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Abstract. Using Lubin-Tate groups, we develop a variant of Fontaine’s
theory of (ϕ, Γ)-modules, and we use it to give a description of the Galois
stable lattices inside certain crystalline representations.

Introduction

In his Grothendieck Festschrift paper [Fo 1], Fontaine introduced a new way
to classify local Galois representation, using the theory of so called (ϕ, Γ)-
modules. To recall this, let k be a perfect field of characteristic p, K0 =
Fr W (k) and K/K0 a finite, totally ramified extension. Fix an algebraic closure
K̄ of K. Fontaine’s theory starts with an infinite extension K∞/K which is
required to have certain ramification properties. Miraculously, these properties
ensure that GK∞

= Gal(K̄/K∞) can be identified with the absolute Galois
group of a local field of equal characteristic p, X(K). It is well known that
representations of such a Galois group on finite dimensional Fp-vector spaces
can be classified rather concretely in terms of finite dimensional vector spaces
over X(K) equipped with an étale Frobenius. If K∞/K is Galois, then Γ =
Gal(K∞/K) acts naturally on X(K), and one obtains a classification of GK-
representations on finite dimensional Fp-vector spaces by adding a semi-linear
action of Γ to the étale ϕ-modules over X(K).
To obtain a classification of GK-representations on finite Zp-modules, one needs
to lift the action of ϕ and Γ on X(K) to commuting operators on a Cohen ring
for X(K). This is probably not always possible, but can be done when K∞

is the p-cyclotomic extension of K. Much of the work on Fontaine’s theory
by Berger, Colmez, Wach and others has focused on this case. In this paper
we focus on the case when K∞ is generated by the p-power torsion points of a
Lubin-Tate group for a finite extension L/Qp contained in K. As an application
we obtain a description of the GK -stable lattices in a certain class of crystalline
GK-representations. This is possible using the p-cyclotomic theory only when
K is an unramified extension of some Qp(µpn).
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More precisely, let G be a Lubin-Tate group over OL, write kL for the residue
field of L, fix a uniformizer πL of L, and write R = lim←−OK̄/p, where the

transition maps in the inverse limit are given by Frobenius. The action of GK on
the Tate module TG of G gives rise to a character χ : Γ→ O×

L . It turns out that,
using the periods of TG one can construct a subring OE ⊂ W (Fr R)⊗W (kL) L

which is naturally a Cohen ring for X(K). The action of O×
L ⊂ OL on G gives

rise to a natural lifting of the action of Γ to OE (via χ), while the action of πL

on G allows one to lift the q-Frobenius ϕq = ϕr to OE , where q = |kL|.
This allows one to classify GK -representations on finite OL-modules in terms
of étale (ϕq, Γ)-modules (see Theorem 1.6 below), and is explained in §1 of the
paper. At least some part of this construction was certainly known to experts.
The construction of the periods involved is in Colmez’s paper [Col 1], and some
of the ideas go back to Coleman [Co]. This material is also closely related to
the subject of Fourquaux’s thesis [Fou, §1.4].
In §2,3 we use this classification to give a classification of Galois stable lattices
in certain crystalline GK-representations, assuming that K ⊂ K0 · L∞ where
L∞/L is the field generated by the torsion points of G. To explain the classi-
fication, assume for simplicity that K = K0 · L, and let SL = OK [[u]]. Fix a
co-ordinate X on G, and for a ∈ OL denote by [a] ∈ OL[[X ]] the power series
giving the action of a on G. Then γ ∈ Γ acts on SL by u 7→ [χ(γ)](u), while

ϕq acts on SL by u 7→ [πL](u). Let Q = [πL](u)/u. We denote by Mod
ϕq,Γ

/SL

the category of finite free SL-modules equipped with a continuous semi-linear
action of Γ which induces the trivial action of M/uM, and an isomorphism

ϕ∗
qM[1/Q]

∼
−→ M[1/Q] such that the map 1 ⊗ ϕq : M → M[1/Q] commutes

with the action of Γ. Inside this category is a subcategory Mod
ϕq,Γ,an

/SL
consisting

of objects M on which the Γ-action is OL-analytic. this means that there is
OL-linear map of Lie algebras dΓ : Lie Γ → EndK(M ⊗SL

K[[u]]), such that
the action of an open subgroup of Γ is obtained by exponentiating dΓ.
To describe the crystalline representations we allow, consider any crystalline
GK-representation on an L-vector space V. Then

DdR(V ) = (BdR ⊗Qp
V )GK = ⊕mDdR(V )m

where m runs over the maximal ideals of K⊗Qp
L. We say that V is L-crystalline

if the filtration on DdR(V )m is trivial, unless m is the kernel of the natural map
K ⊗Qp

L →֒ K corresponding to the inclusion L→ K. One of our main results
is then the following

Theorem (0.1). There is an exact equivalence of ⊗-categories between

Mod
ϕq,Γ,an

/SL
and the category of GK -stable OL-lattices in L-crystalline GK-

representations.

The theorem is a generalization of the classification of GK-stable lattices in
crystalline representations in terms of Wach lattices due to Wach [Wa], Colmez
[Col 2] and Berger [Be 3], when K∞ is the p-cyclotomic extension and K is
unramified.
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It is also analogous to the classification GK∞
-stable lattices, obtained in [Ki]

in the case when K∞ is obtained from K by adjoining the p-power roots of
a uniformizer. The advantage of Theorem (0.1) is that it applies without re-
striction on the ramification of K, and gives a precise description of GK -stable
lattices. Unfortunately, it applies only to a rather special kind of crystalline
GK-representation. It seems likely that in order to obtain a classification valid
for any crystalline GK-representation one needs to consider higher dimensional
subrings of W (Fr R), constructed using the periods of all the conjugates of G.

Acknowledgment: The results presented here were to be the subject of the
Ph. D thesis of Wei Ren. They were written up by the first author after Ren’s
premature and tragic death.

We would like to thank Barry Mazur and Jean-Marc Fontaine for useful con-
versations on some of the material presented here. Finally we thank the referee
for a careful reading of the paper and some useful remarks.

§1 Étale (ϕq, Γ)-modules

(1.1) Throughout the paper we fix a perfect field k, of characteristic p > 0. Let
W = W (k), K0 = W [1/p] and K/K0 a finite totally ramified extension with
ring of integers OK , and uniformizer π. We also fix an algebraic closure K̄ of
K with ring of integers OK̄ , and set GK = Gal(K̄/K).

Let L/Qp be a finite extension of Qp contained in K. Let OL denote the ring of
integers of L, and kL ⊂ k its residue field. Write OL0

= W (kL), L0 = OL0
[1/p],

and q = pr = |kL|. For an OL0
-algebra A, it will be convenient to write AL =

A⊗OL0
OL.

Let G be a Lubin-Tate group over L corresponding to a uniformizer πL ∈ L.
Fix a local co-ordinate X on G so that the formal Hopf algebra OG may be
identified with OL[[X ]]. For a ∈ OL we denote by [a] ∈ OL[[X ]] = OG the power
series giving the endomorphism a of G.

For n ≥ 1, let Kn ⊂ K̄ denote the subfield generated by the πn
L-torsion

points of G. We set K∞ = ∪nKn and we write Γ = Gal(K∞/K) and
GK∞

= Gal(K̄/K∞). Let TG denote the p-adic Tate module of G. Then TG is
a free OL-module of rank 1, and the action of Γ induces a faithful character
χ : Γ→ O×

L .

