity in an interpolation theory Commun. Math. Phys., 54, 1977, pp.
21-32

Documenta Mathematica 13 (2008) 553–584



584 Eric A. Carlen and Elliott H. Lieb

[38] H. Umegaki: Conditional expectation in operator algebras I, Tohoku Math.
J., 6, 1954, pp. 177-181

[39] D. Voiculescu, K. Dykema and A. Nica: Free random variables, CRM
Monograph Series, 1, Am. Math. Soc., Providence, R.I., 1992)

[40] W.H.. Young: On the multiplication of successions of Fourier constants,
Proc. Royal soc. A., 97, 1912, pp. 331-339
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1. Introduction

Let S be the category of simplicial sets and let H be its homotopy category.
The étale homotopy type of a scheme had been defined by Artin and Mazur
[1] as a pro-object in the homotopy category H. Friedlander [11] rigidified
the definition such that the étale topological type is a pro-object in the cate-
gory of simplicial sets itself. This theory has found very remarkable applica-
tions. Quillen and Friedlander used it to prove the Adams conjecture, a purely
topological problem. Friedlander defined and studied étale K-theory, an étale
topological analogue of algebraic K-theory. More recently, Dugger and Isaksen
[8] proved a sums-of-squares formula over fields of positive characteristic using
étale topological arguments. Schmidt [29] answered open questions in Galois
theory using étale homotopy groups. In [25], a stable étale realization func-
tor has been constructed and an étale cobordism theory for schemes has been
defined. For smooth schemes over an algebraically closed field and with finite
coefficients, étale cobordism agrees with algebraic cobordism after inverting a
Bott element.
In almost every application, one considers a profinitely completed object, either
with respect to finite or even with respect to p-groups for some prime p. The
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profinite (resp. pro-p-) completion is an object that is universal with respect to
maps to spaces whose homotopy groups are finite (resp. p-) groups. Artin and
Mazur realized the profinite completion of a space or pro-space only in pro-H.
There is no profinite completion for Friedlander’s rigid objects in pro-S. It is
well known that in many respects it is preferable to work in a model category
itself and not only in the corresponding homotopy category. Hence it is a fun-
damental question if there is a rigid model for the profinite completion, i.e.
an object in S which is homotopy equivalent to the Artin-Mazur completion
in pro-H. Since the étale fundamental group of a scheme is always a profinite
group, this is equivalent to the fundamental question if there is a space, not
only a pro-object in some homotopy category, that yields profinite higher étale
homotopy groups.
Bousfield-Kan [3] proved the existence of a Z/p-completion for a simplicial set
for every prime p in S. Moreover, Morel [23] showed that there is even a Z/p-

model structure on the category Ŝ of simplicial profinite sets such that the
Bousfield-Kan completion yields a fibrant replacement functor in Ŝ. In [25],
this rigid model for the pro-p-homotopy theory has been used. In this paper we
prove that there is a model for arbitrary profinite completion. We do this by
constructing a suitable model structure on the category of simplicial profinite
sets such that the homotopy groups carry a natural profinite structure.
The plan of this paper is the following. First, we construct profinite funda-
mental groups and then we use the profinite topology to define continuous
cohomology with local topological coefficients for profinite spaces. The main
technical result is this: There is a model structure on simplicial profinite sets
such that a weak equivalence is a map that induces isomorphisms on fundamen-
tal groups and in cohomology with local finite abelian coefficients. This model
structure is fibrantly generated, simplicial and left proper. This result enables
us to define higher profinite homotopy groups. It is an important property of
the category of profinite spaces that the limit functor is homotopy invariant for
cofiltering diagrams.
The fibrant replacement of the completion of a simplicial set in Ŝ is a rigid
model for the Artin-Mazur profinite completion of [1], and is equivalent in an
appropriate sense to the completions of Bousfield-Kan [3] and Morel [23]. An
important advantage of this approach is that, for profinite local coefficients,
the continuous cohomology of this completion coincides with the continuous
cohomology of Dwyer-Friedlander [9].
Although we had been motivated by étale homotopy theory, we have postponed
this application to the last section of the paper. As in [25], we consider a profi-
nite étale topological type of a locally noetherian scheme based on the work
of Artin-Mazur and Friedlander. The resulting profinite space has three main
advantages. First, its cohomology agrees with the continuous étale cohomology
for a locally constant profinite sheaf defined by Dwyer-Friedlander in [9] and
by Jannsen in [19]. Second, it provides a rigid model for the profinite higher
étale homotopy groups of a scheme first defined in [1]. Third, it can be used
for an étale realization functor of the motivic stable homotopy category. We
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discuss this last point briefly at the end of the paper, indicating that the étale
realization also yields a derived functor from the flasque model structure of
[18].
Acknowledgments: I would like to thank Alexander Schmidt and the referee
for a lot of detailed and helpful comments.

2. Homotopy Theory of Profinite Spaces

For a category C with small limits, the pro-category of C, denoted pro-C, has
as objects all cofiltering diagrams X : I → C. Its sets of morphisms are defined
as

Hompro−C(X,Y ) := lim
j∈J

colim
i∈I

HomC(Xi, Yj).

A constant pro-object is one indexed by the category with one object and one
identity map. The functor sending an object X of C to the constant pro-object
with value X makes C a full subcategory of pro-C. The right adjoint of this
embedding is the limit functor lim: pro-C → C, which sends a pro-object X to
the limit in C of the diagram corresponding to X .
Let E denote the category of sets and let F be the full subcategory of finite
sets. Let Ê be the category of compact and totally disconnected topological
spaces. We may identify F with a full subcategory of Ê in the obvious way.
The limit functor lim: pro-F → Ê is an equivalence of categories.
We denote by Ŝ (resp. S) the category of simplicial objects in Ê (resp. simplicial

sets). The objects of Ŝ (resp. S) will be called profinite spaces (resp. spaces).

The forgetful functor Ê → E admits a left adjoint (̂·) : E → Ê . It induces a

functor (̂·) : S → Ŝ, which is called profinite completion. It is left adjoint to

the forgetful functor | · | : Ŝ → S which sends a profinite space to its underlying
simplicial set.
For a profinite space X we define the set R(X) of simplicial open equivalence
relations on X . An element R of R(X) is a simplicial profinite subset of the
product X×X such that, in each degree n, Rn is an equivalence relation on Xn

and an open subset of Xn ×Xn. It is ordered by inclusion. For every element
R of R(X), the quotient X/R is a simplicial finite set and the map X → X/R
is a map of profinite spaces. The canonical map X → limR∈R(X)X/R is an

isomorphism in Ŝ, cf. [23], Lemme 1. Nevertheless, Isaksen pointed out that Ŝ
is not equivalent to the category of pro-objects of finite simplicial sets.
Let X be a profinite space. The continuous cohomology H∗(X ;π) of X with
coefficients in the topological abelian group π is defined as the cohomology
of the complex C∗(X ;π) of continuous cochains of X with values in π, i.e.
Cn(X ;π) denotes the set HomÊ(Xn, π) of continuous maps α : Xn → π and
the differentials δn : Cn(X ;π) → Cn+1(X ;π) are the morphisms associating

to α the map
∑n+1
i=0 α ◦ di, where di denotes the ith face map of X . If π is

a finite abelian group and Z a simplicial set, then the cohomologies H∗(Z;π)

and H∗(Ẑ;π) are canonically isomorphic.
If G is an arbitrary profinite group, we may still define the first cohomology
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of X with coefficients in G as done by Morel in [23] p. 355. The functor

X 7→ HomÊ(X0, G) is represented in Ŝ by a profinite space EG. We define
the 1-cocycles Z1(X ;G) to be the set of continuous maps f : X1 → G such
that f(d0x)f(d2x) = f(d1x) for every x ∈ X1. The functor X 7→ Z1(X ;G)
is represented by a profinite space BG. Explicit constructions of EG and
BG may be given in the standard way, see [20]. Furthermore, there is a map
δ : HomŜ(X,EG) → Z1(X ;G) ∼= HomŜ(X,BG) which sends f : X0 → G
to the 1-cocycle x 7→ δf(x) = f(d0x)f(d1x)−1. We define B1(X ;G) to be
the image of δ in Z1(X ;G) and we define the pointed set H1(X ;G) to be the
quotient Z1(X ;G)/B1(X ;G). Finally, if X is a profinite space, we define π0X

to be the coequalizer in Ê of the diagram d0, d1 : X1 ⇉ X0.

2.1. Profinite fundamental groups. For the definition of a profinite fun-
damental group of a profinite space X , we follow the ideas of Grothendieck in
[14]. As in [12], we denote by R/X the category of coverings of X , i.e. the full

subcategory of Ŝ/X whose objects are the morphisms p : E → X such that for
each commutative diagram

(1) ∆[0]

i

��

u // E

p

��
∆[n]

v
// X

there is a unique morphism s : ∆[n]→ E satisfying p ◦ s = v and s ◦ i = u.

Let g : X ′ → X be a morphism of Ŝ/X and p : E → X be a covering of X .
The cartesian square

(2) X ′ ×X E

p′

��

// E

p

��
X ′ g

// X

defines a covering p′ of X ′. The correspondence R/g : R/X → R/X ′ so defined
is a covariant functor.
Let x ∈ X0 be a vertex of X and let x̃ : ∆[0] → X be the corresponding
continuous map. Since there is only one morphism ∆[n] → ∆[0] for each n,
it follows from the definitions that each simplex of a covering E of ∆[0] is
determined by one of its vertices, and hence E = sk0E. Thus we can identify
the category R/∆[0] with the category of profinite sets. The functor R/x̃ is the

fiber functor of R/X over x and we consider its range in Ê . As in [12] App. I

2.2, it is easy to show that a morphism p : E → X in Ŝ is a covering if and only
if it is a locally trivial morphism whose fibers are constant simplicial profinite
sets.
In order to define the fundamental group of X at x ∈ X0 we consider the full
subcategory Rf/X of R/X of coverings with finite fibers together with the
fiber functor Rf/x̃. We call an object of Rf/X a finite covering of X . The
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pair (Rf/X,R/x̃) obviously satisfies the axioms (G1) to (G6) of [14] Expose
V §4. Hence R/x̃ is pro-representable by a pro-object (Xi)i∈I in Rf/X , where
the Xi are Galois, i.e. the action of Aut(Xi) on the fiber of Xi at x is simply

transitive. The corresponding limit of this pro-object defines an element X̃
in R/X of profinite coverings of X and may be considered as the universal

covering of X at x. We denote the automorphism group of X̃ by π1(X,x) and
call it the profinite fundamental group of X at x. It has a canonical profinite
structure as the limit of the finite automorphism groups Aut(Xi).
For varying x and y in X0, we have two corresponding fiber functors R/x and

R/y and representing objects (X̃, x) and (X̃, y). The morphisms between them
are in fact isomorphisms. Hence we may consider the fundamental groupoid
ΠX of X whose objects are the vertices of X and whose morphisms are the
sets Hom((X̃, x), (X̃, y)). Now let X be a pointed simplicial set and let X̂ be

its profinite completion. The finite coverings of X and X̂ agree as coverings in
S. Since the automorphism group of a finite covering of X corresponds to a
finite quotient of π1(X) and since π1(X̂) is the limit over these finite groups,
we deduce the following result.

Proposition 2.1. For a pointed simplicial set X, the canonical map from the

profinite group completion of π1(X) to π1(X̂) is an isomorphism, i.e. π̂1(X) ∼=
π1(X̂) as profinite groups.

Moreover, we get a full description of coverings in Ŝ.

Proposition 2.2. Let X be a connected pointed profinite space with funda-
mental group π := π1(X). Then the functor sending a profinite covering to its
fiber is an equivalence between the category of profinite coverings of X and the
category of profinite sets with a continuous π-action. Its inverse is given by
S 7→ P ×π S.

Proof. Since X is connected, a covering of X is determined up to isomor-
phism by its fiber as a π-set. Hence the category of pro-objects of Rf/X is
equivalent to the category R/X of profinite coverings, i.e. the limit functor

pro−Rf/X ∼→ R/X is an equivalence. Now the assertion follows from [14],
Exposé V, Théorème 4.1 and Corollaire 5.9. �

Corollary 2.3. Let X be a connected pointed profinite space. There is a
bijective correspondence between the sets of profinite coverings of X and closed
subgroups of π1(X).

2.2. Local coefficient systems. Let Γ be a profinite groupoid, i.e. a small
category whose morphisms are all isomorphisms and whose set of objects and
morphisms are profinite sets. A natural example is ΠX for a profinite space
X . A (topological) local coefficient system M on Γ is a contravariant functor
from Γ to topological abelian groups. A morphism (M,Γ) → (M′,Γ′) of
local coefficient systems is a functor f : Γ → Γ′ and natural transformation
M′ →M◦ f . We call M a profinite local coefficient system if it takes values
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in the category of profinite abelian groups. A local coefficient system M on a
profinite space X is a coefficient system on the fundamental groupoid Γ = ΠX
of X .
In order to define the continuous cohomology of a profinite space with local
coefficients we use one alternative characterization of cohomology with local
coefficients of a simplicial set following Goerss and Jardine [13]. We recall
briefly the constructions of [13] VI §4. Let Γ be a profinite groupoid and
let BΓ be its profinite classifying space. If γ is an object of Γ, we form the
category Γ ↓ γ whose objects are morphisms γ′ → γ and whose morphisms are
commutative diagrams in Γ. The forgetful functor Γ ↓ γ → Γ induces a map
πy : B(Γ ↓ γ)→ BΓ. A map γ1 → γ2 induces a functor B(Γ ↓ γ1)→ B(Γ ↓ γ2)

which commutes with the forgetful functor. Hence we get a functor Γ → Ŝ
defined by γ 7→ B(Γ ↓ γ) which is fibered over BΓ.

Now let Φ : X → BΓ be a map in Ŝ. One defines a collection of spaces X̃γ by
forming pullbacks

X̃γ

��

// B(Γ ↓ γ)

��
X // BΓ

and gets a functor Γ → Ŝ, called covering system for Φ. If Γ is ΠX and Φ is
the canonical map, then X̃γ is just the universal covering (X̃, x) for x = γ.

Moreover, if Y : Γ → Ŝ is a functor and M is a topological local coef-
ficient system, there is a corresponding cochain complex homΓ(Y,M), hav-
ing n-cochains given by the group of homΓ(Yn,M) of all continuous natural
transformations, i.e. for every γ ∈ Γ we consider only the continuous maps
Yn(γ) → M(γ) functorial in γ. The differentials are given by the alternating

sum of the face maps as above. For Y = X̃ , we denote this cochain complex
by C∗Γ(X,M) := homΓ(X̃,M).

Definition 2.4. For a topological local coefficient system M on Γ and a map
X → BΓ in Ŝ, we define the continuous cohomology of X with coefficients
in M, denoted by H∗Γ(X,M), to be the cohomology of the cochain complex
C∗Γ(X,M).

IfM is a local system on Γ = ΠX , we write H∗(X,M) for H∗ΠX(X,M). If G is
a profinite group and X = BG is its classifying space, then a topological local
coefficient system M on BG corresponds to a topological G-module M . The
continuous cohomology ofBG with coefficients inM equals then the continuous
cohomology of G with coefficients in M as defined in [31], i.e.

H∗(BG,M) = H∗(G,M).

The following proposition is a standard result. We restate it in our setting of
profinite groups and continuous cohomology. The proof follows the arguments
for [21] Theorem 8bis.9.
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Proposition 2.5. Let Γ be a connected profinite groupoid, let X → BΓ be
a profinite space over BΓ and let M be a local coefficient system on Γ of
topological abelian groups. For an object γ of Γ we denote by π the profinite
group HomΓ(γ, γ). Let p : X̃ → X be the corresponding covering space. Then

π acts continuously on the discrete abelian group Hq(X̃ ; p∗M) and there is a
strongly converging Cartan-Leray spectral sequence

Ep,q2 = Hp(π;Hq(X̃; p∗M))⇒ Hp+q
Γ (X ;M).

Proof. Since Γ is connected,M corresponds to a profinite π-module M . More-
over, the set Cq(X̃; p∗M) equals the set of continuous cochains Cq(X̃ ;M)

denoted by Cq for short. We denote by F ∗ → Ẑ→ 0 a free profinite resolution
of Ẑ by right π-modules, where Ẑ is considered as a trivial π-module. We define
the double complex C∗,∗ by Cp,q := Hom(F p, Cq), δF ⊗ 1 + (−1)q1⊗ δC , where
the Hom-set is taken in the category of continuous π-modules.
First, we filter C∗,∗ row-wise and get for E∗,q0 = Homπ−modules(F

∗, Cq), the
complex computing H∗(π;Cq). Since Cq is a free π-module, the E1-terms are

concentrated in the 0-column, where we get H0(π,Cq) = Cq(X̃;M)π, the π-
fixed points of Cq. By [21] Theorem 2.15, the E2-terms for this filtration are

the continuous π-equivariant cohomology groups H∗π(X̃ ;M) and the spectral
sequence degenerates at E2. Since Γ is connected, these cohomology groups
are canonically isomorphic to Hp+q

Γ (X ;M).
Now we filter C∗,∗ column-wise and we get Ep,∗0 = Homπ(F p, C∗). Since F p

is a free π-module, we may identify the corresponding Ep,∗1 with the complex

computing H∗cont(π;H∗(X̃ ;M)). Both spectral sequences strongly converge to
the same target and the assertion is proved. �

2.3. The model structure on profinite spaces.

Definition 2.6. A morphism f : X → Y in Ŝ is called a weak equivalence if
the induced map f∗ : π0(X) → π0(Y ) is an isomorphism of profinite sets, for
every vertex x ∈ X0 the map f∗ : π1(X,x) → π1(Y, f(x)) is an isomorphism
of profinite groups and f∗ : Hq(Y ;M)→ Hq(X ; f∗M) is an isomorphism for
every local coefficient system M of finite abelian groups on Y for every q ≥ 0.

We want to show that this class of weak equivalences fits into a simplicial
fibrantly generated left proper model structure on Ŝ. For every natural number
n ≥ 0 we choose a finite set with n elements, e.g. the set {0, 1, . . . , n − 1}, as
a representative of the isomorphism class of sets with n elements. We denote
the set of these representatives by T . Moreover, for every isomorphism class of
finite groups, we choose a representative with underlying set {0, 1, . . . , n− 1}.
Hence for each n we have chosen as many groups as there are relations on the
set {0, 1, . . . , n − 1}. This ensures that the collection of these representatives
forms a set which we denote by G.
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Let P and Q be the following two sets of morphisms:

P consisting of EG→ BG,BG→ ∗, L(M,n)→ K(M,n+ 1),
K(M,n)→ ∗, K(S, 0)→ ∗
for every finite set S ∈ T , every finite group G ∈ G,
every finite abelian group M ∈ G and every n ≥ 0;

Q consisting of EG→ ∗, L(M,n)→ ∗ for every finite group G ∈ G,
every finite abelian group M ∈ G and every n ≥ 0.

Lemma 2.7. The underlying profinite set of a profinite group G is an injective
object in Ê.
Proof. This can be deduced from Proposition 1 of [30]. Let X →֒ Y be a

monomorphism in Ŝ and let f : X → G be a map in Ê . Since finite sets are
injective objects in Ê by [23] Lemme 2, there is a lift Y → G/U for every open
(and hence closed) normal subgroup U of G. Let N be the set of pairs (S, s)
of closed subgroups S of G such that there is a lift s : Y → G/S making the
diagram

X

i

��

f/S // G/S

Y

s

=={{{{{{{{

commute. The set N contains the open normal subgroups and has a natural
ordering given by (S, s) ≥ (S′, s′) if S ⊆ S′ and s : Y → G/S is the composite
of s′ and G/S′ → G/S. As shown in [30], N is an inductively ordered set and
has a maximal element by Zorn’s Lemma. We have to show that a maximal
element (S, s) of N satisfies S = {1}.
Suppose S 6= {1}. Then there is an open subgroup U of G such that S∩U 6= S
and S/S∩U is a finite group. By [30], Proposition 1, G/S∩U is isomorphic as a
profinite set to the product G/S×S/S∩U . The map f/S∩U : X → G/S∩U ∼=
G/S × S/S ∩ U induces a compatible map X → S/S ∩ U . Since S/S ∩ U is

a finite set, it is an injective object in Ê and there is a lift t : Y → S/S ∩ U .
Hence s and t define a lift s̃ : Y → G/S ∩U in contradiction to the maximality
of (S, s). Hence S is trivial and there is a lift of the initial map f .

�

Lemma 2.8. 1) The morphisms in Q have the right lifting property with respect
to all monomorphisms. 2) The morphisms in P have the right lifting property
with respect to all monomorphisms that are also weak equivalences.

Proof. 1) Let X →֒ Y be a monomorphism in Ŝ. We have to show that every
X → EG, resp. X → L(M,n), can be lifted to a map Y → EG, resp.

Y → L(M,n), in Ŝ. Hence we must prove that every map Xn → G may be

lifted to a map Yn → G in Ê for every profinite group G. This follows from
Lemma 2.7.
2) Let X →֒ Y be a monomorphism in Ŝ that is also a weak equivalence.
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Let G be a finite group, which is supposed to be abelian if n ≥ 2. We know
by 1) that the morphism of complexes C∗(Y ;G)→ C∗(X ;G) is surjective. By
assumption, it also induces an isomorphism on the cohomology. Hence the maps
Zn(Y ;G)→ Zn(X ;G) and Cn(Y ;G)→ Cn(X ;G)×Zn+1(X;G) Z

n+1(Y ;G) are
surjective and the maps L(G,n) → K(G,n + 1) and K(G,n) → ∗ have the
desired right lifting property.
For K(S, 0) → ∗ and a given map X → K(S, 0), we recall that K(S, 0)n is
equal to S in each dimension and all face and degeneracy maps are identities.
Hence a map X → K(S, 0) in Ŝ is completely determined by its values on
π0X . Since f induces an isomorphism on π0, there is a lift Y → K(S, 0).
Hence K(S, 0)→ ∗ also has the desired right lifting property. �

We remind the reader of the following definitions of [23] p. 360. Let G be a
simplicial profinite group and let E be a profinite G-space. We say that E is a
principal profinite G-space if, for every n, the profinite Gn-set En is free.
A principal G-fibration with base X is a profinite G-space E and a morphism
f : E → X that induces an isomorphism E/G ∼= X . We denote by ΦG(X) the
set of isomorphism classes of principal G-fibrations with base X . The corre-
spondence X 7→ ΦG(X) defines via pullback a contravariant functor Ŝop → E .

Lemma 2.9. LetX be a connected profinite space and let x ∈ X0 be a vertex. Let
G be a profinite group and let Hom(π1(X,x), G)G be the set of outer continuous
homomorphisms. Then we have a natural isomorphism

φ : H1(X ;G)
∼=−→ Hom(π1(X,x), G)G.

Proof. Recall that H1(X ;G) equals the quotient of HomŜ(X,BG) modulo
maps that are induced by the canonical principal G-fibration EG→ BG. The
map φ is defined as follows: Given a map f : X → BG we consider the induced
map X ×G EG→ X . This is a covering on which G acts freely. By Corollary
2.3, there is a quotient Q of π = π1(X,x) such that Q acts on the fibre G
of X ×G EG → X . This action defines a homomorphism of profinite groups
π → G up to inner automorphisms.
We define an inverse ψ for φ. Let α : π → G be a homomorphism of profi-
nite groups up to inner automorphisms. Again by Corollary 2.3, there is a
covering X(G) → X on which G acts freely. Since its total space is cofi-
brant and EG→ ∗ has the left lifting property with respect to all cofibrations,
there is a map X(G) → EG. The corresponding quotient map is the map
ψ(α) : X → BG. One can easily check that φ and ψ are mutually inverse to
each other. �

The proof of the previous lemma also explains the following classification of
principal G-fibrations.

Proposition 2.10. Let G be a simplicial profinite group. For any profinite
space X, the map

θ : H1(X ;G)→ ΦG(X),
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sending the image of f : X → BG in H1(X ;G) to the pullback of EG → BG
along f , is a bijection.

Proposition 2.11. Let f : X → Y be a map of profinite spaces. If x ∈ X is
a 0-simplex, let y = f(x) and p : (X̃, x̃) → (X,x), resp. q : (Ỹ , ỹ) → (Y, y),

be the universal coverings and f̃ : X̃ → Ỹ be the unique covering of f with
f̃(x̃) = ỹ. The following assertions are equivalent:

1) The map f is a weak equivalence in Ŝ in the sense of Definition 2.6.
2) The induced maps f0 : H0(Y ;S)→ H0(X ;S) for every finite set S,
f1 : H1(Y ;G) → H1(X ;G) for every every finite group G and f∗ :
Hq(Y ;M)→ Hq(X ; f∗M) for every local coefficient systemM of finite abelian
groups on Y for every q ≥ 0 are all isomorphisms.
3) The induced map f∗ : π0(X) → π0(Y ) is an isomorphism of profinite sets,
f∗ : π1(X,x) → π1(Y, f(x)) is an isomorphism of profinite groups and the

maps f̃∗ : Hq((Ỹ , f(x));M) → Hq((X̃, x);M) are isomorphisms for every fi-
nite abelian group M for every q ≥ 0 and every 0-simplex x ∈ X0.

Proof. From H0(X ;S) = HomÊ(π0(X), S) for every finite set S, we conclude
that π0(f) is an isomorphism if and only if H0(f, S) is an isomorphism for every
finite set S. From the previous lemma we get that π1(f) is an isomorphism if
and only if H1(f,G) is an isomorphism for every finite group G. Hence (1) and
(2) are equivalent.
In order to show (3) ⇒ (1), we may assume that X and Y are connected
profinite spaces and that f∗ : π1(X,x) → π1(Y, f(x)) is an isomorphism of
profinite groups for every vertex x ∈ X0. Let x0 ∈ X be a fixed 0-simplex and
set π := π1(X,x0) = π1(Y, f(x0)). IfM is a local coefficient system on Y , then
there is a morphism of Cartan-Leray spectral sequences of Proposition 2.5

Ep,q2 = Hp(π,Hq(Ỹ , q∗M)) =⇒ Hp+q(Y,M)
↓ ↓

Ep,q2 = Hp(π,Hq(X̃, p∗f∗M)) =⇒ Hp+q(X, f∗M).

If we assume (3), then the map on the E2-terms is an isomorphism and we get
an isomorphism on the abutments. Hence (3) implies (1).
That (1) implies (3) follows from the definition of cohomology with local coef-
ficients. �

The following theorem had already been expected by Fabien Morel, see [23]
§1.3.

Theorem 2.12. There is a left proper fibrantly generated model structure on Ŝ
with the weak equivalences of Definition 2.6 for which P is the set of generating
fibrations and Q is the set of generating trivial fibrations. The cofibrations are
the levelwise monomorphisms. We denote the homotopy category by Ĥ.

Proof. In order to prove that there is a fibrantly generated model structure,
we check the four conditions of the dual of Kan’s Theorem 11.3.1 in [15]. Since

we use cosmall instead of small objects, it suffices that Ŝ is closed under small
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limits and finite colimits. It is clear that the weak equivalences satisfy the
2-out-of-3 property and are closed under retracts. We denote by Q-cocell the
subcategory of relative Q-cocell complexes consisting of limits of pullbacks of
elements of Q. We write P -proj for the maps having the left lifting property
with respect to all maps in P and P -fib for the maps having the right lifting
property with respect to all maps in P -proj. Now we check the remaining
hypotheses of Kan’s Theorem 11.3.1 in [15].
(1) We have to show that the codomains of the maps in P and Q are cosmall
relative to P -cocell and Q-cocell, respectively. This is clear for the terminal
object ∗. It remains to check that the objects K(M,n) and BG are cosmall
relative to Q-cocell. By definition of cosmallness we have to show that the
canonical map

f : colim
α

HomŜ(Yα,K(M,n))→ HomŜ(lim
α
Yα,K(M,n))

is an isomorphism for some cardinal κ, where Yα is any projective system
whose indexing category is of cardinality κ (and similarly for BG instead of
K(M,n)). By the definition of the spaces K(M,n) (resp. BG) this map is
equal to the map colimα Z

n(Yα,M) → Zn(limα Yα,M) (resp. with M = G
and n = 1). But this map is already an isomorphism on the level of com-
plexes Cn. For, Christensen and Isaksen have shown in [4], Lemma 3.4, that

colimα HomÊ(Yα,M) ∼= HomÊ(limα Yα,M) (resp. M = G, n = 1), since Ê is
equivalent to the pro-category of finite sets.
(2) We have to show that every Q-fibration is both a P -fibration and a weak
equivalence. Let i : A → B be a map in P -proj. As in the proof of
Lemma 2.8, this implies on the one hand that i∗ : Zn(B,M) → Zn(A,M)
(or G instead of M and n = 1) is surjective and on the other hand that
Cn(B,M)→ Cn(A,M)×Zn+1(A,M) Z

n+1(B,M) is surjective for all n ≥ 0 and
every abelian finite group M (or M = G and n = 0). It is easy to see that this
implies that i∗ : Cn(B,M) → Cn(A,M) (or M = G and n = 1) is surjective
as well. Hence i is an element in Q-proj. So P -proj ⊂ Q-proj and hence Q-fib
⊂ P -fib.
Furthermore, if i is a monomorphism in each dimension, then i is an element of
Q-proj by Lemma 2.8. Hence Q-fib is contained in the class of maps that have
the right lifting property with respect to all monomorphisms. By Lemme 3 of
[23] this implies that the maps in Q-fib are simplicial homotopy equivalences
and hence also weak equivalences.
(3) We have seen that every P -projective map is a Q-projective map. It re-
mains to show P -proj ⊆ W . Let f : A → B be a map in P -proj. By the
definition of P -proj, the maps f∗ : Z1(B,G) → Z1(A,G) and C0(B,G) →
C0(A,G)×Z1(A,G) Z

1(B,G) are surjective. The latter implies that, if f∗(β) is

a boundary for an element β ∈ Z1(B,G), then β is already a boundary. Hence
f induces an isomorphism f1 : H1(B;G) ∼= H1(A;G). Moreover, if f has the
left lifting property with respect to maps in P , then the same holds for its
covering map f̃ . The same argument for an abelian finite group M instead of
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G shows that for every n ≥ 1 the map f̃n : Hn(B̃;M)→ Hn(Ã;M) is an iso-
morphism. For n = 0, the left lifting property with respect to K(S, 0)→ ∗ for
any finite set S, not only shows that H0(f ;S) = Z0(f ;S) is surjective but that
it is also an isomorphism since any two liftings B → K(S, 0) are simplicially
homotopic and hence they agree. By Proposition 2.11, this implies that f is a
weak equivalence.
(4) The remaining point is to show that W ∩Q-proj ⊆ P -proj. But this follows
in almost the same way as we proved Lemma 2.8.

This proves that we have found a fibrantly generated model structure on Ŝ. It
remains to show that it is left proper. In fact, the cofibrations are the maps
in Q-proj and by Lemma 2.8 this class includes the monomorphisms. Hence
every object in Ŝ is cofibrant which implies that the model structure is left
proper. That the cofibrations are exactly the monomorphisms will be proved
in the following lemma. �

Lemma 2.13. A map in Ŝ is a cofibration if and only if it is a levelwise
monomorphism. In particular, the maps EG→ ∗ and L(M,n)→ ∗ are trivial

fibrations in Ŝ for every profinite group G, every abelian profinite group M and
every n ≥ 0.

Proof. We have proven in the theorem that the class of cofibrations equals the
class of maps having the left lifting property with respect to all maps in Q. We
have seen that if i is a monomorphism in each dimension, then i is a cofibration
by Lemma 2.8.
So let i : A → B be a cofibration and suppose we have a map f : An → M in
Ê for an abelian profinite group. Then the induced map HomÊ(Bn,M/U) →
HomÊ(An,M/U) is surjective for every n ≥ 0 and every open (and closed)
normal subgroup U of M , since L(M/U, n) is an element of Q. Hence the set N
of pairs (S, s) of closed subgroups S of M such that there is a lift s : Bn →M/S
making the diagram

An

i

��

f/S // M/S

Bn

s

<<yyyyyyyy

commute contains the open normal subgroups of M . Then the same argument
as in Lemma 2.7 shows that there is in fact a lift Bn →M . Thus the induced
map i∗ : HomÊ(Bn,M) → HomÊ(An,M) is surjective for every abelian profi-
nite group M and every n ≥ 0. The same argument works for an arbitrary
profinite group G and n = 0.
By choosing M to be the free profinite group on the set An, see e.g. [27], we
see that i must be injective in every dimension. Hence Q-proj equals the class
of dimensionwise monomorphisms in Ŝ. �

An important property of this model structure is the following homotopy in-
variance of limits in Ŝ.
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Proposition 2.14. Let f : X → Y be a map of cofiltering diagrams I → Ŝ
of profinite spaces such that each fi : Xi → Yi is a weak equivalence. Then
lim fi : limXi → limYi is a weak equivalence in Ŝ. In particular, the limit
functor induces a functor on the homotopy category of Ŝ.
Proof. It follows from the fact that π0 and π1 commute with cofiltering limits
that the profinite groupoids Π(limiXi) and Π(limi Yi) are equivalent. This
also follows from the fact that cohomology with finite coefficients transforms
limits to colimits, i.e. H0(limiXi;S) ∼= colimiH

0(Xi;S) for a finite set S
and H1(limiXi;G) ∼= colimiH

1(Xi;G) for a finite group G; hence the maps
H0(f ;S) and H1(f ;G) are isomorphisms if each H0(fi;S) and H1(fi;G) is
an isomorphism. The cohomology with finite abelian local coefficient systems
commutes with limits in the same way. By Proposition 2.11, this implies that
limi fi is a weak equivalence. �

There is an obvious simplicial structure on Ŝ, cf. [23] and [5]. The function

complex homŜ(X,Y ) for X,Y ∈ Ŝ is the simplicial set defined in degree n by
HomŜ(X ×∆[n], Y ). It is characterized by the isomorphism

HomŜ(X ×W,Y ) ∼= HomS(W, homŜ(X,Y ))

which is natural in the simplicial finite set W and in X,Y ∈ Ŝ. Moreover, if
j : A→ B is a cofibration and q : X → Y a fibration in Ŝ, then the map

homŜ(B,X) −→ homŜ(A,X)×homŜ(A,Y ) homŜ(B, Y )

is a fibration of simplicial sets which is also a weak equivalence if j or q is one.
In fact, by adjunction this statement is equivalent to that for every cofibration
i : V →W in Ŝ the map

(A×W ) ∪A×V (B × V ) −→ B ×W
is a cofibration in Ŝ which is a weak equivalence if j or i is one in Ŝ. The first
point is clear and the second point follows from π1 commuting with products, a
van Kampen type theorem for profinite π1, and the Mayer Vietoris long exact
sequence for cohomology. Hence Ŝ is a simplicial model category in the sense of
[26]. In particular, for X,Y ∈ Ŝ, homŜ(X,Y ) is fibrant in S if Y is fibrant. Of

course, there is also a simplicial model structure on the category Ŝ∗ of pointed
profinite spaces.
Furthermore, if W is a simplicial set and X is a profinite space, then by [23]
the function complex hom(W,X) has the natural structure of a profinite space
as the cofiltering limit of the simplicial finite sets hom(Wα, X/Q) where Wα

runs through the simplicial finite subsets of W .
As an example we consider the simplicial finite set S1, defined as ∆[1] modulo
its boundary. For a pointed profinite space X , we denote its smash product
S1∧X with S1 by ΣX and by ΩX the profinite space homŜ∗(S1, X). ForX,Y ∈
Ŝ∗, there is a natural bijection homŜ∗(ΣX,Y ) = homŜ∗(X,ΩY ). Proposition
2.11 motivates the following definition for profinite higher homotopy groups.
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Definition 2.15. Let X be a pointed profinite space and let RX be a functorial
fibrant replacement of X in the above model structure on Ŝ∗. Then we define
the nth profinite homotopy group of X for n ≥ 2 to be the profinite group

πn(X) := π0(Ωn(RX)).

It remains to show that the initial definition of the profinite fundamental group
fits well with the definition of the higher homotopy groups, i.e. π1(X) ∼=
π0(Ω(RX)).

Lemma 2.16. For every X ∈ Ŝ, the canonical map colimQ Cf(X/Q)→ Cf (X)
is bijective, where the colimit is taken over all Q ∈ R(X).

Proof. We have to show that any finite covering E → X of X is induced by a
finite covering of X/Q via the quotient map X → X/Q for some Q ∈ R(X).
We may assume that E → X is a Galois covering with finite Galois group
G. Now EG → BG is the universal covering of BG. Hence by Proposition
2.10, it suffices to note that X → BG is isomorphic to some quotient map
X → X/Q. �

Proposition 2.17. For a pointed profinite space X, the previously defined
fundamental group π1X and the group π0ΩX agree as profinite groups.

Proof. The functors π1, π0 and Ω commute with cofiltering limits of fibrant
objects by construction. The composed map

X
∼=−→ lim

Q∈R(X)
X/Q

≃−→ lim
Q∈R(X)

R(X/Q)

is a weak equivalence by the homotopy invariance of cofiltering limits in Ŝ of
Proposition 2.14. Hence we may assume that X is a fibrant simplicial finite set.
In this case, π0ΩX agrees with the usual π1|X | of the underlying simplicial finite
set of X and hence we know that π0ΩX is equal to the group of automorphisms
of the universal covering of X . �

Since Ŝ is a simplicial model category, for any profinite abelian group M , every
n and X ∈ Ŝ∗ there is an isomorphism

Hn−q(X ;M) = πq homŜ∗(X,K(M,n)),

where πq denotes the usual homotopy group of the simplicial set
homŜ∗(X,K(M,n)). For an arbitrary profinite group G there is a bijec-
tion of pointed sets

H1(X ;G) = π0 homŜ∗(X,BG).

Let X : I → S be a functor from a small cofiltering category I to simplicial
sets. By [3] XI §7.1, if each Xi fibrant there is a spectral sequence involving
derived limits

(3) Es,t2 =

{
lims

I πtXi for 0 ≤ s ≤ t
0 else
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converging to πs+t holim X . Using [3] XI §§4-7, one can construct a homotopy

limit holimX ∈ Ŝ for a small cofiltering category I and a functor X : I → Ŝ.

Lemma 2.18. Let X : I → Ŝ be a small cofiltering diagram such that each Xi

is fibrant in Ŝ. Then there is a natural isomorphism

πq(holimX) ∼= lim
i
πq(Xi).

Proof. Since the underlying space of a fibrant profinite space is still fibrant in
S, the above spectral sequence exists also for a diagram of profinite spaces. But
in this case all homotopy groups are profinite groups. Since the inverse limit
functor is exact in the category of profinite groups, cf. [27] Proposition 2.2.4,
the spectral sequence (3) degenerates to a single row and implies the desired
isomorphism. �

Corollary 2.19. Let X : I → Ŝ be a cofiltering diagram of profinite spaces
such that each Xi is fibrant. Then the natural map limX → holim X is a weak
equivalence in Ŝ.
Proof. This follows directly from Lemma 2.18 and the fact that the profinite
homotopy groups commute with cofiltering limits of fibrant profinite spaces. �

Corollary 2.20. Let I be a small cofiltering category and M (resp. G) be
a functor from I to the category of profinite abelian groups (resp. profinite
groups). Then the canonical map K(limM,n) → holimK(M,n) is a weak

equivalence in Ŝ for every n ≥ 0 (resp. for n = 0, 1).

Proof. The lemma shows that πq holim K(M,n) is equal to M for q = n and
vanishes otherwise. Hence the canonical map limK(M,n) → holim K(M,n)
is a weak equivalence. The same argument holds for G and n = 1 using the
construction of lim1 of [3] XI §6. �

Since homŜ∗(X,−) commutes with homotopy limits of fibrant objects, this

result and the Bousfield-Kan spectral sequence (3) imply the following result
on the cohomology with profinite coefficients.

Proposition 2.21. Let f : X → Y be a map in Ŝ, let G and M be profinite
groups and let M be abelian. If H1(f ;G/U), resp. H∗(f ;M/V ), are isomor-
phisms for every normal subgroup of finite index U ≤ G, resp. V ≤ M , then
H1(f ;G), resp. H∗(f ;M), is an isomorphism.

Proposition 2.22. Let M be a profinite group and suppose that the topology
of M has a basis consisting of a countable chain of open subgroups M = U0 ≥
U1 ≥ . . .. Then there is a natural short exact sequence for every Y ∈ Ŝ and
every i ≥ 1 (i = 1 if M is not abelian)

0→ lim
n

1Hi−1(Y ;M/Un)→ Hi(Y ;M)→ lim
n
Hi(Y ;M/Un)→ 0.

Proof. This is the short exact sequence of [3] XI §7.4 for X = K(M, i). Propo-
sition 2.20 identifies πi holim X with Hi(X ;M). �
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The hypothesis of the previous proposition is satisfied for example if M is a
finitely generated profinite abelian group. Finally, for a profinite group G and
a profinite abelian G-module M = limU M/U , the isomorphism

Hn−q(G;M) = πq homŜ/BG(BG,K(M,n))

for the continuous cohomology ofG yields via (3) and Proposition 2.20 a natural
spectral sequence for continuous group cohomology, U running through the
open normal subgroups of M :

Ep,q2 = lim
U

pHq(G;M/U)⇒ Hp+q(G;M).

Finally, we can generalize Lemma 2.8.

Proposition 2.23. For every profinite group G, every profinite abelian group
M and every n ≥ 0, the canonical maps EG→ BG and L(M,n)→ K(M,n+1)

are fibrations in Ŝ.

Proof. Let X →֒ Y be a trivial cofibration in Ŝ. Let G be a profinite group,
which is supposed to be abelian if n ≥ 2. We know by Lemma 2.13 that
the morphism of complexes C∗(Y ;G) → C∗(X ;G) is surjective. By assump-
tion, it induces an isomorphism on the cohomology for every finite quotient
G/U . Hence by Proposition 2.21 it also induces an isomorphism on cohomol-
ogy with coefficients equal to G. Hence the maps Zn(Y ;G) → Zn(X ;G) and
Cn(Y ;G) → Cn(X ;G) ×Zn+1(X;G) Z

n+1(Y ;G) are surjective and the maps
L(G,n)→ K(G,n+1) and K(G,n)→ ∗ have the desired right lifting property
as in Lemma 2.8. �

In terms of the homotopy category we can reformulate Proposition 2.10 as
follows.

Proposition 2.24. Let G be a simplicial profinite group. For any profinite
space X, the map

θ : HomĤ(X,BG)→ ΦG(X),

sending the image of f in HomĤ(X,BG) to the pullback of EG → BG along
f , is a bijection.

Corollary 2.25. Let G be a simplicial profinite group and let f : E → X be
a principal G-fibration. Then f is also a fibration in Ŝ.

Proof. Since X is cofibrant and BG fibrant, the map X → BG in Ĥ corre-
sponding to the principal fibration E → X is represented by a map in Ŝ. Since
E → X is the pullback of EG → BG under this map and since fibrations are
stable under pullbacks, the assertion follows. �

The construction of the Serre spectral sequence of Dress in [7] can be easily
translated to our profinite setting, see also [5] §1.5.
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Proposition 2.26. Let B be a simply connected profinite space, let f : E → B
be a fibration in Ŝ with fibre F and let M be an abelian profinite group. Then
there is a strongly convergent Serre spectral sequence

Ep,q2 = Hp(B;Hq(F ;M))⇒ Hp+q(E;M).

Proposition 2.27. Let G be a profinite group and let p : E → X be a principal
G-fibration in Ŝ. Then the canonical map f : E ×G EG → X is a weak
equivalence.

Proof. Since E → X is locally trivial, see [13] V Lemma 2.5, it is also a covering
of X with fibre G. Hence we may assume that p is a Galois covering of X with
G = AutX(E). It follows from the classification of coverings that there is a
short exact sequence of groups

1→ π1(E)→ π1(X)→ G→ 1.

On the other hand, we have a canonicalG-equivariant map EG×G(E×GEG) =
EG × E → E which induces an isomorphism on fundamental groups since
π1(EG) is trivial. Now EG×G(E×GEG) is a principal G-fibration on E×GEG
and we have a corresponding short exact sequence

1→ π1(EG× E)→ π1(E ×G EG)→ G→ 1.

Since the sequences are functorial, we conclude that E ×G EG → X induces
an isomorphism on fundamental groups. The remaining point to check follows
from the Serre spectral sequence of Proposition 2.26 associated to the map of
universal coverings of the fibration E ×G EG→ X . �

2.4. Profinite completion of simplicial sets. We consider the category
S of simplicial sets with the usual model structure of [26]. We denote its
homotopy category by H.

Proposition 2.28. 1. The completion functor (̂·) : S → Ŝ preserves weak
equivalences and cofibrations.
2. The forgetful functor | · | : Ŝ → S preserves fibrations and weak equivalences
between fibrant objects.

3. The induced completion functor (̂·) : H → Ĥ and the right derived functor

R| · | : Ĥ → H form a pair of adjoint functors.

Proof. Let f : X → Y be a map of simplicial sets. If f is a monomorphism and
x and x′ are two distinct n-simplices of X/Q for some Q ∈ R(X), then there
is a finite quotient Y/R, R ∈ R(Y ) such that f(x) and f(x′) are not equal.

Hence f̂ : X̂ → Ŷ is a monomorphism.

If f is a weak equivalence in S, then π0(f̂) = π̂0(f) and π1(f̂) = π̂1(f) are
isomorphisms for every basepoint by Proposition 2.1. Moreover, Hn(f ;M)
are isomorphisms for every finite abelian coefficient systemM on Y and every
n ≥ 0 by [26]. Since the profinite completion of the universal covering of a

space X equals the universal profinite covering of the completion X̂, we see
that for a finite local system M the cohomologies Hn(X ;M) and Hn(X̂ ;M)
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agree. Hence f̂ is a weak equivalence in Ŝ. The second and third assertion now

follow from the first one since (̂·) and | · | form a pair of adjoint functors. �

For a simplicial setX , we have seen that the continuous cohomology of X̂ agrees
with the cohomology of X when the coefficients are finite. But for homotopical
aspects, one should consider a fibrant replacement of X̂ in Ŝ and could call
this the profinite completion of X .

2.5. Homology and the Hurewicz map. We define the homology
H∗(X) := H∗(X ; Ẑ) of a profinite space X to be the homology of the complex

C∗(X) consisting in degree n of the profinite groups Cn(X) := F̂ab(Xn), the
free abelian profinite group on the profinite set Xn. The differentials d are
the alternating sums

∑n
i=0 di of the face maps di of X . If M is a profinite

abelian group, then H∗(X ;M) is defined to be the homology of the complex
C∗(X ;M) := C∗(X)⊗̂M , where ⊗̂ denotes the completed tensor product, see
e.g. [27] §5.5. As for simplicial sets, there is a natural isomorphism of profinite

groups, H0(X ; Ẑ) = F̂ab(π0(X)). For a pointed space (X, ∗), we denote by

H̃n(X ;M) the reduced homology given by the complex C∗(X ;M)/C∗(∗;M).
For a fibrant pointed profinite space X , by Proposition 2.17 and by definition,
the homotopy groups πn(X) are equal to the set HomŜ∗(Sn, X)/ ∼ of maps
modulo simplicial homotopy, where Sn denotes the simplicial finite quotient
∆n/∂∆n. Hence an element α ∈ πn(X) can be represented by an element

x ∈ Xn. But we can view x also as a cycle of C̃n(X) with homology class

[x] ∈ H̃n(X ; Ẑ). One can show as in the case of simplicial sets that this
correspondence α 7→ [x] is well defined and is even a homomorphism of groups,

cf. [20] §13. We call this map hn : πn(X)→ H̃n(X ; Ẑ) the Hurewicz map.

Proposition 2.29. Let X be a connected pointed fibrant profinite space. The
induced map h1 : π1(X)/[π1(X), π1(X)]→ H̃1(X ; Ẑ) is an isomorphism.

Proof. This follows as in [20] §13 or [13] III §3. Since X has a strong deforma-
tion retract Z that is reduced, i.e. Z0 consists of a single element, we may as-
sume that X is reduced. Then C̃1(X) = Z̃1(X) = F̂ab(X1−{∗}). The quotient

X1 → X1/ ∼ induces a natural epimorphism j : Z̃1(X) → π1/[π1(X), π1(X)].

If x ∈ C̃2(X), then by the definition of d and the definition of the group struc-
ture on π1(X) = HomŜ∗(S1, X)/ ∼, we get j ◦ d(x) = 0. Thus j induces a

map j : H̃1(X) → π1/[π1(X), π1(X)] and one checks easily that j and h are
mutually inverse to each other. �

In exactly the same way as for simplicial sets, one proves the following Hurewicz
theorem, see e.g. [20] §13.

Theorem 2.30. Let n ≥ 1 be an integer and let X be a fibrant pointed profinite
space with πq(X) = 0 for all q < n. Then the Hurewicz map h : πn(X) →
H̃n(X ; Ẑ) is an isomorphism of profinite groups.
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Let X be a pointed space. By the universal property of profinite completion,

there is canonical map π̂n(X) → πn(X̂) of profinite groups. We have seen in
Proposition 2.1 that this map is always an isomorphism for n = 1.

Proposition 2.31. Let X be a pointed simplicial set. Suppose that πq(X) = 0

for q < n. Then πn(X̂) is the profinite completion of πn(X), i.e.

π̂n(X) ∼= πn(X̂).

Proof. This follows immediately from the Hurewicz theorem for profinite
spaces. �

2.6. Pro-p-model structures. Morel has shown in [23] that there is a Z/p-

model structure on Ŝ for every prime number p. The weak equivalences
are maps that induce isomorphisms in the continuous cohomology with Z/p-
coefficients. The cofibrations are the levelwise monomorphisms. It is also
a fibrantly generated model structure. The minimal sets of generating fi-
brations and generating trivial fibrations are given by the canonical maps
L(Z/p, n)→ K(Z/p, n+1), K(Z/p, n)→ ∗ and by the maps L(Z/p, n)→ ∗ for
every n ≥ 0, respectively. Moreover, Morel proved that a principal G-fibration
E → X is a fibration in this model structure for any pro-p-group G. In par-
ticular, the maps EG → BG, BG → ∗ are fibrations and the maps EG → ∗
are trivial fibrations for any (nonabelian) pro-p-group G. Hence we would not
get a different structure if we added for example the maps EG → BG for a
nonabelian p-group to the generating sets of fibrations.
However, for the model structure of Theorem 2.12 we cannot skip any map in
the generating sets P and Q. The arguments of [23] rely on the fact that Z/p
is a field and that every pro-p-group has a p-central descending filtration by
normal subgroups such that all subquotients are cyclic of order p. For a general
profinite group there is not such a nice description.
One can describe the structure of [23] as the left Bousfield localization of the
model structure of Theorem 2.12 with respect to the set of fibrant objects
K(Z/p, n) for every n ≥ 0. The homotopy groups πn(X) := π0(ΩnX) of a
fibrant profinite space X for this model structure are pro-p-groups. For a sim-
plicial set X , π1(X̂) is the pro-p-completion of π1(X). If π1(X) is finitely

generated abelian, then π1(X̂) is isomorphic to Zp ⊗Z π1(X).

Remark 2.32. The procedure for the proof of Theorem 2.12 may be applied to
every complete class C of finite groups. It suffices to replace the word finite by
the appropriate additional property C. For the class of p-groups the situation
simplifies in the way indicated above.

2.7. Profinite completion of pro-spaces. We define a completion functor

(̂·) : pro− S → Ŝ as the composite of two functors. First we apply (̂·) : S → Ŝ
levelwise, then we take the limit in Ŝ of the underlying diagram. This com-
pletion functor unfortunately has no right adjoint. But it obviously preserves
monomorphisms and weak equivalences by Propositions 2.14 and 2.28 when we
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equip pro-S with the model structure of [16].
We compare the above constructions with Artin-Mazur’s point of view. We
denote by Hfin the full subcategory of H of spaces whose homotopy groups are
all finite. If X is either a space or a pro-space, then the functor Hfin → E ,
Y 7→ HomH(Y,X) is pro-representable by [1] Theorem 3.4. The corresponding

pro-object X̂AM of Hfin is the Artin-Mazur profinite completion of X .
Now if X is a profinite space we can naturally associate to it a pro-object XAM

in Hfin. It is defined to be the functor R(RX)→ Hfin, Q 7→ RX/Q, where RX

is a fibrant replacement of X in Ŝ. Since RX/Q is finite in each degree, the
same is true for Ωk(RX/Q). Hence π0(Ωk(RX/Q)) is finite for every k ≥ 0.
This functor X 7→ XAM sends weak equivalences to isomorphisms and hence

factors through Ĥ.
The composed functor H → Ĥ → pro−Hfin is isomorphic to the Artin-Mazur
completion of a space. In order to show this, it suffices to check that for a
space X the fundamental groups π1(X̂AM) and π1(X̂) are isomorphic as profi-
nite groups and that cohomology with finite local coefficients agree. The first
point follows from Proposition 2.1 and [1], Corollary 3.7; and the second from
the fact that cohomology with finite local coefficients transforms limits to col-
imits. In particular, this implies the following result.

Proposition 2.33. Let X be connected pointed pro-space. Then the homo-
topy pro-groups of the Artin-Mazur profinite completion XAM and the profinite
homotopy groups of X̂ ∈ Ŝ agree as profinite groups, i.e. for every n ≥ 1

πn(X̂) ∼= πn(XAM).

Nevertheless, the categories Ĥ and pro−Hfin are not equivalent as the example
of Morel in [23], p. 368, shows.
Finally, we show that the continuous cohomology with profinite coefficients of
the completion of a pro-space is equal to the continuous cohomology of Dwyer
and Friedlander [9] Definition 2.8, which we denote by Hn

DF(X ;M).

Proposition 2.34. Let Γ be a profinite groupoid and let X → BΓ be a pro-
space over BΓ. Let M be a profinite coefficient system on Γ. For every n ≥ 0
there is a natural isomorphism induced by completion

Hn
Γ (X̂;M) ∼= Hn

DF(X ;M).

Proof. We may assume that Γ is connected since we can decompose the coho-
mology into the product of the cohomology of the connected components. We
denote by π the profinite group HomΓ(γ, γ) of an object γ ∈ Γ. The continuous
cohomology of [9] is then given by

Hn
DF(X ;M) = π0 holim

j
colim
s

homS/Bπ(Xs,K(Mj , n))

where M = {Mj} is given as an inverse system of finite π-modules and
homS/Bπ denotes the mapping space of spaces over Bπ. Because of the uni-
versal property of profinite completion and since each K(Mj, n) is a simplicial
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finite set, we get a canonical identification of mapping spaces

colim
s

homS/Bπ(Xs,K(Mj , n)) = homŜ/Bπ(X̂,K(Mj, n)).

Furthermore, from Proposition 2.20 we deduce

π0 holim
j

homŜ/Bπ(X̂,K(Mj , n)) ∼= π0 homŜ/Bπ(X̂,K(M,n))

where M = limjMj is the profinite π-module corresponding to M. Finally,

the twisted cohomology of X̂ is represented by the fibration K(M,n)→ Bπ in

Ŝ, i.e. there is a canonical and natural identification

Hn
π (X̂ ;M) = π0 homŜ/Bπ(X̂,K(M,n)).

This series of isomorphisms now yields the proof of the assertion. �

2.8. Stable profinite homotopy theory.

Definition 2.35. A profinite spectrum X consists of a sequence Xn ∈ Ŝ∗ of
pointed profinite spaces for n ≥ 0 and maps σn : S1 ∧ Xn → Xn+1 in Ŝ∗. A

morphism f : X → Y of spectra consists of maps fn : Xn → Yn in Ŝ∗ for
n ≥ 0 such that σn(1 ∧ fn) = fn+1σn. We denote by Sp(Ŝ∗) the corresponding

category and call it the category of profinite spectra. A spectrum E ∈ Sp(Ŝ∗)
is called an Ω-spectrum if each En is fibrant and the adjoint structure maps
En → ΩEn+1 are weak equivalences for all n ≥ 0.

The suspension Σ∞ : Ŝ∗ → Sp(Ŝ∗) sends a profinite space X to the spectrum

given in degree n by Sn∧X . Starting with the model structure on Ŝ of Theorem
2.12, the localization theorem of [25] yields the following result.

Theorem 2.36. There is a stable model structure on Sp(Ŝ∗) for which the pro-
longation of the suspension functor is a Quillen equivalence. The corresponding
stable homotopy category is denoted by ˆSH. In particular, the stable equiva-
lences are the maps that induce an isomorphism on all generalized cohomology
theories, represented by profinite Ω-spectra; the stable cofibrations are the maps
i : X → Y such that i0 and the induced maps jn : Xn∐S1∧Xn−1

S1∧Yn−1 → Yn
are monomorphisms for all n; the stable fibrations are the maps with the right
lifting property with respect to all maps that are both stable equivalences and
stable cofibrations.

Since the suspension is compatible with profinite completion, there is an analo-
gous statement as in Proposition 2.28 on the pair of adjoint functors consisting
of the levelwise completion functor Sp(S∗)→ Sp(Ŝ∗) and the forgetful functor
where Sp(S∗) denotes the category of simplicial spectra with the Bousfield-
Friedlander model structure [2]. For a profinite spectrum X , we define the
stable homotopy groups πsn(X) to be the set HomŜH(Sn, X) of maps in the

stable homotopy category. Since Ω preserves fibrations in Ŝ∗, Proposition 2.31
implies the following characterization of the stable homotopy groups of the
completion of a spectrum.
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Proposition 2.37. Let E be a connected simplicial spectrum, then the canon-

ical map π̂sn(E) → πsn(Ê) is an isomorphism. In particular, if each πsn(E) is

finitely generated, then πsn(Ê) ∼= Ẑ⊗Z π
s
n(E).

Examples for the last assertion are Eilenberg-MacLane spectra HM for a
finitely generated abelian groupM or the simplicial spectrum of complex cobor-
dism MU . Finally, the composition of completion and homotopy limit defines
also a functor from pro-spectra to profinite spectra that induces a functor from
the homotopy category of pro-spectra of Christensen and Isaksen in [4] to ˆSH.

3. Applications in étale homotopy theory

3.1. Profinite étale homotopy groups. The construction of the étale
topological type functor Et from locally noetherian schemes to pro-spaces is
due to Artin-Mazur and Friedlander. We refer the reader to [11] and [17] for a
detailed discussion of the category of rigid hypercoverings and rigid pullbacks.
Let X be a locally noetherian scheme. The étale topological type of X is de-
fined to be the pro-simplicial set EtX := Re ◦ π : HRR(X) → S sending a
rigid hypercovering U of X to the simplicial set of connected components of
U . If f : X → Y is a map of locally noetherian schemes, then the strict map
Et f : EtX → EtY is given by the functor f∗ : HRR(Y ) → HRR(X) and
the natural transformation EtX ◦ Et f → EtY . In order to get a profinite
space, we compose Et with the completion from pro-spaces to Ŝ and denote

this functor by Êt .
Let X be a pointed connected locally noetherian scheme. For k > 0, let
πk(EtX) be the pro-group, defined by the functor πk ◦ Et from HRR(X)
to the category of groups as in [11]. For k = 1 and G a group, Friedlander has
shown in [11], 5.6, that the set of isomorphism classes of principal G-fibrations
over X is isomorphic to the set Hom(π1(EtX), G) of homomorphisms of pro-
groups. Furthermore, the locally constant étale sheaves on X , whose stalks are
isomorphic to a set S, are in 1-1 correspondence to local coefficient systems
on EtX with fibers isomorphic to S. This shows that π1(EtX) is equal to
the enlarged fundamental pro-group of [6], Exposé X, §6. It agrees with the
profinite étale fundamental group of [14] if X is geometrically unibranched (e.g.
if X is normal). More generally, Friedlander shows in [11], Theorem 7.3, that
πk(EtX) is a profinite group for k > 0 when X is connected and geometrically
unibranched.
These arguments are easily transfered to the profinite setting. For a topological
group G there is a bijection between the set of isomorphism classes of principal
G-fibrations over X and the set of isomorphism classes of principal G-fibrations
over ÊtX ; and hence there is a bijection between the set of isomorphism classes
of locally constant étale sheaves of profinite sets on X and the set of isomor-
phism classes of profinite local coefficient systems on ÊtX . Furthermore, we
see that the finite coverings of ÊtX are in 1-1-correspondence with the finite

étale coverings of X . This implies that the finite quotients of π1(ÊtX) corre-

spond to the finite étale coverings of X . Hence the profinite group π1(ÊtX)
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agrees with the usual profinite fundamental group πét
1 (X) of [14].

If F is a locally constant étale sheaf on X , we denote by F also the corre-
sponding local system on EtX respectively ÊtX . Friedlander has shown in
[11] Proposition 5.9, that the groups H∗ét(X ;F ) and H∗(EtX ;F ) are equal.

Moreover, by the definition of ÊtX , the cohomology groups H∗(ÊtX ;F )

and H∗(EtX ;F ) coincide if F is finite. But if F is not finite, H∗(ÊtX ;F )
does not in general agree with the usual étale cohomology groups H∗ét(X ;F )
any more. But since, for example, ℓ-adic cohomology Hi(X ; Zℓ(j)) :=
limnH

i
ét(X ; Z/ℓn(j)) of a scheme X has good properties only if the étale co-

homology groups Hi
ét(X ; Z/ℓn(j)) are finite, this may not be considered as a

problem. In fact, it turns out that, if F is profinite, H∗(ÊtX ;F ) is the con-
tinuous étale cohomology of X , which is a more sophisticated version of étale
cohomology for inverse systems of coefficient sheaves defined by Jannsen in [19].

Proposition 3.1. Let X be a locally noetherian scheme and let F be a lo-
cally constant étale sheaf on X whose stalks are profinite abelian groups. The
cohomology H∗(ÊtX ;F ) of ÊtX with coefficients in the local system corre-
sponding to F coincides with the continuous étale cohomology H∗cont(X ;F ) of

Jannsen and of Dwyer and Friedlander. In particular, H∗(ÊtX ; Zℓ(j)) equals
H∗cont(X ; Zℓ(j)) of [19].

Proof. This follows immediately from Lemma 3.30 of [19] and Proposition 2.34,

since EtX is a pro-space over the profinite groupoid Πét
1 (X) = Π(ÊtX). �

The relation to the usual ℓ-adic cohomology of a locally noetherian scheme X
is given by the exact sequence, as in [19],

0→ lim
n

1Hi−1
ét (X ; Z/ℓn(j))→ Hi(ÊtX ; Zℓ(j))→ lim

n
Hi

ét(X ; Z/ℓn(j))→ 0.

If p : Y → X is a Galois covering with profinite Galois group G and F is a
locally constant profinite étale sheaf on X , then there is a spectral sequence of
continuous cohomology groups

Ep,q2 = Hp(G;Hq(ÊtY ; p∗F ))⇒ Hp+q(ÊtX ;F ).

The previous discussion shows that ÊtX is a good rigid model for the profinite
homotopy type of a scheme. Since the étale fundamental group πét

1 (X) is always

a profinite group and is equal to π1(ÊtX), we make the following definition.

Definition 3.2. For a locally noetherian simplicial scheme X, a geometric
point x and n ≥ 2, we define the profinite étale homotopy groups πét

n (X,x) of

X to be the profinite groups πn(ÊtX,x).

By Proposition 2.33, these profinite homotopy groups agree with the profinitely
completed étale homotopy groups of Artin and Mazur in [1].

3.2. Example: Êt k and the absolute Galois group. Let k be a fixed
field. For a Galois extension L/k we denote by G(L/k) its Galois group. For a
separable closure k of k we write Gk for the absolute Galois group G(k/k) of k.
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We want to determine the well known homotopy type of Êt k as BGk. We de-
note by RC(k) the category of rigid coverings and by HRR(k) the category of
rigid hypercoverings of Spec k. There are two canonical functors between them.
On the one hand there is the restriction functor sending a hypercovering U to
U0; on the other hand we can send a rigid covering U → Spec k to the hypercov-
ering coskk0(U). When we consider the rigid cover SpecL→ Spec k associated
to a finite Galois extension L/k, the simplicial set of connected components

of the corresponding hypercover π0(coskk0(L)) is equal to the classifying space

BG(L/k). Hence when we consider the functor π0 ◦ coskk0(−) : RC(k) → S
from rigid coverings of k, we see that it takes values in simplicial profinite sets
Ŝ and that the limit over all the rigid coverings equals BGk.
Furthermore, the restriction functor defines a monomorphism g : BGk →֒ Êt k;
and the coskeleton coskk0 defines a map in the other direction f : Êt k→ BGk.
In particular, f and g are simplicial homotopy equivalences and g is a cofi-
bration. For, it is clear that f ◦ g equals the identity of BGk, whereas the
composite g ◦ f is homotopic to the identity of Êtk by [11] Prop. 8.2.
For a k-scheme X we write XL := X ⊗k L. The group G := G(L/k) acts via
Galois-automorphisms 1 ⊗ σ on XL. The canonical map XL → X is an étale
Galois covering of X with Galois group G. Hence ÊtXL → ÊtX is a principal
G-fibration in Ŝ. This implies that the canonical map ÊtXL ×G EG → ÊtX
is a weak equivalence by Proposition 2.27 and that the cohomology of ÊtX is
equal to the Borel-cohomology of ÊtXL under the action of G(L/k).
An interesting and well known example is the étale realization of a finite field
Fq with q elements. Its Galois group is Ẑ and hence Êt Fq = K(Ẑ, 1). In fact,

there is a canonical homotopy equivalence S1 → Êt Fq sending the generator

of π1S
1 = Ẑ to the Frobenius map.

Finally, for a base field k, Êt P1
k

is an Eilenberg MacLane Gk-space K(Ẑ(1), 2)

with the canonical Gk-action on the profinite group Ẑ(1) = µ(k) of all roots of
unity in k. More examples may be found in [10].

3.3. Etale realization of the flasque motivic model structure. The
construction of the A1-homotopy category of schemes gave rise to the question
if this functor may be enlarged to the category of motivic spaces. This has
been answered independently by Dugger-Isaksen and Schmidt. The latter one
constructed a geometric functor to the category pro-H as Artin-Mazur. The
idea of Dugger and Isaksen for the less intuitive extension of EtX is that it
should be the usual EtX on a representable presheaf X and should preserve
colimits and the simplicial structure. Isaksen then showed that Et induces a
left Quillen functor on the projective model structure on simplicial presheaves.
Let S be a base scheme and let Sm/S be the category of smooth quasi-projective
schemes of finite type over S. Isaksen has shown in [18] that the flasque model
structure on presheaves on Sm/S is a good model for the A1-homotopy category,
in particular for the construction of the stable motivic homotopy category, since
P1 is a flasque cofibrant space. It was shown in [25] that Êt yields a stable
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étale realization functor of the stable motivic homotopy category. In order to
simplify the constructions, we will deduce from [17] that Êt induces a derived
functor on the flasque motivic structure as well.

Lemma 3.3. Let i : Y →֒ X be an open or closed immersion of locally noether-
ian schemes. Then Et i : EtY →֒ EtX is a monomorphism of pro-simplicial
sets.

Proof. The map Et i is by definition the map of pro-simplicial sets which is
induced by the natural transformation of indexing categories given by the rigid
pullback functor i∗ : HRR(X) → HRR(Y ). If

∐
x Ux, x → X is a rigid cover

of X indexed by the geometric points of X , the connected component (i∗U)y of
the pullback cover of Y at the geometric point y of Y is sent to the connected
component Ui(y) over X . If i is an open, resp. closed, immersion, this map
on the sets of connected components is obviously injective. Since open, resp.
closed, immersions are stable under base change and since for a rigid hypercover
V of X , (coskXs

t−1V )t is a finite fiber product involving the Vs,r’s for r ≤ t and
Xs, we deduce that the induced map Et i is a monomorphism as well. �

Theorem 3.4. The étale topological type functor Et is a left Quillen functor on
the Nisnevich (resp. étale) local flasque model structure on simplicial presheaves
on Sm/S to the model structure on pro-simplicial sets of [16].

Proof. Let i : ∪nk=1Un → X be an acceptable monomorphism as defined in [18].
We have to show that Et i is a monomorphism in pro-S. By compatibility with
colimits, Et ∪nk=1 Un is the coequalizer of the diagram

Et (
∐

k,k′

Uk ×X Uk′)→ Et (
∐

k

Uk).

Hence in order to show that Et i is a cofibration, it is enough to show that
Et (Uk×X Uk′)→ EtUk is a monomorphism for every k and k′. But since open
immersions of schemes are stable under base change, this follows from Lemma
3.3. Moreover, Et is compatible with pushout products and hence Et sends the
generating (trivial) cofibrations in the flasque model structure on presheaves
to (trivial) cofibrations of pro-simplicial sets.
The Nisnevich (resp. étale) local flasque model structure is constructed via the
left Bousfield localizations with respect to all Nisnevich (resp. étale) hypercov-
ers. In fact, Isaksen shows that Et sends Nisnevich and étale hypercovers to
weak equivalences in pro-S, [17], Theorem 12. �

Corollary 3.5. If char S = {0}, the functor Êt also induces a total left

derived functor from the motivic flasque model structure on sPre(Sm/S) to Ŝ
with the general model structure of Theorem 2.12.
If char S contains a prime p > 0, it induces a total derived functor to Ŝ with the
Z/ℓ-model structure of [23] for any prime number ℓ which is prime to char S.

Proof. Since Et induces a total left derived functor on the local structures and
since the above completion induces a functor on the homotopy categories, it is
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clear that Êt induces the desired functor for the local structures.
It remains to check that Êt sends the projection pX : A1×kX → X to a weak
equivalence in Ŝ for all X ∈ Sm/k. If char k = 0, pX induces an isomorphism
on étale cohomology H∗ét(−;F ) for all torsion sheaves F , see e.g. [22] VI,
Corollary 4.20, and an isomorphism on étale fundamental groups. Hence in
this case Êt pX is a weak equivalence in Ŝ.
If char k = p > 0, πX induces an isomorphism on étale cohomology H∗ét(−;F )
for all torsion sheaves F whose torsion is prime to p. But it does not induce
an isomorphism on étale fundamental groups. Hence in this case Êt pX is only

a weak equivalence in the mod ℓ-model structure on Ŝ. �

The space P1
k pointed at ∞ is flasque cofibrant and may be used as in [18]

to construct the stable motivic homotopy category of P1-spectra starting from
the flasque model structure on motivic spaces. As in [25] this yields a stable
motivic realization functor without taking a cofibrant replacement of P1.

Corollary 3.6. Let k be a field with char k = 0. The functor Êt induces a
stable étale realization functor of the stable motivic homotopy category to the
homotopy category ˆSH of Theorem 2.36.

Remark 3.7. 1. For a pointed presheaf X on Sm/S there are profinite étale

homotopy groups for every n ≥ 1: πét
n (X ) := πn(ÊtX ).

2. All statements of this subsection also hold for the closed (motivic) model
structure of [24].
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614 F. Déglise

Notations

We fix a noetherian base scheme S. The schemes considered in this paper are al-
ways assumed to be finite type S-schemes. Similarly, a smooth scheme (resp. mor-
phism of schemes) means a smooth S-scheme (resp. S-morphism of S-schemes).
We eliminate the reference to the base S in all notation (e.g. ×, Pn, ...)
An immersion i of schemes will be a locally closed immersion and we say i is an
open (resp. closed) immersion when i is open (resp. closed). We say a morphism
f : Y → X is projective2 if Y admits a closed X-immersion into a trivial projective
bundle over X .
Given a smooth closed subscheme Z of a scheme X , we denote by NZX the
normal vector bundle of Z in X . Recall a morphism f : Y → X of schemes is
said to be transversal to Z if T = Y ×X Z is smooth and the canonical morphism
NTY → T ×Z NZX is an isomorphism.
For any scheme X , we denote by Pic(X) the Picard group of X .
Suppose X is a smooth scheme. Given a vector bundle E over X , we let P = P(E)
be the projective bundle of lines in E. Let p : P → X be the canonical projection.
There is a canonical line bundle λP on P such that λP ⊂ p−1(E). We call it the
canonical line bundle on P . We set ξP = p−1(E)/λP , called the universal quotient
bundle. For any integer n ≥ 0, we also use the abbreviation λn = λPn

S
. We call

the projective bundle P(E⊕ 1), with its canonical open immersion E → P(E⊕ 1),
the projective completion of E.

1. Introduction

In algebraic topology, it is well known that oriented multiplicative cohomology
theories correspond to algebras over the complex cobordism spectrum MU. Us-
ing the stable homotopy category allows a systematic treatment of this kind of
generalized cohomology theory, which are considered as oriented ring spectra.
In algebraic geometry, the motive associated to a smooth scheme plays the role of
a universal cohomology theory. In this article, we unify the two approaches : on
the one hand, we replace ring spectra by spectra with a structure of modules over
a suitable oriented ring spectra - e.g. the spectrum MGL of algebraic cobordism.
On the other hand, we introduce and consider formal group laws in the motivic
theory, generalizing the classical point of view.
More precisely, we use an axiomatic treatment based on homotopy invariance
and excision property which allows to formulate results in a triangulated cate-
gory which models both stable homotopy category and mixed motives. A suitable
notion of orientation is introduced which implies the existence of Chern classes
together with a formal group law. This allows to prove a purity theorem which
implies the existence of Gysin morphisms for closed immersions and their com-
panion residue morphisms. We extend the definition of the Gysin morphism to
the case of a projective morphism, which involves a delicate study of cobordism
classes in the case of an arbitrary formal group law. This theory then implies
very neatly the duality statement in the projective smooth case. Moreover, these

2 If X admits an amble line bundle, this definition coincide with that of [EGA2].
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constructions are obtained over an arbitrary base scheme, eventually singular and
with unequal characteristics.
Examples are given which include triangulated mixed motives, generalizing the
constructions and results of V. Voevodsky, and MGL-modules. Thus, this work
can be applied in motivic cohomology (and motivic homology), as well as in alge-
braic cobordism. It also applies in homotopy algebraic K-theory3 and some of the
formulas obtained here are new in this context. It can be applied finally to clas-
sical cohomology theories through the notion of a mixed Weil theory introduced
in [CD06]. In the case of rigid cohomology, the formulas and constructions given
here generalize some of the results obtained by P. Berthelot and D. Pétrequin.
Moreover, the theorems proved here are used in an essential way in [CD06].

1.1. The axiomatic framework. We fix a triangulated symmetric monoidal cat-
egory T , with unit 1, whose objects are simply called motives4. To any pair of
smooth schemes (X,U) such that U ⊂ X is associated a motive M(X/U) functo-
rial with respect to U ⊂ X , and a canonical distinguished triangle :

M(U)→M(X)→M(X/U)
∂−→M(U)[1],

where we put M(U) := M(U/∅) and so on. The first two maps are obtained by
functoriality. As usual, the Tate motive is defined to be 1(1) := M(P1

S/S∞)[−2]
where S∞ is the point at infinity.
The axioms we require are, for the most common, additivity (Add), homotopy
invariance (Htp), Nisnevich excision (Exc), Künneth formula for pairs of schemes
(Kun) and stability (Stab) – i.e. invertibility of 1(1) (see paragraph 2.1 for the
precise statement). All these axioms are satisfied by the stable homotopy category
of schemes of F. Morel and V. Voevodsky. However, we require a further axiom
which is in fact our principal object of study, the orientation axiom (Orient) :
to any line bundle L over a smooth scheme X is associated a morphism c1(L) :
M(X) → 1(1)[2] – the first Chern class of L – compatible with base change and
constant on the isomorphism class of L/X .
The best known example of a category satisfying this set of axioms is the triangu-
lated category of (geometric) mixed motives over S, denoted by DMgm(S). It is
defined according to V. Voevodsky along the lines of the case of a perfect base field
but replacing Zariski topology by the Nisnevich one (cf section 2.3.1). Another
example can be obtained by considering the category of oriented spectra in the
sense of F. Morel (see [Vez01]). However, in order to define a monoidal structure
on that category, we have to consider modules over the algebraic cobordism spec-
trum MGL, in the E∞-sense. One can see that oriented spectra are equivalent to
MGL-modules, but the tensor product is given with respect to the MGL-module
structure.

3Recall homotopy algebraic K-theory was introduced by Weibel in [Wei89]. This cohomology
theory coincide with algebraic K-theory when S is regular.

4 A correct terminology would be to call these objects generalized triangulated motives or
triangulated motives with coefficients as the triangulated mixed motives defined by Voevodsky
are particular examples.
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Any object E of the triangulated category T defines a bigraded cohomology (resp.
homology) theory on smooth schemes by the formulas

En,p(X) = HomT

(
M(X),1(p)[n]

)
resp. En,p(X) = HomT

(1(p)[n],E⊗M(X)
)
.

As in algebraic topology, there is a rich algebraic structure on these graded groups
(see section 2.2). The Künneth axiom (Kun) implies that, in the case where E is
the unit object 1, we obtain a multiplicative cohomology theory simply denoted
by H∗∗. It also implies that for any smooth scheme X , E∗∗(X) has a module
structure over H∗∗(X). More generally, if we put A = H∗∗(S), called the ring of
(universal) coefficients, cohomology and homology groups of the previous kind are
graded A-modules.

1.2. Central constructions. These axioms are sufficient to establish an essential
basic fact, the projective bundle theorem :

(th. 3.2)5 Let X be a smooth scheme, P
p−→ X be a projective bundle of dimension

n, and c be the first Chern class of the canonical line bundle. Then the map:∑
0≤i≤n p∗ ⊠ ci : M(P )→⊕

0≤i≤nM(X)(i)[2i] is an isomorphism.
Remark that considering any motive E, even without ring structure, we obtain
E∗∗(P ) = E∗∗(X) ⊗H∗∗(X) H

∗∗(P ) where tensor product is taken with respect
to the H∗∗(X)-module structure. In the case E = 1, we thus obtain the projec-
tive bundle formula for H∗∗ which allows the definition of (higher) Chern classes
following the classical method of Grothendieck :
(def. 3.10) For any smooth scheme X , any vector bundle E over X and any
integer i ≥ 0, ci(E) : M(X)→ 1(i)[2i].
Moreover, the projective bundle formula leads to the following constructions :

(i) (3.7 & 3.8) A formal group law F (x, y) over A such that for any smooth
scheme X which admits an ample line bundle, for any line bundles L,L′

over X , the formula

c1(L ⊗ L′) = F (c1(L), c1(L′))

is well defined and holds in the A-algebra H∗∗(X).
(ii) (def. 5.12) For any smooth schemes X , Y and any projective morphism

f : Y → X of relative dimension n, the associated Gysin morphism f∗ :
M(X)→M(Y )(−n)[−2n].

(iii) (def. 4.6) For any closed immersion i : Z → X of codimension n be-
tween smooth schemes, with complementary open immersion j, the Gysin
triangle :

M(X − Z)
j∗−→M(X)

i∗−→M(Z)(n)[2n]
∂X,Z−−−→M(X − Z)[1].

The last morphism in this triangle is called the residue morphism.

The Gysin morphism permits the construction of a duality pairing in the pure
case :
(th. 5.23) For any smooth projective scheme p : X → S of relative dimension n,

5The proof is essentially based on a very elegant lemma due to F. Morel.
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with diagonal embedding δ : X → X ×X , there is a strong duality6 (in the sense
of Dold-Puppe) :

µX : 1 p∗−→M(X)(−n)[−2n]
δ∗−→M(X)(−n)[−2n]⊗M(X)

ǫX : M(X)⊗M(X)(−n)[−2n]
δ∗−→M(X)

p∗−→ 1.(iv)

In particular, the Hom object Hom(M(X),1) is defined in the monoidal category
T and µX induces a canonical duality isomorphism :

Hom(M(X),1)→M(X)(−n)[−2n].

This explicit duality allows us to recover the usual form of duality between coho-
mology and homology as in algebraic topology, in terms of the fundamental class
of X and cap-product on one hand and in terms of the fundamental class of δ
and slant product on the other hand. Moreover, considering a motive E with a
monoid structure in T and such that the cohomology E∗∗ satisfies the Künneth
formula, we obtain the usual Poincaré duality theorem in terms of the trace mor-
phism (induced by the Gysin morphism p∗ : 1→M(X)(n)[2n]) and cup-product
(see paragraph 5.24).
Note also we deduce easily from our construction that the Gysin morphism associ-
ated to a morphism f between smooth projective schemes is the dual of f∗ (prop.

5.26).
Remark finally that, considering any closed subscheme Z0 of S, and taking tensor
product with the motive M(S/S − Z0) in the constructions (ii), (iii) and (iv), we
obtain a Gysin morphism and a Gysin triangle with support. For example, given
a projective morphism f : Y → X as in (ii), Z = X ×S Z0 and T = Y ×S Z0, we
obtain the morphism MZ(X) → MT (Y )(−n)[−2n]. Similarly, if X is projective
smooth of relative dimension n, MZ(X) admits a strong dual, MZ(X)(−n)[−2n].
Of course, all the other formulas given below are valid for these motives with
support.

1.3. Set of formulas. The advantage of the motivic point of view is to obtain
universal formulae which imply both cohomological and homological statements,
with a minimal amount of algebraic structure involved.

1.3.1. Gysin morphism. We prove the basic properties of the Gysin morphisms
such as functoriality (g∗f∗ = (fg)∗), compatibility with the monoidal structure
(f×g)∗ = f∗⊗g∗), the projection formula ((1Y ∗ ⊠ f∗)f∗ = f∗ ⊠ 1X∗) and the base
change formula in the transversal case (f∗p∗ = q∗g∗).
For the needs of the following formulae, we introduce a useful notation which
appear in the article. For any smooth scheme X , any cohomology class α ∈
Hn,p(X) and any morphism φ : M(X)→M in T , we put

φ⊠α := (φ⊗ α) ◦ δ∗ : M(X)→M(p)[n]

where α is considered as a morphism M(X)→ 1(p)[n], and δ∗ : M(X)→M(X)⊗
M(X) is the morphism induced by the diagonal of X/S and by the Künneth axiom
(Kun).

6Note we use essentially the axiom (Kun) here.
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More striking are the following formulae which express the defect in base change
formulas. Fix a commutative square of smooth schemes

(1.1) T
q //

g �� ∆

Y
f��

Z p
// X

which is cartesian on the underlying topological spaces, and such that p (resp. q)
is projective of relative dimension n (resp. m).
Excess of intersection (prop. 4.16).– Suppose the square ∆ is cartesian. We
then define the excess intersection bundle ξ associated to ∆ as follows. Choose a

projective bundle P/X and a closed immersion Z
i−→ P over X with normal bundle

NZP . Consider the pullback Q of P over Y and the normal bundle NYQ of Y in
Q. Then ξ = NYQ/g

−1NZP is independent up to isomorphism of the choice of P
and i. The rank of ξ is the integer e = n−m.
Then, p∗f∗ =

(
g∗ ⊠ ce(ξ)

)
q∗.

Ramification formula (th. 4.26).– Consider the square ∆ and assume n = m.
Suppose that T admits an ample line bundle and (for simplicity) that S is inte-
gral7.
Let T = ∪i∈ITi be the decomposition of T into connected components. Consider
an index i ∈ I. We let pi and gi be the restrictions of p and g to Ti. The canonical
map T → Z×X Y is a thickening. Thus, the connected component Ti corresponds
to a unique connected component T ′i of Z×X Y . According to the classical defini-
tion, the ramification index of f along Ti is the geometric multiplicity ri ∈ N∗ of
T ′i . We define (cf def. 4.24) a generalized intersection multiplicity for Ti which
takes into account the formal group law F , called for this reason the F -intersection
multiplicity. It is an element r(Ti; f, g) ∈ H0,0(Ti). We then prove the formula :

p∗f∗ =
∑

i∈I

(
r(Ti; f, g) ⊠Ti gi∗

)
q∗i .

