
Documenta Math. 297

Spectral Analysis of Relativistic Atoms –

Dirac Operators with Singular Potentials

Matthias Huber

Received: February 26, 2009

Communicated by Heinz Siedentop

Abstract. This is the first part of a series of two papers, which
investigate spectral properties of Dirac operators with singular poten-
tials. We examine various properties of complex dilated Dirac oper-
ators. These operators arise in the investigation of resonances using
the method of complex dilations. We generalize the spectral analysis
of Weder [50] and Šeba [46] to operators with Coulomb type poten-
tials, which are not relatively compact perturbations. Moreover, we
define positive and negative spectral projections as well as transforma-
tion functions between different spectral subspaces and investigate the
non-relativistic limit of these operators. We will apply these results
in [30] in the investigation of resonances in a relativistic Pauli-Fierz
model, but they might also be of independent interest.
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1 Introduction and Definitions

A fascinating question in the mathematical analysis of operators describing
atomic systems is the fate of eigenvalues embedded in the continuous spectrum
if a perturbation is “turned on”. Typically, these eigenvalues “vanish” and
one has absolutely continuous spectrum. But the eigenvalues leave a trace:
For example, the scattering cross section shows bumps near the eigenvalues, or
certain states with energies close to the eigenvalues have an extended lifetime
(described by the famous “Fermi Golden Rule” [13, Equation (VIII.2), p. 142]
on a certain time scale). These energies are called resonances or resonance
energies. Mathematically, resonances are described by poles of a holomorphic
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continuation of the resolvent (or matrix elements of it) or the scattering am-
plitude to a second sheet.

The generic systems in which resonances occur are many-particle systems. This
can be many-electron systems, in which the electron-electron interaction is the
perturbation. The corresponding physical effect is called “Auger effect”: Ex-
cited states (“autoionizing states”) relax by emission of electrons. Another
typical system in a one- or many-electron atom interacting with the quantized
electromagnetic field, in which case excited states can relax by emitting pho-
tons. Resonances can also occur in one-particle systems, although this is not
typically the case. It is well known (see [8] for example) that for a Schrödinger
operator with Coulomb potential the set of resonances is empty.

During the last decades numerous results were obtained in the mathematical
investigation of resonances so that it seems hopeless to give a complete account
of the available literature. Nevertheless we would like to give an overview and
mention at least some of the relevant works.

The investigation of resonances as poles of holomorphic continuations of scat-
tering amplitude and resolvent goes back to Weisskopf and Wigner [53] and
Schwinger [45]. The mathematical theory of resonances was pushed further by
Friedrichs [14], Livsic [36], and Howland [27, 28]. One of the mathematical
methods in the spectral analysis is the method of complex dilation, which as-
sociates the “vanished” embedded eigenvalue with a non-real eigenvalue of a
certain non-selfadjoint operator and was investigated by Aguilar and Combes
[2] and Balslev and Combes [6] (see [43] for an overview). Resonances in the
case of the Stark effect were investigated by Herbst [24] and by Herbst and
Simon [25]. Simon [48] initiated the mathematical investigation of the time-
dependent perturbation theory. This was carried on by Hunziker [32]. Herbst
[23] proved exponential temporal decay for the Stark effect.

The spectral analysis of non-relativistic atoms in interaction with the radia-
tion field was initiated by Bach, Fröhlich, and Sigal [4, 5]. It was carried on
by Griesemer, Lieb und Loss [18], by Fröhlich, Griesemer und Schlein (see for
example [15]) and many others (see for example Hiroshima [26], Arai and Hi-
rokawa [3], Dereziński and Gérard [9], Hiroshima and Spohn [12]), Loss, Miyao
and Spohn [37] or Hasler and Herbst [21, 20]). In particular, Bach, Fröhlich,
and Sigal [5] proved a lower bound on the lifetime of excited states in non-
relativistic QED. Later, an upper bound was proven by Hasler, Herbst, and
Huber [22] (see also [29]) and by Abou Salem et al. [1]. Recently, Miyao and
Spohn [38] showed the existence of a groundstate for a semi-relativistic electron
coupled to the quantized radiation field.
Our overall aim is to show that the lifetime of excited states of a relativis-
tic one-electron atom obeys Fermi’s Golden Rule [30] and coincides with the
non-relativistic result in leading order in the fine structure constant. We will
investigate the necessary spectral properties of a Dirac operator with potential,
projected to its positive spectral subspace, coupled to the quantized radiation
field. Following Bach et al. [5] and Hasler et al. [22], our main technical tool is
complex dilation in connection with the Feshbach projection method.
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In this first part of the work, we investigate the necessary properties of one-
particle Dirac operators with singular potentials. In particular, we will derive
the necessary properties of complex dilated spectral projections and discuss the
non-relativistic limit of complex dilated Dirac operators. This serves mainly as
a technical input for the second part of our work [30]. However, we believe that
some of the results presented in the first part are also of independent interest.
Note that the method of complex dilation has already successfully been applied
to Dirac operators (see Weder [50] and Šeba [46]). However, these authors
assume the relative compactness of the electric potential so that their method
does not apply to Coulomb type potentials. Note moreover that Weder [51]
considers very general operators including relativistic spin-0-Hamiltonians with
potentials with Coulomb singularity. The basic assumption of this work is,
however, that the unperturbed operator is sectorial, which is not fulfilled for
the Dirac operator. Our results cover a class of Dirac operators which includes
Coulomb and Yukawa potentials (with exception of Lemma 11 and Lemma 12
which we prove for the Coulomb case only).
Our results about the spectral projections of the dilated Dirac operator can be
used to generalize the Douglas-Kroll transformation (see Siedentop and Stock-
meyer [47] and Huber and Stockmeyer [31]) to dilated operators.

2 Definitions and Overview

The free Dirac operator (with velocity of light c > 0)

Dc,0 := −icα · ∇ + c2β (1)

is an operator on the Hilbert space H := L2(R3; C4). It is self-adjoint on the
domain Dom(Dc,0) := H1(R3; C4) [49, Chapter 1.4]. Here α is the vector of
the usual Dirac α- matrices, and β is the Dirac β-matrix.
We define for ǫ > 0 the strip Sǫ := {z ∈ C||Im z| < ǫ}. Let χ : R3 → R a
bounded, measurable function. We will suppose that there is a Θ > 0 such
that θ 7→ χ(eθx) admits a holomorphic continuation to θ ∈ SΘ for all x ∈ R3.
We abbreviate χθ := χ(eθ·). We will need the following two properties at
different places:

sup
θ∈SΘ, x∈R3

|χ(eθx)| ≤ 1 (H1)

sup
x∈R3

|χ(eθx) − χ(x)| ≤ C̃|θ| for some C̃ > 0 (H2)

It is easy to see that these properties are fulfilled for the Coulomb potential
(χ(x) = 1) or the Yukawa potential (χ(x) = e−ax for some a > 0). The Dirac
operator with potential V := χ/| · |

Dc,γ := −icα · ∇ + c2β − γV (2)

is an operator on the Hilbert space L2(R3; C4) as well. It is self-adjoint on
the domain Dom(Dc,γ) := Dom(Dc,0) = H1(R3; C4) for γ ∈ R with |γ| <
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c
√

3/2 [49, Chapter 4.3.3]. γ is called coupling constant. The interacting Dirac
operator describes a relativistic electron in the field of a nucleus, where the free
operator yields the kinetic energy of the electron, whereas the electric potential
gives its potential energy in the electric field of the nucleus.
The operatorDc,γ has the set (−∞,−c2]∪[c2,∞) as essential spectrum. We as-
sume that the operator has a nonempty set of positive eigenvalues, all of which
have finite multiplicity. We number the eigenvalues by Ẽn,l(c, γ) (not counting
multiplicities). Here n ∈ N (or n ∈ {1, . . . , Nmax} for some Nmax ∈ N if there
are only finitely many eigenvalues) denotes the principal quantum number and
l ∈ {1, . . . , Nn} for some Nn ∈ N labels the fine structure components. We
choose the numbering in such a way that for all n′ > n, all l ∈ {1, . . . , Nn} and
all l′ ∈ {1, . . . , Nn′} the inequality Ẽn,l(c, γ) < Ẽn′,l′(c, γ) holds and such that

Ẽn,l(c, γ) < Ẽn,l′(c, γ) for l < l′. This numbering is natural for all values of c for
the Coulomb potential, where the eigenvalues are explicitly known (see [35]).
The spectrum of a Dirac operators can be shown to have this structure if c is
large enough for general potentials (see [49]). We setEn,l(c, γ) := Ẽn,l(c, γ)−c2.
We define for θ ∈ C and γ ∈ R the dilated operators

Dc,0(θ) := −ice−θ
α · ∇ + c2β (3)

and
Dc,γ(θ) := −ice−θ

α · ∇ + c2β − γV (θ) (4)

with V (θ) := e−θχθVC on Dom(Dc,0(θ)) = Dom(Dc,γ(θ)) = H1(R3; C4), where
VC = 1/| · | is the Coulomb potential. It is clear that Dc,0(θ) is closed on
this domain and that (because of Hardy’s inequality) Dc,γ(θ) is at least well
defined under assumption (H1). We shall prove further properties in Section
4. For technical reasons, we will assume c ≥ 1 in the following. We will
assume moreover that γ ≥ 0. Further, we define for θ ∈ R the unitary dilation

U(θ) : L2(R3; C4) → L2(R3; C4), (U(θ)f)(x) := e
3
2 θf(eθx). It fulfills the

identity U(θ)Dc,γU(θ)∗ = Dc,γ(θ). The operators Dc,γ(θ) are extensions of the
operators U(θ)Dc,γU(θ)∗ for complex θ. Note that the mapping U(θ) cannot
be continued as a bounded operator to a complex domain, but the mapping
θ 7→ U(θ)ψ for an analytic vector ψ admits such an continuation, whose radius
of convergence depends on the vector ψ (cf. [42, Chapter X.6]). However, we
will prove in Section 8, that under certain conditions the restrictions of U(θ)
to certain spectral subspaces have bounded, bounded invertible extensions.
We add a short guide through the paper: We define a version of the Foldy-
Wouthuysen transformation for non-self-adjoint Dirac operators in Section 3.
Just as its analog for self-adjoint operators, it diagonalizes the free Dirac op-
erator. It is however not a unitary operator any more so that one has to
prove explicit estimates on its norm (see Theorem 1). The Foldy-Wouthuysen
transformation serves as a technical input for the following sections.
We prove in Section 4 that the method of complex dilation can be successfully
applied to Dirac operators with potentials with Coulomb singularities. In par-
ticular, we shall see that the dilated operators define a holomorphic family of
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type (A) in the sense of Kato (see Theorem 2). Moreover, we provide a spectral
analysis of such operators in Theorem 3. Just as in the case of Schrödinger
operator, the real eigenvalues remain fixed under the complex dilation, whereas
the essential spectrum swings into the complex plane and thus reveals possible
non-real eigenvalues, which correspond to resonances of the original self-adjoint
operator (see Figure ??). Note that there are no resonances for the Coulomb
potential (see Remark 3).

In Section 5 we extend the notion of positive and negative spectral projections
to the complex dilated Dirac operators. The definition of the spectral projec-
tions in Formula (32) is a straightforward extension of a well known formula
from Kato’s book (see [33, Lemma VI.5.6]). The rest of this section is devoted
to the proof that the operators defined in (32) are actually well defined projec-
tions (see Theorem 4), that they commute with the dilated Dirac operator (see
Theorem 5), and that their range is what one expects it to be (see Theorem
5 as well), which is not completely obvious in the non-self-adjoint case. Note
that the projections themselves are not orthogonal projections.

These results enable us to define transformation functions between the positive
spectral projections of the dilated and not dilated Dirac operators in Section
6, which is essential in order to show that also the projected Dirac operators
are holomorphic families – even if they are coupled to the quantized radiation
field. This will be accomplished in [30]. Moreover, these results can be used
to generalize [47] to complex dilated operators. Transformation functions as
defined in Formula (60) are similarity transformations between two (not neces-
sarily orthogonal) projections (see Formula (57) in Theorem 6). Note that our
definition requires that the norm difference between the projections be smaller
than one, but there are more general approaches. For details on transformation
functions we refer the reader to [33, Chapter II.4].

In Theorem 7 in Section 7 we prove a resolvent estimate for the dilated Dirac
operator projected and restricted onto its positive spectral subspace. In par-
ticular, we prove that the norm of the resolvent converges (essentially) to zero
as the inverse distance to the right complex half plane. Note that this really
requires the restriction of the operator to its positive spectral subspace and
that the norm of the resolvent of a non-self-adjoint operator is not bounded
from above by the inverse distance of the spectral parameter to the spectrum.

In Section 8 we will investigate the non-relativistic limit of dilated Dirac op-
erators and thereby generalize and extend the results in Thaller’s book [49] in
various directions. We prove in Theorem 8 and Corollary 2 that complex dilated
Dirac operators converge to the corresponding (complex dilated) Schrödinger
operators in the sense of norm resolvent convergence as the velocity of light
goes to infinity. As in the undilated case, this convergence is needed to gain
information about the spectral projections onto the eigenspaces belonging to
the real eigenvalues and their behaviour in the nonrelativistic limit (see for ex-
ample Lemma 7 or Lemma 8). In particular, the complex dilation, restricted to
an eigenspace is a bounded operator (uniformly in the dilation parameter and
the velocity of light – see Lemma 9) and the projections onto the fine structure
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components are uniformly bounded as well (see Corollary 5). These statements
will be needed in [30]. Note that for Schrödinger operators and non-relativistic
QED the above mentioned problems are absent, since there is neither a fine
structure splitting nor the additional parameter of the velocity of light which
has to be controlled.
Moreover, we show in Theorem 9 and Theorem 10 that the lower Pauli spinor
of a normed eigenfunction of the Dirac operator converges to zero in the sense
of the Sobolev space H1(R3; C2) and that the upper Pauli spinor is bounded
in the sense of H1(R3; C2) as the velocity of light tends to infinity. This shows
that the notion of “large” and “small” components of a Dirac spinor, which is
frequently used by physicists, is also justified for dilated operators. Moreover,
it follows that certain expectation values of the Dirac α-matrix vanish as the
velocity of light tends to infinity. We will apply this fact in [30].
Note that in the discussion of the non-relativistic limit in Section 8 we need
some estimates from Bach, Fröhlich, and Sigal [5] which we cite in Appendix
A for the convenience of the reader.

