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ABSTRACT. For many classical moduli spaces of orthogonal type there
are results about the Kodaira dimension. But nothing is known in the
case of dimension greater than 19. In this paper we obtain the first
results in this direction. In particular the modular variety defined
by the orthogonal group of the even unimodular lattice of signature
(2,8m + 2) is of general type if m > 5.
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1 MODULAR VARIETIES OF ORTHOGONAL TYPE

Let L be an integral indefinite lattice of signature (2,n) and ( , ) the associated
bilinear form. By D we denote a connected component of the homogeneous
type IV complex domain of dimension n

Dy = {[w] € (L ®C) | (w,w) =0, (w,T) > 0}

O*(L) is the index 2 subgroup of the integral orthogonal group O(L) that
leaves Dy, invariant. Any subgroup I' of O" (L) of finite index determines a
modular variety

FL(T) =T\ Dy.
By [BB] this is a quasi-projective variety.
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2 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

For some special lattices L and subgroups I' < OT(L) one obtains in this
way the moduli spaces of polarised abelian or Kummer surfaces (n = 3, see
[GH]), the moduli space of Enriques surfaces (n = 10, see [BHPV]), and the
moduli spaces of polarised or lattice-polarised K3 surfaces (0 < n < 19, see
[Nik1, Dol]). Other interesting modular varieties of orthogonal type include
the period domains of irreducible symplectic manifolds: see [GHS3].

It is natural to ask about the birational type of F.(I"). For many classical
moduli spaces of orthogonal type there are results about the Kodaira dimension,
but nothing is known in the case of dimension greater than 19. In this paper we
obtain the first results in this direction. We determine the Kodaira dimension
of many quasi-projective varieties associated with two series of even lattices.
To explain what these varieties are, we first introduce the stable orthogonal
group O(L) of a nondegenerate even lattice L. This is defined (see [Nik2] for
more details) to be the subgroup of O(L) which acts trivially on the discrim-
inant group Ap, = LY/L, where LY is the dual lattice. If I' < O(L) then we
write I' = ' N O(L). Note that if L is unimodular then O(L) = O(L).

The first series of varieties we want to study, which we call the modular varieties
of unimodular type, is

]:I(T) = O+(II278m+2)\DII2,Sm,+2' (1)

F I(T) is of dimension 8m + 2 and arises from the even unimodular lattice of
signature (2,8m + 2)

II2,8m+2 =2U D mEg(—l),

where U denotes the hyperbolic plane and FEs(—1) is the negative definite
lattice associated to the root system Eg. The variety F ﬁ) is the moduli space
of elliptically fibred K3 surfaces with a section (see e.g. [CM, Section 2]). The
case m = 3 is of particular interest: it arises in the context of the fake Monster
Lie algebra [B1].

The second series, which we call the modular varieties of K3 type, is

+ o (m
(L5 NP (2)

A =5
fQ(dm) is of dimension 8m + 3 and arises from the lattice

LS = 2U @ mEs(—1) @ (—2d),

where (—2d) denotes a lattice generated by a vector of square —2d.
The first three members of the series fé?) have interpretations as moduli
spaces. }-2(521) is the moduli space of polarised K3 surfaces of degree 2d. For

m = 1 the 11-dimensional variety .7-"2(;) is the moduli space of lattice-polarised
K3 surfaces, where the polarisation is defined by the hyperbolic lattice (2d) ®

Eg(—1) (see [Nikl, Dol]). For m = 0 and d prime the 3-fold .7-"2(2) is the moduli
space of polarised Kummer surfaces (see [GH]).
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HIRZEBRUCH-MUMFORD PROPORTIONALITY AND ... 3

THEOREM 1.1 The modular varieties of unimodular and K3 type are varieties
of general type if m and d are sufficiently large. More precisely:

(i) If m > 5 then the modular varieties fl(;n) and .7-'2(;”) (for any d > 1) are
of general type.

(ii) For m = 4 the varieties .7-"2(3) are of general type if d > 3 and d # 4.

(iii) For m = 3 the varieties .7-"2(3) are of general type if d > 1346.

(iv) For m =1 the varieties .7-"2(;) are of general type if d > 1537488.

REMARK. The methods of this paper are also applicable if m = 2. Using them,
one can show that the moduli space .7-'2(3) of polarised K3 surfaces of degree 2d
is of general type if d > 231000. This case was studied in [GHS2], where, using
a different method involving special pull-backs of the Borcherds automorphic
form @15 on the domain Dyy, ,,, we proved that .7-'2(3) is of general type if d > 61
or d = 46, 50, 54, 57, 58, 60.

The methods of [GHS2] do not appear to be applicable in the other cases
studied here. Instead, the proof of Theorem 1.1 depends on the existence of a
good toroidal compactification of Fr,(I'), which was proved in [GHS2], and on
the exact formula for the Hirzebruch-Mumford volume of the orthogonal group
found in [GHS1].

We shall construct pluricanonical forms on a suitable compactification of the
modular variety F7(I') by means of modular forms. Let I' < O"(L) be a
subgroup of finite index, which naturally acts on the affine cone D} over Dr,.
In what follows we assume that dim Dy, > 3.

DEFINITION 1.2 A modular form of weight k and character x: I' — C* with
respect to the group I' is a holomorphic function

F:D; —C
which has the two properties
F(tz) = t7*F(z) VteC,
F(g(z)) = x(9)F(z) Vgel.

The space of modular forms is denoted by My (T, x). The space of cusp forms,
i.e. modular forms vanishing on the boundary of the Baily—Borel compactifi-
cation of I'\Dy, is denoted by Sk(T', x). We can reformulate the definition of
modular forms in geometric terms. Let F' € My, (T, detk) be a modular form,
where n is the dimension of Dy,. Then

F(dzZ)* € HY(Fp()°, Q%F),

where dZ is a holomorphic volume form on Dp, €2 is the sheaf of germs of
canonical n-forms on Fr(I') and Fr(I')° is the open smooth part of Fr(I")
such that the projection 7 : Dy, — I'\Dy, is unramified over Fp,(I')°.
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4 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

The main question in the proof of Theorem 1.1 is how to extend the form
F(dZ)* to FL(T) and to a suitable toroidal compactification F,(I')**. There
are three possible kinds of obstruction to this, which we call (as in [GHS2])
elliptic, reflective and cusp obstructions. Elliptic obstructions arise if Fp,(T")t*
has non-canonical singularities arising from fixed loci of the action of the group
I'. Reflective obstructions arise because the projection 7 is branched along
divisors whose general point is smooth in Fp,(I"). Cusp obstructions arise when
we extend the form from Fp(T") to Fr(I')*".

The problem of elliptic obstructions was solved for n > 9 in [GHS2].

THEOREM 1.3 ([GHS2, Theorem 2.1]) Let L be a lattice of signature (2,n)
withn > 9, and let T < O (L) be a subgroup of finite index. Then there exists
a toroidal compactification Fr,(T')*" of Fr(T') = I'\Dy, such that Fp(T')*" has
canonical singularities and there are no branch divisors in the boundary. The
branch divisors in Fr,(T") arise from the fixed divisors of reflections.

Reflective obstructions, that is branch divisors, are a special problem related
to the orthogonal group. They do not appear in the case of moduli spaces
of polarised abelian varieties of dimension greater than 2, where the modular
group is the symplectic group. There are no quasi-reflections in the symplectic
group even for g = 3.

The branch divisor is defined by special reflective vectors in the lattice L. This
description is given in §2. To estimate the reflective obstructions we use the
Hirzebruch-Mumford proportionality principle and the exact formula for the
Hirzebruch-Mumford volume of the orthogonal group found in [GHS1]. We do
the numerical estimation in §4.

We treat the cusp obstructions in §3, using special cusp forms of low weight
(the lifting of Jacobi forms) constructed in [G2] and the low-weight cusp form
trick (see [G2] and [GHS2)).

2 THE BRANCH DIVISORS

To estimate the obstruction to extending pluricanonical forms to a smooth

+
projective model of Fr(O (L)) we have to determine the branch divisors of
the projection

7Dy — Fr(0 (L)) =0 (L)\Dy. (3)

According to [GHS2, Corollary 2.13] these divisors are defined by reflections
o, € O (L), where

coming from vectors r € L with 2 < 0 that are stably reflective: by this we

. s ..ot
mean that r is primitive and o, or —o, isin O (L). By a (k)-vector for k € Z
we mean a primitive vector r with r? = k.
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HIRZEBRUCH-MUMFORD PROPORTIONALITY AND ... 5

Let D be the exponent of the finite abelian group A; and let the divisor
div(r) of r € L be the positive generator of the ideal (I,L). We note that
r* = r/div(r) is a primitive vector in LY. In [GHS2, Propositions 3.1-3.2] we
proved the following.

LEMMA 2.1 Let L be an even integral lattice of signature (2,n). If o, € 6+(L)
then r? = —2. If —0, € 6+(L), then r? = —2D and div(r) = D = 1 mod 2 or
r? = —D and div(r) = D or D/2.

We need also the following well-known property of the stable orthogonal group.

LEMMA 2.2 For any sublattice M of an even lattice L the group 6(M) can be
considered as a subgroup of O(L).

Proof. Let M+ be the orthogonal complement of M in L. We have as usual
MaeM*+cLcLYcM @M.

We can extend g € 6(M) to M @& M~ by putting g|,,. = id. It is clear that

g € O(M @& M%), For any IV € LV we have g(IV) € IV + (M & M*). In

particular, g(I) € L for any [ € L and g € O(L). O

We can describe the components of the branch locus in terms of homogeneous
domains. For r a stably reflective vector in L we put

Hy ={[w] e P(L ©C) [ (w,r) =0},

and let A/ be the union of all hyperplane sections H, N Dy over all stably
reflective vectors r.

PROPOSITION 2.3 Let r € L be a stably reflective vector: suppose that r and
L do not satisfy D = 4, r> = —4, div(r) = 2. Let K, be the orthogonal
complement of r in L. Then the associated component w(H, N Dr) of the

branch locus N is of the form 6+(Kr)\DK7,.
Proof. We have H, N Dy, = P(K,) NDy, = Dkg,. Let
~+
I, ={p €0 (L) | w(K) = K, }. (4)

Ik, maps to a subgroup of OF(K,). The inclusion of O(K,) in O(L)
(Lemma 2.2) preserves the spinor norm (see [GHS1, §3.1]), because K, has
signature (2,n — 1) and so 6+(K,.) becomes a subgroup of (~)+(L).

Jr
Therefore the image of I'k, contains O (K,) for any r. Now we prove that

this image coincides with 6+(KT) for all r, except perhaps if D = 4, r? = —4
and div(r) = 2.

DOCUMENTA MATHEMATICA 13 (2008) 1-19



6 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

Let us consider the inclusions
(MeK.cLcLVc({) aK.
By standard arguments (see [GHS2, Proposition 3.6]) we see that

|det L| - |r?|
div(r)?

2
r
|det K| = and [L:(r)® K,] = dllV(7|”) =1 or 2.

If the index is 1, then it is clear that the image of 'k, is 6+(K,«). Let us
assume that the index is equal to 2. In this case the lattice (r)" is generated
by V' = —r/(r,7) = r*/2, where r* = r/div(r) is a primitive vector in LY. In
particular 7V represents a non-trivial class in (r)" @ KY modulo LY. Let us
take kY € KV such that k¥ ¢ LY. Then k¥ +r¥ € LY and

oY) — kY =rY —p(rY) mod L.
We note that if ¢ € Tk, then ¢(r) = £r. Hence

S(kY) — kY = 0 mod L ifep(r)=r
|7 mod L if o(r) =—r

Since ¢(r*) = r* mod L, we cannot have ¢(r) = —r unless div(r) = 1 or 2.
Therefore we have proved that (V) = kY mod K, (K, = KY N L), except
possibly if D =4, r2 = —4, div(r) = 2. O

The group 6+(L) acts on N. We need to estimate the number of components
of 6+(L) \ M. This will enable us to estimate the reflective obstructions to
extending pluricanonical forms which arise from these branch loci.

For the even unimodular lattice I3 gy, +2 any primitive vector r has div(r) = 1.
Consequently r is stably reflective if and only if 72 = —2.

For L(;Z;) the reflections and the corresponding branch divisors arise in two
different ways, according to Lemma 2.1. We shall classify the orbits of such
vectors.

PROPOSITION 2.4 Suppose d is a positive integer.

(1) Any two (—2)-vectors in the lattice Il gm+o are equivalent modulo
O™ (II38m+2), and the orthogonal complement of a (—2)-vector r is iso-
metric to

K7 =U@mBs(~1) & (2).

(ii) There is one (~)+(Lézn))—orbit of (—2)-vectors r in L7 with div(r) = 1. If

d = 1 mod 4 then there is a second orbit of (—2)-vectors, with div(r) = 2.
The orthogonal complement of a (—2)-vector r in Lg;) is isometric to

K5 = U@ mEs(~1) @ (2) @ (~2d),
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HIRZEBRUCH-MUMFORD PROPORTIONALITY AND ... 7
if div(r) = 1, and to

m 1 2
N2(d ) = U®mEs(—1)® (l—d 1) )

=
if div(r) = 2.
)

iii) The orthogonal complement of a (—2d)-vector r in L™ is isometric to
g 2d

IIQ,8m+2 =2U D mEg(—l)
if div(r) = 2d, and to
K\™ =UemEs(-1)® ()@ (=2) or Thsmes =UBU(2)@mEs(—1)
if div(r) = d.

(iv) Suppose d > 1. The number of (~)(Lg§))—orb1'ts of (—2d)-vectors with
div(r) = 2d is 2°Y. The number of(N)(LéZL))—orbjts of (—2d)-vectors with
div(r) =d is

2r(d) ifd isodd or d =4 mod §;
2°(d+1if d =0 mod 8;
20()=1if d=2 mod 4.

Here p(d) is the number of prime divisors of d.

Proof. If the lattice L contains two hyperbolic planes then according to the

well-known result of Eichler (see [E, §10]) the 0" (L)-orbit of a primitive vector
1 € L is completely defined by two invariants: by its length (I,1) and by its
image {* + L in the discriminant group Ay, where {* =1/ div(l).

i) If w is a primitive vector of an even unimodular lattice I3 g2 then div(u) =
1 and there is only one O(II2 gm42)-orbit of (—2)-vectors. Therefore we can
take r to be a (—2)-vector in U, and the form of the orthogonal complement is
obvious.

ii) In the lattice Lg;) we fix a generator h of its (—2d)-part. Then for any

r e Lg;) we can write r = u 4 xh, where u € Il g2 and x € Z. It is clear
that div(r) divides 2. If f|div(r), where f = 2, d or 2d, then the vector u
is also divisible by f. Therefore the (—2)-vectors form two possible orbits of
vectors with divisor equal to 1 or 2. If 72 = —2 and div(r) = 2 then u = 2ug
with ug € 2U @mEs(—1) and we see that in this case d =1 mod 4. This gives
us two different orbits for such d. In both cases we can find a (—2)-vector r
in the sublattice U @ (—2d). Elementary calculation gives us the orthogonal
complement of r.

iii) This was proved in [GHS2, Proposition 3.6] for m = 2. For general m the
proof is the same.
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8 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

iv) To find the number of orbits of (—2d)-vectors we have to consider two cases.
a) Let div(r) = 2d. Then r = 2du + zh and r* = (x/2d)h mod L, where u €
II5 8m+2 and z is modulo 2d. Moreover (r,7) = 4d?(u,u) — 2*2d = —2d. Thus
22 =1 mod 4d. This congruence has 2°(9) solutions modulo 2d. For any such
x mod 2d we can find a vector u in 2U & mFEg(—1) with (u,u) = (2% — 1)/2d.
Then r = 2du + xh is primitive (because u is not divisible by any divisor of x)
and (r,r) = —2d.

b) Let div(r) = d. Then r = du+xh, where u is primitive, r* = (z/d)h mod L
and z is modulo d. We have (r*,7*) = —222/d mod 2Z and z?> = 1 mod d.
For any solution modulo d we can find as above u € 2U & mFEs(—1) such that
r = du + xh is primitive and (r,r) = —2d. It is easy to see that the number of
solutions {x mod d|2? =1 mod d} is as stated. O

REMARK. To calculate the number of the branch divisors arising from vectors
r with 72 = —2d one has to divide the corresponding number of orbits found
in Proposition 2.4(iv) by 2 if d > 2. This is because +r determine different
orbits but the same branch divisor. For d = 2 the proof shows that there is
one divisor for each orbit given in Proposition 2.4(iv).

3 MODULAR FORMS OF LOW WEIGHT

In this section we let L = 2U @ Lo be an even lattice of signature (2, n) with
two hyperbolic planes. We choose a primitive isotropic vector ¢; in L. This
vector determines a O-dimensional cusp and a tube realisation of the domain
Dr. The tube domain (see the definition of H(L;) below) is a complexification
of the positive cone of the hyperbolic lattice L1 = ¢i /c;. If div(c;) = 1 we call
this cusp standard (as above, by [E] there is only one standard cusp). In this
case L1 = U @ Lg. In [GHS2, §4] we proved that any 1-dimensional boundary
component of 6+(L) \ DL, contains the standard 0-dimensional cusp if every
isotropic (with respect to the discriminant form: see [Nik2, §1.3]) subgroup of
Ay is cyclic.

Let us fix a 1-dimensional cusp by choosing two copies of U in L. (One has
to add to ¢; a primitive isotropic vector co € Lj with div(cz) = 1). Then
L=U&®L =U& (U & Ly) and the construction of the tube domain may be
written down simply in coordinates. We have

H(Ly) =Hn ={Z = (2n,...,21) € H; x C" % x Hy; (Im Z,Im Z), > 0},

where Z € L1 ® C and (z,,—1,...,22) € Lo ® C. (We represent Z as a column
vector.) An isomorphism between H,, and Dy, is given by

p:H, — 7Dg (5)

1
Z = (zny...,z21) +— (_§(Z’Z)L1 :zn:---:zlzl).

The action of O (L ®R) on H,, is given by the usual fractional linear transfor-
mations. A calculation shows that the Jacobian of the transformation of H,,
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HIRZEBRUCH-MUMFORD PROPORTIONALITY AND ... 9

defined by g € OT (L ® R) is equal to det(g)j(g, Z)~", where j(g, Z) is the last
((n+2)-nd) coordinate of g(p(Z)) € Dr. Using this we define the automorphic
factor

J: ONL®R) x Hpyo — C*
(gaZ) = (detg)_l ](gaz)n

The connection with pluricanonical forms is the following. Consider the form
dZ =dz N -+ Ndz, € Q" (Hy,).

F(dZ)* is a T-invariant k-fold pluricanonical form on H,, for I' a subgroup
of finite index of OT (L), if F(g(Z)) = J(g,Z)*F(Z) for any g € T; in other
words if F' € M,;(T,det”) (see Definition 1.2). To prove Theorem 1.1 we need
cusp forms of weight smaller than the dimension of the corresponding modular
variety.

ProrosIiTION 3.1 For unimodular type, cusp forms of weight 12 + 4m exist:
that is

dim 512+4m(0+(112,8m+2)) > 0.

For K3 type we have the bounds

~1 L(m)

dim S1144m (0 (Lyy’)) > 0 if d>1;

dim S1044m (0 (LS™)) > 0 if d>1;

dim Sriam(O (LI™)) > 0 if d >4

dim Sg44m (0 (L)) > 0 if d=3 or d>5;
dim S544m (0 (LS™)) > 0 if d=5 or d>T,
dim Sos4m (0 (LI™Y) > 0 if d > 180.

Proof. For any F(Z) € Mk((~)+(L)) we can consider its Fourier-Jacobi expan-
sion at the 1-dimensional cusp fixed above

F(Z) = fo(z1) + Z fm(21; 225« - 2Zn—1) exp(2mimzy, ).
m2>1

A lifting construction of modular forms F(Z) € Mk(6+(L)) with trivial char-
acter by means of the first Fourier—Jacobi coefficient is given in [G1], [G2].
We note that f1(z1;22,...,2n-1) € Jg1(Lo), where Ji1(Lo) is the space of
the Jacobi forms of weight k£ and index 1. A more general construction of the
additive lifting was given in [B2] but for our purpose the construction of [G2]
is sufficient.
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The dimension of Jy 1(Lo) depends only on the discriminant form and the rank
of Ly (see [G2, Lemma 2.4]). In particular, for the special cases of L = I3 g2

and L = L;Zln) we have
Jisam1 (mEs(—1)) = S (SLa(Z))

and
Jitim1(mEs(=1) @ (=2d)) = Ji 7",

where J.J¥ is the space of the usual Jacobi cusp forms in two variables of

weight k and index d (see [EZ]) and Si(SLa(Z)) is the space of weight k cusp
forms for SLo(Z).
The lifting of a Jacobi cusp form of index one is a cusp form of the same weight
with respect to O (11 gm42) or 6+(L§ZL)) with trivial character. The fact
that we get a cusp form was proved in [G2] for maximal lattices, i.e., if d is
square-free. In [GHS2, §4] we extended this to all lattices L for which the
isotropic subgroups of the discriminant Ay are all cyclic, which is true in all
cases considered here.
To prove the unimodular type case of Proposition 3.1 we can take the Jacobi
form corresponding to the cusp form Aj2(7). Using the Jacobi lifting construc-
tion we obtain a cusp form of weight 12 + 4m with respect to O+(Ilg7gm+2).
For the K3 type case we need the dimension formula for the space of Jacobi
cusp forms Ji';" (see [EZ]). For a positive integer I one sets
| L] if 1 # 2 mod 12
{I}1o =

&) -1 ifl=2mod 12.

Then if £ > 2 is even
d

-2
dikaC,ZSp _ Z <{k’ +2j}H2 — {iﬁJ) ,

§j=0
and if £ is odd
d—1 ;2
dim J %P = k=142 10— |21 ].
m Jy g ;({ +2j}12 hdJ)

This gives the bounds claimed. For k = 2, using the results of [SZ] one can
also calculate dim J3'3": there is an extra term, [00(d)/2], where oo(d) denotes
the number of divisors of d. This gives dim J;";” > 0 if d > 180 and for some
smaller values of d. 7 O

4 KODAIRA DIMENSION RESULTS

In this section we prove Theorem 1.1. We first explain the geometric back-
ground. Let F L(I’)“’r be a toroidal compactification as in Theorem 1.3. In
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particular all singularities are canonical and there is no ramification divisor
which is contained in the boundary. Then the canonical divisor (as a Q-divisor)
is given by Kz, (ryier = nM —V — D where M is the line bundle of modular
forms of weight 1, n is the dimension of F,(I"), V is the branch locus (which is
given by reflections) and D is the boundary. Hence in order to construct k-fold
pluricanonical forms we must find modular forms of weight kn which vanish
of order k along the branch divisor and the boundary. This also suffices since
Fr(T')¥r has canonical singularities.

Our strategy is the following. For I' C (~)Jr (L) we choose a cusp form Fy, € S, (T")
of low weight a, i.e. a strictly less than the dimension. Then we consider ele-
ments I’ € Fka(n_a) (T, detk): for simplicity we assume that k is even. Such
an I’ vanishes to order at least k on the boundary of any toroidal compactifi-
cation. Hence if dZ is the volume element on Dy, defined in §3 it follows that
F(dZ)* extends as a k-fold pluricanonical form to the general point of every
boundary component of F,(I')*". Since we have chosen the toroidal compact-
ification so that all singularities are canonical and that there is no ramification
divisor which is contained in the boundary the only obstructions to extending
F(dZ)* to a smooth projective model are the reflective obstructions, coming
from the ramification divisor of the quotient map m: Dy — Fr(I') studied in
§2.

Let Dk be an irreducible component of this ramification divisor. Recall from
Proposition 2.3 that Dxg = P(K ® C) N Dy, where K = K, is the orthogonal
complement of a stably reflective vector r. For the lattices chosen in The-
orem 1.1 all irreducible components of the ramification divisor are given in
Proposition 2.4.

PRrROPOSITION 4.1 We assume that k is even and that the dimension n > 9.

For ' C 6+(L), the obstruction to extending forms F(dZ)* where F €
FFMi(n—a)(T) to Fr(T)*" lies in the space

k/2—1 N
B:@B(K) :® @ Mk(n—a)-{—QV(FmOJr(K))ﬂ
K K v=0

where the direct sum is taken over all irreducible components D of the rami-
fication divisor of the quotient map w: Dy — F(T).

Proof. Let 0 € I' be plus or minus a reflection whose fixed point locus is D
We can extend the differential form provided that F' vanishes of order k along
every irreducible component Dy of the ramification divisor.

If F,, vanishes along Dg then K gives no restriction on the second factor of the
modular form F'.

Now let {w = 0} be a local equation for Dg. Then o*(w) = —w (this is
independent of whether o or —o is the reflection). For every modular form
F € M(T) of even weight we have F(o(z)) = F(z). This implies that if
F(z) =0 on Dg, then F vanishes to even order on D.
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We denote by Moy (I')(—vDr) the space of modular forms of weight 2b which
vanish of order at least v along Dg. Since the weight is even we have
Mgb(r)(—DK) = Mgb(F)(—QDK). For F € Mgb(F)(—Ql/DK) we consider
(F/w?) as a function on Dg. From the definition of modular form (Def-
inition 1.2) it follows that this function is holomorphic, T' N T'k-invariant
(see equation (4)) and homogeneous of degree 2b + 2v. Thus (F/w?")|p, €

~
Mj1.)(I'NT'k). In Proposition 2.3 we saw that, ' contains O (K') as sub-
~+
group of O (L)(with equality in almost all cases), so we may replace I' N 'k
~+
by I'NO (K). In this way we obtain an exact sequence

~+
0— Mgb(I‘)(—(Z + 21/)DK) — Mgb(F)(—Ql/DK) — M2(b+y)(r n O (K)),
where the last map is given by F +— F/w?”. This gives the result. O

Now we proceed with the proof of Theorem 1.1.

Let L be a lattice of signature (2,n) and I’ < 6+(L): recall that k is even.
According to Proposition 4.1 we can find pluricanonical differential forms on
Fr(T)tor if
Cp(T) = dim My(_q)(T) = Y _ dim B(K) > 0, (6)
K

where summation is taken over all irreducible components of the ramification
divisor (see the remark at the end of §2). It now remains to estimate the
dimension of B(K) for each of the finitely many components of the ramification
locus in the cases we are interested in, namely I' = O+(IIQ,8m+2) and I' =
0" (L),

According to the Hirzebruch-Mumford proportionality principle

2
dim My, (T) = ~ volgar (T)E™ 4+ O(k™1).

The exact formula for the Hirzebruch-Mumford volume volg s for any indef-
inite orthogonal group was obtained in [GHS1]. It depends mainly on the
determinant and on the local densities of the lattice L. Here we simply quote
the estimates of the dimensions of certain spaces of cusp forms.

The case of 113 gy, 2 is easier because the branch divisor has only one irre-
ducible component defined by any (—2)-vector r. According to Proposition 2.4
the orthogonal complement K. is K}T) This lattice differs from the lattice
L(Qm), whose Hirzebruch-Mumford volume was calculated in [GHS1, §3.5], only
by one copy of the hyperbolic plane. Therefore

~+ ~+
volgar O (L(Qm)) = (Bsm+4/(8m +4)) volgar O (K}T)),
and hence, for even k,

21—4m Bs... Bgm+2
8m+1)!  (8m+2)!

dim My, (0T (K(M)) = ES Ok,
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where the B; are Bernoulli numbers. Assume that m > 3. Let us take a cusp
form

F € Symi12(0T (I T2 8m+2))

from Proposition 3.1. In this case the dimension of the obstruction space B of
Proposition 4.1 for the pluricanonical forms of order k = 2k, is given by

k1—1
. ~+

Z dim M4 —10)k+20 (O (K%n))) =
v=0

24m+2 By ... Bgmio (1+ 1
(8m+2)!  (8m 4+ 2)! 4m — 10
+O(k8m+1)

)8m+2 o 1)((4m o 10)k1)8m+2

In [GHSI, §3.3] we computed the leading term of the dimension of the space
of modular forms for O+(I I5 gm+2). Comparing these two we see that the
constant Cp (O™ (I138m+2)) in the obstruction inequality (6) is positive if and
only if
Bym 1 m
4m+2 (1 )8 +2

1.
4m+ 2 4m — 10 @

Moreover fI(Im) is of general type if Cp(O" (I128m+2)) > 0. From Stirling’s

formula n n

5\/7771(%)2” > | Bap| > 4\/7m(%)2". (8)
Using this estimate we easily obtain that (7) holds if m > 5. Therefore we have
proved Theorem 1.1 for the lattice 113 gm+-2.

Next we consider the lattice LSZ;) of K3 type. For this lattice the branch divisor

of .7:2(:;) is calculated in Proposition 2.4. It contains one or two (if d = 1 mod 4)
components defined by (—2)-vectors and some number of components defined
by (—2d)-vectors. To estimate the obstruction constant Cg(T") in (6) we use the
dimension formulae for the space of modular forms with respect to the group

~+ m
O (M), where M is one of the following lattices from Proposition 2.4: Léd)

(the main group); KQ(?) and NQ(ZL) (the (—2)-obstruction); M gm+2, Kém) and
T3 gm+2 (the (—2d)-obstruction). The corresponding dimension formulae were
found in [GHS1] (see §§3.5, 3.6.1-3.6.2, 3.3 and 3.4). The branch divisor of
(—2d)-type appears ounly if d > 1. We note that

V01HM(6+(T2,8m+2)) > volgp (6+(K2(m)))- 9)

Therefore in order to estimate Cp(T") we can assume that all (—2d)-divisors de-
fined by stably reflective (—2d)-vectors r with div(r) = d (see Proposition 2.4)
are of the type 15 gm+2.

We put k£ = 2k, w =n —a and n = 8m + 3. For the obstruction constant in
(6) we obtain

~+ m . ~+ m
Cp(O7(LY)) > dim Moy, (0 (LS7)) = B(_gy — B(_aa) (10)
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where
B3 = dim B(Kg;”) + dim B(Ng;"),

B(_gq) = 2/ (dim B(Ma g y2) + 2" dim B(To sm+2))

and B(K) is the obstruction space from Proposition 4.1. By hy we denote the
sum 0o q(s) — 02,4(4), where d(n) is d mod n and § is the Kronecker delta (see
Proposition 2.4 and the remark following it).

For any lattice considered above

ki1—1

. ~+
> dim My, 144 (O (K))
v=0

28m+3

= me(Ser3)V01H1\/[(6+(K))(k1w)8m+3+O(k§m+2)

B(K)

where Ey,(8m +3) = (1 + %)8771-}-3.
All terms in (10) contain a common factor. First

_ Bs,,
dim M2k1w(0+(Lg;))) = kv Z8mtd

m,d

Va+ o), ()

Bym+2
where
k‘l aWw-
Cm,d -

24m+1400a | By . By, |B4m+2|d4m+g H(l ) (e ) BS,

Bm+3)! Bm+2)!! 4m+2

pld

We note that 24m+154me2 — 7=+ (4 + 2)¢(4m + 2).
From [GHS1, (16)] it follows that

~ 4 m
volgar(0” (KS)) =
By...B 3 4d
61,4—84,a(8) 22 8m+2 am+3 _—(4m+2) 44
2 (8m +2)! a"rEm T(4m + 2)L(4m + 2, ( » ))

)

We can use the formula for the volume of Né;n in the following form:

+ m
volar (07 (N§3)) =

14810 (8mta) gam+ 2 B2 - Bsmaa _(am2) d
2 d*mte Sm 1 2) T T(4m + 2)L(4m + 2, " )

(see [GHSI, 3.6.2]). It follows that

B(_g) = Cf;j;}”Ew (8m+3)(28m+3794.4® Py (4m +2) + Py (4m +2)) + O(k§™2)
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where (4d)
L(”? T ) 1—p™"
P, = (1—2"")%.a *
) = ( ) L(n, X0,4d) g 14p
and b ( ) L(n,(%)) Hl_p—n
n) = .
N L(n, x0,4) old 1+pm

Here X0,y denotes the principal Dirichlet character modulo f.
We note that |Px(n)| < 1 and |Py(n)| <1 for any d. We conclude that

B(_2) < CplP Ey(8m + 3)b(_s)

where b(_gy = 28m+3 — 1.
The (—2d)-contribution is calculated according to [GHS1, 3.3-3.4]. We note

that 6+(T2,8m+2) is a subgroup of (~)+(M27gm+2). We obtain
B(_2q) < Cpl Euy(8m + 3)b(_2a)
where for d > 2

d 4m+1
b = ﬁ() é ’ 4(2hd(1 + 9—(4m+2) _ 2—(8m+3)) + 2—(8m+3))
(—2d) d d .

As a result we see that that the obstruction constant CB(6+(L¥;))) is positive
if
Ew(8m + 3)(b—2) + b(_2q)) < V.

w Bamq2
5( zl _ ‘B m+
8m-+4

Using (8) we get

B4m+2 5 e 4m+2 1
44/2 \2m +1 28m+4”

For m > 5 we choose a cusp form F, of weight a = 4m + 10, i.e. we take
w = 4m — 7 in Proposition 4.1. Such a cusp form exists for all d > 1 by
Proposition 3.1. Using the fact that 3_aqy < B(_4) for any d > 2 and the value

b—a) = 24m+5  we see that

BSm+4

5(47”*7) <(1+ 1 )8m+3 5 e 4m+2 98m+3 + 9dm+5 +1
e dm — 7 8v2 \2m+1 98m+3 ,

which is smaller than 1 if m > 5. This proves Theorem 1.1 for m > 5.
For m = 4 there exists a cusp form F, of weight 4m + 6 if d # 1,2,4, i.e. we

take w = 4m — 3. To see that 54(1,13) < v/d we need check this only for d = 3
because b(_a4) < b(_¢) for d > 3. One can do it by direct calculation.
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For m < 3 we choose F, of weight 4m + 2, i.e. we take w = 4m + 1. Such

a cusp form exists if d > 180 according to Proposition 3.1. For such d we see
~+

that B(_s4) < 1. Then the obstruction constant C'p(O (Lg;))) is positive if

1

T 1)8m+3(28m+3 + 2) < \/E

‘ Bam+2

BSm+2

This inequality gives us the bound on d in Theorem 1.1.
This completes the proof of Theorem 1.1.

In the proof of Theorem 1.1 above we have seen that the (—2)-part of the branch
divisor forms the most important reflective obstruction to the extension of the
~+

O (Lé?)—invariant differential forms to a smooth compact model of .7-'2(;”). Let

us consider the double covering SF (27;) of fé?) for d > 1 determined by the
special orthogonal group:

m AT m m
S‘Féd) =50 (Léd))\DL;y _"7:2(d)'

Here the branch divisor does not contain the (—2)-part. Theorem 4.2 below

shows that there are only five exceptional varieties ng(dm) with m > 0 and

d > 1 that are possibly not of general type.
The variety 5‘7:2(3) can be interpreted as the moduli space of K3 surfaces of

degree 2d with spin structure: see [GHS2, §5]. The three-fold S}-Q(g) is the
moduli space of (1, t)-polarised abelian surfaces.

THEOREM 4.2 The variety S}‘g;) is of general type for any d > 1 if m > 3. If

m = 2 then 5‘7:2(3) is of general type if d > 3. If m = 1 then 8.7-'2(;) is of general
typeifd=5ord>T.

Proof. The case m = 2 is [GHS2, Theorem 5.1}, and the result for m > 5 is
immediate from Theorem 1.1. For m = 1, 3 and 4 we can prove more than
what follows from Theorem 1.1.

The branch divisor of SF (27;) is defined by the reflections in vectors r € L;Zln)

—~
such that —o, € SO (L(QZ;)), because the rank of L;Zln) is odd. Therefore
r? = —2d, by Proposition 2.1.

—~
If F e Map41(SO (Lé?)) is a modular form (note that the character det is
trivial), d > 1 and z € Dz(m) is such that (z,7) = 0, then

2d

F(z) = F(=0,(2)) = F(=2) = (-1)**'F(2).

Therefore any modular form of odd weight for SA6+(L%L)) vanishes on the
branch divisor.
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To apply the low-weight cusp form trick used in the proof of Theorem 1.1
one needs a cusp form of weight smaller than dimS}'gZZ) = 8m + 3. By
NJ’_ m
Proposition 3.1 there exists a cusp form Fiiyam € S114+4m (SO (Léd))). For
m > 3 we have that 11 4+ 4m < 8m + 3. Therefore the differential forms
. AT m
F1k1+4mF(4m,8)k(dZ)k, for arbltrary F(4'm78)k S M(4m,8)k(SO (Léd)))7 eX-
tend to the toroidal compactification of S]-"g;) constructed in Theorem 1.3.
This proves the cases m > 3 of the theorem.

~+
For the case m = 1 we use a cusp form of weight 9 with respect to SO (L;l))
constructed in Proposition 3.1. O

We can obtain some information also for some of the remaining cases.

PROPOSITION 4.3 The spaces S}‘él) and 8.71(%) have non-negative Kodaira di-
mension.

Proof. By Proposition 3.1 there are cusp forms of weight 11 for SA6+(L{(31))
and é\(/)—k(L%)). The weight of these forms is equal to the dimension. By the
well-known observation of Freitag [F, Hilfssatz 2.1, Kap. III] these cusp forms
determine canonical differential forms on the 11-dimensional varieties Sfél)
and SFL). O

These varieties may perhaps have intermediate Kodaira dimension as it seems
possible that a reflective modular form of canonical weight exists for Lél) and
LY.

In [GHS2] we used pull-backs of the Borcherds modular form ®15 on Dy, , to
show that many moduli spaces of K3 surfaces are of general type. We can also
use Borcherds products to prove results in the opposite direction.

THEOREM 4.4 The Kodaira dimension of .7-'1(7[”) is —oo for m =0, 1 and 2.

Proof. For m = 0 we can see immediately that the quotient is rational: a
straightforward calculation gives that F I(?) = T'\H; x H; where H; is the usual
upper half plane and T" is the degree 2 extension of SL(2,Z) x SL(2,Z) by the
involution which interchanges the two factors. Compactifying this, we obtain
the projective plane Ps.

For m =1, 2 we argue differently. There are modular forms similar to ®15 for
the even unimodular lattices Ils 19 and Ils 8. They are Borcherds products
Do50 and Po7 of weights 252 and 127 respectively, defined by the automorphic
functions

A(T) NT)E (1) =q 1 +504+¢q(...)

and
A(T) " HT)Ey(1) = ¢ +254 4+ q(...),
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where ¢ = exp(2miT) and A(7) and E4(7) are the Ramanujan delta function
and the Eisenstein series of weight 4 (see [B1]). The divisors of ®a50 and $197
coincide with the branch divisors of f}}) and fﬁ) defined by the (—2)-vectors.
Moreover @259 and P17 each vanishes with order one along the respective divi-
sor. Therefore if Fiox(dZ)* (or Fig,(dZ)F) defines a pluricanonical differential
form on a smooth model of a toroidal compactification of fl(}) or fﬁ), then
Fior (or Fig) is divisible by ®&., (or ®F,.), since Fig or Fig, must vanish
to order at least k along the branch divisor. This is not possible, because the
quotient would be a holomorphic modular form of negative weight. O
We have already remarked that the space F ﬁ) is the moduli space of K3 sur-
faces with an elliptic fibration with a section. Using the Weierstrass equations
it is then clear that this moduli space is unirational (such K3 surfaces are
parametrised by a linear system in the weighted projective space P(4,6,1,1)).
In fact it is even rational: see [Le].
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ABSTRACT. The Euler characteristic of a finite category is defined and
shown to be compatible with Euler characteristics of other types of
object, including orbifolds. A formula is proved for the cardinality of
a colimit of sets, generalizing the classical inclusion-exclusion formula.
Both rest on a generalization of Rota’s Mdbius inversion from posets
to categories.
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INTRODUCTION

We first learn of Euler characteristic as ‘vertices minus edges plus faces’, and
later as an alternating sum of ranks of homology groups. But Euler character-
istic is much more fundamental than these definitions make apparent, as has
been made increasingly explicit over the last fifty years; it is something akin
to cardinality or measure. More precisely, it is the fundamental dimensionless
quantity associated with an object.

The very simplest context for Euler characteristic is that of finite sets, and
of course the fundamental way to assign a quantity to a finite set is to count
its elements. Euler characteristic of topological spaces can usefully be thought
of as a generalization of cardinality; for instance, it obeys the same laws with
respect to unions and products.

IPartially supported by a Nuffield Foundation award NUF-NAL 04 and an EPSRC Ad-
vanced Research Fellowship

DOCUMENTA MATHEMATICA 13 (2008) 21-49



22 ToM LEINSTER

In a more sophisticated context, integral geometry, Euler characteris-
tic also emerges clearly as the fundamental dimensionless invariant. A sub-
set of R™ is polyconvex if it is a finite union of compact convex subsets.
Let V,, be the vector space of finitely additive measures, invariant under
Euclidean transformations, defined on the polyconvex subsets of R™. Had-
wiger’s Theorem [KR] states that dimV,, = n + 1. (See also [Sc2], and [MS]
for an important application to materials science.) A natural basis con-
sists of one d-dimensional measure for each d € {0,...,n}: for instance,
{Euler characteristic, perimeter, area} when n = 2. Thus, up to scalar multipli-
cation, Euler characteristic is the unique dimensionless measure on polyconvex
sets.

Schanuel [Scl] showed that for a certain category of polyhedra, Euler char-
acteristic is determined by a simple universal property, making its fundamental
nature transparent.

All of the above makes clear the importance of defining and understanding
Euler characteristic in new contexts. Here we do this for finite categories.

Categories are often viewed as large structures whose main purpose is
organizational. However, some different viewpoints will be useful here. A
combinatorial point of view is that a category is a directed graph (objects and
arrows) equipped with some extra structure (composition and identities). We
will concentrate on finite categories (those with only finitely many objects and
arrows), which also suits the combinatorial viewpoint, and the composition and
identities will play a surprisingly minor role.

A topological point of view is that a category can be understood through its
classifying space. This is formed by starting with one 0-cell for each object, then
gluing in one 1-cell for each arrow, one 2-cell for each commutative triangle,
and so on.

Both of these points of view will be helpful in what follows. The topological
perspective is heavily used in the sequel [BL] to this paper.

With topology in mind, one might imagine simply transporting the defini-
tion of Euler characteristic from spaces to categories via the classifying space
functor, as with other topological invariants: given a category A, define x(A)
as the Euler characteristic of the classifying space BA. The trouble with this
is that the Euler characteristic of BA is not always defined. Below we give a
definition of the Euler characteristic of a category that agrees with the topo-
logical Euler characteristic when the latter exists, but is also valid in a range of
situations when it does not. It is a rational number, not necessarily an integer.

A version of the definition can be given very succinctly. Let A be a finite
category; totally order its objects as ai,...,a,. Let Z be the matrix whose
(i,7)-entry is the number of arrows from a; to a;. Let M = Z~!, assuming
that Z is invertible. Then x(A) is the sum of the entries of M. Of course, the
reader remains to be convinced that this definition is the right one.

The foundation on which this work rests is a generalization of Mébius—-Rota
inversion (§1). Rota developed Moébius inversion for posets [R]; we develop it
for categories. (A poset is viewed throughout as a category in which each hom-
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set has at most one element: the objects are the elements of the poset, and
there is an arrow a — b if and only if @ < b.) This leads, among other
things, to a ‘representation formula’: given any functor known to be a sum of
representables, the formula tells us the representation explicitly. This in turn
can be used to solve enumeration problems, in the spirit of Rota’s paper.

However, the main application of this generalized Mobius inversion is to
the theory of the Euler characteristic of a category (§2). We actually use a dif-
ferent definition than the one just given, equivalent to it when Z is invertible,
but valid for a wider class of categories. It depends on the idea of the ‘weight’
of an object of a category. The definition is justified in two ways: by showing
that it enjoys the properties that the name would lead one to expect (behaviour
with respect to products, fibrations, etc.), and by demonstrating its compati-
bility with Euler characteristics of other types of structure (groupoids, graphs,
topological spaces, orbifolds). There is an accompanying theory of Lefschetz
number.

The technology of Mobius inversion and weights also solves another prob-
lem: what is the cardinality of a colimit? For example, the union of a family
of sets and the quotient of a set by a free action of a group are both examples
of colimits of set-valued functors, and there are simple formulas for their cardi-
nalities. (In the first case it is the inclusion-exclusion formula.) We generalize,
giving a formula valid for any shape of colimit (§3).

Rota and his school proved a large number of results on M6bius inversion
for posets. As we will see repeatedly, many are not truly order-theoretic: they
are facts about categories in general. In particular, important theorems in
Rota’s original work [R] generalize from posets to categories (§4).

(The body of work on Mobius inversion in finite lattices is not, however, so
ripe for generalization: a poset is a lattice just when the corresponding category
has products, but a finite category cannot have products unless it is, in fact, a
lattice.)

Other authors have considered different notions of Mobius inversion for cat-
egories; notably, there is that developed by Content, Lemay and Leroux [CLL]
and independently by Haigh [H]. This generalizes both Rota’s notion for posets
and Cartier and Foata’s for monoids [CF]. (Here a monoid is viewed as a one-
object category.) The relation between their approach and ours is discussed
in §4. Further approaches, not discussed here, were taken by Diir [D] and
Liick [Li].

In the case of groupoids, our Euler characteristic of categories agrees with
Baez and Dolan’s groupoid cardinality [BD]. The cardinality of the groupoid
of finite sets and bijections is e = 2.718 ..., and there are connections to ex-
ponential generating functions and the species of Joyal [J, BLL]. Paré has a
definition of the cardinality of an endofunctor of the category of finite sets [Pal;
I do not know whether this can be related to the definition here of the Lefschetz
number of an endofunctor.

The view of Euler characteristic as generalized cardinality is promoted
in [Scl], [BD] and [Pr1]. The appearance of a non-integral Euler characteristic
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is nothing new: see for instance Wall [W1], Bass [Ba] and Cohen [Co], and the
discussion of orbifolds in §2.

Ultimately it would be desirable to have the Euler characteristic of cate-
gories described by a universal property, as Schanuel did for polyhedra [Scl].
For this, it may be necessary to relax the constraints of the present work, where
for simplicity our categories are required to be finite and the coefficients are
required to lie in the ring of rational numbers. Rather than asking, as below,
‘does this category have Euler characteristic (in Q)?’, we should perhaps ask ‘in
what rig (semiring) does the Euler characteristic of this category lie?” However,
this is not pursued here.

ACKNOWLEDGEMENTS I thank John Baez, Andy Baker, Nick Gurski, Ieke
Moerdijk, Urs Schreiber, Ivan Smith and Stephen Watson for inspiration
and useful discussions. I am grateful to the Centre de Recerca Matematica,
Barcelona, for their hospitality. I also thank the very helpful referee.

1 MOBIUS INVERSION

We consider a finite category A, writing ob A for its set of objects and, when a
and b are objects, A(a,b) for the set of maps from a to b.

DEFINITION 1.1 We denote by R(A) the Q-algebra of functions obA x
obA —— Q, with pointwise addition and scalar multiplication, multiplica-
tion defined by
(09)(a,c) ZG a,b)p
beA

(0,6 € R(A), a,c € A), and the Kronecker § as unit.

The zeta function (4 = ¢ € R(A) is defined by ((a,b) = |A(a,b)|. If
¢ is invertible in R(A) then A is said to have Mdébius inversion; its inverse

A = p = ¢! is the Mobius function of A.

If a total ordering is chosen on the m objects of A then R(A) can be
regarded as the algebra of n x n matrices over Q. The defining equations of
the Mobius function are

Z,uab(bc-éac ZCab

b

for all a,c € A. By finite-dimensionality, u{ = § if and only if (u = 4.

The definitions above could be made for directed graphs rather than cat-
egories, since they do not refer to composition. However, this generality seems
to be inappropriate. For example, the definition of M&bius inversion will lead to
a definition of Euler characteristic, and if we use graphs rather than categories
then we obtain something other than ‘vertices minus edges’. Proposition 2.10
clarifies this point.

A different notion of Mobius inversion for categories has been considered;
see §4.
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EXAMPLES 1.2 a. Any finite poset A has Mobius inversion; this special case
was investigated by Rota [R] and others. We may compute u(a,c) by
induction on the number of elements between a and c:

:u(av c) = 5(a7 ) — Z M(aa b)

b:a<b<c

In particular, u(a,c) = 0 unless a < ¢, and p(a,a) =1 for all a. See also
Theorem 1.4 and Corollary 1.5.

b. Let M be a finite monoid, regarded as a category with unique object *.
(The arrows of the category are the elements of the monoid, and composi-
tion in the category is multiplication in the monoid.) Then {(x,x) = |M]|,
so p(k,x) = 1/|M].

c. Let N > 0. Write DiNnj for the category with objects 0, ..., N whose maps
a — b are the order-preserving injections {1,...,a} —— {1,...,b}.
Then ((a,b) = (Z), and it is easily checked that p(a,b) = (—1)*=¢ (Z) If
we use surjections instead of injections then ((a,b) = (‘Zj) and p(a,b) =
(=1)**(520)-

A category with Mdobius inversion must be skeletal (isomorphic objects
must be equal), for otherwise the matrix of ¢ would have two identical rows.
The property of having M&bius inversion is not, therefore, invariant under
equivalence of categories.

In general we cannot hope to just spot the Mobius function of a category.
In 1.3-1.7 we make tools for computing Mobius functions. These cover large
classes of categories, although not every finite skeletal category has Md&bius
inversion (1.11(d), (e)).

Let n > 0, let A be a category or a directed graph, and let a,b € A. An
n-path from a to b is a diagram

a = ag f1~a1 B, f"~an:b (1)

in A. Tt is a circuit if a = b, and (when A is a category) nondegenerate if no f;
is an identity.

LEMMA 1.3 The following conditions on a finite category A are equivalent:
a. every idempotent in A is an identity
b. every endomorphism in A is an automorphism
c. every circuit in A consists entirely of isomorphisms.

PrROOF (a) = (b) follows from the fact that if f is an element of a finite
monoid then some positive power of f is idempotent. The other implications
are straightforward. O
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THEOREM 1.4 Let A be a finite skeletal category in which the only idempotents
are identities. Then A has Mobius inversion given by

pla,b) =Y (=1)"/|Aut(ao)] - -~ |Aut(an)|

where Aut(a) is the automorphism group of a € A and the sum runs over all
n > 0 and paths (1) for which ag, ..., a, are all distinct.

PROOF First observe that for a path (1) in A, if ag # a1 # -+ # a, then the
a;s are all distinct. Indeed, if 0 <7 < j < n and a; = a; then the sub-path
running from a; to a; is a circuit, so by Lemma 1.3, f;4; is an isomorphism,
and by skeletality, a; = a;41.

Now let a,c € A and define p by the formula above. We have

> e, b)l(be) = p(a,0)¢(e,0) + Y pla,b)((b,c)

beA bibc

Aut(e)] g ula )+ D plab)/|Aut(c)l

b:b#£c, geA(b,c)

— |Aut(c) { a,¢) + > (~1)"/|Aut(ao)| --- [Aut(a,)||Aut(c |}

where the last sum is over all n > 0 and paths

fl fw g

a=ay —> -+ —>a,=b—>c

such that ag # - -+ # a, # ¢. By definition of y, the term in braces collapses
to 0 if @ # ¢ and to 1/|Aut(a)| if @ = ¢. Hence ), u(a,b)((b,c) = d(a,c), as
required. O

COROLLARY 1.5 Let A be a finite skeletal category in which the only endomor-
phisms are identities. Then A has Mobius inversion given by

ula,b) = Z(fl)"Hnondegenemte n-paths from a to b}| € Z.

n>0
O

When A is a poset, this is Philip Hall’s theorem (Proposition 3.8.5 of [St]
and Proposition 6 of [R]).

An epi-mono factorization system (£, M) on a category A consists of a
class & of epimorphisms in A and a class M of monomorphisms in A, satisfying
axioms [FK]. The axioms imply that every map f in A can be expressed as me
for some e € £ and m € M, and that this factorization is essentially unique:
the other pairs (¢/,m’) € & x M satisfying m’e’ = f are those of the form
(ie,mi~1) where i is an isomorphism. Typical examples are the categories of
sets, groups and rings, with £ as all surjections and M as all injections.
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THEOREM 1.6 Let A be a finite skeletal category with an epi-mono factorization
system (€, M). Then A has Mdébius inversion given by

pla,b) = (=1)"/|Aut(ao)| - -- |Aut(as)|

where the sum is over all n > r > 0 and paths (1) such that ay,...,a, are
distinct, a,, ...,a, are distinct, f1,...,fr € M, and fry1,...,fn €E.

PrROOF The objects of A and the arrows in £ determine a subcategory of A,
also denoted &; it satisfies the hypotheses of Theorem 1.4 and therefore has
Moébius inversion. The same is true of M.

Any element v € Q°"* =[], ., Q gives rise to an element of R(A), also
denoted « and defined by a(a,b) = d(a,b)a(b). This defines a multiplication-
preserving map from Q°# to R(A), where the multiplication on Q°P* is coor-
dinatewise. We have elements |Aut| and 1/|Aut| of Q°"#, where, for instance,
|Aut|(a) = |Aut(a)|.

By the essentially unique factorization property, (o = (¢ - ﬁ -(am.- Hence
A has Mobius function ps = paqg - |Aut| - pe. Theorem 1.4 applied to pag and
pe then gives the formula claimed. g

ExXaMPLE 1.7 Let N > 0 and write Fy for the full subcategory of Set with
objects 1,..., N, where n denotes a (chosen) n-element set. Let £ be the set
of surjections in Fy and M the set of injections; then (£, M) is an epi-mono
factorization system. Theorem 1.6 gives a formula for the inverse of the matrix
(i7); ;. For instance, take N = 3; then u(1,2) may be computed as follows:

Paths Contribution to sum
1242 —2/1121 = 1
1203502 3.6/11312! = 3/2

12e2-%03 5% 2 —2.6.6/11203120 = —3

Here ‘1 —>— 2’ means that there are 2 monomorphisms from 1 to 2, ‘3 LY
that there are 6 epimorphisms from 3 to 2, etc. Hence u(1,2) = —1+3/2—-3 =
—5/2.

One of the uses of the Md6bius function is to calculate Euler character-
istic (§2). Another is to calculate representations. Specifically, suppose that
we have a Set-valued functor known to be familially representable, that is, a
coproduct of representables. The Yoneda Lemma tells us that the family of
representing objects is unique (up to isomorphism). But if we have Md&bius
inversion, there is actually a formula for it:

PROPOSITION 1.8 Let A be a finite category with Mobius inversion and let
X : A —— Set be a functor satisfying

X Z r(a)A(a, —)

DOCUMENTA MATHEMATICA 13 (2008) 21-49



28 ToM LEINSTER

for some natural numbers r(a) (a € A). Then
ra) =D 1X(0)|u(b, a)
b

for all a € A.

In the first formula, Y denotes coproduct of Set-valued functors.
ProOOF Follows from the definition of Mébius function. O

In the spirit of Rota’s programme, this can be applied to solve counting
problems, as illustrated by the following standard example.

EXAMPLE 1.9 A derangement is a permutation without fixed points. We cal-
culate d,,, the number of derangements of n letters.

Fix N > 0. Take the category D}’ of Example 1.2(c) and the functor
S : DY — Set defined as follows: S(n) is Sy, the underlying set of the nth
symmetric group, and if f € Diﬁj(m, n) and 7 € Sy, the induced permutation
S¢(T) € Sy, acts as T on the image of f and fixes all other points. Any permu-
tation consists of a derangement together with some fixed points, so there is
an isomorphism of sets

Sp = Z dm]]])if\}j (m,n)
m
where Y denotes disjoint union. Then by Proposition 1.8 and Example 1.2(c),
n—m | ™ 1 1 (71)n

To set up the theory of Euler characteristic we will not need the full
strength of Md&bius invertibility; the following suffices.

DEFINITION 1.10 Let A be a finite category. A weighting on A is a function
k* :obA —— Q such that for all a € A,

> Cla bk =1.
b

A coweighting k, on A is a weighting on A°P.

Note that A has Mo6bius inversion if and only if it has a unique weighting,
if and only if it has a unique coweighting; they are given by

k¢ = Z,u(a,b), ky = Zu(a,b).
b a
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ExAMPLES 1.11 a. Let L be the category

by
/
\

ba.

a

Then the unique weighting k* on L is (k¢, kb, kb?) = (—1,1,1).

. Let M be a finite monoid, regarded as a category with unique object *.
Again there is a unique weighting k*, with k* = 1/|M]|.

. If A has a terminal object 1 then 6(—,1) is a weighting on A.
. A finite category may admit no weighting at all. (This can happen even

when the category is Cauchy-complete, in the sense defined in the Ap-
pendix.) An example is the category A with objects and arrows

f12,912
fll@al < > a2 @f22

f13 Fa1,921 fas3
fa1 f32

as

where if a; —2—» a; —% + 4, and neither p nor ¢ is an identity then
qop = fik-

. A category may certainly have more than one weighting: for instance,
if A is the category consisting of two objects and a single isomorphism
between them, a weighting on A is any pair of rational numbers whose sum
is 1. But even a skeletal category may admit more than one weighting.
Indeed, the full subcategories B = {aj,a2} and C = {ay, az2,a3} of the
category A of the previous example both have a 1-dimensional space of
weightings.

In contrast to Md6bius invertibility, the property of admitting at least one

weighting is invariant under equivalence:

LEMMA 1.12 Let A and B be equivalent finite categories. Then A admits a
weighting if and only if B does.
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PrOOF Let F: A —— B be an equivalence. Given a € A, write C, for the
number of objects in the isomorphism class of a. Take a weighting [* on B and
put k% = (3ppar(a) 1)/C,. 1 claim that k* is a weighting on A.

To prove this, choose representatives ay, . .., a,, of the isomorphism classes
of objects of A; then F(ay),..., F(ay) are representatives of the isomorphism
classes of objects of B. Let o’ € A. For any a € A, the numbers ((a/, a) and k°
depend only on the isomorphism class of a. Hence

Z(j(a',a)k:“ Z Z ¢(a',a)k®

acA =1 a:a™a;

= Z Co,C(d,a;)k™
i=1

= > > )’

=1 b:b2F(a;)

= > (R,
beB
= 1,

as required. O

Weightings and Mébius functions are compatible with sums and products
of categories. We write ), A; for the sum of a family (A;);er of categories,
also called the coproduct or disjoint union and written [[;.; A;. The following
lemma is easily verified.

LEMMA 1.13 Let n >0 and let A4, ..., A, be finite categories.

a. If each A; has a weighting k; then Y. A; has a weighting I* given by
1% = k¢ whenever a € A;. If each A; has Mébius inversion then so does
> Ai, where for a € A; and b € A,

_ 1279 (aa b) ifi=j
By ax (a,0) = { 0 otherwise.
b. If each A; has a weighting ki then [[, A; has a weighting I* given by
Jlanman) — B kan Jf eqch A; has Mobius inversion then so does
Hi Ai; with

Py s ((ars s an) (b s bn)) = g (an,00) -+ o, (@, bp)-
(|

Thinking of R(A) as a matrix algebra (as described after Definition 1.1),
the part of (a) concerning Mébius inversion merely says that the inverse of a
block sum of matrices is the block sum of the inverses.
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To every Set-valued functor X there is assigned a ‘category of elements’
E (X). (See the Appendix for a review of definitions.) This is also true of
functors X taking values in Cat, the category of small categories and functors,
even when X is only a weak or ‘pseudo’ functor. We say that a Set- or Cat-
valued functor X is finite if E(X) is finite. When the domain category A is
finite, this just means that each set or category X (a) is finite.

LEMMA 1.14 Let A be a finite category and X : A —— Cat a finite weak
functor. Suppose that we have weightings on A and on each X (a), all written
k*. Then there is a weighting on E(X) defined by k(*®) = k°k® (a € A,
x € X(a)).

PROOF Let a € A and z € X (a). Then

> CUam), y)E R = D > | DD X ())m kY | B

(b,y)€EE(X) b feA(a,b) \yeX(b)
= > (la,b)k" =1.
b
O

This result will be used to show how Euler characteristic behaves with
respect to fibrations.

2 EULER CHARACTERISTIC

In this section, the Euler characteristic of a category is defined and its basic
properties are established. The definition is justified by a series of propositions
showing its compatibility with the Euler characteristics of other types of object:
graphs, topological spaces, and orbifolds. There follows a brief discussion of
the Lefschetz number of an endofunctor.

LEMMA 2.1 Let A be a finite category, k* a weighting on A, and k, a coweight-
ing on A. Then ) k% =73 kq.

PRrROOF

zb: K= zb: (Z kaC(a, b)) K = Z ka (Z ((a, b)kzb> = ka.

a b

If A admits a weighting but no coweighting then > k® may depend on
the weighting k* chosen: see Example 4.8 of [BL].

DOCUMENTA MATHEMATICA 13 (2008) 21-49



32 ToM LEINSTER

DEFINITION 2.2 A finite category A has Euler characteristic if it admits both
a weighting and a coweighting. Its Fuler characteristic is then

X(A) =)k ="k €Q

for any weighting k* and coweighting k,.

With the Gauss—Bonnet Theorem in mind, one might think of weight as
an analogue of curvature: summed over the whole structure, it yields the Euler
characteristic.

Any category A with Md&bius inversion has Euler characteristic, x(A) =
>api(a,b), as in the Introduction.

EXAMPLES 2.3 a. If A is a finite discrete category then x(A) = |ob A|.

b. If M is a finite monoid then x(M) = 1/|M|. (We continue to view
monoids as one-object categories.) When M is a group, this can be
understood as follows: M acts freely on the contractible space EM , which

has Euler characteristic 1; one would therefore expect the quotient space
BM to have Euler characteristic 1/|M|. (Compare [W]] and [Co].)

c. By Corollary 1.5, a finite poset A has Euler characteristic
Yonso(=1)"c, € Z, where ¢, is the number of chains in A of length
n. (See [Pu], [Fo], [R] and [Fa] for connections with poset homology,
and §4 for further comparisons with the Rota theory.) More generally,
the results of §1 lead to formulas for the Euler characteristic of any fi-
nite category that either has no non-trivial idempotents or admits an

epi-mono factorization system.

For example, let A be a category with no non-trivial idempotents. Let
B be a skeleton of A, that is, a full subcategory containing exactly one
object from each isomorphism class of A. Theorem 1.4 tells us that B has
Moébius inversion and gives us a formula for its Mobius function, hence
for its Euler characteristic. Proposition 2.4(b) below then implies that A
has Euler characteristic, equal to that of B.

d. By 1.11(c) and its dual, if A has Euler characteristic and either an initial
or a terminal object then x(A) = 1; moreover, if A has both an initial and
a terminal object then it does have Euler characteristic. This applies, for
instance, to the category C of 1.11(e). Hence having Md&bius inversion
is a strictly stronger property than having Euler characteristic, even for
skeletal categories.

e. Euler characteristic is not invariant under Morita equivalence. Recall
that categories A and B are Morita equivalent if their presheaf categories
[A°P. Set] and [B°P, Set| are equivalent; see [Bo], for instance. Equiva-
lent categories are Morita equivalent, but not conversely. For instance,
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take A to be the two-element monoid consisting of the identity and an
idempotent, and B to be the category generated by objects and arrows

i
b1<—b2
s

subject to si = 1. Then A and B are Morita equivalent but not equivalent.
Moreover, their Euler characteristics are different: x(A) = 1/2 by (b), but

X(B) =1 by (d).

Clearly x(A°P) = x(A), one side being defined when the other is. The
next few propositions set out further basic properties of Euler characteristic.

PROPOSITION 2.4 Let A and B be finite categories.

a. If there is an adjunction A T B and both A and B have Euler charac-
teristic then x(A) = x(B).

b. If A ~ B then A has Fuler characteristic if and only if B does, and in
that case x(A) = x(B).

In (a), it may be that one category has Euler characteristic but the other
does not: consider, for instance, the unique functor from the category A
of 1.11(d) to the terminal category.

Proor

F
a. Suppose that A =— B with F 4 G. Then ((F(a),b) = {(a, G(b)) for all
G

a € A, b € B; write ((a, b) for their common value. Take a coweighting &,
on A and a weighting k* on B. Then Y, k, = >, k® by the same proof
as that of Lemma 2.1.

b. The first statement follows from Lemma 1.12 and its dual, and the second
from (a). O

ExampLE 2.5 If B is a category with an initial or a terminal object then
X(AB) = x(A) for all A, provided that both Euler characteristics exist. In-
deed, if 0 is initial in B then evaluation at 0 is right adjoint to the diagonal
functor A —— AP,

PROPOSITION 2.6 Let n > 0 and let Aq,..., A, be finite categories that all
have Euler characteristic. Then ), A; and [[, A; have Euler characteristic,

with
X (Z Ai) = x(Ad), X (H&') = [ x).
i i i i
Proor Follows from Lemma 1.13. O
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EXAMPLE 2.7 Let A be a finite groupoid. Choose one object a; from each
connected-component of A, and write G; for the automorphism group of «;.
Then A ~ ). G, so by 2.3(b), 2.4(b) and 2.6, we have x(A) = >, 1/|G;|.
This is what Baez and Dolan call the cardinality of the groupoid A [BD].

One might also ask whether x(A®) = x(A)X®). By 2.3(d), 2.5 and 2.6, the
answer is yes if every connected-component of B has an initial or a terminal
object (and all the Euler characteristics exist). But in general the answer is
no: for instance, take A to be the 2-object discrete category and B to be the
category of 3.4(b). See also Propp [Pr2], Speed [Sp], and §5, 6 of Rota [R].

An important property of topological Euler characteristic is its behaviour
with respect to fibre bundles (or more generally, fibrations). Take a space
A with connected-components Aq, ..., A,, take a fibre bundle E over A, and
write X; for the fibre in the ith component. Then under suitable hypotheses,
X(E) = 32 x(Ai)x(X5).

There is an analogy between topological fibrations and categorical fibra-
tions, which are functors satisfying a certain condition. (In this discussion I
will use ‘fibration’ to mean what is usually called an opfibration; the differ-
ence is inessential.) The crucial property of fibrations of categories is that for
any category A, the fibrations with codomain A correspond naturally to the
weak functors A —— Cat. Given a fibration P : E —— A, define a functor
X : A —— Cat by taking X (a), for each a € A, to be the fibre over a: the
subcategory of E whose objects e are those satisfying P(e) = a and whose
arrows f are those satisfying P(f) = 1,. Conversely, given a weak functor
X : A —— Cat, the corresponding fibration is the category of elements E (X)
together with the projection functor to A. For details, see [Bo], for instance.

The formula for the Euler characteristic of a fibre bundle has a categorical
analogue. Since in general the fibres of a fibration over A vary within each
connected-component of A, the formula for categories is more complicated. We
state the result in terms of Cat-valued functors rather than fibrations; the
proof follows from Lemma 1.14.

PROPOSITION 2.8 Let A be a finite category and X : A —— Cat a finite weak
functor. Let k* be a weighting on A and suppose that E (X) and each X(a)
have Euler characteristic. Then

X(E (X)) =) k*x(X(a)).

O

EXAMPLES 2.9  a. When X is a finite Set-valued functor, x(E (X)) =
> o k%X (a)|. For example, let M be a finite monoid. A finite functor
X : M —— Set is a finite set S with a left M-action. Following [BD],
we write E(X) as S//M, the lax quotient of S by M. (Its objects are
the elements of S, and the arrows s —— s’ are the elements m € M
satisfying ms = §’.) Then x(S//M) = |S|/|M]|.
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b. Define a sequence (S™),>_1 of categories inductively as follows. S™! is
empty. Let L be the category of 1.11(a); define X : L —— Cat by
X(a) = S ! and X(b1) = X(b2) = 1 (the terminal category); put
S™ = E (X). Then explicitly, S™ is the poset

Qg —>C1—> - > Cp
dy —> dy —— . T d,.

(If we take the usual expression of the topological n-sphere S™ as a CW-
complex with two cells in each dimension < n then S™ is the set of cells
ordered by inclusion; S™ is the classifying space of S™.)

Each S™ is a poset, so has Euler characteristic. By Proposition 2.8,
X(S") = —x(S"71) +2x(1) =2 — x(S"7)
for all n > 0; also x(S™!) = 0. Hence x(S") =1+ (—1)".

The next three propositions show how the Euler characteristics of various
types of structure are compatible with that of categories.

First, Euler characteristic of categories extends Euler characteristic of
graphs. More precisely, let G = (G — Go) be a directed graph, where
G is the set of edges and Gy the set of vertices. We will show that if F(G)
is the free category on G then x(F(G)) = |Go| — |G1|. This only makes sense
if F(G) is finite, which is the case if and only if G is finite and circuit-free;
then F(G) is also circuit-free. (A directed graph is circuit-free if it contains no
circuits of non-zero length, and a category is circuit-free if every circuit consists
entirely of identities.)

PROPOSITION 2.10 Let G be a finite circuit-free directed graph. Then x(F(Q))
is defined and equal to |Go| — |G1].

PROOF Given a,b € Gg, write (g(a,b) for the number of edges from a to b
in G. Then Cpg) = >,>0C¢ in R(F(G)), the sum being finite since G is
circuit-free. Hence jip(q) = 6 — (g, and the result follows. O

This suggests that in the present context, it is more fruitful to view a
graph as a special category (via F') than a category as a graph with structure.
Compare the comments after Definition 1.1.

The second result compares the Euler characteristics of categories and
topological spaces. We show that under suitable hypotheses, x(BA) = x(A),
where BA is the classifying space of a category A (that is, the geometric re-
alization of its nerve NA). To ensure that BA has Euler characteristic, we
assume that NA contains only finitely many nondegenerate simplices; then

X(BA) = Z(fl)"Hnondegenerate n-simplices in NA}|.

n>0
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An n-simplex in NA is just an n-path in A, and is nondegenerate in the sense
of simplicial sets if and only if it is nondegenerate as a path, so A must contain
only finitely many nondegenerate paths. This is the case if and only if A is
circuit-free, if and only if A is skeletal and contains no endomorphisms except
identities. So by Corollary 1.5, we have:

PROPOSITION 2.11 Let A be a finite skeletal category containing no endomor-
phisms except identities. Then x(BA) is defined and equal to x(A). O

For the final compatibility result, consider the following schematic dia-
grams:

{triangulated manifolds} {triangulated orbifolds}
- o
{posets} Z {categories} Q.

On the left, we start with a compact manifold M equipped with a finite trian-
gulation. As shown in §3.8 of [St], the topological Euler characteristic of M is
equal to the Euler characteristic of the poset of simplices in the triangulation,
ordered by inclusion. We generalize this result from manifolds to orbifolds,
which entails replacing posets by categories and Z by Q.

Let M be a compact orbifold equipped with a finite triangulation.
(See [MP] for definitions.) The simplices in the triangulation form a poset
P, and if p € P is a d-dimensional simplex then | p = {¢ € P|q < p} is
isomorphic to the poset Py11 of nonempty subsets of {1,...,d+ 1}, withp €| p
corresponding to {1,...,d + 1} € Pyy1. Every p € P has a stabilizer group
G(p), and

X(M) =Y (=1)"™/|G(p)].

peP

On the other hand, the groups G(p) fit together to form a complex of finite
groups on P°P_ that is, a weak functor G : P°? —— Cat taking values in finite
groups (regarded as one-object categories) and injective homomorphisms; see §3
of [M]. This gives a finite category E (G). For example, when M is a manifold,
each group G(p) is trivial and E (G) = P.

The following result is joint with Ieke Moerdijk.

PROPOSITION 2.12 Let M be a compact orbifold equipped with a finite trian-
gulation. Let G be the resulting complex of groups. Then x(E(QG)) is defined
and equal to x(M).

PrROOF Every arrow in E (G) is monic, so by Theorem 1.4, E (G) has Euler
characteristic. Moreover, P is a finite poset, so has a unique coweighting k,,
and x(E(G)) = >, kp/|G(p)| by the dual of Proposition 2.8.

The coweight of p in P is equal to the coweight of p in | p =2 Py, where
d = dimp. The unique coweighting k, on Py is given by k; = (—1)I/=1, so
k, = (—=1){d+D=1 = (—1)dmP_ The result follows. O

DOCUMENTA MATHEMATICA 13 (2008) 21-49



THE EULER CHARACTERISTIC OF A CATEGORY 37

We now turn to the theory of Lefschetz number. Let F': A —— A be an
endofunctor of a category A. The category Fix F' has as objects the (strict)
fixed points of F, that is, the objects a € A such that F(a) = a; a map a —
bin Fix F is a map f : a — b in A such that F(f) = f.

DEFINITION 2.13 Let F' be an endofunctor of a finite category. Its Lefschetz
number L(F) is x(Fix F'), when this exists.

The Lefschetz number is, then, the sum of the (co)weights of the fixed
points. This is analogous to the standard Lefschetz fixed point formula,
(co)weight playing the role of index. The following results further justify the
definition.

PROPOSITION 2.14 Let A be a finite category.

a. L(14) = x(A), one side being defined if and only if the other is.

F
b. If B is another finite category and A T B are functors then L(GF) =
G
L(FG), one side being defined if and only if the other is.

c. Let F: A —— A and write BF : BA —— BA for the induced map on
the classifying space of A. If A is skeletal and contains no endomorphisms
except identities then L(F) = L(BF), with both sides defined.

In the special case that A is a poset, part (c) is Theorem 1.1 of [BBJ.

Proor For (a) and (b), just note that Fix1,y = A and FixGF = Fix FG.
For (c), recall from the proof of Proposition 2.11 that NA has only finitely
many nondegenerate simplices; then

L(BF) = Z(—l)"Hnondegenerate n-simplices in NA fixed by NF}|
n>0
= Z(fl)"Hnondegenerate n-paths in Fix F'}|
n>0
= L(F)v
using Corollary 1.5 in the last step. (]

An algebra for an endofunctor F' of A is an object a € A equipped with
a map h : F(a) —— a. With the evident structure-preserving morphisms,
algebras for F' form a category Alg F. There is a dual notion of coalgebra
(where now h: a — F(a)), giving a category Coalg F'.

PROPOSITION 2.15 Let F be an endofunctor of a finite skeletal category A
containing no endomorphisms except identities. Then x(AlgF) = L(F) =
x(Coalg F), with all three terms defined.
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Proor First observe that A is circuit-free. Now, the inclusion Fix FF ——
Alg F' has a right adjoint R: given an algebra (a,h), circuit-freeness implies
that F'V(a) is a fixed point for all sufficiently large N, and R(a,h) = FN(a).
The Euler characteristics of Alg F' and Fix F' exist, by Corollary 1.5, and are
equal, by Proposition 2.4(a). The statement on coalgebras follows by duality.

O

For example, if f is an endomorphism of a finite poset A then the sub-
posets

{acAlf(a)<a},  {acAlf(a)=a}, {acAlf(a)>a}

all have the same Euler characteristic.

The theory of Euler characteristic presented here can be extended in at
least two directions.

First, we can relax the finiteness assumption. For instance, the category
of finite sets and bijections should have Euler characteristic > - ;1/|S,| = e,
as observed in [BD]. See the remarks after Corollary 4.3.

Second, the Euler characteristic of categories is defined in terms of the
cardinality of finite sets, and the theory can be generalized to V-enriched cate-
gories whenever there is a suitable notion of cardinality or Euler characteristic
of objects of V. For example, V might be the category of finite-dimensional
vector spaces, with dimension playing the role of cardinality, and this leads to
an Euler characteristic for finite linear categories. For another example, a 0-
category is a set and an n-category is a category enriched in (n — 1)-categories;
iterating, we obtain an Euler characteristic for finite n-categories. In particular,
if S™ is the n-category consisting of two parallel n-cells then x(S™) = 14+ (—1)".

3 THE CARDINALITY OF A COLIMIT

The main theorem of this section generalizes the formulas
XUY|=[X|+Y]-[XNY], 15/G| = 15]/1G]|

where X and Y are finite subsets of some larger set and S is a finite set acted
on freely by a finite group G.

Take a finite functor X : A —— Set. The colimit (or direct limit, or
inductive limit) EnX can be viewed as the gluing-together of the sets X (a).
Its cardinality depends on the way in which these sets are glued together, which
in turn is determined by the action of X on arrows, so in general there is no
formula for |thX| purely in terms of the cardinalities | X (a)| (a € A).

Suppose, however, that we are in the extreme case that there are no un-
forced equations of the type (X(f))(x) = (X(f'))(a’), where f and f’ are
arrows in A. For pushouts, this means that the two functions along which we
are pushing out are injective; when A is a group G, so that X is a set with a
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G-action, it means that the action is free. In this extreme case, |[lim X| can be

calculated as a weighted sum of the cardinalities | X (a)].
We now make this precise. Recall from §1 that a Set-valued functor is
said to be familially representable if it is a sum of representables.

PROPOSITION 3.1 Let A be a finite category and k* a weighting on A. If X :
A —— Set is finite and familially representable then [lim X| =" k%X (a)|.

PROOF The result holds if X is representable, since then |lim X| = 1. On the

other hand, the class of functors X for which the conclusion holds is clearly
closed under finite sums. g

To make use of this, we need a way of recognizing familially representable
functors. Carboni and Johnstone [CJ1, CJ2] show that when A satisfies certain
hypotheses, including having all limits, a functor A —— Set is familially
representable if and only if it preserves connected limits. This does not help
directly, because our categories A are finite, and a finite category does not have
even all finite limits unless it is a lattice.

However, a standard philosophy applies: when A fails to have all limits of
a certain type, it is rarely useful to consider the functors A —— Set preserving
limits of that type; the correct substitute is the class of functors that are suit-
ably ‘flat’. The notion of flatness appropriate here will be called nondegeneracy.
(This is unrelated to the usage of ‘nondegenerate’ in §1.)

DEFINITION 3.2 Let A be a small category. A functor X : A —— Set is
nondegenerate if E (X) has the following diagram-completion properties:

Explicitly, this means that

a. given arrows a bl dimAandze X(a), ' € X(a') satisfying
(X () () = (X(f")(x'), there exist arrows a «~2— ¢ —2— o/ and z €

X (c) satistying fg = f'g’, (X(9))(2) = z, and (X(¢"))(z) = 2/, and

f
b. given arrows « — b in A and z € X(a) satisfying (X(f))(z) =
fl

(X (f")(x), there exist ¢ — a and z € X(c) satisfying fg = f’g and
(X(9))(z) = .

This is the most concrete form of the definition. For further explanation,
see the Appendix; for references, see [Ln]. In the Appendix (Lemma 5.2)
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it is shown that under suitable hypotheses, nondegeneracy is equivalent to
familial representability, and from this we deduce a more applicable form of
Proposition 3.1:

THEOREM 3.3 Let A be a finite Cauchy-complete category and k* a weight-
ing on A. If X : A —— Set is finite and nondegenerate then |lim X| =

20 KX (a)]. u

Using the fact that lim X is the set of connected-components of E (X)), this

—

may be rephrased as |mo(E (X))| = > k%X (a)|. On the other hand, Propo-
sition 2.8 implies that x(E (X)) = > k%X (a)|. Indeed, under the hypotheses
of the Theorem, X is familially representable, so each connected-component of
E (X) has an initial object, so x(E (X)) = |mo(E (X))]-

EXAMPLES 3.4  a. Let L be the category of 1.11(a). A functor X : L —
Set is nondegenerate if and only if both functions X (a) — X (b;) are
injective. In that case, Theorem 3.3 says that

| X (b1) +x(a) X(b2)| = [ X (b1)] + | X (b2)| — [X (a)]

where the set on the left-hand side is a pushout.

f
b. Let B be the category <a — b>. A functor X : B —— Set is non-
g

degenerate if and only if the two functions X (f), X (g) are injective and

have disjoint images. The unique weighting k* on B is (k% k%) = (—1,1),
and

[(X(0))/ ~ [ = 1X()] - [X(a)|

where ~ is the equivalence relation generated by (X (f))(z) ~ (X (g))(x)
for all x € X(a).

c. Let G be a group. A functor X : G —— Set is a set S equipped with
a left G-action; the functor is nondegenerate if and only if the action is
free. Theorem 3.3 then says that the number of orbits is |S|/|G].

d. The Theorem can be viewed as a generalized inclusion-exclusion principle.
(Compare [R].) Let n > 0 and let P, be the poset of nonempty subsets
of {1,...,n}, ordered by inclusion. (So P5” is the category L of (a).)
Its unique coweighting k, is defined by ky = (—1)I’I=1. Given subsets
S1,...,9, of some set, there is a nondegenerate functor X : PP ——
Set defined on objects by X (J) = ﬂjeJ S; and on maps by inclusion.
Theorem 3.3 gives the inclusion-exclusion formula,

[S1U--USe= > (=D ) S

P£JC{1,....,n} jeJ
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COROLLARY 3.5 Let A be a finite Cauchy-complete category admitting a
weighting. Let XY : A —— Set be finite nondegenerate functors satisfy-
ing | X (a)| = |Y(a)| for all a € A. Then lim X| = [imY|. O

The condition that A admits a weighting cannot be dropped: consider
the category A of Example 1.11(d) and the functors X = A(a1, —) + A(ay, —),
Y = A(ag, —).

