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Abstract. We calculate the cohomology spaces of the Hilbert
schemes of points on surfaces with values in local systems. For that
purpose, we generalise I. Grojnoswki’s and H. Nakajima’s description
of the ordinary cohomology in terms of a Fock space representation
to the twisted case. We make further non-trivial generalisations of
M. Lehn’s work on the action of the Virasoro algebra to the twisted
and the non-projective case.

Building on work by M. Lehn and Ch. Sorger, we then give an ex-
plicit description of the cup-product in the twisted case whenever the
surface has a numerically trivial canonical divisor.

We formulate our results in a way that they apply to the projective
and non-projective case in equal measure.

As an application of our methods, we give explicit models for the
cohomology rings of the generalised Kummer varieties and of a series
of certain even dimensional Calabi–Yau manifolds.
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1. Introduction and results

Let X be a quasi-projective smooth surface over the complex numbers. We
denote by X [n] the Hilbert scheme of n points on X , parametrising zero-
dimensional subschemes of X of length n. It is a quasi-projective variety
([Gro61]) and smooth of dimension 2n ([Fog68]). Recall that the Hilbert scheme
X [n] can be viewed as a resolution of the n-th symmetric power X(n) := Xn/Sn

of the surface X by virtue of the Hilbert–Chow morphism ρ : X [n] → X(n),
which maps each zero-dimensional subscheme ξ of X to its support supp ξ
counted with multiplicities.
Let L be a local system (always over the complex numbers and of rank 1) over
X . We can view it as a functor from the fundamental groupoid Π of X to the
category of one-dimensional complex vector spaces.
The fundamental groupoid Π(n) of X(n) is the quotient groupoid of Πn by the
natural Sn-action by [Bro88]. (Recall from [Bro88] that the quotient groupoid
of a groupoid P on which a group G is acting (by functors) is a groupoid P/G
together with a functor p : P → P/G that is invariant under the G-action and
so that p : P → P/G is universal with respect to this property.)
Readers who prefer to think in terms of the fundamental group (as opposed to
the fundamental groupoid) can find a description of the fundamental group of
L(n) in [Bea83].
By the universal property of Π(n), we can thus construct from L a local system
L(n) on X(n) by setting

L(n)(x1, . . . , xn) :=
⊗

i

L(xi),

for each (x1, . . . , xn) ∈ X(n) (for the notion of the tensor product over an
unordered index set see, e.g., [LS03]). This induces the locally free system
L[n] := ρ∗L(n) on X [n].
We are interested in the calculation of the direct sum of cohomology spaces⊕

n≥0 H∗(X [n], L[n][2n]). Besided the natural grading given by the cohomo-

logical degree it carries weighting (see remark 1.1 below) given by the number
of points n. Likewise, the symmetric algebra S∗(

⊕
ν≥1 H∗(X, Lν [2])) carries

Documenta Mathematica 14 (2009) 749–770



Twisted Cohomology of the . . . 751

a grading by cohomological degree and a weighting, which is defined so that
H∗(X, L[2]ν) is of pure weight ν.

Remark 1.1. Here, a weighting is just another name for a second grading. A
weight space is a homogeneous subspace to a given degree with respect to this
second grading. Being of pure weight means being homogeneous with respect
to the second grading.
In the context of super vector spaces, however, me make a difference between a
grading and a weighting: Write V = V 0 ⊕ V 1 for the decomposition of a super
vector space into its even and odd part. Recall that for a grading V =

⊕
n∈Z

Vn

on V we have V i =
⊕

n V
i+n (mod 2)
n .

For a weighting, on the contrary, we want to adopt the following convention:
If V =

⊕
n∈Z

V (n) is the decomposition of a weighted super vector space into

its weight spaces, one has V i =
⊕

n V (n)i, i.e. the weighting does not interfere
with the Z/(2)-grading.
This difference is important, for example, for the notion of (super-
)commutativity.

The first result of this paper is the following:

Theorem 1.2. There is a natural vector space isomorphism

⊕

n≥0

H∗(X [n], L[n][2n]) → S∗


⊕

ν≥1

H∗(X, Lν[2])




that respects the grading and weighting.

For L = C, the trivial system, this result has already appeared in [Gro96]
and [Nak97]).
Theorem 1.2 is proven by defining a Heisenberg Lie algebra hX,L, whose un-
derlying vector space is given by

⊕

n≥0

H∗(X, Ln[2]) ⊕
⊕

n≥0

H∗
c (X, L−n[2]) ⊕ Cc ⊕ Cd

and by showing that
⊕

n≥0 H∗(X [n], L[n][2n]) is an irreducible lowest weight

representation of this Lie algebra, as is done in [Nak97] for the untwisted case.

Let p : X̂ → X be a finite abelian Galois covering over the surface X with
Galois group G. The direct image M := p∗C of the trivial local system on X̂
is a local system on X of rank |G|, the order of G. Note that G acts naturally
on M . As G is abelian, there is a decomposition M ∼=

⊕
χ∈G∨ Lχ, where

G∨ = Hom(G,C×) is the character group of G and Lχ is the subsystem of M
on which G acts via χ. In fact, each Lχ is a local system of rank one.

Consider M [n] :=
⊕

χ∈G∨ L
[n]
χ . This is a local system of rank |G| on X [n]. Let

q : X̂ [n] → X [n] be a finite abelian Galois covering of X [n] such that q∗C = M [n].
Using the Leray spectral sequence for q, which already degenerates at the E2-

term, the cohomology of X̂ [n] can be computed by Theorem 1.2:
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Corollary 1.3. There is a natural vector space isomorphism

⊕

n≥0

H∗(X̂ [n],C[2n]) →
⊕

χ∈G∨

S∗


⊕

ν≥1

H∗(X, Lν
χ[2])




that respects the grading and weighting.

We then proceed in the paper by defining a twisted version vX,L of the Virasoro
Lie algebra, whose underlying vector space will be given by

⊕

n≥0

H∗(X, Ln) ⊕
⊕

n≥0

H∗
c (X, L−n) ⊕ Cc ⊕ Cd.