3 Foldy-Wouthuysen-Transformation

In this section we investigate the complex continuation of the Foldy-Wouthuy-
sen transformation and show some important properties in Theorem 1. We need
this as a technical input for the spectral analysis in the following sections. Let us
mention that a complex continuation of the Foldy-Wouthuysen transformation
was implicitly used by Evans, Perry, and Siedentop [11] for the investigation
of the spectrum of the Brown-Ravenhall operator. Also Balslev and Helffer [7]
use holomorphic continuations of the Foldy-Wouthuysen transformation.
For p ∈ R3 we define the matrix Dc,0(p; θ) := ce−θ

α · p + c2β. We use the
convention

√· : C \R−
0 → C :

√
z = rei φ/2 for the complex square root, where

z = rei φ with r ≥ 0 and −π < φ < π. Note that for w ∈ C with | argw| ≤ π
4

the estimate
Re

√
w ≥

√
Rew ≥ 0 (5)

holds, which follows immediately from the formula cos(2φ) = (cosφ)2 −
(sinφ)2 ≤ (cosφ)2. Next, we define for p ∈ R3 and θ ∈ Sπ/2 the matrix

ÛFW(c, p; θ) : =
1

Nc(p; θ)

(

(c2 + Ec(p; θ))12×2 ce−θ
σ · p

−ce−θ
σ · p (c2 + Ec(p; θ))12×2

)

, (6)

where Ec(p; θ) :=
√

e−2θc2p2 + c4 and Nc(p; θ) :=
√

2Ec(p; θ)(c2 + Ec(p; θ)).

ÛFW(c; θ) is the maximal multiplication operator on L2(R3; C4) which is gen-
erated by UFW(p, c; θ). Analogously, we define

V̂FW(p, c; θ) : =
c2 + Ec(p; θ) − ce−θβα · p

Nc(p; θ)
(7)

and VFW(c; θ). The corresponding Fourier transforms are UFW(c; θ) :=
F−1ÛFW(c; θ)F and VFW(c; θ) := F−1V̂FW(c; θ)F . Note that these operators
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coincide with the usual Foldy-Wouthuysen transformation for θ = 0 (see [49]),
but are not unitary for θ /∈ R. Nevertheless they define a similarity transfor-
mation, which diagonalizes the free Dirac operator. This will be important
in the following sections, since the diagonalized operator

√
−c2e−2θ∆ + c4β is

normal, contrary to the operator Dc,0(θ).

Theorem 1. Let θ ∈ Sπ/4. Then the following statements hold:

a) The operator UFW(c; θ) is a bounded operator on L2(R3; C4) with bounded
inverse VFW(c; θ). There is a constant CFW (independent of c and θ) such
that

‖UFW(c; θ)‖ ≤
√

1 + CFW| sin Im θ| (8)

and
‖VFW(c; θ)‖ ≤

√

1 + CFW| sin Im θ|. (9)

b) The Foldy-Wouthuysen transformation diagonalizes the Dirac operator:

UFW(c; θ)Dc,0(θ)VFW(c; θ) =
√

−c2e−2θ∆ + c4β. (10)

Proof.
a) A simple calculation shows

ÛFW(p, c; θ)V̂FW(p, c; θ) = V̂FW(p, c; θ)ÛFW(p, c; θ) = 1. (11)

We have ‖UFW(c; θ)‖ ≤ supp∈R3 ‖ÛFW,c(p; θ)‖. Thus, it suffices to consider

the case c = 1 and Re θ = 0. In view of the identity ‖ÛFW,c(p; θ)‖2 =

‖ÛFW,c(p; θ)
∗ÛFW,c(p; θ)‖ we find with ϑ ∈ (−π/4, π/4)

ÛFW,c(p; iϑ)∗ÛFW,c(p; iϑ) =
(1 + E1(p; iϑ))(1 + E1(p;−iϑ)) + p2

Ñ
(12)

+
βα · p(e−i ϑ(1 + E1(p;−iϑ)) − ei θ(1 + E1(p; iϑ)))

Ñ
,

where Ñ :=
√

4E1(p; iϑ)E1(p;−iϑ)(1 + E1(p; iϑ))(1 + E1(p;−iϑ)). Note that
the expression under the square root is real, and that |1 + E1(p;±iϑ)| ≥
|E1(p;±iϑ)| = 4

√

1 + 2 cos(2ϑ)p2 + p4 ≥ 4
√

1 + p4, where we used |ϑ| < π/4.
Thus the denominator in (12) can be estimated as

|Ñ | ≥ 2
√

1 + |p|4. (13)

Next, observe that

|ei ϑE1(p; iϑ) − e−i ϑE1(p;−iϑ)| ≤ | sin(2ϑ)|
√

p2 + cos(2ϑ)
, (14)

where we used the estimate |w| ≥ |Rew| and (5). From (14) it follows that

‖βα·p(ei ϑ(1+E1(p; iϑ))−e−iϑ(1+E1(p;−iϑ)))‖ ≤ 2|p|| sin(ϑ)|+ | sin(2ϑ)|. (15)
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Moreover, we have

1 − (1 + E1(p;−iϑ)) (1 + E1(p; iϑ)) + p2

Ñ

=
Ñ2 +

(

(1 + E1(p;−iϑ)) (1 + E1(p; iϑ)) + p2
)2

Ñ
(

Ñ + ((1 +E1(p;−iϑ)) (1 + E1(p; iϑ)) + p2)
) . (16)

Using ((1 + E1(p;−iϑ))(1 + E1(p; iϑ)) + p2) > 0 and (13) we estimate the
denominator by

|Ñ(Ñ + ((1 +E1(p;−iϑ))(1 + E1(p; iϑ)) + p2))| ≥ 4(1 + |p|4). (17)

In order to estimate the enumerator we find after some calculations

4E1(p;−iϑ)E1(p; iϑ)(1 + E1(p;−iϑ))(1 + E1(p; iϑ)) (18)

− ((1 + E1(p;−iϑ))(1 + E1(p; iϑ)) + p2)2

=2p4 + 2(e2i ϑ + e−2i ϑ)p2 + 2p2(e−2i ϑE1(p;−iϑ) + e2i ϑE1(p; iϑ))

− 2p2 − 2p2(E1(p;−iϑ) + E1(p; iϑ)) − 2p2E1(p;−iϑ)E1(p; iϑ).

We combine suitable terms in (18): We have

(e2i ϑ + e−2iϑ)p2 − 2p2 = 2(cos(2ϑ) − 1)p2, (19)

|2p2(e−2i ϑE1(p;−iϑ)+e2iϑE1(p; iϑ))−2p2(E1(p;−iϑ)+E1(p; iϑ))|≤4p2

(20)

×|
√

p2+e2iϑ−
√

p2+e−2iϑ| ≤ 4p2 2 sin(2ϑ)

|
√

p2+e2iϑ+
√

p2+e−2iϑ|
≤ 4|p| sin(2ϑ),

and

|2p4 + 2 cos(2ϑ)p2 − 2p2E1(p;−iϑ)E1(p; iϑ)| ≤ 2| sin(2ϑ)|2. (21)

Summarizing the estimates (13) and (15) through (21), we finally obtain

‖ÛFW(iϑ, p)∗ÛFW(iϑ, p) − 1‖ ≤
[

|p| + 1
√

1 + |p|4
+
p2 + 2|p| + 1

1 + |p|4

]

| sin(ϑ)|, (22)

where we used that | sin(2ϑ)| ≤ 2| sinϑ| for |ϑ| ≤ π/4. If we set CFW :=

supt∈R
+
0

[

t+1√
1+t4

+ t2+2t+1
1+t4

]

< ∞, equation (22) shows the claim on UFW(c; θ).

The claim on the inverse operator VFW(c; θ) can be proven analogously.
b) We have ÛFW(c, p; θ)Dc,0(p; θ)V̂FW(c, p; θ) = Dc,0(p; θ)V̂FW(c, p; θ)2 as well

as V̂FW(c, p; θ) = ÛFW(c, p; θ)− 2ce−θβα · p/Nc(p; θ). From this it follows that
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ÛFW(c, p; θ)Dc,0(p; θ)V̂FW(c, p; θ) = Dc,0(p; θ) −A, where A := 1
Nc(p;θ)2

Dc,0(p; θ)[2ce
−θβα · p][c2 + Ec(p; θ) − ce−θβα · p]. A little calculation shows

A = − 2c2e−2θp2Ec(p;θ)β
Nc(p;θ)2 + ce−θ

α · p, which implies

ÛFW(c, p; θ)Dc,0(p; θ)V̂FW(c, p; θ) = Ec(p; θ)β (23)

and thus proves (10).

4 Dilation Analyticity and Spectrum

We show that the operators in equations (3) and (4) define holomorphic families
of closed operators. Since we will be interested in the non-relativistic limit
later on, we consider only such values of c and γ which can be dealt with using
Hardy’s inequality. For θ ∈ Sπ/2 we define the set Mγ/c := {θ ∈ C| 2γ

c <

cos(Im θ)}. We define V1(θ) := e−θ/2χθ

√
VC and V2(θ) := e−θ/2

√
VC . Note

that V (θ) = V1(θ)V2(θ).

Theorem 2. Let θ ∈ Smin{Θ,π/2} and suppose that (H1) holds. Then the

operator Dc,γ(θ) is closed for 2γ
c < cos(Im θ) on Dom(Dc,γ(θ)) = H1(R3; C4),

and we have Dc,γ(θ)∗ = Dc,γ(θ̄). Dc,γ(θ) is a holomorphic family of type (A)
in the sense of Kato for θ ∈Mγ/c. Dc,0(θ) is an entire family of type (A).

Proof. For f ∈ H1(R3; C4) the estimate ‖Dc,0(θ)f‖2 ≥ |Re e−θ|2c2‖∇f‖2

holds. Hardy’s inequality implies ‖γV (θ)f‖2 ≤ 4γ2|e−θ|2‖∇f‖2 and thus
‖γV (θ)f‖ ≤ 2γ

c cos(Im θ)‖Dc,0(θ)f‖, which proves that the operator Dc,γ(θ)

is closed and has a bounded inverse. Thus, the domain Dom(Dc,γ(θ)) =
H1(R3; C4) is independent of θ ∈ Mγ/c. It is clear that for f ∈ Dom(Dc,γ(θ))
the mapping Mγ/c → L2(R3; C4), θ 7→ Dc,γ(θ̄)f is holomorphic, which implies
that Dc,γ(θ) is a holomorphic family of type (A) [33, Chapter VII-2.1].
Moreover, obviously Dc,γ(θ̄)∗ ⊃ Dc,γ(θ) holds. Thus, it suffices to prove the
inclusion Dom(Dc,γ(θ̄)∗) ⊂ Dom(Dc,γ(θ)) = Ran(Dc,γ(θ)−1). We adapt a well
known strategy from the case of self-adjoint operators (cf. [52, Satz 5.14]). We
have Dom(Dc,γ(θ)−1) = Ran(Dc,γ(θ̄)) = L2(R3; C4). For f ∈ Dom(Dc,γ(θ̄)∗)
we find f0 := Dc,γ(θ)−1Dc,γ(θ̄)∗f ∈ Dom(Dc,γ(θ)) ⊂ Dom(Dc,γ(θ̄)∗). Thus
Dc,γ(θ)f0 = Dc,γ(θ̄)∗f0, and the definition of f0 implies Dc,γ(θ̄)∗f = Dc,γ(θ)f0.
From this it follows that Dc,γ(θ̄)∗(f − f0) = 0 and thus f − f0 ∈ N(Dc,γ(θ̄)∗) =
Ran(Dc,γ(θ̄))⊥ = {0}, implying f = f0 ∈ Dom(Dc,γ(θ)).

Remark 1. Note that if V is the Coulomb potential or the Yukawa potential,
then Dc,γ(θ) is equal to a multiple of the self-adjoint operator −icα · ∇ + VC

up to a bounded operator so that the proof of the above theorem is trivial. Note
moreover, that for V = VC , the operator Dc,γ(θ) is entire.

Remark 2. Theorem 2 and its proof imply that H1(R3; C4) is the maximal
domain of the operator on L2(R3; C4) generated by the differential expression
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D̃c,γ(θ) := −e−θicα · ∇ + c2β − γV (θ). To see this set

Mmax := {f ∈ L2(R3; C4)|D̃c,γ(θ)f ∈ L2(R3; C4)},

where the gradient is to be understood in distributional sense. Note that f ∈
Mmax implies ∇f ∈ L1

loc(R
3; C4), since V (θ) ∈ L2(R3) + L∞(R3). If Mmax %

H1(R3; C4), then the operator D′
c,γ(θ) defined by the differential expression

D̃c,γ(θ) on the domain D(D′
c,γ(θ)) := Mmax is a strict extension of the operator

Dc,γ(θ). As in the proof of Theorem 2 it would follow that there was a 0 6=
g ∈ Mmax such that D′

c,γ(θ)g = 0. It follows by partial integration from ∇g ∈
L1

loc(R
3; C4) that (D̃c,γ(θ̄)f, g) = 0 for all f ∈ C∞

0 (R3; C4). By density of
C∞

0 (R3; C4) in H1(R3; C4) this equality extends to (Dc,γ(θ̄)f, g) = 0 for all
f ∈ H1(R3; C4) = D(Dc,γ(θ̄)). Since Dc,γ(θ̄) is onto, it follows g = 0, a
contradiction, which implies H1(R3; C4) = Mmax.

The following lemma, whose simple proof we omit, contains a useful fact:

Lemma 1. Let a, b > 0. Then supp∈R3

√
a2c2p2+c4√
b2c2p2+c4

≤ max{1, a
b }.