In general, r(Ti; f, g) = ri + ǫ where the correction term ǫ is a function of the
coefficients of F – it is zero when F is additive.

1.3.2. Residue morphism. A specificity of the present work is the study of the
Gysin triangle, notably its boundary morphism, called the residue morphism. Con-
sider a square ∆ as in (1.1). Put U = X − Z, V = Y − T and let h : V → U be
the morphism induced by f .
We obtain the following formulas :

(1) (j∗ ⊠ 1U∗)∂X,Z = ∂X,Z ⊠ i∗.
(2) For any smooth scheme Y , ∂X×Y,Z×Y = ∂X,Z ⊗ 1Y ∗.
(3) If f is a closed immersion, ∂X−Z,Y−T ∂Y,T + ∂X−Y,Z−T∂Z,T = 0.
(4) If f is projective, ∂Y,T g

∗ = h∗∂X,Z .
(5) When f is transversal to i, h∗∂Y,T = ∂X,Zg∗.
(6) When ∆ satisfies the hypothesis of Excess of intersection,

h∗∂Y,T = ∂X,Z
(
g∗ ⊠ ce(ξ)

)
.

7 We prove in the text a stronger statement assuming only that S is reduced.
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(7) When ∆ satisfies the hypothesis of Ramification formula,∑
i∈I h∗∂Y,Ti =

∑
i∈I ∂X,Z

(
r(Ti; f, g) ⊠ gi∗

)
.

The differential taste of the residue morphism appears clearly in the last formula
(especially in the cohomological formulation) where the multiplicity r(Ti; f, g)
takes into account the ramification index ri. Even in algebraic K-theory, this
formula seems to be new.

1.3.3. Blow-up formulas. Let X be a smooth scheme and Z ⊂ X be a smooth
closed subscheme of codimension n. Let B be the blow-up of X with center Z

and consider the cartesian square P
k //

p ��
B
f��

Z
i // X

. Let e be the top Chern class of the

canonical quotient bundle on the projective space P/Z.

(1) (prop. 5.38) Let M(P )/M(Z) be the kernel of the split monomorphism
p∗. The morphism (k∗, f∗) induces an isomorphism :

M(P )/M(Z)⊕M(X)→M(B).

(2) (prop. 5.39) The short sequence

0→M(B)

„
k∗

f∗

«

−−−−→M(P )(1)[2]⊕M(X)
(p∗ ⊠ e,−i∗)−−−−−−−−→M(Z)(n)[2n]→ 0

is split exact. Moreover, (p∗ ⊠ e,−i∗)◦
„

p∗

0

«
is an isomorphism8.

The first formula was obtained by V. Voevodsky using resolution of singularities
in the case where S is the spectrum of a perfect field. The second formula is the
analog of a result of W. Fulton on Chow groups (cf [Ful98, 6.7]).

1.4. Characteristic classes. Besides Chern classes, we can introduce the follow-
ing characteristic classes in our context.
Let i : Z → X be a closed immersion of codimension n between smooth schemes,
π : Z → S the canonical projection. We define the fundamental class of Z in X
(paragraph 4.14) as the cohomology class represented by the morphism

ηX(Z) : M(X)
i∗−→M(Z)(n)[2n]

π∗−→ 1(n)[2n].

It is a cohomology class in H2n,n(X) satisfying the more classical expression
ηX(Z) = i∗(1).
Considering the hypothesis of the ramification formula above, when n = m = 1,
we obtain the enlightening formula (cf cor. 4.28) :

f∗(ηX(Z)) =
∑

i∈I
[ri]F · ηY (Ti)

where ri is the ramification index of f along Ti and [ri]F is the ri-th formal sum
with respect to F applied to the cohomological class ηY (Ti). Indeed, the fact T
admits an ample line bundle implies this class is nilpotent.
The most useful fundamental class in the article is the Thom class of a vector
bundle E/X of rank n. Let P = P(E ⊕ 1) be its projective completion and

8This isomorphism is the identity at least in the case when F (x, y) = x + y
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consider the canonical section X
s−→ P . The Thom class of E/X is t(E) := ηP (X).

By the projection formula, s∗ = p∗ ⊠ t(E), where p : P → X is the canonical
projection. Let λ (resp. ξ) be the canonical line bundle (resp. universal quotient
bundle) on P/X . We also obtain the following equalities9 :

t(E) = cn(λ∨ ⊗ p−1E)
(∗)
= cn(ξ) =

n∑

i=0

ci(p
−1E) ∪

(
− c1(λ)

)i
.

This is straightforward in the case where F (x, y) = x + y but more difficult in
general.
We also obtain a computation which the author has not seen in the literature (even
in complex cobordism). Write F (x, y) =

∑
i,j aij .x

iyj with aij ∈ A. Consider the
diagonal embedding δ : Pn → Pn × Pn. Let λ1 and λ2 be the respective canonical
line bundle on the first and second factor of Pn × Pn. Then (prop. 5.30) the
fundamental class of δ satisfies

ηPn×Pn(Pn) =
∑

0≤i,j≤n
a1,i+j−n.c1(λ∨1 )ic1(λ∨2 )j .

Another kind of characteristic classes are cobordism classes. Let p : X → S be a
smooth projective scheme of relative dimension n. The cobordism class of X/S is
the cohomology class represented by the morphism

[X ] : 1 p∗−→M(X)(−n)[−2n]
p∗−→ 1(−n)[−2n].

It is a class in A−2n,−n. As an application of the previous equality, we obtain the
following computation (cor. 5.31) :

[Pn] = (−1)n. det




0 0 1

xxxxxxxxxx
a1,1

xx
xxx

xx
xx

xxx
xa1,2

zz
zz

zz
zz0

1
a1,1 a1,2 a1,n




which of course coincides with the expression given by the classical theorem of
Myschenko in complex cobordism. In fact, our method gives a new proof of the
latter theorem.

1.5. Outline of the work. In section 2, we give the list of axioms (cf 2.1) sat-
isfied by the category T and discuss the first consequences of these. Remark an
originality of our axiomatic is that we not only consider pairs of schemes but also
quadruples (used in the proof of 4.32). The last subsection 2.3 gives the principle
examples which satisfy the axiomatic 2.1. Section 3 contains the projective bundle
theorem and its consequences, the formal group law and Chern classes.
Section 4 contains the study of the Gysin triangle. The fundamental result in this
section is the purity theorem 4.3. Usually, one constructs the Thom isomorphism
using the Thom class (4.4). Here however, we directly construct the former iso-
morphism from the projective bundle theorem and the deformation to the normal

9This corrects an affirmation of I. Panin in the introduction of [Pan03a, p. 268] where equality
(∗) is said not to hold.
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cone. This makes the construction more canonical – though there is a delicate
choice of signs hidden (cf beginning of section 4.1) – and it thus gives a canonical
Thom class. We then study the two principle subjects around the Gysin triangle :
the base change formula and its defect (section 4.2 which contains notably 4.26
and 4.16 cited above) and the interaction (containing notably the functoriality of
the Gysin morphism) of two Gysin triangles attached with smooth subschemes of
a given smooth scheme (th. 4.32).
In section 5, we first recall the notion of strong duality introduced by A. Dold and
D. Puppe and give some complements. Then we give the construction of the Gysin
morphism in the projective case and the duality statement. The general situation
is particularly complicated when the formal group law F is not the additive one,
as the Gysin morphism associated to the projection p of Pn is not easy to han-
dle. Our method is to exploit the strong duality on Pn implied by the projective
bundle theorem. We show that the fundamental class of the diagonal δ of Pn/S
determines canonically the Gysin morphism of the projection (see def. 5.6). This
is due to the explicit form of the duality pairing for Pn cited above : the motive
M(Pn) being strongly dualizable, one morphism of the duality pairing (µX , ǫX)
determines the other; the first one is induced by δ∗ and the other one by p∗. Once
this fact is determined, we easily obtain all the properties required to define the
Gysin morphism and then the general duality pairing. The article ends with the
explicit determination of the cobordism class of Pn and the blow-up formulas as
illustrations of the theory developed here.

1.6. Final commentary. In another work [Dég08], we study the Gysin triangle
directly in the category of geometric mixed motives over a perfect field. In the
latter, we used the isomorphism of the relevant part of motivic cohomology groups
and Chow groups and prove our Gysin morphism induces the usual pushout on
Chow groups via this isomorphism (cf [Dég08, 1.21]). This gives a shortcut for
the definitions and propositions proved here in the particular case of motives over
a perfect field. In loc. cit. moreover, we also use the isomorphism between the
diagonal part of the motivic cohomology groups of a field L and the Milnor K-
theory of L and prove our Gysin morphism induces the usual norm morphism
on Milnor K-theory (cf [Dég08, 3.10]) – after a limit process, considering L as a
function field.
The present work is obviously linked with the fundamental book on algebraic
cobordism by Levine and Morel [LM07] (see also [Lev08b]), but here, we study
oriented cohomology theories from the point of view of stable homotopy. This
point of view is precisely that of [Lev08a]. It is more directly linked with the pre-
publication [Pan03b] of I. Panin which was mainly concerned with the construction
of pushforwards in cohomology, corresponding to our Gysin morphism (see also
[Smi06] and [Pim05] for extensions of this work). Our study gives a unified self-
contained treatment of all these works, except that we have not considered here
the theory of transfers and Chern classes with support (see [Smi06], [Lev08a, part
5]).
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The final work we would like to mention is the thesis of J. Ayoub on cross functors
([Ayo07]). In fact, it is now folklore that the six functor formalism yields a con-
struction of the Gysin morphism. In the work of Ayoub however, the questions of
orientability are not treated. In particular, the Gysin morphism we obtain takes
value in a certain Thom space. To obtain the Gysin morphism in the usual form,
we have to consider the Thom isomorphism introduced here. Moreover, we do
not need the localization property in our study whereas it is essentially used in
the formalism of cross functors. This is a strong property which is not known in
general for triangulated mixed motives. Finally, the interest of this article relies
in the study of the defect of the base change formula which is not covered by the
six functor formalism.

Remerciements. J’aimerais remercier tout spécialement Fabien Morel car ce tra-
vail, commencé à la fin de ma thèse, a bénéficié de ses nombreuses idées et de son
support. Aussi, l’excellent rapport d’une version préliminaire de l’article [Dég08]
m’a engagé à le généraliser sous la forme présente; j’en remercie le rapporteur,
ainsi que Jörg Wildeshaus pour son soutien. Je tiens à remercier Geoffrey Powell
pour m’avoir grandement aidé à clarifier l’introduction de cet article et Joël Riou
pour m’avoir indiqué une incohérence dans une première version de la formule de
ramification. Mes remerciements vont aussi au rapporteur de cet article pour sa
lecture attentive qui m’a notamment aidée à clarifier les axiomes. Je souhaite enfin
adresser un mot à Denis-Charles Cisinski pour notre amitié mathématique qui a
été la meilleure des muses.

2. The general setting : homotopy oriented triangulated systems

2.1. Axioms and notations. Let D be the category whose objects are the carte-
sian squares

(∗) W //

�� ∆

V

��
U // X

made of immersions between smooth schemes. The morphisms in D are the evident
commutative cubes. We will define the transpose of the square ∆, denoted by ∆′,
as the square

W //

�� ∆′

U

��
V // X

made of the same immersions. This defines an endofunctor of D .
In all this work, we consider a triangulated symmetric monoidal category (T ,⊗,1)
together with a covariant functorM : D → T . Objects of T are called premotives.
Considering a square as in (∗), we adopt the suggesting notation

M

(
X/U

V/W

)
= M(∆).

We simplify this notation in the following two cases :

(1) If V = W = ∅, we put M(X/U) = M(∆).
(2) If U = V = W = ∅, we put M(X) = M(∆).
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We call closed pair any pair (X,Z) of schemes such that X is smooth and Z is a
closed (not necessarily smooth) subscheme of X . As usual, we define the premotive
of X with support in Z as MZ(X) = M(X/X − Z).
A pointed scheme is a scheme X together with an S-point x : S → X . When
X is smooth, the reduced premotive associated with (X,x) will be M̃(X,x) =

M(S
x−→ X). Let n > 0 be an integer. We will always assume the smooth

scheme PnS is pointed by the infinity. We define the Tate twist as the premotive1(1) = M̃(P1
S)[−2] of T .

2.1. We suppose the functor M satisfies the following axioms :

(Add) For any finite family of smooth schemes (Xi)i∈I ,
M(⊔i∈IXi) = ⊕i∈IM(Xi).

(Htp) For any smooth scheme X , the canonical projection of the affine line in-
duces an isomorphism M(A1

X)→M(X).
(Exc) Let (X,Z) be a closed pair and f : V → X be an étale morphism. Put

T = f−1(Z) and suppose the map Tred → Zred obtained by restriction of
f is an isomorphism. Then the induced morphism φ : MT (V ) → MZ(X)
is an isomorphism.

(Stab) The Tate premotive 1(1) admits an inverse for the tensor product denoted
by 1(−1).

(Loc) For any square ∆ as in (∗), a morphism ∂∆ : M
(
X/U
V/W

)
→M(V/W )[1] is

given natural in ∆ and such that the sequence of morphisms

M(V/W )→M(X/U)→M

(
X/U

V/W

)
∂∆−−→M(V/W )[1]

made of the evident arrows is a distinguished triangle in T .
(Sym) Let ∆ be a square as in (∗) and consider its transpose ∆′. There is given

a morphism ǫ∆ : M
(
X/U
V/W

)
→M

(
X/V
U/W

)
natural in ∆.

If in the square ∆, V = W = ∅, we put

∂X/U = ∂∆′ ◦ ǫ∆ : M(X/U)→M(U)[1].

We ask the following coherence properties :
(a) ǫ∆′ ◦ ǫ∆ = 1.
(b) If ∆ = ∆′ then ǫ∆ = 1.
(c) The following diagram is anti-commutative :

M
(
X/U
V/W

)
ǫ∆ //

∂∆ ��

M
(
X/V
U/W

)
∂∆′ // M(U/W )[1]

∂U/W [1]
��

M(V/W )[1]
∂V/W [1]

// M(W )[2].

(Kun) (a) For any open immersions U → X and V → Y of smooth schemes,
there are canonical isomorphisms:
M(X/U)⊗M(Y/V ) = M(X × Y/X × V ∪ U × Y ), M(S) = 1
satisfying the coherence conditions of a monoidal functor.
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624 F. Déglise

(b) Let X and Y be smooth schemes and U → X be an open immersion.
Then, ∂X×Y/U×Y = ∂X/U ⊗ 1Y ∗ through the preceding canonical
isomorphism.

(Orient) For any smooth scheme X , there is an application, called the orientation,

c1 : Pic(X)→ HomT (M(X),1(1)[2])

which is functorial in X and such that the class c1(λ1) : M(P1
S)→ 1(1)[2]

is the canonical projection.

For any integer n ∈ N, we let 1(n) (resp. 1(−n)) be the n-th tensor power of1(1) (resp. 1(−1)). Moreover, for an integer n ∈ Z and a premotive E, we put
E(n) = E⊗ 1(n).

2.2. Using the excision axiom (Exc) and an easy noetherian induction, we obtain
from the homotopy axiom (Htp) the following stronger result :

(Htp’) For any fiber bundle E over a smooth scheme X , the morphism induced
by the canonical projection M(E)→M(X) is an isomorphism.

We further obtain the following interesting property :

(Add’) Let X be a smooth scheme and Z, T be disjoint closed subschemes of X .
Then the canonical map MZ⊔T (X)→ MZ(X)⊕MT (X) induced by nat-
urality is an isomorphism.

Indeed, using (Loc) with V = X − T , W = X − (Z ⊔ T ) and U = W , we get a
distinguished triangle

MZ(V )→MZ⊔T (X)
π−→M

(
X/W

V/W

)
→MZ(V )[1].

Using (Exc), we obtain MZ(V ) = MZ(X). The natural map MZ⊔T (X)→MZ(X)

induces a retraction of the first arrow. Moreover, we get M
(
X/W
V/W

)
= MT (X) from

the symmetry axiom (Sym). Note that we need (Sym)(b) and the naturality of
ǫ∆ to identify π with the natural map MZ⊔T (X)→MT (X).

Remark 2.3. About the axioms.—

(1) There is a stronger form of the excision axiom (Exc) usually called the
Brown-Gersten property (or distinguished triangle). In the situation of
axiom (Exc), with U = X − Z and W = V − T , we consider the cone in
the sense of [Nee01] of the morphism of distinguished triangles

M(W ) //

��

M(V ) //

��

M(V/W ) //

��

M(V )[1]

��
M(U) // M(X) // M(X/U) // M(U)[1]

This is a candidate triangle in the sense of op. cit. of the form

M(W )→M(U)⊕M(V )→M(X)→M(W ).

Thus, in our abstract setting, it is not necessarily a distinguished triangle.
We call (BG) the hypothesis that in every such situation, the candidate
triangle obtained above is a distinguished triangle. We will not need the
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hypothesis (BG) ; however, in the applications, it is always true and the
reader may use this stronger form for simplification.

(2) We can replace axiom (Kun)(a) by a weaker one
(wKun) The restriction of M to the category of pairs of schemes (X,U) is a

lax monoidal symmetric functor.
(Kun)(b) is then replaced by an obvious coherence property of the bound-
ary operator in (Loc). This hypothesis is sufficient for the needs of the
article with a notable exception of the duality pairing 5.23. For example,
if one wants to work with cohomology theories directly, one has to use
rather this axiom, replace T by an abelian category and ”distinguished
triangle” by ”long exact sequence” everywhere. The arguments given here
covers equally this situation, except for the general duality pairing.

(3) The symmetry axiom (Sym) encodes a part of a richer structure which
possess the usual examples (all the ones considered in section 2.3). This is
the structure of a derivator as the object M(∆) may be seen as a homotopy
colimit. The coherence axioms which appear in (Sym) are very natural
from this point of view.

Definition 2.4. Let E be a premotive. For any smooth scheme X and any couple
(n, p) ∈ Z×Z, we define respectively the cohomology and the homology groups of
X with coefficient in E as

En,p(X) = HomT

(
M(X),E(p)[n]

)
,

resp. En,p(X) = HomT

(1(p)[n],E ⊗M(X)
)
.

We refer to the corresponding bigraded cohomology group (resp. homology group)
by E∗∗(X) (resp. E∗∗(X)). The first index is usually refered to as the cohomo-
logical (resp. homological) degree and the second one as the cohomological (resp.
homological) twist. We also define the module of coefficients attached to E as
E∗∗ = E∗∗(S).
When E = 1, we use the notations H∗∗(X) (resp. H∗∗(X)) for the cohomology
(resp. homology) with coefficients in 1. Finally, we simply put A = H∗∗(S).

Remark that, from axiom (Kun)(a), A is a bigraded ring. Moreover, using the
axiom (Stab), A = H∗∗(S). Thus, there are two bigraduations on A, one cohomo-
logical and the other homological, and the two are exchanged as usual by a change
of sign. The tensor product of morphisms in T induces a structure of left bigraded
A-module on E∗∗(X) (resp. E∗∗(X)). There is a lot more algebraic structures on
these bigraded groups that we have gathered in section 2.2.
The axiom (Orient) gives a natural transformation

c1 : Pic→ H2,1

of presheaves of sets on SmS , or in other words, an orientation on the fundamental
cohomology H∗,∗ assocciated with the functor M . In our setting, cohomology
classes are morphisms in T : for any element L ∈ Pic(X), we view c1(L) both as
a cohomology class, the first Chern class, and as a morphism in T .

Remark 2.5. In the previous definition, we can replace the premotive M(X) by
any premotive M. This allows to define as usual the cohomology/homology of
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an (arbitrary) pair (X,U) made by a smooth scheme X and a smooth subscheme
U of X . Particular cases of this general definition is the cohomology/homology
of a smooth scheme X with support in a closed subscheme Z and the reduced
cohomology/homology associated with a pointed smooth scheme.

2.2. Products. Let X be a smooth scheme and δ : X → X × X its associated
diagonal embedding. Using axiom (Kun)(a) and functoriality, we get a morphism
δ′∗ : M(X) → M(X) ⊗M(X). Given two morphisms x : M(X) → E and y :
M(X)→ F in T , we can define a product

x⊠ y = (x⊗ y) ◦ δ′∗ : M(X)→ E⊗ F.

2.6. By analogy with topology, we will call ringed premotive any premotive E
equipped with a commutative monoid structure in the symmetric monoidal cat-
egory T . This means we have a product map µ : E ⊗ E → E and a unit map
η : 1→ E satisfying the formal properties of a commutative monoid.
For any smooth scheme X and any couple of integer (n, p) ∈ Z2, the unit map
induces morphisms

ϕX :Hn,p(X)→ En,p(X)

ψX :Hn,p(X)→ En,p(X)

which we call the regulator maps.
Giving such a ringed premotive E, we define10 the following products :

• Exterior products :

En,p(X)⊗ Em,q(Y )→ En+m,p+q(X × Y ),

(x, y) 7→ x× y := µ ◦ x⊗ y
En,p(X)⊗ Em,q(Y )→ En+m,p+q(X × Y ),

(x, y) 7→ x× y := (µ⊗ 1X×Y ∗) ◦ (x⊗ y)

• Cup-product :

En,p(X)⊗ Em,q(X)→ En+m,p+q(X), (x, x′) 7→ x ∪ x′ := µ ◦ (x⊠x′).

Then E∗∗ is a bigraded ring and E∗∗(X) is a bigraded E∗∗-algebra. More-
over, E∗∗ is a bigraded A-algebra and the regulator map is a morphism of
bigraded A-algebra.
• Slant products11 :

En,p(X × Y )⊗ Em,q(X)→ En−m,p−q(Y ),

(w, x) 7→ w/x := µ ◦ (1E ⊗ w) ◦ (x⊗ 1Y ∗)

En,p(X)⊗ Em,q(X × Y )→ Em−n,q−p(Y ),

(x,w) 7→ x\w := (µ⊗ 1Y ∗) ◦ (x ⊗ 1E ⊗ 1Y ∗) ◦ w.

10 We do not indicate the commutativity isomorphisms for the tensor product and the twists
in the formulas to make them shorter.

11For the first slant product defined here, we took a slightly different covention than [Swi02,
13.50(ii)] in order to obtain formula (5.3). Of course, the two conventions coincide up to the
isomorphism X × Y ≃ Y × X.
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• Cap-product :

En,p(X)⊗ Em,q(X)→ Em−n,q−p(X), (x, x′) 7→ x ∩ x′ := x\
(
(1E ⊗ δ∗) ◦ x′

)
.

• Kronecker product :

En,p(X)⊗ Em,q(X)→ An−m,p−q, (x, x′) 7→ 〈x, x′〉 := x/x′

where y is identified to a homology class in Em,q(S ×X).

The regulator maps (cohomological and homological) are compatible with these
products in the obvious way.

Remark 2.7. These products satisfy a lot of formal properties. We will not use
them in this text but we refer the interested reader to [Swi02, chap. 13] for more
details (see more precisely 13.57, 13.61, 13.62).

2.8. We can extend the definition of these products to the cohomology of an open
pair (X,U). We refer the reader to loc. cit. for this extension but we give details
for the cup-product in the case of cohomology with supports as this will be used
in the sequel.
Let X be a smooth scheme and Z, T be two closed subschemes of X . Then the
diagonal embedding of X/S induces using once again axiom (Kun)(a) a morphism
δ′′∗ : MZ∩T (X) → MZ(X) ⊗MT (X). This allows to define a product of motives
with support. Given two morphisms x : MZ(X) → E and y : MT (X) → F in T ,
we define

x⊠ y = (x ⊗ y) ◦ δ′′∗ : MZ∩T (X)→ E⊗ F.

In cohomology, we also define the cup-product with support :

En,pZ (X)⊗ Em,qT (X)→ En+m,p+q
Z∩T (X), (x, y) 7→ x ∪Z,T y = µ ◦ (x ⊗ y) ◦ δ′′∗ .

Note that considering the canonical morphism νX,W : En,pW (X) → En,p(X), for
any closed subscheme W of X , we obtain easily :

(2.1) νX,Z(x) ∪ νX,T (y) = νX,Z∩T (x ∪Z,T y).

2.9. Suppose now that E has no ring structure. It nethertheless always has a
module structure over the ringed premotive 1 – given by the structural map (iso-
morphism) η : 1⊗ E→ E.
This induces in particular a structure of left H∗∗(X)-module on E∗∗(X) for any
smooth scheme X . Moreover, it allows to extend the definition of slant products
and cap products. Explicitely, this gives in simplified terms :

• Slant products :

Hn,p(X × Y )⊗ Em,q(X)→ En−m,p−q(Y ),

(w, y) 7→ w/y := η ◦ (1E ⊗ w) ◦ (x⊗ 1Y ∗)

• Cap-products :

En,p(X)⊗Hm,q(X)→ Em−n,q−p(X), (x, x′) 7→ x ∩x′ := (x⊗ 1X∗) ◦ δ∗ ◦ x′.
These generalized products will be used at the end of the article to formulate
duality with coefficients in E (cf paragraph 5.24).
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Note finally that, analog to the cap-product, we have a H∗∗(X)-module struc-
ture on E∗∗(X) that can be used to describe the projective bundle formula in
E-homology (cf formula (2) of 3.4).

2.3. Examples.

2.3.1. Motives. Suppose S is a regular scheme. Below, we give the full construction
of the category of geometric motives of Voevodsky over S, and indicate how to
check the axioms of 2.1. Note however we will give a full construction of this
category, together with the category of motivic complexes and spectra, over any
noetherian base S in [CD07]. Here, the reader can find all the details for the proof
of the axioms 2.1 (especially axiom (Orient)).
For any smooth schemes X and Y , we let cS(X,Y ) be the abelian group of cycles in
X ×S Y whose support is finite equidimensional over X . As shown in [Dég07, sec.
4.1.2], this defines the morphisms of a category denoted by Smcor

S . The category
Smcor

S is obviously additive. It has a symmetric monoidal structure defined by the
cartesian product on schemes and by the exterior product of cycles on morphisms.
Following Voevodsky, we define the category of effective geometric motives
DM eff

gm (S) as the pseudo-abelian envelope12 of the Verdier triangulated quotient

Kb(Smcor
S )/T

where Kb(Smcor
S ) is the category of bounded complexes up to chain homotopy

equivalence and T is the thick subcategory generated by the following complexes :

(1) For any smooth scheme X ,

. . . 0→ A1
X

p−→ X → 0 . . .

with p the canonical projection.
(2) For any cartesian square of smooth schemes

W
k //

g ��
V
f��

U
j // X

such that j is an open immersion, f is étale and the induced morphism
f−1(X − U)red → (X − U)red is an isomorphism,

(2.2) . . . 0→W

„
g
−k
«

−−−−→ U ⊕ V (j,f)−−−→ X → 0 . . .

Consider a cartesian square of immersions

W
k //

g �� ∆

V
f��

U
j // X

12Recall that according to the result of [BS01], the pseudo-abelian envelope of a triangulated
category is still triangulated
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This defines a morphism of complexes in Smcor
S :

ψ :





. . . 0 // W
k //

g ��
V
f��

// 0 . . .

. . . 0 // U
j // X // 0 . . .

We let M(∆) be the cone of ψ and see it as an object of DM eff
gm (S). To fix the

convention, we define this cone as the triangle (2.2) above. With this convention,
we define ǫ∆ as the following morphism :

. . . 0 // W

−1
��

// U ⊕ V
„

0 1
1 0

«

��

// X

+1
��

// 0 . . .

. . . 0 // W // V ⊕ U // X // 0 . . .

The reader can now check easily that the resulting functor M : D → DM eff
gm (S),

satisfies all the axioms of 2.1 except (Stab) and (Orient). We let Z = M(S) be
the unit object for the monoidal structure of DM eff

gm (S).
To force axiom (Stab), we formally invert the motive Z(1) in the monoidal category
DM eff

gm (S). This defines the triangulated category of (geometric) motives denoted
by DMgm(S). Remark that according to the proof of [Voe02, lem. 4.8], the cyclic
permutation of the factors of Z(3) is the identity. This implies the monoidal
structure on DM eff

gm (S) induces a unique monoidal structure on DMgm(S) such

that the obvious triangulated functor DM eff
gm (S) → DMgm(S) is monoidal. Now,

the functor M : D → DMgm(S) still satisfies all axioms of 2.1 mentioned above
but also axiom (Stab).
To check the axiom (Orient), it is sufficient to construct a natural application

Pic(X)→ HomDMeff
gm (S)(M(X),Z(1)[2]).

We indicate how to obtain this map. Note moreover that, from the following
construction, it is a morphism of abelian group.
Still following Voevodsky, we have defined in [Dég07] the abelian category of
sheaves with transfers over S, denoted by Sh(Smcor

S ). We define the cateogy
DM eff(S) of motivic complexes as the A1-localization of the derived category of
Sh(Smcor

S ). The Yoneda embedding Smcor
S → Sh(Smcor

S ) sends smooth schemes
to free abelian groups. For this reason, the canonical functor

DM eff
gm (S)→ DM eff(S)

is fully faithful. Let Gm be the sheaf with transfers which associates to a smooth
scheme its group of invertible (global) functions. Following Suslin and Voevodsky
(cf also [Dég05, 2.2.4]), we construct a morphism in DM eff(S) :

Gm →M(Gm) = Z⊕ Z(1)[1]

This allows to define the required morphism :

Pic(X) = H1
Nis(X ; Gm) ≃ HomDMeff(S)(M(X),Gm[1])

→ HomDMeff(S)(M(X),Z(1)[2]) ≃ HomDMeff
gm (S)(M(X),Z(1)[2]).
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The first isomorphism uses that the sheaf Gm is A1-local and that the functor
forgetting transfers is exact (cf [Dég07, prop. 2.9]).

2.3.2. Stable homotopy exact functors. In this example, S is any noetherian
scheme. For any smooth scheme X , we let X+ be the pointed sheaf of sets on
SmS represented by X with a (disjoint) base point added.
Consider an immersion U → X of smooth schemes. We let X/U be the pointed
sheaf of sets which is the cokernel of the pointed map U+ → X+.
Suppose moreover given a square ∆ as in (∗). Then we obtain an induced morphism

of pointed sheaves of sets V/W → X/U which is injective. We let X/U
V/W be the

cokernel of this monomorphism. Thus, we obtain a cofiber sequence in H•(S)

V/W → X/U → X/U

V/W

∂∆−−→ S1
s ∧ V/W.

Moreover, the functor

D →H•(S),∆ 7→ X/U

V/W

satisfies axioms (Add), (Htp), (Exc) and (Kun) from [MV99].
Consider now the stable homotopy category of schemes SH (S) (cf [Jar00]) to-
gether with the infinite suspension functor

Σ∞ : H•(S)→ SH (S).

The category SH (S) is a triangulated symmetric monoidal category. The canon-
ical functor D → SH (S) satisfies all the axioms of 2.1 except axiom (Orient). In
fact, (Loc) and (Sym) follows easily from the definitions and (Stab) was forced in
the construction of SH (S).
Suppose we are given a triangulated symmetric monoidal category T together
with a triangulated symmetric monoidal functor

R : SH (S)→ T .

This induces a canonical functor

M : D → T ,
X/U

V/W
7→M

(
X/U

V/W

)
:= R

(
Σ∞

(
X/U

V/W

))

and (M,T ) satisfies formally all the axioms 2.1 except (Orient).
Let BGm be the classifying space of Gm defined in [MV99, section 4]. It is an
object of the simplicial homotopy category H s

• (S) and from loc. cit., proposition
1.16,

Pic(X) = HomH s
• (S)(X+, BGm).

Let π : H s
• (S) → H•(S) be the canonical A1-localisation functor. Applying

proposition 3.7 of loc. cit., π(BGm) = P∞ where P∞ is the tower of pointed
schemes

P1 → ..→ Pn
ιn−→ Pn+1 → ...

made of the inclusions onto the corresponding hyperplane at infinity. We let
M(P∞) (resp. M̃(P∞)) be the ind-object of T obtained by applying M (resp.

M̃) on each degree of the tower above.
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Using this, we can define an application

ρX :Pic(X) = HomH s
• (S)(X+, BGm)

→ HomH•(S) (X+, π(BGm)) = HomH•(S)(X+,P
∞)

→ HomT

(
M(X), M̃(P∞)

)

where the last group of morphisms denotes by abuse of notations the group of
morphisms in the category of ind-objects of T – and similarly in what follows.

Remark 2.10. Note that the sequence (λn)n∈N of line bundles is sent by ρP∞ to

the canonical projection M(P∞) → M̃(P∞) – this follows from the construction
of the isomorphism of loc. cit., prop. 1.16.
Recall that 1(1)[2] = M̃(P1) in T . Let π : M(P1) → M̃(P1) be the canonical
projection and ι : P1 → P∞ be the canonical morphism of pointed ind-schemes.
We introduce the following two sets :

(S1) The transformations c1 : Pic(X) → HomT (M(X),1(1)[2]) natural in the
smooth scheme X such that c1(λ1) = π.

(S2) The morphisms c′1 : M̃(P∞)→ M̃(P1) such that c′1 ◦ ι∗ = 1.

We define the following applications :

(1) ϕ : (S1)→ (S2).
Consider an element c1 of (S1). The collection

(
c1(λn)

)
n∈N

defines a mor-

phism M(P∞)→ M̃(P1). Moreover, the restriction of this latter morphism

M̃(P∞)→ M̃(P1) is obviously an element of (S2), denoted by ϕ(c1).
(2) ψ : (S2)→ (S1).

Let c′1 be an element of (S2). For any smooth scheme X , we define

ψ(c′1) : Pic(X)
ρX−−→ HomT

(
M(X), M̃(P∞)

)
c′1∗−−→ HomT

(
M(X), M̃(P1)

)
.

Using remark 2.10, we check easily that ψ(c′1) belongs to (S1).

The following lemma is obvious from these definitions :

Lemma 2.11. Given, the hypothesis and definitions above, ϕ ◦ ψ = 1.

Thus, an element of (S2) determines canonically an element of (S1). This gives
a way to check the axiom (Orient) for a functor R as above. Moreover, we will
see below (cf paragraph 3.7) that given an element of (S1), we obtain a canonical
isomorphism H∗∗(P∞) = A[[t]] of bigraded algebra, t having bidegree (2, 1). Then
elements of (S2) are in bijection with the set of generators of the the bigraded
algebra H∗∗(P∞). Thus in this case, elements of (S2) are equivalent to orientations
of the cohomology H∗∗ in the classical sense of algebraic topology.

Example 2.12. (1) Let S = Spec(k) be the spectrum of a field, or more
generally any regular scheme. In [CD06, 2.1.4], D.C. Cisinski and the
author introduce the notion of mixed Weil theory (and more generally of
stable theory) as axioms for cohomology theories on smooth S-schemes
which extends the classical axioms of Weil. Examples of such cohomology
theories are algebraic De Rham cohomology if k has characteristic 0, rigid
cohomology if k has caracteristic p and étale l-adic cohomology in any case,
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l being invertible in k (cf part 3 of loc. cit.). To a mixed Weil theory (or
more generally a stable theory) is associated a commutative ring spectrum
(cf loc. cit. 2.1.5) and a triangulated closed symmetric monoidal category
DA1(S, E) – which is obtained by localization of a derived category. By
construction (see loc. cit. (1.5.3.1)), we have a triangulated monoidal
symmetric functor

SH (S)→ DA1(S, E).

In loc. cit. 2.2.9, we associate a canonical element of the set (S2) for this
functor. Thus the resulting functor D → DA1(S, E) satisfies all the axioms
of 2.1.

(2) Consider a noetherian scheme S and the model category of symmetric T -
spectra SpS over S defined by R. Jardine in [Jar00]. It is a cofibrantly
generated, symmetric monoidal model category which satisfies the monoid
axiom of [SS00, 3.1] (cf [Jar00, 4.19] for this latter fact).

A commutative monoid E in the category SpS will be called a (ho-
motopy) coherent ring spectrum. Given such a ring spectrum, according
to [SS00, 4.1(2)], the category of E-modules in the symmetric monoidal
category SpS carries a structure of a cofibrantly generated, symmetric
monoidal model category such that the pair of adjoint functors (F,O)
given by the free E-module functor and the obvious forgetful functor is
a Quillen adjunction. We denote by SH (S; E) the associated homotopy
category and consider the left derived free E-module functor

SH (S)→ SH (S; E).

It is a triangulated symmetric monoidal functor. Then, as indicated in the
previous remark, an element of (S2) relative to this functor is equivalent
to an orientation on the ring spectrum E in the classical sense (see [Vez01,
3.1]).

The basic example of such a ring spectrum is the cobordism ring spec-
trum MGL. Indeed, MGL has a structure of a coherent ring spectrum in
our sense and is evidently oriented (see [PPR07, 1.2.3 and 2.1] for details).
Thus the homotopy category SH (S; MGL) of MGL-modules satisfies
the axioms 2.1.

Another example is given by the spectrum BGL introduced by Vo-
evodsky in [Voe98, par. 6.2]. According to loc. cit., th. 6.9, it represents
the homotopy invariant algebraic K-theory defined by Weibel (cf [Wei89]).
However, it is not at all clear to get a coherent structure on the ring spec-
trum BGL with the definition given in loc. cit. To obtain such a coherent
ring structure on BGL we invoke a recent result of Gepner and Snaith
which construct a coherent ring spectrum homotopy equivalent to BGL

in [DV07, 5.9].

3. Chern classes

3.1. The projective bundle theorem. Let X be a smooth scheme and P be
a projective bundle over X of rank n. We denote by p : P → X the canonical
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projection and by λ the canonical line bundle on P . Put c = c1(λ) : M(P ) →1(1)[2]. We can define a canonical map :

ǫP :=
∑

0≤i≤n
p∗ ⊠ ci : M(P )→

⊕

0≤i≤n
M(X)(i)[2i]

Consider moreover an open subscheme U ⊂ X , PU = P ×X U . We let π :
P/PU → X/U be the canonical projection and ν : P/PU → (P × P )/(P × PU )
the morphism induced by the diagonal embedding and the graph of the immersion
PU → P . Using the product of motives with support (cf 2.8), we also define a
canonical map :

ǫP/PU
:=

∑

0≤i≤n
π∗ ⊠ ci : M(P/PU )→

⊕

0≤i≤n
M(X/U)(i)[2i]

Lemma 3.1. Using the above notations, the following diagram is commutative :

M(PU ) //

ǫPU ��
(1)

M(P ) //

ǫP
��

(2)

M(P/PU ) //

ǫP/PU ��
(3)

M(PU )[1]

ǫPU��⊕
iM(U)(i)[2i] //⊕

iM(X)(i)[2i] //⊕
iM(X/U)(i)[2i] //⊕

iM(U)(i)[2i+ 1]

where the top (resp. bottom) line is the distinguished triangle (resp. sum of dis-
tinguished triangles) obtained using (Loc) (resp. and tensoring with 1(i)[2i]).

Proof. Coming back to the definition of product and product with supports,
squares (1) and (2) are commutative by functoriality of M . For square (3), besides
this functoriality, we have to use axiom (Kun)(b). �

Theorem 3.2. With the above hypothesis and notations, the morphism ǫP :
M(P )→⊕

0≤i≤nM(X)(i)[2i] is an isomorphism in T .

Proof. Consider an open cover X = U ∪ V , W = U ∩ V . Assume that ǫPU , ǫPV

and ǫPW are isomorphisms. Then according to the previous lemma, ǫPV /PW
is an

isomorphism. Using the compatibility of the first Chern class with pullback, we
obtain a commutative diagram

M(PV /PW ) //
ǫPV /PW ��

M(P/PU )
ǫP/PU��⊕

iM(V/W )(i)[2i] //⊕
iM(X/U)(i)[2i]

where the horizontal maps are obtained by functoriality. According to axiom
(Exc), these maps are isomorphisms which implies ǫP/PU

is an isomorphism. Ap-
plying ance again the previous lemma, we deduce that ǫP is an isomorphism.
This reasoning shows that we can argue locally on X and assume P is trivializable
as a projective bundle over X . Then, as the map depends only on the isomorphism
class of the projective bundle P , we can assume P = PnX . Finally, by property
(Kun)(a), ǫPn

X
= M(X)⊗ ǫPn and we can assume X = S. Put simply ǫn = ǫPn .

For n = 0, the statement is trivial. Assume n > 0. Recall we consider the
scheme Pn pointed by the infinite point. The morphism ǫn induces a map
M̃(Pn) → ⊕0<i≤nM̃(P1)⊗,i still denoted by ǫn and we have to prove this later
is an isomorphism. Put c1,n = c1(λn) for any integer n ≥ 0.
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The canonical inclusion Pn−1 → Pn − {0} is the zero section of a vector bundle.
For any integer i ∈ [1, n], we put Ui = {(x1, ..., xn) ∈ An | xi 6= 0} considered as
an open subscheme of An. We obtain the canonical isomorphism denoted by τn :

M(Pn/Pn−1)
(1)≃ M(Pn/Pn − {0}) (2)≃ M(An/An − {0})

= M(An/ ∪i Ui)
(3)
= M(A1/A1 − {0})⊗,n (4)≃ M̃(P1)⊗,n

where (1) follows from (Htp) and (Loc), (2) from (Exc), (3) from (Kun)(a) and
(4) from (Exc), (Htp) and (Loc).
Consider the following diagram

(3.1) M̃(Pn−1)
ιn−1∗ //

ǫn−1
��

(a)

M̃(Pn)
πn //

ǫn �� (b)

M(Pn/Pn−1)

τn��
⊕0<i<nM̃(P1)⊗,i // ⊕0<i≤nM̃(P1)⊗,i // M̃(P1)⊗,n

where ιn−1 is the canonical inclusion, πn is the obvious morphism obtained by
functoriality in D , and the bottom line is made up of the evident split distinguished
triangle. We prove by induction on n > 0 the following statement :

(i) ιn−1∗ is a split monomorphism.

(ii) cn1,n−1 = 0 which means square (a) is commutative.

(iii) cn1,n = τnπn which means square (b) is commutative.

(iv) ǫn is an isomorphism.

(3.2)

For n = 1, this is obvious as (iii) is a part of axiom (Orient).
The induction relies on the following lemma due to Morel.

Lemma 3.3. Let δn : Pn → (Pn)n be the iterated n-th diagonal of Pn/S and denote

by δn∗ : M̃(Pn) → M̃(Pn)⊗,n the morphism induced by δn and axiom (Kun)(a).
Let ι1,n : P1 → Pn be the canonical inclusion.
Then the following square commutes :

M̃(Pn)
δn∗ //

πn ��

M̃(Pn)⊗,n

M(Pn/Pn−1)
τn // M̃(P1)⊗,n.

(ι1,n∗)⊗,n
OO

Consider an integer i ∈ [1, n] and let Ūi be the open subscheme of Pn made of
points (x1 : ... : xn : xn+1) such that xi 6= 0 and put Ωi = Pi−1 × Ui × Pn−i.
We consider the following commutative diagram :

M̃(Pn)
(1) //

πn��

M
(
(Pn)n/ ∪i Ωi

)

M(Pn/Pn−1)
∼ // M

(
Pn/ ∪i Ūi

)
OO

M(An/ ∪i Ui)

(2)jjUUUUUUUUU
∼oo

where the map (1) is induced by δn, the maps on the lower horizontal line are
isomorphisms given respectively by the inclusions Pn−1 ⊂ ∪iŪi and Ui ⊂ Ūi.
Consequently, the map (2) is induced by the restriction of δn. However, this map is
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A1-homotopic to the product ι(1)× ...× ι(n) where ι(i) : A1 → Pn is the embedding
defined by ι(i)(x) = (x1 : ... : xn+1) with xj = 0 if j /∈ {i, n+ 1}, xi = x, xn+1 = 1.
It follows from property (Htp) and (Kun)(a) that the map (2) is equal to the
morphism

M(A1/A1 − {0})⊗,n ι(1)∗ ⊗...⊗ι(n)
∗−−−−−−−−→M(Pn/Ū1)⊗ ...⊗M(Pn/Ūn).

Note finally the scheme Ūi ≃ An is contractible and, from property (Htp), the

corresponding map ι
(i)
∗ : M(A1/A1−{0})→ M̃(Pn) does not depend on the integer

i. Thus the preceding commutative diagram together with the identifications just
described allows to conclude.
With that lemma in hand, we conclude as follows. Suppose the property (3.2) is
true for n− 1.
The composite map

(∑
0<i<n p∗ ⊠ cin

)
◦ ιn−1 is equal to ǫn−1 as cn ◦ ιn−1∗ = cn−1.

This shows (3.2)(i). Then, the preceding lemma implies properties (ii) and (iii).
Now, using (Loc) and (Sym), the upper horizontal line of diagram (3.1) is a split
distinguished triangle which concludes. �

Using axiom (Stab), we obtain the following corollary :

Corollary 3.4. Consider the hypothesis and notations of the previous theorem.
Then H∗∗(P ) is a free H∗∗(X)-module with base 1, ..., cn.
Let E be a motive.

(1) The map

E∗∗(X)⊗H∗∗(X) H
∗∗(P )→ E∗∗(P ), x ⊗ λ→ λ.p∗(x)

is an isomorphism. If moreover E has a ringed motive structure, it is an
isomorphism of E∗∗(X)-algebra.

(2) Considering the H∗∗(X)-module structure on E∗∗(X) (cf the end of 2.9),
the map

E∗∗(P )→
⊕

0≤i≤n
E∗∗(X), ϕ 7→

∑

i

ci ∩ p∗(ϕ)

is an isomorphism.

Remark 3.5. It can be seen actually that the first assertion of this corollary is
equivalent to the fact Hn,m(M(X)(r)) = Hn,m−r(M(X)) which is a weak form of
the stability axiom (Stab).

A corollary of the projective bundle theorem is the following result, classical in
topology and first exploited in the homotopy category of schemes by Morel :

Corollary 3.6. Consider the permutation isomorphism η : 1(1)⊗ 1(1)→ 1(1)⊗1(1) in the symmetric monoidal category T . Then η = 1.
Let E be a ringed motive and X be a smooth scheme.
For any x ∈ En,p(X) and y ∈ Em,q(X), x ∪ y = (−1)nm.y ∪x.

Proof. In general, for x ∈ En,p(X) and y ∈ Em,q(X), we have x ∪ y =
(−1)nmηpq.y ∪x. In particular, when X = P2 and c = c1(λ2), we get c2 = η.c2.
This implies η = 1 from the previous corollary and the other assertion follows. �
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3.2. The associated formal group law.

3.7. Put H∗∗(P∞) = lim←−
n>0

H∗∗(Pn). Then corollary 3.4 together with the relation

(3.2)(ii) implies H∗∗(P∞) = A[[c]], free ring of power series over A with generator
c = (c1,n)n>0 of degree (2, 1). Moreover, H∗∗(P∞ × P∞) = A[[x, y]].
Consider the Segre embeddings σn,m : Pn × Pm → Pn+m+nm for (n,m) ∈ N2

and the induced map on ind-schemes σ : P∞ × P∞ → P∞. Then the map σ∗ :
H∗∗(P∞)→ H∗∗(P∞ × P∞) corresponds to a power series

F =
∑

i,j

aij .x
iyj ∈ A[[x, y]]

which according to the classical situation13 in algebraic topology is a commutative
formal group law :

F (x, 0) = x, F (x, y) = F (y, x), F (x, F (y, z)) = F (F (x, y), z).

For any (i, j) ∈ N2, the element ai,j ∈ A is of homological degree (2(i+ j − 1), i+
j − 1) and the first two relations above are equivalent to

a0,1 = 1, a0,i = 0 if i 6= 1, ai,j = aj,i.

Recall also there is a formal inverse associated to F , that is a formal power series
m ∈ A[[x]] such that F (x,m(x)) = 0. We can find the notation x+F y = F (x, y)
in the litterature. For an integer n ≥ 0, we put [n]F · x = x +F ... +F x, that
is the power series in x equal to the formal n-th addition of x with itself. These
notations will be fixed through the rest of the article.

Proposition 3.8. Let X be a smooth scheme.

(1) For any line bundle L/X, the class c1(L) is nilpotent in H∗∗(X).
(2) Suppose X admits an ample line bundle. For any line bundles L,L′ over

X,
c1(L1 ⊗ L2) = F (c1(L1), c1(L2)) ∈ H2,1(X).

Proof. For the first point, we first remark the question is local in X . As X is
noetherian, we are reduced by induction to consider an open covering X = U ∪V ,
such that c1(LU ) (resp. c1(LV )) is nilpotent in H∗∗(U) (resp. H∗∗(V )) where LU
(resp. LV ) is the restrion of L to U (resp. V ). Let n (resp. m) be the order of
nilpotency of c1(LU ) (resp. c1(LV )). Let Z = X − U (resp. T = X − V ) and
consider the canonical morphism νX,W : H∗∗W (X)→ H∗∗(X) for W = Z, T . From
axiom (Loc), there exists a class a (resp. b) in H∗∗Z (X) (resp. H∗∗T (X) such that
a = c1(L)n (resp. b = c1(L)m). As Z ∩ T = ∅, axiom (Loc) implies a ∪Z,T b = 0.
Thus, relation (2.1) implies c1(L)n+m = 0 as wanted.
The first point follows, as λ is locally trivial and the Chern class of a trivial line
bundle is 0 by definition.
For the second point, the assumption implies there is a torsor π : X ′ → X under
a vector bundle over X such that X ′ is affine. From axioms (Htp’) and (Exc), we

13Recall these properties follows from the fact that the coefficients aij for i ≤ n, j ≤ m are
determined by the map σn,m. The reader can find a more detailed proof in [LM07], proof of cor.

10.6.
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obtain that π∗ : M(X ′)→M(X) is an isomorphism. Thus we are reduced to the
case where X is affine.
Then, the line bundle L is generated by its section (cf [EGA2, 5.1.2,e]), which

means there is a closed immersion L
ι−→ An+1

X where n + 1 is the cardinal of a
generating family. In particular, we get a morphism

f : X ≃ P(L)
ι−→ PnX → Pn

with the property that f−1(λn) = L. In the same way, we can find a morphism
g : X → Pm such that g−1(λm) = L′. We consider the morphism

ϕ : X → X ×X f×g−−−→ Pn × Pm
σn,m−−−→ Pnm+n+m.

By construction, ϕ−1(λnm+n+m) = L ⊗ L′ and this concludes, computing in two
ways the Chern class of this line bundle. �

Consider a ringed motive E with regulator map ϕ : H∗∗ → E∗∗.
The map σ∗ : E∗∗(P∞) → E∗∗(P∞ × P∞) defines a formal group law FE with
coefficients in E∗∗ and FE =

∑
i,j ϕS(ai,j).x

iyj. Thus the regulator map induces

a morphism of formal group law (A,F )→ (E∗∗, FE).

Remark 3.9. In case F is the additive formal group law, F (x, y) = x + y, for any
ringed motive E, FE is the additive formal group law. This is the case for example
if T = DMgm(S) or T is the category of modules over a mixed Weil theory.
When F is the universal multiplicative formal group law F = x + y + β.xy, the
obstruction for FE to be additive is the element ϕ(β).

3.3. Higher Chern classes. We now follow the classical approach of
Grothendieck to define higher Chern classes. Consider a vector bundle E of
rank n > 0 over a smooth scheme X . Let λ (resp. p) be the canonical invertible
sheaf (resp. projection) of the projective bundle P(E)/X . From corollary 3.4,
there are unique classes ci(E) ∈ H2i,i(X) for i = 0, ..., n, such that

(3.3)

n∑

i=0

p∗(ci(E)) ∪
(
− c1(λ)

)n−i
= 0

and c0(E) = 1.

Definition 3.10. With the above notations, we call ci(E) the i-th Chern class of
E. We also put ci(E) = 0 for any integer i > n.

Remark 3.11. In the case n = 1, due to our choice of conventions, λ = p−1(E). The
previous relation is not a definition, but a tautology. This enlighten particularly
our choice of sign in the previous relation. Besides, when c1(λ∨) = −c1(λ) (in
particular when the formal group law F is additive), relation (3.3) agrees precisely
with that of [Gro58].

Remark 3.12. Considering any ringed motive E, with regulator map ϕ : H → E,
ϕ ◦ ci defines Chern classes for cohomology with coefficients in E. When no ringed
structure is given on E, we still get an action of the former Chern classes on the
E-cohomology using the action of the cohomology theory H (cf 2.9).
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The Chern classes are obviously functorial with respect to pullback and invariant
under isomorphism of vector bundles. They also satisfy the Whitney sum formula
; we recall the proof to the reader as it uses the axiom (Kun)(a) in an essential
way.

Lemma 3.13. Let X be a smooth scheme and consider an exact sequence of vector
bundles over X :

0→ E′ → E → E′′ → 0

Then for any k ∈ N, ck(E) =
∑
i+j=k ci(E

′) ∪ cj(F ′′).

Proof. By compatibility of Chern classes with pullback we can assume the se-
quence above is split. Let n (resp. m) be the rank of E′/X (resp. E′′/X). Put
P = P(E) and consider c ∈ H2,1(P ) (resp. p : P → X) the first Chern class of the
canonical line bundle on (resp. canonical projection of) P/X .
Put a =

∑n
i=0 p

∗(ci(E′)).cn−i and b =
∑m
j=0 p

∗(cj(E′′)).cm−j as cohomology

classes in H∗∗(P ). We have to prove a ∪ b = 0.
Consider the canonical embeddings i : P(E′)→ P and j : P − P(E′′)→ P . Then
i∗(a) = 0 which implies by property (Htp’) that j∗(a) = 0. Thus there exists
a′ ∈ H∗,∗P(E′′)(P ) such that a = νF (a′) where νF : H∗,∗P(E′′)(P ) → H∗∗(P ) is the

canonical morphism. Similarly, there exists b′ ∈ H∗,∗P(E′)(P ) such that b = νE(b′)

where νE : H∗,∗P(E′)(P ) → H∗∗(P ) is the canonical morphism. Then, relation (2.1)

allows14 to conclude because P(E′) ∩ P(E′′) = ∅ in P and H∗,∗∅ (P ) = 0 from
property (Loc). �

Remark 3.14. Suppose X admits an ample line bundle and consider a vector
bundle E/X . As a corollary of the first point of proposition 3.8 and the usual
splitting principle, we obtain that the class cn(E) is nilpotent in H∗∗(X) for any
integer n ≥ 0.

4. The Gysin triangle

In this section, we consider closed pairs (X,Z) – recall X is assumed to be smooth
and Z is a closed subscheme of X . We say (X,Z) is smooth (resp. of codimension
n) if Z is smooth (resp. has everywhere codimension n in X). A morphism of
closed pair (f, g) : (Y, T )→ (X,Z) is a commutative square

T //
g ��

Y
f��

Z // X

which is cartesian on the underlying topological space. This means the canonical
embedding T → Z ×X Y is a thickening. We say the morphism is cartesian if the
square is cartesian.
The premotive MZ(X) is functorial with respect to morphisms of closed pairs.

14This is where axiom (Kun)(a) is used.
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4.1. Purity isomorphism. Consider a projective bundle over a smooth scheme
X of rank n. For any integer 0 ≤ r ≤ n, we will consider the embedding15

lr(P ) : M(X)(r)[2r]
(−1)r

−−−−→
⊕

0≤i≤n
M(X)(i)[2i]

ǫ−1
P/X−−−→M(P ).

where the first map is the canonical embedding time (−1)r and the second one is
induced by the isomorphism of theorem 3.2.

4.1. Consider a smooth closed pair (X,Z). Let NZX (resp. BZX) be the normal
bundle (resp. blow-up) of (X,Z) and PZX be the projective completion of NZX .
We denote by BZ(A1

X) the blow-up of A1
X with center {0} × Z. It contains as a

closed subscheme the trivial blow-up A1
Z = BZ(A1

Z). We consider the closed pair
(BZ(A1

X),A1
Z) over A1. Its fiber over 1 is the closed pair (X,Z) and its fiber over

0 is (BZX ∪ PZX,Z). Thus we can consider the following deformation diagram :

(4.1) (X,Z)
σ̄1−→ (BZ(A1

X),A1
Z)

σ̄0←− (PZX,Z).

We will also consider the open subscheme DZX = BZ(A1
X) − BZX , which still

contains A1
Z as a closed subscheme. The previous diagram then gives by restriction

a second deformation diagram :

(4.2) (X,Z)
σ1−→ (DZX,A

1
Z)

σ0←− (NZX,Z).

Note these two deformation diagrams are functorial in (X,Z) with respect to
cartesian morphisms of closed pairs.

Remark 4.2. As we will see in the followings, one of the advantage to con-
sider the deformation space DZX is that, when X is a vector bundle over Z
and the embedding Z ⊂ X is the 0-section, we can define a canonical isomor-
phism DZX ≃ A1 × X . In fact, when X = Spec(A) and Z = Spec(A/I),
DZX = Spec(⊕n∈ZI

n.t−n) with the convention that for n < 0, In = A (t is
an indeterminate). Thus, if A = A0[x1, ..., xn], I = (x1, ..., xn), we get an isomor-
phism defined on the affine level by

A[t′, x′1, ..x
′
n]→ ⊕n∈ZI

n.t−n, t′ 7→ t, x′i 7→ t−1xi.

This isomorphism is independant on the regular sequence parametrizing I. Thus,
in the case when X is an arbitrary vector bundle, we can glue the isomorphisms
obtained by choosing local parametrizations.

Proposition 4.3. Let n be a natural integer.
There exists a unique family of isomorphisms of the form

p(X,Z) : MZ(X)→M(Z)(n)[2n]

indexed by smooth closed pairs of codimension n such that :

15 The change of sign which appears in this formula amounts to take −c instead of c as a
generator of the algebra H∗∗(P ).
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(1) for every cartesian morphism (f, g) : (Y, T ) → (X,Z) of smooth closed
pairs of codimension n, the following diagram is commutative :

MT (Y )
(f,g)∗ //

p(Y,T )
��

MZ(X)

p(X,Z)
��

M(T )(n)[2n]
g∗(n)[2n] // M(Z)(n)[2n].

(2) Let X be a smooth scheme, E be a vector bundle over X of rank n. Put P =
P(E ⊕ 1). Consider the closed pair (P,X) corresponding to the canonical
section of P/X. Then p(P,X) is the inverse of the following composition

M(X)(n)[2n]
ln(P )−−−→M(P )

π−→MX(P )

where the second arrow is obtained by functoriality in D .

Proof. Uniqueness : Consider a smooth closed pair (X,Z) of codimension n. Ap-
plying property (1) above to the deformation diagram (4.1), we obtain the following
commutative diagram :

MZ(X)
σ̄1∗ //

p(X,Z)

��

MA1
Z

(BZ(A1
X))

p
(BZ (A1

X
),A1

Z
)

��

MZ(PZX)

p(PZ X,Z)

��

σ̄0∗oo

M(Z)(n)[2n]
s1∗(n)[2n] // M(A1

Z)(n)[2n] M(Z)(n)[2n]
s0∗(n)[2n]oo

The morphisms s0, s1 : Z → A1
Z are respectively the zero section and the unit

section of A1
Z/Z. Using axiom (Htp), s0∗ = s1∗. Thus in the above diagram,

all morphisms are isomorphisms. Now, property (2) stated previously determines
uniquely p(PZX,Z), thus p(X,Z) is also uniquely determined.
Existence : Consider property (2). Let i : P(E)→ P be the canonical embedding.
Its corestriction i′ : P(E) → P −X is the zero section of a vector bundle, thus it
induces an isomorphism on premotives from property (Htp’). By (Loc), we then
obtain the distinguished triangle :

M(P(E))
i∗−→M(P )

π−→MX(P )
+1−−→

We easily obtain lr(P(E)) ◦ i∗ = lr(P ) for any integer r < n. Thus the composite

ln(P ) ◦ π is an isomorphism as required. We put: p(P,X) =
(
ln(P ) ◦ π

)−1
.

Considering the proof of uniqueness, we have to show that σ̄0∗ and σ̄1∗ are iso-
morphisms. Considering the excision axiom (Exc), this is equivalent to prove the
morphisms

MZ(X)
σ1∗−−→MA1

Z
(DZ(X))

σ0∗←−−MZ(NZX)

induced by diagram (4.2) are isomorphisms. In the case X = AnZ and the inclusion
Z ⊂ X is the 0-section, the result follows from remark 4.2 and axiom (Htp).
We can argue locally for the Zariski topology on X . In fact, consider an open
cover X = U ∪ V , W = U ∩ V , such that the case of (U,Z ∩ U), (V, Z ∩ V ) and
(W,Z ∩W ) are known. Using axiom (Sym), (Exc) and (Loc), the canonical map

M

(
V/V − Z ∩ V
W/W − Z ∩W

)
→M

(
X/X − Z

U/U − Z ∩ U

)
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is an isomorphism, and the same is true when we replace (X,Z) by (DZX,A1
Z).

This fact, together with the above three assumptions and axiom (Loc), allows to
obtain the result for (DZX,A1

Z).
Thus we can assume there exists a parametrisation of the closed pair (X,Z), that

is to say a cartesian morphism (f, g) : (X,Z) → (Ad+nS ,AdS) such that f is étale.
Consider the pullback square

X ′
p //

q ��

X
f��

AnZ
1×g// An+d

S .

There is an obvious closed immersion Z → X ′ and its image is contained in q−1(Z).
As q is étale, Z is a direct factor of q−1(Z). Put W = q−1(Z)−Z and Ω = X ′−W .
Thus Ω is an open subscheme of X ′, and the reader can check that p and q induce
cartesian étale morphisms

(X,Z)← (Ω, Z)→ (AnZ , Z).

The functorialty of (4.2) and axiom (Exc) allow to conclude in view of the previous
case.
To sum up, the purity isomorphism p(X,Z) is defined as the composite

MZX
σ̄0∗−−→MA1

Z

(
BZ(A1

X)
) σ̄−1

1∗−−→MZ(PZX)
p(Z,PZ X)−−−−−−→M(Z)(n)[2n].

We finally have to check the coherence of this definition in the case of the closed
pair (P,X), P = P(E⊕1), appearing in property (2). Explicitely, we have to check
that in this case σ̄−1

1∗ ◦ σ̄0∗ = 1. This is easily seen considering the commutative
diagram :

MX(P )
σ̄1∗ // MA1

X
(BZ(A1

X)) MX(P )
σ̄0∗oo

MX(E)
σ1∗ //

OO

MA1
X

(DXE)

OO

MX(E).
σ0∗oo

OO

We have identified the projective normal bundle of (P,X) (resp. the normal bundle
of (E,X)) with P (resp. E). According to remark 4.2, there is a canonical
isomorphism DXE ≃ A1×E through which σ0 (resp. σ1) corresponds to the zero
(resp. unit) section. The homotopy axiom (Htp) allows to conclude. �

4.4. Let X be a smooth scheme, E be a vector bundle over X of rank n and put
P = P(E ⊕ 1). Let λ be the canonical line bundle on P , and p : P → X be the
canonical projection. We define the Thom class of E/X as the cohomology class

t(E) =

n∑

i=0

p∗(ci(E)) ∪ (−c1(λ))
n−i

in H2n(P ). This is in fact a morphism M(P ) → 1(n)[2n] whose restriction to
M(P(E)) is zero. This implies the morphism

p∗ ⊠ t(E) : M(P )→M(X)(n)[2n]

factors as a morphism MX(P )→ M(X)(n)[2n] and this latter is equal to p(P,X).
Indeed, p∗ ⊠ t(E) is a split epimorphism with splitting ln(P ).
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We introduce the Thom premotive16 as MTh(E) := MX(E) - remark it is functo-
rial with respect to monomorphisms of vector bundles. Using property (Exc), the
natural morphism MTh(E)→MX(P ) is an isomorphism. As a consequence, the
morphism p∗ ⊠ t(E) induces an isomorphism MTh(E) : MTh(E)→M(X)(n)[2n]
which is precisely the purity isomorphism p(E,X). In the litterature, this arrow is
called the Thom isomorphism.

Remark 4.5. Recall the universal quotient bundle ξ on P is defined by the exact
sequence

0→ λ→ p−1(E ⊕ 1)→ ξ → 0.

Thus the Whitney sum formula 3.13 gives: t(E) = cn(ξ).

Definition 4.6. Let (X,Z) be a smooth closed pair of codimension n. Put
U = X − Z and consider the obvious immersions i : Z → X and j : U → X .
Considering the notations of the previous proposition, we call p(X,Z) the purity iso-
morphism associated with (X,Z). Using this isomorphism together with property
(Loc) we obtain a distinguished triangle

M(X − Z)
j∗−→M(X)

i∗−→M(Z)(n)[2n]
∂X,Z−−−→M(X − Z)[1]

called the Gysin triangle. The morphism i∗ (resp. ∂X,Z) is called the Gysin
morphism (resp. residue morphism) associated with (X,Z).

Example 4.7. Let X be a smooth scheme and E/X be a vector bundle of rank
n. Put P = P(E⊕1) and consider the canonical section s : X → P of P/X . Then
property (2) of proposition 4.3 implies s∗ ◦ ln(P ) = 1 : the Gysin triangle of (P,X)
is split and ∂P,X = 0. Moreover, remark 4.4 and the previous definition implies
that

s∗ = p∗ ⊠ t(E).

4.2. Base change.

Definition 4.8. Let (X,Z) (resp. (Y, T )) be a smooth closed pair of codimension
n (resp. m). Let (f, g) : (Y, T )→ (X,Z) be a morphism of closed pairs. We define
the morphism (f, g)! : M(T )(m)[2m] → M(Z)(n)[2n] by the equality (f, g)! :=
p(X,Z) ◦ (f, g)∗ ◦ p−1

(Y,T ).

Thus we obtain a commutative diagram

(4.3) M(Y − T )
l∗ //

h∗ ��

M(Y )
k∗ //

f∗ ��

M(T )(n)[2n]
∂Y,T //

(f,g)!��

M(Y − T )[1]

h∗[1]
��

M(X − Z)
j∗ // M(X)

i∗ // M(Z)(n)[2n]
∂X,Z // M(X − Z)[1]

where i, j, k, l are the obvious immersions and h is the restriction of f .
In what follows, we will compute the morphism (f, g)! in various cases. The com-
mutativity of the second square will give us refined projection formulas. The new
thing in our study is that any such formula corresponds to another formula involv-
ing residue morphisms as we see by considering the third commutative square.

16Analog of the Thom space in algebraic topology.
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Remark 4.9. The notation (f, g)! is to be compared with the notation of [Ful98]
for the ”refined Gysin morphism”. In fact, the reader will notice that in the
case of motivic cohomology, our formulas extend the formulas of Fulton to the
case of arbitrary weights (and arbitrary base). Be careful however that our Gysin
morphism i∗ : M(X)→ M(Z)(n)[2n] corresponds to the usual pushout on Chow
groups (cf [Dég08][1.21]). The Gysin morphism considered by Fulton is induced
by the usual functoriality of motives. This fact can be understand if we thought
of Chow groups over a field studied by Fulton as motivic homology with compact
support.

4.2.1. The transversal case.

Proposition 4.10. Consider the hypothesis of definition 4.8.
Suppose (f, g) is cartesian and n = m. Then (f, g)! = g∗(n)[2n].

Proof. Diagram (4.1) is functorial with respect to cartesian morphism. Let p :
PTY → PZX be the morphism induced by (f, g) on the projective completions
of the normal bundles. Through the morphisms σ̄0∗ and σ̄1∗ for the closed pairs
(X,Z) and (Y, T ), the morphism (f, g)∗ is isomorphic to

(p, g)∗ : M(PTY, T )→M(PZX,Z).

As n = m and Y = X ×Z T , one has PTY = PZX ×Z T . Using the compatibility
of the projective bundle isomorphism with base change, we see that the following
diagram commutes

M(T )(n)[2n]
ln(PT Y ) //

g∗(n)[2n] ��

M(PTY )
p∗��

M(Z)(n)[2n]
ln(PZX) // M(PZX)

which concludes in view of the property (2) in proposition 4.3. �

Corollary 4.11. Consider a smooth closed pair (X,Z) of codimension n and
i : Z → X the corresponding immersion. Put U = X − Z.
Then (1Z∗ ⊠ i∗) ◦ i∗ = i∗ ⊠ 1X∗ as a morphism M(X)→M(Z ×X)(n)[2n],
and (j∗ ⊠ 1U∗) ◦ ∂X,Z = ∂X,Z ⊠ i∗ as a morphism M(Z)(n)[2n]→M(U ×X)[1].

Proof. We consider the cartesian square

Z
γi ��

i // X
δX��

Z ×X i×1X // X ×X
where δX is the diagonal embedding ofX/S. The two formulas then follow from the
previous proposition applied to the morphism of closed pairs (δX , γi) : (X,Z) →
(X ×X,Z ×X) with the help of the following elementary lemma :

Lemma 4.12. Let (X,Z) be a smooth closed pair of codimension n and Y be a
smooth scheme.
Then (i× 1Y )∗ = i∗ ⊗ 1Y ∗ and ∂X×Y,Z×Y = ∂X,Z ⊗ 1Y ∗.
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Using axiom (Kun)(a) and (Kun)(b), the lemma is reduced to prove that
p(X×Y,Z×Y ) = p(X,Z) ⊗ Y . From the construction of the purity isomorphism,
we are reduced to show that for a projective bundle P/X , ǫP×Y = ǫP ⊗ 1X∗ us-
ing the notations of theorem 3.2. This last equality follows finally from axiom
(Kun)(a) and the functoriality of the first Chern class in axiom (Orient). �

Remark 4.13. (1) In the formula of this lemma, there is hidden a permutation
isomorphism for the tensor product. In this paper, we will not need to
care about this isomorphism. However, in some cases, it may result in a
change of sign (see [Dég05], rem. 2.6.2).

(2) Considering a ringed premotive E, the previous corollary gives the usual
projection formula for i : for any z ∈ E∗∗(Z) and any x ∈ E∗∗(X),
i∗(z ∪ i∗(x)) = i∗(z) ∪x.

4.14. Let (X,Z) be a smooth closed pair of codimension n, i : Z → X the corres-
ponding closed immersion. Following Grothendieck (see [Gro58]), we define the
fundamental class of Z in X as the cohomology class ηX(Z) = i∗(1) in H2n,n(X).
As a morphism, it is equal to the composite

M(X)
i∗−→M(Z)(n)[2n]

πZ∗−−→ 1(n)[2n]

where πZ : Z → S is the structural morphism of Z/S.
Suppose that i admits a retraction p : X → Z. Then corollary 3.10 gives the
following computation17 of the Gysin morphism :

(4.4) i∗ = p∗ ⊠ ηX(Z).

Suppose given a vector bundle E/X and put P = P(E ⊕ 1). Applying example
4.7, we get

ηP (X) = t(E)

where X is embedded in P through the canonical section. Indeed example 4.7 is
a particular case of the formula (4.4).
More generally, we can define the localised fundamental class of Z in X as the
cohomology class η̄X(Z) ∈ H2n,n

Z (X) equal to the composite

MZ(X)
p(X,Z)−−−−→M(Z)(n)[2n]

πZ∗−−→ 1(n)[2n].

Considering the canonical morphism νX,Z : H2n,n
Z (X)→ H2n,n(X), we have tau-

tologically νX,Z(η̄X(Z)) = ηX(Z).
For any vector bundle E/X of rank n, P = P(E ⊕ 1), the localised Thom class
t̄(E) = η̄P (X) is uniquely determined by the Thom class t(E). Usually, t̄(E) is

considered as an element of H2n,n
X (E) using axiom (Exc).

As a last application of the previous corollary, let us remark the following :

Corollary 4.15. Let (X,Z) be a smooth closed pair of codimension m, and P be
a projective bundle of rank n over X.

17 Considered in cohomology, this is a well known formula.
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Then for any integer r ∈ [0, n], the following diagram is commutative :

M(PV )
ν∗ //

pV ∗ ⊠ c1(λV )r

��

M(P )
ι∗ //

p∗ ⊠ c1(λ)r

��

M(PZ)(m)[2m]
∂ι //

pZ∗ ⊠ c1(λZ )r

��

M(PV )[1]

pV ∗[1] ⊠ c1(λV )r

��
M(V )(r)[2r]

j∗ // M(Y )(r)[2r]
i∗ // M(Z)(r +m)[2(r +m)]

∂i // M(V )(r)[2r + 1].

In particular, the Gysin triangle is compatible with the projective bundle isomor-
phisms and with the induced embeddings lr(P?).

4.2.2. The excess intersection case. Remark that in the hypothesis of definition
4.8, we have a canonical closed immersion

NTY
ν−→ g∗(NZX).

In particular, we have necessarily the inequality n ≥ m.

Proposition 4.16. Consider the hypothesis of definition 4.8. Suppose (f, g) is
cartesian.
Put e = n−m and consider ξ = g−1(NZX)/NTY , quotient vector bundle over T .
Then (f, g)! = (g∗ ⊠T ce(ξ)) (m)[2m].

Remark 4.17. The integer e is usually called the excess of intersection, and ξ the
excess intersection bundle.

Proof. The morphism (f, g) induces the following composite morphism on normal
bundles :

NTY
ν−→ g−1(NZX)

g′−→ NZX.

Thus, considering now the functoriality of diagram (4.2) with respect to the carte-
sian morphism (f, g), we obtain (f, g)! = (ν, 1T )!(g

′, g)!. From proposition 4.10,
(g′, g)! = g∗(n)[2n]. We conclude using the following lemma :

Lemma 4.18. Let E and F be vector bundles over a smooth scheme T of respective
rank n and m. Consider a monomorphism ν : F → E of vector bundles and put
e = n−m.
Then (ν, 1T )! =

(
1T∗ ⊠ ce(E/F )

)
(m)[2m].

To prove the lemma, we use the description of p(F,T ) and p(E,T ) using the Thom
class (cf 4.4). Let P , Q and ν̄ : Q → P be the respective projective completions
of E, F and ν. Let p : P → T and q : Q → T be the canonical projections. We
are reduced to prove the relation ν̄∗(t(E)) = (q∗ce(E/F )) ∪ t(F ) in H2n,n(Q).
From remark 4.5, we get t(E) = cn(ξP ) (resp. t(F ) = cm(ξQ)) where ξP (resp.
ξQ) is the universal quotient bundle on P (resp. Q). Thus, the relation follows
from the Whitney sum formula 3.13 and the following exact sequence of vector
bundles over Q :

0→ ξQ → ν̄−1ξP → q−1(E/F )→ 0.

�
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Corollary 4.19. Let (X,Z) be a smooth closed pair of codimension n. Then :
(1) i∗i∗ = 1Z ⊠ cn(NZX) as a morphism M(Z)→M(Z)(n)[2n].
(2) ∂X,Z ◦ (1Z ⊠ cn(NZX)) = 0.

This follows from the previous proposition applied with (f, g) = (i, 1Z). We usually
refer to the first formula as the self-intersection formula.

4.20. Consider a vector bundle E over a smooth scheme X of rank n. Let E×

be the complement of the zero section in E and π : E× → X be the obvious
projection. Then using property (Htp’) and the previous corollary, we obtain
from the Gysin triangle for (E,X) the following distinguished triangle

M(E×)
π∗−→M(X)

1X ⊠ cn(E)−−−−−−−→M(X)(n)[2n]
∂E,X−−−→M(E×)[1]

which we shall call the Euler distinguished triangle. Indeed, in cohomology with
coefficients in a ringed premotive E, it corresponds to a long exact sequence where
one of the arrow is the cup product by cn(E).
As a corollary of the self-intersection formula 4.19, we obtain the following tool
to compute fundamental classes which generalises in our setting a theorem of
Grothendieck (cf [Gro58, th. 2]).

Corollary 4.21. Consider a smooth closed pair (X,Z) of codimension n. Let
i be the corresponding closed immersion and ηX(Z) = i∗(1) ∈ H2n,n(X) be the
fundamental class of Z in X (cf 4.14).
Suppose there exists a vector bundle E on X and a section s of E/X such that s
is transversal to the zero section s0 of E and Z = s−1(s0(X)).
Then, ηX(Z) = cn(E).

It simply follows from corollary 4.19 applied to s0 together with proposition 4.10
applied to the following transversal square :

Z
i //

��
X
s0��

X
s // E.

Example 4.22. Let E be a vector bundle of rank n over a smooth scheme X .
Put P = P(E ⊕ 1) and consider p : P → X (resp. s : X → P , λ) the canonical
projection (resp. section, line bundle) of P/X . Consider finally the vector bundle
F = λ∨ ⊗ p−1(E) over P . The sequence of morphisms of vector bundles over P ,

λ→ p−1(E ⊕ 1)→ p−1(E)

gives a section σ of F/P . We check easily it is transversal to the zero section and
we have σ−1(0) = X , while the embedding σ−1(0)→ P is s. Thus we obtain from
the previous corollary ηX(P ) = cn(F ). Considering paragraph 4.14 and remark
4.5 we thus obtain three expressions of the fundamental class of X in P :

t(E) = cn
(
p−1(E ⊕ 1)/λ

)
= cn

(
λ∨ ⊗ p−1(E)

)
.

Note the last equality, though obvious in the case where F is the additive formal
group, is not evident to check directly in the general case. However, we left as
an exercice to the reader to check it using the inverse series of the formal group
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law F in the case of a line bundle. This implies the general case by the splitting
principle.

4.2.3. The ramified case. In this section, we study the case of a morphism (f, g) :
(Y, T )→ (X,Z) of smooth closed pairs of same codimension n. This corresponds
to the proper case in the operation of pullback of Z along f . We put T ′ = Z×X Y
and consider the canonical thickening T ′ → T induced by (f, g).
We first need an assumtion. Let T ′ =

⋃
i∈I T

′
i be the decomposition into connected

components. For any i ∈ I, we also consider the decomposition T ′i =
⋃
j∈Ji

T ′ij
into irreducible components. Put Tij = T ′ij ×T ′ T . As T → T ′ is a thickening,
the geometric multiplicity m(T ′ij) of T ′ij is an integral multiple of the geometric

multiplicity m(Tij) of Tij . We introduce the following condition on the morphism
(f, g):

(Special) For any i ∈ I, there exists an integer ri ≥ 0 such that for any j ∈ Ji,
m(T ′ij) = ri.m(Tij).

The integer ri will be called the ramification index of f along Ti.

Remark 4.23. When S is irreducible, this condition is always fulfilled. When S
is integral, T ′i is irreducible and the integer ri is nothing else than the geometric
multiplicity of T ′i .

Under this assumption, we define intersection multiplicities which take into ac-
count the formal group law F introduced in paragraph 3.7.
Let B be the blow-up of A1

X with center {0} × Z, and P its exceptional divisor.
Put C = B ×X Y , and for any i ∈ I, Qi = P ×T Ti. Remark that Qi/Ti admits
a canonical section si. We denote by Li the line bundle over Ti obtain by the
pullback of the normal bundle NQi(C) along si. We consider the localised Thom

class t̄(Li) ∈ H2,1
Ti

(Li) (cf 4.14); we recall it is sent to 1 by the purity isomorphism

p∗(Li,Ti)
: H2,1

Ti
(Li)→ H0,0(Ti).

Note that, according to remark 3.14, the Thom class t(Li) is nilpotent. Thus,
the same is true for t̄(Li). In particular, we can apply the power series [ri]F (see
paragraph 3.7) to the element t̄(Li) of the A-algebra H∗∗Ti

(Li). This defines an
element [ri]F · t̄(Li) ∈ H∗∗Ti

(Li) of bidegree (2, 1).

Definition 4.24. Consider a morphism (f, g) : (Y, T ) → (X,Z) which satisfies
the condition (Special). Assume T admits an ample line bundle.
We consider the notations introduced above. For any i ∈ I, we define the F -
intersection multiplicity of Ti in f−1(Z) as the element

r(Ti; f, g) = p∗(Li,Ti)

(
[ri]F · t̄(L)

)
∈ H0,0(Ti)

where ri is the ramification index of f along Ti.

A straightforward check shows the F -intersection multiplicities are compatible
with flat base change. When the formal group law F is additive, we easily get
that r(Ti; f, g) = ri.
In the codimension n = 1 case, we can also consider the localised fundamental class
η̄Y (Ti) ∈ H2,1

Ti
(Y ) introduced in paragraph 4.14. It corresponds to the localised

Thom class t̄(NTi(Y )) under the isomorphisms given by the deformation diagram
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(4.2). Thus applying remark 3.14 as above, we obtain that the class η̄Y (Ti) is

nilpotent. In particular, we can consider the class [ri]F ·η̄Y (Ti) ∈ H2,1
Ti

(Y ) obtained
by applying the power series [ri]F of 3.7. We then obtain a natural expression of
the F -intersection multiplicity :

Lemma 4.25. Consider the hypothesis and assumptions of the previous definition
and assume n = 1. Let η̄Y (Ti) ∈ H2,1

Ti
(Y ) be the localised fundamental class of Ti in

Y (cf paragraph 4.14) and p∗(Y,Ti)
: H2,1

Ti
(Y )→ H0,0(Ti) be the purity isomorphism

in cohomology.
Then, r(Ti; f, g) = p∗(Y,Ti)

(
[ri]F · η̄Y (Ti)

)
.

Proof. We may assume T is connected. Thus I = {i} and we put L = Li, r = ri
with the notations of the previous definition. As n = 1, the zero section of A1

X/X
induces the following transversal square

Z = P(NZX)
s //

��

P(NZX ⊕ 1) = P

��
X = BZX // BZ(A1

X) = B

which, after pullback above Y gives a cartesian square, still transversal, T
t //

��

Q

��
Y // C

with t the canonical section of Q/T . Thus we get :

p∗(L,T )([r]F · t̄(L)) = t∗p∗(NQC,Q)([r]F · t̄(NQC)) = t∗p∗(C,Q)([r]F · η̄C(Q))

= p∗(Y,T )([r]F · η̄Y (T ))

where the last equality follows from the transversal square above and proposition
4.10 whereas the other equalities follow from the definitions. �

Before stating the main result of this section, we need to recall an extension of
the functoriality of the deformation diagram (4.2) to certain morphisms of closed
pairs (see also [Dég03, proof of 3.3]).
Consider a morphism (f, g) : (Y, T )→ (X,Z) of smooth closed pairs of codimen-
sion 1. Let I (resp. J , J ′) be the ideal defining Z in X (resp. T in Y , T ′ in Y ).
The map f induces a morphism ϕ : I → f∗J ′ of sheaves over X .
We consider the second deformation space DZX = BZ(A1

X)−BZX as in 4.1. An
easy computation shows

DZX = SpecX

(⊕

n∈Z

In.u−n
)

where In = OX for n < 0, and u is an indeterminate.
Assume18 J ′ = J r. Then we can define a morphism of sheaves of rings over X :

⊕

n∈Z

I n.u−n →
⊕

n∈Z

f∗(J ′ n).u−n →
⊕

m∈Z

f∗(J m).v−m

18 As the immersion T → Y is regular, this can happen only in the codimension 1 case. Note
it implies (f, g) satisfies the condition (Special) and the ramification indexes are all equal to r.
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where the first arrow is induced by ϕ and the second is the obvious inclusion which
maps u to vr as J ′ = J r.
Taking the spectrum of these morphisms over X , we get a morphism

ρr(f, g) : DTY → DZX

of schemes over A1. The fibre of ρr(f, g) over 1 is simply f and one can check that
its fiber over 0 is a composite morphism

σr(f, g) : NTY
ν−→ g∗NZX

µ−→ NZX

such that µ is induced by g and ν is a homogenous morphism of degree r. Thus,
considering the respective deformation diagrams (4.2) for (X,Z) and (Y, T ) we
obtain a commutative diagram of closed pairs

(4.5) (Y, T )
σ′
1 //

(f,g)
��

(DTY,A
1
T )

(ρr(f,g),1×g)
��

(NTY, T )
σ′
0oo

(σr(f,g),g)
��

(X,Z)
σ1 // (DZX,A1

Z) (NZX,Z).
σ0oo

Theorem 4.26. Let (f, g) : (Y, T )→ (X,Z) be a morphism of smooth closed pairs
of codimension n. We assume T admits an ample line bundle and (f, g) satisfies
condition (Special).
Then

(f, g)! =
∑

i∈I
r(Ti; f, g) ⊠T gi∗

where T =
⋃
i∈I Ti is the decomposition into connected component, gi = g|Ti and

r(Ti; f, g) is the F -intersection multiplicity of Ti in f−1(Z).

