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Chow–Künneth Decomposition

for Some Moduli Spaces1
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Abstract. In this paper we investigate Murre’s conjecture on the
Chow–Künneth decomposition for universal families of smooth curves
over spaces which dominate the moduli spaceMg, in genus at most 8
and show existence of a Chow–Künneth decomposition. This is done
in the setting of equivariant cohomology and equivariant Chow groups
to get equivariant Chow–Künneth decompositions.
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2 J. N. Iyer, S. Müller–Stach

1. Introduction

Suppose X is a nonsingular projective variety defined over the complex num-
bers. We consider the rational Chow group CHi(X)Q = CHi(X) ⊗ Q of
algebraic cycles of codimension i on X . The conjectures of S. Bloch and A.
Beilinson predict a finite descending filtration {F jCHi(X)Q} on CHi(X)Q and
satisfying certain compatibility conditions. A candidate for such a filtration has
been proposed by J. Murre and he has made the following conjecture [Mu2],
Murre’s conjecture: The motive (X,∆) of X has a Chow-Künneth decom-
position:

∆ =

2d∑

i=0

πi ∈ CHd(X ×X)⊗Q

such that πi are orthogonal projectors, lifting the Künneth projectors in
H2d−i(X) ⊗ Hi(X). Furthermore, these algebraic projectors act trivially on
the rational Chow groups in a certain range.
These projectors give a candidate for a filtration of the rational Chow groups,
see §2.1.
This conjecture is known to be true for curves, surfaces and a product of a curve
and surface [Mu1], [Mu3]. A variety X is known to have a Chow–Künneth de-
composition if X is an abelian variety/scheme [Sh],[De-Mu], a uniruled three-
fold [dA-Mü1], universal families over modular varieties [Go-Mu], [GHM2] and
the universal family over one Picard modular surface [MMWYK], where a par-
tial set of projectors are found. Finite group quotients (maybe singular) of
an abelian variety also satisfy the above conjecture [Ak-Jo]. Furthermore, for
some varieties with a nef tangent bundle, Murre’s conjecture is proved in [Iy].
A criterion for existence of such a decomposition is also given in [Sa]. Some
other examples are also listed in [Gu-Pe].
Gordon-Murre-Hanamura [GHM2], [Go-Mu] obtained Chow–Künneth projec-
tors for universal families over modular varieties. Hence it is natural to ask if
the universal families over the moduli space of curves of higher genus also admit
a Chow–Künneth decomposition. In this paper, we investigate the existence of
Chow–Künneth decomposition for families of smooth curves over spaces which
closely approximate the moduli spaces of curves Mg of genus at most 8, see
§5.
In this example, we take into account the non-trivial action of a linear algebraic
group G acting on the spaces. This gives rise to the equivariant cohomology
and equivariant Chow groups, which were introduced and studied by Borel, To-
taro, Edidin-Graham [Bo], [To], [Ed-Gr]. Hence it seems natural to formulate
Murre’s conjecture with respect to the cycle class maps between the rational
equivariant Chow groups and the rational equivariant cohomology, see §4.5.
Since in concrete examples, good quotients of non-compact varieties exist, it
became necessary to extend Murre’s conjecture for non-compact smooth va-
rieties, by taking only the bottom weight cohomology WiH

i(X,Q) (see [D]),
into consideration. This is weaker than the formulation done in [BE]. For
our purpose though, it suffices to look at this weaker formulation. We then
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Chow–Künneth Decompositions 3

construct a category of equivariant Chow motives, fixing an algebraic group G
(see [dB-Az], [Ak-Jo], for a category of motives of quotient varieties, under a
finite group action).
With this formalism, we show (see §5.2);

Theorem 1.1. The equivariant Chow motive of a universal family of smooth
curves X → U over spaces U which dominate the moduli space of curves Mg,
for g ≤ 8, admits an equivariant Chow–Künneth decomposition, for a suitable
linear algebraic group G acting non-trivially on X .

Whenever smooth good quotients exist under the action of G, then the equi-
variant Chow-Künneth projectors actually correspond to the absolute Chow–
Künneth projectors for the quotient varieties. In this way, we get orthogonal
projectors for universal families over spaces which closely approximate the mod-
uli spaces Mg, when g is at most 8.
One would like to try to prove a Chow–Künneth decomposition for Mg and
Mg,n (which parametrizes curves with marked points) and we consider our
work a step forward. However since we only work on an open set U one has to
refine projectors after taking closures a bit in a way we don’t yet know.
Other examples that admit a Chow–Künneth decomposition are Fano vari-
eties of r-dimensional planes contained in a general complete intersection in a
projective space, see Corollary 5.3.
The proofs involve classification of curves in genus at most 8 by Mukai
[Muk],[Muk2] with respect to embeddings as complete intersections in homoge-
neous spaces. This allows us to use Lefschetz theorem and construct orthogonal
projectors.
Acknowledgements: The first named author thanks the Math Department of Mainz,

for its hospitality during the visits in 2007 and 2008, when this work was carried out. We

also thank a referee for a useful remark concerning our definition of the weight filtration.

2. Preliminaries

The category of nonsingular projective varieties over C will be denoted by V .
Let CHi(X)Q = CHi(X)⊗Q denote the rational Chow group of codimension
i algebraic cycles modulo rational equivalence.
Suppose X,Y ∈ Ob(V) and X = ∪Xi be a decomposition into connected
components Xi and di = dim Xi. Then Corrr(X,Y ) = ⊕iCHdi+r(Xi × Y )Q

is called a space of correspondences of degree r from X to Y .
A category M of Chow motives is constructed in [Mu2]. Suppose X is a
nonsingular projective variety over C of dimension d. Let ∆ ⊂ X ×X be the
diagonal. Consider the Künneth decomposition of the class of ∆ in the Betti
Cohomology:

[∆] = ⊕2d
i=0π

hom
i

where πhomi ∈ H2d−i(X,Q)⊗Hi(X,Q).

Definition 2.1. The motive of X is said to have Künneth decomposition if
each of the classes πhomi is algebraic, i.e., πhomi is the image of an algebraic

Documenta Mathematica 14 (2009) 1–18



4 J. N. Iyer, S. Müller–Stach

cycle πi under the cycle class map from the rational Chow groups to the Betti
cohomology.

Definition 2.2. The motive of X is said to have a Chow–Künneth decomposi-
tion if each of the classes πhomi is algebraic and they are orthogonal projectors,
i.e., πi ◦ πj = δi,jπi.

Lemma 2.3. If X and Y have a Chow–Künneth decomposition then X×Y also
has a Chow–Künneth decomposition.

Proof. If πXi and πYj are the Chow–Künneth components for h(X) and h(Y )
respectively then

πX×Yi =
∑

p+q=i

πXp × πYq ∈ CH∗(X × Y ×X × Y )Q

are the Chow–Künneth components for X × Y . Here the product πXp × πYq is
taken after identifying X × Y ×X × Y ≃ X ×X × Y × Y . �

2.1. Murre’s conjectures. J. Murre [Mu2], [Mu3] has made the following
conjectures for any smooth projective variety X .
(A) The motive h(X) := (X,∆X) of X has a Chow-Künneth decomposition:

∆X =
2n∑

i=0

πi ∈ CHn(X ×X)⊗Q

such that πi are orthogonal projectors.
(B) The correspondences π0, π1, ..., πj−1, π2j+1, ..., π2n act as zero on CHj(X)⊗
Q.
(C) Suppose

F rCHj(X)⊗Q = Kerπ2j ∩Kerπ2j−1 ∩ ... ∩Kerπ2j−r+1.

Then the filtration F • of CHj(X) ⊗ Q is independent of the choice of the
projectors πi.
(D) Further, F 1CHi(X) ⊗ Q = (CHi(X) ⊗ Q)hom, the cycles which are ho-
mologous to zero.

In §4, we will extend (A) in the setting of equivariant Chow groups.

3. Equivariant Chow groups and equivariant Chow motives

In this section, we recall some preliminary facts on the equivariant groups to
formulate Murre’s conjectures for a smooth variety X of dimension d, which
is equipped with an action by a linear reductive algebraic group G. The equi-
variant groups and their properties that we recall below were defined by Borel,
Totaro, Edidin-Graham, Fulton [Bo],[To],[Ed-Gr], [Fu2].

Documenta Mathematica 14 (2009) 1–18



Chow–Künneth Decompositions 5

3.1. Equivariant cohomology Hi
G(X,Z) of X. Suppose X is a variety

with an action on the left by an algebraic groupG. Borel defined the equivariant
cohomology H∗G(X) as follows. There is a contractible space EG on which G
acts freely (on the right) with quotient BG := EG/G. Then form the space

EG×G X := EG×X/(e.g, x) ∼ (e, g.x).

In other words, EG×G X represents the (topological) quotient stack [X/G].

Definition 3.1. The equivariant cohomology of X with respect to G is the
ordinary singular cohomology of EG×G X:

Hi
G(X) = Hi(EG×G X).

For the special case when X is a point, we have

Hi
G(point) = Hi(BG)

For any X , the map X → point induces a pullback map Hi(BG) → Hi
G(X).

Hence the equivariant cohomology of X has the structure of a Hi(BG)-algebra,
at least when Hi(BG) = 0 for odd i.

3.2. Equivariant Chow groups CHi
G(X) of X. [Ed-Gr]

As in the previous subsection, let X be a smooth variety of dimension n,
equipped with a left G-action. Here G is an affine algebraic group of dimension
g. Choose an l-dimensional representation V of G such that V has an open
subset U on which G acts freely and whose complement has codimension more
than n− i. The diagonal action on X ×U is also free, so there is a quotient in
the category of algebraic spaces. Denote this quotient by XG := (X × U)/G.

Definition 3.2. The i-th equivariant Chow group CHG
i (X) is the usual Chow

group CHi+l−g(XG). The codimension i equivariant Chow group CHi
G(X) is

the usual codimension i Chow group CHi(XG).

Note that if X has pure dimension n then

CHi
G(X) = CHi(XG)

= CHn+l−g−i(XG)

= CHG
n−i(X).

Proposition 3.3. The equivariant Chow group CHG
i (X) is independent of the

representation V , as long as V − U has codimension more than n− i.
Proof. See [Ed-Gr, Definition-Proposition 1]. �

If Y ⊂ X is an m-dimensional subvariety which is invariant under the G-
action, and compatible with the G-action on X , then it has a G-equivariant
fundamental class [Y ]G ∈ CHG

m(X). Indeed, we can consider the product
(Y ×U) ⊂ X×U , where U is as above and the corresponding quotient (Y ×U)/G
canonically embeds into XG. The fundamental class of (Y × U)/G defines the
class [Y ]G ∈ CHG

m(X). More generally, if V is an l-dimensional representation

Documenta Mathematica 14 (2009) 1–18



6 J. N. Iyer, S. Müller–Stach

of G and S ⊂ X × V is an m + l-dimensional subvariety which is invariant
under the G-action, then the quotient (S ∩ (X × U))/G ⊂ (X × U)/G defines
the G-equivariant fundamental class [S]G ∈ CHG

m(X) of S.

Proposition 3.4. If α ∈ CHG
m(X) then there exists a representation V such

that α =
∑
ai[Si]G, for some G-invariant subvarieties Si of X × V .

Proof. See [Ed-Gr, Proposition 1]. �

3.3. Functoriality properties. Suppose f : X → Y is a G-equivariant
morphism. Let S be one of the following properties of schemes or algebraic
spaces: proper, flat, smooth, regular embedding or l.c.i.

Proposition 3.5. If f : X → Y has property S, then the induced map fG :
XG → YG also has property S.
Proof. See [Ed-Gr, Proposition 2]. �

Proposition 3.6. Equivariant Chow groups have the same functoriality as
ordinary Chow groups for equivariant morphisms with property S.
Proof. See [Ed-Gr, Proposition 3]. �

If X and Y have G-actions then there are exterior products

CHG
i (X)⊗ CHG

j (Y )→ CHG
i+j(X × Y ).

In particular, if X is smooth then there is an intersection product on the
equivariant Chow groups which makes ⊕jCHG

j (X) into a graded ring.

3.4. Cycle class maps. [Ed-Gr, §2.8]
Suppose X is a complex algebraic variety and G is a complex algebraic group.
The equivariant Borel-Moore homology HG

BM,i(X) is the Borel-Moore homol-

ogy HBM,i(XG), for XG = X ×G U . This is independent of the representation
as long as V − U has sufficiently large codimension. This gives a cycle class
map,

cli : CHG
i (X)→ HG

BM,2i(X,Z)

compatible with usual operations on equivariant Chow groups. Suppose X is
smooth of dimension d then XG is also smooth. In this case the Borel-Moore
cohomology HG

BM,2i(X,Z) is dual to H2d−i(XG) = H2d−i(X ×G U).
This gives the cycle class maps

(1) cli : CHi
G(X)→ H2i

G (X,Z).

There are also maps from the equivariant groups to the usual groups:

(2) Hi
G(X,Z)→ Hi(X,Z)

and

(3) CHi
G(X)→ CHi(X).

Documenta Mathematica 14 (2009) 1–18



Chow–Künneth Decompositions 7

3.5. Weight filtration W. on Hi
G(X,Z). In this paper, we assign only the

bottom weight Wi of the equivariant cohomology in the simplest situation.
Consider a smooth variety X equipped with a left G action as above.
We can define

WiH
i
G(X,Q) := WiH

i((X × U)/G,Q),

for U ⊂ V an open subset with a free G-action, where codim V −U is at least
n− i.
Lemma 3.7. The group WiH

i
G(X,Q) is independent of the choice of the G-

representation V as long as codim V − U is at least n− i.
Proof. The proof of independence of V in the case of equivariant Chow groups
[Ed-Gr, Definition-Proposition 1] applies directly in the case of the bottom
weight equivariant cohomology. �

3.6. Equivariant Chow motives and the category of equivariant
Chow motives. When G is a finite group then a category of Chow motives
for (maybe singular) quotients of varieties under the G-action was constructed
in [dB-Az], [Ak-Jo]. More generally, we consider the following situation, taking
into account the equivariant cohomology and the equivariant rational Chow
groups, which does not seem to have been considered before.
Fix an affine complex algebraic group G. Let VG be the category whose objects
are complex smooth projective varieties with a G-action and the morphisms
are G-equivariant morphisms.
For any X,Y, Z ∈ Ob(VG), consider the projections

X × Y × Z pXY−→ X × Y,
X × Y × Z pY Z−→ Y × Z,
X × Y × Z pXZ−→ X × Z.

which are G-equivariant.
Let d be the dimension of X . The group of correspondences from X to Y of
degree r is defined as

CorrrG(X × Y ) := CHr+d
G (X × Y ).

Every G-equivariant morphism X → Y defines an element in Corr0G(X × Y ),
by taking the graph cycle.
For any f ∈ CorrrG(X,Y ) and g ∈ CorreG(Y, Z) define their composition

g ◦ f ∈ Corrr+eG (X,Z)

by the prescription
g ◦ f = pXZ∗(p

∗
XY (f).p∗Y Z(g)).

This gives a linear action of correspondences on the equivariant Chow groups

CorrrG(X,Y )× CHs
G(X)Q −→ CHr+s

G (Y )Q

(γ, α) 7→ pY ∗(p
∗
Xα.γ)

for the projections pX : X × Y −→ X, pY : X × Y −→ Y .

Documenta Mathematica 14 (2009) 1–18



8 J. N. Iyer, S. Müller–Stach

The category of pure equivariantG-motives with rational coefficients is denoted
by M+

G. The objects of M+
G are triples (X, p,m)G, for X ∈ Ob(VG), p ∈

Corr0G(X,X) is a projector, i.e., p ◦ p = p and m ∈ Z. The morphisms between
the objects (X, p,m)G, (Y, q, n)G in M+

G are given by the correspondences f ∈
Corrn−mG (X,Y ) such that f ◦p = q ◦f = f . The composition of the morphisms
is the composition of correspondences. This category is pseudoabelian and
Q-linear [Mu2]. Furthermore, it is a tensor category defined by

(X, p,m)G ⊗ (Y, q, n)G = (X × Y, p⊗ q,m+ n)G.

The object (Spec C, id, 0)G is the unit object and the Lefschetz motive L is the
object (Spec C, id,−1)G. Here Spec C is taken with a trivial G-action. The
Tate twist of a G-motive M is M(r) := M ⊗ L⊗−r = (X, p,m+ r)G.

Definition 3.8. The theory of equivariant Chow motives ([Sc]) provides a
functor

h : VG −→M+
G.

For each X ∈ Ob(VG) the object h(X) = (X,∆, 0)G is called the equivariant
Chow motive of X. Here ∆ is the class of the diagonal in CH∗(X × X)Q,
which is G-invariant for the diagonal action on X × X and hence lies in
Corr0

G(X,X) = CH∗G(X ×X)Q.

4. Murre’s conjectures for the equivariant Chow motives

Suppose X is a complex smooth variety of dimension d, equipped with a G-
action. Consider the product variety X ×X together with the diagonal action
of the group G.
The cycle class map

(4) cld : CHd(X ×X)Q → H2d(X ×X,Q).

actually maps to the weight 2d piece W2dH
2d(X ×X,Q) of the ordinary coho-

mology group.
Applying this to the spaces X×U , for open subset U ⊂ V as in §3.2, (4) holds
for the equivariant groups as well and there are cycle class maps:

(5) cld : CHd
G(X ×X)Q →W2dH

2d
G (X ×X,Q).

Lemma 4.1. The image of the diagonal cycle [∆X ] under the cycle class map
cld lies in the subspace

⊕

i

W2d−iH
2d−i
G (X)⊗WiH

i
G(X)

of W2dH
2d
G (X ×X,Q).

Proof. First we prove the assertion for the ordinary cohomology of non-compact
smooth varieties and next apply it to the product spaces X × U , which is
equipped with a free G-action and the quotient space XG.

Documenta Mathematica 14 (2009) 1–18



Chow–Künneth Decompositions 9

If X is a compact smooth variety then we notice that the weight 2d piece
coincides with the cohomology group H2d(X × X,Q) and by the Künneth
formula for products the statement follows in the usual cohomology. Suppose
X is not compact. Using (4), notice that the image of the diagonal cycle [∆X ]
lies in W2dH

2d(X × X,Q). Choose a smooth compactification X of X and
consider the commutative diagram:

⊕

i

H2d−i(X)⊗Hi(X)
≃→ H2d(X ×X,Q)

↓ ↓
⊕

i

W2d−iH
2d−i(X)⊗WiH

i(X)
k→ W2dH

2d(X ×X,Q).

The vertical arrows are surjective maps, defined by the localization. Hence
the map k is surjective. The injectivity follows because this is the Künneth
product map, restricted to the bottom weight cohomology. This shows that k
is an isomorphism.
In particular, the isomorphism k can be applied to the bottom weights of the
ordinary cohomology groups of the smooth variety X ×U , for any open subset
U ⊂ V of large complementary codimension and V is a G-representation. But
this is essentially the bottom weight of the equivariant cohomology group of X .
To conclude, we need to observe that the diagonal cycle [∆X ] is G-invariant.

�

Denote the decomposition of the G-invariant diagonal cycle

(6) ∆X = ⊕2d
i=0π

G
i ∈ W2dH

2d
G (X ×X,Q)

such that πGi lies in the space W2d−iH
2d−i
G (X)⊗WiH

i
G(X).

We defined the equivariant Chow motive of a smooth projective variety with a
G-action in §3.6. We extend the notion of orthogonal projectors on a smooth
variety equipped with a G-action, as follows.

Definition 4.2. Suppose X is a smooth variety equipped with a G-
action. The equivariant Chow motive (X,∆X)G of X is said to have an
equivariant Künneth decomposition if the classes πGi are algebraic, i.e.,
they have a lift in the equivariant Chow group CHd

G(X×X)Q. Furthermore, if

X admits a smooth compactification X ⊂ X such that the action of G extends
on X and the Künneth projectors extend to orthogonal projectors on X then
we say that X has an equivariant Chow–Künneth decomposition.

Remark 4.3. When G is a linear algebraic group, using the results of Sumihiro
[Su], Bierstone-Milman [Bi-Mi, Theorem 13.2], Reichstein-Youssin [Re-Yo],
one can always choose a smooth compactification X ⊃ X such that action
of G extends to X. Since any affine algebraic group is linear, we can always
find smooth G-equivariant compactifications in our set-up.

Suppose X is a smooth variety with a free G-action so that we can form the
quotient variety Y := X/G. Using [Ed-Gr], we have the identification of the
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rational Chow groups
CH∗(Y )Q = CH∗G(X)Q

and
CH∗(Y × Y )Q = CH∗G(X ×X)Q.

Furthermore, these identifications respect the ring structure on the above ratio-
nal Chow groups. A similar identification also holds for the rational cohomology
groups. In view of this, we make the following definition.

Definition 4.4. Suppose X is a smooth variety with a G-action and G acts
freely on X. Denote the quotient space Y := X/G. The absolute Chow–
Künneth decomposition of Y is defined to be the equivariant Chow–Künneth
decomposition of X.

We can now extend Murre’s conjecture to smooth varieties with a G-action, as
follows.

Conjecture 4.5. Suppose X is a smooth variety with a G-action. Then X
has an equivariant Chow–Künneth decomposition.

In particular, if the action of G is trivial then we can extend Murre’s conjec-
ture to a (not necessarily compact) smooth variety, by taking only the bottom
weight cohomology WiH

i(X) of the ordinary cohomology. This is weaker than
obtaining projectors for the ordinary cohomology. We remark a projector π1

in the case of quasi–projective varieties has been constructed by Bloch and
Esnault [BE].

5. Families of curves

Our goal in this paper is to find an (explicit) absolute Chow–Künneth decom-
position for the universal families of curves over close approximations of the
moduli space of smooth curves of small genus. We begin with the following
situation which motivates the statements on universal curves.

Lemma 5.1. Any smooth hypersurface X ⊂ Pn of degree d has an absolute
Chow–Künneth decomposition. If L ⊂ X is any line, then the blow-up X ′ → X
also has a Chow–Künneth decomposition.

Proof. Notice that the cohomology of X is algebraic except in the middle di-
mension Hn−1(X,Q). By the Lefschetz Hyperplane section theorem, the alge-
braic cohomology H2j(X,Q), j 6= n−1, is generated by the hyperplane section
Hj . So the projectors are simply

πr :=
1

d
.Hn−1−r ×Hr ∈ CHn−1(X ×X)Q

for r 6= n− 1. We can now take πn−1 := ∆X −
∑

r,r 6=n−1 πr. This gives a com-
plete set of orthogonal projectors and a Chow–Künneth decomposition for X .
Since X ′ → X is a blow-up along a line, the new cohomology is again algebraic,
by the blow-up formula. Similarly we get a Chow–Künneth decomposition for
X ′ (see also [dA-Mü2, Lemma 2] for blow-ups). �
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The above lemma can be generalized to the following situation.

Lemma 5.2. Suppose Y is a smooth projective variety of dimension r over C
which has only algebraic cohomology groups Hi(Y ) for all 0 ≤ i ≤ m for some
m < r. Then we can construct orthogonal projectors

π0, π1, ..., πm, π2r−m, π2r−m+1, ..., π2r

in the usual Chow group CHr(Y × Y )Q, and where π2i acts as δi,p on H2p(Y )
and π2i−1 = 0. Moreover, if there is an affine complex algebraic group G
acting on Y , then we can lift the above projectors in the equivariant Chow
group CHr

G(Y × Y )Q as orthogonal projectors.

Proof. See also [dA-Mü1, dA-Mü2]. Let H2p(Y ) be generated by cohomology
classes of cycles C1, . . . , Cs and H2r−2p(Y ) be generated by cohomology classes
of cycles D1, . . . , Ds. We denote by M the intersection matrix with entries

Mij = Ci ·Dj ∈ Z.

After base change and passing to Q–coefficients we may assume that M is diag-
onal, since the cup–product H2p(Y,Q)⊗H2r−2p(Y,Q)→ Q is non–degenerate.
We define the projector π2p as

π2p =
s∑

k=1

1

Mkk
Dk × Ck.

It is easy to check that π2p ∗(Ck) = Dk. Define π2r−2p as the adjoint, i.e.,
transpose of π2p. Via the Gram–Schmidt process from linear algebra we can
successively make all projectors orthogonal. �

Suppose X ⊂ Pn is a smooth complete intersection of multidegree d1 ≤ d2 ≤
... ≤ ds. Let Fr(X) be the variety of r-dimensional planes contained in X . Let

δ := min{(r + 1)(n− r)−
(
d+r
r

)
, n− 2r − s}.

Corollary 5.3. If X is general then Fr(X) is a smooth projective variety of
dimension δ and it has an absolute Chow–Künneth decomposition.

Proof. The first assertion on the smoothness of the variety Fr(X) is well–
known, see [Al-Kl], [ELV], [De-Ma]. For the second assertion, notice that Fr(X)
is a subvariety of the Grassmanian G(r,Pn) and is the zero set of a section of
a vector bundle. Indeed, let S be the tautological bundle on G(r,Pn). Then
a section of ⊕si=1Sym

diH0(Pn,O(1)) induces a section of the vector bundle
⊕si=1Sym

diS∗ on G(r,Pn). Thus, Fr(X) is the zero locus of the section of the⊕s
i=1 Sym

diS∗ induced by the equations defining the complete intersection X .
A Lefschetz theorem is proved in [De-Ma, Theorem 3.4]:

Hi(G(r,Pn),Q)→ Hi(Fr(X),Q)

is bijective, for i ≤ δ − 1. We can apply Lemma 5.2 to get the orthogonal
projectors in all degrees except in the middle dimension. The projector cor-
responding to the middle dimension can be gotten by subtracting the sum of
these projectors from the diagonal class.
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�

Corollary 5.4. Suppose X ⊂ Pn is a smooth projective variety of dimension
d. Let r = 2d− n. Then we can construct orthogonal projectors

π0, π1, ..., πr, π2d−r, π2d−r+1, ..., π2d.

Proof. Barth [Ba] has proved a Lefschetz theorem for higher codimensional
subvarieties in projective spaces:

Hi(Pn,Q)→ Hi(X,Q)

is bijective if i ≤ 2d−n and is injective if i = 2d−n+1. The claim now follows
from Lemma 5.2. �

Remark 5.5. The above corollary says that if we can embed a variety X in a
low dimensional projective space then we get at least a partial set of orthogonal
projectors. A conjecture of Hartshorne’s says that any codimension two subva-
riety of Pn for n ≥ 6 is a complete intersection. This gives more examples for
subvarieties with several algebraic cohomology groups.

5.1. Chow–Künneth decomposition for the universal plane curve.
We want to find explicit equivariant Chow–Künneth projectors for the universal
plane curve of degree d. Let d ≥ 1 and consider the linear system P = |OP2(d)|
and the universal plane curve

C ⊂ P2 × P
↓

P.

Furthermore, we notice that the general linear group G := GL3(C) acts on P2

and hence acts on the projective space P = |OP2(d)|. This gives an action on
the product space P2×P and leaves the universal smooth plane curve C ⊂ P2×P
invariant under the G-action.

Lemma 5.6. The variety C has an absolute Chow–Künneth decomposition and
an absolute equivariant Chow–Künneth decomposition.

Proof. We observe that C ⊂ P2 × P is a smooth hypersurface of bi-degree
(d, 1) with variables in P2 whose coefficients are polynomial functions on P.
Notice that P2×P has a Chow–Künneth decomposition and Lefschetz theorems
hold for the embedding C ⊂ P2 × P, since O(d, 1) is very ample. Now we
can repeat the arguments from Lemma 5.2 to get an absolute Chow–Künneth
decomposition and absolute equivariant Chow–Künneth decomposition, for the
variety C. �
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5.2. Families of curves contained in homogeneous spaces. We notice
that when d = 3 in the previous subsection, the family of plane cubics restricted
to the loci of stable curves is a complete family of genus one stable curves. If
d ≥ 4, then the above family of plane curves is no longer a complete family
of genus g curves. Hence to find families which closely approximate over the
moduli spaces of stable curves, we need to look for curves embedded as complete
intersections in other simpler looking varieties. For this purpose, we look at
the curves embedded in special Fano varieties of small genus g ≤ 8, which was
studied by S. Mukai [Muk], [Muk2], [Muk3], [Muk5] and Ide-Mukai [IdMuk].
We recall the main result that we need.

Theorem 5.7. Suppose C is a generic curve of genus g ≤ 8. Then C is a
complete intersection in a smooth projective variety which has only algebraic
cohomology.

Proof. This is proved in [Muk], [Muk2], [Muk3], [IdMuk] and [Muk5]. The
below classification is for the generic curve.
When g ≤ 5 then it is well-known that the generic curve is a linear section of
a Grassmanian.
When g = 6 then a curve has finitely many g1

4 if and only if it is a complete
intersection of a Grassmanian and a smooth quadric , see [Muk3, Theorem 5.2].
When g = 7 then a curve is a linear section of a 10-dimensional spinor variety
X ⊂ P15 if and only if it is non-tetragonal, see [Muk3, Main theorem].
When g = 8 then it is classically known that the generic curve is a linear section
of the grassmanian G(2, 6) in its Plücker embedding.

�

Suppose P(g) is the parameter space of linear sections of a Grassmanian or of a
spinor variety, which depends on the genus, as in the proof of above Theorem
5.7. P(g) is a product of projective spaces on which an algebraic group G
(copies of PGLN) acts. Generic curves are isomorphic, if they are in the same
orbit of G.

Proposition 5.8. Suppose P(g) is as above, for g ≤ 8. Then there is a uni-
versal curve

Cg → P(g)

such that the classifying (rational) map P(g)→Mg is dominant. The smooth
projective variety Cg has an absolute Chow–Künneth decomposition and an ab-
solute equivariant Chow-Künneth decomposition for the natural G–action men-
tioned above.

Proof. The first assertion follows from Theorem 5.7. For the second assertion
notice that the universal curve, when g ≤ 8, is a complete intersection in P(g)×
V where V is either a Grassmanian or a spinor variety, which are homogeneous
varieties. In other words, Cg is a complete intersection in a space which has
only algebraic cohomology. Hence, by Lemma 5.2, Cg has orthogonal projectors
π0, π1, ..., πm, π2r−m, π2r−m+1, ..., π2r , where r := dimCg and m = dimCg − 1,
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14 J. N. Iyer, S. Müller–Stach

using Lefschetz hyplerplane section theorem. Taking πm+1 = ∆Cg−
∑
i6=m+1 πi,

gives an absolute Chow–Künneth decomposition for Cg. Now a homogeneous
variety looks like V = G/P where G is an (linear) algebraic group and P is a
parabolic subgroup. Hence the group G acts on the variety V . This induces
an action on the linear system P(g) and hence G acts on the ambient variety
P(g)×V and leaves the universal curve Cg invariant. Hence we can again apply
Lemma 5.2 to obtain absolute equivariant Chow–Künneth decomposition for
Cg. �

Consider the universal family of curves Cg → P(g) as obtained above, which
are equipped with an action of a linear algebraic group G.
Suppose there is an open subset Ug ⊂ P(g), with the universal family CUg → Ug,
on which G acts freely to form a good quotient family

Yg := CUg/G→ Sg := Ug/G.

Notice that the classifying map Sg →Mg is dominant.

Corollary 5.9. The smooth variety Yg has an absolute Chow–Künneth de-
composition.

Proof. Consider the localization sequence, for the embedding j : CUg × CUg →֒
Cg × Cg,

CHd
G(Cg × Cg)Q

j∗→ CHd
G(CUg × CUg )Q → 0.

Here d is the dimension of Cg. Then the map j∗ is an equivariant ring ho-
momorphism and transforms orthogonal projectors to orthogonal projectors.
Similarly there is a commuting diagram between the equivariant cohomologies:

⊕

i

H2d−i
G (Cg)⊗Hi

G(Cg) ≃→ H2d
G (Cg,Q)

↓ ↓⊕

i

W2d−iH
2d−i
G (CUg )⊗WiH

i
G(CUg )

≃→ W2dH
2d
G (CUg ,Q)

The vertical arrows are surjective maps mapping onto the bottom weights of
the equivariant cohomology groups. By Proposition 5.8, the variety Cg has an
absolute equivariant Chow–Künneth decomposition. Hence the images of the
equivariant Chow–Künneth projectors for the complete smooth variety Cg, un-
der the morphism j∗ give equivariant Chow–Künneth projectors for the smooth
variety CUg .
Using [Ed-Gr], we have the identification of the rational Chow groups

CH∗(Yg)Q = CH∗G(CUg )Q

and

CH∗(Yg × Yg)Q = CH∗G(CUg × CUg )Q.

Furthermore, this respects the ring structure on the above rational Chow
groups. A similar identification also holds for the rational cohomology groups.
This means that the equivariant Chow–Künneth projectors for the variety CUg

Documenta Mathematica 14 (2009) 1–18
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correspond to a complete set of absolute Chow–Künneth projectors for the
quotient variety Yg. �

Remark 5.10. Since Mukai has a similar classification for the non-generic
curves in genus ≤ 8, one can obtain absolute equivariant Chow–Künneth de-
composition for these special families of smooth curves, by applying the proof
of Proposition 5.8. There is also a classification for K3-surfaces and in many
cases the generic K3-surface is obtained as a linear section of a Grassmanian
[Muk]. Hence we can apply the above results to families of K3-surfaces over
spaces which dominate the moduli space of K3-surfaces.
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Abstract. Let G be a connected reductive complex algebraic group.
This paper and its companion [GN] are devoted to the space Z of
meromorphic quasimaps from a curve into an affine spherical G-
variety X . The space Z may be thought of as an algebraic model
for the loop space of X . The theory we develop associates to X a
connected reductive complex algebraic subgroup Ȟ of the dual group
Ǧ. The construction of Ȟ is via Tannakian formalism: we identify
a certain tensor category Q(Z) of perverse sheaves on Z with the
category of finite-dimensional representations of Ȟ .

In this paper, we focus on horospherical varieties, a class of varieties
closely related to flag varieties. For an affine horospherical G-variety
Xhoro, the category Q(Zhoro) is equivalent to a category of vector
spaces graded by a lattice. Thus the associated subgroup Ȟhoro is
a torus. The case of horospherical varieties may be thought of as a
simple example, but it also plays a central role in the general theory.
To an arbitrary affine spherical G-variety X , one may associate a
horospherical variety Xhoro. Its associated subgroup Ȟhoro turns out
to be a maximal torus in the subgroup Ȟ associated to X .
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1. Introduction

Let G be a connected reductive complex algebraic group. In this paper and
its companion [GN], we study the space Z of meromorphic quasimaps from a
curve into an affine spherical G-variety X . A G-variety X is said to be spherical
if a Borel subgroup of G acts on X with a dense orbit. Examples include
flag varieties, symmetric spaces, and toric varieties. A meromorphic quasimap
consists of a point of the curve, a G-bundle on the curve, and a meromorphic
section of the associated X-bundle with a pole only at the distinguished point.
The space Z may be thought of as an algebraic model for the loop space of X .
The theory we develop identifies a certain tensor category Q(Z) of perverse
sheaves on Z with the category of finite-dimensional representations of a con-
nected reductive complex algebraic subgroup Ȟ of the dual group Ǧ. Our
method is to use Tannakian formalism: we endow Q(Z) with a tensor product,
a fiber functor to vector spaces, and the necessary compatibility constraints so
that it must be equivalent to the category of representations of such a group.
Under this equivalence, the fiber functor corresponds to the forgetful functor
which assigns to a representation of Ȟ its underlying vector space. In the pa-
per [GN], we define the category Q(Z), and endow it with a tensor product
and fiber functor. This paper provides a key technical result needed for the
construction of the fiber functor.
Horospherical G-varieties form a special class of G-varieties closely related to
flag varieties. A subgroup S ⊂ G is said to be horospherical if it contains
the unipotent radical of a Borel subgroup of G. A G-variety X is said to be
horospherical if for each point x ∈ X , its stabilizer Sx ⊂ G is horospherical.
When X is an affine horospherical G-variety, the subgroup Ȟ we associate to
it turns out to be a torus. To see this, we explicitly calculate the functor which
corresponds to the restriction of representations from Ǧ. Representations of Ǧ
naturally act on the category Q(Z) via the geometric Satake correspondence.
The restriction of representations is given by applying this action to the object
of Q(Z) corresponding to the trivial representation of Ȟ . The main result of
this paper describes this action in the horospherical case. The statement does
not mention Q(Z), but rather what is needed in [GN] where we define and
study Q(Z).
In the remainder of the introduction, we first describe a piece of the theory
of geometric Eisenstein series which the main result of this paper generalizes.
This may give the reader some context from which to approach the space Z
and our main result. We then define Z and state our main result. Finally, we
collect notation and preliminary results needed in what follows. Throughout
the introduction, we use the term space for objects which are strictly speaking
stacks and ind-stacks.

1.1. Background. One way to approach the results of this paper is to in-
terpret them as a generalization of a theorem of Braverman-Gaitsgory [BG,
Theorem 3.1.4] from the theory of geometric Eisenstein series. Let C be a
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smooth complete complex algebraic curve. The primary aim of the geomet-
ric Langlands program is to construct sheaves on the moduli space BunG of
G-bundles on C which are eigensheaves for Hecke operators. These are the
operators which result from modifying G-bundles at prescribed points of the
curve C. Roughly speaking, the theory of geometric Eisenstein series constructs
sheaves on BunG starting with local systems on the moduli space BunT , where
T is the universal Cartan of G. When the original local system is sufficiently
generic, the resulting sheaf is an eigensheaf for the Hecke operators.
At first glance, the link between BunT and BunG should be the moduli stack
BunB of B-bundles on C, where B ⊂ G is a Borel subgroup with unipotent rad-
ical U ⊂ B and reductive quotient T = B/U . Unfortunately, naively working
with the natural diagram

BunB → BunG
↓

BunT

leads to difficulties: the fibers of the horizontal map are not compact. The
eventual successful construction depends on V. Drinfeld’s relative compactifi-
cation of BunB along the fibers of the map to BunG. The starting point for
the compactification is the observation that BunB also classifies data

(PG ∈ BunG,PT ∈ BunT , σ : PT → PG
G
×G/U)

where σ is a T -equivariant bundle map to the PG-twist of G/U . From this
perspective, it is natural to be less restrictive and allow maps into the PG-twist
of the fundamental affine space

G/U = Spec(C[G]U ).

Here C[G] denotes the ring of regular functions on G, and C[G]U ⊂ C[G] the
(right) U -invariants. Following V. Drinfeld, we define the compactification
BunB to be that classifying quasimaps

(PG ∈ BunG,PT ∈ BunT , σ : PT → PG
G
×G/U)

where σ is a T -equivariant bundle map which factors

σ|C′ : PT |C′ → PG
G
×G/U |C′ → PG

G
×G/U |C′ ,

for some open curve C′ ⊂ C. Of course, the quasimaps that satisfy

σ : PT → PG
G
×G/U

form a subspace canonically isomorphic to BunB.
Since the Hecke operators on BunG do not lift to BunB, it is useful to introduce
a version of BunB on which they do. Following [BG, Section 4], we define the
space ∞BunB to be that classifying meromorphic quasimaps

(c ∈ C,PG ∈ BunG,PT ∈ BunT , σ : PT |C\c → PG
G
×G/U |C\c)
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where σ is a T -equivariant bundle map which factors

σ|C′ : PT |C′ → PG
G
×G/U |C′ → PG

G
×G/U |C′ ,

for some open curve C′ ⊂ C \ c. We call c ∈ C the pole point of the quasimap.
Given a meromorphic quasimap with G-bundle PG and pole point c ∈ C, we
may modify PG at c and obtain a new meromorphic quasimap. In this way,
the Hecke operators on BunG lift to ∞BunB.
Now the result we seek to generalize [BG, Theorem 3.1.4] describes how the
Hecke operators act on a distinguished object of the category P(∞BunB) of
perverse sheaves with C-coefficients on ∞BunB . Let ΛG = Hom(C×, T ) be the
coweight lattice, and let Λ+

G ⊂ Λ be the semigroup of dominant coweights of

G. For λ ∈ Λ+
G, we have the Hecke operator

Hλ
G : P(∞BunB)→ P(∞BunB)

given by convolving with the simple spherical modification of coweight λ. (See
[BG, Section 4] or Section 5 below for more details.) For µ ∈ ΛG, we have the

locally closed subspace ∞Bun
µ

B ⊂ ∞BunB that classifies data for which the
map

PT (µ · c)|C\c σ→ PG
G
×G/U |C\c

extends to a holomorphic map

PT (µ · c) σ→ PG
G
×G/U

which factors

PT (µ · c) σ→ PG
G
×G/U → PG

G
×G/U.

We write ∞Bun
≤µ
B ⊂ ∞BunB for the closure of ∞Bun

µ

B ⊂ ∞BunB, and

IC≤µ
∞BunB

∈ P(∞BunB)

for the intersection cohomology sheaf of ∞Bun
≤µ
B ⊂ ∞BunB.

Theorem 1.1.1. [BG, Theorem 3.1.4] For λ ∈ Λ+
G, there is a canonical iso-

morphism

Hλ
G(IC≤0

∞BunB
) ≃

∑

µ∈ΛT

IC≤µ
∞BunB

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)

Here we write V λ
Ǧ

for the irreducible representation of the dual group Ǧ with

highest weight λ ∈ Λ+
G, and V µ

Ť
for the irreducible representation of the dual

torus Ť of weight µ ∈ ΛG.
In the same paper of Braverman-Gaitsgory [BG, Section 4], there is a general-
ization [BG, Theorem 4.1.5] of this theorem from the Borel subgroup B ⊂ G
to other parabolic subgroups P ⊂ G. We recall and use this generalization in
Section 5 below. It is the starting point for the results of this paper.
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1.2. Main result. The main result of this paper is a version of [BG, Theorem
3.1.4] for X an arbitrary affine horospherical G-variety with a dense G-orbit

X̊ ⊂ X . For any point in the dense G-orbit X̊ ⊂ X , we refer to its stabilizer
S ⊂ G as the generic stabilizer of X . All such subgroups are conjugate to each
other. By choosing such a point, we obtain an identification X̊ ≃ G/S.
To state our main theorem, we first introduce some more notation. Satz 2.1
of [Kn] states that the normalizer of a horospherical subgroup S ⊂ G is a
parabolic subgroup P ⊂ G with the same derived group [P, P ] = [S, S]. We
write A for the quotient torus P/S, and ΛA = Hom(C×, A) for its coweight
lattice. Similarly, for the identity component S0 ⊂ S, we write A0 for the
quotient torus P/S0, and ΛA0 = Hom(C×, A0) for its coweight lattice. The
natural maps T → A0 → A induce maps of coweight lattices

ΛT
q→ ΛA0

i→ ΛA,

where q is a surjection, and i is an injection. For a conjugate of S, the associated
tori are canonically isomorphic to those associated to S. Thus when S is the
generic stabilizer of a horospherical G-variety X , the above tori, lattices and
maps are canonically associated to X .
For an affine horospherical G-variety X with dense G-orbit X̊ ⊂ X , we define
the space Z to be that classifying mermorphic quasimaps into X . Such a
quasimap consists of data

(c ∈ C,PG ∈ BunG, σ : C \ c→ PG
G
×X |C\c)

where σ is a section which factors

σ|C′ : C′ → PG
G
×X̊|C′ → PG

G
×X |C′ ,

for some open curve C′ ⊂ C \ c.
Given a meromorphic quasimap into X with G-bundle PG and pole point c ∈ C,
we may modify PG at c and obtain a new meromorphic quasimap. But in this
context the resulting Hecke operators on Z do not in general preserve the
category of perverse sheaves. Instead, we must consider the bounded derived
category Sh(Z) of sheaves of C-modules on Z. For λ ∈ Λ+

G, we have the Hecke
operator

Hλ
G : Sh(Z)→ Sh(Z)

given by convolving with the simple spherical modification of coweight λ. (See
Section 5 below for more details.) For κ ∈ ΛA0 , we have a locally closed
subspace Zκ ⊂ Z consisting of meromorphic quasimaps that factor

σ : C \ c→ PG
G
×X̊ |C\c → PG

G
×X |C\c

and have a singularity of type κ at c ∈ C. (See Section 3.5 below for more
details.) We write Z≤κ ⊂ Z for the closure of Zκ ⊂ Z, and

IC≤κZ ∈ Sh(Z)

for its intersection cohomology sheaf.
Our main result is the following.
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Theorem 1.2.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

Z ) ≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κZ ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Here the torus A0 and its coweight lattice ΛA0 are those associated to the
generic stabilizer S ⊂ G. We write M for the Levi quotient of the normalizer
P ⊂ G of the generic stabilizer S ⊂ G, and 2ρ̌M for the sum of the positive
roots of M .
In the context of the companion paper [GN], the theorem translates into
the following fundamental statement. The tensor category Q(Z) associated
to X is the category of semisimple perverse sheaves with simple summands

IC≤κZ , for κ ∈ ΛA0 , and the dual subgroup Ȟ associated to X is the subtorus

Spec C[ΛA0 ] ⊂ Ť .

1.3. Notation. Throughout this paper, let G be a connected reductive com-
plex algebraic group, let B ⊂ G be a Borel subgroup with unipotent radical
U(B), and let T = B/U(B) be the abstract Cartan.
Let Λ̌G denote the weight lattice Hom(T,C×), and Λ̌+

G ⊂ Λ̌G the semigroup of

dominant weights. For λ ∈ Λ̌+
G, we write V λG for the irreducible representation

of G of highest weight λ.
Let ΛG denote the coweight lattice Hom(C×, T ), and Λ+

G ⊂ ΛG the semigroup of

dominant coweights. For λ ∈ Λ+
G, let V λ

Ǧ
denote the irreducible representation

of the dual group Ǧ of highest weight λ.
Let Λpos

G ⊂ ΛG denote the semigroup of coweights in ΛG which are non-negative

on Λ̌+
G, and let Rpos

G ⊂ Λpos
G denote the semigroup of positive coroots.

Let P ⊂ G be a parabolic subgroup with unipotent radical U(P ), and let M
be the Levi factor P/U(P ).
We have the natural map

ř : Λ̌M/[M,M ] → Λ̌G

of weights, and the dual map

r : ΛG → ΛM/[M,M ]

of coweights.
Let Λ̌+

G,P ⊂ Λ̌M/[M,M ] denote the inverse image ř−1(Λ̌+
G). Let Λpos

G,P ⊂
ΛM/[M,M ] denote the semigroup of coweights in ΛM/[M,M ] which are non-

negative on Λ̌+
G,P . Let Rpos

G,P ⊂ Λpos
G,P denote the image r(Rpos

G ).

Let WM denote the Weyl group of M , and let WM Λ̌+
G ⊂ Λ̌G denote the union

of the translates of Λ̌+
G by WM . Let Λ̃pos

G,P ⊂ Λ+
M denote the semigroup of

dominant coweights of M which are nonnegative on WM Λ̌+
G.

Finally, let 〈·, ·〉 : Λ̌G × ΛG → Z denote the natural pairing, and let ρ̌M ∈ Λ̌G
denote half the sum of the positive roots of M .
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1.4. Bundles and Hecke correspondences. Let C be a smooth complete
complex algebraic curve.
For a connected complex algebraic group H , let BunH be the moduli stack of
H-bundles on C. Objects of BunH will be denoted by PH .
Let HH be the Hecke ind-stack that classifies data

(c ∈ C,P1
H ,P

2
H ∈ BunH , α : P1

H |C\c
∼→ P2

H |C\c)
where α is an isomorphism of H-bundles. We have the maps

BunH
h←H← HH

h→H→ BunH

defined by

h←H (c,P1
H ,P

2
H , α) = P1

H h→H (c,P1
H ,P

2
H , α) = P2

H ,

and the map

π : HH → C

defined by

π(c,P1
H ,P

2
H , α) = c.

It is useful to have another description of the Hecke ind-stack HH for which we
introduce some more notation. Let O be the ring of formal power series C[[t]],
let K be the field of formal Laurent series C((t)), and let D be the formal disk
Spec(O). For a point c ∈ C, let Oc be the completed local ring of C at c,
and let Dc be the formal disk Spec(Oc). Let Aut(O) be the group-scheme of
automorphisms of the ring O. Let H(O) be the group of O-valued points of H ,
and let H(K) be the group of K-valued points of H . Let GrH be the affine
Grassmannian of H . It is an ind-scheme whose set of C-points is the quotient
H(K)/H(O).
Now consider the (H(O) ⋊ Aut(O))-torsor

̂BunH ×C → BunH ×C
that classifies data

(c ∈ C,PH ∈ BunH , β : D ×H ∼→ PH |Dc , γ : D
∼→ Dc)

where β is an isomorphism of H-bundles, and γ is an identification of formal
disks. We have an identification

HH ≃ ̂BunH ×C
(H(O)⋊Aut(O))

× GrH

such that the projection h→H corresponds to the obvious projection from the
twisted product to BunH .
For H reductive, the (H(O) ⋊ Aut(O))-orbits GrλH ⊂ GrH are indexed by
λ ∈ Λ+

H . For λ ∈ Λ+
H , we write Hλ

H ⊂ HH for the substack

Hλ
H ≃ ̂BunH ×C

(H(O)⋊Aut(O))
× GrλH .
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For a parabolic subgroup P ⊂ H , the connected components SP,θ ⊂ GrP are
indexed by θ ∈ ΛP /Λ[P,P ]sc, where [P, P ]sc denotes the simply connected cover
of [P, P ]. For θ ∈ ΛP /Λ[P,P ]sc , we write SP,θ ⊂ HP for the ind-substack

SP,θ ≃ ̂BunP ×C
(P (O)⋊Aut(O))

× SP,θ.

For θ ∈ ΛP /Λ[P,P ]sc , and λ ∈ Λ+
H , we write SλP,θ ⊂ HP for the ind-substack

SλP,θ ≃ ̂BunP ×C
(P (O)⋊Aut(O))

× SλP,θ

where SλP,θ denotes the intersection SP,θ ∩GrλH .

For any ind-stack Z over BunH ×C, we have the (H(O) ⋊ Aut(O))-torsor

Ẑ→ Z

obtained by pulling back the (H(O) ⋊ Aut(O))-torsor

̂BunH ×C → BunH ×C.
We also have the Cartesian diagram

HH ×
BunH ×C

Z
h→H→ Z

↓ ↓
HH

h→H→ BunH

and an identification

HH ×
BunH ×C

Z ≃ Ẑ
(H(O)⋊Aut(O))

× GrH

such that the projection h→H corresponds to the obvious projection from the
twisted product to Z. For F ∈ Sh(Z), and P ∈ P(H(O)⋊Aut(O))(GrH), we may
form the twisted product

(F⊠̃P)r ∈ Sh(HH ×
BunH ×C

Z).

with respect to the map h→H . In particular, for λ ∈ Λ+
H , we may take P to

be the intersection cohomology sheaf Aλ
G of the closure Gr

λ

H ⊂ GrH of the

(H(O) ⋊ Aut(O))-orbit GrλH ⊂ GrH .

2. Affine horospherical G-varieties

A subgroup S ⊂ G is said to be horospherical if it contains the unipotent
radical of a Borel subgroup of G. A G-variety X is said to be horospherical if
for each point x ∈ X , its stabilizer Sx ⊂ G is horospherical. A G-variety X
is said to be spherical if a Borel subgroup of G acts on X with a dense orbit.
Note that a horospherical G-variety contains a dense G-orbit if and only if it
is spherical.
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Let X be an affine G-variety. As a representation of G, the ring of regular
functions C[X ] decomposes into isotypic components

C[X ] ≃
∑

λ∈Λ̌+
G

C[X ]λ.

We say that C[X ] is graded if

C[X ]λC[X ]µ ⊂ C[X ]λ+µ,

for all λ, µ ∈ Λ̌+
G. We say that C[X ] is simple if the irreducible representation

V λ of highest weight λ occurs in C[X ]λ with multiplicity 0 or 1, for all λ ∈ Λ̌+
G.

Proposition 2.0.1. Let X be an affine G-variety.
(1) [Pop, Proposition 8, (3)] X is horospherical if and only if C[X ] is graded.
(2) [Pop, Theorem 1] X is spherical if and only if C[X ] is simple.

We see by the proposition that affine horospherical G-varieties containing a
dense G-orbit are classified by finitely-generated subsemigroups of Λ̌+

G. To
such a variety X , one associates the subsemigroup

Λ̌+
X ⊂ Λ̌+

G

of dominant weights λ with dim C[X ]λ > 0.

2.1. Structure of generic stabilizer.

Theorem 2.1.1. [Kn, Satz 2.2] If X is an irreducible horospherical G-variety,
then there is an open G-invariant subset W ⊂ X, and a G-equivariant isomor-
phism W ≃ G/S × Y , where S ⊂ G is a horospherical subgroup, and Y is a
variety on which G acts trivially.

Note that for any two such open subsets W ⊂ X and isomorphisms W ≃
G/S × Y , the subgroups S ⊂ G are conjugate. We refer to such a subgroup
S ⊂ G as the generic stabilizer of X .

Lemma 2.1.2. [Kn, Satz 2.1] If S ⊂ G is a horospherical subgroup, then its
normalizer is a parabolic subgroup P ⊂ G with the same derived group [P, P ] =
[S, S] and unipotent radical U(P ) = U(S).

Note that the identity component S0 ⊂ S is also horospherical with the same
derived group [S0, S0] = [S, S] and unipotent radical U(S0) = U(S).
Let S ⊂ G be a horospherical subgroup with identity component S0 ⊂ S, and
normalizer P ⊂ G. We write A for the quotient torus P/S, and ΛA for its
coweight lattice Hom(C×, A). Similarly, we write A0 for the quotient torus
P/S0, and ΛA0 for its coweight lattice Hom(C×, A0). The natural maps

T → A0 → A

induce maps of coweight lattices

ΛT
q→ ΛA0

i→ ΛA,

where q is a surjection, and i is an injection. For a conjugate of S, the associated
tori, lattices, and maps are canonically isomorphic to those associated to S.
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Thus when S is the generic stabilizer of a horospherical G-variety X , the tori,
lattices and maps are canonically associated to X .
We shall need the following finer description of which subgroups S ⊂ G may
appear as the generic stabilizer of an affine horospherical G-variety. To state it,
we introduce some more notation used throughout the paper. For a horospher-
ical subgroup S ⊂ G with identity component S0 ⊂ S, and normalizer P ⊂ G,
let M be the Levi quotient P/U(P ), let MS be the Levi quotient S/U(S), and
let M0

S be the identity component of MS . The natural maps

S0 → S → P

induce isomorphisms of derived groups

[M0
S,M

0
S ]
∼→ [MS ,MS]

∼→ [M,M ].

We write ΛM/[M,M ] for the coweight lattice of the torus M/[M,M ], and

ΛM0
S/[MS ,MS ] for the coweight lattice of the torus M0

S/[MS ,MS]. The natu-
ral maps

M0
S/[MS,MS ]→M/[M,M ]→ A0

induce a short exact sequence of coweight lattices

0→ ΛM0
S/[MS ,MS ] → ΛM/[M,M ] → ΛA0 → 0.

Proposition 2.1.3. Let S ⊂ G be a horospherical subgroup. Then S is the
generic stabilizer of an affine horospherical G-variety containing a dense G-
orbit if and only if

ΛM0
S/[MS ,MS ] ∩ Λpos

G,P = 〈0〉.

Proof. The proof of the proposition relies on the following lemma. Let V̌ be a
finite-dimensional real vector space, and let V̌ + be an open set in V̌ which is
preserved by the action of R>0. Let V be the dual of V̌ , and let V pos be the
closed cone of covectors in V that are nonnegative on all vectors in V̌ +. For a
linear subspace W̌ ⊂ V̌ , we write W̌⊥ ⊂ V for its orthogonal.

Lemma 2.1.4. The map W̌ 7→ W̌⊥ provides a bijection from the set of all
linear subspaces W̌ ⊂ V̌ such that W̌ ∩ V̌ + 6= ∅ to the set of all linear subspaces
W ⊂ V such that W ∩ V pos = 〈0〉.
Proof. If W̌ ∩V̌ + 6= ∅, then clearly W̌⊥∩V pos = 〈0〉. Conversely, if W ∩V pos =
〈0〉, then since V̌ + is open, there is a hyperplane H ⊂ V such that W ⊂ H , and
H∩V pos = 〈0〉. Thus H⊥ ⊂W⊥, and H⊥∩ V̌ + 6= ∅, and so W⊥∩ V̌ + 6= ∅. �

Now suppose X is an affine horospherical G-variety with an open G-orbit and
generic stabilizer S ⊂ G with normalizer P ⊂ G. Then we have Λ̌+

X ⊂ Λ̌+
G,P ,

since otherwise [S, S] would be smaller. We also have that Λ̌+
X intersects the

interior of Λ̌+
G,P , since otherwise [S, S] would be larger. Applying Lemma 2.1.4,

we conclude
ΛM0

S/[MS ,MS ] ∩ Λpos
G,P = 〈0〉.

Conversely, suppose S ⊂ G is a horospherical subgroup with normalizer P ⊂ G.
We define X to be the spectrum of the ring C[X ] of (right) S-invariants in the
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ring of regular functions C[G]. Then C[X ] is finitely-generated, since S contains
the unipotent radical of a Borel subgroup of G. We have Λ̌+

X ⊂ Λ̌+
G,P , since

otherwise [S, S] would be smaller. Suppose

ΛM0
S/[MS ,MS ] ∩ Λpos

G,P = 〈0〉.

Applying Lemma 2.1.4, we conclude that Λ̌+
X intersects the interior of Λ̌+

G,P .

Therefore S/[S, S] consists of exactly those elements of P/[P, P ] annhilated by
Λ̌+
X , and so S is the generic stabilizer of X . �

2.2. Canonical affine closure. Let S ⊂ G be the generic stabilizer of an
affine horospherical G-variety X containing a dense G-orbit. Let C[G] be the
ring of regular functions onG, and let C[G]S ⊂ C[G] be the (right) S-invariants.
We call the affine variety

G/S = Spec(C[G]S)

the canonical affine closure of G/U . We have the natural map

G/S → X

corresponding to the restriction map

C[X ]→ C[G/S] ≃ C[G]S .

Since S is horospherical, the ring C[G]S is simple and graded, and so the affine

variety G/S is spherical and horospherical.
Although we do not use the following, it clarifies the relation between X and
the canonical affine closure G/S.

Proposition 2.2.1. Let X be an affine horospherical G-variety containing a
dense G-orbit and generic stabilizer S ⊂ G. The semigroup Λ̌+

G/S
⊂ Λ̌G is the

intersection of the dominant weights Λ̌+
G ⊂ Λ̌G with the group generated by the

semigroup Λ̌+
X ⊂ Λ̌G.

Proof. Let P ⊂ G be the normalizer of S ⊂ G. The intersection of Λ̌+
G and the

group generated by Λ̌+
X consists of exactly those weights in Λ̌+

G,P that annhilate

S/[S, S]. �

3. Ind-stacks

As usual, let C be a smooth complete complex algebraic curve.

3.1. Labellings. Fix a pair (Λ,Λpos) of a lattice Λ and a semigroup Λpos ⊂ Λ.
We shall apply the following to the pair (ΛM/[M,M ],Λ

pos
G,P ).

For θpos ∈ Λpos, we write U(θpos) for a decomposition

θpos =
∑

m

nmθ
pos
m

where θpos
m ∈ Λpos \ {0} are pairwise distinct and nm are positive integers.
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For θpos ∈ Λpos, and a decomposition U(θpos), we write CU(θpos) for the partially

symmetrized power
∏
mC

(nm) of the curve C. We write C
U(θpos)
0 ⊂ CU(θpos)

for the complement of the diagonal divisor.
For Θ a pair (θ,U(θpos)) consisting of θ ∈ Λ, and U(θpos) a decomposition of
θpos ∈ Λpos, we write CΘ for the product C ×CU(θpos). We write CΘ

0 ⊂ CΘ for
the complement of the diagonal divisor. Although CΘ is independent of θ, it
is notationally convenient to denote it as we do.

3.2. Ind-stack associated to parabolic subgroup. Fix a parabolic sub-
group P ⊂ G, and let M be its Levi quotient P/U(P ). For our application, P
will be the normalizer of the generic stabilizer S ⊂ G of an irreducible affine
horospherical G-variety.
Let ∞BunP be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PM/[M,M ] ∈ BunM/[M,M ],

σ : PM/[M,M ]|C\c → PG
G
×G/[P, P ]|C\c)

where σ is an M/[M,M ]-equivariant section which factors

σ|C′ : PM/[M,M ]|C′ → PG
G
×G/[P, P ]|C′ → PG

G
×G/[P, P ]|C′

for some open curve C′ ⊂ C \ c.

3.2.1. Stratification. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and
θpos ∈ Λpos

G,P . We recall that we have a locally closed embedding

jΘ : BunP ×CΘ
0 → ∞BunP

defined by

jΘ(PP , (c,
∑

m,n

θpos
m · cm,n)) = (c,PP

P
×G,PP

P
× [P, P ](−θ · c−

∑

m,n

θpos
m · cm,n), σ)

where σ is the natural map

PP
P
× [P, P ](−θ · c−

∑

m,n

θpos
m · cm,n)|C\c → PP

P
×G

G
×G/[P, P ]|C\c

induced by the inclusion

PP
P
× P/[P, P ] ⊂ PP

P
×G/[P, P ] ≃ PP

P
×G

G
×G/[P, P ].

The following is an ind-version of [BG, Propositions 6.1.2 & 6.1.3], or [BFGM,
Proposition 1.5], and we leave the proof to the reader.

Proposition 3.2.2. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and
θpos ∈ Λpos

G,P .

Every closed point of ∞BunP belongs to the image of a unique jΘ.
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For Θ a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and θpos ∈ Λpos
G,P , we write

∞Bun
Θ

P ⊂ ∞BunP for the image of jΘ, and ∞Bun
≤Θ

P ⊂ ∞BunP for the closure

of ∞Bun
Θ

P ⊂ ∞BunP .

For Θ a pair (θ,U(0)), with θ ∈ ΛM/[M,M ], the substack ∞Bun
Θ

P ⊂ ∞BunP
classifies data (c,PG,PM/[M,M ], σ) for which the map

PM/[M,M ](θ · c)|C\c σ→ PG
G
×G/[P, P ]|C\c

extends to a holomorphic map

PM/[M,M ](θ · c) σ→ PG
G
×G/[P, P ]

which factors

PM/[M,M ](θ · c) σ→ PG
G
×G/[P, P ]→ PG

G
×G/[P, P ].

In this case, we write jθ in place of jΘ, ∞Bun
θ

P in place of ∞Bun
Θ

P , and∞Bun
≤θ
P

in place of ∞Bun
≤Θ

P . For example, ∞Bun
≤0

P ⊂ ∞BunP is the closure of the
canonical embedding

j0 : BunP ×C → ∞BunP .

3.3. ˜Ind-stack associated to parabolic subgroup. Fix a parabolic sub-
group P ⊂ G, and let M be its Levi quotient P/U(P ). As usual, for our
application, P will be the normalizer of the generic stabilizer S ⊂ G of an
irreducible affine horospherical G-variety.

Let ∞B̃unP be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PM ∈ BunM , σ : PM |C\c → PG
G
×G/U(P )|C\c)

where σ is an M -equivariant section which factors

σ|C′ : PM |C′ → PG
G
×G/U(P )|C′ → PG

G
×G/U(P )|C′

for some open curve C′ ⊂ C \ c.

3.3.1. Stratification. For θpos ∈ Λpos
G,P , we write Ũ(θpos) for a collection of (not

necessarily distinct) elements θ̃pos
m ∈ Λ̃pos

G,P \ {0} such that

θpos =
∑

m

r(θ̃pos
m ).

We write r(Ũ(θpos)) for the decomposition such a collection defines.

Let Θ̃ be a pair (θ̃, Ũ(θpos)) with θ̃ ∈ Λ+
M , and θpos ∈ Λpos

G,P , and let Θ be the

associated pair (r(θ̃), r(Ũ(θpos))). We define the Hecke ind-stack

HΘ̃
M,0 → CΘ

0
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to be that with fiber over (c, cU(θpos)) ∈ CΘ
0 , where cU(θpos) =

∑
m r(θ̃

pos
m ) · cm,

the fiber product

Hθ̃
M |c ×

BunM

∏

BunM

H
θ̃pos
m

M |cm .

The following is an ind-version of [BG, Proposition 6.2.5], or [BFGM, Propo-
sition 1.9], and we leave the proof to the reader.

Proposition 3.3.2. Let Θ̃ be a pair (θ̃, Ũ(θpos)) with θ̃ ∈ Λ+
M , and θpos ∈ Λpos

G,P .
On the level of reduced ind-stacks, there is a locally closed embedding

jΘ̃ : BunP ×
BunM

HΘ̃
M,0 → ∞B̃unP .

Every closed point of ∞B̃unP belongs to the image of a unique jΘ̃.

For Θ̃ a pair (θ̃, Ũ(θpos)), with θ̃ ∈ Λ+
M , and θpos ∈ Λpos

G,P , we write ∞B̃un
Θ̃

P ⊂

∞B̃unP for the image of jΘ̃, and ∞B̃un
≤Θ̃

P ⊂ ∞B̃unP for the closure of

∞B̃un
Θ̃

P ⊂ ∞B̃unP .

For Θ̃ a pair (θ̃, Ũ(0)), with θ̃ ∈ Λ+
M , we write jθ̃ in place of jΘ̃, ∞B̃un

θ̃

P in

place of ∞B̃un
Θ̃

P , and ∞B̃un
≤θ̃
P in place of ∞B̃un

≤Θ̃

P For example, ∞B̃un
≤0

P is
the closure of the canonical embedding

j0̃ : BunP ×C → ∞B̃unP .

3.4. Ind-stack associated to generic stabilizer. Let X be an irreducible
affine horospherical G-variety with generic stabilizer S ⊂ G. Recall that the
normalizer of S is a parabolic subgroup P ⊂ G with the same derived group
[P, P ] = [S, S] and unipotent radical U(P ) = U(S). Let M be the Levi quotient
P/U(P ), and let MS be the Levi quotient S/U(S).
Let Zcan be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PMS/[MS ,MS ] ∈ BunMS/[MS ,MS ],

σ : PMS/[MS ,MS ]|C\c → PG
G
×G/[S, S]|C\c)

where σ is an MS/[MS,MS ]-equivariant section which factors

σ|C′ : PMS/[MS ,MS ]|C′ → PG
G
×G/[S, S]|C′ → PG

G
×G/[S, S]|C′

for some open curve C′ ⊂ C \ c.
The following is immediate from the definitions.

Proposition 3.4.1. The diagram

Zcan → ∞BunP
↓ ↓

BunMS/[MS ,MS ] → BunM/[M,M ]

is Cartesian.
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3.4.2. Stratification. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and
θpos ∈ Λpos

G,P .

We write Z
Θ

can ⊂ Zcan for the substack which completes the Cartesian diagram

Z
Θ

can → ∞Bun
Θ

P

↓ ↓
BunMS/[MS ,MS] → BunM/[M,M ],

and Z
≤Θ

can ⊂ Zcan for the closure of Z
Θ

can ⊂ Zcan.

For Θ a pair (θ,U(0)), with θ ∈ ΛM/[M,M ], we write Z
θ

can in place of Z
Θ

can,

and Z
≤θ
can in place of Z

≤Θ

can . For example, Z
≤0

can is the closure of the canonical
embedding

BunS ×C ⊂ Zcan.

3.5. Naive ind-stack associated to X. Let X be an affine horospherical

G-variety with dense G-orbit X̊ ⊂ X and generic stabilizer S ⊂ G.
Let Z be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG, σ : C \ c→ PG
G
×X |C\c)

where σ is a section which factors

σ|C′ : C′ → PG
G
×X̊|C′ → PG

G
×X |C′

for some open curve C′ ⊂ C \ c.
For the canonical affine closure G/S, we write Zcan for the corresponding ind-
stack.
We call the ind-stack Z naive, since there is no auxilliary bundle in its definition:
it classifies honest sections. Let ⋆Z be the ind-stack that classifies data

(c ∈ C,PG ∈ BunG,PM/MS
∈ BunM/MS

, σ : PM/MS
|C\c → PG

G
×X |C\c)

where σ is an M/MS-equivariant section which factors

σ|C′ : PM/MS
|C′ → PG

G
×X̊ |C′ → PG

G
×X |C′

for some open curve C′ ⊂ C\c. Here as usual, we write M for the Levi quotient
P/U(P ) of the normalizer P ⊂ G of the generic stabilizer S ⊂ G, and MS for
the Levi quotient S/U(S).

For the canonical affine closure G/S, we write ⋆Zcan for the corresponding
ind-stack.
The following analogue of Proposition 3.4.1 is immediate from the definitions.

Proposition 3.5.1. The diagram

Z → ⋆Z
↓ ↓

Bun〈1〉 → BunM/MS

is Cartesian.

Documenta Mathematica 14 (2009) 19–46



34 Gaitsgory and Nadler

3.5.2. Stratification. We shall content ourselves here with defining the sub-
stacks of the naive ind-stack Z which appear in our main theorem. (See [GN]
for a different perspective involving a completely local definition.) Recall that
we write A for the quotient torus P/S, and ΛA for its coweight lattice. Sim-
ilarly, for the identity component S0 ⊂ S, we write A0 for the quotient torus
P/S0, and ΛA0 for its coweight lattice. The natural map A0 → A provides an
inclusion of coweight lattices ΛA0 → ΛA. For κ ∈ ΛA, we shall define a closed
substack Z≤κ ⊂ Z. When κ ∈ ΛA0 , the closed substack Z≤κ ⊂ Z appears in
our main theorem.
For κ ∈ ΛA, let ⋆Zκ ⊂ ⋆Z be the locally closed substack that classifies data
(c,PG,PM/MS

, σ) for which the natural map

PM/MS
(κ · c)|C\c σ→ PG

G
×X |C\c

extends to a holomorphic map

PM/MS
(κ · c) σ→ PG

G
×X

which factors

PM/MS
(κ · c) σ→ PG

G
×X̊ → PG

G
×X.

We write ⋆Z≤κ ⊂ ⋆Z for the closure of ⋆Zκ ⊂ ⋆Z.
For κ ∈ ΛA, let Zκ ⊂ Z be the locally closed substack completing the Cartesian
diagram

Zκ → ⋆Zκ

↓ ↓
Bun〈1〉 → BunM/MS

.

We write Z≤κ ⊂ Z for the closure of Zκ ⊂ Z.

4. Maps

4.1. The map r : ∞B̃unP → ∞BunP . Let Θ be a pair (θ,U(θpos)), with θ ∈
ΛM/[M,M ], and θpos ∈ Λpos

G,P . and U(θpos) a decomposition θpos =
∑

m nmθ
pos
m .

Let ∞B̃un
Θ

P ⊂ ∞B̃unP be the inverse image of ∞Bun
Θ

P ⊂ ∞BunP under the
natural map

r : ∞B̃unP → ∞BunP .

We would like to describe the fibers of the restriction of r to the substack

∞B̃un
Θ

P ⊂ ∞B̃unP .
First, we define the Hecke ind-substack

H
♭(θ)
M ⊂ HM

to be the union of the spherical Hecke substacks

H
µ
M ⊂ HM ,

for µ ∈ Λ+
M such that r(µ) = θ.
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Second, if there exists µ̃pos ∈ Λ̃pos
G,P such that r(µ̃pos) = θpos, we define the

Hecke substack
H
♭(θpos)
M ⊂ HM

to be the union of the spherical Hecke substacks

H
µ̃pos

M ⊂ HM ,

for µ̃pos ∈ Λ̃pos
G,P such that r(µ̃pos) = θpos

m .
Finally, we define the Hecke ind-stack

H
♭(Θ)
M,0 → CΘ

0

to be that with fiber over (c, cU(θpos)) ∈ CΘ
0 , where cU(θpos) =

∑
m,n θ

pos
m · cm,n,

the fiber product

H
♭(θ)
M |c ×

BunM

∏

BunM

H
♭(θpos

m )
M |cm,n .

The following is an ind-version of [BG, Proposition 6.2.5], or [BFGM, Proposi-
tion 1.9], and we leave the proof to the reader. It is also immediately implied
by Proposition 3.3.2.

Proposition 4.1.1. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], θ
pos ∈

Λpos
G,P , and U(θpos) a decomposition θpos =

∑
m nmθ

pos
m .

If for all m there exists µ̃pos
m ∈ Λ̃pos

G,P such that r(µ̃pos
m ) = θpos

m , then on the level
of reduced stacks there is a canonical isomorphism

∞B̃un
Θ

P ≃ BunP ×
BunM

H
♭(Θ)
M,0

such that the following diagram commutes

∞B̃un
Θ

P ≃ BunP ×
BunM

H
♭(Θ)
M,0

↓ ↓
∞Bun

Θ

P ≃ BunP ×CΘ
0

where the right hand side is the obvious projection.
If there is an m such that θpos

m is not equal to r(µ̃pos), for any µ̃pos ∈ Λ̃pos
G,P ,

then ∞B̃un
Θ

P is empty.

4.2. The map p : Zcan → Zcan. Let X be an irreducible affine horospherical
G-variety with generic stabilizer S ⊂ G. Recall that the normalizer of a horo-
spherical subgroup S ⊂ G is a parabolic subgroup P ⊂ G with the same derived
group [P, P ] = [S, S] and unipotent radical U(P ) = U(S). We write M for the
Levi quotient P/U(P ), MS for the Levi quotient S/U(S), and M0

S for the iden-
tity component of MS . We write A for the quotient torus P/S, and ΛA for its
coweight lattice. Similarly, for the identity component S0 ⊂ S, we write A0 for
the quotient torus P/S0, and ΛA0 for its coweight lattice. The natural map
M/[M,M ] → A0 induces a surjection of coweight lattices ΛM/[M,M ] → ΛA0

which we denote by p. The kernel of p is the coweight lattice ΛM0
S/[MS ,MS ].

(Note that the component group of MS is abelian.)
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Associated to the canonical affine closure G/S, we have a Cartesian diagram
of ind-stacks

Zcan → ∞BunP
p ↓ ↓ p

Zcan → ⋆Zcan

We would like to describe some properties of the vertical maps.

Proposition 4.2.1. The map p : ∞BunP → ⋆Zcan is ind-finite.

For θ ∈ ΛM/[M,M ], its restriction to ∞Bun
θ

P is an embedding with image ⋆Zp(θ)can ,

and its restriction to ∞Bun
≤θ
P is finite with image ⋆Z≤p(θ)can .

Proof. For a point (c,PG,PM/[M,M ], σ) ∈ ∞BunP , we write
(c,PG,PM/MS

, σ) ∈ ⋆Zcan for its image under p. Observe that for

θ ∈ ΛM/[M,M ], the point (c,PG,PM/[M,M ](θ · c), σ) ∈ ∞BunP maps to
(c,PG,PM/MS

(p(θ) · c), σ) ∈ ⋆Zcan under p. Therefore to prove the proposi-
tion, it suffices to show that the restriction of p to the canonical embedding
BunP ⊂ ∞BunP is an embedding with image the canonical embedding

BunP ⊂ ⋆Zcan, and its restriction to ∞Bun
≤0

P is a finite map with image ⋆Z≤0
can.

The first assertion is immediate from the definitions. To prove the second,
recall that by [BG, Proposition 1.3.6], ∞BunP is proper over BunG, and so the
map p is proper since it respects the projection to BunG. Therefore it suffices

to check that the fibers over closed points of the restriction of p to ∞Bun
≤0

P

are finite.
Let Θ be a pair (0,U(θpos)), with θpos ∈ Λpos

G,P . The stack ∞Bun
Θ

P classifies
data

(c,PP , cΘ,PM/[M,M ])

together with an isomorphism

α : PP
P
× P/[P, P ] ≃ PM/[M,M ](cΘ).

The fiber of p through such a point classifies data

(PP , c
′
Θ′ ,P

′
M/[M,M ])

together with an isomorphism

α′ : PP
P
× P/[P, P ] ≃ P′M/[M,M ](c

′
Θ′)

such that the labelling cΦ = cΘ − c′Θ′ takes values in ΛM0
S/[MS ,MS ]. Therefore

we need only check that for θpos ∈ Λpos
G,P , there are only a finite number of

φ ∈ ΛM0
S/[MS ,MS ] such that θpos + φ ∈ Λpos

G,P . By Proposition 2.1.3, the lattice

ΛM0
S/[MS ,MS ] intersects the semigroup Λpos

G,P only at 0. Since Λpos
G,P is finitely-

generated, this implies that for θpos ∈ ΛM/[M,M ], the coset θpos + ΛM0
S/[MS ,MS ]

intersects Λpos
G,P in a finite set. �
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Corollary 4.2.2. The map p : Zcan → Zcan is ind-finite.

For θ ∈ ΛM/[M,M ], its restriction to Z
θ

can is an embedding with image Z
p(θ)
can ,

and its restriction to Z
≤θ
can is finite with image Z

≤p(θ)
can .

4.3. The map s : Zcan → Z. Let X be an affine horospherical variety with
dense G-orbit X̊ ⊂ X and generic stabilizer S ⊂ G.

Associated to the natural map G/S → X , we have a Cartesian diagram of
ind-stacks

Zcan → ⋆Zcan

s ↓ ↓ s

Z → ⋆Z.

We would like to describe some properties of the vertical maps.

Proposition 4.3.1. The map s : ⋆Zcan → ⋆Z is a closed embedding.
For κ ∈ ΛA, its restriction to ⋆Zκcan is an embedding with image ⋆Zκ, and its

restriction to ⋆Z≤κcan is a closed embedding with image ⋆Z≤κ.

Proof. First note that s is injective on scheme-valued points since for
(c,PG,PM/MS

σ) ∈ ⋆Zcan, the map

σ : PM/MS
|C\c → PG

G
× G/S|C\c

factors

σ|C′ : PM/MS
|C′ → PG

G
× G/S|C′ → PG

G
× G/S|C′ ,

for some open curve C′ ⊂ C \ c, and the map G/S → X restricted to G/S is
an embedding.
Now to see s is a closed embedding, it suffices to check that s satisfies the
valuative criterion of properness. Let D = Spec C[[t]] be the disk, and D× =
Spec C((t)) the punctured disk. Let f : D → Z be a map with a partial lift

F× : D× → Zcan. Let P
f
G be the D-family of G-bundles defined by f , and let

P
f
M/MS

be the D-family of M/MS-bundles defined by f . We must check that

any partial lift

Σ× : P
f
M/MS

|(C\c)×D× → P
f
G

G
× G/S|(C\c)×D×

of a map

σ : P
f
M/MS

|(C\c)×D → P
f
G

G
× X |(C\c)×D

which factors

σ|C′×D : P
f
M/MS

|C′×D → P
f
G

G
× G/S|C′×D → P

f
G

G
× X |C′×D,

for some open curve C′ ⊂ C \ c, extends to (C \ c) × D. Since G/S → X
restricted to G/S is an embedding with image G/S, we may lift σ|C′×D to

extend Σ× to C′ ×D. But then Σ× extends completely since P
f
M/MS

|(C\c)×D
is normal and the complement of P

f
M/MS

|C′×D is of codimension 2.
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Finally, for a point (c,PG,PM/MS
, σcan) ∈ ⋆Zcan, we write (c,PG,PM/MS

, σ) ∈
⋆Z for its image under s. Observe that for κ ∈ ΛA, the point (c,PG,PM/MS

(κ ·
c), σcan) ∈ ⋆Zcan maps to (c,PG,PM/MS

(κ · c), σ) ∈ ⋆Z under s. Therefore to
complete the proof of the proposition, it suffices to show that the restriction
of s to the canonical embedding BunS ×C ⊂ ⋆Zcan has image the canonical
embedding BunS ×C ⊂ ⋆Z. This is immediate from the definitions. �

Corollary 4.3.2. The map s : Zcan → Z is a closed embedding.
For κ ∈ ΛA, its restriction to Zκcan is an embedding with image Zκ, and its
restriction to Z≤κcan is a closed embedding with image Z≤κ.

5. Convolution

Let X be an affine horospherical G-variety with dense G-orbit X̊ ⊂ X and
generic stabilizer S ⊂ G.
The following diagram summarizes the ind-stacks and maps under considera-
tion

∞B̃unP
r→ ∞BunP

p→ ⋆Zcan

↑ k ↑ k

Zcan
p→ Zcan

s→ Z.

Each of the ind-stacks of the diagram projects to C × BunG, and the maps of
the diagram commute with the projections.
Let Z be any one of the ind-stacks from the diagram, and form the diagram

Z
h←G← HG ×

BunG×C
Z

h→G→ Z

↓ ↓ ↓
BunG

h←G← HG
h→G→ BunG

in which each square is Cartesian.
For λ ∈ Λ+

G, we define the convolution functor

Hλ
G : Sh(Z)→ Sh(Z)

on an object F ∈ Sh(Z) to be

Hλ
G(F) = h←G !(A

λ
G⊠̃F)r

where (Aλ
G⊠̃F)r is the twisted product defined with respect to h→G , and Aλ

G

is the simple spherical sheaf on the fibers of h→G corresponding to λ. (See
Section 1.4 for more on the twisted product and spherical sheaf.)

5.1. Convolution on ∞B̃unP . Recall that for a reductive group H , and
λ ∈ Λ+

H , we write V λ
Ȟ

for the irreducible representation of the dual group Ȟ of
highest weight λ.
We shall deduce our results from the following.
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Theorem 5.1.1. [BG, Theorem 4.1.5]. For λ ∈ Λ+
G, there is a canonical iso-

morphism

Hλ
G(IC≤0

∞
gBunP

) ≃
∑

µ∈Λ+
M

IC≤µ
∞

gBunP
⊗HomM̌ (V µ

M̌
, V λ
Ǧ

).

5.2. Convolution on ∞BunP . Recall that r : ΛM → ΛM/[M,M ] denotes the
natural projection, 2ρ̌M the sum of the positive roots of M , and 〈2ρ̌M , µ〉 the
natural pairing, for µ ∈ ΛM .

Theorem 5.2.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

∞BunP
) ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Proof. Step 1. For the projection

r : ∞B̃unP → ∞BunP ,

we clearly have

(1) Hλ
G(r! IC≤0

∞
gBunP

) ≃ r!H
λ
G(IC≤0

∞
gBunP

).

Let us first analyze the left hand side of equation 1. We may write the push-
forward r! IC≤0

∞
gBunP

in the form

r! IC≤0

∞
gBunP

≃ IC≤0

∞BunP
⊕I≤0

where I≤0 ∈ Sh(∞BunP ) is isomorphic to a direct sum of shifts of sheaves of
the form

IC≤Θ

∞BunP
, for pairs Θ = (0,U(θpos)), with θpos ∈ Λpos

G,P \ {0}.

The asserted form of I≤0 follows from the Decomposition Theorem, the fact

that the restrictions of IC≤0

∞
gBunP

to the strata of ∞B̃unP are constant [BFGM,

Theorem 1.12], and the structure of the map r described in Proposition 4.1.1.
For any ηpos ∈ Λpos

G,P \ {0}, and decomposition U(ηpos), we have the finite map

τU(ηpos) : CU(ηpos) ×∞BunP → ∞BunP

defined by

τU(ηpos)(
∑

m,n

ηpos
m · cm,n, (c,PG,PM/[M,M ], σ))

= (c,PG,PM/[M,M ](−
∑

m,n

ηpos
m · cm,n), σ).

Note that for η ∈ ΛM/[M,M ], and Θ the pair (η,U(ηpos)), the restriction of
τU(ηpos) provides an isomorphism

τU(ηpos) : (CU(ηpos) ×∞Bun
η

P )0
∼→ ∞Bun

Θ

P
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where the domain completes the Cartesian square

(CU(ηpos) ×∞Bun
η

P )0 → CU(ηpos) ×∞Bun
η

P

↓ ↓
(CU(ηpos) × C)0 → CU(ηpos) × C

where as usual

(CU(ηpos) × C)0 ⊂ CU(ηpos) × C
denotes the complement to the diagonal divisor.
We define the strict full triangulated subcategory of irrelevant sheaves

IrrelSh(∞BunP ) ⊂ Sh(∞BunP )

to be that generated by sheaves of the form

τU(ηpos)!
(IC

U(ηpos)
C ⊠F)

where ηpos runs through Λpos
G,P \ {0}, U(ηpos) runs through decompositions of

ηpos, IC
U(ηpos)
C denotes the intersection cohomology sheaf of CU(ηpos), and F

runs through objects of Sh(∞BunP ).

Lemma 5.2.2. The sheaf I≤0 is irrelevant.

Proof. Let Θ be a pair (θ,U(θpos)), with θ ∈ ΛM/[M,M ], and θpos ∈ Λpos
G,P \ {0}.

Then we may realize the sheaf IC≤Θ

∞BunP
as the pushforward

IC≤Θ

∞BunP
≃ τU(θpos)!

(IC
U(θpos)
C ⊠ ICθ

∞BunP
)

To see this, we use the isomorphism

τU(θpos) : (CU(θpos) ×∞Bun
θ

P )0
∼→ ∞Bun

Θ

P ,

and the fact that τU(θpos) is finite. �

Lemma 5.2.3. If E is an irrelevant sheaf, then Hλ
G(E) is an irrelevant sheaf.

Proof. Clearly we have a canonical isomorphism

Hλ
G(τU(ηpos)!

(IC
U(ηpos)
C ⊠F)) ≃ τU(ηpos)!

(IC
U(ηpos)
C ⊠Hλ

G(F)).

�

By the preceding lemmas, we may write the left hand side of equation 1 in the
form

(2) Hλ
G(r! IC≤0

∞
gBunP

) ≃ Hλ
G(IC≤0

∞BunP
)⊕Hλ

G(I≤0)

where Hλ
G(I≤0) is an irrelevant sheaf.

Let us next analyze the right hand side of equation 1. By Theorem 5.1.1, we
have

r!H
λ
G(IC≤0

∞
gBunP

) ≃
∑

µ∈Λ+
M

r! IC≤µ
∞

gBunP
⊗HomM̌ (V µ

M̌
, V λ
Ǧ

).
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Lemma 5.2.4. For µ ∈ Λ+
M , we have

r! IC≤µ
∞

gBunP
≃
∑

ν∈ΛM

(IC
≤r(µ)

∞BunP
⊕I≤µ)⊗HomŤ (V ν

Ť
, V µ
M̌

)[〈2ρ̌M , ν〉].

where I≤µ is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).

Proof. We may form the diagram

∞B̃unP
h←M← HM ×

BunM ×C
∞B̃unP

h→M→ ∞B̃unP

↓ ↓ ↓
BunG

h←M← HG
h→M→ BunG

in which each square is Cartesian. We define the convolution functor

Hµ
M : Sh(∞B̃unP )→ Sh(∞B̃unP )

on an object F ∈ Sh(∞B̃unP ) to be

Hµ
M (F) = h←M !(A

µ
M ⊠̃F)r

where (Aµ
M ⊠̃F)r is the twisted product defined with respect to h→M , and A

µ
M

is the simple spherical sheaf on the fibers of h→M corresponding to µ. Theorem
4.1.3 of [BG] provides a canonical isomorphism

Hµ
M (IC≤0

∞
gBunP

) ≃ IC≤µ
∞

gBunP
.

We also have a commutative diagram

∞B̃unP
h←M← HM ×

BunM ×C
∞B̃unP

r ↓ ↓ r′

∞BunP
h←M/[M,M]← HM/[M,M ] ×

BunM/[M,M]×C
∞BunP

where the modification map h←M/[M,M ] is given by

h←M/[M,M ](θ, (c,PG,PM/[M,M ], σ)) = (c,PG,PM/[M,M ](−θ · c), σ).

We conclude that there is an isomorphism

r! IC≤µ
∞

gBunP
≃ h←M/[M,M ]!r

′
!(A

µ
M ⊠̃ IC≤0

∞
gBunP

)r.

Now the map r′ factors into the projection of the left hand factor

HM ×
BunM ×C

∞B̃unP → HM/[M,M ] ×
BunM/[M,M]×C

∞B̃unP

followed by the projection of the right hand factor

HM/[M,M ] ×
BunM/[M,M]×C

∞B̃unP
r→ HM/[M,M ] ×

BunM/[M,M]×C
∞BunP .
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Thus we have an isomorphism

r′!(A
µ
M ⊠̃ IC≤0

∞
gBunP

)r ≃
∑

ν∈ΛM

(IC≤0

∞BunP
⊕I≤0)⊗HomŤ (V ν

Ť
, V µ
M̌

)[〈2ρ̌M , ν〉]

where as before

r! IC≤0

∞
gBunP

≃ IC≤0

∞BunP
⊕I≤0

where I≤0 is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (0,U(θpos)), with θpos ∈ Λpos

G,P \ {0}.

Finally, applying the modification h←M/[M,M ]! with twist r(µ) to the above iso-

morphism, we obtain an isomorphism

r! IC≤µ
∞

gBunP
≃
∑

ν∈ΛM

(IC
≤r(µ)

∞BunP
⊕I≤µ)⊗HomŤ (V ν

Ť
, V µ
M̌

)[〈2ρ̌M , ν〉].

Here we write I≤µ for the result of applying the modification h←M/[M,M ]! with

twist r(µ) to I≤0. Clearly the modification h←M/[M,M ]! takes strata to strata so

we conclude that I≤µ is isomorphic to a direct sum of shifts of sheaves of the
form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).

�

Note that the proof actually shows that I≤µ is isomorphic to a direct sum of
shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (0,U(θpos)), with θpos ∈ Λpos

G,P \ {0},

and so in particular is irrelevant, but we shall have no need for this.
Combining the formulas given by Theorem 5.1.1 and the preceding lemma, we
may write the right hand side of equation 1 in the form
(3)

r!H
λ
G(IC≤0

∞
gBunP

) ≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]⊕J

where J is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).

Finally, comparing the left hand side (equation 2) and the right hand side

(equation 3), and noting that IC≤θ
∞BunP

is not irrelevant, we conclude that

Hλ
G(IC≤0

∞BunP
) ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]⊕M

where M is is isomorphic to a direct sum of shifts of sheaves of the form

IC≤Θ

∞BunP
, for pairs Θ = (θ,U(θpos)).
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Step 2. Now we shall show that M is in fact zero. To do this, we shall show
that its restriction to each stratum of ∞BunP is zero.
Let Φ be a pair (φ,U(φpos)), with φ ∈ ΛM/[M,M ], and φpos ∈ Λpos

G,P . Let

Hλ
G(IC≤0

∞BunP
)Φ be the restriction of Hλ

G(IC≤0

∞BunP
) to the stratum ∞Bun

Φ

P . For

θ ∈ ΛM/[M,M ], let Aθ
Φ be the restriction of IC≤θ

∞BunP
to the stratum ∞Bun

Φ

P ,

and let MΦ be the restriction of M. Note that by step 1, [BFGM, Theorem
7.3] and Lemma 5.2.5 below, all of the restrictions are locally constant.

We shall calculate Hλ
G(IC≤0

∞BunP
)Φ in two different ways and compare the re-

sults.
On the one hand, by Step 1, we have
(4)

Hλ
G(IC≤0

∞BunP
)Φ ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

Aθ
Φ⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]⊕MΦ

On the other hand, let us return to the definition of the convolution, and
consider the diagram

∞BunP
h←G← HG ×

BunG ×C
∞Bun

≤0

P

h→G→ ∞Bun
≤0

P

↓ ↓ ↓
BunG

h←G← HG
h→G→ BunG

Recall that by definition

Hλ
G(IC≤0

∞BunP
) = h←G !(A

λ
G⊠̃ IC≤0

∞BunP
)r

where (Aλ
G⊠̃ IC≤0

∞BunP
)r is the twisted product defined with respect to h→G , and

Aλ
G is the simple spherical sheaf on the fibers of h→G corresponding to λ.

To calculate Hλ
G(IC≤0

∞BunP
)Φ, consider the inverse image h←G

−1(∞Bun
Φ

P ). Pro-

jecting along h→G , we may decompose the inverse image into a union of locally
closed substacks

h←G
−1(∞Bun

Φ

P ) ≃
⊔

ξ∈Rpos
G,P

SλP,φ−ξ ×
BunP

∞Bun
(ξ,U(φpos))

P .

Projecting each piece back along h←G , we arrive at a spectral sequence for

Hλ
G(IC≤0

∞BunP
)Φ with E2 term

∑

ξ∈Rpos
G,P

∑

µ∈ΛM ,r(µ)=φ−ξ
A0

(ξ,U(φpos)) ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

In fact, the spectral sequence degenerates here for reasons of parity, but we
shall not need this. What we do need is the following cyclicity.

Lemma 5.2.5. Let Ψ be a pair (ψ,U(ψpos)), with ψ ∈ ΛM/[M,M ], and ψpos ∈
Λpos
G,P . Let θ ∈ ΛM/[M,M ]. Then A0

(ψ,U(ψpos)) ≃ Aθ
(ψ+θ,U(ψpos)).
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Proof. The modification

(c,PG,PM/[M,M ], σ) 7→ (c,PG,PM/[M,M ](θ · c), σ).

defines an isomorphism ∞BunP
∼→ ∞BunP which restricts to an isomorphism

∞Bun
(ψ,U(ψpos))

P
∼→ ∞Bun

(ψ+θ,U(ψpos))

P .

�

We apply the lemma with ψ = ξ, ψpos = φpos, and make the substitution
θ = φ− ξ, to write the E2 term

(5)
∑

φ−θ∈Rpos
G,P

∑

µ∈ΛM ,r(µ)=θ

Aθ
(φ,U(φpos)) ⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

Comparing our two calculations (equations 4 and 5), we conclude by a dimen-
sion count that MΦ must be zero. �

5.3. Convolution on Zcan.

Theorem 5.3.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

Zcan
) ≃

∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
Zcan
⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Proof. By Proposition 3.4.1, for θ ∈ ΛM/[M,M ], we have

k∗ IC≤θ
∞BunP

≃ IC≤θ
Zcan

,

Clearly the pullback k∗ commutes with convolution

Hλ
G(k∗ IC≤θ

∞BunP
) ≃ k∗Hλ

G(IC≤θ
∞BunP

).

Thus by Theorem 5.2.1, we conclude

Hλ
G(IC≤0

Zcan
)

≃ Hλ
G(k∗ IC≤0

∞BunP
)

≃ k∗Hλ
G(IC≤0

∞BunP
)

≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

k∗ IC≤θ
∞BunP

⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

IC≤θ
Zcan
⊗HomŤ (V µ

Ť
, V λ
Ť

)[〈2ρ̌M , µ〉].

�
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5.4. Convolution on Z. Recall the map of coweight lattices

q : ΛM
r→ ΛM/[M,M ]

p→ ΛA0 .

Theorem 5.4.1. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

Z ) ≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κZ ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

Proof. By Corollary 4.2.2, for θ ∈ ΛM/[M,M ], we have

p! IC≤θ
Zcan
≃ IC

≤p(θ)
Zcan

,

By Corollary 4.3.2, for κ ∈ ΛA0 , we have

s! IC≤κZcan
≃ IC≤κZ .

Clearly the pushforwards p! and s! commute with convolution

Hλ
G(s!p! IC

Z
≤0
can

) ≃ s!p!H
λ
G(IC

Z
≤0
can

).

Thus by Theorem 5.3.1, we conclude

Hλ
G(IC≤0

Z )

≃ Hλ
G(s!p! IC≤0

Zcan
)

≃ s!p!H
λ
G(IC≤0

Zcan
)

≃
∑

θ∈ΛM/[M,M]

∑

µ∈ΛM ,r(µ)=θ

s!p! IC≤θ
Zcan
⊗HomŤ (V µ

Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉]

≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κZ ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].

�

6. Complements

For our application [GN], we need a slight modification of our main result. As

usual, let X be an affine horospherical G-variety with dense G-orbit X̊ ⊂ X
and generic stabilizer S ⊂ G. Let S0 be the identity component of S, and let
π0(S) be the component group S/S0.
For a scheme S, we write CS for the product S× C. For an S-point (c,PG, σ)
of the ind-stack Z, the section σ defines a reduction of the G-bundle PG to
an S-bundle P′S over an open subscheme C′

S
⊂ CS which is the complement

CS \D of a subscheme D ⊂ CS which is finite and flat over S. By induction,
the S-bundle P′S defines a π0(S)-bundle over C′

S
. We call this the generic

π0(S)-bundle associated to the point (c,PG, σ).
We define ′Z ⊂ Z to be the ind-substack whose S-points (c,PG, σ) have the
property that for every geometric point s ∈ S, the restriction of the associated
generic π0(S)-bundle to {s} × C ⊂ CS is trivial. It is not difficult (see [GN])
to show that ′Z is closed in Z. Observe that we have a short exact sequence

0→ ΛA0 → ΛA → S/S0 → 0.
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Thus for κ ∈ ΛA0 , it makes sense to consider the locally closed substack ′Zκ ⊂
′Z and its closure ′Z≤κ ⊂ ′Z. Observe as well that from the fibration S →
G→ G/S, we have an exact sequence

π1(G)→ π1(X̊)→ π0(S).

Thus for λ ∈ Λ+
G, we have the convolution functor

Hλ
G : Sh(′Z)→ Sh(′Z).

The same arguments show that our main result holds equally well in this con-
text.

Theorem 6.0.2. For λ ∈ Λ+
G, there is an isomorphism

Hλ
G(IC≤0

′Z ) ≃
∑

κ∈ΛA0

∑

µ∈ΛT ,q(µ)=κ

IC≤κ′Z ⊗HomŤ (V µ
Ť
, V λ
Ǧ

)[〈2ρ̌M , µ〉].
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Abstract. We will consider an explicit birational map between a
quadric and the projective variety X(J) of traceless rank one elements
in a simple reduced Jordan algebra J . X(J) is a homogeneous G-
variety for the automorphism group G = Aut(J). We will show that
the birational map is a blow up followed by a blow down. This will
allow us to use the blow up formula for motives together with Vishik’s
work on the motives of quadrics to give a motivic decomposition of
X(J).
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Recently Totaro has solved the birational classification problem for a large class
of quadrics [To08]. In particular, let φ be an r-Pfister form over a field k of
characteristic not 2, and b = 〈b1, · · · bn〉 be a non-degenerate quadratic form
with n ≥ 2.

Proposition 0.1. [To08, Thm. 6.3] The birational class of the quadric defined
by

q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉
only depends on the isometry classes of φ and φ ⊗ b, and not on the choice of
diagonalization of b.

The Sarkisov program [Co94] predicts that any birational map between
quadrics (in fact between any two Mori fibre spaces) factors as a chain of
composites of “elementary links”. In 2.16 we will explicitly factor many of
Totaro’s birational maps into chains of elementary links, and also prove the
following theorem.
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Theorem 0.2. For r = 0, 1, 2 and n ≥ 3, or r = 3 and n = 3, for each of the
birational equivalences from Prop. 0.1, there is a birational map which factors
into two elementary links, each of which is the blow up of a reduced subscheme
followed by a blow down. Furthermore, if r 6= 1 or φ is not hyperbolic, then
the intermediate Mori fibre space of this factorization will be the projective
homogeneous variety X(J) of traceless rank one elements in a Jordan algebra
J .

The birational map from a quadric toX(J) will be the codimension 1 restriction
of a birational map between projective space and the projective variety VJ of
rank one elements of J , first written down by Jacobson [Ja85, 4.26].

0.3 Motivic decompositions. Let G a semisimple linear algebraic group of
inner type, and X a projective homogeneous G-variety such that G splits over
the function field of X , which is to say, X is generically split (see [PSZ08, 3.6]
for a convenient table). Then [PSZ08] gives a direct sum decomposition of the
Chow motive M(X ; Z/pZ) of X . They show that it is the direct sum of some
Tate twists of a single indecomposable motive Rp(G), which generalizes the
Rost motive. This work unified much of what was previously known about
motivic decompositions of anisotropic projective homogeneous varieties.
In the non-generically split cases less is known. Quadrics are in general not
generically split, but much is known by the work of Vishik and others, especially
in low dimensions [Vi04].

Theorem 0.4. (See Thm. 3.6) The motive of the projective quadric defined by
the quadratic forms in Prop. 0.1 may be decomposed into the sum, up to Tate
twists, of Rost motives and higher forms of Rost motives.

In the present paper we will use this knowledge of motives of quadrics to pro-
duce motivic decompositions for the non-generically split projective homoge-
neous G-varieties X(J) which appear in Thm. 0.2. The algebraic groups G are
of Lie type 2An−1, Cn and F4, and are automorphism groups of simple reduced
Jordan algebras of degree ≥ 3. These varieties X(J) come in four different
types which we label r = 0, 1, 2 or 3, corresponding to the 2r dimensional com-
position algebra of the simple Jordan algebra J (see Thm. 2.4 for a description
of X(J) as G/P for a parabolic subgroup P ).

Theorem 0.5. (See Thm. 3.12) The motive of X(J) is the direct sum of a
higher form of a Rost motive, F rn , together with several Tate twisted copies of
the Rost motive Rr.

The r = 1 case of this theorem provides an alternate proof of Krashen’s motivic
equivalence [Kr07, Thm. 3.3]. On the other hand, the r = 1 case of this theorem
is shown in [SZ08, Thm. (C)] by using Krashen’s result (See Remark 3.14).

0.6 Notational conventions. We will fix a base field k of characteristic 0
(unless stated otherwise), and an algebraically closed (equivalently, a separably
closed) field extension k̄ of k. We only use the characteristic 0 assumption to
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show the varieties X(J) and Z1 are homogeneous. We will assume a scheme
over k is a separated scheme of finite type over k, and a variety will be an
irreducible reduced scheme.
For a scheme X over k, X = X ×k k̄.
G denotes an algebraic group over k.
ai are coefficients of the r-Pfister form φ over k.
bi are coefficients of the n-dimensional quadratic form b over k.
q denotes a quadratic form over k, and Q is the associated projective quadric.
iW (q) is the Witt index of the quadratic form q.
C is a composition algebra (not to be confused with the Lie type Cn), and ci
are elements of C.
J is a Jordan algebra, x is an element of J , and u is an idempotent in J .
X(J), Q(J, u), Z1 and Z2 are complete schemes over k defined in Section 2.
F rn and Rr are motives defined in Section 3.1 (not to be confused with the Lie
type F4).
M(X) denotes the motive of a smooth complete scheme X , and M{i} denotes
the ith Tate twist of the motive M .
The paper is organized as follows. In Section 1 we will recall the terminology
and classification of reduced simple Jordan algebras. In Section 2 we describe
the variety X(J) and show it is homogeneous. Also we will define the birational
map v2 from a quadric to X(J) and show that it is a Sarkisov link by analyzing
its scheme of base points. In Section 3 we deduce motivic decompositions for
a class of quadrics, as well as for the indeterminacy locus of v2 introduced
in Section 2. Finally we put these decompositions together to give a motivic
decomposition of X(J).

1 Jordan algebras

A Jordan algebra over k is a commutative, unital (not necessarily associative)
k-algebra J whose elements obey the identity

x2(xy) = x(x2y) for all x, y ∈ J.

A simple Jordan algebra is one with no proper ideals. An idempotent in J is
an element u2 = u 6= 0 ∈ J . Two idempotents are orthogonal if they multiply
to zero, and an idempotent is primitive if it is not the sum of two orthogonal
idempotents in J . For any field extension l/k, we can extend scalars to l by
taking Jl = J ⊗k l, for example J̄ = J ⊗ k̄. A Jordan algebra has degree n if
the identity in J̄ decomposes into n pairwise orthogonal primitive idempotents
over k̄. A degree n Jordan algebra is reduced if the identity decomposes into n
orthogonal primitive idempotents over k.
The classification of reduced simple Jordan algebras of degree ≥ 3 is closely
related to the classification of composition algebras. A composition algebra
over k is a unital k-algebra C together with a non-degenerate quadratic form
φ on C (called the norm form) such that for any c1, c2 ∈ C we have that
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φ(c1c2) = φ(c1)φ(c2). Two composition algebras are isomorphic as k-algebra
iff their norm forms are isometric. Every norm form is an r-fold Pfister form,
which is to say

φ = 〈〈a1, · · · , ar〉〉 := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉.

Furthermore, r must be 0, 1, 2 or 3, and for any such r-fold Pfister form φ, there
is a composition algebra with φ as its norm form and a canonical conjugation
map − : C → C.

Let C be a composition algebra with norm form φ = 〈〈a1, · · · , ar〉〉, and let
b = 〈b1, · · · , bn〉 be a non-degenerate quadratic form. Then we can define a
reduced Jordan algebra in the following way. Let Γ = diag(b1, · · · , bn), and
let σb(x) := Γ−1x̄tΓ define a map from Mn(C) to Mn(C). Then σb is an
involution (i.e. an anti-homomorphism such that σ2

b = σb), so we can define
Sym(Mn(C), σb) to be the commutative algebra of symmetric elements (i.e.
elements x such that σb(x) = x). The product structure is defined by x ◦ y =
1
2 (xy + yx), using the multiplication in C. When C is associative (i.e. r = 0, 1
or 2) we know Sym(Mn(C), σb) is Jordan. For r = 3, it is only Jordan when
n ≤ 3, so in what follows we will always impose this condition in the r = 3
case.

The Jordan algebra isomorphism class of Sym(Mn(C), σb) only depends on the
isomorphism classes of b and C, and not on the diagonalization we have chosen
for b. The following theorem states that in degrees ≥ 3 these make up all of
the reduced Jordan algebras up to isomorphism.

Theorem 1.1. (Coordinatization [Mc04, 17],[Ja68, p.137]) Let J be a re-
duced simple Jordan algebra of degree n ≥ 3. Then there exists a composition al-
gebra C and an n-dimensional quadratic form b such that J ∼= Sym(Mn(C), σb).

2 The Sarkisov link

We will define a birational map from a projective quadric to a projective homo-
geneous variety, X(J), and show it is an elementary link in terms of Sarkisov
(see 2.17).

Let r = 0, 1, 2, 3 and n ≥ 3, and if r = 3 then n = 3. Throughout we
will fix a composition algebra C of dimension 2r over k, and elements bi ∈
k∗ such that b = 〈b1, · · · , bn〉 is a non-degenerate quadratic form. Let J =
Sym(Mn(C), σb) (see Section 1). Then J is a central simple reduced Jordan
algebra. Jacobson defined the closed subset VJ ⊂ PJ of rank 1 elements of J
(he used the terminology reduced elements) and showed it is a variety defined
over k [Ja85, §4].

2.1 The Veronese map. The following rational map is a generalization of the
r = 0 case where it is the degree 2 Veronese morphism [Ch06, 3] [Za93, Last
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page].

v2 : P(Cn) 99K PJ
[c1, · · · , cn] 7→ [bicic̄j ].

If the composition algebra is associative (so r 6= 3), then the set-theoretic image
of v2 (where it is defined) is precisely VJ . If r = 3, then the set-theoretic image
of v2 isn’t closed, but its closure is VJ [Ch06, Prop. 4.2]. Note that this map
specifies a choice of n orthogonal primitive idempotents, v2([0, · · · , 1, · · · , 0]),
so it depends on more than just the isomorphism class of J .
Let us restrict the map v2 to the projective space defined by cn ∈ k1, and abuse
notation by sometimes considering v2 as a rational map from P(Cn−1 × k) 99K

VJ . This map is an isomorphism on the open subset U = (cn 6= 0) ⊂ P(Cn−1×
k) [Ja85, Thm. 4.26], and hence birational. The projective homogeneous variety
we will be interested in is X(J) ⊂ VJ the hyperplane of traceless matrices,
which has dimension 2r(n− 1)− 1.

2.2 The quadric Q(J, u). Define the quadric Q(J, u) ⊂ P(Cn−1 × k) by

φ⊗ 〈b1, · · · bn−1〉 ⊥ 〈bn〉 = (

n−1∑

i=1

bicic̄i) + bnc
2
n = 0.

Here φ is the norm form of C. The right hand side is simply the trace in VJ ,
so the restriction of the birational map v2 to Q(J, u) has image in X(J). We
will often further abuse notation and consider v2 to be the birational map from
Q(J, u) to X(J).
Although the definition of Q(J, u) depends on the diagonalization of b, the
isomorphism class of Q(J, u) depends only on the isomorphism class of J to-
gether with a choice of primitive idempotent u, which we will usually take to
be u = diag(0, · · · , 0, 1) ∈ J , as we have done above.

Remark 2.3. Since the birational class of Q(J, u) is independent of u ∈ J , we
have another proof of Prop. 0.1 when r ≤ 3, and if r = 3 then n = 3. For more
on this, see 2.16.

For connected algebraic groups G over k̄, projective homogeneous G-varieties
G/P are classified by conjugacy classes of parabolic subgroups P in G. Further-
more, the conjugacy classes of parabolics are classified by specifying subsets θ
of the set ∆ of nodes of the Dynkin diagram of G, as in [Ti65, 1.6]. In fact we
will use the complement to his notation, so that θ = ∆ corresponds to a Borel
subgroup P∆ = B, and θ = ∅ corresponds to P∅ = G. We use the Bourbaki
root numberings. G0 denotes the connected component of the identity in G.

Theorem 2.4. VJ is the union of two Aut(J)-orbits: X(J) and VJ − X(J).
Furthermore, we have:
(r=0): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= SO(n), if n 6= 4 then θ = {1}, and
if n = 4 then the Dynkin diagram is two disjoint nodes, where θ is both nodes.
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In all cases, these varieties are quadrics.
(r=1): X(J) ∼= G0/Pθ, for G = Aut(J̄) ∼= Z/2 ⋉ PGL(n) and θ = {1, n− 1},
this is the variety of flags of dimension 1 and codimension 1 linear subspaces
in a vector space.
(r=2): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= PSp(2n) and θ = {2}, this is the
second symplectic Grassmannian.
(r=3): X(J) ∼= G/Pθ, for G = Aut(J̄) ∼= F4 and θ = {4}, this may be viewed
as a hyperplane section of the Cayley plane.

Proof. Aut(J) acts on VJ , since the rank is preserved by automorphisms. So it
is sufficient to prove this theorem for k = k̄. Every element of VJ −X(J) is [u]
for some rank one idempotent u [Ch06, Prop. 3.8], and Aut(J) is transitive on
rank one idempotents by Jacobson’s coordinatization theorem, since the field
is algebraically closed [Mc04, 17].
Clearly X(J) is preserved by Aut(J), since the trace is preserved by automor-
phisms. All that remains is to show that Aut(J) is transitive on X(J), which
we will do in cases. Consider the 2r−1n(n− 1) + n dimensional Aut(J) repre-
sentation J = k ⊕ J0, where J0 is the subrepresentation of traceless elements
in J . In all cases we will show that J0 is an irreducible Aut(J) representation,
find the highest weight, and show that there is a closed orbit in P(J0) which is
contained in X(J) and is of the same dimension. Therefore, by uniqueness of
the closed orbit, which follows from the irreducibility of J0, X(J) is the closed
orbit.

Case r = 0: For simplicity, we will modify the definition of J . Instead
of taking n × n matrices such that xt = x, we will take matrices such that
M−1xtM = x where

M =

[
0 Im
Im 0

]
for n = 2m, and M =




0 Im 0
Im 0 0
0 0 1


 for n = 2m+ 1.

This change is justified by recalling that any two orthogonal involutions in the
same matrix algebra over an algebraically closed field are isomorphic. Now
the Lie algebra of derivations Der(J) ∼= so(n) is in the more standard form,
and we can choose elements of the Cartan subalgebra h as diagonal matrices
Hi = Ei,i − Em+i,m+i as in [FH91, 18]. Following the conventions of [FH91],
we have a dual basis Li(Hj) = δij of h∗, and we wish to find the highest weight
of the representation J0.
For n = 2m, the roots of so(2m) are ±Li ± Lj for 1 ≤ i 6= j ≤ m. One can
check that the non-zero weights of J0 are ±Li ± Lj for all i, j. In particu-
lar, the element E1,m+1 is a weight vector in J0 for the weight 2L1, and the
irreducible representation with highest weight 2L1 is of the same dimension
as J0. Therefore J0 is the irreducible representation with highest weight 2L1,
and since Aut(J) is simple, there is a unique closed orbit in P(J0), and it is
the orbit of E1,m+1. To determine the dimension of the orbit, we ask which
root spaces g−αi in the Lie algebra for the negative simple roots −αi, kill the
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weight space of 2L1. For n = 4, neither root space, for −α1 = −L1 − L2 nor
α2 = −L1 +L2, kills this weight space. For any n ≥ 6 even, all of the negative
simple root spaces kill the weight space 2L1 except for the one for −L1 + L2.
In either case the dimension of the parabolic fixing E1,m+1 is 2m2− 3m+ 2, so
the dimension of the orbit is n−2. This is the dimension of the closed invariant
subset X(J), which must contain a closed orbit. Since there is only one closed
orbit, X(J) must be the entire orbit.
A similar analysis may be carried out in the n = 2m + 1 case, where again
E1,m+1 is a weight vector for the highest weight 2L1.

Case r = 1: We have the action of the connected component Aut(J)0 =
PGL(n) on J ∼= Mn(k), acting by conjugation. The induced action of the
Lie algebra of derivations Der(J) ∼= sl(n) on J0 is just the adjoint action on
sl(n). With the standard diagonal Cartan subalgebra, and choice of positive
roots dual to Hi = Ei,i − Ei+1,i+1, the highest weight is in the representation
J0 is 2L1 + L2 + · · · + Ln−1 with multiplicity 1. A dimension count shows
this representation is irreducible, and the dimension of the parabolic fixing a
highest weight vector is n2 − 2n + 2. So the dimension of the unique closed
orbit is 2n− 3, which is the dimension of X(J). Therefore X(J) is the closed
orbit.

Case r = 2: As in the r = 0 case, we will change our symplectic involution
σ(x) = x̄t to σM (x) = M−1xtM for

M =

[
0 In
−In 0

]
.

Then the Lie algebra of derivations Der(J) ∼= sp(2n) is in the standard form, by
choosing a Cartan subalgebra of diagonal matrices, with Hi = Ei,i − En+i,n+i

and dual basis Li ∈ h∗. The roots of sp(2n) are ±Li ± Lj for all i, j, and
the non-zero weights of J0 are ±Li ± Lj for i 6= j. In particular, the highest
weight is L1 +L2 in the standard weight ordering of [FH91, p.257]. Comparing
dimensions shows that J0 is irreducible, and the parabolic fixing a highest
weight vector is of dimension 2n2− 3n+ 5. So the unique closed orbit in P(J0)
is of dimension 4n− 5, which is the same as the dimension of X(J). Therefore
X(J) is the unique closed orbit.

Case r = 3: First notice that J0 is a 26-dimensional non-trivial represen-
tation of F4 = Aut(J). It is well-known that such a representation is unique,
and has a 15-dimensional unique closed orbit in P(J0). Since X(J) is a 15-
dimensional closed invariant subset, it must be equal to the closed orbit.

Remark 2.5. Over the complex numbers the varieties with exactly two G-
orbits for some semisimple algebraic group G, one of which is of codimension
one, have been classified by [Ah86]. The varieties VJ account for most of these.

2.6 Blowing up the base loci

Any birational map of projective varieties over a field can be expressed as a
blow up followed a blow down of closed subschemes (Prop. 2.7). In this section
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we will show that these closed subschemes, for our birational map from Q(J, u)
to X(J), are (usually) smooth varieties, and hence see that the map is an
elementary link in terms of Sarkisov.
Given a rational map between projective varieties f : Y 99K X , we can define
the scheme of base points of f as a closed subscheme of Y [Ha77, II. Example
7.17.3].

Proposition 2.7. Let f : Y 99K X be a birational map of projective varieties
over a field k with g : X 99K Y the inverse birational map. Let ZY and ZX be
the schemes of base points of f and g respectively. Then the blow up Ỹ of Y
along ZY is isomorphic to the blow up X̃ of X along ZX .

Proof. Let U ⊂ Y be the open subset on which f is an isomorphism. Then
the graph Γf of f |U is a subset of U × f(U) ⊂ Y × X . The closure of Γf in

Y × X , given the structure of a closed reduced subscheme, is the blow up Ỹ
[EH00, Prop. IV.22]1.
Similarly, X̃ is the closure of Γg ⊂ U × f(U). Since the inverse of f on U is

g, we have that X̃ and Ỹ are both closures in Y × X of the same subset of
U × f(U). So they have the same structure as reduced schemes, and hence
X̃ ∼= Ỹ .

2.8 Indeterminacy locus of v2. Let Z1 be the closed reduced subscheme
associated to the scheme of base points in Q(J, u) of the birational map v2. We
will show that Z1 is isomorphic to the scheme of base points. We denote by
Aut(J, u) the subgroup of automorphisms of J that fix the primitive idempotent
u.

Theorem 2.9. Z1 is homogeneous under an action of Aut(J, u).

Proof. To describe the action we will use the vector space isomorphism Cn−1 ∼=
J 1

2
(u) = {x ∈ J |x · u = 1

2x}. Here, as above, we take u = diag(0, · · · , 0, 1) =

En,n. This isomorphism is given by sending an element c ∈ Cn−1 to the matrix
element in J 1

2
(u) ⊂Mn(C) with nth row equal to [c, 0].

So we have an Aut(J, u) action on P(Cn−1). By considering the defining equa-
tions, one see that Z1 is isomorphic to the reduced subscheme of P(J 1

2
(u))

defined by the matrix equation x2 = 0. So it is clear that the underlying closed
subset is stable under Aut(J, u).
Finally, to show the action is transitive, it is enough to show it after extending
scalars to an algebraically closed field k̄. We will use similar arguments as in
the proof of Thm. 2.4.

Case r = 2: Using the notation from the proof of Thm. 2.4, the roots
of the Lie algebra of Aut(J, u) are ±Li ± Lj for i, j ≤ n − 1 together with
±2Ln. One can check that the non-zero weights of the representation J 1

2
(u)

are ±Li ± Ln for i ≤ n− 1. A dimension count reveals that J 1
2
(u) is therefore

1They assume Y is affine, but we can drop this assumption since the blow up is determined
locally.
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an irreducible representation with highest weight L1 + Ln. The only negative
simple roots that don’t kill a highest weight vector are L2 − L1 and −2Ln, so
the dimension of the parabolic subgroup that fixes a point in the unique closed
orbit in P(J 1

2
(u)) is 2n2 − 5n+ 6. So the dimension of this orbit is 2n− 2.

To see this is the same as the dimension of Z1, consider the affine cone Z̃1 over
Z1 inside J 1

2
(u). Then consider the Jacobian matrix of the equations given

by {xix̄j = 0} with respect to the 4(n − 1) variables: 4 variables for each
coordinate xi ∈ C. The rank of this matrix at any point in the affine cone over
Z1 is ≤ dim(J 1

2
(u))−dim(Z̃1), where equality holds if the ideal spanned by the

polynomials {xix̄j} is radical. By choosing a convenient point, we see that the
dimension of Z1 is at most 2n−2, which is the dimension of the closed orbit. So
if Z1 contained another Aut(J, u)-orbit, then it would contain another closed
orbit. But the closed orbit is unique, and therefore Z1 is the closed orbit.

Case r = 3: It is well known that the Aut(J, u) ∼= Spin(9) representation
given by J 1

2
(u) for u = E3,3 is the 16-dimensional spin representation. The

unique closed orbit in P(J 1
2
(u)) is therefore the 10-dimensional spinor variety.

Using a similar argument to the r = 2 case, we can show the dimension of Z1

is at most 10, so by the uniqueness of the closed orbit we can conclude that Z1

is the closed orbit.

Case r = 1: This case is slightly different from the other two because
Aut(J, u) ∼= Z/2 ⋉ GL(n − 1) is a disconnected group, and the connected
component has two closed orbits in P(J 1

2
(u)). The argument is similar to the

r = 2 case, except we find that the sl(n− 1)-representation J 1
2
(u) is the direct

sum of the standard representation V with its dual V ∗. So the two closed
orbits in P(J 1

2
(u)) are the orbits of weight vectors for the weights L1−Ln and

Ln−L1, which are the respective closed orbits in PV and PV ∗. Each sl(n−1)-
orbit has dimension n− 2. Furthermore, the Z/2 part of Aut(J, u) swaps these
two representations, since it acts on matrices as the transpose. So there is a
unique closed Aut(J, u)-orbit, and it is of dimension n− 2.

As in the r = 2 case, by considering the rank of the Jacobian at a closed
point in Z̃1, we see that the dimension of Z1 is at most n − 2. Since Z1 is
Aut(J, u)-stable, we can conclude that it is the closed orbit.

Corollary 2.10. The reduced scheme Z1 is isomorphic to the scheme of base
points of v2 in Q(J, u).

Proof. The r = 0 case is trivial, since v2 is a morphism and hence Z1 is empty.
It is sufficient to assume k is algebraically closed.

The other cases follow from the proof of Thm. 2.9, as follows. We can choose a
convenient closed point in the scheme of base points, and show that the rank of
the Jacobian of the defining polynomials given by {v2(x) = 0} is equal to the
codimension. This implies the scheme is smooth at that point (and therefore
at all points), so in particular, it is reduced.
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Corollary 2.11. Over k̄, the smooth subscheme Z1 is isomorphic to the fol-
lowing.
(r = 0) : ∅
(r = 1) : Pn−2 ⊔ Pn−2

(r = 2) : P1 × P2n−3

(r = 3) : The 10-dimensional spinor variety

Proof. This follows from our representation theoretic understanding of Z1 from
the proof of Thm. 2.9.
There are much more explicit ways of understanding the r 6= 3 cases. For
example, in the r = 2 case, if c = [c1, · · · , cn−1] ∈ P(M2(k̄)n−1) is in Z1,
then the ci’s are rank 1 matrices that have a common non-zero vector in their
kernels. This can be used to get an explicit isomorphism with P1 × P2n−3.

Remark 2.12. These varieties are written in [Za93, Final pages], where it is
implicitly suggested that they are the base locus of the rational map v2.

Remark 2.13. It is shown in [Kr07] that Z1
∼= Spec(k(

√
a1)) ×k Pn−2, where

〈〈a1〉〉 is the norm form associated to C. So the above corollary shows that Z1

is irreducible over k except for the single case when r = 1 and C is split.

2.14 Indeterminacy locus of v−1
2 . Let Z2 be the scheme of base points of

the inverse birational map v−1
2 : X(Jn) 99K Q(J, u). We have that v−1

2 ([xij ]) =
[xn,1, · · · , xn,n], where this is defined.
We will use the notation Jn−1 = Sym(Mn−1(C), σ〈b1,··· ,bn−1〉), and sometimes
Jn = J for emphasis. The isomorphism class of Jn−1 depends on the choice
of primitive idempotent u = En,n ∈ J , but is otherwise independent of the
diagonalization of 〈b1, · · · , bn−1〉.

Lemma 2.15. The scheme of base points Z2 is isomorphic to the smooth sub-
variety X(Jn−1).

Proof. The indeterminacy locus of v−1
2 is simply the closed subset of matrices

in X(Jn) whose bottom row (and therefore right-most column) is zero. In other
words, Z2 is defined by linear polynomials. The ideal of these polynomials is
radical, and therefore the scheme Z2 is reduced. For n ≥ 4, one sees that Z2 is
isomorphic to X(Jn−1). For n = 3, by considering the matrix equation x2 = 0,
we see that the base locus of Z2 is the quadric defined by φ ⊗ 〈b1〉 ⊥ 〈b2〉 = 0.
We will define X(J2) to be this quadric.

2.16 The chain between two quadrics

The Sarkisov program [Co94] predicts that any birational map between two
Mori fibre spaces X and Y factors into a chain of elementary links between
intermediate Mori fibre spaces. An example of such a link (of type II [Co94,
3.4.2]) would be X ← W → V where both morphisms are blow ups of smooth
subvarieties, and X and V are projective homogeneous varieties with Picard
number 1 (and hence Mori fibre spaces).
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Theorem 2.17. For r 6= 1 or C non-split, the birational map v2 from Q(J, u)
to X(J) is an elementary link of type II.

Proof. We have that Z1 is irreducible (see Remark 2.13). The blow up of an
irreducible smooth subscheme increases the Picard number by 1, and a blow
down decreases it by 1. So in this situation, by Lemma 2.15 and Lemma 2.10 we
see that X(J) has Picard number 1. So by Prop. 2.7 we have that v2 is a blow
up of a smooth subvariety followed by a blow down to a smooth subvariety,
and therefore it is an elementary link of type II.

Let b′ = 〈b′1, · · · , b′n〉, and q′ = φ ⊗ 〈b′1, · · · , b′n−1〉 ⊥ 〈b′n〉. Then Totaro’s
Prop. 0.1 states that if φ ⊗ b ∼= φ ⊗ b′, then the quadrics defined by q and q′

are birational. By defining the Jordan algebra J ′ using φ and b′, we have a
birational map v′2 from Q(J ′, u′) to X(J ′).

Proof of Thm. 0.2. If φ ⊗ b ∼= φ ⊗ b′, then the Jordan algebras J ∼= J ′ are
isomorphic as algebras ([KMRT98, Prop. 4.2, p. 43], [Ja68, Ch. V.7, p. 210]),
and therefore the varieties X(J) ∼= X(J ′) are also isomorphic. So, as noted in
Remark 2.3, Q(J, u) is birational to Q(J ′, u′), and moreover by Thm. 2.17 this
map is the composition of two elementary links, with intermediate varietyX(J).
Notice that if C is a split composition algebra (equivalently, φ is hyperbolic)
then Q(J, u) and Q(J ′, u′) are already isomorphic.

2.18 Transposition maps. Now we will explicitly factor the birational maps
of Roussey ([Ro05]) and Totaro ([To08]), which in general have more than
two elementary links. The most basic case they consider, though, is that of
transposition. This corresponds to finding a birational map between quadrics
q and q′, where b′i = bi for 1 ≤ i ≤ n− 2, and b′n−1 = bn, b′n = bn−1. So b and
b′ differ by transposing the last two entries. Totaro proves Prop. 0.1 by finding
a suitable chain of such transposition maps.

Proposition 2.19. For r = 0, 1, 2 and n ≥ 3, and if r = 3 then n = 3, Totaro’s
transposition map factors as the composite of two elementary links.

Proof. Let q and q′ be as above, and let J = Sym(Mn(Cφ), σb). Then the
quadric (q = 0) = Q(J, u) is defined using the idempotent u = diag(0, · · · 0, 1) ∈
J (see 2.2). General rational points on this quadric are elements in P(Cn−1×k)
such that v2([c1, · · · , cn]) ∈ PJ has trace zero. Here ci ∈ C for i 6= n, and
cn ∈ k. The inverse birational map v−1

2 simply takes the nth row of the matrix
in J .
Then the quadric for (q′ = 0) = Q(J, u′) can be defined using the idempotent
u′ = diag(0, · · · , 1, 0) ∈ J . General rational points on this quadric are elements
in P(Cn−2 × k × C) such that v′2([c′1, · · · , c′n]) ∈ PJ has trace zero, where we
use the same Jordan algebra J . Here c′i ∈ C for i 6= n− 1, and c′n−1 ∈ k. The
inverse birational map (v′2)−1 takes the n− 1th row of the matrix in J .
So the composition (v′2)−1◦v2 defines a birational map from Q(J, u) to Q(J, u′).
From Thm. 2.17 this is the composite of two elementary links. So it remains
to show this composite is the same as Totaro’s transposition map.
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To see this, consider the map (v′2)−1 ◦ v2 over k̄, and observe where it sends
a general point from Q(J, u). Recall that v2 sends [c1, · · · , cn] to the matrix
[bicicj ] ∈ X(J), and then taking the n− 1th row of this matrix gives us

[bn−1cn−1c1, · · · , bn−1cn−1cn−1, bn−1cn−1cn] ∈ Q(J, u′) ⊂ P(Cn−2 × k̄ × C).

After using the isomorphism P(Cn−2 × k×C) ∼= P(Cn−1 × k) to swap the last
two coordinates, we can now recognize that this is exactly a map from [To08,
Lemma 5.1], where the “multiplication” of elements in C, is x ∗ y := xȳ.

Remark 2.20. We may also view this chain of birational maps as a “weak
factorization” in the sense of [AKMW02]. They prove that any birational map
between smooth projective varieties can be factored into a sequence of blow
ups and blow downs of smooth subvarieties. But a chain of Sarkisov links (of
type II) is stronger, because then each blow up is immediately followed by a
blow down, and the intermediate varieties are Mori fibre spaces.

3 Motives

For a smooth complete scheme X defined over k, we will denote the Chow
motive of X with coefficients in a ring Λ by M(X ; Λ), following [EKM08] (see
also [Vi04], [Ma68]). We will briefly recall the definition of the category of
graded Chow motives with coefficients in Λ.
Let us define the category C(k,Λ). The objects will be pairs (X, i) for X
a smooth complete scheme over k, and i ∈ Z, and the morphisms will be
correspondences :

HomC(k,Λ)((X, i), (Y, j)) =
⊔

m

CHdim(Xm)+i−j(Xm ×k Y,Λ).

Here {Xm} is the set of irreducible components of X . If f : X →
Y is a morphism of k-schemes, then the graph of f is an element of
HomC(k,Λ)((X, 0), (Y, 0)). There is a natural composition on correspondences
that generalizes the composition of morphisms of schemes.
We denote the additive completion of this pre-additive category by CR(k,Λ).
Its objects are finite direct sums of objects in C(k,Λ), and the morphisms are
matrices of morphisms in C(k,Λ). Then CR(k,Λ) is the category of graded
correspondences over k with coefficients in Λ.
Finally, we let CM(k,Λ) be the idempotent completion of CR(k,Λ). Here
the objects are pairs (A, e), where A is an object in CR(k,Λ) and e ∈
HomCR(k,Λ)(A,A) such that e ◦ e = e. Then the morphisms are

HomCM(k,Λ)((A, e), (B, f)) = f ◦HomCR(k,Λ)(A,B) ◦ e.

This is the category of graded Chow motives over k with coefficients in Λ. For
any smooth complete scheme X over k, we denote M(X) = ((X, 0), idX) its
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Chow motive, and M(X){i} = ((X, i), idX) its ith Tate twist. Any object in
CM(k,Λ) is the direct summand of a finite sum of motives M(X){i}.
In this section we will describe direct sum motivic decompositions ofQ(J, u), Z1

and finally X(J). A non-degenerate quadratic form q of dimension ≥ 2 defines
a smooth projective quadric Q, and we will sometimes write M(q) =M(Q).

3.1 Motives of neighbours of multiples of Pfister quadrics

In this section until 3.8 we can assume our base field k is of any characteristic
other than 2, and r ≥ 1 may be arbitrarily large. Given an r-fold Pfister form
φ and an n-dimensional non-degenerate quadratic form b = 〈b1, · · · , bn〉 over k
we will describe the motivic decomposition of the projective quadric Q defined
by

q = φ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉.
This quadric is dependent on the choice of diagonalization of b. The following
is Vishik’s motivic decomposition of the quadric defined by φ⊗ b.
Theorem 3.2. ([Vi04, 6.1])
For n ≥ 1, there exists a motive F rn such that

M(φ⊗ b) =

2r−1⊕

i=0

F rn{i} ⊕
{
∅ if n is even
M(φ){2r−1(n− 1)} if n is odd.

Vishik uses the notation Fφ(M(b)) for F rn , and calls it a higher form of M(b).
It only depends on the isometry classes of φ and b.
If φ is anisotropic, Rost defined an indecomposable motive Rr such thatM(φ)
is the direct sum of Tate twists of Rr. This is called the Rost motive of φ. If
φ is split, then this motive is no longer indecomposable, but we will still call
Rr = Z⊕ Z{2r−1 − 1} the Rost motive. In fact, F r2 is just the Rost motive of
φ⊗ b (which is similar to a Pfister form). Also note that F r1 = 0.
In particular, for n ≥ 1, by counting Tate motives one sees that

F rn |k̄ =

⌊n2 ⌋−1⊕

i=0

(Z{2ri} ⊕ Z{2r(n− 1)− 2ri− 1}).

So the summand has 2⌊n2 ⌋ Tate motives, which is the same number thatM(b)|k̄
has.
A summand M is said to start at d if d = min{i|Z{i} is a summand of Mk̄}.
Similarly, a summand M ends at d if d = max{i|Z{i} is a summand of Mk̄}.
We will use the following theorem of Vishik. Here iW (q) denotes the Witt index
of the quadratic form q. This is the number of hyperbolic plane summands in
q.

Theorem 3.3. ([Vi04, 4.15]) Let P,Q be smooth projective quadrics over k,
and d ≥ 0. Assume that for every field extension E/k, we have that

iW (p|E) > d⇔ iW (q|E) > m.
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Then there is an indecomposable summand in M(P ) starting at d, and it is
isomorphic to a (Tate twisted) indecomposable summand in M(Q) starting at
m.

With this theorem, it becomes straight forward to prove the following motivic
decomposition (Thm. 3.6), by translating it into some elementary facts about
multiples of Pfister forms. First we will state two lemmas for convenience.

Lemma 3.4. Let φ be an r-fold Pfister form (r ≥ 1) and let b be an n-
dimensional non-degenerate quadratic form (n ≥ 2). For any 0 ≤ d ≤ ⌊n2 ⌋− 1,
we have iW (φ ⊗ b) > 2rd implies iW (φ⊗ b) > 2r(d+ 1)− 1.

Proof. This follows from the fact that if φ is anisotropic then 2r divides iW (φ⊗
b) [Vi04, Lemma 6.2] or [WS77, Thm. 2(c)].

Lemma 3.5. If Q is a smooth projective quadric of dimension N , then for any
0 ≤ d ≤ N , an indecomposable summand of M(Q) starting at d is isomorphic
(up to Tate twist) to an indecomposable summand of M(Q) ending at N − d.
The same is true for indecomposable summands of F rn for any r ≥ 1 and n ≥ 1.

Proof. This is proved in [Vi04, Thm. 4.19] for anisotropic Q, but it is also true
for isotropic Q by using [Vi04, Prop. 2.1] to reduce to the anisotropic case. The
statement for the motive F rn follows easily from its construction.

Theorem 3.6. Let φ be an r-fold Pfister form (r ≥ 1), and for non-zero bi
and n ≥ 2 we let q = φ ⊗ 〈b1, · · · , bn−1〉 ⊥ 〈bn〉 over k of characteristic not 2.
Then we have the following motivic decomposition.

M(q) = F rn⊕
2r−1⊕

i=1

F rn−1{i}⊕
{
∅ if n is odd⊕2r−1−1

j=1 Rr{2r−1(n− 1)− j} if n is even.

Proof. We will split the proof into steps, including one step for each of the three
summands. We will use the notation b′ = 〈b1, · · · , bn−1〉 and b = b′ ⊥ 〈bn〉.
Note that we can assume that φ is anisotropic, because when it is isotropic both
sides split into Tate motives, and we get the isomorphism by checking that on
the right hand side there is exactly one copy of Z{i} for each 0 ≤ i < 2r(n−1).

Step 1: The first summand. To show that F rn is isomorphic to a summand of
M(q), we need to show that given an indecomposable summand in F rn starting
at d, then there is an isomorphic indecomposable summand in M(q) starting
at d. In fact, by Lemma 3.5 it is enough to only consider indecomposable
summands starting in the ‘first half’, which is to say starting at i < 2r−1(n−1).
Since the only Tate motives in the first half of F rn |k̄ are Z{2rd} for some 0 ≤
d ≤ ⌊n2 ⌋ − 1, by Thm. 3.3 it is enough to show that for each such d and E/k
field extension we have iW (φ⊗ b|E) > 2rd iff iW (φ ⊗ b′ ⊥ 〈bn〉|E) > 2rd.
The “if” part is clear. So assume iW (φ ⊗ b|E) > 2rd. Then by Lemma 3.4 we
know iW (φ ⊗ b|E) ≥ 2r(d + 1). So the 2r(d + 1)-dimensional totally isotropic
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subspace must intersect the 2r−1-codimensional subform φ⊗ b′ ⊥ 〈bn〉 ⊂ φ⊗ b
in dimension at least 2rd+ 1. In other words, iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd.

Step 2: The second summand. Fix a 1 ≤ i ≤ 2r − 1. As argued in Step 1,
we want to show that if 0 ≤ d ≤ ⌊n2 ⌋ − 1, and if there is an indecomposable
summand of F rn−1 starting at 2rd, then there is an isomorphic indecomposable
summand of M(q) starting at 2rd+ i. By Thm. 3.3 it is enough to show that
for any E/k we have iW (φ⊗ b′|E) > 2rd iff iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd+ i.

iW (φ⊗ b′|E) > 2rd⇒ iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2r(d+ 1)− 1 Lemma 3.4

⇒ iW (φ⊗ b′ ⊥ 〈bn〉|E) > 2rd+ i

⇒ iW (φ⊗ b′) > 2rd See below

The last implication follows since the ≥ 2rd + 2 dimensional totally isotropic
subspace must intersect the codimension 1 subform in dimension at least 2rd+1.
So, by Lemma 3.5, we have shown that F rn−1{i} is isomorphic to a summand
of M(q) for 1 ≤ i ≤ 2r − 1.

Step 3: The third summand. Assume n is even. Since the summand is
empty for r = 1, we can assume r ≥ 2. Fix an 2r−1(n− 2) < i < 2r−1(n− 1).

iW (φ) > 0⇒ iW (φ) = 2r−1 Property of Pfister forms

⇒ iW (φ⊗ b′ ⊥ 〈bn〉) > i

⇒ iW (φ) > 0 See below

For the last implication, we have that the hyperbolic part of φ⊗ b′ ⊥ 〈bn〉 is of
dimension≥ 2r(n−2)+4. So the anisotropic part is of dimension≤ 2r−2. So by
the Arason-Pfister hauptsatz, φ ⊗ b′ is hyperbolic. Now if φ were anisotropic,
then 2dim(φ) would divide dim(φ ⊗ b′) [WS77, Thm. 2(c)]. But this says
2r+1|2r(n− 1), which is impossible for n even. Therefore φ is isotropic.

To finish Step 3, we use Thm. 3.3 to get the isomorphism of motivic summands.

Step 4: Counting Tate motives. To finish the proof, one needs to show
that the summands we have described in these three steps are all possible
summands. This can easily be checked by counting the Tate motives over k̄.
For a visualization of this, see Example 3.7 below.

We have implicitly used [Vi04, Cor. 4.4] here. Note also that for the n = 2 case
the second summand is zero.

Example 3.7. As an illustration of the counting argument in Step 4 above,
consider r = 2 and n = 4. Then Thm. 3.6 says thatM(〈〈a1, a2〉〉⊗〈b1, b2, b3〉 ⊥
〈b4〉) has 5 motivic (possibly decomposable) summands in this decomposition.
We can visualize this decomposition, as in [Vi04], with a node for each of the
12 Tate motives over k̄, and a line between the nodes if they are in the same
summand. Then the motive of the 11-dimensional quadric,M(q), is as follows,
with each summand labelled:
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R2{5}

F 2
4

F 2
3 {1}

F 2
3 {2}

F 2
3 {3}

Notice that these summands might be decomposable, for example if the Pfister
form 〈〈a1, a2〉〉 is split. So this differs slightly from Vishik’s diagrams, since
he used solid lines to denote indecomposable summands, and dotted lines for
possibly decomposable ones.

3.8 The motive of the base locus Z1

Now we will use our understanding of Z1 from Thm. 2.9 and its proof, to
decompose its motive into the direct sum of Tate twisted Rost motives.

Proposition 3.9. (1) For r = 1, we have that M(Z1,Z/2) ∼= ⊕n−1
i=0 R

1{i}
(2) For r = 2, we have that M(Z1,Z/2) ∼= ⊕2n−3

i=0 R2{i}.
(3) For r = 3, we have that M(Z1,Z/2) ∼= ⊕7

i=0R
3{i}.

Proof. For r = 1, it is shown in [Kr07] that Z1
∼= Pn−2 ×k Spec(k

√
a1). We

know that M(Spec(k[
√
a1])) ∼= R1, so the result follows because the motive of

projective space splits into Tate motives.

We have seen that in all cases Z1 is a smooth scheme that is homogeneous for
Aut(J, u). Moreover, for r = 2 or 3, we know that Z1 is a generically split
variety in the sense of [PSZ08]. So by their theorem [PSZ08, 5.17] we have
that M(Z1,Z/2) is isomorphic to a direct sum of Tate twisted copies of an
indecomposable motive R2(Aut(J, u)).

Now let V be the projective quadric defined by the r-Pfister form φ, the norm
form of the composition algebra C. It is a homogeneous SO(φ) variety. Since
C splits over the function field k(V ), by Jacobson’s coordinatization theorem
J must also split over k(V ), and therefore so does the group Aut(J, u). Fur-
thermore, over k(Z1), we have a rational point in Z1. Then for any non-zero
coordinate ci ∈ C of such a point, there exists 0 6= y ∈ C such that ciy = 0 in
C. But then φ(ci)y = (c̄ici)y = c̄i(ciy) = 0, and so C has an isotropic vector,
and is therefore split. Therefore SO(φ) splits over k(Z1).

Now we may apply [PSZ08, Prop. 5.18(iii)] to conclude that R2(Aut(J, u)) ∼=
R2(SO(φ)). Finally, observe that R2(SO(φ)) is isomorphic to the Rost motive
of φ ([PSZ08, Last example in 7]), which is the motive Rr. The proposition
can be deduced now by counting the Betti numbers of Z1 (see [Kö91]).

3.10 Motivic decomposition of X(J)

We are ready to decompose the motiveM(X(J)) for any reduced simple Jordan
algebra J . Recall that X(J) is a homogeneous space for Aut(J) (Lemma 2.4).
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Proposition 3.11. Let r = 0, 1, 2 or 3 and n ≥ 3, and if r = 3 then n = 3.
We have the following isomorphism of motives with coefficients in Z.

M(Q(Jn, u))⊕
d1−1⊕

i=1

M(Z1){i} ∼=M(X(Jn))⊕
d2−1⊕

i=1

M(X(Jn−1)){i}.

Here di are the respective codimensions of the subschemes Zi. In particular,
for r 6= 0, d1 = 2r−1n− 2 and d2 = 2r.

Proof. If n is the degree of Jn, we have by Section 2.6 that the blow up of
X(Jn) along the smooth subvariety X(Jn−1) is isomorphic to the blow up of
Q(Jn, u) along the smooth subscheme Z1. So by applying the blow up formula
for motives [Ma68, p.463], we get the above isomorphism.

Theorem 3.12. Let r = 0, 1, 2 or 3, and n ≥ 3 (and if r = 3 then n = 3). And
let J = Sym(Mn(C), σb) where C is a 2r-dimensional composition algebra over
k, and b = 〈b1, · · · , bn〉 is a non-degenerate quadratic form over k. Then
(r = 0) :

M(X(J)) ∼= F 0
n =M(b),

(r = 1) :

M(X(J),Z/2) ∼= F 1
n ⊕

⌊n−3
2 ⌋⊕

j=0




2⌊n2 ⌋⊕

i=1

R1{i+ 2j}


 ,

(r = 2) :

M(X(J),Z/2) ∼= F 2
n ⊕

⌊n−2
2 ⌋⊕

j=0




4⌊n−1
2 ⌋+1⊕

i=1

R2{i+ 4j}


 ,

(r = 3) :

M(X(J),Z/2) ∼= F 3
3 ⊕

11⊕

i=1

R3{i}.

Proof. The motive of Q(J, u) may be decomposed in terms of the motives F rn ,
F rn−1 and Rr (Thm. 3.6). The motive of Z1 with Z/2 coefficients may be
decomposed in terms of Rr (Prop. 3.9). The subvariety X(J2) is isomorphic to
the quadric defined by φ ⊗ 〈b1〉 ⊥ 〈b2〉 (see proof of Lemma 2.15), so we have
already decomposed its motive in terms of F r2 and Rr (Thm. 3.6).
So the last ingredient we need is the cancellation theorem. It gives conditions
for when it is true that an isomorphism of motives A ⊕ B ∼= A ⊕ C implies
an isomorphism of motives B ∼= C. This does not hold in general; there are
counter-examples when Λ = Z [CPSZ06, Remark 2.8]. But if we take Λ to be
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any field, then the stronger Krull-Schmidt theorem holds, which says that any
motivic decomposition into indecomposables is unique [CM06, Thm. 34]2.
When we put these pieces into the isomorphism from Prop. 3.11, we may pro-
ceed by induction on n. One sees that we can cancel the F rn−1 terms in the
decomposition, leaving us with the motive M(X(J)) on the right hand side,
F rn on the left hand side, and several Tate twisted copies of Rr on both sides.
To finish the proof one just needs to count the number of copies of Rr remain-
ing after the cancellation theorem, and verify that the given expressions are
correct. We leave this induction argument to the reader.

Remark 3.13. When φ is isotropic, the above motives split. When φ is
anisotropic, Rr is indecomposable, but the motive F rn could still be decom-
posable, depending on the quadratic form b.

Remark 3.14. The r = 1 case of the above theorem may be used to prove
Krashen’s motivic equivalence [Kr07, Thm. 3.3]. To see this, notice that a
1−Pfister form φ defines a quadratic étale extension l/k, and any hermitian
form h over l/k is defined by a quadratic form b over k. So in Krashen’s
notation, V (h) = X(J). Furthermore, his V (qh) is the projective quadric
defined by φ⊗ b, and his PL(N) is isomorphic to the base locus Z1. So in the
notation of this paper, his motivic equivalence is

M(φ⊗ b)⊕
n−2⊕

i=1

M(Z1){i} ∼=M(X(J))⊕M(X(J)){1}.

Since we have motivic decompositions of all of these summands in terms of F 1
n

and R1 (see Thm. 3.2, Prop. 3.9 and Thm. 3.12), it is easy to verify his motivic
equivalence, at least for Z/2 coefficients.
On the other hand, the r = 1 case of Thm. 3.12 follows from Krashen’s motivic
equivalence, together with the r = 1 cases of Thm. 3.2 and Prop. 3.9; this is
pointed out in [SZ08, Thm. (C)].
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Abstract. This paper proves some properties of the big Chern
classes of a vector bundle on a smooth scheme over a field of charac-
teristic 0. These properties together with the explicit computation of
the big Chern classes of universal quotient bundles of Grassmannians
are used to prove the main Theorems (Theorems 1,2 and 3) of this
paper.

The nonexistence certain morphisms between Grassmannians over a
field of characteristic 0 follows directly from these theorems. One of
our theorems, for instance, states that the higher Adams operations
applied to the class of a universal quotient bundle of a Grassmannian
that is not a line bundle yield elements in the K-ring of the Grassman-
nian that are not representable as classes of genuine vector bundles.
This is not true for Grassmannians over a field of characteristic p.
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Keywords and Phrases: Chern character, big Chern classes, Grass-
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1 Introduction

1.1 Motivation

Problems regarding the constraints that morphisms between homogeneous
spaces must satisfy have been studied by Kapil Paranjape and V. Srinivas [7],
[8]. In [7], they characterize self maps of finite degree between homogeneous
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spaces and prove that finite surjective morphisms from Grassmannian to Grass-
mannian are actually isomorphisms. In [8], they prove that if S is a smooth
quadric hypersurface in Pn+1, where n = 2k + 1, and if 2k|d, then there exist
continuous maps f : Pn → S so that f∗(OS(1)) = OPn(d). Let G(r, n) denote
the Grassmannian of r-dimensional quotient spaces of an n-dimensional vector
space over a field of characteristic 0. In the same spirit, given an integer p ≥ 2,
one can ask questions like whether there exists a map from a Grassmannian
G(r, n) to another Grassmannian G(r,M) so that f∗[QG(r,M)] = ψp[QG(r,n)]
where [V ] denotes the class of a vector bundle V in K-theory and QG(r,n)

and QG(r,M) denote the universal quotient bundles of G(r, n) and G(r,M)
respectively. Another question in the same spirit would be whether there
exist morphisms f : G(r, n) → G(r − 1,M) so that f∗(chl(Q)) = chl(Q). The
answers to the first question is in the negative for all r ≥ 2, n ≥ 2r + 1 and
the answer to the second question is in the negative for infinitely many r, with
n assumed to be large enough. It may be noted that in these questions, our
attention is not restricted solely to dominant/finite morphisms unlike in the
results in [7] and [8]. Indeed, the results proven here are not obtainable by the
methods of [7] and [8] as far I can see.

1.2 Statements of the results

The following theorems contain the answers obtained for the above questions.
These theorems are proven in this paper. Before we proceed, we state that all
varieties in this paper are smooth projective varieties over a field of charac-
teristic 0. For any smooth projective variety X , let K(X) denote the K-ring
of X . For any vector bundle V on X , let [V ] denote the class of V in K(X)⊗Q.

Theorem 1. Let Q denote the universal quotient bundle of a Grassmannian
G(r, n). Suppose that r ≥ 2 and that n ≥ 2r + 1. Then, for all p ≥ 2, the
element ψp[Q] of K(G(r, n)) ⊗ Q is not equal to [V ] for any genuine vector
bundle V on G(r, n).

Corollary 1. If f : G(r, n)→ G(r,∞) is a morphism of schemes with r ≥ 2
and n ≥ 2r + 1, then f∗[QG(r,∞)] 6= ψp[QG(r,n)] for any p ≥ 2.

Let X be a smooth variety, and let FrCHl(X) ⊗ Q denote the subspace of
CHl(X)⊗ Q spanned by {chl(V )|V a vector bundle of rank ≤ r}. Then, this
filtration is nontrivial as a theory. Let QG(r,n) denote the universal quotient
bundle of G(r, n), and let ch denotes the Chern character map, with chl denot-
ing the degree l component of ch.

Theorem 2. Given any natural number l ≥ 2, there exist infinitely many
natural numbers r > 0, and a constant C depending on l so that whenever
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n > Cr2 + r,

chl(QG(r,n)) ∈ FrCHl(G(r, n)) ⊗Q \ Fr−1CHl(G(r, n)) ⊗Q.

Corollary 2. Given any natural number l ≥ 2, there exist infinitely many
natural numbers r > 0, and a constant C depending on l so that whenever
n > Cr2 + r, and f : G(r, n)→ G(r − 1,∞) is a morphism of varieties, then

f∗(chl(QG(r−1,∞))) 6= chl(QG(r,n)).

Corollary 3. There exist infinitely many r so that if f : G(r, n) → G(r −
1,∞) is any morphism of schemes with n > 7r2 + r + 2, then

f∗ ch2(QG(r−1,∞)) = κch1(QG(r,n))
2

for some constant κ ∈ K that possibly depends on r.

Theorem 3. If f : G(3, 6)→ G(2,∞) is a morphism, then

f∗(ch2(QG(2,∞))) = κch1(QG(3,6))
2

for some constant κ ∈ K.

1.3 An outline of the set up of the proofs

All these results are proven using certain facts about certain characteristic
classes. These characteristic classes were discovered by M. Kapranov [6] (and
independently by M.V. Nori [1]) as far as I know. In this paper, I shall
show that these objects are characteristic classes that commute with Adams
operations (Lemma 9 and Lemma 13 of Section 4.2 in this paper). These
characteristic classes are defined as follows.

Let X be a smooth projective variety and let V be a vector bundle on X .
Consider the Atiyah class

θV ∈ H1(X,End(V )⊗ Ω)

of V . Denote the k -fold cup product of θV with itself by θkV . Applying
the composition map End(V )⊗k → End(V ), followed by the trace map tr :
End(V )→ OX to θkV , we obtain the characteristic class

tk(V ) ∈ Hk(X,Ω⊗k).

Note that the projection Ω⊗k → ∧kΩ when applied to tk(V ) gives us k! chk(V )
where chk(V ) denotes the degree k part of the Chern character of V . The
classes tk are referred to in the paper by Kapranov [1] as the big Chern classes.
These classes and their properties are discussed in greater detail in Section
4 of this paper. The big Chern classes together give a ring homomorphism
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⊕ tk : K(X)⊗ Q→ ⊕Hk(X,Ω⊗k) where the right hand side is equipped with
a commutative product that shall be described in the Section 2. The com-
mutative ring ⊕Hk(X,Ω⊗k) shall henceforth be denoted by R(X). Both this
product and the usual cup product in addition to some other (λ-ring) structure
on this ring are preserved under pullbacks. Moreover, the two products are
distinct and the Adams gradation on R(X) is distinct from the obvious one
(unlike in the case of the usual cohomology ring). These facts place serious
restrictions on what pullback maps f∗ : R(X) → R(Y ) corresponding to
morphisms f : Y → X look like. An important subring of the ring R(X) will
be calculated explicitly for the Grassmannian G(r, n) at the end of Section 3.

Notation: Throughout this paper, K shall be used to denote the base field.
We assume throughout this paper that the characteristic of K is zero.

1.4 Brief outlines of the proofs

1.4.1 Outline for Theorems 2 and 3

The basic idea behind the proofs of Theorem 2, Corollary 2 and Theorem 3 is
the same.

If σ ∈ Sk is a permutation of {1, . . . , k}, and if F is a vector bundle on X , then
σ gives us a homomorphism σ : F⊗k → F⊗k of OX modules. If f1, . . . , fk are
sections of F over an affine open subscheme Spec(U) of X , then

σ(f1 ⊗ · · · ⊗ fk) = fσ(1) ⊗ · · · ⊗ fσ(k).

This gives us a right action of Sk on F⊗k. If F = Ω, the cotangent bundle
of X , then σ : Ω⊗k → Ω⊗k induces a map σ∗ : Hk(X,Ω⊗k) → Hk(X,Ω⊗k).
Extending this action of Sk on Hk(X,Ω⊗k) gives us an endomorphism β∗ of
Hk(X,Ω⊗k) corresponding to each element β of the group ring KSk of Sk.

To prove Corollary 2, it suffices to show that for l fixed, there exist infinitely
many r such that there is some natural number k with the property that there
exists an element β of KSk such that

β∗ tk(αl(QG(r,n))) 6= 0

and
β∗ tk(αl(QG(r−1,∞))) = 0.

Here αl(V ) = ch−1 chl(V ) for any vector bundle V . This is enough because
tk,αl and β∗ commute with pullbacks. If Corollary 2 were to be violated with
the above situation being true, we would have something that is 0 [ in this
case, β∗ tk(αl(QG(r−1,∞))) ] pulling back to something that is nonzero [ in this
case, β∗ tk(αl(QG(r,n))) ]. This gives us a contradiction. A little more work is
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required to prove Theorem 2.

1.4.2 Outline for Theorem 1

The proof of Theorem 1 is in the same spirit, though much more complicated.
We will define a functor of type (k, l) (or a functor of “Adams weight l”) to be
a map ( not necessarily a ring homomorphism/abelian group homomorphism )
from K(X) ⊗ Q → Rk(X) which takes an element x ∈ K(X)⊗ Q to a linear
combination of expressions of the form

β∗ (tλ1(αl1(x)) ∪ · · · ∪ tλs(αls(x)))

where β ∈ KSk. If vl is a functor of type (k, l) then vl commutes with pullbacks
and

vl(ψ
px) = plvl(x).

Corollary 1 will be proven by showing that there is a linear dependence relation

∑

l

alvl(QG(r,n)) = 0

for all n ≥ 2r + 1, with vl(QG(r,n)) 6= 0, where vl’s are functors of type
(2r, l). We will pick a linear dependence relation of this type of shortest
length. If Corollary 1 is false, we will obtain yet another linear dependence
relation

∑
l p
lalvl(QG(r,n)) = 0, contradicting the fact that the chosen linear

dependence relation is of shortest length. A little more work will give us
Theorem 1.

Detailed proofs are given in Sections 6 and 7, but the previous sections are
required to understand the set up for the proofs. An important ingredient
required to flesh-out the proof outlined above is the explicit calculation of
tk(QG(r,n)). This is done in section 5.

1.5 Remarks about possible future extensions

It can be easily shown that any linear dependence relation between functors of
type (k, l) applied to the universal quotient bundle of G(r, n)

∑

l

alvl(QG(r,n)) = 0

that holds for all n large enough will apply to a vector bundle of rank r on
a smooth projective variety X . Thus, if we are able to prove that we have a
linear dependence relation

∑

l

alvl(QG(r,n)) = 0
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for all n large enough with vl(V ) 6= 0 then we will be able to apply the
same argument to show that in K-Theory, higher Adams operations applied
to [V ] give us elements not expressible as the class of any genuine vector bundle.

One can try doing this for other homogenous vector bundles in the Grass-
mannian, and in general, other vector bundles on a G/P space arising out of
P -representations, where G is a linear reductive group and P is a parabolic
subgroup. This could lead to further progress towards finding the P represen-
tations that give rise to vector bundles satisfying Theorem 1. More intricate
combinatorics than was used here in this paper may be required for further
progress along these lines.

At first sight, it may look that theorem 2 needs to be strengthened. In-
deed, on going through the proof, one feels strongly that the filtration Fr
of CHl() ⊗ Q, which theorem 2 says is nontrivial as a theory, is in fact,
strictly increasing as a theory. More specifically, I feel that given any l ≥ 2
fixed, and r ≥ 2, there exists some Grassmannian G = G(r, n) so that
chl(Q) ∈ FrCHl(G)⊗Q \ Fr−1CHl(G)⊗Q.

One approach to this question is entirely combinatorial (along the lines of the
proof to theorems 2 and 3). Let Vλ denote the irreducible representation of
Sk corresponding to the partition λ of k. Let |λ| denote the number of rows
in the Young diagram of λ. The combinatorial approach to this question is
to try to show that for some k and a particular β ∈ KSk depending on l and
k only, the subspace spanned by the conjugates of βr−1 is of strictly smaller
dimension than that spanned by conjugates of βr. Here, βi is the image of β
under the projection KSk → ⊕|λ|≤iEnd(Vλ). Approaching this question along
these lines would indeed involve algebraic combinatorics extensively.
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difficult to convey my gratitude to him. I also received a lot of encouragement
(as well as many useful suggestions) from Prof. Spencer Bloch, to whom I am
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out a theorem of Bott [4] used in this work and to Prof. Victor Ginzburg for
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classes used are introduced. I thank my friend and colleague Apoorva Khare
for helping me LaTeX this work and Dr. Victor Protsak, Prof. Kaan Akin and
Prof. Mohan Ramachandran for useful suggestions.

2 The λ-ring R(X)

We recall that a (p, q)-shuffle is a permutation σ of {1, 2, . . . , p+ q} such that
σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(p + q). We denote the set of all
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(p, q)-shuffles by Shp,q throughout the rest of this work. Also, for the rest of
this work, the sign of a permutation σ shall be denoted by sgn(σ).

If σ ∈ Sk is a permutation of {1, . . . , k}, and F a vector bundle on X ,
then σ gives us a homomorphism σ : F⊗k → F⊗k of OX modules. If
f1, . . . , fk are sections of F over an affine open subscheme Spec(U) of X , then
σ(f1 ⊗ · · · ⊗ fk) = fσ(1) ⊗ · · · ⊗ fσ(k).

This gives us a right action of Sk on F⊗k. If F = Ω, the cotangent bundle of
X , then σ : Ω⊗k → Ω⊗k induces a map σ∗ : Hk(X,Ω⊗k)→ Hk(X,Ω⊗k).

If f : Y → X is a morphism of varieties, we have a natural pullback map
f̃∗ : Hk(X,ΩX

⊗k)→ Hk(Y, f∗ΩX
⊗k). This can be composed by the map ι⊗k∗ :

Hk(Y, f∗ΩX
⊗k) → Hk(Y,ΩY

⊗k) to define the pullback f∗ : Hk(X,ΩX
⊗k) →

Hk(Y,ΩY
⊗k), where ι : f∗ΩX → ΩY . We note that

f∗ ◦ σ∗ = σ∗ ◦ f∗.

If α ∈ Hl(X,ΩX
⊗l) and β ∈ Hm(X,ΩX

⊗m), define

α⊙ β :=
∑

σ∈Shl,m

sgn(σ)σ−1
∗ (α ∪ β).

⊙ gives us a product on ⊕Hk(X,Ω⊗k). Moreover,

Proposition 1. If α and β are as in the previous paragraph, then α⊙β = β⊙α.
In other words, ⊙ equips R(X) with the structure of a commutative ring.

Proof. If γ is the permutation of {1, . . . , k+ l} where γ(i) = l+ i for 1 ≤ i ≤ k
and γ(i) = i− k for k = 1 ≤ i ≤ l + k, then sgn(γ) = (−1)

kl
. Also, σ → σ ◦ γ

gives us a bijection between Shl,k and Shk,l.
Thus

α⊙ β =
∑

σ∈Shk,l

sgn(σ)σ−1
∗ (α ∪ β) =

∑

τ∈Shl,k

sgn(γ) sgn(τ)(τ ◦ γ)
−1
∗ (α ∪ β)

=
∑

τ∈Shl,k

sgn(τ)(γ−1 ◦ τ−1)∗ sgn(γ)(α∪β) =
∑

τ∈Shl,k

sgn(τ)τ−1
∗ (sgn(γ)γ−1

∗ (α∪β))

=
∑

τ∈Shl,k

sgn(τ)τ−1
∗ (β ∪ α) = β ⊙ α.

(Note that (γ−1 ◦ τ−1)∗ = τ−1
∗ ◦ γ−1

∗ since the action of Sk+l on Ω⊗k+l is a
right action).

We recall from Fulton and Lang [9] that a special λ-ring A is a commutative
ring together with operations ψp : A → A indexed by the natural numbers so
that
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a) ψp is a ring homomorphism for all p.
b) ψp ◦ ψq = ψpq.
c) ψ1 = id.

Here, we show that R(X) has a special λ-ring structure (i.e, has Adams opera-
tions). This is done in Lemma 2. It will be clear from their definition that the
Adams operations commute with pullbacks. The graded tensor co-algebra T ∗Ω
of the cotangent bundle ΩX is a sheaf of graded-commutative Hopf-algebras on
X. The product on T ∗Ω and the Adams operations on T ∗Ω therefore induce
corresponding operations on the cohomology ring of T ∗Ω. Proposition 1 in fact,
proves that the ring R(X) is a subring of the cohomology ring of T ∗Ω. It turns
out that the Adams operations on the cohomology of T ∗Ω restrict to Adams
operations on R(X) as well. The rest of this section is devoted to explaining
the details of the outline we have just highlighted. We begin with a digression
on Hopf-algebras.

2.1 Adams operations on commutative Hopf-algebras

We recall that a Hopf-algebra over a field K of characteristic 0 is a vector
space H together with maps µ : H⊗H → H (multiplication), ∆ : H → H⊗H
(comultiplication), u : K→ H (unit) and c : H → K (counit) such that the six
properties listed below are satisfied.
1. Multiplication is associative and comultiplication is coassociative.
2. Multiplication is a coalgebra homomorphism and comultiplication is an
algebra homomorphism.
3. µ ◦ (u⊗ id) = µ ◦ (id⊗u) = id : H → H .
4. (id⊗c) ◦∆ = (c⊗ id) ◦∆ = id : H → H .
5. u is a coalgebra map and c is an algebra map.
6. c ◦ u = id : K→ K.

One can define a Hopf algebra in the category of OX modules in the same spirit.
It is an OX module H together with maps of OX modules µ : H ⊗ H → H
(multiplication), ∆ : H → H ⊗H (comultiplication), u : OX → H (unit) and
c : H → OX (counit) such that
1. Multiplication is associative and comultiplication is coassociative.
2. Multiplication is a coalgebra homomorphism and comultiplication is an
algebra homomorphism.
3. µ ◦ (u⊗ id) = µ ◦ (id⊗u) = id : H → H.
4. (id⊗c) ◦∆ = (c⊗ id) ◦∆ = id : H → H.
5. u is a coalgebra map and c is an algebra map.
6. c ◦ u = id : OX → OX .

The Hopf algebra H is said to be (graded) commutative if µ ◦ τ = µ where
τ is the (signed) swap map from H ⊗ H to itself. In the graded case

τ(a ⊗ b) = (−1)
|a||b|

b ⊗ a, where a and b are homogenous sections of H over
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an affine open subset of X . |a| and |b| denote the degrees of a and b respectively.

The following four facts are completely analogous to statements in section 4.5.1
of Loday [2]. The checks Loday [2] asks us to do to make these observations
for the case of a commutative Hopf algebra over a field also go through in
our case, that of a graded commutative Hopf algebra in the category of OX
modules. These checks are left to the reader as they are fairly simple.

Fact 1. If H is a (graded) commutative Hopf algebra in the category of OX
modules, we can define the convolution of two maps f, g ∈ EndOX (H) by

f ∗ g = µ ◦ (f ⊗ g) ◦∆.

The convolution product ∗ is an associative product on EndOX (H).

Fact 2. If f is an algebra morphism, then if g and h are any OX linear maps,

f ◦ (g ∗ h) = (f ◦ g) ∗ (f ◦ h).

Fact 3. If H is (graded) commutative and f and g are algebra morphisms,
then f ∗ g is an algebra morphism.

Fact 4. It follows from Fact 3 that

ψk := id ∗ · · · ∗ id ∈ EndOX (H)

is an algebra morphism for all natural numbers k. It also follows from Fact 2
that

ψp ◦ ψq = ψpq

for all natural numbers p, q.

Further, the following proposition, which is an extension of Proposition 4.5.3
of Loday [2] to graded commutative Hopf algebras in the category of OX
modules, holds as well. Since the proof of Proposition 4.5.3 of [2] given by
Loday [2] goes through in this case with trivial modifications, we omit the
proof of the following proposition.

Proposition 2. If H = ⊕n≥0Hn is a (graded) commutative Hopf algebra in
the category of OX modules, then
a) ψp maps Hn to itself for all p and n.

b) There exist elements e
(i)
n of EndOX (Hn) such that

ψk =
n∑

i=1

kie(i)n .
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Further,
e(i)n ◦ e(j)n = δije

(i)
n

where δij is the Kronecker delta.

An immediate consequence (when k = 1) of this proposition is that

id = e(1)n + · · ·+ e(n)
n .

The Hopf algebra that is relevant to us is the (graded) tensor co-algebra of a
vector bundle F . Here,

T ∗(F)n = F⊗n

∆(f1 ⊗ · · · ⊗ fn) =
∑

0≤i≤n
f1 ⊗ · · · ⊗ fi

⊗
fi+1 ⊗ · · · ⊗ fn ∈ T ∗(F)⊗ T ∗(F)

(cut coproduct) and

µ(f1 ⊗ · · · ⊗ fp
⊗

fp+1 ⊗ · · · ⊗ fp+q)

=
∑

σ∈Shp,q

sgn(σ)fσ−1(1) ⊗ · · · ⊗ fσ−1(p+q)

where fi is a section of F over an affine open subscheme U of X for each i.

We note that in this case,

ψ2(f1 ⊗ · · · ⊗ fn) =
∑

p+q=n

∑

σ∈Shp,q

sgn(σ)fσ−1(1) ⊗ · · · ⊗ fσ−1(n).

In this particular case, we also want to find out about the idempotents

e
(i)
n ∈ EndOX (F)⊗n. The following extension of Proposition 4.5.6 from Loday

[2] is what we want. Again, since the proof given in [2] extends with trivial
modifications to our case. We therefore, leave the proof of the following
proposition to the reader.

Lemma 1.

e(i)n =

n∑

j=1

ai,jn l
j
n

where
n∑

i=1

ai,jn X
i =

(
X − j + n

n

)

and
ljn =

∑

σ∈Sn,j
(sgnσ)σ∗

−1.

Here, Sn,j = {σ ∈ Sn|card{i|σ(i) > σ(i + 1)} = j − 1}.

For example, e
(n)
n =

∑
σ∈Sn sgn(σ)σ∗−1.
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2.2 Description of λ-ring structure on R(X)

Consider the tensor co-algebra T ∗Ω. Consider the Adams operations ψk on
T ∗Ω as described in the previous subsection. Note that ψk|Ω⊗n induces a
map ψk∗ : Rn(X)→ Rn(X). Thus the Adams operation ψk induces a map ψk∗ :
R(X)→ R(X) that is K-linear. That ψp ◦ψq = ψpq implies that ψp∗ ◦ψq∗ = ψpq∗ .
Define the k-th Adams operation on ⊕Hn(X,Ω⊗n) to be ψk∗ . That the Adams
operations so defined are ring endomorphisms of R(X) follows from the fact
that the product in R(X) is induced by the product in T ∗Ω. We have therefore,
proven the following Lemma.

Lemma 2. R(X) is a special λ-ring with Adams operations ψp given by ψp∗.

Remark. The Adams operations on R(X) are thus seen to be defined combi-
natorially.

3 The ring R(G(r, n))Gl(n)

In this section we explicitly compute an important part of R(G(r, n)), where
G(r, n) is the Grassmannian of r dimensional quotients of an n-dimensional
vector space. G(r, n) is a homogenous space Gl(n)/P where P is the appropri-
ate parabolic subgroup of Gl(n). Let N denote the unipotent normal subgroup
of P .

All the vector bundles that arise during the course of stating and proving
the main theorems are Gl(n)- equivariant. Thus, the big Chern classes of
these vector bundles lie in the part of R(G(r, n)) fixed by Gl(n). If V is an n
dimensional vector space, let S be the subspace of V preserved by P and Q
the corresponding quotient. The cotangent bundle Ω of the G(r, n) is the vec-
tor bundle arising out of the P -representation Q∗⊗S on which N acts trivially.

Convention. When we refer to Ω in the category of P -representations, we
shall refer to the P representation giving rise to the cotangent bundle of G(r, n).

We are now in a position to make the following four observations. Together
with the step by step justifications that follow them, these observations
describe the method we will use to compute R(G(r, n))Gl(n) while rigorously
justifying our computations at the same time. Observation 1 that follows is a
serious statement. We devote the appendix of this paper to sketch its proof.
Observations 2 and 3 are first stated ”proposition style” and then followed up
with proofs. Observation 4 is a sequence of four computations that is crucial
to the explicit description of R(G(r, n))Gl(n) that we provide.

Observation 1. Let SV denote the vector bundle on G/P arising out of a

P -representation V . Then, Hk(G/P,SV )
G

is isomorphic to Hk(P, V ).
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Here, Hk(P, V ) is in the category of P -modules. This statement follows from a
theorem of Bott [4]. Though the base field is the field of complex numbers in
[4], an extension of this result to an arbitrary base field of characteristic 0 can
be shown using the method of flat descent [11] (Theorem 6 in the appendix to
this paper). We sketch a proof of this fact in the appendix to this paper.

Observation 2. In the case of a Grassmannian,

Hk(G/P,SV )
G ∼= Hk(N,V )

P/N
.

Proof. We have the Lyndon-Hochschild-Serre spectral sequence

E2
pq = Hp(P/N ; Hq(N ;A)) =⇒ Hp+q(P ;A)

where A is any P -representation. In the case of a Grassmannian, P/N is iso-
morphic to Gl(Q)×Gl(S). The category of P/N -representations is semisimple,
and all but the bottom row of the spectral sequence vanish. Thus in the case
of a Grassmannian,

Hk(G/P,SV )
G ∼= Hk(N,V )

P/N
.

Observation 3. From now on G = Gl(n) and P is a parabolic subgroup
such that G/P is the Grassmannian G(r, n). Let N denote the category of
N -representations. For any P -representations V and W on which N acts
trivially,

ExtkN (W,V ) ∼= HomK(W ⊗ ∧kΩ, V ).

Proof. We prove the above assertion as follows.

Step 1: Note that N is a Lie group, and in our case (that of a Grassmannian)
the exponential map gives a bijection between the Lie-algebra η associated to
N and N itself. The category of (finite dimensional) η representations is thus
equivalent to a full subcategory of N in which all our N representations lie.
Note that characteristic 0 is needed to formally define the exponential map and
its inverse. Also, the category of η-representations is equivalent to the category
of U(η)-representations, where U(η) is the universal enveloping algebra of η.
Since η is abelian, (in the case of the Grassmannian) U(η) = Sym∗ η. In what
follows, we shall work in the category of Sym∗ η-modules.

Step 2: Consider the Ad action of P on η. The resulting P representation is
the P -representation Q∗⊗S on which N acts trivially. Since co-tangent bundle
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Ω of G(r, n) arises out of this P -representation, we abuse notation and denote
this P -representation by Ω. For the rest of this section as well as in Sections 5.2
and 5.3, Ω shall denote this P -representation from which the cotangent bundle
of G(r, n) arises. As vector spaces, η ≃ Ω. As algebras,

U(η) ≃ Sym∗(Ω).

Step 3: Note that Sym∗(Ω) acts trivially on W . In other words, y.w = 0 for
any w ∈ W and any y in the ideal of Sym∗(Ω) generated by Ω. Therefore,
a projective Sym∗(Ω)-module resolution of W can be obtained by taking the
Koszul complex

. . .→W ⊗∧kΩ⊗Sym∗ Ω→W ⊗∧k−1Ω⊗ Sym∗ Ω→ . . .→ W ⊗ Sym∗ Ω→W → 0.

It follows that if V is any other Sym∗ Ω-module, then Extk(W,V ) is just the
k-th cohomology of the complex

0→ Hom(W ⊗ Sym∗ Ω, V )→ . . .→ . . .Hom(W ⊗ ∧kΩ⊗ Sym∗ Ω, V )→ . . . .

If V is also a trivial Sym∗ Ω-module, then we see that

Hom(W ⊗ ∧kΩ⊗ Sym∗ Ω, V ) = HomK(W ⊗ ∧kΩ, V )

and the Koszul differential in the previous complex is 0. Thus,

ExtkN (W,V ) ∼= HomK(W ⊗ ∧kΩ, V ).

Observation 4. R(G(r, n))Gl(n) is isomorphic to a quotient of the group ring
KSk as a K-vector space. For the rest of this paper we identify R(G(r, n))Gl(n)

with this quotient via a particular isomorphism. An explicit step by step
construction of this isomorphism is provided in paragraphs a).-d). below.

a). It follows from Observation 3, Observation 2 and the fact that P/N ∼=
Gl(Q)×Gl(S) that

Hk(G(r, n),Ω⊗k)Gl(n) ∼= HomK(∧kΩ,Ω⊗k)
Gl(Q)×Gl(S)

.

We recall from Weyl [10] that if V is any vector space, the map

ϕV : KSk → EndK(V ⊗k)Gl(V )

v1 ⊗ · · · ⊗ vn 7→ vσ(1) ⊗ · · · ⊗ vσ(n)

is a surjection. It follows from this that

ϕQ∗ ⊗ ϕS : KSk ⊗KSk → (EndK(Q∗⊗k)⊗ EndK(S⊗k))Gl(Q)×Gl(S)
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is surjective.

b). Let i : ∧kΩ→ Ω⊗k denote the standard inclusion. Let p : Ω⊗k → Ω⊗k de-
note standard projection onto the image of i. Note that p = 1

k!

∑
ω∈Sk sgn(ω)ω.

If α ∈ (EndK(Q∗⊗k)⊗EndK(S⊗k))Gl(Q)×Gl(S), then α ◦ i = 0 iff α ◦ p = 0. Re-

call that Ω ∼= Q∗⊗S. Therefore, every element in HomK(∧kΩ,Ω⊗k)
Gl(Q)×Gl(S)

is the image of a linear combination of elements of the form

(τ ⊗ σ) ◦ 1

k!

∑

ω∈Sk
sgn(ω)(ω ⊗ ω).

Also, since we are using the right action of Sk × Sk on Q∗⊗k ⊗ S⊗k,

(τ ⊗ σ) ◦ 1

k!

∑

ω∈Sk
sgn(ω)(ω ⊗ ω) =

1

k!

∑

ω∈Sk
sgn(ω)(ω ⊗ ω)(τ ⊗ σ)

=
1

k!

∑

ω∈Sk
sgn(ωσ) sgn(σ−1)(ωσ ⊗ ωσ)(σ−1τ ⊗ id)

=
1

k!
sgn(σ)

∑

ω∈Sk
sgn(ω)(ω ⊗ ω)(σ−1τ ⊗ id).

c). Identify EndK(Ω⊗k) with (EndK(Q∗⊗k)⊗EndK(S⊗k)) and think of Sk×Sk
as acting on this with the left copy of Sk permuting the Q∗ and the right copy
permuting the S. Then, the map p is identified with 1

k!

∑
ω∈Sk sgn(ω)(ω ⊗ ω).

It follows from the above computation that if σ, τ ∈ Sk then

(σ ⊗ τ) ◦ p = sgn(σ)(σ−1τ ⊗ id) ◦ p.

Therefore, every element in HomK(∧kΩ,Ω⊗k)
Gl(Q)×Gl(S)

is the image of a linear
combination of elements of the form

(σ−1τ ⊗ id) ◦ p.

It follows that as a K-vector space, HomK(∧kΩ,Ω⊗k)
Gl(Q)×Gl(S)

can be iden-
tified with a quotient of the group ring KSk. We shall shortly determine this
quotient precisely – but not before making a final computation.

d). Identify Ω with Q∗⊗S. With this identification, if σ ∈ Sk, the right action
of σ on Ω⊗k corresponds to the right action of σ ⊗ σ on Q∗⊗k ⊗ S⊗k. Also, if
β ∈ KSk, then

1

k!

∑

ω∈Sk
sgn(ω)(ω ⊗ ω)(β ⊗ id)(σ ⊗ σ)

=
1

k!

∑

ω∈Sk
sgn(ωσ) sgn(σ)(ωσ ⊗ ωσ)(σ−1βσ ⊗ id)
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=
1

k!
sgn(σ)

∑

ω∈Sk
sgn(ω)(ω ⊗ ω)(σ−1βσ ⊗ id).

The main result of this section. Henceforth B(G(r, n)) shall denote
R(G(r, n))Gl(n). Observations 1-4 above enable us to conclude that B(G(r, n))
is isomorphic to a quotient of KSk as a K-vector space.

We need to specify which quotient of KSk gives B(G(r, n)). Recall that the
irreducible representations of Sk over C can be realized over Q and hence over
any field of characteristic 0. We also recall that the irreducible representations
of Sk are indexed by partitions λ of k. They are self-dual, and Vλ ⊗Alt = Vλ̄,
where λ̄ is the partition conjugate to λ. Note that KSk is isomorphic to
⊕λ End(Vλ).

Notation. Let |λ| denote the rank (number of summands) of the partition
λ. Let Pr denote the projection from KSk to ⊕|λ|≤r End(Vλ) for 1 ≤ r ≤ k,
and let Pr,n denote the projection from KSk to ⊕|λ|≤r,|λ̄|≤n−r End(Vλ). If n is
large enough, Pr,n = Pr.

The main result in this section is the following.

Lemma 3. 1. As a vector space,

B(G(r, n)) ∼= ⊕kPr,n(KSk).

2. If σ ∈ Sk then

σ∗Pr,n(β) = Pr,n(sgn(σ)σ−1βσ) ∀ β ∈ KSk.

3. If α ∈ Sk and β ∈ Sl then

Pr,n(α) ∪ Pr,n(β) = Pr,n(α × β)

where α× β is thought of as an element of Sk+l in the obvious fashion.

The second part of this lemma follows from the paragraph d). of Observation
4 in this subsection. The following sequence of lemmas proves the remaining
parts of the above lemma.

3.1 A lemma and some corollaries

Lemma 4. Let G be a finite group and let χ : G → C∗ be a 1-dimensional
representation of G. Then, if β ∈ C(G),

∑
g∈G χ(g)(g ⊗ g)(β ⊗ id) = 0 in

C(G×G) = C(G) ⊗ C(G) iff β = 0.
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Proof. If β = 0 then clearly
∑
g∈G χ(g)(g⊗ g)(β⊗ id) = 0. For the implication

in the opposite direction, let us see what
∑

g∈G χ(g)(g⊗g) does to C(G×G) =
⊕End(Vx⊗Vy) where the Vx are the irreducible representations of G. Let ei be

a basis for Vx and let fj be a basis of Vy . Suppose that g(ei) =
∑j=dim(Vx)
j=1 gxijej

and that g(fk) =
∑l=dim(Vy)

l=1 gyklfl for all i ∈ {1, . . . ,dim(Vx)} and for all k ∈
{1, . . . ,dim(Vy)}. Then,

∑

g

χ(g)(g ⊗ g)(ei ⊗ fj) =
∑

g

∑

k,l

gik
xgjl

yχ(g)(ek ⊗ fl)

=
∑

k,l

(ek ⊗ fl)(
∑

g

χ(g)gik
xgjl

y) =
∑

k,l

(ek ⊗ fl)(
∑

g

gik
zgjl

y)

where Vz = Vx ⊗ χ.

Note that
∑
g(g⊗ g) ∈ End(Vz⊗Vy) is a G-module homomorphism. In fact, G

acts trivially on (
∑

g g⊗ g).(Vz⊗Vy). Thus, 1
|G|
∑
g(g⊗ g) acts as a projection

to the trivial part of Vz ⊗ Vy. Note that Vz ⊗ Vy has a contains precisely
〈χz , χ̄y〉 copies of the trivial representation of G. In particular, it contains one
copy of the trivial representation of G iff Vz and Vy are dual representations.
In that case, the projection to that copy of the trivial representation is given
by v ⊗ w 7→ 1

dw(v)
∑
ei ⊗ fi where d is the dimension of Vz . Here, {ei} is

a basis for Vz and {fi} is the basis for Vy dual to {ei}. This tells us that∑
g gik

zgjl
y = |G|

d δyz̄δijδkl.

Therefore, in End(Vx⊗Vy), if Vz is not dual to Vy, then
∑
g∈G χ(g)(g⊗ g) = 0.

Assume that Vz is dual to Vy . Let {ei} be a basis for Vz and let {fi} be the
basis of Vy dual to {ei}. If {ẽi} is the basis of Vx corresponding to {ei}, then
with respect to the ordered basis ẽ1 ⊗ f1, ẽ2 ⊗ f1, . . . , ẽd ⊗ f1, ẽ1 ⊗ f2, . . . , ẽd ⊗
f2, . . . , ẽ1⊗ fd, . . . , ẽd⊗ fd of Vx⊗Vy, d

|G|
∑
g∈G χ(g)(g⊗ g) corresponds to the

matrix M such that Mij = 1 if i, j ∈ {kd+ k + 1|0 ≤ k ≤ d− 1} and Mij = 0
otherwise. On the other hand, β ⊗ id in End(Vx ⊗ Vy) is given by a block
diagonal matrix each of whose diagonal blocks is the matrix representing β in
End(Vx). This proves the desired lemma.

In fact, in the above proof, we have also proven the following lemma.

Lemma 5. Let G be a finite group, and let χ : G → C∗ be a 1-dimensional
representation of G. Let Vx and Vy be irreducible representations of G such
that Vx⊗χ is dual to Vy. Then, if β ∈ C(G),

∑
g∈G χ(g)(g⊗ g)(β ⊗ id) = 0 in

End(Vx ⊗ Vy) iff β = 0 in End(Vx).

In our problem, the group in question is Sk. We note that these lemmas give
us the precise description of B(G(r, n) when K = C. Let Sλ denote the Schur-
functor associated with the partition λ of k. In other words, if V is any vector
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space Sλ(V ) = V ⊗k ⊗KSk Vλ where Vλ is the irreducible representation of Sk
corresponding to the partition λ. We know that if V is a vector space of rank
m, Sλ(V ) = 0 iff λ has more than m parts. Therefore, if Q has rank r, then
Sλ(Q) = 0 iff |λ| > r and Sλ̄(S) = 0 iff |λ̄| > n− r. Moreover, if λ and µ are
two partitions of k, then V ⊗k ⊗W⊗k ⊗K(Sk×Sk) Vλ ⊗ Vµ = Sλ(V ) ⊗ Sµ(W ).
If γ ∈ K(Sk × Sk) 6= 0 in End(Vλ ⊗ Vµ), then K(Sk × Sk).γ contains Vλ ⊗ Vµ.
Therefore, V ⊗k⊗W⊗k⊗K(Sk×Sk)γ contains Sλ(V )⊗Sµ(W ). Lemma 5 therefore
says the following when K = C.