Now we need the spectrum of the operator Dc,γ(θ). Theorem 1 shows (see
Figure 1) σ(Dc,0(θ)) = Σ−

c (θ) ∪ Σ+
c (θ), where Σ±

c (θ) = ±Ec(R; θ).
In the case of self-adjoint operators the compactness of the difference of free
and interacting resolvent would imply that Dc,0(θ) and Dc,γ(θ) with γ 6= 0
have the same essential spectrum. This is however not true for non-self-adjoint
operators in general. In particular there exist several different definitions of
the essential spectrum, which do not coincide in general and have different
invariance properties.
In the case of relatively compact perturbations this difficulty can be mastered
using the analytic Fredholm theorem [50]. Since Coulomb type potentials are
not relatively compact, we adapt a strategy invented by Nenciu [40] for the
self-adjoint case. We need the following lemma:

Lemma 2. Let θ ∈ Sπ/4 and z /∈ σ(Dc,0(θ)). Then the operator V
1/2
C (Dc,0(θ)−

z)−1 is compact.

Proof. It suffices to consider the case z = 0. We write V
1/2
C Dc,0(θ)

−1 =

V
1/2
C

(√
−c2e−2θ∆ + c4β

)−1 (√
−c2e−2θ∆ + c4β

)

Dc,0(θ)
−1. Because of

V
1/2
C ∈ L6

w(R3) and 1/(±
√

c2e−2θ(·)2 + c4 − z) ∈ L6(R3), the operator

V
1/2
C (

√
−c2e−2θ∆ + c4β − z)−1 is compact [44]. Moreover, Theorem 1 implies

(
√
−c2e−2θ∆ + c4β)Dc,0(θ)

−1‖ ≤ 1 + CFW|Im θ|. This shows the claim.

For z /∈ σ(Dc,0(θ)) we define the operatorMc;θ(z) := V2(θ)(Dc,0(θ)−z)−1V1(θ).
Moreover, let Bc;θ;+ and Bc;θ;− (see Figure 1) the closed subsets of {z ∈
C|Re z > 0} and {z ∈ C|Re z < 0} respectively, which are enclosed be the
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Figure 1: The spectrum of the operator Dc,0(θ) and sets Bc;θ;± for c = 1 and
θ = iπ/4.

curves [c2,∞) and Ec(R; θ) ((−∞,−c2] and −Ec(R; θ) respectively). We set
Bc;θ = Bc;θ;+ ∪Bc;θ;−.

Furthermore, for θ ∈ Sπ/4 we define the constants

C(Im θ) :=
1 + CFW|Im θ|
√

cos(2Im θ)
, C1(Im θ) := C(Im θ) +

1 + CFW|Im θ|
cos(Im θ)

. (24)

Note the inequality 1/ cos(Im θ) ≤ C(Im θ).

The following theorem yields a precise description of the spectrum of the op-
erator Dc,γ(θ). In particular, outside the set Bc,θ the spectra of Dc,γ(θ) and
Dc,γ(0) coincide so that one particle resonances – if any exist – can be located
only within the set Bc,θ.

Let B(L2(R3; C4)) be the set of bounded and everywhere defined operators on
L2(R3; C4). Moreover, we set Ba(x0) := {x ∈ R3||x − x0| < a} for a > 0 and
x0 ∈ R3

Theorem 3. Let θ ∈ Smin{π/4,Θ} and 2γ
c C(Im θ) < 1. Suppose that (H1)

holds. Then σ(Dc,γ(θ)) = σ(Dc,0(θ)) ∪Ac,γ;θ, where Ac,γ;θ is a discrete subset
of C\σ(Dc,0(θ), and we have Ac,γ;θ∩(C\Bc;θ) = σdisc(Dc,γ(0)). The set Ac,γ;θ

has at most the accumulation points ±c2. For z /∈ σ(Dc,γ(θ)) the resolvent
identity

(Dc,γ(θ) − z)−1 = (Dc,0(θ) − z)−1+

+ γ(Dc,0(θ) − z)−1V1(θ)(1 − e−θγMc;θ(z))
−1V2(θ)(Dc,0(θ) − z)−1 (25)

holds.

Proof. We denote the r.h.s. of (25) by Rc,γ;θ(z).
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Step 1: Proof of (25) for z = i η, η ∈ R. Using Kato’s inequality and Theorem 1
we obtain

‖γMc;θ(i η)‖ = ‖γV2(θ)(Dc,0(θ) − i η)−1V1(θ)‖ ≤ γπe−Re θ(1 + CFW|Im θ|)
2

× ‖ |∇|
√

− cos(2Im θ)c2e−2Re θ∆ + c4
‖ ≤ γ

c

π

2
C(Im θ), (26)

where we used additionally (5) and Lemma 1. Equation (26) shows that (25)
holds for z = i η, η ∈ R.
Step 2: Proof of (25), general case. We have

1−γMc;θ(z)=1−γMc;θ(0)−γ(Mc;θ(z)−Mc;θ(0)) = (1−γMc;θ(0))(1−N(z)),

where N(z) := z (1 − γMc;θ(0))
−1 [

V2(θ)Dc,0(θ)
−1(Dc,0(θ) − z)−1V1(θ)

]

. Us-
ing Step 1 and Lemma 2 we see that N(z) is compact and a holomorphic
function of z for z ∈ C \ σ(Dc,0(θ)). Applying the analytic Fredholm the-
orem [41, Theorem VI.14] yields that (1 − N(z))−1 is a meromorphic func-
tion on C \ σ(Dc,0(θ)) with values in B(L2(R3; C4)), whose residues are op-
erators of finite rank. Using Step 1 once more, we see that this also holds
for (1 − e−θγMc;θ(z))

−1. In particular, there is a set Ac,γ;θ ⊂ C \ σ(Dc,0(θ))
which has no accumulation point in C \ σ(Dc,0(θ)) such that z 7→ Rc,γ;θ(z) is
holomorphic in C \ (σ(Dc,0(θ)) ∪Ac,γ;θ).
Step 3: The mapping z 7→ Rc,γ;θ(z) (Dc,γ(θ) − z) f with f ∈ Dom(Dc,γ(θ))
is holomorphic on C \ (σ(Dc,0(θ)) ∪ Ac,γ;θ). Because of Step 1 the operator
Rc,γ;θ(z) equals the resolvent of Dc,γ(θ) for z = i η, η ∈ R. It follows that
Rc,γ;θ(z) (Dc,γ(θ) − z) f = f for all z ∈ C \ (σ(Dc,0(θ)) ∪ Ac,γ;θ) and f ∈
Dom(Dc,γ(θ)).
Moreover, it is easy to see that RanRc,γ;θ(z) ⊂ H1/2(R3; C4). Thus, we obtain
as before (g, (Dc,γ(θ) − z)Rc,γ;θ(z)f) = (g, f) for all f ∈ L2(R3; C4), g ∈
H1/2(R3; C4) and z ∈ C \ (σ(Dc,0(θ)) ∪Ac,γ;θ). It follows that RanRc,γ;θ(z) ⊂
H1(R3; C4) and (Dc,γ(θ) − z)Rc,γ;θ(z)f = f for f ∈ L2(R3; C4) and z ∈ C \
(σ(Dc,0(θ)) ∪ Ac,γ;θ). Summarizing, we find Rc,γ;θ(z) = (Dc,γ(θ) − z)−1 for
all z ∈ C \ (σ(Dc,0(θ)) ∪ Ac,γ;θ). In particular, it follows that σ(Dc,γ(θ)) ⊂
σ(Dc,0(θ)) ∪Ac,γ;θ.
Let now z0 ∈ Ac,γ;θ. Then the analytic Fredholm theorem implies the existence
of f ∈ L2(R3; C4) with (1 −N(z0))f = 0, and thus also (1 − γMc;θ(z0))f = 0.
We proceed as follows: Since (Dc,0(θ) − z)−1V1(θ) is bounded, we find f ∈
Ran(V2(θ)), i.e. f = V2(θ)g for g = (Dc,0(θ) − z)−1V1(θ)f ∈ L2(R3; C4). It
follows that (Dc,0(θ) − z0)g = γV1(θ)f = γV (θ)g in H−1/2(R3; C4). Rewrit-
ing this equality (in the sense of H−1/2(R3; C4)) we find −i ce−θ

α · ∇g −
βc2g − γV (θ)g = z0g. Since the r.h.s. of this equality is a (regular distri-
bution generated by a) function in L2(R3; C4), the l.h.s. is. This implies that
g ∈ H1(R3; C4) = D(Dc,γ(θ)) by Remark 2, i.e. z0 ∈ σ(Dc,γ(θ)) which in turn
proves σ(Dc,γ(θ)) ∩ (C \ σ(Dc,0(θ))) = Ac,γ;θ.
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Step 4: It remains to show that σ(Dc,γ(θ)) ∩ σ(Dc,0(θ)) = σ(Dc,0(θ)) holds.
To show this, we pick E ∈ σ(Dc,0(θ)) and p ∈ R3 with E = Ec(p; θ) in order
to construct a suitable Weyl sequence. Let us define ψp,c;θ ∈ C∞(R3; C4) by

ψp,c;θ(x) := Nc(p; θ)
−1(c2 + Ec(p; θ)ξ, ce

−θ
σ · pξ)T e−ipx (27)

with ξ = (1, 0)T . Equations (7) and (23) imply

(−icα · ∇ + βc2)ψp,c;θ(x) = Ec(p; θ)ψp,c;θ(x). (28)

We pick a function 0 6= φ ∈ C∞
0 (R3) with suppφ ⊂ B1(0) and set for n ∈ N

φn(x) := φ( 1
nx− ne1) with e1 = (1, 0, 0)T as well as fn := φnψp,c;θ. Obviously,

we have fn ∈ Dom(Dc,γ(θ)). First, we calculate

‖fn‖ ≥ (1 + CFW)−1/2‖φn‖ = n3/2(1 + CFW)−1/2‖φ‖, (29)

where we used the definition (27) of ψp,c;θ, Equation (7), Equation (11), Equa-
tion (8) and the identity

∫

dxφn(x)2 =
∫

dxφ( 1
nx − ne1) = n3

∫

dxφ(x)2.
Furthermore, we find for n ≥ 2

‖VCfn‖2 =

∫

dx
1

|x|2 φn(x)2‖ψp,c;θ(0)‖2 (30)

≤(1 + CFW|Im θ|) 4

n4

∫

dxφn(x)2
4(1 + CFW|Im θ|)

n4
n3‖φ‖2,

since suppφn ⊂ Bn(n2e1) and ‖ψp,c;θ(0)‖ ≤
√

1 + CFW|Im θ| because of For-
mula (9). Moreover, we obtain

‖(cα · ∇φn)ψp,c;θ(·)‖ ≤ c
√

1 + CFW|Im θ|
n

n3/2‖∇φ‖. (31)

Formulas (28) through (31) imply

‖(Dc,γ(θ)−Ec(p; θ))fn‖
‖fn‖

≤
√

1+CFW|Im θ|
2n3/2

n2 ‖φ‖+ cn3/2

n ‖∇φ‖
n3/2√
1+CFW

‖φ‖
−→

n→∞
0.

Thus Dc,γ(θ) − Ec(p; θ) does not have a bounded inverse and Ec(p; θ) ∈
σ(Dc,γ(θ)).
Step 5: The proof of Ac,γ;θ∩(C\Bc;θ) = σdisc(Dc,γ(0)) is a standard argument,
which uses the dilation analyticity of the operators Dc,γ(θ) (see [43, Chapter
XII.6] or [46]). The same holds for the claim on the accumulation points.

Remark 3. Note that for V = VC the set of resonances is empty. This follows
similarly as for the Schrödinger case (see [8]): If there was a resonance, then
Dc,γ(π) would have a non-real eigenvalue.
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5 Spectral Projections

In this section we extend the notion of positive and negative spectral projections

to dilated Dirac operators. We define for p ∈ R3 the matrices Λ
(±)
c,0 (p; θ) :=

1
2 (1 ± cp·α+c2β

Ec(p;θ) ). A calculation shows that Λ
(±)
c,0 (p; θ)2 = Λ

(±)
c,0 (p; θ) and

Λ
(±)
c,0 (p; θ)Dc,0(p; θ) = ±Ec(p; θ)Λ

(±)
c,0 (p; θ). Moreover, one verifies the identity

Λ
(±)
c,0 (p; θ) = 1

2 ± 1
2π lim

R→∞

∫ R

−R
dη 1

Dc,0(p;θ)−iη . These observations motivate the

following definition for the dilated interacting operators:

Λ(±)
c,γ (θ) :=

1

2
± 1

2π
s-lim
R→∞

∫ R

−R

dη
1

Dc,γ(θ) − i η
(32)

It is well known [33, Chapter VI-5.2, Lemma 5.6] that Equation (32) yields the
positive and negative spectral projections for real θ. Note that similar formulas
for not necessarily self-adjoint operators are known (see [16, Chapter VX]).
These authors use a different definition for the spectral projections, however.
First, we show in Theorem 4 that these operators are well defined and bounded
projections even if θ /∈ R. We need the following technical lemma:

Lemma 3. Let θ ∈ Sπ/4. Then for all η ∈ R

‖ |Dc,0(Re θ)| − i η

Dc,0(θ) − i η
‖ ≤ C1(Im θ), (33)

where C1(Im θ) is defined in (24).

Proof. We prove the estimate

‖ |Dc,0(Re θ)| − i η√
−e−2θc2∆ + c4β − i η

‖ ≤ ‖ |Dc,0(Re θ)|√
−e−2θc2∆ + c4β − i η

‖ (34)

+‖ η√
−e−2θc2∆ + c4β − i η

‖ ≤ 1
√

cos(2Im θ)
+

1

cos Im θ
.