(Note the different grading compared to hX,L.) We define an action of vX,L on⊕
n≥0 H∗(X [n], L[n][2n]) by generalising results of [Leh99] to the twisted, not

necessarily projective case. As in [Leh99], we calculate the commutators of the
operators in hX,L with the boundary operator ∂ that is given by multiplying
with − 1

2 of the exceptional divisor class of the Hilbert–Chow morphism. It
turns out that the same relations as in the untwisted, projective case hold.
The next main result of the paper is a decription of the ring structure whenever
X has a numerically trivial canonical divisor. Following ideas in [LS03], we in-
troduce a family of explicitely described graded unital algebras H [n] associated
to a G-weighted (non-counital) graded Frobenius algebra H of degree d. For
example, H =

⊕
L∈G∨ H∗(X, Lχ[2]) is such a Frobenius algebra of degree 2

where G is as above. The following holds for each n ≥ 0:

Theorem 1.4. Assume that X has a numerically trivial canonical divisor.
Then there is a natural isomorphism

⊕

χ∈G∨

H∗(X [n], L[n]
χ [2n]) →


⊕

χ∈G∨

H∗(X, Lχ[2])




[n]

of (G-weighted) graded algebras of degree 2n.

For G the trivial group, and X projective, this theorem is the main result
in [LS03].
The idea of the proof of Theorem 1.4 is not to reinvent the wheel but to study
how everything can already be deduced from the more special case considered
in [LS03].
Again by the Leray spectral sequence, Theorem 1.4 also has a natural applica-
tion to the cohomology ring of coverings of X [n]:

Corollary 1.5. There is a natural isomorphism

H∗(X̂ [n],C[2n]) →


⊕

χ∈G∨

H∗(X, Lχ[2])




[n]

of graded unital algebras of degree 2n.

Documenta Mathematica 14 (2009) 749–770



Twisted Cohomology of the . . . 753

We want to point out at least two applications of our results. The first one
is the computation of the cohomology ring of certain families of Calabi–Yau
manifolds of even dimension: Let X be an Enriques surface. Let X̂ be its
universal covering, which is a K3 surface. Then G ≃ Z/(2). We denote the
local system corresponding to the non-trivial element in G by L. The Hodge
diamonds of H∗(X,C[2]) and H∗(X, L[2]) are given by

1
0 0

0 10 0
0 0

1

and

0
0 0

1 10 1,
0 0

0

respectively.
Denote by X{n} the (two-fold) universal cover of X [n]. By Remark 2.7, the
isomorphism of Corollary 1.3 is in fact an isomorphism of Hodge structures. It
follows that

Hk,0(X{n},C) =

{
C for k = 0 or k = 2n, and

0 for 0 < k < 2n.

In conjunction with Corollary 1.5, we have thus proven:

Proposition 1.6. For n > 1, the manifold X{n} is a Calabi–Yau manifold in
the strict sense. Its cohomology ring H∗(X{n},C[2n]) is naturally isomorphic

to (H∗(X,C[2]) ⊕ H∗(X, L[2]))
[n]

.

Our second application is the calculation of the cohomology ring of the gener-
alised Kummer varieties X [[n]] for an abelian surface X . (A slightly less explicit
description of this ring has been obtained by more special methods in [Bri02].)
Recall from [Bea83] that the generalised Kummer variety X [[n]] is defined as
the fibre over 0 of the morphism σ : X [n] → X , which is the Hilbert–Chow mor-
phism followed by the summation morphism X(n) → X of the abelian surface.
The generalised Kummer surface is smooth and of dimension 2n− 2 ([Bea83]).
As above, let H be a G-weighted graded Frobenius algebra of degree d. Assume
further that H is equipped with a compatible structure of a Hopf algebra of
degree d. For each n > 0, we associate to such an algebra an explicitely
described graded unital algebra H [[n]] of degree n.
In the following Theorem, we view H∗(X,C[2]) as such an algebra (the
Hopf algebra structure is given by the group structure of X), where we give
H∗(X,C[2]) the trivial G-weighting for the group G := X [n], the character
group of the group of n-torsion points on X . We prove the following:

Theorem 1.7. There is a natural isomorphism

H∗(X [[n]],C[2n]) → (H∗(X,C[2]))
[[n]]

of graded unital algebras of degree 2n.
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We should remark that most of the “hard work” that is hidden behind the
scenes is the work of [Gro96], [Nak97], [Leh99], [LQW02], [LS03], etc. Our own
contribution is to generalise and apply the ideas and results in the cited papers
to the twisted and to the non-projective case.

Remark 1.8. Let us finally mention that the restriction to algebraic, i.e. quasi-
projected surfaces, is just a matter of convenience. Our methods work equally
well when we replace X by any complex surface. In this case, the Hilbert
schemes become the Douady spaces ([Dou66]).

2. The Fock space description

In this section, we prove Theorem 1.2 for a local system L on X by the method
that is used in [Nak97] for the untwisted case, i.e. by realising the cohomol-
ogy space of the Hilbert schemes (with coefficients in a local system) as an
irreducible representation of a Heisenberg Lie algebra.
Let l ≥ 0 and n ≥ 1 be two natural numbers. Set

X(l,n) :=
{
(x′, x, x) ∈ X(n+l) × X × X(l) | x′ = x + nx

}

(we write the union of unordered tuples additively). We further define the
reduced subvariety

X [n,l] :=
{
(ξ′, x, ξ) ∈ X [n+l] × X × X [l] | ξ ⊂ ξ′, (ρ(ξ′), x, ρ(ξ)) ∈ X(l,n)

}

in X [n+l] × X × X [l]. This incidence variety has already been considered
in [Nak97]. In contrast to the Hilbert schemes, these incidence varieties are
almost never smooth. Its image under the Hilbert–Chow morphism is again
X(l,n).
We denote the projections of X(l+n)×X×X(l) onto its three factors by p̃, q̃ and
r̃, respectively. Likewise, we denote the three projections of X [l+n] × X × X [l]

by p, q and r.

Lemma 2.1. We have a natural isomorphism q∗Ln ⊗ r∗L[l]|X[n,l]
∼=

p∗L[l+n]|X[n,l].

Proof. Firstly, we have a natural isomorphism q̃∗Ln ⊗ r̃∗L(l)|X(n,l)
∼=

p̃∗L(l+n)|X(n,l) . This follows from

(q̃∗Ln ⊗ r̃∗L(l))(x + nx, x, x)

= L(x)⊗n ⊗
⊗

x′∈x

L(x′) =
⊗

x′∈x+nx

L(x′) = p̃∗L(l+n)(x + nx, x, x)

for every (x + nx, x, x) ∈ X(l,n). By pulling back everything to the Hilbert
schemes, the Lemma follows. �
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Due to Lemma 2.1 and the fact that p|X[l,n] is proper ([Nak97]), the operator
(a correspondence, see [Nak97])

N : H∗(X, Ln[2]) × H∗(X [l], L[l][2l]) → H∗(X [l+n], L[l+n][2(l + n)]),

(α, β) 7→ PD−1p∗((q
∗α ∪ r∗β) ∩ [X [l,n]])

is well-defined. Here,

PD: H∗(X [l+n], L[n+l][2(l + n)]) → HBM
∗ (X [l+n], L[n+l][−2(l + n)])

is the Poincar -duality isomorphism between the cohomology and the Borel–
Moore homology. (The degree shifts are chosen in a way that N is an operator
of degree 0, see [LS03].)