Proof. Using axiom (Add’), we can assume T is connected.
We first reduce to the codimension n = 1 case. Consider the blow-up B = BZ(A1

X)
and its exceptional divisor P = P(NZX⊕1). Consider also the cartesian morphism
(p, q) : (B,P ) → (X,Z). If we put BY = B ×X Y , Q = P ×Z T , we obtain the
following commutative diagram of morphisms closed pairs :

(BY , Q)
(f ′,g′) //

(π′,q) ��

(B,P )
(π,p)��

(Y, T )
(f,g) // (X,Z).

By definition, (f, g)!(π
′, q)! = (π, p)!(f

′, g′)!.
Note that (π, p) and (π′, q) are cartesians. We can apply proposition 4.16 to
(π, p) : the excess intersection bundle is the universal quotient bundle ξ0 on P
and (π, p)! = p∗ ⊠ cn(ξ0). Thus, according to remark 4.5 and paragraph 4.14,
(π, p)! = s∗ where s : X → P is the canonical section.

Similarly, if we put ξ = g′−1
(ξ0), we get (π′, q)! = q∗ ⊠ cn(ξ) = t∗ with t : T → Q

the canonical section. Note this latter morphism is a split epimorphism with
splitting ln(Q). Thus we get

(f, g)! = s∗ ◦ (f ′, g′)! ◦ ln(Q).
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Remark that Q = P ×B BY . Thus the morphism (f ′, g′) of smooth closed pairs
of codimension 1 satifies the condition (Special) and the ramification indexes of f
along T and f ′ along Q are equal. Assume (f ′, g′) = r(Q; f ′, g′) ⊠ g′∗. According
to the expression above, we get

(f, g)! =
(
r(Q; f ′, g′) ⊠ s∗g′∗

)
◦ ln(Q)

(1)
=
(
r(Q; f ′, g′) ⊠ g∗t

∗) ◦ ln(Q)

(2)
=
(
(r(Q; f ′, g′) ◦ t∗) ⊠ g∗

)
t∗ ◦ ln(Q) = (r(Q; f ′, g′) ◦ t∗) ⊠ g∗.

where equality (1) follows from the projection formula of proposition 4.10 and
equality (2) from the other projection formula of corollary 4.11. From definition
4.24, the reader can now easily check the equality of the cohomological classes
t∗[r(Q; f ′, g′)] = r(T ; f, g).
Thus we are reduced to the case n = 1, T still being connected. Let r be the
ramification index of f along T . Let J (resp. J ′) be the ideal sheaf of T (resp.
T ′) in Y . As Z → X and T → Y are regular immersions of a divisor, we see that
necessarily, J ′ = J r. Considering now diagram (4.5), we obtain that (f, g)! =
(σr(f, g), g)!. In view of the factorization of the morphism σr(f, g), we then are
reduced to the following lemma :

Lemma 4.27. Let T be a smooth scheme which admits an ample line bundle.
Consider a line bundle N over T and N⊗r be its r-th tensor power over T .
Let ν : N → N⊗r be the obvious homogenous morphism of degree r, and (ν, 1T ) :
(N,T )→ (N⊗r, T ) be the corresponding morphism of closed pairs.
Then (ν, 1T )! = ρ⊗ 1T∗ where ρ is the unique element of H00(T ) such that [r]F ·
t(N) = ρ.t(N).

Put P = P(N ⊕ 1), P ′ = P(N⊗r ⊕ 1) and consider the projective completion
ν̄ : P → P ′ of ν. Let λ (resp. λ′) be the canonical line bundle and p (resp. p′) be
the canonical projection of P/T (resp. P ′/T ). An easy computation shows that
ν̄∗(λ′) = λ⊗r. Recall from 4.22 that the Thom class of N (resp. L⊗r) is equal
to t(N) = c1(λ∨ ⊗ p−1N) (resp. t(N⊗r) = c1(λ′∨ ⊗ p′−1N⊗r)). Thus, from the
second point of proposition 3.8, ν̄∗t(N⊗r) = [r]F · t(N). This latter class is zero
on P −T , thus we get the relation [r]F · t(N) = ρ.t(N) in H2,1(P ). The conclusion
now follows according to the computation of the Thom isomorphism 4.4.
To finish the proof with that lemma, we remark that ρ = r(T ; ν, 1T ) = r(T ; f, g).

�

Corollary 4.28. Let (f, g) : (Y, T ) → (X,Z) be a morphism of smooth closed
pairs of codimension 1. We assume T admits an ample line bundle and (f, g)
satisfies condition (Special). Let (Ti)i∈I be the connected components of T , and
ri ∈ N be the ramification index of f along Ti.
Then, for any i ∈ I, the fundamental class ηY (Ti) is nilpotent and

f∗(ηX(Z)) =
∑

i∈I
[ri]F · ηT (Ti)

where [ri]F is the power series equal to the ri-th formal sum with respect to the
formal group law F .
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Proof. Let i : Z → X and ji : Ti → Y be the canonical immersions. We simply
put ρi = r(Ti; f, g) ∈ H0,0(Ti). In cohomology, the preceding theorem applied to
(f, g) gives the relation

f∗i∗(z) =
∑

i∈I
ji∗(ρi ⊠ g∗i (z))

for z ∈ H∗∗(Z). Applied with z = 1, this gives f∗(ηX(Z)) =
∑

i ji∗(ρi). Recall
from lemma 4.25 that ρi = p∗(Y,Ti)

([ri]F · η̄Y (Ti)). Tautologically, the composition

ji∗p∗(Y,Ti)
is equal to the canonical morphism H∗∗Ti

(Y )→ H∗∗(Y ) simply obtained

by functoriality. For conclusion, it is sufficient to recall this latter is a morphism
of A-algebra (cf paragraph 2.8). �

Remark 4.29. In the previous corollary, the integers ri can be understood as fol-
lows: locally, Z is parametrized by a S-regular function a : X → A1. Then, (f, g)
is special if a◦f can be written locally u.

∏
i∈I b

ri

i where u is a unit and bi : Y → A1

is a S-regular function parametrizing Ti – this expression should remain the same
when we change any of the parameters bi or a.

4.3. Crossing Gysin triangles. The following lemma will be the key point of
the main result of this section. Though it will appear finally as a particular case,
we begin by proving it to enlighten the proof of theorem 4.32.

Lemma 4.30. Let Z be a smooth scheme, E and E′ be vector bundles over Z of
respective ranks n and m. Put Q = P(E ⊕ 1), Q′ = P(E′ ⊕ 1) and P = Q×Z Q′.
Consider the fundamental class (see paragraph 4.14) ηP (Z) (resp. ηP (Q), ηP (Q′))
of the canonical embedding of Z (resp. Q, Q′) in P , as an element of H∗∗(P ).
Then ηP (Z) = ηP (Q) ∪ ηP (Q′).

Proof. Put d = n + m. Let η̄P (Z) be the localised fundamental class of Z in P
(cf paragraph 4.14). Consider the deformation diagram (4.1) for the closed pair
(P,Z), with B = BZ(A1

P ) :

(P,Z)
σ̄1−→ (B,A1

Z)
σ̄0←− (P,Z).

As σ̄∗0 and σ̄∗1 are isomorphisms, η̄P (Z) is uniquely determined by the class t̄ =
σ̄∗1(η̄P (Z)) and t̄ is uniquely determined by the fact that σ̄∗0(t̄) corresponds to the
Thom class t(E ⊕ E′) in H2d,d(P ).
Consider the divisor D = BZ(A1×P(E)×P(E′⊕ 1)) (resp. D′ = BZ(A1×P(E⊕
1)× P(E′)) in B and the class c = −c1(D) (resp. c′ = −c1(D′)) in H2,1(B). Let
π be the canonical projection of P/X . We define a cohomology class in H2,1(B) :

t =


 ∑

0≤i≤n
π∗(ci(E)) ∪ cn−i


 ∪


 ∑

0≤j≤m
π∗(cj(E

′)) ∪ c′
m−j


 .

Then t vanishes on B − A1
Z and, by construction, its pullback by σ̄0 is equal to

t(E ⊕ E′). Thus t corresponds to the class t̄ mentionned above, through the map

H2d,d
A1

Z
(B) → H2d,d(B). The computation of its pullback by σ̄1 gives the desired

formula. �
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Remark 4.31. Another way to obtain this lemma is to apply corollary 4.21 with
X = P and E = ξ ×Z ξ′ where ξ (resp. ξ′) is the universal quotient bundle of Q
(resp. Q′) — compare with remark 4.5.

Theorem 4.32. Consider a cartesian square of smooth schemes Z
k //

l ��
Y ′
j��

Y
i // X

such

that i,j,k,l are closed immersions of respective pure codimension n, m, s, t. We
put d = n+s = m+ t and consider the closed immersion h : (Y −Z) −→ (X−Y ′)
induced by i.
Then, in the following diagram :

M(X)
j∗ //

i∗ ��
(1)

M(Y ′)(m)[2m]
∂X,Y ′

//

k∗��
(2)

M(X − Y ′)[1]

h∗

��
M(Y )(n)[2n]

l∗
// M(Z)(d)[2d]

∂Y,Z //

∂Y ′,Z ��
(3)

M(Y − Z)(n)[2n+ 1]

∂X−Y ′,Y−Z��
M(Y − Z)(m)[2m+ 1]

∂X−Y,Y−Z

// M(X − Y ∪ Y ′)[2]

squares (1) and (2) are commutative and square (3) is anti-commutative.

Proof. Put Y ′′ = Y ∪Y ′. Using axiom (Loc) and (Sym)(c), we obtain the following
diagram :

(D) : M(X − Y ′′) //

��

M(X − Y ) //

��

M
(
X−Y
X−Y ′′

)
//

��

M(X − Y ′′)[1]

��
M(X − Y ′) //

��

M(X) //

�� (1)

M
(

X
X−Y ′

)

��

//

(2)

M(X − Y ′)[1]

��

M
(
X−Y ′

X−Y ′′

)
//

��

M
(

X
X−Y

)
//

��

M
(

X/X−Y
X−Y ′/X−Y ′′

)
// //

�� (3)

M
(
X−Y ′

X−Y ′′

)
[1]

��
M(X − Y ′′)[1] // M(X − Y )[1] // M

(
X−Y
X−Y ′′

)
[1] // M(X − Y ′′)[2],

in which any line or any row is a distinguished triangle, every square is commuta-
tive except square (3) which is anticommutative.

We put M(X ;Y, Y ′) = M
(

X/X−Y
X−Y ′/X−Y ′′

)
for short. The proof will consist in

constructing a purity isomorphism p(X;Y,Y ′) : M(X ;Y, Y ′) → M(Z)(d)[2d] which
satisfies the following properties :

(i) Functoriality : The morphism p(X;Y,Y ′) is functorial with respect to mor-
phisms in X which are transversal to Y , Y ′ and Z respectively.

(ii) Symmetry : The following diagram is commutative :

M(X ;Y, Y ′)

p(X;Y,Y ′) ((PPPPPP

ǫ // M(X ;Y ′, Y )

p(X;Y ′,Y )vvmmmmmm

M(Z)(d)[2d],
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where ǫ is the isomorphism given in axiom (Sym).
(iii) Compatibility : The following diagram is commutative :

M(X−Y
′

X−Ω ) //

p(X−Y ′,Y −Z)

��

M( X
X−Y ) //

p(X,Y )

��

M(X ;Y, Y ′) //

p(X;Y,Y ′)

��

M(X−Y
′

X−Ω )[1]

p(X−Y ′,Y −Z)

��
M(Y − Z)(n)[2n] // M(Y )(n)[2n]

j∗ // M(Z)(d)[2d]
∂Y,Z // M(Y − Z)(n)[2n+ 1]

With this isomorphism, we can deduce the three relations of the theorem by con-
sidering squares (1), (2), (3) in the above diagram when we apply the evident
purity isomorphisms where we can. We then are reduced to construct the isomor-
phism and to prove the above relations. The difficult one is the second relation
because we have to show that two isomorphisms in a triangulated category are
equal. This forces to be very precise in the construction of the isomorphism.
We use a construction analog to the construction of the purity isomorphism in
proposition 4.3. The first deformation space (cf paragraph 4.1) for the pair (X,Y )
is B = BY (A1

X). We let P = PYX be the projective completion of the normal
bundle of (X,Y ). Consider also the closed pair (U, V ) = (X − Y ′, Y − Z). The
analog deformation space for (U, V ) is BU = B×XU and the projective completion
of its normal bundle is PV = P ×Y V .
The deformation diagrams (4.1) for (X,Y ) and (U, V ) induce the following mor-
phisms

M(X ;Y, Y ′)=M

(
X/X − Y
U/U − V

)
σ̄1∗−−→M

(
B/B − A1

Y

BU/BU − A1
V

)
σ̄0∗←−−M

(
P/P − Y
PV /PV − V

)

and the axiom (Loc) together with the purity theorem 4.3 shows σ̄0∗ and σ̄1∗ are
isomorphisms.
Using the compatibility of the Gysin triangle with the projective bundle isomor-
phism (cf corollary 4.15), we obtain a commutative diagram :

M(PV /PV − V ) // M(P/P − U) // M
(

P/P−Y
PV /PV −V

)
+1 //

M(PV ) //

OO

M(P ) //

OO

M( P
PV

)
+1 //

OO

M(PV ) // M(P ) // M(PZ)(s)[2s]
+1 //

p
−1
(P,PZ )

OO

M(Y − Z)(n)[2n] //

ln(PV )

OO

M(Y )(n)[2n]
j∗ //

ln(P )

OO

M(Z)(d)[2d]
+1 //

ln(PZ )(s)[2s]

OO

The composite of the vertical maps thus gives a morphism of triangles. Using
property (2) of proposition 4.3, the first two maps of this morphism are isomor-
phisms and so is the third. This last isomorphism together with the maps σ̄1∗ and
σ̄0∗ gives the desired isomorphism p(X;Y,Y ′).
Note that property (iii) is obvious by construction. Property (i) is easily obtained
as in proposition 4.10.
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Thus we have only to prove property (ii). First of all, we remark that the previous
construction implies immediately the commutativity of the diagram :

M(X ;Y, Y ′)

p(X;Y,Y ′) ((PPPPPP

α(X;Y,Y ′) // M(X ;Y, Z)

p(X;Y,Z)vvnnnnnn

M(Z)(d)[2d],

where α(X;Y,Y ′) is induced by the evident open immersions.
Consider the following map

β(X;Y,Y ′) : MZ(X)
π(X,Y,Z)−−−−−→M(X ;Y, Z)

α−1

(X;Y,Y ′)−−−−−−→M(X ;Y, Y ′)

where π(X,Y,Z) is obtained by functoriality as usual – it is an isomorphism from
axioms (Loc) and (Sym). Using the coherence axiom (Sym)(b), one checks that
the following diagram is commutative

MZ(X)
β(X;Y,Y ′)

xxqqqqq β(X;Y ′,Y )

&&NNN
NNN

M(X ;Y, Y ′)
ǫ // M(X ;Y ′, Y ).

Thus, it will be sufficient to prove the commutativity of the following diagram :

MZ(X)

p(X,Z) &&NNNNN

π(X,Y,Z) //
(∗)

M(X ;Y, Z)

p(X;Y,Z)vvnnnnnn

M(Z)(d)[2d].

In the remainings of the proof, we consider the triples of smooth schemes
(X ′, Y ′, Z ′) such that Z ′ ⊂ Y ′ ⊂ X ′ are closed subschemes. A morphism of triples
(f, g, h) : (X ′′, Y ′′, Z ′′) → (X ′, Y ′, Z ′) is a morphism of schemes f : X ′′ → X ′

which is transversal to Y ′ and Z ′, and such that Y ′′ = f−(Y ′), Z ′′ = f−1(Z ′).
Using the functoriality of p(X;Y,Z), we remark that diagram (∗) is natural with
respect to morphisms of triples.
We use the notations of paragraph 4.1. We also put B(X ′, Z ′) := BZ′(X ′), for
a closed pair (X ′, Z ′), and so on for the other schemes depending on a closed
pair, to clarify the following considerations. We consider the evident closed pair
(DZX,DZX |Y ) and we put D(X,Y, Z) = D(DZX,DZX |Y ). This scheme is
in fact fibered over A2. The fiber over (1, 1) is X and the fiber over (0, 0) is
B(BZX ∪ PZX,BZX |Y ∪ PZX |Y ). In particular, the (0, 0)-fiber contains the
scheme P (PZX,PZY ).
We now put : D = D(X,Y, Z), D′ = D(Y, Y, Z). Remark that D(Z,Z, Z) = A2

Z .
Similarly, we put P = P (PZX,PZY ), Q = PZY . Remark finally that if we
consider Q′ = PYX |Z , then19 P = Q×Z Q′.
From the above description of fibers, we obtain a deformation diagram of triples :

(X,Y, Z)→ (D,D′,A2
Z)← (E,G,Z).

19This is equivalent to the canonical isomorphism N(NZX, NZY ) = NZY ⊕ NY X|Z .
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Note that these morphisms are on the smaller closed subscheme the (0, 0)-section
and (1, 1)-section of A2

Z over Z, denoted respectively by s1 and s0. Now we apply
these morphisms to diagram (∗) obtaining the following commutative diagram :

MZ(X)

p(X,Z)

��

πX,Y,Z

��@
@@

@@
@@

// MA2
Z

(D)

p
(D,A2

Z
)

��

""F
FF

FF
FF

MZ(P )

p(P,Z)

��

πP,Q,Z

  A
AA

AA
AA

oo

M(X ;Y, Z)

p(X,Y,Z)
~~~

~~~~~

// M(D;D′,A2
Z)

p(D,D′,Z)
xxx

||xxx

M(P ;Q,Z)

p(P,Q,Z)
|||

~~|||

oo

M(Z)(d)[2d]
s1∗

// M(A2
Z)(d)[2d] M(Z)(d)[2d].s0∗

oo

The square parts of this prism are commutative. As morphisms s1∗ and s0∗ are
isomorphisms, the commutativity of the left triangle is equivalent to the commu-
tativity of the right one.
Thus, we are reduced to the case of the smooth triple (P,Q,Z). Now, using the
canonical split epimorphism M(P )→ M(P/P − Z), we are reduced to prove the
commutativity of the diagram :

M(P )

i∗ ��
--[[[[[[[[[[[[[

M
(

P/P−Q
P−Z/P−Q

)

p(P,Q,Z)
qqccccccccccc

M(Z)(d)[2d]

where i : Z → P denotes the canonical closed immersion.
Using property (iii) of the isomorphism p(P,Q,Z), we are finally reduced to prove
the commutativity of the triangle

M(P )
i∗

--[[[[[[[[[[[
j∗ // M(Q)(n)[2n]

k∗
qqbbbbbbbbbbb

M(Z)(d)[2d]

where we considered Z
k−→ Q

j−→ P the canonical closed embeddings. This now
simply follows from paragraph 4.14 and lemma 4.30. �

As a corollary (apply commutativity of square (1) in the case Y ′ = Z), we get the
functoriality of the Gysin morphism of a closed immersion :

Corollary 4.33. Let Z
l−→ Y

i−→ X be closed immersions between smooth schemes
of respective pure codimension n and m.
Then, l∗ ◦ i∗ = (i ◦ l)∗ as a morphism M(X)→M(Z)(n+m)[2(n+m)].

A corollary of this result, using lemma 4.12, is the compatibility of the Gysin
morphism with products :

Corollary 4.34. Consider a closed immersion i : Z → X (resp. k : T → Y )
between smooth schemes of pure codimension n (resp. m).
Then (i× k)∗ = i∗ ⊗ k∗ as a morphism20 :

M(X)⊗M(Y )→M(Z)⊗M(T )(n+m)[2(n+m)].

20 When we identify M(Z)(n)[2n] ⊗ M(T )(m)[2m] with M(Z) ⊗ M(T )(n + m)[2(n + m)]
through the canonical isomorphism.
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Remark 4.35. In the hypothesis of the previous corollary, we obtain in terms of
fundamental classes :

ηX×Y (Z × T ) = ηX(Z)⊗ ηY (T ).

We also obtain a result of intersection of fundamental classes in the case of smooth
cycles :

Corollary 4.36. Let X be a smooth scheme, Z and T be smooth closed subschemes
of X. We assume that :

(1) The intersection of Z and T in X is proper.
(2) There is a closed subscheme W in Z ∩ T which is smooth, homeomorphic

to Z ∩ T and admits an ample line bundle.
(3) The induced morphism of closed pairs (T,W )→ (X,Z) satisfies condition

(Special).

Let νX,W : H∗∗W (X) → H∗∗(X) be the canonical morphism. According to (Add′),
H∗∗W (X) =

⊕
i∈I H

∗∗
Wi

(X) where (Wi)i∈I are the connected components of W . For
any i ∈ I, we can consider the localised fundamental class η̄X(Wi) as an element
of H∗∗W (X) (see paragraph 4.14). We let ρi ∈ H0,0(Wi) be the F -intersection
multiplicity of Wi in Z ∩ T (see definition 4.24). Then,

ηX(Z) ∪ ηX(T ) = νX,W

(∑
i∈I

ρi.η̄X(Wi)
)

using the H0,0(W )-module structure of H∗∗W (X) obtained through the purity iso-
morphism.

Proof. We apply theorem 4.26 to the obvious square :

W
ν′

//
g ��

T
f��

Z
ν // X.

For any i ∈ I, we let ν′i (resp. µi) be the immersion of Wi in T (resp. X). We
thus obtain the formula in H∗∗(T ) : f∗ν∗(1) =

∑
i∈I ν

′
i∗(ρi).

Applying f∗ to this formula and using corollary 4.11 for the left hand side, corollary
4.33 for the right hand side, we obtain ηX(Z) ⊠ ηX(T ) =

∑
i∈I µi∗(ρi). By the very

definition now, µi∗(ρi) = νX,W (ρi.η̄X(Wi)). �

5. Duality and Gysin morphism

5.1. Preliminaries. For the rest of the section, we fix a monoidal category C
with unit 1.

Definition 5.1. Let M an object of C .
We say M is strongly dualizable if the following conditions are fulfilled :

(1) The functor M ⊗ . admits a right adjoint Hom(M, .).
(2) For any object N of C , consider the map

M ⊗Hom(M,1)⊗N ad⊗1N−−−−→ N

induced by the evident adjunction morphism. Then the adjoint map

Hom(M,1)⊗N → Hom(M,N)
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is an isomorphism.

This definition coincides with definition 1.2 of [DP80]. Obviously, strongly dual-
izable objects are stable by finite sums and tensor product. Remark also that any
invertible object of C for the tensor product is a fortiori strongly dualizable.

Definition 5.2. Consider an object M of C .
A strong dual of M is an object M∨ of C and two morphisms µ : M ⊗M∨ → 1,
ǫ : 1→M∨ ⊗M such that the following composites

(i) M
1⊗ǫ−−→M ⊗M∨ ⊗M µ⊗1−−−→M

(ii) M∨
ǫ⊗1−−→M∨ ⊗M ⊗M∨ 1⊗µ−−−→M∨

are the identity morphisms.

The conditions of the definition imply that M∨ ⊗ . is right adjoint to M ⊗ . and
the natural transformations ǫ ⊗ . and µ ⊗ . are the adjunction transformations.
Moreover, M is strongly dualizable as condition (2) of the first definition simply
follows from the structural isomorphism (M∨⊗1)⊗N ≃M∨⊗N (see also [DP80,
1.3]).
Remark we also obtain that .⊗M∨ is left adjoint to .⊗M with natural transfor-
mation .⊗ µ and .⊗ ǫ. This gives the following reciprocal isomorphisms which we
describe for future needs :

HomC (M∨,E)→ HomC (1,E⊗M),ϕ 7→ (ϕ⊗ 1M ) ◦ ǫ
HomC (1,E⊗M)→ HomC (M∨,E),ψ 7→ (1E ⊗ µ) ◦ (ψ ⊗ 1M∨),

(5.1)

where E is any object of C .
The following lemma gives some precisions on the relation between ”strongly du-
alizable” and ”strong dual” :

Lemma 5.3. Consider a strongly dualizable object M of C . Let M∨ be an object
of C .
Consider the following sets :

(1) Couples of morphisms µ : M ⊗M∨ → 1 and ǫ : M∨ ⊗M → 1 such that
(M∨, µ, ǫ) is a strong dual of M .

(2) Morphisms µ : M ⊗ M∨ → 1 such that the adjoint map φ : M∨ →
Hom(M,1) is an isomorphism.

We associate to any morphism µ in (2) the following composite

ǫµ : 1 ad′−−→ Hom(M,M)→ Hom(M,1)⊗M φ−1⊗1−−−−→M∨ ⊗M
where the first map is the evident adjunction morphism and the second one is
induced by the isomorphism obtained by the property of the strongly dualizable
object M .
Then (µ, ǫµ) is an element of (1) and the application

(2)→ (1), µ 7→ (µ, ǫµ)

is a bijection.

We left the easy check to the reader.
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Definition 5.4. Let M (resp. N) be an object of C and (M∨, µM , ǫM ) (resp.
(N∨, µN , ǫN )) be a strong dual of M (resp. N).
For any morphism f : M → N , we define the transpose morphism of f (with
respect to the chosen strong duals) as the composite

tf : N∨
µM⊗1−−−−→M∨ ⊗M ⊗N∨ 1⊗f⊗1−−−−→M∨ ⊗N ⊗N∨ 1⊗ǫN−−−→M∨.

Remark that the morphism tf in the previous definition is characterized by either
one of the next two properties :

(i) The following diagram is commutative :

M ⊗N∨ f⊗1 //

1⊗tf ��

N ⊗N∨
µN
��

M ⊗M∨ µM // 1.
(ii) The following diagram is commutative :

N∨
tf //

��

M∨

��
Hom(N,1)

Hom(f,1) // Hom(M,1)

where the vertical maps are induced by adjunction from µN and µM – cf
lemma 5.3.

5.2. The projective bundle case. Fix an integer n ≥ 0. Using the projective
bundle theorem 3.2 and axiom (Stab), we obtain that the motive M(Pn) is strongly
dualizable, as a finite sum of invertible motives.
Let λn be the canonical line bundle on Pn, c′ = c1(λn). From the projective
bundle theorem 3.2, c′ is a generator of the A-algebra H∗∗(Pn). Let c = c1(λ∨n).
According to paragraph 3.7, c = m(c′) = −c′ mod c′2 where m is the inverse
series associated to the formal group law F . Thus, the class c is still a generator
of H∗∗(Pn) and also satisfies the relation cn+1 = 0. In all this section on duality,
we systematically use this generator.
We consider the following morphism

µn : M(Pn)⊗M(Pn)(−n)[−2n]
δ∗−→M(Pn)

p∗−→ 1
where p : Pn → S is the canonical projection and δ : Pn → Pn × Pn the diagonal
embedding of Pn/S.
If we consider this morphism as a cohomological class in H2n,n(Pn× Pn), it is the
fundamental class ηPn×Pn(Pn) = δ∗(1) ∈ H2n,n(Pn × Pn) of the diagonal. Using
the projective bundle theorem 3.2, it can be written

ηPn×Pn(Pn) =
∑

0≤i,j≤n
η
(n)
i,j .c

i ∪ dj

where η
(n)
i,j is an element in A2(n−i−j),n−i−j and c (resp. d) is the first Chern class

of the canonical dual line bundle on the first (resp. second) factor of Pn × Pn.

We define the (n + 1)-dimensional square matrix Mn =
(
η
(n)
i,j

)
0≤i,j≤n over the

bigraded ring A. Note that Mn is symmetric. Remark finally that the morphism
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induced by adjunction from µn gives by another application of theorem 3.2 a
morphism

n⊕

i=0

1(n− i)[2(n− i)]→
n⊕

j=0

1(j)[2j]

whose matrix is precisely Mn.

Lemma 5.5. For any integer i ≥ 0, put ηi = η
(i)
ii ∈ A−2i,−i. The matrix Mn has

the form 


0 0 1

}}
}}

}}
}}

}}
}}
η1

}}
}}

}}
}

0

1 η1 ηn




Proof. First remark the lemma is clear when n = 0.
Consider the canonical embedding σ : Pn → Pn+1. We apply the excess intersec-
tion formula 4.16 in the case of the following square

Pn
δ //

σ
��

Pn × Pn

σ×σ
��

Pn+1 δ′ // Pn+1 × Pn+1.

In this case, the excess of codimension is 1 and the excess intersection bundle on
Pn is the canonical dual line bundle λ∨n . Proposition 4.16 then gives the formula
(σ × σ)∗(δ′∗(1)) = δ∗(c1(λ∨n)).
The projection on the first factor p1 : Pn × Pn → Pn gives a retraction of δ, and
consequently, δ∗(c1(λ∨n)) = c ∪ δ∗(1). Thus the previous relation reads :

∑

0≤i,j≤n
η
(n+1)
i,j .ci ∪ dj =

∑

0≤i,j≤n
η
(n)
i,j .c

i+1 ∪ dj

with the notations which precede the lemma. This in turn gives the relations
{
η
(n+1)
0,j = 0 if 0 ≤ j ≤ n,
η
(n+1)
i,j = η

(n)
i−1,j if 0 < i ≤ n and 0 ≤ j ≤ n,

which allow to conclude by induction on the integer n. �

As a corollary, we obtain from lemma 5.3 that µn : M(Pn)⊗M(Pn)(−n)[−2n]→ 1
turns M(Pn)(−n)[−2n] into a strong dual of M(Pn).

Definition 5.6. We define the Gysin morphism p∗ : 1 → M(Pn)(−n)[−2n]
associated to the projection p : Pn → S as the transpose of the morphism
p∗ : M(Pn)→ 1 with respect to the strong duality on M(Pn) induced by µn.
Moreover, for any smooth scheme X , considering the projection pX : PnX → X , we
define the Gysin morphism associated to pX as the morphism

p∗X := 1⊗ p∗ : M(X)→M(PnX)(−n)[−2n].
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Using property (ii) after definition 5.4, we obtain the following way to compute
p∗. Consider the inverse matrix

M−1
n =




η′n η′1

��
��

��
1

��
��

��
��

��
��

�

0

η′1

1 0 0




where η′i ∈ A−2i,−i is given by the determinant of the matrix obtained by removing
line 0 and column n− i from Mn times (−1)i. Then

p∗ : 1→ n⊕

i=0

1(i− n)[2(i− n)]

is given by the vector



η′n
...
η′1
1




.

Note we have the fundamental relation in A−2n,−n :

(5.2)
n∑

i=0

ηi ∪ η
′
n−i =

{
1 if n = 0

0 otherwise

Remark 5.7. The coefficients ηi and η′i will be determined in proposition 5.30 and
corollary 5.31.

5.3. The Gysin morphism associated to a projective morphism.

5.3.1. Preliminary lemmas.

Lemma 5.8. Fix a couple of integers n,m ∈ N and a smooth scheme X. Consider
the projection morphisms

PnX ×X PmX
q′ //

p′ ��

PnX
p
��

PmX
q // X.

Then q′∗p∗ = p′∗q∗.

Obvious from definition 5.6.

Lemma 5.9. Consider a closed immersion i : Z → X between smooth schemes
and an integer n ≥ 0. Consider the pullback square

PnZ
l //

q ��

PnX
p��

Z
i // X.

Then l∗p∗ = q∗i∗.

It follows easily from definition 5.6 and lemma 4.12.
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Lemma 5.10. Consider and integer n ≥ 0 and a smooth scheme X. Consider
the canonical projection p : PnX → X.
Then for any section s : X → PnX of p, we have : s∗p∗ = 1.

Proof. Recall from paragraph 4.14 that s∗ = p∗ ⊠Pn
X

(πX∗s∗) where πX : X → S is
the structural morphism of X/S. We easily obtain the following relation :

(p∗ ⊠Pn
X

1) ◦ p∗ = 1 ⊠X p
∗.

Thus : s∗p∗ = 1 ⊠X(πX∗s∗p∗).
As s is a section of p, it can be written s = ν × 1X for a closed immersion
ν : X → PnS . Consider the following cartesian squares :

X
s //

ν
��

PnS ×X
p //

1Pn
S
×ν

��

X

ν
��

PnS
δ // PnS × PnS

π // PnS

where δ is the diagonal embedding and π the canonical projection on the second
factor. Using the projection formula for each square – for the first square, this
is 4.10, for the second square, it follows easily from definition 5.6 – we obtain :
ν∗s∗p∗ = δ∗π∗ν∗.
As πX∗ = πPn

S∗ν∗, we thus are reduced to prove δ∗π∗ = 1. To conclude, the reader
has the choice :

(1) A direct computation shows that the matrix of π∗ (resp. δ∗), through the
projective bundle isomorphism 3.2, is

(
δki .η

′
n−j
)
(j,k)∈[0,n]2, i∈[0,n]

resp. (ηj+k−l−n)l∈[0,n], (j,k)∈[0,n]2 .

The fundamental relation (5.2) allows to conclude.
(2) Use definition 5.4 to compute π∗ = 1 ⊗ p∗ in terms of the duality pairing

(µn, ǫµn) (cf lemma 5.3). Apply the projection formula 4.10 to compute
directly δ∗π∗ ; the second relation of definition 5.2 concludes.

(3) Prove δ∗ = t(δ∗) using characterization (i) after definition 5.4 (and the
usual projection formula 4.10).

�

5.3.2. Definition.

Lemma 5.11. Consider a commutative diagram :

PnX p
**UUU

Y
k 44jjj

i
**TTT X
PmX q

44iii

where i (resp. k) is a closed immersion of codimension r (resp. s) and p (resp.
q) is the canonical projection. Then, k∗p∗ = i∗q∗.
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Proof. Let us introduce the following morphisms :

PnX p

&&LL
LLL

L

Y

k 00

i ..

ν // PnX ×X PmX
q′

55lllllll

p′

))RRRRRRR
X.

PmX
q

88rrrrrr

Applying lemma 5.8, we are reduced to prove k∗ = ν∗q′∗ and i∗ = ν∗p′∗. In other
words, we are reduced to the case m = 0 and q = 1X .
In this case, we introduce the following morphisms :

Y

77
77

77
77

77

77
77

77
77

77 s
''NNNNN

k

&&
PnY l

//

q
��

PnX
p
��

Y
i // X

Then the lemma follows from lemma 5.9, lemma 5.10 and corollary 4.33. �

Consider smooth schemes X and Y and a projective morphism f : Y → X of

codimension d. Consider an arbitrary factorization Y
i−→ PnX

p−→ X of f into a
closed immersion of codimension d+n and the canonical projection. The preceding
lemma shows that the composite morphism

M(X)
p∗−→M(PnX)(−n)[−2n]

i∗−→M(Y )(d)[2d]

is independent of the chosen factorization.

Definition 5.12. Considering the above notations, we define the Gysin morphism
associated to f as the morphism

f∗ := i∗p∗ : M(X)→M(Y )(d)[2d].

5.3.3. Properties.

5.13. Let us first remark that, as a corollary of 4.34, we obtain : (f×g)∗ = f∗⊗g∗
for any projective morphisms f and g.

Proposition 5.14. Consider projective morphisms Z
g−→ Y

f−→ X between smooth
schemes.
Then g∗f∗ = (fg)∗.

Proof. We choose a factorization Y
i−→ PnX

p−→ X (resp. Z
j−→ PmX

q−→ X) of f (resp.
fg) and we introduce the diagram

PmX
q

��

PnX ×X PmX
q′

((RRRRRR

p′
OO

PmY q′′

))SSSSSSSS

i′ 66llllll
PnX

p
LL

&&LL
Z g //

kss
99ss

j

11

Y f //
i 55kkkkkkkk

X.
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in which p′ is deduced from p by base change and so on for q′ and q′′.
Then, by using the factorizations given in the preceding diagram, the proposition
follows directly using 5.9, 5.8, 4.33 and finally 5.11. �

Proposition 5.15. Consider a commutative square of smooth schemes

T
k //

g ��
Y
f��

Z
i // X

such that i is a closed immersion and f is a projective morphism. Let h be the
pullback of f on X −Z. Let n, m, s, t be the respective codimension of i, k, f , g.
Note that n+ s = m+ t and put d = n+ s.
Then the following square is commutative :

M(T )(d)[2d]
∂Y,T // M(Y − T )(s)[2s+ 1]

M(Z)(n)[2n]
∂X,Z //

g∗
OO

M(X − Z)[1]

h∗

OO

Proof. By construction of the Gysin morphism, we have only to consider the case
where f is the projection of a projective bundle or a closed immersion. It follows
from lemma 4.12 in the first case and from theorem 4.32 in the second. �

Remark 5.16. Applying the two preceding propositions and case (i) of the following
proposition, we obtain that the Gysin triangle is functorial with respect to the
Gysin morphism of a projective morphism in the case of a cartesian square as in
the preceding statement.

Proposition 5.17. Consider a cartesian square of smooth schemes

Y ′
g //

q ��
X ′
p��

Y
f // X

such that f (resp. g) is a projective morphism of codimension n (resp. m). Note
that necessarily, n ≥ m.

(i) Suppose n = m and Y ×X X ′ is smooth ( i.e. Y ′ = Y ×X X ′).
Then f∗p∗ = q∗g∗.

(ii) Suppose Y ×X X ′ is smooth and n > m. Put e = n −m. We attach to
the above square a vector bundle ξ of rank e called the excess intersection

bundle : choose a projective bundle P/X and a factorization Y
i−→ P

p−→ X
of f into a closed immersion followed by the canonical projection. We
obtain a canonical embedding NY ′(P ×X X ′)→ q∗NY (P ) and denote by ξ
the quotient bundle over Y ′. This definition is independent of the choice
of the factorization as shown in [Ful98], proof of prop. 6.6.

Then, f∗p∗ =
(
q∗ ⊠ ce(ξ)

)
◦ g∗.

Proof. In each case, we reduce to the corresponding assertion for a closed immer-
sion (4.10, 4.16 and 4.26) by choosing a factorization of f into a closed immersion
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followed by a projection and by considering its pullback on X ′. Indeed, the asser-
tion (i) when f is the projection of a projective bundle is trivial. �

We obtain finally the analog of corollary 4.11 :

Corollary 5.18. Let f : Y → X be a projective morphism between smooth scheme
of pure codimension d.
Then (1Y ∗ ⊠ f∗) ◦ f∗ = f∗ ⊠ 1X∗ as a morphism M(X)→M(Y ×X)(d)[2d].

The proof is the same as for 4.11 using assertion (i) of the proposition above and
the formula of 5.13.

5.19. We now consider the analog of the ramification formula 4.26. Consider a
commutative square of smooth schemes

T
q //

g �� ∆

Y
f��

Z p
// X

which is cartesian on the underlying topological spaces and such that p and q
are projective morphisms of codimension n. We assume T admits an ample line
bundle.
Put T ′ = T ×X Y and note the morphism T → T ′ induce by ∆ is a thickening. Let
T ′ =

⋃
i∈I T

′
i (resp. T ′i =

⋃
j∈Jj

T ′ij) be the decomposition into connected (resp.

irreducible) components. Put Ti = T ′i ×T ′ T and Tij = T ′ij ×T ′ T . We introduce
the following condition on ∆ :

(Special) For any i ∈ I, there exists an integer ri ≥ 0 such that for any j ∈ Ji,
m(T ′ij) = ri.m(Tij).

In this case, the integer ri will be called the ramification index of f along Ti.

Consider a factorization Z
i−→ P

π−→ X of p into a closed immersion and the
projection of a projective bundle. We put Q = P ×X Y and consider the obvious
morphism of closed pairs (h, g) : (Q, T )→ (P,Z). Of course, ∆ satisfies (Special)
if and only if (h, g) satisfies (Special). Moreover, for any i ∈ I, the element
r(Ti;h, g) is independent of the chosen factorization. Indeed, taking into account
the compatibility of F -intersection multiplicity with flat base change, this boils
down to the following lemma :

Lemma 5.20. Consider a commutative diagram of smooth schemes

T ′

))SSSSSSSS
t
yyttt

t
g′

��
T //

g

��

Y

f

��
Z ′s

yyttt
t

))SSSSSSSS

Z // X

such that T and T ′ are connected and admits an ample line bundle, t = s ×Z T
and (f, g) (resp. (f, g′)) is a morphism of smooth closed pairs satisfying condition
(Special) with ramification index r.
Then, r(T ′; f, g′) = t∗r(T ; f, g) ∈ H0,0(T ′).
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Proof. Consider the blow-up B = BZ(A1
X) (resp. B′ = BZ′(A1

X)) and its excep-
tional divisor P (resp. P ′). As Z ′ ⊂ Z, we get a cartesian transversal square,
together with its pullback over Y

P ′ //

��

B′,

��
P // B.

pullback above Y : Q′ //

��

C′.

��
Q // C

The second square is still transversal. Put L = NQC|Z and L′ = NQ′(C′)|Z′ .
Thus, L′ = L|Z′ . According to this equality, the lemma follows from the definition
of F -intersection multiplicities. �

Definition 5.21. Consider the notations and hypothesis of 5.19, assuming the
square ∆ satisfies condition (Special). For any i ∈ I, we define the F -intersection
multiplicity r(Ti; ∆) of Ti in the pullback square ∆ as the well defined element
r(Ti;h, g) according to the notations above.

The following proposition is now a corollary of 4.26 :

Proposition 5.22. Consider the hypothesis and notations of the preceding defi-
nition. Put gi = g|Ti and qi = q|Ti .
Then, p∗f∗ =

∑
i∈I
(
r(Ti; ∆) ⊠ gi∗

)
q∗i .

5.4. The duality pairing. Let X/S be a smooth projective scheme of pure di-
mension n. Let p : X → S (resp. δ : X → X × X) be its structural morphism
(resp. its diagonal embedding).
Then we define morphisms

µX : 1 p∗−→M(X)(−n)[−2n]
δ∗−→M(X ×X)(−n)[−2n]=M(X)(−n)[−2n]⊗M(X)

ǫX : M(X)⊗M(X)(−n)[−2n]
δ∗−→M(X)

p∗−→ 1.
The following result is now a formality :

Theorem 5.23. Consider the notations above.
Then

(
M(X)(−n)[−2n], µX, ǫX

)
is a strong dual of M(X).

Proof. Each identity of definition 5.2 is an easy application of 5.13, 5.17(i) (the
usual projection formula) and proposition 5.14. �

5.24. Applications : Consider the notations of the previous proposition and let E
be a motive.

(1) We define the fundamental class τX ∈ H2n,n(X) of X as the element

p∗ : 1→M(X)(−n)[−2n].

We also consider η ∈ H2n,n(X ×X) the fundamental class of the diagonal
δ.

Then the isomorphisms of (5.1) with M = M(X) gives exactly, consid-
ering the definitions of cap-product and slant product (cf 2.9), the following
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reciprocal isomorphisms :

Er,p(X) ⇆ E2n−r,p−n(X)

x 7→ x ∩ τX

η/y ←[ y.

(5.3)

This is the Poincaré duality isomorphism, as it appears in algebraic topol-
ogy (cf [Ada74], [Swi02, 14.41, 14.42]). To the knowledge of the author,
the first appearance of this precise form of duality in algebraic geometry
is in [PY02].

(2) Suppose E is a ringed motive. In this case, the regulator maps

ϕX :H2n,n(X)→ E2n,n(X)

ψX :H2n,n(X)→ E2n,n(X)

allow to define the fundamental class of X (resp. the fundamental class of
the diagonal) with coefficients in E as the image ψX(τX) (resp. ϕX(η)) of
the corresponding class with coefficients in H . Moreover, we can obviously
express the isomorphisms above with this classes (cf number (1) above),
obtaining a Poincaré duality purely in terms of the cohomology theory
E∗∗.

(3) Suppose E is a ringed motive.
The morphism

p∗ : E∗∗(X)→ A

induced by the Gysin morphism of p is usually called the trace morphism
(relative to S).

We suppose the cohomology E∗∗ satisfies the following Künneth prop-
erty : for any motivesM,N,P ∈ {1,M(X),M(X)(−n)[−2n]}, the pairing

E∗∗(M)⊗A E∗∗(N)⊗A E∗∗(P )→ E∗∗(M ⊗N ⊗ P )

is an isomorphism.
Then it follows formally that

(
E∗∗(M(X)(−n)[−2n]),E∗∗(µ),E∗∗(ǫ)

)

is a strong dual of E∗∗(M(X)) in the category of graded A-modules.
More concretely, the pairing (induced by E∗∗(µ))

E∗∗(X)⊗A E∗∗(X)→ A, x⊗ y 7→ p∗(x ∪ y)

is a perfect pairing of graded A-modules. This is usually called the
Poincaré duality pairing21 for the cohomology theory E∗∗.

Note it implies that E∗∗(X) is a projective finitely generated graded
A-module (see [DP80, 1.4]).

Example 5.25. The conditions of point (3) are fulfilled when X is a Grassmanian
scheme over S, or more generally a cellular variety over S, without any assumption
on E. In [CD06], we study cohomology theories E∗∗ which satisfies the Künneth
formula.

21 This way of deducing the Poincaré duality pairing from the abstract duality of theorem
5.23 and the Künneth formula was explained to me by D.C.Cisinski.
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The Gysin morphism determine the duality pairing defined above. Reciprocally,
this duality determines the Gysin morphism as shown in the next proposition.

Proposition 5.26. Let f : Y → X be a morphism between smooth projective
S-schemes. Suppose X (resp. Y ) is of constant relative dimension n (resp. m)
over S.
Then

f∗ = t(f∗)(−n)[−2n]

where the transpose morphism on the right hand side is taken with respect to the
strong duals of M(X) and M(Y ) obtained in the previous theorem.

Proof. Consider the structural projections p : X → S, q : Y → S and the diagonal
embeddings δX : X → X ×X , δY : Y → Y ×Y . Let n be the dimension of X Put
M(X)∨ = M(X)(−n)[−2n] and M(Y )∨ = M(Y )(−m)[−2m].
According to the first point which follows definition 5.4, we have to prove the
following square is commutative :

M(Y )⊗M(X)∨
f∗⊗1 //

1⊗f∗

��

M(X)⊗M(X)∨

p∗δ
∗
X��

M(Y )⊗M(Y )∨
q∗δ

∗
Y // 1.

We introduce the following cartesian square :

Y
γ //

f ��

Y ×X
f×1��

X
δX // X ×X

Note that f∗ ⊗ 1 = (f × 1)∗ and 1 ⊗ f∗ = (1 × f)∗ (cf 5.13). The result follows
from the computation :

p∗δ
∗
X(f × 1)∗ = p∗f∗γ

∗ = q∗δ
∗
Y (1× f)∗

which uses 5.17(i) and 5.14. �

5.5. Two illustrations.

5.27. Cobordism classes.—

Definition 5.28. Let X be a smooth projective scheme of pure dimension n. Let
p : X → S be its structural projection.
We define the cobordism class of X/S as the element of A, of (cohomological)
degree (−2n,−n),

[X ] = 1 p∗−→M(X)(−n)[−2n]
p∗−→ 1(−n)[−2n].

In other words, [X ] = p∗(1) as a cohomological class. Note that according to
definition 5.6 and what follows it, we obtain that [Pn] = η′n. Note also that
[X ⊔ Y ] = [X ] + [Y ] (from axiom (Add)) and [X ×S Y ] = [X ] ∪[Y ] (from 5.13).

Example 5.29. Consider a factorization X
i−→ PN

π−→ S of the morphism p into
a closed immersion followed by the canonical projection. Let c = N − n be the
codimension of i. Let ηPN (X) ∈ H2c,c(PN ) be the fundamental class associated to
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the embedding i. Then from corollary 4.33, [X ] = p∗(ηPN (X)) (as a cohomological
class).
Thus, to compute this cobordism class, we can use the projective bundle theorem,

which implies we can write ηPN (X) =
∑N
i=0 xi.c

i where c is the Chern class of the
dual canonical line bundle, and xi is an element of A. Then,

[X ] =

N∑

i=0

xi ∪[P
N−i]

as p∗(ci) = [PN−i] according to definition 5.6.

We want to compute now the cobordism class [Pn]. Let δ : Pn → Pn × Pn be the
diagonal embedding. According to definition 5.6, we have to compute

(5.4) δ∗(1) =
∑

0≤i,j≤n
ηi+j−n.c

i ∪ dj

with the notations preceding lemma 5.5.
Let p1, p2 : Pn × Pn → Pn be the projections respectively on the first and second
factor. Let λ (resp. ξ) be the canonical line bundle (resp. quotient bundle) on Pn.
Consider the vector bundles λ(i) = p−1

i (λ) and ξ(i) = p−1
i (ξ) for i = 1, 2. In the

preceding expression, c = c1(λ∨1 ) and d = c1(λ∨2 ). Put E = Hom(λ1, ξ2) = λ∨1 ⊗ξ2.
We get a section s of this vector bundle considering the canonical morphism

λ1 → An+1 × Pn = Pn × An+1 → ξ2.

It is well known (see [PSP]) that δ(Pn) is the subscheme defined by s = 0. Thus
according to corollary 4.21, δ∗(1) = cn(E) = cn(λ∨1 ⊗ ξ2). From this expression,
we obtain easily :

(1) Additive case : When the formal group law is additive22 (i.e. F (x, y) =
x+ y), according to a well known formula (cf [Ful98, ex. 3.2.2]),

cn(λ1 ⊗ ξ2) =
n∑

i=0

c1(λ1)i ∪ cn−i(ξ2) =
n∑

i=0

ci ∪ dn−i.

Thus, [Pn] = 0 if n > 0.
(2) Case n = 1 : As c2 = d2 = 0, we simply obtain :

c1(λ1 ⊗ ξ2) = F (c1(λ1), c1(ξ2)) = c+ d+ a1,1.c ∪ d.
Thus η1 = a1,1 which implies [P1] = −a1,1.

In the general case, we obtain the following computation :

Proposition 5.30. With the notations introduced above,

δ∗(1) =
∑

0≤i,j≤n
a1,i+j−n.c

i ∪ dj .

Proof. Consider the ind-scheme P∞×Pn and the embedding τ : Pn×Pn → P∞×Pn.
Let p̃1 (resp. p2) be the projection on the first (resp. second) factor of P∞ × Pn.

Put λ̃1 = p̃−1
1 (λ), λ2 = p−1

2 (λ) and ξ2 = p−1
2 (ξ). Thus, with a little abuse of

notation, cn(λ1 ⊗ ξ2) = τ∗cn
(
λ̃1 ⊗ ξ2

)
.

22 This is the case for the category DM(S).
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According to the definition of ξ, we consider the short exact sequence :

0→ λ̃∨1 ⊗ λ2 → λ̃∨1 ⊗ An+1 → λ̃∨1 ⊗ ξ2 → 0.

From the Whitney sum formula 3.13, we thus obtain the relation :

cn+1(λ̃∨1 ⊗ An+1) = c1(λ̃∨1 ⊗ λ2) ∪ cn(λ̃∨1 ⊗ ξ2).

Put c̃ = c1(λ̃1), d = c1(λ2) as cohomology classes in B = H∗∗(P∞ × Pn). Note
moreover the A-algebra B is equal to (A[d]/dn+1)[[c̃]]. In terms of the fundamental
group law F and its inverse power series m, the preceding relation reads23 c̃n+1 =
F (c̃,m(d)) ∪ cn(λ̃∨1 ⊗ ξ2).
We have to prove :

cn(λ̃∨1 ⊗ ξ2) =
∑

0≤i,j≤n
a1,i+j−n.c̃

i ∪ dj mod c̃n+1.

Let m(x) =
∑
k>0mk.x

k (thus m1 = −1,m2 = a1,1, etc). For any integers l, s, we
put

Ml,s =
∑

k1+...+kl=s

k1,...,kl>0

mk1 ...mkl

when (l, s) 6= (0, 0), and M0,0 = 1. Thus, F (c̃,m(d)) =
∑
k,l,s ak,lMl,s.c̃

k ∪ ds. In

particular, F (c̃,m(d)) = u.c̃+ v where u is invertible in B and v is nilpotent. This
implies F (c̃,m(d)) is a non zero divisor in B and we are reduced to prove :

F (c̃,m(d)) ∪
∑

0≤i,j≤n
a1,i+j−n.c̃

i ∪ dj = 0 mod c̃n+1.

The left hand side can be expanded (modulo c̃n+1) as the sum :

∑

0≤u,v≤n


∑

k,l,s

ak,lMl,sa1,u+v−n−k−s


 .c̃u ∪ dv.

Finally, for any integers u, v ∈ [0, n], the coefficient of c̃u ∪ dv in the preceding sum
can be written

∑

w


∑

k,l

ak,lMl,w−k


 a1,u+v−n−w.

This is zero according to the relation F (x,m(x)) = 0. �

From definition 5.6, the previous proposition reads ηi = a1,i. As a corollary (cf
relation (5.2)), we recover the classical Myschenko theorem together with a nice
expression of [Pn] as a determinant :

23This expression for computing δ∗(1) was also obtained in [Pan03b].
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Corollary 5.31. (1) For any integer n ≥ 0,

[Pn] = (−1)n. det




0 0 1

xx
xx

xx
xx

xx
x

a1,1

xx
xx

xx
xx

xx
xx

xxa1,2

zzzz
zzz

z
0

1
a1,1 a1,2 a1,n



.

(2) For any integer n > 0,
∑

0≤i≤n a1,i.[Pn−i] = 0.

The usual formulation of the relations given in (2) uses the series p(x) =
∑

i[P
i].xi

and ω(x) = ∂F
∂y (x, 0). It reads p(x) = ω(x)−1.

Remark 5.32. An interesting problem is to extend this computation to the
case of an arbitrary projective bundle P(E). We hope the fundamental class
ηP(E)×P(E)(P(E)) as an explicit description in terms of the coefficients a1,i and
the Chern classes of E which would give an expression of [P(E)] as a determinant
analog of the above. This will give a counter-part to a classical formula of Quillen.

5.33. Blow-up formulas.—

Proposition 5.34. Let (X,Z) be a smooth closed pair and B be the blow-up of
X with center Z. Let f : B → X be the canonical projection.
Then, f∗f∗ = 1.

Proof. Let s1 (resp. s0, π) be the unit section (resp. zero section, canonical
projection) of A1

X/X . Let B′ be the blow-up of A1
X with center 0 × Z. We

consider the following cartesian square :

X
σ̄1 // B′

f ′

��
X

s1 // A1
X .

From the projection formula 5.17(i), we obtain f ′∗s1∗ = σ̄1∗ which implies f ′∗ =
σ̄1∗π∗ by the axiom (Htp).
Thus we deduce easily : f ′∗f

′∗ = f ′∗σ̄1∗π∗ = s1∗π∗ = 1.
Finally we consider the cartesian diagram :

B
f //

ν ��

X
s0��

B′
f ′

// A1
X

Using once again the projection formula loc. cit. we get : f ′∗f
′∗s0∗ = s0∗f∗f∗.

This concludes using axiom (Htp). �

Lemma 5.35. Let P/X be a projective bundle over a smooth scheme X of pure
dimension d. Let ξ be the canonical quotient bundle of P/X and put e = cd(ξ)
seen as a morphism M(P )→ 1(d)[2d].
Then, (p∗ ⊠ e) ◦ p∗ is an isomorphism.
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Proof. Using the projection formula 5.18, we have to prove that the cohomological
class p∗(e) ∈ H00(X) is a unit. By compatibility of this class with base change
and invariance under isomorphisms of projective bundles, we reduce to the case of
P = PdS. Let s : S → PdS be the canonical section. Then, e = s∗(1) (cf remark 4.5
combined with example 4.7). Thus, following lemma 5.10, p∗(e) = 1. �

Remark 5.36. In the case of an additive formal group law, we can easily see that
p∗(e) = 1 for any projective bundle P/X which implies the composite isomorphism
of the lemma is just the identity.

5.37. Let X be a smooth scheme, Z be a smooth closed subscheme of X of pure
codimension n. Let B be the blow-up of X with center Z and P be the exceptional
divisor. Consider the cartesian squares :

P
k //

p
��

B
f
��

B − Ploo

h��
Z

i // X X − Z.joo

We let λ (resp. ξ = p−1(NZX)/λ) be the canonical line bundle (resp. quotient
bundle) on P = P(NZX) and we put : e = cn−1(ξ).

Proposition 5.38. Using the notations above, the short sequence

0→M(P )

„
p∗
k∗

«

−−−→M(Z)⊕M(B)
(−i∗,f∗)−−−−−→M(X)→ 0

is split exact with splitting
„

0
f∗

«
.

By abuse of notation, we denote by M(P/Z) the kernel24 of the split monomor-

phism p∗ and let k̃∗ : M(P/Z) → M(B) be the morphism induced by k∗. Then,
we obtain an isomorphism

M(P/Z)⊕M(X)
(k̃∗,f∗)−−−−−→M(B).

Proof. The previous short sequence is obviously a complex. The fact
„

0
f∗

«
is a

splitting is proposition 5.34.
We directly prove the last assertion of the proposition which then concludes. Con-
sider the following diagram :

M(X − Z)

„
0
j∗

«

//

h∗

��

(1)

M(P/Z)
⊕

M(X)

„
1 0
0 i∗

«

//

(k̃∗,f
∗)

��

(2)

M(P/Z)
⊕

M(Z)(n)[2n]

(0,∂X,Z ) //

(k∗k̃∗,p
∗)

��

(3)

M(X − Z)[1]

h∗

��
M(B − P )

l∗

// M(B)
k∗

// M(P )(1)[2]
∂B,P

// M(B − P )[1]

The two horizontal lines are distinguished triangles. It is commutative : for square
(1), use the projection formula 5.17(i), for square (2), the functoriality of the Gysin

24If we had a splitting s : Z → P of p, this will be the motive associated to the immersion s.
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morphism 5.14, for square (3), the compatibility of residues and Gysin morphism
5.15 and the defining property of the residue ∂B,P .

As h is an isomorphism, we are reduced to prove (k∗k̃∗, p∗) is an isomorphism.
The normal bundle of k : P → B is the canonical line bundle λ. Thus, from
the self-intersection formula 4.19, k∗k∗ = 1P∗ ⊠ c with c = c1(λ). The remaining
assertion is local in X so that we can assume that NZX is trivializable. Finally,
we compute easily the matrix of

(k∗k∗, p
∗) : ⊕n−1

i=0 M(Z)(i)[2i]⊕M(Z)(n)[2n]→ ⊕n−1
i=0 M(Z)(i+ 1)[2i+ 1]

obtained through the projective bundle isomorphism 3.2 :




0

::
::

::
::

::
::

::
:1

::
::

::
::

::
:0

99
99

99
9 0 [Pn]

[Pn−1]

0

1

0 0 1




.

As the matrix of (k∗k̃∗, p∗) is obtained from the above one removing the first
column, it is obviously invertible. �

Proposition 5.39. Consider the notations 5.37. The short sequence

0→M(B)

„
k∗

f∗

«

−−−−→M(P )(1)[2]⊕M(X)
(p∗ ⊠ e,−i∗)−−−−−−−−→M(Z)(n)[2n]→ 0

is split exact with pseudo-splitting
„

p∗

0

«
.

Let C be the cokernel of the split mono p∗ : M(Z)(n − 1)[2n − 2] → M(P ) and

k̃∗ : M(B)→ C(1)[2] the morphism induced by k∗. Then the following morphism
is an isomorphism :

M(B)

„
k̃∗

f∗

«

−−−−→ C(1)[2]⊕M(X).

Remark 5.40. This second blow-up formula is a generalization of [Ful98, 6.7(a)]. In
case X and Z are projective smooth, it is simply the dual statement of the previous
proposition using 5.26. More precisely, from 5.38 (resp. 5.39) the morphism

„
k∗ p∗
f∗ 0

«
(resp.

„
k
∗

f∗
p∗ 0

«
)

is an isomorphism. These two matrices are dual.

Proof. The above sequence is a complex from the excess intersection formula 4.16
applied to the morphism (f, p). The pseudo-splitting of this sequence is exactly
lemma 5.35. We thus are reduced to the last assertion.
Let π : M(P )(1)[2]→ C(1)[2] be the canonical projection. Consider the following
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diagram :

M(B − P )
l∗ //

(1)h∗

��

M(B)
k∗ //

(2)

„
k̃∗

f∗

«

��

M(P )(1)[2]
∂B,P //

(3)

„
π

p∗ ⊠ e

«

��

M(B − P )[1]

h∗

��
M(X − Z) „

0
j∗

« //
C(1)[2]
⊕

M(X)
„

1 0
0 i∗

« //
C(1)[2]
⊕

M(Z)(n)[2n]
(0,∂X,Z )

// M(X − Z)[1]

The horizontal lines are distinguished triangles. The diagram is commutative : (1)
follows from definitions, (2) is a consequence of the excess intersection formula 4.16
for (f, p) and (3) is a consequence of the same formula, considered for residues.

Finally, we are reduced to prove that
„

π
p∗ ⊠ e

«
is an isomorphism. But coKer(p∗) ≃

Ker(p∗ ⊠ e) by a canonical isomorphism so that the latter morphism is simply the
decomposition isomorphism associated to the split epimorphism p∗ ⊠ e. �
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Abstract. Suppose given functors A × A′ F−→ B G−→ C between
abelian categories, an object X in A and an object X ′ in A′ such
that F (X,−), F (−, X ′) and G are left exact, and such that further
conditions hold. We show that, E1-terms exempt, the Grothendieck
spectral sequence of the composition of F (X,−) and G evaluated at
X ′ is isomorphic to the Grothendieck spectral sequence of the com-
position of F (−, X ′) and G evaluated at X . The respective E2-terms
are a priori seen to be isomorphic. But instead of trying to com-
pare the differentials and to proceed by induction on the pages, we
rather compare the double complexes that give rise to these spectral
sequences.
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0 Introduction

To calculate Ext∗(X,Y ), one can either resolve X projectively or Y injectively;
the result is, up to isomorphism, the same. To show this, one uses the double
complex arising when one resolves both X and Y ; cf. [5, Chap. V, Th. 8.1].
Two problems in this spirit occur in the context of Grothendieck spectral se-
quences; cf. §§ 0.2, 0.3.

0.1 Language

In §3, we give a brief introduction to the Deligne-Verdier spectral sequence
language; cf. [17, II.§4], [6, App.]; or, on a more basic level, cf. [11, Kap. 4].
This language amounts to considering a diagram E(X) containing all the images
between the homology groups of the subquotients of a given filtered complex
X , instead of, as is classical, only selected ones. This helps to gain some elbow
room in practice : to govern the objects of the diagram E(X) we can make use
of a certain short exact sequence; cf. §3.4.
Dropping the E1-terms and similar ones, we obtain the proper spectral sequence
Ė(X) of our filtered complex X . Amongst others, it contains all Ek-terms for
k ≥ 2 in the classical language; cf. §§ 3.6, 3.5.

0.2 First comparison

Suppose given abelian categories A, A′ and B with enough injectives and an
abelian category C. Suppose given objects X ∈ ObA and X ′ ∈ ObA′. Let

A×A′ -F B be a biadditive functor such that F (X,−) and F (−, X ′) are left

exact. Let B -G C be a left exact functor. Suppose further conditions to hold;
see §5.1.
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We have a Grothendieck spectral sequence for the composition G ◦ F (X,−)
and a Grothendieck spectral sequence for the composition G ◦ F (−, X ′). We
evaluate the former at X ′ and the latter at X .

In both cases, the E2-terms are (RiG)(RjF )(X,X ′). Moreover, they both
converge to

(
Ri+j(G ◦ F )

)
(X,X ′). So the following assertion is well-motivated.

Theorem 31. The proper Grothendieck spectral sequences just described are
isomorphic; i.e. ĖGr

F (X,−),G(X ′) ≃ ĖGr
F (−,X′),G(X) .

So instead of “resolving X ′ twice”, we may just as well “resolve X twice”.

In fact, the underlying double complexes are connected by a chain of dou-
ble homotopisms, i.e. isomorphisms in the homotopy category as defined in

[5, IV.§4], and rowwise homotopisms (the proof uses a chain • �double • �roww. •
-roww. • -double •). These morphisms then induce isomorphisms on the associ-

ated proper first spectral sequences.

0.3 Second comparison

Suppose given abelian categories A and B′ with enough injectives and abelian
categories B and C. Suppose given objects X ∈ ObA and Y ∈ ObB. Let

A -F B′ be a left exact functor. Let B × B′ -G C be a biadditive functor
such that G(Y,−) is left exact.

Let B ∈ Ob C[0(B) be a resolution of Y , i.e. a complex B admitting a quasiiso-
morphism ConcY - B. Suppose that G(Bk,−) is exact for all k ≥ 0. Let
A ∈ Ob C[0(A) be, say, an injective resolution of X . Suppose further conditions
to hold; see §6.1.

We have a Grothendieck spectral sequence for the composition G(Y,−) ◦ F ,
which we evaluate at X . On the other hand, we can consider the double
complex G(B,FA), where the indices of B count rows and the indices of A
count columns. To the first filtration of its total complex, we can associate the
proper spectral sequence ĖI

(
G(B,FA)

)
.

If B has enough injectives and B is an injective resolution of Y , then in both
cases the E2-terms are a priori seen to be (RiG)

(
Y, (RjF )(X)

)
. So also the

following assertion is well-motivated.

Theorem 34. We have ĖGr
F,G(Y,−)(X) ≃ ĖI

(
G(B,FA)

)
.

So instead of “resolving X twice”, we may just as well “resolve X once and Y
once”.

The left hand side spectral sequence converges to
(
Ri+j(G(Y,−) ◦F )

)
(X). By

this theorem, so does the right hand side one.

The underlying double complexes are connected by two morphisms of double
complexes (in the directions • - • � •) that induce isomorphisms on the
associated proper spectral sequences.

Of course, Theorems 31 and 34 have dual counterparts.

Documenta Mathematica 13 (2008) 677–737



Comparison of Spectral Sequences Involving Bifunctors 681

0.4 Results of Beyl and Barnes

Let R be a commutative ring. Let G be a group. Let N E G be a normal
subgroup. Let M be an RG-module.
Beyl generalises Grothendieck’s setup, allowing for a variant of a Cartan-
Eilenberg resolution that consists of acyclic, but no longer necessarily injective
objects [4, Th. 3.4]. We have documented Beyl’s Theorem as Theorem 40 in
our framework, without claiming originality.
Beyl uses his Theorem to prove that, from the E2-term on, the Grothendieck

spectral sequence for RG -Mod -(−)N

RN -Mod -(−)G/N

R -Mod at M is iso-
morphic to the Lyndon-Hochschild-Serre spectral sequence, i.e. the spectral
sequence associated to the double complex RG(BarG/N ;R⊗R BarG;R , M); cf.
[4, Th. 3.5], [3, §3.5]. This is now also a consequence of Theorems 31 and 34,
as explained in §§ 8.2, 8.3.
Barnes works in a slightly different setup. He supposes given a commutative
ring R, abelian categories A, B and C of R-modules, and left exact functors
F : A - B and G : B - C, where F is supposed to have an exact left adjoint
J : B - A that satisfies F ◦ J = 1B. Moreover, he assumes A to have ample
injectives and C to have enough injectives. In this setup, he obtains a general
comparison theorem. See [2, Sec. X.5, Def. X.2.5, Th. X.5.4].
Beyl [4] and Barnes [2] also consider cup products; in this article, we do not.

0.5 Acknowledgements

Results of Beyl and Haas are included for sake of documentation that they
work within our framework; cf. Theorem 40 and §4. No originality from my
part is claimed.
I thank B. Keller for directing me to [12, XII.§11]. I thank the referee for
helping to considerably improve the presentation, and for suggesting Lemma 47
and §8.2. I thank G. Carnovale and G. Hiß for help with Hopf algebras.

Conventions

Throughout these conventions, let C and D be categories, let A be an additive category, let
B and B′ be abelian categories, and let E be an exact category in which all idempotents split.

• For a, b ∈ Z, we write [a, b] := {c ∈ Z : a ≤ c ≤ b}, [a, b[ := {c ∈ Z : a ≤ c < b},
etc.

• Given I ⊆ Z and i ∈ Z, we write I≥i := {j ∈ I : j ≥ i} and I<i := {j ∈ I : j < i}.

• The disjoint union of sets A and B is denoted by A ⊔ B.

• Composition of morphisms is written on the right, i.e. -a -b = -ab
.

• Functors act on the left. Composition of functors is written on the left, i.e.

-F -G = -G◦F

• Given objects X, Y in C, we denote the set of morphisms from X to Y by C(X, Y ).

• The category of functors from C to D and transformations between them is denoted
by C,D .
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• Denote by C(A) the category of complexes

X = (· · · -d Xi−1 -d Xi -d Xi+1 -d · · · )

with values in A. Denote by C[0(A) the full subcategory of C(A) consisting of com-

plexes X with Xi = 0 for i < 0. We have a full embedding A -Conc
C[0(A), where,

given X ∈ ObA, the complex Conc X has entry X at position 0 and zero elsewhere.

• Given a complex X ∈ Ob C(A) and k ∈ Z, we denote by X•+k the complex that

has differential Xi+k -(−1)kd
Xi+1+k between positions i and i + 1. We also write

X•−1 := X•+(−1) etc.

• Suppose given a full additive subcategory M ⊆ A. Then A/M denotes the quotient
of A by M, which has the same objects as A, and which has as morphisms residue
classes of morphisms of A, where two morphisms are in the same residue class if their
difference factors over an object of M.

• A morphism in A is split if it isomorphic, as a diagram on • - •, to a morphism

of the form X ⊕ Y -
“

1 0
0 0

”

X ⊕ Z. A complex X ∈ Ob C(A) is split if all of its
differentials are split.

• An elementary split acyclic complex in C(A) is a complex of the form

· · · - 0 - T -1 T - 0 - · · · ,

where the entry T is at positions k and k + 1 for some k ∈ Z. A split acyclic complex
is a complex isomorphic to a direct sum of elementary split acyclic complexes, i.e. a
complex isomorphic to a complex of the form

· · · -
“

0 0
1 0

”

T i ⊕ T i+1 -
“

0 0
1 0

”

T i+1 ⊕ T i+2 -
“

0 0
1 0

”

T i+2 ⊕ T i+3 -
“

0 0
1 0

”

· · ·

Let Csp ac(A) ⊆ C(A) denote the full additive subcategory of split acyclic complexes.
Let K(A) := C(A)/Csp ac(A) denote the homotopy category of complexes with values
in A. Let K[0(A) denote the image of C[0(A) in K(A). A morphism in C(A) is a
homotopism if its image in K(A) is an isomorphism.

• We denote by InjB ⊆ B the full subcategory of injective objects.

• Concerning exact categories, introduced by Quillen [14, p. 15], we use the conventions
of [10, Sec. A.2]. In particular, a commutative quadrangle in E being a pullback is
indicated by

A //

��

B

��
C // D ,

a commutative quadrangle being a pushout by

A //

��

B

��
C // D .

• Given X ∈ Ob C(E) with pure differentials, and given k ∈ Z, we denote by ZkX
the kernel of the differential Xk - Xk+1, by Z′kX the cokernel of the differ-
ential Xk−1 - Xk , and by BkX the image of the differential Xk−1 - Xk.

Furthermore, we have pure short exact sequences BkX -r ZkX - HkX and

HkX -r Z′kX - Bk+1X.
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• A morphism X - Y in C(E) between complexes X and Y with pure differentials is
a quasiisomorphism if Hk applied to it yields an isomorphism for all k ∈ Z. A complex
X with pure differentials is acyclic if HkX ≃ 0 for all k ≥ 0. Such a complex is also
called a purely acyclic complex.

• Suppose that B has enough injectives. Given a left exact functor B -F B′, an object
X ∈ ObB is F -acyclic if RiFX ≃ 0 for all i ≥ 1. In other words, X is F -acyclic if for
an injective resolution I ∈ C[0(InjB) of X (and then for all such injective resolutions),
we have HiFI ≃ 0 for all i ≥ 1.

• By a module, we understand a left module, unless stated otherwise. If A is a ring, we
abbreviate A(−, =) := A -Mod(−, =) = HomA(−,=).

1 Double and triple complexes

We fix some notations and sign conventions.

Let A and B be additive categories. Let C(A) -H B be an additive functor.

1.1 Double complexes

1.1.1 Definition

A double complex with entries in A is a diagram

...
...

...

· · · d // X i+2,j d //

∂

OO

X i+2,j+1 d //

∂

OO

X i+2,j+2 d //

∂

OO

· · ·

X = · · · d // X i+1,j d //

∂

OO

X i+1,j+1 d //

∂

OO

X i+1,j+2 d //

∂

OO

· · ·

· · · d // X i,j d //

∂

OO

X i,j+1 d //

∂

OO

X i,j+2 d //

∂

OO

· · ·

...

∂

OO

...

∂

OO

...

∂

OO

in A such that dd = 0, ∂∂ = 0 and d∂ = ∂d everywhere. As morphisms
between double complexes, we take all diagram morphisms. Let CC(A) denote
the category of double complexes. We may identify CC(A) = C(C(A)).
The double complexes considered in this §1.1 are stipulated to have entries in
A.

Let CCx(A) := C[0(C[0(A)) be the category of first quadrant double complexes,
consisting of double complexes X such that X i,j = 0 whenever i < 0 or j < 0.
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Given a double complex X and i ∈ Z, we let X i,∗ ∈ Ob C(A) denote the com-
plex that has entry X i,j at position j ∈ Z, the differentials taken accordingly;
X i,∗ is called the ith row of X .

Similarly, given j ∈ Z, X∗,j ∈ Ob C(A) denotes the jth column of X .

1.1.2 Applying H in different directions

Given X ∈ Ob CC(A), we let H(X∗,−) ∈ Ob C(A) denote the complex that
has H(X∗,j) at position j ∈ Z, and as differential H(X∗,j) - H(X∗,j+1)
the image of the morphism X∗,j - X∗,j+1 of complexes under H . Similarly,
H(X−,∗) ∈ Ob C(A) has H(Xj,∗) at position j ∈ Z.

In other words, a “∗” denotes the index direction to which H is applied, a “−”
denotes the surviving index direction. For short, “∗” before “−”.

1.1.3 Concentrated double complexes

Given a complex U ∈ Ob C[0(A), we denote by Conc2 U ∈ Ob CCx(A) the
double complex whose 0th row is given by U , and whose other rows are zero;
i.e. given j ∈ Z, then (Conc2 U)i,j equals U j if i = 0, and 0 otherwise, the
differentials taken accordingly. Similarly, Conc1 U ∈ Ob CCx(B) denotes the
double complex whose 0th column is given by U , and whose other columns are
zero.

1.1.4 Row- and columnwise notions

A morphism X -f Y of double complexes is called a rowwise homotopism if

X i,∗ -f
i,∗

Y i,∗ is a homotopism for all i ∈ Z. ProvidedA is abelian, it is called a

rowwise quasiisomorphism if X i,∗ -f
i,∗

Y i,∗ is a quasiisomorphism for all i ∈ Z.

A morphism X -f Y of double complexes is called a columnwise homotopism

if X∗,j -f
∗,j

Y ∗,j is a homotopism for all j ∈ Z. Provided A is abelian, it is

called a columnwise quasiisomorphism if X∗,j -f
∗,j

Y ∗,j is a quasiisomorphism
for all j ∈ Z.

Provided A is abelian, a double complex X is called rowwise split if X i,∗ is split
for all i ∈ Z; a short exact sequence X ′ - X - X ′′ of double complexes is
called rowwise split short exact if X ′i,∗ - X i,∗ - X ′′i,∗ is split short exact
for all i ∈ Z.

A double complex X is called rowwise split acyclic if X i,∗ is a split acyclic
complex for all i ∈ Z. It is called columnwise split acyclic if X∗,j is a split
acyclic complex for all j ∈ Z.
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1.1.5 Horizontally and vertically split acyclic double complexes

An elementary horizontally split acyclic double complex is a double complex of
the form

...
...

...
...

· · · // 0

OO

// T i+1

OO

T i+1 //

OO

0

OO

// · · ·

· · · // 0

OO

// T i

∂

OO

T i //

∂

OO

0

OO

// · · ·

...

OO

...

OO

...

OO

...

OO

.

A horizontally split acyclic double complex is a double complex isomorphic to
a direct sum of elementary horizontally split acyclic double complexes, i.e. to
one of the form

...
...

· · · // T i+1,j⊕T i+1,j+1

“
0 0
1 0

”

//

OO

T i+1,j+1⊕T i+1,j+2 //

OO

· · ·

· · · // T i,j⊕T i,j+1

“
0 0
1 0

”

//

“
∂ 0
0 ∂

”
OO

T i,j+1⊕T i,j+2 //

“
∂ 0
0 ∂

”
OO

· · ·

...

OO

...

OO

.
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An elementary vertically split acyclic double complex is a double complex of
the form

...
...

· · · // 0 //

OO

0 //

OO

· · ·

· · · // T i
d //

OO

T i+1 //

OO

· · ·

· · · // T i
d // T i+1 // · · ·

· · · // 0 //

OO

0 //

OO

· · ·

...

OO

...

OO

.

A vertically split acyclic double complex is a double complex isomorphic to a
direct sum of elementary vertically split acyclic double complexes, i.e. to one
of the form

...
...

· · · // T i+1,j⊕T i+2,j

“
d 0
0 d

”

//

OO

T i+1,j+1⊕T i+2,j+1 //

OO

· · ·

· · · // T i,j⊕T i+1,j

“
d 0
0 d

”

//

“
0 0
1 0

”
OO

T i,j+1⊕T i+1,j+1 //

“
0 0
1 0

”
OO

· · ·

...

OO

...

OO

.

A horizontally split acyclic double complex is in particular rowwise split acyclic.
A vertically split acyclic double complex is in particular columnwise split
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acyclic.
A double complex is called split acyclic if it is isomorphic to the direct sum
of a horizontally and a vertically split acyclic double complex. Let CCsp ac(A)
denote the full additive subcategory of split acyclic double complexes. Let

KK(A) := CC(A)/CCsp ac(A) ;

cf. [5, IV.§4]. A morphism in CC(A) that is mapped to an isomorphism in
KK(A) is called a double homotopism.

A speculative aside. The category K(A) is Heller triangulated; cf.
[10, Def. 1.5.(i), Th. 4.6]. Such a Heller triangulation hinges on two in-
duced shift functors, one of them induced by the shift functor on K(A). Now
KK(A) carries two shift functors, and so there might be more isomorphisms
between induced shift functors one can fix. How can the formal structure of
KK(A) be described?

1.1.6 Total complex

Let KKx(A) be the full image of CCx(A) in KK(A).
The total complex tX of a double complex X ∈ Ob CCx(A) is given by the
complex

tX =
(
X0,0 -(d ∂ )

X0,1 ⊕X1,0 -

“
d ∂ 0
0 −d −∂

”

X0,2 ⊕X1,1 ⊕X2,0

-

 
d ∂ 0 0
0 −d −∂ 0
0 0 d ∂

!

X0,3 ⊕X1,2 ⊕X2,1 ⊕X3,0 - · · ·
)

in Ob C[0(A). Using the induced morphisms, we obtain a total complex func-

tor CCx(A) -t C[0(A). Since t maps elementary horizontally or vertically
split acyclic double complexes to split acyclic complexes, it induces a functor

KKx(A) -t K[0(A). If, in addition, A is abelian, the total complex func-
tor maps rowwise quasiisomorphisms and columnwise quasiisomorphisms to
quasiisomorphisms, as one sees using the long exact homology sequence and
induction on a suitable filtration.
Note that we have an isomorphism U -∼ t Conc1 U , natural in U ∈ Ob C[0(A),
having entries 1U0 , 1U1 , −1U2 , −1U3 , 1U4 , etc. Moreover, U = t Conc2 U ,
natural in U ∈ Ob C[0(A).

1.1.7 The homotopy category of first quadrant double com-
plexes as a quotient

Lemma 1 The residue class functor CC(A) - KK(A), restricted to
CCx(A) - KKx(A), induces an equivalence

CCx(A)/
(
CCsp ac(A) ∩CCx(A)

) -∼ KKx(A) .
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Proof. We have to show faithfulness; i.e. that if a morphism X - Y in
CCx(A) factors over a split acyclic double complex, then it factors over a split
acyclic double complex that lies in Ob CCx(A). By symmetry and additivity,
it suffices to show that if a morphism X - Y in CCx(A) factors over a hor-
izontally split acyclic double complex, then it factors over a horizontally split
acyclic double complex that lies in Ob CCx(A). Furthermore, we may assume
X - Y to factor over an elementary horizontally split acyclic double complex
S concentrated in the columns k and k + 1 for some k ∈ Z. We may assume
that Si,j = 0 for i < 0 and j ∈ Z. If k < 0, and in particular, if k = −1, then
X - Y is zero because S - Y is zero, so that in this case we may assume
S = 0. On the other hand, if k ≥ 0, then S ∈ Ob CCx(A).

Cf. also the similar Remark 2.

1.2 Triple complexes

1.2.1 Definition

Let CCC(A) := C(C(C(A))) be the category of triple complexes. A triple
complex Y has entries Y k,ℓ,m for k, ℓ, m ∈ Z.

We denote the differentials in the three directions by Y k,ℓ,m -d1 Y k+1,ℓ,m,

Y k,ℓ,m -d2 Y k,ℓ+1,m and Y k,ℓ,m -d3 Y k,ℓ,m+1, respectively.
Let k, ℓ, m ∈ Z. We shall use the notation Y −,ℓ,= for the double complex hav-
ing at position (k,m) the entry Y k,ℓ,m, differentials taken accordingly. Similarly
the complex Y k,ℓ,∗ etc.
Given a triple complex Y ∈ Ob CCC(A), we write HY −,=,∗ ∈ Ob CC(A) for
the double complex having at position (k, ℓ) the entry H(Y k,ℓ,∗), differentials
taken accordingly.
Denote by CCC (A) ⊆ CCC(A) the full subcategory of first octant triple com-
plexes; i.e. triple complexes Y having Y k,ℓ,m = 0 whenever k < 0 or ℓ < 0 or
m < 0.

1.2.2 Planewise total complex

For Y ∈ Ob CCC (A) we denote by t1,2Y ∈ Ob CCx(A) the planewise total
complex of Y , defined for m ∈ Z as

(t1,2Y )∗,m := t(Y −,=,m) ,

with the differentials of t1,2Y in the horizontal direction being induced by the
differentials in the third index direction of Y , and with the differentials of
t1,2Y in the vertical direction being given by the total complex differentials.
Explicitly, given k, ℓ ≥ 0, we have

(t1,2Y )k,ℓ =
⊕

i, j≥ 0, i+j = k

Y i,j,ℓ .
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By means of induced morphisms, this furnishes a functor

CCC (A) -t1,2
CCx(A)

Y - t1,2Y .