We estimate the first summand using inequality (5) and Lemma 1. For the sec-
ond summand we restrict ourselves to the case Im θ < 0. The proof for Im θ > 0
works analogously, and (33) holds obviously if Im θ = 0. Moreover, it suffices

to consider Re θ = 0. We investigate the term |
√

e−2θc2p2 + c4− i η|. For η > 0

the inequality Im
√

e−2θc2p2 + c4 < 0 yields |−
√

e−2θc2p2 + c4 +i η| ≥ |η|. For

η < 0 the inequality Im
√

c2p2 + e+2θc4 > 0 implies |
√

c2p2 + e+2θc4−ie+θη| ≥
− cos(Im θ)η = cos(Im θ)|η|, which proves (34). The claim follows using Theo-
rem 1.

Theorem 4. Let θ ∈ Smin{π/4,Θ} and 2γ
c C(Im θ) < 1. Suppose that (H1)

holds. Then the following statements hold: Λ
(±)
c,γ (θ) ∈ B(L2(R3; C4)), Λ

(±)
c,γ (θ) =

Λ
(±)
c,γ (θ)2 and Λ

(+)
c,γ (θ) + Λ

(−)
c,γ (θ) = 1. The operators Λ

(±)
c,γ (θ) are bounded holo-

morphic families in θ for θ ∈Mγ/c.
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Proof. The proof is inspired by similar estimates in [47].

Step 1: The resolvent equation (25) and the estimate (26) yield the convergence
of the series

(Dc,γ(θ) − i η)−1 − (Dc,0(θ) − i η)−1 = γ
∞
∑

n=1

(Dc,0(θ) − i η)−1V1(θ)

× [γV2(θ)(Dc,0(θ) − i η)−1V1(θ)]
n−1V2(θ)(Dc,0(θ) − i η)−1 (35)

in norm.

Step 2: We show that the expression

lim
R→∞

∫ R

−R

dη
(

f,
[ 1

Dc,γ(θ) − i η
− 1

Dc,0(θ) − i η

]

g
)

, f, g ∈ L2(R3; C4) (36)

defines a bounded operator on L2(R3; C4). In order to achieve this, we estimate

∣

∣

(

f,
1

Dc,0(θ) − i η
V1(θ)

[

γV2(θ)
1

Dc,0(θ) − i η
V1(θ)

]n−1
V2(θ)

1

Dc,0(θ) − i η
g
)∣

∣

≤ π

2

∥

∥

|∇|1/2

Dc,0(θ̄) + i η
f
∥

∥

∥

∥

|∇|1/2

Dc,0(θ) − i η
g
∥

∥

(γ

c

π

2
C(Im θ)

)n−1 ≤ π

2ce−Re θ

×
∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)| + i η
f
∥

∥

∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)| − i η
g
∥

∥C1(Im θ)2
(γ

c

π

2
C(Im θ)

)n−1
,

where we used (26) in the first estimate and Lemma 3 in the second estimate.
C(Im θ) and C1(Im θ) were defined in (24). As in [47, Proof of Lemma 1] we

obtain
∫ ∞
−∞ dη

∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)|+i ηf
∥

∥

∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)|−iηg
∥

∥ ≤ π‖f‖‖g‖ and thus

∫ ∞

−∞
dη

∣

∣

(

f,
[ 1

Dc,γ(θ) − i η
− 1

Dc,0(θ) − i η

]

g
)∣

∣ ≤

≤ π
γ

c

π

2
‖f‖‖g‖C1(Im θ)2

1

1 −
(

γ
c

π
2C(Im θ)

) (37)

Step 3: The expressions

(

f,
1

Dc,0(θ) − i η
V1(θ)

[

γV2(θ)
1

Dc,0(θ) − i η
V1(θ)

]n−1
V2(θ)

1

Dc,0(θ) − i η
g
)

are holomorphic functions of θ ∈ Smin{π/4,Θ}. These estimates show the exis-
tence of an integrable and summable majorant, independent of θ for θ ∈Mγ/c.
Thus, the operator in Equation (36) is a holomorphic function of θ [33, Chap-

ter VII-1.1], and the identity Λ
(+)
c,γ (θ) = Λ

(+)
c,γ (θ)2, which is obviously true for

θ ∈ R, extends to θ ∈Mγ/c, i.e. Λ
(+)
c,γ (θ) is a projection.
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Step 4: We show that the limit exists as a strong limit and estimate for g ∈
H1/2(R3; C4) as follows:

∣

∣

(

f,
1

Dc,0(θ) − i η

[

γV (θ)
1

Dc,0(θ) − i η

]n−1
V (θ)

1

Dc,0(θ) − i η
g
)
∣

∣

≤ 2

ce−Re θ

∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)| + i η

∥

∥‖f‖
∥

∥

1

|Dc,0(Re θ)| − i η

∥

∥

∥

∥|Dc,0(Re θ)|1/2g
∥

∥

× C1(Im θ)2
(2γ

c
C(Im θ)

)n−1

Here we estimated the expression in the square brackets similarly to (26), but
used Hardy’s inequality instead of Kato’s inequality. Moreover, we used the
estimate (33) twice. Since σ(Dc,0(Re θ)) = (−∞, c2] ∪ [c2,∞), we have

‖ |Dc,0(Re θ)|1/2

|Dc,0(Re θ)| + i η
‖ = sup

|λ|≥c2

√

|λ|
√

λ2 + η2
≤ min{1

c
,

1
√

|η|
}.

This estimate shows that the convergence in formula (36) is uniform in f ∈
L2(R3; C4), which implies the strong convergence [33, Theorem III.1.32 and
Lemma III.3.5], since H1/2(R3; C4) is dense in L2(R3; C4).

Obviously, the identity Λ
(+)
c,γ (θ) + Λ

(−)
c,γ (θ) = 1 holds. We set H(±)

c,γ (θ) :=

Λ
(±)
c,γ (θ)L2(R3; C4) and find L2(R3; C4) = H(+)

c,γ (θ) ∔ H(−)
c,γ (θ), wehre ∔ denotes

the direct sum. We call the Λ
(±)
c,γ (θ) positive and negative spectral projections

and H(±)
c,γ (θ) positive and negative spectral subspaces, respectively. This is

justified because of Theorem 5.
The following corollary generalizes [47, Lemma 1] to dilated spectral projec-
tions.

Corollary 1. Let θ ∈ Smin{π/4,Θ} and suppose that (H1) holds. Then there

exists a constant CNR > 0 such that for 2γ
c C(Im θ) < 1 the estimate

‖Λ(±)
c,γ (θ) − Λ

(±)
c,0 (θ)‖ ≤ CNR

γ

c

holds.

Proof. This follows directly from Equation (37) in the proof of Theorem 4.

The next theorem shows that the spaces H(±)
c,γ (θ) are invariant under Dc,γ(θ)

and describes the spectrum of the restriction of the operator to these spaces.
If a part of the spectrum is contained in a Jordan curve, analogous statements
can be found in [33, Theorem III-6.17]. The following theorem describes a
more general situation, but the essential elements of the proof of [33, Theorem
III-6.17] can be adapted.
For a closed operator A we denote its resolvent set by ρ(A).

Documenta Mathematica 14 (2009) 297–338



Spectral Analysis of Relativistic Atoms 313

Theorem 5. Let θ ∈ Smin{π/4,Θ} and 2γ
c C(Im θ) < 1. Suppose that (H1) holds.

Then the identity

Λ(±)
c,γ (θ)(Dc,γ(θ) − z)−1 = (Dc,γ(θ) − z)−1Λ(±)

c,γ (θ) (38)

holds for all z ∈ ρ(Dc,γ(θ)). The subspaces RanΛ
(+)
c,γ (θ) and Ran Λ

(−)
c,γ (θ) are

invariant subspaces for Dc,γ(θ). In particular,

σ(Dc,γ(θ)|
Ran Λ

(+)
c,γ (θ)

) = σ(Dc,γ(θ)) ∩ {z ∈ C|Re z > 0} (39)

and
σ(Dc,γ(θ)|

Ran Λ
(−)
c,γ (θ)

) = σ(Dc,γ(θ)) ∩ {z ∈ C|Re z < 0} (40)

hold.

Proof. Obviously, for all z /∈ σ(Dc,γ(θ)), all η ∈ R and all f ∈ L2(R3; C4) the
equation (Dc,γ(θ)− z)−1(Dc,γ(θ)− i η)−1f = (Dc,γ(θ)− i η)−1(Dc,γ(θ)− z)−1f
is true. This immediately implies

(Dc,γ(θ) − z)
−1

lim
R→∞

∫ R

−R

dη (Dc,γ(θ) − i η)
−1
f =

= lim
R→∞

∫ R

−R

dη (Dc,γ(θ) − i η)
−1

(Dc,γ(θ) − z)
−1
f

and thus (38). It follows that [33, Chapter III-5.6 and Theorem III.6.5]

(Dc,γ(θ) − z)−1 RanΛ
(±)
c,γ (θ) ⊂ RanΛ

(±)
c,γ (θ) and Λ

(±)
c,γ (θ)Dom(Dc,γ(θ)) ⊂

Dom(Dc,γ(θ)) as well as Dc,γ(θ)H(±)
c,γ (θ) ⊂ H(±)

c,γ (θ). We define the operators

D
(±)
c,γ (θ) := Dc,γ(θ)|H(±)

c,γ (θ)
and (for z /∈ σ(Dc,γ(θ)) at the moment) the resol-

vents R
(±)
c,γ;θ(z) := (D

(±)
c,γ (θ) − z)−1 = (Dc,γ(θ) − z)−1|H(±)

c,γ (θ)
. In particular,

σ(D
(±)
c,γ (θ)) ⊂ σ(Dc,γ(θ)).

On the other side, we have f ∈ H(±)
c,γ (θ) and z /∈ σ(Dc,γ(θ)) R

(±)
c,γ;θ(z)f =

(Dc,γ(θ) − z)−1f = (Dc,γ(θ)− z)−1Λ
(±)
c,γ (θ)f. Using the first resolvent identity,

we find for z ∈ C with Re z < 0 respectively Re z > 0

(Dc,γ(θ) − z)−1Λ(±)
c,γ (θ)f = − 1

2π

∫ ∞

−∞
dη

1

z−i η
(Dc,γ(θ)−i η)−1f, (41)

since for z ∈ C with Re z < 0 respectively Re z > 0 the residue theorem implies

limR→∞
∫ R

−R
dη 1

z−i η = limR→∞
∫ R

−R
dη z

z2+η2 = ∓π.
The r.h.s. of equation (41) is holomorphic in z /∈ i R. Thus, R

(+)
c,γ;θ(z) has

a holomorphic continuation to {z ∈ C|Re z < 0}, and R
(−)
c,γ;θ(z) has a holo-

morphic continuation to {z ∈ C|Re z > 0}. The holomorphicity of the

resolvent implies {z ∈ C|Re z < 0} ⊂ ρ(D
(+)
c,γ (θ)) and {z ∈ C|Re z >

Documenta Mathematica 14 (2009) 297–338



314 Matthias Huber

0} ⊂ ρ(D
(−)
c,γ (θ)). This proves σ(D

(−)
c,γ (θ)) ⊂ {z ∈ C|Re z < 0} and

σ(D
(+)
c,γ (θ)) ⊂ {z ∈ C|Re z > 0}. On the other side, z ∈ σ(Dc,γ(θ)) cannot

fulfill both z ∈ ρ(D
(−)
c,γ (θ)) and z ∈ ρ(D

(+)
c,γ (θ)), because otherwise the identity

(Dc,γ(θ)−z)−1 = (D
(+)
c,γ (θ)−z)−1Λ

(+)
c,γ (θ)+(D

(−)
c,γ (θ)−z)−1Λ

(−)
c,γ (θ) would imply

the contradiction z ∈ ρ(Dc,γ(θ)). This shows (39) and (40).

Next, we need spectral projections for the eigenvalues: We define for all n ≥ 1
(and n ≤ Nmax if there only finitely many eigenvalues) the spectral projections

Pn(c, γ; θ) := − 1

2πi

∫

Γn(c,γ)

1

Dc,γ(θ) − z
dz , (42)

where z runs through Γn(c, γ) in the positive sense. Γn(c, γ) is chosen such that
for all 1 ≤ l ≤ Nn the eigenvalues Ẽn,l(c, γ) are located within the contour,
but no other elements of the spectrum Dc,γ(θ).
For later, we need spectral projections for the fine structure components. We
set for n ≥ 1 and 1 ≤ l ≤ Nn

Pn,l(c, γ; θ) := − 1

2πi

∫

Γn,l(c,γ)

1

Dc,γ(θ) − z
dz , (43)

where z runs through Γn,l(c, γ) in the positive sense, and Γn,l(c, γ) is chosen

such that only the eigenvalue Ẽn,l(c, γ) lies within the contour. We denote the
corresponding normed eigenfunctions by φn,l(c, γ; θ).

6 Transformation Functions

We need transformation functions between the spectral subspaces of dilated
and not dilated operators for the resolvent estimate in Section 7 and in order
to establish the dilation analyticity of a relativistic Pauli-Fierz model in [30].
Another example for a transformation function is the Douglas-Kroll transfor-
mation, which was investigated by Siedentop and Stockmeyer [47] (see also
Huber and Stockmeyer [31]). Contrary to the situation there, our spectral
projections are not self-adjoint and thus the transformation function is a non-
unitary similarity transformation. The estimates in this section can be used to
generalize the Douglas-Kroll transformation to complex dilated operators.
In order to prove the existence of the transformation function, we need norm
estimates on the difference between the spectral projections.

Lemma 4. Let θ ∈ Smin{π/4,Θ}. Suppose that (H1) and (H2) hold. Then the
following statements hold:

a) There is a constant CDL > 0 (independent of c, γ and θ) such that for
2γ
c C(Im θ) < 1 the estimate

‖Λ(±)
c,γ (0) − Λ(±)

c,γ (θ)‖ ≤ CDL|θ| (44)
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holds. The operator |Dc,0(0)|1/2[Λ
(±)
c,γ (0)−Λ

(±)
c,γ (θ)]|Dc,0(0)|−1/2 is a holo-

morphic function of θ ∈Mγ/c.

b) Let moreover 0 < q < 1. Then there is a constant CDLS > 0 (independent
of c, γ and θ) such that for 2γ

c C(Im θ) < q the estimate

‖|Dc,0(0)|1/2[Λ(±)
c,γ (0) − Λ(±)

c,γ (θ)]|Dc,0(0)|−1/2‖ ≤ CDLS|θ| (45)

holds.

