
Documenta Math. 359

On the Motivic Spectra Representing

Algebraic Cobordism and Algebraic K-Theory

David Gepner and Victor Snaith

Received: September 9, 2008

Communicated by Lars Hesselholt

Abstract. We show that the motivic spectrum representing alge-
braic K-theory is a localization of the suspension spectrum of P∞,
and similarly that the motivic spectrum representing periodic alge-
braic cobordism is a localization of the suspension spectrum of BGL.
In particular, working over C and passing to spaces of C-valued points,
we obtain new proofs of the topological versions of these theorems,
originally due to the second author. We conclude with a couple of
applications: first, we give a short proof of the motivic Conner-Floyd
theorem, and second, we show that algebraic K-theory and periodic
algebraic cobordism are E∞ motivic spectra.
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1. Introduction

1.1. Background and motivation. Let (X,µ) be an E∞ monoid in the
category of pointed spaces and let β ∈ πn(Σ∞X) be an element in the stable
homotopy of X . Then Σ∞X is an E∞ ring spectrum, and we may invert the
“multiplication by β” map

µ(β) : Σ∞X ≃ Σ∞S0 ∧ Σ∞X
Σ−nβ∧1
−→ Σ−nΣ∞X ∧ Σ∞X

Σ−nΣ∞µ
−→ Σ−nΣ∞X.

to obtain an E∞ ring spectrum

Σ∞X [1/β] := colim{Σ∞X
β∗

−→ Σ−nΣ∞X
Σ−nβ∗

−→ Σ−2nΣ∞X −→ · · · }

with the property that µ(β) : Σ∞X [1/β] → Σ−nΣ∞X [1/β] is an equivalence.
In fact, as is well-known, Σ∞X [1/β] is universal among E∞ Σ∞X-algebras A
in which β becomes a unit.
It was originally shown in [27] (see also [28] for a simpler proof) that the
ring spectra Σ∞

+ BU [1/β] and Σ∞
+ CP∞[1/β], obtained as above by taking X

to be BU+ or P
∞
+ and β a generator of π2X (a copy of Z in both cases),

represent periodic complex cobordism and topological K-theory, respectively.
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This motivated an attempt in [27] to define algebraic cobordism by replacing
BGL(C) in this construction with Quillen’s algebraic K-theory spaces [26].
The result was an algebraic cobordism theory, defined in the ordinary stable
homotopy category, which was far too large.
By analogy with topological complex cobordism, algebraic cobordism ought to
be the universal oriented algebraic cohomology theory. However, there are at
least two algebraic reformulations of the topological theory; as a result, there
are at least two distinct notions of algebraic cobordism popular in the literature
today. One, due to Levine and Morel [11], [12], constructs a universal “oriented
Borel-Moore” cohomology theory Ω by generators and relations in a way remi-
niscent of the construction of the Lazard ring, and indeed the value of Ω on the
point is the Lazard ring. However, Ω is not a generalized motivic cohomology
theory in the sense of Morel and Voevodsky [20], so it is not represented by a
motivic ring spectrum.
The other notion, and the one relevant to this paper, is Voevodsky’s spectrum
MGL [34]. It is a bona fide motivic cohomology theory in the sense that it is
defined directly on the level of motivic spectra. Although the coefficient ring
of MGL is still not known (at least in all cases), the orientability of MGL
implies that it is an algebra over the Lazard ring, as it carries a formal group
law. Provided one defines an orientation as a compatible family of Thom
classes for vector bundles, it is immediate that MGL represents the universal
oriented motivic cohomology theory; moreover, as shown in [23], and just as in
the classical case, the splitting principle implies that it is enough to specify a
Thom class for the universal line bundle.
The infinite Grassmannian

BGLn ≃ Grassn,∞ := colimk Grassn,k

represents, in the A1-local homotopy category, the functor which associates to
a variety X the set of isomorphism classes of rank n vector bundles on X . In
particular, tensor product of line bundles and Whitney sum of stable vector
bundles endow P

∞ ≃ BGL1 and BGL ≃ colimnBGLn with the structure
of abelian group objects in the A1-homotopy category. Note that, over C,
the spaces P∞(C) and BGL(C) underlying the associated complex-analytic
varieties are equivalent to the usual classifying spaces CP∞ and BU .
We might therefore hypothesize, by analogy with topology, that there are equiv-
alences of motivic ring spectra

Σ∞
+ BGL[1/β] −→ PMGL and Σ∞

+ P
∞[1/β] −→ K

where PMGL denotes a periodic version of the algebraic cobordism spectrum
MGL. The purpose of this paper is to prove this hypothesis. In fact, it holds
over an arbitrary Noetherian base scheme S of finite Krull dimension, provided
one interpretsK properly: the Thomason-TrobaughK-theory of schemes [33] is
not homotopy invariant, and so it cannot possibly define a motivic cohomology
theory. Rather, the motivic analogue of K-theory is Weibel’s homotopy K-
theory [38]; the two agree for any regular scheme.
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1.2. Organization of the paper. We begin with an overview of the theory
of oriented motivic ring spectra. The notion of an orientation is a powerful
one, allowing us to compute first the oriented cohomology of flag varieties and
Grassmannians. We use our calculations to identify the primitive elements in
the Hopf algebra R0(Z×BGL) with R0(BGL1), a key point in our analysis of
the abelian group R0(K) of spectrum maps from K to R.
The second section is devoted to algebraic cobordism, in particular the proof
that algebraic cobordism is represented by the motivic spectrum Σ∞

+ BGL[1/β].
We recall the construction of MGL as well as its periodic version PMGL and
note the functors they (co)represent as monoids in the homotopy category of
motivic spectra. We show that PMGL is equivalent to

∨
n Σ∞MGLn[1/β]

and use the isomorphism R0(BGL) ∼=
∏

nR
0(MGLn) to identify the functors

Rings(Σ∞
+ BGL[1/β],−) and Rings(

∨
n Σ∞MGLn[1/β],−).

The third section provides the proof that algebraic K-theory is represented
by the motivic spectrum Σ∞

+ P∞[1/β]. First we construct a map; to see that
it’s an equivalence, we note that it’s enough to show that the induced map
R0(K) → R0(Σ∞

+ P∞[1/β]) is an isomorphism for any PMGL-algebra R. An

element of R0(K) amounts to a homotopy class of an infinite loop map Z ×
BGL ≃ Ω∞K → Ω∞R; since loop maps Z × BGL → Ω∞R are necessarily
additive, we are reduced to looking at maps P∞ → Ω∞R. We use this to
show that the spaces map(K,R) and map(Σ∞

+ P∞[1/β], R) both arise as the
homotopy inverse limit of the tower associated to the endomorphism of the
space map(Σ∞

+ P∞, R) induced by the action of the Bott map P1 ∧ P∞ → P∞,
and are therefore homotopy equivalent.
We conclude the paper with a couple of corollaries. The first is a quick proof
of the motivic Conner-Floyd theorem, namely that the map

MGL∗,∗(X)⊗MGL∗,∗ K∗,∗ −→ K∗,∗(X),

induced by anMGL-algebra structure onK, is an isomorphism for any compact
motivic spectrum X . This was first obtained by Panin-Pimenov-Röndigs [24]
and follows from a motivic version of the Landweber exact functor theorem [21].
We include a proof because, using the aforementioned structure theorems, we
obtain a simplification of the (somewhat similar) method in [24], but which is
considerably more elementary than that of [21].
Second, it follows immediately from our theorems that both K and PMGL are
E∞ as motivic spectra. An E∞ motivic spectrum is a coherently commutative
object in an appropriate symmetric monoidal model category of structured
motivic spectra, such as P. Hu’s motivic S-modules [6] or J.F. Jardine’s motivic
symmetric spectra [7]; in particular, this is a much stronger than the assertion
that algebraic K-theory defines a presheaf of (ordinary) E∞ spectra on an
appropriate site. This is already known to be the case for algebraic cobordism,
where it is clear from the construction of MGL, but does not appear to be
known either for periodic algebraic cobordism or algebraic K-theory.
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This is important because the category of modules over an E∞ motivic spec-
trum R inherits a symmetric monoidal structure, at least in the higher categor-
ical sense of [16]. As a result, there is a version of derived algebraic geometry
which uses E∞ motivic spectra as its basic building blocks. In [13], J. Lurie
shows that specΣ∞

+ P
∞[1/β] is the initial derived scheme over which the de-

rived multiplicative group GR := specR ∧ Σ∞
+ Z acquires an “orientation”, in

the sense that the formal group of GR may be identified with the formal spec-
trum P∞⊗ specR. Since Σ∞

+ CP∞[1/β] represents topological K-theory, this is
really a theorem about the relation between K-theory and the derived multi-
plicative group, and is the starting point for Lurie’s program to similarly relate
topological modular forms and derived elliptic curves. Hence the motivic ver-
sion of the K-theory result may be seen as a small step towards an algebraic
version of elliptic cohomology.

1.3. Acknowledgements. We are very grateful to Mike Hopkins and Rick
Jardine for helpful lunch-break discussions during a workshop at the Fields
Institute in May 2007, as well as to an anonymous referee for their careful
reading of the paper and constructive criticism. We thank M. Spitzweck and
P.A. Østvær for bringing to our attention their methods, which give an alter-
nate proof of Theorem 4.17 (see [32]), and for suggesting a number of valuable
comments. The first author would also like to thank Sarah Whitehouse for
illuminating conversations about operations in K-theory and John Greenlees
for his interest in this project and its equivariant analogues.

2. Oriented Cohomology Theories

2.1. Motivic spaces. Throughout this paper, we write S for a Noetherian
base scheme of finite Krull dimension.

Definition 2.1. A motivic space is a simplicial sheaf on the Nisnevich site of
smooth schemes over S.

We often write 0 for the initial motivic space ∅, the simplicial sheaf with con-
stant value the set with zero elements, and 1 for the final motivic space S, the
simplicial sheaf with constant value the set with one element.
We assume that the reader is familiar with the Morel-Voevodsky A

1-local model
structure on the category of motivic spaces used to define the unstable motivic
homotopy category [20]. We adhere to this treatment with one exception: we
adopt a different convention for indexing the simplicial and algebraic spheres.
The simplicial circle is the pair associated to the constant simplicial sheaves

S1,0 := (∆1, ∂∆1);

its smash powers are the simplicial spheres

Sn,0 := (∆n, ∂∆n).

The algebraic circle is the multiplicative group scheme G := Gm := A
1 − A

0,
pointed by the identity section 1 → G; its smash powers define the algebraic
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spheres

S0,n := (G, 1)∧n.

Putting the two together, we obtain a bi-indexed family of spheres

Sp,q := Sp,0 ∧ S0,q.

It is straightforward to show that

(An − A
0, 1) ≃ Sn−1,n

and

(An,An − A
0) ≃ (Pn,Pn−1) ≃ Sn,n.

We emphasize that, according to the more usual grading convention, Sp,q is
written Sp+q,q; we find it more intuitive to separate the simplicial and algebraic
spheres notationally. Moreover, for this purposes of this paper, the diagonal
spheres

Sn,n ≃ (An,An − A
0) ≃ (Pn,Pn−1)

are far and away the most important, so they will be abbreviated

Sn := Sn,n.