We let R = lim←−OK̄/p with the transition maps being given by Frobenius.

We may also identify R with lim←−OK̄/πL with the transition map being given
by the q-Frobenius ϕr. Evaluation of X at πL-torsion points then induces a
map ι : TG → R. Namely if v = (vn)n≥0 ∈ TG with vn ∈ G[π

n
L](OK̄) and

πL · vn+1 = vn, then ι(v) = (v∗n(X))n≥0.

Lemma (1.2). There is a unique map { } : R → W (R)L such that {x} is a
lifting of x, and ϕr({x}) = [πL](x). Moreover { } respects the action of GK ,
and for v ∈ TG we have

(1) If a ∈ OL then {ι(av)} = [a]({ι(v)}).
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(2) The action of GK on {ι(TG)} factors through Γ and for γ ∈ Γ

[χ(γ)]({ι(v)}) = {ι(γv)} = {γ · ι(v)} = γ · {ι(v)}

In particular, if v ∈ TG is an OL-generator, there is an embedding WL[[u]] →֒
W (R)L sending u to {ι(v)} which identifies WL[[u]] with a GK-stable, ϕr-stable
subring of W (R)L such that {ι(TG)} lies in the image of WL[[u]].

Proof. The existence and uniqueness of { } is [Col 1, Lem. 9.3]. The map {x}
is given by

{x} = lim
n

[πn
L](ϕ−rn(x̃))

where x̃ ∈ W (R)L is any lifting of x. That { } respects the action of GK follows
by functoriality. In particular, the action of GK on {ι(TG)} factors through Γ.
For (1) note that

[πL][a]{ι(v)} = [a][πL]{ι(v)} = [a]ϕr{ι(v)} = ϕr([a]{ι(v)}).

Since [a]{ι(v)} and {ι(av)} both have image [a](ι(v)) in R, this proves (1).
(Here R is viewed as a OK algebra via OK → k.)
Now the first equality in (2) follows from (1), while the other two equalities
follows from the compatibility of ι and { } with the action of GK .
Finally, since ι(v) has positive valuation with respect to the canonical valuation
on R, u 7→ {ι(v)} induces a well defined map WL[[u]] → W (R)L. Its image is
ϕ-stable by definition of { } and Γ-stable by (2). If this map had a non-trivial
kernel, then so would its reduction modulo πL. The latter map k[[u]] → R,
sending u to ι(v) is easily seen to be injective, as ι(v) has positive valuation. �

(1.3) Write SL = WL[[u]]. We fix an OL-generator v ∈ TpG, and we identify
SL with a subring of W (R)L by sending u to {ι(v)}.
LetOE denote the p-adic completion of SL[1/u]. ThenOE is a complete discrete
valuation ring with uniformizer πL and residue field k((u)). We may view OE

as a subring of W (Fr R)L. Let OEur ⊂W (Fr R)L denote the maximal integral,
unramified extension of OE . We denote by ObEur the p-adic completion of OEur ,

which is again naturally a subring of W (Fr R)L. We write E , Eur and Êur for
the fields of fractions of OE , OEur and ObEur respectively. These rings are all
stable by ϕr, and by the action of GK . Moreover the GK-action on OE factors
through Γ.

Lemma (1.4). The residue field of ObEur is a separable closure of k((u)). There
is a natural isomorphism

Gal(Eur/E)
∼
−→ Gal(K̄/K∞).

Proof. This is a consequence of the theory of norm fields [Wi]. Since Γ is
a p-adic Lie group the theory of loc. cit applies [Wi, 1.2.2]. For any finite
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extension F/K write XK(F ) = lim←−(F ·Kn) where the maps in the inverse limit

are given by the norm. We set XK(K̄) = ∪F XK(F ) where the limit runs over
finite extensions F/K in K̄. Then XK(F ) has the structure of a local field of
characteristic p, which is a finite separable extension of XK(K), XK(K̄) is a
separable closure of XK(K), and the functor XK induces an isomorphism [Wi,
3.2.2]

Gal(XK(K̄)/XK(K))
∼
−→ Gal(K̄/K∞).

On the other hand, there is a natural embedding XK(K) →֒ FrR [Wi ,§4]. To
see this explicitly note that one has well defined maps of rings

(1.4.1) lim←−OKn
→ lim←−OKn

/(v1) →֒ lim←−OK̄/πL = R,

where the transition maps in the first two inverse limits are given by the norm,
and the final inverse limit by x 7→ xq .
The image of (1.4.1) is easily seen to be k[[u]] ⊂ R. Hence we may identify
OE/πLOE with XK(K). It follows that OEur/πLOEur ⊂ Fr R may be identified
with XK(K̄). The lemma follows. �

(1.5) Note that the above proof shows that the map ι induces a map

TG → lim←−K∞,

where the transition maps are given by the norm. This is Coleman’s map [Co,
Thm. A].
We will write ϕq for the q-Frobenius ϕr (for example on the ring W (Fr R)).

Now denote by Mod
ϕq

/OE
(resp. Mod

ϕq,tor

/OE
) the category of finite free (resp. finite

torsion) OE -modules M, equipped with an isomorphism (ϕq)
∗M

∼
−→ M. We

denote by Mod
ϕq,Γ

/OE
(resp. Mod

ϕq,Γ,tor

/OE
) the category of consisting of a module

M in Mod
ϕq

/OE
(resp. Mod

ϕq,tor

/OE
) equipped with a continuous semi-linear action

of Γ which commutes with the action of ϕq.
We denote by RepGK∞

(resp. Reptor
GK∞

) the category of finite free (resp. finite

torsion) OL-modules V, equipped with a linear action of GK∞
Similarly, we

denote by RepGK
(resp. Reptor

GK
) the category of finite free (resp. finite torsion)

OK-modules V, equipped with a linear action of GK .

For M in Mod
ϕq

/OE
(resp. Mod

ϕq,tor

/OE
, resp. Mod

ϕq,Γ

/OE
, resp. Mod

ϕq,Γ,tor

/OE
) we set

V (M) = (ObEur ⊗OE
M)ϕq=1.

For V in RepGK∞
(resp. Reptor

GK∞

resp. RepGK
resp. Reptor

GK
)) we set

MOE
(V ) = (V ⊗OK

ObEur)
GK∞ .
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Theorem (1.6). V and MOE
are quasi-inverse equivalences between the exact

tensor categories Mod
ϕq

/OE
(resp. Mod

ϕq,tor

/OE
, resp. Mod

ϕq,Γ

/OE
, resp. Mod

ϕq,Γ,tor

/OE
)

and RepGK∞
(resp. Reptor

GK∞

, resp. RepGK
, resp. Reptor

GK
)

Proof. The argument for this is identical to that in [Fo 1, 1.2.6, 3.4.3]. For the
convenience of the reader we sketch it: It suffices to prove that V and M induce

quasi-inverse, exact tensor equivalences between Mod
ϕq,tor

/OE
and Reptor

GK∞

.

We first remark that both functors are exact. It suffices to prove this for objects

killed by p. For MOE
this follows from the fact that for M in Mod

ϕq,tor

/OE
, 1−ϕq is

étale locally (on Spec k((u))) surjective. For V this is a consequence of Hilbert’s
theorem 90, and (1.4).