Proof. We adapt method which was used by Siedentop and Stockmeyer [47]
and by Griesemer, Lewis and Siedentop [19] for other choices of projections.
We start with the difference of resolvents

(Dc,0(θ) − i η)−1 − (Dc,0(0) − i η)−1

= ic[e−θ − 1](Dc,0(θ) − i η)−1
α · ∇(Dc,0(0) − i η)−1 (46)

and note that |e−θ − 1| ≤ B|θ| holds with B = eπ/4 for all |θ| ≤ π/4.

Step 1: Proof for the free projections. Equation (46) it and Lemma 3 imply
that

|(f, [(Dc,0(θ) − i η)−1 − (Dc,0(0) − i η)−1]g)|
≤B|θ|‖|Dc,0(Re θ)|1/2(|Dc,0(Re θ)| + i η)−1f‖‖|Dc,0(0)|1/2(Dc,0(0) − i η)−1g‖

× ‖|Dc,0(Re θ)|−1/2cα · ∇|Dc,0(0)|−1/2‖‖ |Dc,0(Re θ)| − i η

Dc,0(θ) − i η
‖

≤ B|θ|
e−Re θ/2

C1(Im θ)‖ |Dc,0(Re θ)|1/2

|Dc,0(Re θ)| + i η
f‖‖ |Dc,0(0)|1/2

Dc,0(0) − i η
g‖,

where we used the estimate ‖c|∇||Dc,0(Re θ)|−1‖ ≤ 1/e−Re θ.

This proves (cf. [47, Proof of Lemma 1] and proof of Corollary 1) ‖Λ(±)
c,0 (0) −

Λ
(±)
c,0 (θ)‖ ≤ C̃DL|θ| with a C̃DL > 0 and analogously ‖|Dc,0(0)|1/2[Λ

(±)
c,0 (0) −

Λ
(±)
c,0 (θ)]|Dc,0(0)|−1/2‖ ≤ C̃DL|θ|, since |Dc,0(0)|1/2 commutes with all operators

in (46).

Step 2: Proof of (44). We write

∥

∥

[

V2(θ)
1

Dc,0(θ) − i η
V1(θ)

]

−
[

V2(0)
1

Dc,0(0) − i η
V1(0)

]∥

∥ (47)

≤
∥

∥

[

V1(θ)
e−θ

Dc,0(θ) − i η
χθV2(θ)

]

−
[

V1(θ)
e−θ

Dc,0(0) − i η
χθV2(θ)

]∥

∥

+
∥

∥

[

V
1/2
C

1

Dc,0(0) − i η
(χθe

−θ − 1)V
1/2
C

]∥

∥ ≤ B|θ|π
2c

(C(Im θ) + 1 + C̃),
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where we estimated the second summand by B(1 + C̃)|θ|π/(2c) from above,
and the second summand – similarly as in (26) – according to

∥

∥(e−θ − 1)
[

V2(θ)
1

Dc,0(θ) − i η
cα · ∇ 1

Dc,0(0) − i η
V1(θ)

]∥

∥ ≤

≤ B|θ|π
2c

∥

∥

|Dc,0(Re θ)|
Dc,0(θ) − i η

∥

∥

∥

∥

|Dc,0(0)|
Dc,0(0) − i η

∥

∥ ≤ B|θ|π
2c

C(Im θ).

In the same way we obtain

∥

∥

[

e−θ/2V
1/2
C (Dc,0(θ) − i η)−1 − V

1/2
C (Dc,0(0) − i η)−1

]

g
∥

∥ (48)

≤|e−θ/2 − eθ/2|
∥

∥e−θV
1/2
C (Dc,0(θ) − i η)−1cα · ∇(Dc,0(0) − i η)−1g

∥

∥

+|e−θ/2−1|
∥

∥V
1/2
C

1

Dc,0(0)−i η
g
∥

∥ ≤ B|θ|
√

π

2c

(

C(Im θ) + 1/2
)∥

∥

|Dc,0(0)|1/2

Dc,0(0) − i η
g
∥

∥.

Lemma 3 implies

∥

∥V
1/2
C

e−θ/2

Dc,0(θ) − i η
g
∥

∥ ≤ C1(Im θ)

√

π

2c

∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)| − i η
g
∥

∥ (49)

and (see Formula (26))

∥

∥V
1/2
C e−θ(Dc,0(θ) − i η)−1V

1/2
C

∥

∥ ≤ πC(Im θ)

2c
. (50)

Formulas (47) through (50) show

∣

∣γn
(

f,
e−θ/2

Dc,0(θ) − i η
V1(θ)

[

V2(θ)
e−θ

Dc,0(θ) − i η
V1(θ)

]n−1
V2(θ)

e−θ/2

Dc,0(θ) − i η
g
)

−

− γn
(

f,
1

Dc,0(0) − i η
V1(0)

[

V2(0)
1

Dc,0(0) − i η
V1(0)

]n−1
V2(0)

1

Dc,0(0) − i η
g
)∣

∣

≤ B|θ|
(πγC(Im θ)

2c

)n−1(πγC1(Im θ)

2c

)(

C(Im θ) + 1 + C̃
)

×
∥

∥

|Dc,0(0)|1/2

|Dc,0(0)| − i η
f
∥

∥

[

n
∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)| + i η
g
∥

∥ +
∥

∥

|Dc,0(0)|1/2

Dc,0(0) + i η
g
∥

∥

]

,

which implies (44).

Step 3: Proof of (45). We use the expansion

(Dc,γ(θ) − i η)−1 − (Dc,0(θ) − i η)−1

=

∞
∑

n=1

γn 1

Dc,0(θ) − i η

[

V (θ)
1

Dc,0(θ) − i η

]n−1
V (θ)

1

Dc,0(θ) − i η
(51)
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and start with the necessary estimates on the differences of the resolvents:
Using Hardy’s inequality, we obtain as in (26)

‖[V (θ)(Dc,0(θ) − i η)−1 − V (0)(Dc,0(0) − i η)−1]|Dc,0(0)|−1/2g
∥

∥ (52)

≤ 2B|θ|
c

(C(Im θ) + 1 + C̃)
∥

∥

|Dc,0(0)|1/2

Dc,0(0) − i η
g
∥

∥,

and we find analogously

∥

∥VC

[

χθ
e−θ

Dc,0(θ) − i η
− χ

1

Dc,0(0) − i η

]∥

∥ ≤ 2B|θ|
c

(C(Im θ) + 1 + C̃) (53)

as well as

‖[(Dc,0(θ̄) + i η)−1 − (Dc,0(0) + i η)−1]|Dc,0(0)|1/2f‖ (54)

≤ ‖[eθ̄−1]
e−θ̄

Dc,0(θ̄) + i η
cα · ∇ |Dc,0(0)|1/2

Dc,0(0)+i η
f‖ ≤ 2B|θ|C(Im θ)‖ |Dc,0(0)|1/2

Dc,0(0)+i η
f‖.

For the terms with the resolvents we use Lemma 3 and Lemma 1 to estimate

∥

∥V (θ)
1

Dc,0(θ) − i η
|Dc,0(0)|−1/2g

∥

∥ ≤ 2

c

∥

∥

|Dc,0(Re θ)|
Dc,0(θ) − i η

|Dc,0(0)|−1/2g
∥

∥ (55)

≤ 2C1(Im θ)eπ/8

c

∥

∥

|Dc,0(Re θ)|1/2

|Dc,0(Re θ)| − i η
g
∥

∥,

and (cf. Formula (26))

∥

∥V (θ)
1

Dc,0(θ) − i η

∥

∥ ≤ 2

c

∥

∥|Dc,0(Re θ)| 1

Dc,0(θ) − i η

∥

∥ ≤ 2C(Im θ)

c
. (56)

Formulas (52) through (56) show

γn
∣

∣

(

f, |Dc,0(0)|1/2
[ 1

Dc,0(θ) − i η

[

V (θ)
1

Dc,0(θ) − i η

]n−1
V (θ)

1

Dc,0(θ) − i η

− 1

Dc,0(0) − i η

[

V
1

Dc,0(0) − i η

]n−1
V

1

Dc,0(0) − i η

]

|Dc,0(0)|−1/2g
)∣

∣

≤ eπ/4B|θ|
(2γC(Im θ)

c

)n−1(2γC1(Im θ)

c

)

(C(Im θ) + 1 + C̃)
∥

∥

|Dc,0(0)|1/2

Dc,0(0) + i η
f
∥

∥

×
[

n
∥

∥

|Dc,0(Re θ)|1/2

Dc,0(Re θ) − i η
g
∥

∥ +
∥

∥

|Dc,0(0)|1/2

Dc,0(0) − i η
g
∥

∥

]

,

which in turn proves (45).
Step 4: Holomorphicity. This follows as in the proof of Theorem 4, since
(

f, |Dc,0(0)|1/2 1
Dc,0(θ)−iη

[

V (θ) 1
Dc,0(θ)−i η

]n−1
V (θ) 1

Dc,0(θ)−iη |Dc,0(0)|−1/2g
)

are

holomorphic functions of θ and the above estimates imply the existence of
summable and integrable majorant which does not depend on θ.
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Before we turn to the existence of a transformation function in Theorem 6,
we need two operator inequalities, one of which was proven in [19]. Since the
other inequality can be proven completely analogously, we omit the proof. Let
us mention that there exits an improved version of one of these inequalities
(see [39]). But since we will be interested in the non-relativistic limit only, it
is sufficient to use the original version.

Lemma 5 ([19], Lemma 2). Suppose that ϑ ∈ R and γ
c <

1
2 . Then the operator

inequalities

(1 − 2γ

c
)|Dc,0(ϑ)‖ ≤ |Dc,γ(ϑ)| ≤ (1 +

2γ

c
)|Dc,0(ϑ)|

hold.

Now we can turn to the transformation function UDL(c, γ; θ) defined below. It

enables us to consider the operator UDL(c, γ; θ)D
(±)
c,γ (θ)UDL(c, γ; θ)−1 instead of

the operator D
(±)
c,γ (θ). This is necessary for technical reasons, since the latter

operates on a fixed space (i.e. Ran Λ
(+)
c,γ (0)). We will prove in [30] that this

operator defines a holomorphic family of operators. Moreover, we will need the
transformation function in the proof of the resolvent estimate in Theorem 7.

Theorem 6. Suppose that θ ∈ Smin{π/4,Θ},
2γ
c C(Im θ) < 1 and CDL|θ| < q

for some 0 < q < 1. Suppose moreover that (H1) and (H2) hold. Then the
following statements hold:

a) There is a bounded mapping UDL(c, γ; θ) : L2(R3; C4) → L2(R3; C4) with
the property

UDL(c, γ; θ)Λ(+)
c,γ (θ)UDL(c, γ; θ)−1 = Λ(+)

c,γ (0) (57)

and bounded inverse VDL(c, γ; θ) := UDL(c, γ; θ)−1. There is a constant
CUDL > 0, independent of c, γ and θ, such that

‖UDL(c, γ; θ) − 1‖ ≤ CUDL|θ| (58)

holds.

b) Suppose that additionally CDLS|θ| < q holds. Then there is a constant
CUDLS, independent of c, γ and θ, such that

‖|Dc,0(0)|1/2UDL(c, γ; θ)|Dc,0(0)|−1/2 − 1‖ ≤ CUDLS |θ| (59)

is true. The same estimates hold for VDL(c, γ; θ).

c) The operator UDL(c, γ; θ), and for CDLS|θ| < q the operator

|Dc,0(0)|1/2UDL(c, γ; θ)|Dc,0(0)|−1/2

and the operator |Dc,0(0)|−1/2UDL(c, γ; θ)|Dc,0(0)|1/2, are holomorphic
functions of θ. The same statements hold for VDL(c, γ; θ).
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Proof. We follow [47, Theorem 1] and [33, Chapter I-4.6.] and define

UDL(c, γ; θ) := [Λ(+)
c,γ (0)Λ(+)

c,γ (θ)+Λ(−)
c,γ (0)Λ(−)

c,γ (θ)][1− (Λ(+)
c,γ (θ)−Λ(+)

c,γ (0))2]−1/2.
(60)

It is easy to see that (Λ
(+)
c,γ (θ)−Λ

(+)
c,γ (0))2 commutes with Λ

(+)
c,γ (θ) and Λ

(+)
c,γ (0)

and that UDL(c, γ; θ) is invertible with inverse VDL(c, γ; θ) := [Λ
(+)
c,γ (θ)Λ

(+)
c,γ (0)+

+Λ
(−)
c,γ (θ)Λ

(−)
c,γ (0)t][1−(Λ

(+)
c,γ (θ)−Λ

(+)
c,γ (0))2]−1/2, and that Equation (57) holds.

Lemma 4 implies that UDL(c, γ; θ) is a holomorphic function θ, since (1−A)−1/2

has a norm convergent series expansion for bounded operators A with ‖A‖ < 1.

Proof of (58): We follow [47, Proof of Lemma 5]. We have Λ
(+)
c,γ (0)Λ

(+)
c,γ (θ) +

Λ
(−)
c,γ (0)Λ

(−)
c,γ (θ) = 1−

[

Λ
(−)
c,γ (0) − Λ

(+)
c,γ (0)

] [

Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0)

]

and thus

UDL(c, γ; θ) :=
{

1−
[

Λ(−)
c,γ (0) − Λ(+)

c,γ (0)
] [

Λ(+)
c,γ (θ) − Λ(+)

c,γ (0)
]}

×
[

1− (Λ(+)
c,γ (θ) − Λ(+)

c,γ (0))2
]−1/2

.

Using the representation (1−a2)−1/2 = 1
π

∫ 1

−1
1√

1−y2

1
1−yady (see [17, Formula

3.197.4]) we obtain

UDL(c, γ; θ) =
{

1−
[

Λ(−)
c,γ (0) − Λ(+)

c,γ (0)
] [

Λ(+)
c,γ (θ) − Λ(+)

c,γ (0)
]}

× 1

π

∫ 1

−1

1
√

1 − y2

1

1 − y(Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0))

dy .