2 Cartan-Eilenberg resolutions

We shall use Quillen’s language of exact categories [14, p. 15] to deal with
Cartan-Eilenberg resolutions [5, XVII.§1], as it has been done by Mac Lane
already before this language was available; cf. [12, XII.§11]. The assertions in
this section are for the most part wellknown.

2.1 A remark

Remark 2 Let A be an additive category. Then

C[0(A)/
(
C[0(A) ∩ Csp ac(A)

) - K[0(A)

is an equivalence.

Proof. Faithfulness is to be shown. A morphism X - Y in C[0(A)
that factors over an elementary split acyclic complex of the form

(· · · - 0 - T T - 0 - · · · ) with T in positions k and k + 1
is zero, provided k < 0.

2.2 Exact categories

Concerning the terminology of exact categories, introduced by
Quillen [14, p. 15], we refer to [10, Sec. A.2].
Let E be an exact category in which all idempotents split. An object I ∈ Ob E
is called relatively injective, or a relative injective (relative to the set of pure
short exact sequences, that is), if E(−, I) maps pure short exact sequences of
E to short exact sequences. We say that E has enough relative injectives, if
for all X ∈ ObE , there exists a relative injective I and a pure monomorphism
X -r I.
In case E is an abelian category, with all short exact sequences stipulated to
be pure, then we omit “relative” and speak of “injectives” etc.

Definition 3 Suppose given a complex X ∈ Ob C[0(E) with pure differentials.
A relatively injective complex resolution of X is a complex I ∈ Ob C[0(E),
together with a quasiisomorphism X - I, such that the following properties
are satisfied.

(1) The object entries of I are relatively injective.

(2) The differentials of I are pure.

(3) The quasiisomorphism X - I consists of pure monomorphisms.
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We often refer to such a relatively injective complex resolution just by I.
A relatively injective object resolution, or just a relatively injective resolution,
of an object Y ∈ ObE is a relatively injective complex resolution of ConcY .
A relatively injective resolution is the complex of a relatively injective object
resolution of some object in E .

Remark 4 Suppose that E has enough relative injectives. Every complex X ∈
Ob C[0(E) with pure differentials has a relatively injective complex resolution
I ∈ Ob C[0(E). In particular, every object Y ∈ Ob E has a relatively injective
resolution J ∈ Ob C[0(E).

Proof. Let X0 -r I0 be a pure monomorphism into a relatively injective
object I0. Forming a pushout along X0 -r I0, we obtain a pointwise purely
monomorphic morphism of complexes X - X ′ with X ′0 = I0 and X ′k = Xk

for k ≥ 2. By considering its cokernel, we see that it is a quasiisomorphism.
So we may assume X0 to be relatively injective.
Let X1 -r I1 be a pure monomorphism into a relatively injective object I1.
Form a pushout along X1 -r I1 etc.

Remark 5 Suppose given X ∈ Ob C[0(E) with pure differentials such that
HkX ≃ 0 for k ≥ 1. Suppose given I ∈ Ob C[0(E) such that Ik is purely

injective for k ≥ 0, and such that the differential I0 -d I1 has a kernel in E.
Then the map

K[0(E)(X, I) - E
(

Kern(X0 -d X1), Kern(I0 -d I1)
)

that sends a representing morphism of complexes to the morphism induced on
the mentioned kernels, is bijective.

Suppose E to have enough relative injectives. Let I ⊆ E denote the full subcat-
egory of relative injectives. Let C[0, res(I) denote the full subcategory of C[0(I)
consisting of complexes X with pure differentials such that HkX ≃ 0 for k ≥ 1.
Let K[0, res(I) denote the image of C[0, res(I) in K(E).

Remark 6 The functor C[0, res(I) - E, X - H0(X), induces an equiva-
lence

K[0, res(I) -∼ E .

Proof. This functor is dense by Remark 4, and full and faithful by Remark 5.

Remark 7 (exact Horseshoe Lemma)
Given a pure short exact sequence X ′ - X - X ′′ and relatively injective
resolutions I ′ of X ′ and I ′′ of X ′′, there exists a relatively injective resolution
I of X and a pointwise split short exact sequence I ′ - I - I ′′ that maps
under H0 to X ′ - X - X ′′.
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Proof. Choose pure monomorphisms X ′ -r I ′0 and X ′′ -r I ′′0 into relative
injectives I ′0 and I ′′0. Embed them into a morphism from the pure short exact
sequence

X ′ -r X - X ′′

to the split short exact sequence

I ′ -(1 0)
I ′ ⊕ I ′′ -

“
0
1

”

I ′′ .

Insert the pushout T of X ′ -r X along X ′ -r I ′0 and the pullback of
I ′0 ⊕ I ′′0 - I ′′0 along X ′′ -r I ′′0 to see that X - I ′0 ⊕ I ′′0 is purely
monomorphic. So we can take the cokernel B1I ′ - B1I - B1I ′′ of this
morphism of pure short exact sequences. Considering the cokernels on the
commutative triangle (X,T, I ′0 ⊕ I ′′0) of pure monomorphisms, we obtain a
bicartesian square (T, I ′0 ⊕ I ′′0, B1I ′, B1I) and conclude that the sequence of
cokernels is itself purely short exact. So we can iterate.

2.3 An exact category structure on C(A)

Let A be an abelian category with enough injectives.

Remark 8 The following conditions on a short exact sequence
X ′ - X - X ′′ in C(A) are equivalent.

(1) All connectors in its long exact homology sequence are equal to zero.

(2) The sequence BkX ′ - BkX - BkX ′′ is short exact for all k ∈ Z.

(3) The morphism ZkX - ZkX ′′ is epimorphic for all k ∈ Z.

(3′) The morphism Z′kX ′ - Z′kX is monomorphic for all k ∈ Z.

(4) The diagram

BkX ′ //

��

ZkX ′ //

��

HkX ′

��
BkX //

��

ZkX //

��

HkX

��
BkX ′′ // ZkX ′′ // HkX ′′

has short exact rows and short exact columns for all k ∈ Z.

Proof. We consider the diagram in (4) as a (horizontal) short exact sequence
of (vertical) complexes and regard its long exact homology sequence. Taking
into account that all assertions are supposed to hold for all k ∈ Z, we can
employ the long exact homology sequence on X ′ - X - X ′′ to prove the
equivalence of (1), (2), (3) and (4).
Now the assertion (1) ⇐⇒ (3) is dual to the assertion (1) ⇐⇒ (3′).
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Remark 9 The category C(A), equipped with the set of short exact sequences
that have zero connectors on homology as pure short exact sequences, is an exact
category with enough relatively injective objects in which all idempotents split.
With respect to this exact category structure on C(A), a complex is relatively
injective if and only if it is split and has injective object entries.

Cf. [12, XII.§11], where pure short exact sequences are called proper. A rela-
tively injective object in C(A) is also referred to as an injectively split complex.
To a relatively injective resolution of a complex X ∈ Ob C(A), we also refer
as a Cartan-Eilenberg-resolution, or, for short, as a CE-resolution of X ; cf.
[5, XVII.§1]. A CE-resolution is a CE-resolution of some complex. Considered
as a double complex, it is in particular rowwise split and has injective object
entries.

Given a morphism X -f X ′ in C(A), CE-resolutions J of X and J ′ of X ′, a

morphism J -f̂ J ′ in CC(A) such that (J i,j -f̂
i,j

J ′i,j) = (0 - 0) for i < 0
and such that

H0(J∗,− -f̂
∗,−

J ′∗,−) = (X -f X ′)

is called a CE-resolution of X -f X ′. By Remarks 9 and 6, each morphism
in C(A) has a CE-resolution.

Proof of Remark 9. We claim that C(A), equipped with the said set of short
exact sequences, is an exact category. We verify the conditions (Ex 1, 2, 3)
listed in [10, Sec. A.2]. The conditions (Ex 1◦, 2◦, 3◦) then follow by duality.

Note that by Remark 8.(3′), a monomorphism X - Y in C(A) is pure if and
only if Z′k(X - Y ) is monomorphic in A for all k ∈ Z.

Ad (Ex 1). To see that a split monomorphism is pure, we may use additivity
of the functor Z′k for k ∈ Z.

Ad (Ex 2). To see that the composition of two pure monomorphisms is pure,
we may use Z′k being a functor for k ∈ Z.

Ad (Ex 3). Suppose given a commutative triangle

Y

�
@@

@@

��@
@@

@

X

??~~~~~~~~
• // Z ,

in C(A). Applying the functor Z′k to it, for k ∈ Z, we conclude that
Z′k(X - Y ) is monomorphic, whence X - Y is purely monomorphic. So
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we may complete to