If A not only has a weighting but admits M&bius inversion then a sharper
statement can be made (Proposition 1.8).

4 RELATIONS WITH ROTA’S THEORY

In 1964, Gian-Carlo Rota published his seminal paper [R] on Mébius inversion
in posets. The name is motivated as follows: in the poset of positive integers
ordered by divisibility, u(a,b) = pu(b/a) whenever a divides b, where the p on
the right-hand side is the classical Mobius function. He was not the first to
define Mobius inversion in posets— Weisner, Hall, and Ward preceded him—but
Rota’s contribution was the decisive one; in particular, he realized the power
of the method in enumerative combinatorics. The history of Mobius inversion
is well described in [R], [G] and [St].

In this section we discover that some of the principal results in Rota’s the-
ory are the order-theoretic shadows of more general categorical facts. We also
examine briefly a different generalization of Mobius-Rota inversion, proposed
by other authors.

Given a poset A, Rota considered its incidence algebra I(A), which is the
subring of R(A) consisting of the integer-valued 6 € R(A) such that 6(a,b) =0
whenever a € b. By Example 1.2(a) or Corollary 1.5, u € I(A).

In posets, then, {(a,b) =0 = p(a,b) = 0. More generally:

THEOREM 4.1 IfA is a finite category with Mobius inversion then, for a,b € A,
¢(a,b) =0 = p(a,b) =0.
The proof uses a combinatorial lemma.

LEMMA 4.2 Letn > 2 and 0 € S,_1. Then there exist k > 1 and po,...,pk
such that

p0:17 p17"'7pk—1€{15"'7n_1}7 Pk =N,
and pr = o(pr—1) + 1 for each r € {1,... k}.

PROOF Suppose not; then there is an infinite sequence (p,)r>o of elements of
{1,...,n — 1} satisfying pp = 1 and p, = o(p,—1) + 1 for all » > 1. Let € be
the endomorphism of the finite set {p, | r > 0} defined by £(p) = o(p) + 1.
Then ¢ is injective but not surjective (since 1 is not in its image), contradicting
finiteness. O
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PrROOF oF THEOREM 4.1 Write the objects of A as aj,...,a,. There is an
n X n matrix Z defined by Z;; = ((a;,a;), and Z is invertible over Q with
(Z7Y)i; = w(ai,a;). Suppose that 4,5 € {1,...,n} and Z;; = 0. Certainly
i # j, so n > 2 and we may assume that (¢,j) = (1,n). By the standard
formula for the inverse of a matrix, our task is to prove that the (n,1)-minor
of Z is 0.

The (n, 1)-minor of Z is

Z iZl,o’(1)+1 T anl,cr(nfl)Jrh

oc€Sp_1

and in fact we will prove that each summand is 0. Indeed, let o € S,,_1. Take
Do, - - -, Pk as in the Lemma. By hypothesis, there is no map a; — a,, in A.
Categories have composition, so there is no diagram

a1 = Qap, Ap, T Apy, = Qn

in A. Hence ((ap,_,,ap,) =0 for some r € {1,...,k}, giving Z,, | »(p,_1)4+1 =
0, as required.

Given objects a, c of a category A, let A, . be the full subcategory consist-
ing of those b € A for which there exist arrows a« — b —— ¢. Theorem 4.1
easily implies:

COROLLARY 4.3 Let A be a finite category. Then A has Mobius inversion if
and only if A, . has Mébius inversion for all a,c € A, and in that case the
Mébius function of A, is the restriction of that of A. d

These results suggest a way of relaxing the finiteness assumption on our
categories. It extends to categories the local finiteness condition on posets used
in the Rota theory. Let A be a category for which each subcategory A, . is
finite. Then each hom-set A(a,b) has finite cardinality, ((a,b), and there is a
Q-algebra

R(A)={0:0bA xobA — Q]| for a,be€ A, {(a,b) =0 = 0(a,b) =0}

with operations defined as for R(A). Evidently ¢ € R(A), and A may be said
to have Md&bius inversion if ¢ has an inverse p in R(A) By Theorem 4.1, this
extends the definition for finite categories. For example, the skeletal category
DM of finite totally ordered sets and order-preserving injections has Mobius
inversion; compare Example 1.2(c).

The main theorem in Rota’s paper [R] relates the Mdbius functions of two
posets linked by a Galois connection. Viewing a poset as a special category,
a Galois connection is nothing but a (contravariant) adjunction, and Rota’s
theorem is a special case of the following result.
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PROPOSITION 4.4 Let A and B be finite categories with Mébius inversion. Let
F

A — B be an adjunction, F' 4 G. Then for alla € A, b € B,
G

> wad)="> b

a’:F(a’)=b b:G(b')=a

PrOOF Write ((a,b) = ((F(a),b) = ((a,G(b)). Then for all a € A, b € B,

Z N(aaal) = Z N(aaal)(s(F(al)vb) = Z N(aaal)<(alabl)ﬂ(blab)'

a’:Fa’'=b a’€A a’ €A, b EB
The result follows by symmetry. O

For example, when [ is an element of a finite lattice L, the inclusion of
the sub-poset {x € L |2z <1} into L has right adjoint (— Al), giving Weisner’s
Theorem (p.351 of [R]).

The Euler characteristic of posets has been studied extensively; see [St] for
references. Given a finite poset A, the classifying space BA always has Euler
characteristic, which by Proposition 2.11 is equal to the Euler characteristic of
the category A. On the other hand, we may form a new poset A by adjoining
to A a least element 0 and a greatest element 1, and then x(4) = p5(0,1) + 1:
see [R] or §3.8 of [St]. This result can be extended from posets to categories:

PROPOSITION 4.5 Let A be a finite category. Write A for the category obtained
from A by freely adjoining an initial object 0 and a terminal object 1. If A has
Mébius inversion then A does too, and x(A) = 17 (0,1) + 1.

PROOF Suppose that A has Mobius inversion. Let A be the category obtained
from A by freely adjoining an initial object 0. Extend p € R(A) to a function
p € R(Ag) by defining

N(Ovb) = _Z:u(a’7b)a :U’(a’vo) =0, ,LL(0,0) =1
a€A

(b,a € A). Tt is easily checked that this is the M&bius function of Ay.

Dually, if B is a finite category with Md&bius inversion then the category
B; obtained from B by freely adjoining a terminal object 1 also has Mobius
inversion, with p(c,1) = =3, cgu(c,b) for all ¢ € B. Take B = Ag: then

Ap; = A has Mobius inversion, and

p(0,1) = = >~ p(0,b) = =Y u(0,b) — p(0,0) = > paa,b) =1 = x(A) - 1.

bEAo beA a,beA

O
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REMARK Given categories B, A and a functor M : B°? x A —— Set, the
collage of M is the category C formed by taking the disjoint union of B and A
and adjoining one arrow b — a for each b € B, a € A and m € M (b,a), with
composition defined using M [CKW]. Assuming finiteness, if B and A have
Mobius inversion then so does C:

puc (b, b/) = s (b, bl)? pe(a, a/) = pal(a, a/)a pic(a, b) =0,
pe(ba) == pa(b,0) MV, a')| pa(d’, a)

/ ’
b a

(b,b" € B, a,a’ € A). In the proof above, the calculation of the Mébius function
of Ay is the special case where B is the terminal category and M has constant
value 1. The ordinal sum of posets is another special case. Moreover, one easily
deduces a formula for the Euler characteristic of a collage, which in the special
case of posets is essentially Theorem 3.1 of Walker [WK].

Let us now look at the different generalization of Rota’s Mobius inversion pro-
posed, independently, by Content, Lemay and Leroux [CLL] and by Haigh [H].
(See also [Lr] and §4 of [La]. Haigh briefly considered the same generalization
as here, too; see 3.5 of [H].) Given a sufficiently finite category A, they take
the algebra I'(A) of functions from {arrows of A} to Q (or more generally, to
some base commutative ring), with a convolution product:

(09)(f) = > 0(9)p(h).

hg=f

Taking ¢ € I(A) to have constant value 1, they call the Mdbius function of A
the inverse u = ¢! in I(A), if it exists. When A is a poset, this agrees with
Rota; when A is a monoid, it agrees with Cartier and Foata [CF].

They seek to solve a harder problem than we do: if a finite category
A has Mobius inversion in their sense then it does in ours (with u(a,b) =
2 rea(an #(f)), but not conversely. For instance, a non-trivial finite group
never has Mdbius inversion in their sense, but always does in ours.

5 APPENDIX: CATEGORY THEORY

Here follows a skeletal account of some standard notions: category of elements,
flat functors, and Cauchy-completeness. Details can be found in texts such
as [Bo]. Throughout, A denotes a small category.

Let X : A —— Set. The category of elements E (X) of X has as objects
all pairs (a,x) where a € A and x € X (a), and as maps (a,z) — (a’,2’) all
maps f:a — a’ in A such that (X(f))(z) = 2/

Similarly, let X : A —— Cat, where Cat is the category of small cate-
gories and functors. Then X has a category of elements E (X); its objects are
pairs (a,z) where a € A and x € X(a), and its maps (a,2) — (a’,2') are
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pairs (f,&) where f:a — o' in A and £ : (X(f))(x) — 2/ in X(a’). This
definition can be made even when X is a weak functor or pseudofunctor, that
is, only preserves composition and identities up to coherent isomorphism. The
weak functors A —— Cat correspond to the fibrations over A°P; see [Bo].

A set can be viewed as a discrete category (one in which the only maps are
the identities). From this point of view, Set-valued functors are special Cat-
valued functors, and the second definition of the category of elements extends
the first.

Any two functors Y : A°®» —— Set and X : A —— Set have a tensor
product Y ® X, a set, defined by

Y®X= (HY(a)xX(a))/N

achA

where ~ is the equivalence relation generated by (y,(X(f))(z)) ~
((Y(f)(y), ) whenever f:a — b, z € X(a) and y € Y(b). (It may be help-
ful to think of X and Y as left and right A-modules.) A functor X : A —
Set is flat if

—® X : [A°P Set] — Set
preserves finite limits. An equivalent condition is that E (X)) is cofiltered, that
is, every finite diagram in E (X) admits at least one cone.

PropPOSITION 5.1 The following conditions on a functor X : A —— Set are
equivalent:

a. X is nondegenerate (in the sense of 3.2)
b. every connected-component of E (X) is cofiltered
c. X is a sum of flat functors.

d. —® X : [A°P Set] —— Set preserves finite connected limits

PROOF See [Ln] or [ABLR]. O

S
An idempotent e : a — a in A splits if there exist a — b such that

3
st = 1 and s = e. The category A is Cauchy-complete if every idempotent
in A splits. (This is a very weak form of completeness. Let I be the category
consisting of one object, the identity on it, and an idempotent u. Then a
splitting of e is precisely a limit of the functor I —— A defined by u — e.)
All of the examples of categories in this paper are Cauchy-complete, except
that a finite monoid is Cauchy-complete if and only if it is a group.

LEMMA 5.2 Let A be a Cauchy-complete category and X : A —— Set a finite
functor. Then X is familially representable if and only if X is nondegenerate.
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As in §1, ‘finite’ means that E (X) is a finite category.

PROOF By Proposition 5.1, it is enough to prove that a finite functor X is
representable if and only if it is flat. ‘Only if’ is immediate.

For ‘if’, suppose that X is flat. Then E (X)) is cofiltered and finite, so the
identity functor 1g(x) admits a cone. Also, E (X) is Cauchy-complete since A

is. Now, if C is a Cauchy-complete category and (j LN ¢)eec is a cone on 1¢
then p; is idempotent, and the object through which it splits is initial. Hence
E (X) has an initial object; equivalently, X is representable. ]
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1 INTRODUCTION

It is well known that the eigenvalues of the one—particle Dirac operator are
in much better accordance with the spectroscopic data then the eigenvalues of
the Schroédinger operator. However, due to the presence of the negative con-
tinuum of positronic states the multiparticle Coulomb-Dirac operator has no
eigenvalues and its essential spectrum is the whole real line. Coupling with the
quantized electromagnetic field does not correct this situation. However, there
are ways to construct a semibounded operator which will take the relativistic
effects into account. Such models, although nonlocal, find their applications
in numerical studies of heavy elements and cosmology, where the relativistic
effects cannot be ignored.

The most obvious choice of the kinetic energy (sometimes called Chandrasekhar
or Herbst operator) given by /p2c? + m2c*, p and m being the momentum
and mass of the particle, suffers from the lack of semiboundedness for nuclear
charges exceeding 87, as shown in [9]. Most other operators considered in the
literature are obtained by reducing the (multiparticle) Dirac operator onto some
subspace on which it becomes semibounded. One of such models, extensively
studied recently, is by Brown and Ravenhall ], see also Bethe and Salpeter [3],
Sucher [T8, [T9]. In this model every particle is confined the positive spectral
subspace of the free Dirac operator. Since the multiplication by interaction
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potentials does not leave this subspace invariant, the potential energy terms
are projected back by the corresponding projector.

The mathematical study of the Brown—Ravenhall operator started from the
one—particle case in the article of Evans, Perry, and Siedentop [f]. The au-
thors have proved that the atomic Hamiltonian is semibounded from below for
nuclear charges not exceeding 124. This makes the Brown-Ravenhall model
applicable to all existing elements. It was also proved in [7] that the essential
spectrum of the one-particle atomic Brown-Ravenhall operator is [mc?, 00)
with m being the mass of the particle, and that the singular continuous spec-
trum is empty.

Further studies of the Brown-Ravenhall operator include the improved lower
bounds by Tix [21], 22] (see also Burenkov and Evans [B]) in the atomic case,
the proof that the eigenvalues of Brown—Ravenhall operator are strictly bigger
than those of the one—particle Dirac operator by Griesemer et al. [§], proofs
of stability of one-electron molecule by Balinsky and Evans [2], the proof of
stability of matter by Hoever and Siedentop [I0)], and the asymptotic result
on the ground state energy for large atomic charges Z (with Z/c fixed) by
Cassanas and Siedentop [6].

The essential spectrum of the multiparticle operator was characterized by
Jakubala—Amundsen [I2, [[3], and in our joint work with S. Vugalter [T6] in
terms of two—cluster decompositions. This is usually referred to as HVZ theo-
rem after the well known result for the multiparticle Schrédinger operator. In
[I1] an analogous result is proved in presence of the constant magnetic field. It
is also proved in [I6] that the neutral atoms or positively charged atomic ions
have infinitely many bound states.

In all these previous studies the nuclei were considered as fixed sources of the
external field, the particles were assumed to be identical, and the interaction
potentials were purely Coulombic.

In this paper we generalize the HVZ theorem of [I2, [[3] [T6] as follows: We allow
any number of (massive) particles of the system to be identical. We allow quite
general matrix interaction potentials. In particular, our result applies in the
presence of the magnetic fields if the vector potential decays at infinity in some
weak sense. Another problem we address is the reduction to any irreducible
representations of the groups of rotation—reflection symmetry and permuta-
tions of identical particles. Note that such a reduction allows to analyze the
eigenvalues of some irreducible representations even if they are embedded into
the continuous spectrum of some other representations. For some particular
models (including atoms and molecules in the Born—Oppenheimer approxima-
tion) the existence of such eigenvalues can be shown along the same lines as in
[16].

From the technical point of view, the nonlocality of the model due to the
presence of the spectral projections of the free Dirac operator is overcome with
the same ideas as in [I6]. One more complication should be stressed: for the
Brown-Ravenhall operator the center of mass motion cannot be separated in
the same way as it is usually done for Schrodinger operators, where the complete
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Hamiltonian without external field can be represented in suitable coordinates

as
H=A®I+1®B,

where A describes the free motion of the center of mass and B is the internal
Hamiltonian of the system (see [I4]). Such a decomposition appears to be
especially fruitful in the presence of rotation symmetries. Since it cannot be
obtained for pseudorelativistic operators due to the form of kinetic energy, we
have used a completely different approach based on the commutation of the
Hamiltonian with the absolute value of the total momentum of the system.
Note that the proof of the HVZ theorem for a system of particles described
by the Chandrasekhar operator was till now not known for operators reduced
to irreducible representations of the rotation-reflection symmetry group (see
the article of Lewis, Siedentop and Vugalter [IA] for the case without such
reductions). Such a proof can now be obtained as a simplified modification of
the proof given in this paper.

In Section ] we introduce the model and make the necessary assumptions. At
the end of this section we formulate the main result in Theorem Bl The rest of
the article contains the proof of this theorem.

2 SETUP AND MAIN RESULT

[A, B] = AB — BA is the commutator of two operators. (,-) and || -|| stand for
the inner product and the norm in L2(R3d7C4d), where d is the dimension of
the underlying configuration space. Irrelevant constants are denoted by C'. I
is the indicator function of the set 2. For a selfadjoint operator A we denote its
spectrum and the corresponding sesquilinear form by o(A) and (A-,-) = (-, A-),
respectively. We use the conventional units 7 = ¢ = 1. Sometimes we denote
the unitary Fourier transform by ™.

In the Hilbert space Ly (R?, C*) the Dirac operator describing a particle of mass
m > 0 is given by

D,, = —ia-V + fm,

where a = (a1,a2,a3) and @ are the 4 x 4 Dirac matrices [20]. The
form domain of D,, is the Sobolev space H'/ 2(R3,C*) and the spectrum is
(—o0,—m] U [m,4+00). Let A, be the orthogonal projector onto the positive
spectral subspace of D,,:

—ia -V + Om
2V—A+m?2’

We consider a finite system of N particles with positive masses m,, n =
1,...,N. To simplify the notation we write D,, and A,, for D,, and A,,,,

N
respectively. Let Hx := ® A,L2(R*,C*) be the Hilbert space with the inner
n=1

1
A =5+ (2.1)

N - - N
product induced by those of ® La(R3,C*) 2 Lo(R3N ,C*"). In this space the
n=1
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N-particle Brown-Ravenhall operator is formally given by

N N
Hy = AN (Z(Dn + V) + ZUM)AN, (2.2)

n=1 n<jg
with

N
H = Zé (2.3)

Here and below the indices n and j indicate the particle, on whose coordinates
the corresponding operator acts. In ([Z2) V,, is the external field potential
for the n'" particle, i.e., the operator of multiplication by a hermitian 4 x 4
matrix—function V,,(x,), n = 1,...,N, and U,; is the potential energy of
the interaction between the n!" and j** particles, given by the operator of
multiplication by a hermitian 16 x 16 matrix—function Uy;(x, — x;), n < j =

., N. More explicitly, if we let s; € {1,2,3,4} be the spinor index of the
jth particle, then

(Vah) (X1, 815+« Xny Sny e oo 3 XNy, SN)

= 3 VT (X1, $15 X Bk X 8N

Sn

and
(Unj) (X1, 815+ -5 Xn, Sps -+ -5 X5, 845+ - ; XN, SN)
Z US"SJ’S"SJ (X, — X;)(X1, 15+ - X, Snj - - -3 Xy, S5+ - - S XN, SN )-
50,5

Before we make other assumptions on the interaction potentials, let us consider
possible decompositions of the system into two clusters. Let Z = (Z71, Z2) be a
decomposition of the index set I := {1,..., N} into two disjoint subsets:

I1=721UZy, Z1NZy=0

Let
N] = #Zja .7 = 172 (24)

be the number of particles in each cluster. We will write n#j if n and j belong
to different clusters. Let

Hzi= Y (Dn+Va)+ > Unj, (2.5)

n€Zy n,j€Z1
n<j
szg = E D, + E Un]’. (26)
neZs n,j€EZ2
n<jg
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We omit Hz ; if Z; = @, j = 1,2. Let us introduce the operators corresponding
to noninteracting clusters, with the second cluster transferred far away from
the sources of the external field:

Hz;:=AzHzMz;, in §7;:= 8 ML(RCY, j=12, (27)

where

Az = HA

We make the following assumptions:

ASSUMPTION 1 There exists C > 0 such that for any Z and j = 1,2

[(Hzj0,0)| < Cliglmrelldllmiz,  forany o0 € ® HYX(R?,CY). (2.8)

nez;

For Coulomb interaction potentials &) follows from Kato’s inequality.
ASSUMPTION 2 There exist C1 > 0 and Co € R such that for any Z

(Hzj, 1) = C1( Y Dut,9b) — Col|v]%,

neZ; (2.9)
forany YeE ® AnHl/Q(R3,(C4), ji=12.
neZ;

REMARK 3 Note that for € ® A, HY?(R3 C*) the metric

neZ;

(> Daw )2 = || 3 1Dl 2y

nez; nez;

1s equivalent to the norm of ¢ in ® H1/2(R3,(C4), since
nGZj

ApnDpAy = Ap|Dp|Ap = A/ —A + m2A,. (2.10)
An equivalent formulation of Assumption [Jis that the operator H 7.5 is semi-
bounded from below even if we multiply all the interaction potentials by 1+ &

with € > 0 small enough. This is only slightly more restrictive than the semi-
boundedness of Hz ;.

ASSUMPTION 4 For any R > 0 there exists a finite constant Cr > 0 such that

([ o) (o) "< e

=1 n<j
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This means that the interaction potentials are locally square integrable.

ASSUMPTION 5 For any € > 0 there exists R > 0 big enough such that for all
n=1...,N

V(x> my 0l < e[| Dal 29|, for all o € H/?(R?,CY),  (2.12)

and for alln<j=1,...,N

103 Ty 5yl < e min {1026, 125126},

(2.13)
for all o e HY*(RS,C'9).
By Remark Bl this assumption is weaker then the decay of L, norms of the
interaction potentials at infinity.
It follows from (29) and Remark Bl that for any Z there exists a constant C' > 0
such that for any 1 € ®Z A, H'Y2(R?,C*)
nes;

1112, < C((Hz0,9) + [9]?), j=1,2. (2.14)

Hence by Assumptions [ and Bl the quadratic forms of operators (1)
(and, in particular, Hy) are semibounded from below and closed on

® A HY?(R3 C*). Thus these operators are well-defined in the form sense.
neZ;

Some particles of the system (say, k" and ') can be identical (in which case
my = my, Vi = Vi, and Uy; = Uy for all j). Then the operator Hy can be
reduced to the subspace of functions which transform in a certain way under
permutations of identical particles. The most physically motivated assumption
is that any transposition of two identical particles should change the sign of
the wave function ¢ € $y describing the system. This is the Pauli principle
applied to the identical fermions (the model describes spin 1/2 particles, thus
fermions).

Let IT be the subgroup of the symmetric group Sy generated by transpositions
of identical particles. We denote the number of elements of IT by hr;. Let E be
some irreducible representation of II with dimension dg and character {g. For
Y€ Hy let

d -
PPy =22 En(mmy, (2.15)
1
mell
where 7 is the operator of permutation:
(M) (X1, 815+ 5 XN, 8N) = V(Xp-1(1), Sx-1(1)5 - X1 (N)s Sr-1(N))-
Here s1,...,sy are the spinor coordinates of the particles. The operator P¥

defined in (ZIH) is the projector to the subspace of functions in $x which
transform according to the representation E of II. Since any 7 € II commutes
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with Hy, P reduces Hy. Let HE be the corresponding reduced selfadjoint
operator in
9% = PEay.

For a decomposition Z = (Z1, Z3) let HJZ be the group generated by transposi-
tions of identical particles inside Z;, j = 1, 2. For any irreducible representation
E; of HjZ with dimension dg; and character {g; the projection to the space of
functions in §z ; transforming according to E; under the action of HJZ is given
by

dg. -
Pij = ﬁ Z §Ej (77)7T¢a w € fJZ,j7

5 z
J TrEHj

where hyz is the cardinality of HJZ . Projectors PPs reduce operators H z,;- We
J

. ~E; .
introduce the reduced operators ’HZ’j in

97 =P%%z;, j=12

Given an irreducible representation E of IT and a decomposition Z = (Z, Z5),
we have
9N C @ (974 ®9H%%), (2.16)
E1,E») ’ ’

where E o are some irreducible representations of Hf 5. We write (E1, E2) ; E

if the corresponding term cannot be omitted on the r.h.s. of [I@) without
violation of the inclusion.

Apart from permutations of identical particles the operator H% can have some
rotation-reflection symmetries. Let v be an orthogonal transform in R3: the
rotation around the axis directed along a unit vector n, through an angle ¢.,
possibly combined with the reflection x — —x. The corresponding unitary
operator O, acts on the functions 1/ € H” as (see [200], Chapter 2)

N
(O’Yw)(xh s ’XN) = H e—i(ﬂ—yn-y'snw(,y—lxh s 77_1XN)-

n=1

Here S,, = —%an A ay, is the spin operator acting on the spinor coordinates of
the nt" particle. The compact group of orthogonal transformations v such that
O., commutes with V;, and U,,; for all n, j = 1,..., N (and thus with HE) we
denote by T'. Further, we decompose $% into the orthogonal sum

9k = @ ay”, (2.17)
acA

where ﬁga’E consists of functions which transform under O,, according to some
irreducible representation D, of I', and A is the set indexing all such irre-
ducible representations. The decomposition [ZI1) reduces HL. We denote the
selfadjoint restrictions of HE to Sﬁﬁ“’E by HJ[\),“’E. For any fixed irreducible
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representation D with dimension dp and character (p the orthogonal projector
in $H onto the subspace of functions which transform according to D is

PP —dp /F o ()0 dpu(),

where p is the invariant probability measure on I'.
For j = 1,2 let D; be some irreducible representations of I" with dimensions
dp, and characters (p,. The corresponding projectors in $)z ; are given by

PPi = dp, /F 0, (7)0~5dp(v),
where O, ; is the restriction of O, to $z ;:

(O’%jw)(xnu e 7X71Nj) = H eiup’yn’y.snw(’yilxnlv T ’,ylean )
nEZj

Given representations D; and FE;, projector PPi PEi = PEi PPi reduces ﬁz,j.
We denote the reduced operators in

ﬁlzj,];E" .= PPipEig,
by ﬁgJ]EJ . Let
(2, Dy, Ej) == inf o (Hy}™). (2.18)
We write (D1, Ey; D, Es) ; (D, E) if the corresponding term cannot be omit-
ted on the r.h.s. of

D.E D, ,FE Do, E

‘6 ) C ‘6 1,541 ®‘f) 2,552

N (D17E1)( Z,1 Z,2 )
(D2, E2)

without violation of the inclusion. For Zs # @ let

»(Z,D,E)
o inf{5¢1(Z, D1, E1)+2(Z, Dy, Es) : (D1, Ex; D, E) p (D,E)}, Z, # @,
%2(Z7D,E), Zl = .

(2.19)

The main result of the article is

THEOREM 6 Suppose Assumptions[, @ [, and @ hold true. For N € N let D
be some irreducible representation of I', and E some irreducible representation
of I1, such that PP PF £0. Then

Ooss (H][\),’E) = [%(D, E), oo) ,
where

(D, E) =min {3(2,D,E) : Z = (Z1,22), Zo # @} (2.20)
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REMARK 7 We only need Assumptiond for the operators ’I—NZ?JEJ which appear

3 COMMUTATOR ESTIMATES

3.1 ONE PARTICLE COMMUTATOR ESTIMATE

LEMMA 8 Let x € C3(R?) (i. e. a bounded twice—differentiable function with
bounded derivatives). Then for m, > 0 the commutator [x, A,] is a bounded
operator from Lo(R3,C*) to HY(R3,C*). There exists C(m) > 0 such that

||[X’A"]HLQ(RS,(}‘l)—»Hl(Ri",(}‘l) < C(mn)(HvXHLoo + H82X||Loc) (31)
Here ||0°xr.. = max  [3x(z)].
k,e{1,2,3}

PROOF. In the coordinate representation for f € C}(R3,C*) the operator A,
acts as

f(x)imy a - (x—y)
() = 150+ Tt [ S (b 1) Sy

VI [ (Rl
RS Ix —yl Ix — vl

A2 QY) Ko (ma|x —YI))f(Y)dy,

where the limit on the r.h.s. is the limit in Ly(R3,C*) (see Appendix B of [I6],
where this formula is derived in the case m, = 1). The rest of the proof is an
obvious modification of the proof of Lemma 1 of [I6], where the case m,, =1
is considered. e

REMARK 9 Since we only deal with a finite number of particles with positive
masses, we will not trace the m-dependence of the constant in Bl any longer.

3.2 MULTIPARTICLE COMMUTATOR ESTIMATE

LEMMA 10 For any d,k € N there exists C > 0 such that for any x € C5(R?)
and u € H'/?(R?,C*)

Ixull mrire@a,cry < ClIxlo@ay + 1VXI Lo @) |2l 172 Ra ey (3.2)

Proor or LEmMA [l We can choose the norm in H'/2(R%, C*) as (see [I],
Theorem 7.48)

|u(x) — u(y)]

2
||u||§—[1/2(Rd,Ck) = ||u||2L2(]Rd,(Ck) +/ |X — y|d+1 dXdy
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Then
2
e e o[ e =X,
XUl 12 re,cr) = IXUIILy (e ,CF) |x [+ y
2 2
2 e )" Jux) —u@)|* | xx) = x3)[’Jue)]
< Il + ff (R 2L ) ORI )y
X\X
< Il o + sup / It |d+1‘ dxull3,.
yER?
(3.3)
The supremum on the r.h.s. of [B3)) can be estimated as
2 2
x(x )| [x(x) — x(¥)|
sup —d_de < sup —d_de
y€ER? |X - Y| yeRe J|x—y|<1 |X - Y| (3 4)

2
‘X(X) - X(Y)| d—1 2 2
+ sup / P =X)L g < 81 (192 + 42 ).
yerd Jix—y|>1 X =yl ( Fee o)

where [S971| is the area of (d — 1)-dimensional unit sphere. Substituting (B4)

into B3) we obtain ([B2). e

LEMMA 11 For any x € C%(R3YN) the operator [x, AN] is bounded in
HY2(R3N (C4N), and for any ¢ € HY?(R3N, C4") we have

106 AY e < CUVXI L + 10X 2) (X2 + VX2 ) 1] 1112

(3.5)
with C' depending only on N and the masses of the particles.
PROOF. Successively commuting y with A,, n=1,..., N (see [Z3)) we obtain
N n—1 N
DOANT =D T Al Al T A (3.6)
n=1k=1 l=n+1

where the empty products should be replaced by identity operators. By (E1I)
the operators A,, are bounded in H'/2 for any n = 1,...,N. This, together
with ([B8) and Lemmata 8 and [0, implies B3). o

4 LOWER BOUND OF THE ESSENTIAL SPECTRUM

In this section we prove that

inf oess (HN'T) = (D, E). (4.1)
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4.1 PARTITION OF UNITY

LEMMA 12 There exists a set of nonnegative functions {xz} indezxed by possi-
ble 2—cluster decompositions Z = (Z1, Za) satisfying

. xz € C®(R3N) for all Z;
2. xz(kX)=xz(X) foral|X|=1, k> 1, Zy # @,
3. Y Xx%(X) =1, for all X € R?; (4.2)
z
There exists C' > 0 such that for any X € supp xz
min{|xj —Xpn| 1X; € Z1, Xp € Z2; |Xn| 1% € Zg} > CIX|;

Xz(YX1, .- YXN) = xz(X1,...,XnN) for any orthogonal

5.
transformation -y;

6. xz is invariant under permutations of variables preserving Z ».

PROOF. The proof is essentially based on the modification of the argument
given in [I7], Lemma 2.4.

1. We first prove that for any X = (x1,...,xy) € R3*" with |[X| = 1 there
exists a 2—cluster decomposition Z = (Z7, Zs2) such that

min{|xj —Xp| X € Z1, Xy € Zo; |Xp| 1 %y € Zg} > N—3/2, (4.4)
Indeed, let k be such that |xx| > |x;| for all j =1,..., N. Then, since |X| =1,
x| > N2, (4.5)

Choose Cartesian coordinates in R3 with the first axis passing through the
origin and xg, so that x; = (|x;¢|7 0, 0). Consider N regions

Ry = {x eR3: ' < |xk|/N}7
R = {XER3:x1 € ((1 = 1)xx|/N, 1|xk|/N}}, I=2,...,N.

At least one of these regions does not contain x; with j # k. Let Iy be the
maximal index of such regions. Let Z5 be the set of indices n such that x,, €
lUl R;. Zs is nonempty since xi € Z3. Setting Z; := I \ Z2 we observe that
>lo

min{|xj —Xp| 1 Xj € Z1, X € Zo; |Xp| 1 X € Zg} > |xk|/N,

which together with H) implies ().

2. Choose n € C* (R4, [0,1]) so that
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2[5 | 2[x; — Xy
o) T o emis ) T of Lt
(2(X) = ng |X|N—3/2 H1 |X|N—3/2
— 7](2|X|), Zy = .
(4.6)
Functions (H) satisfy conditions 1, 2, 4 (with C = N=3/2/2), 5 and 6 of
Lemma Moreover, by the first part of the proof

> ¢z(X)>1, forall XeRW,

Hence all the conditions are satisfied by the functions

Xz :=¢/" ( Z §Z> o
Z

Let
X#(X) = xz(X/R), (4.7)

where the functions xz are defined in Lemma The derivatives of xZ decay
as R tends to infinity:

IVxZle < CR™Y 0°xZ ] < CR™2. (4.8)

To simplify the notation we omit the superscript R further on.

4.2 CLUSTER DECOMPOSITION AND LOWER BOUND

We now estimate from below the quadratic form of HJ?,’E on a function ¢ from

N
sz’E NAN ® HY?(R3,C*), which is the form domain of H]?,’E
n=1

(HEEp, ¢) = (ZD + V) +

Z Um) > X3 v)

= Z<(Z(Dn + Vo) +

Here we have used ([22) and the relation

Z Unj)XZ¢,XZ¢>-

n<j

N

S Valda) = Do (2. Y Valxzg) + (5D Va

A n=1

N8

>g> (4.9)

DOCUMENTA MATHEMATICA 13 (2008) 51-79



ESSENTIAL SPECTRUM OF BROWN-RAVENHALL OPERATORS 63

which holds for any f,g € (]E\é H'/2(R3,C*). The last term on the r.h.s. of
E3) is equal to zero due ton(ﬁ). Thus
MR = 3 ((Hza + Hza) A Xz, AV z0)
Z=(Z1,25)
+{((Hz + Hazo)xz, AN, AN X 290)
+{(Hz1 + Hz2)xz, [xz, AN]¥) (4.10)
+

Z VnX2Z¢a ¢> + <Z UanQZwa ¢>)
=

By 12), @13), E&3), @), and T the terms at the last line of [EI)

can be estimated as

(D Vaxzw, ) + (O Unjx3,90) 2 —e1(R) (Hy P, ) + [9%)  (4.11)
neZs n<jg
n#j

with 1(R) — 0 as R — oo. The terms at the second and third lines of EIT)
can also be estimated as

(Hza +Hz2)xz, AN, AN xz9) + (Hza + Hz2)xz¢, Xz, AN]Y)
> —ea(R)(HEP0.0) + [01). ex(B) — 0.
according to (), B2), BH), EF), and ZId). For Z; # & we estimate

the terms at the first line of EIM) in the following way (recall the definitions
EI3), @I3) and @20)):

(Hz1 + Hz2) AV X2, AV x29)

= ) (M1 PP PEY 4 Hyn PP2 PE2AN y o, ANy 500)

(D17E1;D2,E2)§(D,E)

> > ((>1(Z, D1, Ex) PP PP
(DhEl?DZ,EZ);(D’E)
+ 36(Z, Do, E3)PP2 PE2) AN x 29p, AN x 290)
> (D, E)(AN x 20, AN x z9)
(4.12)

By B2), B3), @X), and T the last term on the r.h.s. of {I) can be

estimated as

#(D, EY{[AN, xz|, xz%) > —e3(R) (Hy v, ¢) + |[Y[?), es(R) — 0.

R—o00

(4.13)

DOCUMENTA MATHEMATICA 13 (2008) 51-79



64 SERGEY MOROZOV
Substituting the estimates ) — EI3) into EIM) we obtain

(HR B0, 8) = (D, E) > X3, 0) + (Y " AN x 1,090, AV X (1,0)0)
Z=(Z1,2Z2)
Zo#D

— ea(R)(HY P, ) + [¥)1?), ea(R) — 0.

R—o0
(4.14)
4.3 ESTIMATE INSIDE OF THE COMPACT REGION

It remains to estimate from below the quadratic form of Hg’E on AN XS{]7Q)TZ).
Note that according to Lemma [ and ) supp x(7,e) C [—2R, 2R3N, To
simplify the notation let

X0 ‘= X(1,2)-
LEMMA 13 For M > 0 let
Wiar = {p e R* : |p)| < M,i=1,...,3N}, Wiy := RN\ Wy,
There exists a finite set Qpr C Lo(R3N) such that for any f € Lo(R3N) with

suppf C [-2R,2R]*N, f1Qu holds

A 1 -
[ PG AR A FNCSLOE
The proof of Lemma [[3 is analogous to the proof of Theorem 7 of [23] and is
given in Appendix C of [T6].
It follows from () that for any M > 0

N
(MY PAN o, ANxot) = C1(>_ DI AN xotr, ANxot) — Call x|
n=1
(4.15)

Here IWM is the operator of multiplication by the characteristic function of

WM in momentum space.
‘We choose
M :=8(5(D,E) 4+ C5)Cy ! (4.16)

and assume henceforth that f := xo¢ is orthogonal to the set Qs defined
in Lemma Since in momentum space the operator D, acts on functions
from A, L2(R3,C*) as multiplication by +/|p|2 + m2, by construction of Wy,

we have

N
(> DTy AN xoth, AV xot) = M| I, AN xot)|*. (4.17)
n=1
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Inequalities (E1H) and [EID) imply
(Hy P AN xotb, AN xot) = CLM || T, AN xot0]* = Callxo||?

M(HI“ Xo|l — HI’WM » X0 1/1||) — Callxo¥|?

M (G, X ? — [T, AN, xal9lI”) = Callxow? (4.18)
4( (D, B) + Co) | I, xo¥ |1
_8(%(D7E)+02)H 7XO]1PH2 — Collxo¥|%

At the last step we have used ([I6]). The second term on the r.h.s. of [EIX)
can be estimated analogously to [EI3) as

~8((D, B)+ o) | A xolu|* > s (R) (HE 0, 0) + [161P), es(R) — 0.

For the first term on the r.h.s. of [I¥) Lemma [[3 implies
4| I, xot |1 = [Ixov|*. (4.19)
As a consequence of [EI¥) — EIJ), we have

(HNEAN xot0, AN xo1b) = 3¢(D, E)||xo||> — e5(R) ((H"1, ) + |[¢]?),
E5(R) — 0.

R—o

(4.20)

4.4 COMPLETION OF THE PROOF

By (m)a (M), and (m)
(M0, 0) 2 (D, E)[Y|* = eo(R)(Hy ", ) + [017), 26(R) — 0.

R—o0

for any v in the form domain of H%E orthogonal to the finite set of functions
(cardinality of this set depends on R). This implies the discreteness of the
spectrum of ’HJ[\),’E below (D, E) and thus EJ).

5 SPECTRUM OF THE FREE CLUSTER

In this section we characterize the spectrum of the cluster Z5 which does not
interact with the external field.

PROPOSITION 14 For any irreducible representations Do, Fo of rotation—

reflection and permutation groups the spectrum of ’HD2 2 g

(HD2 E2) = Uess(HD2 E2) = [%2(Z7 D2;E2); OO);
with some 33(Z, Dy, Es) € R.
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PROOF. Let us introduce the new coordinates in the configuration space R3Nz
of the cluster Zs = {n1,...,nn,}, in the same manner as it is done in [I5]. Let
M = Zne 7, Mn be the total mass of the particles constituting the cluster.
We introduce

ne€Zs (51)
Yk = Xnpy —Xng, k=1,...,Na—1.
The Jacobian of this variable change is one. Here yq is the coordinate of the

center of mass, whereby yx, k = 1,..., No — 1 are the internal coordinates of
the cluster. Accordingly,

1 Ny—1
an = YO - M ; mnk+1yk‘)
Nao1 (5.2)
an+1:y0+yl*M Zmnk“}’ka 1:17"'7N2*]-~
k=1
The momentum operators in the new coordinates are
m No—1
. ni .
Pn, i= —iVx, = =P — Z (7ZVYIC)’
M= (5.3)
. m .
Pn, = —iVx, = ]\;’“ P+ (-iVy, ,), k=2,...,Ny,

where P is the total momentum of the cluster:

P:= ) —iVy, =—iVy,.

neZs

Let Fo be the partial Forurier transform on 53222’]52 defined by
1 —iPyo
(fof)(P7yla"'7yN2—1) = W s f(y07Y1a---aYN2—1)€ dyO

By Z4) and 1) we have
7Dy, E 1R D2,E2}
Hzz " =Fo AzaHz5 Az Fo,

where in the new coordinates

N2—1
,}—HZ),22’E2 = Z (a"p"+ﬁnm")+ Z Unlnk (Yk)+ Z Unknz (Yk_Yl)a
neZs k=2 1<k<I<N2—1

(5.4)
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KZ’Q = H Kn, (55)
neZs
2 2yph+my

operators p,, are given by (B3)), and P should now be interpreted as multiplica-
tion by the vector—function. The operators (&4l) and (&) obviously commute
with 9 := |P|. The operator F, 'PFo (unlike F, 'PFy) is well-defined in
S’JD2’ 2 since it commutes with PP? an P®2 in $z,2. This implies that HDQ’E2
commutes with F; 'PFo.

Let w := P/ € S2. We decompose the Hilbert space j’JDz’Ez into the direct
integral

3,‘)DQ,EQZ/ 9557 Ppap. (5.6)
0

The fibre space S’JD2’EQ’q3 can be considered as a subspace of L2(R3N2_3 X
52 Cc* 2) with the inner product

(f:9)« :=/ (fs9)caradyr - dyn,—1dw.
R3(N2—1) y G2

For f € S§D2’E2 the corresponding element of j’JDQ’EQ’m is given by
fp = Foflpl=p-
We have -
17 = [ 1 plea 5.7

in compliance with (B28)). The form domain of 7?[127722’]52"}3 is
DF .= AT, PP PP gV 2(RIV2-D) 5 62 €472

where A?Q is given by (&) with the only difference that we should replace P
by wP in (B3F). The operators on fibres of the direct integral (BH) are

D7E7 . pY D,E,‘B‘B
HD 2,E2 _AZ2H 2,E2 AZ2’

where HZQQ’E2’m is given by the r.h.s. of (&) with P replaced by wP in (3.
We thus have -
Hyy"e = / dHy5 P PP, (5.8)
0

Dz,Ez

The spectrum of ‘H can be represented as

(HDQ’E2 ) = ess U D2’E2’ ) (5.9)
BeR4
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where the essential union is taken with respect to the Lebesgue measure in R .
The bottom of the spectrum of H%Q’EQ’m is given by

W) = g EE T

5.10
I e (5.10)

LEMMA 15 Function (BI0) is continuous on R.

Proor oF LEMMA [[O Let us fix P € Ry and € > 0. We will prove that
|1(B +p) — u(P)| < e if |p| is small enough. Choose ¢ € D¥ such that

77 Da BB
}W -um| < 5. (5.11)
Let
¢ =AY 3Py € DFTP,
We have
N2
¢—p=AF" — AL =) JTAErP@Er —ab) [[a¥e.  (12)
k=1i<k j>k

Let F be the unitary Fourier transform in Lo(R3(N2=1) x §2, (C4N2) defined by

(-7'—5)(“1;%7 s 7qN2*1)

No—1
a1 —i > aryk
= (2m)3(1=N2)/2 W, y1,.. ., ¥yNo—1)e K= dyi---dyn,-1
R3(Ng—1)
We can rewrite (12) as
Ny
p—p=F "> T[AEP@AE?Y —AT) [ AY 7o, (5.13)
k=1i<k >k
where /A\?, n € Zo are the operators of multiplication by the symbols
N 1 n An n!lin
AP =4 w (5.14)
2 2ypr+m
m No—1
~ ni
p'r‘L1 = —w%_ Z qk7
M k=1 (5.15)
M,

ﬁnk = Mwm+qk‘71; k:2,...,NQ.
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The matrix—functions (EId) are uniformly continuous in B. Thus by [I3)
16— 1172 g sn cae) < C Z IRE =R ol ——, 0. (5.16)
We write
(Hzs ™ ¥ 06,00 = (Hps™ P, 0) + (Mg ™R (6 = 0).9).
+ (M50, (6 — 0 +{(HZE P = 155 %)0, 9)..

The second and third terms on the r.h.s. of (BIT7) tend to zero as |[p| — 0
according to (EIH) and ([ZF). The last term also tends to zero for small |p|,
since the symbol of the difference is

~ m
]:(HQEE%‘B-‘FP _ H1277227E2ﬂ3)‘7:_1 _ Z _nan - wp.

(5.17)

From ([&10) and (B13) follows that
(Hzs™ P, ) (Hp5" %9, 9).
K8l 1F el
if |p| is small enough. Hence by &I and (EI8) for any € > 0

[W(B+p) —w(P)| <e

9
< 9 1
; (5.18)

for |p| small enough. e

Now we prove that p is semibounded from below and tends to infinity as || —
oo. This, together with () and Lemma [ implies that the spectrum of
HDQ’E2 is purely essential and is concentrated on a semi—axis. Proposition [
W111 be thus proved.

According to (1) for j = 2 and EI0) we have

(H75"20,0) > LY V=D +m2, ) — Ca[ ]2,

neZ (5.19)

for any ¢ € PPPF ® AnHl/Q(R3, ch.
neZs

Since all the operators corresponding to the quadratic forms involved in (BI9)
commute with 7 YBFo, it follows from (EH) that for almost all ¢ the inequal-

ity

nEZ2

holds for every ¢ € D%, where p,, are defined in (EI5). Thus p is semibounded
from below. Since by (BIH)

‘32‘2@“

neZs
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there exists n € Z5 such that

) \/ﬁ%er%}Nl;.

neEZs
Thus the r.h.s. of (B20) tends to infinity as P — oo. e

and hence

6 ABSENCE OF GAPS
We are now ready to finish the proof of Theorem B by proving that
[5(D, E),0) C a(HN"). (6.1)

Let us first fix a decomposition Z on which the minimum is attained in 20).
Following the general strategy of [[4], we will prove that for any irreducible
representations (D1, Eq; Do, E9) ; (D, E) any

A > %1(2, Dl,El) + %Q(Z, DQ,EQ)

belongs to o(HYF). This will imply (BI) according to the definition (ET).
Let

)\1 =\ — %1(Z,D1,E1) 2 %2(2, DQ,EQ). (62)

We will use the notation and results of Section Bl The following lemma is a
slight modification of Theorem 8.11 of [I4] and is proved along the same lines:

LEMMA 16 Let A be a selfadjoint operator in a Hilbert space $ and U(y) be
a continuous representation of a compact group I' by unitary operators in $
such that U(y)Dom A C Dom A and U(y)A = AU(y) for any v € I'. Then
for any irreducible (matrix) representation D of T' the corresponding subspace
PP§ reduces A. For every \ € U(AD) where AP is the reduced operator and
every € > 0 there exists a D—generating subspace G of Dom A such that

[[Auw — Au|| < e||u|l, for allu € G.

REMARK 17 Recall that a subspace G of § is called D—generating if the op-
erator U(%)|G is unitary in G for all v € T' and there exists an orthonormal
base in G such that for every v € T the operator U(Y)|G is represented by the
matriz D(y).

ProoF ofF LEMMA [[A Let r be the dimension of the representation D : v —
(le(fy));kzl. Let us introduce in $ the bounded operators Py, by

Plk = T/ le(’Y)U(’Y)dﬂ(V)7 l7 k= 17 s, Ty
I
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where p is the invariant probability measure on I'. It is shown in the proof of
Theorem 8.11 of [T4] that P; are orthogonal projections onto mutually orthog-
onal subspaces of $ and that

PP =%"py. (6.3)
=1

In fact, Py is the projection on the subspace of function which belong to the
I*" row of the representation D. Moreover, Py, is a partial isometry between
Pup$ and Py $. Since A € o(AP), there exists a vector ug € Dom AP such that

1APuo = Auo|| < elfuo]-

It follows from (B3)) that there exists [ € {1,...,7} such that || Pyuo| > r~'.
We can thus define u; := Pyug/|| Puuo|| and then uy := Pyu; for k=1,...,7.
The subspace G spanned by {u}}_, satisfies the statement of the lemma. o
Let

ryi=dim(D; ® E;), j=1,2. (6.4)

Since s11(Z, D1, E1) belongs to the spectrum of ﬁIZ)fl’El (see definition [ZIF)),
by Lemma [[6 we can choose a sequence of (D; ® Fj)-generating subspaces
{Gq}g2y of Dom(H?fI’El) such that for all ¢ € N

[HZ:" 64 = 21(Z, D1 BNyl < a0 l1d4llszs, forall ¢, € Gy (6.5)

Analogously, for any 8 > 0 we can find a sequence {qu}go:l of (Dy ® E3)—

generating subspaces of Dom ﬁlZ)fQ’Ezm such that
™Dy, Es, -
725" P — p@wd|l, <a Mwd,, forallwf €GF. (6.6)

Moreover, we can choose an orthonormal basis {w?l};il in qu in such a way

that for every ¢ € N and [ = 1,...,72 %4, belongs to the I*" row of the
representation (Dy ® Es) and satisfies ({@0). By Proposition [[4 Lemma [H
and ([E2) we can choose Py in such a way that

1(Po) = A1 (6.7)

We choose Ry > ¢ so that I2) and @I3)) hold true for all n,j =1,..., N,
n < j with

£ = q_l(N1 + 1)_1N;1/20%/2(C2 + |)‘1| + 2)_1/2’ (6'8)

where N; 2 are the numbers of elements in Z; 5, and C 2 are the constants in
E3) for j = 2, and so that for some orthonormal base {¢q 1}, of G,

H(l B H I{‘xj|<Rq})¢q’k

JjE€EZy

70 (6.9)

<—2
2 )
L2(R3N17c4N1) 4dE’I“17“2
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where dg is the dimension of E, 712 are defined in (@2)), and the constant
vy > 0 depending only on E, FE;, Es will be specified later in the proof of
Lemma 211

By Assumption ] and Lemma [[H, we can choose a sequence of positive numbers
{04152, tending to zero in such a way that

[W(PB) = M| <g7! forall P e [FBo, Po + g, (6.10)

1 _
7.3 (Po +00)*0Cr, < 7%, (6.11)
where Cg, is the constant in (ZTIl), and

2

1 4 v,
m(‘po +04)%0q - 7Ry < .

3™ < o (6.12)

Let us choose a function f; € Lo(Ry) with supp fq C [Bo, Bo + d¢] so that

Po+dq )
L P -1 (6.13)
Let
wq,l(}’o, ce s YNy—1)
1 Po+dg (6 14)
= (2%)% / /eimwyofq(%)wzfl (W, Yi,--- ,yN2_1)‘J32dwd‘I§, '
Po 52

where {yo,...,¥nN,—1} and {x, }nez, are related by (&) and (B2). It follows
from ([EI3) and the choice of w;fl that

||wqyl||ﬁz,2 = 17 l= ]-a .. '7N2; (615)

and that 4 ; belongs to the Ith row of (Dy ® Es). Clearly the linear subspace

G, spanned by {1,,}72, is a (Dy © Es)-generating subspace of Dom 7?[12722]52

LEMMA 18 For anyn € Zy and ¢ € éq with ||¢]| = 1 the one—particle density

2
Py,n(Xn) = / W’(Xm 7o Xnpy, )‘ (dxn, - 'anNQ)/an
R3N2—3

satisfies

1
lpg,nll Lo (r3) < ﬁ(‘ﬁo +64)54.
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Proor. By ([EI4)

1Pwmll o ®sy < (27) 732Dl Ly (mo)

1 / / /‘BoJrziq/ /‘Boﬂ%/ e,ip(yoJrrn)efi&Bwyof ©9)
(277)6 R3 R3N2 o 52 o 52 1

X w?* (W,Y1, s 7yN2—1)ei$Gyofq(§i)w?(&vyla s 7YN2—1)‘I32‘$2

X dw d‘i dwdPBdyody: - -dyn,—1

(6.16)

dp,

where r,, := x,, — yo, see (2). Integrating the r.h.s. of [EIH) in yo we obtain
(27)38 (p+Pw —P&) from all the factors involving yo. Estimating the absolute
value of the integral by the integral of absolute value and taking into account
that [d(p+...)dp =1 we get

lovllicee < oz [ TMQ N TMQ L1l )

X |1/)qm(W,Y1, s 7yN2*1)‘ ‘w;ﬁ(&ayla s 7yN2*1)|q32§132 (617)

1
(27)347‘-0130 + 5q)26q7

where at the last step we have used Schwarz inequality and ||¢|| = 1. The
formal calculation (BEI0) — (EID) is justified by the fact that the integral over

R3™2 can be considered as a limit of integrals over expanding finite volumes,
since ¢ € Lo(R3N2). o

X do dP dw dB dy: - - dyn, 1 <

COROLLARY 19 For any W € Ly(R3), n € Zy, and ¢ € G, with ||| = 1 we
have

2 1
/ ‘W(Xn)w(xnu-'wanQ)‘ dxnl "'anNQ < 92 2(‘330+5q)25q||w||2-
R3N2 T
Let Fy be the subspace of $y spanned by the functions

Oa kit (X1, XN) = g k(Xj 1 J € Z1) @ Ygi(xy, 1 1 € Z3),

(6.18)
k=1,....,r, l=1,...,19,

where {¢g1},2, and {14,;};2, are orthonormal bases of G, and éq, respec-
tively. We obviously have ”(p%kvl”Lz(RSN oaNy = 1.

LEMMA 20 For any q € N F;, C Dom'Hy. For any ¢ € Fy
_1.1/2 1/2
1(Hn = Vel < 5g7 11 gl
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PROOF. It is enough to show that the functions ([EI8) belong to Dom Hy and
satisfy

(M = Neal p,gon cavy <5a7" (6.19)

Indeed, by triangle and Cauchy inequalities for

T1 T2
Y= Z Z CklPq,k,l (6.20)
k=11=1
we have
T1 T2
[(Ha =Nl <D0 leml||(Ha = Mgl
k=1 1=1

2yl

< sup||(Hy = Mgl
The operator domain of HN can be characterized as the set of functions
¢ from the form domain ® A, H'Y?(R? C*) on which the sesquilinear form

n=

(HNE,+) is a bounded hnear functional in . Functions ([EIF) belong to
N
® A, HY?(R3 C*) by construction. By Z2), @3), and [ZH) we have
n=1

HN =Hz1+Hzz2+ AN< Z Vi + Z Un]-)AN. (6.21)
neZs n;]
n#j

The sesquilinear forms ((Hz1 + Hz,2)@q.k1,-) are bounded linear functionals
over Ly(R3N, C4"), since Gq.k € Dorn(’HD1 E1) and 1, € Dom HY%"™2. More-

over, by (E3)
H(Hz1 —(Z, D1, Er) qule = H Hyy o — %1(ZaD1aE1))¢q,kH <q
and by (E8), @0), EI0), EI), and (EIH)
|(Hz2 = M)@gri]l = (HZ5"* = M)gu|| < 207" (6.22)

In view of [@2ZI)—@E2ZA) and E2), to prove that ¢qr; € DomHy and that
(ETI) holds true it is enough to obtain that

H( D Vet Unj)SDq,k,l 27" (6.23)
neZs n<j
n#j
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To do this, we first note that by (ZI2), ZI3), and Cauchy inequality

H< Y Valgasrg + Y Und{|xn_xj|>Rq}>soq,k,z

neZs n<jg
n#j
Wi+ 1) 3 10alEv] < s+ ONF (X Dl vl )
ness ness
(6.24)
By @3), ([EI5), and 622,
> IDY200l? < O ([(RD5™ = M)wall + Ca + Il
ne€Zs (625)
<O (Ca+ M| +2¢77).
Thus by Z), (E2H) and @) for ¢ > 1 we obtain
H( Z Vil{x,|>R,} T Z Unjf{xnxj|>Rq})<Pq,k,z <q (6.26)
neZs n<jg
n#tj
Now the scalar functions
Vn,q(x) = |Vn (X)‘I{IXKRQ}(X) and UnJ q ‘UW )|I{|x|<Rq}(X)
(6.27)
are square integrable by (ZTIl). By Corollary [ for n € Z5
2 2 1 2
Vaa®atetll? = 1Va,g¥a1? < 5504(Bo + 8| Vaall7, re (6.28)

and for n < j, n#j

2 1
1Unsaanill® < U [1Ungal = 2)al]” < 3584(Bo + 801Ul Fces)-
zE

(6.29)
Hence by (62Z1), (628), E29), 1), and @IT)

H( Y Valfxai<ry T Unjf{xnxﬂ@q})%,k,l

neZs n<jg

n#tj

It remains to add (E26) and (E30) to obtain ([E23), finishing the proof of the
lemma. e

The subspace F, spanned by the functions [EIX) is D1 ® E1 @ Dy ® Eo—

generating. Since (D1, Eq; Do, E9) ; (D, E), F,; contains some nontrivial D—

1
ST (6.30)

generating subspace. Hence the subspace K, := pP F, is not equal to {0} and
is contained in F.
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LEMMA 21 There exists a constant Cg > 0 such that for every ¢ € N
IPPoll > Crllell,  for all ¢ € Fy. (6.31)

PROOF. Projector [ZIH) can be written as

PP == Z Ep(m)m + Z—E Z Ep(m)m. (6.32)

n€ll? x11Z n€Il\(I1Z x11%)
We will denote the first term in [E32) by QF, and the second by R¥. Then

PPl = (o, PPo) = (0,Q%0) + (¢, RF ). (6.33)

Relation (D1, Ey; D, Es) ; (D, E) implies that the representation E|le x 114
k .
is unitarily equivalent to a sum @ n;E®) where n; > 0 are multiplicities of the
i=0
irreducible representations E(*) of the group 117 x 1§ with E(®) = E; ® Es.
For the corresponding characters this gives

k
Ep(m) = Zm{(i)(w), for all 7€ M7 x 115,
i=0

Hence
k
E
Q¥ => wp,
i=0

where v; > 0 and P; is the projector corresponding to the representation F(*).
By construction, Py = ¢ for any ¢ € F, hence P,p =0fori=1,...,k. Thus
for any ¢ € F,

(v, Q%) = mollell*, o >0. (6.34)
We will now estimate the second term on the r.h.s. of [E33). For any n € Z,
and any ¢ € G, with ||| =1 by Corollary [@ and (EI2) we have

2

v,
I, ’<—— 6.35
H {|x7|<Rq}wH 16d4E7“%T% ( )
For any functions (I8 and any 7 € II inequality (@) implies that
Vo
K TP . T T < Iris. AR =~ 7 3Ny + ——.
|<‘Pq (pq,k,l>| S < H {|xJ\<Rq}|‘pq | |90q7k71|>L2(]R ) 4d2E7"17’2

JEZ,
Now if 7 € II\ (I x I1%), then there exists jo € Z; such that 7jo € Z5. Hence
by (E33)
vy

Igix. , =) < ok =)< .
<jgl {l J|<Rq}|90q,k,l| 7r|<pq7k,l|> <|50q,k,l| {l ,0\<Rq}7r|50q,k7l|> 4d2E7“17“2
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Thus o
(ot mo, 50 < g m €T\ (I X TI5). (6.36)

Any ¢ € F, can be written as (E20). By (E30) and Cauchy inequality for any
7 ell\ (17 x 1)

Yo
(o) < D lemtlleggl|{@aktsmo, 50| < ﬁlls@llQ- (6.37)
Kkl E
Since the number of elements of I\ (I1# x I1¥) does not exceed dr; and for any

T ‘{E(w)‘ < dg as a trace of unitary matrix of dimension dg, [E37) implies
that

(0, RE0)| < wollell? /2.
By (E33)) and ([E34)) we conclude that [E3T) holds with Cg = \/1/2.
Lemmata and 21 imply that L, := PFK, is a nontrivial subspace of
Dom Hﬁ’E and for every f = PPy € L,

D,E i1
IHRE =N F]| < | (Hy =N < 5g7'rErf el < 5q7'riri M1 Fll g €N
This implies that \ € J(’H][\),’E), and thus finishes the proof of Theorem @
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ABSTRACT. Let M be a Chow motive over a field F. Let X be a
smooth projective variety over F' and N be a direct summand of the
motive of X. Assume that over the generic point of X the motives M
and N become isomorphic to a direct sum of twisted Tate motives.
The main result of the paper says that if a morphism f: M — N
splits over the generic point of X then it splits over F, i.e., N is a
direct summand of M. We apply this result to various examples of
motives of projective homogeneous varieties.
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1 INTRODUCTION

By a variety X over a field F' we always mean a reduced and irreducible scheme
of finite type over F. By F(X) we denote the function field of X.

DEFINITION 1.1. Let M be a Chow motive over F. We say M is split over F'
if it is a direct sum of twisted Tate motives over F. We say a motive M is
generically split if there exists a smooth projective variety X over F and an
integer [ such that M is a direct summand of the twisted motive M (X){l} of
X and M is split over F(X). In particular, a smooth projective variety X is
called generically split if its Chow motive M (X) is split over F(X).

The classical examples of such varieties are Severi-Brauer varieties, Pfister
quadrics and maximal orthogonal Grassmannians. In the present paper we
provide useful technical tool to study motivic decompositions of generically
split varieties (motives). Namely, we prove the following

Partially supported by SFB 701, INTAS 05-1000008-8118 and DFG GI 706/1-1.
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THEOREM 1.2. Let M be a Chow motive over a field F. Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume that M and N are split over F(X). Then a morphism M — N splits,
i.e. N is a direct summand of M, if it splits over F(X).

The paper is organized as follows. In section 2 we introduce the category of
Chow motives over a relative base. In section 3 we provide the version of the
Rost nilpotence theorem for generically split varieties. In section 4 we prove the
main result of this paper (see the above theorem). The last section is devoted
to various applications and examples.

2 CHOW MOTIVES OVER A RELATIVE BASE

Let X be a variety over a field F. We say X is essentially smooth over F
if it is an inverse limit of smooth varieties X; over F' taken with respect to
open embeddings. Let CH™(X;A) = CH™(X) ®z A denote the Chow group
of codimension m cycles on X with coefficients in a commutative ring A. If X
is essentially smooth, then CH™(X;A) = liLQCHm(XZ-; A), where the limit is
taken with respect to the pull-backs induced by open embeddings.

In the present section we introduce the category of Chow motives over an
essentially smooth variety X with A-coefficients. Our arguments follow the

paper [9].

I. First, we define the category of correspondences C(X;A). The objects of
C(X;A) are smooth projective maps Y — X. The morphisms are given by

Hom([Y — X|,[Z — X]) = &; CHdim(Zi/X)(Y xx Zi; N,

where the sum is taken over all irreducible components Z; of Z of relative
dimensions dim(Z;/X). The composition of two morphisms is given by the
usual correspondence product

VYoo = (pyr):((py,2)"(9) - (pz10)" (¥)),

where ¢ € Hom([Y — X|,[Z — X]), v € Hom([Z — X],[T — X]) and
Dy,T, Py,z, Pz, are projections Y Xx Z xx T =Y xxT,Y xx Z, Z xx T.
The category C(X;A) is a tensor additive category, where the direct sum is
given by [Y — X]|® [Z — X]| := [Y]][Z — X] and the tensor product by
Y - X]|®[Z— X]:=[Y xx Z — X] (cf. [9, §2-4]). As usual we denote by
¢' € CH(Z xx Y) the transposition of a cycle ¢ € CH(Y x x Z).

The category of effective Chow motives Chow(X;A) can be defined as the
pseudo-abelian completion of C(X;A). Namely, the objects are pairs (U, p),
where U is an object of C(X;A) and p € Ende(x;2)(U) is a projector, i.e.
pop = p. The morphisms between (Ui, p;) and (Us,p2) are given by the
group p2 o Home(x;2) (U1, Usz) o p1. The composition of morphisms is induced
by the correspondence product. In the case X = Spec(F) and A = Z we obtain
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the usual category ChoweH(F ) of effective Chow motives over F' with integral
coefficients (cf. [9, §5]).

Consider the projective line P! over F. The projector p = [Spec(F) x P1] €
CH!(P! x P') defines an object (P!, p) in Chow®™ (F) called the Tate motive
over F' and denoted by Z{1} (cf. [9, §6]).

II. We have two types of restriction functors.

1) For any morphism f: X; — X5 of essentially smooth varieties we have a
tensor additive functor

TS X, /X, : C(Xa2;A) — C(X1;A)

given on the objects by [Ya — Xa] — [Ya X x, X1 — X3] and on the morphisms
by ¢ — (id X f)*(¢), where id x f : (Yo X x, Z2) Xx, X1 — Y2 Xx, Z is the
natural map. It induces a functor on pseudo-abelian completions

Tes X, /X, | Chow®™ (Xy; A) — Chow® (X1; A).

2) For any homomorphism of commutative rings h: A — A’ we have a tensor
additive functor

respy/a: C(X,A) — C(X;A)

which is identical on objects and is given by id ® h: CH(Y xx Z;A) —
CH(Y xx Z;A’) on morphisms. Again, it induces a functor on pseudo-abelian
completions

TeSA/ /A : Chow®™ (X; A) — Chow®(X; A).

Observe that the functor resj.,n commutes with resx,,x,. We denote by
Tes x,/x,,a’/A the composite resy,, x, o resy/a. To simplify the notation we
omit Xo (resp. A), if Xo = Spec F' (resp. A =Z).

Let f: X — SpecF and h: Z — A be the structure maps. Then
TESX A : Choweﬁ(F) — ChowEH(X;A). Given a motive N over F' we denote
by Nx a its image resx a(IN) in Choweg(X;A). The image Z{1}x,a of the
Tate motive is denoted by T and is called the Tate motive over X. Let M
be a motive from ChoweH(X; A) and ! > 0 be an integer. The tensor product
M @ T®" is denoted by M{l} and is called the twist of M. The trivial Tate
motive T®? will be denoted A (thus, T®! = A{i}).

The same arguments as in the proof of [9, Lemma of §8] show that for any
motives U and V from Chow(X;A) and [ > 0 the natural map

Hom gy, g et x4y (U, V') — Hom gy gperr .y (U{1}, V{I}) (1)

given by ¢ — ¢ ® idr is an isomorphism.
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ITI. We define the category Chow(X;A) of Chow motives over X with A-
coefficients as follows. The objects are pairs (U,1), where U is an object of
Chow®®(X; A) and [ is an integer. The morphisms are given by

Hom((U,1), (V,m)) := lim Homepouess(x;a)(U{N + 1}, V{N +m}).

N —4o00

This is again a tensor additive category, where the sum and the product are
given by

U, 0)e (V,m) := (U{l —n} & V{m —n},n), where n = min(l,m),

U, 1)® (V,m) = (U®V,l+m).

Observe that the Tate motive T is isomorphic to ([id : X — X7, 1) and, hence,
it is invertible in (Chow(X;A), ®). Moreover, we can say that Chow(X;A) is
obtained from Chow®®(X; A) by inverting T' (cf. [9, §8]).

According to (1) the natural functor Chow(X;A) — Chow(X;A) given by
U — (U,0) is fully faithful and the restriction resx a descend to the respective
functor resx p: Chow(F) — Chow(X;A).

For a smooth projective morphism ¥ — X we denote by M(Y — X) its
effective motive ([Y — X],id) considered as an object of Chow(X;A). If
X = SpecF and A = Z, then we denote the motive M(Y — X) simply
by M(Y). By definition there is a natural identification

Hom pow (x:a) (MY — X){i}, M(Z —=X){j}) = CHI™Z/ X%~y x y Z; A).

IV. Let M be an object of Chow(X;A). We define the Chow group with low
index CH,,(M;A) of M as

CH, (M; A) := Hom cpow(x;a) (A{m}, M)
and the Chow group with upper index CH™ (M; A) as

CH™(M; A) := Hom cpow(x;a) (M, A{m}).
Observe that if M = M(Y — X), then we obtain the usual Chow groups
CHI™Y/X)=m(y A) and CH™(Y;A) of a variety Y. A composite with a
morphism f : M — N induces a homomorphism between the Chow groups

R..(f): CH,,(M) — CH,,(N) and R™(f): CH™(N) — CH™(M) called the
realization map.

3 THE ROST NILPOTENCE

We will extensively use the following version of the Rost nilpotence (cf. [14,
Proposition 9])
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PROPOSITION 3.1. Let N be a generically split motive over a field F'. Then for
any field extension E/F and any coefficient ring A the kernel of the restriction

resg/r : Endp(N) — Endg(Ng)
consists of nilpotents.

To simplify the notation we denote by Endx (M) the endomorphism group
Hom cpow(x;0) (M, M), where M is a motive over a variety X.

Proof. Recall that (see Definition 1.1) a motive N over F is generically split if
there exists a smooth projective variety X and [ € Z such that NV is a direct
summand of M (X){l} and Ni = resg,p(N) is split, where K = F'(X) denotes
the function field of X.

We may assume that N is a direct summand of M (X) (that is, [ = 0). Since for
a split motive M and a field extension E/L, the map Endy (M) — Endg(MEg)
is an isomorphism, we may assume that £ = K.

Consider the composite of ring homomorphisms

T’BSK/FS EndF(N) m Endx(Nx) ES—K/L EndK(NK),

where the last map is induced by passing to the generic point Spec K — X.
Observe that Endx (Nk) = lim Endy(Ny), where the limit is taken over all
open subvarieties U C X. Then ker(resx,x) = Uy ker(resy,x ) and by Lemma
3.2 the kernel of resg,x consists of nilpotents.

On the other hand, the map resx,r is injective. Indeed, since N is a direct
summand of M (X), Endr (V) is a subring of Endp(M (X)) and Endx (Nx) is
a subring of Endx (M (X)x). So, it is sufficient to prove the injectivity for the
case N = M(X). The restriction resx,p: Endp(M (X)) — Endx (M (X)x)
coincides with the pull-back 77 5: CH(X x X; A) — CH(X x X x X; A) induced
by the projection on the first two coordinates. And 7}, splits by (idx x
Ax)*: CH(X x X x X;A) - CH(X x X;A), where Ax: X — X x X is the
diagonal. The proposition is proven. O

LEMMA 3.2. Let X be a smooth projective variety over F and A be a commu-
tative ring. Let U C X be an open embedding. Then for any motive M from
Chow(X; A) the kernel of the restriction map

resy/x : Endx (M) — Endy (My)
consists of nilpotents.

Proof. If M is a direct summand of [Y — X]{i}, then Endx (M) is a subring
of Endx (M (Y — X)) and it is sufficient to study the case M = M(Y — X).
Recall that Endx (M(Y — X)) = CHE)=dm(X) 1y oy A).

Let ¢ be an element from the kernel of resy,x. Let j: Z — X be the reduced
closed complement to U in X. Then by the localization sequence for Chow
groups the cycle ¢ belongs to the image of the induced push-forward

(id(YxXY) X j)* CH((Y X x Y) X x Z,A) — CH(Y X x Y,A)
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Let codim(Z) be the minimum of codimensions of irreducible components of Z,

and d := [Cigif((z))]—l—l. We claim that the d-th power ¢°? of ¢ taken with respect

to the correspondence product is trivial. Indeed, ¢°¢ = (71,d41)«(P1-P2-- . .- Pa),
where ¢; = 7}, 1(¢) and the map m; ;s : Y>>+ Y x x Y is the projection
on the i-th and 4’-th components. Since 7}, o (id(y x yv) X j)« coincides with
(idyx@+n X j)« o (me x idz)*, all cycles ¢; belong to the image of the push-
forward

(idy xca+1) X J)«: CH(YX(d‘H) Xx Z) — CH(YX(d‘H)).

By Proposition 6.1 applied to the projection Y (@1 — X and the closed
embedding j: Z — X we obtain that the product

b1 g € ((idyxarn X §)e CHY XD x o 7))
is trivial. Therefore, ¢°¢ is trivial as well. O

We finish this section with the following

DEFINITION 3.3. Given motive M over a field F' and a field extension L/F we
say a cycle in CH(ML) is rational if it is in the image of the restriction map

TeSL /-

Observe that the rationality of cycles is preserved by push-forward and pull-
back maps. It also respects addition, intersection and correspondence product
of cycles.

4  MOTIVIC SPLITTING LEMMA

In the present section we prove the main result of this paper

THEOREM 4.1. Let M be a Chow motive over a field F. Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume that M and N are split over the function field K = F(X). Then a
morphism f: M — N splits, i.e. N is a direct summand of M, if it splits over
K.

Proof. To construct a section of f we apply recursively the following procedure
starting from g = 0 and such m that CH'(Ng) = 0, for i < m.

For a morphism g : N — M such that the realization morphism
RY(fx o gx) is the identity on CH'(Ng) for i < m, we construct a
new morphism ¢’ : N — M such that R'(fx o g% ) is the identity
on CHi(NK) for 1 < m.

Since the motive N splits, for the corresponding projector py over K we may
write (pn)x = Y, wi X w)’ for certain w; € CH" (X ) and w)’ € CH,(Xk) such
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that deg(w; - w,,) = O,.m. Elements w; form a basis of CH*(Ng) = (pn)k ©
CH"(Xk) C CH"(Xk).

Consider the surjection CH™ (X x X) - CH™(K xp X) = CH™(Xg). Let
be a preimage of an element w; of CH™ (X ).
Consider the difference id — f o g and denote it by h. Assume that over K it
sends a basis element w; to a cycle oj. Since R'(hg) is trivial for all i < m,
the cycle hx = hk o (pn) K can be written as

hK = Z ap X wlv + Z aj X wjv S CHdimX(XK X XK). (2)

codima;=m codim a; >m
From (2) we immediately see that
a; =prq, (Q,x - hx) € CH™(Xk) is rational. (3)

Also, oy o (pn)Kk = .
The realization R™(fx) is a Z-linear map CH™ (Ng) — CH™(Mk). Let C =
(¢ij) be the respective matrix of coefficients, i.e.,

Rm(f}() Wi = chiej’
J

where {60} is a Z-basis of CH"(Mg). Let s : Ny — Mg be a section of
fx. The realization map R™(s) is a left inverse to R™(fx). Hence, for the
respective matrix of coefficients D = (d;;) we have

Rm(S) : 91 = Zdﬂ-wj
J

and D - C = id, i.e., Zj dijcjr = d;,. For each o define the morphism ; :
N — M as
up = Zdli@;/ o (pri(a)-Ax)opn,

where ©) is a preimage of an element 6 of CH,,,(Mg) by means of the canon-
ical surjection Homp (M (X)(m)[2m]|, M) — CH,,(Mk) and py : N — M(X)
be the morphism presenting N as a direct summand of M (X). By definition,
uy is a rational morphism and the realization R™(v;) is given by

91- — dlial

Hence, the composite R™(f o u;) = R™(u;) o R™(f) maps w; to d; 0.

Set § = g+ Y, w. By construction, the realization R(f o g) is the identity on
CHi(NK) for i < m. Consider the endomorphism id — f o g of N. Over K its
realization R*(id — f o §) is trivial for each i < m.

Recursion step is proven and we obtain map ¢’ : N — M such that (fog')x =
idn,. Let ¢ = id — f o g’. By the Proposition 3.1, ¢" = 0, for some r. Set
g=go(id+q+¢*+...+¢" V). Then fog = idy and N is a direct
summand of M. O
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5 EXAMPLES AND APPLICATIONS

GEOMETRIC CONSTRUCTION OF A GENERALIZED ROST MOTIVE. Let p be a
prime and F be a field of characteristic different from p. Let n be a positive
integer. To each nonzero cyclic subgroup («) in K2 (F)/p consisting of pure
symbols one can assign some motive M, in the category Chow (F'; Z/pZ), which
satisfies the following property

For an arbitrary field extension FE/F

alg #0 <= (My)g = resg/p(My) is indecomposable;
alp =0 < (M,)g is split.

It follows from the results of V. Voevodsky and M. Rost that for a given sub-
group such motive always exists and is unique (see [17, § 5] and [15, Prop. 5.9]).
Moreover, when split it is isomorphic to

p—1
n-1_1

Pz/pzii- T}
=0

Such a motive is called a generalized Rost motive with Z/pZ-coefficients.

DEFINITION 5.1. A motive with integral coefficients which specializes modulo
p into a generalized Rost motive and splits modulo ¢ for every prime ¢ different
from p will be called an integral generalized Rost motive and denoted by R, p.

Integral generalized Rost motives, hypothetically, should be parameterized not
by the pure cyclic subgroups of KX (F) /p, but by the pure symbols of KM (F)/p
up to a sign. The existence of integral generalized Rost motives is known for
n = 2 and arbitrary p, for p = 2 and arbitrary n, and for the pair n = 3,p = 3.
All these examples are essentially due to M. Rost.

As the first application of Theorem 4.1 we obtain the construction of the clas-
sical integral Rost motive corresponding to a Pfister form.

COROLLARY 5.2. (cf. [14, Theorem 17.(9) and Proposition 19]) Let X be a
hyperplane section of a n-fold Pfister quadric Y over a field F'. Then M(Y) ~
M(X){1} ® Rp2, where Ry 2 is an integral Rost motive.

Proof. In the proof we use several auxiliary facts concerning quadrics and their
motives which can be found in [5].

Let ¢x and ¢y be the quadratic forms which define X and Y. By definition
¢x is a subform of codimension 1 of the Pfister form ¢y. According to [5,
Def.5.1.2 and Thm.5.3.4.(a)] Y becomes isotropic over K = F(X). This fact
together with [5, Prop.4.2.1] implies that both ¢x and ¢y become totally split
(hyperbolic) over K. Then by [5, E.10.8] the motives M (X )k and M (Y)x are
split over K.

Let T'. be the graph of the closed embedding e: X <— Y. The respective cor-
respondence cycle [I'c] € CHgim x (X x Y') induces the realization map R*(T.)
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which coincides with the pull-back e*: CH*(Y) — CH*(X) (see §2.IV). It is
known that the Chow ring of a hyperbolic quadric is generated by two ele-
ments (h,l), where h is the class of a hyperplane section and [ is the class of
a maximal totally isotropic subspace. In this notation the pull-back e}, maps
hy — hx and ly — lx, i.e. maps the ring CH(Yx) onto the ring CH(Xg).
The latter means that R*(I'.) and, therefore, the transposed correspondence
cycle [Te]t € CHgimy—1(Y x X) have a section over K.

Take f = [[e]t: M(Y) — M(X){1} and apply Theorem 1.2. We obtain the
decomposition M(Y) = M(X){1} & N, where N is such that

Nk =Z & Z{2" ' —1}.

Let E/F be a field extension. The Pfister quadric Y corresponds to some
pure symbol o € KM (F)/2 (see [5, §9.4]) with the property that a|z = 0
if and only if Yg has a rational point. Consider the specialization Ng 7,2
with Z/2-coefficients. We have the following chain of equivalences: Ng 7,5 is
decomposable < Ng 7/, contains Z/2 as a direct summand < M(Y;Z/2)g
contains Z/2 as a direct summand < (see [14, §1.4]) Yr has a zero-cycle of
odd degree < (Springer Theorem) Yy has a rational point. At the same time,
the specialization Nz, is split for any odd prime p, since M (Y';Z/p) is split.
Hence, N is an integral generalized Rost motive corresponding to the symbol
Q. o

To provide the next application we use several auxiliary facts concerning Albert
algebras and Cayley planes which can be found in [4], [8], [11], [12]. We use
the notation of [12, §3].

Consider an Albert algebra J defined by means of the first Tits construction.
Let F4(J) and Eg(J) denote the respective simple groups of types F4 and Eg.
Let X be the variety of maximal parabolic subgroups of F4(J) of type P;. Let
Y be the variety of maximal parabolic subgroups of Eg¢(J) of type P; Here P,
corresponds to a standard parabolic subgroup generated by the Borel subgroup
and all unipotent subgroups corresponding to linear spans of all simple roots
with no i-th terms (our enumeration of roots follows Bourbaki). The variety
Y is called a (twisted) Cayley plane.

Observe that there is a closed embedding e: X <— Y such that over the splitting
field K of J the class [X ] € Pic Yi generates the Picard group of Y. In other
words, X is a hyperplane section of Yi (see [8, 6.3]).

COROLLARY 5.3. Let X and Y be as above. Then M(Y) ~ M(X){1} & Ra.3,
where Rs3 3 is an integral generalized Rost motive corresponding to the Serre-
Rost invariant g3(J) in KM (F)/3.

Proof. We follow the previous proof step by step.

Let K denote the function field of X. Analyzing the Tits indices of Fy(J)
we conclude that J becomes reduced over K. Moreover, since J is defined by
means of the first Tits construction, J becomes split over K. By definition it
implies that both groups and varieties become split over K.
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Consider now the graph I'. of the closed embedding e: X — Y. As before,
the respective correspondence cycle [I'c] induces the realization map R*(T')
which coincides with the pull-back e*. The Chow rings CH(X k) and CH(Yx)
are generated by (h, gt) (see [10, 4.10]) and (H, o/, 08) (see [4, 5.1]). By the
Lefschetz hyperplane theorem the pull-back e* has to be an isomorphisms on
all graded components of codimensions < 7. This immediately implies that e*
maps H — h and o) — g7, i.e. maps the ring CH(Yy) onto the ring CH(X ).
So R*(T.) and, therefore, the transposed cycle [['.]" have a section over K.
Take f = [[e]t: M(Y) — M(X){1} and apply Theorem 1.2. We obtain the
decomposition M(Y) = M(X){1} & N, where the motive N is such that

N = Z & Z{4} & Z{8}.