Lemma 4 implies that the estimates ‖
[

Λ
(−)
c,γ (0)−Λ

(+)
c,γ (0)

][

Λ
(+)
c,γ (θ)−Λ

(+)
c,γ (0)

]

‖ ≤
2CDL|θ| and

∥

∥

1

π

∫ 1

−1

1
√

1 − y2

1

1 − y(Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0))2

dy − 1

∥

∥ =

=
∥

∥

1

π

∫ 1

−1

1
√

1 − y2

y(Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0))

1 − y(Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0))

dy
∥

∥ ≤ C′CDL|θ|

hold for some C′ > 0.
Proof of (59): The strategy is similar to the proof of (58). We write

|Dc,0(0)|1/2UDL(c, γ; θ)|Dc,0(0)|−1/2 =

=
{

1− |Dc,0(0)|1/2|Dc,γ(0)|−1/2
[

Λ(−)
c,γ (0) − Λ(+)

c,γ (0)
]

|Dc,γ(0)|1/2|Dc,0(0)|−1/2

× |Dc,0(0)|1/2
[

Λ(+)
c,γ (θ) − Λ(+)

c,γ (0)
]

|Dc,0(0)|−1/2
}

× 1

π

∫ 1

−1

1
√

1 − y2

1

1 − y|Dc,0(0)|1/2
(

Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0)

)

|Dc,0(0)|−1/2
dy ,
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where we used that |Dc,γ(0)|−1/2 commutes with Λ
(±)
c,γ (0). Using Lemma 5 and

Lemma 4 we obtain the claim as before.

A first application of the transformation function UDL(c, γ; θ) is the following
lemma, which estimates the difference between the dilated Dirac operator and
its original version.

Lemma 6. Under the assumptions of Theorem 6 b) there is a constant CUD > 0,
independent of γ, c and θ, such that

∥

∥

∥
|Dc,0(0)|−1/2

[

UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1

−Dc,γ(0)
]

|Dc,0(0)|−1/2
∥

∥

∥
≤ CUD|θ| (61)

holds.

Proof. We have

|Dc,0(0)|−1/2[UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1 −Dc,γ(0)]|Dc,0(0)|−1/2

=|Dc,0(0)|−1/2[UDL(c, γ; θ) − 1]|Dc,0(0)|1/2|Dc,0(0)|−1/2Dc,γ(θ)|Dc,0(0)|−1/2

×|Dc,0(0)|1/2UDL(c, γ; θ)−1|Dc,0(0)|−1/2+

+|Dc,0(0)|−1/2[Dc,γ(θ) −Dc,γ(0)]|Dc,0(0)|−1/2

×|Dc,0(0)|1/2UDL(c, γ; θ)−1|Dc,0(0)|−1/2 + |Dc,0(0)|−1/2Dc,γ(0)|Dc,0(0)|−1/2

×|Dc,0(0)|1/2[UDL(c, γ; θ)−1 − 1]|Dc,0(0)|−1/2,

which implies the claim, if we use additionally

‖|Dc,0(0)|−1/2[Dc,γ(θ) −Dc,γ(0)]|Dc,0(0)|−1/2‖ = ‖|Dc,0(0)|−1/2 (62)

× [−(e−θ − 1)icα · ∇ − γ(V (θ) − V )]|Dc,0(0)|−1/2‖ ≤ (B + C̃)|θ|(1 +
πγ

2c
)

and Theorem 6. Moreover, we used the inequality |e−θ − 1| ≤ B|θ| with B =
eπ/4 and Kato’s inequality in the proof of (62).

7 A resolvent estimate for the Dirac operator

In the following, we choose an η > 0 such that for some ñ > 1 and all c ≥ 1 the
inequalities Ẽñ,ñ(c, γ) < c2 − η and Ẽñ+1,1(c, γ) > c2 − η hold. If ñ = Nmax,
then the second condition has to be omitted.
Using the notation of Section 5 we define Pdisc,ñ(c, γ; θ) :=

∑

1≤n≤ñ Pn(c, γ; θ)

and P̄disc,ñ(c, γ; θ) := 1 − (Λ
(−)
c,γ (θ) + Pdisc,ñ(c, γ; θ)). Note that P̄disc,ñ(c, γ; θ)

projects onto a subspace of the positive spectral subspace.
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The following theorem partly generalizes [5, Lemma 3.8] for Dirac operators
(see also Theorem A.1). We will slightly extend this theorem in the non-
relativistic limit (see Lemma 7 and Corollary 4). This theorem and Corollary 4
enable us to control the norm of the resolvent of the non-self-adjoint operator
Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ). Note that the usual theorems about the norm of the
resolvent of a self-adjoint operator fail in general, and that for the following to
hold it is essential that to restrict the operator to (a subspace of) the positive
spectral subspace.

Theorem 7. Suppose that the assumptions of Theorem 6 b) hold. Assume
additionally that the inequalities CUD|θ|(1+2γ/c) < q and 2γ(1+CFW|Im θ|) <
q are fulfilled for some 0 < q < 1. Then the following statements are true: The
operator Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − z has a bounded inverse for all z ∈ C with

Re z ≤ c2 − 1 . There is a constant CR > 0, independent of c, γ and θ, such
that for all z ∈ C with Re z ≤ c2 − 1 the estimate

∥

∥

∥

∥

[

Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − z
]−1

P̄disc,ñ(c, γ; θ)

∥

∥

∥

∥

≤ CR‖P̄disc,ñ(c, γ; θ)‖
c2 − η − Re z

holds.

Proof. We make a case distinction:
Case 1: Re z ≤ 0. Theorem 6 implies the inclusion Ran(UDL(c, γ; θ)

× P̄disc,ñ(c, γ; θ)UDL(c, γ; θ)−1) ⊂ Ran(Λ
(+)
c,γ (0)). Thus, using Theorem 6 again,

it suffices to show

∥

∥[(UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)

∥

∥ ≤ C

c2− η− Re z
.

As in [5, Proof of Lemma 3.8], we use a resolvent expansion:

[(UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0) (63)

=

∞
∑

n=0

[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)|Dc,γ(0)|1/2

×
[

Λ(+)
c,γ (0)|Dc,γ(0)|−1/2|Dc,0(0)|1/2|Dc,0(0)|−1/2

× [UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1 −Dc,γ(0)]

× |Dc,0(0)|−1/2|Dc,0(0)|1/2|Dc,γ(0)|−1/2Λ(+)
c,γ (0)

× |Dc,γ(0)|1/2[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)|Dc,γ(0)|1/2

]n

|Dc,γ(0)|−1/2

In order to prove the convergence of the series, we have to estimate the terms
in (63). First, we note that

|Dc,γ(0)|(Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z)−1Λ(+)
c,γ (0) = sup

λ≥c2

λ

|λ− z| ≤ 1 (64)
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holds, since Re z ≤ 0. Moreover, the spectral theorem implies

‖|Dc,γ(0)|1/2[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)‖2 (65)

≤‖[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)‖

× ‖|Dc,γ(0)|[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)‖ ≤ C

c2 − η − Re z
.

Lemma 6, Lemma 5 and (64) prove the convergence of the series in (63). Using
Formula (65), the claim follows for Re z ≤ 0 from (63).

Case 2: 0 ≤ Re z ≤ c2 − 1. We use the resolvent expansion

[Dc,γ(θ) − z]−1 =

∞
∑

n=0

[Dc,0(θ) − z]−1[γV (θ)[Dc,0(θ) − z]−1]n. (66)

Hardy’s inequality and Theorem 1 yield ‖γV (θ)[Dc,0(θ)−z]−1‖ ≤ 2γe−Re θ(1+

CFW|Im θ|)‖ |∇|√
−e−2θc2∆+c4β−z

‖. In order to control this norm, we estimate as

follows:

sup
p∈R3

e−Re θ|p|
|
√

e−2θc2p2 + c4 ± z|
≤ 1

√

cos(2Im θ)
sup
p∈R3

|p|
|
√

c2p2 + c4 ± Re z

Since |p|√
c2p2+c4+Re z

≤ 1/c, it suffices to consider the case with the minus sign.

We need to find the supremum of the function fc,l : [0,∞) → R, fc,l(r) :=
r√

c2r2+c4−l
for 0 ≤ l ≤ (c2 − 1). If we differentiate this function, we find that it

attains its maximum at the point r0 :=
√

c4−l2c
l . Now, we define the function

gc(l) := fc,l(r0) = c√
c4−l2

for 0 ≤ l ≤ (c2 − 1). This function is obviously

monotonously increasing in l and therefore attains its maximum at the point
l0 := c2 − 1. We have gc(l0) = c√

c4−(c2−1)2
= c√

2c2−1
≤ 1.

Thus, Equation (66) and Theorem 1 yield the estimate ‖[Dc,γ(θ) − z]−1‖ ≤
C̃‖1/(

√

e−2θc2p2 + c4β − z)‖ with some C̃ > 0. Since
√

e−2θc2p2 + c4β is
normal, we find ‖[Dc,γ(θ)− z]−1‖ ≤ CR/(c

2 − η−Re z), which remains true, if
we restrict the resolvent to Ran P̄disc,ñ(c, γ; θ).

8 Non-relativistic limit

In this section we investigate the non-relativistic limit of complex dilated Dirac
operators. We will use these results in [30], where we will discuss the interac-
tion with the second quantized radiation field. Moreover, we can extend the
resolvent estimate of Theorem 7 to the region close to the spectrum of the
operator and control the norm of the projection occurring there.
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8.1 General Theory

We extend some statements from [49] to the non-self-adjoint case. We define
β± := 1

2 (1 ± β) as well as M := {z ∈ C| − 1 ≤ Re z < 0, |Im z| ≤ 1} and fix a
γ > 0 such that Dc,γ(θ) − c2 has no eigenvalues E with ReE ≤ −1. This is at
least true for 0 ≤ γ < 1 in the case of V = VC , which can be seen, for example,
using the explicit formula for the eigenvalues, see [35]. We define as operators
on L2(R3; C4):

D∞,0(θ) := −e
−2θ

2
∆, D∞,γ(θ) := −e

−2θ

2
∆ − γV (θ)β+

Kc,0(θ) := (D∞,0(θ) − z − z2

2c2
)−1, Kc,γ(θ) := (D∞,γ(θ) − z − z2

2c2
)−1

as well as

R∞,0;θ(z) := (D∞,0(θ) − z)−1, Rc,0;θ(z) := (Dc,0(θ) − z)−1

R∞,γ;θ(z) := (D∞,γ(θ) − z)−1, Rc,γ;θ(z) := (Dc,γ(θ) − z)−1.

First, we generalize [49, Theorem 6.1 and Theorem 6.4] to dilated operators.
As in [49], Theorem 8 is the starting point for the investigation of the non-
relativistic limit.

Theorem 8. a) Suppose that θ ∈ Sπ/4 and c ≥ 1. Then for z /∈ σ(Dc,0(θ))∪
σ(D∞,0(θ)) the resolvent relation

(Dc,0(θ) ∓ c2 − z)−1 =

(

β± ± 1

2c2
(−icα · ∇ ± z)

)

×
(

1 ∓ 1

2c2
z2 (±D∞,0(θ) − z)

−1

)−1

(±D∞,0(θ) − z)−1 (67)

holds.

b) Suppose that θ ∈ Smin{π/4,θ},
2γ
c C(Im θ) < 1 and that (H1) holds. Then

for z ∈M \ R the relations

(Dc,γ(θ) − c2 − z)−1 =

(

β+ +
1

2c2
(−ice−θ

α · ∇ + z)

)

×Kc,γ(θ)
(

1− γ

2c2
V (θ)(−ice−θ

α · ∇ + z)Kc,γ(θ)
)−1

(68)

and

Kc,γ(θ) =

(

1− z2

2c2
(D∞,γ(θ) − z)−1

)−1

(D∞,γ(θ) − z)−1 (69)

hold.
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Proof.
a) We follow the proof of [49, Theorem 6.1], noting that z ∈ C with z(1+ z

2c2 ) /∈
e−2i Im θ[0,∞) is equivalent to z + c2 /∈ σ(Dc,0(θ)). In order to show Equation
(67), we define the operators A±(θ) := Dc,0(θ)± c2 ± z = −icα ·∇± 2c2β±± z
and note that A+(θ)A−(θ) = A−(θ)A+(θ) = −c2e−2i θ∆−2c2z−z2. This yields

A±(θ)−1 =
A∓(θ)

2c2

(

D∞,0(θ) − z − z2

2c2

)−1

, (70)

which in turn implies the claim. Note that all operators are equivalent to
multiplication operators.
b) We follow the proof of [49, Theorem 6.2]. Theorem 3 implies that
z + c2 /∈ σ(Dc,γ(θ)). It follows that Dc,γ(θ) − (c2 + z) = A−(θ) − γV (θ) =
(1 + γV (θ)A−(θ)−1)A−(θ). Since Dc,γ(θ) − (c2 + z) and A−(θ) have bounded
inverses, the bounded operator 1 + γV (θ)A−(θ)−1 is bijective, and is thus in
particular bounded invertible. From Equation (70) it follows that

(Dc,γ(θ)−c2−z)−1=(A−(θ)−γV (θ))−1=A−(θ)−1(1−γV (θ)A−(θ)−1)−1

(71)

=

(

β+ +
1

2c2
(−ice−θ

α · ∇ + z)

)

(D∞,0(θ) − z − z2

2c2
)−1

×
(

1 − γV (θ)β+Kc,0(θ) −
γ

2c2
V (θ)(−ice−θ

α · ∇ + z)Kc,0(θ)
)−1

.

z ∈ M \ R implies z + z2/(2c) ∈ M \ R and in particular z(1 + z
2c2 ) /∈

σ(D∞,γ(θ)), which shows (69). Moreover Kc,γ(θ) = Kc,0(θ) − γV (θ)β+ =
(1 − γV (θ)β+Kc,0(θ)

−1)Kc,0(θ) holds. To see this, note that z + c2 /∈
σ(Dc,γ(θ)) implies z + c2 /∈ σ(Dc,0(θ)), which in turn implies z(1 + z

2c2 ) /∈
σ(D∞,0(θ)), i.e. Kc,0(θ) is bounded invertible. Thus, the bounded operator
1− γV (θ)β+Kc,0(θ)

−1 has a bounded inverse, and

Kc,γ(θ)−1 = Kc,0(θ)
−1(1− γV (θ)β+Kc,0(θ)

−1)−1 (72)

as well as

(

1 − γV (θ)β+Kc,0(θ) −
γ

2c2
V (θ)(−ice−θ

α · ∇ + z)Kc,0(θ)
)−1

= (1 − γV (θ)Kc,0(θ)
−1β+)−1

×
(

1− γ

2c2
V (θ)(−ice−θ

α · ∇ + z)Kc,0(θ)(1 − γV (θ)Kc,0(θ)
−1β+)−1

)−1

(73)

hold. Using (72) and (73), (68) follows from (71).