This allows us to get by with just a single index most of the time.
We extend this convention to suspension and loop functors. That is, Σ(−)
denotes the endofunctor on pointed motivic spaces (or spectra) defined by

ΣX := S1 ∧X := S1,1 ∧X.

Similarly, its right adjoint Ω(−) is defined by

ΩX := map+(S1, X) := map+(S1,1, X).

Note that Σ is therefore not the categorical suspension, which is to say that the
cofiber of the unique map X → 1 is given by S1,0∧X instead of S1,1∧X = ΣX .
While this may be confusing at first, we feel that the notational simplification
that results makes it worthwhile in the end.

2.2. Motivic spectra. To form the stable motivic category, we formally add
desuspensions with respect to the diagonal spheres Sn = Sn,n = (An,An−A0).

Definition 2.2. A motivic prespectrum is a sequence of pointed motivic spaces

{X(0), X(1), . . .},

equipped with maps ΣpX(q)→ X(p+ q), such that the resulting squares

ΣpΣqX(r) //

��

Σp+qX(r)

��
ΣpX(q + r) // X(p+ q + r)

commute.
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Definition 2.3. A motivic prespectrum is a motivic spectrum if, for all natural
numbers p, q, the adjoints X(q) → ΩpX(p + q) of the prespectrum structure
maps ΣpX(q)→ X(p+ q) are weak equivalences.

A pointed motivic space X = (X, 1) gives rise to the suspension spectrum
Σ∞X , the spectrum associated to the prespectrum with

(Σ∞X)(p) := ΣpX

and structure maps
ΣqΣpX −→ Σp+qX.

If X isn’t already pointed, we usually write Σ∞
+X for Σ∞X+, where X+ is the

pointed space (X+, 1) ≃ (X, 0). If X happens to be the terminal object 1, we
write S := Σ∞

+ 1 for the resulting suspension spectrum, the motivic sphere.
We will need that the category of motivic spectra is closed symmetric monoidal
with respect to the smash product. However, we do not focus on the details
of its construction, save to say that either P. Hu’s theory of motivic S-modules
[6] or J.F. Jardine’s motivic symmetric spectra [7] will do.
In particular, the category of motivic spectra is tensored and cotensored over
itself via the smash product and the motivic function spectrum bifunctors.
We may also regard it as being tensored and cotensored over pointed motivic
spaces via the suspension spectrum functor. Given a motivic spectrum R and
a pointed motivic space X , we write X ∧R for the motivic spectrum Σ∞X ∧R
and RX for the motivic spectrum of maps from Σ∞X to R. Here Σ∞X is the
motivic spectrum associated to the motivic prespectrum whose value in degree
n is the pointed motivic space ΣnX . As a functor from pointed motivic spaces
to motivic spectra, Σ∞ admits a right adjoint Ω∞ which associates to a motivic
spectrum its underlying motivic “infinite-loop”.
There are also a number of symmetric monoidal categories over which the cat-
egory of motivic spectra is naturally enriched. We write Y X for the motivic
function spectrum of maps from the motivic spectrum X to the motivic spec-
trum Y , map(X,Y ) = (Ω∞Y X)(S) for the (ordinary) space of maps from X
to Y , and [X,Y ] = Y 0(X) = π0 map(X,Y ) for the abelian group of homotopy
classes of maps from X to Y .

2.3. Motivic ring spectra. In this paper, unless appropriately qualified,
a motivic ring spectrum will always mean a (not necessarily commutative)
monoid in the homotopy category of motivic spectra. We reiterate that a
motivic spectrum is a P1-spectrum; that is, it admits desuspensions by algebraic
spheres as well as simplicial spheres.

Definition 2.4. A motivic ring spectrum R is periodic if the graded ring π∗R
contains a unit µ ∈ π1R in degree one.

Remark 2.5. Since π1R is by definition π0 map+(P1,Ω∞R), and over spec C,
P1(C) ≃ CP1, the topological 2-sphere, this is compatible with the notion of an
even periodic ring spectrum so common in ordinary stable homotopy theory.

Proposition 2.6. If R is periodic then R ≃ ΣnR for all n.
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Proof. Let µ ∈ π1R be a unit with inverse µ−1 ∈ π−1R. Then for any n, the
multiplication by µ−n map

R −→ ΣnR

is an equivalence, since multiplication by µn provides an inverse. �

Let PS denote the periodic sphere, the motivic spectrum

PS :=
∨

n∈Z

Σn
S.

With respect to the multiplication induced by the equivalences ΣpS ∧ ΣqS →
Σp+qS, the unit in degree one given by the inclusion Σ1S→ PS makes PS into
a periodic S-algebra.
More generally, given an arbitrary motivic ring spectrum R,

PR := PS∧R ≃
∨

n∈Z

ΣnR

is a periodic ring spectrum equipped with a ring map R→ PR.

Proposition 2.7. Let R be a motivic ring spectrum. Then homotopy classes
of ring maps PS→ R naturally biject with units in π1R.

Proof. By definition, ring maps PS → R are indexed by families of elements
rn ∈ πnR with rmrn = rm+n and r0 = 1. Hence rn = rn

1 , and in particular
r−1 = r−1

1 . �

Said differently, the homotopy category of periodic motivic ring spectra is
equivalent to the full subcategory of the homotopy category of motivic ring
spectra which admit a ring map from PS. This is not the same as the ho-
motopy category of PS-algebras, in which only those maps which preserve the
distinguished unit are allowed.

Corollary 2.8. Let Q be a motivic ring spectrum and R a periodic motivic
ring spectrum. Then the set of homotopy classes of ring maps PQ → R is
naturally isomorphic to the set of pairs consisting of a homotopy class of ring
map Q→ R and a distinguished unit µ ∈ π1R.

2.4. Orientations. Let R be a commutative motivic ring spectrum.

Definition 2.9. The Thom space of an n-plane bundle V → X is the pair
(V, V − X), where V − X denotes the complement in V of the zero section
X → V .

Given two vector bundles V → X andW → Y , the Thom space (V×W,V ×W−
X×Y ) of the product bundle V ×W → X×Y is equivalent (even isomorphic)
to the smash product (V, V − X) ∧ (W,W − Y ) of the Thom spaces. Since
the Thom space of the trivial 1-dimensional bundle A1 → A0 is the motivic
1-sphere S1 ≃ (A1,A1 − A0), we see that the Thom space of the trivial n-
dimensional bundle A

n → A
0 is the motivic n-sphere Sn ≃ (An,An−A

0). Note
that the complement of the zero section L − P∞ of the universal line bundle
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L → P∞ ≃ BG is equivalent to the total space of the universal principal G-
bundle EG → BG, which is contractible. Hence the Thom space of L → P∞

is equivalent to (P∞,P0), and the Thom space of the restriction of L → P∞

along the inclusion P1 → P∞ is equivalent to (P1,P0) ≃ S1.

Definition 2.10. An orientation of R is the assignment, to each m-plane
bundle V → X , of a class θ(V/X) ∈ Rm(V, V −X), in such a way that

(1) for any f : Y → X , the class θ(f∗V/Y ) of the restriction f∗V → Y
of V → X is equal to the restriction f∗θ(V/X) of the class θ(V/X) in
Rm(f∗V, f∗V − Y ),

(2) for any n-plane bundle W → Y , the (external) product θ(V/X) ×
θ(W/Y ) of the classes θ(V/X) and θ(W/Y ) is equal to the class
θ(V ×W/X × Y ) of the (external) product of V → X and W → Y in
Rm+n(V ×W,V ×W −X × Y ), and

(3) if L → P∞ is the universal line bundle and i : P1 → P∞ denotes the
inclusion, then i∗θ(L/P∞) ∈ R1(f∗L, f∗L − P1) corresponds to 1 ∈
R0(S0) via the isomorphism R0(S0) ∼= R1(S1) ∼= R1(f∗L, f∗L− P1).

Given an orientation of R, the class θ(V/X) ∈ Rn(V, V −X) associated to a
n-plane bundle V → X is called the Thom class of V → X . The main utility
of Thom classes is that they define R∗(X)-module isomorphisms R∗(X) →
R∗+n(V, V −X) (cf. [23]).

Remark 2.11. The naturality condition implies that it is enough to specify
Thom classes for the universal vector bundles Vn → BGLn. We write MGLn

for the Thom space of Vn → BGLn and θn for θ(Vn/BGLn) ∈ Rn(MGLn).

2.5. Basic calculations in oriented cohomology. In this section we
fix an oriented commutative motivic ring spectrum R equipped with a unit
µ ∈ π1R. Note that we can use µ to move the Thom classes θn ∈ Rn(MGLn) to
degree zero Thom classes ϑn := µnθn ∈ R0(MGLn). The following calculations
are well known (cf. [1], [4], [23]). Note that all (co)homology is implicitly
the (co)homology of a pair. In particular, if X is unpointed, then R0(X) :=
R0(X, 0), where 0 → X is the unique map from the inital object 0; if X is
pointed, then R0(X) := R0(X, 1), where 1 → X is the designated map from
the terminal object 1.

Proposition 2.12. The first Chern class of the tautological line bundle on Pn

defines a ring isomorphism R0[λ]/(λn+1)→ R0(Pn).

Proof. Inductively, one has a morphism of exact sequences

λnR0[λ]/(λn+1) //

��

R0[λ]/(λn+1) //

��

R0[λ]/(λn)

��
R0(Pn,Pn−1) // R0(Pn) // R0(Pn−1)
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in which the left and right, and hence also the middle, vertical maps are
isomorphisms. �

Proposition 2.13. The first Chern class of the tautological line bundle on P∞

defines a ring isomorphism R0[[λ]] ∼= limR0[λ]/(λn)→ R0(P∞
+ ).

Proof. The lim1 term in the exact sequence

0 −→ lim1R−1,0(Pn) −→ R0(P∞) −→ limR0(Pn)

vanishes because the maps R−1,0(Pn) −→ R−1,0(Pn−1) are surjective. �

Corollary 2.14. For each n, the natural map

R0(P
n) −→ homR0(R0(Pn), R0)

is an isomorphism.

Proof. The dual of 2.12 shows that R0(P
n) is free of rank n+ 1 over R0. �

Proposition 2.15 (Atiyah [4]). Let p : Y → X be a map of quasicompact
S-schemes and let y1, . . . , yn be elements of R0(Y ). Let M be the free abelian
group on the y1, . . . , yn, and suppose that X has a cover by open subschemes U
such that for all open V in U , the natural map

R0(V )⊗M −→ R0(p−1V )

is an isomorphism. Then, for any open W in X, the map

R0(X,W )⊗M −→ R0(Y, p−1W )

is an isomorphism.

Proof. Apply Atiyah’s proof [4], mutatis mutandis. �

Proposition 2.16. Let Z be an S-scheme such that, for any homotopy com-
mutative R-algebra A, A0(Z) ∼= R0(Z) ⊗R0 A0. Then, for any S-scheme X,
R0(Z ×X) ∼= R0(Z)⊗R0 R0(X).

Proof. The diagonal ofX induces a homotopy commutativeR-algebra structure
on A = RX , the cotensor of the motivic space X with the motivic spectrum R.
Hence

A0(Z) ∼= R0(Z)⊗R0 A0 ∼= R0(Z)⊗R0 R0(X).