Let E/F be a field extension. Let a = g3(J) € K} (F)/3 be the Serre-Rost
invariant of the Jordan algebra J (see [13]). Analyzing the Tits indices of Eg(J)
we see that a|g = 0 if and only if Yz has a zero-cycle of degree coprime to 3.
Consider the specialization Ng 7,3 with Z/3-coefficients. Similar to the quadric
case there is a chain of equivalences which says that Ng 7,3 is decomposable <
YE has a zero-cycle of degree coprime to 3. At the same time, the specialization
Ngz,p is split for any prime p # 3, since M (Y'; Z/p) is split. Therefore, N is an
integral generalized Rost motive corresponding to the symbol a. O

REMARK 1. Observe that in view of the main result of [10] we obtain the
following decomposition

8
M(Y) ~ P Rss{i}.
1=0

So from the motivic point of view the variety Y is a 3-analog of a Pfister
quadric.

PROJECTIVE HOMOGENEOUS VARIETIES OF TYPE F4. As before let J be an
Albert algebra defined by means of the first Tits construction. Let Fy(J) be
the respective group of type Fy. Let X be the same as before, i.e. the variety
of maximal parabolic subgroups of type P, of Fy4(J). Let Y be the variety
of maximal parabolic subgroups of type P; of F4(J). Observe that Y has
dimension 20.

COROLLARY 5.4. Let X and Y be as above. Then the motive M(X;Z) is
isomorphic to a direct summand of the motive M(Y;Z).

Proof. Since the Albert algebra J splits over the function field K of X, the
motives M (X) and M(Y) become split over K as well. By the main result of
[10] M(X) splits as

7
M(X) ~ P Rss{i},
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where R 3 is the integral generalized Rost motive corresponding to gs(J).
Let Z be the variety of parabolic subgroups of type Ps 4 of F4(J). Observe that
Z has dimension 21 and there is a map pryy = (pry,pry): Z — X XY, where
pPry, pry are the quotient maps. For each ¢ = 0...7 consider the composite

oo s M(Y) 2200 hrxy Ry 516}, where a; € Pic Z.

Set f = @Z:o fa;: M(Y) — M(X). Assume that we can choose «; € PicZ
in such a way that the realization map R*(f) becomes split injective over K.
Then by Theorem 1.2 applied f, the motive M (X) is isomorphic to a direct
summand of M (Y).

So to prove the corollary it is enough to find o; € PicZ, i = 0...7, such that
R*(f) is split injective over K.

Observe that the restriction map resg,p: PicZ — Pic Zk is an isomorphism
(see [10, Lemma 4.3]). Therefore, we may assume that «; € Pic Zx. Observe
also that the ring structures of CH(Xg), CH(Yx) and CH(Zk) are known.
We have R*(fo,)x = R*(a;)x o R*(pi)k, where p; is an idempotent defin-
ing R3 3{i}. Both realizations R*(p;)x and R*(c;)x can be described explic-
itly on generators. Indeed, the realization R*(«;)k is given by the composite

CH(Xk) 25 CH(Zg) 25 CH(Zg ) 2225 CH(Yk ), where the maps pri and
pry, can be described using [10, §3]. The explicit description of the cycles
(pi) K is provided in [10, 5.5].

Let {a; = c1:91+¢2i92 }imo.. 7, C1i, C2; € Z, be the presentation of the cycles «; in
terms of a fixed Z-basis (g1, g2) of Pic Zx. Since all realization maps R*(«;) k,
R*(p;)k are Z-linear, the question of split injectivity of R*(f)x translates
into the problem of solving certain system of Z-linear equations in 16 variables
{c14, €2i }izo...7. Direct computations show that this system has a solution. This
finishes the proof of the corollary. O

TWISTED FORMS OF GRASSMANNIANS. Consider a Grassmannian G(d,n) of
d-dimensional planes in a n-dimensional affine space. Its twisted form is called
a generalized Severi-Brauer variety and denoted by SB4(A), where A is the
respective central simple algebra of degree n (see [7, §1.C]). The next corollary
relates the motive of a generalized Severi-Brauer variety with the motive of
usual Severi-Brauer variety.

COROLLARY 5.5. Let A and B be two central division algebras of degree n with
[A] = £d[B] in the Brauer group Br(F'), where d and n are coprime. Then the
motive of the Severi-Brauer variety SB(A) is a direct summand in the motive
of the generalized Severi-Brauer variety SB4(B).

Proof. We construct the morphism f : M(SB4(B)) — M(SB(A)) as follows.
Consider the Pliicker embedding pl : SB4(B) — SB(A?B). It induces the
morphism M (SB4(B)) — M(SB(A?B)), where AB is the d-th lambda power
of B (see [7, I1.10.A]). By [6, Cor. 1.3.2] the motive M (SB(A?B)) splits as a
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direct sum of shifted copies of M (SB(A)), where [A] = d[B] in Br(F). Take f to
be the composite of the Pliicker embedding and the projection M (SB(A?B)) —

M(SB(4)).
We claim that f has a section (splits) over the generic point of SB(A). Indeed,
it is equivalent to the fact that for each m =0,...,n—1
g.q.d.(cgm)) =1
where cgm) are degrees of the Schubert varieties generating CH™ (G(d, n)). The

latter can be computed using explicit formulas for degrees of Schubert varieties
provided for instance in [3, Ch. 14, Ex. 14.7.11.(ii)].

Then by Theorem 1.2 the motive M(SB(A)) is a direct summand in
M(SB4(B)). Observe that the motives M (SB(A)) and M (SB(A°P)) are iso-
morphic. So replacing [A] by [A°P] = —[A] doesn’t change anything. O

COMPACTIFICATIONS OF A MERKURJEV-SUSLIN VARIETY. Here we follow
definitions and notation of [16]. Let A be a cubic division algebra over F. Re-
call that a smooth compactification D of a Merkurjev-Suslin variety MS(A, ¢)
can be identified with the smooth hyperplane section of the twisted form
X = SB3(M3(A)) of Grassmannian G(3,6). Using Theorem 1.2 one obtains a
shortened proof of the main result of [16]

COROLLARY 5.6. Let D be the smooth projective variety introduced above. Then

M(D) ~ @M(SB(A)){i} ©® Ra,3,

i=1

where Ra 3 is an integral generalized Rost motive. In other words, from the
motivic point of view the variety D can be viewed as a 3-analog of a Norm
quadric.

Proof. Let ¢ : D — X denote the closed embedding. It induces the map
I;: M(D) — M(X). The variety X is a projective homogeneous PGLg-variety
corresponding to a maximal parabolic subgroup of type P;. According to the
Tits indices for the group PGLjy,(4) the parabolic subgroup P is defined over
F and, hence, X is isotropic. By [2, Thm. 7.5] the motive of X splits as

M(X) =ZoQ{1} ® Q{4} © Z{9},
where @@ = M(SB(A) x SB(A°)) = @?:0 M(SB(A)){i} by the projective
bundle theorem. Hence, we obtain

M(X)=7Zo @ M(SB(A){i} & Z{9}. (4)

i=1

We define f to be the composite of I'; and the canonical projection from M (X)
to the direct summand @?:1 M(SB(A)){i} of (4). Observe that the motive
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M (D) splits over the generic point of SB(A). The direct computations (using
multiplication tables provided in [16]) show that f has a section over F'(SB(A)).
By Theorem 1.2 we conclude that

M(D) ~ P M(SB(A)){i} & N

i=1

for some motive N which splits over F'(SB(A)) as Z & Z{4} & Z{8}.

Note that both D and the twisted form of F4/P; (given by the first Tits con-
struction) split the same symbol g3 in K2/ (F)/3. This implies that there is
a morphism f : Nz/3 — R3 3 of motives with Z/3-coefficients which becomes
an isomorphism over the separable closure of F', where R3 3 is a generalized
Rost motive corresponding to gs. Since IV is split over the generic point of the
twisted form of Fy/Py, R33 is a direct summand of Nyz,3 which implies that
R3,3 = Nz/3. Finally observe that Ny, splits if p # 3. O

6 APPENDIX

PROPOSITION 6.1. Let X be a smooth quasi-projective variety, 7: Y — X a
smooth morphism and i: Z — X a closed embedding. Consider the Cartesian
square

/

Y, =Y
I
Z—i>X

Then (imi,)% = 0 for d = [%] + 1, where codimx (Z) is the minimum

of codimensions of irreducible components of Z.
It is sufficient to prove the following:

LEMMA 6.2. Let w:' Y — X be a smooth morphism, with X smooth quasi-
projective, and i1: Z1 — X, i3: Zy — X closed embeddings.
Then there exists a closed embedding is: Z3s — X such that

codim(Z3) > codim(Z1) + codim(Zs) and im(i}). - im(i5). C im(i%)s,
where 1: Yz, — Y, 1 =1,2,3 is obtained from the respective Cartesian square.

Proof. We have (i}).(a) - (15)+(b) = A% (i} x i5)+(a x b)). The diagonal map

Ay:Y — Y x Y is the composition Y %y XxY BTV Y, where ¢ is the
relative diagonal and the second map is the natural embedding. By Lemma
6.3 appliedto B=XxX, V=X, f=Ax,T=Z1xZyand W =Y xY we
obtain a closed embedding h: Z <— X such that

codim(Z) > codim(Z;) + codim(Zs) and im(fy;, o (17 X i5).) C im(hw.).
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Consider the Cartesian square

Y Y xxY

K,

ng(Y Xxy)z

By [3, Theorem 6.2(a)], ¢* o hyy. = hl,o¢'. Hence, im(A% o (i1 X i2)«) C im(h.,)
and the lemma is proven. O

LEMMA 6.3. Let V 55 B & T be closed embeddings with reqular f, and smooth
quasi-projective B. Let e: W — B be a smooth morphism. Consider two
Cartesian diagrams:

va_W>W<gLWT and T—g>B
N
v—lop<?t 71 Ty

There ezists a closed embedding h: Z — V such that codim(h) > codim(g) and
im(f} 0 gw+) Cim(hws).

Proof. Consider the Cartesian square

WTg—W>W

JEWT wa
Wi _w_ Whs
By [3, Theorem 6.2(a)], fi;09w+ = gw«o fiyy- The morphism f{,: CH*(Wr) —
CH*(Wj;) is given by the composition:

CH*(Wr) % CH*(Cy) 225 CH* (M) 25 CH* (W7,

where o is the specialization map from [3, §5.2], Cw = Cyw, (W;) = Cr(T) x5
W is the normal cone of the morphism fyr and Ny = Wi xwy, Ny = (T xv
Ny) xp W is the total space of the vector bundle iy, (N, ) = (67 0 §)*(Ny)
over Wi, pw: Cw — Nw is the closed embedding and s: Wz — Ny is the
zero section.

Consider the Cartesian square of projective completions of Cyr and Ny

P(Cw & O) V> PNy & O)
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By [3, Proposition 3.3] the morphism s* o py,: CH"(Cw) — CH*(Wj;) is
given by 5 o pw. (2) = 7w, (ca(dlyNrw ® O(L) - By (3)), where eb(y) = .
mw : P(Ww @ O) — Wi is the projection and d = codim(fw) = codim(f).

By Lemma 6.4, we can choose a cycle a representing cq(§*Ny ® O(1)) in such
a way that || NP(C & O) has codimension d in P(C @& O). Consider Z :=
7(Ja| NP(C ® ©)) and the closed embedding j: Z < T. Then for arbitrary
x € CH'(P(Cw @ O)) we have |mw. (¢%(e) - Py, (x))] € e7'(Z). This implies
that im(f},) C im(jw, ) and im(gw, o fiy,) C im(hw, ), where h = joj. At the
same time, codim(h) > codim(g), and the lemma is proven. O

LEMMA 6.4. Let X be a quasi-projective variety, and Z;, 1 =1,...,n be closed
wrreducible subvarieties of dimensions d;. Let V be a vector bundle over X.
Then there exists a representative ag of cq(V) such that |ag|NZ; has dimension
<d;—d.

Proof. The total Chern class co(V) is the inverse of the total Segre class se(V),
and 5;(V) = 7. (c1(O(1))" %) where m : Px(V) — X is the projection,
and n = dim(V). Thus, the general case of our statement follows by the
inductive application of the one with d = 1, and V - linear bundle. Indeed, since
ca([X]) = — Z?Zl 7 (1 (O(1))" i (77 (eq—;([X])))), and cg—; can be chosen
with the needed property, it is sufficient to apply the above particular case to
the set of irreducible components of 7=1(Z; N|ag—;]), Il =1,...,n;5 =1,...,d
inside Px (V). Finally, the case d = 1 and linear V follows from the presentation
V=L®LS ! where £; have ”sufficiently many sections”, which is possible,
since X is quasi-projective. O

ACKNOWLEDGMENTS We would like to thank Ivan Panin for very stimulating
discussions on the subject of this paper. We are grateful to Ulf Rehmann and
Markus Rost for creating a nice working atmosphere and opportunity for us
to work together. We are also grateful to the referee for numerous comments
which helped to improve the presentation of the paper.

REFERENCES

[1] P. Brosnan, A Short Proof of Rost Nilpotence via refined correspondences.
Documenta Math. 8 (2003), 69-78.

[2] V. Chernousov, S. Gille, A. Merkurjev, Motivic decomposition of isotropic
projective homogeneous varieties. Duke Math. J. 126 (2005), no. 1, 137—
159.

[3] W. Fulton, Intersection theory. 2nd ed. Ergebnisse der Mathematik und
ihrer Grenzgebiete Folge 3 Vol. 2, Springer (1998), xiii4+470p.

[4] A. Hliev, L. Manivel, On the Chow ring of the Cayley plane. Compositio
Math. 141 (2005), 146-160.

DOCUMENTA MATHEMATICA 13 (2008) 81-96



96 A. VisHIK, K. ZAINOULLINE

[5] B. Kahn, Formes quadratiques sur un corps. Book in progress (2007),
287pp. (http://www.math. jussieu.fr/ kahn)

[6] N. Karpenko, Grothendieck Chow-motives of Severi-Brauer varieties. St.-
Petersburg Math. J. 7 (1996), no. 4, 649-661.

[7] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions.
AMS Colloguium Publications 44 (1998), xxi+593p.

[8] J. Landsberg, L. Manivel, On the projective geometry of rational homoge-
neous varieties. Comment. Math. Helv. 78 (2003) 65—-100.

[9] Y. Manin. Correspondences, Motives and Monoidal Transformations.
Math. USSR Sb. 6 (1968), 439-470.

[10] S. Nikolenko, N. Semenov and K. Zainoulline, Motivic decomposition of
anisotropic varieties of type Fy4 into generalized Rost motives. J. of K-
theory (2008), 20pp., to appear

[11] H. Petersson, M. Racine, Albert algebras, in Jordan algebras. Proc. Ober-
wolfach Conf. (1994), 197-207.

[12] V. Petrov, N. Semenov, K. Zainoulline. Zero-cycles on a twisted Cayley
plane. Canadian Math. Bull. 51 (2008), no.1, 114-124.

[13] M. Rost, A (mod 3) invariant for exceptional Jordan algebras, C. R. Acad.
Sci. Paris Sér. I Math. 313 (1991), no.12, 823-827.

[14] M. Rost, The motive of a Pfister form. Preprint (1998), 13p.
(http://www.math.uni-bielefeld.de/ rost)

[15] M. Rost, On the basic correspondence of a splitting variety. Preprint
(2006), 42p. (http://www.math.uni-bielefeld.de/ rost)

[16] N. Semenov, Motivic decomposition of a compactification of a Merkurjev-
Suslin variety. J. Reine Angew. Math. (2008), to appear.

[17] V. Voevodsky, On motivic cohomology with Z/I-coefficients. K-theory
Preprint Archives 639 (2003), 44p.

A. Vishik K. Zainoulline

School of Mathematical Sciences Mathematisches Institut

University of Nottingham der LMU Miinchen

University Park, Theresienstr. 39
Nottingham, NG7 2RD 80333 Miinchen

UK Germany

alexander.vishik@nottingham.ac.uk  kirill@mathematik.uni-muenchen.de

DOCUMENTA MATHEMATICA 13 (2008) 81-96



DOCUMENTA MATH. 97

ON TAMENESS AND GROWTH CONDITIONS
JORG WINKELMANN

Received: March 8, 2008

Communicated by Ulf Rehmann

ABSTRACT. We study discrete subsets of C?, relating “tameness”
with growth conditions.

2000 Mathematics Subject Classification:
Keywords and Phrases:

1. RESULTS

A discrete subset D in C™ (n > 2) is called “tame” if there exists a holomorphic
automorphism ¢ of C" such that ¢(D) = Z x {0}"~ ! (see [3]). If there exists a
linear projection m of C* onto some C* (0 < k < n) for which the image (D)
is discrete, then D is tame ([3]). If D is a discrete subgroup (e.g. a lattice) of
the additive group (C"+), then D must be tame ([1], lemma 4.4 in combination
with corollary 2.6). On the other hand there do exist discrete subsets which
are not tame (see [3], theorem 3.9).

Here we will investigate how “tameness” is related to growth conditions for D.
Slow growth implies tameness as we well see. On the other hand, rapid growth
can not imply non-tameness, since every discrete subset of C" ! is tame re-
garded as subset of C* = C*~! x C.

The key method is to show that sufficiently slow growth implies that a generic
linear projection will have discrete image for D.

The main result is:

THEOREM 1. Let n be a natural number and let vy, be a sequence of elements
inV =C".
Assume that

1
—_— < X0
2 o2

Then D = {vy : k € N} is tame, i.e., there exists a biholomorphic map ¢ :
C™ — C™ such that
6(D) = Z x {0},

This growth condition is fulfilled for discrete subgroups of rank at most 2n — 3,
implying the following well-known fact:
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COROLLARY 1. Let T' be a discrete subgroup of Z-rank at most 2n — 3 of the
additive group (C™,+).

Then T is a tame discrete subset of C™.

While this is well-known (even with no condition on the Z-rank of I'), our

approach yields the additional information that these discrete subsets remain
tame after a small deformation:

COROLLARY 2. Let T' be a discrete subgroup of Z-rank at most 2n — 3 of the
additive group (C*,4+), 0 < A < 1 and K > 0. Let D be a subset of C* for
which there exists a bijective map ¢ : I' — D with

[IC(v) = vl < AlJv]] + K

for allveT.
Then D is a tame discrete subset of C™.

This confirms the idea that tame sets should be stable under deformation.
Similarily one would hope that the category of non-tame sets is also stable under
deformation. Here, however, one has to be careful not to be too optimistic,
because in fact the following is true:

PROPOSITION. For every non-tame discrete subset D C C™ (n > 1) there is a
tame discrete subset D' and a bijection o : D — D’ such that

S
V2

lla(v) =vl| < —=][v]| Yve D

and
lw =~ (w)]| < [Jw]| Ywe D'

In particular, if D is a tame discrete subset and ( : D — C" is a bijective map
with ||{(v) — v]| < |Jv]| for all v € D, it is possible that {(D) is not tame.
Still, one might hope for a positive answer to the following question:

QUESTION. Letn € N,n>2,let1>X>0, K >0, let D be a tame discrete
subset of C™ and let ( : D — C™ be a map such that

I¢(v) = vl < Al + K
for all v € D. Does this imply that (D) is a tame discrete subset of C™ 2

Technically, the following is the key point for the proof of our main result
(theorem 1):

THEOREM 2. Let n > d > 0. Let V' be a complex vector space of dimension n
and let vy, be a sequence of elements in V.

Assume that .
— < 0
2 ol

Then there exists a complex linear map m : V. — C% such that the set of all
w(vy) is discrete in C.

In a similar way on can prove such a result for real vector spaces:
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THEOREM 3. Letn > d > 0. Let V be a real vector space of dimension n and
let v, be a sequence of elements in V.

Assume that
1
— < 00
2 ol

Then there exists a real linear map 7 : V — R< such that the set of all m(vy)
is discrete in R%.

For the proof of the existence of a linear projection © with 7(D) discrete we
proceed by regarding randomly chosen linear projections and verifying that the
image of D under a random projection has discrete image with probability 1 if
the above stated series converges.

2. PROOFS

First we deduce an auxiliary lemma.

LEMMA 1. Let k,m > 0, n = k+ m and let S denote the unit sphere in
R" = R¥ @ R™. Furthermore let

M, = {(v,w) € RF x R™ : ||v|| < ¢, (v,w) € S}.
Then there are constants § > 0, C; > Cy > 0 such that for all € < § we have
Cre* > \(M,) > Coé*
where \ denotes the rotationally invariant probability measure on S.
Proof. For each € €]0, 1] there is a bijection
e : B xS — M,
where
B={veRF: || <1}, S ={weR™:|w|]|=1}
and

be (v, w) = (ev; V1= ||ev||2w) .

The functional determinant for ¢, equals

m
& (VI=TelP)

e ( 1-— 62>mvolume(5' x B) < volume(M,) < e*volume(S’ x B),

It follows that

which in turn implies

" volume(Me)
€

— = 1.
e—0  wvolume(S’ x B)

Hence the assertion. OdJ
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LEMMA 2. Let T' be a discrete subgroup of Z-rank d in V = R™.

Then
S T < o0
yel

for all e > 0.

Proof. Since all norms on a finite-dimensional vector space are equivalent, there
is no loss in generality if we assume that the norm is the maximum norm and
[ = Z% x {0}"~9. Then the assertion is an easy consequence of the fact that
Y onen® ® < oo if and only if s > 1. O

Now we proceed with the proof of theorem 2:

Proof. We fix a surjective linear map L : V — W = C%. Let K denote U(n)
(the group of unitary complex linear transformations of V). For each g € K
we define a linear map 7, : V' — W as follows:

g v — L(g-v).
For k € N and r € RT define
Skr =19 € K :|[mg(vp)]| <71},

My,={9e K:#{keN:ge Sp,} > N}
and
M, =NNMpy .

Now for each g € K the set {m,(vy) : k € N} is discrete unless there is a number
r > 0 such that infinitely many distinct image points are contained in a ball
of radius r. By the definition of the sets M, it follows that {m,(vs) : k € N} is
discrete unless g € M = UM,..

Let us now assume that there is no linear map L' : V- — W with L'(D) discrete.
Then K = M. In particular (M) > 0, where p denotes the Haar measure on
the compact topological group K. Since the sets M, are increasing in r, we
have

M = U7‘ER+MT = UTENM’!‘
and may thus deduce that p(M,) > 0 for some number r. Fix such a number

r > 0 and define ¢ = p(M,) > 0. Then u(Mn,) > c for all N, since M, =
NMp . However, for fixed N and r we have

Np(My,) < il(Sir)-
k

Hence

Z p(Sk,r) > Nu(My ) > Ne
keN

for all N € N. Since ¢ > 0, it follows that ), u(Sk,r) = +o0.
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Let us now embedd C? into C" as the orthogonal complement of ker L. In this
way we may assume that L is simply the map which projects a vector onto its
first d coordinates, i.e.,

L(wy,...,wy) = (wi1,...,w4;0,...,0).

Now g € Sk, is equivalent to the condition that g(vy) is a real multiple of an
element in M, where M, is defined as in lemma 1 with € = r/||vg||. Using
lemma 1 we may deduce that >, u(Sk,) converges if and only if Y, ||vg|| =2
converges.

Proof of theorem 1. The growth condition allows us to employ theorem 2 in
order to deduce that there is a linear projection onto a space of complex di-
mension d — 1 which maps D onto a discrete image. By the results of Rosay
and Rudin it follows that D is tame. g

Proof of the proposition. We fix a decomposition C* = C x C*~! and write D
as the union of all (ag,b) € C x C*! (k € N). We define

alan.by) = (ar,0) if [Jax|| > [|bxl]
’ (0,br) i [laxl] < [[bx]]

Then D’ = «(D) is tame because each of the projections to one of the two
factors C and C™~! maps D’ onto a discrete subset.
The other assertions follow from the triangle inequality. O

The proof of thm. 3 works in the same way as the proof of thm. 2, simply using
the group of all orthogonal transformations instead of the group of unitary
transformations.
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1 INTRODUCTION

Supersymmetric matrix models derive from superstring theory which ultimately
aims at a quantum field theoretic model of all known forces, including gravity.
Some of the basic mathematical properties of supersymmetric matrix models
are still open and pose a challenge to mathematics.

One of the key properties of supersymmetric matrix models - often assumed
for granted in physics, but difficult to prove mathematically - is the existence
of a ground state. IL.e., the self-adjoint and nonnegative Hamiltonian opera-
tor H = H* > 0 specifying the supersymmetric matrix model under consid-
eration is assumed to have an eigenvalue at 0, the bottom of its spectrum.
Since its spectrum is purely essential and covers the entire positive half axis,
o(H) = [0,00) (see [3, 11]), the existence of zero-energy eigenstates, i.e., the
non-triviality Ker(H) # 0 of the zero-energy subspace, is not a consequence of
standard methods of regular perturbation theory.

The Hamiltonian H acts on (an appropriate dense domain in) the Hilbert space

H = L?(R4UN 2_1)) ® F of square-integrable functions of coordinate variables

1Supported by the Swedish Research Council
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x = (%14)teD, aen With values in the fermion Fock space F spanned by vectors
of the form )\LhAl "'ALk,Ak|O>v where {)\LA}QGS,AGN are standard fermion
creation operators, and |0) is the vacuum vector. The index ranges are denoted
by D:={1,2,...,d}, N :={1,2,...,N?>—1},and S := {1,2,...,d— 1}. Note
that dim¢ F = 9(d=1)(N*~1) < Q.

On H, the Hamiltonian assumes the form

H=-A®1+V(z)®1+ Hp, (1)

where A, is the Laplacian on R4 *~1). The potential V' is a homogenous,
quartic polynomial in the coordinates x,

1
V(z) = 3 faBc fapcr sB Tic Tspr Tiov, (2)

with (fABC)A,B,CeN being real, antisymmetric structure constants of SU(N)
and using Einstein’s summation convention (i.e., repeated indices are summed
over). The operator Hp, the fermionic part of the Hamiltonian, is linear in z,
but quadratic in the fermion creation operators )\L 4 and their adjoints A 4, =

()\L 4)%, the fermion annihilation operators,

d—2
Hr = faBc { - Qi(zxt,c fo,ﬁ) Madss (3)

t=1

+ (@amr,o +izac) Na Mg — (@a1.0 —i%a,0) Aa Aag}v

that represent the Clifford algebra {I'*, T} = 24 - 1a—1)x(d—1), With s,t €
{1,2,...,d—2} and d € {2,3,5,9}.

The Hamiltonian H commutes with the generators {Ja}aen of su(NV), where
Ja = _7’ fABC(szBasc+)\LB)\QC+)\QC)\LB) and O,c = %, and the ground
state sought for is required to be SU(N)-invariant. That is, the spectral analy-
sis of H is carried out on the subspace Ho = [ 4. Ker(J4) € H. On H, the
Hamiltonian H arises as the restriction of the square of supercharges (Q3)ges-
These supercharges are selfadjoint (matrix-valued, first-order partial differen-
tial) operators on H, which we don’t describe here in detail, but we note that
the Hamiltonian H |y,= Q% 11,> 0, is manifestly nonnegative on Hp.

Two main difficulties arise in the analysis of H:

(a) The quartic potential V' has many vanishing directions. E.g., given

where (I'*)%=2 are purely imaginary, antisymmetric (d — 1) x (d — 1) matrices

€= (ea)aen € RN*-1 and denoting Z; = (z1a)acn, the potential V(z) van-
ishes on all hyperplanes M(é) = {z |Vt € D : % € Ré}. So, even though
the potential V' grows to lim, .. V(nz) = oo, for almost all z € Rd(NQ*I),
this growth at infinity is not confining enough for H to have purely discrete

spectrum, as shown in [3].
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(b) The fermionic part Hg of the Hamiltonian is indefinite, so it doesn’t con-
tribute an obviously confining term to —A+ V' (x). Yet, their sum H restricted
to Hy is nonnegative and is expected to yield a zero eigenvalue at the bottom
of its spectrum, for d = 9. In contrast, if d = 2 and N = 2 then zero is not an
eigenvalue of H, as was shown in [5].

A lot of effort was put into the question of existence of zero-energy states in
these SU(N)-invariant supersymmetric matrix models given by H 14,,. The
original formulation uses Clifford variables {©s,4};c5 acpnr 104.4,05 g} =
dg 35 4p rather than fermion creation and annihilation operators employed here,

where 8 := {1,2,...,2(d — 1)} and the relation between Clifford variables and
the fermion creation and annihilation operators is the standard one, ©,,4 =

\%()\LA—i—)\aA) and Oqyg—1,4 := ;—%(ALA—)\&A), forala e Sand A € N. In

terms of these Clifford variables, the Hamiltonian reads H = [-A, 4+ V(z)] ®
1+ Hp, where B
Hp = ifapcric, 504405, (4)

and (v')¢ep are real, symmetric 2(d — 1) x 2(d — 1) matrices given by

s 0 It s (01 o (1 0

with t =1,2,...,d — 2 [6]. The matrices (y*);ep form a real representation of
the Clifford algebra {v*,7'} = 244 - 1, with s,¢ € D, of minimal dimension,
provided d = 2, 3,5, 9. B B

The reason for recalling the form H of the Hamiltonian is that H is manifestly
Spin(d)-invariant. The fermion creation and annihilation operators leading to
(3) correspond to the particular choice (5) of (v')iep. In attempts to construct
a ground state explicitly [9], fermion creation and annihilation operators are
used rather than Clifford variables. This is so, mainly because they provide
the Hilbert space on which the Hamiltonian acts irreducibly from the very
beginning. Namely, the creation and annihilation operators, )\L ArAqas With
a € S and a € N, form a representation of the canonical anticommutation
relations (CAR): {A 4, Mjp} = {Xoa.Agpt = 0 and {A, 4, M55} = dapdas,
where the anticommutator is {a,b} := ab + ba. The CAR have an explicit
representation as linear operators on the fermion Fock space

(d=1)(N?-1)
F = @ span{)\LhAl~~~)\Lk’Ak|0> |a; €8, Aj N}, (6)
k=0

which is a complex Hilbert space of dimension 2(¢—DWV *~1). The vectors
{)‘Tal,Al ...)\Lk7Ak|O> | aj € S, Aj € N} C F form an orthonormal basis;
|0) is called vacuum vector. The Hilbert space H can be viewed as a direct
integral
@
H = / Fde = LRIV 2D, F), (7)
R

d(N2-1)
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whose elements are linear combinations of the form

(d—1)(N?-1)

U(z) = > Wi(a), (8)

k=0
k
Z Z wfxl),Al...,ak,Ak(x) )‘Ll,Al T )‘Tozk,Ak 10). (9)

ar,..., €S Ay, ,AeN

\I/k(I)

While the fermion creation and annihilation operators above (and in attempts
to explicitly construct a ground state as in [9]) are chosen independently of x,
the asymptotic form of the ground state wave function was determined with
the help of space-dependent fermions [7, 6, 5]. The analysis of the asymptotic
form H>*U = 0 of the solutions of HV = 0 leads for N = 2 and d = 2,3,5
to absence of a zero-energy states, as proved in [5], since these solutions are
not square-integrable at » — oo, where r > 0 is introduced in (12), below. On
the other hand, for d = 9, this asymptotic form of the wave function is square-
integrable at infinity, and it is believed that for d = 9, the supersymmetric
matrix models do possess zero enery eigenstates, for all N € N. This belief is
supported by the recent existence proof for a related model [4].

MAIN RESULTS: In this paper we study the asymptotic Hamiltonian H* de-
scribed in detail in (16)—(18). The asympotic Hamiltonian H* = HY + H
splits into a bosonic part Hg and a fermionic part Hg’, similar to the full
Hamiltonian H.

The bosonic Hamiltonian HZ is a sum of harmonic oscillators and we first
focus our attention on the ground state subspace of HZ with corresponding
ground state energy 2(d — 1). This leads us to study the spectral properties of
2(d— 1) + H. We derive a dynamical SU(2) symmetry in (39) and observe
the formation of ‘Cooper pairs’ [e.g., in the ground state of 2(d — 1) + H
computed in (46) and (48)] that arise in the SO(d)-breaking formulation when
diagonalizing certain ingredients of the fermionic part of the Hamiltonian.
Thereafter, we transform the zero energy equation on Fock space into a sys-
tem of graded equations (52) obtained by its natural grading derived from the
fermion number. We show that this system of equations can be solved by a
recursive insertion (58) of solutions, provided a certain invertibility condition
on the graded Hamiltonians hold, which is known to hold true for the first
recursion step (54). We finally observe a sum rule for the graded equations and
apply this to the asymptotic ground state of sq + Hp (62)—(64).

To ease the reading, we carry out our analysis first in the case N = 2, i.e., for
the asymptotic SU(2) theory. In the last section we note that several features
extend to the non-asymptotic case and/or to general N > 2. We mostly restrict
the dimension d to the most interesting case d = 9.

2 ASYMPTOTIC FORM OF THE HAMILTONIAN

The bosonic configuration space is a set of d = 2, 3,5, or 9 traceless hermitian
matrices {X,}9_; corresponding to the Lie algebra su(N) of the gauge group
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SU(N). Given selfadjoint generators T = (T4)aen of su(N) with [T, Ts] =
ifapcTc, the coordinates = derive from expanding X; = x0Ty = T - T in
these generators.

For simplicity, we start by taking N = 2 and 2T to be the Pauli matrices
& = (01,09,03), s0 fapc = €apc. The potential, which for general N > 2 is
given by

Vi) = 5 3 T (X, X, (10)
s,teD
assumes the form
Vie) = = > (T AT)° (11)
s,teD
where (FAY)a = eapc T Yo, as usual. Observe from (11) that V(z) vanishes
if 2 € M := Uzeps M(€), recalling that M (€) are the hyperplanes M(€) =
{z |Vt € D: ¥ € Re}. We remark that, for N = 2, the condition x € M is
even equivalent to V(z) = 0, while a necessary condition for the vanishing of
the potential is more complicated for N > 2. We coordinatize € R3? by (see,
e.g., [6, 5])

I_"t = TEt e + 7’_1/2 gta (12)
for t = 1,...,d, where € € R3 and E = (Ey,...,E;) € R? are unit vectors,
r > 0, and 4; € R? are perpendicular to both E and & in the sense that
Esjs =€ -3, =0, for all t = 1,...,d. They derive from x € R3¢\ {0} by the
requirement that the euclidean length of the projection z!l of z along R- E® &
be maximal. Indeed, € and E are normalized eigenvectors of (x; A:L'tB)?A’ B_1
and (xs4x¢ A)§7t:1, respectively, corresponding to the largest eigenvalue 72 > 0
which, in turn, is the square of the length » = |zll| = (E ® €, z) = Eyx4e4 of
z!l. The component 21+ = z—z!l perpendicular to E®¢ then yields 7, = 7’1/2:5'#-.
Writing E as E(E, 0,p) = (COSHE, sin @ cos ¢, sinf sin gp) in spherical coor-
dinates, the coordinate vectors ¥y assume the form

¥, = rcosf E, & + r 2, (13)

fort=1,...,d—2, and
Ty 1 +iTy = rsinfe?e + r /2 (Ya—1 + i¥a), (14)
where € € R3 and E = (El,EQ,...,Ed_Q) € R?%2 are unit vectors, 8 €

(—m/2,7/2), ¢ € (0,27), and 7 > 0.

To derive the asymptotic form of the Hamiltonian (cf. [5, 9]), we substitute

(13)—(14) (and the corresponding differentials) into H, divide by r, and obtain
1
SH - H™ (15)
r

as the resulting limit, as  — co. Note that, while the difference of H/r and
H® is of lower order in r, the limit » — oo is formal, as this difference is an un-
bounded (differential) operator. Moreover, it ignores the question whether the
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coordinate change (13)—(14) defines a global diffeomorphism. The asymptotic
Hamiltonian H*° in (15) is of the form

H™ = HY + HY, (16)

where the bosonic part

82

Hy = —(1—E;E:)(1 —eqep) + YsA Ysa (17)

aysA ath
is a sum of harmonic oscillators in the variables ¢ in all s4 = 2(d — 1) spatial
directions perpendicular to both F and €}, with ground state energy equal to
sq¢ = 2(d—1) = 2,4,8,16, for d = 2,3,5,9, respectively, and ground state
eigenvector Oo(¥1,...,¥1) = exp[—(1 — EsEy) (1 — eaep) ysa y1B]-

The fermionic part H$® of the asymptotic Hamiltonian H in (16) results from
(3) by inserting (13)—(14), with ¢ = 0 and r = 1,

HyF = 2cos (—ieceanc) Tap Aog Agp 8

+ sinf e (eceaBc) )\LA)\LB + sinfe % (ece€aBC) AupAaas

with Tag = 17 BT .
We henceforth assume the unit vectors E € R42, &€ R3 and 0 € (—m/2,7/2),
¢ € (0,27) to be fixed. Our goal is to find an explicit unitary transformation on
Fock space F which brings H5® into normal (i.e., particle number preserving)
form. It is a well-known fact (see, e.g., [2, 1]) that, since H is quadratic in
the creation and annihilation operators, such a unitary exists and is of the form
)\;L — ukygAZ + Ukj)\z, i.e., linear. While the existence of such a unitary follows
from the diagonalizability of self-adjoint matrices, the determination of that
unitary in an explicit and managable form can be difficult and depends on the
special properties of the model (here: H’) under consideration.
Note that both (Map := —ieceapc)a,p=1,2,3 and (I’aﬁ)i’_ﬁlzl are imaginary,
antisymmetric, and thus self-adjoint matrices.
Since M ¥ = i€ A ¥, an orthonormal basis {€,7,,7_} C C? of eigenvectors,
Me =0,

Mny = €Ny = £y (19)

is given by the usual orthonormal dreibein: € L fiy L 7. We choose iy =
fi+(€) to depend continuously on € and to obey 7+ = 7. Hence

—ieceapc = (4)a(fiy)p — (M-)a(i-)p = (A4)a () — (7-)a (74)B.

(20)
Similary, for d = 3, 5,9, we observe that, due to > = E?-1=1and TrI' =0,
there is an orthonormal basis {é,;| 0 = +,5 = 1,...,(d — 1)/2} C C¢~ L of
eigenvectors of I' such that

léy; = +éuj, (21)
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forall j =1,...,(d—1)/2. Again we choose E €1 continuous and é4; =
é:':]. SO,
Tag = D [(Eri)a (E-i)s = (E-i)a (Eri)a), (22)

J
where the summation ranges over j =1,...,(d —1)/2.

Using the orthonormal (eigen)vectors é4;, fix, and 7y := €, we define space-
dependent fermion creation operators (for d = 3, 5, 9)

Mjr = (Eop)a (1) Moa, (23)
whereo € {+,—-},j=1,...,(d—1)/2,and 7 € {4, —,0}. Note that the matrix
U defined by Usjraa = (€sj)a (7-)a is unitary and, hence, )\LA — )\Lﬁ is
implemented by a unitary conjugation on (the operators on) Fock space F.

Le., )\UjT|O> =0 and )\LjT, )\UjT fulfill the CAR.
Using the new creation operators )\L oo We introduce
to_ aieat ot
A; = ze“’)\ﬂ-Jr AL, (24)
t_ gyt oyt
Bj = demAL AL, (25)

and A; = (A}L)* and B, = (B;)*, for j = 1,...,(d — 1)/2, which may be
considered (Cooper) pair creation and annihilation operators. Note that these
operators obey commutation relations somewhat reminiscent to the canonical
ones, namely

(AL, Al = [Bl,B}] = [Al,B]] = [4,,B]] = 0, (26)
A ALl = (Y —1) = e (N ay + AL - 127
B, Bl = (N7 1) = (A, + AL AL - 1)(28)

The asymptotic Hamiltonian H°°, when acting on the ground state of H,
can be written as

sq¢ + Hp = Hy® + HY® + H™, (29)
where
HE® = s4 + 2cosf Z(N](A) —N;B))7 (30)
j
HY = 2sin0 Y (Al + B, (31)
j
H® = 2sin0 Y (A;+B;). (32)

J

We remark that the degrees of freedom defined by the parallel fermions )\1 jo =
(+j)a€araa do not appear in Hp and can be dropped, henceforth.
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For the d=2 case we instead of (23) define )\1 = (ﬁi)A)\L, and the corre-
sponding expressions for the asymptotic Hamiltonian in (29) are simply

He =2, HP =20, H* =20, C' =il (33)

3 DYNAMICAL SYMMETRY

For definiteness, we restrict our attention in this and the following sections to
the most interesting case: d = 9. Denoting

Je®1 = At == Y Al 1eJ, = Bt = Y. Bl
Jo®1l:=A =3 A, 1®J_ =B = B,

(34)
(35)
(36)
(37)

J3@1 = JNW —4) = L(Z, N —4), 36
1®J; = 2(NB) —4) = %(ZjN;B)fél), 37

with
[Jy,J] = 2J3, [Js,Je] = £Jx, Jx = Ji+ids, (38)

Egs. (29)—(32) can be written as
1
4 + ZHI%O = (24cosfJ3+sinfJi1)®1 + 1® (2—cosb J3+sinb Ji), (39)

thus exhibiting the dynamical symmetry mentioned above. (We recall that a
dynamical symmetry refers to the situation that the Hamiltonian, being one of
the generators of a symmetry Lie group, has nontrivial commutation relations
with the other symmetry generators rather than commuting with them.)

The relevant SU(2) representations are the tensor product of four spin % rep-

resentations, i.e., direct sums of two singlets [note that both (A; Az + A2 A4 —
A1A4 — A2A3)|0> and (A1A2 + A3A4 — A1A4 — A2A3)|O> are annihilated by
At A | and %(N(A) — 4)], three spin 1 representations, and (most importantly,
as providing the zero-energy state of H) one spin 2 representation acting irre-
ducibly on the space spanned by the orthonormal states

00 AT = (D), g5 (410)

1 4
(AN, (40)
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Restricting to that space (correspondingly for the Bt’s), we can write

0
0
V6
0
0

o
)

0 0
NG
0 V6
0 0
0 0

0
0

Jp = 0 . (41)

V6

0

cocoownvo
MO O oo
coc oo

a

I
cocoo
coo o w

>
ocnvo oo

(42)

L
o o oo
o= O O O
N O O OO

0

Since the spectrum of sin 6.J; 4 cos 8J3 is the same as that of J3, the spectrum
of 4 + iH & clearly consists of all integers between zero and eight,

1
0(4+ZH}§°> - {0,1,2,...,8). (43)
Its unique zero-energy state W is most easily obtained by solving individually,
for each A; resp. B; degree of freedom,

(1 =+ cosd aéj) +sin @ 09)) e (1+ oéj))eiéai”éj)\ll . 0, (44)

where we identify

4
20, = p @111 +...+ 1®1®1®akzZafj). (45)
j=1

In our notation oéj) |0) = —|0) and oéj)A;”O) = +A}|0>, and we easily find the
solution to (44) as

v = (He—%wé”) (He%wéﬂB})|O> - %e—"i(h@—l@h) (B1Y*[0). (46)
: !

J
Using the nilpotency of A; and B]T for

ea(A;7A1)|O> = cosaetne 4 |0) and efo‘(BJLBJ‘)B]”O) — sina e®t® B |0},
(47)
the ground state can also be written as

v — (48)
= 1_16 e 4% (sing)~* H {(sin® — (1 — cos H)A}L-) (sin6 — (1 + cos 9)BD}|O)

J

1 )
= — e Y% (sinf)* exp [—

170059‘4T 7 1+ cosf
16

sin 6 sin 6

BJ|0) ~ e o),
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with Cp 1= =80 (], @ 1) 4 1£280(1 @ ). Alternatively, one can solve the

sin 6 sin 6
2 x 2 matrix eigenvector equations resulting from (44),

(1 + cosf (NI —1) + sinf (Al +4,)w = o, (49)
(1 — cosO(NP) —1) + sin6 (Bl + B,))¥ = o0, (50)

to obtain (48).
For d=2 the asymptotic ground state is easily found from (33),

U= Je o) = (1 -cho). (51)

An interesting feature of the form (46) for the ground state is that it expresses
it as a spin-rotation by an angle 6 applied to some reference state (BT)*|0)
(which itself also varies in the first d — 2 directions in space according to (13),

(23), (21)).

4 GRADED CHAIN OF HAMILTONIANS

We henceforth drop the superscript “co” and write Hy = Hg®, Hy = H$°, and

H_ = H*. Consider the grade- resp. fermion number-ordered equations
HoVy + H_VUy, =0,
H, 9y + Hy¥y; + H ¥y =0,
H, 9, + Hy¥Yy + H_¥g =0,
: (52)

H Vi, + HoVyy + H ¥ = 0,
H ¥y + HoVie = 0,

which we obtain by writing ¥ = Zif:o U, requiring (N +NENT, = n ¥,
and the ground state equation

(16 + HX)U = (Ho+ Hy + H)(Wo+Us+...+U35) = 0. (53)

(Recall that we have dropped the eight non-dynamical parallel fermions )\1 jo =
(ézl:j)aeAAaA-)

The following method to construct the ground state we believe to be relevant
also for the fully interacting, non-asymptotic theory. We use the first equation
in (52) to express ¥y in terms of W,

Uy = —Hy ' H_ Vs, (54)

H)j is certainly invertible on the zero-fermion subspace, even in the full theory
(cf. [9]). Inserting (54), the second equation in (52) can be written as

HyWy + H Wy = 0, with Hy := Hy — Hy Hy'H_, (55)
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which yields
Uy = —Hy'H_ 0y, (56)

provided Hs is invertible on H_ Wy, resp. the two-fermion sector of Fock space.
Continuing in this manner, denoting

Ay, = span {(AT)"(BY)"|0)} (57)

m,n=0,1,2,3,4, m+n==k

for the considered 2k-fermion subspace, we find that if we assume invertibility
of Hoy, on % we can form

Hogy1y o= Ho— HyHy'H_ (58)

on ﬁg’;(kﬂ) and solve for Wy, in terms of Wy q). The final equation for Wig
is HIG\IIIG =0. - —
For concreteness, denote an orthonormal basis of J# = @ % by |k, 1) :=
|k) @ |l), where, as in (40),
1 k
()

Then, e.g., H+H51H, acts on ﬁ%’?‘tridiagonally’ according to

1
——H,H'H_|k,l) =
sin® 6 o L

( k(5—k) I(5-1) )| >
44 (k—1—1)cosf 4+ (k—1+1)cosh /)"
VIG =1 (k+1)(4—k)
44 (k—1+1)cosb b+ 1,0-1)

VEG—K)(I+1)(4 -
4+ (k—1—1)cosb

Z>|k—1,l+1). (60)

Calculating the spectra of Hy, on %k (e.g., with the help of a computer)
one can verify the /i{lvertibility of all Hy, on %k for k < 8, while Hig is
identically zero on % g. Hence, one can also start with the state U4 ~ A4B4|O)
(with correct normalization in 6) and generate the lower grade parts of the full
asymptotic ground state ¥ using the relations (54), (56), etc.

We finish this section by noting a simple consequence of the graded form (52)
of the ground state equation H¥ = 0 (for general d and N). Taking the inner
product of the grade 2k-equation with Woy yields

(Wor, H Vyp1y) = —(Ho)ox — (Vor, HyVo(i—1))
= —(Ho)or — (Wap—1), H- V), (61)
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where (Ho)op := (Var, HoWay). The first equation reads (Vo, H_Wo) = —(Hp)o
which is real. The second then becomes (Vo, H_W4) = —(Ho)2 + (Hp)o, and
so on, so that in the last step one obtains

A
> (=D)¥(Ho)ar = 0, (62)
k=0
where A is the total number of fermions in the relevant Fock space.
It is instructive to verify (62) for the asymptotic N = 2 case studied above,
since there all relevant terms can be calculated explicitly. Using the basis (59)
and the notation o := 1 — cosf, 6 := 1+ cos#, we find

Ve 90) = Z(_l)km a" k) @ Z \/Uﬂllb- (63)

(sin @)k (sin@)!

Hence,

(Uop, HyWs,,) = 61_4(51119)8—2" > (2) (‘;) (4+ (k—1) cos ) o®* g2 (64)

k+l=n
5 GENERAL SU(N)

We now compute the ground state energy of
Hp = ifapc o ’)’273 ©4,4 95 p; (65)

for general N > 2 and in regions of the configuration space where the poten-
tial V' is zero (see egs. (2), (3), and recalling that fapc denote the structure
constants of SU(N) in an orthonormal basis). By (10), the vanishing of the po-
tential V' means that all X are commuting, hence can be written X, = UD ;U f
where U is unitary and independent of s and the D, are diagonal. If we look
into a particular direction (which corresponds to fixing € in the SU(2) case)
and choose a basis {14} accordingly, we may write X, = Dy = x,4Ta = x T},
and zs, = 0, where k= 1,...,N — 1 are indices in the Cartan subalgebra and
a,b=N,...,N? — 1 denote the remaining indices.

Denoting the eigenvalues of X; by ul, ie., X; = diag(p,..., %), the eigen-
vectors {ep }op of MYy := —ifacwic = —if 52,5 satisfy (cf. e.g. [8])

Mlep = (uj, — pi)es =: praer, (ef)* = eff. (66)

The crucial observation is that these eigenvectors are independent of ¢. Now,

HF = *’}/g,ﬁ”MébGd,A@ﬁ”,B; = Waaﬁb @aa@g b (67)
where W := — 3", 7" ® M"'. From the above observations we have the ansatz
E, 11 = v, ® ey for the eigenvectors of W, yielding

WEuu = —thU®Mt€kz = (k1) v, @ ew, (68)

t

DOCUMENTA MATHEMATICA 13 (2008) 103-116



DYNAMICAL SYMMETRIES IN SUPERSYMMETRIC MATRIX 115

where (k1) := — >, puh, 7" squares to >, (uk,;)?. Denoting by v, = v the
corresponding 16 eigenvectors of vy(k, 1), we find

WEsjm = £, I (14)? Exju, (69)
t

and H F therefore has

By = =163 | > (uh — pf)? (70)

k<l t=1

as its lowest eigenvalue.

This agrees with the following two previously known cases: [8], where only Xg
is assumed to have large eigenvalues so that Eg — —16 Y, _, [u) — uf|; as well
as the SU(2)-case studied above and in [7], where (13) with, e.g., e4 = 043

gives Ey = —167. Note also [10], where the eigenvalues of Hp are stated, with
the SU(N) symmetry fixed.
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ABSTRACT. The equivariant main conjecture of Iwasawa theory is
shown to hold for a Galois extension K/k of totally real number fields
with Galois group an [-adic pro-l Lie group of dimension 1 containing
an abelian subgroup of index [, provided that Iwasawa’s p-invariant
(K /k) vanishes.
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This note justifies a remark made in the introduction of [6] according to which
the “main conjecture” of equivariant Iwasawa theory, as formulated in [2,
p.564], holds when G = G(K/k) is a pro-l group with an abelian subgroup
G’ of index I.

We quickly repeat the general set-up and, in doing so, refer the reader to [5,§1]
for facts and notation that is taken from our earlier papers on Iwasawa theory.
Namely, [ is a fixed odd prime number and K/k a Galois extension of totally
real number fields, with k/Q and K/k. finite, where ko is the cyclotomic
Zy-extension of k. Throughout it will be assumed that Iwasawa’s p-invariant
(K /k) vanishes. We also fix a finite set S of primes of k containing all primes
above oo and all those whose ramification index in K/k is divisible by I.

In this situation it is shown in [5] that the “main conjecture” of equivariant
Iwasawa theory would follow from two kinds of hypothetical congruences bet-
ween values of Iwasawa L-functions. One of these kinds, the so-called torsion
congruences (see [5, Proposition 3.2]), stated as

ver(Ase,, /k)

=1 mod7’
)\K/k/

1We acknowledge financial support provided by NSERC and the University of Augsburg.
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in the proof of the proposition in §2, has meanwhile been verified in [6].

The purpose of the present paper is to show that the torsion congruences al-
ready suffice to obtain the whole conjecture in the special case when G is a
pro-I group with an abelian subgroup G’ of index [. Before stating the precise
theorem we need to recall some notation (compare [5,§1]).

AAG is the [-completion of the localization AG which is obtained from
the Iwasawa algebra AG = Z,[[G]] by inverting all central elements which
are regular in AG/IAG; QAG is the total ring of fractions of AAG;

T(QAG) = QA G/[QAG, QAG] is the quotient of Q.G by Lie commuta-
tors;
if G is a pro-l group, then (see [5,§2] 2)
K1(AAG) L, T(Q\G)
(LD) Det | 2l
HOM(RG, (AST)*) 5 Hom®(RiG, Q5T%)

is the logarithmic diagram defining the logarithmic pseudomeasure
tK/k S T(Q/\G) by TI‘(tK/k) = L(LK/k)

where Ly /i, = Lii,s € HOM(R;G, (AST'x)*) is the Iwasawa L-function.

THEOREM. With K/k and S as at the beginning and G = G(K/k) a pro-l
group, gy is integral (i.c., tr ), € T(AAG)) whenever G has an abelian
subgroup G’ of index I.

As a corollary, by [5, Proposition 3.2] and [6, Theorem], Lk /5, € Det K1 (A G),
which implies the conjecture (see [3, Theorem A]), up to its uniqueness asser-
tion. However, SK1(QG) = 1 because each simple component, after tensoring
up with a suitable extension field of its centre, becomes isomorphic to a ma-
trix ring of dimension a divisor of 2 by the proof of [2, Proposition 6], as the
character degrees x(1) all divide . Now apply [7, p.334, Corollary].

The proof of the theorem is carried out in §2; before, in a short §1, we introduce
restriction maps

ResG : T(QAG) — T(OAG)

and
ResG : Hom*(R,G, Q5T') — Hom* (R,G’, Q5Tw)

2R;G is the ring of all (virtual) Qg-characters of G with open kernel; T} =
Glkoo/k); NiTy = Zf ®7, AaTy with Z the ring of integers in a fixed algebraic clos-

ure Q of Q;
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making the diagram

Ki(AMG) = T(QAG) 2 Hom*(R,G, Q5T%)

! ’
resgll Resg l Resg |

KiAMG) 2 1) P Hom'(RG,Q5Tw)

commute ® for any pair of pro-l groups G = G(K/k) and G’ = G(K/K') < G
such that [G : G'] is finite. We remark that replacing Res& by the “natural”

restriction map,
(res& f)(x') = f(ind & x), f € Hom"(R,G, Q5Tk), X' € RiG,

does not work, because induction and Adams operations do not commute.

1. RES

Let G = G(K/k) be a pro-l group and G’ = G(K/k') < G an open subgroup.
Recall that W : AST), — ASTy is the map induced by ¥(y) = ~! for v € T,
(compare [5,§1]) and that 1 is the [** Adams operation on R;(—).

DEFINITION. Resgl : Hom™(R,G, Q5T) — Hom*(RlG’, QSTy) sends f to

Resd f = [x' — fndSn) + 3 = " )],

r>1
where x =y (ind & ') — ind & (Yrx') -

To justify the definition we must show that the sum ) -, is actually a finite

sum. For this, let {¢} be a set of coset representatives of G’ in G, s0 G = Ut
and define .
m(g) =min{r >0:¢" € G’} for g€G.

ind@x'(9) => X'(gh= Y. X",

{t:m(g")=0}

Then

if, as usual, ¥’ coincides with y’ on G’ and vanishes on G'\ G'. Hence,

X(g) = (ind & x')(g") — ind & (ix')(9)
= Zm(g“):o X' (") — Zm(g‘):O X'(g") = Zm(g”):l X' (g")

If 7 is such that G'"° C G, then ¥;° 'y = 0 and D1 = Z;” ., because

101

the sum Zm(g 1)1 is empty when g € G

3For finite G, this Resg , making the left square commute, appears already in [1, p.14].

For us the properties (HD),(TD) of Resg/ shown in §1 are equally necessary for the proof of
the Theorem above.
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It remains to show that Resg/f € Hom™(R,G’, Q%Tk), i.e., Resglf is a Galois
stable homomorphism, compatible with W-twists (see [5,§1]), and taking values
in QSI'xs. The first property is easily checked and the third follows from the
second as in [2, proof of Lemma 9]. We turn to twisting.

Let p’ be a type-W character of G’, so p’ is inflated from I'y/, and write p’ =
res & p with p inflated from Ty to G. Then

Fd S (X)) = f(p- mdS') = pF(Fnd Gx)) = (0 (f (md G'))
as f(ind&,x') € Q5T . Moreover, since 1 is multiplicative,
Yu(ind & (/X)) — ind & (i (p'X")) = tu(p-ind G x') —ind & ((0")' - 9hux’) = p* - x

and thus

B X)) = A - 7,
0w ’lx)))=p“(?—rf( o) = ()R F)).-

LEMMA 1. The diagram below commutes. In it, L and L' are the lower hori-
zontal maps of the logarithmic diagram (LD) for G and G', respectively.

HOM(RG, (AST)*) X Hom® (7iG. Q5T)
(HD) resG | ResG |

HOM(R(G', (ASTx)*) 5  Hom*(R,GY, Q5T) .
Indeed, for f € HOM(R;G, (ASTk)*) we get

(Res& Lf)(xX') = (L) (nd Gx) + 3,5, T (LN x)]

(L) (nd ) + 50 - los((0 )~ 1og<f<wl )

= (LA Gx) + 3,51 los(f (i~ lx))fzm T loglswr- )

= (L) (ind Gx') + ¥ log(f(x) = + log ghimdx) 4 ¥ 1o %
find x")*- wwzmdx )

_ 1 _ 1 f(ind x")!
108 Frtpimdx) w7 nd o) = T 198 Tf(md v

e N0

The dotted equality sign, =, is due to the congruence f((fb)x) =1 mod [AST

(see [5,§1]) and to x(1) = 0, so (¥] 'x)(1) = 0 for every r. In fact, w1th

~ def _
= 9] Ly, we have

J(' = Uf(4R) mod IASTy —
FER)E = f(x) = T F(R(1)1) =1 mod IASTy,

for big enough s. Thus (Lf)(x) = log(f(x)) — ‘f log(f(w1X)) as ‘log’ converges
on an element a power of which is =1 mod [AST.
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The proof of Lemma 1 is complete.
By means of the trace isomorphism Tr : T'(—) — Hom"(—) we next transport
Resg/ to Resg/ : T(QAG) — T(QAG"), i.e., the diagram
T(Q\G)  —%  Hom'(RiG,Q5T%)
(TD) ResG | ResG |
T(0\¢) % Hom*(RG', Q5Tw)

commutes.
LEMMA 2.
L
Ki(AMG) = T(QAG) ,
res g/ ! Resg 1 commutes and Resg /e =tk -

KiAMG) 2 1)

The first claim follows from gluing together the diagrams (LD), (HD), (TD)
and applying [2, Lemma 9]; the second claim follows from res& Ly, = L/
[2, Proposition 12].

The next lemma already concentrates on the case when G’ is abelian and
[G: G =1 Weset A= G/G" = (a) and observe that a acts on G’ by
conjugation.

LEMMA 3. Let 7 : ANG — T(AAG) denote the canonical map and g € G. If G’
is abelian * and of index | in G, then

/ Yl ifged
Resg (79) = { g if g¢ G

The lemma is just a special case of

PROPOSITION A. Let H be an open subgroup of G = G(K/k). For g € G set
mH(g) = min{r > 0: ¢ € H} ®, and let t run through a set of left
representatives of H in G, i.e., G = |JtH . Then

m,H —1lg¢ —
1. ReSng(g) _ Zt TH((t_lgt)l o g1>)/lmg(t Lgt) )
2. Res is transitive,

3. Resd is integral, i.e., Res2 (T(AAG)) C T(AnH) for H < G of finite
indez.

Proposition A will be shown in the Appendix.

For the purpose of this paper it is enough to know Lemma 3 which we quick-
ly prove directly on applying Tt" to both sides and employing the formula
Tr'(7'9)(x’) = x'(g)g with g denoting the image of g € G’ in T'ys (see [5,§1]):

4whence 7/ : ANG’ — T(AAG’) is the identity map
5so m& (g) is the m(g) defined earlier with H = G’
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L (T'Resg (r))(X') = Resg (Te(rg))(x') = Ti(rg)(ind &) +
L Tr(rg)(x) since G' C G'. Now, if ¢ € G, Tr(rg)(indgy) =
Zi;éx'(gal)g and x(g) = 0. On the other hand, if g ¢ G,

Tr(rg)(ind &x') = 0 and ¥ Tr(rg)(x) = +ind&x'(¢")g" = x'(¢")7"
since we may choose a = g mod G'.

2. Tr’(Zi;l 9°)(xX') = Zi;é X’(g“i )g, since g“i and g have the same image
in T'j, and so in ['y,. On the other hand, Tr'(¢")(x’) = x'(¢")g" .

The lemma is established.

i

We note that if I (~ Z;) is a central subgroup of G contained in the abelian
subgoup G’ of index [, then the elements of T(AAG) can uniquely be written
as 3y, By7(g) with 85 € AL and g running through a set of preimages of
conjugacy classes of G/T (see [3, Lemma 5]). For each summand we have

o B Zi;l ﬂ gam if g € G’
Res (o) = { S50 $0S8

2. PROOF OF THE THEOREM

In this section G = G(K/k) is a pro-l group and G’ = G(K/k') an abelian
subgroup of index [ (K/k is as in the introduction). As before, A = G/G’ = (a),
and weset A=1+4+a+---+al"t.

If G itself is abelian, the theorem holds by [4,85, Example 1], whence we assume
that G is non-abelian.

LEMMA 4. Assume that there exists an element © € T(AAG) such that
deﬂgdb:c = deﬂgdbtK/k and Resglz = Resg/tK/k . Then tg ), € T(AAG).

Denoting by K, the fixed field of the finite group [G,G], we first obser-
ve, because of [5, Lemma 2.1] and Lemma 2, that deﬂgabtK/k = tk,,/k and
Resg/t K/k = li /i are integral : indeed, a logarithmic pseudomeasure is integral
whenever the group is abelian.

From [4, Proposition 9] we obtain a power [" of I such that ("tx/, € T(AAG).

Consider the element & = ["(z — tg/) € T(AAG). It satisfies deﬂgdb:c =
0= Resglj. We are going to prove © = 0 which implies z = {f/;, because
Hom™(R;G, Q%I'x), and so T(QAG), is torsionfree; whence the the lemma will
be verified.

The proof of £ = 0 employs the commutative diagram shown in the proof of
[5, Proposition 2.2]:

Gab
defla
1 + an — (A/\G)X —» ([X/\C‘:a“b)><
i L] Leb |
deﬁg?Lb

T(Cl/\) — T(A/\G) —» A/\Gab s
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in which L is extended to (AAG)* by means of the canonical surjection
(ANG)* — K1(AAG) and an = ker(AAG — AAG?P). The diagram yields a
v € (AG)* with L(v) = &, simply because deﬂgdb:ﬁ = 0. Combining diagrams
(HD), (LD) and (TD), we arrive at

L' (resS (Det v)) = Res& (L(Det v)) = Res& (TrL(v)) = Tr'(Res& &) = 0
. leld Gab
and, with resz replaced by defls , at

L (defiS”" (Det v)) = defi€”™ (L(Det v)) =
= defig™ (TrL(v)) = Tr*(defi&™ ) = 0,

since L and Tr commute with deflation.
The first displayed formula in [3, p.46] now implies that res& (Detwv)

and deﬂgab (Detv) are torsion elements in HOM(R;G', (ASTy)*) and
HOM(R;(G?P), (AST'x)*), respectively. Moreover, the first paragraph of
the proof of [5, Proposition 3.2] therefore shows that Det v itself is a torsion
element in HOM(R;G, (AGT'%)*). Consequently, for some natural number m,
(Detv)!"™ =1, so I"L(Detv) = 0 = I"™Tr(Lv) = Tr(I"™&), and & = 0 follows,
as has been claimed.

We now introduce the commutative diagram

T(an) = T(AAG) - ANG*P = T(AAG™)
Res | Resg/ ! Res |
by, =7'(b))) —AG =T(ANG') — ANG'/[G,G]) =T(AM(G/]G,G]))

with exact rows (of which the upper one has already appeared in the diagram
shown in the proof of the preceding lemma). The images of all vertical maps
are fixed elementwise by A because of Lemma 3. Thus we can turn the diagram
into

T(Cl/\) — T(A/\G) —» A/\Gab
Res | ResG/ l Res |
(D) b = (MG~ (AG[GG))A
! ] ]

HO(A b)) —  H(AMG) — HYAM(G/[G,G))
with exact rows and canonical lower vertical maps.

LEMMA 5. In (D), the left vertical column is exact and the left bottom hori-
zontal map is injective.

PROOF. The ideal a, is (additively) generated by the elements g(c — 1) with

g € G, c € [G,G]; those with g € G’ generate b’,. We compute Reng(g(cfl)),
using Lemma 3:
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L if g € G, Res 7(g(c = 1)) = LiZh((99)"" — 9*) = g (9(c = 1) e

tI"Ah//\ ,

2. ifg ¢ G', Resg 7(g(c—1)) = Res§ (7(ge)—7(g)) = (g¢)'—g' = get—g' =
0, since
(%) G.G]A =1

by [G,G)=[G, G'] and [G,G')A = ((G')*"1)A =1 as (a — 1)A = 0. Here,
the dotted equality sign, =, results from the equation

(g, bigs] = (g5) 107 (g5) b bgibigh = (91) M (gh " )°(gh)" gh =
(o))" ) (" )Ph) € [6,6- G, G < GG

for gj,95 € G' and b € G\ G’, because G’ is abelian and normal in G.

Thus, Res& 7(an) = trab/, , which proves the first claim of the lemma.
The second claim follows from H (A, Ax(G' /|G, G])) = 0 and this in turn from
the trivial action of A on G'/[G, G] and the torsion freeness of AA(G'/[G, G]).

Lemma 5 is established.

As seen in diagram (D), there is an element x; € T(AAG) with deﬂgabxl =
ti., k- We define 27 € AAG' by Resglxl = tg ) + 2. Because of [5, Lemma
3.1], 1 is fixed by A. We want to change z1 modulo 7(ax) so that the new
becomes zero: then we have arrived at an € T(AAG) as assumed in Lemma
4 and the theorem will have been confirmed.

The above change is possible if, and only if, ) € Resg’(T(aA)) and so, because

of Lemma 5, if 2} is in 7’ def tra(AAG'), the A-trace ideal of the A-action on
AANG'.

PROPOSITION. There exists an element x1 of T(AAG) with deﬂgabxl =tK../k
and zy € T'.

This is seen as follows. From [5,81] we recall the existence of pseu-
domeasures g, /ks Ak /K i K1 (AAG*) and K;(AAG'), respectively, sa-
tisfying Det)‘Kab/k = LKab/k;DetAK/k’ = LK/k’ (SO Lab()\Kab/k)
to/ks > (Ak /i) = tiyw). From [5, 2. of Proposition 3.2] and [6, Theorem)]
we know that

ver()\Kab/k)

=1 mod T’
)\K/k:'
where ‘ver’ is the map induced from the transfer homomorphism G — G’.

Let y € (AAG)™ have deﬂgaby = Ak, /k and set resgly = Mgk -y’ Then

y = resg Yy _ ver(Acu, /k) =1 mod7’

)\K/k/ )\K/k/
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(see the proof of [5, Proposition 3.2]). Moreover, y' € 1+ b’,. Now, 24 def L(y)

has ResG z1 = ResG L(y) = tg/k + 27 with o) & L'(y'), and 2 € b/, because

of the commutativity of

L+by — (MG) — (A(G/[G,G))~

L] L' L
b, —  AG —  ANG]G.G)

Hence, the proposition (and therefore the theorem) will be proved, if
p=L'(y)eT .
However, Lemma 5 gives

e+ NNA+T) =1+ (6" NT') =1+ trab),

i

and as L' (y') = } log % (compare [3, p.39]), we see that

(1) L(y)eT if oy =1 modIT’

So it suffices to show this last congruence.
Write 3/ = 1 + tra 8 with 8’ € b/,. Since (1 + traB)! = 1 + (trap’)! mod 177,
the congruence in (1) is equivalent to

(2) (trAﬁ')l = U(tra ') mod I7".

On picking a central subgroup I' (~ Z;) of G and writing 3’ = Zg/ By ed'(c—
1) with elements 8y . € AAT, ¢’ € G', ¢ € [G, G], we obtain

(t0a)! = ( Sy By ctiale’ (1))
(2) = %, (B (g (e~ 1)

= Sy W(By.e) ((tra(g'e))! = (brag)t) mod 17"
and
(b) V(1) = Xy W (By) (t1a((9'0)) = tra(g"))

as ¥ and try commute. Thus congruence (2) will result from Lemma 6 below,
since then subtracting (b) from (a) yields the sum

g (B0 ((t1a(90))! = tral(g'e)') = (trag’)! + tra(")) =
Sy Uy~ gy +1g) =
Yy (D¥(By )g (e 1) =0 mod 1T,

by (%) of the proof of Lemma 5.
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LEMMA 6.  (trag’)! — tra(g'") = flg’A mod {7’ for g € G'.

PROOF. Set _;1 =7/l x A and make M = Maps(Z/l,A) into an A-set by
defining m(*") () = m(x — 2) - a’. Then

trAg Z g’“ Z H m(z) _ Z glzzgz/l m(z)
=0 meM zeZ/l meM
with >~ m(z) read in Z[A].
We compute the subsums of ) in which m is constrained to an A-orbit.

If m € M has stabilizer {(0,1)} in A, then the A-orbit sum is

2 m&e) ( Comv—2)at
X canei g =3 a)ed g/ Zveznmvm2)el
Z(Z al)g/z m(v)a’ ZZ (g 1>, m(v) ) l~trA(g’Z“ m(v)) cIT

Note that nom € M is stabilized by (0, a’) with a® # 1: for m(z) = m(%)(z) =
m(z)a® implies a® = 1. It follows that the stabilizers of the elements with
stabilizer different from {(0,1)} must be cyclic of order I and different from
{(0,a%) : 0 <i <1 — 1} and therefore = ((1,a’)) for a unique j mod I.

One now checks that for each j there is exactly one A-orbit with stabilizer
((1,a7)) and that it is represented by m;, m;(z) = a’*. Moreover, {(0,a’) :
0 <14 <1—1}is a transversal of the stabilizer of m; in A.

For each 7, the sum of ¢'>= ™) over the A-orbit of mjis Y, g’zzmgoval)(z) =
> g’ ala’ If j =0, thisis ), g’lai = tra(g’), accounting for that term
in the claim. If j # 0, it is ), g’A'ai = lg’A, and summing over j # 0 gives
-1 g’A =1 ~g”21 mod 17" because 12 - ¢/ =1 - tra(g'?) € IT".

This finishes the proof of Lemma 6.

3. APPENDIX
Proof of Proposition A :

We start from the formula y(g) = ng(gt):1 X'(g") which appeared in the

justification of the definition in §1 (now with H = G’). It implies X(glril) _
ng (t=lgt)=r X' ((t~1gt)!") for r > 1. Exploiting [3, Lemma 6] for the equality
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= and [3, Proposition 3] for = we obtain

(RengrcTG(g))(X’)

M — ))(dex)+2r>1 L [(Trara(9) (@] X))
=trace(g | Vinagy) + ZT>1 7= [trace(g | T, rot M)

=(ind Gx)(9)7 + Xpo1 B (7 X)(9)7]

= (nd §x)(@)7 + X,z x(0" He

= Zntie-ra=0 X (90T + st Tt 190 X (7 191)) b

B mH (=1 g¢) 71 G(t Lgt)
= Y X (g

l'mG(t lgt)y

On the other hand, if h € H, the same calculation on the H-level gives

(Trama(h))(X') = trace(h | Byr) = X' (h)h

LBt
and therefore, with 77 (", %) e T(Q(H)), we get

mG

H/ -1
1 ama (7 gt
(Trama 32y 2o ) ()

mH 1 H (1—
=3 s X (T gt)! R T LA

_m& @ lat)

_ ml (= 1gt)
=Y X (g )glmg(ﬁ

via Q¢(T'yr) — Q°(T'x) (where &’ is the fixed field of H).

Since these formulae agree for all characters X of H (with open kernel) it

Lgt)

ng
follows that ResZ7¢(g) = (Y, L

ml (t—1gt)

) by the uniqueness of this
element, proving 1. of Proposition A.

For 2. we first consider the situation H < G’ < G with [G : G'] =1 and show
ResZ = Resd, o Res$

Write G = UmSL'GI , G = UyyH , hence G = Uz’y:cyH, and recall ¢ from 1. that

el . TG/(ZQ; l’ilgl’) , g c G/
Resg g = { ch(gl) e

6if g ¢ G, then we may use {t} = {g*: 0<i<l—1}
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Then, accordingly,

Resg/RengG (9)

S, Resg e (v ga)
Res& 7a(g")

—-1,.—1

H —-1_-1
ey i (y e gay)

.Y, ma((u- e gry)
mH, (y=1gly .
>,y gy ) imé v ')
m& @ tgt) Hy—1
S ora((ttgt)c )/ch(t gt)
t B m,H,(tflglt) H o1
Sera((ttg't) e )1 1 ')
mH 1 1
Zt TH((tflgt)l G(t gt)/lmg(t gt) _ RGSng(g),

using G’ < G and m¥, (2!) + 1 = mf(z) for = ¢ G'.

Induction on [G : H] now proves 2., Res& = Res&, o Resg” for H< G" <G.
Indeed, if G” # G, find G’ > G” with [G : G'] =1 and use

" " ’
Resf Res§ = ResH, (ResS, ResS ) =

" ’ ’
= (ResZ,ResS, )Res& = ResH Res& = ResH .

Finally, for 3., proceed by induction on [G : H] and use 1. if H has index [ in
G and 2. when the index is bigger, in which case there is a subgroup G’ of G
with H <G, [G: G =1.

The proof of Proposition A is complete.
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ABSTRACT. The degeneration of the polylogarithm on the universal
abelian scheme over a Hilbert modular variety at the boundary is
described in terms of (critical) special values of the L-function of the
totally real field defining the variety. This gives a relation between the
polylogarithm on abelian schemes and special values of L-functions.
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INTRODUCTION

The polylogarithm is a very powerful tool in studying special values of L-
functions and subject to many conjectures. Most notably, the Zagier conjec-
ture claims that all values of L-functions of number fields can be described by
polylogarithms. The interpretation of the polylogarithm functions in terms of
periods of variations of Hodge structures has lead to a motivic theory of the
polylog and to generalizations as the elliptic polylog by Beilinson and Levin.
Building on this work, Wildeshaus has defined polylogarithms in a more general
context and in particular for abelian schemes.

Not very much is known about the extension classes arising from these “abelian
polylogarithms”. In an earlier paper [K] we were able to show that the abelian

!Dedicated to John Coates with admiration and respect.
Editorial Remark: This article was intended to be included in DOCUMENTA MATH., The
Book Series, vol. 4: John H. Coates’ Sixtieth Birthday (2006), but its publication was
unfortunately delayed for reasons not caused by the author.
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polylogarithm, is indeed of motivic origin, i.e., is in the image of the regulator
from K-theory.

It was Levin in [L], who started to investigate certain ”polylogarithmic cur-
rents” on abelian schemes, which are related to the construction by Wilde-
shaus. In [B1], Blottiere could show that these currents actually represent the
polylogarithmic extension in the category of Hodge modules.

In this paper we will, following and extending ideas from the case of the elliptic
polylog treated in [HK] (which is in turn inspired by [BL]), consider the prob-
lem of the degeneration of the abelian polylog on Hilbert modular varieties.
The main result will describe this degeneration in terms of (critical) special
values of L-functions of the totally real field, which defines the Hilbert modu-
lar variety. To describe the theorem more precisely, consider the specialization
of the polylog, which gives Eisenstein classes (say in the category of mixed étale
sheaves to fix ideas)

Eis*(a) € Exty? " (Qr, Sym”* H(g)),

where S is the Hilbert modular variety of dimension g and H is the locally
constant sheaf of relative Tate-modules of the universal abelian scheme. Let
j : 8 — S be the Baily-Borel compactification of S and i : 9S :== S\ S — S
the inclusion of the cusps. The degeneration or residue map (see 1.5.2 for the
precise definition) is then

res : Ext?ggfl(Qg, Sym” H(g)) — Homps(Qyr, Q).

The target of this map is sitting inside a sum of copies of Q; and the main
result of this paper 1.7.1 describes res(Eis"(a)) in terms of special values of
(partial) L-functions of the totally real field defining S.

The same result was also obtained by Blottiere in [B2] with different methods.
His computation uses the explicit description of the polylogarithm in terms of
the currents constructed by Levin.

Our method of proof is inspired by [BL] 2.4. and [HK] and follows a different
line. Instead of computing directly the degeneration on the base we work with
the polylog, which lives on the universal abelian scheme, and use the fact that
the universal abelian variety can be written in a neighborhood of the cusps as
an extension of real tori. The idea is to view the problem as of topological
nature and use the good functorial properties of the topological polylog to
compute the degeneration. In fact, we avoid computations by reducing to the
situation considered by Nori [N] and Sczech [Sc|. For the convenience of the
reader we reproduce then their computations, which lead to the relation with
the L-values.

There is a very interesting question raised by the results in this paper. In
[HK] we were able to construct extension classes related to non-critical values
of Dirichlet-L-functions, if the residue map was zero on the specialization of
the polylog. Is there an analogous result here?

The paper is organized as follows: In the first section we review the definition
of the Hilbert modular variety, define the residue or degeneration map and
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formulate our main theorem. The second section reviews the theory of the
polylog and the Eisenstein classes emphasing the topological situation, which
is not extensively covered in the literature. In the third section we give the
proof of the main theorem.

It is a pleasure to thank David Blottiere for a series of interesting and stim-
ulating discussions during his stay in Regensburg. Moreover, I like to thank
Sascha Beilinson for making available some time ago his notes about his and
A. Levin’s interpretation of Nori’s work.

1 POLYLOGARITHMS AND DEGENERATION

We review the definition of a Hilbert modular variety to fix notations and
pose the problem of computing the degeneration of the specializations of the
polylogarithm at the boundary. The main theorem describes this residue in
terms of special values of L-functions.

1.1 NOTATION

As in [BL] we deal with three different types of sheaves simultaneously. Let
X/k be a variety and L a coefficient ring for our sheaf theory, then we consider

i) k = C the usual topology on X (C) and L any commutative ring

ii) k=R or Cand L = Q or R and we work with the category of mixed
Hodge modules

iii) k=Q and L = Z/I"Z,Z; or Q; and we work with the category of étale
sheaves

1.2 HILBERT MODULAR VARIETIES

We recall the definition of Hilbert modular varieties following Rapoport [R].
To avoid all technicalities, we will only consider the moduli scheme over Q.
The theory works over more general base schemes without any modification.

Let F be a totally real field, g := [F : Q], O the ring of integers, D! the
inverse different and dp its discriminant. Fix an integer n > 3. We consider
the functor, which associates to a scheme T over Spec Q the isomorphism classes
of triples (A, a, A), where A/T is an abelian scheme of dimension g, with real
multiplication by O, o : Hom,; ¢ (A, A*) — D71 is a D~ '-polarization in
the sense of [R] 1.19, i.e., an O-module isomorphism respecting the positivity
of the totally positive elements in @~ C F, and X : A[n] = (O/n0)? is a level
n structure satisfying the compatibility of [R] 1.21. For n > 3 this functor is

represented by a smooth scheme S := S,?fl of finite type over Spec Q . Let
A5 S
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be the universal abelian scheme over S. In any of the three categories of sheaves
i)-iii) from 1.1 we let
H := Homg(R'r.L, L)

the first homology of A/S. In the étale case and L = Zy, the fiber of H at a
point is the Tate module of the abelian variety over that point.

1.3 TRANSCENDENTAL DESCRIPTION

For the later computation we need a description in group theoretical terms of
the complex points S(C) and of H.
Define a group scheme G/ SpecZ by the Cartesian diagram

G —— ReSO/ZGIQ

| [

G — Resp/z G
and let
99 := {7 € F®C|Im 7 totally positive or totally negative}.
Then ( (cl ) € G(R) acts on S’th by the usual formula
a b S at +b
c d et +d

and the stabilizer of 1 ® i € HY is

b
d

Ky = (F®C)* NnG(R),
so that
9% =2 GR)/ K.

With this notation one has
S(C) = G(Z)\(H. x G(Z/nZ)).

On S(C) acts G(Z/nZ) by right multiplication. The determinant det : G — Gy,
induces

S(C) — G (Z/nZ)

and the fibers are the connected components. Define a subgroup D C G iso-
morphic to G,, by D := {(8 ?) €eG:ac Gm). This gives a section of det.
Then the action of D(Z/nZ) by right multiplication is transitive on the set of
connected components.
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The embedding G(Z) C Gl2(O) defines an action of G(Z) on O®? and in the
topological realization the local system H is given by the quotient

G(Z)\ (9% x O x G(Z/nZ)).