We denote the real eigenvalues of D∞,γ(θ) by En(∞, γ) = En(γ), ordered by
size and not counting multiplicities. Note that by dilation analyticity these
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eigenvalues are the same as the eigenvalues of D∞,γ(0) and that |En(∞, γ) −
En,l(c, γ)| = O(1/c2) for all l ∈ {1, . . . , Nn} by [49, Theorem 6.8]. We pick now
η as in Section 7 and define for each ǫ̃ > 0 the set

Mη,ǫ̃ := {z ∈ C|1 ≤ Re z ≤ −(η + ǫ̃), |Im z| ≤ 1, dist(z, σ(Dc,γ(θ))) ≥ ǫ̃}.

Moreover, we set D(w, r) := {z ∈ C||z − w| < r} for w ∈ C and r > 0. Fix
ǫ̃ > 0 so small that for all n, n′ ∈ N with n 6= n′ and 1 ≤ n, n′ ≤ ñ the
sets D(En(∞, γ), 2ǫ̃) and D(En′(∞, γ), 2ǫ̃) are disjoint and contained in the
set {z ∈ C|1 ≤ Re z ≤ −(η + ǫ̃), |Im z| ≤ 1}. Now we pick for ǫ̃ > 0 a contour
Γ with positive orientation such that Γ is contained Mη,ǫ̃ and has only the
eigenvalue En(γ) in its interior, but no other eigenvalues of σ(D∞,γ(θ)). Then
we define

Pn(∞, γ; θ) := − 1

2πi

∫

Γ

dz R∞,γ;θ(z)β+.

We set Pdisc(∞, γ; θ) :=
∑ñ

i=1 Pi(∞, γ; θ) and P̄disc(∞, γ; θ) := 1 −
Pdisc(∞, γ; θ). Note that using the definitions in Appendix A and in slight
abuse of notation Pdisc(∞, γ; θ) = Pdisc(γ; θ)β+ and P̄disc(∞, γ; θ) = β− +
P̄disc(γ; θ)β+.
Now we are in the position to generalize [49, Corollary 6.5] to dilated operators.

Corollary 2. Suppose that |θ| < θ0, where θ0 is sufficiently small (see Ap-
pendix A), and θ ∈ Smin{π/4,Θ} as well as 2γ

c C(Im θ) < 1. Suppose moreover
that (H1) holds. Then the resolvent expansion

[

Dc,γ(θ) − (c2 + z)
]−1

=

∞
∑

n=0

1

cn
Rn(z). (74)

holds for all z ∈Mη,ǫ̃ and all sufficiently large c. The series converges in norm,
uniformly in θ and z. In particular,

[Dc,γ(θ) − (c2 + z)]−1 −→
c→∞

[D∞,γ(θ) − z]−1β+

uniformly in θ and z.

Proof. First, we need an estimate on the resolvent of D∞,γ(θ). We split the
resolvent according to

[D∞,γ(θ) − z]−1 = [D∞,γ(θ)|Ran P̄disc(∞,γ;θ) − z]−1P̄disc(∞, γ; θ) (75)

+
ñ

∑

n=1

[D∞,γ(θ)|Ran Pn(∞,γ;θ) − z]−1Pn(∞, γ; θ).

Theorem A.1 implies that the norm of the first summand in (75) is bounded
by 2/η. The norms of the other summands can be estimated according to
∥

∥[D∞,γ(θ)|Ran Pn(∞,γ;θ) − z]−1Pn(∞, γ; θ)
∥

∥ ≤ ‖Pn(∞,γ;θ)‖
dist(z,En(γ)) ≤ C|θ|

dist(z,En(γ)) using
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Corollary A.1. Thus, we have for sufficiently small 1/c (dependent on ǫ̃) and
all z ∈Mη,ǫ̃ the expansion

(1 − z2

2c2
(D∞,γ(θ) − z)−1)−1 = (D∞,γ(θ) − z)−1

∞
∑

n=0

(
z2

2c2
(D∞,γ(θ) − z)−1)n.

Hardy’s inequality implies for f ∈ H2(R3; C4) the estimates ‖V f‖ ≤ 2‖∇f‖ ≤
a‖∆f‖ + (1/a)‖f‖ and e−2Re θ‖∆f‖ ≤ 1/(1 − 2aγ)‖D∞,γ(θ)f‖ + 2γ/[a(1 −
2aγ)]‖f‖ with a sufficiently small a > 0. It follows that

‖ γ

2c2
V (θ)(−ice−θ

α·∇+z)(D∞,γ(θ)−z)−1‖ ≤ γ

c
[C1+C2‖(D∞,γ(θ)−z)−1‖]

holds with C1, C2 > 0 (independent of γ, c and θ), which implies that the
last factor in (68) has a norm convergent series expansion in 1/c for 1/c small
enough.

Remark 4. We find R0(z) := β+R∞,γ;θ(z) as in [49]. As in [49, Remark after
Corollary 6.5], the operators occurring with even powers of 1/c are even, and
the operators occurring with odd powers of 1/c are odd .

Lemma 7. Suppose that the assumptions of Corollary 2 hold. Then there is a
constant CP,n > 0 (independent of c and θ) such that for sufficiently large c
the estimate

‖Pn(c, γ; θ) − Pn(∞, γ; θ)‖ ≤ CP,n

c

holds.

Proof. This follows immediately from Corollary 2.

The following two corollaries extend Theorem 7.

Corollary 3. Suppose that the assumptions of Corollary 2 hold. Then there
is a constant C > 0 (possibly dependent on θ) such that for all z ∈ C with
−1 ≤ Re z ≤ −η and |Im z| ≤ 1 and all sufficiently large c the estimate

‖[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − (c2 + z)]−1P̄disc,ñ(c, γ; θ)‖ ≤ C

holds.

Proof. Corollary 2 implies that [Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ)−(c2+z)]−1 is uniformly
bounded in z ∈ Mη,ǫ̃ and c (for sufficiently large c). Lemma 7 and Lemma 4
yield the existence of an upper bound on

‖P̄disc,ñ(c, γ; θ)‖ = ‖1− (Λ(−)
c,γ (θ) + Pdisc,ñ(c, γ; θ))‖,

which does not depend on c. Thus the claim holds for z ∈Mη,ǫ̃.
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Let z0 ∈ D(En(∞, γ), ǫ̃). Then Γ := {z ∈ C||z−En(∞, γ)| = 2ǫ̃} ⊂Mη,ǫ̃ holds
because of the definition of the set Mη,ǫ̃. Since [Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ))− (c2 +

z)]−1 in z ∈ {z ∈ C| − 1 ≤ Re z ≤ −η, |Im z| ≤ 1} is holomorphic,

[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − (c2 + z0)]
−1P̄disc,ñ(c, γ; θ) = − 1

2πi

×
∫

Γ

[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ)) − (c2 + z)]−1P̄disc,ñ(c, γ; θ)
1

z − z0
dz

holds, where the contour is oriented in the positive sense. This implies the
claim for z0 ∈ D(En(∞, γ), ǫ̃).

Corollary 4. Suppose that the assumptions of Theorem 7 and Corollary 2
hold. Then there is a C > 0 (possibly dependent on θ) such that for all z ∈ C
with −1 < Re z ≤ −η and |Im z| ≤ 1 or with −∞ < Re z ≤ −1 and all
sufficiently large c the estimate

‖[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − (c2 + z)]−1P̄disc,ñ(c, γ; θ)‖ ≤ C

−η − Re z

is true.

Proof. This follows immediately from Corollary 3 and Theorem 7 together with
Lemma 7.

Now, we define a transformation function UNR(c, γ; θ) : L2(R3; C4) →
L2(R3; C4) by

UNR(c, γ; θ) := [Pn(c, γ; θ)Pn(∞, γ; θ) + (1 − Pn(c, γ; θ))(1 − Pn(∞, γ; θ))]

× [1 − (Pn(c, γ; θ) − Pn(∞, γ; θ))2]−1/2.

Lemma 8. Suppose that the assumptions of Corollary 2 and the inequality
CP,n/c < q < 1 hold for some 0 < q < 1. Then the mapping UNR(c, γ; θ) is
bounded with bounded inverse VNR(c, γ; θ). The relations

UNR(c, γ; θ)Pl(∞, γ; θ)UNR(c, γ; θ)−1 = Pl(c, γ; θ) (76)

and

‖UNR(c, γ; θ) − 1‖ ≤ CNRP

c
(77)

hold with a constant CNRP > 0 independent of c and θ. UNR(c, γ; θ) is a
holomorphic function of θ.

Proof. Using Lemma 7 this can be proven in the same way as Theorem 6.
For the holomorphicity in θ note that the power series (in 1/c) for Rc,γ;θ(z),
Pn(c, γ; θ) and UNR(c, γ; θ) converge uniformly in θ.
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Remark 5. As in [49] we obtain by Remark 4 that in the series expansion of
UNR(c, γ; θ) the operators occurring with even powers of 1/c are even and the
operators occurring with odd powers of 1/c are odd. In particular,

UNR(c, γ; θ) = UNR,g(c, γ; θ) +
1

c
UNR,ug(c, γ; θ), (78)

where UNR,g(c, γ; θ) and UNR,ug(c, γ; θ) are even and odd operators holomorphic
in 1/c.

The following theorem generalizes [49, Theorem 6.7] and shows that the lower
component of an eigen-spinor of the Dirac operator converges to zero as c→ ∞.

Theorem 9. Suppose that the assumptions of Lemma 8 hold. Then the normed
eigenfunctions φn(c, γ; θ) of Dc,γ(θ) with eigenvalue En,l(c, γ) have the form

φn,l(c, γ; θ) = φn,l,+(c, γ; θ) +
1

c
φn,l,−(c, γ; θ),

φn,l,±(c, γ; θ) ∈ β±L
2(R3; C4), (79)

where φn,l,±(c, γ; θ) are continuous functions of 1/c.

Proof. We have Pn(c, γ; θ)Dc,γ(θ)Pn(c, γ; θ) = − 1
2πi

∫

Γ
z

Dc,γ (θ)−zdz . Any eigen-

vector φ̃n(c, γ; θ) of Pn(c, γ; θ)Dc,γ(θ)Pn(c, γ; θ) and thus any eigenvector of

Dc,γ(θ) with eigenvalue En,l(c, γ) is given by φ̃n,l(c, γ; θ)
= UNR(c, γ; θ)φn,l(∞, γ; θ) for a φn,l(∞, γ; θ) ∈ β+L

2(R3; C4). Remark 5

and the analytic perturbation theory imply φ̃n,l(c, γ; θ) = φ̃n,l,+(c, γ; θ) +
1
cφn,l,−(c, γ; θ), where φ̃n,l(c, γ; θ) and φ̃n,l,±(c, γ; θ) are holomorphic functions
of 1/c. Since the projections Pn(c, γ; θ) are nor orthogonal, the normed eigen-
functions are in general not holomorphic functions of 1/c. But nevertheless
‖φ̃n,l(c, γ; θ)‖ ≥ 1 − C 1

c holds for some C > 0 and thus (79) follows.

We use these statements to prove that eigenfunctions are bounded in the norm
of H1(R3; C4).

Theorem 10. Suppose the assumptions of Lemma 8 hold. Then there is a con-
stant CEF > 0, independent of c, such that the normed eigenfunctions φn(c, γ; θ)
of Dc,γ(θ) with eigenvalue En,l(c, γ) fulfill the estimates

‖∇φn,l,+(c, γ; θ)‖ ≤ CEF (80)

and

‖∇φn,l,−(c, γ; θ)‖ ≤ CEF

c
(81)

for sufficiently large c.
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Proof. We follow Esteban and Séré [10, Proof of Lemma 7 and Theorem 3],
who considered the non-relativistic limit of self-adjoint Dirac-Fock operators.
Since Dc,γ(θ) is not self-adjoint, there are some additional difficulties. To
simplify the notation, we suppress the dependence of φn,l(c, γ; θ) on c, γ and
θ. We have

En,l(c, γ)
2‖φn,l‖2 = ‖Dc,γ(θ)φn,l‖2

≥e−2Re θ[c2(1 − 2 sin Im θ − γ/4)− 4cγ]‖∇φn,l‖2

+[c4(1 − 2 sin Im θ) − 16γc2]‖φn,l‖2,

where we used Hardy’s inequality. Since En,l(c, γ)
2 − c4 ≤ 0, it follows that

‖∇φn,l‖2 ≤ En,l(c, γ)
2 − c4 + 2 sin Im θc2 + 16c2

c2(1 − 2 sin Im θ − 1/4)− 4cγ
‖φn,l‖2

≤ C(sin Im θc2 + 1)‖φn,l‖2 (82)

for sufficiently large c, where C > 0 does not depend on c.
Note that the term proportional to c2 in (82) does not occur for Im θ = 0, which
implies immediately the boundedness of ‖∇φn,l‖ in this case. To circumvent
this difficulty, we write the Dirac equation in its components, where (in abuse
of notation) φn,l,± denotes the upper and, respectively, lower components of
φn,l:

ce−θ
σ · ∇φn,l,− − γV (θ)φn,l,+ + c2φn,l,+ = En,l(c, γ)φn,l,+ (83)

ce−θ
σ · ∇φn,l,+ − γV (θ)φn,l,− − c2φn,l,− = En,l(c, γ)φn,l,− (84)

Dividing (83) by c, using Hardy’s inequality and the boundedness of En,l(c, γ)−
c2, Formula (82) implies

‖∇φn,l,−‖ ≤ 2

c
‖∇φn,l,+‖ +

|En,l(c, γ) − c2|
c|e−Re θ| ‖φn,l,+‖ ≤ C (85)

for some C > 0 independent of c, i.e. ‖∇φn,l,−‖ is bounded in c. Dividing (84)
by c, we obtain

‖∇φn,l,+‖ ≤ 2

c
‖∇φn,l,−‖ +

|En,l(c, γ) + c2|
c|e−Re θ| ‖φn,l,−‖ ≤ C (86)

for some C > 0 independent of c, where we used Theorem 9 and Equation (85).
This shows (80). Inserting (86) in (85), Equation (81) follows.