Lemma 6. If the rank of Q is r and that of S is n− r, then
∑

σ

sgn(σ)(σ ⊗ σ)(β ⊗ id) = 0

as an element of HomK(Ω⊗k,Ω⊗k) iff β = 0 as an element of End(Vλ) for all
partitions λ such that |λ| ≤ r and |λ̄| ≤ n− r.
Proof. Let γ =

∑
σ sgn(σ)(σ ⊗ σ)(β ⊗ id). Then, by Lemma 5, γ = 0 in

End(Vλ ⊗ Vµ) if µ 6= λ̄. Therefore, γ kills Sλ(Q∗) ⊗ Sµ(S) whenever µ 6= λ̄.
On the other hand, if γ 6= 0 in End(Vλ ⊗ Vλ̄), then Ω⊗k.γ contains a copy of
Sλ(Q∗)⊗ Sλ̄(S). The desired lemma follows immediately.

Since the irreducible representations of Sk over C can be realized over Q and
hence over any field of characteristic 0,lemmas 4,5 and 6 thus hold for KSk
where K is any field of characteristic 0. This proves the first part of Lemma
3 specifying the vector space structure of B(G(r, n)). We have so far also
identified the right Sk module structure of B(G(r, n)). To describe the ring
structure completely, we need to be able to compute cup products explicitly
under this identification.

We now show how one computes the cup product of two elements
Xk ∈ HomK(∧kΩ,Ω⊗k) ⊂ Hk(G(r, n),Ω⊗k) and Yl ∈ HomK(∧lΩ,Ω⊗l) ⊂
Hl(G(r, n),Ω⊗l). Let Xk = (γk ⊗ id) ◦ ik ∈ EndK(Q∗⊗k) ⊗ EndK(S⊗k) and
Yl = (δl⊗ id) ◦ il ∈ EndK(Q∗⊗l)⊗EndK(S⊗l) where ik and il are the standard
inclusions ∧kΩ → Ω⊗k and ∧lΩ → Ω⊗l respectively. EndK(Ω⊗∗) is identified
with EndK(Q∗⊗∗) ⊗ EndK(S⊗∗) as usual. The following Lemma explicitly
computes Xk ∪ Yl.
Lemma 7.

[(γk ⊗ id) ◦ ik] ∪ [(δl ⊗ id) ◦ il] = [((γk ⊗ δl)⊗ id) ◦ ik+l].

The element (γk ⊗ δl) ∈ K(Sk × Sl) ⊂ K(Sk+l) where Sk × Sl is embedded in
Sk+l in the natural way.

Before proving this Lemma, we note that part 3 of Lemma 3 follows immedi-
ately from the above lemma.
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Proof. Let W be any K-vector space Sym∗ Ω acts trivially. In other words,
y.w = 0 for any w ∈ W and any y in the ideal of Sym∗(Ω) generated by Ω.
Let φ ∈ End(W ). Let φ̄ : W ⊗ Sym∗(Ω) → W denote the map φ ⊗ η where
η : Sym∗ Ω → K canonical map from Sym∗ Ω to its quotient by the ideal
generated by Ω.

Let αj : Ω⊗j ⊗ Sym∗(Ω)→ Ω⊗j ⊗ Sym∗(Ω) denote the map

ω1 ⊗ · · · ⊗ ωj
⊗

Y 7→ ω1 ⊗ · · · ⊗ ωj−1

⊗
ωjY

for ω1, . . . , ωj ∈ Ω and Y ∈ Sym∗(Ω).

Let d : ∧jΩ⊗ Sym∗(Ω)→ ∧j−1Ω⊗ Sym∗(Ω) denote the Koszul differential.

Note that the following diagram commutes.

Ω⊗j ⊗ Sym∗(Ω)
αj−−−−→ Ω⊗j−1 ⊗ Sym∗(Ω)

ij⊗idSym∗(Ω)

y
yij−1⊗idSym∗(Ω)

∧jΩ⊗ Sym∗(Ω)
d−−−−→ ∧j−1Ω⊗ Sym∗(Ω)

We have the following commutative diagrams.

0 −−−−→ Ω⊗k −−−−→ Z1 −−−−→ . . .

γ̄k

x θ1

x
x

. . . −−−−→ Ω⊗k ⊗ Sym∗ Ω
αk−−−−→ Ω⊗k−1 ⊗ Sym∗ Ω −−−−→ . . .

. . . −−−−→ Zk −−−−→ K −−−−→ 0
x

x
xid

. . . −−−−→ Sym∗ Ω −−−−→ K −−−−→ 0

0 −−−−→ Ω⊗l −−−−→ Wl −−−−→ . . .

δ̄l

x θ2

x
x

. . . −−−−→ Ω⊗l ⊗ Sym∗ Ω
αl−−−−→ Ω⊗l−1 ⊗ Sym∗ Ω −−−−→ . . .

. . . −−−−→ Wl −−−−→ K −−−−→ 0
x

x
xid

. . . −−−−→ Sym∗ Ω −−−−→ K −−−−→ 0

The top rows of the two commutative diagrams are exact sequences representing
Xk and Yl respectively. To compute the cup product Xk ∪ Yl we only need to
find vertical arrows making all squares in the following diagram commute.
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0 −−−−→ Ω⊗k+l −−−−→ Z1 ⊗ Ω⊗l −−−−→ . . .
x

x
x

. . . −−−−→ Ω⊗k+l ⊗ Sym∗ Ω
αk+l−−−−→ Ω⊗k+l−1 ⊗ Sym∗ Ω −−−−→ . . .

. . . −−−−→ Zk ⊗ Ω⊗l −−−−→ W1 −−−−→ . . .
x

x
xθ2

x

. . . −−−−→ Ω⊗l ⊗ Sym∗ Ω −−−−→
αl

Ω⊗l−1 ⊗ Sym∗ Ω −−−−→ . . .

. . . −−−−→ Wl −−−−→ K −−−−→ 0
x

x
xid

. . . −−−−→ Sym∗ Ω −−−−→ K −−−−→ 0

Note that the diagrams below commute.

0 −−−−→ Ω⊗k+l −−−−→ Z1 ⊗ Ω⊗l −−−−→ . . .

¯γk⊗δl
x θ1⊗δl

x
x

. . . −−−−→ Ω⊗k+l ⊗ Sym∗ Ω
αk+l−−−−→ Ω⊗k+l−1 ⊗ Sym∗ Ω −−−−→ . . .

. . . −−−−→ Zk ⊗ Ω⊗l
x

x

. . . −−−−→ Ω⊗l ⊗ Sym∗ Ω

Zk ⊗ Ω⊗l −−−−→ Ω⊗l

−⊗δl
x

xδl

Ω⊗l ⊗ Sym∗ Ω −−−−→ Ω⊗l

These diagrams prove the desired lemma.

3.2 An example.

Lemma 3 tells us that if X = G(∞,∞) = lim−→G(r,∞) then R(X) = ⊕kKSk
with σ∗α = sgn(σ)σ−1ασ for all σ ∈ Sk, α ∈ KSk. Thus, by Lemma 3 and
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Proposition 1, if α ∈ Sk, and β ∈ Sl, then α ⊙ β =
∑

σ∈Shk,l
σ(α × β)σ−1. In

other words, R(X) is the commutative algebra generated by symbols xγ for all
γ ∈ Sk, for all k modulo the relations xαxβ =

∑
σ∈Shk,l

xσ(α×β)σ−1 . This can
be seen to be larger than the usual cohomology ring of this space.

4 The big Chern Classes tk and a ring homomorphism from K(X)⊗
Q to R(X)

Let V be a locally free coherent sheaf on a scheme X/S with X smooth over S.
An algebraic connection on V is defined as an OS linear sheaf homomorphism
D : V → ΩX/S

⊗
OX V satisfying the Leibniz rule, i.e,

D(fv) = df ⊗ v + fDv ∀ f ∈ Γ(U,OX) , v ∈ Γ(U, V ),

for every U open in X . Note that a connection on V by itself is not OX linear.
However, if D1 and D2 are two connections on V |U with U ⊆ X open, then
D1 −D2 ∈ Γ(U,End(V )⊗ ΩX/S).

For each open U ⊆ X , let CV (U) denote the set of connections on V |U . This
gives us a sheaf of sets on X on which End(V ) ⊗OX ΩX/S acts simply transi-
tively. Consider a covering of X by open affines Ui such that V is trivial on
Ui, and pick an element Di ∈ CV (Ui) ∀ i (Di exists as dn : OnX → ΩnX is a con-
nection and thus gives a connection on V |Ui ∼= OnX , where n is the rank of V ).
The Di together give rise to a well defined element θV ∈ H1(X,End(V )⊗ Ω).

Lemma 8. θV⊗W = AV + BW , where AV and BW are the elements in
H1(X,End(V ) ⊗ End(W ) ⊗ Ω) induced from θV and θW respectively by the
maps End(V ) → End(V ) ⊗ End(W ) (m 7→ m ⊗ idW ) and End(W ) →
End(V )⊗ End(W ), (m′ 7→ idV ⊗m′) respectively.

Corollary 4. θV⊗V is induced from θV by the map End(V ) → End(V ) ⊗
End(V ), (m 7→ m⊗ idV + idV ⊗m).

Proof. Since V and W are locally free, we can cover X by open sets Ui so that
V and W are free over Ui for each i. Let Di ∈ CV (Ui), and Ei ∈ CW (Ui) for
each i. The desired result follows from the fact that idV ⊗Ei + Di ⊗ idW ∈
C(V⊗W )(Ui).

4.1 The big Chern Classes tk

Given any two locally free coherent sheaves F and G on X , one has a cup
product ∪ : Hi(X,F) ⊗ Hj(X,G) → Hi+j(X,F ⊗ G). Hence, we can consider
the cup product of θV with itself k times -

θV ∪ · · · ∪ θV =: θkV ∈ Hk(X,End(V )⊗k
⊗

Ω⊗k).
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The composition map ϕ : End(V )⊗k → End(V ) induces a map

ϕ∗ : Hk(X,End(V )⊗k ⊗ Ω⊗k) → Hk(X,End(V ) ⊗ Ω⊗k). Let t̃k(V ) :=
ϕ∗θkV . The trace map tr : End(V ) → OX is OX -linear and induces

tr∗ : Hk(X,End(V ) ⊗ Ω⊗k) → Hk(X,Ω⊗k). By definition, tk(V ) := tr∗t̃k(V ).
The classes tk are referred to in Kapranov [6] as the big Chern classes. The
projection Ω⊗k → ∧kΩ when applied to tk(V ) gives us k! chk(V ) where chk(V )
is the degree k part of the Chern character of V . The appropriate reference for
the construction of the Atiyah class and the construction of the components
of the Chern character as done here is Atiyah [12].

4.2 Basic properties of the big Chern classes

Firstly, tk is a characteristic class. In other words,

Lemma 9. If 0 → V ′ → V → V ′′ → 0 is an exact sequence of locally free
coherent sheaves on X, then tk(V ) = tk(V ′) + tk(V ′′).

Proof. Let V ,V ′ and V ′′ be as in the statement of this lemma. We first prove
this lemma for the case when k = 1. Consider a cover of X by affine open
sets Ui such that V and V ′ are trivial over the Ui. On each Ui, choose a
connection Di, so that the restriction Di|V ′ of Di to V ′ is a connection on V ′.
In other words, Di(Γ(Ui, V

′)) ⊂ Γ(Ui,Ω ⊗ V ′). On the other hand,for each
U ⊂ X open, one can consider the K-vector space CV,V ′(U) of connections on
V |U that give rise to a connection on V ′|U . Note that the difference between
any two elements of CV,V ′(U) is an element of Γ(U,P ⊗Ω), which acts simply
transitively on CV,V ′(U). Here, P is the subsheaf of sections of End(V ) that
preserve V ′.

Let CV (Ui) denote the space of connections on V |Ui. Thinking of the ΠiDi as
an element of ΠiCV (Ui) we see that the Cech 1-cocycle Πi<j(Di − Dj)
of Πi<jΓ(Ui ∩ Uj ,End(V ) ⊗ Ω) yields the Atiyah class θV of V in
H1(X,End(V ) ⊗ Ω). On the other hand, when the Di are thought of
as elements of CV,V ′(Ui), they similarly give rise to an element θV,V ′ of
H1(X,P ⊗ Ω). If i : P → End(V ) is the natural inclusion, then clearly,
(i ⊗ id)∗θV,V ′ = θV . We shall denote (i ⊗ id) by i henceforth. Note that
tr ◦ i = tr. Hence, tr∗θV,V ′ = tr∗θV = t1(V ). On the other hand, restriction
to V ′ gives us a map p1 : P → End(V ′). Then p1∗θV,V ′ is the cohomology
class obtained by looking at Di|V ′ as elements of CV ′(Ui) which is θV ′ .
We also have a projection p2 : P → End(V ′′). Note that since the Di are
connections on V that restrict to connections on V ′, they induce connections
on V ′′ (all restricted to Ui) which we will again denote by Di. Note that
p2∗θV,V ′ is the cohomology class obtained by thinking of Di as elements of
CV ′′(Ui), i.e, θV ′′ . Now, tr|P = tr◦p1+tr◦p2. This proves the lemma for k = 1.
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Let θkV,V ′ := θV,V ′ ∪ · · · ∪ θV,V ′ ∈ Hk(X,P⊗k⊗Ω⊗k). Let ϕ : P⊗k → P denote

the composition map. Let ˜tk(V, V ′) := ϕ∗θk(V, V ′) ∈ Hk(X,P ⊗ Ω⊗k). The
following observations prove the lemma in general.

1. i∗ ˜tk(V, V ′) = t̃k(V ). This follows from the commutativity of the following
diagram.

P⊗k i⊗k−−−−→ End(V )⊗k
yϕ ϕ

y

P i−−−−→ End(V )

2. p1∗ ˜tk(V, V ′) = t̃k(V ′) and p2∗ ˜tk(V, V ′) = t̃k(V ′′). This is because the two
diagrams below commute.

P⊗k p1
⊗k

−−−−→ End(V ′)⊗k
yϕ ϕ

y

P p1−−−−→ End(V ′)

P⊗k p2
⊗k

−−−−→ End(V ′′)⊗k
yϕ ϕ

y

P p2−−−−→ End(V ′′)

From this and the additivity of trace, we see that tk(V ) = tk(V ′) + tk(V ′′).

Lemma 10. If f : Y → X is a morphism of varieties and V is a vector bundle
on X, then tk(f∗V ) = f∗tk(V ).

Lemma 11. If V = V ′ ⊕ V ′′ as OX-modules and p1 and p2 are the natural
projections End(V ) → End(V ′) and End(V ) → End(V ′′) respectively, then

p1∗t̃k(V ) = t̃k(V ′) and p2∗t̃k(V ) = t̃k(V ′′).

Lemmas 10 and 11 are fairly straightforward to verify and we shall skip their
verification. Another important property that we prove here is that ⊕ tk :
K(X)⊗Q→ R(X) is a ring homomorphism.

Lemma 12. If V and W are two locally free coherent sheaves on X, then,

tk(V ⊗W ) =
∑

l+m=k

tl(V )⊙ tm(W )
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where ⊙ is the product Hl(X,Ω⊗l)⊗Hm(X,Ω⊗m)→ Hk(X,Ω⊗k) appearing in
Proposition 1. In other words, ⊕ tk : K(X)⊗ Q → R(X) is a ring homomor-
phism.

Proof. We know that θV⊗W = θV ⊗ idW + idV ⊗θW . Therefore,

θV⊗W
k = (AV +BW ) ∪ · · · ∪ (AV +BW )

where AV = θV ⊗ idW and BW = idV ⊗θW . Thus,

θV⊗W
k = (AV +BW )

k
=

∑

l+m=k

∑

σ∈Shl,m

sgn(σ)σ−1
∗(AV

l ∪BWm).

Here, a given permutation µ ∈ Sk acts on End(V ⊗W )⊗k
⊗

Ω⊗k by

v1 ⊗ · · · ⊗ vk
⊗

w1 ⊗ · · · ⊗ wk 7→ vµ(1) ⊗ · · · ⊗ vµ(k)

⊗
wµ(1) ⊗ · · · ⊗ wµ(k)

and therefore induces a map from Hk(X,End(V ⊗W )⊗k ⊗ Ω⊗k) to itself.

To verify that

(AV +BW )
k

=
∑

l+m=k

∑

σ∈Shl,m

sgn(σ)σ−1
∗(AV

l ∪BWm),

note that in (AV +BW )k, terms having l AV ’s cupped with m BW ’s are in one-
one correspondence with sequences b1 < · · · < bm, bi ∈ {1, 2, 3, . . . , l + m} ∀i
(the bi’s being the positions of the BW ’s). Such sequences are in 1 − 1 cor-
respondence with (l,m) shuffles. The sequence b := b1, .., bm corresponds
to the (l,m)-shuffle σb such that σb(l + i) = bi, 1 ≤ i ≤ m. Note that
sgn(σb)σb

−1
∗ AV

l ∪BWm is exactly the term in (AV + BW )k where the BW ’s
are in positions b1, . . . , bm. The lemma is now proven by recognizing that
tr∗ ◦ϕ∗σ−1

∗ (AV
l∪BWm) = σ−1

∗ tl(V )∪ tm(W ) if σ is any (l,m)-shuffle. This is
because the inverse of an (l,m)-shuffle does not change the order of composition
among the End(V )-terms and among the End(W ) terms respectively.

Not only that, the ring homomorphism ⊕ tk is also a homomorphism of
special λ-rings. In other words, the big Chern classes commute with Adams
operations. Indeed, the following lemma proves this fact. Note that in any
special λ-ring A, the eigenspace corresponding to the eigenvalue pl of the
Adams operation ψp coincides with that corresponding to the eigenvalue 2l of
the operation ψ2 for any p ≥ 1. Therefore, to verify that ⊕ tk commutes with
the Adams operations, it suffices to verify that ⊕ tk commutes with ψ2. This
is done in the lemma below.

Lemma 13. tk(ψ2V ) = ψ2 tk(V ).
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Proof. By the corollary to Lemma 8 (Corollary 4), θV⊗V is induced from θV
by the map β : End(V ) → End(V ) given by m → m ⊗ idV + idV ⊗m i.e,
θV⊗V = β∗θV . Therefore,

θV⊗V
k = β∗θV ∪ · · · ∪ β∗θV = (β ⊗ · · · ⊗ β)∗θV

k.

By abuse of notation, we shall refer to β ⊗ · · · ⊗ β as β. Then, θkV⊗V = β∗θkV ,

where β : End(V )⊗k → End(V )⊗k is given by

m1 ⊗ · · · ⊗mk 7→
⊗

i=1

k
(mi ⊗ idV + idV ⊗mi).

Further, a direct computation shows that if W is a vector space over a field F ,
with charF 6= 2, W ⊗W = Sym2W ⊕∧2W . Let p1 and p2 denote the resulting
projections from End(W )⊗ End(W ) = End(W ⊗W ) onto End(Sym2W ) and
End(∧2W ) respectively. If M,N ∈ End(W ), then

tr(p1(M ⊗N))− tr(p2(M ⊗N)) = tr(M ◦N).

By this fact, and Lemma 11, we see that

tk(ψ2V ) = tk(Sym2 V )− tk(∧2V ) = tr∗p1∗ ˜tk(V ⊗ V )− tr∗p2∗ ˜tk(V ⊗ V )

= tr∗α∗ ˜tk(V ⊗ V )

where α : End(V )⊗ End(V )→ End(V ) is the composition map.

Let ϕ : End(V ⊗ V )⊗k → End(V ⊗ V ) be the composition map. Observe that
α ◦ ϕ ◦ β : End(V )⊗k → End(V ) is the map given by

m1 ⊗ · · · ⊗mk 7→
∑

p+q=k

∑

σ∈Shp,q

mσ(1) ◦ · · · ◦mσ(k)

(◦ denoting the usual matrix multiplication on the right hand side of the last
equation). Consider the map γ : End(V )⊗k → End(V )⊗k given by

m1 ⊗ · · · ⊗mk 7→
∑

p+q=k

∑

σ∈Shp,q

mσ(1) ⊗ · · · ⊗mσ(k).

Then, we see that

tr∗ ◦ ϕ∗ ◦ γ∗θV k = tr∗ ◦ α∗ ˜tk(V ⊗ V ) = tk(ψ2V ).

Also observe that ψ2 tk(V ) = tr∗ϕ∗ψ2
∗θV

k since the following diagram com-
mutes.

End(V )⊗k ⊗ Ω⊗k
id⊗ψ2

−−−−→ End(V )⊗k ⊗ Ω⊗k

tr◦(ϕ⊗id)

y
ytr◦(ϕ⊗id)

Ω⊗k
ψ2

−−−−→ Ω⊗k
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Here, ψ2
∗ on Hk(X,End(V )⊗k ⊗ Ω⊗k) is by definition induced on co-homology

by the endomorphism id⊗ψ2 of End(V )⊗k ⊗ Ω⊗k. Thus, the following lemma
remains to be proven.

Lemma 14. γ∗θV
k = ψ2

∗θV
k

Proof. Note that the cup-product is anti-commutative. Therefore, if σ ∈ Sk ,
then the map given by

σ : m1⊗· · ·⊗mk

⊗
v1⊗· · ·⊗vk 7→ sgn(σ)mσ(1)⊗· · ·⊗mσ(k)

⊗
vσ(1)⊗· · ·⊗vσ(k)

preserves θV
k.

If σ ∈ Sk let σ ⊗ id denote the endomorphism of End(V )⊗k ⊗ Ω⊗k such that

m1 ⊗ · · · ⊗mk

⊗
v1 ⊗ · · · ⊗ vk 7→ mσ(1) ⊗ · · · ⊗mσ(k)

⊗
v1 ⊗ · · · ⊗ vk.

Similarly, let id⊗σ denote the endomorphism of End(V )⊗k ⊗ Ω⊗k such that

m1 ⊗ · · · ⊗mk

⊗
v1 ⊗ · · · ⊗ vk 7→ m1 ⊗ · · · ⊗mk

⊗
vσ(1) ⊗ · · · ⊗ vσ(k).

It now suffices to note that

γ =
∑

p+q=k

∑

σ∈Shp,q

σ ⊗ id =
∑

p+q=k

∑

σ∈Shp,q

sgn(σ)(id⊗σ−1) ◦ (σ)

=⇒ γ∗θ
k
V =

∑

p+q=k

∑

σ∈Shp,q

sgn(σ)(id⊗σ−1)∗ ◦ (σ)∗θ
k
V

=
∑

p+q=k

∑

σ∈Shp,q

sgn(σ)(id⊗σ−1)∗θ
k
V

= ψ2
∗θ
k
V .

Recalling that αl(V ) = ch−1(chl(V )), where ch is the Chern character map,
we now have the following corollary of Lemma 13 below.

Corollary 5. tk(αl(V )) = ek
(l)
∗ tk(V ) where ek

(l) is the idempotent described
in Lemma 1.

Proof. Note that ψ2 =
∑
e(l)2l. The fact that the ek

(l) are mutually orthog-
onal idempotents adding upto id tells us that ψ2 ◦ ek(l) = 2lek

(l). Therefore,

ψ2 tk(V ) =
∑

2lek
(l)
∗ tk(V ) = tk(ψ2V ) = tk(

∑
2lαl(V )) =

∑
2l tk(αl(V )).

Since eigenvectors corresponding to different eigenvalues of a linear operator
on a finite dimensional vector space over a field of characteristic 0 are linearly
independent, the desired result follows.
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Remark. More conceptually, if TV is the graded tensor algebra over a vector
space V , (with usual tensor product giving the multiplication, and coproduct
dictated by the fact that V ⊂ TV are primitive elements), then T ∗V is the
graded Hopf algebra dual to TV . The map ψ2 = µ ◦ ∆ : T ∗V → T ∗V has
as its dual the map µ ◦ ∆ : TV → TV . The 2l-eigenspace of this map is
seen to be ′′ Syml(L(V ))′′. Thus, the 2l-eigenspace of ψ2 : T ∗V → T ∗V is
dual to the space ′′ Syml(L(V ))′′. Thus, tk(αl(V )) lands in k-cohomology with
coefficients in a space dual to ′′ Syml(L(Ω))′′. Moreover, the last corollary
explicitly describes the projector that gives tk(αl(V )) from tk(V ) as the action
on tk(V ) of a certain idempotent in K(Sk). Thus, one can recover tk(αl(V ))
from tk(V ) combinatorially.

5 Calculating tk(Q), Q the universal quotient bundle of a Grass-
mannian G(r, n)

We remark that QG(r,n) is often denoted by just Q in this and subsequent
sections. The Grassmannian whose universal quotient bundle we are referring
to is usually clear by the context.

5.1 Alternative construction for t̃k(V ) and tk(V )

Let V be a locally free coherent sheaf on a (separated) scheme X/S. It is a fact
that θV is the element in Ext1(V, V ⊗Ω) ∼= H1(X,End(V )⊗Ω) corresponding
to the exact sequence 0 → V ⊗ Ω → J1(V ) → V → 0 where J1(V ) is the first
jet bundle of V . Suppose that α ∈ Hi(X,F) = Exti(OX ,F) is given by an
exact sequence

0→ F → Y1 → . . .→ Yi → OX → 0

and that β ∈ Hj(X,G) = Extj(OX ,G) is given by an exact sequence

0→ G → Z1 → . . .→ Zj → OX → 0.

Let α∗β be the element in Hi+j(X,F⊗G) = Exti+j(OX ,F⊗G) defined by the
exact sequence which is the tensor product of the exact sequences representing
α and β respectively. We note that the product

∗ : Hi(X,F)⊗Hj(X,G)→ Hi+j(X,F ⊗ G)

α⊗ β 7→ α ∗ β
has the linearity and anticommutativity properties required of the cup product.
Since all the cohomology classes we are dealing with are represented by exact
sequences of OX -modules, we can define the cup product to be the product ∗.
With this definition of the cup product, it will follow that t̃k(V ) ∈ Extk(V, V ⊗
Ω⊗k) is given by (θV ⊗ idΩ

k−1) ◦ · · · ◦ θV where ◦ denotes the Yoneda product
and θV is treated as an element in Ext1(V, V ⊗ Ω).
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5.2 Computation of t̃1(Q)

Recall that Ω is identified with Q∗ ⊗ S. Let ∆ : S → Q⊗Ω be the map whose
dual ∆∗ : Q∗ ⊗ Q ⊗ S∗ → S∗ is ev ⊗ idS∗ , where ev : Q∗ ⊗ Q → K is the
evaluation map. Also, ev ⊗ idS is a map from Q⊗ Ω to S.

Lemma 15. The element of EndK(Q⊗ Ω) representing θQ is ∆ ◦ (ev ⊗ idS).

Proof. We note that the following diagram commutes.

0 −−−−→ S
ϕ−−−−→ V

ǫ−−−−→ Q −−−−→ 0

∆

y
y

yid

0 −−−−→ Q⊗Q∗ ⊗ S −−−−→ J1(Q)
γ−−−−→ Q −−−−→ 0

The bottom row of this diagram is the exact sequence giving θV . By the uni-
versal property of push-forwards, we see that the following diagram commutes
(F denotes the pushforward V ∐S Q∗ ⊗Q⊗ S).

0 −−−−→ S
ϕ−−−−→ V

ǫ−−−−→ Q −−−−→ 0

∆

y
y

yid

0 −−−−→ Q∗ ⊗Q⊗ S −−−−→ F −−−−→ Q −−−−→ 0
yid

y id

y

0 −−−−→ Q∗ ⊗Q⊗ S −−−−→ J1(Q) −−−−→ Q −−−−→ 0

Therefore, θQ can be represented by the second row of the above diagram in
Ext1(Q,Q ⊗ Ω). Observe, however, that every arrow in this exact sequence
is a P -module homomorphism (of course, Q∗ ⊗ Q ⊗ S, V and therefore, F
are all P -modules). Thus θQ can be represented by an exact sequence in the

category of P -representations. It follows that for all k ≥ 1, t̃k(Q) and tk(Q)
can be represented by exact sequences in the category of P -representations.
Therefore, to find θQ, we need to find arrows α and β so that all squares in the
following diagram commute.

0 −−−−→ Q∗ ⊗Q⊗ S −−−−→ F −−−−→ Q −−−−→ 0

∆

x
x

xid

0 −−−−→ S
ϕ−−−−→ V

ǫ−−−−→ Q −−−−→ 0

α

x β

x
xid

. . . −−−−→ Q⊗ Ω⊗ Sym∗ Ω −−−−→ Q⊗ Sym∗ Ω −−−−→ Q −−−−→ 0

Observe that Ω = HomK(Q,S) ⊆ End(V ) (here, we have chosen a K-vector
space splitting 0 → S → V ⇆ Q → 0. Choosing such a splitting describes
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Ω as the subspace of elements in End(V ) consisting of matrices whose “upper
right block” is the only nonzero block. Note that the product of two such
matrices is 0. Thus, any element of Sym∗ Ω can be thought of as an element
of Hom(Q, V ) ⊂ End(V ). In this scheme of things, we choose β to be the
natural evaluation map, and α the restriction of β to Q ⊗ Ω ⊗ Sym∗ Ω. Note
that β and α are Sym∗ Ω-module homomorphisms by construction. Note that
α : Q ⊗ Ω ⊗ Sym∗ Ω is the Sym∗ Ω-module homomorphism induced by α̃ :=
ev ∈ HomK(Q⊗Ω, S), where ev is the natural evaluation map. It follows that
as an element in HomK(Q⊗ Ω, Q⊗ Ω), θQ is given by ∆ ◦ (ev ⊗ idS).

Let {ei}, 1 ≤ i ≤ r be a basis for Q. Let {fi} be the basis of Q∗ dual to {ei}.
Let {ui}, 1 ≤ i ≤ n− r be a basis for S, and {vi} the basis for S∗ dual to {ui}.
The following is a restatement of Lemma 15.

Lemma 16. With the notation just fixed, as an element of EndK(Q ⊗ Ω) ≏

End(Q)⊗ End(Ω) ≏ Q∗ ⊗Q⊗Q⊗ S∗⊗Q∗ ⊗ S,

θQ =
∑

l1,m1,r1

fm1 ⊗ el1
⊗

em1 ⊗ vr1
⊗

fl1 ⊗ ur1

(l1, m1 running from 1 to r, r1 running from 1 to n− r).

Proof. ev(ei ⊗ fj ⊗ uk) = δijuk and ∆(uk) =
∑r

l=1 el ⊗ fl ⊗ uk. Therefore,
θQ(ei ⊗ fj ⊗ uk) = δij

∑r
l=1 el ⊗ fl ⊗ uk. On the other hand,

fm1⊗el1
⊗

em1⊗vr1
⊗

fl1⊗ur1(ei⊗fj⊗uk) = δim1δjm1δkr1el1 ⊗fl1⊗ur1 .

This is nonzero iff i = j = m1 and k = r1. This proves the desired result.

5.3 Computing t̃k(Q) for k > 1

This is done inductively. The method by which Yoneda products are computed
is very similar to the cup product computation in the previous section. We
therefore omit the details and state the key results.

If i : ∧kΩ → Ω⊗k is the natural inclusion, t̃k(Q) is given by γk ◦ i where
γk ∈ EndK(Q⊗ Ω⊗k) is as described in the following lemma.

Lemma 17. Identifying EndK(Q⊗Ω⊗k) with EndK(Q)
⊗

Ω∗⊗k
⊗

Ω⊗k, we have

γk =
∑

l1,...,lk
m1,...,mk
r1,...,rk

(
(fm1

⊗el1)◦···◦(fmk⊗elk )
⊗

(em1
⊗vr1)⊗···⊗(emk⊗vrk)⊗

(fl1⊗ur1)⊗···⊗(flk⊗urk) ).

Here, the li, 1 ≤ i ≤ k and the mi, 1 ≤ i ≤ k run from 1 to r , while the
ri, 1 ≤ i ≤ k run from 1 to n− r.
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Having computed t̃k(Q) we compute tk(Q). For this, we note that tk(Q) =

(tr⊗id)∗ t̃k(Q) where t̃k(Q) ∈ End(Q)⊗HomK(∧kΩ,Ω⊗k) and tr : End(Q)→ K
is the trace map. Calculating tk(Q) is then easy. In the formula in the previous
lemma, we see that

(fm1 ⊗ el1) ◦ · · · ◦ (fmk ⊗ elk)(ei) = δimkδlkmk−1
. . . δl2m1el1 .

From this, we see that (fm1 ⊗ el1) ◦ · · · ◦ (fmk ⊗ elk) has trace 1 iff mk =
l1, lk = mk−1, . . . , l2 = m1 and has trace 0 otherwise. From this it follows
that if i : ∧kΩ → Ω⊗k is the natural inclusion, tk(Q) is given by µk ◦ i where
µk ∈ HomK(Ω⊗k,Ω⊗k) is as described in the following lemma.

Lemma 18. Identifying EndK(Ω⊗k) with Ω∗⊗k
⊗

Ω⊗k we have

µk =
X

l1,...,lk
r1,...,rk

(el2 ⊗ vr1)⊗ · · · ⊗ (elk ⊗ vrk−1)⊗ (el1 ⊗ vrk)
O

(fl1 ⊗ ur1)⊗ · · · ⊗ (flk ⊗ urk )

=
X

m1,...,mk
r1,...,rk

(em1⊗vr1)⊗· · ·⊗(emk⊗vrk )
O

(fmk⊗ur1)⊗(fm1⊗ur2)⊗· · ·⊗(fmk−1⊗urk).

As a consequence, the basis element fi1 ⊗ · · · ⊗ fik
⊗
uj1 ⊗ · · · ⊗ ujk of Ω⊗k

is mapped by tk(Q) to fik ⊗ fi1 ⊗ · · · ⊗ fik−1

⊗
uj1 ⊗ · · · ⊗ ujk . Therefore,

if we identify EndK(Ω⊗k) with Q∗⊗k ⊗ S⊗k, tk(Q) can be thought of as
(k k − 1 k − 2 .. 2 1)⊗ idS⊗k where (k k − 1 k − 2 .. 2 1) is the k-cycle acting
on Q∗⊗k by the usual action of Sk on V ⊗k for a vector space V . We denote
this k-cycle by τk.

Let Pr,n be as in Lemma 3. By Lemma 18 and the above paragraph,

Lemma 18’.
tk(Q) = Pr,n(τk).

6 Proofs of Theorems 2 and 3

We recall that Sk,j denotes the set Sk,j = {σ ∈ Sk|card{i|σ(i) > σ(i + 1)} =
j − 1}, i.e, the set of permutations of {1, . . . , k} with j − 1 descents. By part
2 of Lemma 3, if

∑
aσ sgn(σ)σ ∈ K(Sk), we have

∑
aσ sgn(σ)σ∗(tk(Q)) = Pr,n(

∑
aσσ

−1τkσ).

The following lemma now follows immediately from Corollary 5.

Lemma 19.

tk(αl(Q)) = Pr,n(

n∑

j=1

∑

σ∈Sk,j
(al,jk στkσ

−1))
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A remark and some notation.
∑k

j=1

∑
σ∈Sk,j sgn(σ)al,jk σ

−1 is the operator

e
(l)
k for the graded commutative Hopf-algebra T ∗V . In fact,

∑k
j=1

∑
σ∈Sk,j a

l,j
k σ

is the operator e
(l)
k for the co-commutative ordinary Hopf-algebra TV . We

henceforth denote this idempotent by ẽ
(l)
k . Let ∗ denote the conjugation action

of KSk on itself. If a ∈ Sk and b ∈ KSk then a ∗ b = aba−1 and (
∑
cgg) ∗ h =∑

cgghg
−1, h ∈ KSk. Then, Lemma 19 can be concisely restated as

tk(αl(Q)) = Pr,n(ẽ
(l)
k ∗ τk).

Note that ∗ is a left action.

6.1 Proofs of Corollary 2 and Corollary 3

Recall the definitions of the projections Pr and Pr,n from Section 3. Assume
for now that n is large enough so that Pr = Pr,n for all values of k that we
shall use. Let I(k, r, l) denote the annihilator in KSk of tk(αl(Q)). By Lemma
3 and Lemma 19 this is precisely the subspace

I(k, r, l) = {
∑

g

cg sgn(g)g|Pr((
∑

g

cgg
−1) ∗ ẽ(l)k ∗ τk) = 0}.

If 〈α〉 denotes the subspace of KSk spanned by conjugates of α by elements of
Sk where α ∈ KSk, then

dim(I(k, r, l)) = dim(〈ẽ(l)k ∗ τk〉)− dim(〈Pr(ẽ(l)k ∗ τk)〉).

Note that since Pr−1 factors through Pr, I(k, r, l) ⊆ I(k, r − 1, l). It follows
that this inclusion is strict if

dim(〈Pr(ẽ(l)k ∗ τk)〉) > dim(〈Pr−1(ẽ
(l)
k ∗ τk)〉).

We will prove the following lemma.

Lemma 20. For a fixed l, there exists a constant C and infinitely many r such
that there exists a k < Cr2 so that

dim(〈Pr(ẽ(l)k ∗ τk)〉) > dim(〈Pr−1(ẽ
(l)
k ∗ τk)〉).

Note that in such a situation, if n > Cr2 + r then Pr = Pr,n as pro-
jection operators on KSk. We can then pick an element β in KSk such
that β∗ tk(αl(QG(r−1,∞))) = 0 and β∗ tk(αl(QG(r,n))) 6= 0. If Corollary 2
were false there would be a morphism f : G(r, n) → G(r − 1,∞) so that
f∗
(
β∗ tk(αl(QG(r−1,∞)))

)
= β∗ tk(αl(QG(r,n))). This gives us a contradiction.

Therefore, Corollary 2 follows immediately from Lemma 20.

We will prove Lemma 20 by a simple counting argument. We however, need
the following lemma.
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Lemma 21.
ẽ
(l)
k ∗ τk = ẽ

(l−1)
k−1 ∗ τk

where Sk−1 ⊂ Sk is embedded as the subgroup fixing k.

Proof. Let α be a permutation of {1, 2, 3, . . . , k−1} with j−1 descents. Then,
among the permutations α, ατk, . . . , ατk

k−1, we see that j of the permutations
have j− 1 descents, while the remaining k− j have j descents. For, ατk

i has j
descents or j−1 descents depending on whether α(k− i) < α(k− i+ 1) or not,
for 2 ≤ i ≤ k − 1. For j − 1 such i, α(k − i) > α(k − i + 1) (corresponding to
the descents of α). These j − 1 elements together with α have j − 1 descents.
The remaining k − j permutations have j descents. As τk

iτkτk
−i = τk, the

coefficient of ατkα
−1 in ẽ

(l)
k ∗ τk is given by jal,jk + (k − j)al,j+1

k , since among

the elements α, ατk, . . . , ατk
k−1, those with j − 1 descents contribute al,jk and

those with j descents contribute al,j+1
k to the coefficient of ατkα

−1 in ẽ
(l)
k ∗ τk.

The desired lemma follows from observing that jal,jk + (k − j)al,j+1
k = jal−1,j

k−1 ,

since j
(
X−j+k

k

)
+ (k − j)

(
X−j−1−k

k

)
= X

(
X−j−1−k

k−1

)
.

Proof. (Proof of Lemma 20). Suppose we have shown that there exists a con-
stant C such that for a fixed l and r,

dim(〈ẽ(l)k ∗ τk〉) > dim(〈Pr(ẽ(l)k ∗ τk)〉)

if k ≥ Cr2. Then,

there exists s ≥ r so that dim(〈Ps(ẽ(l)k ∗ τk)〉) < dim(〈Ps+1(ẽ
(l)
k ∗ τk)〉).

Therefore, for any l and r, there exists s ≥ r so that

dim(〈Ps(ẽ(l)k ∗ τk)〉) < dim(〈Ps+1(ẽ
(l)
k ∗ τk)〉).

With l,r and s as above, pick k = Cr2. Then k < C(s+ 1)
2

as well. This
proves the lemma provided we actually show that there exists a constant C
such that for a fixed l and r,

dim(〈ẽ(l)k ∗ τk〉) > dim(〈Pr(ẽ(l)k ∗ τk)〉)

whenever k > Cr2. This is what we will do now.

1. Observe that the stabilizer of τk under conjugation is the cyclic subgroup
generated by τk. Thus, Sk−1 acts freely on the conjugates of τk and β ∗ τk = 0
for some β ∈ KSk−1 iff β = 0. It follows from this remark and the Lemma

21 that dim(〈ẽ(l)k ∗ τk〉) is the dimension of the representation KSk−1.ẽ
(l−1)
k−1 of

KSk−1. By exercise 4.5 in Loday[2] that this space has dimension equal to the
coefficient of ql−1 in q(q + 1) . . . (q + k − 2).
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2. On the other hand, look at dim(⊕|λ|≤r End(Vλ) for a fixed r. Note that if
λ : k = λ1 + · · · + λr′ is a partition of k, and if Π denotes the product of the
hook lengths of the Young diagram corresponding to λ, then dim(Vλ) = k!

Π ≤
k!

λ1!λ2!...λr′ !
. Thus, dim(End(Vλ)) ≤ ( k!

λ1!λ2!...λr′ !
)
2
. Hence,

dim(⊕|λ|≤r End(Vλ)) ≤
∑

λ1+···+λr=k
λi≥0

(
k!

λ1!λ2! . . . λr!
)
2

≤ (
∑

λ1+···+λr=k
λi≥0

k!

λ1!λ2! . . . λr!
)2 = r2k.

Therefore, for a fixed r,

dim(〈Pr(ẽ(l)k ∗ τk)〉) ≤ dim(⊕|λ|≤r End(Vλ)) ≤ r2k.

On the other hand,

dim(〈ẽ(l)k ∗ τk〉) = coefficient of ql−1 in q(q + 1) . . . (q + k − 2) ≥ (k − 2)!

(l − 2)!
.

We need to find k large enough so that (k−2)!
(l−2)! > r2k. To see this we need to

find k large enough so that

ln((k − 2)!)− ln((l − 2)!) > 2k ln r.

Note that

ln((k − 2)!) > (k − 2) ln(k − 2)− (k − 3).

We therefore, only need to find k large enough so that

(k − 2) ln(k − 2) > k − 3 + ln((l − 2)!) + (k − 2) ln(r2) + 2 ln(r2).

Put D = ln(r4(l − 2)!). We then need k so that

(k − 2) ln(k − 2) > k − 3 +D + (k − 2) ln(r2).

Certainly, there exists N ∈ N so that N(k − 2) > (k − 3) + D To see this,
note that we can pick N > D + 1 if k > 3 for instance. In fact, picking
N > 5 + ln((l − 2)!) works as well. The latter choice of N is independent of r.
If k − 2 > eNr2, then we see that

(k − 2) ln(k − 2) > k − 3 +D + (k − 2) ln(r2).

Certainly, k > eN+1r2 would do for our purposes.

Documenta Mathematica 14 (2009) 67–113



On the Nonexistence of Certain Morphisms from . . . 99

Thus, if l and r are fixed, we have shown that there is a constant C so that
when k > Cr2, then

dim(〈ẽ(l)k ∗ τk〉) > dim(〈Pr(ẽ(l)k ∗ τk)〉).

If l = 2, in particular, we need

(k − 2) ln(k − 2) > k − 3 + (k − 2) ln(r2) + 2 ln(r2)

We see that this happens if k − 2 > 7r2.

This completes the proof of Corollary 2. In addition, we have shown in Lemma
20 and hence in Corollary 2 that if l = 2, C = 7 works.

To complete the proof of Corollary 3, we make some observations.

Observation 1. By Lemma 21,

τk =
∑

l≥2

ẽ
(l−1)
k−1 ∗ τk =

∑

l≥2

ẽ
(l)
k ∗ τk

=⇒ tk(Q) =
∑

l≥2

tk(αl(Q)) =⇒ tk(α1(Q)) = 0 ∀k ≥ 2.

Observation 2. Since ⊕ tk : K(X)⊗Q→ ⊕Hk(X,Ω⊗k) is a ring homomor-
phism, is follows that

tk(α1(Q)
2
) = 0

if k 6= 2.

If f : G(s+ 1, N)→ G(s,M) is a morphism, then one sees that

f∗(α2(Q′)) = Aα1(Q)
2

+Bα2(Q)

where Q and Q′ are the universal quotient bundles of G(s+ 1, N) and G(s,M)
respectively. By Observation 2,

tk
(
f∗
(
α2(QG(s,M))

))
= B tk(α2(QG(s+1,N))).

If B 6= 0, one sees that I(k, s, 2) ⊆ I(k, s+ 1, 2) (a contradiction). This finally
proves Corollary 3.

To prove Theorem 2, we need the following lemma.

Lemma 22. X a smooth (projective) scheme. Suppose that [V ] ∈ K(X) is
given by [V ] =

∑
ai[Vi], where Vi’s are of rank ≤ r. Then, I(k, r, l) annihilates

tk(αl([V ])).
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Proof. There exists N ∈ N so that for each m > N there exist surjections
Gi → Vi(m) where Gi is a free OX module for each i. Let Ki denote
the rank of Gi. This is equivalent to saying that for each i there exists a
morphism fi : X → G(rank(Vi),Ki) so that Vi(m) = fi

∗Qi, Qi being the
universal quotient bundle of G(rank(Vi),Ki). Thus for each i, I(k, r, l) kills
tk (αl(Vi ⊗O(m))) for each m > N .

To prove this lemma, it suffices to show that I(k, r, l) kills tk(αl(Vi)) for each
i. For this, we note that ⊕ tk(O(1)) = et1(α1(O1)), with the understanding

that t1(α1(O1))D+1 = 0 where D is the dimension of the ambient projective
space. Thus, ⊕ tk(O(m)) = em t1(α1(O1)). Since the Vandermonde determinant
∆(N + 1, .., N + D + 1) 6= 0, we can find a linear combination W of O(N +
1), . . . ,O(N + D + 1) so that tk(W ) = 0 for every k ≥ 1 and t0(W ) = 1.
Clearly, tk(αl(Vi ⊗W )) = tk(αl(Vi)) is killed by I(k, r, l).

Proof of Theorem 2. Lemma 20 implies that given any fixed l ≥ 2, there
exists a constant C such that there exist infinitely many r such that given any
n > Cr2 + r,

I(k, r, l) ( I(k, r − 1, l).

Lemma 22 implies that I(k, r − 1, l) annihilates tk(x) for any element x of
Fr−1CHl(QG(r,n))⊗Q. Theorem 2 now follows immediately from the fact that
I(k, r, l) is the annihilator of tk(αl(QG(r,n))) by definition.

6.2 Outline of proof of Theorem 3

Originally, the hope was for a stronger result saying that for fixed l and r, there
exists a k satisfying I(k, r, l) ( I(k, r − 1, l). In fact, there was the hope of
being able to show that I(2r, r, l) ( I(2r, r− 1, l). This would have shown that
there is no morphism f : G(r, 2r) → G(r − 1,M) so that f∗(αl(Q′)) = αl(Q).
We have so far been unable to do this in general. However, we have found (by
means of a computer program) that I(6, 3, 2) ( I(6, 2, 2) thus proving that if

f : G(3, 6) → G(2,M) is a morphism, then f∗(α2(Q′)) = Cα1(Q)
2
. This we

do by showing that ⊕|λ|=3 End(Vλ) contains an irreducible representation Vµ
of S6 not contained in ⊕|λ|≤2 End(Vλ), and that if πµ denotes the projection

from KSk to Vµ, then πµ ∗ ẽ(2)6 ∗ τ6 6= 0. This is achieved using a Mathematica
program.

7 Proof of Theorem 1

7.1 A certain decomposition of KSk

Observe that KSk = ⊕Wλ where Wλ is the K-span of elements of Sk in the
conjugacy class corresponding to the partition λ. We shall break each of the
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spaces Wλ further into a direct sum of K-vector spaces in a specific manner.
The significance of the new decomposition shall become clear as we proceed.
First, let us decompose the conjugacy class C(k) which is the conjugacy class

of the cycle τk. Note that τk =
∑

l≥2 ẽ
(l)
k ∗ τk and that ẽ

(l)
k ẽ

(l′)
k = δll′ ẽ

(l)
k . Define

operators Πl on C(k) by Πl(βτkβ
−1) = β ∗ (ẽ

(l)
k ∗ τk) for β ∈ Sk and extend this

by linearity to C(k). Note that
∑
l≥2 Πl(β ∗τk) = β ∗τk. First, we need to check

that we actually have a well defined operator here. It suffices to show that if
β, γ ∈ Sk with β ∗ τk = γ ∗ τk then Πl(β ∗ τk) = Πl(γ ∗ τk). In other words, we

need to show that β ∗ (ẽ
(l)
k ∗ τk) = γ ∗ (ẽ

(l)
k ∗ τk) which is equivalent to showing

that (β−1γ) ∗ (ẽ
(l)
k ∗ τk) = ẽ

(l)
k ∗ τk. But β ∗ τk = γ ∗ τk iff β−1γ = τsk for some s.

Therefore, the fact that Πl is well defined follows from the following lemma.

Lemma 23.
τsk ∗ (ẽ

(l)
k ∗ τk) = ẽ

(l)
k ∗ τk

for any integer s.

Proof. This really follows from the fact that for any smooth scheme X , and for
any vector bundle V on X ,

sgn(τk)τk∗ tk(V ) = tk(V ).

After all, sgn(τk)τk∗θV
k = θV

k (by the properties of the cup product). Hence,

tr∗ϕ∗ sgn(τk)τk∗θV
k = tr∗ϕ∗θV

k

where ϕ : End(V )⊗k → End(V ) is k-fold composition. The right hand side
of this equation is tk(V ) by definition. The left hand side is sgn(τk)τk∗ tk(V )
since

tr ◦ ϕ ◦ τk = τk ◦ tr ◦ ϕ.

This tells us that sgn(τsk )τsk ∗ tk(V ) = tk(V ). To finish the proof of the lemma,
we observe that by Lemma 19,

τsk ∗ (ẽ
(l)
k ∗ τk) = sgn(τsk )τsk∗ tk(αl(Q

′))

and that
ẽ
(l)
k ∗ τk = tk(αl(Q

′))

where Q′ is the universal quotient bundle of the Grassmannian G(r′, 2r′) with
r′ chosen to be greater than k.

The other detail to be verified is the fact that the operators Πl are mutually
orthogonal projections. For this, we see that

Πl(β ∗ τk) = β ∗ (ẽ
(l)
k ∗ τk) = (βẽ

(l)
k ) ∗ τk =⇒ Πl ◦Πm(β ∗ τk)

= (βẽ
(m)
k ẽ

(l)
k ) ∗ τk = (βδlmẽ

(l)
k ) ∗ τk.
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We therefore, have a direct sum decomposition W(k) = ⊕l≥2Πl(W(k)).

We now proceed to breakup Wλ into a direct sum of K-vector spaces in an anal-
ogous manner. Note that Cλ is the conjugacy class of τλ := τλ1τλ2 . . . τλs where
the partition λ is given by λ : k = λ1 + ..+λs, the λi ’s arranged in decreasing
order and where τλi is the cycle (λ1+· · ·+λi, λ1+· · ·+λi−1, . . . , λ1+· · ·+λi−1)
which is after all the cycle τλi embedded in Sk under the composition
Sλi ⊂ Sλ1×· · ·×Sλs ⊂ Sk. Call the map Sλ1×· · ·×Sλs ⊂ Sk as ϕ. Note that ϕ
extends to a K-algebra homomorphism ϕ : K(Sλ1×· · ·×Sλs)→ K(Sk). Identify

K(Sλ1)⊗· · ·⊗K(Sλs) with K(Sλ1×· · ·×Sλs) and consider (ẽ
(l1)
λ1
⊗· · ·⊗ẽ(ls)λs

)∗τλ.

By this we mean that we are looking at ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

as an element of KSk
through the homomorphism ϕ. We now make the following observations that
give a step by step, explicit construction of the decomposition of KSk that we
are interested in.

Observation 1. The elements ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ

(ls)
λs

are mutually orthogonal
idempotents in K(Sk) adding up to id. This follows from the fact that the
above statement is true in K(Sλ1 × · · · × Sλs).

Observation 2. As τλ = τλ1 ⊗ · · · ⊗ τλs ,

(ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

) ∗ τλ = (ẽ
(l1)
λ1
∗ τλ1)⊗ · · · ⊗ (ẽ

(ls)
λs
∗ τλs)

It follows that if for some i, λi ≥ 2 and li = 1, then

(ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

) ∗ τλ = 0.

Observation 3. Let

ẽ
(l)
λ :=

∑

l1+···+ls=l
ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

.

Then ẽ
(l)
λ is an idempotent with

ẽ
(l)
λ .(ẽ

(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

) = (ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

)

if l1 + · · ·+ ls = l and

ẽ
(l)
λ .(ẽ

(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

) = 0

otherwise.

Let Πl be defined by Πl(β ∗ τλ) = (βẽ
(l)
λ ) ∗ τλ for every β ∈ Cλ . We then have

Lemma 24. The Πl are well-defined mutually orthogonal projection operators
on Wλ.
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Proof. Note that it suffices to show that if γ is a permutation in the stabilizer

of τλ under conjugation, then γ ∗ (ẽ
(l)
λ ∗ τλ) = ẽ

(l)
λ ∗ τλ. Note that if γ stabilizes

τλ under conjugation, then γ is of the form ζ(τr1λ1
⊗· · ·⊗ τrsλs) where ζ permutes

blocks of equal lengths among [1, . . . , λ1], [λ1 + 1, . . . , λ1 + λ2], . . . , [λ1 + · · ·+
λs−1 + 1, . . . , k] while preserving order within such blocks. Now we need to

show that γ ∗ (ẽ
(l)
λ ∗ τλ) = ẽ

(l)
λ ∗ τλ. Observe that

(τr1λ1
⊗· · ·⊗τrsλs)∗(ẽ

(l1)
λ1
⊗· · ·⊗ ẽ(ls)λs

)∗τλ = (τr1λ1
∗ ẽ(l1)λ1

∗τλ1)⊗· · ·⊗(τrsλs ∗ ẽ
(ls)
λs
∗τλs)

= (ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

) ∗ τλ
(the last equality by Lemma 23). So, we only need to show that

ζ ∗ ẽ(l)λ ∗ τλ = ẽ
(l)
λ ∗ τλ.

But this is true since ζ induces a permutation ζ′ of 1, 2, .., s and we see that

ζ.(ẽ
(l1)
λ1
⊗ · · · ⊗ ẽ(ls)λs

) = (ẽ
(lζ′(1))

λζ′(1)
⊗ · · · ⊗ ẽ(lζ′(s))λζ′(s)

).

Observation 4. It now follows from this and the fact that the Πl are mutually
orthogonal idempotents adding upto id that

Wλ = ⊕Πl(Wλ).

Also, Observation 2 tells us that Π1(Wλ) = 0 and that Π2(Wλ) = 0 if λ 6= (k).
Therefore, this direct sum decomposition runs over l ≥ 2. Combining this with
the decomposition KSk = ⊕λWλ, we see that

KSk = ⊕λ ⊕l≥2 Πl(Wλ) = ⊕l≥2Πl(KSk).

7.2 Proof of Corollary 1

Definition :Define an elementary functor of type (k, l) to be a map v (not
necessarily linear) from K(X)⊗Q to Rk(X) such that

w(x) = β∗ tλ1(αl1(x)) ∪ · · · ∪ tλs(αls(x))

for some β ∈ KSk, some s-tuple (λ1, .., λs) of non-negative integers adding up
to k and some s-tuple (l1, . . . , ls) of non-negative integers adding up to l.

Define a functor of type (k, l) to be a map from K(X)⊗Q to Rk(X) given by
a ”linear combination of elementary functors of type (k, l)”. In other words, a
functor of type (k, l) is a map v from K(X)⊗Q to Rk(X) such that

v(x) =

j=p∑

j=1

cjwj(x)
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where p ∈ N, and w1, .., wp are elementary functors of type (k, l).

Define a vector of type (k, l) in Pr,n(KSk) to be an element of the form v(Q),
where v is a functor of type (k, l) and Q is the universal quotient bundle of the
Grassmannian G(r, n).

Note that if v is a functor of type (k, l), then

v(ψpx) = plv(x)

for any x ∈ K(X)⊗Q. Also note that functors of type (k, l) respect pullbacks.

We now try to understand what the decomposition of KSk given in the Section
7.1 means. Lemma 19 together with Lemma 3 part 3 tells us that

tλ1(αl1(QG(r,n))) ∪ · · · ∪ tλs(αls(QG(r,n))) = Pr,n(ẽ
(l)
λ ∗ τλ).

Also, by Lemma 3 part 2

sgn(β)β−1
∗ tλ1(αl1(QG(r,n))) ∪ · · · ∪ tλs(αls(QG(r,n))) = Pr,n(β ∗ ẽ(l)λ ∗ τλ).

Let l =
∑

i li. Thus the space spanned by

{β∗ tλ1(αl1(QG(r,n))) ∪ · · · ∪ tλs(αls(QG(r,n))) |
∑

i

li = l,
∑

i

λi = k},

which is Pr,n(Πl(KSk)), is precisely the space of vectors of type (k, l).

If both r and n − r are larger than k, then Pr,n = id. What we did in
Section 7.1 shows that in this case, KSk decomposes into the direct sum of the
spaces Πl(KSk). The space Πl(KSk) is stable under conjugation and is the
space of vectors of type (k, l). However, if k is not too large, something very
interesting happens primarily because the projection Pn,r ”behaves badly”
with the projections Πl. Let n ≥ 2r + 1 and let k = 2r. Then, Pr,n = Pr.
Also, tj(QG(r,n)) = tj(QG(r,M)) for every M ≥ n and every j ≤ k. It follows
that vl(QG(r,n)) = vl(QG(r,M)) for all M ≥ n if vl is any functor of type (2r, l).
Let Q denote QG(r,n). The following claim holds in this situation.

Claim: There exists a nontrivial linear dependence relation of the form
∑

l

vl(Q) = 0

such that vl is a functor of type (2r, l) for each l.

The above claim is proven in Section 7.3. This leads to Corollary 1 as follows.
Choose a shortest nontrivial linear dependence relation of the form

∑

l

vl(Q) = 0
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with vl a functor of type (2r, l). Then, suppose that there exists a map f :
G(r, n) → G(r,M) with f∗([QG(r,M)]) = ψp[QG(r,n)], we can assume without
loss of generality that M ≥ n. Thus,

0 = f∗(
∑

l

vl(QG(r,M))) =
∑

l

vl(f
∗QG(r,M)) =

∑

l

vl(ψ
pQ) =

∑

l

plvl(Q).

Since p ≥ 2, comparing this linear dependence relation with the previous one
would enable us to extract a linear dependence relation of the same form but
of shorter length than the one we began with. This yields a contradiction.

The proof of theorem 1 requires a little more work which we do in Section 7.4.

7.3 A linear dependence relation between functors of type (2r, l)

First, we observe that if V is a vector space with V = V1⊕V2 and also V = ⊕Wi,
with pi being the projections to Vi and πi being the projections to Wi, then

dim p1(W1) + · · ·+ dim p1(Wm) ≥ dim V1.

To see this, suppose that equality holds. Then,

dim p1(Wi) = dim Wi − dim Wi ∩ V2

=⇒ dim W1 ∩ V2 + · · ·+ dim Wm ∩ V2 = dim V2.

From this, we see that πi(V2) = Wi ∩ V2 for all i ∈ {1, 2, .., , }. In particular, if
πi(V2) 6= Wi ∩ V2, then

dim p1(W1) + · · ·+ dim p1(Wm) > dim V1.

Having said this, we will prove that for V = KS2r ( V = V1 ⊕ V2 where
V1 = ⊕|λ|≤r End(Vλ) and V2 = ⊕|λ|>r End(Vλ) also V = ⊕l≥2Πl(V ))

Π2(V2) 6= Π2(V ) ∩ V2.

This will prove that

∑

l≥2

dim Pr(Πl(V )) > dim V1.

Observation 4 of Section 7.1 tells us that Π2(V ) = Π2(W(2r)). Any element in
this space is a linear combination of conjugates of τ2r. It follows that if such
a linear combination is nonzero in End(Vλ) it is also nonzero as an element of
End(Vλ̄), where λ̄ is the partition conjugate to λ. Thus Π(2r)(V ) ∩ V2 = 0. It
therefore, suffices to prove that Π2(V2) 6= 0.
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Lemma 25. To prove that Π2(V2) 6= 0, it suffices to show that

Π2((1 2r)
∑

g∈Cµ
g) 6= 0

where (1 2r) is the transposition interchanging 1 with 2r and µ is some partition
among {(2r − 1, 1), . . . , (r, r)}.

Proof. Consider the matrix M = (χλ(Cµ)) where λ runs over all partitions of
2r that satisfy λ ≥ (r, r) (recall that there is a lexicographic ordering among
the partitions,enabling one to compare them), and µ ∈ {(2r− 1, 1), . . . , (r, r)}.
Note that if λ is such a partition and λ 6= (r, r) then λ1 ≥ r+ 1. We claim that
M is of rank r. To prove this, it suffices to show that N is of rank r where
N = (ψλ(Cµ)), where

ψλ = IndS2r

Sλ
(triv) = χλ +

∑

µ>λ

Kµλχµ.

However,

ψλ(Cµ) =
1

|Cµ|
[S2r : Sλ]|Cµ ∩ Sλ|.

Therefore, ψλ(Cµ) = 0 if µ > λ. This lexicographic order is a total or-
der. Consider the restriction of N to the rows given by the partitions in
{(2r− 1, 1), . . . , (r, r)}. This restriction of N is then a lower triangular matrix
with nonzero diagonal entries if the rows are arranged in the correct order
(since ψλ(Cλ) 6= 0). It follows that N and therefore, M are matrices of rank r.

We further claim that if we restrict M to rows corresponding to λ > (r, r), we
still get a matrix of rank r. To see this, we need to show that for some scalars
aλ,

χ(r,r)(Cµ) =
∑

λ>(r,r)

aλχλ(Cµ)

for all µ ∈ {(2r − 1, 1), . . . , (r, r)}. For this, it is enough to show that

ψ(r,r)(Cµ) =
∑

λ>(r,r)

bλψλ(Cµ)

for all µ ∈ {(2r − 1, 1), . . . , (r, r)}, for some scalars bλ. In fact, we claim that
there are scalars bi,0 ≤ i ≤ r − 1, so that

ψ(r,r)(Cµ) =
∑

0≤i≤r−1

biψ(2r−i,i)(Cµ).

Note that |C(2r−s,s) ∩ S(2r−t,t)| = 0 if s 6= t and both are nonzero. Also note
that ψ(2r)(C(r,r)) 6= 0. Thus the vector (ψ(2r)(Cµ)), µ ∈ {(2r − 1, 1), . . . , (r, r)}
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is given by (a1, .., ar), where ar 6= 0. The vector ψ(2r−s,s)(Cµ), µ ∈ {(2r −
1, 1), . . . , (r, r)} is given by (0, .., 0, ds, . . . , 0), ds 6= 0 for 1 ≤ s ≤ r − 1. Thus,

ψ(2r)(Cµ)−
∑ as

ds
ψ(2r−s,s)(Cµ) = (0, .., 0, ar)

which is a nonzero multiple of ψ(r,r)(Cµ). This shows that the matrix
M = χλ(Cµ) where λ > (r, r) and µ ∈ {(2r − 1, 1), . . . , (r, r)} is of rank r.
Since χλ̄ = χλ. sgn, and |λ̄| ≥ r + 1 iff λ > (r, r), the matrix M ′ = χλ(Cµ)
where |λ̄| ≥ r + 1 and µ ∈ {(2r − 1, 1), . . . , (r, r)} is obtained from M by
multiplying some columns by −1 and is therefore of rank r.

Now suppose that Π2((1 2r)
∑

g∈C(2r−s,s)
g) 6= 0 for some 1 ≤ s ≤ r. SinceM ′ is

of rank r, we can find a linear combination of rows of M ′ that gives us the vector
es i.e,

∑
|λ|>r+1 aλχλ(Cµ) = 0 if µ 6= (2r − s, s) and

∑
|λ|>r+1 aλχλ(Cµ) = 1 if

µ = (2r − s, s). So,

Π2((1 2r)(
∑

g∈S2r

|λ|>r+1

aλχλ(g)g)) = Π2((1 2r)
∑

g∈C(2r−s,s)

g) 6= 0.

The first equality is because only the 2r cycles contribute to Π2(V ). Note that
since

∑
χλ(g)g ∈ End(Vλ) it follows that

(
∑

g∈S2r

|λ|>r+1

aλχλ(g)g) ∈ V2

and hence
(1 2r)(

∑

g∈S2r

|λ|>r+1

aλχλ(g)g) ∈ V2.

It follows that Π2(V2) 6= 0.

Lemma 26. For some s, 1 ≤ s ≤ r, we have Π2((1 2r)
∑

g∈C(2r−s,s)
g) 6= 0.

Proof. Every 2r cycle that arises in (1 2r)
∑

g∈C(2r−s,s)
g arises with coefficient

1. We therefore need to identify the 2r cycles that do arise. They are those
of the form (1 a2 .. as 2r as+2 . . . ) or (1 a2 . . . a2r−s 2r . . . ). For this proof,
denote the subgroup of S2r fixing the elements i and j by S(i, j) for any 1 ≤
i < j ≤ 2r. We note that

(1 2r)
∑

g∈C(2r−s,s)

g

=
∑

α∈S(1,2r)

α ∗ (2r 2r − s 2r − s− 1....1 2r − 1 2r − 2 . . . 2r − s+ 1)

+α ∗ (2r s s− 1 . . . 1 2r − 1.. s+ 1)
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=
∑

α∈S(1,2r)

α ∗ (τs−1
2r−1 + τ2r−s−1

2r−1 ) ∗ τ2r

= (τ−1
2r−1(

∑

β∈S(2r−1,2r)

β)τ2r−1) ∗ (τs−1
2r−1 + τ2r−s−1

2r−1 ) ∗ τ2r

= (τ−1
2r−1

∑

β∈S(2r−1,2r)

β) ∗ (τs2r−1 + τ2r−s
2r−1 ) ∗ τ2r.

Therefore,

Π2((1 2r)
∑

g∈C(2r−s,s)

g) = (τ−1
2r−1

∑

β∈S(2r−1,2r)

β) ∗ (τs2r−1 + τ2r−s
2r−1 ) ∗ (ẽ

(2)
2r ∗ τ2r)

= (τ−1
2r−1

∑

β∈S(2r−1,2r)

β) ∗ (τs2r−1 + τ2r−s
2r−1 ) ∗ (ẽ

(1)
2r−1 ∗ τ2r),

the last equality following from Lemma 21.

For this proof, denote the subgroup of S2r−1 fixing the element i by S(i) for
any 1 ≤ i ≤ 2r − 1. It therefore, suffices to show that

(τ−1
2r−1

∑

β∈S(2r−1)

β)(τs2r−1 + τ2r−s
2r−1 )(ẽ

(1)
2r−1) 6= 0

for some s, 1 ≤ s ≤ r. It therefore, suffices to show that

Ws := (
∑

β∈S(2r−1)

β)(τs2r−1 + τ2r−s
2r−1 )(ẽ

(1)
2r−1) 6= 0

for some s, 1 ≤ s ≤ r. Consider a vector space V of finite dimension, and let u
and v be two basis vectors of V . We will show that the right action of Ws on
u⊗2r−2 ⊗ v is nonzero. Note that

1

(2r − 2)!
(u⊗2r−2 ⊗ v)Ws = (u⊗2r−2 ⊗ v)(τs2r−1 + τ2r−s

2r−1 )ẽ
(1)
2r−1

= (u⊗s−1 ⊗ v ⊗ u⊗2r−1−s + u⊗2r−1−s ⊗ v ⊗ u⊗s−1)ẽ
(1)
2r−1.

Therefore, it is enough to show that

(u⊗s−1 ⊗ v ⊗ u⊗2r−1−s + u⊗2r−1−s ⊗ v ⊗ u⊗s−1)ẽ
(1)
2r−1 6= 0

for some s, 1 ≤ s ≤ r. For this, we note that

0 6= ad(u)2r−2(v) = (lu − ru)2r−2(v) =
∑

i

(
2r − 2

i

)
u⊗i ⊗ v ⊗ u2r−2−i.

Now, ad(u)2r−2(v) is an element of the free Lie algebra generated by V . The

idempotent ẽ
(1)
2r−1 therefore acts as the identity on this vector, which is a linear

combination of (u⊗s−1 ⊗ v ⊗ u⊗2r−1−s + u⊗2r−1−s ⊗ v ⊗ u⊗s−1) where s runs
from 1 to r.
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7.4 Final step to the proof of Theorem 1

Suppose that [ψpQ] = [Y ] for some genuine vector bundle Y . Then Y is of
rank r, and for all sufficiently large m, Y ⊗O(m) is a quotient of OGs for some
s. It follows that Y ⊗O(m) = f∗Q′ for some morphism f : G(r, n)→ G(r, n′),
where Q′ is the universal quotient bundle of G(r, n′). Without loss of generality
we may assume that n′ ≥ 2r + 1. Let Q denote the universal quotient bundle
of G(r, n). As in Section 7.2, choose a shortest linear dependence relation of
the form ∑

l

vl(Q) = 0

where vl is a functor of type (2r, l).

Then,
∑

l vl(Q
′) = 0. Since the vl’s respect pullbacks,

∑

l

vl(Y ⊗O(m)) = 0

for all sufficiently large m. Note that ⊕ tk(O(m)) = exp(t1(α1(O(1)))). There-
fore,

tλi(αli(Y ⊗O(m))) = tλs(αls(Y ) +mαls−1(Y )α1(O(1)) + . . . ).

Therefore,

vl(Y ⊗O(m)) = vl(Y ) +m.A1(Y ) + · · ·+msAs(Y )

for all l with Ai(Y ) ∈ R(G(r, n)). In other words, vl(Y ⊗O(m)) is a polynomial
in m with coefficients in R(G(r, n)) whose constant term is vl(Y ). It follows
that

∑
l vl(Y ⊗ O(m)) is a polynomial in m with coefficients in R(G(r, n))

whose constant term is
∑

l vl(Y ). The fact that
∑
l vl(Y ⊗O(m)) vanishes for

all sufficiently large m implies that
∑

l vl(Y ) = 0. Thus,

∑

l

vl(ψ
pQ) =

∑

l

plvl(Q) = 0

as well. As in Section 7.2, since p ≥ 2, this together with the linear dependence
relation

∑
l vl(Q) = 0 yields a linear dependence relation of the same form but

of shorter length, thereby giving a contradiction. This finally proves Theorem 1.

Appendix

This appendix if for sketching a proof of Observation 1 of Section 3. This
material is by and large reproduced from notes by Jinhyun Park [13] of a
course taught by Madhav Nori at the University of Chicago in Fall 2004.
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Recall that given a morphism f : Y → X of schemes, a sheaf F on Y is said
to have descent data if it satisfies the following three properties.

[D1]. Given any two morphisms g1, g2 : Z → Y such that f ◦ g1 = f ◦ g2, there
is an isomorphism c(g1, g2) : g∗1F ∼= g∗2F .
[D2]. (Functoriality). Given any morphisms h : W → Z and g1, g2 : Z → Y
such that f ◦ g1 = f ◦ g2, the following diagram commutes.

h∗ ◦ g∗1F
h∗c(g1,g2)−−−−−−−→ h∗ ◦ g∗2F

≃
y

y≃

(g1 ◦ h)∗F c(g1◦h,g2◦h)−−−−−−−−→ (g2 ◦ h)∗F

[D3]. Given any three morphisms g1, g2, g3 : Z → Y such that f ◦ g1 = f ◦ g2 =
f ◦ g3 the following diagram commutes.

g∗1F
c(g1,g2)−−−−−→ g∗2F

c(g1,g3)

y
yc(g2,g3)

g∗3F
id−−−−→ g∗3F

We now recall a theorem of Grothendieck [15].

Theorem 4. Let f : Y → X be a flat surjective morphism of schemes. There
is an equivalence of categories

{Quasicoherent sheaves on X} ←→
{quasicoherent sheaves on Y with descent data}

G 7→ f∗G.

The following construction due to Grothendieck [15] gives the inverse to the
above equivalence of categories.

Construction 1. Let F be a quasicoherent sheaf on Y with descent data.
Note that for every open U ⊂ X , F|f−1(U) is a quasicoherent sheaf with descent

data for the morphism f |f−1(U) : f−1(U)→ U . Let F denote the sheafification
of the presheaf

U 7→ {s ∈ Γ(f−1(U),F) | c(g1, g2)g∗1s = g∗2s for all g1, g2 : Z → f−1(U)}.

The inverse to the equivalence of categories in Theorem 4 is given by F 7→ F .
For example, OY = OX .
Let P be an affine group scheme over K. Let f : Y → X be a principal P -
bundle on X . Then, descent data for f on a sheaf F is indeed equivalent to a
P -action on F . Theorem 4 therefore implies the following theorem.
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Theorem 5. Let f : Y → X be a principal P -bundle. There is an equivalence
of categories

{ Quasicoherent sheaves on X} ←→
{Quasicoherent sheaves on Y with P action}

G 7→ f∗G.

Corollary 6. The functor

F : { P-representations} −→ {locally free Quasicoherent sheaves on X}

F (V ) = OY ⊗K V

is an exact functor commuting with ⊗.

Proof. OY is naturally a P -sheaf on Y . A representation V of P is a H-sheaf
on Spec K. Therefore, OY ⊗K V is a P -sheaf on Y = Y ×Spec K Spec K. By
Theorem 5, F (V ) is a quasicoherent sheaf on X . Clearly, F (V ) is locally free.
It can also be verified without difficulty that V 7→ OY ⊗K V is an exact functor
commuting with ⊗. Since the functor from Theorem 5 is an equivalence of
categories, the desired corollary follows.

We can now sketch the proof of the following theorem. Let G be a affine
algebraic group and let P be a closed subgroup of G. Let P denote the category
of P -representations. With these assumptions, we have the following theorem
of Bott [4]. This theorem has been referred to in Section 3 as Observation 1.

Theorem 6. Let G be reductive. If K is regarded as the trivial P -
representation,

Hi(G/P, F (V ))G ≃ ExtiP(K, V ).

Proof. For any V ∈ P , let T i(V ) = Hi(G/P, F (V ))G. We shall show that in the
language of Grothendieck [14], T 0(V ) = HomP(K, V ) and T i(V ) = RiT 0(V ).
This will prove the desired theorem. To do this, we need to verify the following
list of properties.
(a) T i : P → K− vector spaces is a functor.
(b) Given a short exact sequence 0→ V ′ → V → V ′′ → 0 in P , there is a long
exact sequence

. . .
δ−−−−→ T i(V ′) −−−−→ T i(V ) −−−−→ T i(V ′′)

δ−−−−→ T i+1V ′ −−−−→ . . .

The given short exact sequence gives a long exact sequence Hi(G/P,−). Now,
for any exact sequence W ′ → W → W ′′ of G-representations, the sequence
W ′G →WG →W ′′G is exact. This verifies (b).
(c) The data in (b) is functorial.
(d) T 0(V ) = V P .
(e) (effaceability) For all i > 0, for all α ∈ T i(V ), there is a monomorphism
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j : V →W in P such that T i(j)(α) = 0.

We check (e), the only nontrivial assertion above. Put W = Γ(P,OP ). Then,
F (W ) = f∗OG where f : G → G/P is the natural morphism. Note that G
is affine and f ia an affine morphism. Therefore, for any quasicoherent sheaf
F on G, Hi(G,F) = 0 for every i > 0 and Rif∗F = 0 for every i > 0. The
Leray spectral sequence then tell us that Hi(G/P, f∗F) ≃ Hi(G,F) = 0 for
all i > 0. In particular, Hi(G/P, F (W )) = 0 for every i > 0. Let V be any
P -representation. We have an isomorphism

HomP(V,Γ(P,OP )) ≃ V ∗ (1)

L 7→ evid ◦ L.

Here, evid ◦ L is the composite

V
L−−−−→ Γ(P,OP )

evid−−−−→ K.

Denote the inverse of the isomorphism (1) by S. Choose linear func-
tionals u1, . . . , ui, . . . on V such that ∩Ker(ui) = 0. Then, S(ui) ∈
HomP(V,Γ(P,OP )). Clearly, the morphism ⊕iS(ui) : V → ⊕iΓ(P,OP ) is
a monomorphism in P . Further, T p(⊕iΓ(P,OP )) = 0 whenever p > 0 since
we just showed that T p(Γ(P,OP )) = 0 whenever p > 0. This completes the
verification of (e) and therefore, the proof of the desired theorem.
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Abstract. This is the the second part of a series of two papers,
which investigate spectral properties of Dirac operators with singular
potentials. We will provide a spectral analysis of a relativistic one-
electron atom in interaction with the second quantized radiation field
and thus extend the work of Bach, Fröhlich, and Sigal [5] and Hasler,
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case. We will rely on the technical preparations derived in the first
part [25] of this work.
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1 Introduction

We continue our study of resonances for relativistic electrons and apply the
results about one-particle Dirac operators with singular potentials in [25] to
a relativistic Pauli-Fierz model. We prove upper and lower bounds on the
lifetime of excited states for a relativistic hydrogen (-like) atom coupled to
the quantized radiation field and show that it is described by Fermi’s Golden
Rule and coincides with the non-relativistic result in leading order in the fine
structure constant α.
The spectral analysis of non-relativistic atoms in interaction with the radia-
tion field was initiated by Bach, Fröhlich, and Sigal [4, 5]. It was carried on
by Griesemer, Lieb and Loss [16], by Fröhlich, Griesemer and Schlein (see for

Documenta Mathematica 14 (2009) 115–156



116 Matthias Huber

example [15]) and many others (see for example Hiroshima [22], Arai and Hi-
rokawa [3], Dereziński and Gérard [12], Hiroshima and Spohn [21]), Loss, Miyao
and Spohn [32] or Hasler and Herbst [18, 17]). Recently, Miyao and Spohn [35]
showed the existence of a groundstate for a semi-relativistic electron coupled
to the quantized radiation field.

Bach, Fröhlich, and Sigal [5] proved a lower bound on the lifetime of excited
states in non-relativistic QED. Later, an upper bound was proven by Hasler,
Herbst, and Huber [19] (see also [24]) and by Abou Salem et al. [1]. As in [4, 5,
19] we use the method of complex dilation. Since the corresponding operators
are not normal, we are going to apply the Feshbach projection method, which
was introduced in non-relativistic QED by Bach et al. [4, 5].

We describe the electron by the Coulomb-Dirac operator, projected onto its
positive spectral subspace. Note that this choice is not gauge invariant. Our
analysis will work for other potentials as well, as long as condition (26) holds
for the difference between fine structure components, and as long the eigen-
functions have a exponential decay uniform in the velocity of light.

On a technical level the relativistic model is more difficult to handle than the
nonrelativistic Pauli-Fierz model. One reason is the fine structure splitting
of the eigenvalues. Moreover, due to the use of complex dilation one has to
make sense of the notion of a positive spectral subspace for a non-selfadjoint
operator. Finally, a factor of α is missing in front of the radiation field.

We would like to mention that the Feshbach method is named after the physicist
Herman Feshbach, which used the method to deal with resonances in nuclear
physics [14, Equation (2.14)]. Also Howland [23] used the Feshbach operator
calling it “Livšic matrix”, since Livšic [31, 30] used the method in scattering
theory. Moreover, the method is known under the name “Schur complement”.
This name is due to Haynsworth [20], who used it in honor of the Schur determi-
nant formula. Also Menniken and Motovilov [34, 33] use the Schur complement
to treat resonances of 2×2-operator matrices. They call it “transfer function”,
however. For a detailed overview over the history of the Schur complement, we
refer the reader to [40]. For some more references about resonances in general
and the spectral analysis of (non-relativistic QED) we refer the reader to [25].

2 Model and Definitions

The (initial) Hilbert space of our model is H′ := Hel ⊗ F , where Hel :=
L2(R3; C4) is the Hilbert space for a relativistic electron and

F :=

∞⊕

N=0

SNL2[(R3 × Z2)]N

is the Fock space (with vacuum Ω) of the quantized electromagnetic field taking
into account the two polarizations of the photon. SN is the projection onto the
subspace of functions which are symmetric under exchange of variables.
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The Coulomb-Dirac operator with velocity of light c, Planck constant ~, elec-
tron mass m, elementary charge e, atomic number Z and permittivity of the
vacuum ǫ0 is in SI units

D′ := −i ~cα · ∇+ βmc2 − e2Z

4πǫ0

1

| · | .

This operator is self-adjoint on the domain H1(R3; C4) for e2Z
4πǫ0

<
√

3
2 c. In the

following, we will always assume that this condition is fulfilled. Actually, for
technical reasons, we are even going to impose some more restrictive conditions
later on (see for example Theorem 3).
We denote the positive spectral projection of this operator by Λ′(+). We will
restrict the operator to its positive spectral subspace and couple it to the quan-
tized radiation field A′κ′(x) := A′κ′(x)+ +A′κ′(x)−, where A′κ′(x)+ and A′κ′(x)−
are defined as in the non-relativistic case by

A′κ′(x)+ :=
∑

µ=1,2

∫

k∈R3

dk κ′(|k|)
√

~
2ǫ0c|k|(2π)3

ε′µ(k)e−ik·xa′∗µ (k) (1)

A′κ′(x)− :=
∑

µ=1,2

∫

k∈R3

dk κ′(|k|)
√

~
2ǫ0c|k|(2π)3

ε′µ(k)eiαk·xa′µ(k). (2)

Here ε′µ(k), µ = 1, 2 are the polarization vectors of the photons, which depend
only on the direction of k.
If we add the operator H ′f for the kinetic energy of the photons

H ′f := ~c
∑

µ=1,2

∫

k∈R3

dk |k|a′∗µ (k)a′µ(k), (3)

we obtain (cf. [11, B-V.1., Formula (35) through (39), page 431])

H ′ := Λ′(+)[cα · (−i ~∇− eA′κ′(x)) + βmc2 − e2Z

4πǫ0

1

| · | ]Λ
′(+) +H ′f .

In principle, one could define the operator without restriction to the positive
spectral subspace. For this case it is at least known that selfadjoint realizations
exist [2, Theorem 1.2], which are, however, not explicitly known. Moreover the
expression for the inverse life lifetime (see equation (21)) without UV cutoff
would diverge in this case so the investigation of this operator with regard to the
lifetime of excited states would not make any sense. We would like to mention
that for a certain class of potentials – which does not include the Coulomb
potential – it is known that the operator without projections is essentially
self-adjoint on a suitable domain. (see Stockmeyer and Zenk [38] and Arai [2]).
Similar to the non-relativistic case [19, 5] we set a0 := α−1( ~

mc
) (Bohr radius),

ζ := a0 and ξ−1 := α
a0

and scale the operator according to x → ζx and

k → ξ−1k. We denote the corresponding unitary transformation by U . In
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this scaling we can expect to be able to treat the operator similarly as in the
non-relativistic case. We have to make the replacements

~∇→ αmc∇ eA′κ′(x)→ α5/2mcAκ(αx)

e2

4πǫ0

1

| · | → α2mc2
1

| · | H ′f → α2mc2Hf

and obtain

H̃ ′α,Z := UH ′U∗ =α2mc2
[
Λ

(+)
α−1,Z[Dα−1,Z −

√
αα ·Aκ(αx)]Λ

(+)
α−1,Z+Hf

]
. (4)

Here

Dα−1,Z := −iα−1
α · ∇+ α−2β − Z

| · |

with αZ <
√

3/2 is the scaled version of the Dirac operator D′. Λ
(+)
α−1,Z is

the positive spectral projection of the operator Dα−1,Z, where α−1 plays the
role of the velocity of light after the scaling and Z the role of the coupling
constant. We denote the eigenvalues of this operator by Ẽn,l(α

−1,Z), where n
is the principal quantum number and l numbers the eigenvalues belonging to
the principal quantum number n by size not counting multiplicities. We have
n ∈ N and l ∈ N with l ≤ n. We set

En,l(α
−1,Z) := Ẽn,l(α

−1,Z)− c2, En(∞,Z) := − Z2

2n2
, (5)

where En(∞,Z) is the n-th eigenvalue (not counting multiplicities) of the Schrö-
dinger operator which we obtain in the limit α → 0 (see [25, Section 8]). We
abbreviate En := En(∞,Z) and En,l(α) := En,l(α

−1,Z) for n ∈ N and for
1 ≤ l ≤ n.
Hf and Aκ(x) are given by

Hf :=
∑

µ=1,2

∫

k∈R3

dk |k|a∗µ(k)aµ(k) (6)

and Aκ(x) := Aκ(x)+ +Aκ(x)− with

Aκ(x)+ :=
∑

µ=1,2

∫

k∈R3

dk κ(|k|)√
4π2|k|

εµ(k)e−ik·xa∗µ(k) (7)

Aκ(x)− :=
∑

µ=1,2

∫

k∈R3

dk κ(|k|)√
4π2|k|

εµ(k)eik·xaµ(k) (8)

as in the non-relativistic case.
In the following, we will consider the operator

Hα := Λ
(+)
α−1,Z[Dα−1,Z − α−2 −√αα ·Aκ(αx)]Λ

(+)
α−1,Z +Hf (9)
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on H := Λ
(+)
α−1,ZL

2(R3; C4)⊗F , where we omit trivial factors ⊗1f or 1el⊗.

In order to apply the methods of the non-relativistic case (see Bach, Fröhlich,
and Sigal [5] and Hasler, Herbst, and Huber [19]) with a minimal amount
of changes, and in order to apply the results about the non-relativistic limit
obtained in [25], we subtract the rest energy α−2. As in the non-relativistic
case we define the perturbation parameter g := α3/2 > 0 and the perturbation
operator

W (α) :=
√
αΛ

(+)
α−1,Zα ·Aκ(αx)Λ

(+)
α−1,Z

as well as the free operator

Hα,0 := Λ
(+)
α−1,ZDα−1,ZΛ

(+)
α−1,Z +Hf − α−2

and the electronic operator

H
(α)
el := Λ

(+)
α−1,Z[Dα−1,Z − α−2]Λ

(+)
α−1,Z.

We will always assume Z > 0.

We will prove the self-adjointness of these operators in Section 3. Note that
contrary to the non-relativistic case also the free operator depends on α. We

suppress the dependence of the operators Hα, Hα,0 and H
(α)
el on the atomic

number Z, since we will treat it as a fixed parameter.

Note that the prefactor of the photonic field in (9) is
√
α only and not α3/2

as in the non-relativistic case. Moreover, Dα,Z depends on the fine structure
constant. The limit α → 0 corresponds in this scaling to the non-relativistic
limit. In the treatment of the resonances for this operator the distance of
neighbouring eigenvalues may vanish as α → 0 so that the estimates on the
Feshbach operator (see below) have to be improved. Nevertheless we will use
the perturbation parameter g = α3/2.

As in [5, 19], we will make use of (complex) dilations of the above operators:
We define

H
(α)
el (θ) : = Uel(θ)H

(α)
el Uel(θ)

−1, Hg(θ) := U(θ)HgU(θ)−1 and (10)

Wg(θ) : = U(θ)WgU(θ)−1

for real θ, where U(θ) is the unitary group associated to the generator of di-
lations. It is defined in such a way that the coordinates of the electron are
dilated as xj 7→ eθxj and the momenta of the photons as k 7→ e−θk. In this
way we obtain the operator

H
(α)
el (θ) := Uel(θ)H

(α)
el Uel(θ)

−1 = Λ
(+)
α−1,Z(θ)[Dα−1,Z(θ)− α−2]Λ

(+)
α−1,Z(θ)

on Λ
(+)
α−1,Z(θ)L2(R3; C4), which is selfadjoint on Dom(H

(α)
el (θ)) =
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= Λ
(+)
α−1,Z(θ)H1(R3; C4), as well as the operators

Hα(θ) := Λ
(+)
α−1,Z(θ)[Dα−1,Z(θ)− α−2−√αα·A(θ)

κ (αx)]Λ
(+)
α−1,Z(θ) + e−θHf

W (α)(θ) :=
√
αΛ

(+)
α−1,Z(θ)[α · A(θ)

κ (αx)]Λ
(+)
α−1,Z(θ)

Hα,0(θ) := Λ
(+)
α−1,Z(θ)Dα−1,Z(θ)Λ

(+)
α−1,Z(θ) + e−θHf − α−2

on Λ
(+)

α−1,Z(θ)L2(R3; C4)⊗F , where Λ
(+)

α−1,Z(θ) has been defined in [25] even for

non-real θ. Here A
(θ)
κ (x) := A

(θ)
κ (x)+ +A

(θ)
κ (x)−, where

A(θ)
κ (x)+ :=

∑

µ=1,2

∫

k∈R3

dk G(θ̄)
x (k, µ)∗a∗µ(k)

and

A(θ)
κ (x)− :=

∑

µ=1,2

∫

k∈R3

dk G(θ)
x (k, µ)aµ(k)

with

G(θ)
x (k, µ) :=

e−θκ(e−θ|k|)√
4π2|k|

ei k·xǫµ(k).

We will show in Section 3 that these operators admit a holomorphic continua-
tion to certain values of θ. Moreover, we define

W
(α)
1,0 (θ) :=

√
αΛ

(+)
α−1,Z(θ)

[
α ·A(θ)

κ (αx)+

]
Λ

(+)
α−1,Z(θ) (11)

W
(α)
0,1 :=

√
αΛ

(+)

α−1,Z(θ)
[
α ·A(θ)

κ (αx)−
]

Λ
(+)

α−1,Z(θ) (12)

w0,1(k, µ; θ) :=
√
αα ·G(θ)

αx(k, µ) (13)

w1,0(k, µ; θ) := w0,1(k, µ; θ̄)
∗
. (14)

Using the notation from [25, Section 5] we define the projections

P
(α)
el,n,l(θ) := Pn,l(α

−1,Z; θ) P
(α)
el,n,l := Pn,l(α

−1,Z; 0)

P
(α)
el,n(θ) := Pn(α−1,Z; θ) P

(α)
el,n := Pn(α−1,Z; 0)

P
(α)

el,n(θ) := Λ
(+)
α−1,Z(θ)− P (α)

el,n(θ) P
(α)

el,n := Λ
(+)
α−1,Z − P

(α)
el,n

P
(α)

el,n,l(θ) := P
(α)
el,n(θ)− P (α)

el,n,l(θ) P
(α)

el,n,l := P
(α)
el,n − P

(α)
el,n,l

P
(α)
el,n,l(θ) := Λ

(+)
α−1,Z(θ)− P (α)

el,n,l(θ) P
(α)
el,n,l := Λ

(+)
α−1,Z − P

(α)
el,n,l

as operators on Λ
(+)

α−1,Z(θ)L2(R3; C4) and Λ
(+)

α−1,ZL
2(R3; C4), respectively. More-

over, we need for a η > 0 such that Ẽñ,ñ(α−1,Z) < α−2 − η and

Ẽñ+1,1(α−1,Z) > α−2 − η for some ñ ∈ N (see [25, Section 7]) the projec-
tions

Pdisc(α; θ) := Pdisc,ñ(α−1,Z; θ) =
∑

1≤n′≤ñ
Pn′(α

−1,Z; θ) (15)
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and
P̄disc(α; θ) := Λ

(+)
α−1,Z(θ) − Pdisc(α; θ) (16)

as operators on Ran Λ
(+)
α−1,Z(θ)L2(R3; C4) as well. η is chosen in such a way

that ñ > n, where n is the principal quantum number whose life-time we are
interested in.
For ρ > 0 (to be specified later) we define the projections

Pn,l(θ) := P
(α)
el,n,l ⊗ χHf≤ρ, Pn,l(θ) := 1− Pn,l(θ)

and for R > 0

Pn,l(θ;R) := P
(α)
el,n,l(θ)⊗ χHf+R>ρ + P

(α)
el,n,l(θ)⊗ 1f

as operators on Λ
(+)
α−1,Z(θ)L2(R3; C4)⊗F .

As in [5, 19], the main technical tool in our analysis is the Feshbach operator

FPn,l(θ)(Hα(θ)− z) := Pn,l(θ)(Hα(θ)− z)Pn,l(θ)− Pn,l(θ)W (α)(θ)Pn,l(θ)

× [Pn,l(θ)(Hα(θ)− z)Pn,l(θ)]
−1Pn,l(θ)W

(α)(θ)Pn,l(θ), (17)

which we define as an operator on RanPn,l(θ). Note that we need the Feshbach
operator for each fine structure component of the considered principal quantum
number n, i.e. for all 1 ≤ l ≤ n. Note moreover that we do not distinguish
between the operators PAP and PAP |RanP when we write PAP , where A is a
closed operator an P a projection with DomA ⊂ RanP . The meaning of this
expression will be clear from the context.
We will show below that the Feshbach operator can be approximated in a
certain sense by the operators

Zodn,l,±(α) := lim
ǫ↓0

∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,lw0,1(k, µ; 0)

× P (α)
el,n,l

[
P

(α)
el,n,lH

(α)
el − En,l(α) + |k| ± i ǫ

]−1

P
(α)
el,n,lw1,0(k, µ; 0)P

(α)
el,n,l (18)

and

Zdn,l(α) :=
∑

µ=1,2

∫

k∈R3

dk

|k| P
(α)
el,n,lw0,1(k, µ; 0)P

(α)
el,n,lw1,0(k, µ; 0)P

(α)
el,n,l (19)

as well as
Zn,l,±(α) := Zdn,l(α) + Zodn,l,±(α), (20)

defined as operators on RanP
(α)
el,n,l. These operators are the relativistic analoga

of [19, Equations (3) and (4)]. Note that Uel(θ) restricted to RanP
(α)
el,n,l is a

similarity transformation ([25, Lemma 9]).
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It is easy to see that the imaginary part of Zn,l,±(α) is given by (cf. Equation
(11) in Remark 1 in [19])

ImZn,l,±(α) =∓ π
∑

n′,l′:
En′,l′ (α)<En,l(α)

∑

µ=1,2

∫

|ω|=1

dω (En′,l′(α)− En,l(α))
2

× P (α)
el,n,lw0,1((En,l(α) − En′,l′(α))ω, µ; 0)P

(α)
el,n′,l′

× w1,0((En,l(α)− En′,l′(α))ω, µ; 0)P
(α)
el,n,l.

It will turn out that the lifetime in lowest order in the fine structure constant
α is given by the same expression as in the non-relativistic case (see Lemma
10). Therefore, we define (cf. [19, Equation (12)])

Zn,l,im = g2 2

3

∑

1≤n′<n
1≤l≤n

(−En′+En)3× κ(|− En′+En|)2P (0)
el,n,lxP

(0)
el,n′,l′xP

(0)
el,n,l (21)

and

Yn,l,±(α) := UNR(α−1,Z; 0)−1ReZn,l(α)UNR(α−1,Z; 0)∓ iZn,l,im (22)

as operators on RanP
(0)
el,n,l, where we defined RanP

(0)
el,n,l := UNR(α−1,Z; 0)−1

×P (α)
el,n,lUNR(α−1,Z; 0). UNR(α−1,Z; 0) is the unitary transformation which cor-

responds to taking the non-relativistic limit (see [25, Section 8]). We set

Zn,l(α) := Zn,l,−(α), Yn,l(α) := Yn,l,−(α).

Note that contrary to [19] the coupling constant g is contained in the definition
of the objects Zn,l(α), Yn,l(α) and so on. We see from Equation (21) that
transitions between fine structure components of a principal quantum number
do not play a role in lowest order in α.
Note that we remove the dependence on α only from the imaginary part, since
a discussion of the real part, which yields the Lamb shift [28, 6], does not
make sense without an UV renormalization. Moreover, the Lamb shift is not
important for lifetime measurements using the so called “beam-foil”-method
[10, 13, 7, 8].
We can now formulate our main result: Fix n > 2. Since Zn,l,im is obtained
from the corresponding matrix in the nonrelativistic case by restricting the

corresponding quadratic form to RanP
(0)
el,n,l, we see immediately that in this

case Zn,l,im is strictly positive for all 1 ≤ l ≤ n (see [19, Appendix B.3]).
Note that this is not the case for n = 2 due to the metastability of the 2s-
sates of hydrogen. Indeed we will need in our proof the Feshbach operator and
the matrices Zn,l,±(α) and Yn,l,±(α) for all fine structure components of the
corresponding principal quantum number and not only for the fine structure
component, whose lifetime we are interested in.
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Theorem 1. Let n > 2 and φ(α) a normalized eigenvector of H
(α)
el with eigen-

value En,l(α), ψ(α) := φ(α)⊗Ω and φ(0) := UNR(α−1,Z; 0)−1φ(α). Then there
is a C > 0 such that for all α > 0 small enough and all s ≥ 0

〈ψ(α), e−isHαψ(α)〉 = 〈φ(0), e−is(En,l(α)−Yn,l(α))φ(0)〉 + b(g, s)

holds, where |b(g, s)| ≤ C√α.

We will prove Theorem 1 in Section 7.

Remark 1. If we compare Definition (22) of Yn,l(α) with [19, Formula (12)]
we see that the lifetime of an excited state in the relativistic model is the same as
in the Pauli-Fierz model. Thus relativistic effects play a minor role for electric
dipole transitions. But there seems to be a small relativistic contribution for
the decay of the metastable 2s-state of hydrogen (see Breit and Teller [9]).

3 Selfadjointness and Dilation Analyticity

Before we can turn to the operator Hα in the following sections we have to
prove its selfadjointness and the holomorphicity properties of the operators
Hα(θ).

Theorem 2. Let 0 < αZ <
√

3/2. Then the following holds: The operator

Hα : D ⊂ (Λ
(+)
α−1,ZL

2(R3; C4))⊗Dom(Hf)→ (Λ
(+)
α−1,ZL

2(R3; C4))⊗F

is on D := Λ
(+)
α−1,ZH

1(R3; C4))⊗̂Dom(Hf) essentially selfadjoint, where ⊗̂ de-
notes the algebraic tensor product.

Proof. Because of [39, Theorem 4.4] the operator H
(α)
el + α−2 is selfadjoint

and positive on the domain Dom(H
(α)
el ) = Λ

(+)
α−1,ZH

1(R3; C4). Since Hf is

selfadjoint and positive on a suitable domain Dom(Hf), it follows from [36,
Theorem VIII.33] that Hα,0 +α−2 is essentially selfadjoint and positive on the

(algebraic) tensor product D = Λ
(+)
α−1,ZH

1(R3; C4)⊗̂Dom(Hf). We have for all

ψ ∈ D and all ǫ > 0 with a C > 0 (see for example [5, Proof of Lemma 1.1])

‖W (α)ψ‖ ≤ C√α‖(Hf + 1)1/2ψ‖ ≤ C√α(‖ψ‖+
√
‖ψ‖‖Hfψ‖)

≤ C√α[(1 +
1

2ǫ
)‖ψ‖+

ǫ

2
‖Hfψ‖] ≤ C

√
α[(1 +

1

2ǫ
)‖ψ‖+

ǫ

2
‖(Hα,0 +α−2)ψ‖].

Thus W (α) is infinitesimally (Hα,0 +α−2)-bounded, and in turn Hα+α−2 (and
thus also Hα) is essentially selfadjoint on Dom(Hα,0).

We denote the operators defined in Theorem 2 again by Hα and Hα,0 respec-
tively.
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We turn to the operators Hα(θ) and Hα,0(θ) on the domain Dom(Hα(θ)) =

Dom(Hα,0(θ)) = Λ
(+)
α−1,Z(θ)H1(R3; C4)⊗̂Dom(Hf). In the following theorem

we show that the families of operators

UDL(α−1,Z; θ)Hα(θ)UDL(α−1,Z; θ)−1,

UDL(α−1,Z; θ)Hα,0(θ)UDL(α−1,Z; θ)−1, (23)

defined on the Hilbert space Λ
(+)
α−1,ZL

2(R3; C4)⊗F with domain UDL(α−1,Z; θ)

× Λ
(+)
α−1,Z(θ)H1(R3; C4)⊗̂Dom(Hf), are holomorphic families of type (B) on a

suitable domain. Here UDL(α−1,Z; θ) is the transformation function between
positive spectral projections of Dα−1,Z and Dα−1,Z(θ) defined in [25, Theorem
6]. We will write UDL(α−1,Z; θ) for the operator UDL(α−1,Z; θ)⊗ 1f .

Theorem 3. Let θ ∈ Sπ/4, 2αZC(Im θ) < 1, CDL|θ| < q and CDLS|θ| < q
for some 0 < q < 1, where the constants CDL and CDLS are defined in [25,
Section 6] and C(Im θ) is defined in [25, Section 4]. Then there is a θ0 > 0
independent of 0 < α ≤ 1 such that for all |θ| ≤ θ0 the operators (23) define
holomorphic families of operators H̃α(θ) bzw. H̃α,0(θ) of type (B) on a suitable

domain Dom(H̃α(θ)) = Dom(H̃α,0(θ)). These operators are m-sectorial.

Proof. The expression qα−1,0(ψ) := 〈ψ, (Dα−1,Z ⊗ 1 + 1 ⊗ Hf)ψ〉 for ψ ∈ D
is a positive closable quadratic form whose closure q̃α−1,0 defines a selfadjoint
operator which coincides with the operatorHα,0 defined in Theorem 2. We have
Dom(q̃α−1,0) = Dom((Hα,0 + α−2)1/2). In particular, for ψ ∈ Dom(q̃α−1,0) the
estimate

‖|Dα−1,Z|1/2ψ‖ = ‖(Λ(+)
α−1,ZDα−1,ZΛ

(+)
α−1,Z)1/2ψ‖

≤ ‖(Λ(+)

α−1,ZDα−1,ZΛ
(+)

α−1,Z ⊗ 1 + 1⊗Hf)
1/2ψ‖ <∞

holds, and in the same way we see ‖(Hf + 1)1/2ψ‖ <∞.
Thus, we find for ψ ∈ Dom(q̃α−1,0)

〈ψ,UDL(α−1; θ)Dα−1,Z(θ)UDL(α−1; θ)−1ψ〉 (24)

=〈|Dα−1,Z|1/2ψ, |Dα−1,Z|−1/2|Dα−1,0|1/2

× |Dα−1,0|−1/2UDL(α−1; θ)Dα−1,Z(θ)UDL(α−1; θ)−1|Dα−1,0|−1/2

× |Dα−1,0|1/2|Dα−1,Z|−1/2|Dα−1,Z|1/2ψ〉.

[25, Lemma 5 and Lemma 6] imply

|〈ψ,UDL(α−1; θ)Dα−1,Z(θ)UDL(α−1; θ)−1ψ〉−〈ψ,Dα−1,Zψ〉|≤C|θ|〈ψ,Dα−1,Zψ〉

with some C > 0 independent of α and θ. Moreover, |e−θ〈ψ,Hfψ〉−〈ψ,Hfψ〉| ≤
B|θ|〈ψ,Hfψ〉 with B := eπ/4. Since ‖W (α)(θ)(Hf +1)−1/2‖ ≤ √αC1 with some
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C1 > 0 independent of θ and α (see for example [5, Proof of Lemma 1.1]) we
obtain for all ǫ > 0

|〈ψ,UDL(α−1; θ)W (α)(θ)UDL(α−1; θ)−1ψ〉|
≤ √αC1(1 + CDL|θ|)2[(1/ǫ2 + ǫ2)‖ψ‖2 + ǫ2〈ψ,Hfψ〉]. (25)

It follows that the quadratic form pα−1;θ(ψ) := 〈ψ, (Hα + α−2)ψ〉 for ψ ∈
Dom(q̃α−1,0) is well defined for sufficiently small |θ|. If we choose |θ| so small
that (C +B)|θ| < 1 holds, and then in (25) ǫ > 0 small enough (depending on
θ), we see that the quadratic form pα−1;θ − q̃α,0 is relatively q̃α,0-bounded with
form bound smaller than 1.
Because of [27, Theorem VI-1.33] the quadratic form pα−1;θ is closed with
Dom(pα−1;θ) = Dom(q̃α−1,0) and sectorial. Moreover,

|Dα−1,0|−1/2UDL(α−1; θ)Dα−1,Z(θ)UDL(α−1; θ)−1|Dα−1,0|−1/2

=|Dα−1,0|−1/2UDL(α−1; θ)|Dα−1,0|1/2|Dα−1,0|−1/2Dα−1,Z(θ)|Dα−1,0|−1/2

× |Dα−1,0|1/2UDL(α−1; θ)−1|Dα−1,0|−1/2.

Using Equation (24) and [25, Theorem 6 c)] we see that the expression
〈ψ,UDL(α−1; θ)Dα−1,Z(θ)UDL(α−1; θ)−1ψ〉 for all ψ ∈ Dom(pα−1;θ) is a holo-
morphic function of θ. It is easy to see that

(Hf + 1)−1/2UDL(α−1; θ)W (α)(θ)UDL(α−1; θ)−1(Hf + 1)−1/2

is bounded-holomorphic. Thus 〈ψ,UDL(α−1; θ)W (α)(θ)UDL(α−1; θ)−1ψ〉 is
holomorphic function of θ. It follows that pα−1;θ(ψ) is a holomorphic func-
tion of θ for all ψ ∈ Dom(pα−1;θ) = Dom(q̃α−1,0). The family of m-sectorial
operators defined by these quadratic forms is a holomorphic family of type (B)
(see [27, Chapter VII-4.2]). The proof for the operator without interaction
works analogously. Since ‖W (α)(θ)(Hf + 1)−1/2‖ ≤ √αC1 (see above), is in-
finitesimally operator bounded with respect to the free operator which implies
the equality of the domains.

Remark 2. The above proof also shows that the operators

UDL(α−1; θ)Dα−1,Z(θ)UDL(α−1; θ)−1|
Ran Λ

(+)

α−1,Z

on the space Λ
(+)
α−1,ZL

2(R3; C4)

are sectorial for sufficiently small |θ|. In particular, the assumptions of the
Ichinose Lemma (see [37, Corollary 2 on page 183] or [26]) are fulfilled so that

σ(Dα−1,Z(θ)|
Ran Λ

(+)

α−1,Z
(θ)
⊗ 1f + e−θ1el ⊗Hf) =

= σ(Dα−1,Z(θ)|
Ran Λ

(+)

α−1,Z
(θ)

) + e−θσ(Hf )

holds.

In the following, we will consider UDL(α−1,Z; θ)−1H̃α(θ)UDL(α−1,Z; θ) and
UDL(α−1,Z; θ)−1H̃α,0(θ)UDL(α−1,Z; θ) on the respective domains

UDL(α−1,Z; θ)−1 Dom(H̃α(θ)) and UDL(α−1,Z; θ)−1 Dom(H̃α,0(θ)). We will
denote these operators by Hα(θ) and Hα,0(θ) again.
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4 Technical Lemmata

In this section we will formulate and prove all technical statements which we
will need to show the existence of the Feshbach operator and in order to ap-
proximate it by suitable operators.
Using the dilation analyticity we can restrict to θ = iϑ with 0 < ϑ < θ0.
We choose θ0 so small that the statements of Theorem 3 as well as the state-
ments in [25, Appendix A] hold. Moreover, we choose for this θ0 a α0 > 0
so small that the statements about the “nonrelativistic limit” of the operator
Dα−1,Z(θ) (proven in [25, Section 8]) and inequality (26) hold. In particular,
all projections occurring in the following are uniformly bounded in α and θ.
We put

δn,l,±(α) :=





|En,l(α)− En,l±1(α)|/2 1 < l < n

|En,l(α)− En,l+1(α)|/2 l = 1

|En,l(α)− En,l−1(α)|/2 l = n

δn,l(α) := min{δn,l,+(α), δn,l,−(α)}, δn,± := |En − En±1|/2,
δn := min{δn,+, δn,−}.

Note that δn,l(α) = δn,l,±(α) holds for l = 1 or l = n. We will suppress
the dependence of these quantities on α in certain places in order to simplify
notation. It follows from the explicit form of the eigenvalues (see [29]) that for
all α < α0 with α0 > 0 small enough the inequality

c1α
2 ≤ δn,l,±(α) ≤ c2α2 (26)

holds with two constants 0 < c1 < c2 independent of α and l.
We choose ρ, σ > 0 and define the sets (see Figure 1)

A<n,l(α, σ) := [En,l(α)− δn,l,−(α), En,l(α) + δn,l,+(α)] + i [−σ,∞), 1 ≤ l ≤ n

and

An,l(α, σ) :=





[En,l(α) − δn,l,−(α), En,l(α)+δn,l,+(α)]+i [−σ,∞) 1 < l < n

[En − δn,−, En,l(α) + δn,l,+(α)] + i [−σ,∞) l = 1

[En − δn,l,−(α), En + δn,+] + i [−σ,∞) l = n

.

Note that for 1 < l < n the identity A<n,l(α, σ) = An,l(α, σ) holds. More-

over, following [5] we define Bθ(ρ) := Λ
(+)
α−1,Z(θ)[H

(α)
el (θ) − En,l(α) + e−θ(Hf +

ρ)]Λ
(+)
α−1,Z(θ) as an operator on the Hilbert space Λ

(+)
α−1,Z(θ)L2(R3; C4) ⊗ F

with domain Dom(Bθ(ρ)) = UDL(α−1,Z; θ)−1 Dom(H̃α,0(θ)). The operator is
a densely defined and closed operator (cf. Theorem 3 and the remarks fol-
lowing it). It follows that Bθ(ρ)∗ is densely defined as well and we have
Bθ(ρ)∗∗ = Bθ(ρ). Note that the adjoint is to be taken with respect to the
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scalar product on the Hilbert space Λ
(+)
α−1,Z(θ)L2(R3; C4) ⊗ F . In particular,

Bθ(ρ)∗ 6= Bθ̄(ρ). As in the Pauli-Fierz model Bθ(ρ) is only an auxiliary object,
which saves some combinatorics. In principle, one could prove all statements
without using Bθ(ρ). Note that all norms, scalar products and adjoints are to

be understood in the sense of Λ
(+)

α−1,Z(θ)L2(R3; C4) or Λ
(+)

α−1,Z(θ)L2(R3; C4)⊗F .

We will choose ρ and σ later on as suitable functions of the coupling constant
g. At the moment, we assume only that σ and ρ are nonnegative and bounded
by some constant from above.

In the proofs in this and the following section, C denotes a generic, positive
constant, which does not depend on α and z, but perhaps on ϑ.

In the following lemmas we will prove some estimates on the resolvents of the

free operator Hα,0 and of the electronic operator H
(α)
el . The lemmas generalize

similar statements and their proofs [5]. Due to the fine structure splitting and
the missing power of α some additional difficulties have to be addressed.

Lemma 1. Let 0 < ϑ < θ0. Then the following statements hold:

a) There is a C > 0 such that for all α ≤ α0, all σ ≤ δn,l(α) sinϑ
2 cosϑ , all R > 0

and all z ∈ An,l(α, σ)

∥∥∥
[
P

(α)

el,n,l(θ)⊗ 1f(H
(α)
el (θ) + e−θ(Hf +R)− z)P

(α)

el,n,l(θ)⊗ 1f

]−1

× P (α)

el,n,l(θ)⊗ 1f

∥∥∥ ≤ C

δn,l(α) sinϑ
(27)

holds.

b) There is a C > 0 such that for all ρ > 0, all σ ≤ ρ sin ϑ
2 , all R ≥ ρ and

all z ∈ An,l(α, σ)

∥∥∥
[
P

(α)

el,n,l(θ)⊗ 1f(H
(α)
el (θ) + e−θ(Hf +R)− z)P

(α)

el,n,l(θ)⊗ 1f

]−1

× P (α)

el,n,l(θ)⊗ 1f

∥∥∥ ≤ C

R sinϑ
(28)

holds.

c) There is a C > 0 such that for all α ≤ α0, all σ ≤ δn sinϑ
2 cosϑ , all R > 0 and

all z ∈ An,l(α, σ)

∥∥∥
[
P

(α)

el,n(θ)⊗ 1f(H
(α)
el (θ) + e−θ(Hf +R)− z)P

(α)

el,n(θ)⊗ 1f

]−1

× P (α)

el,n(θ)⊗ 1f

∥∥∥ ≤ C

δn sinϑ
. (29)
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Proof.

a) We split the projection and the resolvent according to the formula

P
(α)

el,n,l(θ) =
∑

1≤l′≤n, l′ 6=l P
(α)
el,n,l′(θ) and use the representation (spectral theo-

rem) in which Hf is the multiplication with the variable r. In order to simplify
the notation we will suppress the dependence of the eigenvalues En,l′(α) on α.
Note that for En,l′ < En,l

|En,l′ − z + e−θ(r +R)| ≥ Im (eθ(z − En,l′)) ≥

≥ −(cosϑ)σ + sinϑ(Re z − En,l′) ≥
sinϑδn,l(α)

2
(30)

and for En,l′ > En,l

|En,l′ − z + e−θ(r + R)| ≥ Re (En,l′ − z + e−θ(r + R)) ≥ δn,l(α) (31)

holds, which proves the claim together with [25, Corollary 5]. For l = 1 and
l = n the estimates (30) and (31) respectively are not needed. We used in the

first estimate that (cosϑ)σ ≤ sinϑδn,l(α)
2 .

b) We estimate Im (−En,l′ + z − e−θ(r + R)) ≥ −σ + sinϑ(r + R) ≥ sinϑR
2 ,

where we used σ ≤ sinϑR
2 .

c) We split the projection P
(α)

el,n = P̄disc(α; θ) +
∑

1≤n′≤ñ
n′ 6=n

P
(α)
el,n′(θ) according to

(15) and obtain analogously to the proof of a) the estimate | 1
En,l′−z+e−θ(r+R)

| ≤
C

δn sinϑ and with [25, Corollary 4]

∥∥∥
[
P̄disc(α; θ)(H

(α)
el (θ) + e−θ(Hf +R)− z)P̄disc(α; θ) ⊗ 1f

]−1
P̄disc(α; θ)

∥∥∥

≤ sup
r>0

C

−η − (Re z − (r +R))
≤ C

δn
.

Lemma 2. Let 0 < ϑ < θ0. Then the following statements hold:

a) There is a C > 0 such that for all α ≤ α0, all R > 0 , all σ ≤
min{ δn,l(α) sinϑ

2 cosϑ , δn sinϑ
2 cosϑ , 1/2ρ sinϑ} and all z ∈ An,l(α, σ)

∥∥∥
[
Pn,l(θ;R)(H

(α)
el (θ) + e−θ(Hf +R)− z)Pn,l(θ;R)

]−1
Pn,l(θ;R)

∥∥∥ ≤

≤ C

min{δn, δn,l(α), ρ} sinϑ
(32)

b) There is a C > 0 such that for all α ≤ α0, all σ ≤ min{ δn,l(α) sin ϑ
2 cosϑ ,
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δn sinϑ
2 cosϑ , 1/2ρ sinϑ} and all z ∈ An,l(α, σ)

∥∥∥
[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)Bθ(ρ)

∥∥∥ ≤

≤ C

sinϑ

(
1 +

ρ

min{δn,l(α), δn}

)
(33)

holds.

Proof.

a) We split the projection

Pn,l(θ;R) = P
(α)

el,n(θ)⊗ 1f + P
(α)

el,n,l(θ)⊗ 1f + P
(α)
el,n,l(θ)⊗ χHf+R≥ρ.

For r + R ≥ ρ we estimate as follows: Im (−En,l + z − e−θ(r + R)) ≥ −σ +

sinϑ(r +R) ≥ sinϑρ
2 . We used here σ ≤ 1/2ρ sinϑ and r +R ≥ ρ. This shows

the claim together with (27) and (29) in Lemma 1.

b) As before, we split Pn,l(θ) = P
(α)

el,n(θ)⊗1f +P
(α)

el,n,l(θ)⊗1f +P
(α)
el,n,l(θ)⊗χHf≥ρ.

We start with

∥∥∥
[
P

(α)
el,n,l(θ) ⊗ χHf≥ρ(Hα,0(θ)− z)

]−1
P

(α)
el,n,l(θ)⊗ χHf≥ρBθ(ρ)

∥∥∥

= sup
r≥ρ
| e−θ(r + ρ)

En,l − z + e−θr
|‖P (α)

el,n,l(θ)‖ ≤
4

sinϑ
‖P (α)

el,n,l(θ)‖,

where we used the inequality

Im (−En,l + z − e−θr) ≥ −σ + sinϑr ≥ sinϑr

2
, (34)

which follows from σ ≤ sinϑρ
2 and ρ ≤ r.

Using Equations (30) and (31) from the proof of Lemma 1 as well as Equation
(34) we obtain with some C > 0 (independent of α)

∣∣∣En,l′ − En,l + e−θ(r + ρ)

En,l′ − z + e−θr

∣∣∣ ≤
∣∣∣∣
En,l′ − En,l + e−θρ
En,l′ − z + e−θr

∣∣∣∣+

∣∣∣∣
e−θr

En,l′ − z + e−θr

∣∣∣∣

≤C 2(α2 + ρ)

sinϑδn,l(α)
+

{
2ρ

sinϑδn,l(α) , r ≤ ρ
2r

sinϑr , r > ρ

≤C 4

sinϑ
(1 +

ρ

δn,l(α)
).

Analogously, we obtain for n′ 6= n the estimate |En′,l′−En,l+e
−θ(r+ρ)

En′,l′−z+e−θr | ≤
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C 4
sin ϑ (1 + ρ

δn
). Eventually we find

∥∥∥
[
P̄disc(α; θ)(Hα,0(θ)− z)

]−1
P̄disc(α; θ)Bθ(ρ)

∥∥∥

≤‖P̄disc(α; θ)‖ + sup
r≥0

∥∥∥ z − En,l − e−θρ
P̄disc(α; θ)(H

(α)
el (θ)− z + e−θ(r + ρ0))

P̄disc(α; θ)
∥∥∥

≤‖P̄disc(α; θ)‖ + sup
r≥0

max{δn,−, δn,+}+ ρ

Re (−η − z) + cosϑr
≤ C

δn
,

using [25, Corollary 4].

Part b) of the above lemma and the following lemmas are preparations for the
proof of relative bounds on the interaction.

Corollary 1. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all α ≤ α0,

all σ ≤ min{ δn,l(α) sinϑ
2 cosϑ , δn sin ϑ

2 cosϑ , 1/2ρ sinϑ} and all z ∈ An,l(α, σ)

‖|Bθ(ρ)|1/2[Pn,l(θ)(Hα,0(θ) − z)Pn,l(θ)]
−1Pn,l(θ)|Bθ(ρ)∗|1/2‖ ≤ C

sinϑ

holds.

Proof. We find

∥∥∥|Bθ(ρ)|
[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)

∥∥∥

=
∥∥∥
[
Pn,l(θ)(Hα,0(θ) − z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ)∗|

∥∥∥.

The claim follows by complex interpolation and using Lemma 2 b).

Lemma 3. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all 0 < α < α0

and all ρ > 0 the following statements hold:

a)
∥∥∥P (α)

el,n(θ)Bθ(ρ)−1
∥∥∥ ≤ C

sinϑ
(35)

b)
∥∥Bθ(ρ)−1

∥∥ ≤ C

sinϑ

(
1 +

1

ρ

)
(36)

c)
∥∥HfBθ(ρ)−1

∥∥ ≤ C

sinϑ
(37)
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Proof.
a) We estimate using [25, Corollary 4]

‖P̄disc(α; θ)Bθ(ρ)−1‖

≤ sup
r≥0

C

−η − En,l + cosϑ(r + ρ)
≤ C

δn

and note that analogously to the Formulas (30) and (31) we find for n′ < n

|En′,l′ − En,l + e−θ(r + ρ)| ≥ Im (eθ(z − En,l))
≥ −(cosϑ)σ + sinϑ(En,l − En′,l′) ≥ sinϑδn (38)

and for n′ > n

|En′,l′ − En,l + e−θ(r + ρ)| ≥ Re (En′,l′ − En,l + e−θ(r + ρ)) ≥ δn, (39)

which proves the claim.

b) In view of part a) it suffices to show the estimate on RanP
(α)
el,n(θ). We find

for all 1 ≤ n′ ≤ ñ and all 1 ≤ l ≤ n′, in particular for n′ = n,

|En′,l′(α) − En,l(α) + e−θ(r + ρ)| ≥ sinϑ(r + ρ) ≥ ρ sinϑ, (40)

which proves the claim.
c) Using Formula (40) we obtain for all 1 ≤ n′ ≤ ñ and all 1 ≤ l ≤ n′

r

|En′,l′(α)− En,l(α) + e−θ(r + ρ)| ≤
r

sinϑ(r + ρ)
≤ 1

sinϑ
,

which prove the claim on RanPdisc(α; θ). Using [25, Corollary 4] we find on
Ran P̄disc(α; θ)

∥∥HfBθ(ρ)−1P̄disc(α; θ)
∥∥ ≤ C sup

r≥0

r

η − En,l + cosϑ(r + ρ)
≤ C 1

cosϑ
.

Note that | sinϑ| < cosϑ for |ϑ| < π/4.

Corollary 2. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all
0 < α < α0 and all ρ > 0 the following estimates hold:

a)

‖P (α)

el,n(θ)|Bθ(ρ)|−1/2‖ ≤ C√
sinϑ

, ‖|Bθ(ρ)∗|−1/2P
(α)

el,n(θ)‖ ≤ C√
sinϑ

b)

‖|Bθ(ρ)|−1/2‖ ≤ C√
sinϑ

(
1 +

1√
ρ

)
, ‖|Bθ(ρ)∗|−1/2‖ ≤ C√

sinϑ

(
1 +

1√
ρ

)
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c)

‖H1/2
f |Bθ(ρ)|−1/2‖ ≤ C√

sinϑ
, ‖H1/2

f |Bθ(ρ)∗|−1/2‖ ≤ C√
sinϑ

Proof.

a) We find ‖P (α)

el,n(θ)|Bθ(ρ)|−1/2‖2 ≤ ‖P (α)

el,n(θ)‖‖P (α)

el,n(θ)Bθ(ρ)−1‖ as well as

‖|Bθ(ρ)∗|−1/2P
(α)

el,n(θ)‖2 ≤ ‖P (α)

el,n(θ)∗‖‖Bθ(ρ)−1P
(α)

el,n(θ)‖. The claim follows
now from Lemma 3.

b) This follows immediately from the spectral theorem for self-adjoint opera-
tors.

c) From Formula (37) in Lemma 3 we obtain for all ψ ∈ Dom(Bθ(ρ)) the
estimate ‖Hfψ‖ ≤ C

min{sinϑ,cosϑ}‖Bθ(ρ)ψ‖ . Taking the square root of this op-

erator inequality, the claim follows. The second inequality follows analogously
using the identity ‖HfBθ(ρ)−1‖ = ‖[Bθ(ρ)∗]−1Hf‖ = ‖Hf [Bθ(ρ)∗]−1‖.

In the last two lemmas in this section, we prove relative bounds on the in-
teraction. In comparison to the non-relativistic case, we have the additional
difficulty that the factor in front of the interaction is

√
α only. To circumvent

this problem, we use the statements about the non-relativistic limit shown in
[25].

Lemma 4. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all 0 < α < α0

and all ρ > 0 the estimate

∥∥∥|Bθ(ρ)∗|−1/2W (α)(θ)|Bθ(ρ)|−1/2
∥∥∥ ≤ C

sinϑ

√
α

[
1 + α

(
1 +

1

ρ1/2

)]

holds.

Proof. We split the projection according to Λ
(+)

α−1,Z(θ) = P1(θ) + P2(θ), where

P1(θ) = P
(α)
el,n(θ)⊗1f , P2(θ) = P

(α)

el,n(θ)⊗1f . Since the estimate with A
(θ)
κ (αx)+

works analogously, we consider A
(θ)
κ (αx)− only. We find for ψ, ψ′ ∈

Λ
(+)
α−1,Z(θ)L2(R3; C4)⊗F and i, j ∈ {1, 2}

∣∣∣
〈
ψ′, |Bθ(ρ)∗|−1/2Pi(θ)α · A(θ)

κ (αx)−Pj(θ)|Bθ(ρ)|−1/2ψ
〉∣∣∣

≤
∑

µ=1,2

∫

k∈R3

dk |κ(e−θ|k|)|√
4π2|k|

∥∥∥Pi(θ)∗|Bθ(ρ)∗|−1/2ψ′
∥∥∥

×
∥∥Pi(θ)α · εµ(k)eiαk·xPj(θ)

∥∥
∥∥∥aµ(k)Pj(θ)|Bθ(ρ)|−1/2ψ

∥∥∥ . (41)

We have to make a case distinction:
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Case 1: i = j = 2. Using Corollary 2 a) we find ‖|Bθ(ρ)∗|−1/2Pi(θ)‖ ≤ C.
Moreover ‖Pi(θ)α · εµ(k)eiαk·xPj(θ)‖ ≤ C. The r.h.s. of Formula (41) can be
estimated by

C‖ψ′‖‖ψ‖‖H1/2
f |Bθ(ρ)|−1/2‖ ≤ C√

sinϑ
‖ψ′‖‖ψ‖ (42)

with a generic C > 0, where we used Corollary 2 c) in the last step.
Case 2: All other combinations of i and j. ¿From [25, Lemma 10 or Theo-
rem 11] it follows that ‖Pi(θ)α · εµ(k)eiαk·xPj(θ)‖ ≤ Cα(1 + α|k|), and from
Corollary 2 a) and b) that ‖|Bθ(ρ)∗|−1/2Pi(θ)‖ ≤ C√

sin ϑ
(1 + 1

ρ1/2
). The r.h.s.

of Formula (41) can be estimated by

α
C√
sinϑ

(
1 +

1

ρ1/2

)
‖ψ′‖

√√√√
∑

µ=1,2

∫

k∈R3

dk |κ(e−θ|k|)|2(1 + α|k|)2
|k|2 (43)

×
√∑

µ=1,2

∫

k∈R3

dk |k|‖aµ(k)Pj(θ)|Bθ(ρ)|−1/2ψ‖2 ≤ α C

sinϑ

(
1+

1

ρ1/2

)
‖ψ′‖‖ψ‖

in this case with a generic C > 0.

Lemma 5. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all 0 < α < α0

and all ρ > 0 the following estimates hold:

a)

∥∥∥|Bθ(ρ)∗|−1/2W
(α)
1,0 (θ)Pn,l(θ)

∥∥∥ ≤ C√
sinϑ

g (44)

∥∥∥Pn,l(θ)W (α)
0,1 (θ)|Bθ(ρ)|−1/2

∥∥∥ ≤ C√
sinϑ

g

b)

∥∥∥|Bθ(ρ)∗|−1/2W
(α)
0,1 (θ)Pn,l(θ)

∥∥∥ ≤ C√
sinϑ

gρ1/2 (45)

∥∥∥Pn,l(θ)W (α)
1,0 (θ)|Bθ(ρ)|−1/2

∥∥∥ ≤ C√
sinϑ

gρ1/2

c)
∥∥∥W (α)

0,1 (θ)Pn,l(θ)
∥∥∥ ≤ Cgρ,

∥∥∥Pn,l(θ)W (α)
1,0 (θ)

∥∥∥ ≤ Cgρ (46)

Proof. We begin with

∥∥∥|Bθ(ρ)∗|−1/2W
(α)
0,1 (θ)Pn,l(θ)

∥∥∥

≤ √α
∥∥∥|Bθ(ρ)∗|−1/2

∥∥∥
∥∥∥Λ

(+)
α−1,Z(θ)α ·A(θ)

κ (αx)−Pn,l(θ)
∥∥∥
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and find with [25, Theorem 11] similarly as in [4, Lemma IV.9.]

∣∣∣
〈
ψ′,Λ(+)

α−1,Z(θ)α · A(θ)
κ (αx)−Pn,l(θ)ψ

〉∣∣∣

≤
2∑

µ=1

∫

k∈R3

dk |κ(e−θ|k|)|√
4π2|k|

∣∣∣
〈
ψ′,Λ(+)

α−1,Z(θ)α · εµ(k)eiαk·xP (α)
el,n,laµ(k)χHf≤ρψ

〉∣∣∣

≤ Cα

√√√√
2∑

µ=1

∫

|k|≤ρ
dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k|2
√∑

µ=1,2

∫

k∈R3

|k|‖aµ(k)χHf≤ρψ‖2

≤ αρ‖ψ‖‖ψ′‖. (47)

For ‖Pn,l(θ)W (α)
1,0 (θ)|Bθ(ρ)|−1/2‖ one shows a similar estimate such that the

claim in b) follows from Corollory 2. Formula (47) and an analogous calculation

for W
(α)
1,0 (θ) prove the claim in c).

To show a) we estimate similarly as in Formula (47)

|〈ψ′, Pn,l(θ)W (α)
0,1 (θ)|Bθ(ρ)|−1/2ψ〉

≤ C√αα‖ψ′‖‖H1/2
f |Bθ(ρ)|−1/2‖‖ψ‖ ≤ C√

sin θ
g‖ψ′‖‖ψ‖.

The estimate on ‖|Bθ(ρ)∗|−1/2W
(α)
1,0 (θ)Pn,l(θ)‖ follows analogously.

5 Existence and approximation of the Feshbach Operator

We set now ρ0 = g4/3 = α2 and σ0 = g5/3 = α5/2 and use the estimates from
Section 4 for ρ = ρ0 and σ = σ0.
We apply the strategy from [5], but have to overcome additional difficulties.
First, we generalize [5, Lemma 3.14] to the relativistic case and show the exis-
tence of the inverse [Pn,l(θ)(Hα(θ) − z)Pn,l(θ)]

−1.

Lemma 6. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all sufficiently
small α > 0 the following holds: The operator Pn,l(θ)(Hα(θ)− z)Pn,l(θ) is for
all z ∈ An,l(α, σ0) invertible on RanPn,l(θ), and we have

‖[Pn,l(θ)(Hα(θ)− z)Pn,l(θ)]
−1Pn,l(θ)‖ ≤

C

sin2 ϑρ0

.

Proof. The claim follows from the series expansion
∥∥∥
[
Pn,l(θ)(Hα(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)

∥∥∥

=
∥∥∥
∞∑

n=0

[
Pn,l(θ)(Hα,0(θ) − z)Pn,l(θ)

]−1
Pn,l(θ)

×
[
−W (α)(θ)

[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)

]n ∥∥∥
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=
∥∥∥
∞∑

n=0

|Bθ(ρ0)|−1/2

× |Bθ(ρ0)|+1/2
[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

×
[
− |Bθ(ρ0)∗|−1/2W (α)(θ)|Bθ(ρ0)|−1/2

× |Bθ(ρ0)|+1/2
[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

]n

× |Bθ(ρ0)∗|−1/2
∥∥∥

≤
∥∥∥|Bθ(ρ0)|−1/2

∥∥∥
∥∥∥|Bθ(ρ0)∗|−1/2

∥∥∥

×
∥∥∥|Bθ(ρ0)|+1/2

[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

∥∥∥

×
∞∑

n=0

[ ∥∥∥|Bθ(ρ0)∗|−1/2W (α)(θ)|Bθ(ρ0)|−1/2
∥∥∥

×
∥∥∥|Bθ(ρ0)|+1/2

[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

∥∥∥
]n

≤ C

sin2 ϑ
√
ρ0
√
ρ0

∞∑

n=0

[ C

sin2 ϑ

√
α
(
1 + α

(
1 +

1√
ρ0

))]n

≤ C

sin2 ϑρ0

∞∑

n=0

(
C

sin2 ϑ

√
α

)n

with a generic C > 0 independent of z and α. We used Corollary 2 b),
Corollary 1 and Lemma 4.

We turn now to the existence of the Feshbach operator and generalize [5,
Lemma 3.15].

Lemma 7. Let 0 < ϑ < θ0 small enough. Then there is a C > 0 such that for
all sufficiently small α > 0 and all z ∈ An,l(α, σ0) the following estimates hold:

a)
∥∥∥Pn,l(θ)W (α)(θ)[P n,l(θ)(Hα(θ)− z)Pn,l(θ)]

−1Pn,l(θ)
∥∥∥ ≤ g C

sin2 ϑ
√
ρ0

.

(48)∥∥∥[Pn,l(θ)(Hα(θ)− z)Pn,l(θ)]
−1Pn,l(θ)W

(α)(θ)Pn,l(θ)
∥∥∥ ≤ g C

sin2 ϑ
√
ρ0

.

(49)

b) For all 1 ≤ l, l′, l′′ ≤ n we have

∥∥∥Pn,l′(θ)W (α)(θ)P n,l(θ)[P n,l(θ)(Hα(θ) − z)Pn,l(θ)]
−1

× Pn,l(θ)W (α)(θ)Pn,l′′ (θ)
∥∥∥ ≤ C

(sinϑ)2
g2 (50)
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c) The Feshbach operator, defined in equation (17), exists for all z ∈
An,l(α, σ0) and fulfills the equation

(Hα(θ) − z)−1 =

=
[
Pn,l(θ)− Pn,l(θ)

(
Pn,l(θ)Hα(θ)Pn,l(θ)− z

)−1
Pn,l(θ)W

(α)(θ)Pn,l(θ)
]

×
[
FPn,l(θ)(Hα(θ) − z)

]−1

×
[
Pn,l(θ)− Pn,l(θ)W (α)(θ)P n,l(θ)

(
Pn,l(θ)Hα(θ)P n,l(θ) − z

)−1
Pn,l(θ)

]

+ Pn,l(θ)
(
Pn,l(θ)Hα(θ)Pn,l(θ) − z

)−1
Pn,l(θ), (51)

where the l.h.s. exists if and only if the r.h.s. exists.

Proof.
a) We obtain as in the proof of Lemma 6

∥∥∥Pn,l(θ)W (α)(θ)P n,l(θ)
[
Pn,l(θ)(Hα(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)

∥∥∥

≤
∥∥∥Pn,l(θ)W (α)(θ)|Bθ(ρ)|−1/2

∥∥∥

×
∥∥∥|Bθ(ρ)|+1/2

[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ)∗|1/2

∥∥∥

×
∞∑

n=0

[∥∥|Bθ(ρ)∗|−1/2W (α)(θ)|Bθ(ρ)|−1/2
∥∥

×
∥∥|Bθ(ρ)|+1/2

[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ)∗|1/2

∥∥
]n
‖

× ‖|Bθ(ρ)∗|−1/2‖

≤g C

sin2 ϑ
√
ρ0

∞∑

n=0

(
C

sin2 ϑ

√
α

)n
,

where we used additionally Lemma 5 a) and b). The other estimate follows
analogously.
b) Follows similarly as in a).
c) This follows from Lemma 6 and Part a) of [4, Theorem IV.1].

Having shown the existence of the Feshbach operator, we can turn now to its
approximation by suitable other operators. The aim is to control its numerical
range and gain thus information about its invertability.
We define the operator

Q
(α)
n,l (z; θ) :=

∑

µ=1,2

∫

k∈R3

dk Pn,l(θ)[w0,1(k, µ; θ)⊗ 1f ]

×
[

Pn,l(θ; |k|)
H

(α)
el (θ) + e−iϑ(Hf + |k|)− z

]
[w1,0(k, µ; θ)⊗ 1f ]Pn,l(θ)
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as operator on RanPn,l(θ) for z ∈ An,l(α, σ0). Futhermore, we define θ-
dependent versions of the operators Zn,l,±(α) (cf. [19, Equation (8)]). We
set for Im θ 6= 0

Zn,l(α; θ) :=
∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,l(θ)w0,1(k, µ; θ)P

(α)
el,n,l(θ)

×
[
P

(α)
el,n,l(θ)H

(α)
el (θ)− En,l(α) + e−θ|k|

]−1

P
(α)
el,n,l(θ)w1,0(k, µ; θ)P

(α)
el,n,l(θ)

+
∑

µ=1,2

∫

k∈R3

dk

e−θ|k|P
(α)
el,n,l(θ)w0,1(k, µ; θ)P

(α)
el,n,l(θ)w1,0(k, µ; θ)P

(α)
el,n,l(θ).

We have Zn,l(α; θ) = Uel(θ)Zn,l,−(α)Uel(θ)
−1 for Im θ > 0 and Zn,l(α; θ) =

Uel(θ)Zn,l,+(α)Uel(θ)
−1 for Im θ < 0. Moreover, we define the following re-

mainder terms:

Rem0 :=

Pn,l(θ)W
(α)(θ)Pn,l(θ)[Pn,l(θ)(Hα(θ)−z)Pn,l(θ)]

−1Pn,l(θ)W
(α)(θ)Pn,l(θ)

−Pn,l(θ)W (α)(θ)Pn,l(θ)[Pn,l(θ)(Hα,0(θ)−z)Pn,l(θ)]
−1Pn,l(θ)W

(α)(θ)Pn,l(θ)

Rem1 :=

Pn,l(θ)W
(α)(θ)P n,l(θ)[P n,l(θ)(Hα,0(θ)−z)Pn,l(θ)]

−1Pn,l(θ)W
(α)(θ)Pn,l(θ)

−Pn,l(θ)W (α)
0,1 (θ)Pn,l(θ)[Pn,l(θ)(Hα,0(θ)−z)Pn,l(θ)]

−1Pn,l(θ)W
(α)
1,0 (θ)Pn,l(θ)

Rem2 :=

= Pn,l(θ)W
(α)
0,1 (θ)P n,l(θ)[P n,l(θ)(Hα,0(θ)− z)Pn,l(θ)]

−1Pn,l(θ)W
(α)
1,0 (θ)Pn,l(θ)

−Q(α)
n,l (z; θ)

Rem3 := Pn,l(θ)W
(α)(θ)Pn,l(θ)

We generalize Lemma [5, Lemma 3.16] (see also [19, Lemma A.7]).

Lemma 8. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all sufficiently
small α > 0 and all z ∈ An,l(α, σ0) the estimate

‖[FPn,l(θ)(Hα(θ)−z)−(H
(α)
el (θ)−z+e−θHf−Q(α)

n,l (z; θ))Pn,l(θ)]‖ ≤
C

sin4 ϑ
g2√α

holds.

Proof. We begin with the estimate on Rem0:

‖Rem0‖ ≤
∞∑

n=1

∥∥∥Pn,l(θ)W (α)(θ)|Bθ(ρ0)|−1/2
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× |Bθ(ρ0)|+1/2
[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

×
[
− |Bθ(ρ0)∗|−1/2W (α)(θ)|Bθ(ρ0)|−1/2

× |Bθ(ρ0)|+1/2
[
Pn,l(θ)(Hα,0(θ)− z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

]n

× |Bθ(ρ0)∗|−1/2W (α)(θ)Pn,l(θ)
∥∥∥

≤
∥∥Pn,l(θ)W (α)(θ)|Bθ(ρ0)|−1/2

∥∥∥∥|Bθ(ρ0)∗|−1/2W (α)(θ)Pn,l(θ)
∥∥

×
∥∥∥|Bθ(ρ0)|+1/2

[
Pn,l(θ)(Hα,0(θ) − z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

∥∥∥

×
∞∑

n=1

[∥∥|Bθ(ρ0)∗|−1/2W (α)(θ)|Bθ(ρ0)|−1/2
∥∥

×
∥∥|Bθ(ρ0)|+1/2

[
Pn,l(θ)(Hα,0(θ)−z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

∥∥]n

≤ C

sin2 ϑ
g2
∞∑

n=1

( C

sin2 ϑ

√
α
)n
≤ C

sin4 ϑ
g2
√
α

We used here Lemma 5 a) and b), Lemma 4 and Corollary 1. For Rem1 we
find

‖Rem1‖ ≤
∥∥∥|Bθ(ρ0)|+1/2

[
Pn,l(θ)(Hα,0(θ) − z)Pn,l(θ)

]−1
Pn,l(θ)|Bθ(ρ0)∗|1/2

∥∥∥

×
(∥∥Pn,l(θ)W (α)

1,0 (θ)|Bθ(ρ0)|−1/2
∥∥∥∥|Bθ(ρ0)∗|−1/2W

(α)
1,0 (θ)Pn,l(θ)

∥∥

+
∥∥Pn,l(θ)W (α)

1,0 (θ)|Bθ(ρ0)|−1/2
∥∥∥∥|Bθ(ρ0)∗|−1/2W

(α)
0,1 (θ)Pn,l(θ)

∥∥

+
∥∥Pn,l(θ)W (α)

0,1 (θ)|Bθ(ρ0)|−1/2
∥∥∥∥|Bθ(ρ0)∗|−1/2W

(α)
0,1 (θ)Pn,l(θ)

∥∥
)

≤ C

sin2 ϑ
g2ρ

1/2
0 =

C

sin2 ϑ
g2α

using Corollary 1 and Lemma 5 a) and b).
For Rem2 we use the pull-through formula [4, Lemma IV.8]: We have

Rem2 =α
∑

µ,µ′=1,2

∫

k∈R3

dk

∫

k′∈R3

dk ′Pn,l(θ)α ·G(θ)
αx(k, µ)a∗µ′(k

′)

×
P

(α)
el,n,l ⊗ 1f + P

(α)
el,n,l ⊗ χHf+|k|+|k′|≥ρ0

H
(α)
el (θ) + e−θ(Hf + |k|+ |k′|)− z

α ·G(θ)
αx(k′, µ′)aµ(k)Pn,l(θ).

Using Lemma 2 (for the resolvent) and [25, Theorem 11] (for the expectation
values of the Dirac matrix) we obtain

∣∣〈ψ,Rem2ψ
′〉∣∣ ≤ Cα

2∑

µ,µ′=1

∫

|k|≤ρ0
dk

∫

|k′|≤ρ0
dk ′
|κ(e−θ|k|)|√

|k|
|κ(e−θ|k′|)|√

|k′|

×
∥∥P (α)

el,n,l(θ)α · ǫµ(k)eiαx·kΛ
(+)
α−1,Z(θ)

∥∥∥∥Λ
(+)
α−1,Z(θ)α · ǫµ(k′)e−iαx·k′P (α)

el,n,l(θ)
∥∥
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×
∥∥∥
P

(α)
el,n,l(θ)⊗ 1f + P

(α)
el,n,l(θ)⊗ χHf+|k|+|k′|≥ρ0

H
(α)
el (θ) + e−θ(Hf + |k|+ |k′|)− z

∥∥∥

×
∥∥aµ(k)χHf≤ρ0ψ

∥∥∥∥aµ′(k′)χHf≤ρ0ψ
∥∥

≤ Cg2

sinϑρ0

2∑

µ,µ′=1

∫

|k|≤ρ0
dk
|κ(e−θ|k|)|(1 + α|k|)√

|k|
√
|k|

√
|k|
∥∥aµ(k)χHf≤ρ0ψ

∥∥

×
∫

|k′|≤ρ0
dk ′
|κ(e−θ|k′|)|(1 + α|k′|)√

|k′|
√
|k′|

√
|k′|
∥∥aµ′(k′)χHf≤ρ0ψ

′∥∥

≤ Cg2

sinϑρ0

( ∫

|k|≤ρ0
dk

1

|k|2
)∥∥H1/2

f χHf≤ρ0ψ
′∥∥∥∥H1/2

f χHf≤ρ0ψ
∥∥

≤ Cg2

sinϑρ0
ρ2
0‖ψ′‖‖ψ‖ =

C

sinϑ
g2α2‖ψ′‖‖ψ‖

with a generic C > 0.

Finally, we consider Rem3 := Pn,l(θ)W
(α)(θ)Pn,l(θ), where we show the esti-

mate with A
(θ)
κ (αx)− only. The other estimate works analogously. We find

using [25, Lemma 10]

√
α
∣∣〈ψ′, P (α)

el,n,l(θ)⊗ χHf≤ρ0α · A(θ)
κ (αx)−P

(α)
el,n,l(θ)⊗ χHf≤ρ0ψ

〉∣∣

≤√α
2∑

µ,µ′=1

∫

|k|≤ρ0
dk
|κ(e−θ|k|)|√

|k|

×
∥∥P (α)

el,n,l(θ)α · ǫµ(k)eiαx·kP (α)
el,n,l(θ)

∥∥∥∥ψ′‖‖aµ(k)χHf≤ρ0ψ
∥∥

≤Cg
√∫

|k|≤ρ0
dk

1

|k|2
∥∥ψ′‖‖H1/2

f χHf≤ρ0ψ
∥∥ ≤ Cgρ0‖ψ′‖‖ψ‖ = C

√
αg2‖ψ′‖‖ψ‖.

Note that the following Lemma 9 holds only for z ∈ A<n,l(α, σ0), contrary to
Lemma 8. It generalizes [5, Lemma 3.16] (see also [19, Lemma A.8]).

Lemma 9. Let 0 < ϑ < θ0. Then there is a C > 0 such that for all α > 0
sufficiently small and all z ∈ A<n,l(α, σ0) the estimate

∥∥∥Q(α)
n,l (z; θ)− Zn,l(α; θ)

∥∥∥ ≤ C

sin2 ϑ
g2α

holds.
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Proof. We split Q
(α)
n,l (z; θ)− Zn,l(α; θ) = Rem4a + Rem4b with

Rem4a :=
∑

µ=1,2

∫

k∈R3

dk Pn,l(θ)[w0,1(k, µ; θ)⊗ 1f ]

×
[

P
(α)
el,n,l(θ)⊗ χHf+|k|≥ρ0

H
(α)
el (θ) + e−θ(Hf + |k|)− z

]
[w1,0(k, µ; θ)⊗ 1f ]Pn,l(θ)

−
∑

µ=1,2

∫

k∈R3

dk

e−θ|k|P
(α)
el,n,l(θ)w0,1(k, µ; θ)P

(α)
el,n,l(θ)w1,0(k, µ; θ)P

(α)
el,n,l

and

Rem4b :=
∑

µ=1,2

∫

k∈R3

dk Pn,l(θ)[w0,1(k, µ; θ)⊗ 1f ]

×
[

P
(α)
el,n,l(θ) ⊗ 1f

H
(α)
el (θ) + e−θ(Hf + |k|)− z

]
[w1,0(k, µ; θ)⊗ 1f ]Pn,l(θ)

−
∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,l ⊗ χHf≤ρ0w0,1(k, µ; θ)

×
[

P
(α)
el,n,l(θ)

H
(α)
el (θ)− En,l + e−θ|k|

]
w1,0(k, µ; θ)P

(α)
el,n,l(θ)⊗ χHf≤ρ0 .

We start with Rem4a: As in the proof of Lemma 2 a) one shows for ρ0 ≤ r+ |k|
the inequalities

|En,l(α) + e−θ(r + |k|)− z)| ≥ −σ0 + sinϑ(r + |k|) ≥ |k| sinϑ
2

(52)

and

|En,l(α) + e−θ(r + |k|)− z)| ≥ −σ0 + sinϑ(r + |k|) ≥ ρ0 sinϑ

2
, (53)

since we have σ0 ≤ ρ0 sinϑ
2 ≤ (r+|k|) sinϑ

2 for sufficiently small α > 0.
As in the proof of Lemma 4 one obtains using [25, Lemma 10] the inequality

‖P (α)
el,n,l(θ)w0,1(k, µ; θ)P

(α)
el,n,l(θ)‖ ≤ Cg

|κ(e−θ|k|)|√
|k|

. (54)

We find after a little transformation of Rem4a

∥∥Rem4a

∥∥ =
∥∥∥
∑

µ=1,2

∫

k∈R3

dk Pn,l(θ)[w0,1(k, µ; θ)⊗ 1f ]P
(α)
el,n,l(θ)

×
[(
e−θHf + En,l(α)− z

)
χHf+|k|≥ρ0χHf≤ρ0

(En,l(α) + e−θ(Hf + |k|)− z) e−θ|k|

]
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× P (α)
el,n,l(θ)[w1,0(k, µ; θ)⊗ 1f ]Pn,l(θ)

−
∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,l(θ)w0,1(k, µ; θ)P

(α)
el,n,l(θ)

× χHf≤ρ0χHf+|k|≤ρ0
e−θ|k| w1,0(k, µ; θ)P

(α)
el,n,l

∥∥∥

≤ C

sinϑ
g2(α2 + ρ0)

( 1

ρ0

∫

|k|≤ρ0
dk
|κ(e−θ|k|)|2
|k|2 +

∫

|k|≥ρ0
dk
|κ(e−θ|k|)|2
|k|3

)

+ g2

∫

|k|≤ρ0
dk
|κ(e−θ|k|)|2
|k|2

≤ C

sinϑ
g2(α2 ρ0

ρ0
+ α2 ln ρ−1

0 + ρ0) ≤ C

sinϑ
g2α.

Here, we split the integration in the first summand in the regions |k| ≤ ρ0 and
|k| > ρ0. We use inequality (53) in the first region, and inequality (52) in the
second region.

The estimate on Rem4b is more difficult. We split the projection P
(α)
el,n,l =

P
(α)

el,n + P
(α)

el,n,l and obtain for P = P
(α)

el,n as well as for P = P
(α)

el,n,l

∥∥∥
∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,l(θ)⊗ χHf≤ρ0 [w0,1(k, µ; θ)⊗ 1f ]

×
[

P ⊗ 1f

H
(α)
el (θ) + e−θ(Hf + |k|)− z

]
[w1,0(k, µ; θ)⊗ 1f ]P

(α)
el,n,l(θ) ⊗ χHf≤ρ0

−
∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,l(θ)⊗ χHf≤ρ0w0,1(k, µ; θ)

×
[

P ⊗ 1f

H
(α)
el (θ) − En,l + e−θ|k|

]
w1,0(k, µ; θ)P

(α)
el,n,l(θ)⊗ χHf≤ρ0

∥∥∥

≤α
∑

µ=1,2

∫

k∈R3

dk
|κ(e−θ|k|)|2
|k|

×
∥∥P (α)

el,n,l(θ)α · ǫµ(k)eiαx·kΛ
(+)
α−1,Z(θ)

∥∥∥∥Λ
(+)
α−1,Z(θ)α · ǫµ(k′)e−iαx·k′P (α)

el,n,l(θ)
∥∥

×
[∥∥ P ⊗ 1f

H
(α)
el (θ) + e−θ(Hf + |k|)− z

∥∥∥∥ P

H
(α)
el (θ)− En,l + e−θ|k|

∥∥

×
(
|En,l − z|+ ‖HfχHf≤ρ0‖

)]

≤Cg2α2

∫

k∈R3

dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k|

×
∥∥ P ⊗ 1f

H
(α)
el (θ) + e−θ(Hf + |k|)− z

∥∥∥∥ P

H
(α)
el (θ)− En,l + e−θ|k|

∥∥.
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We used [25, Theorem 11]. Note that all estimates on ‖ P⊗1f

H
(α)
el (θ)+e−θ(Hf+|k|)−z

‖

in Lemma 1 hold also for ‖[PH(α)
el (θ)−En,l + e−θ|k|]−1P‖, since the operator

under the norm in the second expression is the projection of the operator in
the first expression on the vacuum sector with z = En,l.

Case 1: P = P
(α)

el,n,l. We split the integration in the regions B1 := {k ∈
R3||k| ≤ ρ0} and B2 := {k ∈ R3||k| > ρ0}. Using Formula (27) in Lemma 1 a),
the integral over B1 can be estimated by

C

sin2 ϑ
g2α2 1

δn,l(α)2

∫

k∈B1

dk
1

|k| ≤
C

sin2 ϑ
g2α−2ρ2

0 =
C

sin2 ϑ
g2α2.

With Formula (28) in Lemma 1 b) we estimate the integral over B2 by

C

sin2 ϑ
g2α2

∫

k∈B2

dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k|3 ≤ C

sin2 ϑ
g2α2 ln ρ−1

0 .

Case 2: P = P
(α)

el,n. We estimate the resolvents with Lemma 1 c) and obtain
the estimate

C

δ2n sin2 ϑ
g2α2

∫

k∈R3

dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k| ≤ C

δ2n sin2 ϑ
g2α2 =

C

δ2n sin2 ϑ
g2α2.

The following Lemma generalizes [19, Corollary A.9]. Note, however, that we
do not remove the α-dependence of the real part.

Lemma 10. There is a constant C > 0 such that for all sufficiently small α > 0
the estimate

‖UNR(α−1,Z; 0)−1Zn,l,±(α)UNR(α−1,Z; 0)− Yn,l,±(α)‖ ≤ Cg2α

holds.

Proof. We consider the case with the minus sign only. It suffices to show

‖UNR(α−1,Z; 0)−1ImZn,l,−(α)UNR(α−1,Z; 0)− Zn,l,im‖ ≤ Cg2α.

Because of [x,H
(α)
el ] = iα−1

α and |eiαk·x − 1| ≤ α|k||x| we obtain from [25,
Lemma 10 and Lemma 12]

‖ImZn,l,−(α) − g2π
∑

n′,l′:
En′,l′ (α)<En,l(α)

∑

µ=1,2

∫

|ω|=1

dω (En′,l′(α) − En,l(α))

× κ(|En′,l′(α) − En,l(α)|)2
4π2

P
(α)
el,n,lǫµ(ω) · xP (α)

el,n′,l′ǫµ(ω) · xP (α)
el,n,l‖ ≤ g2α.
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The integral over ω and the sum over the polarizations can be done in the same
way as in the non-relativistic case (see [19, Remark 1]). If we take additionally
into account that |En,l′(α) − En,l(α)| ≤ Cα2, we obtain

‖ImZn,l,−(α) − g2 2

3

∑

n′,l′:n′<n

(En′,l′(α)− En,l(α))

× κ(|En′,l′(α) − En,l(α)|)2
4π2

P
(α)
el,n,lxP

(α)
el,n′,l′xP

(α)
el,n,l‖ ≤ g2α.

[25, Lemma 8] implies UNR(α−1,Z; 0)−1P
(α)
el,n,l = P

(0)
el,n,lUNR(α−1,Z; 0). The

claim follows together with [25, Lemma 7], [25, Equation (76) in Lemma 8]
and [25, Lemma 11]. Note that κ admits an analytic continuation.

6 Estimates on the Numerical Range

The estimates in Section 5 allow us to control the numerical range of the
Feshbach operator. But since ReZn,l,±(α) depends on α, we have to prove
that Zn,l,±(α) is of order g2:

Lemma 11. Let 0 < ϑ < θ0 and n > 2. Then the following holds:

a) There is a C > 0 such that for all sufficiently small α > 0 the estimate

‖Zn,l,±(α)‖ ≤ Cg2

holds.

b) There is a c > 0 such that for all sufficiently small α > 0 the estimates

ImZn,l,−(α) ≥ cg2 +O(g2α)

ImZn,l,+(α) ≤ −cg2 +O(g2α)

hold.

Proof.

b) follows immediately from Lemma 10, since by [19, Theorem B.1] there is a
c > 0 such that the estimates ImYn,l,−(α) ≥ cg2 and ImYn,l,+(α) ≤ −cg2 hold
(cf. the Definition (22) of ImYn,l,±(α) as well as the remark before Theorem
1).

a) As in the estimates on Rem4a in the proof of Lemma 9 we find

‖
∑

µ=1,2

∫

k∈R3

dk

e−θ|k|P
(α)
el,n,l(θ)w0,1(k, µ; θ)P

(α)
el,n,l(θ)w1,0(k, µ; θ)P

(α)
el,n,l‖ ≤Cg2.
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Moreover, we obtain

‖
∑

µ=1,2

∫

k∈R3

dk P
(α)
el,n,l(θ)⊗ χHf≤ρ0w0,1(k, µ; θ)

× P (α)
el,n,l(θ)[P

(α)
el,n,l(θ)H

(α)
el (θ)− En,l + e−θ|k|]−1

× P (α)
el,n,l(θ)w1,0(k, µ; θ)P

(α)
el,n,l(θ) ⊗ χHf≤ρ0‖ ≤ Cg2.

To see this, we proceed as in the estimate on Rem4b in the proof of Lemma 9:
In Case 1 we can estimate the integral over B1 by

C

sinϑ
g2 1

δn,l(α)

∫

k∈B1

dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k| ≤ C

sinϑ
g2α−2ρ2

0 =
C

sin2 ϑ
g2α2

and the integral over B2 by

C

sinϑ
g2

∫

k∈B2

dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k|2 ≤ C

sinϑ
g2.

In Case 2 we obtain the estimate

C

δn sinϑ
g2

∫

k∈R3

dk
|κ(e−θ|k|)|2(1 + α|k|)2

|k| ≤ C

δn sinϑ
g2.

[25, Lemma 9] yields the claim.

This lemma implies in particular that the numerical range of Zn,l,±(α) is con-
tained in a ball around 0 with radiusO(g2). In particular, this holds for the real
part ReZn,l,±(α) = ReYn,l,±(α). As in [19], there are constants a, b > 0 such
that NumRan Yn,l,±(α) ⊂ g2A(c, a, b) with A(c, a, b) := ic+ ([−a, a] + i [0, b]).
As in the non-relativistic case, we set ν := min{ϑ, arctan(c/(2a))}. Since we
are interested only in n ≤ ñ, we can choose the set A(c, a, b) and the angle ν
independent of n and l.
Thus, we can control the inverse of the Feshbach operator FPn,l(θ)(Hα(θ)− z)
for z ∈ A<n,l(α, σ0) analogously to the non-relativsitic case (see [19, Lemma 6])
as follows (see Figure 1):

Lemma 12. Let 0 < ϑ < θ0 and 0 < g ≪ ϑ small enough. Then the following
estimates hold:

a) There are constants C1, C2 > 0 such that FPn,l(θ)(Hα(θ) − z) has a
bounded inverse for all z ∈ A<n,l(α, σ0) \D(NumRan(En,l(α)− Yn,l(α)⊗
1f + e−θ1el ⊗ Hf)|RanP

(0)
el,n,l

, C1 · g2
√
α) , and for λ ∈ [En,l(α) −

δn,l,−(α), En,l(α)
+ δn,l,+(α)] the esimate

∥∥FPn,l(θ)(Hα(θ) − λ)−1
∥∥ ≤ C2

sin ν
√

(En,l(α) − λ)2 + cg4
(55)

holds.
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b) There are constants C1, C2 > 0 such that for all z ∈ C \
D(NumRan(En,l(α)
− Yn,l(α))|

Ran P
(0)
el,n,l(0)

, C1 · g2α) the operator (En,l(α) − z −
Zn,l(α; θ))|

RanP
(α)
el,n,l(θ)

defined on RanP
(α)
el,n,l(θ) has a bounded inverse

which fulfills the estimate

‖[(En,l(α) − z − Zn,l(α; θ))|
Ran P

(α)
el,n,l(θ)

]−1‖

≤ C

dist(z,NumRan(En,l(α) − Yn,l(α))|
Ran P

(α)
el,n,l(0)

)
, (56)

and in particular (55).

Proof. This can be shown using Lemmas 8, 9 and 10 exactly as in the proof of
[19, Lemma 6].

For l = 1 or l = n, the set A<n,l(α, σ0) is strictly interior of the set An,l(α, σ0),
such that we need a relativistic analogon of [19, Lemma 7] in this case.

Lemma 13. Let 0 < ϑ < θ0 and 0 < g ≪ ϑ small enough. Let moreover
l = 1 or l = n. Then the following statements hold: The Feshbach operator
FPn,l(θ)(Hα(θ)−z) is bounded invertible for all z ∈ An,l(α, σ0)\A<n,l(α, σ0) and
there is a C > 0 such that for λ ∈ [En − δn,−, En,1(α)− δn,1,−(α)] respectively
λ ∈ [En,n(α) + δn,n,+(α), En + δn,+] the estimate

‖FPn,l(θ)(Hα(θ)− λ)−1‖ ≤ C

sinϑ|λ− En,l(α)| − Cg2

holds with l = 1 or l = n, respectively. The same estimate holds for [En,l(α)−
λ−Q(α)

n,l (λ; θ)]−1.

Proof. This follows analogously to the non-relativistic case (see the proof of [19,

Lemma 7]) from Lemma 7 b). For the claim on [En,l(α) − λ − Q(α)
n,l (λ; θ)]−1,

note additionally Lemma 8 and the proof thereof.

Corollary 3. Let 0 < ϑ < θ0 and 0 < g ≪ ϑ small enough. The for all
1 ≤ l ≤ n the following holds:

σ(Hα(θ)) ∩ An,l(α, σ0)

⊂ D(NumRan(En,l(α)− Yn,l(α)⊗ 1f + e−θ1el ⊗Hf)|RanP
(0)
el,n,l

, C1 · g2√α),

where C1 was defined in Lemma 12. In particular, [En − δn,−, En + δn,+] ⊂
ρ(Hα(θ)).

Proof. This follows because of Lemma 7 c) immediately from Lemma 12 and
Lemma 13.
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Remark 3. The estimates above hold as in the non-relativistic case (cf. [19,
Remark 5]) also for −θ0 < ϑ < 0, if one reflects the sets An,l(α, σ0) and
A<n,l(α, σ0) about the real axis and replaces Yn,l(α) = Yn,l,−(α) by Yn,l,+(α) for
the localization of the numerical range.

Figure 1: The integration contour in the relativistic model for the principal
quantum number n = 3.

7 Lifetime of Excited States

We are now able to prove Theorem 1 similarly as in the non-relativistic case.
The fine structure splitting induces some differences, however: Since a spectral
cutoff around the fine structure component considered would converge to zero
as α2, we introduce a spectral cutoff around all the fine structure components of
the corresponding principal quantum number so that additionally contributions
of the other components have to be estimated.

Proof of Theorem 1.

Step 1: We pick a function F̃ ∈ C∞0 (R) with F̃ (x) = 0 for |x| ≥ 1 and F̃ (x) = 1
for |x| ≤ 1/2 and define a cutoff function F (x) := F̃ (δ−1

n (x − En)). As in the
non-relativistic case (see step 1 in the proof of [19, Theorem 1]) one shows
|〈ψ(α), e−isHαF (Hα)ψ(α)〉 − 〈ψ(α), e−isHαψ(α)〉| ≤ C√α uniformly in s ≥ 0.

Step 2: We write

〈ψ(α), e−isHαF (Hα)ψ(α)〉

=− 1

2πi
lim
ǫ↓0

∫
dλ e−iλsF (λ)[f(0, λ− i ǫ)− f(0, λ+ i ǫ)]

=− 1

2πi

∫
dλ e−iλsF (λ)[f(θ, λ)− f(θ, λ)],

where f(θ, λ) := 〈ψ(α; θ), 1
Hα(θ)−λψ(α; θ)〉 with ψ(α; θ) := φ(α; θ) ⊗ Ω and

φ(α; θ) := Uel(θ)φ(α). (We choose Im θ > 0.) In the first step, we used [36,
Theorem VII.13]. In the second step, we used the dilation analyticity of Hα(θ)
(see Theorem 3) and the fact that Hα(θ) has no spectrum in the interval
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[En− δn,−, En+ δn,+/2] (see Corollary 3). We split the integration into several
intervals:

− 1

2πi

∫
dλ e−iλsF (λ)[f(θ, λ) − f(θ, λ)]

= − 1

2πi

{
n∑

l′=1

∫ En,l′(α)+δn,l′,+(α)

En,l′(α)−δn,l′,−(α)

dλ e−iλs[f(θ, λ)− f(θ, λ)]

+

∫ En,1(α)−δn,1,−(α)

En−δn,−
dλ e−i λsF (λ)[f(θ, λ)− f(θ, λ)]

+

∫ En+δn,+

En,n(α)+δn,n,+(α)

dλ e−iλsF (λ)[f(θ, λ)− f(θ, λ)]

}

We used here F (λ) = 1 for λ ∈ [En,1(α)− δn,1,−(α), En,n(α)
+ δn,n,+(α)] ⊂ [En − δn/2, En + δn/2].
Step 3: For λ ∈ [En,l(α)− δn,l,−(α), En,l(α) + δn,l,+(α)] we observe that Equa-
tion (51) in Lemma 7 implies

〈ψ(α; θ),
1

Hg(θ)− λ
ψ(α; θ)〉 = 〈ψ(α; θ),FPn,l(θ)(Hα(θ)− λ)−1ψ(α; θ)〉

and find

f(θ, λ) = 〈ψ(α; θ),FPn,l(θ)(Hα(θ) − λ)−1ψ(α; θ)〉
=〈φ(α; θ), [En,l(α) − λ− Zn,l(α; θ)]−1φ(α; θ)〉
− 〈ψ(α; θ), [En,l(α) − λ− Zn,l(α; θ)]−1

× [FPn,l(θ)(Hα(θ)− λ) − (En,l(α) − λ+ e−θ1el ⊗Hf − Zn,l(α; θ))Pn,l(θ)]

×FPn,l(θ)(Hα(θ)− λ)−1ψ(α; θ)〉 =: f̂(θ, λ) +B1(θ, λ)

using the second resolvent equation. Here f̂(θ, λ) is the first term in the sum.
Using the dilation analyticity and the resolvent identity once again, we obtain

f̂(θ, λ) = 〈φ(α), [En,l(α)− λ− Zn,l,−(α)]−1φ(α)〉
=〈φ(0), [En,l(α) − λ− UNR(α−1,Z; 0)−1Zn,l,−(α)UNR(α−1,Z; 0)]−1φ(0)〉
=〈φ(0), [En,l(α) − λ− Yn,l,−(α)]−1φ(0)〉
− 〈φ(0), [En,l(α)− λ− Yn,l,−(α)]−1

× [UNR(α−1,Z; 0)−1Zn,l,−(α)UNR(α−1,Z; 0)− Yn,l,−(α)]

× [En,l(α)− λ− UNR(α−1,Z; 0)−1Zn,l,−(α)UNR(α−1,Z; 0)]−1φ(0)〉
= : f̃−(λ) +B2,−(λ),

where f̃−(λ) is the first term in the sum. We set B(θ, λ) := B1(θ, λ)+B2,−(λ).
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Accordingly we obtain

f̂(θ̄, λ) = 〈φ(α), [En,l(α) − λ− Zn,l,+(α)]−1φ(α)〉
=〈φ(0), [En,l(α) − λ− Yn,l,+(α)]−1φ(0)〉
− 〈φ(0), [En,l(α)− λ− Yn,l,+(α)]−1

× [UNR(α−1,Z; 0)−1Zn,l,+(α)UNR(α−1,Z; 0)− Y+(α)]

× [En,l(α)− λ− UNR(α−1,Z; 0)−1Zn,l,+(α)UNR(α−1,Z; 0)]−1φ(0)〉
= : f̃+(λ) +B2,+(λ),

where f̃+(λ) is the first term in the sum. We set B(θ̄, λ) := B1(θ̄, λ)+B2,+(λ).

As in the non-relativistic case, we move the contour for f̃±(λ) and estimate the
terms B(θ, λ) and B(θ̄, λ) on the real axis. We find

∫ En,l(α)+δn,l,+(α)

En,l(α)−δn,l,−(α)

dλ e−iλs[f(θ̄, λ)− f(θ, λ)]

=

∫ En,l(α)+δn,l,+(α)

En,l(α)−δn,l,−(α)

dλ e−iλs[B(θ, λ)−B(θ, λ)]

+

∫

C1+C5

dz e−i zs[f̃+(z)− f̃−(z)]

+

∫

C2+C3+C4

dz e−i zs[f̃+(z)− f̃−(z)]−
∫

C0

dz e−i zs[f̃+(z)− f̃−(z)],

where C := C1 +C2 +C3 +C4 +C5 with C1 := [En,l(α)− δn,l,−(α), En,l(α)−
δn,l,−(α)/2], C2 := [En,l(α) − δn,l,−(α)/2, En,l(α) − δn,l,−(α)/2 − i δn,l(α)],
C3 := [En,l(α) − δn,l,−(α)/2 − i δn,l(α), En,l(α) + δn,l,+(α)/2 − i δn,l(α)],
C4 := [En,l(α) + δn,l,+(α)/2 − i δn,l(α), En,l(α) + δn,l,+(α)/2] and C5 :=
[En,l(α) + δn,l,+(α)/2, En,l(α) + δn,l,+(α)]. Note that this contour lies par-
tially outside An,l(α, σ0) , which is possible since we do not consider any

integrals which contain Q
(α)
n,l (z; θ). C0 is a suitable contour to pick a pole

contribution of f̃(θ, z). We choose as in the non-relativistic case C0 =
[En,l(α) + g2(−(a + c/2) − ic/2), En,l(α) + g2((a + c/2) − ic/2)] + [En,l(α) +
g2((a+ c/2)− ic/2), En,l(α) + g2((a+ c/2)− i (b+ 3c/2))] + [En,l(α) + g2((a+
c/2)− i (b+3c/2)), En,l(α)+g2(−(a+c/2)− i (b+3c/2))]+[En,l(α)+g2(−(a+
c/2)− i (b+ 3c/2)), En,l(α) + g2(−(a+ c/2)− i (c/2))].

Estimates on the real axis: We show the estimate on B1(θ, λ). Using Lemma

8, Lemma 9 and Lemma 12 we obtain |B1(θ, λ)| ≤ Cν−2 · g2
√
α

(En,l(α)−λ)2+c2g4 . It

is easy to see that
∫

dλ g2
√
α

(En,l(α)−λ)2+c2g4 is O(
√
α). The same estimates hold

for B1(θ̄, λ). The estimates on B2,±(λ) work analogously using Lemma 10 and
Lemma 12.

Estimates on the contour C: We estimate the integral
∫
C
|e−isz ||f̃+(z) −
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f̃−(z)||dz |: Note that

f̃−(z) =
1

En,l(α) − z 〈φ(0), φ(0)〉

+〈φ(0),
1

En,l(α) − z Yn,l,−(α)
1

En,l(α) − z − Yn,l,−(α)
φ(0)〉

holds. Accordingly, the leading terms of f̃−(z) and f̃+(z) cancel, and it suffices
to show that the remaining terms are at least of order

√
α. It follows from

Equation (22) and Lemma 11 that ‖Yn,l,±(α)‖ ≤ Cg2. Thus we can estimate

|〈φ(0),
1

En,l(α) − (λ− i δn,l(α))
Yn,l,−(α)

× 1

En,l(α) − (λ− i δn,l(α)) − Yn,l,−(α)
φ(0)〉| ≤ C · g2

(En,l(α)− λ)2 + δn,l(α)2
.

Since the contour C3 has length O(α2), we estimate the integral over the ex-
pression above by Cα. Similar estimates hold on C1, C2, C4 and C5. The
integral over f̃+(z) can be estimated analogously.
Pole-Term: The integral along C0 over f−(z) yields the claimed leading term,
the integral over f+(z) is zero.
Step 4: For λ ∈ [En,l′(α) − δn,l′,−(α), En,l′ (α) + δn,l′,+(α)] with l′ 6= l we

observe that φ(α) ∈ RanP
(α)
el,n,l implies

Pn,l′(θ)ψ(α; θ) = (P
(α)
el,n,l′(θ)⊗ χHf≥ρ0 + P

(α)
el,n,l′(θ)⊗ 1f)ψ(α; θ) = ψ(α; θ)

and Pn,l′(θ)ψ(α; θ) = 0, which in turn shows

f(θ, λ) =

=
〈
ψ(α; θ̄), Pn,l′(θ)

(
Pn,l′(θ)Hα(θ)P n,l′(θ) − λ

)−1
Pn,l′(θ)W

(α)(θ)Pn,l′ (θ)

×
[
FPn,l′(θ)(Hα(θ)− λ)

]−1

× Pn,l′(θ)W (α)(θ)P n,l′(θ)
(
Pn,l(θ)Hα(θ)P n,l′(θ) − λ

)−1
Pn,l′(θ)ψ(α; θ)

〉

+
〈
ψ(α; θ̄), Pn,l′(θ)

(
Pn,l′(θ)Hα(θ)P n,l′(θ) − λ

)−1
Pn,l′(θ)ψ(α; θ)

〉

= : f1(θ, λ) + f2(θ, λ)

using (51) in Lemma 7, where f1(θ, λ) is the first summand. Using the resolvent
identity we find f1(θ, λ) = f1,a(θ, λ) + f1,b(θ, λ) + f1,c(θ, λ) with

f1,a(θ, λ) :=
〈
ψ(α; θ̄), Pn,l′(θ)

(
Pn,l′(θ)Hα,0(θ)Pn,l′(θ)− λ

)−1

×Pn,l′(θ)W (α)(θ)Pn,l′ (θ)FPn,l′ (θ)(Hα(θ) − λ)−1Pn,l′(θ)W
(α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα,0(θ)P n,l′(θ)− λ

)−1
Pn,l′(θ)ψ(α; θ)

〉
,
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f1,b(θ, λ) := −
〈
ψ(α; θ̄), Pn,l′(θ)

(
Pn,l′(θ)Hα,0(θ)P n,l′(θ)− λ

)−1

× Pn,l′(θ)W (α)(θ)Pn,l′(θ)
(
Pn,l′(θ)Hα(θ)Pn,l′(θ)− λ

)−1

× Pn,l′(θ)W (α)(θ)Pn,l′ (θ)
[
FPn,l′(θ)(Hα(θ)− λ)

]−1
Pn,l′(θ)W

(α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα,0(θ)Pn,l′(θ)− λ

)−1
Pn,l′(θ)ψ(α; θ)

〉

−
〈
ψ(α; θ̄), Pn,l′(θ)

(
Pn,l′(θ)Hα,0(θ)P n,l′(θ) − λ

)−1

× Pn,l′(θ)W (α)(θ)Pn,l′ (θ)
[
FPn,l′(θ)(Hα(θ)− λ)

]−1
Pn,l′(θ)W

(α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα(θ)P n,l′(θ) − λ

)−1
Pn,l′(θ)W

(α)(θ)Pn,l′(θ)

×
(
Pn,l′(θ)Hα,0(θ)Pn,l′(θ)− λ

)−1
Pn,l′(θ)ψ(α; θ)

〉

and

f1,c(θ, λ) :=
〈
ψ(α; θ̄), Pn,l′(θ)

(
Pn,l′(θ)Hα,0(θ)Pn,l′(θ)− λ

)−1

× Pn,l′(θ)W (α)(θ)P n,l′(θ)
(
Pn,l′(θ)HαPn,l′(θ)− λ

)−1

× Pn,l′(θ)W (α)(θ)Pn,l′ (θ)
[
FPn,l′(θ)(Hα(θ)− λ)

]−1
Pn,l′(θ)W

(α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα(θ)Pn,l′(θ)− λ

)−1
Pn,l′(θ)W

(α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα,0(θ)P n,l′(θ)− λ

)−1
Pn,l′(θ)ψ(α; θ)

〉
.

We obtain

f1,a(θ, λ) =
1

(En,l(α)− λ)2
〈ψ(α; θ̄),W

(α)
0,1 (θ)Pn,l′ (θ)

×FPn,l′(θ)(Hα(θ)− λ)−1Pn,l′(θ)W
(α)
1,0 (θ)ψ(α; θ)〉.

Lemma 5 c) and Lemma 12 a) imply

|f1,a(θ, λ)| ≤ 1

|En,l(α)− λ|2
g2ρ2

0

g2
,

which shows
∫ En,l′(α)+δn,l′,+(α)

En,l′(α)−δn,l′,−(α)

dλ |f1,a(θ, λ)| ≤ ρ2
0

α2
= O(α2).

In order to estimate f1,b(θ, λ) it suffices to consider the first summand, which
can be estimated according to

1

|En,l(α) − λ|2 |〈ψ(α; θ̄),

× Pn,l(θ)W (α)(θ)Pn,l′(θ)
(
Pn,l′(θ)Hα(θ)Pn,l′(θ)−λ

)−1
Pn,l′(θ)W

(α)(θ)Pn,l′ (θ)

×
[
FPn,l′(θ)(Hα(θ)− λ)

]−1
Pn,l′(θ)W

(α)
1,0 (θ)ψ(α; θ)〉|

≤ C

|En,l(α)−λ|2
g2gρ0

g2
,
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where we used Lemma 5 c), Lemma 12 a) and Lemma 7 b) in the last step. It
follows that

∫ En,l′(α)+δn,l′,+(α)

En,l′(α)−δn,l′,−(α)

dλ |f1,b(θ, λ)| ≤ C gρ0

α2
= O(g) = O(α3/2).

Eventually, we obtain by Lemma 12 a) and Lemma 7 b)

|f1,c(θ, λ)| = 1

|En,l(α) − λ|2 |〈ψ(α; θ̄), Pn,l(θ)W
(α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα(θ)Pn,l′(θ)− λ

)−1
Pn,l′(θ)W

(α)(θ)Pn,l′(θ)

×
[
FPn,l′(θ)(Hα(θ)− λ)

]−1

× Pn,l′(θ)W (α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)HαPn,l′(θ) − λ

)−1
Pn,l′(θ)W

(α)(θ)Pn,l(θ)ψ(α; θ)〉|

≤ C 1

|En,l(α)− λ|2
g4

g2
.

Integration yields

∫ En,l′(α)+δn,l′,+(α)

En,l′(α)−δn,l′,−(α)

dλ |f1,c(θ, λ)| ≤ C g
2

α2
= O(α).

Now, we have to treat the term f2(θ, λ). Using the resolvent identity we find
f2(θ, λ) = f2,a(θ, λ) + f2,b(θ, λ) + f3,c(θ, λ), with

f2,a(θ, λ) :=〈ψ(α; θ̄), Pn,l′(θ)
(
Pn,l′(θ)Hα,0(θ)P n,l′(θ)− λ

)−1
Pn,l′(θ)ψ(α; θ)〉,

f2,b(θ, λ) :=− 〈ψ(α; θ̄), Pn,l′(θ)
(
Pn,l′(θ)Hα,0(θ)Pn,l′(θ)− λ

)−1

× Pn,l′(θ)W (α)(θ)P n,l′(θ)

×
(
Pn,l′(θ)Hα,0(θ)P n,l′(θ) − λ

)−1
Pn,l′(θ)ψ(α; θ)〉

and

f2,c(θ, λ) := 〈ψ(α; θ̄), Pn,l′(θ)
(
Pn,l′(θ)Hα,0(θ)P n,l′(θ)− λ

)−1

× Pn,l′(θ)W (α)(θ)P n,l′(θ)
(
Pn,l′(θ)Hα(θ)P n,l′(θ) − λ

)−1

× Pn,l′(θ)W (α)(θ)P n,l′(θ)
(
Pn,l′(θ)Hα,0(θ)P n,l′(θ) − λ

)−1
Pn,l′(θ)ψ(α; θ)〉.

Using the dilation analyticity we obtain

f2,a(θ, λ) =
1

En,l(α) − λ〈ψ(α; 0), ψ(α; 0)〉,

which implies f2,a(θ̄, λ)− f2,a(θ, λ) = 0. Moreover, we have

f2,b(θ, λ) = − 1

(En,l(α)− λ)2
〈ψ(α; θ̄),W (α)(θ)ψ(α; θ)〉 = 0
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and

|f2,c(θ, λ)| = 1

|En,l(α)− λ|2 |〈ψ(α; θ̄), Pn,l(θ)W
(α)(θ)P n,l′(θ)

× (Pn,l′(θ)Hα(θ)Pn,l′(θ)− λ)−1Pn,l′(θ)W
(α)(θ)Pn,l(θ)ψ(α; θ)〉|

≤ C g2

|En,l(α)− λ|2 ,

where we used Lemma 7 b) in the last step. Integration yields

∫ En,l′(α)+δn,l′,+(α)

En,l′(α)−δn,l′,−(α)

dλ |f2,c(θ, λ)| ≤ C g
2

α2
= O(α).

Step 5: For λ ∈ [En,n(α) + δn,n,+(α), En + δn,+] and also for λ ∈ [En −
δn,−, En,1(α)−δn,1,−(α)] we have to proceed somewhat differently: We consider
the first case only and make a case distinction.
1st Case: 1 < l ≤ n. Lemma 13 with l′ = 1 implies ‖FPn,l′(θ)(Hα(θ)− z)−1‖ ≤

C
sinϑ|λ−En,l′(α)|−Cg2 ≤ C

α2 , which we use to estimate f1(θ, λ). f2(θ, λ) can be

estimated as in Step 4. Note that for both the estimates on f1(θ, λ) and on
f2(θ, λ) the integration limits have to be changed accordingly. Thus, we obtain
as in Step 4

∣∣∣
∫ En,1(α)−δn,1,−(α)

En−δn,−
dλ e−iλsF (λ)[f(θ, λ)− f(θ, λ)]

∣∣∣ = O(α).

2nd case: l = 1. Using the resolvent identity we find

f(θ, λ) = 〈ψ(α; θ),FPn,l(θ)(Hα(θ) − λ)−1ψ(α; θ)〉
=〈ψ(α; θ), [En,l(α)− λ−Q(α)

n,l (λ; θ)]−1ψ(α; θ)〉
− 〈ψ(α; θ), [En,l(α) − λ−Q(α)

n,l (λ; θ)]−1

× [FPn,l(θ)(Hα(θ)− λ)− (En,l(α) − λ+ e−θ1el ⊗Hf −Q(α)
n,l (λ; θ))Pn,l(θ)]

×
[
FPn,l(θ)(Hα(θ)− λ)

]−1
ψ(α; θ)〉 =: f̃(θ, λ) +B(θ, λ),

where f̃(θ, λ) is the first summand. Lemma 13 yields the estimate
‖FPn,l(θ)(Hα(θ) − λ)−1‖ ≤ C

sinϑ|λ−En,l(α)|−Cg2 and the same estimate for

[En,l(α)− λ−Q(α)
n,l (λ; θ)]−1. Thus, Lemma 8 implies

|B(θ, λ)| ≤ Cg2
√
α

(sinϑ|λ− En,l(α)| − Cg2)2

and finally

∫ En,1(α)−δn,1,−(α)

En−δn,−
dλF (λ)|B(θ, λ)| = O(g) = O(α3/2)
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with the same reasoning as in the non-relativistic case (Proof of [19, Theorem
1], Step 2). The same holds for B(θ̄, λ).
To estimate f̃(θ, λ),we use

f̃(θ, λ) = 〈ψ(α; θ̄), [En,1(α) − λ]−1ψ(α; θ)〉+
+ 〈ψ(α; θ̄), [En,l(α) − λ]−1Q

(α)
n,1(λ; θ)[En,1(α)− λ−Q(α)

n,1(λ; θ)]−1ψ(α; θ)〉.

The first summand cancels with the corresponding summand of f̃(θ̄, λ). The
second summand can be estimated by g2 C

|En,1(α)−λ| (sinϑ|λ−En,l(α)|−Cg2) , which

implies

∫ En,1(α)−δn,1,−(α)

En−δn,−
dλF (λ)|f̃ (θ, λ)− f̃(θ̄, λ)| = O(g2/3) = O(α)

as above.
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2008.

[20] Emilie V. Haynsworth. Determination of the inertia of a partitioned Her-
mitian matrix. Linear Algebra and Appl., 1(1):73–81, 1968.

[21] F. Hiroshima and H. Spohn. Ground state degeneracy of the Pauli-Fierz
Hamiltonian with spin. Adv. Theor. Math. Phys., 5(6):1091–1104, 2001.

[22] Fumio Hiroshima. Ground states of a model in nonrelativistic quantum
electrodynamics. II. J. Math. Phys., 41(2):661–674, 2000.

Documenta Mathematica 14 (2009) 115–156



Spectral Analysis of Relativistic Atoms 155

[23] James S. Howland. The Livsic matrix in perturbation theory. J. Math.
Anal. Appl., 50:415–437, 1975.

[24] Matthias Huber. Modelle relativistischer und nicht-relativistischer
Coulomb-Systeme [Dissertation an der Fakultät für Mathematik, Infor-
matik und Statistik der Ludwig-Maximilians-Universität München]. Logos-
Verlag Berlin GmbH, 2008.

[25] Matthias Huber. Spectral analysis of relativistic atoms – Dirac operators
with singular potentials. Submitted to Documenta Mathematica, 2009.