For M in Mod
ϕq,tor

/OE
, we have a natural map

(1.6.1) (M ⊗OE
OEur)ϕq=1 ⊗OK

OEur →M ⊗OE
OEur

and taking GK∞
invariants of both sides induces a map MOE

(V (M))→M. To
show that this map is an isomorphism one reduces to the case of objects killed
by p, using the exactness proved above. In this case, (1.6.1) is an isomorphism,
because étale locally M is spanned by its ϕq-invariants. Similarly, one obtains
an isomorphism V (MOE

(V ))→M for V in Reptor
GK∞

, using dévissage, Hilbert

theorem 90, and (1.4). �

§2 (ϕq, Γ)-modules and weakly admissible modules

(2.1) We keep the notation of the previous section, so in particular we write
K0,L for the field K0⊗L0

L = Fr WL ⊂ K. In order not to overload notation we
will write vn for (vn)∗(X) ∈ K̄. We now also assume that K ⊂ K0,L(vn)n≥0.
Fix an integer m ≥ 1 such that K ⊂ K0,L(vm).
As in [Ki, 1.1.1], denote by D[0, 1) the rigid analytic disk of radius 1, over K0,L,
and denote by u the co-ordinate on D[0, 1). For I ⊂ [0, 1) an interval, denote
by D(I) ⊂ D[0, 1) the open subspace whose K̄ points consist of x ∈ K̄ with
|x| ∈ I. We denote by OI the ring of rigid analytic functions on D(I), and we
write O = O[0,1). We will often use the fact that D[0, 1) is a p-adic Stein space,
so that a coherent sheaf on D[0, 1) can be recovered from its global sections. In
particular, we may regard a finite free O-module as a coherent sheaf on D[0, 1).
We regard SL ⊂ O by u 7→ u. The action of ϕq and Γ on SL have a unique
continuous extension to O, regarded with its canonical Frechet topology.1

Let Q = [πm
L ](u)/[πm−1

L ](u). Denote by Mod
ϕq

/O the category of finite free O-

modules M equipped with an isomorphism ϕ∗
q(M)[1/Q]

∼
−→M[1/Q]. We de-

note by Mod
ϕq,Γ

/O the category whose objects consist of an object of Mod
ϕq

/O

equipped with a continuous semi-linear action of Γ such that Γ acts trivially

1Contrary to our usual conventions, the symbol OL will continue to denote the ring of integers
of L, rather than O ⊗L0

L.
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onM/uM and the ϕq-semi-linear map 1⊗ϕq :M→M[1/Q] commutes with
Γ.
We now explain how to differentiate the action of Γ on an object in Mod

ϕq,Γ

/O

following [Be 1, §IV,V].

Lemma (2.1.1). The action of Γ on O, defined above, is continuous. In par-

ticular, O with its action of Γ and ϕq is an object of Mod
ϕq,Γ

/O .

Proof. For r ∈ (0, 1), denote by | · |r the sup norm on O[0,r]. If f(u) =∑
i≥0 aiu

i ∈ O[0,r] then |f |r = supi |ai|r
i. We have to show that, for any r,

as γ → 1, |γ(f)− f |r → 0, uniformly in f with |f |r 6 1.
Any γ ∈ Γ acts on O by composition with [χ(γ)]. Write

[χ(γ)] =

∞∑

i=1

biX
i = expG(χ(γ)logGX)

where bi ∈ OL, logG denotes the logarithm of G and expG denotes its inverse.2

Then b1 = χ(γ) and for i > 1, bi is a polynomial in χ(γ), which vanishes at
χ(γ) = 1. Given ǫ > 0, choose i0 so that ri0 < ǫ. Then for γ sufficiently close
to 1, |bi| < ǫ for 1 < i < i0, and |b1 − 1| < ǫ so |[χ(γ)](u)− u|r < ǫ. Hence

|γ(f)− f |r = |f([χ(γ)](u))− f(u)|r 6

∞∑

i=1

|ai([χ(γ)](u)i − ui)|r 6 ǫ|f(u)|r.

The lemma follows. �

Lemma (2.1.2). Let M be in Mod
ϕq,Γ

/O . For each r ∈ (0, 1) and γ ∈ Γ suffi-

ciently close to 1 (depending on r) the series

logγ =
∞∑

i=1

(γ − 1)i(−1)i−1/i

induces a well defined operator on M|D[0,r). This induces a well defined Zp-
linear map of Lie algebras

dΓM : Lie Γ→ EndK0
M; β 7→ log(exp β).

such that for β ∈ Lie Γ, dΓO(β) is a derivation and dΓM(β) is a differential
operator over dΓO(β). That is, for m ∈ M, f ∈ O and β ∈ LieΓ,

dΓM(β)(fm) = dΓO(β)(f)m + fdΓM(β)(m).

Proof. Let M0 ⊂M be finite free WL-submodule of rank equal to d = rkOM,
which spans M. Choosing a basis for M0, we may identify M with Od. As

2So if G = Gm, then logG(X) = log(1 + X).
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in (2.1.1), choose r ∈ (0, 1) and denote by | |r the norm on MD[0,r] = Od
D[0,r]

induced by the sup norm on OD[0,r]. For any ǫ > 0, and γ sufficiently small we
have |γ(m) −m|r 6 ǫ|m|r for m ∈ M0 and |γ(f)− f |r 6 ǫ|f |r for f ∈ OD[0,r]

by (2.1.1). Hence

|γ(mf)−mf |r 6 |γ(m)−m|r|γ(f)|r + |γ(f)− f |r|m|r 6 2ǫ|m|r|f |r = 2ǫ|fm|r.

This shows that logγ is well defined.
It follows that the map

dΓM =: LieΓ→ EndK0
M; β 7→ log(exp β)

is well defined for β sufficiently small, and we extend it to all of Lie Γ by Zp-
linearity. That dΓO(β) is a derivation and dΓM(β) is a differential operator
over dΓO(β) follows from a simple computation, as does the fact that dΓM

is a map of Lie algebras. Note that the latter statement just means that the
differential operators dΓM(β) for β ∈ Lie Γ commute. �

(2.1.3) We say that M in Mod
ϕq,Γ

/O is OL-analytic if the map dΓM is OL-

linear, not just Zp-linear. We denote by Mod
ϕq,Γ,an

/O the full subcategory of

Mod
ϕq,Γ

/O consisting of OL-analytic objects. One checks easily that this is a

⊗-subcategory, which is stable under taking subobjects and quotients.

Lemma (2.1.4). Let M be in Mod
ϕq,Γ,an

/O .

(1) For each r ∈ (0, 1) the operator N∇ =: logγ/logχ(γ) is well defined for
γ 6= 1 sufficiently close to 1, and is independent of γ.

(2) The operators in (1) induce a K0,L-linear map N∇ : M → M, which
is a differential operator over the derivation N∇ : O → O, and which
commutes with ϕq onM.

(3) There is a singular connection ∇ onM with simple poles at the zeroes
of [πn

L]/u for n ≥ 1 (that is at the non-trivial πL-power torsion points of

G) such that N∇ = 〈∇, ∂F
∂Y (u, 0)logGu · d/du〉, where F (X, Y ) denotes

the formal group law of G with respect to X, and ∂F
∂Y (u, 0) ∈ OL[[u]]×.