Remark 2.2. Note that although the variety X [l,n] is not smooth in general, it
nevertheless possesses a fundamental class [X [l,n]] ∈ HBM

∗ (X [l,n],C). (This is
actually true for every analytic variety, see e.g. the appendices of [PS08].)

Furthermore, q × r|X×X[l] is proper ([Nak97]). Thus we can also define an
operator the other way round:

N † : H∗
c (X, L−n[2]) × H∗(X [n+l], L[l+n][2]) → H∗(X [l], L[l][2l]),

(α, β) 7→ (−1)nPD−1r∗(q
∗α ∪ p∗β ∩ [X [l,n]])

As in [Nak97], we will use these operators to define an action of a Heisenberg
Lie algebra on

VX,L :=
⊕

n≥0

H∗(X [n], L[n][2n]).

For this, let A be a weighted, graded Frobenius algebra of degree d (over the
complex numbers), that is a weighted and graded vector space over C with a
(graded) commutative and associative multiplication of degree d and weight 0
and a unit element 1 (necessarily of degree −d and weight 0) together with a
linear form

∫
: A → C of degree −d and weight 0 such that for each weight

ν ∈ Z the induced bilinear form 〈·, ·〉 : A(ν) × A(−ν) → C, (a, a′) 7→
∫

A
aa′ is

non-degenerate (of degree 0). Here A(ν) denotes the weight space of weight ν.
In particular, all weight spaces are finite-dimensional. In the case of a trivial
weighting, this notion of a graded Frobenius algebra has already appeared
in [LS03].

Example 2.3. Consider the vector space

AX,L :=
⊕

ν≥0

H∗(X, Lν [2]) ⊕
⊕

ν≥0

H∗
c (X, L−ν [2]).

It inherits a grading from the cohomological grading of its pieces H∗(X, Lν [2]).
We endow AX,L also with a weighting by defining H∗(X, Lν[2]) to be of pure
weight ν for ν ≥ 0 and H∗

c (X, L−ν[2]) to be of pure weight −ν.
Recall that there is a natural linear map φ : H∗

c (X, M) → H∗(X, M) for every
local system M on X . (In the de Rham-model of cohomology, it is induced
by the inclusion of the (co-)complex of forms with compact support into the
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complex of forms with arbitrary support.) This linear map is compatible with
the — non-unitary in the case of compact support — algebra structures on
H∗

c (X, ·) and H∗(X, ·) and the module structure of H∗
c (X, ·) over H∗(X, ·).

With this, we mean that

φ(am) = aφ(m), φ(mn) = φ(m)φ(n), φ(m)n = mn(1)

for all a ∈ H∗(X, M) and m, n ∈ H∗
c (X, M).

This allows us to define a commutative multiplication map of degree 2 ( =
dimX) and weight 0 on AX,L as follows: For elements α, β ∈ AX,L of pure
weight, we set

α · β :=





α ∪ β for α ∈ H∗(X, Lν[2]), β ∈ H∗(X, Lµ[2])

α ∪ β for α ∈ H∗
c (X, L−ν[2]), β ∈ H∗

c (X, L−µ[2])

α ∪ β for α ∈ H∗(X, Lν[2]), β ∈ H∗
c (X, L−µ[2]) and ν ≤ µ

φ(α ∪ β) α ∈ H∗(X, Lν[2]), β ∈ H∗
c (X, L−µ)[2] and ν > µ

for ν, µ ≥ 0. By (1), it follows immediately that this multiplication map is
associative, i.e. defines on AX,L the structure of a weighted, graded, unital,
commutative and associative algebra of degree 2.
We proceed by extending the linear form

∫
X

: H∗
c (X,C[2]) → C of degree −2

given by evaluating a class of compact support on the fundamental class of X
trivially (that is by extending by zero) on AX,L and call the resulting linear
form

∫
: AX,L → C.

We claim that this endows AX,L with the structure of a weighted, graded
Frobenius algebra of degree 2: In fact, given a class α ∈ H∗(X, Lν), we can
always find a class β ∈ H∗

c (X, L−ν) and vice versa so that
∫

α·β =
∫

X
α∪β 6= 0.

For any weighted, graded Frobenius algebra A we set

hA := A ⊕ Cc ⊕ Cd.

We define the structure of a weighted, graded Lie algebra on hA by defining c

to be a central element of weight 0 and degree 0, d an element of weight 0 and
degree 0 and by setting the following commutator relations: [d, a] := n · a for
each element a ∈ A of weight n, and [a, a′] = 〈[d, a], a′〉c for elements a, a′ ∈ A.

Definition 2.4. The Lie algebra hA the Heisenberg algebra associated to A.

For A = AX,L, we set hX,L := hA. We define a linear map

q : hX,L → End(VX,L)

as follows: Let l ≥ 0 and β ∈ VX,L(l) = H∗(X [l], L[l][2l]). We set q(c)(β) := β,
and q(d)(β) := lβ. For n ≥ 0, and α ∈ AX,L(ν) = H∗(X, Lν [2]), we set
q(α)(β) := N(α, β). For α ∈ AX,L(−ν) = H∗

c (X, L−ν[2]), we set q(α)(β) :=
N †(α, β). Finally, we set q(α)(β) = 0 for α ∈ AX,L(0) = H∗(X,C)⊕H∗

c (X,C).

Proposition 2.5. The map q is a weighted, graded action of hX,L on VX,L.
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Proof. This Proposition is proven in [Nak97] for the untwisted case, i.e. for
L = C. The proof there is based on calculating commutators on the level of cy-
cles of the correspondences defined by the incidence schemes X [l,n]. These com-
mutators are independent of the local system used. Thus the proof in [Nak97]
also applies to this more general case. �

Example 2.6. Let α =
∑

α(1) ⊗ · · · ⊗ α(n) ∈ H∗(X(n), L(n)[2n]) =

SnH∗(X, L[2]) = (H∗(X, L[2])⊗n)Sn (we use the Sweedler notation to denote
elements in tensor products). The pull-back of α by the Hilbert–Chow mor-
phism ρ : X [n] → X(n) is then given by

ρ∗α =
1

n!

∑
q(α(1)) · · · q(α(n))|0〉,

where |0〉 is the unit 1 ∈ H∗(X [0],C) = C.

We will use Proposition 2.5 to prove our first Theorem.

