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Abstract. We give evidence for a conjecture of Serre and a conjec-
ture of Bogomolov.
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Conjecture II of Serre considers a field F of characteristic p with cd(Gal(F )) ≤ 2
such that either p = 0 or p > 0 and [F : F p] ≤ p and predicts that
H1(Gal(F ), G) = 1 (i.e. each principal homogeneous G-spaces has an F -
rational point) for each simply connected semi-simple linear algebraic group
G [Ser97, p. 139].

As Serre notes, the hypothesis of the conjecture holds in the case where F is
a field of transcendence degree 1 over a perfect field K with cd(Gal(K)) ≤ 1.
Indeed, in this case cd(Gal(F )) ≤ 2 [Ser97, p. 83, Prop. 11] and [F : F p] ≤ p if
p > 0 (by the theory of p-bases [FrJ08, Lemma 2.7.2]). We prove the conjecture
for F in the special case, where K is PAC of characteristic 0 that contains all
roots of unity.

One of the main ingredients of the proof is the projectivity of Gal(K(x)ab)
(where x is transcendental over K and K(x)ab is the maximal Abelian ex-
tension of K(x)). We also use the same ingredient to establish an analog
to the wellknown open problem of Shafarevich that Gal(Qab) is free. Under
the assumption that K is PAC and contains all roots of unity we prove that
Gal(K(x)ab) is not only projective but even free. This proves a stronger version
of a conjecture of Bogomolov for a function field of one variable F over a PAC
field that contains all roots of unity [Pos05, Conjecture 1.1].
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1. The Projectivity of Gal(K(x)ab)

We denote the separable (resp. algebraic) closure of a field K by Ks (resp. K̃)
and its absolute Galois group by Gal(K). The field K is said to be PAC if
every absolutely irreducible variety defined over K has a K-rational point. The
proof of the projectivity result applies a local-global principle for Brauer groups
to reduce the statement to Henselian fields.
For a prime number p and an Abelian group A, we say that A is p′-divisible,
if for each a ∈ A and every positive integer n with p ∤ n there exists b ∈ A such
that a = nb. Note that if p = 0, then “p′-divisible” is the same as “divisible”.

Lemma 1.1: Let p be 0 or a prime number, B a torsion free Abelian group,

and A is a p′-divisible subgroup of B of finite index. Then B is also p′-divisible.

Proof: First suppose p = 0 and let m = (B : A). Then, for each b ∈ B and a
positive integer n there exists a ∈ A such that mb = mna. Since B is torsion
free, m = na. Thus, B is divisible.
Now suppose p is a prime number, let mpk = (B : A), with p ∤ m and k ≥ 0,
and consider b ∈ B. Then mpkb ∈ A. Hence, for each positive integer n with
p ∤ n there exists a ∈ A with mpkb = mna. Thus, pkb = na. Since p ∤ n,
there exist x, y ∈ Z such that xpk + yn = 1. It follows from xpkb = xna that
b = n(xa + yb), as claimed.

Corollary 1.2: Let L/K be an algebraic field extension, v a valuation of L,

and p = 0 or p is a prime number. Suppose that v(K×) is p′-divisible. Then

v(L×) is p′-divisible.

Proof: Let x ∈ L× and n a positive integer with p ∤ n. Then v(K(x)×)
is a torsion free Abelian group and v(K×) is a subgroup of index at most
[K(x) : K]. Since v(K×) is p′-divisible, Lemma 1.1 gives y ∈ K(x)× such that
v(x) = nv(y). It follows that v(L×) is p′-divisible.

Given a Henselian valued field (M, v) we use v also for its unique extension to
Ms. We use a bar to denote the residue with respect to v of objects associated
with M , let OM be the valuation ring of M , and let ΓM = v(M×) be the value
group of M .
We write cdl(K) and cd(K) for the lth cohomological dimension and the coho-
mological dimension of Gal(K) and note that cd(K) ≤ 1 if and only if Gal(K)
is projective [Ser97, p. 58, Cor. 2].