In particular, as a family of real (2¢g-dimensional) tori, the complex points A(C)
of the universal abelian scheme can be written as

GZ\(9% x (F @ R/O)*? x G(Z/nZ))

and the level n structure is given by the subgroup
1
(50/0)692 C (FeR/0)®2

The O-multiplication on A(C) is in this description given by the natural O-
module structure on F' ® R.
1.4 TRANSCENDENTAL DESCRIPTION OF THE CUSPS

The following description of the boundary cohomology is inspired by [H]. For
further details we refer to [H] 2.1. Let B C G the subgroup of upper triangular
matrices, 7' C B its maximal torus and N C B its unipotent radical. We have
an exact sequence

1-N—>BLT1T-1.

We denote by G', B! and T' the subgroups of determinant 1. Note that
G' = Resp/zSla. Let KB := B(R) N Ko, then the Cartan decomposition
shows that §% = B(R)/KZ2. A pointed neighborhood of the set of all cusps is
given by

(1) Sp = B(Z)\(B(R)/KE x G(z/nZ)).

In particular, the set of cusps is (cf. also [R] p.305)

(2) 9S(C) = B (Z)\G(Z/nZ).

The fibres of the map 95(C) — G, (Z/nZ) induced by the determinant are
3) BAZ)\G (2/nZ) = T\P1(0),

where I'¢ := ker(GY(Z) — G'(Z/nZ)). In particular, we can think of a cusp
represented by h € G1(Z/nZ) as a rank 1 O-module by, which is a quotient

(4) 0% 25 by,

together with a level structure, i.e., a basis h € G'(Z/nZ). Explicitly, the
fractional ideal by, is generated by any representatives u,v € O of the second
row of h.
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On Sp acts G(Z/nZ) by multiplication from the right. This action is transitive
on the connected components of Sg. Define

(5) Sp = B(Z)\(B(R)/KZ x B(Z/nZ)),

then Sp C S B is a union of connected components of S . Let KL (respectively
T(Z)) be the image of K2 (respectively B(Z)) under ¢ : B(R) — T(R). Define
(6) Sr = T@\(T(R)/KL x T(Z/nZ)),

then the map ¢ : B — T induces a fibration

(7) q:Sp — Sr,

whose fibers are N(Z)\ (N (R) x N(Z/nZ)) with N(Z) := B(Z)NN(R). Denote
by

(8) u: Sy — pt

the structure map to a point. For the study of the degeneration, one considers
the diagram

Sp —L— Sp —“— pt

(9) l
s

In fact we are interested in the cohomology of certain local systems on these
topological spaces. For the computations it is convenient to replace Sp and St
by homotopy equivalent spaces as follows.

Define KT, := KZ NT'(R) and note that this is the kernel of the determinant
KT — R*. Then the inclusion induces an isomorphism

TYZ\ (T (R)/ KL x T(Z/nZ)) = Sr.

Themap a — (& 2, defines isomorphisms (F®R)* = T(R) and O* = TY(Z).

0at

Note that KZ' C (F@R)* is identified with the two torsion subgroup in (F@R)*
and that KOTO1 = (Z/27)9 permutes the set of connected components of T (R).

LEMMA 1.4.1. Let (F @ R)! ¢ THR) = (F ® R)* be the subgroup of elements
of norm 1 and O*1 = O* N (F @ R). Then

Ski= O\ ((FoR)' /KL N(F®R)! x T(Z/nZ))

is homotopy equivalent to St. Moreover, the inclusion of the totally positive
elements (F @ R)Y. into (F @ R)! provides an identification

(FeR)L =~ (FeR)'/KL n(FeR).
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Proof. The exact sequence
0— (FoR)! - (FoR)* —-R* -0
together with the fact that K OTol is the two torsion in (FQR)* allows to identify
T'(R)/KL = (F@R)'/KL N(FOR)') x Rso.

The last identity is clear. (I
We define S} to be the inverse image of St under ¢, so that we have a Cartesian
diagram

Sy —1— st
(10) l l

Sp —L— Sr.
Over Sp the representation @2 has a filtration
(11) 0-0—-0>% 00,

where the first map sends a € O to the vector (8) and the second map is

(‘;) — b. This induces a filtration on the local system H

(12) 0—-N—-H—M-—0,

where A and M are the associated local systems. In particular, over 5113 one
has a filtration of topological tori

(13) 0— Ty — AC) L Ty — 0,

where Ty := N ® R/Z and Ty, :== M ® R/Z. By definition of N the fibration
in (13) and (10) are compatible, i.e., one has a commutative diagram

AC) —2— Ty

w TR

1 q 1
SL —% ., Sk

1.5 THE DEGENERATION MAP

In this section we explain the degeneration problem we want to consider.
The polylogarithm on 7 : A — S defines for certain linear combinations « of
torsion sections of A an extension class

(15) Eis*(a) € Ext?,f’s_l(L, Sym” H(g)),
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where 7 can be M HM, et,top. The construction of this class will be given in
section 2 definition 2.4.1.

Let S be the Baily-Borel compactification of S. Denote by 95 := S\ S the set
of cusps. We get

98 LS LS.
The adjunction map together with the edge morphism in the Leray spectral
sequence for Rj,. gives

Extég_l(L, Sym* H(g)) —— Ext?,%_l(L, i*Rj, Sym"” H(g))
(16) \ |
Homys (L, " R*~" j, Sym" H(g)).
There are several possibilities to compute *R?971 5, Symk H(g).

THEOREM 1.5.1. Assume that Q C L. Then, in any of the categories
MHM,et,top, there is a canonical isomorphism

i*R¥715, Sym* H(g) = L,
where L has the trivial Hodge structure (resp. the trivial Galois action,).

REMARK: J. Wildeshaus has pointed out that the determination of the weight
on the right hand side is not necessary for our main result, but follows from it.
In fact, our main result gives non-zero classes in

Hompg (L,i*R*971j, Sym” H(g)),

so that the rank one sheaf i* R29~1j, Sym"® H(g) has to be of weight zero.

Using this identification we define the residue or degeneration map:

DEFINITION 1.5.2. The map from (16) together with the identification of 1.5.1
define the residue map

res : Ext? (L, Sym" H(g)) — Homgas(L, L).
The residue map is equivariant for the G(Z/nZ) action on both sides.

Proof. (of theorem 1.5.1). In the case of Hodge modules we use theorem 2.9.
in Burgos-Wildeshaus [BW] and in the étale case we use theorem 5.3.1 in
[P2]. Roughly speaking, both results asserts that the higher direct image can
be calculated using group cohomology and the “canonical construction”, which
associates to a representation of the group defining the Shimura variety a Hodge
module resp. an étale sheaf.

More precisely, from a topological point of view, the monodromy at the cusps
is exactly the cohomology of Sg. One has

H?~Y(Sp, Sym" H(g)) = Ind§7/n7) H*~(Sp, Sym" H(g))
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and
H*"N(Sp,Sym" H(g)) = €D H'(Sr,R°q.Sym" H(g))).
r4+s=2g—1
As the cohomological dimension of I'r is ¢ — 1 and that of I'y is g, one has in
fact
H?~Y(Sp, Sym® H(g)) = HY}(Sr, R9q. Sym" H(g))).

The exact sequence
0-0-0*20-0

from (11) shows that R9¢, Sym” H(g) can be identified via p with Sym” O ®
L with the induced T'(Z) action, which maps (8 2) to d*. To compute the
coinvariants, extend the coefficients to R, so that

OR @ R

T:F—R

and (&) € T(Z) acts via 7(d) on the component indexed by 7. Thus Sym"* O®
L can only have a trivial quotient, if £ = 0 mod ¢ and on this one dimensional
quotient the action is by the norm map T'(Z) — £1. One gets:

L ifk=0modg

g—1 k ~
H97(Sp,Sym" O ® L) = { 0 clse

The above mentioned theorems imply that this topological computation gives
also the result in the categories M HM,et,top. The Hodge structure on
Hg_l(ST,Symk O ® L) is the trivial one, as one sees from the explicit de-
scription of the action of T" and the fact that the action of the Deligne torus S,
which defines the weight, is induced from the embedding x +— (30‘ ?)., hence is
trivial. The same remark and proposition 5.5.4. in [P2] show that the weight
is also zero in the étale case. (I

1.6 PARTIAL ZETA FUNCTIONS OF TOTALLY REAL FIELDS

Let b, be relatively prime integral ideals of O, € : (R ® F)* — {x1} a sign
character. This is a product of characters e, : R* — {%1} for all embeddings
7 : FF — R. Denote by |e¢|] the number of non-trivial e, which occur in this
product decomposition of e. Moreover let x € O such that z # 0 mod b~ 1§
and Of := {a € Ola totally positive and a = 1 mod f}. Define

(17) F(b,f,e,x,8) := Z ]\j(u)

ve(z+fb—1)/O7

for Re s > 1. Here N is the norm. On the other hand let Tr : ' — Q be the
trace map and define

6()\)6271'1' Tr(zX)

(18) L(b,f,e,2,8) := Z NG

AEB(fD)~1/OF
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These two L-functions are related by a functional equation. To formulate it we
introduce the I'-factor

el .
T.(s) := w2 (s0tlelp s+l r (f)g le] '
2 2

The functional equation follows directly with Hecke’s method for
Grossencharacters and was first mentioned for these partial zeta functions by
Siegel:

PROPOSITION 1.6.1 (cf.[Si] Formel (10)). The functional equation reads:
T(1—=s)F(b,f,e,2,1—s) =i 1dp| 2N '6)Tc(s)L(b, f, €, 7, 5),
where dp is the discriminant of F/Q.

The functional equation shows that F'(b,f,e,2,1 — k) can be non-zero for k =
1,2,... only if |e] is either g or 0. Let us introduce

(b, f,x,5) == > !

N(v)s
vE(z+b—1)/O;

We get:

COROLLARY 1.6.2. The functional equation shows that F(b,f,e,x,1 — k) for
k=1,2,... is non-zero for |e| = 0 and k even or for || = g and k odd. In
these cases one has

(k=17

C(bafaza 1- k) = |dF 7%N(f71[j) (27.‘.2)1%]

(b7 f? 6’ 1’7 k)'

1.7 'THE MAIN THEOREM

Here we formulate our main theorem. It computes the residue map from (1.5.2)
in terms of the partial L-functions.
The transcendental description of the cusps gives

H°(0S(C), L) = nd{4™ L
and H°(9S, L) is the subgroup of elements invariant under D(Z/nZ). Similarly,
the n-torsion sections of A[n] over S(C) can be identified with functions from
G(Z/nZ) to (1O/0)?, which are equivariant with respect to the canonical
GY(Z) := ker(G(Z) — Z*) action. The action of G(Z/nZ) on S induces via
pull-back an action on A[n](S(C)) and we have:

Aln)(5(C)) = md& ™ (L 0/0)
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The group A[n](S) consists again of the elements invariant under D(Z/nZ).
Let D := A[n](S) and consider the formal linear combinations

LD :={> Is(0):ls € Land Y I, =0}.
oceD oceD

The G(Z/nZ) action on D carries over to an action on L[D]°. For o € L[D]°
we construct in 2.4.1 a class

Eis®(a) € Ext¥ " (L, Sym* H(g)),

which depends on « in a functorial way. Thus, the resulting map

ok
(19) L[D]® == Exty (L, Sym* H(g)) ~= Ind5{," L

is equivariant for the G(Z/nZ) action.

THEOREM 1.7.1. Let L > Q and oo =) ls(c). Then res(Eis™(a)) is non-

zero only for m = 0(g) and for every h € G(Z/nZ) and k > 0

res(Eis? (a))(h) = (1)1 Y 1:¢(0, O, p(ho), —k).

ceD

To use the basis given by the coinvariants in Symgk O ® L as we did in the
proof of theorem 1.5.1 is not natural. A better description is as follows: For
each h € G(Z/nZ) choose an element dj, € D(Z/nZ) such that h := hd, ' €
G'(Z/nZ). Then, as in (4) we have an ideal b; and a projection

PR
0? = b;.

Now use the identification H9~1(Sr, Sym* b; ® L) = L at the cusp h. With
this basis the above result reads

COROLLARY 1.7.2. In this basis

res(Bis? (a))(h) = (=1)* ' N6-*"1 > 1,6y, O, pj (0), k).
oeD

The theorem and the corollary will be proved in section 3.

2 POLYLOGARITHMS

In this section we review the theory of the polylogarithm on abelian schemes.
Special emphasis is given the topological case, which will be important in the
proof of the main theorem. The elliptic polylogarithm was introduced by Beilin-
son and Levin [BL] and the generalization to higher dimensional families of
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abelian varieties is due to Wildeshaus [W]. The idea to interprete the con-
struction by Nori in terms of the topological polylogarithm is due to Beilinson
and Nori (unpublished).

The polylogarithm can be defined in any of the categories M HM, et,top for
any abelian scheme 7 : A — S, with unit section e : S — A of constant relative
dimension g. If we work in top, it even suffices to assume that 7 : A — S is
a family of topological tori (i.e., fiberwise isomorphic to (R/Z)?). For more
details in the case of abelian schemes, see [W] chapter IIT part I, or [L]. In the
case of elliptic curves one can also consult [BL] or [HK].

2.1 CONSTRUCTION OF THE POLYLOG

For simplicity we assume L D @Q in this section and discuss the necessary
modifications for integral coefficients later. Define a lisse sheaf Log(l) on A,
which is an extension

OHHHLog(l)HLHO

together with a splitting s : e*L — e* Log(l) in any of the three categories
MHM, et,top as follows: Consider the exact sequence

0 — Exth(L, H) =5 Ext!y (L, 7*H) — Homg(L, R'm,7"H) — 0,

which is split by e*. Note that by the projection formula R'7,. m*H = R'm, L ®
‘H so that
Homg (L, R*7.m*H) = Homg(H, H).

Then Log(l) is a sheaf representing the unique extension class in Extil(L, m™H),
which splits when pulled back to .S via e* and which maps to id € Homg(H, H).
Define

Log(k) := Sym* Log(l) .
DEFINITION 2.1.1. The logarithm sheaf is the pro-sheaf

Log := Log 4 := yLnLog(k),

where the transition maps are induced by the map Log(l) — L. In particular,
one has exract sequences

*k=1) _ g

0 — Sym*H — Log(k) — Log
and a splitting induced by s : e*L — e* Log(l)

e* Log = H Sym* H.

k>0
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Any isogeny ¢ : A — A of degree invertible in L induces an isomorphism Log 22
¢* Log, which is on the associated graded induced by Sym”* ¢ : Sym* H —
Sym” H. For every torsion point z € A(S)ors one gets an isomorphism

(20) x* Log = e* Log = H Sym* H.
k>0

The most important property of the sheaf Log is the vanishing of its higher
direct images except in the highest degree.

THEOREM 2.1.2 (Wildeshaus, [W], cor. 4.4., p. 70). One has
Rim,Log =0 fori # 2g
and the augmentation Log — L induces canonical isomorphisms
R%*7, Log = R*7,.L = L(—g).

For the construction of the polylogarithm one considers a non-empty disjoint
union of torsion sections i : D C A, whose orders are invertible in L (more
generally, one can also consider D étale over S). Let

LD =L

oceD

and L[D]° C L[D] the kernel of the augmentation map L[D] — L. Elements
a € L[D] are written as formal linear combinations o = 3 ., l5(0). Similarly,
define

Log[D] := @ o* Log
oeD

and
Log[D]° := ker (Log[D] — L)

to be the kernel of the composition of the sum of the augmentation maps
Log[D] — L[D] and the augmentation L[D] — L.

COROLLARY 2.1.3. The localization sequence for U := A\ D induces an iso-
morphism

Ext?? " (L[D]°, Log(g)) = Homg(L[D]°, Log[D]°).

Proof. The vanishing result 2.1.2 implies that the localization sequence is of
the form

0 — Ext??~"(L[D]°, Log(g)) — Homg(L[D]°, i* Log) — Homg(L[D]’, L) — 0.

Inserting the definition of Log[D]° gives the desired result. O

DOCUMENTA MATHEMATICA 13 (2008) 131-159



144 Guipo KINGS

DEFINITION 2.1.4. The polylogarithm polD is the extension class
pol” € Exty?”'(L[D]’, Log(y)),

which maps to the canonical inclusion L[D]° — Log|[D] under the isomorphism
in 2.1.3. In particular, for every a € L[D]° we get by pull-back an extension
class

pol? € Ext;? "' (L, Log(g)).

2.2 INTEGRAL VERSION OF THE POLYLOGARITHM, THE TOPOLOGICAL CASE

In the topological and the étale situation it is possible to define the polylog-
arithm with integral coefficients. In this section we treat the topological case
and the étale case in the next section. The construction presented here is a
reinterpretation by Beilinson and Levin (unpublished) of results of Nori and
Sczech.
We start by defining the logarithm sheaf for any (commutative) coefficient ring
L, in particular for L = Z. In the topological situation, it is even possible to
define more generally the polylogarithm for any smooth family of real tori of
constant dimension g, which has a unit section.
Let

m:7T — S

be such a family, e : S — 7 the unit section and let Hy, := Homg(R'm, L, L)
be the local system of the homologies of the fibers with coefficients in L. Let
Hr be the associated vector bundle of Hg. Then 7 = Hy\Hgr and we denote
by R
T H]R — T
the associated map. Let
LHz] :=e*mL
be the local system of group rings on S, which is stalk-wise the group ring of

the stalk of the local system Hy with coefficients in L. The augmentation ideal
of L[Hz] — L is denoted by Z and we define

L[[Hz]] == 11Ln L[Hz]/Z"

the completion along the augmentation ideal. Note that Z/Z"+! = Sym" H,.
If L D Q, one has even a ring isomorphism

(21) L{[Hz]] = [ Sym"* M.,

k>0

induced by h — >, o, h®"/k! for h € Hz. In the special case L = Z,Q the
canonical map of group rings Z[Hz] — Q[Hz] induces

(22) Z[[MHz]] — Q[[Hz])= [ ] Sym* He.

k>0
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DEFINITION 2.2.1. The logarithm sheaf Log is the local system on T defined

by
Log := L ®r,) L{[Hz]]-

As a local system of L[[Hz]]-modules, Log is of rank 1.

Any isogeny ¢ : 7 — 7 of order invertible in L induces an isomorphism
Log = ¢* Log, which is induced by ¢ : Hz — Hz. In particular, if the order of
a torsion section x : S — 7 is invertible in L, one has an isomorphism

x* Log = e* Log = L[[Hz]].

To complete the definition of the polylogarithm, one has to compute the coho-
mology of Log. As L[[Hz]] is a flat L[Hz]-module one gets

R'm, Log = R'm. 7L @3, L[[Hz)]
and because 7, = m one has to consider R(m o 7)L. But the fibers of
TOoT: 7-(R — S

are just g-dimensional vector spaces and the cohomology with compact support
lives only in degree g, where it is the dual of A™**H . Hence, we have proved:

LEMMA 2.2.2. Denote by u¥ the L-dual of pr := A™**Hy. Then the higher
direct images of Log are given by

i ~ r o oifi=
Rom Log:{ MOT J;lse, !

As in 2.1.3 one obtains
Ext?(L[D]°, Log ®u7) = Homg(L[D]", Log[D]°)
and one defines the polylogarithm
pol” € Ext{, " (L[D]°, Log ®u1)
in the same way. For a € L[D]° one has again
pol? e Ext%_l(L,Log our) = H9 YU, Log ®ur).

The relation to the polylog defined in 2.1.4 is as follows: If we denote the
logarithm sheaf and the polylog from this section by Log, and polZD and sim-
ilarly the ones from 2.1.4 by Logg and polg , we get from 22 a canonical map
Q ®z Logy, — Logg and hence a map

Ext{; ' (Z[D]°, Logz ®ur) — Extf;, ' (Q[D]°, Logg ®pur),

which maps polZD to
pol(g .
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2.3 INTEGRAL VERSION OF THE POLYLOGARITHM, THE ETALE CASE

This section will not be used in the rest of the paper and can be omitted by
any reader not interested in the integral étale case.

To define an integral étale polylogarithm, one has to modify the definition of
the logarithm sheaf as in the topological case. The situation we consider here
is again an abelian scheme

T A— S

of constant fiber dimension g and unit section e : S — A. Let £ be a prime
number, L = Z/(*Z and assume that ¢ is invertible in Og. Then the ¢'-
multiplication [¢"] : A — A is étale and the sheaves [¢"];L form a projective
system via the trace maps

[ET]QL — [Eril]!L.
DEFINITION 2.3.1. The logarithm sheaf is the inverse limit

Logy, :=lim[¢"];L

T

with respect to the above trace maps. The logarithm sheaf with Zg-coefficients
s defined by

Logy, = lim Logy /47 -
k

Let H; := lim A[¢"] be the Tate-module of A/S. As £ is nilpotent in L, we
get that e*Log = L[[H/]] is the Iwasawa algebra of H, with coefficients in

L. Any isogeny ¢ : A — A of degree prime to ¢ induces an isomorphism
[("W\L — ¢*[¢"]: L, which induces

Log & ¢* Log.

PROPOSITION 2.3.2. Let L = Z/{*Z or L = Z,. The higher direct images of
Log are given by

- L(-g) ifi=2g
g ~
Rm. Log = { 0 else.

Proof. 1t suffices to consider the case L = Z/0*7. We will show that the
transition maps R'm,[¢")iL — R'm.[¢°]|L are zero for i < 2g and every s, if r is
sufficiently big. By Poincaré duality we may consider the maps

(23) R¥™'m[°].L(g) — R*~'m ("] L(g).

By base change we may assume that S is the spectrum of an algebraically
closed field. Denote by Ay the variety A considered as covering of A via [¢°].
Then

R'm[¢*].L(g) = H' (A, [¢*].L(g)) = Hom(m1 (As), L(9))-
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With this description we see that for every f € Hom(m;(As), L(g)) there is an
r, such that the restriction to m;(A,) is trivial. This shows that the map in
(23) is zero, if r is sufficiently big and ¢ < 2¢ as the cohomology in degree i is
the i-th exterior power of the first cohomology. That (23) is an isomorphism
for i = 2g is clear. O

2.4 EISENSTEIN CLASSES

The Eisenstein classes are specializations of the polylogarithm. The situation
is as follows. First let o € L[A[n]]® and assume that Q C L. Then one can
pull-back the class polf["] € Ext?]_l(L, Log(g)) along e and gets:

e polé[”] € Exti«g*l(L, e*Log(g)) = H Ext?ggfl(L, Sym” H(g)).
k>0

DEFINITION 2.4.1. For any o € L[A[n]]°, define the k-th Eisenstein class as-

sociated to a,
Eis*(a) € Exty’ (L, Sym" H(g)),

to be the k-th component of e* polé[”].
Note that by the functoriality of the polylogarithm the map

(24) LIAR]® 25 Ext20-1(L, Sym* H(g))

is equivariant for the G(Z/nZ) action on both sides.

These Eisenstein classes should be considered as analogs of Harder’s Eisenstein
classes (but observe that we have only classes in cohomological degree 2g — 1).
The advantage of the above classes is that they are defined by a universal
condition, which makes a lot of their properties easy to verify.

3 PROOF OF THE MAIN THEOREM

In this section we assume that Q C L.

The proof of the main theorem will be in several steps. First we reduce to
the case of local systems for the usual topology. The second step consists of
a trick already used in [HK]: instead of working with the Eisenstein classes
directly, we work with the polylogarithm itself. The reason is that the polylog
is characterized by a universal property and has a very good functorial behavior.
The third step reviews the computations of Nori in [N]. In the fourth step we
compute the integral over Sk and the fifth step gives the final result.

3.1 1. STEP: REDUCTION TO THE CLASSICAL TOPOLOGY

We distinguish the M HM and the étale case. In the M HM case, the target
of the residue map from (1.5.2)

(25) res : Ext? " (L, Sym" H(g)) — Homps (L, L).

DOCUMENTA MATHEMATICA 13 (2008) 131-159



148 Guipo KINGS

is purely topological and does not depend on the Hodge structure. More pre-
cisely, the canonical map “forget the Hodge structure” denoted by rat induces
an isomorphism

rat : HOHIMHMﬁs(L, L) = Homt0p7as(L, L).
By [Sa] thm. 2.1 we have a commutative diagram

Ext?\/glﬁlM’S(L,Symk H(g)) ——— Homngar,as(L, L)

(26) lrat Elrac

Extrg, (L, Sym* H(g)) ——— Homrop,os(L, L).

This reduces the computation of the residue map for M HM to the case of local
systems in the classical topology.
In the étale case one has an injection

Hometﬁs (La L) — HometﬂSXQ(Lv L) = Homtop,as(([:) (La L)
and a commutative diagram

Ext2 5N (L,Sym" H(g)) —=—  Homeas(L, L)

(27) | |

29— res
Exty?” ¢ ¢ (L Sym* H(g)) —=— Homyop os(c) (L L).

Again, this reduces the residue computation to the classical topology.

3.2 2. STEP: TOPOLOGICAL DEGENERATION

In this section we reduce the computation of reso Eis* to a computation of the
polylog on Ty,.

We are now in the topological situation and use again the notations S and S
instead of 95(C) and S(C).

Recall from (19) that reso Eis* is G(Z/nZ) equivariant. In particular,

res(Eis® (a))(h) = res(Eis® (ha))(id),

where ha denotes the action of h on a. To compute the residue it suffices to
consider the residue at id.
Recall from (14) that we have a commutative diagram of fibrations

AC) —— Ty

(28) ”l W

1 q 1
sL —21 - sh.
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The map p : H — M induces Log 4 — p* Log,. Let D = A[n] and U := A\ D
be the complement. Let p(D) = Taq[n] be the image of D in Tpq and V :=
Trm \ p(D) be its complement in 7x. Then p induces a map

p:U\p ' (p(D)) = V.
We define a trace map
(29) ps  Ext?? (L, Log 4 ®ua) — Extd (L, Log g @piryy)
as the composition of the restriction to U \ p~*(p(D))
Ext?f’fl(L, Log 4 ®pa) — Extfjg\;l,l(p(D)) (L,Log 4 ®pA)

with the adjunction map

Extjg\;il(p(D))(L, Log 4 ®p1.4) — Extd (L, R9p.p* Log u @pi4).

As pa = pr @ pr,,, the projection formula gives
Rp.p* Log g = Log g @pr,,.

The composition of these maps gives the desired p. in (29). The crucial fact is
that the polylogarithm behaves well under this trace map.

PROPOSITION 3.2.1. With the notations above, let o € L[D]° and polia S

Ext?jq_l(L,LogA) be the associated polylogarithm. Denote by p(«) the image

of a under the map
p: L[D)° — Lip(D))°
induced by p : A(C) — Tpq. Then

p(D)

D
P« POlg o = POly ) -

Proof. This is a quite formal consequence of the definition and the fact that the
residue map commutes with the trace map. We use cohomological notation,

then one has a commutative diagram

H29~ (U, Log 4 ®p.4) ———  HY(A,Log, ®pua)

l l

H?9~1 (U \pil(p(D))a LOg.A ®,U'.A) _— Higl(p(p)) (Aa LOg_A ®,U'.A)

|- |7

H9~1(V,Log rq ®pry) —— HJ ) (T, Log p @uTs)-
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We can identify

H%g(.A, Log 4 ®pua) = @ o* Log 4
oceD

and

HJ ) (T, Log p @py,) = P o Logs,, -
oep(D)

With this identification the composition of the vertical arrows on the right is
induced by Log 4 — p* Logz, . The polylog polia belongs to the section o €
L[D]° ¢ @, o Log 4. This maps to p(a) € Lp(D)]® C Doepp) 0" Logr,,-

p(D) 0O

Thus pol , is mapped under p. to poly " .

We want to prove the same sort of result for the Eisenstein classes themselves.
To formulate it properly, we need:
LEMMA 3.2.2. Let g : S — Sk be the fibration from (28). Then
R9¢, Sym* H = Sym* M @ u%\[.
Proof. Recall the exact sequence
0O->N—-H->M=0

from (12). By definition of N(Z), the coinvariants of Sym* H for N(Z) are
exactly Sym” M. The lemma follows, as RYq, corresponds by definition of the
fibering exactly to the coinvariants under N(Z). O

Define a trace map

Gs Ext?;gB_l(L, Sym" H @ pa) — Extg;l(L, Sym* M @ pr.,)

by adjunction for ¢, the isomorphism R9¢g, Sym* H = Sym* M ® e - from
lemma 3.2.2 and the isomorphism 4 & 7, ® pir,,. The behaviour of Eis®(«)
under g, is given by:

THEOREM 3.2.3. Let k > 0 and o € L[D]°. Then
0. (Eishi (a) = Bisk,, (p(a)),
where p : L[D]° — L[p(D)]° is the map from 3.2.1.
Proof. Consider the following diagram in the derived category:
Rp.Logg®ua ——— Rp.ece™Log,Qua

l H

l l

Logr,, ®prul—9] —— el Logr,, @n1y,[-9]
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We will show that this diagram is commutative and thereby explain all the
maps. First consider the commutative diagram

Rp.Loga®@ua ———  Rpie.e” Log g @pua

l l

Rp.p” Logr,, ®pua ——— Rp.e.e’p” Logr, Opa,

where the horizontal arrows are induced from adjunction id — e,e® and the
vertical arrows from Log 4 — p* Logr,,. One has poe = ¢’ o ¢ and hence

* Ik

Rp.e.ep” Logr,, ®pa = €, Rq.q"e” Logr,, ®pa.
The projection formula gives
e Rq.q e Logr, ®ua = e,e” Logr, ®ua ® Rq.L.
Projection to the highest cohomology gives a commutative diagram

Rp.p* Logr,, ®ua — ele* Logr, ®ua® Rq.L
Logr,, ®pa @ py,, — ee*Logr, @ua® py,.,

where the horizontal maps are adjunction maps id — €.e’*. Finally we use 4 ®

u%\[ & 117, to obtain the commutative diagram (30). Applying Ext%,g_l(L, —)
to this diagram, where V' := Ty \ p(D) we get

Ext?jq_l(L, Log g ®pua) —— EXt?gg_l(La e” Log ®p.a)

| |o

Ext{, '(L,Logr,, ®ury,) — Exty '(L,e* Logr,, ®ury)-
Now, as k > 0, we may assume that a € L[D\e(S)]° and p(a) € Lp(D)\e'(S)]°.
The result follows then from proposition 3.2.1. (I

In a similar (but simpler) way one shows:

THEOREM 3.2.4. Let ¢ : Typy — Ty be an isogeny of tori, then ¢ induces a
morphism ¢, : e* Log, — e* Logn.y and

¢ Eist, (o) = Eist , (¢(a)).
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3.3 3. STEP: EXPLICIT DESCRIPTION OF THE POLYLOG

" for any

In this section we follow Nori [N] to describe the polylog polgM
B € L[Tp[n]\0]° explicitly. The presentation is also influenced by unpublished
notes of Beilinson and Levin.

In fact it is useful for the connection with L-functions to consider a more general
situation and to allow arbitrary fractional ideals a instead just O.

We assume L = C. The geometric situation is this: Recall that T1(Z) = O*
and let a C F be a fractional ideal with the usual T"(Z)-action. We can form

as usual the semi direct product
axTYZ),

where the multiplication is given by the formula (v,)(v',¢') = (v + v/, #t').
Similarly, we can form a @ R x T*(R) and we define

To:=axT(Z)\ (a@RxT'(R)) /KL.
We have
Tq : Ty — St

and we consider the polylog for this real torus bundle of relative dimension
g. The case Ty is the one where (&9) € T'(Z) acts via d € O* on O. Let
us describe the logarithm sheaf Logz, in this setting. As the coefficients are
L = C, we can use the isomorphism from (21)

(31) C[la] = H Sym* ac =: U(a)

k>0

v — exp(v) :

I
.

The action of (0,t) € a x T"(Z) on U(a) is induced by the action of T'(Z) on
a. The action of
(v,id) € a x TH(Z)

on U(a) is given by multiplication with exp(v). The logarithm sheaf Logr. is
just the local system defined by the quotient

a3 THZ)\ (a ®R x TH(R) x ma)) /KT

A C>-section f of Logy. is a function f:a®@R x THR) — L?(a), which has
the equivariance property

F(w,)(v', ) = (0, )T (', 1),

In a similar way, we can describe Logz, -valued currents. The global C*°-section

= (o)
exp(—0) s (v,8) = 3

k=0
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with (v,t) € a ® R x T*(R) defines a trivialization of Logs. as C*°-bundle.
Every current p(v,t) with values in Logs. can then be written in the form

w(v,t) = v(v,t) exp(—v),

where v(v,t) is now a current with values in the constant bundle Z(a). In
particular, v(v,t) is invariant under the action of a C a x T1(Z).

LEMMA 3.3.1. Let v : a®R — U(a) be the canonical inclusion given by a@R C
Sym' a ® C, then the canonical connection ¥V on Logr, acts on v by

Vv = (d—dv)r.

Proof. Straightforward computation. O

Following Nori [N] we describe the polylog as a Logz -valued current p(v,t) on
7., such that

(32) Vu(v,t) = dg,
where

g =Y lobg

oceD

and J, are the currents defined by integration over the cycles on 7, given by
the section o. If we write as above

(v, t) = v(v,t) exp(—v)
we get the equivalent condition
(33) (d—dv)v(v,t) = dg.

As v(v,t) is invariant under the a-action, we can develop v(v,t) into a Fourier
series

(34) v(v,t) = Y v,(t)e”™ ),

pEaV

The property (33) reads for the Fourier coefficients v,(t):
(35) (d 4 2midp — du)v,(t) = (e 2P} yol,

where vol is the unique constant coefficient g-form on a ® R, such that the
integral fa®R/u vol = 1 and

e~ 2mip(B) .— Z 106_2””(”).

DOCUMENTA MATHEMATICA 13 (2008) 131-159



154 Guipo KINGS

We do not explain in detail the method of Nori to solve this equation, we just
give the result. This suffices, because the cohomology class of the polylogarithm
is uniquely determined by the equation (32) and we just need to give a solution
for it.

Fix a positive definite quadratic form ¢ on a ® R, viewed as an isomorphism

q:(a®@R)Y 2axR.

Define a left action of t € T1(R) by ¢:(v,w) := q(t 'v,t " w). Consider p as
element in (a ® R)V. Then ¢(p) can be considered as a vector field and we
denote by ¢, the contraction with this vector field g;(p). We may also consider
q+(p) as element in (a) and denote this by q;(p).

THEOREM 3.3.2 (Nori). With the notations above, one has for 0 # p

9-1 )™ (e=2mip(8))

— (_1 t
)= 2 Grigta ) = @)

=0

(dow,)™vol

and
1Z0) (t) =0

Proof. Write @, for the operator multiplication by 2midp—dv and ¥, := d+®,,.
One checks that ¥, 0¥, = 0 = 1, 0, and that ¥, 04, + ¢, 0 ¥, is an
isomorphism. Indeed ®, 0 ¢, + ¢, 0 ®, is multiplication by 2mip(g:(p)) — a:(p)
and £, := do,+,0 is the Lie derivative with respect to the vector field g;(p).
The formula in the theorem is just

1po (W01, +1,0W,) e 2P ol
and to check that
W,01,0(W,01,+1,0¥,) ! =id

note that ¢,0¥, commutes with (¥,0t,+:,0¥,)~! and 1,0V ,(e =27 vol =
0. (]
COROLLARY 3.3.3. The polylogarithm polg" [n]
ization by the current

1s given in the topological real-

w(v, t) = v(v,t) exp(—v)

where v(v,t) is the current given by

g1 oo _1\ym2mwip(v—P3)
Z - a:(p)®*ep(dor,)™ vol.
k+m+1
m=0 k=0 < k pEAV\0 (27”p(Qt(p))) m
Proof. This follows from the formula m = :‘; 0 _Akffiﬂ (kzm)_ 0

DOCUMENTA MATHEMATICA 13 (2008) 131-159



DEGENERATION OF POLYLOGARITHMS ... 155

The Eisenstein classes are obtained by pull-back of this current along the zero
section e. As for k > 0 the series over the p converges absolutely, this is defined
and only terms with m = g — 1 survive. We get the following formula for the
Eisenstein classes.

COROLLARY 3.3.4. Let 8 € C[T4[n]]® and k > 0, then the topological Eisenstein
class is given by

Eisk(ﬁ) _ (k+g_ 1)' Z

k!
peaVv\0

— 9—16—27rip(ﬁ)
T o) e vl

Here, we have written £ for the Euler vector field and q:(p) is considered as a
function q(p) : ST — a @ R, which maps t to the vector g(p).

Proof. From 3.3.3 we have to compute
€*tp,(do,)" vol.

For this remark that the Lie derivative £, = d o ¢, + ¢, o d with respect to the
vector field g;(p) acts in the same way on vol as d o t,. One sees immediately
that e*1,(do,)™ vol = 0, if m < g—1 and a direct computation in coordinates
gives that ¢,(L,)9 ! vol = (g — 1)!g:(p)*1e vol. O

3.4 4. STEP: COMPUTATION OF THE INTEGRAL

To finish the proof of theorem 1.7.1 we have to compute wu. Eisk(ﬂ), where u :
Sk — pt is the structure map. As we need only to compute the corresponding
integral for the component of S} corresponding to id, we let I'r C TY(Z) be
the stabilizer of id € T(Z/nZ) and consider

wa : O\ (T (R)/KL ) — pt.

To compute the integral, we introduce coordinates on TH(R) = (F @ R)* and
on the torus 7. We identify F @ R = []_ . R and denote by e1,..., e, the
standard basis on the right hand side and by z1,...,z, the dual basis. For
any element u = ) u;e; or u =Y u;x; we write Nu := u; - - - uq. Let ¢ be the
quadratic form given by Y 2. We identify the orbit of ¢ under T1(R) with
(F ®R)% by mapping

(36) (F®R)* — T*(R)q
L gy

This map factors over (F ® R)% and the map is compatible with the T*(Z)
action on both sides. We let f1,...,¢;, be coordinates on (F ® R)! so that
t1,...,t2 are coordinates on (F @ R)!. If we write p = Y pjz; and t; := x;(t),

then
pla(p)) =D tin:
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and q(p) has coordinates tZp;. More precisely, if we let eq, ..., e, be the basis
é1,...,eq considered as elements of U (a), which identifies ¢ (a) with the power
series ring C[[e1, ..., e4]], then q;(p) = Y t?p;e;. The volume form is given by

vol = |dF|_1/2Na_1dx1 Ao Adzg
and we can write the Euler vector field as & = > x;0,,. One gets (observe that
Nt=1)
g —_
qi(p)*re vol = |dp| 229 IN () Na ™' Y (=1 gdty AL dty .. Adly.
k=1
Explicitly, the Eisenstein class is given as a current on T*(R) by

(37) Eis"(B)(t) =

(k+g—1)! 3 (=19~ e 2meB) (3 t2pse)©*
k! (2mi Y p2t2)ktg

at(p)"te vol
pEav\0

Define an isomorphism (R® F)! x R* = (R® F)* by mapping (t,r) + y := rt.
Then we get:

d d d g _
(38) ﬂ/\.../\ﬁ:—r/\Z(—l)k’ltkdtl/\...dtk.../\dtg.
u Yg L

We use this decomposition to write Eis®(3)(t) as a Mellin transform:

(39) Eis*(9)(t) =
20 a.\®k
Z (1)9_16_2””(6)/6_“(2”2p?t?)i(z tipie:) uk+gd;u A qi(p)*ie vol.

k!
peav\0 R>o

Substitute u = 72 = N(y)?/9 and use (38) to get

(40) Eis*(8)(t) =

3 (—1)g‘12"6‘2””‘5)N(p)/6_2m-zpfyf (X yipied)®"
|dr['/2Na k!

(y)dyrA. . .Adyg.

\%
p€av\0 So

The application of uiq » amounts to integration over
Pr\(TH(R)/KL) = Of) \(F @ R)Y,
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where Ofn) are the totally positive units, which are congruent to 1 modulo the
ideal generated by (n). This gives with the usual trick

(41)  uiqg « Eisk(ﬁ) =

Z (,1)9—1296—2“9([3)]\7(;))
|dp|1/2Na

peogn)\(w\o)

. 25.0, )0k
X / e 2mi X Y} X yipiei)™” ylz"e’) N(y)dys A ... Ady,g.
(FOR)%

The integral is a product of integrals for j =1,...,¢g:

®k
/e—Qmpﬁy? KC ok+2dYs _

Rk

e’

) = S
RV oy 2p5(2mipg)ht

We now consider Eis?*(3) instead of Eis*(3). If we consider e* polé7 as a
Ne®*

power series in the e; we are interested in the coefficient of =5—. In fact, the
integrallity properties of Eisgk(ﬂ) are better reflected if we write it in terms
of a basis a1,...,a, of a. Then Ne®* = Na=*Na®* where ai,...,a, denote
again the images of a1,...,a4 in Z;{(a). We get:

COROLLARY 3.4.1. With the above basis a, . . .,a,4, The integral over the Eisen-
stein class is given by

) —1)9- (kN9 e 2min(B) Na®Fk
Uid Engk(ﬂ) _ : ( ) ( ) Z - e
(27i) 9+ D) | d | 1/2 N ak+1 N(p)ktt klo

pe0\ (a7\0)

3.5 5. STEP: END OF THE PROOF

To finish the proof of the theorem 1.7.1, let a € L[A[n]]° and suppose we want
to compute res(Eis® («))(h). Using the equivariance of res o Eis® from (19), this
amounts to compute res(Eis”(ha))(id). Theorem 1.5.1 shows that

res(Eis® (ha))(id) = uiq g« Eis® (ha),

where ¢ : S — Si and wigq : FT\(TI(R)/KOTOI) — pt is the structure map of
the component corresponding to id € TY(Z/nZ). From theorem 3.2.3 we get

¢« Bis® (ha) = Eis"® (p(ha)).
Using corollary 3.4.1 for a = O and the formula 1.6.2 for b = f = O we get
(42)
(=1)9- (k"9 e—2mip(p(ha)) 1
—_ — = (-1) 1,¢(0,0,p(ho), —k),
(27) 9k +9|d | 1/2 Z N(p)+ (=1) 2;3 ¢(0,0,p(ho), —k)
pe0;,\(0V\0) 7€
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which is the formula in the main theorem 1.7.1. To prove the corollary, we use
that the map of real tori

A(C) & Ty

factors through ¢ : 7y, — T, where ¢ is induced by the inclusion b; C O.
Using corollary 3.4.1 for a = by, we get the desired formula

res(Eis? (o)) (h) = (=1)7'NoZ "1 Y " 1,¢(by, O, pji (9), —k),
oeD

which ends the proof.
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ABSTRACT. A covering of k-graphs (in the sense of Pask-Quigg-
Raeburn) induces an embedding of universal C*-algebras. We show
how to build a (k + 1)-graph whose universal algebra encodes this
embedding. More generally we show how to realise a direct limit
of k-graph algebras under embeddings induced from coverings as the
universal algebra of a (k4 1)-graph. Our main focus is on computing
the K-theory of the (k+ 1)-graph algebra from that of the component
k-graph algebras.

Examples of our construction include a realisation of the Kirchberg
algebra P,, whose K-theory is opposite to that of O,,, and a class of
AT-algebras that can naturally be regarded as higher-rank Bunce-
Deddens algebras.

2000 Mathematics Subject Classification: Primary 46L05
Keywords and Phrases: Graph algebra; k-graph; covering; K-theory;
C*-algebra

1. INTRODUCTION

A directed graph E consists of a countable collection E° of vertices, a count-
able collection E' of edges, and maps r,s : E! — EY which give the edges
their direction; the edge e points from s(e) to r(e). Following the convention
established in [30], the associated graph algebra C*(E) is the universal C*-
algebra generated by partial isometries {s. : e € E'} together with mutually
orthogonal projections {p, : v € E°} such that Ds(e) = Si8e for all e € E*,
and py > Y cp Sest for all v € E° and finite F C v~ (v), with equality when
F = r~!(v) is finite and nonempty.

Graph algebras, introduced in [13, 23], have been studied intensively in recent
years because much of the structure of C*(FE) can be deduced from elementary

*This research was supported by the Australian Research Council.
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features of E. In particular, graph C*-algebras are an excellent class of models
for Kirchberg algebras, because it is easy to tell from the graph E whether
C*(E) is simple and purely infinite [22]. Indeed, a Kirchberg algebra can be
realised up to Morita equivalence as a graph C*-algebra if and only if its K-
group is torsion-free [39]. It is also true that every AF algebra can be realised
up to Morita equivalence as a graph algebra; the desired graph is a Bratteli
diagram for the AF algebra in question (see [11] or [40]). However, this is the
full extent to which graph algebras model simple classifiable C*-algebras due
to the following dichotomy: if E is a directed graph and C*(F) is simple, then
C*(E) is either AF or purely infinite (see [22, Corollary 3.10], [2, Remark 5.6]).
Higher-rank graphs, or k-graphs, and their C*-algebras were originally devel-
oped by the first two authors [20] to provide a graphical framework for the
higher-rank Cuntz-Krieger algebras of Robertson and Steger [35]. A k-graph A
is a kind of k-dimensional graph, which one can think of as consisting of ver-
tices A together with k collections of edges A®', ..., A® which we think of as
lying in k different dimensions. As an aid to visualisation, we often distinguish
the different types of edges using k different colours.

Higher-rank graphs and their C*-algebras are generalisations of directed graphs
and their algebras. Given a directed graph F, its path category E* is a 1-graph,
and the 1-graph C*-algebra C*(E*) as defined in [20] is canonically isomorphic
to the graph algebra C*(FE) as defined in [23]. Furthermore, every 1-graph
arises this way, so the class of graph algebras and the class of 1-graph algebras
are one and the same. For k > 2, there are many k-graph algebras which do
not arise as graph algebras. For example, the original work of Robertson and
Steger on higher-rank Cuntz-Krieger algebras describes numerous 2-graphs A
for which C*(A) is a Kirchberg algebra and K7(C*(A)) contains torsion.
Recent work of Pask, Raeburn, Rgrdam and Sims has shown that one can also
realise a substantial class of AT-algebras as 2-graph algebras, and that one can
tell from the 2-graph whether or not the resulting C*-algebra is simple and
has real-rank zero [27]. The basic idea of the construction in [27] is as follows.
One takes a Bratteli diagram in which the edges are coloured red, and replaces
each vertex with a blue simple cycle (there are technical restrictions on the
relationship between the lengths of the blue cycles and the distribution of the
red edges joining them, but this is the gist of the construction). The resulting
2-graph is called a rank-2 Bratteli diagram. The associated C*-algebra is AT
because the C*-algebra of a simple cycle of length n is isomorphic to M, (C(T))
[17]. The results of [27] show how to read off from a rank-2 Bratteli diagram the
K-theory, simplicity or otherwise, and real-rank of the resulting AT algebra.
The construction explored in the current paper is motivated by the following
example of a rank-2 Bratteli diagram. For each n € N, let Lo be the sim-
ple directed loop graph with 2" vertices labelled 0,...,2" — 1 and 2" edges
fos--., fan_1, where f; is directed from the vertex labelled ¢ + 1 (mod 2™) to
the vertex labelled i. We specify a rank-2 Bratteli diagram A(2°°) as follows.
The n't level of A(2%°) consists of a single blue copy of Lon-1 (n = 1,2,---).
For 0 <1¢ < 2™ — 1, there is a single red edge from the vertex labelled ¢ at the
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(n+1)%t level to the vertex labelled i (mod 2") at the n*® level. The C*-algebra
of the resulting 2-graph is Morita equivalent to the Bunce-Deddens algebra of
type 2°°, and this was one of the first examples of a 2-graph algebra which is
simple but neither purely infinite nor AF (see [27, Example 6.7]).

The purpose of this paper is to explore the observation that the growing blue
cycles in A(2%°) can be thought of as a tower of coverings of 1-graphs (roughly
speaking, a covering is a locally bijective surjection — see Definition 2.1), where
the red edges connecting levels indicate the covering maps.

In Section 2, we describe how to construct (k + 1)-graphs from coverings. In
its simplest form, our construction takes k-graphs A and I" and a covering map
p: T — A, and produces a (k + 1)-graph AT in which each edge in the
(k+ 1) dimension points from a vertex v of I to the vertex p(v) of A which it
covers'. Building on this construction, we show how to take an infinite tower
of coverings p, : Apy1 — Ay, n = 1,2,... and construct from it an infinite
(k + 1)-graph lim(A,, p,) with a natural inductive structure (Corollary 2.11).
The next step,:chieved in Section 3, is to determine how the universal C*-
algebra of ALT relates to those of A and I. We show that C*(ALT) is
Morita equivalent to C*(T") and contains an isomorphic copy of C*(A) (Propo-
sition 3.2). We then show that given a system of coverings p, : Apy1 — Ay,
the C*-algebra C*(lim(A,,p,)) is Morita equivalent to a direct limit of the
C*(Ay,) (Theorem 33).

In Section 4, we use results of [34] to characterise simplicity of C*(lim(Ay,, py)),
and we also give a sufficient condition for this C*-algebra to be pu?ely infinite.
In Section 5, we show how various existing methods of computing the K-theory
of the C*(A,,) can be used to compute the K-theory of C*(lim(A,,p,)). Our
results boil down to checking that each of the existing K —theoﬁy computations
for the C*(A,) is natural in the appropriate sense. Given that K-theory for
higher-rank graph C*-algebras has proven quite difficult to compute in general
(see [14]), our K-theory computations are an important outcome of the paper.
We conclude in Section 6 by exploring some detailed examples which illustrate
the covering-system construction, and show how to apply our K-theory calcula-
tions to the resulting higher-rank graph C*-algebras. For integers 3 < n < oo,
we obtain a 3-graph algebra realisation of Kirchberg algebra P,, whose K-theory
is opposite to that of O,, (see Section 6.3). We also obtain, using 3-graphs, a
class of simple AT-algebras with real-rank zero which cannot be obtained from
the rank-2 Bratteli diagram construction of [27] (see Section 6.4), and which
we can describe in a natural fashion as higher-rank analogues of the Bunce-
Deddens algebras. These are, to our knowledge, the first explicit computations
of K-theory for infinite classes of 3-graph algebras.

In its full generality, our construction is more complicated (see Proposition 2.14), enabling
us to recover the important example of the irrational rotation algebras discussed in [27]. To
keep technical detail in this introduction to a minimum, we discuss only the basic construction
here.
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2. COVERING SYSTEMS OF k-GRAPHS

For k-graphs we adopt the conventions of [20, 25, 31]; briefly, a k-graph is a
countable small category A equipped with a functor d : A — N* satisfying the
factorisation property: for all A € A and m,n € N¥ such that d(\) = m +n
there exist unique p,v € A such that d(p) = m, d(v) = n, and A = pr. When
d(X\) = n we say A has degree n. By abuse of notation, we will use d to denote
the degree functor in every k-graph in this paper; the domain of d is always
clear from context.

The standard generators of N* are denoted ey, ..., e, and for n € N* and
1 < i < k we write n; for the it" coordinate of n.

If A is a k-graph, the vertices are the morphisms of degree 0. The factorisation
property implies that these are precisely the identity morphisms, and so can
be identified with the objects. For a € A, the source s(«) is the domain of «,
and the range r(«) is the codomain of « (strictly speaking, s(a) and r(«) are
the identity morphisms associated to the domain and codomain of «).

For n € N¥, we write A" for d~*(n). In particular, A is the vertex set. For
u,v € A and E C A, we write uE := ENr~!(u) and Ev := ENs 1(v). For
n € N¥, we write

AS" = {X € A:d(\) < n,s(\)A® = ) whenever d(\) +e; < n}.

We say that A is connected if the equivalence relation on A® generated by
{(v,w) € A° x A° : vAw # (0} is the whole of A® x A°. A morphism between
k-graphs is a degree-preserving functor.

We say that A is row-finite if vA™ is finite for all v € A and n € N*. We
say that A is locally convex if whenever 1 < i < j <k, e € A%, f € A% and
r(e) = r(f), we can extend both e and f to paths ee’ and ff’ in A% T,

We next introduce the notion of a covering of one k-graph by another. For a
more detailed treatment of coverings of k-graphs, see [25].

DEFINITION 2.1. A covering of a k-graph A is a surjective k-graph morphism
p: T — A such that for all v € T'°, p maps I'v 1-1 onto Ap(v) and vI" 1-1 onto
p(v)A. A covering p: ' — A is connected if T', and hence also A, is connected.
A covering p: T' — A is finite if p~1(v) is finite for all v € A°.

Remarks 2.2. (1) A covering p : I' — A has the unique path lifting property:
for every A € A and v € T'? with p(v) = s(\) there exists a unique v such
that p(y) = A and s(y) = v; likewise, if p(v) = r(A) there is a unique ¢ such
that p({) = A and r(¢) = v.

(2) If A is connected then surjectivity of p is implied by the unique path-lifting
property.

DOCUMENTA MATHEMATICA 13 (2008) 161-205



C*-ALGEBRAS ASSOCIATED TO COVERINGS OF k-GRAPHS 165

(3) If there is a fixed integer n such that [p~!(v)| = n for all v € A, p is said to
be an n-fold covering. If T' is connected, then p is automatically an n-fold
covering for some n.

Notation 2.3. For m € N\ {0}, we write S, for the group of permutations of
theset {1,...,m}. We denote both composition of permutations in S,,, and the
action of a permutation in Sy, on an element of {1,...,m} by juxtaposition;
so for ¢,¢ € S, ¢y € S, is the permutation ¢ o ¢, and for ¢ € S, and
je{l,...,m}, ¢j € {1,...,m} is the image of j under ¢. When convenient,
we regard Sy, as (the morphisms of) a category with a single object.

DEFINITION 2.4. Fix k,m € N\ {0}, and let A be a k-graph. A cocycle
s: A — S, is a functor A — s()) from the category A to the category S,.
That is, whenever «, § € A satisfy s(a) = () we have s(«a)s(08) = s(af).

We are now ready to describe the data needed for our construction.

DEFINITION 2.5. A covering system of k-graphs is a quintuple (A,T',p,m,s)
where A and T' are k-graphs, p: A — T" is a covering, m is a nonzero positive
integer, and s : I' — S, is a cocycle. We say that the covering system is row
finite if the covering map p is finite and both A and I' are row finite. When
m = 1 and s is the identity cocycle, we drop references to m and s altogether,
and say that (A,T',p) is a covering system of k-graphs.

Given a covering system (A,T',p,m,s) of k-graphs, we will define a (k + 1)-
graph AT which encodes the covering map. Before the formal statement
of this construction, we give an intuitive description of AT, The idea is
that AZ°T" is a (k + 1)-graph containing disjoint copies #(A) and 7(I') of the
k-graphs A and T in the first k¥ dimensions. The image j(v) of a vertex v € T is
connected to the image «(p(v)) of the vertex it covers in A by m parallel edges
e(v,1),...,e(v,m) of degree eyy;. Factorisations of paths in AT involving
edges e(v, 1) of degree ey41 are determined by the unique path-lifting property
and the cocycle s.

It may be helpful on the first reading to consider the case where m = 1 so
that s is necessarily trivial. To state the result formally, we first establish some
notation.

Notation 2.6. Fix k > 0. For n € N* we denote by (n,01) the element
Zle nie; € NF¥*l and for m € N, we denote by (0x,m) the element
megr1 € NFHL We write (N*,0;) for {(n,01) : n € N*} and (0x, N) for
{(0g,m) : m € N}.

Given a (k 4 1)-graph Z, we write 2N for {¢ € = : d(¢) € (0, N)}, and
we write 2N"01) for {¢€ € 2 :d(&) € (N*,0;)}. When convenient, we re-
gard Z(0N) a5 a 1-graph and EN"01) a5 4 k-graph, ignoring the distinctions
between N and (0x, N) and between N* and (N¥,0,).

PROPOSITION 2.7. Let (A,T',p,m,s) be a covering system of k-graphs. There

is a unique (k4 1)-graph AT such that:
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(1) there are injective functors 1 : A — AT and 7 : T — AT such that
d((a)) = (d(@),01) and d(3(B)) = (d(B),01) for allaw € A and B € T;

2) 1(A) N y(T) =0 and u(A) U (D) = {r € AL : d(7)p41 = 0};

3) there is a bijection e : TO x {1,...,m} — (AZSD)ex+1;

4) s(e(v,1)) = 3(v) and r(e(v,1)) = 2(p(v)) for allv € T° and 1 <1 < m; and

5) e(r(A),1)s(\) = 1(p(A)e(s(N\),5(A\) ") for all \ €T and 1 <1 < m.

If the covering system (A,T',p,m,s) is row finite, then AZT s row finite.
Moreover, A is locally convez if and only if T is locally convez, and in this case
AT s also locally convex.

Notation 2.8. If m = 1 so that s is necessarily trivial, we drop all reference
to 5. We denote A2 by ALT, and write (ALL)+1 = {e(v) : v € T°}. In
this case, the factorisation property is determined by the unique path-lifting
property alone.

The main ingredient in the proof of Proposition 2.7 is the following fact from
[15, Remark 2.3] (see also [31, Section 2]).

LEMMA 2.9. Let Ey,...,E; be 1-graphs with the same vertex set E°. For
distinct i, € {1,...,k}, let B;ij = {(e,f) € Ef x Ej : s(e) = r(f)}, and
write v((e, f)) =r(e) and s((e, f)) = s(f). For distinct h,i,j € {1,...,k}, let
Enij:={(e, f,9) € E}, x B} x Ejl (e, f) € B, (f.9) € Eij}.

Suppose we have bijections 0, ; : E; ; — E;; such thatro6;; =r, s0b,; = s
and 0; ; 0 0;; = id, and such that

(2.1) (97;7j X ld)(ld Xeh,j)(eh,i X ld) = (ld xHh,i)(G;LJ X ld)(ld ><9i7j)

as bijections from Ep;; to Ej;p.

Then there is a unique k-graph A such that A® = E°, A% = E} for 1 <i <k,
and for distinct i,5 € {1,...,k} and (e, f) € E; ;, the pair (f',e') € E;,; such
that (f',e') = 0; (e, f) satisfies ef = f'e’ as morphisms in A.

Remark 2.10. Every k-graph arises in this way: Given a k-graph A, let E? :=
A% and E}! := A% for 1 < i < k, and define r,s : E} — EY by restriction
of the range and source maps in A. Define bijections 0;; : E;; — FEj;; via
the factorisation property: 6; ;(e, f) is equal to the unique pair (f’,¢') € E;;
such that ef = f’¢’ in A. Then condition (2.1) holds by the associativity of
the category A, and the uniqueness assertion of Lemma 2.9 implies that A is
isomorphic to the k-graph obtained from the F; and the 0; ; using Lemma 2.9.

Lemma 2.9 tells us how to describe a k-graph pictorially. As in [31, 27], the
skeleton of a k-graph A is the directed graph Ex with vertices ES = A°, edges
E} = Ule A% range and source maps inherited from A, and edges of different
degrees in A distinguished using k different colours in E: in this paper, we
will often refer to edges of degree e; as “blue” and edges of degree e, as “red.”
Lemma 2.9 implies that the skeleton Fj together with the factorisation rules
fg =g f where f, f' € A% and g,g’ € A% completely specify A. In practise,
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we draw F, using solid, dashed and dotted edges to distinguish the different
colours, and list the factorisation rules separately.

Proof of Proposition 2.7. The idea is to apply Lemma 2.9 to obtain the (k+1)-
graph AZT. We first define sets E° and El1 for 1 <i<k+1. As a set, E°
is a copy of the disjoint union A? LITY. We denote the copy of A in E? by
{1(v) : v € A°} and the copy of T'” in E° by {(w) : w € I’} where as yet the
1(v) and j(w) are purely formal symbols. So

E° = {1(v) v € A%} U {H(w) : w € TV},
For 1 <i < k, we define, in a similar fashion,
Bf ={uf): feA“}U{)(9) 1 g €T}

to be a copy of the disjoint union A% LI T'¢. We define E,i_H to be a copy
of I x {1,...,m} which is disjoint from E® and each of the other E}, and
use formal symbols {e(v,l) : v € T° 1 < I < m} to denote its elements.
For 1 < i < k, define range and source maps r,s : E} — E° by 7(2(f)) =
u(r(f)), s(f)) = u(s(f)), r(s(9)) == s(r(g)) and s(5(9)) := (s(g)). Define
r,s: Bl — E° as in Proposition 2.7(4).

For distinct ¢,j € {1,...,k+ 1}, define E; ; as in Lemma 2.9. Define bijections
Gi,j : Ei,j — Ej,i as follows:

o For 1 < 4,5 < k and (e, f) € E;;, we must have either e = 2(a) and
f = 1(b) for some composable pair (a,b) € A% x o A%, or else e = j(a)
and f = j(b) for some composable pair (a,b) € I'* xpo 3I'%. If e = 1(a)
and f = 1(b), the factorisation property in A yields a unique pair &’ € A%,
a’ € A% such that ab = b'a’, and we then define 0; ;(e, f) = (2(b'),1(a’)). If
e = j(a) and f = 5(b), we define 0; ;(e, f) similarly using the factorisation
property in I'.

e For 1 < i < k, and (e,f) € Eky14, we have f = 3(b) and e =
e(r(b),l) for some b € I'“ and 1 < | < m. Define Opy1,(e, f) =
((p(b)), e(s(f),s(f) 1))

o For 1 <i <k, to define 0; 41, first note that if (f,e’) = Ox41,i(e, f), then
e = e(w,l) for some w € I'” and I € {1,...,m} such that p(w) = s(f’),
f is the unique lift of f’ such that s(f) = j(w), and e = e(r(f),s(f)]). It
follows that 641, is a bijection and we may define 0; ;41 := H;ilji.

Since A and I' are k-graphs, the maps 6;;, 1 < 4,7 < k are bijections with
0;; = 9;}, and we have 8; ;11 = 9,;_&171. by definition, so to invoke Lemma 2.9,
we just need to establish equation (2.1).

Equation (2.1) holds when h,i,j < k because A and I' are both k-graphs.
Suppose one of h,i,j = k+ 1. Fix edges f, € E}, fi € E} and f; € Ej. First
suppose that h = k + 1; so fi = e(r(f;),1) for some [, and f; and f; both
belong to j(T'). Apply the factorisation property for I' to obtain f; and f] such
that f/ € B}, fj € Ej and fif] = fif;. We then have 0; ;(fi, f;) = (f}, i)

If we write p for the map from {3(f): f € Ule e} to {o(f): f € Ule Aci}
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given by p(3(A)) := 1(p(N\)), then the properties of the covering map imply that
0i5(0(f:),p(f3)) = ((f}), B(f:)). Now
(0,5 x id)(id XOp ;) (On,i x id)(fn, fi, [;)
= (05, x id)(id x0p5) (B(fi), e(s(f:),5(fi) 1), ;)
= (05,5 x 1d)(B(f), B(f;), e(s(f7),s(f) " (5(f:)7H1D))
(2.2) = (B(f)):b(f]), e(s(fy). s(fif;) D),
where, in the last equality, s(f;) " s(fi)~* = s(fif;)~" by the cocycle property.
On the other hand,
(id x0h,:) (On,; x id)(id X ;)(fn, fi; f5)

= (id x0n:)(0n,; x id)(fn, £, fi)

= (id x0n0) (B(f), e(s(f), s(f) D). f7)

= (B(f))B(f))s e(s(fi),s(f)) " H(s(F)710)))

= (B(f7), B(f7), e(s(fo), s(f7.£))1D)).
Since fif; = fifj, this establishes (2.1) when h = k + 1 and 1 < 4,5 < k.
Similar calculations establish (2.1) when ¢ = k + 1 and when j =k + 1.
By Lemma 2.9, there is a unique (k + 1)-graph AT with (A&F)O = E°,
(Apﬁ’sl“)ei = E} for all i and with commuting squares determined by the 6; ;.
Since the 0; ;, 1 <14, j < k agree with the factorisation properties in I' and A,
the uniqueness assertion of Lemma 2.9 applied to paths consisting of edges in
E{ U---U E} shows that ¢ and 7 extend uniquely to injective functors from A
and T to (A&I‘)(Nk’ol) which satisfy Proposition 2.7(2). Assertions (3) and (4)
of Proposition 2.7 follow from the definition of E} 41, and the last assertion (5)
is established by factorising A into edges from the E}, 1 < i < k and then
performing calculations like (2.2).
Now suppose that p is finite. Then I is row-finite if and only if A is, and in this
case, AZET is also row-finite because p is locally bijective and m < oo. That p
is locally bijective shows that A is locally convex if and only if T is. Suppose
that T is locally convex. Fix 1 <i < j <k+1,a € (AYT)% and b € (AXT)
with r(a) = 7(b). If j < k+ 1 then a and b can be extended to paths of degree
e; + e; because A and I' are locally convex. If j = k + 1, then b = e(v,1) for
some v € I'? and 1 <1 < m. Let a’ be the lift of a such that r(a’) = s(v), then
ae(s(a’),l) and ba’ extend a and b to paths of degree e; + e;. It follows that

ALY is locally convex. d

COROLLARY 2.11. Fiz N > 2 in NU{oo}. Let (An,AnH,pn,mn,sn)ﬁy:_ll be a
sequence of covering systems of k-graphs. Then there is a unique (k+1)-graph A
such that A% = |_|7];]=1 A forl <i <k, A+ = Ug;ll(Anp@"AnH)ekﬂ, and
such that range, source and composition are all inherited from the Anp”ﬁ’s”AnH.
If each (A, Api1, Pr, Min, Sn) is row-finite then A is row-finite. If each A, is
locally convex, so is A, and if each A, is connected, so is A.
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Proof. For the first part we just apply Lemma 2.9; the hypotheses follow
automatically from the observation that if h,i,j are distinct elements of
{1,...,k+ 1} then each path of degree e, + ¢; + ¢; lies in some Anp"és"A,H_l,
and these are all (k + 1)-graphs by Proposition 2.7.

The arguments for row-finiteness, local convexity and connectedness are the
same as those in Proposition 2.7. g

Notation 2.12. When N is finite, the (k+1)-graph A of the previous lemma will
henceforth be denoted Alpﬁl .- -prﬁNflAN. If N = oo, we instead denote

A by lim(Ay; pn, 5n)-

2.1. MATRICES OF COVERING SYSTEMS. In this subsection, we generalise our
construction to allow for a different covering system (A;,T';, p; ;,mi j,8; ;) for
each pair of connected components A; C A and I'; C I The objective is to
recover the example of the irrational rotation algebras [27, Example 6.5].

DEFINITION 2.13. Fix nonnegative integers cp,cr € N\ {0}. A matriz of
covering systems (Aj, Ti,mi j,pi g, i )i =) consists of:
(1) k-graphs A and T" which decompose into connected components A =

I_lj:I,M,CA A; and F = I-li:l,m,cr L'i;
(2) a matrix (m; ;)% € My ¢, (N) with no zero rows or columns; and

i,j=1
(3) for each 4, j such that m; ; # 0, a covering system (A;,T';, pi j, M j,8i,;) of
k-graphs.
PROPOSITION 2.14. Fiz nonnegative integers cp,cr € N\ {0} and a matriz of
covering systems (Aj,Ti,mi j,pij,5ij)i =1 Then there is a unique (k + 1)-
graph
s
(LAy)~=(UTs)

such that

s Okl 032560 e
((LA)E(LT)) ™ = Ly (0" e,

each ((|_|Aj)p%5(|_|I‘i))el for 1 <1<k is equal to A UT® and the commuting
squares are inherited from the Aqu"jési’jf‘i.

If each (Ai, T, pi 5, mij,5:5) is row finite then (UAJ)&(UR) is Trow finite.
If A and T are locally convez, so is (|_|Aj)]£(|_|l’i).

Proof. We apply Lemma 2.9; since the commuting squares are inherited from
the Aqu"jésq"jfi, they satisfy the associativity condition (2.1) because each
Aqu"jési’jf‘i is a (k + 1)-graph. O

COROLLARY 2.15. Fiz N > 2 in NU{oo}. Let (c,)N_; € N\ {0} be a sequence
of positive integers. For 1 <n < N, let (A"’j’A"H’i’p?,jvm%ﬁﬁj)g:}gfc" be a
matriz of covering systems. Then there exists a unique (k + 1)-graph A such
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that
A =Un U AS S for1 < i<k,

N1 . R ;
AR+ — Un=1 ((l_lj=1 An,j) 2 (Ll::{l An+1,i))6k+1;

and the range, source and composition functions are all inherited from the

(k +1)-graphs (LJ5=y Ang)"~ (L3 Angri)-

If each (Amj,An+1,i,p2j,m§fj,5§fj) is row finite, then A is row finite. If each

A, is locally convex, so is A.

Ezample 2.16 (The Irrational Rotation algebras). Fix 6 € [0,1] \ Q. Let

[a1,az,...] be the simple continued fraction expansion of 8. For each n, let
cn = 2, let ¢, = (“1" é), and let m™ := (ij)zz,j:I be the matrix product

GT(n+1)** OT(m)+1 where T(n) := n(n + 1)/2 is the n'™ triangular number.
Of all the integers m;'; obtained this way, only miQ is equal to zero, so the
matrices m" have no zero rows or columns. Whenever mj’; # 0, let s7'; be the
permutation of the set {1,...,m } given by 57, =1+ 1if 1 <1 <m7;, and
sijmi; = 1.

Let Ay, n € N\ {0}, i = 1,2 be mutually disjoint copies of the 1-
graph T7; whose skeleton consists of a single vertex and a single directed
edge. For each n, let A, be the 1-graph A, ; U A, 2 so that for each n,

(Anjs Ang1is DF m?,jvﬁ?,j)zz,j:l is a matrix of covering systems.

7/ % /7 %
\ \ 7

7N
\

7/ %
\ 7

FIGURE 1. A tower of coverings with multiplicities

Modulo relabelling the generators of N2, the 2-graph @ (U;il Anji iy 5%)
obtained from this data as in Corollary 2.15 is precisely the rank-2 Bratteli
diagram of [27, Example 6.5] whose C*-algebra is Morita equivalent to the
irrational rotation algebra Ag. Figure 1 is an illustration of its skeleton (parallel
edges drawn as a single edge with a label indicating the multiplicity). The
factorisation rules are all of the form fg = o(g)f’ where f and f’ are the
dashed loops at either end of a solid edge in the diagram, and o is a transitive
permutation of the set of edges with the same range and source as g.

More generally, Section 7 of [27] considers in some detail the structure of the
C*-algebras associated to rank-2 Bratteli diagrams with length-1 cycles. All
such rank-2 Bratteli diagrams can be recovered as above from Corollary 2.15.
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3. C*-ALGEBRAS ASSOCIATED TO COVERING SYSTEMS OF k-GRAPHS

In this section, we describe how a covering system (A,T',p, m,s) induces an
inclusion of C*-algebras C*(A) — M,,(C*(T")) and hence a homomorphism of
K-groups K,(C*(A)) — K.(C*(T')). The main result of the section is The-
orem 3.8 which shows how to use these maps to compute the K-theory of
C*(im(Ay; pn,S,)) from the data in a sequence (Ap, Apt1,Pny M, S5 )00, of
coveElg systems.

The following definition of the Cuntz-Krieger algebra of a row-finite locally
convex k-graph A is taken from [31, Definition 3.3].

Given a row-finite, locally convex k-graph (A, d), a Cuntz-Krieger A-family is
a collection {t) : A € A} of partial isometries satisfying

(CK1) {t, : v € A%} is a collection of mutually orthogonal projections;

(CK2) txt, = ta, whenever s(\) = r(p);

(CK3) titx =ty for all A € A; and

(CK4) ty, =Y \conzn tat} for all v € A” and n € N*.

The Cuntz-Krieger algebra C*(A) is the C*-algebra generated by a Cuntz-
Krieger A-family {s) : A\ € A} which is universal in the sense that for every
Cuntz-Krieger A-family {¢, : A € A} there is a unique homomorphism m; of
C*(A) satisfying m:(sy) = ¢y for all A € A.

Remarks 3.1. If A has no sources (that is vA™ # () for all v € A and n € N¥),
then A is automatically locally convex, and the definition of C*(A) given above
reduces to the original definition [20, Definition 1.5].

By [31, Theorem 3.15] there is a Cuntz-Krieger A-family {¢x : A € A} such that
tx # 0 for all A € A. The universal property of C*(A) therefore implies that
the generating partial isometries {sy : A € A} C C*(A) are all nonzero.

Let = be a k-graph. The universal property of C*(E) gives rise to an action ~
of T* on C*(Z), called the gauge-action (see, for example [31, §4.1]), such that
72 (s¢) = 24 s¢ for all z € T* and € € =.

PROPOSITION 3.2. Let (A,T',p,m,s) be a row-finite covering system of locally
conver k-graphs. Let yo and yr denote the gauge actions of TF on C*(A) and

C*(T'), and let y denote the gauge action of T*T! on C*(Apﬁ’sl“).
(1) The inclusions 1 : A — AZT and 3 : T — AZT induce embeddings of C*(A)
and C*(T) in C*(ART) characterised by
14:(8a) = 8y(a) and J.(sg) = sy3) fora € A and T
(2) The sum ZvG](FO) s, converges in the strict topology to a full projection

Q € M(C*(ARE)), and the range of 7. is QC*(AZT)Q.
3) For1<i<m, the sum 0 Se(v.i) converges strictly to a partial isome-
vell (v,1)

try V; € M(C*(AR2T)). The sum 2 veu(a0) Svs converges strictly to the full
projection P := 1" V;V* € M(C*(ARETY)). Moreover, 1, is a nondegen-
erate homomorphism into PC*(AY2T)P.
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(4) There is an isomorphism ¢ : M,,(C*(T)) — PC*(AYT)P such that

m

¢((a1] i,j= 1 Z Vigs az]

(5) There is an embedding i, s : C*(A) — Mp,(C*(T)) such that ¢ o iy s = 1.
The embedding 1, is equivariant in ya and the action id, @yr of TF on
M, (C*(T)) by coordinate-wise application of yr.

(6) If we identify K.(C*(T")) with K.(M,(C*(T'))), then the induced homo-
morphism (ip.s)« may be viewed as a map from K.(C*(A)) — K. (C*(T)).
When applied to Ky-classes of vertex projections, this map satisfies

(tpo)e([s0]) = D m - [su] € Ko(C™(T)).
p(u)=v
The proofs of the last three statements require the following general Lemma.
This is surely well-known but we include it for completeness.

LEMMA 3.3. Let A be a C*-algebra, let ¢ € M(A) be a projection, and suppose
that v1,...,v, € M(A) satisfy viv; = 0;;q for 1 < i,5 < n. Then p =
St vivf is a projection and pAp = M, (qAq).

Proof. That viv; = §; jq implies that the v; are partial isometries with mutually
orthogonal range projections v;vf. Hence p is a projection in M(A). Define
a map ¢ from pAp to M, (qAq) as follows: for a € pAp and 1 < i,5 < n, let
a; j = v;avj, and define ¢(a) to be the matrix ¢(a) = (ai ;)7 ;—;-

It is straightforward to check using the properties of the v; that ¢ is a
C*-homomorphism. It is an isomorphism because the homomorphism ¢ :

M, (gAq) — pAp defined by

n
w((ai,j):-fj:l) = Z via;v; € qAq
i,j=1
is an inverse for ¢. O
Proof of Proposition 3.2. (1) The collection {s,»y : A € A} forms a Cuntz-
Krieger A-family in C*(A%T), and so by the universal property of C*(A) in-
duces a homomorphism ¢, : C*(A) — C*(AYET). For z € TF, write (z,1) for
the element (z1,..., 2z, 1) € TF¥*1. Recall that v denotes the gauge action of
T+ on C*(AYT). Then the action z — 7(, 1) of T® on C*(ART) satisfies

ue((a)=(a)) = (=) (1(a)

for all @ € C*(A) and z € T*. Since w.(s,) = s,,) # 0 for all v € A it
follows from the gauge-invariant uniqueness theorem [20, Theorem 2.1] that 1,
is injective. A similar argument applies to ..

(2) As the projections s, v € 3(I'°) are mutually orthogonal, a standard argu-
ment shows that the sum Z@E](Fo) Sy converges to a projection @ in the mul-

tiplier algebra (see [30, Lemma 2.1]). The range of j, is equal to QC*(AYT)Q
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because J(D0)(AR0))(I9) = 4(I'). To see that Q is full, it suffices to show
that every generator of C* (Apﬁ’sl“) belongs to the ideal I(Q) generated by Q.
So let o € AR, Either s(a) € 3(I'°) or s(a) € o(A°). If s(a) € 5(I'°), then
50 = 8aQ € I(Q). On the other hand, if s(a) € 2(A°), the Cuntz-Krieger
relation ensures that

Sa = D p(w)=s(a) >t SaSe(w,i) @S¢ (w i)

which also belongs to I(Q).

(3) For fixed 4, the partial isometries s(, ;) have mutually orthogonal range
projections and mutually orthogonal source projections. Hence an argument
similar that of [30, Lemma 2.1] shows that ) o Se(v,i) converges strictly to a
multiplier V; € M(C*(A%°T)). A simple calculation shows that V;*V; = &; ;Q
for all 4, j. Hence each V; is a partial isometry, and P is full because @ is full.
The homomorphism 2, is nondegenerate because the net

(1 (Soers)

converges strictly to P € M(C*(AYTD)).

(4) This follows directly from Part (3) and Lemma 3.3.

(5) We define ¢p ¢ := ¢~ 1o1,. For the gauge-equivariance, recall that 1, (respec-
tively 7.) are equivariant in | 1) and yo (respectively yr). By definition, ¢
is equivariant in (id ®7) and y(» 1) © J«. The equivariance of ¢, s follows.

(6) By (CK4), for v € A® we have s,(,) = Zfey(ApéﬁF)eHl sf8%, so the Ko-

We can write v(AZST)+1 as the

FCA finite

class [s,()] is equal to Zer(A{’*_ﬁr)ekﬂ [sfs7]-
disjoint union
v(AZED)er+t = |_| {e(u,7) : 1 < i< m}.
p(u)=v
In Ko(C*(A%T)), we have [Seu,i)Sequiy) = [55uiySen] = [8;w)]; and the
result follows. 0

Notation 3.4. As in Notation 2.8, when m = 1 so that s is trivial, we continue
to drop references to s at the level of C*-algebras. So Proposition 3.2(5) gives
an inclusion ¢, : C*(A) — C*(I') and the induced homomorphism of K-groups
obtained from Proposition 3.2(6) is denoted (¢p)« : K. (C*(A)) — K. (C*(I)).
This homomorphism satisfies

(tp)e([s0]) = D [sul.
p(u)=v

When no confusion is likely to occur, we will suppress the maps ¢, 7, 2. and ),
and regard A and I as subsets of A% and C*(A) and C*(T") as C*-subalgebras
of C*(AZED).

Remark 3.5. (1) The isomorphism ¢ of Proposition 3.2(4) extends to an iso-
morphism ¢ : M, 1(C*(T')) — C*(AYET) which takes the block diagonal
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%T:;: 0,,:;1 ) to g«(a). To see this, let V..., V,, be as in Proposi-
tion 2.7(3), let V41 = Q, and apply Lemma 3.3.

(2) If m = 1 then ¢ is an isomorphism of C*(T") onto PC*(ALT)P, and 4, :
C*(A) — C*(T") satisfies

matrix (

tp(S2) = 225 (5)=x Sx-

Fix N > 2 in N. Let (An,An_H,pn,77%,5”)2[:_11 be a sequence of row-finite
covering systems of locally convex k-graphs. Recall that in Corollary 2.11 we
obtained from such data a (k + 1)-graph AP 'prﬁNflAN, which for
convenience we will denote A (the subscript is unnecessary here, but will be
needed in Proposition 3.7). We now examine the structure of C*(Ay) using
Proposition 3.2.

PRrROPOSITION 3.6. Continue with the notation established in the previous para-
graph. For each v € A%, list A%e’““v as {a(v,3) : 1 < i < M} where

M=mimsg---mpn_1.

(1) For 1 < n < N, the sum ZveAg{ s, converges strictly to a full projection
P, € M(C*(An)).

(2) For1<i< M, the sum ZUEA[])\, Sa(v,i) converges strictly to a partial isom-
etry V; € M(C*(An)) such that V;*V; = Py.

(3) We have sz\i1 ViV* = P1, and there is an isomorphism

¢ My (C*(AN)) — PIC*(AN)Py
such that (gﬁ((ai,j)%:l) = 2%:1 Viai ; V.
Proof. Calculations like those in parts (2) and (3) of Proposition 3.2 show
that the sums defining the P, and the V; converge in the multiplier algebra of
C*(An) and that each P, is full.

Since distinct paths in A%e’““ have orthogonal range projections and since
paths in A%e’““ with distinct sources have orthogonal source projections, each
ViV, = Py, and 0 V;V* = Py.