Proof. For γ sufficiently close to 1, we may write γ = expβ with β ∈ Lie Γ.
Since β 7→ log(exp β) is OL-linear by assumption. and β 7→ log(χ(exp(β)))
is obviously OL-linear, logγ/logχ(γ) is independent of γ. This proves (1) and
(2) follows by viewing M as a coherent module on D[0, 1). The fact that N∇

commutes with ϕq follows from the fact that ϕq commutes with the action of
Γ.
To see (3), we first compute the derivation N∇ on O. For γ ∈ Γ write aγ =
χ(γ)− 1. Then

N∇(u) = lim
γ 7→1

[χ(γ)](u)− u

logχ(γ)
= lim

aγ→0

expG((1 + aγ)logGu)− u

logχ(γ)

= lim
aγ→0

F (u, expG(aγ logGu))− u

logχ(γ)
=

∂F

∂Y
(u, 0)logG(u).
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Hence N∇ is given on O by N∇(f) = ∂F
∂Y (u, 0)(logGu) df

du . As ∂F
∂Y (u, 0) has

constant term 1, and coefficients in OL[[u]], it is a unit O.

Now for anyM, define∇(m) for m ∈ M by∇(m) = ( ∂F
∂Y (u, 0)logGu)−1N∇(m).

Since N∇ onM is a differential operator over the derivation ∂F
∂Y (u, 0)(logGu) df

du
on O, ∇ is a (singular) connection. A priori ∇(m) has a simple pole at each
[πL]-torsion point of G, however since the action of Γ on M is trivial mod u,
the operator N∇ vanishes mod u, and ∇(m) has no pole at u = 0. This proves
(3). �

(2.2) Denote by Mod
F,ϕq

/K0,L
the category of finite dimensional K0,L-vector spaces

D equipped with an isomorphism ϕ∗
qD

∼
−→ D and a decreasing, separated

filtration on DK = D ⊗K0,L
K, indexed by Z, by K-subspaces.

Our next task to to show that there is an exact ⊗-equivalence between

Mod
F,ϕq

/K0,L
and Mod

ϕq,Γ,an

/O . The construction is analogous to that in [Be 2]

and [Ki, 1.2]. Since many of the proofs from [Ki] go over verbatim, we often
only sketch the argument.3

For n ≥ 0, denote by Ŝn the complete local ring at the point xn of D[0, 1),

corresponding to u = vm+n. That is, Ŝn is the completion of the localization

of O at the maximal ideal generated by [πm+n
L ](u)/[πm+n−1

L ](u). Then Ŝn is
a discrete valuation ring with residue field Km+n = K(vm+n) ⊃ K, which is

canonically a subfield of Ŝn. In particular, u − vm+n is a uniformizer for Ŝn.
Let

λ =
∏

n≥0

ϕn
q (Q(u)/Q(0))) =

∏

n≥0

[πm+n
L ](u)/[πm+n−1

L ](u)πL,

and write ϕq,WL
: O → O for the OL-linear automorphism given by applying

ϕr to the coefficients of a series in O.

Given D in Mod
F,ϕq

/K0,L
and n ≥ 0, we denote by ιn the composite

ιn : D ⊗K0,L
O[1/λ]

ϕ−n
q ⊗ϕ−n

q,WL

→֒ D ⊗K0,L
Ŝn[1/λ]

∼
−→ DK ⊗K Ŝn[1/u− vm+n].

We set

M(D) = {d ∈ D⊗K0,L
O[1/λ] : ∀n ≥ 0, ιn(d) ∈ Fil0(DK⊗K Ŝn[1/u−vm+n])}.

Lemma (2.2.1). For D in Mod
F,ϕq

/K0,L
, M(D) is naturally an object of

Mod
ϕq,Γ,an

/O .

Proof. ThatM(D) is a finite free O-module, and the fact that ϕq on D⊗K0,L

O[1/λ] induces an isomorphism ϕ∗
q(M(D))[1/Q]

∼
−→ M(D)[1/Q] is proved

exactly as in [Ki, 1.2.2].

3In fact they often simplify since one only has to consider the case when N = 0 in [Ki].
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Note that for γ ∈ Γ,

γ([πL](u)) = [πL] ◦ [χ(γ)](u) = [πLχ(γ)](u).

Hence γ(λ) = λ ◦ [χ(γ)] has a simple zero at each [πm
L ]-torsion point which is

not a [πm−1
L ]-torsion point. It follows that λ/γ(λ) ∈ SL[1/p]×. In particular,

if γ ∈ Γ acts on D ⊗K0,L
O by 1 ⊗ γ, then this induces an action of Γ on

D ⊗K0,L
O[1/λ]. The same argument shows that γ induces an automorphism

of Ŝn for n ≥ 0. As ϕq,WL
[χ(γ)] = [χ(γ)], one sees that M(D) is stable by

the action of Γ. Finally, this action is OL-analytic, as the action of Γ on O is
OL-analytic. �

Lemma (2.2.2). Let M be in Mod
ϕq,Γ,an

/O . There exists a unique K0,L-linear

section ξ : M/uM → M[1/λ] such that the elements of ξ(M/uM) are Γ-
invariant. Moreover, we have

(1) ξ is ϕq-equivariant.
(2) ξ induces an isomorphism

M/uM⊗K0,L
O[1/λ]

∼
−→M[1/λ].

(3) The image of ξ ⊗ 1 : M/uM⊗K0,L
O → M[1/λ] coincides with (1 ⊗

ϕq)(ϕ
∗
qM) over an admissible open neighborhood of u = vm.

Proof. Consider the connection∇ onM defined in (2.1.4)(3). For r ∈ (0, 1) suf-
ficiently small there exists a unique ∇-parallel section ξr :M/uM→M|D[0,r).

Since N∇ commutes with ϕq, the section ϕq ◦ ξr ◦ ϕ−1
q is also ∇-parallel, and

hence equal to ξr. Hence ξr is ϕq-invariant. Similarly γ ◦ ξr ◦ γ−1 is ∇-parallel
for γ ∈ Γ, so ξr is Γ-invariant.
Now ξ may be constructed from ξr exactly as in [Ki, 1.2.6], by repeatedly

pulling ξr back by ϕ∗
q and using the isomorphism ϕ∗

qM[1/Q]
∼
−→M[1/Q]. The

claims (2) and (3) also follow exactly as in loc. cit. �

(2.2.3) Suppose thatM is in Mod
ϕq,Γ,an

/O . For i an integer denote by Filiϕ∗
qM

the preimage of QiM under ϕ∗
qM[1/Q]

∼
−→ M[1/Q]. Note that this filtra-

tion is Γ-stable. Let D(M) =M/uM. By (2.2.2), ξ induces an isomorphism

D(M) ⊗K0,L
O

∼
−→ ϕ∗(M) near the point u = vm. Hence we obtain an iso-

morphism

(2.2.4) D(M)⊗K0,L
K(vm)

∼
−→ ϕ∗

q(M)/Qϕ∗
q(M).

Give the right hand side of (2.2.4) the filtration induced by that on ϕ∗
qM, and

pull this filtration back to D(M) ⊗K0,L
K(vm). This gives rise to a Γ-stable

filtration on D(M)⊗K0,L
K(vm), which necessarily descends to a filtration on

D(M)K . This gives D(M) the structure of an object in Mod
F,ϕq

/K0,L
.
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Lemma (2.2.5). Let M be in Mod
ϕq,Γ,an

/O and D = D(M). Then for all i ∈ Z

the map ξ induces an isomorphism

∑

j≥0

Qj
Ŝ0 ⊗K Fili−jD(M)K

∼
−→ Ŝ0 ⊗O Filiϕ∗(M).