�

Corollary 2.17. Let p : V → X be a rank n vector bundle over a quasicompact
S-scheme X and let L → P(V ) be the tautological line bundle. Then the map
which sends λ to the first Chern class of L induces an isomorphism

R0(X)[λ]/(λn − λn−1c1V + · · ·+ (−1)ncnV ) −→ R0(P(V ))

of R0-algebras.
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Proof. If V is trivial then P(V ) ∼= P
n−1
X , and the result follows from Propo-

sitions 2.12 and 2.16. In general, the projection P(V ) → X is still locally
trivial, so we may apply Proposition 2.15, with W empty and {yi} the image
in R0(P(V )) of a basis for R0(X)[λ]/(λn − . . . + (−1)ncnV ) as a free R0(X)-
module. �

Proposition 2.18. Let V → X be a rank n vector bundle over a quasicompact
S-scheme X, Flag(V ) → X the associated flag bundle, and σk(x1, . . . , xn),
1 ≤ k ≤ n, the kth elementary symmetric function in the indeterminates λi.
Then the map

R0(X)[λ1, . . . , λn]/({ck(V )− σk(λ1, . . . , λn)}k>0) −→ R0(Flag(V ))

which sends the λi to the first Chern classes of the n tautological line bundles
on Flag(V ), is an isomorphism of R0-algebras.

Proof. The evident relations among the Chern classes imply that the
map is well-defined. Using Proposition 2.15 and a basis for the free R0-
module R0(Flag(An−1), it follows inductively from the fibration Flag(An−1)→
Flag(An)→ P

n−1 that

R0[λ1, . . . , λn]/({σk(λ1, . . . , λn)}) −→ R0(Flag(An))

is an isomorphism. Using Proposition 2.16, we deduce the desired result for
trivial vector bundles V . For the general case, we apply Proposition 2.15 again,
with a basis of the free R0(X)-module R0(X)[λ1, . . . , λn]/({ck(V )−σk}) giving
the necessary elements of R0(Flag(V )). �

Proposition 2.19. Let p : V → X be an rank n vector bundle over a qua-
sicompact S-scheme X, let q : Grassm(V ) → X be the Grassmannian bundle
of m-dimensional subspaces of V , let ξm(V ) → Grassm(V ) be the tautologi-
cal m-plane bundle over Grassm(V ), and write q∗(V )/ξm(V ) for the quotient
(n−m)-plane bundle. Then the map

R0(X)[σ1, . . . , σm, τ1, . . . , τn−m] −→ R0(Grassm(V ))

which sends σi to ci(ξm(V )) and τj to cj(q
∗(V )/ξm(V )) induces an isomor-

phism

R0(X)[σ1, . . . , σm, τ1, . . . , τn−m]/({ck(V )− Σ
i+j=k

σiτj}) −→ R0(Grassm(V ))

of R0-algebras (as usual, ck(V ) = 0 for k > n and c0(V ) = σ0 = τ0 = 1).

Proof. The identity q∗c(V ) = c(q∗V ) = c(ξm(V ))c(q∗V/ξm(V )) implies that
each ck(V ) − Σσiτj is sent to zero, so the map is well-defined. Just as in
the case of flag bundles, use induction together with the fibration Flag(Am)×
Flag(An−m)→ Flag(An)→ Grassm(An) to see that

R0[σ1, . . . , σm, τ1, . . . , τn−m]/({ Σ
i+j=k

σiτj}) −→ R0(Grassm(An))
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is an isomorphism. This implies the result for trivial vector bundles by
Proposition 2.16, and we deduce the general result from Proposition 2.15. �

Proposition 2.20. There are isomorphisms

R0(BGLn) −→ R0(BGLn
1 )Σn ∼= R0[[λ1, . . . , λn]]Σn ∼= R0[[σ1, . . . , σn]].

Proof. Writing Vn → BGLn for the tautological vector bundle, we have an
equivalence Flag(Vn) ≃ BGLn

1 . Inductively, we have isomorphisms

R0[[λ1, . . . , λn]] −→ R0(BGLn
1 )

and the map

R0(BGLn) −→ R0(BGLn
1 ) ∼= R0[[λ1, . . . , λn]]

factors through the invariant subring R0[[λ1, . . . , λn]]Σn ∼= R0[[σ1, . . . , σn]]. By
Proposition 2.18, R0(BGLn

1 ) is free of rank n! over R0(BGLn), so it follows
that R0(BGLn) ∼= R0(BGLn

1 )Σn . �

Corollary 2.21. The natural map

R0(BGLn) −→ homR0
(Symn

R0
R0(P

∞), R0)

is an isomorphism.

Proof. By Proposition 2.20, we need only check this for n = 1. But

R0(Pm) ∼= homR0
(R0(P

m), R0),

both being free of rank m+ 1 over R0, and

R0(P∞) ∼= limR0(Pm) ∼= homR0
(colimR0(P

m), R0) ∼= homR0
(R0(P

∞), R0)

by Proposition 2.12. �

Corollary 2.22. There are isomorphisms R0(BGL) ∼= limnR
0(BGLn) ∼=

R0[[σ1, σ2, . . .]].

Proof. The lim1 term in the short exact sequence

0 −→ lim1
nR

1,0(BGLn) −→ R0(BGL) −→ limnR
0(BGLn)

vanishes since the maps R1,0(BGLn)→ R1,0(BGLn−1) are surjective. �

2.6. The oriented cohomology of BGL+ ∧ Z. Let R be an oriented pe-
riodic commutative motivic ring spectrum and let Z be an arbitrary motivic
spectrum. Recall (cf. [5]) that a motivic spectrum is cellular if belongs to the
smallest full subcategory of motivic spectra which is closed under homotopy
colimits and contains the spheres Sp,q for all p, q ∈ Z, and that a motivic space
is stably cellular if its suspension spectrum is cellular.
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Proposition 2.23. Let X := colimnXn be a telescope of finite cellular motivic
spectra such that each R∗,∗(Xn) is a finite free R∗,∗-module and, for any motivic
spectrum Z, the induced maps

R0(Xn ∧ Z) −→ R0(Xn−1 ∧ Z)

are surjective. Then the natural map

R0(X)⊗̂
R0

R0(Z) −→ R0(X ∧ Z)

is an isomorphism.

Proof. This is an immediate consequence of the motivic Künneth spectral
sequence of Dugger-Isaksen [5]. Indeed, for each n, R∗,∗(Xn) is a free R∗,∗-
module, so the spectral sequence

TorR∗,∗

∗ (R∗,∗(Xn), R∗,∗(Z))⇒ R∗,∗(Xn ∧ Z)

collapses to yield the isomorphism

R∗,∗(Xn) ⊗̂
R∗,∗

R∗,∗(Z) ∼= R∗,∗(Xn ∧ Z).

Moreover, by hypothesis, each of the relevant lim1 terms vanish, so that

R∗,∗(X) ⊗̂
R∗,∗

R∗,∗(Z) ∼= lim
n
R∗,∗(Xn) ⊗

R∗,∗

R∗,∗(Z)

∼= lim
n
R∗,∗(Xn ∧ Z) ∼= R∗,∗(X ∧ Z).

�

Corollary 2.24. Let Z be a motivic spectrum. Then there are natural iso-
morphisms

R0(P∞)⊗̂
R0

R0(Z) −→ R0(P∞
+ ∧ Z)

and

R0(BGL)⊗̂
R0

R0(Z) −→ R0(BGL+ ∧ Z)

Proof. For each m,

BGLm ≃ colimn Grassm(An)

is a colimit of finite stably cellular motivic spaces such that, for each n,
R∗,∗(Grassm(An)) is a free R∗,∗-module and

R0(Grassm(An))⊗R0 R0(Z) ∼= R0(Grassm(An)+ ∧ Z) −→

R0(Grassm(An−1)+ ∧ Z) ∼= R0(Grassm(An−1))⊗R0
R0(Z)

is (split) surjective. It therefore follows from Proposition 2.23 that, for each m,

R0(Grassm(A∞)+)⊗̂
R0

R0(Z) ∼= R0(Grassm(A∞)+ ∧ Z).

Taking m = 1 yields the result for P∞; for BGL, we must consider the sequence

BGL ≃ colimmBGLm ≃ Grassm(A∞)
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in which the maps come from a fixed isomorphism A1 ⊕ A∞ ∼= A∞. Note,
however, that it follows from the above, together with the (split) surjection

R0(Grassm(A∞) −→ R0(Grassm−1(A
∞))

of Proposition 2.20, that, for each m,

R0(Grassm(A∞)+ ∧ Z) −→ R0(Grassm−1(A
∞)+ ∧ Z)

is (split) surjective, so that the lim1 term vanishes and

R0(BGL)⊗̂
R0

R0(Z) ∼= lim
m
R0(Grassm(A∞)+ ∧ Z) ∼= R0(BGL+ ∧ Z).

�

2.7. Primitives in the oriented cohomology of BGL. Let R be an ori-
ented periodic commutative motivic ring spectrum. As is shown in Section 4.3
of [20], the group completion

BGLZ ≃ Ω1,0B(BGLN)

(usually written Z × BGL) of the additive monoid BGLN =
∐

n∈N
BGLn fits

into a fibration sequence

BGL −→ BGLZ −→ Z,

whereBGL ≃ colimnBGLn. AsBGLN is commutative up to homotopy,BGLZ

is an abelian group object in the motivic homotopy category.

Lemma 2.25. Let Add(BGLZ,Ω
∞R) denote the abelian group of homotopy

classes of additive maps BGLZ → Ω∞R. Then the inclusion

Add(BGLZ,Ω
∞R) −→ R0(BGLZ)

identifies Add(BGLZ,Ω
∞R) with the abelian group of primitive elements in

the Hopf algebra R0(BGLZ).

Proof. By definition, there is an equalizer diagram

Add(BGLZ,Ω
∞R) // R0(BGLZ) //

// (BGLZ ×BGLZ)

associated to the square

BGLZ ×BGLZ
//

��

BGLZ

��
Ω∞R× Ω∞R // Ω∞R

in which the horizontal maps are the addition maps. Let δ denote the Hopf
algebra diagonal

δ : R0(BGLZ) −→ R0(BGLZ ×BGLZ) ∼= R0(BGLZ)⊗̂
R0

R0(BGLZ).

Then the equalizer consists of those f ∈ R0(BGLZ) such that δ(f) =
f ⊗ 1 + 1 ⊗ f . This identifies Add(BGLZ,Ω

∞R) with the primitive elements
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in R0(BGLZ). �

Lemma 2.26. There are natural isomorphisms

Add(BGLZ,Ω
∞R) ∼= Add(BGL,Ω∞R)×Add(Z,Ω∞R)

∼= Add(BGL,Ω∞R)×R0.

Proof. The product of additive maps is additive, and, in any category with
finite products and countable coproducts, Z =

∐
Z

1 is the free abelian group
on the terminal object 1. �

Proposition 2.27. The map

Add(BGLZ,Ω
∞R) −→ R0(BGL1),

obtained by restricting an additive map BGLZ → Ω∞R along the inclusion
BGL1 → BGLZ, is an isomorphism.