One checks as in Proposition 3.2(1) that the inclusions #, : A, — Ay induce
inclusions (¢,)« : C*(A,) — P,C*(An)P,, and in particular that (i¢n)s :
C*(An) — PyC*(An)Pn is an isomorphism. The final statement follows
from Lemma 3.3. |

We now describe the inclusions of the corners determined by P; as N increases.
To do this, we first need some notation. Given a C*-algebra A, and positive
integers m, n, we denote by mp, n ®ida : My, (Mp(A)) — Mpn(A) the canonical
isomorphism which takes the matrix a = ((ai,j7jf,i1)?7j,=1)z,:1 to the matrix

7(a) satisfying

(@) jin(i-1).jran(e—1) = @i g for 1 <iyi <m, 1<j,5" <n.
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Given C*-algebras A and B, a positive integer m, and a C*-homomorphism
Y A— B, we write id,, ® : My, (A) — M,,(B) for the C*-homomorphism

(idm @) ((ai,4)7%=1) = (w(am))zlj‘:r

Finally, given a matrix algebra M,,(A) over a C*-algebra A, and given 1 <
i, <m and a € A, we write 6, ;a for the matrix

(9 ) a ifj=idiandj =17
i Q) g 50 =
B 0 otherwise.

PROPOSITION 3.7. Fir N > 2 in N. Let (A, Api1,Dn,Mn,5,)0_ be
a sequence of row-finite covering systems of locally convex k-graphs. We
view the (k + 1)-graph Ay = APEE PNV TN G as a subcategory of
Aniy = AP ~m§NAN+1 and likewise regard C*(An) as a C*-subalgebra
of C*(AN41). In particular, we view Py = ZUGA? Sy, as a projection in both
M(C*(AN)) and M(C*(An+1)).

Let M := mima...mpy—1, and let ¢n : My (C*(An)) — PL(C*(AN)P1 and
ONt+1 2 Mapmy (C*(Ant1)) — PiC*(An41)P1 be the isomorphisms obtained
from Proposition 3.6. Then the following diagram commutes.

C
Plc*(AN)Pl C — PlC*(AN+1)P1
ON ON+1
(WM,m 29 idc* ANas )O (ldM Qlpy, )
My (C*(An)) il Aver) PN Myt (C*(Ans1))
Proof. As in Proposition 3.6, write A%e’““ = {a(v,i) : v € A,i €

{1,---,M}}. Fori=1,...,M, let V; := ZveA(;vsa(v,i)- For j = 1,...,mp,

let
M

Wit= ) ) Sa(w(w).iSe(w)-

weAY,, =1

For (i, j) in the cartesian product {1,..., M} x{1,...,mn}, let Uj i, (i—1) =
Zue!\‘iurl Sa(py (u),i)e(u,j)- 1 what follows, we suppress canonical inclusion
maps, and regard C*(Ay) as a subalgebra of C*(Axy), and both C*(Ay) and
C*(An+1) as subalgebras of C*(An41). The corner PiC*(An)P; is equal
to the closed span of elements of the form V;aV;} where a € C*(Ay) and
i,i’ € {1,..., M}, and PLC*(An41)P; is equal to the closed span of elements
of the form U;bU}; where b € C*(Any1), I,I' € {1,...,Mmny}.

We have ¢N((ai7¢/)%,=1) = Z%,Zl Viai i V5 by definition. The isomorphism
ON+1 from Mpsmy (C*(An41)) to PLC*(AN41)P1 described in Proposition 3.6

satisfies

¢N+1(Z%/Z'1V UbUjy) = (bz,l/)l]\ﬁ;?
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The Cuntz-Krieger relations show that

VZVJWJW; = Uj"l‘mN(i_l)U;lerN(i/—l) = WJW;V%VJ
for 1 <,/ < M,1<j,7 <mpy, and this decomposition of the matrix units
U,Uy; implements 7oz my . Hence o110 (Tarmy ® ide«(ay,,)) satisfies

ON+1 0 (TM,mu @ idC*(AN+1))(((bi,j,j’,i’)rﬁzl)xzzl)

= Zi,i/:l Zj,j/:1 Uj+mN(ifl)bwa’ﬂ’Uj/+mN(i/71)'

The Cuntz-Krieger relations also show that V; = Z;ﬂz’vl W;W:V; for all i, and
hence V;aV,; = Zj Uj+mN(’L'*l)Wja’WjU;f+mN(i’71) for all a € PLC*(AN)P;.

One now checks that for A € Ay, we have

(3.1)

WIAW; =32 (0)=a Se(r(3).5) Se(r(A)sn (M)7) SN
and hence that V;s\Vj =3, ZpN(A’):A Usn(\)jtmn (i—1)S3 Ul 1) - Re-
call that 0; ;s € My (C*(An)) denotes the matrix

(9 ) sy ifj=iandj =17
R S
DA D 0 otherwise.

Then Vs V) = ¢n (Qiﬂ-fs)\) by definition of ¢, so
On(0s,08x) = Zj ZpN(X)=A UsN(A’)j+mN(i—l)SXUermN(i'—n-
Since (idar @y ) (01,53) = Oiir ), vyn 537> We may therefore apply (3.1)
to see that
N (0iir8x) = ON+1 0 (Tarmy @ 1o (Any)) © (Ida ®tpy s ) (B3, S0)-
Since elements of the form 6; ;s generate My (C*(An)) this proves the result.

O

THEOREM 3.8. Let (An, Ant1,Pn, Mn,5n)52, be a sequence of row-finite cov-

erings of locally convex k-graphs. For each n, let A, := AP ~p”_ﬁ”_lAn,

identify A, with the corresponding subset of Um(Ay; pp,$,), and likewise iden-
tify C*(A,,) with the corresponding C*-subalgebra of C*(@(An;pn,sn)). Then

(3-2) C*(Um(An; pn, 8n)) = Uy C* (An).

n=1
Let Py := Zue/\? Sy, and for each n, let My, := mimso---my,_1. Then P; is a
full projection in each M(C*(Ay,)), and we have
(3.3) PC* (@(An;pn,sn))Pl o hi>n (MMn (C*(An)),idns, ®Lpn75n).
In particular,
(O (A po- 50))) = Ko (PLC* (I (A p. ) P1)
Hm (K (C™(An)), (4,50 )+)-

—

Il

DOCUMENTA MATHEMATICA 13 (2008) 161-205



C*-ALGEBRAS ASSOCIATED TO COVERINGS OF k-GRAPHS 177

Proof. For the duration of the proof, let A := lim(A,;pn,s,). We have
C*(A) = span{s,s; : p,v € A}, so for the first statement, we need only
show that
span{s,s} : p,v € A} C Us—, C*(A,).

To see this we simply note that for any finite ' C A, the integer N := max{n €
N :s(F)NAY # 0} satisfies F C Ay.

Since P is full in each C*(A,,) by Proposition 3.2(3), it is full in C*(A) by (3.2).
Equation 3.3 follows from Proposition 3.7. The final statement then follows
from continuity of the K-functor. O

Remark 3.9. Note that if we let v denote the restriction of the gauge action to
Plc*(@(An;pn,sn))Pl then v(;,... 1) is trivial for all z € T. Indeed, if s,s;
is a nonzero element PyC*(lim (A, ; pn,5n))P1, then d(p)nt1 = d(¥)nt1. So v
may be regarded as an actiorby T* rather than T*+1,

We can extend Theorem 3.8 to the situation of matrices of covering systems as
discussed in Section 2.1 as follows.

PROPOSITION 3.10. Resume the notation of Corollary 2.15. FEach C*(Ay,) is
canonically isomorphic to @;’;1 C*(An,j). There are homomorphisms (in)x
K. (C*(Ay)) = K (C*(Apt1)) such that the partial homomorphism which maps
the j*® summand in K.(C*(Ay,)) to the i** summand in K.(C*(An11)) is equal
to 0 if mil; = 0, and is equal to (tpyp sn )« otherwise. The sum Z@E/\? Sy
converges strictly to a full projection Py € M(C*(A)). Furthermore,

K.(PC ()P = lim (D K€ (Ay)), (). ).

Proof. For each A\ € A, = U;il Ay j, define a partial isometry ¢\ €

@;’;1 C*(Ay,j) by ty := (0,...,0,5x,0,...,0) (the nonzero term is in the ;0
coordinate when A € A, ;). These nonzero partial isometries form a Cuntz-
Krieger A, -family consisting of nonzero partial isometries. The universal prop-
erty of C*(A,,) gives a homomorphism 7" : C*(A,) — @;’;1 C*(A,,;) which
intertwines the direct sum of the gauge actions on the C*(A,, ;) and the gauge
action on C*(A,). The gauge-invariant uniqueness theorem [20, Theorem 3.4],
and the observation that each generator of each summand in @;’;1 C*(Anj) is
nonzero and belongs to the image of 7f* therefore shows that 7} is an isomor-
phism.

The individual covering systems (A, ;, Ant1,:,p", m", ") induce inclusions
tpr st CF(Ap ) — M (C*(Anya,i)) as in Proposition 3.2(5). We therefore
obtain homomorphisms (1 er )s  Ki(C*(Anj)) — Ki(C*(Ant1,)). The
statement about the partial homomorphisms of K-groups then follows from
the properties of the isomorphism K, (€D, Ai) = @, K.(A;) for C*-algebras
A;.

The final statement can then be deduced from arguments similar to those of
Theorem 3.8. O
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4. SIMPLICITY AND PURE INFINITENESS

Theorem 3.1 of [34] gives a necessary and sufficient condition for simplicity of
the C*-algebra of a row-finite k-graph with no sources. Specifically, C*(A) is
simple if and only if A is cofinal and every vertex of A receives an aperiodic
infinite path (see below for the definitions of cofinality and aperiodicity). In
this section we present some means of deciding whether lim(A,,; p,,, 6,,) is cofi-
nal (Lemma 4.7), and whether an infinite path in lim(A:pn,sn) is aperiodic
(Lemma 4.3). We also present a condition under which C* (Um(Ap; pn,sp)) is
purely infinite (Proposition 4.8). T

We begin by recalling the notation and definitions required to make sense of
the hypotheses of [34, Theorem 3.1]. For more detail, see Section 2 of [31].

Notation 4.1. We write Qy, for the k-graph such that Qf := {(m,n) € N¥ xN* :
n —m = q} for each ¢ € N¥, with r(m,n) = (m,m) and s(m,n) = (n,n). We
identify Q) = {(m,m) : m € N*} with N*. An infinite path in a k-graph =
is a graph morphism z : ; — Z, and we denote the image x(0) of the vertex
0 € Qf by r(z). We write = for the collection of all infinite paths in Z,
and for v € 2% we denote by v=> the collection {z € Z* : r(z) = v}. For
z € 2 and ¢ € N*, there is a unique infinite path o?(x) € E* such that
o9(x)(m,n) = x(m +q,n + q) for all m < n € N*.

DEFINITION 4.2. We say that a row-finite k-graph = with no sources is aperiodic
if for each vertex v € Z° there is an infinite path x € v=° such that o9(z) #
o (z) for all ¢ # ¢’ € N*. We say that Z is cofinal if for each v € Z° and
z € E* there exists m € N* such that v=Ex(m) # (.

We continue to make use in the following of the notation established earlier
(see Notation 2.6) for the embeddings of N*¥ and of N in N*+1.

If y is an infinite path in the (k+1)-graph =, we write o, for the infinite path in
20N defined by oy (p, q) := y((Ok,p), (0k, q)) for p < g € N, and we write
for the infinite path in ZN"01) defined by x4(p,q) == y((p,01), (g,01)) where
p < qe Nk

PROPOSITION 4.3. Let (An, Apt1,Pn, M, 5n)22, be a sequence of row-finite
covering systems of k-graphs with no sources. For a,b € N**t1 an infinite path
y € (Hﬁm(/\n;pn,sn))c>o satisfies %(y) = o®(y) if and only if Tya(y)y = Tob(y)
and Qga(y) = Qgb(y)-
Proof. The “only if” implication is trivial. For the “if” implication, note that
the factorisation property implies that an infinite path z of im(A,; pn,s,) is
uniquely determined by z, and the paths Qgn01)(z)s M € N’T. So it suffices
to show that each Q(n.01) () is uniquely determined by z,(0g,n) and a,. Fix
n € N¥ and let A := x,(0x,n) = 2(0g+1, (n,01)). Fix i € N. We will show that
Qyn01)(5)(01,7) is uniquely determined by cv.(01,4) and A. Let v = r(z), and let
N € N be the element such that v € A, For 1 < j <i,let w; = a,(i) € A(J)V+jv
and let 1 <1; < mp4,_1 be the integer such that a,(j — 1,5) = e(w;,1;). We
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have py(w1) = v, and py4j—1(w;j) = wj—q for 2 < j <. For each j, let A\; be
the unique lift of A such that r(\;) = w;. By definition of the (k + 1)-graph
Um(An;pp,sn), the path

)\6(5()\1),5()\1)7”1)6(8()\2),5()\2)7112) e 6(5()@),5()\1')7111') = OLZ(Ol,i)Ai

is the unique minimal common extension of A and «(01,%) in Um(Ay; py, $,).
N
Hence

Q01 () (01,8) = e(s(A1),5s(A1) " H)e(s(A2),5(A2) " Ha) .. e(s(N), 5(N) 1)
which is uniquely determined by A and «,(01,7). O

COROLLARY 4.4. Let (Ap, Apt1,Dn,Mn, 51)5% be a sequence of row-finite cov-
ering systems of k-graphs with no sources. Suppose that A, is aperiodic for
some n. Then so is Um(Ay; pn,Sn).

Proof. Since each vertex in A,, receives an aperiodic path in A,,, Proposition 4.3,
guarantees that each vertex in A,, receives an aperiodic path in im(A,; p,, $,).
Since the p,, are coverings, it follows that every vertex of lim(An;pTL, §y,) Teceives
an infinite path of the form Ay or of the form o?(y) where y is an aperiodic
path with range in A,. If y is aperiodic, then Ay is aperiodic for any A\ and
0%(y) is aperiodic for any a and the result follows. O

LEMMA 4.5. Let (A, A1, Dn,y Mn, 5,)52 1 be a sequence of row-finite covering
systems of k-graphs with no sources. Fixy € (@(An;pn,ﬁn))m, with y(0) €
A, and a,b € N¥*1, Let @ and b denote the elements of N* determined by the
first k coordinates of a and b. For each m > n, let vy, and i, be the unique
pair such that o, (m,m + 1) = e(Um,im). For each m > n, let p,, and v, be
the unique lifts of x,(0,a) and x,(0,b) such that () = r(Vm) = vm. Then
Qga(y) = Qgv(yy if and only if the following three conditions hold:

(1) ags1 = brg1;

(2) s(um) = s(vm) for allm > n; and

(3) Sm(tm)im = Sm(Vm)im for allm >n.

Proof. We have aga(yy(m,m+1) = e(s(tmtaysy)s Sm(mtaris)imta,,,) for all
m, and likewise for b and v. O

Remark 4.6. Lemma 5.4 of [27] implies that an infinite path in a rank-2 Bratteli
diagram A is aperiodic if and only if the factorisation permutations of its red
coordinate-paths are of unbounded order. Lemma 4.5 is the analogue of this
result for general systems of coverings. To see the analogy, note that in a rank-2
Bratteli diagram, every z, is of the form AAX ... for some blue cycle A, so that
condition (3) fails for all a # b precisely when the orders of the permutations
Sm(1m) grow arbitrarily large with m.

LEMMA 4.7. Let (An, Api1, Pn, Mn, 5n)52 1 be a sequence of row-finite coverings
of k-graphs with no sources. If infinitely many of the A, are cofinal, then
Um(Ay; pn, Sn) is also cofinal.
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Proof. Fix a vertex v and an infinite path z € (im(Ay,; pn,5,))>°. Let ni,ny €
N be the elements such that v € A?Il and r(,zTE A?m. Choose N > nq,ns
such that Ay is cofinal. Fix w € A% such that p, o p,i10---0py_1(w) = v;
SO v(@(An;pn,sn))w # (). We have T, N-n2) ;) € AR, and since Ay is
cofinal, it follows that wAN:EU(o,C,NﬂLQ)(Z)(q) #£ () for some ¢ € NF. Since
:Eg(ok,NﬂLQ)(z)(q) = z(g, N — n2), this completes the proof. O

As in [38], we say that a path A in a k-graph A is a cycle with an entrance if
s(A) = r(A), and there exists u € r(A)A with d(p) < d(X) and A(0,d(u)) # p.

PROPOSITION 4.8. Let (Ap, Apt1,PnsMin, 5n)o2, be a sequence of row-finite
coverings of k-graphs with no sources. There exists n such that A,, contains a
cycle with an entrance if and only if every A, contains a cycle with an entrance.
Moreover, if C*(im(Ay;pn,sn)) is simple and Ay contains a cycle with an
entrance, then C*UX) is purely infinite.

Proof. That the presence of a cycle with an entrance in A; is equivalent to the
presence of a cycle with an entrance in every A, follows from the properties of
covering maps. Now the result follows from [38, Proposition 8.8] O

5. K-THEORY

In this section, we consider the K-theory of C* (A&I‘). Specifically, we show
how the homomorphism from K, (C*(A)) to K.(C*(I")) obtained from Propo-
sition 3.2 behaves with respect to existing calculations of K-theory for various
classes of higher-rank graph C*-algebras. We will use these results later to com-
pute the K-theory of C*(lim(A,; pn, sn)) for a number of sequences of covering
systems. T

Throughout this section, given a k-graph A, we view the ring ZA° as the
collection of finitely supported functions f : A — Z. For v € A°, we denote
the point-mass at v by §,. Given a finite covering p : I' — A of row-finite
k-graphs, we define p* : ZA® — ZI'Y by p*(d,) = > dw; equivalently,

p*(N)w) = f(p(w)).

5.1. COVERINGS OF 1-GRAPHS AND THE PIMSNER-VOICULESCU EXACT SE-
QUENCE. It is shown in [26, 32] how to compute the K-theory of a graph
C*-algebra using the Pimsner-Voiculescu exact sequence. In this subsection,
we show how this calculation interacts with the inclusion of C*-algebras arising
from a covering of 1-graphs.

The K-theory computations for arbitrary graph C*-algebras [12, 1] are some-
what more complicated than for the C*-algebras of row-finite graphs with no
sources. Moreover, every graph C*-algebra is Morita equivalent to the C*-
algebra of a row-finite graph with no sources [12]. We therefore restrict out
attention here to the simpler setting.

p(u)=v

THEOREM 5.1. Let (E*, F*,p,m,s) be a row-finite covering system of 1-graphs
with no sources. Let A, B be the vertex connectivity matrices of the underlying
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graphs E and I respectively. Then the diagram

0 —=Ki(C"(E7)) ZE° ZE° Ko(C*(E"))—= 0

(5'1) J (tp,s) l m-p* J m-p* J (tp,s)=

0 —= K, (C*(F*)) ZF0 ——E — 70 Ko(C*(F*))—=— 0

commutes and the rows are exact.

The proof of this theorem occupies the remainder of Section 5.1. We fix, for the
duration, a finite covering p : F* — E* of row-finite 1-graphs with no sources,
a multiplicity m and a cocycle s : F* — S,,.

It is relatively straightforward to prove that the right-hand two squares of (5.1)
commute and that the rows are exact.

LEMMA 5.2. Resume the notation of Theorem 5.1. We have (1 — B')p* =
p*(1 — AY), the right-hand two squares of (5.1) commute, and the Tows are
exact.

Proof. For the first statement, consider a generator d, € ZE". We have

(p* o (1—AN)(6,) = p*(5y — Z Sse)) = Z 8y — Z Z Ss(f)-

ecvEl p(u)=v e€vE! p(f)=e
On the other hand,

((1 - Bt) Op*)(év) = (1 - Bt) Z 0y = Z (5u - Z 5S(f))'
p(u)=v p(u)=v feur?

Since p is a covering the double-sums occurring in these two equations each
contain exactly one term for each edge f € F! such that p(r(f)) = v, and it
follows that the two are equal.

Multiplying by m throughout the above calculation shows that the middle
square of (5.1) commutes.

The identification of Ko(C*(E*)) with coker(1 — A?) takes the class of the
projection s, € C*(E*) to the class of the corresponding generator 8, € ZE°
(see [30]). That the right-hand square commutes then follows from Proposi-

tion 3.2(6).
Exactness of the rows is precisely the computation of K-theory for 1-graph
C*-algebras [8, 26, 32]. O

It remains to prove that the left-hand square of (5.1) commutes. The strategy
is to assemble the eight-term commuting diagrams which describe the K-theory
of each of C*(E*) and C*(F*) (see equation (5.3) below) into a sixteen-term
diagram, one face of which is the left-hand square of (5.1). We then focus on
the cube in the sixteen-term diagram which contains left-hand square of (5.1)
as one of its faces, and show that the remaining five faces of this cube commute.
A diagram-chase then establishes that the sixth face commutes as well. The
majority of the work involved goes into defining the connecting maps needed
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to write down the sixteen-term diagram in the first place. The proof that the
various squares in it commute is then relatively straightforward.

To begin, we recall how one shows that the rows of (5.1) are exact. Let E* x4Z
be the skew-product of E* by the length functor d (see [20, Section 5]). Let 7 be
the gauge action of T on C*(E*) satisfying v, (s.) = zs. for e € E! and z € T.
Let (iT,ic+(g+)) be the universal covariant representation of (C*(E*), T,) in
the crossed product C*(E*) x,T. By [32, Lemma 3.1], there is an isomorphism

(5.2) b C*(E* x4 Z) — C*(E*) x,, T

satisfying Yg (s n)) = i1(2)"ic () (7).

The C*-algebra C*(E* x4 Z) is AF with Ky-group h_r)n(ZEO, A) (see [26, 32]).
Hence one may apply the dual Pimsner-Voiculescu sequence [4, Section 10.6]
to the crossed product algebra C*(E*) x., T to show that the top row of (5.1)
is exact (the bottom row is the same after replacing £ with F).

From the point of view of coverings, the skew-product graph E* x 4Z and its C*-
algebra are more natural to work with than the crossed product C*(E*) x, T.
Before proving that the final square of (5.1) commutes, we therefore detail first
how coverings p : F* — E* interact with the isomorphisms ¢ g : C*(E* x4Z) —
C*(E*) x4 T.

LEMMA 5.3. With the above notation, let E* xXqZ and F* x4 7Z be the skew-

product graphs by the length functors d, and let v g and Y be the isomorphisms

described in (5.2). Let yg and «yp denote the gauge actions of T on C*(E*)

and C*(F™).

(1) the formulae p(A,n) := (p(A),n) and 5§(A\,n) := s(\) determine a covering
p:F*XqZ — E* X472 and a cocycle 5 : F* xXqZ — S,.

(2) the inclusion tps @ C*(E*) — Mp(C*(F*)) is equivariant in the ac-
tions vg and idp, @yr, and induces an inclusion tps : C*(E*) X4, T —
My (C*(F™)) Xid,, @7 T-

(3) The following diagram commutes.

Lp,5

C*(E* x4 Z) M (C*(F* x4 Z))
wq idy, ®'¢F¢

C*(E*) Xy Tli‘Mm(C*(F*)) Xid,, @yr T

Proof. (1) Tt is straightforward to check that p is a covering. To see that &
is a cocycle, note that (i, m) and (v,n) are composable in the skew-product
precisely when p and v are composable, and n = m—d(v). Sofori € {1,...,m}
we may calculate

5(p, m)(8(v, m — d(v))i) = s(p)(s(v)i) = s(ur)i = &(pr, m — d(v))i.
(2) That ¢, s is equivariant in yg and id,, ®7yp follows from Proposition 3.2(5).
That it induces the desired inclusion ¢, 5 of crossed-products follows from the
universal properties of the crossed-product algebras.
(3) That the diagram commutes follows from a simple calculation using the
definitions of the maps involved. O
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Proof of Theorem 5.1. Lemma 5.2 establishes everything except that the left-
hand square in the diagram (5.1) commutes. To establish this last claim, recall
from [32, Theorem 3.2] (see also [26]) that there is a homomorphism ¢g :
ZE° — Ko(C*(E*) x4, T) satisfying ¢p(d,) = [iT(1)ic«(g+)(sy)]. Moreover,
the rows of the following commutative diagram are exact and the left- and
right-most vertical maps are isomorphisms (see [30, Lemma 7.15], [26]).

1—At

0—ker(1 — A"} ZE° ZE° coker(1 — A")=0

o L

01 (O™ (B") Ko (O (E") s T) =25 Ko (C* (") 5 T) o (C* ()0

IR

A similar commutative diagram holds for F™*, and using the standard isomor-
phism of K, (M,,(C*(F*))) with K,.(C*(F*)), we may assemble these two di-
agrams can into a single three-dimensional diagram by connecting each term
in the diagram for E* to the corresponding term in the diagram for F'* using
the appropriate maps induced from (p,s). The map connecting the Ky-groups
of the skew-product graph algebras is induced from the connecting map in
the bottom row of the commuting diagram in Lemma 5.3(3) by applying the
K-functor and using the canonical isomorphisms

Ko (M (C7(F7) x4, T)) = Ko (C*(F7) x4, T)  and
My (C*(F*) Xy T) = M,y (C*(F™)) Xid,, @yr T-

Let n denote the unlabelled inclusion K1 (C*(F*)) — Ko(C*(F*) X, T)) in
the bottom row of the diagram of the form (5.3) for F*. Notice that injectivity
of the map m-p* : ZE® — ZF° together with the first statement of Lemma 5.2
ensures that m - p* restricts to a map from ker(1 — A?) to ker(1 — B?); abusing
notation, we denote this map m - p* too. With this notation the diagram (5.4)
below is the left-hand cube of the three-dimensional diagram described in the
previous paragraph.

ker(1 — A?) « ZE°
= (o]
ker(1 — B?) «
(5.4) ]
Ky (C*(E7))
(Lp,ﬁ)*
Ky (C*(F7)) . Ko(C™(F") X, T)

We have shown the whole cube because we prove that the left-hand face —
which is none other than the left-hand square of (5.1) — commutes by showing
that the other five faces commute.

To see why this suffices, suppose that the other five faces do indeed commute.
Since 7 is an injection by the exactness of the rows of (5.3), we just need to
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show that the two maps from ker(1 — A?) into Ko(C*(F*) x, T)) obtained
from the maps in the left-hand face of the cube followed by 1 agree. A diagram
chase shows that this is the case.

It therefore remains only to show that the top, bottom, front, back and right-
hand faces of (5.4) commute. The top square commutes by definition. The
bottom square commutes by the naturality of the dual Pimsner-Voiculescu
exact sequence (see the argument at the beginning of [32, Section 3]). The
back and front faces commute because (5.3) commutes.

To see that the right-hand face commutes, recall that C*(E* x4 Z) is AF
with Ky-group lii>n(ZEO7 1 — A?). Hence there is an inclusion ex : ZEY —
Ko(C*(E* x4Z)) which takes d, to the Ko-class of the vertex projection s(, q),
and likewise for F. Consider the map g defined in (5.2) and the map ¢g
appearing in (5.3). It is clear that ¢ = (¥g). o g and similarly for F. So it
suffices to show that the following diagram commutes.

m-p*

ZE° ZFO
l |
(5.5) Ko(C*(E* x4 7)) Ko(C*(F* x4 7))
(¢E)*l (YF)«

Ko(C*(E") x4z T) Ko(C*(F*) x4, T)
If one applies the K-functor to all terms and maps in the diagram of
Lemma 5.3(3), and then applies the natural isomorphism

K (Mp(C*(E") Xy T)) 2 K (C*(E) X4y, T)

to the terms on the right, one obtains precisely the bottom rectangle of (5.5).
The bottom rectangle of (5.5) therefore commutes by naturality of the K-
functor together with Lemma 5.3(3).

To see that the top rectangle of (5.5) commutes, recall that g takes the image
of the point-mass ¢, in the direct limit 1ii>1r1(ZEO7 A?) to the class of the projec-
tion s(,,0). The image of s(,, ) under the homomorphism ¢ 5 is the diagonal ma-
trix in My, (C* (F"* x4 Z)) whose diagonal entries are all equal to ) _, 5(w,0)-
Under the standard isomorphism Ko (M., (C*(F* x4 Z))) = Ko(C*(F* xq Z)),
we therefore obtain the following equality in Ko(C*(F™* x4 Z)):

55 (swa)l = D m [s60)] :m.( > [S(w,0>])-
p(w)=v p(w)=v

Using once again the characterisation of the maps eg and g, we see that this
is precisely the statement that the bottom rectangle of (5.5) commutes. O

5.2. COVERINGS OF HIGHER-RANK GRAPHS AND KASPAROV’S SPECTRAL SE-
QUENCE THEOREM. We turn to the case where £ > 1. We invoke the K-theory
computations of [14] which are based on Kasparov’s spectral sequence theorem
for the computation of the K-theory of crossed products by groups for which
the Baum-Connes conjecture holds (see [18, Theorem 6.10], [14, Lemma 3.3]
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and [35]). We are grateful to Gennadi Kasparov for pointing out that the
spectral sequence is natural.

The standard notation for spectral sequences is that a spectral sequence
(E",d") has terms £} , and differentials d" : E} , — Ej_. .. 1 where r > 0
and p,q € Z. This however is problematic in the current situation because p
clashes with our notation for a covering map. To avoid this, we replace the
indexing variables p, ¢ in the spectral sequence with a,b. That is, our spectral
sequences have terms E;b and differentials d" : E;b — Eg_hb 1 where r > 0
and a,b € Z.

Since each higher rank graph C*-algebra C*(A) is Morita equivalent to a crossed
product by Z* [21, Theorem 5.6], Kasparov’s result applies to give a spectral
sequence which converges to K, (C*(A)) with E? terms given by the homology
of Z¥ with appropriately chosen coefficients. In [14] Evans computes these
homology groups using a resolution related to the Koszul complex. It follows
that the above spectral sequence may be extended so that the terms of the
resolution become the terms E;’b for b even.

The main result of this subsection is to show that given a finite covering p :
I' — A of row-finite k-graphs with no sources, a multiplicity m and a cocycle
s: ' — S,,, there is a natural morphism of spectral sequences defined on E!
terms using m - p* : ZA® — ZT'° which is compatible (see [41, p.126]) with
(tp,s)« the induced map on K-theory. This result is specialised to the case
k = 2 with a view to applications in Section 6.

The following is an immediate Corollary of [18, Theorem 6.10] (see [14,
Lemma 3.3] and [35]). For more detail on spectral sequences used in this
context, see [35, 14].

PROPOSITION 5.4. Let F be a C*-algebra and let o : ZF — AutF be an
action of Z* on F. Then there is a spectral sequence (ET,d") with dif-
ferentials d” : E, — EI__ .., which converges to K.(F Xo ZF) with
E?, = H,(Z*, Ky(F)). Moreover, the spectral sequence is natural with respect
to Vequivariant maps of C*-algebras.

Proof. As noted in the proof of [14, Lemma 3.3] this follows immediately from
[18, Theorem 6.10] since Z* is amenable and the Baum-Connes conjecture
is known to hold for amenable groups [16, Theorem 1.1], so the v part of
K.(F x4 Z¥) exhausts. The naturality of the spectral sequence with respect
to equivariant maps follows from the construction in the proof of [18, Theorem
6.10], since every step is functorial. ]

Naturality means that given Z* actions o; on F;, a ZF-equivariant map ¢ :
F1 — Fo induces a morphism of spectral sequences and this morphism is
compatible with

Bu : Ku(F1 Xy ZF) — K (Fa X0, ZF)

where @ : Fy X o, Z¥ — Fy x4, ZF is the natural map.
Evans applies this when F = F, is the crossed product C*(A) x., T* of C*(A)
by the gauge action, and « is the dual action 4 of Z*. Hence, by Takai duality
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we have K,(C*(A)) = K.(Fa xoZF). In this case we have more specific results
(see [14, Lemma 3.3]):

s ) Ha(ZF,Ko(Fp)) if0<a<kandbis even,
0 otherwise.

In [14, Theorem 3.14]), Evans shows that these homology groups may be
computed as the homology of the complex D} = A"ZF @ ZA°. That is,
DA = AN"ZF @ ZA® for 0 <a <k and DX =0 fora > k. For 1 <j <k let M;
denote the vertex connectivity matrix of the coordinate graph (A%, A% r, s).
For 1 < a < k define the differential 9, : DA — D2 | by
a
Oaleiy N Nei, @en) =D (=1 e A AT, Avs A, @ (1= M)e,

j=1
where €1, ..., €, constitute the canonical basis for ZF, 1 < i; < -+ < i, < k
and v € A, Tt is straightforward to verify that D? is a complex. The first part
of the following theorem is a restatement of [14, Theorem 3.15]).

THEOREM 5.5. Fiz k > 1. Let A be a row-finite k-graph with no sources.
With notation as above there is a spectral sequence (E",d") with differentials
d": By, — B} | which converges to K.(C*(A)) = K.(Fa Xqo Z*) with

a—r,b+r—
El,=D)=N\"Z" 2",

if 0 < a <k and b is even, and 0 otherwise. The differential d* E;b — E;_Lb
is given by O, if b is even.

Let (A, T, p,m,s) be a row-finite covering system of k-graphs with no sources.
There is a morphism f of spectral sequences which is compatible with (tp )« :

K.(C*(A)) — K.(C*(T")) such that f': DX — DY is given by id @(m - p*).
Proof. Evans computes the homology groups using a Koszul complex (see [41,
§4.5]). Set G = Z* = (s1,...s1), R = ZG and let I be the ideal in R generated
by {1—s;':1<a<k}. Letey,...,e constitute the canonical basis for R*.
For each a, define 9, : A" RF — /\a*1 R¥ as follows: for 1 < iy < -+ <i, <k
so that €;, A--- A, € \" R¥, define

Oaleiy Ao M) =D (1) (1 =857 Neiy Ao AT Ao Ney,

j=1

where the symbol “~” denotes deletion of an element (note that 0y(e;) =
1—s;h).
Then R/I = Z and the following sequence of R-modules is exact (see [41,
Corollary 4.5.5])

k
OH/\ Rkﬂ-'-ﬂ/\leH/\ORkHZHO.
Note that A\’ R¥ = R and A" R¥ is a free R-module with basis

{es Ao Nei, 11 <y < -+ <iq < k}.
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Hence, A" R¥ yields a projective resolution of Z. Thus, by [6, §II.1] we have

H.(G,Ko(Fnp)) = /\ RF ¢ Ko(Fu)).

We follow Evans here but have adopted slightly different notation to make
naturality more apparent (see [14, Definition 3.11] and following). Under the
isomorphism A" RF ®@¢ Ko(Fa) = A" Z* @ Ko(Fa) (as abelian groups), the
boundary map 9, : A" Z*F @ Ko(Fa) — N~ ZF @ Ko(Fa) is given by
Oales, N Nei, @) = Z(*l)aJrlez‘l /\.../\gij AN Ne, @(1— sj):E
j=1
where 1 <i; < -+ < i, <k and z € Ko(Fyp).
Let DA be given as above. There is a natural map &* : Co(A°) < Fa which
induces a map & : ZA® — Ko(Fa). Moreover (see [14, Theorem 3.14]) the
natural map
ideel: \ ZF @ ZA° — )\ ZF @ Ko(Fa)
is a map of complexes which induces an isomorphism on homology and hence
H.(G,Ko(Fa)) = /\ ZF @ ZAY).
Therefore, setting

o _{/\aZk@)ZAO if 0 <a <k and b is even,

b= .
@ 0 otherwise

and defining d* : E;’b — Eé—u; to be 0, if b is even (and 0 otherwise), yields

a,b —

52 e H,(G,Ko(Fy)) if0<a<kandbis even,
0 otherwise.

It follows by [14, Lemma 3.3] that the spectral sequence converges to
K.(C*(N)) = K.(Fa xq ZF) as required.

For the second part of the theorem, fix (A,T',p,m,s). The embedding ¢, :
C*(A) — M, (C*(I')) induces an embedding ¢, s : Fo — My (Fr). Functorial-
ity yields a map of complexes

id®(tps)« /\ ZF @ Ko(Fp) — /\ Z" @ Ko(Fr).

Since group homology is a covariant functor of its coefficient module we obtain
the functorial maps for each n =0,1,...,k

H,((lpe)s) : Ho(ZF, Ko(Fp)) — Ho(ZF, Ko(Fr)).

Then arguing as in Lemma 5.2 with p* : ZA? — ZI'¥ defined as above we see
that

(1= (M7))(m-p*) = (m-p*)(1 = (M}))

forall j =1,...,k. It follows that the natural map
ide(m-p*): \ 2*©2ZA° — N\ Z* @ 21"
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is a map of complexes.

Arguing as in the proof of Theorem 5.1, we see that (ip ) © ed=clo(m-p),
so the map on homology induced by id ®(m - p*) coincides with the functorial
map above (under the identifications of the homology groups induced by id @&
and id ®el). This combined with the naturality of Proposition 5.4 yields a
morphism f of spectral sequences compatible with the map

(L//p\/:")* : K*(‘T:A Xa Zk) - K*(fF X Zk)

such that f!: D} — DI is given by id®(m - p*). Under the identifications
K. (C*(A)) = Ku(FAxoZF) and K. (C*(T)) = K.(FrxoZ*), wehave (155), =
]

(tp,s )

The following corollary is an immediate consequence of the above theorem
restricted to the case k = 2; for the first assertion see [14, Proposition 3.16]
and its proof (see also [35]).

Given a 2-graph A, recall that M; and Ms denote the vertex connectivity
matrices of the coordinate graphs (A, A, r, s) and (A%, A®2, 1, s).

COROLLARY 5.6. Suppose that (A,T',p,m,s) is a row-finite covering system
of 2-graphs with no sources. With the notation of Theorem 5.5, the complex
DA = \"Z2 @ ZA® may be written as follows:

(5.6) 0 ZA® 2L ZAO g ZA® 2 ZA0 — 0

ML-1

where 1 = (1 — M{,1 — M3) and 9, = (1 — M}

) . We have Eg,b = Eg5,, and

Ko(C*(A)) = coker 91 & ker 0,

(57) Kl(C*(A))gkeral/Imé)g%Hl(Zk,Ko(}'A))-

Moreover, the following diagram commutes

A A
0 ZAY I ZAO G ZA0 P ZA0
(58) lm-p* J{m-p*EBm-p* J{mgp*
0o . 0 0 o . 9% 0
0 zr ZM° o721’ «——— ZTY «———— 0

and by naturality induces (tp.s)s : Ki(C*(A)) — K, (C*(I)).

The inclusion of coker 9y into Ko(C*(A)) obtained from (5.7) takes the equiva-
lence class (in the quotient group coker &y = ZA°/Im(d;)) of the generator 4,
of ZAY to the Ko-class of the vertex projection [s,] in C*(A). The proof of this
fact can be obtained from the proof of [14, Proposition 4.4]. We thank Gwion
Evans for pointing this out to us.
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5.3. PRODUCT COVERINGS AND THE KUNNETH FORMULA. In this section we
consider covering systems (A, p,) in which each k-graph A, is a cartesian
product of two lower-dimensional graphs, and the covering maps p, respect
the product decomposition.

Recall from [20, Proposition 1.8] that given a k-graph (A,d) and a k-
graph (A’,d’), the cartesian-product category A x A’ becomes a (k + k')-
graph when we endow it with the degree functor d x d' : (\,X) —
(dN)1y s dN iy (N )1y ooy d (Vi)

PROPOSITION 5.7. Fix k, k' € N\ {0}. Let (A,T,p,m,s) and (A',T7,p',m’,s)
be row-finite covering systems of k- and k'-graphs with no sources. Then

pxp T xI'—=AxA

is a finite covering of row-finite (k + k')-graphs with no sources. Let [ :
{1,....m} x {1...,m'} — {1,...,mm'} denote the bijection f(j,j') :=
J+ (' = 1)ym. There is a cocycle s x s’ : T’ x IV — Sy, determined by
((5 X 5’)(a,a’))f(j,j’) = f(s(a)j,s’(o/)j’). Moreover, the following diagram
commautes.

s

C*(A x A') C*(A) ® C*(M')

J/"po/,sxs’ lbp,5®Lp/15/

Moy (C*(D X T7)) —=— My (C*(T')) @ My (C*(I))

Suppose that at least one of K.(C*(A)), K.(C*(A')) and at least one of
K. (C*(T)), K.(C*(T")) are torsion-free. Then the following diagram com-
mutes and the horizontal connecting maps are zero-graded isomorphisms:

K.(C*(A) ® K. (C*(A)) ——— K.(C*(AxA"))
lup,s)*@(bpqs,)* l()
K.(C*(1) @ Ko (C*(I")) —— K.(C*(I xI"))

If T° and (I")° (and hence also A° and (A')°) are finite then the C*-algebras
are unital, and the horizontal isomorphisms take [1] ® [1] to [1].

Proof. 1t is straightforward to check that px p’ is a covering using the properties
of the covering maps p and p’ and the definition of the cartesian-product graph.
A simple calculation shows that s x ¢’ defines a cocycle.

Theorem 5.5 of [20] shows that C*(A), C*(A’), C*(T") and C*(I"”) are nuclear,
and so there is just one tensor-product C*-algebra C*(A) ® C*(A’). Corol-
lary 3.5(iv) of [20] shows that the map sy ,) = sx ® s, is an isomorphism of
C*(Ax A") onto C*(A)® C*(A’), and similarly for C*(T') and C*(I'). It is easy
to check using the formulae for the maps tp s, tp 57, and tpxp sxs and using
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the chain of isomorphisms
My (C* (T x T')) 2 My (C) @ C*(T' x T7)
~ M,,(C) ® C*(I') @ M, (C) @ C*(I)
= My (C*(I)) ® My (C*(I))

that the first diagram commutes.
In the presence of the additional hypothesis concerning torsion-free K-groups,
the Kiinneth Theorem of [37] (see also Theorem 23.1.3 of [4]) implies: (1) that

K. (C*(A)) ® K.(C7(M)) = K. (CT(A) ® C7(A))

and similarly for T',T”; (2) that these isomorphisms are natural and are zero-
graded; and (3) that these isomorphisms take [1]®[1] to [1]. The result therefore
follows from the naturality of the K-functor. O

Note that in general when no assumption is made about torsion, the Kiinneth
Theorem of [37] gives a short exact sequence which is still natural. The ana-
logue of Proposition 5.7 still holds and gives a (fairly complicated) commuting
diagram in which the rows are short exact sequences.

6. EXAMPLES

In this section we discuss a number of examples. A recurring theme will be
supernatural numbers and the associated dimension groups, so we pause here
to establish some notation.

We will think of a supernatural number as an infinite product o = HZO:I Qn,
where each «, is an integer greater than 1. Any two such expressions in which
the same prime factors occur with the same cardinality correspond to the same
supernatural number. Given supernatural numbers «, 3, we will abuse notation
and write a8 for the supernatural number [[)2, a,/3,. We write a1, n] for
the product []}_; a; of the first n terms in o

For z1,...,2, € C, we write Z[z1,..., z,] for the ring obtained by adjoining
Z1y...,2n to Z; we regard Z[z1,...,2,] as a group under addition. Abusing
notation, for a supernatural number «, we write Z [ﬂ for the dimension group
li_r)n(Z, Xy, ) which we identify with the group

Y

o ]}CQ

Uz[m

consisting of all fractions p/q where p, ¢ € Z, and ¢ is a divisor of some a[1, n].

6.1. RANK-2 BRATTELI DIAGRAMS. A rank-2 Bratteli diagram is a 2-graph
in which the blue edges form a Bratteli diagram and the red edges determine
simple cycles so that every vertex lies on precisely one red cycle, and all vertices
on a given red cycle are at the same level in the blue Bratteli diagram.

The C*-algebras of these 2-graphs were studied in [27] and provided the initial
motivation for the covering construction. A rank-2 Bratteli diagram A can be
constructed using Proposition 2.14 and Corollary 2.15 precisely when the length
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of each red cycle at level n of A is divisible by the lengths of all the cycles at
level n — 1 to which it connects. In particular, the 2-graphs whose C*-algebras
are Morita equivalent to the Bunce-Deddens algebras [27, Example 6.7] and
the irrational rotation algebras [27, Example 6.5] arise in this fashion.

6.2. COVERINGS OF DIHEDRAL GRAPHS D,,. For n € N\ {0}, let D,, be the
directed graph with n vertices {vo, ..., v,—1} and edges {z;,y; : 0 <i <n—1}
where r(z;) = v; = s(y;) and s(x;) = vi41 = r(y;) (throughout this section,
addition in the subscripts is understood to be evaluated modulo n). More
descriptively, D,, is a ring of n vertices, each of which connects to both of its
neighbours (see Figure 2). Let D be the path-category of D,,, regarded as a
1-graph. Note that for n € N\ {0}, the graph Ds,, is the Cayley graph for the

U3

U2

Un—1
U1
Vo

FiGUuRrE 2. The 1-graph D,

dihedral group with 2n elements.

Ezample 6.1. For n,m > 1 there are m-fold covering maps py, mn : D}

as follows: for 0 <7 < mn —1let ¢/ =¢ mod n and define

pn,mn(vi) = Uy, pn,mn(xz) =Ty and pn,mn(yz) =Y.
Hence for each pair of positive integers n,m, we obtain a row-finite covering
system (D}, Dy,.., Pn,mn) of 1-graphs with no sources (see Notation 2.8).
Fix an infinite supernatural number a = [[;°, ;. Consider the sequence of
covering systems (Dga[l,n]’Dga[l,n-l—l]7p6a[17"]760¢[17"+1])$10=1 as in Notation 2.8.
Applying Corollary 2.11, we obtain a 2-graph
D :=lim(Dgq 1 n» Poalt n) 6af1,n+1))-
PROPOSITION 6.2. Consider the situation discussed in Example 6.1. We have
Ko(C*(D)) = Z[é] P Z[i] and K1(C*(D)) = Z @ Z. Let P, := ZveDg Sy
Then [Py] is the 0 element of Ko(P,C*(D)Py). Moreover, C*(D) is simple
and purely infinite.
Before proving the proposition, we describe the K-theory of C*(D}) in general.
LEMMA 6.3. (1) Ko(C*(D})) is generated by [sy,] and [sw,], and for each i, we
have [8711] = 7[5"71'4»3] in KO(C*(D;;))
(2) K1(C*(Dy)) = {(a1,...,an) € Z"™ : aj4o = aj11 — a; for all i}.
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(3) the following table describes the K -theory of each C*(D}).

n mod 6 | Ko(C*(D})) | Ki(C*(Dy}))

0 VA z?

1 0 0

2 7./3Z 0

3 | z/2292/2Z 0

4 Z/3Z 0

5 0 0
Proof. (1) The K group is generated by the classes [s,,], ..., [y, _,] subject to
the relations [s,,] = [sv,,,]+[Sv;_,]. This relation forces [sy,,,] = [Sv,,,] — [Sv.]s

from which we conclude first that K is generated by [s,,] and [s,,] and second
that
[Svi+3] = [Sﬂi+2] - [Svi+1] = ([Svi+1] - [8711]) - [Svi+1] = 7[8711']'

(2) Let A, denote the vertex connectivity matrix of D,; so A,(i,j) = 1
when ¢ = j £ 1 (mod n) and zero otherwise. As in Theorem 5.1, we have
K, (C*(Df)) 2 ker(1 — AlL). Form € Z™, (1 — Al)m); = —m;—1 +m; —m;q1
by definition of A,,, and this establishes (2).

(3) If E is a finite 1-graph with no sinks or sources, then C*(E) is isomorphic to
the Cuntz-Krieger algebra of the adjacency matrix Ag of F [23]. In particular,
K1(C*(FE)) is torsion-free and has the same rank as Ko(C*(E)) [9]. Hence it
suffices to verify that the first column of the table is correct. To calculate Ky,
we use (1) to check by hand that the cases n = 1,2,...6 are as claimed. If
n > 6, then applying the relations we find that [s,, ;] = [s,,] for all 4 which
accounts for all remaining cases. O

Proof of Proposition 6.2. Lemma 6.3(1) shows that Ko(C*(Dg, ,,;) is gener-
ated by [syp] and [syp] where the vg' are the vertices of Dg,, . Fixi € {1,2}.
We have

(61)  (p)lsup] = [sypea] sy T [,

i+6a(1,n] i+6(cp 11 —1afl,n] ’

By Lemma 6.3(1), each [s,n+1,6;] = [s,n1] in Ko(C*(Dgypy nyry))s s0 (6.1)

2 — Z? is multiplication

implies (tp,, )«([sor] = an - [s,n+1]. Hence Ko(p,) : Z
by a,. '

Fix m € N\ {0}. By Lemma 6.3(2), K;(C*(D{,,)) is identified with the
set of sequences (a1, ...,agn) which satisfy a;1o = a;41 — a; for all i. By
Lemma 6.3(2), this forces a;1o = a;+1 — a; for all i. Consequently, the map
a=(a1,...,a6m) — (a1,az) yields an isomorphism (,, : K1(C*(Dj,,)) — Z>.
As Catn1] © K1 (tpgapy mysapmiy) = Caltyn]s it follows that Ki(ip,) 7> — 772
is the identity map.

Recall that D denotes hin(Dga[Ln],p6a[1,n],6a[1,n+1]). By Theorem 5.1 the K-
groups of C*(D) are as claimed. To compute the class of the identity, let
P, € C*(D) be the sum of the six vertex projections in the bottom level. The
final statement of Lemma 6.3(1) shows that the classes of the vertex projections
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in Ko(C*(D{)) cancel, so that the class of the identity in Ko(C*(D)) is the
zero element. It follows that the class of the identity Py in Ko(P,C*(D)P;) is
also the zero element.

Each D} is aperiodic and cofinal (see Definition 4.2), so we may conclude
from Corollary 4.4 and Lemma 4.7 that D is aperiodic and cofinal. Hence
Proposition 4.8 of [20] implies that C*(D) is simple. The path x1y; is a cycle
with an entrance (namely o) in D}. Proposition 4.8 now shows that C*(D) is
purely infinite. O

6.3. DIRECT LIMITS OF O, ® C(T).

Ezample 6.4. Fix n > 3, and let B,, be the bouquet of n loops. For m > 1,
let L., denote the loop with m vertices, and let A,, be the cartesian-product

2-graph A, = L?n—l)’” x By, obtained from the path categories of L(,_1y» and
B,

For each m, Let p,, denote the obvious (n — 1)-fold covering of LGfl)’" by
L’("n_l)m+1, and let p’ be the identity covering of B,, by B,,.

PROPOSITION 6.5. Consider the situation of Example 6.4. Let v be a vertex of
A1. Then s,C*(Um(Ay,, pm X P'))sy is isomorphic to the Kirchberg algebra Py,
(see [5]) whose K -theory is opposite to that of O,,.

Proof. Since C*(By,) is generated by n isometries whose range projections sum
to the identity, C*(B,,) is canonically isomorphic to O, [7]. Hence

C*(Am) = C*(Liy_1y) © O

by [20, Corollary 3.5(iv)]. As in [17, Lemma 2.4], there is an isomor-
phism C*(L{,,_jym) = M(u—1)m(C(T)) for each m, and in particular we have
K. (C*(L{,_1ym)) = (2,Z). Since K.(On) = (Z/(n —1)Z,0) [9], the Kiinneth
theorem implies that K, (C*(Ay,)) = (Z/(n—1)Z,Z/(n — 1)Z).

A special case of [27, Equation (4.7)] implies that the covering map p,, induces
multiplication by n —1 from Ko(C*(L{,,_1ym)) to Ko(C*(L{,,_1ym+1)), and the
identity homomorphism from K1 (C*(L{,, _y.)) to K1(C* (sznq)mﬂ )). Clearly
p’ induces the identity map on K,(O,).

Let A = @(Am,pm x p'). Theorem 3.8 and Proposition 5.7 combine to show
that

K.(C*(A)) 2 lm((Z/(n — 1)Z,Z/(n — 1)Z), (x (n — 1),id)).

Since multiplication by n — 1 is the 0 homomorphism from Z/(n — 1)Z to
Z/(n —1)Z, it follows that K,.(C*(A)) = (0,Z/(n — 1)Z).

Lemma 4.7 proves that A is cofinal. For an infinite path y € A°°, Lemma 4.5
combined with the observation that the cycles in the L’("n_l)m grow with m
shows that if a,b € N? and 0(y) = o®(y), then a and b differ only in their
first coordinates. It follows from Proposition 4.3 that the aperiodicity of A
is implied by the well-known aperiodicity of B,,. Hence C*(A) is simple by
[20, Proposition 4.8]. Moreover, since every vertex of A hosts a cycle with an
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entrance, C*(A) is also purely infinite (see [20, Proposition 4.9], [38, Proposi-
tion 8.8]). The result therefore follows from the Kirchberg-Phillips classification
theorem [28]. O

6.4. HIGHER-RANK BUNCE-DEDDENS ALGEBRAS. In this subsection we de-
scribe a class of simple AT algebras with real-rank 0 which arise from sequences
of covering systems of 2-graphs and which cannot in general be obtained from
the construction of [27] (see Example 6.6 and Theorem 6.7). We indicate in
Remark 6.12 why we think of these algebras as higher-rank analogues of the
Bunce-Deddens algebras.

For k > 1, let A be the k-graph with vertices Z¥, morphisms {(m,n) €
ZF x ZF : m < n} where r(m,n) = m, s(m,n) = n and d(m,n) = n—m. There
is a free action of Z* on Ay, given by translation; that is m-(p, q¢) = (p+m, g+m)
for m € Z* and (p,q) € Ay.

Given a finite-index subgroup H of Z*, we denote by Ay /H the quotient of Ay
by the action of H. That is, for ¢ € N*, (Ax/H)? = {[g,9+ q] : g € Z*}; in
particular, (Ay/H)® = {[g,9] : g € Z*}, and we henceforth identify (A /H)°
with Z*/H via the map [g, g] — [g] where [g] denotes the class g + H of g in
Z*/H. The range and source maps in A /H are then given by ([g, g+4q]) = [g]
and s([g,9+¢q]) =g+ ¢|. If H C H is a finite-index subgroup of H, then it
also has finite index in Z*, and there is a natural surjection p : Z¥/H' — ZF/H
which induces a finite covering map, also denoted p of Ay/H by Ay /H'.
Most of the remainder of this section is concerned with the following example
of a sequence of covering systems.

Ezample 6.6. Let Hi D Hy D Hs D ... be a chain of finite-index sub-
groups of Z%. For each n, let p, : Ay/H,y1 — Ag/H, be the canonical
covering induced by the quotient maps described above, let m,, = 1, and let
Sp @ Ag/Hui1 — Sp be the trivial cocycle. This data specifies a sequence
(Ag/Hy, As/Hpt1,pn)22, of row-finite covering systems of 2-graphs with no
sources. Applying Corollary 2.11, we obtain a 3-graph lim(As/H,,;py)). As
always, Py denotes } -, c(n, /)0 Sv € C*(A2/Hy) C C*(@(Ag/Hn;pn)).
THEOREM 6.7. Consider the situation of Fxample 6.6.
(1) We have
KO(Plc*(@(AQ/Hn;pn))PI) = @(Z; X[Hn : HnJrl]) e Z,

and this isomorphism takes [P1] to (g,0) where g is the image of [Z* : Hi|

in the direct limit im(Z, x[Hy, : Hn1]).
(2) For each n the homomorphism from Z? to Z* determined by coordinate-

wise multiplication by the integer [Hy, : Hy 1] restricts to a homomorphism
MH, Hpyy @ Hn — Hyp1. Moreover,

Ky (PO (im(Az/ Hy; pn)) Pr) = hm(Hy, mo,, i, 4, )-
(3) C*(im(As/Hy;py)) is simple if and only if (o Hn, = {0}, and is an AT

alge% with real-rank 0 when it is simple.
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The proof of this result will occupy the bulk of this section. Before presenting
it, we state a Corollary and use it to formulate some concrete examples.

COROLLARY 6.8. Consider the situation of Example 6.6. There are sequences
(W), and (h%)22, in Z? such that: (1) for each n, the elements h} and

Ly generate Hy; and (2) the matriz M, = (m“ 3

. 1
V) satisfying byt =
mg 1 My o ) fy 9 M
my  hi + mi o hy and Ryttt = my 1 hi + my ohy has positive determinant for

n n
my o, —my o

all n. Moreover, if M:* denotes the classical adjoint (7m7211 mr ) of My, for
each n, and if we regard these matrices as homomorphisms of Z?, then
(6.2) K1(PyC* (im(Ag / Hy; py)) Pr) = Lim(Z2, M;P).

Proof. That we can choose the h} so that the matrices M,, all have positive
determinant follows from an inductive argument based on the observation that
replacing h " with —h?*! reverses the sign of det(M,,).

For each n, let v, be the isomorphism of Z? onto H,, satisfying 1, (e;) = h?,
and let mpy, H,., : Hy — Hyy1 be the homomorphism described in Theo-
rem 6.7(2). We claim that 9,41 0 M3* = mpy, nm,., © ¥n.

To see this, observe that mg,, m,,, is multiplication by the determinant of M,,.
Hence, as rational transformations, mI_Ji,,HnH o M = M, *. Since mu,, m,+1
commutes with 1, the desired equality ¥, 1 o M;* = mpg, H,,, © ¥n is
therefore equivalent to 1,11 = 9, o M,,, which follows from the definitions of
the maps involved. This establishes the claim.

The claim guarantees that lim(H,, mu, m,,,) = lim(Z*, M;?), and (6.2) then

follows from Theorem 6.7(2). O

Ezamples 6.9. (1) Let « and 8 be supernatural numbers. For n € N\ {0},
let ¢, be the homomorphism of Z2 determined by the diagonal matrix
an, 0
M, = ( o B )
For each n, let
H, :=a[l,n)Z x B[1,n)Z = ¢,(Z?) C Z2.
We deduce from Theorem 6.7 that
K.(PiC* (lim(As/ Has pa)) P1) = (2[5] © 2, Z[L] @ 2[1]),
that the position of the unit in K corresponds to the element (aq,0), and
that PyC*(lim(Az/H,;pn)) P is a simple AT algebra of real-rank 0.

We claim that this is an example of an AT algebra which cannot be
realised using a rank-2 Bratteli diagram as in [27]. To see this, suppose
otherwise. Then [27, Theorem 6.1] implies that there exists an injective
homomorphism ¢ : Z[ﬂ &) Z[%} — Z[%ﬁ] @ Z such that each element of
coker(¢) has finite order. Hence there exists (z,y) € Z [é] eZ [%] such that
¢(x,y) = (z,m) with m # 0. Since Z[1]BZ [%] is generated by elements of
the form (z,0) and (0, y), we may in fact assume without loss of generality
that there is an element x € Z[1] such that ¢(z,0) = (z,m). Since « is
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infinite, there exist n > m and 2’ € Z[%] such that n - 2’ = z, and this
forces n - ¢(a’,0) = (2, m) which is impossible by our choice of n.

Since each Ay /H,, & LZ[Ln] X LZ}[Ln]v the K-theory calculations for this

example can also be verified using the Kiinneth formula (Theorem 3.8 and
Proposition 5.7).
Let ¢ be the homomorphism of Z? determined by the integer matrix M :=
(‘; 2). Suppose that M is diagonalisable as a real 2 x 2 matrix, and that
its eigenvalues are greater than 1 in modulus. Let D := ad — bc be the
determinant of M. For n > 1, let H, := M"Z? and A,, := Ay/H,. Our
assumption regarding the eigenvalues of M ensures that (-, H, = {0}, so
Theorem 6.7 and Corollary 6.8 imply that C*(lim(Az/Hy; py)) is a simple
AT algebra of real rank zero with T

K. (PO (D / Hyip) ) = (23] & 2, lim (22, (2 ) ).

In particular, let M = (Z *Z) with a? + b? > 1. We may identify Z? with
the group of Gaussian integers Z[i| by (m,n) — m+in, and then the group
homomorphism of Z2? obtained from multiplication by M coincides with
the group homomorphism of Z[i] obtained from multiplication by a + b.
Likewise M°* implements multiplication by the conjugate a — ib. With

D:=a?>+b%and ¢ := a_lib = aazf;;, we have

K.(PiC* (lim(Az/ Has pa))P) = (2] ] © 2, Zi,1]).

by Theorem 6.7.

More generally, a sequence of Gaussian integers ¢; := a; + bji with |(;]| > 1
for all j gives rise to a natural notion of a Gaussian supernatural number
¢= H(;L ¢;. Generalising the construction of the latter part of example (2)

above, let H, := ([[}_, (;)Z[i) for each n, and identify Z[i] with Z? as a
group to obtain a decreasing chain of subgroups of H, of Z? with trivial
intersection.
Let a be the supernatural number a = [[Z, |¢;]*. Then
KL (PiC*(lim(Ao/ Hyi pa))P) = (21 02, 2[i, 1)
by Theorem 6.7 and Corollary 6.8.

now turn to the proof of Theorem 6.7; in particular, we adopt the notation

and conventions of Example 6.6. Our first step is to describe explicitly the
K-theory of C*(Ay/H,) for a fixed n € N\ {0}. We do this using the results
of Section 5.2.

For

q € ZF we write ¢ and ¢_ for the positive and negative parts of ¢. That

is to say that ¢, and ¢_ are the unique elements of N* whose coordinate-wise
minimum ¢4 A g is equal to 0, and which satisfy ¢ = ¢4 — q—.

For

q € Z*, a cycle of degree q in a k-graph A is a pair (u,v) where p € A%+

and v € A% such that r(u) = r(v) and s(u) = s(v). When g € N¥, ¢ = ¢,
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and g = 0, so v is a vertex, and p is a cycle in the usual sense: a path whose
range and source coincide.

Let H C Z? be a finite-index subgroup of Z2. Let G = Z?/H. We view the
ring ZG as the collection of functions f : G — Z. For X C G we denote the
indicator function of X by 1x. We denote the point-mass at g € G by d,.

Let A := Ay/H. Let E be the skeleton of A. That is F is the directed graph
with the same vertices as A, and edges A°*UA°2, with range and source inherited
from A. The degree map from A restricts to a map from E* to {ej,ea}. As in
[31, 27] we call edges in F blue when they are of degree ey in A, and red when
they are of degree e2. We often blur the distinction between concatenation of
edges in E and the corresponding factorisation of a path in A.

Recall that we are identifying A with G = Z?/H. Hence, given a path a =
apay - - - a, in E, we define functions f° and f7 in ZG by

falg) = #{0<j<n:r(a)=g.da;)=e}
fo(h) = #{0<k<mn:r(ag) =h,d(ar) = ez2}.

The idea is that f%(g) counts the number of blue edges in o whose range is g,
and fT(g) does the same thing for red edges.

We define f, € ZG @ ZG by f, = f2 @ fI. For a vertex g € A’ = G, we define
f;’ and f7 to be the zero element of ZG, and f, = f_f; @ f, is then the zero
element of ZG & ZG.

As A = Ay /H, for each g € A° = G there is a unique path [g,g + (1,1)] of
degree (1, 1) with range g. Using the factorisation property, we can express this
path as byrgy(e;] = Tgbgy[e,) Where ry and by denote the unique red and blue
edges in E with range g (for n € Z2, [n] denotes the class of n in the quotient
group G = Z?/H). We write z, for the function (8, (e, — dg) & (0g — dgt(ey])
in ZG & ZG.

Given paths « = ag---a,, and 8 = by - - - b,, in the skeleton F of A such that
r(ao) = r(bo) and s(am) = s(bn), let fop == fo — f3 € ZG & ZG. Fix
generators hi, ho for H; so [h;] = [0] in G. By definition of A, there are unique
paths puf € A"+ and 7 € AP~ with r(uf) = 0. Fix factorisations ai of
,uli into edges from the skeleton E. Since

s(pf) = [(h1)+] = [(h1)-] = s(py)

in G, the pair (u],u7) is a cycle of degree hy in A with range [0]. The same
construction for hy gives a cycle (ug, uy ) of degree hy with range [0] and fixed
factorisations o of p3 into edges from the skeleton E.

LEMMA 6.10. With the notation established in the preceding paragraphs, the
chain complex (5.6) can be described as follows:

(1) for each g € G, 01(0yg ©0) = 0y — dgpfe,], O1(0 B y) = 0y — dgy[e,], and

02(3g) = (Ogt(es) — 0g) B (0 — Ogi(es)) = 2g-

(2) coker(01) = Z is generated by do + Im(dy);
(3) ker(02) = Z is generated by 1g;
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(4) For each h € G, the set {z,: g € G\ {h}} is a basis for Im(0y) = ZIGI~1.

(5) Fiz any two factorisations « and B of a path p in A into edges from E.
Then fa — fg S Im(ag), and 0 (fa) =0 (fg) = (5r(a) — (55(a).

(6) ker(01) is the subgroup of ZG & ZG generated by the elements fo 5 where
a and B are paths in the skeleton E with r(a) = r(8) and s(a) = s(8).

(7) There is an isomorphism ¢ of H onto ker(d1)/Im(02) which takes d(p) —
d(v) to fap +Im(0s) for each cycle (u,v) in A and pair of factorisations
a of w and B of v. In particular, for any basis B for Im(0s2), the set
BuU {faf,a;afa;,a;} is a basis for ker(d)) = ZIGIH (where o are the
fized factorisations of the paths = of degree (hi)+ described above).

In particular, K.(C*(A)) = (Z?, H) where the class of the identity in Kq is

identified with the element (|G|,0) of Z2.

Proof. (1) The adjacency matrix M; associated to (A%, A, r, s) is the permu-
tation matrix determined by translation by [e1] in G and similarly for Ms. The
first statement then follows from the formulae for 07 and 9o in terms of My
and Mo.

(2) The formulae for d1 (6, @0) and 91 (0© J4) show that oy +1Im (1) = 0gp(e,) +
Im(d;) in coker(d;) for i = 1,2 and g € G. Since the action of Z? on G by
translation is transitive, this establishes (2).

(3) Using the formula for d2 established in (1), one can see that for f € ZG,
A (f) = f1 @ f2 where

filg) =—flg)+ flg—Tle]) and  fa(g) = f(g) — f(g — [e2]))-

Hence f € ker(02) if and only if f(g) = f(g — [e1]) = f(g — [e2]) for all g € G,
and since the action of Z2 on G is transitive, this establishes (3).

(4) Part (1) establishes that Im(92) is generated by {z4 : ¢ € G}. A simple
calculation shows that 37 2y = 0 in ZG & ZG, and it follows that for any
h € G, the set {2z, : g € G\ {h}} generates Im(J) = ZI¢I=1. Since ker(dz) has
rank 1, the rank of its image is |G| — 1, establishing (4).

(5) By part (4), the image of 0, is generated by elements of the form f, — fg
where o and  are the two possible factorisations of a path in A1V, Since
fag = fo + f3 when a and 8 are paths in E which can be concatenated, this
establishes the first claim. The second statement follows from a straightforward
calculation using that

(6.3) O(f* @ f)(g) = f*(g) = f*lg — [er]) + F7(9) — f7(g — [e2)).

(6) If «, 8 are paths in the skeleton with r(a) = r(8) and s(a) = s(8) then
fa,p belongs to ker(91) by (5).

We must show that every f € ker(d;) can be written as a Z-linear combination
of elements of the form f, g. First note that it suffices to treat the case where f
takes only nonnegative values (this is because 1¢ @ 1¢ can be so expressed). So
suppose that f takes nonnegative values, and write f = f@ f". Let E; be the
directed graph with vertices G and which contains f°(g) parallel copies of the
blue edge in E with range g and f7(g) copies of the red edge in E with range
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g. If Ey contains a terminal vertex g which receives at least one edge but emits
no edges at all, then f*(g) + f"(g) # 0, but f°(g — [e1]) = f"(g — [e2]) = O,
and (6.3) shows that 01(f)(g) # 0. Hence Ey contains no such vertex, and
therefore must either contain a cycle a or contain no edges at all. In the latter
case, the claim is trivial, and in the former case, f > f4, and removing the cycle
o from E¢ produces the graph Ey_y, for the function f — f,. After finitely
many such steps, we must obtain a forest with no terminal vertex. The only
such forest is the empty graph which corresponds to the function 0 @ 0. That
is f = qcr fa = 0@ 0 for some collection L of cycles, and this proves (6).
(7) Suppose that (u,v) is a cycle in A. Then

in G =A% =2Z2/H, so d(u) —d(v) € H. Tt is clear from the definition of A
that each element of H arises as d(p) — d(v) for some cycle (u,v) in A.

To see that the assignment d(u) — d(v) — fa,g + Im(02) is well defined, we
must show two things. First that for distinct factorisations @ and o/ of pu and
distinct factorisations 8 and ' of v, the difference fo g — for g lies in the image
of 5. This follows from (5). Second, we must show that if (u, v) and (¢, V') are
cycles in A with d(u) —d(v) = d(p') — d(v'), then there exist factorisations a of
w, Bofv,a of i/, and B’ of v/ such that fo g — for g is in Im(d2). To see this,
first note that by factorising u = p/v and v = v'7 where d(7) = d(u) A d(v),
we can reduce to the case where d(u) Ad(v) = 0. Next we claim that it suffices
to consider the case where r(u) = r(v) = r(u') = r(v') = [0]. To see this, fix
n in [0JAr(u) and note that the cycle (nu, nv) corresponds to the same class as
(u,v) in ker(0y)/Im(0z). Factorise nu = £p and nv = wo where d(§) = d(p),
d(w) = d(v) and d(p) = d(o) = d(n). Since each gA™ is a singleton and
since Z? acts on A by translation, (§,w) is a cycle with range [0], and p = o.
Hence the cycle (€, w) corresponds to the same class in ker(9;)/ Im(02) as (p, ).
After shifting (¢/,7') in a similar way we may assume that both cycles have
range [0]. We now have cycles (i, v) and (¢, ") with range [0] and such that
d(p) —d(v) =d(p') —d(@') and d(p) Ad(v) =0 =d(') Ad(v'). Since [0]JA™ is
a singleton for any n € Z2, this forces u = p/ and v = v/. This completes the
proof that d(u) — d(v) — fa,p+ Im(92) is well defined.

That fog = fo+ f3 ensures that ¥(g+h) = ¢¥(g)+(h), and that fgo = —fa
shows that ¥(—g) = —¢(g). Hence ¢ is a homomorphism. By part (6), to see
that 9 is surjective, we just need to show that each f, g+Im(92) is in the range
of 1. This is clear because fq g + Im(92) is precisely ¥ (d(u) — d(v)) where p
factorises as a and v factorises as 3. Finally, to see that 1 is injective, note that
if fa,5 € Im(02), then d(u) = d(v) where p factorises as o and v factorises as
8. This completes the proof that ¢ : H — ker(9;)/Im(92) is an isomorphism.
The remaining statement follows from (4) and that (u], uy) and (i, py ) are
cycles whose degrees form a basis for H. This proves (7).

The final statement of the Lemma follows from (5.7). O

DOCUMENTA MATHEMATICA 13 (2008) 161-205



200 ALEX KuMJiaN, DAVID PASkK, AIDAN SiMs

We now consider two consecutive graphs in the sequence of covering systems
described in Example 6.6, and describe the homomorphism of K-invariants
obtained from Proposition 3.2(6).

THEOREM 6.11. Consider the situation described in Example 6.6, and fix n €
N\ {0}. Fori = n,n+1, let A; := Az/H;, and consider the commuting
diagram

BAW' BAW
0 —— ZAD 2 ZAO @ ZA < ZAD

lpz lﬁ@pz lpz
ohn+1 A
0 —— ZAY ) ———— ZAD  ®ZAS , —&— ZAY,, —— 0
(1) The right-hand vertical map p} : ZAY — ZAY | restricts to a homo-

morphism p;';|ker(6é\n) : ker(95) — ker(@é\ ") which is characterised by

n+1

p;|ker(6$")(1Gn) = 1Gn+1'
(2) The left-hand vertical map pf, : ZA® — ZA?Hrl induces a homomorphism

pi - coker(d™) — coker(af ") characterised by
P (80 +Im(A)) = [Hy : Hogt] - 8 + Im (9" ).

(3) The middle vertical map p}, ®py, : ZA2 ®ZAY — ZAY | & ZAY_ | induces a
homomorphism (p* @& p)™ : ker(82")/ Im(85") — ker(ai\"“)/ Im(@f”“)
such that the following diagram commutes.

H, —" ker(92)/ Im(95™)

n
lmHn,Hm l(p:,,@p;)N

Hi =55 ker(91)/ Tm(95+)

where ¥, and Pn41 are the isomorphisms obtained from Lemma 6.10(7),
a1 5 as in Theorem 6.7(2).

Under the isomorphism
K. (C*(Ay)) = (coker(91) & ker(05), ker(91)/Im(03"))
obtained from Corollary 5.6, the maps described in (1), (2) and (3) deter-

mine the map (tp, )« : Ki(C*(Ap)) — Ki(C*(Any1)) obtained from Proposi-
tion 3.2(6).

Proof. Lemma 6.10(3) ensures that 1, generates ker(957) for i = n,n-+1. The
formula for p; shows that p)(la,) = la,,,, which gives (1). Statement (2)
follows from the formula for p} combined with the observation that for i =
n,n + 1, the §,4, g € G; are all equivalent modulo Im(@{\").

It remains only to prove (3). We first consider the case where H,, = Z2, so
G, = {0} and A, is a copy of the 2-graph T, = N2 (as a category) with one
vertex and one morphism ), of each degree m € N?. In this case, 1, is just
the identity map from Z2 to Z®Z. Let hq, ho be a pair of generators for H,, 1.

and My, H
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Since H,, 41 has finite index in Z2, the assignments (1,0) — hy and (0,1) — hs
determine an endomorphism of H, which is a rational isomorphism. Hence it
suffices to show that (pi@®p:)~ o, (hi) = ¥ni1([Z? : Hyiq]-hi) fori =1,2. We
just argue that this happens for ¢ = 1 (the case i = 2 follows from a symmetric
argument).

Writing hy = (x,y) where x,y € Z, the formula for p} ensures that (p} @ p})™
takes ¥, (h1) to the class of zlg, ,, ® yla, ,. To see that this is ¢,41([Z* :
Hyq1] - ha), let f == faf,a; = tn11(h1) be the function in ZG, 1 ® ZGpia
obtained from Lemma 6.10(7). By definition of f, we have f = f, ® f, where
the entries of f; sum to x and the entries of f, sum to y. For g € G, 41, let
g+ fv be the function determined by g - fi(h) = fp(h — g), and similarly for f,.
Since Gy41 acts freely and transitively on A%, ; = Gy 41, it follows that

(64) deGnJrl g-f= len+1 D y]-Gn+1 - (p:z D p;)w o wn(hl)

The proof of statement (7) in Lemma 6.10 shows that each g- f :=g- fo ®g- f»
represents the same class as f in ker(@i\"“)/ Im(@f”“). Hence the left-hand
side of (6.4) has the same class in ker(@f”“)/ Im(@é\"“) as Ynt1(|Gni1| - h1)
as required.

For the general case, first note that we may assume without loss of generality
that Hy = Z? so that Ay = T5. Let ppy ) := p1 o+ 0 pp_1 and ppy ,4q) =
p1o---op, be the coverings of A; = T by A,, and A,,41 obtained by composing
the first n and n + 1 levels of the covering system; we may apply the argument
of the previous paragraph to these coverings. Then pp ,41] = P[1,n] © P, SO
pE‘I’nH} P p[*LRH] = (pf‘lﬁn] P pE‘Ln]) o (p: @ p), and since these maps induce

homomorphisms between ker(972)/Im(8;2) and ker(@f"“) / Im(aé\ "+ which
are rational isomorphisms, it follows that (pf @ p¥)~ behaves as claimed.
The final statement follows from Corollary 5.6. O

We are now ready to prove Theorem 6.7.

Proof of Theorem 6.7. Proposition 3.2 shows that P is full so that compression
by P; induces an isomorphism on K-theory. The formulae for the K-groups
in statements (1) and (2) follow from Lemma 6.10 and Theorem 6.11 and the
continuity of the K-functor.

Since v(Ag/Hy)w # O for all n € N\ {0}, and v,w € AY/H,, the 3-graph
lim(As/H,, py) is cofinal. Moreover a given infinite path  in lim(Ay/H,,, py,) is
[;“iodic with period m € Z2 if and only if every infinite path i;hm(Ag/Hn, Dn)
is periodic with period m, which in turn is equivalent to the condition that
m € 2, Hy. It follows from Lemma 4.5 that lim(Ay/H,,, p,,) is simple if and
only if (| H,, = {0}; moreover, in this case, the ggument of the second part of
[27, Section 5] shows that C*(lim(As/Hy, py)) has unique trace.

We next claim that each C*(ZQ/H»”) = Miz2.,1(C(T?)). To verify this,
one first checks that h +— 5[(0,h+)}5>{(o,h,)] is a group isomorphism H, —
U(s10)C*(A2/Hy)sp) for each n. The standard argument used in [27,
Lemma 3.9] shows that each 5[(0,h+)}5>[k(0,h,)] has full spectrum. One can

DOCUMENTA MATHEMATICA 13 (2008) 161-205



202 ALEX KuMJiaN, DAVID PASkK, AIDAN SiMs

then deduce that sqC*(Az/Hy)sg = C*(H,) = C*(Z*) = C(T?). For
m € Z?/H,, define V,, = Slom] € C*(A3/H,). Applying Lemma 3.3
to these partial isometries with p = so; and ¢ = lgw(a,/m,)proves that
C*(A2/Hp) = Migz.p,) (C(T?)).

It now follows from [3, Theorem 1.3] that C*(lim(Ag/Hy;py)) has real-rank
0. The classification of such algebras of Didarlat-Elliott-Gong (see [36, Theo-
rem 3.3.1]), and the K-theory calculations above complete the proof. O

Remark 6.12. Higher-rank Bunce-Deddens algebras and generalised odometer
actions. We consider a slightly more general version of the situation described
in Example 6.6. Let H; D Hy D H3 D ... be a chain of finite-index sub-
groups of ZF such that N, Hn = {0}. For each n, let p, : Ap/Hpi1 — Ay/Hy
be the canonical covering induced by the quotient maps described above, let
m, = 1, and let s, : Ag/H,y1 — S1 be the trivial cocycle. This data spec-
ifies a sequence (Ap/Hp,Ar/Hpi1,pn)5>; of row-finite covering systems of
k-graphs with no sources. Applying Corollary 2.11, we obtain a (k + 1)-graph
lm(Ag/Hp; pn)-

We claim that the corner P,C* (im(Ag/Hy;pn))P1 can be thought of as a
higher-rank Bunce-Deddens algebr?m. We justify this by giving a description
of PC* (@(Ak/Hn;pn))Pl as a crossed product by a generalised odometer
action. We assume here that H; = Z* so that A, /H; is a copy of the k-graph
T), = N¥ (as a category) with one vertex and one morphism A, of each degree
m € NF,

One way to realise the Bunce-Deddens algebras is as crossed products of alge-
bras of continuous functions on Cantor sets by generalised odometer actions.
Given a supernatural number a = aqaz---, let G, := Z/a[l,n]Z for all n.
Then for each n, since a1, n+1]Z D a[l, n|Z, there is a natural surjective group
homomorphism from G,4+;1 to G,,. Hence, we may form the projective limit
group lim(Gy, pn). The automorphism 7(g1,92,...) = (g1 + [1], 92 + [1],...)
for (g1,92,...) € @(Gmpn) can then naturally be regarded as an odometer
action on liLn(Gn,pn). The Bunce-Deddens algebra of type « is the crossed
product C(im(Gy,p,)) 7 Z where 7 is the automorphism of C(lim(Gn, pn))
induced by 7 (see [33, Examples 1(3)]).

There is an analogous realisation of PyC*(im(Ay/Hy,py))P1 as follows. Let
A :=1lim(Ag/Hp, pp). Let F' denote the fixed-point algebra of C*(A) for the
gauge action v of T+, Note that by Remark 3.9, the restriction of the gauge
action to PyC*(A)Py is trivial on the last coordinate of T**1 and therefore
becomes an action by T* denoted 7. Recall that A denotes the collection
of infinite paths in A (see Notation 4.1). It is not hard to see that P, FP; is
canonically isomorphic to C(vA®®) where v is the unique vertex of Ay /Hy =2 T,.
Let G, := Zk/Hn for each n, and let p, : Gn,4+1 — G, be the induced map
pn(m+ Hpt1) := m—+ H,. Observe that G = @(Gn,pn) is a compact abelian
group. By functoriality of the projective limit the quotient maps Z* — Z*/H,,
induce a homomorphism j : ZF¥ — G; injectivity of j follows from the fact
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that (), H, = {0}. There is an action 7 of Z* on G given by 7,,(g1,92,...) =
(g1 +[m],g2+[m],...), which generalises the odometer action discussed above.
Since there is just one infinite path in T}, the arguments of Section 4 show that
vA>® = G as a topological space. Note that for every m € N¥, the generator
Sx,, associated to the unique path A, € T} is a unitary in P;C*(A)P; and
that under the identification of PyFP; with C(vA*) = C(G) conjugation by
Sx,, implements the automorphism induced by the homeomorphism 7,,, of G.
It follows that the reduction of the path groupoid (see [20, Section 2]) of A to
vA™> is isomorphic to the semidirect product groupoid G x, ZF. Therefore,
standard arguments show that

P,C*(A)P, =2 CO(G) %z ZF
where 7 is the action induced by 7. Note that under this identification the

restricted gauge action 4 coincides with the dual action of T* = Zk.
The action of G on C(G) induced by translation in G yields an action of G on

C(G) x7 Z* which commutes with the dual action of T* = Z*. Thus we obtain
an action a by the compact abelian group G x T* with fixed point algebra
isomorphic to C. Hence, C(G) xz Z* (and thus P,C*(A)P;) admits an ergodic
action of a compact abelian group. Such ergodic actions have been classified in
[24, 4.5, 6.1]; the invariant is a symplectic bicharacter y, on G x Z*, the dual
of G x T*. This gives rise to an alternative description of the C*-algebra as a
twisted group C*-algebra with the group G x ZF and a 2-cocycle associated to
the bicharacter y, (only its cohomology class is determined by the bicharacter).
It follows that
C(G) %+ ZF = C(T*) x G

where the action of G on C(T*) arises by translation from the embedding
G — TF dual to j : ZF — G.
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ABSTRACT. The aim of the paper is to calculate face numbers
of simple generalized permutohedra, and study their f-, h- and -
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associahedra, simple graphic zonotopes, nestohedra, and other inter-
esting polytopes.