Lemma 1.3: Let (M, v) be a Henselian valued field. Suppose p = char(M) =
char(M̄), Gal(M̄) is projective, and ΓM is p′-divisible. Then Gal(M) is pro-

jective.

Proof: We denote the inertia field of M by Mu. It is determined by its
absolute Galois group: Gal(Mu) = {σ ∈ Gal(M) | v(σx − x) > 0 for all x ∈
Ms with v(x) ≥ 0}. The map σ 7→ σ̄ of Gal(M) into Gal(M̄) such that σ̄x̄ = σx
for each x ∈ OM is a well defined epimorphism [Efr06, Thm. 16.1.1] whose
kernel is Gal(Mu). It therefore defines an isomorphism

(1) Gal(Mu/M) ∼= Gal(M̄).
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Claim A: M̄u is separably closed. Let g ∈ M̄ [X ] be a monic irreducible
separable polynomial of degree n ≥ 1. Then there exists a monic polynomial
f ∈ OMu

[X ] of degree n such that f̄ = g. We observe that f is also irreducible
and separable. Moreover, if f(X) =

∏n
i=1(X − xi) with x1, . . . , xn ∈ Ms, then

g(X) =
∏n

i=1(X − x̄i). Given 1 ≤ i, j ≤ n there exists σ ∈ Gal(Mu) such that
σxi = xj . By definition, x̄j = σxi = σ̄x̄i = x̄i. Since g is separable, i = j, so
n = 1. We conclude that M̄u is separably closed.

Claim B: Each l-Sylow group of Gal(Mu) with l 6= p is trivial. Indeed, let
L be the fixed field of an l-Sylow group of Gal(Mu) in Ms. If l = 2, then
ζl = −1 ∈ L. If l 6= 2, then [L(ζl) : L]|l − 1 and [L(ζl) : L] is a power of l, so
ζl ∈ L.
Assume that Gal(L) 6= 1. By the the theory of finite l-groups, L has a cyclic
extension L′ of degree l. By the preceding paragraph and Kummer theory,
there exists a ∈ L× such that L′ = L( l

√
a). By Corollary 1.2, there exists

b ∈ L× such that lv(b) = v(a). Then c = a
bl satisfies v(c) = 0. By Claim A, L̄

is separably closed. Therefore, c̄ has an lth root in L̄. By Hensel’s lemma, c
has an lth root in L. It follows that a has an l-root in L. This contradiction
implies that L = Ms, as claimed.
Having proved Claim B, we consider again a prime number l 6= p and let Gl

be an l-Sylow subgroup of Gal(M). By the Claim, Gl ∩ Gal(Mu) = 1, hence
the map res: Gal(M) → Gal(Mu/M) maps Gl isomorphically onto an l-Sylow
subgroup of Gal(Mu/M). By (1), Gl is isomorphic to an l-Sylow subgroup of
Gal(M̄). Since the latter group is projective, so is Gl, i.e. cdl(G) ≤ 1 [Ser97,
p. 58, Cor. 2].
Finally, if p 6= 0, then cdp(M) ≤ 1 [Ser97, p. 75, Prop. 3], because then
char(M) = p. It follows that cd(M) ≤ 1 [Ser97, p. 58, Cor. 2].

Lemma 1.4: Let F be an extension of a PAC field K of transcendence degree

1 and characteristic p. Suppose v(F×) is p′-divisible for each valuation v of

F/K. Then Gal(F ) is projective.

Proof: Let Kins be the maximal purely inseparable algebraic extension
of K and set F ′ = FKins. Then Kins is PAC [FrJ08, Cor. 11.2.5],
trans.deg(F ′/Kins) = 1, and v((F ′)×) is p′-divisible for every valuation v of
F ′ (by Corollary 1.2). Moreover, Gal(F ′) = Gal(F ). Thus, we may replace K
by Kins and F by F ′, if necessary, to assume that K is perfect.
Let V (F/K) be a system of representatives of the equivalence classes of valua-
tions of F that are trivial on K. For each v ∈ V (F/K) we choose a Henselian
closure Fv of F at v. By [Efr01, Thm. 3.4], there is an injection of Brauer
groups,

(2) Br(F ) →
∏

v∈V (F/K)

Br(Fv).