Proof of Theorem 1.2. The vector space ṼX,L := S∗(
⊕

ν≥1 H∗(X, Lν[2])) car-
ries a unique structure of an hX,L-module such that c acts as the identity, d

acts by multiplying with the weight, α ∈ H∗(X, Ln) for n ≥ 1 acts by multiply-
ing with α, and α ∈ H∗(X,C)⊕H∗

c (X,C) acts by zero. By the representation
theory of the Lie algebras of Heisenberg type, this is an irreducible lowest
weight representation of hV,L, which is generated by the lowest weight vector
1 of weight 0.
The hV,L-module VX,L also has a vector of weight 0, namely |0〉. Thus, there

is a unique morphism Φ: ṼL → VL of hL-modules that maps 1 to |0〉. This
will be the inverse of the isomorphism mentioned in Theorem 1.2. It remains
to show that Φ is bijective. The injectivity follows from the fact that ṼX,L is
irreducible as an hX,L-module.
In order to prove the surjectivity, we will derive upper bounds on the dimen-
sions of the weight spaces of the right hand side VX,L (see also [Leh04] about
this proof method). By the Leray spectral sequence associated to the Hilbert–
Chow morphism ρ : X [n] → X(n), such an upper bound is provided by the
dimension of the spectral sequence’s E2-term H∗(X(n),R∗ρ∗L[2n]). As shown
in [GS93], it follows from the Beilinson–Bernstein–Deligne–Gabber decompo-
sition theorem that

R∗ρ∗Q[2n] =
⊕

λ∈P(n)

(iλ)∗Q[2ℓ(λ)].

Here, P (n) is the set of all partitions of n, ℓ(λ) = r is the length of a partition
λ = (λ1, λ2, . . . , λr), X(λ) := {

∑r
i=1 λixi | xi ∈ X} ⊂ X(n), and iλ : X(λ) →

X(n) is the inclusion map.
Set L(λ) := i∗λL(n). By the projection formula, it follows that R∗ρ∗L[2n] =⊕

λ∈P(n)(iλ)∗L
(λ)[2ℓ(λ)].

Thus, an upper bound on the dimension of H∗(X [n], L[n][2n]) is provided by
the dimension of

⊕
λ∈P(n) H∗(X(λ), L(λ)[2ℓ(λ)]). By [GS93], this can be seen
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to be isomorphic to
⊕

P

i≥1 iνi=n

⊗

i≥1

SνiH∗(X, Li[2]),

where each νi ≥ 0. It follows that the upper bound given by the E2-term is
exactly the dimension of the n-th weight space of ṼX,L. Thus the dimension of
the weight spaces of VX,L cannot be greater than the dimensions of the weight

spaces of ṼX,L. Thus the Theorem is proven. �

Remark 2.7. Assume that X is projective. In this case, the (twisted) coho-
mology spaces of X and its Hilbert schemes X [n] carry pure Hodge structures.
As the isomorphism of Theorem 1.2 is defined by algebraic correspondences
(i.e. by correspondences of Hodge type (p, p)), it follows that the isomorphism
in Theorem 1.2 is compatible with the natural Hodge structures on both sides.
In terms of Hodge numbers, the following equation encodes our result:
∑

n≥0

∏

i,j

hi,j(X [n], L[n][2n])piqjzn

=
∏

m≥1

∏

i,j

(1 − (−1)i+jpiqjzm)−(−1)i+jhi,j(X,Lm[2])

3. The Virasoro algebra in the twisted case

To each weighted, graded Frobenius algebra A of degree d, we associate a
skew-symmetric form e : A × A → C of degree d as follows:
Let n ∈ Z. We note that A(n) and A(−n) are dual to each other via the linear
form

∫
. Thus we can consider the linear map ∆(n) : C → A(n)⊗A(−n) dual to

the bilinear form 〈·, ·〉 : A(n)⊗A(−n) → C. Write ∆(n)1 =
∑

e(1)(n)⊗e(2)(n)
in Sweedler notation. Then we define e by setting

e(α, β) :=

n∑

ν=0

ν(n − ν)

2

∫ ∑
e(1)(ν)e(2)(ν)αβ

for all α ∈ A(n) whenever n ≥ 0. We shall call this form the Euler form of A.

Example 3.1. Assume that A(n) ≡ A(0) for all n ∈ Z. In this case, we have

e(α, β) =
n3 − n

12

∫
eαβ

for α ∈ A(n) with e :=
∫ ∑

e(1)(0)e(2)(0) ([Leh99]).

We use the Euler form to define another Lie algebra associated to A. We set

vA := A[−2] ⊕ Cc ⊕ Cd.

We define the structure of a weighted, graded Lie algebra on vA be defining c

to be a central element or weight 0 and degree 0, d an alement of weight 0 and
degree 0 and by introducing the following commutator relations: [d, a] := n · a
for each element a ∈ A[−2] of weight n, and [a, a′] := (da)a′ − a(da′)− e(a, a′)
for elements a, a′ ∈ A.
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Definition 3.2. The Lie algebra vA is the Virasoro algebra associated to A.

For A = AX,L, we set vX,L := vA. The whole construction is a generalisation
to the twisted case of the Virasoro algebra found in [Leh99].
We now define a linear map L : vX,L → End(VX,L) as follows: We define L(c)
to be the identity, L(d) to be multiplication with the weight, and for α ∈ A[−2]
we set

L(α) :=
1

2

∑∑

ν∈Z

:q(e(1)(ν))q(e(2)(ν)α):,

where the normal ordered product :aa′: of two operators is defined to be aa′ if
the weight of a is greater or equal to the weight of a′ and is defined to be a′a
if the weight of a′ is greater than the weight of a.
The following Lemma is proven for the untwisted case in [Leh99].

Lemma 3.3. For α ∈ AV,L[−2] and β ∈ AV,L, we have

[L(α), q(β)] = −q(α[d, β]).

Proof. Let α ∈ AV,L[2](n) and β ∈ AV,L(m) with n, m ∈ Z. In
the following calculations we omit all Koszul signs arising from commut-
ing the graded elements α and β. By definition, we have [L(α), q(β)] =
1
2

∑∑
ν [:q(e(1)(ν))q(e(2)(ν)α):, q(β)], where ν runs through all integers. As

the commutator of two operators in hV,L is central, we do not have to pay
attention to the order of the factors of the normally ordered product when
calculating the commutator:

[:q(e(1)(ν))q(e(2)(ν)α):, q(β)]

= ν〈e(1)(ν), β〉q(e(2)(ν)α) + (n − ν)〈e(2)(ν)α, β〉q(e(1)(ν)).