We give several explicit formulas for h-vectors and ~y-vectors involv-
ing descent statistics. This includes a combinatorial interpretation
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flag simple polytopes, and confirms for them Gal’s conjecture on the
nonnegativity of y-vectors.
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corresponding to all Dynkin diagrams of finite and affine types. We
also discuss relations with Narayana numbers and with Simon New-
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1 INTRODUCTION

Generalized permutohedra are a very well-behaved class of convex polytopes
studied in [Post’05], as generalizations of the classical permutohedra, associ-
ahedra, cyclohedra, etc. That work explored their wonderful properties from
the point of view of valuations such as volumes, mixed volumes, and number of
lattice points. This paper focuses on their further good behavior with respect
to face enumeration in the case when they are simple polytopes.

Simple generalized permutohedra include as an important subclass (the duals
of) the nested set complexes considered by DeConcini and Procesi in their
work on wonderful compactifications of hyperplane arrangements; see [DP’95,
FS’05]. In particular, when the arrangement comes from a Coxeter system, one
obtains interesting flag simple polytopes studied by Davis, Januszkiewicz, and

DOCUMENTA MATHEMATICA 13 (2008) 207-273



FACES OF GENERALIZED PERMUTOHEDRA 209

Scott [DJS’03]. These polytopes can be combinatorially described in terms of
the corresponding Coxeter graph. Carr and Devadoss [CD’06] studied these
polytopes for arbitrary graphs and called them graph-associahedra.

We mention here two other recent papers in which generalized permutohedra
have appeared. Morton, Pachter, Shiu, Sturmfels, and Wienand [M-W’06]
considered generalized permutohedra from the point of view of rank tests on
ordinal data in statistics. The normal fans of generalized permutohedra are
what they called submodular rank tests. Agnarsson and Morris [AM’06] in-
vestigated closely the 1-skeleton (vertices and edges) in the special case where
generalized permutohedra are Minkowski sums of standard simplices.

Let us formulate several results of the present paper. A few definitions are
required. A connected building set B on [n] := {1,...,n} is a collection of
nonempty subsets in [n] such that

1.ifI,JeBandINJ #0, then IUJ € B,
2. B contains all singletons {¢} and the whole set [n];

see Definition 6.1. An interesting subclass of graphical building sets B(G) comes
from connected graphs G on [n]. The building set B(G) contains all nonempty
subsets of vertices I C [n] such that the induced graph G|; is connected.
The nestohedron Pg is defined (see Definition 6.3) as the Minkowski sum

Ps=7) A

IeB

of the coordinate simplices Ay := ConvexHull(e; | 7 € I), where the e; are the
endpoints of the coordinate vectors in R”. According to [Post’05, Theorem 7.4]
and [FS’05, Theorem 3.14] (see Theorem 6.5 below), the nestohedron Pg is a
simple polytope which is dual to a simplicial nested set complex. For a graphical
building set B(G), the nestohedron Pg(g) is called the graph-associahedron. In
the case when G is the n-path, Pp(g) is the usual associahedron; and in the
case when G = K, is the complete graph, Pg(g) is the usual permutohedron.
Recall that the f-vector and the h-vector of a simple d-dimensional polytope P
are (fo, f1,-.., fa) and (ho, h1,..., hq), where f; is the number of i-dimensional
faces of P and Y h; (t+1)" =Y fit'. It is known that the h-vector of a simple
polytope is positive and symmetric. Since the h-vector is symmetric, one can
define another vector called the y-vector (y1,72,...,7|4/2)) by the relation

L£)

d
D hitt =)yt (14 1)
=0

=0

A simplicial complex A is called a flag complex (or a clique complex) if its
simplices are cliques (i.e., subsets of vertices with complete induced subgraphs)
of some graph (1-skeleton of A). Say that a simple polytope is flag if its dual
simplicial complex is flag.
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Gal conjectured [Gal’05] that the «-vector has nonnegative entries for any flag
simple polytope.

Let us that say a connected building set B is chordal if, for any of the sets
I={i <. <i.}in B, all subsets {is,4s511,...,%,} also belong to B; see
Definition 9.2. By Proposition 9.4, graphical chordal building sets B(G) are
exactly building sets coming from chordal graphs. By Proposition 9.7, all
nestohedra Pg for chordal building sets are flag simple polytopes. So Gal’s
conjecture applies to this class of chordal nestohedra, which include graph-
associahedra for chordal graphs and, in particular, for trees.

For a building set B on [n], define (see Definition 8.7) the set &,,(B) of B-
permutations as the set of permutations w of size n such that, for any ¢ =
1,...,n, there exists I € B such that I C {w(1),...,w(i)}, and I contains
both w(i) and max{w(1),w(2),...,w(i)}. It turns out that B-permutations
are in bijection with vertices of the nestohedron Pg; see Proposition 8.10.

Let des(w) = #{i | w(i) > w(i + 1)} denote the number of descents in a
permutation w. Let én be the subset of permutations w of size n without two
consecutive descents and without final descent, i.e., there is no ¢ € [n — 1] such
that w(i) > w(i + 1) > w(i + 2), assuming that w(n + 1) = 0.

THEOREM 1.1. (Corollary 9.6 and Theorem 11.6) Let B be a connected chordal
building set on [n]. Then the h-vector of the nestohedron Py is given by

Z h; 1= Z tdes(w)7

weS, (B)

and the vy-vector of the nestohedron Pg is given by

Z i ti _ Z tdes(w)'

WEG, (B)NE,
This result shows that Gal’s conjecture is true for chordal nestohedra.

The paper is structured as follows. Sections 2, 3, and 4 give some background
on face numbers and general results about generalized permutohedra. More
specifically, Section 2 reviews polytopes, cones, fans, and gives basic terminol-
ogy of face enumeration for polytopes (f-vectors), simple polytopes (h-vectors),
and flag simple polytopes (vy-vectors).

Section 3 reviews the definition of generalized permutohedra, and recasts this
definition equivalently in terms of their normal fans. It then sets up the dic-
tionary between preposets, and cones and fans coming from the braid arrange-
ment. In particular, one finds that each vertex in a generalized associahedron
has associated to it a poset that describes its normal cone. This is used to
characterize when the polytope is simple, namely when the associated posets
have Hasse diagrams which are trees. In Section 4 this leads to a combinatorial
formula for the h-vector in terms of descent statistics on these tree-posets.
The remainder of the paper deals with subclasses of simple generalized permu-
tohedra. Section 5 dispenses quickly with the very restrictive class of simple
zonotopal generalized permutohedra, namely the simple graphic zonotopes.
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Sections 6 through 11 deal with the very interesting class of nestohedra, cul-
minating with a proof of Gal’s conjecture for chordal nestohedra. More specif-
ically, Section 6 discusses nestohedra Pg coming from a building set B, where
the posets associated to each vertex are rooted trees. These include graph-
associahedra. Section 7 characterizes the flag nestohedra.

Section 8 discusses B-trees and B-permutations. These trees and permuta-
tions are in bijection with each other and with vertices of the nestohedron Pg.
The h-polynomial of a nestohedron is the descent-generating function for B-
trees. Then Section 9 introduces the class of chordal building sets and shows
that h-polynomials of their nestohedra are descent-generating functions for B-
permutations.

Section 10 illustrates these formulas for h-polynomials by several examples: the
classical permutohedron and associahedron, the cyclohedron, the stellohedron
(the graph-associahedron for the star graph), and the Stanley-Pitman polytope.

Section 11 gives a combinatorial formula for the y-vector of all chordal nestohe-
dra as a descent-generating function (or peak-generating function) for a subset
of B-permutations. This result implies Gal’s nonnegativity conjecture for this
class of polytopes. The warm-up example here is the classical permutohedron,
and the section concludes with the examples of the associahedron and cyclohe-
dron.

Sections 12 through 14 give some graph-associahedra calculations as well as
conjectures. Specifically, Section 12 calculates the generating functions for f-
polynomials of the graph-associahedra for all trees with one branching point
and discusses a relation with Simon Newcomb’s problem. Section 13 deals
with graphs that are formed by a path with two small fixed graphs attached to
the ends. It turns out that the h-vectors of graph-associahedra for such path-
like graphs can be expressed in terms of h-vectors of classical associahedra.
The section includes explicit formulas for graph-associahedra for the Dynkin
diagrams of all finite and affine Coxeter groups. Section 14 gives some bounds
and monotonicity conjectures for face numbers of generalized permutohedra.

The paper ends with an Appendix which clarifies the equivalence between var-
ious kinds of deformations of a simple polytope.

ACKNOWLEDGMENTS: The authors thank Federico Ardila, Richard Ehren-
borg, Ira Gessel, Sangwook Kim, Jason Morton, Margaret Readdy, Anne Shiu,
Richard Stanley, John Stembridge, Bernd Sturmfels, Oliver Wienand, and An-
drei Zelevinsky for helpful conversations.

2 FACE NUMBERS

This section recalls some standard definitions from the theory of convex poly-
topes and formulates Gal’s extension of the Charney-Davis conjecture.
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2.1 POLYTOPES, CONES, AND FANS

A convex polytope P is the convex hull of a finite collection of points in R™.
The dimension of a polytope (or any other subset in R™) is the dimension of
its affine span.

A polyhedral cone in R™ is a subset defined by a conjunction of weak inequalities
of the form A(z) > 0 for linear forms A € (R™)*. A face of a polyhedral cone
is a subset of the cone given by replacing some of the inequalities A(z) > 0 by
the equalities A(z) = 0.

Two polyhedral cones o1, 09 intersect properly if their intersection is a face of
each. A complete fan of cones F in R"™ is a collection of distinct nonempty
polyhedral cones covering R™ such that (1) every nonempty face of a cone in
F is also a cone in F, and (2) any two cones in F intersect properly. Cones in
a fan F are also called faces of F.

Note that fans can be alternatively defined only in terms of their top di-
mensional faces, as collections of distinct pairwise properly intersecting n-
dimensional cones covering R™.

A face F of a convex polytope P is the set of points in P where some linear
functional A € (R™)* achieves its maximum on P, i.e.,

F={x € P|Xz)=max{\(y) | y € P}}.

Faces that consist of a single point are called vertices and 1-dimensional faces
are called edges of P.

Given any convex polytope P in R™ and a face F' of P, the normal cone to
P at F, denoted Np(P), is the subset of linear functionals A € (R™)* whose
maximum on P is achieved on all of the points in the face F, i.e.,

Np(P):={) e (R")" | XM(z) = max{\(y) | y € P} for all z € F}.

Then Np(P) is a polyhedral cone in (R™)*, and the collection of all such cones
NF(P) as one ranges through all faces F of P gives a complete fan in (R™)*
called the normal fan N'(P). A fan of the form N(P) for some polytope P is
called a polytopal fan.

The combinatorial structure of faces of P can be encoded by the lattice of faces
of P ordered via inclusion. This structure is also encoded by the normal fan
N (P). Indeed, the map F — Npg(P) is an inclusion-reversing bijection between
the faces of P and the faces of N'(P).

A cone is called pointed if it contains no lines (1-dimensional linear subspaces),
or equivalently, if it can be defined by a conjunction of inequalities A;(z) > 0
in which the A; span (R™)*. A fan is called pointed if all its faces are pointed.
If the polytope P C R"™ is full-dimensional, that is dim P = n, then the normal
fan NV(P) is pointed. For polytopes P of lower dimension d, define the (n — d)-
dimensional subspace P+ C (R™)* of linear functionals that are constant on P.
Then all cones in the normal fan A/(P) contain the subspace Pt. Thus N(P)
can be reduced to a pointed fan in the space (R™)*/P~.
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A polytope P is called simple if any vertex of P is incident to exactly d = dim P
edges. A cone is called simplicial if it can be given by a conjunction of linear
inequalities A;(z) > 0 and linear equations u;(z) = 0 where the covectors \;
and p; form a basis in (R™)*. A fan is called simplicial if all its faces are
simplicial. Clearly, simplicial cones and fans are pointed. A convex polytope
P C R" is simple if and only if its (reduced) normal fan A'(P)/P= is simplicial.
The dual simplicial complez Ap of a simple polytope P is the simplicial complex
obtained by intersecting the (reduced) normal fan N(P)/P+ with the unit
sphere. Note that i-simplices of Ap correspond to faces of P of codimension
v+ 1.

2.2  f-VECTORS AND h-VECTORS

For a d-dimensional polytope P, the face number f;(P) is the number of i-
dimensional faces of P. The vector (fo(P),..., fa(P)) is called the f-vector,
and the polynomial fp(t) = Z?:o fi(P)t! is called the f-polynomial of P.
Similarly, for a d-dimensional fan F, f;(F) is the number of i-dimensional faces
of F, and fr(t) = Z?:o fi(F)t'. Note that face numbers of a polytope P and
its (reduced) normal cone F = N(P)/P+ are related as fi(P) = fq_i(F), or
equivalently, fp(t) =t fr(t71).

We will most often deal with the case where P is a simple polytope, or equiv-
alently, when F is a simplicial fan. In these situations, there is a more
compact encoding of the face numbers f;(P) or f;(F) by smaller nonnega-
tive integers. One defines the h-vector (ho(P),...,hq(P)) and h-polynomial
hp(t) = Z?:o h;(P)t' uniquely by the relation

fp(t) = hp(t+1), or equivalently, f;(P) =" <;) hi(P), 7=0,...,d.

K3

1)
For a simplicial fan F, the h-vector (ho(F),...,hq(F)) and the h-polynomial
hr(t) = Z?:o hi(F)t* are defined by the relation t¢ f£(t~1) = hx(t + 1), or
equivalently, f;(F) = >_, (dij)hi(}"), for j =0,...,d. Thus the h-vector of a
simple polytope coincides with the h-vector of its normal fan.
The nonnegativity of h;(P) for a simple polytope P comes from its well-known
combinatorial interpretation [Zieg’94, §8.2] in terms of the 1-skeleton of the
simple polytope P. Let us extend this interpretation to arbitrary complete
simplicial fans.
For a simplicial fan F in R?, construct the graph Gz with vertices correspond-
ing to d-dimensional cones and edges corresponding to (d—1)-dimensional cones
of F, where two vertices of Gx are connected by an edge whenever the cor-
responding cones share a (d — 1)-dimensional face. Pick a vector g € R that
does not belong to any (d — 1)-dimensional face of F and orient edges of Gz,
as follows. Orient an edge {01, 02} corresponding to two cones o1 and o9 in F
as (01, 02) if the vector g points from o7 to o2 (in a small neighborhood of the
common face of these cones).
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PROPOSITION 2.1. For a simplicial fan F, the ith entry h;(F) of its h-vector
equals the number of vertices with outdegree i in the oriented graph Gx. These
numbers satisfy the Dehn-Sommerville symmetry: hi(F) = hq—i(F).

COROLLARY 2.2. (cf. [Zieg’94, §8.2]) Let P € R™ be a simple polytope. Pick
a generic linear form A € (R™)*. Let Gp be the 1-skeleton of P with edges
directed so that A increases on each edge. Then h;(P) is the number of vertices
in Gp of outdegree 1.

Proof of Proposition 2.1. The graph G has a unique vertex of outdegree 0.
Indeed, this is the vertex corresponding to the cone in F containing the vector
g. For any face F' of F (of an arbitrary dimension), let G#(F') be the induced
subgraph on the set of d-dimensional cones of F containing F' as a face. Then
Gr(F) ~ Gz, where F' is the link of the face F in the fan F, which is also a
simplicial fan of smaller dimension. Thus the subgraph G (F) also contains a
unique vertex of outdegree 0 (in this subgraph).

There is a surjective map ¢ : F' — o from all faces of F to vertices of G (i.e.,
d-dimensional faces of F) that sends a face F' to the vertex o of outdegree 0 in
the subgraph Gz (F). Now, for a vertex o of G of outdegree i, the preimage
¢~ (o) contains exactly (3:;.) faces of dimension j. Indeed, ¢~1(o) is formed by
taking all possible intersections of o with some subset of its (d —1)-dimensional
faces {Fi,..., Fy_;} on which the vector g is directed towards the interior of o;
there are exactly d — i such faces because o has indegree 7 in G£. Thus a face
of dimension j in ¢~ (o) has the form F;, N---N F;,_, for a (d — j)-element
subset {i1,...,4q—;} C [d—1].

Let h; be the number of vertices of G+ of outdegree i. Counting Jj-dimensional
faces in preimages ¢~ '(o) one obtains the relation f;(F) =3, (g:;.) h;. Com-
paring this with the definition of h;(F), one deduces that hi(F) = hq_;.

Note that the numbers h;(F) do not depend upon the choice of the vector g.
It follows that the numbers h; of vertices with given outdegrees also do not
depend on g. Replacing the vector g with —g reverses the orientation of all
edges in the d-regular graph G, implying the the symmetry h; = hgq_;. O

The Dehn-Sommerville symmetry means that h-polynomials are palindromic

polynomials: t*hz(1) = hz(t). In this sense the h-vector encoding is
more compact, since it is determined by roughly half of its entries, namely
ho’hl""’hL%J'

Whenever possible, we will try to either give further explicit combinatorial
interpretations or generating functions for the f- and h-polynomials of simple
generalized permutohedra.

2.3 FLAG SIMPLE POLYTOPES AND 7-VECTORS

A simplicial complex A is called a flag simplicial complex or clique complex if
it has the following property: a collection C' of vertices of A forms a simplex
in A if and only if there is an edge in the 1-skeleton of A between any two
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vertices in C. Thus flag simplicial complexes can be uniquely recovered from
their 1-skeleta.

We call a simple polytope P is a flag polytope if its dual simplicial complex Ap
is a flag simplicial complex.

We next discuss y-vectors of flag simple polytopes, as introduced by Gal
[Gal’05] and independently in a slightly different context by Branden [Brd’04,
Bré’06]; see also the discussion in [Stem’07, §1D]. A conjecture of Charney and
Davis [ChD’95] led Gal [Gal’05] to define the following equivalent encoding of
the f-vector or h-vector of a simple polytope P, in terms of smaller integers,
which are conjecturally nonnegative when P is flag. Every palindromic poly-
nomial h(t) of degree d has a unique expansion in terms of centered binomials
t(1+t)%2 for 0 < i < d/2, and so one can define the entries v; = ~;(P) of the

d ,
~y-vector (Yo, V1, - - - ’VL%J) and the ~v-polynomial vp(t) := Z}ié ~;t* uniquely
by
L4) ;
hp(t) = A1+ =1+ 8)yp [ ).

=0

CONJECTURE 2.3. [Gal’05] The ~v-vector has nonnegative entries for any flag
simple polytope. More generally, the nonnegativity of the ~y-vector holds for
every flag simplicial homology sphere.

Thus we will try to give explicit combinatorial interpretations, where possible,
for the y-vectors of flag simple generalized permutohedra. As will be seen in
Section 7.1, any graph-associahedron is a flag simple polytope.

3 GENERALIZED PERMUTOHEDRA AND THE CONE-PREPOSET DICTIONARY

This section reviews the definition of generalized permutohedra from [Post’05].
It then records some observations about the relation between cones and fans
coming from the braid arrangement and preposets. (Normal fans of generalized
permutohedra are examples of such fans.) This leads to a characterization for
when generalized permutohedra are simple, an interpretation for their h-vector
in this situation, and a corollary about when the associated toric variety is
smooth.

The material in this section and in the Appendix (Section 15) has substantial
overlap with recent work on rank tests of non-parametric statistics [M—W’06].
We have tried to indicate in places the corresponding terminology used in that

paper.

3.1 GENERALIZED PERMUTOHEDRA

Recall that a usual permutohedron in R™ is the convex hull of n! points obtained
by permuting the coordinates of any vector (aq, ..., a,) with strictly increasing
coordinates a; < --- < an. So the vertices of a usual permutohedron can be
labelled vy, = (@y-1(1), -+ @w-1(n)) by the permutations w in the symmetric
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group &,,. The edges of this permutohedron are [vy,, Vo, ], where s; = (i, + 1)
is an adjacent transposition. Then, for any w € &,, and any s;, one has

Vw — Vws; = kw,i(ew(i) - ew(i+1)) (2)

where the k,; are some strictly positive real scalars, and ey,...,e, are the
standard basis vectors in R".

Note that a usual permutohedron in R™ has dimension d = n — 1, because it is
contained in an affine hyperplane where the sum of coordinates x1 + - -+ + x,
is constant.

DEFINITION 3.1. [Post’05, Definition 6.1] A generalized permutohedron P is
the convex hull of n! points v, in R™ labelled by the permutations w in the
symmetric group Sy, such that for any w € &,, and any adjacent transposition
si, one still has equation (2), but with k, ; assumed only to be nonnegative,
that is, ky ; can vanish.

The Appendix shows that all n! points v,, in a generalized permutohedron P
are actually vertices of P (possibly with repetitions); see Theorem 15.3. Thus
a generalized permutohedron P comes naturally equipped with the surjective
map ¥p : S,, — Vertices(P) given by ¥p : w — vy, for w € &,,.

Definition 3.1 says that a generalized permutohedron is obtained by moving the
vertices of the usual permutohedron in such a way that directions of edges are
preserved, but some edges (and higher dimensional faces) may degenerate. In
the Appendix such deformations of a simple polytope are shown to be equivalent
to various other notions of deformation; see Proposition 3.2 below and the more
general Theorem 15.3.

3.2 BRAID ARRANGEMENT

Let x1,...,7, be the usual coordinates in R™. Let R"/(1,...,1)R ~ R*~!
denote the quotient space modulo the 1-dimensional subspace generated by
the vector (1,...,1). The braid arrangement is the arrangement of hyperplanes
{z;—x; = 0}1<i<j<n in the space R™/(1, ..., 1)R. These hyperplanes subdivide
the space into the polyhedral cones

Cy = {:L"w(l) < L (2) <---< xw(n)}

labelled by permutations w € &,,, called Weyl chambers (of type A). The
Weyl chambers and their lower dimensional faces form a complete simplicial
fan, sometimes called the braid arrangement fan.

Note that a usual permutohedron P has dimension d = n — 1, so one can
reduce its normal fan modulo the 1-dimensional subspace P+ = (1,...,1)R.
The braid arrangement fan is exactly the (reduced) normal fan A'(P)/P* for a
usual permutohedron P C R”. Indeed, the (reduced) normal cone N, (P)/P+
of P at vertex v, is exactly the Weyl chamber C,,. (Here one identifies R™
with (R™)* via the standard inner product.)
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Recall that the Minkowski sum P + @ of two polytopes P,QQ C R" is the
polytope P+Q :={z+y |2 € P,y € Q}. Say that P is a Minkowski summand
of R, if there is a polytope @ such that P+ @Q = R. Say that a fan F is refined
by a fan F’ if any cone in F is a union of cones in F’. The following proposition
is a special case of Theorem 15.3.

PROPOSITION 3.2. A polytope P in R™ is a generalized permutohedron if and
only if its normal fan (reduced by (1,...,1)R) is refined by the braid arrange-
ment fan.

Also, generalized permutohedra are exactly the polytopes arising as Minkowski
summands of usual permutohedra.

This proposition shows that generalized permutohedra lead to the study of
cones given by some inequalities of the form z; — z; > 0 and fans formed by
such cones. Such cones are naturally related to posets and preposets.

3.3 PREPOSETS, EQUIVALENCE RELATIONS, AND POSETS

Recall that a binary relation R on a set X is a subset of R C X x X. A preposet
is a reflexive and transitive binary relation R, that is (z,z) € R for all z € X,
and whenever (z,y), (y, 2) € R one has (z, z) € R. In this case we will often use
the notation x <p y instead of (z,y) € R. Let us also write z <g y whenever
x =gyand x #£y.

An equivalence relation = is the special case of a preposet whose binary relation
is also symmetric. Every preposet ) gives rise to an equivalence relation =¢
defined by x =¢ y if and only if both + ¢ y and y =g =. A poset is the
special case of a preposet () whose associated equivalence relation =¢ is the
trivial partition, having only singleton equivalence classes.

Every preposet () gives rise to the poset J/=¢g on the equivalence classes
X/=qg. A preposet @ is uniquely determined by =g and Q/=¢q, that is, a
preposet is just an equivalence relation together with a poset structure on the
equivalence classes.

A preposet @ on X is connected if the undirected graph having vertices X and
edges {x,y} for all  <¢ y is connected.

A covering relation x <gy in a poset () is a pair of elements x <¢g y such that
there is no z such that * <g z <@ y. The Hasse diagram of a poset ) on X is
the directed graph on X with edges (z,y) for covering relations x <¢ y.

We call a poset Q a tree-poset if its Hasse diagram is a spanning tree on X.
Thus tree-posets correspond to directed trees on the vertex set X.

A linear extension of a poset @ on X is a linear ordering (y1,...,yn) of all
elements in X such that y1 <g y2 <@ -+ <@ Yn. Let L£(Q) denote the set of
all linear extensions of Q.

The union R U Rs of two binary relations R, Ro on X is just their union as
two subsets of X x X. Given any reflexive binary relation Q, denote by @Q
the preposet which is its transitive closure. Note that if Q1 and Q2 are two
preposets on the same set X, then the binary relation Q1 UQ5 is not necessarily

DOCUMENTA MATHEMATICA 13 (2008) 207-273



218 ALEX POSTNIKOV, VICTOR REINER, LAUREN WILLIAMS

a preposet. However, we can obtain a preposet by taking its transitive closure
Q1 U Q2.

Let R C @ denote containment of binary relations on the same set, meaning
containment as subsets of X x X. Also let R°P be the opposite binary relation,
that is (z,y) € R if and only if (y,x) € R.

For two preposets P and @) on the same set, let us say that @ is a contraction
of P if there is a binary relation R C P such that @ = P U R°P. In other words,
the equivalence classes of =¢ are obtained by merging some equivalence classes
of =p along relations in P and the poset structure on equivalence classes of
=( is induced from the poset structure on classes of =p.

For example, the preposet 1 < {2,3} < 4 (where {2,3} is an equivalence class)
is a contraction of the poset P = (1 < 3,2 < 3,1 < 4, 2 < 4). However, the
preposet ({1,2} < 3, {1,2} < 4) is not a contraction of P because 1 and 2 are
incomparable in P.

DEFINITION 3.3. We say that two preposets Q1 and QY2 on the same set intersect
properly if the preposet Q1 U Q2 is both a contraction of Q1 and of Q2. A
complete fan of posets* on X is a collection of distinct posets on X which
pairwise intersect properly, and whose linear extensions (disjointly) cover all
linear orders on X.

Compare Definition 3.3 to the definitions of properly intersecting cones and
complete fans of cones in Section 2.1. Proposition 3.5 will elucidate this con-
nection.

EXAMPLE 3.4. The two posets Py :=1 < 2 and Py := 2 < 1 on the set {1,2}
intersect properly. Here Py U Py is equal to {1 < 2,2 < 1}. These P and
Py form a complete fan of posets. However, the two posets Q1 = 2 < 3 and
Q2 :=1 < 2 < 3 on the set {1,2,3} do not intersect properly. In this case
Q1 U Q2 = Q2, which is not a contraction of Q1.

3.4 THE DICTIONARY

Let us say that a braid cone is a polyhedral cone in the space R"/(1,...,1)R ~
R"~1 given by a conjunction of inequalities of the form x; — x; > 0. In other
words, braid cones are polyhedral cones formed by unions of Weyl chambers or
their lower dimensional faces.

There is an obvious bijection between preposets and braid cones. For a preposet
Q on the set [n], let og be the braid cone in the space R"/(1,...,1)R defined
by the conjunction of the inequalities z; < x; for all i g j. Conversely, one
can always reconstruct the preposet () from the cone og by saying that i <g j
whenever x; < z; for all points in oq.

PROPOSITION 3.5. Let the cones o,a’ correspond to the preposets Q, Q" under
the above bijection. Then

4In [M—W’06], this is called a convez rank test.
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(1) The preposet QU Q' corresponds to the cone o No’.

(2) The preposet Q is a contraction of Q' if and only if the cone o is a face
/
o’

(8) The preposets Q,Q’ intersect properly if and only if the cones o,0" do.

(4) Q is a poset if and only if o is a full-dimensional cone, i.e., dimo =n—1.

5) The equivalence relation =g corresponds to the linear span Span(o) of o.
Q

(6) The poset Q/=¢ corresponds to a full-dimensional cone inside Span(oq).

(7) The preposet Q is connected if and only if the cone o is pointed.

(8) If Q is a poset, then the minimal set of inequalities describing the cone
ois {x; < x; | i <q j}. (These inequalities associated with covering
relations in @) are exactly the facet inequalities for o.)

(9) Q is a tree-poset if and only if o is a full-dimensional simplicial cone.

(10) For w € &,,, the cone o contains the Weyl chamber Cy, if and only if Q
is a poset and w is its linear extension, that is w(l) < w(2) <q -+ <@
w(n).

Proof. (1) The cone o N o’ is given by conjunction of all inequalities for o
and ¢’. The corresponding preposet is obtained by adding all inequalities that
follow from these, i.e., by taking the transitive closure of Q U @Q’.

(2) Faces of ¢’ are obtained by replacing some inequalities z; < x; defining
o’ with equalities z; = x;, or equivalently, by adding the opposite inequalities
€T; Z Zj.

(3) follows from (1) and (2).

(4) o is full-dimensional if its defining relations do not include any equalities
x; = x5, that is =¢ has only singleton equivalence classes.

(5) The cone associated with the equivalence relation =¢ is given by the equa-
tions x; = x; for ¢ =¢ j, which is exactly Span(o).

(6) Follows from (4) and (5).

(7) The maximal subspace contained in the half-space {z; < z;} is given by
x; = xj. Thus the maximal subspace contained in the cone o is given by the
conjunction of equations z; = x; for i <g j. If Q is disconnected then this
subspace has a positive dimension. If () is connected then this subspace is given
by 1 = -+ = x,,, which is just the origin in the space R"/(1,...,1)R.

(8) The inequalities for the covering relations i <¢ j imply all other inequalities
for ¢ and they cannot be reduced to a smaller set of inequalities.

(9) By (4) and (7) full-dimensional pointed cones correspond to connected
posets. These cones will be simplicial if they are given by exactly n — 1 in-
equalities. By (8) this means that the corresponding poset should have exactly
n — 1 covering relations, i.e., it is a tree-poset.

(10) Follows from (4) and definitions. O
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According to Proposition 3.5, a full-dimensional braid cone o associated with
a poset @ can be described in three different ways (via all relations in @, via
covering relations in @, and via linear extensions £(Q) of Q) as

o={z;<zj|izgjt={zi<z|i<gj}= U C.
weL(Q)

Let F be a family of d-cones in R? which intersect properly. Since they have
disjoint interiors, they will correspond to a complete fan if and only if their
closures cover R?, or equivalently, their spherical volumes sum to the volume
of the full (d — 1)-sphere.

A braid cone corresponding to a poset @ is the union of the Weyl chambers
Cy, for all linear extensions w € £(Q), and every Weyl chamber has the same
spherical volume (% of the sphere) due to the transitive Weyl group action.
Therefore, a collection of properly intersecting posets {Q@1,...,Q+} on [n] cor-
respond to a complete fan on braid cones if and only if

t t
U L(Q;) = 6,(disjoint union), or equivalently, if and only ifz |£(Q:)] = n!,

i=1 =1
cf. Definition 3.3.

COROLLARY 3.6. A complete fan of braid cones (resp., pointed braid cones, sim-
plicial braid cones) in R™/(1,...,1)R corresponds to a complete fan of posets
(resp., connected posets, tree-posets) on [n].

Using Proposition 3.2, we can relate Proposition 3.5 and Corollary 3.6 to gen-
eralized permutohedra. Indeed, normal cones of a generalized permutohedron
(reduced modulo (1,...,1)R) are braid cones.

For a generalized permutohedron P, define the verter poset Q, at a ver-
tex v € Vertices(P) as the poset on [n] associated with the normal cone
No(P)/(1,...,1)R at the vertex v, as above.

COROLLARY 3.7. For a generalized permutohedron (resp., simple generalized
permutohedron) P, the collection of vertex posets {Q, | v € Vertices(P)} is a
complete fan of posets (resp., tree-posets).

Thus normal fans of generalized permutohedra correspond to certain complete
fans of posets, which we call polytopal. In [M—W’06], the authors call such fans
submodular rank tests, since they are in bijection with the faces of the cone of
submodular functions. That cone is precisely the deformation cone we discuss
in the Appendix.

ExXAaMPLE 3.8. In [M-W’06], the authors modify an example of Studeny
[Stud’05] to exhibit a non-polytopal complete fan of posets. They also kindly
provided us with the following further nonpolytopal example, having 16 posets
Qy, all of them tree-posets: (1,2 < 3 < 4) (which means that 1 < 3 and
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2 <3), (1,2 <4 < 3), (3,

(3,4 <2),B4<2<1),(1<4<23),
(4<1<2,3),(2<3<1,4), (3 )

1< 2)
2<1,4),(1<3<2<4),(1<3<4<2),
B<l<2<4),B3<1<4<2),2<4<1<3),2<4<3<1),
4<2<1<3),4<2<3<1). This gives a complete fan of simplicial
cones, but does not correspond to a (simple) generalized permutohedron.

<
<
<

Recall that Up : &, — Vertices(P) is the surjective map Up : w +— vy;
see Definition 3.1. The previous discussion immediately implies the following
corollary.

COROLLARY 3.9. Let P be a generalized permutohedron in R™, and v €
Vertices(P) be a vertex. For w € &, one has ¥Up(w) = v whenever the normal
cone Ny (P) contains the Weyl chamber Cy,. The preimage ‘111_31(1)) CG, ofa
vertex v € Vertices(P) is the set L(Q.) of all linear extensions of the vertex
poset Q.

We remark on the significance of this cone-preposet dictionary for toric varieties
associated to generalized permutohedra or their normal fans; see Fulton [Ful’93]
for further background.

A complete fan F of polyhedral cones in R whose cones are rational with
respect to Z¢ gives rise to a toric variety Xz, which is normal, complete and
of complex dimension d.

This toric variety is projective if and only if F is the normal fan A/ (P) for some
polytope P, in which case one also denotes X r by Xp.

The toric variety X £ is quasi-smooth or orbifold if and only if F is a complete fan
of simplicial cones; in the projective case, where F = N(P), this corresponds
to P being a simple polytope.

In this situation, the h-numbers of F (or of P) have the auxiliary geometric
meaning as the (singular cohomology) Betti numbers h; = dim H*(X £, C). The
symmetry h; = hq_; reflects Poincaré duality for this quasi-smooth variety.
The toric variety Xz is smooth exactly when every top-dimensional cone of F is
not only simplicial but unimodular, that is, the primitive vectors on its extreme
rays form a Z-basis for Z?. Equivalently, the facet inequalities ¢1, ..., ¢4 can
be chosen to form a Z-basis for (Z4)* = Hom(Z%, Z) inside (R?)*. One has Xz
both smooth and projective if and only if F = N (P) for a Delzant polytope P,
that is, one which is simple and has every vertex normal cone unimodular.

COROLLARY 3.10. (cf. [Zel’06, §5]) A complete fan F of posets gives rise to a
complete toric variety Xz, which will be projective if and only if F is associated
with the normal fan N'(P) for a generalized permutohedron.

A complete fan F of tree-posets gives rise to a (smooth, not just orbifold)
toric variety Xz, which will be projective if and only F is associated with
the normal fan N'(P) of a simple generalized permutohedron. In other words,
simple generalized permutohedra are always Delzant.

Proof. All the assertions should be clear from the above discussion, except for
the last one about simple generalized permutohedra being Delzant. However, a
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tree-poset ) corresponds to a set of functionals x; — x; for the edges {i,j} of a
tree, which are well-known to give a Z-basis for (Z%)*, cf. [Post’05, Proposition
7.10]. O

4 SIMPLE GENERALIZED PERMUTOHEDRA

The goal of this section is to combinatorially interpret the h-vector of any
simple generalized permutohedron.

4.1 DESCENTS OF TREE-POSETS AND h-VECTORS

DEFINITION 4.1. Given a poset Q on [n], define the descent set Des(Q) to be
the set of ordered pairs (i,j) for which i <q j is a covering relation in Q with
i >z j, and define the statistic number of descents des(Q) := |Des(Q)].

THEOREM 4.2. Let P be a simple generalized permutohedron, with vertex posets
{Qu}vevertices(p)- Then one has the following expression for its h-polynomial:

hp(t)= Y 4@ (3)

v€E Vertices(P)

More generally, for a complete fan F = {Q,} of tree-posets (see Definition 3.3),
one also has hr(t) =3, tdes(@),

Proof. (cf. proof of Proposition 7.10 in [Post’05]) Let us prove the more general
claim about fans of tree-posets, that is, simplicial fans coarsening the braid
arrangement fan.

Pick a generic vector ¢ = (g1,...,9n) € R™ such that g; < -+ < ¢, and
construct the directed graph Gz, as in Proposition 2.1. Let 0 = {x; < z; |
i<q, j} be the cone of F associated with poset Q,; see Proposition 3.5(8). Let
o’ be an adjacent cone separated from o by the facet x; = x;, i <@, j. The
vector g points from o to ¢’ if and only if g; >r g;, or equivalently, i >z j.
Thus the outdegree of o in the graph G £ is exactly the descent number des(Q).
The claim now follows from Proposition 2.1. o

For a usual permutohedron P in R™, the vertex posets (), are just all linear
orders on [n]. So hp(t) is the classical Eulerian polynomial®

A1) = Y ), 4)

weG,

where des(w) := #{i | w(i) > w(i+1)} is the descent number of a permutation
w.

Any element w in the Weyl group &,, sends a complete fan F = {Q;} of tree-
posets to another such complete fan wF = {w@Q;}, by relabelling all of the
posets. Since wF is an isomorphic simplicial complex, with the same h-vector,
this leads to a curious corollary.

5Note that a more standard convention is to call tA,(t) the Eulerian polynomial.
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DEFINITION 4.3. Given a tree-poset Q on [n], define its generalized Eulerian

polynomial
Ag(t) = ) tdeslwe),
we6,

Note that Ag depends upon Q only as an unlabelled poset.
When @ is a linear order, Ag(¢) is the usual Eulerian polynomial A,,(¢).

COROLLARY 4.4. The h-polynomial hp(t) of a simple generalized permutohe-
dron P is the “average” of the generalized Fulerian polynomials of its vertex
tree-posets QQy:

he(t) = — > A,

" veVertices(P)

See Example 5.5 below for an illustration of Theorem 4.2 and Corollary 4.4.

4.2 BOUNDS ON THE h-VECTOR AND MONOTONICITY

It is natural to ask for upper and lower bounds on the h-vectors of simple
generalized permutohedra. Some of these follow immediately from an h-vector
monotonicity result of Stanley [Stan’92] that applies to complete simplicial
fans.

DEFINITION 4.5. A simplicial complex A is a geometric subdivision of a sim-
plicial complex A if they have geometric realizations that are topological spaces
on the same underlying set, and every face of A’ is contained in a single face

of A.

THEOREM 4.6. (see [Stan’92, Theorem 4.1]) If A’ is a geometric subdivision of
a Cohen-Macaulay simplicial complex A, then the h-vector of A’ is componen-
twise weakly larger than that of A. In particular this holds when A, A’ come
from two complete simplicial fans and A’ refines A, e.g., the normal fans of
two simple polytopes P, P’ in which P is a Minkowski summand of P.

COROLLARY 4.7. A simple generalized permutohedron P in R™ has h-
polynomial coefficientwise smaller than that of the permutohedron, namely the
Eulerian polynomial A, (t).

Proof. Proposition 3.2 tells us that the normal fan of P is refined by that of
the permutohedron, so the above theorem applies. O

QUESTION 4.8. Does the permutohedron also provide an upper bound for the
f-vectors, flag f- and flag h-vectors, generalized h-vectors, and cd-indices of
generalized permutohedra also in the non-simple case? Is there also a mono-
tonicity result for these other forms of face and flag number data when one
has two generalized permutohedra P, P' in which P is a Minkowski summand
of P'?
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The answer is “Yes” for f-vectors and flag f-vectors, which clearly increase
under subdivision. The answer is also “Yes” for generalized h-vectors, which
Stanley also showed [Stan’92, Corollary 7.11] can only increase under geometric
subdivisions of rational convex polytopes. But for flag h-vectors and cd-indices,
this is not so clear.

Later on (Example 6.11, Section 7.2, and Section 14) we will say more about
lower bounds for h-vectors of simple generalized permutohedra within various
classes.

5 THE CASE OF ZONOTOPES

This section illustrates some of the foregoing results in the case where the simple
generalized permutohedron is a zonotope; see also [Post’05, §8.6]. Zonotopal
generalized permutohedra are exactly the graphic zonotopes, and those that
are simple correspond to a very restrictive class of graphs that are easily dealt
with.

A zonotope is a convex polytope Z which is the Minkowski sum of one-
dimensional polytopes (line segments), or equivalently, a polytope whose nor-
mal fan NV (Z) coincides with chambers and cones of a hyperplane arrangement.
Under this equivalence, the line segments which are the Minkowski summands
of Z lie in the directions of the normal vectors to the hyperplanes in the ar-
rangement. Given a graph G = (V, E) without loops or multiple edges, on node
set V = [n] and with edge set E, define the associated graphic zonotope Z¢ to
be the Minkowski sum of line segments in the directions {e; — e; }ijcr.
Proposition 3.2 then immediately implies the following.

ProproOSITION 5.1. The zonotopal generalized permutohedra are exactly the
graphic zonotopes Zg.

Simple zonotopes are very special among all zonotopes, and simple graphic
zonotopes have been observed [Kim’06] to correspond to a very restrictive class
of graphic zonotopes, namely those whose biconnected components are all com-
plete graphs.

Recall that for a graph G = (V, E), there is an equivalence relation on E defined
by saying e ~ e’ if there is some circuit (i.e., cycle which is minimal with respect
to inclusion of edges) of G containing both e, ¢’. The ~-equivalence classes are
then called biconnected components of G.

PROPOSITION 5.2. [Kim’06, Remark 5.2] The graphic zonotope Z¢g correspond-
ing to a graph G = (V, E) is a simple polytope if and only if every biconnected
component of G is the set of edges of a complete subgraph some subset of the
vertices V.

In this case, if Vi,...,V, CV are the node sets for these complete subgraphs,
then Zg is isomorphic to the Cartesian product of usual permutohedra of di-
mensions |V;| — 1 for j =1,2,...,r.
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Let us give another description for this class of graphs. For a graph F' with n
edges e1, ..., ey, the line graph Line(F') of F is the graph on the vertex set [n]
where {7, 7} is an edge in Line(F) if and only if the edges e; and e; of F' have
a common vertex. The following claim is left as an exercise for the reader.

REMARK 5.3. For a graph G, all biconnected components of G are edge sets
of complete graphs if and only if G is isomorphic to the line graph Line(F)
of some forest F. Biconnected components of Line(F') correspond to non-leaf
vertices of F.

For the sake of completeness, we include a proof of Proposition 5.2.

Proof of Proposition 5.2. If the biconnected components of G induce subgraphs
isomorphic to graphs Gi,...,G, then one can easily check that Zs is the
Cartesian product of the zonotopes Z¢,. Since a Cartesian product of polytopes
is simple if and only if each factor is simple, this reduces to the case where
r = 1. Also note that when » = 1 and G is a complete graph, then Zs is the
permutohedron, which is well-known to be simple.

For the reverse implication, assume G is biconnected but not a complete graph,
and it will suffice, by Proposition 3.5(9), to construct a vertex v of Zs whose
poset @, is not a tree-poset. One uses the fact [GZ’83] that a vertex v in
the graphic zonotope Zg corresponds to an acyclic orientation of G, and the
associated poset @), on V is simply the transitive closure of this orientation.
Thus it suffices to produce an acyclic orientation of G whose transitive closure
has Hasse diagram which is not a tree.

Since G is biconnected but not complete, there must be two vertices {z, y} that
do not span an edge in E, but which lie in some circuit C. Traverse this circuit
C in some cyclic order, starting at the node x, passing through some nonempty
set of vertices V; before passing through y, and then through a nonempty set
of vertices V5 before returning to . One can then choose arbitrarily a total
order on the node set V' so that these sets appear as segments in this order:

Via z, Y, ‘/2; V*(%U%U{Z,y})

It is then easily checked that if one orients the edges of G consistently with
this total order, then the associated poset has a non-tree Hasse diagram: for
any v1 € V1 and vy € V5, one has v1 < x,y < vy with x,y incomparable. O

COROLLARY 5.4. Let Zg be a simple graphic zonotope, with notation as in
Proposition 5.2. Then Zg is flag, and its f-polynomial, h-polynomial, and
y-polynomial are all equal to products for 7 = 1,2,...,r of the f-, h-, or ~-
polynomials of (|V;| — 1)-dimensional permutohedra.

Proof. Use Proposition 5.2 along with the fact that a Cartesian product of
simple polytopes is flag if and only if each factor is flag, and has f-, h- and
~-polynomial equal to the product of the same polynomials for each factor. [
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EXAMPLE 5.5. Consider the graph G = (V, E) with V = [4] := {1,2,3,4} and
E = {12,13,23,14}, whose biconnected components are the triangle 123 and
the edge 14, which are both complete subgraphs on node sets Vi = {1,2,3} and
Vo = {1,4}. Hence the graphic zonotope Zg is simple and flag, equal to the
Cartesian product of a hexagon with a line segment, that is, Zg is a hexagonal
prism.

Its f-, h- and y-polynomials are

fze(t) = (2+1t)(6+6t+t%) =12+ 18t + 8> + 3
hyg(t) = Ag(t)Az(t) = (1 +t)(1 + 4t +12) =1+ 5t + 5% + 3
Y26 () = (1)(1 +2t) =1+2t

One can arrive at the same h-polynomial using Theorem 4.2. One lists the
tree-posets Q. for each of the 12 vertices v of the hexagonal prism Zg, coming
in 5 isomorphism types, along with the number of descents for each:

type  poset Qy des type poset Qy des
chain: 2<3<1<4 1 wedge: 2<3<landd<1l 2
3<2<1<4 2 3<2<landd<1l 3
4<l<2<3 1 wye:  2<1<3andl<4 1
d<l<3<2 2 3<1<2andl<4 1
vee: 1<2<3andl<4 0 lambda: 3<1<2andd<1 2
1<3<2andl<4 1 Scl<3andd<1l 2

and finds that 3, t4e3(@v) = 1 + 5t + 5¢2 + 3.
Lastly one can get this h-polynomial from Corollary 4.4, by calculating directly
that

cham(t) 14 11t + 1162 + % = Ay (¢)
Avee(t) = 3+ 10t + 8t2 + 33
Agedge(t) = 3+ 8t + 10t + 3¢
Awye(t) = Atambaa(t) = 2 + 10t + 10¢2 + 2¢3

and then the h-polynomial is

1
I [4Achain(t) + 2Avee(t) + 2Awedge(t) + 2Awye(t) + 2Alambda(t)]

=145t +5t% + 3.

6 BUILDING SETS AND NESTOHEDRA
This section reviews some results from [FS’05], [Post’05], and [Zel’06] regarding

the important special case of generalized permutohedra that arise from building
sets. These generalized permutohedra, which we call nestohedra, turn out to
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always be simple, and they include the graph-associahedra, which in turn gen-
eralize the associahedron, cyclohedron, and permutohedron; this will be fleshed
out in Section 10. Their dual simplicial complexes, the nested set complexes,
are defined, and several tools are given for calculating their f- and h-vectors.
The notion of nested sets goes back to work of Fulton and MacPherson [FM’94],
and DeConcini and Procesi [DP’95] defined building sets and nested set com-
plexes. However, our exposition mostly follows [Post’05] and [Zel’06].

6.1 BUILDING SETS, NESTOHEDRA, AND NESTED SET COMPLEXES

DEFINITION 6.1. [Post’05, Definition 7.1] A collection B of nonempty subsets
of a finite set S is a building set if it satisfies the conditions:

(B1) IfI,JeB and INJ #0, then TU J € B.
(B2) B contains all singletons {i}, forie S.

For a building set B on S and a subset I C S, define the restriction of B to
Tas By :={J € B|J C I}. Let Bpax C B denote the inclusion-maximal
subsets of a building B. Then elements of By,.x are pairwise disjoint subsets
that partition the set S. Call the restrictions B|;, for I € Bpax, the connected
components of B. Say that a building set is connected if Byax has only one
element: Bpax = {S}.

EXAMPLE 6.2. Let G be a graph (with no loops nor multiple edges) on the node
set S. The graphical building B(G) is the set of nonempty subsets J C S such
that the induced graph G|; on node set J is connected. Then B(G) is a building
set.

The graphical building set B(G) is connected if and only if the graph G is con-
nected. The connected components of the graphical B(G) building set correspond
to connected components of the graph G. Also each restriction B(G)|s is the
graphical building set B(G|y) for the induced subgraph G|y .

DEFINITION 6.3. Let B be a building set on [n] := {1,...,n}. Faces of the
standard coordinate simplex in R™ are the simplices Ay := ConvexHull(e; | i €
I), for I C [n], where the e; are the endpoints of the coordinate vectors in R™.
Define the nestohedron® Pg as the Minkowski sum of these simplices

PB = Zy[A], (5)

IeB
where yr are strictly positive real parameters; see [Post’05, Section 6].

Note that since each of the normal fans A'(Aj) is refined by the braid arrange-
ment fan, the same holds for their Minkowski sum [Zieg’94, Prop. 7.12], and
hence the nestohedra Pg are generalized permutohedra by Proposition 3.2.

6Called the nested set polytope in [Zel’06].
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It turns out that Pg is always a simple polytope, whose poset of faces does
not depend upon the choice of the positive parameters y;. To describe this
combinatorial structure it is convenient to describe the dual simplicial complex
of PB-

DEFINITION 6.4. [Post’05, Definition 7.3] For a building set B, let us say that
a subset N C B\ Buax is a nested set if it satisfies the conditions:

(N1) For any I,J € N one has either I C J, J C I, or I and J are disjoint.

(N2) For any collection of k > 2 disjoint subsets Jy,...,Jr € N, their union
JiU---UJg s not in B.

Define the nested set complex A as the collection of all nested sets for B.

It is immediate from the definition that the nested set complex Ap is an ab-
stract simplicial complex on node set B. Note that this slightly modifies the
definition of a nested set from [Post’05], following [Zel’06], in that one does not
include elements of B,.x in nested sets.

THEOREM 6.5. [Post’05, Theorem 7.4], [FS’05, Theorem 3.14] Let B be a
building set on [n]. The nestohedron Pg is a simple polytope of dimension

N — |Bmax|. Its dual simplicial complex is isomorphic to the nested set complex
Ag.

An explicit correspondence between faces of Pg and nested sets in Ag is de-
scribed in [Post’05, Proposition 7.5]. The dimension of the face of Py associated
with a nested set N € Ag equals n — [N| — |Bmax|. Thus vertices of Pg cor-
respond to inclusion-maximal nested sets in Ag, and all maximal nested sets
contain exactly n — |Bmax| elements.

REMARK 6.6. For a building set B on [n], it is known [FY’04, Theorem 4]
that one can obtain the nested set complex Ap (resp., the nestohedron Pp)
via the following stellar subdivision (resp., shaving) construction, a common
generalization of

e the barycentric subdivision of a simplex as the dual of the permutohedron,
e Lee’s construction of the associahedron [Lee’89, §3].

Start with an (n — 1)-simplex whose vertices (resp., facets) have been labelled
by the singletons i for i € [n], which are all in B. Then proceed through each of
the non-singleton sets I in B, in any order that reverses inclusion (i.e., where
larger sets come before smaller sets), performing a stellar subdivision on the
face with vertices (resp., shave off the face which is the intersection of facets)
indexed by the singletons in I.

REMARK 6.7. Note that if Bi,...,B; are the connected components of a
building set B, then Pg is isomorphic to the direct product of polytopes Pp, X
-+ x Pg,. Thus it is enough to investigate generalized permutohedra Py and
nested set complexes Ag only for connected buildings.
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REMARK 6.8. The definition (5) of the nestohedron Pg as a Minkowski sum
should make it clear that whenever one has two building sets B C BB, then Pg
is a Minkowski summand of Pg. Hence Theorem 4.6 implies the h-vector of
Pg: is componentwise weakly larger than that of Pg.

REMARK 6.9. Nestohedra Pg(q) associated with graphical building sets B(G)
are called graph-associahedra, and have been studied in [CD’06, Post’05, Tol’05,
Zel’06]. In [CD’06], the sets in B(G) are called tubes, and the nested sets are
called tubings.

In particular, the h-vector monotonicity discussed in Remark 6.8 applies to
graph-associahedra Ppg(cy, Pp(cry associated to graphs G, G" where G is an edge-
subgraph of G'.

EXAMPLE 6.10. (Upper bound for nestohedra: the permutohedron) see [Post 05,
Sect. 8.1] For the complete graph K,, the building set B(K,) = 2"1 \ {0}
consists of all nonempty subsets in [n]. Let us call it the complete building set.
The corresponding nestohedron (the graph-associahedron of the complete graph)
is the usual (n — 1)-dimensional permutohedron in R™. The k-th component hy,
of its h-vector is the Fulerian number, that is the number of permutations in
S, with k descents; and its h-polynomial is the Eulerian polynomial A, (t);
see (4).

This h-vector gives the componentwise upper bound on h-vectors for all (d—1)-
dimensional nestohedra. This also implies that the f-vector of the permutohe-
dron gives the componentwise upper bound on f-vectors of nestohedra.

EXAMPLE 6.11. (Lower bound for nestohedra: the simplex) The smallest pos-
sible connected building set B = {{1},{2},...,{n}, [n]} gives rise to the nesto-
hedron Pg which is the (n — 1)-simplex in R™. In this case

; 1+¢6)" -1
=1

give trivial componentwise lower bounds on the f-, h-vectors of nestohedra.

6.2 TWO RECURRENCES FOR f-POLYNOMIALS OF NESTOHEDRA

There are two useful recurrences for f-polynomials of nestohedra and nested
set complexes.
Let fg(t) be the f-polynomial of the nestohedron Pg:

()= fitt = Y S| Bl =IN,
NeAs

where f; = f;(Pg) is the number of i-dimensional faces of Pg. As usual, it is
related to the h-polynomial as fg(t) = hg(t + 1).

THEOREM 6.12. [Post’05, Theorem 7.11] The f-polynomial fg(t) is determined
by the following recurrence relations:

DOCUMENTA MATHEMATICA 13 (2008) 207-273



230 ALEX POSTNIKOV, VICTOR REINER, LAUREN WILLIAMS

1. If B consists of a single singleton, then fg(t) = 1.

2. If B has connected components Bi, ..., By, then
fB(t) = fBI(t) T ka(t)'
8. If B is a connected building set on S, then

Jo(t) =" ¥ p, (0).

IcS

Another recurrence relation for f-polynomials was derived in [Zel’06], and will
be used in Section 12.4 below. It will be more convenient to work with the
f-polynomial of nested set complexes

f5(t) = Z HNT = IS1=1Buasl (1Y,

NEAB

where B is a building set on S.

For a building set B on S and a subset I C S, recall that the restriction of 5
to I is defined as B|; = {J € B | J C I'}. Also define the contraction of I from
B as the building set on S\ I given by

B/I:={JeS\I|JeBorJUI € B},

see [Zel’06, Definition 3.1]. A link decomposition of nested set complexes was
constructed in [Zel’06]. It implies the following recurrence relation for the
f-vector.

THEOREM 6.13. [Zel’06, Proposition 4.7] For a building set B on a nonempty
set S, one has

d ~ ~ .
=T = > Fau () fau() and fs(0)=1.
IeB\Bmax

Let G be a simple graph on S and let I € B(G), i.e., I is a connected subset
of nodes of G. It has already been mentioned that B(G)|r = B(G|r); see
Example 6.2. Let G/I be the graph on the node set S\ I such that two nodes
i,j € S\ I are connected by an edge in G/I if and only if

1. ¢ and j are connected by an edge in G, or
2. there are two edges (i, k) and (j,1) in G with k,l € I.

Then the contraction of I from the graphical building set B(G) is the graphical
building set associated with the graph G/I, that is B(G)/I = B(G/I).
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7 FLAG NESTOHEDRA

This section characterizes the flag nested set complexes and nestohedra, and
then identifies those which are “smallest”.

7.1 WHEN IS THE NESTED SET COMPLEX FLAG?

For a graphical building set B(G) it has been observed ([Post’05, §8,4], [Zel’06,
Corollary 7.4]) that one can replace condition (N2) in Definition 6.4 with a
weaker condition:

(N2’) For a disjoint pair of subsets I,J € N, one has I U J ¢ B.

This implies that nested set complexes associated to graphical buildings are
flag complexes. More generally, one has the following characterization of the
nested set complexes which are flag.

PROPOSITION 7.1. For a building set B, the following are equivalent.

(i) The nested set complex Ap (or equivalently, the nestohedron Pg) is flag.

(ii) The nested sets for B are the subsets N C B\ Bmax which satisfy conditions
(N1) and (N2).

(iii) If Ji,...,Je € B with £ > 2 are pairwise disjoint and their union J; U
--UJy 1s in B, then one can reindex so that for some k with1 < k < {£—1
one has both Jy U---UJ, and Jpy1 U---U Jp in B.

Proof. The equivalence of (i) and (ii) essentially follows from the definitions.
We will show here the equivalence of (i) and (iii).

Assume that (iii) fails, and let Jy, ..., J; provide such a failure with ¢ minimal.
Note that this means ¢ > 3, and minimality of ¢ forces J, U Js &€ B for each
r # s; otherwise one could replace the two sets J,., Js on the list with the set
Jr U Js to obtain a counterexample of size £ — 1. Therefore all of the pairs
{Jr, Js} index edges of Ap, although {.Ji,...,Jp} does not. Hence Ag is not
flag, i.e., (i) fails.

Now assume (i) fails, i.e., Ap is not flag. Let Jp,...,J; be subsets in B, for
which each pair {J,, Js} with r # s is a nested set, but the whole collection
M :={J1,...,J¢} is not, and assume that this violation has ¢ minimal. Because
{Jr, Js} are nested for r # s, it must be that M does satisfy condition (N1),
and so M must fail condition (N2). By minimality of ¢, it must be that the
J1,...,Jp are pairwise disjoint and their union J; U---U Jy is in B. Bearing
in mind that J. U Js & B for r # s, it must be that £ > 3. But then M must
give a violation of property (iii), else one could use property (iii) to produce
a violation of (i) either of size k or of size £ — k, which are both smaller than
L. O

COROLLARY 7.2. For graphical buildings B(G), the graph-associahedron Pgqy
and nested set complex Ag) are flag.
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7.2 STANLEY-PITMAN POLYTOPES AND THEIR RELATIVES

One can now use Proposition 7.1 to characterize the inclusion-minimal con-
nected building sets B for which Az and Pp are flag.

For any building set B on [n] with A flag, one can apply Proposition 7.1(iii)
with {Ji,..., Je} equal to the collection of singletons {{1},...,{n}}, since they
are disjoint and their union [n] is also in B. Thus after reindexing, some initial
segment [k] and some final segment [n] \ [k] must also be in B. Iterating this,
one can assume after reindexing that there is a plane binary tree T with these
properties

e the singletons {{1},...,{n}} label the leaves of T,

e each internal node of 7 is labelled by the set I which is the union of the
singletons labelling the leaves of the subtree below it (so [n] labels the
root node), and

e the building set B contains of all of the sets labelling nodes in this tree.

It is not hard to see that these sets labelling the nodes of 7 already comprise a
building set B, which satisfies Proposition 7.1(iii), and therefore give rise to a
nested set complex Ag_ and nestohedron Pg_ which are flag. See Figure 1.

{1,2,3,4}

{12 {34}

NN

B @ & @4

& e N
1,2}e NS 9{34
{12} » {34 3 4
e )
2

Figure 1: A binary tree 7 and building set B, along with its complex of nested
sets Ap,, drawn first as in the construction of Remark 6.6, and then redrawn
as the boundary of an octahedron.

The previous discussion shows the following.

PRrROPOSITION 7.3. The building sets B, parametrized by plane binary trees T
are exactly the inclusion-minimal building sets among those which are connected
and have the nested set complex and nestohedron flag.
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As a special case, when 7 is the plane binary tree having leaves labelled by the
singletons and internal nodes labelled by all initial segments [k], one obtains
the building set B, whose nestohedron Pg_ is the Stanley-Pitman polytope from
[StPi’02]; see [Post’05, §8.5]. The Stanley-Pitman polytope is shown there to be
combinatorially (but not affinely) isomorphic to an (n — 1)-cube; the argument
given there generalizes to prove the following.

PROPOSITION 7.4. For any plane binary tree T with n leaves, the nested set
complex Ag, 1is isomorphic to the boundary of a (n — 1)-dimensional cross-
polytope (hyperoctahedron), and Pg_ is combinatorially isomorphic to an (n —
1)-cube.

Proof. Note that the sets labelling the non-root nodes of 7 can be grouped
into n — 1 pairs {I1,J1},...,{ln-1, Jn—1} of siblings, meaning that I, Jj are
nodes with a common parent in 7. One then checks that the nested sets for
B, are exactly the collections N containing at most one set from each pair
{Ix, Ji }. As a simplicial complex, this is the boundary complex of an (n — 1)-
dimensional cross-polytope in which each pair {I, J;} indexes an antipodal
pair of vertices. O

Note that in this case,
fo. () = +0"" e () = (1+0)""", () =1=140-t40-1>+---.

which gives a lower bound for the f- and h-vectors of flag nestohedra by Re-
mark 6.8. If one assumes Conjecture 2.3, then it would also give a lower bound
for v-vectors of flag nestohedra (and for flag simplicial polytopes in general).
Note that the permutohedron is a graph-associahedron (and hence a flag nesto-
hedra). Therefore, Corollary 4.7 implies that the permutohedron provides the
upper bound on the f- and h-vectors among the flag nestohedra.

8 B-TREES AND B-PERMUTATIONS

This section discusses B-trees and B-permutations, which are two types of
combinatorial objects associated with vertices of the nestohedron Pz. The
h-polynomial of Pg equals the descent-generating function for B-trees.

8.1 B-TREES AND h-POLYNOMIALS

This section gives a combinatorial interpretation of the h-polynomials of nesto-
hedra. Since nestohedra Pg are always simple, one should expect some descrip-
tion of their vertex tree-posets @, (see Corollaries 3.7 and 3.9) in terms of the
building set B.

Recall that a rooted tree is a tree with a distinguished node, called its root. One
can view a rooted tree T  as a partial order on its nodes in which ¢ <7 j if 7 lies
on the unique path from i to the root. One can also view it as a directed graph

DOCUMENTA MATHEMATICA 13 (2008) 207-273



234 ALEX POSTNIKOV, VICTOR REINER, LAUREN WILLIAMS

in which all edges are directed towards the root; we will use both viewpoints
here.

For a node ¢ in a rooted tree T, let T<; denote the set of all descendants of ¢,
that is j € T<; if there is a directed path from the node j to the node i. Note
that ¢ € T<;. Nodes ¢ and j in a rooted tree are called incomparable if neither
1 is a descendant of j, nor j is a descendant of 7.

DEFINITION 8.1. [Post’05, Definition 7.7], cf. [FS’05] For a connected building
set B on [n], let us define a B-tree as a rooted tree T on the node set [n] such
that

(T1) For any i € [n], one has T<; € B.
(T2) For k > 2 incomparable nodes i1, ..., i, € [n], one has U?=1 T<i, ¢ B.

Note that, when the nested set complex Ap is flag, that is when B satisfies
any of the conditions of Proposition 7.1, one can define a B-tree by requiring
condition (T2) ounly for k = 2.

PROPOSITION 8.2. [Post’05, Proposition 7.8], [FS’05, Proposition 3.17] For
a connected building set B, the map sending a rooted tree T to the collection
of sets {T<; |i is a nonroot vertex} C B gives a bijection between B-trees and
maximal nested sets. (Recall that maximal nested sets correspond to the facets
of the nested set complex Ag and to the vertices of the nestohedron Pg.)
Furthermore, if the B-tree T corresponds to the vertex v of Pg then T = @Q,,
that is, T is the vertex tree-poset for v in the notation of Corollary 3.7.

QUESTION 8.3. Does a simple (indecomposable) generalized permutohedron P
come from a (connected) building set if and only if every poset Q, is a rooted
tree, i.e. has a unique maximal element?

Proposition 8.2 and Theorem 4.2 yield the following corollary.

COROLLARY 8.4. For a connected building set B on [n], the h-polynomial of
the generalized permutohedron Pg is given by

hB (t) = Z tdeS(T)a

T
where the sum is over B-trees T'.
The following description of B-trees is straightforward from the definition.

PROPOSITION 8.5. [Post’05, Section 7] Let B be a connected building set on
S and leti € S. Let By, ..., B, be the connected components of the restriction
Bls\giy- Then all B-trees with root at i are obtained by picking a Bj-tree T;, for
each component Bj, j = 1,...,r, and connecting the roots of T1,..., T, with
the node i by edges.
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In other words, each B-tree is obtained by picking a root i € S, splitting
the restriction B|g\;; into connected components, then picking nodes in all
connected components, splitting corresponding restrictions into components,
etc.

Recall Definition 3.1 of the surjection ¥ := ¥Up,

Up: &, — Vertices(Pg) = {B-trees},

Here and below one identifies vertices of the nestohedron Ps with B-trees via
Proposition 8.2. By Corollary 3.9, for a B-tree T, one has Ug(w) = T if and
only if w is a linear extension of T.

Proposition 8.5 leads to an explicit recursive description of the surjection ¥g.

PROPOSITION 8.6. Let B be a connected building set on [n]. Given a permuta-
tionw = (w(l),...,w(n)) € &,, one recursively constructs a B-tree T = T'(w),
as follows.

The root of T is the node w(n). Let By, ..., B, be the connected components of
the restriction Bl{u(1),...wn—1)}- Restricting w to each of the sets B; gives a
subword of w, to which one can recursively apply the construction and obtain
a B;-tree T;. Then attach these T1, ..., T, as subtrees of the root node w(n) in
T. This association w — T(w) is the map Vp.

8.2 B-PERMUTATIONS

It is natural to ask for a nice section of the surjection ¥p; these are the B-
permutations defined next.

DEFINITION 8.7. Let B be a building set on [n]. Define the set &,(B) C &,
of B-permutations as the set of permutations w € &, such that for any i €
[n], the elements w(i) and max{w(1),w(2),...,w(i)} lie in the same connected
component of the restricted building set Bl (1),...w(i)}-

The following construction of B-permutations is immediate from the definition.

LEMMA 8.8. A permutation w € &, is a B-permutation if and only if it can be
constructed via the following procedure.

Pick w(n) from the connected component of B that contains n; then pick
w(n — 1) from the connected component of B\ fw(n)} that contains the mazi-
mal element of [n]\{w(n)}; then pick w(n—2) from the connected component of
Bli\{w(n),w(n—1)} that contains the mazimal element of [n] \ {w(n),w(n —1)},
etc. Continue in this manner until w(1) has been chosen.

Let T be a rooted tree on [n] viewed as a tree-poset where the root is the
unique maximal element. The lexicographically minimal linear extension of T
is the permutation w € &,, such that w(1l) is the minimal leaf of T' (in the
usual order on Z), w(2) is the minimal leaf of T'— {w(1)} (the tree T' with the
vertex w(1l) removed), w(3) is the minimal leaf of T'— {w(1),w(2)}, etc. There
is the following alternative “backward” construction for the lexicographically
minimal linear extension of 7.
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LEMMA 8.9. Let w be the lexicographically minimal linear extension of a rooted
tree T on [n]|. Then the permutation w can be constructed from T, as follows:
w(n) is the root of T; w(n — 1) is the root of the connected component of
T —{w(n)} that contains the mazimal vertex of this forest (in the usual order
on Z); w(n —2) is the root of the connected component of T —{w(n),w(n—1)}
that contains the mazximal vertex of this forest, etc.

In general, w(i) is the root of the connected component of the forest

T —{w(n),...,w(i+1)}
that contains the verter max(w(1), ..., w(3)).

Proof. The proof is by induction on the number of vertices in T. Let T’ be
the rooted tree obtained from T by removing the minimal leaf [. Then the
lexicographically minimal linear extension w of T'is w = (I, w’), where w’ is the
lexicographically minimal linear extension of 77, and both w and w’ are written
in list notation. By induction, w’ can be constructed from T’ backwards. When
one performs the backward construction for 7', the vertex [ can never be the

root of the connected component of T — {w(n),...,w(i + 1)} containing the
maximal vertex, for ¢ > 1. So the backward procedure for T produces the same
permutation w = (I, w’). O

The next claim gives a correspondence between B-trees and B-permutations.

PROPOSITION 8.10. Let B be a connected building set on [n]. The set &,,(B) of
B-permutations is exactly the set of lexicographically minimal linear extensions
of the B-trees. (Equivalently, &, (B) is the set of lexicographically minimal
representatives of fibers of the map ¥g.)

In particular, the map Vi induces a bijection between B-permutations and B-
trees, and &,(B) is a section of the map Vp.

Proof. Let w € &, be a permutation and let T' = T'(w) be the corresponding B-
tree constructed as in Proposition 8.6. Note that, fori =n—1,n—2,...,1, the
connected components of the forest T'|¢y(1),...we)y =T — {w(n),...,w(i+1)}
correspond to the connected components of the building set By (1),....w(i)}, and
corresponding components have the same vertex sets. According to Lemma 8.9,
the permutation w is the lexicographically minimal linear extension of T if and
only if w is a B-permutation as described in Lemma 8.8. o

9 CHORDAL BUILDING SETS AND THEIR NESTOHEDRA

This section describes an important class of building sets B, for which the de-
scent numbers of B-trees are equal to the descent numbers of B-permutations.
In this case, the h-polynomial of the nestohedron Pp equals the descent-
generating function of the corresponding B-permutations.
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9.1 DESCENTS IN POSETS VS. DESCENTS IN PERMUTATIONS

A descent of a permutation w € &,, is a pair’ (w(i),w(i+ 1)) such that w(i) >
w(i+1). Let Des(w) be the set of all descents in w. Also recall that the descent
set Des(Q) of a poset @ is the set of pairs (a,b) such that a <g b and a >z b;
see Definition 4.1.

LEMMA 9.1. Let Q be any poset on [n], and let w = w(Q) be the lexicographi-
cally minimal linear extension of Q. Then one has Des(w) C Des(Q).

Proof. One must show that any descent (a,b) (with a >z b) in w must come
from a covering relation a <g b in the poset ). Indeed, if a and b are incom-
parable in (), then the permutation obtained from w by transposing a and b
would be a linear extension of P which is lexicographically smaller than w. On
the other hand, if ¢ and b are comparable but not adjacent elements in (), then
they can never be adjacent elements in a linear extension of Q. o

In particular, this lemma implies that, for a B-tree T" and the corresponding
B-permutation w (i.e., w is the lexicographically minimal linear extension of
T), one has Des(w) C Des(T'). The rest of this section discusses a special class
of building sets for which one always has Des(w) = Des(T).

9.2 CHORDAL BUILDING SETS

DEFINITION 9.2. A building set B on [n] is chordal if it satisfies the following
condition: for any I = {i; < -+ < i} € B and s = 1,...,r, the subset
{isy9541...,%r} also belongs to B.

Recall that a graph is called chordal if it has no induced k-cycles for k > 4. It
is well known [FG’65] that chordal graphs are exactly the graphs that admit a
perfect elimination ordering, which is an ordering of vertices such that, for each
vertex v, the neighbors of v that occur later than v in the order form a clique.
Equivalently, a graph G is chordal if its vertices can be labelled by numbers in
[n] so that G has no induced subgraph G|fi<;j<x} with the edges (i, j), (i,k)
but without the edge (j, k). Let us call such graphs on [n] perfectly labelled
chordal graphs.®

EXAMPLE 9.3. A tree on [n] is called decreasing if the labels decrease in the
shortest path from the vertex n (the root) to another vertex. It is easy to see
that decreasing trees are exactly the trees which are perfectly labelled chordal
graphs. Clearly, any unlabelled tree has such a decreasing labelling of vertices.

The following claim justifies the name “chordal building set.”

7A more standard convention is say that a descent is an indez i such that w(i) > w(i+1).

8We can also call them 312-avoiding graphs because they are exactly the graphs that have
no induced 3-path a—b—c with the relative order of the vertices a, b, ¢ as in the permutation
312. Note that, unlike the pattern avoidance in permutations, a 312-avoiding graph is the
same thing as a 213-avoiding graph.
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PROPOSITION 9.4. A graphical building set B(G) is chordal if and only if G is
a perfectly labelled chordal graph.

Proof. Suppose that G contains an induced subgraph G|{;<;j<r} Wwith exactly
two edges (4, ), (i, k). Then {3, 7,k} € B(G) but {j, k} ¢ B(G). Thus B(G) is
not a chordal building set.

On the other hand, suppose that B(G) is not chordal. Then one can find
an s and a connected subset I = {i; < --- < i,} of vertices in G such that
{is,is11,...,ir} & B(G). In other words, the induced graph G’ = G/, i}
is disconnected. Let us pick a shortest path P in G|y, .. ;.1 that connects two
different components of G’. Let i be the minimal vertex in P and let j and k
be the two vertices adjacent of ¢ in the path P. Clearly, j > ¢ and k > 4. It
is also clear that (4, ) is not an edge of G. Otherwise there is a shorter path
obtained from P by replacing the edges (i, ) and (i, k) with the edge (4, k). So
one has found a forbidden induced subgraph G|y; j xy. Thus G is not a perfectly
labelled chordal graph. O

PRrROPOSITION 9.5. Let B be a connected chordal building set. Then, for any
B-tree T and the corresponding B-permutation w, one has Des(w) = Des(T).

Proof. Let T be a B-tree and let w be the corresponding B-permutation, which
can be constructed backward from T as described in Lemma 8.9. Let us fix
ie{n—1,n—-2,...,1}. Let T1,..., T}, T}, ..., T, be the connected components
of the forest T—{w(n), w(n—1),...,w(i+1)}, where T, ..., T, are the subtrees
whose roots are the children of the vertex w(i + 1), and T7,...,T, are the
remaining subtrees. Let I = T<,,;41) C [n] be the set of all descendants of
w(i + 1) in T. By Definition 8.1(T1), one has I € B.

Suppose that the vertex m = max(w(1),...,w(i)) appears in one of the sub-
trees T4, ..., Ty, say, in the tree T. Then, by Lemma 8.9, w(i) should be the
root of 7. We claim that all vertices in Ts, ..., T, are less than w(i + 1). In-

deed, this is clear if w(i + 1) is the maximal element in I. Otherwise, the set
I'=In{w(l+1)4+1,...,n—1,n} is nonempty, I’ € B because B is chordal,
and I’ contains the maximal vertex m. Since the vertex set J of Ty should be
an element of B, it follows that I’ C J. So all vertices of T5,..., T, are less
than w(i + 1).

Thus none of the edges of T joining the vertex w(i + 1) with the roots of
T5,T5,...,T,. can be a descent edge. The only potential descent edge is the
edge (w(i), w(i+1)) that attaches the subtree T} to w(i+1). This edge will be a
descent edge in T if and only if w(i) > w(i+1), i.e., exactly when (w(7), w(i+1))
is a descent in the permutation w.

Now suppose that the maximal vertex m = max(w(1),...,w(i)) appears in
one of the remaining subtrees 77, ..., T, which are not attached to the vertex
w(i+1), say, in T7. In this case w(i+1) should be greater than all w(1),. .., w(7).
(Otherwise, if w(i + 1) < m, then at the previous step of the backward con-
struction for w, T7 is the connected component of T —{w(n), ..., w(i+1)} that
contains the vertex max(w(1),...,w(i+1)) = m. So w(i+1) should have been
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the root of T}.) In this case, none of the edges joining the vertex w(i + 1) with

the components 77, ...,7T, can be a descent edge and (w(i),w(i + 1)) cannot
be a descent in w.
This proves that descent edges of T" are in bijection with descents in w. o

Corollary 8.4 and Proposition 9.5 imply the following formula.

COROLLARY 9.6. For a connected chordal building set B, the h-polynomial of
the nestohedron Pp equals

het) = 30 ),

weS, (B)
where des(w) is the usual descent number of a permutation w € &,,(B).
Let us give an additional nice property of nestohedra for chordal building sets.

PROPOSITION 9.7. For a chordal building set B, the nestohedron Pg is a flag
simple polytope.

Proof. Let us check that a chordal building set B satisfies the condition in
Proposition 7.1(iii). Using the notation of that proposition, let J; U---U Jy =
{i1 < -+ < i,}. Let Us be the union of those subsets Ji,...,.JJp that have
a nonempty intersection with {is, és41,...,4}. Since {is,%541,...,%n} is in B
(because B is chordal), the subset U, should also be in B (by Definition 6.1(B1)).
Clearly, Uy is the union of all J;’s and U, consists of a single J;. It is also clear
that Uj4 either equals U; or is obtained from U; by removing a single subset
Ji. It follows that there exists an index s such that Us = (J1 U---U Jp) \ J;.
This gives an index ¢ such that (J; U---UJ;) \ J; and J; are both in B, as
needed. o

10 EXAMPLES OF NESTOHEDRA

Let us give several examples that illustrate Corollary 8.4 and Corollary 9.6. The
f- and h-numbers for the permutohedron and associahedron are well-known.

10.1 THE PERMUTOHEDRON

For the complete building set B = B(K,) the nestohedron Pz is the usual
permutohedron; see Example 6.10 and [Post’05, Sect. 8.1]. In this case B-trees
are linear orders on [n] and B-permutations are all permutations &, (B) = G,,.
Thus, as noted before in Example 6.10, the h-polynomial is the usual Eulerian
polynomial A, (t), and the h-numbers are the Eulerian numbers hy(Pg) =
A(n, k) == #{w € &, | des(w) = k}.
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10.2 THE ASSOCIAHEDRON

Let G = Path,, denote the graph which is a path having n nodes labelled
consecutively 1,...,n. The graphical building set B = B(Path,,) consists of all
intervals [4, j], for 1 <4 < j < n. The corresponding nestohedron Pg(patn,,) is
the usual Stasheff associahedron; see [CD’06, Post’05].

In this case, the B-trees correspond to unlabelled plane binary trees on n nodes,
as follows; see [Post’05, Sect. 8.2] for more details. A plane binary tree is
a rooted tree with two types of edges (left and right) such that every node
has at most one left and at most one right edge descending from it. From
Proposition 8.5, one can see that a B-tree is a binary tree with n nodes labelled
1,2,...,n so that, for any node, all nodes in its left (resp., right) branch have
smaller (resp., bigger) labels. Conversely, given an unlabelled plane binary tree,
there is a unique way to label its nodes 1,2,...,n to create a B-tree, namely
in the order of traversal of a depth-first search. Furthermore, note that descent
edges correspond to right edges.

It is well-known that the number of unlabelled binary trees on n nodes is equal
to the Catalan number C, = — (2”), and the number of binary trees on n

n+l\n
nodes with k£ — 1 right edges is the Narayana number N(n, k) = %(2) (")
see [Stan’99, Exer. 6.19c and Exer. 6.36]. Therefore, the h-numbers of the
associahedron Pg(pa¢n,,) are the Narayana numbers: hy(Pg(path, ) = N(n, k +
1), for k=0,...,n—1.

It is also well-known that the f-numbers of the associahedron are
fr(Pgpath,)) = ni_l (”;1) (2"n_k). This follows from a classical Kirkman-
Cayley formula [Cay’1890] for the number of ways to draw k noncrossing
diagonals in an n-gon.

In this case, the B-permutations are exactly 312-avoiding permutations w € &,,.
Recall that a permutation w is 312-avoiding if there is no triple of indices
i < j < k such that w(j) < w(k) < w(i). Thus Corollary 9.6 says that the
h-polynomial of the associahedron Pg(patn,,) is D, tdes(w) where the sum runs
over all 312-avoiding permutations in &,,. This is consistent with the known
fact that the Narayana numbers count 312-avoiding permutations according
to their number of descents; see Simion [Sim’94, Theorem 5.4] for a stronger
statement.