Proof. This is the analogue of [Ki, 1.2.12(4)] in our situation, and the proof is

identical, so we only sketch it here. Since D(M)K ⊗ Ŝ0 and Ŝ0 ⊗O ϕ∗
q(M)

induce the same filtration on their common quotient D(M)K , one sees easily
that it suffices to check that for all i ∈ Z,

ξ(FiliD(M)K) ⊂ Ŝ0 ⊗O (1 ⊗ ϕq)(Filiϕ∗(M)).

We will identify ϕ∗
qM with its image (1 ⊗ ϕq)(ϕ

∗
qM) in M[1/Q]. An element

d ∈ ξ(FiliD(M)K) can be written as d = d0 + d1 with d0 ∈ Ŝ0 ⊗O Filiϕ∗
q(M)

and d1 ∈ QŜ0 ⊗O ϕ∗
q(M). As N∇(d) = 0, we have

N∇(d1) = −N∇(d0) ∈ Ŝ0 ⊗O (Filiϕ∗
q(M) ∩Qϕ∗

q(M)) =: Mi.

Thus it suffices to show that for all i ∈ Z, N∇ induces a bijection on Mi, for

then d1 ∈ Mi ⊂ Ŝ0 ⊗O Filiϕ∗
q(M). For i sufficiently small this follows from

the isomorphism D(M) ⊗O Ŝ0
∼
−→ ϕ∗

qM⊗O Ŝ0. The general case follows by
descending induction on i and an application of the snake lemma. �

Proposition (2.2.6). The functors M and D between Mod
F,ϕq

/K0,L
and

Mod
ϕq,Γ,an

/O are quasi-inverse, exact, ⊗-equivalences.

Proof. Let D be in Mod
F,ϕq

/K0,L
. From the definition ofM(D), there is a natural

Γ-equivariant inclusion D ⊂M(D)[1/Q], which induces an isomorphism of D
with D(M(D)) =M(D)/uM(D). Hence the image of this inclusion coincides
with ξ(D(M(D))), and one sees from the definitions that the filtration on DK

coincides with the one on D(M(D))K . This produces a natural isomorphism

D
∼
−→ D(M(D)).

Conversely, let M be in Mod
ϕq,Γ,an

/O . Then both M and M(D(M)) may be

identified with O-submodules of D(M) ⊗K0,L
O[1/λ]. At any point of D[0, 1)

other u = vn, n ≥ m, both submodules coincide with D(M) ⊗K0,L
O[1/λ].

Since both M and M(D(M)) are in Mod
ϕq,Γ

/O , to show these submodules are

equal it suffices to check that these two submodules coincide at u = vm. This
follows from (2.2.5). (cf. [Ki, 1.2.13]). Hence we have a natural isomorphism

M(D(M))
∼
−→M.

That M and D are exact follows from (2.2.5). One checks easily that M and
D respect ⊗-products (cf. [Ki, 1.2.15]). �
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(2.3) We now apply Kedlaya’s slope filtration as in [Be 2] and [Ki, §1.3] to

show that an object M of Mod
ϕq,Γ,an

/O can be descended to SL if and only if

D(M) is weakly admissible.4 Again, as many of the arguments are identical
to those of [Ki] we sometimes only sketch the proofs.
Let R = limr→1− O(r,1) denote the Robba ring, and Rb = limr→1− Ob

(r,1),

where Ob
(r,1) ⊂ O(r,1) denotes the subring of bounded functions. Then Rb is a

discrete valuation field, with valuation

vRb(f) = −logπL
lim

r→1−

sup
x∈D(r,1)

|f(x)|

and uniformizer πL. The endomorphism ϕq and the derivation N∇ of O induce
an automorphism and a derivation respectively of R and Rb, which we will
again denote by ϕq and N∇.
Denote by Mod

ϕq

/R (resp. Mod
ϕq

/Rb) the category of finite free R-modules (resp.

Rb-modules) M equipped with an isomorphism ϕ∗
qM

∼
−→ M. For an M in

Mod
ϕq

/R, we denote by

0 =M0 ⊂M1 ⊂ · · · ⊂ Mr =M

Kedlaya’s slope filtration [Ke 1], [Ke 2]. We write si for the slope of the pure
slope quotientMi/Mi−1, which is finite free overR. The filtration is functorial
for maps in Mod

ϕq

/R. One of Kedlaya’s results about the filtration says that a

module of pure slope s has a canonical descent to a module Mb in Mod
ϕq

/Rb

which has slope s in the sense of Dieudonné-Manin theory (and the valuation
on Rb normalized so that v(πL) = 1).

For M in Modϕ,Γ,an
/O we write MR =M⊗O R. The operators ϕq and N∇ on

M induce operators ϕq and N∇ onMR.

Lemma (2.3.1). Let M be in Mod
ϕq,Γ,an
O . The slope filtration on MR is in-

duced by a unique filtration onM by saturated, finite free O-submodules. This
filtration on M is stable by ϕq and the action of Γ.

Proof. It is clear that a such filtration on M, if it exists is unique and stable
by ϕq. The functoriality of the slope filtration onMR implies that it is stable
by Γ, and hence so is the filtration onM.
It remains to show the existence of such a filtration. As ϕq(λ) =

πL[πm−1
L ]/[πm

L ]λ, for any integer s, the slope filtration on λ−sMR is given
by λ−sMR,i, and the slopes of λ−sMR are those ofMR shifted by −s. Since

[πm
L ]/[πm−1

L ]πL has a unique, simple zero on D[0, 1) at x0, we may replaceM by
λ−sM for s sufficiently large, and assume that ϕq induces a map ϕ∗

qM→M.
We first show that the slope filtration is induced by a filtration on M|D(0,1)

by saturated O(0,1)-submodules. For some r0 sufficiently close to 1, the slope

4The idea of relating Kedlaya’s slope filtration to the condition of weak admissibility comes
from Berger’s beautiful paper [Be 2], however our treatment here is closer to that of [Ki].
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filtration on MR is induced by a filtration onM|D(r0,1) by saturated O(r0,1)-
submodules. Let r0 > r1 > . . . be a sequence approaching 0, and such that
ϕ−1

q (D(ri, 1)) ⊂ D(ri−1, 1) for i ≥ 1. The same argument as in [Ki, 1.3.4] shows
that for j ≥ 0,MR,i is induced by a filtration onM|D(rj ,1) by closed, saturated
O(rj ,1)-submodules, and hence by a filtration onM|D(0,1) by closed, saturated
O(0,1)-submodules.
The filtration on MD(0,1) is stable by Γ, by uniqueness, and hence it is stable

by N∇. Consider the operator ∂ = 〈∇,−u d
du〉 on M. This is well defined

in a neighbourhood of 0, and preserves the filtration on M|D(0,1) over this
neighbourhood as N∇ does. Hence the filtration on M|D(0,1) is induced by a
filtration on M by closed, saturated O-submodules by [Ki, 1.3.5]. �

(2.3.2) Let D in Mod
F,ϕq

/K0,L
be 1-dimensional over K0,L. Choose a basis vector

v for D, and set tN,L(D) = vπL
(α) where α ∈ K0,L satisfies ϕq(v) = αv. We

write tH,L(D) for the unique integer i such that griDK is non-zero. For D of
arbitrary dimension d, we set tN,L(D) = tN,L(∧dD) and tH,L(D) = tH,L(∧dD).
We will say that D is weakly admissible if the usual conditions of weak admis-
sibility are satisfied with these invariants in place of the usual ones. That is
if tH,L(D) = tN,L(D) and tH,L(D′) 6 tN,L(D′) for all ϕq-stable submodules
D′ ⊂ D.