A

•@
@@

@

  @
@@

@

// B

Y

�
@@

@@

  @
@@

@

>
~~~~

>>~~~~

X

•~~~~

>>~~~~

• // Z

in C(A) with (X,Y,B) and (A, Y, Z) pure short exact sequences. Applying Z′k

to this diagram, we conclude that Z′k(A - B) is a monomorphism for k ∈ Z,
whence A - B is a pure monomorphism.
This proves the claim.
Note that idempotents in C(A) are split since C(A) is also an abelian category.
We claim relative injectivity of complexes with split differentials and injec-
tive object entries. By a direct sum decomposition, and using the fact that
any monomorphism from an elementary split acyclic complex with injective
entries to an arbitrary complex is split, we are reduced to showing that a pure
monomorphism from a complex with a single nonzero injective entry, at posi-
tion 0, say, to an arbitrary complex is split. So suppose given I ∈ Ob InjA,
X ∈ Ob C(A) and a pure monomorphism Conc I -r X . Using Remark 8.(3′),
we may choose a retraction to the composite (I - X0 - Z′0X). This yields
a retraction to I - X0 that composes to 0 with X−1 - X0, which can be
employed for the sought retraction X - Conc I. This proves the claim.
Let X ∈ Ob C(A). We claim that there exists a pure monomorphism from X
to a relatively injective complex. Since A has enough injectives, by a direct
sum decomposition we are reduced to finding a pure monomorphism from X to
a split complex. Consider the following morphism φk of complexes for k ∈ Z,

· · · // 0 // Xk
(1 0) // Xk ⊕ Z′kX // 0 // · · ·

· · · // Xk−2
d //

OO

Xk−1
d //

d

OO

Xk
d //

(1 p)

OO

Xk+1 //

OO

· · · ,

where Xk -p Z′kX is taken from X . The functor Z′k maps it to the identity.
We take the direct sum of the upper complexes over k ∈ Z and let the mor-
phisms φk be the components of a morphism φ from X to this direct sum. At
position k, this morphism φ is monomorphic because φk is. Moreover, Z′k(φ)
is a monomorphism because Z′k(φk) is. Hence φ is purely monomorphic by
condition (3′) of Remark 8. This proves the claim.

Remark 10 Write E := C(A). Given ℓ ≥ 0, we have a homology functor

E -H
ℓ

A, which induces a functor C(E) -C(Hℓ)
C(A). Suppose given a purely

acyclic complex X ∈ Ob C(E). Then C(Hℓ)X ∈ Ob C(A) is acyclic.
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Proof. This follows using the definition of pure short exact sequences, i.e.
Remark 8.(1).

2.4 An exact category structure on C[0(A)

Write CCx,CE(InjA) for the full subcategory of CCx(A) whose objects are
CE-resolutions. Write KKx,CE(InjA) for the full subcategory of KKx(A) whose
objects are CE-resolutions.

Remark 11 The category C[0(A), equipped with the short exact sequences that
lie in C[0(A) and that are pure in C(A) in the sense of Remark 9 as pure short
exact sequences, is an exact category wherein idempotents are split. It has
enough relative injectives, viz. injectively split complexes that lie in C[0(A).

Proof. To show that it has enough relative injectives, we replace φ0 in the proof

of Remark 9 by X -φ
′
0 ConcX0, defined by X0

-1X0
X0 at position 0.

2.5 The Cartan-Eilenberg resolution of a quasiisomorphism

Abbreviate E := C(A), which is an exact category as in Remark 9. Consider
CCx(A) ⊆ C[0(E), where the second index of X ∈ Ob CCx(A) counts the
positions in E = C(A); i.e. when X is viewed as a complex with values in E ,
its entry at position k is given by Xk,∗ ∈ E = C(A).

Remark 12 Suppose given a split acyclic complex X ∈ Ob C[0(A). There
exists a horizontally split acyclic CE-resolution J ∈ Ob CCx,CE(InjA) of X.

Proof. This holds for an elementary split acyclic complex, and thus also in the
general case by taking a direct sum.

Lemma 13 Suppose given X ∈ Ob CCx(A) with pure differentials when con-
sidered as an object of C[0(E), and with Hk

(
X∗,−

)
≃ 0 in C[0(A) for k ≥ 1.

Suppose given J ∈ Ob CCx(InjA) with split rows Jk,∗ for k ≥ 1. In other
words, J is supposed to consist of relative injective object entries when consid-
ered as an object of C[0(E).
Then the map

(∗) KKx(A)(X, J) -H0((−)∗,−)
K[0(A)

(
H0
(
X∗,−

)
, H0

(
J∗,−

))

is bijective.

Proof. First, we observe that by Remark 5, we have

(∗∗) K[0(E)(X, J) -H0((−)∗,−)
∼ E

(
H0
(
X∗,−

)
, H0

(
J∗,−

))
.

Documenta Mathematica 13 (2008) 677–737



Comparison of Spectral Sequences Involving Bifunctors 695

So it remains to show that (∗) is injective. Let X -f J be a morphism
that vanishes under (∗). Then H0

(
X∗,−

) - H0
(
J∗,−

)
factors over a split

acyclic complex S ∈ Ob C[0(A); cf. Remark 2. Let K be a horizontally split
acyclic CE-resolution of S; cf. Remark 12. By Remark 5, we obtain a mor-
phism X - K that lifts H0

(
X∗,−

) - S and a morphism K - J that lifts

S - H0
(
J∗,−

)
. The composite X - K - J vanishes in KKx(A). The

difference

(X -f J)− (X - K - J)

lifts H0
(
X∗,−

) -0 H0
(
J∗,−

)
. Hence by (∗∗), it vanishes in K[0(E) and so a

fortiori in KKx(A). Altogether, X -f J vanishes in KKx(A).

Proposition 14 The functor CCx,CE(InjA) -H0((−)∗,−)
C[0(A) induces an

equivalence

KKx,CE(InjA) -H0((−)∗,−)
∼ K[0(A) .

Proof. By Lemma 13, this functor is full and faithful. By Remark 4, it is
dense.

Corollary 15 Suppose given X, X ′ ∈ Ob C[0(A). Let J be a CE-resolution
of X. Let J ′ be a CE-resolution of X ′. If X and X ′ are isomorphic in K[0(A),
then J and J ′ are isomorphic in KKx(A).

The following lemma is to be compared to Remark 12.

Lemma 16 Suppose given an acyclic complex X ∈ Ob C[0(A). There exists
a rowwise split acyclic CE-resolution J of X. Each CE-resolution of X is
isomorphic to J in KKx(A).

Proof. By Corollary 15, it suffices to show that there exists a rowwise split
acyclic CE-resolution of X . Recall that a CE-resolution of an arbitrary com-
plex Y ∈ Ob C[0(A) can be constructed by a choice of injective resolutions of
HkY and BkY for k ∈ Z, followed by an application of the abelian Horseshoe
Lemma to the short exact sequences BkY - ZkY - HkY for k ∈ Z and
then to ZkY - Y k - Bk+1Y for k ∈ Z; cf. [5, Chap. XVII, Prop. 1.2].
Since HkX = 0 for k ∈ Z, we may choose the zero resolution for it. Applying
this construction, we obtain a rowwise split acyclic CE-resolution.

Given X -f X ′ in C[0(A), a morphism J -f̂ J ′ in CCx(A) is called a

CE-resolution of X -f X ′ if H0(f̂∗,−) ≃ f , as diagrams of the form • - •.
By Remark 5, given CE-resolutions J of X and J ′ of X ′, there exists a

CE-resolution J -f̂ J ′ of X -f X ′.
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Proposition 17 Let X -f X ′ be a quasiisomorphism in C[0(A). Let

J -f̂ J ′ be a CE-resolution of X -f X ′. Then f̂ can be written as a com-
posite in CCx,CE(InjA) of a rowwise homotopism, followed by a double homo-
topism.

Proof. Choose a pointwise split monomorphism X -a A into a split acyclic
complex X . We can factor

(X -f X ′) =

(
X -(f a )

X ′ ⊕A -

“
1
0

”

X ′
)
,

so that (f a) is a pointwise split monomorphism. Let B be a CE-resolution of
A. Choosing a CE-resolution b of a, we obtain the factorisation

(J -f̂ J ′) =

(
J -( f̂ b)

J ′ ⊕B -

“
1
0

”

J ′
)
.

SinceX ′⊕A -

“
1
0

”

X ′ is a homotopism, J ′⊕B -

“
1
0

”

J is a double homotopism;
cf. Corollary 15. Hence f̂ is a composite of a rowwise homotopism and a double
homotopism if and only if this holds for ( f̂ b). So we may assume that f is
pointwise split monomorphic, so in particular, monomorphic.

By Proposition 14, we may replace the given CE-resolution f̂ by an arbitrary
CE-resolution of f between J and an arbitrarily chosen CE-resolution of X ′

without changing the property of being a composite of a rowwise homotopism
and a double homotopism for this newly chosen CE-resolution of f .

Let X -f X ′ - X̄ be a short exact sequence in C[0(A). Since f is a quasi-
isomorphism, X̄ ∈ Ob C[0(A) is acyclic. Let J̄ be a rowwise split acyclic

CE-resolution of X̄; cf. Lemma 16. The short exact sequence X -f X ′ - X̄
is pure by acyclicity of X̄; cf. Remark 8.(1). Hence by the exact Horseshoe
Lemma, there exists a rowwise split short exact sequence J - J̃ ′ - J̄ of

CE-resolutions that maps to X -f X ′ - X̄ under H0
(
(−)∗,−

)
; cf. Remark 7.

Since J̄ is rowwise split acyclic and since the sequence J - J̃ ′ - J̄ is row-
wise split short exact, J - J̃ ′ is a rowwise homotopism. Since J - J̃ ′ is a

CE-resolution of X -f X ′, this proves the proposition.

3 Formalism of spectral sequences

We follow essentially Verdier [17, II.4]; cf. [6, App.]; on a more basic level, cf.
[11, Kap. 4].

Let A be an abelian category.

Documenta Mathematica 13 (2008) 677–737



Comparison of Spectral Sequences Involving Bifunctors 697

3.1 Pointwise split and pointwise finitely filtered complexes

Let Z∞ := {−∞}⊔Z ⊔ {∞}, considered as a linearly ordered set, and thus as
a category. Write ]α, β] := {σ ∈ Z∞ : α < σ ≤ β} for α, β ∈ Z∞ such that
α ≤ β; etc.

Given X ∈ Ob Z∞,C(A) , the morphism of X on α ≤ β in Z∞ shall be

denoted by X(α) -x X(β).
An object X ∈ Ob Z∞,C(A) is called a pointwise split and pointwise finitely
filtered complex (with values in A), provided (SFF 1, 2, 3) hold.

(SFF 1) We have X(−∞) = 0.

(SFF 2) The morphism X(α)i -x
i

X(β)i is split monomorphic for all
i ∈ Z and all α ≤ β in Z∞.

(SFF 3) For all i ∈ Z, there exist β0, α0 ∈ Z such that X(α)i -x
i

X(β)i

is an identity whenever α ≤ β ≤ β0 or α0 ≤ α ≤ β in Z∞.

The pointwise split and pointwise finitely filtered complexes with values in A
form a full subcategory SFFC(A) ⊆ Z∞,C(A) .

Suppose given a pointwise split and pointwise finitely filtered complex X with
values in A for the rest of the present §3.

Let α ∈ Z∞. Write X̄(α) := Cokern
(
X(α− 1) - X(α)

)
for α ∈ Z. Given

i ∈ Z, we obtain X(α)i ≃⊕σ∈]−∞,α] X̄(σ)i, which is a finite direct sum. We

identify along this isomorphism. In particular, we get as a matrix representa-
tion for the differential

(
X(α)i -d X(α)i+1

)

=


⊕

σ∈]−∞,α] X̄(σ)i -(di
σ,τ)σ,τ ⊕

τ∈]−∞,α] X̄(τ)i+1


 ,

where diσ,τ = 0 whenever σ < τ ; a kind of lower triangular matrix.

3.2 Spectral objects

Let Z̄∞ := Z∞ × Z. Write α+k := (α, k), where α ∈ Z∞ and k ∈ Z. Let
α+k ≤ β+ℓ in Z̄∞ if k < ℓ or (k = ℓ and α ≤ β), i.e. let Z̄∞ be linearly ordered
via a lexicographical ordering. We have an automorphism α+k - α+k+1 of
the poset Z̄∞, to which we refer as shift. Note that −∞+k = (−∞)+k.

We have an order preserving injection Z∞ - Z̄∞ , α - α+0. We use this
injection as an identification of Z∞ with its image in Z̄∞ , i.e. we sometimes
write α := α+0 by abuse of notation.
Let Z̄#

∞ := {(α, β) ∈ Z̄∞ × Z̄∞ : β−1 ≤ α ≤ β ≤ α+1}. We usually
write β/α := (α, β) ∈ Z̄#

∞; reminiscent of a quotient. The set Z̄#
∞ is partially

ordered by β/α ≤ β′/α′ :⇐⇒ (β ≤ β′ and α ≤ α′). We have an automorphism
β/α - (β/α)+1 := α+1/β of the poset Z̄#

∞, to which, again, we refer as shift.
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We write Z#
∞ := {β/α ∈ Z̄#

∞ : −∞ ≤ α ≤ β ≤ ∞}. Note that any element of
Z̄#
∞ can uniquely be written as (β/α)+k for some β/α ∈ Z#

∞ and some k ∈ Z.

We shall construct the spectral object Sp(X) ∈ Ob Z̄#
∞,K(A) . The morphism

of Sp(X) on β/α ≤ β′/α′ in Z̄#
∞ shall be denoted by X(β/α) -x X(β′/α′).

We require that

(
X
(
(β/α)+k

) -x X
(
(β′/α′)+k

))
=

(
X(β/α) -x X(β′/α′)

)•+k

for β/α ≤ β′/α′ in Z̄#
∞; i.e., roughly put, that Sp(X) be periodic up to shift of

complexes.

Define

X
(
β/α

)
:= Cokern

(
X(α) -x X(β)

)

for β/α ∈ Z#
∞. By periodicity, we conclude that X

(
α/α

)
= 0 and X

(
α+1/α

)
=

0 for all α ∈ Z̄∞.

Write

Di
β/α, β′/α′ := (diσ,τ )σ∈]α,β], τ∈]α′,β′] : X(β/α)i - X(β′/α′)i+1

for i ∈ Z and β/α, β′/α′ ∈ Z#
∞.

Given −∞ ≤ α ≤ β ≤ γ ≤ ∞ and i ∈ Z, we let

(
X(β/α)i -x

i

X(γ/α)i
)

:=

(
X(β/α)i -(1 0)

X(β/α)i ⊕X(γ/β)i
)

(
X(γ/α)i -x

i

X(γ/β)i
)

:=

(
X(β/α)i ⊕X(γ/β)i -

“
0
1

”

X(γ/β)i
)

(
X(γ/β)i -x

i

X(α+1/β)i
)

:=

(
X(γ/β)i -

Di
γ/β, β/α

X(β/α)i+1

)
.

By periodicity up to shift of complexes, this defines Sp(X). The construction
is functorial in X ∈ Ob SFFC(A).

3.3 Spectral sequences

Let Z̄##
∞ := {(γ/α, δ/β) ∈ Z̄#

∞ × Z̄#
∞ : δ−1 ≤ α ≤ β ≤ γ ≤ δ ≤ α+1}. Given

(γ/α, δ/β) ∈ Z̄##
∞ , we usually write δ/β//γ/α := (γ/α, δ/β). The set Z̄##

∞ is
partially ordered by

δ/β//γ/α ≤ δ′/β′//γ′/α′ :⇐⇒ (γ/α ≤ γ′/α′ and δ/β ≤ δ′/β′) .

Define the spectral sequence E(X) ∈ Ob Z̄##
∞ ,A of X by letting its value on

δ/β//γ/α ≤ δ′/β′//γ′/α′
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in Z̄##
∞ be the morphism that appears in the middle column of the diagram

H0
(
X(γ/α)

) � //

H0(x)

��

E(δ/β//γ/α)(X) • //

e

��

H0
(
X(δ/β)

)

H0(x)

��
H0
(
X(γ′/α′)

) � // E(δ′/β′//γ′/α′)(X) • // H0
(
X(δ′/β′)

)
.

Given δ/β//γ/α ∈ Z̄##
∞ and k ∈ Z, we also write

E(δ/β//γ/α)+k(X) := E
(
(δ/β)+k//(γ/α)+k

)
(X) .

Altogether,

Z∞,C(A) ⊇ SFFC(A) - Z̄#
∞,K(A) - Z̄##

∞ ,A
X - Sp(X) - E(X) .

3.4 A short exact sequence

Lemma 18 Given ε−1 ≤ α ≤ β ≤ γ ≤ δ ≤ ε ≤ α+1 in Z̄∞, we have a short
exact sequence

E(ε/β//γ/α)(X) -re E(ε/β//δ/α)(X) -e E(ε/γ//δ/α)(X) .

Proof. See [10, Lem. 3.9].

Lemma 19 Given ε−1 ≤ α ≤ β ≤ γ ≤ δ ≤ ε ≤ α+1 in Z̄∞, we have a short
exact sequence

E(ε/γ//δ/α)(X) -re E(ε/γ//δ/β)(X) -e E(α+1/γ//δ/β)(X) .

Proof. Apply the functor induced by β/α - α+1/β to Sp(X). Then apply
[10, Lem. 3.9].

The short exact sequence in Lemma 18 is called a fundamental short exact
sequence (in first notation), the short exact sequence in Lemma 19 is called
a fundamental short exact sequence (in second notation). They will be used
without further comment.

3.5 Classical indexing

Let 1 ≤ r ≤ ∞ and let p, q ∈ Z. Denote

Ep,qr = Ep,qr (X) := E(−p− 1 + r/−p− 1//−p/−p− r)+p+q(X) ,

where i+∞ :=∞ and i−∞ := −∞ for all i ∈ Z.
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Example 20 The short exact sequences in Lemmata 18, 19 allow to derive the
exact couples of Massey. Write

Di,j
r = Di,j

r (X) := E(−i/−∞//−i−r+1/−∞)+i+j(X)

for i, j ∈ Z and r ≥ 1. We obtain an exact sequence

Di, j
r

-e Di−1, j+1
r

-e Ei+r−2, j−r+2
r

-e Di+r−1, j−r+2
r

-e Di+r−2, j−r+3
r

by Lemmata 18, 19.

3.6 Comparing proper spectral sequences

LetX -f Y be a morphism in SFFC(A), i.e. a morphism of pointwise split and

pointwise finitely filtered complexes with values in A. Write E(X) -E(f)
E(Y )

for the induced morphism on the spectral sequences.
For α, β ∈ Z̄∞, we write α <̇ β if

(
α < β

)
or

(
α = β and α ∈ {∞+k : k ∈ Z} ∪ {−∞+k : k ∈ Z}

)
.

We write

˙̄Z##
∞ := {δ/β//γ/α ∈ Z̄##

∞ : δ−1 ≤ α <̇ β ≤ γ <̇ δ ≤ α+1} .

We write

Ė = Ė(X) := E(X)| ˙̄Z##
∞
∈ Ob ˙̄Z##

∞ ,A

for the proper spectral sequence of X ; analogously for the morphisms.

Lemma 21 If E(α+ 1/α− 1//α/α− 2)+k(f) is an isomorphism for all α ∈ Z

and all k ∈ Z, then Ė(f) is an isomorphism.

Proof. Claim 1. We have an isomorphism E(γ/β − 1//β/β − 2)+k(f) for all
k ∈ Z, all β ∈ Z and all γ ∈ Z such that γ > β. We have an isomorphism
E(β + 1/β − 1//β/α− 1)+k(f) for all k ∈ Z, all β ∈ Z and all α ∈ Z such that
α < β.
The assertions follow by induction using the exact sequences

E(γ + 2/γ//γ + 1/β)+k−1 -e E(γ/β − 1//β/β − 2)+k

-e E(γ + 1/β − 1//β/β − 2)+k - 0

and

0 - E(β + 1/β − 1//β/α− 2)+k -e E(β + 1/β − 1//β/α− 1)+k

-e E(β − 1/α− 2//α− 1/α− 3)+k+1 .
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Claim 2. We have an isomorphism E(γ/β− 1//β/α− 1)+k(f) for all k ∈ Z and
all α, β, γ ∈ Z such that α < β < γ.

We proceed by induction on γ − α. By Claim 1, we may assume that α <
β − 1 < β + 1 < γ. Consider the image diagram

E(γ−1/β−1//β/α−1)+k -e E(γ/β−1//β/α−1)+k -re E(γ/β−1//β/α)+k .

Claim 3. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z such that α < β ≤ γ < δ.

We may assume that γ − β ≥ 1, for E(δ/β//β/α)+k = 0. We proceed by
induction on γ − β. By Claim 2, we may assume that γ − β ≥ 2. Consider the
short exact sequence

E(δ/β//γ − 1/α)+k -re E(δ/β//γ/α)+k -e E(δ/γ − 1//γ/α)+k .

Claim 4. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z∞ such that α < β ≤ γ < δ.

In view of Claim 3, it suffices to choose α̃ ∈ Z small enough such that
E(δ/β//γ/α̃)+k(f) = E(δ/β//γ/−∞)+k(f); etc.

Claim 5. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z∞ such that α <̇ β ≤ γ <̇ δ.

In view of Claim 4, it suffices to choose β̃ ∈ Z small enough such that
E(δ/β̃//γ/−∞)+k(f) = E(δ/−∞//γ/−∞)+k(f); etc.

Claim 6. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all
α, β, γ, δ ∈ Z̄∞ such that −∞ ≤ δ−1 ≤ α <̇ β ≤ γ ≤ ∞ < −∞+1 ≤ δ ≤ α+1.

In view of Claim 5, it suffices to consider the short exact sequence

E(∞/β//γ/δ−1)+k -re E(∞/β//γ/α)+k -e E(δ/β//γ/α)+k .

Claim 7. The morphism Ė(f) is an isomorphism.

Suppose given α, β, γ, δ ∈ Z̄∞ such that δ−1 ≤ α <̇ β ≤ γ <̇ δ ≤ α+1. Via a
shift, we may assume that we are in the situation of Claim 5 or of Claim 6.

3.7 The first spectral sequence of a double complex

Let A be an abelian category. Let X ∈ Ob CCx(A). Given n ∈ Z∞, we write
X [n,∗ for the double complex arising from X by replacing X i,j by 0 for all i ∈
[0, n[. We define a pointwise split and pointwise finitely filtered complex tIX ,
called the first filtration of tX, by letting tIX(α) := tX [−α,∗ for α ∈ Z∞; and by
letting tIX(α) - tIX(β) be the pointwise split inclusion tX [−α,∗ - tX [−β,∗

for α, β ∈ Z∞ such that α ≤ β. Let EI = EI(X) := E(tIX). This construction
is functorial in X ∈ Ob CCx(A). Note that tIX(α) = X−α,k+α.

We record the following wellknown lemma in the language we use here.
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Lemma 22 Let α ∈ ]−∞, 0]. Let k ∈ Z such that k ≥ −α. We have

EI(α/α− 1//α/α− 1)+k(X) = Hk+α(X−α,∗)
EI(α+ 1/α− 1//α/α− 2)+k(X) = H−α

(
Hk+α(X−,∗)

)
,

naturally in X ∈ Ob CCx(A).

Proof. The first equality follows by EI(α/α−1//α/α−1)+k = HktIX(α/α−1) =
Hk+α(X−α,∗).

The morphism tIX(α/α−1) - tIX
(
(α−2)+1/α−1

)
= tIX

(
α−1/α−2

)•+1

from Sp(tIX) is at position k ≥ 0 given by

tIX(α)k = X−α,k+α -(−1)α ∂
X−α+1,k+α = tIX(α− 1)k+1 ;

cf. §1.1.6. In particular, the morphisms

EI(α+ 1/α//α+ 1/α)+k−1 -e EI(α/α− 1//α/α− 1)+k

-e EI(α− 1/α− 2//α− 1/α− 2)+k+1

are given by

Hk+α(X−α−1,∗) -(−1)α+1Hk+α(∂)
Hk+α(X−α,∗)

-(−1)αHk+α(∂)
Hk+α(X−α+1,∗) .

Now the second equality follows by the diagram

EI(α+1/α−1//α/α−2)+k

•U
UUUUUUU

e

**UUUUUUUU

EI(α/α−1//α/α−2)+k

•T
TTTTTTT

e

))TTTTTTTT

*jjjjjjjj

e

55jjjjjjjj

EI(α+1/α−1//α/α−1)+k

EI(α+1/α//α+1/α)+k−1 e // EI(α/α−1//α/α−1)+k e //

)iiiiiiii

e

44iiiiiiii

EI(α−1/α−2//α−1/α−2)+k+1 .

Remark 23 Let X -f Y be a rowwise quasiisomorphism in CCx(A). Then
EI(δ/β//γ/α)+k(f) is an isomorphism for δ−1 ≤ α ≤ β ≤ γ ≤ δ ≤ α+1 in Z̄∞
and k ∈ Z.

Proof. It suffices to show that the morphism Sp(tIf) in Z̄#
∞, K(A) is point-

wise a quasiisomorphism. To have this, it suffices to show that tf [k,∗ is a quasi-
isomorphism for k ≥ 0. But f [k,∗ is a rowwise quasiisomorphism for k ≥ 0; cf.
§1.1.6.
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Lemma 24 The functor CCx(A) -ĖI ˙̄Z##
∞ , A factors over

KKx(A) -ĖI ˙̄Z##
∞ , A .

Proof. By Lemma 1, we have to show that ĖI annihilates all elementary horizon-
tally split acyclic double complexes in Ob CCx(A) and all elementary vertically
split acyclic double complexes in Ob CCx(A).
Let U ∈ Ob CCx(A) be an elementary vertically split acyclic double complex
concentrated in rows i and i + 1, where i ≥ 0. Let V ∈ Ob CCx(A) be an
elementary horizontally split acyclic double complex concentrated in columns
j and j + 1, where j ≥ 0.
Since V is rowwise acyclic, EI annihilates V by Remark 23, whence so does ĖI.
Suppose given

(∗) −∞ ≤ α <̇ β ≤ γ <̇ δ ≤ ∞
in Z̄∞ and k ∈ Z. We claim that the functor EI(δ/β//γ/α)+k annihilates U .
We may assume that β < γ. Note that EI(δ/β//γ/α)+k(U) is the image of

Hk
(
tIU(γ/α)

) - Hk
(
tIU(δ/β)

)
.

The double complex U [−δ,∗/U [−β,∗ is columnwise acyclic except possibly if
−β = i+ 1 or if −δ = i+ 1. The double complex U [−γ,∗/U [−α,∗ is columnwise
acyclic except possibly if −α = i + 1 or if −γ = i + 1. All three remaining
combinations of these exceptional cases are excluded by (∗), however. Hence
EI(δ/β//γ/α)+k(U) = 0. This proves the claim.
Suppose given

(∗∗) δ−1 ≤ α <̇ β ≤ γ ≤ ∞ ≤ −∞+1 ≤ δ ≤ α+1 .

in Z̄∞ and k ∈ Z. We claim that the functor EI(δ/β//γ/α)+k annihilates U .
We may assume that β < γ and that δ−1 < α. Note that EI(δ/β//γ/α)+k(U)
is the image of

Hk
(
tIU(γ/α)

) - Hk+1
(
tIU(β/δ−1)

)
.

The double complex U [−β,∗/U [−(δ−1),∗ is columnwise acyclic except possibly
if −(δ−1) = i + 1 or if −β = i + 1. The double complex U [−γ,∗/U [−α,∗ is
columnwise acyclic except possibly if−γ = i+1 or if−α = i+1. Both remaining
combinations of these exceptional cases are excluded by (∗∗), however. Hence
EI(δ/β//γ/α)+k(U) = 0. This proves the claim.
Both claims taken together show that ĖI annihilates U .

4 Grothendieck spectral sequences

4.1 Certain quasiisomorphisms are preserved by a left exact
functor

Suppose given abelian categories A, B, and suppose that A has enough injec-

tives. Let A -F B be a left exact functor.
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Remark 25 Suppose given an F -acyclic object X ∈ ObA and an injective res-

olution I ∈ Ob C[0(InjA) of X. Let ConcX -f I be its quasiisomorphism.

Then ConcFX -Ff FI is a quasiisomorphism.

Proof. This follows since F is left exact and since Hi(FI) ≃ (RiF )X ≃ 0 for
i ≥ 1.

Remark 26 Suppose given a complex U ∈ Ob C[0(A) consisting of F -acyclic
objects. There exists an injective complex resolution I ∈ Ob C[0(InjA)

of U such that its quasiisomorphism U -f I maps to a quasiisomorphism

FU -Ff FI.

Proof. Let J ∈ Ob CCx,CE(InjA) be a CE-resolution of U ; cf. Remark 9. Since
the morphism of double complexes Conc2 U - J is a columnwise quasiiso-
morphism consisting of monomorphisms, taking the total complex, we obtain
a quasiisomorphism U - tJ consisting of monomorphisms. By F -acyclicity
of the entries of U , the image Conc2 FU - FJ under F is a columnwise
quasiisomorphism, too; cf. Remark 25. Hence F maps the quasiisomorphism
U - tJ to the quasiisomorphism FU - F tJ . So we may take I := tJ .

Lemma 27 Suppose given a complex U ∈ Ob C[0(A) consisting of F -acyclic

objects and an injective complex resolution I ∈ Ob C[0(InjA) of U . Let U -f I

be its quasiisomorphism. Then FU -Ff FI is a quasiisomorphism.

Proof. Let U - I ′ be a quasiisomorphism to an injective complex resolution
I ′ that is mapped to a quasiisomorphism by F ; cf. Remark 26. Since U - I ′

is a quasiisomorphism, the induced map K(A)(U, I) �
K(A)(I

′, I) is surjec-
tive, so that there exists a morphism I ′ - I such that (U - I ′ - I) =

(U -f I) in K(A). Since, moreover, U -f I is a quasiisomorphism, I ′ - I
is a homotopism. Since FU - FI ′ is a quasiisomorphism and FI ′ - FI is
a homotopism, we conclude that FU - FI is a quasiisomorphism.

4.2 Definition of the Grothendieck spectral sequence functor

Suppose given abelian categories A, B and C, and suppose that A and B have

enough injectives. Let A -F B and B -G C be left exact functors.
A (F,G)-acyclic resolution of X ∈ ObA is a complex A ∈ Ob C[0(A), together
with a quasiisomorphism ConcX - A, such that the following hold.

(A 1) The object Ai is F -acyclic for i ≥ 0.

(A 2) The object Ai is (G ◦ F )-acyclic for i ≥ 0.

(A 3) The object FAi is G-acyclic for i ≥ 0.
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An object X ∈ ObA that possesses an (F,G)-acyclic resolution is called
(F,G)-acyclicly resolvable. The full subcategory of (F,G)-acyclicly resolvable
objects in A is denoted by A(F,G).

A complex A ∈ Ob C[0(A), together with a quasiisomorphism ConcX - A,
is called an F -acyclic resolution of X ∈ ObA if (A 2) holds.

Remark 28 If F carries injective objects to G-acyclic objects, then (A 1) and
(A 3) imply (A 2).

Proof. Given i ≥ 0, we let I be an injective resolution of Ai, and Ĩ the acyclic
complex obtained by appending Ai to I in position −1. Since Ai is F -acyclic,
the complex F Ĩ is acyclic; cf. Remark 25. Note that FB0Ĩ ≃ FAi is G-acyclic
by assumption. Since

(RkG)F Ĩj - (RkG)FBj+1Ĩ - (Rk+1G)FBj Ĩ

is exact in the middle for j ≥ 0 and k ≥ 1, we may conclude by induction on
j and by G-acyclicity assumption on F Ĩj that FBj Ĩ is G-acyclic for j ≥ 0. In
particular, we have (R1G)(FBj Ĩ) ≃ 0 for j ≥ 0, whence

GFBj Ĩ - GFĨj - GFBj+1Ĩ

is short exact for j ≥ 0. We conclude that (G ◦ F )Ĩ is acyclic. Hence Ai is
(G ◦ F )-acyclic.

To see Remark 28, one could also use a Grothendieck spectral sequence, once
established.

Remark 29 Suppose given X ∈ ObA, an injective resolution I of X and an
F -acyclic resolution A of X. Then there exists a quasiisomorphism A - I

that is mapped to 1X by H0. Moreover, any morphism A -u I that is mapped
to 1X by H0 is a quasiisomorphism and is mapped to a quasiisomorphism

FA -Fu
FI by F .

Proof. Let I ′ be an injective complex resolution of A such that its quasiisomor-
phism A - I ′ is mapped to a quasiisomorphism by F ; cf. Remark 26. We
use the composite quasiisomorphism ConcX - A - I ′ to resolve X by I ′.
To prove the first assertion, note that there is a homotopism I ′ - I resolving
1X ; whence the composite (A - I ′ - I) is a quasiisomorphism resolving
1X .
To prove the second assertion, note that the induced map

K(A)(A, I) �
K(A)(I

′, I) is surjective, whence there is a factorisation

(A - I ′ - I) = (A -u I) in K(A) for some morphism I ′ - I, which,

since resolving 1X as well, is a homotopism. In particular, A -u I is a quasi-

isomorphism. Finally, since FI ′ - FI is a homotopism, also FA -Fu FI is
a quasiisomorphism.
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Alternatively, in the last step of the preceding proof we could have invoked
Lemma 27.

The following construction originates in [5, XVII.§7] and [7, Th. 2.4.1]. In its
present form, it has been carried out by Haas in the classical framework [8].
We do not claim any originality.

I do not know whether the use of injectives in A in the following construction
can be avoided; in any case, it would be desirable to do so.

We set out to define the proper Grothendieck spectral sequence functor

A(F,G)
-ĖGr

F,G ˙̄Z##
∞ , C .

We define ĖGr
F,G on objects. Suppose given X ∈ ObA(F,G). Choose an

(F,G)-acyclic resolution AX ∈ Ob C[0(A) of X . Choose a CE-resolution
JX ∈ Ob CCx(InjB) of FAX . Let EGr

F,G(X) := EI(GJX) = E(tIGJX) ∈
Ob Z̄##

∞ , C be the Grothendieck spectral sequence of X with respect to F
and G. Accordingly, let

ĖGr
F,G(X) := ĖI(GJX) = Ė(tIGJX) ∈ Ob ˙̄Z##

∞ , C

be the proper Grothendieck spectral sequence of X with respect to F and G.

We define ĖGr
F,G on morphisms. Suppose given X ∈ ObA(F,G), and let AX

and JX be as above. Choose an injective resolution IX ∈ Ob C[0(InjA) of

X . Choose a quasiisomorphism AX -pX
IX that is mapped to 1X by H0 and

to a quasiisomorphism by F ; cf. Remark 29. Choose a CE-resolution KX ∈
Ob CCx(InjB) of FIX . Choose a morphism JX -qX

KX in CCx(InjB) that is
mapped to FpX by H0

(
(−)∗,−

)
; cf. Remark 6.

Note that JX -qX
KX can be written as a composite in CCx,CE(InjB) of a

rowwise homotopism, followed by a double homotopism; cf. Proposition 17.

Hence, so can GJX
GqX−−−→ GKX . Thus ĖI(GJX)

ĖI(GqX)−−−−−→ ĖI(GKX) is an
isomorphism; cf. Remark 23, Lemma 24.

Suppose given X -f Y in A(F,G). Choose a morphism IX -f
′

IY in C[0(A)

that is mapped to f by H0. Choose a morphism KX
-f
′′

KY in CCx(InjB)
that is mapped to Ff ′ by H0

(
(−)∗,−

)
; cf. Remark 6. Let

ĖGr
F,G(X

f−→ Y ) :=
(

ĖI(GJX)
ĖI(GqX )−−−−−→∼ ĖI(GKX)

ĖI(Gf
′′)−−−−−→ ĖI(GKY )

ĖI(GqY )←−−−−−∼ ĖI(GJY )

)
.
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The procedure can be adumbrated as follows.

X -f

Y

AX

���
pX

IX
-f ′

AY

���
pY

IY

JX

���
qX

KX
-f ′′

JY

���
qY

KY

We show that this defines a functor ĖGr
F,G : A(F,G)

- ˙̄Z##
∞ , C . We need to

show independence of the construction from the choices of f ′ and f ′′, for then
functoriality follows by appropriate choices.

Let IX -f̃
′

IY and KX
-f̃
′′

KY be alternative choices. The residue classes of
f ′ and f̃ ′ in K[0(A) coincide, whence so do the residue classes of Ff ′ and F f̃ ′

in K[0(B). Therefore, the residue classes of f ′′ and f̃ ′′ in KKx(B) coincide; cf.
Proposition 14. Hence, so do the residue classes of Gf ′′ and Gf̃ ′′ in KKx(C).
Thus ĖI(Gf

′′) = ĖI(Gf̃
′′); cf. Lemma 24.

We show that alternative choices of AX , IX and pX , and of JX , KX and qX ,
yield isomorphic proper Grothendieck spectral sequence functors.

Let ÃX -p̃X
ĨX and J̃X -q̃X

K̃X be alternative choices, where X runs through
ObA(F,G).

Suppose given X -f Y in A(F,G). We resolve the commutative quadrangle

X
f // Y

X
f // Y

in A to a commutative quadrangle

IX
f ′

//

uX

��

IY

uY

��
ĨX

f̃ ′

// ĨY

Documenta Mathematica 13 (2008) 677–737



708 Matthias Künzer

in K[0(A), in which uX and uY are homotopisms; cf. Remark 6. Then we
resolve the commutative quadrangle

FIX
Ff ′

//

FuX

��

FIY

FuY

��
F ĨX

Ff̃ ′

// F ĨY

in K[0(B) to a commutative quadrangle

KX
f ′′

//

vX

��

KY

vY

��
K̃X

f̃ ′′

// K̃Y

in KKx(B); cf. Proposition 14. Therein, vX and vY are each composed of a
rowwise homotopism, followed by a double homotopism; cf. Proposition 17. So
are GvX and GvY . An application of ĖI

(
G(−)

)
yields the sought isotransfor-

mation, viz.

(
ĖI(GJX)

ĖI(GqX )−−−−−→∼ ĖI(GKX)
ĖI(GvX )−−−−−→∼ ĖI(GK̃X)

ĖI(Gq̃X)←−−−−−∼ ĖI(GJ̃X)
)

at X ∈ ObA(F,G); cf. Remark 23, Lemma 24.

Finally, we recall the starting point of the whole enterprise.

Remark 30 ([5, XVII.§7], [7, Th. 2.4.1]) Suppose given X ∈ ObA(F,G)

and k, ℓ ∈ Z≥0. We have

ĖGr
F,G(−k + 1/−k− 1//−k/−k− 2)+k+ℓ(X) ≃ (RkG)(RℓF )(X)

ĖGr
F,G(∞/−∞//∞/−∞)+k+ℓ(X) ≃

(
Rk+ℓ(G ◦ F )

)
(X) ,

naturally in X.

Proof. Keep the notation of the definition of ĖGr
F,G .

We shall prove the first isomorphism. By Lemma 22, we have

ĖGr
F,G(−k + 1/−k− 1//−k/−k− 2)+k+ℓ(X) ≃ Hk(Hℓ(GJ−,∗X )) .

Since JX is rowwise split, we have Hℓ(GJ−,∗X ) ≃ G(HℓJ−,∗X ). Note that

HℓJ−,∗X is an injective resolution of HℓFAX ; cf. Remark 8.(1). By Remark 29,

HℓFAX -HℓFpX

∼ HℓFIX ≃ (RℓF )(X). So

Hk(Hℓ(GJ−,∗X )) ≃ Hk(G(HℓJ−,∗X )) ≃ (RkG)(HℓFAX) ≃ (RkG)(RℓF )(X) .
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We shall prove naturality of the first isomorphism. Suppose given X -f Y
in A(F,G). Consider the following commutative diagram. Abbreviate E :=

Ė(−k + 1/−k− 1//−k/−k− 2)+k+ℓ.

E(tIGJX)
E(tIGqX )

∼
//

≀

��

E(tIGKX)
E(tIGf′′) //

≀

��

E(tIGKY )

≀

��

E(tIGJY )
E(tIGqY )

∼
oo

≀

��
HkHℓGJ−,∗

X

HkHℓGq
−,∗
X

∼
//

≀

��

HkHℓGK−,∗
X

HkHℓGf′′−,∗
//

≀

��

HkHℓGK−,∗
Y

≀

��

HkHℓGJ−,∗
Y

HkHℓGq
−,∗
Y

∼
oo

≀

��
HkGHℓJ−,∗

X

HkGHℓq
−,∗
X

∼
//

≀

��

HkGHℓK−,∗
X

HkGHℓf′′−,∗
//

≀

��

HkGHℓK−,∗
Y

≀

��

HkGHℓJ−,∗
Y

HkGHℓq
−,∗
Y

∼
oo

≀

��
(RkG)HℓFAX

(RkG)HℓF pX

∼
// (RkG)HℓFIX

(RkG)HℓF f′
//

≀

��

(RkG)HℓFIY

≀

��

(RkG)HℓFAY

(RkG)HℓF pY

∼
oo

(RkG)(RℓF )(X)
(RkG)(RℓF )(f) // (RkG)(RℓF )(Y )

We shall prove the second isomorphism. By Lemma 27, the quasiisomorphism
FAX - tJX maps to a quasiisomorphism GFAX - tGJX ≃ GtJX . By

Lemma 27, the quasiisomorphism AX -pX
IX maps to a quasiisomorphism

GFAX -GFpX
GFIX . So

ĖGr
F,G(∞/−∞//∞/−∞)+k+ℓ(X) ≃ Hk+ℓ(tGJX) ≃ Hk+ℓ(GtJX)

≃ Hk+ℓ(GFAX) ≃ Hk+ℓ(GFIX)
≃
(
Rk+ℓ(G ◦ F )

)
(X) .

We shall prove naturality of the second isomorphism. Consider the following
diagram. Abbreviate Ẽ := ĖGr

F,G(∞/−∞//∞/−∞)+k+ℓ.

Ẽ(tIGJX)
Ẽ(tIGqX )

∼
//

≀

��

Ẽ(tIGKX)
Ẽ(tIGf′′) //

≀

��

Ẽ(tIGKY )

≀

��

Ẽ(tIGJY )
Ẽ(tIGqY )

∼
oo

≀

��
Hk+ℓtGJX

Hk+ℓtGqX

∼
//

≀

��

Hk+ℓtGKX

Hk+ℓtGf′′
//

≀

��

Hk+ℓtGKY

≀

��

Hk+ℓtGJY

Hk+ℓtGqY

∼
oo

≀

��
Hk+ℓGtJX

Hk+ℓGtqX

∼
// Hk+ℓGtKX

Hk+ℓGtf′′
// Hk+ℓGtKY Hk+ℓGtJY

Hk+ℓGtqY

∼
oo

Hk+ℓGFAX

Hk+ℓGF pX

∼
//

≀

OO

Hk+ℓGFIX

Hk+ℓGF f′
//

≀

��

OO

Hk+ℓGFIY

≀

��

OO

Hk+ℓGFAY

Hk+ℓGF pY

∼
oo

≀

OO

`
Rk+ℓ(G ◦ F )

´
(X)

(Rk+ℓ(G◦F ))(f)// `Rk+ℓ(G ◦ F )
´
(Y )
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4.3 Haas transformations

The following transformations have been constructed in the classical framework
by Haas [8]. We do not claim any originality.

4.3.1 Situation

Consider the following diagram of abelian categories, left exact functors and
transformations,

A F //

U

��

B G //

V

��

C
W

��
A′ F ′

// B′ G′
// C′ ,

µ 8@yyy yyy
ν 8@yyy yyy

i.e. F ′ ◦ U -µ V ◦ F and G′ ◦ V -ν W ◦ G. Suppose that the conditions
(1, 2, 3) hold.

(1) The categories A, B, A′ and B′ have enough injectives.

(2) The functors U and V carry injectives to injectives.

(3) The functor F carries injective to G-acyclic objects. The functor F ′

carries injective to G′-acyclic objects.

We haveA(F,G) = A since an injective resolution is an (F,G)-acyclic resolution.
Likewise, we have A′(F ′,G′) = A′.
Note in particular the case U = 1A , V = 1B and W = 1C .

We set out to define the Haas transformations

ĖGr
F ′,G′

(
U(−)

) -hI
µ

ĖGr
F,G′◦V

(
−
) -hII

ν
ĖGr
F,W◦G

(
−
)
,

where hI
µ depends on F , F ′, G′, U , V and µ, and where hII

ν depends on F , G,
G′, V , W and ν.

4.3.2 Construction of the first Haas transformation

Given T ∈ ObA, we let ĖGr
F,G(T ) be defined via an injective resolution IT of T

and via a CE-resolution JT of FIT ; cf. §4.2.

Given T ′ ∈ ObA′, we let ĖGr
F ′,G′(T ′) be defined via an injective resolution I ′T ′

of T ′ and via a CE-resolution J ′T ′ of F ′I ′T ′ ; cf. §4.2.

We define hI
µ. Let X ∈ ObA. By Remark 5, there is a unique morphism

I ′UX
-h
′X

UIX in K[0(A′) that maps to 1UX under H0. Let J ′UX
-h
′′X

V JX
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be the unique morphism in KKx(B′) that maps to the composite mor-

phism
(
F ′I ′UX

-F ′h′X
F ′UIX -µ V FIX

)
in K[0(B′) under H0

(
(−)∗,−

)
; cf.

Lemma 13. Let the first Haas transformation be defined by

(
ĖGr
F ′,G′

(
UX

) -hI
µX

ĖGr
F,G′◦V

(
X
))

:=
(

EI(G
′J ′UX) -EI(G

′h′′X)
EI(G

′V JX)
)
.

We show that hI
µ is a transformation. Let X -f Y be a morphism in A.

Let IX -f
′

IY resolve X -f Y . Let JX -f
′′

JY resolve FIX -f
′

FIY .

Let I ′UX
-f̃
′

I ′UY resolve UX -Uf UY . Let J ′UX
-f̃
′′

JUY resolve

F ′IUX -F
′f̃ ′

F ′IUY . The quadrangle

UX

Uf

��

UX

Uf

��
UY UY

commutes in A′. Hence, by Remark 5, applied to I ′UX and UIY , the resolved
quadrangle

I ′UX
h′X //

f̃ ′

��

UIX

Uf ′

��
I ′UY

h′Y

// UIY

commutes in K[0(A′). Hence both quadrangles in

F ′I ′UX
F ′h′X //

F ′f̃ ′

��

F ′UIX

F ′Uf ′

��

µ // V FIX

V Ff ′

��
F ′I ′UY

F ′h′Y

// F ′UIY µ
// V FIY

commute in K[0(B′). By Lemma 13, applied to J ′UX and V JY , the outer quad-
rangle in the latter diagram can be resolved to the commutative quadrangle

J ′UX
h′′X //

f̃ ′′

��

V JX

V f ′′

��
J ′UY

h′′Y

// V JY
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in KKx(B′). Applying EI

(
G′(−)

)
and employing the definitions of ĖGr

F ′,G′ ,

ĖGr
F,G′◦V and hI

µ , we obtain the sought commutative diagram

ĖGr
F ′,G′(UX)

hI
µX //

ĖGr
F ′,G′ (Uf)

��

ĖGr
F,G′◦V (X)

ĖGr
F,G′◦V

(f)

��
ĖGr
F ′,G′(UY )

hI
µY

// ĖGr
F,G′◦V (Y )

in ˙̄Z##
∞ , C′ .

4.3.3 Construction of the second Haas transformation

We maintain the notation of §4.3.2.
Given X ∈ ObA, we let the second Haas transformation be defined by

(
ĖGr
F,G◦V

(
X
) -hII

ν X ĖGr
F,W◦G

(
X
))

:=
(

ĖI(G
′V JX) -ĖI(ν)

ĖI(WGJX)
)
.

It is a transformation since ν is.

5 The first comparison

5.1 The first comparison isomorphism

Suppose given abelian categories A, A′ and B with enough injectives and an
abelian category C.
Let A×A′ -F B be a biadditive functor. Let B -G C be an additive functor.
Suppose given objects X ∈ ObA and X ′ ∈ ObA′. Suppose the following
properties to hold.

(a) The functor F (−, X ′) : A - B is left exact.

(a′) The functor F (X,−) : A′ - B is left exact.

(b) The functor G is left exact.

(c) The object X possesses a
(
F (−, X ′), G

)
-acyclic resolution A ∈

Ob C[0(A).

(c′) The object X ′ possesses a
(
F (X,−), G

)
-acyclic resolution A′ ∈

Ob C[0(A′).

Moreover, the resolutions appearing in (c) and (c′) are stipulated to have the
following properties.
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(d) For all k ≥ 0, the quasiisomorphism ConcX - A is mapped to a quasi-
isomorphism ConcF (X,A′k) - F (A,A′k) under F (−, A′k).

(d′) For all k ≥ 0, the quasiisomorphism ConcX ′ - A′ is mapped to a
quasiisomorphism ConcF (Ak, X ′) - F (Ak, A′) under F (Ak,−).

The conditions (d, d′) are e.g. satisfied if F (−, A′k) and F (Ak,−) are exact for
all k ≥ 0.

Theorem 31 (first comparison) The proper Grothendieck spectral se-
quence for the functors F (X,−) and G, evaluated at X ′, is isomorphic to
the proper Grothendieck spectral sequence for the functors F (−, X ′) and G,
evaluated at X; i.e.

ĖGr
F (X,−),G(X ′) ≃ ĖGr

F (−,X′),G(X)

in ˙̄Z##
∞ , C .

Proof. Let JA , JA′ , JA,A′ ∈ Ob CCx(InjB) be CE-resolutions of the com-
plexes F (A,X ′), F (X,A′), tF (A,A′) ∈ Ob C[0(B), respectively.
The quasiisomorphism ConcX - A is mapped to the morphism
F (ConcX,A′) - F (A,A′), yielding F (X,A′) - tF (A,A′), which is a
quasiisomorphism since ConcF (X,A′k) - F (A,A′k) is a quasiisomorphism
for all k ≥ 0 by (d).
Choose a CE-resolution JA′ - JA,A′ of F (X,A′) - tF (A,A′); cf. Re-
mark 6. Since the morphism F (X,A′) - tF (A,A′) is a quasiisomorphism,
JA′ - JA,A′ is a composite in CCx,CE(InjB) of a rowwise homotopism and
a double homotopism; cf. Proposition 17. So is GJA′ - GJA,A′ . Hence, by
Remark 23 and by Lemma 24, we obtain an isomorphism of the proper spectral
sequences of the first filtrations of the total complexes,

ĖGr
F (X,−),G(X ′) = ĖI(GJA′) -∼ ĖI(GJA,A′) .

Likewise, we have an isomorphism

ĖGr
F (−,X′),G(X) = ĖI(GJA) -∼ ĖI(GJA,A′) .

We compose to an isomorphism ĖGr
F (X,−),G(X ′) -∼ ĖGr

F (−,X′),G(X) as sought.

5.2 Naturality of the first comparison isomorphism

We narrow down the assumptions just as we have done for the introduction of
the Haas transformations in §4.3.1 in order to be able to express, in this narrower
case, a naturality of the first comparison isomorphism from Theorem 31.

Suppose given abelian categories A, A′ and B with enough injectives and an
abelian category C.
Let A×A′ -F B be a biadditive functor. Let B -G C be an additive functor.
Suppose that the following properties hold.
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(a) The functor F (−, X ′) : A - B is left exact for all X ′ ∈ ObA′.

(a′) The functor F (X,−) : A′ - B is left exact for all X ∈ ObA.

(b) The functor G is left exact.

(c) For all X ′ ∈ ObA′, the functor F (−, X ′) carries injective objects to
G-acyclic objects.

(c′) For all X ∈ ObA, the functor F (X,−) carries injective objects to
G-acyclic objects.

(d) The functor F (I,−) is exact for all I ∈ Ob InjA.

(d′) The functor F (−, I ′) is exact for all I ′ ∈ Ob InjA′.

Proposition 32 Suppose given X -x X̃ in A and X ′ ∈ ObA′. Note that
we have a transformation F (x,−) : F (X,−) - F (X̃,−). The following
quadrangle, whose vertical isomorphisms are given by the construction in the
proof of Theorem 31, commutes.

ĖGr
F (X,−),G(X ′)

hI
F (x,−)X

′

//

≀
��

ĖGr
F (X̃,−),G

(X ′)

≀
��

ĖGr
F (−,X′),G(X)

ĖGr
F(−,X′),G

(x)
// ĖGr
F (−,X′),G(X̃)

For the definition of the first Haas transformation hI
F (x,−), see §4.3.2.

An analogous assertion holds with interchanged roles of A and A′.
Proof of Proposition 32. Let I resp. Ĩ be an injective resolution of X resp. X̃ in

A. Let I -x̂ Ĩ be a resolution of X -x X̃ . Let I ′ be an injective resolution
of X ′ in A′.
Let J

(X)
I′ resp. J

(X̃)
I′ be a CE-resolution of F (X, I ′) resp. F (X̃, I ′).

Let JI,I′ resp. JĨ,I′ be a CE-resolution of tF (I, I ′) resp. tF (Ĩ , I ′).

Let JI resp. JĨ be a CE-resolution of F (I,X ′) resp. F (Ĩ , X ′).
We have a commutative diagram

F (X, I ′)
F (x,I′) //

��

F (X̃, I ′)

��
tF (I, I ′)

tF (x̂,I′) // tF (Ĩ , I ′)

F (I,X ′)
F (x̂,X′) //

OO

F (Ĩ , X ′)

OO

Documenta Mathematica 13 (2008) 677–737



Comparison of Spectral Sequences Involving Bifunctors 715

in C[0(B), hence in K[0(B). By Proposition 14, it can be resolved to a commu-
tative diagram

J
(X)
I′

//

��

J
(X̃)
I′

��
JI,I′ // JĨ,I′

JI //

OO

JĨ

OO

in KKx(B). Application of ĖI

(
G(−)

)
yields the result; cf. Lemma 24.

We refrain from investigating naturality of the first comparison isomorphism in
G.

6 The second comparison

6.1 The second comparison isomorphism

Suppose given abelian categories A and B′ with enough injectives, and abelian
categories B and C.
Let A -F B′ be an additive functor. Let B×B′ -G C be a biadditive functor.
Suppose given objects X ∈ ObA and Y ∈ ObB. Let B ∈ Ob C[0(B) be
a resolution of Y , i.e. suppose a quasiisomorphism ConcY - B to exist.
Suppose the following properties to hold.

(a) The functor F is left exact.

(b) The functor G(Y,−) is left exact.

(c) The objectX possesses an (F, G(Y,−))-acyclic resolutionA ∈ Ob C[0(A).

(d) The functor G(Bk,−) is exact for all k ≥ 0.

(e) The functor G(−, I ′) is exact for all I ′ ∈ Ob InjB′.

Remark 33 Suppose given a morphism D -f D′ in CCx(C). If Hℓ(f−,∗) is
a quasiisomorphism for all ℓ ≥ 0, then f induces an isomorphism

ĖI(D) -ĖI(f)
ĖI(D

′)

of proper spectral sequences.

Proof. By Lemma 21, it suffices to show that EI(α + 1/α− 1//α/α− 2)+k(f)
is an isomorphism for all α ∈ Z and all k ∈ Z. By Lemma 22, this amounts to
isomorphisms HkHℓ(f−,∗) for all k, ℓ ≥ 0, i.e. to quasiisomorphisms Hℓ(f−,∗)
for all ℓ ≥ 0.
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Consider the double complex G(B,FA) ∈ Ob CCx(C), where the indices of B
count rows and the indices of A count columns. To the first filtration of its
total complex, we can associate the proper spectral sequence ĖI(G(B,FA)) ∈
Ob ˙̄Z##

∞ , C .

Theorem 34 (second comparison) The proper Grothendieck spectral se-
quence for the functors F and G(Y,−), evaluated at X, is isomorphic to
ĖI(G(B,FA)); i.e.

ĖGr
F,G(Y,−)(X) ≃ ĖI(G(B,FA))

in ˙̄Z##
∞ , C .

Proof. Let J ′ ∈ Ob CCx(InjB′) be a CE-resolution of FA. By definition,
ĖGr
F,G(Y,−)(X) = ĖI(G(Y, J ′)). By Remark 33, it suffices to find D ∈ Ob CCx(C)

and two morphisms of double complexes

G(B,FA) -u D �v
G(Y, J ′)

such that Hℓ(u−,∗) and Hℓ(v−,∗) are quasiisomorphisms for all ℓ ≥ 0.
Given a complex U ∈ Ob C[0(B), recall that we denote by Conc2U ∈ Ob CCx(B)
the double complex whose row number 0 is given by U , and whose other rows
are zero.
We have a diagram

G(B,Conc2 FA) - G(B, J ′) � G(ConcY, J ′)

in CCC (C). Let ℓ ≥ 0. Application of Hℓ
(
(−)−,=,∗

)
yields a diagram

(∗) Hℓ
`

G(B, Conc2 FA)−,=,∗´ - Hℓ
`

G(B, J ′)−,=,∗´ � Hℓ
`

G(Conc Y, J ′)−,=,∗´

in CCx(C). We have

Hℓ
(
G(B,Conc2 FA)−,=,∗

)
≃ G

(
B , Hℓ

(
(Conc2 FA)−,∗

))

= G
(
B,Conc Hℓ(FA)

)

and
Hℓ
(
G(B, J ′)−,=,∗

)
≃ G

(
B,Hℓ(J ′−,∗)

)
,

since the functor G(Bk,−) is exact for all k ≥ 0 by (d), or, since the
CE-resolution J is rowwise split. Since the CE-resolution J ′ is rowwise split,
we moreover have

Hℓ
(
G(ConcY, J ′)−,=,∗

)
≃ G

(
ConcY,Hℓ(J ′−,∗)

)
.

So the diagram (∗) is isomorphic to the diagram

(∗∗) G
(
B,Conc Hℓ(FA)

) - G
(
B,Hℓ(J ′−,∗)

) � G
(

ConcY, Hℓ(J ′−,∗)
)
,
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whose left hand side morphism is induced by the quasiisomorphism
Conc Hℓ(FA) - Hℓ(J ′−,∗), and whose right hand side morphism is induced
by the quasiisomorphism ConcY - B.
By exactness ofG(Bk,−) for k ≥ 0, the left hand side morphism of (∗∗) is a row-
wise quasiisomorphism. Since Hℓ(J ′k,∗) is injective, the functor G(−,Hℓ(J ′k,∗))
is exact by (e), and therefore the right hand side morphism of (∗∗) is a column-
wise quasiisomorphism. Thus an application of t to (∗∗) yields two quasi-
isomorphisms; cf. §1.1.6. Hence, also an application of t to (∗) yields two
quasiisomorphisms in the diagram

tHℓ
`

G(B, Conc2 FA)−,=,∗´ - tHℓ
`

G(B, J ′)−,=,∗´ � tHℓ
`

G(Conc Y, J ′)−,=,∗´

.

Note that t ◦ Hℓ
(
(−)−,=,∗

)
= Hℓ

(
(−)−,∗

)
◦ t1,2, where t1,2 denotes taking the

total complex in the first and the second index of a triple complex; cf. §1.2.2.
Hence we have a diagram

Hℓ
`

(t1,2G(B, Conc2 FA))−,∗´ - Hℓ
`

(t1,2G(B, J ′))−,∗´ � Hℓ
`

(t1,2G(Conc Y, J ′))−,∗´

consisting of two quasiisomorphisms. This diagram in turn, is isomorphic to

Hℓ
(
G(B,FA)−,∗

)
- Hℓ

(
(t1,2G(B, J ′))−,∗

)
� Hℓ

((
G(Y, J ′)

)−,∗)
,

where the left hand side morphism is obtained by precomposition with the
isomorphism G(B,FAk) -∼ t Conc1G(B,FAk) = (t1,2G(B,Conc2 FA))−,k,
where k ≥ 0; cf. §1.1.6.
Hence we may take

(
G(B,FA) -u D �v

G(B, J ′)
)

:=
(
G(B,FA) - t1,2G(B, J ′) � G(Y, J ′)

)
.

6.2 Naturality of the second comparison isomorphism

Again, we narrow down the assumptions just as we have done for the introduc-
tion of the Haas transformations in §4.3.1 to express a naturality of the second
comparison isomorphism from Theorem 34.

Suppose given abelian categories A and B′ with enough injectives, and abelian

categories B and C. Suppose given additive functors A --
F

F̃
B′ and a transfor-

mation F -φ F̃ . Let B × B′ -G C be a biadditive functor.

Suppose given a morphism X -x X̃ in A and an object Y ∈ ObB. Let B ∈
Ob C[0(B) be a resolution of Y , i.e. suppose a quasiisomorphism ConcY - B
to exist. Suppose the following properties to hold.

(a) The functors F and F̃ are left exact and carry injective to G(Y,−)-acyclic
objects.

(b) The functor G(Y,−) is left exact.
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(c) The functor G(Bk,−) is exact for all k ≥ 0.

(d) The functor G(−, I ′) is exact for all I ′ ∈ Ob InjB′.

Let A -a Ã in C[0(InjA) be an injective resolution of X -x X̃ in A. Note
that we have a commutative quadrangle

G(B,FA)
G(B,φA) //

G(B,Fa)

��

G(B, F̃A)

G(B,F̃a)

��
G(B,FÃ)

G(B,φÃ) // G(B, F̃ Ã)

in CCx(C).
Note that once chosen injective resolutions A of X and Ã of X̃, the image of

G(B,Fa) in KKx(C) does not depend on the choice of the resolution A -a Ã

of X -x X̃, for C[0(A) -G(B,F (−))
CCx(C) maps an elementary split acyclic

complex to an elementary horizontally split acyclic complex.

Lemma 35 The quadrangle

ĖGr
F,G(Y,−)(X)

ĖGr
F,G(Y,−)(x) //

≀
��

ĖGr
F,G(Y,−)(X̃)

≀
��

ĖI(G(B,FA))
ĖI(G(B,Fa)) // ĖI(G(B,FÃ))

commutes, where the vertical isomorphisms are those constructed in the proof
of Theorem 34.

Proof. Let J ′ -â J̃ ′ be a CE-resolution of FA -Fa FÃ. Consider the following
commutative diagram in CCx(C).

G(Y, J ′)
G(Y,â) //

��

G(Y, J̃ ′)

��
t1,2G(B, J ′)

t1,2G(B,â) // t1,2G(B, J̃ ′)

G(B,FA)
G(B,Fa) //

OO

G(B,FÃ)

OO

An application of ĖI yields the result.
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Lemma 36 The quadrangle

ĖGr
F,G(Y,−)(X)

hI
φX //

≀
��

ĖGr
F̃ ,G(Y,−)

(X)

≀
��

ĖI(G(B,FA))
ĖI(G(B,φA)) // ĖI(G(B, F̃A))

commutes, where the vertical morphisms are those constructed in the proof of
Theorem 34.

For the definition of the first Haas transformation hI
F (x,−), see §4.3.2.

Proof. Let J ′ -φ̂ J̆ ′ be a CE-resolution of FA -Fφ F̃A. Consider the following
commutative diagram in CCx(C).

G(Y, J ′)
G(Y,φ̂) //

��

G(Y, J̆ ′)

��
t1,2G(B, J ′)

t1,2G(B,φ̂) // t1,2G(BJ̆ ′)

G(B,FA)
G(B,φA) //

OO

G(B, F̃A)

OO

An application of ĖI yields the result.

We refrain from investigating naturality of the second comparison isomorphism
in Y .

7 Acyclic CE-resolutions

We record Beyl’s Theorem [4, Th. 3.4] (here Theorem 40) in order to document
that it fits in our context. The argumentation is entirely due to Beyl [4, Sec. 3],
so we do not claim any originality.

Let A, B and C be abelian categories. Suppose A and B to have enough

injectives. Let A -F B -G C be left exact functors.

7.1 Definition

Let T ∈ Ob C[0(B). In this §7, a CE-resolution of T will synonymously (and
not quite correctly) be called an injective CE-resolution, to emphasise the fact
that its object entries are injective.
We regard C[0(B) as an exact category as in Remarks 9 and 11.
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Definition 37 A double complex B ∈ CCx(B) is called a G-acyclic
CE-resolution of T if the following conditions are satisfied.

(1) We have H0(B∗,−) ≃ T and Hk(B∗,−) ≃ 0 for all k ≥ 1.

(2) The morphism of complexes Bk,∗ - Bk+1,∗, consisting of vertical dif-
ferentials of B, is a pure morphism for all k ≥ 0.

(3) The object Bℓ(Bk,∗) is G-acyclic for all k, ℓ ≥ 0 .

(4) The object Zℓ(Bk,∗) is G-acyclic for all k, ℓ ≥ 0 .

A G-acyclic CE-resolution is a G-acyclic CE-resolution of some T ∈ Ob C[0(B).

From (3, 4) and the short exact sequence Zℓ(Bk,∗) - Bk,ℓ - Bℓ+1(Bk,∗),
we conclude that Bk,ℓ is G-acyclic for all k, ℓ ≥ 0 .
From (3, 4) and the short exact sequence Bℓ(Bk,∗) - Zℓ(Bk,∗) - Hℓ(Bk,∗),
we conclude that Hℓ(Bk,∗) is G-acyclic for all k, ℓ ≥ 0 .

Example 38 An injective CE-resolution of T is in particular a G-acyclic
CE-resolution of T .

Note that given Y ∈ Ob C(B) and ℓ ∈ Z, we have ZℓGY ≃ GZℓY ,
whence the universal property of the cokernel HℓGY of GY ℓ−1 - ZℓGY
induces a morphism HℓGY - GHℓY . This furnishes a transformation

Hℓ(GXk,∗) -θX GHℓ(Xk,∗), natural in X ∈ Ob CCx(B).

Remark 39 If B is a G-acyclic CE-resolution, then the morphism

Hℓ(GB−,∗) -θB GHℓ(B−,∗) is an isomorphism for all ℓ ≥ 0.

Proof. The sequences

GBℓ(Bk,∗) - GZℓ(Bk,∗) - GHℓ(Bk,∗)
GZℓ−1(Bk,∗) - GBk,ℓ−1 - GBℓ(Bk,∗)

are short exact for k, ℓ ≥ 0 by G-acyclicity of Bℓ(Bk,∗) resp. of Zℓ−1(Bk,∗). In
particular, the cokernel of GBk,ℓ−1 - GZℓ(Bk,∗) is given by GHℓ(Bk,∗).

7.2 A theorem of Beyl

Let X ∈ ObA(F,G). Let A ∈ C[0(A) be a (F,G)-acyclic resolution of X . Let
B ∈ CCx(B) be a G-acyclic CE-resolution of FA.

Theorem 40 (Beyl, [4, Th. 3.4]) We have an isomorphism of proper spec-
tral sequences

ĖGr
F,G(X) ≃ ĖI(GB)

in ˙̄Z##
∞ , C .
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Proof. Since the proper Grothendieck spectral sequence is, up to isomorphism,
independent of the choice of an injective CE-resolution, as pointed out in §4.2,
our assertion is equivalent to the existence of an injective CE-resolution J of
FA such that ĖI(GJ) ≃ ĖI(GB). So by Remark 33, it suffices to show
that there exists an injective CE-resolution J of FA and a morphism B - J
that induces a quasiisomorphism Hℓ(GB−,∗) - Hℓ(GJ−,∗) for all ℓ ≥ 0. By
Remark 39 and Example 38, it suffices to show that GHℓ(B−,∗) - GHℓ(J−,∗)
is a quasiisomorphism for all ℓ ≥ 0.
By the conditions (1, 2) on B and by G-acyclicity of Hℓ(Bk,∗) for k, ℓ ≥ 0, the
complex Hℓ(B−,∗) is a G-acyclic resolution of Hℓ(FA); cf. Remark 10.
By Remark 4, there exists J ∈ Ob CCx(InjB) with vertical pure morphisms
and split rows, and a morphism B - J consisting rowwise of pure monomor-
phisms such that Hk(B∗,−) - Hk(J∗,−) is an isomorphism of complexes for
all k ≥ 0. In particular, the composite (Conc2 FA - B - J) turns J into
an injective CE-resolution of FA.
Let ℓ ≥ 0. Since B is a G-acyclic and J an injective CE-resolution of FA,
both Conc Hℓ(FA) - Hℓ(B−,∗) and Conc Hℓ(FA) - Hℓ(J−,∗) are quasiiso-
morphisms. Hence Hℓ(B−,∗) - Hℓ(J−,∗) is a quasiisomorphism, too. Now
Lemma 27 shows that GHℓ(B−,∗) - GHℓ(J−,∗) is a quasiisomorphism as
well.

8 Applications

We will apply Theorems 31 and 34 in various algebraic situations. In particular,
we will re-prove a theorem of Beyl; viz. Theorem 53 in §8.3.

In several instances below, we will make tacit use of the fact that a left exact
functor between abelian categories respects injectivity of objects provided it
has an exact left adjoint.

8.1 A Hopf algebra lemma

We will establish Lemma 47 in §8.1.4, needed to prove an acyclicity that enters
the proof of the comparison result Theorem 52 in §8.2 for Hopf algebra coho-
mology, which in turn allows to derive comparison results for group cohomology
and Lie algebra cohomology; cf. §§ 8.3, 8.4.

8.1.1 Definition

Let R be a commutative ring. Write ⊗ := ⊗R . A Hopf algebra over R is

an R-algebra H together with R-algebra morphisms H -ε R (counit) and

H -∆ H ⊗ H (comultiplication), and an R-linear map H -S H (antipode)
such that the following conditions (i–iv) hold.
Write x∆ =

∑
i xui ⊗ xvi for x ∈ H , where ui and vi are chosen maps from H

to H , and where i runs over a suitable indexing set. Note that

∑
i (r · x+ s · y)ui ⊗ (r · x+ s · y)vi = r · (∑i xui ⊗ xvi) + s · (∑i yui ⊗ yvi)
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for x, y ∈ H and r, s ∈ R, whereas ui and vi are not necessarily R-linear
maps.

The elegant Sweedler notation [15, §1.2] for the images under ∆(∆⊗1) etc. led
the author, being new to Hopf algebras, to confusion in a certain case. So we
will express them in these more naive terms.

Write H ⊗H -∇ H , x⊗ y - x · y and R -η H , r - r · 1H .

Write H ⊗H -τ H ⊗H , x⊗ y - y ⊗ x.

(i) We have ∆(ε⊗ idH) = (x - 1R ⊗ x), i.e.
∑

i xuiε · xvi = x for x ∈ H .

(i′) We have ∆(idH ⊗ε) = (x - x⊗ 1R), i.e.
∑

i xui · xviε = x for x ∈ H .

(ii) We have ∆(idH ⊗∆) = ∆(∆ ⊗ idH), i.e.
∑

i,j xui ⊗ xviuj ⊗ xvivj =∑
i,j xuiuj ⊗ xuivj ⊗ xvi for x ∈ H .

(iii) We have ∆(S ⊗ idH)∇ = εη, i.e.
∑

i xuiS · xvi = xε · 1H for x ∈ H .

(iii′) We have ∆(idH ⊗S)∇ = εη, i.e.
∑

i xui · xviS = xε · 1H for x ∈ H .

(iv) We have S2 = idH .

In particular, imposing (iv), we stipulate a Hopf algebra to have an involutive
antipode.

8.1.2 Some basic properties

In an attempt to be reasonably self-contained, we recall some basic facts on
Hopf algebras needed for Lemma 47 below; cf. [15, Ch. IV], [1, §2], [13, §§1-3].
In doing so, we shall use direct arguments.

Suppose given a Hopf algebra H over R.

Remark 41 ([15, Prop. 4.0.1], [1, Th. 2.1.4], [13, 3.4.2])
The following hold.

(1) We have
∑
i(x ·y)ui⊗(x ·y)vi =

∑
i,j(xui ·yuj)⊗(xvi ·yvj) for x, y ∈ H.

(2) We have 1HS = 1H .

(3) We have (x · y)S = y · x for x, y ∈ H.

(4) We have Sε = ε.

(5) We have ∆(S ⊗ S)τ = S∆, i.e.
∑

i xuiS ⊗ xviS =
∑

i xSvi ⊗ xSui for
x ∈ H.

(6) We have x · y =
∑

i

(∑
j(xui)uj · y · (xui)vjS

)
· xvi for x, y ∈ H.

(6′) We have y · x =
∑

i xui ·
(∑

j(xvi)ujS · y · (xvi)vj
)

for x, y ∈ H.
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(7) We have
∑
i xvi · xuiS = xε · 1H for x ∈ H.

(7′) We have
∑
i xviS · xui = xε · 1H for x ∈ H.

Proof. Ad (1). Given x, y ∈ H , we obtain
∑

i (xy)ui ⊗ (xy)vi = (xy)∆ = x∆ · y∆ =
∑
i,j (xui · yuj)⊗ (xvi · yvj) .

Ad (2). Remarking that 1H∆ = 1H ⊗ 1H , we obtain

1HS = 1H∆(S ⊗ idH)∇ (iii)
= 1Hε · 1H = 1H .

Ad (3). Given x, y ∈ H , we obtain

(x · y)S
2× (i′)

=
∑

i,k(xui · xviε · yuk · yvkε)S
(iii′)
=

∑
i,j,k(xui · yuk · yvkε)S · xviuj · xvivjS

(iii′)
=

∑
i,j,k,ℓ(xui · yuk)S · xviuj · yvkuℓ · yvkvℓS · xvivjS

2× (ii)
=

∑
i,j,k,ℓ(xuiuj · yukuℓ)S · xuivj · yukvℓ · yvkS · xviS

(1)
=

∑
i,j,k(xui · yuk)ujS · (xui · yuk)vj · yvkS · xviS

(iii)
=

∑
i,k(xui · yuk)ε · yvkS · xviS

=
∑

i,k(yukε · yvk)S · (xuiε · xvi)S
2× (i)

= yS · xS .
Ad (4). Note that (yε · z)ε = yε · zε = (y · z)ε for y, z ∈ H . Given x ∈ H , we
obtain

xSε
(i)
= (

∑
i xuiε · xvi)Sε = (

∑
i xuiε · xviS)ε = (

∑
i xui · xviS)ε

(iii′)
= (xε · 1H)ε = xε .

Ad (5). Given x ∈ H , we obtain

x∆(S ⊗ S)τ
(i)
=

∑
i(xuiε · xvi)∆(S ⊗ S)τ

=
∑

i(xuiε · 1H)∆ · xvi∆(S ⊗ S)τ
(iii)
=

∑
i,j(xuiujS · xuivj)∆ · xvi∆(S ⊗ S)τ

=
∑

i,j xuiujS∆ · xuivj∆ · xvi∆(S ⊗ S)τ
(ii)
=

∑
i,j xuiS∆ · xviuj∆ · xvivj∆(S ⊗ S)τ

=
∑

i,j,k,ℓ xuiS∆ · (xviujuk ⊗ xviujvk) · (xvivjvℓS ⊗ xvivjuℓS)

=
∑

i,j,k,ℓ xuiS∆ · (xviujuk · xvivjvℓS ⊗ xviujvk · xvivjuℓS)
(ii)
=

∑
i,j,k,ℓ xuiS∆ · (xviuj · xvivjvkvℓS ⊗ xvivjuk · xvivjvkuℓS)

(ii)
=

∑
i,j,k,ℓ xuiS∆ · (xviuj · xvivjvkS ⊗ xvivjukuℓ · xvivjukvℓS)

(iii′)
=

∑
i,j,k xuiS∆ · (xviuj · xvivjvkS ⊗ xvivjukε · 1H)

=
∑

i,j,k xuiS∆ · (xviuj · (xvivjvk · xvivjukε)S ⊗ 1H)
(i)
=

∑
i,j xuiS∆ · (xviuj · xvivjS ⊗ 1H)
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(iii′)
=

∑
i xuiS∆ · (xviε · 1H ⊗ 1H)

=
∑
i(xui · xviε)S∆

(i′)
= xS∆ .

Ad (6). Given x, y ∈ H , we obtain

x·y (i′)
=
∑
i xui·y·xviε

(iii)
=
∑

i,j xui·y·xviujS ·xvivj
(ii)
=
∑
i,j xuiuj ·y·xuivjS ·xvi.

Ad (6′). Given x ∈ H , we obtain

y·x (i)
=
∑

i xuiε·y·xvi
(iii′)
=
∑

i,j xuiuj ·xuivjS ·y·xvi
(ii)
=
∑

i,j xui·xviujS ·y·xvivj .
Ad (7). Given x ∈ H , we have

∑
i xvi · xuiS

(iv)
=
∑

i xS
2vi · xS2uiS

(5)
=
∑
i xSuiS · xSviS2

(iv)
=
∑
i xSuiS · xSvi

(iii)
= xSε · 1H

(4)
= xε · 1H .

Ad (7′). Given x ∈ H , we have

∑
i xviS · xui

(iv)
=
∑

i xS
2viS · xS2ui

(5)
=
∑
i xSuiS

2 · xSviS
(iv)
=
∑

i xSui · xSviS
(iii′)
= xSε · 1H

(4)
= xε · 1H .

In the present §8.1, we shall refer to the assertions Remark 41.(1–7′) just by
(1–7′).

8.1.3 Normality

Suppose given a Hopf algebra H over R, and an R-subalgebra K ⊆ H . Suppose
H and K to be flat as modules over R.
Note that K ⊗ K - H ⊗ H is injective. We will identify K ⊗ K with its
image.
The R-subalgebra K ⊆ H is called a Hopf-subalgebra if K∆ ⊆ K ⊗ K and
KS ⊆ K. In this case, we may and will suppose the maps ui and vi to restrict
to maps from K to K.
Suppose K ⊆ H to be a Hopf-subalgebra. It is called normal, if for all a ∈ K
and all x ∈ H , we have

∑
i xui · a · xviS ∈ K and

∑
i xuiS · a · xvi ∈ K .

An ideal I ⊆ H is called a Hopf ideal if I∆ ⊆ I ⊗H + H ⊗ I (where we have
identified I ⊗H and H ⊗ I with their images in H ⊗H), Iε = 0 and IS ⊆ I.
In this case, the quotient H/I carries a Hopf algebra structure via

H/I -ε R , x+ I - xε

H/I -∆ H/I ⊗H/I , x+ I - ∑
i(xui + I)⊗ (xvi + I)

H/I -S H/I , x+ I - xS + I .
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Suppose K ⊆ H to be a normal Hopf subalgebra. Write K+ :=

Kern(H -ε R). By (6, 6′, 3, 4), HK+ = K+H is a Hopf ideal in H .

8.1.4 Some remarks and a lemma

Suppose given a Hopf algebra H over R and a normal Hopf-subalgebra K ⊆ H .
Suppose H and K to be flat as modules over R.
Write H̄ := H/HK+. Given x ∈ H , write x̄ := x + HK+ ∈ H̄ for its residue
class.
Let N ′, N , M , M ′ and Q be H-modules. Let P be an H̄-module, which we
also consider as an H-module via H - H̄, x - x̄.
We write K(N,M) = K(N |K ,M |K) for the R-module of K-linear maps from
N to M .

Remark 42 Given f ∈ R(N,M) and x ∈ H, we define x · f ∈ R(N,M) by

[n](x · f) :=
∑

i xui · [xviS · n]f

for n ∈ N . This defines a left H-module structure on R(N,M).

Formally, squared brackets mean the same as parentheses. Informally, squared
brackets are to accentuate the arguments of certain maps.

Proof. We claim that x′ · (x · f) = (x′ · x) · f for x, x′ ∈ H . Suppose given
n ∈ N . We obtain

[n](x′ · (x · f)) =
∑
i x
′ui · [x′viS · n](x · f)

=
∑
i,j x

′ui · xuj · [xvjS · x′viS · n]f
(3)
=

∑
i,j(x

′ui · xuj) · [(x′vi · xvj)S · n]f
(1)
=

∑
i(x
′ · x)ui · [(x′ · x)viS · n]f

= [n]((x′ · x) · f) .

We claim that 1H · f = f . Suppose given n ∈ N . We obtain

[n](1H · f) =
∑

i 1Hui · [1HviS · n]f = 1H · [1HS · n]f
(2)
= [n]f ,

remarking that 1H∆ = 1H ⊗ 1H .

I owe to G. Hiß the hint to improve a previous weaker version of Corollary 45
below by means of the following Remark 43.

Denote by

MK := {m ∈M : a ·m = aε ·m for all a ∈ K}

the fixed point module of M under K.

Remark 43 Letting x̄ · m := x · m for x ∈ H and m ∈ MK, we define an
H̄-module structure on MK.
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Proof. The value of the product x̄ ·m does not depend on the chosen represen-
tative x of x̄ since, given y ∈ H , a ∈ K+ and m ∈MK , we have

y · a ·m = y · aε ·m = 0 .

It remains to be shown that given x ∈ H and m ∈MK , the element x ·m lies
in MK . In fact, given a ∈ K, we obtain

a · x ·m (6′)
=

∑
i xui ·

(∑
j(xvi)ujS · a · (xvi)vj

)
·m

=
∑

i xui ·
(∑

j(xvi)ujS · a · (xvi)vj
)
ε ·m

=
∑

i,j xui · xviujSε · aε · xvivjε ·m
(4)
=

∑
i,j xui · xviujε · aε · xvivjε ·m

(ii)
=

∑
i,j xuiuj · xuivjε · aε · xviε ·m

(i′)
=

∑
i xui · aε · xviε ·m

(i′)
= aε · x ·m .

Remark 44 We have (R(N,M))
K

= K(N,M), as subsets of R(N,M).

Proof. The module (R(N,M))
K

consists of the R-linear maps N -f M that
satisfy ∑

i xui · [xviS · n]f = xε · [n]f .

for x ∈ H and n ∈ N . The module K(N,M) consists of the R-linear maps

N -f M that satisfy
[x · n]f = x · [n]f

for x ∈ H and n ∈ N . By (iii′), we have (R(N,M))
K ⊇ K(N,M).

It remains to show that (R(N,M))
K ⊆ K(N,M). Given f ∈ (R(N,M))

K
,

x ∈ H and n ∈ N , we obtain

x · [n]f
(i′)
=

∑
i xui · xviε · [n]f

=
∑
i xui · [xviε · n]f

(iii)
=

∑
i,j xui · [xviujS · xvivj · n]f

(ii)
=

∑
i,j xuiuj · [xuivjS · xvi · n]f

=
∑
i xuiε · [xvi · n]f

(i)
= [x · n]f .

Corollary 45 Given f ∈ K(N,M) and x ∈ H, we define x̄ · f ∈ K(N,M) by

[n](x̄ · f) :=
∑

i xui · [xviS · n]f

for n ∈ N . This defines a left H̄-module structure on K(N,M).
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Proof. By Remark 42, we may apply Remark 43 to R(N,M). By Remark 44,
the assertion follows.

Remark 46 Given f ∈ K(N,M), x ∈ H, and H-linear maps N ′ -ν N ,

M -µ M ′, we obtain
ν(x̄ · f)µ = x̄ · (νfµ) .

Proof. Given n′ ∈ N ′, we obtain

[n′]
(
ν(x̄ · f)µ

)
=
(∑

i xui · [xviS · n′ν]f
)
µ =

∑
i xui · [xviS · n′](νfµ)

= [n′](x̄ · (νfµ)).

The following Lemma 47 has been suggested by the referee, and has been
achieved with the help of G. Carnovale. It is reminiscent of [16, Cor. 4.3],
but easier. It resembles a bit a Fourier inversion.

Note that the right H̄-module structure on H̄ induces a left H̄-module structure
on R(H̄,M).

Lemma 47 We have the following mutually inverse isomorphisms of
H̄-modules.

K(H,M) -Φ∼ R(H̄,M)
f - (x̄ - ∑

i xui · [xviS]f)

K(H,M) �Ψ

∼ R(H̄,M)
(x - ∑

j xvj · [xujS ]g) � g

Proof. We claim that Φ is a welldefined map. We have to show that fΦ is
welldefined, i.e. that its value at x̄ does not depend on the representing element
x. Suppose given y ∈ H and a ∈ K+. We obtain

∑
i(ya)ui · [(ya)viS]f

(1)
=

∑
i,j yui · auj · [(yvi · avj)S]f

(3)
=

∑
i,j yui · auj · [avjS · yviS]f

=
∑

i,j yui · auj · avjS · [yviS]f
(iii′)
=

∑
i yui · aε · [yviS]f

= 0 .

We claim that Φ is H̄-linear. Suppose given y ∈ H and x ∈ H . We obtain

[x̄]((ȳf)Φ) =
∑
i xui · [xviS](ȳf)

=
∑
i,j xui · yuj · [yvjS · xviS]f

(3)
=

∑
i,j xui · yuj · [(xvi · yvj)S]f

(1)
=

∑
i(x · y)ui · [(x · y)viS]f

= [x̄](ȳ(fΦ)) .
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We claim that Ψ is a welldefined map. We have to show that gΨ is K-linear.
Suppose given a ∈ K and x ∈ H . Note that aui ∈ K for all i, whence also
auiS ∈ K, and therefore auiS ≡HK+ auiSε · 1H . We obtain

[a · x](gΨ) =
∑
j(a · x)vj · [ (a · x)ujS ]g

(1)
=

∑
i,j avi · xvj · [ (aui · xuj)S ]g

(3)
=

∑
i,j avi · xvj · [xujS · auiS ]g

=
∑
i,j avi · xvj · [xujS · auiSε ]g

(4)
=

∑
i,j auiε · avi · xvj · [xujS ]g

(i)
=

∑
j a · xvj · [xujS ]g

= a · [x](gΨ) .

We claim that ΦΨ = id
K(H,M). Suppose given x ∈ H . We obtain

[x](fΦΨ) =
∑

j xvj · [xujS ](fΦ)

=
∑

i,j xvj · xujSui · [xujSviS]f
(5)
=

∑
i,j xvj · xujviS · [xujuiS2]f

(iv)
=

∑
i,j xvj · xujviS · [xujui]f

(ii)
=

∑
i,j xvjvi · xvjuiS · [xuj ]f

(7)
=

∑
j xvjε · [xuj ]f

(i)
= [x]f .

We claim that ΨΦ = id
R(H̄,M). Suppose given x ∈ H . We obtain

[x̄](gΨΦ) =
∑

i xui · [xviS](gΨ)

=
∑

i,j xui · xviSvj · [xviSujS ]g
(5)
=

∑
i,j xui · xviujS · [xvivjS2 ]g

(iv)
=

∑
i,j xui · xviujS · [xvivj ]g

(ii)
=

∑
i,j xuiuj · xuivjS · [xvi ]g

(iii′)
=

∑
i xuiε · [xvi ]g

(i)
= [x̄]g .

Finally, it follows by H̄-linearity of Φ and by Ψ = Φ−1 that Ψ is H̄-linear.

The tensor product N⊗M is an H-module via ∆. Note that R is an H-module
via ε. Note that R ⊗M ≃M ≃M ⊗R as H-modules by (i, i′).

Remark 48 (cf. [3, Lem. 3.5.1]) We have mutually inverse isomorphisms
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of R-modules

H̄(P, K(Q,M)) -α∼ H(P ⊗Q,M)
f - (p⊗ q - [q](pf))

H̄(P, K(Q,M)) �β∼ H(P ⊗Q,M)
(p - (q - [p⊗ q]g)) � g ,

natural in P ∈ Ob H̄-Mod, Q ∈ ObH-Mod and M ∈ ObH-Mod.

Proof. We claim that α is welldefined. We have to show that fα is H-linear.
Suppose given x ∈ H . We obtain

x · (p⊗ q) =
∑
i xui · p⊗ xvi · q

-fα ∑
i[xvi · q]((xui · p)f)

=
∑
i[xvi · q](xui · (pf))

=
∑
i,j xuiuj · [xuivjS · xvi · q](pf)

(ii)
=

∑
i,j xui · [xviujS · xvivj · q](pf)

(iii)
=

∑
i xui · [xviε · q](pf)

(i′)
= x · [q](pf)
= x · [p⊗ q](fα) .

We claim that β is welldefined. First, we have to show that [p](gβ) is K-linear.
Suppose given a ∈ K. We obtain

a·q -[p](gβ)
[p⊗a·q]g (i)

=
∑
i [auiε·p⊗avi ·q]g =

∑
i [aui ·p⊗avi ·q]g = a·[p⊗q]g .

Second, we have to show that gβ is H̄-linear. Suppose given x ∈ H . We obtain

x̄ · p -gβ (q - [x̄ · p⊗ q]g)
(i)
= (q - ∑

i[xui · xviε · p⊗ q)]g)
(iii′)
= (q - ∑

i,j [xui · p⊗ xviuj · xvivjS · q)]g)
(ii)
= (q - ∑

i,j [xuiuj · p⊗ xuivj · xviS · q)]g)

= (q - ∑
i xui · [p⊗ xviS · q]g)

= x̄ · (q - [p⊗ q]g) .

Finally, α and β are mutually inverse.

Corollary 49 We have H̄(P,MK) ≃ H̄(P, K(R,M)) ≃ H(P,M) as
R-modules, natural in P and M .

Proof. Note that M ≃ R(R,M) as H-modules, whence MK ≃ K(R,M) as
H̄-modules by Remarks 43, 44. Now the assertion follows from Remark 48,
letting Q = R.
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8.2 Comparing Hochschild-Serre-Hopf with Grothendieck

Let R be a commutative ring. Suppose given a Hopf algebra H over R (with
involutive antipode) and a normal Hopf-subalgebra K ⊆ R; cf. §8.1.3. Write
H̄ := H/HK+. Suppose H , K and H̄ to be projective as modules over R.
Suppose H to be projective as a module over K.
Let B ∈ Ob C(H-Mod) be a projective resolution of R over H . Let B̄ ∈
Ob C(H̄-Mod) be a projective resolution of R over H̄. Note that since H̄ is
projective over R, B̄|R ∈ Ob C(R-Mod) is a projective resolution of R over R.
Let M be an H-module.
By Corollary 45 and by Remark 46, we have a biadditive functor

(H-Mod)◦ × H-Mod -U H̄-Mod
(X , X ′) - U(X,X ′) := K(X,X ′) .

Write

(H̄-Mod)◦ × H̄-Mod -V H̄-Mod
(Y , Y ′) - V (N,M) := H̄(N,M)

for the usual Hom-functor.

Lemma 50 The H̄-module U(H,M) is V (R,−)-acyclic.

Proof. By Lemma 47, this amounts to showing that R(H̄,M) is V (R,−)-
acyclic, which in turn amounts to showing that V

(
B̄ , R(H̄,M)

)
=

H̄

(
B̄ , R(H̄,M)

)
has vanishing cohomology in degrees ≥ 1. Now,

H̄

(
B̄ , R(H̄,M)

)
≃ R(H̄ ⊗H̄ B̄ , M) ≃ R(B̄ , M) ,

whose cohomology in degree i ≥ 1 is ExtiR(R,M) ≃ 0.
Consider the double complex

D(M) = D−,=(M) := V
(
B̄− , U(B= , M)

)
= H̄

(
B̄− , K(B= , M)

)
.

Note that D(M) is isomorphic in CCx(R-Mod) to H

(
B̄− ⊗R B= , M

)
, natu-

rally in M ; cf. Remark 48.
We have functors

H-Mod -U(R,−)
H̄-Mod -V (R,−)

R-Mod .

M - U(R,M) ≃MK

P - V (R,P ) ≃ P H̄

Lemma 51 Given a projective H-module P , the H̄-module U(P,M) is
V (R,−)-acyclic.
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Proof. It suffices to show that U(
∐

ΓH, M) ≃ ∏
Γ U(H, M) is V (R,−)-

acyclic for any indexing set Γ. By Lemma 50, it remains to be shown that
RiV (R,

∏
Γ Y ) is isomorphic to

∏
Γ RiV (R, Y ) for a given H̄-module Y and

for i ≥ 1. Having chosen an injective resolution J of Y , we may choose the
injective resolution

∏
Γ J of

∏
Γ Y . Then

RiV (R,
∏

Γ Y ) ≃ HiV (R,
∏

Γ J) ≃ Hi
∏

Γ V (R, J)

≃ ∏
Γ HiV (R, J) ≃ ∏

Γ RiV (R, Y ) .

Theorem 52 The proper spectral sequences

ĖI(D(M)) and ĖGr
U(R,−), V (R,−)(M)

are isomorphic (in ˙̄Z##
∞ , R-Mod ), naturally in M ∈ ObH-Mod.

Proof. To apply Theorem 31 with, in the notation of §5.1,

(
A×A′ -F B -G C

)

=
(

(H-Mod)◦ ×H-Mod -U H̄-Mod -V (R,−)
R-Mod

)
,

and with X = R and X ′ = M , we verify the conditions (a–d′) of loc. cit. in
this case.
Ad (c). We claim that B is a

(
U(−,M), V (R,−)

)
-acyclic resolution of R. We

have to show that U(Bi,M) is V (R,−)-acyclic for i ≥ 0; cf. §4.2. Since Bi is
projective over H , this follows by Lemma 51. This proves the claim.
Ad (c′). Let I be an injective resolution of M over H . We claim that I is a(
U(R,−), V (R,−)

)
-acyclic resolution of M . We have to show that U(R, Ii)

is V (R,−)-acyclic for i ≥ 0. In fact, by Corollary 49, U(R, Ii) is an injective
H̄-module. This proves the claim.
Ad (d, d′). We claim that U(Bi,−) and U(−, Ii) are exact for i ≥ 0; cf. §5.1.
The former follows from H being projective over K. The latter is a consequence

of Ii|K being injective in K-Mod by exactness of K-Mod -H⊗K−
H-Mod. This

proves the claim.
So an application of Theorem 31 yields

ĖGr
U(R,−),V (R,−)(M) ≃ ĖGr

U(−,M),V (R,−)(R) .

To apply Theorem 34 with, in the notation of §6.1,

(
A -F B′ , B × B′ -G C

)

=
(

(H-Mod)◦ -U(−,M)
H̄-Mod , (H̄-Mod)◦ × H̄-Mod -V C

)
,
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and with X = R and Y = R, we verify the conditions (a–e) of loc. cit. in this
case.
Ad (c). We have already remarked that B is a

(
U(−,M), V (R,−)

)
-acyclic

resolution of R.
Ad (d). As a resolution of R over H̄ , we choose B̄.
So an application of Theorem 34 yields

ĖGr
U(−,M),V (R,−)(R) ≃ ĖI

(
V
(
B̄− , U(B= , M)

))
.

Naturality in M ∈ ObH-Mod remains to be shown. Suppose given M -m M̃
in H-Mod. Note that the requirements of §5.2 are met. By Proposition 32, with
roles of A and A′ interchanged, we have the following commutative quadrangle.

ĖGr
U(R,−),V (R,−)(M)

ĖGr
U(R,−),V (R,−)(m)

// ĖGr
U(R,−),V (R,−)(M̃)

ĖGr
U(−,M),V (R,−)(R)

hI
U(−,m)R //

≀

OO

ĖGr
U(−,M̃),V (R,−)

(R)

≀

OO

Note that the requirements of §6.2 are met. By Lemma 36, we have the follow-
ing commutative quadrangle.

ĖGr
U(−,M),V (R,−)(R)

hI
U(−,m)R //

≀
��

ĖGr
U(−,M̃),V (R,−)

(R)

≀
��

ĖI

(
V
(
B̄− , U(B= , M)

)) ĖI(V (B̄−, U(B=,m))) // ĖI

(
V
(
B̄− , U(B= , M̃)

))

8.3 Comparing Lyndon-Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let G be a group and let N E G be a
normal subgroup. Write Ḡ := G/N . Let M be an RG-module. Write
BarG;R ∈ Ob C(RG -Mod) for the bar resolution of R over RG, having
(BarG;R)i = RG⊗(i+1) for i ≥ 0, the tensor product being taken over R.
Note that RG is a Hopf algebra over R via

RG -∆ RG⊗RG , g - g ⊗ g
RG -S RG , g - g−1

RG -ε R , g - 1 ,

where g ∈ G; cf. §8.1.1. Moreover, RN is a normal Hopf subalgebra of RG
such that RG/(RG)(RN)+ ≃ RḠ; cf. §8.1.3.
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Note that RG, RN and RḠ are projective over R, and that RG is projective
over RN .

We have functors RG -Mod -(−)N

RḠ -Mod -(−)Ḡ

R-Mod, taking respective
fixed points.

Theorem 53 (Beyl, [4, Th. 3.5]) The proper spectral sequences

ĖGr
(−)N , (−)Ḡ(M) and ĖI

(
RG

(
(BarḠ;R)− ⊗R (BarG;R)= , M

))

are isomorphic (in ˙̄Z##
∞ , R-Mod ), naturally in M ∈ ObRG -Mod.

Beyl uses his Theorem 40 to prove Theorem 53. We shall re-derive it from
Theorem 52, which in turn relies on the Theorems 31 and 34.

Proof. This follows by Theorem 52.

8.4 Comparing Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let g be a Lie algebra over R that is free
as an R-module. Let n E g be an ideal such that n and ḡ := g/n are free
as R-modules. Let M be a g-module, i.e. a U(g)-module. Write Barg;R ∈
Ob C(U(g) -Mod) for the Chevalley-Eilenberg resolution of R over U(g), having
(Barg;R)i = U(g)⊗R ∧ig for i ≥ 0; cf. [5, XIII.§7] or [18, Th. 7.7.2].
Note that U(g) is a Hopf algebra over R via

U(g) -∆ U(g)⊗ U(g) , g - g ⊗ 1 + 1⊗ g
U(g) -S U(g) , g - −g
U(g) -ε R , g - 0 ,

where g ∈ g; cf. §8.1.1.
Note that U(g), U(n) and U(ḡ) are projective overR, and that U(g) is projective
over U(n); cf. [18, Cor. 7.3.9].

We have functors U(g) -Mod -(−)n

U(ḡ) -Mod -(−)ḡ

R-Mod, taking respective
annihilated submodules; cf. [18, p. 221].

Theorem 54 The proper spectral sequences

ĖGr
(−)n, (−)ḡ(M) and ĖI

(
U(g)

(
(Barḡ;R)− ⊗R (Barg;R)= , M

))

are isomorphic (in ˙̄Z##
∞ , R-Mod ), naturally in M ∈ ObU(g) -Mod.

Cf. Barnes, [2, Sec. IV.4, Ch. VII].

Proof. This follows by Theorem 52.
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8.5 Comparing two spectral sequences for a change of rings

The following application is taken from [5, XVI.§6].

Let R be a commutative ring. Let A -φ B be a morphism of R-algebras.
Consider the functors

A-Mod -A(B,−)
B-Mod , (B-Mod)◦ ×B-Mod -B(−,=)

R-Mod .

Let X be an A-module, let Y be a B-module.

We shall compare two spectral sequences with E2-terms Exti
B(Y,Extj

A(B, X)),

converging to Exti+j
A (Y, X). If one views X⇑B

A := A(B, X) as a way to induce
from A-Mod to B-Mod, this measures the failure of the Eckmann-Shapiro-type

formula Exti
B(Y, X⇑B

A)
?
≃ Exti

A(Y, X), which holds if B is projective over A.

Let I ∈ Ob C[0(A-Mod) be an injective resolution of X . Let P ∈
Ob C[0(B-Mod) be a projective resolution of Y .

Proposition 55 The proper spectral sequences

ĖGr
A(B,−), B(Y,−)(X) and ĖI

(
B(P−, A(B, I=))

)

are isomorphic (in ˙̄Z##
∞ , R-Mod ).

Proof. To apply Theorem 34, if suffices to remark that for each injective
A-module I ′, the B-module A(B, I ′) is injective, and thus B(Y,−)-acyclic.

Remark 56 The functor A(B,−) can be replaced by A(M,−), where M is an
A-B-bimodule that is flat over B.

8.6 Comparing two spectral sequences for Ext and ⊗
Let R be a commutative ring. Let S be a ring. Let A be an R-algebra. Let
M be an R-S-bimodule. Let X and X ′ be A-modules. Assume that X is flat
over R. Assume that ExtiR(M,X ′) ≃ 0 for i ≥ 1.

Example 57 Let T be a discrete valuation ring, with maximal ideal generated
by t. Let R = T/tℓ for some ℓ ≥ 1. Let S = T/tk, where 1 ≤ k ≤ ℓ. Let G be
a finite group, and let A = RG. Let M = S. Let X and X ′ be RG-modules
that are both finitely generated and free over R.

Consider the functors

(A-Mod)◦ ×A-Mod -A(−,=)
R-Mod -R(M,−)

S -Mod
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Proposition 58 The proper Grothendieck spectral sequences

ĖGr
A(X,−), R(M,−)(X

′) and ĖGr
A(−,X′), R(M,−)(X)

are isomorphic (in ˙̄Z##
∞ , S -Mod ).

Both have E2-terms ExtiR
(
M, ExtjA(X,X ′)

)
, and both converge to

Exti+jA (X ⊗R M,X ′). In particular, in the situation of Example 57, both

have E2-terms ExtiR
(
S, ExtjRG(X,X ′)

)
and converge to Exti+jRG(X/tk, X ′).

Proof of Proposition 58. To apply Theorem 31, we comment on the conditions
in §5.1.
(c) Given a projective A-module P , we want to show that the R-module

A(P,X ′) is R(M,−)-acyclic. We may assume that P = A, which is to
be viewed as an A-R-bimodule. Now, we have ExtiR

(
M, A(A,X ′)

)
≃

ExtiR(M,X ′) ≃ 0 for i ≥ 1 by assumption.

(c′) Given an injective A-module I ′, the R-module A(X, I ′) is injective since
X is flat over R by assumption.

8.7 Comparing two spectral sequences for Ext of sheaves

Let T -f S be a flat morphism of ringed spaces, i.e. suppose that

OT ⊗f−1OS
− : f−1OS -Mod - OT -Mod

is exact. Consequently, f∗ : OS -Mod - OT -Mod is exact.
Given OS-modules F and F ′, we abbreviate OS(F ,F ′) := HomOS (F ,F ′) ∈
ObR-Mod and OS((F ,F ′)) := HomOS (F ,F ′) ∈ ObOS -Mod.
Let F be an OS-module that has a locally free resolution B ∈ Ob C(OS -Mod);
cf. [9, Prop. III.6.5]. Let G ∈ ObOT -Mod. Let A ∈ Ob C[0(OT -Mod) be an
injective resolution of G.
Consider the functors

OT -Mod -f∗ OS -Mod , (OS -Mod)◦ ×OS -Mod -OS
((−,=))

OS -Mod .

Proposition 59 The proper spectral sequences

ĖGr
f∗, OS

((F ,−))(G) and ĖI

(
OS((B−, f∗A=))

)

are isomorphic (in ˙̄Z##
∞ , OS -Mod ).

In particular, both spectral sequences have E2-terms Ext iOS

(
F , (Rjf∗)(G)

)
and

converge to (Ri+jIΓF)(G), where IΓF(−) := OS((F , f∗(−))) ≃ f∗ OT((f∗F ,−)).
For example, if S = {∗} is a one-point-space and if we write R := OS(S), then
we can identify OS -Mod = R-Mod. If, in this case, F = R/rR for some r ∈ R,
then IΓR/rR(G) ≃ Γ(T,G)[r] := {g ∈ G(T ) : rg = 0}.
Proof of Proposition 59. To apply Theorem 34, we comment on the conditions
in §6.1.
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(c) Since f∗ maps injective OT -modules to injective OS-modules by flatness

of T -f S, the complex A is an
(
f∗, OS((F ,−))

)
-acyclic resolution of G.

(e) If I is an injective OS-module and U ⊆ S is an open subset, then I|U
is an injective OU -module; cf. [9, Lem. III.6.1]. Hence OS((−, I)) turns a
short exact sequence of OS-modules into a sequence that is short exact
as a sequence of abelian presheaves, and hence a fortiori short exact as a
sequence of OS-modules. In other words, the functor OS((−, I)) is exact.
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Abstract. We investigate the following two problems on a hermitian

form Φ over an algebraic number field: (1) classification of Φ over the

ring of algebraic integers; (2) hermitian Diophantine equations. The same

types of problems for quadratic forms were treated in the author’s previ-

ous articles. Here we discuss the hermitian case. Problem (2) concerns

an equation ξΦ · tξρ = Ψ , where Φ and Ψ represent hermitian forms. We

connect the number of such ξ modulo a group of units with the class

number and mass of the unitary group of a form Θ such that Φ ≈ Ψ ⊕Θ.
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(secondary)

Introduction

To explain Problems (1) and (2) of the abstract, we take a quadratic exten-

sion K of an algebraic number field F, a vector space V over K of dimension

n, and a nondegenerate hermitian form ϕ : V × V → K with respect to

the nontrivial automorphism ρ of K over F. We denote by d0(ϕ) the coset of

F×/NK/F (K×) represented by (−1)n(n−1)/2 det(ϕ). It is classically known that

n, d0(ϕ), and the indices of ϕ at certain archimedean primes of F, satisfying

a natural consistency condition, determine the isomorphism class of (V, ϕ),

and vice versa. This classification does not answer, however, the question of

classification over the ring of integers. To be precise, let r denote the ring of

algebraic integers in K and g = F ∩ r; let d be the different of K relative to

F. We put

(0.1) Hn =
{
Φ ∈ GLn(K)

∣∣Φ = tΦρ
}
.

We call a matrix Φ = (ϕij) ∈ Hn semi-integral if ϕij ∈ d−1 and ϕii ∈ g for

every i and j, which means that
∑

i,j ϕijxix
ρ
j ∈ g for every (xi)

n
i=1 ∈ rn.

Further we call a semi-integral Φ reduced if the following condition is satisfied:
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(R) If Φ = PΨ · tP ρ with a semi-integral Ψ and P = (pij) ∈ GLn(K), pij ∈ r,

then det(P ) ∈ r×.

These definitions are natural, but cover only a special class of (V, ϕ), as an

r-lattice in V may not be isomorphic to rn. In order to classify all g-valued

hermitian forms, we have to define the genus of a form relative to an isomor-

phism class of lattices, and study its connection with the isomorphism class of

(V, ϕ). These are nontrivial, and will be treated in §§2.4 and 2.5. We are then

able to classify all the genera of g-valued hermitian forms in terms of matrices

(Theorems 2.10 and 2.11). The results can be presented in simpler forms if K

is a real or an imaginary quadratic field of odd class number, in which case

the above definitions cover all hermitian spaces. Let d be the discriminant

of such a K; then K = Q(
√
d ). For a semi-integral Φ with entries in K, put

s(Φ) = p− q when d < 0 and Φ as a complex hermitian matrix has p positive

and q negative eigenvalues; we do not define s(Φ) if d > 0. Let H0
n be the

set of all reduced semi-integral elements of Hn. Then we can prove (Theorem

2.14):

(A) Let three integers n, σ, and e be given as follows: 0 < n ∈ 2Z, σ ∈
2Z, |σ| ≤ n; σ = 0 if d > 0; e is positive and squarefree. Let r be the number

of prime factors of e. Suppose that σ−2r ∈ 4Z and no prime factor of e splits

in K. Then there exists an element Φ of H0
n such that

det(
√
dΦ) = (−1)σ/2e and s(Φ) = σ if d < 0,

det(
√
dΦ) = τe with τ = 1 or −1 if d > 0.

Moreover, every element of H0
n is of this type. Its genus is determined by (σ, e)

if d < 0, and by e if d > 0. If d > 0 and −1 ∈ NK/Q(K×), then both

e and −e can occur as det(
√
dΦ) for Φ in the same genus. If d > 0 and

−1 /∈ NK/Q(K×), then τ is uniquely determined by the condition that a prime

number p divides e if and only if τe /∈ NK/Q(K×p ), where Kp = K ⊗Q Qp.

This concerns the case of even n. We have similar but somewhat different

results for odd n (Theorem 2.15). In fact we discussed in [S5] and [S6] semi-

integral and reduced quadratic forms and obtained results of the same type. If

K is imaginary, the hermitian case is almost parallel to the case of quadratic

forms over Q, but the theory for real K is more subtle, as can be seen from

the above statement.

Let us now turn to the second problem. Before explaining the principal

results, let us first discuss natural problems which are more basic and which

must be settled before investigating the main question. Given (V, ϕ) as before,

let Uϕ(V ) and SUϕ(V ) denote the unitary group and the special unitary group

of ϕ, defined as subgroups of GL(V, K). Take an r-lattice L in V and put

(0.2) Γ (L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
, Γ 1(L) = Γ (L) ∩ SUϕ(V ).
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Then we ask, for a fixed q ∈ F×, whether the set {h ∈ V
∣∣ϕ[h] = q

}
modulo

Γ 1(L) is a finite set. A similar question can be asked by replacing F, K, (V, ϕ)

and L by their localizations at a nonarchimedean prime and by defining an

obvious analogue of Γ 1(L). We will prove that the answer is affirmative in both

global and local cases, provided n > 1 (Theorems 3.3 and 4.2). The same is

true for the problem about the solutions ξ of the equation ξΦ · tξρ = Ψ, where

Ψ is of size m, and ξ belongs to an r-lattice in the space of (m× n)-matrices

with entries in K, where m is a positive integer < n (Theorems 5.2 and 5.3).

We already proved in [S3] the analogues of these facts for quadratic forms and