10.3 THE CYCLOHEDRON

If G = Cycle,, is the n-cycle, then the nestohedron Pg(cyele, ) is the cyclohe-
dron or Bott-Taubes polytope; see [CD’06, Post’05]. The h-polynomial of the
cyclohedron was computed by Simion [Sim’03, Corollary 1]:

n 2
n
hp(cycte, ) () = Z (k) tk. (6)
k=0

Note that the n-cycle (for n > 3) is not a chordal graph, so Corollary 9.6 does
not apply to this case.
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10.4 THE STELLOHEDRON

Let m =n—1. Let G = K, be the m-star graph with the central node m+1
connected to the nodes 1,...,m. Let us call the associated polytope Ppk, ,.)
the stellohedron.

From Proposition 8.5 one sees that B(K7 ., )-trees are in bijection with partial

permutations of [m], which are ordered sequences v = (uy,...,u,) of distinct
numbers in [m], where » = 0,...,m. The tree T associated to a partial permu-
tation u = (u1,...,u,) has the edges

(UpyUp—1), -, (U2, ur), (g, m+1),(m=+1,41),...,(m+1,im—p)

where i1, ..., 4m,—, are the elements of [m] \ {u1,...,u,}. The root of T is u,
if r>1,or m+1if r=0. For r > 1, one has des(T") = des(u) + 1, where the
descent number of a partial permutation is

des(u) :=#{i=1,...,r =1 |w; > uiy1}.

Also for the tree T associated with the empty partial permutation (for r = 0)
one has des(T") = 0. Corollary 8.4 then says that

moe r
hB(Kl,m)(t) =1+ thES(u)Jrl =1+ Z <T> ZA(Ta k) tkv (7)
u r=1 k=1

where the first sum is over nonempty partial permutations w of [m]. In partic-
ular, the total number of vertices of the stellohedron Pp(k, ) equals

m

Jo(Pocics ) = i (’:) =Y 7:—"

r=0 r=0

This sequence appears in [Sloa] as A000522.

In this case, B(K1 ,)-permutations are permutations w € &,,41 such that
m + 1 appears before the first descent. Such permutations w are in bijection
with partial permutations u of [m]. Indeed, u is the part of w after the entry
m + 1. Since our labelling of K, (with the central node labelled m + 1) is
decreasing (see Example 9.3), Corollary 9.6 implies that the h-polynomial of
the stellohedron Ppg, ) is h(t) = >, tdes(w) " where the sum runs over all
such permutations w € &,,41. This agrees with the above expression in terms
of partial permutations.

10.5 THE STANLEY-PITMAN POLYTOPE

Let Bps = {[i,n],{i} | i = 1,...,n}, the collection of all intervals [i, n] and sin-
gletons {i}. This (non-graphical) building set is chordal. According to [Post’05,
§8.5], the corresponding nestohedron Pg, is the Stanley-Pitman polytope from
[StPi'02)].
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By Proposition 8.5, Bpg-trees have the following form T'(I). For an increasing
sequence I of positive integers i1 < iy < -+ < i = n, construct the tree T'(I)
on [n] with the root at i; and the chain of edges (i1,12), (i2,%3),. .., (ix—1,0k);
also, for each j € [n]\ I, one has the edge (4, j) where ¢; is the minimal element
of I such that i; > j.

In this case, Bpg-permutations are permutations w € &, such that w(1l) <
w(2) <---<wk) >wk+1)>--->wn), for some k=1,...,n.

Using Bpg-trees or Bpg-permutations one can easily deduce that the h-
polynomial of the Stanley-Pitman polytope is hp,q(t) = (1+¢)"~ 1. This is not
surprising since Pg,q is combinatorially isomorphic to the (n — 1)-dimensional
cube.

11 ~-VECTORS OF NESTOHEDRA

Recall that the y-vector (y0,71, - - -,7|a/2)) of a d-dimensional simple polytope
is defined via its h-polynomial as h(t) = > 7; t*(1+t)¢~2%; and the y-polynomial
is y(t) = > i t'; see Section 2.3. The main result of this section is a formula
for the y-polynomial of a chordal nestohedron as a descent-generating function
(or peak-generating function) for some set of permutations. This implies that
Gal’s conjecture (Conjecture 2.3) holds for this class of flag simple polytopes.
To prove this, we will employ a certain combinatorial approach that goes back
to work of Shapiro, Woan, and Getu [SWG’83], also used by Foata and Strehl,
and more recently by Brianden; see [Bra’06] for a thorough discussion.
Suppose P is a simple polytope and one has a combinatorial formula for the
h-polynomial hp(t) = > ,c 4 t/(@) where f(a) is some statistic on the set A.
Suppose further that one has a partition of A into f-symmetric Boolean classes,
i.e. such that the f-generating function for each class is t" (1 +¢)>"~" for some
r. Let A C A be the set of representatives of the classes where f (a) takes its
minimal value. Then the y-polynomial equals yp(t) = >_ . 2 tf(@, Call f(a) a
“generalized descent-statistic.” Additionally, define

peak(a) = min{f(b) | @ and b in the same class} + 1

and call it a “generalized peak statistic.”

11.1 A WARM UP: 7-VECTOR FOR THE PERMUTOHEDRON

We review here the beautiful construction of Shapiro, Woan, and Getu
[SWG’83] that leads to a nonnegative formula for the ~y-vector of the usual
permutohedron. This subsection also serves as a warm-up for a more general
construction in the following subsection.

Some notation is necessary. Recall that a descent in a permutation w € &,, is
a pair (w(i), w(i + 1)) such that w(i) > w(i + 1), where ¢ € [n — 1]. A final
descent is when w(n — 1) > w(n), and a double descent is a pair of consecutive
descents, i.e. a triple w(i) > w(i + 1) > w(i + 2).

DOCUMENTA MATHEMATICA 13 (2008) 207-273



FACES OF GENERALIZED PERMUTOHEDRA 243

Additionally, define a peak of w to be an entry w(i) for 1 < ¢ < n such that
w(t —1) < w(i) > w(i +1). Here (and below) set w(0) = w(n + 1) = 0 and so
a peak can occur in positions 1 or n. On the other hand, a valley of w is an
entry w(i) for 1 < i < n such that w(i — 1) > w(i) < w(i+1). The peak-valley
sequence of w is the subsequence in w formed by all peaks and valleys.

Let 6&,, denote the set of permutations in &,, which do not contain any final
descents or double descents. Let peak(w) denote the number of peaks in a
permutation w. It is clear that peak(w)—1 = des(w), for permutations w € &,
(and only for these permutations).

THEOREM 11.1. (cf. [SWG’83, Proposition 4]) The ~-polynomial of the usual
permutohedron Pgk, ) is

Z tpeak(w)fl _ Z tdes(w)'

we@n we@n

EXAMPLE 11.2. Let us calculate the ~y-polynomial of the two dimensional per-
mutohedron Pgk,y. One has 63 = {(1,2,3),(2,1,3),(3,1,2)}. Of these,
(1,2,3) has one peak (and no descents), and (2,1,3) and (3,1,2) have two
peaks (and one descent). Therefore, the vy-polynomial is 1+ 2t.

Say that an entry w(i) of w is an intermediary entry if w(i) is not a peak or
a valley. Say that w(i) is an ascent-intermediary entry if w(i — 1) < w(i) <
w(i+1) and that it is a descent-intermediary entry if w(i—1) > w(i) > w(i+1).
(Here again one should assume that w(0) = w(n+1) = 0.) Note that the set S,
is exactly the set of permutations in G,, without descent-intermediary entries.
It is convenient to graphically represent a permutation w € &,, by a piece-
wise linear “mountain range” M, obtained by connecting the points (zg,0),
(z1,w(1)), (z2,w(2)), ..., (¥p,w(n)), (ns1,0) on R? by straight line inter-
vals, for some g < 1 < -+ < xp41; see Figure 2. Then peaks in w cor-
respond to local maxima of M, valleys correspond to local minima of M,
ascent-intermediary entries correspond to nodes on ascending slopes of M,
and descent-intermediary entries correspond to nodes on descending slopes of
M,,. For example, the permutation w = (6, 5,4, 10,8,2,1,7,9, 3) shown in Fig-
ure 2 has three peaks 6,10,9, two valleys 4,1, one ascent-intermediary entry
7, and four descent-intermediary entries 5,8, 2,3. Its peak-valley sequence is
(6,4,10,1,9).

As noted in Section 4.1, the h-polynomial of the permutohedron is the descent-
generating function for permutations in &,, (the Eulerian polynomial). In
order to prove Theorem 11.1, one constructs an appropriate partitioning of &,
into equivalence classes, where each class has exactly one element from &,,.
To describe the equivalence classes of permutations, one must introduce some
operations on permutations.

DEFINITION 11.3. Let us define the leap operations L, and L;* that act on
permutations. Informally, the permutation L,(w) is obtained from w by moving
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Figure 2: Mountain range M,, for w = (6,5,4,10,8,2,1,7,9,3)

an intermediary node a on the mountain range M,, directly to the right until
it hits the next slope of M,. The permutation L;*(w) is obtained from w by
moving a directly to the left until it hits the next slope of M.

More formally, for an intermediary entry a = w(i) in w, the permutation
L, (w) is obtained from w by removing a from the i-th position and inserting a
in the position between w(j) and w(j + 1), where j is the minimal index such
that j > i and a is between w(j) and w(j + 1), ie., w(j) < a < w(j + 1)
or w(j) > a > w(j+1). The leap operation L, is not defined if all entries
following a in w are less than a.

Similarly, the inverse operation L, (w) is given by removing a from the i-
th position in w and inserting a between w(k) and w(k + 1), where k is the
mazimum index such that k < i and a is between w(k) and w(k + 1). The
operation L' is is not defined if all entries preceding a in w are less than a.

For example, for the permutation w shown on Figure 2, one has Lo(w) =
(6,5,4,10,8,1,2,7,9,3) and L, ' (w) = (2,6,5,4,10,8,1,7,9,3).

Clearly, if a is an ascent-intermediary entry in w then a is a descent-
intermediary entry in LF!(w), and vice versa. Note that if a is an ascent-
intermediary entry in w, then L,(w) is always defined, and if a is a decent-
intermediary entry, then L, !(w) is always defined.

DEFINITION 11.4. Let us also define the hop operations H, on permutations.
For an ascent-intermediary entry a in w, define Hy,(w) = Lo(w); and, for a
descent-intermediary entry a in w, define H,(w) = L, (w).

For example, for the permutation w shown on Figure 2, the permuta-
tion Ha(w) = (2,6,5,4,10,8,1,7,9,3) is obtained by moving the descent-
intermediary entry 2 to the left to the first ascending slope, and H7(w) =
(6,5,4,10,8,2,1,9,7,3) is obtained by moving the ascent-intermediary entry 7
to the right to the last descending slope.

Note that leaps and hops never change the shape of the mountain range M,,,
that is, they never change the peak-valley sequence of w. They just move
intermediary nodes from one slope of M, to another. It is quite clear from the
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definition that all leap and hop operations pairwise commute with each other.
It is also clear that two hops H, get us back to the original permutation.

LEMMA 11.5. For intermediary entries a and b in w, one has (H,)*(w) = w
and Hy(Hy(w)) = Hp(Hy(w)).

Thus the hop operations H, generate the action of the group (Z/2Z)™ on the
set of permutations with a given peak-valley sequence, where m is the number
of intermediary entries in such permutations.

We say that two permutations are hop-equivalent if they can be obtained from
each other by the hop operations H, for various a’s. The partitioning of &,,
into hop-equivalence classes allows us to prove Theorem 11.1.

Proof of Theorem 11.1. The number des(w) of descents in w equals the num-
ber of peaks in w plus the number of descent-intermediary entries in w minus 1
(because the last entry is either a peak or a descent-intermediary entry, but it
does not contribute a descent). Notice that if a is an ascent-intermediary (resp.,
descent-intermediary) entry in w then the number of descent-intermediary en-
tries in H,(w) increases (resp., decreases) by 1 and the number of peaks does
not change.

If w € &, has p = peak(w) peaks then it has p — 1 valleys and n — 2p + 1
intermediary entries. Lemma 11.5 implies that the hop-equivalence class C of
w involves 2"~ 2P*! permutations. Moreover, the descent-generating function
for these permutations is ZUEC tdes(u) — ¢p (t+ 1)"=2r+1, Each hop-equivalence
class has exactly one representative u without descent-intermediary entries,
that is v € &,,. Thus, summing the contributions of hop-equivalence classes,
one can write the h-polynomial of the permutohedron as

h(t) _ Z tdes(w) — Z tpeak(w)fl(t_i_1)n+172peak(w).

weSy, wes,

Comparing this to the definition of the y-polynomial, one derives the theorem.
O

11.2 ~-VECTORS OF CHORDAL NESTOHEDRA

According to Proposition 9.7, nestohedra for chordal building sets are flag
simple polytopes. Thus Gal’s conjecture (Conjecture 2.3) applies. This section
proves this conjecture and presents a nonnegative combinatorial formula for -
polynomials of such nestohedra as peak-generating functions for some subsets
of permutations.

Let B be a connected chordal building set on [n]. Recall that &,,(B) is the set
of B-permutations; see Definition 8.7. Let &,,(B) := &,,(B)N &, be the subset
of B-permutations which have no final descent or double descent.

The following theorem is the main result of this section.
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THEOREM 11.6. For a connected chordal building B on [n], the vy-polynomial
of the nestohedron Pg is the peak-generating function for the permutations in

&,.(B):
VB (t) _ Z tpeak(w)—l _ Z tdes(w)'

weB, (B) weS, (B)

As noted earlier, peak(w) — 1 = des(w) for w € Sn.

The proof of Theorem 11.6 will be an extension of the proof given for the
v-vector of the permutohedron in Section 11.1. Recall that Corollary 9.6
interprets the h-polynomial of Pg as the descent-generating function for B-
permutations w € &,(B). Theorem 11.6 will be proven by constructing an
appropriate partitioning of the set &,,(B) into equivalence classes, where each
equivalence class has exactly one representative from én(B) As before, one
uses (suitably generalized) hop operations to describe equivalence classes of
elements of &,,(B).

One needs powers of the leap operations L] := (L,)", for » > 0, and L} :=
(L;1)~", for r < 0; see Definition 11.3. In other words, for r > 0, L"(w) is
obtained from w by moving the intermediary entry a to the right until it hits
the r-th slope from its original location; and, for » < 0, by moving a to the left
until it hits (—r)-th slope from its original location. Clearly, L’ (w) is defined
whenever r is in a certain integer interval r € [rumin, "max|. It is also clear that,
if @ is an ascent-intermediary entry in w, then a is ascent-intermediary in L7 (w)
for even r and a is descent-intermediary in L% (w) for odd r, and vice versa if
a is descent-intermediary in w.

Note that for a B-permutation w € &, (B), the permutations L’ (w) may no
longer be B-permutations. The next lemma ensures that at least some of them
will be B-permutations.

LEMMA 11.7. Let B be a chordal building on [n]. Suppose that w € &,(B) is a
B-permutation.

(1) If a is an ascent-intermediary letter in w, then there exists an odd positive
integer v > 0 such that L (w) € 6,(B) and Li(w) & &,(B), for all0 < s < r.
(2) If a is a descent-intermediary letter in w, then there exists an odd negative
integer r < 0 such that LT, (w) € &,(B) and Li(w) & S,(B), for all0 > s> r.

The proof of Lemma 11.7 will require some preparatory notation and observa-
tions.
For a permutation w € &,, and a € [n] such that w(i) = a, let

{wNa} :={w(j) | j <, w(j) = a}

be the set of all entries in w which are located to the left of a and are greater
than or equal to a (including the entry a itself). The arrow in this notation
refers to our graphical representation of a permutation as a mountain range
M,,: the set {w\ a} is the set of entries in w located to the North-West of the
entry a.
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According to Definition 8.7, the set &, (B) is the set of permutations w
such that, for ¢ = 1,...,n, there exists I € B such that both w(i) and
max(w(1),...,w(i)) are in I and I C {w(1),...,w(é)}. If B is chordal, then
I' := InNfw(i), 0] also belongs to B (see Definition 9.2) and satisfies the same
properties. Clearly max(w(1),...,w(#)) = max{w\w(¢)}. Thus, for a chordal
building set, one can reformulate Definition 8.7 of B-permutations as follows.

LEMMA 11.8. Let B be a chordal building set. Then &,(B) is the set of permu-
tations w € &,, such that for any a € [n], the elements a and max{w\a} are

in the same connected component of Blyy~ a}. Equivalently, there exists I € B
such that a € I, max{w\a} € I, and I C {w\a}.

Let us now return to the setup of Lemma 11.7. There are 2 possible reasons
why the permutation v = L’ (w) may no longer be a B-permutation, that is,
fail to satisfy the conditions in Lemma 11.8:

(A) It is possible that the entry a and the entry max{u\a} are in different
connected components of By~ q}-

(B) Tt is also possible that another entry b # a in u and max{u\ b} are in
different connected components of B¢, p}-

Let us call these two types of failure A-failure and B-failure. The following
auxiliary result is needed.

LEMMA 11.9. Let us use the notation of Lemma 11.7.

(1) For left leaps uw = L% (w), r < 0, one can never have a B-failure.

(2) For the mazximal left leap uw = L™ (w), where the entry a goes all the way
to the left, one cannot have an A-failure.

(3) For the maximal right leap w = Lim»(w), where the entry a goes all the
way to the right, one cannot have an A-failure.

(4) Let w = L"(w) and v/ = LIt (w), for r € Z, be two adjacent leaps such
that a is descent-intermediary in u (and, thus, a is ascent-intermediary in u’).
Then there is an A-failure in u if and and only if there is an A-failure in u'.

Proof. (1) Since w € &,,(B), there is a subset I € B that contains both b and
max{w \ b} and such that I C {w\b}. The same subset I works for u because
{ub} = {w b} or {u™\b} = {w\b} U {a}.

(2) In this case, a is greater than all preceding entries in u, so a = max{u \a}.
(3) In this case, a is greater than all following entries in w. The interval I =
[a,n] contains both a and max{u\a}, I C {u\a}, and I € B because B is
chordal.

(4) In this case, all entries between the position of a in u and the position of
a in ' are less than a. Thus {uN\a} = {v'\a}. So u has an A-failure if and
only if v’ has an A-failure. O

Proof of Lemma 11.7. 1t is easier to prove the second part of the lemma.
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(2) By parts (1) and (2) of Lemma 11.9, there exists a negative r such that
Ll (w) € 6,(B). Let us pick such an r with minimal possible absolute value.
Then r should be odd, by part (4) of Lemma 11.9, which proves (2).

(1) Suppose that there is an entry b # a in the permutation w such that b
and m = max{w\\b} are in different connected components of B|f,~ s}\{a}-
In this case, a € {w\\b}, that is b < a and b is located to the right of a in w.
(Otherwise, b and m are in different connected components of B|y,,~ 3}, which
is impossible because w is a B-permutation.) Let us pick the leftmost entry
b in w that satisfies this condition. Then the permutation v = L’ (w) has a
B-failure if the letter a moves to the right of this entry b; and u has no B-failure
if a stays to the left of b. By our assumptions, a stays to the left of b in L} (w),
so such a wu exists.

Let w = L], (w) be the maximal right leap (i.e., with maximal r > 0) such that
the entry a stays to the left of b. Then all entries in u between the positions
of a and b should be less than a. Thus m = max{u\a} = max{w \b}. Since
w € 6,(B), there is an I € B such that b,m € I and I C {w\b}. This
subset I should also contain the entry a. (Otherwise, b and m would be in the
same connected component B, ~ p}\{a}, contrary to our choice of b.) Thus
I' := INJa,+o0] € B contains both a and m and I’ C {u\a}. This means
that there is no A-failure in u. Thus u € &,,(B).

If there is no entry b in w as above, then none of the permutations L} (w) has
a B-failure. In this case Lim=(w) € &,(B) by part (3) of Lemma 11.9.

In all cases, there exists a positive r such that L (w) € &,(B) and only A-
failures are possible in L2 (w), for 0 < s < r. Let us pick the minimal such r.
Then r should be odd by part (4) of Lemma 11.9, as needed. O

DEFINITION 11.10. Let us define the B-hop operations BH,. For a B-
permutation w with an ascent-intermediary (resp., descent-intermediary) entry
a, the permutation BH,(w) is the right leap uw = L% (w), r > 0 (resp., the left
leap w = L] (w), r < 0) with minimal possible |r| such that u is a B-permutation.
Informally, BH,(w) is obtained from w by moving the node a on its mountain
range M., directly to the right if a is ascent-intermediary in w, or directly left
if a is descent-intermediary in w (possibly passing through several slopes) until
one hits a slope and obtain a B-permutation.

Lemma 11.7 says that the B-hop BH,(w) is well-defined for any intermediary
entry a in w. It also says that if a is ascent-intermediary in w then a is descent-
intermediary in BH,(w), and vice versa. Moreover, according to that lemma,
(BH,)?(w) = w.

ExaMpPLE 11.11. Let G be the decreasing tree shown on Figure 3. Then the
graphical building B = B(G) is chordal; see Example 9.3. Figure 3 shows several
B-hops of the B-permutation w = (1,10,8,3,6,9,7,4,12,11,5,2):

BH;(w) = Li(w) = (10,8,3,6,9,7,4,12,11,5,2,1),
BHs(w) = (L)% (w) = (1,5,10,8,3,6,9,7,4,12,11, 2),
BHg(w) = Lg(w) = (1,10,8,3,9,7,6,4,12,11,5,2).
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Figure 3: A B(G)-permutation w and some B-hops

Let us now show that the B-hop operations pairwise commute with each other.

LEMMA 11.12. Let a and b be two intermediary entries in a B-permutation w.
Then BHq(BHp(w)) = BHy(BH,(w)).

Proof. Let us first assume that both a and b are descent-intermediary entries in
w. Without loss of generality assume that a > b. In this case BH,(w) = L’ (w)
and BH,(w) = Lj(w) for some negative odd r and s, that is the entries a and
b of w are moved to the left. According to Lemma 11.9(1), in this case one
does not need to worry about B-failures. In other words, BH,(w) is the first
left leap L7 (w) (i.e., with minimal —r > 0) that has no A-failure. Similarly,
BHj(w) is the first left leap Lj(w) without A-failures (where A-failures concern
the entry b).

Since A-failures for permutations v = L% (w), ¢ < 0, are described in terms of
the set {u\a} C [a, o0], moving the entry b < a in w will have no effect on these
A-failures. Thus, for the permutation w’ = BH}(w), one has BH,(w') = L% (w")
with exactly the same r as in BH,(w) = L} (w).

However, for permutations u = L} (w), ¢ < 0, the sets {u\\b} might change
if one first performs the operation BH, to w. Namely, let w = BH,(w) and
@ = Li(w) = Li(L(w)). Then {a\b} = {u\b} U {a} if a is located to the
left of b in @ and a is located to the right of b in u (and {a\b} = {u\b}
otherwise). Notice that one always has m = max{u\b} = max{a "\ b}, since
this maximum is the maximal peak preceding b in u (or in @), and leaps and
hops have no affect on the peaks.

If b and m are in the same connected component of B, »} then they are also
in the same connected component of B[z~ 3}, that is if there is no A-failure
for u then there is no A-failure for .

Suppose that there is no A-failure for @ but there is an A-failure for u. Then
the sets {u\ b} and {@ "\ b} have to be different. That means that a is located
to the left of b in @ and a is located to the right of b in u. Let I be the element
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I € B such that b,m € I and I C {@\\b}. Then I should contain the entry a.
(Otherwise, I C {u\\b} and there would be no A-failure for u.)

Let @ = Lf(w) be the left leap with maximal possible —f > 0 such that the
position of a in w is located to the right of the position of b in u. Since
@ = Li(L(w)), it follows that |f| < |r|. In other words, if one starts moving
to the right from the node b along the mountain range My, the (ascending)
slope that first crosses the level a is the place where the entry a is located in
w. Note that ¢ is odd because a should be an ascent-intermediary entry in ;
in particular ¢ < 0.

Since all entries in w located between the position of b in % and the position
of a in @ are less than a, one deduces that {a\b} N [a,00] = {@\a}. Thus
the subset [ = I N [a, o0] has three important properties: it lies in B (because
B is chordal); it contains both a and m = max{w\a}; and it is a subset of
{w\a}. It follows that there is no A-failure in w. This contradicts the fact
that L7 (w) # Lf;(w) is the first left leap that has no A-failure.

Thus v has an A-failure if and only if & has an A-failure. It follows that
BHy(w) = Lj(w) with exactly the same s as in BHy(w) = Lj(w).

This proves that BH,(BHy(w)) = L}, (L;(w)) = Lj(L}(w)) = BHy(BH,(w)),
in the case when both a and b are descent-intermediary in w.

Let us now show that the general case easily follows. Suppose that, say, a
is ascent-intermediary and b is descent-intermediary in w. Then, for w” =
BH,(w ) both a and b are descent-intermediary. One has BH,(BHy(w"))

BHy(BH,(w")). Thus BH,(BHy,(BH,(w))) = BHy,(BH,(BH,(w))) =
BH;,( Applylng BH, to both sides, one deduces BH(BH,(w)) =
(BHb( )). The other cases are similar. O

Thus the B-hop operations BH, generate the action of the group (Z/2Z)™
the set of B-permutations with a given peak-valley sequence, where m is the
number of intermediary entries in such permutations.

We say that two B-permutation are B-hop-equivalent if they can be obtained
from each other by the B-hop operations BH, for various a’s. This gives the
partitioning of the set of B-permutations into B-hop-equivalence classes.

One can now prove Theorem 11.6 by literally repeating the argument in the
proof of Theorem 11.1.

Proof of Theorem 11.6. For a B-permutation w € &,(B) with p = peak(w),
the descent-generating function of the B-hop-equivalence class C' of w is
S pec tde = 2(t 4+ 1)"=2PF1. Each B-hop-equivalence class has exactly one

representative without descent-intermediary entries, that is, in the set én(B)
Thus the h-polynomial of the nestohedron Pg (see Corollary 9.6) is

hPB (t) = Z tdes(w) = Z tpeak(w)*l(t + 1)n+172 peak(w).
weS, (B) HIE@n(B)
Comparing this to the definition of the y-polynomial, one derives the theorem.

O
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COROLLARY 11.13. Gal’s conjecture holds for all graph-associahedra corre-
sponding to chordal graphs.
11.3 ~-VECTORS FOR THE ASSOCIAHEDRON AND CYCLOHEDRON

In Propositions 11.14 and 11.15 we give two explicit formulas which can be
derived from the expressions for the corresponding h-polynomials (see Sections
10.2 and 10.3) using standard quadratic transformations of hypergeometric
series; e.g., see [RSW’03, Lemma 4.1].

ProPoOsSITION 11.14. The ~y-polynomial of the associahedron Pgpatn,,) 5

L'n.;l

n—1\ ,

NOEY CT< o >t,
r=0

) is the r-th Catalan number.

where C, = T—Jlrl (2:

PROPOSITION 11.15. The y-polynomial of the cyclohedron Ppg(cycle,) 15

L5

-3

r=0

We now give three combinatorial proofs of Proposition 11.14 as an alternative
to using hypergeometric series.

First proof of Proposition 11.14. It is known that the Narayana polynomial
which is the h-polynomial of Pg(pacn,,) is also the rank generating function for
the well-studied lattice of noncrossing partitions NC(n). An explicit symmet-
ric chain decomposition for NC(n) was given by Simion and Ullman [SU’91],
who actually produced a much stronger decomposition of NC(n) into disjoint
Boolean intervals placed symmetrically about the middle rank(s) of NC(n).
Their decomposition contains exactly C, (”2: ,1) such Boolean intervals of rank
n—(2r+1) for each r =0,1,..., "T’l, which immediately implies the formula
for the v-polynomial; see [SU’91, Corollary 3.2]. O

Second proof of Proposition 11.14. By Section 10.2, the h-polynomial of
Pp(patn,,) counts plane binary trees on n nodes according to their number of
right edges. There is a natural map from binary trees to full binary trees,
i.e., those in which each node has zero or two children: if a node has a unique
child, contract this edge from the node to its child. If the original binary tree
T has n nodes, then the resulting full binary tree 77 will have 2r + 1 nodes, 2r
edges and r right edges for some r = 0,1,...,[(n — 1)/2|. There are C, such
full binary trees for each r. Given such a full binary tree T”, one can produce
all of the binary trees in its preimage by inserting n — (2r + 1) more nodes
and deciding if they create left or right edges. One chooses the locations of
these nodes from 2r + 1 choices, either an edge of the full binary tree they
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n7(2r+1)+(2r+1)71) _ (n—l)
n—(2r+1) 2r
possible locations. Thus the generating function with respect to the number
of right edges for the preimage of 7" is (n;TI) t"(t + 1)~ 7+ where the term
t"(t + 1)"= 27+ comes from choosing whether each of the new nodes creates
a left or a right edge. It follows that the generating function for all binary
trees on n nodes is hpatn,, (1) = >, C ("2:1) " (t 4 1)@+ where C, counts
full binary trees. This implies the needed expression for the y-vector of the
associahedron Pg(path,,)-

Equivalently, one can describe the subdivision of all binary trees into classes
where two binary trees are in the same class if they can be obtained from
each other by switches of left and right edges coming from single child nodes.
Then one gets exactly C, ("2; 1) classes having ¢" (¢t + 1)”*(2”1) as its generating
function counting number of right edges, for each r =0,1,...,|(n—1)/2|. O

will subdivide or located above the root, giving (

Third proof of Proposition 11.14. This proof is based on our general approach
to y-vectors of chordal nestohedra. According to Section 10.2, B-permutations
for the associahedron are 312-avoiding permutations and h-polynomial is equal
to the sum hpyp,., () = >, qPe ()= gver all 312-avoiding permutations
w € &,. By Theorem 11.6, v,(Pg(path,)) equals the number of 312-avoiding
permutations with no descent-intermediary elements and r 4+ 1 peaks. The
(flattenings of) peak-valley sequences of such permutations are exactly 312-
avoiding alternating permutations in Sq,41, that is 312-avoiding permutations
w’ such that wj > why < wy > -+ < wy,, . It is known that the number of such
permutations equals the Catalan number C,.; see [Man’02, Theorem 2.2]. Then
there are (”;.') ways to insert the remaining n — (2r + 1) descent-intermediary

2r
elements. 0

12  GRAPH-ASSOCIAHEDRA FOR SINGLE BRANCHED TREES

Our goal in this section is to compute a generating function that computes the
h-polynomials of all graph-associahedra in which the graph is a tree having at
most one branched vertex (i.e., a vertex of valence 3 or more).

12.1 ASSOCIAHEDRA AND NARAYANA POLYNOMIALS

First recall (see Section 10.2) that the A-numbers of the associahedron Pg(patn,,)
are the Narayana numbers hy,(Pg(path,)) = N(n, k) := %(Z) (kﬁl), and the h-
polynomial of the associahedron is the Narayana polynomial:

hB(Pathn)(t) - Cn(t) = Z N(na k) et (8)

n
k=1

Recall the well-known recurrence and generating function for the Narayana
polynomials C,,(t). The recurrence in Theorem 6.12 for the f-polynomials
[BPath,) (t) = hpPatn,)(t +1) = Cp(t 4+ 1) can be written as follows. When
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one removes k vertices from the n-path, it splits into k + 1 (possibly empty)
paths. So one obtains

Cu(t) = (t—1)F* > Coy () - Cey (1), forn >1, (9)
k>1 mi+-+mpp1=n—k

where the sum is over mq,...,myy1 > 0 such that > m; = n — k. Here one
assumes that Cy(t) = 1.
Let C(t,z) be the generating function for the Narayana polynomials:

Ct,z) = Cu(t)a" =+ (1+1)2” + (143t +1%)2° + - (10)

n>1

1z —tz— /(1 -z —tx)? — dla?
B 2tx '

The recurrence relation (9) is equivalent to the following well-known functional
equation:
C=txC?*+(1+t)xC +uz, (11)

see [Stan’99, Exer. 6.36b].

12.2 GENERATING FUNCTION FOR SINGLE BRANCHED TREES

Trees with at most one branched vertex have the following form. For
ai,...,ar > 0, let Tg, . 4. be the graph obtained by attaching k chains of
lengths a1, ..., ar to one central node. For example, Ty, .. o is the graph with a
single node and T4, . 1 is the k-star graph K j.

THEOREM 12.1. One has the following generating function for the h-
polynomials of graph-associahedra Pgr, ) for the graphs Ty, .. 4

k-

T(t,ay,...,ox) = Y hr, ., (®)«pthapt!
ai,...,ax >0
(t—1)¢1--- P&

T+ (- 1) o)

where ¢; = x;(1 + tC(t,x;)), and C(t,x) is the generating function for the
Narayana polynomials from (10).

This theorem immediately implies the following formula from [Post’05].

COROLLARY 12.2. [Post’05, Proposition 8.7 The generating function for the
number of vertices in the graph-associahedron Ppg(t, o) U

a1,...,0k

where C(z) = Y onsoCn " = V1A% s the generating function for the Cata-
lan numbers. -
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Proof. The claim is obtained from Theorem 12.1 in the limit ¢ — 1. Note
however that one needs to use I’Hopital’s rule before plugging in t = 1. O

The first proof of Theorem 12.1 is fairly direct, using Corollary 8.4 and the
solution to Simon Newcomb’s problem. The second uses Theorem 6.13 to
set up and then solve a system of PDE’s; it has the advantage of producing
a generating function for the h-polynomials of one further family of graph-
associahedra.

12.3 THEOREM 12.1 vIA SIMON NEWCOMB’S PROBLEM

Let us first review Simon Newcomb’s problem and its solution.

Let w = (w(l),...,wy) be a permutation of the multiset {1°,..., k°}, that
is, each i appears in w exactly ¢; times, for i = 1,...,k. A descent in w is an
index ¢ such that w(i) > w(i + 1). Let des(w) denote the number of descents
in w. Simon Newcomb’s Problem is the problem of counting permutations
of a multiset with a given number of descents, see [Mac’17, Sec. IV, Ch. IV]
and [GJ’83, Sec. 4.2.13]. Let us define the multiset Eulerian polynomial as

Aclywwck (t) = Z tdes(w)’

w

where the sum is over all permutations w of the multiset {1°*,...,k%}. By
convention, set Ay o(t) = 1.

In particular, the polynomial Ay 1(¢) is the usual Eulerian polynomial. It is
clear that Acl,___7ck(1) = (Chﬁ%), the total number of multiset permutations.
A solution to Simon Newcomb’s problem can be expressed by the following
generating function for the A, . ., (t).

PROPOSITION 12.3. [GJ'83, Sec. 4.2.13] One has

t—1
Z AC1,...7ck(t) yil .. yl‘;k — _ .
et t—TLo (T (1))

Theorem 12.1 then immediately follows from Proposition 12.3 and the following
proposition.

PROPOSITION 12.4. The generating function for the h-polynomials of the poly-
topes Py, o) equals

T(tay,...,50) = . Ae e (t) o5 gt

C1,..,Ck >0

Proof. Let us label nodes of the graph Ty, . o, by integers in [n], where n =
a1 + --- 4+ ar + 1, so that the first chain is labelled by 1,...,a1, the second
chain is labelled by a1 + 1, ..., a1 + a9, etc., with all labels increasing towards
the central node, and finally the central node has the maximal label n.
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Let T be a Ty, ... .q,-tree. Suppose that the root r of T' belongs to the w(1)-st
chain of the graph T}, .. 4, . If one removes the node r from the graph T,,, . ,,,
then the graph decomposes into 2 connected components, one of which is a chain
Pathy, and the other is Tau...,a;,(l),---,aw where a;j(l) = Qy(1) — b1 — 1 and all
other indices are the same as before. (The first component is empty if b; = 0.)
According to Proposition 8.5, the tree 1" is obtained by attaching a Pathy, -tree

Tyand aT,, o (1)7,,,’ak—tree T’ to the root r. (Here one assumes that there is

one empty Pathg-tree T3, for by = 0.) Let us repeat the same procedure with
the tree T'. Assume that its root belongs to the w(2)-nd chain and split it into
a Pathy,-tree Ty and a tree T"”. Then repeat this procedure with T, etc. Keep
on doing this until one gets a tree T"" with the root at the central node n.
Finally, if one removes the central node n from T""l, then it splits into k trees
T1,..., Ty such that Tj is a Pathy;-tree, for j = 1,... k.

So each Ty, ... q,-tree T gives us the following data:

m

1. a sequence (w(1),...,wy) € [K]™;
2. a Pathy,-tree T3, for i = 1,...,m;
3. a Pathgy,-tree Tj, forj=1,...,k.
This data satisfies the following conditions:
1. m,by,...,bm,dy,...,dr >0, and
2. (b1 4 Deyay + -+ (bm + 1)ew,, + (di,....di) = (a1,...,ax),

where ey, ..., e, are the standard basis vectors in R¥. Conversely, data of this
form gives us a unique Ty, ... q,-tree T. The number of descents in the tree T’
is

m k
des(T) = Z des(T;) + Z des(T}) + 1 + des(w),

where [ is the number of nonempty trees among 14, . .., T, T4, - . ., Tip. Indeed,
all descents in trees T; and Tj correspond to descents in T', each nonempty tree
T; or Tj gives an additional descent for the edge that attaches this tree, and
descents in w correspond to descent edges that attach trees TV,T",. ...

Let us fix a sequence w = w(l),...,w(m). For i € [k], let ¢; be the num-
ber of times the integer ¢ appears in w. In other words, w is a permuta-
tion of the multiset {1°,...,k%}. Then the total contribution to the gen-
erating function T'(t,x1,...,xx) of trees T whose data involve w is equal to
tdes(w) pertl, ~¢)2’“+1. Indeed, the term 1 in ¢; = z;(1 + ¢ - C(t,x;)) corre-
sponds to an empty tree, and the term ¢ - C(t, ;) corresponds to nonempty
trees, which contribute one additional descent. The term ¢;* comes from the

¢; trees Tj,, ..., Tj. , where wj,, ..., wj,  are all occurrences of 7 in w. Finally,
additional 1’s in the exponents of ¢;’s come from the trees T1, ..., T. Summing
this expression over all permutations w of the multiset {1, ..., k% } and then
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over all ¢1,...,¢c; > 0, one obtains the needed expression for the generating
function T'(¢, z1,. .., xk). O

REMARK 12.5. One can dualize all definitions, statements, and arguments in
this section, as follows. An equivalent dual formulation to Theorem 12.1 says

(1 —t) 41~y
T—t [T, (1 + (1= t) )

where ¥; = x;(1+ C(t,z;)). The equivalence to Theorem 12.1 follows from the
relation ¢; - ;i = (t — 1)(¢; — 0;), which is a reformulation of the functional
equation (11).

The dual multiset Eulerian polynomial is A, ¢, (t) == >ow twdes(w)+1 - phere
the sum is over permutations w of the multiset M = {1¢,... k%}, m =
1+ -+ ¢k, and wdes(w) is the number of weak descents in the multiset
permutation w, that is, the number of indices i for which w(i) > w(i+1). The
bijection which reverses the word w shows that flchm,ck (t) =t Aey e (E71)
and consequently one has an equivalent formulation of the solution to Simon
Newcomb’s problem:

T(tamla"'axk) =

_ -
Z Acl,...,ck (t) yil e ka _ _ |
C1yeesCl 20 1-— tHizl(l + (1 — t) yi)

Then one can modify the proof of Proposition 12.4, by switching the labels i
with n +1 — ¢ in the graph Ty, ... q,, and applying a similar argument to show

T(twy,..om) = > Acy e ()7 gt

C1y..sCp >0

12.4 PROOF OF THEOREM 12.1 viaA PDE

This section rederives Theorem 12.1 using Theorem 6.13. It also calculates the
generating function for f-polynomials of graph-associahedra corresponding to
another class of graphs, the hedgehog graphs defined below.

Recall that Path,, is the path with n nodes, and T, ... 4, is the graph obtained

by attaching the paths Path,,, ..., Path,, to a central node. Let us also
define the hedgehog graph H,, .. ., as the graph obtained from the disjoint
union of the chains Path,,, ..., Path,, by adding edges of the complete graph

between the first vertices of all chains. For example, Hy, . o is the empty graph,
Hy, . 1= Ky, and Hy . o is agraph with 2k vertices obtained from the complete
graph K} by adding a “leaf” edge hanging from each of the k original nodes.
By convention, for the empty graph, one has fHO AAAAA .(t)=0.

Theorem 6.13 gives the following recurrence relation for f-polynomials of path
graphs:

d - n—1 . .
EfPathn (t) = ;(n -7+ 1) : fPath,.(t) . fPathn,T (t)
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Indeed, there are n — r + 1 connected r-element subsets I of nodes of Path,,,
the deletion Path,|; is isomorphic to Path,, and the contraction Path,, /I is
isomorphic to Path,, ...

For graphs Ty, ... 4., Theorem 6.13 gives the following recurrence relation:

k a
d - .
EfTal ..... ak (t) = ZZfPatm (t) fTa1 ..... ai—Tee g (t) (az —r+1)
i=1r=1
+ZfTb1 ..... b (t) fHal—bl ..... ap—bg (t)v
where the second sum is over by,...,b; such that 0 < b; < a;, fori=1,...,k.

Indeed, a connected subset I of vertices of G = Tg, ... 4, either belongs to one of
the chains Path,,, or contains the central node. In the first case, the restriction
is G|; = Path, and the contraction is G/I =T,,, . a;—r....a,, Wwhere r = |I|. In
the second case, the restriction G|; has the form Ty, . 5, and the contraction
is G/I = Hgy—by,....an—b,- Similarly, for hedgehog graphs Hy, ... 4, , one obtains
the recurrence relation

d - 2 =
Tt (=30 Feaen () Fite, o (8) (s = 1)
i=1r=1
+Zbe1 ..... br (t) fHal—bl ..... ap —by (t)a
where the second sum is over by,...,br such tha‘g 0 < b < ai, for ¢ =
1,...,k. In all cases one has the initial conditions fpatn, (0) = fr,, ., (0) =
fHal ..... ag (O) =1, except fPatho (t) = fHo ..... o(t) =0.

The above recurrence relations can be written in a more compact form using
these generating functions:

Fa(t,2) = feam, (t) 2" =2 + (1 +2t) 2® + (1 + 5t +5t%) ' + -,

n>1
Fr(t,xy,...,25) = Z fro, . ak(t)x?ﬁ“'w?““v
ay,...,ar >0
Fy(t,zq,...,zk) = Z fHal ,,,,, ak(t)x‘f“'wi’“-
ai,...,ap >0

Note that F4 and Fp are related to generating functions from Section
12: Fa(t,z) = t7 2Ot ! + 1,tx), and Fr(t,z1,...,7x) = t FTE ! +
1,taq,. .. tog).

The above recurrence relations can be expressed as the following partial differ-
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ential equations with initial conditions at ¢t = O:

OF OF x?
T =y Faleo=1— 02
OFr k OFr Ty T
—— =) Fualt,z;) =—+Fr-Fu, Frli=o=——""—""—, (13)

ot E: Ox; I, —=)

=1 =1 T

OFy < OFy _1-TI (0 — )

7 f;FA(tamz)a—xl (FH) ) FH|t:0* Hle(l—xi) ~(14)

One can actually solve these partial differential equations for arbitrary initial
conditions, as follows.

PROPOSITION 12.6. The solutions F(t,xz), G(t,x1,...,2x), H(t,x1,...,2k),

and R(t,x1,...,x) to the following system of partial differential equations with
initial conditions
O —r % Pl = o) (15)
%—f:gF(t x;) g_:i’ Gli=o = go(x1, ..., zk), (16)
%—Ij ng(t,xi)g—z+H2, Hli=o = ho(z1, ..., ), (17)
%:iF(t,xi)g—i—i—R-H, Rli—o =ro(z1,...,2k) (18)

@
Il
N

are given by

folx +t-F)=F (implicit form)

G =go(&1,---,&k)

H=—(t+ (ho(&1,.-, &))"
R=—ro(&,. &) - (L4 t-ho(6r,--- &))"

where & = x; +t- F(t,x;), fori=1,...,k.

Proof. Let us first solve (15). For a constant C', consider the function z(¢) given
implicitly as F'(t,z) = C, i.e., the graph of x(¢) is a level curve for F(¢,z). The
tangent vector to the graph of x(t) at some point (¢o, o) such that F(to,zo) =
Cis (1, dx(tO)). The derivative of the function F(¢,z) at the point (¢, o) in
the direction of this vector should be 0, i.e., 1- 6F(g; o) 4 dz(to) aF(ég,:Eo) =0.
This equation, together with the dlfferentlal equation (15) for F, implies that
jt x(t) = —C. Solving this trivial differential equation for z(t) one deduces
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that z(t) = —C -t + B(C'), where B is a function that depends only on the
constant C. Since C' can be an arbitrary constant, one deduces that

x=—F(t,z) - t+ B(F(t,z)), or, equivalently, BS™Y (z + ¢ - F(t,z)) = F(t,z).
Plugging the initial condition F|i—g = fo(x) in the last expression, one gets

BV (z) = fo(w).
Thus the solution F'(¢,x) is given by fo(z +¢- F) = F, as needed.
Direct verification shows that the function G = R(F(t,z1),...,F(t,zx))
satisfies the differential equation (16), for an arbitrary R(y1,...,yx). The
initial condition for t = 0 gives R(fo(z1),..., fo(zk)) = go(z1,...,zk).
Thus R(y1,...,yx) = go(B(y1),...,B(yx)), where B = f0<71>, as
above.  Since B(F(t,z)) = x + t - F(t,x), one deduces that G =
go(B(F(t, 1'1))7 ceey B(F(ta Ik))) = gO(fla ceey fk)a as needed.
Making the substitution H = —(t + G(t,x1,...,2%)) ! in differential equation
(17) for H, one obtains equation (17) for G with gg = —(ho)~!. By the
previous calculation, one has G = —(ho(&1,...,&)) L. Thus the solution for
(17) s H = —(t + (ho(&, .- &) ).
Making the substitution R = H - G in equation (17) for R, where H is the
solution to (17), one obtains equation (16) for G with go = ro/ho. By the
above calculation, one has G = ro (&1, ..., zx)/ho(&1, - - -, &k). Thus,

_ 1 .To(fl,...,xk) _ To(fl,...,xk)
t+(h0(§1;---7€k))_1 ho(gla"'agk) 1+t'h0(§15"'7§k‘)’
as needed. O

R=

Applying Proposition 12.6 to differential equation (12) for F4(t, x), one obtains
the implicit solution:
t-Fa)?
ACRAEVVa
l—xz—t-Fu
This is equivalent to the quadratic equation (11) for C(¢,z). Explicitly, one
gets

(1—z—2tx) — /(1 — o — 2tx)? — 4t(t + 1)a2

2t(t+1) '
Applying Proposition 12.6 to differential equations (13) and (14) for the gen-
erating functions Fr and Fj, one obtains the following result.

FA(t,I) = (19)

THEOREM  12.7. The generating functions Fr(t,xz1,...,xz) and
Fy(t,xy,...,x5) are given by the following expressions
& n

Fr(t,zi,...,zx) = E+D)(1—-&)---(1-&)—-t

1-(0-&)---(1—=&)
G0 &) (&)
where & = x; +t- Fa(t,x;) and Fy is given by (19).

FH(taxla"'azk): (
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Note that the above expression for Fr is equivalent to Theorem 12.1, using (1).

13 GRAPH-ASSOCIAHEDRA FOR PATH-LIKE GRAPHS

The goal of this section is to use Theorem 6.12 to compute the h-polynomials
of the graph-associahedra of a fairly general infinite family of graphs, including
all Dynkin diagrams of finite and affine Coxeter groups.

Let A and B be two connected graphs with a marked vertex in each, and let
ng be the total number of unmarked vertices in A and B. For n > ng, let
G, = G,(A, B) be the graph obtained by connecting the marked vertices in A
and B by the path Path,_,, so that the total number of vertices in G, is n.
Call graphs of the form G,, path-like graphs because, for large n, they look like
paths with some “small” graphs attached to their ends.

The following claim shows that the h-polynomials of the graph-associahedra
Pp(g,) can be expressed as linear combinations (with polynomial coefficients)
of the h-polynomials C),(¢) of usual associahedra; see (8).

THEOREM 13.1. There exist unique polynomials go(t),g1(t),. .., gn,(t) € Z[t]
of degrees deg g;(t) < i such that, for any n > ng one has

ha, (t) = go(t) Cn(t) + g1(t) Cr1(t) + -+ + gno (t) Crno (¢)-

The polynomial g;(t) is a palindromic polynomial, that is g;(t) = t* g;(t~1), for
1= 0, ..., NQ.

Similarly, one can express the f-polynomials of Py(g, ) as a linear combination
of the f-polynomials of usual associahedra, because fa(t) = ha(t + 1).

One can rewrite this theorem in terms the generating function C(t, ) for the
Narayana numbers; see (10).

COROLLARY 13.2. There exists a unique polynomial g(t,z) € Z[t,x] such that
for anyn > ng, hg, (t) is the coefficient of ™ in g(t,x) C(t,x). The polynomial
g(t,x) has degree at most ng with respect to x, and satisfies g(t,x) = g(t~1,tx).

Proof. This follows from Theorem 13.1, by setting g(¢t,z) = go(t) + g1(¢) = +
...Jrgno(t)xno. O

Proof of Theorem 13.1. Let us first prove the existence of the linear expan-
sion. The recurrence from Theorem 6.12 will be used to prove this claim
by induction on the total number of vertices in A and B. Suppose that
A or B is disconnected, say, A is a disjoint union of graphs A; and A,
where A; contains the marked vertex. Let G, := Gn(A1,B) and let r
be the number of vertices in As. Then hg,(t) = hg,  (t)ha,(t), where
deghy,(t) < r — 1. By induction, hg  (t) can be expressed as a linear
combination of Cy,_y(t), Cpn—r_1(t), ..., Cr_n,(t), which produces the needed
expression for hg,, (t).
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Now assume that both A and B are connected graphs. Theorem 6.12(3)
gives the expression for the h-polynomial as the sum hg, (t) = >, (t —
DIEI=1he \ () over nonempty subsets L of vertices of G,,, where G, \ L de-
notes the graph G,, with removed vertices in L. (Here one has shifted ¢ by —1 to
transform f-polynomials into h-polynomials.) Let us write L as a disjoint union
L=TUJUK, where I is a subset of unmarked vertices of A, J is a subset of
unmarked vertices of B, and K is a subset of vertices in the path connecting the
marked vertices. The contribution of the terms with K = () to the above sum
is Y2, (t= DI he |\ Uy (t). Note that G, \ (TUJ) = G, (A\1, B\ J),
where r = |I| +[J|. By induction, one can express each term hg,\(7us)(t) as a
combination of Cp_,(t),. .., Cp_n, ().

The remaining terms involve a nonempty subset K of vertices in the path
Path,,_n,. When one removes these k = | K| vertices from the path, it splits
into k + 1 smaller paths Path,,,,...,Path,,,  , with m; > 0; cf. paragraph
before (9). Thus the remaining contribution to hg, (t) can be written as

S0 > =) b 1,0 (E) Cona (£) -+ Cony () By 0,500 (1),

I,J my,...;,mg4120
where o is the graph with a single vertex,

p=mi+|A\I| -1,
q=mrs1+|B\J| -1, and

k+Zmi:nfno.

By induction, one can express hg, (a\1,0)(t) and hg, (o, 3\.)(t) as linear combi-
nations of the Cy,/(¢). So the remaining contribution to hg, (t) can be written
as a sum of several expressions of the form

s(t) Y > (t =D Cry (1) Coina (8) - G (8) Cy (1),

’ ’
k21 m) ma,....me,mj

where the sum is over m’, ma, ..., mg, m) ., such that m| > a, ma,...,my >0,
My 1 > b, my +ma + - +mg +my, +k=mn—c This expression depends
on nonnegative integers a, b, ¢ such that a + b+ ¢ = ng and a polynomial s(t)
of degree degs(t) < c. If one extends the summation to all my,mj , > 0,
one obtains the expansion (9) for C,_.(t) times s(¢). Applying the inclusion-
exclusion principle and equation (9), one deduces that the previous sum equals

a—1
s(t) [ Coeclt) = Y tCoy () Crmemny—1 () =+ |,
mi=0
which is a combination of C,,(t),...,Ch_n,(t) as needed.

It remains to show the uniqueness of the linear expansion and show that the
gi(t) are palindromic polynomials. (Here one assumes that the graphs A and
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B are connected.) According to Corollary 13.2, the polynomial H(t,z) :=
> s NG (t) 2™ can be written as H(t,x) = g(t,2) C(t,z) + r(t,x), where
g(t,x),r(t,x) € Z[t,x]. f H(t,x) = g(t,x) C(t,x)+7(t, ) with g(¢,x) # g(t, x),
then this would imply that C(¢, x) is a rational function, which contradicts the
formula (10) involving a square root. This proves the uniqueness claim.

One has H(t,z) = H(t 1,tx)/t and C(t,z) = C(t ! ,tz)/t because h-
polynomials are palindromic. Thus

H(t,x) = g(t,x) O(t,x) +r(t,x) = g(t ™, ta) C(t,x) + %r(t‘l, tr).

This implies that g(¢t,z) = g(t~!,tz). Otherwise, C(t,z) would be a rational
function. The equation g(t,x) = g(t~!,tz) says that the coefficients g;(t) of
g(t,z) =", 9:(t) 2" are palindromic. O

Let us illustrate Theorem 13.1 by several examples. For a series of path-like
graphs G, let g{G,} denote the polynomial g(¢,z) that appears in the gen-
erating functions »°, . ‘he, (t) 2" = g(t,z) C(t, ) + r(t,x). For instance, the
expression g{D,} =2 — (t + 1)z — ta? (see the example below) is equivalent to
the expression hp, (t) = 2C,(t) — (t+ 1) Cp_1(t) — t Cp_2(t), for n > 2.

EXAMPLES 13.3. Define daisy graphs as Daisy,, ,, :=T,,_j_1 1+; see Section 12.
(Here 1% means a sequence of k ones.) They include type D Dynkin diagrams
D,, := Daisy,, 5. For fized k, the Daisy,, ,, form the series of path-like graphs
for A = Kiy (the k-star with marked central vertexr) and B = o (the graph
with a single vertex). Also define kite graphs as Kite, x 1= Hy_p 1 15-1; See
Section 12.4. They are path-like graphs for A = Ky and B = o. The affine
Dynkin diagram of type D, _1 is the nth path-like graph in the case when both
A and B are 3-paths with marked central vertices.

Here are the polynomials g{G,} for several series of such graphs:

g{Dn}=2—(t+1)x —ta?

HDp 1} =4—4t+1D)z+(t—1)%2% + 26t +1) 2% + 12 2*,

g{Kite, 3} =2— (t+ 1)z,

g{Daisy, 3} =6 —6(t + 1)z + (1 = 5t +t*) 2® — t(t + 1) 2°,

g{Daisy, 4} =24 —36(t + 1)z + (14 — 16 ¢ + 14¢*) 2® +
F(=14+3t+312 =3 2> — (t + 1> +13) 2.

The formulas for Dy, Kite, k, and Daisy,, , were derived from Theorems 12.1

and 12.7. The formula for the affine Dynkin diagram En,l was obtained using
the inductive procedure given in the proof of Theorem 13.1.

REMARK 13.4. The induction from the proof of Theorem 13.1 is quite involved.
It is very difficult to calculate by hand other examples for bigger graphs A and
B. It would be interesting to find a simpler procedure for finding the polynomials
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g{Gn}. Also it would be interesting to find explicit formulas for the polynomials
g{Gn} for all daisy graphs, kite graphs, and other “natural” series of path-like
graphs.

14 BOUNDS AND MONOTONICITY FOR FACE NUMBERS OF GRAPH-
ASSOCIAHEDRA

Section 7.2 showed that the f- and h-vectors of flag nestohedra coming from
connected building sets are bounded below by those of hypercubes and bounded
above by those of permutohedra. It is natural to ask for the bounds within the
subclass of graph-associahedra corresponding to connected graphs.
Permutohedra are graph-associahedra corresponding to complete graphs, and
so they still provide the upper bound for the f- and h-vectors. For lower
bounds on f- and h-vectors, the monotonicity discussed in Remark 6.9 implies
that the f- and h-vector of any graph-associahedron Pg(g) for a connected
graph G is bounded below by the graph-associahedron for any spanning tree
inside G. Thus it is of interest to look at bounds for f-, h- and ~y-vectors of
graph-associahedra for trees.

A glance at Figure 4 suggests that, roughly speaking, trees which are more
branched and forked (that is, farther from being a path) tend to have higher
entries componentwise in their y-vectors, and hence also in their f- and h-
vectors. In fact, in that figure, which shows all trees on 7 vertices grouped by
their degree sequences, one sees several (perhaps misleading) features:

(i) The degree sequences are ordered linearly under the majorization (or
dominance) partial ordering on partitions of 2(n —1) (=2-(7—1) = 12
here).

(ii) The y-vectors of these trees are linearly ordered under the componentwise
partial order.

(ili) Trees whose degree sequence are lower in the majorization order have
componentwise smaller ~-vectors.

(iv) The trees are distinguished up to isomorphism by their ~v-vectors.

Additionally, it seems that the Wiener index [Wie’d7] for graphs has some
correlation with the v-vector. The Wiener index W (G) of a graph G is defined
as the sum of distances d(i,j) over unordered pairs 7, j of vertices in G, where
d(i,7) is the number of edges in the shortest path from i to j. The Wiener
index W(T') of a tree is equal to the number of forbidden 312 patterns (see
the remarks following Definition 9.2) provided by the tree T' (plus the constant
(3)). Thus, for two trees on n vertices, if one has W(T) < W(I"), then
roughly speaking one might expect that the generalized permutohedron Pg(r)
has a larger gamma vector than Pg(r).

This is exactly the case for trees on 7 vertices, as shown in Figure 4. It shows
that as the y-vectors decrease, the Wiener indices (weakly) increase. Note that
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degree sequence tree gamma-vectdiener inde

6111111 p— (1,57,230,61) 36
5211111 =2. . (1,4214233) 40
4311111 S (1,36,117,27) 42
4221111 ‘—%—H (1,31,88,18) 44

«f-ee (1287716) 46
3321111 "« (1,27,7415) 46

o= (1,24,6513) 48

(1,23,55,10) 48

3222111 = . (1,21,49,9) 50
Se e o o= (1,19,44,8) 52
22222211le e « e e« - (1,1530,5) 56

Figure 4: The «y-vectors (yo,71, 72, v3) for graph-associahedra of all trees on 7
vertices, grouped by degree sequence.

in this case, the Wiener index together with the degree sequence completely
distinguish all equivalence classes of trees.

For trees on n vertices, the maximum and minimum values of the Wiener index

are, respectively, Z?;ll i(n—i) = n(n*—1)/6 for Path,,, and (n—1)2 for K1 ,_1.

None of the properties (i)-(iv) persist for all trees. For example, when looking
at trees on n = 8 nodes, one finds that

(i) the degree sequences are only partially ordered by the majorization order
on partitions of 2(n — 1) = 14:
22222211 < 32222111
< 33221111 < 33311111,42221111
< 43211111 < 44111111,52211111
< 53111111 < 62111111 < 71111111

(ii) there are trees, such as the two shown in Figure 5(a) and (b), whose
y-vectors are incomparable componentwise,

(iii) there are trees, such as the two shown in Figure 5(d) and (c), where
the degree sequence of one strictly majorizes that of the other, but its
y-vector is strictly smaller, and

(iv) there are nonisomorphic trees, such as the two shown in Figure 5(d) and
(e), having the same y-vector.
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(@ (b) (©) (d) (e)
32222111 33221111 33221111 42221111 3322111
(1,33,135,76) (1,32,143,87) (1,38,174,108)

(1,42,201,126)
Figure 5: The «-vectors of the graph-associahedra of some trees on 8 nodes.

Nevertheless, we do make some monotonicity conjectures about the face num-
bers for graph-associahedra.

CONJECTURE 14.1. There exists a partial order < on the set of (unlabelled,
isomorphism classes of ) trees with n nodes, having these properties:

e Path, s the unique <-minimum element,

o K n—1 is the unique <-mazimum element, and
;. . .

o T < T implies VPs(r) < VP(rr componentwise.

We suspect that such a partial order < can be defined so that 7,7’ will, in
particular, be comparable whenever 1,7’ are related by one of the flossing
moves considered in [BR’04, §4.2].

Assuming Conjecture 14.1, the y-vectors (and hence also the f-, h-vectors) of
graph-associahedra for trees on n nodes would have the associahedron Pg(pan,,)
and the stellohedron Pgf, ,_,) giving their lower and upper bounds. This
would also imply that the f-, h-vectors of graph-associahedra for connected
graphs on n nodes would have associahedra and permutohedra giving their
lower and upper bounds. To make a similar assertion for ~y-vectors it would
be nice to have the following analogue of Stanley’s monotonicity result (Theo-
rem 4.6).

CONJECTURE 14.2. When A, A" are two flag simplicial complexes and A’ is a
geometric subdivision of A, the v-vector of A’ is componentwise weakly larger
than that of A. In particular, when B,B’ are building sets giving rise to flag
nestohedra and B C B, (such as graphical buildings B(G) C B(G') for an edge-
subgraph G C G') then the y-vector of Pg: is componentwise weakly larger than
that of Pg.

We close with a question suggested by the sets of permutations &, (B) and
G,,(B) for a chordal building set B which appeared in Corollary 9.6 and The-
orem 11.6.

QUESTION 14.3. Given a (non-chordal) building set B, is there a way to define
two sets of permutations &, (B) and & (B) such that:

e the h-polynomial for the nestohedron Pg is given by the descent generating
function for & (B), and
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e the y-polynomial is given by the peak generating function for é’n(B)?

15 APPENDIX: DEFORMATIONS OF A SIMPLE POLYTOPE

The goal of this section is to clarify the equivalence between various definitions
of the deformations of a simple polytope, either by

e deforming vertex positions, keeping edges in the same parallelism class,
or

e deforming edge lengths, keeping them nonnegative, or

e altering level sets of facet inequalities, but not allowing facets to move
past any vertices.

There will be defined below three cones of such deformations which are all lin-
early isomorphic. This discussion is essentially implicit in [Post’05, Definition
6.1 and §19], but we hope the explication here clarifies this relationship.

Let P be a simple d-dimensional polytope in R%. Let V be its set of vertices.
Let E C (‘2/) be its set of edge pairs. Let F' be an indexing set for its facets, so
that P is defined by facet inequalities h¢(z) < ay for f € F', in which each hy
is a linear functional in (R%)*, and (ay)fer € R,

DEFINITION 15.1. (1) The vertex deformation cone DY of P is the set of points
(zy)vev € (RY)Y such that

Ty — Ty € Rxo(u —v), for every edge uv € E. (20)

(2) The edge length deformation cone DE of P is the set of points (ye)eer € RY
such that all ye > 0, and, for any 2-dimensional face of P with edges e; = v1va,
€2 = V203, ..., €1 = Vk—-1VE, € = VEVU1, ONE has

Yer (V1 — V2) + Yep (V2 — v3) + -+ + Ye,, (v — v1) = 0.

(3) For 8= (Bf)ser € RY, let P3:={x € R? | hy(x) < B¢, for f € F} be the
polytope obtained from P by parallel translations of the facets. In particular,
P, = P. The open facet deformation cone® D?Ope" for P is the set of f € RF
or which the polytopes an ave the same normal fan = .
f hich the poly Pg and P h h I fan N(Pg) = N(P)
(Equivalently, Pg and P have the same combinatorial structure.) The (closed)

. . F L.
facet deformation cone is the closure DY of Dp°P“" inside RY.

It is clear that the definitions of Dg and Dg translate into linear equations
and weak linear inequalities. Thus DY and DE are (closed) polyhedral cones
in the spaces (R?)" and R¥, correspondingly. The following lemma shows that
DE is also a polyhedral cone.

9This is linearly isomorphic to the type-cone of P described by McMullen [McM’73, §2,
p. 88].
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LEMMA 15.2. For a simple polytope P, the facet deformation cone D?Ope" is a
full |F|-dimensional open polyhedral cone inside RY, that is a nonempty subset
in RY given by strict linear inequalities. Thus D% is the closed polyhedral cone
in RY given by replacing the strict inequalities with the corresponding weak
inequalities.

Proof. Since every polytope Pg has facet normals in directions which are a
subset of those for P, the rays (=1-dimensional normal cones) in N'(Pg) are a
subset of those in N/(P). Therefore, one will have N'(P3) = N (P) if and only if
Pg3, P have the same face lattices, or equivalently, the same collection of vertex-
facet incidences (v, f). This means that one can define the set D """ inside
R¥ by a collection of strict linear inequalities on the coordinates 5 = (3 ) fer.
It is next explained how to produce one such inequality for each pair (vg, fo)
of a vertex vy and facet fo of P such that vy € fo.

If vy lies on the d facets fi,...,fq in P, then vy is the unique solution to
the linear system hy, () = ay, for j = 1,...,d. Its corresponding vertex zg
in P is then the unique solution to hy,(x) = By, for j = 1,...,d. Note that
this implies g has coordinates given by linear expressions in the coefficients [3.
Then the inequality corresponding to the vertex-facet pair (vg, fo) asserts that
hfo ($0) < ﬁfo'

Lastly, note that this system of strict linear inequalities has at least one so-
lution, namely the « for which P, = P. Hence this open polyhedral cone is
nonempty. O

Theorem 15.3 gives several ways to describe deformations of a simple polytope.

THEOREM 15.3. Let P be a d-dimensional simple polytope in RY, with notation
as above. Then the following are equivalent for a polytope P’ in R?:

(i) The normal fan N (P) refines the normal fan N (P').

(i) The wvertices of P’ can be (possibly redundantly) labelled x,, v € V, so
that (x,)vev s a point in the vertex deformation cone DY, i.c., the x,
satisfy conditions (20).

(iii) The polytope P’ is the convex hull of points x,,, v € V, such that (x,)vev
is in the vertex deformation cone DY .

(iv) P' = Pg for some 3 in the closed facet deformation cone DE.

(v) P’ is a Minkowski summand of a dilated polytope rP, that is there exist
a polytope Q C RY and a real number r > 0 such that P' +@Q = rP.

Proof. One proceeds by proving the following implications (i) = (ii) = (iii) =
(i) = (iv) = (iii), (iv) = (v) = ().

(i) implies (ii). The refinement of normal fans gives rise to the redundant
labelling of vertices (z,),cp as follows: given a vertex x of P’, label it by
x, for every vertex v in P having its normal cone N, (P) contained in the
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normal cone N;(P'). There are then two possibilities for an edge uv € E of
P: either x, = x,, in which case (20) is trivially satisfied, or else z, # z, so
that NV, (P), N, (P) lie in different normal cones N, (P’) # N, (P’). But then
since NV'(P) refines N (P’), these latter two cones must share a codimension one
subcone lying in the same hyperplane that separates A, (P) and N, (P). As
this hyperplane has normal vector u — v, this forces z, — x, to be a positive
multiple of this vector, as desired.

(i) implies (iii). Trivial.

(iii) implies (i). Let P’ be the convex hull of the points x,. Fix a vertex u € V.
Let A € (R%)* be a generic linear functional that belongs to the normal cone
N, (P) of P at the vertex u. Then the maximum of A on P is achieved at the
point v and nowhere else. Let us orient the 1-skeleton of P so that X increases
on each directed edge. This connected graph has a unique vertex of outdegree
0, namely the vertex u. Thus, for any other vertex v € V, there is a directed
path (v1,...,v) from v; = v to v; = w in this directed graph. According to
the conditions of the lemma, one has have A(zy, ) < A(Zy,) < -+ < M@y, ), SO
Azy) < A(zy,). Thus the maximum of X on the polytope P’ is achieved at the
point x,. This implies that z, is a vertex of P’ and the normal cone N, (P’)
of P’ at this point contains the normal cone N, (P) of P at u. Since the same
statement is true for any vertex of P, one deduces that N (P) refines N'(P’).
(i) implies (iv). First, note that if N(P') = N(P) then P’ = P3 for some
3 in the open facet deformation cone D5"*". Tndeed, the facets of P’ are
orthogonal to the 1-dimensional cones in N (P’), thus they should be parallel
to the corresponding facets of P.

Now assume that A'(P) refines N'(P’). Recall the standard fact [Zieg’94, Prop.
7.12] that the normal fan N(Q; + @Q2) of a Minkowski sum Q1 + Q3 is the
common refinement of the normal fans V' (Q1) and AV (Qz). Thus, for any € > 0,
the normal fan of the Minkowski sum P’ + €P coincides with A/(P). By the
previous observation, one should have P’ 4¢P = Py for some f3(¢) € Dg"’p en,
Since all coordinates of 3(e) linearly depend on €, one obtain P' = Pg for
B = lim._oB(e) € DE.

(iv) implies (iii). Given 8 € D, it is the limit point for some family
{B(e)} € D", One may assume that () linearly depends on ¢ > 0
and lim. .o f(e) = B. Hence P’ = Pg is the limit of the polytopes Pg(),
which each have N (Pg()) = N(P). In particular, the vertices of Pg() can
be labelled by z,(€), v € V. These vertices linearly depend on e and satisfy
Zy(€) — 4 (€) = R>o(u —v) for any edge uv € E. Taking the limit e — 0, one
obtains that P’ is the convex hull of points x, = lim._,q 2, (¢) satisfying (20).
(iv) implies (v). Note that P, + Ps = P45, for 7,6 € DE. Let P’ = Pj for
B € DE. The point a (such that P = P,) belongs to the open cone D?Ope”.
Thus, for sufficiently large r, the point v = ra — 8 also belongs to the open
cone DEP". Let Q = P,. Then one has P' + Q = P3 + Pro_p = Py = 1P,
as needed.

(v) implies (i). This follows from the standard fact [Zieg’94, Prop. 7.12] on
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normal fans of Minkowski sums mentioned above. O

REMARK 15.4. We are being somewhat careful here, since Theorem 15.83 can
fail when one allows a broader interpretation for a simple polytope P to deform
into a polytope P’ by parallel translations of its facets, e.g. if one allows facets
to translate past vertices. For example, letting P’ be a reqular tetrahedron in
R3, and P the result of “shaving off an edge” from P’ with a generically tilted
plane in R?, one finds that N'(P) does not refine N'(P').

Let us now describe the relationship between the three deformation cones D},
DE  and DE. Let H be the linear subspace in (R%)" given by

H := {(xy)vev € RYY | 2, — 7, € R(u —v) for any edge uv € E}.
Clearly, the cone Dg belongs to the subspace H. Let us define two linear maps
¢:H—RF and ¢:RF — H.

The map ¢ sends (z,)vev € H to (Ye)ecr € RF, where 2, — 7, = ye(u—v), for
any edge e = uwv € E. The map ¢ sends 3 = (8¢)ser to (zy)vev, where, for
each vertex v of P given as the intersection of the facets of P indexed f1, ..., f4,
the point z,, € R? is the unique solution of the linear system {hy,(z) = By, |
j=1,...,d}. For B € D" 4(3) = (x)vev, where the z, are the vertices
of the polytope Pz. One can easily check that ¥ (3) € H. Indeed, this is clear
for 8 € DZ’OP " and thus this extends to all 3 € R by linearity.

Note that the kernel of the map ¢ is the subspace A(R?) ~ R? embedded
diagonally into (R%)V. This comes from the fact that the 1l-skeleton of P
is connected. The vertex deformation cone DK can be reduced modulo the
subspace A(R?) of parallel translations of polytopes. Similarly, the facet defor-
mation cone can be reduced modulo the subspace A’'(RY) = 1)~ 1(A(R%)) ~ R4,
where A'(z) := (h¢(x)) fer for z € RY.

THEOREM 15.5. The map 1 gives a linear isomorphism between the cones
DE and DY. The map ¢ induces a linear isomorphism between the cones
DY /A(R?) and DE. Thus one has

DE ~ DY /A(RY) ~ DE/A/(RY).
In particular, dim DE = dim DY, — d = dim DE —d = |F| — d.

Proof. The claim about the map v follows immediately from Theorem 15.3.
Let us prove the claim about ¢. Note that, for (z,),ey € DY, the point
(Ye)ecE = ¢((xy)vev) satisfies the condition of Definition 15.1(2) because

Yeu (V1 — 02) + Ye, (v2 — v3) + -+ + e, (vk — v1)
= (1"01 71‘712)4» (1'112 7xﬂ3)+"'+ (xﬂk 71’1}1)
=0.
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It remains to show that for any (y)ecr € DE there exists a unique (modulo
diagonal translations) element (z,),cyv € H such that z, — z, = ye(u — v)
for any edge e = uv € E. Let us construct the points z, € R? as follows.
Pick a vertex vg € V and pick any point x,, € R?. For any other v € V,
find a path (vg,v1,...,v;) from vy to v; = v in the 1-skeleton of P and define
Ty = Tog — Yvour (UO - vl) — Yvqvs (Ul - UQ) T Yoy ('0171 - Ul)' This pOiIlt
x, does not depend on a choice of path from vy to v, because any other path
in the 1-skeleton can be obtained by switches along 2-dimensional faces of P.
These (), satisfy the needed conditions.

Finally, note that dim DE = |F| because D% is a full-dimensional cone. O
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ABSTRACT. A Fréchet algebra endowed with a multiplicatively con-
vex topology has two types of invariants: homotopy invariants (topo-
logical K-theory and periodic cyclic homology) and secondary in-
variants (multiplicative K-theory and the non-periodic versions of
cyclic homology). The aim of this paper is to establish a Riemann-
Roch-Grothendieck theorem relating direct images for homotopy and
secondary invariants of Fréchet m-algebras under finitely summable
quasihomomorphisms.
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1 INTRODUCTION

For a noncommutative space described by an associative Fréchet algebra o/
over C, we distinguish two types of invariants. The first type are (smooth)
homotopy invariants, for example topological K-theory [27] and periodic cyclic
homology [5]. The other type are secondary invariants; they are no longer
stable under homotopy and carry a finer information about the “geometry”
of the space /. Typical examples of secondary invariants are algebraic
K-theory [29] (which will not be used here), multiplicative K-theory [17] and
the unstable versions of cyclic homology [18]. The aim of this paper is to
define push-forward maps for homotopy and secondary invariants between two
Fréchet algebras &7 and 4, induced by a smooth finitely summable quasiho-
momorphism [8]. The compatibility between the different types of invariants
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is expressed through a noncommutative Riemann-Roch-Grothendieck theorem
(Theorem 6.3). The present p aper is the first part of a series on secondary
characteristic classes. In the second part we will show how to obtain local
formulas for push-forward maps, following a general principle inspired by
renormalization which establishes the link with chiral anomalies in quan-
tum field theory [25]; in order to keep a reasonable size to the present paper,
these methods will be published in a separate survey with further examples [26].

We deal with Fréchet algebras endowed with a multiplicatively convex topology,
or Fréchet m-algebras for short. These algebras can be presented as inverse lim-
its of sequences of Banach algebras, and as a consequence many constructions
valid for Banach algebras carry over Fréchet m-algebras. In particular Phillips
[27] defines topological K-theory groups K°P(«/) for any such algebra & and
n € Z. The fundamental properties of interest for us are (smooth) homotopy
invariance and Bott periodicity, i.e. K, F(o/) = K°P(). Hence there are es-

sentially two topological K-theory groups for any Fréchet m-algebra, KSOP ()
whose elements are roughly represented by idempotents in the stabilization of
&/ by the algebra £ of "smooth compact operators”, and KIOp(d ) whose
elements are represented by invertibles. Fréchet m-algebras naturally arise in
many situations related to differential geometry, commutative or not, and the
formulation of index problems. In the latter situation one usually encounters
an algebra & of ”finitely summable operators”, for us a Fréchet m-algebra
provided with a continuous trace on its p-th power for some p > 1. A typ-
ical example is the Schatten class . = ZP(H) of p-summable operators on
an infinite-dimensional separable Hilbert space H. & can be stabilized by
the completed projective tensor product .#®.7 and its topological K-theory
K!°P(#®s7) is the natural receptacle for indices. Other important topolog-
ical invariants of o (as a locally convex algebra) are provided by the peri-
odic cyclic homology groups H P, (), which is the correct version sharing the
properties of smooth homotopy invariance and periodicity mod 2 with topolog-
ical K-theory [5]. For any finitely summable algebra .# the Chern character
KP(F %) — HP, (/) allows to obtain cohomological formulations of index
theorems.

If one wants to go beyond differential topology and detect secondary invari-
ants as well, which are no longer stable under homotopy, one has to deal with
algebraic K-theory [29] and the unstable versions of cyclic homology [18]. In
principle the algebraic K-theory groups K22(7) defined for any n € Z pro-
vide interesting secondary invariants for any ring «/, but are very hard to
calculate. It is also unclear if algebraic K-theory can be linked to index theory
in a way consistent with topological K-theory, and in particular if it is possible
to construct direct images of algebraic K-theory classes in a reasonable con-
text. Instead, we will generalize slightly an idea of Karoubi [16, 17] and define
for any Fréchet m-algebra /' the multiplicative K-theory groups M K;f (),
n € Z, indexed by a given finitely summable Fréchet m-algebra .#. Depend-
ing on the parity of the degree n, multiplicative K-theory classe s are repre-
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sented by idempotents or invertibles in certain extensions of .#®.%7, together
with a transgression of their Chern character in certain quotient complexes.
Multiplicative K-theory is by definition a mixture of the topological K-theory
K!P(#%.4/) and the non-periodic cyclic homology HC,, (7). It provides a
“good” approximation of algebraic K-theory but is much more tractable. In
addition, the Jones-Goodwillie Chern character in negative cyclic homology
K?#8(o/) — HN,(&) factors through multiplicative K-theory. The precise
relations between topological, multiplicative K-theory and the various versions
of cyclic homology are encoded in a commutative diagram whose rows are long
exact sequences of abelian groups

K'P (I éod) —> HCp_ 1 () ——> MK (of) —> K'P (I &0/

R | o

HPy 1 (o) —>> HC,_y (o) —2—> HN, (o) ——> HP, (/)

The particular case .# = C was already considered by Karoubi [16, 17] after the
construction by Connes and Karoubi of regulator maps on algebraic K-theory
[6]. The incorporation of a finitely summable algebra .# is rather straightfor-
ward. This diagram describes the primary and secondary invariants associated
to the noncommutative “manifold” /. We mention that the restriction to
Fréchet m-algebras is mainly for convenience. In principle these constructions
could be extended to all locally convex algebras over C, however the subsequent
results, in particular the proof of the Riemann-Roch-Grothendieck theorem
would become much more involved.

If now & and % are two Fréchet m-algebras, it is natural to consider the ad-
equate “morphisms” mapping the primary and secondary invariants from .o/
to B. Let # be a p-summable Fréchet m-algebra. By analogy with Cuntz’
description of bivariant K-theory for C*-algebras [8], if & > .#®% denotes a
Fréchet m-algebra containing .#®% as a (not necessarily closed) two-sided
ideal, we define a p-summable quasihomomorphism from </ to £ as a contin-
uous homomorphism

p:ad — E> IR ,

where &° and .#° are certain Zy-graded algebras obtained from & and .# by a
standard procedure. Quasihomomorphisms come equipped with a parity (even
or odd) depending on the construction of & and #°. In general, we may
suppose that the parity is p mod 2. We say that . is multiplicative if it is
provided with a homomorphism X : .#®.# — ., possibly defined up to adjoint
action of multipliers on .#, and compatible with the trace. A basic example of
multiplicative p-summable algebra is, once again, the Schatten class £P(H).
Then it is easy to show that such a quasihomomorphism induces a pushforward
map in topological K-theory p : K!°P( S ®.e7) — Kfff;(ﬂ@%), whose degree
coincides with the parity of the quasihomomorphism. This is what one expects
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from bivariant K-theory and is not really new. Our goal is to extend this
map to the entire diagram (1). Direct images for the unstable versions of cyclic
homology are necessarily induced by a bivariant non-periodic cyclic cohomology
class ch?(p) € HCP?(«/,%). This bivariant Chern character exists only under
certain admissibility properties about the algebra & (note that it is sufficient for
& to be (p+ 1)-summable instead of p-summable). In particular, the bivariant
Chern caracter constructed by Cuntz for any quasihomomorphism in [9, 10]
cannot be used here because it provides a bivariant periodic cyclic cohomology
class, which does not detect the secondary invariants of &/ and #. We give
the precise definition of an admissible quasihomomorphism and construct the
bivariant Chern character ch”(p) in section 3, on the basis of previous works
[23]. An analogous construction was obtained by Nistor [20, 21] or by Cuntz
and Quillen [12]. However the bivariant Chern character of [23] is related to
other constructions involv ing the heat operator and can be used concretely for
establishing local index theorems, see for example [24]. The pushforward map
in topological K-theory combined with the bivariant Chern character leads to
a pushforward map in multiplicative K-theory py : M K;” (/) — MKf_p(%).
Our first main result is the following non-commutative version of the Riemann-
Roch-Grothendieck theorem (see Theorem 6.3 for a precise statement):

THEOREM 1.1 Let p: of — 5> F5QA be an admissible quasihomomorphism
of parity p mod 2. Suppose that & is (p + 1)-summable in the even case and
p-summable in the odd case. Then one has a graded-commutative diagram

K, (S &) HCp () —— MK/ (o) —— K!°P(I @)

n+1
lpl l/chp(p) lp! lp!