[26] Takashi Ichinose. Tensor products of linear operators and the method of
separation of variables. Hokkaido Math. J., 3:161–189, 1974.

[27] Tosio Kato. Perturbation Theory for Linear Operators, volume 132
of Grundlehren der mathematischen Wissenschaften. Springer-Verlag,
Berlin, 1 edition, 1966.

[28] Willis E. Lamb and Robert C. Retherford. Fine structure of the hydrogen
atom by a microwave method. Physical Review, 72(3):241–243, August
1947.

[29] L.D. Landau, E.M. Lifschitz, V.B. Berestetskij, and L.P. Pitaevskij.
Lehrbuch der theoretischen Physik. Band 4: Quantenelektrodynamik. 7.,
bearb. Aufl. Frankfurt am Main: H. Deutsch., 1991.

[30] M. S. Livshits. The application of non-self-adjoint operators to scattering
theory. Soviet Physics. JETP, 4:91–98, 1957.
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Abstract. In this short note we study foliations on surfaes withrationally onneted leaves. Our main result is that on a surfae thereexists a polarisation suh that the Harder-Narasimhan �ltration of thetangent bundle with respet to this polarisation yields the maximalrationally onneted quotient of the surfae.2000 Mathematis Subjet Classi�ation: 14J26, 37F75
1 IntroductionLet X be a smooth projetive variety over the omplex numbers. In this notewe are interested in foliations with rationally onneted leaves. In [KSCT07℄ itis shown how to onstrut suh foliations from the Harder-Narasimhan �ltra-tion of the tangent bundle of the variety. This onstrution depends heavilyon a hosen polarisation, and therefore the question arises how this foliationvaries with the polarisation.There is another way to onstrut a �bration with rationally onneted �bers,the maximal rationally onneted quotient. This is a rational map whose �bersare rationally onneted. Almost every rational urve in X lies in a �ber ofthis map.We an ask if the Harder-Narasimhan �ltration of the tangent bundle alwaysindues the maximal rationally onneted quotient with respet to any polari-sation. The answer is negative already on surfaes as shown by an example ofThomas Ekl [Ek08℄.In this note we will prove that on surfaes there always exists a polarisation suhthat the Harder-Narasimhan �ltration yields the maximal rationally onnetedquotient.
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2 Preliminary Results and NotationLet X be an n-dimensional projetive variety over the omplex numbers withan ample line bundle H . Given a torsion-free oherent sheaf F on X , we de�nethe slope of F with respet to H to be

µH(F) :=
c1(F) ·Hn−1rk(F)

.We all F semistable with respet to H if for any nonzero proper subsheaf G of
F we have µH(G) ≤ µH(F).If there exists a nonzero subsheaf G ⊂ F suh that µH(G) > µH(F), we willall G a destabilizing subsheaf of F .
Theorem 2.1 ([Mar80, Proposition 1.5.℄). Let F be a torsion-free oherentsheaf on a smooth projetive variety and H be an ample line bundle on X.There exists a unique �ltration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = Fof F depending on H, the Harder-Narasimhan �ltration or HN-�ltration, withthe following properties:(i) The quotients Gi := Fi/Fi−1 are torsion-free and semistable.(ii) The slopes of the quotients satisfy µH(G1) > . . . > µH(Gk).
Definition 2.2. Let F be a torsion-free oherent sheaf on a smooth projetivevariety. The unique sheaf F1 appearing in the Harder-Narasimhan �ltration of
F is alled the maximal destabilizing subsheaf of F .
Definition 2.3. Let F be a oherent torsion-free sheaf on a smooth projetivevariety with Harder-Narasimhan �ltration

0 = F0 ⊂ . . . ⊂ Fk = Fwith respet to an ample line bundle H . If the slope of the quotient Fi/Fi−1is positive with respet to H , then Fi is alled positive with respet to H .
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Remark 2.4. Note that the onstrution of the Harder-Narasimhan �ltrationnaturally extends to Q- and R-divisors, i.e. we do not need to assume that thehosen polarisation is integral.Obviously, the Harder-Narasimhan �ltration depends only on the numeriallass of the hosen ample bundle. In partiular it makes sense to ask how the�ltration of a given sheaf depends on the ample bundle sitting in the �nitedimensional vetor spae of all divisors modulo numerial equivalene.We an now state an important result originally formulated by Miyaoka andexpliitly shown in [KSCT07℄. For a survey on these and related results werefer the reader to [KSC06℄.
Theorem 2.5 ([KSCT07, Theorem 1℄). Let X be a smooth projetive varietyand let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = TXbe the Harder-Narasimhan �ltration of the tangent bundle with respet to a po-larisation H. Write µi := µH(Fi/Fi−1) for the slopes of the quotients. Assume
µ1 > 0 and set m := max {i ∈ N|µi > 0}. Then eah Fi with i ≤ m is a folia-tion, i.e. a saturated subsheaf of the tangent bundle losed under Lie braket.Furthermore the leaves of these foliations are algebrai and for general x ∈ Xthe losure of the leaf through x is rationally onneted.Let X be a smooth projetive variety and assume the onditions of Theorem(2.5) are ful�lled. Thus we obtain foliations F1, . . . ,Fk with algebrai andrationally onneted leaves. By setting

qi : X 99K Im(qi) ⊂ Chow(X)
x 7→ Fi-leaf through xwe obtain a rational map, suh that the losure of the general �bre is rationallyonneted, see [KSCT07℄ Setion 7.There is another map with this property alled the maximal rationally on-neted quotient, or MRC-quotient, for short based on a onstrution by Cam-pana [Cam81℄ [Cam94℄ and Kollár-Miyaoka-Mori [KMM92℄, see also [Kol96,Chapter IV, Theorem 5.2℄.

Theorem 2.6 ([KMM92, Theorem 2.7.℄). Let X be a smooth projetive variety.There exists a variety Z and a rational map φ : X 99K Z with the followingproperties:
• the �bers of φ are rationally onneted,
• a very general �ber of φ is an equivalene lass with respet to rationalonnetivity and
• up to birational equivalene the map φ and the variety Z are unique.In this paper we ask if the Harder-Narasimhan �ltration with respet to aertain polarisation yields the MRC-quotient. We will give a positive answerfor surfaes in the next setion.
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3 Rationally Connected Foliations on Surfaces and the MRC-
quotientIn this setion X denotes a smooth projetive surfae over the the �eld ofomplex numbers.We want to investigate the regions in the ample one whih indue the same HN-�ltration. More preisely we divide the ample one into parts, so that in eahpart we get the same HN-�ltration of the tangent bundle. With this at hand weare able to show that the MRC-quotient omes from the Harder-Narasimhan�ltration of the tangent bundle with respet to a ertain polarisation.In order to ompute the HN-�ltration of the tangent bundle on surfaes, weonly have to searh for a destabilizing subsheaf whose quotient is torsion-free.This is formulated in the next lemma.

Lemma 3.1. Let X be a smooth projetive surfae. If F ⊂ TX is a destabilizingsubsheaf with respet to a polarisation suh that TX/F is torsion-free, then theHarder-Narasimhan �ltration is given by 0 ⊂ F ⊂ TX.Proof. Let H be a polarisation and F a destabilizing subsheaf of TX withrespet to H . Consider the exat sequene
0→ F → TX → TX/F → 0.Using that the rank and the �rst Chern lass are additive in short exat se-quenes, we obtain

µH(TX) =
1

2
µH(TX/F) +

1

2
µH(F).Sine µH(F) > µH(TX), we therefore have µH(F) > µH(TX/F). That is,

0 ⊂ F ⊂ TXsatis�es the properties of the Harder-Narasimhan �ltration and by the unique-ness of the HN-�ltration we are done.
Notation 3.2. We write N1(X) for the Néron-Severi group and N1

Q(X) (resp.
N1

R(X)) for the vetor spae of Q�divisors (resp. R�divisors) modulo numerialequivalene onX . The onvex one of all ample R�divisors in N1
R(X) is denotedby AmpR(X).Now we de�ne the regions in AmpR(X) we are interested in. Let H ∈ N1

R(X)be an ample bundle. If TX is not semistable with respet to H , let F bethe maximal destabilizing subsheaf of TX with respet to H , i.e. the Harder-Narasimhan �ltration of TX with respet to H is given by 0 ⊂ F ⊂ TX. Weall
∆H :=

{
H̃ ∈ AmpR(X) |

(
c1(F)− 1

2
c1(TX)

)
· H̃ > 0

}the destabilizing hamber with respet to H .
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Remark 3.3. By Lemma (3.1) the ondition (c1(F)− 1

2c1(TX)) ·H̃ > 0 ensuresthat for all polarisations in ∆H we get the same HN-�ltration, namely 0 ⊂ F ⊂
TX . So we have indeed de�ned the regions in the ample one, in whih theHarder-Narasimhan �ltration of the tangent bundle remains onstant.Note that if the tangent bundle is semistable with respet to a ertain polar-isation, then we get a hamber suh that for all polarisations in this hamber
TX is semistable. This region is alled the semistable hamber.Conerning the struture of these hambers we prove the following lemma.
Lemma 3.4. Let X be a smooth projetive surfae. We have:(i) The destabilizing hambers and the semistable hamber are onvex onesin AmpR(X).(ii) The semistable hamber is losed in AmpR(X).(iii) The destabilizing hambers are open in AmpR(X).(iv) The destabilizing hambers and the semistable hamber give a deompo-sition of the ample one, i.e. the union of all hambers is the ample oneand the hambers are pairwise disjoint.Proof. The onvexity property of both the semistable hamber and the desta-bilizing hamber follows diretly from the linearity of the intersetion produt.Statement (iii) is a diret onsequene of the ontinuity of the intersetionprodut, sine for a maximal destabilizing subsheaf F ⊂ TX the ondition

(
c1(F)− 1

2
c1(TX)

)
·H > 0is an open ondition.To prove (iv) note that by de�nition of the hambers, eah polarisation appearsin at least one hamber. Sine for a given polarisation the assoiated maximaldestabilizing subsheaf of TX is unique, the polarisation appears in exatly onehamber.Statement (ii) is a diret onsequene of (iii) and (iv).In the proof of our main result, we will use the following orollary.

Corollary 3.5. Let X be a smooth projetive surfae. Let ℓ be a line segmentin AmpR(X), suh that ℓ does not interset the semistable hamber. Then ℓ isontained in a single destabilizing hamber.Proof. Assume ℓ intersets at least two destabilizing hambers. By Lemma(3.4) we get a partition of ℓ into disjoint open sets. This is impossible beause
ℓ is onneted.
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162 Sebastian NeumannTo prove semistability of the tangent bundle on ertain surfaes having manyautomorphisms, we will give a useful lemma. Let σ ∈ Aut(X) and F ⊂ TX .By means of the di�erential of σ, we an identify TX and σ∗TX . Thus we aninterpret σ∗(F) as a subsheaf of TX . For instane, if p ∈ X and F := TX⊗Ip,then σ∗(F) is identi�ed with TX ⊗ Iσ−1(p) ⊂ TX .
Lemma 3.6. Let X be a smooth projetive surfae and let σ ∈ Aut0(X). Let
F be the maximal destabilizing subsheaf of TX with respet to some polarisa-tion. We then have σ∗F = F . In partiular: If F is a foliation then theautomorphism σ maps eah leaf of F to another leaf of F .Proof. Let H ∈ AmpR(X) and let F be the maximal destabilizing subsheaf of
TX with respet to H . We ompute the slope of σ∗(F) ⊂ TX :

µH
(
σ∗(F)

)
= H ·

(
c1(σ∗(F))

)

= H · σ∗(c1(F))
= H · c1(F)
> 1

2c1(TX) ·H.We give an explanation of the third equality. Reall that the group of auto-morphisms ats on the Néron-Severi group. Sine N1(X) is disrete, Aut0(X)ats trivially on N1(X), i.e. σ∗(c1(F)) = c1(F).We therefore have shown that σ∗(F) is a destabilizing subsheaf of TX . ByLemma (3.1) and the uniqueness of the maximal destabilizing subsheaf of TX ,we onlude that σ∗F = F .
Example 3.7. Hirzebruh SurfaesLet Σn be the n-th Hirzebruh surfae and let π : Σn −→ P1 be the projetiononto the projetive line. We denote the �ber under the projetion by f andthe distinguished setion with sel�ntersetion −n by C0. Reall (see [Har77℄,hapter V.2) that N1

R(Σn) =< C0, f > and a divisor D ≡num aC0 + bf isample if and only if a > 0 and b > an. The anonial bundle is given by
−KΣn = 2C0+(2+n)f . The relative tangent bundle of π is a natural andidatefor a destabilizing subbundle. We have the sequene

0→ TΣn/P1 → TΣn → π∗TP1 → 0Let H := xC0 + yf be a polarisation. Then one an ompute that TΣn/P1 isdestabilizing if and only if −2x − nx + 2y > 0. In partiular we ompute for
n ≥ 2:

−2x− nx+ 2y > −2x− nx+ 2nx = −2x+ nx ≥ 0.Therefore, for n ≥ 2 the HN-�ltration is given by
0 ⊂ TX/P1 ⊂ TX
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Figure 1: The ample one of X = Σ0 and the hamber struture. Here T 1

X/P1and T 2
X/P1 denote the relative tangent bundle of the �rst and seond projetion.

0 ⊂ T1
X/P1

⊂ TX

0 ⊂ T2
X/P1

⊂ TX

y

x

for all polarisations. In other words we obtain only one destabilizing hamber.For n = 0 we have Σ0 = P1×P1 and we get three hambers. The two destabiliz-ing hambers orrespond to the two relative tangent bundles of the projetions.They are ut out by the inequalities x > y and x < y. There is a hamber ofsemistability, whih is determined by the equation x = y.For n = 1 we see that for x > 3
2y the relative tangent bundle is destabilizing.Sine Σ1 is the projetive plane blown up at a point p, the group of automor-phisms is the automorphism group of the projetive plane leaving p �xed. Thedestabilizing foliation orresponds to the radial foliation through p in the plane.So if there were another foliation F oming from the Harder-Narasimhan �l-tration of TΣ1, we ould deform the leaves with these automorphisms. Thenwe would again obtain leaves of this foliation by Lemma (3.6). So unless F isthe foliation given by the relative tangent bundle of the projetion morphism,we ould deform eah leaf of F while leaving a point on the leaf not lying on

C0 �xed. Thus the foliation indued by F would have singularities on a denseopen subset of Σ1 whih is absurd. So the tangent bundle is semistable for
x ≤ 3

2y.Now we want to answer the question if there always exists a polarisation, suhthat the Harder-Narasimhan �ltration gives rise to the MRC-quotient.
Theorem 3.8. Let X be a uniruled projetive surfae. Then there exists apolarisation, suh that the maximal rationally onneted quotient of X is givenby the foliation assoiated to highest positive term in the Harder-Narasimhan�ltration with respet to this polarisation.Proof. To start, observe that there is always a polarisation A suh that c1(TX)·
A > 0. Indeed, there exists a free rational urve f : P1 → X . See [Deb01,Corollary 4.11℄ for a proof of the existene of suh a urve. Writing

f∗(TX) = O(a1)⊕O(a2)
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164 Sebastian Neumannwith a1 + a2 ≥ 2, we ompute
−KX · f∗P1 = a1 + a2 ≥ 2.Write ℓ := f∗P1 for this urve. Sine ℓ is movable, it is in partiular nef. So foran ample lass H , the lass ℓ+ ǫH will be ample. Thus for su�iently small ǫthe lass ℓ+ ǫH will interset −KX positively.First let us assume that X is not rationally onneted. As we have just seen,we an �nd a polarisation H with c1(TX) ·H > 0. There exists a destabilizingsubsheaf F of TX , sine otherwiseX would be rationally onneted by Theorem(2.5). Furthermore the slope of F has to be bigger than c1(TX)·H and thereforepositive. So this sheaf will give a foliation with rationally onneted leaves andhene the maximal rationally onneted quotient.Now we onsider the ase where X is rationally onneted. We then �x a veryfree rational urve ℓ on X . For a proof of the existene of a very free rationalurve see [Deb01, Corollary 4.17℄. This means that TX |ℓ is ample. So we knowthat eah quotient of TX |ℓ has stritly positive degree.Sine ℓ is movable, it is in partiular nef. Let H be an ample lass. Beause ℓis nef, we know that Hǫ := ℓ + ǫH is ample in N1

Q(X) for any ǫ > 0. Observethat c1(TX) · Hǫ > 0 for su�iently small ǫ, say for 0 < ǫ < ǫ0. If TX issemistable with respet to a ertain polarisation Hǫ with 0 < ǫ < ǫ0, the laimfollows sine TX has positive slope and indues a trivial foliation whih givesthe rationally onneted quotient. If TX is not semistable for all polarisations
Hǫ with 0 < ǫ < ǫ0, let Fǫ be the maximal destabilizing subsheaf of TX withrespet to Hǫ. Beause of Corollary (3.5) the ray Hǫ stays in one destabilizinghamber and Remark (3.3) ensures that F := Fǫ remains onstant.Now it is lear that for su�iently small ǫ both the slope of F and the slope of
TX/F will be positive with respet to Hǫ. Therefore the HN-�ltration of TXwith respet to Hǫ yields the maximal rationally onneted quotient.
References[Cam81℄ Frédéri Campana. Corédution algébrique d'un espae analytiquefaiblement kählérien ompat. Invent. Math., 63(2):187�223, 1981.[Cam94℄ Frédéri Campana. Remarques sur le revêtement universel des var-iétés kählériennes ompates. Bull. So. Math. Frane, 122(2):255�284, 1994.[Deb01℄ Olivier Debarre. Higher-dimensional algebrai geometry. Universi-text. Springer-Verlag, New York, 2001.[Ek08℄ Thomas Ekl. Lower bounds for Seshadri onstants. Math. Nahr.,281(8):1119�1128, 2008.[Har77℄ Robin Hartshorne. Algebrai geometry. Springer-Verlag, New York,1977. Graduate Texts in Mathematis, No. 52.
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Introduction

The Allegretto-Piepenbrink theorem relates solutions and spectra of 2nd order
partial differential operators H and has quite some history, cf. [1, 5, 6, 7, 34,
35, 36, 43, 37, 38].
One way to phrase it is that the supremum of those real E for which a nontrivial
positive solution ofHΦ = EΦ exists coincides with the infimum of the spectrum
of H . In noncompact cases this can be sharpened in the sense that nontrivial
positive solutions of the above equation exist for all E ≤ inf σ(H).
In the present paper we consider the Allegretto-Piepenbrink theorem in a gen-
eral setting in the sense that the coefficients that are allowed may be very
singular. In fact, we regard H = H0 + ν, where H0 is the generator of a
strongly local Dirichlet form and ν is a suitable measure perturbation. Let us
stress, however, that one main motivation for the present work is the conceptual
simplicity that goes along with the generalisation.
The Allegretto-Piepenbrink theorem as stated above consists of two statements:
the first one is the fact that positive solutions can only exist for E below the
spectrum. Turned around this means that the existence of a nontrivial positive
solution of HΦ = EΦ implies that H ≥ E. For a strong enough notion of
positivity, this comes from a “ground state transformation”. We present this
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simple extension of known classical results in Section 2, after introducing the
necessary set-up in Section 1. For the ground state transformation not much
structure is needed.
For the converse statement, the existence of positive solutions below σ(H), we
need more properties of H and the underlying space: noncompactness, irre-
ducibility and what we call a Harnack principle. All these analytic properties
are well established in the classical case. Given these tools, we prove this part
of the Allegretto-Piepenbrink theorem in Section 3 with arguments reminiscent
of the corresponding discussion in [18]. For somewhat complementary results
we refer to [14] where it is shown that existence of a nontrivial subexponentially
bounded solution of HΦ = EΦ yields that E ∈ σ(H). This implies, in partic-
ular, that the positive solutions we construct for energies below the spectrum
cannot behave to well near infinity. We dedicate this paper to Jürgen Voigt -
teacher, collaborator and friend - in deep gratitude and wish him many more
years of fun in analysis.

1. Basics and notation concerning strongly local Dirichlet
forms and measure perturbations

Dirichlet forms. We will now describe the set-up; we refer to [22] as the
classical standard reference as well as [13, 19, 23, 31] for literature on Dirichlet
forms. Let us emphasize that in contrast to most of the work done on Dirichlet
forms, we treat real and complex function spaces at the same time and write
K to denote either R or C.
Throughout we will work with a locally compact, separable metric space X
endowed with a positive Radon measure m with suppm = X .
The central object of our studies is a regular Dirichlet form E with domain D
in L2(X) and the selfadjoint operator H0 associated with E . Let us recall the
basic terminology of Dirichlet forms: Consider a dense subspace D ⊂ L2(X,m)
and a sesquilinear and non-negative map E : D ×D → K such that D is closed
with respect to the energy norm ‖ · ‖E , given by

‖u‖2E = E [u, u] + ‖u‖2L2(X,m),

in which case one speaks of a closed form in L2(X,m). In the sequel we will
write

E [u] := E [u, u].

The selfadjoint operator H0 associated with E is then characterized by

D(H0) ⊂ D and E [f, v] = (H0f | v) (f ∈ D(H0), v ∈ D).

Such a closed form is said to be a Dirichlet form if D is stable under certain
pointwise operations; more precisely, T : K→ K is called a normal contraction
if T (0) = 0 and |T (ξ)− T (ζ)| ≤ |ξ− ζ| for any ξ, ζ ∈ K and we require that for
any u ∈ D also

T ◦ u ∈ D and E [T ◦ u] ≤ E [u].

Here we used the original condition from [9] that applies in the real and the
complex case at the same time. Today, particularly in the real case, it is mostly
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expressed in an equivalent but formally weaker statement involving u ∨ 0 and
u ∧ 1, see [22], Thm. 1.4.1 and [31], Section I.4.
A Dirichlet form is called regular if D ∩ Cc(X) is large enough so that it is
dense both in (D, ‖ · ‖E) and (Cc(X), ‖ · ‖∞), where Cc(X) denotes the space
of continuous functions with compact support.

Capacity. Due to regularity, we find a set function, the capacity that allows
to measure the size of sets in a way that is adapted to the form E : For U ⊂ X ,
U open,

cap(U) := inf{‖v‖2E | v ∈ D, χU ≤ v}, (inf ∅ =∞),

and

cap(A) := inf{cap(U) | A ⊂ U}
(see [22], p. 61f.). We say that a property holds quasi-everywhere, short q.e.,
if it holds outside a set of capacity 0. A function f : X → K is said to be
quasi-continuous, q.c. for short, if, for any ε > 0 there is an open set U ⊂ X
with cap(U) ≤ ε so that the restriction of f to X \ U is continuous.
A fundamental result in the theory of Dirichlet forms says that every u ∈ D
admits a q.c. representative ũ ∈ u (recall that u ∈ L2(X,m) is an equivalence
class of functions) and that two such q.c. representatives agree q.e. Moreover,
for every Cauchy sequence (un) in (D, ‖ · ‖E) there is a subsequence (unk) such
that the (ũnk) converge q.e. (see [22], p.64f).

Measure perturbations. We will be dealing with Schrödinger type oper-
ators, i.e., perturbations H = H0 + V for suitable potentials V . In fact, we
can even include measures as potentials. Here, we follow the approach from
[45, 46]. Measure perturbations have been regarded by a number of authors in
different contexts, see e.g. [4, 24, 47] and the references there.
We denote by MR(U) the signed Radon measures on the open subset U of X
and by MR,0(U) the subset of measures ν that do not charge sets of capacity
0, i.e., those measures with ν(B) = 0 for every Borel set B with cap(B) = 0.
In case that ν = ν+ − ν− ∈ MR,0(X) we can define

ν[u, v] =

∫

X

ũṽdν for u, v ∈ D with ũ, ṽ ∈ L2(X, ν+ + ν−).

We have to rely upon more restrictive assumptions concerning the negative
part ν− of our measure perturbation. We write MR,1 for those measures ν ∈
MR(X) that are E-bounded with bound less than one; i.e. measures ν for
which there is a κ < 1 and a cκ such that

ν[u, u] ≤ κE [u] + cκ‖u‖2.
The set MR,1 can easily be seen to be a subset of MR,0. We write ν ∈
MR,0−MR,1 if the positive part ν+ of the measure is inMR,0 and the negative
ν− is in MR,1.
By the KLMN theorem (see [39], p. 167), the sum E + ν given by D(E + ν) =
{u ∈ D | ũ ∈ L2(X, ν+)} is closed and densely defined (in fact D ∩ Cc(X) ⊂
D(E+ν)) for ν ∈MR,0−MR,1. We denote the associated selfadjoint operator

Documenta Mathematica 14 (2009) 167–189



170 D. Lenz, P. Stollmann, I. Veselić

by H0 + ν. An important special case is given by ν = V dm with V ∈ L1
loc(X).

As done in various papers, one can allow for more singular measures, a direction
we are not going to explore here due to the technicalities involved.

Approximation and Regularity. By assumption the Dirichlet form (E ,D)
is regular. We show now that this property carries over to the perturbed form
(E + ν,D(E + ν)). Along the way we prove an approximation result which will
be useful in the context of Theorem 2.3. It will be convenient to introduce a
notation for the natural norm in D(E + ν). For all ψ ∈ D(E + ν) we define

‖ψ‖2E+ν := ‖ψ‖2E + ν+(ψ, ψ) .

Lemma 1.1. Let ν ∈ MR,0 −MR,1, and E and E + ν be as above. Then

(a) For each u ∈ D(E + ν) there exists a sequence (un) in D ∩ L∞c (X) such
that |un| ≤ |u| for all n ∈ N and ‖u− un‖E+ν → 0 for n→∞.

(b) For any v ∈ D ∩L∞c (X) with v ≥ 0 and any η ∈ D ∩Cc(X) with η ≡ 1 on
the support of v there exists a sequence (φn) in D ∩Cc(X) with φn → v in
(D(E + ν), ‖ · ‖E+ν) and 0 ≤ v, φn ≤ η for all n ∈ N.

In particular, D ∩ Cc(X) is dense in (D(E + ν), ‖ · ‖E+ν) and the form (E +
ν,D(E + ν)) is regular.

Note that D ∩ L∞c (X) ⊂ D(E + ν).

Proof. By splitting u into its real and imaginary and then positive and negative
part we can assume afterwards that u ≥ 0.
We now prove the first statement. Since E is regular there exists a sequence
(φn) in D ∩ Cc(X) such that ‖u − φn‖E → 0. By the contraction property of
Dirichlet forms we can suppose that φn ≥ 0 and deduce that un := φn ∧u→ u
in (D, ‖ · ‖E) as well. (Note that un = T (φn − u) with the normal contraction
T : R −→ R, T (y) = y for y ≤ 0 and T (y) = 0 for y ≥ 0.) Choosing
a subsequence, if necessary, we can make sure that ũn → ũ q.e. Therefore
ũn → ũ a.e. with respect to ν+ and ν−. Now (E + ν)-convergence follows by
Lebesgue’s dominated convergence theorem.
Now we turn to the proof of the second statement. Without loss of generality
we may chose 0 ≤ v ≤ 1. Consider the convex set

C := {φ ∈ D ∩Cc(X) | 0 ≤ φ ≤ η}
Since C is convex, its weak and norm closure in (D(E + ν), ‖ · ‖E+ν) coincide.
Therefore it suffices to construct a sequence (φn) ⊂ C that is bounded w.r.t ‖ ·
‖E+ν and converges to ṽ q.e. By regularity we can start with a sequence

(ψn) ⊂ D ∩ Cc(X) such that ψn → v w.r.t ‖ · ‖E and ψ̃n → ṽ q.e. By the
contraction property of Dirichlet forms the sequence φn := 0∨ψn∧η is bounded
in (D, ‖ · ‖E). Since 0 ≤ φn ≤ η, (φn) is also bounded in L2(ν+ + ν−). We
finally prove the ’in particular’ statemtent. Since E is regular, we can find an
η ∈ D ∩ Cc(X), 0 ≤ η ≤ 1 with η ≡ 1 on supp v. Now, the proof follows from
the previous parts. �
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Strong locality and the energy measure. E is called strongly local if

E [u, v] = 0

whenever u is constant a.s. on the support of v.
The typical example one should keep in mind is the Laplacian

H0 = −∆ on L2(Ω), Ω ⊂ Rd open,

in which case

D = W 1,2
0 (Ω) and E [u, v] =

∫

Ω

(∇u|∇v)dx.

Now we turn to an important notion generalizing the measure (∇u|∇v)dx ap-
pearing above.
In fact, every strongly local, regular Dirichlet form E can be represented in the
form

E [u, v] =

∫

X

dΓ(u, v)

where Γ is a nonnegative sesquilinear mapping fromD×D to the set of K-valued
Radon measures on X . It is determined by

∫

X

φdΓ(u, u) = E [u, φu]− 1

2
E [u2, φ]

for realvalued u ∈ D, φ ∈ D ∩ Cc(X) and called energy measure; see also [13].
We discuss properties of the energy measure next (see e.g. [13, 22, 47]). The
energy measure satisfies the Leibniz rule,

dΓ(u · v, w) = udΓ(v, w) + vdΓ(u,w),

as well as the chain rule

dΓ(η(u), w) = η′(u)dΓ(u,w).

One can even insert functions from Dloc into dΓ, where Dloc is the set

{u ∈ L2
loc | for all compact K ⊂ X there is φ ∈ D s. t. φ = u m-a.e. on K},

as is readily seen from the following important property of the energy measure,
strong locality:
Let U be an open set in X on which the function η ∈ Dloc is constant, then

χUdΓ(η, u) = 0,

for any u ∈ D. This, in turn, is a consequence of the strong locality of E and
in fact equivalent to the validity of the Leibniz rule.
We write dΓ(u) := dΓ(u, u) and note that the energy measure satisfies the
Cauchy-Schwarz inequality:

∫

X

|fg|d|Γ(u, v)| ≤
(∫

X

|f |2dΓ(u)

) 1
2
(∫

X

|g|2dΓ(v)

) 1
2

≤ 1

2

∫

X

|f |2dΓ(u) +
1

2

∫

X

|g|2dΓ(v).
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In order to introduce weak solutions on open subsets of X , we extend E and
ν[·, ·] to Dloc(U)×Dc(U): where,

Dloc(U) := {u ∈ L2
loc(U) | ∀compact K ⊂ U∃ φ ∈ D s. t. φ = u m-a.e. on K}

Dc(U) := {ϕ ∈ D|suppϕ compact in U}.
For u ∈ Dloc(U), ϕ ∈ Dc(U) we define

E [u, ϕ] := E [ηu, ϕ],

where η ∈ D ∩ Cc(U) is arbitrary with constant value 1 on the support of ϕ.
This makes sense as the RHS does not depend on the particular choice of η
by strong locality. In the same way, we can extend ν[·, ·], using that every
u ∈ Dloc(U) admits a quasi continuous version ũ. Moreover, also Γ extends to
a mapping Γ : Dloc(U)×Dloc(U)→MR(U).

For completeness reasons we explicitly state the following lemma.

Lemma 1.2. (a) Let Ψ ∈ Dloc ∩ L∞loc(X) and ϕ ∈ D ∩ L∞c (X) be given.
Then, ϕΨ belongs to D.

(b) Let Ψ ∈ Dloc and ϕ ∈ D ∩L∞c (X) be such that dΓ(ϕ) ≤ C · dm. Then,
ϕΨ belongs to D.

Proof. Let K be the support of ϕ and V an open neighborhood of K.
(a) Locality and the Leibniz rule give

∫
dΓ(ϕΨ) =

∫

K

|ϕ|2dΓ(Ψ) + 2

∫

K

ϕΨdΓ(ϕ,Ψ) +

∫

K

|Ψ|2dΓ(ϕ).

Obviously, the first and the last term are finite and the middle one can be
estimated by Cauchy Schwarz inequality. Putting this together, we infer∫
dΓ(ϕΨ) <∞.

(b) Clearly, it suffices to treat the case Ψ ≥ 0. Since Ψn := Ψ ∧ n is a normal
contraction of Ψ for every n ∈ N it follows that dΓ(Ψn) ≤ dΓ(Ψ). By part (a)
we know that ϕΨn ∈ D and an estimate as above gives that

E(ϕΨn) =

∫

X

dΓ(ϕΨn)

≤ 2

(∫

X

ϕ2dΓ(Ψn) +

∫

X

Ψ2
ndΓ(ϕ)

)

≤ 2

(∫

X

ϕ2dΓ(Ψ) + C

∫

X

χV Ψ2dm

)
,

is bounded independently of n ∈ N. As ϕΨn converge to ϕΨ in L2(X,m), an
appeal to the Fatou type lemma for closed forms, [31], Lemma 2.12., p. 21
gives the assertion. �

We close this section by noting that both D∩Cc(X) and D∩L∞c (X) are closed
under multiplication (due to Leibniz rule).
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The intrinsic metric. Using the energy measure one can define the intrinsic
metric ρ by

ρ(x, y) = sup{|u(x)− u(y)| |u ∈ Dloc ∩ C(X) and dΓ(u) ≤ dm}
where the latter condition signifies that Γ(u) is absolutely continuous with
respect to m and the Radon-Nikodym derivative is bounded by 1 on X . Note
that, in general, ρ need not be a metric. We say that E is strictly local if ρ is a
metric that induces the original topology on X . Note that this implies that X
is connected, since otherwise points in x, y in different connected components
would give ρ(x, y) = ∞, as characteristic functions of connected components
are continuous and have vanishing energy measure. We denote the intrinsic
balls by

B(x, r) := {y ∈ X |ρ(x, y) ≤ r}.
An important consequence of the latter assumption is that the distance function
ρx(·) := ρ(x, ·) itself is a function in Dloc with dΓ(ρx) ≤ dm, see [47]. This
easily extends to the fact that for every closed E ⊂ X the function ρE(x) :=
inf{ρ(x, y)|y ∈ E} enjoys the same properties (see the Appendix of [14]). This
has a very important consequence. Whenever ζ : R −→ R is continuously
differentiable, and η := ζ ◦ ρE , then η belongs to Dloc and satisfies

(1) dΓ(η) = (ζ′ ◦ ρE)2dΓ(ρE) ≤ (ζ′ ◦ ρE)2dm.

For this reason a lot of good cut-off functions are around in our context. More
explicitly we note the following lemma (see [14] as well).

Lemma 1.3. For any compact K in X there exists a ϕ ∈ Cc(X)∩D with ϕ ≡ 1
on K, ϕ ≥ 0 and dΓ(ϕ) ≤ C dm for some C > 0. If L is another compact set
containing K in its interior, then ϕ can be chosen to have support in L.

Proof. Let r > 0 be the positive distance of K to the complement of L. Choose
a two times differentiable ζ : R→ [0,∞) with ζ(0) = 1 and support contained
in (−∞, r). Then, ζ ◦ ρK does the job by (1). �

Irreducibility. We will now discuss a notion that will be crucial in the
proof of the existence of positive weak solutions below the spectrum. In what
follows, h will denote a densely defined, closed semibounded form in L2(X)
with domain D(h) and positivity preserving semigroup (Tt; t ≥ 0). We de-
note by H the associated operator. Actually, the cases of interest in this
paper are h = E or h = E + ν with ν ∈ MR,0 − MR,1. We refer to
[40], XIII.12 and a forthcoming paper [30] for details. We say that h is re-
ducible, if there is a measurable set M ⊂ X such that M and its complement
M c are nontrivial (have positive measure) and L2(M) is a reducing subspace
for M , i.e., 1MD(h) ⊂ D(h), h restricted to 1MD(h) is a closed form and
E(u, v) = E(u1M , v1M ) + E(u1Mc , v1Mc) for all u, v. If there is no such de-
composition of h, the latter form is called irreducible. Note that reducibility
can be rephrased in terms of the semigroup and the resolvent:

Theorem 1.4. Let h be as above. Then the following conditions are equivalent:
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• h is irreducible.
• Tt is positivity improving, for every t > 0, i.e. f ≥ 0 and f 6= 0 implies

that Ttf > 0 a.e.
• (H + E)−1 is positivity improving for every E < inf σ(H).

In [30] we will show that for a strictly local Dirichlet form E as above and a mea-
sure perturbation ν ∈ MR,0 −MR,1, irreducibility of E implies irreducibility
of E + ν.

2. Positive weak solutions and the associated transformation

Throughout this section we consider a strongly local, regular Dirichlet form,
(E ,D) on X and denote by Γ : Dloc × Dloc → M(X) the associated energy
measure. We will be concerned with weak solutions Φ of the equation

(2) (H0 + V )Φ = E · Φ,
where H0 is the operator associated with E and V is a realvalued, locally inte-
grable potential. In fact, we will consider a somewhat more general framework,
allowing for measures instead of functions, as presented in the previous sec-
tion. Moreover, we stress the fact that (2) is formal in the sense that Φ is
not assumed to be in the operator domain of neither H0 nor V . Here are the
details.

Definition 2.1. Let U ⊂ X be open and ν ∈ MR,0(U) be a signed Radon
measure on U that charges no set of capacity zero. Let E ∈ R and Φ ∈ L2

loc
(U).

We say that Φ is a weak supersolution of (H0 + ν)Φ = E · Φ in U if:

(i) Φ ∈ Dloc(U),

(ii) Φ̃dν ∈ MR(U),
(iii) ∀ϕ ∈ D ∩Cc(U), ϕ ≥ 0 :

E [Φ, ϕ] +

∫

U

ϕΦ̃dν ≥ E · (Φ|ϕ).

We call Φ a weak solution of (H0 + ν)Φ = E ·Φ in U if equality holds in (iii)
above (which extends to all ϕ ∈ D ∩ Cc(U)). If V ∈ L1

loc
(U) we say that Φ is

a weak (super-)solution of (H0 + V )Φ = E · Φ in U if it is a weak (super-)
solution of (H0 + ν)Φ = E ·Φ for ν = V dm.

Remark 2.2. (1) If ν = V dm and V ∈ L2
loc

(U), then property (ii) of the
Definition above is satisfied.

(2) If Φ ∈ L∞
loc

(U) and ν ∈ MR(U) then (ii) of the Definition above is
satisfied.

(3) If ν ∈ MR(U) satisfies (ii) above then ν − Edm ∈ MR(U) satisfies
(ii) as well and any weak solution of (H0 + ν)Φ = E ·Φ in U is a weak
solution of (H0 + ν−Edm)Φ = 0 in U . Thus it suffices to consider the
case E = 0.

(4) If Φ is a weak solution on U , then

E [Φ, ϕ] +

∫

U

ϕΦ̃dν = E · (Φ|ϕ).
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for all ϕ ∈ D ∩ L∞c (U). This follows easily from (b) of the approxima-
tion Lemma 1.1. (Note that we can indeed approximate within U by
first choosing an appropriate η with compact support in U according to
Lemma 1.3.)

We will deal with function Φ ∈ Dloc with Φ > 0. If Φ is such a function and
Φ−1 ∈ L∞loc, we can use the chain rule and suitable smoothed version of the
function x 7→ 1/x to conclude that Φ−1 must belong to Dloc as well. This will
be used various times in the sequel.

Here comes the first half of the Allegretto-Piepenbrink Theorem in a general
form.

Theorem 2.3. Let (E ,D) be a regular, strictly local Dirichlet form, H0 be the
associated operator and ν ∈ MR,0(U). Suppose that Φ is a weak solution of
(H0 + ν)Φ = E · Φ in U with Φ > 0 m-a.e. and Φ,Φ−1 ∈ L∞

loc
(U). Then, for

all ϕ, ψ ∈ D ∩ L∞c (U):

E [ϕ, ψ] + ν[ϕ, ψ] =

∫

U

Φ2dΓ(ϕΦ−1, ψΦ−1) + E · (ϕ|ψ).

In particular, E + ν ≥ E if furthermore U = X.

Proof. The “in particular” is clear as the desired inequality holds on D∩Cc(X)
and the form is regular by Lemma 1.1.
For the rest of the proof we may assume E = 0 without restriction, in view of
the preceding remark. Without loss of generality we may also assume that ϕ
and ψ are real valued functions. We now evaluate the RHS of the above equa-
tion, using the following identity. The Leibniz rule implies that for arbitrary
w ∈ Dloc(U):

0 = dΓ(w, 1) = dΓ(w,ΦΦ−1) = Φ−1dΓ(w,Φ) + ΦdΓ(w,Φ−1) (⋆)

Therefore, for ϕ, ψ ∈ D ∩ Cc(X):

∫

X

Φ2dΓ(ϕΦ−1, ψΦ−1) =

∫

X

ΦdΓ(ϕ, ψΦ−1) +

∫

X

Φ2ϕdΓ(Φ−1, ψΦ−1)

(by symmetry) =

∫

X

dΓ(ϕ, ψ) +

∫

X

ΦψdΓ(ϕ,Φ−1)

+

∫

X

Φ2ϕdΓ(ψΦ−1,Φ−1)

= E [ϕ, ψ] +

∫

X

Φ2dΓ(ϕψΦ−1,Φ−1)

( by (⋆)) = E [ϕ, ψ]−
∫

X

dΓ(ϕψΦ−1,Φ)

= E [ϕ, ψ]− E [ϕψΦ−1,Φ].
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As Φ is a weak solution we can now use part (4) of the previous remark to
continue the computation by

... = E [ϕ, ψ]−
(
−ν[ϕψΦ−1,Φ]

)

= E [ϕ, ψ] + ν[ϕ, ψ].

This finishes the proof. �

We note a number of consequences of the preceding theorem. The first is rather
a consequence of the proof, however:

Corollary 2.4. Assume that there is a weak supersolution Φ of (H0 + ν)Φ =
E ·Φ on X with Φ > 0 m-a.e. and Φ,Φ−1 ∈ L∞

loc
(X). Then E + ν ≥ E.

For the Proof we can use the same calculation as in the proof of the Theorem
with ϕ = ψ and use the inequality instead of the equality at the end.

Remark 2.5. (1) We can allow for complex measures ν without problems.
In the context of PT–symmetric operators there is recent interest in
this type of Schrödinger operators, see [8]

(2) Instead of measures also certain distributions could be included. Cf [25]
for such singular perturbations.

We will extend Theorem 2.3 to all of ϕ, ψ ∈ D. This is somewhat technical.
The main part is done in the next three propositions. We will assume the
situation (S):

(S) Let (E ,D) be a regular, strictly local Dirichlet form, H0 be the associ-
ated operator and ν ∈MR,0−MR,1. Suppose that Φ is a weak solution
of (H0 + ν)Φ = E · Φ in X with Φ > 0 m-a.e. and Φ,Φ−1 ∈ L∞loc(X).

Proposition 2.6. Assume (S). Let u ∈ D(E + ν) be given. Let (un) be a
sequence in D(E + ν) ∩ L∞c (X) which converges to u with respect to ‖ · ‖E+ν.
Then, ϕunΦ−1 and ϕuΦ−1 belong to D(E + ν) and

‖ϕunΦ−1 − ϕuΦ−1‖E+ν → 0, n→∞
for any ϕ ∈ D ∩ Cc(X) with dΓ(ϕ) ≤ Cdm for some C > 0. In particular,
uΦ−1 belongs to Dloc.

Proof. Without loss of generality we assume E = 0.
As shown above ϕΦ−1 belongs to D ∩ L∞c . Hence, ϕunΦ−1 = un(ϕΦ−1) is a
product of functions in D ∩ L∞c and therefore belongs to D ∩ L∞c as well.
As ϕΦ−1 belongs to L∞, the sequence ϕunΦ−1 converges to ϕuΦ−1 in
L2(X,m). It therefore suffices to show that ϕunΦ−1 is a Cauchy sequence
with respect to ‖ · ‖E+ν.
As (un) is Cauchy with respect to ‖ · ‖E+ν and ϕΦ−1 is bounded, convergence
of the ν part is taken care of and it suffices to show that

E(ϕ(un − um)Φ−1)→ 0, n,m→∞.
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Let K be the compact support of ϕ. Let c > 0 be an upper bound for Φ−2 on
K. Choose n,m ∈ N and set v := un − um. Then, we can calculate

E(ϕvΦ−1) =

∫

K

dΓ(ϕvΦ−1)

=

∫

K

1

Φ2
Φ2dΓ(ϕvΦ−1)

≤ c

∫

K

Φ2dΓ(ϕvΦ−1)

(Previous theorem) = c(E(ϕv) + ν(ϕv))

= c(E(ϕ(un − um)) + ν(ϕ(un − um))).

Now, convergence of ν(ϕ(un−um)) to 0 for n,m→∞ can easily be seen (with
arguments as at the beginning of the proof). As for E(ϕ(un − um)) we can use
Leibniz rule and Cauchy-Schwarz and dΓ(ϕ) ≤ C dm to compute

E(ϕ(un − um)) =

∫

K

dΓ(ϕ(un − um))

=

∫
ϕ2dΓ(un − um) + 2

∫
ϕ(un − um)dΓ(ϕ, un − um)

+

∫
|un − um|2dΓ(ϕ)

≤ 2(

∫
ϕ2dΓ(un − um) +

∫
|un − um|2dΓ(ϕ))

≤ 2‖ϕ‖2E(un − um) + 2C

∫
|un − um|2dm.

This gives easily the desired convergence to zero and (ϕunΦ−1) is a Cauchy
sequence with respect to ‖ · ‖E+ν.
We now turn to a proof of the last statement: By Lemma 1.3, for any compact
K we can find a ϕ satisfying the assumptions of the proposition with ϕ ≡ 1 on
K. Then, ϕuΦ−1 belongs to D by the above argument and agrees with uΦ−1

on K be construction. �

Proposition 2.7. Assume (S). Let u ∈ D(E + ν) be given. Let (un) be a
sequence in D(E + ν) ∩ L∞c (X) which converges to u with respect to ‖ · ‖E+ν.
Then, ∫

ψdΓ(unΦ−1)→
∫
ψdΓ(uΦ−1)

for any ψ ∈ L∞c (X).

Proof. We start with an intermediate claim.

Claim. For any ψ ∈ L∞(X) and ϕ ∈ D ∩ Cc(X) with dΓ(ϕ) ≤ C dm for some
C > 0, we have

∫
ψdΓ(ϕunΦ−1)→

∫
ψdΓ(ϕuΦ−1).
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Proof of the claim. By triangle inequality, the difference between the terms in
question can be estimated by

|
∫
ψdΓ(ϕ(u − un)Φ−1, ϕunΦ−1)|+ |

∫
ψdΓ(ϕuΦ−1, ϕ(u − un)Φ−1)|.

By Cauchy Schwarz inequality these terms can be estimated by

‖ψ‖∞E((ϕ(un − u)Φ−1)1/2E(ϕunΦ−1)1/2

and
‖ψ‖∞E((ϕ(un − u)Φ−1)1/2E(ϕuΦ−1)1/2.

The previous proposition gives that E(ϕ(un − u)Φ−1) → 0, n → ∞ and the
claim follows.

Let now ψ ∈ L∞c (X) be given. Let K be the compact support of ψ. We use
Lemma 1.3 to find ϕ ∈ Cc(X) ∩ D with ϕ ≡ 1 on K and dΓ(ϕ) ≤ C dm. for
some C > 0. Locality gives∫

ψdΓ(unΦ−1) =

∫
ψdΓ(ϕunΦ−1)

and ∫
ψdΓ(uΦ−1) =

∫
ψdΓ(ϕuΦ−1)

and the proposition follows from the claim. �

Proposition 2.8. Assume (S). Let u ∈ D(E + ν) be given. Let (un) be a
sequence in D(E + ν) ∩ L∞c (X) which converges to u with respect to ‖ · ‖E+ν.
Then, ∫

Φ2dΓ(unΦ−1)→
∫

Φ2dΓ(uΦ−1)

for any ψ ∈ L∞c (X).

Proof. Without loss of generality we assume E = 0. We start with the following
claim.

Claim. E(u) + ν(u) ≥
∫

Φ2dΓ(uΦ−1).
Proof of claim. By convergence of un to u w.r.t. ‖ · ‖E+ν and the last theorem,
we have

E(u) + ν(u) = lim
n→∞

E(un) + ν(un) = lim
n→∞

∫
Φ2dΓ(unΦ−1).

Now, the claim follows easily from the preceeding proposition.

We now note that for fixed n ∈ N, the sequence (um−un)m converges to u−un
w.r.t. ‖ · ‖E+ν. We can therefore apply the claim to u− un instead of u. This
gives

E(u− un) + ν(u− un) ≥
∫

Φ2dΓ((u − un)Φ−1) ≥ 0

for any n ∈ N. As the left hand side converges to zero for n→∞, so does the
right hand side.
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Mimicking the argument given in the proof of the Claim of the previous propo-
sition, we can now conclude the desired statement. �

Corollary 2.9. Let (E ,D) be a regular, strictly local Dirichlet form, H0 be the
associated operator and ν ∈ MR,0 −MR,1. Suppose that Φ is a weak solution
of (H0 +ν)Φ = E ·Φ in X with Φ > 0 m-a.e. and Φ,Φ−1 ∈ L∞

loc
(X). Then, for

all ϕ, ψ ∈ D(E + ν), the products ϕΦ−1, ψΦ−1 belong to Dloc and the formula

(3) E [ϕ, ψ] + ν[ϕ, ψ] =

∫

X

Φ2dΓ(ϕΦ−1, ψΦ−1) + E · (ϕ|ψ)

holds.

Proof. Without loss of generality we assume E = 0. It suffices to consider
ϕ = ψ. By Proposition 2.6, ϕΦ−1 belongs to Dloc. According to Lemma 1.1,
we can choose a sequence (ϕn) in D ∩ L∞c (X) converging to ϕ w.r.t. ‖ · ‖E+ν .
This convergence and the last theorem then give

E(ϕ) + ν(ϕ) = lim
n→∞

E(ϕn) + ν(ϕn) = lim
n→∞

∫
Φ2dΓ(ϕnΦ−1).

The previous proposition then yields the desired formula. �

3. The existence of positive weak solutions below the spectrum

As noted in the preceding section, we find that H0 + ν ≥ E whenever E + ν is
closable and admits a positive weak solution of (H0+ν)Φ = EΦ. In this section
we prove the converse under suitable conditions. We use an idea from [18] where
the corresponding statement for ordinary Schrödinger operators on Rd can be
found. A key property is related to the celebrated Harnack inequality.

Definition 3.1. (1) We say that H0 +ν satisfies a Harnack inequality for
E ∈ R if, for every relatively compact, connected open X0 ⊂ X there is
a constant C such that all positive weak solutions Φ of (H0+ν)Φ = EΦ
on X0 are locally bounded and satisfy

esssupB(x,r)u ≤ CessinfB(x,r)u,

for every B(x, r) ⊂ X0 where esssup and essinf denote the essential
supremum and infimum.

(2) We say that H0 + ν satisfies the Harnack principle for E ∈ R if for
every relatively compact, connected open subset U of X and every
sequence (Φn)n∈N of nonnegative solutions of (H0 + ν)Φ = E · Φ in U
the following implication holds: If, for some measurable subset A ⊂ U
of positive measure

sup
n∈N
‖Φn1A‖2 <∞

then, for all compact K ⊂ U also

sup
n∈N
‖Φn1K‖2 <∞.
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(3) We say that H0 + ν satisfies the uniform Harnack principle if for every
bounded intervall I ⊂ R, every relatively compact, connected open
subset U of X and every sequence (Φn)n∈N of nonnegative solutions of
(H0 + ν)Φ = En ·Φ in U with En ∈ I the following implication holds:
If, for some measurable subset A ⊂ U of positive measure

sup
n∈N
‖Φn1A‖2 <∞

then, for all compact K ⊂ U also

sup
n∈N
‖Φn1K‖2 <∞.

Note that validity of a Harnack principle implies that a nonnegative weak
solution Φ must vanish identically if it vanishes on a set of positive measure (as
Φn := nΦ has vanishing L2 norm on the set of positive measure in question).
Note also that validity of an Harnack inequality extends from balls to compact
sets by a standard chain of balls argument. This easily shows that H0 + ν
satisfies the Harnack principle for E ∈ R if it obeys a Harnack inequality for
E ∈ R. Therefore, many situations are known in which the Harnack principle
is satisfied:

Remark 3.2. (1) For ν ≡ 0 and E = 0 a Harnack inequality holds, when-
ever E satisfies a Poincaré and a volume doubling property; cf [12] and
the discussion there.

(2) The most general results for H0 = −∆ in terms of the measures ν that
are allowed seem to be found in [24], which also contains a thorough
discussion of the literature prior to 1999. A crucial condition concern-
ing the measures involved is the Kato condition and the uniformity of
the estimates from [24] immediately gives that the uniform Harnack
principle is satisfied in that context. Of the enormous list of papers on
Harnack’s inequality, let us mention [2, 10, 11, 17, 24, 26, 27, 33, 41,
42, 49, 50]

Apart from the Harnack principle there is a second property that will be im-
portant in the proof of existence of positive general eigensolutions at energies
below the spectrum: We say that E satisfies the local compactness property if

D0(U) := D ∩ Cc(U)
‖·‖E

is compactly embedded in L2(X) for every relatively
compact open U ⊂ X . (In case of the classical Dirichlet form this follows from
Rellich’s Theorem on compactness of the embedding of Sobolev spaces in L2.)

Theorem 3.3. Let (E ,D) be a regular, strictly local, irreducible Dirichlet form,
H0 be the associated operator and ν ∈ MR,0 −MR,1. Suppose that E satisfies
the local compactness property and X is noncompact. Then, if E < inf σ(H0 +
ν) and H0 + ν satisfies the Harnack principle for E, there is an a.e. positive
solution of (H0 + ν)Φ = EΦ.
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Proof. Let E < inf σ(H0 + ν). Since X is noncompact, locally compact and
σ-compact, it can be written as a countable union

X =
⋃

R∈N

UR, UR open, relatively compact , UR ⊂ UR+1;

where the UR can be chosen connected, as X is connected, see [30] for details.
For n ∈ N let gn ∈ L2(X) with supp gn ⊂ X \ Un+2, gn ≥ 0 and gn 6= 0. It
follows that

Φn := (H0 + ν + E)−1gn ≥ 0

is nonzero and is a weak solution of (H0+ν)Φ = EΦ onX\supp gn, in particular
on the connected open subset Un+2. Since (H0 +ν+E)−1 is positivity improv-
ing, it follows that ‖Φn1U1‖2 > 0. By multiplying with a positive constant we
may and will assume that ‖Φn1U1‖2 = 1 for all n ∈ N. We want to construct
a suitably convergent subsequence of (Φn)n∈N so that the corresponding limit
Φ is a positive weak solution.
First note that by the Harnack principle, for fixed R ∈ N and n ≥ R we know
that

sup
n∈N
‖Φn1UR‖2 <∞,

since all the corresponding Φn are nonnegative solutions on UR+2. In particular,
(Φn1UR)n∈N is bounded in L2(X) and so has a weakly convergent subsequence.
By a standard diagonal argument, we find a subsequence, again denoted by
(Φn)n∈N, so that Φn1UR → ΨR weakly in L2(X) for all R ∈ N and suitable ΨR.
As multiplication with 1UR is continuous and hence also weak-weak continuous,
there is Φ ∈ L2

loc(X) such that ΨR = Φ1UR . We will now perform some
bootstrapping to show that the convergence is, in fact, much better than just
local weak convergence in L2 which will imply that Φ is the desired weak
solution.
Since for fixed R > 0 and n ≥ R the Φn are nonnegative solutions on UR+2 the
Caccioppoli inequality, cf [14] implies that

∫

UR

dΓ(Φn) ≤ C
∫

UR+1

Φ2
ndm

is uniformly bounded w.r.t. n ∈ N. Combined with Leibniz rule and Cauchy
Schwarz inequality this directly gives that

∫
UR

dΓ(ψΦn) is uniformly bounded

w.r.t. n ∈ N for every ψ ∈ D with dΓ(ψ) ≤ dm (see [14] as well). Therefore,
by Lemma 1.3, we can find for suitable cut-off functions ηR ∈ D ∩Cc(X) with
1UR ≤ ηR ≤ 1UR+1 such that the sequence (ηRΦn) is bounded in (D, ‖ · ‖E).
The local compactness property implies that (ηRΦn) has an L2-convergent
subsequence. Using a diagonal argument again, we see that there is a common
subsequence, again denoted by (Φn)n∈N, such that

Φn1UR → Φ1UR in L2(X) as n→∞
for all R ∈ N.
As a first important consequence we note that Φ 6= 0, since ‖Φ1U1‖2 =
limn ‖Φn1U1‖2 = 1.

Documenta Mathematica 14 (2009) 167–189



182 D. Lenz, P. Stollmann, I. Veselić

Another appeal to the Caccioppoli inequality gives that
∫

UR

dΓ(Φn − Φk) ≤ C
∫

UR+1

(Φn − Φk)2dm→ 0 as n, k→∞.

Therefore, by the same reasoning as above, for every R ∈ N the sequence
(ηRΦn) converges in (D, ‖ · ‖E). Since this convergence is stronger than weak
convergence in L2(X), its limit must be ηRΦ, so that the latter is in D. We
have thus proven that Φ ∈ Dloc(X). Moreover, we also find that

E [Φn, ϕ]→ E [Φ, ϕ] for all ϕ ∈ D ∩Cc(X),

(since, by strong locality, for every cut-off function η ∈ D ∩Cc(X) that is 1 on
suppϕ, we get

E [Φn, ϕ] = E [ηΦn, ϕ]→ E [ηΦ, ϕ] = E [Φ, ϕ].)

We will now deduce convergence of the potential term. This will be done in two
steps. In the first step we infer convergence of the ν− part from convergence
w.r.t. ‖ · ‖E and the relative boundedness of ν−. In the second step, we use
the fact that Φ is a weak solution to reduce convergence of the ν+ part to
convergence w.r.t. ‖ · ‖E and convergence of the ν− part. Here are the details:
Consider cut-off functions ηR for R ∈ N as above. Due to convergence in
(D, ‖ · ‖E), we know that there is a subsequence of (ηRΦn)n∈N that converges
q.e., see [22] and the discussion in Section 1. One diagonal argument more

will give a subsequence, again denoted by (Φn)n∈N, such that the Φ̃n converge

to Φ̃ q.e., where ˜ denotes the quasi-continuous representatives. Since ν is
absolutely continuous w.r.t capacity we now know that the Φ̃n converge to
Φ̃ ν-a.e. Moreover, again due to convergence in (D, ‖ · ‖E), we know that

(ηRΦ̃n)n∈N is convergent in L2(ν−) as ν− ∈MR,1. Its limit must coincide with

ηRΦ̃, showing that Φ̃dν− ∈ MR.
We now want to show the analogous convergence for ν+; we do so by approx-
imation and omit the˜for notational simplicity. By simple cut-off procedures,
every ϕ ∈ Dc(X) ∩ L∞(X) can be approximated w.r.t. ‖ · ‖E by a uniformly
bounded sequence of continuous functions in D with common compact support.
Thus, the equation

E [Φ, ϕ] + ν[Φ, ϕ] = E · (Φ|ϕ),

initially valid for ϕ ∈ D∩Cc(X) extends to ϕ ∈ Dc(X)∩L∞(X) by continuity.
Therefore, for arbitrary k ∈ N, and R < min(n− 2,m− 2)
Z

|Φn−Φm|≤k

(Φn − Φm)2ηRdν+ ≤

Z

(Φn − Φm){(−k) ∨ (Φn − Φm) ∧ k}ηRdν+

= ν+[(Φn − Φm), {(−k) ∨ (Φn −Φm) ∧ k}ηR]

= E((Φn − Φm)|{. . .}ηR) + ν−[(Φn − Φm), {. . .}ηR)]

−E [(Φn −Φm), {(−k) ∨ (Φn − Φm) ∧ k}ηR]

By what we already know about convergence in D, L2 and L2(ν−), the RHS
goes to zero as n,m → ∞, independently of k. This gives the desired conver-
gence of ηRΦ̃n, the limit being ηRΦ̃ since this is the limit pointwise.
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Finally, an appeal to the Harnack principle gives that Φ is positive a.e. on
every UR and, therefore, a.e. on X. �

Remark 3.4. That we have to assume that X is noncompact can easily be
seen by looking at the Laplacian on a compact manifold. In that situation any
positive weak solution must in fact be in L2 due to the Harnack principle. Thus
the corresponding energy must lie in the spectrum. In fact, the corresponding
energy must be the infimum of the spectrum as we will show in the next theorem.
The theorem is standard. We include a proof for completeness reasons.

Theorem 3.5. Let (E ,D) be a regular, strictly local, irreducible Dirichlet form,
H0 be the associated operator and ν ∈MR,0−MR,1. Suppose that X is compact
and E satisfies the local compactness property. Then, H0 + ν has compact
resolvent. In particular, there exists a positive weak solution to (H0 + ν)Φ =
E0Φ for E0 := inf σ(H0 + ν). This solution is unique (up to a factor) and
belongs to L2(X). If H0 + ν satisfies a Harnack principle, then E0 is the only
value in R allowing for a positive weak solution.

Proof. As X is compact, the local compactness property gives that the op-
erator associated to E has compact resolvent. In particular, the sequence of
eigenvalues of H0 is given by the minmax principle and tends to ∞. As ν+ is
a nonnegative operator and ν− is form bounded with bound less than one, we
can apply the minmax principle to H0 + ν as well to obtain empty essential
spectrum.
In particular, the infimum of the spectrum is an eigenvalue. By irreducibility
and abstract principles, see e.g. [40], XIII.12, the corresponding eigenvector
must have constant sign and if a Harnack principle holds then any other en-
ergy allowing for a positive weak solution must be an eigenvalue as well (as
discussed in the previous remark). As there can not be two different eigenval-
ues with positive solutions, there can not be another energy with a positive
weak solution. �

Combining the results for the compact and noncompact case we get:

Corollary 3.6. Let (E ,D) be a regular, strictly local, irreducible Dirichlet
form, H0 be the associated operator and ν ∈ MR,0 − MR,1. Suppose that
E satisfies the local compactness property and H0 + ν satisfies the Harnack
principle for all E ∈ R. Then,

inf σ(H0 + ν) ≤ sup{E ∈ R|∃ a.e. positive weak solution (H0 + ν)Φ = EΦ}.
This doesn’t settle the existence of a positive weak solution for the groundstate
energy inf σ(H0 + ν) in the noncompact case. The uniform Harnack principle
settles this question:

Theorem 3.7. Let (E ,D) be a regular, strictly local, irreducible Dirichlet form,
H0 be the associated operator, ν ∈ MR,0 −MR,1. Suppose that E satisfies the
local compactness property and H0 + ν satisfies the uniform Harnack principle.
Then there is an a.e. positive weak solution of (H0 + ν)Φ = EΦ for E =
inf σ(H0 + ν).
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Proof. It suffices to consider the case of noncompact X . Take a sequence (En)
increasing to E = inf σ(H0 + ν). From Theorem 3.3 we know that there is an
a.e. positive solution Ψn of (H0 +ν)Φ = EnΦ. We use the exhaustion (UR)R∈N

from the proof of Theorem 3.3 and assume that

‖Ψn1U1‖2 = 1 for all n ∈ N.

As in the proof of Theorem 3.3 we can now show that we can pass to a sub-
sequence such that (ηRΨn) converges in D, L2(m) and L2(ν+ + ν−) for every
R ∈ N. The crucial point is that the uniform Harnack principle gives us a con-
trol on ‖ηRΨn‖2, uniformly in n, due to the norming condition above. With
aruments analogous to those in the proof of Theorem 3.3, the assertion fol-
lows. �

Note that Corollaries 2.4 and 3.6 together almost give

inf σ(H0 + ν) = sup{E ∈ R|∃ a.e. positive weak solution (H0 + ν)Φ = EΦ}.

The only problem is that for the “≥” from Corollary 2.4 we would have to
replace a.e. positive by a.e. positive and Φ,Φ−1 ∈ L∞loc. This, however, is
fulfilled whenever a Harnack inequality holds.

Corollary 3.8. Let (E ,D) be a regular, strictly local, irreducible Dirichlet
form, H0 be the associated operator and ν ∈ MR,0 −MR,1. Suppose that E
satisfies the local compactness property and H0+ν satisfies a Harnack inequality
for all E ∈ R. Then,

inf σ(H0 + ν) = sup{E ∈ R|∃ a.e. positive weak solution (H0 + ν)Φ = EΦ}.

4. Examples and applications

We discuss several different types of operators to which our results can be
applied. Parts of the implications have been known before. However, previous
proofs dealt with each of the mentioned operators separately, while we have a
uniform argument of proof.

Examples. Classical examples of operators for which our results have been
known before can be found in [5, 6, 7, 34, 35, 36, 18]. They concern Schrödinger
operators and, more generally, symmetric elliptic second order differential op-
erators on unbounded domains in Rd, whose coefficients satisfy certain regular-
ity conditions. For Laplace-Beltrami operators on Riemannian manifolds the
Allegretto-Piepenbrink theorem has been stablished in [51].

Here we want to concentrate on two classes of examples which have attracted
attention more recently: Hamiltonians with singular interactions and quantum
graphs.
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Hamiltonians with singular interactions. These are operators acting on Rd
which may be formally written as H = −∆ − αδ(· −M) where α is a pos-
itive real and M ⊂ Rd is a manifold of codimension one satisfying certain
regularity conditions, see e.g. [15] or Appendix K of [3]. In fact, the delta
interaction can be given a rigorous interpretation as a measure νM concen-
trated on the manifold M . More precisely, for any Borel set B ⊂ Rd, one
sets νM (B) := vold−1(B ∩M) where vold−1 denotes the (d − 1)-dimensional
Hausdorff measure on M . In [15], page 132, one can find suitable regularity
conditions on M under which the measure νγ belongs to the classMR,1. Thus
the singular interaction operatorH falls into our general framework, cf. Remark
3.2.
If M is a C2-regular, compact curve in R2 the essential spectrum of H equals
σess(−∆) = [0,∞), cf. [15]. On the other hand, the bottom of the spectrum of
H is negative and consists consequently of an eigenvalue. This can be seen using
the proof of Corollary 11 in [16]. In Section 3 of [21] it has been established
that the ground state is nondegenerate and the corresponding eigenfunction
strictly positive. This corresponds to part of our Theorem 3.3.

Quantum graphs. Quantum graphs are given in terms of a metric graph X and
a Laplace (or more generally) Schrödinger operatorH defined on the edges of X
together with a set of (generalised) boundary conditions at the vertices which
make H selfadjoint. To make sure that we are dealing with a strongly-local
Dirichlet form we restrict ourselves here to the case of so called free or Kirchoff
boundary conditions. A function in the domain of the corresponding quantum
graph Laplacian H0 is continuous at each vertex and the boundary values of
the derivatives obtained by approaching the vertex along incident edges sum
up to zero. Note that any non-negative Borel measure on X belongs to the
class MR,0(X). For ν+ ∈ MR,0(X) and ν− ∈ MR,1(X) the quantum graph
operator H = H0 + ν+ − ν− falls into our framework.
See Section 5 of [14] for a more detailed discussion of the relation between
Dirichlet forms and quantum graphs.

Applications. The ground state transformation which featured in Theorem
2.3 and Corollary 2.9 can be used to obtain a formula for the lowest spectral
gap. To be more precise let us assume that E , ν and Φ satisfy the conditions
of Theorem 2.3 with U = X . Assume in addition that Φ is in D(E + ν). Then
Φ is an eigenfunction of H corresponding to the eigenvalue E = minσ(H). We
denote by

E′ := inf{E [u, u] + ν[u, u] | u ∈ D, ‖u‖ = 1, u ⊥ Φ}

the second lowest eigenvalue below the essential spectrum of H , or, if it does
not exist, the bottom of σess(H). Then we obtain the following formula

(4) E′ − E = inf
{u∈D(E+ν),‖u‖=1,u⊥Φ}

∫

X

Φ2dΓ(uΦ−1, uΦ−1)
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which determines the lowest spectral gap. It has been used in [28, 29, 52]
to derive lower bounds on the distance between the two lowest eigenvalues of
different classes of Schrödinger operators (see [44] for a related approach). In
[28] bounded potentials are considered, in [29] singular interactions along curves
in R2 are studied, and [52] generalises these results using a unified approach
based on Kato-class measures.
If for a subset U ⊂ X of positive measure and a function u ∈ {u ∈ D, ‖u‖ =
1, u ⊥ Φ} the non-negative measure Γ(uΦ−1, uΦ−1) is absolutely continuous
with respect to m, one can exploit formula (4) to derive the following estimate
(cf. Section 3 in [52], and [28, 29] for similar bounds). Denote by γ(uΦ−1) =
dΓ(uΦ−1,uΦ−1)

dm the Radon-Nykodim derivative. Then
∫

U

Φ2dΓ(uΦ−1, uΦ−1) ≥ 1

m(U)
inf
U

Φ2

(∫

U

√
γ(uΦ−1)dm

)2

In specific situations one can chose u to be an eigenfunction associated to the
second eigenvalue E′ and use geometric properties of Φ and u to derive explicit
lower bounds on the spectral gap.

Other uses of the ground state transformation include the study of Lp-Lq

mapping properties of the semigroup associated to E [20] and the proof of
Lifschitz tails [32].
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Abstract. In the manuscript “On the Parity of Ranks of Selmer
Groups III” Documenta Math. 12 (2007), 243–274, [1], Remark
4.1.2(4) and the treatment of archimedean ε-factors in 4.1.3 are incor-
rect. Contrary to what is stated in 0.3, the individual archimedean
ε-factors εu(M) (u | ∞) cannot be expressed, in general, in terms of
Mp, but their product can.

2000 Mathematics Subject Classification: 11G40 11R23

To motivate the corrections below, consider a motive M (pure of weight w)

over F with coefficients in L. Set S̃∞ = {τ : F →֒ C}, S̃p = {σ : F →֒ Qp}
and denote by r∞ : S̃∞ −→ S∞, rp : S̃p −→ Sp the canonical surjections. Fix

an embedding ι : L →֒ C and an isomorphism λ : Qp
∼−→ C such that p is

induced by ιp = λ−1 ◦ ι : L →֒ Qp. To each v ∈ Sp then corresponds a subset

S∞(v) = {r∞(λ ◦ σ) | rp(σ) = v} ⊂ S∞
such that

∑

w∈S∞(v)

[Lw : R] = [Fv : Qp].

For each τ ∈ S̃∞, the Betti realization MB,τ is an L-vector space and there is
a Hodge decomposition

MB,τ ⊗L,ι C =
⊕

i∈Z
(ιMτ )i,w−i.
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The corresponding Hodge numbers

hi,w−i(ιMu) := hi,w−i(ιMτ ) = dimC (ιMτ )i,w−i

depend only on u = r∞(τ) ∈ S∞. The de Rham realization MdR is a free L⊗Q

F -module; its Hodge filtration is given by submodules F rMdR (not necessarily
free) which correspond, under the de Rham comparison isomorphism

MdR ⊗L⊗QF,ι⊗τ C
∼−→MB,τ ⊗L,ι C,

to

(F rMdR)⊗L⊗QF,ι⊗τ C
∼−→
⊕

i≥r
(ιMτ )i,w−i,

hence

dimC

(
(griFMdR)⊗L⊗QF,ι⊗τ C

)
= hi,w−i(ιMτ ).

The p-adic realization Mp of M is isomorphic, as an Lp-vector space, to

MB,τ ⊗LLp (for any τ ∈ S̃∞). For each v ∈ Sp, DdR(Mp,v) is a free Lp⊗Qp Fv-
module equipped with a filtration satisfying

Dr
dR(Mp,v)

∼−→ F rMdR ⊗L⊗QF (Lp ⊗Qp Fv).

This implies that, for each i ∈ Z, the dimension

div(Mp) := dimLp

(
Di
dR(Mp,v)/D

i+1
dR (Mp,v)

)

is equal to

dimLp

(
griFMdR

)
⊗L⊗QF (Lp ⊗Qp Fv)

= dim
Qp

(
griFMdR

)
⊗L⊗QF,ιp⊗incl (Qp ⊗Qp Fv)

=
∑

σ:Fv →֒Qp

dim
Qp

(
griFMdR

)
⊗L⊗QF,ιp⊗σ Qp

=
∑

u∈S∞(v)

[Fu : R]hi,w−i(ιMu),

hence

d−v (Mp) :=
∑

i<0

i div(Mp) =
∑

u∈S∞(v)

[Fu : R] d−(ιMu),

d−(ιMu) :=
∑

i<0

i hi,w−i(ιMu). (⋆)
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Corrections to §4.1 and §5.1: firstly, 4.1.2(4) and 5.1.2(9) should be
deleted. Secondly, §4.1.3 should be reformulated as follows: we assume that V
satisfies 4.1.2(1)-(3). For each v ∈ Sp we define

d−v (V ) :=
∑

i<0

i div(V ), div(V ) = dimLp

(
Di
dR(Vv)/Di+1

dR (Vv)
)

(4.1.3.1′)

and

∏

u∈S∞(v)

ε(Vu) := (−1)d
−
v (V )

∏

u∈S∞(v),Fu=C

(−1)dimLp (V )/2 (4.1.3.2′)

(even though we are unable to define the individual ε(Vu)). If V = Mp, where

M
∼−→ M∗(1) is pure (of weight −1), it follows from (⋆) and (2.3.1) that this

definition gives the correct product of archimedean ε-factors.
The formula (4.1.3.6) should be replaced by

∀v ∈ Sp ε̃(Vv) = (−1)d
−
v (V )(detV +

v )(−1) = ε(WD(Vv)N−ss), (4.1.3.6′)

which implies that

ε̃(Vv)
∏

u∈S∞(v)

ε(Vu) = (detV +
v )(−1)

∏

u∈S∞(v),Fu=C

(−1)dimLp (V )/2,

hence

∏

v∈Sp∪S∞
ε̃(Vv) = (−1)r2(F ) dimLp (V )/2

∏

v∈Sp
(det V +

v )(−1), (4.1.3.7′)

where r2(F ) denotes the number of complex places of F .

Corrections to Theorem 5.3.1 and its proof: the statement should say
that, under the assumptions 5.1.2(1)-(8), the quantity

(−1)h
1
f (F,V )/ε(V ) = (−1)̃h

1
f (F,V )/ε̃(V ) =

= (−1)̃h
1
f (F,V )(−1)r2(F ) dimL (V)/2

∏

v∈Sp
(detV+

v )(−1)
∏

v 6∈Sp∪S∞
ε(Vv)

depends only on V and V+
v (v ∈ Sp).

In the proof, a reference to (4.1.3.7) should be replaced by that to (4.1.3.7’),
which yields

ε̃(V ) =
∏

v∈Sp∪S∞
ε̃(Vv)

∏

v 6∈Sp∪S∞
ε(Vv) = (−1)r2(F ) dimLp (V )/2

∏

v∈Sp
(detV +

v )(−1)
∏

v 6∈Sp∪S∞
ε(Vv).
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Corrections to §5.3.3: the first question should ask whether

(−1)d
−
v (V )ε(WD(Vv)N−ss) (v ∈ Sp)

depends only on Vv?
Corrections to §5.3.4-5: it is often useful to use a slightly more general
version of Example 5.3.4 with Γ = Γ0 ×∆, where Γ0 is isomorphic to Zp and
∆ is finite (abelian). Given a character α : ∆ −→ O∗p, set

R = Op[[Γ0]], T =
(
T ⊗Op

Op[[Γ+]]
)
⊗Op[∆],α Op,

T +
v =

(
T+
v ⊗Op

Op[[Γ+]]
)
⊗Op[∆],α Op (v ∈ Sp).

As in 5.3.4(2)-(3), T is an R[GF,S ]-module equipped with a skew-symmetric
R-bilinear pairing ( , ) : T × T −→ R(1) inducing an isomorphism

T ⊗Q
∼−→ HomR(T , R(1))⊗Q.

In 5.3.4(5) we have to replace β : Γ −→ Lp(β) by β : Γ0 −→ Lp(β); then

TP /̟PTP = Ind
GF,S
GF0,S

(V ⊗ (β × α)).

In 5.3.5, we set, for any Lp[Γ]-module M ,

M (β×α) = {x ∈M ⊗Lp
Lp(β) | ∀σ ∈ Γ σ(x) = (β × α)(x)};

then

H1
f (F, TP /̟PTP ) = H1

f (F0, V ⊗ (β × α))

=
(
H1
f (Fβ , V )⊗ (β × α)

)Gal(Fβ/F0)
= H1

f (Fβ , V )(β
−1×α−1)

and

τ : H1
f (Fβ , V )(β

−1×α−1) ∼−→ H1
f (Fβ , V )(β×α).

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order
β, β′ : Γ0 −→ L

∗
p, that

(−1)h
1
f (F0,V⊗(β×α))/ ε(F0, V ⊗ (β × α))

= (−1)h
1
f (F0,V⊗(β′×α))/ ε(F0, V ⊗ (β′ × α)). (5.3.5.1′)
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Abstract. We develop an idempotent version of probabilistic po-
tential theory. The goal is to describe the set of max-plus harmonic
functions, which give the stationary solutions of deterministic optimal
control problems with additive reward. The analogue of the Martin
compactification is seen to be a generalisation of the compactification
of metric spaces using (generalised) Busemann functions. We define
an analogue of the minimal Martin boundary and show that it can
be identified with the set of limits of “almost-geodesics”, and also
the set of (normalised) harmonic functions that are extremal in the
max-plus sense. Our main result is a max-plus analogue of the Mar-
tin representation theorem, which represents harmonic functions by
measures supported on the minimal Martin boundary. We illustrate
it by computing the eigenvectors of a class of Lax-Oleinik semigroups
with nondifferentiable Lagrangian: we relate extremal eigenvector to
Busemann points of normed spaces.
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1 Introduction

There exists a correspondence between classical and idempotent analysis, which
was brought to light by Maslov and his collaborators [Mas87, MS92, KM97,
LMS01]. This correspondence transforms the heat equation to an Hamilton-
Jacobi equation, and Markov operators to dynamic programming operators.
So, it is natural to consider the analogues in idempotent analysis of harmonic
functions, which are the solutions of the following equation

ui = sup
j∈S

(Aij + uj) for all i ∈ S. (1)

The set S and the map A : S × S → R ∪ {−∞}, (i, j) 7→ Aij , which plays
the role of the Markov kernel, are given, and one looks for solutions u : S →
R ∪ {−∞}, i 7→ ui. This equation is the dynamic programming equation of
a deterministic optimal control problem with infinite horizon. In this context,
S is the set of states, the map A gives the weights or rewards obtained on
passing from one state to another, and one is interested in finding infinite
paths that maximise the sum of the rewards. Equation (1) is linear in the
max-plus algebra, which is the set R ∪ {−∞} equipped with the operations of
maximum and addition. The term idempotent analysis refers to the study of
structures such as this, in which the first operation is idempotent.
In potential theory, one uses the Martin boundary to describe the set of har-
monic and super-harmonic functions of a Markov process, and the final be-
haviour of its paths. Our goal here is to obtain analogous results for Equa-
tion (1).
The original setting for the Martin boundary was classical potential theory
[Mar41], where it was used to describe the set of positive solutions of Laplace’s
equation. Doob [Doo59] gave a probabilistic interpretation in terms of Wiener
processes and also an extension to the case when time is discrete. His method
was to first establish an integral representation for super-harmonic functions
and then to derive information about final behaviour of paths. Hunt [Hun60]
showed that one could also take the opposite approach: establish the results
concerning paths probabilistically and then deduce the integral representation.
The approach taken in the present paper is closest to that of Dynkin [Dyn69],
which contains a simplified version of Hunt’s method.
There is a third approach to this subject, using Choquet theory. However, at
present, the tools in the max-plus setting, are not yet sufficiently developed to
allow us to take this route.
Our starting point is the max-plus analogue of the Green kernel,

A∗ij := sup{Ai0i1 + · · ·+Ain−1in | n ∈ N, i0, . . . , in ∈ S, i0 = i, in = j} .

Thus, A∗ij is the maximal weight of a path from i to j. We fix a map i 7→ σi,
from S to R ∪ {−∞}, which will play the role of the reference measure. We
set πj := supk∈S σk +A∗kj . We define the max-plus Martin space M to be the
closure of the set of maps K := {A∗·j − πj | j ∈ S} in the product topology,
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and the Martin boundary to be M \K . This term must be used with caution
however, since K may not be open in M (see Example 10.6). The reference
measure is often chosen to be a max-plus Dirac function, taking the value 0 at
some basepoint b ∈ S and the value −∞ elsewhere. In this case, πj = A∗bj .
One may consider the analogue of an “almost sure” event to be a set of outcomes
(in our case paths) for which the maximum reward over the complement is
−∞. So we are lead to the notion of an “almost-geodesic”, a path of finite total
reward, see Section 7. The almost sure convergence of paths in the probabilistic
case then translates into the convergence of every almost-geodesic to a point
on the boundary.
The spectral measure of probabilistic potential theory also has a natural ana-
logue, and we use it to give a representation of the analogues of harmonic
functions, the solutions of (1). Just as in probabilistic potential theory, one
does not need the entire Martin boundary for this representation, a particular
subset, called the minimal Martin space, will do. The probabilistic version
is defined in [Dyn69] to be the set of boundary points for which the spectral
measure is a Dirac measure located at the point itself. Our definition (see Sec-
tion 4) is closer to an equivalent definition given in the same paper in which
the spectral measure is required only to have a unit of mass at the point in
question. The two definitions are not equivalent in the max-plus setting and
this is related to the main difference between the two theories: the representing
max-plus measure may not be unique.
Our main theorem (Theorem 8.1) is that every (max-plus) harmonic vector u
that is integrable with respect to π, meaning that supj∈S πj + uj <∞, can be
represented as

u = sup
w∈Mm

ν(w) + w, (2)

where ν is an upper semicontinuous map from the minimal Martin space Mm

to R∪{−∞}, bounded above. The map ν is the analogue of the density of the
spectral measure.
We also show that the (max-plus) minimal Martin space is exactly the set of
(normalised) harmonic functions that are extremal in the max-plus sense, see
Theorem 8.3. We show that each element of the minimal Martin space is either
recurrent, or a boundary point which is the limit of an almost-geodesic (see
Corollary 7.7 and Proposition 7.8).
To give a first application of our results, we obtain in Corollary 11.3 an existence
theorem for non-zero harmonic functions of max-plus linear kernels satisfying
a tightness condition, from which we derive a characterisation of the spectrum
of some of these kernels (Corollary 11.4).
To give a second application, we obtain in Section 12 a representation of the
eigenvectors of the Lax-Oleinik semigroup [Eva98, §3.3]:

T tu(x) = sup
y∈Rn

−tL
(y − x

t

)
+ u(y) ,
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where L is a convex Lagrangian. This is the evolution semigroup of the
Hamilton-Jacobi equation

∂u

∂t
= L⋆(∇u) ,

where L⋆ denotes the Legendre-Fenchel transform of L. An eigenvector with
eigenvalue λ ∈ R is a function u such that T tu = λt + u holds for all t >
0. We compute the eigenvectors for a subclass of possibly nondifferentiable
Lagrangians (Corollary 12.3 and Theorem 12.5).
Results and ideas related to the ones of present paper have appeared in several
works: we now discuss them.
Max-plus harmonic functions have been much studied in the finite-dimensional
setting. The representation formula (2) extends the representation of harmonic
vectors given in the case when S is finite in terms of the critical and saturation
graphs. This was obtained by several authors, including Romanovski [Rom67],
Gondran and Minoux [GM77] and Cuninghame-Green [CG79, Th. 24.9]. The
reader may consult [MS92, BCOQ92, Bap98, GM02, AG03, AGW05] for more
background on max-plus spectral theory. Relations between max-plus spec-
tral theory and infinite horizon optimisation are discussed by Yakovenko and
Kontorer [YK92] and Kolokoltsov and Maslov [KM97, § 2.4]. The idea of
“almost-geodesic” appears there in relation with “Turnpike” theorems.
The max-plus Martin boundary generalises to some extent the boundary of a
metric space defined in terms of (generalised) Busemann functions by Gromov
in [Gro81] in the following way (see also [BGS85] and [Bal95, Ch. II]). (Note
that this is not the same as the Gromov boundary of hyperbolic spaces.) If
(S, d) is a complete metric space, one considers, for all y, x ∈ S, the function
by,x given by

by,x(z) = d(x, z)− d(x, y) for z ∈ S .

One can fix the basepoint y in an arbitrary way. The space C (S) can
be equipped with the topology of uniform convergence on bounded sets, as
in [Gro81, Bal95], or with the topology of uniform convergence on compact
sets, as in [BGS85]. The limits of sequences of functions by,xn ∈ C (S), where
xn is a sequence of elements of S going to infinity, are called (generalised)
Busemann functions.
When the metric space S is proper, meaning that all closed bounded subsets
of S are compact, the set of Busemann functions coincides with the max-plus
Martin boundary obtained by taking Azx = A∗zx = −d(z, x), and σ the max-
plus Dirac function at the basepoint y. This follows from Ascoli’s theorem, see
Remark 7.10 for details. Note that our setting is more general since −A∗ need
not have the properties of a metric, apart from the triangle inequality (the case
when A∗ is not symmetrical is needed in optimal control).
We note that Ballman has drawn attention in [Bal95, Ch. II] to the analogy
between this boundary and the probabilistic Martin boundary.
The same boundary has recently appeared in the work of Rieffel [Rie02], who
called it the metric boundary. Rieffel used the term Busemann point to des-
ignate those points of the metric boundary that are limits of what he calls
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“almost-geodesics”. We shall see in Corollary 7.13 that these are exactly the
points of the max-plus minimal Martin boundary, at least when S is a proper
metric space. We also relate Busemann points to extremal eigenvectors of Lax-
Oleinik semigroups, in Section 12. Rieffel asked in what cases are all bound-
ary points Busemann points. This problem, as well as the relation between
the metric boundary and other boundaries, has been studied by Webster and
Winchester [WW06, WW05] and by Andreev [And04, And07]. However, rep-
resentation problems like the one dealt with in Theorem 8.1 do not seem to
have been treated in the metric space context.

Results similar to those of max-plus spectral theory have recently appeared in
weak-KAM theory. In this context, S is a Riemannian manifold and the kernel
A is replaced by a Lax-Oleinik semigroup, that is, the evolution semigroup
of a Hamilton-Jacobi equation. Max-plus harmonic functions correspond to
the weak-KAM solutions of Fathi [Fat97b, Fat97a, Fat08], which are essentially
the eigenvectors of the Lax-Oleinik semigroup, or equivalently, the viscosity
solutions of the ergodic Hamilton-Jacobi equation, see [Fat08, Chapter 8]. In
weak-KAM theory, the analogue of the Green kernel is called the Mañe po-
tential, the role of the critical graph is played by the Mather set, and the
Aubry set is related to the saturation graph. In the case when the manifold
is compact, Contreras [Con01, Theorem 0.2] and Fathi [Fat08, Theorem 8.6.1]
gave a representation of the weak-KAM solutions, involving a supremum of
fundamental solutions associated to elements of the Aubry set. The case of
non-compact manifolds was considered by Contreras, who defined an analogue
of the minimal max-plus Martin boundary in terms of Busemann functions,
and obtained in [Con01, Theorem 0.5] a representation formula for weak-KAM
solutions analogous to (2). Busemann functions also appear in [Fat03]. Other
results of weak-KAM theory concerning non-compact manifolds have been ob-
tained by Fathi and Maderna [FM02]. See also Fathi and Siconolfi [FS04]. Let
us point out that some results of weak-KAM theory with a discrete flavor were
established by MacKay, Slijepčević, and Stark [MSS00]. Extremality proper-
ties of the elements of the max-plus Martin boundary (Theorems 6.2 and 8.3
below) do not seem to have been considered in weak-KAM theory.

Despite the general analogy, the proofs of our representation theorem for har-
monic functions (Theorem 8.1) and of the corresponding theorems in [Con01]
and [Fat08] require different techniques. In order to relate both settings, it
would be natural to set A = Bs, where (Bt)t≥0 is the Lax-Oleinik semigroup,
and s > 0 is arbitrary. However, only special kernels A can be written in this
way, in particular A must have an “infinite divisibility” property. Also, not
every harmonic function of Bs is a weak-KAM solution associated to the semi-
group (Bt)t≥0. Thus, the discrete time case is in some sense more general than
the continuous-time case, but eigenvectors are more constrained in continuous
time, so both settings require distinct treatments. Nevertheless, in some spe-
cial cases, a representation of weak-KAM solutions follows from our results.
This happens for example in Section 12, where our assumptions imply that the
minimal Martin space of Bs is independent of s. We note that the Lagrangian
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there is not necessarily differentiable, a property which is required in [Fat08]
and [Con01].

The lack of uniqueness of the representing measure is examined in a further
work [Wal09], where it is shown that the set of (max-plus) measures represent-
ing a given (max-plus) harmonic function has a least element.

After the submission of the present paper, a boundary theory which has some
similarities with the present one was developed by Ishii and Mitake [IM07].
The results there are in the setting of viscosity solutions and are independent
of the present ones.

We note that the main results of the present paper have been announced in
the final section of a companion paper, [AGW05], in which max-plus spectral
theory was developed under some tightness conditions. Here, we use tightness
only in Section 11. We finally note that the results of the present paper have
been used in the further works [Wal07, Wal08].

Acknowledgements. We thank Albert Fathi for helpful comments, and in par-
ticular for having pointed out to us the work of Contreras [Con01]. We also
thank Arnaud de la Fortelle for references on the probabilistic Martin boundary
theory.

2 The max-plus Martin kernel and max-plus Martin space

To show the analogy between the boundary theory of deterministic optimal
control problems and classical potential theory, it will be convenient to use
max-plus notation. The max-plus semiring, Rmax, is the set R∪{−∞} equipped
with the addition (a, b) 7→ a ⊕ b := max(a, b) and the multiplication (a, b) 7→
a⊙ b := a+ b. We denote by 0 := −∞ and 1 := 0 the zero and unit elements,
respectively. We shall often write ab instead of a ⊙ b. Since the supremum
of an infinite set may be infinite, we shall occasionally need to consider the
completed max-plus semiring Rmax, obtained by adjoining to Rmax an element
+∞, with the convention that 0 = −∞ remains absorbing for the semiring
multiplication.

The sums and products of matrices and vectors are defined in the natural
way. These operators will be denoted by ⊕ and concatenation, respectively.
For instance, if A ∈ RS×Smax , (i, j) 7→ Aij , denotes a matrix (or kernel), and if
u ∈ RSmax, i 7→ ui denotes a vector, we denote by Au ∈ RSmax, i 7→ (Au)i, the
vector defined by

(Au)i :=
⊕

j∈S
Aijuj ,

where the symbol ⊕ denotes the usual supremum.

We now introduce the max-plus analogue of the potential kernel (Green kernel).
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Given any matrix A ∈ RS×Smax , we define

A∗ = I ⊕A⊕A2 ⊕ · · · ∈ RS×Smax ,

A+ = A⊕A2 ⊕A3 ⊕ · · · ∈ RS×Smax

where I = A0 denotes the max-plus identity matrix, and Ak denotes the kth
power of the matrix A. The following formulae are obvious:

A∗ = I ⊕A+, A+ = AA∗ = A∗A, and A∗ = A∗A∗ .

It may be useful to keep in mind the graph representation of matrices: to any
matrix A ∈ RS×Smax is associated a directed graph with set of nodes S and an
arc from i to j if the weight Aij is different from 0. The weight of a path is
by definition the max-plus product (that is, the sum) of the weights of its arcs.
Then, A+

ij and A∗ij represent the supremum of the weights of all paths from i
to j that are, respectively, of positive an nonnegative length.
Motivated by the analogy with potential theory, we will say that a vector
u ∈ RSmax is (max-plus) harmonic if Au = u and super-harmonic if Au ≤ u.
Note that we require the entries of a harmonic or super-harmonic vector to
be distinct from +∞. We shall say that a vector π ∈ RSmax is left (max-plus)
harmonic if πA = π, π being thought of as a row vector. Likewise, we shall say
that π is left (max-plus) super-harmonic if πA ≤ π. Super-harmonic vectors
have the following elementary characterisation.

Proposition 2.1. A vector u ∈ RSmax is super-harmonic if and only if u = A∗u.

Proof. If u ∈ RSmax is super-harmonic, then Aku ≤ u for all k ≥ 1, from which it
follows that u = A∗u. The converse also holds, since AA∗u = A+u ≤ A∗u.

From now on, we make the following assumption.

Assumption 2.2. There exists a left super-harmonic vector with full support,
in other words a row vector π ∈ RS such that π ≥ πA.

By applying Proposition 2.1 to the transpose of A, we conclude that π = πA∗.
Since π has no components equal to 0, we see that one consequence of the
above assumption is that A∗ij ∈ Rmax for all i, j ∈ S. A fortiori, Aij ∈ Rmax

for all i, j ∈ S.
The choice of π we make will determine which set of harmonic vectors is the
focus of attention. It will be the set of harmonic vectors u that are π-integrable,
meaning that πu <∞. Of course, the boundary that we define will also depend
on π, in general. For brevity, we shall omit the explicit dependence on π of
the quantities that we introduce and shall omit the assumption on π in the
statements of the theorems. We denote by H and S , respectively, the set of
π-integrable harmonic and π-integrable super-harmonic vectors.
It is often convenient to choose π := A∗b· for some b ∈ S. (We use the notation
Mi· and M·i to denote, respectively, the ith row and ith column of any matrix
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202 Marianne Akian, Stéphane Gaubert, and Cormac Walsh

M .) We shall say that b is a basepoint when the vector π defined in this way
has finite entries (in particular, a basepoint has access to every node in S).
With this choice of π, every super-harmonic vector u ∈ RSmax is automatically
π-integrable since, by Proposition 2.1, πu = (A∗u)b = ub < +∞. So, in this
case, H coincides with the set of all harmonic vectors. This conclusion remains
true when π := σA∗, where σ is any row vector with finite support, that is,
with σi = 0 except for finitely many i.
We define the Martin kernel K with respect to π:

Kij := A∗ij(πj)
−1 for all i, j ∈ S . (3)

Since πiA
∗
ij ≤ (πA∗)j = πj , we have

Kij ≤ (πi)
−1 for all i, j ∈ S . (4)

This shows that the columns K·j are bounded above independently of j. By
Tychonoff’s theorem, the set of columns K := {K·j | j ∈ S} is relatively
compact in the product topology of RSmax. The Martin space M is defined to
be the closure of K . We call B := M \K the Martin boundary. From (3)
and (4), we get that Aw ≤ w and πw ≤ 1 for all w ∈ K . Since the set of
vectors with these two properties can be written

{w ∈ RSmax | Aijwj ≤ wi and πkwk ≤ 1 for all i, j, k ∈ S}

and this set is obviously closed in the product topology of RSmax, we have that

M ⊂ S and πw ≤ 1 for all w ∈M . (5)

3 Harmonic vectors arising from recurrent nodes

Of particular interest are those column vectors of K that are harmonic. To
investigate these we will need some basic notions and facts from max-plus
spectral theory. Define the maximal circuit mean of A to be

ρ(A) :=
⊕

k≥1

(trAk)1/k ,

where trA =
⊕

i∈S Aii. Thus, ρ(A) is the maximum weight-to-length ratio for
all the circuits of the graph of A. The existence of a super-harmonic row vector
with full support, Assumption 2.2, implies that ρ(A) ≤ 1 (see for instance
Prop. 3.5 of [Dud92] or Lemma 2.2 of [AGW05]). Define the normalised
matrix Ã = ρ(A)−1A. The max-plus analogue of the notion of recurrence is
defined in [AGW05]:

Definition 3.1 (Recurrence). We shall say that a node i is recurrent if Ã+
ii = 1.

We denote by N r(A) the set of recurrent nodes. We call recurrent classes
of A the equivalence classes of N r(A) with the relation R defined by iRj if
Ã+
ijÃ

+
ji = 1.
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This should be compared with the definition of recurrence for Markov chains,
where a node is recurrent if one returns to it with probability one. Here, a
node is recurrent if we can return to it with reward 1 in Ã.
Since AA∗ = A+ ≤ A∗, every column of A∗ is super-harmonic. Only those
columns of A∗ corresponding to recurrent nodes yield harmonic vectors:

Proposition 3.2 (See [AGW05, Prop. 5.1]). The column vector A∗·i is har-
monic if and only if ρ(A) = 1 and i is recurrent.

The same is true for the columns of K since they are proportional in the max-
plus sense to those if A∗.
The following two results show that it makes sense to identify elements in the
same recurrence class.

Proposition 3.3. Let i, j ∈ S be distinct. Then K·i = K·j if and only if
ρ(A) = 1 and i and j are in the same recurrence class.

Proof. Let i, j ∈ S be such that K·i = K·j. Then, in particular, Kii = Kij ,
and so A∗ij = πj(πi)

−1. Symmetrically, we obtain A∗ji = πi(πj)
−1. Therefore,

A∗ijA
∗
ji = 1. If i 6= j, then this implies that A+

ii ≥ A+
ijA

+
ji = A∗ijA

∗
ji = 1, in

which case ρ(A) = 1, i is recurrent, and i and j are in the same recurrence
class. This shows the “only if” part of the proposition. Now let ρ(A) = 1 and i
and j be in the same recurrence class. Then, according to [AGW05, Prop. 5.2],
A∗·i = A∗·jA

∗
ji, and so K·i = K·j(πi)−1πjA

∗
ji. But since π = πA∗, we have that

πi ≥ πjA
∗
ji, and therefore K·i ≤ K·j. The reverse inequality follows from a

symmetrical argument.

Proposition 3.4. Assume that ρ(A) = 1. Then, for all u ∈ S and i, j in the
same recurrence class, we have πiui = πjuj.

Proof. Since π ∈ RS , we can consider the vector π−1 := (π−1
i )i∈S . That π

is super-harmonic can be expressed as πj ≥ πiAij , for all i, j ∈ S. This is
equivalent to (πi)

−1 ≥ Aij(πj)
−1; in other words, that π−1, seen as a column

vector, is super-harmonic. Proposition 5.5 of [AGW05] states that the restric-
tion of any two ρ(A)-super-eigenvectors of A to any recurrence class of A are
proportional. Therefore, either u = 0 or the restrictions of u and π−1 to any
recurrence class are proportional. In either case, the map i ∈ S 7→ πiui is
constant on each recurrence class.

Remark 3.5. It follows from these two propositions that, for any u ∈ S , the
map S → Rmax, i 7→ πiui induces a map K → Rmax, K·i 7→ πiui. Thus, a
super-harmonic vector may be regarded as a function defined on K .

Let u ∈ RSmax be a π-integrable vector. We define the map µu : M → Rmax by

µu(w) := lim sup
K·j→w

πjuj := inf
W∋w

sup
K·j∈W

πjuj for w ∈M ,

where the infimum is taken over all neighbourhoods W of w in M . The reason
why the limsup above cannot take the value +∞ is that πjuj ≤ πu < +∞ for
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all j ∈ S. The following result shows that µu : M → Rmax is an upper semi-
continuous extension of the map from K to Rmax introduced in Remark 3.5.

Lemma 3.6. Let u be a π-integrable super-harmonic vector. Then, µu(K·i) =
πiui for each i ∈ S and µu(w)w ≤ u for each w ∈M . Moreover,

u =
⊕

w∈K

µu(w)w =
⊕

w∈M

µu(w)w .

Proof. By Proposition 2.1, A∗u = u. Hence, for all i ∈ S,

ui =
⊕

j∈S
A∗ijuj =

⊕

j∈S
Kijπjuj . (6)

We conclude that ui ≥ Kijπjuj for all i, j ∈ S. By taking the limsup with
respect to j of this inequality, we obtain that

ui ≥ lim sup
K·j→w

Kijπjuj ≥ lim inf
K·j→w

Kij lim sup
K·j→w

πjuj = wiµu(w) , (7)

for all w ∈M and i ∈ S. This shows the second part of the first assertion of
the lemma. To prove the first part, we apply this inequality with w = K·i. We
get that ui ≥ Kiiµu(K·i). Since Kii = (πi)

−1, we see that πiui ≥ µu(K·i). The
reverse inequality follows from the definition of µu. The final statement of the
lemma follows from Equation (6) and the first statement.

4 The minimal Martin space

In probabilistic potential theory, one does not need the entire boundary to
be able to represent harmonic vectors, a certain subset suffices. We shall see
that the situation in the max-plus setting is similar. To define the (max-plus)
minimal Martin space, we need to introduce another kernel:

K♭
ij := A+

ij(πj)
−1 for all i, j ∈ S .

Note that K♭
·j = AK·j is a function of K·j. For all w ∈ M , we also define

w♭ ∈ RSmax:

w♭i = lim inf
K·j→w

K♭
ij for all i ∈ S .

The following lemma shows that no ambiguity arises from this notation since
(K·j)♭ = K♭

·j.

Lemma 4.1. We have w♭ = w for w ∈ B, and w♭ = K♭
·j = Aw for w = K·j ∈

K . For all w ∈M , we have w♭ ∈ S and πw♭ ≤ 1.
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Proof. Let w ∈ B. Then, for each i ∈ S, there exists a neighbourhood W of w
such that K·i 6∈ W . So

w♭i = lim inf
K·j→w

K♭
ij = lim inf

K·j→w
Kij = wi ,

proving that w♭ = w.
Now let w = K·j for some j ∈ S. Taking the sequence with constant value K·j,
we see that w♭ ≤ K♭

·j. To establish the opposite inequality, we observe that

w♭ = lim inf
K·k→w

AK·k ≥ lim inf
K·k→w

A·iKik = A·iwi for all i ∈ S ,

or, in other words, w♭ ≥ Aw. Therefore we have shown that w♭ = K♭
·j .

The last assertion of the lemma follows from (5) and the fact that π is super-
harmonic.

Next, we define two kernels H and H♭ over M .

H(z, w) :=µw(z) = lim sup
K·i→z

πiwi = lim sup
K·i→z

lim
K·j→w

πiKij

H♭(z, w) :=µw♭(z) = lim sup
K·i→z

πiw
♭
i = lim sup

K·i→z
lim inf
K·j→w

πiK
♭
ij .

Using the fact that K♭ ≤ K and Inequality (4), we get that

H♭(z, w) ≤ H(z, w) ≤ 1 for all w, z ∈M .

If w ∈ M , then both w and w♭ are elements of S by (5) and Lemma 4.1.
Using the first assertion in Lemma 3.6, we get that

H(K·i, w) = πiwi (8)

H♭(K·i, w) = πiw
♭
i . (9)

In particular

H(K·i,K·j) = πiKij = πiA
∗
ij(πj)

−1 (10)

H♭(K·i,K·j) = πiK
♭
ij = πiA

+
ij(πj)

−1 . (11)

Therefore, up to a diagonal similarity, H and H♭ are extensions to M ×M of
the kernels A∗ and A+ respectively.

Lemma 4.2. For all w, z ∈M , we have

H(z, w) =

{
H♭(z, w) when w 6= z or w = z ∈ B ,1 otherwise .
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Proof. If w ∈ B, then w♭ = w by Lemma 4.1, and the equality of H(z, w) and
H♭(z, w) for all z ∈M follows immediately.
Let w = K·j for some j ∈ S and let z ∈M be different from w. Then, there
exists a neighbourhood W of z that does not contain w. Applying Lemma 4.1
again, we get that w♭i = K♭

ij = Kij = wi for all i ∈ W . We deduce that

H(z, w) = H♭(z, w) in this case also.
In the final case, we have w = z ∈ K . The result follows from Equation (10).

We define the minimal Martin space to be

M
m := {w ∈M | H♭(w,w) = 1} .

From Lemma 4.2, we see that

{w ∈M | H(w,w) = 1} = M
m ∪K . (12)

Lemma 4.3. Every w ∈Mm ∪K satisfies πw = 1.
Proof. We have

πw = sup
i∈S

πiwi ≥ lim sup
K·i→w

πiwi = H(w,w) = 1.
By Equation (5), πw ≤ 1, and the result follows.

Proposition 4.4. Every element of Mm is harmonic.

Proof. If K ∩Mm contains an element w, then, from Equation (11), we see
that ρ(A) = 1 and w is recurrent. It follows from Proposition 3.2 that w is
harmonic.
It remains to prove that the same is true for each element w of B ∩Mm. Let
i ∈ S be such that wi 6= 0 and assume that β > 1 is given. Since w ∈ B, w and
K·i will be different. We make two more observations. Firstly, by Lemma 4.2,
lim supK·j→w πjwj = 1. Secondly, limK·j→wKij = wi. From these facts, we
conclude that there exists j ∈ S, different from i, such that1 ≤ βπjwj and wi ≤ βKij . (13)

Now, since i and j are distinct, we have A∗ij = A+
ij = (AA∗)ij . Therefore, we

can find k ∈ S such that

A∗ij ≤ βAikA∗kj . (14)

The final ingredient is thatA∗kjwj ≤ wk because w is super-harmonic. From this

and the inequalities in (13) and (14), we deduce that wi ≤ β3Aikwk ≤ β3(Aw)i.
Both β and i are arbitrary, so w ≤ Aw. The reverse inequality is also true since
every element of M is super-harmonic. Therefore w is harmonic.
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5 Martin spaces constructed from different basepoints

We shall see that when the left super-harmonic vector π is of the special form
π = A∗b· for some basepoint b ∈ S, the corresponding Martin boundary is
independent of the basepoint.

Proposition 5.1. The Martin spaces corresponding to different basepoints are
homeomorphic. The same is true for Martin boundaries and minimal Martin
spaces.

Proof. Let M and M ′ denote the Martin spaces corresponding respectively to
two different basepoints, b and b′. We set π = A∗b· and π′ = A∗b′·. We denote
by K and K ′ the Martin kernels corresponding respectively to π and π′. By
construction, Kbj = 1 holds for all j ∈ S. It follows that wb = 1 for all w ∈M .
Using the inclusion in (5), we conclude that M ⊂ Sb := {w ∈ S | wb = 1},
where S denotes the set of π-integrable super-harmonic functions. Observe
that A∗bi and A∗b′j are finite for all i, j ∈ S, since both b and b′ are basepoints.
Due to the inequalities π′ ≥ A∗b′bπ and π ≥ A∗bb′π′, π-integrability is equivalent
to π′-integrability. We deduce that M ′ ⊂ Sb′ := {w′ ∈ S | w′b′ = 1}.
Consider now the maps φ and ψ defined by

φ(w) = w(wb′ )
−1, ∀w ∈ Sb ψ(w′) = w′(w′b)

−1, ∀w′ ∈ Sb′ .

Observe that if w ∈ Sb, then wb′ ≥ A∗b′bwb = A∗b′b 6= 0. Hence, w 7→ wb′ does
not take the value 0 on Sb. By symmetry, w′ 7→ w′b does not take the value
zero on Sb′ . It follows that φ and ψ are mutually inverse homeomorphisms
which exchange Sb and Sb′ . Since φ sends K·j to K ′·j, φ sends the the Martin
space M , which is the closure of K := {K·j | j ∈ S}, to the Martin space
M ′, which is the closure of K ′ := {K ′·j | j ∈ S}. Hence, φ sends the Martin
boundary M \K to the Martin boundary M ′ \K ′.
It remains to show that the minimal Martin space corresponding to π, Mm, is
sent by φ to the minimal Martin space corresponding to π′, M ′m. Let

H ′♭(z′, w′) = lim sup
K′·i→z′

lim inf
K′·j→w′

A∗b′iA
+
ij(A

∗
b′j)
−1 .

Since φ is an homeomorphism sending K·i to K ′·i, a net (K·i)i∈I converges to
w if and only if the net (K ′·i)i∈I converges to φ(w), and so

H ′♭(φ(z), φ(w)) = lim sup
K·i→z

lim inf
K·j→w

A∗b′iA
+
ij(A

∗
b′j)
−1 = zb′w

−1
b′ H

♭(z, w) .

It follows that H♭(w,w) = 1 if and only if H ′♭(φ(w), φ(w)) = 1. Hence,
φ(Mm) = M ′m.

Remark 5.2. Consider the kernel obtained by symmetrising the kernel H♭,

(z, w) 7→ H♭(z, w)H♭(w, z) .
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The final argument in the proof of Proposition 5.1 shows that this symmetrised
kernel is independent of the basepoint, up to the identification of w and φ(w).
The same is true for the kernel obtained by symmetrising H ,

(z, w) 7→ H(z, w)H(w, z) .

6 Martin representation of super-harmonic vectors

In probabilistic potential theory, each super-harmonic vector has a unique rep-
resentation as integral over a certain set of vectors, the analogue of Mm ∪K .
The situation is somewhat different in the max-plus setting. Firstly, according
to Lemma 3.6, one does not need the whole of Mm ∪K to obtain a repre-
sentation: any set containing K will do. Secondly, the representation will
not necessarily be unique. The following two theorems, however, show that
Mm ∪K still plays an important role.

Theorem 6.1 (Martin representation of super-harmonic vectors). For each
u ∈ S , µu is the maximal ν : Mm ∪K → Rmax satisfying

u =
⊕

w∈Mm∪K

ν(w)w , (15)

Any ν : Mm ∪K → Rmax satisfying this equation also satisfies

sup
w∈Mm∪K

ν(w) < +∞ (16)

and any ν satisfying (16) defines by (15) an element u of S .

Proof. By Lemma 3.6, u can be written as (15) with ν = µu. Suppose that
ν : Mm ∪K → Rmax is an arbitrary function satisfying (15). We have

πu =
⊕

w∈Mm∪K

ν(w)πw .

By Lemma 4.3, πw = 1 for each w ∈ Mm ∪K . Since πu < +∞, we deduce
that (16) holds.

Suppose that ν : Mm∪K → Rmax is an arbitrary function satisfying (16) and
define u by (15). Since the operation of multiplication by A commutes with
arbitrary suprema, we have Au ≤ u. Also πu =

⊕
w∈Mm∪K

ν(w) < +∞. So
u ∈ S .
Let w ∈Mm ∪K . Then ν(w)wi ≤ ui for all i ∈ S. So we have

ν(w)H(w,w) = ν(w) lim sup
K·i→w

πiwi ≤ lim sup
K·i→w

πiui = µu(w) .

Since H(w,w) = 1, we obtain ν(w) ≤ µu(w).
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We shall now give another interpretation of the set Mm ∪ K . Let V be
a subsemimodule of RSmax, that is a subset of RSmax stable under pointwise
maximum and the addition of a constant (see [LMS01, CGQ04] for definitions
and properties of semimodules). We say that a vector ξ ∈ V \{0} is an extremal
generator of V if ξ = u ⊕ v with u, v ∈ V implies that either ξ = u or ξ = v.
This concept has, of course, an analogue in the usual algebra, where extremal
generators are defined for cones. Max-plus extremal generators are also called
join irreducible elements in the lattice literature. Clearly, if ξ is an extremal
generator of V then so is αξ for all α ∈ R. We say that a vector u ∈ RSmax is
normalised if πu = 1. If V is a subset of the set of π-integrable vectors, then
the set of its extremal generators is exactly the set of αξ, where α ∈ R and ξ
is a normalised extremal generator.

Theorem 6.2. The normalised extremal generators of S are precisely the el-
ements of Mm ∪K .

The proof of this theorem relies on a series of auxiliary results.

Lemma 6.3. Suppose that ξ ∈ Mm ∪ K can be written in the form ξ =⊕
w∈M

ν(w)w, where ν : M → Rmax is upper semicontinuous. Then, there
exists w ∈M such that ξ = ν(w)w.

Proof. For all i ∈ S, we have ξi =
⊕

w∈M
ν(w)wi. As the conventional sum of

two upper semicontinuous functions, the function M → Rmax : w 7→ ν(w)wi
is upper semicontinuous. Since M is compact, the supremum of ν(w)wi is

attained at some w(i) ∈M , in other words ξi = ν(w(i))w
(i)
i . Since H(ξ, ξ) = 1,

by definition of H , there exists a net (ik)k∈D of elements of S such that K·ik
converges to ξ and πikξik converges to 1. The Martin space M is compact and
so, by taking a subnet if necessary, we may assume that (w(ik))k∈D converges
to some w ∈M . Now, for all j ∈ S,

Kjikπikξik = A∗jikξik = A∗jikν(w(ik))w
(ik)
ik
≤ ν(w(ik))w

(ik)
j ,

since w(ik) is super-harmonic. Taking the limsup as k → ∞, we get that
ξj ≤ ν(w)wj . The reverse inequality is true by assumption and therefore
ξj = ν(w)wj .

The following consequence of this lemma proves one part of Theorem 6.2.

Corollary 6.4. Every element of Mm∪K is a normalised extremal generator
of S .

Proof. Let ξ ∈ Mm ∪ K . We know from Lemma 4.3 that ξ is normalised.
In particular, ξ 6= 0. We also know from Equation (5) that ξ ∈ S . Suppose
u, v ∈ S are such that ξ = u⊕ v. By Lemma 3.6, we have u =

⊕
w∈M

µu(w)w
and v =

⊕
w∈M

µv(w)w. Therefore, ξ =
⊕

w∈M
ν(w)w, with ν = µu ⊕ µv.

Since µu and µv are upper semicontinuous maps from M to Rmax, so is ν. By
the previous lemma, there exists w ∈ M such that ξ = ν(w)w. Now, ν(w)
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must equal either µu(w) or µv(w). Without loss of generality, assume the first
case. Then ξ = µu(w)w ≤ u, and since ξ ≥ u, we deduce that ξ = u. This
shows that ξ is an extremal generator of S .

The following lemma will allow us to complete the proof of Theorem 6.2.

Lemma 6.5. Let F ⊂ RSmax have compact closure F̄ in the product topology.
Denote by V the set whose elements are of the form

ξ =
⊕

w∈F

ν(w)w ∈ RSmax, with ν : F → Rmax, sup
w∈F

ν(w) <∞ . (17)

Let ξ be an extremal generator of V , and ν be as in (17). Then, there exists
w ∈ F̄ such that ξ = ν̂(w)w, where

ν̂(w) := lim sup
w′→w,w′∈F

ν(w′).

Proof. Since ν ≤ ν̂, we have ξ ≤ ⊕
w∈F

ν̂(w)w ≤ ⊕
w∈F̄

ν̂(w)w. Clearly,
ν(w)wi ≤ ξi for all i ∈ S and w ∈ F . Taking the limsup as w → w′ for any
w′ ∈ F̄ , we get that

ξi ≥ ν̂(w′)w′i.

Combined with the previous inequality, this gives us the representations

ξ =
⊕

w∈F

ν̂(w)w =
⊕

w∈F̄

ν̂(w)w . (18)

Consider now, for each i ∈ S and α < 1, the set

Ui,α := {w ∈ F̄ | ν̂(w)wi < αξi} ,
which is open in F̄ since the map w 7→ ν̂(w)wi is upper semicontinuous. Let
ξ ∈ V \{0} be such that ξ 6= ν̂(w)w for all w ∈ F̄ . We conclude that there exist
i ∈ S and α < 1 such that αξi > ν̂(w)wi, which shows that (Ui,α)i∈S,α<1 is
an open covering of F̄ . Since F̄ is compact, there exists a finite sub-covering
Ui1,α1 , . . . , Uin,αn .
Using (18) and the idempotency of the ⊕ law, we get

ξ = ξ1 ⊕ · · · ⊕ ξn with ξj =
⊕

w∈Uij,αj∩F

ν̂(w)w , (19)

for j = 1 . . . , n. Since the supremum of ν̂ over F̄ is the same as that over F ,
the vectors ξ1, . . . , ξn all belong to V . Since ξ is an extremal generator of S ,
we must have ξ = ξj for some j. Then Uij ,αj ∩F is non-empty, and so ξij > 0.
But, from the definition of Uij ,αj ,

ξjij =
⊕

w∈Uij,αj∩F

ν̂(w)wij ≤ αij ξij < ξij .

This shows that ξj is different from ξ, and so Equation (19) gives the required
decomposition of ξ, proving it is not an extremal generator of V .
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We now conclude the proof of Theorem 6.2:

Corollary 6.6. Every normalised extremal generator of S belongs to Mm ∪
K .

Proof. Take F = Mm ∪ K and let V be as defined in Lemma 6.5. Then,
by definition, F̄ = M , which is compact. By Theorem 6.1, V = S . Let
ξ be a normalised extremal generator of S . Again by Theorem 6.1, ξ =
⊕w∈Fµξ(w)w. Since µξ is upper semicontinuous on M , Lemma 6.5 yields
ξ = µξ(w)w for some w ∈ M , with µξ(w) 6= 0 since ξ 6= 0. Note that
µαu = αµu for all α ∈ Rmax and u ∈ S . Applying this to the previous
equation and evaluating at w, we deduce that µξ(w) = µξ(w)µw(w). Thus,
H(w,w) = µw(w) = 1. In addition, ξ is normalised and so, by Lemma 4.3,1 = πξ = µξ(w)πw = µξ(w).

Hence ξ = w ∈Mm ∪K .

7 Almost-geodesics

In order to prove a Martin representation theorem for harmonic vectors, we will
use a notion appearing in [YK92] and [KM97, § 2.4], which we will call almost-
geodesic. A variation of this notion appeared in [Rie02]. We will compare the
two notions later in the section.

Let u be a super-harmonic vector, that is u ∈ RSmax and Au ≤ u. Let α ∈ Rmax

be such that α ≥ 1. We say that a sequence (ik)k≥0 with values in S is an
α-almost-geodesic with respect to u if ui0 ∈ R and

ui0 ≤ αAi0i1 · · ·Aik−1ikuik for all k ≥ 0 . (20)

Similarly, (ik)k≥0 is an α-almost-geodesic with respect to a left super-harmonic
vector σ if σi0 ∈ R and

σik ≤ ασi0Ai0i1 · · ·Aik−1ik for all k ≥ 0 .

We will drop the reference to α when its value is unimportant. Observe that, if
(ik)k≥0 is an almost-geodesic with respect to some right super-harmonic vector
u, then both uik and Aik−1ik are in R for all k ≥ 0. This is not necessarily true
if (ik)k≥0 is an almost-geodesic with respect to a left super-harmonic vector σ,
however, if additionally σik ∈ R for all k ≥ 0, then Aik−1ik ∈ R for all k ≥ 0.

Lemma 7.1. Let u, σ ∈ RSmax be, respectively, right and left super-harmonic
vectors and assume that u is σ-integrable, that is σu < +∞. If (ik)k≥0 is an
almost-geodesic with respect to u, and if σi0 ∈ R, then (ik)k≥0 is an almost-
geodesic with respect to σ.
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Proof. Multiplying Equation (20) by σik(ui0)−1, we obtain

σik ≤ ασikuik(ui0)−1Ai0i1 · · ·Aik−1ik ≤ α(σu)(σi0ui0)−1σi0Ai0i1 · · ·Aik−1ik .

So (ik)k≥0 is a β-almost-geodesic with respect to σ, with β :=
α(σu)(σi0ui0)−1 ≥ α.

Lemma 7.2. Let (ik)k≥0 be an almost-geodesic with respect to π and let β > 1.
Then, for ℓ large enough, (ik)k≥ℓ is a β-almost-geodesic with respect to π.

Proof. Consider the matrix Āij := πiAij(πj)
−1. The fact that (ik)k≥0 is an

α-almost-geodesic with respect to π is equivalent to

pk := (Āi0i1)−1 · · · (Āik−1ik)−1 ≤ α for all k ≥ 0 .

Since (Āiℓ−1iℓ)
−1 ≥ 1 for all ℓ ≥ 1, the sequence {pk}k≥1 is nondecreasing. The

upper bound then implies it converges to a finite limit. The Cauchy criterion
states that

lim
ℓ,k→∞, ℓ<k

Āiℓiℓ+1
· · · Āik−1ik = 1 .

This implies that, given any β > 1, Āiℓiℓ+1
· · · Āik−1ik ≥ β−1 for k and ℓ large

enough, with k > ℓ. Writing this formula in terms of A rather than Ā, we see
that, for ℓ large enough, (ik)k≥ℓ is a β-almost-geodesic with respect to π.

Proposition 7.3. If (ik)k≥0 is an almost-geodesic with respect to π, then K·ik
converges to some w ∈Mm.

Proof. Let β > 1. By Lemma 7.2, (ik)k≥ℓ is a β-almost-geodesic with respect
to π, for ℓ large enough. Then, for all k > ℓ,

πik ≤ βπiℓA+
iℓik
≤ βπiℓA∗iℓik .

Since π is left super-harmonic, we have πiℓA
∗
iℓik
≤ πik . Dividing by βπik the

former inequalities, we deduce that

β−1 ≤ πiℓK♭
iℓik
≤ πiℓKiℓik ≤ 1 . (21)

Since M is compact, it suffices to check that all convergent subnets of K·ik
have the same limit w ∈ Mm. Let (ikd)d∈D and (iℓe)e∈E denote subnets of
(ik)k≥0, such that the nets (K·ikd )d∈D and (K·iℓe )e∈E converge to some w ∈M

and w′ ∈M , respectively. Applying (21) with ℓ = ℓe and k = kd, and taking
the limit with respect to d, we obtain β−1 ≤ πiℓewiℓe . Taking now the limit
with respect to e, we get that β−1 ≤ H(w′, w). Since this holds for all β > 1,
we obtain 1 ≤ H(w′, w), thus H(w′, w) = 1. From Lemma 3.6, we deduce that
w ≥ µw(w′)w′ = H(w′, w)w′ = w′. By symmetry, we conclude that w = w′,
and so H(w,w) = 1. By Equation (12), w ∈ Mm ∪ K . Hence, (K·ik)k≥0

converges towards some w ∈Mm ∪K .
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Assume by contradiction that w 6∈ Mm. Then, w = K·j for some j ∈ S,
and H♭(w,w) < 1 by definition of Mm. By (11), this implies that πjK

♭
jj =

A+
jj < 1. If the sequence (ik)k≥0 takes the value j infinitely often, then, we

can deduce from Equation (21) that A+
jj = 1, a contradiction. Hence, for k

large enough, ik does not take the value j, which implies, by Lemma 4.1, that
wik = w♭ik . Using Equation (21), we obtain H♭(w,w) ≥ lim supk→∞ πikw

♭
ik

=
lim supk→∞ πikwik = 1, which contradicts our assumption on w. We have
shown that w ∈Mm.

Remark 7.4. An inspection of the proof of Proposition 7.3 shows that the same
conclusion holds under the weaker hypothesis that for all β > 1, we have
πik ≤ βπiℓA+

iℓik
for all ℓ large enough and k > ℓ.

Lemma 7.5. If (ik)k≥0 is an almost-geodesic with respect to π, and if w is the
limit of K·ik , then

lim
k→∞

πikwik = 1 .

Proof. Let β > 1. By Lemma 7.2, (ik)k≥ℓ is a β-almost-geodesic with re-
spect to π for ℓ large enough. Hence, for all k ≥ ℓ, πik ≤ βπiℓA

∗
iℓik

, and so1 ≤ βπiℓA
∗
iℓik

π−1
ik

= βπiℓKiℓik . Since Kiℓik converges to wiℓ when k tends to
infinity, we deduce that 1 ≤ β lim infℓ→∞ πiℓwiℓ , and since this holds for all
β > 1, we get 1 ≤ lim infℓ→∞ πiℓwiℓ . Since πjwj ≤ 1 for all j, the lemma is
proved.

Proposition 7.6. Let u be a π-integrable super-harmonic vector. Then, µu
is continuous along almost-geodesics, meaning that if (ik)k≥0 is an almost-
geodesic with respect to π and if K·ik tends to w, then,

µu(w) = lim
k→∞

µu(K·ik) = lim
k→∞

πikuik .

Proof. Recall that πiui = µu(K·i) holds for all i, as shown in Lemma 3.6. It
also follows from this lemma that u ≥ µu(w)w, and so πiui ≥ πiwiµu(w) for
all i ∈ S. Hence,

lim inf
k→∞

πikuik ≥ lim inf
k→∞

πikwikµu(w)

= µu(w) ,

by Lemma 7.5. Moreover, lim supk→∞ πikuik ≤ µu(w), by definition of µu(w).

Combining Lemma 7.1 and Proposition 7.3, we deduce the following.

Corollary 7.7. If (ik)k≥0 is an almost-geodesic with respect to a π-integrable
super-harmonic vector, then K·ik converges to some element of Mm.

For brevity, we shall say sometimes that an almost-geodesic (ik)k≥0 converges
to a vector w when K·ik converges to w. We state a partial converse to Propo-
sition 7.3.
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Proposition 7.8. Assume that M is first-countable. For all w ∈Mm, there
exists an almost-geodesic with respect to π converging to w.

Proof. By definition, H♭(w,w) = 0. Writing this formula explicitly in terms of
Aij and making the transformation Āij := πiAij(πj)

−1, we get

lim sup
K·i→w

lim inf
K·j→w

Ā+
ij = 1 .

Fix a sequence (αk)k≥0 in Rmax such that αk > 1 and α := α0α1 · · · < +∞.
Fix also a decreasing sequence (Wk)k≥0 of open neighbourhoods of w. We
construct a sequence (ik)k≥0 in S inductively as follows. Given ik−1, we choose
ik to have the following three properties:

a. K·ik ∈Wk,

b. lim infK·j→w Ā
+
ikj

> α−1
k ,

c. Ā+
ik−1ik

> α−1
k−1.

Notice that it is possible to satisfy (c) because ik−1 was chosen to satisfy (b)
at the previous step. We require i0 to satisfy (a) and (b) but not (c). Since
M is first-countable, one can choose the sequence (Wk)k≥0 in such a way that
every sequence (wk)k≥0 in M with wk ∈ Wk converges to w. By (c), one can

find, for all k ∈ N, a finite sequence (iℓk)0≤ℓ≤Nk such that i0k = ik, iNkk = ik+1,
and

Āi0k,i1k · · · ĀiNk−1

k ,i
Nk
k

> α−1
k for all k ∈ N .

Since Āij ≤ 1 for all i, j ∈ S, we obtain

Āi0
k
,i1
k
· · · Āin−1

k ,ink
> α−1

k for all k ∈ N, 1 ≤ n ≤ Nk .

Concatenating the sequences (iℓk)0≤ℓ≤Nk , we obtain a sequence (jm)m≥0 such
that α−1 ≤ Āj0j1 · · · Ājm−1jm for all m ∈ N, in other words an α-almost-
geodesic with respect to π. From Lemma 7.3, we know that K·jm converges to
some point in M . Since (ik) is a subsequence of (jm) and K·ik converges to w,
we deduce that K·jm also converges to w.

Remark 7.9. If S is countable, the product topology on M is metrisable. Then,
the assumption of Proposition 7.8 is satisfied.

Remark 7.10. Assume that (S, d) is a metric space, let Aij = A∗ij = −d(i, j)
for i, j ∈ S, and let π = A∗b· for any b ∈ S. We have K·j = −d(·, j) + d(b, j).
Using the triangle inequality for d, we see that, for all k ∈ S, the function
K·k is non-expansive, meaning that |Kik − Kjk| ≤ d(i, j) for all i, j ∈ S.
It follows that every map in M is non-expansive. By Ascoli’s theorem, the
topology of pointwise convergence on M coincides with the topology of uniform
convergence on compact sets. Hence, if S is a countable union of compact sets,
then M is metrisable and the assumption of Proposition 7.8 is satisfied.
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Example 7.11. The assumption in Proposition 7.8 cannot be dispensed with.
To see this, take S = ω1, the first uncountable ordinal. For all i, j ∈ S, define
Aij := 0 if i < j and Aij := −1 otherwise. Then, ρ(A) = 1 and A = A+. Also
A∗ij equals 0 when i ≤ j and −1 otherwise. We take π := A∗0·, where 0 denotes
the smallest ordinal. With this choice, πi = 1 for all i ∈ S, and K = A∗.
Let D be the set of maps S → {−1, 0} that are non-decreasing and take the
value 0 at 0. For each z ∈ D , define s(z) := sup{i ∈ S | zi = 0} ∈ S ∪ {ω1}.
Our calculations above lead us to conclude that

K = {z ∈ D | s(z) ∈ S and zs(z) = 0} .

We note that D is closed in the product topology on {−1, 0}S and contains
K . Furthermore, every z ∈ D \K is the limit of the net (A∗·d)d∈D indexed by
the directed set D = {d ∈ S | d < sz}. Therefore the Martin space is given by
M = D . Every limit ordinal γ less than or equal to ω1 yields one point zγ in
the Martin boundary B := M \K : we have zγi = 0 for i < γ, and zγi = −1
otherwise.
Since A+

ii = Aii = −1 for all i ∈ S, there are no recurrent points, and so
K ∩Mm is empty. For any z ∈ B, we have zd = 0 for all d < s(z). Taking
the limsup, we conclude that H(z, z) = 1, thus Mm = B. In particular, the
identically zero vector zω1 is in Mm.
Since a countable union of countable sets is countable, for any sequence (ik)k∈N

of elements of S, the supremum I = supk∈N ik belongs to S, and so its successor
ordinal, that we denote by I+1, also belongs to S. Since limk→∞KI+1,ik = −1,
K·ik cannot converge to zω1 , which shows that the point zω1 in the minimal
Martin space is not the limit of an almost-geodesic.

We now compare our notion of almost-geodesic with that of Rieffel [Rie02]
in the metric space case. We assume that (S, d) is a metric space and take
Aij = A∗ij = −d(i, j) and πj = −d(b, j), for an some b ∈ S. The compactifica-
tion of S discussed in [Rie02], called there the metric compactification, is the
closure of K in the topology of uniform convergence on compact sets, which,
by Remark 7.10, is the same as its closure in the product topology. It thus
coincides with the Martin space M . We warn the reader that variants of the
metric compactification can be found in the literature, in particular, the refer-
ences [Gro81, Bal95] use the topology of uniform convergence on bounded sets
rather than on compacts.
Observe that the basepoint b can be chosen in an arbitrary way: indeed, for
all b′ ∈ S, setting π′ = A∗b′·, we get π′ ≥ A∗b′bπ and π ≥ A∗bb′π

′, which implies
that almost-geodesics in our sense are the same for the basepoints b and b′.
Therefore, when speaking of almost-geodesics in our sense, in a metric space,
we will omit the reference to π.
Rieffel defines an almost-geodesic as an S-valued map γ from an unbounded
set T of real nonnegative numbers containing 0, such that for all ǫ > 0, for all
s ∈ T large enough, and for all t ∈ T such that t ≥ s,

|d(γ(t), γ(s)) + d(γ(s), γ(0))− t| < ǫ .
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By taking t = s, one sees that |d(γ(t), γ(0)) − t| < ǫ. Thus, almost-geodesics
in the sense of Rieffel are “almost” parametrised by arc-length, unlike those in
our sense.

Proposition 7.12. Any almost-geodesic in the sense of Rieffel has a subse-
quence that is an almost-geodesic in our sense. Conversely, any almost-geodesic
in our sense that is not bounded has a subsequence that is an almost-geodesic
in the sense of Rieffel.

Proof. Let γ : T → S denote an almost-geodesic in the sense of Rieffel. Then,
for all β > 1, we have

A∗γ(0),γ(t) ≤ βA∗γ(0),γ(s)A
∗
γ(s)γ(t) (22)

for all s ∈ T large enough and for all t ∈ T such that t ≥ s. Since the
choice of the basepoint b is irrelevant, we may assume that b = γ(0), so that
πγ(s) = A∗γ(0),γ(s). As in the proof of Lemma 7.2 we set Āij = πiA

∗
ijπ
−1
j . We

deduce from (22) that

β−1 ≤ Āγ(s)γ(t) ≤ 1 .

Let us choose a sequence β1, β2, . . . ≥ 1 such that the product β1β2 . . . converges
to a finite limit. We can construct a sequence t0 < t1 < . . . of elements of T
such that, setting ik = γ(tik),

Āikik+1
≥ β−1

k .

Then, the product Āi0i1 Āi1i2 · · · converges, which implies that the sequence i0,
i1, . . . is an almost-geodesic in our sense.
Conversely, let i0, i1, . . . be an almost-geodesic in our sense, and assume that
tk = d(b, ik) is not bounded. After replacing ik by a subsequence, we may
assume that t0 < t1 < . . .. We set T = {t0, t1, . . .} and γ(tk) = ik. We choose
the basepoint b = i0, so that t0 = 0 ∈ T , as required in the definition of Rieffel.
Lemma 7.2 implies that

A∗bik ≤ βA∗biℓA∗iℓik
holds for all ℓ large enough and for all k ≥ ℓ. Since t−1

k = A∗bik , γ is an
almost-geodesic in the sense of Rieffel.

Rieffel called the limits of almost-geodesics in his sense Busemann points.

Corollary 7.13. Let S be a proper metric space. Then the minimal Martin
space is the disjoint union of K and of the set of Busemann points of S.

Proof. Since A+
ii = −d(i, i) = 0 for all i, the set K is included in the minimal

Martin space Mm. We next show that Mm\K is the set of Busemann points.
Let w ∈M be a Busemann point. By Proposition 7.12 we can find an almost-
geodesic in our sense i0, i1, . . . such that K·ik converges to w and d(b, ik) is
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unbounded. We know from Proposition 7.3 that w ∈Mm. It remains to check
that w 6∈K . To see this, we show that for all z ∈M ,

lim
k→∞

H(K·ik , z) = H(w, z) . (23)

Indeed, for all β > 1, letting k tend to infinity in (21) and using (8), we get

β−1 ≤ πiℓwiℓ = H(K·iℓ , w) ≤ 1 ,

for ℓ large enough. Hence, limℓ→∞H(K·iℓ , w) = 1. By Lemma 3.6,
z ≥ H(w, z)w. We deduce that H(K·iℓ , z) ≥ H(w, z)H(K·iℓ , w), and so
lim infℓ→∞H(K·iℓ , z) ≥ H(w, z). By definition of H , lim supℓ→∞H(K·iℓ , z) ≤
lim supK·j→wH(K·j, z) = H(w, z), which shows (23). Assume now that
w ∈K , that is, w = K·j for some j ∈ S, and let us apply (23) to z = K·b. We
have H(K·ik , z) = A∗bikA

∗
ikb

= −2 × d(b, ik) → −∞. Hence, H(w, z) = −∞.
But H(w, z) = A∗bjA

∗
jb = −2× d(b, j) > −∞, which shows that w 6∈K .

Conversely, let w ∈Mm \K . By Proposition 7.8, w is the limit of an almost-
geodesic in our sense. Observe that this almost-geodesic is unbounded. Oth-
erwise, since S is proper, ik would have a converging subsequence, and by
continuity of the map i 7→ K·i, we would have w ∈ K , a contradiction. It
follows from Proposition 7.12 that w is a Busemann point.

8 Martin representation of harmonic vectors

Theorem 8.1 (Poisson-Martin representation of harmonic vectors). Any ele-
ment u ∈H can be written as

u =
⊕

w∈Mm

ν(w)w , (24)

with ν : Mm → Rmax, and necessarily,

sup
w∈Mm

ν(w) < +∞ .

Conversely, any ν : Mm → Rmax satisfying the latter inequality defines by (24)
an element u of H . Moreover, given u ∈ H , µu is the maximal ν satisfy-
ing (24).

Proof. Let u ∈ H . Then u is also in S and so, from Lemma 3.6, we obtain
that

u =
⊕

w∈M

µu(w)w ≥
⊕

w∈Mm

µu(w)w . (25)

To show the opposite inequality, let us fix some i ∈ S such that ui 6= 0. Let
us also fix some sequence (αk)k≥0 in Rmax such that αk > 1 for all k ≥ 0 and
such that α := α0α1 · · · < +∞. Since u = Au, one can construct a sequence
(ik)k≥0 in S starting at i0 := i, and such that

uik ≤ αkAikik+1
uik+1

for all k ≥ 0 .
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Then,

ui0 ≤ αAi0i1 · · ·Aik−1ikuik ≤ αA∗i0ikuik for all k ≥ 0 , (26)

and so (ik)k≥0 is an α-almost-geodesic with respect to u. Since u is π-integrable,
we deduce using Corollary 7.7 thatK·ik converges to some w ∈Mm. From (26),
we get ui ≤ αKiikπikuik , and letting k go to infinity, we obtain ui ≤ αwiµu(w).
We thus obtain

ui ≤ α
⊕

w∈Mm

µu(w)wi .

Since α can be chosen arbitrarily close to 1, we deduce the inequality opposite
to (25), which shows that (24) holds with ν = µu.
The other parts of the theorem are proved in a manner similar to Theorem 6.1.

Remark 8.2. The maximal representing measure µu at every point that is the
limit of an almost geodesic can be computed by taking the limit of πiui along
any almost-geodesic converging to this point. See Proposition 7.6.

In particular, H = {0} if and only if Mm is empty. We now prove the analogue
of Theorem 6.2 for harmonic vectors.

Theorem 8.3. The normalised extremal generators of H are precisely the
elements of Mm.

Proof. We know from Theorem 6.2 that each element of Mm is a normalised
extremal generator of S . Since H ⊂ S , and Mm ⊂H (by Proposition 4.4),
this implies that each element of Mm is a normalised extremal generator of
H .
Conversely, by the same arguments as in the proof of Corollary 6.6, taking
F = Mm in Lemma 6.5 and using Theorem 8.1 instead of Lemma 3.6, we get
that each normalised extremal generator ξ of H belongs to Mm ∪K . Since,
by Proposition 3.2, no element of K \Mm can be harmonic, we have that
ξ ∈Mm.

Remark 8.4. Consider the situation when there are only finitely many recur-
rence classes and only finitely many non-recurrent nodes. Then K is a finite
set, so that B is empty, M = K , and Mm coincides with the set of columns
K·j with j recurrent. The representation theorem (Theorem 8.1) shows in this
case that each harmonic vector is a finite max-plus linear combination of the
recurrent columns of A∗, as is the case in finite dimension.

9 Product Martin spaces

In this section, we study the situation where the set S is the Cartesian product
of two sets, S1 and S2, and A and π can be decomposed as follows:

A = A1 ⊗ I2 ⊕ I1 ⊗A2 , π = π1 ⊗ π2 . (27)
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Here, ⊗ denotes the max-plus tensor product of matrices or vectors, Ai is an
Si×Si matrix, πi is a vector indexed by Si, and Ii denotes the Si×Si max-plus
identity matrix. For instance, (A1 ⊗ I2)(i1,i2),(j1,j2) = (A1)i1j1(I2)i2j2 , which is
equal to (A1)i1j1 if i2 = j2, and to 0 otherwise. We shall always assume that
πi is left super-harmonic with respect to Ai, for i = 1, 2. We denote by Mi the
corresponding Martin space, by Ki the corresponding Martin kernel, etc.
We introduce the map

ı : RS1
max × RS2

max → RSmax, ı(w1, w2) = w1 ⊗ w2 ,

which is obviously continuous for the product topologies. The restriction of
ı to the set of (w1, w2) such that π1w1 = π2w2 = 1 is injective. Indeed,
if w1 ⊗ w2 = w′1 ⊗ w′2, applying the operator I1 ⊗ π2 on both sides of the
equality, we get w1 ⊗ π2w2 = w′1 ⊗ π2w

′
2, from which we deduce that w1 = w′1

if π2w2 = π2w
′
2 = 1.

Proposition 9.1. Assume that A and π are of the form (27), and that πiwi =1 for all wi ∈ Mi and i = 1, 2. Then, the map ı is a homeomorphism from
M1 ×M2 to the Martin space M of A, and sends K1 ×K2 to K . Moreover,
the same map sends

M
m
1 × (K2 ∪M

m
2 ) ∪ (K1 ∪M

m
1 )×M

m
2

to the minimal Martin space Mm of A.

The proof of Proposition 9.1 relies on several lemmas.

Lemma 9.2. If A is given by (27), then, A∗ = A∗1 ⊗A∗2 and

A+ = A+
1 ⊗A∗2 ⊕A∗1 ⊗A+

2 .

Proof. Summing the equalities Ak =
⊕

1≤ℓ≤k A
ℓ
1⊗Ak−ℓ2 , we obtain A∗ = A∗1⊗

A∗2. Hence, A+ = AA∗ = (A1⊗I2⊕I1⊗A2)(A∗1⊗A∗2) = A+
1 ⊗A∗2⊕A∗1⊗A+

2 .

We define the kernelH◦ı from (M1×M2)2 to Rmax, byH◦ı((z1, z2), (w1, w2)) =
H(ı(z1, z2), ı(w1, w2)). The kernel H♭ ◦ ı is defined from H♭ in the same way.

Lemma 9.3. If A∗ = A∗1 ⊗ A∗2 and π = π1 ⊗ π2, then K = ı(K1 ×K2) and
ı(M1 ×M2) = M . Moreover, if πiwi = 1 for all wi ∈Mi and i = 1, 2, then ı
is an homeomorphism from M1 ×M2 to M , and H ◦ ı = H1 ⊗H2.

Proof. Observe that K = K1 ⊗K2. Hence, K = ı(K1 ×K2). Let X denote
the closure of any set X . Since Ki = Mi, we get K1 ×K2 = M1 ×M2, and
so K1 ×K2 is compact. Since ı is continuous, we deduce that ı(K1 ×K2) =
ı(K1 ×K2). Hence, ı(M1×M2) = K = M . Assume now that πiwi = 1 for all
wi ∈Mi and i = 1, 2, so that the restriction of ı to M1×M2 is injective. Since
M1 ×M2 is compact, we deduce that ı is an homeomorphism from M1 ×M2

to its image, that is, M . Finally, let z = ı(z1, z2) and w = ı(w1, w2), with
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z1, w1 ∈M1 and z2, w2 ∈M2. Since ı is an homeomorphism from M1×M2 to
M , we can write H(z, w) in terms of limsup and limit for the product topology
of M1 ×M2:

H(z, w) = lim sup
(K1)·i1→z1
(K2)·i2→z2

lim
(K1)·j1→w1

(K2)·j2→w2

π(i1,i2)K(i1,i2),(j1,j2) . (28)

Since A∗ = A∗1 ⊗ A∗2 and π = π1 ⊗ π2, we can write the right hand side term
of (28) as the product of two terms that are both bounded from above:

π(i1,i2)K(i1,i2),(j1,j2) = ((π1)i1(K1)i1,j1) ((π2)i2(K2)i2,j2) .

Hence, the limit and limsup in (28) become a product of limits and limsups,
respectively, and so H(z, w) = H1(z1, w1)H2(z2, w2).

Lemma 9.4. Assume that A and π are of the form (27) and that πiwi = 1 for
all wi ∈Mi and i = 1, 2. Then

H♭ ◦ ı = H♭
1 ⊗H2 ⊕H1 ⊗H♭

2 . (29)

Proof. By Lemma 9.2, A+ = A+
1 ⊗A∗2 ⊕A∗1 ⊗ A+

2 , and so

K♭ = K♭
1 ⊗K2 ⊕K1 ⊗K♭

2 .

Let z = ı(z1, z2) and w = ı(w1, w2), with z1, w1 ∈M1, z2, w2 ∈M2. In a way
similar to (28), we can write H♭ as

H♭(z, w) = lim sup
(K1)·i1→z1
(K2)·i2→z2

lim inf
(K1)·j1→w1

(K2)·j2→w2

π(i1,i2)K
♭
(i1,i2),(j1,j2) .

The right hand side term is a sum of products:

π(i1,i2)K
♭
(i1,i2),(j1,j2)

= (π1)i1(K♭
1)i1j1(π2)i2(K2)i2j2 ⊕ (π1)i1(K1)i1j1(π2)i2(K♭

2)i2j2 .

We now use the following two general observations. Let (αd)d∈D, (βe)e∈E ,
(γd)d∈D, (δe)e∈E be nets of elements of Rmax that are bounded from above.
Then,

lim sup
d,e

αdβe ⊕ γdδe = (lim sup
d

αd)(lim sup
e

βe)⊕ (lim sup
d

γd)(lim sup
e

δe) .

If additionally the nets (βe)e∈E and (γd)d∈D converge, we have

lim inf
d,e

αdβe ⊕ γdδe = (lim inf
d

αd)(lim
e
βe)⊕ (lim

d
γd)(lim inf

e
δe) .

Using both identities, we deduce that H♭ is given by (29).
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Proof of Proposition 9.1. We know from Lemma 9.2 that A∗ = A∗1⊗A∗2, and so,
by Lemma 9.3, ı is an homeomorphism from M1×M2 to M . Since the kernels
H1, H

♭
1, H2 and H♭

2 all take values less than or equal to 1, we conclude from (29)
that, when z = ı(z1, z2), H♭(z, z) = 1 if and only if H♭

1(z1, z1) = H2(z2, z2) = 1
or H1(z1, z1) = H♭

2(z2, z2) = 1. Using Equation (12) and the definition of the
minimal Martin space, we deduce that

M
m = ı

(
M

m
1 × (K2 ∪M

m
2 ) ∪ (K1 ∪M

m
1 )×M

m
2

)
.

Remark 9.5. The assumption that πiwi = 1 for all wi ∈ Mi is automatically
satisfied when the left super-harmonic vectors πi originate from basepoints, that
is, when πi = (Ai)

∗
bi,· for some basepoint bi. Indeed, we already observed in the

proof of Proposition 5.1 that every vector wi ∈ Mi satisfies (πi)bi(wi)bi = 1.
By (5), πiwi ≤ 1. We deduce that πiwi = 1.

Remark 9.6. Rieffel [Rie02, Prop. 4.11] obtained a version of the first part of
Lemma 9.3 for metric spaces. His result states that if (S1, d1) and (S2, d2)
are locally compact metric spaces, and if their product S is equipped with the
sum of the metrics, d((i1, i2), (j1, j2)) = d1(i1, j1) + d2(i2, j2), then the metric
compactification of S can be identified with the Cartesian product of the metric
compactifications of S1 and S2. This result can be re-obtained from Lemma 9.3
by taking (A1)i1,ji = −d1(i1, j1), (A2)i2,j2 = −d2(i2, j2), πi1 = −d1(i1, b1), and
πi2 = −d(i2, b2), for arbitrary basepoints b1, b2 ∈ Z. We shall illustrate this in
Example 10.4.

10 Examples and Counter-Examples

We now illustrate our results and show various features that the Martin space
may have.

Example 10.1. Let S = N, Ai,i+1 = 0 for all i ∈ N, Ai,0 = −1 for all i ∈ N\{0}
and Aij = −∞ elsewhere. We choose the basepoint 0, so that π = A∗0,·. The
graph of A is:

0 0 0

−1
−1

0

−1

States (elements of S) are represented by black dots. The white circle represents
the extremal boundary element ξ, that we next determine. In this example,
ρ(A) = 1, and A has no recurrent class. We have A∗ij = 1 for i ≤ j and
A∗ij = −1 for i > j, so the Martin space of A corresponding to π = A∗0· consists
of the columns A∗·j , with j ∈ N, together with the vector ξ whose entries are
all equal to 1. We have B = {ξ}. One can easily check that H(ξ, ξ) = 1.
Therefore, Mm = {ξ}. Alternatively, we may use Proposition 7.3 to show that
ξ ∈ Mm, since ξ is the limit of the almost-geodesic 0, 1, 2, . . .. Theorem 8.1
says that ξ is the unique (up to a multiplicative constant) non-zero harmonic
vector.

Documenta Mathematica 14 (2009) 195–240
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Example 10.2. Let us modify Example 10.1 by setting A00 = 0, so that the
previous graph becomes:

0 0 0

−1
−1

0

−1

0

We still have ρ(A) = 1, the node 0 becomes recurrent, and the minimal Martin
space is now Mm = {K·0, ξ}, where ξ is defined in Example 10.1. Theorem 8.1
says that every harmonic vector is of the form αK·0 ⊕ βξ, that is sup(α +
K·0, β + ξ) with the notation of classical algebra, for some α, β ∈ R ∪ {−∞}.

Example 10.3. Let S = Z, Ai,i+1 = Ai+1,i = −1 for i ∈ Z, and Aij = 0
elsewhere. We choose 0 to be the basepoint, so that π = A∗0,·. The graph of A
is:

We are using the same conventions as in the previous examples, together with
the following additional conventions: the arrows are bidirectional since the
matrix is symmetric, and each arc has weight −1 unless otherwise specified.
This example and the next were considered by Rieffel [Rie02].

We have ρ(A) = −1 < 1, which implies there are no recurrent nodes. We have
A∗i,j = −|i − j|, and so Ki,j = |j| − |i − j|. There are two Martin boundary

points, ξ+ = limj→∞K·j and ξ− = limj→−∞K·j, which are given by ξ+i = i
and ξ−i = −i. Thus, the Martin space M is homeomorphic to Z := Z ∪ {±∞}
equipped with the usual topology. Since both ξ+ and ξ− are limits of almost-
geodesics, Mm = {ξ+, ξ−}. Theorem 8.1 says that every harmonic vector is of
the form αξ+ ⊕ βξ−, for some α, β ∈ Rmax.

Example 10.4. Consider S := Z×Z and the operator A given by A(i,j),(i,j±1) =
−1 and A(i,j),(i±1,j) = −1, for each i, j ∈ Z, with all other entries equal to −∞.
We choose the basepoint (0, 0). We represent the graph of A with the same
conventions as in Example 10.3:
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For all i, j, k, l ∈ Z,

A∗(i,j),(k,l) = −|i− k| − |j − l| .

Note that this is the negative of the distance in the ℓ1 norm between (i, j) and
(k, l). The matrix A can be decomposed as A = A1⊗ I ⊕ I ⊗A2, where A1, A2

are two copies of the matrix of Example 10.3, and I denotes the Z×Z identity
matrix (recall that ⊗ denotes the tensor product of matrices, see Section 9
for details). The vector π can be written as π1 ⊗ π2, with π1 = (A1)∗0,· and
π2 = (A2)∗0,·. Hence, Proposition 9.1 shows that the Martin space of A is
homeomorphic to the Cartesian product of two copies of the Martin space of
Example 10.3, in other words, that there is an homeomorphism from M to
Z× Z. Proposition 9.1 also shows that the same homeomorphism sends K to
Z×Z and the minimal Martin space to ({±∞}×Z) ∪ (Z×{±∞}). Thus, the
Martin boundary and the minimal Martin space are the same. This example
may be considered to be the max-plus analogue of the random walk on the 2-
dimensional integer lattice. The Martin boundary for the latter (with respect
to eigenvalues strictly greater than the spectral radius) is known [NS66] to be
the circle.

Example 10.5. Let S = Q and Aij = −|i− j|. Choosing 0 to be the basepoint,
we get Kij = −|i− j| + |j| for all j ∈ Q. The Martin boundary B consists of
the functions i 7→ −|i − j| + |j| with j ∈ R \ Q, together with the functions
i 7→ i and i 7→ −i. The Martin space M is homeomorphic to R := R ∪ {±∞}
equipped with its usual topology.

Example 10.6. We give an example of a complete locally compact metric space
(S, d) such that the canonical injection from S to the Martin space M is not
an embedding, and such that the Martin boundary B = M \K is not closed.
Consider S = {(i, j) | i ≥ j ≥ 1} and the operator A given by

A(i,j),(i+1,j) = A(i+1,j),(i,j) = −1, for i ≥ j ≥ 1,
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A(i,j),(i,j+1) = A(i,j+1),(i,j) = −2, for i− 1 ≥ j ≥ 1,

A(1,1),(i,i) = A(i,i),(0,0) = −1/i, for i ≥ 2,

with all other entries equal to −∞. We choose the basepoint (1, 1). The graph
of A is depicted in the following diagram:

−1/2

−1/3

−1/4

We are using the same conventions as before. The arcs with weight −2 are
drawn in bold. One can check that

A∗(i,j),(k,ℓ) = max
(
− |i− k| − 2|j − ℓ|,−(i− j)− (k − ℓ)− φ(j)− φ(ℓ)

)

where φ(j) = 1/j if j ≥ 2, and φ(j) = 0 if j = 1. In other words, an optimal
path from (i, j) to (k, ℓ) is either an optimal path for the metric of the weighted
ℓ1 norm (i, j) 7→ |i| + 2|j|, or a path consisting of an horizontal move to the
diagonal point (j, j), followed by moves from (j, j) to (1, 1), from (1, 1) to (ℓ, ℓ),
and by an horizontal move from (ℓ, ℓ) to (k, ℓ). Since A is symmetric and A∗ is
zero only on the diagonal, d((i, j), (k, ℓ)) := −A∗(i,j),(k,ℓ) is a metric on S. The

metric space (S, d) is complete since any Cauchy sequence is either ultimately
constant or converges to the point (1, 1). It is also locally compact since any
point distinct from (1, 1) is isolated, whereas the point (1, 1) has the basis of
neighbourhoods consisting of the compact sets Vj = {(i, i) | i ≥ j} ∪ {(1, 1)},
for j ≥ 2.
If ((im, jm))m≥1 is any sequence of elements of S such that both im and jm
tend to infinity, then, for any (k, ℓ) ∈ S,

A∗(k,ℓ),(im,jm) = A∗(k,ℓ),(1,1)A
∗
(1,1),(im,jm) for m large enough.

(Intuitively, this is related to the fact that, for m large enough, every optimal
path from (k, ℓ) to (im, jm) passes through the point (1, 1)). It follows that
K·,(im,jm) converges to K·,(1,1) as m → ∞. However, the sequence (im, jm)
does not converge to the point (1, 1) in the metric topology unless im = jm for
m large enough. This shows that the map (i, j)→ K·,(i,j) is not an homeomor-
phism from S to its image.
The Martin boundary consists of the points ξ1, ξ2, . . ., obtained as limits of
horizontal half-lines, which are almost-geodesics. We have

ξℓ(i,j) := lim
k→∞

K(i,j),(k,ℓ) = max
(
i− ℓ− 2|j − ℓ|+ φ(ℓ),−(i− j)− φ(j)

)
.
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The functions ξℓ are all distinct because i 7→ ξℓ(i,i) has a unique maximum

attained at i = ℓ. The functions ξℓ do not belong to K because ξℓ(3j,j) =

j + ℓ + φ(ℓ) ∼ j as j tends to infinity, whereas for any w ∈ K , w(3j,j) =

−2j − φ(j) ∼ −2j as j tends to infinity,. The sequence ξℓ converges to K·,(1,1)
as ℓ tends to infinity, which shows that the Martin boundary B = M \K is
not closed.

Example 10.7. We next give an example of a Martin space having a boundary
point which is not an extremal generator. The same example has been found
independently by Webster and Winchester [WW06]. Consider S := N×{0, 1, 2}
and the operator A given by

A(i,j),(i+1,j) = A(i+1,j),(i,j) = A(i,1),(i,j) = A(i,j),(i,1) = −1,

for all i ∈ N and j ∈ {0, 2}, with all other entries equal to −∞. We choose
(0, 1) as basepoint, so that π := A∗(0,1),· is such that π(i,j) = −(i + 1) if j = 0

or 2, and π(i,j) = −(i + 2) if j = 1 and i 6= 0. The graph associated to the
matrix A is depicted in the following diagram, with the same conventions as in
the previous example.

There are three boundary points. They may be obtained by taking the limits

ξ0 := lim
i→∞

K·,(i,0), ξ1 := lim
i→∞

K·,(i,1), and ξ2 := lim
i→∞

K·,(i,2).

Calculating, we find that

ξ0(i,j) = i− j + 1, ξ2(i,j) = i+ j − 1, and ξ1 = ξ0 ⊕ ξ2.

We have H(ξ0, ξ0) = H(ξ2, ξ2) = H(ξ2, ξ1) = H(ξ0, ξ1) = 0. For all other
pairs (ξ′, ξ) ∈ B ×B, we have H(ξ′, ξ) = −2. Therefore, the minimal Martin
boundary is Mm = {ξ0, ξ2}, and there is a non-extremal boundary point, ξ1,
represented above by a gray circle. The sequences ((i, 0))i∈N and ((i, 2))i∈N are
almost-geodesics, while it should be clear from the diagram that there are no
almost-geodesics converging to ξ1. So this example provides an illustration of
Propositions 7.3 and 7.8.

Example 10.8. Finally, we will give an example of a non-compact minimal
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Martin space. Consider S := N× N× {0, 1} and the operator A given by

A(i,j,k),(i,j+1,k) =A(i,j+1,k),(i,j,k) =−1, for all i, j ∈ N and k ∈ {0, 1},
A(i,j,k),(i,j,1−k) =−1, for all i ∈ N, j ∈ N\{0} and k ∈ {0, 1},
A(i,0,k),(i,0,1−k) =−2, for all i ∈ N and k ∈ {0, 1},

A(i,0,k),(i+1,0,k) =A(i+1,0,k),(i,0,k) =−1, for all i ∈ N and k ∈ {0, 1},

with all other entries equal to −∞. We take π := A∗(0,0,0),·. With the same
conventions as in Examples 10.4 and 10.7, the graph of A is

Recall that arcs of weight −1 are drawn with thin lines whereas those of weight
−2 are drawn in bold.
For all (i, j, k), (i′, j′, k′) ∈ S,

A∗(i,j,k),(i′,j′,k′) = −|k′−k|− |i′− i|− |j′− j|χi=i′− (j+ j′)χi6=i′ −χj=j′=0, k 6=k′ ,

where χE takes the value 1 when condition E holds, and 0 otherwise. Hence,

K(i,j,k),(i′,j′,k′) =k′ − |k′ − k|+ i′ − |i′ − i|+ j′ − |j′ − j|χi=i′ − (j + j′)χi6=i′

+ χj′=0,k′=1 − χj=j′=0, k 6=k′ .

By computing the limits of K·,(i′,j′,k′) when i′ and/or j′ go to +∞, we readily
check that the Martin boundary is composed of the vectors

ξi
′,∞,k′ := lim

j′→∞
K·,(i′,j′,k′),

ξ∞,∞,k
′

:= lim
i′,j′→∞

K·,(i′,j′,k′)

ξ∞,0,k
′

:= lim
i′→∞

K·,(i′,0,k′).
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where the limit in i and j′ in the second line can be taken in either order. Note
that limi′→∞K·,(i′,j′,k′) = ξ∞,∞,k

′

for any j′ ∈ N \ {0} and k′ ∈ {0, 1}. The

minimal Martin space is composed of the vectors ξi
′,∞,k′ and ξ∞,0,k

′

with i′ ∈ N
and k′ ∈ {0, 1}. The two boundary points ξ∞,∞,0 and ξ∞,∞,1 are non-extremal
and have representations

ξ∞,∞,0 = ξ∞,0,0 ⊕−3ξ∞,0,1 ,

ξ∞,∞,1 = ξ∞,0,0 ⊕−1ξ∞,0,1.

For k′ ∈ {0, 1}, the sequence (ξi
′,∞,k′)i∈N converges to ξ∞,∞,k

′

as i goes to
infinity. Since this point is not in Mm, we see that Mm is not compact.

11 Tightness and existence of harmonic vectors

We now show how the Martin boundary can be used to obtain existence results
for eigenvectors. As in [AGW05], we restrict our attention to the case where
S is equipped with the discrete topology. We say that a vector u ∈ RSmax is
A-tight if, for all i ∈ S and β ∈ R, the super-level set {j ∈ S | Aijuj ≥ β} is
finite. We say that a family of vectors {uℓ}ℓ∈L ⊂ RSmax is A-tight if supℓ∈L u

ℓ

is A-tight. The notion of tightness is motivated by the following property.

Lemma 11.1. If a net {uℓ}ℓ∈L ⊂ RSmax is A-tight and converges pointwise to
u, then Auℓ converges pointwise to Au.

Proof. This may be checked elementarily, or obtained as a special case of gen-
eral results for idempotent measures [Aki95, AQV98, Aki99, Puh01] or, even
more generally, capacities [OV91]. We may regard u and ul as the densities of
the idempotent measures defined by

Qu(J) = sup
j∈J

uj and Qul(J) = sup
j∈J

ulj ,

for any J ⊂ S. When S is equipped with the discrete topology, pointwise
convergence of (uℓ)ℓ∈L is equivalent to convergence in the hypograph sense of
convex analysis. It is shown in [AQV98] that this is then equivalent to conver-
gence of (Qul)ℓ∈L in a sense analogous to the vague convergence of probability
theory. It is also shown that, when combined with the tightness of (ul)ℓ∈L,
this implies convergence in a sense analogous to weak convergence. The result
follows as a special case.

Proposition 11.2. Assume that S is infinite and that the vector π−1 :=
(π−1
i )i∈S is A-tight. Then, some element of M is harmonic and, if 0 6∈ M ,

then Mm is non-empty. Furthermore, each element of B is harmonic.

Proof. Since S is infinite, there exists an injective map n ∈ N 7→ in ∈ S.
Consider the sequence (in)n∈N. Since M is compact, it has a subnet (jk)k∈D,
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jk := ink such that {K·jk}k∈K converges to some w ∈ M . Let i ∈ S. Since
(AA∗)ij = A+

ij = A∗ij for all j 6= i, we have

(AK·jk)i = Kijk

when jk 6= i. But, by construction, the net (jk)k∈D is eventually in S\{i}
and so we may pass to the limit, obtaining limk∈K AK·jk = w. Since π−1 is
A-tight, it follows from (4) that the family (K·j)j∈S is A-tight. Therefore, by
Lemma 11.1, we get w = Aw. If 0 6∈M , then H contains a non-zero vector,
and applying the representation formula (24) to this vector, we see that Mm

cannot be empty.
It remains to show that B ⊂ H . Any w ∈ B is the limit of a net {K·jk}k∈D.
Let i ∈ S. Since w 6= K·i, the net {K·jk}k∈D is eventually in some neighbour-
hood of w not containing K·i. We deduce as before that w is harmonic.

Corollary 11.3 (Existence of harmonic vectors). Assume that S is infinite,
that π = A∗b· ∈ RS for some b ∈ S, and that π−1 is A-tight. Then, H contains
a non-zero vector.

Proof. We have Kbj = 1 for all j ∈ S and hence, by continuity, wb = 1 for
all w ∈ M . In particular, M does not contain 0. The result follows from an
application of the proposition.

We finally derive a characterisation of the spectrum of A. We say that λ is a
(right)-eigenvalue of A if Au = λu for some vector u such that u 6= 0.

Corollary 11.4. Assume that S is infinite, A is irreducible, and for each
i ∈ S, there are only finitely many j ∈ S with Aij > 0. Then the set of right
eigenvalues of A is [ρ(A),∞[.

Proof. Since A is irreducible, no eigenvector of A can have a component equal
to 0. It follows from [Dud92, Prop. 3.5] that every eigenvalue of A must be
greater than or equal to ρ(A).
Conversely, for all λ ≥ ρ(A), we have ρ(λ−1A) ≤ 1. Combined with the
irreducibility of A, this implies [AGW05, Proposition 2.3] that all the entries
of (λ−1A)∗ are finite. In particular, for any b ∈ S, the vector π := (λ−1A)∗b· is
in RS . The last of our three assumptions ensures that π−1 is (λ−1A)-tight and
so, by Corollary 11.3, (λ−1A) has a non-zero harmonic vector. This vector will
necessarily be an eigenvector of A with eigenvalue λ.

Example 11.5. The following example shows that when π−1 is not A-tight, a
Martin boundary point need not be an eigenvector. Consider S := N and the
operator A given by

Ai,i+1 = Ai+1,i := −1 and A0i := 0 for all i ∈ N,

with all other entries of equal to −∞. We take π := A∗0,·. With the same
conventions as in Example 10.7, the graph of A is
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0
0

0

We have A∗i,j = max(−i,−|i− j|) and πi = 0 for all i, j ∈ N. There is only one
boundary point, b := limk→∞K·k, which is given by bi = −i for all i ∈ N. One
readily checks that b is not an harmonic vector and, in fact, A has no non-zero
harmonic vectors.

12 Eigenvectors of Lax-Oleinik semigroups and Busemann points
of normed spaces

We now use the Martin boundary to solve a class of continuous-time determin-
istic optimal control problems. Consider the value function v defined by:

v(t, x) := sup
X(·), X(0)=x

φ(X(t))−
∫ t

0

L(Ẋ(s)) ds .

Here, x is a point in Rn, t is a nonnegative real number, the Lagrangian L is
a Borel measurable map Rn → R ∪ {+∞}, bounded from below, the terminal
reward φ is an arbitrary map Rn → R∪{−∞}, and the supremum is taken over
all absolutely continuous functions X : [0, t] → Rn such that X(0) = x. This
is a special case of the classical Lagrange problem of calculus of variations.

The Lax-Oleinik semigroup (T t)t≥0 is composed of the maps T t sending the
value function at time 0, v(0, ·) = φ to the value function at time t, v(t, ·). The
semigroup property T t+s = T t ◦ T s follows from the dynamic programming
principle. The kernel of the operator T t is given by

(x, y) 7→ T tx,y = sup
X(·), X(0)=x, X(t)=y

−
∫ t

0

L(Ẋ(s)) ds ,

where the supremum is taken over all absolutely continuous functions X :
[0, t]→ Rn such that X(0) = x and X(t) = y.

The classical Hopf-Lax formula states that

T tx,y = −t coL
(y − x

t

)
, for t > 0 ,

where coL denotes the convex lower semicontinuous hull of L. This is proved,
for instance, in [Eva98, §3.3, Th. 4] when L is convex and finite valued, and
when the curves X(·) are required to be continuously differentiable. The ex-
tension to the present setting is not difficult.

Since T t only depends on coL, we shall assume that L is convex, lower semi-
continuous, and bounded from below. Moreover, we shall always assume that
L(0) is finite.
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230 Marianne Akian, Stéphane Gaubert, and Cormac Walsh

We say that a function u : Rn → R ∪ {−∞}, not identically −∞, is an eigen-
vector of the semigroup (T t)t≥0 with eigenvalue λ if

T tu = u+ λt, for all t > 0 .

We shall say that u is extremal if it is an extremal generator of the eigenspace
of the semigroup (T t)t≥0 with eigenvalue λ, meaning that u cannot be written
as the supremum of two eigenvectors with the same eigenvalue that are both
different from it.
One easily checks, using the convexity of L, that for all t > 0, the maximal
circuit mean of the operator T t is given by

ρ(T t) = −tL(0) .

By Proposition 3.5 of [Dud92] or Lemma 2.2 of [AGW05], any eigenvalue µ of
T t must satisfy µ ≥ ρ(T t), and so any eigenvalue λ of the semigroup (T t)t≥0

satisfies
λ ≥ −L(0) .

We denote by ζ(x) the one sided directional derivative of L at the origin in the
direction x:

ζ(x) = lim
t→0+

t−1(L(tx)− L(0)) = inf
t>0

t−1(L(tx)− L(0)) ∈ R ∪ {±∞} , (30)

which always exists since L is convex.

Proposition 12.1. Assume that ζ does not take the value −∞. Then, the
eigenvectors of the Lax-Oleinik semigroup (T t)t≥0 with eigenvalue −L(0) are
precisely the functions u : Rn → R ∪ {−∞}, not identically −∞, such that

−ζ(y − x) + u(y) ≤ u(x) , for all x, y ∈ Rn . (31)

Moreover, when ζ only takes finite values, the extremal eigenvectors with eigen-
value −L(0) are of the form c+ w, where c ∈ R and w belongs to the minimal
Martin space of the kernel (x, y) 7→ −ζ(y − x) with respect to any basepoint.

Proof. Let us introduce the kernels

As := T s + sL(0), for all s ≥ 0.

Using the Hopf-Lax formula, we get

(As)
+
xy = sup

k∈N\{0}
−ksL

(y − x
ks

)
+ ksL(0) .

Using (30) and the fact that ζ(0) = 0, we deduce that

(As)
∗
xy = (As)

+
xy = −ζ(y − x) . (32)
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The eigenvectors of the semigroup (T t)t≥0 are precisely the functions that are
harmonic with respect to all the kernels As, with s > 0. Since (As)xx = 0 for all
x ∈ Rn, the harmonic and super-harmonic functions of As coincide. It follows
from Proposition 2.1 that u is a super-harmonic function of As if and only if
u ≥ A∗su. Since the latter condition can be written as (31) and is independent
of s, the first assertion of the corollary is proved.
By (32), when ζ is finite, any point can be taken as the basepoint. The kernels
As and (x, y) 7→ −ζ(y − x) have the same Martin and minimal Martin spaces
with respect to any given basepoint, and so the final assertion of the corollary
follows from Theorem 6.2.

Remark 12.2. When ∂L(0), the subdifferential of L at the origin, is non-empty,
ζ does not take the value −∞. This is the case when the origin is in the relative
interior of the domain of L. Then, ζ coincides with the support function of
∂L(0):

ζ(x) = sup
y∈∂L(0)

y · x, for all x ∈ Rn ,

see [Roc70, Th. 23.4]. If in addition the origin is in the interior of the domain of
L, then ∂L(0) is non-empty and compact, and so the function ζ is everywhere
finite.

Corollary 12.3. When ζ is a norm on Rn, the extremal eigenvectors with
eigenvalue −L(0) of the Lax-Oleinik semigroup (T t)t≥0 are precisely the func-
tions x 7→ c − ζ(y − x), where c ∈ R and y ∈ Rn, together with the functions
c+ w, where c ∈ R and w is a Busemann point of the normed space (Rn, ζ).

Proof. This follows from Proposition 12.1 and Corollary 7.13.

Remark 12.4. The map ζ is a norm when the origin is in the interior of the
domain of L and the subdifferential ∂L(0) is symmetric, meaning that p ∈
∂L(0) implies −p ∈ ∂L(0). When ζ is a norm, condition (31) means that u is
Lipschitz-continuous with respect to ζ or that u is identically −∞.

We next study the eigenspace of (T t)t≥0 for an eigenvalue λ > −L(0) in the
special case where L is of the form

L(x) =
‖x‖
p

p

,

where ‖ · ‖ is an arbitrary norm on Rn and p > 1. For all λ > 0, we set

ϑλ := (qλ)
1
q where

1

p
+

1

q
= 1 .

Theorem 12.5. Let s > 0 and λ > 0. Any eigenvector of T s with eigenvalue
λs is an eigenvector of the Lax-Oleinik semigroup (T t)t≥0 with eigenvalue λ.
Such an eigenvector can be written as

u = sup
w∈Mbu

ν(w) + ϑλw , (33)
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where Mbu denotes the set of Busemann points of the normed space (Rn, ‖ · ‖)
and ν is an arbitrary map Mbu → R∪{−∞} bounded from above. The maximal
map ν satisfying (33) is given by µu. Moreover, the extremal eigenvectors with
eigenvalue λ are of the form c+ ϑλw, where c ∈ R and w ∈Mbu.

This theorem follows from Theorem 8.1, Theorem 8.3, and the next lemma.

Lemma 12.6. For all s > 0, the minimal Martin space of the kernel As :=
T s− sλ, with respect to any basepoint, coincides with the set of functions ϑλw,
where w is a Busemann point of the normed space (Rn, ‖ · ‖) equipped with the
same basepoint.

Proof. For all x, y ∈ Rn, we set

ψ(t) := −t1−pL(y − x)− tλ .

It follows from the Hopf-Lax formula that

(As)
+
xy = sup

k∈N\{0}
ψ(ks) . (34)

Since ψ is concave, the supremum of ψ(t) over all t > 0 is attained at the point
t̄ such that

ψ′(t̄) = t̄−p(p− 1)L(y − x)− λ = 0 .

It follows that
ψ(t̄) = −ϑλ‖y − x‖ .

Since ψ is concave, we have ψ(t) ≥ ψ(t̄) + ψ′(t)(t − t̄), and so, for t ≥ t̄,

ψ(t)− ψ(t̄) = ψ(t)− ψ(t̄)− ψ′(t̄)(t− t̄)
≥ (ψ′(t)− ψ′(t̄))(t− t̄) ≥ ψ′′(t̄)(t− t̄)2

since ψ′ is convex. Let k denote the smallest integer such that t̄ ≤ ks, and let
t = ks. We deduce that

0 ≥ ψ(t)− ψ(t̄) ≥ −p(p− 1)L(y − x)t̄−1−p(t− t̄)2 = −pλt̄−1(t− t̄)2 .

Since t̄ ≤ t ≤ t̄+ s, since t̄ = (qλ)−1/p‖y − x‖, and since

ψ(t̄) ≥ (As)
∗
xy ≥ (As)

+
xy ≥ ψ(t) ,

we get

(As)
∗
xy = −ϑλ‖y − x‖ + ǫ(‖y − x‖) , (35)

where ǫ is a function tending to 0 at infinity. Observe that the supremum
in (34) is always attained by an integer k which can be bounded by an increasing
function of ‖y−x‖. Hence, for all x ∈ Rn and every compact set C, we can find
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an integer N such that (As)
+
xy = sup1≤k≤N ψ(ks) for all y ∈ C. Since every

ψ(ks) is a continuous function of y− x, we deduce that the map y 7→ (As)
+
xy is

continuous.
Denote by K the Martin kernel of As with respect to this basepoint and denote
by M , Mm, and K , the corresponding Martin space, minimal Martin space,
and set of columns of the Martin kernel. Also, we denote by H the kernel
constructed from K as in Section 4. Define the kernel A′ : (x, y) 7→ −ϑλ‖y −
x‖. We use K ′,M ′,M ′m,K ′ and H ′ to denote the corresponding objects
constructed from A′.
We next show that Mm = M ′m \K ′.
An element w of Mm is the limit of a net (K·yd)d∈D. If the net (yd)d∈D had
a bounded subnet, it would have a subnet converging to some y ∈ Rd. Then,
by continuity of the map z 7→ (As)

+
·z, the element w would be proportional in

the max-plus sense either to f := (As)
∗
·y or to g := (As)

+
·y (the first case arises

if the subnet is ultimately constant). Both cases can be ruled out: we know
from Proposition 4.4 that an element of the minimal Martin space is harmonic,
but fy = 0 6= gy = (Asf)y = −sλ 6= (Asg)y = −2sλ, and so f and g are not
harmonic. This shows that (yd)d∈D tends to infinity.
By (35), we deduce that K ′·yd tends to w. Thus, any net (yd)d∈D such that K·yd
tends to w is such that yd tends to infinity and K ′·yd tends to w. We deduce
that w ∈M ′ and H ′(w,w) ≥ H(w,w) = 1, and so, by (12), Mm ⊂M ′m∪K ′.
We proved that the columns of (As)

∗ are not harmonic, and so Mm ⊂M \K .
We claim that Mm ⊂M ′m \K ′. Indeed, if a net K·yd converges to w ∈Mm,
we showed that (yd)d∈D tends to infinity, and that K ′·yd tends to w. But K ′·yd
cannot converge to an element K ′·y ∈K ′ because the map sending an element
of a finite-dimensional normed space to its column of the Martin kernel is an
embedding (see [Bal95, Ch. II,§1] for a more general result). So w 6∈K ′.
Let us take now w′ ∈M ′m \K ′. Then, w′ is the limit of some net (K ′·y′d

)d∈D′ ,

where (y′d)d∈D′ necessarily tends to infinity, since otherwise, there would be a
subnet of (y′d)d∈D′ converging to some z ∈ Rn, and so we would have w′ =
K ′·z ∈K ′. It follows from (35) that w′ is the limit of K·y′

d
, and hence w′ ∈M .

These properties also imply that H ′(w′, w′) ≤ H(w′, w′). Since w′ ∈ M ′m,
we have H ′(w′, w′) = 1, and so H(w′, w′) = 1, and by (12), w′ ∈ Mm ∪K .
Observe that the map z 7→ w′z is continuous because it is a pointwise limit of
elements of K ′, all of which are Lipschitz continuous with constant ϑλ with
respect to the norm ‖ · ‖. For all y ∈ Rn, the map x 7→ A∗xy takes the value 0
when x = y and the value (As)

+
xy ≤ −sλ < 0 when x 6= y. Thus, the elements of

K are not continuous, and so, w′ 6∈ K . It follows that w′ ∈Mm \K = Mm.
We have shown that Mm = M ′m \K ′.
By Corollary 7.13, M ′m \ K ′ is the set of Busemann points of the normed
space (Rn, ϑλ‖ · ‖). These are precisely the functions of the form ϑλw, where
w is a Busemann point of (Rn, ‖ · ‖).

Remark 12.7. Lemma 12.6 identifies a special situation where the minimal
Martin space of T s − sλ is independent of s. This seems related to the fact
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that the set of functions of the form x 7→ a‖x‖p with a > 0 is stable by inf-
convolution. One may still obtain a representation of the eigenvectors for more
general semigroups (T t)t≥0, but this requires adapting some of the present
results to the continuous-time setting. We shall present this elsewhere.

Example 12.8. Consider the Euclidean norm on Rn, ‖x‖ := (x · x)1/2, and
L(x) := ‖x‖p/p with p > 1. The set of Busemann points of the normed space
(Rn, ‖ · ‖), with respect to the basepoint 0, coincides with the set of functions

w : x 7→ x · y ,

where y is an arbitrary vector of norm 1. It follows from Theorem 12.5 that
the extremal eigenvectors with eigenvalue λ > 0 of the Lax-Oleinik semigroup
are of the form c+ ϑλw, with c ∈ R, and that any eigenvector with eigenvalue
λ is a supremum of maps of this form. In particular, when n = 1, there are
two Busemann points, w±(x) = ±ϑλx, and any eigenvector u with eigenvalue
λ can be written as

x 7→ max(c+ + ϑλx, c
− − ϑλx) ,

with c± ∈ R∪{−∞}. The Busemann points w± are the limits of the geodesics
t 7→ ±t, from [0,∞[ to R. Hence, Proposition 7.6 allows us to determine the
maximal representing measure µu, or equivalently, the maximal value of the
scalars c±, as follows:

c± = lim
t→±∞

u(t)∓ ϑλt .

In this special case, the representing measure is unique.

In order to give another example, we characterise the Busemann points of a
polyhedral norm. We call proper face of a polytope the intersection of this
polytope with a supporting half-space.

Proposition 12.9. Let ‖ · ‖ denote a polyhedral norm on Rn, so that

‖x‖ = max
i∈I

x′i · x ,

where (x′i)i∈I is the finite family of the extreme points of the dual unit ball.
The Martin boundary of the kernel (x, y) 7→ −‖x− y‖, taking the origin as the
basepoint, is precisely the set of functions of the form

x 7→ min
j∈J

x′j · (x−X) + max
j∈J

x′j ·X , (36)

where X ∈ Rn and (x′j)j∈J is the set of extreme points of a proper face of the
dual unit ball. Moreover, all the points of the Martin boundary are Busemann
points.

Proof. Any point f of the Martin boundary is the limit of a sequence of func-
tions

x 7→ fk(x) = ‖Xk‖ − ‖Xk − x‖ ,
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where Xk ∈ Rn and ‖Xk‖ → ∞ when k → ∞. Consider the sequence of
vectors

uk = (x′i ·Xk − ‖Xk‖)i∈I .

These vectors lie in [−∞, 0]I , which is compact and metrisable, and so, we may
assume, by taking a subsequence if necessary, that uk converges to some vector
u ∈ [−∞, 0]I . Since I is finite, we may also assume, again taking a subsequence
if necessary, that there exists an index j0 ∈ I such that x′j0 ·Xk = ‖Xk‖ for all
k. Let J := {i ∈ I | ui > −∞}. Observe that J is non-empty since uj0 = 0.
We have

f(x) = lim
k→∞

fk(x) = lim
k→∞

−max
i∈I

(x′i ·Xk − ‖Xk‖ − x′i · x)

= −max
j∈J

(uj − x′j · x) .

Observe that the set E := {((x′j −x′j0) ·X)j∈J | X ∈ Rn} is closed, since it is a

finite-dimensional vector space. Since the vector (uk)j∈J belongs to E and has
a finite limit when k → ∞, this limit belongs to E, and so there exists some
X ∈ Rn such that uj = x′j ·X − x′j0 ·X for all j ∈ J . Thus,

f(x) = −max
j∈J

x′j · (X − x) + x′j0 ·X .

Since f(0) = 0, we have maxj∈J x′j ·X = x′j0 ·X , and so

f(x) = −max
j∈J

x′j · (X − x) + max
j∈J

x′j ·X ,

which is of the form (36).
We now have to show that (x′j)j∈J is the set of extreme points of a face of the

dual unit ball. Let E′ denote the set of vectors x′ ∈ Rn such that x′ ·Xk−‖Xk‖
remains bounded when k tends to infinity. This is an affine space. Let B′ denote
the dual unit ball. We claim that F ′ := E′ ∩ B′ is an extreme subset of B′,
meaning that

αx′ + (1 − α)y′ ∈ F ′ =⇒ x′, y′ ∈ F ′, for all x′, y′ ∈ B′ and 0 < α < 1.
(37)

Indeed, let x′, y′ ∈ B′ and 0 < α < 1. Since x′ ∈ B′, we have x′·X ≤ ‖X‖ for all
X ∈ Rn. In particular, x′ ·Xk−‖Xk‖ ≤ 0 for all k. Similarly, y′ ·Xk−‖Xk‖ ≤ 0
for all k. Since

(αx′ + (1− α)y′) ·Xk − ‖Xk‖
= α(x′ ·Xk − ‖Xk‖) + (1− α)(y′ ·Xk − ‖Xk‖)
≤ α(x′ ·Xk − ‖Xk‖)
≤ 0 ,
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we deduce that x′ ·Xk − ‖Xk‖ is bounded if αx′ + (1 − α)y′ ∈ F ′. Similarly,
y′ ·Xk − ‖Xk‖ is bounded. This shows (37).

Let z denote any accumulation point of the sequence ‖Xk‖−1Xk. We have
F ′ ⊂ {x′ ∈ B′ | x′ · z = 1}, and so, F ′ 6= B′.
Since the dual ball B′ is a polytope, the convex extreme subset F ′ 6= B′ is a
proper face of B′. Therefore, the vectors x′i, with i ∈ I, such that x′i ·Xk−‖Xk‖
remains bounded are precisely the x′i that belong to the proper face F ′. Hence,
these x′i are the extreme points of the proper face F ′.
Every proper face F ′ of the dual ball is the intersection of the dual ball with
a supporting hyperplane, so F ′ = {x′ ∈ B′ | x′ · y = 1} for some y ∈ B.
Observe that the set J of x′i such that x′i · y = 1 is precisely the set of extreme
points of F ′. Consider now X ∈ Rn and the ray t 7→ X + ty, which is a
geodesic, and a fortiori an almost-geodesic. One readily checks that the function
x 7→ ‖X + ty‖ − ‖X + ty − x‖ converges to the function (36) when t tends to
+∞, and so, every point of the Martin boundary is a Busemann point.

Remark 12.10. Karlsson, Metz, and Noskov [KMN06] have shown previously
that every boundary point of a polyhedral normed space is the limit of a
geodesic, and hence a Busemann point. They did this by characterising the
sequences which converge to a boundary point.

Example 12.11. Consider now L(x) := ‖x‖p∞/p with ‖x‖∞ :=
max(|x1|, · · · , |xn|) and p > 1. By Proposition 12.9, the Busemann points of
(Rn, ‖ · ‖∞) with respect to the basepoint 0 are of the form:

w : x 7→ min
i∈I

ǫi(xi −Xi) + max
i∈I

ǫiXi ,

where I is a non-empty subset of {1, . . . , n}, ǫi = ±1, and the Xi are arbitrary
reals. Theorem 12.5 shows that any eigenvector with eigenvalue λ > 0 of the
Lax-Oleinik semigroup can be written as a supremum of maps c+ ϑλw, where
c ∈ R ∪ {−∞} and w is of the above form. For instance, when n = 2, the
functions w are of one of the following forms:

ǫ1x1, ǫ2x2, or min(ǫ1(x1 −X1), ǫ2(x2 −X2)) + max(ǫ1X1, ǫ2X2) ,

with X1, X2 ∈ R and ǫ1 = ±1, ǫ2 = ±1.