Proof. By Lemma 2.26, it’s enough to show that the inclusion (BGL1, 1) →
(BGL, 1) induces an isomorphism

Add(BGL,Ω∞R) −→ R0(BGL1, 1).

Thus let M = R0(BGL1, 1), and consider the R0-algebra

A :=
⊕

n≥0

Symn
R0
M

together with its augmentation ideal

I :=
⊕

n>0

Symn
R0
M.

We have isomorphisms of split short exact sequences

0 // R0(BGL, 1) //

��

R0(BGL) //

��

R0 //

��

0

0 // homR0
(I, R0) // homR0

(A,R0) // homR0
(R0, R0) // 0

and

0 // R0(BGL×2, BGL∨2) //

��

R0(BGL×2) //

��

. . .

0 // homR0
(I ⊗R0

I, R0) // homR0
(A⊗R0

A,R0) // . . .

. . . // R0(BGL∨2) //

��

0

. . . // homR0
(R0 ⊕ I⊕2, R0) // 0
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of R0-modules. According to Lemmas 2.25 and 2.26, we have an exact sequence

0 −→ Add(BGL,Ω∞R) −→ R0(BGL, 1) −→ R0(BGL×2, BGL∨2)

in which the map on the right is the cohomology of the map

µ− p1 − p2 : (BGL×2, BGL∨2) −→ (BGL, 1)

(µ is the addition and the pi are the projections); moreover, this map is the
R0-module dual of the multiplication I ⊗R0

I → I. Hence these short exact
sequences assemble into a diagram

0 // homR0
(I/I2, R0) //

��

Add(BGL,Ω∞R) //

��

. . .

0 // homR0
(I, R0) //

��

R0(BGL) //

��

. . .

0 // homR0
(I ⊗R0

I, R0) // R0(BGL×2) // . . .

. . . // 0

��

// 0

. . . // R0

��

// 0

. . . // homR0
(R0 ⊕ I⊕2, R0) // 0

of short exact sequences by the snake lemma. In particular, we see that
Add(BGL,Ω∞R) is naturally identified with the dual homR0

(I/I2, R0) of the
module of indecomposables I/I2. But I/I2 ∼= M = R0(BGL1, 1), the duality
map

R0(BGL1, 1) −→ homR0
(R0(BGL1, 1), R0)

is an R0-module isomorphism, and the restriction R0(BGL, 1)→ R0(BGL1, 1)
is dual to the inclusion M → I. �

3. Algebraic Cobordism

3.1. The representing spectrum. For each natural number n, let Vn →
BGLn denote the universal n-plane bundle over BGLn. Then the Thom spaces

MGLn := (Vn, Vn −BGLn)

come equipped with natural maps

MGLp ∧MGLq −→MGLp+q

defined as the composite of the isomorphism

(Vp, Vp −BGLp) ∧ (Vq , Vq −BGLq) −→ (Vp × Vq, Vp × Vq −BGLp ×BGLq)
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and the map on Thom spaces associated to the inclusion of vector bundles

Vp × Vq

��

// Vp+q

��
BGLp ×BGLq // BGLp+q.

Restricting this map of vector bundles along the inclusion 1×BGLq → BGLp×
BGLq gives a map of Thom spaces

(Ap,Ap − A
0) ∧MGLq →MGLp+q,

and these maps comprise the structure maps of the prespectrum MGL. The
associated spectrum is defined by

MGL(p) := colimq ΩqMGLp+q,

as evidently the adjoints

MGL(q) ≃ colimr ΩrMGLq+r ≃ colimr Ωp+rMGLp+q+r ≃ ΩpMGL(p+ q)

of the structure maps ΣpMGL(q) → MGL(p + q) are equivalences. The last
equivalence uses the fact that P1 is a compact object of the motivic homotopy
category.

Definition 3.1 (Voevodsky [34]). Algebraic cobordism is the motivic coho-
mology theory represented by the motivic spectrum MGL.

3.2. Algebraic cobordism is the universal oriented motivic spec-
trum. Just as in ordinary stable homotopy theory, the Thom classes θn ∈
Rn(MGLn) coming from an orientation on a commutative motivic ring spec-
trum R assemble to give a ring map θ : MGL → R. We begin with a brief
review of this correspondence.

Proposition 3.2 (Panin, Pimenov, Röndigs [23]). Let R be a commutative
monoid in the homotopy category of motivic spectra. Then the set of monoidal
maps MGL→ R is naturally isomorphic to the set of orientations on R.

Proof. The classical analysis of complex orientations on ring spectra R
generalizes immediately. A spectrum map θ : MGL → R is determined by
a compatible family of maps θn : MGLn → Rn, which is to say a family
of universal Thom classes θn ∈ Rn(MGLn). An arbitrary n-plane bundle
V → X , represented by a map X → BGLn, induces a map of Thom spaces
V/V − X → MGLn, so θn restricts to a Thom class in Rn(V/V − X).
Moreover, these Thom classes are multiplicative and unital precisely when
θ : MGL→ R is monoidal. Conversely, an orientation on R has, as part of its
data, Thom classes θn ∈ Rn(MGLn) for the universal bundles Vn → BGLn,
and these assemble to form a ring map θ : MGL→ R. �

Again, just as in topology, an orientation on R is equivalent to a compatible
family of R-theory Chern classes for vector bundles V → X . This follows from
the Thom isomorphism R∗(BGLn) ∼= R∗(MGLn).
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More difficult is the fact that an orientation on a ring spectrum R is uniquely
determined by the first Thom class alone; that is, a class θ1 ∈ R1(BGL1) = R
whose restriction i∗θ1 ∈ R1(S1) along the inclusion S1 → MGL1 corresponds
to 1 ∈ R0(S0) via the suspension isomorphism R1(S1) ∼= R0(S0). This is a
result of the splitting principle, which allows one to construct Thom classes (or
Chern classes) for general vector bundles by descent from a space over which
they split. See Adams [1] and Panin-Pimenov-Röndigs [23] for details.

3.3. A ring spectrum equivalent to PMGL. The wedge
∨

n∈N

Σ∞MGLn

forms a ring spectrum with unit S ≃ Σ∞MGL0 and multiplication
∨

p

Σ∞MGLp ∧
∨

q

Σ∞MGLq −→
∨

p,q

Σ∞MGLp ∧MGLq −→
∨

n

Σ∞MGLn

induced by the maps MGLp ∧MGLq → MGLp+q. Evidently, a (homotopy
class of a) ring map

∨
n Σ∞MGLn → R is equivalent to a family of degree zero

Thom classes

ϑn ∈ R
0(MGLn)

with ϑ0 = 1 ∈ R0(MGL0) = R0 such that ϑp+q restricts via MGLp∧MGLq →
MGLp+q to the product ϑpϑq. This is not the same as an orientation on R, as
there is nothing forcing ϑ1 ∈ R0(MGL1) to restrict to a unit in R0(S1). Clearly
we should impose this condition, which amounts to inverting β : P1 → P∞.

Proposition 3.3. A ring map PMGL → R induces a ring map∨
n Σ∞MGLn[1/β]→ R.

Proof. A ring map θ : PMGL → R consists of a ring map MGL → R and
a unit µ ∈ π1R. This specifies Thom classes θn ∈ Rn(MGLn), and therefore
Thom classes

ϑn := µnθn ∈ R
0(MGLn)

such that

ϑpϑq = µp+qθpθq = µp+qi∗θp+q = i∗ϑp+q ∈ R
0(MGLp ∧MGLq),

where i is the map MGLp ∧ MGLq → MGLp+q. This gives a ring map
ϑ :

∨
n Σ∞MGLn → R, and therefore the desired map, provided β is sent to a

unit. But this is clear: as a class in R0(S1),

ϑ(β) = β∗ϑ1 = µβ∗θ1,

and β∗θ1 ∈ R1(S1) is the image of 1 ∈ R0(S0) under the isomorphism
R0(S0) ∼= R1(S1). �

Proposition 3.4. The ring map
∨

n∈N

Σ∞MGLn[1/β]→ PMGL is an equiva-

lence.
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Proof. Write

M :=
∨

n∈N

Σ∞MGLn[1/β]→ PMGL,

and consider the natural transformation of set-valued functors

Rings(PMGL,−) −→ Rings(M,−).

Given a ring spectrum R, we have seen that the set Rings(M,R) is naturally
isomorphic to the set of collections {ϑn}n∈N with ϑn ∈ R0(MGLn) such that
ϑp+q restricts to ϑpϑq, ϑ1 restricts to a unit in R−1, and ϑ0 = 1 ∈ R0(S0).
Similarly, the set Rings(PMGL,R) is naturally isomorphic to the product of
the set of units in R−1 and the set of collections {θn}n∈N with Rn(MGLn) such
that θp+q restricts to θpθq, θ1 restricts to the image of 1 ∈ R0(S0) in R1(S1),
and θ0 = 1 ∈ R0(S0).
The map Rings(PMGL,R) → Rings(M,R) sends µ ∈ R−1 and
θn ∈ Rn(MGLn) to ϑn = µnθn. We get a natural map back which sends
ϑn ∈ R0(MGLn) to θn = µ−nϑn, where µ ∈ R−1 in the unit corresponding to
β∗ϑ1 ∈ R0(S1). Clearly the composites are the respective identities, and we
conclude that M → PMGL is an equivalence. �

3.4. Σ∞
+ BGL[1/β] is orientable. Recall from [23] that, just as in the usual

stable homotopy category, an orientation on a ring spectrum R is equivalent to
a class in R1(MGL1) which restricts, under the inclusion i : S1 → MGL1 of
the bottom cell, to the class in R1(S1) corresponding to the unit 1 ∈ R0(S0)
under the suspension isomorphism R0(S0) → R1(S1). Note also that in the
case R is periodic with Bott element β ∈ R0(S1), corresponding under the
suspension isomorphism to the unit µ ∈ R−1(S0) with inverse µ−1 ∈ R1(S0),
then the suspension isomorphism R0(S0)→ R1(S1) sends 1 to µ−1β.
Now there’s a canonical class θ1 ∈ Σ∞

+ BGL[1/β]1(MGL1) such that

µ−1β = i∗θ1 ∈ Σ∞
+ BGL[1/β]1(S1).

Namely, set θ1 := µ−1ϑ1, where ϑ1 ∈ Σ∞
+ BGL[1/β]0(MGL1) is the class of the

composite

Σ∞MGL1 ≃ Σ∞BGL1 −→ Σ∞
+ BGL −→ Σ∞

+ BGL[1/β].

Then β = i∗µθ, so µ−1β = i∗θ.

Proposition 3.5. There is a canonical ring map θ : PMGL→ Σ∞
+ BGL[1/β].

Proof. The Thom class θ1 ∈ Σ∞
+ BGL[1/β]0(MGL1) extends, as in [1] or

[23], to a ring map MGL → Σ∞
+ BGL[1/β], and we have a canonical unit

µ ∈ R−1(S0), the image of β ∈ R0(S1) under the suspension isomorphism
R0(S1) ∼= R−1(S0). �

Corollary 3.6. There is a canonical ring map ϑ :
∨

n Σ∞MGLn[1/β] →
Σ∞

+ BGL[1/β].
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Proof. Precompose the map from the previous Proposition 3.5 with the equiv-
alence ∨

n

Σ∞MGLn[1/β]→ PMGL.