Ky (I 6B) —> HCyrp(B) —> MK (B) —> KL (565)
compatible with the cyclic homology SBI exact sequences after taking the Chern
characters K{P(S&-) — HP, and MK — HN,.

At this point it is interesting to note that the pushforward maps py and
the bivariant Chern character ch”(p) enjoy some invariance properties with
respect to equivalence relations among quasihomomorphisms. Two types
of equivalence relations are defined: smooth homotopy and conjugation by
invertibles. The second relation corresponds to “compact perturbation” in
Kasparov K K-theory for C*-algebras [2]. In the latter situation, the Ms-
stable version of conjugation essentially coincide with homotopy, at least
for separable o/ and o-unital #. For Fréchet algebras however, Ms-stable
conjugation is strictly stronger than homotopy as an equivalence relation.
This is indeed in the context of Fréchet algebras that secondary invariants
appear. The pushforward maps in topological K-theory and periodic cyclic
homology are invariant under homotopy of quasihomomorphisms. The maps
in multiplicative K-theory and the non-perio dic versions of cyclic homology
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HC, and HN, are only invariant under conjugation and not homotopy. Also
note that in contrast with the C*-algebra situation, the Kasparov product of
two quasihomomorphisms p : & — &> I°0% and p' : B — F5v> I°FC
is not defined as a quasihomomorphism from .27 to ¥. The various bivariant
K-theories constructed for m-algebras [9, 10] or even for general bornological
algebras [11] cannot be used here, again because they are homotopy invariant
by construction. We leave the construction of a bivariant K-theory compatible
with secondary invariants as an open problem.

In the last part of the paper we illustrate the Riemann-Roch-Grothendieck
theorem by constructing assembly maps for certain crossed product algebras. If
I' is a discrete group acting on a Fréchet m-algebra 7, under certain conditions
the crossed product o/ x I' is again a Fréchet m-algebra and one would like
to obtain multiplicative K-theory classes out of a geometric model inspired

by the Baum-Connes construction [1]. Thus let P L M be a principal T'-
bundle over a compact manifold M, and denote by «/p the algebra of smooth
sections of the associated «7-bundle. If D is a K-cycle for M represented by
a pseudodifferential operator, we obtain a quasihomomorphism from @p to
&/ x I" and hence a map

ME;/ (ep) = MK;] (o xT)

for suitable p and Schatten ideal .#. In general this map cannot exhaust
the entire multiplicative K-theory of the crossed product but nevertheless
interesting secondary invariants arise in this way. In the case where o7 is the
algebra of smooth functions on a compact manifold, &7p is commutative and its
secondary invaiants are closely related to (smooth) Deligne cohomology. From
this point of view the pushforward map in multiplicative K-theory should be
considered as a non-commutative version of “integrating Deligne classes along
the fibers” of a submersion. We perform the computations for the simple
example provided by the noncommutative torus.

The paper is organized as follows. In section 2 we review the Cuntz-Quillen
formulation of (bivariant) cyclic cohomology [12] in terms of quasi-free exten-
sions for m-algebras. Nothing is new but we take the opportunity to fix the
notations and recall a proof of generalized Goodwillie theorem. In section 3 we
define quasihomomorphisms and construct the bivariant Chern character. The
formulas are identical to those found in [23] but in addition we carefully es-
tablish their adic properties and conjugation invariance. In section 4 we recall
Phillips’ topological K-theory for Fréchet m-algebras, and introduce the peri-
odic Chern character K!°P(#®/) — HP, (<) when .# is a finitely summable
algebra. The essential point here is to give explicit and simple formulas for
subsequent use. Section 5 is devoted to the definition of the multiplicative
K-theory groups M K;f («7) and the proof of the long exact seque nce relating
them with topological K-theory and cyclic homology. We also construct the
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negative Chern character M K;” («/) — HN, (/) and show the compatibility
with the SBI exact sequence. Direct images of topological and multiplica-
tive K-theory under quasihomomorphisms are constructed in section 6 and
the Riemann-Roch-Grothendieck theorem is proved. The example of assembly
maps and crossed products is treated in section 7.

2 CYCLIC HOMOLOGY

Cyclic homology can be defined for various classes of associative algebras over
C, in particular complete locally convex algebras. For us, a locally convex
algebra &7 has a topology induced by a family of continuous seminorms p :
&/ — R, for which the multiplication &/ x &/ — & is jointly continuous.
Hence for any seminorm p there exists a seminorm ¢ such that p(ajas) <
q(a1)g(az), Ya; € <. For technical reasons however we shall restrict ourselves
to multiplicatively conver algebras [5], whose topology is generated by a family
of submultiplicative seminorms

plaiaz) < plar)plaz) Va; € o .

A complete multiplicatively convex algebra is called m-algebra, and may equiv-
alently be described as a projective limit of Banach algebras. The unitalization
g+ = C® & of an m-algebra &7 is again an m-algebra, for the seminorms
p(Al +a) = |A| + p(a), YA € C,a € &/. In the same way, if & is another
m-algebra, the direct sum o & £ is an m-algebra for the topology generated
by the seminorms (p@®¢q)(a,b) = p(a)+q(b), where p is a seminorm on &7 and ¢
a seminorm on A. Also, the algebraic tensor product &/ ® % may be endowed
with the projective topology induced by the seminorms

(p®q)(c) = inf { Zp(ai)q(bi) such that ¢ = Z a; b, €A R %} . (2)

=1

The completion B = o @,.P of the algebraic tensor product under this
family of seminorms is the projective tensor product of Grothendieck [14], and
is again an m-algebra.

Cyclic homology, cohomology and bivariant cyclic cohomology for m-algebras
can be defined either within the cyclic bicomplex formalism of Connes [5], or
the X-complex of Cuntz and Quillen [12]. We will make an extensive use of
both formalisms throughout this paper. In general, we suppose that all linear
maps or homomorphims between m-algebras are continuous, tensor products
are completed projective tensor products, and extensions of m-algebras 0 —
I — X — o — 0 always admit a continuous linear splitting o : & — Z.

2.1 CyCLIC BICOMPLEX

NON-COMMUTATIVE DIFFERENTIAL FORMS. Let &/ be an m-algebra. The
space of non-commutative differential forms over .7 is the algebraic direct sum
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O = @P,~, 2"« of the n-forms subspaces Q"o = AT @A for n > 1
and Q0¢/ = o, where &/ is the unitalization of o/. Each of the subspaces
Q"o is complete but we do not complete the direct sum. It is customary
to use the differential notation agday . ..da, (resp. dai ...day) for the string
ap®ay...®ap (resp. 1®ay...®ay). A continuous differential d : Q"o —
Q" *lo7 is uniquely specified by d(agda; . .. day,) = dagday . .. da, and d? = 0.
A continuous and associative product Q" x Q"o — Q"T"g/ is defined as
usual and fulfills the Leibniz rule d(wiws) = dwiws + (—)'“1|w1dw2, where |w |
is the degree of wy. This tu rns ¢/ into a differential graded (DG) algebra.
On Q¢f are defined various operators. First of all, the Hochschild boundary
map b: Q""le/ — Q" reads b(wda) = (—)"|w,a] for w € Q"&/, and b = 0
on Q%% = o/. One easily shows that b is continuous and b? = 0, hence Q.7 is
a complex graded over N. The Hochschild homology of &/ (with coefficients in
the bimodule &) is the homology of this complex:

HH, (/)= H,(Qa/,b), VneN. (3)

Then the Karoubi operator « : Q"o — Q"o is defined by 1 — k = db + bd.
Therefore  is continuous and commutes with b and d. One has k(wda) =
(—)"daw for any w € Q"% and a € «/. The last operator is Connes’ B :
0o/ — Q"la/, equal to (1 + Kk + ...+ k™)d on Q"¢/. It is also continuous
and verifies B> = 0 = Bb+bB and Bk = kB = B. Thus .&/ endowed with the
two anticommuting differentials (b, B) becomes a bicomplex. It splits as a direct
sum Q.of = QT ® Qa/~ of even and odd degree differential forms, hence is a
Zo-graded complex for the total boundary map b+ B. However its homology
is trivial [18]. The various versions of cyclic homology are defined using the
natural filtrations on Q.o/. Following Cuntz and Quillen [12], we define the
Hodge filtration on Q.7 as the decreasing family of Zs-graded subcomplexes
for the total boundary b + B

e =g o Pty Wnel,
k>n

with the convention that F"Q.«/ = Q& for n < 0. The completion of Q.47 is
defined as the projective limit of Zs-graded complexes

Qof =lim Qe /F"Qef = [[ Q"o . (4)
n n>0

Hence Qof = Ot/ & O~/ is a Zo-graded complex endowed with the total
boundary map b+ B. It is itself filtered by the decreasing family of Zy-graded
subcomplexes F"Q.ef = Ker(ef — Qo /F"Q.7), which may be written

FrQd =b" Moo [[ e, Wnez. (5)
k>n
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In particular the quotient Qo / FnQdf is a Zo-graded complex isomorphic to
Qo |F™Qef , explicitly

n—1
O [F"Qd = (POt & Qe b ) (6)
k=0

and it vanishes for n < 0. As a topological vector space, QM/F”Q,Q% may fail
to be separated because the image b(2""1.¢7) is not closed in general.

DEFINITION 2.1 In any degree n € Z, the periodic, non-periodic and negative
cyclic homologies are respectively the (b + B)-homologies

HP,(@) = Hpio(Qe) ,
HCp () = Hypyon(Qet JFQ) (7)
HN, () = Hypoon(F" Q) .

Hence HP, (&) = HP,;12(4) is 2-periodic, HC, (&) = 0 for n < 0 and
HN,(«/) = HP, (&) for n < 0. By construction these cyclic homology groups
fit into a long exact sequence

s HPy 1 () -5 HC, 1 () 25 HN, (of) — HP, (/) — ... (8)

where S is induced by projection, I by inclusion, and the connecting map cor-
responds to the operator B. The link between cyclic and Hochshild homology
may be obtained through non-commutative de Rham homology [16], defined as

HD, (o) := Hyyoz (Ve JF" Q) , VneZ. (9)
This yields for any n € Z a short exact sequence of Zs-graded complexes
0 — Gp() — Qi JF"Qd — QO JF" ' Qot — 0 |

where G, is Q"o /bQ" 1o/ in degree n mod 2, and bQ".«/ in degree n — 1
mod 2. One has Hy27(G,) = HH, (&) and H,,_1422(G,) = 0, so that the
associated six-term cyclic exact sequence in homology reduces to

0— HD, 1(«)— HCp_1() — HH, (&) - HCy (/) — HD,,_o(o/) — 0,

and Connes’s SBI exact sequence [4] for cyclic homology is actually obtained
by splicing together the above sequences for all n € Z:

s HCpi1 () 25 HC, (o) 25 HH, (/) — HC (/) — ... (10)
Hence the non-commutative de Rham homology group HD, (&) may be

identified with the image of the periodicity shift S : HC)y2(&/) — HC, ().
Clearly the exact sequence (8) can be transformed to (10) by taking the
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natural maps HP, (&) — HC, (&) and HN, (&) — HH, ().

Passing to the dual theory, let Hom(ﬁd ,C) be the Zs-graded complex of linear
maps .o/ — C which are continuous for the adic topology on Q.7 induced by
the Hodge filtration. It is concretely described as the direct sum

Hom(Q.e7, C) = (P Hom(Q"«/,C)

n>0

where Hom(Q"«7, C) is the space of continuous linear maps Q"< — C. The
space Hom (e, C) is endowed with the transposed of the boundary operator
b+ B on Q7. Then the periodic cyclic cohomology of & is the cohomology of

this complex: R
HP"(o/) = H" "% (Hom(Q.e7, C)) . (11)

One defines analogously the non-periodic and negative cyclic cohomologies
which fit into an IB.S long exact sequence.

2.2  X-COMPLEX AND QUASI-FREE ALGEBRAS

We now turn to the description of the X-complex. It first appeared in the
coalgebra context in Quillen’s work [28], and subsequently was used by Cuntz
and Quillen in their formulation of cyclic homology [12]. Here we recall the
X-complex construction for m-algebras.

Let Z be an m-algebra. The space of non-commutative one-forms Q% is a %-
bimodule, hence we can take its quotient 2'%; by the subspace of commutators
(%, V%) = bV R. Q' %y may fail to be separated in general. However, it is
automatically separated when Z is quasi-free, see below. In order to avoid
confusions in the subsequent notations, we always write a one-form xodxr; €
Q'% with a bold d when dealing with the X-complex of Z. The latter is the
Za-graded complex [12]

kd
X(%#): %= Q% , (12)
b

where #Z = X, (%) is located in even degree and Q'%, = X_(#) in odd
degree. The class of the generic element (zodz; mod [,]) € Q'%; is usually
denoted by fzodz;. The map id : Z — Q' %, thus sends x € Z to fdz. Also,
the Hochschild boundary b : Q'% — % vanishes on the commutator subspace
(%, %), hence passes to a well-defined map b : Q1 %, — Z%. Explicitly the im-
age of fzodx; by b is the commutator [0, x1]. These maps are continuous and
satisfy idob = 0 and bolid = 0, so that (X (%), 1d$b) indeed defines a Z,-graded
complex. We mention that everything can be formulated when & itself is a
Zo-graded algebra: we just have to replace everywhere the ordinary commuta-
tors by graded commutators, and the differentials anticommute with elements
of odd degree. In particular one gets bhrdy = (—)I*![z,y], where |z| is the
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degree of x and [z, y] is the graded commutator. The X-complex is obviously a
functor from m-algebras to Zs-graded complexes: if p : Z — . is a continuous
homomorphism, it induces a chain map of even degree X (p) : X(#) — X (),
by setting X (p)(z) = p(z) and X (p)(Grodz1) = i p(zo)dp(21).

In fact the X-complex may be identified with the quotient of the (b + B)-
complex 0% by the subcomplex FYO% = b2 % & [Li>o O*% of the Hodge
filtration, i.e. there is an exact sequence

O—>F1§\Z<@—>§%—>X(%)—>O.

It turns out that the X-complex is especially designed to compute the cyclic
homology of algebras for which the subcomplex F')% is contractible. This
led Cuntz and Quillen to the following definition:

DEFINITION 2.2 ([12]) An m-algebra Z is called quasi-free if there exists a
continuous linear map ¢ : # — V2R with property

d(zy) = d(x)y + rvo(y) +dody , Vo,y € Z . (13)

We refer to [12, 19] for many other equivalent definitions of quasi-free algebras.
Let us just observe that a quasi-free algebra has dimension < 1 with respect to
Hochschild cohomology. Indeed, the map ¢ allows to contract the Hochschild
complex of Z in dimensions > 1, and this contraction carries over to the cyclic
bicomplex. First, the linear map

o Qlﬁh - 07 gzdy — xdy + b(xd(y))

is well-defined because it vanishes on the commutator subspace [%Z, Q' %] =
bQ2Z by the algebraic property of ¢. Hence o is a continuous linear splitting
of the exact sequence 0 — bQ2%Z — Q'# — Q'%, — 0. By the way, this
implies that for a quasi-free algebra %, the topological vector space Q1'% splits
into the direct sum of two closed subspaces bQ22% and Q' %,. Then, we extend
¢ to a continuous linear map ¢ : Q"% — Q"T2% in all degrees n > 1 by the
formula

n

d(zodzy ...dx,) = Z(*)ni¢(xi)dzi+1 ...dz,dzg...dx;—q .
i=0

The following proposition gives a chain map v : X (%) — Q% which is inverse
to the natural projection 7 : 0% — X (%) up to homotopy. Remark that the
infinite sum (1 — ¢)~! := 3.2 | ¢"™ makes sense as a linear map % — QT2 or
Oz — QR

PROPOSITION 2.3 Let #Z be a quasi-free m-algebra. Then
i) The map v : X(#) — Q% defined for x,y € Z by

Y(z) = (1—9¢) (z) (14)
Y(izdy) = (1—¢) " (ady + b(zé(y)))
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is a chain map of even degree from the X -complex to the (b + B)-complex.
it) Let m : Q% — X(X) be the natural projection. There is a contracting
homotopy of odd degree h : QR — QX such that

moy = Id on X(Z),
yor = Id+[b+B,hl on QZ.

Hence X (%) and Q% are homotopy equivalent.

Proof: See the proof of [22], Proposition 4.2. There the result was stated in
the particular case of a tensor algebra # = T/, but the general case of a
quasi-free algebra is strictly identical (with the tensor algebra the image of v
actually lands in the subcomplex QT2 C QT for a judicious choice of ¢,
but for generic quasi-free algebras it is necessary to take the completion Q%
of O%). L]

EXTENSIONS. Let & be an m-algebra. By an extension of &/ we mean an exact
sequence of m-algebras 0 — & — # — &/ — 0 provided with a continuous
linear splitting o/ — %, and the topology of the ideal .# is induced by its
inclusion in Z. Hence as a topological vector space Z# is the direct sum of
the closed subspaces .# and «/. By convention, the powers " of the ideal
# will always denote the image in % of the n-th tensor power .£®...®.# by
the multiplication map. For n < 0, we define #° as the algebra Z. Now let
us suppose that all the powers .#™ are closed and direct summands in % (this
is automatically satisfied if % is quasi-free). Then the quotients Z/.#™ are
m-~algebras and give rise to an inverse system with surjective homomorphisms

0— oA =R|I — R|I*> — ... — R|I" —

We denote by % = lim 9?/ " the projective limit and view it as a pro-
algebra indexed by the directed set Z (see [19]). Since the bicomplex of non-
commutative differential forms Q2 and the X -complex X (#) are functorial in
Z, we can define O% and X (@) as the Zy-graded pro-complexes

o~ o~

0% = LmQ(#/I") =l YR/ I")|F" QR I™)
X(%) = lmX(%/5"),

endowed respectively with the total boundary maps b+ B and 9 = id @ b.
When Z is quasi-free, a refinement of Proposition 2.3 yields a chain map 7 :
X (%) — Q% inverse to the projection 7 : Q% — X (%) up to homotopy, which
we call a generalized Goodwillie equivalence:

PROPOSITION 2.4 Let 0 — & — % — &/ — 0 be an extension of m-algebras,
with Z quasi-free. Then the chain map v : X (#) — QZ extends to a homotopy

equivalence of pro-complezes X(é?) — O%.
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Proof: We recall the proof because it will be useful for establishing Proposition
3.10. Let us introduce the following decreasing filtration of the space Q"% by
the subspaces H*Q™ %, k € Z:

HFQ™ % = Z ghoqgk  d.gkm
ko+...4+km>k

Clearly H*1Qm% c H*Q™%, and for k < 0 H*Q™% = Q™%. Morally,
H*Q™% contains at least k powers of the ideal .#. The direct sum
D, H*Q™% is stable by the operators d, b, x, B for any k. We have to
establish how k changes when the linear map ¢ : Q™% — Q" 12% is applied.
First consider ¢ : Z — Q2%. If x1, ..., x} denote k elements in %, one has by
the algebraic property of ¢ (see [12])

k

(725(1'1 .. .l'k) = Zl‘l .. .l‘i,1¢(1'i)1'i+1 R i 8

i=1

+ E 1’1...$i,1d1'il‘i+1 ...l‘jfldl‘jl'jJrl X
1<i<j<k

Taking the elements z; in the ideal .# and using that ¢(.%) C Q2% yields

k
¢(sF) > s dgdz s+ Y s T T

i=1 1<i<j<k

Therefore ¢(#%) ¢ H*102% for any k. Now from the definition of ¢ on
Q™. one has

p(srodsM . dstm) Y g(sMdsle L dsRe ¢ BT
=0

whenever k = ko + ... + kp,, hence ¢(H*Q™%) C H*"1Q™+2%. Now let us
evaluate the even part of the chain map v: Z — Qt%. The part of v landing
in Q%™ is the m-th power ¢™. One gets ¢™(F*) C H¥ ™02, hence ¢™
sends the quotient algebra /7% to 02™ (% /.#™) provided (1+2m)n < k—m
(indeed 1 + 2m is the maximal number of factors & in the tensor product
02m%). Passing to the projective limits, ¢™ induces a well-defined map
7 sz@’ and summing over all degrees 2m yields ~ : % HQ*@.

Let us turn to the odd part of the chain map v : Q'%;, — Q~%. By con-
struction, it is the composition of the linear map o : Q'%; — Q'Z with
all the powers ¢™ : Q1'% — Q?™*t1%. One has §(SF*dZ + #d(I*)) C
1(S*dZ#Z + 7% 1d.#), and by the definition of o,

ot(skd% + s ds) ¢ sRAR + IS + W(IFQR) + I ()
c HYO'% +bH'02% < H'Q'% .
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Therefore (¢™ o o)y(Fkd%Z + #*-1ds) c HF™"10?m+H R Since Z is
the direct sum of Z/.#% and .#* as a topological vector space, the quo-
tient Q1(%2/.7%); coincides with Q' Z/(F*d% + #d(I*) + (%, 0 %)), and
the map ¢™ oo : QY %/ I*), — Q¥+L(R/.Fm) is well-defined provided
(2m 4+ 2)n < k —m — 1. Thus passing to the projective limits induces a map
Qléh — Q02m+1% and summing over m yields 7 : Qlﬁu — QO %.

Finally, the contracting homotopy h of Proposition 2.3 is also constructed
from ¢ (see [22] Proposition 4.2), hence extends to a contracting homotopy

h: Q% — Q. The relations 7o~ = Id on X(#) and yor =1d + [b+ B, h]
on QZ follow immediately. [

ADIC FILTRATION. Suppose that .# is a (not necessarily closed) two-sided ideal
in £, provided with its own topology of m-algebra for which the inclusion
& — A is continuous and the multiplication map Z+ x & x Z+ — £ is
jointly continuous. As usual we define the powers #™ as the two-sided ideals
corresponding to the image in Z of the n-fold tensor products & ...®.7
under multiplication. Following [12], we introduce the adic filtration of X (%)
by the subcomplexes

FPX(#) : I"T [ %) = 4.9"d% (15)
FOHIX (%) « ot 2 g Az + sd S

where the commutator [.#", %] is by definition the image of .#"d% under the
Hochschild operator b, and .#" is defined as the unitalized algebra %Z* for
n < 0. This is a decreasing filtration because F/yt' X (#) C F'. X (%), and for
n < 0 one has F'y X(#Z) = X(#). Denote by X,(%#,9) = X(Z)/F'} X (%)
the quotient complex. It is generally not separated. One gets in this way an
inverse system of Zy-graded complexes { X, (%, -#)}nez with projective limit
X(%,.7).

Now suppose that we start from an extension of m-algebras 0 — % — #Z —
&/ — 0 with continuous linear splitting, and assume that any power #" is
a direct summand in %Z. Then, the sequence X,,(%,.¥) is related to the X-
complexes of the quotient m-algebras Z/.#™:

0— Xo(#,9)=o )|, — X1(R,I)=X() — ...
= X (R I — Xopn (R, I) — Xop(R,I) — X (R I") — ...

Hence the projective limit of the system {X,,(Z, .#)}nez is isomorphic to the
X-complex of the pro-algebra Z:

X(#,9) =lm X, (%, 5) =lmX(#Z/I") = X (%) . (16)

The pro-complex X (%, .7) is naturally filtered by the family of subcomplexes
F"X(%#,9)=Ker(X — X,,). If 0 = ¢ — . — % — 0 is another extension
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of m-algebras with continuous linear splitting, then the space of linear maps
between the two pro-complexes X (%, .#) and X (.7, J), or between X and

X' for short, is given by

Hom(X, X') = lim (@Hom(xn, X;n)> , (17)

where Hom(X,,, X/ ) is the space of continuous linear maps between the Zo-
graded complexes X,,(#,.#) and X,,(~7, 7). Thus Hom(X,X') is a Z,-
graded complex. It corresponds to the space of linear maps {f : X -
X/ | Vk, In : f(F")?) C Fk)?’}; the boundary of an element f of parity
|f| is given by the graded commutator 8o f — (=)!//If 0 & with the bounary
maps 0 = 1d®b on X and X'. Hom()?, )?’) itself is filtered by the subcomplexes
of linear maps of order < n for any n € N:

Hom™(X,X") ={f: X — X' | Vk, f(F**"X)c FFX'} . (18)

These Hom-complexes will be used in the various definitions of bivariant cyclic
cohomology, once the relation between the adic filtration over the X-complex
of a quasi-free algebra # and the Hodge filtration of the cyclic bicomplex over
the quotient algebra & = %/.# is established.

2.3 THE TENSOR ALGEBRA

Taking & as the tensor algebra of an m-algebra <7 provides the link with cyclic
homology [9, 12]. The (non-unital) tensor algebra T'e/ is the completion of the
algebraic direct sum @0,,~; &®" with respect to the family of seminorms

P=Pr*=pepepepeprepe...,
n>1

where p runs through all the submultiplicative seminorms on 7. Of course p®™
is the projective seminorm on «/®™ defined by a generalization of (2). These
seminorms are submultiplicative with respect to the tensor product &/ on
O™ — /9"t ™ and therefore the completion T'.%7 is an m-algebra. It is free,
hence quasi-free: a linear map ¢ : T/ — Q?T./ with the property ¢(zy) =
d(x)y + x¢(y) + dedy may be canonically constructed by setting ¢(a) = 0
on the generators a € o C T/, and then recursively ¢(a1 ® a2) = daidas,
¢(a1 ® az ® az) = (daydaz)as + d(a1 ® az)das, and so on...

The multiplication map T&/ — &, sending a1 ®. . .®Qa,, to the product a; . .. an,,
is continuous and we denote by J.<7 its kernel. Since the inclusion o : & —
T/ is a continuous linear splitting of the multiplication map, the two-sided
ideal J.f is a direct summand in T.«/. This implies a linearly split quasi-free
extension 0 — Jo&/ — T@/ — & — 0. It is the universal free extension of
& in the following sense: let 0 — & — #Z — &/ — 0 be any other extension
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(Z is not necessarily quasi-free), provided with a continuous linear splitting
o: 9 — Z%. Then one gets a commutative diagram

0> Jof —> T —> of —>0
el
. v P

where p, : T/ — Z is the continuous algebra homomorphism obtained by
setting p.(a) = o(a) on the generators a € & C T'«/. Moreover, the homomor-
phism p, is independent of the linear splitting o up to homotopy (two splittings
can always be connected by a linear homotopy).

As remarked by Cuntz and Quillen [12], the tensor algebra is closely related to
a deformation of the algebra of even-degree noncommutative differential forms
Ot o/, Endow the space Q.27 with the Fedosov product

w1 Owsy = wiws — dwidws , w; € QT . (19)
Then (7«7, ®) is a dense subalgebra of T'«/, with the explicit correspondence
O/ 3 apday ... dag, —— ag @w(a,a2) ® ... @ wlag,_1,a2,) € T .

It turns out that the Fedosov product ® extends to the projective limit Qo
and the latter is isomorphic to the pro-algebra

Tot = lim T/ / (J.o/ )" . (20)

n

Moreover, Qo and X (f@f ) = X (T, Jaf) are isomorphic as Zs-graded pro-
vector spaces [12], and this isomorphism identifies the Hodge filtration F nQof
with the adic filtration F"X (T, Jef). By a fundamental result of Cuntz and
Quillen, all these identifications are homotopy equivalences of pro-complexes,
Le. the boundary b + B on Qo corresponds to the boundary td @ b on
X(Te/,J<) up to homotopy and rescaling (see [12]). Hence the periodic and
negative cyclic homologies of &/ may be computed respectively by X (T, Jt)
and F")?(Tsz/, Jo). Also, the non-periodic cyclic homology of &/ may be
computed by the quotient complex X, (T, J</) which is homotopy equiv-
alent to the complex % /F nQ.e/. More generally the same result holds if
tensor algebra T/ is replaced by any quasi-free extension of /. Indeed if
0 - 4 - % — o — 0is a quasi-free extension with ¢ ontinuous linear
splitting, the classifying homomorphism p. : T« — % induces a map of
pro-complexes X (p.) : X(T<@/,Jo/) — X(Z%,.7) compatible with the adic
filtrations induced by the ideals J& and .#. It turns out to be a homotopy
equivalence, irrespective to the choice of Z:
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THEOREM 2.5 (CUNTZ-QUILLEN [12]) For any linearly split extension of m-
algebras 0 — I — X — of — 0 with Z quasi-free, one has isomorphisms

HP,(o/) = Hyy(X(2,9)) ,

HCW(#) = Hpron(Xa(%,.7)) (21)
HD, (o) = Hpyz(Xn1(%,5)),

HNu (o) = Hoioz(F"'X(%,.9)) .

These filtrations also allow to define various versions of bivariant cyclic coho-
mology, which may be formulated either within the X-complex framework or
by means of the (b + B)-complex of differential forms.

DEFINITION 2.6 ([12]) Let &7 and % be m-algebras, and choose arbitrary (lin-
early split) quasi-free extensions 0 — % - % — o —-0and 0 — ¢ — &/ —
B — 0. The bivariant periodic cyclic cohomology of </ and %A is the homol-
ogy of the Zo-graded complex (17) of linear maps between the pro-complezes

X(%#,7) and X(S, 7):
HP"(f,B) = Hyron(Hom(X (%, 9), X (S, 7)), YneZ. (22)

For any n € Z, the non-periodic cyclic cohomology group HC™ (o, B) of degree
n is the homology, in degree n mod 2, of the Zs-graded subcomplex (18) of linear
maps of order < n:

HC™(f , B) = Hyron(Hom™(X (2, 9), X (S, 1)) - (23)

The embedding Hom™ < Hom""? induces, for any n, the S-operation in bivari-
ant cyclic cohomology S : HC™ (o, B) — HC"*?(o/, %), and Hom" — Hom
yields a natural map HC™ (o, B) — HP" (<, B).

Of course the bivariant periodic theory has period two: HP"+2 = HP". Let
us look at particular cases. The algebra C is quasi-free hence X(T'C, JC) is
homotopically equivalent to X(C) : C 2 0, and the periodic cyclic homology
of C is simply HPy(C) = C and HP;(C) = 0. This implies that for any
m-algebra o/, we get the usual isomorphisms HP"(C, /) &2 HP_, (<) and
HP™(o/,C) = HP"™ (<) in any degree n. For the non-periodic theory, one has
the isomorphism HC"(C, &) = HN_,, (&) with negative cyclic homology, and
HC"(«/,C) =2 HC™(«) is the non-periodic cyclic cohomology of Connes [4].
Finally, since any class ¢ € HCP (4, $) is represented by a chain map sending
the subcomplex F”)?(T;zf, J) to F"_p)?(Tc%’, JA) for any n € Z, it is not
difficult to check that ¢ induces a transformation of degree —p between the
SBI exact sequences for & and 4, i.e. a graded-commutative diagram

HP, (o) —2—> HC,_ () —2—> HN,(o/) —— HP, ()

A & &

HP, p1(#) —> HC,_, 1(B) 2> HN,_,(B) —>HP,_,(#)
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The graded-commutativity comes from the fact that the middle square is actu-
ally anticommutative when ¢ is of odd degree, for in this case the connecting
morphism B anticommutes with the chain map representing ¢.

3 QUASIHOMOMORPHISMS AND CHERN CHARACTER

In this section we define quasihomomorphisms for metrizable (or Fréchet) m-
algebras and construct a bivariant Chern character. The topology of a Fréchet
m-algebra is defined by a countable family of submultiplicative seminorms, and
can alternatively be considered as the projective limit of a sequence of Banach
algebras [27]. In particular, the projective tensor product of two Fréchet m-
algebras is again a Fréchet m-algebra.

We say that a Fréchet m-algebra .# is p-summable (with p > 1 an integer),
if there is a continuous trace Tr : 4P — C on the pth power of .#. Recall
that by definition, .#P is the image in .# of the p-th completed tensor product
S & ...%7 under the multiplication map. Hence the trace is understood as a
continuous linear map #®...®.# — C, and the tracial property means that
it vanishes on the image of 1 — A\, where the operator ) is the backward cyclic
permutation A(i1 ® ... ®1ip) = ip ®i1... @ ip_1. In the low degree p = 1 we
interpret the trace just as a linear map .# — C vanishing on the subspace of
commutators [.Z, ] := Q7.

Now consider any Fréchet m-algebra Z and form the completed tensor product
JIR%. Suppose that & is a Fréchet m-algebra containing .#®% as a (not
necessarily closed) two-sided ideal, in the sense that the inclusion .#®% — & is
continuous. The left and right multiplication maps & x S QZB x & — S DA are
then automatically jointly continuous (see [7]). As in [13], we define the semi-
direct sum & x .# @2 as the algebra modeled on the vector space & & .¥ .2,
where the product is such that as many elements as possible are put in the
summand .#©%. The semi-direct sum is a Fréchet algebra but it may fail
to be multiplicatively convex in general. The situation when & x I &R is a
Fréchet m-algebra will be depicted as

Ev> IHPB (24)

to stress the analogy with [8]. The definition of quasihomomorphisms involves
a Zs-graded version of & > .# %8, depending only on a choice of parity (even
or odd). It is constructed as follows:

1) EVEN CASE: Define &7 as the Fréchet m-algebra & x .#®%. It is endowed
with a linear action of the group Z, by automorphisms: the image of an element
(a,b) € & ® F©% under the generator F of the group is (a+ b, —b). We define
the Zs-graded algebra &° as the crossed product &% x Zg. Hence &7 splits as
the direct sum &7 © &° where &7 is the subalgebra of even degree elements
and &° = F'&} is the odd subspace.

This definition is rather abstract but there is a concrete description of &°
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in terms of 2 x 2 matrices. Consider M(&) = M>(C)®& as a Zg-graded
algebra with grading operator (é _01). Thus diagonal elements are of even
degree and off-diagonal elements are odd. &* can be identified with a (non-
closed) subalgebra of My (C)®& in the following way. Any element z+ Fy € &*
may be decomposed to its even and odd parts z,y € & ® I ©%B, with x = (a, b)

and y = (¢,d). Then x + Fy is represented by the matrix

a+b c . .
x+ Fy= (c+d a) with a,c€ &, b,de SRR .
The action of Zy on &7 is implemented by the adjoint action of the following
odd-degree multiplier of My (&):

F(? é)GMg(C), F?=1. (25)

Denote by .#° = 7 © #° the Zs-graded algebra My (C)®.#, with I3 the
subalgebra of diagonal elements and % the off-diagonal subspace. We thus
have an inclusion of .#*®% as a (non-closed) two-sided ideal in &%, with &* >
SF*®%. The commutator [F,&?] is contained in #°®%. Finally, we denote
by trs the supertrace of even degree on Ms(C):

/
trg : Ma(C) — C trg (Z, z)za'—a.

2) OpD CASE: Now regard M, (&) as a trivially graded algebra and define &7
as the (non-closed) subalgebra

. (& soB
‘9@+_<J®% 5) (26)

provided with its own topology of complete m-algebra. Let C; = C & C be
the complex Clifford algebra of the one-dimensional euclidian space. Cj is the
Zy-graded algebra generated by the unit 1 € C in degree zero and ¢ in degree
one with €2 = 1. We define the Zs-graded algebra &° as the tensor product
C’1®£’j. Hence &° = &7 @ &° where &7 is the subalgebra of even degree and
&* = e&7% is the odd subspace. Similarly, define . = M, (C1)®.7 = I35 & .75,
Then #*®% is a (non-closed) two-sided ideal of &* and one has & > .7 *®%.
The matrix

Fs((l) _01) € My(Cy), F?=1 (27)
is an odd multiplier of &° and the commutator [F, &7] is contained in .#° RAB.
Finally, we define a supertrace tr, of odd degree on C by sending the generators
1 to 0 and € to £v/2i. The normalization £1/2i is chosen for compatibility with
Bott periodicity, see [22]. We will choose conventionally the “sign” as —/2i in
order to simplify the subsequent formulas. One thus has

' bgel :
try : Ma(Cy) — C tr<iiiz diid,)\@(a'+d').
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The objects F', &° and .#° are defined in such a way that we can handle the
even and odd case simultaneously. This allows to give the following synthetic
definition of quasihomomorphisms.

DEFINITION 3.1 Let &, B, , & be Fréchet m-algebras. Assume that &
is p-summable and & > FRAB. A QUASIHOMOMORPHISM from o/ to B is a
continuous homomorphism

p:o — ES> IR (28)

sending &/ to the even degree subalgebra &7. The quasihomomorphism comes
equipped with a degree (even or odd) depending on the degree chosen for the
above construction of &°. In particular, the linear map a € o/ — [F,p(a)] €
FI3RRB is continuous.

In other words, a quasihomomorphism of even degree p = (p o p(i ) is a pair of

homomorphisms (p4, p—) : & = & such that the difference p;(a) — p_(a) lies
in the ideal #®2% for any a € «/. A quasihomomorphism of odd degree is a
homomorphism p : & — M>(&) such that the off-diagonal elements land in
IRAB.

The Cuntz-Quillen formalism for bivariant cyclic cohomology HC" (<7, %) re-
quires to work with quasi-free extensions of &/ and %. Hence let us suppose
that we choose such extensions of m-algebras

0—-¥Y—>9% > —0, 0— F -F%—PB—0,

with % and #Z quasi-free. We always take .# = T.&/ as the universal free
extension of &7, but we leave the possibility to take any quasi-free extension
Z for A since the tensor algebra T'Z will not be an optimal choice in general.
The first step toward the bivariant Chern character is to lift a given quasiho-
momorphism p : & — &° > F°R% to a quasihomomorphism from .# to %,
compatible with the filtrations by the ideals ¥ C %, # C %. This requires
to fix some admissibility conditions on the intermediate algebra &:

DEFINITION 3.2 Let 0 — ¢ — Z — % — 0 be a quasi-free extension of A,
and let & be p-summable with trace Tr : P — C. We say that &> SRR is
provided with an %-admissible extension if there are algebras M > QR and
N> f@/ and a commutative diagram of extensions

0 N M & 0

s

0—=IQ I — IR —> IQB—>0

with the following properties:
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i) Any power A™ is a direct summand in A (as a topological vector space);

ii) For any degree n > max(1,p—1), the linear map (I @Z)"d(I %) — Q' %,
induced by the trace £t — C factors through the quotient

(IR A(IQR) = (S RF)"d(S X)) mod [, Q' ] ,
and the chain map Tr : F;"g%X(%) — X (Z) thus obtained is of order zero
with respect to the adic filtration induced by the ideals N C M and ¥ C X.
In the following we will say that & is Z-admissible, keeping in mind that the
extension .# is given. Condition i) is automatically satisfied for example if
A is a quasi-free algebra (this will not always be the case). The chain map
Tr of condition ii) is constructed as follows. For n > 1 one has the inclusion
(L) " P d C y(I0R)"d(IDR), so that the subcomplex of the & @.%-
adic filtration reads

F;”é;X(///) D (IR 2 (I RR)"A(I D)

Then, the trace .#"*! — C induces a partial trace (S @Z%Z)"T! — %. The
latter combined with §(.# ®Z)"d (. RZ) — Q'%, yields a linear map in any
degree n > max(1,p — 1)

. 2n
Tv: FUOX (M) — X(R) (30)

compatible with the inclusions F;"g ;X (M) C F;"g QI,X (). The trace over
# ™+ ensures that (30) is a chain map. It is not obvious, however, that it is au-
tomatically of degree zero with respect to the .4"-adic and _#-adic filtrations,
i.e. that the intersection F;”g%X(%) NFk X () is mapped to F}X(%’) for
any k € Z. This should be imposed as a condition.

Remark that the case p = 1, n = 0 is pathological, since there is no canoni-
cal way to map the space §((FQZ)dA + .#Td(IRR)) to 2%, using only
the trace over .. In this situation, it seems preferable to impose directly
the existence of a chain map Tr : E1¢®%,X(///) — X(Z) in the definition of
admissibility.

EXAMPLE 3.3 When &/ is arbitrary and & = C, a p-summable quasihomo-
morphism represents a K-homology class of &7 in the sense of [4, 5]. Here we
take & = ¥P(H) as the Schatten ideal of p-summable operators on a sepa-
rable infinite-dimensional Hilbert space H. Recall that .# is a two-sided ideal
in the algebra of all bounded operators .¥ = Z(H). .# is a Banach algebra
for the norm ||z, = (Tr(|]z|?))!/?, .Z is provided with the operator norm, and
the products ¥ x £ x & — & are jointly continuous. Since .Z and & are
Banach algebras, the semi-direct sum % x .# is automatically a Banach algebra
and we can write .Z > .. A p-summable K-homology class of even degree is
represented by a pair of continuous homomorphisms (p4,p—) : & = £ such

DOCUMENTA MATHEMATICA 13 (2008) 275-363



SECONDARY INVARIANTS FOR FRECHET ALGEBRAS. .. 295

that the difference p. — p— lands to .#. We get in this way an even degree
quasihomomorph ism p : & — £ > #°. Here it is important to note that
by a slight modification of the intermediate algebra .Z, it is always possible to
consider .# as a closed ideal [13]. Indeed if we define & as the Banach algebra

E=ZL %I

then one clearly has & > .# and .# is closed in & by construction. The
pair of homomorphisms (p4+,p-) : & = £ may be replaced with a new
pair (o), pl) :+ & = & by setting p/ (a) = (p-(a),p+(a) — p-(a)) and
p_(a) = (p-(a),0) in £ & .#. The above K-homology class is then repre-
sented by the new quasihomomorphism p’ : & — &% 1> .75,

In the odd case, a p-summable K-homology class is represented by a continu-
ous homomorphism p : & — (% _‘é ), which can be equivalently described as a
homomorphism p’ : & — M3(&) with off-diagonal elements in .#.

Concerning cyclic homology, the algebra C is quasi-free, hence the quasi-free
extension #Z = C and _# = 0 computes the cyclic homology of C. Therefore
by choosing .# = & and .4 = 0, the algebra &> .7 is C-admissible (condition
i) is trivial since Q'Cy = 0).

EXAMPLE 3.4 More generally, if .# is a p-summable Fréchet m-algebra con-
tained as a (not necessarily closed) two-sided ideal in a unital Fréchet m-algebra
£, with Z > #, a p-summable quasihomomorphism from & to & could be
constructed from the generic intermediate algebra & = Z®%, provided that
the map S ®% — & is injective. If 0 — ¢ — % — % — 0 is a quasi-free
extension of &, the choice # = LOF and N = f@/ shows that & is
Z-admissible provided that the maps S RZ — A and FQ J — A are in-
jective. In fact it is easy to get rid of these injectivity conditions by redefining
the algebra
E=(Lx IR ,

which contains .#®% as a closed ideal. Then & becomes automatically Z-
admissible by taking # = (£ x F)QZ and N = (£ x F)® ¢ (remark that
(Z x I)" = £ x & for any n because .Z is unital, hence 4™ is a direct
summand in .#). The chain map Tr : F;”g (@%X (M) — X (Z) is obtained
by multiplying all the factors in .# and .#, and taking the trace on .#"*+1,
while the compatibility between the .4"-adic and _#-adic filtrations is obvious.
Although interesting examples arise under this form (see section 7), the algebra
& cannot be decomposed into a tensor product with £ in all situations.

EXAMPLE 3.5 An important example where & cannot be taken in the previous
form is provided by the Bott element of the real line. Here &/ = C and
B = C*=(0,1) is the algebra of smooth functions f : [0,1] — C such that
f and all its derivatives vanish at the endpoints 0 and 1. Take .# = C as
a l-summable algebra, and & = C*°|0, 1] is the algebra of smooth functions
f :1]0,1] — C with the derivatives vanishing at the endpoints, while f itself
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takes arbitrary values at 0 and 1. & and & provided with their usual Fréchet
topology are m-algebras, and one has & > 4. The Bott element is represented
by the quasihomomorphism of odd degree

p:C— &> IQRAB ,

where .#° = My(Cy) and &° C M3(C1)®& by construction. The homomor-
phism p : C — &7} is built from an arbitrary real-valued function { € & such
that £(0) = 0, £(1) = /2, and sends the unit e € C to the matrix

_1({e 0 cosé  siné
ple) = B 1(0 O>R’ R= <—sin§ cosg) ’

The algebra % is quasi-free hence we can choose Z = %, # = 0 as quasi-
free extension. The cyclic homology of Z is therefore computed by X (4).
Moreover, setting .# = & and .4 = 0 shows that & is #-admissible. Indeed,
Q' %, is contained in the space Q'(0,1) of ordinary (commutative) complex-
valued smooth one-forms over [0, 1] vanishing at the endpoints with all their
derivatives. The chain map Tr : F3 7' X(&) — X(4%) is thus well-defined
for any n > 1, and just amounts to project noncommutative forms over & to
ordinary (commutative) differential forms over [0, 1].

We shall now construct the bivariant Chern character of a given p-summable
quasihomomorphism p : &7 — &°>.7°®%B. We take the universal free extension
0 - Jog - Tod — o — 0 for &, and choose some quasi-free extension
0— ¢4 =% — % — 0 for # with the property that the algebra & IR
is Z-admissible. The bivariant Chern character should be represented by a
chain map between the complexes X (7<) and X (%), compatible with the
adic filtrations induced by the ideals Jo/ and _# (section 2). Our task is thus
to lift the quasihomomorphism to the quasi-free algebras T« and #Z. First, the
admissibility condition provides a diagram of extensions (29). From .#>.7 &%
define the Zo-graded algebra .#° in complete analogy with &°: depending on
the degree of the quasihomomorphism, .#* is a subalgebra of My (C)&.# (even
case) or Ma(C1)®.# (odd case), with commutator property [F, #5] C S Q%.
Also, from A > & _¢ define A% as the Zs-graded subalgebra of My (C)@.A4
or M>(C1)®.4" with commutator [F, #}f] C #*& #. The algebras &, .#*
and 4° are gifted with a differential of odd degree induced by the graded
commutator [F, | (its square vanishes because F? = 1). Then we get an
extension of Zs-graded differential algebras

0—-N° > H°— & —0.

The restriction to the even-degree subalgebras yields an extension of trivially
graded algebras 0 — A4° — .#7{ — &7 — 0, split by a continuous linear map
o: &Y — M (recall the splitting is our basic hypothesis about extensions of
m-algebras). The universal properties of the tensor algebra T'e/ then allows
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to extend the homomorphism p : & — &7 to a continuous homomorphism
px : Tal — M3 by setting pe(a1 @ ... ® an) = oplar1) @ ... opla,):

0 J.of T 4 0
p*l p*l lp (31)

A vpriori p. depends on the choice of linear splitting o, but in a way which
will not affect the cohomology class of the bivariant Chern character. This
construction may be depicted in terms of a p-summable quasihomomorphism
px Tl — M°> IR, compatible with the adic filtration by the ideals
in the sense that J.</ is mapped to A% > fs®/. Hence, p. extends to a
quasihomomorphism of pro-algebras

p*:fszfﬂ///l\sbfsé@@, (32)

where T/ , M° and Z are the adic completions of T.w/, .#° and # with
respect to the ideals J&/, A4° and #. Next, depending on the degree of
the quasihomomorphism, the even supertrace try : M2(C) — C or the odd
supertrace trg : My(Cp) — C yields a chain map X (.#°) — X (.#) by setting
az — trg(a)z and faxd(By) — *trs(af)iady for any z,y € A4 and o, €
M5(C) or Ms(Cq). The sign + is the parity of the matrix 3, which has to
move across the differential d. Hence composing with the chain map Tr :
F;”g (@%X (M) — X(#) guaranteed by the admissibility condition, we obtain
for any integer n > max(1,p — 1) a supertrace chain map

TP X (%) S FEOX (M) B X (%) (33)
of order zero with respect to the .#"*-adic filtration on X (.#*) and the #-
adic filtration on X (#). The parity of 7 corresponds to the parity of the
quasihomomorphism. This allows to construct a chain map X" : Qn P = X(%)
from the (b4 B)-complex of the algebra .Z, in any degree n > p having the
same parity as the supertrace 7. Observe that the linear map » € .#7 —
[F,z] € .#°®% is continuous by construction.

PROPOSITION 3.6 Let p: of — &> QB be a p-summable quasihomomor-
phism of parity p mod 2, with %Z-admissible algebra &. Given any integer
n > p of the same parity, consider two linear maps Xy : Q" M? — X and
Xy QA — Q' Ry defined by

WO+ 5)

X\g(IQdfl N dxn) = (—) m

Z E()\) T(x/\(o) [F, x/\(l)] e [F, x)\(n)])
AESH+1

(34)
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nF(l + ﬁ) n+1
Trin 2 ri(zo[F,21]. .. dai...[F,2n1])

)??(xodxl .. .dxn_,_l) = (—)

where Syp11 s the cyclic permutation group of n + 1 elements and € 1is the
signature. Then Xy and X7 define together a chain map X" : QH; — X (Z)
of parity n mod 2, i.e. fulfill the relations

XeB=0, bdyg—(=)"XiB=0, b\ —(-)"Xgb=0, Xib=0. (35

Moreover X" is invariant under the Karoubi operator x acting on Q". 43 and
n+1 s
QP

Proof: This follows from purely algebraic manipulations, using the following
general properties:

- The graded commutator [F, ] is a differential and 7([F, ]) = 0;

- dF =0 so that [F, ] and d are anticommuting differentials;

- Th is a supertrace.

The computation is lengthy but straightforward. [

Thus we have attached to a p-summable quasihomomorphism p : & — &° >
F 329 of parity p mod 2 a sequence of cocycles X" (n > p) of the same parity in
the Zs-graded complex Hom(ﬁ/// 7, X(#)). They are in fact all cohomologous,
and the proposition below gives an explicit transgression formula in terms of
the eta-cochain:

PROPOSITION 3.7 Let p: of — &> QB be a p-summable quasihomomor-
phism of parity p mod 2, with Z-admissible algebra &. Given any integer
n > p+ 1 of parity opposite to p, consider two linar maps ny : "M} — R
and N« Q" — QO Ry defined by

o~ L)
o (zodzy ... dxy,) = Y iT(F:co[F,xl]...[F,xn]Jr

—_

£

NE

(=)M[F, ;) ...[F,xp|FaolF,x1] ... [F, 931;1])

.
I

Nt (zodaxy ...drpt1) = (36)
F(nJrl) n+1

G z)! ; ST F + (n+ 2 = i) Fag)[Fyan] . dai .. [F o] -

Then 0 and 77 define together a cochain N € Hom(ﬁ//lj,X(%’)) of parity
n mod 2, whose coboundary equals the difference of cocycles

XX = (d @bt — ()" (b + B)
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FEzxpressed in terms of components this amounts to the identities

Xo ol = —()"mB. b — (=)™ (b + 1 *B) =0, (37)
X1t o= wdig — ()"t B, bdip T - (<) (@b + 7P B) =0 .
Proof: Direct computation. ]

REMARK 3.8 Using a trick of Connes [4], we may replace the chain map 7 by
7/ = 17(F[F, ]). This allows to improve the summability condition by requiring
the quasihomomorphism to be only (p + 1)-summable instead of p-summable,
while the condition on the degree remains n > p for X and n > p + 1 for
n". It is traightforward to write down the new formulas for X" and observe
that it involves exactly n+ 1 commutators [F, z]. These formulas were actually

obtained in [23] in a more general setting where we allow dF # 0.

DEFINITION 3.9 The bivariant Chern character of the quasihomomorphism p :
o — &> IQB is represented in any degree n > p by the composition of
chain maps

W (p) : X(Tet) 2 0Tt 25 0utt; o X () | (38)

where v : X(Te/) — QT is the Goodwillie equivalence constructed in section
2 for any quasi-free algebra and p, : Te/ — A7 is the classifying homomor-
phism. In the same way, define a transgressed cochain in Hom(X (T« ), X (%))
by means of the eta-cochain in any degree:

"™ (p) : X(T.t) 5 QTar 25 Qs 5 X (%) . (39)

It fulfills the transgression property ch™(p) — ch™*2(p) = [, oh™ " (p)] where O
s the X -complex boundary map.

Recall that v(z) = (1 — ¢)~1(x) and y(sady) = (1 — ¢) " (zdy + b(x¢(y))) for
any z,y € T.o/, where the map ¢ : Q"T/ — Q2T o7 is uniquely defined from
its restriction to zero-forms. Its existence is guaranteed by the fact that T.o/
is a free algebra. Several choices are possible, but conventionally we always
take ¢ : T/ — Q2T.o/ as the canonical map obtained by setting ¢(a) = 0 on
the generators a € &/ C T/, and then extended to all T« by the algebraic
property ¢(zy) = ¢(z)y + 2¢(y) + dzdy.

Of course ch™(p) and ¢h"(p) are not very interesting a priori, because the X-
complex of the non-completed tensor algebra T« is contractible. However,
taking into account the adic filtrations induced by the ideals J&/ C T« and
J C Z yields non-trivial bivariant objects. By virtue of Remark 3.8 we
suppose from now on that .# is (p + 1)-summable.
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PROPOSITION 3.10 Let p: & — &> QP be a (p + 1)-summable quasiho-
momorphism of parity p mod 2 with Z-admissible extension &, and let n > p
be an integer of the same parity. The composites X" px7y and 77 pyy are linear
maps X (T o) — X (R) verifying the adic properties

X'py  FiyX(Ted) — FX(2)

Ty o Fi X (Tl) — Fi" 2 X (%)

for any k € Z. Consequently the composite ch™(p) = X" p.~y defines a cocycle of
parity n mod 2 in the complexr Hom" (X (Te/,Jo/), X (%, ¥ )) and the Chern
character is a bivariant cyclic cohomology class of degree n:

ch"(p) e HC™ (o, %B), Yn>p. (40)

Moreover, the transgression relation ch™(p) — ch™ 2 (p) = [0, ¢gh" " (p)] holds in
the complex Hom" (X (Tt , J.o/ ), X (%, 7)), which implies

ch™*2(p) = Sch™(p) in HC""? (o, B) . (41)

In particular the cocycles ch™(p) for different n define the same periodic cyclic
cohomology class ch(p) € HP™(<f | B).

Proof: Let us denote by 0 — ¥4 — % — & — 0 the universal extension
0 - Jo&& - T/ — o/ — 0. Recall that .#Z° and its ideal A4° are Zo-
graded differential algebras on which the graded commutator [F, | acts as a
differential of odd degree. Moreover the commutation relations [F,.Z3] C
IEQF and [F, V7] C F°& ¢ hold. Now, we have to investigate the adic
behaviour of the Goodwillie equivalence v : X (%) — O.F with respect to the
filtration Fif X (.#). The first step in that direction was actually done in the
proof of Proposition 2.4, where the following filtration of the subspaces Q".%
was introduced:

HO" 7 = Z @grodgk . A9k c QT .

Let us look at the image of the latter filtration under the maps X"ps and
N"ps : QF — X(Z) given by Eqgs. (34, 36). We know that the homomorphism
px : F — M3 respects the ideals 4 and .#/°. Hence if x,...,z, denote
n + 1 elements in @%0 ... &%~ respectively, with ky + ... + k, > k, then
zxo) [Fyzaq)] - - [Fyxam)] € (A)F for any permutation A\ € S,1q. Hence
applying the supertrace 7, which is a chain map of order zero with respect to
the A %-adic and _#-adic filtrations on X (.#°) and X (%), yields (from now
on we omit to write the homomorphism p,)

Xp(HPQ F) ¢ g (42)

In the same way, for n + 1 elements x, ..., Tyqq in G50, .. GFn+1 the one-
form fzo[F,z1]...dx; ... [F,xny1] involves kg + ... + ky 1 > k powers of the
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ideal .4, hence lies in the subspace §((A4 *)*d.#* + (A *)*~1d.#®). Thus
applying the supertrace T one gets

Xi(HNQLZ) cu( Az + g 7)) (43)

Proceeding in exactly the same fashion with the maps 7 : Q"% — % and
QL — QL% it is clear that

i (HFQ.7)
T (L)

kL (44)
(sraz+ s g | (45)
However these estimates are not optimal concerning the component X7. We

need a refinement of the H-filtration. For any k € Z, n > 0, let us define the
subspaces

C
C

Gkang = Y ghdF)gM(dF).. g (dF)GE + BT
ko+...+kn>k

Then for fixed n, G*Q™.Z is a decreasing filtration of 2".%, and by convention
GkOn.ZF = Q"F for k < 0. One has GFQ"Z < H*Q".%. Now observe the
following. Since [F, ] and d are derivations, the map zodz; ...dz;...d2xy11 —
hao[F,x1]...dx; ... [F, x,41] has the property that

Gt (d.F)GM (A.F) ... (dF)G" .. (dF)GF+ —
h(/s)ko [F, %S](WS)kl [F,.2%)... (d.///é)(ﬂé)kl . |F, %s](ws)kw,+1
(),

and because X (HFH1QHLZ) c 4(_#k1d#Z + #*d_¢#) C i _#*dZ, one gets
the crucial estimate
UGFF) C 5 shaz . (46)

Now we have to understand the way v sends the X-complex filtration

FZX(7) : 9" 1 [9% 7] = 19rds
FFHX(F) © @* 2 y(@' T dF +9raY)

to the filtration G*Q".Z, in all degrees n. Recall that v(z)|qzmgs = ¢"(z)
and y(hzdy)|gzn+1 ez = ¢"(xzdy + b(zd(y))) for any x,y € %, where the map
¢ : OF — Qn2.F is obtained from its restriction to zero-forms as

n

d(zodzy ...dx,) = Z(*)ni¢(xi)dmi+1 ...dz,dzg...dx;—q .
i=0

Note the following important properties of ¢. Firstly, it is invariant under the
Karoubi operator k : Q"% — Q™.Z in the sense that ¢ o kK = ¢, and vanishes
on the image of the boudaries d, B : Q".% — Q""1.%. Secondly, the relation
@b — b = B holds on Q"% whenever n > 1 (see [22] §4). Since we have
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to apply successive powers of ¢ on the filtration G*¥Q™.%, the computation

will be greatly simplified by exploiting x-invariance. Define the linear map
¢ OF — QF2.Z by

n

d(zodzy ... dxy,) = Z(f)id:co coodri1o(x)deiyy ... da, .
i=0

Then <z~5 coincides with ¢ modulo the image of 1 — . In particular the relation
@" = ¢ o ¢" ! holds. The advantage of the map ¢ stems from the fact that
it does not involve cyclic permutations of the elements z;, and verifies the
following optimal compatibility with the G-filtration

OGO F) C GFIOTRFE k>0,
whereas the map ¢ is only compatible with the (coarser) H-filtration:
H(HFQ"Z) Cc HF1Q"2.Z  Vkn>0.

We shall now evaluate the image of the filtration FX (%) under the map
v : X(F) — QF. Firstly, one has y(45T1) N Q*nF = ¢"(9**1). But ¥+ C
GFH1Q0.Z and ¢™ = ¢ o ¢!, hence

NG N QT C H(GF TR (47)

Secondly, the image of 19¥d.% in Q?"*+1.7 is given by ¢"(4*d.Z +b(G*p(.F))).
One has b(9*¢(F)) C [9*d.F,F]| C 9*d.Z, hence we only need to compute
¢"(F*A.T) C ¢"(GFQLF), and

Y19 d.F) N QL C p(GR I | (48)

Thirdly, [¢%,.Z] = bi9*d.Z so that v([9*, Z]) = (b+ B)y(14*d.#) because v
is a chain map. Therefore, the image of [¢*, 7] restricted to Q2. is contained
in B¢"~H(4*d.F) + bp"(9*d.F). We may estimate coarsly the first term as
Bo"~Y(9*d.F) c B¢ L (HFQL.F) ¢ HF"HOZ | and the second term as
bod" L (GRA.F) C bp(GF 02 —L.Z). Hence

W([@F, Z]) N Q" F C HF "1 F 4 bg(GF IO LE) L (49)

Fourthly, the image of 19*d¥ in Q?"+1.Z is given by ¢"(4*d¥ + b(Z*4(9))).
We estimate coarsly ¢"(9%d¥) C ¢"(H*QL7) ¢ HF"+1Q2 1% Then,
one has 9*¢(4) Cc 9*d.#d.F C G*¥O2.Z, and using repeatedly the relations
ob—bp = B, $B = 0 gives ¢"b(Z*$(F)) C bo™ (GFQ2.F) + By" L (GFQ2.F) C
bp(GF—HIQ2Z) + BHF"H102" 7. Thus

V((RAD) N Q2 HLE ¢ HF IO 4 bp(GETTHIOZ) L (50)

Now everything is set to evaluate the adic behaviour of the composites X"~
and n"v. We shall deal only with even degrees, the odd case is similar.
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Hence let us start with the map X3"y : F — %. For any k € Z, Eq. (47)
gives Y2y (9FHL) C X3 0 ¢(GE 2022 7). But X3" is k-invariant, hence
K20 ¢ = X2" 0 ¢. Therefore, R2y(&FH1) C R (GF-H1Q2Z) gkt
using GF"T1Q ¢ H*"*1Q and (42). Now we look at its companion Y™ :
QL7 — Q'%,. From (48) one gets X3"(19*d.F) C \3" o p(GFH1Qn—1.7).
But x?" is also k-invariant and Y3" o ¢ = 2" o 6, thus Xy b9+ d.F) C
Y GEQMTLF) C g 7% "dZ% by (46). This allows to estimate the image
of (9%, F] = b§9*d.Z under the chain map X>"y. Indeed 2"y (b1%*d.Z) =
X2y (19*d.7) C by _ZF"d %, so that X3y ([9F, F]) C [ £+, %)]. Collect-
ing these results shows the effect of the map ¥2"y on the adic filtration in even
degree:

Ry S gh T g g
R AT s g grAR

hence ¥2"y : F2FEX(F) — F{?“Q"X(%’). To understand the effect on the fil-

tration in odd degree, one has to evaluate X" on §4*d%¥. From (50), one gets
Xy (hgkd9) C XA (HFHQ2HLF 4 bo(GFTHLO2Z)). But (35) shows
3" ob =0, and (43) implies ¥2"v(19*d¥) C y( £+ d%z + 7+ d 7).
One thus gets the adic behaviour of the chain map X"y on the filtration of
odd degree:

Xeny . @htl — gkl
5(\%"7: h(gk+1dﬂ+gkdg) N h(/k_n+1d%+/k_"d/)

hence X"y : F2F ' X(F) — F}C&”HX(%’) and x?"y is a map of order 2n.
Using similar methods, one shows that 271+ is of order 2n + 1.
Now we investigate the eta-cochain. Consider "y : F — A.
(47) gives My (9FETL)  C pEre(GRT2Q ). However 72" is
not k-invariant, so that we cannot replace ¢ by ;5 We are forced
to consider @(GF 202" 2g) C HF"TIO2MZ  and  consequently
(@t ¢ _gkrtl by (44). Similarly, (49) implies 73"y([9%, F)) C
ﬁg”(Hk7”+IQ2”§Z) + ﬁgnbd)(kanJrlQ%LflJa;) C ﬁgn(kanQQn(gz) hence
ey (9, Z#]) ¢ _#F . Its companion iy : QL.F, — Q1% evaluated on
19%d.Z uses equation (48) again with ¢(GF—"+H1Q2n—1.7) c Hk—nQ2+tlZ
so that 7?"y(k9*d.F) C W\ (HF Q" HLF) C y( g dz + gk nld #)
by (45). This shows the effect of 7"y on the filtration of even degree

ﬁ%n’Yl gk-ﬁ-l + [gk,y] N /k—n

Wy R AT — W gFrA%+ gR N )
hence %"y : F2*X () — F}k_%_lX(%). For the odd filtration, let us com-
pute from (50) 77"y (19%d9) C R (HF—TIO2HLFZ) L 2nbg(GF IO 7).

But the identities (37) show that 77"b = Y2" ™!, hence using k-invariance one
gets ﬁ%”bgb(Gk_”"'lQQ”ﬂ) C X\%"Jrlqﬁ(Gk_”"‘lQQ”ﬁ') C X\%”Jrl(Gk_"Q%H‘Qy)_
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Therefore, (45) and (46) imply 7?"y(19%d¥) C §_#Z* "d#. These results give
the adic behaviour of 72"y with respect to the odd filtration

ﬁ%"v: gk-‘,—l _ /k—n-‘,—l
Bty B(GAF +9hAY) — g gk AR

hence 72"y : FF 1 X(F) — FKQ;Q"X(%) and 72"y is a map of order 2n + 1.

Similarly, one shows that n?"+!

v is of order 2n + 2. n
Note that the chain maps v and X" extend to the adic completions of all the al-
gebras involved, so that from now on we will consider the bivariant Chern char-
acter ch”(p) € Hom"(X(T«/, J</), X (%, 7)) as a chain map of pro-complexes

ch™(p) : X(Tt) L QT et L5 Q0?55 X(R) . (51)

We would like to introduce some equivalence relations among quasihomomor-
phisms, and discuss the corresponding invariance properties of the Chern char-
acter. The first equivalence relation is (smooth) homotopy. It involves the
algebra C'°°[0, 1] of smooth functions f : [0,1] — C, such that all the deriva-
tives of order > 1 vanish at the enpoints 0 and 1, while the values of f itself
remain arbitrary. We have already seen that C'*°[0, 1] endowed with its usual
Fréchet topology is an m-algebra. It is moreover nuclear [14], so that its pro-
jective tensor product &/®C°°[0,1] with any m-algebra & is isomorphic to
the algebra of smooth «7-valued functions over [0, 1], with all derivatives of
order > 1 vanishing at the endpoints. We will usually denote by </[0, 1] this
m-algebra. The second equivalence relation of interest among quasihomomor-
phisms is conjugation by an invertible element of the unitalized algebra (&) .

DEFINITION 3.11 Let pg : o — &> I°RB and p1 : o — E5> IR be
two quasithomomorphisms with same parity. They are called

I) HOMOTOPIC if there exists a quasihomomorphism p : o — &0,1)° >
I*R%0,1] such that evaluation at the endpoints gives py and py;

II) CONJUGATE if there exists an invertible element in the unitalized algebra
U e (&) with U —1 € &, such that pr = U 'poU as a homomorphism

Remark that the commutators [F,U] and [F,U~!] always lie in the ideal
I*R% C &°. When the algebra .# is My-stable (i.e. My(f) & .#), two
conjugate quasihomomorphisms are also homotopic, but the converse is not
true. Hence conjugation is strictly stronger than homotopy as an equivalence
relation. The former is an analogue of “compact perturbation” of quasihomo-
morphisms in Kasparov’s bivariant K-theory for C*-algebras, see [2].

The proposition below describes the compatibility between these equivalence
relations and the bivariant Chern character.
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PROPOSITION 3.12 Let py : o — E°> I°QB and p1 : o — E5> IR
be two (p + 1)-summable quasithomomorphisms of parity p mod 2, with &
admissible with respect to a quasi-free extension % of %B. Let n > p be any
integer of the same parity.

i) If po and p1 are homotopic, then Sch™(pg) = Sch”(p1) in HC""2(ot | B).
In particular ch™(pg) = ch™(p1) whenever n > p + 2.

it) If po and p1 are conjugate, then ch™(po) = ch™(p1) in HC™(f, B) for all
n > p.

Proof: First observe that if p : & — &°>.7°®% is a quasihomomorphism with
Z-admissible algebra &, the lifting homomorphism p. : T'&/ — .#7 factors
through the tensor algebra T'6} by virtue of the commutative diagram

0 Jof T o 0
Y

0 J&EY T —= & ——=0

0 2 ///ié & 0

where the homomorphism ¢ : T/ — T&F is p(a1 @ ... @ an) = pla1) ®...®
p(an), and the arrow T'¢¢ — .47 maps a tensor product e; ®...®e, € TE to
the product o(e1)...o(e,). By the naturality of the Goodwillie equivalences
Vo : X(TH) — QT </ and Ve X(T&7) — ﬁTé"f_, one immediately sees that
the bivariant Chern character coincides with the composition of chain maps
0 (p) : X(Ter) X9 x(187) 5 ares X x (@) .

Hence, all the information about the homomorphism p : & — &7 is con-
centrated in the chain map X(p) : X(T'e/) — X(T'¢}). This will simplify
the comparison of Chern characters associated to homotopic or conjugate
quasihomomorphisms.

i) Homotopy: the cocycles ch™(py) and ch™(p;) differ only by the chain maps
X(pi) : X(Tet) —» X(T&Y), i =0,1. We view p: &/ — &7[0,1] as a smooth
family of homomorphisms p; : &/ — & parametrized by t € [0,1], giving a
homotopy between the two endpoints pg and p;. Cuntz and Quillen prove in
[12] a Cartan homotopy formula which provides a transgression between the
chain maps X (¢;). At any point ¢t € [0, 1], denote by ¢ = %cp :Tel — T
the derivative of the homomorphism ¢, with respect to ¢, and define a linear
map ¢: QT — Qm_lTé’j by

Wzodzy ... day) = (ex0)(Pz1)d(vx2) ... d(PTm) .
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The tensor algebra T/ is quasi-free, hence consider any ¢ : T.o/ — Q*T.of
verifying ¢(zy) = ¢(x)y + z¢(y) + dady, and let h : X (T) — X (T&F) be
the linear map of odd degree

hz) =no(z) ,  hfrdy) = u(zdy + b(zd(y)))

(the latter is well-defined on fzdy). Then Cuntz and Quillen show the following
adic properties of h for any k € Z,

h(F% , X (Ta)) C F}f;gX(ng) if p(Jo)CJES,
h(F% , X(T<)) C F}“giX(Té”’j) if p(T<)CJE,

and moreover the transgression formula % X (¢) = [9,h] holds. Hence if we
define by integration over [0, 1] the odd chain H = fol dt h, one has

X(p1) = X(po) = [0, H]

in the complex Hom' (X (T.«, Jd),)?(Té"j,Jé"j)) in case ¢(Jo/) C J&F, or
in the complex Hom®(X (T.«, Jd),)?(Té"j, J&%)) in case p(T'e/) C J&3. For
a general homotopy we are in the first case ¢(Jo/) C J&7. After composition
by the chain map )?”’ygi € Hom"()?(Tcg’j,ch’j),)?(%, 7)), this shows the

transgression relation
ch™(p1) — ch™(po) = (=)"[0, X" Ve H| € Hom" ™ (X (T.of , J o), X(Z, 7)) ,

whence Sch™(p;) = Sch™(pg) in HC™*2(/,%). The sign (—)" comes from
the parity of the chain map )?”%@i.

ii) Conjugation: now g, 1 : T.e/ — T&} are the homomorphism lifts of pg
and p1 = U 'poU. Introduce the pro-algebra T'€F = lim, Té"j/({é"j)k =
[Tis0 97675, and consider the invertible U € (&5)" as an element U of the
unitalization (fﬁ $)T, via the linear inclusion of zero-forms &5 — T& 7. By
proceeding as in [12], it turns out that U is invertible, with inverse given by
the series N R
U= Ul dudu)* e (Ten)t.
k>0

Of course the image of U~! under the multiplication map (f@@i)*‘ — (&)
is U~!. We will show that ¢, viewed as a homomorphism T/ — fcg’j, is
homotopic to the homomorphism U *lcpol_'A] . For any t € [0,1] define a linear
map oy : &/ — TE} by

oi(a) = (1 —t)pr(a) +tU po(a)U , Vae o,

where pg(a) and py(a) are considered as elements of the subspace of zero-
forms &7 — T'&}. Thus oy is a linear lifting of the constant homomorphism
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1: 4 — &7. Then use the universal property of the tensor algebra T'< to

build a smooth family of homomorphisms (t) : T/ — T& ? by means of the
commutative diagram with exact rows

0 Jof Tof - of 0
W(t)l W(t)l at lpl
R R
0 J&s T& —= 67 ——0

By construction one has ¢(0) = ¢1, p(1) = U~lpoU and the derivative ¢
sends T.7 to the ideal J& 7. Hence from the Cartan homotopy formula of part
i) we deduce that the chain maps X(cpl) and X (U~1goU) are cohomologous in
the complex Hom®(X (T« J.of ), X(T&3,JéE)). Then we have to show that
X (U poU) and X (¢p) are cohomologous. Consider the following linear map
of odd degree h : X (T'e/) — X(T&3) = X(T€5,J&5) defined by

h(z) =40 po(2)dU) ,  h(gzdy) = 0.

It is easy to see that h defines a cochain of order zero, i.e. lies in the complex
Hom’ (X (T;af J;af) (Té"j, J&%)). Moreover, one has the transgression rela-

tion X (U ~YpoU)—X (o) = [0, h]. Indeed (we replace @o(x) by z for notational
simplicity)

XU ol) (@) — X (90)(2)

Q>

' )

\
|

n@

X (U o) (hedy) — X (o) (gzdy) = 40U~ 2Ud(UyU) — ady
h(U Y2UAU YU + U tadyU + U taydU — zdy)
§(—yzdUU " 4+ aydUUY) =40 [z, y]dU

= h(bjzdy)
where in the second computation we use the identity dU~! = —U~1dUU !

deduced from d1 = 0. This shows the equality of bivariant cyclic cohomology
classes

X(p1) = X(po) € HCU(,67)

so that after composition with S(\"fygi € HC"(&7,9%), the equality
ch™(p1) = ch™(po) holds in HC™ (o, AB). L]

Part ii) of the above proof also shows the independence of the cohomology
class ch"(p) € HC™(o/, %) with respect to the choice of linear splitting
o: &} — A3 used to lift the homomorphism p, two such splittings being al-
ways homotopic. Then, from section 2 we know that any class in HC™ (<, %)
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induces linear maps of degree —n between the cyclic homologies of &/ and £,
compatible with the SBI exact sequence. Hence, if the quasihomomorphism
is (p + 1)-summable and with parity p mod 2, the lowest degree representative
of the Chern character ch?(p) € HCP? (47, %) carries the maximal information.
We collect these results in a theorem:

THEOREM 3.13 Let p: o/ — &3> I:RB be a (p+ 1)-summable quasihomo-
morphism of parity p mod 2, with & admissible with respect to a quasi-free
extension of B. The bivariant Chern character ch?(p) € HCP (o, B) induces
a graded-commutative diagram

HP, (o) —2 > HC,_(o/) —2—> HN, (o) —— HP, ()

lch%) lch%) lchw) lcm(p)
S

HP,_p1(#B) —2>HC,_, 1(B) L~ HN,_,(B) —~HP,_,(®)

invariant under conjugation of quasihomomorphisms. Moreover the arrow in
periodic cyclic homology HP,(</) — HP,_,(%) is invariant under homotopy
of quasihomomorphisms.

Proof: The fact that Sch?(p) € HCP™2(a/, %) is homotopy invariant shows its
image in the periodic theory H PP(</, %) is homotopy invariant. [

EXAMPLE 3.14 When & is arbitrary and &8 = C, we saw in Example 3.3
that a (p + 1)-summable quasihomomorphism p : & — £° > #° represents
a K-homology class of /. By hypothesis, the degree of the quasihomomor-
phism is p mod 2. The Chern character ch?(p) € HC?(«/,C) = HCP()
is a cyclic cohomology class of degree p over 7, represented by a chain map
X(Te,Jo/) — C vanishing on the subcomplex FPX (T, Jaf). Using the
pro-vector space isomorphism X T, Jo) = % , one finds that ch?(p) is
non-zero only on the subspace of p-forms QP.o7, explicitly

ch? (p)(aodas . .. day) = %” Try(FIF, a0 . .. [F.a,)) ,

where Trg : (£%)PT1 — C is the supertrace of the (p+ 1)-summable algebra %
and ¢, is a constant depending on the degree. One has ¢, = (—)"(n!)?/p! when
p = 2n is even, and ¢, = v/2mi (—)"/2? when p = 2n + 1 is odd. This coincides
with the Chern-Connes character [4, 5], up to a scaling factor accounting for the
homotopy equivalence between the X-complex X (T, J<?) and the (b+ B)-
complex Q.

EXAMPLE 3.15 When &/ = C and & = C*°(0,1), the Bott element (Example
3.5) represented by the odd 1-summable quasihomomorphism p : C — &° >
I*R% with %-admissible extension & = C*[0, 1], has a Chern character in
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HCY(C, %) = HP(%). The periodic cyclic homology of % is isomorphic to
the de Rham cohomology of the open interval (0, 1), hence HPy(#) = 0 and
HP,(#) = C. Consequently, the Chern character ch'(p) may be represented
by a smooth one-form over [0, 1] vanishing at the endpoints. It involves a real-
valued function £ € &, with £(0) = 0 and £(1) = 7/2, used in the construction
of the homomorphism p : C — &7. One explicitly finds

ch(p) = V2mid(sin€) ,

so that its integral over the interval [0, 1] is normalized to v/27i, and of course
does no depend on the chosen function £. This is due to the fact that quasiho-
momorphisms associated to different choices of £ are homotopic.

4 TOPOLOGICAL K-THEORY

We review here the topological K-theory of Fréchet m-algebras following
Phillips [27], and construct various Chern character maps with value in cyclic
homology. Topological K-theory for Fréchet m-algebras is defined in analogy
with Banach algebras and fulfills the same properties of homotopy invariance,
Bott periodicity and excision [27]. For our purposes, only homotopy invariance
and Bott periodicity are needed. A basic example of Fréchet m-algebra is pro-
vided by the algebra JZ of “smooth compact operators”. £ is the space of
infinite matrices (A4;;); jen with entries in C and rapid decay, endowed with
the family of submultiplicative norms

|All, = sup (1+i+j)"Aiy; <oco VneN.
(i,5)€N?

The multiplication of matrices makes " a Fréchet m-algebra. Moreover % is
nuclear as a locally convex vector space [14]. If o is any Fréchet m-algebra,
the completed tensor product J# ®.7 is the smooth stabilization of </. Other
important examples are the algebras C*°[0, 1], resp. C*°(0,1), of smooth C-
valued functions over the interval, with all derivatives of order > 1, resp. >
0, vanishing at the endpoints. As already mentioned in section 3, these are
again nuclear Fréchet m-algebras and the completed tensor products «7[0,1] =
A ©C>®[0,1] and «7(0,1) = Z/®C>(0,1) are isomorphic to the algebras of
smooth «7-valued functions over the interval, with the appropriate vanishing
boundary conditions. In particular S := &7(0,1) is the smooth suspension
of /. We say that two idempotents ey, e; of an algebra &/ are smoothly
homotopic if there exists an id empotent e € 270, 1] whose evaluation at the
endpoints gives eg and e;. Similarly for invertible elements.

The definition of topological K-theory involves idempotents and invertibles of
the unitalized algebra (¥ ®</)*. Choosing an isomorphism Ms(#) = ¢
makes (# ©.27)T a semigroup for the direct sum a @ b = (8 g). We denote by
po the idempotent (§§) of the matrix algebra Ma(# ®@.47)".
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DEFINITION 4.1 (PHILLIPS [27]) Let o/ be a Fréchet m-algebra. The topolog-
ical K -theory of & in degree zero and one is defined by

K (/) = {set of smooth homotopy classes of idempotents e € Mo(H &.o7)t
such that e — py € Mao(H @47 }
K{®(o/) = {set of smooth homotopy classes of invertibles g € (H &2/ )*

such that g — 1 € H @ }

K{°®(o/) and K|°P(</) are semigroups for the direct sum of idempotents and
invertibles; in the case of idempotents, the direct sum e @ e’ € My(# @)t
has to be conjugated by the invertible matrix

€ My(x o)t , cl=c, (52)

in order to preserve the condition c(e @ €')c — po € My(H# ®.7), with o the
diagonal matrix diag(1,1,0,0). The proof that K;°P(«/) and K}°°(&) are
actually abelian groups will be recalled in Lemma 5.2. The unit of K(t)Op () is
the class of the idempotent py € Ma(# ®7)", whereas the unit of K;°P (/)
is represented by 1 € (£ ®@a/)*.

The fundamental property of topological K-theory is Bott periodicity [27]. Let
S/ = ¢7/(0,1) be the smooth suspension of 7. Define two additive maps

o Ki°P(o) — KP(S4) | B: K P(of) — K{°P(Se) (53)

as follows. First choose a real-valued function £ € C°°[0, 1] such that £(0) =0
and £(1) = 7/2 (we recall that all the derivatives of £ vanish at the endpoints).
Let g € (# &.2/)* represent an element of K;°° (7). Then the idempotent

alg) =G 'poG ., alg) —po € Ma(H @S

defines an element of K{°°(S.e7), where G : [0,1] — My(# &.27)* is the matrix
function over [0, 1]

G:Rl( L0 )R with R = ( cos§ - sing ) .

0 g —siné cosé

Now z = exp(4i€) is a complex-valued invertible function over [0, 1] with wind-
ing number 1. The functions z — 1 and 2~% — 1 lie in C°°(0,1). Then for any
idempotent e € My(# &/)* representing a class in K;°°(</), we define the
invertible element

Ble) =1+ (z—1e)(1+(z—1)po)~*.

One has (1+ (2 — 1)po) ™! = (1 + (27! — 1)py), and the idempotent relations
e* =e, pg = po imply B(e) = 1+ (2 — 1)e(e — po) + (27" = 1)(po — €)po, which
shows that 3(e) — 1 is an element of the algebra Ms( ¥ ®Se/) = H @S,
hence 3(e) defines a class in K°P(S.e).
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PROPOSITION 4.2 (BOTT PERIODICITY [