As 〈·, ·〉 is of weight zero, the first summand is only non-zero for ν = −m, while
the second summand is only non-zero for ν = n + m. Thus we have

[L(α), q(β)] = −
m

2

∑(
〈e(1)(−m), β〉q(e(2)(−m)α)

+〈e(2)(n + m)α, β〉q(e(1)(n + m))
)
.

As e(1)(·) is the dual basis to e(2)(·), the right hand side simplifies to −mq(αβ),
which proves the Lemma. �

We use Lemma 3.3 to prove the following Proposition, which has already ap-
peared in [Leh99] for the untwisted, projective case:

Proposition 3.4. The map L is a weighted, graded action of the Virasoro
algebra vX,L on VX,L.

Proof. Let α ∈ A[−2](m) and β ∈ A[−2](n) with m, n ∈ Z. We have to prove
that [L(α), L(β)] = (m − n)L(αβ) − e(α, β). We follow ideas in [FLM88]. In
all summations below, ν runs through all integers if not specified otherwise.
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We begin with the case n 6= 0 and m +n 6= 0. In this case, by Lemma 3.3, it is

[L(α), L(β)] =
1

2

[
L(m),

∑∑

ν

q(e(1)(ν))q(e(2)(ν)β)

]
=

=
1

2

(∑∑

ν

(−ν)q(e(1)(ν)α)q(e(2)(ν)β) +
∑∑

ν

(ν − n)q(e(1)(ν))q(e(2)(ν)αβ)

)
.

As
∑

q(e(1)(ν)(α)q(e(2)(ν)β) = q(e(1)(ν +m))q(e(2)(ν −m)αβ), the right hand
side is equal to

1

2

∑∑

ν

(
(−ν)q(e(1)(ν + m))q(e(2)(ν + m)αβ)+

+(ν − n)q(e(1)(ν))q(e(2)(ν)αβ)
)
,

which is nothing else than (m − n)L(αβ). Note that e(α, β) = 0 in this case.
The next case we study is m > 0 and n = −m. In order to ensure convergence
in the following calculations we have to split up L(β) as follows:

L(β) =
∑∑

ν≥m

q(e(1)(ν)β)q(e(2)(ν)) +
∑∑

ν<m

q(e(2)(ν))q(e(1)(ν)β)

Calculating the commutator [L(α), L(β)] thus yields the four terms:

1

2

∑∑

ν≥m

(m − ν)q(e(1)(ν)αβ)q(e(2)(ν)) +
1

2

∑∑

ν≥m

νq(e(1)(ν)β)q(e(1)(ν)α)+

+
1

2

∑∑

ν<m

νq(e(2)(ν)α)q(e(1)(ν)β) +
1

2

∑∑

ν<m

(m − ν)q(e(2)(ν))q(e(1)(ν)αβ).

As in the first case, we now move α and β rightwards. Then we can split off an
infinite part given by a multiple of L(αβ) and are left over with the finite sum

[L(α), L(β)] − 2mL(αβ)

=
1

2

∑ m∑

ν=0

(m − ν)
(
q(e(2)(ν))q(e(1)(ν)αβ) − q(e(1)(ν))q(e(2)(ν)αβ)

)
.

The right side is exactly e(α, β).
The remaining cases either follow from the above by exchanging n and m or
are trivial (n = m = 0). �

4. The boundary operator

We proceed as in [Leh99] by introducing a boundary operator on VX,L. Recall
the definition of the tautological classes of the Hilbert scheme [LQW02]: Let Ξn

be the universal family over X [n], which is a subscheme of X [n]×X . We denote
the projections of X [n] ×X onto its factors by p and q. To each α ∈ H∗(X,C)
we associate the tautological classes

α[n] := p∗(ch(OΞn) ∪ q∗(td(X) ∪ α))
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in H∗(X [n],C).

Remark 4.1. Note that the tautological classes live in the cohomology with
untwisted coefficients, and we have not generalised this concept to the twisted
case.

Each α ∈ H∗(X,C) defines an operator m(α) ∈ End(VX,L), which is given

by m(α)(β) := α[n] ∪ β for all β ∈ H∗(X [n], L[n]). It is an operator of weight
zero. As it does not respect the grading, we split it up into its homogeneous
components m(α) =

∑
m∗(α) with respect to the grading. Following [Leh99],

we set ∂ := m2(1) and call it the boundary operator. It is an operator of weight
0 and degree 2. For each operator p ∈ End(VX,L), we set p′ := [∂, p] and call
it the derivative of p.
The main theorem in [Leh99] is the calculation of the derivatives of the Heisen-
berg operators in the untwisted, projective case. In the sequel, we will do this
in our more general case:
Let K be the canonical divisor class of X . We make it into an operator
K : AX,L → AX,L[−2] of weight zero by setting

K(α) :=
|n| − 1

2
Kα

for α ∈ H∗(X, Ln[2]).

Proposition 4.2. For all α, β ∈ AX,L the following holds:

[q′(α), q(β)] = −q([d, α][d, β]) −

∫
K([d, α])[d, β].

Proof. Let us first consider the case of α ∈ A(m) and β ∈ A(n) with n+m 6= 0.
We have to show that [q′(α), q(β)] = −nmq(αβ). This is proven in [Leh99] for
the projective, untwisted case. The proof in [Leh99] is based on calculating
the commutator on the level of cycles. As these calculations are local in X ,
the result remains true for non-projective X . Furthermore, the proof literally
works in the twisted case.
The case n + m = 0 remains. Here we have to show that [q′(α), q(β)] =

m2 |m|−1
2

∫
Kαβ. In [Leh99] the following intermediate result is formulated

for the projective, untwisted case: For all m ∈ Z, there exists a class Km ∈
H∗(X,C) such that [q′(α), q(β)] = m2id

∫
Kmαβ. As above the proof for this

intermediate result that is given in [Leh99] also works in the twisted and non-
projective case. The classes Km do not depend on the choice of L, i.e. are
universal for the surface. In [Leh99], the classes Km are computed for the

projective case, namely Km = |m|−1
2 K, where K is the class of the canonical

divisor. All that remains is to calculate the classes Km for the non-projective
(untwisted) case. As [q′(α), q(β)] = [q′(β), q(α)] (up to Koszul signs), it is
enough to calculate Km for m > 0:
Let β ∈ AX,C(−m) = H∗

c (X,C[2]). Consider an open embedding j : X →

X̂ of X into a smooth, projective surface X̂ . We denote the corresponding
embeddings X [n] → X̂ [n] also by the letter j. Denote the 1 in A

X̂,C(m) =
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H∗(X,C[2]) by 1(m). As all constructions considered so far are functorial (in
the appropriate senses) with respect to open embeddings, we have

j∗[q′(1(m)), q(j∗β)]|0〉 = [q′(j∗1(m)), q(β)]|0〉.