Remark 12.12. It is natural to ask whether the eigenvectors of the Lax-Oleinik
semigroup (T t)t≥0 coincide with the viscosity solutions of the ergodic Hamilton-
Jacobi equation

L⋆(∇u) = λ ,

where L⋆ denotes the Legendre-Fenchel transform of L. This is proved
in [Fat08, Chapter 7] in the different setting where the space is a compact
manifold and the Lagrangian L can depend on both the position and the speed
but must satisfy certain regularity and coercivity conditions.
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CMAP, École Polytechnique
91128 Palaiseau Cedex
France
marianne.akian@inria.fr
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Abstract. We show that the p-adic Galois representations attached
to Hilbert modular forms of motivic weight are potentially semistable
at all places above p and are compatible with the local Langlands cor-
respondence at these places, proving this for those forms not covered
by the previous works of T. Saito and of D. Blasius and J. Rogawski.
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1 Introduction

Let F be a totally real extension of Q of degree d. Let F be an algebraic closure
of F and let GF := Gal(F/F ). Let I := HomQ(F,C) be the set of embeddings
of F into C. The set I indexes the archimedean places of F . For each finite
place v of F let F v be an algebraic closure of Fv and fix an F -embedding
F →֒ F v. These determine a choice of a decomposition group Dv ⊂ GF for
each v and an identification of Dv with Gal(F v/Fv). Let p be a rational prime
and fix an algebraic closure Qp of Qp and an isomorphism ι : C

∼→ Qp. Via

composition with ι the set I is identified with the embeddings of F into Qp.

Let π be a cuspidal automorphic representation of GL2(AF ). Then π is a
restricted tensor product π = ⊗′πv with v running over all places of F . Assume
that each πi, i ∈ I, is a discrete series representation with Blattner parameter
ki ≥ 2 and central character x 7→ sgn(x)ki |x|−wi with w an integer independent
of i. We say that π has infinity type (k, w), k := (ki)i∈I . Assume also that each
ki ≡ w ( mod 2). In this case, π is an automorphic representation associated
with a Hilbert modular eigenform of weight k. We recall that attached to π
(and ι) is a two-dimensional semisimple Galois representation

ρπ : GF → GL2(Qp)
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such that
WD(ρπ |Dv )Fr-ss ∼= ιRecv(πv ⊗ | · |−1/2

v ) ∀v ∤ p∞. (1)

Here WD(σ) denotes the Weil-Deligne representation over Qp associated to a

continuous representation σ : Dv → GLn(Qp) for a place v ∤ p∞ (see [Ta,
(4.2.1)]), and the superscript ‘Fr-ss’ denotes its Frobenius semi-simplification.
Also, Recv(τ) denotes the Frobenius semi-simple Weil-Deligne representation
over C associated with an irreducible admissible representation τ of GLn(Fv) by
the local Langlands correspondence, and ιRecv(τ) is the Weil-Deligne represen-
tation over Qp obtained from Recv(τ) by change of scalars via the isomorphism
ι. We choose Recv so that when n = 1, Recv is the inverse of the Artin map
of local class field theory normalized so that uniformizers correspond to geo-
metric frobenius elements. The existence of a ρπ satisfying (1) was established
by Carayol [Ca2], Wiles [W], Blasius and Rogawski [BR], and Taylor [Tay1],
following the work of Eichler, Shimura, Deligne, Langlands, and others on the
Galois representations associated with elliptic modular eigenforms.

The purpose of this note is to complete the proof of the analog of (1) at places
v | p:

Theorem 1 Let v | p be a place of F . The representation ρπ|Dv is potentially
semistable with Hodge-Tate type (k, w) and satisfies

WD(ρπ |Dv )Fr-ss ∼= ιRecv(πv ⊗ | · |−1/2
v ). (2)

We recall that ρv := ρπ|Dv is potentially semistable if

Dpst(ρv) :=
⋃

L/Fv

(ρv ⊗Qp Bst)
Gal(Fv/L)

is a free Qp ⊗Qp F
ur
v,0-module of rank 2, where here L is ranging over all finite

extensions of Fv, F
ur
v,0 is the union of all absolutely unramified subfields of F v,

and Bst is Fontaine’s ring of semistable p-adic periods (the latter has a con-

tinuous action of Dv = Gal(F v/Fv) with the property that B
Gal(Fv/L)
st = L0,

the maximal absolutely unramified subfield of L). We also recall that the
module DHT (ρv) := (V ⊗Qp BHT )Dv is a graded Qp ⊗Qp Fv-module (recall

that BHT := ⊕n∈ZCFv (n), CFv := F̂ v, with the obvious action of Dv). By
ρπ|Dv having Hodge-Tate type (k, w), we mean that for j ∈ HomQp(Fv ,Qp)

the induced graded module DHT (ρv) ⊗Qp⊗QpF,j
Qp is non-zero in degrees

(w − ki(j))/2 and (w + ki(j) − 2)/2, where i(j) ∈ I is the induced embed-

ding of F into Qp. To make sense of the left-hand side of (2) we recall that
Fontaine has defined an action of the Weil-Deligne group on Dpst(ρv). Given
an embedding τ : Furv,0 →֒ Qp we obtain a Weil-Deligne representation over Qp

on WD(ρv)τ := Dpst(ρv)⊗Qp⊗QpF
ur
v,0,τ

Qp. This representation is independent

of τ up to equivalence, and we have denoted an element of its equivalence class
by WD(ρv). The right-hand side of (2) has the same meaning as in (1).
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Saito proved that Theorem 1 holds when either d is odd or there exists a
finite place w such that πw is square-integrable [Sa1, Sa2]; this builds on the
aforementioned work of Carayol. Under the same hypotheses or when d is
even and some ki is strictly larger than 2, Blasius and Rogawski proved that
ρ|Dv is potentially semistable of Hodge-Tate type (k, w), and when additionally
πp = ⊗v|pπv is unramified they essentially showed that the full conclusion of the
theorem holds [BR] (some additional, albeit minor, observations are required to
extend their arguments to all such cases). The theorem is of course also known
for those π that are the automorphic induction of a (necessarily) algebraic Hecke
character of an imaginary quadratic extension of F (such representations are
often called CM representations). In this case, Theorem 1 follows from the
results in [Se]. These results account for the cases where ρπ is known to arise
from a motive; the conclusion of the theorem then follows from various deep
comparison theorems between suitable cohomology theories.

It remains to deal with the cases where ρπ is not known to arise from a motive,
namely those cases where each ki = 2, each πv is a principal series represen-
tation, and π is not a CM representation. In [Tay2] it is shown that if ρπ is
residually irreducible and πv, v|p, is unramified, then ρπ|Dv is crystalline with
the predicted Hodge-Tate weights. For p > 2 unramified in F , the same result
is proved in [Br] without the hypothesis that ρπ be residually irreducible. For
those ρπ that are residually irreducible, Kisin [Ki1] deduced Theorem 1 from
his results on potentially semistable deformation rings, Taylor’s construction
of the representations ρπ, and Saito’s results. In this paper, we prove Theo-
rem 1 by a different approach. A simple base change argument reduces the
theorem, in the cases not covered by Saito’s results, to that where d is even
and each πv, v|p, is unramified. From the automorphy of the symmetric square
Sym2π and the results of [Mo] it follows that Sym2ρv is crystalline1 and even
that WD(Sym2ρv) ∼= ιRecv(Sym2πv ⊗ | · |−1

v ). From results of Wintenberger
[Win1, Win2] we then deduce that ρv is crystalline up to a (possibly trivial)
quadratic twist and hence that WD(ρv) is isomorphic to a (possibly trivial)

quadratic twist of ιRecv(πv ⊗ | · |−1/2
v ). There exists a suitable p-adic analytic

family of eigensystems of cuspidal representations of GL2(AF ) (essentially due
to Buzzard [Bu1] in the cases needed) that contains an eigensystem attached
to ρπ. For members of this family with sufficiently regular weights Theorem 1
is known by the work of Blasius and Rogawski. An appeal to a result of Kisin
then shows that WD(ρv) has at least one Dv-eigenspace predicted by (2), from
which we then conclude that (2) holds.

After completing the first draft of this paper, the author learned that Tong Liu
[L] has also proven Theorem 1, at least for p > 2, by an argument that is a
generalization of that of Kisin [Ki1].

Acknowledgements. The author’s work on this paper was inspired by a question

1As remarked at the end of 2.4.1, a similar use of the symmetric square yields a proof of
the Ramanujan conjecture for π. This conjecture has previously been established in [B2].
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about what was known regarding Theorem 1 asked by Henri Darmon at the
summer school on the stable trace formula, automorphic forms, and Galois
representations held at BIRS in August of 2008. The referee prodded the author
to write a note with more details. The author’s research is supported by grants
DMS-0701231 and DMS-0803223 from the National Science Foundation and by
a fellowship from the David and Lucile Packard Foundation.

2 The proof of Theorem 1

We keep to the notation from the introduction. We assume some familiarity
on the part of the reader with p-adic Hodge theory, particularly the theory of
Hodge-Tate weights and the notions of crystalline and semistable representa-
tions. A good reference is [Fo]. While p-adic Hodge theory is usually applied to
continuous representations of Gal(F v/Fv), v|p, defined over a finite extension
of Qp, we apply it to continuous representations over Qp. This should cause no
confusion as the latter are always defined over a finite extension of Qp. While
this is well-known, references seem rare, so we provide a quick proof.

Let Γ be a compact group and ρ : Γ→ GLn(Qp) a continuous representation.

The subfields L of Qp that are finite over Qp form a countable set, and as

each GLn(L) is closed in GLn(Qp), the subgroups ΓL := ρ−1(GLn(L)) form a
countable set of closed subgroups of Γ whose union is Γ. Since Γ is compact, it
carries a Haar measure with total measure finite and non-zero. As the countable
union of measurable sets each having measure zero also has measure zero, it
follows that some ΓL must have non-zero measure and hence have finite index
in Γ. Write Γ = ⊔mi=1giΓL. Then ρ takes values in GLn(L′) where L′ is the
finite extension of Qp generated by L and the entries of the ρ(gi).

2.1 Weil-Deligne representations over Qp for v|p
Let v|p be a place of F . Let BHT := ⊕n∈bZCFv(n) with the obvious action
of Dv. Let Bcris ⊂ Bst be Fontaine’s rings of crystalline and semistable p-
adic periods, respectively. Recall that the latter are naturally Furv,0-algebras

equipped with a continuous action of Dv such that B
Gal(Fv/L)
? = L0 for any

finite extension L/Fv, ? = cris, st, and that furthermore they are both equipped
with a compatible Furv,0-semilinear Frobenius morphism ϕ : B? → B? (that
is, ϕ(ax) = frobp(a)ϕ(x) for all a ∈ Furv,0, where frobp ∈ Gal(Furv,0/Qp) is
the absolute arithmetic Frobenius). Additionally, Bst is equipped with an
Furv,0-linear and Dv-equivariant monodromy operator N : Bst → Bst such that

Bcris = BN=0
st .

For a finite-dimensional Qp-vector space V with a continuous Qp-linear action
of Dv we put

DHT (V ) := (V ⊗Qp BHT )Dv , Dcris(V ) := (V ⊗Qp Bcris)
Dv ,
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and
DL
st(V ) := (V ⊗Qp Bst)

Gal(Fv/L), Dpst(V ) :=
⋃

L/Fv

DL
st(V ),

where L/Fv is a finite extension. Then DHT (V ) is a finite, graded Qp⊗Qp Fv-

module. Also, Dcris(V ) is a finite Qp ⊗Qp Fv,0-module, DL
st(V ) is a finite

Qp ⊗Qp L0-module, and Dpst(V ) is a finite Qp ⊗Qp F
ur
v,0-module, each of rank

at most dimQp
(V ). The action of ϕ induces a Qp-linear, Fv,0-semilinear (resp.

L0-semilinear) Frobenius operator on Dcris(V ) (resp. DL
st(V )) that we also

denote by ϕ. The action of the monodromy operator N on Bst induces a
Qp ⊗Qp L0-linear nilpotent operator on DL

st(V ) that we also denote by N and
which satisfies N ◦ϕ = pϕ ◦N . These are compatible with varying L, so ϕ and
N are defined on Dpst(V ) as well. Note that Dcris(V ) = DFv

st (V )N=0.

Let Wv ⊂ Dv be the Weil group of Fv. The action of Dv on V and Bst induces
a Qp-linear, Furv,0-semilinear action rsl of Wv on Dpst(V ). We define another

action r of Wv on Dpst(V ): for w ∈ WK we let r(w) = rsl(w) ◦ ϕν(w) with

ν(w) ∈ Z such that w acts on Furv,0 as frob−ν(w)
p . This also defines an action on

Dcris(V ). The action r is Qp ⊗Qp F
ur
v,0-linear, and we have

N ◦ r(w) = N ◦ rsl(w) ◦ ϕν(w) ◦N = rsl(w) ◦N ◦ ϕν(w) = pν(w)r(w) ◦N.

It follows that the pair (r,N) defines an action of the Weil-Deligne group W ′v
of Fv on Dpst(V ). Moreover, if τ : Furv,0 →֒ Qp is any embedding, then it also
follows that the induced action on

WD(V )τ := Dpst(V )⊗Qp⊗QpF
ur
v,0,τ

Qp

is a Weil-Deligne representation over Qp (the subscript τ on the tensor sign

means that we consider Qp as a Qp ⊗Qp F
ur
v,0-algebra via the homomor-

phism id ⊗ τ). Furthermore, d ⊗ x 7→ ϕ(d) ⊗ x defines an isomorphism
WD(V )τ◦frobp

∼→ WD(V )τ of Weil-Deligne representations over Qp, hence the
equivalence class of WD(V )τ is independent of the choice of τ . We let WD(V )
be any member of this equivalence class.

We recall that V is potentially semistable if Dpst(V ) is a free Qp ⊗Qp F
ur
v,0-

module of rank equal to dimQp
V or, equivalently, dimQp

WD(V ) = dimQp
V .

Similarly, V is crystalline if Dcris(V ) is a free Qp ⊗Qp Fv,0-module of rank

dimQp
V . This is equivalent to (V ⊗Qp Bcris)

Iv being a free Qp ⊗Qp F
ur
0,v-

module of rank equal to dimQp
V , where Iv ⊂ Dv is the inertia subgroup.

Thus, V is crystalline if and only if V is potentially semistable and both N
and Iv act trivially on Dpst(V ). In particular, V is crystalline if and only if
dimQp

WD(V ) = dimQp
(V ), WD(V ) is unramified (i.e., N = 0 and the inertia

group Iv acts trivially). Consequently, for V crystalline the eigenvalues of
w ∈ Wv on WD(V )Fr-ss are just the roots of the characteristic polynomial of
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the Qp-endomorphism induced by ϕν(w). We also recall that for a crystalline

representation V there is Qp ⊗Qp Fv-filtration on Dcris(V ) ⊗Fv,0 Fv whose
associated graded module is just DHT (V ).

Suppose now that πv is unramified. From the preceding paragraph it follows
that (2) holds if ρv = ρπ|Dv is crystalline and if for all w ∈Wv

det(1− Tϕν(w)|Dcris(V )⊗Qp⊗QpFv,0,τ
Qp) = det(1− Tw|ιRecv(πv ⊗ | · |−1/2

v ))

(3)
for some (equivalently, each) embedding τ : Fv,0 →֒ Qp.

2.2 Reduction to d even and πv unramified

As mentioned in the introduction, Saito has proven Theorem 1 when the degree
d of F is odd or some πv is square-integrable [Sa1],[Sa2]. We may therefore
assume that d is even and that πv is a principal series representation for finite
places v. Theorem 1 then asserts that each ρv is potentially crystalline with
predicted Hodge-Tate weights. Clearly, this is true for ρv = ρπ|Dv if and only if
there is a finite extension F ′/F such that it is true for ρπ|Dv′ , v′|v the place of F ′

determined by the fixed embedding F →֒ F v. Additionally, if ρv is potentially
crystalline with the predicted Hodge-Tate weights, then to establish (2) it is
enough to show that

trace(w|WD(ρv)) = trace(w|ιRecv(πv ⊗ | · |−1/2
v )) (4)

for all w ∈ Wv with ν(w) > 0.

Let v|p. For a given w ∈ Wv such that ν(w) > 0 there exists an abelian
extension F ′/F such that (a) the base change π′ of π to GL2(AF ′) is cuspidal
and unramified at each place over p and (b) w ∈ Wv′ ⊆ Wv for v′|v the
place of F ′ determined by the fixed embedding F →֒ F v. That (a) can be
satisfied is a consequence of each local constituent of π being a principal series
representation (we are, of course, using that base change is known for GL2

for abelian extensions). That (b) can be simultaneously satisfied with (a) is a
simple consequence of ν(w) > 0. Note that the extension F ′/F may depend on
w. As ρπ′ ∼= ρπ|GF ′ , it follows that WD(ρπ′ |Dv′ ) ∼= WD(ρπ|Dv )|W ′

v′
. Similarly,

Recv′(πv′ ⊗ | · |−1/2
v′ ) ∼= Recv(πv ⊗ | · |−1/2

v )|W ′
v′

. Therefore if Theorem 1 holds

for π′, then ρv is potentially crystalline with the predicted Hodge-Tate weights
and (4) holds for the given w. This shows that if Theorem 1 holds whenever
the representation is unramifed at all primes above p then it also holds for π.
Consequently, it suffices to prove Theorem 1 under the assumption that each
πv, v|p, is unramified.

2.3 Galois representations in the cohomology of certain Shimura
varieties

As mentioned in the introduction, Blasius and Rogawski have essentially proved
Theorem 1 in the case where some ki > 2 and each πv, v|p, is unramified [BR].
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We explain this here, giving the necessary modifications required to make their
argument cover all such cases. We also record some additional consequences
for Galois representations associated with essentially self-dual representations
of GL3(AF ).

2.3.1 The Shimura varieties

Let E0 ⊆ F be an imaginary quadratic extension of Q in which p splits and set
E = FE0. Fix a place v0 of E0 above p. For convenience we assume that for
each place v|p of F the fixed embedding F →֒ F v induces the valuation v0 on
E0. Fix an embedding E0 →֒ C such that - again for convenience - composition
with ι also induces the valuation v0. Let φ be the CM type of E consisting of
those embeddings E →֒ C extending the fixed embedding of E0. For τ ∈ φ we
write τ̄ for the composition of τ with complex conjugation. Restriction to F
determines a bijection between φ and I, and we write τi for the element of φ
extending i ∈ I. Via composition with ι, φ determines a place of E above each
place v|p of F ; the fixed decomposition group Dv is also a decomposition group
for the place of E above p so determined, hence we also denote this place by v,
writing v̄ for its conjugate (note that each place v|p of F splits in E). If M is
an OE-module, then M∞ := M⊗C decomposes as M∞ ∼=

∏
τ∈φMτ⊕Mτ̄ with

Mσ := M ⊗OE,σ C for any embedding σ : E →֒ C. Similarly, Mp := M ⊗ Zp
decomposes as Mp

∼=
∏
vMv ⊕Mv̄ with Mw := M ⊗OE OE,w for a place w|p

of E.

Fix i0 ∈ I. Let Φ be the Hermitian E-pairing on V := E3 (viewed as column
vectors) defined by the diagonal matrix J := diag(α, 1, 1) with α ∈ F× such
that τi0(α) < 0 and τi(α) > 0 for i 6= i0: Φ(x, y) = tx̄Jy. Then Φ has
signature (2, 1) with respect to τi0 and signature (3, 0) with respect to all
other τi. Let U(Φ)/Q be the unitary group of Φ and G := GU(Φ)/Q its
similitude group. We note that G(C) ∼= C× × ∏τ∈φ GLC(Vτ ), where the

projection to the C×-factor is the similitude character, and the projection to
the second factor is via the corresponding projection of GLE⊗C(V∞). Similarly,
G(Qp) ∼= Q×p ×

∏
v GLEv (Vv), where v runs over the place of F dividing p (or

the fixed places of E over these). Let ψ := traceE/QβΦ with β a totally
imaginary element of E0. Then there exists an OE-lattice Λ ⊂ V such that ψ
identifies Λp with its Zp-dual.

Let S := ResC/RGm, so S(R) = (C⊗R R)× for any R-algebra R. We identify
S(C) = (C⊗C)× with C× ×C× via z ⊗ w 7→ (zw, z̄w). Let h : S→ G/R be
the homomorphism such that for (z, w) ∈ S(C)

h(z, w) = (zw)×
∏

τ∈φ

{
diag(z, w,w) τ = τi0
diag(w,w,w) τ 6= τi0 .

Let h(z) = h(z, z̄). We assume that β is such that ψ(x, h(i)x) is positive
definite for x ∈ V ⊗R. As explained in [Ko], associated with E, V, ψ, and h
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is a family of PEL moduli spaces SK over2 E, K ⊂ G(Af ) being a neat open
compact subgroup: in the notation of [Ko, §5] we take3 B = E with ∗ the non-
trivial automorphism fixing F and (V, (−,−)) = (V, ψ); then C = EndE(V )
and the G of loc. cit. is the group G defined above, and we take for the ∗-
homomorphism C→ C ⊗R the R-linear extension of z 7→ h(z). The varieties
SK are smooth over E and, being solutions to PEL moduli problems, are
equipped with ‘universal’ abelian varieties AK/SK . As explained in [Ko, §8],
SK is naturally identified with a disjoint union of a finite number of copies
of the canonical model ShK over E of the Shimura variety associated with G,
h−1, and K, indexed by the isomorphism classes of Hermitian E-spaces (V ′, ψ′)
that are everywhere locally isomorphic to (V, ψ). We identify ShK with the
copy corresponding to the class of (V, ψ) and let AK/ShK be the restriction of
the universal abelian variety.

Suppose K = KpK
p with Kp ⊆ G(Ap

f ) and Kp ⊂ G(Qp) identified with a

subgroup Z×p ×
∏
v|pKv ⊆ Z×p ×

∏
v GLOE,v̄ (Λv̄). Let v|p be a fixed place. If

Kv = GLOE,v(Λv), then an argument of Carayol [Ca1, §5] shows that AK and
SK have good reduction at v. A model of SK over OF,v = OE,v is obtained
by considering a moduli problem as in [Ca1, 5.2.2]. To be be precise, one
considers the functor from the category of locally Noetherian OF,v-schemes to
the category of sets that sends an OF,v-scheme R to the set of isomorphism
classes of quadruples (A, i, θ, k̄v) where (a) A is an abelian scheme over R of
relative dimension 3d and i : OE →֒ EndR(A) is an embedding such that
Lie(A)v is a locally free OR-module of rank one on which OF,v = OE,v acts
via the structure map OF,v → OR and such that Lie(A)v′ = 0 for all v′|p,
v′ 6= v; (b) θ is a prime-to-p polarization of A satisfying θ ◦ i(x) = i(x̄)∨ ◦ θ for
all x ∈ OE ; (c) k̄v is a K-level structure as4 in [Ca1, 5.2.2(c)] but with VZ in
the definition of W there replaced by Λ. That this functor is isomorphic over
Fv = Ev to that in [Ko, §5] defining SK/Ev follows from the arguments in [Ca1,
2.4-2.6,5.2.2]. That it is representable by a smooth, projective scheme SK over
OF,v follows from the arguments in [Ca1, 5.3-5.5]. The p-divisible group Ap of
A decomposes under the action of OE,p = OE ⊗ Zp as Ap =

∏
v′|pAv′ × Av̄′ .

The condition on Lie(A)v′ in (a) then implies that Av′ is ind-étale if v′ 6= v,
and part of the level structure k̄v is a class modulo

∏
v′ 6=vKv′ of OE,p-linear

R-isomorphisms kvp :
∏
v′ 6=v A[pn]v′

∼→ ∏
v′ 6=v(p

−nΛ/Λ)v′ with n any integer
so large that Kv′ contains the kernel of the reduction map GLOE,v′ (Λv′) →
GLOE,v′ (Λv′/p

nΛv′) (see [Ca1, 5.2.3(ii)]). The condition that Λp is self-dual
ensures that over Fv this moduli problem is equivalent to one with a usual

2The reflex field in this case is τi0 (E) ⊂ C which we identify with E via τi0 .
3As we are only defining the moduli spaces over E at this point, the conditions at p in

[Ko, §5] are superfluous.
4When adapting the arguments of [Ca1] to the setting of this paper, the roles of the super-

scripts 1 and 2 in loc. cit. are switched. This is a result of our choice of the homomorphism h
and the identification of E with the reflex field. A homomorphism S → G/R more naturally
generalizing that in loc. cit. would be (z, w) 7→ h(w, z). We have chosen h here so that ShK
is the Shimura variety in [BR].
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K-level structure. The representability of this moduli problem by a scheme
SK over OF,v follows from the arguments in [Ca1, 5.3] and the properness from
those in [Ca1, 5.5]. The smoothness of this scheme follows exactly as in [Ca1,
5.4]. The key point is that for R a local artinian OF,v-module, the conditions
on the dimension of A and on Lie(A)v in (a) imply that Av is a divisible OF,v-
module of height 3 whose formal (or connected) part has height 1 (we are
keeping to the terminology in the Appendix of [Ca1]). The smoothness then
follows by the deformation argument given in loc. cit. Over Ev, SK is just SK ,
and AK is the base change of the universal abelian scheme AK/SK . Hence SK ,
ShK , and AK have good reduction at v.

2.3.2 Theorem 1 when some ki > 2 and each πv unramified

We can now explain how the arguments in [BR] yield Theorem 1 when d > 1,
some ki > 2, and each πv, v|p, is unramified. Without loss of generality we may
assume that w = maxi∈I ki; choosing a different w amounts to replacing ρπ by
a Tate-twist. We may assume that E0 has been chosen so that the base change
πE of π to GL2(AE) is cuspidal (equivalently, π is not a CM representation
associated to a Hecke character of E). Fix an algebraic Hecke character µ of
A×E satisfying µ|A×F = ωE/F , the quadratic character of the extension E/F ,

and such that µ is unramified at each place over p. As explained5 in [BR,
Prop. 4.1.2], there exists a global L-packet τ on the quasi-split unitary group
U(2)/F such that its non-standard base change to GL2(AE) (with respect to µ)

is πE ⊗ η| · |1/2E with η an algebraic Hecke character of A×E that is unramified at
each place above p. It follows from [BR, Lem. 4.2.1] that there exists a global
character θ of U(1)/F unramified at all places above p for which the L-packet
ρ = τ ⊗ θ of U(2)×U(1) is such that the endoscopic L-packet Π(ρf ) for U(Φ)
contains an element σf with d(σf ) := #{σ∞ ∈ Π(ρ∞) : ǫ(σ∞)ǫ(σf ) = 1} =
2. Let χ be an algebraic character of the center of G extending the central
character of Π(ρ) and unramified at all places above p (cf. [BR, §1.2]). The
pair (σf , χ) defines an admissible representation π(σf , χ) of G(A∞Q ). From the
definition of σf it follows that σp is an unramified representation of U(Qp) ∼=∏
v GLEv̄(Vv̄) in the sense that it is a tensor product of unramified principal

series representations of each factor. In particular, as χ is unramified at each
place above p, π(σf , χ)K 6= 0 for K = KpK

p with Kp identified with Z×p ×∏
v|p GLOE,v(Λv) and Kp sufficiently small.

As explained in the proof of [BR, Thm. 3.3.1], associated with π(σf , χ) is a
motive M = (AnK , e) with coefficients in a number field T ⊂ C (this motive is
denoted M0 in loc. cit.; n is some integer depending on the weights of π, µ, θ,
and χ, AnK is the n-fold self-product over the Shimura variety ShK , and e is an
idempotent in Zh(AnK ×AnK)) such that for any prime ℓ and any isomorphism

5The representations of GL2(AF ) in [BR] are normalized so that what is denoted by π

there equals π ⊗ | · |
1/2
F in this paper.
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ι′ : C
∼→ Qℓ, the ℓ-adic realization Mℓ of M satisfies

Mℓ,ι′ := Mℓ ⊗T⊗Qℓ,ι′ Qℓ
∼= ρπ,ι′ |GE ⊗ ρηψ,ι′ , (5)

where the subscript ι′ denotes that the objects on the right-hand side are the
ℓ-adic Galois representations6 associated with the embedding ι′. Here ψ is the
Hecke character z 7→ χ(NE/E0

(z̄)) of A×E . Equivalently,

WD(Mℓ,ι′|Dw ) ∼= ι′Recw(πE,w ⊗ ηwψw| · |−1/2
w ) (6)

for all places w ∤ ℓ of E, Dw being any decomposition group for w. More
precisely, (6) is only shown in [BR, Thm. 3.3.1] for those w ∤ ℓ coprime to the
conductor of π and the absolute discriminant of E. But this together with the
existence of the ℓ-adic representations associated with π, ηψ, and ι′ implies (5),
from which (6) follows for all places w ∤ ℓ. This relies on more than is proved
in loc. cit.; it also requires the work of Carayol and Taylor on the existence of
the ℓ-adic representations.

As AK has good reduction at v|p, it follows - from the theorems of Faltings
and of Katz and Messing cited in [BR, §5] together with (5) and (6) - that for
a place v|p of F the representation Mp,ι is crystalline at v and for all w ∈ Wv

det(1−Xϕν(w)|Dcris(Mp,ι|Dv )⊗Qp⊗QpFv,0,τ
Qp)

= det(1−Xw|ιRecv(πv ⊗ ηvψv| · |−1/2
v ).

(7)

As η and ψ are both unramified at all places above p, ρηψ|·|E is crystalline at v.

It then follows that ρv ∼= (Mp,ι⊗ ρ−1
ηψ)|Dv is crystalline, and so (3) follows from

(7). That ρv has Hodge-Tate type (k, w) is immediate from [BR, Thm. 2.5.1(ii)]
and Faltings’ proof of the deRham conjecture.

2.3.3 Essentially self-dual representations of GL3(AF )

Let Π = ⊗′Πv be a cuspidal automorphic representation of GL3(AF ) for which
each Πi, i ∈ I, is such that its corresponding representation Reci(Πi) of the
Weil group of Fi satisfies

Reci(Πi)|C× ∼= zai z̄bi ⊕ zbi z̄ai ⊕ (zz̄)(ai+bi)/2, ai 6= bi ∈ Z, ai + bi ∈ 2Z. (8)

Suppose also that Π∨ ∼= Π⊗ψ for some Hecke character ψ (then ψ is necessarily
algebraic). As explained in [B1, 4.1-4.6], it is a consequence of the results in
[Mo] that for each prime ℓ and each isomorphism ι′ : C

∼→ Qℓ there is an
ℓ-adic Galois representation ρΠ,ι′ : GF → GL3(Qℓ) satisfying WD(ρΠ,ι′ |Dv ) ∼=

6For an algebraic Hecke character ψ of a number field, we denote by ρψ,ι′ the ℓ-adic
Galois representation associated with ψ and ι′, normalized so that the restriction of the
Galois character to the decomposition group at a place w ∤ ℓ is just the image of the local
character ψw under the inverse of the Artin map, composed with ι′.
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ι′Recv(Πv) for all places v ∤ ℓ that are prime to the conductor of Π and the
absolute discriminant of F .

The proof of the existence of ρΠ,ι′ follows the arguments in [BR]. In particular,
letting E be as in 2.3.2, if the base change of Π to E is still cuspidal then, as
explained in the proof of [B1, Thm. 4.2], there is a motive M = (AmK , e), K
small enough, such that the ℓ-adic realizations of M yield ρΠ|GE twisted by
a representation associated with an algebraic Hecke character of A×E . If Π is
unramified at each v|p then one can take K = KpK

p with Kp identified with
Z×p ×

∏
v|p GLOE,v(Λv) and the Hecke character can be taken unramified at

each v|p. Then arguing as in 2.3.2 shows that ρΠ := ρΠ,ι is crystalline at each
v|p and such that DHT (ρΠ|Dv ) ⊗Qp⊗QpFv,j

Qp, j ∈ HomQp(Fv,Qp), is non-

zero in degrees −ai(j),−bi(j), and −(ai(j) + bi(j))/2, i(j) ∈ I being the induced
embedding of F . Furthermore, if WD(ρΠ,ι′ |Dv ) ∼= ι′Recv(Πv) for some ℓ 6= p
(only an additional condition if p is not prime to the absolute discriminant of
F ), then these arguments also show that WD(ρΠ|Dv ) ∼= ιRecv(Πv).

Remark. Suppose Πv is unramified at each v|p. From the good reduction of the
Shimura variety ShK with Kp as in 2.3.2 or 2.3.3, it follows easily from the Weil
conjectures that the Frobenius-at-v eigenvalues of any ℓ-adic representation
ρΠ,ι′ , ℓ 6= p, have absolute value as predicted by the Ramanujan conjecture
for Πv when considered as elements of C via ι′. Therefore, if WD(ρΠ,ι′ |Dv ) ∼=
ι′Recv(Πv), then the Ramanujan conjecture is true for Πv. This argument
shows (at least) that if q is a prime such that Πw is unramified for all w|q,
then the Ramanujan conjecture is true for Πw, w|q, provided there is some
prime ℓ 6= q such that the ℓ-adic representation ρΠ,ι′ satisfies WD(ρΠ,ι′ |Dw ) ∼=
ι′Recw(Πw).

2.4 Theorem 1 for the remaining cases

As a consequence of the work of Saito [Sa1, Sa2], the remarks in 2.2, and the
results of [BR] as described in 2.3.2, to complete the proof of Theorem 1 it
remains to consider the case where d is even, each ki = 2, each πv, v|p, is
unramified, and π is not a CM representation. Replacing π by a twist by an
integral power of | · |F if necessary (which corresponds to twisting ρπ by a
power of the cyclotomic character), we may also assume that w = 2. Hereon
we assume we are in this case.

2.4.1 An application of the symmetric square

Let Π := Sym2π ⊗ | · |−1
F , with Sym2π the symmetric square lift of π to

GL3(AF ) (cf. [GJ]). As π is not a CM representation, Π is cuspidal. Since

Reci(πi)|C× ∼= (z̄/z)1/2⊕̄(z/z̄)1/2, Reci(Πi)|C× ∼= Sym2Reci(πi| · |−1/2
i )|C× sat-

isfies (8) with ai = −2 and bi = 0. Furthermore, as π∨ ∼= π⊗ω−1, ω the central
character of π, it follows that Π∨ ∼= Π⊗ω−2| · |2F . Therefore, Π satisfies all the
hypotheses in 2.3.3. In particular, there exist associated ℓ-adic representations
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ρΠ,ι′ . Clearly ρΠ,ι′
∼= Sym2ρπ,ι′, so WD(ρΠ,ι′ |Dw ) ∼= ι′Recw(Sym2πw ⊗ | · |−1

w )
for all w ∤ ℓ. Since πv, and therefore Πv, is unramified at each v|p, as ex-
plained in 2.3.3 we can conclude from this that for each v|p: (i) Sym2ρπ|Dv
is crystalline for v|p, (ii) WD(Sym2ρπ|Dv ) ∼= ιRecv(Sym2πv ⊗ | · |−1

v ), and (iii)
DHT (Sym2ρπ|Dv ) ⊗Qp⊗QpFv ,j

Qp, j ∈ HomQp(Fv,Qp), is non-zero in degrees

2, 1, and 0.

Let v|p. By conclusion (iii) of the preceding paragraph, the graded module
DHT (Sym2ρv) is the symmetric square of the expected graded module for ρv. It
then follows from results of Wintenberger7 - Thm. 1.1.3, Prop. 1.2, and Remarks
1.1.4 of [Win1] or Thm. 2.2.2 of [Win2], applied to the isogeny GL2 → GL2/±1 -
that there is a crystalline representation ρ : Dv → GL2(Qp) such that Sym2ρ =

Sym2ρv. From this it follows that ρv is isomorphic to a (possibly trivial)
quadratic twist of ρ. In particular, ρv is potentially crystalline. Therefore
WD(Sym2ρv) ∼= Sym2WD(ρv), and it then follows from conclusion (ii) of the

preceding paragraph that Sym2WD(ρv) ∼= Sym2ιRecv(πv ⊗ | · |−1/2
v ). From

this it follows that WD(ρv) is isomorphic to a (possibly trivial) quadratic twist

of ιRecv(πv ⊗ | · |−1/2
v ). It also follows that ρv is of Hodge-Tate type (k, w)

(= ((2)i∈I , 2) in this case).

Remark. We can also use Sym2π to show that the Ramanujan conjecture holds
for π. We may assume that π is not a CM representation. Let q be a prime.
It then follows from the remark at the end of 2.3.3 that if πw is unramified at
each w|q, then the Ramanujan conjecture holds for each Sym2πw and hence
for πw. A simple base change argument like that in 2.2 then shows that the
Ramanujan conjecture holds at all places where π is a principal series. In
particular, this establishes the Ramanujan conjecture for those π for which
there is no finite place v with πv square-integrable. That the Ramanujan
conjecture is known when such a v exists follows from Carayol’s work [Ca2].
The Ramanujan conjecture has already been established for π by Blasius [B2].

2.4.2 The existence of a crystalline period

Recall that we are assuming that for each v|p, πv ∼= π(αv , βv) is an un-
ramified principal series8. As WD(ρv) is isomorphic to a (possibly trivial)

quadratic twist of ιRecv(πv ⊗ | · |−1/2
v ), to prove (2) it suffices to show that

WD(ρv)frobv=αv(̟v)q
1/2
v 6= 0, where frobv is a geometric frobenius at v, ̟v is a

uniformizer at v, and qv is the order of the residue field at v. This is equivalent

to showing that Dcris(ρv|Dv )ϕ
fv=q1/2v αv(̟v) is a Qp ⊗Qp Fv,0-module of rank

7Note that ‘weakly admissible = admissible’ has been proved by Colmez and Fontaine,
and ‘de Rham = potentially semistable’ has been proved (independently in some cases) by
André, Berger, Kedlaya, and Mebkhout, and so the hypotheses on which these results depend
are known to hold.

8By π(α, β) we mean the usual principal series representation that is the induction to

GL2(Fv) of the character ( a ∗
0 d ) 7→ α(a)β(d)|a/d|

1/2
v of the upper-triangular Borel.
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at least one. To establish a lower bound on this rank, we make use of p-adic
analytic families of cuspidal representations.

Let O denote the integer ring of F and let Op := O ⊗ Zp
∼→ ∏

v|pOv. Let

Sp := {v|p} be the set of places of F over p and let Sπ be the set of finite places
of F at which π is ramified. Let S := Sπ ∪ Sp and KS :=

∏
v 6∈S,v∤∞GL2(Ov).

Let HS be the abelian Hecke algebra

HS := Cc(GL2(AS
F,f )//KS).

For each v ∈ Sp let

Iv := {
(
a b
c d

)
∈ GL2(Ov) : ̟v|c}, Ip :=

∏

v|p
Iv,

and let Uv ⊂ Cc(GL2(Ov)//Iv) be the abelian subalgebra generated by the
characteristic functions

Uv := char(Ivdiag(̟v, 1)Iv).

Put
Up := ⊗v|pUp and TS := Up ⊗HS .

Then there exists an fπ ∈ πK
SIp that is an eigenvector for the (usual) ac-

tion of the Hecke ring TS such that char(Ivdiag(̟v, 1)Iv) acts with eigenvalue

q
1/2
v αv(̟v).

Let K ⊂ Qp be a finite extension of Qp containing each i(F ), i ∈ I, and

the eigenvalues for the action of TS on fπ. Let |K×| = {|x|p : x ∈ K×}.
For r ∈ |K×|, we denote by Br the usual closed rigid ball over K of radius

r (so Br(Cp) = {x ∈ Cp : |x|p ≤ r}, where Cp := Q̂p). Then O(B1) =
K < T >. Let Ar := O(Br); this is an affinoid K-algebra. From the work
of Buzzard [Bu1, Bu2] one can deduce that if r0 ∈ |K×| is sufficiently small,
then there exists a reduced finite torsion-free Ar0 -algebra R (so also an affinoid
K-algebra) and a homomorphism φ : TS → R satisfying (i)-(iii) below. For
x ∈ HomK(R,Qp) put φx := x ◦ φ. Then:

(i) if x is such that x(1 + T ) = (1 + q)nx , nx ∈ p(p− 1)Z>0 (q = p if p odd
and q = 4 if p = 2), then there exists a cuspidal representation πx of
GL2(AF ) with infinity type (kx, wx) = ((nx + 2)i∈I , nx + 2)) and which
is unramified at all v|p and such that φx : TS → Qp gives the eigenvalues

of the action of TS on an eigenvector fx ∈ πK
SIp

x ;

(ii) there exists x0 ∈ X (K) with x0(1 + T ) = 1 such that φx0 gives the
eigenvalues of the action of TS on fπ;

(iii) if φv := φ(Uv) ∈ R×, then |x(φv)|p is constant for all x;
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(iv) there exists a continuous representation

ρR : GF → GL2(R)

unramified away from S and such that for x as in (i) the representation
ρx : GF → GL2(Qp) induced from ρR by x is equivalent to ρπx and that
induced by x0 is equivalent to ρπ.

Assuming the existence of R and φ, we can complete the proof of Theorem 1.
Let Σ ⊂ HomK(R,Qp) be the set of x as in (i). Then Σ is Zariski dense by the
finiteness of R over Ar. As explained in 2.3.2 we know that Theorem 1 holds
for each πx, x ∈ Σ. Let v|p and x ∈ Σ. Then πx,v ∼= π(µx, λx), an unramified

principal series with x(φv) = µx(̟v)q
1/2
v . In particular, as Theorem 1 holds

for ρx ∼= ρπx we have that Dcris(ρx|Dv )ϕ
fv=x(φv) is a Qp ⊗Qp Fv,0-module

of rank at least one for all x ∈ Σ, where fv is the residue class degree of
Fv (so qv = pfv). As the Hodge-Tate type of ρx, x ∈ Σ, is (kx, wx), each
DHT (ρx|Dv )⊗Qp⊗QpFv ,j

Qp is non-zero in degrees 0 and nx+1. It then follows

easily from [Ki2, (5.15)] that9

Dcris(ρπ|Dv )ϕ
fv=q1/2v αv(̟v) = Dcris(ρx0 |Dv )ϕ

fv=x0(φv)

is also a Qp ⊗Qp Fv,0-module of rank at least one.

While the existence of R and φ is essentially proved in the work of Buz-
zard, there is no convenient reference in [Bu1]. So we conclude by explain-
ing how their existence follows from this work. Let D be the quaternion
algebra over F that is split at all finite places and compact modulo the
center at all archimedean places. Fix a maximal order OD of D, and for
each finite place v of F fix an isomorphism OD,v ∼= M2(Ov). This identi-
fies GL2(AF,f ) with (D ⊗F AF,f )×. Let n be the conductor of π and let

U0 ⊆ GL2(O⊗ Ẑ) be the subgroup of matrices with lower left entries in n⊗ Ẑ,
and let U = U0 ∩ Ip. Let J := {v|p}. For a ∈ ZJ>0 let Ua :=

∏
v∈J U

av
v . For

v ∈ J let σv := ordv(αv(̟v)q
1/2
v ), and let σa :=

∑
v∈J avσv.

For r ∈ |K×| with r ≤ 1 we define a homomorphism κ : O×p ×O×p → A×r by

κ((xv), (yv)) =
∏

v∈Sp

∏

j∈HomQp (Fv,Qp)

j(yv)(1 + T )logp NmFv/Qp (xv).

9Proposition (5.14) and Corollary (5.15) of [Ki2] are only stated for representations of
GQp = Gal(Qp/Qp). But it is easily checked that the arguments extend to the case of the

representations of Dv = Gal(F v/Fv) under consideration here; the necessary results with
ϕ replaced by ϕfv (e.g., Corollary (3.7)) are easily deduced from those for ϕ. A key point
is that our hypotheses on the weights in the family X ensure that the polynomial P (X) ∈
(O(X )⊗Qp Fv)[X] provided by Sen’s theory as in [Ki2, (2.2)] is of the form P (X) = XQ(X)
with the constant coefficient of Q not a zero-divisor.
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Let W be the rigid analytic weight space over K defined in §8 of [Bu1]. Then
Br is identified with a reduced affinoid subspace ofW such that κ is the induced
weight in the sense of loc. cit. Let m ∈ |K×| be so small that the Ar-Banach
module SDκ (U ;m) of overconvergent automorphic forms is defined (notation
as in [Bu1, §9]). This is equipped with an Ar-linear action of TS such that
each Uv is a completely continuous operator. For b ∈ Br(Qp) such that the

induced map eb : Ar → Qp sends 1 + T to (1 + q)nb with nb ∈ p(p − 1)Z≥0

we have a TS-equivariant inclusion of the classical forms of weight (kb,wb):
SDkb,wb(U) ⊆ SDκ (U ;m)⊗O(Br),eb Qp, wb := (nb + 2)i∈I ∈ ZI (see [Bu1, §11]).
By the Jacquet-Langlands correspondence, there exists f0 ∈ S2,2(U) having
the same TS-eigenvalues as fπ. Recall that by the theory of Fredholm series
and orthonormalizable Banach modules as developed by Coleman, Ash and
Stevens, and Buzzard, if r is small enough then there is a finite Ar-direct
summand N ⊂ SDκ (U ;m) that is stable under TS and such that for each
a ∈ ZJ>0 the Fredholm series for Ua on N is a factor of the slope σa part of
the Fredholm series Pa(X) ∈ Ar{X} associated to the completely continuous
operator Ua on SDκ (U ;m) (the latter is well-defined for r small enough), and
furthermore is such that f0 ∈ N ⊗Ar,e0 K. If r is sufficiently small then for
any b ∈ Ar with nb ∈ p(p − 1)Z>0 it follows from the arguments in [Bu2, §7]
(see also the comment at the end of §11 of [Bu1]) that Nb := N ⊗Ar,eb Qp is

comprised of classical forms in SDnb+2,nb+2(U) (nb is divisible by a high power
of p; the smaller r is, the larger the power of p). By the definition of N , any
TS-eigenform in Nb is such that the eigenvalue of Uv has slope σv, and so if
r is small enough relative to σv then it is easily seen that the v-constituent of
the irreducible representation of GL2(AF,f ) generated by f is not special and
therefore must be an unramified principal series.

Let R be the Ar-algebra generated by the image of TS in EndAr (N ); this is
a finite torsion-free Ar-algebra and so an affinoid K-algebra. Note that there
exists a K-homomorphism φ0 : R→ K giving the eigenvalues of the TS-action
on f0. Let A be the normalization of the quotient of R by a minimal prime
containing the kernel of φ0. This is a reduced finite torsion-free Ar-algebra and
so also an affinoidK-algebra. Let φ : TS → A be the canonical homomorphism.
It follows from the definitions that (i), (ii), and (iii) hold with R replaced by
A. For each x ∈ HomK(A,Qp) as in (i), let Tx : GF → Qp be the continuous
pseudo-representation associated with ρπx (so Tx = trace ρπx). Since for a
place w ∤ np, Tx(frobw) = x◦φ(char(GL2(Ow)diag(̟w, 1)GL2(Ow)), ̟w ∈ Ow
a uniformizer, it follows easily from the Cebotarev density theorem and the
Zariski density of the set ΣA of x ∈ HomK(A,Qp) as in (i) that there is a
continuous pseudo-representation T : GF → A such that Tx = x ◦ T . From
the general theory of pseudo-representations (cf. [Tay3]) there is a semisimple
Galois representation ρA : GF → GL2(FA), FA the field of fractions of A, such
that T = trace ρA. It is easy to see that there is a finite A-module M ⊂ F 2

A on
which GF acts continuously and such that Vx := Mx ⊗Ax,x Qp is isomorphic
to the representation ρπx , x ∈ ΣA or x any extension of φ0 to A (here the
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subscript x on M and A denotes the localization at the kernel of x). Such
a module M is given explicitly as follows. Fix a basis of ρA such that for
some i ∈ I the corresponding complex conjugation in GF is diagonalized (with
eigenvalues 1 and −1). Writing ρA(σ) =

(
aσ bσ
cσ dσ

)
, we have aσ, dσ, bσcσ′ ∈ A

for all σ, σ′ ∈ GF and that these define continuous functions of σ and σ′. It
follows that the A-submodules B and C of FA generated by {bσ : σ ∈ GF }
and {cσ : σ ∈ GF }, respectively, are fractional ideals of A satisfying CB ⊆ A
(note that by the semisimplicity of ρA and the diagonalization of the chosen
complex conjugation, B = 0 if and only of C = 0). We can then take M =
A ⊕ A if C = 0 and M = A ⊕ C otherwise. Being a finite A-module, M
is a Banach A-module and the continuity of the action of GF on M is clear
from the continuity of the functions aσ, dσ, and bσcσ′ . As A is normal, for any
x ∈ HomK(A,Qp) the localization Ax is a DVR, and so Mx is a free Ax-module
of rank two. The representation Vx is then two-dimensional and its associated
pseudo-representation is x ◦ T . Therefore if x ∈ ΣA or x any extension of φ0

to A, the pseudo-representation associated with Vx equals that associated with
ρπx . As the latter representation is irreducible (this irreducibility is well-known,
but see also the remark below) it follows that Vx ∼= ρπx . As A is normal and
finite over Ar, there is an f 6∈ TAr (in fact one can pick f not to be zero on
any given finite set of points of Br) such that Mf is free over Af . Let r0 ≤ r
be so small that f ∈ A×r0 . Then (i)-(iv) hold with R the quotient of A⊗Ar Ar0
by any minimal prime (a finite Ar0 -algebra and so an affinoid K-algebra) and
with ρR the representation of GF on the free R-module M ⊗A R.

Remark. We recall that there is a quick proof of the irreducibility of ρπ using
that it is potentially semistable (really only that it is Hodge-Tate), which was
established in 2.4.1. If ρπ ∼= χ1⊕χ2, then each χi is potentially semistable and
hence is the Galois representation associated to an algebraic Hecke character
ψi of F (cf. [Se], esp. III,2.3-2.4). It then follows that L(π ⊗ ψ−1

2 , s − 1/2) =
L(ψ1/ψ2, s)ζF (s). As ψi = ψ′i| · |aiF with ai ∈ Z and ψ′i finite and since we may
assume a1 ≥ a2, L(ψ1/ψ2, 1) = L(ψ′1/ψ

′
2, a1 − a2 + 1) 6= 0. But this implies

that L(π ⊗ ψ−1
2 , s) has a pole at s = 1, contradicting the cuspidality of π.
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Abstract. We consider the moduli space Hg,n of n-pointed smooth
hyperelliptic curves of genus g. In order to get cohomological in-
formation we wish to make Sn-equivariant counts of the numbers of
points defined over finite fields of this moduli space. We find recur-
rence relations in the genus that these numbers fulfill. Thus, if we
can make Sn-equivariant counts of Hg,n for low genus, then we can
do this for every genus. Information about curves of genus 0 and 1
is then found to be sufficient to compute the answers for Hg,n for all
g and for n ≤ 7. These results are applied to the moduli spaces of
stable curves of genus 2 with up to 7 points, and this gives us the
Sn-equivariant Galois (resp. Hodge) structure of their ℓ-adic (resp.
Betti) cohomology.
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1. Introduction

By virtue of the Lefschetz trace formula, counting points defined over finite
fields of a space gives a way of finding information on its cohomology. In
this article we wish to count points of the moduli space Hg,n of n-pointed
smooth hyperelliptic curves of genus g. On this space we have an action of the
symmetric group Sn by permuting the marked points of the curves. To take
this action into account we will make Sn-equivariant counts of the numbers of
points of Hg,n defined over finite fields.
For every n we will find simple recurrence relations in the genus, for the equi-
variant number of points of Hg,n defined over a finite field. Thus, if we can
count these numbers for low genus, we will know the answer for every genus.
The hyperelliptic curves will need to be separated according to whether the
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characteristic is odd or even and the respective recurrence relations will in
some cases be different.
When the number of marked points is at most 7 we use the fact that the
base cases of the recurrence relations only involve the genus 0 case, which
is easily computed, and previously known Sn-equivariant counts of points of
M1,n, to get equivariant counts for every genus. If we consider the odd and
even cases separately, then all these counts are polynomials when considered
as functions of the number of elements of the finite field. For up to five points
these polynomials do not depend upon the characteristic. But for six-pointed
hyperelliptic curves there is a dependence, which appears for the first time for
genus 3.
By the Lefschetz trace formula, the Sn-equivariant count of points of Hg,n is
equivalent to the trace of Frobenius on the ℓ-adic Sn-equivariant Euler char-
acteristic of Hg,n. But this information can also be formulated as traces of
Frobenius on the Euler characteristic of some natural local systems Vλ on Hg.
By Theorem 3.2 in [1] we can use this connection to determine the Euler char-
acteristic, evaluated in the Grothendieck group of absolute Galois modules, of
all Vλ on Hg ⊗ Q of weight at most 7. These result are in agreement with
the results on the ordinary Euler characteristic and the conjectures on the mo-
tivic Euler characteristic of Vλ on H3 by Bini-van der Geer in [5], the ordinary
Euler characteristic of Vλ on H2 by Getzler in [16], and the S2-equivariant
cohomology of Hg,2 for all g ≥ 2 by Tommasi in [20].

The moduli stack Mg,n of stable n-pointed curves of genus g is smooth and
proper, which implies purity of the cohomology. If the Sn-equivariant count of
points of this space, when considered as a function of the number of elements
of the finite field, gives a polynomial, then using the purity we can determine
the Sn-equivariant Galois (resp. Hodge) structure of its individual ℓ-adic (resp.
Betti) cohomology groups (see Theorem 3.4 in [2] which is based on a result of
van den Bogaart-Edixhoven in [6]). All curves of genus 2 are hyperelliptic and
hence we can apply this theorem toM2,n for all n ≤ 7. These results on genus
2 curves are all in agreement with the ones of Faber-van der Geer in [9] and
[10]. Moreover, for n ≤ 3 they were previously known by the work of Getzler
in [14, Section 8].
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Outline

Let us give an outline of the paper, where ⋆· denotes the section.
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⋆2 In this section we define Sn-equivariant counts of points of Hg,n over
a finite field k, and we formulate the counts in terms of numbers aλ|g,
which are connected to the H1’s of the hyperelliptic curves.

⋆3 The hyperelliptic curves of genus g, in odd characteristic, are realized
as degree 2 covers of P1 given by square-free polynomials of degree
2g+2 or 2g+1. The numbers aλ|g are then expressed in terms of these
polynomials in equation (3.2). The expression for aλ|g is decomposed
into parts denoted ug, which are indexed by pairs of tuples of numbers
(n; r). The special cases of genus 0 and 1 are discussed in Section 3.1.

⋆4 A recurrence relation is found for the numbers ug (Theorem 4.12).
The first step is to use the fact that any polynomial can be written
uniquely as a monic square times a square-free one. This results in an
equation which gives Ug in terms of uh for h less than or equal to g,
where Ug denotes the expression corresponding to ug, but in terms of
all polynomials instead of only the square-free ones. The second step
is to use that, if g is large enough, Ug can be computed using a simple
interpolation argument.

⋆5 The recurrence relations for the ug’s are put together to form a linear
recurrence relation for aλ|g, whose characteristic polynomial is given
in Theorem 5.2.

⋆6 It is shown how to compute u0 for any pair (n; r).
⋆7 Information on the cases of genus 0 and 1 is used to compute, for all g,

ug for tuples (n; r) of degree at most 5, and aλ|g of weight at most 7.
⋆8 The hyperelliptic curves are realized, in even characteristic, as pairs

(h, f) of polynomials fulfilling three conditions. The numbers ug and
Ug are then defined to correspond to the case of odd characteristic.

⋆9 In even characteristic, a recurrence relation is found for the numbers ug
(Theorem 9.11). Lemmas 9.6 and 9.7 show that one can do something
in even characteristic corresponding to uniquely writing a polynomial
as a monic square times a square-free one in odd characteristic. This
results in a relation between Ug and uh for h less than or equal to g.
Then, as in odd characteristic, a simple interpolation argument is used
to compute Ug for g large enough.

⋆10 The same amount of information as in Section 7 is obtained in the
case of even characteristic. It is noted that aλ|g is independent of
the characteristic for weight at most 5 (Theorem 10.3). This does not
continue to hold for weight 6 where there is dependency for genus at
least 3 (see Example 10.6).

⋆11 The counts of points of the previous sections are used to get cohomo-
logical information. This is, in particular, applied to M2,n for n ≤ 7.

⋆12 In the first appendix, a more geometric interpretation is given of the
information contained in all the numbers ug of at most a certain degree
(see Lemma 12.8).

⋆13 In the second appendix, we find that for sufficiently large g we can
compute the Euler characteristic, with Gal(Q/Q)-structure, of the part

Documenta Mathematica 14 (2009) 259–296



262 Jonas Bergström

of the cohomology of sufficiently high weight, of some local systems Vλ
on Hg. We will also see that these results are, in a sense, stable in g.

2. Equivariant counts

Let k be a finite field with q elements and denote by km a degree m extension.
Define Hg,n to be the coarse moduli space ofHg,n⊗k̄ and let F be the geometric
Frobenius morphism.
The purpose of this article is to make Sn-equivariant counts of the number of
points defined over k of Hg,n. With this we mean a count, for each element
σ ∈ Sn, of the number of fixed points of Fσ acting on Hg,n. Note that these
numbers only depend upon the cycle type c(σ) of the permutation σ.
Define Rσ to be the category of hyperelliptic curves of genus g that are de-
fined over k together with marked points (p1, . . . , pn) defined over k̄ such that
(Fσ)(pi) = pi for all i. Points of Hg,n are isomorphism classes of n-pointed
hyperelliptic curves of genus g defined over k̄. For any pointed curve X that
is a representative of a point in HFσ

g,n , the set of fixed points of Fσ acting on
Hg,n, there is an isomorphism from X to the pointed curve (Fσ)X . Using
this isomorphism we can descend to an element of Rσ (see [17, Lem. 10.7.5]).
Therefore, the number of k̄-isomorphism classes of the category Rσ is equal to
|HFσ

g,n |.
Fix an element Y = (C, p1, . . . , pn) in Rσ . We then have the following equality
(see [12] or [17]):

∑

[X]∈Rσ/∼=k
X∼=k̄Y

1

|Autk(X)| = 1.

This enables us to go from k̄-isomorphism classes to k-isomorphism classes:

|HFσ
g,n | =

∑

[Y ]∈Rσ/∼=k̄

1 =
∑

[Y ]∈Rσ/∼=k̄

∑

[X]∈Rσ/∼=k
X∼=k̄Y

1

|Autk(X)| =
∑

[X]∈Rσ/∼=k

1

|Autk(X)| .

For any curve C over k, define C
(
σ
)

to be the set of n-tuples of distinct points

(p1, . . . , pn) in C(k̄) that fulfill (Fσ)(pi) = pi.

Notation 2.1. A partition λ of an integer m consists of a sequence of non-
negative integers λ1, . . . , λν such that |λ| :=

∑ν
i=1 iλi = m. We will write

λ = [1λ1 , . . . , νλν ].

Say that τ ∈ Sn consists of one n-cycle. The elements of C
(
τ
)

are then given
by the choice of p1 ∈ C(kn) such that p1 /∈ C(ki) for every i < n. By an
inclusion-exclusion argument it is then straightforward to show that

|C
(
τ
)
| =

∑

d|n
µ(n/d) |C(kd)|,

where µ is the Möbius function. Say that λ is any partition and that σ ∈ S|λ|
has the property c(σ) = λ. Since C

(
σ
)

consists of tuples of distinct points it
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directly follows that

(2.1) |C
(
σ
)
| =

ν∏

i=1

λi−1∏

j=0

(∑

d|i

(
µ(i/d) |C(kd)| − ji

))
.

Fix a curve C over k and let X1, . . . , Xm be representatives of the distinct k-
isomorphism classes of the subcategory of Rσ of elements (D, q1, . . . , qn) where
D ∼=k C. For each Xi we can act with Autk(C) which gives an orbit lying in
Rσ and where the stabilizer of Xi is equal to Autk(Xi). Together the orbits of
X1, . . . , Xm will contain |C

(
σ
)
| elements and hence we obtain

(2.2) |HFσ
g,n | =

∑

[X]∈Rσ/∼=k

1

|Autk(X)| =
∑

[C]∈Hg(k)/∼=k

|C
(
σ
)
|

|Autk(C)| .

We will compute slightly different numbers than |HFσ
g,n |, but which contain

equivalent information. Let C be a curve defined over k. The Lefschetz trace
formula tells us that for all m ≥ 1,
(2.3)

|C(km)| = |CFmk̄ | = 1 + qm − am(C) where am(C) = Tr
(
Fm, H1(Ck̄,Qℓ)

)
.

If we consider equations (2.1) and (2.2) in view of equation (2.3) we find that

|HFσ
g,n | =

∑

[C]∈Hg(k)/∼=k

1

|Autk(C)| fσ(q, a1(C), . . . , an(C)),

where fσ(x0, . . . , xn) is a polynomial with coefficients in Z. Give the variable
xi degree i. Then there is a unique monomial in fσ of highest degree, namely
xλ1

1 · · ·xλνν . The numbers which we will pursue will be the following.

Definition 2.2. For g ≥ 2 and any partition λ define

(2.4) aλ|g :=
∑

[C]∈Hg(k)/∼=k

1

|Autk(C)|

ν∏

i=1

ai(C)λi .

This expression will be said to have weight |λ|. Let us also define

a0|g :=
∑

[C]∈Hg(k)/∼=k

1

|Autk(C)| ,

an expression of weight 0.

3. Representatives of hyperelliptic curves in odd characteristic

Assume that the finite field k has an odd number of elements. The hyperelliptic
curves of genus g ≥ 2 are the ones endowed with a degree 2 morphism to P1.
This morphism induces a degree 2 extension of the function field of P1. If we
consider hyperelliptic curves defined over the finite field k and choose an affine
coordinate x on P1, then we can write this extension in the form y2 = f(x),
where f is a square-free polynomial with coefficients in k of degree 2g + 1 or
2g+ 2. At infinity, we can describe the curve given by the polynomial f in the
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coordinate t = 1/x by y2 = t2g+2 f(1/t). We will therefore let f(∞), which
corresponds to t = 0, be the coefficient of f of degree 2g + 2.

Definition 3.1. Let Pg denote the set of square-free polynomials with coeffi-
cients in k and of degree 2g+ 1 or 2g+ 2, and let P ′g ⊂ Pg consist of the monic
polynomials. Write Cf for the curve corresponding to the element f in Pg.

By construction, there exists for each k-isomorphism class of objects in Hg(k)
an f in Pg such that Cf is a representative. Moreover, the k-isomorphisms
between curves corresponding to elements of Pg are given by k-isomorphisms of
their function fields. By the uniqueness of the linear system g1

2 on a hyperelliptic
curve, these isomorphisms must respect the inclusion of the function field of
P1. The k-isomorphisms are therefore precisely (see [16, p. 126]) the ones
induced by elements of the group G := GLop

2 (k)× k∗/D where

D := {(
( a 0

0 a

)
, ag+1) : a ∈ k∗} ⊂ GLop

2 (k)× k∗

and where an element

γ = [(
(
a b
c d

)
, e)] ∈ G

induces the isomorphism

(x, y) 7→
(
ax+ b

cx+ d
,

ey

(cx+ d)g+1

)
.

This defines a left group action of G on Pg, where γ ∈ G takes f ∈ Pg to

f̃ ∈ Pg, with

(3.1) f̃(x) =
(cx + d)2g+2

e2
f
(ax+ b

cx+ d

)
.

Notation 3.2. Let us put I := 1/|G| = (q3 − q)−1(q − 1)−1.

Definition 3.3. Let χ2,m be the quadratic character on km. Recall that it is
the function that takes α ∈ km to 1 if it is a square, to −1 if it is a nonsquare
and to 0 if it is 0. With a square or a nonsquare we will always mean a nonzero
element.

Lemma 3.4. If Cf is the hyperelliptic curve corresponding to f ∈ Pg then

am(Cf ) = −
∑

α∈P1(km)

χ2,m

(
f(α)

)
.

Proof: The fiber of Cf → P1 over α ∈ A1(km) will consist of two points
defined over km if f(α) is a square in km, no point if f(α) is a nonsquare in
km, and one point if f(α) = 0. By the above description of f in terms of the
coordinate t = 1/x, the same holds for α = ∞. The lemma now follows from
equation (2.3). �
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We will now rephrase equation (2.4) in terms of the elements of Pg. By what
was said above, the stabilizer of an element f in Pg under the action of G is
equal to Autk(Cf ) and hence

(3.2) aλ|g =
∑

[f ]∈Pg/G

1

|StabG(f)|

ν∏

i=1

ai(Cf )λi =

=
1

|G|
∑

f∈Pg

ν∏

i=1

ai(Cf )λi = I
∑

f∈Pg

ν∏

i=1

(
−

∑

α∈P1(ki)

χ2,i

(
f(α)

))λi
.

This can up to sign be rewritten as

(3.3) I
∑

f∈Pg

∑

(α1,1,...,αν,λν )∈S

ν∏

i=1

λi∏

j=1

χ2,i

(
f(αi,j)

)
,

where S :=
∏ν
i=1 P1(ki)

λi , in other words, αi,j ∈ P1(ki) for each 1 ≤ i ≤ ν and
1 ≤ j ≤ λi. The sum (3.3) will be split into parts for which we, in Section 4,
will find recurrence relations in g.

Definition 3.5. For any tuple n = (n1, . . . , nm) ∈ Nm≥1, let the set A(n) consist

of the tuples α = (α1, . . . , αm) ∈ ∏m
i=1 P1(kni) such that for any 1 ≤ i, j ≤ m

and any s ≥ 0,

F s(αi) = αj =⇒ ni|s and i = j.

Let us also define A′(n) := A(n) ∩∏m
i=1 A1(kni).

Definition 3.6. Let Nm denote the set of pairs (n; r) such that n =
(n1, . . . , nm) ∈ Nm≥1 and r = (r1, . . . , rm) ∈ {1, 2}m.

Definition 3.7. For any g ≥ −1, (n; r) ∈ Nm and α = (α1, . . . , αm) ∈ A(n)
define

u(n;r)
g,α := I

∑

f∈Pg

m∏

i=1

χ2,ni

(
f(αi)

)ri

and

u(n;r)
g :=

∑

α∈A(n)

u(n;r)
g,α .

Construction-Lemma 3.8. For each λ, there are positive integers c1, . . . , cs
and m1, . . . ,ms, and moreover pairs (n(i); r(i)) ∈ Nmi for each 1 ≤ i ≤ s, such
that for any finite field k,

aλ|g =
s∑

i=1

ci u
(n(i);r(i))
g .

Proof: The lemma will be proved by writing the set S as a disjoint union of
parts that only depend upon the partition λ, and which therefore are indepen-
dent of the chosen finite field k.
For each positive integer i, let i = di,1 > . . . > di,δi = 1 be the divisors of i.
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⋆ For each 1 ≤ i ≤ ν, let Ti,1, . . . , Ti,δi be an ordered partition of the set
{1, . . . , λi} into (possibly empty) subsets.

⋆ For each 1 ≤ i ≤ ν and each 1 ≤ j ≤ δi, let Qi,j,1, . . . , Qi,j,κi,j be
an unordered partition (where κi,j is arbitrary) of the set Ti,j into
non-empty subsets.

From such a choice of partitions we define a subset S′ = S({Ti,j}, {Qi,j,k})
of S consisting of the tuples (α1,1, . . . , αν,λν ) ∈ S fulfilling the following two
properties.

⋆ If x ∈ Ti,j then: αi,x ∈ kj and ∀s < j, αi,x /∈ ks.
⋆ If x ∈ Qi,j,k and x′ ∈ Qi′,j′,k′ then:

∃s : F s(αi,x) = αi′,x′ ⇐⇒ (i, j, k) = (i′, j′, k′).

Define n to be equal to the tuple

(

κ1,1
z }| {

d1,1, . . . , d1,1,

κ1,2
z }| {

d1,2, . . . , d1,2, . . . ,

κ1,δ1
z }| {

d1,δ1 , . . . , d1,δ1 ,

κ2,1
z }| {

d2,1, . . . , d2,1, . . . ,

κν,δν
z }| {

dν,δν , . . . , dν,δν ).

Let ρi,j,k be equal to 2 if either i/di,j or |Qi,j,k| is even, and 1 otherwise.
Define r to be equal to

(ρ1,1,1, ρ1,1,2, . . . , ρ1,1,κ1,1 , ρ1,2,1, . . . , ρ1,δ1,κ1,δ1
, ρ2,1,1, . . . , ρν,δν ,κν,δν ).

The equality

u(n;r)
g = I

∑

f∈Pg

∑

(α1,1,...,αν,λν )∈S′

ν∏

i=1

λi∏

j=1

χ2,i

(
f(αi,j)

)

is clear in view of the following three simple properties of the quadratic char-
acter.

⋆ Say that α ∈ P1(ks), then if s̃/s is even we have χ2,s̃

(
f(α)

)
=

χ2,s

(
f(α)

)2
and if s̃/s is odd we have χ2,s̃

(
f(α)

)
= χ2,s

(
f(α)

)
.

⋆ If for any α, β ∈ P1 we have F s(α) = β for some s, then χ2,i

(
f(α)

)
=

χ2,i

(
f(β)

)
for all i.

⋆ Finally, for any α ∈ P1 and any s, we have χ2,s

(
f(α)

)r
= χ2,s

(
f(α)

)2

if r is even and χ2,s

(
f(α)

)r
= χ2,s

(
f(α)

)
if r is odd.

The lemma now follows directly from the fact that the sets S({Ti,j}, {Qi,j,k}) ⊂
S (for different choices of partitions {Ti,j} and {Qi,j,k}) are disjoint and cover
S. �

The set of data {(ci, (n(i); r(i)))} resulting from the procedure given in the
proof of Construction-Lemma 3.8 is, after assuming the pairs (n(i); r(i)) to be
distinct, unique up to simultaneous reordering of the elements of n(i) and r(i)

for each i, and it will be called the decomposition of aλ|g.
Definition 3.9. For a partition λ, the pair

(n; r) =
(
(

λ1︷ ︸︸ ︷
1, . . . , 1,

λ2︷ ︸︸ ︷
2, . . . , 2, . . . ,

λν︷ ︸︸ ︷
ν, . . . , ν); (1, . . . , 1)

)
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will appear in the decomposition of aλ|g (corresponding to the partitions Ti,1 =
{1, . . . , λi} for 1 ≤ i ≤ ν, and Qi,1,k = {k} for 1 ≤ i, k ≤ ν) with coefficient
equal to 1, and it will be called the general case. All other pairs (n; r) appearing
in the decomposition of aλ|g will be refered to as degenerations of the general
case.

Definition 3.10. For any (n; r) ∈ Nm, the number |n| :=
∑m

i=1 ni will be
called the degree of (n; r).

Lemma 3.11. The general case is the only case in the decomposition of aλ|g
which has degree equal to the weight of aλ|g.
Proof: If (n; r) appears in the decomposition of aλ|g and is associated to

the partitions {Ti,j} and {Qi,j,k}, then |n| =
∑ν

i=1

∑δi
j=1 κi,jdi,j . Since λi =

∑δi
j=1 κi,j and 1 ≤ di,j ≤ i, the equality |λ| = |n| implies that κi,1 = λi and

κi,j = 0 if j 6= 1. �

Lemma 3.12. If (n; r) appears in the decomposition of aλ|g then
∑m
i=1 rini ≤ |λ|

and these two numbers have the same parity.

Proof: If (n; r) appears in the decomposition of aλ|g and is associated to the

partitions {Ti,j} and {Qi,j,k}, then
∑m

i=1 rini =
∑ν

i=1

∑δi
j=1

∑κi,j
k=1 ρi,j,kdi,j .

Let us prove the lemma by induction on m, starting with the case that m =∑ν
i=1 λi. In this case we must have |Qi,j,k| = 1 for all 1 ≤ i ≤ ν, 1 ≤ j ≤ δi

and 1 ≤ k ≤ κi,j , and hence ρi,j,k is only equal to two if i/di,j is even. This
directly tells us that ρi,j,kdi,j ≤ i, and that these two numbers have the same

parity. Since λi =
∑δi

j=1 κi,j , it follows that
∑m
i=1 rini ≤ |λ| and that these

two numbers have the same parity.
Assume now that m = k and that the lemma has been proved for all pairs (ñ; r̃)
with m̃ > k. Since m <

∑ν
i=1 λi we know that there exists numbers i0, j0, k0

such that |Qi0,j0,k0 | ≥ 2. Let us fix an element x ∈ Qi0,j0,k0 and define a new
pair (n′; r′) associated to the partitions {T ′i,j} and {Q′i,j,k} by putting:

⋆ T ′i,j = Ti,j for all 1 ≤ i ≤ ν and 1 ≤ j ≤ δi,
⋆ Q′i0,j0,k0 = Qi0,j0,k0 \ {x},
⋆ κ′i0,j0 = κi0,j0 + 1 and Q′i0,j0,κ′i0,j0

= {x},
⋆ Q′i,j,k = Qi,j,k in all other cases.

The pair (n′, r′) thus appears in the decomposition of λ, and m′ = k + 1.

Moreover, we directly find that
∑m

i=1 rini ≤
∑m′

i=1 r
′
in
′
i and that these two

numbers have the same parity. By the induction hypothesis the lemma is then
also true for (n; r). �

Example 3.13. Let us decompose a[22]|g starting with the general case:

a[22]|g = I
∑

f∈Pg

(
−
∑

α∈P1(k2)

χ2,2

(
f(α)

))2

= I
∑

f∈Pg

∑

α,β∈P1(k2)

χ2,2

(
f(α)f(β)

)
=

= u((2,2);(1,1))
g + 2u((2,1);(1,2))

g + 2u((2);(2))
g + u((1,1);(2,2))

g + u((1);(2))
g .
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Example 3.14. The decomposition of a[14,2]|g, starting with the general case:

a[14,2]|g = −u((2,1,1,1,1);(1,1,1,1,1))
g − 6u((2,1,1,1);(1,2,1,1))

g − 3u((2,1,1);(1,2,2))
g

− 4u((2,1,1);(1,1,1))
g − u((2,1);(1,2))

g − u((1,1,1,1,1);(2,1,1,1,1))
g − 6u((1,1,1,1);(2,2,1,1))

g

− 4u((1,1,1,1),(1,1,1,1))
g − 3u((1,1,1);(2,2,2))

g − 22u((1,1,1);(2,1,1))
g

− 7u((1,1);(2,2))
g − 8u((1,1);(1,1))

g − u((1);(2))
g .

3.1. The cases of genus 0 and 1. We would like to have an equality of the
same kind as in equation (3.2), but for curves of genus 0 and 1. Every curve of
genus 0 or 1 has a morphism to P1 of degree 2 and in the same way as for larger
genera, it then follows that every k-isomorphism class of curves of genus 0 or 1
has a representative among the curves coming from polynomials in P0 and P1

respectively. But there is a difference, compared to the larger genera, in that
for curves of genus 0 or 1 the g1

2 is not unique. In fact, the group G induces (in
the same way as for g ≥ 2) all k-isomorphisms between curves corresponding
to elements of P0 and P1 that respect their given morphisms to P1 (i.e a fixed
g1
2), but not all k-isomorphisms between curves of genus 0 or 1 are of this form.

Let us, for all r ≥ 0, define the category Ar consisting of tuples (C,Q0, . . . , Qr)
where C is a curve of genus 1 defined over k and the Qi are, not necessarily
distinct, points on C defined over k. The morphisms of Ar are, as expected,
isomorphisms of the underlying curves that fix the marked points. Note that
A0 is isomorphic to the category M1,1(k). We also define, for all r ≥ 0, the
category Br consisting of tuples (C,L,Q1, . . . , Qr) of the same kind as above,
but where L is a g1

2 . A morphism of Br is an isomorphism φ of the underlying
curves that fixes the marked points, and such that there is an isomorphism τ
making the following diagram commute:

C
φ−−−−→ C′

L

y
yL′

P1 τ−−−−→ P1.

Consider P1 as a category where the morphisms are given by the elements of
G. To every element of P1 there corresponds, precisely as for g ≥ 2, a curve
Cf together with a g1

2 given by the morphism to P1, thus an element of B0.
Since every morphism in B0 between objects corresponding to elements of P1

is induced by an element of G, and since for every k-isomorphism class of an
element in B0 there is a representative in P1, the two categories P1 and B0 are
equivalent.
For all r ≥ 1 there are equivalences of the categories Ar and Br given by

(C,Q0, . . . , Qr) 7→ (C, |Q0 +Q1|, Q1, . . . , Qr),

with inverse

(C,L,Q1, . . . , Qr) 7→ (C, |L −Q1|, Q1, . . . , Qr).
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We therefore have the equality

∑

[X]∈Ar/∼=k

1

|Autk(X)|

ν∏

i=1

ai(C)λi =
∑

[Y ]∈Br/∼=k

1

|Autk(Y )|

ν∏

i=1

ai(C)λi .

The Riemann hypothesis tells us that |ar(C)| ≤ 2g
√
qr, for any finite field k

with q elements and for any curve C defined over k of genus g. For genus 1
this implies that |C(k)| ≥ q+ 1− 2

√
q > 0, and thus every genus 1 curve has a

point defined over k. There is therefore a number s such that 1 ≤ |C(k)| ≤ s
for all genus 1 curves C. As in the argument preceding equation (2.2) we can
take a representative (C,Q0, . . . , Qr) for each element of Ar/ ∼=k and act with
Autk(C,Q0), respectively for each representative (C,L,Q1, . . . , Qr) of B0/ ∼=k

act with Autk(C,L), and by considering the orbits and stabilizers we get

s∑

j=1

jr
∑

[X]∈A0/∼=k
|C(k)|=j

1

|Autk(X)|

ν∏

i=1

ai(C)λi =

s∑

j=1

jr
∑

[Y ]∈B0/∼=k
|C(k)|=j

1

|Autk(Y )|

ν∏

i=1

ai(C)λi .

Since this holds for all r ≥ 1 we can, by a Vandermonde argument, conclude
that we have an equality as above for each fixed j. We can therefore extend
Definition 2.2 to genus 1 in the following way:

(3.4) aλ|1 :=
∑

[(C,Q0)]∈
M1,1(k)/∼=k

1

|Autk(C,Q0)|

ν∏

i=1

ai(C)λi =

=
∑

[f ]∈P1/G

1

|StabG(f)|
ν∏

i=1

ai(Cf )λi = I
∑

f∈P1

ν∏

i=1

ai(Cf )λi ,

which gives an agreement with equation (3.2).
All curves of genus 0 are isomorphic to P1 and ar(P

1) = 0 for all r ≥ 1. In
this trivial case we just let equation (3.2) be the definition of aλ|0.

4. Recurrence relations for ug in odd characteristic

This section will be devoted to finding, for a fixed finite field k with an odd
number of elements and for a fixed pair (n; r) ∈ Nm, a recurrence relation for
ug. Notice that we will often suppress the pair (n; r) in our notation and for

instance write ug instead of u
(n;r)
g .

Fix a nonsquare t in k and an α = (α1, . . . , αm) ∈ A(n). Multiplying with the
element t gives a fixed point free action on the set Pg and therefore

(4.1) ug,α = I
∑

f∈Pg

m∏

i=1

χ2,ni

(
f(αi)

)ri
= I

∑

f∈Pg

m∏

i=1

χ2,ni

(
t f(αi)

)ri
=

= I
∑

f∈Pg

m∏

i=1

χ2,ni(t)
ri χ2,ni

(
f(αi)

)ri
= (−1)

Pm
i=1 rini ug,α.
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This computation and Lemmas 3.8 and 3.12 proves the following lemma.

Lemma 4.1. For any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n), if
∑m

i=1 rini is odd
then ug,α = 0. Consequently, aλ|g is equal to 0 if it has odd weight.

Thus, the only interesting cases are those for which
∑m
i=1 rini is even.

Remark 4.2. The last statement of Lemma 4.1 can also be found as a conse-
quence of the existence of the hyperelliptic involution.

We also see from equation (4.1) that

(4.2) ug,α = I (q − 1)
∑

f∈P ′g

m∏

i=1

χ2,ni

(
f(αi)

)ri
if

m∑

i=1

rini is even.

Definition 4.3. Let Qg denote the set of all polynomials (that is, not neces-
sarily square-free) with coefficients in k and of degree 2g+ 1 or 2g+ 2, and let
Q′g ⊂ Qg consist of the monic polynomials. For a polynomial h ∈ Qg we let
h(∞) be the coefficient of the term of degree 2g+ 2 (which extends the earlier
definition for elements in Pg). For any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n),
define

U (n;r)
g,α := I

∑

h∈Qg

m∏

i=1

χ2,ni

(
h(αi)

)ri
,

U (n;r)
g :=

∑

α∈A(n)

U (n;r)
g,α and Û (n;r)

g :=

g∑

i=−1

U
(n;r)
i .

We will find an equation relating Ug to ui for all −1 ≤ i ≤ g. Moreover, for
g large enough we will be able to compute Ug. Together, this will give us our
recurrence relation for ug.
With the same arguments as was used to prove equation (4.2) one shows that

(4.3) Ug,α = I (q − 1)
∑

h∈Q′g

m∏

i=1

χ2,ni

(
h(αi)

)ri
if

m∑

i=1

rini is even.

Definition 4.4. For any α = (α1, . . . , αm) ∈ A′(n), let bj = bnj be the number

of monic polynomials l of degree j such that l(αi) is nonzero for all i. Let us

also put b̂j = b̂nj :=
∑j

i=0 b
n
i .

Lemma 4.5. For each j ≥ 0 and n ∈ Nm≥1, we have the equality

(4.4) bj = qj +

j∑

i=1

(−1)i
∑

1≤m1<...<mi≤mPi
l=1 nml≤j

qj−
Pi
l=1 nml

from which it follows that bj does not depend upon the choice of α ∈ A′(n).

Proof: The numbers bj can be computed by inclusion-exclusion, where the
choice of 1 ≤ m1 < . . . < mi ≤ m corresponds to demanding the polynomial
to be 0 in the points αm1 , . . . , αmi . �
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Notation 4.6. For any α ∈ A′(n), let pαi denote the minimal polynomial of
αi and put pα :=

∏m
i=1 pαi .

Lemma 4.7. For any α ∈ A′(n) there is a one-to-one correspondence be-
tween polynomials f defined over k with deg(f) ≤ |n| − 1, and tuples
(f(α1), . . . , f(αm)) ∈ ∏m

i=1 kni .

Proof: For any α ∈ A′(n) we have deg(pαi) = ni and gcd(pαi , pαj ) = 1 if
i 6= j. The lemma now follows from the Chinese remainder theorem, which
tells us that the morphism k[x]/pα →

∏m
i=1 k[x]/pαi

∼=
∏m
i=1 kni given by

f(x) 7→ (f(α1), . . . , f(αm)) is an isomorphism. �

Notation 4.8. Let Rj denote the set of polynomials of degree j and let R′j be
the subset containing the monic polynomials.

We will divide into two cases.

4.1. The case α ∈ A′(n). Fix an element α ∈ A′(n). Any nonzero polyno-
mial h can be written uniquely in the form h = f l2 where f is a square-free
polynomial and l is a monic polynomial. This statement translates directly
into the equality

Us,α = I
∑

j+k=s

∑

l∈R′j

∑

f∈Pk

m∏

i=1

χ2,ni

(
f(αi)

)ri
χ2,ni

(
l(αi)

)2ri
=

s+1∑

j=0

bjus−j,α,

because for any β ∈ A1(ks), χ2,s

(
(fl2)(β)

)
= χ2,s

(
f(β)

)
if l(β) 6= 0. Summing

this equality over all s between −1 and g gives

(4.5) Ûg,α =

g+1∑

j=0

b̂jug−j,α.

If ri = 2 for all i, then it follows from equation (4.3) that

Us,α = I (q − 1)
∑

h∈Q′s

m∏

i=1

χ2,ni

(
h(αi)

)2
= I (q − 1)(b2s+2 + b2s+1).

Summing this equality over all s between −1 and g gives

(4.6) Ûg,α = I (q − 1)b̂2g+2 for g ≥ −1 if ∀i : ri = 2.

In Ûg,α we are summing over all polynomials h of degree less than or equal
to 2g + 2, and every h can uniquely be written on the form h1 + pαh2, with
deg h1 ≤ |n| − 1 and deg h2 ≤ 2g + 2 − |n|. Hence if 2g + 2 ≥ |n| − 1 we find
that

Ûg,α = I q2g+3−|n|
|n|−1∑

s=1

∑

h1∈Rs

m∏

i=1

χ2,ni

(
h1(αi)

)ri
.

Using Lemma 4.7 we can reformulate this equality as

Ûg,α = I q2g+3−|n| ∑

(β1,...,βm)∈Qm
i=1 kni

m∏

i=1

χ2,ni(βi)
ri .
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For any j, half of the nonzero elements in kj are squares and half are nonsquares,
and thus if ri = 1 for some i, we can conclude from this equality that

(4.7) Ûg,α = 0 for g ≥ (|n| − 3)/2 if ∃i : ri = 1.

4.2. The case α ∈ A(n) \ A′(n). Fix an element α ∈ A(n) \ A′(n). We
can assume that α1 = ∞, and then α̃ := (α2, . . . , αm) ∈ A′(ñ) where ñ :=
(n2, . . . , nm).
If h ∈ Qg and f ∈ Pj such that h = f l2 for some monic polynomial l (which is
then unique), then h(∞) = f(∞), because the coefficient of h of degree 2g + 2
must equal the coefficient of f of degree 2j + 2. As in Section 4.1 we get
(4.8)

Ug,α = I
∑

j+k=g

∑

l∈R′j

∑

f∈Pk
f(∞)

m∏

i=2

χ2,ni

(
f(αi)

)ri
χ2,ni

(
l(αi)

)2ri
=

g+1∑

j=0

bñj ug−j,α.

If
∑m

i=1 rini is even, equation (4.3) and the definition of h(∞) shows that

(4.9) Ug,α = I (q − 1)
∑

h∈R′2g+2

m∏

i=2

χ2,ni

(
h(αi)

)ri
.

If ri = 2 for all i, then equation (4.9) tells us that

(4.10) Ug,α = I (q − 1)bñ2g+2 for g ≥ −1, ∀i : ri = 2.

If 2g + 2 ≥ |n| − 1, an element h ∈ R′2g+2 can be written uniquely as h =
h1 + pα̃h2, where deg(h1) ≤ |n| − 2, deg(h2) ≥ 0 and h2 monic. In the same
way as in Section 4.1 we can (if

∑m
i=1 rini is even) use this together with

equation (4.9) and Lemma 4.7 to conclude that

(4.11) Ug,α = 0 for g ≥ (|n| − 3)/2, ∃i : ri = 1,

which of course also holds if
∑m

i=1 rini is odd by Lemma 4.1 and equation (4.8).

Remark 4.9. Fix an α ∈ A(n). If there is an element β ∈ A1(k) such that
β /∈ {α1, . . . , αn}, then T (α) := (T (α1), . . . , T (αn)) is in A′(n), where T is the
projective transformation of P1

k defined by x 7→ βx/(x− β).

In the notation of equation (3.1), χ2,ni

(
f(T (αi))

)
= χ2,ni

(
f̃(αi)

)
(with e =

1). Since this induces a permutation of Pg, we find that ug,α = ug,T (α) and
similarily that Ug,α = Ug,T (α). So, if q ≥ |n|, then equations (4.5), (4.6) and
(4.7) will also hold for α ∈ A(n) \ A′(n). By Lemma 4.10 in the next section,
we will see that this is true even if q < |n|.

4.3. The two cases joined. In this section we will put the results of the two
previous sections together using the following lemma.

Lemma 4.10. For any ñ = (n2, . . . , nm), if n = (1, n2, . . . , nm) then b̂nj = bñj .
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Proof: Fix any tuple n = (n1, . . . , nm) and put n := |n|. If we let ti = qni in
the formula

m∏

i=1

(ti − 1) = t1 · · · tm +

m∑

i=1

(−1)i
∑

1≤m1<...<mi≤m
t1 · · · tm

1

tm1

· · · 1

tmi
,

then the right hand side is equal to the right hand side of equation (4.4), and
hence

(4.12)

m∏

i=1

(qni − 1) = bnn.

Say that bnj =
∑j

i=0 c
n
j,iq

i and b̂nj =
∑j
i=0 ĉ

n
j,iq

i. If i ≤ j then equation (4.4)

implies that cnj,i = cnn,n+i−j and hence ĉnj,i =
∑j

s=0 c
n
n,n+i−s. By equation

(4.12) we know that q − 1 divides bnn, and if bnn/(q − 1) =
∑n−1
i=0 diq

i then
ĉnj,i = dn−1+i−j .
So, if n1 = 1 and ñ = (n2, . . . , nm) then bnn/(q − 1) = bñn−1 and thus ĉnj,i =

cñn−1,n−1+i−j = cñj,i. �

Notation 4.11. Let us write J := I (q − 1) |A(n)|.
Theorem 4.12. For any pair (n; r) ∈ Nm,

g+1∑

j=0

b̂jug−j =

{
J b̂2g+2 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .

Proof: The theorem follows from combining equations (4.5), (4.6), (4.7) and
equations (4.8), (4.10), (4.11), using Lemma 4.10. �

Note that with this theorem we can, for any (n; r) ∈ Nm such that ri = 2 for
all i, compute ug for any g. Moreover, for any pair (n; r) we can compute ug
for any g, if we already know ug for all g < (|n| − 3)/2.

Lemma 4.13. For any n, q − 1 divides bn|n|, and if we write bn|n|/(q − 1) =
∑|n|−1

i=0 diq
i then b̂j − qb̂j−1 = d|n|−1−j.

Proof: The first claim is shown in the proof of Lemma 4.10. Using the notation

of that proof we find that b̂j − qb̂j−1 =
∑j

i=0 dn−1+i−jqi −
∑j−1

i=0 dn+i−jqi+1 =
dn−1−j . Note that dn−1−j only depends upon n and not on q. �

Theorem 4.14. For any pair (n; r) ∈ Nm,

min(|n|−1,g+1)∑

j=0

(b̂j − qb̂j−1)ug−j =

{
J (b̂2g+2 − qb̂2g) if ∀i : ri = 2, g ≥ 0;

0 if ∃i : ri = 1, g ≥ |n|−1
2 .

Proof: Let us temporarily put F (s) :=
∑s+1

j=0 b̂jus−j . From Lemma 4.13 we

find that b̂j − qb̂j−1 = 0 if j > |n|− 1. The theorem then follows from applying
Theorem 4.12 to the expression F (g)− qF (g − 1). �
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For g ≥ (|n| − 1)/2, Theorem 4.14 presents us with a linear recurrence relation
for ug which has coefficients that are independent of the finite field k.

Example 4.15. If (n; r) = ((2, 1, 1, 1); (1, 2, 1, 1)) then bn5/(q−1) = (q2−1)(q−
1)2 = q4 − 2q3 + 2q − 1. Applying Lemma 4.13 and then Theorem 4.14 we get

ug − 2ug−1 + 2ug−3 − ug−4 = 0 for g ≥ 3.

Example 4.16. Let us compute ug, for all g ≥ −1, when (n; r) =
((1, 1, 1), (2, 2, 2)). We have that u−1 = J = 1 and since ri = 2 for all i,
Theorem 4.14 gives the equality u0 = 2u−1 + J(q2 − 3q + 1) = q2 − 3q + 3.
Applying Theorem 4.14 again we get

ug − 2ug−1 + ug−2 = q2g−1(q − 1)3 for g ≥ 1.

Solving this recurrence relation gives

u((1,1,1);(2,2,2))
g =

q2g+3(q − 1)− (2g + 2)(q2 − 1) + 3q + 1

(q + 1)2
for g ≥ −1.

5. Linear recurrence relations for aλ|g
Remark 5.1. From a sequence vn that fulfills a linear recurrence relation with
characteristic polynomial C we can, for any polynomial D, in the obvious way
construct a linear recurrence relation for vn with characteristic polynomial CD.
Thus, from two sequences vn and wn that each fulfill linear recurence relation
with characteristic polynomial C and D respectively, we can construct a linear
recurence relation for the sequence vn + wn with characteristic polynomial
lcm(C,D).

Theorem 5.2. By applying Theorem 4.14 to each pair (n; r) appearing in the
decomposition (given by Lemma 3.8) of aλ|g, we get a linear recurrence relation
for aλ|g. The characteristic polynomial C(X) of this linear recurrence relation
equals

(5.1)
1

X − 1

ν∏

i=1

(X i − 1)λi .

Proof: Fix any pair (n; r) in the decomposition of aλ|g and put n = |n|.
Lemma 4.13 tells us that b̂j − qb̂j−1 is equal to the coefficient of qn−1−j

in bn/(q − 1). If g ≥ n − 1, then these numbers are also the coefficients
in the recurrence relation given by Theorem 4.14. By equation (4.12), the
characteristic polynomial C(n;r) of this linear recurrence relation is equal to

(
∏m
i=1(Xni − 1))/(X − 1).

We find that the linear recurrence relation in the general case (see Defini-
tion 3.9) will have characteristic polynomial equal to C. Moreover, we find (by
their construction in the proof of Lemma 3.8) that if (n; r) is a degenerate case
then C(n;r)|C. The theorem now follows from Remark 5.1. �

Theorem 5.2 tells us that if we can compute aλ|g for g < |λ| − 1 then we can
compute it for every g. But note that by considering the individual cases in the
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decomposition of aλ|g we will do much better in Section 7, in the sense that we
will be able to use information from curves of only genus 0 and 1 to compute
aλ|g for any λ such that |λ| ≤ 6.

Example 5.3. For λ = [14, 2] the characteristic polynomial equals (X−1)4(X+
1), so if Vg is a particular solution to the linear recurrence relation for a[14,2]|g
then

a[14,2]|g = Vg +A3g
3 +A2g

2 +A1g +A0 +B0(−1)g,

where A0, A1, A2, A3 and B0 do not depend upon g.

6. Computing u0

In this section we will see that we can compute u0 for any choice of a pair
(n; r) ∈ Nm. This is due to the fact that if C is a curve of genus 0 then, for
all r, |C(kr)| = 1 + qr or equivalently ar(C) = 0.

Construction-Lemma 6.1. For each (n; r) ∈ Nm, there are numbers
c1, . . . , cs and pairs (n(1); r(1)), . . . , (n(s); r(s)), where r(i) = (2, . . . , 2) for all
i, such that for any finite field k,

u
(n;r)
0 =

s∑

i=1

ciu
(n(i);r(i))
0 .

Proof: Fix a pair (n; r) ∈ Nm. We will use induction over the number n := |n|,
where the base case n = 0 is trivial.
Let us put (ñ; r̃) = ((n2, . . . , nm); (r2, . . . , rm)). For an α̃ = (α2, . . . , αm) ∈
A(ñ) let P̂1

α̃(ki) be the set of all points in P1(ki) \ {α2, . . . , αm} that are
not defined over a proper subfield of ki. The set of α1 ∈ P1(kn1) such that
(α1, . . . , αm) ∈ A(n) then equals

(6.1) P1(kn1) \
(⋃

i|n1

P̂1
α̃(ki)

⋃

ni|n1

{αi, . . . , Fni−1αi}
)
.

Assume now that the lemma has been proved for all pairs of degree strictly less
than n. By reordering the elements of the pair (n; r) we can assume that r1 = 1,
because otherwise r = (2, . . . , 2) and we are done. By applying equation (6.1)
we get

(6.2) I
∑

α∈A(n)

m∏

i=1

χ2,ni

(
f(αi)

)ri
= I

∑

α̃∈A(ñ)

m∏

i=2

χ2,ni

(
f(αi)

)ri ·

·
(
−an1(Cf )−

∑

i|n1

∑

β∈P̂1
α̃(ki)

χ2,n1

(
f(β)

)
−
∑

ni|n1

ni χ2,n1

(
f(αi)

))
.

Let us put (n(i); r(i)) = ((i, n2, . . . , nm); (ni/i, r2, . . . , rm)) for all i that divides
ni and r̃(i) = (r2, . . . , ri−1, ri n1/ni, ri+1, . . . , rm) for all ni that divides n1.
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Summing both sides of equation (6.2) over polynomials f ∈ P0 and using that
an1(Cf ) = 0 then gives

(6.3) u
(n;r)
0 = −

∑

i|n1

u
(n(i);r(i))
0 −

∑

ni|n1

niu
(ñ;r̃(i))
0 .

Since |ñ| < n and |n(i)| < n, the lemma follows by induction from equa-
tion (6.3). �

Example 6.2. In the case (n; r) = ((6, 6, 3, 1, 1); (1, 1, 2, 2, 2)), the first step in
the procedure in the proof of Lemma 6.1 equals

u
(n;r)
0 = −u((6,3,3,1,1);(1,2,2,2,2))

0 − u((6,3,2,1,1);(1,2,1,2,2))
0 − u((6,3,1,1,1);(1,2,2,2,2))

0

− 5u
((6,3,1,1);(1,2,2,2))
0 − 6u

((6,3,1,1);(2,2,2,2))
0 .

Example 6.3. In the case (n; r) = ((4, 1, 1, 1); (1, 2, 1, 1)), the procedure in the
proof of Lemma 6.1 gives

u
(n;r)
0 = u

((2,1,1);(2,2,2))
0 +u

((1,1,1);(2,2,2))
0 +u

((1,1);(2,2))
0 −u((2,1);(2,2))

0 −u((1);(2))
0

7. Results for weight up to 7 in odd characteristic

We will in this section show that we, for any number g and any finite field k of
odd characteristic, can compute all aλ|g of weight at most 7. This is achieved
by decomposing aλ|g using Lemma 3.8 and employing the recurrence relation of
Theorem 4.12 on the different parts. This involves finding the necessary base
cases for the recurrence relations and that will be possible with the help of
results on genus 0 curves obtained in Section 6, and on genus 1 curves obtained
in the article [1].
We will write aλ|g,odd and ug,odd to stress that all results are in the case of odd
characteristic. See Section 10 for results in the case of even characteristic.

Example 7.1. Theorem 4.12 is applicable even if the degree is 0 (if considered

as a case when ri = 2 for all i) and with b̂j =
∑j

i=0 q
i. From Theorem 4.12 we

find that a0|0,odd = Jq2 = q/(q2 − 1) and again from Theorem 4.12 that

a0|g,odd = J(q2g+2 − q2g) = q2g−1 for g ≥ 1.

This result can also be found in [7, Proposition 7.1].

7.1. Degree at most 3. When the degree of the pair (n; r) is at most 3 we
find using Theorem 4.12 that we do not need any base cases to compute ug for
every g.

Example 7.2. Let us consider (n; r) = ((2); (1)). We have u−1 = J = 1/(q+1)
and applying Theorem 4.12 we get u0 = −(q+1)u−1 = −1. Theorem 4.14 tells
us that ug = −ug−1 for g ≥ 1 and thus

u
((2);(1))
g,odd = (−1)g+1 for g ≥ 0.
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Example 7.3. The result for a[2]|g,odd is

a[2]|g,odd = −u((2);(1))
g − u((1);(2))

g = (−1)g − q2g for g ≥ 0.

Example 7.4. The result for a[12]|g,odd is

a[12]|g,odd = u((1,1);(1,1))
g + u((1);(2))

g = −1 + q2g for g ≥ 0.

Remark 7.5. The result for (q2 + 1) a0|g,odd−a[2]|g,odd can be found in lecture
notes by Bradley Brock and Andrew Granville from 28 July 2003.

Example 7.6. Consider the case (n; r) = ((1, 1, 1); (2, 1, 1)). We have u−1 =
J = 1 and from Theorem 4.12 we get u0 = −(q−2)u−1 = −q+2. Theorem 4.14
gives the recurrence relation ug = 2ug−1 − ug−2 for g ≥ 1 and hence

u
((1,1,1);(2,1,1))
g,odd = g(−q + 1)− q + 2.

7.2. Degree 4 or 5. From Theorem 4.12 we find that when the degree of the
pair (n; r) is 4 or 5 we need the base case of genus 0. But the genus 0 case is
always computable using Lemma 6.1 and then Theorem 4.12, and hence the
same is true for ug for all g.

Example 7.7. For (n; r) = ((2, 1, 1); (1, 1, 1)) we have u−1 = q and from
Lemma 6.1 it follows that

u
((2,1,1);(1,1,1))
0 = −u((2,1);(1,2))

0 = u
((1,1);(2,2))
0 + u

((1);(2))
0 = q.

Using Theorem 4.12 we get u1 = −(q − 1)u0 − (q2 − q − 1)u−1 = −q3 + 2q.
Solving the recurrence relation ug = ug−1−ug−2−ug−3 for g ≥ 2, coming from
Theorem 4.14, gives

u
((2,1,1);(1,1,1))
g,odd =

1

4
(q3 − q)(−2g + (−1)g − 1) + q.

Example 7.8. The result for a[12,2]|g,odd is

a[12,2]|g,odd = −u((2,1,1);(1,1,1))
g − u((2,1);(1,2))

g − u((1,1,1);(2,1,1))
g

− u((1,1);(2,2))
g − 2u((1,1);(1,1))

g − u((1);(2))
g =

= −q
2g+2 − 1

q + 1
− q2g +

1

2
g(q3 + q − 2) +

1

2

{
2q if g ≡ 0 mod 2

q3 − q − 2 if g ≡ 1 mod 2

7.3. Weight 6. We will not be able to compute ug for all pairs (n; r) of de-
gree 6. But we will be able to compute ug for all pairs (n; r) that are general
cases in the decomposition of aλ|g for λ’s of weight 6. This will be sufficient
to compute all aλ|g of weight 6, because we saw in Lemma 3.11 that only the
general case will have degree 6 and therefore all degenerate cases are covered
in Sections 7.1 and 7.2.
Let ug be the general case in the decomposition of aλ|g. When the degree is
equal to 6 we see from Theorem 4.12 that we need the base cases of genus 0
and 1 to compute ug for all g. As we know, we can always compute u0 using
Lemma 6.1. For genus 1, the numbers aλ|1 have been computed for weight up
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to 6 by the author. This was done by embedding every genus 1 curve with a
given point as a plane cubic curve, see [1, Section 15]. Since we know all the
degenerate cases in the decomposition of aλ|1 we can then compute the general
case u1.

Example 7.9. Let us deal with (n; r) = ((6); (1)) which is the generic case in
the decomposition of a[6]|g,odd and for which we have u−1 = J = q3 + q − 1.
Using Lemma 6.1 we get

u
((6);(1))
0 = −u((3);(2))

0 − u((2);(1))
0 − u((1);(2))

0 = −u((3);(2))
0 = −q2.

Using the results of [1, Section 15] we find that a[6]|1 = q − 1. Decomposing

a[6]|g gives a[6]|1 = −u((6);(1))
1 − u

((3);(2))
1 − u

((2);(1))
1 − u((1);(2))

1 . Thus, using

Example 7.2, we get u1 = −(q − 1)− (q4 − q2 − q − 1)− 1− q2 = −q4 + 1. We
can now apply Theorem 4.12 which gives u2 = −(q + 1)u1 − (q2 + q + 1)u0 −
(q3 + q2 + q + 1)u−1 = −q6 + q2 − q, u3 = −u2 − u1 − u0 − u−1 = q6 + q4 − q3
and u4 = −u3− u2− u1− u0− u−1 = 0. If we then multiply the characteristic
polynomial for the linear recurrence relation of ug by X − 1 we get ug = ug−6

for all g ≥ 5.

Example 7.10. The result for a[6]|g,odd is

a[6]|g,odd = −u((6);(1))
g − u((3);(2))

g − u((2);(1))
g − u((1);(2))

g = −q2g −
q2g+3(q − 1)

q2 − q + 1
+

+
1

q2 − q + 1

8

><

>:

q2 if g ≡ 0 mod 3

−q2 − 1 if g ≡ 1 mod 3

1 if g ≡ 2 mod 3

+

8

>>>>>>>><

>>>>>>>>:

q2 + 1 if g ≡ 0 mod 6

q4 − 2 if g ≡ 1 mod 6

q6 − q2 + q + 1 if g ≡ 2 mod 6

−q6 − q4 + q3 − 1 if g ≡ 3 mod 6

1 if g ≡ 4 mod 6

−q3 − q if g ≡ 5 mod 6

Remark 7.11. For any choice of λ and g, consider aλ|g,odd as a function of the
number q of elements of the finite field k of odd characteristic. If λ is of weight
at most 7 it follows from our computations that this function is a polynomial
in the variable q.
This will not continue to hold when considering for instance a[16]|3, that is, also
including finite fields of even characteristic, see Example 10.6. But it will also
not hold for instance for a[110]|1,odd, which for prime fields will be a polynomial
function minus the Ramanujan τ -function, compare [15, Corollary 5.4].

8. Representatives of hyperelliptic curves in even characteristic

Let k be a finite field with an even number of elements. We will again describe
the hyperelliptic curves of genus g ≥ 2 defined over k by their degree 2 mor-
phism to P1. If we choose an affine coordinate x on P1 we can write the induced
degree 2 extension of the function field of P1 in the form y2 +h(x)y+f(x) = 0,
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where h and f are polynomials defined over k that fulfill the following condi-
tions:

2g + 1 ≤ max
(
2 deg(h), deg(f)

)
≤ 2g + 2;(8.1)

gcd(h, f ′2 + fh′2) = 1;(8.2)

t ∤ gcd(h∞, f
′2
∞ + f∞h

′2
∞).(8.3)

The last condition comes from the nonsingularity of the point(s) in infinity,
around which the curve can be described in the variable t = 1/x as y2 +
h∞(t)y + f∞(t) = 0, where h∞ := tg+1h(1/t) and f∞ := t2g+2f(1/t). We
therefore define h(∞) and f(∞) to be equal to the degree g + 1 and 2g + 2
coefficient respectively. For a reference see for instance [19, p. 294].

Definition 8.1. Let Pg denote the set of pairs (h, f) of polynomials defined
over k, where h is nonzero, that fulfill all three conditions (8.1), (8.2) and (8.3).
Write C(h,f) for the curve corresponding to the element (h, f) in Pg.

To each k-isomorphism class of objects in Hg(k) there is a pair (h, f) in Pg
such that C(h,f) is a representative. All k-isomorphisms between the curves
represented by elements of Pg are given by k-isomorphisms of their function
fields, and since the g1

2 of a hyperelliptic curve is unique the k-isomorphisms
must respect the inclusion of the function field of P1.
Identify the set of polynomials l(x) defined over k and of degree at most g + 1
with kg+2, and define the group homomorphism

φg : GLop
2 (k)× k∗ → Aut(kg+2), φg(

( a b
c d

)
, e)
(
l(x)

)
:=

e−1(cx+ d)g+1l
(ax+ b

cx+ d

)
.

Now define the group Gg :=
(
kg+2 ⋊φg (GLop

2 (k)× k∗)
)
/D where

D := {(0,
( a 0

0 a

)
, ag+1) : a ∈ k∗} ⊂ kg+2 ⋊φg (GLop

2 (k)× k∗).

The k-isomorphisms between curves corresponding to elements of Pg are then
precisely the ones induced by elements of Gg by letting

γ = [(l(x),
(
a b
c d

)
, e)] ∈ Gg

induce the isomorphism

(x, y) 7→
(
ax+ b

cx+ d
,
e
(
y + l(x)

)

(cx+ d)g+1

)
.

This defines a left group action of Gg on Pg, where γ = [(l,Λ, e)] ∈ Gg takes

(h, f) ∈ Pg to (h̃, f̃) ∈ Pg, with

(h̃, f̃) = (φg(Λ, e)(h), e−1φ2g(Λ, e)(f) + l φg(Λ, e)(h) + l2).
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Definition 8.2. Let τm be the function that takes (a, b) ∈ k2
m to 1 if the

equation y2 + ay+ b has two roots defined over km, 0 if it has one root and −1
if it has none.

Lemma 8.3. If C(h,f) is the hyperelliptic curve corresponding to (h, f) ∈ Pg
then

am(C(h,f)) = −
∑

α∈P1(km)

τm
(
h(α), f(α)

)
.

Proof: Follows in the same way as Lemma 3.4. �

Notation 8.4. Let us put Ig := 1/|Gg| = q−(g+2)(q3 − q)−1(q − 1)−1.

In the same way as in the case of odd characteristic we get the equality

aλ|g = Ig
∑

(h,f)∈Pg

ν∏

i=1

(
−

∑

α∈P1(ki)

τi
(
h(α), f(α)

))λi
.

All results of Section 3.1 are independent of the characteristic and hence we
extend the definition of aλ|g to genus 0 and 1 in the same way as in that section.

Definition 8.5. For any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n) define

u(n;r)
g,α := Ig

∑

(h,f)∈Pg

m∏

i=1

τni
(
h(αi), f(αi)

)ri

and

u(n;r)
g :=

∑

α∈A(n)

u(n;r)
g,α .

Construction-Lemma 8.6. For each λ we have (in even characteristic) the
same decomposition of aλ|g as given by Construction-Lemma 3.8.

Proof: The following properties of τm for (h, f) ∈ Pg correspond precisely to
the ones for the quadratic character.

⋆ Say that α ∈ P1(ks), then τs̃
(
h(α), f(α)

)
= τs

(
h(α), f(α)

)2
if s̃/s is

even, and τs̃
(
h(α), f(α)

)
= τs

(
h(α), f(α)

)
if s̃/s is odd.

⋆ If for any α, β ∈ P1 we have F s(α) = β for some s, then
τi
(
h(α), f(α)

)
= τi

(
h(α), f(β)

)
for all i.

⋆ Finally, for any α ∈ P1 and any s, τ,s
(
h(α), f(α)

)r
= τs

(
h(α), f(α)

)2

if r is even and τs
(
h(α), f(α)

)r
= τs

(
h(α), f(α)

)
if r is odd.

With this established we can use the same proof as for Construction-Lemma 3.8.
�

Since the decompositions are the same, Lemmas 3.11 and 3.12 also hold in even
characteristic.
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9. Recurrence relations for ug in even characteristic

Analogously to Section 4, this section will be devoted to finding for a fixed pair
(n; r) ∈ Nm, a recurrence relation for ug. Fix an s ∈ k which does not lie in the
set {r2 +r : r ∈ k}, that is, such that τ1(1, s) = −1. We define an involution on
Pg sending (h, f) to (h, f + s h2). This involution is fixed point free and hence

ug,α = Ig
∑

(h,f)∈Pg

m∏

i=1

τni
(
h(αi), f(αi)

)ri
=

= Ig
∑

(h,f)∈Pg

m∏

i=1

τni
(
h(αi), f(αi) + s h2(αi)

)ri
= (−1)

Pm
i=1 riniug,α.

Thus, Lemma 4.1 also holds in the case of even characteristic.

Definition 9.1. Let Qg denote the set of pairs (h, f) of polynomials over k,
where h is nonzero and h, f are of degree at most g + 1, 2g + 2 respectively.
Extending the definition for Pg above to a pair (h, f) ∈ Qg, let h(∞) and f(∞)
be equal to the degree g + 1 and 2g+ 2 coefficient of h and f respectively. For
any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n) define

Û (n;r)
g,α := Ig

∑

(h,f)∈Qg

m∏

i=1

τni
(
h(αi), f(αi)

)ri

and

Û (n;r)
g :=

∑

α∈A(n)

Û (n;r)
g,α .

Remark 9.2. The connection between the sets Qg and Pg which we will present
below is due to Brock and Granville and can be found in an early version of
[7]. There the connection is used to count the number of hyperelliptic curves
in even characteristic, which is a0|g,even in our terminology.

Lemma 9.3. Let h and f be polynomials over k. For any irreducible polynomial
m over k, the following two statements are equivalent:

⋆ m| gcd(h, f ′2 + fh′2);
⋆ there is a polynomial l over k, such that m|h and m2|f + hl + l2.

Proof: Say that α ∈ kn is a root of an irreducible polynomial m and of the

polynomial gcd(h, f ′2+fh′2). Let l be equal to f q
n/2. Working modulo (x−α)2

we then get

f + hl + l2 = f + hf q
n/2 + f q

n

≡ f(α) + f ′(α)(x − α) + h′(α)f(α)q
n/2(x − α) + f(α)q

n

≡ (x − α)(f ′(α) + h′(α)f(α)q
n/2) ≡ (x− α)(f ′(α)2 + h′(α)2f(α))1/2 = 0,

which tells us that m2|f +hl+ l2. For the other direction, assume that we have
an irreducible polynomialm and a polynomial l such thatm|h andm2|f+hl+l2.
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Differentiating the polynomial f + hl + l2 gives m2|f ′ + h′l + hl′, and thus
m|f ′ + h′l. Taking squares we get m2|f ′2 + h′2l2 and then it follows that
m2|f ′2 + h′2(f + hl) and hence m|f ′2 + h′2f . �

Let (h, f) be an element of Qg. In the first part of the proof of Lemma 9.3,

we may take for l any representative of f q
n/2 modulo h, because for these l we

have f + hl + l2 ≡ f + hf q
n/2 + f q

n

modulo (x − α)2. In the second part it
does not matter which degree l has. We conclude from this that Lemma 9.3
also holds if we assume that l is of degree at most g + 1.
Choose g ≥ −1 and let (h, f) ∈ Qg. Lemma 9.3 gives the following alternative
formulation of the conditions (8.1), (8.2) and (8.3). For all polynomials l of
degree at most g + 1:

m|h, m2|f + hl + l2 =⇒ deg(m) = 0;(9.1)

deg(h) = g + 1 or deg(f + hl + l2) ≥ 2g + 1.(9.2)

Here we used that t| gcd(h∞, f ′2∞ + f∞h′2∞) if and only if t|h∞ and there exists
a polynomial l∞ such that deg(l∞) ≤ g + 1 and t2|f∞ + h∞l∞ + l2∞. In turn,
this happens if and only if deg(h) ≤ g and there exists a polynomial l of degree
at most g+ 1 such that deg(f +hl+ l2) ≤ 2g, where we connect l and l∞ using
the definitions l := xg+1l∞(1/x) and l∞ := tg+1l(1/t).
This reformulation leads us to making the following definition.

Definition 9.4. Let ∼g be the relation on Qg given by (h, f) ∼g (h, f+hl+l2)
if l is a polynomial of degree at most g + 1. This is an equivalence relation
and since (h, f) = (h, f + hl + l2) if and only if l = 0 or l = h, the number of
elements of each equivalence class [(h, f)]g is qg+2/2. If (h, f) ∈ Pg ⊂ Qg then
[(h, f)]g ⊂ Pg and we get an induced equivalence relation on Pg which we also
denote ∼g.
We will now construct all ∼g equivalence classes of elements of Qg in terms of
the ∼i equivalence classes of the elements in Pi, where i is between −1 and g.
This is the counterpart of factoring a polynomial into a square-free part and a
squared part in the case of odd characteristic.

Definition 9.5. For z := [(h, f)]i ∈ Pi/ ∼i let Vz be the set of all equiva-
lence classes [(mh,m2f)]g in Qg for all monic polynomials m of degree at most
g − i. This is well defined since if (h1, f1) ∼i (h2, f2) then (mh1,m

2f1) ∼g
(mh2,m

2f2).

Lemma 9.6. The sets Vz for all z ∈ Pi/ ∼i where −1 ≤ i ≤ g are disjoint.

Proof: Say that for some z1 and z2 the intersection Vz1 ∩ Vz2 is nonempty.
That is, there exist (h1, f1) ∈ Pi1 , (h2, f2) ∈ Pi2 and monic polynomials m1,
m2 such that m1h1 = m2h2 and m2

1f1 = m2
2f2 + m2h2l + l2. If for some

irreducible polynomial r we have r|m1 but r ∤ m2, it follows that r|h2 and
r2|m2

2f2 + m2h2l + l2. By the equivalence of conditions (8.2) and (9.1), this
implies that r|(m2

2f2)′2 +m2
2f2(m2h2)′2 which in turn implies that r|f ′22 +f2h

′2
2 .

Since (h2, f2) ∈ Pi2 we see that r must be constant. Hence every irreducible
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factor of m1 is a factor of m2. The situation is symmetric and therefore the
converse also holds.
So far we have not ruled out the possibility that a factor in m1 appears with
higher multiplicity than in m2, or vice versa. Let m be the product of all
irreducible factors of m1 and put m̃1 := m1/m, m̃2 := m2/m and l̃ := l/m.
We are then in the same situation as above, that is m̃1h1 = m̃2h2 and m̃2

1f1 =

m̃2
2f2 + m̃2h2 l̃+ l̃2. Thus, if r is an irreducible polynomial such that r|m̃1 but

r ∤ m̃2 we can argue as above to conclude that r is constant. By a repeated
application of this line of reasoning we can conclude that m1 and m2 must be
equal.
It now follows that h1 = h2 and that m2|l, thus (h1, f1) ∼i1 (h2, f2). This tells
us that Vz1 ∩ Vz2 is only nonempty when z1 = z2. �

Lemma 9.7. The sets Vz for all z ∈ Pi/ ∼i where −1 ≤ i ≤ g cover Qg/ ∼g.

Proof: Pick any element (h1, f1) ∈ Qg and put g1 := g. We define a procedure,
where at the ith step we ask if there are any polynomials mi and li such that
deg(mi) > 0, deg(li) ≤ gi + 1, mi|hi and m2

i |fi + hili + l2i . If so, take any
such polynomials mi, li and define hi+1 := hi/mi, fi+1 := (fi + hili + l2i )/m

2
i

and gi+1 := gi− deg(mi). This procedure will certainly stop. Assume that the
procedure has been carried out in some way and that it has stopped at the jth
step, leaving us with some pair of polynomials (hj , fj).
Next, we take (hj , fj+1) to be any element of the set [(hj , fj)]gj for which

deg(fj+1) is minimal. Say that fj+1 = fj + hj lj + l2j where deg(lj) ≤
gj + 1 and let us define gj+1 to be the number such that 2gj+1 + 1 ≤
max

(
2 deg(hj), deg(fj+1)

)
≤ 2gj+1 + 2. The claim is now that (hj , fj+1) ∈

Pgj+1 . By definition, condition (8.1) holds for (hj , fj+1). If there were polyno-

mials mj+1 and lj+1 such that mj+1|hj and m2
j+1|fj+1 +hjlj+1 + l2j+1 then the

pair of polynomials mj+1 and lj + lj+1 would contradict that the process above
stopped at the jth step. Hence condition (9.1) is fulfilled for (hj , fj+1). Condi-
tion (9.2) is fulfilled if 2 deg(hj) ≥ deg(fj+1) because then deg(hj) = gj+1 + 1.
On the other hand, if 2 deg(hj) < deg(fj+1) and there were a polynomial
lj+1 such that deg(lj+1) ≤ gj+1 + 1 and deg(fj+1 + hj lj+1 + l2j+1) ≤ 2gj+1

then this would contradict the minimality of deg(fj+1). We conclude that
(hj , fj+1) ∈ Pgj+1 .

Finally we see that if we put m̂r :=
∏r−1
i=1 mi and l :=

∑j
i=1 m̂ili, then deg(l) ≤

g + 1, h1 = m̂jhj and f1 = m̂2
jfj+1 + h1l + l2. This shows that Vz contains

[(h1, f1)]g where z := [(hj , fj+1)]gj+1 ∈ Pgj+1/ ∼gj+1 . �

Using the lemmas above we will be able to write Ûg in terms of ui for i between

−1 and g. After this we will determine Ûg for large enough values of g. We
divide into two cases.

Notation 9.8. Let Sj denote all polynomials of degree at most j, and let
S′j ⊂ Sj consist of the monic polynomials.

Documenta Mathematica 14 (2009) 259–296



284 Jonas Bergström

9.1. The case α ∈ A′(n). Fix an element α ∈ A′(n). It follows from
Lemma 9.6 and Lemma 9.7 that

(9.3) Ûg,α =
Ig
2

∑

l∈Sg+1

g∑

j=−1

∑

z∈Pj/∼j

∑

[(h,f)]j∈Vz

m∏

i=1

τni
(
h(αi), (f+hl+l2)(αi)

)ri
.

Lemma 9.9. Choose any s ≥ 1 and t1, t2 in ks. We then have

τs(vt1, v
2t2) = τs(t1, t2) for all v 6= 0 ∈ ks;

τs(t1, t2 + vt1 + v2) = τs(t1, t2) for all v ∈ ks.
Proof: Clear. �

Fix elements z = [(h0, f0)]i ∈ Pi/ ∼i and β ∈ A1(ks) and define V ′z to be the
subset of Vz of classes [(m̃h0, m̃

2f0)]g, where m̃ is a monic polynomial with
m̃(β) 6= 0. Lemma 9.9 shows that τs(h(β), f(β)) is constant for all s and
(h, f) such that [(h, f)]g ∈ V ′z . Applying this to equation (9.3) after recalling
Definition 4.4 we find that

(9.4) Ûg,α = Ig
qg+1

2

g∑

j=−1

∑

z∈Pj/∼j

∑

m̃∈S′g−j

m∏

i=1

τni
(
(m̃h)(αi), (m̃

2f)(αi)
)ri

=

= Ig
qg+1

2

g∑

j=−1

b̂g−juj,α
2

qj+1Ij
=

g+1∑

i=0

b̂iug−i,α,

where we have taken into account that the group of isomorphisms depends
upon g and that the numbers of elements of the equivalence classes of the
relations ∼g−j and ∼g differ by a factor qj . From the definitions we see that
qg−j Ig/Ij = 1.
For any g ≥ −1 and any h0 ∈ Sg+1 it is clear that
(9.5)

∑

(h0,f)∈Qg

m∏

i=1

τni
(
h0(αi), f(αi)

)ri
=

{
0 if ∀i : ri = 2, ∃j : h0(αj) = 0;

q2g+3 if ∀i : ri = 2, ∀j : h0(αj) 6= 0.

For any g such that 2g+ 2 ≥ |n| − 1, and any nonzero polynomial h0 of degree
at most g + 1, Lemma 4.7 tells us that

(9.6)
∑

(h0,f1+pαf2)∈Qg

m∏

i=1

τni
(
h0(αi), (f1 + pαf2)(αi)

)ri
=

= q2g+3−|n| ∑

f1∈S|n|−1

m∏

i=1

τni
(
h0(αi), f1(αi)

)ri
=

= q2g+3−|n| ∑

(β1,...,βm)∈Q
m
i=1 kni

m∏

i=1

τni
(
h0(αi), βi

)ri
= 0 if ∃i : ri = 1,

because for all a ∈ ks there are as many b ∈ ks for which τs(a, b) = 1 as there
are b ∈ ks for which τs(a, b) = −1.
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Summing equations (9.5) and (9.6) over all h0 ∈ Sg+1 and using that q2g+3Ig =
Iqg+1 we get

(9.7) Ûg,α =

{
I (q − 1)qg+1b̂g+1 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .

9.2. The case α ∈ A(n) \ A′(n). Fix an α ∈ A(n) \ A′(n). We can assume
that α1 =∞, and then α̃ := (α2, . . . , αm) ∈ A′(ñ) where ñ := (n2, . . . , nm).

Lemma 9.10. For any element (h, f) ∈ P ′i and any monic polynomial m of
degree g − i,

τs((mh)(∞), (m2f)(∞)) = τs(h(∞), f(∞));

τs((mh)(∞), (f + lh+ l2)(∞)) = τs(h(∞), f(∞)).

Proof: Clear. �

For any (h, f) ∈ Qg it holds that if deg(h) < g+1 then τs(h(∞), f(∞)) = 0 for
all s. Define therefore P ′g and Q′g to be the subsets of Pg and Qg respectively,
that consist of pairs (h, f) such that deg(h) = g+1. We get an induced relation
∼i on P ′i and Q′i and we let V ′′z be the set of all equivalence classes [(mh,m2f)]g
in Q′g for all monic polynomials m of degree g−i, where z := [(h, f)]i ∈ P ′i/ ∼i.
In the same way as in Lemma 9.6 and 9.7 we see that the sets V ′′z for all
z ∈ P ′i/ ∼i, where −1 ≤ i ≤ g, are disjoint and cover Q′g/ ∼g. Using this
together with Lemma 9.10 and the arguments showing equation (9.4) we find
that

(9.8) Ûg,α =
Ig
2

X

l∈Sg+1

X

z∈Q′g/∼g

mY

i=1

τni
`
h(αi), (f + hl + l2)(αi)

´ri =

= Ig
qg+1

2

gX

j=−1

X

z∈P ′j/∼j

X

m̃∈R′g−j

mY

i=1

τni
`
(m̃h)(αi), (m̃

2f)(αi)
´ri =

g+1X

i=0

bñi ug−i,α.

If we choose g such that 2g+ 2 ≥ |n| − 1, h0 ∈ Rg+1 and we put pα(x) := x pα̃,
then we find in the same way as for equation (9.6) that

(9.9)
∑

(h0,f1+pαf2)∈Qg

m∏

i=1

τni
(
h0(αi), (f1 + pαf2)(αi)

)ri
=

= q2g+3−|n| ∑

(β1,...,βm)∈Q
m
i=1 kni

m∏

i=1

τni
(
h0(αi), βi

)ri
= 0 if ∃i : ri = 1.

Since equation (9.5) also hold for α ∈ A(n) \ A′(n) we find, by summing over
all polynomials h0 ∈ Rg+1, that

(9.10) Ûg,α =

{
I (q − 1)qg+1bñg+1 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .
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9.3. The two cases joined. Recall that J = (q − 1) I |A(n)|.

Theorem 9.11. For any pair (n; r) ∈ Nm,

g+1∑

j=0

b̂jug−j =

{
J qg+1b̂g+1 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .

Proof: The theorem follows from combining equations (9.4), (9.7), (9.8) and
(9.10), using Lemma 4.10. �

Theorem 9.12. For any pair (n; r) ∈ Nm,

min(|n|−1,g+1)∑

j=0

(b̂j − qb̂j−1)ug−j =

{
J qg+1(b̂g+1 − b̂g) if ∀i : ri = 2, g ≥ 0;

0 if ∃i : ri = 1, g ≥ |n|−1
2 .

Proof: In the notation of the proof of Theorem 4.14, the theorem follows from
applying Theorem 9.11 to the expression F (g)− qF (g − 1). �

Theorem 9.13. By applying Theorem 9.12 to each pair (n; r) appearing in
the decomposition (given by Lemma 8.6) of aλ|g,even we get a linear recurrence
relation for aλ|g,even. The characteristic polynomial of this linear recurrence
relation equals (5.1).

Proof: We know that the decomposition of aλ|g is independent of character-
istic, and since the left hand side of the equation in Theorem 9.12 is the same
as the left hand side of the equation of Theorem 4.14 this theorem follows in
the same way as Theorem 5.2. �

10. Results for weight up to 7 in even characteristic

In this section we compute, for any number g and any finite field k of even char-
acteristic, all aλ|g,even of weight at most 7. First we will exploit the similarities
of Theorems 4.12 and 9.11.

Lemma 10.1. If g ≥ n− 2 then b̂2g+2 = qg+1b̂g+1.

Proof: Fix a pair (n; r) ∈ Nm. Lemma 4.13 tells us that b̂j = qb̂j−1 +d|n|−1−j,

so if j ≥ |n| then b̂j = qb̂j−1 and thus b̂j = qj+1−|n|b̂|n|−1. �

Remark 10.2. If ri = 1 for some i and g ≥ (|n| − 3)/2, then the recursive
relations of Theorems 9.11 and 4.12 are equal. On the other hand, if ri = 2
for all i we see from Lemma 10.1 that the recursive relations of Theorems 9.11
and 4.12 are equal if g ≥ |n| − 2.

Theorem 10.3. For weight less than or equal to 5, aλ|g,even = aλ|g,odd as
functions (in this case polynomials) in q.
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Proof: Consider any aλ|g with |λ| ≤ 5. By Lemma 3.12 it suffices to show that
ug is independent of characteristic when (n; r) ∈ Nm is such that

∑m
i=1 niri ≤ 5.

Clearly u−1 = J is always independent of characteristic. Clearly, Lemma 6.1
also holds in even characteristic. We can therefore assume that ri = 2 for all
i in the case of genus 0. But if ri = 2 for all i then |n| ≤ 2 and hence, by
Remark 10.2, u0 will be independent of characteristic.
This takes care of the base cases of the recurrence relations for ug when g ≥ 1,
given by Theorems 4.12 and 9.11. Again by Remark 10.2 we see that (both
in the case when ri = 2 for all i, and when ri = 1 for some i) when g ≥ 1
these recurrence relations are the same. We can therefore conclude that ug is
independent of characteristic for all g. �

We will now compute aλ|g,even for weight 6 in the same way as in Section 7.3.
To compute ug of degree at most 5 using Theorem 9.11 we need to find the base
case u0. But when the genus is 0 we can use Lemma 6.1 (which also holds in
even characteristic) to reduce to the case that ri = 2 for all i, which is always
computable using Theorem 9.11.
What is left is the general case of the decomposition of aλ|g,even. We then need
the base cases of genus 0 and 1. Again, the genus 0 part is no problem. The
computation of aλ|1 in [1] is independent of characteristic. We can therefore
compute the genus 1 part (compare Section 7.3).

Remark 10.4. As in the case of odd characteristic, for all g and all λ such that
|λ| ≤ 7, aλ|g,even is a polynomial when considered as a function in the number
q (compare Remark 7.11) of elements of the finite field k of even characteristic.
In Theorem 10.3 we saw that the polynomial functions aλ|g,odd and aλ|g,even
are equal (for a fixed g), if |λ| ≤ 5. But for weight 6 there are λ such that
the two polynomials are different, this occurs for the first time for genus 3, see
Example 10.6.

Example 10.5. Let us compute ug,even when (n; r) = ((1, 1); (2, 2, 2)). We see
that u−1 = 1 and Theorem 9.11 gives u0 = q2 − 3q+ 2. This result is different
from the 1 in the case of odd characteristic, see Example 4.16. Continued use
of Theorem 9.11 gives u1 = q4 − 3q3 + 5q2 − 6q + 3 and then Theorem 9.12
gives

ug = 2ug−1 − ug−2 + q2g−1(q − 1)3 for g ≥ 2.

Solving this leaves us with

u((1,1,1);(2,2,2))
g,even =

(q − 1)(q2g+3 + g(q2 − 1)− 3q − 2)

(q + 1)2
.

Example 10.6. The result for a[16]|g,even is

a[16]|g,even = a[16]|g,odd −
5

8
g(g − 1)(g − 2)

(
(g − 3)(q − 1)− 4

)
.
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Example 10.7. The result for a[12,4]|g,even is

a[12,4]|g,even = a[12,4]|g,odd −
1

4





g(q − 1) if g ≡ 0 mod 4;

(g − 1)(q − 1) if g ≡ 1 mod 4;

(g − 2)(q − 1) if g ≡ 2 mod 4;

(g − 3)(q − 1)− 4 if g ≡ 3 mod 4.

11. Cohomological results

11.1. Cohomological results for Hg,n. Define the local system V :=
R1π∗(Qℓ) where π : Mg,1 → Mg is the universal curve. For every par-
tition (note that in this section we use a different notation for partitions)
λ = (λ1 ≥ . . . ≥ λg ≥ 0) there is an irreducible representation of GSp(2g)
with highest weight (λ1 − λ2)γ1 + . . .+ λgγg − |λ|η, where the γi are suitable
fundamental roots and η is the multiplier representation, and we define Vλ to
be the corresponding local system. Let us also denote by Vλ its restriction to
Hg. In Lemma 13.5 below we will see that making an Sñ-equivariant count of
points of Hg,ñ over a finite field k, for all ñ ≤ n, is equivalent to computing
the trace of Frobenius on the compactly supported ℓ-adic Euler characteristic
ec(Hg ⊗ k̄,Vλ), for every λ with |λ| ≤ n (where ℓ ∤ |k|). For more details, see
[14] and [15].
Thus, we can use the results of Section 7 together with Theorem 3.2 in [1]
to compute the ℓ-adic Euler characteristic ec(Hg ⊗ Q,Vλ) in K0(GalQ), the
Grothendieck group of Gal(Q̄/Q)-representations, for every λ with |λ| ≤ 7.
Specifically, Theorem 3.2 in [1] tells us that if there is a polynomial P such
that Tr(F, ec(Hg ⊗ k̄,Vλ)) = P (q) for all finite fields k, possibly with the

exception of a finite number of characteristics, then ec(Hg ⊗ Q,Vλ) = P (q),
where q is the class of Qℓ(−1) in K0(GalQ). By excluding even characteristic,
Section 7 (see Remark 7.11) and Lemma 13.5 shows that there is indeed such
a polynomial for all g and all |λ| ≤ 7.

Example 11.1. For g = 8 and λ = (5, 1) we have

ec(Hg ⊗Q,Vλ) = 5q5 − 28q4 + 4q3 + 96q2 − 34q− 88.

11.2. Cohomological results for M2,n and M2,n. Using the stratifica-

tion ofMg,n we can make an Sn-equivariant count of its number of points using
the Sn-equivariant counts of the points ofMg̃,ñ for all g̃ ≤ g and ñ ≤ n+2(g−g̃)
(see [13, Thm 8.13] and also [2]). Since all curves of genus 2 are hyperelliptic,
M2,n is equal to H2,n. Above, we have made Sn-equivariant counts of H2,n

for n ≤ 7 and they were all found to be polynomial in q. These Sn-equivariant
counts can now be complemented with ones of M1,n for n ≤ 9 (see [1, Section
15]) and of M0,n for n ≤ 11 (see [18, Prop 2.7]), which are also found to be
polynomial in q. We can then apply Theorem 3.4 in [2] to conclude, for all
n ≤ 7, the Sn-equivariant GalQ (resp. Hodge) structure of the ℓ-adic (resp.

Betti) cohomology of M2,n.
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In the theorems below we give the Sn-equivariant Hodge Euler characteristic
(which by purity is sufficient to conclude the Hodge structure) in terms of the
Schur polynomials and L, the class of the Tate Hodge structure of weight 2
in K0(HSQ), the Grothendieck group of rational Hodge structures. That is,

the action of Sn on M2,n induces an action on its cohomology, and hence

Hi(M2,n ⊗ C,Q) may be written as a direct sum of Hi
λ(M2,n ⊗ C,Q), which

correspond to the irreducible representations of Sn indexed by λ ⊢ n and with
characters χλ. In terms of this, the coefficient of the Schur polynomial sλ is
equal to 1/χλ(id) ·∑i(−1)i[Hi

λ(M2,n ⊗ C,Q)]. The results for n ≤ 3 were
previously known by the work of Getzler in [14, Section 8].

Theorem 11.2. The Sn-equivariant Hodge Euler characteristic ofM2,4 is equal
to

(L7 + 8L6 + 33L5 + 67L4 + 67L3 + 33L2 + 8L + 1)s4

+(4L6 + 26L5 + 60L4 + 60L3 + 26L2 + 4L)s31

+(2L6 + 12L5 + 28L4 + 28L3 + 12L2 + 2L)s22

+(3L5 + 10L4 + 10L3 + 3L2)s212

Theorem 11.3. The Sn-equivariant Hodge Euler characteristic ofM2,5 is equal
to

(L8 + 9L7 + 49L6 + 128L5 + 181L4 + 128L3 + 49L2 + 9L + 1)s5

+(6L7 + 48L6 + 156L5 + 227L4 + 156L3 + 48L2 + 6L)s41

+(3L7 + 31L6 + 106L5 + 159L4 + 106L3 + 31L2 + 3L)s32

+(8L6 + 42L5 + 65L4 + 42L3 + 8L2)s312

+(6L6 + 26L5 + 43L4 + 26L3 + 6L2)s221

+(L5 + 3L4 + L3)s213

Theorem 11.4. The Sn-equivariant Hodge Euler characteristic ofM2,6 is equal
to

(L9 + 11L8 + 68L7 + 229L6 + 420L5 + 420L4 + 229L3 + 68L2 + 11L + 1)s6

+(7L8 + 75L7 + 317L6 + 641L5 + 641L4 + 317L3 + 75L2 + 7L)s51

+(5L8 + 62L7 + 292L6 + 615L5 + 615L4 + 292L3 + 62L2 + 5L)s42

+(L8 + 21L7 + 108L6 + 236L5 + 236L4 + 108L3 + 21L2 + L)s32

+(17L7 + 118L6 + 278L5 + 278L4 + 118L3 + 17L2)s412

+(16L7 + 115L6 + 277L5 + 277L4 + 115L3 + 16L2)s321

+(3L7 + 22L6 + 53L5 + 53L4 + 22L3 + 3L2)s23

+(9L6 + 29L5 + 29L4 + 9L3)s313

+(6L6 + 21L5 + 21L4 + 6L3)s2212
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Theorem 11.5. The Sn-equivariant Hodge Euler characteristic of M2,7 is equal to

(L10 + 12L9 + 90L8 + 363L7 + 854L6 + 1125L5 + 854L4 + 363L3 + 90L2 + . . .)s7

+(9L9 + 109L8 + 580L7 + 1529L6 + 2109L5 + 1529L4 + 580L3 + 109L2 + 9L)s61

+(6L9 + 100L8 + 606L7 + 1728L6 + 2430L5 + 1728L4 + 606L3 + 100L2 + 6L)s52

+(3L9 + 58L8 + 389L7 + 1153L6 + 1647L5 + 1153L4 + 389L3 + 58L2 + 3L)s43

+(28L8 + 258L7 + 831L6 + 1221L5 + 831L4 + 258L3 + 28L2)s512

+(34L8 + 331L7 + 1133L6 + 1675L5 + 1133L4 + 331L3 + 34L2)s421

+(12L8 + 140L7 + 489L6 + 738L5 + 489L4 + 140L3 + 12L2)s321

+(8L8 + 91L7 + 335L6 + 502L5 + 335L4 + 91L3 + 8L2)s322

+(28L7 + 143L6 + 228L5 + 143L4 + 28L3)s413

+(34L7 + 170L6 + 275L5 + 170L4 + 34L3)s3212

+(10L7 + 47L6 + 77L5 + 47L4 + 10L3)s231

+(4L6 + 7L5 + 4L4)s314

+(2L6 + 6L5 + 2L4)s2213

In Table 1 we present the nonequivariant information (remember that all co-
homology is Tate) in the form of Betti numbers of M2,n for all n ≤ 7. Notice
that the table only contains as many numbers as we need to be able to fill in
the missing ones using Poincaré duality. These results agree with Table 2 of
ordinary Euler characteristics for M2,n for n ≤ 6 found in [4].

Table 1. Dimensions of Hi(M2,n ⊗ C,Q) for n ≤ 7.

H0 H2 H4 H6 H8 H10

M2 1 2

M2,1 1 3 5

M2,2 1 6 14

M2,3 1 12 44 67

M2,4 1 24 144 333

M2,5 1 48 474 1668 2501

M2,6 1 96 1547 8256 18296

M2,7 1 192 4986 39969 129342 189289

The theorem used above also gives the corresponding results forM2,n for n ≤ 7,
which we will present in terms of local systems Vλ defined as above, but starting
from V := R1π∗Q. See [14, Section 8] for the results on ec(M2 ⊗ C,Vλ), for
all λ of weight at most 3.
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Theorem 11.6. The Hodge Euler characteristics of the local systems Vλ on
M′2 :=M2 ⊗ C of weight 4 or 6 are equal to

ec(M′2,V(4,0)) = 0, ec(M′2,V(3,1)) = L2 − 1, ec(M′2,V(2,2)) = −L4,

ec(M′2,V(6,0)) = −1, ec(M′2,V(5,1)) = L2 − L− 1,

ec(M′2,V(4,2)) = L3, ec(M′2,V(3,3)) = −L− 1.

12. Appendix: Introducing bi, ci and ri

This section will give an interpretation of the information carried by the ug’s.
It will be in terms of counts of hyperelliptic curves together with prescribed
inverse images of points on P1 under their unique degree 2 morphism.

Definition 12.1. Let Cϕ be a curve defined over k together with a separable
degree 2 morphism ϕ over k from C to P1. We then define

bi(Cϕ) := |{α ∈ A(i) : |ϕ−1(α)| = 2, ϕ−1(α) ⊆ C(ki)}|,
ci(Cϕ) := |{α ∈ A(i) : |ϕ−1(α)| = 2, ϕ−1(α) * C(ki)}|

and put ri(Cϕ) := bi(Cϕ) + ci(Cϕ).

The number of ramification points of f that lie in A(i) is then equal to |A(i)|−
ri(Cϕ). Let λi denote the partition of i consisting of one element. We then find
that

|Cϕ(λi)| = |A(i)|+ bi(Cϕ)− ci(Cϕ) +

{
2ci/2(Cϕ) if i is even;

0 if i is odd.

and thus

an(Cϕ) =
∑

i|n : 2i∤n

(
ci(Cϕ)− bi(Cϕ)

)
+
∑

i:2i|n

(
−bi(Cϕ)− ci(Cϕ)

)
.

Definition 12.2. For partitions µ and ν, g ≥ 2 and odd characteristic, define

bµcν |g :=
∑

[Cf ]∈Hg(k)/∼=k

1

|Autk(Cf )|

l(µ)∏

i=1

bi(Cf )µi
l(ν)∏

j=1

cj(Cf )νj .

The number |µ|+ |ν| will be called the weight of this expression.

Remark 12.3. We can, in the obvious way, also define aλbµcν |g, but from
the relation between ai(Cf ), bi(Cf ) and ci(Cf ) we see that this gives no new
phenomena.

Directly from the definitions we get the following lemma.

Lemma 12.4. Let the characteristic be odd and let f be an element of Pg. We
then have

bi(Cf ) =
1

2

∑

α∈A(i)

(
χ2,i

(
f(α)

)2
+ χ2,i

(
f(α)

))

Documenta Mathematica 14 (2009) 259–296



292 Jonas Bergström

and

ci(Cf ) =
1

2

∑

α∈A(i)

(
χ2,i

(
f(α)

)2 − χ2,i

(
f(α)

))
.

If the characteristic is odd we then use the same arguments as in Section 3 to
conclude that

bµcν |g =
I

2|µ|+|ν|
∑

f∈Pg

l(µ)∏

i=1

( ∑

α∈A(i)

χ2,i

(
f(α)

)
+ χ2,i

(
f(α)

)2)µi ·

·
l(ν)∏

j=1

( ∑

α∈A(j)

χ2,j

(
f(α)

)
− χ2,j

(
f(α)

)2)νj
.

Note that this expression is defined for all g ≥ −1. It can be decomposed in
terms of ug’s (that is, we can find a result corresponding to Lemma 3.8) for
tuples (n; r) ∈ Nm such that

(12.1) |n| ≤ |µ|+ |ν|.
Remark 12.5. The corresponding results clearly hold for elements (h, f) in
Pg in even characteristic and the decomposition of bµcν |g is independent of
characteristic.

Example 12.6. For each N we have the decomposition:

b[N ]|g =
1

2
(u((N);(2))
g + u((N);(1))

g ) and c[N ]|g =
1

2
(u((N);(2))
g − u((N);(1))

g ).

Example 12.7. Let us decompose b[12]c[2]|g into ug’s:

b[12]c[2]|g =
1

8
(u((2,1,1);(2,2,2))
g + u((2,1,1);(2,1,1))

g + 2u((2,1);(2,2))
g

− u((2,1,1);(1,2,2))
g − u((2,1,1);(1,1,1))

g − 2u((2,1);(1,2))
g ).

In this expression we have removed the ug’s for which
∑m
i=1 rini is odd, since

they are always equal to 0.

Lemma 12.8. For each N , the following information is equivalent:

(1) all ug’s of degree at most N ;
(2) all bµcν |g of weight at most N .

Proof: From property (12.1) of the decomposition of bµcν |g into ug’s we
directly find that if we know (1) we can compute (2). For the other direction
we note on the one hand that

(12.2) I
∑

f∈Pg

j∏

i=1

(
bi(Cf )− ci(Cf )

)si(
bi(Cf ) + ci(Cf )

)ti

can be formulated in terms of bµcν |g’s of weight at most

S :=

j∑

i=1

i (si + ti).
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If we on the other hand decompose (12.2) into ug’s we find that there is a unique
ug of degree S. The corresponding pair (n; r) contains, for each i, precisely si
entries of the form i1 and ti entries of the form i2. Every ug of degree S can
be created in this way and hence if we know (2) we can compute (1). �

Remark 12.9. From the definitions of ai(Cf ) and ri(Cf ) we see that knowing
(1) and (2) in Lemma 12.8 is also equivalent to knowing

(3) all aλrξ|g of weight at most N ,

where aλrξ|g is defined in the obvious way. Moreover, aλrξ|g = 0 if |λ| is odd.

13. Appendix: The stable part of the counts

Remark 13.1. All results in this section are independent of characteristic.

Definition 13.2 ([8, Def. 1.2.1, 1.2.2]). Let F be a constructible (ℓ-adic)
sheaf on a scheme X of finite type over Z. The sheaf F is said to be pure
of weight m if, for every closed point x in X and eigenvalue α of Frobenius
F (relative to k = k(x)) acting on Fx̄, α is an algebraic integer of weight
equal to m, i.e., such that all its conjugates have absolute value equal to qm/2.
The sheaf F is said to be mixed of weight ≤ m if there exists a filtration
0 = F−1 ⊂ F0 ⊂ . . . ⊂ Fm = F of constructible subsheaves such that, for all
j, Fj/Fj−1 is pure of weight j.

Theorem 13.3 ([8, Cor. 3.3.3, 3.3.4]). Let X
f−→ Z be a scheme of finite type,

and F a constructible sheaf mixed of weight ≤ m. Then Rif!F is mixed of
weight ≤ m+ i. Thus, for every finite field k, there is a filtration 0 = W−1 ⊂
W0 ⊂ . . . ⊂ Wi+m = Hi

c(Xk̄,F) of Gal(k̄/k)-representations such that, for all
j, Wj/Wj−1 is pure of weight j.

Definition 13.4. Let K0(Galk) be the Grothendieck group of Gal(k̄/k)-repre-
sentations. In this category, and with the notation of Theorem 13.3, we have

[Hi
c(Xk̄,F)] =

∑i+m
j=0 [Wj/Wj−1]. For any w ≥ 0, let us define [Hi

c(Xk̄,F)]w :=∑i+m
j=w [Wj/Wj−1] and ewc (Xk̄,F) :=

∑
i≥0(−1)i[Hi

c(Xk̄,F)]w in K0(Galk). We

make the corresponding definition of ewc (XQ,F) in K0(GalQ).

Recall the definition in Section 11.1, for a prime ℓ ∤ q, of the ℓ-adic local system
Vλ onHg. If τ is the canonical morphism fromHg⊗k̄ to Hg, we put V′λ = τ∗Vλ.
This is a constructible sheaf pure of weight |λ|.
In this section we will see that if g and w are large enough we can compute the
trace of Frobenius on ewc (Hg ⊗ k̄,Vλ), which by definition (cf. Section 2 in [3])
is equal to ewc (Hg,V′λ). We first make the connection to Sn-equivariant counts
of points of Hg,n explicit.

Lemma 13.5. Let the symmetric polynomial s<λ> be the Schur polynomial
in the symplectic case (see [11, A.45]), and pλ the power sum. If s<λ> =∑
|µ|≤|λ|mµ pµ then

(13.1) Tr
(
F, ec(Hg ⊗ k̄,V′λ)

)
=

∑

|µ|≤|λ|
mµ q

1
2 (|λ|−|µ|) aµ|g.
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From Theorems 4.14 and 9.12 we see that only the ug’s with all ri = 2 have
inhomogeneous recurrence relations. Theorem 5.2 dealt with the homogeneous
part of the linear recurrence relations for aλ|g. The following lemma, which is
a direct consequence of Theorems 4.14, 9.12 and 5.2, deals with the “inhomo-
geneities”.

Lemma 13.6. Denote by tn the coefficient of u
(n;(2,...,2))
g in the decomposi-

tion of aλ|g (given in Construction-Lemma 3.8). Each value of |n| for a pair
(n; (2, . . . , 2)) appearing in this decomposition of aλ|g is at most equal to |λ|/2.
Define the polynomial

fn(x) :=
( m∏

i=1

(xni − 1)
)
/(x− 1).

For g ≥ 0, let Rλ(q)|g be the sum, over the pairs (n; (2, . . . , 2)) that occur in
the decomposition of aλ|g, of the polynomial quotients of,

(13.2) tn q
2g+|n| J (q − 1) fn(q) by fn(q2),

which is of degree at most (|λ|+4g−2)/2. The polynomial Rλ(q)|g is a particular
solution to the recurrence relation, described in Section 5, for aλ|g.
Since the power sums form a rational basis of the ring of symmetric polynomials,
equation (13.1) and Theorem 13.3 show that aλ|g is of the form

∑
j zjαj for a

finite set of rational numbers zj and distinct algebraic integers αi of weight at
most |λ|+ 4g− 2 (note that 2g− 1 is the dimension of Hg). If our base field k
is replaced by an extension km of degree m then aλ|g is equal to

∑
j zjα

m
j . For

g ≥ |λ| − 1, the linear recurrence relation for aλ|g (see Section 5) shows that it
can be written as the particular solution Rλ(q)|g plus the homogeneous part,
an integer sum of aλ|g̃ −Rλ(q)|g̃ for g̃ ≤ |λ|− 2. We then see that if g ≥ |λ|− 1
and w = 5 |λ|−9, the homogeneous part of the solution to the linear recurrence
relation for aλ|g does not contribute to Tr

(
F, ewc (Hg ⊗ k̄,V′λ)

)
. To conclude

this we used the fact that
∑

i ziα
m
i = 0 for all m implies that zi = 0 for all i,

where the zi and αi are complex numbers and the αi are distinct and nonzero.
We can now summarize using Theorem 3.2 in [1].

Definition 13.7. For a polynomial f(x) =
∑

i fix
i put fw(x) :=

∑
i≥w fix

i.

Theorem 13.8. Let q denote the class of Qℓ(−1) in K0(GalQ). For g ≥ |λ|−1
and w = 5 |λ| − 9 we have an equality in K0(GalQ),

ewc (Hg ⊗Q,Vλ) =
∑

|µ|≤|λ|
mµ q

1
2 (|λ|−|µ|)Rw−|λ|+|µ|µ

(
q
)
|g.

Example 13.9. In the case λ = (4, 2, 2), for w = 31 and g ≥ 7, we find that
Tr
(
F, ewc (Hg ⊗ k̄,Vλ)

)
is equal to fwg (q), where fg is the polynomial quotient

of q2g+4(3q2 + 3q + 2) by (q2 + 1)2(q + 1)3.

Remark 13.10. By Poincaré duality (cf. Section 2 in [3]) we find that there is
a filtration 0 = W ′i+|λ|−1 ⊂ W ′i+|λ| ⊂ . . . ⊂ W ′2(2g−1+|λ|) = Hi(Hg ⊗ k̄,Vλ)
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of Gal(k̄/k)-representations such that W ′j/W
′
j−1 is pure of weight j. Let

us define [Hi(Hg ⊗ k̄,Vλ)]w :=
∑w

j=i+|λ|[W
′
j/W

′
j−1] and ew(Hg ⊗ k̄,Vλ) :=∑

i≥0(−1)i[Hi(Hg ⊗ k̄,Vλ)]w in K0(Galk) and similarily ew(Hg⊗Q,Vλ). The-

orem 13.8 shows that, for g ≥ g̃ ≥ |λ| − 1 and w = 4g̃ − 3 |λ|+ 7, one has that
ew(Hg ⊗Q,Vλ) is stable, in the sense that it is independent of g.

Computations for λ’s of low weight lead us to make a conjecture, which is true
for |λ| ≤ 30.

Conjecture 13.11. For g ≥ |λ|−1 and w = 5 |λ|−9, we have ewc (Hg⊗Q,Vλ) =
0 for all λ such that λ1 > |λ|/2.
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Abstract. This is the first part of a series of two papers, which
investigate spectral properties of Dirac operators with singular poten-
tials. We examine various properties of complex dilated Dirac oper-
ators. These operators arise in the investigation of resonances using
the method of complex dilations. We generalize the spectral analysis
of Weder [50] and Šeba [46] to operators with Coulomb type poten-
tials, which are not relatively compact perturbations. Moreover, we
define positive and negative spectral projections as well as transforma-
tion functions between different spectral subspaces and investigate the
non-relativistic limit of these operators. We will apply these results
in [30] in the investigation of resonances in a relativistic Pauli-Fierz
model, but they might also be of independent interest.

2000 Mathematics Subject Classification: 81C05 (47F05; 47N50;
81M05)
Keywords and Phrases: Dirac operator, Coulomb Potential, Spectral
theory of non-self-adjoint operators, Non-relativistic limit

1 Introduction and Definitions

A fascinating question in the mathematical analysis of operators describing
atomic systems is the fate of eigenvalues embedded in the continuous spectrum
if a perturbation is “turned on”. Typically, these eigenvalues “vanish” and
one has absolutely continuous spectrum. But the eigenvalues leave a trace:
For example, the scattering cross section shows bumps near the eigenvalues, or
certain states with energies close to the eigenvalues have an extended lifetime
(described by the famous “Fermi Golden Rule” [13, Equation (VIII.2), p. 142]
on a certain time scale). These energies are called resonances or resonance
energies. Mathematically, resonances are described by poles of a holomorphic
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continuation of the resolvent (or matrix elements of it) or the scattering am-
plitude to a second sheet.

The generic systems in which resonances occur are many-particle systems. This
can be many-electron systems, in which the electron-electron interaction is the
perturbation. The corresponding physical effect is called “Auger effect”: Ex-
cited states (“autoionizing states”) relax by emission of electrons. Another
typical system in a one- or many-electron atom interacting with the quantized
electromagnetic field, in which case excited states can relax by emitting pho-
tons. Resonances can also occur in one-particle systems, although this is not
typically the case. It is well known (see [8] for example) that for a Schrödinger
operator with Coulomb potential the set of resonances is empty.

During the last decades numerous results were obtained in the mathematical
investigation of resonances so that it seems hopeless to give a complete account
of the available literature. Nevertheless we would like to give an overview and
mention at least some of the relevant works.

The investigation of resonances as poles of holomorphic continuations of scat-
tering amplitude and resolvent goes back to Weisskopf and Wigner [53] and
Schwinger [45]. The mathematical theory of resonances was pushed further by
Friedrichs [14], Livsic [36], and Howland [27, 28]. One of the mathematical
methods in the spectral analysis is the method of complex dilation, which as-
sociates the “vanished” embedded eigenvalue with a non-real eigenvalue of a
certain non-selfadjoint operator and was investigated by Aguilar and Combes
[2] and Balslev and Combes [6] (see [43] for an overview). Resonances in the
case of the Stark effect were investigated by Herbst [24] and by Herbst and
Simon [25]. Simon [48] initiated the mathematical investigation of the time-
dependent perturbation theory. This was carried on by Hunziker [32]. Herbst
[23] proved exponential temporal decay for the Stark effect.

The spectral analysis of non-relativistic atoms in interaction with the radia-
tion field was initiated by Bach, Fröhlich, and Sigal [4, 5]. It was carried on
by Griesemer, Lieb und Loss [18], by Fröhlich, Griesemer und Schlein (see for
example [15]) and many others (see for example Hiroshima [26], Arai and Hi-
rokawa [3], Dereziński and Gérard [9], Hiroshima and Spohn [12]), Loss, Miyao
and Spohn [37] or Hasler and Herbst [21, 20]). In particular, Bach, Fröhlich,
and Sigal [5] proved a lower bound on the lifetime of excited states in non-
relativistic QED. Later, an upper bound was proven by Hasler, Herbst, and
Huber [22] (see also [29]) and by Abou Salem et al. [1]. Recently, Miyao and
Spohn [38] showed the existence of a groundstate for a semi-relativistic electron
coupled to the quantized radiation field.
Our overall aim is to show that the lifetime of excited states of a relativis-
tic one-electron atom obeys Fermi’s Golden Rule [30] and coincides with the
non-relativistic result in leading order in the fine structure constant. We will
investigate the necessary spectral properties of a Dirac operator with potential,
projected to its positive spectral subspace, coupled to the quantized radiation
field. Following Bach et al. [5] and Hasler et al. [22], our main technical tool is
complex dilation in connection with the Feshbach projection method.
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In this first part of the work, we investigate the necessary properties of one-
particle Dirac operators with singular potentials. In particular, we will derive
the necessary properties of complex dilated spectral projections and discuss the
non-relativistic limit of complex dilated Dirac operators. This serves mainly as
a technical input for the second part of our work [30]. However, we believe that
some of the results presented in the first part are also of independent interest.
Note that the method of complex dilation has already successfully been applied
to Dirac operators (see Weder [50] and Šeba [46]). However, these authors
assume the relative compactness of the electric potential so that their method
does not apply to Coulomb type potentials. Note moreover that Weder [51]
considers very general operators including relativistic spin-0-Hamiltonians with
potentials with Coulomb singularity. The basic assumption of this work is,
however, that the unperturbed operator is sectorial, which is not fulfilled for
the Dirac operator. Our results cover a class of Dirac operators which includes
Coulomb and Yukawa potentials (with exception of Lemma 11 and Lemma 12
which we prove for the Coulomb case only).
Our results about the spectral projections of the dilated Dirac operator can be
used to generalize the Douglas-Kroll transformation (see Siedentop and Stock-
meyer [47] and Huber and Stockmeyer [31]) to dilated operators.

2 Definitions and Overview

The free Dirac operator (with velocity of light c > 0)

Dc,0 := −icα · ∇+ c2β (1)

is an operator on the Hilbert space H := L2(R3; C4). It is self-adjoint on the
domain Dom(Dc,0) := H1(R3; C4) [49, Chapter 1.4]. Here α is the vector of
the usual Dirac α- matrices, and β is the Dirac β-matrix.
We define for ǫ > 0 the strip Sǫ := {z ∈ C||Im z| < ǫ}. Let χ : R3 → R a
bounded, measurable function. We will suppose that there is a Θ > 0 such
that θ 7→ χ(eθx) admits a holomorphic continuation to θ ∈ SΘ for all x ∈ R3.
We abbreviate χθ := χ(eθ·). We will need the following two properties at
different places:

sup
θ∈SΘ, x∈R3

|χ(eθx)| ≤ 1 (H1)

sup
x∈R3

|χ(eθx)− χ(x)| ≤ C̃|θ| for some C̃ > 0 (H2)

It is easy to see that these properties are fulfilled for the Coulomb potential
(χ(x) = 1) or the Yukawa potential (χ(x) = e−ax for some a > 0). The Dirac
operator with potential V := χ/| · |

Dc,γ := −icα · ∇+ c2β − γV (2)

is an operator on the Hilbert space L2(R3; C4) as well. It is self-adjoint on
the domain Dom(Dc,γ) := Dom(Dc,0) = H1(R3; C4) for γ ∈ R with |γ| <
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c
√

3/2 [49, Chapter 4.3.3]. γ is called coupling constant. The interacting Dirac
operator describes a relativistic electron in the field of a nucleus, where the free
operator yields the kinetic energy of the electron, whereas the electric potential
gives its potential energy in the electric field of the nucleus.
The operator Dc,γ has the set (−∞,−c2]∪[c2,∞) as essential spectrum. We as-
sume that the operator has a nonempty set of positive eigenvalues, all of which
have finite multiplicity. We number the eigenvalues by Ẽn,l(c, γ) (not counting
multiplicities). Here n ∈ N (or n ∈ {1, . . . , Nmax} for some Nmax ∈ N if there
are only finitely many eigenvalues) denotes the principal quantum number and
l ∈ {1, . . . , Nn} for some Nn ∈ N labels the fine structure components. We
choose the numbering in such a way that for all n′ > n, all l ∈ {1, . . . , Nn} and
all l′ ∈ {1, . . . , Nn′} the inequality Ẽn,l(c, γ) < Ẽn′,l′(c, γ) holds and such that

Ẽn,l(c, γ) < Ẽn,l′(c, γ) for l < l′. This numbering is natural for all values of c for
the Coulomb potential, where the eigenvalues are explicitly known (see [35]).
The spectrum of a Dirac operators can be shown to have this structure if c is
large enough for general potentials (see [49]). We setEn,l(c, γ) := Ẽn,l(c, γ)−c2.
We define for θ ∈ C and γ ∈ R the dilated operators

Dc,0(θ) := −ice−θα · ∇+ c2β (3)

and
Dc,γ(θ) := −ice−θα · ∇+ c2β − γV (θ) (4)

with V (θ) := e−θχθVC on Dom(Dc,0(θ)) = Dom(Dc,γ(θ)) = H1(R3; C4), where
VC = 1/| · | is the Coulomb potential. It is clear that Dc,0(θ) is closed on
this domain and that (because of Hardy’s inequality) Dc,γ(θ) is at least well
defined under assumption (H1). We shall prove further properties in Section
4. For technical reasons, we will assume c ≥ 1 in the following. We will
assume moreover that γ ≥ 0. Further, we define for θ ∈ R the unitary dilation

U(θ) : L2(R3; C4) → L2(R3; C4), (U(θ)f)(x) := e
3
2 θf(eθx). It fulfills the

identity U(θ)Dc,γU(θ)∗ = Dc,γ(θ). The operators Dc,γ(θ) are extensions of the
operators U(θ)Dc,γU(θ)∗ for complex θ. Note that the mapping U(θ) cannot
be continued as a bounded operator to a complex domain, but the mapping
θ 7→ U(θ)ψ for an analytic vector ψ admits such an continuation, whose radius
of convergence depends on the vector ψ (cf. [42, Chapter X.6]). However, we
will prove in Section 8, that under certain conditions the restrictions of U(θ)
to certain spectral subspaces have bounded, bounded invertible extensions.
We add a short guide through the paper: We define a version of the Foldy-
Wouthuysen transformation for non-self-adjoint Dirac operators in Section 3.
Just as its analog for self-adjoint operators, it diagonalizes the free Dirac op-
erator. It is however not a unitary operator any more so that one has to
prove explicit estimates on its norm (see Theorem 1). The Foldy-Wouthuysen
transformation serves as a technical input for the following sections.
We prove in Section 4 that the method of complex dilation can be successfully
applied to Dirac operators with potentials with Coulomb singularities. In par-
ticular, we shall see that the dilated operators define a holomorphic family of
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type (A) in the sense of Kato (see Theorem 2). Moreover, we provide a spectral
analysis of such operators in Theorem 3. Just as in the case of Schrödinger
operator, the real eigenvalues remain fixed under the complex dilation, whereas
the essential spectrum swings into the complex plane and thus reveals possible
non-real eigenvalues, which correspond to resonances of the original self-adjoint
operator (see Figure ??). Note that there are no resonances for the Coulomb
potential (see Remark 3).

In Section 5 we extend the notion of positive and negative spectral projections
to the complex dilated Dirac operators. The definition of the spectral projec-
tions in Formula (32) is a straightforward extension of a well known formula
from Kato’s book (see [33, Lemma VI.5.6]). The rest of this section is devoted
to the proof that the operators defined in (32) are actually well defined projec-
tions (see Theorem 4), that they commute with the dilated Dirac operator (see
Theorem 5), and that their range is what one expects it to be (see Theorem
5 as well), which is not completely obvious in the non-self-adjoint case. Note
that the projections themselves are not orthogonal projections.

These results enable us to define transformation functions between the positive
spectral projections of the dilated and not dilated Dirac operators in Section
6, which is essential in order to show that also the projected Dirac operators
are holomorphic families – even if they are coupled to the quantized radiation
field. This will be accomplished in [30]. Moreover, these results can be used
to generalize [47] to complex dilated operators. Transformation functions as
defined in Formula (60) are similarity transformations between two (not neces-
sarily orthogonal) projections (see Formula (57) in Theorem 6). Note that our
definition requires that the norm difference between the projections be smaller
than one, but there are more general approaches. For details on transformation
functions we refer the reader to [33, Chapter II.4].

In Theorem 7 in Section 7 we prove a resolvent estimate for the dilated Dirac
operator projected and restricted onto its positive spectral subspace. In par-
ticular, we prove that the norm of the resolvent converges (essentially) to zero
as the inverse distance to the right complex half plane. Note that this really
requires the restriction of the operator to its positive spectral subspace and
that the norm of the resolvent of a non-self-adjoint operator is not bounded
from above by the inverse distance of the spectral parameter to the spectrum.

In Section 8 we will investigate the non-relativistic limit of dilated Dirac op-
erators and thereby generalize and extend the results in Thaller’s book [49] in
various directions. We prove in Theorem 8 and Corollary 2 that complex dilated
Dirac operators converge to the corresponding (complex dilated) Schrödinger
operators in the sense of norm resolvent convergence as the velocity of light
goes to infinity. As in the undilated case, this convergence is needed to gain
information about the spectral projections onto the eigenspaces belonging to
the real eigenvalues and their behaviour in the nonrelativistic limit (see for ex-
ample Lemma 7 or Lemma 8). In particular, the complex dilation, restricted to
an eigenspace is a bounded operator (uniformly in the dilation parameter and
the velocity of light – see Lemma 9) and the projections onto the fine structure
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components are uniformly bounded as well (see Corollary 5). These statements
will be needed in [30]. Note that for Schrödinger operators and non-relativistic
QED the above mentioned problems are absent, since there is neither a fine
structure splitting nor the additional parameter of the velocity of light which
has to be controlled.
Moreover, we show in Theorem 9 and Theorem 10 that the lower Pauli spinor
of a normed eigenfunction of the Dirac operator converges to zero in the sense
of the Sobolev space H1(R3; C2) and that the upper Pauli spinor is bounded
in the sense of H1(R3; C2) as the velocity of light tends to infinity. This shows
that the notion of “large” and “small” components of a Dirac spinor, which is
frequently used by physicists, is also justified for dilated operators. Moreover,
it follows that certain expectation values of the Dirac α-matrix vanish as the
velocity of light tends to infinity. We will apply this fact in [30].
Note that in the discussion of the non-relativistic limit in Section 8 we need
some estimates from Bach, Fröhlich, and Sigal [5] which we cite in Appendix
A for the convenience of the reader.

3 Foldy-Wouthuysen-Transformation

In this section we investigate the complex continuation of the Foldy-Wouthuy-
sen transformation and show some important properties in Theorem 1. We need
this as a technical input for the spectral analysis in the following sections. Let us
mention that a complex continuation of the Foldy-Wouthuysen transformation
was implicitly used by Evans, Perry, and Siedentop [11] for the investigation
of the spectrum of the Brown-Ravenhall operator. Also Balslev and Helffer [7]
use holomorphic continuations of the Foldy-Wouthuysen transformation.
For p ∈ R3 we define the matrix Dc,0(p; θ) := ce−θα · p + c2β. We use the
convention

√· : C \R−0 → C :
√
z = rei φ/2 for the complex square root, where

z = reiφ with r ≥ 0 and −π < φ < π. Note that for w ∈ C with | argw| ≤ π
4

the estimate
Re
√
w ≥

√
Rew ≥ 0 (5)

holds, which follows immediately from the formula cos(2φ) = (cosφ)2 −
(sinφ)2 ≤ (cosφ)2. Next, we define for p ∈ R3 and θ ∈ Sπ/2 the matrix

ÛFW(c, p; θ) : =
1

Nc(p; θ)

(
(c2 + Ec(p; θ))12×2 ce−θσ · p
−ce−θσ · p (c2 + Ec(p; θ))12×2

)
, (6)

where Ec(p; θ) :=
√
e−2θc2p2 + c4 and Nc(p; θ) :=

√
2Ec(p; θ)(c2 + Ec(p; θ)).

ÛFW(c; θ) is the maximal multiplication operator on L2(R3; C4) which is gen-
erated by UFW(p, c; θ). Analogously, we define

V̂FW(p, c; θ) : =
c2 + Ec(p; θ)− ce−θβα · p

Nc(p; θ)
(7)

and VFW(c; θ). The corresponding Fourier transforms are UFW(c; θ) :=
F−1ÛFW(c; θ)F and VFW(c; θ) := F−1V̂FW(c; θ)F . Note that these operators
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coincide with the usual Foldy-Wouthuysen transformation for θ = 0 (see [49]),
but are not unitary for θ /∈ R. Nevertheless they define a similarity transfor-
mation, which diagonalizes the free Dirac operator. This will be important
in the following sections, since the diagonalized operator

√
−c2e−2θ∆ + c4β is

normal, contrary to the operator Dc,0(θ).

Theorem 1. Let θ ∈ Sπ/4. Then the following statements hold:

a) The operator UFW(c; θ) is a bounded operator on L2(R3; C4) with bounded
inverse VFW(c; θ). There is a constant CFW (independent of c and θ) such
that

‖UFW(c; θ)‖ ≤
√

1 + CFW| sin Im θ| (8)

and
‖VFW(c; θ)‖ ≤

√
1 + CFW| sin Im θ|. (9)

b) The Foldy-Wouthuysen transformation diagonalizes the Dirac operator:

UFW(c; θ)Dc,0(θ)VFW(c; θ) =
√
−c2e−2θ∆ + c4β. (10)

Proof.
a) A simple calculation shows

ÛFW(p, c; θ)V̂FW(p, c; θ) = V̂FW(p, c; θ)ÛFW(p, c; θ) = 1. (11)

We have ‖UFW(c; θ)‖ ≤ supp∈R3 ‖ÛFW,c(p; θ)‖. Thus, it suffices to consider

the case c = 1 and Re θ = 0. In view of the identity ‖ÛFW,c(p; θ)‖2 =

‖ÛFW,c(p; θ)
∗ÛFW,c(p; θ)‖ we find with ϑ ∈ (−π/4, π/4)

ÛFW,c(p; iϑ)∗ÛFW,c(p; iϑ) =
(1 + E1(p; iϑ))(1 + E1(p;−iϑ)) + p2

Ñ
(12)

+
βα · p(e−iϑ(1 + E1(p;−iϑ))− ei θ(1 + E1(p; iϑ)))

Ñ
,

where Ñ :=
√

4E1(p; iϑ)E1(p;−iϑ)(1 + E1(p; iϑ))(1 + E1(p;−iϑ)). Note that
the expression under the square root is real, and that |1 + E1(p;±iϑ)| ≥
|E1(p;±iϑ)| = 4

√
1 + 2 cos(2ϑ)p2 + p4 ≥ 4

√
1 + p4, where we used |ϑ| < π/4.

Thus the denominator in (12) can be estimated as

|Ñ | ≥ 2
√

1 + |p|4. (13)

Next, observe that

|eiϑE1(p; iϑ)− e−iϑE1(p;−iϑ)| ≤ | sin(2ϑ)|√
p2 + cos(2ϑ)

, (14)

where we used the estimate |w| ≥ |Rew| and (5). From (14) it follows that

‖βα·p(eiϑ(1+E1(p; iϑ))−e−iϑ(1+E1(p;−iϑ)))‖ ≤ 2|p|| sin(ϑ)|+ | sin(2ϑ)|. (15)
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Moreover, we have

1− (1 + E1(p;−iϑ)) (1 + E1(p; iϑ)) + p2

Ñ

=
Ñ2 +

(
(1 + E1(p;−iϑ)) (1 + E1(p; iϑ)) + p2

)2

Ñ
(
Ñ + ((1 +E1(p;−iϑ)) (1 + E1(p; iϑ)) + p2)

) . (16)

Using ((1 + E1(p;−iϑ))(1 + E1(p; iϑ)) + p2) > 0 and (13) we estimate the
denominator by

|Ñ(Ñ + ((1 +E1(p;−iϑ))(1 + E1(p; iϑ)) + p2))| ≥ 4(1 + |p|4). (17)

In order to estimate the enumerator we find after some calculations

4E1(p;−iϑ)E1(p; iϑ)(1 + E1(p;−iϑ))(1 + E1(p; iϑ)) (18)

− ((1 + E1(p;−iϑ))(1 + E1(p; iϑ)) + p2)2

=2p4 + 2(e2iϑ + e−2iϑ)p2 + 2p2(e−2iϑE1(p;−iϑ) + e2iϑE1(p; iϑ))

− 2p2 − 2p2(E1(p;−iϑ) + E1(p; iϑ))− 2p2E1(p;−iϑ)E1(p; iϑ).

We combine suitable terms in (18): We have

(e2iϑ + e−2iϑ)p2 − 2p2 = 2(cos(2ϑ)− 1)p2, (19)

|2p2(e−2iϑE1(p;−iϑ)+e2iϑE1(p; iϑ))−2p2(E1(p;−iϑ)+E1(p; iϑ))|≤4p2

(20)

×|
√
p2+e2iϑ−

√
p2+e−2iϑ| ≤ 4p2 2 sin(2ϑ)

|
√
p2+e2iϑ+

√
p2+e−2iϑ|

≤ 4|p| sin(2ϑ),

and

|2p4 + 2 cos(2ϑ)p2 − 2p2E1(p;−iϑ)E1(p; iϑ)| ≤ 2| sin(2ϑ)|2. (21)

Summarizing the estimates (13) and (15) through (21), we finally obtain

‖ÛFW(iϑ, p)∗ÛFW(iϑ, p)− 1‖ ≤
[
|p|+ 1√
1 + |p|4

+
p2 + 2|p|+ 1

1 + |p|4

]
| sin(ϑ)|, (22)

where we used that | sin(2ϑ)| ≤ 2| sinϑ| for |ϑ| ≤ π/4. If we set CFW :=

supt∈R+
0

[
t+1√
1+t4

+ t2+2t+1
1+t4

]
< ∞, equation (22) shows the claim on UFW(c; θ).

The claim on the inverse operator VFW(c; θ) can be proven analogously.
b) We have ÛFW(c, p; θ)Dc,0(p; θ)V̂FW(c, p; θ) = Dc,0(p; θ)V̂FW(c, p; θ)2 as well

as V̂FW(c, p; θ) = ÛFW(c, p; θ)− 2ce−θβα · p/Nc(p; θ). From this it follows that
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ÛFW(c, p; θ)Dc,0(p; θ)V̂FW(c, p; θ) = Dc,0(p; θ)−A, where A := 1
Nc(p;θ)2

Dc,0(p; θ)[2ce−θβα · p][c2 + Ec(p; θ) − ce−θβα · p]. A little calculation shows

A = − 2c2e−2θp2Ec(p;θ)β
Nc(p;θ)2

+ ce−θα · p, which implies

ÛFW(c, p; θ)Dc,0(p; θ)V̂FW(c, p; θ) = Ec(p; θ)β (23)

and thus proves (10).

4 Dilation Analyticity and Spectrum

We show that the operators in equations (3) and (4) define holomorphic families
of closed operators. Since we will be interested in the non-relativistic limit
later on, we consider only such values of c and γ which can be dealt with using
Hardy’s inequality. For θ ∈ Sπ/2 we define the set Mγ/c := {θ ∈ C| 2γc <

cos(Im θ)}. We define V1(θ) := e−θ/2χθ
√
VC and V2(θ) := e−θ/2

√
VC . Note

that V (θ) = V1(θ)V2(θ).

Theorem 2. Let θ ∈ Smin{Θ,π/2} and suppose that (H1) holds. Then the

operator Dc,γ(θ) is closed for 2γ
c < cos(Im θ) on Dom(Dc,γ(θ)) = H1(R3; C4),

and we have Dc,γ(θ)∗ = Dc,γ(θ̄). Dc,γ(θ) is a holomorphic family of type (A)
in the sense of Kato for θ ∈Mγ/c. Dc,0(θ) is an entire family of type (A).

Proof. For f ∈ H1(R3; C4) the estimate ‖Dc,0(θ)f‖2 ≥ |Re e−θ|2c2‖∇f‖2
holds. Hardy’s inequality implies ‖γV (θ)f‖2 ≤ 4γ2|e−θ|2‖∇f‖2 and thus
‖γV (θ)f‖ ≤ 2γ

c cos(Im θ)‖Dc,0(θ)f‖, which proves that the operator Dc,γ(θ)

is closed and has a bounded inverse. Thus, the domain Dom(Dc,γ(θ)) =
H1(R3; C4) is independent of θ ∈ Mγ/c. It is clear that for f ∈ Dom(Dc,γ(θ))
the mapping Mγ/c → L2(R3; C4), θ 7→ Dc,γ(θ̄)f is holomorphic, which implies
that Dc,γ(θ) is a holomorphic family of type (A) [33, Chapter VII-2.1].
Moreover, obviously Dc,γ(θ̄)∗ ⊃ Dc,γ(θ) holds. Thus, it suffices to prove the
inclusion Dom(Dc,γ(θ̄)∗) ⊂ Dom(Dc,γ(θ)) = Ran(Dc,γ(θ)−1). We adapt a well
known strategy from the case of self-adjoint operators (cf. [52, Satz 5.14]). We
have Dom(Dc,γ(θ)−1) = Ran(Dc,γ(θ̄)) = L2(R3; C4). For f ∈ Dom(Dc,γ(θ̄)∗)
we find f0 := Dc,γ(θ)−1Dc,γ(θ̄)∗f ∈ Dom(Dc,γ(θ)) ⊂ Dom(Dc,γ(θ̄)∗). Thus
Dc,γ(θ)f0 = Dc,γ(θ̄)∗f0, and the definition of f0 implies Dc,γ(θ̄)∗f = Dc,γ(θ)f0.
From this it follows that Dc,γ(θ̄)∗(f − f0) = 0 and thus f − f0 ∈ N(Dc,γ(θ̄)∗) =
Ran(Dc,γ(θ̄))⊥ = {0}, implying f = f0 ∈ Dom(Dc,γ(θ)).

Remark 1. Note that if V is the Coulomb potential or the Yukawa potential,
then Dc,γ(θ) is equal to a multiple of the self-adjoint operator −icα · ∇ + VC
up to a bounded operator so that the proof of the above theorem is trivial. Note
moreover, that for V = VC , the operator Dc,γ(θ) is entire.

Remark 2. Theorem 2 and its proof imply that H1(R3; C4) is the maximal
domain of the operator on L2(R3; C4) generated by the differential expression
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D̃c,γ(θ) := −e−θicα · ∇+ c2β − γV (θ). To see this set

Mmax := {f ∈ L2(R3; C4)|D̃c,γ(θ)f ∈ L2(R3; C4)},

where the gradient is to be understood in distributional sense. Note that f ∈
Mmax implies ∇f ∈ L1

loc(R
3; C4), since V (θ) ∈ L2(R3) + L∞(R3). If Mmax %

H1(R3; C4), then the operator D′c,γ(θ) defined by the differential expression

D̃c,γ(θ) on the domain D(D′c,γ(θ)) := Mmax is a strict extension of the operator
Dc,γ(θ). As in the proof of Theorem 2 it would follow that there was a 0 6=
g ∈ Mmax such that D′c,γ(θ)g = 0. It follows by partial integration from ∇g ∈
L1
loc(R

3; C4) that (D̃c,γ(θ̄)f, g) = 0 for all f ∈ C∞0 (R3; C4). By density of
C∞0 (R3; C4) in H1(R3; C4) this equality extends to (Dc,γ(θ̄)f, g) = 0 for all
f ∈ H1(R3; C4) = D(Dc,γ(θ̄)). Since Dc,γ(θ̄) is onto, it follows g = 0, a
contradiction, which implies H1(R3; C4) = Mmax.

The following lemma, whose simple proof we omit, contains a useful fact:

Lemma 1. Let a, b > 0. Then supp∈R3

√
a2c2p2+c4√
b2c2p2+c4

≤ max{1, ab }.

Now we need the spectrum of the operator Dc,γ(θ). Theorem 1 shows (see
Figure 1) σ(Dc,0(θ)) = Σ−c (θ) ∪ Σ+

c (θ), where Σ±c (θ) = ±Ec(R; θ).
In the case of self-adjoint operators the compactness of the difference of free
and interacting resolvent would imply that Dc,0(θ) and Dc,γ(θ) with γ 6= 0
have the same essential spectrum. This is however not true for non-self-adjoint
operators in general. In particular there exist several different definitions of
the essential spectrum, which do not coincide in general and have different
invariance properties.
In the case of relatively compact perturbations this difficulty can be mastered
using the analytic Fredholm theorem [50]. Since Coulomb type potentials are
not relatively compact, we adapt a strategy invented by Nenciu [40] for the
self-adjoint case. We need the following lemma:

Lemma 2. Let θ ∈ Sπ/4 and z /∈ σ(Dc,0(θ)). Then the operator V
1/2
C (Dc,0(θ)−

z)−1 is compact.

Proof. It suffices to consider the case z = 0. We write V
1/2
C Dc,0(θ)−1 =

V
1/2
C

(√
−c2e−2θ∆ + c4β

)−1 (√
−c2e−2θ∆ + c4β

)
Dc,0(θ)−1. Because of

V
1/2
C ∈ L6

w(R3) and 1/(±
√
c2e−2θ(·)2 + c4 − z) ∈ L6(R3), the operator

V
1/2
C (
√
−c2e−2θ∆ + c4β − z)−1 is compact [44]. Moreover, Theorem 1 implies

(
√
−c2e−2θ∆ + c4β)Dc,0(θ)−1‖ ≤ 1 + CFW|Im θ|. This shows the claim.

For z /∈ σ(Dc,0(θ)) we define the operatorMc;θ(z) := V2(θ)(Dc,0(θ)−z)−1V1(θ).
Moreover, let Bc;θ;+ and Bc;θ;− (see Figure 1) the closed subsets of {z ∈
C|Re z > 0} and {z ∈ C|Re z < 0} respectively, which are enclosed be the
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Figure 1: The spectrum of the operator Dc,0(θ) and sets Bc;θ;± for c = 1 and
θ = iπ/4.

curves [c2,∞) and Ec(R; θ) ((−∞,−c2] and −Ec(R; θ) respectively). We set
Bc;θ = Bc;θ;+ ∪Bc;θ;−.

Furthermore, for θ ∈ Sπ/4 we define the constants

C(Im θ) :=
1 + CFW|Im θ|√

cos(2Im θ)
, C1(Im θ) := C(Im θ) +

1 + CFW|Im θ|
cos(Im θ)

. (24)

Note the inequality 1/ cos(Im θ) ≤ C(Im θ).

The following theorem yields a precise description of the spectrum of the op-
erator Dc,γ(θ). In particular, outside the set Bc,θ the spectra of Dc,γ(θ) and
Dc,γ(0) coincide so that one particle resonances – if any exist – can be located
only within the set Bc,θ.

Let B(L2(R3; C4)) be the set of bounded and everywhere defined operators on
L2(R3; C4). Moreover, we set Ba(x0) := {x ∈ R3||x − x0| < a} for a > 0 and
x0 ∈ R3

Theorem 3. Let θ ∈ Smin{π/4,Θ} and 2γ
c C(Im θ) < 1. Suppose that (H1)

holds. Then σ(Dc,γ(θ)) = σ(Dc,0(θ)) ∪Ac,γ;θ, where Ac,γ;θ is a discrete subset
of C\σ(Dc,0(θ), and we have Ac,γ;θ∩(C\Bc;θ) = σdisc(Dc,γ(0)). The set Ac,γ;θ

has at most the accumulation points ±c2. For z /∈ σ(Dc,γ(θ)) the resolvent
identity

(Dc,γ(θ) − z)−1 = (Dc,0(θ)− z)−1+

+ γ(Dc,0(θ)− z)−1V1(θ)(1 − e−θγMc;θ(z))−1V2(θ)(Dc,0(θ) − z)−1 (25)

holds.

Proof. We denote the r.h.s. of (25) by Rc,γ;θ(z).