For each v ∈ V (F/K) we have, v(F×

v ) = v(F×) is p′-divisible. Also, the residue
field F̄v is an algebraic extension of K. Since K is PAC, a theorem of Ax says
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that Gal(K) is projective [FrJ08, Thm. 11.6.2], hence Gal(F̄v) is projective
[FrJ08, Prop. 22.4.7]. Finally, char(Fv) = char(F̄v). Therefore, by Lemma 1.3,
Gal(Fv) is projective, hence Br(Fv) = 0 [Ser97, p. 78, Prop. 5]. It follows from
the injectivity of (2) that Br(F ) = 0.
If F1 is a finite separable extension of F , v1 ∈ V (F1/K), and v = v1|F ,
then v(F×) is p′-divisible. Hence, by Corollary 1.2, v1((F1)

×) is p′-divisible.
It follows from the preceding paragraph that Br(F1) = 0. Consequently, by
[Ser97, p. 78, Prop. 5], cd(Gal(F )) ≤ 1.

Lemma 1.5: Let p be either 0 or a prime number and let Γ be an additive

subgroup of Q. Suppose 1
n ∈ Γ for each positive integer n with p ∤ n. Then Γ

is p′-divisible.

Proof: We consider γ ∈ Γ. If p = 0, we write γ = a
b , with a ∈ Z and b ∈ N.

Given n ∈ N, we have γ
n = a · 1

nb ∈ Γ.
If p > 0, we write γ = a

bpk , where a ∈ Z, b ∈ N, k ∈ Z, and p ∤ a, b. Let n ∈ N

with p ∤ n. If k ≤ 0, then γ
n = ap−k · 1

nb ∈ Γ. If k > 0, we may choose x, y ∈ Z

such that xpk + ynb = 1. Then γ
n = a

nbpk = axpk+aynb
nbpk = ax · 1

nb + by · a
bpk ∈ Γ,

as claimed.

Proposition 1.6: Let K be a PAC field that contains all roots of unity and let

E be an extension of K of transcendence degree 1. Then Gal(Eab) is projective.

Proof: First we consider the case where E = K(x), where x is transcendental
over K, and set F = Eab. In the notation of Lemma 1.4 we consider a valuation
v ∈ V (F/K) normalized in such a way that v(E×) = Z. Then v(F×) ≤ Q.
On the other hand, let p = char(K) and consider a positive integer n with
p ∤ n. Let e ∈ E with v(e) = 1. Then e1/n ∈ F (because K contains a root
of 1 of order n). Therefore, 1

n = v(e1/n) ∈ v(F×). By Lemma 1.5, v(F×) is
p′-divisible. We conclude from Lemma 1.4 that Gal(F ) is projective.
In the general case we choose x ∈ E transcendental over K. By the preceding
paragraph, Gal(K(x)ab) is projective. Since taking purely inseparable exten-
sions of a field does not change its absolute Galois group, Gal(K(x)ab,ins) is
projective. Now note that Gal(Eab,ins) as a subgroup of Gal(K(x)ab,ins) is also
projective. Hence, Gal(Eab) is projective.

Remark 1.7: Proposition 1.6 is false if K does not contain all roots of unity.
Indeed, the authors will elsewhere provide an example of a prime number l and
a PAC field K of characteristic 0 that contains all roots of unity of order n
with l ∤ n but not ζl such that Gal(K(x)ab) is not projective.

2. Serre and Shafarevich

We refer to a simply connected semi-simple linear algebraic group G as a sim-

ply connected group. In this case H1(Gal(K), G) will be also denoted by
H1(K, G). Since each element of H1(K, G) is represented by a principal homo-
geneous space V of G and V is an absolutely irreducible variety defined over
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K, V has a K-rational point if K is PAC. Hence, V is equivalent to G [LaT58,
Prop. 4]. Thus, H1(K, G) = 1.
The proof of Serre’s Conjecture II in our case is based on the following conse-
quence of a theorem of Colliot-Thélène, Gille, and Parimala:

Proposition 2.1: Let F be a field and G a simply connected group defined

over F . Suppose F is a C2-field of characteristic 0, cd(F ) ≤ 2, and cd(Fab) ≤ 1.