The right hand side is given by m2
∫

Kmβ, where Km is the class corre-
sponding to X . By the calculations in [Leh99], the left hand side is given

by m2 |m|−1
2

∫
K

X̂
j∗β, where K

X̂
is the canonical divisor class of X̂. As

j∗K
X̂

= KX , we see that Km = |m|−1
2 K also holds in the non-projective

case, which proves the Proposition. �

Corollary 4.3. For all α ∈ AX,L, the following holds:

q′(α) = L([d, α]) + q(K([d, α])).

Proof. This can be deduced from 4.2 as the respective statement for the un-
twisted, projective case is proven in [Leh99]. �

5. The ring structure

From now on, we assume that the canonical divisor of X is numerically trivial.

Example 5.1. Let H be a graded Frobenius algebra of degree d. Recall the
symmetric non-degenerate bilinear form 〈·, ·〉 : H ⊗ H → C, h ⊗ h′ →

∫
hh′. It

defines an isomorphism between H and its dual H∨. We can use this to dualise
the multiplication map H⊗H → H to a map ∆: H → H⊗H, h 7→

∑
h(1)⊗h(2)

(in Sweedler notation) of degree d. It is coassociative and cocommutative (this
follows from the associativity and commutativity of the multiplication map of
H). Further, this map is characterised by

∑
〈h(1), e〉 〈h(2), f〉 = 〈h, ef〉

for all e, f ∈ H . It follows that ∆(gh) =
∑

(gh(1)) ⊗ h(2) for all g ∈ H . Thus
∆ is a homomorphisms of H-modules when we view H ⊗H as a left H-algebra
by scalar multiplication on the first factor. (By the cocommutativity of ∆ we
could have equally chosen the analogously defined right H-algebra structure on
H ⊗ H .)

The example leads us to the following definition when we forget about the
linear form

∫
:

A non-counital graded Frobenius algebra H of degree d (over the complex num-
bers) is a graded vector space over C with a (graded) commutative and associa-
tive multiplication of degree d and a unit element 1 (of degree −d) together with
a coassociative and cocommutative H-module homomorphism ∆: H → H ⊗H
of degree d where we regard H ⊗ H as a left H-algebra by multiplying on the
left factor. The map ∆ is called the diagonal.
By example 5.1, every graded Frobenius algebra is in particular a non-counital
graded Frobenius algebra.
Let G be a finite abelian group. A G-weighting on H is an action of G on
H compatible with the Frobenius structure on H . In other words, H comes
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together with a weight decomposition of the form
⊕

χ∈G∨ H(χ), where each

g ∈ G acts on H(χ) by multiplication with χ(g).

Example 5.2. Let p : X̂ → X be a finite abelian Galois covering of X with
Galois group G. Then G acts on M := p∗C. Write M =

⊕
χ∈G∨ Lχ, where G

acts on each Lχ by multiplication via the character χ. The multiplication on
the local system on C induces a multiplication map M ⊗ M → M and thus
isomorphisms Lχ⊗Lχ′ ∼= Lχχ′ of local systems on X that are commutative and
associative in a certain sense. Thus we may assume without loss of generality
that these isomorphisms are in fact equalities.
The G-weighted vector space

HX,G :=
⊕

χ∈G∨

H∗(X, Lχ[2])

is naturally a non-counital G-weighted, graded Frobenius algebra of degree 2 as
follows: the grading is given by the cohomological grading. The multiplication
is given by the cup product. The diagonal is given by the proper push-forward
δ∗ : HX,G → HX,G⊗HX,G that is induced by the diagonal map δ : X → X×X .
(The map δ∗ is indeed a module homomorphism with respect to the left (or,
equivalently, right) module structure on HX,G⊗HX,G as one can see as follows:
Let π : X ×X → X be the projection onto the left factor. Then one has by the
projection formula that

δ∗(α ∪ β) = δ∗((δ
∗π∗α) ∪ β) = (π∗α) ∪ (δ∗β)

for all α, β ∈ HX,G.)

By iterated application, ∆ induce maps ∆: H → H⊗n with n ≥ 1. We denote
the restriction of ∆: H → H⊗n to H(Ln

χ), χ ∈ G∨, followed by the projection

onto H(Lχ)⊗n by ∆(χ) : H(Ln
χ) → H(Lχ)⊗n. The element e := (∇◦∆(1))(1) ∈

H is called the Euler class of H , where ∇ : H ⊗ H → H is the multiplication
map.
There is a construction given in [LS03] that associates to each graded Frobenius
algebra H of degree of d a sequence of graded Frobenius algebras H [n] (whose
degrees are given by nd). We extend this construction to G-weighted not
necessarily counital Frobenius algebras as follows: For each χ ∈ G∨, set

Hn(χ) :=
⊕

σ∈Sn


 ⊗

B∈σ\[n]

H(L|B|
χ )


σ and Hn :=

⊕

χ∈G∨

Hn(χ),

where [n] := {1, . . . , n} and σ\[n] is the set of orbits of the action of the cyclic
group generated by σ on the set [n]. (Note that Hn(1) = H(1){Sn} in the
terminology of [LS03].) The symmetric group Sn acts on Hn. The graded
vector space of invariants, HSn

n , is denoted by H [n].
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Let f : I → J a surjection of finite sets and (ni)i∈I a tuple of integers. Fibre-
wise multiplication yields ring homomorphisms

∇I,J := ∇f :
⊗

i∈I

H(Lni
χ ) →

⊗

j∈J

H
(
L

P

f(i)=j
ni

χ

)

of degree d(|I| − |J |). (These correspond to the ring homomorphism f I,J

in [LS03].) Dually, by using the diagonal morphisms ∆(χ) and relying on
their coassociativity and cocommutativity, we can define ∇f -module homo-
morphisms

∆J,I := ∆f :
⊗

j∈J

H
(
L

P

f(i)=j ni

χ

)
→
⊗

i∈I

H(Lni
χ ),

which are also of degree d(|I| − |J |). (These correspond to the module homo-
morphisms fJ,I in [LS03]).
Let σ, τ ∈ Sn be two permutations. By 〈σ, τ〉 we denote the subgroup of Sn

generated by the two permutations. Note that there are natural surjections
σ\[n] → 〈σ, τ〉\[n], τ\[n] → 〈σ, τ〉\[n], and (στ)\[n] → 〈σ, τ〉\[n]. The corre-
sponding ring and module homomorphism are denoted by ∇σ,〈σ,τ〉, etc., and
∆〈σ,τ〉,σ, etc.
Let χ, χ′ ∈ G∨. We define a linear map

mσ,τ :
⊗

B∈σ\[n]