Remark 6. Their validity of Theorem 9 and Theorem 10 in the Coulomb case
could be derived from the explicit form of the eigenfunctions (see the proof of
Lemma 11).
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Moreover, we need a bound on the norm of the dilation operator U(θ), restricted
to the spaces RanPn(c, γ; θ).

Lemma 9. Suppose that the assumptions of Lemma 8 hold. Then the family
of operators U(θ)|Ran Pn(c,γ;0) : RanPn(c, γ; 0) → RanPn(c, γ; θ) is uniformly
bounded in c and θ.

Proof. Surely U(θ)|Ran Pn(∞,γ;0) : RanPn(∞, γ; 0) → RanPn(∞, γ; θ) is well
defined for all θ ∈ C with |θ| ≤ min{π/4,Θ} (see [2, 6]) and (as a mapping
between finite-dimensional vector spaces) bounded. Since the operator is a
holomorphic function of θ for |θ| ≤ min{π/4,Θ}, there is a bound C′ > 0
(independent of θ) on its norm.

Let f ∈ RanPn(c, γ; 0). Then there is a f̃ ∈ RanPn(∞, γ; 0) with f =
UNR(c, γ; 0)f̃ , and for real θ f(θ) := Uel(θ)f = U(θ)UNR(c, γ; 0)U(θ)−1f̃(θ) =
UNR(c, γ; θ)f̃(θ) holds, where f̃(θ) := Uel(θ)f̃ . By holomorphic continua-
tion we obtain for complex θ the equality f(θ) = UNR(c, γ; θ)f̃(θ). Thus
Lemma 8 implies ‖f(θ)‖ ≤ ‖UNR(c, γ; θ)‖‖f̃(θ)‖ ≤ (1 + CNRP/c)C

′‖f̃‖ ≤
(1 + CNRP/c)C

′‖f‖ for some C′ > 0 independent of c and θ.

The following corollary shows that also the projections on the fine structure
components are bounded uniformly in c. This follows from the fact the dilated
projections are similar to the corresponding orthogonal projections belonging
to the corresponding self-adjoint Dirac operators because of Lemma 9. Note
that in general such projections are not uniformly bounded in the perturbation
parameter (see [33, Chapter II-1.5]).

Corollary 5. Let 1 ≤ n ≤ ñ and suppose that the assumptions of Lemma 9
hold. Then ‖Pn,l(c, γ; θ)‖ ≤ C for some C > 0 independent of n, l, c and θ.

Proof. This follows from Lemma 5, since the projections Pn,l(c, γ; 0) =
= U(θ)−1Pn,l(c, γ; 0)U(θ) are orthogonal.

8.2 Application to expectation values of Dirac matrices

We are now in the position to investigate expectation values of the matrices
α. Since these matrices are odd, such expectation values involve scalar prod-
ucts of the upper component of one spinor with the lower component of the
other spinor. Therefore, one expects that such expectation values converge to
zero like 1/c as c → ∞ uniformly in a set of suitable spinors. We show in the
following that this is true, if one of the spinors is in the set of eigenstates (in
the positive part of the gap) and the other state is an arbitrary state from the
positive spectral subspace. Note that this is not true, if both states are arbi-
trary states from the positive spectral subspace. At least for the free spectral
subspaces this can be seen from the explicit form of the projections (see Section
5). We will apply this result in [30].
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Lemma 10. Suppose that the assumptions of Lemma 9 hold and let ñ as in
Section 7. Then there is a constant C > 0, independent of c and θ, such that
for all 1 ≤ n, n′ ≤ ñ, 1 ≤ l ≤ n, 1 ≤ l′ ≤ n′ and k1, k2 ∈ R3

‖Pn,l(c, γ; θ)k1 · αeik2·xPn′,l′(c, γ; θ)‖ ≤ C|k1|
c

.

Proof. This follows from Theorem 9 and Corollary 5, since α is an odd operator.

Lemma 11. Suppose that V = VC . Let c ≥ 1 and γ/c <
√

3/2. Then there is
a constant C > 0, independent of c, such that

‖|x|Pn,l(c, γ; 0)‖ ≤ C

holds, where x denotes the operator of multiplication with the space variable.

Proof. We define the unitary dilations Uc fc(x) := (Ucf)(x) := c−3/2f(c−1x)
and note that UcDc,γU

−1
c = c2D1,γ/c. Thus, if f ∈ H1(R3; C4) is a normed

eigenfunction of Dc,γ with eigenvalue En,l, then fc is a normed eigenfunction
of D1,γ/c with eigenvalue En,l/c

2. The radial parts fc,±(r) of the upper and
lower component, respectively, of fc are (see [35, Abschnitt 36])

fc,±(r) :=
±(2λ)3/2

Γ(2γ̃ + 1)

(1 ± En,l/c
2)Γ(2γ̃ + nr + 1)

4 γ
cλ( γ

cλ − κ)nr!
(2λr)γ̃−1e−λr

× {( γ
cλ

− κ)F (−nr, 2γ̃ + 1, 2λr) ∓ nrF (1 − nr, 2γ̃ + 1, 2λr)}.

Here the radial quantum number fulfills nr ∈ N0 if κ < 0 and nr ∈ N if κ > 0,
and κ ∈ ±N is the eigenvalue of the spin-orbit operator (see [49, Chapter
4.6]). F denotes the confluent hypergeometric function, which reduces to a
polynomial in 2λr here (see [35, Abschnitt 36] and [34, Abschnitt d]). Moreover,

γ̃ :=
√

κ2 − γ2/c2 and λ :=
√

1 − E2
n,l/c

4. Thus, the radial parts f±(r) of the

upper respectively lower components of f are

f±(r) :=
±(2cλ)3/2

Γ(2γ̃ + 1)

(1 ± En,l/c
2)Γ(2γ̃ + nr + 1)

4 γ
cλ( γ

cλ − κ)nr!
(2λr)γ̃−1e−cλr

× {( γ
cλ

− κ)F (−nr, 2γ̃ + 1, 2cλr) ∓ nrF (1 − nr, 2γ̃ + 1, 2cλr)}.

Using the explicit formula (see [35]) for the eigenvalues, we see that cλ is a
function bounded in c with cλ −→ γ/n for c → ∞. Moreover, obviously
γ̃ → |κ| holds. This shows the claim.

Remark 7. At this point we make use of the explicit from of the eigenfuntions
of the Coulomb Dirac operator. There do not seem any results to be available
in the literature about exponential decay of eifenfunctions of the Dirac operator
uniformly in the velocity of light.
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Lemma 12. Suppose that the assumptions of Lemma 9 are fulfilled and let ñ
as in Section 7. Let moreover f : C → C with |f(z)| ≤ |z|. Then there is a
constant C > 0, independent of c, such that for all 1 ≤ n ≤ ñ, 1 ≤ l ≤ n and
k1, k2 ∈ R3

‖Pn,l(c, γ; 0)k1 · αf(k2 · x)Pn′,l′(c, γ; 0)‖ ≤ C|k1||k2|
c

.

Proof. Lemma 11 implies that ‖xPn,l(c, γ; 0)‖ is uniformly bounded in c, in
particular (using the notation of Theorem 9) xφn,l,+(c, γ; 0). Now the claim
follows exactly as in Lemma 10.

The following theorem generalizes Lemma 10. Note that the statement of
Lemma 10 is not completely obvious, since not even the lower component of
the free positive spectral projection converges to zero in norm as c→ ∞. This
is, however, compensated by the fact that theH1-norm of the upper component
of bound states is bounded uniformly in c (Theorem 10).

Theorem 11. Suppose the assumptions of Lemma 9 hold and let ñ as in Section
7. Then there is a constant C > 0, independent of c and θ such that for all
1 ≤ n ≤ ñ, 1 ≤ l ≤ n and k1, k2 ∈ R3

‖Pn,l(c, γ; θ)k1 · αeik2·xΛ(±)
c,γ (θ)‖ ≤ C|k1|(1 + |k2|)

c
.

Proof. Corollary 1 and Corollary 5 imply ‖Pn,l(c, γ; θ)k1 · αeik2·xΛ
(±)
c,γ (θ)‖ ≤

‖Pn,l(c, γ; θ)k1 ·αeik2·xΛ
(±)
c,0 (θ)‖+CNR|k1|γc with some C > 0 independent of θ

and c. Thus, it suffices to show ‖Pn,l(c, γ; θ)k · αeik2·xΛ
(±)
c,0 (θ)‖ ≤ C|k1|(1+|k2|)

c

for some C > 0. In a first step, we pick f ∈ RanPn,l(c, γ; θ̄) and g ∈
Ran Λ

(±)
c,0 (θ) normed, but arbitrary otherwise. We have g = VFW(c; θ)(g̃, 0)T

for some g̃ ∈ L2(R3; C2). It follows that g = F−1( c2+Ec(p;θ)
Nc(p;θ) F g̃, ce−θ

σ·p
Nc(p;θ) F g̃)T ,

where F denotes both the Fourier transform on L2(R3; C2) and on L2(R3; C4).
We decompose f = (f+, f−)T with f± ∈ L2(R3; C2). It follows that

|(f, Pn,l(c, γ; θ)k1αe
ik2·xΛ

(±)
c,0 (θ)g)|

≤|(f+, k1 · σF−1−ce−θ
σ · p

Nc(p; θ)
F g̃)| + |k1|‖f−‖‖g̃‖ sup

p∈R3

|c
2 + Ec(p; θ)

Nc(p; θ)
|.

Similarly to the proof of Theorem 1 we see that the supremum

supp∈R3 | c
2+Ec(p;θ)
Nc(p;θ) | is bounded independently of c and θ. Thus, Theorem

9 implies the claim for the second summand.

For the first summand, observe that supp∈R3 | ce−θ

Nc(p;θ) | ≤ eπ/4/c. Thus

|(f+, k1 · σeik2·xF−ce−θ
σ · p

Nc(p; θ)
F−1g̃)|

= |(σ · (−i∇)k1 · σe−ik2·xf+,F
−ce−θ

Nc(p; θ)
F−1g̃)| ≤ |k1|eπ/4

c
‖∇eik2·xf+‖‖g̃‖.
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Theorem 1 yields ‖g̃‖ ≤
√

1 + CFW|Im θ|‖g‖, which shows

|(f, Pn,l(c, γ; θ)k1αe
ik2·xΛ

(±)
c,0 (θ)g)| ≤ C‖f‖‖g‖ (87)

for some C > 0, if one takes Theorem 9 and Theorem 10 into account .
Now, pick f, g ∈ L2(R3; C4) arbitrarily and apply (87) to the functions

Pn,l(c, γ; θ̄)f and Λ
(±)
c,0 (θ)g. This implies the claim together with Corollary

5 and Lemma 4.

A Some Estimates taken from Bach, Fröhlich, and Sigal [5]

In this appendix we quote some results from [5] which we need for the inves-
tigation of the non-relativistic limit in Section 8. We quote the result only in
the generality which we need here and would like to mention that it also holds
for suitable multi-particle Schrödinger operators.
We define

Hγ(θ) := −e
−2θ

2
∆ − γV (θ) (88)

as operator on L2(R3; C2) and pick some eigenvalue Eñ. We define (with
r > 0 small enough) Pel,n′(γ; θ) := −(2πi )−1

∫

|En′−z|=r
(Hγ(θ) − z)−1dz as

projection onto the eigenspace of Hγ(θ) with eigenvalue En′ . We abbrevi-
ate Pn′(γ; θ) := 1 − Pn′(θ). For η > 0 with Eñ < −η < Eñ+1 we define
Pdisc(γ; θ) :=

∑

i:Ei≤−η Pi(γ; θ) and P disc(γ; θ) := 1 − Pdisc(γ; θ).
In the following, we pick a sufficiently small θ0 > 0.

Lemma A.1 ([5], Corollary 1.4.). There is a constant C > 0 such that for all
|θ| < θ0 the estimate ‖[Hγ(θ) −Hγ(0)](Hγ(0) ± i )−1‖ ≤ C|θ| holds.

Lemma (A.1) implies

Corollary A.1 ([5], Equation (3.79)). There is a C > 0 such that for all
|θ| < θ0 the estimate ‖Pn(γ; θ)−Pn(γ; 0)‖ ≤ C|θ| holds. The same estimate is
true if one replaces Pn with Pdisc.

Using Lemma A.1 and Corollary A.1 as well as a resolvent expansion one shows

Theorem A.1 ([5], Lemma 3.8.). Let z ∈ C with Re z < Σ − η. Then the
operator Hγ(θ)− z is invertible on Ran P̄disc(γ; θ) for sufficiently small |θ|(1 +
(−η − Re z)−1) and the estimate

∥

∥(Hγ(θ)|P̄disc(γ;θ) − z)−1P̄disc(γ; θ)
∥

∥ ≤ 2(−η − Re z)−1

holds.
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Lützowstr. 125
58095 Hagen
Germany
Matthias.Huber@gmx.de

Documenta Mathematica 14 (2009) 297–338