orthogonal groups.

In order to go beyond the mere finiteness, we consider the adelizations

Uϕ(V )A and SUϕ(V )A, and define their open subgroups C and C1 by

(0.3) C =
{
γ ∈ Uϕ(V )A

∣∣Lγ = L
}
, C1 = C ∩ SUϕ(V )A,

where L is a fixed r-lattice in V. Given two solutions ξ0 and ξ1 of the equation

ξΦ · tξρ = Ψ, we say that they belong to the same genus (with respect to C)

if ξ0γv = ξ1 for every nonarchimedean prime v with an element (γv)v ∈ C.

Naturally they are said to belong to the same class if ξ0γ = ξ1 with γ ∈ Γ (L).

Now to explain our principal ideas in the simplest case, put G = Uϕ(V ) and

H =
{
α ∈ G

∣∣ ξ0α = ξ0
}

; also assume for the moment that GA = GC. Then

there is a bijection of H\HA/(HA ∩ C) onto the set of classes in the genus of

ξ0, and so

(B) #
{
H\HA/(HA ∩ C)

}
= the number of classes in the genus of ξ0.

Here and henceforth #{X} denotes the number of elements in a set X. If

GA 6= GC, the right-hand side becomes a finite sum of the class numbers of

several genera (Theorem 5.4). Since the left-hand side is the class number of

the unitary group H with respect to HA ∩ C, equality (B) connects it to the

solutions ξ of ξΦ · tξρ = Ψ.

If m = 1, the results can be stated in a more transparent way. Returning to

the hermitian form ϕ : V × V → K, put ϕ[h] = ϕ(h, h) for h ∈ V. Then the

equation ξΦ · tξρ = Ψ can be written ϕ[h] = q with h ∈ V and q ∈ F×; thus

h and q replace ξ and Ψ. Given a fractional ideal b in K, put

(0.4) L[q, b] =
{
h ∈ V

∣∣ϕ[h] = q, ϕ(h, L) = b
}
.

We call L integral if ϕ[x] ∈ g for every x ∈ L and call L maximal if it is

maximal among the integral r-lattices. The point of considering L[q, b] is that

L[q, b], if nonempty, consists of a single genus with respect to C in the above

sense. This is clearly a result of local nature; unfortunately, its proof given in

Section 3 is not short. In this case H = Uϕ(W ), where W is the orthogonal

complement of Kh in V. Now we can prove (Theorem 4.4, Corollary 5.8):
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(C) For every y ∈ GA, there is a bijection of H\(HA∩GyC)/(HA∩C) onto

(Ly−1)[q, b]/∆y, where ∆y = G ∩ yCy−1.

(D) Take {yi}i∈I ⊂ GA so that GA =
⊔
i∈I GyiC and put Li = Ly−1

i . Then
∑

i∈I
#
{
Li[q, b]/Γ (Li)

}
= #

{
H
∖
HA

/
(HA ∩ C)

}
.

(E) If the archimedean factor of GA is compact, then∑

i∈I
#
{
Li[q, b]

}
/#
{
Γi
}

= m(H, HA ∩ C),

where the right-hand side is the mass of H with respect to the open subgroup

HA ∩ C of HA in the sense of [S2].

These assertions are true with SUϕ(V ), SUϕ(W ) and C1 in place of G, H,

and C, if dim(V ) > 2 and we impose a certain condition on (q, b). Notice that

(E) gives the mass of H by means of the number of solutions h of ϕ[h] = q

under the condition ϕ(h, L) = b, while (D) gives the class number of H.

In our recent book [S3, Chapter III] we developed a theory of a Diophantine

equation ϕ[h] = q for a quadratic form ϕ defined on a vector space over an

algebraic number field. The principal result is that to each “primitive solution”

h of this equation for a fixed q, considered modulo the group of units Γ, one

can associate a “class” of lattices with respect to the orthogonal group H of the

restriction of ϕ to a subspace of codimension 1. Consequently the class number

of H equals the number of such h modulo Γ. This includes as a special case the

result of Gauss that the number of primitive representations of q as the sum of

three squares equals an elementary factor times the class number of primitive

binary quadratic forms of discriminant −q. Also, formulas of type (B) and (E)

were proved in [S3] and [S6] for quadratic forms. The reader is referred to [S7]

for some more historical and technical comments on this subject. Now (B),

(C), (D), and (E) are hermitian analogues of these results. In order to develop

the theory for hermitian forms, we are naturally guided by the formulation in

the case of quadratic forms, but we need new ideas and technique, and it is

wrong to say that we can do things “in the same way.” This is especially so

when we consider the problem with respect to the special unitary group instead

of the unitary group. Thus there are two theories with respect to these two

types of groups, and one, that for the special unitary group, is more complex

than the other, and in a sense more interesting.

1. Generalities on hermitian forms and unitary groups

1.1. For an associative ring A with an identity element we denote by A×

the group of all invertible elements of A, and for positive integers m and n we

denote by Amn the A-module of all (m× n)-matrices with entries in A. We put

Mn(A) = Ann when we view it as a ring, and denote by 1n its identity element.
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We take a basic field F and a couple (K, ρ) consisting of an F -algebra K

and a nontrivial F -linear automorphism ρ of K belonging to the following two

types:

(I) K is a separable quadratic extension of F and ρ generates Gal(K/F );

(II) K = F × F and (x, y)ρ = (y, x) for (x, y) ∈ F × F.
In our later discussion, K of type (II) will appear as a localization of a global

K of type (I). For a matrix α = (aij) with entries in K we denote by tα the

transpose of α, and put αρ = (aρij) and α∗ = tαρ; we put also α−ρ = (αρ)−1

when α is invertible. For a subring S of K we write α ≺ S if all the entries of

α are contained in S. Given a left K-module V, we denote by End(V, K) the

ring of all K-linear endomorphisms of V and put GL(V, K) = End(V, K)×.
We let End(V, K) act on V on the right; namely we denote by wα the image

of w ∈ V under α ∈ End(V, K).

Let V be a left K-module isomorphic to K1
n; we put then n = dim(V ). By a

hermitian space we mean a structure (V, ϕ), where ϕ is a hermitian form on

V, that is, an F -bilinear map ϕ : V × V → K such that

(1.1) ϕ(x, y)ρ = ϕ(y, x),

(1.2) ϕ(ax, by) = abρϕ(x, y) for every a, b ∈ K.
Whenever we speak of a hermitian space (V, ϕ), we assume that ϕ is non-

degenerate, and put ϕ[x] = ϕ(x, x) for x ∈ V. We define groups Uϕ(V ) and

SUϕ(V ) by

(1.3a) Uϕ = Uϕ(V ) =
{
α ∈ GL(V, K)

∣∣ϕ[xα] = ϕ[x] for every x ∈ V
}
,

(1.3b) SUϕ = SUϕ(V ) =
{
α ∈ Uϕ(V )

∣∣ det(α) = 1
}
.

For every free K-submodule X of V on which ϕ is nondegenerate, we put

(1.4) X⊥ =
{
y ∈ V

∣∣ϕ(y, X) = 0
}
,

and define Uϕ(X) and SUϕ(X) by (1.3a, b) with X in place of V ; namely we

use ϕ for its restriction to X. We always identify Uϕ(X) with the subgroup

of Uϕ(V ) consisting of the elements α such that yα = y for every y ∈ X⊥.

Similarly we view SUϕ(X) as a subgroup of SUϕ(V ).

Let h be an element of V such that ϕ[h] 6= 0. Then

(1.5)
{
x ∈ V

∣∣ϕ[x] = ϕ[h]
}

=

{
h · Uϕ if dim(V ) = 1,

h · SUϕ if dim(V ) > 1.

This follows easily from the generalized Witt theorem; see [S2, Lemma 1.3],

for example. The case K = F × F is not included in that theorem, but the

structure of (V, ϕ) for such a K is determined by dim(V ) as shown in [S2,

§2.13], and so the fact corresponding to the Witt theorem is trivially true; see

also §1.8 below.
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1.2. Let ϕ0 be the matrix that represents ϕ with respect to a K-basis of

V ; then we denote by d0(V, ϕ) the element of F×/NK/F (K×) represented by

(−1)n/2 det(ϕ0) or (−1)(n−1)/2 det(ϕ0) according as n is even or odd. This

does not depend on the choice of a K-basis of V. We denote d0(V, ϕ) simply

by d0(V ) or d0(ϕ) when there is no fear of confusion.

Given s ∈ F×, we denote by {K, s} the quaternion algebra B over F in

which K is embedded and which is given by

(1.6) B = K +Kω, ω2 = s, ωa = aρω for every a ∈ K.
Since B is determined by K and sNK/F (K×), for a coset ε ∈ F×/NK/F (K×)

we denote by {K, ε} the algebra {K, s} with any s ∈ ε. In particular, we can

associate with (V, ϕ) a quaternion algebra {K, d0(ϕ)}.
Lemma 1.3. Given (V, ϕ) as in §1.1, suppose dim(V ) = 2 and put B =

{K, d0(ϕ)}. Then there is a ring-injection j of B into End(V, K) and an

element ℓ of V such that ϕ[ℓ] 6= 0, ℓj(B) = V, ℓj(a) = aℓ for every a ∈ K,
and ϕ[ℓj(ξ)] = ϕ[ℓ]ξξι for every ξ ∈ B, where ι is the main involution of B.

Moreover, TrK/F
(
ϕ(ℓα, ℓβ)

)
= ϕ[ℓ]TrB/F (αβι) for every α, β ∈ B, and

(1.7a) Uϕ(V ) =
{
z−1α

∣∣ z ∈ K×, α ∈ B×, zzρ = ααι
}
,

(1.7b) SUϕ(V ) =
{
α ∈ B×

∣∣ααι = 1
}
,

where we identify α with j(α) for α ∈ B.
Proof. Identify V with K1

2 so that ϕ(x, y) = xϕ0y
∗ for x, y ∈ K1

2 with

ϕ0 = diag[c, −cs], where c, s ∈ F×. Then d0(ϕ) = sNK/F (K×), and so B is

given by (1.6). Define j : B →M2(K) by j(a+ bω) =

[
a b
sbρ aρ

]
and put ℓ =

(1, 0). Then it is an easy exercise to verify all the statements; cf. [S2, Lemmas

4.3, 4.4, and (4.3.2)]. Notice that j(B) =
{
α ∈M2(K)

∣∣αιϕ0 = ϕ0α
∗}.

1.4. When K is a field, by a weak Witt decomposition of V we mean a direct

sum decomposition of V with 2r elements ei, fi, and a subspace Z of V such

that

(1.8a) V =
∑r
i=1(Kei +Kfi) + Z, Z =

(∑r
i=1(Kei +Kfi)

)⊥
,

(1.8b) ϕ(ei, ej) = ϕ(fi, fj) = 0, ϕ(ei, fj) = δij for every i and j.

Clearly
∑r

i=1(Kei + Kfi) is a subspace of dimension 2r. We call this a Witt

decomposition if ϕ[x] 6= 0 for every x ∈ Z, 6= 0, in which case we call Z a

core subspace of (V, ϕ) and dim(Z) the core dimension of (V, ϕ). If ζ is the

restriction of ϕ to Z, then clearly d0(ϕ) = d0(ζ).

1.5. In this paper a global field means an algebraic number field of finite

degree, and a local field the completion of a global field at a nonarchimedean

prime. For a global field F we denote by g the ring of algebraic integers in F ;
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for a local F we denote by g the ring of local integers in F in the standard

sense. An archimedean completion of a global field will not be called a local

field. In both local and global cases, by a g-lattice in a finite-dimensional vector

space V over F, we mean a finitely generated g-submodule of V that spans V

over F.

Let (K, ρ) be as in §1.1 with a local or global F. We then denote by r the

ring of all elements of K integral over g, and by d the different of K relative

to F. We have r = d = g× g if K = F × F. By a g-ideal we mean a fractional

ideal in F, and similarly by an r-ideal we mean a fractional ideal in K if K

is a field. If K = F × F, an r-ideal means a subset of K of the form a × b

with g-ideals a and b. In both local and global cases, by an r-lattice in a

K-module V as in §1.1 we mean a g-lattice in V stable under multiplication

by the elements of r. Given two r-lattices L and M in V, we denote by [L/M ]

the r-ideal generated by det(α) for all α ∈ GL(V ) such that Lα ⊂ M. Thus

[L/Lα] = det(α)r. In particular, if α ∈ Uϕ and K is a field in the local case,

then [L/Lα] = r. If K = F × F, however, [L/Lα] = a × a−1 with a g-ideal a

for α ∈ Uϕ.
Lemma 1.6. Two hermitian spaces (V, ϕ) and (V ′, ϕ′) in the local case are

isomorphic if and only if dim(V ) = dim(V ′) and d0(ϕ) = d0(ϕ′).

This is well known. For the proof, see [S2, Proposition 5.3], for example.

1.7. Let (V, ϕ) be defined with a local or global F. For a g-lattice L in V

we denote by µ(L) the g-ideal generated by ϕ[x] for all x ∈ L. We call a

g-lattice L in V integral if µ(L) ⊂ g; we call an r-lattice L maximal if L is

maximal among the integral r-lattices. (This is what we called g-maximal in

[S2].) For basic properties of maximal lattices in V the reader is referred to

[S1] or Sections 4 and 5 of [S2]. For example, we note ([S2, (4.7.1)])

(1.9) ϕ(L, L) ⊂ d−1 if L is integral.

If n > 1 and L is maximal, then µ(L) = g. This fact in the global case follows

from the local case, which can be seen from [S2, Lemmas 5.4 and 5.6].

Given an r-lattice L in V, q ∈ F×, and an r-ideal b, we put

(1.10a) L̂ =
{
x ∈ V

∣∣ϕ(x, L) ⊂ d−1
}
,

(1.10b) L[q] =
{
x ∈ L

∣∣ϕ[x] = q
}
,

(1.10c) L[q, b] =
{
x ∈ V

∣∣ϕ[x] = q, ϕ(x, L) = b
}
.

By (1.9), we have L ⊂ L̂ if L is integral. The set L[q, b] is not neces-

sarily contained in L[q]. If M is another r-lattice in V, then we easily see

that [L/M ]ρ = [M̂/L̂]. If L1 = Lα with α ∈ Uϕ, then L̂1 = L̂α, and so

[L̂1/L1] = [L̂/L].

The notation being as in (1.8a, b), take a maximal r-lattice M in Z and put
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(1.11) L =
∑r
i=1(rei + d−1fi) +M.

Then L is maximal; see [S2, Lemma 4.9 (2)]. We can easily verify that

(1.12) L̂ =
∑r

i=1(rei + d−1fi) + M̂, M̂ =
{
x ∈ Z

∣∣ϕ(x, M) ⊂ d−1
}
.

1.8. Let us now consider the case K = F × F ; then we define the core

dimension of (V, ϕ) to be 0. We can write an element of V = K1
n in the form

(x, y) with x, y ∈ F 1
n . Taking a suitable coordinate system, we can assume

that

(1.13) ϕ
(
(x, y), (z, w)

)
= (x · tw, y · tz) (x, y, z, w ∈ F 1

n).

This is shown in [S2, §2.13]. We have then ϕ
[
(x, y)

]
= x · ty and

(1.14) Uϕ =
{

(ξ, ξ̃)
∣∣ ξ ∈ GLn(F )

}
, SUϕ =

{
(ξ, ξ̃)

∣∣ ξ ∈ SLn(F )
}
,

where ξ̃ = tξ−1; also g1
n × g1

n is a maximal lattice. It should be noted that if

h ∈ V and ϕ[h] 6= 0, then Kh is isomorphic to K.

Lemma 1.9. Let L be a maximal lattice in V and t the core dimension of

(V, ϕ); suppose K is a local field; put

E =
{
e ∈ r×

∣∣ eeρ = 1
}
, E0 =

{
eρ/e

∣∣ e ∈ r×
}
, EL = det

(
C(L)

)
,

where C(L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
. Then the following assertions hold:

(i) [E : E0] = 1 or 2 according as K is unramified or ramified over F.

(ii) EL = E0 if t = 0; EL = E if t > 0.

This is included in [S1, Lemma 4.16 and Proposition 4.18] and [S2, Lemma

5.11].

Suppose K is a local field ramified over F ; let L and M be maximal lattices

in V. Then there exists an element α ∈ Uϕ such that M = Lα as shown in

(i) of the following lemma. We then denote by e(L/M) the element of E/E0

represented by det(α). This is well defined in view of (ii) above.

Lemma 1.10. Let L and M be maximal lattices in V in the local case, and

let t be the core dimension of (V, ϕ). Then the following assertions hold:

(i) There exists an element α of Uϕ such that M = Lα.

(ii) We can take such an α from SUϕ if t > 0 or K is a field unramified

over F.

(iii) Suppose K is ramified over F and t = 0; then M = Lα with α ∈ SUϕ
if and only if e(L/M) = 1.

(iv) Suppose K = F × F ; then M = Lα with α ∈ SUϕ if and only if

[L/M ] = r.

Proof. The first assertion is included in [S1, Propositions 3.3 and 4.13] and

also in [S2, Lemmas 4.12 and 5.9]. Next, suppose K is a field; given M, take
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α ∈ Uϕ so that Lα = M and put c = det(α). Then c ∈ E. If K is unramified

over F or t > 0, then Lemma 1.9 guarantees an element β of Uϕ such that

Lβ = L and det(β) = c−1. Then βα ∈ SUϕ and Lβα = M. This proves (ii).

Assertion (iii) can be proved in a similar way. Assertion (iv) is included in [S1,

Proposition 3.3].

1.11. Let us now consider the case with n = 2 and a local F. Using the

symbols B, j, and ℓ of Lemma 1.3, we first observe that

(1.15) B ∼= M2(F ) ⇐⇒ t = 0 ⇐⇒ 1 ∈ d0(ϕ).

Let O be a maximal order in B containing r. We can find an element γ ∈ B×
such that ϕ[ℓ]−1 = γγι. Put M = ℓj(Oγ) and Ô =

{
α ∈ B

∣∣TrB/F (αO) ⊂ g
}
.

Identifying B with j(B), for α ∈ B we see that

ℓαγ ∈ M̂ ⇐⇒ ϕ(ℓαγ, M) ⊂ d−1 ⇐⇒ TrK/F
(
rϕ(ℓαγ, M)

)
⊂ g

⇐⇒ TrB/F (αO) ⊂ g⇐⇒ α ∈ Ô.

Thus M̂ = ℓj(Ôγ). If B is not a division algebra, then Ô = O, so that M̂ = M,

which means that M is maximal. Suppose B is a division algebra; then O ={
α ∈ B

∣∣ααι ∈ g
}

as noted in [S3, Theorem 5.13], and so M =
{
x ∈ V

∣∣ϕ[x] ∈
g
}
, which is a unique maximal lattice in V by [S2, Lemma 5.4]. Since Ô = P−1

with the maximal ideal P of O, we have M̂ = ℓj(P−1γ). Thus [M̂/M ] = pr

with the maximal ideal p of g.

2. Classification of hermitian forms over a global field

2.1. Throughout this section we assume that F is a global field and K is

a quadratic extension of F. We denote by a and h the sets of archimedean

primes and nonarchimedean primes of F respectively, and put v = a ∪ h.

Given an algebraic group G defined over F, we define Gv for each v ∈ v and

the adelization GA as usual, and view G and Gv as subgroups of GA. We then

denote by Ga and Gh the archimedean and nonarchimedean factors of GA,

respectively. In particular, the adelization of the multiplicative group F× is

denoted by F×A , which is the idele group of F. For x ∈ GA and v ∈ v we

denote by xv the v-component of x.

Given (V, ϕ) over F, for each v ∈ v we can define the v-localization

(V, ϕ)v = (Vv, ϕv) with ϕv : Vv × Vv → Kv in a natural way. For v ∈ h

let tv be the core dimension of (V, ϕ)v. Since x 7→ ϕv[x] for x ∈ Vv can be

viewed as an Fv-valued quadratic form, we have 2tv ≤ 4 by a well known

principle, and so tv ≤ 2. Let r0 denote the set of all real archimedean primes

of F that do not split in K. If v ∈ a and v /∈ r0, then there is only one

isomorphism class of (V, ϕ)v for each n. For each fixed v ∈ r0 we have a pair

of nonnegative integers (pv, qv) such that ϕv is represented by diag[1pv , −1qv ]

when Fv and Kv are identified with R and C. We put then sv(ϕ) = pv − qv,
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and call sv(ϕ) the index of ϕ at v. Clearly |sv(ϕ)| is the core dimension of

ϕv, sv(ϕ) − n ∈ 2Z, and |sv(ϕ)| ≤ n; also, n and sv(ϕ) determine (pv, qv),

and vice versa.

For an r-lattice L in V and v ∈ h we denote by Lv the rv-linear span of L

in Vv. Also, for ξ ∈ GL(V, K)A we denote by Lξ the lattice in V such that

(Lξ)v = Lvξv for every v ∈ h. By the Uϕ(V )-genus (resp. SUϕ(V )-genus)

of L we understand the set of all lattices of the form Lξ with ξ ∈ Uϕ(V )A
(resp. ξ ∈ SUϕ(V )A). Also, by the Uϕ(V )-class (resp. SUϕ(V )-class) of L

we understand the set of all lattices of the form Lα with α ∈ Uϕ(V ) (resp.

α ∈ SUϕ(V )).

The classification of (V, ϕ) over a number field was done by Landherr in [L].

We formulate the results in the form that suits our later purposes, and give a

proof for the reader’s convenience. To be precise, we are going to show that

the isomorphism classes of hermitian spaces correspond bijectively to the sets

of data consisting of the following objects:

(2.1a) 0 < n ∈ Z; ε ∈ F×; an integer σv, given for each v ∈ r0, such that

|σv| ≤ n and σv − n ∈ 2Z.

We look for (V, ϕ) such that dim(V ) = n, d0(ϕ) is represented by ε, and

sv(ϕ) = σv for every v ∈ r0. Clearly the following condition is necessary:

(2.1b) (−1)σv/2ε > 0 for every v ∈ r0 if n ∈ 2Z and (−1)(σv−1)/2ε > 0 for

every v ∈ r0 if n− 1 ∈ 2Z.

Theorem 2.2. (i) The isomorphism class of (V, ϕ) is determined by

n, {σv}, and d0(ϕ).

(ii) Given n, ε, and {σv} satisfying (2.1a, b), there exists a hermitian space

(V, ϕ) such that dim(V ) = n, ε ∈ d0(ϕ), and sv(ϕ) = σv for every v ∈ r0.

Proof. Clearly n and {σv} determine (V, ϕ)v for every v ∈ a, and n and

d0(ϕ) determine (V, ϕ)v for every v ∈ h by Lemma 1.6. Therefore we obtain (i)

in view of the Hasse principle. We prove (ii) by induction on n. The case n = 1

is trivial, and so we assume n > 1. We first prove the case in which σv ≥ 0 for

every v ∈ r0. Let τv = σv − 1. Then the set
(
n − 1, (−1)n−1ε, {τv}

)
satisfies

(2.1a, b), and therefore by induction we can find a hermitian space (W, ψ) such

that dim(W ) = n − 1, τv = sv(ψ) for every v ∈ r0, and (−1)n−1ε ∈ d0(ψ).

Put V = K ⊕W and define ϕ on V by ϕ[a⊕ y] = aaρ + ψ[y] for a ∈ K and

y ∈W. Then clearly ε ∈ d0(ϕ) and sv(ϕ) = σv for every v ∈ r0.

Now, given {σv} with possibly negative σv, take c ∈ F× so that c < 0 or

c > 0 at v ∈ r0 according as σv < 0 or σv ≥ 0. Then the set
(
n, cnε, {|σv|}

)

satisfies (2.1a, b). Therefore we can find a hermitian space (V1, ϕ1) such that

dim(V1) = n, cnε ∈ d0(ϕ1), and sv(ϕ1) = |σv| for every v ∈ r0. Put ϕ = cϕ1.

Then ε ∈ d0(ϕ) and sv(ϕ) = σv for every v ∈ r0. This completes the proof.
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Theorem 2.3. Given (V, ϕ), put B = {K, d0(ϕ)} using the notation of

§1.2. Let e be the product of the prime ideals of F ramified in B; also let L be

a maximal lattice in V. Then the following assertions hold.

(i) [L̂/L] = er if n is even.

(ii) When n is odd, put d0(ϕ)g = aNK/F (b) with an r-ideal b and a

squarefree integral g-ideal a whose prime factors remain prime in K. Then

[L̂/L] = ad, where d is the different of K relative to F.

Proof. For v ∈ h let tv be the core dimension of (V, ϕ)v. Suppose n ∈ 2Z;

then tv = 0 if and only if d0(ϕ) is represented by an element of NK/F (K×v ),

that is, if and only if v does not divide e. If n is odd, the isomorphism class

of (V, ϕ)v depends on av and dv. Thus our assertions can be reduced to the

question about [L̂v/Lv] for v ∈ h. In fact, suppressing the subscript v, we

have, in the local case,

(2.2) [L̂/L] = r if t = 0; [L̂/L] = pr if t = 2; [L̂/L] = d if t = 1 and

d0(ϕ) ∩ g× 6= ∅; [L̂/L] = pd if t = 1 and d0(ϕ) ∩ g× = ∅.
Here p is the maximal ideal of g. In view of Lemma 1.10 (i), it is sufficient to

prove this for a special choice of L. If K = F ×F, then we can put L = g1
n×g1

n

as noted in §1.8, and so L̂ = L. Thus we assume that K is a field. By (1.12),

L = L̂ if t = 0. Let M =
{
x ∈ Z

∣∣ ϕ[x] ∈ g
}
. By (1.12), [L̂/L] = [M̂/M ].

We have seen that [M̂/M ] = pr in §1.11 if t = 2. If t = 1, then M = rℓ

with an element ℓ such that ϕ[ℓ]g is g or pg. Thus M̂ = d−1ϕ[ℓ]−1ℓ, and so

[L̂/L] = [M̂/M ] = ϕ[ℓ]d, which completes the proof of (2.2). Combining the

results on [L̂v/Lv] for all v ∈ h, we obtain our theorem.

2.4. To illustrate Theorem 2.3 in terms of matrices, we have to define the

genus and class of a hermitian matrix. We put

(2.3) G = GLn(K), Hn =
{
Φ ∈ G

∣∣Φ∗ = Φ
}
, L0 = r1n,

(2.4) E = Ga

∏

v∈h
GLn(rv), Eξ = ξ−1Eξ (ξ ∈ GA),

(2.5) ∆ξ = Eξ ∩G, ∆1
ξ = Eξ ∩ SLn(K).

Every r-lattice L in K1
n can be given as L = L0ξ with ξ ∈ GA, and Eξ =

{
y ∈

GA

∣∣Ly = L
}
. We denote by Hn(ξ) the set of all Φ ∈ Hn such that xΦx∗ ∈ g

for every x ∈ L0ξ. We call such a Φ reduced (relative to ξ) if the following

condition is satisfied:

(2.6) Φ ∈ Hn(ζ−1ξ) with ζ ∈ Gh ∩
∏

v∈h
Mn(rv) =⇒ ζ ∈ E.

We denote by H0
n(ξ) the set of all reduced elements of Hn(ξ).

We say that two elements Φ and Ψ of Hn(ξ) belong to the same genus (relative

to ξ) if there exists an element ε of Eξ such that εΦε∗ = Ψ ; they are said to
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belong to the same U -class (resp. SU -class) if αΦα∗ = Ψ for some α ∈ ∆ξ

(resp. α ∈ ∆1
ξ). These depend on the choice of L = L0ξ.

Given Φ ∈ Hn, put V = K1
n and ϕ[x] = xΦx∗ for x ∈ V. Then we obtain a

hermitian space (V, ϕ), which we denote by [Φ], and we write U(Φ) and SU(Φ)

for Uϕ(V ) and SUϕ(V ) as subgroups of G. Put L = L0ξ with ξ ∈ GA. Clearly

L is integral if Φ ∈ Hn(ξ), in which case L is maximal if and only if Φ ∈ H0
n(ξ).

Thus an element of H0
n(ξ) determines a hermitian space and a maximal lattice.

2.5. To parametrize all genera of Φ ∈ H0
n(ξ), we need a few more symbols:

(2.7) t = K×A ∩
(
K×a

∏

v∈h
tv

)
, tv =

{
y ∈ K×v

∣∣ yyρ ∈ g×v
}
,

(2.8) T =
{
x ∈ GA

∣∣ det(x) ∈ t
}
.

Notice that tv = r×v ·
{
y ∈ K×v

∣∣ yyρ = 1
}

for every v ∈ h, and tv = r×v if v does

not split in K. Let IK denote the ideal group of K and I0
K/F the subgroup of

IK generated by the ideals a such that NK/F (a) = g and the principal ideals.

Now there is a sequence of isomorphisms:

(2.9) GA/TG ∼= K×A/K
×t ∼= IK/I

0
K/F .

The last isomorphism can be obtained by the map y 7→ yr for y ∈ K×A. As for

the first isomorphism, we first note, for every ξ ∈ GA and Φ ∈ Hn,

(2.10) TGξ = EξU(Φ)AG =
{
x ∈ GA

∣∣ det(ξ−1x) ∈ K×t
}
.

Clearly the last set contains the second set. Conversely, suppose x ∈ GA

and det(ξ−1x) = by with b ∈ K× and y ∈ t. We can find z, w ∈ K×A
such that zv ∈ r×v and wvw

ρ
v = 1 for every v ∈ h and y = zw. We can

find ε ∈ E, α ∈ G, and γ ∈ U(Φ)A such that det(ε) = z, det(α) = b, and

det(γ) = w. Then det(x−1εξγα) = 1. By strong approximation in SLn(K) we

see that x−1εξγα ∈ x−1ExSLn(K), and so x−1εξγα = x−1ε′xβ with ε′ ∈ E
and β ∈ SLn(K). Then x = (ε′)−1εξγαβ−1 ∈ EξU(Φ)AG, which proves the

last equality of (2.10). That TG equals the last set of (2.10) for ξ = 1 can be

proved in the same way. Thus TG is the inverse image of K×t under the map

x 7→ det(x), and so TG is a normal subgroup of GA. Then we obtain the first

isomorphism of (2.9) and also the first equality of (2.10) for every ξ ∈ GA.

Proposition 2.6. (i) For Φ, Ψ ∈ H0
n(ξ), ξ ∈ GA, the spaces [Φ] and [Ψ ] are

isomorphic if and only if they belong to the same genus.

(ii) Let X be a complete set of representatives for GA/TG, and for each

ξ ∈ GA let Yξ be a complete set of representatives for the genera of the elements

of H0
n(ξ). Then the hermitian spaces [Φ] obtained from Φ ∈ Yξ for all ξ ∈

X exhaust all isomorphism classes of n-dimensional hermitian spaces without

overlapping.
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Proof. Let Φ and Ψ be elements of H0
n(ξ) belonging to the same genus. Then

there exists an element ε ∈ Eξ such that εΦε∗ = Ψ, and the Hasse principle

guarantees an element α of G such that Ψ = αΦα∗. Thus [Ψ ] is isomorphic

to [Φ]. Conversely, suppose [Φ] and [Ψ ] are isomorphic for Φ, Ψ ∈ H0
n(ξ). Then

Φ = βΨβ∗ for some β ∈ G. Now L0ξ is maximal in both [Φ] and [Ψ ], and L0ξβ

is maximal in [Ψ ]. Thus L0ξβ = L0ξγ with γ ∈ U(Ψ)A by Lemma 1.10. Put

ζ = βγ−1. Then ζ ∈ Eξ, and ζΨζ∗ = Φ. Therefore Ψ belongs to the genus of

Φ. This proves (i). Clearly every n-dimensional hermitian space is isomorphic

to [Ψ ] for some Ψ ∈ Hn. Take a maximal lattice L in K1
n = V and put L = L0η

with η ∈ GA. We have then η ∈ TGξ with some ξ ∈ X. By (2.10) we can

put ξ = εηγα−1 with ε ∈ E, γ ∈ U(Ψ)A, and α ∈ G. Put Φ = αΨα∗. Then

α gives an isomorphism of [Φ] onto [Ψ ]. Now L0ηγ is a maximal lattice in [Ψ ]

and L0ξα = L0ηγ, and so L0ξ is a maximal lattice in [Φ]. Thus Φ ∈ H0
n(ξ).

By (i), Φ can be replaced by a member of Yξ. This shows that every (V, ϕ)

can be obtained as described in (ii). Now suppose [Φ1] and [Φ2] are isomorphic

for Φi ∈ Yξi with ξ1, ξ2 ∈ X. Then Φ1 = αΦ2α
∗ with α ∈ G. Since L0ξi is

maximal, we have L0ξ1α = L0ξ2ζ with ζ ∈ U(Φ2)A. Then ξ1αζ
−1ξ−1

2 ∈ E,
and so det(ξ1ξ

−1
2 ) ∈ K×t. We are taking the ξi from X, and therefore ξ1 = ξ2

by (2.10). By (i), Φ2 belongs to the genus of Φ1, and so Φ2 = Φ1. This completes

the proof.

2.7. The connection of a class of hermitian matrices with a class of lattices

is not so simple in general. Given Φ ∈ H0
n(ξ) with a fixed ξ, in order to

exhaust all classes in the U(Φ)-genus of L0ξ, we have to consider the genera of

elements in H0
n(ξζ) for all ζ ∈ TG/EξG. Thus H0

n(ξ) is sufficient if and only if

K×t = K× det(E). We will not go into details, as we do not need the result in

our later treatment.

The case of SU -class is simpler. Fix ξ ∈ G and put L = L0ξ. For Φ ∈ Hn(ξ)

we define the SU -genus (relative to ξ) of Φ to be the set of all Ψ ∈ H0
n(ξ) such

that Ψ = εΦε∗ with ε ∈ Eξ such that det(ε) = 1. Clearly det(Ψ) = det(Φ).

Given such Ψ and ε, the Hasse principle guarantees an element α ∈ G such

that Ψ = αΦα∗. Then det(α) det(α)ρ = 1. Changing α for αγ with a suitable

γ ∈ U(Φ), we may assume that det(α) = 1. Since Lα = Lε−1α and ε−1α ∈
SU(Φ)A, we see that Lα belongs to the SU(Φ)-genus of L. We then associate

the SU(Φ)-class of Lα to Ψ. We can easily verify that the set of all SU -classes

in the SU -genus of Φ contained in Hn(ξ) are in one-to-one correspondence with

the set of SU(Φ)-classes in the SU(Φ)-genus of L.

2.8. Define (V, ϕ) by V = K1
n and ϕ[x] = xΦx∗ as above with any Φ ∈ Hn.

Put L = L0ξ with ξ ∈ GA. We easily see that L̂ = d−1L0(Φξ∗)−1, and so

(2.11) [L̂/L] = det(Φξξρ)dn if L = L0ξ.

We need a few more symbols. First, we put d0 = d2∩F. For v ∈ r0 and (V, ϕ)
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isomorphic to [Φ] with Φ ∈ Hn we put sv(Φ) = sv(ϕ) and d0(Φ) = d0(ϕ).

Lemma 2.9. Let B be a quaternion algebra over F and K a quadratic ex-

tension of F contained in B; let r be the maximal order of K and O a maximal

order in B containing r; further let e be the product of the prime ideals in F

ramified in B and d the different of K relative to F. Then there exists a g-ideal

a such that O is isomorphic as a left r-module to r⊕a andNK/F (da) = se with

an element s such that B is isomorphic to {K, s}. Moreover, the coset aI0
K/F

is independent of the choice of O, and O is isomorphic as a right r-module to

r⊕ aι, where ι is the main involution of B.

Proof. Take ε ∈ F× so that B = {K, ε}, and consider (V, ϕ) = [Φ] over K

with V = K1
2 and ϕ such that ε ∈ d0(ϕ). Using the symbols y, j of Lemma

1.3, identify j(α) with α for α ∈ B, and put M = yOγ with γ ∈ B×h such that

ϕ[y]−1 = γvγ
ι
v for every v ∈ h. Applying the local result of §1.11 to Mv, we see

that M is maximal and [M̂/M ] = er. Put M = r12ξ with some ξ ∈ GL2(K)A
and a = det(ξ)r. Then by a well-known principle M is r-isomorphic to r⊕ a.

By (2.11) we have det(Φ)NK/F (da) = e. Then we obtain the first assertion of

our lemma by taking s = − det(Φ)−1. Let O′ be another maximal order in B

containing r. By the Chevalley-Hasse-Noether theorem (see [E, Satz 7]) there

exists an r-ideal b such that bO′ = Ob. Take c ∈ K×A so that b = cr. Then

for each v ∈ h we can find ηv ∈ GL2(Kv) such that yc−1
v xcv = yxηv for every

x ∈ Bv. Then yO′v = yOvηv, and so yO′ = Mγ−1η with η = (ηv)v∈h. Using

the map j in the proof of lemma 1.3, we find that ηv = diag[1, cρv/cv], and so

det(γ−1η)r = ϕ[y]b−1bρ ∈ I0
K/F . Thus det(ξγ−1η)r ∈ aI0

K/F , which proves the

second assertion. We can put O = rz + aw with elements z and w. Applying

ι to this, we obtain the last assertion.

We call the coset aI0
K/F in the above lemma the characteristic coset of K

relative to B. Using this notion, we now reformulate Theorems 2.2 and 2.3 in

terms of the matrices Φ in H0
n(ξ).

Theorem 2.10 (The case of even n). Let the symbols n, {σv}v∈r0 , ε, and

ξ be given as follows: 0 < n ∈ 2Z, σv ∈ 2Z, |σv| ≤ n; ε ∈ F×, ξ ∈ GA. Let

B = {K, ε}; let e be the product of the prime ideals in F ramified in B, and

k the characteristic coset of K relative to B. Suppose that (−1)σv/2ε > 0 at

each v ∈ r0 and

(2.12) det(ξ)d(n−2)/2 ∈ k.

Then there exists an element Φ of H0
n(ξ) such that

(2.13) ε ∈ d0(Φ), det(Φξξρ)d
n/2
0 = e, sv(Φ) = σv for every v ∈ r0.

Moreover, every element of H0
n(ξ) is of this type, and the coset TGξ and the

genus of Φ are determined by (εNK/F (K×), {σv}v∈r0).
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Proof. Let the symbols n, {σv}v∈r0 , ε, and ξ be given as in our theorem.

Then Theorem 2.2 combined with Proposition 2.6 guarantees an element Ψ

of H0
n(η) with some η ∈ GA such that ε ∈ d0(Ψ) and σv = sv(Ψ) for ev-

ery v ∈ r0. Put y = det(η)r. By Theorem 2.3 (i), (2.11), and Lemma 2.9

we see that yd(n−2)/2 ∈ k. Combining this with our condition (2.12), we see

that y ∈ det(ξ)I0
K/F , and so det(η−1ξ) ∈ K×t, which implies η ∈ TGξ; see

(2.9). By Proposition 2.6 (ii), [Ψ ] is isomorphic to [Φ] with some Φ ∈ H0
n(ξ).

Replacing (Ψ, η) by (Φ, ξ), we obtain (2.13). This proves the first part of our

theorem. Conversely, given Φ ∈ H0
n(ξ), put L = L0ξ. Let e be the product of

the prime ideals in F ramified in {K, d0(ϕ)}. By Theorem 2.2 (i) and (2.11),

det(Φξξρ)d
n/2
0 = e, which together with Lemma 2.9 implies condition (2.12).

This proves the second part. The last part follows from Proposition 2.6.

Theorem 2.11 (The case of odd n). Let the symbols n, {σv}v∈r, ε, and

ξ be given as follows: 0 < n − 1 ∈ 2Z, σv − 1 ∈ 2Z, |σv| ≤ n; ε ∈ F× and

ξ ∈ GA. Let εg = aNK/F (b) with an r-ideal b and a squarefree integral g-

ideal a whose prime factors remain prime in K. Suppose (−1)(σv−1)/2ε > 0 at

each v ∈ r0 and

(2.14) det(ξ)d(n−1)/2b ∈ I0
K/F .

Then there exists an element Φ of H0
n(ξ) such that

(2.15) ε ∈ d0(Φ), det(Φξξρ)d
(n−1)/2
0 = a, sv(Φ) = σv for every v ∈ r0.

Moreover, every element of H0
n(ξ) is of this type, and the coset TGξ and the

genus of Φ are determined by (εNK/F (K×), {σv}v∈r0).

This can be proved in exactly the same fashion as for Theorem 2.10.

Lemma 2.12. Suppose F has class number 1. Then the class number of K

is odd if and only if IK = I0
K/F , in which case −1 ∈ NK/Q(K×) if and only if

−1 ∈ NK/Q(r×).

Proof. Suppose the class number of K is odd. Then every r-ideal a is of the

form a = cb2 with an r-ideal b and c ∈ K×. Thus a = cbbρb(bρ)−1 ∈ I0
K/F

as bbρ is principal, and so IK = I0
K/F . Suppose the class number of K is

even. Then there exists an r-ideal x whose ideal class is not a square. Suppose

x ∈ I0
K/F . Then x = zy−1yρ with z ∈ K× and an r-ideal y. Thus x = zyyρy−2,

a contradiction, as yyρ is principal. This proves the first part. To prove the

second part, suppose −1 = ααρ with α ∈ K×; put αr = bc−1 with integral r-

deals b and c that are relatively prime. Then bbρ = ccρ and we easily see that

b = cρ, and so c2 = α−1ccρ, which is principal. If the class number of K is odd,

then c = cr with c ∈ r. Thus αc = εcρ with ε ∈ r×. Then εερ = ααρ = −1.

This completes the proof.
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The last statement of the above lemma is false if the class number of K is

even. For example, let K = Q(
√

34 ). Then the class number is 2 and −1 = ααρ

with α = (3 +
√

34 )/5, but −1 /∈ NK/Q(r×).

2.13. Let us now take K to be a real or an imaginary quadratic field whose

class number is odd. We denote by d the discriminant of K. Thus F = Q and

K = Q(
√
d ). By Lemma 2.12 we have IK = I0

K/F , and so GA = TG by (2.9).

Therefore by Proposition 2.6, every hermitian space over K is isomorphic to

[Φ] with Φ ∈ H0
n(1n), and r1n is a maximal lattice in it. For simplicity we put

H1
n = Hn(1n) and H0

n = H0
n(1n). Then H1

n consists of all Φ = (cij) ∈ Hn such

that
√
d cij ∈ r and cii ∈ Z for every i and j; H0

n consists of all Φ ∈ H1
n

satisfying the following condition:

(2.16) If Φ = PΨP ∗, Ψ ∈ H1
n, and P ∈ GLn(K) ∩Mn(r), then det(P ) ∈ r×.

For Φ ∈ Hn we put s(Φ) = p − q if K is imaginary and Φ as a complex

hermitian matrix has p positive and q negative eigenvalues; we put s(Φ) = 0

if d > 0 and n ∈ 2Z; we do not define s(Φ) if d > 0 and n /∈ 2Z, and so the

symbol s(Φ) in that case must be ignored. Clearly two elements Φ1 and Φ2 of

H1
n belong to the same genus if s(Φ1) = s(Φ2) and Φ1 = PvΦ2P

∗
v with some

Pv ∈ GLn(rv) for every v ∈ h. Now, for L = r1n we have [L̂/L] = det(
√
dΦ)r

by (2.11). For d > 0 we fix an embedding of K into R, and take
√
d > 0.

Theorem 2.14 (The case of even n). Let K = Q(
√
d ) as in §2.13, and let

three integers n, σ, and e be given as follows: 0 < n ∈ 2Z, σ ∈ 2Z, |σ| ≤ n;

σ = 0 if d > 0; e is positive and squarefree. Let r be the number of prime

factors of e. Suppose that σ − 2r ∈ 4Z and no prime factor of e splits in K.

Then there exists an element Φ of H0
n such that

(2.17a) det(
√
dΦ) = (−1)σ/2e and s(Φ) = σ if d < 0,

(2.17b) det(
√
dΦ) = τe with τ = 1 or −1 if d > 0.

Moreover, every element of H0
n is of this type. Its genus is determined by

(σ, e) if d < 0, and by e if d > 0. If d > 0 and −1 ∈ NK/Q(K×), then both

e and −e can occur as det(
√
dΦ) for Φ in the same genus. If d > 0 and

−1 /∈ NK/Q(K×), then τ is uniquely determined by the condition that a prime

number p divides e if and only if τe /∈ NK/Q(K×p ).

Proof. Given (n, σ, e) as in our theorem, we can find a quaternion algebra B

over Q which is ramified at p if and only if p|e. Then B is definite if and only

if r is odd. Since σ− 2r ∈ 4Z, we see that d < 0 if r is odd. Our assumption

on the prime factors of e allows us to put B = {K, ε} with ε ∈ Q×. Then

(−1)σ/2ε > 0 if d < 0. By Theorem 2.10, we obtain Φ ∈ H0
n satisfying (2.13)

with ξ = 1n, as (2.12) can be ignored. Then e = eZ and det(
√
dΦ) = τe with

τ = ±1. Since s(Φ) = σ, we see that τ = (−1)σ/2 if d < 0. The same theorem
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says that every element of H0
n is of this type, and its genus is determined by

εNK/F (K×) and σ. We easily see that (e, σ) determines (εNK/F (K×), σ), and

vice versa. If −1 ∈ NK/Q(K×), then by Lemma 2.12, r× contains an element

ζ such that ζζρ = −1. Then det(PΦP ∗) = − det(Φ) for P = diag[ζ, 1n−1].

Thus both e and −e can happen. Suppose d > 0 and −1 /∈ NK/Q(K×).

Then {K, e} is not isomorphic to {K, −e}. Since −d ∈ NK/Q(K×), d0(ϕ) is

represented by det(
√
dΦ). If det(

√
dΦ) = τe, then B = {K, τe}. Thus τ is

uniquely determined by the condition that a prime number p divides e if and

only if τe /∈ NK/Q(K×p ).

Theorem 2.15 (The case of odd n). Let K = Q(
√
d ) as in §2.13 and let

four integers n, σ, τ, and e be given as follows: 0 < n−1 ∈ 2Z; σ is necessary

only if d < 0, σ − 1 ∈ 2Z, and |σ| ≤ n; τ is necessary only if d > 0, and

τ = 1 or −1; e is positive and squarefree, and every prime factor of e remains

prime in K. Then there exists an element Φ of H0
n such that

(2.18a) det(
√
dΦ) = (−1)(σ−1)/2e

√
d and s(Φ) = σ if d < 0,

(2.18b) det(
√
dΦ) = τe

√
d if d > 0.

Moreover, every element of H0
n is of this type, and its genus is determined by

(σ, e) if d < 0 and by (τ, e) if d > 0. For d > 0 the sets (1, e) and (−1, e)

determine the same genus if and only if −1 ∈ NK/Q(K×).

Proof. Given (n, σ, τ, e) as in our theorem, take ε = (−1)(σ−1)/2e if d < 0

and ε = (−1)(n−1)/2τe if d > 0. Then Theorem 2.11 with ξ = 1n and a = eZ

guarantees an element Φ of H0
n satisfying (2.15). We can easily verify that

(2.18a, b) hold. That every Φ ∈ H0
n is of this type also follows from Theorem

2.11, as d0(Φ) can be represented by e or −e with a positive integer e as in

our theorem. Since the last assertion is obvious, our proof is complete.

Corollary 2.16. Let K = Q(
√
d ) and H1

n be as in §2.13; let 0 < n ∈ Z

and σ ∈ Z.

(i) If d < 0, there exists an element Φ of H1
n such that det(

√
dΦ) = 1 and

s(Φ) = σ exactly when n ∈ 2Z and σ ∈ 4Z.

(ii) Suppose d > 0; then there exists an element Φ of H1
n such that

det(
√
dΦ) = 1 if and only if n ∈ 2Z. Moreover, there exists an element Φ′

of H1
n such that det(

√
dΦ′) = −1 if and only if n ∈ 2Z and −1 ∈ NK/Q(K×).

Proof. From Theorem 2.15 we see that det(
√
dΦ) = ±1 for Φ ∈ H1

n cannot

happen if n is odd. Take e = 1 in Theorem 2.14. Then r = 0, and we

obtain our results immediately from that theorem. Notice that if d > 0 and

−1 /∈ NK/Q(K×), then {K, −1} is a division algebra, and so −1 /∈ NK/Q(K×p )

for some prime number p.

The above corollary is a natural analogue of a well-known fact on unimodular

quadratic form over Q.
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2.17. Examples. (2) Take n = 2, d = 21, and e1 = 11 · 13; then the class

number of K is 1 and −1 /∈ NK/Q(K×). For Φ1 =

[
7 2/

√
21

−2/
√

21 −1

]
we

have det(
√

21Φ1) = −e1 and Φ1 ∈ H0
2. But we cannot have det(

√
21Φ) = e1

for Φ ∈ H0
2.

Next take e2 = 3 · 7 · 11 · 13. Then det(
√

21Φ) for Φ ∈ H0
2 can be −e2 but

cannot be e2. Also, {K, 11 · 13} is ramified at p = 3, 7, but {K, −11 · 13} is

not. From this we can derive that diag[11, −13] is reduced, but diag[11, 13] is

not.

3. Hermitian Diophantine equations over a local field

3.1. Throughout this section we fix (V, ϕ) in the local case, and put n =

dim(V ). We denote by p the maximal ideal of g, and by t the core dimension

of (V, ϕ). Then t ≤ 2 as observed in §2.1. For an r-lattice L in V we put

(3.1) C(L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
, C1(L) = C(L) ∩ SUϕ(V ).

Define L[q, b] and L[q] by (1.10b, c). Clearly L[q, b] and L[q] are stable un-

der right multiplication by the elements of C(L), and so the four orbit sets

L[q, b]/C(L), L[q]/C(L), L[q, b]/C1(L), and L[q]/C1(L) are meaningful. Now

our principal results of this section are the following two theorems.

Theorem 3.2. Suppose that F is local and n > 1. Let L be a maximal

r-lattice in V . Then for every q ∈ F× and every r-ideal b the following

assertions hold:

(i) #
{
L[q, b]/C(L)

}
≤ 1.

(ii) #
{
L[q, b]/C1(L)

}
<∞.

(iii) #
{
L[q, b]/C1(L)

}
≤ 1 if we exclude the following two cases: (a) n = 2

and t = 0; (b) t = 1, qr = bbρ, and d 6= r.

(iv) If n = 2 and t = 0, then

(3.2) #
{
L[q, d−1]/C1(L)

}
=

{
1 if q ∈ g×,

N(qg)
[
1− {K/F}N(p)−1

]
if q ∈ p,

where N(a) = #(g/a), and {K/F} = 1, −1, or 0, according as K = F × F, K
is an unramified quadratic extension of F, or K is ramified over F.

(v) L[q, d−1] 6= ∅ exactly in the following cases: (a) t = 0 and q ∈ g; (b) t =

1, d = r, d0(ϕ) = NK/F (K×), and q ∈ g; (c) t = 1, d0(ϕ) 6⊂ g×NK/F (K×),

and q ∈ p−1; (d) t = 1, d 6= r, and q ∈ pd−2 ∪
(
d−2 ∩ d0(ϕ)

)
; (e) n = t = 2

and g ⊂ qg ⊂ p−1 if d = r; qg = p−1 if d 6= r; (f) n > 2 = t and q ∈ p−1.

The proof will be given in §3.6 through §3.12.

The quantity #
{
L[q, b]/C1(L)

}
in Case (b) of (iii) is not so simple. We will

discuss that case in Lemma 3.13 (ii).
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For every α ∈ Uϕ we have C(Lα) = α−1C(L)α, C1(Lα) = α−1C1(L)α, and

(Lα)[q, b] = L[q, b]α. Therefore, in view of Lemma 1.10 (i), it is sufficient to

prove Theorem 3.2 for a special choice of L. Also, since c ·L[q, b] = L[ccρq, cb]

for every c ∈ K×, it is sufficient to prove our theorem when b = d−1 or b = r.

Theorem 3.3. If n > 1, we have #
{

Λ[q]/C1(Λ)
}
< ∞ for every q ∈ F×

and every r-lattice Λ in V.

Proof. Let L be a maximal lattice in V. Given Λ, we can find c ∈ F× such

that cΛ ⊂ L. Then cΛ[q] ⊂ L[c2q]. For any two open compact subgroups D

and E of SUϕ we have [D : D∩E] <∞. Therefore it is sufficient to prove that

#
{
L[q]/C1(L)

}
< ∞. Given h ∈ L[q], put b = ϕ(h, L). Then qr ⊂ b ⊂ d−1,

and hence L[q] ⊂ ⋃
b L[q, b], where b runs over the r-ideals b such that

qr ⊂ b ⊂ d−1. Therefore the desired fact follows from Theorem 3.2 (ii).

Lemma 3.4. Let L be a maximal lattice in V. Suppose dim(V ) > 1 and

q ∈ g×; then #
{
L[q, r]/C(L)

}
≤ 1. Moreover, #

{
L[q, r]/C1(L)

}
≤ 1 if K is

a field unramified over F, or the core dimension of (Kh)⊥ is not 0 for some

h ∈ L[q, r].

Proof. Let h, k ∈ L[q, r]. We see that L+ rh is integral, and so h ∈ L, as L

is maximal. Given x ∈ L, put y = x− ϕ[h]−1ϕ(x, h)h. Then y ∈ L ∩ (Kh)⊥.

From this we can derive that L = rh ⊕M with M = L ∩ (Kh)⊥. Similarly

L = rk ⊕M ′ with M ′ = L ∩ (Kk)⊥. Since L is maximal, M and M ′ must be

maximal. By (1.5) we can find an element α of SUϕ(V ) such that k = hα.

Then Mα is a maximal lattice in (Kk)⊥. By Lemma 1.10 (i) we can find an

element β of Uϕ
(
(Kk)⊥

)
such that Mαβ = M ′; by Lemma 1.10 (ii) such a

β can be taken from SUϕ
(
(Kk)⊥

)
if K is a field unramified over F, or the

core dimension of (Kk)⊥ is not 0. Extend β to V by putting kβ = k. Then

αβ ∈ C(L) and hαβ = k. We have αβ ∈ C1(L) under the said conditions on

K or on Kk. This proves our lemma. Notice that the core dimension of (Kh)⊥

depends only on hU(ϕ).

3.5. We call an element x of r1n primitive if xrn1 = r. Replacing r by g, we

can similarly define the primitive elements of g1
n. Given an integral r-lattice L

in V, identify V and L with K1
n and r1n with respect to an r-basis {zi}ni=1 of

L; also let ϕ0 =
(
ϕ(zi, zj)

)n
i,j=1

. By (1.9) we have δϕ0 ≺ r for any element δ

of r such that δr = d. Moreover, ϕ(x, L) = d−1 for x ∈ L = r1n if and only if

δxϕ0 is primitive.

To prove Theorem 3.2, we fix a maximal lattice L in V, and hereafter write

simply C and C1 for C(L) and C1(L); we always assume n > 1.

3.6. In this subsection we consider the case K = F × F, using the notation

of §1.8. We can put L = g1
n × g1

n.
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Let h = (a, b) ∈ L[q, r] with a, b ∈ F 1
n . Then ϕ(h, L) = (agn1 , bg

n
1 ), and

so both a and b are primitive. Let {ei}ni=1 be the standard basis of F 1
n .

Take α ∈ SLn(g) so that aα = e1 and put c = b · tα−1 = (ci)
n
i=1. Then

c1 = q. Suppose q ∈ g×; then define β ∈ SLn(g) by β =

[
1 x
0 1n−1

]
with

x = (q−1c2, . . . , q
−1cn) and put γ = α · tβ. Then aγ = e1 and b · tγ−1 =

cβ−1 = qe1. Thus L[q, r]/C1 is represented by (e1, qe1) if q ∈ g×.
Next suppose q ∈ p; then (c2, . . . , cn) is primitive, and so we can find β ∈

GLn−1(g) such that (c2, . . . , cn)β = (1, 0, . . . , 0). Put γ = α · diag[1, tβ−1].

Then aγ = e1 and b · tγ−1 = (q, 1, 0, . . . , 0). This shows that #
{
L[q, r]/C} =

1. If n > 2, we can take β ∈ SLn−1(g), and hence #
{
L[q, r]/C1} = 1.

Finally suppose n = 2 and q ∈ p; then we have shown that L[q, r]/C1 can

be represented by the elements of the form
(
e1, (q, s)

)
with s ∈ g×. Suppose(

e1, (q, s)
)
α =

(
e1, (q, t)

)
with α = (γ, tγ−1) ∈ C1, γ ∈ SL2(g), and s, t ∈

g×. Clearly γ =

[
1 0
v 1

]
with v ∈ g, and so t = s − qv. Since the procedure

is reversible, we see that #
{
L[q, r]/C1} = #(g/qg)×, which gives (3.2) for

K = F × F. This completes the proof of Theorem 3.2 in the case K = F × F.

Hereafter from §3.7 through §3.12 we assume that K is a field.

3.7. Let us consider the case n = t = 2. Let the symbols be as in Lemma

1.3 and §1.11; we identify B with j(B). In view of Lemma 1.6 we can take

ϕ[ℓ] = c = 1 in the proof of Lemma 1.3, and so we can take γ = 1 in §1.11.

Thus M = ℓO. Since ϕ is anisotropic, SUϕ(V ) = C1(M) =
{
α ∈ O×

∣∣ααι =

1
}
. From (1.5) we see that #

{
M [q, d−1]/C1

}
= 1 if M [q, d−1] 6= ∅. Since

TrK/F
(
ϕ(ℓα, ℓβ)

)
= TrB/F (αβι) for α, β ∈ B, we have ϕ(ℓα, M) = d−1 only

if TrB/F (αO) = g, which is so if and only if αO = O or αO = P−1. Take

such an α and assume that K is unramified over F. Then ℓα ∈ M [ααι, r].

Thus M [q, d−1] 6= ∅ if and only if qg is g or p−1. Next suppose that K is

ramified over F. Clearly M [q, d−1] 6= ∅ for some q, and qg is g or p−1 for

the same reason as above. Suppose q ∈ g×. Then we can find an element

ξ ∈ O× such that ξξι = q. Then ϕ[xξ] = qϕ[x] for every x ∈ V, Mξ = M, and

M [1, b]ξ = M [q, b]. Let d0(ϕ) = sNK/F (K×) as in the proof of Lemma 1.3.

We may assume that s ∈ g×, s /∈ NK/F (r×), and ϕ0 = diag[1, −s]. Observe

that O consists of the elements a + bω with a, b ∈ K such that a + aρ ∈ g

and aaρ − sbbρ ∈ g. Now let ℓα ∈ M [1, d−1] with α ∈ B. Then ααι = 1,

and so ℓ ∈ M [1, d−1]. Thus d−1 = ϕ(ℓ, M) = ϕ(ℓ, ℓO). For a + bω ∈ O as

above, we have ϕ(ℓ, ℓ(a + bω)) = aρ, and so O contains an element a + bω

such that ar = d−1. Put NK/F (d) = pκ with 0 < κ ∈ Z. Then aaρg = p−κ,
and bbρg = p−κ as aaρ−sbbρ ∈ g. Putting a−1b = c, we obtain sccρ−1 ∈ pκ,

a contradiction, as s /∈ NK/F (r×). Thus M [q, d−1] 6= ∅ only if qg = p−1. This

proves Theorem 3.2 when n = t = 2.
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3.8. Take an element u ∈ r so that r = g[u] and put δ = u − uρ. Then

d = δr and δρ = −δ. We will often use these u and δ in our later treatment.

Take a decomposition of V as in (1.8a, b), and assume that it is a Witt

decomposition; thus t = dim(Z). Put gi = δ−1fi and

(3.3) L =

r∑

i=1

(rei + rgi) +M, M =
{
y ∈ Z

∣∣ϕ[y] ∈ g
}
.

Then L is a maximal lattice in V as noted in §1.7. With an r-

basis {mi}ti=1 of M, consider matrix representation with respect to

{e1, . . . , er, m1, . . . , mt, g1, . . . , gr}. Then ϕ is represented by

(3.4) ϕ0 =




0 0 −δ−11r
0 ζ 0

δ−11r 0 0


 ,

where ζ =
(
ϕ(mi, mj)

)t
i,j=1

. Now write an element of GL(V ) as a matrix with

9 matrix blocks corresponding to the blocks of (3.4), and let P be the group

consisting of the elements of Uϕ whose lower left 3 blocks under the diagonal

blocks are all 0; also let P 1 = P ∩ SUϕ. Then

(3.5) Uϕ = PC(L) and SUϕ = P 1C1(L);

see [S2, Proposition 5.16]. If r = 1, P consists of the matrices of the form

(3.6)



a b a−ρ(s+ uρbζb∗)
0 e −δa−ρeζb∗
0 0 a−ρ


 ,

where a ∈ K×, b ∈ K1
t , e ∈ U ζ(Z), and s ∈ F.

3.9. The case t = 0. Represent the elements of V by row vectors in K1
r ×K1

r

with respect to the basis {e1, . . . , er, g1, . . . , gr}, and GL(V ) by GL2r(K),

acting on the right. Then for h = (y, z) ∈ K1
r ×K1

r we have ϕ[h] = δ−1(zy∗−
yz∗) and ϕ(h, L) = δ−1

∑r
i=1(ryi+rzi). Now ϕ is represented by δ−1 η, where

η =

[
0 −1r
1r 0

]
.

Therefore diag[α, α̃] ∈ Uϕ for every α ∈ GLr(K), where α̃ = (α∗)−1. Suppose

ϕ(h, L) = d−1 for h = (y, z); then
∑r
i=1(ryi + rzi) = r and ϕ[h] ∈ g. Putting

k = (e1, qug1) with q ∈ F (not necessarily 6= 0), let us prove

(3.7) ϕ[h] = q and ϕ(h, L) = d−1 =⇒ h ∈ kC(L); h ∈ kC1(L) if r > 1.

Since η ∈ C1, changing h for hη if necessary, we may assume that
∑r

i=1 ryi =

r. We can find an element α ∈ GLr(r) such that yα = e1; we can even take

α from SLr(r) if r > 1. Put w = zα̃. Then (y, z)diag[α, α̃] = (e1, w), and

so w1 − wρ1 = qδ. Thus we can put w1 = p + qu with p ∈ g. Define an

element s = s∗ ∈ Mr(r) so that s11 = p and s1j = wj for j > 1, and put
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β =

[
1r s
0 1r

]
. Then β ∈ C1 and kβ = (e1, w). If r > 1, then we see that

h ∈ kC1, and so L[q, d−1] = kC1. This proves (3.7) and also Theorem 3.2 (i),

(iii), (v) when t = 0.

Suppose r = 1; then y ∈ r×. Since C1 is a normal subgroup of C, the above

argument shows that h ∈ ⋃t(t, t−ρqu)C1, where t runs over r×. Define B

as in Lemma 1.3. From (1.7b), (1.15), and the last equality in the proof of

Lemma 1.3 we obtain B = M2(F ), SUϕ = SL2(F ), and C1 = SL2(g). Let

t ∈ r× ∩ g[qu]. Then t = a + cqu with a, c ∈ g, and we can find an element

γ ∈ SL2(g) of the form γ =

[
a b
c d

]
. We have (1, qu)γ = (t, t−ρv) with

v ∈ r. Then v − vρ = qδ, so that v = qu − s with s ∈ g. Since ttρ ∈ g×,

we can put s = ttρs′ with s′ ∈ g. Put σ =

[
1 s′

0 1

]
. Then σ ∈ C1 and

(t, t−ρv)σ = (t, t−ρqu), which shows that (t, t−ρqu) ∈ (1, qu)C1 if t ∈ g[qu].

Since the converse is obvious, we thus obtain L[q, d−1] =
⊔
t∈τ (t, t−ρqu)C1,

where τ = r×/g[qu]×. This proves (3.2) and completes the proof of Theorem

3.2 when t = 0.

3.10. The notation being as in (3.3), put Hj =
∑j
i=1(Kei + Kgi). Let

us now show that given h ∈ V, there exists an element α of C1 such that

hα ∈ H1 + Z. This is obvious if h ∈ Z or r = 1. So assume that h /∈ Z and

r > 1. Put h = w+k with k ∈ Z and w =
∑r
i=1(yiei+zigi) ∈ Hr, yi, zi ∈ K.

Then we can put
∑r

i=1(yir + zir) = dr with d ∈ K×. Taking d−1w as h of

(3.7), we can find an element γ ∈ C1(L ∩Hr) such that d−1wγ ∈ H1. Extend

γ to an element of C1(L) by defining xγ = x for every x ∈ Z. Then we obtain

the desired fact. This means that if n > t > 0, then it is sufficient to prove

Theorem 3.2 when r = 1.

3.11. Case t > 0, r = 1. Writing simply e and g for e1 and g1, we have

V = Ke+ Z + Kg and L = re +M + rg with a maximal lattice M in Z. Let

h = ye+x+ zg with y, z ∈ K and x ∈ Z. Then ϕ[h] = δ−1(zyρ− yzρ) + ζ[x],

where ζ is the restriction of ϕ to Z, and ϕ(h, L) = δ−1(ry + rz) + ζ(x, M).

Suppose h ∈ L[q, d−1]. Then ry+rz+dζ(x, M) = r, and hence y, z ∈ r, x ∈ M̂,

and ϕ[h]− ζ[x] ∈ g. We identify an element of Z with a row vector of K1
t with

respect to an r-basis of M. Then an element ae+b+cg of V with a, c ∈ K and

b ∈ Z can be identified with a row vector [a b c] of K1
t+2. If t = 2 and M

corresponds to O as in §1.11, then M̂ corresponds to P−1, and so ζ[x] ∈ p−1;

consequently ϕ[h] ∈ p−1. Since e + qug ∈ L[q, d−1] if q ∈ g, we see that

L[q, d−1] 6= ∅ for every q ∈ g.

(a) First suppose t = 2 and q ∈ p. Suppose also that ry + rz 6= r. Then

yzρ ∈ pr, and so δ−1(zyρ−yzρ) ∈ p. Thus ζ[x] ∈ p, and hence ζ(x, M) 6= d−1.

(In §3.7 we showed that ζ(x, M) = d−1 only if g ⊂ ϕ[x]g ⊂ p−1.) Therefore
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δϕ(h, L) 6= r, a contradiction. This shows that (y, z) must be primitive. By

(3.7) there is an element α of C(re+ rg) such that (ye+ zg)α = e+ aug with

a ∈ g. Extend α to an element γ of SUϕ(V ) by defining wγ = wσ for w ∈ Z
with σ ∈ Uϕ(Z) such that det(σ) = det(α)−1. Since Mσ = M, we see that

γ ∈ C1, and hγ = [1 k au] with k ∈ M such that ζ[k] = q − a. Given

another h′ ∈ L[q, d−1], we can similarly find an element γ′ of C1 such that

h′γ′ = [1 k′ a′u] with a′ ∈ g and k′ ∈ M such that ζ[k′] = q − a′. Put

b = k′ − k and

(3.8) τ =




1 b s+ uρbζb∗

0 1 −δζb∗
0 0 1




with some s ∈ g. This is a special case of (3.6) and belongs to SUϕ(V ). Since

b ≺ r and δζ ≺ r, we see that τ ∈ C1. We choose s so that hγτ = [1 k′ a′u],

which is so if and only if a′u = s+ uρbζb∗ − δkζb∗ + au. This can be achieved

by taking s = TrK/F
(
uζ(k, k′)

)
− (u + uρ)ζ[k′]. Then h′γ′ = hγτ, and so

h′ ∈ hC1 as expected.

(b) Next suppose t = 2 and q /∈ p. Then q ∈ g× or qg = p−1. If d 6= r and

q ∈ g, then ζ[x] ∈ g, and so δζ(x, M) 6= r as shown in §3.7. Consequently

ry+rz = r in such a case, and the argument of case (a) is applicable. Therefore

we may assume that qg = p−1 if d 6= r. Then as observed in §3.7, we can find an

element v of M [q, d−1]. The same can be said for both cases q ∈ g× and qg =

p−1 if d = r. We identify v with the row vector [0 v 0], which can be viewed

as an element of L[q, d−1], and so L[q, d−1] 6= ∅ in such cases. Combining (1.5)

and (3.5), we have h ∈ vP 1C1, and hence h = vπα with π ∈ P 1 and α ∈ C1.

Write π in the form (3.6) and focus our attention on the element e of U ζ(Z)

there. Since U ζ(Z) = C(M), we see that ve ∈ M [q, d−1], and hence ve = vε

with ε ∈ C1(M) = SU ζ(Z) as shown in §3.7. Let β = diag[1, ε, 1] and

π1 = πβ−1. Then β ∈ C1, π1 ∈ P 1, and vπ1 = hα−1β−1 ∈ L[q, d−1]. Our

choice of ε shows that vπ1 = [0 v p] with p ∈ r. Since v ∈ M [q, d−1],

δvζ is primitive (see §3.5), and so we can find an element b of r12 such that

δvζb∗ = −p. Define τ by (3.8) with this b and s = 0. Then τ ∈ C1 and

vτ = vπ1 = hα−1β−1. This shows that h ∈ vC1. Thus we obtain Theorem 3.2

when n > t = 2.

(c) Finally suppose t = 1; let M and ζ be as in (3.3) and (3.4). Then ζ =

ϕ[m] and M = rm with an element m. Clearly ζ ∈ g× or ζg = p; the latter

case occurs only when d = r. We first treat the case where ζ ∈ g×; the other

case will be treated in §3.12. Thus h = ye+zg+sm with y, z, s ∈ K such that

yr+zr+sd = r and δ−1(zyρ−yzρ)+ζssρ = q. Suppose d = r and yr+zr 6= r.

Then s ∈ r× and we see that q = ϕ[h] ∈ g×. Then #
{
L[q, d−1]/C1(L)

}
≤ 1

by Lemma 3.4.

(c1) Let us now prove the case in which q ∈ g and yr + zr = r for both
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ramified and unramified K. Putting p = δ−1(zyρ − yzρ) and applying (3.7)

to ye + zg, we find γ ∈ C(L) such that Mγ =M and (y, z)γ = (1, pu) with

p∈g. Replacing γ by γα with α∈C such that mα=det(γ)−1m and α is the

identity map onKe+Kg,we may assume that γ∈C1. We have hγ = [1 x pu]

with x ∈ r. We consider

(3.9) σ =




1 −x uρζxxρ

0 1 δζxρ

0 0 1


 ,

which is similar to (3.8) and belongs to C1. We have then hγσ = [1 0 s]

with s ∈ g. Taking (1, s) as (y, z) above, we find γ′ ∈ C1 such that hγσγ′ =

[1 0 qu]. Thus h ∈ kC1 with k = e+ qug; also Theorem 3.2 (v), (b) is valid.

(c2) SupposeK is ramified over F. If q ∈ g, then s ∈ r, so that yr+zr = r.

and (c1) covers this case. Thus we assume that q /∈ g. Then s /∈ r and

qg = ssρg. Put d = qκ with the maximal ideal q of r and 0 < κ ∈ Z. Since

sd ⊂ r, we can put s−1r = qa with 0 < a ≤ κ; then qg = p−a. Thus a is

determined by q. Suppose a < κ; then sd 6= r, so that yr + zr = r. By the

same technique as in (c1), we can find γ ∈ C1 such that hγ = [1 x pu] with

p ∈ g and x ∈ K. Then xqa = r. Let k = [1 x1 p1u] ∈ L[q, d−1] with p1 ∈ g

and x1 such that x1q
a = r.Our task is to show that k ∈ hC. For simplicity

put N(w) = wwρ for w ∈ K×. We have ζN(x) + p = q = ζN(x1) + p1, and so

N(x−1x1) − 1 ∈ pa. Thus N(x−1x1) ∈ N(r×) ∩ (1 + pa) = N(1 + qa) by [S2,

Lemma 17.6 (2)]. We can therefore put N(x−1x1) = N(d) with d ∈ 1 + qa.

Put α = diag[1r, dx
−1
1 x, 1r]. Then α ∈ C1 and kα = [1 dx p1u]. Put

b = dx − x and consider τ of (3.8) with this b and any s ∈ g. Then τ ∈ C1

and hγτ = [1 dx c] with c ∈ g such that c− cρ = δp1. Choosing s suitably,

we obtain c = p1u. Then k ∈ hC1.

(c3) It remains to treat the case a = κ. Then sd = r and qr = d−2. Put

h0 = δh and q0 = −δ2q. Then h0 ∈ L[q0, r]. Since q0 ∈ g×, by Lemma 3.4 we

see that #
{
L[q, d−1]/C

}
= #

{
L[q0, r]/C

}
≤ 1.

(c4) As for (d) of Theorem 3.2 (v), we have seen that L[q, d−1] 6= ∅ only

if q ∈ d−2; also e + qug ∈ L[q, d−1] if q ∈ g. Thus it remains to consider the

case where d 6= r and q /∈ g. Suppose qg = p−a with 0 < a < κ. We can

find c ∈ g× such that c − 1 ∈ pa and c /∈ N(r×). Then q or c−1q represents

d0(ϕ). If q ∈ d0(ϕ), then q = ζssρ with s ∈ K, and e + sm ∈ L[q, d−1]. If

q ∈ cd0(ϕ), put q = cζssρ with s ∈ K and p = ζssρ(c− 1). Then p ∈ g and

e + pug + sm ∈ L[q, d−1]. Thus L[q, d−1] 6= ∅ if q ∈ pd−2. The case qr = d−2

will be settled in Lemma 3.13.

3.12. Let us now treat the case where t = 1 and ζg = p. Then d = r

and δ ∈ r×. To avoid possible confusion, we use the letter π instead of ζ;

thus ϕ[m] = π. Let h = ae + bf + cm ∈ L[q, r]. Then ra + rb + rπc = r and

abρ + aρb + πccρ = q. Clearly q ∈ p−1; also c ∈ r if and only if q ∈ g. Given
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q ∈ g, we can find b ∈ r such that b + bρ = q. Then e + bf ∈ L[q, r]. Given

q ∈ p−1, /∈ g, we can find d ∈ r× such that ddρ = πq. Then π−1dm ∈ L[q, r].

Thus L[q, r] 6= ∅ if and only if q ∈ p−1.

(1) Let us first assume that q ∈ g; then c ∈ r and ra + rb = r. By (3.7)

there exists an element β of C(re + rf) such that kβ = e + sf with s ∈ r.

Extend β to an element α of C1(L) by defining mα = det(β)−1m. Then

hα = e + sf + c1m with c1 ∈ r. Now represent the elements of Uϕ(V ) by

matrices with respect to {e, m, f}. Then (3.5) holds with the subgroup P of

Uϕ consisting of the upper triangular matrices. Observe that P contains every

matrix of the form

(3.10)




1 −x y
0 1 πxρ

0 0 1




with x, y ∈ K such that y + yρ = −πxxρ. Since TrK/F (r) = g, for any x ∈ r

we can take such a y from r. Let γ be the matrix of (3.10) with x = c1 and

y ∈ r. Then γ ∈ C1(L) and hαγ = e + zf with z ∈ r such that z + zρ = q.

Take z1 ∈ r so that z1 + zρ1 = q. Denote by ε the matrix of (3.10) with x = 0

and y = z1−z. Then ε ∈ C1(L) and (e+zf)ε = e+z1f. This gives the desired

result when q ∈ g.

(2) Next we consider the case c /∈ r; put d = πc. Then d ∈ r× and q =

abρ + aρb + π−1ddρ. Thus πq ∈ g×, and so we can find an element d0 ∈ r×

such that d0d
ρ
0 = πq. Put k = π−1d0m. Then k ∈ L[q, r]. By (1.5), we have

h = kα with α ∈ SUϕ, and by (3.5) we can put α = βγ with β ∈ P 1 and

γ ∈ C1. Replacing β by βξ with a suitable diagonal matrix ξ belonging to

C1, we may assume that the center entry of β is 1. (Here we need Lemma 1.9

(i).) Let [0 1 j] be the second row of β. Then [0 π−1d0 π−1d0j] = kβ =

hγ−1 ∈ L[q, r], and so π−1d0j ∈ r. Put x = π−1jρ; then x ∈ r. Let ε be the

matrix of (3.10) with this x and y such that y + yρ = −πxxρ. Then ε ∈ C1

and kε = kβ = hγ−1, which gives the desired fact.

It only remains to discuss L[q, d−1]/C1 when d 6= r and qr = d−2. (In (c3)

we treated L[q, d−1]/C.) The problem is settled by (ii) of the following Lemma.

Lemma 3.13. If K is a field ramified over F, then the following assertions

hold:

(i) Let W = (Kh)⊥ with h ∈ L[q, b] and let E1 = det
(
C ∩ Uϕ(W )

)
, where

we view Uϕ(W ) as the subgroup of Uϕ(V ) consisting of the elements ξ such

that hξ = h. Then #
{
L[q, b]/C1

}
= [EL : E1] <∞, where EL is as in Lemma

1.9.

(ii) If 1 < n − 1 ∈ 2Z and qr = d−2, then #
{
L[q, d−1]/C1

}
= 2 or 0

according as q represents d0(ϕ) or not.

Proof. Clearly C∩Uϕ(W ) is an open subgroup of Uϕ(W ). Now det : Uϕ(W )

→ E is a continuous surjective map, and so it is an open map by virtue of a well
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know principle; see [S3, Lemma 8.0]. Thus E1 is an open subgroup of E, and

so [E : E1] <∞, as E is compact. Therefore [EL : E1] <∞. Next, take a finite

subset B ⊂ C so that {det(β)}β∈B gives EL/E1. Let k ∈ L[q, b]. By Theorem

3.2 (i), k = hα with α ∈ C. Then det(αβ−1) ∈ E1 for some β ∈ B, so that

det(αβ−1) = det(γ) with γ ∈ C ∩ Uϕ(W ). Put ξ = α−1γβ. Then ξ ∈ C1 and

hβ = hγβ = kξ, that is, k ∈ hβC1. Thus L[q, b] =
⋃
β∈B hβC

1. We easily

see that the last union is disjoint, and so we obtain (i). To prove (ii), let the

notation be as in (3.3) and (3.4); let M = rm, ϕ[m] = ζ ∈ g×, and d = qκ as

in (c2) above. Then ζ represents d0(ϕ). Suppose qr = d−2 and h ∈ L[q, d−1];

put h =
∑r

i=1(yiei + zigi) + sm with yi, zi, s ∈ K. Then yi, zi ∈ r, and

q − ζssρ ∈ g, so that sr = d−1 and (ζssρ)−1q ∈ 1 + pκ ∈ NK/F (r×); thus

q represents d0(ϕ). This shows that L[q, d−1] 6= ∅ only for such a q. Taking

such a q, we can put q = ζxxρ with x ∈ K×. Let k = xm and W = (Kk)⊥.

Then k ∈ L[q, d−1], W =
∑r

i=1(Kei + Kgi), and C ∩ Uϕ(W ) = C(Λ) with

Λ =
∑r

i=1(rei + rgi); thus E1 = EΛ. By Lemma 1.9, EL = E, EΛ = E0, and

[E : E0] = 2, which together with (i) shows that #
{
L[q, d−1]/C1

}
= 2. This

completes the proof.

Lemma 3.14. Let W = (Kh)⊥ with h ∈ L[q, b] and let Λ = L∩W. Suppose

that 0 < n− 1 ∈ 2Z. Then there is a unique maximal lattice in W containing

Λ at least in the following two cases: (1) q(bbρ)−1 = r; (2) q(bbρ)−1 = pr and

{K, qd0(ϕ)} is a division algebra. Moreover, Λ is maximal and C(Λ) = C(L)∩
Uϕ(W ) in Case (1); Λ is maximal and [C(Λ) : C(L) ∩ Uϕ(W )] = N(p) + 1 in

Case (2) if K is unramified over F and d0(ϕ) = NK/F (K×). These assertions

are true with C1 instead of C.

Proof. Changing h for ch with some c ∈ K×, we may assume that b = r.

This does not change the ideal q(bbρ)−1 nor {K, qd0(ϕ)}. Thus q ∈ g× in

Case (1) and qg = p in Case (2). Suppose q ∈ g×. Then L = rh ⊕ Λ as

shown in the proof of Lemma 3.4, and Λ is maximal as noted there; clearly

C(Λ) = C(L) ∩ Uϕ(W ) and C1(Λ) = C1(L) ∩ Uϕ(W ). Next suppose qg = p

and {K, qd0(ϕ)} is a division algebra. Let u, δ, and {ei, gi} be as in §3.8.

Since n /∈ 2Z, we have L = rm +
∑r
i=1(rei + rgi) with an element m such

that ϕ[m] = ζ. Theorem 3.2 (i) allows us to replace h by any element in

L[q, r]. Thus we can put h = e1 + qug1. Put now k = e1 + quρg1 , Y =

Kk + Km, and N = rk + rm. Then ϕ[k] = −q, W = Y ⊕∑r
i=2(Kei + Kgi),

Λ = N +
∑r
i=2(rei + rgi), and d0(Y ) = qd0(ϕ). Since {K, qd0(ϕ)} is a division

algebra, (Y, ϕ) is anisotropic, and so has a unique maximal lattice M as noted

in §3.7. Put Λ′ = M +
∑r
i=2(rei + rgi). Then clearly Λ′ is the unique maximal

lattice in W containing Λ.

To prove the remaining part, we assume that qg = p, d = r, and d0(ϕ) =

NK/F (K×). Since N ⊂M and [M̂ : M ] = N(p)2 = [N̂ : N ], we obtain M = N,

and so Λ is maximal. We easily see that C(L)∩Uϕ(W ) ⊂ C(Λ). Let γ ∈ C(Λ).
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Then Lγ is a maximal lattice in V containing Λ, so that
∑r

i=2(rei+ rgi) ⊂ Lγ.
By [S2, Lemma 4.9 (i)] we have Lγ = J+

∑r
i=2(rei+rgi) with a maximal lattice

J in Km+Ke1 +Kg1. Since m ∈ J, from (1.9) we see that ϕ(m, J) = r, and

so J = rm+H with a maximal lattice H in Ke1 +Kg1 as shown in the proof

of Lemma 3.4. Now h = hγ ∈ Lγ and k ∈ Λ = Λγ; thus h, k ∈ J. Put

H0 = re1 + rg1. By Lemma 1.10 (ii), H = H0α with α ∈ SUϕ(Ke1 +Kg1). By

(3.5) we can take α in the form (3.6). Identify GL(Ke1 +Kg1) with GL2(K)

with respect to the basis {e1, g1}. Replacing α by an element of C(H0)α, we

can put α =

[
a−1 b

0 a

]
with a ∈ F× and b ∈ F. Put z = a−1e1 + bg1 and

w = ag1; then H = rz+ rw. Since δe1 = uk− uρh ∈ H and qδg1 = h− k ∈ H,
we see that p ⊂ ag ⊂ g, and so we may assume that a = 1 or a = q. Now

ϕ(z, e1) ∈ r, and so b ∈ g. Thus if a = 1, then H = H0. Suppose a = q; put

αb =

[
a−1 b
0 a

]
. Then H0αb = H0αb′ if and only if b − b′ ∈ p. Thus there

exist exactly N(p) + 1 maximal lattices in Ke1 + Kg1 containing h and k,

and so there exist at most N(p) + 1 lattices of the form Lγ with γ ∈ C(Λ).

This shows that

(3.11)
[
C(Λ) : C(L) ∩ Uϕ(W )

]
≤ N(p) + 1.

To show that this is actually an equality, define the symbols ℓ, j, ω, and O as in

Lemma 1.3, (1.6), and §3.7, with Y as the space V there. In the proof of Lemma

1.3 take ϕ0 = diag[ζ, −q] and s = ζ−1q. Then the identification of V with

K1
2 in the proof of Lemma 1.3 (which is unrelated to the above identification

of GL(Ke1 + Kg1) with K2
2 ) identifies m with (1, 0) and k with (0, 1), so

that m here equals ℓ of Lemma 1.3; also, M = ℓj(O) = mj(O). Let β be an

element of O such that ββι = 1; define ξ ∈ SUϕ(V ) by ξ = j(β) on Y and

xξ = x for every x ∈ Kh+
∑r
i=2(Kei+Kgi). Then ξ ∈ C1(Λ). Put β = c+dω

with c, d ∈ r. Then ℓξ = cℓ+ dk and kξ = sdρℓ+ cρk. Since δe1 = uk − uρh
and qδg1 = h − k, we have qδg1ξ = (1 − cρ)e1 − sdρℓ + q(u − cρuρ)g1. Thus

ξ ∈ C1(L) if and only if c − 1 ∈ pr, which is so if and only if β − 1 ∈ P.

Since ββι = 1, this shows that there exist at least N(p) + 1 different Lγ with

γ ∈ C1(Λ), and so

N(p) + 1 ≤
[
C1(Λ) : C1(L) ∩ Uϕ(W )

]
.

This combined with (3.11) proves that

[
C1(Λ) : C1(L) ∩ Uϕ(W )

]
=
[
C(Λ) : C(L) ∩ Uϕ(W )

]
= N(p) + 1,

which completes the proof.

We insert here the classification of the structures (V, sϕ) with s ∈ F×. If

K = F × F, the matter is settled in §1.8.
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Proposition 3.15. (i) If F is a local field and dim(V ) is even, then (V, ϕ)

is isomorphic to (V, sϕ) for every s ∈ F×.
(ii) Suppose F is an arbitrary field and dim(V ) is odd; let s ∈ F×; then

(V, ϕ) is isomorphic to (V, sϕ) if and only if s ∈ NK/F (K×).

Proof. The first assertion is included in Lemma 1.6. The second assertion

can be proved easily in the same manner as for [S3, Theorem 7.13] in the

even-dimensional case.

4. Hermitian Diophantine equations over a global field

4.1. Throughout this section we assume that F is an algebraic number field

and K is a quadratic extension of F ; we fix a hermitian space (V, ϕ) and use

the notation of §2.1. For an r-lattice L in V we put

(4.1) Γ (L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
, Γ 1(L) = Γ (L) ∩ SUϕ(V ).

Given h ∈ V such that ϕ[h] 6= 0, put W = (Kh)⊥. We view Uϕ(W ) as a

subgroup of Uϕ(V ), and SUϕ(W ) as a subgroup of SUϕ(V ) as explained in

§1.1. For σ ∈ Uϕ(V )A, the symbol hσ is meaningful as an element of VA.

Theorem 4.2. If dim(V ) > 1, then #
{

Λ[q]/Γ 1(Λ)
}
<∞ for every q ∈ F×

and every r-lattice Λ in V.

Proof. Assuming dim(V ) > 1 and Λ[q] 6= ∅, take h ∈ Λ[q] and define W as

above; put G = SUϕ(V ), H = SUϕ(W ), D =
{
x ∈ GA

∣∣Λx = Λ
}
, and Dv =

Gv∩D for v ∈ h. Then Γ 1(Λ) = G∩D and Dv = C1(Λv). By Theorem 3.3 and

(1.5) we have Λv[q] =
⋃
α∈Xv

hαDv with a finite subset Xv of Gv. By Theorem

3.2 (iii) and (iv) we can take Xv = {1} if Λv is maximal, v is not ramified in

K, and q ∈ g×v . Thus Xv = {1} for almost all v ∈ h. Put X =
∏
v∈hXv. This

is a finite subset of Gh. For each ξ ∈ X we can find a finite subset Eξ of Hh

such that HA =
⋃
ε∈Eξ

Hε(HA ∩ ξDξ−1). Then HAξD =
⋃
ε∈Eξ

HεξD. For

each (ε, ξ) such that G∩εξD 6= ∅ pick βε,ξ ∈ G∩εξD. Now let k ∈ Λ[q]. Then

k = hξζ for some ξ ∈ X and ζ ∈ D. On the other hand k = hα with α ∈ G
by (1.5). Then αζ−1ξ−1 ∈ HA, so that α ∈ HAξD. Thus α ∈ HεξD for some

ε ∈ Eξ. Then α ∈ Hβε,ξD∩G = Hβε,ξΓ
1(Λ), and hence k = hα ∈ hbε,ξΓ 1(Λ).

Since the bε,ξ form a finite set, we obtain our theorem.

4.3. We now fix a maximal lattice L in V, and put

(4.2) C =
{
γ ∈ Uϕ(V )A

∣∣Lγ = L
}
, C1 = C ∩ SUϕ(V )A.

We are going to state our main theorem with respect to a pair (G, H) belonging

to the following two types of objects:

Type U: G = Uϕ(V ) and H = Uϕ(W );

Type SU: G = SUϕ(V ) and H = SUϕ(W ).
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Here W = (Kh)⊥ with a fixed h ∈ V. For a subset S of Uϕ(V )A the symbol

hS is meaningful as a subset of VA. Therefore V ∩ hS is a well-defined subset

of V.

Theorem 4.4. Suppose dim(V ) > 1. For a fixed h ∈ V such that ϕ[h] 6= 0

put W = (Kh)⊥, and take (G, H) of Type U or SU as above. Let D = D0Ga

with an open compact subgroup D0 of Gh. Then the following assertions hold.

(i) For y ∈ GA we have HA ∩GyD 6= ∅ if and only if V ∩ hDy−1 6= ∅.
(ii) Fixing y ∈ GA, for every ε ∈ HA ∩GyD take α ∈ G so that ε ∈ αyD.

Then the map ε 7→ hα gives a bijection of H\(HA ∩ GyD)/(HA ∩ D) onto

(V ∩ hDy−1)/∆y , where ∆y = G ∩ yDy−1.

(iii) Take {yi}i∈I ⊂ GA so that GA =
⊔
i∈I GyiD, and put Γi = G∩yiDy−1

i .

Then

(4.3) #
{
H
∖
HA

/
(HA ∩D)

}
=
∑

i∈I
#
{

(V ∩ hDy−1
i )/Γi

}
.

(iv) Let q = ϕ[h] and b = ϕ(h, L). Then for every y ∈ Uϕ(V )A, we have

(4.4) V ∩ hCy−1 =
(
Ly−1

)
[q, b].

(v) Suppose moreover that dim(V ) > 2 and the following condition is satis-

fied:

(4.5) If n is odd, then qvrv 6= bvb
ρ
v for every v ∈ h ramified in K.

Then for every y ∈ SUϕ(V )A we have

(4.6) V ∩ hC1y−1 =
(
Ly−1

)
[q, b].

Proof. Let y, ε, and α be as in (ii); then clearly hα ∈ V ∩ hDy−1. If

ηεζ ∈ βyD with η ∈ H, ζ ∈ HA ∩D, and β ∈ G, then β−1ηα ∈ G∩ yDy−1 =

∆y, and hence hα = hηα ∈ hβ∆y. Thus our map is well defined. Next let

k ∈ V ∩ hDy−1. Then k = hδy−1 with δ ∈ D, and moreover, by (1.5), k = hξ

with ξ ∈ G. Then h = hξyδ−1, so that ξyδ−1 ∈ HA. Thus ξyδ−1 ∈ HA∩GyD.
This shows that k is the image of an element of HA ∩GyD. To prove that the

map is injective, suppose ε ∈ αyD ∩HA and δ ∈ βyD ∩HA with α, β ∈ G,
and hα = hβσ with σ ∈ ∆y. Put ω = βσα−1. Then hω = h, so that ω ∈ H.
Since σ ∈ yDy−1, we have βyD = βσyD = ωαyD, and hence δ ∈ βyD∩HA =

ωαyD ∩HA = ω(αyD ∩HA) = ω(εD ∩HA) = ωε(D ∩HA) ⊂ Hε(D ∩HA).

This proves the injectivity, and completes the proof of (ii). At the same time

we obtain (i).

Since HA =
⊔
i∈I(HA ∩GyiD), we can derive (iii) immediately from (ii).

As for (v), clearly V ∩hC1 ⊂ L[q, b]. Conversely, if x ∈ L[q, b], then x ∈ hC1

by Theorem 3.2 (iii). Thus

(4.7) V ∩ hC1 = L[q, b].
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If k ∈ V ∩ hC1y−1, then hC1y−1 = kyC1y−1. Now ϕ
(
k, Ly−1

)
=ϕ(h, L) =b.

Taking k, yC1y−1, and Ly−1 in place of h, C1, and L in (4.7), we obtain V ∩
kyC1y−1 =

(
Ly−1

)
[q, b]. This proves (4.6) when V ∩hC1y−1 6= ∅. To prove the

remaining case, suppose ℓ ∈
(
Ly−1

)
[q, b]; then ϕ

(
ℓvyv, Lv

)
= bv = ϕ(h, L)v

for every v ∈ h, and so, by Theorem 3.2 (iii), ℓy ∈ hC1. Taking ℓ, yC1y−1,

and Ly−1 in place of h, C1, and L in (4.7), we obtain ∅ 6=
(
Ly−1

)
[q, b] = V ∩

ℓyC1y−1 = V ∩ hC1y−1. This shows that
(
Ly−1

)
[q, b] = ∅ if V ∩ hC1y−1 = ∅,

and hence (4.6) holds for every y ∈ GA. This proves (v). Assertion (iv) can be

proved in the same way.

In view of (i) we can restrict the indices i on the right-hand side of (4.3)

to those for which HA ∩ GyiD 6= ∅. If I ′ denotes the set of all such i’s, then

HA =
⊔
j∈I′ (HA ∩GyjD).

Combining (4.3) and (4.4), we obtain, for (G, H) of type U, an equality

(4.8) #
{
H
∖
HA

/
(HA ∩ C)

}
=
∑

i∈I
#
{

(Ly−1
i )[q, b]/Γi

}
,

where {yi} is such that GA =
⊔
i∈I GyiC and Γi = G ∩ yiCy−1

i . We can state

a similar formula for (G, H) of type SU when n > 2 and (4.5) is satisfied.

Formula (4.8) connects the class number of H with respect to HA ∩ C to the

solutions h of the equation ϕ[h] = q under the condition ϕ(h, Ly−1
i ) = b.

5. Nonscalar hermitian Diophantine equations

5.1. So far we discussed the equation ϕ[h] = q with a scalar q. We can

formulate a similar problem with nonscalar q, which can be stated in terms of

matrices as follows. We take F to be local or global. Given q∗ = q ∈ GLm(K)

and ϕ∗ = ϕ ∈ GLn(K), we consider the solutions h ∈ Km
n of the equation

hϕh∗ = q. Here and throughout this section we assume n > m > 0. More

intrinsically, take (V, ϕ) as before and take also (X, q) with a nondegenerate

hermitian form q on a free K-module X of dimension m. We consider h ∈
Hom(X, V ) such that ϕ[xh] = q[x] for every x ∈ X. Since q is nondegenerate,

h must be injective. To simplify our notation, for every k ∈ Hom(X, V )

we denote by ϕ[k] the hermitian form on X defined by ϕ[k][x] = ϕ[xk] for

every x ∈ X. Then our problem concerns the solutions h ∈ Hom(X, V ) of the

equation ϕ[h] = q for a fixed q. If m = 1 and X = K, then q ∈ F×, and

an element h of V defines an element of Hom(K, V ) that sends c to ch for

c ∈ K, and every element of Hom(K, V ) is of this type. Thus the problem

about ϕ[h] = q with q ∈ F× is the one-dimensional special case. Let h be an

element of Hom(X, V ) such that rank(ϕ[h]) = m. Then

(5.1)
{
x ∈ Hom(X, V )

∣∣ϕ[x] = ϕ[h]
}

= h · SUϕ.
This is similar to (1.5), and follows easily from the Witt theorem in the unitary

case. Though we take V to be coordinate-free, it is practical to take X to be

Documenta Mathematica 13 (2008) 739–774



Arithmetic of Hermitian Forms 769

K1
m, and so take q to be a hermitian element of GLm(K), and q[x] = xqx∗

for x ∈ K1
m. For h ∈ Hom(X, V ) and 1 ≤ i ≤ m we define “the i-th row” of

h to be the element hi of V determined by ah =
∑m

i=1 aihi for a = (ai)
m
i=1 ∈

K1
m = X.

We first prove a local finiteness result that generalizes Theorem 3.3.

Theorem 5.2. Suppose F is a local field; let Λ be an r-lattice in Hom(X, V )

and let D =
{
γ ∈ SUϕ(V )

∣∣Λγ = Λ
}
. Then, given h ∈ Hom(X, V ) ∩ Λ such

that ϕ[h] is nondegenerate, there exists a finite subset A of SUϕ(V ) such that

(5.2)
{
x ∈ Λ

∣∣ϕ[x] = ϕ[h]
}

=
⊔
α∈A hαD.

Moreover, suppose K = F × F or K is a field unramified over F ; suppose also

that ϕ[h] ∈ GLm(r) and Λ =
{
λ ∈ Hom(X, V )

∣∣ r1mλ ⊂ L
}

with a maximal

lattice L in V. Then we can take A = {1}.
Proof. The first part is Theorem 3.3 if m = 1, and so we assume m > 1

and prove (5.2) by induction on m. Put q = ϕ[h]. Changing (h, q, Λ) for

(ch, cqc∗, cΛ) with a suitable c ∈ GLm(K), we may assume that q = diag[a, η]

with a ∈ F× and η∗ = η ∈ GLm−1(K). Also we may assume that Λ ={
κ ∈ Hom(X, V )

∣∣Mκ ⊂ L
}

with M = r1m and an r-lattice L in V. Then

D =
{
α ∈ SUϕ(V )

∣∣Lα = L
}
. If x ∈ Λ and ϕ[x] = q, then x1, h1 ∈ L and

ϕ[x1] = ϕ[h1] = a, and hence by Theorem 3.3 there exists a finite subset B

of L such that such an x1 belongs to
⋃
b∈B bD and ϕ[b] = a for every b ∈ B.

Suppose x1 = bγ with b ∈ B and γ ∈ D. Put Wb = (Kb)⊥, y = xγ−1 and

z=[yi]
m
i=2. Then y1 =b and ϕ[y]=ϕ[h], so that ϕ[z]=η, and yi∈Wb for i > 1.

We can view z as an element of Hom(K1
m−1, Wb). Then r1m−1z ⊂ L ∩Wb.

Put E=
{
ε∈SUϕ(Wb)

∣∣ (L∩Wb)ε=L∩Wb

}
. By induction there exists a finite

subset Ub of Hom(K1
m−1, Wb) such that

{
z ∈ Hom(K1

m−1, Wb)
∣∣ r1m−1z ⊂ L ∩Wb, ϕ[z]=η

}
=
⊔
u∈Ub

uE.

We can find a finite subset S of E such that E =
⊔
σ∈S σ(D ∩ E). Then y =[

b
z

]
=

[
b
uστ

]
with u ∈ Ub, σ ∈ S, and τ ∈ D ∩ E. Thus x =

[
b
uσ

]
τγ, and

τγ ∈D. This shows that x∈⊔k∈P kD with a finite subset P of the left-hand

side of (5.2), as the elements (b, u, σ) form a finite set. By (5.1), for each k∈P
there exists an element α of SUϕ(V ) such that k=hα. This proves the first

assertion.

Next suppose that the conditions on K, q, Λ, and ϕ as in the second asser-

tion are satisfied. Take an r-basis of L and identify V, L, and ϕ with K1
n, r1n,

and a hermitian matrix with respect to that basis. Given ℓ ∈ L = r1n, put

z = q−1hϕℓ∗ and y = ℓ − z∗h. Since ϕ ≺ r and q ∈ GLm(r), we see that

y ∈ L, and for every w ∈ X we have whϕy∗ = 0, so that y ∈ (Xh)⊥. Put

M = r1m and Y = (Xh)⊥. Then V =Xh ⊕ Y and L=Mh ⊕ (L ∩ Y ). Suppose

ϕ[k]=q with k∈Λ. Then similarly L=Mk⊕ (L∩Z) with Z=(Xk)⊥. Since L
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is maximal, Mh resp. Mk is maximal in Xh resp. Xk, and L ∩ Y resp. L ∩ Z
is maximal in Y resp. Z. By (5.1) there exists an element γ ∈ SUϕ(V ) such

that hγ = k. Then Mhγ = Mk, Y γ = Z, and (L ∩ Y )γ is r-maximal in Z,

so that by Lemma 3.4 (i), (L ∩ Y )γε = L ∩ Z with some ε ∈ Uϕ(Z). Define

α ∈ GL(V ) by α = γ on Xh and α = γε on Y. Then α ∈ Uϕ(V ), Lα = L,

and hα = k. Since det(α) ∈ r×, we can find an element ξ of Uϕ(Z) such that

(L ∩ Z)ξ = L ∩ Z and det(ξ) = det(α)−1. This is clear if K = F × F ; see

§3.6. If K is a field unramified over F, then the fact is included in Lemma

1.9. Extend ξ to an element of Uϕ(V ) by putting xkξ = xk for x ∈ X. Then

αξ ∈ SUϕ(V ), hαξ = k, and Lαξ = L. Clearly Λαξ = Λ, and hence we obtain

(5.2) with A={1}. This completes the proof.

Next we prove a generalization of Theorem 4.2, which is a global version of

the above theorem.

Theorem 5.3. Suppose that F is an algebraic number field; let Λ be an r-

lattice in Hom(X, V ), Γ =
{
γ ∈ SUϕ(V )

∣∣Λγ = Λ
}
, and Tq =

{
x ∈ Λ

∣∣ϕ[x] =

q
}

with q∗ = q ∈ GLm(K). Then Tq/Γ is a finite set.

Proof. We assume the existence of h ∈ Tq. Put W = (Xh)⊥, G = SUϕ(V ),

H = SUϕ(W ), M = r1m, D =
{
γ ∈ GA

∣∣Λγ = Λ
}
, and Dv = D ∩ Gv for

v ∈ h. We identify H with
{
α ∈ G

∣∣ hα = h
}
. Fix a maximal lattice L in V.

By Theorem 5.2, for each v ∈ h there exists a finite subset Ev of Gv such that
{
x ∈ Λv

∣∣ϕ[x] = q
}

=
⊔
ε∈Ev

hεDv.

Now for almost all v ∈ h we have Λv =
{
γ∈Hom(Xv, Vv)

∣∣Mvγ⊂Lv
}
, Lv is

maximal, v is unramified in K, and q∈ GLm(rv). Therefore, by Theorem 5.2,

we can take Ev = {1} for almost all v ∈ h. Consequently we can find a finite

subset E of Gh such that Tq ⊂
⋃
η∈E hηD. If x ∈ Tq, then x ∈ hG by (5.1).

Thus x = hα = hηδ with α ∈ G, η ∈ E, and δ ∈ D. We have αδ−1η−1 ∈ HA,

and hence α ∈ HAηD. For each η ∈ E we can find a finite subset Zη of Hh

such that HA =
⊔
ζ∈Zη

Hζ(HA ∩ ηDη−1). Then HAηD =
⋃
ζ∈Zη

HζηD, and

hence α ∈ ⋃η,ζ(G ∩ HζηD) =
⋃
η,ζ H(G ∩ ζηD). For each (ζ, η) such that

G ∩ ζηD 6= ∅, pick any β ∈ G ∩ ζηD. Then G ∩ ζηD = G ∩ βD = βΓ. Let B

be the set of such β’s chosen for each (ζ, η). Then α ∈ ⋃β∈B HβΓ, and thus

hα ∈ ⋃β∈B hβΓ, which proves our theorem.

Theorem 5.4. Suppose that F is an algebraic number field. With a fixed

h ∈ Hom(X, V ) such that rank
(
ϕ[h]

)
= m, put q = ϕ[h], W = (Xh)⊥, G =

Uϕ(V ), H = Uϕ(W ), and V = Hom(X, V ). Let D be an open subgroup of GA

containing Ga such that D ∩ Gh is compact, and let GA =
⊔
i∈I GyiD. Then

assertions (i), (ii), and (iii) of Theorem 4.4 are valid if we take the symbols

h, G, H, and D there to be those of the present setting, and replace V there by

V . In particular we have
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(5.3) #
{
H
∖
HA

/
(HA ∩D)

}
=
∑

i∈I
#
{

(V ∩ hDy−1
i )/Γi

}
,

where Γi = G∩yiDy−1
i . The same is true with G = SUϕ(V ) and H = SUϕ(W ).

Proof. We can repeat the proof of Theorem 4.4 with obvious modifications.

Theorem 5.5. In the setting of Theorem 5.4 with G = SUϕ(V ) and H =

SUϕ(W ) suppose that n −m > 1 and neither Ga nor Ha is compact. Let k

be an element of Hom(X, V ) such that k = hγv for every v ∈ h with some

(γv)v∈h ∈ D∩Gh. Then there exists an element α ∈ G∩D such that k = hα.

In particular, if m = 1 and (4.5) is satisfied, then #
{
L[q, b]/Γ 1(L)

}
≤ 1 for

every maximal lattice L in V.

Proof. By our assumptions, strong approximation holds on G and H, and so

we have GA = GD and HA = H(HA ∩ D). Thus we can take {yi}i∈I = {1}.
Therefore (5.3) implies that #

{
(V ∩ hD)/(G ∩D)

}
= 1, which gives the first

assertion. This combined with (4.6) proves the second assertion.

5.6. Before proceeding further, let us recall the notion of the mass of an

algebraic group G with respect to an open subgroup D of GA containing Ga

and such that Gh ∩D is compact. For simplicity here we take G to be Uϕ or

SUϕ and assume that Uϕa is compact. For x ∈ GA put ∆x = G ∩ xDx−1 and

ν(∆x) = [∆x : 1]−1. Then the the mass of G with respect to D is defined by

(5.4) m(G, D) =
∑

b∈B

ν(∆b), B = G\GA/D.

For this the reader is referred to [S2, (10.9.4), (24.1.1), (24.1.2)]. If D′ is a

subgroup of GA of the same type as D, then from [S2, Lemma 24.2] we obtain

(5.5) [D : D ∩D′]m(G, D) = m(G, D ∩D′) = [D′ : D ∩D′]m(G, D′).

Theorem 5.7. In the setting of Theorem 5.4, suppose that Ga is compact.

Then for every y ∈ GA we have

(5.6) ν(∆y)#
{
V ∩ hDy−1

}
=
∑

ε∈E

ν(∆ε),

where E = H\(HA ∩ GyD)/(HA ∩ D) and ∆x = H ∩ xDx−1. Moreover, let

GA =
⊔
i∈I GyiD and Γi = G ∩ yiDy−1

i ; then

(5.7)
∑

i∈I
ν
(
Γi
)
#
{
V ∩ hDy−1

i

}
= m(H, HA ∩D).

Proof. To prove (5.6), we may assume that HA ∩ GyD 6= ∅. For ε ∈ E

take αε ∈ G so that ε ∈ αεyD. Then H ∩ αε∆yα
−1
ε = H ∩ αεyDy−1α−1

ε =

H ∩ εDε−1 = ∆ε. Now V ∩ hDy−1 =
⊔
ε∈E hαε∆y by the part of Theorem 5.4

corresponding to Theorem 4.4 (ii). For γ, γ′ ∈ Γ (Λ) we have hαεγ = hαεγ
′ if

and only if αεγ
′γ−1α−1

ε ∈ H, that is, γ′γ−1 ∈ α−1
ε Hαε ∩∆y = α−1

ε ∆εαε, so
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that

#
{
hαε∆y

}
=
[
∆y : α−1

ε ∆εαε
]

= ν(∆ε)/ν
(
∆y

)
.

Therefore we obtain (5.6). Next, let Ei = H\(HA ∩ GyiD)/(HA ∩ D). Then

HA =
⊔
i∈I(HA ∩GyiD) =

⊔
i∈I
⊔
ε∈Ei

Hε(HA ∩D), and so m(H, HA ∩D) =∑
i∈I
∑

ε∈Ei
ν(∆ε), which combined with (5.6) proves (5.7).

Corollary 5.8. Define C and C1 by (4.2) with a maximal lattice L in V ;

take (G, H) of type U as in Theorem 4.4; suppose that Ga is compact. Let

GA =
⊔
i∈I GyiC, Li = Ly−1

i , and Γi = Γ (Li). Then

(5.8)
∑

i∈I
ν
(
Γi
)
#
{
Li[q, b]

}
= m(H, HA ∩ C),

where q = ϕ[h] and b = ϕ(h, L). This is valid for (G, H) of type SU if we