H(L|B|
χ ) ⊗

⊗

B∈τ\[n]

H(L
|B|
χ′ ) →

⊗

B∈(στ)\[n]

H(L
|B|
χχ′)

by

mσ,τ (α ⊗ β) = ∆〈σ,τ〉,(στ)(∇
σ,〈σ,τ〉(α)∇τ,〈σ,τ〉(β)eγ(σ,τ)),

where the expression eγ(σ,τ) is defined as in [LS03] (we have to use our Euler
class e, which is defined above). This defines a product Hn ⊗Hn → Hn which
is given by

(ασ) · (βτ ) := mσ,τ (α, β)στ

for ασ ∈ Hn(Lχ) and βτ ∈ Hn(Lχ′). This product is associative, Sn-
equivariant, and of degree nd, which can be proven exactly as the corresponding
statements about the product of the rings H{Sn}, which are defined in [LS03].
The product becomes (graded) commutative when restricted to H [n]. Thus we
have made H [n] a graded commutative, unital algebra of degree nd.

Definition 5.3. The algebra H [n] is the n-th Hilbert algebra of H .

In case G is trivial, the n-th Hilbert algebra of H defined here is exactly the
algebra H [n] of [LS03]. For non-trivial G, this is no longer true.
The underlying graded vector space of

⊕
n≥0 H [n](Lχ) is naturally isomorphic

to S(Lχ) := S∗(
⊕

n≥1 H(Ln
χ)), namely as follows: Firstly, we introduce linear

maps Hn(Lχ) → S(Lχ), which are defined by mapping an element of the form∑
σ∈Sn

⊗
B∈σ\[n] ασ,Bσ to 1

n!

∑
σ∈Sn

∏
B∈σ\[n] ασ,B. The restrictions of these

morphisms to the S∗-invariant parts define a linear map
⊕

n≥0 H [n](Lχ) →
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S(Lχ). This map is an isomorphism, which can be proven exactly as it is
in [LS03] for trivial G.
Recall that H∗(X,C[2]) is a (trivially weighted) graded non-counital Frobenius
algebra of degree d.

Lemma 5.4. There is a natural isomorphism H∗(X,C[2])[n] → H∗(X [n],C[2n])
of graded unital algebras of degree nd.

Proof. Recall the just defined isomorphism between the spaces⊕
n≥0 H∗(X,C[2])

[n]
and S∗(

⊕
ν>0 H∗(X,C[2])) (for the trivial character

χ = 1). The composition of this isomorphism with isomorphism between
the spaces S∗(

⊕
ν>0 H∗(X,C[2])) and

⊕
n≥0 H∗(X [n],C[2n]) of Theorem 1.2

induces by restriction the claimed isomorphism of the Lemma on the level of
graded vector spaces.
That this isomorphism is in fact an isomorphism of unital algebras, is proven
in [LS03] for X being projective. The proof there does not use the fact that
H∗(X,C[2]) has a counit, in fact it only uses its diagonal map. It relies on
the earlier work in [Leh99], which has been extended to the non-projective
case above, and [LQW02], which can similarly be extended. Thus the proof
in [LS03] also works in the non-projective case, when we replace the notion of
a Frobenius algebra by the notion of a non-counital Frobenius algebra. �

We will now deduce Theorem 1.4 from Lemma 5.4:

Proof of Theorem 1.4. Let χ, χ′ ∈ G∨. Set L := Lχ and M := Lχ′ .
Let λ = (λ1, . . . , λl) be a partition of n. Let νi the multiplicity of i in λ,
i.e. λ =

∑
i νi · i. Set X(λ) :=

∏
i X(νi), and L(λ) :=

∏
i pr∗i L

(νi), where the

pri denote the projections onto the factors X(νi). Let α =
∑

α(1) · · ·α(r) ∈

H∗(X(λ), L(λ)[2l]) =
⊗

i SνiH∗(X, Li[2]).
We set

|α〉 :=
∑

q(α(1)) · · · q(α(r))|0〉.

By Theorem 1.2, the cohomology space H∗(X [n], L[n][2n]) is linearly spanned
by classes of the form |α〉.
Let µ = (µ1, . . . , µm) be another partition of n and β ∈ H∗(X(µ), M (µ)[2m]). In
order to describe the ring structure of H∗(X [n], L[n][2n]), we have to calculate
the classes |α ∪ β〉 := |α〉 ∪ |β〉 in terms of the vector space description given
by Theorem 1.2.
This means that we have to calculate the numbers

〈γ | α ∪ β〉 := q(γ)|α ∪ β〉 ∈ H∗(X [0],C) = C

for all γ ∈ H∗
c (X(κ), ((LM)−1)

(κ)
[2k]) for all partitions κ = (κ1, . . . , κk) of n,

and we have to show that they are equal to the numbers that would come out
if we calculated the product of α and β by the right hand side of the claimed
isomorphism of the Theorem.
The class |α〉 is given by applying a sequence of correspondences to the vacuum
vector: Recall from [Nak97] how to compose correspondences. It follows that
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|α〉 is given by

PD−1(pr1)∗(pr∗2α ∩ ζλ),

where the symbols have the following meaning: The maps pr1 and pr2 are the
projections of X [n] × X(λ) onto its factors X [n] and X(λ). Further, ζλ is a
certain class in HBM

∗ (Zλ), where Zλ is the incidence variety

Zλ :=

{
(ξ, (x1, x2, . . .)) ∈ X [n] × X(λ) | supp ξ =

∑

i

ixi

}

in X [n] × X(λ). (Note that pr∗1L
[n]|Zλ

= pr∗2L
(λ)|Zλ

, and that p|Zλ
is proper.)

For |β〉 and |γ〉 we get similar expressions. By definition of the cup-product
(pull-back along the diagonal), it follows that 〈γ | α ∪ β〉 = 〈r∗γ ∪ p∗α ∪
q∗β, ζλ,µ,κ〉, where p, q, and r are the projections from X(λ)×X(µ)×X(κ) onto
its three factors, and ζλ,µ,κ is a certain class in HBM

∗ (Zλ,µ,κ) with

Zλ,µ,κ :=

=



((x1, x2, . . .), (y1

, y
2
, . . .), (z1, z2, . . .)) |

∑

i

ixi =
∑

j

jy
j

=
∑

k

kzk



 .