Then H1(F, G) = 1.

Proof: Let F ′ be a finite extension of F . Since F is C2, [CGP04, Thm. 1.1(vi)]
implies that if the exponent e of a central simple algebra A over F ′ is a power
of 2 or a power of 3, then e is equal to the index of A.
Since cd(F ) ≤ 2 and cd(Fab) ≤ 1, [CGP04, Thm. 1.2(v)] implies that
H1(F, G) = 1.

Remark 2.2: By Merkuriev-Suslin, the assumption that F is a C2-field implies
that cd(F ) ≤ 2 [Ser97, end of page 88]. However, we will be able to prove both
properties of F directly in the application we have in mind.

The following result establishes the first condition on F .

Lemma 2.3: Let F be an extension of transcendence degree 1 over a perfect

PAC field K. Suppose either char(K) > 0 and K contains all roots of unity or

char(K) = 0. Then cd(F ) ≤ 2 and F is a C2-field.

Proof: By Ax, cd(K) ≤ 1 [FrJ08, Thm. 11.6.2]. Hence, by [Ser97, p. 83,
Prop. 11], cd(F ) ≤ 2.
A conjecture of Ax from 1968 says that every perfect PAC field K is C1 [FrJ08,
Problem 21.2.5]. The conjecture holds if K contains an algebraically closed field
[FrJ08, Lemma 21.3.6(a)]. In particular, if p = char(K) > 0 and K contains all
roots of unity, then F̃p ⊆ K, so K is C1. If char(K) = 0, K is C1, by [Kol07,
Thm. 1]. It follows that in each case, F is C2 [FrJ08, Prop. 21.2.12].

Theorem 2.4: Let F be an extension of transcendence degree 1 of a PAC field

K of characteristic 0. Suppose K contains all roots of unity. Then F satisfies

Serre’s conjecture II. That is, H1(F, G) = 1 for each simply connected group

G defined over F .

Proof: By Lemma 2.3, cd(F ) ≤ 2 and F is a C2-field. By Proposition 1.6,
cd(Fab) ≤ 1. It follows from Proposition 2.1 that H1(F, G) = 1 for each simply
connected group G.

Remark 2.5: All of the ingredients of the proof of Theorem 2.4 except possibly
Proposition 2.1 work also when char(K) > 0.

The proof of the freeness of Gal(K(x)ab) applies the notion of ”quasi-freeness”
due to Harbater and Stevenson. To this end recall that a finite split em-

bedding problem E for a profinite group G is a pair (ϕ: G → A, α: B → A),
where A, B are finite groups, ϕ, α are epimorphisms, and α has a group the-
oretic section. A solution of E is an epimorphism γ: G → B such that

521



522 Moshe Jarden and Florian Pop

α ◦ γ = ϕ. We say that G is quasi-free if its rank m is infinite and every
finite split embedding problem for G has m distinct solutions.

Theorem 2.6: Let F be a function field of one variable over a PAC field K
of cardinality m containing all roots of unity and let x be a variable. Then

Gal(Fab) is isomorphic to the free profinite group of rank m.

Proof: Since K is PAC, K is ample, that is every absolutely irreducible curve
defined over K with a K-rational simple point has infinitely many K-rational
points. By [HaS05, Cor. 4.4], Gal(F ) is quasi-free of rank m = card(K).
Hence, by [Har09, Thm. 2.4], Gal(Fab) is also quasi-free of rank m. Since by
Proposition 1.6, Gal(Fab) is projective, it follows from a result of Chatzidakis
and Melnikov [FrJ08, Lemma 25.1.8] that Gal(Fab) is free of rank m.

Acknowledgment: The authors thank Jean-Louis Colliot-Thélène for stimulat-
ing discussions, in particular for pointing out Proposition 2.1 to them.
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