replace C and Γ (··) by C1 and Γ 1(··), provided n > 2 and (4.5) is satisfied.

Proof. Take m = 1 and D = C in Theorem 5.7. Combining (5.7) with (4.4),

we obtain (5.8). The case of SUϕ follows similarly from (4.6).

5.9. Formulas (5.7) and (5.8) are similar to, but different from, the formula

of Siegel about
∑

i ν(Γi)#
{
Li[q]

}
. We already explained in [S3, §13.13] the

main differences between our formulas in the orthogonal case given in that

book and that of Siegel. In principle, our comments there apply to the present

unitary case.

Now in [S2, Theorem 24.4] we gave an exact formula for m(G, D) for G = Uϕ

and a certain type of D, under the condition that if n is odd, then d0(ϕ) is

represented by an element of g×. The groupHA∩C in (5.8) does not necessarily

belong to the types of D there, but we can compute [D : HA ∩C] by means of

Lemma 3.14 under some conditions on (q, b). Then we obtain m(H, HA ∩ C)

from [S2, Theorem 24.4] by (5.5).

Proposition 5.10. In the setting of Theorem 5.4 suppose that n − m is

odd. Then the structure (W, det(q)ϕ) depends only on ϕ and the indices of q

at the real archimedean primes of F ramified in K.

Proof. Let ψ be the restriction of ϕ to W. Then we can easily verify that

d0

(
det(q)ψ

)
= det(q)n−md0(ψ) = (−1)n−1d0(ϕ) as m − n is odd. This com-

bined with Theorem 2.2 (i) proves our proposition.

This is an analogue of the fact concerning a quadratic form in even dimension

with square discriminant given in [S4, Theorem 1.12].

We insert here some results about the relationship between various invariants

associated with Uϕ and those with SUϕ.

Proposition 5.11. Let D be an open subgroup of UϕA containing Uϕa and

such that Uϕh ∩D is compact; put P =
{
x ∈ K×

∣∣ xxρ = 1
}

and D1 = D∩SUϕA.
Then UϕSUϕAD is a normal subgroup of UϕA and
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(5.9a) [UϕA : UϕSUϕAD] = [PA : P det(D)],

(5.9b) #(Uϕ\UϕA/D) ≤
∑

x∈Ξ
#(SUϕ\SUϕA/xD1x−1),

where Ξ = UϕA/U
ϕSUϕAD. Moreover, if Uϕa is compact, then

(5.9c) m(Uϕ, D) ≤ [PA : P det(D)] ·m(SUϕ, D1).

Furthermore, if P ∩ det(D) = det(Uϕ ∩ yDy−1) for every y ∈ UϕA, then the

equality holds in (5.9b), and

(5.9d) #
(
P ∩ det(D)

)
m(Uϕ, D) = [PA : P det(D)]m(SUϕ, D1).

Proof. Since P = det(Uϕ), we can easily show that

(5.10) UϕSUϕADx =
{
y ∈ UϕA

∣∣ det(y) ∈ P det(Dx)
}

for every x ∈ UϕA. This shows that UϕSUϕAD is a normal subgroup of

UϕA and UϕA/U
ϕSUϕAD is isomorphic to PA/[P det(D)], as PA = det(UϕA).

Thus we obtain (5.9a); we also see that UϕSUϕA\UϕA/D can be identified

with UϕA/U
ϕSUϕAD. Given x ∈ UϕA, take Bx ⊂ SUϕA so that SUϕA =⊔

b∈Bx
SUϕbxD1x−1. Then we have UϕSUϕAxD =

⋃
b∈Bx

UϕbxD, and hence

UϕA =
⋃
x∈Ξ

⋃
b∈Bx

UϕbxD. From this we obtain (5.9b). To prove (5.9c), put

Γx = Uϕ ∩ xDx−1 and Γ 1
x = SUϕ ∩ xD1x−1 for x ∈ UϕA. Then m(Uϕ, D) ≤∑

x∈Ξ
∑
b∈Bx

ν(Γbx) ≤ ∑
x∈Ξ

∑
b∈Bx

ν(Γ 1
bx) =

∑
x∈Ξ m(SUϕ, xD1x−1). Now

formula (5.5) shows that m(SUϕ, D1) depends only on the measure of D1.

(If Uϕa is not compact, we have to consider the measure of D1
h.) Since

m(SUϕ, xD1x−1) = m(SUϕ, D1), we obtain (5.9c).

Suppose P ∩ det(D) = det(Γy) for every y ∈ UϕA. Suppose also that b′x =

abxd for a ∈ Uϕ, d ∈ D, and b, b′ ∈ Bx. Then det(a) = det(d−1) ∈ P ∩
det(D) = det(Γbx), and so det(a) = det(c) with c ∈ Γbx. Put e = x−1b−1cbx.

Then e ∈ D, det(ed) = 1, and b′x = abxd = ac−1bxed ∈ SUϕbxD1. Thus

b′ = b. This shows that UϕSUϕAxD =
⊔
b∈Bx

SUϕbxD, from which we obtain

the equality in (5.9b). Also, ν(Γ 1
bx)/ν(Γbx) = [Γbx : Γ 1

bx] = #
(

det(Γbx)
)

=

#
(
P ∩ det(D)

)
, and so

#
(
P ∩ det(D)

)
m(Uϕ, D) =

∑

x∈Ξ

∑

b∈Bx

ν(Γ 1
bx)

=
∑

x∈Ξ
m(SUϕ, xD1x−1) = #(Ξ) ·m(SUϕ, D1),

which is (5.9d).
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Abstract. We investigate the values of several types of Dirichlet series

D(s) for certain integer values of s, and give explicit formulas for the value

D(s) in many cases. The easiest types of D are Dirichlet L-functions and

their variations; a somewhat more complex case involves elliptic functions.

There is one new type that includes
∑∞
n=1(n2+1)−s for which such values

have not been studied previously.
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Introduction

By a Dirichlet character modulo a positive integer d we mean as usual a

C-valued function χ on Z such that χ(x) = 0 if x is not prime to d, and

χ induces a character on (Z/dZ)×. In this paper we always assume that χ is

primitive and nontrivial, and so d > 1. For such a χ we put

(0.1) L(s, χ) =

∞∑

n=1

χ(n)n−s.

It is well known that if k is a positive integer such that χ(−1) = (−1)k, then

L(k, χ) is πk times an algebraic number, or equivalently, L(1 − k, χ) is an

algebraic number. In fact, there is a well-known formula, first proved by Hecke

in [3]:

(0.2) kd1−kL(1− k, χ) = −
d−1∑

a=1

χ(a)Bk(a/d),

where Bk(t) is the Bernoulli polynomial of degree k. Actually Hecke gave the

result in terms of L(k, χ), but here we state it in the above form. Hecke’s proof

is based on a classical formula

(0.3) Bk(t) = −k!(2πi)−k
∑

06=h∈Z
h−ke(ht) (0 < k ∈ Z, 0 < t < 1).
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There is also a well-known proof of (0.2), which is essentially the functional

equation of L(s, χ) combined with a proof of (0.3). We will not discuss it in

the present paper, as it is not particularly inspiring.

In [9] we gave many formulas for L(1−k, χ) different from (0.2). The primary

purpose of the present paper is to give elementary proofs for some of them, as

well as (0.2), and discuss similar values of a few more types of Dirichlet series.

The point of our new proofs can be condensed to the following statement: We

find infinite sum expressions for L(s, χ), which are valid for all s ∈ C and so

can be evaluated at s = 1− k, whereas the old proof of Hecke and our proofs in

[9] employ calculations at s = k and involve the Gauss sum of χ.

To make our exposition smooth we put

(0.4) e(z) = exp(2πiz) (z ∈ C),

(0.5) H =
{
z ∈ C

∣∣ Im(z) > 0
}
.

The three additional types of Dirichlet series we consider naturally involve a

complex variable s, and are defined as follows:

(0.6) Dν(s; a, p) =
∑

−a6=n∈Z
(n+ a)ν |n+ a|−ν−se

(
p(n+ a)

)
,

where a ∈ R, p ∈ R, and ν = 0 or 1,

(0.7) Lk(s, z) =
∑

m∈Z
e(mr)(z +m)−k|z+m|−2s (k ∈ Z, r ∈ Q, z ∈ H),

(0.8) ϕν(u, s; L) =
∑

α∈L
(u+ α)−ν |u+ α|ν−2s,

where L is a lattice in C, 0 ≤ ν ∈ Z, and u ∈ C, /∈ L. We should also note

(0.9) E(z, s) = Im(z)s
∑

(m,n)

(mz+n)−k|mz+n|−2s (0 ≤ k ∈ Z, z ∈ H),

where (m, n) runs over the nonzero elements of Z2. The value E(z, µ) for an

integer µ such that 1−k ≤ µ ≤ 0 was already discussed in [9], and so it is not

the main object of study in this paper, but we mention it because (0.8) is a nat-

ural analogue of (0.9). We will determine in Section 3 the value ϕν(u, κ/2; L)

for an integer κ such that 2 − ν ≤ κ ≤ ν, which may be called a nearly holo-

morphic elliptic function. Now (0.6) is closely connected with L(s, χ). In [9,

Theorem 4.2] we showed that Dν(k; a, p) for 0 < k ∈ Z is elementary factors

times the value of a generalized Euler polynomial Ec,k−1(t) at t = p. In Sec-

tion 2 we will reformulate this in terms of Dν(1 − k; a, p). Finally, the nature

of the series of (0.7) is quite different from the other types. We will show in

Section 4 that ikLk(β, z) is a Q-rational expression in π, e(z/N), and Im(z),

if β ∈ Z and −k < β ≤ 0, where N is the smallest positive integer such that

Nr ∈ Z. Similar results will also be given under other conditions on β. In the

final section we will make some comments in the case where the base field is

an algebraic number field.
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1. L(1 − k, χ)

1.1. We start with an elementary proof of (0.2). Strange as it may sound,

the main idea is the binomial theorem. We first note

(1.1) Bn(t) =
n∑

ν=0

(
n
ν

)
Bνt

n−ν (0 ≤ n ∈ Z),

(1.2a) B0 = 1, ζ(0) = −1/2 = B1,

(1.2b) nζ(1 − n) = −Bn (1 < n ∈ Z),

where Bn is the nth Bernoulli number. Formulas (1.1) and (1.2a) are well-

known; (1.2b) is usually given only for even n, but actually true also for odd

n, since ζ(−2m) = 0 = B2m+1 for 0 < m ∈ Z.

To prove (0.2), we first make a trivial calculation:

L(s, χ)−
d−1∑

a=1

χ(a)a−s =

∞∑

m=1

d−1∑

a=1

χ(dm+ a)(dm+ a)−s

=

∞∑

m=1

d−1∑

a=1

χ(a)(dm)−s
(

1 +
a

dm

)−s
.

Now we apply the binomial theorem to (1 + X)−s. Thus the last double sum

equals

(1.3)

∞∑

m=1

d−1∑

a=1

χ(a)(dm)−s
∞∑

r=0

(
−s
r

)(
a

dm

)r

=

∞∑

r=0

(
−s
r

) ∞∑

m=1

m−s−rd−s
d−1∑

a=1

χ(a)(a/d)r,

where (
τ
r

)
=
τ(τ − 1) . . . (τ − r + 1)

r!
,

which is of course understood to be 1 if r = 0. So far our calculation is formal,

but can be justified at least for Re(s) > 1. Indeed, put Re(s) = σ and |s| = α.

Then

(1.4)

∣∣∣∣
(
−s
r

)∣∣∣∣ ≤
α(α + 1) . . . (α+ r − 1)

r!
= (−1)r

(
−α
r

)
.

Therefore the triple sum obtained from (1.3) by taking the absolute value of

each term is majorized by
d−1∑

a=1

∞∑

r=0

∞∑

m=1

m−σ−rd−σ
(
−α
r

)(−a
d

)r

≤ ζ(σ)d−σ
d−1∑

a=1

∞∑

r=0

(
−α
r

)(−a
d

)r
= ζ(σ)d−σ

d−1∑

a=1

(
1− a

d

)−α
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if σ > 1. Thus, for Re(s) > 1, (1.3) can be justified, and so

(1.5) L(s, χ)−
d−1∑

a=1

χ(a)a−s =

∞∑

r=0

(
−s
r

)
ζ(s+ r)d−s

d−1∑

a=1

χ(a)(a/d)r.

We can show that the last sum
∑∞

r=0 defines a meromorphic function in s

on the whole C. For that purpose given s ∈ C, take a positive integer µ so

that Re(s) > −µ and decompose the sum into
∑µ+1

r=0 and
∑∞

r=µ+2 . There is no

problem about the first sum, as it is finite. As for the latter, we have |ζ(s+r)| ≤
ζ(2) for r ≥ µ + 2. Putting ε = (d − 1)/d, we have |∑d−1

a=1 χ(a)(a/d)r| ≤
(d−1)εr. Therefore for Re(s) > −µ the infinite sum

∑∞
r=µ+2 can be majorized

by

dµ(d− 1)ζ(2)

∞∑

r=0

(
−α
r

)
(−ε)r = dµ(d− 1)ζ(2)(1 − ε)−α.

This proves the desired meromorphy of the right-hand side of (1.5).

Now, for 0 < k ∈ Z, without assuming that χ(−1) = (−1)k, we evaluate

(1.5) at s = 1 − k. We easily see that

(
−s
r

)
= 0 and ζ(s + r) is finite for

s = 1−k if r > k. We have to be careful about the term for r = k, as ζ(s+k)

has a pole at s = 1− k. Since

(1.6) lim
s→1−k

(
−s
k

)
ζ(s+ k) = lim

s→1−k

(
−s
k

)
1

s− 1 + k
=
−1

k
,

the term for r = k at s = 1 − k produces −(dk−1/k)
∑d−1
a=1 χ(a)(a/d)k. Thus

the evaluation of (1.5) at s = 1− k gives

(1.7) kd1−kL(1− k, χ) = k

d−1∑

a=1

χ(a)(a/d)k−1

−
d−1∑

a=1

χ(a)(a/d)k +
k−1∑

r=0

k

(
k − 1
r

)
ζ(1 + r − k)

d−1∑

a=1

χ(a)(a/d)r.

By (1.2b) we have, for 0 ≤ r < k − 1,

k

(
k − 1
r

)
ζ(1 + r − k) =

−k
k − r

(
k − 1
r

)
Bk−r = −

(
k
r

)
Bk−r.

The term for r = k − 1 produces kζ(0)
∑d−1

a=1 χ(a)(a/d)k−1, which

combined with the first term on the right-hand side of (1.7) gives

−kB1

∑d−1
a=1 χ(a)(a/d)k−1. Thus we obtain

kd1−kL(1− k, χ) = −
k∑

r=0

(
k
r

)
Bk−r

d−1∑

a=1

χ(a)(a/d)r,

which together with (1.1) proves (0.2). Notice that we did not assume that

χ(−1) = (−1)k, and so we proved (0.2) for every positive integer k. If χ(−1) =

(−1)k−1, we have L(1−k, χ) = 0, which means that the right-hand side of (0.2)

is 0 if χ(−1) = (−1)k−1. This can be proved more directly; see [9, (4.28)].

Documenta Mathematica 13 (2008) 775–794



The Critical Values of Certain Dirichlet Series 779

In the above calculation the term for r = 0 actually vanishes, as∑d−1
a=1 χ(a) = 0. However, we included the term for the following reason. In

later subsections we will consider similar infinite sums with r ranging from 0

to ∞, of which the terms for r = 0 are not necessarily zero.

1.2. By the same technique as in §1.1 (that is, employing the binomial

theorem) we will express L(1− k, χ) explicitly in terms of a polynomial Φk−1

of degree k − 1. Writing n for k − 1, the polynomial is defined by

(1.8) Φn(t) = tn −
[(n+1)/2]∑

ν=1

(
n

2ν − 1

)
(22ν − 1)

B2ν

ν
tn+1−2ν (0 ≤ n ∈ Z),

where Bν denotes the Bernoulli number as before. We understand that Φ0(t) =

1. We will eventually show that Φn is the classical Euler polynomial of degree n,

but we prove Theorem 1.4 below with this definition of Φn, with no knowledge

of the Euler polynomial. We first prove:

Lemma 1.3. Let χ be a primitive Dirichlet character of conductor 4d0 with

0 < d0 ∈ Z. Then χ(a− 2d0) = −χ(a) for every a ∈ Z.

Proof. We may assume that a is prime to 2d0, as the desired equality is

trivial otherwise. Then we can find an integer b such that ab− 1 ∈ 4d0Z, and

we have χ(a− 2d0) = χ(a)χ(1− 2d0b). Since (1 − 2dob)
2 − 1 ∈ 4d0Z, we have

χ(1 − 2dob) = ±1. Suppose χ(1 − 2dob) = 1; let x = 1 − 2d0y with y ∈ Z.

Thenxb − (1 − 2d0b)
y ∈ 4d0Z, and so χ(x)b = 1. Thus χ(x) = 1, as b is

odd. This shows that the conductor of χ is a divisor of 2d0, a contradiction.

Therefore χ(1 − 2d0b) = −1, which proves the desired fact.

Theorem 1.4. Let χ be a nontrivial primitive Dirichlet character modulo

d, and let k be a positive integer such that χ(−1) = (−1)k.

(i) If d = 2q + 1 with 0 < q ∈ Z, then

(1.9) L(1− k, χ) =
dk−1

2kχ(2)− 1

q∑

b=1

(−1)bχ(b)Φk−1(b/d).

(ii) If d = 4d0 with 1 < d0 ∈ Z, then

(1.10) L(1− k, χ) = (2d0)k−1

d0−1∑

a=1

χ(a)Φk−1(2a/d).

Before proving these, we note that these formulas are better than (0.2) in the

sense that Φk−1(t) is of degree k − 1, whereas Bk(t) is of degree k.

Proof. We first put

Z(s) =

∞∑

n=1

(−1)nn−s, Λ(s) =

∞∑

n=1

(−1)nχ(n)n−s.

We easily see that
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Λ(s) + L(s, χ) = 2

∞∑

n=1

χ(2n)(2n)−s = χ(2)21−sL(s, χ),

and a similar equality holds for Z(s). Thus

Z(s) = ζ(s)(21−s − 1), Λ(s) = L(s, χ)
{
χ(2)21−s − 1

}
.

We prove (i) by computing Λ(1− k) for a given k in the same elementary way

as we did in §1.1. With q as in (i) we observe that every positive integer m

not divisible by d can be written uniquely m = nd + a with 0 ≤ n ∈ Z or

m = nd− a with 0 < n ∈ Z, where in either case a is in the range 0 < a ≤ q.
Therefore

Λ(s) =

q∑

a=1

(−1)aχ(a)a−s

+

q∑

a=1

∞∑

n=1

{
(−1)nd+aχ(nd+ a)(nd+ a)−s + (−1)nd−aχ(nd− a)(nd− a)−s

}
.

The last double sum can be written
q∑

a=1

∞∑

n=1

(−1)n+ad−sn−s
{
χ(a)

(
1 +

a

nd

)−s
+ χ(−a)

(
1− a

nd

)−s}
.

Applying the binomial theorem to (1±X)−s, we obtain

Λ(s)−
q∑

a=1

(−1)aχ(a)a−s

=

∞∑

n=1

∞∑

r=0

(−1)n(dn)−r−s
(
−s
r

){
1 + (−1)r+k

} q∑

a=1

(−1)aχ(a)ar

=

∞∑

r=0

d−s
(
−s
r

)
Z(s+ r)

{
1 + (−1)r+k

} q∑

a=1

(−1)aχ(a)(a/d)r .

By the same technique as in §1.1, we can justify this for Re(s) > 1. We can

even show that the last sum
∑∞

r=0 is absolutely convergent for every s ∈ C as

follows. We first note that Z is an entire function. Take a positive integer µ and

s so that Re(s) > −µ. Then for r ≥ µ+2 we have |Z(s+r)| ≤ ζ(2). Put |s| = α.

We have also |∑q
a=1(−1)aχ(a)(a/d)r| ≤ 2−rq. Therefore for Re(s) > −µ the

infinite sum
∑∞

r=µ+2 can be majorized by

2dµζ(2)q

∞∑

r=0

(
−α
r

)
(−2)−r = 2dµζ(2)q(1 − 2−1)−α.

This proves the desired convergence of
∑∞

r=0 . Substituting 1− k for s in the

above equality, we obtain Λ(1− k) as an infinite sum, which is actually a finite

sum, because

(
k − 1
r

)
= 0 if r ≥ k. (This time, the term r = k causes no

problem.) Also, we need only those r such that k−r ∈ 2Z. Putting k−r = 2ν,

we find that
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d1−kL(1− k, χ)
{
χ(2)2k − 1

}
= d1−kΛ(1− k)

=

q∑

a=1

(−1)aχ(a)(a/d)k−1 + 2

[k/2]∑

ν=1

(
k − 1
2ν − 1

)
Z(1− 2ν)

q∑

a=1

(−1)aχ(a)(a/d)k−2ν .

From (1.2b) we obtain

(1.11) 2νZ(1− 2ν) = 2ν(22ν − 1)ζ(1 − 2ν) = (1− 22ν)B2ν .

Using this expression for Z(1− 2ν), we obtain a formula for L(1− k, χ). Then

comparison of it with our definition of Φn proves (1.9).

Next, let d = 4d0 with 1 < d0 ∈ Z as in (ii). Observe that the set of all

positive integers greater than d0 and not divisible by d0 is the disjoint union

of the sets
{

4νd0±a
∣∣ 0 < a < d0, 0 < ν ∈ Z

}
⊔
{

(4ν+2)d0±a
∣∣ 0 < a < d0, 0 ≤ ν ∈ Z

}
.

Clearly χ(4νd0 ± a) = χ(±a); also χ
(
(4ν + 2)d0 ± a

)
= −χ(±a) by Lemma

1.3. Therefore we have

L(s, χ) =

d0−1∑

a=1

χ(a)a−s

+
∞∑

ν=1

d0−1∑

a=1

{
χ(a)(4νd0 + a)−s + χ(−a)(4νd0 − a)−s

}

−
∞∑

ν=0

d0−1∑

a=1

{
χ(a)

(
(4ν + 2)d0 + a

)−s
+ χ(−a)

(
(4ν + 2)d0 − a

)−s}
.

Employing the binomial theorem in the same manner as before, we have

L(s, χ)−
d0−1∑

a=1

χ(a)a−s

=

∞∑

ν=1

∞∑

r=0

(
−s
r

)
(4νd0)−s−r

{
1 + (−1)k+r

} d0−1∑

a=1

χ(a)ar

−
∞∑

ν=0

∞∑

r=0

(
−s
r

)(
(4ν + 2)d0

)−s−r{
1 + (−1)k+r

} d0−1∑

a=1

χ(a)ar.

Notice that
∑∞
ν=1(4ν)−s −∑∞ν=0(4ν + 2)−s = 2−sZ(s). Therefore

L(s, χ) =

d0−1∑

a=1

χ(a)a−s+
∞∑

r=0

(
−s
r

)
(2d0)−s−rZ(s+r)

{
1+(−1)k+r

}d0−1∑

a=1

χ(a)ar.

The validity of this formula for all s ∈ C can be proved in the same way as in

the previous case. The last infinite sum
∑∞

r=0 evaluated at s = 1− k becomes

a finite sum
∑k−1

r=0 , which is actually extended only over those r such that

k − r = 2ν with ν ∈ Z. Therefore, using (1.11), we obtain (1.10).
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1.5. Let us now show that Φn coincides with the classical Euler polynomial.

In [9, (4.2)] we defined polynomials Ec, n(t) for c = −e(α) with α ∈ R, /∈ Z,

by

(1.12)
(1 + c)etz

ez + c
=

∞∑

n=0

Ec,n(t)

n!
zn.

If c = 1, the polynomial E1,n(t) is the classical Euler polynomial of degree n.

Our task is to prove

(1.13) E1,n = Φn.

We first note here some basic formulas:

(1.14) Ec,n(t) = (1 + c−1)n!(2πi)−n−1
∑

h∈Z
(h+ α)−n−1e

(
(h+ α)t

)

(c = −e(α), α ∈ R, /∈ Z; 0 < t < 1 if n = 0; 0 ≤ t ≤ 1 if 0 <n∈ Z),

(1.15) Ec,n(t+ r) =

n∑

k=0

(
n
k

)
Ec,k(r)tn−k (0 ≤ n ∈ Z),

(1.16) E1,0(0) = 1, E1,n(0) = 2(1− 2n+1)(n+ 1)−1Bn+1 (0 < n ∈ Z).

Formula (1.14) was given in [9, (4.5)]; the sum
∑

h∈Z means limm→∞
∑
|h|≤m

if n = 0. Replacing t in (1.12) by t+ r and making an obvious calculation, we

obtain (1.15). We have Ec,0(t) = 1 as noted in [9, (4.3h)]. Clearly E1,n(0) = 0

if n is even. Assuming n to be odd, take t = 0 and α = 1/2 in (1.14), and

recall that 2 ·m!(2πi)−mζ(m) = −Bm if 0 < m ∈ 2Z. Then we obtain E1,n(0)

as stated in (1.16). Taking r = 0 in (1.15) and using (1.16), we obtain (1.13).

The value Ec,n(0) for an arbitrary c is given in [9, (4.6)].

1.6. In [9, Theorem 4.14] we proved, for χ, d, and k as in Theorem 1.4,

(1.17) L(1− k, χ) =
dk−1

2k − χ(2)

q∑

a=1

χ(a)E1,k−1(2a/d),

where q = [(d − 1)/2], and derived (i) and (ii) above, with E1,k−1 in place

of Φk−1, from (1.17). In fact, (i) and (ii) combined are equivalent to (1.17).

Though this is essentially explained in [9, p. 36], here let us show that (1.17) for

even d follows from (ii). With d = 4d0 as before, we have [(d−1)/2] = 2d0−1

and
2d0−1∑

a=1

χ(a)Φk−1(2a/d)

=

d0−1∑

a=1

{
χ(a)Φk−1(2a/d) + χ(2d0 − a)Φk−1

(
2(2d0 − a)/d

)}
.

We have E1,n(1 − t) = (−1)nE1,n(t) as noted in [9, (4.3f)]. This combined

with (1.13) shows that Φk−1(1− t) = (−1)k−1Φk−1(t). By Lemma 1.3, we have

χ(2d0 − a) = −χ(−a) = (−1)k+1χ(a), and so the last sum equals
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2

d0−1∑

a=1

χ(a)Φk−1(2a/d).

Therefore (1.17) follows from (1.10) if d = 4d0. Similarly we can derive(1.17)

for odd d from (1.9), which, in substance, is shown in the last paragraph of [9,

p. 36].

1.7. Our technique is applicable even to ζ(1−k). Instead of ζ(s) we consider

W (s) =
∑∞

m=0(2m+ 1)−s. We have clearly

W (s) = 1 +

∞∑

m=1

(2m+ 1)−s = 1 +

∞∑

m=1

(2m)−s
(

1 +
1

2m

)−s

= 1 +

∞∑

m=1

(2m)−s
∞∑

r=0

(
−s
r

)
(2m)−r = 1 +

∞∑

r=0

ζ(s+ r)

(
−s
r

)
2−s−r.

We evaluate this at s = 1 − k with 0 < k ∈ Z. Our calculation is similar to

that of §1.1; we use (1.6) for determining the term for r = k, which produces

−(2k)−1. Thus

(1− 2k−1)ζ(1 − k) = W (1− k) = 1− 1

2k
+

k−1∑

r=0

(
k − 1
r

)
2k−1−rζ(1− k + r).

Taking k = 1, we find a well-known fact ζ(0) = −1/2. Also, ζ(1 − k) appears

on both sides. Therefore, putting k−r = t and rearranging our sum, we obtain

(1− 2k)ζ(1 − k) =
k − 1

2k
+

k−1∑

t=2

(
k − 1
t− 1

)
2t−1ζ(1 − t).

This holds for every even or odd integer k > 1. Recall that ζ(−m) = 0 for

0 < m ∈ 2Z. Thus, taking k = 2n with 0 < n ∈ Z, we obtain a formula for

ζ(1 − 2n) as a linear combination of ζ(1 − 2ν) for 1 ≤ ν < n (which is 0 if

n = 1) plus a constant as follows:

(1.18) (1− 22n)ζ(1 − 2n) =
2n− 1

4n
+

n−1∑

ν=1

(
2n− 1
2ν − 1

)
22ν−1ζ(1 − 2ν).

Similarly, taking k = 2n+ 1 and putting t = 2ν, we obtain

(1.19)

n∑

ν=1

(
2n

2ν − 1

)
22ν−1ζ(1 − 2ν) =

−n
2n+ 1

.

Either of these equalities (1.18) and (1.19) expresses ζ(1 − 2n) as a Q-linear

combination of ζ(1 − 2ν) for 1 ≤ ν < n plus a constant. The two expressions

are different, as can easily be seen.

In [9, (11.8)] we gave a similar recurrence formula which can be written

(1.20) 4(1−2n+1)ζ(−n) = 1+2

n∑

k=2

(
n

k − 1

)
(2k−1)ζ(1−k) (0 < n ∈ Z).
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Taking n to be even or odd, we again obtain two different recurrence formulas

for ζ(1 − 2n). It should be noted that the technique of using the binomial

theorem is already in §68 of Landau [5], in which (s−1)ζ(s) is discussed, while

we employ W (s).

2. Extending the parameters c and n in Ec,n

2.1. The function Ec,n(t) is a polynomial in t of degree n, and involves

c = −e(α) with α ∈ R. We now extend this in two ways: first, we take

α ∈ C, /∈ Z; second, we consider (h + α)−s instead of (h + α)−n−1. The first

case is simpler. Since Ec,n(t) is a polynomial in t and (1 + c)−1 as noted in [9,

p. 26], we can define a function En(α, t) by

(2.1) En(α, t) = Ec,n(t), c = −e(α), α ∈ C, /∈ Z, 0 ≤ n ∈ Z.

This is a polynomial in t, whose coefficients are holomorphic functions in α ∈
C, /∈ Z. Now equality (1.14) can be extended to

(2.2) En(α, t) =
(
1− e(−α)

)
n!(2πi)−n−1

∑

h∈Z
(h+ α)−n−1e

(
(h+ α)t

)

for all α ∈ C, /∈ Z, where 0 < t < 1 if n = 0, and 0 ≤ t ≤ 1 if n > 0.

Indeed, if n > 0, the right-hand side is absolutely convergent, and defines a

holomorphic function. Since (2.2) holds for α ∈ R, /∈ Z, we obtain (2.2) as

expected. If n = 0, we have to consider limm→∞
∑
|h|≤m(h+α)−1e

(
(h+α)t

)
.

Clearly
m∑

h=−m

e(ht)

α+ h
=

1

α
+

m∑

h=1

2α · cos(2πht)

α2 − h2
+ 2i

m∑

h=1

h · sin(2πht)

h2 − α2
.

The last sum on the right-hand side equals
m∑

h=1

sin(2πht)

h
+

m∑

h=1

sin(2πht)α2

h(h2 − α2)
.

It is well-known that the first sum tends to a finite value as m→∞. Obviously

the last sum converges to a holomorphic function in α ∈ C, /∈ Z as m → ∞.
Thus we can justify (2.2) for n = 0.

Formula (2.2) for n = 0 (with −α in place of α) can be written

(2.3)
e(tα)

1− e(α)
=

1

2πi

∑

h∈Z

e(th)

h− α (α ∈ C, /∈ Z, 0 < t < 1).

This was first given by Kronecker [4].

2.2. We next ask if the power (h + a)−n−1 in (1.14) can be replaced by

(h+ a)−s with a complex parameter s. Since h+ a can be negative, (h+ a)−s

is not suitable. Thus, for s ∈ C, a ∈ R, p ∈ R, and ν = 0 or 1 we put

(2.4) Dν(s; a, p) =
∑

−a6=n∈Z
(n+ a)ν |n+ a|−ν−se

(
p(n+ a)

)
,
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(2.5) T ν(s; a, p) = Γ
(
(s+ ν)/2

)
π−(s+ν)/2Dν(s; a, p).

Clearly the infinite series of (2.4) is absolutely convergent for Re(s) > 1, and

defines a holomorphic function of s there. Notice that if k − ν ∈ 2Z, then

Dν(k; 0, t) =
∑

06=n∈Z n
−ke(nt), which is the infinite sum of (0.3). Thus the

Bernoulli polynomials are included in our discussion.

Theorem 2.3. The function T ν(s; a, p) can be continued as a meromorphic

function of s to the whole C. It is entire if ν = 1. If ν = 0, then T 0(s; a, p) is

−2δ(a)

s
+

2e(ap)δ(p)

s− 1

plus an entire function, where δ(x) = 1 if x ∈ Z and δ(x) = 0 if x /∈ Z.

Moreover,

(2.6) T ν(1− s; a, p) = i−νe(ap)T ν(s; −p, a).

Proof. Put ϕ(x) = xνe(−x2z−1/2 + px) for x ∈ R and z ∈ H. Denote by

ϕ̂ the Fourier transform of ϕ. Then from [9, (2.25)] we easily obtain ϕ̂(x) =

i−ν(−iz)κ(x− p)νe
(
(x − p)2z/2

)
, where κ = ν + 1/2. Put also

f(z) =
∑

n∈Z
(n+ a)νe

(
(n+ a)2z/2 + p(n+ a)

)
,

and f#(z) = (−iz)−κf(−z−1). Then f(−z−1) =
∑
n∈Z ϕ(n+ a), which equals∑

m∈Z e(ma)ϕ̂(m) by virtue of the Poisson summation formula. In this way

we obtain

f#(z) = i−ν
∑

m∈Z
e(ma)(m− p)νe

(
(m− p)2z/2

)
.

Now T ν(2s − ν; a, p) is the Mellin transform of f(iy), and so we obtain our

theorem by the general principle of Hecke, which is given as Theorem 3.2 in

[9].

Theorem 2.4. For ν = 0 or 1, 0 ≤ a ≤ 1, and a positive integer k such

that k − ν ∈ 2Z we have

(2.7) D0(0; a, p) = −δ(a),

(2.8) Dν(ν − 2m; a, p) = 0 if 0 < m ∈ Z,

(2.9) Dν(1− k; a, p) = 2(2πi)−k(k − 1)!e(ap)Dν(k; −p, a),

(2.10) Dν(1− k; a, p) = −2e(ap)Bk(a)/k if p ∈ Z,

(2.11) Dν(1− k; a, p) =
2e(ap)

1− e(p)
Ec,k−1(a) if p /∈ Z,

where c = −e(−p), and we have to assume that 0 < a < 1 in (2.10) and (2.11)

if k = 1.

Proof. By Theorem 2.3,
[
sT 0(s; a, p)

]
s=0

= −2δ(a), from which we ob-

tain (2.7). Next, let 0 < m ∈ Z. Since Γ
(
(s + ν)/2

)
Dν(s; a, p) is finite and
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Γ
(
(s + ν)/2

)
has a pole at s = ν − 2m, we obtain (2.8). We easily see that

Γ (1/2−m) = π1/2(−2)m
∏m
t=1(2t−1)−1. Therefore from (2.6) we obtain (2.9).

If p ∈ Z, then Dν(k; −p, a) =
∑

06=n∈Z n
−ke(an). The well-known classical

formula, stated in [9, (4.9)] (and also as (0.3)), shows that the last sum equals

−(2πi)kBk(a)/k! for 0 ≤ a ≤ 1 if k > 1, and for 0 < a < 1 if k = 1. If

p /∈ Z, then Dν(k; −p, a) =
∑

n∈Z(n− p)−ke
(
a(n− p)

)
. By (1.14), this equals

(1 + c−1)−1(2πi)kEc,k−1(a)/(k − 1)!, where c = −e(−p), under the same con-

dition on a. Combining these with (2.9), we obtain (2.10) and (2.11).

We note here a special case of (2.10):

(2.12) Dν(1 − k; 0, 0) =

{
− 2Bk/k if k > 1,

0 if k = 1.

It should be noted that D1(s; 0, 0) = 0.

3. Nearly holomorphic elliptic functions

3.1. Let L be a lattice in C. As an analogue of (2.4) we put

(3.1) ϕν(u, s; L) =
∑

α∈L
(u + α)−ν |u+ α|ν−2s

for 0 ≤ ν ∈ Z, u ∈ C, /∈ L, and s ∈ C. Clearly

(3.2a) ϕν(λu, s; λL) = λ−ν |λ|ν−2sϕν(u, s; L) for every λ ∈ C×,

(3.2b) ϕν(u + α, s; L) = ϕν(u, s; L) for every α ∈ L.

If L is a Z-lattice in an imaginary quadratic field K and u ∈ K, (3.1) is

the same as the series of [9, (7.1)]. The analytic properties of the series that

we proved there can easily be extended to the case of (3.1). First of all, the

right-hand side of (3.1) is absolutely convergent for Re(s) > 1, and defines a

holomorphic function of s there.

Theorem 3.2. Put Φ(u, s) = π−sΓ (s+ ν/2)ϕν(u, s; L). Then Φ(u, s) can

be continued to the whole s-plane as a meromorphic function in s, which

is entire if ν > 0. If ν = 0, then Φ(u, s) is an entire function of s plus

v(L)−1/(s−1), where v(L) = vol(C/L). Moreover, Φ(u, s) is a C∞ function in

u, except when ν = 0 and s = 1, and each derivative (∂/∂u)a(∂/∂u)bΦ(u, s)

is meromorphic in s on the whole C.

Proof. This can be proved by the same argument as in [9, §7.2], except for the

differentiability with respect to u and the last statement about the derivatives,

which can be shown as follows. As shown in the proof of [9, Theorem 3.2], the

product π−sΓ (s)ϕν(u, s− ν/2; L) minus the pole part can be written
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∫ ∞

p

F (u, y)ys−1dy +

∫ ∞

p

G(u, y)yν−sdy,

where

F (u, y) =
∑

α∈L
(u+ α)ν exp

(
− π|u+ α|2y

)
,

G(u, y) = A
∑

β∈B
exp

(
πi(βu + βu)

) ∑

ξ−β∈M
ξν exp

(
− π|ξ|2y

)

with a constant A, a finite subset B of C, a positive constant p, and lattices L

and M in C. Therefore the differentiability and the last statement follow from

the standard fact on differentiation under the integral sign.

3.3. Before stating the next theorem, we note a few elementary facts. Take

L in the form L = Zω1 + Zω2 with complex numbers ω1 and ω2 such that

ω1/ω2 ∈ H. We put then v(ω1, ω2) = v(L). It can easily be seen that

(3.3) v(ω1, ω2) = |ω2|2Im(ω1/ω2) = (2i)−1(ω1ω2 − ω1ω2),

and in particular, v(z, 1) = Im(z). We also recall the function ζ of Weierstrass

defined by

(3.4) ζ(u) = ζ(u; ω1, ω2) =
1

u
+

∑

06=α∈L

{
1

u− α +
1

α
+

u

α2

}
,

where L = Zω1 + Zω2. It is well known that

(3.5) ζ(−u) = −ζ(u), (∂/∂u)ζ(u; ω1, ω2) = −℘(u; ω1, ω2)

with the Weierstrass function ℘. We put as usual

(3.6a) ηµ(ω1, ω2) = 2ζ(ωµ/2) (µ = 1, 2).

Then

(3.6b) ζ(u+ ωµ) = ζ(u) + ηµ(ω1, ω2).

We also need the classical nonholomorphic Eisenstein series E2 of weight 2,

which can be given by

(3.7) E2(z) =
1

8πy
− 1

24
+

∞∑

n=1

( ∑

0<d|n
d

)
e(nz).

We are interested in the value of ϕν(u, s; L) at s = ν/2, which is meaningful

for every ν ∈ Z, > 0, by Theorem 3.2. The results can be given as follows.

Theorem 3.4. For L = Zω1 + Zω2 with ω1/ω2 ∈ H we have

(3.8) ϕν(u, ν/2; L) =
(−1)ν

(ν − 1)!

∂ν−2

∂uν−2
℘(u; ω1, ω2) (2 < ν ∈ Z),

(3.9) ϕ2(u, 1; L) = ℘(u; ω1, ω2)− 8π2ω−2
2 E2(ω1/ω2),

(3.10) ϕ1(u, 1/2; L) = ζ(u) + 8π2ω−2
2 E2(ω1/ω2)u− πv(L)−1u,
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(3.11) ηµ(ω1, ω2) = πωµv(L)−1 − 8π2ω−2
2 E2(ω1/ω2)ωµ (µ = 1, 2).

Proof. If ν > 2, then clearly ϕν(u, ν/2; L) =
∑
α∈L(u + α)−ν , from which

we obtain (3.8). The cases ν = 2 and ν = 1 are more interesting. We first

note that

(3.12a) (∂/∂u)ϕν(u, s; L) = (−s− ν/2)ϕν+1(u, s+ 1/2; L),

(3.12b) (∂/∂u)ϕν(u, s; L) = (−s+ ν/2)ϕν−1(u, s+ 1/2; L),

at least for sufficiently large Re(s). Since both sides of (3.12a, b) are meromor-

phic in s on the whole C, we obtain (3.12a, b) for every s. The first formula

with ν = 2 produces

(∂/∂u)ϕ2(u, 1; L) = −2ϕ3(u, 3/2; L) = (∂/∂u)℘(u; ω1, ω2),

from which we obtain ϕ2(u, 1; L) = ℘(u; ω1, ω2) + c(u) with an anti-

holomorphic function c(u). Since (3.12b) shows that ϕ2(u, 1; L) is holomorphic

in u, we see that c(u) does not involve u or u, that is, it is a constant de-

pending only on L. Suppose L = Zz + Z with z ∈ H. For 0 < N ∈ Z and

(p, q) ∈ Z2, /∈ NZ2 define a standard Eisenstein series ENν (z, s; p, q) of level

N by [9, (9.1)]. Then we easily see that

ϕν
(
(pz + q)/N, s; L

)
= N2syν/2−sENν (z, s− ν/2; p, q),

ϕν
(
(pz + q)/N, ν/2; L

)
= NνENν (z, 0; p, q).

Define Fν and F2 as in [9, (10.10b, c, d)]. Taking ν = 2, we obtain

ϕ2

(
(pz + q)/N, 1; L

)
= N2EN2 (z, 0; p, q) = (2πi)2F2(z; p/N, q/N).

By [9, (10.13)], F2(z; a, b) = (2πi)−2℘(az + b; z, 1
)

+ 2E2(z) with E2 of (3.7).

Therefore we can conclude that

(3.13) ϕ2(u, 1; Zz + Z) = ℘(u; z, 1)− 8π2E2(z).

More generally, using (3.2a) we obtain (3.9).

We next consider the case ν = 1. Since (∂/∂u)ζ(u; ω1, ω2) = −℘(u; ω1, ω2),

from (3.9) and (3.12a) we obtain

(∂/∂u)ϕ1(u, 1/2; L) = −ϕ2(u, 1; L)

= (∂/∂u)ζ(u; ω1, ω2) + 8π2ω−2
2 E2(ω1/ω2).

We have also

(∂/∂u)ϕ1(u, 1/2; L) = lim
σ→1

(1 − σ)ϕ0(u, σ; L) = −π/v(L),

since the residue of π−sΓ (s)ϕ0(u, s; L) at s = 1 is v(L)−1 as shown in Theo-

rem 3.2. Therefore ϕ1(u, 1/2; L) = −πu/v(L) + g(u) with a function g holo-

morphic in u. Clearly ∂g/∂u = (∂/∂u)ϕ1(u, 1/2; L), and so we can conclude

that
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(3.14) ϕ1(u, 1/2; L) = ζ(u) + 8π2ω−2
2 E2(ω1/ω2)u− πv(L)−1u+ ξ(L)

with a constant ξ(L) independent of u. From (3.2a) we obtain ϕ1(−u, s; L) =

−ϕ1(u, s; L). Also ζ(−u) = −ζ(u). Thus ξ(L) = 0, and consequently we obtain

(3.10). Since ϕ1(u, 1/2; L) is invariant under u 7→ u + ωµ, we obtain (3.11)

from (3.10) and (3.6b).

3.5. In [9] we discussed the value of an Eisenstein series E(z, s) of weight

k at s = −m for an integer m such that 0 ≤ m ≤ k − 1, and observed

that it is nearly holomorphic in the sense that it is a polynomial in y−1 with

holomorphic functions as coefficients; for a precise statement, see [9, Theorem

9.6]. As an analogue we investigate ϕν(u, κ/2; L) for an integer κ such that

2− ν ≤ κ ≤ ν and κ− ν ∈ 2Z. From (3.12b) we obtain, for 0 ≤ a ∈ Z,

(3.15) (∂/∂u)aϕν(u, (ν/2)− a; L) = a! · ϕν−a(u, (ν − a)/2;L).

Theorem 3.6. Let κ be an integer such that 2 − ν ≤ κ ≤ ν and κ− ν ∈
2Z. Then ϕν(u, κ/2;L) is a polynomial in u of degree d with holomorphic

functions in u as coefficients, where d = (ν − κ)/2 if ν + κ ≥ 4 and d =

(ν − κ+ 2)/2 if ν + κ = 2. The leading term is udϕ(ν+κ)/2(u, (ν + κ)/4; L) or

−πd−1v(L)−1ud according as ν + κ ≥ 4 or ν + κ = 2.

Proof. Given κ as in the theorem, put a = (ν−κ)/2. Then (ν/2)−a = κ/2

and ν − a = (ν + κ)/2 ≥ 1. If ν − a ≥ 2, then by Theorem 3.4, ϕν−a(u, (ν −
a)/2;L) is holomorphic in u, and so (3.15) shows that ϕν(u, κ/2; L) is a poly-

nomial in u of degree a with holomorphic functions in u as coefficients. If

ν−a = 1, the function ϕ1(u, 1/2; L) is linear in u as given in (3.10). Therefore

we obtain our theorem.

Thus, we may call ϕν(u, κ/2; L) a nearly holomorphic elliptic function. In

the higher-dimensional case it is natural to consider theta functions instead of

periodic functions. For details of the basic ideas and results on this the reader

is referred to [6] and [7].

4. The series with a parameter in H

4.1. To state the following lemma, we first define a confluent hypergeometric

function τ(y; α, β) for y > 0 and (α, β) ∈ C2 by

(4.1) τ(y; α, β) =

∫ ∞

0

e−yt(1 + t)α−1tβ−1dt.

This is convergent for Re(β) > 0. It can be shown that Γ (β)−1τ(y; α, β) can be

continued to a holomorphic function in (α, β) on the whole C2; see [9, Section

A3], for example. Also, for v ∈ C× and α ∈ C we define vα by

(4.2) vα = exp(α log(v)), −π < Im[log(v)] ≤ π.
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Lemma 4.2. For α, β ∈ C such that Re(α + β) > 1, 0 ≤ r < 1, and

z = x+ iy ∈ H we have

iα−β(2π)−α−βΓ (α)Γ (β)
∑

m∈Z
e(mr)(z +m)−α(z +m)−β

=

∞∑

n=1

e
(
(n− r)z

)
(n− r)α+β−1τ

(
4π(n− r)y; α, β

)

+

∞∑

n=1

e
(
− (n+ r)z

)
(n+ r)α+β−1τ

(
4π(n+ r)y; β, α

)

+

{
(4πy)1−α−βΓ (α+ β − 1) if r = 0,

e(−rz)rα+β−1τ
(
4πry; β, α

)
if r 6= 0.

Proof. If r = 0, this is Lemma A3.4 of [9]. The case with nontrivial r

can be proved in the same way as follows. Define two functions f(x) and

f1(x) of x ∈ R by f(x) = (x + iy)−α(x − iy)−β with a fixed y > 0 and

f1(x) = e(rx)f(x). Then f̂1(x) = f̂(x − r), and so the Poisson summation

formula (see [9, (2.9)]) shows that

e(−rx)
∑

m∈Z
f1(x+m) = e(−rx)

∑

n∈Z
f̂1(n)e(nx) =

∑

n∈Z
e
(
(n− r)x

)
f̂(n− r).

In [9, p. 133] we determined f̂ explicitly in terms of τ as follows:

iα−β(2π)−α−βΓ (α)Γ (β)f̂ (t) =





e(ity)tα+β−1τ(4πty; α, β) (t > 0),

e(−ity)|t|α+β−1τ(4π|t|y; β, α) (t < 0),

(4πy)1−α−βΓ (α+ β − 1) (t = 0).

Therefore we obtain our lemma.

4.3. We now need an elementary result:

(4.3)

∞∑

n=1

nk−1xn =
xPk(x)

(1 − x)k
(1 ≤ k ∈ Z).

Here x is an indeterminate and Pk is a polynomial. We have P1 = P2 = 1 and

Pk+1 = (kx − x + 1)Pk − (x2 − x)P ′k for k ≥ 2. Thus Pk is of degree k − 2

for k ≥ 2. These are easy; see [9, p. 17]. We also need two formulas and an

estimate given as (A3.11), (A3.14), and Lemma A3.2 in [9]:

(4.4) τ(y; n, β) =

n−1∑

µ=0

(
n− 1
µ

)
Γ (β + µ)y−µ−β (0 < n ∈ Z),

(4.5)
[
τ(y; α, β)/Γ (β)

]
β=0

= 1,

(4.6) Γ (β)−1yβτ(y; α, β) is bounded when (α, β) belongs to a compact subset

of C2 and y > c with a positive constant c.

Our principal aim of this section is to study the nature of the series
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(4.7) Lk(s, z) =
∑

m∈Z
e(mr)(z +m)−k|z +m|−2s,

for certain integer values of s. Here k ∈ Z, r ∈ R, s ∈ C, and z ∈ H. The

sum depends only on r modulo Z, and so we may assume that 0 ≤ r < 1.

Clearly this series is absolutely convergent for Re(2s + k) > 1, and defines a

holomorphic function of s there.

Theorem 4.4. The function Lk(s, z) can be continued as a meromorphic

function of s to the whole C, which is entire if r /∈ Z. If r ∈ Z, the locations

of the poles of Lk(s, z) are the same as those of Γ (2s+k−1)/
{
Γ (s+k)Γ (s)

}
.

Proof. Our function is the infinite series of Lemma 4.2 defined with α = s+k

and β = s. Therefore our assertion can easily be verified by means of the

formula of Lemma 4.2 and the estimate given by (4.6).

Theorem 4.5. Assuming that r ∈ Q, let N be the smallest positive integer

such that Nr ∈ Z and let β ∈ Z. Then the following assertions hold:

(i) If β > 0 or β+ k > 0, then Lk(s, z) is finite at s = β and ikLk(β, z) is

a rational function in π, e(z/N), e(−z/N), and Im(z) with coefficients in Q.

(ii) If −k < β ≤ 0, then ik{1 − e(z)}k+βLk(β, z) is a polynomial in

π, e(z/N), Im(z), and Im(z)−1 with coefficients in Q.

(iii) If 0 < β ≤ −k, then ik{1 − e(−z)}βLk(β, z) is a polynomial in π,

e(−z/N), Im(z), and Im(z)−1 with coefficients in Q.

Proof. As we already said, we may assume that 0 ≤ r < 1. Put α = β + k.

We first have to study the nature of Γ (2s+ k − 1)/
{
Γ (s+ k)Γ (s)

}
at s = β.

This is clearly finite at s = β if α + β > 1. Suppose α + β ≤ 1; then α ≤ 0

if β > 0, and β ≤ 0 if α > 0. In all cases the value is finite, and in fact

is a rational number. We now evaluate the formula of Lemma 4.2 divided by

Γ (α)Γ (β). If α > 0, we have, by (4.4),

τ
(
4π(n− r)y; α, β

)
/Γ (β) =

α−1∑

µ=0

(
α− 1
µ

)
(n− r)−µ−β(4πy)−µ−β

µ−1∏

κ=0

(β + κ).

Thus an infinite sum of the form
∑∞
n=1 e

(
(n− r)z

)
(n− r)α−µ−1 appears. Ap-

plying the binomial theorem to the power of n − r, we see that the sum is a

Q-linear combination of e(−rz)
∑∞

n=1 e(nz)nν for 0 ≤ ν ≤ α− µ− 1. We can

handle τ
(
4π(n+ r)y; β, α

)
/Γ (α) in a similar way if β > 0. Put q = e(z) and

qr = e(rz). Then, assuming that 0 < r < 1, α > 0, and β > 0, we have

ikLk(β, z) = q−1
r

α−1∑

µ=0

α−µ−1∑

ν=0

aµνπ
α−µy−µ−β

∞∑

n=1

nνqn

+ qr

β−1∑

µ=0

β−µ−1∑

ν=0

bµνπ
β−µy−µ−α

∞∑

n=0

nνqn,

Documenta Mathematica 13 (2008) 775–794



792 Goro Shimura

where aµν and bµν are rational numbers depending on β, k, and r. Applying

(4.3) to
∑∞

n=1 n
νXn with X = q and X = q, we obtain (i). Suppose β ≤ 0 and

β + k > 0; then the sum involving τ
(
4π(n+ r)y; β, α

)
/
{
Γ (α)Γ (β)

}
vanishes

and we obtain (ii). The case in which β > 0 and β + k ≤ 0 is similar and

produces (iii). If r = 0, the constant term of ikLk(β, z) is 2π(2y)1−α−βΓ (α+

β − 1)/[Γ (a)Γ (β)], which causes no problem. This completes the proof.

One special case is worthy of attention. Taking β = 0 and 1 < k = α ∈ Z,

and using (4.5), we obtain, for 0 ≤ r < 1,

(4.8)
∑

m∈Z

e
(
r(z +m)

)

(z +m)k
=

(2πi)k

(k − 1)!

k∑

ν=1

(
k − 1
ν − 1

)
rk−ν

qPν(q)

(q− 1)ν
,

where q = e(z). We assume 0 < r < 1 and
∑

m∈Z = limh→∞
∑
|m|≤h when

k = 1. In (4.7) we take z in H, but in (4.8) we can take z ∈ C, /∈ Z, since

both sides of (4.8) are meaningful for such z. If k = 1, the result is the same

as (2.3).

We can mention another special case. Namely, take z = ia with a positive

rational number a. Then we see that the values

(4.9)
∑

m∈Z
(a2 +m2)−β

for 0 < β ∈ Z belong to the field generated by π and e−2πa over Q, and

therefore any three such values satisfy a nontrivial algebraic equation over Q.

5. The rationality over a totally real base field

5.1. Throughout this section we fix a totally real algebraic number field F.

The algebraicity of π−kL(k, χ) can be generalized to the case of L-functions

over F, but there is no known formulas similar to (0.2), (1.9), (1.10), except

that Siegel proved some such formulas in [10] and [11] when [F : Q] = 2. The

paper [1] of Hecke may be mentioned in this connection. In this section we

merely consider a generalization of (2.4) and prove an algebraicity result on its

critical values, without producing explicit expressions.

We denote by g, DF , and a the maximal order of F, the discriminant of

F, and the set of archimedean primes of F. We also put Tr(x) = TrF/Q(x) for

x ∈ F and [F : Q] = g. For α ∈ F and a fractional ideal a in F we put

α+ a =
{
α+ x

∣∣ x ∈ a
}

and ã =
{
ξ ∈ F |Tr(ξa) ⊂ Z

}
.

Given α and a as above, ξ ∈ F, 0 < µ ∈ Z, and a (sufficiently small)

subgroup U of g× of finite index, we put

(5.1) Dµ(s; ξ, α, a) = rU
∑

06=h∈U\(α+a)

ea(hξ)h−µa|h|(µ−s)a,

(5.1a) rU = [g× : U ]−1,
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where ea(ξ) = e
(∑

v∈a(ξv)
)

for ξ ∈ F and xta =
∏
v∈a x

t
v for x ∈ Ca

and U\X means a complete set of representatives for X modulo multiplication

by the elements of U. We have to take U so small that the sum of (5.1) is

meaningful. For instance, it is sufficient to take

U ⊂
{
u ∈ g×

∣∣ua = 1, uξ − ξ ∈ α−1g̃ ∩ ã
}
.

The factor rU makes the quantity of (5.1) independent of the choice of U.

Clearly the sum is convergent for Re(s) > 1. Now Dµ(s; ξ, α, a) is a special

case of the series of [8, (18.1)], and so from Lemma 18.2 of [8] we see that it

can be continued as a holomorphic function in s to the whole C.

Theorem 5.2. For 0 < µ ∈ Z we have

(5.2) (2πi)−µgD1/2
F Dµ(µ; ξ, 0, a) ∈ Q,

(5.3) Dµ(1 − µ; 0, α, a) ∈ Q.

Proof. The last formula is a restatement of Proposition 18.10(2) of [8]. To

prove (5.2), let b =
{
x ∈ a

∣∣ ea(xξ) = 1
}

and let R be a complete set of

representatives for a/b. Then

Dµ(s; ξ, 0, a) =
∑

β∈R
ea(βξ)Dµ(s; 0, β, b).

Put Qµ(β, b) = (2πi)−µgD1/2
F Dµ(µ; 0, β, b). Then the quantity of (5.2) equals∑

β∈R ea(βξ)Qµ(β, b). Let t ∈ ∏p Z×p and let σ be the image of t under

the canonical homomorphism of Q×A onto Gal(Qab/Q). Our task is to show

that the last sum is invariant under σ. By [8, Proposition 18.10(1)] we have

Qµ(β, b)σ = Qµ(β1, b) with β1 ∈ F such that (tβ1 − β)v ∈ bv for every

nonarchimedean prime v of F. For β ∈ R there is a unique β1 ∈ R with that

property. Now e(c)σ = e(t−1c) for every c ∈ Q/Z =
∏
p(Qp/Zp); see [8, (8.2)].

Since ea(βξ) = e
(
Tr(βξ)

)
, we easily see that ea(βα)σ = ea(β1α), which gives

the desired fact.
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Abstract. We show that when the gerbe µ representing a magnetic
monopole is viewed as a virtual 2-vector bundle, then it decomposes,
modulo torsion, as two times a virtual 2-vector bundle ς. We therefore
interpret ς as representing half a magnetic monopole, or a semipole.
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§1. Introduction

Let A be a connective S-algebra, where S is the sphere spectrum, and let
K(A) = K0(π0(A)) × BGL∞(A)+ be its algebraic K-theory space. The nat-
ural map w : BGL1(A) → K(A) is given by the inclusion of 1 × 1 matrices
BGL1(A) → BGL∞(A), followed by the canonical map into the plus con-
struction. Let ku denote the connective complex K-theory spectrum, with
π∗ku = Z[u], |u| = 2, and let π : ku → HZ be the unique 2-connected S-
algebra map to the integral Eilenberg–Mac Lane spectrum. Its homotopy fiber
is bu, with π∗bu = (u) ⊂ Z[u]. We define BSL1(ku) and K(π) as the homotopy
fibers of the induced maps π : BGL1(ku)→ BGL1(Z) and π : K(ku)→ K(Z),

The authors thank Andy Baker and Birgit Richter for organizing the workshop “New Topo-
logical Contexts for Galois Theory and Algebraic Geometry” where this project started, and
the Banff International Research Station for its support and hospitality.
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respectively, so that we have the following commutative diagram of horizontal
homotopy fiber sequences

(1.1) BSL1(ku) //

��

BGL1(ku)
π //

w

��

BGL1(Z)

w

��
K(π) // K(ku)

π // K(Z) .

We have a map from the Eilenberg–MacLane complex K(Z, 3) to the upper
left hand corner of this diagram, induced by the infinite loop space inclu-
sion BU(1) → BU⊗ and the equivalences K(Z, 3) ≃ BBU(1) and BBU⊗ ≃
BSL1(ku). Recall that the space K(Z, 3) represents gerbes with band U(1)
[Br93, Ch. V], whereas K(ku) represents virtual 2-vector bundles [BDR04,
Thm. 4.10], [BDRR]. A 2-vector bundle of rank 1 is the same as a gerbe, and
the composite map

(1.2) K(Z, 3)→ K(ku)

represents the construction that views a gerbe as a virtual 2-vector bundle.
We now consider gerbes and 2-vector bundles over the base space S3. There
is a map µ : S3 → K(Z, 3) representing a generator of H3(S3) = Z, or dually,
corepresenting a generator of π3K(Z, 3) = Z. It also represents a U(1)-gerbe
over S3, which is interpreted in [Br93, Ch. VII] as a mathematical model for a
magnetic monopole, stationary in time and localized at one point.
Parallel transport in this gerbe, around closed loops in S3, defines a holo-
nomy line bundle over the free loop space of S3 [Br93, Ch. VI]. Its complex
1-dimensional fibers can be interpreted as the state spaces of these free loops,
viewed as strings in S3. Parallel transport over compact surfaces in S3, between
tensor products of copies of this line bundle, defines an action functional that
makes these state spaces part of a field theory. Here the compact surfaces are
viewed as world sheets in S3. In a quantized theory one would consider Hilbert
spaces of sections in the holonomy line bundle, rather than its individual fibers,
as the state spaces.
Following the point of view explained in [AR, §5.5], we also view 2-vector
bundles over a base space as data defining (virtual) state spaces and action
functionals for strings in that base. More field theories arise this way, since
the state spaces are no longer restricted to being 1-dimensional, hence it is also
possible to model more kinds of particles by 2-vector bundles than those arising
from gerbes.
In particular we may ask, as the second author did, how the magnetic monopole
µ over S3 decomposes when viewed as a virtual 2-vector bundle. Does it remain
a single particle?
The addition in the abelian group π3K(ku) is induced by the H-group multi-
plication of K(ku), which represents the direct sum of virtual 2-vector bundles,
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or in the above terms, the superposition of two particles. Therefore, a mathe-
matical formulation of the question stated above is: “What is the structure of
π3K(ku) = K3(ku), and what is the image of µ ∈ π3K(Z, 3) in that group?”
The surprising answer, which the title of this paper refers to, is that modulo
torsion, µ becomes divisible by two as a virtual 2-vector bundle. In more detail,
there are virtual 2-vector bundles ς and ν over S3, with 24ν = 0, such that

(1.3) µ+ ν = 2ς

in K3(ku). Modulo torsion, ς is therefore half a magnetic monopole. Ignoring
torsion is justified in the physical interpretation, since the numerical invariants
of a field theory traditionally take torsion-free values, and will send ν to zero.
On the other hand, both µ and ς have infinite order in K3(ku).

§2. Statement of results

Let i : S → K(ku) be the unit map, and recall that π3(S) = Z/24{ν} and
K3(Z) ∼= Z/48{λ} [LS76]. The composite map πi : S → K(Z) induces the
injection π3(S)→ K3(Z) that takes ν to 2λ.
By [Wa78, Prop. 1.2], as generalized in [BM94, Prop. 10.9], the homotopy fiber
K(π) is 2-connected. Hence Ki(ku) → Ki(Z) is an isomorphism for i ≤ 2.
Here is what happens in dimension three:

Theorem 2.1. (a) The maps K(Z, 3) → BSL1(ku) → K(π) induce isomor-
phisms

Z{µ} = π3K(Z, 3)
∼=−→ π3BSL1(ku)

∼=−→ K3(π) .

(b) The unit map i : S → K(ku) induces a homomorphism

Z/24{ν} = π3(S)
i∗−→ K3(ku)

that identifies the source with the torsion subgroup in the target. We abbreviate
i∗(ν) to ν ∈ K3(ku).
(c) The homotopy fiber sequence K(π) → K(ku) → K(Z) induces a short
exact sequence

0→ K3(π)→ K3(ku)
π∗−→ K3(Z)→ 0

which is isomorphic to the nontrivial extension

0→ Z{µ} → Z{ς} ⊕ Z/24{ν} π∗−→ Z/48{λ} → 0 .

Here the first map takes µ to 2ς − ν, and the second map takes ς to λ and ν to
2λ.

Corollary 2.2. The map K(Z, 3) → K(ku) that represents viewing U(1)-
gerbes as virtual 2-vector bundles induces the homomorphism

Z{µ} = π3K(Z, 3)→ K3(ku) = Z{ς} ⊕ Z/24{ν}
that takes µ to 2ς − ν, where 24ν = 0. The image of ς ∈ K3(ku) in K3(Z) is
the generating element λ of order forty-eight.
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Corollary 2.3. There is no “determinant map”

det : K(ku)→ BGL1(ku)

such that the composite det ◦w is an equivalence.

Corollary 2.2 is readily extracted from Theorem 2.1(a) and (c). Corollary 2.3
follows, since det : K3(ku)→ π3BGL1(ku) ∼= Z{µ} cannot map 2ς − ν to µ.

Remark 2.4. For commutative rings R there is a determinant map
det : K(R) → BGL1(R), which is left inverse to w. On the other hand,
it follows from [Wa82, Cor. 3.7] that w : BGL1(S)→ K(S) admits no such re-
traction up to homotopy. In [AR, §5.2], the first and third authors used the ex-
istence of a rational determinant map detQ : K(ku)→ BSL1(ku)Q ≃ (BBU⊗)Q

to define the rational anomaly bundle of a 2-vector bundle, generalizing the
definition of the anomaly line bundle of a gerbe. Corollary 2.3 shows that no
such generalization can be integrally defined on all of K(ku). This suggests
that an integral anomaly bundle will only be defined on a space covering
K(ku), classifying 2-vector bundles with some form of higher orientation.

§3. Proofs

Proof of Thm. 2.1(a). In view of the infinite loop space splitting BU⊗ ≃
BU(1) × BSU⊗ it is clear that K(Z, 3) ≃ BBU(1) → BBU⊗ ≃ BSL1(ku) is
4-connected. For the second part, we refer to the proof of [BM94, Prop. 10.9]
to see that there is an isomorphism

(3.1) colim
n

Mn(π2(bu))/[GLn(π0(ku)),Mn(π2(bu))] ∼= K3(π) .

Here Mn denotes the ring of n × n matrices, and GLn acts on Mn by con-
jugation. Furthermore, under the isomorphism (3.1), π3BSL1(ku) → K3(π)
factors as

(3.2) π3BSL1(ku) ∼= π2(bu) = M1(π2(bu))/[GL1(π0(ku)),M1(π2(bu))] ,

followed by the canonical map from the term n = 1 into the colimit in (3.1).
For each n ≥ 1 the matrix trace induces an isomorphism [Ka83, Prop. 1.3]

Mn(π2(bu))/[GLn(π0(ku)),Mn(π2(bu))]
∼=−→ π2(bu)/[π0(ku), π2(bu)] = π2(bu) ,

hence each structure map in the colimit is an isomorphism, and therefore the
canonical map from (3.2) to K3(π) is also an isomorphism. �

To proceed, we make use of the natural trace map tr : K(A) → THH(A) to
topological Hochschild homology [BHM93]. We define THH(π) as the homo-
topy fiber of π : THH(ku)→ THH(Z), so as to obtain the following commu-
tative diagram of horizontal homotopy fiber sequences

(3.3) K(π) //

��

K(ku)
π //

tr

��

K(Z)

tr

��
THH(π) // THH(ku)

π // THH(Z) .
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Proof of Thm. 2.1(b) and (c). Passing to homotopy groups, we get the following
vertical map of short exact sequences

(3.4) 0 // K3(π) //

(∼=)

��

K3(ku)
π∗ //

tr∗

��

K3(Z) //

tr∗

��

0

0 // THH3(π) // THH3(ku)
π∗ // THH3(Z) // 0 .

Here K3(π) → K3(ku) is injective because K4(Z) = 0 [Ro00], and K3(ku) →
K3(Z) is surjective because K2(π) = 0. Furthermore, THH3(π)→ THH3(ku)
is injective because THH4(Z) = 0 [Bö], [FP98, Cor. 3.2] and THH3(ku) →
THH3(Z) is surjective because

Z/48{λ} = K3(Z)
tr∗−−→ THH3(Z) = Z/2{e}

takes λ to e [BM94, Thm. 10.14], [Ro98, Thm. 1.1] and the right hand square
commutes. The left hand vertical map K3(π) → THH3(π) is split injective,
by [BM94, Thm. 10.12]. We shall soon see that it is in fact an isomorphism.
The 2-primary homotopy of THH(ku) is fully computed in [AHL], but in low
dimensions the following direct argument suffices. The homotopy cofiber ku/S
of S → ku is 1-connected, with π2(ku/S) ∼= Z. By construction, THH(ku)
is the geometric realization of a simplicial spectrum, and the map from the
(n − 1)-skeleton to the n-skeleton has cofiber Σnku ∧ (ku/S) ∧ · · · ∧ (ku/S),
with n copies of ku/S, which is (3n − 1)-connected. By induction, the map
from the 1-skeleton to all of THH(ku) is 5-connected. Furthermore, the 0-
simplices ku split off from the 1-skeleton of THH(ku) since ku is commutative,
so THH3(ku) ∼= π3(ku) ⊕ π3(Σku ∧ (ku/S)) ∼= Z{ǫ}, for some choice of gene-
rator ǫ.
Diagram (3.4) is therefore isomorphic to

(3.5) 0 // Z{µ} //

∼=
��

K3(ku)
π∗ //

tr∗
����

Z/48{λ} //

tr∗
����

0

0 // Z{2ǫ} // Z{ǫ} π∗ // Z/2{e} // 0 ,

where the split injection Z{µ} → Z{2ǫ} must be an isomorphism. (We assume
that we have chosen our orientations so that µ maps to 2ǫ, rather than −2ǫ.)
The right hand square is a pullback, so there is a short exact sequence

(3.6) 0→ Z/24{ν} i∗−→ K3(ku)
tr∗−−→ Z{ǫ} → 0 ,

where the image of the injective homomorphism i∗ : π3(S) → K3(ku) is iden-
tified under π∗ : K3(ku)→ K3(Z) with the kernel of tr∗ : K3(Z)→ THH3(Z).
Hence the image of i∗ equals the kernel of tr∗ : K3(ku)→ THH3(ku).
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To fix a splitting of (3.6), we let ς ∈ K3(ku) be the class mapping to ǫ in
THH3(ku) and to λ in K3(Z). This is admissible, since both classes map to e
in THH3(Z). Then

K3(ku) ∼= Z{ς} ⊕ Z/24{ν} ,
and µ ∈ K3(π) maps to 2ς in K3(ku) modulo the image of i∗. Since µ continues
to 0 in K3(Z), the exact formula must be 2ς − ν. �
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[Bö] Marcel Bökstedt, Topological Hochschild homology of Fp and Z (Uni-
versity of Bielefeld preprint (ca 1986)).

[BHM93] Marcel Bökstedt, Wu Chung Hsiang and Ib Madsen, The cyclotomic
trace and algebraic K-theory of spaces, Invent. Math. 111 (1993),
465–539.

[BM94] Marcel Bökstedt and Ib Madsen, Topological cyclic homology of the
integers, K-theory (Strasbourg, 1992), Astérisque, vol. 226, 1994,
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Abstract. Let G be a finite subgroup of GLn(C). G-constellations
are a scheme-theoretic generalization of orbits of G in Cn. We study
flat families of G-constellations parametrised by an arbitrary resolu-
tion of the quotient space Cn/G. We develop a geometrical naturality
criterion for such families, and show that, for an abelian G, the num-
ber of equivalence classes of these natural families is finite.

The main intended application is the derived McKay correspondence.
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14J10, 14D20, 14J40.

0 Introduction

Let G ⊆ GLn(C) be a finite subgroup. In this paper we classify flat families of
G-constellations parametrised by a given resolution Y of the singular quotient
space X = Cn/G.

Y
π

  @
@@

@@
@@

@ Cn

q

}}||
||

||
||

X

A G-constellation is a scheme-theoretical generalization of a set-theoretical or-
bit of G in Cn. They first arose in the context of moduli space constructions of
crepant resolutions of X . Interpreting G-constellations in terms of representa-
tions of the McKay quiver of G, it is possible to use the methods of [Kin94] to
consruct via GIT fine moduli spaces of stable G-constellations. The main irre-
ducible component of such a moduli space turns out to be a projective crepant
resolution of X . By varying the stability parameter θ it is possible to obtain
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different resolutions Mθ. In case of n = 3 and G abelian, it is possible to
obtain all projective crepant resolutions in this way [CI04]. For further details
see [Cra01], [CI04], [CMT07a], [CMT07b].
The formal definition of a G-constellation is:

Definition 0.1 ([Cra01]). A G-constellation is a G-equivariant coherent sheaf
F whose global sections Γ(Cn,F), as a representation of G, are isomorphic to
the regular representation.

Families of G-constellations also occur naturally as objects defining Fourier-
Mukai transforms (cf. [BKR01],[CI04], [BO95] and [Bri99]) which give a cat-
egory equivalence D(Y )

∼−→ DG(Cn) between the bounded derived categories
of coherent sheaves on Y and of G-equivariant coherent sheaves on Cn, respec-
tively. This equivalence is known as the derived McKay correspondence (cf.
[Rei97], [BKR01], [Kaw05], [Kal08]). It is the derived category interpretation
of the classical McKay correspondence between the representation theory of
G and the geometry of crepant resolutions of Cn/G. It was conjectured by
Reid in [Rei97] to hold for any finite subgroup G of SLn(C) and any crepant
resolution Y of Cn/G.
In this paper we take an arbitrary resolution Y → Cn/G and prove that it can
support only a finite number (up to a twist by a line bundle) of flat families ofG-
constellations. We give a complete classification of these families which allows
one to explicitly compute them. For the precise statement of the classification
see the end of this introduction.
A motivation for this study is the fact that if a flat family of G-constellations
on a crepant resolution Y of Cn/G is sufficiently orthogonal, then it defines an
equivalence D(Y )→ DG(Cn) ([Log08], Theorem 1.1), i.e. the derived McKay
correspondence conjecture holds for Y . For an example of a specific application
of this see [Log08], §4, where the first known example of a derived McKay
correspondence for a non-projective crepant resolution is explicitly constructed.
This paper is laid out as follows. At the outset we allow Y to be any normal
scheme birational to the quotient space X and first of all we move from the
category CohG(Cn) to the equivalent category Modfg-R⋊G of the finitely-
generated modules for the cross product algebra R⋊G, where R denotes the
coordinate ring C[x1, . . . , xn] of Cn. This makes a family of G-constellations
into a vector bundle on Y . In Section 1 we develop a geometrical naturality
criterion for such families: mimicking the moduli spaces Mθ of θ-stable G-
constellations and their tautological families, we demand for a G-constellation
parametrised in a family F by a point p ∈ Y to be supported precisely on
the G-orbit corresponding to the point π(p) in the quotient space X . In other
words, the support of the corresponding sheaf on Y × Cn must lie within the
fibre product Y ×X Cn. We call the families which satisfy this condition gnat-
families (short for a geometrically natural) and demonstrate (Proposition 1.5)
that they enjoy a number of other natural properties, including being equivalent
(locally isomorphic) to the natural family π∗q∗OCn on the open set of Y which
lies over the free orbits in X . In this natural family a G-constellation which
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lies over a free orbit is the unique G-constellation supported on that orbit - its
reduced subscheme structure. Thus, in a sense, gnat-families can be viewed as
flat deformations of free orbits of G.
Another property which characterises gnat-families is that it is possible to
embed them into K(Cn), considered as a constant sheaf on Y . This leads us to
study G-equivariant locally free sub-OY -modules of K(Cn). In Section 2, we
study the rank one case. A G-invariant invertible sub-OY -module of K(Cn) is
just a Cartier divisor, and we define G- Car(Y ), a group of G-Cartier divisors
on Y , as a natural extension of the group of Cartier divisors which fits into a
short exact sequence

1→ Car(Y )→ G- Car(Y )
ρ−→ G∨ → 1

where G∨ is the group of 1-dimensional irreducible representations of G.
We then define Q-valued valuations of these G-Cartier divisors at prime Weil
divisors of Y and defineG-Div Y , the group ofG-Weil divisors of Y , as a torsion-
free subgroup of Q-Weil divisors which fits into a following exact sequence:

1 // CarY� _

valK

��

// G- CarY

valKG

��

ρ // G∨

valG∨
����

// 1

0 // Div Y // G- Div Y // valG∨(G∨) // 0

We then show that the three vertical maps in this diagram, valK , the ordinary
Z-valued valuation of Cartier divisors, valKG , the Q-valued valuation of G-
Cartier divisors, and their quotient valG∨ , a Q/Z-valued valuation of G∨, are
all isomorphisms when Y is smooth and proper over X .
Then, in Section 3, we observe that when our group G is abelian all its irre-
ducible representations are of rank 1, so any gnat-family splits into invertible
G-eigensheaves. Thus G-Weil divisors are all that we need to classify it after
an embedding into K(Cn). We further show that, since any gnat-family F
embedded into K(Cn) must be closed under the natural action of R on the
latter, all the G-eigensheaves into which F decomposes must be, in a certain
sense, close to each other inside K(Cn). Up to a twist by a line bundle, this
leaves only a finite number of possibilities for the corresponding G-Weil divi-
sors. Thus, surprisingly, the number of equivalence classes of gnat-families on
any Y is finite.
Our main result (Theorem 4.1) is:

Theorem (Classification of gnat-families). Let G be a finite abelian subgroup
of GLn(C), X the quotient of Cn by the action of G and Y a resolution of X.
Then isomorphism classes of gnat-families on Y are in 1-to-1 correspondence
with linear equivalence classes of G-divisor sets {Dχ}χ∈G∨ , each Dχ a χ-Weil
divisor, which satisfy the inequalities

Dχ + (f)−Dχρ(f) ≥ 0 ∀ χ ∈ G∨, G-homogeneous f ∈ R
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Here ρ(f) ∈ G∨ is the homogeneous weight of f . Such a divisor set {Dχ}
corresponds then to a gnat-family

⊕L(−Dχ).
This correspondence descends to a 1-to-1 correspondence between equivalence
classes of gnat-families and sets {Dχ} as above and with Dχ0 = 0, where χ0 is
the trivial character. Furthermore, each divisor Dχ in such a set satisfies

Mχ ≥ Dχ ≥ −Mχ−1

where {Mχ} is a fixed divisor set defined by

Mχ =
∑

P

( min
f∈Rχ

vP (f))P

As a consequence, the number of equivalence classes of gnat-families on Y is
finite.

Acknowledgements: The author would like to express his gratitude to Alas-
tair Craw, Akira Ishii and Dmitry Kaledin for useful discussions on the subject
and to Alastair King for the motivation, the discussions and the support. This
paper was completed during the author’s stay at RIMS, Kyoto, and one would
like to thank everyone at the institute for their hospitality.

1 gnat-Families

1.1 Families of G-Constellations

Let G be a finite abelian group and let Vgiv be an n-dimensional faithful repre-
sentation of G. We identify the symmetric algebra S(Vgiv

∨) with the coordinate
ring R of Cn via a choice of such an isomorphism that the induced action of G
on Cn is diagonal. The (left) action of G on Vgiv induces a (left) action of G
on R, where we adopt the convention that

g.f(v) = f(g−1.v) ∀ g ∈ G, f ∈ R,v ∈ Vgiv, (1.1)

When we consider the induced scheme morphisms g : Cn → Cn and the induced
sheaf morphisms g : OCn → g−1

∗ OCn , the convention above ensures that for any
point x ∈ Cn and any function f in the stalk OCn,x at x, the function g.f is,
naturally, an element of the stalk OCn,g.x at g.x
Corresponding to the inclusion RG ⊂ R of the subring of G-invariant functions
we have the quotient map q : Cn → X , where X = Spec RG is the quotient
space. This space is generally singular.
We first wish to establish a notion of a family of G-Constellations parametrised
by an arbitrary scheme.

Definition 1.1 ([CI04]). A G-constellation is a G-equivariant coherent
sheaf F on Cn such that H0(F) is isomorphic, as a C[G]-module, to the regular
representation Vreg.
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We would like for a family of G-constellations to be a locally free sheaf on Y ,
whose restriction to any point of Y would give us the respectiveG-constellation.
We’d like this restriction to be a finite-dimensional vector-space, and for this
purpose, it would be better to consider, instead of the whole G-constellation
F , just its space of global sections Γ(F). It is a vector space with G and R
actions, satisfying

g.(f.v) = (g.f).(g.v) (1.2)

On the other hand, for any vector space V with G and R actions satisfying
(1.2), we can define maps g : Ṽ → g−1

∗ Ṽ to give the sheaf Ṽ = V ⊗R OCn a
G-equivariant structure. It is convenient to view such vector spaces as modules
for the following non-commutative algebra:

Definition 1.2. A cross-product algebra R⋊G is an algebra, which has the
vector space structure of R⊗C C[G] and the product defined by setting, for all
g1, g2 ∈ G and f1, f2 ∈ R,

(f1 ⊗ g1)× (f2 ⊗ g2) = (f1(g1.f2))⊗ (g1g2) (1.3)

This is not a pure formalism - R⋊G is one of the non-commutative crepant
resolutions of Cn/G, a certain class of non-commutative algebras introduced
by Michel van den Bergh in [dB02] as an analogue of a commutative crepant
resolution for an arbitrary non-quotient Gorenstein singularity. For three-
dimensional terminal singularities, van den Bergh shows ([dB02], Theorem
6.3.1) that if a non-commutative crepant resolution Q exists, then it is pos-
sible to construct commutative crepant resolutions as moduli spaces of certain
stable Q-modules.

Functors Γ(•) and •̃ = (•) ⊗R OCn give an equivalence (compare to [Har77],
p. 113, Corollary 5.5) between the categories of quasi-coherent G-equivariant
sheaves on Cn and of R⋊G-modules. G-constellations then correspond to
R⋊G-modules, whose underlying G-representation is Vreg. As an abuse of
notation, we shall use the term ‘G-constellation’ to refer to both the equivariant
sheaf and the corresponding R⋊G-module.

Definition 1.3. A family of G-constellations parametrised by a

scheme S is a sheaf F of (R⋊G) ⊗C OS-modules, locally free as an OS-
module, and such that for any point ιp : Spec C →֒ S, its fiber F|p = ι∗pF is a
G-constellation.

We shall say that two families F and F ′ are equivalent if they are locally
isomorphic as (R⋊G)⊗C OS-modules.

1.2 gnat-Families

Let Y be a normal scheme and π : Y → X be a birational map.
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We wish to refine the definition (1.3) above and develop a notion of a geomet-
rically natural family of G-constellations parametrised by Y .

Any free G-orbit supports a unique G-cluster Z ⊂ Cn: the reduced induced
closed subscheme structure. Let U be an open subset of Y such that π(U)
consists of free orbits of G and consider the sheaf π∗q∗OCn restricted to U . It
has a natural (R ⋊G)-module structure induced from OCn . It is locally free as
an OU module, since the quotient map q is flat wherever G acts freely. Its fiber
at a point p ∈ Y is Γ(OZ), where Z is the G-cluster corresponding to the free
orbit q−1π(p). Thus π∗q∗OCn is a natural family of G-constellations, indeed of
G-clusters, on U ⊂ Y .

Its fiber at the generic point of Y is K(Cn). The Normal Basis Theorem from
Galois theory ([Gar86], Theorem 19.6) gives an isomorphism from K(Cn) to
the generic fiber of any G-constellation family on Y , which we can write as
K(Y ) ⊗C Vreg, but this isomorphism is only K(Y ) and G, but not necessarily
R, equivariant.

On the other hand, for any G-constellation in a sense of G-equivariant sheaf,
we can consider its support in Cn. For instance, in the natural family π∗q∗OCn

discussed above the support of the G-constellation parametrised by a point
p ∈ U is precisely the G-orbit q−1π(p). This turns out to be the criterion we
seek and we shall show that any family satisfying it is generically equivalent to
the natural one.

Definition 1.4. A gnat-family F (short for geometrically natural family) is
a family of G-constellations parametrised by Y such that for any p ∈ Y

q
(
SuppCn F|p

)
= π(p) (1.4)

Proposition 1.5. Let Y be a normal scheme and π : Y → X be a birational
map. Let F be a family of G-constellations on Y . Then the following are
equivalent:

1. On any U ⊂ Y , such that πU consists of free orbits, F is equivalent to
π∗q∗OCn .

2. There exists an (R⋊G)⊗C K(Y )-module isomorphism:

F|pY

∼−→ (π∗q∗OCn)pY

where pY is the generic point of Y .
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3. There exists an (R⋊G)⊗C OY -module embedding

F →֒ K(Cn)

where K(Cn) is viewed as a constant sheaf on Y and given a OY -module
structure via the birational map π : Y → X.

4. F is a gnat-family.

5. The action of (R⋊G) ⊗C OY on F descends to the action of
(R⋊G) ⊗RG OY , where RG-module structure on OY is induced
by the map π : Y → X.

Proof. 1 ⇒ 2 is restricting any of the local isomorphisms to the stalk at the
generic point pY of Y . 2 ⇒ 3: the embedding is given by the natural map
F →֒ F ⊗ K(Y ). As Y is irreducible and F is locally free, F ⊗ K(Y ) is
isomorphic to FpY , and hence to K(Cn). 3⇒ 5 is immediate by inspecting the
natural R⋊G⊗COY -module structure on K(Cn). 5⇒ 4 is also immediate, as
the descent of the action of R⋊G⊗COY to that of R⋊G⊗RGOY implies that
for any p ∈ Y we have mπ(p) ⊂ AnnR F|p, where mπ(p) ⊂ RG is the maximal
ideal of π(p). Therefore mπ(p) = (AnnR F|p)G, which is equivalent to (1.4).
4⇒ 5: Consider the following composition of algebra morphisms:

R⋊G⊗C OY α−→ EndOY (F)
βp−→ EndC(F|p)

where α is the action map of R⋊G ⊗C OY on F and βp is restriction to the
fiber at a point p ∈ Y .
To show that α filters through R⋊G⊗RG OY it suffices to show that for any
f ∈ RG we have f⊗1−1⊗f ∈ ker(α). From (1.4) we have mπ(p) = (AnnR F|p)G,
and therefore

βpα((f − f(p))⊗ 1) = 0

Observe that βpα(f(p)⊗ 1) = f(p) 1EndC F|p
= βpα(1 ⊗ f), and therefore

βpα(f ⊗ 1− 1⊗ f) = 0 (1.5)

As EndOY F is locally free, (1.5) holding ∀ p ∈ Y implies α(f ⊗ 1− 1⊗ f) = 0,
as required.
5⇒ 1: We have the R⋊G⊗RG OY -action on F :

R⋊G⊗RG OY α−→ EndOY (F)

LHS is isomorphic to π∗ EndOX (q∗OCn). Over U , since q is flat over π(U), LHS
is further isomorphic to EndOU (π∗q∗OCn). Thus we have:

EndOU (π∗q∗OCn)
α′

−→ EndOU (F) (1.6)

This map (1.6) is an OU -algebra homomorphism of (split) Azumaya algebras
over U of the same rank. By a general result on Azumaya algebras any such is
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an isomorphism (see [ACvdE05], Theorem 5.3, for full generality, but the origi-
nal result in [AG60], Corollary 3.4 will also suffice here). Now Skolem-Noether
theorem for Azumaya algebras ([Mil80], IV, §2, Proposition 2.3) implies that
locally α′ must be induced by isomorphisms π∗q∗OCn

∼−→ F .

2 G-Cartier and G-Weil divisors

If F is a gnat-family, by Proposition 1.5 we can embed it into K(Cn). We
need, therefore, to study G-subsheaves of K(Cn) which are locally free on Y .
In this section we treat the rank 1 case, i.e. the invertible sheaves. Now, on an
arbitrary scheme S, an invertible sheaf together with its embedding into K(S)
defines a unique Cartier divisor on S. But here we embed not into K(Y ) but
into its Galois extension K(Cn). Recall that we identify K(Y ) with K(Cn)G

via the birational map Y
π−→ X . We therefore seek to extend the familiar

construction of Cartier divisors to accommodate for this fact.

2.1 G-Cartier divisors

We write G∨ for Hom(G,C∗), the group of irreducible representations of G of
rank 1.

Definition 2.1. We shall say that a rational function f ∈ K(Cn) is
G-homogeneous of weight χ ∈ G∨ if

g.f = χ(g−1)f ∀ g ∈ G (2.1)

We shall denote by Kχ(Cn) the subset of K(Cn) of homogeneous elements of a
specific weight χ and by KG(Cn) the subset of K(Cn) of all the G-homogeneous
elements. We shall use Rχ and RG to mean R ∩ Kχ(Cn) and R ∩ KG(Cn)
respectively.

NB: The choice of a sign is dictated by wanting f ∈ R to be homogeneous of
weight χ ∈ G∨ if f(g.v) = χ(g)f(v) for all g ∈ G and v ∈ Cn.

The invertible elements of KG(Cn) form a multiplicative group which we shall
denote by K∗G(Cn). We have a short exact sequence:

1→ K∗(Y )→ K∗G(Cn)
ρ−→ G∨ → 1 (2.2)

The following replicates, almost word-for-word, the definition of a Cartier di-
visor in [Har77], pp. 140-141.

Definition 2.2. A group of G-Cartier divisors on Y , denoted by G-
Car(Y ) is the group of global sections of the sheaf of multiplicative groups
K∗G(Cn)/O∗Y , i.e. the quotient of the constant sheaf K∗G(Cn) on Y by the sheaf
O∗Y of invertible regular functions.
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Observe that (2.2) gives a well-defined short exact sequence:

1→ Car(Y )→ G- Car(Y )
ρ−→ G∨ → 1 (2.3)

Given a G-Cartier divisor, we call its image χ ∈ G∨ under ρ the weight of
the divisor and say, further, that the divisor is χ-Cartier.
A G-Cartier divisor can be specified by a choice of an open cover {Ui} of Y
and functions {fi} ⊆ K∗G(Cn) such that fi/fj ∈ Γ(Ui ∩ Uj ,O∗Y ). In such case,
the weight of the divisor is the weight of any one of fi.
As with ordinary Cartier divisors, we say that a G-Cartier divisor is principal
if it lies in the image of the natural map K∗G(Cn)→ K∗G(Cn)/O∗Y and call two
divisors linearly equivalent if their difference is principal.
Consider now a χ-Cartier divisor D on Y specified by a collection {(Ui, fi)}
where Ui form an open cover of Y and fi ∈ K∗χ(Cn). We define an invertible

sheaf L(D) on Y as the sub-OY -module of K(Cn) generated by f−1
i on Ui.

Observe that G acts on L(D), the action being the restriction of the one on
K(Cn), and that it acts on every section by the character χ.

Proposition 2.3. The map D → L(D) gives an isomorphism between G-
CarY and the group of invertible G-subsheaves of K(Cn). Furthermore, it
descends to an isomorphism of the group G- Cl of G-Cartier divisors up to
linear equivalence and the group G- Pic of invertible G-sheaves on Y .

Proof. A standard argument in [Har77], Proposition 6.13, shows everything
claimed, apart from the fact we can embed any invertible G-sheaf L, with G
acting by some χ ∈ G∨, as a sub-OY -module into K(Cn).
Given such L, we consider the sheaf L⊗OY K(Y ). On every open set Ui where
L is trivial, it is G-equivariantly isomorphic to the constant sheaf Kχ(Cn). On
an irreducible scheme a sheaf constant on an open cover is constant itself, so
as Y is irreducible we have L ⊗OY K(Y ) ≃ Kχ(Cn) and a particular choice of
this isomorphism gives the necessary embedding as

L → L⊗OY K(Y ) ≃ Kχ(Cn) ⊂ K(Cn)

2.2 Homogeneous valuations

We now aim to develop a matching notion of G-Weil divisors. Recall that the
homomorphism from ordinary Cartier to ordinary Weil divisors is defined in
terms of valuations of rational functions at prime Weil divisors of Y .
Valuations at prime divisors of Y define a unique group homomorphism valK
from K∗(Y ) to Div Y , the group of Weil divisors. Looking at the short exact
sequence (2.2), we see that valK must extend uniquely to a homomorphism
valKG from K∗G(Cn) to Q- Div Y , as G∨ is finite and Q is injective. We further
obtain a quotient homomorphism valG∨ from G∨ to Q/Z- Div Y .
Explicitly, we set:
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Definition 2.4. Let P be a prime Weil divisor on Y .
For any f ∈ K∗G(Cn), observe that f |G| is necessarily of trivial weight and
hence lies in K(Y ). We define valuation of f at P to be

vP (f) =
1

|G|vP (f |G|) ∈ Q (2.4)

where vP (f |G|) is the ordinary valuation in the local ring of P .
For any χ ∈ G∨, observe that for any f, f ′ homogeneous of weight χ their
ratio f/f ′ is of trivial character and therefore has integer valuation. We define
valuation of χ at P to be

vP (χ) = frac(vP (f)) ∈ Q/Z (2.5)

where f is any homogeneous function of weight χ and frac(-) denotes the frac-
tional part.

It can be readily verified that valKG =
∑
vP (-)P and valG∨ =

∑
vP (-)P .

Furthermore, the short exact sequence (2.3) becomes a commutative diagram:

1 // CarY

valK

��

// G- CarY

valKG

��

ρ // G∨

valG∨

��

// 1

0 // Div Y // Q- Div Y // Q/Z−Div Y // 0

(2.6)

2.3 G-Weil divisors

Aiming to have a short exact sequence similar to (2.3), we now define the group
G-Div Y of G-Weil divisors to be the subgroup of Q-DivY , which consists of
the pre-images of valG∨(G∨) ⊂ Q/Z-DivY .

Definition 2.5. We say that a Q-Weil divisor
∑
qPP on Y is a G-Weil

divisor if there exists χ ∈ G∨ such that

frac(qP ) = vP (χ) for all prime Weil P (2.7)

We call a G-Weil divisor principal if it is an image of a single function
f ∈ K∗G(Cn) under valKG , call two G-Weil divisors linearly equivalent if their
difference is principal and call a divisor

∑
qiDi effective if all qi ≥ 0.

We now have a following commutative diagram:

1 // CarY� _

valK

��

// G- CarY

valKG

��

ρ // G∨

valG∨
����

// 1

0 // Div Y // G- Div Y // valG∨(G∨) // 0

(2.8)
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A warning: for general Y , even a smooth one, G-Cartier and G-Weil divisors
may not be very well behaved. For an example let Y be the smooth locus of
X . It can be shown, that while valK is an isomorphism, valKG is not even
injective as G-CarY has torsion. And valG∨ is the zero map, thus G-Div Y is
just Div Y .

Proposition 2.6. If Y is smooth and proper over X, then valK , valKG and
valG∨ in (2.8) are isomorphisms.

Proof. If Y is smooth, or at least locally factorial, valK is well-known to be
an isomorphism ([Har77], Proposition 6.11). It therefore suffices to show that
valG∨ is injective and hence an isomorphism. As diagram (2.8) commutes,
valKG will then also have to be an isomorphism.
Fix χ ∈ G∨. Let Yχ denote the normalisation of Y ×X (Cn/ kerχ). It is a
Galois covering of Y whose Galois group is χ(G). By Zariski-Nagata’s purity
of the branch locus theorem ([Zar58], Proposition 2), the ramification locus of
Yχ → Y is either empty or of pure codimension one. As Y is smooth, Yχ → Y
being finite and unramified would make it an étale cover. Which is impossible,
since a resolution of a quotient singularity is well known to be simply-connected
(see, for instance, [Ver00], Theorem 4.1).
Thus, we can assume there exists a ramification divisor P ⊂ Yχ. Let Q be its
image in Y . Let Ram(P ) be the subgroup of G which fixes P pointwise. Then
nram = |Ram(P )/ kerχ| is the ramification index of P . We can take ordinary
integer valuations of K∗χ(Cn) on prime divisors of Yχ as K∗χ(Cn) ⊂ K(Cn)kerχ.
It is easy to see that for any f ∈ K∗χ(Cn)

vQ(f) =
1

nram
vP (f) (2.9)

where LHS is a rational valuation in sense of Definition 2.4.
If vQ(χ) = 0, then vQ(K∗χ(Cn)) ⊂ Z. Then necessarily vQ(K∗χ(Cn)) = Z,
as K∗χ(Cn) is a coset of K(Y ) in K∗G(Cn). In particular, there would exist
fχ ∈ K∗χ(Cn), such that vQ(fχ) = 0, i.e. fχ is a unit in OYχ,P . Which is
impossible: any g ∈ Ram(P ) fixes P pointwise, in particular f − g.f ∈ mY,P

for any f ∈ OY,P . As Ram(P )/ kerχ is non-trivial we can choose g such that
χ(g) 6= 1 and then fχ = 1

1−χ(g) (fχ − g.fχ) must lie in mY,P . This finishes the

proof.
For abelian G, this all can be seen very explicitly by exploiting the toric struc-
ture of the singularity: even though we do not assume the resolution Y to
be toric, it has been proven by Bouvier ([Bou98], Theorem 1.1) and by Ishii
and Kollár ([KI03], Corollary 3.17, in a more general context of Nash problem)
that every essential divisor over X (i.e. a divisor which must appear on every
resolution) is toric. The set of essential toric divisors is well understood - it can
be identified with the Hilbert basis of the positive octant of the toric lattice
of weights, and then with a subset of Ext1(G∨,Z) = Hom(G∨,Q/Z). This
correspondence sends each divisor precisely to the valuation of G∨ at it, see
[Log04], Section 4.3 for more detail.
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We also show that, away from a finite number of prime divisors on Y , all G-Weil
divisors are ordinary Weil.

Proposition 2.7. Unless a prime divisor P ⊂ Y is exceptional or its image
in X is a branch divisor of Cn → X, the valuation vP : G∨ → Q/Z is the
zero-map.

Proof. If P is not exceptional, let Q be its image in X . The valuations at
P and Q are the same, so it suffices to prove the statement about vQ. Let
P ′ be any divisor in Cn which lies above Q. As in Proposition 2.6, for any
f ∈ K∗G(Cn) we have vQ(f) = 1

nram
vP ′(f) where nram is the ramification

index of P ′. Unless Q is a branch divisor, nram = 1 and vQ = vP ′ . Which
makes vQ integer-valued on K∗G(Cn) and makes the quotient homomorphism
G∨ → Q/Z the zero map.

3 Classification of gnat-families

3.1 Reductor Sets

From now on, in addition to assuming that G is a finite group acting faithfully
on Vgiv, we also assume that G is abelian. We further assume that Y is smooth
and π : Y → X is proper.
Let F be a gnat-family on Y . Write the decomposition of F into G-eigensheaves
as
⊕

χ∈G∨ Fχ. By Proposition 1.5 we can embed F into K(Cn) and, as was
demonstrated in Proposition 2.3, the image of each Fχ defines a χ-Cartier
divisor. Hence F ≃⊕χ L(−Dχ) for some set {Dχ}χ∈G∨ of G-Weil divisors.

Definition 3.1. Let {Dχ}χ∈G∨ be a set of G-Weil divisors on Y . We call it a
reductor set if each Dχ is a χ-Weil divisor and ⊕L(−Dχ) is a gnat-family on
Y . We call a reductor set normalised if Dχ0 = 0. We say that two reductor
sets {Dχ} and {D′χ} are linearly equivalent if there exists f ∈ K(Y ) such that
Dχ −D′χ = Div f for all χ ∈ G∨.

Lemma 3.2. Let {Dχ} and {D′χ} be two reductor sets. Any (R ⋊G) ⊗ OY -
module morphism φ :

⊕L(−Dχ)→⊕L(−D′χ) is necessarily a multiplication
inside K(Cn) by some f ∈ K(Y ).

Proof. Because of G-equivariance φ decomposes as
⊕

χ∈G∨ φχ with φχ a mor-
phism L(−Dχ) → L(−D′χ). Each φχ is a morphism of invertible sub-OY -
modules of K(Cn) and so is necessarily a multiplication by some fχ ∈ K(Y ):
consider the induced map OY → L(−Dχ + D′χ) and take fχ to be the image
of 1 under this map.
It remains to show that all fχ are equal. Fix any χ ∈ G∨ and consider any G-
homogeneous m ∈ R of weight χ. Take any s ∈ L(−Dχ0). Then ms ∈ L(−Dχ)
and by R-equivariance of φ

φχ(ms) = mφχ0(s) = fχ0ms (3.1)

and hence fχ = fχ0 for all χ ∈ G∨.
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Corollary 3.3. Isomorphism classes of gnat-families on Y are in 1-to-1 cor-
respondence with linear equivalence classes of reductor sets.

Proof. If in the proof of Lemma 3.2 each φχ is an isomorphism, then f , by
construction, globally generates each L(−D′χ +Dχ). Thus Dχ−D′χ = Div(f).

Proposition 3.4. Let {Dχ} and {D′χ} be two reductor sets. Then
⊕L(−Dχ)

and