Documenta Mathematica 14 (2009) 297–338



308 Matthias Huber

Step 1: Proof of (25) for z = i η, η ∈ R. Using Kato’s inequality and Theorem 1
we obtain

‖γMc;θ(i η)‖ = ‖γV2(θ)(Dc,0(θ)− i η)−1V1(θ)‖ ≤ γπe−Re θ(1 + CFW|Im θ|)
2

× ‖ |∇|√
− cos(2Im θ)c2e−2Re θ∆ + c4

‖ ≤ γ

c

π

2
C(Im θ), (26)

where we used additionally (5) and Lemma 1. Equation (26) shows that (25)
holds for z = i η, η ∈ R.
Step 2: Proof of (25), general case. We have

1−γMc;θ(z)=1−γMc;θ(0)−γ(Mc;θ(z)−Mc;θ(0)) = (1−γMc;θ(0))(1−N(z)),

where N(z) := z (1− γMc;θ(0))
−1 [

V2(θ)Dc,0(θ)−1(Dc,0(θ) − z)−1V1(θ)
]
. Us-

ing Step 1 and Lemma 2 we see that N(z) is compact and a holomorphic
function of z for z ∈ C \ σ(Dc,0(θ)). Applying the analytic Fredholm the-
orem [41, Theorem VI.14] yields that (1 − N(z))−1 is a meromorphic func-
tion on C \ σ(Dc,0(θ)) with values in B(L2(R3; C4)), whose residues are op-
erators of finite rank. Using Step 1 once more, we see that this also holds
for (1 − e−θγMc;θ(z))−1. In particular, there is a set Ac,γ;θ ⊂ C \ σ(Dc,0(θ))
which has no accumulation point in C \ σ(Dc,0(θ)) such that z 7→ Rc,γ;θ(z) is
holomorphic in C \ (σ(Dc,0(θ)) ∪Ac,γ;θ).
Step 3: The mapping z 7→ Rc,γ;θ(z) (Dc,γ(θ) − z) f with f ∈ Dom(Dc,γ(θ))
is holomorphic on C \ (σ(Dc,0(θ)) ∪ Ac,γ;θ). Because of Step 1 the operator
Rc,γ;θ(z) equals the resolvent of Dc,γ(θ) for z = i η, η ∈ R. It follows that
Rc,γ;θ(z) (Dc,γ(θ)− z) f = f for all z ∈ C \ (σ(Dc,0(θ)) ∪ Ac,γ;θ) and f ∈
Dom(Dc,γ(θ)).
Moreover, it is easy to see that RanRc,γ;θ(z) ⊂ H1/2(R3; C4). Thus, we obtain
as before (g, (Dc,γ(θ)− z)Rc,γ;θ(z)f) = (g, f) for all f ∈ L2(R3; C4), g ∈
H1/2(R3; C4) and z ∈ C \ (σ(Dc,0(θ)) ∪Ac,γ;θ). It follows that RanRc,γ;θ(z) ⊂
H1(R3; C4) and (Dc,γ(θ) − z)Rc,γ;θ(z)f = f for f ∈ L2(R3; C4) and z ∈ C \
(σ(Dc,0(θ)) ∪ Ac,γ;θ). Summarizing, we find Rc,γ;θ(z) = (Dc,γ(θ) − z)−1 for
all z ∈ C \ (σ(Dc,0(θ)) ∪ Ac,γ;θ). In particular, it follows that σ(Dc,γ(θ)) ⊂
σ(Dc,0(θ)) ∪Ac,γ;θ.
Let now z0 ∈ Ac,γ;θ. Then the analytic Fredholm theorem implies the existence
of f ∈ L2(R3; C4) with (1 −N(z0))f = 0, and thus also (1− γMc;θ(z0))f = 0.
We proceed as follows: Since (Dc,0(θ) − z)−1V1(θ) is bounded, we find f ∈
Ran(V2(θ)), i.e. f = V2(θ)g for g = (Dc,0(θ) − z)−1V1(θ)f ∈ L2(R3; C4). It
follows that (Dc,0(θ) − z0)g = γV1(θ)f = γV (θ)g in H−1/2(R3; C4). Rewrit-
ing this equality (in the sense of H−1/2(R3; C4)) we find −i ce−θα · ∇g −
βc2g − γV (θ)g = z0g. Since the r.h.s. of this equality is a (regular distri-
bution generated by a) function in L2(R3; C4), the l.h.s. is. This implies that
g ∈ H1(R3; C4) = D(Dc,γ(θ)) by Remark 2, i.e. z0 ∈ σ(Dc,γ(θ)) which in turn
proves σ(Dc,γ(θ)) ∩ (C \ σ(Dc,0(θ))) = Ac,γ;θ.
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Step 4: It remains to show that σ(Dc,γ(θ)) ∩ σ(Dc,0(θ)) = σ(Dc,0(θ)) holds.
To show this, we pick E ∈ σ(Dc,0(θ)) and p ∈ R3 with E = Ec(p; θ) in order
to construct a suitable Weyl sequence. Let us define ψp,c;θ ∈ C∞(R3; C4) by

ψp,c;θ(x) := Nc(p; θ)
−1(c2 + Ec(p; θ)ξ, ce

−θ
σ · pξ)T e−ipx (27)

with ξ = (1, 0)T . Equations (7) and (23) imply

(−icα · ∇+ βc2)ψp,c;θ(x) = Ec(p; θ)ψp,c;θ(x). (28)

We pick a function 0 6= φ ∈ C∞0 (R3) with suppφ ⊂ B1(0) and set for n ∈ N
φn(x) := φ( 1

nx− ne1) with e1 = (1, 0, 0)T as well as fn := φnψp,c;θ. Obviously,
we have fn ∈ Dom(Dc,γ(θ)). First, we calculate

‖fn‖ ≥ (1 + CFW)−1/2‖φn‖ = n3/2(1 + CFW)−1/2‖φ‖, (29)

where we used the definition (27) of ψp,c;θ, Equation (7), Equation (11), Equa-
tion (8) and the identity

∫
dxφn(x)2 =

∫
dxφ( 1

nx − ne1) = n3
∫

dxφ(x)2.
Furthermore, we find for n ≥ 2

‖VCfn‖2 =

∫
dx

1

|x|2 φn(x)2‖ψp,c;θ(0)‖2 (30)

≤(1 + CFW|Im θ|) 4

n4

∫
dxφn(x)2

4(1 + CFW|Im θ|)
n4

n3‖φ‖2,

since suppφn ⊂ Bn(n2e1) and ‖ψp,c;θ(0)‖ ≤
√

1 + CFW|Im θ| because of For-
mula (9). Moreover, we obtain

‖(cα · ∇φn)ψp,c;θ(·)‖ ≤
c
√

1 + CFW|Im θ|
n

n3/2‖∇φ‖. (31)

Formulas (28) through (31) imply

‖(Dc,γ(θ)−Ec(p; θ))fn‖
‖fn‖

≤
√

1+CFW|Im θ|
2n3/2

n2 ‖φ‖+ cn3/2

n ‖∇φ‖
n3/2√
1+CFW

‖φ‖
−→
n→∞

0.

Thus Dc,γ(θ) − Ec(p; θ) does not have a bounded inverse and Ec(p; θ) ∈
σ(Dc,γ(θ)).
Step 5: The proof of Ac,γ;θ∩(C\Bc;θ) = σdisc(Dc,γ(0)) is a standard argument,
which uses the dilation analyticity of the operators Dc,γ(θ) (see [43, Chapter
XII.6] or [46]). The same holds for the claim on the accumulation points.

Remark 3. Note that for V = VC the set of resonances is empty. This follows
similarly as for the Schrödinger case (see [8]): If there was a resonance, then
Dc,γ(π) would have a non-real eigenvalue.
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5 Spectral Projections

In this section we extend the notion of positive and negative spectral projections

to dilated Dirac operators. We define for p ∈ R3 the matrices Λ
(±)
c,0 (p; θ) :=

1
2 (1± cp·α+c2β

Ec(p;θ)
). A calculation shows that Λ

(±)
c,0 (p; θ)2 = Λ

(±)
c,0 (p; θ) and

Λ
(±)
c,0 (p; θ)Dc,0(p; θ) = ±Ec(p; θ)Λ(±)

c,0 (p; θ). Moreover, one verifies the identity

Λ
(±)
c,0 (p; θ) = 1

2 ± 1
2π lim

R→∞

∫ R
−R dη 1

Dc,0(p;θ)−iη . These observations motivate the

following definition for the dilated interacting operators:

Λ(±)
c,γ (θ) :=

1

2
± 1

2π
s-lim
R→∞

∫ R

−R
dη

1

Dc,γ(θ)− i η
(32)

It is well known [33, Chapter VI-5.2, Lemma 5.6] that Equation (32) yields the
positive and negative spectral projections for real θ. Note that similar formulas
for not necessarily self-adjoint operators are known (see [16, Chapter VX]).
These authors use a different definition for the spectral projections, however.
First, we show in Theorem 4 that these operators are well defined and bounded
projections even if θ /∈ R. We need the following technical lemma:

Lemma 3. Let θ ∈ Sπ/4. Then for all η ∈ R

‖ |Dc,0(Re θ)| − i η

Dc,0(θ) − i η
‖ ≤ C1(Im θ), (33)

where C1(Im θ) is defined in (24).

Proof. We prove the estimate

‖ |Dc,0(Re θ)| − i η√
−e−2θc2∆ + c4β − i η

‖ ≤ ‖ |Dc,0(Re θ)|√
−e−2θc2∆ + c4β − i η

‖ (34)

+‖ η√
−e−2θc2∆ + c4β − i η

‖ ≤ 1√
cos(2Im θ)

+
1

cos Im θ
.

We estimate the first summand using inequality (5) and Lemma 1. For the sec-
ond summand we restrict ourselves to the case Im θ < 0. The proof for Im θ > 0
works analogously, and (33) holds obviously if Im θ = 0. Moreover, it suffices

to consider Re θ = 0. We investigate the term |
√
e−2θc2p2 + c4− i η|. For η > 0

the inequality Im
√
e−2θc2p2 + c4 < 0 yields |−

√
e−2θc2p2 + c4 +i η| ≥ |η|. For

η < 0 the inequality Im
√
c2p2 + e+2θc4 > 0 implies |

√
c2p2 + e+2θc4−ie+θη| ≥

− cos(Im θ)η = cos(Im θ)|η|, which proves (34). The claim follows using Theo-
rem 1.

Theorem 4. Let θ ∈ Smin{π/4,Θ} and 2γ
c C(Im θ) < 1. Suppose that (H1)

holds. Then the following statements hold: Λ
(±)
c,γ (θ) ∈ B(L2(R3; C4)), Λ

(±)
c,γ (θ) =

Λ
(±)
c,γ (θ)2 and Λ

(+)
c,γ (θ) + Λ

(−)
c,γ (θ) = 1. The operators Λ

(±)
c,γ (θ) are bounded holo-

morphic families in θ for θ ∈Mγ/c.
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Proof. The proof is inspired by similar estimates in [47].

Step 1: The resolvent equation (25) and the estimate (26) yield the convergence
of the series

(Dc,γ(θ) − i η)−1 − (Dc,0(θ)− i η)−1 = γ
∞∑

n=1

(Dc,0(θ)− i η)−1V1(θ)

× [γV2(θ)(Dc,0(θ)− i η)−1V1(θ)]n−1V2(θ)(Dc,0(θ) − i η)−1 (35)

in norm.

Step 2: We show that the expression

lim
R→∞

∫ R

−R
dη
(
f,
[ 1

Dc,γ(θ)− i η
− 1

Dc,0(θ)− i η

]
g
)
, f, g ∈ L2(R3; C4) (36)

defines a bounded operator on L2(R3; C4). In order to achieve this, we estimate

∣∣(f, 1

Dc,0(θ)− i η
V1(θ)

[
γV2(θ)

1

Dc,0(θ)− i η
V1(θ)

]n−1
V2(θ)

1

Dc,0(θ)− i η
g
)∣∣

≤ π

2

∥∥ |∇|1/2
Dc,0(θ̄) + i η

f
∥∥∥∥ |∇|1/2
Dc,0(θ) − i η

g
∥∥(γ
c

π

2
C(Im θ)

)n−1 ≤ π

2ce−Re θ

×
∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|+ i η

f
∥∥∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)| − i η

g
∥∥C1(Im θ)2

(γ
c

π

2
C(Im θ)

)n−1
,

where we used (26) in the first estimate and Lemma 3 in the second estimate.
C(Im θ) and C1(Im θ) were defined in (24). As in [47, Proof of Lemma 1] we

obtain
∫∞
−∞ dη

∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|+i ηf

∥∥∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|−iηg

∥∥ ≤ π‖f‖‖g‖ and thus

∫ ∞

−∞
dη
∣∣(f,

[ 1

Dc,γ(θ) − i η
− 1

Dc,0(θ) − i η

]
g
)∣∣ ≤

≤ πγ
c

π

2
‖f‖‖g‖C1(Im θ)2

1

1−
(
γ
c
π
2C(Im θ)

) (37)

Step 3: The expressions

(
f,

1

Dc,0(θ) − i η
V1(θ)

[
γV2(θ)

1

Dc,0(θ) − i η
V1(θ)

]n−1
V2(θ)

1

Dc,0(θ)− i η
g
)

are holomorphic functions of θ ∈ Smin{π/4,Θ}. These estimates show the exis-
tence of an integrable and summable majorant, independent of θ for θ ∈Mγ/c.
Thus, the operator in Equation (36) is a holomorphic function of θ [33, Chap-

ter VII-1.1], and the identity Λ
(+)
c,γ (θ) = Λ

(+)
c,γ (θ)2, which is obviously true for

θ ∈ R, extends to θ ∈Mγ/c, i.e. Λ
(+)
c,γ (θ) is a projection.
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Step 4: We show that the limit exists as a strong limit and estimate for g ∈
H1/2(R3; C4) as follows:

∣∣(f, 1

Dc,0(θ)− i η

[
γV (θ)

1

Dc,0(θ)− i η

]n−1
V (θ)

1

Dc,0(θ)− i η
g
)∣∣

≤ 2

ce−Re θ

∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|+ i η

∥∥‖f‖
∥∥ 1

|Dc,0(Re θ)| − i η

∥∥∥∥|Dc,0(Re θ)|1/2g
∥∥

× C1(Im θ)2
(2γ

c
C(Im θ)

)n−1

Here we estimated the expression in the square brackets similarly to (26), but
used Hardy’s inequality instead of Kato’s inequality. Moreover, we used the
estimate (33) twice. Since σ(Dc,0(Re θ)) = (−∞, c2] ∪ [c2,∞), we have

‖ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|+ i η

‖ = sup
|λ|≥c2

√
|λ|√

λ2 + η2
≤ min{1

c
,

1√
|η|
}.

This estimate shows that the convergence in formula (36) is uniform in f ∈
L2(R3; C4), which implies the strong convergence [33, Theorem III.1.32 and
Lemma III.3.5], since H1/2(R3; C4) is dense in L2(R3; C4).

Obviously, the identity Λ
(+)
c,γ (θ) + Λ

(−)
c,γ (θ) = 1 holds. We set H(±)

c,γ (θ) :=

Λ
(±)
c,γ (θ)L2(R3; C4) and find L2(R3; C4) = H(+)

c,γ (θ) ∔H(−)
c,γ (θ), wehre ∔ denotes

the direct sum. We call the Λ
(±)
c,γ (θ) positive and negative spectral projections

and H(±)
c,γ (θ) positive and negative spectral subspaces, respectively. This is

justified because of Theorem 5.
The following corollary generalizes [47, Lemma 1] to dilated spectral projec-
tions.

Corollary 1. Let θ ∈ Smin{π/4,Θ} and suppose that (H1) holds. Then there

exists a constant CNR > 0 such that for 2γ
c C(Im θ) < 1 the estimate

‖Λ(±)
c,γ (θ) − Λ

(±)
c,0 (θ)‖ ≤ CNR

γ

c

holds.

Proof. This follows directly from Equation (37) in the proof of Theorem 4.

The next theorem shows that the spaces H(±)
c,γ (θ) are invariant under Dc,γ(θ)

and describes the spectrum of the restriction of the operator to these spaces.
If a part of the spectrum is contained in a Jordan curve, analogous statements
can be found in [33, Theorem III-6.17]. The following theorem describes a
more general situation, but the essential elements of the proof of [33, Theorem
III-6.17] can be adapted.
For a closed operator A we denote its resolvent set by ρ(A).
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Theorem 5. Let θ ∈ Smin{π/4,Θ} and 2γ
c C(Im θ) < 1. Suppose that (H1) holds.

Then the identity

Λ(±)
c,γ (θ)(Dc,γ(θ)− z)−1 = (Dc,γ(θ)− z)−1Λ(±)

c,γ (θ) (38)

holds for all z ∈ ρ(Dc,γ(θ)). The subspaces Ran Λ
(+)
c,γ (θ) and Ran Λ

(−)
c,γ (θ) are

invariant subspaces for Dc,γ(θ). In particular,

σ(Dc,γ(θ)|
Ran Λ

(+)
c,γ (θ)

) = σ(Dc,γ(θ)) ∩ {z ∈ C|Re z > 0} (39)

and
σ(Dc,γ(θ)|

Ran Λ
(−)
c,γ (θ)

) = σ(Dc,γ(θ)) ∩ {z ∈ C|Re z < 0} (40)

hold.

Proof. Obviously, for all z /∈ σ(Dc,γ(θ)), all η ∈ R and all f ∈ L2(R3; C4) the
equation (Dc,γ(θ)− z)−1(Dc,γ(θ)− i η)−1f = (Dc,γ(θ)− i η)−1(Dc,γ(θ)− z)−1f
is true. This immediately implies

(Dc,γ(θ)− z)
−1

lim
R→∞

∫ R

−R
dη (Dc,γ(θ)− i η)

−1
f =

= lim
R→∞

∫ R

−R
dη (Dc,γ(θ)− i η)

−1
(Dc,γ(θ) − z)

−1
f

and thus (38). It follows that [33, Chapter III-5.6 and Theorem III.6.5]

(Dc,γ(θ) − z)−1 Ran Λ
(±)
c,γ (θ) ⊂ Ran Λ

(±)
c,γ (θ) and Λ

(±)
c,γ (θ) Dom(Dc,γ(θ)) ⊂

Dom(Dc,γ(θ)) as well as Dc,γ(θ)H(±)
c,γ (θ) ⊂ H(±)

c,γ (θ). We define the operators

D
(±)
c,γ (θ) := Dc,γ(θ)|H(±)

c,γ (θ)
and (for z /∈ σ(Dc,γ(θ)) at the moment) the resol-

vents R
(±)
c,γ;θ(z) := (D

(±)
c,γ (θ) − z)−1 = (Dc,γ(θ) − z)−1|H(±)

c,γ (θ)
. In particular,

σ(D
(±)
c,γ (θ)) ⊂ σ(Dc,γ(θ)).

On the other side, we have f ∈ H(±)
c,γ (θ) and z /∈ σ(Dc,γ(θ)) R

(±)
c,γ;θ(z)f =

(Dc,γ(θ)− z)−1f = (Dc,γ(θ)− z)−1Λ
(±)
c,γ (θ)f. Using the first resolvent identity,

we find for z ∈ C with Re z < 0 respectively Re z > 0

(Dc,γ(θ) − z)−1Λ(±)
c,γ (θ)f = − 1

2π

∫ ∞

−∞
dη

1

z−i η
(Dc,γ(θ)−i η)−1f, (41)

since for z ∈ C with Re z < 0 respectively Re z > 0 the residue theorem implies

limR→∞
∫ R
−R dη 1

z−i η = limR→∞
∫ R
−R dη z

z2+η2 = ∓π.
The r.h.s. of equation (41) is holomorphic in z /∈ i R. Thus, R

(+)
c,γ;θ(z) has

a holomorphic continuation to {z ∈ C|Re z < 0}, and R
(−)
c,γ;θ(z) has a holo-

morphic continuation to {z ∈ C|Re z > 0}. The holomorphicity of the

resolvent implies {z ∈ C|Re z < 0} ⊂ ρ(D
(+)
c,γ (θ)) and {z ∈ C|Re z >
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0} ⊂ ρ(D
(−)
c,γ (θ)). This proves σ(D

(−)
c,γ (θ)) ⊂ {z ∈ C|Re z < 0} and

σ(D
(+)
c,γ (θ)) ⊂ {z ∈ C|Re z > 0}. On the other side, z ∈ σ(Dc,γ(θ)) cannot

fulfill both z ∈ ρ(D
(−)
c,γ (θ)) and z ∈ ρ(D

(+)
c,γ (θ)), because otherwise the identity

(Dc,γ(θ)−z)−1 = (D
(+)
c,γ (θ)−z)−1Λ

(+)
c,γ (θ)+(D

(−)
c,γ (θ)−z)−1Λ

(−)
c,γ (θ) would imply

the contradiction z ∈ ρ(Dc,γ(θ)). This shows (39) and (40).

Next, we need spectral projections for the eigenvalues: We define for all n ≥ 1
(and n ≤ Nmax if there only finitely many eigenvalues) the spectral projections

Pn(c, γ; θ) := − 1

2πi

∫

Γn(c,γ)

1

Dc,γ(θ) − zdz , (42)

where z runs through Γn(c, γ) in the positive sense. Γn(c, γ) is chosen such that
for all 1 ≤ l ≤ Nn the eigenvalues Ẽn,l(c, γ) are located within the contour,
but no other elements of the spectrum Dc,γ(θ).
For later, we need spectral projections for the fine structure components. We
set for n ≥ 1 and 1 ≤ l ≤ Nn

Pn,l(c, γ; θ) := − 1

2πi

∫

Γn,l(c,γ)

1

Dc,γ(θ) − zdz , (43)

where z runs through Γn,l(c, γ) in the positive sense, and Γn,l(c, γ) is chosen

such that only the eigenvalue Ẽn,l(c, γ) lies within the contour. We denote the
corresponding normed eigenfunctions by φn,l(c, γ; θ).

6 Transformation Functions

We need transformation functions between the spectral subspaces of dilated
and not dilated operators for the resolvent estimate in Section 7 and in order
to establish the dilation analyticity of a relativistic Pauli-Fierz model in [30].
Another example for a transformation function is the Douglas-Kroll transfor-
mation, which was investigated by Siedentop and Stockmeyer [47] (see also
Huber and Stockmeyer [31]). Contrary to the situation there, our spectral
projections are not self-adjoint and thus the transformation function is a non-
unitary similarity transformation. The estimates in this section can be used to
generalize the Douglas-Kroll transformation to complex dilated operators.
In order to prove the existence of the transformation function, we need norm
estimates on the difference between the spectral projections.

Lemma 4. Let θ ∈ Smin{π/4,Θ}. Suppose that (H1) and (H2) hold. Then the
following statements hold:

a) There is a constant CDL > 0 (independent of c, γ and θ) such that for
2γ
c C(Im θ) < 1 the estimate

‖Λ(±)
c,γ (0)− Λ(±)

c,γ (θ)‖ ≤ CDL|θ| (44)
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holds. The operator |Dc,0(0)|1/2[Λ
(±)
c,γ (0)−Λ

(±)
c,γ (θ)]|Dc,0(0)|−1/2 is a holo-

morphic function of θ ∈Mγ/c.

b) Let moreover 0 < q < 1. Then there is a constant CDLS > 0 (independent
of c, γ and θ) such that for 2γ

c C(Im θ) < q the estimate

‖|Dc,0(0)|1/2[Λ(±)
c,γ (0)− Λ(±)

c,γ (θ)]|Dc,0(0)|−1/2‖ ≤ CDLS|θ| (45)

holds.

Proof. We adapt method which was used by Siedentop and Stockmeyer [47]
and by Griesemer, Lewis and Siedentop [19] for other choices of projections.
We start with the difference of resolvents

(Dc,0(θ)− i η)−1 − (Dc,0(0)− i η)−1

= ic[e−θ − 1](Dc,0(θ) − i η)−1
α · ∇(Dc,0(0)− i η)−1 (46)

and note that |e−θ − 1| ≤ B|θ| holds with B = eπ/4 for all |θ| ≤ π/4.

Step 1: Proof for the free projections. Equation (46) it and Lemma 3 imply
that

|(f, [(Dc,0(θ)− i η)−1 − (Dc,0(0)− i η)−1]g)|
≤B|θ|‖|Dc,0(Re θ)|1/2(|Dc,0(Re θ)|+ i η)−1f‖‖|Dc,0(0)|1/2(Dc,0(0)− i η)−1g‖

× ‖|Dc,0(Re θ)|−1/2cα · ∇|Dc,0(0)|−1/2‖‖ |Dc,0(Re θ)| − i η

Dc,0(θ)− i η
‖

≤ B|θ|
e−Re θ/2

C1(Im θ)‖ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|+ i η

f‖‖ |Dc,0(0)|1/2
Dc,0(0)− i η

g‖,

where we used the estimate ‖c|∇||Dc,0(Re θ)|−1‖ ≤ 1/e−Re θ.

This proves (cf. [47, Proof of Lemma 1] and proof of Corollary 1) ‖Λ(±)
c,0 (0) −

Λ
(±)
c,0 (θ)‖ ≤ C̃DL|θ| with a C̃DL > 0 and analogously ‖|Dc,0(0)|1/2[Λ

(±)
c,0 (0) −

Λ
(±)
c,0 (θ)]|Dc,0(0)|−1/2‖ ≤ C̃DL|θ|, since |Dc,0(0)|1/2 commutes with all operators

in (46).

Step 2: Proof of (44). We write

∥∥[V2(θ)
1

Dc,0(θ)− i η
V1(θ)

]
−
[
V2(0)

1

Dc,0(0)− i η
V1(0)

]∥∥ (47)

≤
∥∥[V1(θ)

e−θ

Dc,0(θ)− i η
χθV2(θ)

]
−
[
V1(θ)

e−θ

Dc,0(0)− i η
χθV2(θ)

]∥∥

+
∥∥[V 1/2

C

1

Dc,0(0)− i η
(χθe

−θ − 1)V
1/2
C

]∥∥ ≤ B|θ|π
2c

(C(Im θ) + 1 + C̃),
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where we estimated the second summand by B(1 + C̃)|θ|π/(2c) from above,
and the second summand – similarly as in (26) – according to

∥∥(e−θ − 1)
[
V2(θ)

1

Dc,0(θ) − i η
cα · ∇ 1

Dc,0(0)− i η
V1(θ)

]∥∥ ≤

≤ B|θ|π
2c

∥∥ |Dc,0(Re θ)|
Dc,0(θ) − i η

∥∥∥∥ |Dc,0(0)|
Dc,0(0)− i η

∥∥ ≤ B|θ|π
2c

C(Im θ).

In the same way we obtain

∥∥[e−θ/2V 1/2
C (Dc,0(θ)− i η)−1 − V 1/2

C (Dc,0(0)− i η)−1
]
g
∥∥ (48)

≤|e−θ/2 − eθ/2|
∥∥e−θV 1/2

C (Dc,0(θ)− i η)−1cα · ∇(Dc,0(0)− i η)−1g
∥∥

+|e−θ/2−1|
∥∥V 1/2

C

1

Dc,0(0)−i η
g
∥∥ ≤ B|θ|

√
π

2c

(
C(Im θ) + 1/2

)∥∥ |Dc,0(0)|1/2
Dc,0(0)− i η

g
∥∥.

Lemma 3 implies

∥∥V 1/2
C

e−θ/2

Dc,0(θ)− i η
g
∥∥ ≤ C1(Im θ)

√
π

2c

∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)| − i η

g
∥∥ (49)

and (see Formula (26))

∥∥V 1/2
C e−θ(Dc,0(θ) − i η)−1V

1/2
C

∥∥ ≤ πC(Im θ)

2c
. (50)

Formulas (47) through (50) show

∣∣γn
(
f,

e−θ/2

Dc,0(θ)− i η
V1(θ)

[
V2(θ)

e−θ

Dc,0(θ) − i η
V1(θ)

]n−1
V2(θ)

e−θ/2

Dc,0(θ)− i η
g
)
−

− γn
(
f,

1

Dc,0(0)− i η
V1(0)

[
V2(0)

1

Dc,0(0)− i η
V1(0)

]n−1
V2(0)

1

Dc,0(0)− i η
g
)∣∣

≤ B|θ|
(πγC(Im θ)

2c

)n−1(πγC1(Im θ)

2c

)(
C(Im θ) + 1 + C̃

)

×
∥∥ |Dc,0(0)|1/2
|Dc,0(0)| − i η

f
∥∥[n
∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)|+ i η

g
∥∥+

∥∥ |Dc,0(0)|1/2
Dc,0(0) + i η

g
∥∥],

which implies (44).

Step 3: Proof of (45). We use the expansion

(Dc,γ(θ) − i η)−1 − (Dc,0(θ)− i η)−1

=

∞∑

n=1

γn
1

Dc,0(θ)− i η

[
V (θ)

1

Dc,0(θ)− i η

]n−1
V (θ)

1

Dc,0(θ)− i η
(51)
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and start with the necessary estimates on the differences of the resolvents:
Using Hardy’s inequality, we obtain as in (26)

‖[V (θ)(Dc,0(θ) − i η)−1 − V (0)(Dc,0(0)− i η)−1]|Dc,0(0)|−1/2g
∥∥ (52)

≤ 2B|θ|
c

(C(Im θ) + 1 + C̃)
∥∥ |Dc,0(0)|1/2
Dc,0(0)− i η

g
∥∥,

and we find analogously

∥∥VC
[
χθ

e−θ

Dc,0(θ)− i η
− χ 1

Dc,0(0)− i η

]∥∥ ≤ 2B|θ|
c

(C(Im θ) + 1 + C̃) (53)

as well as

‖[(Dc,0(θ̄) + i η)−1 − (Dc,0(0) + i η)−1]|Dc,0(0)|1/2f‖ (54)

≤ ‖[eθ̄−1]
e−θ̄

Dc,0(θ̄) + i η
cα · ∇ |Dc,0(0)|1/2

Dc,0(0)+i η
f‖ ≤ 2B|θ|C(Im θ)‖ |Dc,0(0)|1/2

Dc,0(0)+i η
f‖.

For the terms with the resolvents we use Lemma 3 and Lemma 1 to estimate

∥∥V (θ)
1

Dc,0(θ)− i η
|Dc,0(0)|−1/2g

∥∥ ≤ 2

c

∥∥ |Dc,0(Re θ)|
Dc,0(θ)− i η

|Dc,0(0)|−1/2g
∥∥ (55)

≤ 2C1(Im θ)eπ/8

c

∥∥ |Dc,0(Re θ)|1/2
|Dc,0(Re θ)| − i η

g
∥∥,

and (cf. Formula (26))

∥∥V (θ)
1

Dc,0(θ) − i η

∥∥ ≤ 2

c

∥∥|Dc,0(Re θ)| 1

Dc,0(θ)− i η

∥∥ ≤ 2C(Im θ)

c
. (56)

Formulas (52) through (56) show

γn
∣∣(f, |Dc,0(0)|1/2

[ 1

Dc,0(θ) − i η

[
V (θ)

1

Dc,0(θ) − i η

]n−1
V (θ)

1

Dc,0(θ) − i η

− 1

Dc,0(0)− i η

[
V

1

Dc,0(0)− i η

]n−1
V

1

Dc,0(0)− i η

]
|Dc,0(0)|−1/2g

)∣∣

≤ eπ/4B|θ|
(2γC(Im θ)

c

)n−1(2γC1(Im θ)

c

)
(C(Im θ) + 1 + C̃)

∥∥ |Dc,0(0)|1/2
Dc,0(0) + i η

f
∥∥

×
[
n
∥∥ |Dc,0(Re θ)|1/2
Dc,0(Re θ)− i η

g
∥∥+

∥∥ |Dc,0(0)|1/2
Dc,0(0)− i η

g
∥∥],

which in turn proves (45).
Step 4: Holomorphicity. This follows as in the proof of Theorem 4, since(
f, |Dc,0(0)|1/2 1

Dc,0(θ)−iη

[
V (θ) 1

Dc,0(θ)−i η

]n−1
V (θ) 1

Dc,0(θ)−iη |Dc,0(0)|−1/2g
)

are

holomorphic functions of θ and the above estimates imply the existence of
summable and integrable majorant which does not depend on θ.
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Before we turn to the existence of a transformation function in Theorem 6,
we need two operator inequalities, one of which was proven in [19]. Since the
other inequality can be proven completely analogously, we omit the proof. Let
us mention that there exits an improved version of one of these inequalities
(see [39]). But since we will be interested in the non-relativistic limit only, it
is sufficient to use the original version.

Lemma 5 ([19], Lemma 2). Suppose that ϑ ∈ R and γ
c <

1
2 . Then the operator

inequalities

(1− 2γ

c
)|Dc,0(ϑ)‖ ≤ |Dc,γ(ϑ)| ≤ (1 +

2γ

c
)|Dc,0(ϑ)|

hold.

Now we can turn to the transformation function UDL(c, γ; θ) defined below. It

enables us to consider the operator UDL(c, γ; θ)D
(±)
c,γ (θ)UDL(c, γ; θ)−1 instead of

the operator D
(±)
c,γ (θ). This is necessary for technical reasons, since the latter

operates on a fixed space (i.e. Ran Λ
(+)
c,γ (0)). We will prove in [30] that this

operator defines a holomorphic family of operators. Moreover, we will need the
transformation function in the proof of the resolvent estimate in Theorem 7.

Theorem 6. Suppose that θ ∈ Smin{π/4,Θ},
2γ
c C(Im θ) < 1 and CDL|θ| < q

for some 0 < q < 1. Suppose moreover that (H1) and (H2) hold. Then the
following statements hold:

a) There is a bounded mapping UDL(c, γ; θ) : L2(R3; C4)→ L2(R3; C4) with
the property

UDL(c, γ; θ)Λ(+)
c,γ (θ)UDL(c, γ; θ)−1 = Λ(+)

c,γ (0) (57)

and bounded inverse VDL(c, γ; θ) := UDL(c, γ; θ)−1. There is a constant
CUDL > 0, independent of c, γ and θ, such that

‖UDL(c, γ; θ)− 1‖ ≤ CUDL|θ| (58)

holds.

b) Suppose that additionally CDLS|θ| < q holds. Then there is a constant
CUDLS, independent of c, γ and θ, such that

‖|Dc,0(0)|1/2UDL(c, γ; θ)|Dc,0(0)|−1/2 − 1‖ ≤ CUDLS |θ| (59)

is true. The same estimates hold for VDL(c, γ; θ).

c) The operator UDL(c, γ; θ), and for CDLS|θ| < q the operator

|Dc,0(0)|1/2UDL(c, γ; θ)|Dc,0(0)|−1/2

and the operator |Dc,0(0)|−1/2UDL(c, γ; θ)|Dc,0(0)|1/2, are holomorphic
functions of θ. The same statements hold for VDL(c, γ; θ).
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Proof. We follow [47, Theorem 1] and [33, Chapter I-4.6.] and define

UDL(c, γ; θ) := [Λ(+)
c,γ (0)Λ(+)

c,γ (θ) + Λ(−)
c,γ (0)Λ(−)

c,γ (θ)][1− (Λ(+)
c,γ (θ)−Λ(+)

c,γ (0))2]−1/2.
(60)

It is easy to see that (Λ
(+)
c,γ (θ)−Λ

(+)
c,γ (0))2 commutes with Λ

(+)
c,γ (θ) and Λ

(+)
c,γ (0)

and that UDL(c, γ; θ) is invertible with inverse VDL(c, γ; θ) := [Λ
(+)
c,γ (θ)Λ

(+)
c,γ (0)+

+Λ
(−)
c,γ (θ)Λ

(−)
c,γ (0)t][1−(Λ

(+)
c,γ (θ)−Λ

(+)
c,γ (0))2]−1/2, and that Equation (57) holds.

Lemma 4 implies that UDL(c, γ; θ) is a holomorphic function θ, since (1−A)−1/2

has a norm convergent series expansion for bounded operators A with ‖A‖ < 1.

Proof of (58): We follow [47, Proof of Lemma 5]. We have Λ
(+)
c,γ (0)Λ

(+)
c,γ (θ) +

Λ
(−)
c,γ (0)Λ

(−)
c,γ (θ) = 1−

[
Λ

(−)
c,γ (0)− Λ

(+)
c,γ (0)

] [
Λ

(+)
c,γ (θ)− Λ

(+)
c,γ (0)

]
and thus

UDL(c, γ; θ) :=
{
1−

[
Λ(−)
c,γ (0)− Λ(+)

c,γ (0)
] [

Λ(+)
c,γ (θ)− Λ(+)

c,γ (0)
]}

×
[
1− (Λ(+)

c,γ (θ)− Λ(+)
c,γ (0))2

]−1/2

.

Using the representation (1−a2)−1/2 = 1
π

∫ 1

−1
1√

1−y2

1
1−yady (see [17, Formula

3.197.4]) we obtain

UDL(c, γ; θ) =
{
1−

[
Λ(−)
c,γ (0)− Λ(+)

c,γ (0)
] [

Λ(+)
c,γ (θ)− Λ(+)

c,γ (0)
]}

× 1

π

∫ 1

−1

1√
1− y2

1

1− y(Λ
(+)
c,γ (θ)− Λ

(+)
c,γ (0))

dy .

Lemma 4 implies that the estimates ‖
[
Λ

(−)
c,γ (0)−Λ

(+)
c,γ (0)

][
Λ

(+)
c,γ (θ)−Λ

(+)
c,γ (0)

]
‖ ≤

2CDL|θ| and

∥∥ 1

π

∫ 1

−1

1√
1− y2

1

1− y(Λ
(+)
c,γ (θ)− Λ

(+)
c,γ (0))2

dy − 1
∥∥ =

=
∥∥ 1

π

∫ 1

−1

1√
1− y2

y(Λ
(+)
c,γ (θ)− Λ

(+)
c,γ (0))

1− y(Λ
(+)
c,γ (θ)− Λ

(+)
c,γ (0))

dy
∥∥ ≤ C′CDL|θ|

hold for some C′ > 0.
Proof of (59): The strategy is similar to the proof of (58). We write

|Dc,0(0)|1/2UDL(c, γ; θ)|Dc,0(0)|−1/2 =

=
{
1− |Dc,0(0)|1/2|Dc,γ(0)|−1/2

[
Λ(−)
c,γ (0)− Λ(+)

c,γ (0)
]
|Dc,γ(0)|1/2|Dc,0(0)|−1/2

× |Dc,0(0)|1/2
[
Λ(+)
c,γ (θ) − Λ(+)

c,γ (0)
]
|Dc,0(0)|−1/2

}

× 1

π

∫ 1

−1

1√
1− y2

1

1− y|Dc,0(0)|1/2
(

Λ
(+)
c,γ (θ) − Λ

(+)
c,γ (0)

)
|Dc,0(0)|−1/2

dy ,
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where we used that |Dc,γ(0)|−1/2 commutes with Λ
(±)
c,γ (0). Using Lemma 5 and

Lemma 4 we obtain the claim as before.

A first application of the transformation function UDL(c, γ; θ) is the following
lemma, which estimates the difference between the dilated Dirac operator and
its original version.

Lemma 6. Under the assumptions of Theorem 6 b) there is a constant CUD > 0,
independent of γ, c and θ, such that

∥∥∥|Dc,0(0)|−1/2
[
UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1

−Dc,γ(0)
]
|Dc,0(0)|−1/2

∥∥∥ ≤ CUD|θ| (61)

holds.

Proof. We have

|Dc,0(0)|−1/2[UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1 −Dc,γ(0)]|Dc,0(0)|−1/2

=|Dc,0(0)|−1/2[UDL(c, γ; θ)− 1]|Dc,0(0)|1/2|Dc,0(0)|−1/2Dc,γ(θ)|Dc,0(0)|−1/2

×|Dc,0(0)|1/2UDL(c, γ; θ)−1|Dc,0(0)|−1/2+

+|Dc,0(0)|−1/2[Dc,γ(θ) −Dc,γ(0)]|Dc,0(0)|−1/2

×|Dc,0(0)|1/2UDL(c, γ; θ)−1|Dc,0(0)|−1/2 + |Dc,0(0)|−1/2Dc,γ(0)|Dc,0(0)|−1/2

×|Dc,0(0)|1/2[UDL(c, γ; θ)−1 − 1]|Dc,0(0)|−1/2,

which implies the claim, if we use additionally

‖|Dc,0(0)|−1/2[Dc,γ(θ)−Dc,γ(0)]|Dc,0(0)|−1/2‖ = ‖|Dc,0(0)|−1/2 (62)

× [−(e−θ − 1)icα · ∇ − γ(V (θ)− V )]|Dc,0(0)|−1/2‖ ≤ (B + C̃)|θ|(1 +
πγ

2c
)

and Theorem 6. Moreover, we used the inequality |e−θ − 1| ≤ B|θ| with B =
eπ/4 and Kato’s inequality in the proof of (62).

7 A resolvent estimate for the Dirac operator

In the following, we choose an η > 0 such that for some ñ > 1 and all c ≥ 1 the
inequalities Ẽñ,ñ(c, γ) < c2 − η and Ẽñ+1,1(c, γ) > c2 − η hold. If ñ = Nmax,
then the second condition has to be omitted.
Using the notation of Section 5 we define Pdisc,ñ(c, γ; θ) :=

∑
1≤n≤ñ Pn(c, γ; θ)

and P̄disc,ñ(c, γ; θ) := 1 − (Λ
(−)
c,γ (θ) + Pdisc,ñ(c, γ; θ)). Note that P̄disc,ñ(c, γ; θ)

projects onto a subspace of the positive spectral subspace.
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The following theorem partly generalizes [5, Lemma 3.8] for Dirac operators
(see also Theorem A.1). We will slightly extend this theorem in the non-
relativistic limit (see Lemma 7 and Corollary 4). This theorem and Corollary 4
enable us to control the norm of the resolvent of the non-self-adjoint operator
Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ). Note that the usual theorems about the norm of the
resolvent of a self-adjoint operator fail in general, and that for the following to
hold it is essential that to restrict the operator to (a subspace of) the positive
spectral subspace.

Theorem 7. Suppose that the assumptions of Theorem 6 b) hold. Assume
additionally that the inequalities CUD|θ|(1+2γ/c) < q and 2γ(1+CFW|Im θ|) <
q are fulfilled for some 0 < q < 1. Then the following statements are true: The
operator Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − z has a bounded inverse for all z ∈ C with

Re z ≤ c2 − 1 . There is a constant CR > 0, independent of c, γ and θ, such
that for all z ∈ C with Re z ≤ c2 − 1 the estimate

∥∥∥∥
[
Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − z

]−1

P̄disc,ñ(c, γ; θ)

∥∥∥∥ ≤
CR‖P̄disc,ñ(c, γ; θ)‖
c2 − η − Re z

holds.

Proof. We make a case distinction:
Case 1: Re z ≤ 0. Theorem 6 implies the inclusion Ran(UDL(c, γ; θ)

× P̄disc,ñ(c, γ; θ)UDL(c, γ; θ)−1) ⊂ Ran(Λ
(+)
c,γ (0)). Thus, using Theorem 6 again,

it suffices to show

∥∥[(UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)

∥∥ ≤ C

c2− η− Re z
.

As in [5, Proof of Lemma 3.8], we use a resolvent expansion:

[(UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0) (63)

=

∞∑

n=0

[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)|Dc,γ(0)|1/2

×
[
Λ(+)
c,γ (0)|Dc,γ(0)|−1/2|Dc,0(0)|1/2|Dc,0(0)|−1/2

× [UDL(c, γ; θ)Dc,γ(θ)UDL(c, γ; θ)−1 −Dc,γ(0)]

× |Dc,0(0)|−1/2|Dc,0(0)|1/2|Dc,γ(0)|−1/2Λ(+)
c,γ (0)

× |Dc,γ(0)|1/2[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)|Dc,γ(0)|1/2

]n
|Dc,γ(0)|−1/2

In order to prove the convergence of the series, we have to estimate the terms
in (63). First, we note that

|Dc,γ(0)|(Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z)−1Λ(+)
c,γ (0) = sup

λ≥c2
λ

|λ− z| ≤ 1 (64)
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holds, since Re z ≤ 0. Moreover, the spectral theorem implies

‖|Dc,γ(0)|1/2[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)‖2 (65)

≤‖[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)‖

× ‖|Dc,γ(0)|[Dc,γ(0)|
Ran Λ

(+)
c,γ (0)

− z]−1Λ(+)
c,γ (0)‖ ≤ C

c2 − η − Re z
.

Lemma 6, Lemma 5 and (64) prove the convergence of the series in (63). Using
Formula (65), the claim follows for Re z ≤ 0 from (63).

Case 2: 0 ≤ Re z ≤ c2 − 1. We use the resolvent expansion

[Dc,γ(θ)− z]−1 =

∞∑

n=0

[Dc,0(θ)− z]−1[γV (θ)[Dc,0(θ)− z]−1]n. (66)

Hardy’s inequality and Theorem 1 yield ‖γV (θ)[Dc,0(θ)−z]−1‖ ≤ 2γe−Re θ(1+

CFW|Im θ|)‖ |∇|√
−e−2θc2∆+c4β−z

‖. In order to control this norm, we estimate as

follows:

sup
p∈R3

e−Re θ|p|
|
√
e−2θc2p2 + c4 ± z|

≤ 1√
cos(2Im θ)

sup
p∈R3

|p|
|
√
c2p2 + c4 ± Re z

Since |p|√
c2p2+c4+Re z

≤ 1/c, it suffices to consider the case with the minus sign.

We need to find the supremum of the function fc,l : [0,∞) → R, fc,l(r) :=
r√

c2r2+c4−l for 0 ≤ l ≤ (c2− 1). If we differentiate this function, we find that it

attains its maximum at the point r0 :=
√
c4−l2c
l . Now, we define the function

gc(l) := fc,l(r0) = c√
c4−l2 for 0 ≤ l ≤ (c2 − 1). This function is obviously

monotonously increasing in l and therefore attains its maximum at the point
l0 := c2 − 1. We have gc(l0) = c√

c4−(c2−1)2
= c√

2c2−1
≤ 1.

Thus, Equation (66) and Theorem 1 yield the estimate ‖[Dc,γ(θ) − z]−1‖ ≤
C̃‖1/(

√
e−2θc2p2 + c4β − z)‖ with some C̃ > 0. Since

√
e−2θc2p2 + c4β is

normal, we find ‖[Dc,γ(θ)− z]−1‖ ≤ CR/(c2− η−Re z), which remains true, if
we restrict the resolvent to Ran P̄disc,ñ(c, γ; θ).

8 Non-relativistic limit

In this section we investigate the non-relativistic limit of complex dilated Dirac
operators. We will use these results in [30], where we will discuss the interac-
tion with the second quantized radiation field. Moreover, we can extend the
resolvent estimate of Theorem 7 to the region close to the spectrum of the
operator and control the norm of the projection occurring there.
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8.1 General Theory

We extend some statements from [49] to the non-self-adjoint case. We define
β± := 1

2 (1± β) as well as M := {z ∈ C| − 1 ≤ Re z < 0, |Im z| ≤ 1} and fix a
γ > 0 such that Dc,γ(θ)− c2 has no eigenvalues E with ReE ≤ −1. This is at
least true for 0 ≤ γ < 1 in the case of V = VC , which can be seen, for example,
using the explicit formula for the eigenvalues, see [35]. We define as operators
on L2(R3; C4):

D∞,0(θ) := −e
−2θ

2
∆, D∞,γ(θ) := −e

−2θ

2
∆− γV (θ)β+

Kc,0(θ) := (D∞,0(θ)− z − z2

2c2
)−1, Kc,γ(θ) := (D∞,γ(θ)− z − z2

2c2
)−1

as well as

R∞,0;θ(z) := (D∞,0(θ) − z)−1, Rc,0;θ(z) := (Dc,0(θ)− z)−1

R∞,γ;θ(z) := (D∞,γ(θ)− z)−1, Rc,γ;θ(z) := (Dc,γ(θ)− z)−1.

First, we generalize [49, Theorem 6.1 and Theorem 6.4] to dilated operators.
As in [49], Theorem 8 is the starting point for the investigation of the non-
relativistic limit.

Theorem 8. a) Suppose that θ ∈ Sπ/4 and c ≥ 1. Then for z /∈ σ(Dc,0(θ))∪
σ(D∞,0(θ)) the resolvent relation

(Dc,0(θ) ∓ c2 − z)−1 =

(
β± ±

1

2c2
(−icα · ∇ ± z)

)

×
(
1∓ 1

2c2
z2 (±D∞,0(θ) − z)

−1

)−1

(±D∞,0(θ) − z)−1 (67)

holds.

b) Suppose that θ ∈ Smin{π/4,θ},
2γ
c C(Im θ) < 1 and that (H1) holds. Then

for z ∈M \ R the relations

(Dc,γ(θ)− c2 − z)−1 =

(
β+ +

1

2c2
(−ice−θα · ∇+ z)

)

×Kc,γ(θ)
(
1− γ

2c2
V (θ)(−ice−θα · ∇+ z)Kc,γ(θ)

)−1

(68)

and

Kc,γ(θ) =

(
1− z2

2c2
(D∞,γ(θ) − z)−1

)−1

(D∞,γ(θ)− z)−1 (69)

hold.

Documenta Mathematica 14 (2009) 297–338



324 Matthias Huber

Proof.
a) We follow the proof of [49, Theorem 6.1], noting that z ∈ C with z(1+ z

2c2 ) /∈
e−2i Im θ[0,∞) is equivalent to z + c2 /∈ σ(Dc,0(θ)). In order to show Equation
(67), we define the operators A±(θ) := Dc,0(θ)± c2± z = −icα ·∇± 2c2β±± z
and note that A+(θ)A−(θ) = A−(θ)A+(θ) = −c2e−2i θ∆−2c2z−z2. This yields

A±(θ)−1 =
A∓(θ)

2c2

(
D∞,0(θ)− z − z2

2c2

)−1

, (70)

which in turn implies the claim. Note that all operators are equivalent to
multiplication operators.
b) We follow the proof of [49, Theorem 6.2]. Theorem 3 implies that
z + c2 /∈ σ(Dc,γ(θ)). It follows that Dc,γ(θ) − (c2 + z) = A−(θ) − γV (θ) =
(1 + γV (θ)A−(θ)−1)A−(θ). Since Dc,γ(θ)− (c2 + z) and A−(θ) have bounded
inverses, the bounded operator 1 + γV (θ)A−(θ)−1 is bijective, and is thus in
particular bounded invertible. From Equation (70) it follows that

(Dc,γ(θ)−c2−z)−1 =(A−(θ)−γV (θ))−1=A−(θ)−1(1−γV (θ)A−(θ)−1)−1

(71)

=

(
β+ +

1

2c2
(−ice−θα · ∇+ z)

)
(D∞,0(θ)− z − z2

2c2
)−1

×
(

1− γV (θ)β+Kc,0(θ)− γ

2c2
V (θ)(−ice−θα · ∇+ z)Kc,0(θ)

)−1

.

z ∈ M \ R implies z + z2/(2c) ∈ M \ R and in particular z(1 + z
2c2 ) /∈

σ(D∞,γ(θ)), which shows (69). Moreover Kc,γ(θ) = Kc,0(θ) − γV (θ)β+ =
(1 − γV (θ)β+Kc,0(θ)−1)Kc,0(θ) holds. To see this, note that z + c2 /∈
σ(Dc,γ(θ)) implies z + c2 /∈ σ(Dc,0(θ)), which in turn implies z(1 + z

2c2 ) /∈
σ(D∞,0(θ)), i.e. Kc,0(θ) is bounded invertible. Thus, the bounded operator
1− γV (θ)β+Kc,0(θ)−1 has a bounded inverse, and

Kc,γ(θ)−1 = Kc,0(θ)−1(1− γV (θ)β+Kc,0(θ)−1)−1 (72)

as well as

(
1− γV (θ)β+Kc,0(θ)− γ

2c2
V (θ)(−ice−θα · ∇+ z)Kc,0(θ)

)−1

= (1− γV (θ)Kc,0(θ)−1β+)−1

×
(
1− γ

2c2
V (θ)(−ice−θα · ∇+ z)Kc,0(θ)(1− γV (θ)Kc,0(θ)−1β+)−1

)−1

(73)

hold. Using (72) and (73), (68) follows from (71).

We denote the real eigenvalues of D∞,γ(θ) by En(∞, γ) = En(γ), ordered by
size and not counting multiplicities. Note that by dilation analyticity these
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eigenvalues are the same as the eigenvalues of D∞,γ(0) and that |En(∞, γ) −
En,l(c, γ)| = O(1/c2) for all l ∈ {1, . . . , Nn} by [49, Theorem 6.8]. We pick now
η as in Section 7 and define for each ǫ̃ > 0 the set

Mη,ǫ̃ := {z ∈ C|1 ≤ Re z ≤ −(η + ǫ̃), |Im z| ≤ 1, dist(z, σ(Dc,γ(θ))) ≥ ǫ̃}.

Moreover, we set D(w, r) := {z ∈ C||z − w| < r} for w ∈ C and r > 0. Fix
ǫ̃ > 0 so small that for all n, n′ ∈ N with n 6= n′ and 1 ≤ n, n′ ≤ ñ the
sets D(En(∞, γ), 2ǫ̃) and D(En′(∞, γ), 2ǫ̃) are disjoint and contained in the
set {z ∈ C|1 ≤ Re z ≤ −(η + ǫ̃), |Im z| ≤ 1}. Now we pick for ǫ̃ > 0 a contour
Γ with positive orientation such that Γ is contained Mη,ǫ̃ and has only the
eigenvalue En(γ) in its interior, but no other eigenvalues of σ(D∞,γ(θ)). Then
we define

Pn(∞, γ; θ) := − 1

2πi

∫

Γ

dz R∞,γ;θ(z)β+.

We set Pdisc(∞, γ; θ) :=
∑ñ

i=1 Pi(∞, γ; θ) and P̄disc(∞, γ; θ) := 1 −
Pdisc(∞, γ; θ). Note that using the definitions in Appendix A and in slight
abuse of notation Pdisc(∞, γ; θ) = Pdisc(γ; θ)β+ and P̄disc(∞, γ; θ) = β− +
P̄disc(γ; θ)β+.
Now we are in the position to generalize [49, Corollary 6.5] to dilated operators.

Corollary 2. Suppose that |θ| < θ0, where θ0 is sufficiently small (see Ap-
pendix A), and θ ∈ Smin{π/4,Θ} as well as 2γ

c C(Im θ) < 1. Suppose moreover
that (H1) holds. Then the resolvent expansion

[
Dc,γ(θ) − (c2 + z)

]−1
=

∞∑

n=0

1

cn
Rn(z). (74)

holds for all z ∈Mη,ǫ̃ and all sufficiently large c. The series converges in norm,
uniformly in θ and z. In particular,

[Dc,γ(θ)− (c2 + z)]−1 −→
c→∞

[D∞,γ(θ) − z]−1β+

uniformly in θ and z.

Proof. First, we need an estimate on the resolvent of D∞,γ(θ). We split the
resolvent according to

[D∞,γ(θ) − z]−1 = [D∞,γ(θ)|Ran P̄disc(∞,γ;θ) − z]−1P̄disc(∞, γ; θ) (75)

+
ñ∑

n=1

[D∞,γ(θ)|RanPn(∞,γ;θ) − z]−1Pn(∞, γ; θ).

Theorem A.1 implies that the norm of the first summand in (75) is bounded
by 2/η. The norms of the other summands can be estimated according to∥∥[D∞,γ(θ)|RanPn(∞,γ;θ) − z]−1Pn(∞, γ; θ)

∥∥ ≤ ‖Pn(∞,γ;θ)‖
dist(z,En(γ)) ≤

C|θ|
dist(z,En(γ)) using
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Corollary A.1. Thus, we have for sufficiently small 1/c (dependent on ǫ̃) and
all z ∈Mη,ǫ̃ the expansion

(1− z2

2c2
(D∞,γ(θ)− z)−1)−1 = (D∞,γ(θ)− z)−1

∞∑

n=0

(
z2

2c2
(D∞,γ(θ)− z)−1)n.

Hardy’s inequality implies for f ∈ H2(R3; C4) the estimates ‖V f‖ ≤ 2‖∇f‖ ≤
a‖∆f‖ + (1/a)‖f‖ and e−2Re θ‖∆f‖ ≤ 1/(1 − 2aγ)‖D∞,γ(θ)f‖ + 2γ/[a(1 −
2aγ)]‖f‖ with a sufficiently small a > 0. It follows that

‖ γ
2c2

V (θ)(−ice−θα·∇+z)(D∞,γ(θ)−z)−1‖ ≤ γ

c
[C1+C2‖(D∞,γ(θ)−z)−1‖]

holds with C1, C2 > 0 (independent of γ, c and θ), which implies that the
last factor in (68) has a norm convergent series expansion in 1/c for 1/c small
enough.

Remark 4. We find R0(z) := β+R∞,γ;θ(z) as in [49]. As in [49, Remark after
Corollary 6.5], the operators occurring with even powers of 1/c are even, and
the operators occurring with odd powers of 1/c are odd .

Lemma 7. Suppose that the assumptions of Corollary 2 hold. Then there is a
constant CP,n > 0 (independent of c and θ) such that for sufficiently large c
the estimate

‖Pn(c, γ; θ)− Pn(∞, γ; θ)‖ ≤ CP,n

c

holds.

Proof. This follows immediately from Corollary 2.

The following two corollaries extend Theorem 7.

Corollary 3. Suppose that the assumptions of Corollary 2 hold. Then there
is a constant C > 0 (possibly dependent on θ) such that for all z ∈ C with
−1 ≤ Re z ≤ −η and |Im z| ≤ 1 and all sufficiently large c the estimate

‖[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − (c2 + z)]−1P̄disc,ñ(c, γ; θ)‖ ≤ C

holds.

Proof. Corollary 2 implies that [Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ)−(c2+z)]−1 is uniformly
bounded in z ∈ Mη,ǫ̃ and c (for sufficiently large c). Lemma 7 and Lemma 4
yield the existence of an upper bound on

‖P̄disc,ñ(c, γ; θ)‖ = ‖1− (Λ(−)
c,γ (θ) + Pdisc,ñ(c, γ; θ))‖,

which does not depend on c. Thus the claim holds for z ∈Mη,ǫ̃.
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Let z0 ∈ D(En(∞, γ), ǫ̃). Then Γ := {z ∈ C||z−En(∞, γ)| = 2ǫ̃} ⊂Mη,ǫ̃ holds
because of the definition of the set Mη,ǫ̃. Since [Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ))− (c2 +

z)]−1 in z ∈ {z ∈ C| − 1 ≤ Re z ≤ −η, |Im z| ≤ 1} is holomorphic,

[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − (c2 + z0)]−1P̄disc,ñ(c, γ; θ) = − 1

2πi

×
∫

Γ

[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ)) − (c2 + z)]−1P̄disc,ñ(c, γ; θ)
1

z − z0
dz

holds, where the contour is oriented in the positive sense. This implies the
claim for z0 ∈ D(En(∞, γ), ǫ̃).

Corollary 4. Suppose that the assumptions of Theorem 7 and Corollary 2
hold. Then there is a C > 0 (possibly dependent on θ) such that for all z ∈ C
with −1 < Re z ≤ −η and |Im z| ≤ 1 or with −∞ < Re z ≤ −1 and all
sufficiently large c the estimate

‖[Dc,γ(θ)|Ran P̄disc,ñ(c,γ;θ) − (c2 + z)]−1P̄disc,ñ(c, γ; θ)‖ ≤ C

−η − Re z

is true.

Proof. This follows immediately from Corollary 3 and Theorem 7 together with
Lemma 7.

Now, we define a transformation function UNR(c, γ; θ) : L2(R3; C4)→
L2(R3; C4) by

UNR(c, γ; θ) := [Pn(c, γ; θ)Pn(∞, γ; θ) + (1− Pn(c, γ; θ))(1− Pn(∞, γ; θ))]

× [1− (Pn(c, γ; θ)− Pn(∞, γ; θ))2]−1/2.

Lemma 8. Suppose that the assumptions of Corollary 2 and the inequality
CP,n/c < q < 1 hold for some 0 < q < 1. Then the mapping UNR(c, γ; θ) is
bounded with bounded inverse VNR(c, γ; θ). The relations

UNR(c, γ; θ)Pl(∞, γ; θ)UNR(c, γ; θ)−1 = Pl(c, γ; θ) (76)

and

‖UNR(c, γ; θ)− 1‖ ≤ CNRP

c
(77)

hold with a constant CNRP > 0 independent of c and θ. UNR(c, γ; θ) is a
holomorphic function of θ.

Proof. Using Lemma 7 this can be proven in the same way as Theorem 6.
For the holomorphicity in θ note that the power series (in 1/c) for Rc,γ;θ(z),
Pn(c, γ; θ) and UNR(c, γ; θ) converge uniformly in θ.
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Remark 5. As in [49] we obtain by Remark 4 that in the series expansion of
UNR(c, γ; θ) the operators occurring with even powers of 1/c are even and the
operators occurring with odd powers of 1/c are odd. In particular,

UNR(c, γ; θ) = UNR,g(c, γ; θ) +
1

c
UNR,ug(c, γ; θ), (78)

where UNR,g(c, γ; θ) and UNR,ug(c, γ; θ) are even and odd operators holomorphic
in 1/c.

The following theorem generalizes [49, Theorem 6.7] and shows that the lower
component of an eigen-spinor of the Dirac operator converges to zero as c→∞.

Theorem 9. Suppose that the assumptions of Lemma 8 hold. Then the normed
eigenfunctions φn(c, γ; θ) of Dc,γ(θ) with eigenvalue En,l(c, γ) have the form

φn,l(c, γ; θ) = φn,l,+(c, γ; θ) +
1

c
φn,l,−(c, γ; θ),

φn,l,±(c, γ; θ) ∈ β±L2(R3; C4), (79)

where φn,l,±(c, γ; θ) are continuous functions of 1/c.

Proof. We have Pn(c, γ; θ)Dc,γ(θ)Pn(c, γ; θ) = − 1
2πi

∫
Γ

z
Dc,γ (θ)−zdz . Any eigen-

vector φ̃n(c, γ; θ) of Pn(c, γ; θ)Dc,γ(θ)Pn(c, γ; θ) and thus any eigenvector of

Dc,γ(θ) with eigenvalue En,l(c, γ) is given by φ̃n,l(c, γ; θ)
= UNR(c, γ; θ)φn,l(∞, γ; θ) for a φn,l(∞, γ; θ) ∈ β+L

2(R3; C4). Remark 5

and the analytic perturbation theory imply φ̃n,l(c, γ; θ) = φ̃n,l,+(c, γ; θ) +
1
cφn,l,−(c, γ; θ), where φ̃n,l(c, γ; θ) and φ̃n,l,±(c, γ; θ) are holomorphic functions
of 1/c. Since the projections Pn(c, γ; θ) are nor orthogonal, the normed eigen-
functions are in general not holomorphic functions of 1/c. But nevertheless
‖φ̃n,l(c, γ; θ)‖ ≥ 1− C 1

c holds for some C > 0 and thus (79) follows.

We use these statements to prove that eigenfunctions are bounded in the norm
of H1(R3; C4).

Theorem 10. Suppose the assumptions of Lemma 8 hold. Then there is a con-
stant CEF > 0, independent of c, such that the normed eigenfunctions φn(c, γ; θ)
of Dc,γ(θ) with eigenvalue En,l(c, γ) fulfill the estimates

‖∇φn,l,+(c, γ; θ)‖ ≤ CEF (80)

and

‖∇φn,l,−(c, γ; θ)‖ ≤ CEF

c
(81)

for sufficiently large c.

Documenta Mathematica 14 (2009) 297–338



Spectral Analysis of Relativistic Atoms 329

Proof. We follow Esteban and Séré [10, Proof of Lemma 7 and Theorem 3],
who considered the non-relativistic limit of self-adjoint Dirac-Fock operators.
Since Dc,γ(θ) is not self-adjoint, there are some additional difficulties. To
simplify the notation, we suppress the dependence of φn,l(c, γ; θ) on c, γ and
θ. We have

En,l(c, γ)2‖φn,l‖2 = ‖Dc,γ(θ)φn,l‖2

≥e−2Re θ[c2(1− 2 sin Im θ − γ/4)− 4cγ]‖∇φn,l‖2

+[c4(1− 2 sin Im θ)− 16γc2]‖φn,l‖2,

where we used Hardy’s inequality. Since En,l(c, γ)2 − c4 ≤ 0, it follows that

‖∇φn,l‖2 ≤
En,l(c, γ)2 − c4 + 2 sin Im θc2 + 16c2

c2(1− 2 sin Im θ − 1/4)− 4cγ
‖φn,l‖2

≤ C(sin Im θc2 + 1)‖φn,l‖2 (82)

for sufficiently large c, where C > 0 does not depend on c.
Note that the term proportional to c2 in (82) does not occur for Im θ = 0, which
implies immediately the boundedness of ‖∇φn,l‖ in this case. To circumvent
this difficulty, we write the Dirac equation in its components, where (in abuse
of notation) φn,l,± denotes the upper and, respectively, lower components of
φn,l:

ce−θσ · ∇φn,l,− − γV (θ)φn,l,+ + c2φn,l,+ = En,l(c, γ)φn,l,+ (83)

ce−θσ · ∇φn,l,+ − γV (θ)φn,l,− − c2φn,l,− = En,l(c, γ)φn,l,− (84)

Dividing (83) by c, using Hardy’s inequality and the boundedness of En,l(c, γ)−
c2, Formula (82) implies

‖∇φn,l,−‖ ≤
2

c
‖∇φn,l,+‖+

|En,l(c, γ)− c2|
c|e−Re θ| ‖φn,l,+‖ ≤ C (85)

for some C > 0 independent of c, i.e. ‖∇φn,l,−‖ is bounded in c. Dividing (84)
by c, we obtain

‖∇φn,l,+‖ ≤
2

c
‖∇φn,l,−‖+

|En,l(c, γ) + c2|
c|e−Re θ| ‖φn,l,−‖ ≤ C (86)

for some C > 0 independent of c, where we used Theorem 9 and Equation (85).
This shows (80). Inserting (86) in (85), Equation (81) follows.

Remark 6. Their validity of Theorem 9 and Theorem 10 in the Coulomb case
could be derived from the explicit form of the eigenfunctions (see the proof of
Lemma 11).
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Moreover, we need a bound on the norm of the dilation operator U(θ), restricted
to the spaces RanPn(c, γ; θ).

Lemma 9. Suppose that the assumptions of Lemma 8 hold. Then the family
of operators U(θ)|RanPn(c,γ;0) : RanPn(c, γ; 0) → RanPn(c, γ; θ) is uniformly
bounded in c and θ.

Proof. Surely U(θ)|RanPn(∞,γ;0) : RanPn(∞, γ; 0) → RanPn(∞, γ; θ) is well
defined for all θ ∈ C with |θ| ≤ min{π/4,Θ} (see [2, 6]) and (as a mapping
between finite-dimensional vector spaces) bounded. Since the operator is a
holomorphic function of θ for |θ| ≤ min{π/4,Θ}, there is a bound C′ > 0
(independent of θ) on its norm.

Let f ∈ RanPn(c, γ; 0). Then there is a f̃ ∈ RanPn(∞, γ; 0) with f =
UNR(c, γ; 0)f̃ , and for real θ f(θ) := Uel(θ)f = U(θ)UNR(c, γ; 0)U(θ)−1f̃(θ) =
UNR(c, γ; θ)f̃(θ) holds, where f̃(θ) := Uel(θ)f̃ . By holomorphic continua-
tion we obtain for complex θ the equality f(θ) = UNR(c, γ; θ)f̃(θ). Thus
Lemma 8 implies ‖f(θ)‖ ≤ ‖UNR(c, γ; θ)‖‖f̃(θ)‖ ≤ (1 + CNRP/c)C

′‖f̃‖ ≤
(1 + CNRP/c)C

′‖f‖ for some C′ > 0 independent of c and θ.

The following corollary shows that also the projections on the fine structure
components are bounded uniformly in c. This follows from the fact the dilated
projections are similar to the corresponding orthogonal projections belonging
to the corresponding self-adjoint Dirac operators because of Lemma 9. Note
that in general such projections are not uniformly bounded in the perturbation
parameter (see [33, Chapter II-1.5]).

Corollary 5. Let 1 ≤ n ≤ ñ and suppose that the assumptions of Lemma 9
hold. Then ‖Pn,l(c, γ; θ)‖ ≤ C for some C > 0 independent of n, l, c and θ.

Proof. This follows from Lemma 5, since the projections Pn,l(c, γ; 0) =
= U(θ)−1Pn,l(c, γ; 0)U(θ) are orthogonal.

8.2 Application to expectation values of Dirac matrices

We are now in the position to investigate expectation values of the matrices
α. Since these matrices are odd, such expectation values involve scalar prod-
ucts of the upper component of one spinor with the lower component of the
other spinor. Therefore, one expects that such expectation values converge to
zero like 1/c as c → ∞ uniformly in a set of suitable spinors. We show in the
following that this is true, if one of the spinors is in the set of eigenstates (in
the positive part of the gap) and the other state is an arbitrary state from the
positive spectral subspace. Note that this is not true, if both states are arbi-
trary states from the positive spectral subspace. At least for the free spectral
subspaces this can be seen from the explicit form of the projections (see Section
5). We will apply this result in [30].
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Lemma 10. Suppose that the assumptions of Lemma 9 hold and let ñ as in
Section 7. Then there is a constant C > 0, independent of c and θ, such that
for all 1 ≤ n, n′ ≤ ñ, 1 ≤ l ≤ n, 1 ≤ l′ ≤ n′ and k1, k2 ∈ R3

‖Pn,l(c, γ; θ)k1 ·αeik2·xPn′,l′(c, γ; θ)‖ ≤ C|k1|
c

.

Proof. This follows from Theorem 9 and Corollary 5, since α is an odd operator.

Lemma 11. Suppose that V = VC . Let c ≥ 1 and γ/c <
√

3/2. Then there is
a constant C > 0, independent of c, such that

‖|x|Pn,l(c, γ; 0)‖ ≤ C

holds, where x denotes the operator of multiplication with the space variable.

Proof. We define the unitary dilations Uc fc(x) := (Ucf)(x) := c−3/2f(c−1x)
and note that UcDc,γU

−1
c = c2D1,γ/c. Thus, if f ∈ H1(R3; C4) is a normed

eigenfunction of Dc,γ with eigenvalue En,l, then fc is a normed eigenfunction
of D1,γ/c with eigenvalue En,l/c

2. The radial parts fc,±(r) of the upper and
lower component, respectively, of fc are (see [35, Abschnitt 36])

fc,±(r) :=
±(2λ)3/2

Γ(2γ̃ + 1)

(1± En,l/c2)Γ(2γ̃ + nr + 1)

4 γ
cλ( γcλ − κ)nr!

(2λr)γ̃−1e−λr

× {( γ
cλ
− κ)F (−nr, 2γ̃ + 1, 2λr)∓ nrF (1− nr, 2γ̃ + 1, 2λr)}.

Here the radial quantum number fulfills nr ∈ N0 if κ < 0 and nr ∈ N if κ > 0,
and κ ∈ ±N is the eigenvalue of the spin-orbit operator (see [49, Chapter
4.6]). F denotes the confluent hypergeometric function, which reduces to a
polynomial in 2λr here (see [35, Abschnitt 36] and [34, Abschnitt d]). Moreover,

γ̃ :=
√
κ2 − γ2/c2 and λ :=

√
1− E2

n,l/c
4. Thus, the radial parts f±(r) of the

upper respectively lower components of f are

f±(r) :=
±(2cλ)3/2

Γ(2γ̃ + 1)

(1± En,l/c2)Γ(2γ̃ + nr + 1)

4 γ
cλ( γcλ − κ)nr!

(2λr)γ̃−1e−cλr

× {( γ
cλ
− κ)F (−nr, 2γ̃ + 1, 2cλr)∓ nrF (1− nr, 2γ̃ + 1, 2cλr)}.

Using the explicit formula (see [35]) for the eigenvalues, we see that cλ is a
function bounded in c with cλ −→ γ/n for c → ∞. Moreover, obviously
γ̃ → |κ| holds. This shows the claim.

Remark 7. At this point we make use of the explicit from of the eigenfuntions
of the Coulomb Dirac operator. There do not seem any results to be available
in the literature about exponential decay of eifenfunctions of the Dirac operator
uniformly in the velocity of light.
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Lemma 12. Suppose that the assumptions of Lemma 9 are fulfilled and let ñ
as in Section 7. Let moreover f : C → C with |f(z)| ≤ |z|. Then there is a
constant C > 0, independent of c, such that for all 1 ≤ n ≤ ñ, 1 ≤ l ≤ n and
k1, k2 ∈ R3

‖Pn,l(c, γ; 0)k1 ·αf(k2 · x)Pn′,l′(c, γ; 0)‖ ≤ C|k1||k2|
c

.

Proof. Lemma 11 implies that ‖xPn,l(c, γ; 0)‖ is uniformly bounded in c, in
particular (using the notation of Theorem 9) xφn,l,+(c, γ; 0). Now the claim
follows exactly as in Lemma 10.

The following theorem generalizes Lemma 10. Note that the statement of
Lemma 10 is not completely obvious, since not even the lower component of
the free positive spectral projection converges to zero in norm as c→∞. This
is, however, compensated by the fact that the H1-norm of the upper component
of bound states is bounded uniformly in c (Theorem 10).

Theorem 11. Suppose the assumptions of Lemma 9 hold and let ñ as in Section
7. Then there is a constant C > 0, independent of c and θ such that for all
1 ≤ n ≤ ñ, 1 ≤ l ≤ n and k1, k2 ∈ R3

‖Pn,l(c, γ; θ)k1 ·αeik2·xΛ(±)
c,γ (θ)‖ ≤ C|k1|(1 + |k2|)

c
.

Proof. Corollary 1 and Corollary 5 imply ‖Pn,l(c, γ; θ)k1 · αeik2·xΛ
(±)
c,γ (θ)‖ ≤

‖Pn,l(c, γ; θ)k1 ·αeik2·xΛ
(±)
c,0 (θ)‖+CNR|k1|γc with some C > 0 independent of θ

and c. Thus, it suffices to show ‖Pn,l(c, γ; θ)k · αeik2·xΛ
(±)
c,0 (θ)‖ ≤ C|k1|(1+|k2|)

c

for some C > 0. In a first step, we pick f ∈ RanPn,l(c, γ; θ̄) and g ∈
Ran Λ

(±)
c,0 (θ) normed, but arbitrary otherwise. We have g = VFW(c; θ)(g̃, 0)T

for some g̃ ∈ L2(R3; C2). It follows that g = F−1( c
2+Ec(p;θ)
Nc(p;θ)

F g̃, ce−θσ·p
Nc(p;θ)

F g̃)T ,
where F denotes both the Fourier transform on L2(R3; C2) and on L2(R3; C4).
We decompose f = (f+, f−)T with f± ∈ L2(R3; C2). It follows that

|(f, Pn,l(c, γ; θ)k1αe
ik2·xΛ

(±)
c,0 (θ)g)|

≤|(f+, k1 · σF−1−ce−θσ · p
Nc(p; θ)

F g̃)|+ |k1|‖f−‖‖g̃‖ sup
p∈R3

|c
2 + Ec(p; θ)

Nc(p; θ)
|.

Similarly to the proof of Theorem 1 we see that the supremum

supp∈R3 | c
2+Ec(p;θ)
Nc(p;θ)

| is bounded independently of c and θ. Thus, Theorem

9 implies the claim for the second summand.

For the first summand, observe that supp∈R3 | ce−θNc(p;θ)
| ≤ eπ/4/c. Thus

|(f+, k1 · σeik2·xF
−ce−θσ · p
Nc(p; θ)

F−1g̃)|

= |(σ · (−i∇)k1 · σe−ik2·xf+,F
−ce−θ
Nc(p; θ)

F−1g̃)| ≤ |k1|eπ/4
c

‖∇eik2·xf+‖‖g̃‖.
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Theorem 1 yields ‖g̃‖ ≤
√

1 + CFW|Im θ|‖g‖, which shows

|(f, Pn,l(c, γ; θ)k1αe
ik2·xΛ

(±)
c,0 (θ)g)| ≤ C‖f‖‖g‖ (87)

for some C > 0, if one takes Theorem 9 and Theorem 10 into account .
Now, pick f, g ∈ L2(R3; C4) arbitrarily and apply (87) to the functions

Pn,l(c, γ; θ̄)f and Λ
(±)
c,0 (θ)g. This implies the claim together with Corollary

5 and Lemma 4.

A Some Estimates taken from Bach, Fröhlich, and Sigal [5]

In this appendix we quote some results from [5] which we need for the inves-
tigation of the non-relativistic limit in Section 8. We quote the result only in
the generality which we need here and would like to mention that it also holds
for suitable multi-particle Schrödinger operators.
We define

Hγ(θ) := −e
−2θ

2
∆− γV (θ) (88)

as operator on L2(R3; C2) and pick some eigenvalue Eñ. We define (with
r > 0 small enough) Pel,n′(γ; θ) := −(2πi )−1

∫
|En′−z|=r(Hγ(θ) − z)−1dz as

projection onto the eigenspace of Hγ(θ) with eigenvalue En′ . We abbrevi-
ate Pn′(γ; θ) := 1 − Pn′(θ). For η > 0 with Eñ < −η < Eñ+1 we define
Pdisc(γ; θ) :=

∑
i:Ei≤−η Pi(γ; θ) and P disc(γ; θ) := 1− Pdisc(γ; θ).

In the following, we pick a sufficiently small θ0 > 0.

Lemma A.1 ([5], Corollary 1.4.). There is a constant C > 0 such that for all
|θ| < θ0 the estimate ‖[Hγ(θ) −Hγ(0)](Hγ(0)± i )−1‖ ≤ C|θ| holds.

Lemma (A.1) implies

Corollary A.1 ([5], Equation (3.79)). There is a C > 0 such that for all
|θ| < θ0 the estimate ‖Pn(γ; θ)−Pn(γ; 0)‖ ≤ C|θ| holds. The same estimate is
true if one replaces Pn with Pdisc.

Using Lemma A.1 and Corollary A.1 as well as a resolvent expansion one shows

Theorem A.1 ([5], Lemma 3.8.). Let z ∈ C with Re z < Σ − η. Then the
operator Hγ(θ)− z is invertible on Ran P̄disc(γ; θ) for sufficiently small |θ|(1 +
(−η − Re z)−1) and the estimate

∥∥(Hγ(θ)|P̄disc(γ;θ) − z)−1P̄disc(γ; θ)
∥∥ ≤ 2(−η − Re z)−1

holds.
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Received: September 1, 2008

Revised: July 31, 2009

Communicated by Wolfgang Soergel

Abstract. LetG be a complex, connected, reductive algebraic group
with Weyl groupW and Steinberg variety Z. We show that the graded
Borel-Moore homology of Z is isomorphic to the smash product of the
coinvariant algebra of W and the group algebra of W .

2000 Mathematics Subject Classification: Primary 20G05; Secondary
20F55
Keywords and Phrases: Borel-Moore Homology, Steinberg Variety,
Coinvariant algebra, Weyl group

1. Introduction

Suppose G is a complex, reductive algebraic group, B is the variety of Borel
subgroups of G. Let g be the Lie algebra of G and N the cone of nilpotent
elements in g. Let T ∗B denote the cotangent bundle of B. Then there is a
moment map, µ0 : T ∗B → N . The Steinberg variety of G is the fibered product
T ∗B ×N T ∗B which we will identify with the closed subvariety

Z = { (x,B′, B′′) ∈ N × B × B | x ∈ Lie(B′) ∩ Lie(B′′) }
of N × B × B. Set n = dimB. Then Z is a 2n-dimensional, complex algebraic
variety.
If V = ⊕i≥0Vi is a graded vector space, we will frequently denote V by V•.
Similarly, if X is a topological space, then Hi(X) denotes the ith rational Borel-
Moore homology of X and H•(X) = ⊕i≥0Hi(X) denotes the total Borel-Moore
homology of X .
Fix a maximal torus, T , of G, with Lie algebra t, and let W = NG(T )/T be
the Weyl group of (G, T ). In [6] Kazhdan and Lusztig defined an action of
W ×W on H•(Z) and they showed that the representation of W ×W on the

1The authors would like to thank their charming wives for their unwavering support during
the preparation of this paper
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top-dimensional homology of Z, H4n(Z), is equivalent to the two-sided regular
representation of W . Tanisaki [11] and, more recently, Chriss and Ginzburg
[3] have strengthened the connection between H•(Z) and W by defining a Q-
algebra structure on H•(Z) so that Hi(Z) ∗Hj(Z) ⊆ Hi+j−4n(Z). Chriss and
Ginzburg [3, §3.4] have also given an elementary construction of an isomorphism
between H4n(Z) and the group algebra QW .
Let Z1 denote the “diagonal” in Z:

Z1 = { (x,B′, B′) ∈ N × B × B | x ∈ Lie(B′) }.
In this paper we extend the results of Chriss and Ginzburg [3, §3.4] and show
in Theorem 2.3 that for any i, the convolution product defines an isomorphism
Hi(Z1) ⊗ H4n(Z)

∼−→ Hi(Z). It then follows easily that with the convolution
product, H•(Z) is isomorphic to the smash product of the coinvariant algebra
of W and the group algebra of W .
Precisely, for 0 ≤ i ≤ n let Coinv2i(W ) denote the degree i subspace of
the rational coinvariant algebra of W , so Coinv2i(W ) may be identified with
the space of degree i, W -harmonic polynomials on t. If j is odd, define
Coinvj(W ) = 0. Recall that the smash product, Coinv(W )#QW , is the Q-
algebra whose underlying vector space is Coinv(W )⊗Q QW with multiplication
satisfying (f1⊗φ1)·(f2⊗φ2) = f1φ1(f2)⊗φ1φ2 where f1 and f2 are in Coinv(W ),
φ1 and φ2 are in QW , and QW acts on Coinv(W ) in the usual way. The al-
gebra Coinv(W )#QW is graded by (Coinv(W )#QW )i = Coinvi(W )#QW
and we will denote this graded algebra by Coinv•(W )#QW . In Theorem
2.5 we construct an explicit isomorphism of graded algebras H4n−•(Z) ∼=
Coinv•(W )#QW .
This paper was motivated by the observation, pointed out to the first author
by Catharina Stroppel, that the argument in [3, 8.1.5] can be used to show that
H•(Z) is isomorphic to the smash product of QW and Coinv•(W ). The details
of such an argument have been carried out in a recent preprint of Namhee Kwon
[8]. This argument relies on some deep and technical results: the localization
theorem in K-theory proved by Thomason [12], the bivariant Riemann-Roch
Theorem [3, 5.11.11], and the Kazhdan-Lusztig isomorphism between the equi-
variant K-theory of Z and the extended, affine, Hecke algebra [7]. In contrast,
and also in the spirit of Kazhdan and Lusztig’s original analysis of H4n(Z), and
the analysis of H4n(Z) in [3, 3.4], our argument uses more elementary notions
and is accessible to readers who are not experts in equivariant K-theory and to
readers who are not experts in the representation theory of reductive, algebraic
groups.
Another approach to the Borel-Moore homology of the Steinberg variety uses
intersection homology. Let µ : Z → N be projection on the first factor. Then,
as in [3, §8.6], H•(Z) ∼= Ext4n−•D(N ) (Rµ∗QN , Rµ∗QN ). The Decomposition The-

orem of Beilinson, Bernstein, and Deligne can be used to decompose Rµ∗QN
into a direct sum of simple perverse sheaves Rµ∗QN ∼= ⊕x,φ IC

nx,φ
x,φ where x

runs over a set of orbit representatives in N , for each x, φ runs over a set of ir-
reducible representations of the component group of ZG(x), and ICx,φ denotes
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an intersection complex (see [2] or [9, §4,5]). Chriss and Ginzburg have used
this construction to describe an isomorphism H4n(Z) ∼= QW and to in addition
give a description of the projective, indecomposable H•(Z)-modules.
It follows from Theorem 2.3 that Hi(Z) ∼= Coinv4n−i(W )⊗H4n(Z) and so

(1.1)

Coinvi(W )⊗H4n(Z) ∼= Ext4n−iD(N ) (Rµ∗QN , Rµ∗QN )

∼=
⊕

x,φ

⊕

y,ψ

Ext4n−iD(N )

(
IC

nx,φ
x,φ , IC

ny,ψ
y,ψ

)
.

In the special case when i = 0 we have that

Coinv0(W )⊗H4n(Z) ∼= EndD(N ) (Rµ∗QN ) ∼=
⊕

x,φ

EndD(N )

(
IC

nx,φ
x,φ

)
.

The image of the one-dimensional vector space Coinv0(W ) in
EndD(N ) (Rµ∗QN ) is the line through the identity endomorphism and

QW ∼= H4n(Z) ∼= ⊕x,φ EndD(N )

(
IC

nx,φ
x,φ

)
is the Wedderburn decomposi-

tion of QW as a direct sum of minimal two-sided ideals. For i > 0 we have
not been able to find a nice description of the image of Coinvi(W ) in the
right-hand side of (1.1).
The rest of this paper is organized as follows: in §2 we set up our notation
and state the main results; in §3 we construct an isomorphism of graded
vector spaces between Coinv•(W ) ⊗ QW and H4n−•(Z); and in §4 we com-
plete the proof that this isomorphism is in fact an algebra isomorphism when
Coinv•(W ) ⊗ QW is given the smash product multiplication. Some very gen-
eral results about graphs and convolution that we need for the proofs of the
main theorems are proved in an appendix.
In this paper ⊗ = ⊗Q, if X is a set, then δX , or just δ, will denote the diagonal
embedding of X in X ×X , and for g in G and x in g, g · x denotes the adjoint
action of g on x.

2. Preliminaries and Statement of Results

Fix a Borel subgroup, B, of G with T ⊆ B and define U to be the unipotent
radical ofB. We will denote the Lie algebras of B and U by b and u respectively.
Our proof that H•(Z) is isomorphic to Coinv•(W )#QW makes use of the
specialization construction used by Chriss and Ginzburg in [3, §3.4] to estab-
lish the isomorphism between H4n(Z) and QW . We begin by reviewing their
construction.
The group G acts diagonally on B × B. Let Ow denote the orbit containing
(B,wBw−1). Then the rule w 7→ Ow defines a bijection between W and the
set of G-orbits in B × B.
Let πZ : Z → B×B denote the projection on the second and third factors and
for w in W define Zw = π−1

Z (Ow). For w in W we also set uw = u∩w · u. The
following facts are well-known (see [10] and [9, §1.1]):

• Zw ∼= G×B∩wB uw.
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• dimZw = 2n.
• The set {Zw | w ∈W } is the set of irreducible components of Z.

Define

g̃ = { (x,B′) ∈ g× B | x ∈ Lie(B′) },
Ñ = { (x,B′) ∈ N × B | x ∈ Lie(B′) }, and

Ẑ = { (x,B′, B′′) ∈ g× B × B | x ∈ Lie(B′) ∩ Lie(B′′) },

and let µ : g̃ → g denote the projection on the first factor. Then Ñ ∼= T ∗B,

µ(Ñ ) = N , Z ∼= Ñ ×N Ñ , and Ẑ ∼= g̃×g g̃.

Let π̂ : Ẑ → B × B denote the projection on the second and third factors and

for w in W define Ẑw = π̂−1(Ow). Then it is well-known that dim Ẑw = dim g

and that the closures of the Ẑw’s for w in W are the irreducible components of

Ẑ (see [9, §1.1]).
Next, for (x, gBg−1) in g̃, define ν(x, gBg−1) to be the projection of g−1 ·x in t.
Then µ and ν are two of the maps in Grothendieck’s simultaneous resolution:

g̃
µ //

ν

��

g

��
t // t/W

It is easily seen that if µ̂ : Ẑ → g is the projection on the first factor, then the
square

Ẑ
bµ //

��

g

δg

��
g̃× g̃

µ×µ
// g× g

is cartesian, where the vertical map on the left is given by (x,B′, B′′) 7→
((x,B′), (x,B′′)). We will frequently identify Ẑ with the subvariety of g̃ × g̃

consisting of all pairs ((x,B′), (x,B′′)) with x in Lie(B′) ∩ Lie(B′′).
For w in W , let Γw−1 = { (h,w−1 · h) | h ∈ t } ⊆ t× t denote the graph of the
action of w−1 on t and define

Λw = Ẑ ∩ (ν × ν)−1 (Γw−1) = { (x,B′, B′′) ∈ Ẑ | ν(x,B′′) = w−1ν(x,B′) }.

In the special case when w is the identity element in W , we will denote Λw by
Λ1.
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The spaces we have defined so far fit into a commutative diagram with cartesian
squares:

(2.1) Λw //

��

Ẑ
bµ //

��

g

δg

��
(ν × ν)−1 (Γw−1) //

��

g̃× g̃
µ×µ

//

ν×ν
��

g× g

Γw−1 // t× t

Let νw : Λw → Γw−1 denote the composition of the leftmost vertical maps in
(2.1), so νw is the restriction of ν × ν to Λw.

For the specialization construction, we consider subsets of Ẑ of the form ν−1
w (S′)

for S′ ⊆ Γw−1 . Thus, for h in t we define Λhw = ν−1
w (h,w−1h). Notice in

particular that Λ0
w = Z. More generally, for a subset S of t we define ΛSw =∐

h∈S Λhw. Then, ΛSw = ν−1
w (S′), where S′ is the graph of w−1 restricted to S.

Let treg denote the set of regular elements in t.
Fix a one-dimensional subspace, ℓ, of t so that ℓ ∩ treg = ℓ \ {0} and set

ℓ∗ = ℓ \ {0}. Then Λℓw = Λℓ
∗

w

∐
Λ0
w = Λℓ

∗

w

∐
Z. We will see in Corollary

3.6 that the restriction of νw to Λℓ
∗

w is a locally trivial fibration with fibre
G/T . Thus, using a construction due to Fulton and MacPherson ([4, §3.4], [3,
§2.6.30]), there is a specialization map

lim: H•+2(Λℓ
∗

w ) −→ H•(Z).

Since Λℓ
∗

w is an irreducible, (2n+1)-dimensional variety, if [Λℓ
∗

w ] denotes the fun-
damental class of Λℓ

∗

w , then H4n+2(Λℓ
∗

w ) is one-dimensional with basis {[Λℓ∗w ]}.
Define λw = lim([Λℓ

∗

w ]) in H4n(Z). Chriss and Ginzburg [3, §3.4] have proved
the following theorem.

Theorem 2.2. Consider H•(Z) endowed with the convolution product.

(a) For 0 ≤ i, j ≤ 4n, Hi(Z) ∗ Hj(Z) ⊆ Hi+j−4n(Z). In particular,
H4n(Z) is a subalgebra of H•(Z).

(b) The element λw in H4n(Z) does not depend on the choice of ℓ.

(c) The assignment w 7→ λw extends to an algebra isomorphism

α : QW
∼=−→ H4n(Z).

Now consider

Z1 = { (x,B′, B′) ∈ N × B × B | x ∈ Lie(B′) }.

Then Z1 may be identified with the diagonal in Ñ × Ñ . It follows that Z1 is

closed in Z and isomorphic to Ñ .
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Since Ñ ∼= T ∗B, it follows from the Thom isomorphism in Borel-Moore homol-
ogy [3, §2.6] that Hi+2n(Z1) ∼= Hi(B) for all i. Since B is smooth and compact,
Hi(B) ∼= H2n−i(B) by Poincaré duality. Therefore, H4n−i(Z1) ∼= Hi(B) for all
i.
The cohomology of B is well-understood: there is an isomorphism of graded
algebras, H•(B) ∼= Coinv•(W ). It follows that Hj(Z1) = 0 if j is odd and
H4n−2i(Z1) ∼= Coinv2i(W ) for 0 ≤ i ≤ n.
In §3 below we will prove the following theorem.

Theorem 2.3. Consider the Borel-Moore homology of the variety Z1.

(a) There is a convolution product on H•(Z1). With this product, H•(Z1)
is a commutative Q-algebra and there is an isomorphism of graded Q-
algebras

β : Coinv•(W )
∼=−−→ H4n−•(Z1).

(b) If r : Z1 → Z denotes the inclusion, then the direct image map in
Borel-Moore homology, r∗ : H•(Z1) −→ H•(Z), is an injective ring
homomorphism.

(c) If we identify H•(Z1) with its image in H•(Z) as in (b), then the linear
transformation given by the convolution product

Hi(Z1)⊗H4n(Z)
∗−−→ Hi(Z)

is an isomorphism of vector spaces for 0 ≤ i ≤ 4n.

The algebra Coinv•(W ) has a natural action of W by algebra automorphisms,
and the isomorphism β in Theorem 2.3(a) is in fact an isomorphism of W -
algebras. The W -algebra structure on H•(Z1) is described in the next theorem,
which will be proved in §4.

Theorem 2.4. If w is in W and H•(Z1) is identified with its image in H•(Z),
then

λw ∗Hi(Z1) ∗ λw−1 = Hi(Z1).

Thus, conjugation by λw defines a W -algebra structure on H•(Z1). With this

W -algebra structure, the isomorphism β : Coinv•(W )
∼=−−→ H4n−•(Z1) in The-

orem 2.3(a) is an isomorphism of W -algebras.

Recall that the algebra Coinv(W )#QW is graded by (Coinv(W )#QW )i =
Coinvi(W )⊗QW . Then combining Theorem 2.2(c), Theorem 2.3(c), and The-
orem 2.4 we get our main result.

Theorem 2.5. The composition

Coinv•(W )#QW β⊗α−−−→ H4n−•(Z1)⊗H4n(Z)
∗−−→ H4n−•(Z)

is an isomorphism of graded Q-algebras.
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3. Factorization of H•(Z)

Proof of Theorem 2.3(a). We need to prove that H•(Z1) is a commutative
Q-algebra and that Coinv•(W ) ∼= H4n−•(Z1).

Let π : Ñ → B by π(x,B′) = B′. Then π may be identified with the vec-
tor bundle projection T ∗B → B and so the induced map in cohomology

π∗ : Hi(B) → Hi(Ñ ) is an isomorphism. The projection π determines an
isomorphism in Borel-Moore homology that we will also denote by π∗ (see [3,

§2.6.42]). We have π∗ : Hi(B)
∼=−−→ Hi+2n(Ñ ).

For a smooth m-dimensional variety X , let pd: Hi(X) −→ H2m−i(X) denote
the Poincaré duality isomorphism. Then the composition

H2n−i(B)
pd−1

−−−−→ Hi(B)
π∗−−−→ Hi(Ñ )

pd−−−→ H4n−i(Ñ )

is an isomorphism. It follows from the uniqueness construction in [3, §2.6.26]
that

pd ◦ π∗ ◦ pd−1 = π∗ : H2n−i(B) −→ H4n−i(Ñ )

and so π∗ ◦ pd = pd ◦ π∗ : Hi(B) −→ H4n−i(Ñ ).
Recall that Coinvj(W ) = 0 if j is odd and Coinv2i(W ) is the degree i subspace
of the coinvariant algebra of W . Let bi : Coinv•(W ) −→ H•(B) be the Borel
isomorphism (see [1, §1.5] or [5]). Then with the cup product, H•(B) is a
graded algebra and bi is an isomorphism of graded algebras.
Define β : Coinvi(W )→ H4n−i(Z1) to be the composition

Coinvi(W )
bi−−→ Hi(B)

π∗−−−→ Hi(Ñ )
pd−−−→ H4n−i(Ñ )

δ∗−−→ H4n−i(Z1)

where δ = δ eN . Then β is an isomorphism of graded vector spaces and

β = δ∗ ◦ pd ◦ π∗ ◦ bi = δ∗ ◦ π∗ ◦ pd ◦ bi.

The algebra structure of H•(B) and H•(Ñ ) is given by the cup product,

and π∗ : H•(B) → H•(Ñ ) is an isomorphism of graded algebras. Since

Ñ is smooth, as in [3, §2.6.15], there is an intersection product defined

on H•(Ñ ) using Poincaré duality and the cup product on H•(Ñ ). Thus,

pd : H•(Ñ ) → H4n−•(Ñ ) is an algebra isomorphism. Finally, it is observed

in [3, §2.7.10] that δ∗ : H•(Ñ ) → H•(Z1) is a ring homomorphism and hence
an algebra isomorphism. This shows that β is an isomorphism of graded alge-
bras and proves Theorem 2.3(a).

Proof of Theorem 2.3(b). To prove the remaining parts of Theorem 2.3,
we need a linear order on W . Suppose |W | = N . Fix a linear order on W that
extends the Bruhat order. Say W = {w1, . . . , wN}, where w1 = 1 and wN is
the longest element in W .

For 1 ≤ j ≤ N , define Zj =
∐j
i=1 Zwi . Then, for each j, Zj is closed in Z, Zwj

is open in Zj , and Zj = Zj−1

∐
Zwj . Notice that ZN = Z and Z1 = Zw1 .

Similarly, define Ẑj =
∐j
i=1 Ẑwi . Then each Ẑj is closed in Ẑ, Ẑwj is open in

Ẑj , and Ẑj = Ẑj−1

∐
Ẑwj .
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We need to show that r∗ : H•(Z1) −→ H•(Z) is an injective ring homomor-
phism.
Let resj : Hi(Zj)→ Hi(Zwj ) denote the restriction map in Borel-Moore homol-
ogy induced by the open embedding Zwj ⊆ Zj and let rj : Hi(Zj−1) −→ Hi(Zj)
denote the direct image map in Borel-Moore homology induced by the closed
embedding Zj−1 ⊆ Zj . Then there is a long exact sequence in homology

· · · //Hi(Zj−1)
rj //Hi(Zj)

resj //Hi(Zwj )
∂ //Hi−1(Zj−1) // · · ·

It is shown in [3, §6.2] that ∂ = 0 and so the sequence

(3.1) 0 //Hi(Zj−1)
rj //Hi(Zj)

resj //Hi(Zwj ) //0

is exact for every i and j. Therefore, if r : Zj → Z denotes the inclusion, then
the direct image r∗ : Hi(Zj)→ Hi(Z) is an injection for all i. (The fact that r
depends on j should not lead to any confusion.)
We will frequently identify Hi(Zj) with its image in Hi(Z) and consider Hi(Zj)
as a subset of Hi(Z). Thus, we have a flag of subspaces 0 ⊆ Hi(Z1) ⊆ · · · ⊆
Hi(ZN−1) ⊆ Hi(Z).
In particular, r∗ : Hi(Z1) → Hi(Z) is an injection for all i. It follows from
[3, Lemma 5.2.23] that r∗ is a ring homomorphism. This proves part (b) of
Theorem 2.3.

Proof of Theorem 2.3(c). We need to show that the linear transformation
given by the convolution product Hi(Z1)⊗H4n(Z)→ Hi(Z) is an isomorphism
of vector spaces for 0 ≤ i ≤ 4n.
The proof is a consequence of the following lemma.

Lemma 3.2. The image of the convolution map ∗ : Hi(Z1)⊗H4n(Zj) −→ Hi(Z)
is precisely Hi(Zj) for 0 ≤ i ≤ 4n and 1 ≤ j ≤ N .

Assuming that the lemma has been proved, taking j = N , we conclude that the
convolution product in H•(Z) induces a surjection Hi(Z1)⊗H4n(Z) −→ Hi(Z).
It is shown in [3, §6.2] that dimH•(Z) = |W |2 and so dimH•(Z1)⊗H4n(Z) =
|W |2 = dimH•(Z). Thus, the convolution product induces an isomorphism
Hi(Z1)⊗H4n(Z) ∼= Hi(Z).
The rest of this section is devoted to the proof of Lemma 3.2.
To prove Lemma 3.2 we need to analyze the specialization map,
lim: H•+2(Λℓ

∗

w ) → H•(Z), beginning with the subvarieties Λℓw and Λℓ
∗

w of
Λw.

Subvarieties of Λw. Suppose that ℓ is a one-dimensional subspace of t with
ℓ∗ = ℓ \ {0} = ℓ ∩ treg. Recall that uw = u ∩ w · u for w in W .

Lemma 3.3. The variety Λℓw ∩ Ẑw is the G-saturation in Ẑ of the subset

{ (h+ n,B,wBw−1) | h ∈ ℓ, n ∈ uw }.
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Proof. By definition,

Λℓw = Λℓ
∗

w

∐
Λ0
w = { (x,B′, B′′) ∈ Ẑ | ν(x,B′′) = w−1ν(x,B′) ∈ w−1(ℓ) }.

Suppose that h is in treg and (x, g1Bg
−1
1 , g2Bg

−1
2 ) is in Λhw. Then g−1

1 ·x = h+n1

and g−1
2 · x = w−1h + n2 for some n1 and n2 in u. Since h is regular, there

are elements u1 and u2 in U so that u−1
1 g−1

1 · h = h and u−1
2 g−1

2 · h = w−1h.
Then x = g1u1 · h = g2u2w

−1 · h and so g1u1 = g2u2w
−1t for some t in T .

Therefore, (x, g1Bg
−1
1 , g2Bg

−1
2 ) = g1u1 · (h,B,wBw−1). Thus, Λhw is contained

in the G-orbit of (h,B,wBw−1). Since ν is G-equivariant, it follows that Λhw
is G-stable and so Λhw is the full G-orbit of (h,B,wBw−1). Therefore, Λℓ

∗

w is

the G-saturation of { (h+ n,B,wBw−1 | h ∈ ℓ∗, n ∈ uw } and Λhw ⊆ Ẑw for h
in ℓ∗.
We have already observed that Λ0

w = Z and so

Λℓw ∩ Ẑw =
(

Λℓ
∗

w ∩ Ẑw
)∐(

Λ0
w ∩ Ẑw

)
= Λℓ

∗

w

∐
Zw.

It is easy to see that Zw is the G-saturation of { (n,B,wBw−1) | n ∈ uw } in
Z. This proves the lemma. �

Corollary 3.4. The variety Λℓw ∩ Ẑw is a locally trivial, affine space bundle
over Ow with fibre isomorphic to ℓ + uw, and hence there is an isomorphism

Λℓw ∩ Ẑw ∼= G×B∩wB (ℓ+ uw).

Proof. It follows from Lemma 3.3 that the map given by projection on the
second and third factors is a G-equivariant morphism from Λℓw onto Ow and
that the fibre over (B,wBw−1) is { (h + n,B,wBw−1) | h ∈ ℓ, n ∈ uw }.
Therefore, Λℓw

∼= G×B∩wB (ℓ+ uw). �

Let grs denote the set of regular semisimple elements in g and define g̃rs =
{ (x,B′) ∈ g̃ | x ∈ grs }. For an arbitrary subset S of t, define

g̃S = ν−1(S) = { (x,B′) ∈ g̃ | ν(x,B′) ∈ S }.
For w in W , define w̃ : G/T × treg −→ G/T × treg by w̃(gT, h) = (gwT,w−1h).
The rule (gT, h) 7→ (g · h, gB) defines an isomorphism of varieties

f : G/T × treg
∼=−−→ g̃rs

and we will denote the automorphism f ◦ w̃ ◦ f−1 of g̃rs also by w̃. Notice that
if h is in treg and g is in G, then w̃(g · h, gB) = (g · h, gwBw−1g−1).

Lemma 3.5. The variety Λℓ
∗

w is the graph of w̃|egℓ∗ : g̃ℓ
∗ → g̃w

−1(ℓ∗).

Proof. It follows from Lemma 3.3 that

Λℓ
∗

w = { (g · h, gBg−1, gwBw−1g−1) ∈ grs × B × B | h ∈ ℓ∗, g ∈ G }
= { ((g · h, gBg−1), (g · h, gwBw−1g−1)) ∈ g̃× g̃ | h ∈ ℓ∗, g ∈ G }.

The argument in the proof of Lemma 3.3 shows that

g̃ℓ
∗

= { (g · h, gBg−1) | h ∈ ℓ∗, g ∈ G }
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and by definition w̃(g · h, gB) = (g · h, gwBw−1g−1). Therefore, Λℓ
∗

w is the
graph of w̃|egℓ∗ . �

Corollary 3.6. The map νw : Λℓ
∗

w → ℓ∗ is a locally trivial fibration with fibre
isomorphic to G/T .

Proof. This follows from the lemma and the fact that g̃ℓ
∗ ∼= G/T × ℓ∗. �

The specialization map. Suppose that w is in W and that ℓ is a one-
dimensional subspace of t with ℓ∗ = ℓ \ {0} = ℓ ∩ treg. As in [4] and [3,

§2.6.30], lim: Hi+2(Λℓ
∗

w )→ Hi(Z) is the composition of three maps, defined as
follows.
As a vector space over R, ℓ is two-dimensional. Fix an R-basis of ℓ, say {v1, v2}.
Define P to be the open half plane R>0v1⊕Rv2, define I>0 to be the ray R>0v1,
and define I to be the closure of I>0, so I = R≥0v1.

Since P is an open subset of ℓ∗, ΛPw is an open subset of Λℓ
∗

w and so there is a
restriction map in Borel-Moore homology res: Hi+2(Λℓ

∗

w )→ Hi+2(ΛPw).
The projection map from P to I>0 determines an isomorphism in Borel-Moore

homology ψ : Hi+2(ΛPw)→ Hi+1(ΛI>0
w ).

Since I = I>0

∐{0}, we have ΛIw = ΛI>0
w
∐

Λ0
w = ΛI>0

w
∐
Z, where Z is closed

in ΛIw. The connecting homomorphism of the long exact sequence in Borel-

Moore homology arising from the partition ΛIw = ΛI>0
w
∐
Z is a map

∂ : Hi+1(ΛI>0
w )→ Hi(Z).

By definition, lim = ∂ ◦ ψ ◦ res.
Now fix j with 1 ≤ j ≤ N and set w = wj .

Consider the intersection ΛIw∩Ẑj = (ΛI>0
w ∩Ẑj)

∐
(Z∩Ẑj). Then Z∩Ẑj is closed

in ΛIw ∩ Ẑj and by construction, ΛI>0
w ⊆ Ẑj and Z ∩ Ẑj = Zj. Thus, ΛIw ∩ Ẑj =

ΛI>0
w
∐
Zj . Let ∂j : Hi+1(ΛI>0

w )→ Hi(Zj) be the connecting homomorphism of
the long exact sequence in Borel-Moore homology arising from this partition.
Because the long exact sequence in Borel-Moore homology is natural, we have
a commutative square:

Hi+1(ΛI>0
w )

∂ // Hi(Z)

Hi+1(ΛI>0
w )

∂j

// Hi(Zj)

r∗

OO

This proves the following lemma.

Lemma 3.7. Fix j with 1 ≤ j ≤ N and set w = wj . Then the map

∂ : Hi+1(ΛI>0
w ) −→ Hi(Z) factors as r∗ ◦ ∂j where ∂j : Hi+1(ΛI>0

w ) −→ Hi(Zj)
is the connecting homomorphism of the long exact sequence arising from the

partition ΛIw ∩ Ẑ = ΛI>0
w
∐
Zj.
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It follows from the lemma that lim: Hi+2(Λℓ
∗

w ) −→ Hi(Z) factors as

(3.8) Hi+2(Λℓ
∗

w )
res−−−→ Hi+2(ΛPw)

ψ−−→ Hi+1(ΛI>0
w )

∂j−−→ Hi(Zj)
r∗−−→ Hi(Z).

Define limj : Hi+2(Λℓ
∗

w ) −→ Hi(Zj) by limj = ∂j ◦ ψ ◦ res.

Specialization and restriction. As above, fix j with 1 ≤ j ≤ N and a
one-dimensional subspace ℓ of t with ℓ∗ = ℓ \ {0} = ℓ ∩ treg. Set w = wj .
Recall the restriction map resj : Hi(Zj)→ Hi(Zw) from (3.1).

Lemma 3.9. The composition resj ◦ limj : Hi+2(Λℓ
∗

w ) −→ Hi(Zw) is surjective
for 0 ≤ i ≤ 4n.

Proof. Using (3.8), resj ◦ limj factors as

Hi+2(Λℓ
∗

w )
res−−−→ Hi+2(ΛPw)

ψ−−→ Hi+1(ΛI>0
w )

∂j−−→ Hi(Zj)
resj−−−→ Hi(Zw).

Lemma 3.11 below shows that res is always surjective and the map ψ is an
isomorphism, so we need to show that the composition resj ◦ ∂j is surjective.

Consider ΛIw ∩ Ẑw = (ΛIw ∩ Ẑj) ∩ Ẑw = ΛI>0
w
∐
Zw. Then ΛI>0

w is open in

ΛIw ∩ Ẑw and we have a commutative diagram of long exact sequences

· · · // Hi+1(ΛIw ∩ Ẑw) // Hi+1(ΛI>0
w )

∂w // Hi(Zw) // · · ·

· · · // Hi+1(ΛIw ∩ Ẑj) //

OO

Hi+1(ΛI>0
w )

∂j // Hi(Zj) //

resj

OO

· · ·

where ∂w is the connecting homomorphism of the long exact sequence arising

from the partition ΛIw∩Ẑw = ΛI>0
w
∐
Zw. We have seen at the beginning of this

section that resj is surjective and so it is enough to show that ∂w is surjective.
Recall that {v1, v2} is an R-basis of ℓ and I = R≥0v1. Define

EI = G×B∩wB (R≥0v1 + uw) ,

EI>0 = G×B∩wB (R>0v1 + uw) , and

E0 = G×B∩wB uw.

It follows from Corollary 3.4 that EI ∼= ΛIw, EI>0
∼= ΛI>0

w , and E0
∼= Zw,

so the long exact sequence arising from the partition ΛIw ∩ Ẑw = ΛI>0
w
∐
Zw

may be identified with the long exact sequence arising from the partition EI =
EI>0

∐
E0:

· · · //Hi+1(EI) //Hi+1(EI>0)
∂E //Hi(E0) // · · ·

Therefore, it is enough to show that ∂E is surjective. In fact, we show that
H•(EI) = 0 and so ∂E is an isomorphism.
Define ER = G ×B∩wB (Rv1 + uw). Then ER is a smooth, real vector bundle
overG/B∩wB and so ER is a smooth manifold containingEI as a closed subset.
We may apply [3, 2.6.1] and conclude that Hi(EI) ∼= H4n+1−i(ER, ER \ EI).
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Consider the cohomology long exact sequence of the pair (ER, ER \EI). Since
ER is a vector bundle over G/B ∩wB, it is homotopy equivalent to G/B ∩wB.
Similarly, ER\EI ∼= G×B∩wB (R<0v1 + uw) and so is also homotopy equivalent
to G/B∩wB. Therefore, Hi(ER) ∼= Hi(ER\EI) and it follows that the relative
cohomology groupHi(ER, ER\EI) is trivial for every i. Therefore, H•(EI) = 0,
as claimed.
This completes the proof of the lemma. �

Corollary 3.10. The specialization map lim1 : Hi+2(Λℓ
∗

1 ) −→ Hi(Z1) is sur-
jective for 0 ≤ i ≤ 4n.

Proof. This follows from Lemma 3.9, because Z1 = Zw1 and so res1 is the
identity map. �

The next lemma is true for any specialization map.

Lemma 3.11. The restriction map res : Hi+2(Λℓ
∗

w ) −→ Hi+2(ΛPw) is surjective
for every w in W and every i ≥ 0.

Proof. There are homeomorphisms Λℓ
∗

w
∼= G/T × ℓ∗ and ΛPw

∼= G/T × P .
By definition, P is an open subset of ℓ∗ and so there is a restriction map
res : H2(ℓ∗) → H2(P ). This map is a non-zero linear transformation between
one-dimensional Q-vector spaces so it is an isomorphism.
Using the Künneth formula we get a commutative square where the horizontal
maps are isomorphisms and the right-hand vertical map is surjective:

Hi+2(Λℓ
∗

w )
∼= //

res

��

Hi(G/T )⊗H2(ℓ∗) +Hi+1(G/T )⊗H1(ℓ∗)

id⊗res+0

��
Hi+2(ΛPw) ∼=

// Hi(G/T )⊗H2(P )

It follows that res: Hi+2(Λℓ
∗

w )→ Hi+2(ΛPw) is surjective. �

Proof of Lemma 3.2. Fix i with 0 ≤ i ≤ 4n. We show that the image of
the convolution map ∗ : Hi(Z1) ⊗H4n(Zj) −→ Hi(Z) is precisely Hi(Zj) for
1 ≤ j ≤ N using induction on j.
For j = 1, H4n(Z1) is one-dimensional with basis {λ1}. It follows from The-
orem 2.2(c) that λ1 is the identity in H•(Z) and so clearly the image of the
convolution map Hi(Z1)⊗H4n(Z1) −→ Hi(Z) is precisely Hi(Z1).
Assume that j > 1 and set w = wj . We will complete the proof using the
commutative diagram with exact rows

(3.12) Hi ⊗H4n(Zj−1) � � id⊗(rj)∗ //

∗
��

Hi ⊗H4n(Zj)

∗
��

id⊗resj// // Hi ⊗H4n(Zw)

∗
��

Hi(Zj−1) � � (rj)∗ // Hi(Zj)
resj // // Hi(Zw)
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and the Five Lemma, where in the first line Hi means Hi(Z1). We saw in
(3.1) that the bottom row is exact and it follows that the top row is also exact.
By induction, the convolution product in H•(Z) determines a surjective map
∗ : Hi(Z1)⊗H4n(Zj−1) −→ Hi(Zj−1). To conclude from the Five Lemma that
the middle vertical map is a surjection, it remains to define the other vertical
maps so that the diagram commutes and to show that the right-hand vertical
map is a surjection.
First we show that the image of the map Hi(Z1) ⊗ H4n(Zj) −→ Hi(Zj) de-
termined by the convolution product in H•(Z) is contained in Hi(Zj). It then
follows that the middle vertical map in (3.12) is defined and so by exactness
there is an induced map from Hi(Z1) ⊗ H4n(Zw) to Hi(Zw) so that the dia-
gram (3.12) commutes. Second we show that the right-hand vertical map is a
surjection.
By Lemma 3.5, Λℓ

∗

1 is the graph of the identity map of g̃ℓ
∗

, and Λℓ
∗

w is the graph

of w̃|egℓ∗ . Therefore, Λℓ
∗

1 ◦ Λℓ
∗

w = Λℓ
∗

w and there is a convolution product

Hi+2(Λℓ
∗

1 )⊗H4n+2(Λℓ
∗

w )
∗−−→ Hi+2(Λℓ

∗

w ).

Suppose a is in Hi(Z1). Then by Corollary 3.10, a = lim1(a1) for some a1 in
Hi+2(Λℓ

∗

1 ). It is shown in [3, Proposition 2.7.23] that specialization commutes

with convolution, so lim(a1 ∗ [Λℓ
∗

w ]) = lim(a1) ∗ lim([Λℓ
∗

w ]) = a ∗ λw. Also,

a1 ∗ [Λℓ
∗

w ] is in Hi+2(Λℓ
∗

w ) and lim = r∗ ◦ limj and so a∗λw = r∗ ◦ limj(a1 ∗ [Λℓ
∗

w ])
is in Hi(Zj). By induction, if k < j, then a ∗ λwk is in Hi(Zk) and so a ∗ λwk
is in Hi(Zk). Since the set {λwk | 1 ≤ k ≤ j } is a basis of H4n(Zj), it
follows that a ∗ H4n(Zj) ⊆ Hi(Zj). Therefore, the image of the convolution
map Hi(Z1)⊗H4n(Zj) −→ Hi(Z) is contained in Hi(Zj).
To complete the proof of Lemma 3.2, we need to show that the induced map
from Hi(Z1)⊗H4n(Zw) to Hi(Zw) is surjective.
Consider the following diagram:

Hi+2(Λℓ
∗

1 )⊗H4n+2(Λℓ
∗

w )
∗ //

lim1 ⊗ limj

��

Hi+2(Λℓ
∗

w )

limj

��
Hi(Z1)⊗H4n(Zj)

∗ //

id⊗resj

��

Hi(Zj)

resj

��
Hi(Z1)⊗H4n(Zw)

∗ //Hi(Zw)

We have seen that the bottom square is commutative. It follows from the
fact that specialization commutes with convolution that the top square is also
commutative. It is shown in Proposition A.2 that the convolution product
Hi+2(Λℓ

∗

1 )⊗H4n+2(Λℓ
∗

w )→ Hi+2(Λℓ
∗

w ) is an injection. Since Hi+2(Λℓ
∗

1 ) is finite-

dimensional and H4n+2(Λℓ
∗

w ) is one-dimensional, it follows that this convolution
mapping is an isomorphism. Also, we saw in Lemma 3.9 that resj ◦ limj is sur-
jective. Therefore, the composition resj ◦ limj ◦ ∗ is surjective and it follows
that the bottom convolution map Hi(Z1)⊗H4n(Zw)→ Hi(Zw) is also surjec-
tive. This completes the proof of Lemma 3.2.
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4. Smash Product Structure

In this section we prove Theorem 2.4. We need to show that λw∗Hi(Z1)∗λw−1 =

Hi(Z1) and that β : Coinv•(W )
∼=−−→ H4n−•(Z1) is an isomorphism of W -

algebras.
Suppose that ℓ is a one-dimensional subspace of t so that ℓ∗ = ℓ\{0} = ℓ∩ treg.

Recall that for S ⊆ t, g̃S = ν−1(S). By Lemma 3.5, if w is in W , then Λℓ
∗

w is

the graph of the restriction of w̃ to g̃ℓ
∗

. It follows that there is a convolution
product

H4n+2(Λℓ
∗

w )⊗Hi+2(Λ
w−1(ℓ∗)
1 )⊗H4n+2(Λw

−1(ℓ∗)
w )

∗−−→ Hi+2(Λℓ
∗

1 ).

Because specialization commutes with convolution, the diagram

H4n+2(Λℓ
∗

w )⊗Hi+2(Λ
w−1(ℓ∗)
1 )⊗H4n+2(Λ

w−1(ℓ∗)
w )

∗ //

lim⊗ lim⊗ lim

��

Hi+2(Λℓ
∗

1 )

lim

��
H4n(Z)⊗Hi(Z1)⊗H4n(Z) ∗

// Hi(Z)

commutes.
We saw in Corollary 3.10 that lim1 : Hi+2(Λℓ

∗

1 ) → Hi(Z1) is surjective. Thus,

if c is in Hi(Z1), then c = lim(c1) for some c1 in Hi+2(Λ
w−1(ℓ∗)
w1 ). Therefore,

λw∗c∗λw−1 =lim([Λℓ
∗

w ])∗lim(c1)∗lim([Λ
w−1(ℓ∗)
w−1 ]) = lim

(
[Λℓ
∗

w ] ∗ c1 ∗ [Λ
w−1(ℓ∗)
w−1 ]

)
.

Since Λℓ
∗

w and Λ
w−1(ℓ∗)

w−1 are the graphs of w̃ and w̃−1 respectively, and Λ
w−1(ℓ∗)
1

is the graph of the identity function, it follows that [Λℓ
∗

w ] ∗ c1 ∗ [Λ
w−1(ℓ∗)
w−1 ] is in

Hi+2(Λ
w−1(ℓ∗)
1 ) and so by (3.8), λw ∗ c ∗ λw−1 is in Hi(Z1). This shows that

λw ∗Hi(Z1) ∗ λw−1 = Hi(Z1) for all i.
To complete the proof of Theorem 2.4 we need to show that if w is in W and
f is in Coinvi(W ), then β(w · f) = λw ∗ β(f) ∗ λw−1 where w · f denotes the
natural action of w on f . To do this, we need some preliminary results.
First, since Λℓ

∗

1 is the diagonal in g̃ℓ
∗ × g̃ℓ

∗

, it is obvious that

δ ◦ w̃−1 = (w̃−1 × w̃−1) ◦ δ : g̃w
−1(ℓ∗) −→ Λℓ

∗

1 .

Therefore,

(4.1) δ∗ ◦ w̃−1
∗ = (w̃−1 × w̃−1)∗ ◦ δ∗ : Hi(g̃

w−1(ℓ∗)) −→ Hi(Λ
ℓ∗

1 )

for all i. (The first δ in (4.1) is the diagonal embedding g̃ℓ
∗ ∼= Λℓ

∗

1 and the

second δ is the diagonal embedding g̃w
−1(ℓ∗) ∼= Λ

w−1(ℓ∗)
1 .)

Next, with ℓ ⊆ t as above, g̃ℓ = g̃ℓ
∗∐

ν−1(0) = g̃ℓ
∗∐ Ñ and the restriction

of ν : g̃ℓ → ℓ to g̃ℓ
∗

is a locally trivial fibration. Therefore, there is a special-

ization map lim0 : Hi+2(g̃ℓ
∗

)→ Hi(Ñ ). Since δ∗ : Hi+2(g̃ℓ
∗

)→ Hi+2(Λℓ
∗

1 ) and
δ∗ : Hi(Z)→ Hi(Z1) are isomorphisms, the next lemma is obvious.

Documenta Mathematica 14 (2009) 339–357



Homology of the Steinberg Variety 353

Lemma 4.2. Suppose that ℓ is a one-dimensional subspace of t so that ℓ∗ =
ℓ \ {0} ⊆ treg. Then the diagram

Hi+2(g̃ℓ
∗

)
δ∗ //

lim0

��

Hi+2(Λℓ
∗

1 )

lim1

��
Hi(Z)

δ∗

// Hi(Z1)

commutes.

Finally, Ñ ×N N = Ñ and so Z ◦ Ñ = (Ñ ×N Ñ ) ◦ (Ñ ×N N ) = Ñ ×N N .

Thus, there is a convolution action, H4n(Z) ⊗ Hi(Ñ ) −→ Hi(Ñ ), of H4n(Z)

on Hi(Ñ ).

Suppose that w is in W and z is in Hi(B). Then π∗ ◦pd(z) is in H4n−i(Ñ ) and

so λw ∗ (π∗ ◦ pd(z)) is in H4n−i(Ñ ). It is shown in [3, Proposition 7.3.31] that
for y in H•(B), λw ∗ π∗(y) = ǫwπ

∗(w · y) where ǫw is the sign of w and w · y
denotes the action of W on H•(B) coming from the action of W on G/T and
the homotopy equivalence G/T ≃ B. It is also shown in [3, Proposition 7.3.31]
that pd(w · z) = ǫww · pd(z). Therefore,

λw ∗ (π∗ ◦ pd(z)) = ǫwπ
∗(w · pd(z)) = ǫwǫwπ

∗ ◦ pd(w · z) = π∗ ◦ pd(w · z).

This proves the next lemma.

Lemma 4.3. If w is in W and z is in Hi(B), then

λw ∗ (π∗ ◦ pd(z)) = π∗ ◦ pd(w · z).

Proof of Theorem 2.4. Fix w in W and f in Coinvi(W ). We need to show
that λw ∗ β(f) ∗ λw−1 = β(w · f). Set C = λw ∗ β(f) ∗ λw−1 . Using the fact
that β = δ∗ ◦ π∗ ◦ pd ◦ bi we compute

C = lim1

(
[Λℓ
∗

w ] ∗ lim−1
1 (β(f)) ∗ [Λ

w−1(ℓ∗)
w−1 ]

)
[3, 2.7.23]

= lim1 ◦(w̃−1 × w̃−1)∗ ◦ lim−1
1 ◦β(f) Proposition A.3

= lim1 ◦δ∗ ◦ w̃−1
∗ ◦ δ−1

∗ ◦ lim−1
1 ◦β(f) (4.1)

= δ∗ ◦ lim0 ◦w̃−1
∗ ◦ δ−1

∗ ◦ lim−1
1 ◦δ∗ ◦ δ−1

∗ ◦ β(f) Lemma 4.2

= δ∗ ◦ lim0 ◦w̃−1
∗ ◦ lim−1

0 ◦δ−1
∗ ◦ β(f) Lemma 4.2

= δ∗ ◦ lim0 ◦w̃−1
∗ ◦ lim−1

0 ◦π∗ ◦ pd ◦ bi(f)

= δ∗ ◦ lim0

(
(lim−1

0 ◦π∗ ◦ pd ◦ bi(f)) ∗ [Λ
w−1(ℓ∗)
w−1 ]

)
[3, 2.7.11]

= δ∗ ((π∗ ◦ pd ◦ bi(f)) ∗ λw−1) [3, 2.7.23]

= δ∗ (λw ∗ (π∗ ◦ pd ◦ bi(f))) Lemma A.1 and [3, 3.6.11]

= δ∗ ◦ π∗ ◦ pd(w · bi(f)) Lemma 4.3

= δ∗ ◦ π∗ ◦ pd ◦ bi(w · f) bi is W -equivariant

= β(w · f).
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This completes the proof of Theorem 2.4.

Appendix A. Convolution and Graphs

In this appendix we prove some general properties of convolution and graphs.
Suppose M1, M2, and M3 are smooth varieties, dimM2 = d, and that Z1,2 ⊆
M1×M2 and Z2,3 ⊆M2×M3 are two closed subvarieties so that the convolution
product,

Hi(Z1,2)⊗Hj(Z2,3)
∗−−→ Hi+j−2d(Z1,2 ◦ Z2,3),

in [3, §2.7.5] is defined. For 1 ≤ i, j ≤ 3, let τi,j : Mi ×Mj → Mj ×Mi be
the map that switches the factors. Define Z2,1 = τ1,2(Z1,2) ⊆ M2 ×M1 and
Z3,2 = τ2,3(Z2,3) ⊆M3 ×M2. Then the convolution product

Hj(Z3,2)⊗Hi(Z2,1)
∗′−−−→ Hi+j−2d(Z3,2 ◦ Z2,1)

is defined. We omit the easy proof of the following lemma.

Lemma A.1. If c is in Hi(Z1,2) and d is in Hj(Z2,3), then (τ1,3)∗(c ∗ d) =
(τ2,3)∗(d) ∗′ (τ1,2)∗(c).

Now suppose X is an irreducible, smooth, m-dimensional variety, Y is a smooth
variety, and f : X → Y is a morphism. Then if ΓX and Γf denote the graphs
of idX and f respectively, using the notation in [3, §2.7], we have ΓX ◦Γf = Γf
and there is a convolution product ∗ : Hi(ΓX)⊗H2m(Γf ) −→ Hi(Γf ).

Proposition A.2. The convolution product ∗ : Hi(ΓX)⊗H2m(Γf ) −→ Hi(Γf )
is an injection.

Proof. For i, j = 1, 2, 3, let pi,j denote the projection of X × X × Y on the
ith and jth factors. Then the restriction of p1,3 to (ΓX × Y ) ∩ (X × Γf ) is
the map that sends (x, x, f(x)) to (x, f(x)). Thus, the restriction of p1,3 to
(ΓX×Y )∩(X×Γf ) is an isomorphism onto Γf and hence is proper. Therefore,
the convolution product in homology is defined.
Since X is irreducible, so is Γf and so H2m(Γf ) is one-dimensional with basis
[Γf ]. Suppose that c is in Hi(ΓX). We need to show that if c ∗ [Γf ] = 0, then
c = 0.
Fix c in Hi(ΓX). Notice that the restriction of p1,3 to (ΓX × Y ) ∩ (X × Γf )
is the same as the restriction of p2,3 to (ΓX × Y ) ∩ (X × Γf ). Thus, using the
projection formula, we have

c ∗ [Γf ] = (p1,3)∗
(
p∗1,2c ∩ p∗2,3[Γf ]

)

= (p2,3)∗
(
p∗1,2c ∩ p∗2,3[Γf ]

)

=
(
(p2,3)∗p

∗
1,2c
)
∩ [Γf ],

where the intersection product in the last line is from the cartesian square:

Γf

��

= // Γf

��
X × Y =

// X × Y
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Let p : X × Y → X and q : ΓX → X be the first and second projections,
respectively. Then the square

ΓX × Y
p1,2

��

p2,3 // X × Y
p

��
ΓX q

// X

is cartesian. Thus,

p∗ (c ∗ [Γf ]) = p∗
((

(p2,3)∗p
∗
1,2c
)
∩ [Γf ]

)

= p∗ ((p∗q∗c) ∩ [Γf ])

= q∗c ∩ (p|Γf )∗[Γf ]

= q∗c ∩ [X ]

= q∗c,

where we have used the projection formula and the fact that (p|Γf )∗[Γf ] = [X ].
Now if c∗ [Γf ] = 0, then q∗c = 0 and so c = 0, because q is an isomorphism. �

Let ΓY denote the graph of the identity functions idY . Then the following
compositions and convolution products in Borel-Moore homology are defined:

• Γf ◦ ΓX = Γf and so there is a convolution product

Hi(Γf )⊗Hj(ΓX) −→ Hi+j−m(Γf ).

• ΓY ◦ Γf−1 = Γf−1 and so there is a convolution product

Hi(ΓX)⊗Hj(Γf−1) −→ Hi+j−m(Γf−1).

• Γf ◦ Γf−1 = ΓX and so there is a convolution product

Hi(Γf )⊗Hj(Γf−1) −→ Hi+j−m(ΓX).

Thus, if c is in Hi(ΓY ), then [Γf ] ∗ c ∗ [Γf−1 ] is in Hi(ΓX). Note that the map
f−1 × f−1 : ΓY → ΓX is an isomorphism, so in particular it is proper.

Proposition A.3. If c is in Hi(ΓY ), then [Γf ] ∗ c ∗ [Γf−1 ] = (f−1 × f−1)∗(c).

Proof. We compute ([Γf ] ∗ c) ∗ [Γf−1 ], starting with [Γf ] ∗ c.
For 1 ≤ i, j ≤ 3 let qi,j be the projection of the subset

Γf × Y ∩X × ΓY = { (x, f(x), f(x)) | x ∈ X }
of X × Y × Y onto the i, j-factors. Then q1,3 = q1,2. Therefore, using the
projection formula, we see that

[Γf ] ∗ c = (q1,3)∗
(
q∗1,2[Γf ] ∩ q∗2,3c

)

= (q1,2)∗
(
q∗1,2[Γf ] ∩ q∗2,3c

)

= [Γf ] ∩ (q1,2)∗q
∗
2,3c

= (q1,2)∗q
∗
2,3c.
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Next, for 1 ≤ i, j ≤ 3 let pi,j be the projection of the subset

Γf ×X ∩X × Γf−1 = { (x, f(x), x) | x ∈ X }
of X × Y ×X onto the i, j-factors. Then p1,3 = (f−1 × id) ◦ p2,3. Therefore,
using the fact that [Γf ] ∗ c = (q1,2)∗q∗2,3c and the projection formula, we have

([Γf ] ∗ c) ∗ [Γf−1 ] = (p1,3)∗
(
p∗1,2((q1,2)∗q

∗
2,3c) ∩ p∗2,3[Γf−1 ]

)

= (f−1 × id)∗(p2,3)∗
(
p∗1,2((q1,2)∗q

∗
2,3c) ∩ p∗2,3[Γf−1 ]

)

= (f−1 × id)∗
(
(p2,3)∗p

∗
1,2(q1,2)∗q

∗
2,3c ∩ [Γf−1 ]

)

= (f−1 × id)∗(p2,3)∗p
∗
1,2(q1,2)∗q

∗
2,3c.

The commutative square

Γf ×X ∩X × Γf−1
id×id×f //

id

��

Γf × Y ∩X × ΓY

q1,2

��
Γf ×X ∩X × Γf−1

p1,2
// Γf

is cartesian, so p∗1,2(q1,2)∗ = (id× id× f)∗.
Also, the commutative square

Γf ×X ∩X × Γf−1

q2,3◦(id×id×f) //

(f−1×id)◦p2,3
��

ΓY

f−1×f−1

��
ΓX

id
// ΓX

is cartesian, so (f−1 × id)∗(p2,3)∗(id× id× f)∗q∗2,3 = (f−1 × f−1)∗.
Therefore,

([Γf ] ∗ c) ∗ [Γf−1 ] = (f−1 × id)∗(p2,3)∗p
∗
1,2(q1,2)∗q

∗
2,3c

= (f−1 × id)∗(p2,3)∗(id× id× f)∗q∗2,3c

= (f−1 × f−1)∗c.

This completes the proof of the proposition. �
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Abstract. We show that the motivic spectrum representing alge-
braic K-theory is a localization of the suspension spectrum of P∞,
and similarly that the motivic spectrum representing periodic alge-
braic cobordism is a localization of the suspension spectrum of BGL.
In particular, working over C and passing to spaces of C-valued points,
we obtain new proofs of the topological versions of these theorems,
originally due to the second author. We conclude with a couple of
applications: first, we give a short proof of the motivic Conner-Floyd
theorem, and second, we show that algebraic K-theory and periodic
algebraic cobordism are E∞ motivic spectra.
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1. Introduction

1.1. Background and motivation. Let (X,µ) be an E∞ monoid in the
category of pointed spaces and let β ∈ πn(Σ∞X) be an element in the stable
homotopy of X . Then Σ∞X is an E∞ ring spectrum, and we may invert the
“multiplication by β” map

µ(β) : Σ∞X ≃ Σ∞S0 ∧ Σ∞X
Σ−nβ∧1−→ Σ−nΣ∞X ∧ Σ∞X

Σ−nΣ∞µ−→ Σ−nΣ∞X.

to obtain an E∞ ring spectrum

Σ∞X [1/β] := colim{Σ∞X β∗−→ Σ−nΣ∞X
Σ−nβ∗−→ Σ−2nΣ∞X −→ · · · }

with the property that µ(β) : Σ∞X [1/β] → Σ−nΣ∞X [1/β] is an equivalence.
In fact, as is well-known, Σ∞X [1/β] is universal among E∞ Σ∞X-algebras A
in which β becomes a unit.
It was originally shown in [27] (see also [28] for a simpler proof) that the
ring spectra Σ∞+ BU [1/β] and Σ∞+ CP∞[1/β], obtained as above by taking X
to be BU+ or P∞+ and β a generator of π2X (a copy of Z in both cases),
represent periodic complex cobordism and topological K-theory, respectively.
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This motivated an attempt in [27] to define algebraic cobordism by replacing
BGL(C) in this construction with Quillen’s algebraic K-theory spaces [26].
The result was an algebraic cobordism theory, defined in the ordinary stable
homotopy category, which was far too large.
By analogy with topological complex cobordism, algebraic cobordism ought to
be the universal oriented algebraic cohomology theory. However, there are at
least two algebraic reformulations of the topological theory; as a result, there
are at least two distinct notions of algebraic cobordism popular in the literature
today. One, due to Levine and Morel [11], [12], constructs a universal “oriented
Borel-Moore” cohomology theory Ω by generators and relations in a way remi-
niscent of the construction of the Lazard ring, and indeed the value of Ω on the
point is the Lazard ring. However, Ω is not a generalized motivic cohomology
theory in the sense of Morel and Voevodsky [20], so it is not represented by a
motivic ring spectrum.
The other notion, and the one relevant to this paper, is Voevodsky’s spectrum
MGL [34]. It is a bona fide motivic cohomology theory in the sense that it is
defined directly on the level of motivic spectra. Although the coefficient ring
of MGL is still not known (at least in all cases), the orientability of MGL
implies that it is an algebra over the Lazard ring, as it carries a formal group
law. Provided one defines an orientation as a compatible family of Thom
classes for vector bundles, it is immediate that MGL represents the universal
oriented motivic cohomology theory; moreover, as shown in [23], and just as in
the classical case, the splitting principle implies that it is enough to specify a
Thom class for the universal line bundle.
The infinite Grassmannian

BGLn ≃ Grassn,∞ := colimk Grassn,k

represents, in the A1-local homotopy category, the functor which associates to
a variety X the set of isomorphism classes of rank n vector bundles on X . In
particular, tensor product of line bundles and Whitney sum of stable vector
bundles endow P∞ ≃ BGL1 and BGL ≃ colimnBGLn with the structure
of abelian group objects in the A1-homotopy category. Note that, over C,
the spaces P∞(C) and BGL(C) underlying the associated complex-analytic
varieties are equivalent to the usual classifying spaces CP∞ and BU .
We might therefore hypothesize, by analogy with topology, that there are equiv-
alences of motivic ring spectra

Σ∞+ BGL[1/β] −→ PMGL and Σ∞+ P∞[1/β] −→ K

where PMGL denotes a periodic version of the algebraic cobordism spectrum
MGL. The purpose of this paper is to prove this hypothesis. In fact, it holds
over an arbitrary Noetherian base scheme S of finite Krull dimension, provided
one interpretsK properly: the Thomason-TrobaughK-theory of schemes [33] is
not homotopy invariant, and so it cannot possibly define a motivic cohomology
theory. Rather, the motivic analogue of K-theory is Weibel’s homotopy K-
theory [38]; the two agree for any regular scheme.
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1.2. Organization of the paper. We begin with an overview of the theory
of oriented motivic ring spectra. The notion of an orientation is a powerful
one, allowing us to compute first the oriented cohomology of flag varieties and
Grassmannians. We use our calculations to identify the primitive elements in
the Hopf algebra R0(Z×BGL) with R0(BGL1), a key point in our analysis of
the abelian group R0(K) of spectrum maps from K to R.
The second section is devoted to algebraic cobordism, in particular the proof
that algebraic cobordism is represented by the motivic spectrum Σ∞+ BGL[1/β].
We recall the construction of MGL as well as its periodic version PMGL and
note the functors they (co)represent as monoids in the homotopy category of
motivic spectra. We show that PMGL is equivalent to

∨
n Σ∞MGLn[1/β]

and use the isomorphism R0(BGL) ∼=
∏
nR

0(MGLn) to identify the functors
Rings(Σ∞+ BGL[1/β],−) and Rings(

∨
n Σ∞MGLn[1/β],−).

The third section provides the proof that algebraic K-theory is represented
by the motivic spectrum Σ∞+ P∞[1/β]. First we construct a map; to see that
it’s an equivalence, we note that it’s enough to show that the induced map
R0(K) → R0(Σ∞+ P∞[1/β]) is an isomorphism for any PMGL-algebra R. An

element of R0(K) amounts to a homotopy class of an infinite loop map Z ×
BGL ≃ Ω∞K → Ω∞R; since loop maps Z × BGL → Ω∞R are necessarily
additive, we are reduced to looking at maps P∞ → Ω∞R. We use this to
show that the spaces map(K,R) and map(Σ∞+ P∞[1/β], R) both arise as the
homotopy inverse limit of the tower associated to the endomorphism of the
space map(Σ∞+ P∞, R) induced by the action of the Bott map P1 ∧ P∞ → P∞,
and are therefore homotopy equivalent.
We conclude the paper with a couple of corollaries. The first is a quick proof
of the motivic Conner-Floyd theorem, namely that the map

MGL∗,∗(X)⊗MGL∗,∗ K
∗,∗ −→ K∗,∗(X),

induced by anMGL-algebra structure onK, is an isomorphism for any compact
motivic spectrum X . This was first obtained by Panin-Pimenov-Röndigs [24]
and follows from a motivic version of the Landweber exact functor theorem [21].
We include a proof because, using the aforementioned structure theorems, we
obtain a simplification of the (somewhat similar) method in [24], but which is
considerably more elementary than that of [21].
Second, it follows immediately from our theorems that both K and PMGL are
E∞ as motivic spectra. An E∞ motivic spectrum is a coherently commutative
object in an appropriate symmetric monoidal model category of structured
motivic spectra, such as P. Hu’s motivic S-modules [6] or J.F. Jardine’s motivic
symmetric spectra [7]; in particular, this is a much stronger than the assertion
that algebraic K-theory defines a presheaf of (ordinary) E∞ spectra on an
appropriate site. This is already known to be the case for algebraic cobordism,
where it is clear from the construction of MGL, but does not appear to be
known either for periodic algebraic cobordism or algebraic K-theory.
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This is important because the category of modules over an E∞ motivic spec-
trum R inherits a symmetric monoidal structure, at least in the higher categor-
ical sense of [16]. As a result, there is a version of derived algebraic geometry
which uses E∞ motivic spectra as its basic building blocks. In [13], J. Lurie
shows that spec Σ∞+ P∞[1/β] is the initial derived scheme over which the de-
rived multiplicative group GR := specR ∧ Σ∞+ Z acquires an “orientation”, in
the sense that the formal group of GR may be identified with the formal spec-
trum P∞⊗ specR. Since Σ∞+ CP∞[1/β] represents topological K-theory, this is
really a theorem about the relation between K-theory and the derived multi-
plicative group, and is the starting point for Lurie’s program to similarly relate
topological modular forms and derived elliptic curves. Hence the motivic ver-
sion of the K-theory result may be seen as a small step towards an algebraic
version of elliptic cohomology.

1.3. Acknowledgements. We are very grateful to Mike Hopkins and Rick
Jardine for helpful lunch-break discussions during a workshop at the Fields
Institute in May 2007, as well as to an anonymous referee for their careful
reading of the paper and constructive criticism. We thank M. Spitzweck and
P.A. Østvær for bringing to our attention their methods, which give an alter-
nate proof of Theorem 4.17 (see [32]), and for suggesting a number of valuable
comments. The first author would also like to thank Sarah Whitehouse for
illuminating conversations about operations in K-theory and John Greenlees
for his interest in this project and its equivariant analogues.

2. Oriented Cohomology Theories

2.1. Motivic spaces. Throughout this paper, we write S for a Noetherian
base scheme of finite Krull dimension.

Definition 2.1. A motivic space is a simplicial sheaf on the Nisnevich site of
smooth schemes over S.

We often write 0 for the initial motivic space ∅, the simplicial sheaf with con-
stant value the set with zero elements, and 1 for the final motivic space S, the
simplicial sheaf with constant value the set with one element.
We assume that the reader is familiar with the Morel-Voevodsky A1-local model
structure on the category of motivic spaces used to define the unstable motivic
homotopy category [20]. We adhere to this treatment with one exception: we
adopt a different convention for indexing the simplicial and algebraic spheres.
The simplicial circle is the pair associated to the constant simplicial sheaves

S1,0 := (∆1, ∂∆1);

its smash powers are the simplicial spheres

Sn,0 := (∆n, ∂∆n).

The algebraic circle is the multiplicative group scheme G := Gm := A1 − A0,
pointed by the identity section 1 → G; its smash powers define the algebraic
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spheres

S0,n := (G, 1)∧n.

Putting the two together, we obtain a bi-indexed family of spheres

Sp,q := Sp,0 ∧ S0,q.

It is straightforward to show that

(An − A0, 1) ≃ Sn−1,n

and

(An,An − A0) ≃ (Pn,Pn−1) ≃ Sn,n.
We emphasize that, according to the more usual grading convention, Sp,q is
written Sp+q,q; we find it more intuitive to separate the simplicial and algebraic
spheres notationally. Moreover, for this purposes of this paper, the diagonal
spheres

Sn,n ≃ (An,An − A0) ≃ (Pn,Pn−1)

are far and away the most important, so they will be abbreviated

Sn := Sn,n.

This allows us to get by with just a single index most of the time.
We extend this convention to suspension and loop functors. That is, Σ(−)
denotes the endofunctor on pointed motivic spaces (or spectra) defined by

ΣX := S1 ∧X := S1,1 ∧X.
Similarly, its right adjoint Ω(−) is defined by

ΩX := map+(S1, X) := map+(S1,1, X).

Note that Σ is therefore not the categorical suspension, which is to say that the
cofiber of the unique map X → 1 is given by S1,0∧X instead of S1,1∧X = ΣX .
While this may be confusing at first, we feel that the notational simplification
that results makes it worthwhile in the end.

2.2. Motivic spectra. To form the stable motivic category, we formally add
desuspensions with respect to the diagonal spheres Sn = Sn,n = (An,An−A0).

Definition 2.2. A motivic prespectrum is a sequence of pointed motivic spaces

{X(0), X(1), . . .},
equipped with maps ΣpX(q)→ X(p+ q), such that the resulting squares

ΣpΣqX(r) //

��

Σp+qX(r)

��
ΣpX(q + r) // X(p+ q + r)

commute.
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Definition 2.3. A motivic prespectrum is a motivic spectrum if, for all natural
numbers p, q, the adjoints X(q) → ΩpX(p + q) of the prespectrum structure
maps ΣpX(q)→ X(p+ q) are weak equivalences.

A pointed motivic space X = (X, 1) gives rise to the suspension spectrum
Σ∞X , the spectrum associated to the prespectrum with

(Σ∞X)(p) := ΣpX

and structure maps
ΣqΣpX −→ Σp+qX.

If X isn’t already pointed, we usually write Σ∞+X for Σ∞X+, where X+ is the
pointed space (X+, 1) ≃ (X, 0). If X happens to be the terminal object 1, we
write S := Σ∞+ 1 for the resulting suspension spectrum, the motivic sphere.
We will need that the category of motivic spectra is closed symmetric monoidal
with respect to the smash product. However, we do not focus on the details
of its construction, save to say that either P. Hu’s theory of motivic S-modules
[6] or J.F. Jardine’s motivic symmetric spectra [7] will do.
In particular, the category of motivic spectra is tensored and cotensored over
itself via the smash product and the motivic function spectrum bifunctors.
We may also regard it as being tensored and cotensored over pointed motivic
spaces via the suspension spectrum functor. Given a motivic spectrum R and
a pointed motivic space X , we write X ∧R for the motivic spectrum Σ∞X ∧R
and RX for the motivic spectrum of maps from Σ∞X to R. Here Σ∞X is the
motivic spectrum associated to the motivic prespectrum whose value in degree
n is the pointed motivic space ΣnX . As a functor from pointed motivic spaces
to motivic spectra, Σ∞ admits a right adjoint Ω∞ which associates to a motivic
spectrum its underlying motivic “infinite-loop”.
There are also a number of symmetric monoidal categories over which the cat-
egory of motivic spectra is naturally enriched. We write Y X for the motivic
function spectrum of maps from the motivic spectrum X to the motivic spec-
trum Y , map(X,Y ) = (Ω∞Y X)(S) for the (ordinary) space of maps from X
to Y , and [X,Y ] = Y 0(X) = π0 map(X,Y ) for the abelian group of homotopy
classes of maps from X to Y .

2.3. Motivic ring spectra. In this paper, unless appropriately qualified,
a motivic ring spectrum will always mean a (not necessarily commutative)
monoid in the homotopy category of motivic spectra. We reiterate that a
motivic spectrum is a P1-spectrum; that is, it admits desuspensions by algebraic
spheres as well as simplicial spheres.

Definition 2.4. A motivic ring spectrum R is periodic if the graded ring π∗R
contains a unit µ ∈ π1R in degree one.

Remark 2.5. Since π1R is by definition π0 map+(P1,Ω∞R), and over spec C,
P1(C) ≃ CP1, the topological 2-sphere, this is compatible with the notion of an
even periodic ring spectrum so common in ordinary stable homotopy theory.

Proposition 2.6. If R is periodic then R ≃ ΣnR for all n.
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Proof. Let µ ∈ π1R be a unit with inverse µ−1 ∈ π−1R. Then for any n, the
multiplication by µ−n map

R −→ ΣnR

is an equivalence, since multiplication by µn provides an inverse. �

Let PS denote the periodic sphere, the motivic spectrum

PS :=
∨

n∈Z

ΣnS.

With respect to the multiplication induced by the equivalences ΣpS ∧ ΣqS →
Σp+qS, the unit in degree one given by the inclusion Σ1S→ PS makes PS into
a periodic S-algebra.
More generally, given an arbitrary motivic ring spectrum R,

PR := PS∧R ≃
∨

n∈Z

ΣnR

is a periodic ring spectrum equipped with a ring map R→ PR.

Proposition 2.7. Let R be a motivic ring spectrum. Then homotopy classes
of ring maps PS→ R naturally biject with units in π1R.

Proof. By definition, ring maps PS → R are indexed by families of elements
rn ∈ πnR with rmrn = rm+n and r0 = 1. Hence rn = rn1 , and in particular
r−1 = r−1

1 . �

Said differently, the homotopy category of periodic motivic ring spectra is
equivalent to the full subcategory of the homotopy category of motivic ring
spectra which admit a ring map from PS. This is not the same as the ho-
motopy category of PS-algebras, in which only those maps which preserve the
distinguished unit are allowed.

Corollary 2.8. Let Q be a motivic ring spectrum and R a periodic motivic
ring spectrum. Then the set of homotopy classes of ring maps PQ → R is
naturally isomorphic to the set of pairs consisting of a homotopy class of ring
map Q→ R and a distinguished unit µ ∈ π1R.

2.4. Orientations. Let R be a commutative motivic ring spectrum.

Definition 2.9. The Thom space of an n-plane bundle V → X is the pair
(V, V − X), where V − X denotes the complement in V of the zero section
X → V .

Given two vector bundles V → X andW → Y , the Thom space (V×W,V ×W−
X×Y ) of the product bundle V ×W → X×Y is equivalent (even isomorphic)
to the smash product (V, V − X) ∧ (W,W − Y ) of the Thom spaces. Since
the Thom space of the trivial 1-dimensional bundle A1 → A0 is the motivic
1-sphere S1 ≃ (A1,A1 − A0), we see that the Thom space of the trivial n-
dimensional bundle An → A0 is the motivic n-sphere Sn ≃ (An,An−A0). Note
that the complement of the zero section L − P∞ of the universal line bundle
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L → P∞ ≃ BG is equivalent to the total space of the universal principal G-
bundle EG → BG, which is contractible. Hence the Thom space of L → P∞
is equivalent to (P∞,P0), and the Thom space of the restriction of L → P∞
along the inclusion P1 → P∞ is equivalent to (P1,P0) ≃ S1.

Definition 2.10. An orientation of R is the assignment, to each m-plane
bundle V → X , of a class θ(V/X) ∈ Rm(V, V −X), in such a way that

(1) for any f : Y → X , the class θ(f∗V/Y ) of the restriction f∗V → Y
of V → X is equal to the restriction f∗θ(V/X) of the class θ(V/X) in
Rm(f∗V, f∗V − Y ),

(2) for any n-plane bundle W → Y , the (external) product θ(V/X) ×
θ(W/Y ) of the classes θ(V/X) and θ(W/Y ) is equal to the class
θ(V ×W/X × Y ) of the (external) product of V → X and W → Y in
Rm+n(V ×W,V ×W −X × Y ), and

(3) if L → P∞ is the universal line bundle and i : P1 → P∞ denotes the
inclusion, then i∗θ(L/P∞) ∈ R1(f∗L, f∗L − P1) corresponds to 1 ∈
R0(S0) via the isomorphism R0(S0) ∼= R1(S1) ∼= R1(f∗L, f∗L− P1).

Given an orientation of R, the class θ(V/X) ∈ Rn(V, V −X) associated to a
n-plane bundle V → X is called the Thom class of V → X . The main utility
of Thom classes is that they define R∗(X)-module isomorphisms R∗(X) →
R∗+n(V, V −X) (cf. [23]).

Remark 2.11. The naturality condition implies that it is enough to specify
Thom classes for the universal vector bundles Vn → BGLn. We write MGLn
for the Thom space of Vn → BGLn and θn for θ(Vn/BGLn) ∈ Rn(MGLn).

2.5. Basic calculations in oriented cohomology. In this section we
fix an oriented commutative motivic ring spectrum R equipped with a unit
µ ∈ π1R. Note that we can use µ to move the Thom classes θn ∈ Rn(MGLn) to
degree zero Thom classes ϑn := µnθn ∈ R0(MGLn). The following calculations
are well known (cf. [1], [4], [23]). Note that all (co)homology is implicitly
the (co)homology of a pair. In particular, if X is unpointed, then R0(X) :=
R0(X, 0), where 0 → X is the unique map from the inital object 0; if X is
pointed, then R0(X) := R0(X, 1), where 1 → X is the designated map from
the terminal object 1.

Proposition 2.12. The first Chern class of the tautological line bundle on Pn
defines a ring isomorphism R0[λ]/(λn+1)→ R0(Pn).

Proof. Inductively, one has a morphism of exact sequences

λnR0[λ]/(λn+1) //

��

R0[λ]/(λn+1) //

��

R0[λ]/(λn)

��
R0(Pn,Pn−1) // R0(Pn) // R0(Pn−1)
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in which the left and right, and hence also the middle, vertical maps are
isomorphisms. �

Proposition 2.13. The first Chern class of the tautological line bundle on P∞
defines a ring isomorphism R0[[λ]] ∼= limR0[λ]/(λn)→ R0(P∞+ ).

Proof. The lim1 term in the exact sequence

0 −→ lim1R−1,0(Pn) −→ R0(P∞) −→ limR0(Pn)

vanishes because the maps R−1,0(Pn) −→ R−1,0(Pn−1) are surjective. �

Corollary 2.14. For each n, the natural map

R0(Pn) −→ homR0(R0(Pn), R0)

is an isomorphism.

Proof. The dual of 2.12 shows that R0(Pn) is free of rank n+ 1 over R0. �

Proposition 2.15 (Atiyah [4]). Let p : Y → X be a map of quasicompact
S-schemes and let y1, . . . , yn be elements of R0(Y ). Let M be the free abelian
group on the y1, . . . , yn, and suppose that X has a cover by open subschemes U
such that for all open V in U , the natural map

R0(V )⊗M −→ R0(p−1V )

is an isomorphism. Then, for any open W in X, the map

R0(X,W )⊗M −→ R0(Y, p−1W )

is an isomorphism.

Proof. Apply Atiyah’s proof [4], mutatis mutandis. �

Proposition 2.16. Let Z be an S-scheme such that, for any homotopy com-
mutative R-algebra A, A0(Z) ∼= R0(Z) ⊗R0 A0. Then, for any S-scheme X,
R0(Z ×X) ∼= R0(Z)⊗R0 R0(X).

Proof. The diagonal of X induces a homotopy commutativeR-algebra structure
on A = RX , the cotensor of the motivic space X with the motivic spectrum R.
Hence

A0(Z) ∼= R0(Z)⊗R0 A0 ∼= R0(Z)⊗R0 R0(X).

�

Corollary 2.17. Let p : V → X be a rank n vector bundle over a quasicompact
S-scheme X and let L → P(V ) be the tautological line bundle. Then the map
which sends λ to the first Chern class of L induces an isomorphism

R0(X)[λ]/(λn − λn−1c1V + · · ·+ (−1)ncnV ) −→ R0(P(V ))

of R0-algebras.
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Proof. If V is trivial then P(V ) ∼= Pn−1
X , and the result follows from Propo-

sitions 2.12 and 2.16. In general, the projection P(V ) → X is still locally
trivial, so we may apply Proposition 2.15, with W empty and {yi} the image
in R0(P(V )) of a basis for R0(X)[λ]/(λn − . . . + (−1)ncnV ) as a free R0(X)-
module. �

Proposition 2.18. Let V → X be a rank n vector bundle over a quasicompact
S-scheme X, Flag(V ) → X the associated flag bundle, and σk(x1, . . . , xn),
1 ≤ k ≤ n, the kth elementary symmetric function in the indeterminates λi.
Then the map

R0(X)[λ1, . . . , λn]/({ck(V )− σk(λ1, . . . , λn)}k>0) −→ R0(Flag(V ))

which sends the λi to the first Chern classes of the n tautological line bundles
on Flag(V ), is an isomorphism of R0-algebras.

Proof. The evident relations among the Chern classes imply that the
map is well-defined. Using Proposition 2.15 and a basis for the free R0-
module R0(Flag(An−1), it follows inductively from the fibration Flag(An−1)→
Flag(An)→ Pn−1 that

R0[λ1, . . . , λn]/({σk(λ1, . . . , λn)}) −→ R0(Flag(An))

is an isomorphism. Using Proposition 2.16, we deduce the desired result for
trivial vector bundles V . For the general case, we apply Proposition 2.15 again,
with a basis of the free R0(X)-module R0(X)[λ1, . . . , λn]/({ck(V )−σk}) giving
the necessary elements of R0(Flag(V )). �

Proposition 2.19. Let p : V → X be an rank n vector bundle over a qua-
sicompact S-scheme X, let q : Grassm(V ) → X be the Grassmannian bundle
of m-dimensional subspaces of V , let ξm(V ) → Grassm(V ) be the tautologi-
cal m-plane bundle over Grassm(V ), and write q∗(V )/ξm(V ) for the quotient
(n−m)-plane bundle. Then the map

R0(X)[σ1, . . . , σm, τ1, . . . , τn−m] −→ R0(Grassm(V ))

which sends σi to ci(ξm(V )) and τj to cj(q
∗(V )/ξm(V )) induces an isomor-

phism

R0(X)[σ1, . . . , σm, τ1, . . . , τn−m]/({ck(V )− Σ
i+j=k

σiτj}) −→ R0(Grassm(V ))

of R0-algebras (as usual, ck(V ) = 0 for k > n and c0(V ) = σ0 = τ0 = 1).

Proof. The identity q∗c(V ) = c(q∗V ) = c(ξm(V ))c(q∗V/ξm(V )) implies that
each ck(V ) − Σσiτj is sent to zero, so the map is well-defined. Just as in
the case of flag bundles, use induction together with the fibration Flag(Am)×
Flag(An−m)→ Flag(An)→ Grassm(An) to see that

R0[σ1, . . . , σm, τ1, . . . , τn−m]/({ Σ
i+j=k

σiτj}) −→ R0(Grassm(An))
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is an isomorphism. This implies the result for trivial vector bundles by
Proposition 2.16, and we deduce the general result from Proposition 2.15. �

Proposition 2.20. There are isomorphisms

R0(BGLn) −→ R0(BGLn1 )Σn ∼= R0[[λ1, . . . , λn]]Σn ∼= R0[[σ1, . . . , σn]].

Proof. Writing Vn → BGLn for the tautological vector bundle, we have an
equivalence Flag(Vn) ≃ BGLn1 . Inductively, we have isomorphisms

R0[[λ1, . . . , λn]] −→ R0(BGLn1 )

and the map

R0(BGLn) −→ R0(BGLn1 ) ∼= R0[[λ1, . . . , λn]]

factors through the invariant subring R0[[λ1, . . . , λn]]Σn ∼= R0[[σ1, . . . , σn]]. By
Proposition 2.18, R0(BGLn1 ) is free of rank n! over R0(BGLn), so it follows
that R0(BGLn) ∼= R0(BGLn1 )Σn . �

Corollary 2.21. The natural map

R0(BGLn) −→ homR0(Symn
R0
R0(P∞), R0)

is an isomorphism.

Proof. By Proposition 2.20, we need only check this for n = 1. But

R0(Pm) ∼= homR0(R0(Pm), R0),

both being free of rank m+ 1 over R0, and

R0(P∞) ∼= limR0(Pm) ∼= homR0(colimR0(Pm), R0) ∼= homR0(R0(P∞), R0)

by Proposition 2.12. �

Corollary 2.22. There are isomorphisms R0(BGL) ∼= limnR
0(BGLn) ∼=

R0[[σ1, σ2, . . .]].

Proof. The lim1 term in the short exact sequence

0 −→ lim1
nR

1,0(BGLn) −→ R0(BGL) −→ limnR
0(BGLn)

vanishes since the maps R1,0(BGLn)→ R1,0(BGLn−1) are surjective. �

2.6. The oriented cohomology of BGL+ ∧ Z. Let R be an oriented pe-
riodic commutative motivic ring spectrum and let Z be an arbitrary motivic
spectrum. Recall (cf. [5]) that a motivic spectrum is cellular if belongs to the
smallest full subcategory of motivic spectra which is closed under homotopy
colimits and contains the spheres Sp,q for all p, q ∈ Z, and that a motivic space
is stably cellular if its suspension spectrum is cellular.
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Proposition 2.23. Let X := colimnXn be a telescope of finite cellular motivic
spectra such that each R∗,∗(Xn) is a finite free R∗,∗-module and, for any motivic
spectrum Z, the induced maps

R0(Xn ∧ Z) −→ R0(Xn−1 ∧ Z)

are surjective. Then the natural map

R0(X)⊗̂
R0
R0(Z) −→ R0(X ∧ Z)

is an isomorphism.

Proof. This is an immediate consequence of the motivic Künneth spectral
sequence of Dugger-Isaksen [5]. Indeed, for each n, R∗,∗(Xn) is a free R∗,∗-
module, so the spectral sequence

TorR
∗,∗

∗ (R∗,∗(Xn), R∗,∗(Z))⇒ R∗,∗(Xn ∧ Z)

collapses to yield the isomorphism

R∗,∗(Xn) ⊗̂
R∗,∗

R∗,∗(Z) ∼= R∗,∗(Xn ∧ Z).

Moreover, by hypothesis, each of the relevant lim1 terms vanish, so that

R∗,∗(X) ⊗̂
R∗,∗

R∗,∗(Z) ∼= lim
n
R∗,∗(Xn) ⊗

R∗,∗
R∗,∗(Z)

∼= lim
n
R∗,∗(Xn ∧ Z) ∼= R∗,∗(X ∧ Z).

�

Corollary 2.24. Let Z be a motivic spectrum. Then there are natural iso-
morphisms

R0(P∞)⊗̂
R0
R0(Z) −→ R0(P∞+ ∧ Z)

and

R0(BGL)⊗̂
R0
R0(Z) −→ R0(BGL+ ∧ Z)

Proof. For each m,

BGLm ≃ colimn Grassm(An)

is a colimit of finite stably cellular motivic spaces such that, for each n,
R∗,∗(Grassm(An)) is a free R∗,∗-module and

R0(Grassm(An))⊗R0 R0(Z) ∼= R0(Grassm(An)+ ∧ Z) −→
R0(Grassm(An−1)+ ∧ Z) ∼= R0(Grassm(An−1))⊗R0 R

0(Z)

is (split) surjective. It therefore follows from Proposition 2.23 that, for each m,

R0(Grassm(A∞)+)⊗̂
R0
R0(Z) ∼= R0(Grassm(A∞)+ ∧ Z).

Taking m = 1 yields the result for P∞; for BGL, we must consider the sequence

BGL ≃ colimmBGLm ≃ Grassm(A∞)
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in which the maps come from a fixed isomorphism A1 ⊕ A∞ ∼= A∞. Note,
however, that it follows from the above, together with the (split) surjection

R0(Grassm(A∞) −→ R0(Grassm−1(A∞))

of Proposition 2.20, that, for each m,

R0(Grassm(A∞)+ ∧ Z) −→ R0(Grassm−1(A∞)+ ∧ Z)

is (split) surjective, so that the lim1 term vanishes and

R0(BGL)⊗̂
R0
R0(Z) ∼= lim

m
R0(Grassm(A∞)+ ∧ Z) ∼= R0(BGL+ ∧ Z).

�

2.7. Primitives in the oriented cohomology of BGL. Let R be an ori-
ented periodic commutative motivic ring spectrum. As is shown in Section 4.3
of [20], the group completion

BGLZ ≃ Ω1,0B(BGLN)

(usually written Z × BGL) of the additive monoid BGLN =
∐
n∈N BGLn fits

into a fibration sequence

BGL −→ BGLZ −→ Z,

whereBGL ≃ colimnBGLn. AsBGLN is commutative up to homotopy,BGLZ

is an abelian group object in the motivic homotopy category.

Lemma 2.25. Let Add(BGLZ,Ω
∞R) denote the abelian group of homotopy

classes of additive maps BGLZ → Ω∞R. Then the inclusion

Add(BGLZ,Ω
∞R) −→ R0(BGLZ)

identifies Add(BGLZ,Ω
∞R) with the abelian group of primitive elements in

the Hopf algebra R0(BGLZ).

Proof. By definition, there is an equalizer diagram

Add(BGLZ,Ω
∞R) // R0(BGLZ) // // (BGLZ ×BGLZ)

associated to the square

BGLZ ×BGLZ
//

��

BGLZ

��
Ω∞R× Ω∞R // Ω∞R

in which the horizontal maps are the addition maps. Let δ denote the Hopf
algebra diagonal

δ : R0(BGLZ) −→ R0(BGLZ ×BGLZ) ∼= R0(BGLZ)⊗̂
R0
R0(BGLZ).

Then the equalizer consists of those f ∈ R0(BGLZ) such that δ(f) =
f ⊗ 1 + 1 ⊗ f . This identifies Add(BGLZ,Ω

∞R) with the primitive elements
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in R0(BGLZ). �

Lemma 2.26. There are natural isomorphisms

Add(BGLZ,Ω
∞R) ∼= Add(BGL,Ω∞R)×Add(Z,Ω∞R)

∼= Add(BGL,Ω∞R)×R0.

Proof. The product of additive maps is additive, and, in any category with
finite products and countable coproducts, Z =

∐
Z 1 is the free abelian group

on the terminal object 1. �

Proposition 2.27. The map

Add(BGLZ,Ω
∞R) −→ R0(BGL1),

obtained by restricting an additive map BGLZ → Ω∞R along the inclusion
BGL1 → BGLZ, is an isomorphism.

Proof. By Lemma 2.26, it’s enough to show that the inclusion (BGL1, 1) →
(BGL, 1) induces an isomorphism

Add(BGL,Ω∞R) −→ R0(BGL1, 1).

Thus let M = R0(BGL1, 1), and consider the R0-algebra

A :=
⊕

n≥0

Symn
R0
M

together with its augmentation ideal

I :=
⊕

n>0

Symn
R0
M.

We have isomorphisms of split short exact sequences

0 // R0(BGL, 1) //

��

R0(BGL) //

��

R0 //

��

0

0 // homR0(I, R0) // homR0(A,R0) // homR0(R0, R0) // 0

and

0 // R0(BGL×2, BGL∨2) //

��

R0(BGL×2) //

��

. . .

0 // homR0
(I ⊗R0 I, R0) // homR0

(A⊗R0 A,R0) // . . .

. . . // R0(BGL∨2) //

��

0

. . . // homR0(R0 ⊕ I⊕2, R0) // 0
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of R0-modules. According to Lemmas 2.25 and 2.26, we have an exact sequence

0 −→ Add(BGL,Ω∞R) −→ R0(BGL, 1) −→ R0(BGL×2, BGL∨2)

in which the map on the right is the cohomology of the map

µ− p1 − p2 : (BGL×2, BGL∨2) −→ (BGL, 1)

(µ is the addition and the pi are the projections); moreover, this map is the
R0-module dual of the multiplication I ⊗R0 I → I. Hence these short exact
sequences assemble into a diagram

0 // homR0(I/I2, R0) //

��

Add(BGL,Ω∞R) //

��

. . .

0 // homR0(I, R0) //

��

R0(BGL) //

��

. . .

0 // homR0(I ⊗R0 I, R0) // R0(BGL×2) // . . .

. . . // 0

��

// 0

. . . // R0

��

// 0

. . . // homR0(R0 ⊕ I⊕2, R0) // 0

of short exact sequences by the snake lemma. In particular, we see that
Add(BGL,Ω∞R) is naturally identified with the dual homR0(I/I2, R0) of the
module of indecomposables I/I2. But I/I2 ∼= M = R0(BGL1, 1), the duality
map

R0(BGL1, 1) −→ homR0(R0(BGL1, 1), R0)

is an R0-module isomorphism, and the restriction R0(BGL, 1)→ R0(BGL1, 1)
is dual to the inclusion M → I. �

3. Algebraic Cobordism

3.1. The representing spectrum. For each natural number n, let Vn →
BGLn denote the universal n-plane bundle over BGLn. Then the Thom spaces

MGLn := (Vn, Vn −BGLn)

come equipped with natural maps

MGLp ∧MGLq −→MGLp+q

defined as the composite of the isomorphism

(Vp, Vp −BGLp) ∧ (Vq , Vq −BGLq) −→ (Vp × Vq, Vp × Vq −BGLp ×BGLq)
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and the map on Thom spaces associated to the inclusion of vector bundles

Vp × Vq

��

// Vp+q

��
BGLp ×BGLq // BGLp+q.

Restricting this map of vector bundles along the inclusion 1×BGLq → BGLp×
BGLq gives a map of Thom spaces

(Ap,Ap − A0) ∧MGLq →MGLp+q,

and these maps comprise the structure maps of the prespectrum MGL. The
associated spectrum is defined by

MGL(p) := colimq ΩqMGLp+q,

as evidently the adjoints

MGL(q) ≃ colimr ΩrMGLq+r ≃ colimr Ωp+rMGLp+q+r ≃ ΩpMGL(p+ q)

of the structure maps ΣpMGL(q) → MGL(p + q) are equivalences. The last
equivalence uses the fact that P1 is a compact object of the motivic homotopy
category.

Definition 3.1 (Voevodsky [34]). Algebraic cobordism is the motivic coho-
mology theory represented by the motivic spectrum MGL.

3.2. Algebraic cobordism is the universal oriented motivic spec-
trum. Just as in ordinary stable homotopy theory, the Thom classes θn ∈
Rn(MGLn) coming from an orientation on a commutative motivic ring spec-
trum R assemble to give a ring map θ : MGL → R. We begin with a brief
review of this correspondence.

Proposition 3.2 (Panin, Pimenov, Röndigs [23]). Let R be a commutative
monoid in the homotopy category of motivic spectra. Then the set of monoidal
maps MGL→ R is naturally isomorphic to the set of orientations on R.

Proof. The classical analysis of complex orientations on ring spectra R
generalizes immediately. A spectrum map θ : MGL → R is determined by
a compatible family of maps θn : MGLn → Rn, which is to say a family
of universal Thom classes θn ∈ Rn(MGLn). An arbitrary n-plane bundle
V → X , represented by a map X → BGLn, induces a map of Thom spaces
V/V − X → MGLn, so θn restricts to a Thom class in Rn(V/V − X).
Moreover, these Thom classes are multiplicative and unital precisely when
θ : MGL→ R is monoidal. Conversely, an orientation on R has, as part of its
data, Thom classes θn ∈ Rn(MGLn) for the universal bundles Vn → BGLn,
and these assemble to form a ring map θ : MGL→ R. �

Again, just as in topology, an orientation on R is equivalent to a compatible
family of R-theory Chern classes for vector bundles V → X . This follows from
the Thom isomorphism R∗(BGLn) ∼= R∗(MGLn).

Documenta Mathematica 14 (2009) 359–396



Motivic Spectra Representing Cobordism and K-Theory 375

More difficult is the fact that an orientation on a ring spectrum R is uniquely
determined by the first Thom class alone; that is, a class θ1 ∈ R1(BGL1) = R
whose restriction i∗θ1 ∈ R1(S1) along the inclusion S1 → MGL1 corresponds
to 1 ∈ R0(S0) via the suspension isomorphism R1(S1) ∼= R0(S0). This is a
result of the splitting principle, which allows one to construct Thom classes (or
Chern classes) for general vector bundles by descent from a space over which
they split. See Adams [1] and Panin-Pimenov-Röndigs [23] for details.

3.3. A ring spectrum equivalent to PMGL. The wedge
∨

n∈N

Σ∞MGLn

forms a ring spectrum with unit S ≃ Σ∞MGL0 and multiplication
∨

p

Σ∞MGLp ∧
∨

q

Σ∞MGLq −→
∨

p,q

Σ∞MGLp ∧MGLq −→
∨

n

Σ∞MGLn

induced by the maps MGLp ∧MGLq → MGLp+q. Evidently, a (homotopy
class of a) ring map

∨
n Σ∞MGLn → R is equivalent to a family of degree zero

Thom classes

ϑn ∈ R0(MGLn)

with ϑ0 = 1 ∈ R0(MGL0) = R0 such that ϑp+q restricts via MGLp∧MGLq →
MGLp+q to the product ϑpϑq. This is not the same as an orientation on R, as
there is nothing forcing ϑ1 ∈ R0(MGL1) to restrict to a unit in R0(S1). Clearly
we should impose this condition, which amounts to inverting β : P1 → P∞.

Proposition 3.3. A ring map PMGL → R induces a ring map∨
n Σ∞MGLn[1/β]→ R.

Proof. A ring map θ : PMGL → R consists of a ring map MGL → R and
a unit µ ∈ π1R. This specifies Thom classes θn ∈ Rn(MGLn), and therefore
Thom classes

ϑn := µnθn ∈ R0(MGLn)

such that

ϑpϑq = µp+qθpθq = µp+qi∗θp+q = i∗ϑp+q ∈ R0(MGLp ∧MGLq),

where i is the map MGLp ∧ MGLq → MGLp+q. This gives a ring map
ϑ :
∨
n Σ∞MGLn → R, and therefore the desired map, provided β is sent to a

unit. But this is clear: as a class in R0(S1),

ϑ(β) = β∗ϑ1 = µβ∗θ1,

and β∗θ1 ∈ R1(S1) is the image of 1 ∈ R0(S0) under the isomorphism
R0(S0) ∼= R1(S1). �

Proposition 3.4. The ring map
∨
n∈N

Σ∞MGLn[1/β]→ PMGL is an equiva-

lence.
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Proof. Write

M :=
∨

n∈N

Σ∞MGLn[1/β]→ PMGL,

and consider the natural transformation of set-valued functors

Rings(PMGL,−) −→ Rings(M,−).

Given a ring spectrum R, we have seen that the set Rings(M,R) is naturally
isomorphic to the set of collections {ϑn}n∈N with ϑn ∈ R0(MGLn) such that
ϑp+q restricts to ϑpϑq, ϑ1 restricts to a unit in R−1, and ϑ0 = 1 ∈ R0(S0).
Similarly, the set Rings(PMGL,R) is naturally isomorphic to the product of
the set of units in R−1 and the set of collections {θn}n∈N with Rn(MGLn) such
that θp+q restricts to θpθq, θ1 restricts to the image of 1 ∈ R0(S0) in R1(S1),
and θ0 = 1 ∈ R0(S0).
The map Rings(PMGL,R) → Rings(M,R) sends µ ∈ R−1 and
θn ∈ Rn(MGLn) to ϑn = µnθn. We get a natural map back which sends
ϑn ∈ R0(MGLn) to θn = µ−nϑn, where µ ∈ R−1 in the unit corresponding to
β∗ϑ1 ∈ R0(S1). Clearly the composites are the respective identities, and we
conclude that M → PMGL is an equivalence. �

3.4. Σ∞+ BGL[1/β] is orientable. Recall from [23] that, just as in the usual
stable homotopy category, an orientation on a ring spectrum R is equivalent to
a class in R1(MGL1) which restricts, under the inclusion i : S1 → MGL1 of
the bottom cell, to the class in R1(S1) corresponding to the unit 1 ∈ R0(S0)
under the suspension isomorphism R0(S0) → R1(S1). Note also that in the
case R is periodic with Bott element β ∈ R0(S1), corresponding under the
suspension isomorphism to the unit µ ∈ R−1(S0) with inverse µ−1 ∈ R1(S0),
then the suspension isomorphism R0(S0)→ R1(S1) sends 1 to µ−1β.
Now there’s a canonical class θ1 ∈ Σ∞+ BGL[1/β]1(MGL1) such that

µ−1β = i∗θ1 ∈ Σ∞+ BGL[1/β]1(S1).

Namely, set θ1 := µ−1ϑ1, where ϑ1 ∈ Σ∞+ BGL[1/β]0(MGL1) is the class of the
composite

Σ∞MGL1 ≃ Σ∞BGL1 −→ Σ∞+ BGL −→ Σ∞+ BGL[1/β].

Then β = i∗µθ, so µ−1β = i∗θ.

Proposition 3.5. There is a canonical ring map θ : PMGL→ Σ∞+ BGL[1/β].

Proof. The Thom class θ1 ∈ Σ∞+ BGL[1/β]0(MGL1) extends, as in [1] or
[23], to a ring map MGL → Σ∞+ BGL[1/β], and we have a canonical unit
µ ∈ R−1(S0), the image of β ∈ R0(S1) under the suspension isomorphism
R0(S1) ∼= R−1(S0). �

Corollary 3.6. There is a canonical ring map ϑ :
∨
n Σ∞MGLn[1/β] →

Σ∞+ BGL[1/β].
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Proof. Precompose the map from the previous Proposition 3.5 with the equiv-
alence ∨

n

Σ∞MGLn[1/β]→ PMGL.

�

3.5. ϑ is an equivalence. We analyze the effect of ϑ :
∨
n Σ∞MGLn[1/β]→

Σ∞+ BGL[1/β] on cohomology. To this end, fix an oriented periodic commuta-
tive motivic ring spectrum R; we aim to show that the induced map

R0(Σ∞+ BGL[1/β]) −→ R0(
∨

n

Σ∞MGLn[1/β])

is an isomorphism.

Lemma 3.7. Let R be a commutative ring and let A = colimnAn be a filtered
commutative R-algebra with the property that Ap ⊗R Aq → A ⊗R A → A
factors through the inclusion Ap+q → A (that is, the multiplication is compatible
with the filtration). Suppose that, for each n, the maps An−1 → An are split
injections, so that the isomorphisms An−1 ⊕ An/An−1 → An define an R-
module isomorphism

grA :=
⊕

n

An/An−1
≃−→ colimnAn = A

of A with its associated graded. Then the multiplication Ap/Ap−1 ⊗R
Aq/Aq−1 → Ap+q/Ap+q−1 makes grA =

⊕
nAn/An−1 into a commutative

R-algebra in such a way that grA→ A is an R-algebra isomorphism. �

Proposition 3.8. There is a commuting square of R0-module maps

R0(BGL) //

��

∏
nR

0(MGLn)

��
R0(BGL×BGL) //

∏
p,q R

0(MGLp ∧MGLq)

,

in which the vertical maps are induced by the multiplication on BGL and∨
nMGLn, respectively, and the horizontal maps are isomorphisms.

Proof. Set A := colimn Symn
R0
R0(P∞), where the map Symn−1

R0
R0(P∞) →

Symn
R0
R0(P∞) is induced by the the inclusion R0

∼= R0(P0) → R0(P∞). Ap-
plying R0 to the cofiber sequence BGLn−1 → BGLn → MGLn yields split
short exact sequences

Symn−1R0(P∞) //

∼=
��

SymnR0(P∞) //

∼=
��

SymnR0(P∞)/ Symn−1R0(P∞)

∼=
��

R0(BGLn−1) // R0(BGLn) // R0(MGLn)
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with A ∼= colimnR0(BGLn) ∼= R0(BGL) a filtered commutative R-algebra.
By the lemma, we have a commutative square
L

p,q

Symp R0(P∞)/Symp−1 R0(P∞) ⊗
R0

Symq R0(P∞)/Symq−1 R0(P∞) //

��

A ⊗
R0

A

��L

n Symn R0(P∞)/Symn−1 R0(P∞) // A

in which the vertical maps are multiplication and the horizontal maps are
R0-algebra isomorphisms. The desired commutative square is obtained by
taking R0-module duals. �

Theorem 3.9. The map of oriented periodic motivic ring spectra

ϑ :
∨

n

Σ∞MGLn[1/β]→ Σ∞+ BGL[1/β]

is an equivalence.

Proof. We show that the induced natural transformation

ϑ∗ : Rings(Σ∞+ BGL[1/β],−) −→ Rings(
∨

n

Σ∞MGLn[1/β],−)

is in fact a natural isomorphism. The result then follows immediately from
Yoneda’s Lemma.
Fix a ring spectrum R, and observe that, for another ring spectrum A,
Rings(A,R) is the equalizer of the pair of maps fromR0(A) to R0(A∧A)×R0(S)
which assert the commutativity of the diagrams

A ∧A //

��

A

��
R ∧R // R

and S

��?
??

??
??

// A

��
R

.

Given a map β : Σ1S→ A, the set Rings(A[1/β], R) is the equalizer of the pair
of maps from Rings(A,R)×R0(Σ−1S) to R0(S) which assert that the ring map
A→ R is such that there’s a spectrum map Σ−1S→ R for which the product

S ≃ Σ1S ∧ Σ−1S −→ A ∧R −→ R ∧R −→ R

is equivalent to the unit S → R. Putting these together, we may express
Rings(A[1/β], R) as the equalizer of natural pair of maps from R0(A)×R0(S−1)
to R0(A ∧A)×R0(S)×R0(S).
We therefore get a map of equalizer diagrams

R0(BGL)×R0(Σ−1S)
// //

��

R0(BGL×BGL)×R0(S)×R0(S)

��
Q

n R0(MGLn)×R0(Σ−1S) // //
Q

p,q R0(MGLp ∧MGLq)×R0(S)×R0(S) ,
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the equalizer of which is ϑ∗. Now if R does not admit the structure of a
PMGL-algebra, then clearly there cannot be any ring maps from either of the
PMGL-algebras

∨
n Σ∞MGLn[1/β] of Σ∞+ BGL[1/β]. Hence we may assume

that R is also an oriented periodic ring spectrum, in which case Proposition
3.8 implies that the vertical maps are isomorphisms. �

Corollary 3.10. The map of periodic oriented motivic ring spectra

θ : PMGL→ Σ∞+ BGL[1/β]

is an equivalence.

Proof.
∨
n Σ∞MGLn[1/β]→ PMGL is an equivalence. �

4. Algebraic K-Theory

4.1. The representing spectrum. Let BGLZ ≃ Z×BGL denote the group
completion of the monoid

BGLN :=
∐

n∈N

BGLn.

Given a motivic space X , write K0(X) := π0 mapS(X,BGLZ). If S = spec Z
and X is a scheme, this agrees with the homotopy algebraic K-theory of X as
defined by Weibel [38], and if in addition X is smooth, this also agrees with
Thomason-Trobaugh algebraic K-theory of X [33]; see Proposition 4.3.9 of [20]
for details. As the name suggests, homotopy algebraic K-theory is a homotopy
invariant version of the Thomason-Trobaugh algebraicK-theory, and homotopy
invariance is of course a prerequisite for any motivic cohomology theory.
It turns out that the motivic space BGLZ, pointed by the inclusion

1 ≃ BGL0 −→ BGLN −→ BGLZ,

is the zero space of the motivic spectrum K representing (homotopy) algebraic
K-theory. This is a direct corollary of the following famous fact.

Proposition 4.1 (Motivic Bott Periodicity). The adjoint

(BGLZ, BGL0) −→ Ω(BGLZ, BGL0)

of the map Bott map Σ(BGLZ, BGL0)→ (BGLZ, BGL0) classifying the tensor
product of (L− 1) and V , where L→ P1 is the restriction of the universal line
bundle and V → BGLZ is the universal virtual vector bundle, is an equivalence.

Proof. Quillen’s projective bundle theorem [26] implies that the tensor product
of vector bundles induces an isomorphism

K0(P1) ⊗
K0

K0(X) −→ K0(P1 ×X)
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of abelian groups. It follows that there’s an isomorphism of split short exact
sequences of K0(X)-modules

λK0(X)[λ]/(λ2) //

��

K0(X)[λ]/(λ2) //

��

K0(X)

��
K0((P1,P0) ∧ (X, 0)) // K0(P1 ×X) // K0(P0 ×X) .

In particular, K0((P1,P0) ∧ (X, 0)) ∼= K0(X) and similarly K0((P1,P0) ∧
(X, 1)) ∼= K0(X, 1). �

Define a sequence of pointed spaces K(n) by

K(n) := (BGLZ, BGL0)

for all n ∈ N. By Proposition 4.1, each K(n) comes equipped with an equiva-
lence

K(n) = (BGLZ, BGL0) −→ Ω(BGLZ, BGL0) = ΩK(n+ 1),

making K := (K(0),K(1), . . .) into a motivic spectrum.

4.2. A map Σ∞+ P∞[1/β] → K. Let β : P1 → P∞ be the map classifying the

tautological line bundle on P1. We construct a ring map Σ∞+ P∞ → K which
sends β to a unit in K, thus yielding a ring map Σ∞+ P∞[1/β] → K. There is
a homotopy commutative ring structure on the motivic space BGLZ ≃ Ω∞K
in which addition is induced by the sum of vector bundles and multiplication
is induced by the tensor product of vector bundles.
Ring maps Σ∞+ P∞ → K are adjoint to monoidal maps P∞ → GL1K, the
multiplicative monoid of units (up to homotopy) in the ring space Ω∞K ≃
BGLZ. Since π0BGLZ contains a copy of Z, the multiplicative units contain
the subgroup {±1} → Z, giving a map

{±1} ×BGL −→ GL1K.

But the inclusion BGL1 → BGL is monoidal with respect to the multiplicative
structure on BGL, so we get a monoidal map

P∞ ≃ BGL1 −→ {+1} ×BGL −→ GL1K

and therefore a ring map Σ∞+ P∞ → K.

Proposition 4.2. The class of the composite

Σ∞S1 ≃ Σ∞(P1,P0) −→ Σ∞+ P∞ −→ K

is equal to that of the K-theory Bott element β, i.e. the class of the reduced
tautological line bundle L− 1 on P1.