Proposition (2.3.3). Let D be in Mod
F,ϕq

/K0,L
and M = M(D). Then D is

weakly admissible if and only ifMR is pure of slope 0.

Proof. Suppose first that dimK0,L
D = 1. Let v be a basis vector for D, and

write ϕ(v) = αv for some α ∈ K×
0,L. From the definition of M(D) one finds

thatM(D) = λ−tH,L(D)(D ⊗K0,L
O), so

ϕq(λ
−tH,L(D)e) = ([πm−1

L ]πL/[πm
L ])−tH,L(D)αλ−tH,L(D)e

As, [πm
L ] = [πL] ◦ [πm−1

L ], we have that [πm
L ]/[πm−1

L ] ∈ SL, is an element whose

reduction modulo πL is uqm−qm−1

. Hence [πm
L ]/[πm−1

L ] is a unit in Rb. It follows
thatM(D) has slope

vπL
(α) − tH,L(D) = tN,L(D)− tH,L(D).

This proves the proposition when D has dimension 1. The general case follows
from exactly the same argument as in [Ki, 1.3.8], using the equivalence (2.2.6)
and (2.3.1). �

(2.4) Denote by Mod
ϕq

/SL
the category consisting of finite free SL-modules M

equipped with an isomorphisms 1⊗ϕq : ϕ∗
qM[1/Q]

∼
−→M[1/Q]. We denote by

Mod
ϕq,Γ

/SL
the category whose objects consist of an object of Mod

ϕq

/SL
equipped

a semi-linear action of Γ on M which commutes with the action of ϕq, and such
that Γ acts trivially on M/uM.

We denote by Mod
ϕq,0

/O (resp. Mod
ϕq.Γ,0

/O ) the full subcategory of Mod
ϕq

/O (resp.

Mod
ϕq,Γ

/O ) consisting of objects M such that MR =M⊗O R is pure of slope

0.
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Lemma (2.4.1). There is an equivalence of ⊗-categories

Mod
ϕq

/SL
⊗Zp

Qp → Mod
ϕq,0

/O ; M 7→M⊗WL[[u]] O

where the left hand side means the category obtained from Mod
ϕq,Γ

/SL
by applying

⊗Zp
Qp to the Hom groups.

Proof. This is identical to [Ki, 1.3.13]. �

Corollary (2.4.2). There is an equivalence of exact ⊗-categories

Mod
ϕq,Γ

/SL
⊗Zp

Qp → Mod
ϕq,Γ,0

/O ; M 7→M/uM.

Proof. This follows from (2.4.1), since the action of γ ∈ Γ can be thought of as

an isomorphism γ∗(M)
∼
−→M for M in Mod

ϕq

/SL
or Mod

ϕq,Γ,0

/O . �

(2.4.3) We denote by Mod
ϕq,Γ,an

/SL
the full subcategory of Mod

ϕq,Γ

/SL
such that

the corresponding object in Mod
ϕq,Γ

/O is in Mod
ϕq,Γ,an

/O

Corollary (2.4.4). There is an exact, fully faithful ⊗-functor

Mod
ϕq,Γ,an

/SL
⊗Zp

Qp → Mod
F,ϕq

/K0,L

whose essential image consists of the weakly admissible modules in Mod
F,ϕq

/K0,L
.

Proof. This follows by combining (2.4.2), (2.2.6) and (2.3.3). �

§3 (ϕq, Γ)-modules and crystalline representations

(3.1) Recall the ring R = lim←−OK̄/p introduced in (1.1). Denote by BdR, Bcris ⊃

W (R) the usual rings introduced by Fontaine [Fo 2]. Write Bcris,L = Bcris⊗L0
L.

We write ϕq for the L-linear extension of the operator ϕr on Bcris. Note that
we have an embedding

(3.1.1) Bcris,L ⊗K0,L
K

∼
−→ Bcris ⊗K0

K →֒ BdR.

For D in Mod
F,ϕq

/K0,L
this gives rise to an embedding

(3.1.2) Bcris,L ⊗K0,L
DK

∼
−→ Bcris ⊗K0

DK →֒ BdR ⊗K DK .

We say an element in Bcris,L ⊗K0,L
D is in Fil0 if its image in BdR ⊗K DK

under (3.1.2) is. Dually, we say K0,L-linear map D → Bcris,L is compatible
with filtrations if the map DK → BdR induced by (3.1.1) is compatible with
filtrations.
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For D in Mod
F,ϕq

K0,L
let

VL(D) = Fil0(Bcris,L ⊗K0,L
D)ϕq=1

and
V ∗

L (D) = Homϕq,Fil(D, Bcris,L).

There is a canonical isomorphism V ∗
L (D)

∼
−→ VL(D∗), where D∗ denotes the

dual of D in Mod
F,ϕq

/K0,L
.

We will prove an analogue for the category Mod
F,ϕq

/K0,L
of the result that weakly

admissible modules are admissible.

Lemma (3.1.3). Let D in Mod
F,ϕq

/K0,L
be of K0,L-dimension 1 such that

tH,L(D) 6 tN,L(D). Then VL(D) = 0 unless tH,L(D) = tN,L(D), in which
case dimLVL(D) = 1.

Proof. Give D(G) = K0,L the structure of an object of Mod
F,ϕq

/K0,L
by equipping

it with a ϕq semi-linear automorphism given by sending 1 to π−1
L and defining

FiliD(G)K = D(G)K if i 6 −1 and 0 otherwise. Then by [Col 1, Prop. 9.19]

VL(D(G)) = Fil0(D(G)⊗K0,L
Bcris,L)ϕq=1 = Fil1B

ϕq=πL

cris,L = tL · L,

where tL = logGu, is a unit in Bcris,L [Col 1, Prop. 9.10, 9.17].

Let D in Mod
F,ϕq

/K0,L
be of K0,L-dimension 1 such that tH,L(D) 6 tN,L(D). Let

d ∈ D be a K0,L-basis vector. Since multiplication by tjL induces a bijection of

VL(D) with VL(D ⊗D(G)j), we may assume that ϕq(d) = αd with α ∈ W×
L .

Furthermore, if k̄ denotes the residue field of K̄, then there exists β ∈ W (k̄)×L
such that ϕq(β) = αβ, so we may assume that α = 1. Then tN,L(D) = 0 ≥
tH,L(D),

VL(D) = Fil−tH,L(D)B
ϕq=1
cris,L

and the lemma follows from [Col 1, Lem. 9.14]. �

Lemma (3.1.4). Suppose that D in Mod
F,ϕq

/K0,L
is weakly admissible. Then

dimLVL(D) 6 dimK0,L
D.