�

3.5. ϑ is an equivalence. We analyze the effect of ϑ :
∨

n Σ∞MGLn[1/β]→
Σ∞

+ BGL[1/β] on cohomology. To this end, fix an oriented periodic commuta-
tive motivic ring spectrum R; we aim to show that the induced map

R0(Σ∞
+ BGL[1/β]) −→ R0(

∨

n

Σ∞MGLn[1/β])

is an isomorphism.

Lemma 3.7. Let R be a commutative ring and let A = colimnAn be a filtered
commutative R-algebra with the property that Ap ⊗R Aq → A ⊗R A → A
factors through the inclusion Ap+q → A (that is, the multiplication is compatible
with the filtration). Suppose that, for each n, the maps An−1 → An are split
injections, so that the isomorphisms An−1 ⊕ An/An−1 → An define an R-
module isomorphism

grA :=
⊕

n

An/An−1
≃
−→ colimnAn = A

of A with its associated graded. Then the multiplication Ap/Ap−1 ⊗R

Aq/Aq−1 → Ap+q/Ap+q−1 makes grA =
⊕

nAn/An−1 into a commutative
R-algebra in such a way that grA→ A is an R-algebra isomorphism. �

Proposition 3.8. There is a commuting square of R0-module maps

R0(BGL) //

��

∏
nR

0(MGLn)

��
R0(BGL×BGL) //

∏
p,q R

0(MGLp ∧MGLq)

,

in which the vertical maps are induced by the multiplication on BGL and∨
nMGLn, respectively, and the horizontal maps are isomorphisms.

Proof. Set A := colimn Symn
R0
R0(P

∞), where the map Symn−1
R0

R0(P
∞) →

Symn
R0
R0(P

∞) is induced by the the inclusion R0
∼= R0(P

0) → R0(P
∞). Ap-

plying R0 to the cofiber sequence BGLn−1 → BGLn → MGLn yields split
short exact sequences

Symn−1R0(P
∞) //

∼=

��

SymnR0(P
∞) //

∼=

��

SymnR0(P
∞)/ Symn−1R0(P

∞)

∼=

��
R0(BGLn−1) // R0(BGLn) // R0(MGLn)
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with A ∼= colimnR0(BGLn) ∼= R0(BGL) a filtered commutative R-algebra.
By the lemma, we have a commutative square
L

p,q

Symp R0(P
∞)/Symp−1 R0(P

∞) ⊗
R0

Symq R0(P
∞)/Symq−1 R0(P

∞) //

��

A ⊗
R0

A

��
L

n
Symn R0(P

∞)/Symn−1 R0(P
∞) // A

in which the vertical maps are multiplication and the horizontal maps are
R0-algebra isomorphisms. The desired commutative square is obtained by
taking R0-module duals. �

Theorem 3.9. The map of oriented periodic motivic ring spectra

ϑ :
∨

n

Σ∞MGLn[1/β]→ Σ∞
+ BGL[1/β]

is an equivalence.

Proof. We show that the induced natural transformation

ϑ∗ : Rings(Σ∞
+ BGL[1/β],−) −→ Rings(

∨

n

Σ∞MGLn[1/β],−)

is in fact a natural isomorphism. The result then follows immediately from
Yoneda’s Lemma.
Fix a ring spectrum R, and observe that, for another ring spectrum A,
Rings(A,R) is the equalizer of the pair of maps fromR0(A) to R0(A∧A)×R0(S)
which assert the commutativity of the diagrams

A ∧A //

��

A

��
R ∧R // R

and S

��?
?

?
?

?
?

?
// A

��
R

.

Given a map β : Σ1S→ A, the set Rings(A[1/β], R) is the equalizer of the pair
of maps from Rings(A,R)×R0(Σ−1S) to R0(S) which assert that the ring map
A→ R is such that there’s a spectrum map Σ−1

S→ R for which the product

S ≃ Σ1
S ∧ Σ−1

S −→ A ∧R −→ R ∧R −→ R

is equivalent to the unit S → R. Putting these together, we may express
Rings(A[1/β], R) as the equalizer of natural pair of maps from R0(A)×R0(S−1)
to R0(A ∧A)×R0(S)×R0(S).
We therefore get a map of equalizer diagrams

R0(BGL) × R0(Σ−1
S)

//
//

��

R0(BGL × BGL) × R0(S) × R0(S)

��
Q

n
R0(MGLn) × R0(Σ−1

S) //
//
Q

p,q
R0(MGLp ∧ MGLq) × R0(S) × R0(S) ,
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the equalizer of which is ϑ∗. Now if R does not admit the structure of a
PMGL-algebra, then clearly there cannot be any ring maps from either of the
PMGL-algebras

∨
n Σ∞MGLn[1/β] of Σ∞

+ BGL[1/β]. Hence we may assume
that R is also an oriented periodic ring spectrum, in which case Proposition
3.8 implies that the vertical maps are isomorphisms. �

Corollary 3.10. The map of periodic oriented motivic ring spectra

θ : PMGL→ Σ∞
+ BGL[1/β]

is an equivalence.

Proof.
∨

n Σ∞MGLn[1/β]→ PMGL is an equivalence. �

4. Algebraic K-Theory

4.1. The representing spectrum. Let BGLZ ≃ Z×BGL denote the group
completion of the monoid

BGLN :=
∐

n∈N

BGLn.

Given a motivic space X , write K0(X) := π0 mapS(X,BGLZ). If S = spec Z

and X is a scheme, this agrees with the homotopy algebraic K-theory of X as
defined by Weibel [38], and if in addition X is smooth, this also agrees with
Thomason-Trobaugh algebraic K-theory of X [33]; see Proposition 4.3.9 of [20]
for details. As the name suggests, homotopy algebraic K-theory is a homotopy
invariant version of the Thomason-Trobaugh algebraicK-theory, and homotopy
invariance is of course a prerequisite for any motivic cohomology theory.
It turns out that the motivic space BGLZ, pointed by the inclusion

1 ≃ BGL0 −→ BGLN −→ BGLZ,

is the zero space of the motivic spectrum K representing (homotopy) algebraic
K-theory. This is a direct corollary of the following famous fact.

Proposition 4.1 (Motivic Bott Periodicity). The adjoint

(BGLZ, BGL0) −→ Ω(BGLZ, BGL0)

of the map Bott map Σ(BGLZ, BGL0)→ (BGLZ, BGL0) classifying the tensor
product of (L− 1) and V , where L→ P1 is the restriction of the universal line
bundle and V → BGLZ is the universal virtual vector bundle, is an equivalence.

Proof. Quillen’s projective bundle theorem [26] implies that the tensor product
of vector bundles induces an isomorphism

K0(P1) ⊗
K0

K0(X) −→ K0(P1 ×X)
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of abelian groups. It follows that there’s an isomorphism of split short exact
sequences of K0(X)-modules

λK0(X)[λ]/(λ2) //

��

K0(X)[λ]/(λ2) //

��

K0(X)

��
K0((P1,P0) ∧ (X, 0)) // K0(P1 ×X) // K0(P0 ×X) .

In particular, K0((P1,P0) ∧ (X, 0)) ∼= K0(X) and similarly K0((P1,P0) ∧
(X, 1)) ∼= K0(X, 1). �

Define a sequence of pointed spaces K(n) by

K(n) := (BGLZ, BGL0)

for all n ∈ N. By Proposition 4.1, each K(n) comes equipped with an equiva-
lence

K(n) = (BGLZ, BGL0) −→ Ω(BGLZ, BGL0) = ΩK(n+ 1),

making K := (K(0),K(1), . . .) into a motivic spectrum.

4.2. A map Σ∞
+ P∞[1/β] → K. Let β : P1 → P∞ be the map classifying the

tautological line bundle on P
1. We construct a ring map Σ∞

+ P
∞ → K which

sends β to a unit in K, thus yielding a ring map Σ∞
+ P∞[1/β] → K. There is

a homotopy commutative ring structure on the motivic space BGLZ ≃ Ω∞K
in which addition is induced by the sum of vector bundles and multiplication
is induced by the tensor product of vector bundles.
Ring maps Σ∞

+ P∞ → K are adjoint to monoidal maps P∞ → GL1K, the
multiplicative monoid of units (up to homotopy) in the ring space Ω∞K ≃
BGLZ. Since π0BGLZ contains a copy of Z, the multiplicative units contain
the subgroup {±1} → Z, giving a map

{±1} ×BGL −→ GL1K.

But the inclusion BGL1 → BGL is monoidal with respect to the multiplicative
structure on BGL, so we get a monoidal map

P
∞ ≃ BGL1 −→ {+1} ×BGL −→ GL1K

and therefore a ring map Σ∞
+ P∞ → K.

Proposition 4.2. The class of the composite

Σ∞S1 ≃ Σ∞(P1,P0) −→ Σ∞
+ P

∞ −→ K

is equal to that of the K-theory Bott element β, i.e. the class of the reduced
tautological line bundle L− 1 on P1.

Proof. The map Σ∞
+ P∞ → K classifies the tautological line bundle on P∞, so

the pointed version Σ∞P∞ → K corresponds to the reduced tautological line
bundle on P

∞. This restricts to the reduced tautological line bundle on P
1. �
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Corollary 4.3. There’s a canonical ring map ψ : Σ∞
+ P∞[1/β]→ K. �

4.3. Comparing R0(K) and R0(L). Let L denote the localized motivic ring
spectrum

L := Σ∞
+ P

∞[1/β].

That is, L is the colimit

L = colimn Σ∞−n
P
∞
+

of a telescope of desuspended suspension spectra. We show that ψ : L→ K is
an equivalence by showing the induced map R0(L)→ R0(K) is an isomorphism
for a sufficiently large class of motivic spectra R.
Throughout this section, we will be considering the motivic space BGLZ

(pointed by {0}×BGL0) multiplicatively, as a homotopy commutative monoid
with respect to the smash product. Accordingly, Σ∞BGLZ is a ring spectrum,
and the monoidal map

P
∞
+ ≃ BGL0 +BGL1 −→ BGLN −→ BGLZ

gives Σ∞BGLZ the structure of a homotopy commutative Σ∞P∞
+ -algebra. In

particular, the Bott element β ∈ π1Σ
∞P∞

+ determines a Bott element β ∈
π1Σ

∞BGLZ as well as a Bott element β ∈ π1K.
If R is a homotopy commutative ring spectrum equipped with homotopy ele-
ment α ∈ πnR, we write

µ(α) = Σ−n(µ ◦ (α ∧R)) : R −→ Σ−nR

for the “multiplication by α” map, the n-fold desuspension of the composite

ΣnR ≃ Σn
S ∧R

α∧R
−→ R ∧R

µ
−→ R.

If α ∈ πnR is a unit, then this map has an inverse µ(α)−1 : Σ−nR → R, the
n-fold desuspension of the multiplication by α−1 map µ(α−1) : R→ ΣnR. For
our purposes, R will typically admit a periodic orientation, and α will be the
image of the Bott element β ∈ π1PMGL ∼= π1Σ

∞
+ BGL[1/β] under some ring

map PMGL→ R.
Finally, we also write

µ(β) : BGLZ −→ ΩBGLZ

for multiplication by β in the homotopy commutative monoid BGLZ (regarded
multiplicatively). This is Ω∞ applied to the multiplication by β map µ(β) :
K → Σ−1K on K-theory, and thus it is the equivalence adjoint to the Bott
map

ΣBGLZ −→ BGLZ

The following lemma is formal.