Proof. The map Σ∞+ P∞ → K classifies the tautological line bundle on P∞, so
the pointed version Σ∞P∞ → K corresponds to the reduced tautological line
bundle on P∞. This restricts to the reduced tautological line bundle on P1. �
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Corollary 4.3. There’s a canonical ring map ψ : Σ∞+ P∞[1/β]→ K. �

4.3. Comparing R0(K) and R0(L). Let L denote the localized motivic ring
spectrum

L := Σ∞+ P∞[1/β].

That is, L is the colimit

L = colimn Σ∞−nP∞+
of a telescope of desuspended suspension spectra. We show that ψ : L→ K is
an equivalence by showing the induced map R0(L)→ R0(K) is an isomorphism
for a sufficiently large class of motivic spectra R.
Throughout this section, we will be considering the motivic space BGLZ

(pointed by {0}×BGL0) multiplicatively, as a homotopy commutative monoid
with respect to the smash product. Accordingly, Σ∞BGLZ is a ring spectrum,
and the monoidal map

P∞+ ≃ BGL0 +BGL1 −→ BGLN −→ BGLZ

gives Σ∞BGLZ the structure of a homotopy commutative Σ∞P∞+ -algebra. In
particular, the Bott element β ∈ π1Σ∞P∞+ determines a Bott element β ∈
π1Σ∞BGLZ as well as a Bott element β ∈ π1K.
If R is a homotopy commutative ring spectrum equipped with homotopy ele-
ment α ∈ πnR, we write

µ(α) = Σ−n(µ ◦ (α ∧R)) : R −→ Σ−nR

for the “multiplication by α” map, the n-fold desuspension of the composite

ΣnR ≃ ΣnS ∧R α∧R−→ R ∧R µ−→ R.

If α ∈ πnR is a unit, then this map has an inverse µ(α)−1 : Σ−nR → R, the
n-fold desuspension of the multiplication by α−1 map µ(α−1) : R→ ΣnR. For
our purposes, R will typically admit a periodic orientation, and α will be the
image of the Bott element β ∈ π1PMGL ∼= π1Σ∞+ BGL[1/β] under some ring
map PMGL→ R.
Finally, we also write

µ(β) : BGLZ −→ ΩBGLZ

for multiplication by β in the homotopy commutative monoid BGLZ (regarded
multiplicatively). This is Ω∞ applied to the multiplication by β map µ(β) :
K → Σ−1K on K-theory, and thus it is the equivalence adjoint to the Bott
map

ΣBGLZ −→ BGLZ

The following lemma is formal.

Lemma 4.4. Let ε : ΣΩBGLZ → BGLZ denote the counit of the adjunction
(Σ,Ω) applied to BGLZ. Then the composite

ΣBGLZ
Σµ(β)−→ ΣΩBGLZ

ε−→ BGLZ

is the Bott map ΣBGLZ −→ BGLZ.
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Proof. More generally, if (Σ,Ω) is any adjunction and β∗ : ΣX → Y is a map
left adjoint to β∗ : X → ΩY , then β∗ = εY ◦ Σβ∗. �

Proposition 4.5. The square

Σ∞+1P∞+
Σµ(β) //

��

Σ∞P∞+

��
Σ∞+1BGLZ

Σµ(β) // Σ∞BGLZ ,

in which vertical maps come from the inclusion i : P∞+ ≃ BGL0 + BGL1 →
BGLZ and the horizontal maps are the Bott maps, commutes up to homotopy.

Proof. The inclusion Σ∞P∞+ → Σ∞BGLZ is a map of homotopy commutative
ring spectra, and the Bott element Σ∞P1 → Σ∞BGLZ factors through the
Bott element Σ∞P1 → Σ∞P∞+ . �

Proposition 4.6. Let R be a homotopy commutative PMGL-algebra. Then
the space map(K,R) of maps from K to R is equivalent to the homotopy inverse
limit

map(K,R) ≃ holimn{· · · f−→ map(Σ∞BGLZ, R)
f−→ map(Σ∞BGLZ, R)},

where f = µ(α)−1 ◦ Σ−1 ◦ µ(β) is the endomorphism of map(Σ∞BGLZ, R)
which sends a map x : Σ∞BGLZ → R to the composite

Σ∞BGLZ
µ(β)−→ Σ∞−1BGLZ

Σ−1x−→ Σ−1R
µ(α)−1

−→ R.

Proof. In general, for motivic spectra M and N ,

map(M,N) ≃ holim{· · · −→ map(M(1), N(1)) −→ map(M(0), N(0))},
where the maps send a map x : M(n)→ N(n) to Ωx : M(n− 1) ≃ ΩM(n)→
ΩN(n) ≃ N(n− 1). By adjunction, we may rewrite this as

map(M,N) ≃ holim{· · · −→ map(Σ∞Ω∞ΣM,ΣN) −→ map(Σ∞Ω∞M,N)}.
Now K and R are periodic via equivalences µ(β) : K → Σ−1K and µ(α) : R→
Σ−1R, the diagram

map(BGLZ, Ω∞R)
Ω //

≃

��

map(ΩBGLZ, Ω∞+1R)
µ(β)∗ //

≃

��

map(BGLZ, Ω∞+1R)

≃

��
map(Σ∞BGLZ, R)

Σ∞ε∗// map(Σ∞+1ΩBGLZ, R)
Σ∞+1µ(β)∗// map(Σ∞+1BGLZ, R) ,

in which the vertical arrows are adjunction equivalences, commutes, and ac-
cording to Lemma 4.4 above, the Σ∞ applied to the composite ε ◦ Σµ(β) is
Σµ(β) : Σ∞+1BGLZ → Σ∞BGLZ. Hence

map(K,R) ≃ holim{· · · −→ map(Σ∞BGLZ, R) −→ map(Σ∞BGLZ, R)}
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is the homotopy inverse limit of the tower determined by the composite

map(Σ∞BGLZ, R)
Σµ(β)∗−→ map(Σ∞+1BGLZ, R)

µ(α)−1
∗ ◦Σ−1

−→ map(Σ∞BGLZ, R).

That is, the endomorphism f of map(Σ∞BGL,R) sends x : Σ∞BGL → R to
the composite µ(α)−1 ◦ Σ−1(x ◦ Σµ(β)) = µ(α)−1 ◦ Σ−1(x) ◦ µ(β), which is to
say that f = µ(α)−1 ◦ Σ−1 ◦ µ(β). �

Proposition 4.7. Let R be a homotopy commutative PMGL-algebra. Then
the space map(L,R) of maps from L to R is equivalent to the homotopy inverse
limit

map(L,R) ≃ holimn{· · · g−→ map(Σ∞P∞+ , R)
g−→ map(Σ∞P∞+ , R)},

where g = µ(α)−1 ◦ Σ−1 ◦ µ(β) is the endomorphism of map(Σ∞P∞+ , R) which
sends a map y : Σ∞P∞+ → R to the composite

Σ∞P∞+
µ(β)−→ Σ∞−1P∞+

Σ−1y−→ Σ−1R
µ(α)−1

−→ R.

Proof. By definition, L = Σ∞+ P∞[1/β] = hocolimn Σ∞−nP∞+ , where the map

Σ∞−nP∞+ → Σ∞−n−1P∞+

is the n-fold desuspension of the multiplication by β map µ(β) : Σ∞P∞+ →
Σ∞−1P∞+ . Hence

map(L,R) ≃

≃ holimn{· · ·
Σ−1◦Σµ(β)∗−→ map(Σ∞P∞+ ,ΣR)

Σ−1◦Σµ(β)∗−→ map(Σ∞P∞+ , R)}.

Again, since R is periodic via the multiplication by α map µ(α) : R → Σ−1R,
we may compose with µ(α)−1 in order to rewrite this as

map(L,R) ≃ holimn{· · · g−→ map(Σ∞P∞+ , R)
g−→ map(Σ∞P∞+ , R)},

where g is the endomorphism of map(Σ∞P∞+ , R) which sends the map
y : Σ∞P∞+ → R to the map g(y) = µ(α)−1 ◦ Σ−1(y) ◦ µ(β). �

Corollary 4.8. Let R be a homotopy commutative PMGL-algebra. Then the
square

map(Σ∞BGLZ, R)
f //

i∗

��

map(Σ∞BGLZ, R)

i∗

��
map(Σ∞P∞+ , R)

g // map(Σ∞P∞+ , R) ,

in which the vertical map are induced by the inclusion i : P∞+ ≃ BGL0 +
BGL1 → BGLZ, commutes up to homotopy. In particular, ψ∗ : map(K,R)→
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map(L,R) is the homotopy inverse limit of the map of towers

map(K, R)
≃ //

ψ∗

��

holim{· · ·
f // map(Σ∞BGLZ, R)

f //

i∗

��

map(Σ∞BGLZ, R)}

i∗

��
map(L, R)

≃ // holim{· · ·
g // map(Σ∞P∞

+ , R)
g // map(Σ∞P∞

+ , R)}

obtained from iterating this commuting square.

Proof. This is immediate from Lemmas 4.6 and 4.7. �

4.4. A useful splitting. To complete the analysis of ψ∗ : map(K,R) →
map(L,R), we must split the space of additive maps from BGLZ to Ω∞R off
of the space of all maps from BGLZ to Ω∞R.

Proposition 4.9. Let R be a motivic spectrum equipped with an equivalence
µ(α) : R→ Σ−1R. Then given a map x : Ω∞K → Ω∞R, the map

Ω∞µ(α)−1 ◦ Ω(x) ◦ Ω∞µ(β) : Ω∞K −→ Ω∞+1K −→ Ω∞+1R −→ Ω∞R

is a homomorphism for the additive structures on Ω∞K and Ω∞R.

Proof. If X is a motivic space equipped with an equivalence X → ΩY , then
X is a group object in the homotopy category of motivic spaces; if in addition
Y ≃ ΩZ, then X is an abelian group object. In particular, the additions on
Ω∞K and Ω∞R are induced by the equivalences Ω∞µ(β) : Ω∞K → Ω∞+1K
and Ω∞µ(α) : Ω∞R → Ω∞+1R, respectively, and Ω∞µ(α)−1 ◦ Ω(x) ◦ Ω∞µ(β)
is a map of loop spaces and therefore respects this addition. �

Proposition 4.10. Let R be a homotopy commutative PMGL-algebra. Then
there exists a canonical section s : RP∞+ → RBGLZ of the restriction r = i∗ :
RBGLZ → RP∞+ induced by the inclusion i : P∞+ ≃ BGL0 +BGL1 → BGLZ.

Proof. Set Y = RBGLZ and Z = RP∞+ . By Proposition 4.11, the additive maps
from BGLZ to Ω∞R define a canonical section π0Z → π0Y of the surjection
π0Y → π0Z. We must lift this to a map of spectra s : Z → Y .
By Proposition 2.24, we have isomorphisms R0(P∞+ ⊗Z) ∼= R0(Z)⊗π0R π0Z ∼=
Z0(Z). Combined with the section π0Y → π0Z, this induces a map

Z0(Z)→ R0(Z)⊗π0R π0Z → R0(Z)⊗π0R π0Y → Y 0(Z).

Take s ∈ Y 0(Z) to be the image of 1 ∈ Z0(Z) under this map. �

Corollary 4.11. Let R be a homotopy commutative PMGL-algebra. Then

map(Σ∞BGLZ, R) ≃ map(Σ∞P∞+ , R)×X
for some space X.
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Proof. Take X to be the global points of the motivic space obtained by
applying Ω∞ to the fiber of r : RBGLZ → RP∞+ . �

We write

r : map(Σ∞BGLZ, R) −→ map(Σ∞P∞+ , R)

for the restriction and

s : map(Σ∞P∞+ , R) −→ map(Σ∞BGLZ, R)

for the section corresponding to the inclusion of the additive maps from BGLZ

to Ω∞R into all maps from BGLZ to Ω∞R. By Corollary 4.8, we have that
r ◦ f = g ◦ r; however, the next proposition shows that in fact f ≃ s ◦ g ◦ r,
which is stronger since r ◦ f ≃ r ◦ s ◦ g ◦ r ≃ g ◦ r as s is a section of r.

Proposition 4.12. Let R be a homotopy commutative PMGL-algebra. Then

f ≃ s ◦ g ◦ r : map(Σ∞BGLZ, R) −→ map(Σ∞BGLZ, R).

Proof. Note that f and g are induced from corresponding maps f : RBGLZ →
RBGLZ and g : RP∞+ → RP∞+ , respectively, and that r and s come similarly from
maps r : RBGLZ → RP∞+ and s : RP∞+ → RBGLZ. Thus it’s enough to check
that

f = s ◦ g ◦ r ∈ π0 map(RBGLZ , RBGLZ).

Since r ◦ f ≃ g ◦ r, we may instead show that f ≃ s ◦ r ◦ f . By definition,

f ∈ π0 map(RBGLZ , RBGLZ) ∼= R0(BGLZ)⊗̂
R0
R0(RBGLZ)

is the image of

1 ∈ π0 map(RBGLZ , RBGLZ) ∼= R0(BGLZ)⊗̂
R0
R0(RBGLZ)

under the map obtained by applying (−)⊗̂R0R0(RBGLZ) to the map

Ω∞µ(α)−1
∗ Ω∞µ(β)∗Ω : π0 map(BGLZ,Ω

∞R) −→ π0 map(BGLZ,Ω
∞R).

One similarly checks that r and s are obtained by applying (−)⊗̂R0R
0(RBGLZ)

to the restriction R0(BGLZ)→ R0(P∞) and its section R0(P∞)→ R0(BGLZ),
respectively. Now, according to Proposition 4.9, as a map of motivic loop
spaces, Ω∞µ(α)−1

∗ Ω∞µ(β)∗Ω sends x : BGLZ → Ω∞R to the additive map

Ω∞µ(α)−1 ◦ Ω(x) ◦ Ω∞µ(β) : BGLZ −→ ΩBGLZ −→ Ω∞+1R −→ Ω∞R,

which is to say that it factors through the inclusion Add(BGLZ,Ω
∞R) ∼=

R0(P∞+ )→ R0(BGLZ). Hence f is in the image of

R0(P∞+ )⊗̂R0R0(RBGLZ)
s //

∼=
��

R0(BGLZ)⊗̂R0R0(RBGLZ)

∼=
��

π0 map(RBGLZ , RP∞+ )
s // π0 map(RBGLZ , RBGLZ) ,
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so f = s◦f̃ for some f̃ : RBGLZ → RP∞+ . But then s◦r◦f ≃ s◦r◦s◦f̃ ≃ s◦f̃ ≃ f .
�

Lemma 4.13. Suppose given a homotopy commutative diagram of (ordinary)
spectra

Y
f //

r

��

Y

r

��
Z

g // Z

such that r : Y → Z admits a section s : Z → Y with

f ≃ s ◦ g ◦ r : Y → Y.

Then the natural map from the homotopy limit of the tower {· · · → Y → Y },
obtained by iterating f , to the homotopy limit of the tower {· · · → Z → Z},
obtained by iterating g, is an equivalence.

Proof. Since Z is a retract of Y , we may write Y ≃ Z ×X for some spectrum
X such that the fiber of f over g is the trivial map X → X . Now consider the
diagram

W //

��

∏
nX

//

��

∏
nX

��
holim{· · · → Y → Y } //

��

∏
n Y

1−f //

��

∏
n Y

��
holim{· · · → Z → Z} // ∏

n Z
1−g // ∏

n Z

in which the rows and columns are fiber sequences. Then the fiber of
1 − f over 1 − g is the identity

∏
nX → ∏

nX , so W is trivial and
holim{· · · → Y → Y } ≃ holim{· · · → Z → Z}. �

Proposition 4.14. Let R be an orientable commutative motivic ring spectrum
and let α ∈ π1R be a unit. Then

ψ∗ : map(K,R) −→ map(L,R)

is an equivalence.

Proof. Set Y = map(Σ∞BGLZ, R) and Z = map(Σ∞P∞+ , R), so that
Y ≃ Z × X via r : Y → Z and its section s : Z → Y . By Proposition 4.12,
f ≃ s ◦ g ◦ r : Y → Y , and since r and s are infinite loop maps we may regard
them as maps of (ordinary) connective spectra. The result then follows from
Lemma 4.13. �
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Corollary 4.15. The map ψ : L→ K induces an isomorphism ψ∗ : R0(K)→
R0(L) for any orientable periodic commutative motivic ring spectrum R.

Proof. This is immediate from Proposition 4.14 above, since the spectrum of
motivic spectrum maps from L to R admits precisely the same description as
that of the spectrum of motivic spectrum maps from K to R. Indeed,

L ≃ colimn{Σ∞+ P∞ β∗−→ Σ−1Σ∞+ P∞ β∗−→ · · · },

and we see that

RL ≃ holimn{· · · g−→ RP∞+
g−→ RP∞+ },

where the map g : RP∞+ → RP∞+ sends λ : Σ∞+ P∞ → R to α−1
∗ ◦ Σ−1λ ◦ β∗, the

composite

Σ∞+ P∞ → Σ−1Σ∞+ P∞ → Σ−1R→ R,

just as above. �

By the homotopy category of orientable periodic spectra, we mean the full
subcategory of the homotopy category of spectra on the orientable and periodic
objects. In other words, R is an orientable periodic spectrum if there exists a
homotopy commutative ring structure onR which admits a ring map PMGL→
R. Note that, according to this definition, maps between orientable periodic
spectra need not preserve potential orientations or even ring structures.

Proposition 4.16. ψ induces an isomorphism ψ∗ : [K,−]→ [L,−] of functors
from the homotopy category of orientable periodic spectra to abelian groups.

Proof. Let R be an orientable periodic spectrum. Then

ψ∗ : [K,R] = R0(K)→ R0(L) = [L,R]

is an isomorphism by Corollary 4.15, and this isomorphism is natural in
spectrum maps R → R′, provided of course that R′ is also orientable and
periodic. �

Theorem 4.17. The ring map ψ : L→ K is an equivalence.

Proof. Let ϕ∗ : [L,−] → [K,−] be the inverse of the isomorphism
ψ∗ : [K,−] → [L,−] of Proposition 4.16, and let ϕ : K → L be the map
obtained by applying ϕ∗ to the identity 1 ∈ [L,L]. It follows from the Yoneda
lemma that ϕ∗ is precomposition with ϕ. The equations ϕ∗ ◦ ψ∗ = 1∗K and
ψ∗ ◦ ϕ∗ = 1∗L imply that ψ ◦ϕ = 1K and ϕ ◦ ψ = 1L in the homotopy category
of orientable periodic spectra, and therefore that ψ ◦ ϕ = 1K and ϕ ◦ ψ = 1L
in the homotopy category of spectra. Hence ψ : L→ K is an equivalence with
inverse ϕ : K → L. �
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5. Applications

5.1. The motivic Conner-Floyd theorem. The classical theorem of Con-
ner and Floyd shows that complex cobordism determines complex K-theory
by base change. More precisely, writing PMU for periodic complex cobordism
and KU for complex K-theory, then, for any finite spectrum X , the natural
map

PMU0(X)⊗PMU0 KU0 → KU0(X)

is an isomorphism of KU0-modules.

Remark 5.1. This is the precursor of the more general notion of Landweber
exactness. In [8], P. Landweber gives a necessary and sufficient condition on
an MU∗-module G so that the functor (−) ⊗MU∗ G, from (MU∗,MU∗MU)-
comodules to graded abelian groups, is exact. For G = K∗, it follows that the
natural map

MU∗(−)⊗MU∗ K
∗ → K∗(−)

is an isomorphism. See [21] for the motivic analogue of Landweber exactness.

We now turn to the motivic version of the theorem of Conner and Floyd. A
motivic spectrum X is said to be compact if [X,−], viewed as a functor from
motivic spectra to abelian groups, commutes with filtered colimits.

Proposition 5.2. Let X be a compact motivic spectrum. Then the natural
map

PMGL0(X) ⊗
PMGL0

K0 −→ K0(X)

is surjective.

Proof. Set B := Σ∞+ BGL and A := Σ∞+ P∞. Then the determinant map
r : B → A admits a section s : A → B, so, for each n, Σ−nA is a retract of
Σ−nB and Σ−nB0(X) → Σ−nA0(X) is surjective. Since X is compact, the
colimit

B[1/β]0(X) ∼= colimn Σ−nB0(X) −→ colimn Σ−nA0(X) ∼= A[1/β]0(X)

is also surjective, and we see that

B[1/β]0(X) ⊗
B[1/β]0

A[1/β]0 −→ A[1/β]0(X) ⊗
B[1/β]0

A[1/β]0 ∼= A[1/β]0(X)

is surjective as well. �

Theorem 5.3. Let X be a compact motivic spectrum. Then the natural map

PMGL0(X) ⊗
PMGL0

K0 −→ K0(X)

is an isomorphism.
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Proof. According to Proposition 5.2, it’s enough to show that the map is
injective. For simplicity of notation, set R := PMGL, define a contravariant
functor J0(−) from compact motivic spectra to R0-modules by the rule

J0(X) := ker{R0(X)→ K0(X)},
and write J0 for J0(S). Since the tensor product is right exact, the map

J0(X)⊗R0 K0 −→ ker{R0(X)⊗R0 K0 → K0(X)⊗R0 K0}
is surjective, so in light of the isomorphism

K0(X)⊗R0 K0 ∼= K0(X)⊗K0 K0 ∼= K0(X)

it’s enough to show that J0(X)⊗R0 K0 is zero, or, equivalently, that

J0(X)⊗R0 J0 −→ J0(X)⊗R0 R0 ∼= J0(X)

is surjective. To this end, set

I0(X) := im{J0(X)⊗R0 J0 → J0(X)⊗R0 R0 ∼= J0(X)};
we must show that I0(X) ∼= J0(X).
Now, writing B := Σ∞+ BGL and A := Σ∞+ P∞ as above, and using the com-
pactness of X , we see that any element of

J0(X) ∼= ker{colimn[X,Σ−nB]→ colimn[X,Σ−nA]}
∼= colimn ker{[X,Σ−nB]→ [X,Σ−nA]}

is represented by a map

x : ΣnX → B ≃ colimp colimq Σ∞+ Grassp,q,

which, by compactness, factors as fx : ΣnX → Yx followed by y : Yx → B
for Yx ≃ Σ∞+ Grassp,q the suspension spectrum of a finite Grassmannian. This
yields a commuting diagram

ΣnX
x //

fx

��

B

r

��
Yx //

y
<<zzzzzzzz
A

in which r ◦ x is trivial and the determinant map r : B → A admits a section
s : A→ B. Of course, as r ◦ y need not be trivial, set y′ := y− s ◦ r ◦ y, so that

y′ ◦ f ≃ (y − s ◦ r ◦ y) ◦ f ≃ y ◦ f − s ◦ r ◦ y ◦ f ≃ x− s ◦ r ◦ x ≃ x
and r ◦ y′ ≃ 0, which is to say that y′ ∈ J0(X) and f∗xy

′ = x.
Finally, according to Proposition 2.19, R0(Yx) ⊗R0 K0 ∼= K0(Yx) for each
x ∈ J0(X), so we must have surjections

J0(Yx)⊗R0 J0 −→ J0(Yx)⊗R0 R0 ∼= J0(Yx).
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Adding these together, we obtain a morphism of short exact sequences

0 //⊕
x I

0(Yx) //

��

⊕
xJ

0(Yx) //

L
x f
∗
x

��

0 //

��

0

0 // I0(X) // J0(X) // J0(X)⊗R0 K0 // 0

such that
⊕

x f
∗
x :

⊕
x J

0(Yx) → J0(X) is surjective. It follows that
I0(X) ∼= J0(X). �

5.2. PMGL and K are E∞ motivic spectra. As a final application, we
show that PMGL and K are E∞ motivic spectra. As we shall see, this is an
immediate consequence of the fact that PMGL and K are obtained through a
localization of the category of E∞ R-algebras for some E∞ motivic spectrum
R. Roughly, given an element β ∈ πp,qR, the functor which sends the R-
module M to M [1/β] := M ∧R R[1/β] defines a monoidal localization of the
category of R-modules, so it extends to a localization of the category of E∞
R-algebras. Taking R = Σ∞+ BGL and β the Bott element, we see that PMGL
is the localization of the initial E∞ R-algebra and K is the localization of the
determinant E∞ R-algebra.
In order to make this precise, we fix a suitable symmetric monoidal model cat-
egory (ModS,∧S) of motivic spectra, such as motivic S-modules [6] or motivic
symmetric spectra [7]. For sake of definiteness, we adopt the formalism of the
latter; nevertheless, we refer to motivic symmetric spectra as S-modules, as
they are indeed modules over the symmetric motivic sphere S.
Recall that a motivic symmetric sequence is a functor from the groupoid Σ
of finite sets and isomorphisms to pointed motivic spaces. It is sometimes
convenient to use a skeleton of Σ, so we simply write n for a finite set with n
elements and Σ(n) for its automorphism group. Motivic symmetric sequences
form a symmetric monoidal category under the smash product defined by

(X ∧ Y )(n) :=
∨

n=p+q

Σ(n)+ ∧Σ(p)×Σ(q) X(p) ∧ Y (q).

The motivic sphere S has a natural interpretation as the motivic symmet-
ric sequence in which S(n) is the pointed Σ(n)-space associated to the pair
(An,An−A0), where Σ(n) acts by permutation of coordinates. The Σ(p)×Σ(q)-
equivariant maps

(Ap,Ap − A0) ∧ (Aq,Aq − A0) −→ (Ap+q,Ap+q − A0)

give S the structure of a commutative monoid for this smash product. An
S-module is then a motivic symmetric sequence equipped with an action of S,
which is to say a sequence X(p) of pointed Σ(p)-equivariant motivic spaces
equipped with Σ(p)× Σ(q)-equivariant maps

(Ap,Ap − A0) ∧X(q) −→ X(p+ q);

Documenta Mathematica 14 (2009) 359–396



Motivic Spectra Representing Cobordism and K-Theory 391

the fact that S is a commutative monoid implies that ∧ extends to a smash
product ∧S on the category ModS of S-modules. There are monoidal functors

{Motivic spaces}→{Motivic symmetric spaces}→{Motivic symmetric spectra}
in which the righthand map is the free S-module functor, the left hand map
sends the motivic space X to the constant motivic symmetric space X+, and
the composite is a structured version of the suspension spectrum functor Σ∞+ .

Proposition 5.4. The S-modules Σ∞+ BGL and Σ∞+ P∞ are equivalent to
strictly commutative S-algebras in such a way that the determinant map
Σ∞+ BGL→ Σ∞+ P∞ is equivalent to a map of strictly commutative S-algebras.

Proof. For each n, writeGL(n) for the group S-scheme of linear automorphisms
of An. Then Σ(n) acts on GL(n) by conjugation via the embedding Σ(n) →
GL(n), so that GL(n) is the value at n of a symmetric sequence GL in group S-
schemes such that the determinant mapGL→ GL1 is a morphism of symmetric
sequences in group S-schemes, where we regard GL1 as a constant symmetric
sequence. Taking classifying spaces, we obtain a morphism of commutative
monoid symmetric sequences BGL→ BGL1 in unpointed motivic spaces. Now
let S[BGL] and S[BGL1] denote the S-modules defined by

S[BGL](n) := S(n) ∧BGL(n)+ and S[BGL1](n) := S(n) ∧BGL1+,

respectively, where Σ(n) acts diagonally; note that S[BGL1] is the free S-
module on the motivic symmetric sequence BGL1+, whereas the action of S
on S[BGL] is induced by the canonical Σ(p)× Σ(q)-equivariant inclusions

BGL(q) −→ BGL(p)×BGL(q)→ BGL(p+ q)

coming from the fact that BGL(p) has a canonical basepoint which is fixed
by the action of Σ(p). The monoidal structure on BGL1 extends to a strictly
commutative S-algebra structure on S[BGL1], and the strictly commutative
S-algebra structure on S[BGL] comes from Σ(p)× Σ(q)-equivariant pairing

S(p) ∧BGL(p)+ ∧ S(q) ∧BGL(q)+ −→ S(p+ q) ∧BGL(p+ q)+;

moreover, it is clear that the determinant map S[BGL]→ S[BGL1] is monoidal
with respect to these multiplicative structures. Hence we are done, provided
the underlying ordinary motivic spectra (obtained by forgetting the actions of
the symmetric groups) of S[BGL] and S[BGL1] are equivalent to the motivic
spectra Σ∞+ BGL and Σ∞+ P∞, respectively. This is immediate for S[BGL1],
whose underlying spectrum is the suspension spectrum Σ∞+ BGL1; on the other
hand, the underlying spectrum of S[BGL] is the prespectrum {Sn ∧BGLn+}.
But the motivic spectrum associated to Σ∞+ BGL is given by

colimp ΩpΣp colimq BGLq ≃ colimp colimq ΩpΣpBGLq ≃ colimn ΩnΣnBGLn,

so the two motivic prespectra are stably equivalent. �

Instead of considering localization in the context of symmetric monoidal model
categories, it will be enough to consider localization in the context of symmetric
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monoidal ∞-categories, in the sense of Lurie [16]. Indeed, if (M ,⊗) is a sym-
metric monoidal model category, then, in the notation of [16], the commutative
algebra objects of the associated symmetric monoidal ∞-category N(M ,⊗)◦

correspond to coherently homotopy commutative, or E∞, objects of (M ,⊗).
Here N denotes the simplicial nerve of a simplicial category; if the simplicial
category comes from a symmetric monoidal model category, then its simpli-
cial nerve is symmetric monoidal as an ∞-category. See [17] for facts about
∞-categories and simplicial nerves, and [16] for a treatment of commutative
algebra in the ∞-categorical context.
Recall (cf. [17]) that a map F : C → D of ∞-categories is said to be a
localization if F admits a fully faithful right adjoint G. In this case, it is
common to identify D with the full subcategory of C consisting of those objects
in the essential image of G (the “local objects”), and suppress D and G from
the notation by writing L for the composite G ◦ F : C → D → C . If C is the
underlying ∞-category of a symmetric monoidal ∞-category (C ,⊗), then we
may ask when a localization L : C → C extends to a lax symmetric monoidal
functor on (C ,⊗). Given a localization L : C → C , an L-equivalence is a map
which becomes an equivalence after applying L.

Definition 5.5 ([16], Example 1.7.5). Let (C ,⊗) be a symmetric monoidal
∞-category and let L : C → C be a localization of the underlying ∞-category.
Then L is said to be compatible with ⊗ if, for all L-equivalences A → A′ and
all objects B of C , A⊗B → A′ ⊗B is an L-equivalence.

Proposition 5.6 ([16], Proposition 1.7.6). Let (C ,⊗) be a symmetric monoidal
∞-category, let L : C → C be a localization of the underlying ∞-category,
and suppose that L is compatible with ⊗. Then L extends to a lax symmetric
monoidal functor

(L,⊗) : (C ,⊗)→ (C ,⊗).

In particular, L preserves algebra and commutative algebra objects of (C ,⊗).

Let N(ModS,∧S)◦ denote the symmetric monoidal ∞-category which arises
as the simplicial nerve of the symmetric monoidal simplicial model category
(ModS,∧S) of S-modules. Since commutative algebra objects of N(ModS,∧S)◦

are modeled by algebras over a suitable E∞ operad, we refer to commutative
algebra objects of N(ModS,∧S)◦ as E∞ S-algebras. Given an E∞ S-algebra
R, we write (ModR,∧R) for the resulting symmetric monoidal ∞-category of
R-modules, and refer to commutative algebra objects of (ModR,∧R) as E∞
R-algebras.

Proposition 5.7. Let R be an E∞ S-algebra, let f ∈ πp,qR be an arbitrary
element, and write Lf : ModR → ModR for the functor which sends the R-
module M to the R-module

M [1/f ] := M ∧R R[1/f ].

Then Lf is a localization functor which is compatible with the symmetric
monoidal structure ∧R on ModR; in particular, Lf extends to a lax monoidal
functor Lf : (ModR,∧R)→ (ModR,∧R).
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Proof. Say that an R-module M is f -local if the multiplication by f map
f∗ : M → Σ−p,−qM is an equivalence. Given an f -local R-module M , the
induced map

Map(R[1/f ],M) ≃ lim{M ← Σp,qM ← · · · } ≃M
is an equivalence, so

map(N [1/f ],M) ≃ map(N,Map(R[1/f ],M)) ≃ map(N,M)

is an equivalence for any R-module N . Hence Lf is left adjoint to the inclusion
of the full subcategory of f -local R-modules, and is therefore a localization.
Moreover, it is compatible with ∧R, since if M → M ′ is an Lf -equivalence
then so is M ∧RN →M ′ ∧RN for any R-module N , for if M [1/f ]→M ′[1/f ]
is an equivalence then

(M ∧R N)[1/f ] ≃M [1/f ] ∧R N −→M ′[1/f ] ∧R N ≃ (M ′ ∧R N)[1/f ]

is as well. Hence, by Proposition 5.6, Lf extends to a lax symmetric monoidal
endofunctor (Lf ,∧R) of (ModR,∧R). �

Corollary 5.8. Let R be an E∞ S-algebra and let f ∈ πp,q be a fixed element.
Then R[1/f ] is an E∞ R-algebra, and therefore also an E∞ S-algebra.

Proof. By Proposition 5.7, Lf is a lax symmetric monoidal functor with
LfR ≃ R[1/f ]. Since lax symmetric monoidal functors preserve commuta-
tive algebra objects, we see that R[1/f ] is a commutative algebra object in
(ModR,∧R). Lastly, as the forgetful functor from R-modules to S-modules is
lax symmetric monoidal, it follows that R[1/f ] is also an E∞ S-algebra. �

Corollary 5.9. MGL, PMGL and K are E∞ S-algebras.

Proof. The MGL case is already well-known (cf. [6], for example). By
Proposition 5.4, Σ∞+ BGL and Σ∞+ P∞ are equivalent to strictly commutative
S-algebras, so they are naturally commutative algebra objects in the sym-
metric monoidal ∞-category N(ModS,∧S). Applying Proposition 5.8, we see
that PMGL ≃ Σ∞+ BGL[1/β] is an E∞ Σ∞+ BGL-algebra, and likewise that
K ≃ Σ∞+ P∞[1/β] is an E∞ Σ∞+ P∞-algebra. In particular, PMGL and K are
E∞ S-algebras. �

Proposition 5.10. K is an E∞ PMGL-algebra.

Proof. Note that the Bott element ΣS → Σ∞+ P∞ factors as the com-
posite of the Bott element ΣS → Σ∞+ BGL followed by the determinant
map Σ∞+ BGL → Σ∞+ P∞. By Proposition 5.4, the determinant map
Σ∞+ BGL → Σ∞+ P∞ is a map of E∞ Σ∞+ BGL-algebras, so by Propo-
sition 5.8, the localization K ≃ Σ∞+ P∞[1/β] is an E∞ algebra over
PMGL ≃ Σ∞+ BGL[1/β]. �
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Abstract. Let k be an algebraially losed �eld of harateristi
p > 0, andG be a Barsotti-Tate over k. We denote by S the �algebrai�loal moduli in harateristi p of G, by G the universal deformationof G over S, and by U ⊂ S the ordinary lous of G. The étalepart of G over U gives rise to a monodromy representation ρG of thefundamental group of U on the Tate module of G. Motivated by afamous theorem of Igusa, we prove in this artile that ρG is surjetiveif G is onneted and HW-yli. This latter ondition is equivalentto saying that Oort's a-number of G equals 1, and it is satis�ed by allonneted one-dimensional Barsotti-Tate groups over k.2000 Mathematis Subjet Classi�ation: 13D10, 14L05, 14H30,14B12, 14D15, 14L15Keywords and Phrases: Barsotti-Tate groups (p-divisible groups), p-adi monodromy representation, universal deformation, Hasse-Wittmaps. 1. Introdution

1.1. A lassial theorem of Igusa says that the monodromy representation as-soiated with a versal family of ordinary ellipti urves in harateristi p > 0is surjetive [Igu, Ka2℄. This important result has deep onsequenes in thetheory of p-adi modular forms, and inpsired various generalizations. Faltingsand Chai [Ch2, FC℄ extended it to the universal family over the moduli spaeof higher dimensional prinipally polarized ordinary abelian varieties in har-ateristi p, and Ekedahl [Eke℄ generalized it to the jaobian of the universal
n-pointed urve in harateristi p, equipped with a sympleti level struture.Reently, Chai and Oort [CO℄ proved the maximality of the p-adi monodromyover eah �entral leaf� in the moduli spae of abelian varieties whih is notontained in the supersingular lous. We refer to Deligne-Ribet [DR℄ and Hida[Hid℄ for other generalizations to some moduli spaes of PEL-type and their
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398 Yichao Tianarithmeti appliations. Though it has been formulated in a global setting, theproof of Igusa's theorem is purely loal, and it has got also loal generalizations.Gross [Gro℄ generalized it to one-dimensional formal O-modules over a om-plete disrete valuation ring of harateristi p, where O is the integral losureof Zp in a �nite extension of Qp. We refer to Chai [Ch2℄ and Ahter-Norman[AN℄ for more results on loal monodromy of Barsotti-Tate groups. Motivatedby these results, it has been longly expeted/onjetured that the monodromyof a versal family of ordinary Barsotti-Tate groups in harateristi p > 0 ismaximal. The aim of this paper is to prove the surjetivity of the monodromyrepresentation assoiated with the universal deformation in harateristi p ofa ertain lass of Barsotti-Tate groups.
1.2. To desribe our main result, we introdue �rst the notion of HW-yliBarsotti-Tate groups. Let k be an algebraially losed �eld of harateristi p >
0, and G be a Barsotti-Tate group over k. We denote by G∨ the Serre dual of G,and by Lie(G∨) its Lie algebra. The Frobenius homomorphism of G (or duallythe Vershiebung of G∨) indues a semi-linear endomorphism ϕG on Lie(G∨),alled the Hasse-Witt map of G (2.6.1). We say that G is HW-yli, if c =
dim(G∨) ≥ 1 and there is a v ∈ Lie(G∨) suh that v, ϕG(v), · · · , ϕc−1

G (v) forma basis of Lie(G∨) over k (4.1). We prove in 4.7 that G is HW-yli and non-ordinary if and only if the a-number of G, de�ned previously by Oort, equals
1. Basi examples of HW-yli Barsotti-Tate groups are given as follows. Let
r, s be relatively prime integers suh that 0 ≤ s ≤ r and r 6= 0, λ = s/r, Gλbe the Barsotti-Tate group over k whose (ontravariant) Dieudonné module isgenerated by an element e over the non-ommutative Dieudonné ring with therelation (F r−s − V s) · e = 0 (4.10). It is easy to see that Gλ is HW-yli forany 0 < λ < 1. Any onneted Barsotti-Tate group over k of dimension 1 andheight h is isomorphi to G1/h [Dem, Chap.IV �8℄.Let G be a Barsotti-Tate group of dimension d and height c+ d over k; assume
c ≥ 1. We denote by S the �algebrai� loal moduli of G in harateristi p, andby G be the universal deformation of G over S (f. 3.8). The sheme S is a�neof ring R ≃ k[[(ti,j)1≤i≤c,1≤j≤d]], and the Barsotti-Tate group G is obtainedby algebraizing the formal universal deformation of G over Spf(R) (3.7). Let
U be the ordinary lous of G (i.e. the open subsheme of S parametrizing theordinary �bers of G), and η a geometri point over the generi point of U. Forany integer n ≥ 1, we denote by G(n) the kernel of the multipliation by pnon G, and by

Tp(G, η) = lim←−
n

G(n)(η)the Tate module of G at η. This is a free Zp-module of rank c. We onsiderthe monodromy representation attahed to the étale part of G over U(1.2.1) ρG : π1(U, η)→ AutZp(Tp(G, η)) ≃ GLc(Zp).The aim of this paper is to prove the following :
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Theorem 1.3. If G is onneted and HW-yli, then the monodromy repre-sentation ρG is surjetive.Igusa's theorem mentioned above orresponds to Theorem 1.3 for G = G1/2 (f.5.7). My interest in the p-adi monodromy problem started with the seondpart of my PhD thesis [Ti1℄, where I guessed 1.3 for G = Gλ with 0 < λ < 1and proved it for G1/3. After I posted the manusript on ArXiv [Ti2℄, Strauhproved the one-dimensional ase of 1.3 by using Drinfeld's level strutures [Str,Theorem 2.1℄. Later on, Lau [Lau℄ proved 1.3 without the assumption that
G is HW-yli. By using the Newton strati�ation of the universal deforma-tion spae of G due to Oort, Lau redued the higher dimensional ase to theone-dimensional ase treated by Strauh. In fat, Strauh and Lau onsideredmore generally the monodromy representation over eah p-rank stratum of theuniversal deformation spae. In this paper, we provide �rst a di�erent proof ofthe one-dimensional ase of 1.3. Our approah is purely harateristi p, whileStrauh used Drinfeld's level struture in harateristi 0. Then by followingLau's strategy, we give a new (and easier) argument to redue the general aseof 1.3 to the one-dimensional ase for HW-yli groups. The essential partof our argument is a versality riterion by Hasse-Witt maps of deformationsof a onneted one-dimensional Barsotti-Tate group (Prop. 4.11). This rite-rion an be onsidered as a generalization of another theorem of Igusa whihlaims that the Hasse invariant of a versal family of ellipti urves in hara-teristi p has simple zeros. Compared with Strauh's approah, our harater-isti p approah has the advantage of giving also results on the monodromy ofBarsotti-Tate groups over a disrete valuation ring of harateristi p.
1.4. Let A = k[[π]] be the ring of formal power series over k in the variable
π, K its fration �eld, and v the valuation on K normalized by v(π) = 1. We�x an algebrai losure K of K, and let Ksep be the separable losure of Kontained inK, I be the Galois group ofKsep overK, Ip ⊂ I be the wild inertiasubgroup, and It = I/Ip the tame inertia group. For every integer n ≥ 1, thereis a anonial surjetive harater θpn−1 : It → F×pn (5.2), where Fpn is the�nite sub�eld of k with pn elements.We put S = Spec(A). Let G be a Barsotti-Tate group over S, G∨ be its Serredual, Lie(G∨) the Lie algebra of G∨, and ϕG the Hasse-Witt map of G, i.e.the semi-linear endomorphism of Lie(G∨) indued by the Frobenius of G. Wede�ne h(G) to be the valuation of the determinant of a matrix of ϕG, and allit the Hasse invariant of G (5.4). We see easily that h(G) = 0 if and only if Gis ordinary over S, and h(G) <∞ if and only if G is generially ordinary. If Gis onneted of height 2 and dimension 1, then h(G) = 1 is equivalent to that
G is versal (5.7).
Proposition 1.5. Let S = Spec(A) be as above, G be a onneted HW-yliBarsotti-Tate group with Hasse invariant h(G) = 1, and G(1) the kernel of themultipliation by p on G. Then the ation of I on G(1)(K) is tame; moverover,
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G(1)(K) is an Fpc -vetor spae of dimension 1 on whih the indued ation of
It is given by the surjetive harater θpc−1 : It → F×pc .This proposition is an analog in harateristi p of Serre's result [Se3, Prop.9℄ on the tameness of the monodromy assoiated with one-dimensional formalgroups over a trait of mixed harateristi. We refer to 5.8 for the proof of thisproposition and more results on the p-adi monodromy of HW-yli Barsotti-Tate groups over a trait in harateristi p.
1.6. This paper is organized as follows. In Setion 2, we review some wellknown fats on ordinary Barsotti-Tate groups. Setion 3 ontains some prelim-inaries on the Dieudonné theory and the deformation theory of Barsotti-Tategroups. In Setion 4, after establishing some basi properties of HW-yligroups, we give the fundamental relation between the versality of a Barsotti-Tate group and the oe�ients of its Hasse-Witt matrix (Prop. 4.11). Setion5 is devoted to the study of the monodromy of a HW-yli Barsotti-Tate groupover a omplete trait of harateristi p. Setion 6 is totally elementary, andontains a riterion (6.3) for the surjetivity of a homomorphism from a pro�-nite group to GLn(Zp). Setion 7 is the heart of this work, and it ontainsa proof of Theorem 1.3 in the one-dimensional ase. Finally in Setion 8, wefollow Lau's strategy and omplete the proof of 1.3 by reduing the generalase to the one-dimensional ase treated in Setion 7.The proof in Setion 7 of 1.3 in the one-dimensional ase is based on an indu-tion on the height n+ 1 ≥ 2 of G. The ase n = 1 is just the lassial Igusa'stheorem (5.7). For n ≥ 2, by lemmas 6.3 and 6.5, it su�es to prove the fol-lowing two statements: (a) the image of redution modulo p of ρG ontains anon-split Cartan subgroup; (b) under a suitable basis, the image of ρG ontainsall matrix of the form (

B b
0 1

) with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp).The �rst statement follows easily from 1.5 by onsidering a ertain base hangeof G to a omplete disrete valuation ring. To prove (b), we onsider the for-mal ompletion Spec(R′) of the loalization of the loal moduli S = Spec(R)of G at the generi point of the lous where the universal deformation G has
p-rank ≤ 1 (7.4). The ring R′ is a omplete regular ring of dimension n − 1,and the Barsotti-Tate group G ′ = G ⊗R R′ has a onneted part of height nand an étale part of height 1. Let K0 be the residue �eld of R′, and K0 analgebrai losure of K0. In order to apply the indution hypothesis, we on-sider the set of k-algebra homomorphisms σ : R′ → R̃′ = K0[[t1, · · · , tn−1]]lifting the natural inlusion K0 → K0. The key point is that, the natural map
σ 7→ GfR′,σ = G ′⊗R′,σ R̃′ gives a bijetion between the set of suh σ's and the setof deformations of GK0

= G ′⊗R′K0 to R̃′; moreover, we an ompute expliitlythe Hasse-Witt map of the onneted omponent G ◦fR′,σ of GfR′,σ (Lemma 7.8).From the versality riterion for one-dimensional Barsotti-Tate groups in termsof the Hasse-Witt map established in Setion 4 (Prop. 4.11), it follows imme-diately that there exists a σ suh that the Barsotti-Tate group G ◦fR′,σ, whih
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p-Adic Monodromy of a Barsotti-Tate Group 401is onneted and one-dimensional of height n, is the universal deformation ofits losed �ber. We �x suh a σ. Then the set of all σ′ with G ◦fR′,σ′ ≃ G ◦fR′,σas deformations of their ommon losed �ber is atually a group isomorphito Ext1fR′(Qp/Zp,G ◦fR′,σ) (Prop. 3.10). Let σ1 be the element orrespondingto neutral element in Ext1fR′(Qp/Zp,G ◦fR′,σ). Applying the indution hypothesisto G ◦fR′,σ1
, we see that the monodromy group of GfR′,σ1

, hene that of G, on-tains the subgroup (GLn−1(Zp) 0
0 1

) under a suitable basis of the Tate module(7.5.3). In order to onlude the proof, we need another σ2 suh that GfR′,σ2has the same onneted omponent as GfR′,σ1
, and that the indued extensionbetween the Tate module of the étale part of GfR′,σ2

and that of G ◦R′,σ2
is non-trivial after redution modulo p (see 7.5 and 7.5.4). To verify the existene ofsuh a σ2, we redue the problem to a similar situation over a omplete trait ofharateristi p (see 7.9), and we use a riterion of non-triviality of extensionsby Hasse-Witt maps (5.12).

1.7. Acknowledgement. This paper is an expanded version of the seondpart of my Ph.D. thesis at University Paris 13. I would like to express my greatgratitude to my thesis advisor Prof. A. Abbes for his enouragement duringthis work, and also for his various helpful omments on earlier versions of thispaper. I also thank heartily E. Lau, F. Oort and M. Strauh for interestingdisussions and valuable suggestions.
1.8. Notations. Let S be a sheme of harateristi p > 0. A BT-groupover S stands for a Barsotti-Tate group over S. Let G be a ommutative�nite group sheme (resp. a BT-group) over S. We denote by G∨ its Cartierdual (resp. its Serre dual), by ωG the sheaf of invariant di�erentials of G over
S, and by Lie(G) the sheaf of Lie algebras of G. If S = Spec(A) is a�neand there is no risk of onfusions, we also use ωG and Lie(G) to denote theorresponding A-modules of global setions. We put G(p) the pull-bak of Gby the absolute Frobenius of S, FG : G → G(p) the Frobenius homomorphismand VG : G(p) → G the Vershiebung homomorphism. If G is a BT-group and
n an integer ≥ 1, we denote by G(n) the kernel of the multipliation by pn on
G; we have G∨(n) = (G∨)(n) by de�nition. For an OS-module M , we denoteby M (p) = OS ⊗FS M the salar extension of M by the absolute Frobenius of
OS . If ϕ : M → N be a semi-linear homomorphism of OS-modules, we denoteby ϕ̃ : M (p) → N the linearization of ϕ, i.e. we have ϕ̃(λ⊗x) = λ ·ϕ(x), where
λ (resp. x) is a loal setion of OS (resp. of M).Starting from Setion 5, k will denote an algebraially losed �eld of hara-teristi p > 0.

2. Review of ordinary Barsotti-Tate groupsIn this setion, S denotes a sheme of harateristi p > 0.
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2.1. Let G be a ommutative group sheme, loally free of �nite type over S.We have a anonial isomorphism of oherent OS-modules [Ill, 2.1℄(2.1.1) Lie(G∨) ≃H omSfppf
(G,Ga),where H omSfppf

is the sheaf of homomorphisms in the ategory of abelian
fppf-sheaves over S, and Ga is the additive group sheme. Sine G(p)

a ≃ Ga,the Frobenius homomorphism of Ga indues an endomorphism(2.1.2) ϕG : Lie(G∨)→ Lie(G∨),semi-linear with respet to the absolute Frobenius map FS : OS → OS ; we allit the Hasse-Witt map of G. By the funtoriality of Frobenius, ϕG is also theanonial map indued by the Frobenius of G, or dually by the Vershiebungof G∨.
2.2. By a ommutative p-Lie algebra over S, we mean a pair (L,ϕ), where Lis an OS-module loally free of �nite type, and ϕ : L → L is a semi-linearendomorphism with respet to the absolute Frobenius FS : OS → OS . Whenthere is no risk of onfusions, we omit ϕ from the notation. We denote by
p-LieS the ategory of ommutative p-Lie algebras over S.Let (L,ϕ) be an objet of p-LieS . We denote by

U (L) = Sym(L) = ⊕n≥0 Symn(L),the symmetri algebra of L over OS . Let Ip(L) be the ideal sheaf of U (L)de�ned, for an open subset V ⊂ S, by
Γ(V,Ip(L)) = {x⊗p − ϕ(x) ; x ∈ Γ(V,U (L))},where x⊗p = x⊗ x⊗ · · · ⊗ x ∈ Γ(V, Symp(L)). We put Up(L) = U (L)/Ip(L),and all it the p-enveloping algebra of (L,ϕ). We endow Up(L) with the stru-ture of a Hopf-algebra with the omultipliation given by ∆(x) = 1⊗ x+x⊗ 1and the oinverse given by i(x) = −x.Let G be a ommutative group sheme, loally free of �nite type over S. Wesay that G is of oheight one if the Vershiebung VG : G(p) → G is the zerohomomorphism. We denote by GVS the ategory of suh objets. For anobjet G of GVS , the Frobenius FG∨ of G∨ is zero, so the Lie algebra Lie(G∨)is loally free of �nite type over OS ([DG℄ VIIA Théo. 7.4(iii)). The Hasse-Wittmap of G (2.1.2) endows Lie(G∨) with a ommutative p-Lie algebra strutureover S.

Proposition 2.3 ([DG℄ VIIA, Théo. 7.2 et 7.4). The funtor GVS → p-LieSde�ned by G 7→ Lie(G∨) is an anti-equivalene of ategories; a quasi-inverse isgiven by (L,ϕ) 7→ Spec(Up(L)).
2.4. Assume S = Spec(A) a�ne. Let (L,ϕ) be an objet of p-LieS suh that
L is free of rank n over OS , (e1, · · · , en) be a basis of L over OS , (hij)1≤i,j≤nbe the matrix of ϕ under the basis (e1, · · · , en), i.e. ϕ(ej) =

∑n
i=1 hijei for
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1 ≤ j ≤ n. Then the group sheme attahed to (L,ϕ) is expliitly given by

Spec(Up(L)) = Spec

(
A[X1, · · · , Xn]/(Xp

j −
n∑

i=1

hijXi)1≤j≤n

)
,with the omultipliation ∆(Xj) = 1⊗Xj +Xj ⊗ 1. By the Jaobian riterionof étaleness [EGA, IV0 22.6.7℄, the �nite group sheme Spec(Up(L)) is étaleover S if and only if the matrix (hij)1≤i,j≤n is invertible. This ondition isequivalent to that the linearization of ϕ is an isomorphism.

Corollary 2.5. An objet G of GVS is étale over S, if and only if the lin-earization of its Hasse-Witt map (2.1.2) is an isomorphism.Proof. The problem being loal over S, we may assume S a�ne and L =
Lie(G∨) free over OS . By Theorem 2.3, G is isomorphi to Spec(Up(L)), andwe onlude by the last remark of 2.4. �

2.6. Let G be a BT-group over S of height c+ d and dimension d. The Lie al-gebra Lie(G∨) is an OS-module loally free of rank c, and anonially identi�edwith Lie(G∨(1))([BBM℄ 3.3.2). We de�ne the Hasse-Witt map of G(2.6.1) ϕG : Lie(G∨)→ Lie(G∨)to be that of G(1) (2.1.2).
2.7. Let k be a �eld of harateristi p > 0, G be a BT-group over k. Reallthat we have a anonial exat sequene of BT-groups over k(2.7.1) 0→ G◦ → G→ Gét → 0with G◦ onneted and Gét étale ([Dem℄ Chap.II, �7). This indues an exatsequene of Lie algebras(2.7.2) 0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,ompatible with Hasse-Witt maps.
Proposition 2.8. Let k be a �eld of harateristi p > 0, G be a BT-groupover k. Then Lie(Gét∨) is the unique maximal k-subspae V of Lie(G∨) withthe following properties:(a) V is stable under ϕG;(b) the restrition of ϕG to V is injetive.Proof. It is lear that Lie(Gét∨) satis�es property (a). We note that the Ver-shiebung of Gét(1) vanishes; so Gét(1) is in the ategory GVSpec(k). Sine kis a �eld, 2.5 implies that the restrition of ϕG to Lie(Gét∨), whih oinideswith ϕGét , is injetive. This proves that Lie(Gét∨) veri�es (b). Conversely, let
V be an arbitrary k-subspae of Lie(G∨) with properties (a) and (b). We haveto show that V ⊂ Lie(Gét∨). Let σ be the Frobenius endomorphism of k. If Mis a k-vetor spae, for eah integer n ≥ 1, we put M (pn) = k ⊗σn M , i.e. wehave 1 ⊗ ax = σn(a) ⊗ x in k ⊗σn M for a ∈ k, x ∈ M . Sine ϕG|V : V → Vis injetive by assumption, the linearization ϕ̃nG|V (pn) : V (pn) → V of ϕnG|V
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404 Yichao Tianis injetive (hene bijetive) for any n ≥ 1. We have V = ϕ̃nG(V (pn)). Sine
G◦ is onneted, there is an integer n ≥ 1 suh that the n-th iterated Frobe-nius FnG◦(1) : G◦(1) → G◦(1)(p

n) vanishes. Hene by de�nition, the linearized
n-iterated Hasse-Witt map ϕ̃nG◦ : Lie(G◦∨)(p

n) → Lie(G◦∨) is zero. By theompatibility of Hasse-Witt maps, we have ϕ̃nG(Lie(G∨)(p
n)) ⊂ Lie(Gét∨); inpartiular, we have V = ϕ̃nG(V (pn)) ⊂ Lie(Gét∨). This ompletes the proof. �

Corollary 2.9. Let k be a �eld of harateristi p > 0, G be a BT-group over
k. Then G is onneted if and only if ϕG is nilpotent.Proof. In the proof of the proposition, we have seen that the Hasse-Witt mapof the onneted part of G is nilpotent. So the �only if� part is veri�ed. Con-versely, if ϕG is nilpotent, Lie(Gét∨) is zero by the proposition. Therefore G isonneted. �

Definition 2.10. Let S be a sheme of harateristi p > 0, G be a BT-group over S. We say that G is ordinary if there exists an exat sequene ofBT-groups over S(2.10.1) 0→ Gmult → G→ Gét → 0,suh that Gmult is multipliative and Gét is étale.We note that when it exists, the exat sequene (2.10.1) is unique up to aunique isomorphism, beause there is no non-trivial homomorphisms between amultipliative BT-group and an étale one in harateristi p > 0. The propertyof being ordinary is learly stable under arbitrary base hange and Serre duality.If S is the spetrum of a �eld of harateristi p > 0, G is ordinary if and onlyif its onneted part G◦ is of multipliative type.
Proposition 2.11. Let G be a BT-group over S. The following onditions areequivalent:(a) G is ordinary over S.(b) For every x ∈ S, the �ber Gx = G⊗S κ(x) is ordinary over κ(x).() The �nite group sheme KerVG is étale over S.(') The �nite group sheme KerFG is of multipliative type over S.(d) The linearization of the Hasse-Witt map ϕG is an isomorphism.First, we prove the following lemmas.
Lemma 2.12. Let T be a sheme, H be a ommutative group sheme loally freeof �nite type over T . Then H is étale ( resp. of multipliative type) over T ifand only if, for every x ∈ T , the �ber H⊗T κ(x) is étale ( resp. of multipliativetype) over κ(x).Proof. We will onsider only the étale ase; the multipliative ase follows byduality. Sine H is T -�at, it is étale over T if and only if it is unrami�edover T . By [EGA, IV 17.4.2℄, this ondition is equivalent to that H ⊗T κ(x) isunrami�ed over κ(x) for every point x ∈ T . Hene the onlusion follows. �
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Lemma 2.13. Let G be a BT-group over S. Then KerVG is an objet of theategory GVS, i.e. it is loally free of �nite type over S, and its Vershiebung iszero. Moreover, we have a anonial isomorphism (KerVG)∨ ≃ KerFG∨ , whihindues an isomorphism of Lie algebras Lie

(
(KerVG)∨

)
≃ Lie(KerFG∨) =

Lie(G∨), and the Hasse-Witt map (2.1.2) of KerVG is identi�ed with ϕG(2.6.1).Proof. The group sheme KerVG is loally free of �nite type over S ([Ill℄ 1.3(b)),and we have a ommutative diagram
(KerVG)(p)

VKer VG //
� _

��

KerVG� _

��
(G(p))(p)

V
G(p) // G(p)By the funtoriality of Vershiebung, we have VG(p) = (VG)(p) and KerVG(p) =

(KerVG)(p). Hene the omposition of the left vertial arrow with VG(p) van-ishes, and the Vershiebung of KerVG is zero.By Cartier duality, we have (KerVG)∨ = Coker(FG∨(1)). Moreover, the exatsequene
· · · → G∨(1)

FG∨(1)−−−−→
(
G∨(1)

)(p) VG∨(1)−−−−→ G∨(1)→ · · · ,indues a anonial isomorphism(2.13.1) Coker(FG∨(1))
∼−→ Im(VG∨(1)) = KerFG∨(1) = KerFG∨ .Hene, we dedue that(2.13.2) (KerVG)∨ ≃ Coker(FG∨(1))

∼−→ KerFG∨ →֒ G∨(1).Sine the natural injetion KerFG∨ → G∨(1) indues an isomorphism of Liealgebras, we get(2.13.3) Lie
(
(KerVG)∨

)
≃ Lie(KerFG∨) = Lie(G∨(1)) = Lie(G∨).It remains to prove the ompatibility of the Hasse-Witt maps with (2.13.3). Wenote that the dual of the morphism (2.13.2) is the anonial map F : G(1) →

KerVG = Im(FG(1)) indued by FG(1). Hene by (2.1.1), the isomorphism(2.13.3) is identi�ed with the funtorial map
H omSfppf

(KerVG,Ga)→H omSfppf
(G(1),Ga)indued by F , and its ompatibility with the Hasse-Witt maps follows easilyfrom the de�nition (2.1.2). �Proof of 2.11. (a)⇒(b). Indeed, the ordinarity of G is stable by base hange.(b)⇒(). By Lemma 2.12, it su�es to verify that for every point x ∈ S, the�ber (KerVG)⊗S κ(x) ≃ KerVGx is étale over κ(x). Sine Gx is assumed to beordinary, its onneted part (Gx)◦ is multipliative. Hene, the Vershiebung of
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(Gx)◦ is an isomorphism, and KerVGx is anonially isomorphi to KerVGét
x
⊂

(Gét
x )(p) ≃ (G

(p)
x )ét, so our assertion follows.

(c)⇔ (d). It follows immediately from Lemma 2.13 and Corollary 2.5.()⇔('). By 2.12, we may assume that S is the spetrum of a �eld. So theategory of ommutative �nite group shemes over S is abelian. We will justprove ()⇒('); the onverse an be proved by duality. We have a fundamentalshort exat sequene of �nite group shemes(2.13.4) 0→ KerFG → G(1)
F−→ KerVG → 0,where F is indued by FG(1), That indues a ommutative diagram

0 // (KerFG
)(p)

V ′

��

// (G(1)
)(p) F (p)

//

VG(1)

��

(
KerVG

)(p) //

V ′′

��

0

0 // KerFG // G(1)
F // KerVG // 0where vertial arrows are the Vershiebung homomorphisms. We have seenthat V ′′ = 0 (2.13). Therefore, by the snake lemma, we have a long exatsequene(2.13.5)

0→ KerV ′ → KerVG(1)
α−→
(
KerVG

)(p) →

→ CokerV ′ → CokerVG(1)
β−→ KerVG → 0,where the map α is the Frobenius of KerVG and β is the omposed isomorphism

Coker(VG(1)) ≃ G(1)/KerFG(1)
∼−→ Im(FG(1)) ≃ KerVG.Then ondition () is equivalent to that α is an isomorphism; it implies that

KerV ′ = CokerV ′ = 0, i.e. the Vershiebung of KerFG is an isomorphism,and hene (').()⇒(a). For every integer n > 0, we denote by FnG the omposed homomor-phism
G

FG−−→ G(p)
F
G(p)−−−−→ · · ·

F
G(pn−1)−−−−−−→ G(pn),and by V nG the omposed homomorphism

G(pn)
V
G(pn−1)−−−−−−→ G(pn−1)

V
G(pn−2)−−−−−−→ · · · VG−−→ G;

FnG and V nG are isogenies of BT-groups. From the relation V nG ◦ FnG = pn, wededue an exat sequene(2.13.6) 0→ KerFnG → G(n)
Fn−−→ KerV nG → 0,
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p-Adic Monodromy of a Barsotti-Tate Group 407where Fn is indued by FnG. For 1 ≤ j < n, we have a ommutative diagram(2.13.7) G(pn)

V n−j

G(pj) //

V nG ""E
EEE

EE
EE

G(pj)

V jG||yy
yy

yy
yy

G.One noties that KerV n−j
G(pj)

= (KerV n−jG )(p
j) by the funtoriality of Ver-shiebung . Sine all maps in (2.13.7) are isogenies, we have an exat sequene(2.13.8) 0→ (KerV n−jG )(p

j)
i′n−j,n−−−−→ KerV nG

pn,j−−→ KerV jG → 0.Therefore, ondition () implies by indution that KerV nG is an étale groupsheme over S. Hene the j-th iteration of the Frobenius KerV n−jG →
(KerV n−jG )(p

j) is an isomorphism, and KerV n−jG is identi�ed with a losedsubgroup sheme of KerV nG by the omposed map
in−j,n : KerV n−jG

∼−→ (KerV n−jG )(p
j)

i′n−j,n−−−−→ KerV nG .We laim that the kernel of the multipliation by pn−j on KerV nG is KerV n−jG .Indeed, from the relation pn−j · IdG(pn) = Fn−j
G(pj)

◦ V n−j
G(pj )

, we dedue a ommu-tative diagram (without dotted arrows)(2.13.9) KerV nG //

pn−j

��

pn,j

$$I
I

I
I

I G(pn)

pn−j

��

V n−j

G(pj )

##G
GG

GG
GG

GG

KerV jG
//_________

ij,nzzu
u

u
u

u
G(pj)

Fn−j

G(pj){{ww
ww

ww
www

KerV nG // G(pn).It follows from (2.13.8) that the subgroup KerV nG of G(pn) is sent by V n−j
G(pj )

onto
KerV jG. Therefore diagram (2.13.9) remains ommutative when ompleted bythe dotted arrows, hene our laim. It follows from the laim that (KerV nG )n≥1onstitutes an étale BT-group over S, denoted by Gét. By duality, we have anexat sequene(2.13.10) 0→ KerF jG → KerFnG → (KerFn−jG )(p

j) → 0.Condition (') implies by indution that KerFnG is of multipliative type. Henethe j-th iteration of Vershiebung (KerFn−jG )(p
j) → KerFn−jG is an isomor-phism. We dedue from (2.13.10) that (KerFnG)n≥1 form a multipliative BT-group over S that we denote by Gmult. Then the exat sequenes (2.13.6) givea deomposition of G of the form (2.10.1). �
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Corollary 2.14. Let G be a BT-group over S, and Sord be the lous in S ofthe points x ∈ S suh that Gx = G ⊗S κ(x) is ordinary over κ(x). Then Sordis open in S, and the anonial inlusion Sord → S is a�ne.The open subsheme Sord of S is alled the ordinary lous of G.
3. Preliminaries on Dieudonné Theory and Deformation Theory

3.1. We will use freely the onventions of 1.8. Let S be a sheme of hara-teristi p > 0, G be a Barsotti-Tate group over S, and M(G) = D(G)(S,S) bethe oherent OS-module obtained by evaluating the (ontravariant) Dieudonnérystal of G at the trivial divided power immersion S →֒ S [BBM, 3.3.6℄. Reallthat M(G) is an OS-module loally free of �nite type satisfying the followingproperties:(i) Let FM : M(G)(p) →M(G) and VM : M(G) →M(G)(p) be the OS-linearmaps indued respetively by the Frobenius and the Vershiebung of G. Wehave the following exat sequene:
· · · →M(G)(p)

FM−−→M(G)
VM−−→M(G)(p) → · · · .(ii) There is a onnetion ∇ : M(G) → M(G) ⊗OS Ω1

S/Fp
for whih FM and

VM are horizontal morphisms.(iii) We have two anonial �ltrations on M(G) by OS-modules loally free of�nite type:(3.1.1) 0→ ωG →M(G)→ Lie(G∨)→ 0,alled the Hodge �ltration on M(G) [BBM, 3.3.5℄, and the onjugate �ltrationon M(G)(3.1.2) 0→ Lie(G∨)(p)
φG−−→M(G)→ ω

(p)
G → 0,whih is obtained by applying the Dieudonné funtor to the exat sequene of�nite group shemes 0 → KerFG → G(1) → KerVG → 0 [BBM, 4.3.1, 4.3.6,4.3.11℄. Moreover, we have the following ommutative diagram (f. [Ka1, 2.3.2
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p-Adic Monodromy of a Barsotti-Tate Group 409and 2.3.4℄)(3.1.3)
0

��

0

��

0

��

ω
(p)
G

��

ωG

��

ψG // ω(p)
G

��
// M(G)(p)

FM //

��

M(G)

��

VM //

6 6mmmmmmmmmmmmmmmm

M(G)(p)

��

// ,

Lie(G∨)(p)

��

( �

φG

6llllllllllllll fϕG // Lie(G∨)

��

Lie(G∨)(p)

��
0 0 0where the olumns are the Hodge �ltrations and the anti-diagonal is theonjugate �ltration. By funtoriality, we see easily that ϕ̃G above is noth-ing but the linearization of the Hasse-Witt map ϕG (2.6.1), and the mor-phism ψ∗G : Lie(G)(p) → Lie(G), whih is obtained by applying the funtor

H omOS (_,OS) to ψG, is identi�ed with the linearization ϕ̃G∨ of ϕG∨ .The formation of these strutures on M(G) ommutes with arbitrary basehanges of S. In the sequel, we will use (M(G), FM ,∇) to emphasize thesestrutures on M(G).
3.2. In the reminder of this setion, k will denote an algebraially losed �eldof harateristi p > 0. Let S be a sheme formally smooth over k suh that
Ω1
S/Fp

= Ω1
S/k is an OS-module loally free of �nite type, e.g. S = Spec(A)with A a formally smooth k-algebra with a �nite p-basis over k. Let G be aBT-group over S. We put KS to be the omposed morphism(3.2.1) KS : ωG →M(G)

∇−→M(G)⊗OS Ω1
S/k

pr−→ Lie(G∨)⊗OS Ω1
S/kwhih is OS-linear. We put TS/k = H omOS(Ω1

S/k,OS), and de�ne theKodaira-Spener map of G(3.2.2) Kod : TS/k →H omOS (ωG,Lie(G∨))to be the morphism indued by KS. We say that G is versal if Kod is surjetive.
3.3. Let r be an integer ≥ 1, R = k[[t1, · · · , tr]], m be the maximal idealof R. We put S = Spf(R), S = Spec(R), and for eah integer n ≥ 0,
Sn = Spec(R/mn+1). By a BT-group G over the formal sheme S , we meana sequene of BT-groups (Gn)n≥0 over (Sn)n≥0 equipped with isomorphisms
Gn+1 ×Sn+1 Sn ≃ Gn.
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410 Yichao TianAording to [deJ, 2.4.4℄, the funtor G 7→ (G×SSn)n≥0 indues an equivaleneof ategories between the ategory of BT-groups over S and the ategory of BT-groups over S . For a BT-group G over S , the orresponding BT-group Gover S is alled the algebraization of G . We say that G is versal over S , if itsalgebraization G is versal over S. Sine S is loal, by Nakayama's Lemma, Gor G is versal if and only if the redution of Kod modulo the maximal ideal(3.3.1) Kod0 : TS/k ⊗OS k −→ Homk(ωG0 ,Lie(G∨0 ))is surjetive.
3.4. We reall brie�y the deformation theory of a BT-group. Let ALk be theategory of loal artinian k-algebras with residue �eld k. We notie that allmorphisms of ALk are loal. A morphism A′ → A in ALk is alled a smallextension, if it is surjetive and its kernel I satis�es I ·mA′ = 0, where mA′ isthe maximal ideal of A′.Let G0 be a BT-group over k, and A an objet of ALk. A deformation of
G0 over A is a pair (G,φ), where G is a BT-group over Spec(A) and φ isan isomorphism φ : G ⊗A k ∼−→ G0. When there is no risk of onfusions, wewill denote a deformation (G,φ) simply by G. Two deformations (G,φ) and
(G′, φ′) over A are isomorphi if there exists an isomorphism of BT-groups
ψ : G

∼−→ G′ over A suh that φ = φ′ ◦ (ψ⊗A k). Let's denote by D the funtorwhih assoiates with eah objet A of ALk the set of isomorphsm lasses ofdeformations of G0 over A. If f : A → B is a morphism of ALk, then themap D(f) : D(A) → D(B) is given by extension of salars. We all D thedeformation funtor of G0 over ALk.
Proposition 3.5 ([Ill℄, 4.8). Let G0 be a BT-group over k of dimension d andheight c+ d, D be the deformation funtor of G0 over ALk.(i) Let A′ → A be a small extension in ALk with ideal I, x = (G,φ)be an element in D(A), Dx(A′) be the subset of D(A′) with image x in
D(A). Then the set Dx(A′) is a nonempty homogenous spae under the group
Homk(ωG0 ,Lie(G∨0 ))⊗k I.(ii) The funtor D is pro-representable by a formally smooth formal sheme Sover k of relative dimension cd, i.e. S = Spf(R) with R ≃ k[[(tij)1≤i≤c,1≤j≤d]],and there exists a unique deformation (G , ψ) of G0 over S suh that, for anyobjet A of ALk and any deformation (G,φ) of G0 over A, there is a uniquehomomorphism of loal k-algebras ϕ : R→ A with (G,φ) = D(ϕ)(G , ψ).(iii) Let TS /k(0) = TS /k⊗OS

k be the tangent spae of S at its unique losedpoint,
Kod0 : TS /k(0) −→ Homk(ωG0 ,Lie(G∨0 ))be the Kodaira-Spener map of G evaluated at the losed point of S . Then Kod0is bijetive, and it an be desribed as follows. For an element f ∈ TS /k(0), i.e.a homomorphism of loal k-algebras f : R→ k[ǫ]/ǫ2, Kod0(f) is the di�ereneof deformations

[G ⊗R (k[ǫ]/ǫ2)]− [G0 ⊗k (k[ǫ]/ǫ2)],whih is a well-de�ned element in Homk(ωG0 ,Lie(G∨0 )) by (i).
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p-Adic Monodromy of a Barsotti-Tate Group 411
Remark 3.6. Let (ej)1≤j≤d be a basis of ωG0 , (fi)1≤i≤c be a basis of Lie(G∨0 ).In view of 3.5(iii), we an hoose a system of parameters (tij)1≤i≤c,1≤j≤d of Ssuh that

Kod0(
∂

∂tij
) = e∗j ⊗ fi,where (e∗j )1≤j≤d is the dual basis of (ej)1≤j≤d. Moreover, if m is the maximalideal of R, the parameters tij are determined uniquely modulo m2.

Corollary 3.7 (Algebraization of the universal deformation). Theassumptions being those of (3.5), we put moreover S = Spec(R) and G thealgebraization of the universal formal deformation G . Then the BT-group Gis versal over S, and satis�es the following universal property: Let A be anoetherian omplete loal k-algebra with residue �eld k, G be a BT-group over
A endowed with an isomorphism G ⊗A k ≃ G0. Then there exists a uniqueontinuous homomorphism of loal k-algebras ϕ : R→ A suh that G ≃ G⊗RA.Proof. By the last remark of 3.3, G is learly versal. It remains to prove that itsatis�es the universal property in the orollary. Let G be a deformation of G0over a noetherian omplete loal k-algebra A with residue �eld k. We denoteby mA the maximal ideal of A, and put An = A/mn+1

A for eah integer n ≥ 0.Then by 3.5(b), there exists a unique loal homomorphism ϕn : R → An suhthat G ⊗ An ≃ G⊗R An. The ϕn's form a projetive system (ϕn)n≥0, whoseprojetive limit ϕ : R→ A answers the question. �

Definition 3.8. The notations are those of (3.7). We all S the loal moduli inharateristi p of G0, and G the universal deformation of G0 in harateristi
p.If there is no onfusions, we will omit �in harateristi p� for short.
3.9. Let G be a BT-group over k, G◦ be its onneted part, and Gét be itsétale part. Let r be the height of Gét. Then we have Gét ≃ (Qp/Zp)r, sine
k is algebraially losed. Let DG (resp. DG◦) be the deformation funtor of G(resp. G◦) over ALk. If A is an objet in ALk and G is a deformation of G(resp. G◦) over A, we denote by [G ] its isomorphism lass in DG(A) (resp. in
DG◦(A)).
Proposition 3.10. The assumptions are as above, let Θ : DG → DG◦ be themorphism of funtors that maps a deformation of G to its onneted omponent.(i) The morphism Θ is formally smooth of relative dimension r.(ii) Let A be an objet of ALk, and G ◦ be a deformation of G◦ over A. Then thesubset Θ−1

A ([G ◦]) of DG(A) is anonially identi�ed with Ext1A(Qp/Zp,G ◦)r,where Ext1A means the group of extensions in the ategory of abelian fppf-sheaves on Spec(A).Proof. (i) Sine DG and DG◦ are both pro-representable by a noetherian loalomplete k-algebra and formally smooth over k (3.5), by a formal ompletionversion of [EGA, IV 17.11.1(d)℄, we only need to hek that the tangent map
Θk[ǫ]/ǫ2 : DG(k[ǫ]/ǫ2)→ DG◦(k[ǫ]/ǫ2)
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412 Yichao Tianis surjetive with kernel of dimension r over k. By 3.5(iii), DG(k[ǫ]/ǫ2)(resp. DG◦(k[ǫ]/ǫ2)) is isomorphi to Homk(ωG,Lie(G∨)) (resp.
Homk(ωG◦ ,Lie(G◦∨))) by the Kodaira-Spener morphism. In view of theanonial isomorphism ωG ≃ ωG◦ , Θk[ǫ]/ǫ2 orresponds to the map

Θ′k[ǫ]/ǫ2 : Homk(ωG,Lie(G∨))→ Homk(ωG,Lie(G◦∨))indued by the anonial surjetion Lie(G∨) → Lie(G◦∨). It is lear that
Θ′k[ǫ]/ǫ2 is surjetive of kernel Homk(ωG,Lie(Gét∨)), whih has dimension rover k.(ii) Sine Gét is isomorphi to (Qp/Zp)r, every element in Ext1A(Qp/Zp,G ◦)rde�nes learly an element of DG(A) with image [G ◦] in DG◦(A). Conversely, forany G ∈ DG(A) with onneted omponent isomorphi to G ◦, the isomorphism
Gét ≃ (Qp/Zp)r lifts uniquely to an isomorphism G ét ≃ (Qp/Zp)r beause A ishenselian. The anonial exat sequene 0 → G ◦ → G → G ét → 0 shows that
G omes from an element of Ext1A(Qp/Zp,G ◦)r.

�

4. HW-yli Barsotti-Tate Groups
Definition 4.1. Let S be a sheme of harateristi p > 0, G be a BT-groupover S suh that c = dim(G∨) is onstant. We say that G is HW-yli, if c ≥ 1and there exists an element v ∈ Γ(S,Lie(G∨)) suh that

v, ϕG(v), · · · , ϕc−1
G (v)generate Lie(G∨) as an OS-module, where ϕG is the Hasse-Witt map (2.6.1) of

G.
Remark 4.2. It is lear that a BT-group G over S is HW-yli, if and onlyif Lie(G∨) is free over OS and there exists a basis of Lie(G∨) over OS underwhih ϕG is expressed by a matrix of the form(4.2.1) 



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



,where ai ∈ Γ(S,OS) for 1 ≤ i ≤ c.

Lemma 4.3. Let R be a loal ring of harateristi p > 0, k be its residue �eld.(i) A BT-group G over R is HW-yli if and only if so is G⊗ k.(ii) Let 0→ G′ → G→ G′′ → 0 be an exat sequene of BT-groups over R. If
G is HW-yli, then so is G′. In partiular, if R is henselian, the onnetedpart of a HW-yli BT-group over R is HW-yli.Proof. (i) The property of being HW-yli is learly stable under arbitrarybase hanges, so the �only if� part is lear. Assume that G0 = G ⊗ kis HW-yli. Let v be an element of Lie(G∨0 ) = Lie(G∨) ⊗ k suh that
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p-Adic Monodromy of a Barsotti-Tate Group 413
(v, ϕG0(v), · · · , ϕc−1

G0
(v)) is a basis of Lie(G∨0 ). Let v be any lift of v in Lie(G∨).Then by Nakayama's lemma, (v, ϕG(v), · · · , ϕc−1

G (v)) is a basis of Lie(G∨).(ii) By statement (i), we may assume R = k. The exat sequene of BT-groupsindues an exat sequene of Lie algebras(4.3.1) 0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,and the Hasse-Witt map ϕG′ is indued by ϕG by funtoriality. Assume that
G is HW-yli and G∨ has dimension c. Let u be an element of Lie(G∨) suhthat

u, ϕG(u), · · · , ϕc−1
G (u)form a basis of Lie(G∨) over k. We denote by u′ the image of u in Lie(G′∨).Let r ≤ c be the maximal integer suh that the vetors

u′, ϕG′(u
′), · · · , ϕr−1

G′ (u′)are linearly independent over k. It is easy to see that they form a basis of the
k-vetor spae Lie(G′∨). Hene G′ is HW-yli. �

Lemma 4.4. Let S = Spec(R) be an a�ne sheme of harateristi p > 0, Gbe a HW-yli BT-group over R with c = dim(G∨) onstant, and



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈Mc×c(R),be a matrix of ϕG. Put ac+1 = 1, and P (X) =
∑c
i=0 ai+1X

pi ∈ R[X ].(i) Let VG : G(p) → G be the Vershiebung homomorphism of G. Then KerVGis isomorphi to the group sheme Spec(R[X ]/P (X)) with omultipliationgiven by X 7→ 1⊗X +X ⊗ 1.(ii) Let x ∈ S, and Gx be the �bre of G at x. Put(4.4.1) i0(x) = min
0≤i≤c

{i; ai+1(x) 6= 0},where ai(x) denotes the image of ai in the residue �eld of x. Then the étale partof Gx has height c− i0(x), and the onneted part of Gx has height d + i0(x).In partiular, Gx is onneted if and only if ai(x) = 0 for 1 ≤ i ≤ c.Proof. (i) By 2.3 and 2.13, KerVG is isomorphi to the group sheme
Spec

(
R[X1, . . . , Xc]/(X

p
1 −X2, · · · , Xp

c−1 −Xc, X
p
c + a1X1 + · · ·+ acXc)

)with omultipliation ∆(Xi) = 1 ⊗ Xi + Xi ⊗ 1 for 1 ≤ i ≤ c. By sending
(X1, X2, · · · , Xc) 7→ (X,Xp, · · · , Xpc−1

), we see that the above group shemeis isomorphi to Spec(R[X ]/P (X)) with omultipliation ∆(X) = 1⊗X+X⊗1.
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414 Yichao Tian(ii) By base hange, we may assume that S = x = Spec(k) and hene G = Gx.Let G(1) be the kernel of the multipliation by p on G. Then we have an exatsequene
0→ KerFG → G(1)→ KerVG → 0.Sine KerFG is an in�nitesimal group sheme over k, we have G(1)(k) =

(KerVG)(k), where k is an algebrai losure of k. By the de�nition of i0(x), wehave P (X) = Q(Xpi0(x)

), where Q(X) is an additive sepearable polynomial in
k[X ] with deg(Q) = pc−i0(x). Hene the roots of P (X) in k form an Fp-vetorspae of dimension c − i0(x). By (i), (KerVG)(k) an be identi�ed with theadditive group onsisting of the roots of P (X) in k. Therefore, the étale partof G has height c− i0(x), and the onneted part of G has height d+ i0(x). �

4.5. Let k be a perfet �eld of harateristi p > 0, and αp = Spec(k[X ]/Xp) bethe �nite group sheme over k with omultipliation map ∆(X) = 1⊗X+X⊗1.Let G be a BT-group over k. Following Oort, we all
a(G) = dimk Homkfppf

(αp, G)the a-number of G, where Homkfppf
means the homomorphisms in the ate-gory of abelian fppf-sheaves over k. Sine the Frobenius of αp vanishes, anymorphism of αp in G fatorize through Ker(FG). Therefore we have

Homkfppf
(αp, G) = Homk−gr(αp,Ker(FG))

= Homk−gr(Ker(FG)∨, αp)

= Homp-Liek(Lie(αp),Lie(Ker(FG))),where Homk−gr denotes the homomorphisms in the ategory of ommutativegroup shemes over k, and the last equality uses Proposition 2.3. Sine we havea anonial isomorphism Lie(Ker(FG)) ≃ Lie(G) and Lie(αp) has dimension oneover k with ϕαp = 0, we get(4.5.1) a(G) = dimk{x ∈ Lie(G)|ϕG∨(x) = 0} = dimk Ker(ϕG∨).Due to the perfetness of k, we have also a(G) = dimk Ker(ϕ̃G∨), where ϕ̃G∨is the linearization of ϕG∨ . By Proposition 2.11, we see that a(G) = 0 if andonly if G is ordinary.
Lemma 4.6. Let G be a BT-group over k, and G∨ its Serre dual. Then wehave a(G) = a(G∨).Proof. Let ψG : ωG → ω

(p)
G be the k-linear map indued by the Vershiebungof G. Then ψ∗G, the morphism obtained by applying the funtor Homk(_, k)to ψG, is identi�ed with ϕ̃G∨ . By (4.5.1) and the exatitude of the funtor

Homk(_, k), we have a(G) = dimk Ker(ψ∗G) = dimk Coker(ψG). Using theadditivity of dimk, we get �nally a(G) = dimk Ker(ψG). By onsidering theommutative diagram (3.1.3), we have
a(G) = dimk

(
ωG ∩ φG(Lie(G∨)(p))

)
.
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p-Adic Monodromy of a Barsotti-Tate Group 415On the other hand, it follows also from (3.1.3) that
a(G∨) = dimk Ker(ϕ̃G) = dimk

(
φG(Lie(G∨)(p)) ∩ ωG

)
.The lemma now follows immediately.

�

Proposition 4.7. Let k be a perfet �eld of harateristi p > 0, G a BT-groupover k. Consider the following onditions:(i) G is HW-yli and non-ordinary;(ii) the onneted part G◦ of G is HW-yli and not of multipliative type;(iii) a(G∨) = a(G) = 1.We have (i) ⇒ (ii) ⇔ (iii). If k is algebraially losed, we have moreover
(ii)⇒ (i).
Remark 4.8. In [Oo1, Lemma 2.2℄, Oort proved the following assertion, whihis a generalization of (iii) ⇒ (ii): Let k be an algebraially losed �eld ofharateristi p > 0, and G be a onneted BT-group with a(G) = 1. Thenthere exists a basis of the Dieudonné module M of G overW (k), suh that theation of Frobenius on M is given by a display-matrix of �normal form� in thesense of [Oo1, 2.1℄.Proof. (i)⇒ (ii) follows from 4.3(ii).
(ii)⇒ (iii). First, we note that a(G) = a(G◦), so we may assume G onneted.Sine G is not of multipliative type, we have c = dim(G∨) ≥ 1. By Lemma4.4(ii), there exists a basis of Lie(G∨) over k under whih ϕG is expressed by




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0... . . . ...
0 0 · · · 1 0



∈ Mc×c(k).Aording to (4.5.1), a(G∨) equals to dimk Ker(ϕG), i.e. the k-dimension ofthe solutions of the equation system in (x1, · · · , xc)




0 0 · · · 0 0
1 0 · · · 0 0... . . . ...
0 0 · · · 1 0







xp1
xp2...
xpc


 = 0The solutions (x1, · · · , xc) form learly a vetor spae over k of dimension 1,i.e. we have a(G∨) = 1.

(iii) ⇒ (ii). Let Gét be the étale part of G. Sine k is perfet, the exatsequene (2.7.1) splits [Dem, Chap. II �7℄; so we have G ≃ G◦ ×Gét. We put
M = Lie(G∨), M1 = Lie(G◦∨) and M2 = Lie(Gét∨) for short. By 2.8 and 2.9,we have a deomposition M = M1 ⊕M2, suh that M1,M2 are stable under
ϕG, and the ation of ϕG is nilpotent on M1 and bijetive on M2. We note
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416 Yichao Tianthat a(G◦∨) = a(G◦) = a(G) = 1. By the last remark of 4.5, G◦ is not ofmultipliative type, hene dimkM1 = dim(G◦∨) ≥ 1. It remains to prove that
G◦ is HW-yli. Let n be the minimal integer suh that ϕnG(M1) = 0. Wehave a stritly inreasing �ltration

0 ( Ker(ϕG) ( · · · ( Ker(ϕnG) = M1.If n = 1, then M1 is one-dimensional, hene G◦ is learly HW-yli. Assume
n ≥ 2. For 2 ≤ m ≤ n, ϕm−1

G indues an injetive map
ϕm−1
G : Ker(ϕmG )/Ker(ϕm−1

G ) −→ Ker(ϕG).Sine dimk Ker(ϕG) = a(G◦∨) = 1, ϕm−1
G is neessarily bijetive. So we have

dimk Ker(ϕmG ) = m for 1 ≤ m ≤ n. Let v be an element of M1 but not in
Ker(ϕn−1

G ). Then v, ϕG(v), · · · , ϕn−1
G (v) are linearly independant, hene theyform a basis of M1 over k. This proves that G◦ is HW-yli.Assume k algebraially losed. We prove that (ii) ⇒ (i). Noting that G isordinary if and only if G◦ is of multipliative type, we only need to hek that

G is HW-yli. We onserve the notations above. Sine ϕG is bijetive on M2and k algebraially losed, there exists a basis (e1, · · · , em) of M2 suh that
ϕG(ei) = ei for 1 ≤ i ≤ m. Let v ∈ M1 but not in Ker(ϕn−1

G ) as above, andput u = v + λ1e1 + · · ·λmem, where λi(1 ≤ i ≤ m) are some elements in k tobe determined later. Then we have



ϕnG(u)...
ϕn+m−1
G (u)


 =




λp
n

1 · · · λp
n

m... . . . ...
λp

n+m−1

1 · · · λp
n+m−1

m






e1...
em


 .Let L(λ1, · · · , λm) ∈ k[λ1, · · · , λm] be the determinant polynomial of the ma-trix on the right side. An elementary omputation shows that the polyno-mial L(λ1, · · · , λm) is not null. We an hoose λ1, · · · , λm ∈ k suh that

L(λ1, · · · , λm) 6= 0 beause k is algebraially losed. So ϕnG(u), · · · , ϕn+m−1
G (u)form a basis of M2 over k. Sine

ϕiG(u) ≡ ϕiG(v) mod M2 for 0 ≤ i ≤ n,by the hoie of u, we see that {u, ϕG(u), · · · , ϕn+m−1
G (u)} form a basis of

M = Lie(G∨) over k. �By ombining 4.6 and 4.7, we obtain the following
Corollary 4.9. Let k be an algebraially losed �eld of harateristi p > 0.Then a BT-group over k is HW-yli if and only if so is its Serre dual.
4.10. Examples. Let k be a perfet �eld, W (k) be the ring of Witt vetorswith oe�ients in k, and σ be the Frobenius automorphism of W (k). Let
s, r be relatively prime integers suh that 0 ≤ s ≤ r and r 6= 0; put λ = s

r .We onsider the Dieudonné module Mλ ≃ W (k)[F, V ]/(F r−s − V s), where
W (k)[F, V ] is the non-ommutative ring with relations FV = V F = p, Fa =
σ(a)F and V σ(a) = aV for all a ∈ W (k). We note that Mλ is free of rank

Documenta Mathematica 14 (2009) 397–440



p-Adic Monodromy of a Barsotti-Tate Group 417
r over W (k) and Mλ/VMλ ≃ k[F ]/F r−s. By the ontravariant Dieudonnétheory, Mλ orresponds to a BT-group Gλ over k of height r with Lie(Gλ∨) =
Mλ/VMλ. We see easily that Gλ is HW-yli, and we all it the elementaryBT-group of slope λ. We note that G0 ≃ Qp/Zp, G1 ≃ µp∞ , and (Gλ)∨ ≃ G1−λfor 0 ≤ λ ≤ 1.Assume k algebraially losed. Then by the Dieudonné-Manin's lassi�ationof isorystals [Dem, Chap.IV �4℄, any BT-group over k is isogenous to a �-nite produt of Gλ's; moreover, any onneted one-dimensional BT-group over
k of height r is neessarily isomorphi to G1/r [Dem, Chap.IV �8℄, hene inpartiular HW-yli.
Proposition 4.11. Let k be an algebraially losed �eld of harateristi p > 0,
R be a noetherian omplete regular loal k-algebra with residue �eld k, and
S = Spec(R). Let G be a onneted HW-yli BT-group over R of dimension
d ≥ 1 and height c+ d,

h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈ Mc×c(R)be a matrix of ϕG.(i) If G is versal over S, then {a1, · · · , ac} is a subset of a regular system ofparameters of R.(ii) Assume that d = 1. The onverse of (i) is also true, i.e. if {a1, · · · , ac}is a subset of a regular system of parameters of R then G is versal over S.Furthermore, G is the universal deformation of its speial �ber if and only if

{a1, · · · , ac} is a system of regular parameters of R.Proof. Let (M(G), FM ,∇) be the �nite free OS-module equipped with a semi-linear endomorphism FM and a onnetion ∇ : M(G) → M(G) ⊗OS Ω1
S/k,obtained by evaluating the Dieudonné rystal of G at the trivial immersion

S →֒ S (f. 3.1). Reall that we have a ommutative diagram(4.11.1) M(G)(p)
FM //

pr

��

M(G)

pr

��
Lie(G∨)(p)

fϕG //
( �

φG

66llllllllllllll

Lie(G∨),where φG is universally injetive (3.1.3). Let {v1, · · · , vc} be a basis of Lie(G∨)over OS under whih ϕG is expressed by h, i.e. we have ϕi−1
G (v1) = vi for

1 ≤ i ≤ c and ϕcG(v1) = ϕG(vc) = −∑c
i=1 aivi. Let f1 be a lift of v1 to

Γ(S,M(G)), and put fi+1 = φG(v
(p)
i ) for 1 ≤ i ≤ c− 1, where v(p)

i = 1 ⊗ vi ∈
Γ(S,Lie(G∨)(p)). The image of fi in Γ(S,Lie(G∨)) is thus vi for 1 ≤ i ≤ c by
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418 Yichao Tian(4.11.1). We put(4.11.2) e1 = φG(v(p)
c ) + a1f1 + · · ·+ acfc ∈ Γ(S,M(G)).The image of e1 in Γ(S,Lie(G∨)) is ϕG(vc) +

∑c
i=1 aivi = 0; so we have e1 ∈

Γ(S, ωG). By 4.4(ii), we notie that a1, · · · , ac belong to the maximal ideal
mR of R, as G is onneted. Hene, we have e1 = φG(v

(p)
c ), where for a R-module M and x ∈ M , we denote by x the anonial image of x in M ⊗ k.Sine φG ommutes with base hange and is universally injetive, we get e1 =

φG(v
(p)
c ) = φG⊗k(v

(p)
c ) 6= 0. Therefore, we an hoose e2, · · · , ed ∈ Γ(S, ωG)suh that (e1, · · · , ed) beomes a basis of ωG over OS , so (e1, · · · , ed, f1, · · · , fc)is a basis of M(G). Sine FM is horizontal for the onnetion ∇ (f. 3.1(ii)),we have
∇(φG(v(p)

c )) = ∇(FM (f (p)
c )) = 0.In view of (4.11.2), we get

∇(e1) =

c∑

i=1

fi ⊗ dai +

c∑

i=1

ai∇(fi)

≡
c∑

i=1

fi ⊗ dai (mod mR).(4.11.3)Let KS0 and Kod0 be respetively the redutions modulo mR of (3.2.1) and(3.2.2). Sine (vi)1≤i≤c is a base of Lie(G∨)⊗ k, we an write
KS0(ej) =

c∑

i=1

vi ⊗ θi,j for 1 ≤ j ≤ d,where θi,j ∈ ΩS/k ⊗ k. From (4.11.3), we dedue that θi,1 = dai. By thede�nition of Kod0, we have(4.11.4) Kod0(∂) =

d∑

j=1

c∑

i=1

< ∂, θi,j > ej
∗ ⊗ viwhere ∂ ∈ TS/k ⊗ k, < •, • > is the anonial pairing between TS/k ⊗ k and

Ω1
S/k⊗ k, and (ei

∗)1≤i≤d denotes the dual basis of (ei)1≤i≤d. Now assume that
G is versal over S, i.e. Kod0 is surjetive by de�nition (3.2). In partiular,there are ∂1, · · · , ∂c ∈ TS/k ⊗ k suh that Kod0(∂i) = e1

∗ ⊗ vi for 1 ≤ i ≤ c,i.e. we have(4.11.5) < ∂i, daj >=

{
1 if i = j

0 if i 6= j
for 1 ≤ i, j ≤ c,and

< ∂i, θj,ℓ >= 0 for 1 ≤ i, j ≤ c, 2 ≤ ℓ ≤ d.From (4.11.5), we see easily that da1, · · · , dac are linearly independent in ΩS/k⊗
k ≃ mR/m

2
R; therefore, (a1, · · · , ac) is a part of a regular system of parametersof R. Statement (i) is proved.
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p-Adic Monodromy of a Barsotti-Tate Group 419For statement (ii), we assume d = 1 and that (a1, · · · , ac) is a part of a regularsystem of parameters of R. Then the formula (4.11.4) is simpli�ed as
Kod0(∂) =

c∑

i=1

< ∂, dai > e1
∗ ⊗ vi.Sine da1, · · · , dac are linearly independent in Ω1

S/k⊗k, there exist ∂1, · · · , ∂c ∈
TS/k⊗k suh that (4.11.5) holds, i.e. (e1

∗⊗vi)1≤i≤c are in the image of Kod0.But the elements (e1
∗⊗vi)1≤i≤c form already a basis ofH omOS (ωG,Lie(G∨))⊗

k. So Kod0 is surjetive, and hene G is versal over S by Nakayama's lemma.Let G0 be the speial �ber of G. It remains to prove that when d = 1, G is theuniversal deformation of G0 if and only if dim(S) = c and G is versal over S.Let S be the loal moduli in harateristi p of G0. By the universal propertyof G (3.7), there exists a unique morphism f : S → S suh that G ≃ G×S S.Sine S and S are loal omplete regular shemes over k with residue �eld k ofthe same dimension, f is an isomorphism if and only if the tangent map of f atthe losed point of S, denoted by Tf , is an isomorphism. By the funtorialityof Kodaira-Spener maps (3.2.2), we have a ommutative diagram
TS/k ⊗OS k

Tf

��

KodS0 // Homk(ωG0 ,Lie(G∨0 ))

TS/k ⊗OS
k

KodS
0 // Homk(ωG0 ,Lie(G∨0 ))

,where horizontal arrows are the Kodaira-Spener maps evaluated at the losedpoints (3.3.1). Sine KodS0 and KodS
0 are isomorphisms aording to the �rstpart of this propostion, we dedue that so is Tf . This ompletes the proof. �

5. Monodromy of a HW-yli BT-group over a Complete Traitof Charateristi p > 0

5.1. Let k be an algebraially losed �eld of harateristi p > 0, A be a om-plete disrete valuation ring of harateristi p, with residue �eld k and fration�eld K. We put S = Spec(A), and denote by s its losed point, by η its generipoint. Let K be an algebrai losure of K, Ksep be the maximal separableextension of K ontained in K, Kt be the maximal tamely rami�ed extensionof K ontained in Ksep. We put I = Gal(Ksep/K), Ip = Gal(Ksep/Kt) and
It = I/Ip = Gal(Kt/K).Let π be a uniformizer of A; so we have A ≃ k[[π]]. Let v be the valuation on
K normalized by v(π) = 1; we denote also by v the unique extension of v to K.For every α ∈ Q, we denote by mα (resp. by m+

α ) the set of elements x ∈ Ksepsuh that v(x) ≥ α (resp. v(x) > α). We put(5.1.1) Vα = mα/m
+
α ,whih is a k-vetor spae of dimension 1 equipped with a ontinuous ation ofthe Galois group I.
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420 Yichao Tian

5.2. First, we reall some properties of the inertia groups Ip and It [Se1, Chap.IV℄. The subgroup Ip, alled the wild inertia subgroup, is the unique maximalpro-p-group ontained in I and hene normal in I. The quotient It = I/Ipis a ommutative pro�nite group, alled the tame inertia group. We have aanonial isomorphism(5.2.1) θ : It
∼−→ lim←−

(d,p)=1

µd,where the projetive system is taken over positive integers prime to p, µd is thegroup of d-th roots of unity in k, and the transition maps µm → µd are givenby ζ 7→ ζm/d, whenever d divides m. We denote by θd : It → µd the projetionindued by (5.2.1). Let q be a power of p, Fq be the �nite sub�eld of k with qelements. Then µq−1 = F×q , and we an write θq−1 : It → F×q . The harater
θd is haraterized by the following property.
Proposition 5.3 ([Se3℄ Prop.7). Let a, d be relatively prime positive integerswith d prime to p. Then the natural ation of Ip on the k-vetor spae Va/d(5.1.1) is trivial, and the indued ation of It on Va/d is given by the harater
(θd)

a : It → µd. In partiular, if q is a power of p, the ation of It on V1/(q−1)is given by the harater θq−1 : It → F×q and any I-equivariant Fp-subspae of
V1/(q−1) is an Fq-vetor spae.
5.4. Let G be a BT-group over S. We de�ne h(G) to be the valuation of thedeterminant of a matrix of ϕG if dim(G∨) ≥ 1, and h(G) = 0 if dim(G∨) = 0.We all h(G) the Hasse invariant of G.(a) h(G) does not depend on the hoie of the matrix representing ϕG. Indeed,let c be the rank of Lie(G∨) over A, h ∈ Mc×c(A) be a matrix of ϕG. Anyother matrix representing ϕG an be written in the form U−1 · h · U (p), where
U ∈ GLc(A), U−1 is the inverse of U , and U (p) is the matrix obtained byapplying the Frobenius map of A to the oe�ients of U .(b) By 2.11, the generi �ber Gη is ordinary if and only if h(G) < ∞; G isordinary over T if and only h(G) = 0.() Let 0→ G′ → G→ G′′ → 0 be a short exat sequene of BT-groups over T ,then we have h(G) = h(G′) + h(G′′). Indeed, the exat sequene of BT-groupsindues a short exat sequene of Lie algebras (f. [BBM℄ 3.3.2)

0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,from whih our assertion follows easily.
Proposition 5.5. Let G be a BT-group over S. Then we have h(G) = h(G∨).Proof. The proof is very similar to that of Lemma 4.6. First, we have

h(G) = leng
(
Lie(G∨)/ϕ̃G(Lie(G∨)(p))

)
,where ϕ̃G is the linearization of ϕG, and � leng� means the length of a �nite

A-module (note that this formulae holds even if dim(G∨) = 0). By the om-mutative diagram (3.1.3), we have
h(G) = leng M(G)/(φG(Lie(G∨)(p)) + ωG).
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p-Adic Monodromy of a Barsotti-Tate Group 421On the other hand, by applying the funtor HomA(_, A) to the A-linear map
ϕ̃G∨ : Lie(G)(p) → Lie(G), we obtain a map ψG : ωG → ω

(p)
G . If U is a matrixof ϕ̃G∨ , then the transpose of U , denoted by U t, is a matrix of ψG. So we have

h(G∨) = v(det(U)) = v(det(U t)) = leng
(
ω

(p)
G /ψG(ωG)

)
.By diagram 3.1.3, we get

h(G∨) = leng M(G)/(φG(Lie(G∨)(p)) + ωG) = h(G).

�

5.6. Let G be a BT-group over S, c = dim(G∨). We put(5.6.1) Tp(G) = lim
←−
n

G(n)(K)the Tate module of G, where G(n) is the kernel of pn : G → G. It is a free
Zp-module of rank ≤ c, and the equality holds if and only if the generi �ber Gηis ordinary. The Galois group I ats ontinuously on Tp(G). We are interestedin the image of the monodromy representation(5.6.2) ρ : I = Gal(Ksep/K)→ AutZp(Tp(G)).We denote by(5.6.3) ρ : I = Gal(Ksep/K)→ AutFp

(
G(1)(K)

)its redution mod p.
Theorem 5.7 (Reformulation of Igusa's theorem). Let G be a onneted BT-group over S of height 2 and dimension 1. Then G is versal (3.2) if and only if
h(G) = 1; moreover, if this ondition is satis�ed, the monodromy representation
ρ : I → AutZp(Tp(G)) ≃ Z×p is surjetive.Proof. Sine Lie(G∨) is an OS-module free of rank 1, the ondition that h(G) =
1 is equivalent to that any matrix of ϕG is represented by a uniformizer of A.Hene the �rst part of this theorem follows from Proposition 4.11(ii).We follow [Ka2, Thm 4.3℄ to prove the surjetivity of ρ under the assumptionthat h(G) = 1. For eah integer n ≥ 1, let

ρn : I → AutZ/pnZ(G(n)(K)) ≃ (Z/pnZ)×be the redution mod pn of ρ, Kn be the sub�eld of Ksep �xed by the kernelof ρn. Then ρn indues an injetive homomorphism Gal(Kn/K)→ (Z/pnZ)×.By taking projetive limits, we are redued to proving the surjetivity of ρn forevery n ≥ 1. It su�es to verify that
| Im(ρn)| = [Kn : K] ≥ pn−1(p− 1)(then the equality holds automatially).
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422 Yichao TianWe regard G as a formal group over S. Then by [Ka2, 3.6℄, there exists aparameter X of the formal group G normalized by the ondition that [ξ](X) =
ξ(X) for all (p− 1)-th root of unity ξ ∈ Zp. For suh a parameter, we have

[p](X) = a1X
p + αXp2 +

∑

m≥2

cmX
p(1+m(p−1)) ∈ A[[X ]],where we have v(a1) = h(G) = 1 by [Ka2, 3.6.1 and 3.6.5℄, and v(α) = 0, as Gis of height 2. For eah integer i ≥ 0, we put

V (pi)(X) = ap
i

1 X + αp
i

Xp +
∑

m≥2

cp
i

mX
1+m(p−1) ∈ A[[X ]];then we have [pn](X) = V (pn−1) ◦ V (pn−2) ◦ · · · ◦ V (Xpn). Hene eah pointof G(n)(K) is given by a sequene y1, · · · , yn ∈ Ksep (or simply an element

yn ∈ Ksep) satisfying the equations




V (y1) = a1y1 + αyp1 + · · · = 0;

V (p)(y2) = ap1y2 + αpyp2 + · · · = y1;...
V (pn−1)(yn) = ap

n−1

1 yn + αp
n−1

ypn + · · · = yn−1.Let yn ∈ Ksep be suh that y1 6= 0. By onsidering the Newton polygons ofthe equations above, we verify that
v(yi) =

1

pi−1(p− 1)
for 1 ≤ i ≤ n.In partiular, the rami�ation index e(Kn/K) is at least pn−1(p − 1). By thede�nition of Kn, the Galois group Gal(Ksep/Kn) must �x yn ∈ Ksep, i.e. Knis an extension of K(yn). Therefore, we have [Kn : K] ≥ [K(yn) : K] ≥

e(K(yn)/K) ≥ pn−1(p− 1). �

Proposition 5.8. Let G be a HW-yli BT-group over S of height c+ d anddimension d suh that G⊗K is ordinary,
h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac


be a matrix of ϕG. Put q = pc, ac+1 = 1, and P (X) =

∑c
i=0 ai+1X

pi ∈ A[X ].(i) Assume that G is onneted and the Hasse invariant h(G) = 1. Then therepresentation ρ (5.6.3) is tame, G(1)(K) is endowed with the struture of an
Fq-vetor spae of dimension 1, and the indued ation of It is given by theharater θq−1 : It → F×q .(ii) Assume that c > 1, v(ai) ≥ 2 for 1 ≤ i ≤ c − 1 and v(ac) = 1. Then theorder of Im(ρ) is divisible by pc−1(p− 1).
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p-Adic Monodromy of a Barsotti-Tate Group 423(iii) Put i0 = min0≤i≤c{i; v(ai+1) = 0}. Assume that there exists α ∈ k suhthat v(P (α)) = 1. Then we have i0 ≤ c− 1 and the order of Im(ρ) is divisibleby pi0 .Proof. Sine G is generially ordinary, we have a1 6= 0 by 2.11(d). Hene
P (X) ∈ K[X ] is a separable polynomial. By 4.4, G(1)(K) ≃ (KerVG)(Ksep)is identi�ed with the additive group onsisting of the roots of P (X) in Ksep.(i) By de�nition of the Hasse invariant, we have v(a1) = h(G) = 1. By 4.4(ii),the assumption that G is onneted is equivalent to saying v(ai) ≥ 1 for 1 ≤
i ≤ c. From the Newton polygon of P (X), we dedue that all the non-zeroroots of P (X) in Ksep have the same valuation 1/(q − 1). We denote by

ψ : G(1)(K)→ V1/(q−1)the map whih sends eah root x ∈ Ksep of P (X) to the lass of x in V1/(q−1) =

m1/(q−1)/m
+
1/(q−1) (5.1.1). We remark that G(1)(K) is an Fp-vetor spae ofdimension c. Hene G(1)(K) is automatially of dimension 1 over Fq onewe know it is an Fq-vetor spae. By 5.3, it su�es to show that ψ is aninjetive I-equivariant homomorphism of groups. By 4.4(i), ψ is obviously an

I-equivariant homomorphism of groups. Let x0 be a root of P (X), and put
Q(y) = P (x0y). Then the polynomial Q(y) has the form Q(y) = xq0Q1(y),where

Q1(y) = yq + bcy
pc−1

+ · · ·+ b2y
p + b1ywith bi = ai/x

(q−pi−1)
0 ∈ Ksep. We have v(bi) > 0 for 2 ≤ i ≤ c and v(b1) = 0.Let b1 be the lass of b1 in the residue �eld k = m0/m

+
0 . Then the images ofthe roots of P (X) in V1/(q−1) are x0b

1/(q−1)

1 ζ, where ζ runs over the �nite �eld
Fq. Therefore, ψ is injetive.(ii) By omputing the slopes of the Newton polygon of P (X), we see that P (X)has pc−1(p − 1) roots of valuation 1/(pc − pc−1). Let L be the sub-extensionof Ksep obtained by adding to K all the roots of P (x). Then the rami�ationindex e(L/K) is divisible by pc−1(p − 1). Let L̃ be the sub-extension of Ksep�xed by the kernel of ρ (5.6.3). The Galois group Gal(Ksep/L̃) �xes the rootsof P (x) by de�nition. Hene we have L ⊂ L̃, and | Im(ρ)| = [L̃ : K] is divisibleby [L : K]; in partiular, it is divisible by pc−1(p− 1).(iii) Note that the relation i0 ≤ c − 1 is equivalent to saying that G is notonneted by 4.4(ii). Assume onversely i0 = c, i.e. G is onneted. Then wewould have

P (X) ≡ Xq mod (πA[X ]).But v(P (α)) = 1 implies that αpc ∈ πA, i.e. α = 0; hene we would have
P (α) = 0, whih ontradits the ondition v(P (α)) = 1.We put Q(X) = P (X + α) = P (X) + P (α). As v(P (α)) = 1, then (0, 1) and
(pi0 , 0) are the �rst two break points of the Newton polygon of Q(X). Henethere exists pi0 roots of Q(X) of valuation 1/pi0. Let L be the subextensionof K in Ksep generated by the roots of P (X). The rami�ation index e(L/K)is divisible by pi0 . As in the proof of (ii), if L̃ is the subextension of Ksep
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424 Yichao Tian�xed by the kernel of ρ, then it is an extension of L. Therefore, we have
| Im(ρ)| = [L̃ : K] is divisible by [L : K], and in partiular, divisible by pi0 . �

5.9. Let G be a BT-group over S with onneted part G◦, and étale part Gétof height r. We have a anonial exat sequene of I-modules(5.9.1) 0→ G◦(1)(K)→ G(1)(K)→ Gét(1)(K)→ 0giving rise to a lass C ∈ Ext1Fp[I](G
ét(1)(K), G◦(1)(K)), whih vanishes ifand only if (5.9.1) splits. Sine I ats trivially on Gét(1)(K), we have anisomorphism of I-modules Gét(1)(K) ≃ Frp. Reall that for any Fp[I]-module

M , we have a anonial isomorphism ([Se1℄ Chap.VII, �2)
Ext1Fp[I](Fp,M) ≃ H1(I,M).Hene we dedue that(5.9.2) C ∈ Ext1Fp[I](G

ét(1)(K), G◦(1)(K)) ≃ H1(I,G◦(1)(K))r.

Proposition 5.10. Let G be a HW-yli BT-group over S suh that h(G) = 1,
ρ (5.6.3) be the representation of I on G(1)(K). Then the ohomology lass Cdoes not vanish if and only if the order of the group Im(ρ) is divisible by p.First, we prove the following result on ohomology of groups.
Lemma 5.11. Let F be a �eld, Γ be a ommutative group, and χ : Γ→ F× be anon-trivial harater of Γ. We denote by F (χ) an F -vetor spae of dimension
1 endowed with an ation of Γ given by χ. Then we have H1(Γ, F (χ)) = 0.Proof. Let C be a 1-oyle of Γ with values in F (χ). We prove that C is a
1-oboundary. For any g, h ∈ Γ, we have

C(gh) = C(g) + χ(g)C(h),

C(hg) = C(h) + χ(h)C(g).Sine Γ is ommutative, it follows from the relation C(gh) = C(hg) that(5.11.1) (χ(g)− 1)C(h) = (χ(h)− 1)C(g).If χ(g) 6= 1 and χ(h) 6= 1, then
1

χ(g)− 1
C(g) =

1

χ(h)− 1
C(h).Therefore, there exists x ∈ F (χ) suh that C(g) = (χ(g) − 1)x for all g ∈ Γwith χ(g) 6= 1. If χ(g) = 1, we have also C(g) = 0 = (χ(g) − 1)x by (5.11.1).This shows that C is a 1-oboundary. �Proof of 5.10. By 4.3(ii) and 5.4(), the onneted part G◦ of G is HW-yliwith h(G◦) = h(G) = 1. Assume that Tp(G

◦) has rank ℓ over Zp, and Tp(G
ét)has rank r. Then by 5.8(a), G◦(1)(K) is an Fq-vetor spae of dimension 1 with

q = pℓ, and the ation of I on G◦(1)(K) fators through the harater χ : I →
It

θq−1−−−→ F×q . We write G◦(1)(K) = Fq(χ) for short. If the ohomology lass
C is zero, then the exat sequene (5.9.1) splits, i.e. we have an isomorphism
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p-Adic Monodromy of a Barsotti-Tate Group 425of Galois modules G(1)(K) ≃ Fq(χ)⊕ Frp. It is lear that the group Im(ρ) hasorder q − 1.Conversely, if the ohomology lass C is not zero, we will show that there existsan element in Im(ρ) of order p. We hoose a basis adapted to the exat sequene(5.9.1) suh that the ation of g ∈ I is given by(5.11.2) ρ(g) =

(
χ(g) C(g)

0 1r

)
,where 1r is the unit matrix of type (r, r) with oe�ients in Fp, and the map

g 7→ C(g) gives rise to a 1-oyle representing the ohomology lass C. Let
I1 be the kernel of χ : I → F×q , Γ be the quotient I/I1, so χ indues anisomorphism χ : Γ

∼−→ F×q . We have an exat sequene
0→ H1(Γ,Fq(χ))r

Inf−−→ H1(I,Fq(χ))r
Res−−→ H1(I1,Fq(χ))r,where �Inf� and �Res� are respetively the in�ation and restrition homomor-phisms in group ohomology. Sine H1(Γ,Fq(χ))r = 0 by 5.11, the restritionof the ohomology lass C to H1(I1,Fq(χ))r is non-zero. Hene there exists

h ∈ I1 suh that C(h) 6= 0. As we have χ(h) = 1, then
ρ(h)p =

(
1ℓ pC(h)
0 1r

)
= 1ℓ+r.Thus the order of ρ(h) is p. �

Corollary 5.12. Let G be a HW-yli BT-group over S,
h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac


be a matrix of ϕG, P (X) = Xpc + acX

pc−1

+ · · · + a1X ∈ A[X ]. If h(G) = 1and if there exists α ∈ k ⊂ A suh that v(P (α)) = 1, then the ohomology lass(5.9.2) is not zero, i.e. the extension of I-modules (5.9.1) does not split.Proof. Sine v(a1) = h(G) = 1, the integer i0 de�ned in 5.8(iii) is at least 1.Then the orollary follows from 5.8(iii) and 5.10. �

6. Lemmas in Group TheoryIn this setion, we �x a prime number p ≥ 2 and an integer n ≥ 1.
6.1. Reall that the general linear group GLn(Zp) admits a natural exhaustivedereasing �ltration by normal subgroups

GLn(Zp) ⊃ 1 + pMn(Zp) ⊃ · · · ⊃ 1 + pmMn(Zp) ⊃ · · · ,where Mn(Zp) denotes the ring of matrix of type (n, n) with oe�ients in Zp.We endow GLn(Zp) with the topology for whih (1 + pmMn(Zp))m≥1 form a
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426 Yichao Tianfundamental system of neighborhoods of 1. Then GLn(Zp) is a omplete andseparated topologial group.
6.2. Let G be a pro�nite group, ρ : G→ GLn(Zp) be a ontinuous homomor-phism of topologial groups. By taking inverse images, we obtain a dereasing�ltration (FmG,m ∈ Z≥0) on G by open normal subgroups:

F 0G = G, and FmG = ρ−1(1 + pmMn(Zp)) for m ≥ 1.Furthermore, the homomorphism ρ indues a sequene of injetive homomor-phisms of �nite groups
ρ0 : F 0G/F 1G −→ GLn(Fp)(6.2.1)
ρm : FmG/Fm+1G→ Mn(Fp), for m ≥ 1.(6.2.2)

Lemma 6.3. The homomorphism ρ is surjetive if and only if the followingonditions are satis�ed:(i) The homomorphism ρ0 is surjetive.(ii) For every integer m ≥ 1, the subgroup Im(ρm) of Mn(Fp) ontains anelement of the form 


x 0 · · · 0
0 0 · · · 0... ... . . . ...
0 0 · · · 0


with x 6= 0; or equivalently, there exists, for every m ≥ 1, an element gm ∈ Gsuh that ρ(gm) is of the form




1 + pma1,1 pm+1a1,2 · · · pm+1a1,n

pm+1a2,1 1 + pm+1a2,2 · · · pm+1a2,n... ... . . . ...
pm+1an,1 pm+1an,2 · · · 1 + pm+1an,n


 ,where ai,j ∈ Zp for 1 ≤ i, j ≤ n and a1,1 is not divisible by p.Proof. We notie �rst that ρ is surjetive if and only if ρm is surjetive for every

m ≥ 0, beause G is omplete and GLn(Zp) is separated [Bou, Chap. III �2
n◦8 Cor.2 au Théo. 1℄. The surjetivity of ρ0 is ondition (i). Condition (ii) islearly neessary. We prove that it implies the surjetivity of ρm for all m ≥ 1,under the assumption of (i). First, we remark that under ondition (i), if Alies in Im(ρm), then for any U ∈ GLn(Fp) the onjuagate matrix U · A · U−1lies also in Im(ρm). In fat, let Ã be a lift of A in Mn(Zp) and Ũ ∈ GLn(Zp) alift of U . By assumption, there exist g, h ∈ G suh that
ρ(g) ≡ 1+pmÃ mod (1+pm+1Mn(Zp)) and ρ(h) ≡ Ũ mod (1+pMn(Zp)).Therefore, we have ρ(hgh−1) ≡ (1 + pmŨ · Ã · Ũ−1) mod (1 + pm+1Mn(Zp)).Hene hgh−1 ∈ FmG and ρm(hgh−1) = U ·A · U−1.For 1 ≤ i, j ≤ n, let Ei,j ∈ Mn(Fp) be the matrix whose (i, j)-th entry is
0 and the other entries are 0. The matries Ei,j(1 ≤ i, j ≤ n) form learly
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p-Adic Monodromy of a Barsotti-Tate Group 427a basis of Mn(Fp) over Fp. To prove the surjetivity of ρm, we only needto verify that Ei,j ∈ Im(ρm) for 1 ≤ i, j ≤ n, beause Im(ρm) is an Fp-subspae of Mn(Fp). By assumption, we have E1,1 ∈ Im(ρm). For 2 ≤ i ≤ n,we put Ui = E1,i − Ei,1 +
∑

j 6=1,i Ej,j . Then we have Ui ∈ GLn(Zp) and
Ui · E1,1 · U−1

i = Ei,i ∈ Im(ρm). For 1 ≤ i < j ≤ n, we put Ui,j = I + Ei,jwhere I is the unit matrix. Then we have Ui,j ·Ei,i ·U−1
i,j = Ei,i+Ei,j ∈ Im(ρm),and hene Ei,j ∈ Im(ρm). This ompletes the proof.

�

Remark 6.4. By using the arguments in [Se2, Chap. IV 3.4 Lemma 3℄, we anprove the following stronger form of Lemma 6.3: If p = 2, ondition (i) and
(ii) for m = 1, 2 are su�ient to guarantee the surjetivity of ρ; if p ≥ 3, then
(i) and (ii) just for m = 1 su�e already.A subgroup C of GLn(Fp) is alled a non-split Cartan subgroup, if the subset
C∪{0} of the matrix algebra Mn(Fp) is a �eld isomorphi to Fpn ; suh a groupis yli of order pn − 1.
Lemma 6.5. Assume that n ≥ 2. We denote by H the subgroup of GLn(Fp)onsisting of all the elements of the form (

A b
0 1

)
, where A ∈ GLn−1(Fp) and

b =




b1...
bn−1


 with bi ∈ Fp(1 ≤ i ≤ n − 1). Let G be a subgroup of GLn(Fp).Then G = GLn(Fp) if and only if G ontains H and a non-split Cartan subgroupof GLn(Fp).Proof. The �only if� part is lear. For the �if� part, let C be a non-split Cartansubgroup ontained in G. For a �nite group Λ, we denote by |Λ| its order. Aneasy omputation shows that |GLn(Fp)| = |H | · |C|. So we just need to provethat U∩C = {1}; sine then we will have |GLn(Fp)| = |G|, hene G = GLn(Fp).Let g ∈ H ∩ C, and P (T ) ∈ Fp[T ] be its harateristi polynomial. We �x anisomorphism C ≃ F×pn , and let ζ ∈ F×pn be the element orresponding to g. Wehave P (T ) =
∏
σ∈Gal(Fpn/Fp)

(T − σ(ζ)) in Fpn [T ]. On the other hand, the fatthat g ∈ H implies that (T − 1) divises P (T ). Therefore, we get ζ = 1, i.e.
g = 1. �

Remark 6.6. E. Lau point out the following strengthened version of 6.5: When
n ≥ 3, a subgroup G ⊂ GLn(Fp) oinides with GLn(Fp) if and only if Gontains a non-split Cartan subgroup and the subgroup (GLn−1(Fp) 0

0 1

). Thisan be used to simplify the indution proess in the proof of Theorem 7.3 when
n ≥ 3.
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7. Proof of Theorem 1.3 in the One-dimensional Case
7.1. We start with a general remark on the monodromy of BT-groups. Let Xbe a sheme, G be an ordinary BT-group over a sheme X , Gét be its étalepart (2.10.1). If η is a geometri point of X , we denote by

Tp(G, η) = lim←−
n

G(n)(η) = lim←−
n

Gét(n)(η)the Tate module of G at η, and by ρ(G) the monodromy representation of
π1(X, η) on Tp(G, η). Let f : Y → X be a morphism of shemes, ξ be ageometri point of Y , GY = G ×X Y . Then by the funtoriality, we have aommutative diagram(7.1.1) π1(Y, ξ)

π1(f) //

ρ(GY )

��

π1(X, f(ξ))

ρ(G)

��
AutZp(Tp(GY , ξ)) AutZp(Tp(G, f(ξ)))In partiular, the monodromy of GY is a subgroup of the monodromy of G. Inthe sequel, diagram (7.1.1) will be refereed as the funtoriality of monodromyfor the BT-group G and the morphism f .

7.2. Let k be an algebraially losed �eld of harateristi p > 0, G be theunique onneted BT-group over k of dimension 1 and height n+ 1 ≥ 2 (4.10).We denote by S the algebrai loal moduli of G in harateristi p, by G theuniversal deformation of G over S, and by U the ordinary lous of G over S(3.8). Reall that S is a�ne of ring R ≃ k[[t1, · · · , tn]] (3.7), and that G and
G are HW-yli (f. 4.3(i) and 4.10). Let η be a geometri point of U overits generi point. We put

Tp(G, η) = lim←−
m∈Z≥1

G(m)(η)to be the Tate module of G at the point η. This is a free Zp-module of rank
n. We have the monodromy representation

ρn : π1(U, η)→ AutZp(Tp(G, η)) ≃ GLn(Zp).The following is the one-dimensional ase of Theorem 1.3.
Theorem 7.3. Under the above assumptions, the homomorphism ρn is surje-tive for n ≥ 1.
7.4. First, we assume n ≥ 2. By Proposition 4.11(ii), we may assume that(7.4.1) h =




0 0 · · · 0 −t1
1 0 · · · 0 −t2
0 1 · · · 0 −t3... . . . ...
0 0 · · · 1 −tn
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p-Adic Monodromy of a Barsotti-Tate Group 429is a matrix of the Hasse-Witt map ϕG. Let p be the prime ideal of R generatedby t1, · · · , tn−1. Then the losed subsheme of S de�ned by p is just the louswhere the p-rank of G is ≤ 1 by 4.4(ii). Let K0 ≃ k((tn)) be the fration�eld of R/p, R′ = R̂p be the ompletion of the loalization of R at p, and
GR′ = G ⊗R R′. Sine the natural map R → R′ is injetive, for any a ∈ R,we will denote also by a its image in R′. Sine the Hasse-Witt map ommuteswith base hange, the image of h in Mn×n(R′), denoted also by h, is a matrixof ϕGR′

. We see easily that the étale part of GR′ has height 1 and its onnetedpart G ◦R′ has height n. We have an exat sequene of BT-groups over R′(7.4.2) 0→ G
◦
R′ → GR′ → G

ét
R′ → 0.We �x an imbedding i : K0 → K0 of K0 into an algebraially losed �eld. Put

G ∗
K0

= G ∗R′ ⊗K0 for ∗ = ∅, ét, ◦. We have G ét
K0
≃ Qp/Zp, and G ◦

K0
is the uniqueonneted one-dimensional BT-group over K0 of height n (f. 4.10). We put

R̃′ = K0[[x1, · · · , xn−1]], and(7.4.3) Σ = {ring homomorphisms σ : R′ → R̃′ lifting R′ → K0
i−→ K0}Let σ ∈ Σ. We dedue from (7.4.2) by base hange an exat sequene ofBT-groups over R̃′(7.4.4) 0→ G

◦
fR′,σ → GfR′,σ → G

ét
fR′,σ → 0,where we have put G ∗fR′,σ = G ∗R′ ⊗σ R̃′ for ∗ = ◦, ∅, ét. Due to the henselianproperty of R̃′, the isomorphism G ét

K0
≃ Qp/Zp lifts uniquely to an isomorphism

G ét
fR′,σ ≃ Qp/Zp . Assume that G ◦fR′,σ is generially ordinary over S̃′ = Spec(R̃′).Let Ũ ′σ ⊂ S̃′ be its ordinary lous, and x be a geometri point over the generipoint of Ũ ′σ. The exat sequene (7.4.4) indues an exat sequene of Tatemodules(7.4.5) 0→ Tp(G

◦
fR′,σ, x)→ Tp(GfR′,σ, x)→ Tp(G

ét
fR′,σ, x)→ 0ompatible with the ations of π1(Ũ ′σ, x). Sine we have Tp(G

ét
fR′,σ, x) ≃

Tp(Qp/Zp, x) = Zp, this determines a ohomology lass(7.4.6) Cσ ∈ Ext1
Zp[π1(eU ′σ ,x)]

(Zp,Tp(G ◦fR′,σ, x)) ≃ H1(π1(Ũ ′σ, x),Tp(G
◦
fR′,σ, x)).We onsider also the �mod-p version� of (7.4.5)

0→ G
◦
fR′,σ(1)(x)→ GfR′,σ(1)(x)→ Fp → 0,whih determines a ohomology lass(7.4.7) Cσ ∈ Ext1

Fp[π1(eU ′σ ,x)]
(Fp,G ◦fR′,σ(1)(x)) ≃ H1(π1(Ũ ′σ, x),G ◦fR′,σ(1)(x)).It is lear that Cσ is the image of Cσ by the anonial redution map

H1(π1(Ũ ′σ, x),Tp(G
◦
fR′,σ, x))→ H1(π1(Ũ ′σ, x),G ◦fR′,σ(1)(x)).
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Lemma 7.5. Under the above assumptions, there exist σ1, σ2 ∈ Σ satisfying thefollowing properties:(i) We have G ◦fR′,σ1
= G ◦fR′,σ2

, and it is the universal deformation of G ◦
K0

.(ii) We have Cσ1 = 0 and Cσ2 6= 0.Before proving this lemma, we prove �rst Theorem 7.3.
Proof of 7.3. First, we notie that the monodromy of a BT-group is inde-pendent of the base point. So we an hange η to any geometri point of Uwhen disussing the monodromy of G. We make an indution on the odimen-sion n = dim(G∨). The ase of n = 1 is proved in Theorem 5.7. Assume that
n ≥ 2 and the theorem is proved for n− 1. We denote by

ρn : π1(U, η)→ AutFp(G(1)(η)) ≃ GLn(Fp)the redution of ρn modulo by p. By Lemma 6.3 and 6.5, to prove the surje-tivity of ρn, we only need to verify the following onditions:(a) Im(ρn) ontains a non-split Cartan subgroup of GLn(Fp);(b) Im(ρn) ontains the subgroup H ⊂ GLn(Zp) onsisting of all the elementsof the form (
B b
0 1

)
∈ GLn(Zp), with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp);For ondition (a), let A = k[[π]], T = Spec(A), ξ be its generi point, ξ be ageometri point over ξ, and I = Gal(ξ/ξ) be the absolute Galois group over

ξ. We keep the notations of 7.4. Let f∗ : R → A be the homomorphism of
k-algebras suh that f∗(t1) = π and f∗(ti) = 0 for 2 ≤ i ≤ n. We denote by
f : T → S the orresponding morphism of shemes, and put GT = G×S T . Bythe funtoriality of Hasse-Witt maps,

hT =




0 0 · · · 0 −π
1 0 · · · 0 0... . . . ...
0 0 · · · 1 0


is a matrix of ϕGT . By de�nition 5.4, the Hasse invariant of GT is h(G) = 1.Hene GT is generially ordinary; so f(ξ) ∈ U. Let

ρT : I = Gal(ξ/ξ)→ AutFp(GT (1)(ξ))be the mod-p monodromy representation attahed to GT . Proposition 5.8(i)implies that Im(ρT ) is a non-split Cartan subgroup of GLn(Fp). On the otherhand, by the funtoriality of monodromy, we get Im(ρT ) ⊂ Im(ρn). This veri�esondition (a).To hek ondition (b), we onsider the onstrutions in 7.4. Let S′ = Spec(R′),
f : S′ → S be the morphism of shemes orresponding to the natural ringhomomorphism R→ R′, U ′ be the ordinary lous of GR′ , and ξ be a geometripoint of U ′. From (7.4.2), we dedue an exat sequene of Tate modules(7.5.1) 0→ Tp(G

◦
R′ , ξ)→ Tp(GR′ , ξ)→ Tp(G

ét
R′ , ξ)→ 0.
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p-Adic Monodromy of a Barsotti-Tate Group 431Let ρG ′ : π1(U ′, ξ)→ AutZp(Tp(GR′ , ξ)) ≃ GLn(Zp) be the monodromy repre-sention of GR′ . Under any basis of Tp(GR′ , ξ) adapted to (7.5.1), the ation of
π1(U ′, ξ) on Tp(GR′ , ξ) is given by

ρGR′
: g ∈ π1(U ′, ξ) 7→

(
ρG ◦

R′
(g) ∗

0 ρG ét
R′

(g),

)where g 7→ ρG ◦
R′

(g) ∈ GLn−1(Zp) (resp. g 7→ ρG ét
R′

(g) ∈ Z×p ) gives the ationof π1(U ′, ξ) on Tp(G
◦
R′ , ξ) (resp. on Tp(G

ét
R′ , ξ)). Note that f(U ′) ⊂ U. So bythe funtoriality of monodromy, we get Im(ρG ′) ⊂ Im(ρn). To omplete theproof of Theorem 7.3, it su�es to hek ondition (b) with ρn replaed by ρGR′under the indution hypothesis that 7.3 is valide for n−1. Let σ1, σ2 : R′ → R̃′be the homomorphisms given by 7.5. For i = 1, 2, we denote by fi : S̃′ =

Spec(R̃′)→ S′ = Spec(R′) the morphism of shemes orresponding to σi, andput Gi = GfR′,σi = GR′ ⊗σi R̃′ to simply the notations. By ondition 7.5(i), wean denote by G ◦ the ommon onneted omponent of G1 and G2. Let Ũ ′ ⊂ S̃′be the ordinary lous of G ◦. Then we have fi(Ũ ′) ⊂ U ′ for i = 1, 2. Let x bea geometri point over the generi point of Ũ ′. We have an exat sequene ofTate modules(7.5.2) 0→ Tp(G
◦, x)→ Tp(Gi, x)→ Tp(Qp/Zp, x)→ 0ompatible with the ations of π1(Ũ ′, x). We denote by

ρGi : π1(Ũ ′, x)→ AutZp(Tp(Gi, x)) ≃ GLn(Zp)the monodromy representation of Gi. In a basis adapted to (7.5.2), the ationof π1(Ũ ′, x) on Tp(Gi, x) is given by
ρGi : g 7→

(
ρG ◦(g) Cσi (g)

0 1

)
,where ρG ◦ : π1(Ũ ′, x) → GLn−1(Zp) is the monodromy representation of G ◦,and the ohomology lass in H1(π1(Ũ ′, x),Tp(G

◦)) given by g 7→ Cσi (g) isnothing but the lass de�ned in (7.4.6). By 7.5(i) and the indution hypothesis,
ρG ◦ is surjetive. Sine the ohomology lass Cσ1 = 0 by 7.5(ii), we may assume
Cσ1 (g) = 0 for all g ∈ π1(U ′, x). Therefore Im(ρG1) ontains all the matrix ofthe form (

B 0
0 1

) with B ∈ GLn−1(Zp). By the funtoriality of monodromy,
Im(ρGR′

) ontains Im(ρG1). Hene we have(7.5.3) (
GLn−1(Zp) 0

0 1

)
⊂ Im(ρG1) ⊂ Im(ρGR′

).On the other hand, sine the ohomology lass Cσ2 6= 0, there exists a
g ∈ π1(Ũ ′, x) suh that b2 = Cσ2(g) 6= 0. Hene the matrix ρG2(g) has theform (B2 b2

0 1

) suh that B2 ∈ GLn−1(Zp) and the image of b2 ∈M1×n−1(Zp)
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432 Yichao Tianin M1×n−1(Fp) is non-zero. By the funtoriality of monodromy, we have
Im(ρG2) ⊂ Im(ρGR′

); in partiular, we have (B2 b2
0 1

)
∈ Im(ρGR′

). In viewof (7.5.3), we get(7.5.4) (
GLn−1(Zp) 0

0 1

)(
B2 b2
0 1

)(
GLn−1(Zp) 0

0 1

)
⊂ Im(ρGR′

).But the subset of GLn(Zp) on the left hand side is just the subgroup Hdesribed in ondition (b). Therefore, ondition (b) is veri�ed for ρGR′
, andthe proof of 7.3 is omplete.The rest of this setion is dediated to the proof of Lemma 7.5.

Lemma 7.6. Let k be an algebraially losed �eld of harateristi p > 0, Abe a noetherian henselian loal k-algebra with residue �eld k, G be a BT-groupover A, and Gét be its étale part. Put
Lie(G∨)ϕ=1 = {x ∈ Lie(G∨) suh that ϕG(x) = x}.Then Lie(G∨)ϕ=1 is an Fp-vetor spae of dimension equal to the rankof Lie(Gét∨), and the A-submodule Lie(Gét∨) of Lie(G∨) is generated by

Lie(G∨)ϕ=1.Proof. Let r be the rank of Lie(Gét∨), G◦ be the onneted part of G, and sbe the height of Lie(G◦∨). We have an exat sequene of A-modules
0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,ompatible with Hasse-Witt maps. We hoose a basis of Lie(G∨) adapted tothis exat sequene, so that ϕG is expressed by a matrix of the form (

U W
0 V

)with U ∈ Mr×r(A), V ∈ Ms×s(A), and W ∈ Mr×s(A). An element of
Lie(G∨)ϕ=1 is given by a vetor (x

y

), where x =



x1...
xr


 and y =



y1...
ys


 with

xi, yj ∈ A, satisfying(7.6.1) (
U W
0 V

)
·
(
x(p)

y(p)

)
=

(
x
y

)
⇔

{
U · x(p) +W · y(p) = x

V · y(p) = y.where x(p) (resp. y(p)) is the vetor obtained by applying a 7→ ap to eah xi(1 ≤
i ≤ r) (resp. yj(1 ≤ j ≤ s)). By 2.9, the Hasse-Witt map of the speial �ber of
G◦ is nilpotent. So there exists an integer N ≥ 1 suh that ϕNG◦(Lie(G◦∨)) ⊂
mA · Lie(G◦∨), i.e. we have V · V (p) · · ·V (pN−1) ≡ 0 (mod mA). From theequation V · y(p) = y, we dedue that

y = V · V (p) · · ·V (pN−1) · y(pN ) ≡ 0 (mod mA).
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p-Adic Monodromy of a Barsotti-Tate Group 433But this implies that y(pN ) ≡ 0 (mod m
pN

A ). Hene we get y = V · y(p) ≡
0 (mod m

pN+1
A ). Repeting this argument, we get �nally y ≡ 0 (mod mℓ

A)for all integers ℓ ≥ 1, so y = 0. This implies that Lie(G∨)ϕ=1 ⊂ Lie(Gét∨),and the equation (7.6.1) is simpli�ed as U · x(p) = x. Sine the linearizationof ϕGét is bijetive by 2.11, we have U ∈ GLr(A). Let U be the image of
U in GLr(k), and Sol be the solutions of the equation U · x(p) = x. As k isalgebraially losed, Sol is an Fp-spae of dimension r, and Lie(Gét∨) ⊗ k isgenerated by Sol (f. [Ka2, Prop. 4.1℄). By the henselian property of A, everyelements in Sol lifts uniquely to a solution of U ·x(p) = x, i.e. the redution map
Lie(G∨)ϕ=1 ∼−→ Sol is bijetive. By Nakayama's lemma, Lie(G∨)ϕ=1 generatesthe A-module Lie(Gét∨). �

7.7. We keep the notations of 7.4. Let CompK0
be the ategory of noetherianomplete loal K0-algebras with residue �eld K0, DGK0

(resp. DG ◦
K0

) be thefuntor whih assoiates to every objet A of CompK0
the set of isomorphsmlasses of deformations of GK0

(resp. G ◦
K0

) . If A is an objet in CompK0
and

G is a deformation of GK0
(resp. G ◦

K0
) over A, we denote by [G] its isomorphilass in DGK0

(A) (resp. in DG ◦
K0

).
Lemma 7.8. Let Σ be the set de�ned in (7.4.3).(i) The morphism of sets Φ : Σ→ DGK0

(R̃′) given by σ 7→ [GfR′,σ] is bijetive.(ii) Let σ ∈ Σ. Then there exists a basis of Lie(G ◦∨fR′,σ) suh that ϕG ◦fR′,σ
isrepresented by a matrix of the form(7.8.1) h◦σ =




0 0 · · · 0 a1

1 0 · · · 0 a2... . . . ...
0 0 · · · 1 an−1


with ai ≡ α · σ(ti) (mod m2

fR′) for 1 ≤ i ≤ n− 1, where α ∈ R̃′× and mfR′ is themaximal ideal of R̃′. In partiular, G ◦fR′,σ is the universal deformation of G ◦
K0if and only if {σ(t1), · · · , σ(tn−1)} is a system of regular parameters of R̃′.Proof. (i) We begin with a remark on the Kodaira-Spener map of GR′ . Let

TS/k = H omOS
(Ω1

S/k,OS) be the tangent sheaf of S. Sine G is universal,the Kodaira-Spener map (3.2.2)
Kod : TS/k

∼−→H omOS
(ωG,Lie(G∨))is an isomorphism. By funtoriality, this indues an isomorphism of R′-modules(7.8.2) KodR′ : TR′/k

∼−→ HomR′(ωGR′
,Lie(G ∨R′)),where TR′/k = HomR′(Ω

1
R′/k, R

′) = Γ(S,TS/k)⊗R R′.For eah integer ν ≥ 0, we put R̃′ν = R̃′/mν+1
fR′ , Σν to be the set of liftings of

R→ K0 → K0 to R→ R̃′ν , and Φν : Σν → DGK0
(R̃′ν) to be the morphism of
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434 Yichao Tiansets σν 7→ [GR′⊗σν R̃′ν ]. We prove by indution on ν that Φν is bijetive for all
ν ≥ 0. This will omplete the proof of (i). For ν = 0, the laim holds trivially.Assume that it holds for ν − 1 with ν ≥ 1. We have a ommutative diagram

Σν

��

Φν // DGK0
(R̃′ν)

��
Σν−1

Φν−1 // DGK0
(R̃′ν−1),where the vertial arrows are the anonial redutions, and the lower arrowis an isomorphism by indution hypothesis. Let τ be an arbitrary element of

Σν−1. We denote by Σν,τ ⊂ Σν the preimage of τ , and by DΦν−1(τ)(R̃
′
ν) ⊂

DGK0
(R̃′ν) the preimage of Φν−1(τ). It su�es to prove that Φν indues abijetion between Σν,τ and DΦν−1(τ)(R̃

′
ν). Let Iν = mν

fR′/m
ν+1
fR′ be the ideal ofthe redution map R̃′ν → R̃′ν−1. By [EGA, 0IV 21.2.5 and 21.9.4℄, we have

Ω1
R′/k ≃ Ω̂1

R′/k, and they are free over A of rank n. By [EGA, 0IV 20.1.3℄, Σν,τis a (nonempty) homogenous spae under the group
HomK0(Ω1

R′/k ⊗R′ K0, Iν) = TR′/k ⊗R′ Iν .On the other hand, aording to 3.5(i), DΦν−1(τ)(R̃′ν) is a homogenous spaeunder the group
HomK0

(ωGK0
,Lie(G ∨

K0
))⊗K0

Iν = HomR′(ωGR′
,Lie(G ∨R′))⊗R′ Iν .Moreover, it is easy to hek that the morphism of sets Φν : Σν,τ →

DΦν−1(τ)(R̃
′
ν) is ompatible with the homomorphism of groups

KodR′ ⊗R′ Id : TR′/k ⊗R′ Iν → HomR′(ωGR′
,Lie(G ∨R′))⊗R′ Iν ,where KodR′ is the Kodaira-Spener map (7.8.2) assoiated to GR′ . The bije-tivity of Φν now follows from the fat that KodR′ is an isomorphism.(ii) The seond part of the statement follows immediately from 4.11. It remainsto ompute the Hasse-Witt map of G ◦fR′,σ. We determine �rst the submodule

Lie(G ét∨
fR′,σ) of Lie(G ∨fR′,σ). We hoose a basis of Lie(G∨) over OS suh that ϕGis expressed by the matrix h (7.4.1). As GfR′,σ derives from G by base hange

R → R′
σ−→ R̃′, there exists a basis (e1, · · · , en) of Lie(G ∨fR′,σ) suh that ϕG fR′,σis expressed by

hσ =




0 0 · · · 0 −σ(t1)
1 0 · · · 0 −σ(t2)... . . . ...
0 0 · · · 1 −σ(tn)


 .By Lemma 7.6, Lie(G ét∨

fR′,σ) is generated by Lie(G ∨fR′,σ)ϕ=1. If ∑n
i=1 xnen ∈

Lie(G ∨fR′,σ)ϕ=1 with xi ∈ R̃′ for 1 ≤ i ≤ n, then (xi)1≤i≤n must satisfy the
Documenta Mathematica 14 (2009) 397–440



p-Adic Monodromy of a Barsotti-Tate Group 435equation hσ ·



xp1...
xpn


 =



x1...
xn


 ; or equivalently,

(7.8.3) 



x1 = −σ(t1)xpn
x2 = −σ(t2)xpn − σ(t1)pxp

2

n

· · ·
xn−1 = −σ(tn−1)xpn − · · · − σ(t1)p

n−2

xp
n−1

n

σ(t1)p
n−1

xp
n

n + σ(t2)p
n−2

xp
n−1

n + · · ·+ σ(tn)xpn + xn = 0.We note that σ(ti) ∈ mfR′ for 1 ≤ i ≤ n − 1 and σ(tn) ∈ R̃′
× with image

i(tn) ∈ K0, where i : K0 → K0 is the �xed immbedding. By Hensel's lemma,every solution inK0 of the equation i(tn)xpn+xn = 0 lifts uniquely to a solutionof (7.8.3). As Lie(G ét∨
fR′,σ) has rank 1, by Lemma 7.6, these are all the solutionsof (7.8.3). Let (λ1, · · · , λn) be a non-zero solution of (7.8.3). We have(7.8.4) λn ∈ R̃′

× and λi ≡ −λpnσ(ti) (mod m2
fR′).We put v = λ1e1 + · · · + λnen; so v is a basis of Lie(G ét∨

fR′,σ) by 7.6. For
1 ≤ i ≤ n, let fi be the image of ei in Lie(G ◦∨fR′,σ). Then f1, · · · , fn learlygenerate Lie(G ◦∨fR′,σ). By the expliit desription above of Lie(G ét∨

fR′,σ), we have
fn = −λ−1

n (λ1f1 · · ·+λn−1fn−1). Hene f1, · · · , fn−1 form a basis of Lie(G ◦∨fR′,σ).By the funtoriality of Hasse-Witt maps, we have ϕG ◦fR′
(fi) = fi+1 for 1 ≤ i ≤

n− 1, or equivalently,
ϕG ◦fR′,σ

(f1, · · · , fn−1) = (f1, · · · , fn−1) ·




0 0 · · · 0 −λ−1
n λ1

1 0 · · · 0 −λ−1
n λ2... . . . ...

0 0 · · · 1 −λ−1
n λn−1


 .In view of (7.8.4), we see that the above matrix has the form of (7.8.1) bysetting α = λp−1

n ∈ R̃′×. The seond part of statement (ii) follows immediatelyfrom Proposition 4.11(ii) and the desription above of ϕG ◦fR′,σ
. �Now we an turn to the proof of 7.5.

7.9. Proof of Lemma 7.5. First, suppose that we have found a σ2 ∈ Σsuh that Cσ2 6= 0 and G ◦fR′,σ2
is the universal deformation of G ◦

K0
. Sine

Φ : Σ
∼−→ DGK0

(R̃′) is bijetive by 7.8(i), there exists a σ1 ∈ Σ orresponding tothe deformation [G ◦fR′,σ2
⊕Qp/Zp] ∈ DGK0

(R̃′). It is lear that G ◦fR′,σ1
≃ G ◦fR′,σ2

.Besides, the exat sequene (7.4.5) for σ1 splits; so we have Cσ1 = 0. Itremains to prove the existene of σ2. We note �rst that K0 an be anoniallyimbedded into R̃′, sine it is perfet. Sine R′ is formally smooth over k and
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(t1, · · · , tn) is a p-basis of R′ over k, by [EGA, 0IV 21.2.7℄, there is a σ ∈ Σsuh that σ(ti) (1 ≤ i ≤ n− 1) form a system of regular parameters of R̃′ and
σ(tn) ∈ K0 ⊂ R̃′. We laim that σ2 = σ answers the question. In fat, Lemma7.8(ii) implies that G ◦fR′,σ is the universal deformation of G ◦

K0
. It remains toverify that Cσ 6= 0.Let A = K0[[π]] be a omplete disrete valuation ring of harateristi p withresidue �eld K0, T = Spec(A), ξ be the generi point of T , ξ be a geometriover ξ, and I = Gal(ξ/ξ) the Galois group. We de�ne a homomorphism of

K0-algebras f∗ : R̃′ → A by putting f∗(σ(t1)) = π and f∗(σ(ti)) = 0 for
2 ≤ i ≤ n − 1. This is possible, sine (σ(t1), · · · , σ(tn−1)) is a system ofregular parameters of R̃′. Let f : T → S̃′ be the homomorphism of shemesorresponding to f∗, and GT = GfR′,σ×fS′ T . By the funtoriality of Hasse-Wittmaps,

hT =




0 0 · · · 0 −π
1 0 · · · 0 0
0 1 · · · 0 0... . . . ...
0 0 · · · 1 −f∗(σ(tn))



∈Mn×n(R̃′)is a matrix of ϕGT . By de�nition (5.4), the Hasse invariant of GT is h(GT ) = 1.In partiular, GT is generially ordinary. Let Ũ ′σ ⊂ S̃′ be the ordinary lousof GfR′,σ. We have f(ξ) ∈ Ũ ′σ. By the funtoriality of fundamental groups, findues a homomorphism of groups

π1(f) : I = Gal(ξ/ξ)→ π1(Ũ ′σ, f(ξ)) ≃ π1(Ũ ′σ, x).Let G ◦T be the onneted part of GT , and G ét
T be the étale part of GT . Then

G ét
T ≃ Qp/Zp. We have an exat sequene of Fp[I]-modules

0→ G
◦
T (1)(ξ)→ GT (1)(ξ)→ G

ét
T (1)(ξ)→ 0,whih determines a ohomology lass CT ∈ H1(I,G ◦T (1)(ξ)). We notie that

GT (1)(ξ) is isomorphi to GfR′,σ(1)(x) as an abelian group, and the ation of Ion GT (1)(ξ) is indued by the ation of π1(Ũ ′σ, x) on GfR′,σ(1)(x). Therefore,
CT is the image of Cσ by the funtorial map

H1
(
π1(Ũ ′σ, x),G ◦fR′,σ(1)(x)

)
→ H1

(
I,G ◦T (1)(ξ)

)
.To verify that Cσ 6= 0, it su�es to hek that CT 6= 0. We onsider thepolynomial P (X) = Xpn + f∗(σ(tn))Xpn−1

+ πX ∈ A[X ]. Aording to 5.12,it su�es to �nd a α ∈ K0 ⊂ A suh that P (α) is a uniformizer of A. But bythe hoie of σ, we have σ(tn) ∈ K0 and σ(tn) 6= 0; so f∗(σ(tn)) 6= 0 lies in K0.Let α be a pn−1(p − 1)-th root of −f∗(σ(tn)) in K0. Then we have α ∈ K×0 ,and P (α) = απ is a uniformizer of A. This ompletes the proof of 7.5.
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8. End of the Proof of Theorem 1.3In this setion, k denotes an algebraially losed �eld of harateristi p > 0.

8.1. First, we reall some preliminaries on Newton strati�ation due to F.Oort. Let G be an arbitrary BT-group over k, S be the loal moduli of G inharateristi p, and G be the universal deformation of G over S (3.8). Put
d = dim(G) and c = dim(G∨). We denote by N (G) the Newton polygon of
G whih has endpoints (0, 0) and (c + d, d). Here we use the normalization ofNewton polygons suh that slope 0 orresponds to étale BT- groups and slope1 orresponds to groups of multipliative type.Let NP(c + d, d) be the set of Newton polygons with endpoints (0, 0) and
(c + d, d) and slopes in (0, 1). For α, β ∈ NP(c + d, d), we say that α � βif no point of α lies below β; then ��� is a partial order on NP(c + d, d).For eah β ∈ NP(c + d, d), we denote by Vβ the subset of S onsisting ofpoints x with N (Gx) � β, and by V ◦β the subset of S onsisting of points xwith N (Gx) = β. By Grothendiek-Katz's speialization theorem of Newtonpolygons, Vβ is losed in S, and V ◦β is open (maybe empty) in Vβ . We put
♦(β) =

{(x, y) ∈ Z×Z | 0 ≤ y < d, y < x < c+d, (x, y)lies on or above the polygon β},and dim(β) = #(♦(β)).
Theorem 8.2 ([Oo2℄ Theorem 2.11). Under the above assumptions, for eah
β ∈ NP(c + d, d), the subset V ◦β is non-empty if and only if N (G) � β. Inthat ase, Vβ is the losure of V ◦β and all irreduible omponents of Vβ havedimension dim(β).
8.3. Let G be a onneted and HW-yli BT-group over k of dimension d =
dim(G) ≥ 2. Let β ∈ NP(c + d, d) be the Newton polygon given by thefollowing slope sequene:

β = (1/(c+ 1), · · · , 1/(c+ 1)︸ ︷︷ ︸
c+1

, 1, · · · , 1︸ ︷︷ ︸
d−1

).We have N (G) � β sine G is supposed to be onneted. By Oort's Theorem8.2, Vβ is a equal dimensional losed subset of the loal moduli S of dimension
c(d− 1). We endow Vβ with the struture of a redued losed subsheme of S.
Lemma 8.4. Under the above assumptions, let R be the ring of S, and




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈ Mc×c(R)be a matrix of the Hasse-Witt map ϕG. Then the losed redued subsheme Vβof S is de�ned by the prime ideal (a1, · · · , ac). In partiular, Vβ is irreduible.
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438 Yichao TianProof. Note �rst that {a1, · · · , ac} is a subset of a system of regular parametersof R by 4.11(i). Let I be the ideal of R de�ning Vβ . Let x be an arbitrarypoint of Vβ , we denote by px the prime ideal of R orresponding to x. Sinethe Newton polygon of the �bre Gx lies above β, Gx is onneted. By Lemma4.4, we have ai ∈ px for 1 ≤ i ≤ c. Sine Vβ is redued, we have ai ∈ I.Let P = (a1, · · · , ac), and V (P) the losed subsheme of S de�ned by P.Then V (P) is an integral sheme of dimension c(d− 1) and Vβ ⊂ V (P). SineTheorem 8.2 implies that dimVβ = c(d−1), we have neessarily Vβ = V (P). �We keep the assumptions above. Let (ti,j)1≤i≤c,1≤j≤d be a regular system ofparameters of R suh that ti,d = ai for all 1 ≤ i ≤ c. Let x be the generi pointof the Newton strata Vβ , k′ = κ(x), and R′ = ÔS,x. Sine R is noetherianand integral, the anonial ring homomorphism R → OS,x → R′ is injetive.The image in R′ of an element a ∈ R will be denoted also by a. By hoosing a
k-setion k′ → R′ of the anonial projetion R′ → k′, we get a (non-anonial)isomorphism of k-algebras R′ ≃ k′[[t1,d, · · · , tc,d]]. Let k′′ be an algebrailosure of k′, and R′′ = k′′[[t1,d, · · · , tc,d]]. Then we have a natural injetivehomomorphism of k-algebras R′ → R′′ mapping ti,d to ti,d for 1 ≤ i ≤ c.Let S′′ = Spec(R′′), x be its losed point. By the onstrution of S′′, we havea morphism of k-shemes(8.4.1) f : S′′ → Ssending x to x. We put G = G×S S

′′. By the hoie of the Newton polygon β,the losed �bre Gx has a BT-subgroup Hx of multipliative type of height d−1.Sine S′′ is henselian, Hx lifts uniquely to a BT-subgroup H of G . We put
G ′′ = G /H . It is a onneted BT-group over S′′ of dimension 1 and height c+1.
Lemma 8.5. Under the above assumptions, G ′′ is the universal deformation inequal harateristi of its speial �ber.This lemma is a partiular ase of [Lau, Lemma 3.1℄. Here, we use 4.11(ii) togive a simpler proof.Proof. We have an exat sequene of BT-groups over S′′

0→H → G → G
′′ → 0,whih indues an exat sequene of Lie algebras 0 → Lie(G ′′∨) → Lie(G ∨) →

Lie(H ∨)→ 0 ompatible with Hasse-Witt maps. Sine H is of multipliativetype, we get Lie(H ∨) = 0 and an isomorphism of Lie algebras Lie(G ′′∨) ≃
Lie(G ∨). By the hoie of the regular system (ti,j)1≤i≤c,1≤j≤d, there is a basis
(v1, · · · , vc) of Lie(G ′′∨) over OS′′ suh that ϕG ′′ is given by the matrix

h =




0 0 · · · 0 −t1,d
1 0 · · · 0 −t2,d
0 1 · · · 0 −t3,d... . . . ...
0 0 · · · 1 −tc,d



.
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p-Adic Monodromy of a Barsotti-Tate Group 439Now the lemma results from Proposition 4.11(ii). �

8.6. Proof of Theorem 1.3. The one-dimensional ase is treated in 7.3.If dim(G) ≥ 2, we apply the preeding disussion to obtain the morphism
f : S′′ → S and the BT-groups G = G×S S

′′ and G ′′, whih is the quotient of
G by the maximal subgroup of G of multipliative type. Let U ′′ be the ommonordinary lous of G and G ′′ over S′′, and ξ be a geometri point of U ′′. Then
f maps U ′′ into the ordinary lous U of G. We denote by

ρG : π1(U ′′, ξ)→ AutZp(Tp(G , ξ))the monodromy representation assoiated to G , and the same notation for ρG ′′ .By the funtoriality of monodromy, we have Im(ρG ) ⊂ Im(ρG). On the otherhand, the anonial map G → G ′′ indues an isomorphism of Tate modules
Tp(G , η)

∼−→ Tp(G
′′, η) ompatible with the ation of π1(U ′′, η). Therefore,the group Im(ρG ) is identi�ed with Im(ρG ′′). Sine G ′′ is one-dimensional, weonlude the proof by Lemma 8.5 and Theorem 7.3.Referenes[AN℄ J. Ahter and P. Norman, Loal monodromy of p-divisible groups, toappear in Transations of A.M.S., (2006).[BBM℄ P. Berthelot, L. Breen and W. Messing, Théorie de DieudonnéCristalline II, Let. notes in Math. 930, Springer-Verlag, (1982).[Bou℄ N. Bourbaki, Algèbre Commutative, Masson, Paris (1985).[Ch1℄ L. Chai, Loal monodromy for deformations of one dimensional formalgroups, J. reine angew. Math. 524, (2000), 227-238.[Ch2℄ L. Chai, Methods for p-adi monodromy, to appear in Jussieu J. Math.,(2006).[CO℄ L. Chai and F. Oort, Monodromy and irreduibility of leaves, availableat the webpage of F. Oort, (2008).[DR℄ P. Deligne and K. Ribet, Values of abelian L-funtions at negativeintegers over totally real �elds. Inven. Math. 59, (1980), 227-286.[Dem℄ M. Demazure, Letures on p-Divisible Groups, Let. notes in Math.

302, Springer-Verlag, (1972).[DG℄ M. Demazure and A. Grothendiek, Shéma en Groupes I (SGA 3I), Let. notes in Math. 151, Springer-Verlag, (1970).[Eke℄ T. Ekedahl, The ation of monodromy on torsion points of Jaobians,Arithmeti Algebrai Geometry, G. van der Geer, F. Oort and J. Steen-brink, ed. Progress in Math. 89, Birkhäuser, (1991), 41-49.[FC℄ G. Faltings and L. Chai, Degeneration of Abelian Varieties, ErgebnisseBd 22, Springer-Verlag,(1990).[Gro℄ B. Gross, Rami�ation in p-adi Lie extensions, Journée de GéométrieAlgébrique de Rennes III, Astérisque 65, (1979), 81-102.[EGA℄ A. Grothendiek, Éléments de Géométrie algébrique IV, Étude loaledes shémas et des morphismes de shémas, Publ. Math. Inst. HautesÉtud. Si. 20, 24, 28, 32 (1964-1967).
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440 Yichao Tian[Gr℄ A. Grothendiek, Groupes de Barsotti-Tate et Cristaux de Dieudonné,les Presses de l'Université de Montréal, (1974).[Hid℄ H. Hida p-adi automorphi forms on redutive groups, Astérisque 296(2005), 147-254.[Ill℄ L. Illusie, Déformations de groupes de Barsotti-Tate (d'après A.Grothendiek), Astérisque 127 (1985), 151-198.[Igu℄ J. Igusa, On the algebrai theory of ellipti modular funtions. J. Math.So. Japan 20 (1968), 96-106.[deJ℄ A. J. de Jong, Crystalline Dieudonné module theory via formal andrigide geometry, Publ. Math. Inst. Hautes Étud. Si. 82 (1995), 5-96.[Ka1℄ N. Katz, Algebrai solutions of di�erential equations (p-urvature andthe Hodge �ltration), Inven. Math. 18 (1972), 1-118.[Ka2℄ N. Katz, p-adi properties of modular shemes and modular forms,in Modular Funtions of One Variable III, Let. notes in Math. 350,Springer-Verlag, (1973).[Lau℄ E. Lau, Tate modules and universal p-divisible groups,arXiv:0803.1390v1, (2008).[Oo1℄ F. Oort, Newton polygons and formal groups: onjetures by Maninand Grothendiek, Ann. of Math. 152 (2000), 183-206.[Oo2℄ F. Oort, Newton polygon strata in the moduli spae of abelian va-rieties, in Moduli spae of Abelian Varieties (Progress in Mathematis
195), Birkhäuser-Verlag, (2001), 417-440.[Se1℄ J. P. Serre, Corps Loaux, Hermann, Paris, (1968).[Se2℄ J. P. Serre, Abelian ℓ-adi representations and ellipti urves, A KPeters, Wellesley, MA, (1998). Originally published in 1968 by W. A.Benjamin.[Se3℄ J. P. Serre, Propriétés galoisiennes des points d'ordre �ni des ourbeselliptiques, Inven. Math. 15 (1972), 259-331.[Str℄ M. Strauh, Galois ations on torsion points of universal one-dimensional formal modules, arXiv: 0709.3542, (2007).[Ti1℄ Y. Tian, Thesis at University Paris 13, defensed in November 2007.[Ti2℄ Y. Tian, p-adi monodromy of the universal deformation of an elemen-tary Barsotti-Tate group, arXiv: 0708.2022, (2007).Yihao TianDepartment of MathematisPrineton UniversityPrinetonNew Jersey08544USAyihaot�prineton.edu

Documenta Mathematica 14 (2009) 397–440



Documenta Math. 441

Galois Representations and Lubin-Tate Groups

Mark Kisin and Wei Ren

Received: May 3, 2009

Revised: June 6, 2009

Communicated by Takeshi Saito

Abstract. Using Lubin-Tate groups, we develop a variant of Fontaine’s
theory of (ϕ,Γ)-modules, and we use it to give a description of the Galois
stable lattices inside certain crystalline representations.

Introduction

In his Grothendieck Festschrift paper [Fo 1], Fontaine introduced a new way
to classify local Galois representation, using the theory of so called (ϕ,Γ)-
modules. To recall this, let k be a perfect field of characteristic p, K0 =
FrW (k) and K/K0 a finite, totally ramified extension. Fix an algebraic closure
K̄ of K. Fontaine’s theory starts with an infinite extension K∞/K which is
required to have certain ramification properties. Miraculously, these properties
ensure that GK∞ = Gal(K̄/K∞) can be identified with the absolute Galois
group of a local field of equal characteristic p, X(K). It is well known that
representations of such a Galois group on finite dimensional Fp-vector spaces
can be classified rather concretely in terms of finite dimensional vector spaces
over X(K) equipped with an étale Frobenius. If K∞/K is Galois, then Γ =
Gal(K∞/K) acts naturally on X(K), and one obtains a classification of GK-
representations on finite dimensional Fp-vector spaces by adding a semi-linear
action of Γ to the étale ϕ-modules over X(K).
To obtain a classification of GK-representations on finite Zp-modules, one needs
to lift the action of ϕ and Γ on X(K) to commuting operators on a Cohen ring
for X(K). This is probably not always possible, but can be done when K∞
is the p-cyclotomic extension of K. Much of the work on Fontaine’s theory
by Berger, Colmez, Wach and others has focused on this case. In this paper
we focus on the case when K∞ is generated by the p-power torsion points of a
Lubin-Tate group for a finite extension L/Qp contained in K. As an application
we obtain a description of the GK -stable lattices in a certain class of crystalline
GK-representations. This is possible using the p-cyclotomic theory only when
K is an unramified extension of some Qp(µpn).
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More precisely, let G be a Lubin-Tate group over OL, write kL for the residue
field of L, fix a uniformizer πL of L, and write R = lim←−OK̄/p, where the

transition maps in the inverse limit are given by Frobenius. The action ofGK on
the Tate module TG of G gives rise to a character χ : Γ→ O×L . It turns out that,
using the periods of TG one can construct a subring OE ⊂ W (FrR)⊗W (kL) L

which is naturally a Cohen ring for X(K). The action of O×L ⊂ OL on G gives
rise to a natural lifting of the action of Γ to OE (via χ), while the action of πL
on G allows one to lift the q-Frobenius ϕq = ϕr to OE , where q = |kL|.
This allows one to classify GK -representations on finite OL-modules in terms
of étale (ϕq,Γ)-modules (see Theorem 1.6 below), and is explained in §1 of the
paper. At least some part of this construction was certainly known to experts.
The construction of the periods involved is in Colmez’s paper [Col 1], and some
of the ideas go back to Coleman [Co]. This material is also closely related to
the subject of Fourquaux’s thesis [Fou, §1.4].
In §2,3 we use this classification to give a classification of Galois stable lattices
in certain crystalline GK-representations, assuming that K ⊂ K0 · L∞ where
L∞/L is the field generated by the torsion points of G. To explain the classi-
fication, assume for simplicity that K = K0 · L, and let SL = OK [[u]]. Fix a
co-ordinate X on G, and for a ∈ OL denote by [a] ∈ OL[[X ]] the power series
giving the action of a on G. Then γ ∈ Γ acts on SL by u 7→ [χ(γ)](u), while

ϕq acts on SL by u 7→ [πL](u). Let Q = [πL](u)/u. We denote by Mod
ϕq,Γ

/SL

the category of finite free SL-modules equipped with a continuous semi-linear
action of Γ which induces the trivial action of M/uM, and an isomorphism

ϕ∗qM[1/Q]
∼−→ M[1/Q] such that the map 1 ⊗ ϕq : M → M[1/Q] commutes

with the action of Γ. Inside this category is a subcategory Mod
ϕq,Γ,an

/SL
consisting

of objects M on which the Γ-action is OL-analytic. this means that there is
OL-linear map of Lie algebras dΓ : Lie Γ → EndK(M ⊗SL K[[u]]), such that
the action of an open subgroup of Γ is obtained by exponentiating dΓ.
To describe the crystalline representations we allow, consider any crystalline
GK-representation on an L-vector space V. Then

DdR(V ) = (BdR ⊗Qp V )GK = ⊕mDdR(V )m

where m runs over the maximal ideals of K⊗QpL.We say that V is L-crystalline
if the filtration on DdR(V )m is trivial, unless m is the kernel of the natural map
K ⊗Qp L →֒ K corresponding to the inclusion L→ K. One of our main results
is then the following

Theorem (0.1). There is an exact equivalence of ⊗-categories between

Mod
ϕq,Γ,an

/SL
and the category of GK -stable OL-lattices in L-crystalline GK-

representations.

The theorem is a generalization of the classification of GK-stable lattices in
crystalline representations in terms of Wach lattices due to Wach [Wa], Colmez
[Col 2] and Berger [Be 3], when K∞ is the p-cyclotomic extension and K is
unramified.
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It is also analogous to the classification GK∞ -stable lattices, obtained in [Ki]
in the case when K∞ is obtained from K by adjoining the p-power roots of
a uniformizer. The advantage of Theorem (0.1) is that it applies without re-
striction on the ramification of K, and gives a precise description of GK -stable
lattices. Unfortunately, it applies only to a rather special kind of crystalline
GK-representation. It seems likely that in order to obtain a classification valid
for any crystalline GK-representation one needs to consider higher dimensional
subrings of W (FrR), constructed using the periods of all the conjugates of G.
Acknowledgment: The results presented here were to be the subject of the
Ph. D thesis of Wei Ren. They were written up by the first author after Ren’s
premature and tragic death.

We would like to thank Barry Mazur and Jean-Marc Fontaine for useful con-
versations on some of the material presented here. Finally we thank the referee
for a careful reading of the paper and some useful remarks.

§1 Étale (ϕq,Γ)-modules

(1.1) Throughout the paper we fix a perfect field k, of characteristic p > 0. Let
W = W (k), K0 = W [1/p] and K/K0 a finite totally ramified extension with
ring of integers OK , and uniformizer π. We also fix an algebraic closure K̄ of
K with ring of integers OK̄ , and set GK = Gal(K̄/K).

Let L/Qp be a finite extension of Qp contained in K. Let OL denote the ring of
integers of L, and kL ⊂ k its residue field. Write OL0 = W (kL), L0 = OL0 [1/p],
and q = pr = |kL|. For an OL0-algebra A, it will be convenient to write AL =
A⊗OL0

OL.
Let G be a Lubin-Tate group over L corresponding to a uniformizer πL ∈ L.
Fix a local co-ordinate X on G so that the formal Hopf algebra OG may be
identified with OL[[X ]]. For a ∈ OL we denote by [a] ∈ OL[[X ]] = OG the power
series giving the endomorphism a of G.
For n ≥ 1, let Kn ⊂ K̄ denote the subfield generated by the πnL-torsion
points of G. We set K∞ = ∪nKn and we write Γ = Gal(K∞/K) and
GK∞ = Gal(K̄/K∞). Let TG denote the p-adic Tate module of G. Then TG is
a free OL-module of rank 1, and the action of Γ induces a faithful character
χ : Γ→ O×L .
We let R = lim←−OK̄/p with the transition maps being given by Frobenius.

We may also identify R with lim←−OK̄/πL with the transition map being given
by the q-Frobenius ϕr. Evaluation of X at πL-torsion points then induces a
map ι : TG → R. Namely if v = (vn)n≥0 ∈ TG with vn ∈ G[πnL](OK̄) and
πL · vn+1 = vn, then ι(v) = (v∗n(X))n≥0.

Lemma (1.2). There is a unique map { } : R → W (R)L such that {x} is a
lifting of x, and ϕr({x}) = [πL](x). Moreover { } respects the action of GK ,
and for v ∈ TG we have

(1) If a ∈ OL then {ι(av)} = [a]({ι(v)}).
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(2) The action of GK on {ι(TG)} factors through Γ and for γ ∈ Γ

[χ(γ)]({ι(v)}) = {ι(γv)} = {γ · ι(v)} = γ · {ι(v)}

In particular, if v ∈ TG is an OL-generator, there is an embedding WL[[u]] →֒
W (R)L sending u to {ι(v)} which identifies WL[[u]] with a GK-stable, ϕr-stable
subring of W (R)L such that {ι(TG)} lies in the image of WL[[u]].

Proof. The existence and uniqueness of { } is [Col 1, Lem. 9.3]. The map {x}
is given by

{x} = lim
n

[πnL](ϕ−rn(x̃))

where x̃ ∈ W (R)L is any lifting of x. That { } respects the action of GK follows
by functoriality. In particular, the action of GK on {ι(TG)} factors through Γ.
For (1) note that

[πL][a]{ι(v)} = [a][πL]{ι(v)} = [a]ϕr{ι(v)} = ϕr([a]{ι(v)}).

Since [a]{ι(v)} and {ι(av)} both have image [a](ι(v)) in R, this proves (1).
(Here R is viewed as a OK algebra via OK → k.)
Now the first equality in (2) follows from (1), while the other two equalities
follows from the compatibility of ι and { } with the action of GK .
Finally, since ι(v) has positive valuation with respect to the canonical valuation
on R, u 7→ {ι(v)} induces a well defined map WL[[u]] → W (R)L. Its image is
ϕ-stable by definition of { } and Γ-stable by (2). If this map had a non-trivial
kernel, then so would its reduction modulo πL. The latter map k[[u]] → R,
sending u to ι(v) is easily seen to be injective, as ι(v) has positive valuation. �

(1.3) Write SL = WL[[u]]. We fix an OL-generator v ∈ TpG, and we identify
SL with a subring of W (R)L by sending u to {ι(v)}.
LetOE denote the p-adic completion of SL[1/u].ThenOE is a complete discrete
valuation ring with uniformizer πL and residue field k((u)). We may view OE
as a subring of W (FrR)L. Let OEur ⊂W (FrR)L denote the maximal integral,
unramified extension of OE . We denote by ObEur the p-adic completion of OEur ,

which is again naturally a subring of W (FrR)L. We write E , Eur and Êur for
the fields of fractions of OE , OEur and ObEur respectively. These rings are all
stable by ϕr, and by the action of GK . Moreover the GK-action on OE factors
through Γ.

Lemma (1.4). The residue field of ObEur is a separable closure of k((u)). There
is a natural isomorphism

Gal(Eur/E)
∼−→ Gal(K̄/K∞).

Proof. This is a consequence of the theory of norm fields [Wi]. Since Γ is
a p-adic Lie group the theory of loc. cit applies [Wi, 1.2.2]. For any finite
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extension F/K write XK(F ) = lim←−(F ·Kn) where the maps in the inverse limit

are given by the norm. We set XK(K̄) = ∪FXK(F ) where the limit runs over
finite extensions F/K in K̄. Then XK(F ) has the structure of a local field of
characteristic p, which is a finite separable extension of XK(K), XK(K̄) is a
separable closure of XK(K), and the functor XK induces an isomorphism [Wi,
3.2.2]

Gal(XK(K̄)/XK(K))
∼−→ Gal(K̄/K∞).

On the other hand, there is a natural embedding XK(K) →֒ FrR [Wi ,§4]. To
see this explicitly note that one has well defined maps of rings

(1.4.1) lim←−OKn → lim←−OKn/(v1) →֒ lim←−OK̄/πL = R,

where the transition maps in the first two inverse limits are given by the norm,
and the final inverse limit by x 7→ xq .
The image of (1.4.1) is easily seen to be k[[u]] ⊂ R. Hence we may identify
OE/πLOE with XK(K). It follows that OEur/πLOEur ⊂ FrR may be identified
with XK(K̄). The lemma follows. �

(1.5) Note that the above proof shows that the map ι induces a map

TG → lim←−K∞,

where the transition maps are given by the norm. This is Coleman’s map [Co,
Thm. A].
We will write ϕq for the q-Frobenius ϕr (for example on the ring W (FrR)).

Now denote by Mod
ϕq
/OE (resp. Mod

ϕq,tor

/OE ) the category of finite free (resp. finite

torsion) OE -modules M, equipped with an isomorphism (ϕq)
∗M

∼−→ M. We

denote by Mod
ϕq,Γ

/OE (resp. Mod
ϕq,Γ,tor

/OE ) the category of consisting of a module

M in Mod
ϕq
/OE (resp. Mod

ϕq,tor

/OE ) equipped with a continuous semi-linear action

of Γ which commutes with the action of ϕq.
We denote by RepGK∞ (resp. Reptor

GK∞
) the category of finite free (resp. finite

torsion) OL-modules V, equipped with a linear action of GK∞ Similarly, we
denote by RepGK (resp. Reptor

GK
) the category of finite free (resp. finite torsion)

OK-modules V, equipped with a linear action of GK .

For M in Mod
ϕq
/OE (resp. Mod

ϕq,tor

/OE , resp. Mod
ϕq,Γ

/OE , resp. Mod
ϕq,Γ,tor

/OE ) we set

V (M) = (ObEur ⊗OE M)ϕq=1.

For V in RepGK∞ (resp. Reptor
GK∞

resp. RepGK resp. Reptor
GK

)) we set

MOE (V ) = (V ⊗OK ObEur)
GK∞ .
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Theorem (1.6). V and MOE are quasi-inverse equivalences between the exact

tensor categories Mod
ϕq
/OE (resp. Mod

ϕq,tor

/OE , resp. Mod
ϕq,Γ

/OE , resp. Mod
ϕq,Γ,tor

/OE )

and RepGK∞ (resp. Reptor
GK∞

, resp. RepGK , resp. Reptor
GK

)

Proof. The argument for this is identical to that in [Fo 1, 1.2.6, 3.4.3]. For the
convenience of the reader we sketch it: It suffices to prove that V and M induce

quasi-inverse, exact tensor equivalences between Mod
ϕq,tor

/OE and Reptor
GK∞

.

We first remark that both functors are exact. It suffices to prove this for objects

killed by p. For MOE this follows from the fact that for M in Mod
ϕq,tor

/OE , 1−ϕq is

étale locally (on Spec k((u))) surjective. For V this is a consequence of Hilbert’s
theorem 90, and (1.4).

For M in Mod
ϕq,tor

/OE , we have a natural map

(1.6.1) (M ⊗OE OEur)ϕq=1 ⊗OK OEur →M ⊗OE OEur

and taking GK∞ invariants of both sides induces a map MOE (V (M))→M. To
show that this map is an isomorphism one reduces to the case of objects killed
by p, using the exactness proved above. In this case, (1.6.1) is an isomorphism,
because étale locally M is spanned by its ϕq-invariants. Similarly, one obtains
an isomorphism V (MOE (V ))→M for V in Reptor

GK∞
, using dévissage, Hilbert

theorem 90, and (1.4). �

§2 (ϕq,Γ)-modules and weakly admissible modules

(2.1) We keep the notation of the previous section, so in particular we write
K0,L for the field K0⊗L0 L = FrWL ⊂ K. In order not to overload notation we
will write vn for (vn)∗(X) ∈ K̄. We now also assume that K ⊂ K0,L(vn)n≥0.
Fix an integer m ≥ 1 such that K ⊂ K0,L(vm).
As in [Ki, 1.1.1], denote by D[0, 1) the rigid analytic disk of radius 1, over K0,L,
and denote by u the co-ordinate on D[0, 1). For I ⊂ [0, 1) an interval, denote
by D(I) ⊂ D[0, 1) the open subspace whose K̄ points consist of x ∈ K̄ with
|x| ∈ I. We denote by OI the ring of rigid analytic functions on D(I), and we
write O = O[0,1). We will often use the fact that D[0, 1) is a p-adic Stein space,
so that a coherent sheaf on D[0, 1) can be recovered from its global sections. In
particular, we may regard a finite free O-module as a coherent sheaf on D[0, 1).
We regard SL ⊂ O by u 7→ u. The action of ϕq and Γ on SL have a unique
continuous extension to O, regarded with its canonical Frechet topology.1

Let Q = [πmL ](u)/[πm−1
L ](u). Denote by Mod

ϕq
/O the category of finite free O-

modules M equipped with an isomorphism ϕ∗q(M)[1/Q]
∼−→M[1/Q]. We de-

note by Mod
ϕq,Γ

/O the category whose objects consist of an object of Mod
ϕq
/O

equipped with a continuous semi-linear action of Γ such that Γ acts trivially

1Contrary to our usual conventions, the symbol OL will continue to denote the ring of integers
of L, rather than O ⊗L0

L.

Documenta Mathematica 14 (2009) 441–461



Galois Representations and Lubin-Tate Groups 447

onM/uM and the ϕq-semi-linear map 1⊗ϕq :M→M[1/Q] commutes with
Γ.
We now explain how to differentiate the action of Γ on an object in Mod

ϕq,Γ

/O
following [Be 1, §IV,V].

Lemma (2.1.1). The action of Γ on O, defined above, is continuous. In par-

ticular, O with its action of Γ and ϕq is an object of Mod
ϕq,Γ

/O .

Proof. For r ∈ (0, 1), denote by | · |r the sup norm on O[0,r]. If f(u) =∑
i≥0 aiu

i ∈ O[0,r] then |f |r = supi |ai|ri. We have to show that, for any r,

as γ → 1, |γ(f)− f |r → 0, uniformly in f with |f |r 6 1.
Any γ ∈ Γ acts on O by composition with [χ(γ)]. Write

[χ(γ)] =

∞∑

i=1

biX
i = expG(χ(γ)logGX)

where bi ∈ OL, logG denotes the logarithm of G and expG denotes its inverse.2

Then b1 = χ(γ) and for i > 1, bi is a polynomial in χ(γ), which vanishes at
χ(γ) = 1. Given ǫ > 0, choose i0 so that ri0 < ǫ. Then for γ sufficiently close
to 1, |bi| < ǫ for 1 < i < i0, and |b1 − 1| < ǫ so |[χ(γ)](u)− u|r < ǫ. Hence

|γ(f)− f |r = |f([χ(γ)](u))− f(u)|r 6

∞∑

i=1

|ai([χ(γ)](u)i − ui)|r 6 ǫ|f(u)|r.

The lemma follows. �

Lemma (2.1.2). Let M be in Mod
ϕq,Γ

/O . For each r ∈ (0, 1) and γ ∈ Γ suffi-

ciently close to 1 (depending on r) the series

logγ =
∞∑

i=1

(γ − 1)i(−1)i−1/i

induces a well defined operator on M|D[0,r). This induces a well defined Zp-
linear map of Lie algebras

dΓM : Lie Γ→ EndK0M; β 7→ log(expβ).

such that for β ∈ Lie Γ, dΓO(β) is a derivation and dΓM(β) is a differential
operator over dΓO(β). That is, for m ∈ M, f ∈ O and β ∈ Lie Γ,

dΓM(β)(fm) = dΓO(β)(f)m+ fdΓM(β)(m).

Proof. Let M0 ⊂M be finite free WL-submodule of rank equal to d = rkOM,
which spans M. Choosing a basis for M0, we may identify M with Od. As

2So if G = Gm, then logG(X) = log(1 +X).
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in (2.1.1), choose r ∈ (0, 1) and denote by | |r the norm on MD[0,r] = OdD[0,r]

induced by the sup norm on OD[0,r]. For any ǫ > 0, and γ sufficiently small we
have |γ(m) −m|r 6 ǫ|m|r for m ∈ M0 and |γ(f)− f |r 6 ǫ|f |r for f ∈ OD[0,r]

by (2.1.1). Hence

|γ(mf)−mf |r 6 |γ(m)−m|r|γ(f)|r + |γ(f)− f |r|m|r 6 2ǫ|m|r|f |r = 2ǫ|fm|r.
This shows that logγ is well defined.
It follows that the map

dΓM =: Lie Γ→ EndK0M; β 7→ log(expβ)

is well defined for β sufficiently small, and we extend it to all of Lie Γ by Zp-
linearity. That dΓO(β) is a derivation and dΓM(β) is a differential operator
over dΓO(β) follows from a simple computation, as does the fact that dΓM
is a map of Lie algebras. Note that the latter statement just means that the
differential operators dΓM(β) for β ∈ Lie Γ commute. �

(2.1.3) We say that M in Mod
ϕq,Γ

/O is OL-analytic if the map dΓM is OL-

linear, not just Zp-linear. We denote by Mod
ϕq,Γ,an

/O the full subcategory of

Mod
ϕq,Γ

/O consisting of OL-analytic objects. One checks easily that this is a

⊗-subcategory, which is stable under taking subobjects and quotients.

Lemma (2.1.4). Let M be in Mod
ϕq,Γ,an

/O .

(1) For each r ∈ (0, 1) the operator N∇ =: logγ/logχ(γ) is well defined for
γ 6= 1 sufficiently close to 1, and is independent of γ.

(2) The operators in (1) induce a K0,L-linear map N∇ : M → M, which
is a differential operator over the derivation N∇ : O → O, and which
commutes with ϕq onM.

(3) There is a singular connection ∇ onM with simple poles at the zeroes
of [πnL]/u for n ≥ 1 (that is at the non-trivial πL-power torsion points of

G) such that N∇ = 〈∇, ∂F∂Y (u, 0)logGu · d/du〉, where F (X,Y ) denotes

the formal group law of G with respect to X, and ∂F
∂Y (u, 0) ∈ OL[[u]]×.

Proof. For γ sufficiently close to 1, we may write γ = expβ with β ∈ Lie Γ.
Since β 7→ log(expβ) is OL-linear by assumption. and β 7→ log(χ(exp(β)))
is obviously OL-linear, logγ/logχ(γ) is independent of γ. This proves (1) and
(2) follows by viewing M as a coherent module on D[0, 1). The fact that N∇
commutes with ϕq follows from the fact that ϕq commutes with the action of
Γ.
To see (3), we first compute the derivation N∇ on O. For γ ∈ Γ write aγ =
χ(γ)− 1. Then

N∇(u) = lim
γ 7→1

[χ(γ)](u)− u
logχ(γ)

= lim
aγ→0

expG((1 + aγ)logGu)− u
logχ(γ)

= lim
aγ→0

F (u, expG(aγ logGu))− u
logχ(γ)

=
∂F

∂Y
(u, 0)logG(u).
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Hence N∇ is given on O by N∇(f) = ∂F
∂Y (u, 0)(logGu) dfdu . As ∂F

∂Y (u, 0) has
constant term 1, and coefficients in OL[[u]], it is a unit O.
Now for anyM, define∇(m) for m ∈ M by∇(m) = ( ∂F∂Y (u, 0)logGu)−1N∇(m).