Proof. This is very similar to [CF, Prop. 4.5]. Denote by Ccris,L the field of
fractions of Bcris,L. Let V denote the Ccris,L-span of VL(D) ⊂ Ccris ⊗K0,L

D.
Then V is invariant under the action of GK , and [CF, Lem. 4.6] implies that
there exists a unique K0,L-subspace D′ ⊂ D such that Ccris,L⊗K0,L

D′ is equal
to V .
Let s = dimK0,L

D′ and d1, . . . , ds ∈ D′ a K0,L-basis. We also choose
v1, . . . , vs ∈ VL(D) which span V . Then

w := v1 ∧ · · · ∧ vs = bd1 ∧ · · · ∧ ds
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for some b ∈ Ccris,L. As 0 6= w ∈ VL(∧sD′), tH,L(D′) = tN,L(D′) by (3.1.3) and
dimLVL(∧sD′) = 1. Moreover, (3.1.3) implies that there is a perfect pairing

VL(∧sD′)⊗L VL((∧sD′)∗)→ VL(K0,L)
∼
−→ L,

so VL((∧sD′)∗) = b−1d1 ∧ · · · ∧ ds and b is a unit in Bcris,L.
Finally, if v ∈ VL(D), write v =

∑s
i=1 bivi with bi ∈ Ccris. Then for 1 6 i 6 s

v1 ∧ · · · ∧ vi−1 ∧ v ∧ vi+1 · · · ∧ vs = biw ∈ VL(∧sD′).

Hence bi ∈ L, which shows that dimLVL(D) = s 6 dimK0,L
D. �

(3.2) Write S
ur
L = ObEur ∩W (R)L ⊂ W (Fr R)L. We set P = [πm−1

L ](u). For

γ ∈ Γ, we have γ(P ) = [χ(γ)] ◦ [πm−1
L ] = [χ(γ)πm−1

L ], so γ(P )/P is a unit in
SL. In particular S

ur
L [1/P ] is GK-stable.

Note that the embedding SL →֒ W (R)L, extends uniquely to a continuous
embedding O →֒ B+

cris,L, where B+
cris,L = B+

cris ⊗OL0
OL, as usual.

Lemma (3.2.1). Let M be in Mod
ϕq

/SL
. The natural map

(3.2.2) VSL
(M) := HomSL,ϕq

(M, Sur
L [1/P ])→ HomOE ,ϕq

(OE ⊗SL
M, ÔEur)

is an isomorphism, and both sides are free OL-modules of rank rkSL
M. More-

over, if ϕq on M induces a map ϕ∗
qM→M then the left hand side of (3.2.2) is

equal to HomSL,ϕq
(M, Sur

L ).

Proof. Suppose first that ϕq induces a map ϕ∗
qM→M. In this case the proof

of the lemma is identical to the proof of [Ki, 2.1.4], using [Fo 1, §A.1.2].
Next let tL = logGu ∈ O as in the proof of (3.1.3). Then ϕq(λ

−1tL) =
Q(u)λ−1tL, and the zeroes of λ−1tL on D[0, 1) coincide with those of P.
Hence λ−1tLP−1 ∈ SL[1/p]×, and there exists w ∈ SL[1/P ]× such that
ϕq(w) = Q(u)w. Let M(G) = SL equipped with a semi-linear action of ϕq

which takes 1 to Q(u). Then multiplication by wi induces a bijection

VSL
(M)→ VSL

(M⊗SL
M(G)⊗i).

Hence the lemma for general M in Mod
ϕq

/SL
follows from the case considered

above. �

Proposition (3.2.3). Let M be in Mod
ϕq,Γ,an
SL

and D in Mod
F,ϕq

/K0,L
the weakly

admissible module associated to M by (2.4.4). Then there is a a canonical GK-
equivariant bijection

HomSL,ϕq
(M, Sur

L [1/P ])
∼
−→ HomFil,ϕq

(D, Bcris,L)

where the right hand side means maps compatible with filtrations in the sense
explained in (3.1). In particular, both sides of the above isomorphism have
dimension dimK0,L

D over L.

Proof. The argument is similar to [Ki, 2.1.5]. Let M = M ⊗SL
O. Note that

P−1 ∈ λt−1
L SL[1/p]× ⊂ Bcris,L. Similarly, λ−1 ∈ Pt−1

L SL[1/p]× ⊂ Bcris,L.
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Consider the composite
(3.2.4)
HomSL,ϕq

(M, Sur
L [1/P ])→ HomO,ϕq

(M, Bcris,L)→ HomO,ϕq
(ϕ∗

qM, Bcris,L).

We claim the image of composite map consists of morphisms respecting filtra-
tions. To see this suppose first that ϕq on M induces a map ϕ∗

qM → M.
Then by (3.2.1), the left hand side of (3.2.4) is equal to HomSL,ϕq

(M, Sur
L ).

A SL-linear map f : M → S
ur
L induces an O-linear map f : M → B+

cris,L. If

m ∈ ϕ∗
qM satisfies (1⊗ϕq)(m) ∈ QiM for some integer i, then f ◦(1⊗ϕq)(m) ∈

QiB+
cris,L ⊂ FiliBdR, as Q(u) ∈ Fil1BdR [Col 1, Lem. 9.3]. This proves the claim

when ϕ∗
qM maps to M.

To prove the claim for general M we use the notation of the proof of (3.2.1).
Let M(i) = M ⊗S M(G)⊗i, and M(i) = M(i) ⊗SL

O, where i is an integer
which is large enough that ϕq induces a map ϕ∗

qM(i)→M(i). The underlying
O-module of M(i) may be identified with M, and the induced identification
ϕ∗

qM = ϕ∗
qM(i) identifies Filjϕ∗

qM with Fili+jϕ∗
qM for all j. As we have a

commutative diagram

HomSL,ϕq
(M(i), Sur

L [1/P ]) //

w−i∼

��

HomO,Fil,ϕq
(ϕ∗

qM(i), Bcris,L)

w−i∼

��

HomSL,ϕq
(M, Sur

L [1/P ]) // HomO,ϕq
(ϕ∗

qM, Bcris,L)

the claim follows for general M.
We now compose (3.2.4) with the map

(3.2.5) HomO,Fil,ϕq
(ϕ∗

qM, Bcris,L)→ HomK0,L,Fil,ϕq
(D, Bcris,L).

induced by extending a map in the left hand side to ϕ∗
qM[1/λ] and composing

with ϕ∗
q(ξ) : D → ϕ∗

qM[1/λ], where ξ is the map of (2.2.2). Note that (3.2.5)
respects filtrations as ϕ∗

q(ξ) is compatible with filtrations by (2.2.5), and λ
vanishes to order 1 at u = vm. Combining (3.2.4) and (3.2.5) we obtain a
canonical GK-equivariant map

(3.2.6) HomSL,ϕq
(M, Sur

L [1/P ])→ HomK0,L,Fil,ϕq
(D, Bcris,L).

It is easy to see that (3.2.6) is injective. By (3.2.1) the left hand side of (3.2.6)
has L-dimension d = rkSL

M, while by (3.1.4) the right hand side has dimension
6 d. Hence (3.2.6) is an isomorphism. �

(3.3) We now explain how to pass from ϕq-modules to ϕ-modules, using an
induction procedure which was explained to us by Fontaine (cf. [FY, §7.3]).
Suppose that D is a finite dimensional K0,L-vector space. We set

D̃ := ⊕r−1
i=0 ϕi∗(D) = ⊕σ:L0 →֒Lσ∗(D),
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so that D̃ is a finite free K0 ⊗Qp
L-module. Here we have denoted by ϕi the

map K0 ⊗L0
L

ϕi⊗1
→ K0 ⊗ϕi,L0

L. We put D̃K = D̃ ⊗K0
K.

We denote by ModF,ϕ
/K0⊗QpL the category of finite free K ⊗Qp

L-modules D̃

equipped with an isomorphism ϕ∗(D̃)
∼
−→ D̃ and a decreasing separated filtra-

tion on D̃K = D̃ ⊗K0
K, indexed by Z, by K ⊗Qp

L-submodules. For any D̃

in ModF,ϕ
KO⊗QpL we denote by tN (D̃) and tH(D̃) the usual invariants when D̃ is

considered as a filtered ϕ-module over K0.