Lemma 4.4. Let ε : ΣΩBGLZ → BGLZ denote the counit of the adjunction
(Σ,Ω) applied to BGLZ. Then the composite

ΣBGLZ

Σµ(β)
−→ ΣΩBGLZ

ε
−→ BGLZ

is the Bott map ΣBGLZ −→ BGLZ.
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Proof. More generally, if (Σ,Ω) is any adjunction and β∗ : ΣX → Y is a map
left adjoint to β∗ : X → ΩY , then β∗ = εY ◦ Σβ∗. �

Proposition 4.5. The square

Σ∞+1P∞
+

Σµ(β)
//

��

Σ∞P∞
+

��
Σ∞+1BGLZ

Σµ(β)
// Σ∞BGLZ ,

in which vertical maps come from the inclusion i : P∞
+ ≃ BGL0 + BGL1 →

BGLZ and the horizontal maps are the Bott maps, commutes up to homotopy.

Proof. The inclusion Σ∞P∞
+ → Σ∞BGLZ is a map of homotopy commutative

ring spectra, and the Bott element Σ∞P1 → Σ∞BGLZ factors through the
Bott element Σ∞P1 → Σ∞P∞

+ . �

Proposition 4.6. Let R be a homotopy commutative PMGL-algebra. Then
the space map(K,R) of maps from K to R is equivalent to the homotopy inverse
limit

map(K,R) ≃ holimn{· · ·
f
−→ map(Σ∞BGLZ, R)

f
−→ map(Σ∞BGLZ, R)},

where f = µ(α)−1 ◦ Σ−1 ◦ µ(β) is the endomorphism of map(Σ∞BGLZ, R)
which sends a map x : Σ∞BGLZ → R to the composite

Σ∞BGLZ

µ(β)
−→ Σ∞−1BGLZ

Σ−1x
−→ Σ−1R

µ(α)−1

−→ R.

Proof. In general, for motivic spectra M and N ,

map(M,N) ≃ holim{· · · −→ map(M(1), N(1)) −→ map(M(0), N(0))},

where the maps send a map x : M(n)→ N(n) to Ωx : M(n− 1) ≃ ΩM(n)→
ΩN(n) ≃ N(n− 1). By adjunction, we may rewrite this as

map(M,N) ≃ holim{· · · −→ map(Σ∞Ω∞ΣM,ΣN) −→ map(Σ∞Ω∞M,N)}.

Now K and R are periodic via equivalences µ(β) : K → Σ−1K and µ(α) : R→
Σ−1R, the diagram

map(BGLZ, Ω∞R)
Ω //

≃

��

map(ΩBGLZ, Ω∞+1R)
µ(β)∗

//

≃

��

map(BGLZ, Ω∞+1R)

≃

��
map(Σ∞BGLZ, R)

Σ∞ε∗// map(Σ∞+1ΩBGLZ, R)
Σ∞+1µ(β)∗

// map(Σ∞+1BGLZ, R) ,

in which the vertical arrows are adjunction equivalences, commutes, and ac-
cording to Lemma 4.4 above, the Σ∞ applied to the composite ε ◦ Σµ(β) is
Σµ(β) : Σ∞+1BGLZ → Σ∞BGLZ. Hence

map(K,R) ≃ holim{· · · −→ map(Σ∞BGLZ, R) −→ map(Σ∞BGLZ, R)}

Documenta Mathematica 14 (2009) 359–396



Motivic Spectra Representing Cobordism and K-Theory 383

is the homotopy inverse limit of the tower determined by the composite

map(Σ∞BGLZ, R)
Σµ(β)∗

−→ map(Σ∞+1BGLZ, R)
µ(α)−1

∗
◦Σ−1

−→ map(Σ∞BGLZ, R).

That is, the endomorphism f of map(Σ∞BGL,R) sends x : Σ∞BGL → R to
the composite µ(α)−1 ◦ Σ−1(x ◦ Σµ(β)) = µ(α)−1 ◦ Σ−1(x) ◦ µ(β), which is to
say that f = µ(α)−1 ◦ Σ−1 ◦ µ(β). �

Proposition 4.7. Let R be a homotopy commutative PMGL-algebra. Then
the space map(L,R) of maps from L to R is equivalent to the homotopy inverse
limit

map(L,R) ≃ holimn{· · ·
g
−→ map(Σ∞

P
∞
+ , R)

g
−→ map(Σ∞

P
∞
+ , R)},

where g = µ(α)−1 ◦ Σ−1 ◦ µ(β) is the endomorphism of map(Σ∞P∞
+ , R) which

sends a map y : Σ∞P∞
+ → R to the composite

Σ∞
P
∞
+

µ(β)
−→ Σ∞−1

P
∞
+

Σ−1y
−→ Σ−1R

µ(α)−1

−→ R.

Proof. By definition, L = Σ∞
+ P∞[1/β] = hocolimn Σ∞−nP∞

+ , where the map

Σ∞−n
P
∞
+ → Σ∞−n−1

P
∞
+

is the n-fold desuspension of the multiplication by β map µ(β) : Σ∞P∞
+ →

Σ∞−1P∞
+ . Hence

map(L,R) ≃

≃ holimn{· · ·
Σ−1◦Σµ(β)∗

−→ map(Σ∞
P
∞
+ ,ΣR)

Σ−1◦Σµ(β)∗

−→ map(Σ∞
P
∞
+ , R)}.

Again, since R is periodic via the multiplication by α map µ(α) : R → Σ−1R,
we may compose with µ(α)−1 in order to rewrite this as

map(L,R) ≃ holimn{· · ·
g
−→ map(Σ∞

P
∞
+ , R)

g
−→ map(Σ∞

P
∞
+ , R)},

where g is the endomorphism of map(Σ∞P∞
+ , R) which sends the map

y : Σ∞P∞
+ → R to the map g(y) = µ(α)−1 ◦ Σ−1(y) ◦ µ(β). �

Corollary 4.8. Let R be a homotopy commutative PMGL-algebra. Then the
square

map(Σ∞BGLZ, R)
f

//

i∗

��

map(Σ∞BGLZ, R)

i∗

��
map(Σ∞P∞

+ , R)
g

// map(Σ∞P∞
+ , R) ,

in which the vertical map are induced by the inclusion i : P
∞
+ ≃ BGL0 +

BGL1 → BGLZ, commutes up to homotopy. In particular, ψ∗ : map(K,R)→
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map(L,R) is the homotopy inverse limit of the map of towers

map(K, R)
≃ //

ψ∗

��

holim{· · ·
f
// map(Σ∞BGLZ, R)

f
//

i∗

��

map(Σ∞BGLZ, R)}

i∗

��
map(L, R)

≃ // holim{· · ·
g

// map(Σ∞
P
∞

+ , R)
g

// map(Σ∞
P
∞

+ , R)}

obtained from iterating this commuting square.

Proof. This is immediate from Lemmas 4.6 and 4.7. �

4.4. A useful splitting. To complete the analysis of ψ∗ : map(K,R) →
map(L,R), we must split the space of additive maps from BGLZ to Ω∞R off
of the space of all maps from BGLZ to Ω∞R.

Proposition 4.9. Let R be a motivic spectrum equipped with an equivalence
µ(α) : R→ Σ−1R. Then given a map x : Ω∞K → Ω∞R, the map

Ω∞µ(α)−1 ◦ Ω(x) ◦ Ω∞µ(β) : Ω∞K −→ Ω∞+1K −→ Ω∞+1R −→ Ω∞R

is a homomorphism for the additive structures on Ω∞K and Ω∞R.

Proof. If X is a motivic space equipped with an equivalence X → ΩY , then
X is a group object in the homotopy category of motivic spaces; if in addition
Y ≃ ΩZ, then X is an abelian group object. In particular, the additions on
Ω∞K and Ω∞R are induced by the equivalences Ω∞µ(β) : Ω∞K → Ω∞+1K
and Ω∞µ(α) : Ω∞R → Ω∞+1R, respectively, and Ω∞µ(α)−1 ◦ Ω(x) ◦ Ω∞µ(β)
is a map of loop spaces and therefore respects this addition. �

Proposition 4.10. Let R be a homotopy commutative PMGL-algebra. Then
there exists a canonical section s : RP

∞

+ → RBGLZ of the restriction r = i∗ :
RBGLZ → RP

∞

+ induced by the inclusion i : P∞
+ ≃ BGL0 +BGL1 → BGLZ.

Proof. Set Y = RBGLZ and Z = RP
∞

+ . By Proposition 4.11, the additive maps
from BGLZ to Ω∞R define a canonical section π0Z → π0Y of the surjection
π0Y → π0Z. We must lift this to a map of spectra s : Z → Y .
By Proposition 2.24, we have isomorphisms R0(P∞

+ ⊗Z) ∼= R0(Z)⊗π0R π0Z ∼=
Z0(Z). Combined with the section π0Y → π0Z, this induces a map

Z0(Z)→ R0(Z)⊗π0R π0Z → R0(Z)⊗π0R π0Y → Y 0(Z).

Take s ∈ Y 0(Z) to be the image of 1 ∈ Z0(Z) under this map. �

Corollary 4.11. Let R be a homotopy commutative PMGL-algebra. Then

map(Σ∞BGLZ, R) ≃ map(Σ∞
P
∞
+ , R)×X

for some space X.
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Proof. Take X to be the global points of the motivic space obtained by
applying Ω∞ to the fiber of r : RBGLZ → RP

∞

+ . �

We write

r : map(Σ∞BGLZ, R) −→ map(Σ∞
P
∞
+ , R)

for the restriction and

s : map(Σ∞
P
∞
+ , R) −→ map(Σ∞BGLZ, R)

for the section corresponding to the inclusion of the additive maps from BGLZ

to Ω∞R into all maps from BGLZ to Ω∞R. By Corollary 4.8, we have that
r ◦ f = g ◦ r; however, the next proposition shows that in fact f ≃ s ◦ g ◦ r,
which is stronger since r ◦ f ≃ r ◦ s ◦ g ◦ r ≃ g ◦ r as s is a section of r.

Proposition 4.12. Let R be a homotopy commutative PMGL-algebra. Then

f ≃ s ◦ g ◦ r : map(Σ∞BGLZ, R) −→ map(Σ∞BGLZ, R).

Proof. Note that f and g are induced from corresponding maps f : RBGLZ →
RBGLZ and g : RP

∞

+ → RP
∞

+ , respectively, and that r and s come similarly from
maps r : RBGLZ → RP

∞

+ and s : RP
∞

+ → RBGLZ. Thus it’s enough to check
that

f = s ◦ g ◦ r ∈ π0 map(RBGLZ , RBGLZ).