Since N∇ onM is a differential operator over the derivation ∂F
∂Y (u, 0)(logGu) dfdu

on O, ∇ is a (singular) connection. A priori ∇(m) has a simple pole at each
[πL]-torsion point of G, however since the action of Γ on M is trivial mod u,
the operator N∇ vanishes mod u, and ∇(m) has no pole at u = 0. This proves
(3). �

(2.2) Denote by Mod
F,ϕq
/K0,L

the category of finite dimensionalK0,L-vector spaces

D equipped with an isomorphism ϕ∗qD
∼−→ D and a decreasing, separated

filtration on DK = D ⊗K0,L K, indexed by Z, by K-subspaces.
Our next task to to show that there is an exact ⊗-equivalence between

Mod
F,ϕq
/K0,L

and Mod
ϕq,Γ,an

/O . The construction is analogous to that in [Be 2]

and [Ki, 1.2]. Since many of the proofs from [Ki] go over verbatim, we often
only sketch the argument.3

For n ≥ 0, denote by Ŝn the complete local ring at the point xn of D[0, 1),

corresponding to u = vm+n. That is, Ŝn is the completion of the localization

of O at the maximal ideal generated by [πm+n
L ](u)/[πm+n−1

L ](u). Then Ŝn is
a discrete valuation ring with residue field Km+n = K(vm+n) ⊃ K, which is

canonically a subfield of Ŝn. In particular, u − vm+n is a uniformizer for Ŝn.
Let

λ =
∏

n≥0

ϕnq (Q(u)/Q(0))) =
∏

n≥0

[πm+n
L ](u)/[πm+n−1

L ](u)πL,

and write ϕq,WL : O → O for the OL-linear automorphism given by applying
ϕr to the coefficients of a series in O.
Given D in Mod

F,ϕq
/K0,L

and n ≥ 0, we denote by ιn the composite

ιn : D ⊗K0,L O[1/λ]
ϕ−nq ⊗ϕ−nq,WL→֒ D ⊗K0,L Ŝn[1/λ]

∼−→ DK ⊗K Ŝn[1/u− vm+n].

We set

M(D) = {d ∈ D⊗K0,LO[1/λ] : ∀n ≥ 0, ιn(d) ∈ Fil0(DK⊗K Ŝn[1/u−vm+n])}.

Lemma (2.2.1). For D in Mod
F,ϕq
/K0,L

, M(D) is naturally an object of

Mod
ϕq,Γ,an

/O .

Proof. ThatM(D) is a finite free O-module, and the fact that ϕq on D⊗K0,L

O[1/λ] induces an isomorphism ϕ∗q(M(D))[1/Q]
∼−→ M(D)[1/Q] is proved

exactly as in [Ki, 1.2.2].

3In fact they often simplify since one only has to consider the case when N = 0 in [Ki].
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Note that for γ ∈ Γ,

γ([πL](u)) = [πL] ◦ [χ(γ)](u) = [πLχ(γ)](u).

Hence γ(λ) = λ ◦ [χ(γ)] has a simple zero at each [πmL ]-torsion point which is

not a [πm−1
L ]-torsion point. It follows that λ/γ(λ) ∈ SL[1/p]×. In particular,

if γ ∈ Γ acts on D ⊗K0,L O by 1 ⊗ γ, then this induces an action of Γ on
D ⊗K0,L O[1/λ]. The same argument shows that γ induces an automorphism

of Ŝn for n ≥ 0. As ϕq,WL [χ(γ)] = [χ(γ)], one sees that M(D) is stable by
the action of Γ. Finally, this action is OL-analytic, as the action of Γ on O is
OL-analytic. �

Lemma (2.2.2). Let M be in Mod
ϕq,Γ,an

/O . There exists a unique K0,L-linear

section ξ : M/uM → M[1/λ] such that the elements of ξ(M/uM) are Γ-
invariant. Moreover, we have

(1) ξ is ϕq-equivariant.
(2) ξ induces an isomorphism

M/uM⊗K0,L O[1/λ]
∼−→M[1/λ].

(3) The image of ξ ⊗ 1 : M/uM⊗K0,L O → M[1/λ] coincides with (1 ⊗
ϕq)(ϕ

∗
qM) over an admissible open neighborhood of u = vm.

Proof. Consider the connection∇ onM defined in (2.1.4)(3). For r ∈ (0, 1) suf-
ficiently small there exists a unique ∇-parallel section ξr :M/uM→M|D[0,r).

Since N∇ commutes with ϕq, the section ϕq ◦ ξr ◦ ϕ−1
q is also ∇-parallel, and

hence equal to ξr. Hence ξr is ϕq-invariant. Similarly γ ◦ ξr ◦ γ−1 is ∇-parallel
for γ ∈ Γ, so ξr is Γ-invariant.
Now ξ may be constructed from ξr exactly as in [Ki, 1.2.6], by repeatedly

pulling ξr back by ϕ∗q and using the isomorphism ϕ∗qM[1/Q]
∼−→M[1/Q]. The

claims (2) and (3) also follow exactly as in loc. cit. �

(2.2.3) Suppose that M is in Mod
ϕq,Γ,an

/O . For i an integer denote by Filiϕ∗qM
the preimage of QiM under ϕ∗qM[1/Q]

∼−→ M[1/Q]. Note that this filtra-
tion is Γ-stable. Let D(M) = M/uM. By (2.2.2), ξ induces an isomorphism

D(M) ⊗K0,L O
∼−→ ϕ∗(M) near the point u = vm. Hence we obtain an iso-

morphism

(2.2.4) D(M)⊗K0,L K(vm)
∼−→ ϕ∗q(M)/Qϕ∗q(M).

Give the right hand side of (2.2.4) the filtration induced by that on ϕ∗qM, and
pull this filtration back to D(M) ⊗K0,L K(vm). This gives rise to a Γ-stable
filtration on D(M)⊗K0,L K(vm), which necessarily descends to a filtration on

D(M)K . This gives D(M) the structure of an object in Mod
F,ϕq
/K0,L

.
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Lemma (2.2.5). Let M be in Mod
ϕq,Γ,an

/O and D = D(M). Then for all i ∈ Z
the map ξ induces an isomorphism

∑

j≥0

QjŜ0 ⊗K Fili−jD(M)K
∼−→ Ŝ0 ⊗O Filiϕ∗(M).

Proof. This is the analogue of [Ki, 1.2.12(4)] in our situation, and the proof is

identical, so we only sketch it here. Since D(M)K ⊗ Ŝ0 and Ŝ0 ⊗O ϕ∗q(M)
induce the same filtration on their common quotient D(M)K , one sees easily
that it suffices to check that for all i ∈ Z,

ξ(FiliD(M)K) ⊂ Ŝ0 ⊗O (1 ⊗ ϕq)(Filiϕ∗(M)).

We will identify ϕ∗qM with its image (1 ⊗ ϕq)(ϕ∗qM) in M[1/Q]. An element

d ∈ ξ(FiliD(M)K) can be written as d = d0 + d1 with d0 ∈ Ŝ0 ⊗O Filiϕ∗q(M)

and d1 ∈ QŜ0 ⊗O ϕ∗q(M). As N∇(d) = 0, we have

N∇(d1) = −N∇(d0) ∈ Ŝ0 ⊗O (Filiϕ∗q(M) ∩Qϕ∗q(M)) =: Mi.

Thus it suffices to show that for all i ∈ Z, N∇ induces a bijection on Mi, for

then d1 ∈ Mi ⊂ Ŝ0 ⊗O Filiϕ∗q(M). For i sufficiently small this follows from

the isomorphism D(M) ⊗O Ŝ0
∼−→ ϕ∗qM⊗O Ŝ0. The general case follows by

descending induction on i and an application of the snake lemma. �

Proposition (2.2.6). The functors M and D between Mod
F,ϕq
/K0,L

and

Mod
ϕq,Γ,an

/O are quasi-inverse, exact, ⊗-equivalences.

Proof. Let D be in Mod
F,ϕq
/K0,L

. From the definition ofM(D), there is a natural

Γ-equivariant inclusion D ⊂M(D)[1/Q], which induces an isomorphism of D
with D(M(D)) =M(D)/uM(D). Hence the image of this inclusion coincides
with ξ(D(M(D))), and one sees from the definitions that the filtration on DK

coincides with the one on D(M(D))K . This produces a natural isomorphism

D
∼−→ D(M(D)).

Conversely, let M be in Mod
ϕq,Γ,an

/O . Then both M and M(D(M)) may be

identified with O-submodules of D(M) ⊗K0,L O[1/λ]. At any point of D[0, 1)
other u = vn, n ≥ m, both submodules coincide with D(M) ⊗K0,L O[1/λ].

Since both M and M(D(M)) are in Mod
ϕq,Γ

/O , to show these submodules are

equal it suffices to check that these two submodules coincide at u = vm. This
follows from (2.2.5). (cf. [Ki, 1.2.13]). Hence we have a natural isomorphism

M(D(M))
∼−→M.

That M and D are exact follows from (2.2.5). One checks easily that M and
D respect ⊗-products (cf. [Ki, 1.2.15]). �
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(2.3) We now apply Kedlaya’s slope filtration as in [Be 2] and [Ki, §1.3] to

show that an object M of Mod
ϕq,Γ,an

/O can be descended to SL if and only if

D(M) is weakly admissible.4 Again, as many of the arguments are identical
to those of [Ki] we sometimes only sketch the proofs.
Let R = limr→1− O(r,1) denote the Robba ring, and Rb = limr→1− Ob(r,1),
where Ob(r,1) ⊂ O(r,1) denotes the subring of bounded functions. Then Rb is a

discrete valuation field, with valuation

vRb(f) = −logπL lim
r→1−

sup
x∈D(r,1)

|f(x)|

and uniformizer πL. The endomorphism ϕq and the derivation N∇ of O induce
an automorphism and a derivation respectively of R and Rb, which we will
again denote by ϕq and N∇.
Denote by Mod

ϕq
/R (resp. Mod

ϕq
/Rb) the category of finite free R-modules (resp.

Rb-modules) M equipped with an isomorphism ϕ∗qM
∼−→ M. For an M in

Mod
ϕq
/R, we denote by

0 =M0 ⊂M1 ⊂ · · · ⊂ Mr =M

Kedlaya’s slope filtration [Ke 1], [Ke 2]. We write si for the slope of the pure
slope quotientMi/Mi−1, which is finite free overR. The filtration is functorial
for maps in Mod

ϕq
/R. One of Kedlaya’s results about the filtration says that a

module of pure slope s has a canonical descent to a module Mb in Mod
ϕq
/Rb

which has slope s in the sense of Dieudonné-Manin theory (and the valuation
on Rb normalized so that v(πL) = 1).

For M in Modϕ,Γ,an/O we write MR =M⊗O R. The operators ϕq and N∇ on

M induce operators ϕq and N∇ on MR.

Lemma (2.3.1). Let M be in Mod
ϕq,Γ,an
O . The slope filtration on MR is in-

duced by a unique filtration onM by saturated, finite free O-submodules. This
filtration on M is stable by ϕq and the action of Γ.

Proof. It is clear that a such filtration on M, if it exists is unique and stable
by ϕq. The functoriality of the slope filtration onMR implies that it is stable
by Γ, and hence so is the filtration on M.
It remains to show the existence of such a filtration. As ϕq(λ) =

πL[πm−1
L ]/[πmL ]λ, for any integer s, the slope filtration on λ−sMR is given

by λ−sMR,i, and the slopes of λ−sMR are those of MR shifted by −s. Since

[πmL ]/[πm−1
L ]πL has a unique, simple zero onD[0, 1) at x0, we may replaceM by

λ−sM for s sufficiently large, and assume that ϕq induces a map ϕ∗qM→M.
We first show that the slope filtration is induced by a filtration on M|D(0,1)

by saturated O(0,1)-submodules. For some r0 sufficiently close to 1, the slope

4The idea of relating Kedlaya’s slope filtration to the condition of weak admissibility comes
from Berger’s beautiful paper [Be 2], however our treatment here is closer to that of [Ki].
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filtration on MR is induced by a filtration on M|D(r0,1) by saturated O(r0,1)-
submodules. Let r0 > r1 > . . . be a sequence approaching 0, and such that
ϕ−1
q (D(ri, 1)) ⊂ D(ri−1, 1) for i ≥ 1. The same argument as in [Ki, 1.3.4] shows

that for j ≥ 0,MR,i is induced by a filtration onM|D(rj ,1) by closed, saturated
O(rj ,1)-submodules, and hence by a filtration onM|D(0,1) by closed, saturated
O(0,1)-submodules.
The filtration on MD(0,1) is stable by Γ, by uniqueness, and hence it is stable

by N∇. Consider the operator ∂ = 〈∇,−u d
du〉 on M. This is well defined

in a neighbourhood of 0, and preserves the filtration on M|D(0,1) over this
neighbourhood as N∇ does. Hence the filtration on M|D(0,1) is induced by a
filtration on M by closed, saturated O-submodules by [Ki, 1.3.5]. �

(2.3.2) Let D in Mod
F,ϕq
/K0,L

be 1-dimensional over K0,L. Choose a basis vector

v for D, and set tN,L(D) = vπL(α) where α ∈ K0,L satisfies ϕq(v) = αv. We
write tH,L(D) for the unique integer i such that griDK is non-zero. For D of
arbitrary dimension d, we set tN,L(D) = tN,L(∧dD) and tH,L(D) = tH,L(∧dD).
We will say that D is weakly admissible if the usual conditions of weak admis-
sibility are satisfied with these invariants in place of the usual ones. That is
if tH,L(D) = tN,L(D) and tH,L(D′) 6 tN,L(D′) for all ϕq-stable submodules
D′ ⊂ D.
Proposition (2.3.3). Let D be in Mod

F,ϕq
/K0,L

and M = M(D). Then D is

weakly admissible if and only ifMR is pure of slope 0.

Proof. Suppose first that dimK0,LD = 1. Let v be a basis vector for D, and

write ϕ(v) = αv for some α ∈ K×0,L. From the definition of M(D) one finds

that M(D) = λ−tH,L(D)(D ⊗K0,L O), so

ϕq(λ
−tH,L(D)e) = ([πm−1

L ]πL/[π
m
L ])−tH,L(D)αλ−tH,L(D)e

As, [πmL ] = [πL] ◦ [πm−1
L ], we have that [πmL ]/[πm−1

L ] ∈ SL, is an element whose

reduction modulo πL is uq
m−qm−1

. Hence [πmL ]/[πm−1
L ] is a unit in Rb. It follows

that M(D) has slope

vπL(α) − tH,L(D) = tN,L(D)− tH,L(D).

This proves the proposition when D has dimension 1. The general case follows
from exactly the same argument as in [Ki, 1.3.8], using the equivalence (2.2.6)
and (2.3.1). �

(2.4) Denote by Mod
ϕq
/SL

the category consisting of finite free SL-modules M

equipped with an isomorphisms 1⊗ϕq : ϕ∗qM[1/Q]
∼−→M[1/Q]. We denote by

Mod
ϕq,Γ

/SL
the category whose objects consist of an object of Mod

ϕq
/SL

equipped

a semi-linear action of Γ on M which commutes with the action of ϕq, and such
that Γ acts trivially on M/uM.

We denote by Mod
ϕq,0

/O (resp. Mod
ϕq.Γ,0

/O ) the full subcategory of Mod
ϕq
/O (resp.

Mod
ϕq,Γ

/O ) consisting of objects M such that MR =M⊗O R is pure of slope

0.
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Lemma (2.4.1). There is an equivalence of ⊗-categories

Mod
ϕq
/SL
⊗Zp Qp → Mod

ϕq,0

/O ; M 7→M⊗WL[[u]] O

where the left hand side means the category obtained from Mod
ϕq,Γ

/SL
by applying

⊗ZpQp to the Hom groups.

Proof. This is identical to [Ki, 1.3.13]. �

Corollary (2.4.2). There is an equivalence of exact ⊗-categories

Mod
ϕq,Γ

/SL
⊗Zp Qp → Mod

ϕq,Γ,0

/O ; M 7→M/uM.

Proof. This follows from (2.4.1), since the action of γ ∈ Γ can be thought of as

an isomorphism γ∗(M)
∼−→M for M in Mod

ϕq
/SL

or Mod
ϕq,Γ,0

/O . �

(2.4.3) We denote by Mod
ϕq,Γ,an

/SL
the full subcategory of Mod

ϕq,Γ

/SL
such that

the corresponding object in Mod
ϕq,Γ

/O is in Mod
ϕq,Γ,an

/O

Corollary (2.4.4). There is an exact, fully faithful ⊗-functor

Mod
ϕq,Γ,an

/SL
⊗Zp Qp → Mod

F,ϕq
/K0,L

whose essential image consists of the weakly admissible modules in Mod
F,ϕq
/K0,L

.

Proof. This follows by combining (2.4.2), (2.2.6) and (2.3.3). �

§3 (ϕq,Γ)-modules and crystalline representations

(3.1) Recall the ring R = lim←−OK̄/p introduced in (1.1). Denote by BdR, Bcris ⊃
W (R) the usual rings introduced by Fontaine [Fo 2]. WriteBcris,L = Bcris⊗L0L.
We write ϕq for the L-linear extension of the operator ϕr on Bcris. Note that
we have an embedding

(3.1.1) Bcris,L ⊗K0,L K
∼−→ Bcris ⊗K0 K →֒ BdR.

For D in Mod
F,ϕq
/K0,L

this gives rise to an embedding

(3.1.2) Bcris,L ⊗K0,L DK
∼−→ Bcris ⊗K0 DK →֒ BdR ⊗K DK .

We say an element in Bcris,L ⊗K0,L D is in Fil0 if its image in BdR ⊗K DK

under (3.1.2) is. Dually, we say K0,L-linear map D → Bcris,L is compatible
with filtrations if the map DK → BdR induced by (3.1.1) is compatible with
filtrations.
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For D in Mod
F,ϕq
K0,L

let

VL(D) = Fil0(Bcris,L ⊗K0,L D)ϕq=1

and
V ∗L (D) = Homϕq,Fil(D,Bcris,L).

There is a canonical isomorphism V ∗L (D)
∼−→ VL(D∗), where D∗ denotes the

dual of D in Mod
F,ϕq
/K0,L

.

We will prove an analogue for the category Mod
F,ϕq
/K0,L

of the result that weakly

admissible modules are admissible.

Lemma (3.1.3). Let D in Mod
F,ϕq
/K0,L

be of K0,L-dimension 1 such that

tH,L(D) 6 tN,L(D). Then VL(D) = 0 unless tH,L(D) = tN,L(D), in which
case dimLVL(D) = 1.

Proof. Give D(G) = K0,L the structure of an object of Mod
F,ϕq
/K0,L

by equipping

it with a ϕq semi-linear automorphism given by sending 1 to π−1
L and defining

FiliD(G)K = D(G)K if i 6 −1 and 0 otherwise. Then by [Col 1, Prop. 9.19]

VL(D(G)) = Fil0(D(G)⊗K0,L Bcris,L)ϕq=1 = Fil1B
ϕq=πL
cris,L = tL · L,

where tL = logGu, is a unit in Bcris,L [Col 1, Prop. 9.10, 9.17].

Let D in Mod
F,ϕq
/K0,L

be of K0,L-dimension 1 such that tH,L(D) 6 tN,L(D). Let

d ∈ D be a K0,L-basis vector. Since multiplication by tjL induces a bijection of

VL(D) with VL(D ⊗D(G)j), we may assume that ϕq(d) = αd with α ∈ W×L .
Furthermore, if k̄ denotes the residue field of K̄, then there exists β ∈ W (k̄)×L
such that ϕq(β) = αβ, so we may assume that α = 1. Then tN,L(D) = 0 ≥
tH,L(D),

VL(D) = Fil−tH,L(D)B
ϕq=1
cris,L

and the lemma follows from [Col 1, Lem. 9.14]. �

Lemma (3.1.4). Suppose that D in Mod
F,ϕq
/K0,L

is weakly admissible. Then

dimLVL(D) 6 dimK0,LD.

Proof. This is very similar to [CF, Prop. 4.5]. Denote by Ccris,L the field of
fractions of Bcris,L. Let V denote the Ccris,L-span of VL(D) ⊂ Ccris ⊗K0,L D.
Then V is invariant under the action of GK , and [CF, Lem. 4.6] implies that
there exists a unique K0,L-subspace D′ ⊂ D such that Ccris,L⊗K0,LD

′ is equal
to V .
Let s = dimK0,LD

′ and d1, . . . , ds ∈ D′ a K0,L-basis. We also choose
v1, . . . , vs ∈ VL(D) which span V . Then

w := v1 ∧ · · · ∧ vs = bd1 ∧ · · · ∧ ds
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for some b ∈ Ccris,L. As 0 6= w ∈ VL(∧sD′), tH,L(D′) = tN,L(D′) by (3.1.3) and
dimLVL(∧sD′) = 1. Moreover, (3.1.3) implies that there is a perfect pairing

VL(∧sD′)⊗L VL((∧sD′)∗)→ VL(K0,L)
∼−→ L,

so VL((∧sD′)∗) = b−1d1 ∧ · · · ∧ ds and b is a unit in Bcris,L.
Finally, if v ∈ VL(D), write v =

∑s
i=1 bivi with bi ∈ Ccris. Then for 1 6 i 6 s

v1 ∧ · · · ∧ vi−1 ∧ v ∧ vi+1 · · · ∧ vs = biw ∈ VL(∧sD′).
Hence bi ∈ L, which shows that dimLVL(D) = s 6 dimK0,LD. �

(3.2) Write Sur
L = ObEur ∩W (R)L ⊂ W (FrR)L. We set P = [πm−1

L ](u). For

γ ∈ Γ, we have γ(P ) = [χ(γ)] ◦ [πm−1
L ] = [χ(γ)πm−1

L ], so γ(P )/P is a unit in
SL. In particular Sur

L [1/P ] is GK-stable.
Note that the embedding SL →֒ W (R)L, extends uniquely to a continuous
embedding O →֒ B+

cris,L, where B+
cris,L = B+

cris ⊗OL0
OL, as usual.

Lemma (3.2.1). Let M be in Mod
ϕq
/SL

. The natural map

(3.2.2) VSL(M) := HomSL,ϕq(M,Sur
L [1/P ])→ HomOE ,ϕq(OE ⊗SL M, ÔEur)

is an isomorphism, and both sides are free OL-modules of rank rkSLM. More-
over, if ϕq on M induces a map ϕ∗qM→M then the left hand side of (3.2.2) is
equal to HomSL,ϕq(M,Sur

L ).

Proof. Suppose first that ϕq induces a map ϕ∗qM→M. In this case the proof
of the lemma is identical to the proof of [Ki, 2.1.4], using [Fo 1, §A.1.2].
Next let tL = logGu ∈ O as in the proof of (3.1.3). Then ϕq(λ

−1tL) =
Q(u)λ−1tL, and the zeroes of λ−1tL on D[0, 1) coincide with those of P.
Hence λ−1tLP

−1 ∈ SL[1/p]×, and there exists w ∈ SL[1/P ]× such that
ϕq(w) = Q(u)w. Let M(G) = SL equipped with a semi-linear action of ϕq
which takes 1 to Q(u). Then multiplication by wi induces a bijection

VSL(M)→ VSL(M⊗SL M(G)⊗i).

Hence the lemma for general M in Mod
ϕq
/SL

follows from the case considered

above. �

Proposition (3.2.3). Let M be in Mod
ϕq,Γ,an
SL

and D in Mod
F,ϕq
/K0,L

the weakly

admissible module associated to M by (2.4.4). Then there is a a canonical GK-
equivariant bijection

HomSL,ϕq(M,Sur
L [1/P ])

∼−→ HomFil,ϕq(D,Bcris,L)

where the right hand side means maps compatible with filtrations in the sense
explained in (3.1). In particular, both sides of the above isomorphism have
dimension dimK0,LD over L.

Proof. The argument is similar to [Ki, 2.1.5]. Let M = M ⊗SL O. Note that
P−1 ∈ λt−1

L SL[1/p]× ⊂ Bcris,L. Similarly, λ−1 ∈ Pt−1
L SL[1/p]× ⊂ Bcris,L.
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Consider the composite
(3.2.4)
HomSL,ϕq(M,Sur

L [1/P ])→ HomO,ϕq(M, Bcris,L)→ HomO,ϕq(ϕ
∗
qM, Bcris,L).

We claim the image of composite map consists of morphisms respecting filtra-
tions. To see this suppose first that ϕq on M induces a map ϕ∗qM → M.
Then by (3.2.1), the left hand side of (3.2.4) is equal to HomSL,ϕq(M,Sur

L ).

A SL-linear map f : M → Sur
L induces an O-linear map f : M → B+

cris,L. If

m ∈ ϕ∗qM satisfies (1⊗ϕq)(m) ∈ QiM for some integer i, then f ◦(1⊗ϕq)(m) ∈
QiB+

cris,L ⊂ FiliBdR, asQ(u) ∈ Fil1BdR [Col 1, Lem. 9.3]. This proves the claim
when ϕ∗qM maps to M.
To prove the claim for general M we use the notation of the proof of (3.2.1).
Let M(i) = M ⊗S M(G)⊗i, and M(i) = M(i) ⊗SL O, where i is an integer
which is large enough that ϕq induces a map ϕ∗qM(i)→M(i). The underlying
O-module of M(i) may be identified with M, and the induced identification
ϕ∗qM = ϕ∗qM(i) identifies Filjϕ∗qM with Fili+jϕ∗qM for all j. As we have a
commutative diagram

HomSL,ϕq(M(i),Sur
L [1/P ]) //

w−i∼
��

HomO,Fil,ϕq(ϕ
∗
qM(i), Bcris,L)

w−i∼
��

HomSL,ϕq(M,Sur
L [1/P ]) // HomO,ϕq(ϕ

∗
qM, Bcris,L)

the claim follows for general M.
We now compose (3.2.4) with the map

(3.2.5) HomO,Fil,ϕq(ϕ
∗
qM, Bcris,L)→ HomK0,L,Fil,ϕq(D,Bcris,L).

induced by extending a map in the left hand side to ϕ∗qM[1/λ] and composing
with ϕ∗q(ξ) : D → ϕ∗qM[1/λ], where ξ is the map of (2.2.2). Note that (3.2.5)
respects filtrations as ϕ∗q(ξ) is compatible with filtrations by (2.2.5), and λ
vanishes to order 1 at u = vm. Combining (3.2.4) and (3.2.5) we obtain a
canonical GK-equivariant map

(3.2.6) HomSL,ϕq(M,Sur
L [1/P ])→ HomK0,L,Fil,ϕq(D,Bcris,L).

It is easy to see that (3.2.6) is injective. By (3.2.1) the left hand side of (3.2.6)
has L-dimension d = rkSLM, while by (3.1.4) the right hand side has dimension
6 d. Hence (3.2.6) is an isomorphism. �

(3.3) We now explain how to pass from ϕq-modules to ϕ-modules, using an
induction procedure which was explained to us by Fontaine (cf. [FY, §7.3]).
Suppose that D is a finite dimensional K0,L-vector space. We set

D̃ := ⊕r−1
i=0ϕ

i∗(D) = ⊕σ:L0 →֒Lσ
∗(D),
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so that D̃ is a finite free K0 ⊗Qp L-module. Here we have denoted by ϕi the

map K0 ⊗L0 L
ϕi⊗1→ K0 ⊗ϕi,L0

L. We put D̃K = D̃ ⊗K0 K.

We denote by ModF,ϕ/K0⊗QpL
the category of finite free K ⊗Qp L-modules D̃

equipped with an isomorphism ϕ∗(D̃)
∼−→ D̃ and a decreasing separated filtra-

tion on D̃K = D̃ ⊗K0 K, indexed by Z, by K ⊗Qp L-submodules. For any D̃

in ModF,ϕKO⊗QpL
we denote by tN (D̃) and tH(D̃) the usual invariants when D̃ is

considered as a filtered ϕ-module over K0.

For any D̃ in ModF,ϕ/K0⊗QpL
we may write D̃K = ⊕m(D̃K)m where m runs

over the maximal ideals of K ⊗Qp L. Denote by m0 the kernel of the natural

map K ⊗Qp L → K. Given D in Mod
F,ϕq
/K0,L

we give D̃ the structure of an

object in ModF,ϕ/K0⊗QpL
by noting that (D̃K)m0 may be identified with DK , and

giving D̃K the direct sum of the filtration on DK and the trivial filtration on
⊕m 6=m0(D̃K)m.

Lemma (3.3.1). The functor D 7→ D̃ induces an fully faithful ⊗-functor

Mod
F,ϕq
/K0,L

∼−→ ModF,ϕK0⊗QpL

The essential image of this functor consists of those objects such that the
filtration on ⊕m 6=m0D̃K is trivial.

Proof. Given D in Mod
F,ϕq
K0,L

there is a natural isomorphism

ϕ∗(D̃) = ⊕ri=1ϕ
i∗(D)

∼−→ ⊕r−1
i=0ϕ

i∗(D) = D̃,

which sends ϕi∗(D) identically to ϕi∗(D) for i 6= r and maps ϕr∗(D) = ϕ∗q(D)
to D using the map ϕq on D. This defines the functor of the lemma.

To define a quasi-inverse on the essential image of the functor, let D̃ be in

ModF,ϕ/K0⊗QpL
be such that the filtration on ⊕m 6=m0D̃K is trivial, and set D′ =

D̃ ⊗K0⊗QpL (K0 ⊗L0 L). There is an isomorphism ϕ∗r(D′)
∼−→ D′ induced by

ϕ∗r(D̃)
∼−→ D̃. Using the decomposition

K0 ⊗Qp L
∼−→ ⊕r−1

i=0K0 ⊗ϕi,L0
L

one sees that there is a canonical isomorphism D̃′
∼−→ D̃. In particular this

makes D′ into an object of Mod
F,ϕq
/K0,L

.

One checks immediately that these two functors are quasi-inverse. �

Lemma (3.3.2). Let D be in Mod
F,ϕq
/K0,L

. Then

(3.3.3) tN,L(D) = tN (D̃) and tH,L(D) = tH(D̃)
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and D is weakly admissible if and only if D̃ is weakly admissible.

Proof. Since the functor of (3.3.1) respects ⊗-products, it suffices to prove
(3.3.3) when D is 1-dimensional over K0,L. Moreover, as the essential image
of the functor in (3.3.1) is stable under subobjects, (3.3.3) implies the claim
regarding weak admissibility.
Let D be 1-dimensional over K0,L with basis vector v, and ϕq(v) = αv for some

α ∈ K0,L. Then for i = 0, . . . , r − 1 the K0-vector space ∧[L:L0]
K0

ϕi∗(D) has a

basis vector ei such that ϕ(ei) = ei+1 if i < r−1, and ϕ(er−1) = NK0,L/K0
(α)e0.

Hence ϕ takes

e0 ∧ · · · ∧ er−1 ∈ ∧[L:Qp]
K0

D̃
∼−→ ⊗r−1

i=0 ∧
[L:L0]
K0

ϕi∗(D)

to (−1)rNK0,L/K0
(α)e0 ∧ · · · ∧ er−1, and

tN (D̃) = vp(NK0,L/K0
(α)) = [L : L0]vp(α) = vπL(α) = tN,L(D).

On the other hand, tH,L(D) = tH(D̃), from the definition of the filtration on

D̃. �

Proposition (3.3.4). LetD be a weakly admissible object in Mod
F,ϕq
/K0,L

. Then

there is a canonical GK-equivariant isomorphism

V ∗L (D)
∼−→ V ∗(D̃) := HomFil,ϕ(D̃, Bcris).

Proof. Suppose f̃ : D̃ → Bcris ⊗Qp L is a K0 ⊗Qp L-linear, ϕ-compatible map,
such that

fK : D̃K → K ⊗K0 Bcris ⊗Qp L →֒ BdR ⊗Qp L

is compatible with filtrations. Consider the composite

θ(f) : D →֒ D̃ → Bcris ⊗Qp L→ Bcris,L.

This is a ϕq-compatible map, such that the composite

θ(f)K : DK → K ⊗K0,L Bcris,L →֒ BdR.

is obtained from fK by localizing at m0. In particular, θ(f)K is compatible with
filtrations. Note also that f can be recovered from θ(f) : The decomposition

K0 ⊗Qp L
∼−→ ⊕r−1

i=0K0 ⊗ϕi,L0
L

allows us to view Bcris,L as a direct summand in Bcris ⊗Qp L. Then f is the
unique ϕ-linear extension of the ϕq-linear map

D
θ(f)→ Bcris,L →֒ Bcris ⊗Qp L.
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Hence we have an injective map

(3.3.5) HomFil,ϕ,K0⊗QpL(D̃, Bcris ⊗Qp L) →֒ HomFil,ϕq,K0,L(D,Bcris,L)

On the other hand, the trace map L→ Qp induces an isomorphism

(3.3.6) HomFil,ϕ,K0⊗QpL(D̃, Bcris ⊗Qp L)
∼−→ HomFil,ϕ,K0(D̃, Bcris).

Composing the inverse of (3.3.6) with (3.3.5) gives an injective map V ∗(D̃)→
V ∗L (D). As D̃ is admissible by (3.3.2), dimLV

∗(D̃) = dimK0,LD, and this is

equal to dimLV
∗
L (D) by (3.3.2). Hence we have V ∗(D̃)

∼−→ V ∗L (D). �

(3.3.7) Denote by RepL-cris
GK

the full subcategory of RepGK consisting of those
objects V such that V ⊗OL L is a crystalline representation and, if DdR(V ) =
(V ⊗QpBdR)GK , then the filtration on DdR(V )m is trivial for m 6= m0 a maximal
ideal of K ⊗Qp L.

Corollary (3.3.8). There is an exact equivalence of ⊗-categories

Mod
ϕq,Γ,an

/SL

∼−→ RepL-cris
GK ; M 7→ V (OE ⊗SL M)

where V is the functor introduced in (1.5).

Proof. Using (3.2.3) and (3.3.4) one sees that the functor of (1.6) induces a
fully faithful, exact ⊗-functor as in the corollary. To show that this functor is
essentially surjective let V be in RepL-cris

GK
, and let M = MOE (V ). By (2.4.4) and

(3.3.1), there exists an M′ in Mod
ϕq,Γ,an

/SL
such that V (OE⊗SLM′) is isomorphic

to a GK -stableOL-lattice V ′ ⊂ V ⊗OLL. Thus, by the equivalence of (1.6) there

is an isomorphism E ⊗OE M
∼−→ E ⊗SL M′. Then M = M ∩M′[1/p] ⊂M [1/p]

is in Mod
ϕq,Γ,an

/SL
and satisfies OE ⊗SL M

∼−→ M. Hence V (OE ⊗SL M)
∼−→

V (M)
∼−→ V. �
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Abstract. We consider relativistic many-particle operators which –
according to Brown and Ravenhall – describe the electronic states of
heavy atoms. Their ground state energy is investigated in the limit of
large nuclear charge and velocity of light. We show that the leading
quasi-classical behavior given by the Thomas-Fermi theory is raised
by a subleading correction, the Scott correction. Our result is valid for
the maximal range of coupling constants, including the critical one.
As a technical tool, a Sobolev-Gagliardo-Nirenberg-type inequality is
established for the critical atomic Brown-Ravenhall operator. More-
over, we prove sharp upper and lower bounds on the eigenvalues of the
hydrogenic Brown-Ravenhall operator up to and including the critical
coupling constant.
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1 Introduction and main result

The description of atoms and molecules, in particular of their energies, has
been a primer for the development of quantum mechanics. However, it became
soon clear that atoms with more than one electron are not accessible to ex-
plicit solutions. This motivated the development of approximate models for
large Coulomb systems. One of the most simple and – simultaneously – the
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most fundamental models was introduced by Thomas [73], Fermi [27, 28], and
Lenz [41] who proposed the energy functional which we will also use here. It
predicts that the ground state energy of atoms would decrease with the atomic
number Z to leading order as Z7/3. In order to get a refined description, Scott
[54] conjectured that the electrons close to the nucleus should raise the energy
by Z2/2. Considerably later Schwinger [52] argued also for Scott’s prediction;
Schwinger [53] and Englert and Schwinger [13, 14, 15] even refined these con-
siderations by adding more lower order terms [53] (see also Englert [12]). In
fact, a contribution to the Z5/3-term can be traced back to Dirac [10]. — The
challenge to address the question whether the predicted formulae would yield
asymptotically correct results when compared with the N -particle Schrödinger
theory was for a long time unsuccessful. It was Lieb and Simon who proved in
their seminal paper [44] that the prediction of Thomas, Fermi, and Lenz is in-
deed asymptotically correct. However, establishing the Scott correction resisted
the mathematical efforts and became Problem 10B of Simon’s 15 Problems in
Mathematical Physics [62]. Eventually, the Scott correction was established
mathematically by Hughes [37, 38] (lower bound), and Siedentop and Weikard
[55, 56, 57, 58, 59] (lower and upper bound). In fact, even the existence of the
Z5/3-correction conjectured by Schwinger was proved by Fefferman and Seco
[23, 24, 25, 18, 26, 21, 19, 20, 22]. Later these results were extended in various
ways, e.g., to ions and molecules [1, 39, 66, 4].

Despite of the mathematical success in establishing the large Z asymptotics
of the Schrödinger theory, these considerations remain questionable from a
physical point of view, since large atoms force electrons into orbits that are close
to the nucleus where the electrons move with high speed which should require a
relativistic treatment. The atom is shrinking with increasing Z: already in non-
relativistic quantum mechanics the bulk of the electrons has a distance Z−1/3

from the nucleus; the electrons contributing to the Scott correction even live
on the scale Z−1. Schwinger [53] has estimated these effects concluding that
a correction to the Scott correction occurs whereas the leading term should be
unaffected by the change of model. Sørensen [51] was the first who proved that
the latter is indeed the case for a simplified ad hoc naive relativistic model, the
Chandrasekhar multi-particle operator, in the limit of large Z and large velocity
of light c. The value of the Scott correction is again of order Z2, a result which
was announced [64] and proven [65] by Solovej, Sørensen, and Spitzer (see also
Sørensen [50] for the non-interacting case). In a previous paper [31] we gave
a short alternative proof, roling the problem back to the non-relativistic Scott
correction. Nevertheless, a question from the physical point of view remains:
Although the Chandrasekhar model is believed to represent some qualitative
features of relativistic systems, there is no reason to assume that it should
give quantitatively correct results. Therefore, to obtain not only qualitatively
correct results it is interesting, in fact mandatory, to consider a Hamiltonian
which – as the one by Brown and Ravenhall [6] – is derived from QED such that
it yields the leading relativistic effects in a quantitative correct manner. (See
also Sucher [69, 70, 71].) The first step in this direction was taken by Cassanas
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and Siedentop [7] who showed that, similarly to the Chandrasekhar case, the
leading energy is not affected. To show in which way the Scott correction is
changed for this model is our concern in this paper.

1.1 Relativistic energy form

According to Brown and Ravenhall [6] the energy of an atom with N electrons
in a state ψ ∈ QB

N is given by

EBN (ψ)

:=

〈
ψ,



N∑

ν=1

(
cαν · pν + c2βν − c2 −

Z

|xν |

)
+

∑

1≤µ<ν≤N

1

|xµ − xν |


ψ
〉
.

(1.1)

This involves the free Dirac operator reduced by the rest mass, acting in
L2(R3,C4), with the four Dirac matrices in standard representation,

α =

(
0 σ

σ 0

)
, β =

(
1 0
0 −1

)
,

where σ are the three Pauli matrices in standard representation, i.e.,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We use atomic units in which m = e2 = ~ = 1. The parameter Z is the atomic
number and c the velocity of light.
The Hilbert space of an electron is chosen as the positive spectral subspace of
the Dirac operator,

HB := χ[c2,∞)(cα · p + c2β)
(
L2(R3,C4)

)
,

and, correspondingly, the Hilbert space of N electrons HBN is the antisymmetric

tensor product of the one-particle space, i.e., HBN :=
∧N
ν=1 HB. Finally, the form

domain of (1.1) is QB
N := HBN ∩ S(R3N ,C4N ) with S the Schwartz space of

rapidly decreasing functions. As is shown in [17], the Brown-Ravenhall form
EBN is closable and bounded from below if and only if

κ :=
Z

c
≤ κB :=

2

2/π + π/2
. (1.2)

(See also Tix [74, 76], who improved the bound given in [17] to an explicit
positive bound.) For the physical value, about 1/137, of the Sommerfeld fine
structure, which equals 1/c in atomic units used here, the critical atomic num-
ber Z exceeds 124 slightly. This includes all known elements.
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In the following we will assume that the atom described by (1.1) is neutral,
i.e., Z = N , an assumption that we make mainly for the sake of brevity and
clarity of presentation, since the Scott correction is independent of the ioniza-
tion degree N/Z ≥ const > 0. Similarly, it might seem that our treatment is
restricted to spherically symmetric systems (atoms). However, on the energy
scale considered here, molecular Hamiltonians essentially separate – in nature
the distances between nuclei with charges ZZ1, ..., ZZK remain on a scale much
larger than Z−1/3 – into spherically symmetric one-center problems (atoms).
Therefore, the molecular case follows from the atomic case by additional local-
ization. However, for the sake of brevity and clarity, we will spare the reader
the corresponding tedious technicalities, restrict to the atomic case, and freely
use the resulting symmetry.
Thus, according to Friedrichs, the one-particle form EB1 defines for κ ≤ κB a
distinguished self-adjoint operator in HB. Through a unitary transformation
it may be represented as a self-adjoint operator in the Hilbert space H :=
L2(R3,C2) of two-spinors. More precisely, using the notation p := |p|, ωp :=
p/p we set

E(p) :=
√

p2 + 1, φν(p) :=

√
E(p) + (−1)ν

2E(p)
, ν = 0, 1, (1.3)

and introduce the following bounded operators on H,

Φ0(p) := φ0(p), Φ1(p) := φ1(p) σ · ωp. (1.4)

The operator Φc : H → HB, ψ 7→ (Φ0(p/c)ψ,Φ1(p/c)ψ), maps H unitarily
onto HB [7]. Therefore, the form EB1 defines the (two-spinor) Brown-Ravenhall
operator in H,

Bc[Z/|x|] :=Φ−1
c

(
cα · p + c2β − c2 − Z/|x|

)
Φc

=c2E(p/c)− c2 − Uc(Z/|x|), (1.5)

where Uc(A) := Φ0(p/c)AΦ0(p/c) + Φ1(p/c)AΦ1(p/c). In the case c = 1 we
denote this operator by BZ . Further properties of BZ and its relation to the
corresponding Chandrasekhar operator and Schrödinger operator

CZ := (p2 + 1)1/2 − 1− Z/|x|, SZ := 1
2p

2 − Z/|x| (1.6)

all realized in H, can be found in Sections 2 and 3 below and in Appendix C.

1.2 Main result

We are interested in the ground state energy

EBc (Z) := inf{EBZ (ψ) |ψ ∈ QB
Z , ‖ψ‖ = 1}

of the energy form (1.1) for large atomic number Z and large velocity of light
c satisfying (1.2). Note that we picked N = Z. It was shown in [7], that
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similarly to the Chandrasekhar case [51], the leading behavior of EBc (Z) is not
affected by relativistic effects and is, as in the Schrödinger case [44], given by
the minimal Thomas-Fermi energy

ETF(Z) := inf{ETF(ρ) | ρ ∈ L5/3(R3), ρ ≥ 0, D(ρ, ρ) <∞}. (1.7)

The latter is defined in terms of the Thomas-Fermi energy functional

ETF(ρ) :=

∫

R3

[
3

5
γTF ρ(x)5/3 − Z

|x|ρ(x)

]
dx +D(ρ, ρ)

where, in our units, γTF = (3π2)2/3/2 and

D(ρ, σ) :=
1

2

∫

R3

∫

R3

ρ(x)σ(y)

|x− y| dxdy

is the Coulomb scalar product. By scaling, one finds ETF(Z) = ETF(1)Z7/3.
This paper concerns the correction to the leading behavior. For the formulation
of the main result, we abbreviate the negative part of an operator by A− :=
−Aχ(−∞,0)(A) and introduce for 0 < κ ≤ κB the spectral shift

s(κ) := κ−2 trH

[
(Bκ)− − (Sκ)−

]
. (1.8)

(We use the term “spectral shift” for s for convenience although it is used
in slightly different meaning otherwise.) It describes the shift of the Brown-
Ravenhall bound state energies compared to those of the Schrödinger operator.
In Section 3 we show that s is well-defined and discuss some of its properties. In
particular, we prove that the function s is non-negative on the interval (0, κB]
and can be continuously extended to zero where it satisfies

s(κ) = O(κ2) as κ→ 0. (1.9)

We are now ready to state our main result.

Theorem 1.1 (Scott correction). There exists a constant C > 0 such that
for all Z ≥ 1 and all c ≥ Z/κB one has

∣∣EBc (Z)− ETF(Z)−
(

1
2 − s(Z/c)

)
Z2
∣∣ ≤ CZ47/24. (1.10)

Put differently, Theorem 1.1 asserts that in the limit Z →∞ we have uniformly
in the quotient κ = Z/c ∈ (0, κB]

EBc (Z) = ETF(Z) +
(

1
2 − s(κ)

)
Z2 + o(Z2). (1.11)

(We do not claim that the error Z47/24 in (1.10) is sharp, so we only write o(Z2)
here.) The second term

(
1
2 − s(κ)

)
Z2 in (1.11) is the so-called Scott correction

in the Brown-Ravenhall model. It does not exceed the Scott correction Z2/2 in
the non-relativistic model [55]. Indeed, if κ = Z/c stays away from zero then
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there is a relativistic lowering of the ground state energy at order Z2. On the
other hand, in the non-relativistic limit c→∞ with κ = Z/c→ 0, one recovers
– non-surprisingly – the value of the Schrödinger case. In this case (1.9) implies

EBc (Z) = ETF(Z) + 1
2Z

2 +O(c−2Z4 + Z47/24). (1.12)

The Scott correction in the Brown-Ravenhall model, however, exceeds the Scott
correction predicted by the naive Chandrasekhar model treated in [65] and [31].
This follows from the fact that sums of bound state energies of the atomic Chan-
drasekhar operator are dominated by those of the Brown-Ravenhall operator,
cf. the proof of Theorem 3.1 below.

1.3 Outline of the paper

The central strategy of our paper is to compare the ground state energy of
the Brown-Ravenhall operator with that of the Schrödinger operator. The
latter is known up to the required accuracy o(Z2) and the leading contribution
agrees with the Brown-Ravenhall energy. The subtraction of the corresponding
ground state energies results in a renormalized effective model which accurately
describes the energy differences and is amenable to analysis. The germ of this
idea has been presented in the simpler context of the Chandrasekhar model [31].
The full blown renormalization required is developed in this paper. A virtue of
our approach is that it leads to an explicit formula for the spectral shift which
can be evaluated numerically. We believe it would be interesting to compare
this formula with experimental data.
We show that the difference between the Brown-Ravenhall and Schrödinger
ground state energies on the multi-particle level coincides, up to the required
accuracy, with a spectral shift on the one-particle level. A crucial step in our
analysis is therefore a bound on the corresponding spectral shift for rather gen-
eral spherically symmetric potentials. This is presented in Section 3, where we
show that sums of differences of Brown-Ravenhall and Schrödinger eigenvalues
decay rather rapidly as the angular momentum increases.
In Section 2 we address various aspects of hydrogenic Brown-Ravenhall oper-
ators. An essential feature and source of difficulties, which does not occur in
the naive Chandrasekhar model, is the non-locality of the potential energy. In
particular, instead of the usual Coulomb potential |x|−1 we face the ‘twisted’
non-local operator Uc(|x|−1). Estimating the difference between the corre-
sponding potential energies is the topic in Subsection 2.3. Since, in contrast
to the Schrödinger case, the eigenvalues of the hydrogenic Brown-Ravenhall
operator are not known explicitly, we prove upper and lower bounds in Sub-
section 2.1. Our bounds are sharp with respect to their dependence on the
quantum numbers n and l. An upper bound is given by the Dirac eigenvalues,
a consequence of the mini-max principle for eigenvalues in the gap. For the
lower bound we overcome the non-locality of the potential by a non-trivial com-
parison argument with a super-critical Chandrasekhar operator. In Subsection
2.2 we prove a new Sobolev-type inequality, from which we derive estimates on
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the eigenfunctions of the hydrogenic Brown-Ravenhall operator. The technical
challenge here is to prove such a result up to and including the critical coupling
constant.
Finally, we present the proof of our main result, Theorem 1.1, in Section 4.
For the readers’ convenience we collect various facts in the appendices. Ap-
pendix A recalls the partial wave decomposition of the Hilbert space of two-
spinors, Appendix B establishes some useful properties of the twisting opera-
tors, and Appendix C collects basic facts on hydrogenic Brown-Ravenhall and
Chandrasekhar operators. Appendix D fills in some details in the proof of The-
orem 2.2 and, eventually, Appendix E defines the one-particle density matrix
giving the main contribution of the energy.

2 The hydrogenic Brown-Ravenhall operator

In this section we set c = 1 and investigate the Brown-Ravenhall operator with
Coulomb potential

Bκ =
√

p2 + 1− 1− κU(|x|−1) (2.1)

in the Hilbert space H = L2(R3,C2) of two-spinors, where we recall that

U(|x|−1) = Φ0(p)|x|−1Φ0(p) + Φ1(p)|x|−1Φ1(p) (2.2)

with Φν defined in (1.4). In Subsection 2.1 we prove sharp upper and lower
bounds on the eigenvalues of Bκ. In Subsection 2.2 we prove Lp estimates on
the eigenfunctions of this operator. Technically, this is expressed as a Sobolev-
type inequality for the massless version of Bκ, which is a non-negative opera-
tor. Finally, in Subsection 2.3 we compare the potential energy of the opera-
tor Bκ, namely

〈
ψ,U(|x|−1)ψ

〉
, with the corresponding local potential energy〈

ψ, |x|−1ψ
〉
. For comparison purpose also the corresponding Chandrasekhar

and Schrödinger operator Cκ and Sκ occur (see (1.6)).
According to [17] and [40] the operators Bκ and Cκ are well-defined for all
κ ≤ κ# with # = B,C and

κB =
2

2/π + π/2
, κC := 2/π; (2.3)

see also Appendix C. Of course, for the Schrödinger operator no upper bound
on κ is needed.

2.1 Estimates on eigenvalues of the hydrogen atom

In contrast to the Schrödinger or Dirac models, the eigenvalues of Bκ and Cκ
are not known explicitly. In order to obtain upper and lower bounds on these
eigenvalues, we use that the spectra of Bκ, Cκ and Sκ may be classified in
terms of angular momenta.
As usual write L := x× p for the operators of orbital angular momentum and
J := L + 1

2σ for the operators of total angular momentum. The four operators
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Bκ, J2, J3, L2 commute pairwise, and this also holds, if Cκ or Sκ replace Bκ.
This allows us to decompose the Hilbert space H into orthogonal subspaces
which reduce such a quadruple of operators, i.e.,

H =
⊕

j∈N0+ 1
2

⊕

l=j±1/2

Hj,l, Hj,l :=

j⊕

m=−j
Hj,l,m. (2.4)

Here Hj,l,m is the maximal joint eigenspace of J2 with eigenvalues j(j + 1), of
L2 with eigenvalue l(l+ 1), and J3 with eigenvalue m. More details concerning
the partial wave decomposition (2.4) can be found in Appendix A.
We denote by bj,l(κ), cl(κ), and sl(κ) the reduced operators corresponding to
fixed angular momenta j and l, where, strictly speaking, we consider bj,l(κ)
and cl(κ) in momentum space whereas sl(κ) in position space. We refer to
Appendix C for precise definitions of bj,l(κ) and cl(κ) and for further discussion.

Of course, sl(κ) = − 1
2

d2

dr2 + l(l+1)
2r2 − κ

r .
The main result of this subsection is that for large quantum numbers n, j, and
l, the eigenvalues of bj,l(κ) and cl(κ) behave similarly to the explicitly known
ones of the Schrödinger operator sl(κ).

Theorem 2.1 (Energies of Brown-Ravenhall hydrogen). There is a
constant C < ∞ such that for all j ∈ N0 + 1

2 , and l = j ± 1
2 , n ∈ N and

κ ∈ (0, κB] one has

−C κ2

(n+ l)2
≤ λn(bj,l(κ)) ≤ − κ2

2(n+ l)2
. (2.5)

Here and below, we denote by λ1(A) ≤ λ2(A) ≤ . . . the eigenvalues, re-
peated according to multiplicities, below the bottom of the essential spec-
trum of the self-adjoint, lower semi-bounded operator A. Note that −κ2(2(n+
l)2)−1 = λn(sl(κ)) on the right hand side of (2.5) is the n-th eigenvalue of the
Schrödinger operator corresponding to angular momentum l. In particular, we
conclude from (2.5) that the partial traces in Hj,l (cf. (3.1)) satisfy

0 ≤ trj,l
(
[Bκ + µ]− − [Sκ + µ]−

)
<∞ (2.6)

for all µ ≥ 0. In the proof of Theorem 2.1 we use heavily the corresponding
result for the Chandrasekhar case, which we state next.

Theorem 2.2 (Energies of Chandrasekhar hydrogen). There is a con-
stant C <∞ such that for all l ∈ N0, n ∈ N and κ ∈ (0, κC ] one has

−C κ2

(n+ l)2
≤ λn(cl(κ)) ≤ − κ2

2(n+ l)2
. (2.7)

We break the proofs of Theorems 2.1 and 2.2 into three parts, corresponding to
the upper bound and the lower bound for subcritical and, respectively, critical
values of the coupling constant.
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2.1.1 Upper bound on hydrogen eigenvalues

We begin with the Chandrasekhar case.

Proof of Theorem 2.2. Upper bound. The second inequality in (2.7) is an im-

mediate consequence of the inequality
√
p2 + 1−1 ≤ p2/2 and the known form

of the Schrödinger eigenvalues in the subspace corresponding to fixed angular
momentum l.

Next, we turn to the Brown-Ravenhall case.

Proof of Theorem 2.1. Upper bound. We first recall some facts about the eigen-
values of the hydrogenic Dirac operator Dκ := α · p + β − κ|x|−1; see Darwin
[8], Gordon [32] and also Bethe and Salpeter [5] for a textbook presentation.
The following subspaces of L2(R3,C4),

H̃j,l,m =

{
x 7→

(
ir−1f(r)Ωj,l,m(ωx)
−r−1g(r)Ωj,2j−l,m(ωx)

)
: f, g ∈ L2(R+)

}
,

reduce the Dirac operator Dκ with κ ∈ (0, 1). Under the natural identification
of H̃j,l,m with L2(R+,C2) the part of Dκ in H̃j,l,m is unitarily equivalent to

dj,l(κ) =

(
1− κ

r − d
dr −

(j−l)(2j+1)
r

d
dr −

(j−l)(2j+1)
r −1− κ

r

)
.

The non-decreasing sequence λn(dj,l(κ)) of eigenvalues of dj,l(κ) in the gap
(−1, 1) is independent of l and given explicitly by

λn(dj,l(κ)) =


1− κ2

(
n− 1 +

√
(j + 1/2)2 − κ2

)2

+ κ2




1/2

, n ∈ N. (2.8)

The Dirac eigenvalues reduced by the rest energy are bounded from above by
the Schrödinger eigenvalues: for all n, l, j, and κ ∈ (0, 1)

1− λn(dj,l(κ)) ≥ κ2

2(n+l)2 = −λn(sl(κ)). (2.9)

To show (2.9), we use

√
(j + 1/2)2 − κ2 ≤

√
(l + 1)2 − κ2 ≤

√
(n+ l)2 − κ2 + 1− n

and expand the outer square root in (2.8) up to first order which gives an upper
bound.
Hence the upper bound in Theorem 2.1 will follow if we can show that

λn(bj,l(κ)) ≤ −1 + λn(dj,l(κ)). (2.10)
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To prove this, we fix (j, l) and abbreviate Λ+ := χ[1,∞)(dj,l(0)) and Λ− :=
1 − Λ+. It follows from the definition of the Brown-Ravenhall operator that
bj,l(κ) is unitarily equivalent to the operator Λ+(dj,l − 1)Λ+ in the Hilbert
space Λ+(L2(R+,C2)). The variational principle for eigenvalues in gaps by
Griesemer et al. [34, 35] under the weakened hypotheses of Dolbeault et al.
[11] states that

λn(dj,l(κ))

= inf
V⊂Λ+(L2(R+,C

2)),

dimV=n

sup

{
(f, dj,l(κ)f)

‖f‖2 : 0 6= f ∈ V ⊕ Λ−(L2(R+,C2))

}
.

Since the supremum decreases when restricted to 0 6= f ∈ V , one obtains (2.10).

2.1.2 Lower bounds on hydrogen eigenvalues. Subcritical case

Proof of Theorem 2.2. Subcritical case. Since we will reduce the Brown-
Ravenhall case in Theorem 2.1 to the Chandrasekhar case, we actually prove
a slightly stronger statement. As explained in (C.8), the operators cl(κ) are
lower bounded for all l ≥ 1 up to κCl > κB.
We assume that either l ≥ 1 and 0 < κ ≤ κB or else that l = 0 and 0 < κ ≤
κBκC/κC1 . For any 0 < δ < 1 there exist Mδ > 0 and cδ > 0 such that

√
p2 + 1− 1 ≥

{
(1 − δ)p if p ≥Mδ

cδ p
2/2 if p ≤Mδ.

.

Denoting by χi the characteristic function of the centered ball in R3 with radius
Mδ, and putting χo := 1 − χi, the Schwarz inequality implies the operator
inequality

|x|−1 ≤ (1 + δ−1)χi(p)|x|−1χi(p) + (1 + δ)χo(p)|x|−1χo(p),

and hence
√

p2 + 1− 1− κ|x|−1 ≥χi(p)
(
cδp

2/2− (1 + δ−1)κ|x|−1
)
χi(p) (2.11)

+ χo(p)
(
(1 − δ)|p| − (1 + δ)κ|x|−1

)
χo(p) .

Now choose δ as the the unique solution of the equation (1+δ)/(1−δ) = κC1 /κ
B

in the interval (0, 1). Then the restrictions on κ imply that (1 + δ)κ ≤ (1 −
δ)κC1 ≤ (1 − δ)κCl for l ≥ 1 and (1 + δ)κ ≤ (1 − δ)κC for l = 0. In any
case, the second operator in the above sum is non-negative. The variational
principle hence implies that the n-th eigenvalue of cl(κ) is greater or equal to
the n-th eigenvalue of χi(p)

(
cδp

2/2− (1 + δ−1)κ|x|−1
)
χi(p). Again by the

variational principle, the latter is greater or equal to the n-th eigenvalue of
cδp

2/2− (1 + δ−1)κ|x|−1, which is −const κ2(n+ l)−2.
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Proof of Theorem 2.1. Subcritical case. We assume that either j ≥ 3/2 and
0 < κ ≤ κB or else that j = 1/2 and 0 < κ ≤ κBκC/κC1 . We claim that

λn(cl(κ)) = λ2n−1(cl(κ)⊗ 1C2) ≤ λ2n−1(bj,l(κ)) . (2.12)

Once we have proved this, the assertion follows easily from what we have shown
in the proof of Theorem 2.2 above.
To establish (2.12) we use the same notation as in the proof of the upper bound
in Theorem 2.1. By the variational principle,

λn(bj,l(κ))

= sup
f1,...,fn−1∈

Λ+(L2(R+,C
2))

inf{〈f, (dj,l(κ)− 1)f〉 : ‖f‖ = 1, f ∈ Λ+(L2(R+,C2)), f ⊥ fν}

= sup
f1,...,fn−1∈
L2(R+,C

2)

inf{〈Flf, cl(κ)Flf〉 : ‖f‖ = 1, f ∈ Λ+(L2(R+,C2)), f ⊥ fν}

with Fl the Fourier-Bessel transform, see (A.5). The infimum does not increase
if the condition f ∈ Λ+(L2(R+,C2)) is relaxed to f ∈ L2(R+,C2). This gives
the eigenvalues of the operator cl(κ)⊗ 1C2 , proving (2.12).

2.1.3 Lower bounds on hydrogen eigenvalues. Critical case

Proof of Theorem 2.2. Critical case. It remains to prove that

λn(c0(κ)) ≥ −const κ2n−2

for κBκC/κC1 ≤ κ ≤ κC . We may assume that κ = κC and will prove that for
all τ > 0

N(−τ, c0(κC)) := trχ(−∞,−τ)(c0(κC)) ≤ const τ−1/2. (2.13)

Let χ2
i + χ2

o = 1 be a smooth radial quadratic partition of unity with χi
supported in the unit ball and χo supported outside the ball of radius 1/2
about the origin. It was shown in [31, Eq. (19)] that the localization error can
be estimated by a bounded exponentially decaying potential v(r) ≤ const e−r,
i.e.,

√
p2 + 1− 1− κC |x|−1 ≥ χi

(√
p2 + 1− 1− κC |x|−1 − v(|x|)

)
χi

+ χo

(√
p2 + 1− 1− κC |x|−1 − v(|x|)

)
χo.

By the variational principle it suffices to consider the eigenvalue counting func-
tion corresponding to the interior and exterior term separately. The interior
term is further estimated according to

χi

(√
p2 + 1− 1− κC |x|−1 − v(|x|)

)
χi

≥χi
(
|p| − κC |x|−1 − const

)
χi.
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As shown by Lieb and Yau [46] and explained in Corollary D.1, the number of
negative eigenvalues of the latter operator acting in the subspace corresponding
to l = 0 is finite, i.e., for all τ > 0

Nl=0

(
−τ, χi

(
|p| − κC |x|−1 − const

)
χi
)
≤ const . (2.14)

For the exterior problem, we note that by the variational principle

Nl=0

(
−τ, χo

(√
p2 + 1− 1− κC |x|−1 − v(|x|)

)
χo

)

≤ Nl=0

(
−τ,

√
p2 + 1− 1− χ(x)(κC |x|−1 + v(|x|))

)
(2.15)

where χ denotes the characteristic function of the support of χo. With the
singularity gone, the result follows as in the subcritical case. Namely, sim-
ilarly as in (2.11) we cut in momentum space according to small and large
momenta. Again, by the variational principle, the right-hand side of (2.15) is
then bounded from above by

Nl=0(−const τ, |p| − w(|x|)) +Nl=0(−const τ, p2 − w(|x|)),
where w(r) = const χ(r)(κCr−1 + v(r)). The first term is estimated with the
help of Daubechies’ inequality [9]

Nl=0(−τ, |p| − w(|x|)) ≤ τ−1/2 trl=0(|p| − w(|x|))1/2−
≤ const τ−1/2

∫ ∞

0

w(r)3/2 dr

with the latter integral being finite. For the second term we estimate w(r) ≤
const r−1 and use that

Nl=0(−τ, p2 − const |x|−1) ≤ const τ−1/2.

This concludes the proof of Theorem 2.2.

Our proof of Theorem 2.1 in the critical Brown-Ravenhall case is based on a
reduction to the Chandrasekhar case. The next lemma compares the number of
eigenvalues of the critical operators b1/2,l(κ

B) with those of the two operators
cl′(κ

C
l′ ) with l′ = 0, 1 and critical coupling constants κC0 = 2/π and κC1 = π/2,

cf. (C.8).

Lemma 2.3. There is a constant such that for l = 0, 1 and all τ > 0 one has

N
(
−τ, b1/2,l(κB)

)
≤ const

[
N
(
− τ

const , c0(κC0 )
)

+N
(
− τ

const , c1(κC1 )
)]
.

Proof. We start with the observation that (κC0 )−1 + (κC1 )−1 = 2(κB)−1. Using
the explicit form of the reduced operators (cf. Appendix C), this implies the
identities

b1/2,0(κB) = κB
(

(κC0 )−1φ0b̃0,0φ0 + (κC1 )−1φ1b̃1,1φ1

)
,

b1/2,1(κB) = κB
(

(κC0 )−1φ1b̃0,1φ1 + (κC1 )−1φ0b̃1,0φ0

)
,

(2.16)
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where the operators b̃l,ν are defined in L2(R+) through quadratic forms

〈f, b̃l,νf〉 :=

∫ ∞

0

E(p)− 1

2φν(p)2
|f(p)|2 dp− κCl

∫ ∞

0

∫ ∞

0

f(p)kCl (p, q)f(q) dp dq.

In case ν = 1 it hence follows from 2φ1(p)2 ≤ 1 that 〈f, b̃l,1f〉 ≥ 〈f, cl(κCl )f〉.
In case ν = 0 we use the inequality

(E(p) − 1)φ0(p)−2 ≥
√
p2 + 4− 2 = 2(E(p/2)− 1) (2.17)

which is most easily seen by writing both sides in terms of E(p). It implies

〈f, b̃l,0f〉 ≥ 2〈uf, cl(κCl )uf〉

where the unitary scaling transformation u is defined through (uf)(p) :=√
2f(2p). The proof is completed by the variational principle.

We are now ready to give a

Proof of Theorem 2.1. Critical case. The previous lemma implies that it suf-
fices to show that for l = 0, 1

N
(
−τ, cl(κCl )

)
≤ const τ−1/2.

In case l = 0 this was established in (2.13), and the case l = 1 follows similarly
with the analogue of (2.14) given in Corollary D.1.

2.2 Sobolev inequality for the critical Brown-Ravenhall oper-
ator

Having studied the eigenvalues of Bκ in the previous subsection, we now turn
to integrability properties of its eigenfunctions. The Lq-norm of two-spinors ψ
is given by

‖ψ‖q :=

(∫

R3

|ψ(x)|qdx

)1/q

,

where the modulus, | · |, refers to the Euclidean norm in C2. For q = 2 we drop
the subscript. We aim at proving the following

Theorem 2.4 (Lq-properties of eigenfunctions). Let 2 ≤ q < 3. There
exists a constant Cq <∞ such that for any κ ∈ (0, κB] and all ψ ∈ Q(Bκ) with
〈ψ,Bκψ〉 ≤ 0 one has ψ ∈ Lq with

‖ψ‖q ≤ Cq ‖ψ‖ . (2.18)

Note that (2.18) applies, in particular, to eigenfunctions of Bκ corresponding
to negative eigenvalues. The proof of Theorem 2.4, which is spelled out below,
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relies on a Sobolev inequality for the massless atomic Brown-Ravenhall operator
in H given by

B(0)
κ := |p| − κ

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
.

This operator is bounded below (in fact, non-negative) if and only if κ ≤ κB.

Theorem 2.5 (Sobolev inequality). For any 2 ≤ q < 3 there exists a

constant Cq > 0 such that for all ψ ∈ Q(B
(0)
κB ),

‖ψ‖2q ≤ Cq
〈
ψ,B

(0)

κBψ
〉θ
‖ψ‖2(1−θ), θ = 6(1

2 − 1
q ). (2.19)

It is illustrative to compare (2.19) with the ‘standard’ Sobolev-Gagliardo-
Nirenberg inequalities,

‖ψ‖2q ≤ C′q 〈ψ, |p|ψ〉θ ‖ψ‖2(1−θ), θ = 6(1
2 − 1

q ), 2 ≤ q ≤ 3, (2.20)

see, e.g., [43, Thm. 8.4]. Hence Theorem 2.5 says that, if the endpoint q = 3
is avoided, an inequality of the same form remains true after subtracting the
maximal possible multiple of 1

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
from |p|. More-

over, one can show that (2.19) does not hold with q = 3, not even if the L3-norm
is replaced by the weak L3-norm.

Note that if κ < κB then (2.19) with B
(0)
κ instead of B

(0)

κB
follows from (2.20)

– but with a constant that deteriorates as κ → κB. The main point is to
derive an inequality which holds uniformly in κ up to and including the critical
constant. Our proof is based on the somewhat surprising fact that the Brown-
Ravenhall operator with coupling constant κB can be bounded from below by
the Chandrasekhar operator with smaller coupling constant κC .
Before we start the proof of (2.19), we provide the

Proof of Theorem 2.4. The Sobolev inequality (2.19) implies

‖ψ‖2q ≤ Cq
〈
ψ,B(0)

κ ψ
〉θ
‖ψ‖2(1−θ) ≤ Cq

〈
ψ,
[
B(0)
κ −Bκ

]
ψ
〉θ‖ψ‖2(1−θ)

≤ Cq‖B(0)
κ −Bκ‖θ‖ψ‖2.

Tix showed [75, Thm. 1] (see also Balinsky and Evans [3]) that the difference

B
(0)
κ − Bκ extends to a bounded operator with norm uniformly bounded for

any κ ∈ (0, κB].

2.2.1 Comparison of critical operators

The first step in the proof of the Sobolev inequality (2.19) is a comparison of

B
(0)
κ with the massless atomic Chandrasekhar operator in H, which is given by

C(0)
κ := |p| − κ|x|−1.
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It is bounded below if and only if κ ≤ κC . As discussed in Appendix C the parts

of B
(0)
κ and C

(0)
κ in the subspace Hj,l,m are unitarily equivalent to operators

b
(0)
j (κ) and c

(0)
l (κ) in L2(R+), which depend only on j in the Brown-Ravenhall

case and only on l in the Chandrasekhar case. For the comparison argument

it is important to note that the reduced operators b
(0)
j (κ) and c

(0)
l (κ) are lower

bounded for κ up to and including the critical coupling constants κBj and κCl
respectively. They are defined in (C.7) and, as is explained there, exceed κB

and κC , if j ≥ 3/2 or l ≥ 1.

We begin by observing that all the critical operators b
(0)
j (κBj ) and c

(0)
l (κCl ) have

the same ‘generalized ground state’, namely p. The corresponding ground state
representation formula (in momentum space) is given in

Lemma 2.6 (Ground state representation). If f ∈ Q(b
(0)
j (κBj )) and

g(p) = pf(p), then

〈f, b(0)j (κBj )f〉 =
κBj
2

∫ ∞

0

∫ ∞

0

|g(p)− g(q)|2kBj (p, q)
dp

p

dq

q
. (2.21)

Similarly, if f ∈ Q(c
(0)
l (κCl )) and g(p) = pf(p), then

〈f, c(0)l (κCl )f〉 =
κCl
2

∫ ∞

0

∫ ∞

0

|g(p)− g(q)|2kCl (p, q)
dp

p

dq

q
. (2.22)

where kBj and kCl are defined in (C.4).

Proof. We write k for one of the functions kBj or kCl and κ for the corresponding

constant κBj or κCl . Expanding the square and using k(p, q) = k(q, p), we find

1

2

∫ ∞

0

∫ ∞

0

|g(p)− g(q)|2k(p, q)
dp

p

dq

q

=

∫ ∞

0

|g(p)|2
(∫

k(p, q)
dq

q

)
dp

p
−
∫ ∞

0

∫ ∞

0

g(p)k(p, q)g(q)
dp

p

dq

q

=

∫ ∞

0

p|f(p)|2
(∫

k(p, q)
dq

q

)
dp−

∫ ∞

0

∫ ∞

0

f(p)k(p, q)f(q) dp dq.

By definitions (C.7) and (C.8) of κ we have
∫ ∞

0

k(p, q)
dq

q
= κ−1,

which implies the assertion.

Next, we bound B
(0)

κB from below by C
(0)

κC .

Lemma 2.7 (Comparison of critical operators). There is a positive con-

stant such that for any ψ ∈ Q(B
(0)

κB
) ∩ H⊥1/2,1

〈
ψ,B

(0)

κB
ψ
〉
≥ const

〈
ψ,C

(0)

κC
ψ
〉
. (2.23)
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An inequality of the form (2.23) cannot hold for ψ ∈ H1/2,1, since the right
hand side is bounded from below by a constant times 〈ψ, |p|ψ〉 while the left
hand side is not.

Proof. By orthogonality it suffices to prove the inequality on each subspace
Hj,l. First let (j, l) = (1/2, 0). We may also fix m = ±1/2 and choose ψ ∈
H1/2,0,m. Its Fourier transform is of the form ψ̂(p) = p−1f(p)Ω 1

2 ,0,m
(ωp), see

Appendix A. Setting f(p) =: pg(p) one finds using (C.2) and Lemma 2.6

〈ψ,B(0)

κB
ψ〉 = 〈f, b(0)1/2(κB)f〉 =

κB

2

∫ ∞

0

∫ ∞

0

|g(p)− g(q)|2 kB1/2(p, q)
dp

p

dq

q
.

Similarly, using (C.3)

〈ψ,C(0)

κC
ψ〉 = 〈f, c(0)0 (κC)f〉 =

κC

2

∫ ∞

0

∫ ∞

0

|g(p)− g(q)|2 kC0 (p, q)
dp

p

dq

q
.

Recalling the explicit expressions (C.4) and (C.5) for kB1/2 and kC0 and estimat-
ing Q1 ≥ 0 we conclude that

〈ψ,B(0)

κB
ψ〉 ≥ (1 + (2/π)2)−1〈ψ,C(0)

κC
ψ〉,

which proves the assertion on the subspace H1/2,0. Now assume that ψ ∈(
H1/2,0 ⊕ H1/2,1

)⊥
. Since κBj is monotone increasing in j, see Appendix C, we

have on that subspace

|p| ≥
κB3/2

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
.

We conclude that

〈ψ,B(0)
κBψ〉 ≥

κB3/2 − κB1/2
κB3/2

〈ψ, |p|ψ〉 ≥
κB3/2 − κB1/2

κB3/2
〈ψ,C(0)

κCψ〉,

proving the assertion.

2.2.2 Proof of the Sobolev inequality

We are now ready to give a

Proof of Theorem 2.5. By scaling, (2.19) is equivalent to the inequality

‖ψ‖2q ≤ C′q
(〈
ψ,B

(0)
κBψ

〉
+ ‖ψ‖2

)
.

This, together with the triangle inequality, shows that it is enough to prove
the inequality separately on the subspaces H1/2,1 and H⊥1/2,1. On the latter
subspace, the claim follows immediately from Lemma 2.7 above and the Sobolev

Documenta Mathematica 14 (2009) 463–516



480 R. Frank, H. Siedentop, S. Warzel

inequality for the critical Chandrasekhar operator [30, Corollary 2.5]. We now
reduce the claim for the subspace H1/2,1 to that for H1/2,0. For this purpose,

we note that the helicity operator H = ωp · σ, cf. (B.1), commutes with B
(0)
κ

and, by (B.2), maps Hj,l into Hj,2j−l. Hence if ψ ∈ H1/2,1 then by the Sobolev
inequality on H1/2,0

〈
ψ,B

(0)

κB
ψ
〉

+ ‖ψ‖2 =
〈

Hψ,B
(0)

κB
Hψ
〉

+ ‖Hψ‖2 ≥ const ‖Hψ‖2q.

By Lemma B.1 the helicity H = H−1 is bounded on Lq(R3,C2).

2.3 Estimates on the electric potential

The goal of this subsection is to compare twisted and untwisted electric poten-
tials. We begin with an estimates for point charges and then turn to smeared
out charges.

Lemma 2.8. Let l ≥ 1 and ψ ∈ Hj,l. Then

∣∣〈ψ,
(
|x|−1 − U(|x|−1)

)
ψ
〉∣∣ ≤ const

l2
〈ψ,p2ψ〉. (2.24)

Proof. By orthogonality it suffices to prove the assertion for ψ ∈ Hj,l,m. Its

Fourier transform is of the form ψ̂(p) = f(p)p−1Ωj,l,m(ωp), cf. Appendix A,
and we compute similarly as in (C.11)

〈ψ,
(
|x|−1 − U(|x|−1)

)
ψ〉

=
1

π

∫ ∞

0

dp f(p)

∫ ∞

0

dq f(q)
{

[1− φ0(p)φ0(q)]Ql

(
1
2

(
q
p + p

q

))

−φ1(p)φ1(q)Q2j−l
(

1
2

(
q
p + p

q

))}

=
1

2π
(A1 +A2)

with

A1 :=

∫ ∞

0

dp f(p)

∫ ∞

0

dq f(q)

1∑

ν=0

(φν(p)− φν(q))
2
Ql

(
1
2

(
q
p + p

q

))
,

A2 :=2

∫ ∞

0

dp f(p)

∫ ∞

0

dq f(q)φ1(p)φ1(q)

×
[
Ql

(
1
2

(
q
p + p

q

))
−Q2j−l

(
1
2

(
q
p + p

q

))]
.

We estimate these terms separately. For the first term we use (B.5) and (B.6)
together with Abel’s argument to turn Hermitian integral operators into mul-
tiplication operators by means of the Schwarz inequality (see also [46, Ineq.
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(6.9)]). Since the Ql are positive, we obtain

A1 ≤
∫ ∞

0

dp
|f(p)|2
E(p)4

∫ ∞

0

dq

(
p

q

)2

E(p)2

×
1∑

ν=0

(φν(p)− φν(q))2E(q)2Ql

(
1
2

(
q
p + p

q

))

≤5

8

∫ ∞

0

dp
|f(p)|2
E(p)4

∫ ∞

0

dq

(
p

q

)2

(p− q)2Ql
(

1
2

(
q
p + p

q

))

=
5

8

∫ ∞

0

dp
|f(p)|2
E(p)4

p3

∫ ∞

0

dq

q2
(1 − q)2Ql

(
1
2

(
q + q−1

))
.

We now use the bounds p3/E(p)4 ≤ p2 and, for q ≥ 1, (1− q)2 ≤ q2 − 1 which
yield

∫ ∞

0

dq

q2
(1− q)2Ql

(
1
2

(
q + q−1

))
= 2

∫ ∞

1

dq

q2
(1− q)2Ql

(
1
2

(
q + q−1

))

≤ 4

∫ ∞

1

dxQl(x) =
4

l(l+ 1)
,

where the last step involved [16, 324(18)]. Thus,

A1 ≤
5

2l(l+ 1)

∫ ∞

0

dp p2|f(p)|2 =
5

2l(l+ 1)
〈ψ,p2ψ〉.

We estimate the term A2 similarly by the Schwarz inequality,

A2 ≤ 2

∫ ∞

0

dp|f(p)|2 |φ1(p)|2

×
∫ ∞

0

dq
p

q

∣∣∣Ql
(

1
2

(
q
p + p

q

))
−Q2j−l

(
1
2

(
q
p + p

q

))∣∣∣

≤ 4

∫ ∞

0

dp|f(p)|2p2

×
∫ ∞

1

dq

q

∣∣Ql
(

1
2

(
q + q−1

))
−Q2j−l

(
1
2

(
q + q−1

))∣∣ .

Due to the pointwise monotonicity (C.10) the difference inside the modulus is
of definite sign. Without loss of generality, we may therefore assume 2j = 2l+1.
Using the integral representation (C.1) we can bound

∫ ∞

1

dq

q

[
Ql
(

1
2

(
q + q−1

))
−Ql+1

(
1
2

(
q + q−1

))]

=

∫ ∞

1

dzz−l−2 (z − 1)

∫ 1
2 (z+z−1)

1

dx√
x2 − 1

1√
1− 2xz + z2

≤ π√
2

∫ ∞

1

dzz−l−5/2 (z − 1) =
π√

2(l + 1
2 )(l + 3

2 )
.
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Adding the estimates for A1 and A2 we arrive at (2.24).

Note that our proof shows that one can choose different powers of |p| on the
right hand side of (2.24).

Lemma 2.9. There exists a constant such that for any electric potential v of a
spherically symmetric non-negative charge density

|〈ψ, (v − U(v))ψ〉| ≤ const v(0) 〈ψ,p2ψ〉.

Proof. We denote by τ : R3 → [0,∞) the spherically symmetric, non-negative
charge density corresponding to v, i.e., v(x) =

∫
τ(x−y) |y|−1dy. The Fourier

transform of τ obeys the estimates

|τ̂(p)| =
√

2

π p2

∣∣∣∣
∫ ∞

0

r sin(|p|r) τ(r)dr

∣∣∣∣ ≤
v(0)

(2π)3/2 |p| .

By Fourier transform the scalar product on the left side of the assertion becomes

〈ψ, (v − U(v))ψ〉

=

√
2

π

∫∫
ψ̂(p)∗

τ̂ (p− q)

|p− q|2 (1− Φ0(p)Φ0(q)− Φ1(p)Φ1(q)) ψ̂(q)dpdq.

Using Lemma B.2 we estimate the absolute value of the preceding expression
from above by the sum of two terms, B1 and B2. The first term can be further
bounded as follows,

B1 = const

∫∫
|τ̂ (p− q)||ψ̂(p)||ψ̂(q)| dpdq

≤ const v(0)

∫
dp |ψ̂(p)|2

∫ ( |p|
|q|

)5/2
1

|p− q| dq

≤ const v(0)

∫
|ψ̂(p)|2p2 dp,

where we use the Schwarz inequality in the second step. The second term is
estimated similarly

B2 = const

∫∫
|τ̂ (p− q)|

√
|p| |q|
|p− q| |ψ̂(p)||ψ̂(q)| dpdq

≤ const v(0)

∫
dp |ψ̂(p)|2

∫ ( |p|
|q|

)2 √|p| |q|
|p− q|2 dq

≤ const v(0)

∫
|ψ̂(p)|2|p|2 dp.

This proves the assertion.
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3 Spectral shift from Schrödinger to Brown-Ravenhall opera-
tors

The main theme of this section is the (integrated) spectral shift, i.e., the differ-
ence of sums of eigenvalues of the Brown-Ravenhall or Chandrasekhar operator

B[v] :=
√

p2 + 1− 1− U(v), C[v] :=
√

p2 + 1− 1− v,

(cf. (2.2)) and the Schrödinger operator S[v] := 1
2p

2 − v, all acting in the
Hilbert space H = L2(R3,C2) of two-spinors. We have set c = 1.
Concerning the potential v : R3 → R we will always assume that the above oper-
ators can be defined through the Friedrichs extension starting from S(R3,C2).
For example, the condition 0 ≤ v(x) ≤ κ# |x|−1 with # = B, C (cf. (2.3)) en-
sures that the Brown-Ravenhall, respectively the Chandrasekhar operator are
well-defined and bounded from below (see [17] and [40]).
We assume throughout that the potential v is radially symmetric which allows
us to investigate the spectral shift on each subspace Hj,l in the decomposition
(2.4) separately. We write Λj,l for the orthogonal projection onto Hj,l. For the
reduced traces we use the notations

trj,l(A) := tr(Λj,lA), trj(A) := trj,j+1/2(A) + trj,j−1/2(A). (3.1)

3.1 Estimate on the spectral shift

One of the key observations in our proof of the Scott correction is that the
spectral shift between the one-particle Brown-Ravenhall and the Schrödinger
operator decreases sufficiently fast for high angular momenta.

Theorem 3.1 (Spectral shift: Brown-Ravenhall case). There exists a
constant C <∞ such that for any κ ≤ κB, any v : [0,∞)→ [0,∞) satisfying

v(r) ≤ κ r−1, (3.2)

any µ > 0 and any j ∈ N0 + 1/2 one has

trj
(
[B[v] + µ]− − [S[v] + µ]−

)
≤ C κ4 j−2. (3.3)

We derive this result from a corresponding theorem for the Chandrasekhar
operator. For a proof of the latter we need to strengthen [31, Thm. 2]. In
particular, we need to consider C[v] for potentials v satisfying (3.2) also in case
κC < κ ≤ κB. Those operators are not densely defined in the Hilbert space H.
However, according to (C.8) below, they are densely defined in the subspaces
Hj,l with j ≥ 3/2. Another new aspect is that we trace the dependence on the
coupling constant.

Theorem 3.2 (Spectral shift: Chandrasekhar case). There exists a
constant C <∞ such that for all l ∈ N0, j = l ± 1

2 , for all κ satisfying

κ ≤
{
κC if l = 0,
κB if l ≥ 1,

Documenta Mathematica 14 (2009) 463–516



484 R. Frank, H. Siedentop, S. Warzel

for all µ ≥ 0 and for all v : [0,∞)→ [0,∞) satisfying (3.2), one has

0 ≤ trj,l
(
[C[v] + µ]− − [S[v] + µ]−

)
≤ C κ4

(l + 1
2 )2

. (3.4)

One of the key points to be appreciated in the above theorems is an effective
cancellation in the differences in (3.4) and (3.3). This can already be seen for
Coulomb potentials v(r) = κr−1, where

trj,l [Sκ]− = (2j + 1)
κ2

2

∞∑

n=1

1

(n+ l)2
,

which does not decay at all as j → ∞. Moreover, for fixed j and l the above
trace vanishes only like κ2 as κ→ 0. It is rather remarkable that such cancel-
lations occur uniformly for all attractive potential v satisfying (3.2).
The following proof of Theorem 3.2 follows the ideas of [31, Thm. 2]. It is
not only included to render the paper self-contained, but also to establish the
above mentioned improvement, which is important for the present paper.

Proof of Theorem 3.2. We note that both traces trj,l [C[v] + µ]− and
trj,l [S[v] + µ]− are finite. This follows by the variational principle from
the case v(r) = κr−1, cf. Theorem 2.2 in the Chandrasekhar case. Thus, for
l < 3 say, it is enough to show the claim for κ in a neighborhood of 0. More
precisely, we can assume κ ≤ 1√

8
(l + 1

2 ) which covers all κ ≤ κB for l ≥ 3.

Moreover, by an approximation argument it is sufficient to consider µ > 0 and
bounded potentials v, cf. [31].
We denote by γj,l the orthogonal projection onto the eigenspace of C[v] corre-
sponding to angular momenta j, l and eigenvalues less or equal than −µ. The
identity

1
2p

2 = C0 + 1
2C

2
0 (3.5)

and the variational principle (cf. [43, Thm. 12.1]) imply

0 ≤ 2 trj,l
(
[C[v] + µ]− − [S[v] + µ]−

)
≤ tr

[
C2

0γj,l
]
. (3.6)

Using the eigenvalue equation and the bound (3.2) on the potential we estimate
this term further as follows.

tr
[
C2

0γj,l
]
≤ trj,l [C[v]]

2
− + tr

[
v2γj,l

]
≤ trj,l [Cκ]

2
− + κ2 tr

[
|x|−2γj,l

]
.

Using Hardy’s inequality and (3.5)

tr
[
|x|−2γj,l

]
≤
(
l + 1

2

)−2
tr
[
p2γj,l

]

=
(
l+ 1

2

)−2 (
tr
[
C2

0γj,l
]

+ 2 tr [C0γj,l]
)
.

Since κ < l + 1
2 , the last two estimates may be summarized as

tr
[
C2

0γj,l
]
≤
(

1− κ2

(l + 1
2 )2

)−1(
trj,l [Cκ]

2
− +

2κ2

(l + 1
2 )2

tr [C0γj,l]

)
. (3.7)
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We shall estimate the two terms on the right hand side separately. From [31,
Lemma 3] we recall the following angular momentum barrier inequality on Hj,l,

C0 ≥ 2κr−1χ{r≤Rl(κ)}, Rl(κ) = 1
8κ (l + 1

2 )2. (3.8)

(Here we use that κ ≤ 1√
8
(l + 1

2 ).) This implies

tr [C0γj,l] ≤ κ tr
[
|x|−1γj,l

]
≤ 1

2
tr [C0γj,l] +

1

4
tr [wlγj,l]

=
3

4
tr [C0γj,l]−

1

4
tr [C[wl]γj,l]

where wl(r) := 4κr−1χ{r≥Rl(κ)}. Hence, using the variational principle fol-
lowed by Daubechies’ inequality [9] (cf. also [31, Prop. 1])

tr [C0γj,l] ≤ trj,l [C[wl]]−

≤ const (2l+ 1)

(∫ ∞

0

wl(r)
3/2 dr +

∫ ∞

0

wl(r)
2 dr

)
≤ const κ2. (3.9)

In order to estimate the first term on the right hand side of (3.7) we use (3.8)
to obtain on Hj,l

Cκ ≥ 1
2C0 − κr−1χ{r≥Rl(κ)} ≥ 1

2C[wl].

with wl as above. Hence again by Daubechies’ inequality

trj,l [Cκ]
2
− ≤const (2l+ 1)

(∫ ∞

0

wl(r)
5/2 dr +

∫ ∞

0

wl(r)
3 dr

)

≤const κ4(l + 1
2 )−2.

Combing this with (3.9), (3.7), and (3.6) completes the proof.

Having finished the proof of Theorem 3.2 it is easy to give the

Proof of Theorem 3.1. Since the trace trj [B[v] + µ]− is finite according to The-

orem 2.1 we may assume that either κ ≤ κC and j = 1/2, or else that j ≥ 3/2.
In this case, the claim essential boils down to Theorem 3.2. To see this, we
note the identity

B[v] = U(C[v]) = 1
2 (U(p)∗C[v]U(p) + U(p)C[v]U(p)∗) (3.10)

involving the unitary operator U(p) := Φ0(p)+iΦ1(p) (see also (2.1)). Equality
(3.10) as well as the unitarity of U(p) are easily derived from the fact that
Φ2

0(p) + Φ2
1(p) = 1.

Even if v satisfies (3.2) only with a κC < κ ≤ κB, identity (3.10) remains
valid on all subspaces Hj with j ≥ 3/2. Hence by the concavity of the sum of
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negative eigenvalues [72] of B[v] + µ one has for any µ ≥ 0

trj [B[v] + µ]−

≤1

2
trj [U∗(p)C[v]U(p) + µ]− +

1

2
trj [U(p)C[v]U∗(p) + µ]−

= trj [C[v] + µ]− . (3.11)

By (3.4) the trace in (3.3) is thus bounded from above by

trj
(
[C[v] + µ]− − [S[v] + µ]−

)
≤ const κ4j−2,

as claimed.

3.2 Properties of the spectral shift

In this subsection we discuss some properties of the spectral shift s(κ) defined
in (1.8).

Lemma 3.3 (Properties of the spectral shift). The spectral shift s is a
continuous, non-negative function on (0, κB] satisfying s(κ) = O(κ2) as κ ↓ 0.

Proof. According to (2.6) and Theorem 3.1 one has

0 ≤ sj(κ) := κ−2 trj
(
[Bκ]− − [Sκ]−

)
≤ const κ2j−2.

Therefore the sum s(κ) =
∑

j sj(κ) converges, is non-negative and satisfies
the claimed asymptotic estimate as κ ↓ 0. By the min-max principle each
eigenvalue depends continuously on κ. Thus the continuity of their sum follows
from the estimates in Theorem 2.1 and the Weierstraß criterion for uniform
convergence.

4 Proof of the Scott correction

The strategy of the proof of the main results is similar to the one used for
the Chandrasekhar operator [31]. We employ the Schrödinger operator as a
regularization for the relativistic problem, i.e., we will use it to eliminate the
main contribution to the energy (the Thomas-Fermi energy) and focus only
on the energy shift of the low lying states. For these the electron-electron
interaction plays no role and the unscreened problem remains. We define

ES(Z) := inf{ESZ (ψ) |ψ ∈ QS
Z , ‖ψ‖ = 1}

to be the ground state energy in the Schrödinger case,

ESN (ψ) :=

〈
ψ,



N∑

ν=1

(
1

2
p2
ν − Z|xν |−1

)
+

∑

1≤µ<ν≤N
|xµ − xν |−1


ψ
〉
.
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It is defined on QS
N := HSN ∩S(R3N ,C2N ), where HSN :=

∧N
ν=1 H is the Hilbert

space of anti-symmetric two-spinors. We recall that we suppose neutrality, i.e.,
N = Z.

The asymptotics of the Schrödinger ground-state energy up to Scott correction
reads [55]

ES(Z) = ETF(Z) + 1
2 Z

2 +O(Z47/24). (4.1)

For our purpose this remainder estimate is sufficient. However, even the coef-
ficient of the Z5/3-term in the asymptotic expansion is known [23, 24, 25, 18,
26, 21, 19, 20, 22].

Our main result, Theorem 1.1, will follow from (4.1) if we can show that in the
limit Z → ∞ the difference of the Schrödinger and Brown-Ravenhall ground-
state energy satisfies

ES(Z)− EBc (Z) = s(Z/c)Z2 +O(Z47/24) (4.2)

uniformly in κ = Z/c ∈ (0, κB]. We break the proof of this assertion into an
upper and lower bound.

4.1 Upper bound on the energy difference

The Thomas-Fermi functional (1.7) has a unique minimizer ̺Z , the Thomas-
Fermi density (Lieb and Simon [44]). It scales as ̺Z(x) := Z2̺1(Z1/3x). We
set

φTF(x) := Z|x|−1 −
∫

R3

̺Z(y)

|x− y| dy, (4.3)

the Thomas-Fermi potential, and

LTF(x) :=

∫

|x−y|<RZ(x)

̺Z(y)

|x− y| dy,

the exchange hole potential. Here RZ(x) is defined as the (unique) minimal
radius for which

∫
|x−y|≤RZ(x)

̺Z(y)dy = 1
2 . The corresponding one-particle

operators – self-adjointly realized in H – are

STF = S[φTF + LTF], BTF = Bc[φTF + LTF].

Here we use a notation analogous to that in (1.5).

We shall express the many-particle ground-state energies ES(Z) and EBc (Z)
in terms of quantities involving the above one-particle operators. In the
Schrödinger case, this was achieved in [55, 58] in terms of the Thomas-Fermi
potential φTF. Our point in the proof of the following proposition is to replace
φTF by the exchange hole reduced potential φTF + LTF.
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Proposition 4.1. Let J :=
[
Z1/9

]
+ 1

2 . Then, as Z →∞,

ES(Z)

= −
J−1∑

j=1/2

trj
[
S[Z|x|−1]

]
− −

Z+1/2∑

j=J

trj [STF]− −D(̺Z , ̺Z) +O(Z47/24).

(4.4)

Since φTF + LTF has a Coulomb tail, the trace trj [STF]− is finite for each j,
but not summable with respect to j. It is therefore essential to restrict the
second sum to a finite number of angular momenta. However, the value of the
cut-off, j ≤ Z + 1/2, is not chosen optimally here, since for our argument it is
largely arbitrary.

Proof of Proposition 4.1. According to the correlation inequality [47]

ES(Z) ≥ −
Z+1/2∑

j=1/2

trj [STF]− −D(̺Z , ̺Z).

Note that the Z electrons can certainly be accommodated in the first Z angular
momentum channels (which is a very crude bound). Estimating φTF+LTF from
above by the Coulomb potential for small angular momenta, we obtain

ES(Z) ≥ −
J−1∑

j=1/2

trj
[
S[Z|x|−1]

]
− −

Z+1/2∑

j=J

trj [STF]− −D(̺Z , ̺Z). (4.5)

Moreover, see [55, 58],

ES(Z)

≤ −
J−1∑

j=1/2

trj
[
S[Z|x|−1]

]
− −

∞∑

j=J

trj [S[φTF]]− −D(̺Z , ̺Z) + const Z47/24.

Hence it suffices to prove that

−
Z+1/2∑

j=J

trj [STF]− ≥ −
∞∑

j=J

trj [S[φTF]]− − const Z5/3 (4.6)

(Note that the lower bound in [31] contains an error by estimating [31, Equation
(43)] too generously. Really, only the first Z lowest negative eigenvalues need
to occur on the right hand side instead of all. In particular, there will be never
more than Z total angular momentum channels occupied. This fact is taken
into account here yielding a suitable lower bound. The problem in [31] can be
circumvented in exactly the same way.) We decompose LTF = L< +L> where

L< = χ{|x|<R}LTF, L> = χ{|x|≥R}LTF,
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with a constant R (independent of Z) to be chosen below. For ε > 0 to be
specified later we estimate using the variational principle for sums of eigenvalues

trj [STF]−
≤ trj(

1
2 (1−2ε2)p2−φTF)−+ ε2 trj(

1
2p

2− ε−2L<)−+ ε2 trj(
1
2p

2− ε−2L>)−.
(4.7)

By the subsequent lemma the first (and main) term is bounded according to

Z+1/2∑

j=J

trj(
1
2 (1− 2ε2)p2 − φTF)− −

∞∑

j=J

trj(
1
2p

2 − φTF)−

≤ tr(1
2 (1 − 2ε2)p2 − φTF)− − tr(1

2p
2 − φTF)− ≤ const ε2Z7/3.

For the second term on the right side of (4.7) we use the Lieb-Thirring inequal-
ity [45] to obtain

ε2
Z+1/2∑

j=J

trj(
1
2p

2 − ε−2L<)− ≤ ε2 tr(1
2p

2 − ε−2L<)−

≤ const ε−3

∫
L<(x)5/2 dx ≤ const ε−3Z2/3.

In the last inequality we used a bound of Siedentop and Weikard [58, Proof of
Lemma 2]. It is at this point that R is chosen. The penultimate inequality in
[58, Proof of Lemma 2] asserts after scaling that L>(x) ≤ const |x|−1. Hence
by comparison with the exact hydrogen solution

ε2
Z+1/2∑

j=J

trj(
1
2p

2 − ε−2L>)− ≤ ε2
Z+1/2∑

j=1/2

trj(
1
2p

2 − ε−2const |x|−1)−

=const ε−2

Z+1/2∑

j=1/2

∞∑

n=1

2j + 1

(n+ j − 1/2)2
≤ const ε−2Z.

Choosing ε = Z−1/3 all the error terms are O(Z5/3), proving (4.6).

In the previous proof we used

Lemma 4.2. For all 0 < ε ≤ 1/2, as Z →∞,

tr(1
2 (1− ε2)p2 − φTF)− ≤ tr(1

2p
2 − φTF)− + const ε2Z7/3. (4.8)

Note that there are only a finite number of eigenvalues, since φTF decays like
|x|−4.
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Proof. Let dεTF be the projection onto the negative eigenvalues of 1
2 (1− ǫ2)p2−

φTF. Then, by the variational principle

tr(1
2 (1− ε2)p2 − φTF)− − tr(1

2p
2 − φTF)−

≤ − tr dεTF(1
2 (1− ε2)p2 − φTF) + tr dεTF(1

2p
2 − φTF) = ε2

2 tr dεTFp
2. (4.9)

Hence the claim will follow, if we show that tr dεTFp
2 ≤ const Z7/3. Note

that dεTF depends on both ε and Z, and by rescaling one may get rid of the
ε dependence at the expense of changing Z. We may therefore assume that
ε = 0 and write dTF = d0

TF.
Thus, it remains to prove

tr dTFp
2 ≤ const Z7/3. (4.10)

Note that this says that the kinetic energy is bounded by the order of the total
energy tr dTF(1

2p
2−φTF), which is well-known to be of order Z7/3. Using that

φTF is bounded by a constant times min{Z|x|−1, |x|−4} (see [44]) we get for
any R > 0

1
2 tr dTFp

2 ≤ tr dTFφTF

≤ const



(∫

{|x|<R}
(Z|x|−1)5/2 dx

)2/5(∫
dTF(x,x)5/3 dx

)3/5

+R−4

∫
dTF(x,x) dx

)
.

The Cwikel-Lieb-Rozenblum inequality (for a textbook presentation, see, e.g.,
[63]) guarantees that

∫
dTF(x,x) dx ≤ const

∫
φTF(x)3/2dx = const Z.

Moreover, by the Lieb-Thirring inequality [45]

∫
dTF(x,x)5/3 dx ≤ const tr dTFp

2.

We can estimate for any δ > 0

(∫

{|x|<R}
(Z|x|−1)5/2 dx

)2/5(∫
dTF(x,x)5/3 dx

)3/5

≤ const ZR1/5
(
tr dTFp

2
)3/5

≤ δ tr dTFp
2 + const δ−3/2Z5/2R1/2.
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In summary, we have shown that

(
1
2 − const δ

)
tr dTFp

2 ≤ const
(
δ−3/2Z5/2R1/2 +R−4Z

)
.

Choosing δ small (of order one) and R = Z−1/3 we obtain (4.10).

Next, we bound the many-particle ground state energy of the Brown-Ravenhall
operator from below by one-body quantities which match the corresponding
quantities in the Schrödinger case (4.4).

Lemma 4.3. For all J ∈ N0 + 1/2 and Z ∈ N

EBc (Z) ≥ −
J−1∑

j=1/2

trj
[
Bc[Z|x|−1]

]
− −

Z+1/2∑

j=J

trj [BTF]− −D(̺Z , ̺Z).

Proof. This follows by the same argument leading to (4.5).

We are now ready to give a

Proof of Theorem 1.1 – first part. Choosing J =
[
Z1/9

]
+ 1

2 and combining
Proposition 4.1 and Lemma 4.3 we obtain

ES(Z)− EBc (Z) ≤
J−1∑

j=1/2

trj

([
Bc[Z|x|−1]

]
− −

[
S[Z|x|−1]

]
−

)
(4.11)

+

Z+1/2∑

j=J

trj
(
[BTF]− − [STF]−

)
+O(Z47/24).

We note that by scaling x 7→ x/c, the operators S[Z|x|−1] and Bc[Z|x|−1]
are unitarily equivalent to the operators Z2κ−2Sκ and Z2κ−2Bκ where κ =
Z/c. Similarly, STF and BTF are unitarily equivalent to the operators
Z2κ−2S[κ|x|−1 − χc] and Z2κ−2B[κ|x|−1 − χc] acting in H, where

χc(x) := c−4

∫

|x−y|>cRZ(c−1x)

̺Z(c−1y)

|x− y| dy.

This implies that the first two terms on the right-hand side of (4.11), which we
denote by Σ1(Z, c) and Σ2(Z, c), can be rewritten as

Σ1(Z, c) =Z2κ−2
J−1∑

j=1/2

trj
(
[Bκ]− − [Sκ]−

)
,

Σ2(Z, c) =Z2κ−2

Z+1/2∑

j=J

trj

([
B[κ|x|−1 − χc]

]
− −

[
S[κ|x|−1 − χc]

]
−

)
.
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Inequality (2.6) and Theorem 3.1 guarantee that the terms in the first sum are
non-negative and that the terms in both sums are bounded from above by a
constant times κ4j−2 independently of Z and c. Therefore, the first sum can
be bounded from above by an absolutely convergent series,

Σ1(Z, c) ≤ Z2κ−2
∞∑

j=1/2

trj
(
[Bκ]− − [Sκ]−

)
= Z2 s(κ).

By the same token

Σ2(Z, c) ≤ const Z2κ2
∞∑

j=J

j−2 = O(Z17/9),

uniformly in c. This concludes the proof of the upper bound on the energy
difference.

4.2 Lower bound on the energy difference

Similarly to [55] we define one-particle density matrices dS and dB on H as
sums

d# = d#
< + d>, # = S,B. (4.12)

The contribution of small total angular momenta, d#
< =

∑
l<L d

#
l , is defined

in Appendix E.1. It comes from the eigenspinors of the atomic problems. The
contribution of large angular momentum, d> =

∑∞
l=L dl, is defined in Ap-

pendix E.2. It corresponds to the Macke orbitals of [55] and, in particular, co-
incides for the Schrödinger and Brown-Ravenhall case. The angular-momentum
cut-off L will be chosen in a Z-dependent way, namely,

L := [Z1/12].

Important properties of the density matrices, whose construction is explained
in more detail in Appendix E, are:

• The densities

ρ#(x) := trC2

(
d#(x,x)

)
, ρ#

l (x) := trC2

(
d#
l (x,x)

)
,

ρ#
<(x) :=

∑

l<L

ρ#
l (x), ρ>(x) :=

∑

l≥L
ρl(x).

of d#, d#
l , and d> are all spherically symmetric.

• The dimension of the ranges of the density matrices dS and dB is at most
Z, in particular tr d# ≤ Z. Moreover,

tr d#
l =

∫
ρ#
l (x) dx = 2(2l+ 1)(K − l), 0 ≤ l < L, (4.13)

with K = [const Z1/3] and a suitable constant.
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For a lower bound on the ground state energy in the Schrödinger case, we recall
from [55] and [31, Proposition 4] the following

Proposition 4.4. For large Z,

ES(Z) = tr
[
S[Z|x|−1] dS

]
+D(ρS , ρS) +O(Z47/24).

To obtain an upper bound on the ground state energy in the Brown-Ravenhall
case, we use the reduced Hartree-Fock variational principle. It involves the
density

ρBU (x) := trC2

(
Uc(dB)(x,x)

)

of the twisted density matrix Uc(dB).
For further reference, we also set

ρBU,l(x) := trC2

(
Uc(dBl )(x,x)

)
, ρBU,<(x) :=

∑

l<L

ρBU,l(x),

ρU,>(x) :=
∑

l≥L
ρU,l(x).

Applying to (1.1) the Hartree-Fock variational principle – in the strengthened
version of Lieb [42] (see also Bach [2]) – and omitting the manifestly negative
exchange energy we arrive at

Proposition 4.5. For all Z and c,

EBc (Z) ≤ tr[Bc[Z|x|−1] dB ] +D(ρBU , ρ
B
U ).

Combining Propositions 4.4 and 4.5 we find

EBc (Z)− ES(Z)

≤ tr[Bc[Z|x|−1]dB]− tr[S[Z|x|−1]dS ] +D(ρBU − ρS , ρBU + ρS) + const Z47/24.

Now we use the inequality p2 ≥ 2c2(E(p/c) − 1) for the kinetic energy corre-
sponding to d>. Moreover, we write

D(ρBU − ρS , ρBU + ρS) = D(ρU,> − ρ>, ρU,> + ρ>) + 2D(ρBU,<, ρ
B
U + ρS)

−D(ρBU,< + ρS<, ρ
B
U,< + ρS<)− 2D(ρBU,< + ρS<, ρ>)

and drop the two negative terms on the right hand side. We arrive at

EBc (Z)− ES(Z) ≤ tr
[
Bc[

Z
|x| ]d

B
<

]
− tr

[
S[ Z|x| ]d

S
<

]
+ tr

[(
Z
|x| − Uc( Z|x|)

)
d>

]

︸ ︷︷ ︸
=:R1

+D(ρU,> − ρ>, ρU,> + ρ>)︸ ︷︷ ︸
=:R2

+2D(ρBU,<, ρ
B
U + ρS)

︸ ︷︷ ︸
=:R3

+const Z47/24. (4.14)

As we shall see, the first two terms will yield the Scott correction. In the follow-
ing subsections we prove that R1, R2, and R3 are relatively small remainder
terms. Hence, we wish to control the effects of the twisting operation Uc, which
stems from the electronic projection, on the electrostatic Coulomb energy.
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4.2.1 Controlling the electron projection for high angular mo-
menta

Our task in this subsection is to prove that for large angular momenta, the
twisted and untwisted electrostatic energy are asymptotically equal.
We start by comparing the electric potential energy with or without electron
projection for large angular momentum. This will imply that the term R1 in
(4.14) is relatively small.

Lemma 4.6. In the limit Z →∞ one has uniformly in κ = Z/c ∈ (0, κB]

∫
(ρ>(x)− ρU,>(x))

dx

|x| = tr
[(
|x|−1 − Uc(|x|−1)

)
d>
]

= O(Z11/12).

Proof. Let {ψα} stand for the Macke orbitals building up d> which we label
by α = (j, l,m, n); see (E.1) and preceding equations in Appendix E.2. By the
scaling x 7→ x/c one has the relation

〈
ψα,

[
|x|−1 − Uc(|x|−1)

]
ψα
〉

= c
〈
ψ(c)
α ,
[
|x|−1 − U1(|x|−1)

]
ψ(c)
α

〉

where ψ
(c)
α (x) := c−3/2ψα(x/c). Assuming that α corresponds to a fixed (large)

(j, l) we may use Lemma 2.8 to estimate the right-hand side by a constant times

c

l2

〈
ψ(c)
α ,p2ψ(c)

α

〉
=

1

l2 c

〈
ψα,p

2ψα
〉
.

Using that Z/c ≤ κB we obtain the estimate

tr
[(
|x|−1 − Uc(|x|−1)

)
d>
]
≤ const

κB

Z

∞∑

l=L

1

l2

∑

j=l±1/2

trj,l
[
p2d>

]
.

The proof is completed using Lemma E.1 from Appendix E.3.

Next, we estimate the difference of Coulomb energies corresponding to large
total angular momenta. This shows that the term R2 in (4.14) may be ne-
glected.

Lemma 4.7. In the limit Z →∞,one has uniformly in κ = Z/c ∈ (0, κB]

R2 = D(ρU,> − ρ>, ρ> + ρU,>) = O(Z5/3).

Proof. We define v := (ρ> +ρU,>)∗ | · |−1 to be the electric potential generated
by ρ> + ρU,> which is obviously spherically symmetric and obeys

v(0) = tr
[
d>
(
|x|−1 + Uc(|x|−1)

)]

= 2 tr
[
d>|x|−1

]
− tr

[
d>
(
|x|−1 − Uc(|x|−1)

)]
.
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According to [55] (see also (E.8)) the first term on the right side is O(Z4/3).
Moreover the second term is O(Z11/12) by Lemma 4.6, hence much smaller
than the first term. Now,

D(ρ> − ρU,>, ρ> + ρU,>) = 1
2 tr [d> (v − Uc(v))] . (4.15)

Decomposing the trace in (4.15) into the orbitals contributing to d> and scaling
x 7→ x/c enables us to employ Lemma 2.9 to obtain the bound

tr [d> (v − Uc(v))] ≤ const

c2
v(0) tr

[
d>p2

]
.

This concludes the proof, since again from [55] (see (E.8)) we conclude that
the trace on the right-hand side is O(Z7/3).

4.2.2 Contribution from low angular momenta to the Coulomb
energy

We now show that the term R3 in (4.14) is negligible.

Lemma 4.8. In the limit Z →∞ one has uniformly in κ = Z/c ∈ (0, κB]

R3 = D(ρBU,<, ρ
B
U + ρS) = O(Z11/6 logZ).

Proof. We first treat the termD(ρBU,<, ρU,>+ρ>). By construction the densities

ρBU,j are spherically symmetric and satisfy according to (4.13)

∫
ρBU,l(x) dx =

∫
ρBl (x) dx = 2(2l+ 1)(K − l), 0 ≤ l < L. (4.16)

Recalling the choice of K and L we see that
∫
ρBU,<(x) dx = O(Z1/2). (4.17)

It follows from (E.8) and Lemma 4.6 that

∫
ρU,>(x) + ρ>(x)

|x| dx = O(Z4/3).

Hence Newton’s theorem [49] yields

D(ρBU,<, ρU,> + ρ>) ≤ 1

2

∫
ρBU,<(x)dx

∫
ρU,>(y) + ρ>(y)

|y| dy = O(Z11/6).

In the remainder of the proof we are concerned with the term
D(ρBU,<, ρ

B
U,< + ρS<). Noting that

D(ρBU,<, ρ
B
U,< + ρS<) ≤ 3

2
D(ρBU,<, ρ

B
U,<) +

1

2
D(ρS<, ρ

S
<).

Documenta Mathematica 14 (2009) 463–516



496 R. Frank, H. Siedentop, S. Warzel

and that according to [55, Prop. 3.5] D(ρS<, ρ
S
<) = O(Z11/6), it suffices to

consider D(ρBU,<, ρ
B
U,<). We split the lowest angular momentum corresponding

to l ≤ 2Z/c− 1/4 =: l0 off and define

dB⊢ :=
∑

l≤l0
dBl , dB⊣ :=

L−1∑

l>l0

dBl ,

and
ρBU,⊢ := trC2

(
Uc(dB⊢ )(x,x)

)
, ρBU,⊣ := trC2

(
Uc(dB⊣ )(x,x)

)
.

Note that in case l0 < 0 there is no need for this procedure. Accordingly, we
estimate

D(ρBU,<, ρ
B
U,<) ≤ 2D(ρBU,⊢, ρ

B
U,⊢) + 2D(ρBU,⊣, ρ

B
U,⊣).

For an estimate of the second part corresponding to l0 < l < L, we apply the
following angular momentum barrier inequality

Bc[0] ≥ Uc
(

2Z

|x| χ{|x|≤rl}
)

(4.18)

on Hj,l, where rl =
(
(l + 1/2)2c2 − 4Z2

)
/(4Zc2) and l > 2Z/c. This bound

follows by applying U1 to the inequality in [31, Lemma 2.6] with Rl = [(l +
1/2)2 − 4κ2]/(4κ) and scaling x 7→ x/c.
Inequality (4.18) implies

tr
[
Uc
(
|x|−1

)
dBl
]
≤ 1

2Z
tr
[
Bc[0] dBl

]
+ tr

[
Uc
(
|x|−1χ{|x|>rl}

)
dBl
]

≤ 1

2
tr
[
Uc
(
|x|−1

)
dBl
]

+
4Z

(l + 1/2)2 − 4Z2/c2
tr[dBl ].

Here the last inequality used the fact that eigenfunctions of dBl are eigenfunc-
tions of Bc[Z|x|−1] with negative eigenvalue. Now, note that

(l + 1/2)2 − 4Z2/c2 = (l + 1/2 + 2Z/c)(l+ 1/2− 2Z/c) ≥ const (l + 1/2)2

for l ≥ l0. Hence, using (4.16) and summing over l we obtain

∫
ρBU,⊣(x)

|x| dx =
L−1∑

l>l0

tr
[
Uc(|x|−1)dBl

]

≤ const Z

L−1∑

l=0

(l + 1/2)−2

∫
ρBl (x) dx = O(Z4/3 logZ).

Accordingly, Newton’s theorem and (4.17) yield

D(ρBU,⊣, ρ
B
U,⊣) ≤

1

2

∫
ρBU,⊣(x) dx

∫
ρBU,⊣(x)

|x| dx = O(Z11/6 logZ).

Documenta Mathematica 14 (2009) 463–516



The Scott Correction 497

Finally, we consider the contribution from l ≤ l0. Note that then l ≤ 2κB −
1/4 < 2. We claim that the electrostatic energy corresponding to the electrons
in this subspace is bounded by

D
(
ρBU,⊢, ρ

B
U,⊢
)
≤ const cK2. (4.19)

Since by the choice of l0 one has 2Z/c ≥ l + 1/4 ≥ 1/4, estimate (4.19) will
imply that D

(
ρBU,⊢, ρ

B
U,⊢
)
≤ const ZK2 = O(Z5/3) and hence complete the

proof of Lemma 4.8. By scaling it suffices to prove (4.19) for c = 1, which we
will assume in the sequel. The Hardy-Littlewood-Sobolev inequality (see, e.g.,
[43, Thm. 4.3]) implies that

D
(
ρBU,⊢, ρ

B
U,⊢
)
≤ const

∥∥ρBU,⊢
∥∥2

6/5
. (4.20)

The triangle inequality together with the definition of U and (B.2) yields

‖ρU,⊢‖6/5 ≤
∑

α∈A

∑

ν=0,1

‖Φνψα‖212/5, (4.21)

where {ψα|α ∈ A} stands for the collection of normalized eigenfunctions build-
ing up dB⊢ , i.e., the corresponding sum ranges over all indices (j, l,m, n). We
further estimate with the help of Lemma B.1 and Theorem 2.4,

‖Φνψα‖212/5 ≤ const ‖ψα‖212/5 ≤ const .

This, together with (4.20), (4.21) and the fact that the number of indices in A
is bounded by a constant times K proves (4.19).

4.2.3 Finishing the proof

We repeat (4.14),

ES(Z)− EBc (Z) ≥ tr[S[ Z|x| ]d
S
<]− tr[Bc[

Z
|x| ]d

B
<]−R1 −R2 −R3 − const Z

47
24 .

By Lemmata 4.6, 4.7, and 4.8 we have uniformly in κ = Z/c ∈ (0, κB]

R1 = O(Z23/12), R2 = O(Z5/3), R3 = O(Z11/6 logZ),

so these terms are of lower order than Z47/24. Next, we scale x 7→ x/c and
obtain

tr[S[Z|x|−1]dS<]− tr[Bc[Z|x|−1]dB<] = Z2s(κ)−R4

where s(κ) is introduced in (1.8) and

R4 := Z2κ−2
L−1∑

l=0

(2l + 1)
∑

j=l±1/2

∞∑

n=K−l+1

(λn(sl(κ))− λn(bj,l(κ)) .
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By Theorem 2.1 there is a constant such that for all 0 < κ ≤ κB

0 ≤ R4 ≤ Z2κ−2
L−1∑

l=0

(2l + 1)
∑

j=l±1/2

∞∑

n=K−l+1

|λn(bj,l(κ)|

≤ const Z2
L−1∑

l=0

(2l + 1)

∞∑

n=K−l+1

(n+ l)−2

≤ const Z2L2K−1 = O(Z11/6).

This concludes the proof of the lower bound and hence of our main result.
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Note added in proof. After this paper has been submitted, one of us (R. F.)
found an easier proof of a stronger inequality than (2.19). This proof is based
on an inequality from [65] as well as Lemma 2.6 in the present paper; see [29].

A Partial wave analysis

For the convenience of the reader and for normalization of the notation we
gather some fact on the partial wave analysis of the Brown-Ravenhall operator.
We denote by Yl,m the normalized spherical harmonics on the unit sphere S2

(see, e.g., [48], p. 421) with the convention that Yl,m ≡ 0 if |m| > l, and we
define for j ∈ N0 + 1

2 , l ∈ N0, and m = −j, . . . , j the spherical spinors

Ωj,l,m(ω) :=








√
j+m
2j Y

l,m− 1
2

(ω)
√

j−m
2j Y

l,m+
1
2

(ω)


 if j = l + 1

2 ,



−
√

j−m+1
2j+2 Y

l,m− 1
2

(ω)
√

j+m+1
2j+2 Y

l,m+
1
2

(ω)


 if j = l − 1

2 .

(A.1)

The set of admissible indices is I := {(j, l,m) : j ∈ N− 1/2, l = j± 1/2, m =
−j, ..., j}. It is known that the functions Ωj,l,m, (j, l,m) ∈ I, form an orthonor-
mal basis of the Hilbert space L2(S2; C2). They are joint eigenfunctions of J2,
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J3, and L2 with eigenvalues given by j(j + 1), l(l + 1), and m. The subspace
Hj,l,m corresponding to the joint eigenspace of total angular momentum J2

with eigenvalue j(j + 1) and angular momentum L2 with eigenvalue l(l+ 1) is
then given by

Hj,l,m = span{x 7→ |x|−1 f(|x|) Ωj,l,m(ωx) | f ∈ L2(R+)}

where ωx := x/|x|. This leads to the orthogonal decomposition

H =
⊕

j∈N0+ 1
2

⊕

l=j±1/2

Hj,l, Hj,l =

j⊕

m=−j
Hj,l,m, (A.2)

of the Hilbert space of two spinors.
We note that the Fourier transform,

ψ̂(p) := (2π)−3/2

∫

R3

e−ip·xψ(x) dx, (A.3)

leaves the spaces Hj,l invariant. Namely, if we decompose ψ according to (A.2),

ψ(x) =
∑

(j,l,m)∈I
r−1ψj,m,l(r) Ωj,l,m(ωx),

then

ψ̂(p) =
∑

(j,l,m)∈I
p−1 (Flψj,m,l) (p) Ωj,l,m(ωp) (A.4)

with the Fourier-Bessel transform

(Flf)(p) = i−l
√

2

π

∫ ∞

0

f(r)jl(rp)rp dr. (A.5)

Here jl is a spherical Bessel function. Moreover,

‖ψ‖2 =
∑

(j,l,m)∈I

∫ ∞

0

|ψj,m,l(r)|2dr =
∑

(j,l,m)∈I

∫ ∞

0

|(Flψj,m,l)(p)|2dp = ‖ψ̂‖2.

B Properties of the twisting operators

We define the helicity operator H = ωp · σ on H by

Ĥψ(p) := σ · ωpψ̂(p). (B.1)

It follows from the pointwise identity

(ωp · σ)Ωj,l,m(ωp) = −Ωj,2j−l,m(ωp), (B.2)
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see, e.g., Greiner [33, p. 171, (12)], that H is an isomorphism between Hj,l and
Hj,2j−l. Moreover, since (σ · a) (σ · b) = a · b + iσ · (a × b) for any a, b ∈ R3,
we infer that H is an involution on H, i.e., H = H−1.
We shall need to consider H on Lp spaces with p 6= 2. The relevant properties
are summarized in the next lemma, together with those of the operators

Φ̂νψ(p) := Φν(p) ψ̂(p), (B.3)

introduced in (1.4). Note that while Φ0 acts trivially on the spin, Φ1 involves
the helicity H.

Lemma B.1 (Lp-properties of H and Φν). The operators H and Φν , ν =
0, 1, extend to bounded operators from Lp(R3,C2) to Lp(R3,C2) for any p ∈
(1,∞).

Proof. The Lp-boundedness of H follows from that of the Riesz transformation,
see [68, Ch. II-III]. Therefore, to prove the statement about the operators
Φν , it suffices to consider the operators φν defined analogously as in (B.3)
on L2(R3). Since p 7→ φν(p) is smooth away from the origin and pk∂kφν is
bounded for k = 0, 1, 2, the Hörmander-Mihlin multiplier theorem [68, Thm.
IV.3] implies that φν extend to bounded operators from Lp(R3) to Lp(R3) for
any p ∈ (1,∞).

Lemma B.2. For all p,q ∈ R3

1− Φ0(p)Φ0(q) − Φ1(p)Φ1(q)

=
1

2

1∑

ν=0

(Φν(p)− Φν(q))2 +
1

2
(Φ1(q)Φ1(p)− Φ1(p)Φ1(q)) . (B.4)

and furthermore

|Φ0(p)− Φ0(q)|2 ≤ |p− q|2
8E(p)2E(q)2

|Φ1(p)− Φ1(q)|2 ≤ |p− q|2
E(p)E(q)

|Φ1(q)Φ1(p)− Φ1(p)Φ1(q)| ≤
√
|p||q||p− q|
E(p)E(q)

Proof. The first equality is an immediate consequence of the definition of Φ0

and Φ1. From this definition we also conclude by an explicit calculation that

|Φ0(p)− Φ0(q)|2 = (φ0(p)− φ0(q))2 ≤ |p− q|2
8E(p)2E(q)2

. (B.5)

Moreover, for a proof of the next inequality we write

|Φ1(p)− Φ1(q)|2 = (φ1(p)− φ1(q))2 + φ1(p)φ1(q)|ωp − ωq|2,
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and estimate the last two terms with the help of the inequalities

(φ1(p)− φ1(q))
2 ≤ (|p| − |q|)2

2E(p)2E(q)2
≤ |p− q|2

2E(p)2E(q)2
, (B.6)

and

φ1(p) ≤ 1√
2

|p|
E(p)

and |ωp − ωq|2 ≤
|p− q|2
|p||q| . (B.7)

Finally, for a proof of the last inequality we use

|Φ1(q)Φ1(p)− Φ1(p)Φ1(q)| = 2φ1(p)φ1(q) |σ · (ωp × ωq)|
≤ 2φ1(p)φ1(q)|ωp − ωq|.

Using again (B.7) concludes the proof of the third inequality.

C Basics of relativistic hydrogenic operators

In this section we collect – following [17] – some basic properties of the op-
erators Bκ and Cκ which describe hydrogenic atoms in the Brown-Ravenhall
respectively Chandrasekhar model. For pedagogical reasons we first discuss
their massless analogues,

B(0)
κ := |p| − κ

2

(
|x|−1 + ωp · σ |x|−1 ωp · σ

)
, C(0)

κ := |p| − κ|x|−1. (C.1)

C.1 Massless case

Expanding ψ̂ as in (A.4) and using (B.2) yields [17] the following partial diag-
onalization of the massless operators,

〈ψ,B(0)
κ ψ〉 =

∑

(l,m,s)∈I
〈Flψj,m,l, b(0)j (κ)Flψj,m,l〉, (C.2)

〈ψ,C(0)
κ ψ〉 =

∑

(l,m,s)∈I
〈Flψj,m,l, c(0)l (κ)Flψj,m,l〉. (C.3)

Here the operators b
(0)
j (κ) and c

(0)
l (κ) are densely defined in L2(R+) through

their quadratic forms,

〈f, b(0)j (κ)f〉 :=

∫ ∞

0

p |f(p)|2dp− κ
∫ ∞

0

∫ ∞

0

f(p) kBj (p, q) f(q) dq dp,

〈f, c(0)l (κ)f〉 :=

∫ ∞

0

p |f(p)|2dp− κ
∫ ∞

0

∫ ∞

0

f(p) kCl (p, q) f(q) dq dp,

with maximal form domain denoted by Q(b
(0)
j (κ)) and Q(c

(0)
l (κ)). In the above

expression, the integral kernels kBj and kCl are given by

kBj (p, q) :=
1

2π

[
Qj−1/2

(
1
2

(
p
q + q

p

))
+Qj+1/2

(
1
2

(
p
q + q

p

))]
, (C.4)

kCl (p, q) :=
1

π
Ql

(
1
2

(
p
q + q

p

))
, (C.5)
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where Ql are the Legendre functions of the second kind, i.e.,

Ql(z) = 1
2

∫ 1

−1

Pl(t)(z − t)−1dt (C.6)

with Pl standing for Legendre polynomials; see Stegun [67] for the notation
and some properties of these special functions.
It was proved in [17] and [40, Eq. (5.33)] that the operators (C.1) are self-
adjoint and lower bounded if and only if κ ≤ κ#, # = B,C, cf. (2.3). More

can be said about the reduced operators b
(0)
j (κ) and c

(0)
l (κ). They are lower

bounded (in fact, non-negative) if and only if

1

κ
≥ 1

κBj
:=

∫ ∞

0

kBj (1, t)
dt

t
, (C.7)

1

κ
≥ 1

κCl
:=

∫ ∞

0

kCl (1, t)
dt

t
. (C.8)

This follows by the same lines of reasoning as in [17].
Since [67, (8.4)] P0(t) = 1, P1(t) = t, we have

Q0(t) =
1

2
log

t+ 1

t− 1
, Q1(t) =

t

2
log

t+ 1

t− 1
− 1, (C.9)

such that κC0 = 2/π, κC1 = π/2 and thus κB1/2 = 2/(2/π + π/2).

The critical coupling constants κBj and κCl are strictly increasing in j and l

and, in particular, κB1/2 = κB and κC0 = κC . This follows from the pointwise
monotonicity

Ql(t) ≥ Ql′(t) for l′ ≥ l and t > 1 (C.10)

which, in turn, is evident from the integral representation

Ql(x) =

∫ ∞

x+
√
x2−1

z−l−1

√
1− 2xz + z2

dz, x > 1;

see Whittaker and Watson [77, p. 334, Chap. X, Sec. 3.2].

C.2 Massive case

Similarly as in the previous subsection, one obtains the following partial di-
agonalization of the massive hydrogenic Brown-Ravenhall and Chandrasekhar
operators,

〈ψ,Bκ ψ〉 =
∑

(l,m,s)∈I
〈Flψj,m,l, bj,l(κ)Flψj,m,l〉, (C.11)

〈ψ,Cκψ〉 =
∑

(j,l,m)∈I
〈Flψj,m,l, cl(κ)Flψj,m,l〉. (C.12)
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Here the operators bj,l(κ) and cl(κ) are densely defined in L2(R+) through
their quadratic forms,

〈f, bj,l(κ)f〉

:=

∫ ∞

0

(E(p) − 1)|f(p)|2dp− κ
∫ ∞

0

∫ ∞

0

f(p) kBj,l(p, q) f(q) dq dp, (C.13)

〈f, cl(κ)f〉

:=

∫ ∞

0

(E(p) − 1)|f(p)|2dp− κ
∫ ∞

0

∫ ∞

0

f(p) kCl (p, q) f(q) dq dp (C.14)

with maximal form domain denoted by Q(bj,l(κ)) and Q(cl(κ)), cf. [17]. In the
above expression, the integral kernel kBj,l depends, in contrast to the massless
case, on both j and l and is given by

kBj,l(p, q)

:=
1

π

[
φ0(p)Ql

(
1
2

(
p
q + q

p

))
φ0(q) + φ1(p)Q2j−l

(
1
2

(
p
q + q

p

))
φ1(q)

]
.

The form (C.13) defines a self-adjoint semi-bounded operator bj,l(κ) if and
only if κ ≤ κBj (Evans et al. [17]). A trivially modified argument shows that

(C.14) defines a self-adjoint semi-bounded operator cl(κ) if and only if κ ≤ κCl .
In fact, the semiboundedness of the massive cases and the massless cases are
equivalent, since the differences of the massive and massless forms are bounded
(Tix [75, Thm. 1]). (One even knows that bj,l(κ)+1 is non-negative (Tix [76]).)

D Critical Chandrasekhar operator on a finite domain

Lieb and Yau [46] have shown that the critical Chandrasekhar operator
|p| − κC |x|−1 when restricted to a ball has only discrete spectrum with eigen-
values accumulating at infinity at the rate predicted by the semiclassical result
for |p| alone. This is remarkable since the semiclassical phase-space volume
corresponding to |p| − κ|x|−1 is infinite.
We aim at proving an analogous result for the Chandrasekhar operator re-
stricted to a ball and restricted to the subspace of fixed angular momentum.
In the proof of Theorem 2.1 it is essential to handle coupling constants which
are larger than κC , all the way up to and including κC1 .
In order to define the above operator we consider for R > 0 and l ∈ N the
Hilbert space

Fl(R) :=
{
f ∈ L2(0,∞)

∣∣ (F−1
l f

)
(r) = 0 for all r ≥ R

}
,

where Fl denotes the Fourier-Bessel transformation, cf. (A.5). The quadratic

form given by 〈f, c(0)l (κ)f〉 with domain Fl(R)∩Q(c
(0)
l (κ)) defines for all κ ≤ κCl

a self-adjoint, non-negative operator in Fl(R) which we will denote by c
(0)
l (κ,R).

Documenta Mathematica 14 (2009) 463–516



504 R. Frank, H. Siedentop, S. Warzel

Lemma D.1. Let l ∈ N. There is a constant such that for all R > 0, µ > 0,
and κ ≤ κCl

tr
(
c
(0)
l (κ,R)− µ

)
−
≤ const µ2R. (D.1)

We have not tried to track the l-dependence of the constant, since the cases
l = 0, 1 will be enough for our purpose.

Proof. For a proof of (D.1) we basically follow the argument in [46]. The start-
ing point is the following reduction to a simpler variational problem involving
only functions. Namely, for any non-negative function h : R+ → R+, let

t(p) :=
κCl
πh(p)

∫ ∞

0

Ql
(

1
2 (pq + q

p )
)
h(q) dq .

Then

− tr
(
cl(κ

C
l , R)− µ

)
− ≥ inf

{∫ ∞

0

σ(p) (p− µ− t(p)) dp
∣∣ 0 ≤ σ ≤Ml

}
(D.2)

where Ml := R supr>0(2/π)r2j2l (r). The proof of (D.2) is analogous to the one
of [46, Eq. (7.8)]. We merely replace the Fourier transformation in R3 by the
Fourier-Bessel transformation Fl in R+.
From now on we assume that l ≥ 1 and comment on the necessary changes in
case l = 0 at the end. We choose h of the form

h(p) =

{
p−1 − (A/2)p−2 if p > A,
(2A)−1 if p ≤ A.

Below we shall show that the constant A can be picked in such a way that for
some δ > 0

p− µ− t(p) ≥
{

0 if p ≥ δ−1A,
−const A−1µ2 if p < δ−1A.

(D.3)

In view of (D.2) this will prove the result, since then

inf

{∫ ∞

0

σ(p) (p− µ− t(p)) dp
∣∣ 0 ≤ σ ≤Ml

}

≥− const A−1µ2Ml

∫ δ−1A

0

dp = −const δ−1µ2Ml.

To prove (D.3) we recall that
∫∞
0
Ql
(

1
2 (t + 1

t )
)
dt
t = π(κCl )−1, cf. (C.8), and

hence by a straightforward calculation

p− t(p) = p
κCl
π

∫ ∞

0

Ql
(

1
2 (t+ 1

t )
) (

1
t −

h(tp)
h(p)

)
dt

= p
κCl
π

{
A/2p

1−A/2p (F (1)− F (A/p)) if p ≥ A,
(−F (1) + F (p/A)) if p < A.
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Here for 0 < s ≤ 1 we have set

F (s) :=

∫ s

0

Ql
(

1
2 (t+ 1

t )
) (

1
t − 1

s

)2
dt .

Since Ql(τ) ≤ Q1(τ), which vanishes like a constant times τ−2 as τ →∞, one
has F (s) → 0 as s → 0. Choosing δ ∈ (0, 1) such that F (s) ≤ 1

2F (1) for all
0 < s ≤ δ, we have shown that for all p ≥ δ−1A one has

p− t(p) ≥ A F (1)

8(1−A/2p) ≥ A
F (1)

8
.

For A ≤ p < δ−1A we use the monotonicity, dF/ds ≥ 0, to bound

p− t(p) ≥ 0.

Finally, for 0 ≤ p < A we drop the term F (p/A) ≥ 0 to obtain

p− t(p) ≥ −p
2
F (1) ≥ −AF (1)

2
.

Choosing A := 8µ/F (1) yields the claimed inequality (D.3).
In case l = 0, the function h can be chosen as before. However, the corre-
sponding expressions F (1) − F (s) should be interpreted as a single integral,
and estimated with slightly more care.

Corollary D.2. Let l ∈ N. Then there is a constant such that for all 0 <
κ ≤ κCl , all µ > 0 and all functions χ on R+ with χ = 0 on [R,∞) for some
R > 0 one has

Nl(0, χ
(
|p| − κ|x|−1 − µ

)
χ) ≤ const µR.

Proof. The variational principle implies that

Nl(0, χ
(
|p| − κ|x|−1 − µ

)
χ) ≤ N(µ, c

(0)
l (κ,R)).

Indeed, if Vl is the negative spectral subspace of χ
(
|p| − κ|x|−1 − µ

)
χ with

fixed l, then any f ∈ FlχVl ⊂ Fl(R) satisfies 〈f, (c(0)l (κ,R)− µ) f〉 < 0.
Hence, in order to prove the assertion, it suffices to show that

N(µ, c
(0)
l (κ,R)) ≤ const µR.

For a proof, we note that the elementary inequality χ(−∞,µ)(E) ≤ (E−λ)−
λ−µ ,

valid for any µ < λ, together with Lemma D.1 implies that

N(µ, c
(0)
l (κ,R)) ≤ (λ − µ)−1 tr(c

(0)
l (κ,R)− λ)− ≤ const (λ− µ)−1λ2R.

The proof is completed by optimizing over λ.
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E The trial density matrix

In this section we define the density matrices dS and dB that we use to bound
the Schrödinger energy, respectively the Brown-Ravenhall energy, from above.
Both density matrices are split into two parts corresponding to low and high
angular momenta

dS := dS< + d>, dB := dB< + d>.

Low angular momenta correspond to orbits whose perinucleon is close to the
nucleus, while high angular momenta ensure that the orbits are never close to
the nucleus. We will cut between these two at L := [Z1/12].

E.1 Low angular momenta

In the vicinity of the nucleus the nuclear attraction dominates the interaction
with the other electrons. This motivates to choose the orbitals as the ones
of the Bohr atom, i.e., as the eigenfunctions of the unscreened operator with
nuclear charge Z. The corresponding density matrices d#

< are of the form

d#
< =

L−1∑

l=0

d#
j , d#

l =
∑

j=l±1/2, j≥1/2

d#
j,l

and

d#
j,l =

j∑

m=−j

K−l∑

n=1

|ψ#
j,l,m,n〉〈ψ

#
j,l,m,n|.

Here K = [const Z1/3] with some positive constant, i.e., on the order of the last
occupied shell of the Bohr atom. We now turn to the definition of the orbitals
ψ#
j,l,m,n for which we consider the cases # = B,S separately.

In the Brown-Ravenhall case we choose ψBj,l,m,n such that its Fourier transform
is

ψ̂Bj,l,m,n(p) = p−1fBj,l,n(p)Ωj,l,m(ωp),

where fBj,l,n is the n-th eigenfunction of the operator Vc bj,l(Z/c)V
∗
c in L2(R+).

Here the unitary scaling operator Vc is defined by (Vcf)(p) := c−1/2f(p/c) and
we recall that the operator bj,l(κ) was defined in Subsection C.2. The opera-
tors Vc bj,l(Z/c)V

∗
c appear as the angular momentum reductions of Bc[Z|x|−1].

Indeed, by (C.11) and scaling one has

〈ψ,Bc[Z|x|−1]ψ〉 = c2
∑

(j,l,m)∈I
〈ψ̂j,m,l, Vc bj,l(Z/c)V ∗c ψ̂j,m,l〉.

In the Schrödinger case we choose

ψSj,l,m,n(x) = r−1fSl,n(r)Ωj,l,m(ωx),

where fSl,n is the n-th eigenfunction of − 1
2

d2

dr2 + l(l+1)
2r2 − Z

r in L2(R+) with
Dirichlet boundary conditions.
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E.2 High angular momenta

For large angular momenta, the electrons are sufficiently far from the center
moving – classically speaking – slowly. This motivates to pick non-relativistic
orbitals in both in the relativistic and non-relativistic case. Moreover, for large
quantum numbers the correspondence principle would predict quasi-classical
behavior (in the quantum sense) as well. This motivates the following choice
which we take – with slight modifications – from [55]:

d> :=
∑

l≥L
dl, dl :=

∑

j=l±1/2

j∑

m=−j

∑

n∈Z

wn,l|ϕn,lΩj,l,m〉〈ϕn,lΩj,l,m|. (E.1)

We repeat at this point the construction of the Macke orbitals ϕn,l and their
weights wn,l. We will also present a new estimate not directly given in that
paper.
The semi-classical mean-field in which the electrons move is the Thomas-Fermi
potential φTF (see (4.3)). According to Hellmann [36] the semi-classical electron
density for fixed angular momentum is

σHl (r) :=
2(2l+ 1)

π

√
2

[
nZφTF(r) − (l + 1

2 )2

2r2

]

+

, (E.2)

where we added the factor nZ = (1 − aZ−1/2)2/3 for normalization purposes
with some fixed positive a and where we replaced the self-generated field of
the sum of the radial densities σl by the Thomas-Fermi potential. We will
write ρHl for the functions σHl when a = 0, i.e., no normalization factor occurs.
In passing we note that the densities ρHl are the minimizers of the Hellmann
functional with external potential given by the Thomas-Fermi density and no
other interaction between the electrons (see [61]).
The functions σHl vanish for large l and we define

k′ := min{l ∈ N |σHl ≡ 0}.

By scaling, k′ is of the order Z1/3. Moreover, since the function r 7→ φTF(r)r2

has exactly one maximum, the support of σHl is an interval [r1(l), r2(l)].
We cannot use the density σHl directly in defining semi-classical orbitals, since
the derivative of its square root is not square integrable. Thus we pick two
points,

x1(l) := r1(l) + T (l + 1
2 )Z−1, x2(l) := r2(l)− SZ−2/3 (E.3)

for some positive S and T ∈ (0, 4), and set

ρl(r) :=





2(2l + 1)α2r2l+2, r ∈ [0, x1(l)],

σHl (r), r ∈ [x1(l), x2(l)],

2(2l + 1)β2 exp(−23/2Z2/3r), r ∈ [x2(l),∞).

(E.4)
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The constants α and β are chosen such that ρl is continuous. We suppress their
dependence on l in the notation.
Next, we define for l < k′ and n ∈ Z the Macke orbitals

ϕn,l(r) :=

√
ζ′l(r)

r
eiπkn,lζl(r) (E.5)

where ζl : [0,∞)→ [0, 1) is the Macke transform

ζl(r) :=

∫ r
0 ρl(t)dt∫∞
0 ρl(t)dt

. (E.6)

For l ≥ k′ we set ϕn,l :≡ 0. The integral

Nj,l,m :=
1

2(2l+ 1)

∫ ∞

0

ρl(r)dr,

which is independent of j and m, will represent the number of electrons in the
angular momentum channel (j, l,m). Moreover, we set εl := Nj,l,m − [Nj,l,m].
If [Nj,l,m] is odd, we pick kn,l = 2n, otherwise kn,l = 2n− 1. The weights are
chosen as

wn,l :=





1 |kn,l| ≤ [Nj,l,m]− 1

εl/2 |kn,l| = [Nj,l,m] + 1

0 otherwise

(E.7)

which guarantees that
∑

n∈Zwn,l = Nj,l,m.
Strictly speaking, our trial density matrix differs from the one used in [55],
since we label the orbitals by the modulus of total angular momentum, by
the third component of total angular momentum, and by the orbital angular
momentum. This, however, is merely a minor rearrangement of terms.
We also adapt to atomic units used in this paper which changes the value of
the Thomas-Fermi constant and gives a factor 1/2 in front of all three kinetic
energy terms in the Hellmann-Weizsäcker functional.

E.3 Energy estimates for high angular momenta

For the convenience of the reader, we gather from [55] (based on the construc-
tion in [60]) two estimates on the order of the average kinetic and potential
energy of the Schrödinger operator associated with the semi-classical density
matrix d>,

tr(p2d>) = O(Z7/3), tr(|x|−1d>) = O(Z4/3). (E.8)

We also need a more detailed estimate on the kinetic energy.

Lemma E.1. Let L = [Z1/12]. Then for large Z,

∞∑

l=L

l−2 tr(p2dl) = O(Z2/L). (E.9)
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Proof. The definition of dl implies (cf. [55, (2.3)]) that for angular momenta
l < k′ one has

tr(p2dl) =

∫ ∞

0

[√
ρl
′2

+
αl
3
ρ3
l +

l(l+ 1)

r2
ρl

]
dr + Fl (E.10)

where we set

Fl :=
αl
3

(
−1 + 6εl − 3ε2l

N2
j,l,m

+
2ε3l − 6ε2l + 4εl

N3
j,l,m

)∫ ∞

0

ρ3
l dr,

αl :=
π2

4(2l+ 1)2
,

and emphasize that αl should not be confused with α from (E.4). According
to [55, Proposition 3.6]

∞∑

l=L

l−2 Fl ≤
∞∑

l=L

Fl ≤ const Z5/3

where L = [Z1/12]. The first term on the right-hand side of (E.10) is estimated
according to

∫ ∞

0

[√
ρl
′2

+
αl
3
ρ3
l +

l(l+ 1)

r2
ρl

]
dr

≤
∫ ∞

0

[
αl
3
ρHl (r)3 +

(l + 1
2 )2

r2
ρHl (r)

]
dr +Gl +Hl + Il. (E.11)

with

Gl :=

∫ x1(l)

0

[
√
ρl
′2

+
αl
3
ρ3
l +

(
l + 1

2

)2

r2
ρl

]
dr ≤ const Z2

(
l +

1

2

)−3/2

,

Hl :=

∫ ∞

x2(l)

[
√
ρl
′2

+
αl
3
ρ3
l +

(
l+ 1

2

)2

r2
ρl

]
dr ≤ const Z7/6

(
l +

1

2

)

where the inequalities were obtained by integration as in [55, (3.4)]. Inequality
[55, (3.9)] for the gradient term in the middle region reads

Il :=

∫ x2(l)

x1(l)

√
ρl
′2

dr ≤ const

(
l +

1

2

)

×
[
Z2

(
l +

1

2

)−3

+ Z + Z2

(
l +

1

2

)−5/2

+
Z5/3

(
l + 1

2

)−1/2

min{l+ 1
2 , Z

1/4}

]
.
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This implies

∞∑

l=L

l−2Gl ≤ const Z2
∞∑

l=L

l−7/2 ≤ const Z2L−5/2,

∞∑

l=L

l−2Hl ≤
k′∑

l=L

l−2Hl ≤ const Z7/6 log k′ ≤ const Z7/6 logZ

∞∑

l=L

l−2 Il ≤ const
[
Z2L−3 + Z logZ + Z2L−5/2 + Z5/3L−3/2

]

≤ const Z43/24.

It thus remains to estimate the sum of the first terms on the right-hand side
of (E.11). We begin with the first summand,

∞∑

l=L

1

l2

∫ ∞

0

αl
3
ρHl (r)3dr ≤ const

∞∑

l=L

1

l

∫ ∞

0

(Z/r − l2/r2)
3/2
+ dr

=const Z2
∑

l≥L

1

l2

∫ ∞

0

r−3/2(1− r−1)
3/2
+ dr = O(Z2/L)

where we used that the Thomas-Fermi potential is bounded from above by Z/r.
This leaves the second summand,

∞∑

l=L

1

l2

∫ ∞

0

(
l + 1

2

)2

r2
ρHl (r)dr ≤ const

∞∑

l=L

l

∫ ∞

0

r−2(Z/r − l2/r2)
1/2
+ dr

= const Z2
∞∑

l=L

1

l2

∫ ∞

0

r−5/2(1− r−1)
1/2
+ dr = O(Z2/L),

which completes the proof of Lemma E.1.
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Conjecture II of Serre,

Conjecture II of Serre considers a field F of characteristic p with cd(Gal(F )) ≤ 2
such that either p = 0 or p > 0 and [F : F p] ≤ p and predicts that
H1(Gal(F ), G) = 1 (i.e. each principal homogeneous G-spaces has an F -
rational point) for each simply connected semi-simple linear algebraic group
G [Ser97, p. 139].

As Serre notes, the hypothesis of the conjecture holds in the case where F is
a field of transcendence degree 1 over a perfect field K with cd(Gal(K)) ≤ 1.
Indeed, in this case cd(Gal(F )) ≤ 2 [Ser97, p. 83, Prop. 11] and [F : F p] ≤ p if
p > 0 (by the theory of p-bases [FrJ08, Lemma 2.7.2]). We prove the conjecture
for F in the special case, where K is PAC of characteristic 0 that contains all
roots of unity.

One of the main ingredients of the proof is the projectivity of Gal(K(x)ab)
(where x is transcendental over K and K(x)ab is the maximal Abelian ex-
tension of K(x)). We also use the same ingredient to establish an analog
to the wellknown open problem of Shafarevich that Gal(Qab) is free. Under
the assumption that K is PAC and contains all roots of unity we prove that
Gal(K(x)ab) is not only projective but even free. This proves a stronger version
of a conjecture of Bogomolov for a function field of one variable F over a PAC
field that contains all roots of unity [Pos05, Conjecture 1.1].
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1. The Projectivity of Gal(K(x)ab)

We denote the separable (resp. algebraic) closure of a field K by Ks (resp. K̃)
and its absolute Galois group by Gal(K). The field K is said to be PAC if
every absolutely irreducible variety defined over K has a K-rational point. The
proof of the projectivity result applies a local-global principle for Brauer groups
to reduce the statement to Henselian fields.
For a prime number p and an Abelian group A, we say that A is p′-divisible,
if for each a ∈ A and every positive integer n with p ∤ n there exists b ∈ A such
that a = nb. Note that if p = 0, then “p′-divisible” is the same as “divisible”.

Lemma 1.1: Let p be 0 or a prime number, B a torsion free Abelian group,
and A is a p′-divisible subgroup of B of finite index. Then B is also p′-divisible.

Proof: First suppose p = 0 and let m = (B : A). Then, for each b ∈ B and a
positive integer n there exists a ∈ A such that mb = mna. Since B is torsion
free, m = na. Thus, B is divisible.
Now suppose p is a prime number, let mpk = (B : A), with p ∤ m and k ≥ 0,
and consider b ∈ B. Then mpkb ∈ A. Hence, for each positive integer n with
p ∤ n there exists a ∈ A with mpkb = mna. Thus, pkb = na. Since p ∤ n,
there exist x, y ∈ Z such that xpk + yn = 1. It follows from xpkb = xna that
b = n(xa+ yb), as claimed.

Corollary 1.2: Let L/K be an algebraic field extension, v a valuation of L,
and p = 0 or p is a prime number. Suppose that v(K×) is p′-divisible. Then
v(L×) is p′-divisible.

Proof: Let x ∈ L× and n a positive integer with p ∤ n. Then v(K(x)×)
is a torsion free Abelian group and v(K×) is a subgroup of index at most
[K(x) : K]. Since v(K×) is p′-divisible, Lemma 1.1 gives y ∈ K(x)× such that
v(x) = nv(y). It follows that v(L×) is p′-divisible.

Given a Henselian valued field (M, v) we use v also for its unique extension to
Ms. We use a bar to denote the residue with respect to v of objects associated
with M , let OM be the valuation ring of M , and let ΓM = v(M×) be the value
group of M .
We write cdl(K) and cd(K) for the lth cohomological dimension and the coho-
mological dimension of Gal(K) and note that cd(K) ≤ 1 if and only if Gal(K)
is projective [Ser97, p. 58, Cor. 2].

Lemma 1.3: Let (M, v) be a Henselian valued field. Suppose p = char(M) =
char(M̄), Gal(M̄) is projective, and ΓM is p′-divisible. Then Gal(M) is pro-
jective.

Proof: We denote the inertia field of M by Mu. It is determined by its
absolute Galois group: Gal(Mu) = {σ ∈ Gal(M) | v(σx − x) > 0 for all x ∈
Ms with v(x) ≥ 0}. The map σ 7→ σ̄ of Gal(M) into Gal(M̄) such that σ̄x̄ = σx
for each x ∈ OM is a well defined epimorphism [Efr06, Thm. 16.1.1] whose
kernel is Gal(Mu). It therefore defines an isomorphism

(1) Gal(Mu/M) ∼= Gal(M̄).
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Claim A: M̄u is separably closed. Let g ∈ M̄ [X ] be a monic irreducible
separable polynomial of degree n ≥ 1. Then there exists a monic polynomial
f ∈ OMu [X ] of degree n such that f̄ = g. We observe that f is also irreducible
and separable. Moreover, if f(X) =

∏n
i=1(X − xi) with x1, . . . , xn ∈Ms, then

g(X) =
∏n
i=1(X − x̄i). Given 1 ≤ i, j ≤ n there exists σ ∈ Gal(Mu) such that

σxi = xj . By definition, x̄j = σxi = σ̄x̄i = x̄i. Since g is separable, i = j, so
n = 1. We conclude that M̄u is separably closed.

Claim B: Each l-Sylow group of Gal(Mu) with l 6= p is trivial. Indeed, let
L be the fixed field of an l-Sylow group of Gal(Mu) in Ms. If l = 2, then
ζl = −1 ∈ L. If l 6= 2, then [L(ζl) : L]|l − 1 and [L(ζl) : L] is a power of l, so
ζl ∈ L.
Assume that Gal(L) 6= 1. By the the theory of finite l-groups, L has a cyclic
extension L′ of degree l. By the preceding paragraph and Kummer theory,
there exists a ∈ L× such that L′ = L( l

√
a). By Corollary 1.2, there exists

b ∈ L× such that lv(b) = v(a). Then c = a
bl

satisfies v(c) = 0. By Claim A, L̄
is separably closed. Therefore, c̄ has an lth root in L̄. By Hensel’s lemma, c
has an lth root in L. It follows that a has an l-root in L. This contradiction
implies that L = Ms, as claimed.
Having proved Claim B, we consider again a prime number l 6= p and let Gl
be an l-Sylow subgroup of Gal(M). By the Claim, Gl ∩ Gal(Mu) = 1, hence
the map res: Gal(M)→ Gal(Mu/M) maps Gl isomorphically onto an l-Sylow
subgroup of Gal(Mu/M). By (1), Gl is isomorphic to an l-Sylow subgroup of
Gal(M̄). Since the latter group is projective, so is Gl, i.e. cdl(G) ≤ 1 [Ser97,
p. 58, Cor. 2].
Finally, if p 6= 0, then cdp(M) ≤ 1 [Ser97, p. 75, Prop. 3], because then
char(M) = p. It follows that cd(M) ≤ 1 [Ser97, p. 58, Cor. 2].

Lemma 1.4: Let F be an extension of a PAC field K of transcendence degree
1 and characteristic p. Suppose v(F×) is p′-divisible for each valuation v of
F/K. Then Gal(F ) is projective.

Proof: Let Kins be the maximal purely inseparable algebraic extension
of K and set F ′ = FKins. Then Kins is PAC [FrJ08, Cor. 11.2.5],
trans.deg(F ′/Kins) = 1, and v((F ′)×) is p′-divisible for every valuation v of
F ′ (by Corollary 1.2). Moreover, Gal(F ′) = Gal(F ). Thus, we may replace K
by Kins and F by F ′, if necessary, to assume that K is perfect.
Let V (F/K) be a system of representatives of the equivalence classes of valua-
tions of F that are trivial on K. For each v ∈ V (F/K) we choose a Henselian
closure Fv of F at v. By [Efr01, Thm. 3.4], there is an injection of Brauer
groups,

(2) Br(F )→
∏

v∈V (F/K)

Br(Fv).

For each v ∈ V (F/K) we have, v(F×v ) = v(F×) is p′-divisible. Also, the residue
field F̄v is an algebraic extension of K. Since K is PAC, a theorem of Ax says

519



520 Moshe Jarden and Florian Pop

that Gal(K) is projective [FrJ08, Thm. 11.6.2], hence Gal(F̄v) is projective
[FrJ08, Prop. 22.4.7]. Finally, char(Fv) = char(F̄v). Therefore, by Lemma 1.3,
Gal(Fv) is projective, hence Br(Fv) = 0 [Ser97, p. 78, Prop. 5]. It follows from
the injectivity of (2) that Br(F ) = 0.
If F1 is a finite separable extension of F , v1 ∈ V (F1/K), and v = v1|F ,
then v(F×) is p′-divisible. Hence, by Corollary 1.2, v1((F1)×) is p′-divisible.
It follows from the preceding paragraph that Br(F1) = 0. Consequently, by
[Ser97, p. 78, Prop. 5], cd(Gal(F )) ≤ 1.

Lemma 1.5: Let p be either 0 or a prime number and let Γ be an additive
subgroup of Q. Suppose 1

n ∈ Γ for each positive integer n with p ∤ n. Then Γ
is p′-divisible.

Proof: We consider γ ∈ Γ. If p = 0, we write γ = a
b , with a ∈ Z and b ∈ N.

Given n ∈ N, we have γ
n = a · 1

nb ∈ Γ.
If p > 0, we write γ = a

bpk
, where a ∈ Z, b ∈ N, k ∈ Z, and p ∤ a, b. Let n ∈ N

with p ∤ n. If k ≤ 0, then γ
n = ap−k · 1

nb ∈ Γ. If k > 0, we may choose x, y ∈ Z
such that xpk + ynb = 1. Then γ

n = a
nbpk = axpk+aynb

nbpk = ax · 1
nb + by · a

bpk ∈ Γ,
as claimed.

Proposition 1.6: Let K be a PAC field that contains all roots of unity and let
E be an extension of K of transcendence degree 1. Then Gal(Eab) is projective.

Proof: First we consider the case where E = K(x), where x is transcendental
over K, and set F = Eab. In the notation of Lemma 1.4 we consider a valuation
v ∈ V (F/K) normalized in such a way that v(E×) = Z. Then v(F×) ≤ Q.
On the other hand, let p = char(K) and consider a positive integer n with
p ∤ n. Let e ∈ E with v(e) = 1. Then e1/n ∈ F (because K contains a root
of 1 of order n). Therefore, 1

n = v(e1/n) ∈ v(F×). By Lemma 1.5, v(F×) is
p′-divisible. We conclude from Lemma 1.4 that Gal(F ) is projective.
In the general case we choose x ∈ E transcendental over K. By the preceding
paragraph, Gal(K(x)ab) is projective. Since taking purely inseparable exten-
sions of a field does not change its absolute Galois group, Gal(K(x)ab,ins) is
projective. Now note that Gal(Eab,ins) as a subgroup of Gal(K(x)ab,ins) is also
projective. Hence, Gal(Eab) is projective.

Remark 1.7: Proposition 1.6 is false if K does not contain all roots of unity.
Indeed, the authors will elsewhere provide an example of a prime number l and
a PAC field K of characteristic 0 that contains all roots of unity of order n
with l ∤ n but not ζl such that Gal(K(x)ab) is not projective.

2. Serre and Shafarevich

We refer to a simply connected semi-simple linear algebraic group G as a sim-
ply connected group. In this case H1(Gal(K), G) will be also denoted by
H1(K,G). Since each element of H1(K,G) is represented by a principal homo-
geneous space V of G and V is an absolutely irreducible variety defined over
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K, V has a K-rational point if K is PAC. Hence, V is equivalent to G [LaT58,
Prop. 4]. Thus, H1(K,G) = 1.
The proof of Serre’s Conjecture II in our case is based on the following conse-
quence of a theorem of Colliot-Thélène, Gille, and Parimala:

Proposition 2.1: Let F be a field and G a simply connected group defined
over F . Suppose F is a C2-field of characteristic 0, cd(F ) ≤ 2, and cd(Fab) ≤ 1.
Then H1(F,G) = 1.

Proof: Let F ′ be a finite extension of F . Since F is C2, [CGP04, Thm. 1.1(vi)]
implies that if the exponent e of a central simple algebra A over F ′ is a power
of 2 or a power of 3, then e is equal to the index of A.
Since cd(F ) ≤ 2 and cd(Fab) ≤ 1, [CGP04, Thm. 1.2(v)] implies that
H1(F,G) = 1.

Remark 2.2: By Merkuriev-Suslin, the assumption that F is a C2-field implies
that cd(F ) ≤ 2 [Ser97, end of page 88]. However, we will be able to prove both
properties of F directly in the application we have in mind.

The following result establishes the first condition on F .

Lemma 2.3: Let F be an extension of transcendence degree 1 over a perfect
PAC field K. Suppose either char(K) > 0 and K contains all roots of unity or
char(K) = 0. Then cd(F ) ≤ 2 and F is a C2-field.

Proof: By Ax, cd(K) ≤ 1 [FrJ08, Thm. 11.6.2]. Hence, by [Ser97, p. 83,
Prop. 11], cd(F ) ≤ 2.
A conjecture of Ax from 1968 says that every perfect PAC field K is C1 [FrJ08,
Problem 21.2.5]. The conjecture holds if K contains an algebraically closed field
[FrJ08, Lemma 21.3.6(a)]. In particular, if p = char(K) > 0 and K contains all
roots of unity, then F̃p ⊆ K, so K is C1. If char(K) = 0, K is C1, by [Kol07,
Thm. 1]. It follows that in each case, F is C2 [FrJ08, Prop. 21.2.12].

Theorem 2.4: Let F be an extension of transcendence degree 1 of a PAC field
K of characteristic 0. Suppose K contains all roots of unity. Then F satisfies
Serre’s conjecture II. That is, H1(F,G) = 1 for each simply connected group
G defined over F .

Proof: By Lemma 2.3, cd(F ) ≤ 2 and F is a C2-field. By Proposition 1.6,
cd(Fab) ≤ 1. It follows from Proposition 2.1 that H1(F,G) = 1 for each simply
connected group G.

Remark 2.5: All of the ingredients of the proof of Theorem 2.4 except possibly
Proposition 2.1 work also when char(K) > 0.

The proof of the freeness of Gal(K(x)ab) applies the notion of ”quasi-freeness”
due to Harbater and Stevenson. To this end recall that a finite split em-
bedding problem E for a profinite group G is a pair (ϕ: G→ A, α: B → A),
where A,B are finite groups, ϕ, α are epimorphisms, and α has a group the-
oretic section. A solution of E is an epimorphism γ: G → B such that
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α ◦ γ = ϕ. We say that G is quasi-free if its rank m is infinite and every
finite split embedding problem for G has m distinct solutions.

Theorem 2.6: Let F be a function field of one variable over a PAC field K
of cardinality m containing all roots of unity and let x be a variable. Then
Gal(Fab) is isomorphic to the free profinite group of rank m.

Proof: Since K is PAC, K is ample, that is every absolutely irreducible curve
defined over K with a K-rational simple point has infinitely many K-rational
points. By [HaS05, Cor. 4.4], Gal(F ) is quasi-free of rank m = card(K).
Hence, by [Har09, Thm. 2.4], Gal(Fab) is also quasi-free of rank m. Since by
Proposition 1.6, Gal(Fab) is projective, it follows from a result of Chatzidakis
and Melnikov [FrJ08, Lemma 25.1.8] that Gal(Fab) is free of rank m.

Acknowledgment: The authors thank Jean-Louis Colliot-Thélène for stimulat-
ing discussions, in particular for pointing out Proposition 2.1 to them.
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526 Balmer and Calmès

1 Introduction

Witt groups form a very interesting cohomology theory in algebraic geometry.
(For a survey, see [5].) Unlike the better known K-theory and Chow theory,
Witt theory is not oriented in the sense of Levine-Morel [17] or Panin [22], as
already visible on the non-standard projective bundle theorem, see Arason [2]
and Walter [26]. Another way of expressing this is that push-forwards do not
exist in sufficient generality for Witt groups. This “non-orientability” can make
computations unexpectedly tricky. Indeed, the Witt groups of such elementary
schemes as Grassmann varieties will appear for the first time in the companion
article [6], whereas the corresponding computations for oriented cohomologies
have been achieved more than 35 years ago in [16], using the well-known cellular
decomposition of Grassmann varieties. See also [21] for general statements on
cellular varieties.
In oriented theories, there is a very useful computational technique, recalled in
Theorem 1.3 below, which allows inductive computations for families of cellular
varieties. Our paper originates in an attempt to extend this result to the non-
oriented setting of Witt theory. Roughly speaking, such an extension is possible
“half of the time”. In the remaining “half”, some specific ideas must come in
and reflect the truly non-oriented behavior of Witt groups. To explain this
rough statement, let us fix the setup, which will remain valid for the entire
paper.

Setup 1.1. We denote by Sch the category of separated connected noetherian
Z[ 12 ]-scheme. Let X,Z ∈ Sch be schemes and let ι : Z →֒ X be a regular closed
immersion of codimension c ≥ 2. Let Bl = BlZX be the blow-up of X along Z
and E the exceptional fiber. Let U = X − Z ∼= Bl − E be the unaltered open
complement. We have a commutative diagram

Z
� � ι // X U? _υoo

nN

υ̃}}{{
{{

{{
{{

E
� �

ι̃
//

π̃

OO

Bl

π

OO

(1)

with the usual morphisms.

Consider now a cohomology theory with supports, say H∗

· · · ∂−→H∗Z(X)−→H∗(X)
υ∗−→H∗(U)

∂−→H∗+1
Z (X)−→· · · (2)

In this paper we shall focus on the case of Witt groups H∗ = W∗ but we take
inspiration from H∗ being an oriented cohomology theory. Ideally, we would
like conditions for the vanishing of the connecting homomorphism ∂ = 0 in the
above localization long exact sequence. Even better would be conditions for
the restriction υ∗ to be split surjective. When H∗ is an oriented theory, there is
a well-known hypothesis under which such a splitting actually exists, namely :
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Hypothesis 1.2. Assume that there exists an auxiliary morphism α̃ : Bl → Y

Z
� � ι // X U? _υoo

N n

υ̃

}}{{
{{

{{
{{

α
��

E
� �

ι̃
//

π̃

OO

Bl

π

OO

α̃
// Y

(3)

such that α := α̃◦ υ̃ : U → Y is an A∗-bundle, i.e. every point of Y has a Zariski
neighborhood over which α is isomorphic to a trivial Ar-bundle, for some r ≥ 0.
See Ex. 1.5 for an explicit example with X , Y and Z being Grassmann varieties.

Theorem 1.3 (The oriented technique). Under Setup 1.1 and Hypothesis 1.2,
assume X, Y and Z regular. Assume the cohomology theory H∗ is homotopy
invariant for regular schemes and oriented, in that it admits push-forwards
along proper morphisms satisfying flat base-change. Then, the restriction
υ∗ : H∗(X) → H∗(U) is split surjective with explicit section π∗ ◦ α̃∗ ◦ (α∗)−1,
where π∗ : H∗(Bl)→ H∗(X) is the push-forward. Hence the connecting homo-
morphism ∂ : H∗(U)→ H∗+1

Z (X) vanishes and the above localization long exact
sequence (2) reduces to split short exact sequences 0 → H∗Z(X) → H∗(X) →
H∗(U)→ 0.

Proof. By homotopy invariance, we have α∗ : H∗(Y )
∼→ H∗(U). By base-

change, υ∗◦π∗ = υ̃∗ and since υ̃∗◦α̃∗ = α∗, we have υ∗◦π∗◦α̃∗◦(α∗)−1 = id.

The dichotomy between the cases where the above technique extends to Witt
groups and the cases where is does not, comes from the duality. To understand
this, recall that one can consider Witt groups W∗(X,L) with duality twisted
by a line bundle L on the scheme X . Actually only the class of the twist L in
Pic(X)/2 really matters since we have square-periodicity isomorphisms for all
M ∈ Pic(X)

W∗(X,L) ∼= W∗(X,L⊗M⊗2) . (4)

Here is a condensed form of our Theorem 2.3 and Main Theorem 2.6 below :

Theorem 1.4. Under Hypothesis 1.2, assume X, Y and Z regular. Let L ∈
Pic(X). Then there exists an integer λ(L) ∈ Z (defined by (8) below) such
that :

(A) If λ(L) ≡ c− 1 mod 2 then the restriction υ∗ : W∗(X,L)→W∗(U,L|U )

is split surjective with a section given by the composition π∗ ◦ α̃∗ ◦ (α∗)−1.

Hence the connecting homomorphism W∗(U,L|U )
∂−→W∗+1

Z (X,L) van-
ishes and the localization long exact sequence reduces to split short exact
sequences

0−→W∗Z(X,L)−→W∗(X,L)−→W∗(U,L|U )−→ 0 .

(B) If λ(L) ≡ c mod 2 then the connecting homomorphism ∂ is equal to a
composition of pull-backs and push-forwards : ∂ = ι∗ ◦ π̃∗ ◦ ι̃∗ ◦ α̃∗◦(α∗)−1.
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This statement requires some explanations. First of all, note that we have used
push-forwards for Witt groups, along π : Bl → X in (A) and along π̃ : E → Z
and ι : Z → X in (B). To explain this, recall that the push-forward in Witt
theory is only conditionally defined. Indeed, given a proper morphism f : X ′ →
X between (connected) regular schemes and given a line bundle L ∈ Pic(X),
the push-forward homomorphism does not map W∗(X ′, f∗L) into W∗(X,L),
as one could naively expect, but the second author and Hornbostel [8] showed
that Grothendieck-Verdier duality yields a twist by the relative canonical line
bundle ωf ∈ Pic(X ′) :

Wi+dim(f)
(
X ′ , ωf ⊗ f∗L

) f∗−→ Wi(X , L ) . (5)

Also note the shift by the relative dimension, dim(f) := dimX ′−dimX , which
is not problematic, since we can always replace i ∈ Z by i− dim(f).

More trickily, if you are given a line bundle M ∈ Pic(X ′) and if you need
a push-forward W∗(X ′,M) → W∗−dim(f)(X, ?) along f : X ′ → X , you first
need to check that M is of the form ωf ⊗ f∗L for some L ∈ Pic(X), at least
module squares. Otherwise, you simply do not know how to push-forward.
This is precisely the source of the dichotomy of Theorem 1.4, as explained in
Proposition 2.1 below.

At the end of the day, it is only possible to transpose to Witt groups the
oriented technique of Theorem 1.3 when the push-forward π∗ exists for Witt
groups. But actually, the remarkable part of Theorem 1.4 is Case (B), that is
our Main Theorem 2.6 below, which gives a description of the connecting homo-
morphism ∂ when we cannot prove it zero by the oriented method. This is the
part where the non-oriented behavior really appears. See more in Remark 2.7.
Main Theorem 2.6 is especially striking since the original definition of the con-
necting homomorphism given in [3, § 4] does not have such a geometric flavor
of pull-backs and push-forwards but rather involves abstract techniques of tri-
angulated categories, like symmetric cones, and the like. Our new geometric
description is also remarkably simple to use in applications, see [6]. Here is the
example in question.

Example 1.5. Let k be a field of characteristic not 2. (We describe flag varieties
over k by giving their k-points, as is customary.) Let 1 ≤ d ≤ n. Fix a
codimension one subspace kn−1 of kn. Let X = Grd(n) be the Grassmann
variety of d-dimensional subspaces Vd ⊂ kn and let Z ⊂ X be the closed
subvariety of those subspaces Vd contained in kn−1. The open complement
U = X − Z consists of those Vd 6⊂ kn−1. For such Vd ∈ U , the subspace
Vd ∩ kn−1 ⊂ kn−1 has dimension d − 1. This construction defines an An−d-
bundle α : U → Y := Grd−1(n− 1), mapping Vd to Vd ∩ kn−1. This situation
relates the Grassmann variety X = Grd(n) to the smaller ones Z = Grd(n− 1)
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and Y = Grd−1(n− 1). Diagram (1) here becomes

Grd(n− 1)
� � ι // Grd(n) U? _υoo

kK
υ̃

yyrrrrrrrrrrrr

α

��
E

� �

ι̃
//

π̃

OO

Bl

π

OO

α̃
// Grd−1(n− 1) .

The blow-up Bl is the variety of pairs of subspaces Vd−1 ⊂ Vd in kn, such that
Vd−1 ⊂ kn−1. The morphisms π : Bl→ X and α̃ : Bl→ Y forget Vd−1 and Vd
respectively. The morphism υ̃ maps Vd 6⊂ kn−1 to the pair (Vd ∩ kn−1) ⊂ Vd.
Applying Theorem 1.3 to this situation, Laksov [16] computes the Chow groups
of Grassmann varieties by induction. For Witt groups though, there are
cases where the restriction W∗(X,L) → W∗(U,L|U ) is not surjective (see [6,
Cor. 6.7]). Nevertheless, thank to our geometric description of the connecting
homomorphism, we have obtained a complete description of the Witt groups of
Grassmann varieties, for all shifts and all twists, to appear in [6]. In addition to
the present techniques, our computations involve other ideas, specific to Grass-
mann varieties, like Schubert cells and desingularisations thereof, plus some
combinatorial bookkeeping by means of special Young diagrams. Including all
this here would misleadingly hide the simplicity and generality of the present
paper. We therefore chose to publish the computation of the Witt groups of
Grassmann varieties separately in [6].

The paper is organized as follows. Section 2 is dedicated to the detailed ex-
planation of the above dichotomy and the proof of the above Case (A), see
Theorem 2.3. We also explain Case (B) in our Main Theorem 2.6 but its proof
is deferred to Section 5. The whole Section 2 is written, as above, under the
assumption that all schemes are regular. This assumption simplifies the state-
ments but can be removed at the price of introducing dualizing complexes and
coherent Witt groups, which provide the natural framework over non-regular
schemes. This generalization is the purpose of Section 3. There, we even drop
the auxiliary Hypothesis 1.2, i.e. the dotted part of Diagram (3). Indeed, our
Main Lemma 3.5 gives a very general description of the connecting homomor-
phism applied to a Witt class over U , if that class comes from the blow-up Bl
via restriction υ̃∗. The proof of Main Lemma 3.5 occupies Section 4. Finally,
Hypothesis 1.2 re-enters the game in Section 5, where we prove our Main The-
orem 2.6 as a corollary of a non-regular generalization given in Theorem 5.1.
For the convenience of the reader, we gathered in Appendix A the needed re-
sults about Picard groups, canonical bundles and dualizing complexes, which
are sometimes difficult to find in the literature. The conscientious reader might
want to start with that appendix.

2 The regular case

We keep notation as in Setup 1.1 and we assume all schemes to be regular.
This section can also be considered as an expanded introduction.
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As explained after Theorem 1.4 above, we have to decide when the push-forward
along π : Bl → X and along π̃ : E → Z exist. By (5), we need to determine
the canonical line bundles ωπ ∈ Pic(Bl) and ωπ̃ ∈ Pic(E). This is classical and
is recalled in Appendix A. First of all, Proposition A.6 gives

Pic




Z
� � ι // X U? _υoo

Pp

υ̃����
��

��
�

E
� �

ι̃
//

π̃

OO

Bl

π

OO



∼=

Pic(Z)
(

1
0

)
��

Pic(X)
ι∗oo

(
1
0

)
��

Pic(X) .

Pic(Z)⊕ Z Pic(X)⊕ Z

(
ι∗ 0
0 1

)
oo

(1 0)

88qqqqqqqqqq

The Z summands in Pic(Bl) and Pic(E) are generated by O(E) = OBl(−1)
and O(E)|E = OE(−1) respectively. Then Proposition A.11 gives the wanted

ωπ = (0, c− 1) in Pic(X)⊕ Z ∼= Pic(Bl) and

ωπ̃ = (−ωι, c) in Pic(Z)⊕ Z ∼= Pic(E) .
(6)

So, statistically, picking a line bundle M ∈ Pic(Bl) at random, there is a 50%
chance of being able to push-forward W∗(Bl,M)→W∗(X,L) along π for some
suitable line bundle L ∈ Pic(X). To justify this, observe that

coker
(

Pic(X)
π∗ // Pic(Bl)

)/
2 ∼= Z/2

and tensoring by ωπ is a bijection, so half of the elements of Pic(Bl)/2 are of
the form ωπ⊗π∗(L). The same probability of 50% applies to the push forward
along π̃ : E → Z but interestingly in complementary cases, as we summarize
now.

Proposition 2.1. With the notation of 1.1, assume X and Z regular. Recall
that c = codimX(Z). Let M ∈ Pic(Bl). Let L ∈ Pic(X) and ℓ ∈ Z be such that
M = (L, ℓ) in Pic(Bl) = Pic(X)⊕ Z, that is, M = π∗L⊗O(E)⊗ℓ.

(A) If ℓ ≡ c− 1 mod 2, we can push-forward along π : Bl→ X, as follows :

W∗(Bl,M) ∼= W∗(Bl, ωπ ⊗ π∗L)
π∗→W∗(X,L) .

(B) If ℓ ≡ c mod 2, we can push-forward along π̃ : E → Z, as follows :

W∗(E,M|E ) ∼= W∗
(
E,ωπ̃ ⊗ π̃∗(ωι ⊗ L|Z )

) π̃∗→W∗−c+1(Z, ωι ⊗ L|Z ).

In each case, the isomorphism ∼= comes from square-periodicity in the twist (4)
and the subsequent homomorphism is the push-forward (5).

Proof. We only have to check the congruences in Pic /2. By (6), when ℓ ≡ c−1
mod 2, we have [ωπ ⊗ π∗L] = [(L, ℓ)] = [M ] in Pic(Bl)/2. When ℓ ≡ c mod 2,
we have [ωπ̃⊗π̃∗(ωι⊗L|Z )] = [(L|Z , ℓ)] = [M|E ] in Pic(E)/2. To apply (5), note
that dim(π) = 0 since π is birational and dim(π̃) = c− 1 since E = PZ(CZ/X )
is the projective bundle of the rank-c conormal bundle CZ/X over Z.
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So far, we have only used Setup 1.1. Now add Hypothesis 1.2 with Y regular.

Remark 2.2. Since Picard groups of regular schemes are homotopy invariant,
the A∗-bundle α : U → Y yields an isomorphism α∗ : Pic(Y )

∼→ Pic(U). Let
us identify Pic(Y ) with Pic(U), and hence with Pic(X) as we did above since
c = codimX(Z) ≥ 2. We also have O(E)|U ≃ OU . Putting all this together,
the right-hand part of Diagram (3) yields the following on Picard groups :

Pic




X U? _υoo

α

��

N n

υ̃

}}{{
{{

{{
{{

Bl

π

OO

α̃
// Y



∼=

Pic(X)
(

1
0

)
��

Pic(X)

Pic(X)⊕ Z

(1 0)

88qqqqqqqqqq

Pic(X) .

(
1
λ

)
oo

Note that the lower right map Pic(X) ∼= Pic(Y )
α̃∗−→Pic(Bl) ∼= Pic(X)⊕Z must

be of the form
(

1
λ

)
by commutativity (i.e. since

(
1 0
)
·
(

1
λ

)
= 1) but there is

no reason for its second component λ : Pic(X) → Z to vanish. This is indeed
a key observation. In other words, we have two homomorphisms from Pic(X)
to Pic(Bl), the direct one π∗ and the circumvolant one α̃∗ ◦ (α∗)−1 ◦ υ∗ going
via U and Y

Pic(X)
υ∗

≃
//

π∗

��
6=

Pic(U)

(α∗)−1≃
��

Pic(Bl) Pic(Y )
α̃∗

oo

(7)

and they do not coincide in general. The difference is measured by λ, which
depends on the choice of Y and on the choice of α̃ : Bl→ Y , in Hypothesis 1.2.
So, for every L ∈ Pic(X), the integer λ(L) ∈ Z is defined by the equation

α̃∗ (α∗)−1 υ∗(L) = π∗(L)⊗O(E)⊗λ(L) (8)

in Pic(Bl). Under the isomorphism Pic(Bl) ∼= Pic(X)⊕Z, the above equation
can be reformulated as α̃∗ (α∗)−1 υ∗(L) =

(
L, λ(L)

)
.

Theorem 2.3 (Partial analogue of Theorem 1.3). With the notation of 1.1,
assume Hypothesis 1.2 and assume X,Y, Z regular. Recall that c = codimX(Z).
Let L ∈ Pic(X) and consider the integer λ(L) ∈ Z defined in (8) above.
If λ(L) ≡ c−1 mod 2 then the restriction υ∗ : W∗(X,L)→W∗(U,L|U ) is split

surjective, with an explicit section given by the composition π∗ ◦ α̃∗ ◦ (α∗)−1

W∗(X,L) W∗(U,L|U )

(α∗)−1≃
��

W∗(Bl , ωπ ⊗ π∗L) ∼= W∗
(
Bl , α̃∗ (α∗)−1L|U

)
π∗

OO

W∗
(
Y , (α∗)−1 L|U

)
α̃∗

oo
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Proof. The whole point is that π∗ can be applied after α̃∗ ◦ (α∗)−1, that is, on
W∗
(
Bl , α̃∗ (α∗)−1 υ∗(L)

)
. This holds by Proposition 2.1 (A) applied to

M := α̃∗ (α∗)−1 υ∗(L)
(8)
= (L, λ(L)) ∈ Pic(X)⊕ Z = Pic(Bl) . (9)

The assumption λ(L) ≡ c − 1 mod 2 expresses the hypothesis of Proposi-
tion 2.1 (A). Checking that we indeed have a section goes as in the oriented
case, see Thm. 1.3 :

υ∗ ◦ π∗ ◦ α̃∗ ◦ (α∗)−1 = υ̃∗ ◦ α̃∗ ◦ (α∗)−1 = α∗ ◦ (α∗)−1 = id .

The first equality uses base-change [8, Thm. 6.9] on the left-hand cartesian
square :

X U? _υoo

Bl

π

OO

U? _υ̃oo

id

OO L L|U

ωπ ⊗ π∗L L|U

with respect to the right-hand line bundles. Note that (ωπ)|U = OU by (6).

Remark 2.4. In the above proof, see (9), we do not apply Proposition 2.1 to
M being π∗L, as one could first expect; see Remark 2.2. Consequently, our
condition on L, namely λ(L) ≡ c − 1 mod 2, does not only depend on the
codimension c of Z in X but also involves (hidden in the definition of λ) the
particular choice of the auxiliary scheme Y and of the morphism α̃ : Bl → Y
of Hypothesis 1.2.

Remark 2.5. The legitimate question is now to decide what to do in the
remaining case, that is, when λ(L) ≡ c mod 2. As announced, this is the
central goal of our paper (Thm. 2.6 below). So, let L ∈ Pic(X) be a twist such
that push-forward along π : Bl → X cannot be applied to define a section
to the restriction W∗(X,L) → W∗(U,L|U ) as above. Actually, we can find
examples of such line bundles for which this restriction is simply not surjective
(see Ex. 1.5). The natural problem then becomes to compute the possibly non-
zero connecting homomorphism ∂ : W∗(U,L|U )→W∗+1

Z (X,L). Although not
absolutely necessary, it actually simplifies the formulation of Theorem 2.6 to
use dévissage from [9, §6], i.e. the fact that push-forward along a regular closed
immersion is an isomorphism

ι∗ : W∗−c(Z, ωι ⊗ L|Z )
∼→W∗Z(X,L) . (10)

Using this isomorphism, we can replace the Witt groups with supports by Witt
groups of Z in the localization long exact sequence, and obtain a long exact
sequence

· · · W∗(X,L)
υ∗ // W∗(U,L|U )

∂ ((QQQQQQQQQQQ

∂′ // W∗+1−c(Z, ωι ⊗ L|Z ) //

≃ ι∗

��

W∗+1(X,L) · · ·

(11)

W∗+1
Z (X,L)

66mmmmmmmmmmmm
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We now want to describe ∂′ when λ(L) ≡ c mod 2 (otherwise ∂′ = 0 by
Thm. 2.3).
By the complete dichotomy of Proposition 2.1, we know that when the
push-forward π∗ : W∗(Bl,M) → W∗(X, ?) does not exist, here for M =
α̃∗ (α∗)−1 υ∗(L) by (9), then the following composition π̃∗ ◦ ι̃∗ exists and starts
from the very group where π∗ cannot be defined and arrives in the very group
where ∂′ itself arrives :

W∗(Bl,M)
ι̃∗−→W∗(E,M|E )

π̃∗−→W∗−c+1(Z, ωι ⊗ L|Z ) .

Hence, in a moment of exaltation, if we blindly apply this observation at the
precise point where the oriented technique fails for Witt groups, we see that
when we cannot define a section to restriction by the formula π∗ ◦

(
α̃∗ ◦ (α∗)−1

)

we can instead define a mysterious homomorphism (π̃∗ ◦ ι̃∗) ◦
(
α̃∗ ◦ (α∗)−1

)
.

Theorem 2.6 (Main Theorem in regular case). With the notation of 1.1, as-
sume Hypothesis 1.2 and assume X,Y, Z regular. Let L ∈ Pic(X) and recall
the integer λ(L) ∈ Z defined by (8).
If λ(L) ≡ c mod 2 then the composition π̃∗ ◦ ι̃∗ ◦ α̃∗ ◦ (α∗)−1 is equal to the
connecting homomorphism ∂′ of (11), that is, the following diagram commutes :

W∗+1−c(Z, ωι ⊗ L|Z ) W∗(U,L|U )

(α∗)−1≃
��

∂′oo

W∗
(
E , ωπ̃ ⊗ π̃∗(ωι ⊗ L|Z )

)∼=W∗
(
E , ι̃∗ α̃∗ (α∗)−1L|U

)
π̃∗

OO

W∗
(
Y, (α∗)−1 L|U

)
ι̃∗ α̃∗
oo

This statement implies Thm. 1.4 (B) since ∂ = ι∗ ∂′ by (11). Its proof will be
given after generalization to the non-regular setting, at the end of Section 5.

Remark 2.7. Let us stress the peculiar combination of Theorem 2.3 and The-
orem 2.6. Start with a Witt class wU over the open U ⊂ X , for the duality
twisted by some L ∈ Pic(U) = Pic(X), and try to extend wU to a Witt class
wX over X :

∂′(wU )

←50%
∣∣50%→

wX
� υ∗ // wU_

(α∗)−1

��
wE
_

π̃∗

OO

wBl
�

ι̃∗
oo

_

π∗

OO

wY
�

α̃∗
oo

Then, either we can apply the same construction as for oriented theories, i.e.
push-forward the class wBl := α̃∗ ◦ (α∗)−1(wU ) from Bl to X along π, con-
structing in this way an extension wX := π∗(wBl) as wanted, or this last
push-forward π∗ is forbidden on wBl because of the twist, in which case the
Witt class wU might simply not belong to the image of restriction υ∗. The
latter means that wU might have a non-zero boundary ∂′(wU ) over Z, which
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then deserves to be computed. The little miracle precisely is that in order to
compute this ∂′(wU ), it suffices to resume the above process where it failed,
i.e. with wBl , and, since we cannot push it forward along π, we can consider
the bifurcation of Proposition 2.1 and restrict this class wBl to the exceptional
fiber E, say wE := ι̃∗wBl , and then push it forward along π̃. Of course, this
does not construct an extension of wU anymore, since this new class π̃∗(wE)
lives over Z, not over X . Indeed, there is no reason a priori for this new class
to give anything sensible at all. Our Main Theorem is that this construction
in fact gives a formula for the boundary ∂′(wU ).