⊕L(−D′χ) are equivalent (locally isomorphic) if and only if there exists a

Weil divisor N such that Dχ −D′χ = N for all χ ∈ G∨.
Proof. The ‘if’ direction is immediate.
Conversely, if the families are equivalent, then by applying Lemma 3.2 to each
local isomorphism, we obtain the data {Ui, fi}, where Ui are an open cover
of Y and on each Ui multiplication by fi is an isomorphism

⊕L(−Dχ)
∼−→⊕L(−D′χ). One can readily check that such {Ui, fi} must define a Cartier

divisor and that the corresponding Weil divisor is the requisite divisor N .

Corollary 3.5. In each equivalence classes of gnat-families there is precisely
one family whose reductor set is normalised.

3.2 Reductor Condition

We now investigate when is a set {Dχ} of G-divisors a reductor set.
This issue is the issue of

⊕L(−Dχ) actually being (R ⋊G)⊗OY -module. By
definition it is a sub-OY -module of K(Cn), but there is no a priori reason for it
to also be closed under the naturalR⋊G-action onK(Cn). If it is closed, it can
be checked that it trivially satisfies all the other requirements in Proposition
1.5, item 3, which makes it a gnat-family. We further observe that

⊕L(−Dχ)
is always closed under the action of G, so it all boils down to the closure under
the action of R.
Recall, that we write RG for R ∩ K∗G(Cn), the G-homogeneous regular poly-
nomials, and Rχ for R ∩K∗χ(Cn), the G-homogeneous regular polynomials of
weight χ ∈ G∨.

Proposition 3.6 (Reductor Condition). Let {Dχ}χ∈G∨ be a set with each Dχ

a χ-Weil divisor. Then it is a reductor set if and only if, for any f ∈ RG, the
divisor

Dχ + (f)−Dχρ(f) ≥ 0 (3.2)

i.e. it is effective.

Remarks:

1. If we choose a G-eigenbasis of Vgiv, then its dual basis, a set of basic
monomials x1, . . . , xn, generates RG as a semi-group. As condition (3.2)
is multiplicative on f , it is sufficient to check it only for f being one of
xi. This leaves us with a finite number of inequalities to check.
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2. Numerically, if we write each Dχ as
∑
qχ,PP , inequalities (3.2) subdivide

into independent sets of inequalities

qχ,P + vP (f)− qχρ(f),P ≥ 0 ∀ χ ∈ G∨ (3.3)

a set for each prime divisor P on Y . This shows that a gnat-family can
be specified independently at each prime divisor of Y : we can construct
reductor sets {Dχ} by independently choosing for each prime divisor P
any of the sets of numbers {qχ,P }χ∈G∨ which satisfy (3.3).

3. There is an interesting link here with the work of Craw, Maclagan and
Thomas in [CMT07a] which bears further investigation. In a toric con-
text, they have rediscovered these inequalities as dual, in a certain sense,
to the defining equations of the coherent component Yθ of the mod-
uli space Mθ of θ-semistable G-constellations. They then use them to
compute the distinguished θ-semistable G-constellations parametrised by
torus orbits of Yθ. In particular, their Theorem 7.2 allows them to ex-
plicitly write down the tautological gnat-family on Yθ and suggests that,
up to a reflection, it is the gnat family which minimizes θ.{Dχ}. We shall

see an example of that for the case of Yθ = HilbG in our Proposition 3.17.

Proof. Take an open cover Ui on which all L(−Dχ) are trivialised and write gχ,i
for the generator of L(−Dχ) on Ui. As R is a direct sum of its G-homogeneous
parts, it is sufficient to check the closure under the action of just the homo-
geneous functions. Thus it suffices to establish that for each f ∈ RG, each Ui
and each χ ∈ G∨

fgχ,i ∈ OY (Ui)gχρ(f),i

On the other hand, with the notation above, G-Cartier divisorDχ+(f)−Dχρ(f)

is given on Ui by
fgχ,i

gχρ(f),i
and it being effective is equivalent to

fgχ,i
gχρ(f),i

∈ OY (Ui)

for all Ui’s. The result follows.

3.3 Canonical family

We have not yet given any evidence of any gnat-families actually existing on
an arbitrary resolution Y of X .

Proposition 3.7 (Canonical family). Let Y be a resolution of X = Cn/G.
Define the set {Cχ}χ∈G∨ of G-Weil divisors by

Cχ =
∑

v(P, χ)P
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where P runs over all prime Weil divisors on Y and v(P, χ) are the numbers
introduced in Definition 2.4 (lifted to [0, 1) ⊂ Q).
Then {Cχ}χ∈G∨ is a reductor set.
We call the corresponding family the canonical gnat-family on Y .

Proof. We must show that {Cχ} satisfies the inequalities (3.2). Choose any
χ ∈ G∨, any f ∈ RG and any prime divisor P on Y . Observe that 0 ≤
vP (χ), vP (χρ(f)) < 1 by definition, while vP (f) ≥ 0 since f |G| is regular on all
of Y . So we must have

vP (χ) + vP (f)− vP (χρ(f)) > −1

As the above expression must be integer-valued, we further have

vP (χ) + vP (f)− vP (χρ(f)) ≥ 0

as required.

This family has a following geometrical description:

Proposition 3.8. On any resolution Y , the canonical family is isomorphic to
the pushdown to Y of the structure sheaf N of the normalisation of the reduced
fiber product Y ×X Cn.

Proof. First we construct a (R ⋊G)⊗OY -module embedding of N into K(Cn).
Let α be the map OY ⊗RG R→ K(Cn) which sends a⊗ b to ab. It is R⋊G⊗
OY -equivariant. If we show that kerα is the nilradical of OY ⊗RG R, then
N can be identified with the integral closure of the image of α in K(Cn).
Due to G-equivariance α decomposes as

⊕
χ∈G∨ αχ with each αχ a morphism

OY ⊗RG Rχ → Kχ(Cn). Observe that (OY ⊗RG Rχ)|G| ⊂ OY ⊗RG Rχ0 = OY
as a product of |G| homogeneous functions is invariant. Hence (kerαχ)|G| ⊂
kerαχ0 = 0 as required.
Write

⊕
χ∈G∨ Nχ for the decomposition of N into G-eigensheaves. Fix a point

p ∈ Y and observe that f ∈ Kχ(Cn) is integral over the local ring Np if and
only if f |G| ∈ (Nχ0)p = OY,p. Therefore

(Nχ)p = {f ∈ Kχ(Cn) | G-Weil divisor Div(f) is effective at p}

In particular, the generator cχ of Cχ at p lies in (Nχ)p. Observe further that
for any f ∈ (Nχ)p the Weil divisor Div(f) − Cχ is effective at p as the coef-
ficients of Cχ are just the fractional parts of those of Div(f) and the latter is
effective. Therefore cχ generates (Nχ)p as OY,p-module, giving Nχ = L(−Cχ)
as required.

3.4 Symmetries

Having demonstrated that the set of equivalence classes of gnat-families is
always non-empty, we now establish two types of symmetries which this set
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possesses. It is worth noting that from the description of the symmetries of the
chambers in the parameter space of the stability conditions for G-constellations
described in [CI04], Section 2.5, it follows that all the symmetries described
below take the subset of gnat-families on Y consisting of universal families of
stable G-constellations into itself.

Proposition 3.9 (Character Shift). Let {Dχ} be a normalised reductor set.
Then for any χ in G∨

D′χλ = Dχ −Dλ−1 (3.4)

is also a normalised reductor set. We call it the χ-shift of {Dχ}.

Proof. Writing out the reductor condition (3.2) for the new divisor set {D′χ}
we get:

(Dχ −Dλ−1) + (m)− (Dχρ(m) −Dλ−1) ≥ 0

Cancelling out D−1
λ , we obtain precisely the reductor condition for the original

set {Dχ}. And since

D′χ0
= D′λ−1λ = Dλ−1 −Dλ−1 = 0

we see that the new reductor set is normalised.

NB: Observe, that for a reductor set {Dχ} and for any χ-Weil divisor N , the
set {Dχ +N} is linearly equivalent to the χ-shift of {Dχ}.

Proposition 3.10 (Reflection). Let {Dχ} be a normalised reductor set.
Then the set {−Dχ−1} is also a normalised reductor set, which we call the

reflection of {Dχ}.

Proof. We need to show that

−Dχ−1 + (m)− (−Dχ−1ρ(m)−1) ≥ 0

Rearranging we get

Dχ−1ρ(m)−1 + (m)−Dχ−1ρ(m)−1ρ(m) ≥ 0

which is one of the reductor equations the original set {Dχ} must satisfy. As
D′χ0

= −Dχ0 = 0, the new set is normalised.

3.5 Maximal shift family and finiteness

We now examine the individual line bundles L(−Dχ) in a gnat-family and show
that the reductor condition imposes a restriction on how far apart from each
other they can be.
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Lemma 3.11. Let {Dχ} be a reductor set. Write each Dχ as
∑
qχ,PP , where

P ranges over all the prime Weil divisors on Y . For any χ1, χ2 ∈ G∨ and for
any prime Weil divisor P , we necessarily have

min
f∈Rχ1/χ2

vP (f) ≥ qχ1,P − qχ2,P ≥ − min
f∈Rχ2/χ1

vP (f) (3.5)

Proof. Both inequalities follow directly from the reductor condition (3.2): the
right inequality by setting χ = χ1 ∈ G∨, ρ(f) = χ2

χ1
and letting f vary within

Rρ(f); the left inequality by setting χ = χ2 and ρ(f) = χ1

χ2
.

This suggests the following definition:

Definition 3.12. For each character χ ∈ G∨, we define the maximal shift

χ-divisor Mχ to be

Mχ =
∑

P

( min
f∈Rχ

vP (f))P (3.6)

where P ranges over all prime Weil divisors on Y .

Lemma 3.13. The G-Weil divisor set {Mχ} is a normalised reductor set. We
call the corresponding family the maximal shift gnat-family on Y .

Proof. We need to show that for any f ∈ RG and any prime divisor P

vP (mχ) + vP (f)− vP (mχρ(f)) ≥ 0

where mχ and mχρ(f) are chosen to achieve the minimality in (3.6).
Observe that mχf is also a G-homogeneous element of R, therefore by the
minimality of vP (mχρ(f)) we have

vP (mχf) ≥ vP (mχρ(f))

as required.
To establish that Mχ0 = 0 we observe that for any G-homogeneous f ∈ R
we have vP (f) ≥ 0 on any prime Weil divisor P as f |G| is globally regular.
Moreover for f in Rχ0 = RG this lower bound is achieved by f = 1.

Observe that with Lemma 3.13 we have established another gnat-family which
always exists on any resolution Y . While sometimes it coincides with the
canonical family, generally the two are distinct.

Proposition 3.14 (Maximal Shifts). Let {Dχ} be a normalised reductor set.
Then for any χ ∈ G∨

Mχ ≥ Dχ ≥ −Mχ−1 (3.7)

Moreover both the bounds are achieved.
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Proof. To establish that (3.7) holds set χ2 = χ0 in Lemma 3.11. Lemma 3.13
shows that the bounds are achieved.

Proposition 3.15. If the coefficient of a maximal shift divisor Mχ at a prime
divisor P ⊂ Y is non-zero, then either P is an exceptional divisor or the image

of P in X is a branch divisor of Cn
q−→ X.

Proof. Let P be a prime divisor on X which is not a branch divisor of q. Let
χ ∈ G∨. By the defining formula (3.6) it suffices to find f ∈ Rχ such that
vP (f) = 0.
As R is a PID, there exist t1, . . . , tk ∈ R such that (t1), . . . , (tk) are all the
distinct prime divisors lying over P in Cn. Observe that the product t1 . . . tn
must be G-homogeneous. Since P is not a branch divisor, there exists u ∈ R
such that t1 . . . tku is invariant and u /∈ (ti) for all i. Then u′ = u|G|−1 is a G-
homogeneous function of the same weight as t1 . . . tk and vP (u′) = 0. Now take
any f ∈ Rχ and consider its factorization into irreducibles. G-homogeneity of
f implies that all ti occur with the same power k. Now replacing (t1 . . . tn)k in
the factorization by (u′)k we obtain an element of Rχ whose valuation at P is
zero.

Corollary 3.16. The number of equivalence classes of gnat-families on Y is
finite.

Proof. Let {Dχ} be a normalised reductor set. Coefficients of Dχ at prime
divisors P of Y have fixed fractional parts (Definition 2.5), are bound above and
below (Proposition 3.14) and are zero at all but finite number of P (Proposition
3.15). This leaves only a finite number of possibilities.

For one particular resolution Y the family provided by the maximal shift divi-
sors has a nice geometrical description.

Proposition 3.17. Let Y = HilbG Cn, the coherent component of the moduli
space of G-clusters in Cn. If Y is smooth, then

⊕L(−Mχ) is the univer-
sal family F of G-clusters parametrised by Y , up to the usual equivalence of
families.

Proof. Firstly F is a gnat-family, as over any set U ⊂ X such that G acts
freely on q−1(U) we have F|U ≃ π∗q∗OCn |U . Write F as ⊕L(−Dχ) for some
reductor set {Dχ}. Take an open cover {Ui} of Y and consider the generators
{fχ,i} of Dχ on each Ui. Working up to equivalence, we can consider {Dχ} to
be normalised and so fχ0,i = 1 for all Ui.
Now any G-cluster Z is given by some invariant ideal I ⊂ R and so the corre-
sponding G-constellation H0(OZ) is given by R/I. In particular note that R/I
is generated by R-action on the generator of χ0-eigenspace. Therefore any fχ,i
is generated from fχ0,i = 1 by R-action, which means that all fχ,i lie in R.
But this means that for any prime Weil divisor P on Y we have

vP (fχ,i) ≥ min
f∈Rχ

vP (f)
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and therefore Dχ ≥Mχ. Now Proposition 3.14 forces the equality.

4 Conclusion

We summarise the results achieved in the following theorem:

Theorem 4.1 (Classification of gnat-families). Let G be a finite abelian sub-
group of GLn(C), X the quotient of Cn by the action of G, Y nonsingular and
π : Y → X a proper birational map. Then isomorphism classes of gnat-families
on Y are in 1-to-1 correspondence with linear equivalence classes of G-divisor
sets {Dχ}χ∈G∨ , each Dχ a χ-Weil divisor, which satisfy the inequalities

Dχ + (f)−Dχρ(f) ≥ 0 ∀ χ ∈ G∨, G-homogeneous f ∈ R

Such a divisor set {Dχ} corresponds then to a gnat-family
⊕L(−Dχ).

This correspondence descends to a 1-to-1 correspondence between equivalence
classes of gnat-families and sets {Dχ} as above and with Dχ0 = 0. Further-
more, each divisor Dχ in such a set satisfies inequality

Mχ ≥ Dχ ≥ −Mχ−1

where {Mχ} is a fixed divisor set defined by

Mχ =
∑

P

( min
f∈Rχ

vP (f))P

As a consequence, the number of equivalence classes of gnat-families is finite.

Proof. Corollary 3.3 establishes the correspondence between isomorphism
classes of gnat-families and linear equivalence classes of reductor sets. Propo-
sition 3.6 gives description of reductor sets as the divisor sets satisfying the
reductor condition inequalities.
Corollary 3.5 gives the correspondence on the level of equivalence classes of
gnat-families and normalised reductor sets. Proposition 3.14 establishes the
bounds on the set of all normalised reductor sets and Corollary 3.16 uses it to
show that the set of all normalised reductor sets is finite.
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1 Introduction

Let k be an algebraically closed field of characteristic p > 2. Let W = W (k)
be its ring of Witt vectors and L = Quot(W ). Let σ be the Frobenius auto-
morphism on k as well as on W . By NilpW we denote the category of schemes
S over Spec(W ) such that p is locally nilpotent on S. Let S be the closed sub-
scheme of S that is defined by the ideal sheaf pOS . Let (X, λX) be a principally
polarized p-divisible group over k. If X is a p-divisible group, we denote its
dual by X̂. Then the polarization λX is an isomorphism X→ X̂.
We consider the functor

M : NilpW → Sets,

which assigns to S ∈ NilpW the set of isomorphism classes of pairs (X, ρ),
where X is a p-divisible group over S and ρ : XS = X×Spec(k) S → X×S S is a
quasi-isogeny such that the following condition holds. There exists a principal
polarization λ : X → X̂ such that ρ∨ ◦ λS ◦ ρ and λX,S coincide up to a

scalar. Two pairs (X1, ρ1) and (X2, ρ2) are isomorphic if ρ1 ◦ ρ−1
2 lifts to an

isomorphism X2 → X1. This functor is representable by a formal scheme M
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826 Eva Viehmann

which is locally formally of finite type over Spf(W ) (see [RaZ], Thm. 3.25).
LetMred be its underlying reduced subscheme, that is the reduced subscheme
of M defined by the maximal ideal of definition. Then Mred is a scheme over
Spec(k).
The analogues of these moduli spaces for p-divisible groups without polariza-
tion have been studied by de Jong and Oort in [JO] for the case that the
rational Dieudonné module of X is simple and in [V1] without making this
additional assumption. There, the sets of connected components and of irre-
ducible components, as well as the dimensions, are determined. In the polarized
case, the moduli spaces Mred have been examined in several low-dimensional
cases. For example, Kaiser ([Kai]) proves a twisted fundamental lemma for
GSp4 by giving a complete description in the case that X is two-dimensional
and supersingular. An independent description of this case is given by Kudla
and Rapoport in [KR]. In [Ri], Richartz describes the moduli space in the case
of three-dimensional supersingular X. In this paper we derive corresponding
results on the global structure of the mo duli space Mred for arbitrary X.
The first main result of this paper concerns the set of connected components
of Mred.

Theorem 1. Let X be nontrivial and let Xm ×Xbi ×Xet be the decomposition
into its multiplicative, bi-infinitesimal, and étale part. Then

π0(Mred) ∼=
(
GLht(Xm)(Qp)/GLht(Xm)(Zp)

)
× Z.

Next we consider the set of irreducible components ofMred. Let (N,F ) be the
rational Dieudonné module of X. Here, N is an L-vector space of dimension
ht(X) and F : N → N is a σ-linear isomorphism. The polarization λX induces
an anti-symmetric bilinear perfect pairing 〈·, ·〉 on N . Let G be the correspond-
ing general symplectic group of automorphisms of N respecting 〈·, ·〉 up to a
scalar. Let

J = {g ∈ G(L) | g ◦ F = F ◦ g}.
It is the set of Qp-valued points of an algebraic group over Qp (see [RaZ], Prop.
1.12). There is an action of J on Mred.

Theorem 2. The action of J on the set of irreducible components of Mred is
transitive.

We choose a decomposition N =
⊕l

j=1N
j with N j simple of slope λj =

mj/(mj + nj) with (mj , nj) = 1 and λj ≤ λj′ for j < j′. Let

m =

1

2

∑

j

min{mj , nj}

 ,

where ⌊x⌋ is the greatest integer less or equal x. As N is the isocrystal of a
polarized p-divisible group, its Newton polygon is symmetric, i. e. λl+1−j =
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1− λj . Hence we obtain

m =

 ∑

{j|mj<nj}
mj +

1

2
| {j | mj = nj = 1} |

 . (1.1)

Theorem 3. Mred is equidimensional of dimension

dimMred =
1

2


∑

j

(mj − 1)(nj − 1)

2
+
∑

j<j′

mjnj′ +m


 . (1.2)

Note that the equidimensionality is already a consequence of Theorem 2. How-
ever, it also follows from the proof of the dimension formula without requiring
additional work.
Our results on the set of connected components and on the dimension ofMred

are analogous to those for other affine Deligne-Lusztig sets for split groups
where a scheme structure is known. We now define these affine Deligne-Lusztig
varieties and give a brief overview over the general results in comparison to the
results for the case treated in this paper.
Let O be a finite unramified extension of Zp or Fp[[t]] and let G be a split
connected reductive group over O. Let F be the quotient field of O. Let
K = G(O). Let L be the completion of the maximal unramified extension of
F and let σ be the Frobenius of L over F . Let A be a maximal torus and B a
Borel subgroup containing A. Let µ ∈ X∗(A) be dominant and let b ∈ G(L).
Let εµ be the image of p or t ∈ F

× under µ. Let

Xµ(b) = {g ∈ G(L)/K | g−1bσ(g) ∈ KεµK} (1.3)

be the generalized affine Deligne-Lusztig set associated to µ and b. We assume
that b ∈ B(G,µ) to have that Xµ(b) is nonempty (compare [Ra], 5). There
are two cases where it is known that Xµ(b) is the set of k-valued points of a
scheme. Here, k denotes the residue field of OL. The first case is that F = Qp

and that Xµ(b) is the set of k-valued points of a Rapoport-Zink space of type
(EL) or (PEL). In that case µ is always minuscule. Rapoport-Zink spaces
without polarization were considered in [V1], in that case G = GLh. For the
moduli spaces considered in this paper let G = GSp2h. We choose a basis
{ei, fi | 1 ≤ i ≤ h} identifying N with L2h and the symplectic form on N with
the symplectic form on L2h defined by requiring that 〈ei, ej〉 = 〈fi, fj〉 = 0
and 〈ei, fj〉 = δi,h+1−j . Let B be the Borel subgroup of G = GSp2h fixing
the complete isotropic flag (e1) ⊂ (e1, e2) ⊂ · · · ⊂ (e1, . . . , eh). We choose A
to be the diagonal torus. Let π1(G) be the quotient of X∗(A) by the coroot
lattice of G. Then the multiplier G → Gm induces an isomorphism π1(G) →
π1(Gm) ∼= Z. Let µ ∈ X∗(A) be the unique minuscule element whose image
in π1(G) is 1. Then pµ is a diagonal matrix with diagonal entries 1 and p,
each with multiplicity h. We write F = bσ with b ∈ G. Note that there is a

Documenta Mathematica 13 (2008) 825–852



828 Eva Viehmann

bijection between Mred(k) and the set of Dieudonné lattices in N . Using the
above notation, we have the bijection

Xµ(b) → Mred(k)

g 7→ g(W (k)2h).

The second case is that F is a function field. Here Xµ(b) obtains its scheme
structure by considering it as a subset of the affine GrassmannianG(L)/G(OL).
In this case we do not have to assume µ to be minuscule. The Xµ(b) are lo-
cally closed subschemes of the affine Grassmannian. The closed affine Deligne-
Lusztig varieties X�µ(b) are defined to be the closed reduced subschemes of
G(L)/G(OL) given by X�µ(b) =

⋃
µ′�µXµ′(b). Here µ′ � µ if µ− µ′ is a non-

negative linear combination of positive coroots. Note that the two schemes
Xµ(b) and X�µ(b) coincide if µ is minuscule.
The sets of connected components of the moduli spaces of non-polarized p-
divisible groups are given by a formula completely analogous to Theorem 1
(compare [V1], Thm. A). For closed affine Deligne-Lusztig varieties in the
function field case, the set of connected components is also given by a general-
ization of the formula in Theorem 1 (see [V3], Thm. 1). The sets of connected
components of the non-closed Xµ(b) are not known in general. There are exam-
ples (compare [V3], Section 3) which show that a result analogous to Theorem
1 cannot hold for all non-closed Xµ(b).
The only further general case where the set of irreducible components is known
are the reduced subspaces of moduli spaces of p-divisible groups without polar-
ization. Here, the group J also acts transitively on the set of irreducible com-
ponents. There are examples of affine Deligne-Lusztig varieties in the function
field case associated to non-minuscule µ where this is no longer true (compare
[V2], Ex. 6.2).
To discuss the formula for the dimension let us first reformulate Theorem 3.
Let G = GSp2h and µ be as above. Let ν = (λi) ∈ Qh ∼= X∗(A)Q be the
(dominant) Newton vector associated to (N,F ) as defined by Kottwitz, see
[Ko1]. Let ρ be the half-sum of the positive roots of G and ωi the fundamental
weights of the adjoint group Gad. Then one can reformulate (1.2) as

dimMred = 〈2ρ, µ− ν〉+
∑

i

⌊〈ωi, ν − µ〉⌋. (1.4)

In this form, the dimension formula proves a special case of a conjecture by
Rapoport (see [Ra], Conjecture 5.10) for the dimension of affine Deligne-Lusztig
varieties. Denote by rkQp the dimension of a maximal Qp-split subtorus and let
defG(F ) = rkQpG− rkQpJ . Note that defG(F ) only depends on the conjugacy
class of F or equivalently on the σ-conjugacy class of b if we write F = bσ for
some b ∈ G. In our case, it is equal to h−⌈l/2⌉ where l is the number of simple
summands of N . Using Kottwitz’s reformulation of the right hand side of (1.4)
in [Ko2], we obtain

dimMred = 〈ρ, µ− ν〉 − 1

2
defG(F ). (1.5)
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For the case of moduli of p-divisible groups for G = GLh, the analogous formula
for the dimension is shown in [V1]. In the function field case, the dimension
of the generalized affine Deligne-Lusztig variety has been determined in [V2],
[GHKR]. The formula for the dimension is also in this case the analogue of
(1.5).
The dimension of the moduli spacesMred is also studied by Oort and by Chai
using a different approach. In [O2], Oort defines an almost product structure
(that is, up to a finite morphism) on Newton strata of moduli spaces of polarized
abelian varieties. It is given by an isogeny leaf and a central leaf for the p-
divisible group. The dimension of the isogeny leaf is the same as that of the
corresponding Mred. The dimension of the central leaf is determined by Chai
in [C] and also by Oort in [O4]. The dimension of the Newton polygon stratum
itself is known from [O1]. Then the dimension of Mred can also be computed
as the difference of the dimensions of the Newton polygon stratum and the
central leaf.
We outline the content of the different sections of the paper. In Section 2 we
introduce the necessary background and notation, and reduce the problem to
the case of bi-infinitesimal groups. In the third and fourth section, we define
the open dense subscheme S1 where the a-invariant of the p-divisible group is
1 and describe its set of closed points. This description is refined in Sections 5
and 6 to prove the theorems on the set of irreducible components and on the
dimension, respectively. In the last section we determine the set of connected
components.
Acknowledgement. Part of this paper was written during a stay at the Uni-
versité Paris-Sud at Orsay which was supported by a fellowship within the
Postdoc-Program of the German Academic Exchange Service (DAAD). I thank
the Université Paris-Sud for its hospitality. I thank the referee for very helpful
remarks.

2 Notation and preliminary reductions

2.1 A decomposition of the rational Dieudonné module

The principal polarization λX equips the rational Dieudonné module (N,F ) of
X with a nondegenerate anti-symmetric bilinear pairing 〈·, ·〉. It satisfies

〈v, Fw〉 = σ(〈V v,w〉) (2.1)

for all x, y ∈ N .
We assumed k to be algebraically closed. Then the classification of isocrystals
shows that N has a decomposition into subisocrystals Ni of one of the following
types. Let l be the number of supersingular summands in a decomposition of
N into simple isocrystals. Then

N =

{
N0 ⊕N1 if l is even

N0 ⊕N 1
2
⊕N1 otherwise,

(2.2)
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satisfying the following three properties.

1. The slopes of N0 are smaller or equal to 1
2 .

2. The summand N 1
2

is simple and supersingular.

3. N1 is the isocrystal dual to N0, i.e.

〈N0, N0〉 = 〈N1, N1〉 = 〈N0, N 1
2
〉 = 〈N1, N 1

2
〉 = 0.

Note that if l > 1, then this decomposition is not unique and N0 and N1

also contain supersingular summands. For i ∈ {0, 1
2 , 1} we denote by pi the

canonical projection N → Ni.
The moduli spaces Mred for different (X, λX) in the same isogeny class are
isomorphic. Replacing X by an isogenous group we may assume that

X =

{
X0 × X1 if l is even

X0 × X 1
2
× X1 otherwise.

(2.3)

Here, Xi is such that its rational Dieudonné module is Ni.
Mapping (X, ρ) ∈ Mred(k) to the Dieudonné module of X defines a bijection
between Mred(k) and the set of Dieudonné lattices in N that are self-dual up
to a scalar. Here a sublattice Λ of N is called a Dieudonné lattice if ϕ(Λ) ⊆ Λ
for all ϕ in the Dieudonné ring of k,

D = D(k) = W (k)[F, V ]/(FV = V F = p, aV = V σ(a), Fa = σ(a)F ). (2.4)

All lattices considered in this paper are Dieudonné lattices. A lattice Λ ⊂ N
is self-dual up to a scalar if the dual lattice Λ∨ satisfies Λ∨ = cΛ with c ∈ L×.
The following notion is introduced by Oort in [O3].

Definition 2.1. Let X be a p-divisible group over k and Λmin be its Dieudonné
module. Then X is a minimal p-divisible group if End(Λmin) is a maximal order
in End(Λmin)⊗W L.

Remark 2.2. By Morita equivalence X is minimal if and only if Λmin is the
direct sum of submodules Λimin such that N i = Λimin ⊗W L is simple and that
End(Λimin) is a maximal order in End(N i), which is Oort’s original definition.
Note that in every isogeny class of p-divisible groups over k there is exactly one
isomorphism class of minimal p-divisible groups (compare [O3], 1.1).

Lemma 2.3. There is a k-valued point (X, ρ) of Mred such that X is minimal.

Proof. Let N0 and N1 as in the decomposition above. Let Λmin,0 ⊂ N0 be the
lattice of a minimal p-divisible group and let Λmin, 12

⊂ N 1
2

be the Dieudonné
module of X 1

2
. There is only one isomorphism class of one-dimensional super-

singular p-divisible groups and it consists of minimal p-divisible groups. Let
c ∈ L× with Λ∨

min, 12
= cΛmin, 12

. Let

Λmin,1 = {x ∈ N1 | 〈x, cy〉 ∈ W for all y ∈ Λmin,0}.
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Then Λmin,1 is also the Dieudonné module of a minimal p-divisible group. Fur-
thermore, Λmin = Λmin,0 ⊕ Λmin, 12

⊕ Λmin,1 satisfies Λ∨min = cΛmin. Thus Λmin

corresponds to an element of Mred(k) and to a minimal p-divisible group.

Remark 2.4. There is the following explicit description of the Dieudonné mod-
ule of a minimal p-divisible group: Let N =

⊕
j N

j be a decomposition of N

into simple isocrystals. For each j we write the slope ofN j asmj/(mj+nj) with

(mj , nj) = 1. Then there is a basis ej1, . . . , e
j
mj+nj

of N j with F (eji ) = eji+mj

for all i, j. Here we use the notation eji+mj+nj
= peji . For the existence com-

pare for example [V1], 4.1. Furthermore, these bases may be chosen such that

〈eji , ej
′

i′ 〉 = δj,l+1−j′ · δi,mj+nj+1−i′ for 1 ≤ i, i′ ≤ mj + nj = ml+1−j + nl+1−j .
Then we can take the lattice Λmin to be the lattice generated by these basis
elements eji .

2.2 Moduli of non-polarized p-divisible groups

For the moment let X be a p-divisible group without polarization. Then associ-
ated to X there is an analogous moduli problem of quasi-isogenies of p-divisible
groups without polarization. If X is polarized, we thus obtain two functors
which are closely related. In this section we recall the definition of the moduli
spaces of non-polarized p-divisible groups and relate them to Mred. Besides,
we provide a technical result on lattices in isocrystals which we need in the
following section.
Let Mnp

X be the functor associating to a scheme S ∈ NilpW the set of pairs
(X, ρ) where X is a p-divisible group over S and ρ a quasi-isogeny XS → XS .
Two such pairs (X1, ρ1) and (X2, ρ2) are identified in this set if ρ1◦ρ−1

2 lifts to an
isomorphismX2 → X1 over S. This functor is representable by a formal scheme
which is locally formally of finite type over Spf(W ) (see [RaZ], Theorem 2.16).
Let Mnp

X,red be its reduced subscheme. We always include X in this notation,

because we compareMred to the two moduli spacesMnp
X,red and Mnp

X0,red
.

Let Jnp = {g ∈ GL(N) | g ◦ F = F ◦ g}. Then J ⊆ Jnp.
If X is a principally polarized p-divisible group, then forgetting the polarization
induces a natural inclusion as a closed subscheme

Mred →֒ Mnp
X,red.

Furthermore, there is a natural inclusion as a closed subscheme

Mnp
X0,red

→֒ Mred (2.5)

mapping an S-valued point (X0, ρ0) to (X0 × X∨0 , (ρ, ρ
∨)) if the number of

supersingular summands of N is even and to (X0 ×X 1
2
×X∨0 , (ρ, ρ 1

2
, ρ∨)) oth-

erwise. Here X 1
2

= X 1
2 ,S

is the base-change of the unique one-dimensional
supersingular p-divisible group over k and ρ 1

2
= id.

Let ṽ be the valuation on the Dieudonné ring D determined by

ṽ(aF iV j) = 2vp(a) + i+ j (2.6)
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for every a ∈W (k).

Lemma 2.5. One can decompose each B ∈ D uniquely as B = LT(B)+B′ with
ṽ(B′) > ṽ(B) and

LT(B) =
∑

0≤i≤ṽ(B),2α+i=ṽ(B)

pα([ai]V
i + [bi]F

i).

Here [ai] and [bi] are Teichmüller representatives of elements of k× or 0 and
[b0] = 0.

Proof. The V i with i ≥ 0 and the F i with i > 0 together form a basis of the
W (k)-module D. Besides, as k is perfect, every element of W (k) can be written
in a unique way as x =

∑
α≥0 p

α[xα]. Hence we can write B =
∑
i≥0 xiV

i +∑
i>0 yiF

i =
∑
i≥0

∑
α≥0 p

α[xi,α]V i +
∑

i>0

∑
α≥0 p

α[yi,α]F i where xi, yi are
0 for all but finitely many i. By the definition of ṽ(B), all xi,α, yi,α with
i + 2α < ṽ(B) vanish. Let LT(B) be the sum of all terms pα[xi,α]V i and
pα[yi,α]F i on which ṽ takes the value ṽ(B), i.e. those with 2α + i = ṽ(B).
Then LT(B) is as in the lemma and ṽ(B − LT(B)) > ṽ(B).

Lemma 2.6. Let (N0, b0σ) be the rational Dieudonné module of some p-divisible
group over k. Let m = vp(det b0) and n = dimL(N0) −m. Let v ∈ N0 be not
contained in any proper sub-isocrystal of N0.

1. Ann(v) = {ϕ ∈ D | ϕ(v) = 0} is a principal left ideal of D. There is a
generating element of the form

A = aFn + bVm +
n−1∑

i=0

aiF
i +

m−1∑

i=1

biV
i.

with a, b ∈W× and ai, bi ∈W .

2. If N0 is simple (and thus of slope m/(m+ n)), we have

LT(A) =





[a]Fn if n < m

[b]V m if m < n

[a]F + [b]V if m = n = 1

(2.7)

for some a, b ∈ k×.

3. Let N0 = ⊕jN j be a decomposition of N0 into simple summands. Then
LT(A) = LT(

∏
j Lj). Here each Lj is of the form (2.7) associated to some

nonzero element in N j.

Proof. We use induction on the number of summands in a decomposition of N0

into simple isocrystals. If N0 is simple, the lemma follows immediately from
[V1], Lemma 4.12. For the induction step write N0 = N ′ ⊕ N ′′

where N ′ is
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simple. Let A′ be as in the lemma and associated to N ′ and pN ′(v) where
pN ′ : N → N ′ is the projection. Note that an element of an isocrystal is not
contained in any proper sub-isocrystal if and only if the Dieudonné module
generated by the element is a lattice. Let Λ be the lattice generated by v. The
Dieudonné module generated by A′(v) is equal to Λ ∩ N ′′

, and hence also a
lattice. We may therefore apply the induction hypothesis to A′(v) and N

′′

and
obtain some A

′′

generating Ann(A′(v)). Thus Ann(v) is a principal left ideal
generated by A

′′

A′. Multiplying the corresponding expressions for A
′′

and A′,
the lemma follows.

2.3 Reduction to the bi-infinitesimal case

Let X = Xet×Xbi×Xm be the decomposition of X into its étale, bi-infinitesimal,
and multiplicative parts.

Lemma 2.7. We have

MX,red
∼=
{
Mnp

Xet,red
×MXbi,red if Xbi is nontrivial

Mnp
Xet,red

× Z otherwise.

and
Mnp

Xet,red
∼= GLht(Xet)(Qp)/GLht(Xet)(Zp).

Proof. Consider the following morphism ι from the right to the left hand side of
the first isomorphism. In the first case, an S-valued point ((Xet, ρet), (Xbi, ρbi))
is mapped to (Xet×Xbi×Xm, (ρet, ρbi, ρm)) where Xm = X̂et. Furthermore, ρm

is the dual isogeny of c ·ρet and c is the scalar determined by the duality condi-
tion for ρbi. In the second case ((Xet, ρet), l) is mapped to (Xet×Xm, (ρet, ρm))
with Xm = X̂et and ρm = (pl ·ρet)

∨. In both cases ι is a monomorphism, and to
check that it is a closed immersion we verify the valuation criterion for proper-
ness. Let (X, ρ) be a k[[t]]-valued point ofMX,red such that the generic point is
in the image of ι. Let πX : X ։ Xet with Xet étale over Spec(k[[t]]) and X inf
initesimal over Xet, as in [M], Lemma II.4.8. Our assumption implies that this
map has a right inverse Xet,k((t)) → Xk((t)) after base change to Spec(k((t))).
By [J1], Corollary 1.2, this morphism lifts to a morphism Xet → X over k[[t]].
Together with the inclusion of the kernel of πX in X we obtain a morphism of
the product of an étale and an infinitesimal p-divisible group over Spec(k[[t]])
to X . Its inverse is constructed similarly by lifting the projection morphism
of Xk((t)) to the kernel of πX from k((t)) to k[[t]]. Hence X can be written as
a product of an étale and an infinitesimal p-divisible group. As X is selfdual,
it is then also the product of an étale, a bi-infinitesimal, and a multiplicative
p-divisible group, thus of the form Xet×Xbi×Xm with Xm = X̂et. The quasi-
isogeny ρ is compatible with this decompos ition, and the compatibility with
the polarizations shows that the induced quasi-isogenies (ρet, ρbi, ρm) have the
property that ρbi is selfdual up to some scalar c and ρm is the dual isogeny of
c ·ρet. Hence (X, ρ) is in the image of ι. This finishes the proof that ι is proper,
hence a closed immersion.
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To show that ι is an isomorphism it is thus enough to show that each k-valued
point of the left hand side is contained in its image. From the Hodge-Newton
decomposition (see [Kat], Thm. 1.6.1) we obtain for each k-valued point (X, ρ)
a decomposition X = Xet×Xbi×Xm and ρ = ρet× ρbi× ρm into the étale, bi-
infinitesimal, and multiplicative parts. The compatibility with the polarization
then yields that up to some scalar pl, the quasi- isogenies ρm and ρet are dual.
From this the first isomorphism follows. The second isomorphism is shown by
an easy calculation (compare [V1], Section 3).

The lemma reduces the questions after the global structure ofMred to the same
questions forMXbi,red. Thus from now on we assume that X is bi-infinitesimal.

3 The dense subscheme S1

In [V1], 4.2 we define an open dense subscheme Snp
X,1 of Mnp

X,red. Let Λ ⊂ N

be the lattice associated to x ∈ Mnp
X,red(k). Then x ∈ Snp

X,1 if and only if
a(Λ) = dimk(Λ/(FΛ + V Λ)) = 1. As F and V are topologically nilpotent
on Λ, this is equivalent to the existence of some v ∈ Λ such that Λ is the
Dieudonné submodule of N generated by v. Note that a(Λ) can also be defined
as dimk(Hom(αp, X)) where X is the p-divisible group associated to Λ.
Let

S1 = Snp
X,1 ∩Mred ⊆Mred.

Then S1 is open in Mred.

Lemma 3.1. The open subscheme S1 is dense in Mred.

Proof. Recall that we assume X to be bi-infinitesimal. Let (X, ρ) ∈ Mred(k)
and let λ be a corresponding polarization of X. Note that by [M], Lemma
II.4.16 (or by [J2], Lemma 2.4.4) there is an equivalence of categories between
p-divisible groups over an adic, locally noetherian affine formal scheme Spf(A)
and over Spec(A). From [O1], Corollary 3.11 we obtain a deformation (X,λ)
of (X,λ) over Spec(k[[t]]) such that the generic fiber satisfies a = 1. Next
we show that after a base change we may also deform ρ to a quasi-isogeny ρ
between (X,λ) and the constant p-divisible group (X, λX) that is compatible
with the polarizations. From [OZ], Corollary 3.2 we obtain a deformation of ρ
to a quasi-isogeny between X and a constant p-divisible group Y after a base-
change to the perfect hull of k[[t]]. As Y is constant it is quasi-isogenous to the
base change XSpec(k[[t]]perf ) of X. After composing the deformation of ρ with a
quasi-isogeny between Y and XSpec(k[[t]]perf ) we may assume that Y is already

equal to XSpec(k[[t]]perf ). Let x be the point of Spec(k[[t]]perf) over the generic
point of Spec(k[[t]]). Then we may further compose the quasi-isogeny with
a self-quasi-isogeny of XSpec(k[[t]]perf ) such that in x it is compatible with the

polarizations of the two groups in this point. Thus we obtain a k[[t]]perf-valued
point of Mnp

X,red such that the image of x is in Mred. As Mred is closed, this

has to be a k[[t]]perf-valued point of Mred. Modifying the point by a suitable
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elemen t of J , we may assume that the special point is mapped to (X, ρ). In
the generic point, the a-invariant of the p-divisible group X is 1. Thus this
provides the desired deformation of (X, ρ) to a point of S1.

To determine the dimension and the set of irreducible components of Mred

it is thus sufficient to consider S1. We proceed in the same way as for the
moduli spaces of p-divisible groups without polarization. In contrast to the
non-polarized case it turns out to be useful to use two slightly different sys-
tems of coordinates to prove the assertions on the dimension and on the set of
irreducible components of Mred.
Let us briefly recall the main steps for the moduli spaces Mnp

X,red of non-
polarized p-divisible groups. Their sets of irreducible components and their
dimension are determined by studying Snp

X,1. In [V1], 4 it is shown that the con-

nected components of Snp
X,1 are irreducible and that Jnp = {j ∈ GL(N)|j ◦F =

F ◦ j} acts transitively on them. The first step to prove this is to give a de-
scription of Snp

X,1(k). One uses that each such point corresponds to a lattice
in N with a-invariant 1. As Dieudonné modules, these lattices are generated
by a single element and the description of the set of points is given by classi-
fying these elements generating the lattices. The second step consists in the
construction of a family inMnp

X,red to show that a set of points which seems to

parametrize an irreducible compo nent of Snp
X,1 indeed comes from an irreducible

subscheme. More precisely, a slight reformulation of the results in [V1], Section
4 yields the following proposition.

Proposition 3.2. Let (N,F ) be the isocrystal of a p-divisible group X over
k. Let m = vp(detF ). Let S = Spec(R) ∈ NilpW be a reduced affine scheme
with pR = 0 and let j ∈ Jnp. Let v ∈ NR = N ⊗LW (R)[ 1

p ] such that in every

x ∈ S(k), the reduction vx of v in x satisfies that

vx ∈ jΛmin

and

vp(det j) = max{vp(det j′) | j′ ∈ Jnp and vx ∈ j′Λmin}.
Here, Λmin ⊂ N is the lattice of the minimal p-divisible group in Remark 2.4.
Let R̃ = σ−m(R) be the unique reduced extension of R such that σm : R̃ →
R̃ has image R. Let ṽ ∈ NR̃ with σm(ṽ) = v. Then there is a morphism

ϕ : Spec(R̃) → Mnp
X,red such that for every x ∈ Spec(R̃)(k), the image ϕ(x)

corresponds to the Dieudonné module Λx in N generated by vx.
Assume in addition that X is principally polarized and that for every x, the
Dieudonné module Λx corresponds to a point of Mred. Then ϕ factors through
Mred.

Note that the second condition on vx (or more precisely the existence of the
maximum) implies that the Dieudonné submodule of N generated by vx is a
lattice.
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Proof. To prove the first assertion we may assume that j = id. Note that ṽ
satisfies the same conditions as v. The conditions on the ṽx are reformulated in
[V1], Lemma 4.8. The condition given there is exactly the condition needed in
[V1], Section 4.4 to construct a display over S leading to the claimed morphism
ϕ. It maps x to the Dieudonné lattice generated by σm(ṽx) = vx. The second
assertion is trivial as S is reduced andMred a closed subscheme ofMnp

X,red.

Remark 3.3. We use the same notation as in the proposition. From [V1], 4.4
we also obtain that under the conditions of Proposition 3.2, the elements

v, V v, . . . , V vp(detF )v, Fv, . . . , F dimN−vp(detF )−1v

are a basis of the freeW (R̃)[ 1
p ]-moduleNR̃. They are the images of the standard

basis of N under some element of GL(NR̃).
We apply the preceding to the situation of an isocrystal N = N0 and its
dual, N1. Then GL(N0) × Gm is isomorphic to the Siegel Levi subgroup of
GSp(N0 ⊕ N1). Let v ∈ N0 = N be as in Proposition 3.2. Then there are
elements yi ∈ (N1)R̃ which form a basis of (N1)R̃ which is dual to the basis

(x1, . . . , xdimN0) = (v, V v, . . . , V vp(detF )v, Fv, . . . , F dimN0−vp(detF )−1v)

with respect to 〈·, ·〉. In other words, the yi ∈ (N1)R̃ are such that 〈xi, yj〉 = δij .

4 Geometric points of S1

4.1 N with an even number of supersingular summands

In this subsection we consider the case that N has an even number of super-
singular summands. By (2.2) we have a decomposition N = N0 ⊕N1.
Recall that by a lattice we always mean a Dieudonné lattice. Let Λ ⊂ N be
the lattice corresponding to a k-valued point ofMred. Then Λ∨ = cΛ for some
c ∈ L×. Let Λ0 = p0(Λ) and Λ1 = Λ∩N1. For a subset M of N and δ ∈ {0, 1}
let

(M)∨δ = {x ∈ Nδ | 〈x, x′〉 ∈W for all x′ ∈M}. (4.1)

Then cΛ1 = (Λ0)∨1 . Hence Λ0 and Λ1 correspond to dual p-divisible groups,
which implies a(Λ0) = a(Λ1).
The geometric points of S1 correspond to lattices Λ that in addition satisfy
a(Λ) = 1. Especially, a(Λ0) = a(Λ1) = 1. In this subsection we classify a
slightly larger class of lattices. We fix a lattice Λ0 ⊂ N0 with a(Λ0) = 1 and
c ∈ L×. Then we consider all lattices Λ ⊂ N with

p0(Λ) = Λ0 and Λ∨ = cΛ. (4.2)

Note that we have a description of the set of lattices Λ0 ⊂ N0 with a(Λ0) = 1
from [V1], see also Section 2.2.
The considerations above show that Λ ∩ N1 = Λ1 = c−1(Λ0)∨1 is determined
by Λ0 and c. Let v0 be an element generating Λ0 as a Dieudonné module. If
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v ∈ Λ with p0(v) = v0, then Λ is generated by v and Λ1. Let A be a generator
of Ann(v0) as in Lemma 2.6. We write v = v0 + v1 for some v1 ∈ N1. Then
Av = Av1 ∈ Λ1.

Remark 4.1. Let Λ0 and c be as above, and let Λ1 = c−1(Λ0)∨1 . Let Λ be a
Dieudonné lattice with p0(Λ) = Λ0, Λ ∩N1 ⊇ Λ1 and

Λ∨ ⊇ cΛ. (4.3)

Let vol(·) denote the volume of a lattice, normalized in such a way that the
lattice corresponding to the basepoint (X, id) of Mred has volume 0. The
conditions imply above that vol(Λ∨) ≤ vol(cΛ) ≤ vol(c(Λ0 ⊕ Λ1)) = vol((Λ0 ⊕
Λ1)∨). Dualizing the inequality for the first and last term, we see that all terms
must be equal. Thus Λ satisfies (4.2) and Λ ∩N1 = Λ1.

The next step in the description of lattices with (4.2) is to reformulate (4.3). To
do so, we fix a generator v0 of Λ0 and describe the set of all v1 ∈ N1 such that
the lattice Λ generated by v = v0 + v1 and Λ1 as a Dieudonné lattice satisfies
(4.3) and Λ∩N1 = Λ1. Generators for Λ as a W -module are given by Λ1, and
all F iv with i ≥ 0 and V iv with i > 0. Let m,n be as in Lemma 2.6 (associated
to the given N0). Note that as N0 contains all simple summands of N with
slope < 1/2 and half of the supersingular summands, m is the same as in (1.1)
and n = h−m ≥ m. By Lemma 2.6, 1. applied to v0 ∈ N0, the F iv with i > n,
and the V iv with i ≥ m can be written as a linear combination of the F iv with
i ≤ n and the V iv with i < m, and a summand in Ann(v0) · v ⊂ Λ ∩N1 = Λ1.
Hence Λ is already generated by Λ1, the F iv with 0 ≤ i ≤ n and the V iv
with 0 < i < m. The inclusion (4.3) is equivalent to 〈x, y〉 ∈ c−1W for all
x, y ∈ Λ. This is equivalent to the same condition for pairs (x, y) where x and
y are among the generators of Λ described above. From the definition of Λ1 we
see that the values on pairs of elements of Λ automatically satisfy this if one of
the elements is in Λ1. By (2.1) it is enough to consider the products of v with
all other generators. Thus (4.3) is equivalent to

〈v, F iv〉 ∈ c−1W

and

〈v, V iv〉 ∈ c−1W (4.4)

for n ≥ i > 0. Furthermore, the equations for V i together with (2.1) imply
those for F i.
If x and y are elements of the same of the summands N0 or N1, then 〈x, y〉 = 0.
Hence the decomposition of v together with (2.1) shows that (4.4) is equivalent
to

〈v0, V iv1〉 − 〈V iv0, v1〉 = 〈F iv0, v1〉σ
−i − 〈V iv0, v1〉 ∈ c−1W. (4.5)

For φ ∈ D let

ξv1(φ) = 〈φv0, v1〉. (4.6)
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Then ξv1 is left-W -linear in φ. Let A be a generator of Ann(v0) as in Lemma
2.6. Then

ξv1(ψA) = 0 (4.7)

for all ψ ∈ D. Note that an element v1 ∈ N1 is uniquely determined by
〈v1, F iv0〉 for i ∈ {0, . . . , n − 1} and 〈v1, V iv0〉 for i ∈ {1, . . . ,m}. We are
looking for the set of v1 satisfying (4.5). In terms of ξv1 , this is

ξv1(F i)σ
−i − ξv1(V i) ∈ c−1W. (4.8)

Lemma 4.2. 1. Let M be the set of W -linear functions ξ : D → L with (4.7)
and (4.8) for i ≤ n. Then (4.6) defines a bijection between M and the
set of elements v1 ∈ N1 as above.

2. Let M be the set of functions ξ : D → L/c−1W with the same properties
as in 1. Then (4.6) defines a bijection between M and the set of equiva-
lence classes of elements v1 as above. Here two such elements are called
equivalent if their difference is in c−1(Λ0)∨1 .

Proof. Let ξ : D → L be given. An element v1 of N1 is uniquely determined by
the value of 〈·, v1〉 on v0, Fv0, . . . , F

h−m−1v0, V v0, . . . , V
mv0. These h values

may be chosen arbitrarily. For the values of 〈·, v1〉 on the other elements of
Dv0, a complete set of relations is given by 〈ψAv0, v1〉 = 0 for all ψ ∈ D. This
is equivalent to (4.7). Furthermore, (4.8) is equivalent to the condition that
the lattice generated by Λ1 and v0 + v1 satisfies all required duality properties.
To prove 2., we want to lift ξ : D → L/c−1W to a function with values in
L. We lift the values of ξ at φ ∈ {Vm, V m−1, . . . , 1, . . . , Fh−m−1} arbitrarily.
Then the lifts of the remaining values are uniquely determined by (4.7). As
(4.8) was satisfied before, it still holds (as a relation modulo c−1W ) for the
lifted functions. Then 1. implies the existence of v1. Let now w1 be a second
element inducing ξ (mod c−1W ). Then 〈φv0, w1 − v1〉 ∈ c−1W for all φ ∈ D.
Hence w1 − v1 ∈ c−1(Λ0)∨1 .

4.2 N with an odd number of supersingular summands

As parts of this case are similar to the previous one, we mainly describe the
differences. By (2.2) we have a decomposition N = N0 ⊕N 1

2
⊕N1.

We want to classify the lattices Λ ⊂ N corresponding to k-valued points of S1.
As before let Λ0 = p0(Λ) and Λ1 = Λ ∩N1. Let c ∈ L× with Λ∨ = cΛ. Then
cΛ1 = (Λ0)∨1 . Besides,

cΛ ∩N 1
2

= (p 1
2
(Λ))∨1

2
. (4.9)

Here we use (·)∨1
2

analogously to (4.1).

Again we use the description of the Dieudonné lattices Λ0 ⊂ N0 with a(Λ0) = 1.
We have to classify the Λ corresponding to some fixed Λ0 and c, and begin by
describing and normalizing the possible images under the projection to N0⊕N 1

2
.

Let v ∈ Λ with Dv = Λ and write v = v0 + v 1
2

+ v1 with vi ∈ Ni. Let A with

ṽ(A) = m be a generator of Ann(v0) as in Lemma 2.6.
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Proposition 4.3. 1. There is a j ∈ J such that j(v) is of the form v0 +
ṽ 1

2
+ ṽ1 with ṽi ∈ Ni and ADṽ 1

2
= DAṽ 1

2
.

2. Let j be as in the previous statement. Then p 1
2
(jΛ) is the unique

Dieudonné lattice in N 1
2

with p 1
2
(jΛ)∨ = (cpm)p 1

2
(jΛ). Besides, (jΛ) ∩

N 1
2

= pmp 1
2
(jΛ).

Proof. To prove 1. let ṽ 1
2
∈ N 1

2
be such that v′1

2

= v 1
2
− ṽ 1

2
is in the kernel of

A and ADṽ 1
2

= DAṽ 1
2
.

We first reduce the assertion of 1. to the case where N0 and N1 are simple of
slope 1

2 . Let A 1
2

be a generator of Ann(v′1
2

) as in Lemma 2.6. As A ∈ Ann(v′1
2

),

we can write A = ÃA 1
2

with Ã ∈ D. Then Ã generates Ann(A 1
2
v0). From

the description of annihilators of elements of N0 in Lemma 2.6 we see that we
may write v0 = v′0 + ṽ0 with A 1

2
v′0 = 0 and ṽ0 lying in a proper subisocrystal

Ñ0 of N0. Then v′0 generates a simple subisocrystal N ′0 of N0 of slope 1
2

and N0 = N ′0 ⊕ Ñ0. Let N ′1 be the subisocrystal of N1 which is dual to N ′0.
Then we want to show that the assertion of the proposition holds for some
j ∈ J ∩End(N ′0⊕N ′1

2

⊕N ′1). To simplify the notation, we may assume that N

only consists of these three summa nds.
We construct the inverse of the claimed element j ∈ J . Let j̃ ∈ {g ∈
GL(N0 ⊕ N1) | g ◦ F = F ◦ g} be in the unipotent radical of the parabolic
subgroup stabilizing the subspace N1. We assume that j̃ /∈ J , i. e. that j̃ is
not compatible with the pairing. Let v0 + v1 with v1 ∈ N1 be the image of
v0. Then Ann(v1) = Ann(v0) and f = 〈v0 + v1, F (v0 + v1)〉 6= 0. Let A be
a generator of Ann(v0) as in Lemma 2.6. Then A = aF + a0 + bV for some
a, b ∈W× and a0 ∈ W . We obtain

0 = 〈v0 + v1, A(v0 + v1)〉σ = aσfσ − bf.

This is a Qp-linear equation of degree p, thus the set of solutions is a one-
dimensional Qp-vector space in L. As A also generates Ann(v′1

2

), the number

〈v′1
2

, F (v′1
2

)〉 is also in this vector space. Hence there is an α ∈ Q×p wit h

αf = 〈v′1
2

, F (v′1
2

)〉. By multiplying v1 by a suitable factor, we may assume that

α = −1. Note that this does not change Ann(v1). This implies that

〈v0 + v′1
2

+ v1, F (v0 + v′1
2

+ v1)〉 = 0.

Besides, we have Ann(v0 + v′1
2

+ v1) = Ann(v0). The element j−1 we are

constructing will map v0 to v0 + v′1
2

+ v1. Let Ñ0 = D(v0 + v′1
2

+ v1). Then we

can extend j−1 uniquely to a linear map from N0 to Ñ0 which is compatible
with F . On N1, we define j−1 to be the identity. Then one easily checks that
j−1 : N0 ⊕ N1 → Ñ0 ⊕ N1 respects the pairing. It remains to define j−1 on
N 1

2
. Let Ñ 1

2
be the orthogonal complement of Ñ0 ⊕N1. Then Ñ 1

2
⊆ N 1

2
⊕N1
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Let j−1(v′1
2

) = u where u ∈ Ñ 1
2

is such that pN 1
2

(u) = v′1
2

. Then Ann(u) ⊆
Ann(v′1

2

). As u is contained in a simple isocrystal of slope 1
2 , this inclusion has

to be an equality. As 〈N 1
2
⊕N1, N1〉 = 0, we have 〈u, Fu〉 = 〈v′1

2

, Fv′1
2

〉. Hence

we can extend j−1 to an element of J . Then p 1
2
(j(v0+v 1

2
+v1)) = v 1

2
−v′1

2

= ṽ 1
2
.

Thus j satisfies all properties of 1.

It remains to prove 2. We may assume that j = 1. Note that there is exactly
one Dieudonné lattice of each volume in N 1

2
. Equivalently, for each α ∈ L×

there is exactly one Λ ⊂ N 1
2

with Λ∨ = αΛ. (For the rest of the proof all

dual lattices are the dual lattices inside the selfdual isocrystal N 1
2
.) We have

Λ ∩N 1
2

= c−1(p 1
2
(Λ))∨ ⊆ p 1

2
(Λ). Let Λ 1

2
be the lattice with c−1(Λ 1

2
)∨ = Λ 1

2
.

Then

Λ ∩N 1
2
⊆ Λ 1

2
⊆ p 1

2
(Λ) (4.10)

and the lengths of the two inclusions are equal. We have to show that the
length of the inclusions are both equal to m. The lattice p 1

2
(Λ) also contains

A(p 1
2
(Λ)). As ṽ(A) = m, the length of this inclusion is m. Furthermore,

Λ ∩N 1
2

= Ann(Av1)Av = Ann(Av1)Av 1
2
⊆ DAv 1

2
= ADv 1

2
= Ap 1

2
(Λ).

Note that here we only know that the length of the inclusion is ≥ m = ṽ(A1)
where A1 is a generator of Ann(Av1). Thus we obtain a second chain of inclu-
sions

Λ ∩N 1
2
⊆ Ap 1

2
(Λ) ⊆ p 1

2
(Λ).

We compare this to (4.10). To show that the length of the first inclusion of
this chain is not greater than the length of the second inclusion, we have to
show that Ap 1

2
(Λ) ⊆ Λ 1

2
. By definition of Λ 1

2
this is equivalent to Ap 1

2
(Λ) ⊆

c−1(Ap 1
2
(Λ))∨. To prove this last inclusion we use again the duality relation

for Λ. Note that Ap 1
2
(Λ) = DAv 1

2
= p 1

2
(Λ ∩ (N 1

2
⊕N1)). Let x, y ∈ N 1

2
⊕N1.

Then 〈x, y〉 = 〈p 1
2
(x), p 1

2
(y)〉. Thus the duality relation for Λ implies that

Ap 1
2
(Λ) ⊆ c−1(Ap 1

2
(Λ))∨.

For both Theorem 2 and Theorem 3 it is enough to describe a locally closed
subset of S1 whose image under the action of J is all of S1. Thus we may assume
that j = 1 and that v itself already satisfies the property of the proposition.
Especially, p 1

2
(Λ) is then determined by c.

The element v 1
2

may be modified by arbitrary elements in p 1
2
(Λ ∩ (N 1

2
⊕N1))

without changing Λ. Indeed, for each such element there is an element in Λ
whose projection to N0 ⊕ N 1

2
is the given element. Thus for fixed v0, the

projection of Λ to N0 ⊕ N 1
2

is described by the element v 1
2

varying in the
W -module

p 1
2
(Λ)/p 1

2
(Λ ∩ (N 1

2
⊕N1)) = p 1

2
(Λ)/A(p 1

2
(Λ))
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of length m which is independent of Λ. To choose coordinates for v 1
2

we use

that this module is isomorphic to W/p⌊m/2⌋W ⊕W/p⌈m/2⌉W . Under this iso-
morphism, the element v 1

2
is mapped to an element of the form

⌊m/2⌋∑

i=1

[yi]p
i−1 ⊕

m∑

i=⌊m/2⌋+1

[yi]p
i−⌊m/2⌋−1. (4.11)

Here we use that k is perfect, and [yi] is the Teichmüller representative of an
element yi of k.
Note that a(Λ) = 1 (or the condition that j = 1) implies that A(v 1

2
) is a gen-

erator of Λ∩N 1
2

and not only an arbitrary element. This is an open condition

on p 1
2
(Λ)/p 1

2
(Λ ∩ (N 1

2
⊕ N1)). More precisely, it excludes a finite number of

hyperplanes (compare [V1], Lemma 4.8).
Let now v 1

2
also be fixed. It remains to determine the set of possible v1 such

that Λ = D(v0 + v 1
2

+ v1) is a lattice with Λ∨ = cΛ. The same arguments as
in the previous case show that v1 can be chosen in an open subset of the set of
v1 with

〈v0, φv1〉+ 〈v1, φv0〉 ≡ −〈v 1
2
, φv 1

2
〉 (mod c−1W ). (4.12)

for all φ ∈ D.

Remark 4.4. Let φ ∈ D with ṽ(φ) = 2m. Then φv 1
2
∈ pmp 1

2
(Λ) ⊂ c−1Λ∨.

Especially, 〈v 1
2
, φv 1

2
〉 is in c−1W . This is later used in the form that ai =

−〈v 1
2
, F iv 1

2
〉 satisfies (6.3).

Analogously to the previous case we use (4.6) to define ξv. Then we also obtain
the analogue of Lemma 4.2.

Lemma 4.5. 1. Let M be the set of W -linear functions ξ : D → L with (4.7)
and (4.12) for i ≤ n. Then (4.6) defines a bijection between M and the
set of elements v1 ∈ N1 as above.

2. Let M be the set of functions ξ : D → L/c−1W with the same properties
as in 1. Then (4.6) defines a bijection between M and the set of equiva-
lence classes of elements v1 as above. Here two such elements are called
equivalent if their difference is in c−1(Λ0)∨1 .

5 The set of irreducible components

Lemma 5.1. Let Λ ⊂ N0⊕N1 be a lattice generated by a sublattice Λ1 ⊂ N1 and
an element v with v = v0+v1 for some v0 ∈ N0 and v1 ∈ N1. Let Λ̃ be generated
by Λ1 and v0 + ṽ1 for some ṽ1 ∈ N1. If ξṽ1(F i)σ

−i − ξṽ1(V i) = ξv1(F i)σ
−i −

ξv1(V i) for every i ∈ {1, . . . , h} then there is a j ∈ J with j(Λ) = Λ̃.

Proof. The assumption implies that 〈v0 + ṽ1 − v1, ϕ(v0 + ṽ1 − v1)〉 = 0 for
ϕ ∈ {1, V, . . . , V h} (see the reformulation of (4.4) in Section 4.1). By (2.1), the
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same holds for ϕ ∈ {F, . . . , Fh}. As dimN = 2h, the ϕ(v0 + ṽ1 − v1) for these
elements ϕ ∈ D generate N ′ = (D(v0 + ṽ1 − v1)) [1/p] ⊆ N as an L-vector
space. Especially,

〈v0 + ṽ1 − v1, ϕ(v0 + ṽ1 − v1)〉 = 0 (5.1)

for all ϕ ∈ D. Let A be a generator of Ann(v0) as in Lemma 2.6. Then (5.1) for
ϕ = ϕ′A implies that 〈v0, ϕ′A(ṽ1−v1)〉 = 0 for all ϕ′ ∈ D. Thus A(ṽ1−v1) = 0.
Let j ∈ GL(N) be defined by v0 7→ v0 + ṽ1−v1, j|N1 = id, and j ◦F = F ◦j. To
check that this is well-defined we have to verify that Aj(v0) = j(Av0) = 0. But
A(j(v0)) = A(v0+ṽ1−v1) = 0. By definition j commutes with F . Furthermore,
(5.1) implies that j ∈ G(L). Hence j ∈ J .

For v1 as above and i ∈ {1, . . . , h} let

ψi(v1) = ξv1(V i)− ξv1(F i)σ
−i

. (5.2)

Then the lemma yields the following corollary.

Corollary 5.2. Let Λ and Λ̃ be two extensions of Λ0 and Λ1 as described
in the previous section (or, in the case of an odd number of supersingular
summands, two extensions of Λ0 and Λ1 associated to the same v 1

2
) and let

v = v0 + v1 and ṽ = v0 + ṽ1 (resp. v = v0 + v 1
2

+ v1 and ṽ = v0 + v 1
2

+ ṽ1) be

the generators. Then ψi(v1) = ψi(ṽ1) for all i implies that Λ and Λ̃ are in one
J-orbit.

Let v0 ∈ N0 such that Dv0 is a lattice in N0. Then the next proposition implies
that for each (c1, . . . , ch) ∈ Lh there is a v1 ∈ N1 with ψi(v1) = ci for all i.

We fix an irreducible component of Snp
X0,1

. Then [V1], 4 describes a mor-
phism from a complement of hyperplanes in an affine space to this irre-
ducible component that is a bijection on k-valued points. Let Spec(R0) be
this open subscheme of the affine space. One first defines a suitable element
v0,R0 ∈ N0 ⊗W W (R0). The morphism is then constructed in such a way that
each k-valued point x of Spec(R0) is mapped to the lattice in N0 generated by
the reduction of σm(v0,R0) at x.

Proposition 5.3. Let R be a reduced k-algebra containing σm(R0). Let
c1, . . . , ch ∈ W (R)[1/p]. Then there is a morphism R → R′ where R′ is a
limit of étale extensions of R and a v1 ∈ N1,R′ with ψi(v1) = ci for all i. Here,
the ψi are defined with respect to the universal element σm(v0,R0) ∈ (N0)σm(R0).

For the proof we need the following lemma to simplify the occurring system of
equations.

Lemma 5.4. Let R be an Fp-algebra and let m,n ∈ N with m ≤ n. For
0 ≤ i ≤ m and 0 ≤ j ≤ n let Pij(x) ∈ (W (R)[ 1

p ])[x] be a linear combination of

Documenta Mathematica 13 (2008) 825–852



Moduli Spaces of Polarized p-Divisible Groups 843

the σl(x) = xp
l

with l ≥ 0. Assume that the coefficient of x is zero for j < i
and in W (R)× for i = j. Consider the system of equations

n∑

j=0

Pij(xj) = ai

with ai ∈ W (R)[ 1
p ] and i = 0, . . . ,m. It is equivalent to a system of equations

of the form
∑
j Qij(xj) = bi with bi ∈ W (R)[ 1

p ] such that the Qij satisfy the
same conditions as the Pij and in addition Qij = 0 if j < i.

Proof. We use a modification of the Gauss algorithm to show by induction on λ
that the system is equivalent to a system of relations of the form

∑
j Q

λ
ij(xj) =

bλi with bλi ∈ L such that the Qλij satisfy the same conditions as the Pij and

in addition Qλij = 0 if j < i and j ≤ λ. For the induction step we have to
carry out the following set of modifications for j = λ + 1 and each i > λ + 1.
If Qλij vanishes, we do not make any modification. We now assume Qλij to

be nontrivial. Let σli(x) and σlj (x) be the highest powers of x occurring in
Qλii and Qλij . If li < lj , we modify the jth equation by a suitable multiple of

σlj−li applied to the ith equation to lower lj . Else we modify the ith equation
by a suitable multiple of σli−lj applied to the jth equation to lower li. We
proceed in this way as long as none of the two polynomials Qλii and Qλij becomes
trivial. Note that the defining properties of the Pij are preserved by these
modifications. As (by induction) Qλij does not have a linear term, the linear

term of Qλii remains unchanged. Thus this process of modifications ends after
a finite number of steps with equations

∑
j Q

λ+1
ij (xj) = bλ+1

i which satisfy

Qλ+1
ij = 0 for j < i and j ≤ λ+ 1. For λ+ 1 = n, this is what we wanted.

Proof of Proposition 5.3. An element v1 ∈ N1,R′ is determined by the values of
ξv1 at any h consecutive elements of . . . , F 2, F, 1, V, V 2, . . . . The other values
of ξ are then determined by ξv1(φA) = 0 for all φ ∈ D. Here A ∈ Ann(v0) is
as in Lemma 2.6. Indeed, each of these equations for φ = F i or V i for some i
gives a linear equation with coefficients in L between the values of ξv1 at h+ 1
consecutive elements of . . . , F 2, F, 1, V, V 2, . . . . For the proof of the proposition
we take the values ξv1(F i) for i ∈ {1, . . . , h} as values determining v1. Then
all other values are linear combinations of these ξv1(F i).
The definition of ψv1 in (5.2) yields

ξv1(V i)σ
i

= ξv1(F i) + ψi(v1)σ
i

for i ∈ {1, . . . , h}. On the other hand, ξv1(V i)σ
i

is a linear combination of the

ξv1(F j)σ
i

for j ∈ {1, . . . , h}. From this we obtain a system of h equations for
the ξv1(F i) with 1 ≤ i ≤ h of the same form as in Lemma 5.4. The resulting
equations

∑
j Qij(ξv1 (F j)) = bi may be reformulated as Qii(ξv1(F i)) = ci

where ci also contains the summands corresponding to powers of F larger than
i. We can then consider these equations by decreasing induction on i. For
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each i, the polynomial Qii(x) is a linear combination of powers of x of the

form xσ
l

, and its linear term does not vanish. Thus there is a limit R′ of étale
extensions of R and ξv1(F i) ∈ W (R′)⊗Q with vp(ξv1 (F i)) ≥ vp(ci) satisfying
these equations. Note that R′ is in general an infinite extension of R, because
the equations are between elements of W (R)⊗Q and not over R itself. Given
ξv1 , Remark 3.3 shows that there is an element v1 ∈ (N1)R′ which induces ξv1 .
Indeed, choose v1 to be a suitable linear combination of the dual basis defined
there.

5.1 Proof of Theorem 2

We begin by constructing an irreducible subscheme of the subscheme of S1

where the height of the universal quasi-isogeny is 0. The k-valued points of
this subscheme correspond to lattices Λ with a(Λ) = 1 and Λ∨ = Λ. There
is a d ∈ N such that for each (c1, . . . , ch) ∈ (pdW )h, the v1 constructed in
Proposition 5.3 lies in the lattice Λ1 ⊂ N1. Let R0 as above. In the case
of an even number of supersingular summands let R1 = σm(R0). Otherwise
let σm(v0,R0) + v 1

2
∈ Nσm(R0)[y1,...,ym] where v0,R0 is as above and where v 1

2
∈

(N 1
2
)σm(R0)[y1,...,ym] is identified with the element in (4.11). The open condition

on Spec(σm(R0)[y1, . . . , ym]) that Av 1
2

is a generator and not only an element

of p 1
2
(Λ∩N 1

2
⊕N1) is equivalent to DAv 1

2
= ADv 1

2
. This condition is satisfied

by all y1 that do not lie in some finite-dimensional Qp-subvector space of k
determined by the kernel of A (compare the proof of Proposition 4.3 1.). In
this case let R1 be the extension of σm(R0) corresponding to this affine open
subscheme. Let in both cases

R = R1[xi,j | i ∈ {1, . . . , h}, j ∈ {0, . . . , d− 1}].

For i ∈ {1, . . . , h} let ci =
∑d−1
j=0 [xi,j ]p

j ∈ W (R). Let Spec(R′) and v1 ∈ NR′

be as in Proposition 5.3. Let v = σm(v0,R0)+v1, resp. v = σm(v0,R0)+v 1
2

+v1.

Let S = Spec(R) be an irreducible component of the affine open subscheme of
Spec(R′) consisting of the points x with v1,x ∈ (Dvx)∨1 \(F (Dvx)∨1 +V (Dvx)∨1 ).
We denote the image of v in NR also by v. A s we already know that S1 is
dense, this open subset is nonempty. Let R̃ be the inverse image of R under
σh as in Proposition 3.2. Note that vp(detF ) = h, whereas vp(detF |N0) = m.

Let S̃ = Spec(R̃). The next step is to define an associated morphism ϕ : S̃ →
Mred such that in each k-valued point x of S̃, the image inMred(k) corresponds
to the lattice generated by the reduction vx of v at x. By Proposition 3.2 it
is enough to show that there is a j ∈ J such that for each x ∈ S̃(k), we
have vx ∈ jΛmin and vp(det j) = max{vp(det j′) | vx ∈ j′Λmin}. Let η be the

generic point of S̃ and let jη ∈ J be such a maximizing element for η. Then
the same holds for each k-valued point in an open and thus dense subscheme
of S̃. As the property vx ∈ jηΛmin is closed, it is true for each x ∈ S̃(k).
In [V1], 4 it is shown that for lattices Λ ⊂ N with a(Λ) = 1, the difference
vol(Λ)−max{vp(det j′) | Λ ⊂ eqj′Λmin} is a constant only depending on N . In
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our case, the duality condition shows that vol(Dvx) is constant on S̃ and only
depending on c and N . Thus the maximum is also constant. Hence in every
k-valued point, vp(det jη) is equal to this maximum, which is what we wanted

for the existence of ϕ : S̃ →Mred. We obtain an irreducible subscheme ϕ(S̃)
of S1 ⊆Mred.

To show that J acts transitively on the set of irreducible components we have
to show that for each x ∈ S1(k) there is an element j ∈ J such that jx lies
in the image of ϕ. Let Λ ⊂ N be the lattice corresponding to x. The first
step is to show that there is a j ∈ J such that j(Λ) is selfdual (and not only
up to a scalar c(Λ)). It is enough to show that there is a j ∈ J such that
vp(c(Λ)) = vp(c(jΛ)) + 1. Such an element is given by taking the identity on

N1, multiplication by p on N0, and the map e
1
2

i 7→ e
1
2

i+1 on N 1
2
. Here we use

the notation of Remark 2.4 for the basis of N . Next we want to apply an
element of J modifying Λ0. We have a(p0(Λ)) = a(Λ ∩ N1) = 1. From the
classification of lattices with a = 1 in [V1], 4 we obtain that Jnp

X0
(which may

be considered as a subgroup of J by mapping j ∈ Jnp
X0

to the map consisting of
j and its dual on N1) is acting transitively on the set of irreducible components
ofMnp

X0,red
. Thus by possibly multiplying with such an element we assume that

Λ0 lies in the fixed irreducible component chosen for Proposition 5.3. Recall
from Section 4.2 that in the case of an odd number of supersingular summands,
there is a j ∈ J mapping the element v 1

2
to the irreducible family described

there. It remains to study the possible extensions of the lattices Λ0 and Λ1

(or in the second case of the sublattice of N0 ⊕N 1
2

determined by Λ0 and v 1
2

and of Λ1). They are given by the associated elements v1. Fix a generating
element σm(v0) of Λ0 (in the second case also an element v 1

2
) and let v1 be an

element associated to the e xtension Λ with a(Λ) = 1. Then Lemma 5.1 and
the construction of S show that there is an element of J mapping Λ to a lattice
associated to a point of S inducing the same ψi as Λ. Thus the image of ϕ(S̃)
under J is S1, which proves the theorem.

6 Dimension

We use the same notation as before, namely Λ is the lattice corresponding to
a point of S1, generated by an element v = v0 + v 1

2
+ v1 with vi ∈ Ni. Again,

A is a generator of Ann(v0) and Λ0 = p0(Λ) and Λ1 = Λ ∩N1.
To determine the dimension of S1 and ofMred we have to classify the elements
v1 of Section 4 up to elements in c−1Λ1 and not up to the (locally finite) action
of J which we used in Section 5. To do so, it is more useful to use the values
of ξv1 as coordinates instead of the values of ψv1 .

We investigate the set of possible values ξ(φ) ∈ L/c−1W for φ ∈ D using
decreasing induction on ṽ(φ) ≥ 0. Here, ṽ is as in (2.6). Recall from Lemma 4.2
2. that the use of functions ξ with values in L/c−1W instead of L corresponds
to considering v1 as an element of N1/Λ1. But as v1 and v1 + δ with δ ∈ Λ1

lead to the same lattice Λ, this is sufficient to determine the set of possible
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extensions of Λ0 and Λ1.
Instead of equations (4.7) and (4.8) we consider the following slightly more
general problem to treat at the same time the case of an odd number of super-
singular summands. There, (4.8) is replaced by (4.12). We want to consider
W -linear functions ξ : D → L/c−1W with

ξ(F i)− ξ(V i)σi ≡ ai (mod c−1W ) (6.1)

ξ(ψA) ≡ 0 (mod c−1W ) (6.2)

for all ψ ∈ D. Here ai ∈ L are given elements satisfying

aip
ji ∈ c−1W if 2ji + i ≥ 2m. (6.3)

Let Di = {φ ∈ D | ṽ(φ) ≥ i}. We call a W -linear function

ξi0 : Di0 → L/(c−1W )

satisfying (6.1) and (6.2) a partial solution of level i0. Then the induction
step consists in determining the possible partial solutions ξi0 of level i0 leading
to a fixed solution of level i0 + 1. Note that the assumption on ai implies
that there exists the trivial partial solution ξ2m ≡ 0 of level 2m inducing
partial solutions of all higher levels. Recall that we assumed F and V to be
elementwise topologically nilpotent on N . Thus for each function ξ with (6.1)
and (6.2) there is a level i such that ξ induces the trivial partial solution of
level i.
Assume that we already know the ξ(φ) for ṽ(φ) > i0 and want to determine
its possible values for ṽ(φ) = i0. Then we know in particular ξ(pφ) = pξ(φ) ∈
L/c−1W , or ξ(φ) ∈ L/p−1c−1W . We want to determine the possible liftings
modulo c−1W .
A basis of the k-vector space Di0/Di0+1 is given by the i0 + 1 monomials

F i0 , V F i0−1 = pF i0−2, . . . , V i0−1F = pV i0−2, V i0 .

Equation (6.1) leads to ⌊i0/2⌋ relations between the values of ξ on these mono-
mials. Recall that ṽ(A) = m. Thus if ṽ(φ) = i0−m for some φ ∈ D, (6.2) leads
to a relation between the value of ξ on LT(φA) ∈ Di0 and values on Di0+1. As
the ξ are linear, it is sufficient to consider the max{0, i0−m+ 1} relations for
φ ∈ {F i0−m, pF i0−m−2, . . . , V i0−m} ∩ Di0−m. This count of relations leads to
the notation

r(i0) = ⌊i0/2⌋+ max{0, i0 −m+ 1}.
Then i0 + 1 ≤ r(i0) is equivalent to i0 ≥ 2m.
The following proposition is the main tool to prove Theorem 3 on the dimension
of the moduli spaces.

Proposition 6.1. 1. Let i0 ≥ 2m. Then there is a partial solution ξi0 of
(6.1) and (6.2) of level i0. If we fix ξi0 and an l ∈ N with l ≥ i0, there are
only finitely many other partial solutions ξ̃i0 of level i0 such that ξi0 − ξ̃i0
induces the trivial partial solution of level l of the associated homogenous
system of equations.
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2. Let i0 + 1 > r(i0) and let ξi0+1 be a partial solution of (6.1) and (6.2)
of level i0 + 1. Then to obtain a partial solution ξi0 of level i0 inducing
ξi0+1, one may choose the lifts to L/c−1W of the values of ξi0 at the first
i0 + 1− r(i0) monomials pαV β with 2α+β = i0 and β ≤ 2(i0− r(i0)) + 1
arbitrarily. Each of the remaining values lies in some finite nonempty set
depending polynomially on the values on the previous monomials.

Proof. Note that the existence statement in the first assertion is satisfied as
the condition on the ai yields that there is the trivial solution of level 2m. We
show the two assertions simultaneously. Let ξi0+1 be a fixed partial solution
of level i0 + 1 for any i0. It is enough to show that for a lift ξi0 , the values
of the first max{0, i0 + 1− r(i0)} variables can be chosen arbitrarily, and that
the remaining values then lie in some finite set depending polynomially on the
values on the previous variables. If i0 + 1 > r(i0), we have to show that this
finite set is nonempty. We investigate the relations (6.1) and (6.2) more closely.
The first set of relations shows that ξi0(paF b) with 2a+ b = i0 is determined
by ξi0(paV b). Thus it is sufficient to consider this latter set of values. Be-
sides, we have to consider (6.2) for ψ ∈ {V i0−m, pV i0−m−2, . . . , F i0−m}. For
B ∈ D let LT(B) as in Lemma 2.6. Then the equations for the values of
ξi0 relate ξi0(LT(ψA)) to something which is known by the induction hypoth-
esis. Let us recall the description of LT(A) from Lemma 2.6 3. Let h′ be
the number of supersingular summands of N0. Let j ≥ 0 with i0 −m− j ≥ 0.
Then LT(V i0−m−jF jA) is a linear combination of V i0−jF j , . . . , V i0−j−h

′

F j+h
′

whose coefficients are Teichmüller representatives of elements of k. Further-
more, the coefficients of ξi0(V i0−jF j) and ξi0 (V i0−j−h

′

F j+h
′

) are units in W .
Using (6.1) we may replace values of ξi0 at monomials in F by σ-powers of the
values of the corresponding monomials in V . We thus obtain a relation between
a polynomial in the remaining ⌈(i0+1)/2⌉ values of ξi0 and an expression which
is known by induction. For 2j ≤ i0, the first summand ξi0 (V i0−jF j) remains
the variable associated to the highest power of V which occurs linearly in this
polynomial. In the following we ignore all equations for 2j > i0. They only
occur for i0 > 2m, a case where we only want to prove the finiteness of the set
of solutions. The system of equations with 2j ≤ i0 is of the form considered
in Lemma 5.4. The proof of this Lemma for coefficients in L/c−1W is the
same as for coefficients in L. Thus we obtain that the lifts of the values at the
i0 + 1− r(i0) variables associated to the largest values of j can be chosen freely
and the other ones have to satisfy some relation of the form Qii(x) ≡ bi for
some given bi. As the Qii have a linear term they are nontrivial. This implies
that the set of solutions of these equations is nonempty and finite and dep ends
polynomially on the previous values.

6.1 Proof of Theorem 3

By Lemma 3.1 it is enough to show that S1 is equidimensional of the claimed
dimension. From [V1], 4 we obtain that the connected components of Snp

X,1

are irreducible. The discrete invariant with values in Jnp/(Jnp ∩ Stab(Λmin))
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distinguishing the components is given by Λ 7→ jΛ with Λ ⊆ jΛΛmin and

vp(det jΛ) = max{vp(det j) | j ∈ Jnp,Λ ⊆ jΛmin}.

Especially, jΛ is constant on each connected component of S1 ⊆ Snp
X,1. Besides,

p0(jΛΛmin) determines the connected component of p0(Λ) = Λ0 inside SX0,1.
Thus we may fix an irreducible component of SX0,1 and determine the dimen-
sion of the union of connected components of S1 such that Λ0 is in this fixed
component. Let R0 and R1, v0 and v 1

2
be as in the proof of Theorem 2. Again

we use the functions ξ defined with respect to σm(v0) instead of v0. Fix an
arbitrary partial solution ξ2m of (6.1) and (6.2) of level 2m. Let

R2 = R1[xiβ | i ≥ 0, 1 ≤ β ≤ i+ 1− r(i)].

We use decreasing induction on i to lift ξ2m to a partial solution of level i over
an étale extension Ri2 of R2. Let R2m

2 = R2. Assume that a lift ξi+1 is given.
Then Proposition 6.1 shows that the values at i + 1 − r(i) monomials with
ṽ = i may be lifted arbitrarily to a value of ξi. If pαV β with 2α + β = i and
β ≤ i+ 1− r(i) is such a monomial we write (using the induction hypothesis)
ξi+1(pα+1V β) =

∑
i<vp(c−1)[ai]p

i with ai ∈ Ri+1
2 . Then we choose

ξi(pαV β) =
∑

i<vp(c−1)

[ai]p
i−1 + [xiβ ]pvp(c−1)−1.

Let Ri2 be the extension of Ri+1
2 given by adjoining further variables xiβ for

larger β parametrizing the other values of the lift of ξi+1 to ξi and with relations
as in Proposition 6.1, 2. and its proof. More precisely, Ri2 is obtained fromRi+1

2

by a finite number of extensions given by equations of the form Qjj(x) ≡ bj
(mod c−1W ) where Qjj(x) is a polynomial that is a finite linear combination

of the monomials xp
l

with l ≥ 0 such that the coefficient of x is in W (Ri+1
2 )×.

This implies that Ri2 is a finite étale extension of Ri+1
2 . Let R3 = R0

2. Let
v1,R3 ∈ N1,R3 be such that ξv1,R3

= ξ0. Its existence follows again from the
existence of the dual basis in Remark 3.3. Let v = σm(v0,R0) + v1,R3 , or
v = σm(v0,R0) + v 1

2
+ v1,R3 . As in the proof of Theorem 2 let S = §pec(R)

be an irreducible component of the affine open subscheme of Spec(R3) over
which Dv contains (Dv)∨1 . As we want to compute the dimension of S1, we
only have to consider these subschemes. Let R̃ = σ−m(R) as in Proposition
3.2. The same argument as in the proof of Theorem 2 shows that there is
a morphism ϕ : Spec(R̃) → Mred mapping x ∈ Spec(R̃)(k) to the lattice
generated by vx. The finiteness statements in Proposition 6.1 imply that for
each given y ∈ S1 (and thus given ξ) there is an open neighborhood in S1

which only contains points of ϕ(Spec(R̃)) for a finite number of choices of an
irreducible component of SX0,1 and a corresponding component S. Besides,
the construction of R3 together with the description of the k-valued points of
S1 shows that for each y ∈ S1(k) there is exactly one irreducible component
of SX0,1, one corresponding component S, and one point x ∈ Spec(R̃)(k) such
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that ϕ(x) = y. Thus dimMred = dimS1 is the maximum of dim Spec(R̃) for
all irreducible components S. It remains to show that this is equal to the right
hand side of (1.2). Note that Ri is equidimensional for i = 0, 1, 2, 3. From
the construction of S we see that in case of an even number of supersingular
summands,

dim Spec(R̃) = dimS = dimR3 = dimR2

= dimMnp
X0,red

+
∑

i≥0

max{0, i+ 1− r(i)}. (6.4)

In the other case,

dim Spec(R̃) = dimS = dimR3 = dimR2

= dimMnp
X0,red

+
∑

i≥0

max{0, i+ 1− r(i)} +m. (6.5)

The last summand corresponds to the choice of v 1
2
.

From the decomposition of N into l simple summands N j we obtain a decom-
position N0 =

⊕l0
j=1N

j with l0 = ⌊l/2⌋. Let again λj = mj/(mj + nj) be the

slope of N j . Recall from [V1], Theorem B that

dimMnp
X0,red

=

l0∑

j=1

(mj − 1)(nj − 1)

2
+

∑

{j,j′|j<j′≤l0}
mjnj′ .

We denote the right hand side of (1.2) by D. Let us first consider the case
of an even number of supersingular summands. Then by the symmetry of the
Newton polygon we obtain

D − dimMnp
X0,red

=
1

2

∑

j<j′≤l
mjnj′ +

m

2
−

∑

j<j′≤l0
mjnj′ .

Again by the symmetry of the Newton polygon this is equal to

=

l0∑

j=1

l∑

j′=l0+1

mjnj′

2
+
m

2

=

l0∑

j,j′=1

mjmj′

2
+
m

2

=
m(m+ 1)

2
.

In the other case, the same calculation shows that

D − dimMnp
X0,red

=
m(m+ 1)

2
+ 2

l0∑

j=1

mjnl0+1

2

=
m(m+ 1)

2
+m.
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In the last step we used that N l0+1 is supersingular, hence nl0+1 = 1.
On the other hand (6.4) implies that in the case of an even number of super-
singular summands,

dimMred − dimMnp
X0,red

=
∑

i≥0

max{0, i+ 1− r(i)}

=
m−1∑

i=0

(⌊
i

2

⌋
+ 1

)
+

2m−1∑

i=m

(⌊
i

2

⌋
− i+m

)

= m+
2m−1∑

i=0

⌊
i

2

⌋
−
m−1∑

i=0

i

=
m(m+ 1)

2
.

The same calculation with (6.5) shows that for an odd number of supersingular
summands

dimMred − dimMnp
X0,red

=
m(m+ 1)

2
+m.

Together with the calculation of D−dimMnp
X0,red

, this implies Theorem 3.

7 Connected components

In this section we determine the set of connected components of Mred. The
reduction to the bi-infinitesimal case in Section 2.3 shows that Theorem 1
follows from the next theorem.

Theorem 7.1. Let X be bi-infinitesimal and non-trivial. Then

κ :Mred(k) → Z

Λ 7→ vp(c(Λ)),

where Λ∨ = c(Λ) · Λ, induces a bijection

π0(Mred) ∼= Z.

Proof. From Theorem 2 we obtain a J-equivariant surjection π : J ։

π0(Mred). Besides, the map κ induces a surjection π0(Mred)→ Z. We choose
the base point of M to be a minimal p-divisible group. Let Λmin be the cor-
responding lattice in N . An element jΛmin with j ∈ J is in the kernel of κ if
and only if (jΛmin)∨ = jΛmin. This is equivalent to jΛmin = j′Λmin for some
j′ ∈ J ∩ Sp2h(L). Thus we have to show that J ∩ Sp2h(L) is mapped to a
single connected component ofMred. Our choice of the base point implies that
Stab(Λmin) = K. Thus the surjection π maps J ∩K to the component of the
identity. Note that J ∩ Sp2h(L) = Jder(Qp) where Jder is the derived group of
J . Hence the elements of (J ∩ Sp2h(L))/(J ∩K) correspond to vertices in the
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building of Jder. The building of Jder is connected. To show that all vertices
correspond to points in one connected component ofMred, it is thus enough to
show that if Λ0,Λ1 are the lattices corresponding to two such vertices such that
Λ0 ∩ Λ1 = Λ is of colength 1 in Λ0 and Λ1, then the two lattices correspond
to points in the same connected component of Mred. As a W -module Λ0 is
generated by Λ and v0 for some v0 ∈ N . As the slopes of F are in (0, 1) we have
Fv0, V v0 ∈ Λ. Similarly Λ1 is generated by Λ and some v1 with Fv1, V v1 ∈ Λ.
For a ∈ A1(k) let Λa = 〈Λ, v0+a(v1−v0)〉. As Λ0 and Λ1 are selfdual one easily
sees that Λa is selfdual for each a. By [V1], Lemma 3.4 there is a morphism
A1 →Mnp

red(X) mapping each point a as above to the point ofMnp
red(X) corre-

sponding to Λa. As all Λa are selfdual, this induces a corresponding morphism
f : A1 →Mred. Hence f(0) and f(1), the points corresponding to Λ0 and Λ1,
are in the same connected component of Mred.
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