Since r ◦ f ≃ g ◦ r, we may instead show that f ≃ s ◦ r ◦ f . By definition,

f ∈ π0 map(RBGLZ , RBGLZ) ∼= R0(BGLZ)⊗̂
R0

R0(RBGLZ)

is the image of

1 ∈ π0 map(RBGLZ , RBGLZ) ∼= R0(BGLZ)⊗̂
R0

R0(RBGLZ)

under the map obtained by applying (−)⊗̂R0R0(RBGLZ) to the map

Ω∞µ(α)−1
∗ Ω∞µ(β)∗Ω : π0 map(BGLZ,Ω

∞R) −→ π0 map(BGLZ,Ω
∞R).

One similarly checks that r and s are obtained by applying (−)⊗̂R0
R0(RBGLZ)

to the restriction R0(BGLZ)→ R0(P∞) and its section R0(P∞)→ R0(BGLZ),
respectively. Now, according to Proposition 4.9, as a map of motivic loop
spaces, Ω∞µ(α)−1

∗ Ω∞µ(β)∗Ω sends x : BGLZ → Ω∞R to the additive map

Ω∞µ(α)−1 ◦ Ω(x) ◦ Ω∞µ(β) : BGLZ −→ ΩBGLZ −→ Ω∞+1R −→ Ω∞R,

which is to say that it factors through the inclusion Add(BGLZ,Ω
∞R) ∼=

R0(P∞
+ )→ R0(BGLZ). Hence f is in the image of

R0(P∞
+ )⊗̂R0R0(RBGLZ)

s //

∼=

��

R0(BGLZ)⊗̂R0R0(RBGLZ)

∼=

��
π0 map(RBGLZ , RP

∞

+ )
s // π0 map(RBGLZ , RBGLZ) ,
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so f = s◦f̃ for some f̃ : RBGLZ → RP
∞

+ . But then s◦r◦f ≃ s◦r◦s◦f̃ ≃ s◦f̃ ≃ f .
�

Lemma 4.13. Suppose given a homotopy commutative diagram of (ordinary)
spectra

Y
f

//

r

��

Y

r

��
Z

g
// Z

such that r : Y → Z admits a section s : Z → Y with

f ≃ s ◦ g ◦ r : Y → Y.

Then the natural map from the homotopy limit of the tower {· · · → Y → Y },
obtained by iterating f , to the homotopy limit of the tower {· · · → Z → Z},
obtained by iterating g, is an equivalence.

Proof. Since Z is a retract of Y , we may write Y ≃ Z ×X for some spectrum
X such that the fiber of f over g is the trivial map X → X . Now consider the
diagram

W //

��

∏
nX

//

��

∏
nX

��
holim{· · · → Y → Y } //

��

∏
n Y

1−f
//

��

∏
n Y

��
holim{· · · → Z → Z} //

∏
n Z

1−g
//
∏

n Z

in which the rows and columns are fiber sequences. Then the fiber of
1 − f over 1 − g is the identity

∏
nX →

∏
nX , so W is trivial and

holim{· · · → Y → Y } ≃ holim{· · · → Z → Z}. �

Proposition 4.14. Let R be an orientable commutative motivic ring spectrum
and let α ∈ π1R be a unit. Then

ψ∗ : map(K,R) −→ map(L,R)

is an equivalence.

Proof. Set Y = map(Σ∞BGLZ, R) and Z = map(Σ∞P∞
+ , R), so that

Y ≃ Z × X via r : Y → Z and its section s : Z → Y . By Proposition 4.12,
f ≃ s ◦ g ◦ r : Y → Y , and since r and s are infinite loop maps we may regard
them as maps of (ordinary) connective spectra. The result then follows from
Lemma 4.13. �
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Corollary 4.15. The map ψ : L→ K induces an isomorphism ψ∗ : R0(K)→
R0(L) for any orientable periodic commutative motivic ring spectrum R.

Proof. This is immediate from Proposition 4.14 above, since the spectrum of
motivic spectrum maps from L to R admits precisely the same description as
that of the spectrum of motivic spectrum maps from K to R. Indeed,

L ≃ colimn{Σ
∞
+ P

∞ β∗

−→ Σ−1Σ∞
+ P

∞ β∗

−→ · · · },

and we see that

RL ≃ holimn{· · ·
g
−→ RP

∞

+
g
−→ RP

∞

+ },

where the map g : RP
∞

+ → RP
∞

+ sends λ : Σ∞
+ P∞ → R to α−1

∗ ◦ Σ−1λ ◦ β∗, the
composite

Σ∞
+ P

∞ → Σ−1Σ∞
+ P

∞ → Σ−1R→ R,

just as above. �

By the homotopy category of orientable periodic spectra, we mean the full
subcategory of the homotopy category of spectra on the orientable and periodic
objects. In other words, R is an orientable periodic spectrum if there exists a
homotopy commutative ring structure onR which admits a ring map PMGL→
R. Note that, according to this definition, maps between orientable periodic
spectra need not preserve potential orientations or even ring structures.

Proposition 4.16. ψ induces an isomorphism ψ∗ : [K,−]→ [L,−] of functors
from the homotopy category of orientable periodic spectra to abelian groups.

Proof. Let R be an orientable periodic spectrum. Then

ψ∗ : [K,R] = R0(K)→ R0(L) = [L,R]

is an isomorphism by Corollary 4.15, and this isomorphism is natural in
spectrum maps R → R′, provided of course that R′ is also orientable and
periodic. �

Theorem 4.17. The ring map ψ : L→ K is an equivalence.

Proof. Let ϕ∗ : [L,−] → [K,−] be the inverse of the isomorphism
ψ∗ : [K,−] → [L,−] of Proposition 4.16, and let ϕ : K → L be the map
obtained by applying ϕ∗ to the identity 1 ∈ [L,L]. It follows from the Yoneda
lemma that ϕ∗ is precomposition with ϕ. The equations ϕ∗ ◦ ψ∗ = 1∗K and
ψ∗ ◦ ϕ∗ = 1∗L imply that ψ ◦ϕ = 1K and ϕ ◦ ψ = 1L in the homotopy category
of orientable periodic spectra, and therefore that ψ ◦ ϕ = 1K and ϕ ◦ ψ = 1L

in the homotopy category of spectra. Hence ψ : L→ K is an equivalence with
inverse ϕ : K → L. �
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5. Applications

5.1. The motivic Conner-Floyd theorem. The classical theorem of Con-
ner and Floyd shows that complex cobordism determines complex K-theory
by base change. More precisely, writing PMU for periodic complex cobordism
and KU for complex K-theory, then, for any finite spectrum X , the natural
map

PMU0(X)⊗PMU0 KU0 → KU0(X)

is an isomorphism of KU0-modules.

Remark 5.1. This is the precursor of the more general notion of Landweber
exactness. In [8], P. Landweber gives a necessary and sufficient condition on
an MU∗-module G so that the functor (−) ⊗MU∗

G, from (MU∗,MU∗MU)-
comodules to graded abelian groups, is exact. For G = K∗, it follows that the
natural map

MU∗(−)⊗MU∗ K∗ → K∗(−)

is an isomorphism. See [21] for the motivic analogue of Landweber exactness.

We now turn to the motivic version of the theorem of Conner and Floyd. A
motivic spectrum X is said to be compact if [X,−], viewed as a functor from
motivic spectra to abelian groups, commutes with filtered colimits.

Proposition 5.2. Let X be a compact motivic spectrum. Then the natural
map

PMGL0(X) ⊗
PMGL0

K0 −→ K0(X)

is surjective.

Proof. Set B := Σ∞
+ BGL and A := Σ∞

+ P∞. Then the determinant map
r : B → A admits a section s : A → B, so, for each n, Σ−nA is a retract of
Σ−nB and Σ−nB0(X) → Σ−nA0(X) is surjective. Since X is compact, the
colimit

B[1/β]0(X) ∼= colimn Σ−nB0(X) −→ colimn Σ−nA0(X) ∼= A[1/β]0(X)

is also surjective, and we see that

B[1/β]0(X) ⊗
B[1/β]0

A[1/β]0 −→ A[1/β]0(X) ⊗
B[1/β]0

A[1/β]0 ∼= A[1/β]0(X)

is surjective as well. �

Theorem 5.3. Let X be a compact motivic spectrum. Then the natural map

PMGL0(X) ⊗
PMGL0

K0 −→ K0(X)

is an isomorphism.
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Proof. According to Proposition 5.2, it’s enough to show that the map is
injective. For simplicity of notation, set R := PMGL, define a contravariant
functor J0(−) from compact motivic spectra to R0-modules by the rule

J0(X) := ker{R0(X)→ K0(X)},

and write J0 for J0(S). Since the tensor product is right exact, the map

J0(X)⊗R0 K0 −→ ker{R0(X)⊗R0 K0 → K0(X)⊗R0 K0}

is surjective, so in light of the isomorphism

K0(X)⊗R0 K0 ∼= K0(X)⊗K0 K0 ∼= K0(X)

it’s enough to show that J0(X)⊗R0 K0 is zero, or, equivalently, that

J0(X)⊗R0 J0 −→ J0(X)⊗R0 R0 ∼= J0(X)

is surjective. To this end, set

I0(X) := im{J0(X)⊗R0 J0 → J0(X)⊗R0 R0 ∼= J0(X)};

we must show that I0(X) ∼= J0(X).
Now, writing B := Σ∞

+ BGL and A := Σ∞
+ P∞ as above, and using the com-

pactness of X , we see that any element of

J0(X) ∼= ker{colimn[X,Σ−nB]→ colimn[X,Σ−nA]}

∼= colimn ker{[X,Σ−nB]→ [X,Σ−nA]}

is represented by a map

x : ΣnX → B ≃ colimp colimq Σ∞
+ Grassp,q,

which, by compactness, factors as fx : ΣnX → Yx followed by y : Yx → B
for Yx ≃ Σ∞

+ Grassp,q the suspension spectrum of a finite Grassmannian. This
yields a commuting diagram

ΣnX
x //

fx

��

B

r

��
Yx

//

y
<<zzzzzzzz

A

in which r ◦ x is trivial and the determinant map r : B → A admits a section
s : A→ B. Of course, as r ◦ y need not be trivial, set y′ := y− s ◦ r ◦ y, so that

y′ ◦ f ≃ (y − s ◦ r ◦ y) ◦ f ≃ y ◦ f − s ◦ r ◦ y ◦ f ≃ x− s ◦ r ◦ x ≃ x

and r ◦ y′ ≃ 0, which is to say that y′ ∈ J0(X) and f∗
xy

′ = x.
Finally, according to Proposition 2.19, R0(Yx) ⊗R0 K0 ∼= K0(Yx) for each
x ∈ J0(X), so we must have surjections

J0(Yx)⊗R0 J0 −→ J0(Yx)⊗R0 R0 ∼= J0(Yx).
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Adding these together, we obtain a morphism of short exact sequences

0 //
⊕

x I
0(Yx) //

��

⊕
xJ

0(Yx) //

L

x
f∗

x

��

0 //

��

0

0 // I0(X) // J0(X) // J0(X)⊗R0 K0 // 0

such that
⊕

x f
∗
x :

⊕
x J

0(Yx) → J0(X) is surjective. It follows that
I0(X) ∼= J0(X). �

5.2. PMGL and K are E∞ motivic spectra. As a final application, we
show that PMGL and K are E∞ motivic spectra. As we shall see, this is an
immediate consequence of the fact that PMGL and K are obtained through a
localization of the category of E∞ R-algebras for some E∞ motivic spectrum
R. Roughly, given an element β ∈ πp,qR, the functor which sends the R-
module M to M [1/β] := M ∧R R[1/β] defines a monoidal localization of the
category of R-modules, so it extends to a localization of the category of E∞

R-algebras. Taking R = Σ∞
+ BGL and β the Bott element, we see that PMGL

is the localization of the initial E∞ R-algebra and K is the localization of the
determinant E∞ R-algebra.
In order to make this precise, we fix a suitable symmetric monoidal model cat-
egory (ModS,∧S) of motivic spectra, such as motivic S-modules [6] or motivic
symmetric spectra [7]. For sake of definiteness, we adopt the formalism of the
latter; nevertheless, we refer to motivic symmetric spectra as S-modules, as
they are indeed modules over the symmetric motivic sphere S.
Recall that a motivic symmetric sequence is a functor from the groupoid Σ
of finite sets and isomorphisms to pointed motivic spaces. It is sometimes
convenient to use a skeleton of Σ, so we simply write n for a finite set with n
elements and Σ(n) for its automorphism group. Motivic symmetric sequences
form a symmetric monoidal category under the smash product defined by

(X ∧ Y )(n) :=
∨

n=p+q

Σ(n)+ ∧Σ(p)×Σ(q) X(p) ∧ Y (q).