(The incidence variety is proper over any of the three factors, so everything
is well-defined.) The main point is now that the incidence variety Zλ,µ,κ and
the homology class ζλ,µ,κ are independent of the local systems L and M . In
particular, we can calculate ζλ,µ,κ once we know the cup-product in the case
L = M = C. But this is the case that is described in Lemma 5.4, which we
will analyse now.
First of all, the incidence variety is given by

Zλ,µ,κ =
∑

σ,τ

Zσ,τ

where σ and τ run through all permutations with cycle type λ and µ, respec-
tively, such that ρ := στ has cycle type κ. The varieties Zσ,τ are defined as
follows:
As the orbits of the group action of 〈σ〉 on [n] correspond to the entries of
the partition λ, there exists a natural map Xσ\[n] → X(λ), which is given by
symmetrising. Furthermore the natural surjection σ\[n] → 〈σ, τ〉\[n] induces
a diagonal embedding X〈σ,τ〉\[n] → Xσ\[n]. Composing both maps, we get a
natural map X〈σ,τ〉\[n] → X(λ). Analoguously, we get maps from X〈σ,τ〉\[n] to
X(µ) and X(κ). Together, these maps define a diagonal embedding

iτ,σ : X〈σ,τ〉\[n] → X(κ) × X(λ) × X(µ).

We define Zσ,τ to be the image of this map.
By Lemma 5.4, the class ζλ,µ,κ is given by

∑
σ,τ (iσ,τ )∗ζσ,τ , where each class

ζσ,τ ∈ HBM
∗ (X〈σ,τ〉\[n]) is Poincaré dual to cσ,τ eγ(σ,τ). Here, cσ,τ is a certain

combinatorial factor (possibly depending on σ and τ), whose precise value is
of no concern for us.

Documenta Mathematica 14 (2009) 749–770



Twisted Cohomology of the . . . 767

Having derived the value of ζλ,µ,κ from Lemma 5.4, we have thus calculated
the value 〈γ | α ∪ β〉.
Now we have to compare this value with the one that is predicted by the descrip-
tion of the cup-product given by the right hand side of the claimed isomorphism
of the Theorem. With the same analysis as above, we find this value is also
given by a correspondence on Zλ,µ,κ with the class

∑
τ,σ(iσ,τ )∗cσ,τPD(eγ(σ,τ))

with the same combinatorial factors cσ,τ as above. We thus find that the
claimed ring structure yields the correct value of 〈γ | α ∪ β〉. �

Remark 5.5. One can also define a natural diagonal map for the Hilbert algebras
H [n] making them into graded, non-counital Frobenius algebras of degree nd.
The isomorphism of Theorem 1.4 then becomes an isomorphism of graded non-
counital Frobenius algebras.

6. The generalised Kummer varieties

Finally, we want to use Theorem 1.4 to study the cohomology ring of the
generalised Kummer varieties.
Let H be a non-counital graded Frobenius algebra of degree d that is moreover
endowed with a compatible structure of a cocommutative Hopf algebra of degree
d. The comultiplication δ of the Hopf algebra structure is of degree −d. The
counit of the Hopf algebra structure is denoted by ǫ and is of degree d. We
further assume that H is also equipped with a G-weighting for a finite abelian
group G.

Example 6.1. Let X be an abelian surface. The group structure on X induces
naturally a graded Hopf algebra structure of degree 2 on the graded Frobenius
algebra H∗(X,C[2]). This algebra is also trivially X [n]-weighted, where G :=
X [n] ≃ (Z/(n))4 is the group of n-torsion points on X . (Trivially weighted
means that the only non-trivial X [n]-weight space of H∗(X,C[2]) is the one
corresponding to the identity element 0.)

Let n be a positive integer. Recall the definition of the (G-weighted) Hilbert
algebra H [n]. Repeated application of the comultiplication δ induces a map
δ : H → H⊗n = H id\[n], which is of degree −(n − 1)d. Its image lies in the
subspace of symmetric tensors. Thus we can define a map φ : H → H [n] with
φ(α) := δ(α)id. One can easily check that this map is an algebra homomor-
phism of degree −(n − 1)d, making H [n] into an H-algebra.
Define

H [[n]] := H [n] ⊗H C,

where we view C as an H-algebra of degree d via the Hopf counit ǫ. It is H [[n]]

a (G-weighted) graded Frobenius algebra of degree nd.

Definition 6.2. The algebra H [[n]] is the n-th Kummer algebra of H .

The reason of this naming is of course Theorem 1.7.
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Proof of Theorem 1.7. Let n : X → X denote the morphism that maps x to
n · x. There is a natural cartesian square

(2)

X × X [[n]] ν
−−−−→ X [n]

p

y
yσ

X −−−−→
n

X,

where p is the projection on the first factor and ν maps a pair (x, ξ) to x + ξ,
the subscheme that is given by translating ξ by x ([Bea83]). Then G is the
Galois group of n. Each element χ of G∨ corresponds to a local system Lχ

on X , and we have n∗C =
⊕

χ∈G∨ Lχ. It follows that ν is an abelian Galois

covering of X [n] with ν∗C =
⊕

χ∈G∨ L
[n]
χ .

Together with Theorem 1.4, this leads to the claimed description of the coho-
mology ring of X [[n]]: Firstly, there is a natural isomorphism

H∗(X [[n]],C[2n]) → H∗(X × X [[n]],C[2n]) ⊗H∗(X,C[2]) C

of unital algebras (the tensor product is taken with respect to the map p∗ and
the Hopf counit H∗(X,C[2]) → C). By the Leray spectral sequence for ν and
by (2), the right hand side is naturally isomorphic to

H∗(X [n], ν∗C[2n]) ⊗H∗(X,C[2]) C =
⊕

χ∈G∨

H∗(X [n], L[n]
χ [2n]) ⊗H∗(X,C[2]) C

(where the tensor product is taken with respect to the map σ∗ and the Hopf
counit).

By Theorem 1.4, the algebra
⊕

χ∈G∨ H∗(X [n], L
[n]
χ [2n]) is naturally isomor-

phic to
⊕

χ∈G∨ H∗(X, Lχ[2])
[n]

. Now H∗(X, Lχ[2]) = 0 unless χ is the trivial

character, which follows from the fact that all classes in H∗(X,C) are invari-
ant under the action of the Galois group of n, i.e. correspond to the trivial
character. Thus there is a natural isomorphism

⊕

χ∈G∨

H∗(X [n], L[n]
χ [2n]) → H∗(X,C[2])

[n]
,

of G-weighted algebras, where we endow H∗(X,C[2]) with the trivial G-
weighting. Under this isomorphism, the map σ∗ corresponds to the homo-
morphism φ defined below Example 6.1. Thus we have proven the existence of
a natural isomorphism

H∗(X [[n]],C[2n]) → H∗(X,C[2])
[n]

⊗H∗(X,C[2]) C

of unital, graded algebras. But the right hand side is nothing but H [[n]], thus
the Theorem is proven. �
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