For any D̃ in ModF,ϕ
/K0⊗QpL we may write D̃K = ⊕m(D̃K)m where m runs

over the maximal ideals of K ⊗Qp
L. Denote by m0 the kernel of the natural

map K ⊗Qp
L → K. Given D in Mod

F,ϕq

/K0,L
we give D̃ the structure of an

object in ModF,ϕ
/K0⊗QpL by noting that (D̃K)m0

may be identified with DK , and

giving D̃K the direct sum of the filtration on DK and the trivial filtration on
⊕m 6=m0

(D̃K)m.

Lemma (3.3.1). The functor D 7→ D̃ induces an fully faithful ⊗-functor

Mod
F,ϕq

/K0,L

∼
−→ ModF,ϕ

K0⊗QpL

The essential image of this functor consists of those objects such that the
filtration on ⊕m 6=m0

D̃K is trivial.

Proof. Given D in Mod
F,ϕq

K0,L
there is a natural isomorphism

ϕ∗(D̃) = ⊕r
i=1ϕ

i∗(D)
∼
−→ ⊕r−1

i=0 ϕi∗(D) = D̃,

which sends ϕi∗(D) identically to ϕi∗(D) for i 6= r and maps ϕr∗(D) = ϕ∗
q(D)

to D using the map ϕq on D. This defines the functor of the lemma.

To define a quasi-inverse on the essential image of the functor, let D̃ be in

ModF,ϕ
/K0⊗Qp L be such that the filtration on ⊕m 6=m0

D̃K is trivial, and set D′ =

D̃ ⊗K0⊗QpL (K0 ⊗L0
L). There is an isomorphism ϕ∗r(D′)

∼
−→ D′ induced by

ϕ∗r(D̃)
∼
−→ D̃. Using the decomposition

K0 ⊗Qp
L

∼
−→ ⊕r−1

i=0 K0 ⊗ϕi,L0
L

one sees that there is a canonical isomorphism D̃′ ∼
−→ D̃. In particular this

makes D′ into an object of Mod
F,ϕq

/K0,L
.

One checks immediately that these two functors are quasi-inverse. �

Lemma (3.3.2). Let D be in Mod
F,ϕq

/K0,L
. Then

(3.3.3) tN,L(D) = tN (D̃) and tH,L(D) = tH(D̃)
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and D is weakly admissible if and only if D̃ is weakly admissible.

Proof. Since the functor of (3.3.1) respects ⊗-products, it suffices to prove
(3.3.3) when D is 1-dimensional over K0,L. Moreover, as the essential image
of the functor in (3.3.1) is stable under subobjects, (3.3.3) implies the claim
regarding weak admissibility.
Let D be 1-dimensional over K0,L with basis vector v, and ϕq(v) = αv for some

α ∈ K0,L. Then for i = 0, . . . , r − 1 the K0-vector space ∧
[L:L0]
K0

ϕi∗(D) has a

basis vector ei such that ϕ(ei) = ei+1 if i < r−1, and ϕ(er−1) = NK0,L/K0
(α)e0.

Hence ϕ takes

e0 ∧ · · · ∧ er−1 ∈ ∧
[L:Qp]
K0

D̃
∼
−→ ⊗r−1

i=0 ∧
[L:L0]
K0

ϕi∗(D)

to (−1)rNK0,L/K0
(α)e0 ∧ · · · ∧ er−1, and

tN (D̃) = vp(NK0,L/K0
(α)) = [L : L0]vp(α) = vπL

(α) = tN,L(D).

On the other hand, tH,L(D) = tH(D̃), from the definition of the filtration on

D̃. �

Proposition (3.3.4). Let D be a weakly admissible object in Mod
F,ϕq

/K0,L
. Then

there is a canonical GK-equivariant isomorphism

V ∗
L (D)

∼
−→ V ∗(D̃) := HomFil,ϕ(D̃, Bcris).

Proof. Suppose f̃ : D̃ → Bcris ⊗Qp
L is a K0 ⊗Qp

L-linear, ϕ-compatible map,
such that

fK : D̃K → K ⊗K0
Bcris ⊗Qp

L →֒ BdR ⊗Qp
L

is compatible with filtrations. Consider the composite

θ(f) : D →֒ D̃ → Bcris ⊗Qp
L→ Bcris,L.

This is a ϕq-compatible map, such that the composite

θ(f)K : DK → K ⊗K0,L
Bcris,L →֒ BdR.

is obtained from fK by localizing at m0. In particular, θ(f)K is compatible with
filtrations. Note also that f can be recovered from θ(f) : The decomposition

K0 ⊗Qp
L

∼
−→ ⊕r−1

i=0 K0 ⊗ϕi,L0
L

allows us to view Bcris,L as a direct summand in Bcris ⊗Qp
L. Then f is the

unique ϕ-linear extension of the ϕq-linear map

D
θ(f)
→ Bcris,L →֒ Bcris ⊗Qp

L.
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Hence we have an injective map

(3.3.5) HomFil,ϕ,K0⊗QpL(D̃, Bcris ⊗Qp
L) →֒ HomFil,ϕq,K0,L

(D, Bcris,L)

On the other hand, the trace map L→ Qp induces an isomorphism

(3.3.6) HomFil,ϕ,K0⊗QpL(D̃, Bcris ⊗Qp
L)

∼
−→ HomFil,ϕ,K0

(D̃, Bcris).

Composing the inverse of (3.3.6) with (3.3.5) gives an injective map V ∗(D̃)→

V ∗
L (D). As D̃ is admissible by (3.3.2), dimLV ∗(D̃) = dimK0,L

D, and this is

equal to dimLV ∗
L (D) by (3.3.2). Hence we have V ∗(D̃)

∼
−→ V ∗

L (D). �

(3.3.7) Denote by RepL-cris
GK

the full subcategory of RepGK
consisting of those

objects V such that V ⊗OL
L is a crystalline representation and, if DdR(V ) =

(V ⊗Qp
BdR)GK , then the filtration on DdR(V )m is trivial for m 6= m0 a maximal

ideal of K ⊗Qp
L.

Corollary (3.3.8). There is an exact equivalence of ⊗-categories

Mod
ϕq,Γ,an

/SL

∼
−→ RepL-cris

GK
; M 7→ V (OE ⊗SL

M)

where V is the functor introduced in (1.5).

Proof. Using (3.2.3) and (3.3.4) one sees that the functor of (1.6) induces a
fully faithful, exact ⊗-functor as in the corollary. To show that this functor is
essentially surjective let V be in RepL-cris

GK
, and let M = MOE

(V ). By (2.4.4) and

(3.3.1), there exists an M
′ in Mod

ϕq,Γ,an

/SL
such that V (OE⊗SL

M
′) is isomorphic

to a GK -stableOL-lattice V ′ ⊂ V ⊗OL
L. Thus, by the equivalence of (1.6) there

is an isomorphism E ⊗OE
M

∼
−→ E ⊗SL

M
′. Then M = M ∩M

′[1/p] ⊂M [1/p]

is in Mod
ϕq,Γ,an

/SL
and satisfies OE ⊗SL

M
∼
−→ M. Hence V (OE ⊗SL

M)
∼
−→

V (M)
∼
−→ V. �
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