The motivic sphere S has a natural interpretation as the motivic symmet-
ric sequence in which S(n) is the pointed Σ(n)-space associated to the pair
(An,An−A0), where Σ(n) acts by permutation of coordinates. The Σ(p)×Σ(q)-
equivariant maps

(Ap,Ap − A
0) ∧ (Aq,Aq − A

0) −→ (Ap+q,Ap+q − A
0)

give S the structure of a commutative monoid for this smash product. An
S-module is then a motivic symmetric sequence equipped with an action of S,
which is to say a sequence X(p) of pointed Σ(p)-equivariant motivic spaces
equipped with Σ(p)× Σ(q)-equivariant maps

(Ap,Ap − A
0) ∧X(q) −→ X(p+ q);
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the fact that S is a commutative monoid implies that ∧ extends to a smash
product ∧S on the category ModS of S-modules. There are monoidal functors

{Motivic spaces}→{Motivic symmetric spaces}→{Motivic symmetric spectra}

in which the righthand map is the free S-module functor, the left hand map
sends the motivic space X to the constant motivic symmetric space X+, and
the composite is a structured version of the suspension spectrum functor Σ∞

+ .

Proposition 5.4. The S-modules Σ∞
+ BGL and Σ∞

+ P∞ are equivalent to
strictly commutative S-algebras in such a way that the determinant map
Σ∞

+ BGL→ Σ∞
+ P∞ is equivalent to a map of strictly commutative S-algebras.

Proof. For each n, writeGL(n) for the group S-scheme of linear automorphisms
of An. Then Σ(n) acts on GL(n) by conjugation via the embedding Σ(n) →
GL(n), so that GL(n) is the value at n of a symmetric sequence GL in group S-
schemes such that the determinant mapGL→ GL1 is a morphism of symmetric
sequences in group S-schemes, where we regard GL1 as a constant symmetric
sequence. Taking classifying spaces, we obtain a morphism of commutative
monoid symmetric sequences BGL→ BGL1 in unpointed motivic spaces. Now
let S[BGL] and S[BGL1] denote the S-modules defined by

S[BGL](n) := S(n) ∧BGL(n)+ and S[BGL1](n) := S(n) ∧BGL1+,

respectively, where Σ(n) acts diagonally; note that S[BGL1] is the free S-
module on the motivic symmetric sequence BGL1+, whereas the action of S

on S[BGL] is induced by the canonical Σ(p)× Σ(q)-equivariant inclusions

BGL(q) −→ BGL(p)×BGL(q)→ BGL(p+ q)

coming from the fact that BGL(p) has a canonical basepoint which is fixed
by the action of Σ(p). The monoidal structure on BGL1 extends to a strictly
commutative S-algebra structure on S[BGL1], and the strictly commutative
S-algebra structure on S[BGL] comes from Σ(p)× Σ(q)-equivariant pairing

S(p) ∧BGL(p)+ ∧ S(q) ∧BGL(q)+ −→ S(p+ q) ∧BGL(p+ q)+;

moreover, it is clear that the determinant map S[BGL]→ S[BGL1] is monoidal
with respect to these multiplicative structures. Hence we are done, provided
the underlying ordinary motivic spectra (obtained by forgetting the actions of
the symmetric groups) of S[BGL] and S[BGL1] are equivalent to the motivic
spectra Σ∞

+ BGL and Σ∞
+ P∞, respectively. This is immediate for S[BGL1],

whose underlying spectrum is the suspension spectrum Σ∞
+ BGL1; on the other

hand, the underlying spectrum of S[BGL] is the prespectrum {Sn ∧BGLn+}.
But the motivic spectrum associated to Σ∞

+ BGL is given by

colimp ΩpΣp colimq BGLq ≃ colimp colimq ΩpΣpBGLq ≃ colimn ΩnΣnBGLn,

so the two motivic prespectra are stably equivalent. �

Instead of considering localization in the context of symmetric monoidal model
categories, it will be enough to consider localization in the context of symmetric
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monoidal ∞-categories, in the sense of Lurie [16]. Indeed, if (M ,⊗) is a sym-
metric monoidal model category, then, in the notation of [16], the commutative
algebra objects of the associated symmetric monoidal ∞-category N(M ,⊗)◦

correspond to coherently homotopy commutative, or E∞, objects of (M ,⊗).
Here N denotes the simplicial nerve of a simplicial category; if the simplicial
category comes from a symmetric monoidal model category, then its simpli-
cial nerve is symmetric monoidal as an ∞-category. See [17] for facts about
∞-categories and simplicial nerves, and [16] for a treatment of commutative
algebra in the ∞-categorical context.
Recall (cf. [17]) that a map F : C → D of ∞-categories is said to be a
localization if F admits a fully faithful right adjoint G. In this case, it is
common to identify D with the full subcategory of C consisting of those objects
in the essential image of G (the “local objects”), and suppress D and G from
the notation by writing L for the composite G ◦ F : C → D → C . If C is the
underlying ∞-category of a symmetric monoidal ∞-category (C ,⊗), then we
may ask when a localization L : C → C extends to a lax symmetric monoidal
functor on (C ,⊗). Given a localization L : C → C , an L-equivalence is a map
which becomes an equivalence after applying L.

Definition 5.5 ([16], Example 1.7.5). Let (C ,⊗) be a symmetric monoidal
∞-category and let L : C → C be a localization of the underlying ∞-category.
Then L is said to be compatible with ⊗ if, for all L-equivalences A → A′ and
all objects B of C , A⊗B → A′ ⊗B is an L-equivalence.

Proposition 5.6 ([16], Proposition 1.7.6). Let (C ,⊗) be a symmetric monoidal
∞-category, let L : C → C be a localization of the underlying ∞-category,
and suppose that L is compatible with ⊗. Then L extends to a lax symmetric
monoidal functor

(L,⊗) : (C ,⊗)→ (C ,⊗).

In particular, L preserves algebra and commutative algebra objects of (C ,⊗).

Let N(ModS,∧S)
◦ denote the symmetric monoidal ∞-category which arises

as the simplicial nerve of the symmetric monoidal simplicial model category
(ModS,∧S) of S-modules. Since commutative algebra objects of N(ModS,∧S)

◦

are modeled by algebras over a suitable E∞ operad, we refer to commutative
algebra objects of N(ModS,∧S)

◦ as E∞ S-algebras. Given an E∞ S-algebra
R, we write (ModR,∧R) for the resulting symmetric monoidal ∞-category of
R-modules, and refer to commutative algebra objects of (ModR,∧R) as E∞

R-algebras.

Proposition 5.7. Let R be an E∞ S-algebra, let f ∈ πp,qR be an arbitrary
element, and write Lf : ModR → ModR for the functor which sends the R-
module M to the R-module

M [1/f ] := M ∧R R[1/f ].

Then Lf is a localization functor which is compatible with the symmetric
monoidal structure ∧R on ModR; in particular, Lf extends to a lax monoidal
functor Lf : (ModR,∧R)→ (ModR,∧R).
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Proof. Say that an R-module M is f -local if the multiplication by f map
f∗ : M → Σ−p,−qM is an equivalence. Given an f -local R-module M , the
induced map

Map(R[1/f ],M) ≃ lim{M ← Σp,qM ← · · · } ≃M

is an equivalence, so

map(N [1/f ],M) ≃ map(N,Map(R[1/f ],M)) ≃ map(N,M)

is an equivalence for any R-module N . Hence Lf is left adjoint to the inclusion
of the full subcategory of f -local R-modules, and is therefore a localization.
Moreover, it is compatible with ∧R, since if M → M ′ is an Lf -equivalence
then so is M ∧R N →M ′ ∧R N for any R-module N , for if M [1/f ]→M ′[1/f ]
is an equivalence then

(M ∧R N)[1/f ] ≃M [1/f ] ∧R N −→M ′[1/f ] ∧R N ≃ (M ′ ∧R N)[1/f ]

is as well. Hence, by Proposition 5.6, Lf extends to a lax symmetric monoidal
endofunctor (Lf ,∧R) of (ModR,∧R). �

Corollary 5.8. Let R be an E∞ S-algebra and let f ∈ πp,q be a fixed element.
Then R[1/f ] is an E∞ R-algebra, and therefore also an E∞ S-algebra.

Proof. By Proposition 5.7, Lf is a lax symmetric monoidal functor with
LfR ≃ R[1/f ]. Since lax symmetric monoidal functors preserve commuta-
tive algebra objects, we see that R[1/f ] is a commutative algebra object in
(ModR,∧R). Lastly, as the forgetful functor from R-modules to S-modules is
lax symmetric monoidal, it follows that R[1/f ] is also an E∞ S-algebra. �

Corollary 5.9. MGL, PMGL and K are E∞ S-algebras.

Proof. The MGL case is already well-known (cf. [6], for example). By
Proposition 5.4, Σ∞

+ BGL and Σ∞
+ P∞ are equivalent to strictly commutative

S-algebras, so they are naturally commutative algebra objects in the sym-
metric monoidal ∞-category N(ModS,∧S). Applying Proposition 5.8, we see
that PMGL ≃ Σ∞

+ BGL[1/β] is an E∞ Σ∞
+ BGL-algebra, and likewise that

K ≃ Σ∞
+ P∞[1/β] is an E∞ Σ∞

+ P∞-algebra. In particular, PMGL and K are
E∞ S-algebras. �

Proposition 5.10. K is an E∞ PMGL-algebra.

Proof. Note that the Bott element ΣS → Σ∞
+ P∞ factors as the com-

posite of the Bott element ΣS → Σ∞
+ BGL followed by the determinant

map Σ∞
+ BGL → Σ∞

+ P∞. By Proposition 5.4, the determinant map
Σ∞

+ BGL → Σ∞
+ P∞ is a map of E∞ Σ∞

+ BGL-algebras, so by Propo-
sition 5.8, the localization K ≃ Σ∞

+ P∞[1/β] is an E∞ algebra over
PMGL ≃ Σ∞

+ BGL[1/β]. �
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