Bottom line : Essentially the same geometric recipe of pull-back and push-
forward either splits the restriction or constructs the connecting homomor-
phism. In particular, the connecting homomorphism is explicitly described in
both cases.

3 The non-regular case

In Section 2, we restricted our attention to the regular case in order to grasp
the main ideas. However, most results can be stated in the greater general-
ity of separated and noetherian Z[ 12 ]-schemes admitting a dualizing complex.
The goal of this section is to provide the relevant background and to extend
Theorem 1.4 to this non-regular setting, see Main Lemma 3.5.

Remark 3.1. The coherent Witt groups W̃∗(X,KX) of a scheme X ∈ Sch
(see 1.1) are defined using the derived category Db

coh(X) of complexes of OX -
modules whose cohomology is coherent and bounded. Since X is noetherian
and separated, Db

coh(X) is equivalent to its subcategory Db(coh(X)) of bounded
complexes of coherent OX -modules; see for instance [8, Prop. A.4]. The dual-
ity is defined using the derived functor RHom(−,KX) where KX ∈ Db

coh(X)
is a dualizing complex (see [19, § 3] or [8, § 2]), meaning that the functor
RHom(−,KX) defines a duality on Db

coh(X). For example, a scheme is Goren-
stein if and only if OX itself is an injectively bounded dualizing complex
and, in that case, all other dualizing complexes are shifted line bundles (see
Lemma A.7). Regular schemes are Gorenstein, and for them, coherent Witt
groups coincide with the usual “locally free” Witt groups W∗(X,L) (i.e. the
ones defined using bounded complexes of locally free sheaves instead of coherent
ones). For any line bundle L, we still have a square-periodicity isomorphism

W̃(X,KX) ∼= W̃(X,KX ⊗ L⊗2) (12)

given by the multiplication by the class in W0(X,L⊗2) of the canonical form
L→ L∨⊗L⊗2, using the pairing between locally free and coherent Witt groups.
For any closed embedding Z →֒ X with open complement υ : U →֒ X , the
restriction KU := υ∗KX is a dualizing complex [19, Thm. 3.12] and the general
triangulated framework of [3] gives a localization long exact sequence

· · · ∂−→ W̃∗Z(X,KX)−→ W̃∗(X,KX)−→ W̃∗(U,KU )
∂−→ W̃∗+1

Z (X,KX)−→· · ·
(13)
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As for K-theory, no such sequence holds in general for singular schemes and
locally free Witt groups.

Remark 3.2. For coherent Witt groups, the push-forward along a proper mor-
phism f : X ′ → X takes the following very round form : If KX is a dualizing
complex on X then f !KX is a dualizing complex on X ′ ([8, Prop. 3.9]) and the
functor R f∗ : Db

coh(X ′)→ Db
coh(X) induces a push-forward ([8, Thm. 4.4])

f∗ : W̃i(X ′, f !KX)→ W̃i(X,KX) . (14)

Recall that f ! : DQcoh(X) → DQcoh(X ′) is the right adjoint of R f∗ . If we
twist the chosen dualizing complex KX by a line bundle L ∈ Pic(X), this is
transported to X ′ via the following formula (see [8, Thm. 3.7])

f !(KX ⊗ L) ≃ f !(KX)⊗ f∗L . (15)

In the regular case, push-forward maps are also described in Nenashev [20].

Remark 3.3. Let us also recall from [8, Thm. 4.1] that the pull-back

f∗ : W̃i(X,KX)→ W̃i(X ′,Lf∗KX)

along a finite Tor-dimension morphism f : X ′ → X is defined if Lf∗(KX)
is a dualizing complex (this is not automatically true). Together with the
push-forward, this pull-back satisfies the usual flat base-change formula (see [8,
Thm. 5.5]).

A regular immersion f : X ′ →֒ X has finite Tor-dimension since it is even
perfect (see [1, p. 250]). Moreover, in that case, Lf∗ is the same as f ! up to a
twist and a shift (see Proposition A.8), hence it preserves dualizing complexes.

Proposition 3.4. In Setup 1.1, let KX be a dualizing complex on X. Let
L ∈ Pic(X) and ℓ ∈ Z. Then K = π!(KX) ⊗ π∗L ⊗ O(E)⊗ℓ is a dualizing
complex on Bl and any dualizing complex has this form, for some L ∈ Pic(X)
and ℓ ∈ Z. Moreover, the dichotomy of Proposition 2.1 here becomes :

(A) If ℓ ≡ 0 mod 2, we can push-forward along π : Bl → X, as follows :

W̃∗(Bl,K) ∼= W̃∗
(
Bl, π!(KX ⊗ L))

π∗→ W̃∗
(
X,KX ⊗ L) .

(B) If ℓ ≡ 1 mod 2, we can push-forward along π̃ : E → Z, as follows :

W̃∗(E,Lι̃∗K) ∼= W̃∗+1
(
E, π̃!ι!(KX ⊗ L))

) π̃∗→ W̃∗+1
(
Z, ι!(KX ⊗ L)

)
.

As before, in both cases, the first isomorphism ∼= comes from square-
periodicity (12) and the second morphism is push-forward (14).
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Proof. The complex KBl := π!KX is a dualizing complex on Bl by Remark 3.2.
By Lemma A.7 and Proposition A.6 (i), all dualizing complexes on Bl are of
the form K = π!(KX)⊗ π∗L⊗O(E)⊗ℓ, for unique L ∈ Pic(X) and ℓ ∈ Z.
We only need to check the relevant parity for applying (12). Case (A) follows
easily from (15) by definition of K and parity of ℓ. In (B), we need to compare
Lι̃∗K and π̃!ι!(KX ⊗ L)[1]. By Proposition A.11 (iv), we know that ι̃!(−) ∼=
ι̃∗O(E)[−1] ⊗ Lι̃∗(−). We apply this and (15) in the second equality below,
the first one using simply that ιπ̃ = πι̃ :

π̃!ι!(KX ⊗ L)[1] ∼= ι̃!π!(KX ⊗ L)[1] ∼= ι̃∗O(E)[−1]⊗ Lι̃∗
(
π!(KX)⊗ π∗L

)
[1] ∼=

∼= ι̃∗O(E)⊗ Lι̃∗(K ⊗O(E)⊗−ℓ) ∼= ι̃∗O(E)⊗(1−ℓ) ⊗ Lι̃∗K.

Since 1− ℓ is even, ι̃∗O(E)⊗(1−ℓ) is a square, as desired.

We now want to give the key technical result of the paper, which is an ana-
logue of Theorem 1.4 in the non-regular setting. The idea is to describe the
connecting homomorphism on Witt classes over U which admit an extension
to the blow-up Bl. The key fact is the existence of an additional twist on Bl,
namely the twist by O(E), which disappears on U (see A.1) and hence allows
Case (B) below.

Main Lemma 3.5. In Setup 1.1, assume that X has a dualizing complex KX

and let KU = υ∗(KX) and KBl = π!(KX); see Remarks 3.1 and 3.2. Let i ∈ Z.

(A) The following composition vanishes :

W̃i(Bl,KBl)
υ̃∗ // W̃i(U,KU )

∂ // W̃i+1
Z (X,KX) .

(B) The following composition (well-defined since υ̃∗O(E) ≃ OU )

W̃i
(
Bl,KBl ⊗O(E)

) υ̃∗// W̃i
(
U,KU ⊗ υ̃∗O(E)

)∼=W̃i(U,KU )
∂ // W̃i+1

Z (X,KX)

coincides with the composition

W̃i(Bl,O(E)⊗KBl)

ι̃∗

��

W̃i+1
Z (X,KX)

W̃i
(
E,Lι̃∗(O(E) ⊗KBl)

) ∼= W̃i+1
(
E, π̃!ι!KX

) π̃∗ // W̃i+1
(
Z, ι!KX

)
ι∗

OO

where the latter isomorphism ∼= is induced by the composition

Lι̃∗(O(E)⊗KBl) ∼= ι̃∗(O(E))⊗Lι̃∗(KBl) ∼= ι̃!KBl[1] ∼= π̃!ι!KX [1] . (16)

The proof of this result occupies Section 4. Here are just a couple of comments
on the statement. Let us first of all explain the announced sequence of isomor-
phisms (16). The first one holds since Lι̃∗ is a tensor functor and since O(E) is
a line bundle (hence is flat). The second one holds by Proposition A.9 (v). The
last one follows by definition of KBl and the fact that ι π̃ = π ι̃. Finally, note
that we use the pull-back ι̃∗ on coherent Witt groups as recalled in Remark 3.3.
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4 The main argument

Surprisingly enough for a problem involving the blow-up Bl = BlZ(X) of X
along Z, see (1), the case where codimX(Z) = 1 is also interesting, even though,
of course, in that case Bl = X and E = Z. In fact, this case is crucial for the
proof of Main Lemma 3.5 and this is why we deal with it first. In the “general”
proof where codimX(Z) is arbitrary, we will apply the case of codimension one
to ι̃ : E →֒ Bl. Therefore, we use the following notation to discuss codimension
one.

Notation 4.1. Let B ∈ Sch be a scheme with a dualizing complex KB and
ι̃ : E →֒ B be a prime divisor, that is, a regular closed immersion of codimension
one, of a subscheme E ∈ Sch. Let O(E) be the line bundle on B associated
to E (see Definition A.1). Let υ̃ : U →֒ B be the open immersion of the open
complement

E
� � ι̃ // B U? _υ̃oo

U = B − E and let KU be the dualizing complex υ̃∗(KB) on U .

Lemma 4.2 (Main Lemma in codimension one). With Notation 4.1, let i ∈ Z.
Then :

(A) The composition

W̃i(B,KB)
υ̃∗ // W̃i(U,KU )

∂ // W̃i+1
E (B,KB)

is zero.

(B) The composition

W̃i
(
B,KB ⊗O(E)

) υ̃∗ // W̃i
(
U,KU ⊗ υ̃∗O(E)

)∼=W̃i(U,KU)
∂ // W̃i+1

E (B,KB)

coincides with the composition

W̃i(B,O(E) ⊗KB)

ι̃∗

��

W̃i+1
E (B,KB)

W̃i
(
E,Lι̃∗(O(E) ⊗KB)

)
∼= W̃i

(
E, ι̃!KB[1]

)
∼= W̃i+1

(
E, ι̃!KB

)
ι̃∗

OO

where the first isomorphism ∼= is induced by the following isomorphism

Lι̃∗(O(E) ⊗KB) ∼= ι̃∗(O(E)) ⊗ Lι̃∗(KB) ∼= ι̃!(KB)[1]. (17)

Proof. Case (A) is simple : The composition of two consecutive morphisms in
the localization long exact sequence (13) is zero. Case (B) is the nontrivial one.
The isomorphisms (17) are the same as in (16).
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At this stage, we upload the definition of the connecting homomorphism for
Witt groups ∂ : W̃i(U,KU ) → W̃i+1

E (B,KB), which goes as follows : Take a
non-degenerate symmetric space (P, φ) over U for the ith-shifted duality with
values in KU ; there exists a possibly degenerate symmetric pair (Q,ψ) over
B for the same duality (with values in KB) which restricts to (P, φ) over U ;
compute its symmetric cone d(Q,ψ), which is essentially the cone of ψ equipped
with a natural metabolic form; see [3, § 4] or [4, Def. 2.3] for instance ; for any
choice of such a pair (Q,ψ), the boundary ∂(P, φ) ∈ W̃i+1

E (B,KB) is the Witt
class of d(Q,ψ).
There is nothing really specific to dualizing complexes here. The above con-
struction is a purely triangular one, as long as one uses the same duality for
the ambient scheme B, for the open U ⊂ B and for the Witt group of B with
supports in the closed complement E. The subtlety of statement (B) is that we
start with a twisted duality on the scheme B which is not the duality used for ∂,
but which agrees with it on U by the first isomorphism ∼= in statement (B).
Now, take an element in W̃i(B,O(E) ⊗KB). It is the Witt-equivalence class
of a symmetric space (P, φ) over B with respect to the ith-shifted duality with
values in O(E) ⊗KB. The claim of the statement is that, modulo the above
identifications of dualizing complexes, we should have

∂(υ̃∗(P, φ)) = ι̃∗(ι̃
∗(P, φ)) (18)

in W̃i+1
E (B,KB). By the above discussion, in order to compute ∂(υ̃∗(P, φ)),

we need to find a symmetric pair (Q,ψ) over B, for the duality given by KB,
and such that υ̃∗(Q,ψ) = υ̃∗(P, φ). Note that we cannot take for (Q,ψ) the
pair (P, φ) itself because (P, φ) is symmetric for the twisted duality O(E)⊗KB

on B. Nevertheless, it is easy to “correct” (P, φ) as follows.
As in Definition A.1, we have a canonical homomorphism of line bundles :

σE : O(E)∨ → OB .
The pair (O(E)∨, σE) is symmetric in the derived category Db(VB(B)) of vector
bundles over B, with respect to the 0th-shifted duality twisted by O(E)∨,
because the target of σE is the dual of its source : (O(E)∨)∨[0]⊗O(E)∨ ∼= OB.
Let us define the wanted symmetric pair (Q,ψ) in Db

coh(B) for the ith-shifted
duality with values in KB as the following product :

(Q,ψ) := (O(E)∨, σE)⊗ (P, φ) .

Note that we tensor a complex of vector bundles with a coherent one to get a
coherent one, following the formalism of [4, § 4] where such external products
are denoted by ⋆. We claim that the restriction of (Q,ψ) to U is nothing but
υ̃∗(P, φ). This is easy to check since O(E)|U = OU via σE (see A.1), which
means (O(E)∨, σE)|U = 1U . So, by the construction of the connecting homo-
morphism ∂ recalled at the beginning of the proof, we know that ∂(υ̃∗(P, φ))
can be computed as d(Q,ψ). This reads :

∂(υ̃∗(P, φ)) = d
(
(O(E)∨, σE)⊗ (P, φ)

)
.
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Now, we use that (P, φ) is non-degenerate and that therefore (see [4, Rem. 5.4]
if necessary) we can take (P, φ) out of the above symmetric cone d(...), i.e.

∂(υ̃∗(P, φ)) = d(O(E)∨, σE)⊗ (P, φ) . (19)

Let us compute the symmetric cone d(O(E)∨, σE) =: (C,χ). Note that this
only involves vector bundles. We define C to be the cone of σE and we equip
it with a symmetric form χ : C

∼→ C∨[1] ⊗ O(E)∨ for the duality used for
(O(E), σE) but shifted by one, that is, for the 1st shifted duality with values
in O(E)∨. One checks that (C,χ) is given by the following explicit formula :

C =

χ

��

(
· · · // 0 //

��

0 //

��

O(E)∨
σE //

−1

��

OB //

1

��

0 //

��

0 //

��

· · ·
)

C∨[1]⊗O(E)∨ =
(
· · · // 0 // 0 // O(E)∨

−(σE)∨
// OB // 0 // 0 // · · ·

)

(20)
where the complexes have OB in degree zero. Now, observe that the complex
C is a resolution of ι̃∗(OE) over B, by Definition A.1, that is, C ≃ ι̃∗(OE)
in the derived category of B. Moreover, by Propositions A.8 and A.9 (ii), we
have ι̃!(O(E)∨[1]) = ωι̃[−1]⊗ ι̃∗(O(E)∨[1]) ∼= OE . Using this, one checks the
conceptually obvious fact that χ is also the push-forward along the perfect
morphism ι̃ of the unit form on OE . See Remark 4.3 below for more details.
This means that we have an isometry in Db

E(VB(B))

d
(
O(E)∨, σE

)
= ι̃∗(1E)

of symmetric spaces with respect to the 1st shifted duality with values inO(E)∨.
Plugging this last equality in (19), and using the projection formula (see Re-
mark 4.3) we obtain

∂(υ̃∗(P, φ)) = ι̃∗(1E)⊗ (P, φ) = ι̃∗
(
1E ⊗ ι̃∗(P, φ)

)
= ι̃∗

(
ι̃∗(P, φ)

)
.

This is the claimed equality (18).

Remark 4.3. In the above proof, we use the “conceptually obvious fact” that
the push-forward of the unit form on OE is indeed the χ of (20). This fact is
obvious to the expert but we cannot provide a direct reference for this exact
statement. However, if the reader does not want to do this lengthy verification
directly, the computation of [8, § 7.2] can be applied essentially verbatim. The
main difference is that here, we are considering a push-forward of locally free
instead of coherent Witt groups along a regular embedding. Such a push-
forward is constructed using the same tensor formalism as the proper push-
forwards for coherent Witt groups considered in loc. cit. along morphisms that
are proper, perfect and Gorenstein, which is true of a regular embedding. In
loc. cit. there is an assumption that the schemes are Gorenstein, ensuring that
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the line bundles are dualizing complexes. But here, the dualizing objects for
our category of complexes of locally free sheaves are line bundles anyway and
the extra Gorenstein assumption is irrelevant.
Moreover, the projection formula used in the above proof is established in
complete generality for non necessarily regular schemes by the same method
as in [8, § 5.7] using the pairing between the locally free derived category and
the coherent one to the coherent one. More precisely, this pairing is just a

restriction of the quasi-coherent pairing DQcoh×DQcoh
⊗−→DQcoh of loc. cit. to

these subcategories. By the general tensor formalism of [10], for any morphism
f : X → Y as above, for any object A (resp. B) in the quasi-coherent derived
category of X (resp. Y ), we obtain a projection morphism in DQcoh(Y )

R f∗(A)⊗B−→R f∗(A⊗ Lf∗(B)),

see [10, Prop. 4.2.5]. It is an isomorphism by [8, Thm. 3.7]. We actually only
use it for A a complex of locally free sheaves and B a complex with coherent and
bounded cohomology. The projection formula is implied by [10, Thm. 5.5.1].

Proof of Main Lemma 3.5. Case (A) follows from the codimension one case
and the compatibility of push-forwards with connecting homomorphisms (here
along the identity of U). Case (B) follows from the outer commutativity of the
following diagram :

W̃i(U,KU )
∂ // W̃i+1

Z (X,KX) W̃i+1(Z, ι!KX)
ι∗oo

W̃i(U,KU )
∂ // W̃i+1

E (Bl,KBl)

π∗

OO

W̃i+1(E, π̃!ι!KX)
ι̃∗oo

π̃∗

OO

W̃i(Bl,O(E)⊗KBl)

υ̃∗

OO

ι̃∗ // W̃i
(
Bl,Lι̃∗(O(E) ⊗KBl)

)
∼= W̃i+1(E, ι̃!KBl)

∼=

OO

(21)
We shall now verify the inner commutativity of this diagram. The upper left
square of (21) commutes by compatibility of push-forward with connecting
homomorphisms. The upper right square of (21) simply commutes by functo-
riality of push-forward applied to ι ◦ π̃ = π ◦ ι̃. Most interestingly, the lower
part of (21) commutes by Lemma 4.2 applied to the codimension one inclusion
ι̃ : E →֒ Bl.

5 The Main Theorem in the non-regular case

Without regularity assumptions, we have shown in Main Lemma 3.5 how to
compute the connecting homomorphism ∂ : W̃∗(U,KU) → W̃∗+1

Z (X,KX) on
those Witt classes over U which come from Bl = BlZ(X) by restriction υ̃∗.
The whole point of adding Hypothesis 1.2 is precisely to split υ̃∗, that is, to
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construct for each Witt class on U an extension on Bl. In the regular case,
this follows from homotopy invariance of Picard groups and Witt groups. In
the non-regular setting, things are a little more complicated. Let us give the
statement and comment on the hypotheses afterwards (see Remark 5.2).

Main Theorem 5.1. In Setup 1.1, assume that X has a dualizing complex KX

and equip U with the restricted complex KU = υ∗(KX). Assume Hypothesis 1.2
and further make the following hypotheses :

(a) There exists a dualizing complex KY on Y such that α∗KY = KU .

(b) The A∗-bundle α induces an isomorphism W̃∗(Y,KY )
∼→ W̃∗(U,KU ).

(c) The morphism α̃ is of finite Tor dimension and Lα̃∗(KY ) is dualizing.

(d) Sequence (25) is exact : Z→ Pic(Bl)→ Pic(U). (See Proposition A.3.)

Then Lα̃∗(KY ) ≃ π!KX ⊗ O(E)⊗n for some n ∈ Z, and the following holds
true :

(A) If n can be chosen even, the composition π∗α̃∗(α∗)−1 is a section of υ∗.

(B) If n can be chosen odd, the composition ι∗π̃∗ι̃∗α̃∗(α∗)−1 coincides with
the connecting homomorphism ∂ : W̃∗(U,KU )→ W̃∗+1

E (X,KX).

Proof. By (c) and Remark 3.2 respectively, both Lα̃∗(KY ) and π!KX are dual-
izing complexes on Bl. By Lemma A.7 (i), they differ by a shifted line bundle :
Lα̃∗(KY ) ≃ π!KX ⊗ L[m] with L ∈ Pic(Bl) and m ∈ Z. Restricting to U , we
get

KU ⊗ υ̃∗L[m] ≃ υ̃∗π!KX ⊗ υ̃∗L[m]

≃ υ̃∗(π!KX ⊗ L[m]) ≃ υ̃∗ Lα̃∗(KY ) ≃ α∗KY ≃ KU

where the first equality holds by flat base-change ([8, Thm. 5.5]). Thus, υ̃∗L[m]
is the trivial line bundle on U by Lemma A.7 (ii). So m = 0 and, by (d),
L ≃ O(E)⊗n for some n ∈ Z. This gives Lα̃∗(KY ) ≃ π!KX ⊗ O(E)⊗n as
claimed.
We now consider coherent Witt groups. By (c) and Remark 3.3, α̃ induces
a morphism α̃∗ : W̃∗(Y,KY ) → W̃(Bl,Lα̃∗KY ). By Lemma A.12, the flat
morphism α induces a homomorphism α∗ : W̃∗(Y,KY )→ W̃∗(U,KU ) which is
assumed to be an isomorphism in (b). So, we can use (α∗)−1. When n is even,
we have

υ∗π∗α̃
∗(α∗)−1 = υ̃∗α̃∗(α∗)−1 = α∗(α∗)−1 = id

where the first equality holds by flat base-change ([8, Thm. 5.5]). This
proves (A). On the other hand, when n is odd, we have

ι∗π̃∗ι̃
∗α̃∗(α∗)−1 = ∂ υ̃∗α̃∗(α∗)−1 = ∂ α∗(α∗)−1 = ∂

where the first equality holds by Main Lemma 3.5 (B).
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Remark 5.2. Hypothesis (a) in Theorem 5.1 is always true when Y admits a
dualizing complex and homotopy invariance holds over Y for the Picard group
(e.g. Y regular). Homotopy invariance for coherent Witt groups should hold in
general but only appears in the literature when Y is Gorenstein, see Gille [12].
This means that Hypothesis (b) is a mild one. Hypothesis (d) is discussed in
Proposition A.3.

Remark 5.3. In Theorem 5.1, the equation Lα̃∗(KY ) ≃ π!KX ⊗O(E)⊗n, for
n ∈ Z, should be considered as a non-regular analogue of Equation (8). In
Remark 2.2, we discussed the compatibility of the various lines bundles on the
schemes X , U , Y and Bl. Here, we need to control the relationship between
dualizing complexes instead and we do so by restricting to U and by using the
exact sequence (25). Alternatively, one can remove Hypothesis (d) and directly
assume the relation Lα̃∗(KY ) ≃ π!(KX)⊗O(E)⊗n for some n ∈ Z. This might
hold in some particular examples even if (25) is not exact.

For the convenience of the reader, we include the proofs of the following facts.

Lemma 5.4. If X is Gorenstein, then Z and Bl are Gorenstein. If X is regular,
Bl is regular.

Proof. By Prop. A.8, π!(OX) is the line bundle ωπ. Since π is proper, π! pre-
serves injectively bounded dualizing complexes and ωπ is dualizing and since it
is a line bundle, Bl is Gorenstein. The same proof holds for Z, since ι!(OX) is
ωι (shifted) which is also a line bundle by Prop. A.11. For regularity, see [18,
Thm. 1.19].

Proof of Theorem 2.6. Note that all the assumptions of Theorem 5.1 are ful-
filled in the regular case, that is, in the setting of Section 2. Indeed, if X and
Y are regular, Bl and U are regular, and the dualizing complexes on X , Y , Bl
and U are simply shifted line bundles. The morphism α∗ : Pic(Y ) → Pic(U)
is then an isomorphism (homotopy invariance) and α̃ is automatically of finite
Tor dimension, as any morphism to a regular scheme. Finally, the sequence on
Picard groups is exact by Proposition A.3.

Let KX = L be the chosen line bundle on X . Then set LU := KU = υ∗L
and choose LY = KY to be the unique line bundle (up to isomorphism) such
that α∗LY = LU . By (8), we have α̃∗LY = π∗L ⊗ O(E)⊗λ(L) = π!L ⊗
O(E)⊗(λ(L)−c+1), where the last equality holds since π!L = O(E)⊗(c−1) ⊗ π∗L
by Proposition A.11 (vi). In other words, we have proved that α̃∗KY =
π!KX ⊗O(E)⊗(λ(L)−c+1). In Theorem 5.1, we can then take n = λ(L)− c+ 1
and the parity condition becomes λ(L) ≡ c−1 mod 2 for Case (A) and λ(L) ≡ c
mod 2 for Case (B). So, Case (A) is the trivial one and corresponds to Theo-
rem 2.3. Case (B) exactly gives Theorem 2.6 up to the identifications of line
bundles explained in Appendix A.
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A Line bundles and dualizing complexes

We use Hartshorne [15] or Liu [18] as general references for algebraic geometry.
We still denote by Sch the category of noetherian separated connected schemes
(we do not need “over Z[ 12 ]” in this appendix).

Definition A.1. Let ι̃ : E →֒ B be a regular closed immersion of codimension
one, with B ∈ Sch. Consider the ideal IE ⊂ OB defining E

0 // IE
σE // OB // ι̃∗OE // 0 . (22)

By assumption, IE is an invertible ideal, i.e. a line bundle. The line bundle
associated to E is defined as its dual O(E) := (IE)∨, see [15, II.6.18]. We
thus have by construction a global section σE : O(E)∨ → OB, which vanishes
exactly on E. This gives an explicit trivialization of O(E) outside E. On the
other hand, the restriction of O(E) to E is the normal bundle O(E)|E

∼= NE/B.

Example A.2. Let Bl = BlZ(X) be the blow-up of X along a regular closed
immersion Z →֒ X as in Setup 1.1. Let I = IZ ⊂ OX be the sheaf of ideals
defining Z. By construction of the blow-up, we have Bl = Proj(S) where S is
the sheaf of graded OX -algebras

S := OX ⊕ I ⊕ I2 ⊕ I3 ⊕ · · ·

Similarly, E = Proj(S/J ) where J := I · S ⊂ S is the sheaf of homogeneous
ideals

J = I ⊕ I2 ⊕ I3 ⊕ I4 ⊕ · · ·
So, E = PZ(CZ/X ) is a projective bundle over Z associated to the vector bundle
CZ/X = I/I2 which is the conormal bundle of Z in X . Associating OBl-sheaves
to graded S-modules, the obvious exact sequence 0 → J → S → S/J → 0
yields

0 // J̃ σE // OBl // ι̃∗OE // 0 . (23)

Compare (22). This means that here IE = J̃ . But now, J is obviously S(1)
truncated in non-negative degrees. Since two graded S-modules which coincide

above some degree have the same associated sheaves, we have IE = J̃ = S̃(1) =
OBl(1). Consequently, O(E) = (IE)∨ = OBl(−1). In particular, we get

O(E)|E = OBl(−1)|E = OE(−1). (24)

Proposition A.3 (Picard group in codimension one). Let B ∈ Sch be a
scheme and ι̃ : E →֒ B be a regular closed immersion of codimension one
of an irreducible subscheme E ∈ Sch with open complement υ̃ : U →֒ B. We
then have a complex

Z // Pic(B)
υ̃∗ // Pic(U) (25)
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where the first map sends 1 to the line bundle O(E) associated to E. This
complex is exact if B is normal, and υ̃∗ is surjective when B is furthermore
regular. It is also exact when B is the blow-up of a normal scheme X along a
regular embedding.

Proof. (25) is a complex since O(E) is trivial on U . When B is normal, Pic(B)
injects in the group Cl(B) of Weil divisors (see [18, 7.1.19 and 7.2.14 (c)]), for
which the same sequence holds by [15, Prop. II.6.5]. Exactness of (25) then
follows by diagram chase. The surjectivity of υ̃∗ when B is regular follows from
[15, Prop. II.6.7 (c)]. When B is the blow-up of X along Z, we can assume
that codimX(Z) ≥ 2 by the previous point. Then, the result again follows by
diagram chase, using that Pic(B) = Pic(X)⊕Z, as proved in Proposition A.6 (i)
below.

Remark A.4. Note that the blow-up of a normal scheme along a regular closed
embedding isn’t necessarily normal if the subscheme is not reduced. For exam-
ple, take X = A2 = Spec(k[x, y]) and Z defined by the equations x2 = y2 = 0.
Then, Bl is the subscheme of A2 × P1 defined by the equations x2v = y2u
where [u : v] are homogeneous coordinates for P1 and it is easy to check that
the whole exceptional fiber is singular. Thus Bl is not normal (not even regular
in codimension one).

Proposition A.5 (Picard group of a projective bundle). Let X ∈ Sch be a
(connected) scheme and F a vector bundle over X. We consider the projective
bundle PX(F) associated to F . Its Picard group is Pic(X) ⊕ Z where Z is
generated by O(−1) and Pic(X) comes from the pull-back from X.

Proof. Surjectivity of Pic(X) ⊕ Z → Pic(PX(F)) is a formal consequence of
Quillen’s formula [23, Prop. 4.3] for the K-theory of a projective bundle. In-
deed, the determinant map K0 → Pic is surjective with an obvious set theoretic
section and can easily be computed on each component of Quillen’s formula.
Injectivity is obtained by pulling back to the fiber of a point for the Z compo-
nent, and by the projection formula for the remaining Pic(X) component.

Proposition A.6 (Picard group of a blow-up). Under Setup 1.1, we have :

(i) The Picard group of Bl = BlZ(X) is isomorphic to Pic(X)⊕Z where the
direct summand Pic(X) comes from the pull-back π∗ and Z is generated
by the class of the exceptional divisor O(E) = OBl(−1).

(ii) If X is normal, the map υ∗ : Pic(X) → Pic(U) is injective. If X is
regular it is an isomorphism.

(iii) The exceptional fiber E is the projective bundle P(CZ/X ) over Z and its
Picard group is therefore Pic(Z)⊕ Z where Z is generated by OE(−1).

(iv) The pull-back ι̃∗ : Pic(Bl)→ Pic(E) maps [O(E)] ∈ Pic(Bl) to [OE(−1)].
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Under these identifications, Diagram (1) induces the following pull-back maps
on Picard groups :

Pic(Z)
(

id
0

)
��

Pic(X)
ι∗oo υ∗ //

(
id
0

)
��

Pic(U) .

Pic(Z)⊕ Z Pic(X)⊕ Z

(
ι∗ 0
0 id

)
oo

(υ∗ 0)

66nnnnnnnnnnnn

Proof. By Example A.2, we get (iv) and we can deduce (iii) from Proposi-
tion A.5. To prove (ii), use that for X normal (resp. regular) Pic(X) injects into
(resp. is isomorphic to) the group Cl(X) of Weil divisors classes (see [18, 7.1.19
and 7.2.14 (c), resp. 7.2.16]), and that Cl(X) = Cl(U) since codimX(Z) ≥ 2.
Finally, for (i), consider the commutative diagram

Dperf(Z)

Lπ̃∗

��

Dperf(X)
Lι∗oo

Lπ∗

��
Dperf(E) Dperf(Bl)

Lι̃∗oo

(26)

of induced functors on the derived categories of perfect complexes. We will
use :
Fact 1 : The tensor triangulated functors Lπ∗ and Lπ̃∗ are fully faithful with
left inverse Rπ∗ and R π̃∗ respectively, see Thomason [24, Lemme 2.3].
Fact 2 : If M ∈ Dperf(Bl) is such that Lι̃∗(M) ≃ Lπ̃∗(N) for some N ∈
Dperf(Z), then M ≃ Lπ∗(L) for some L ∈ Dperf(X), which must then be
Rπ∗(M) by Fact 1. This follows from [11, Prop. 1.5]. (In their notation, our as-
sumption implies that M is zero in all successive quotients Di+1

perf(Bl)/Di
perf(Bl)

hence belongs to D0
perf(Bl).)

Hence Pic(X)⊕Z→ Pic(Bl) is injective : If L is a line bundle on X and n ∈ Z
are such that Lπ∗(L)⊗OBl(n) is trivial then we get n = 0 by restricting to E
and applying (iii), and we get L ≃ Rπ∗ Lπ∗L ≃ Rπ∗OBl ≃ Rπ∗ Lπ∗OX ≃ OX
by Fact 1. So, let us check surjectivity of Pic(X)⊕ Z→ Pic(Bl). Let M be a
line bundle on Bl. Using (iii) again and twisting with OBl(n) if necessary, we
can assume that Lι̃∗(M) is isomorphic to Lπ̃∗N = π̃∗N for some line bundle
N on Z. By Fact 2, there exists L ∈ Dperf(X) such that Lπ∗(L) ≃ M . It
now suffices to check that this L ∈ Dperf(X) is a line bundle. The natural
(evaluation) map L∨⊗L→ OX is an isomorphism, since it is so after applying
the fully faithful tensor functor Lπ∗ : Dperf(X)→ Dperf(Bl). So L ∈ Dperf(X)
is an invertible object, hence it is the mth suspension of a line bundle for m ∈ Z,
see [7, Prop. 6.4]. Using (26), one checks by restricting to Z that m = 0, i.e. L
is a line bundle.

* * *
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We now discuss dualizing complexes and relative canonical bundles. First of
all, we mention the essential uniqueness of dualizing complexes on a scheme.

Lemma A.7. Let X ∈ Sch be a scheme admitting a dualizing complex KX.
Then :

(i) For any line bundle L and any integer i, the complex KX ⊗L[i] is also a
dualizing complex and any dualizing complex on X is of this form.

(ii) If KX ⊗ L[i] ≃ KX in the derived category of X, for some line bundle L
and some integer i, then L ≃ OX and i = 0.

In other words, the set of isomorphism classes of dualizing complexes on X is
a principal homogeneous space under the action of Pic(X)⊕ Z.

Proof. For (i), see [19, Lemma 3.9]. Let us prove (ii). We have the isomor-
phisms

OX ∼→ RHom(KX ,KX) ≃ RHom(KX ,KX ⊗ L[n])

≃ RHom(KX ,KX)⊗ L[n]
∼←L[n]

in the coherent derived category. The first and last ones hold by [19, Prop. 3.6].
We thus obtain an isomorphism OX ≃ L[n] in the derived category of perfect
complexes (it is a full subcategory of the coherent one). This forces n = 0 and
the existence of an honest isomorphism of sheaves OX ≃ L, see [7, Prop. 6.4]
if necessary.

We now use the notion of local complete intersection (l.c.i.) morphism, that
is, a morphism which is locally a regular embedding followed by a smooth
morphism, see [18, § 6.3.2]. The advantage of such morphisms f : X ′ → X
is that f ! is just Lf∗ twisted by a line bundle ωf and shifted by the relative
dimension dim(f).

Proposition A.8. Let f : X ′ → X be an l.c.i. morphism with X,X ′ ∈ Sch.
Assume that f is proper. Then f !(OX) is a shifted line bundle ωf [dim(f)] and

there exists a natural isomorphism f !(OX) ⊗ Lf∗(−)
∼→ f !(−). In particular,

f ! preserves the subcategory Dperf of Db
coh.

Proof. There is always a natural morphism f !(OX) ⊗ Lf∗(−) → f !(−). One
shows that it is an isomorphism and that f !(OX) is a line bundle directly from
the definition, since both these facts can be checked locally, are stable by com-
position and are true for (closed) regular immersions and smooth morphisms
by Hartshorne [14, Ch. III]. The subcategory Dperf is then preserved since both
Lf∗ and tensoring by a line bundle preserve it.

The above proposition reduces the description of f ! to that of the line bun-
dle ωf .
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Proposition A.9. In the following cases, we have concrete descriptions of ωf .

(i) When f : X ′ → X is smooth and proper, ωf ≃ det(Ω1
X′/X) is the determi-

nant of the sheaf of differentials. In particular, when f is the projection
of a projective bundle P(F) to its base, where F is a vector bundle of
rank r, then ωf ≃ f∗(detF)⊗OP(F)(−r).

(ii) When f : X ′ →֒ X is a regular closed immersion, ωf ≃ det(NX′/X) is
the determinant of the normal bundle. In particular when f : E →֒ B is
the inclusion of a prime divisor (Def. A.1), we have ωf ≃ O(E)|E .

Proof. See [25, Prop. 1 and Thm. 3]. See alternatively [18, § 6.4.2].

Remark A.10. All morphisms along which we consider push-forward in this
article are l.c.i. It might not be obvious for π : Bl→ X but this follows from [1,
VII 1.8 p. 424] (it is locally of the form mentioned there). So, ωπ is also a line
bundle. Let us now describe the relative canonical line bundles in terms of
ωι = det(NZ/X).

Proposition A.11. With the notation of Setup 1.1, we have

(i) ωι̃ = O(E)|E = OE(−1)

(ii) ωπ̃ = π̃∗ω∨ι ⊗O(E)⊗c|E
= π̃∗ω∨ι ⊗OE(−c)

(iii) ωπ = O(E)⊗(c−1) = OBl(1− c).

By Proposition A.8, it implies that we have

(iv) ι̃!(−) = O(E)|E ⊗ Lι̃∗(−)[−1] = OE(−1)⊗ Lι̃∗(−)[−1]

(v) π̃!(−) = π̃∗ω∨ι ⊗O(E)⊗c|E
⊗Lπ̃∗(−)[c−1] = π̃∗ω∨ι ⊗OE(−c)⊗Lπ̃∗(−)[c−1]

(vi) π!(−) = O(E)⊗(c−1) ⊗ Lπ∗(−) = OBl(1 − c)⊗ Lπ∗(−).

Proof. Points (i) and (ii) follow from Proposition A.9 (ii) and (i), respectively.
They imply (iv) and (v). To prove point (iii) let us first observe that the exact
sequence (22) gives rise to an exact triangle

OBl(l + 1)→ OBl(l)→ R ι̃∗(OE(l))→ OBl(l + 1)[1]

in Dperf(Bl) for any l ∈ Z. Applying Rπ∗ to this triangle and using that

Rπ∗R ι̃∗OE(l) = R ι∗R π̃∗OE(l) = 0 for − c < l < 0

(by [13, 2.1.15]), we obtain by induction that Rπ∗OBl(l) = Rπ∗OBl = OX for
−c < l ≤ 0. In particular Rπ∗OBl(1 − c) = OX . We now use the filtration
of [11, Prop. 1.5]. Let us show that π!(OX) ⊗ OBl(c − 1) is in D0

perf(Bl). By

Documenta Mathematica 14 (2009) 525–550



548 Balmer and Calmès

loc. cit. it suffices to show that Lι̃∗(π!(OX) ⊗ OBl(c − 1)) is in D0
perf(E). It

follows from the sequence of isomorphisms

Lι̃∗(π!(OX)⊗OBl(c− 1)) ≃ Lι̃∗π!(OX)⊗OE(c− 1)
(iv)≃ ι̃!π!(OX)⊗OE(c)[1]

≃ π̃!ι!(OX)⊗OE(c)[1]
A.8≃ π̃!(ωι)⊗OE(c)[−c+ 1]

(v)≃ OE .

Since L := π!(OX) ⊗ OBl(c − 1) is in D0
perf(Bl), it is of the form Lπ∗M for

M = Rπ∗L (by Fact 1 in the proof of Prop. A.6) which we compute by duality:

Rπ∗(π
!(OX)⊗OBl(c− 1)) ≃ Rπ∗RHom(OBl, π!(OX)⊗OBl(c− 1)) ≃

≃ Rπ∗RHom(OBl(1− c), π!(OX))
(†)≃ RHom(R π∗OBl(1− c),OX)

(⋆)≃

≃ RHom(OX ,OX) ≃ OX

where (⋆) is by the computation at the beginning of the proof, (†) is the duality
isomorphism and all other isomorphisms are obtained as consequences of the
monoidal structure on the Db

coh involved (see [10] and [8] for details). Hence,
π!(OX) ≃ OBl(1− c) as announced. This proves (iii) and thus (vi).

Finally, we also use dualizing complexes in the context of an A∗-bundle U → Y ,
i.e. a morphism that is locally of the form AnY → Y (and is in particular flat).

Lemma A.12. Let α : U → Y be an A∗-bundle. Assume that Y admits a
dualizing complex KY . Then Lα∗(KY ) = α∗(KY ) is a dualizing complex on U .

Proof. This can be checked locally, so we can assume α decomposes as α = f ◦u
for an open immersion u : AnY →֒ PnY followed by the structural projection
f : PnY → Y . Note that α, u and f are all flat. We have by Propositions A.8
and A.9 (i)

u∗f !KY [n] = u∗(O(−n− 1)⊗ f∗KY ) ≃ u∗f∗KY = α∗KY

where the second equality comes from the triviality of O(−n− 1) on AnY . Now
u∗f !KY [n] is dualizing because proper morphisms, open immersions and shift-
ing preserve dualizing complexes.

Acknowledgments : We thank Marc Levine for precious discussions on The-
orem 1.3 and Example 1.5, Jean Fasel for a florilegium of relative bundles and
Burt Totaro for several discussions on algebraic geometry.
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Abstract. We prove a motivic Landweber exact functor theorem.

The main result shows the assignment given by a Landweber-type

formula involving the MGL-homology of a motivic spectrum defines a

homology theory on the motivic stable homotopy category which is

representable by a Tate spectrum. Using a universal coefficient spec-

tral sequence we deduce formulas for operations of certain motivic

Landweber exact spectra including homotopy algebraic K-theory. Fi-

nally we employ a Chern character between motivic spectra in order

to compute rational algebraic cobordism groups over fields in terms

of rational motivic cohomology groups and the Lazard ring.
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1 Introduction

The Landweber exact functor theorem combined with Brown representability

provides an almost unreasonably efficient toolkit for constructing homotopy

types out of purely algebraic data. Among the many examples arising this

way is the presheaf of elliptic homology theories on the moduli stack of elliptic

curves. In this paper we incite the use of such techniques in the algebro-

geometric setting of motivic homotopy theory.

In what follows we shall state some of the main results in the paper, comment on

the proofs and discuss some of the background and relation to previous works.

Throughout we employ a stacky viewpoint of the subject which originates with

formulations in stable homotopy theory pioneered by Morava and Hopkins. Let

S be a regular noetherian base scheme of finite Krull dimension and SH(S) the

corresponding motivic stable homotopy category. A complex point Spec(C)→
S induces a functor SH(S) → SH to the classical stable homotopy category.

Much of the work in this paper is guidelined by the popular quest of hoisting

results in SH to the more complicated motivic category.

To set the stage, denote by MGL the algebraic cobordism spectrum introduced

by Voevodsky [39]. By computation we show (MGL∗,MGL∗MGL) is a flat Hopf

algebroid in Adams graded abelian groups. (Our standard conventions concern-

ing graded objects are detailed in Section 3. Recall that MGL∗ ≡ MGL2∗,∗.)
The useful fact that MGL gives rise to an algebraic stack [MGL∗/MGL∗MGL]

comes to bear. (This apparatus is reviewed in Section 2.) By comparing with

the complex cobordism spectrum MU we deduce a 2-categorical commutative
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diagram:

Spec(MGL∗)

��

// Spec(MU∗)

��

[MGL∗/MGL∗MGL] // [MU∗/MU∗MU]

(1)

The right hand part of the diagram is well-known: Milnor’s computation of

MU∗ and Quillen’s identification of the canonical formal group law over MU∗
with the universal formal group law are early success stories in modern algebraic

topology. As a Gm-stack the lower right hand corner identifies with the moduli

stack of strict graded formal groups. Our plan from the get-go was to prove

(1) is cartesian and use that description of the algebraic cobordism part of the

diagram to deduce motivic analogs of theorems in stable homotopy theory. It

turns out this strategy works for general base schemes.

Recall that an MU∗-module M∗ is Landweber exact if v
(p)
0 , v

(p)
1 , . . . forms a

regular sequence in M∗ for every prime p. Here v
(p)
0 = p and the v

(p)
i for i > 0

are indecomposable elements of degree 2pi − 2 in MU∗ with Chern numbers

divisible by p. Using the cartesian diagram (1) we show the following result

for Landweber exact motivic homology theories, see Theorem 7.3 for a more

precise statement.

Theorem: Suppose A∗ is a Landweber exact graded MU∗-algebra. Then

MGL∗∗(−)⊗MU∗ A∗

is a bigraded ring homology theory on SH(S).

Using the theorem we deduce that

MGL∗∗(−)⊗MU∗ A∗

is a ring cohomology theory on the subcategory of strongly dualizable objects

of SH(S). In the case of the Laurent polynomial ring Z[β, β−1] on the Bott

element, this observation forms part of the proof in [35] of the motivic Conner-

Floyd isomorphism

MGL∗∗(−)⊗MU∗ Z[β, β−1]
∼= // KGL∗∗(−)

for the motivic spectrum KGL representing homotopy algebraic K-theory.

Define the category of Tate objects SH(S)T as the smallest localizing triangu-

lated subcategory of the motivic stable homotopy category containing the set

T of all mixed motivic spheres

Sp,q ≡ Sp−qs ∧Gq
m
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of smash products of the simplicial circle S1
s and the multiplicative group

scheme Gm. The Tate objects are precisely the cellular spectra in the termi-

nology of [7]. Our choice of wording is deeply rooted in the theory of motives.

Since the inclusion SH(S)T ⊆ SH(S) preserves sums and SH(S) is compactly

generated, a general result for triangulated categories shows that it acquires

a right adjoint functor pSH(S),T : SH(S) → SH(S)T , which we call the Tate

projection. When E is a Tate object and F a motivic spectrum there is thus an

isomorphism

E∗∗(F) ∼= E∗∗(pSH(S),T F).

As in topology, it follows that the E∗∗-homology of F is determined by the E∗∗-
homology of mixed motivic spheres. This observation is a key input in showing

(E∗,E∗E) is a flat Hopf algebroid in Adams graded abelian groups provided one

- and hence both - of the canonical maps E∗∗ → E∗∗E is flat and the canonical

map E∗E ⊗E∗ E∗∗ → E∗∗E is an isomorphism. Specializing to the example of

algebraic cobordism allows us to form the algebraic stack [MGL∗/MGL∗MGL]

and (1).

Our motivic analog of Landweber’s exact functor theorem takes the following

form, see Theorem 8.7.

Theorem: Suppose M∗ is an Adams graded Landweber exact MU∗-module.

Then there exists a motivic spectrum E in SH(S)T and a natural isomorphism

E∗∗(−) ∼= MGL∗∗(−)⊗MU∗ M∗

of homology theories on SH(S).

In addition, if M∗ is a graded MU∗-algebra then E acquires a quasi-

multiplication which represents the ring structure on the corresponding Landwe-

ber exact theory.

When the base scheme is the integers Z we use motivic Landweber exactness

and Voevodsky’s result that SH(Z)T is a Brown category [39], so that all

homology theories are representable, to conclude the proof of the motivic exact

functor theorem. For more details and a proof of the fact that SH(Z)T is

a Brown category we refer to [26]. For a general base scheme we provide

base change results which allow us to reduce to the case of the integers. The

subcategory of Tate objects of the derived category of modules over MGL -

relative to Z - turns also out to be a Brown category. This suffices to show

the above remains valid when translated verbatim to the setting of highly

structured MGL-modules. Recall MGL is a motivic symmetric spectrum and

the monoid axiom introduced in [33] holds for the motivic stable structure [17,

Proposition 4.19]. Hence the modules over MGL acquire a closed symmetric

monoidal model structure. Moreover, for every cofibrant replacement of MGL
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in commutative motivic symmetric ring spectra there is a Quillen equivalence

between the corresponding module categories.

We wish to emphasize the close connection between our results and the classical

Landweber exact functor theorem. In particular, if M∗ is concentrated in even

degrees there exists a commutative ring spectrum ETop in SH which represents

the corresponding topological Landweber exact theory. Although E and ETop

are objects in widely different categories of spectra, it turns out there is an

isomorphism

E∗∗E ∼= E∗∗ ⊗E
Top
∗

ETop
∗ ETop.

In the last part of the paper we describe (co)operations and phantom maps

between Landweber exact motivic spectra. Using a universal coefficient spectral

sequence we show that every MGL-module E gives rise to a surjection

Ep,q(M) // Hom
p,q
MGL∗∗

(MGL∗∗M,E∗∗), (2)

and the kernel of (2) identifies with the Ext-term

Ext
1,(p−1,q)
MGL∗∗

(MGL∗∗M,E∗∗). (3)

Imposing the assumption that E
Top
∗ ETop be a projective E

Top
∗ -module implies

the given Ext-term in (3) vanishes, and hence (2) is an isomorphism. The as-

sumption on ETop holds for unitary topologicalK-theory KU and localizations of

Johnson-Wilson theories. By way of example we compute the KGL-cohomology

of KGL. That is, using the completed tensor product we show there is an iso-

morphism of KGL∗∗-algebras

KGL∗∗KGL
∼= // KGL∗∗⊗̂KU∗KU∗KU.

By [2] the group KU1KU is trivial and KU0KU is uncountable. We also show

that KGL does not support any nontrivial phantom map. Adopting the proof

to SH reproves the analogous result for KU. The techniques we use can fur-

ther be utilized to construct a Chern character in SH(S) from KGL to the

periodized rational motivic Eilenberg-MacLane spectrum representing ratio-

nal motivic cohomology. For smooth schemes over fields we prove there is

an isomorphism between rational motivic cohomology MQ and the Landwe-

ber spectrum representing the additive formal group law over Q. This leads

to explicit computations of rational algebraic cobordism groups, cf. Corollary

10.6.

Theorem: If X is a smooth scheme over a field and L∗ denotes the (graded)

Lazard ring, then there is an isomorphism

MGL∗∗(X)⊗Z Q ∼= MQ∗∗(X)⊗Z L∗.
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For finite fields it follows that MGL2∗∗⊗Z Q ∼= Q⊗Z L∗ and MGL∗∗⊗Z Q is the

trivial group if (∗, ∗) 6∈ Z(2, 1). Number fields provide other examples for which

MGL∗∗⊗ZQ can now be computed explicitly (in terms of the number of real and

complex embeddings). The theorem suggests the spectral sequence associated

to the slice tower of the algebraic cobordism spectrum takes the expected form,

and that it degenerates rationally, cf. the works of Hopkins-Morel reviewed in

[19] and Voevodsky [41].

Inspired by the results herein we make some rather speculative remarks con-

cerning future works. The all-important chromatic approach to stable homo-

topy theory acquires deep interplays with the algebraic geometry of formal

groups. Landweber exact algebras over Hopf algebroids represent a central

theme in this endeavor, leading for example to the bicomplete closed symmetric

monoidal abelian category of BP∗BP-comodules. The techniques in this paper

furnish a corresponding Landweber exact motivic Brown-Peterson spectrum

MBP equivalent to the constructions in [16] and [38]. The object MBP∗MBP

and questions in motivic chromatic theory at large can be investigated along

the lines of this paper. An exact analog of Bousfield’s localization machinery

in motivic stable homotopy theory was worked out in [32, Appendix A], cf. also

[13] for a discussion of the chromatic viewpoint. In a separate paper [27] we

dispense with the regularity assumption on S. The results in this paper remain

valid for noetherian base schemes of finite Krull dimension. Since this general-

ization uses arguments which are independent of the present work, we deferred

it to loc. cit. The slices of motivic Landweber spectra are studied in [34] by

the third author.

Acknowledgments. We wish to thank J. Hornbostel, O. Röndigs and the

referee for helpful comments on this paper.

2 Preliminaries on algebraic stacks

By a stack we shall mean a category fibered in groupoids over the site comprised

by the category of commutative rings endowed with the fpqc-topology. A stack

X is algebraic if its diagonal is representable and affine, and there exists an affine

scheme U together with a faithfully flat map U → X, called a presentation of

X. We refer to [12], [25] and [11] for motivation and basic properties of these

notions.

Lemma 2.1: Suppose there are 2-commutative diagrams of algebraic stacks

Z //

��

Z′

��

X // X′

Y //

π

��

Y′

��

X // X′

(4)
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where π is faithfully flat. Then the left hand diagram in (4) is cartesian if and

only if the naturally induced commutative diagram

Z×X Y //

��

Z′ ×X′ Y
′

��

Y // Y′

(5)

is cartesian.

Proof. The base change of the canonical 1-morphism c : Z → Z′ ×X′ X over X

along π identifies with the canonically induced 1-morphism

Z×X Y
c×1

// (Z′ ×X′ X)×X Y ∼= Z′ ×X′ Y ∼= (Z′ ×X′ Y
′)×Y′ Y.

This is an isomorphism provided (5) is cartesian; hence so is c× 1. By faithful

flatness of π it follows that c is an isomorphism. The reverse implication holds

trivially.

Corollary 2.2: Suppose X and Y are algebraic stacks, U → X and V → Y

are presentations and there is a 2-commutative diagram:

U //

��

V

��

X // Y

(6)

Then (6) is cartesian if and only if one - and hence both - of the commutative

diagrams (i = 1, 2)

U ×X U //

pri

��

V ×Y V

pri

��

U // V

(7)

is cartesian.

Proof. Follows from Lemma 2.1 since presentations are faithfully flat.

A presentation U → X yields a Hopf algebroid or cogroupoid object in commu-

tative rings (Γ(OU ),Γ(OU×XU )). Conversely, if (A,B) is a flat Hopf algebroid,

denote by [Spec(A)/Spec(B)] the associated algebraic stack. We note that

by [25, Theorem 8] there is an equivalence of 2-categories between flat Hopf

algebroids and presentations of algebraic stacks.

Let QcX denote the category of quasi-coherent OX-modules and A ∈ QcX

a monoid, or quasi-coherent sheaf of OX-algebras. If X0 is a scheme and
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π : X0 → X faithfully flat, then A is equivalent to the datum of the

OX0 -algebra A(X0) ≡ π∗A combined with a descent datum with respect to

X1 ≡ X0 ×X X0
//
// X0 . When X0 = Spec(A) is affine, X1 = Spec(Γ) is

affine, (A,Γ) a flat Hopf algebroid and A(X0) a Γ-comodule algebra.

Denote the adjunction between left A-modules in QcX and left A(X0)-modules

in QcX0
by:

π∗ : A−mod
// A(X0)−mod : π∗oo

Since π∗ has an exact left adjoint π∗ it preserves injectives and there are iso-

morphisms

ExtnA(M, π∗N ) ∼= ExtnA(X0)(π
∗M,N ) (8)

between Ext-groups in the categories of quasi-coherent left A- and A(X0)-

modules.

Now assume that i : U →֒ X is the inclusion of an open algebraic substack.

Then [25, Propositions 20, 22] imply i∗ : QcU →֒ QcX is an embedding of a

thick subcategory; see also [25, section 3.4] for a discussion of the functoriality

of QcX with respect to X. For F ,G ∈ QcU the Yoneda description of Ext-groups

gives isomorphisms

ExtnA(A⊗OX
i∗F ,A⊗OX

i∗G) ∼= Extni∗A(i∗A⊗OU F , i∗A⊗OU G). (9)

We shall make use of the following general result in the context in motivic

homotopy theory, cf. the proof of Theorem 9.7.

Proposition 2.3: Suppose there is a 2-commutative diagram of algebraic

stacks

X0

π

��

X

α
>>|||||||| f

//

πX

��

fX
!!B

BB
BB

BB
B Y

πY

��

fY
}}||

||
||

||

X

U
. �

iX

>>||||||||� � i // U ′
0 P

iY

aaBBBBBBBB

where X, Y , X0 are schemes, π, πX , πY faithfully flat, and iX , iY (hence also

i) open inclusions of algebraic substacks. If π∗Y πY,∗OY ∈ QcY is projective then

ExtnA(X0)(A(X0)⊗OX0
π∗fY,∗OY ,A(X0)⊗OX0

α∗OX)

∼=
{

0 n ≥ 1,

HomOY (π∗Y πY,∗OY ,A(Y )⊗OY f∗OX) n = 0.
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Proof. By (8) the group ExtnA(X0)(π
∗(A ⊗OX

fY,∗OY ),A(X0) ⊗OX0
α∗OX) is

isomorphic to ExtnA(A ⊗OX
fY,∗OY , π∗(π∗A ⊗OX0

α∗OX)), which the projec-

tion formula identifies with ExtnA(A⊗OX
iY,∗πY,∗OY ,A⊗OX

iY,∗i∗πX,∗OX). By

(9) the latter Ext-group is isomorphic to Extni∗YA(i∗YA ⊗OU′ πY,∗OY , i∗YA ⊗OU′
i∗πX,∗OX). Replacing i∗πX,∗OX by πY,∗f∗OX and applying (8) gives

an isomorphism to ExtnA(Y )(π
∗
Y (i∗YA ⊗OU′ πY,∗OY ),A(Y ) ⊗OY f∗OX) =

ExtnA(Y )(A(Y ) ⊗OY π∗Y πY,∗OY ,A(Y ) ⊗OY f∗OX). Now A(Y ) ⊗OY π∗Y πY,∗OY
is a projective left A(Y )-module by the assumption on π∗Y πY,∗OY . Hence the

Ext-term vanishes in every positive degree, while for n = 0, we get

HomA(Y )(A(Y )⊗OY π∗Y πY,∗OY ,A(Y )⊗OY f∗OX) ∼=
∼= HomOY (π∗Y πY,∗OY ,A(Y )⊗OY f∗OX).

3 Conventions

The category of graded objects in an additive tensor category A refers to

integer-graded objects subject to the Koszul sign rule x⊗ y = (−1)|x||y|y ⊗ x.

However, in the motivic setting, A will often have a supplementary graded

structure. The category of Adams graded objects in A refers to integer-graded

objects in A, but no sign rule for the tensor product is introduced as a conse-

quence of the Adams grading. It is helpful to think of the Adams grading as

being even. We will deal with graded abelian groups, Adams graded graded

abelian groups, or Z2-graded abelian groups with a sign rule in the first but

not in the second variable, and Adams graded abelian groups. For an Adams

graded graded abelian group A∗∗ we define Ai ≡ A2i,i and let A∗ denote the

corresponding Adams graded abelian group. It will be convenient to view

evenly graded MU∗-modules as being Adams graded, and implicitly divide the

grading by a factor of 2.

The smash product induces a closed symmetric monoidal structure on SH(S).

We denote the internal function spectrum from E to F by Hom(E,F) and the

tensor unit or sphere spectrum by 1. The Spanier-Whitehead dual of E is

by definition E∨ ≡ Hom(E,1). Note that E∗∗ with the usual indexing is an

Adams graded graded abelian group. Let Ei be short for E2i,i. When E is

a ring spectrum, i.e. a commutative monoid in SH(S), we implicitly assume

E∗∗ is a commutative monoid in Adams graded graded abelian groups. This

latter holds true for orientable ring spectra [16, Proposition 2.16] in view of

[24, Theorem 3.2.23].
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4 Homology and cohomology theories

An object F of SH(S) is called finite (another term is compact) if

HomSH(S)(F,−) respects sums. Using the 5-lemma one shows the subcate-

gory of finite objects SH(S)f of SH(S) is thick [14, Definition 1.4.3(a)]. For

a set R of objects in SH(S)f let SH(S)R,f denote the smallest thick triangu-

lated subcategory of SH(S)f containing R and SH(S)R the smallest localizing

subcategory of SH(S) containing R [14, Definition 1.4.3(b)]. The examples we

will deal with are the sets of mixed motivic spheres T , the set of (isomorphism

classes of) strongly dualizable objects D and the set SH(S)f .

Remark 4.1: According to [7, Remark 7.4] SH(S)T ⊆ SH(S) is the full sub-

category of cellular motivic spectra introduced in loc. cit.

Recall F ∈ SH(S) is strongly dualizable if for every G ∈ SH(S) the canonical

map

F∨ ∧ G // Hom(F,G)

is an isomorphism. A strongly dualizable object is finite since 1 is finite.

Lemma 4.2: SH(S)D,f is the full subcategory of SH(S)f of strongly dualizable

objects of SH(S).

Proof. Since D is stable under cofiber sequences and retracts, every object of

SH(S)D,f is strongly dualizable.

Lemma 4.3: SH(S)R,f is the full subcategory of compact objects of SH(S)R
and the latter is compactly generated.

Proof. Note SH(S)R is compactly generated since SH(S) is so [28, Theorem

2.1, 2.1.1]. If (−)c indicates a full subcategory of compact objects [28, Theorem

2.1, 2.1.3] implies

SH(S)cR = SH(S)R ∩ SH(S)c = SH(S)R ∩ SH(S)f .

Hence it suffices to show SH(S)R ∩ SH(S)f = SH(S)R,f . The inclusion “⊇”

is obvious and to prove “⊆” let R′ be the smallest set of objects closed under

suspension, retract and cofiber sequences containing R. Then R′ ⊆ SH(S)f

and

SH(S)R,f = SH(S)R′,f ⊆ SH(S)f ,SH(S)R = SH(S)R′ .

By applying [28, Theorem 2.1, 2.1.3] to R′ it follows that

SH(S)R ∩ SH(S)f = SH(S)R′ ∩ SH(S)f = R′ ⊆ SH(S)R′,f = SH(S)R,f .
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Corollary 4.4: If R ⊆ R′ are as above, the inclusion SH(S)R ⊆ SH(S)R′

has a right adjoint pR,R′ .

Proof. Since SH(S)R is compactly generated and the inclusion preserves sums

the claim follows from [28, Theorem 4.1].

Definition 4.5: The Tate projection is the functor

pSH(S)f ,T : SH(S) // SH(S)T .

Lemma 4.6: In the situation of Corollary 4.4, the right adjoint pR′,R preserves

sums.

Proof. Using [28, Theorem 5.1] it suffices to show that SH(S)R ⊆ SH(S)R′

preserves compact objects. Hence by Lemma 4.3 we are done provided

SH(S)R,f ⊆ SH(S)R′,f . Clearly this holds since R ⊆ R′.

Lemma 4.7: Suppose R as above contains T . Then

pR,T : SH(S)R // SH(S)T

is an SH(S)T -module functor.

Proof. Let ι : SH(S)T → SH(S)R be the inclusion and F ∈ SH(S)T , G ∈
SH(S)R. Then the counit of the adjunction between ι and pR,T yields the

canonical map

ι(F ∧ pR,T (G)) ∼= ι(F) ∧ ι(pR,T (G)) // ι(F) ∧ G,

adjoint to

F ∧ pR,T (G) // pR,T (ι(F) ∧ G). (10)

We claim (10) is an isomorphism for all F, G. In effect, the full subcate-

gory of SH(S)T generated by the objects F for which (10) is an isomorphism

for all G ∈ SH(S)R is easily seen to be localizing, and hence we may assume

F = Sp,q for p, q ∈ Z. The sphere Sp,q is invertible, so SH(S)T (−, pR,T (ι(Sp,q)∧
G)) ∼= SH(S)R(ι(−), Sp,q ∧ G) is isomorphic to SH(S)R(ι(−) ∧ S−p,−q,G) ∼=
SH(S)T (− ∧ S−p−q, pR,T (G)) ∼= SH(S)T (−, Sp,q ∧ pR,T (G)). This shows

pR,T (ι(Sp,q) ∧ G) and Sp,q ∧ pR,T (G) are isomorphic, as desired.

Remark 4.8: (i) For every G ∈ SH(S) the counit pR,T (G) → G, where ι

is omitted from the notation, is an π∗∗-isomorphism. Using pSH(S),T
rather than the cellular functor introduced in [7] refines Proposition 7.3

of loc. cit.
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(ii) If E ∈ SH(S)T and F ∈ SH(S) then Ep,q(F) ∼= Ep,q(pSH(S),T (F)) on

account of the isomorphisms between SH(S)(Sp,q,E ∧ F) and

SH(S)T (Sp,q, pSH(S),T (E ∧ F)) ∼= SH(S)T (Sp,q,E ∧ pSH(S),T (F)).

In [7] it is argued that most spectra should be non-cellular. On the other

hand, the E-homology of F agrees with the E-homology of some cellular

spectrum. We note that many conspicuous motivic (co)homology theories

are representable by cellular spectra: Landweber exact theories, including

algebraic cobordism and homotopy algebraic K-theory, and also motivic

(co)homology over fields of characteristic zero according to work of Hop-

kins and Morel.

Definition 4.9: A homology theory on a triangulated subcategory T of SH(S)

is a homological functor T → Ab which preserves sums. Dually, a cohomology

theory on T is a homological functor Top → Ab which takes sums to products.

Lemma 4.10: Suppose R ⊆ D is closed under duals. Then every homology

theory on SH(S)R,f extends uniquely to a homology theory on SH(S)R.

Proof. In view of Lemma 4.3 we can apply [14, Corollary 2.3.11] which we refer

to for a more detailed discussion.

Homology and cohomology theories on SH(S)D,f are interchangeable according

to the categorical duality equivalence SH(S)opD,f
∼= SH(S)D,f . The same holds

for every R for which SH(S)R,f is contained in SH(S)D,f and closed under

duality, e.g. SH(S)T ,f . We shall address the problem of representing homology

theories on SH(S) in Section 8. Cohomology theories are always defined on

SH(S)f unless specified to the contrary.

Definition 4.11: Let T ⊂ SH(S) be a triangulated subcategory closed under

the smash product. A multiplicative or ring (co)homology theory on T, always

understood to be commutative, is a (co)homology theory E on T together with

maps Z→ E(S0,0) and E(F)⊗E(G)→ E(F∧G) which are natural in F,G ∈ T.

These maps are subject to the usual unitality, associativity and commutativity

constraints [36, pg. 269].

Ring spectra in SH(S) give rise to ring homology and cohomology theories.

We shall use the following bigraded version of (co)homology theories.

Definition 4.12: Let T ⊂ SH(S) be a triangulated subcategory closed under

shifts by all mixed motivic spheres Sp,q. A bigraded homology theory on T is

a homological functor Φ from T to Adams graded graded abelian groups which
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preserves sums together with natural isomorphisms

Φ(X)p,q ∼= Φ(Σ1,0X)p+1,q

and

Φ(X)p,q ∼= Φ(Σ0,1X)p,q+1

such that the diagram

Φ(X)p,q //

��

Φ(Σ1,0X)p+1,q

��

Φ(Σ0,1X)p,q+1
// Φ(Σ1,1X)p+1,q+1

commutes for all p and q.

Bigraded cohomology theories are defined likewise.

We note there is an equivalence of categories between (co)homology theories

on T and bigraded (co)homology theories on T.

5 Tate objects and flat Hopf algebroids

Guided by stable homotopy theory, we wish to associate flat Hopf algebroids to

suitable motivic ring spectra. By a Hopf algebroid we shall mean a cogroupoid

object in the category of commutative rings over either abelian groups, Adams

graded abelian groups or Adams graded graded abelian groups. Throughout

this section E is a ring spectrum in SH(S)T . We call E∗∗ flat provided one -

and hence both - of the canonical maps E∗∗ → E∗∗E is flat, and similarly for

E∗ and E∗ → E∗E.

Lemma 5.1: (i) If E∗∗ is flat then for every motivic spectrum F the canonical

map

E∗∗E⊗E∗∗ E∗∗F // (E ∧ E ∧ F)∗∗

is an isomorphism.

(ii) If E∗ is flat and the canonical map E∗E⊗E∗E∗∗ → E∗∗E is an isomorphism,

then for every motivic spectrum F the canonical map

E∗E⊗E∗ E∗F // (E ∧ E ∧ F)∗

is an isomorphism.

Proof. (i): Using Lemma 4.7 we may assume that F is a Tate object. The

proof follows now along the same lines as in topology by first noting that the
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statement clearly holds when F is a mixed motivic sphere, and secondly that

we are comparing homology theories on SH(S)T which respect sums. (ii): The

two assumptions imply we may refer to (i). Hence there is an isomorphism

E∗∗E⊗E∗∗ E∗∗F // (E ∧ E ∧ F)∗∗.

By the second assumption the left hand side identifies with

(E∗E⊗E∗ E∗∗)⊗E∗∗ E∗∗F ∼= E∗E⊗E∗ E∗∗F.

Restricting to bidegrees which are multiples of (2, 1) yields the claimed isomor-

phism.

Corollary 5.2: (i) If E∗∗ is flat then (E∗∗,E∗∗E) is canonically a flat Hopf

algebroid in Adams graded graded abelian groups and for every F ∈ SH(S)

the module E∗∗F is an (E∗∗,E∗∗E)-comodule.

(ii) If E∗ is flat and the canonical map E∗E⊗E∗E∗∗ → E∗∗E is an isomorphism,

then (E∗,E∗E) is canonically a flat Hopf algebroid in Adams graded abelian

groups and for every F ∈ SH(S) the modules E∗∗F and E∗F are (E∗,E∗E)-

comodules.

The second part of Corollary 5.2 is really a statement about Hopf algebroids:

Lemma 5.3: Suppose (A∗∗,Γ∗∗) is a flat Hopf algebroid in Adams graded graded

abelian groups and the natural map Γ∗⊗A∗A∗∗ → Γ∗∗ is an isomorphism. Then

(A∗,Γ∗) has the natural structure of a flat Hopf algebroid in Adams graded

abelian groups, and for every comodule M∗∗ over (A∗∗,Γ∗∗) the modules M∗∗
and M∗ are (A∗,Γ∗)-comodules.

6 The stacks of topological and algebraic cobordism

6.1 The algebraic stack of MU

Denote by FG the moduli stack of one-dimensional commutative formal groups

[25]. It is algebraic and a presentation is given by the canonical map FGL→ FG,

where FGL is the moduli scheme of formal group laws. The stack FG has a

canonical line bundle ω, and [MU∗/MU∗MU] is equivalent to the corresponding

Gm-torsor FGs over FG.

6.2 The algebraic stack of MGL

In this section we first study the (co)homology of finite Grassmannians over

regular noetherian base schemes of finite Krull dimension. Using this compu-

tational input we relate the algebraic stacks of MU and MGL. A key result is
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the isomorphism

MGL∗∗MGL ∼= MGL∗∗ ⊗MU∗ MU∗MU.

When S is a field this can easily be extracted from [6, Theorem 5]. Since it

is crucial for the following, we will give a rather detailed argument for the

generalization.

We recall the notion of oriented motivic ring spectra formulated by Morel [23],

cf. [16], [29] and [38]: If E is a motivic ring spectrum, the unit map 1 → E

yields a class 1 ∈ E0,0(1) and hence by smashing with the projective line a class

c1 ∈ E2,1(P1). An orientation on E is a class c∞ ∈ E2,1(P∞) that restricts to

c1. Note that KGL and MGL are canonically oriented.

For 0 ≤ d ≤ n define the ring

Rn,d ≡ Z[x1, . . . , xn−d]/(sd+1, . . . , sn), (11)

where si is given by

1 +

∞∑

n=1

snt
n ≡ (1 + x1t+ x2t

2 + . . .+ xn−dt
n−d)−1 in Z[x1, . . . , xn−d][[t]]

×.

By assigning weight i to xi every sk ∈ Z[x1, . . . , xk] is homogeneous of degree

k. In (11), sj = sj(x1, . . . , xn−d, 0, . . .) by convention when d+ 1 ≤ i ≤ n.

We note that Rn,d is a free Z-module of rank
(
n
d

)
. For every sequence a =

(a1, . . . , ad) subject to the inequalities n− d ≥ a1 ≥ a2 ≥ . . . ≥ ad ≥ 0, set:

∆a ≡ det




xa1 xa1+1 . . . xa1+d−1

xa2−1 xa2 . . . xa2+d−2

. . . . . . . . . . . .

xad−d+1 . . . . . . xad




Here x0 ≡ 1 and xi ≡ 0 for i < 0 or i > n − d. The Schur polynomials {∆a}
form a basis for Rn,d as a Z-module. Let π : Rn+1,d+1 → Rn,d+1 be the unique

surjective ring homomorphism where π(xi) = xi for 1 ≤ i ≤ n − d − 1 and

π(xn−d) = 0. It is easy to see that π(∆a) = ∆a if a1 ≤ n−d−1 and π(∆a) = 0

for a1 = n− d. Hence the kernel of π is the principal ideal generated by xn−d.
That is,

ker(π) = xn−d · Rn+1,d+1.

Moreover, let ι : Rn,d → Rn+1,d+1 be the unique monomorphism of abelian

groups such that for every a, ι(∆a) = ∆a′ where a′ = (n − d, a) ≡ (n −
d, a1, . . . , ad). Clearly we get

im(ι) = ker(π). (12)
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Note that ι is a map of degree n − d. We will also need the unique ring

homomorphism f : Rn+1,d+1 → Rn,d = Rn+1,d+1/(sd+1) where f(xi) = xi for

all 1 ≤ i ≤ n− d. Elementary matrix manipulations establish the equalities

f(∆(a1,...,ad,0)) = ∆(a1,...,ad) (13)

and

ι(∆(a1,...,ad)) = xn−d ·∆(a1,...,ad,0). (14)

Next we discuss some geometric constructions involving Grassmannians.

For 0 ≤ d ≤ n, denote by Grn−d(An) the scheme parametrizing subvec-

tor bundles of rank n − d of the trivial rank n bundle such that the inclu-

sion of the subbundle is locally split. Similarly, G(n, d) denotes the scheme

parametrizing locally free quotients of rank d of the trivial bundle of rank n;

G(n, d) ∼= Grn−d(An) is smooth of relative dimension d(n− d). If

0 // Kn,d // On
G(n,d)

// Qn,d // 0 (15)

is the universal short exact sequence of vector bundles on G(n, d) and K′n,d
denotes the dual of Kn,d, then the tangent bundle

TG(n,d)
∼= Qn,d ⊗K′n,d. (16)

The map

i : G(n, d) ∼= Grn−d(An) � � // Grn−d(An+1) ∼= G(n+ 1, d+ 1)

classifying Kn,d ⊆ OnG(n,d) →֒ On+1
G(n,d) is a closed immersion. From (16) it

follows that the normal bundle N (i) of i identifies with Kn,d. Next consider

the composition on G(n+ 1, d+ 1)

α : On
G(n+1,d+1)

� � // On+1
G(n+1,d+1)

// Qn+1,d+1

for the inclusion into the first n factors. The complement of the support of

coker(α) is an open subscheme U ⊆ G(n + 1, d + 1) and there is a map π :

U → G(n, d + 1) classifying α|U . It is easy to see that π is an affine bundle of

dimension d, and hence

π is a motivic weak equivalence. (17)

An argument with geometric points reveals that U = G(n+1, d+1)ri(G(n, d)).

We summarize the above with the diagram

G(n, d) � � i // G(n+ 1, d+ 1) U?
_oo π // G(n, d+ 1). (18)
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With these precursors out of the way we are ready to compute the (co)homology

of finite Grassmannians with respect to any oriented motivic ring spectrum.

For every 0 ≤ d ≤ n there is a unique morphism of E∗∗-algebras ϕn,d : E∗∗ ⊗Z

Rn,d → E∗∗(G(n, d)) such that ϕn,d(xi) = ci(Kn,d) for 1 ≤ i ≤ n − d. This

follows from (15) and the standard calculus of Chern classes in E-cohomology.

Note that ϕn,d is bigraded if we assign degree (2i, i) to xi ∈ Rn,d.

Proposition 6.1: For 0 ≤ d ≤ n the map of E∗∗-algebras

ϕn,d : E∗∗ ⊗Z Rn,d // E∗∗(G(n, d))

is an isomorphism.

Proof. We observe that the result holds when d = 0 and d = n, since then

G(n, d) = S. By induction it suffices to show that if ϕn,d and ϕn,d+1 are

isomorphisms, then so is ϕn+1,d+1. To that end we contemplate the diagram:

E∗−2r,∗−r(G(n, d))
α // E∗∗(G(n+ 1, d+ 1))

β
// E∗∗(G(n, d+ 1))

(E∗∗ ⊗Z Rn,d)(−2r,−r)

ϕn,d(−2r,−r) ∼=

OO

1⊗ι
// E∗∗ ⊗Z Rn+1,d+1

ϕn+1,d+1

OO

1⊗π
// E∗∗ ⊗Z Rn,d+1

ϕn,d+1 ∼=

OO

(19)

Here r ≡ codim(i) = n−d and (−2r,−r) indicates a shift. The top row is part of

the long exact sequence in E-cohomology associated with (18) using the Thom

isomorphism E∗+2r,∗+r(Th(N (i))) ∼= E∗∗(G(n, d)) and the fact that E∗∗(U) ∼=
E∗∗(G(n, d + 1)) by (17). The lower sequence is short exact by (12). Since

Kn+1,d+1|U ∼= π∗(Kn,d+1) ⊕ OU we get β(ϕn+1,d+1(xi)) = β(ci(Kn+1,d+1)) =

ci(Kn+1,d+1|U ) = π∗(ci(Kn,d+1)) = ϕn,d+1(1 ⊗ π(xi)). Therefore, the right

hand square in (19) commutes, β is surjective and the top row in (19) is short

exact. Next we study the Gysin map α.

Since i∗(Kn+1,d+1) = Kn,d there is a cartesian square of projective bundles:

P(Kn,d ⊕O)
i′ //

p

��

P(Kn+1,d+1 ⊕O)

��

G(n, d)
i // G(n+ 1, d+ 1)

By the induction hypothesis ϕn,d is an isomorphism. Thus the projective bun-

dle theorem gives

E∗∗(P(Kn,d ⊕O)) ∼= (E∗∗ ⊗Z Rn,d)[x]/(xr+1 +
r∑

i=1

(−1)iϕn,d(xi)x
r+1−i),
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where x ≡ c1(OP(Kn,d⊕O)(1)) ∈ E2,1(P(Kn,d ⊕O)). Similarly,

E∗∗(P(Kn+1,d+1 ⊕O)) ∼=

∼= E∗∗(G(n+ 1, d+ 1))[x′]/(x′r+1 +

r∑

i=1

(−1)iϕn+1,d+1(x′i)x
′r+1−i),

where x′ ≡ c1(OP(Kn+1,d+1⊕O)(1)) and x′i = ci(Kn+1,d+1) ∈ Rn+1,d+1. (We

denote the canonical generators of Rn+1,d+1 by x′i in order to distinguish them

from xi ∈ Rn,d.) Recall the Thom class of Kn,d ∼= N (i) is constructed from

th ≡ cr(p
∗(Kn,d)⊗OP(Kn,d⊕O)(1)) =

= xr +

r∑

i=1

(−1)iϕn,d(xi)x
r−i ∈ E2r,r(P(Kn,d ⊕O)).

Using i′∗(x′) = x and i∗(ϕn+1,d+1(x′i)) = ϕn,d(xi) for 1 ≤ i ≤ r, we get that

t̃h ≡ x′r +

r∑

i=1

(−1)iϕn+1,d+1(x′i)x
′r−i ∈ E2r,r(P(Kn+1,d+1 ⊕O))

satisfies i
′∗(t̃h) = th, and if z : G(n+ 1, d+ 1)→ P(Kn+1,d+1 ⊕O) denotes the

zero-section, then

z∗(t̃h) = (−1)n−dϕn+1,d+1(x′n−d) ∈ E2(n−d),n−d(G(n+ 1, d+ 1)). (20)

Moreover, since i∗(Kn+1,d+1) = Kn,d we conclude

E∗∗(i) ◦ ϕn+1,d+1 = ϕn,d ◦ (1 ⊗ f). (21)

By inspection of the construction of the Thom isomorphism, it follows that

α ◦ E∗∗(i) equals multiplication by z∗(t̃h). (22)

And for every partition a as above,

α ◦ ϕn,d(∆a)
(13)
= α ◦ ϕn,d ◦ (1⊗ f)(∆(a,0))

(21)
= α ◦ E∗∗(i) ◦ ϕn+1,d+1(∆(a,0))

(22)
= z∗(t̃h) · ϕn+1,d+1(∆(a,0))

(20)
= ϕn+1,d+1((−1)n−dx′n−d ·∆(a,0))

(14)
= (−1)n−d · ϕn+1,d+1((1⊗ ι)(∆a)).

This verifies that the left hand square in (19) commutes up to a sign. Hence,

by the 5-lemma, ϕn+1,d+1 is an isomorphism.
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Since Σ∞+ G(n, d) ∈ SH(S) is dualizable and E is oriented we see that for all

0 ≤ d ≤ n the Kronecker product

E∗∗(G(n, d)) ⊗E∗∗ E∗∗(G(n, d)) // E∗∗ (23)

is a perfect pairing of finite free E∗∗-modules.

Proposition 6.2: (i) E∗∗(BGLd) = E∗∗[[c1, . . . , cd]] where ci ∈
E2i,i(BGLd) is the ith Chern class of the tautological rank d vector

bundle.

(ii) a) E∗∗(BGL) = E∗∗[[c1, c2, . . .]] where ci is the ith Chern class of the

universal bundle.

b) E∗∗(BGL) = E∗∗[β0, β1, . . .]/(β0 = 1) as E∗∗-algebras where βi ∈
E2i,i(BGL) is the image of the dual of ci1 ∈ E2i,i(BGL1).

(iii) There are Thom isomorphisms of E∗∗-modules

E∗∗(BGL)
∼= // E∗∗(MGL)

and E∗∗-algebras

E∗∗(MGL)
∼= // E∗∗(BGL).

Proof. Parts (i) and (ii)a) are clear from the above. From (23) we conclude

there are canonical isomorphisms

E∗∗(BGLd)
∼= // HomE∗∗(E∗∗(BGLd),E∗∗),

E∗∗(BGLd)
∼= // HomE∗∗,c(E

∗∗(BGLd),E∗∗).

The notation HomE∗∗,c refers to continuous E∗∗-linear maps with respect to the

inverse limit topology on E∗∗(BGLd) and the discrete topology on E∗∗. Using

this, the proofs of parts (ii)b) and (iii) carry over verbatim from topology.

Corollary 6.3: (i) The tuple (MGL∗∗,MGL∗∗MGL) is a flat Hopf algebroid

in Adams graded graded abelian groups. For every motivic spectrum F the

module MGL∗∗F is an (MGL∗∗,MGL∗∗MGL)-comodule.

(ii) By restriction of structure the tuple (MGL∗,MGL∗MGL) is a flat Hopf

algebroid in Adams graded abelian groups. For every motivic spectrum F

the modules MGL∗∗F and MGL∗F are (MGL∗,MGL∗MGL)-comodules.
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Proof. (i): We note MGL is a Tate object by [7, Theorem 6.4], Remark 4.1

and MGL∗∗ is flat by Proposition 6.2(iii) with E = MGL. Hence the state-

ment follows from Corollary 5.2(i). (ii): The bidegrees of the generators βi in

Proposition 6.2 are multiples of (2, 1). This implies the assumptions in Corol-

lary 5.1(ii) hold, and the statement follows.

The flat Hopf algebroid (MGL∗,MGL∗MGL) gives rise to the algebraic stack

[MGL∗/MGL∗MGL].

Although the grading is not required for the definition, it defines a Gm-action on

the stack and we may therefore form the quotient stack [MGL∗/MGL∗MGL]/Gm.

For F ∈ SH(S), let F(F) be the Gm-equivariant quasi-coherent sheaf on

[MGL∗/MGL∗MGL] associated with the comodule structure on MGL∗F furnished

by Corollary 6.3(ii). Denote by F/Gm(F) the descended quasi-coherent sheaf

on [MGL∗/MGL∗MGL]/Gm.

Lemma 6.4: (i)

MGL∗∗MGL ∼= MGL∗∗ ⊗MU∗ MU∗MU ∼= MGL∗∗[b0, b1, . . .]/(b0 = 1).

(ii) Let x, x′ be the images of the orientation on MGL with respect to the

two natural maps MGL∗ → MGL∗MGL. Then x′ =
∑
i≥0 bix

i+1 (where

b0 = 1).

Proof. Here bi is the image under the Thom isomorphism of βi in Proposition

6.2. Part (i) follows by comparing the familiar computation of MU∗MU with

our computation of MGL∗∗MGL. For part (ii), the computations leading up to

[1, Corollary 6.8] carry over to the algebraic cobordism spectrum.

6.3 Formal groups and stacks

A graded formal group over an evenly graded ring A∗ or more generally over

an algebraic Gm-stack is a group object in formal schemes over the base with

a compatible Gm-action such that locally in the Zariski topology it looks like

Spf(R∗[[x]]), as a formal scheme with Gm-action, where x has weight −1. (Note

that every algebraic Gm-stack can be covered by affine Gm-stacks.) This is

equivalent to demanding that x has weight 0 (or any other fixed weight) by

looking at the base change R→ R[y, y−1], y of weight 1. A strict graded formal

group is a graded formal group together with a trivialization of the line bundle

of invariant vector fields with the trivial line bundle of weight 1. The strict

graded formal group associated with the formal group law over MU∗ inherits a

coaction of MU∗MU compatible with the grading and the trivialization; thus,
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it descends to a strict graded formal group over FGs. As a stack, FGs is the

moduli stack of formal groups with a trivialization of the line bundle of invariant

vector fields, while as a Gm-stack it is the moduli stack of strict graded formal

groups. It follows that FG (with trivial Gm-action) is the moduli stack of

graded formal groups. For a Gm-stack X the space of Gm-maps to FG is the

space of maps from the stack quotient X/Gm to FG. Hence a graded formal

group is tantamount to a formal group over X/Gm.

An orientable theory gives rise to a strict graded formal group over the coeffi-

cients:

Lemma 6.5: If E ∈ SH(S) is an oriented ring spectrum satisfying the as-

sumptions in Corollary 5.2(ii) then the corresponding strict graded formal

group over E∗ inherits a compatible E∗E-coaction and there is a descended

strict graded formal group over the stack [E∗/E∗E]. In particular, the flat

Hopf algebroid (MGL∗,MGL∗MGL) acquires a well defined strict graded formal

group, [MGL∗/MGL∗MGL] a strict graded formal group and the quotient stack

[MGL∗/MGL∗MGL]/Gm a formal group.

Proof. Functoriality of E∗(F) in E and F ensures the formal group over E∗
inherits an E∗E-coaction. For example, compatibility with the comultiplication

of the formal group amounts to commutativity of the diagram:

(E ∧ E)∗(P∞) //

��

(E ∧ E ∧ E)∗(P∞)

��

(E ∧ E)∗(P∞ × P∞) // (E ∧ E ∧ E)∗(P∞ × P∞)

All maps respect gradings, so there is a graded formal group over the Hopf

algebroid. Different orientations yield formal group laws which differ by a

strict isomorphism, so there is an enhanced strict graded formal group over

the Hopf algebroid. It induces a strict graded formal group over the Gm-stack

[MGL∗/MGL∗MGL] and quotienting out by the Gm-action yields a formal group

over the quotient stack.

For oriented motivic ring spectra E and F, denote by ϕ(E,F) the strict isomor-

phism of formal group laws over (E ∧ F)∗ from the pushforward of the formal

group law over E∗ to the one of the formal group law over F∗ given by the

orientations on E ∧ F induced by E and F.

Lemma 6.6: Suppose E,F,G are oriented spectra and let p : (E ∧ F)∗ → (E ∧
F ∧ G)∗, q : (F ∧ G)∗ → (E ∧ F ∧ G)∗ and r : (E ∧ G)∗ → (E ∧ F ∧ G)∗ denote the

natural maps. Then r∗ϕ(E,G) = p∗ϕ(E,F) ◦ q∗ϕ(F,G).
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Corollary 6.7: If E ∈ SH(S) is an oriented ring spectrum and satis-

fies the assumptions in Corollary 5.2(i), there is a map of Hopf algebroids

(MU∗,MU∗MU)→ (E∗∗,E∗∗E) such that MU∗ → E∗∗ classifies the formal group

law on E∗∗ and MU∗MU → E∗∗E the strict isomorphism ϕ(E,E). If E satis-

fies the assumptions in Corollary 5.2(ii) then this map factors through a map

of Hopf algebroids (MU∗,MU∗MU) → (E∗,E∗E). The induced map of stacks

classifies the strict graded formal group on [E∗/E∗E].

6.4 A map of stacks

Corollary 6.7 and the orientation of MGL furnish a map of flat Hopf algebroids

(MU∗,MU∗MU) // (MGL∗,MGL∗MGL)

such that the induced map of Gm-stacks [MGL∗/MGL∗MGL] → FGs classi-

fies the strict graded formal group on [MGL∗/MGL∗MGL]. Thus there is a

2-commutative diagram:

Spec(MGL∗) //

��

Spec(MU∗)

��

[MGL∗/MGL∗MGL] // FGs

(24)

Quotienting out by the Gm-action yields a map of stacks

[MGL∗/MGL∗MGL]/Gm → FG which classifies the formal group on

[MGL∗/MGL∗MGL]/Gm.

Proposition 6.8: The diagram (24) is cartesian.

Proof. Combine Corollary 2.2 and Lemma 6.4. Part (ii) of the lemma

is needed to ensure that the left and right units of (MU∗,MU∗MU) and

(MGL∗,MGL∗MGL) are suitably compatible.

Corollary 6.9: The diagram

Spec(MGL∗) //

��

Spec(MU∗)

��

[MGL∗/MGL∗MGL]/Gm
// FG

is cartesian.
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7 Landweber exact theories

Recall the Lazard ring L is isomorphic to MU∗. For a prime p we fix a regular

sequence

v
(p)
0 = p, v

(p)
1 , . . . ∈ MU∗

where v
(p)
n has degree 2(pn−1) as explained in the introduction. An (ungraded)

L-module M is Landweber exact if (v
(p)
0 , v

(p)
1 , . . .) is a regular sequence on M

for every p. An Adams graded MU∗-module M∗ is Landweber exact if the

underlying ungraded module is Landweber exact as an L-module [15, Definition

2.6]. In stacks this translates as follows: An L-module M gives rise to a quasi-

coherent sheaf M∼ on Spec(L) and M is Landweber exact if and only if M∼ is

flat over FG with respect to Spec(L)→ FG, see [25, Proposition 7].

Lemma 7.1: Let M∗ be an Adams graded MU∗-module and M∼∗ the associated

quasi-coherent sheaf on Spec(MU∗). Then M∗ is Landweber exact if and only

if M∼∗ is flat over FGs with respect to Spec(MU∗)→ FGs.

Proof. We need to prove the “only if” implication. Assume M∗ is Landwe-

ber exact so that M∼ has a compatible Gm-action. Let q : Spec(MU∗) →
[Spec(MU∗)]/Gm denote the quotient map and N∼∗ the descended quasi-

coherent sheaf of M∼∗ on [Spec(MU∗)/Gm]. There is a canonical map N∼∗ →
q∗M∼∗ , which is the inclusion of the weight zero part of the Gm-action. By

assumption, M∼∗ is flat over FG, i.e. q∗M∼∗ is flat over FG. Since N∼∗ is a direct

summand of q∗M∼∗ it is flat over FG. Hence M∼∗ is flat over FGs since there is

a cartesian diagram:

Spec(MU∗) //

��

FGs

��

[Spec(MU∗)]/Gm
// FG

Remark 7.2: Lemma 7.1 does not hold for (ungraded) L-modules: The map

Spec(Z)→ FGs classifying the strict formal multiplicative group over the inte-

gers is not flat, whereas the corresponding L-module Z is Landweber exact.

In the following statements we view Adams graded abelian groups as Adams

graded graded abelian groups via the line Z(2, 1). For example an MU∗-module

structure on an Adams graded graded abelian group M∗∗ is an MU∗-module in

this way. In particular, MGL∗∗F is an MU∗-module for every motivic spectrum

F.
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Theorem 7.3: Suppose A∗ is a Landweber exact MU∗-algebra, i.e. there is

a map of commutative algebras MU∗ → A∗ in Adams graded abelian groups

such that A∗ viewed as an MU∗-module is Landweber exact. Then the functor

MGL∗∗(−)⊗MU∗ A∗ is a bigraded ring homology theory on SH(S).

Proof. By Corollary 6.8 there is a projection p from

Spec(A∗)×FGs [MGL∗/MGL∗MGL] ∼= Spec(A∗)×Spec(MU∗) Spec(MGL∗)

to [MGL∗/MGL∗MGL] such that

MGL∗F⊗MU∗ A∗ ∼= Γ(Spec(A∗)×FGs [MGL∗/MGL∗MGL], p∗F(F)). (25)

(This is an isomorphism of Adams graded abelian groups, but we won’t

use that fact.) The assignment F 7→ F(F) is a homological functor since

F 7→ MGL∗F is a homological functor, and p is flat since it is the pullback of

Spec(A∗) → FGs which is flat by Lemma 7.1. Thus p∗ is exact. Taking global

sections over an affine scheme is an exact functor [37, Corollary 4.23]. There-

fore, F 7→ Γ(Spec(A∗)×FGs [MGL∗/MGL∗MGL], p∗F(F)) is a homological functor

on SH(S), so that by (25) F 7→ MGL∗F⊗MU∗ A∗ is a homological functor with

values in Adams graded abelian groups. It follows that F 7→ (MGL∗F⊗MU∗A∗)0,

the degree zero part in the Adams graded abelian group, is a homological func-

tor, and it preserves sums. Hence it is a homology theory on SH(S). The

associated bigraded homology theory is clearly the one formulated in the the-

orem. Finally, the ring structure is induced by the ring structures on the

homology theory represented by MGL and on A∗.

We note the proof works using F/Gm(F) instead of F(F); this makes the refer-

ence to Lemma 7.1 superfluous since neglecting the grading does not affect the

proof.

Corollary 7.4: The functor MGL∗∗(−)⊗MU∗ A∗ is a ring cohomology theory

on strongly dualizable motivic spectra.

Proof. Applying the functor in Theorem 7.3 to the Spanier-Whitehead duals

of strongly dualizable motivic spectra yields the cohomology theory on display.

Its ring structure is induced by the ring structure on A∗.

Proposition 7.5: The maps [MGL∗/MGL∗MGL] → FGs and

[MGL∗/MGL∗MGL]/Gm → FG are affine.

Proof. Use Proposition 6.8, Corollary 6.9 and the fact that being an affine

morphism can be tested after faithfully flat base change.
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Remark 7.6: We may formulate the above reasoning in more sheaf theo-

retic terms: Namely, denoting by i : [MGL∗/MGL∗MGL] → FGs the canon-

ical map, the Landweber exact theory is given by taking sections of i∗F(F)

over Spec(A∗) → FGs. It is a homology theory by Proposition 7.5 since

Spec(A∗)→ FGs is flat.

Next we give the versions of the above theorems for MU∗-modules.

Proposition 7.7: Suppose M∗ is an Adams graded Landweber exact MU∗-
module. Then MGL∗∗(−) ⊗MU∗ M∗ is a homology theory on SH(S) and

MGL∗∗(−)⊗MU∗ M∗ a cohomology theory on strongly dualizable spectra.

Proof. The map i : [MGL∗/MGL∗MGL]→ FGs is affine according to Proposition

7.5. With p : Spec(MU∗) → FGs the canonical map, the first functor in the

proposition is given by

F
� // Γ(Spec(MU∗),M∗ ⊗MU∗ p

∗i∗F(F)),

which is exact by assumption.

The second statement is proven by taking Spanier-Whitehead duals.

A Landweber exact theory refers to a homology or cohomology theory con-

structed as in Proposition 7.7. There are periodic versions of the previous

results:

Proposition 7.8: Suppose M is a Landweber exact L-module. Then

MGL∗(−) ⊗L M is a (2, 1)-periodic homology theory on SH(S) with values in

ungraded abelian groups. The same statement holds for cohomology of strongly

dualizable objects. These are ring theories if M is a commutative L-algebra.

Next we formulate the corresponding results for (highly structured) MGL-

modules. In stable homotopy theory this viewpoint is emphasized in [20] and

it plays an important role in this paper, cf. Section 9.

Proposition 7.9: Suppose M∗ is a Landweber exact Adams graded MU∗-
module. Then F 7→ F∗∗ ⊗MU∗ M∗ is a bigraded homology theory on the derived

category DMGL of MGL-modules.

Proof. The proof proceeds along a now familiar route. What follows reviews the

main steps. We wish to construct a homological functor from DMGL to quasi-

coherent sheaves on [MGL∗/MGL∗MGL]. Our first claim is that for every F ∈
DMGL the Adams graded MGL∗-module F∗ is an (MGL∗,MGL∗MGL)-comodule.

As in Lemma 5.1,

MGL∗∗MGL⊗MGL∗∗ F∗∗ // (MGL ∧ F)∗∗
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is an isomorphism restricting to an isomorphism

MGL∗MGL⊗MGL∗ F∗ // (MGL ∧ F)∗.

This is proven by first observing that it holds for “spheres” Σp,qMGL, and sec-

ondly that both sides are homological functors which commute with sums. This

establishes the required comodule structure. Next, the proof of Proposition 7.7

using flatness of M∗ viewed as a quasi-coherent sheaf on [MGL∗/MGL∗MGL]

shows the functor in question is a homology theory. The remaining parts are

clear.

Remark 7.10: We leave the straightforward formulations of the cohomology,

algebra and periodic versions of Proposition 7.9 to the reader.

8 Representability and base change

Here we deal with the question when a motivic (co)homology theory is repre-

sentable. Let R be a subset of SH(S)f such that SH(S)R,f consists of strongly

dualizable objects, is closed under smash products and duals and contains the

unit.

First, recall the notions of unital algebraic stable homotopy categories and

Brown categories from [14, Definition 1.1.4 and next paragraph]: A stable ho-

motopy category is a triangulated category equipped with sums, a compatible

closed tensor product, a set G of strongly dualizable objects generating the

triangulated category as a localizing subcategory, and such that every cohomo-

logical functor is representable. It is unital algebraic if the tensor unit is finite

(thus the objects of G are finite) and a Brown category if homology functors

and natural transformations between them are representable.

A map between objects in a stable homotopy category is phantom if the induced

map between the corresponding cohomology functors on the full subcategory

of finite objects is the zero map. In case the category is unital algebraic this

holds if and only if the map between the induced homology theories is the zero

map.

Lemma 8.1: The category SH(S)R is a unital algebraic stable homotopy cat-

egory. The set G can be chosen to be (representatives of) the objects of

SH(S)R,f .

Proof. This is an immediate application of [14, Theorem 9.1.1].

Remark 8.2: If S = Spec(k) for a field k admitting resolutions of singularities,

then SH(S) itself is unital algebraic, essentially because every smooth k-scheme

is strongly dualizable in SH(S), cf. [31, Theorem 52]. For S the spectrum of
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a discrete valuation ring R with quotient field K, U+ := Spec(K)+ ∈ SH(S)

is compact but not strongly dualizable, hence by [14, Theorem 2.1.3,d)] SH(S)

is not unital algebraic. We sketch a proof of the fact that U+ is not dual-

izable which arose in discussion with J. Riou: Assume U+ was dualizable,

and consider the trace of its identity, an element of π0,0(1R) which restricts

to 1 ∈ π0,0(1K) and to 0 ∈ π0,0(1κ) (κ the residue field of R). To obtain

a contradiction, it would thus suffice to know that π0,0(1R) is simple, which

seems plausible but is open to the authors’ knowledge. However, it suffices to

construct a tensor-functor SH(S) → D (a “realization”) such that the corre-

sponding statements hold in D. Taking for D the category of LQ-modules (cf.

Section 10) is easily seen to work.

Lemma 8.3: Suppose S is covered by Zariski spectra of countable rings. Then

SH(S)R is a Brown category and the category of homology functors on SH(S)R
is naturally equivalent to SH(S)R modulo phantom maps.

Proof. The first part follows by combining [14, Theorem 4.1.5] and [39, Propo-

sition 5.5], [26, Theorem 1] and the second part by the definition of a Brown

category.

Suppose R,R′ are as above and SH(S)R,f ⊂ SH(S)R′,f . Then a cohomology

theory on SH(S)R′,f represented by F restricts to a cohomology theory on

SH(S)R,f represented by pR′,R(F). For Landweber exact theories the following

holds:

Proposition 8.4: Suppose a Landweber exact homology theory restricted to

SH(S)T ,f is represented by a Tate spectrum E. Then E represents the theory

on SH(S).

Proof. Let M∗ be a Landweber exact Adams graded MU∗-module affording the

homology theory under consideration. By assumption there is an isomorphism

on SH(S)T ,f
E∗∗(−) ∼= MGL∗∗(−)⊗MU∗ M∗.

By Lemma 4.10 the isomorphism extends to SH(S)T . Since MGL is cellular, an

argument as in Remark 4.8 shows that both sides of the isomorphism remain

unchanged when replacing a motivic spectrum by its Tate projection.

Next we consider a map f : S′ → S of base schemes. The derived functor Lf∗,
see [30, Proposition A.7.4], sends the class of compact generators Σp,qΣ∞X+

of SH(S) - X a smooth S-scheme - to compact objects of SH(S′). Hence

[28, Theorem 5.1] implies Rf∗ preserves sums, and the same result shows Lf∗
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preserves compact objects in general. A modification of the proof of Lemma

4.7 shows Rf∗ is an SH(S)T -module functor, i.e. there is an isomorphism

Rf∗(F
′ ∧ Lf∗G) ∼= Rf∗(F

′) ∧ G (26)

in SH(S), which is natural in F′ ∈ SH(S′), G ∈ SH(S)T .

Proposition 8.5: Suppose a Landweber exact homology theory over S deter-

mined by the Adams graded MU∗-module M∗ is representable by E ∈ SH(S)T .

Then Lf∗E ∈ SH(S′)T represents the Landweber exact homology theory over

S′ determined by M∗.

Proof. For an object F′ of SH(S′), adjointness, the assumption on E and (26)

imply (Lf∗E)∗∗(F′) = π∗∗(F′ ∧ Lf∗E) is isomorphic to

π∗∗(Rf∗(F
′ ∧ Lf∗E)) ∼= π∗∗(Rf∗F

′ ∧ E) ∼= π∗∗(MGL ∧Rf∗F
′)⊗MU∗ M∗.

Again by adjointness and (26) there is an isomorphism with

π∗∗(MGLS′ ∧ F′)⊗MU∗ M∗ = MGLS′,∗∗F
′ ⊗MU∗ M∗.

In the next lemma we show the pullback from Proposition 8.5 respects mul-

tiplicative structures. In general one cannot expect that ring structures on

the homology theory lift to commutative monoid structures on representing

spectra. Instead we will consider quasi-multiplications on spectra, by which

we mean maps E ∧ E→ E rendering the relevant diagrams commutative up to

phantom maps.

Lemma 8.6: Suppose a Landweber exact homology theory afforded by the Adams

graded MU∗-algebra A∗ is represented by a Tate object E ∈ SH(S)T with quasi-

multiplication m : E ∧ E → E. Then Lf∗m : Lf∗E ∧ Lf∗E → Lf∗E is a quasi-

multiplication and represents the ring structure on the Landweber exact homol-

ogy theory determined by A∗ over S′.

Proof. Let φ : F1∧F2 → F3 be a map in SH(S)T . Let F′i be the base change of Fi

to S′. If F′,G′ ∈ SH(S′) there are isomorphisms F′i,∗∗F
′ ∼= Fi,∗∗Rf∗F′ employed

in the proof of Proposition 8.5, and likewise for G′. These isomorphisms are
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compatible with φ in the sense provided by the commutative diagram:

F′1,∗∗F
′ ⊗ F′2,∗∗G

′ // F′3,∗∗(F
′ ∧ G′)

F3,∗∗(Rf∗(F′ ∧ G′))

∼=

OO

F1,∗∗Rf∗F′ ⊗ F2,∗∗Rf∗G′

∼=

OO

// F3,∗∗(Rf∗F′ ∧Rf∗G′)

OO

Applying the above to the quasi-multiplication m implies Lf∗m represents

the ring structure on the Landweber theory over S′. Hence Lf∗m is a quasi-

multiplication since the commutative diagrams exist for the homology theories,

i.e. up to phantom maps.

We are ready to prove the motivic analog of Landweber’s exact functor theorem.

Theorem 8.7: Suppose M∗ is an Adams graded Landweber exact MU∗-module.

Then there exists a Tate object E ∈ SH(S)T and an isomorphism of homology

theories on SH(S)

E∗∗(−) ∼= MGL∗∗(−)⊗MU∗ M∗.

In addition, if M∗ is a graded MU∗-algebra, then E acquires a quasi-

multiplication which represents the ring structure on the Landweber exact the-

ory.

Proof. First, let S = Spec(Z). By Landweber exactness, see Proposition

7.7, the right hand side of the claimed isomorphism is a homology theory on

SH(Z). Its restriction to SH(Z)T ,f is represented by some E ∈ SH(Z)T since

SH(Z)T is a Brown category by Lemma 8.3. We may conclude in this case

using Proposition 8.4. The general case follows from Proposition 8.5 since

Lf∗(SH(Z)T ) ⊆ SH(S)T for f : S → Spec(Z).

Now assume M∗ is a graded MU∗-algebra. We claim that the representing

spectrum E ∈ SH(Z)T has a quasi-multiplication representing the ring struc-

ture on the Landweber theory: The corresponding ring cohomology theory on

SH(Z)T ,f can be extended to ind-representable presheaves on SH(Z)T ,f . Eval-

uating E(F)⊗E(G)→ E(F∧G) with F = G the ind-representable presheaf given

by E on idE⊗ idE gives a map (E∧E)0(−)→ E0(−) of homology theories. Since

SH(Z)T is a Brown category this map lifts to a map E∧E→ E of spectra which

is a quasi-multiplication since it represents the multiplication of the underlying

homology theory. The general case follows from Lemma 8.6.
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Remark 8.8: A complex point Spec(C) → S induces a sum preserving

SH(S)T -module realization functor r : SH(S) → SH to the stable homotopy

category. By the proof of Proposition 8.5 it follows that the topological real-

ization of a Landweber exact theory is the corresponding topological Landweber

exact theory, as one would expect.

Proposition 8.9: Suppose M∗ is an Adams graded Landweber exact MU∗-
module. Then there exists an MGL-module E and an isomorphism of homology

theories on DMGL

(E ∧MGL −)∗∗ ∼= (−)∗∗ ⊗MU∗ M∗.

In addition, if M∗ is a graded MU∗-algebra then E acquires a quasi-

multiplication in DMGL which represents the ring structure on the Landweber

exact theory.

Proof. We indicate a proof. By Proposition 7.9 it suffices to show that the

homology theory given by the right hand side of the isomorphism is repre-

sentable. When the base scheme is Spec(Z) we claim that DMGL,T is a Brown

category. In effect, SH(S)f is countable, cf. [39, Proposition 5.5], [26, Theorem

1], and MGL is a countable direct homotopy limit of finite spectra, so it fol-

lows that DMGL,T ,f is also countable. The conclusion that DMGL,T be a Brown

category follows now from [14, Theorem 4.1.5]. Thus there exists an object

of DMGL,T representing the Landweber exact theory over Spec(Z). Now let

f : S → Spec(Z) be the unique map and Lf∗MGL : DMGLZ
→ DMGLS the pullback

functor between MGL-modules. It has a right adjoint RfMGL,∗. As prior to

Proposition 8.5, we conclude RfMGL,∗ preserves sums and is a DMGLZ,T -module

functor. The proof of Proposition 8.5 shows Lf∗MGL represents the Landweber

theory over S.

By inferring the analog of Lemma 8.6 our claim about the quasi-multiplication

is proven along the lines of the corresponding statement in Theorem 8.7.

9 Operations and cooperations

Let A∗ be a Landweber exact Adams graded MU∗-algebra and E a motivic spec-

trum with a quasi-multiplication which represents the corresponding Landwe-

ber exact theory. Denote by ETop the ring spectrum representing the corre-

sponding topological Landweber exact theory. Then E
Top
∗ ∼= A∗, ETop is a

commutative monoid in the stable homotopy category and there are no even

degree nontrivial phantom maps between such topological spectra [15, Section

2.1].

Proposition 9.1: In the above situation the following hold.
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(i) E∗∗E ∼= E∗∗ ⊗E
Top
∗

E
Top
∗ ETop.

(ii) E satisfies the assumption of Corollary 5.2(ii).

(iii) The flat Hopf algebroid (E∗∗,E∗∗E) is induced from (MGL∗∗,MGL∗∗MGL)

via the map MGL∗∗ → MGL∗∗ ⊗MU∗ A∗ ∼= E∗∗.

Proof. The isomorphism E∗∗F ∼= MGL∗∗F⊗MU∗ A∗ can be recast as

E∗∗F ∼= MGL∗∗F⊗MGL∗ MGL∗ ⊗MU∗ ETop
∗ ∼= MGL∗∗F⊗MGL∗ E∗

and

E∗∗F ∼= MGL∗∗F⊗MGL∗∗ MGL∗∗ ⊗MU∗ ETop
∗ ∼= MGL∗∗F⊗MGL∗∗ E∗∗.

In particular, E∗∗E ∼= MGL∗∗E⊗MGL∗∗ E∗∗ ∼= E∗∗MGL⊗MGL∗∗ E∗∗ is isomorphic

to

(MGL∗∗MGL⊗MGL∗∗E∗∗)⊗MGL∗∗E∗∗ ∼= E∗∗⊗MGL∗∗MGL∗∗MGL⊗MGL∗∗E∗∗. (27)

Moreover, since MGL∗∗MGL ∼= MGL∗∗ ⊗MU∗ MU∗MU,

ETop
∗ ⊗MU∗ MGL∗∗MGL⊗MU∗ ETop

∗ ∼= ETop
∗ ⊗MU∗ MGL∗∗⊗MU∗ MU∗MU⊗MU∗ ETop

∗

is isomorphic to

MGL∗∗ ⊗MU∗ ETop
∗ ETop ∼= MGL∗∗ ⊗MU∗ ETop

∗ ⊗
E

Top
∗

ETop
∗ ETop ∼= E∗∗ ⊗E

Top
∗

ETop
∗ ETop.

This proves the first part of the proposition. In particular,

E∗E ∼= E∗ ⊗E
Top
∗

ETop
∗ ETop (28)

and

E∗∗E ∼= E∗∗ ⊗E∗ E∗E. (29)

We note that E
Top
∗ ETop is flat over E

Top
∗ by the topological analog of (27) (this

equation shows Spec(ETop
∗ ETop) = Spec(ETop

∗ ) ×FGs Spec(ETop
∗ )). Hence by (28)

E∗E is flat over E∗. Together with (29) this is Part (ii) of the proposition. Part

(iii) follows from (27).

Remark 9.2: Let ETop and FTop be evenly graded topological Landweber exact

spectra, E and F the corresponding motivic spectra. Then E ∧ F is Landweber

exact corresponding to the MU∗-module (ETop∧FTop)∗ (with either MU∗-module

structure).

Theorem 9.3: (i) The map afforded by the Kronecker product

KGL∗∗KGL // HomKGL∗∗(KGL∗∗KGL,KGL∗∗)

is an isomorphism of KGL∗∗-algebras.
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(ii) With the completed tensor product there is an isomorphism of KGL∗∗-
algebras

KGL∗∗KGL ∼= KGL∗∗⊗̂KU∗KU∗KU

Item (i) and the module part of (ii) generalize to KGL∗∗(KGL∧j) for j > 1.

Proof. Recall KU∗KU is free over KU∗ [2] and KGL is the Landweber theory

determined by the MU∗-algebra MU∗ → Z[β, β−1] which classifies the multi-

plicative formal group law x+y−βxy over Z[β, β−1] with |β| = 2 [35, Theorem

1.2]. The corresponding topological Landweber exact theory is KU by the

Conner-Floyd theorem. Thus by Proposition 9.1 (i) KGL∗∗KGL is free over

KGL∗∗. Moreover, KGL has the structure of an E∞-motivic ring spectrum,

see [9], [35], so the Universal coefficient spectral sequence in [7, Proposition

7.7] can be applied to the KGL-modules KGL ∧ KGL and KGL; it converges

conditionally [5], [21], and with abutment Hom∗∗KGL−mod(KGL ∧ KGL,KGL) =

Hom∗∗SH(S)(KGL,KGL). But the spectral sequence degenerates since KGL∗∗KGL

is a free KGL∗∗-module. Hence items (i) and (ii) hold for j = 1.

The more general statement is proved along the same lines by noting the iso-

morphism

ETop
∗ ((ETop)∧j) ∼= ETop

∗ ETop ⊗
E

Top
∗
· · · ⊗

E
Top
∗

ETop
∗ ETop,

and similarly for the Adams graded and Adams graded graded motivic versions.

In stable homotopy theory there is a universal coefficient spectral sequence for

every Landweber exact ring theory [15, Proposition 2.21]. It appears there is no

direct motivic analog: While there is a reasonable notion of evenly generated

motivic spectrum as in [15, Definition 2.10] and one can show that a motivic

spectrum representing a Landweber exact theory is evenly generated as in [15,

Proposition 2.12], this does not have as strong consequences as in topology

because the coefficient ring MGL∗ is not concentrated in even degrees as MU∗,
but see Theorem 9.7 below. We aim to extend the above results on homotopy

algebraic K-theory to more general Landweber exact motivic spectra.

Proposition 9.4: Suppose M is a Tate object and E an MGL-module. Then

there is a trigraded conditionally convergent right half-plane cohomological spec-

tral sequence

E
a,(p,q)
2 = Ext

a,(p,q)
MGL∗∗

(MGL∗∗M,E∗∗)⇒ Ea+p,qM.

Proof. MGL ∧M is a cellular MGL-module so this follows from [7, Proposition

7.10].
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The differentials in the spectral sequence go

dr : E
a,(p,q)
r

//
E
a+r,(p−r+1,q)
r .

Theorem 9.5: Suppose M∗ is a Landweber exact graded MU∗-module concen-

trated in even degrees and M ∈ SH(S)T represents the corresponding motivic

cohomology theory. Then for p, q ∈ Z and N an MGL-module spectrum there is

a short exact sequence

0→ Ext
1,(p−1,q)
MGL∗∗

(MGL∗∗M,N∗∗)→ Np,qM
π−→Hom

p,q
MGL∗∗

(MGL∗∗M,N∗∗)→ 0.

Proof. Let MTop be the topological spectrum associated with M∗. Then

MU∗MTop is a flat MU∗-module of projective dimension at most one, see [15,

Propositions 2.12, 2.16]. Hence MGL∗∗M = MGL∗∗⊗MU∗ MU∗MTop is a MGL∗∗-
module of projective dimension at most one and consequently the spectral

sequence of Proposition 9.4 degenerates at its E2-page. This implies the de-

rived lim1-term lim1 E∗∗∗r of the spectral sequence is zero; hence it converges

strongly. The assertion follows because Ep,∗∗∞ = 0 for all p 6= 0, 1.

Remark 9.6: (i) For p, q ∈ Z, the group of phantom maps Php,q(M,N) ⊆
Np,qM is defined as {Sp,q∧M

ϕ→ N | for all E ∈ SH(S)T ,f and E
ν→ Sp,q∧

M : ϕν = 0}. It is clear that Php,q(M,N) ⊆ ker(π).

(ii) The following topological example due to Strickland shows a nontrivial

Ext1-term. The canonical map KU(p) → KUp from p-local to p-complete

unitary topological K-theory yields a cofiber sequence

KU(p) // KUp // E
δ // ΣKU(p).

Here E is rational and thus Landweber exact. Thus δ is a degree 1 map

between Landweber exact spectra.

However, δ is a nonzero phantom map.

Over fields embeddable into C the corresponding boundary map for the

motivic Landweber spectra is likewise phantom and non-zero. Using the

notion of heights for Landweber exact algebras from [25, Section 5], ob-

serve that E has height zero while ΣKU(p) has height one, compare with

the assumptions in Theorem 9.7 below.

Now fix Landweber exact MU∗-algebras E∗ and F∗ concentrated in even degrees

and a 2-commutative diagram

Spec(F∗)
f

//

fF
##HHHHHHHHH

Spec(E∗)

fE
{{vvvvvvvvv

X

(30)
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where X is the stack of formal groups and fF (resp. fE) the map classifying the

formal group GF (resp. GE) canonically associated with the complex orientable

cohomology theory corresponding to F∗ (resp. E∗). This entails an isomorphism

f∗GE
∼= GF of formal groups over Spec(F∗). Hence the height of F∗ is less

or equal to the height of E∗. Let ETop,FTop (resp. E,F ∈ SH(S)T ) be the

topological (resp. motivic) spectra representing the indicated Landweber exact

cohomology theory.

Theorem 9.7: With the notation above assume E
Top
∗ ETop is a projective E

Top
∗ -

module.

(i) The map from Theorem 9.5

π : F∗∗E // Hom∗∗MGL∗∗
(MGL∗∗E,F∗∗) ∼= Hom

E
Top
∗

(ETop
∗ ETop,F∗∗)

is an isomorphism.

(ii) Under the isomorphism in (i), the bidegree (0, 0) maps S∗,∗ ∧ E → F

which respect the quasi-multiplication correspond bijectively to maps of

E
Top
∗ -algebras

Hom
E

Top
∗ −alg

(ETop
∗ ETop,F∗∗).

Remark 9.8: (i) The assumptions in Theorem 9.7 hold when ETop = KU

and for certain localizations of Johnson-Wilson theories according to [2]

respectively [3]. Theorem 9.7 recovers Theorem 9.3 with no mention of

an E∞-structure on KGL.

(ii) The theorem applies to the quasi-multiplication (E∧ E→ E) ∈ E00(E∧ E)

and shows that this is a commutative monoid structure which lifts uniquely

the multiplication on the homology theory. For example, there is a unique

structure of commutative monoid on KGLS ∈ SH(S) representing the

familiar multiplicative structure of homotopy K-theory, see [30] for a

detailed account and an independent proof in the case S = Spec(Z).

(iii) The composite map α : E∗
f→ F∗ → MGL∗∗⊗MU∗ F∗ = F∗∗ yields a canon-

ical bijection between the sets Hom
E

Top
∗ −alg

(ETop
∗ ETop,F∗∗) and {(α′, ϕ)},

where α′ : E∗ → F∗∗ is a ring homomorphism and ϕ : α∗GE → α′∗GE a

strict isomorphism of strict formal groups.

(iv) Taking F = E in Theorem 9.7 and using Remark 9.6(i) implies that

Ph∗∗(E,E) = 0. For example, there are no nontrivial phantom maps

KGL→ KGL of any bidegree.
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Proof. (of Theorem 9.7): We shall apply Proposition 2.3 withX0 ≡ Spec(MU∗),
X ≡ Spec(F∗), Y ≡ Spec(E∗), fX ≡ fF and fY ≡ fE, π : Spec(MU∗) → X the

map classifying the universal formal group, f as given by (30) and α : X =

Spec(F∗) → X0 = Spec(MU∗) corresponding to the MU∗-algebra structure

MU∗ → F∗. Now by [25, Theorem 26], fX (resp. fY ) factors as fX = iX ◦ πX
(resp. fY = iY ◦πY ) with πX and πY faithfully flat and iX and iY inclusions of

open substacks. The map i in Proposition 2.3 is induced by f . Finally, MGL∗∗ is

canonically an MU∗MU-comodule algebra and the OX-algebra A in Proposition

2.3 corresponds to MGL∗∗, i.e. A(X0) = MGL∗∗ and π∗Y πY,∗OY ∈ QcY to the

projective E
Top
∗ -module E

Top
∗ ETop. Taking into account the isomorphisms

A(X0)⊗OX0
π∗fY,∗OY ∼= MGL∗∗ ⊗MU∗ MUTop

∗ ETop ∼= MGL∗∗E

A(X0)⊗OX0
α∗OX ∼= MGL∗∗ ⊗MU∗ FTop

∗ ∼= F∗∗

π∗Y πY,∗OY ∼= ETop
∗ ETop

A(Y )⊗OY f∗OX ∼= F∗∗

OY ∼= ETop
∗

we obtain from Proposition 2.3

ExtnMGL∗∗
(MGL∗∗E,F∗∗) ∼=

{
0 n ≥ 1,

Hom
E

Top
∗

(ETop
∗ ETop,F∗∗) n = 0.

Hence (i) follows from Theorem 9.5 and (ii) by unwinding the definitions.

10 The Chern character

In what follows we define a ring map from KGL to periodized rational motivic

cohomology which induces the Chern character (or regulator map) from K-

theory to (higher) Chow groups when the base scheme is smooth over a field.

Let MZ denote the integral motivic Eilenberg-MacLane ring spectrum intro-

duced by Voevodsky [39, §6.1], cf. [8, Example 3.4]. Next we give a canonical

orientation on MZ, in particular the construction of a map P∞+ → K(Z(1), 2) =

L((P1,∞)).

Recall the space L(X) assigns to any U the group of proper relative cycles

on U ×S X over U of relative dimension 0 which have universally integral

coefficients. Now the line bundle OPn(1) ⊠ OP1(n) acquires the section ln ≡
Tnx

n
0 + Tn−1x

n−1
0 x1 + · · · + T0x

n
1 , where [T0 : · · · : Tn] denotes homogeneous

coordinates on Pn and [x0 : x1] on P1. Its zero locus is a relative divisor of

degree n on P1 which induces a map Pn → L(P1). These maps combine to give

maps Pn → L((P1,∞)) which are compatible with the inclusions Pn → Pn+1.
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Hence there is an induced map ϕ : P∞ → K(Z(1), 2). Moreover, the map

Pn → L(P1) is additive with respect to the maps Pn × Pm → Pn+m induced

by multiplication by the section ln. Hence ϕ is a map of commutative monoids

and it restricts to the canonical map P1 → K(Z(1), 2). This establishes an

orientation on MZ with the additive formal group law.

Let MQ be the rationalization of MZ. In order to apply the spectral sequence

in Proposition 9.4 to MQ we equip it with an MGL-module structure. Note that

both MZ and MQ have canonical E∞-structures. Thus MQ∧MGL is also E∞.

As an MQ-module it has the form MQ[b1, b2, . . .]. For any generator bi we let

ιi : Σ2i,iMQ → MQ ∧MGL denote the corresponding map. Taking its adjoint

provides a map from the free MQ-E∞-algebra on
∨
i>0 S2i,i to MQ ∧ MGL.

Since we are dealing with rational coefficients the contraction of these cells

in E∞-algebras is isomorphic to MQ. Hence there is a map MGL → MQ in

E∞-algebras. This gives in particular an MGL-module structure on MQ.

Let PMQ be the periodized rational Eilenberg-MacLane spectrum considered

as an MGL-module, and LQ the Landweber spectrum corresponding to the

additive formal group law over Q. By Remark 9.8 LQ is a ring spectrum.

We let PLQ be the periodic version. Both LQ and PLQ have canonical struc-

tures of MGL-modules. Finally, let PHQ be the periodized rational topological

Eilenberg-MacLane spectrum.

Recall the map ChPH
∗ : KU∗ → PHQ∗ sending the Bott element to the canonical

element in degree 2. The exponential map establishes an isomorphism from the

additive formal group law over PHQ∗ to the pushforward of the multiplicative

formal group law over KU∗ with respect to ChPH
∗ . By Theorem 9.7 and Remark

9.8(iii) there is an induced map of motivic ring spectra ChPL : KGL→ PLQ.

Theorem 10.1: The rationalization

ChPL
Q : KGLQ

// PLQ

of the map ChPL from KGL to PLQ is an isomorphism.

Proof. Follows directly from the fact that the rationalization of ChPH
∗ is an

isomorphism.

Theorem 9.5 shows there is a short exact sequence

0 // Ext
1,(p−1,q)
MGL∗∗

(MGL∗∗LQ,MQ∗∗) // MQp,qLQ

π // Hom
p,q
MGL∗∗

(MGL∗∗LQ,MQ∗∗) // 0.
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Now since MQ has the additive formal group law there is a natural transfor-

mation of homology theories

LQ∗∗(−) // MQ∗∗(−). (31)

Applying the methods of Theorem 9.7 to E = LQ and F = MQ shows that (31)

lifts uniquely to a map of motivic ring spectra

ι : LQ // MQ.

It prolongs to a map of motivic ring spectra PLQ → PMQ (denoted by the

same symbol).

The composite map

ChPM : KGL
ChPL

// PLQ
ι // PMQ

is called the Chern character. By construction it is functorial in the base scheme

with respect to the natural map Lf∗PMQS → PMQS′ for f : S′ → S.

Recall that for smooth schemes over fields motivic cohomology coincides with

higher Chow groups [40].

Proposition 10.2: Evaluated on smooth schemes over fields the map ChPM

coincides with the usual Chern character from K-theory to higher Chow groups.

Proof. The construction of the Chern character in [4] and [18] uses the methods

of [10]. We first show that the individual Chern class transformations Ci in

loc. cit. from K-theory to the cohomology theory in question can be extended

to a transformation between simplicial presheaves on smooth affine schemes

over the given field k. Fix a cofibration

BGL(Z) // BGL+(Z).

The simplicial presheaf

Spec(A) 7→ Γ(A) ≡ Z× BGL(A) ∪BGL(Z) BGL+(Z)

represents K-theory, see [4]. The Chern class Ci of the universal vector bundle

on the sheaf BGL(−) can be represented by a transformation of simplicial

presheaves BGL(−)→ K(i), where K(i) denotes an injectively fibrant presheaf

of simplicial abelian groups representing motivic cohomology with coefficients

in Q(i) with the appropriate simplicial shift. The map BGL(k) → K(i)(k)

extends to

Γ(k) // K(i)(k).

Documenta Mathematica 14 (2009) 551–593



588 Niko Naumann, Markus Spitzweck, Paul Arne Østvær

By definition of the presheaf Γ we get the required map. Having achieved this,

the Chern class transformations Ci extend to functors on the full subcategoryF
of objects of finite type in the sense of [39] in the A1-local homotopy category.

Denote by j : F → SH(k) the canonical functor.

With the above observations as prelude, it follows that these transformations

induce a multiplicative Chern character transformation

τ : Γ(−) // PMQ00(−) ◦ j

on this category. The source and target of τ are P1-periodic and τ is compatible

with these. Hence there is an induced transformation on the Karoubian en-

velope of the Spanier-Whitehead stabilization with respect to the pointed P1,

which is the full subcategory of SH(k) of compact objects according to [39,

Propositions 5.3 and 5.5]. But as a cohomology theory on compact objects,

KGL is the universal oriented theory which is multiplicative for the formal

group law. To conclude the proof, it is now sufficient to note that the trans-

formation constructed above has the same effect on the universal first Chern

class as ChPM does, which is clear.

For smooth quasi-projective schemes over fields the Chern character is known to

be an isomorphism after rationalization [4], hence our transformation ChPM is

an isomorphism after rationalization (a map E→ F between periodic spectra is

an isomorphism if it induces isomorphisms E−i,0(X)→ F−i,0(X) for all smooth

schemes X over S and i ≥ 0). By Mayer-Vietoris the same holds for smooth

schemes over fields.

Corollary 10.3: For smooth schemes over fields the map

ι : LQ // MQ

is an isomorphism of motivic ring spectra.

Corollary 10.4: For smooth schemes over fields

MQ∗∗(−)

is the universal oriented homology theory with rational coefficients and additive

formal group law.

Next we identify the rationalization MGLQ of the algebraic cobordism spec-

trum:

Theorem 10.5: There are isomorphisms of motivic ring spectra

MGLQ
∼= MGL ∧ LQ ∼= LQ[b1, . . .],

where the generator bi has bidegree (2i, i) for every i ≥ 1.
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Proof. According to Remark 9.2 MGL ∧ LQ is the motivic Landweber exact

spectrum associated with MU∧HQ ∼= MUQ; this implies the first isomorphism.

In homotopy, the canonical map of ring spectra LQ→ MGL ∧ LQ yields

π∗∗LQ = MGL∗∗ ⊗MU∗ Q→ π∗∗(MGL ∧ LQ) =

= MGL∗∗MGL⊗MU∗ Q = π∗∗LQ[b1, . . .].

Hence there is a map of ring spectra LQ[b1, . . .]→ MGL ∧ LQ under LQ which

is an π∗∗-isomorphism. Since all spectra above are cellular the second isomor-

phism follows.

Corollary 10.6: Suppose S is smooth over a field.

(i) There are isomorphisms of motivic ring spectra

MGLQ
∼= MGL ∧MQ ∼= MQ[b1, . . .].

(ii) For X/S smooth and L∗ the (graded) Lazard ring, there is an isomorphism

MGL∗∗(X)⊗Z Q ∼= MQ∗∗(X)⊗Z L∗.

Proof. Part (i) is immediate from Theorem 10.5, specialized to smooth schemes

over fields, and Corollary 10.3. Part (ii) follows from (i) using compactness of

X .

As alluded to in the introduction we may now explicate the rationalized alge-

braic cobordism of number fields. The answer is conveniently formulated in

terms of the (graded) Lazard ring L∗ = Z[x1, x2, . . .] with its cohomological

grading |xi| = (−2i,−i), i ≥ 1.

Corollary 10.7: Suppose k is a number field with r1 real embeddings and r2
pairs of complex embeddings. Then there are isomorphisms

MGL2i,j(k)⊗Q ∼=
{

L2i ⊗Q j = i

0 j 6= i

MGL2i+1,j(k)⊗Q ∼=





L2i ⊗ k∗ ⊗Q j = i+ 1, i ≤ 0

L2i ⊗Qr2 j − i ≡ 3 (4), j − i > 1

L2i ⊗Qr1+r2 j − i ≡ 1 (4), j − i > 1

0 otherwise.

Proof. Follows from Corollary 10.6(ii) and the well-known computation of the

rational motivic cohomology of number fields.
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Remark 10.8: In Corollary 10.3 we identified the (unique) Landweber exact

motivic spectrum LQ with rational motivic cohomology MQ (for base schemes

smooth over some field). The topological analog of this result is a triviality

because HQ is the Landweber exact spectrum associated with the additive for-

mal group over Q. To appreciate the content of Corollary 10.3, we offer the

following remark: In stable homotopy theory it is trivial that S0
Q
∼= HQ but

the motivic analog of this result fails. Let 1Q denote the rationalized motivic

sphere spectrum. Using orthogonal idempotents, Morel [22] has constructed a

splitting

1Q
∼= 1+

Q ∨ 1−Q

and noted that 1−Q is nontrivial for formally real fields (e.g. the rational num-

bers). It is easy to show that every map from the motivic sphere spectrum to

an oriented motivic ring spectrum annihilates 1−Q. In particular, 1Q and LQ

are not isomorphic in general.
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Abstract. In this paper, we study the noncommutative balls

Cρ := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) ≤ 1}, ρ ∈ (0,∞],

where ωρ is the joint operator radius for n-tuples of bounded linear
operators on a Hilbert space. In particular, ω1 is the operator norm,
ω2 is the joint numerical radius, and ω∞ is the joint spectral radius.

We introduce a Harnack type equivalence relation on Cρ, ρ > 0, and
use it to define a hyperbolic distance δρ on the Harnack parts (equiv-
alence classes) of Cρ. We prove that the open ball

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1}, ρ > 0,

is the Harnack part containing 0 and obtain a concrete formula for the
hyperbolic distance, in terms of the reconstruction operator associated
with the right creation operators on the full Fock space with n gener-
ators. Moreover, we show that the δρ-topology and the usual operator
norm topology coincide on [Cρ]<1. While the open ball [Cρ]<1 is not
a complete metric space with respect to the operator norm topology,
we prove that it is a complete metric space with respect to the hyper-
bolic metric δρ. In the particular case when ρ = 1 and H = C, the
hyperbolic metric δρ coincides with the Poincaré-Bergman distance
on the open unit ball of Cn.

We introduce a Carathéodory type metric on [C∞]<1, the set of all
n-tuples of operators with joint spectral radius strictly less then 1, by
setting

dK(A,B) = sup
p
‖ℜp(A)−ℜp(B)‖, A,B ∈ [C∞]<1,

where the supremum is taken over all noncommutative polynomials
with matrix-valued coefficients p ∈ C[X1, . . . , Xn]⊗Mm, m ∈ N, with
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ℜp(0) = I and ℜp(X) ≥ 0 for all X ∈ C1. We obtain a concrete
formula for dK in terms of the free pluriharmonic kernel on the non-
commutative ball [C∞]<1. We also prove that the metric dK is com-
plete on [C∞]<1 and its topology coincides with the operator norm
topology.

We provide mapping theorems, von Neumann inequalities, and
Schwarz type lemmas for free holomorphic functions on noncommuta-
tive balls, with respect to the hyperbolic metric δρ, the Carathéodory
metric dK , and the joint operator radius ωρ, ρ ∈ (0,∞].
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Carathéodory distance; Free holomorphic function; Free plurihar-
monic function; Fock space; Creation operator; Joint operator radius;
Joint numerical radius; Joint spectral radius; von Neumann inequal-
ity; Schwarz lemma.

Contents

Introduction 596

1. The noncommutative ball Cρ and a free pluriharmonic functional
calculus 601

2. Harnack domination on noncommutative balls 608

3. Hyperbolic metric on Harnack parts of the noncommutative ball Cρ 617

4. Mapping theorems for free holomorphic functions on
noncommutative balls 625
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Introduction

In [48], we provided a generalization of the Sz.-Nagy–Foiaş theory of ρ-
contractions (see [54], [55], [56]), to the multivariable setting. An n-tuple
(T1, . . . , Tn) ∈ B(H)n of bounded linear operators acting on a Hilbert space
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H belongs to the class Cρ, ρ > 0, if there is a Hilbert space K ⊇ H and some
isometries Vi ∈ B(K), i = 1, . . . , n, with orthogonal ranges such that

Tα = ρPHVα|H for any α ∈ F+
n \{g0},

where PH is the orthogonal projection of K onto H. Here, F+
n stands for the

unital free semigroup on n generators g1, . . . , gn, and the identity g0, while
Tα := Ti1Ti2 · · ·Tik if α = gi1gi2 · · · gik ∈ F+

n and Tg0 := IH, the identity on H.

According to the theory of row contractions (see [56] for the case n = 1, and
[16], [7], [32], [33], [34], for n ≥ 2) we have

C1 = [B(H)n]−1 :=
{

(X1, . . . , Xn) ∈ B(H)n : ‖X1X
∗
1 + · · ·+XnX

∗
n‖1/2 ≤ 1

}
.

The results in [48] (see Section 4) can be seen as the unification of the the-
ory of isometric dilations for row contractions [54], [56], [16], [7], [32], [33],
[34] (which corresponds to the case ρ = 1) and Berger type dilations for n-
tuples (T1, . . . , Tn) with the joint numerical radius w(T1, . . . , Tn) ≤ 1 (which
corresponds to the case ρ = 2).

Following the classical case ([19], [59]), we defined the joint operator radius
ωρ : B(H)n → [0,∞), ρ > 0, by setting

ωρ(T1, . . . , Tn) := inf

{
t > 0 :

(
1

t
T1, . . . ,

1

t
Tn

)
∈ Cρ

}

and ω∞(T1, . . . , Tn) := lim
ρ→∞

ωρ(T1, . . . , Tn). In particular, ω1(T1, . . . , Tn) coin-

cides with the norm of the row operator [T1 · · · Tn], ω2(T1, . . . , Tn) coincides
with the joint numerical radius w(T1, . . . , Tn), and ω∞(T1, . . . , Tn) is equal to
the (algebraic) joint spectral radius (see [7], [25])

r(T1, . . . , Tn) := lim
k→∞

∥∥∥∥∥∥
∑

|α|=k
TαT

∗
α

∥∥∥∥∥∥

1/2k

,

where the length of α ∈ F+
n is defined by |α| := 0 if α = g0 and by |α| := k if α =

gi1 · · · gik and i1, . . . , ik ∈ {1, . . . , n}. In [48], we considered basic properties
of the joint operator radius ωρ and we extended to the (noncommutative and
commutative) multivariable setting several classical results obtained by Sz.-
Nagy and Foiaş, Halmos, Berger and Stampfli, Holbrook, Paulsen, Badea and
Cassier, and others (see [2], [3], [4], [5], [17], [18], [19], [20], [21], [29], [30], [55],
and [59]).

In [49], we introduced a hyperbolic metric δ on the open noncommutative ball
[B(H)n]1, which turned out to be a noncommutative extension of the Poincaré-
Bergman ([6]) metric on the open unit ball Bn := {z ∈ Cn : ‖z‖2 < 1}. We
proved that δ is invariant under the action of the group Aut([B(H)n]1) of all
free holomorphic automorphisms of [B(H)n]1, and showed that the δ-topology
and the usual operator norm topology coincide on [B(H)n]1. Moreover, we
proved that [B(H)n]1 is a complete metric space with respect to the hyperbolic
metric and obtained an explicit formula for δ in terms of the reconstruction
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operator. A Schwarz-Pick lemma for bounded free holomorphic functions on
[B(H)n]1, with respect to the hyperbolic metric, was also obtained. In [46], we
continued to study the noncommutative hyperbolic geometry on the unit ball
of B(H)n, its connections with multivariable dilation theory, and its implica-
tions to noncommutative function theory. The results from [49] and [46] make
connections between noncommutative function theory (see [41], [44], [50], [47])
and classical results in hyperbolic complex analysis (see [22], [23], [24], [52],
[58]).

The present paper is an attempt to extend the results [49] concerning the
noncommutative hyperbolic geometry of the unit ball [B(H)n]1 to the more
general setting of [48]. We study the noncommutative balls

[Cρ]<1 = {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1} , ρ ∈ (0,∞],

and the Harnach parts of Cρ, ρ > 0, as metric spaces with respect to a hyper-
bolic (resp. Carathéodory) type metric that will be introduced. We provide
mapping theorems for free holomorphic functions on these noncommutative
balls, extending classical results from complex analysis and hyperbolic geome-
try.

In Section 1, we consider some preliminaries on free holomorphic (resp. pluri-
harmonic) functions on the open unit ball [B(H)n]1, and present several char-
acterizations for the n-tuples of operators of class Cρ, ρ ∈ (0,∞). We introduce
a free pluriharmonic functional calculus for the class Cρ and show that a von
Neumann type inequality characterizes this class. In particular, we prove that
an n-tuple of operators (T1, . . . , Tn) ∈ B(H)n is of class Cρ if and only if

‖p(T1, . . . , Tn)‖ ≤ ‖ρp(S1, . . . , Sn) + (1− ρ)p(0)‖

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[Z1, . . . , Zn] ⊗Mm, m ∈ N, where S1, . . . , Sn are the left creation operators
on the full Fock space with n generators.

In Section 2, we introduce a preorder relation
H≺ on the class Cρ. If A :=

(A1, . . . , An) and B := (B1, . . . , Bn) are in the class Cρ ⊂ B(H)n, we say that

A is Harnack dominated by B (denote A
H≺ B) if there exists c > 0 such that

ℜp(A1, . . . , An) + (ρ− 1)ℜp(0) ≤ c2 [ℜp(B1, . . . , Bn) + (ρ− 1)ℜp(0)]

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗Mm, m ∈ N, such that ℜp(X) := 1

2 [p(X)∗ + p(X)] ≥ 0 for
any X ∈ [B(K)n]1, where K is an infinite dimensional Hilbert space. When we

want to emphasize the constant c, we write A
H≺
c
B. We provide several char-

acterizations for the Harnack domination on the noncommutative ball Cρ (see
Theorem 2.2), and determine the set of all elements in Cρ which are Harnack
dominated by 0. The results of this section will play a major role in the next
sections.
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The relation
H≺ induces an equivalence relation

H∼ on the class Cρ. More pre-

cisely, two n-tuples A and B are Harnack equivalent (and denote A
H∼ B)

if and only if there exists c > 1 such that A
H≺
c
B and B

H≺
c
A (in this case we

denote A
H∼
c
B). The equivalence classes with respect to

H∼ are called Harnack

parts of Cρ. In Section 3, we provide a Harnack type double inequality for
positive free pluriharmonic functions on the noncommutative ball Cρ and use it
to prove that the Harnack part of Cρ which contains 0 coincides with the open
noncommutative ball

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1}.
We introduce a hyperbolic metric δρ : ∆×∆→ R+ on any Harnack part ∆ of
Cρ, by setting

δρ(A,B) := ln inf
{
c > 1 : A

H∼
c
B
}
, A,B ∈ ∆.

A concrete formula for the hyperbolic distance on any Harnack part of Cρ is
obtained. When ∆ = [Cρ]<1, we prove that

δρ(A,B) = ln max
{∥∥∥Cρ,AC−1

ρ,B

∥∥∥ ,
∥∥∥Cρ,BC−1

ρ,A

∥∥∥
}
, A,B ∈ [Cρ]<1,

where

Cρ,X := ∆ρ,X(I −RX)−1,

∆ρ,X := [ρI + (1− ρ)(R∗X +RX) + (ρ− 2)R∗XRX ]
1/2

,

andRX := X∗1⊗R1+· · ·+X∗n⊗Rn is the reconstruction operator associated with
the right creation operatorsR1, . . . , Rn on the full Fock space with n generators,
and X := (X1, . . . , Xn) ∈ [Cρ]<1. We recall that the reconstruction operator
has played an important role in noncommutative multivariable operator theory.
It appeared as a building block in the characteristic function associated to a
row contraction (see [34], [45]) and also as a quantized variable (associated with
the n-tuple X) in the noncommutative Cauchy, Poisson, and Berezin transform,
respectively (see [41], [44], [47], [48]).

In Section 4, we study the stability of the ball Cρ under contractive free holo-
morphic functions and provide mapping theorems, von Neumann inequalities,
and Schwarz type lemmas, with respect to the hyperbolic metric δρ and the
operator radius ωρ, ρ ∈ (0,∞].

Let f := (f1, . . . , fm) be a contractive free holomorphic function with ‖f(0)‖ <
1 such that the boundary functions f̃1, . . . , f̃m are in the noncommutative disc
algebra An (see [36], [40]). If an n-tuple of operators (T1, . . . , Tn) ∈ B(H)n is
of class Cρ, ρ > 0, then we prove that, under the free pluriharmonic functional
calculus, the m-tuple f(T1, . . . , Tn) ∈ B(H)m is of class Cρf , where ρf > 0 is
given in terms of ρ and f(0).

One of the main results of this section is the following spectral von Neumann
inequality for n-tuples of operators. If f := (f1, . . . , fm) satisfies the conditions
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above and (T1, . . . , Tn) ∈ B(H)n has the joint spectral radius r(T1, . . . , Tn) < 1,
then r(f(T1, . . . , Tn)) < 1.

If, in addition, f(0) = 0 and δρ : ∆×∆→ [0,∞) is the hyperbolic metric on a
Harnack part ∆ of Cρ, then we prove that

δρ(f(A), f(B)) ≤ δρ(A,B), A,B ∈ ∆.

In particular, this holds when ∆ is the open ball [Cρ]<1. Moreover, in this
setting, we show that

ωρ(f(T1, . . . , Tn)) < 1, (T1, . . . , Tn) ∈ [Cρ]<1,

for any ρ > 0. The general case when f(0) 6= 0 is also discussed.

In Section 5, we introduce a Carathéodory type metric on the set of all n-tuples
of operators with joint spectral radius strictly less then 1, i.e.,

[C∞]<1 := {(X1, . . . , Xn) ∈ B(H)n : r(X1, . . . , Xn) < 1},
by setting

dK(A,B) = sup
p
‖ℜp(A)−ℜp(B)‖,

where the supremum is taken over all noncommutative polynomials with
matrix-valued coefficients p ∈ C[X1, . . . , Xn] ⊗Mm, m ∈ N, with ℜp(0) = I
and ℜp(X) ≥ 0 for all X ∈ [B(K)n]1.

We obtain a concrete formula for dK in terms of the free pluriharmonic kernel
on the open unit ball [C∞]<1. More precisely, we show that

dK(A,B) = ‖P (A,R)− P (B,R)‖, A,B ∈ [C∞]<1,

where

P (X,R) :=

∞∑

k=1

∑

|α|=k
Xα ⊗R∗α̃ + ρI ⊗ I +

∞∑

k=1

∑

|α|=k
X∗α ⊗Rα̃, X ∈ [C∞]<1,

and α̃ is the reverse of α ∈ F+
n . This is used to prove that the metric dK is

complete on [C∞]<1 and its topology coincides with the operator norm topol-
ogy. We also prove that if f := (f1, . . . , fm) is a contractive free holomorphic

function with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in
the noncommutative disc algebra An, then

dK(f(A), f(B)) ≤ 1 + ‖f(0)‖
1− ‖f(0)‖dK(A,B), A,B ∈ [C∞]<1.

As a consequence, we deduce that the map

[C∞]<1 ∋ (X1, . . . , Xn) 7→ f(X1, . . . , Xn) ∈ [C∞]<1

is continuous in the operator norm topology.

In Section 6, we compare the hyperbolic metric δρ with the Carathéodory metric
dK , and the operator metric, respectively, on Harnack parts of the unit ball Cρ,
ρ > 0. In particular, we prove that the hyperbolic metric δρ is complete on the
open unit unit ball [Cρ]<1, while the other two metrics, mentioned above, are
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not complete. On the other hand, we show the δρ-topology, the dK-topology,
and the operator norm topology coincide on [Cρ]<1.

In Section 7, we consider the single variable case (n = 1) and show that our
Harnack domination for ρ-contractions is equivalent to the one introduced and
studied by G. Cassier and N. Suciu in [9] and [10]. Consequently, we recover
some of their results and, moreover, we obtain some results which seem to be
new even in the single variable case.

Finally, we want to acknowledge that we were influenced in writing this paper
by the work of C. Foiaş ([15]), I. Suciu ([53]), and G. Cassier and N. Suciu ([9],
[10]) concerning the Harnack domination and the hyperbolic distance between
two ρ-contractions. It will be interesting to see to which extent the results of
this paper, concerning the hyperbolic geometry on noncommutative balls, can
be extended to the Hardy algebras of Muhly and Solel (see [26], [27], [28]).

1. The noncommutative ball Cρ and a free pluriharmonic
functional calculus

In this section, we consider some preliminaries on free holomorphic (resp. pluri-
harmonic) functions on the unit ball [B(H)n]1, and several characterizations for
the n-tuples of operators of class Cρ. We introduce a free pluriharmonic func-
tional calculus for the class Cρ and show that a von Neumann type inequality
characterizes the class Cρ.
Let Hn be an n-dimensional complex Hilbert space with orthonormal basis e1,
e2, . . . , en, where n = 1, 2, . . . , or n =∞. The full Fock space of Hn is defined
by

F 2(Hn) := C1⊕
⊕

k≥1

H⊗kn ,

where H⊗kn is the (Hilbert) tensor product of k copies of Hn. We define the
left (resp. right) creation operators Si (resp. Ri), i = 1, . . . , n, acting on the
full Fock space F 2(Hn) by setting

Siϕ := ei ⊗ ϕ, ϕ ∈ F 2(Hn),

(resp. Riϕ := ϕ ⊗ ei, ϕ ∈ F 2(Hn)). We recall that the noncommutative
disc algebra An (resp. Rn) is the norm closed algebra generated by the left
(resp. right) creation operators and the identity. The noncommutative analytic
Toeplitz algebra F∞n (resp. R∞n ) is the weakly closed version of An (resp. Rn).
These algebras were introduced in [36] in connection with a von Neumann type
inequality [57], as noncommutative analogues of the disc algebra A(D) and the
Hardy spaceH∞(D). For more information on theses noncommutative algebras
we refer the reader to [35], [37], [38], [40], [12], and the references therein.

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear
operators onH. We identify Mm(B(H)), the set of m×m matrices with entries
from B(H), with B(H(m)), where H(m) is the direct sum of m copies of H. If
X is an operator space, i.e., a closed subspace of B(H), we consider Mm(X ) as
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a subspace of Mm(B(H)) with the induced norm. Let X ,Y be operator spaces
and u : X → Y be a linear map. Define the map um : Mm(X )→Mm(Y) by

um([xij ]) := [u(xij)].

We say that u is completely bounded if

‖u‖cb := sup
m≥1
‖um‖ <∞.

If ‖u‖cb ≤ 1 (resp. um is an isometry for any m ≥ 1) then u is completely
contractive (resp. isometric), and if um is positive for all m, then u is called
completely positive. For basic results concerning completely bounded maps
and operator spaces we refer to [29], [31], and [13].

A few more notations and definitions are necessary. If ω, γ ∈ F+
n , we say that

ω >l γ if there is σ ∈ F+
n \{g0} such that ω = γσ and set ω\lγ := σ. We denote

by α̃ the reverse of α ∈ F+
n , i.e., α̃ = gik · · · gi1 if α = gi1 · · · gik ∈ F+

n . An
operator-valued positive semidefinite kernel on the free semigroup F+

n is a map
K : F+

n × F+
n → B(H) with the property that for each k ∈ N, for each choice

of vectors h1, . . . , hk in H, and σ1, . . . , σk in F+
n , the inequality

k∑

i,j=1

〈K(σi, σj)hj , hi〉 ≥ 0

holds. Such a kernel is called multi-Toeplitz if it has the following properties:
K(α, α) = IH for any α ∈ F+

n , and

K(σ, ω) =





K(g0, ω\lσ) if ω >l σ

K(σ\lω, g0) if σ >l ω

0 otherwise.

An n-tuple of operators (T1, . . . , Tn), Ti ∈ B(H), belongs to the class Cρ, ρ > 0,
if there exist a Hilbert space K ⊇ H and isometries Vi ∈ B(K), i = 1, . . . , n,
with orthogonal ranges, such that

Tα = ρPHVα|H, α ∈ F+
n \{g0},

where PH is the orthogonal projection of K onto H. If K = KT :=
∨
α∈F+

n
VαH,

then the n-tuple (V1, . . . , Vn) is the minimal isometric dilation of (T1, . . . , Tn),
which is unique up to an isomorphism. Note that if (T1, . . . , Tn) ∈ Cρ, then the
joint spectral radius r(T1, . . . , Tn) ≤ 1, where

r(T1, . . . , Tn) := lim
k→∞

∥∥∥∥∥∥
∑

|α|=k
TαT

∗
α

∥∥∥∥∥∥

1/2k

.

We recall (see Corollary 1.36 from [48]) that
⋃
ρ>0
Cρ is dense (in the operator

norm topology) in the set of all n-tuples of operators with joint spectral radius
r(T1, . . . , Tn) ≤ 1. Moreover, any n-tuple of operators with r(T1, . . . , Tn) < 1
is of class Cρ for some ρ > 0. We should add that (see Theorem 5.9 from [43])
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(T1, . . . , Tn) ∈ B(H)n has the joint spectral radius r(T1, . . . , Tn) < 1 if and
only if it is uniformly stable, i.e., ‖∑|α|=k TαT ∗α‖ → 0, as k →∞.

Since the joint spectral radius of n-tuples of operators plays an important role
in the present paper, we recall (see [7], [25]) some of its properties. The joint
right spectrum σr(T1, . . . , Tn) of an n-tuple (T1, . . . , Tn) of operators in B(H) is
the set of all n-tuples (λ1, . . . , λn) of complex numbers such that the right ideal
of B(H) generated by the operators λ1I − T1, . . . , λnI − Tn does not contain
the identity operator. We know that σr(T1, . . . , Tn) is included in the closed
ball of Cn of radius r(T1, . . . , Tn).

If we assume that T1, . . . , Tn ∈ B(H) are mutually commuting operators and
B is a closed subalgebra of B(H) containing T1, . . . , Tn, and the identity, then
the Harte spectrum σ(T1, . . . , Tn) is the set of all (λ1, . . . , λn) ∈ Cn such that

(λ1I − T1)X1 + · · ·+ (λnI − Tn)Xn 6= I

for all X1, . . . , Xn ∈ B. In this case, we have

r(T1, . . . , Tn) = max{‖(λ1, . . . , λn)‖2 : (λ1, . . . , λn) ∈ σ(T1, . . . , Tn)}.
According to [25], the latter formula remains true if the Harte spectrum is
replaced by the Taylor’s spectrum for commuting operators.

According to Theorem 4.1 from [39] and Theorems 1.34 and 1.39 from [48], we
have the following characterizations for the n-tuples of operators of class Cρ.
We denote by C[Z1, . . . , Zn] the set of all noncommutative polynomials in n
noncommuting indeterminates.

Theorem 1.1. Let T1, . . . , Tn ∈ B(H) and let S ⊂ C∗(S1, . . . , Sn) be the op-
erator system defined by

S := {p(S1, . . . , Sn) + q(S1, . . . , Sn)∗ : p, q ∈ C[Z1, . . . , Zn]}.
Then the following statements are equivalent:

(i) (T1, . . . , Tn) ∈ Cρ.
(ii) The map Ψ : S → B(H) defined by

Ψ (p(S1, . . . , Sn) + q(S1, . . . , Sn)∗) := p(T1, . . . , Tn) + q(T1, . . . , Tn)∗

+ (ρ− 1)(p(0) + q(0))I

is completely positive.
(iii) The joint spectral radius r(T1 . . . , Tn) ≤ 1 and the ρ-pluriharmonic

kernel defined by

Pρ(rT,R) :=
∞∑

k=1

∑

|α|=k
r|α|Tα ⊗R∗α̃ + ρI ⊗ I +

∞∑

k=1

∑

|α|=k
r|α|T ∗α ⊗Rα̃

is positive for any 0 < r < 1, where the convergence is in the operator
norm topology.
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(iv) The spectral radius r(T1, . . . , Tn) ≤ 1 and

ρI ⊗ I + (1− ρ)r

n∑

i=1

(Ti ⊗R∗i + T ∗i ⊗Ri) + (ρ− 2)r2

(
n∑

i=1

TiT
∗
i ⊗ I

)
≥ 0

for any 0 < r < 1.
(v) The multi-Toeplitz kernel Kρ,T : F+

n × F+
n → B(H) defined by

Kρ,T (α, β) :=





1
ρTβ\lα if β >l α

I if α = β
1
ρ(Tα\lβ)∗ if α >l β

0 otherwise

is positive semidefinite.

Consider 1 ≤ m < n and let (R′1, . . . , R
′
m) and (R1, . . . , Rn) be the right

creation operators on F 2(Hm) and F 2(Hn), respectively. According to the
Wold type decomposition for isometries with orthogonal ranges [33], the m-
tuple (R1, . . . , Rm) is unitarily equivalent to (R′1⊗ IE , . . . , R′m⊗ IE), where E is
equal to F 2(Hn) ⊖ F 2(Hm). Consequently, using Theorem 1.1, one can easily
deduce the following result.

Corollary 1.2. Let ρ > 0, 1 ≤ m < n, and consider an m-tuple
(T1, . . . , Tm) ∈ B(H)m and its extension (T1, . . . , Tm, 0, . . . , 0) ∈ B(H)n. Then
the following statements hold:

(i) (T1, . . . , Tm) ∈ Cρ if and only if (T1, . . . , Tm, 0, . . . , 0) ∈ Cρ;
(ii) ωρ(T1, . . . , Tm) = ωρ(T1, . . . , Tm, 0, . . . , 0));

(iii) r(T1, . . . , Tm) = r(T1, . . . , Tm, 0, . . . , 0).

Throughout this paper, we assume that E is a separable Hilbert space. We recall
[44] that a mapping F : [B(H)n]1 → B(H)⊗̄minB(E) is called free holomorphic
function on [B(H)n]1 with coefficients in B(E) if there exist A(α) ∈ B(E),

α ∈ F+
n , such that lim supk→∞

∥∥∥
∑
|α|=k A

∗
(α)A(α)

∥∥∥
1/2k

≤ 1 and

F (X1, . . . , Xn) =

∞∑

k=0

∑

|α|=k
Xα ⊗A(α),

where the series converges in the operator norm topology for any (X1, . . . , Xn)
in the open unit ball [B(H)n]1 := {(X1, . . . , Xn) : ‖X1X

∗
1 + · · ·+XnXn‖ < 1}.

The set of all free holomorphic functions on [B(H)n]1 with coefficients in B(E)
is denoted by Hball(B(E)). Let H∞ball(B(E)) denote the set of all elements F
in Hball(B(E)) such that

‖F‖∞ := sup ‖F (X1, . . . , Xn)‖ <∞,
where the supremum is taken over all n-tuples of operators (X1, . . . , Xn) ∈
[B(H)n]1 and any Hilbert space H. According to [44] and [47], H∞ball(B(E))
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can be identified to the operator algebra F∞n ⊗̄B(E) (the weakly closed alge-
bra generated by the spatial tensor product), via the noncommutative Poisson
transform. Due to the fact that a free holomorphic function is uniquely de-
termined by its representation on an infinite dimensional Hilbert space, we
identify, throughout this paper, a free holomorphic function with its represen-
tation on a separable infinite dimensional Hilbert space.

We say that a map u : [B(H)n]1 → B(H)⊗̄minB(E) is a self-adjoint free pluri-
harmonic function on [B(H)n]1 if u = ℜf := 1

2 (f∗ + f) for some free holo-
morphic function f . A free pluriharmonic function on [B(H)n]1 has the form
H := H1 + iH2, where H1, H2 are self-adjoint free pluriharmonic functions on
[B(H)n]1. We recall [47] that if

f(Z1, . . . , Zn) =

∞∑

k=1

∑

|α|=k
Z∗α ⊗B(α) + I ⊗A(0) +

∞∑

k=1

∑

|α|=k
Zα ⊗A(α)

is a free pluriharmonic function on [B(H)n]1 with coefficients in B(E) and
(T1, . . . , Tn) ∈ B(H)n is any n-tuple of operators with joint spectral radius
r(T1, . . . , Tn) < 1, then f(T1, . . . , Tn) is a bounded linear operator, where the
corresponding series converge in norm. Moreover limr→1 f(rT1, . . . , rTn) =
f(T1, . . . Tn) in the operator norm topology. We refer to [47] for more results
on free pluriharmonic functions.

We denote by Harcball(B(E)) the set of all free pluriharmonic functions on
[B(H)n]1 with operator-valued coefficients in B(E), which have continuous ex-
tensions (in the operator norm topology) to the closed ball [B(H)n]−1 . We
assume that H is an infinite dimensional Hilbert space. According to The-
orem 4.1 from [47], we can identify Harcball(B(E)) with the operator space

An(E)∗ +An(E)
‖·‖

, where An(E) := An⊗̄minB(E) and An is the noncommu-
tative disc algebra. More precisely, if u : [B(H)n]1 → B(H)⊗̄minB(E), then
the following statements are equivalent:

(a) u is a free pluriharmonic function on [B(H)n]1 which has a continuous
extension (in the operator norm topology) to the closed ball [B(H)n]−1 ;

(b) there exists f ∈ An(E)∗ +An(E)
‖·‖

such that u(X) = (PX ⊗ id)(f) for
X ∈ [B(H)n]1, where PX is the noncommutative Poisson transform at
X ;

(c) u is a free pluriharmonic function on [B(H)n]1 such that
u(rS1, . . . , rSn) converges in the operator norm topology, as r → 1.

In this case, we have f = lim
r→1

u(rS1, . . . , rSn), where the convergence is

in the operator norm topology. Moreover, the map Φ : Harcball(B(E)) →
An(E)∗ +An(E)

‖·‖
defined by Φ(u) := f is a completely isometric isomor-

phism of operator spaces. We call f the model boundary function of u.

Now, we introduce a free pluriharmonic functional calculus for the class Cρ.
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Theorem 1.3. Let T := (T1, . . . , Tn) ∈ B(H)n be of class Cρ, and let u ∈
Harcball(B(E)) have the standard representation

u(X1, . . . , Xn) =

∞∑

k=1

∑

|α|=k
X∗α ⊗B(α) + I ⊗A(0) +

∞∑

k=1

∑

|α|=k
Xα ⊗A(α)

on [B(H)n]1, for some A(α), B(α) ∈ B(E), where the series converge in the
operator norm topology. Then

u(T1, . . . , Tn) := lim
r→1

u(rT1, . . . , rT1)

exists in the operator norm and

‖u(T1, . . . , Tn)‖ ≤ ‖ρu+ (1− ρ)u(0)‖∞.

Proof. Since T := (T1, . . . , Tn) ∈ B(H)n is an n-tuple of class Cρ, there is a
minimal isometric dilation V := (V1, . . . , Vn) of T on a Hilbert space KT ⊇ H,
satisfying the following properties: V ∗i Vj = δijI for i, j = 1, . . . , n, and Tα =
ρPHVα|H for any α ∈ F+

n \{g0}, and KT =
∨
α∈F+

n
VαH. Taking into account

that u ∈ Harcball(B(E)), we have

u(rV1, . . . , rVn) =

∞∑

k=1

∑

|α|=k
r|α|V ∗α ⊗B(α) + I ⊗A(0) +

∞∑

k=1

∑

|α|=k
r|α|Vα ⊗A(α),

where the convergence is in the operator norm. Hence, and due to the fact that

∑

|α|=k
r|α|T ∗α ⊗B(α) = ρ(PH ⊗ I)


∑

|α|=k
r|α|V ∗α ⊗B(α)


 |H⊗E , k = 1, 2, . . . ,

we deduce that

u(rT1, . . . , rTn) :=

∞∑

k=1

∑

|α|=k
r|α|T ∗α ⊗B(α) + I ⊗A(0) +

∞∑

k=1

∑

|α|=k
r|α|Tα ⊗A(α)

= ρ(PH ⊗ I)u(rV1, . . . , rVn)|H⊗E − (ρ− 1)u(0).

exists in the operator norm topology. Now, taking into account that
limr→1 u(rV1, . . . , rV1) exists in the operator norm, we deduce that
limr→1 u(rT1, . . . , rT1) exists in the same topology. Consequently, we can
define

u(T1, . . . , Tn) := lim
r→1

u(rT1, . . . , rT1).

Using the considerations above, and the noncommutative von Neumann in-
equality, we obtain

‖u(T1, . . . , Tn)‖ ≤ ‖ρu+ (1− ρ)u(0)‖∞ ≤ (ρ+ |ρ− 1|)‖u‖∞
for any (T1, . . . , Tn) ∈ Cρ. �
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We will refer to the map

Harcball(B(E)) ∋ u 7→ u(T1, . . . , Tn) ∈ B(H)⊗̄minB(E)

as the free pluriharmonic functional calculus for the class Cρ. Since there is

a completely isometric isomorphism of operator spaces An(E)∗ +An(E)
‖·‖ ∋

f 7→ u ∈ Harcball(B(E)), given by u = (PX ⊗ id)(f) for X ∈ [B(H)n]1, we also
use the notation f(T1, . . . , Tn) for u(T1, . . . , Tn).

Now, we show that the von Neumann type inequality of Theorem 1.3 charac-
terizes the class Cρ. Denote

P(S1, . . . , Sn) := {p(S1, . . . , Sn) : p ∈ C[Z1, . . . , Zn]},
where S1, . . . , Sn are the left creation operators on the full Fock space F 2(Hn).

Theorem 1.4. Let T := (T1, . . . , Tn) ∈ B(H)n be an n-tuple of operators.
Then the following statements are equivalent:

(i) T is of class Cρ;
(ii) the von Neumann type inequality

‖p(T1, . . . , Tn)‖ ≤ ‖ρp(S1, . . . , Sn) + (1− ρ)p(0)‖
holds for any noncommutative polynomial p ∈ C[Z1, . . . , Zn] ⊗ Mm,
m ∈ N;

(iii) the map ΨT : An → B(H) defined by

ΨT (q(S1, . . . , Sn)) :=
1

ρ
q(T1, . . . , Tn) +

(
1− 1

ρ

)
q(0)I

for q(S1, . . . , Sn) ∈ P(S1, . . . , Sn) is completely contractive.

Proof. The implication (i) =⇒ (ii) follows, in particular, from Theorem
1.3. To prove the implication (ii) =⇒ (iii), note that setting p := 1

ρq +(
1− 1

ρ

)
q(0)I, where q ∈ C[Z1, . . . , Zn]⊗Mm, m ∈ N, we have

‖ΨT (q(S1, . . . , Sn))‖ = ‖p(T1, . . . , Tn)‖
≤ ‖ρp(S1, . . . , Sn) + (1 − ρ)p(0)‖
= ‖q(S1, . . . , Sn)‖,

which proves that ΨT is completely contractive on the set of all polynomials
P(S1, . . . , Sn) and, consequently, extends uniquely to a completely contractive
map on the noncommutative disc algebraAn. It remains to prove that (iii) =⇒
(i). Due to Arveson’s extension theorem, item (iii) implies the existence of a

unique completely positive extension Ψ̃T : A∗n +An → B(H) of ΨT . Note that

Ψ̃T (r(S1, . . . , Sn) + q(S1, . . . , Sn)∗) =

=
1

ρ
(r(T1, . . . , Tn) + q(T1, . . . , Tn)∗) +

(
1− 1

ρ

)
(r(0) + q(0))I

for any polynomials r(S1, . . . , Sn) and q(S1, . . . , Sn) in P(S1, . . . , Sn). Applying
Theorem 1.1 (the equivalence (i)↔ (ii)), we complete the proof. �
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2. Harnack domination on noncommutative balls

We introduce a preorder relation
H≺ on the noncommutative ball Cρ, ρ ∈ (0,∞),

and provide several characterizations. We determine the elements of Cρ which
are Harnack dominated by 0. These results will play a crucial role in the next
sections.

First, we consider some preliminaries on noncommutative Poisson transforms.
Let C∗(S1, . . . , Sn) be the Cuntz-Toeplitz C∗-algebra generated by the left
creation operators (see [11]). The noncommutative Poisson transform at the n-
tuple T := (T1, . . . , Tn) ∈ [B(H)n]−1 is the unital completely contractive linear
map PT : C∗(S1, . . . , Sn)→ B(H) defined by

PT [f ] := lim
r→1

K∗rT (IH ⊗ f)KrT , f ∈ C∗(S1, . . . , Sn),

where the limit exists in the operator norm topology of B(H). Here, the non-
commutative Poisson kernel KrT : H → ∆rTH⊗F 2(Hn), 0 < r ≤ 1, is defined
by

KrTh :=
∞∑

k=0

∑

|α|=k
r|α|∆rTT

∗
αh⊗ eα, h ∈ H,

where {eα}α∈F+
n

is the orthonormal basis for the full Fock space F 2(Hn), defined

by eα := ei1 ⊗ · · · ⊗ eik if α = gi1 · · · gik ∈ F+
n and eg0 := 1, and ∆rT := (IH −

r2T1T
∗
1 −· · ·− r2TnT ∗n)1/2. We recall that PT [SαS

∗
β ] = TαT

∗
β , α, β ∈ F+

n . When

T := (T1, . . . , Tn) is a pure row contraction, i.e., SOT- lim
k→∞

∑
|α|=k TαT

∗
α = 0,

then we have

PT [f ] = K∗T (IDT ⊗ f)KT , f ∈ C∗(S1, . . . , Sn) or f ∈ F∞n ,

where DT := ∆TH. We refer to [41], [42], and [48] for more on noncommutative
Poisson transforms on C∗-algebras generated by isometries.

A free pluriharmonic function u on [B(K)n]1 with operator valued coeffi-
cients is called positive, and denote u ≥ 0, if u(X1, . . . , Xn) ≥ 0 for any
(X1, . . . , Xn) ∈ [B(K)n]1, where K is an infinite dimensional Hilbert space.
We mention that it is enough to assume that the positivity condition holds
for any finite dimensional Hilbert space K. Indeed, for each m ∈ N, consider

R(m) := (R
(m)
1 , . . . , R

(m)
n ), where R

(m)
i is the compression of the right creation

operator Ri to the subspace Pm := span {eα : α ∈ F+
n , |α| ≤ m} of F 2(Hn).

We recall from [47] the following result.

Lemma 2.1. Let u be a free pluriharmonic function on [B(K)n]1 with operator-
valued coefficients. Then u(X1, . . . , Xn) ≥ 0 for any (X1, . . . , Xn) ∈ [B(K)n]1

if and only if u(R
(m)
1 , . . . , R

(m)
n ) ≥ 0 for any m ∈ N.

Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be n-tuples of operators in

Cρ ⊂ B(H)n. We say that A is Harnack dominated by B, and denote A
H≺ B,

if there exists c > 0 such that

ℜp(A1, . . . , An) + (ρ− 1)ℜp(0) ≤ c2 [ℜp(B1, . . . , Bn) + (ρ− 1)ℜp(0)]
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for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn]⊗Mm, m ∈ N, such that ℜp ≥ 0. When we want to emphasize

the constant c, we write A
H≺
c
B.

According to Theorem 1.3, we can associate with each n-tuple T :=

(T1, . . . , Tn) ∈ Cρ the completely positive map ϕT : A∗n +An
‖·‖ → B(H) de-

fined by

(2.1) ϕT (g) :=
1

ρ
g(T1, . . . , Tn) +

(
1− 1

ρ

)
g(0),

where g(T1, . . . , Tn) is defined by the free pluriharmonic functional calculus for
the class Cρ.
Now, we present several characterizations for the Harnack domination in Cρ.
Theorem 2.2. Let A := (A1, . . . , An) ∈ B(H)n and B := (B1, . . . , Bn) ∈
B(H)n be in the class Cρ and let c > 0. Then the following statements are
equivalent:

(i) A
H≺
c
B;

(ii) Pρ(rA,R) ≤ c2Pρ(rB,R) for any r ∈ [0, 1), where Pρ(X,R) is the
multi-Toeplitz kernel associated with X ∈ Cρ;

(iii) u(rA1, . . . , rAn) + (ρ− 1)u(0) ≤ c2 [u(rB1, . . . , rBn) + (ρ− 1)u(0)] for
any positive free pluriharmonic function u on [B(H)n]1 with operator-
valued coefficients and any r ∈ [0, 1);

(iv) Kρ,A ≤ c2Kρ,B, where Kρ,X is the multi-Toeplitz kernel associated with
X ∈ Cρ;

(v) c2ϕB − ϕA is a completely positive linear map on the operator space

A∗n +An‖·‖, where ϕA, ϕB are the c.p. maps associated with A and
B, respectively.

(vi) there is an operator LB,A ∈ B(KB ,KA) with ‖LB,A‖ ≤ c such that
LB,A|H = IH and

LB,AWi = ViLB,A, i = 1, . . . , n,

where (V1, . . . , Vn) on KA ⊃ H and (W1, . . . ,Wn) on KA ⊃ H are the
minimal isometric dilations of A and B, respectively.

Proof. First we prove that (i) =⇒ (ii). Since R
(m)
α = 0 for any α ∈ F+

n with
|α| ≥ m+ 1, we have

Pρ(rX,R
(m)) =

∑

1≤|α|≤m
r|α|X∗α ⊗R(m)

eα + ρI ⊗ I +
∑

1≤|α|≤m
r|α|Xα ⊗R(m)

eα
∗
.

Since X 7→ P1(X,R) is a positive free pluriharmonic function on [B(H)n]1,
with coefficients in B(F 2(Hn)), so is the map

X 7→ P1(rX,R(m)) = (I ⊗ PPm)P1(rX,R)|H⊗Pm
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for any r ∈ [0, 1). If A
H≺
c
B, then we have

P1(rA,R(m)) + (ρ− 1)P1(0, R(m)) ≤ c2
[
P1(rB,R(m)) + (ρ− 1)P1(0, R(m))

]

for any m = 1, 2, . . . . Using Lemma 2.1, we deduce that

P1(rA,R) + (ρ− 1)I ≤ c2 [P1(rB,R) + (ρ− 1)I]

for any r ∈ [0, 1). Since Pρ(rY,R) = P1(rY,R) + (ρ − 1)I for any n-tuple
Y ∈ B(H)n with spectral radius r(Y ) ≤ 1 and r ∈ [0, 1), we deduce item (ii).

To prove the implication (ii) =⇒ (iii), assume that condition (ii) holds and
let u be a positive free pluriharmonic function on [B(H)n]1 with coefficients in
B(E) of the form

u(Z1, . . . , Zn) =

∞∑

k=1

∑

|α|=k
Z∗α ⊗ C∗(α) + I ⊗ C(0) +

∞∑

k=1

∑

|α|=k
Zα ⊗ C(α).

It is well-known (see e.g. [29]) that if S ⊆ B(F 2(Hn)) is an operator system
and µ : S → B(K) is a completely bounded map, then there exists a completely
bounded linear map

µ̃ := µ⊗ id : S⊗̄minB(H)→ B(K)⊗̄minB(H)

such that µ̃(f ⊗ Y ) := µ(f)⊗ Y for f ∈ S and Y ∈ B(H). Moreover, ‖µ̃‖cb =
‖µ‖cb and, if µ is completely positive, then so is µ̃.

Using Corollary 5.5 from [47], we find a completely positive linear map ν :
R∗n + Rn → B(E) such that ν(Rα̃) = C∗(α) if |α| ≥ 1 and ν(I) = C(0). Note

that

(id⊗ ν)[c2Pρ(rB,R) − Pρ(rA,R)]

= (id⊗ ν)




∞∑

k=1

∑

|α|=k
r|α|(c2Bα −Aα)⊗R∗α̃ + ρ(c2 − 1)I ⊗ I

+

∞∑

k=1

∑

|α|=k
(c2B∗α −A∗α)⊗Rα̃





=




∞∑

k=1

∑

|α|=k
r|α|(c2Bα −Aα)⊗ C(α) + ρ(c2 − 1)I ⊗ C(0)

+

∞∑

k=1

∑

|α|=k
(c2B∗α −A∗α)⊗ C∗(α)





= c2 [u(rB1, . . . , rBn) + (ρ− 1)u(0)]

−[u(rA1, . . . , rAn) + (ρ− 1)u(0)] .

Hence, and using the fact that c2Pρ(rB,R) − Pρ(rA,R) ≥ 0, we deduce that

c2 [u(rB1, . . . , rBn) + (ρ− 1)u(0)]− [u(rA1, . . . , rAn) + (ρ− 1)u(0)] ≥ 0,
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which proves (iii).

Now, we prove the implication (iii) =⇒ (v). Let g ∈
(
A∗n +An

‖·‖)⊗minMm

be positive. Then, according to Theorem 4.1 from [47], the map defined by

g(X) := (PX ⊗ id)[g], X ∈ [B(H)n]1,

is a positive free pluriharmonic function. Condition (iii) implies

g(rA1, . . . , rAn) + (ρ− 1)g(0) ≤ c2 [g(rB1, . . . , rBn) + (ρ− 1)g(0)]

for any r ∈ [0, 1). Hence, and using relation (2.1), we get ρϕA(gr) ≤ c2ρϕB(gr).
Taking r → 1, we deduce item (v).

To prove the implication (v) =⇒ (i), let p ∈ C[X1, . . . , Xn] ⊗Mm, m ∈ N,
be a noncommutative polynomial with matrix coefficients such that Re p ≥ 0.
Since

ρϕY (p) = p(Y1, . . . , Yn) + (ρ− 1)p(0)

for any Y := (Y1, . . . , Yn) ∈ Cρ, it is clear that (v) implies item (i).

We prove now that (ii) =⇒ (iv). We recall that eα := ei1 ⊗ · · · ⊗ eik if
α = gi1 · · · gik ∈ F+

n and eg0 := 1, and that {eα}α∈F+
n

is an orthonormal basis

for the full Fock space F 2(Hn). First, we prove that
(2.2)〈
Pρ(X, rR)


∑

|β|≤q
hβ ⊗ eβ


 ,

∑

|γ|≤q
hγ ⊗ eγ

〉
= ρ

∑

|β|,|γ|≤q
〈Kρ,X,r(γ, β)hβ , hγ〉 ,

where the multi-Toeplitz kernel Kρ,X,r : F+
n ×F+

n → B(H), r ∈ (0, 1), is defined
by

Kρ,X,r(α, β) :=





1
ρr
|β\lα|Xβ\lα if β >l α

I if α = β
1
ρr
|α\lβ|(Xα\lβ)∗ if α >l β

0 otherwise.

Note that if {hβ}|β|≤q ⊂ H, then we have

〈(ρI ⊗ I +

∞∑

k=1

∑

|α|=k
X∗α ⊗ rkRα̃




∑

|β|≤q
hβ ⊗ eβ


 ,

∑

|γ|≤q
hγ ⊗ eγ

〉

= ρ
∑

|β|≤q
‖hβ‖2 +

∞∑

k=1

∑

|α|=k

〈∑

|β|≤q
X∗αhβ ⊗ rkRα̃eβ ,

∑

|γ|≤q
hγ ⊗ eγ

〉

= ρ
∑

|β|≤q
‖hβ‖2 + +

∑

|α|≥1

∑

|β|,|γ|≤q
r|α| 〈eβα, eγ〉 〈X∗αhβ , hγ〉

= ρ
∑

|β|≤q
‖hβ‖2 +

∑

γ>β; |β|,|γ|≤q
r|γ\lβ|

〈
X∗γ\lβhβ, hγ

〉

=
∑

γ≥β; |β|,|γ|≤q
〈ρKρ,X,r(γ, β)hβ , hγ〉 .
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Now, taking into account that Kρ,X,r(γ, β) = K∗ρ,X,r(β, γ), we deduce relation

(2.2). Therefore, the condition Pρ(rA,R) ≤ c2Pρ(rB,R), r ∈ [0, 1), implies

[Kρ,A,r(α, β)]|α|,|β|≤q ≤ c2[Kρ,B,r(α, β)]|α|,|β|≤q

for any 0 < r < 1 and q = 0, 1, . . .. Taking r → 1 in the latter inequality, we
obtain item (iv).

Assume now that (iv) holds. Since c2Kρ,B − Kρ,A is a positive semidefi-
nite multi-Toeplitz kernel, due to Theorem 3.1 from [39] (see also the proof
of Theorem 5.2 from [47]), we find a completely positive linear map µ :
C∗(S1, . . . , Sn)→ B(E) such that

µ(Sα) = c2Kρ,B(g0, α)−Kρ,A(g0, α) =
1

ρ
(c2Bα −Aα)

for any α ∈ F+
n with |α| ≥ 1, and µ(I) = (c2 − 1)I. Since

P (rS,R) :=

∞∑

k=1

∑

|α|=k
rkSα ⊗R∗α̃ + I ⊗ I +

∞∑

k=1

∑

|α|=k
rkS∗α ⊗Rα̃ ≥ 0

for r ∈ [0, 1), we deduce that

(µ⊗ id)[P (rS,R)] =

∞∑

k=1

∑

|α|=k

1

ρ
r|α|[c2B∗α −A∗α]⊗Reα + (c2 − 1)I ⊗ I

+

∞∑

k=1

∑

|α|=k

1

ρ
r|α|[c2Bα −Aα]⊗R∗eα

= c2Pρ(rB,R)− Pρ(rA,R) ≥ 0,

which implies (ii).

Let us prove that (iv) =⇒ (vi). Assume that (iv) holds. Then we haveKρ,A ≤
c2Kρ,B, where Kρ,X is the multi-Toeplitz kernel associated with X ∈ Cρ. Let
V := (V1, . . . , Vn) be the minimal isometric dilation of A := (A1, . . . , An). Then
KA =

∨
α∈F+

n
VαH and ρPHVα|H = Aα for any |α| ≥ 1. Similar properties hold

if W := (W1, . . . ,Wn) is the minimal isometric dilation of B := (B1, . . . , Bn).
Hence, and taking into account that V1, . . . , Vn and W1, . . . ,Wn are isometries
with orthogonal ranges, respectively, we have
‚
‚
‚
‚
‚
‚

X

|α|≤m

Vαhα

‚
‚
‚
‚
‚
‚

2

=

=
X

α>lβ,|α|,|β|≤m

˙
Vα\lβhα, hβ

¸
+

X

|α|≤m

〈hα, hα〉+
X

β>lα,|α|,|β|≤m

˙
V ∗
β\lα

hα, hβ
¸

=
X

α>lβ,|α|,|β|≤m

fi
1

ρ
Aα\lβhα, hβ

fl

+
X

|α|≤m

〈hα, hα〉+
X

β>lα,|α|,|β|≤m

fi
1

ρ
A∗
β\lα

hα, hβ

fl

=
X

|α|≤m,|β|≤m

〈Kρ,A(β, α)hα, hβ〉 =
D

[Kρ,A(β, α)]|α|,|β|≤m hm,hm
E
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for any m ∈ N and hm := ⊕|α|≤mhα ∈ ⊕|α|≤mHα, where each Hα is a copy of
H. Similarly, we obtain

∥∥∥∥∥∥
∑

|α|≤m
Wαhα

∥∥∥∥∥∥

2

=
〈

[Kρ,B(β, α)]|α|,|β|≤m hm,hm

〉
.

Taking into account that Kρ,A ≤ c2Kρ,B, we deduce that
∥∥∥∥∥∥
∑

|α|≤m
Vαhα

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
∑

|α|≤m
Wαhα

∥∥∥∥∥∥
.

Therefore, we can define an operator LB,A : KB → KA by setting

(2.3) LB,A


 ∑

|α|≤m
Wαhα


 :=

∑

|α|≤m
Vαhα

for any m ∈ N and hα ∈ H, α ∈ F+
n . Note that LB,A is a bounded operator

with ‖LB,A‖ ≤ c. Since LB,A|H = IH, we have ‖LB,A‖ ≥ 1. It is easy to see
that LB,AWi = ViLB,A for i = 1, . . . , n. Therefore item (vi) holds.

Conversely, assume that there is an operator LB,A ∈ B(KB ,KA) with norm
‖LB,A‖ ≤ c such that LB,A|H = IH and LB,AWi = ViLB,A, i = 1, . . . , n.

Then, we deduce that LB,A

(∑
|α|≤mWαhα

)
=
∑
|α|≤m Vαhα for any m ∈ N

and hα ∈ H, α ∈ F+
n . The condition ‖LB,A‖ ≤ c implies

∥∥∥∥∥∥
∑

|α|≤m
Vαhα

∥∥∥∥∥∥

2

≤ c2
∥∥∥∥∥∥
∑

|α|≤m
Wαhα

∥∥∥∥∥∥

2

,

which is equivalent to the inequality
〈

[Kρ,A(β, α)]|α|,|β|≤m hm,hm

〉
≤ c2

〈
[Kρ,B(β, α)]|α|,|β|≤m hm,hm

〉

for any m ∈ N and hm := ⊕|α|≤mhα ∈ ⊕|α|≤mHα. Consequently, we deduce
item (iv). The proof is complete. �

A closer look at the proof of Theorem 2.2 reveals that one can assume that
u(0) = I in part (iii), and one can also assume that ℜp(0) = I in the definition

of the Harnack domination A
H≺B. We also remark that, due to Theorem 1.3,

we can add an equivalence to Theorem 2.2, namely, A
H≺
c
B if and only if

u(A1, . . . , An) + (ρ− 1)u(0) ≤ c2 [u(B1, . . . , Bn) + (ρ− 1)u(0)]

for any positive free pluriharmonic function u ∈ Harcball(B(E)).
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Corollary 2.3. If A,B ∈ Cρ and A
H≺B, then

‖LB,A‖ = inf{c > 1 : A
H≺
c
B}

= inf{c > 1 : Pρ(rA,R) ≤ c2Pρ(rB,R) for any r ∈ [0, 1)}.

Moreover, A
H≺B if and only if supr∈[0,1) ‖LrA,rB‖ <∞. In this case,

‖LA,B‖ = sup
r∈[0,1)

‖LrA,rB‖

and the mapping r 7→ ‖LrA,rB‖ is increasing on [0, 1).

Proof. Assume that A
H≺B. Then, due to Theorem 2.2, A

H≺
c
B if and only if there

is an operator LB,A ∈ B(KB ,KA) with ‖LB,A‖ ≤ c such that LB,A|H = IH
and LB,AWi = ViLB,A for i = 1, . . . , n. Consequently, taking c = ‖LB,A‖, we

deduce that A
H≺

‖LB,A‖
B, which is equivalent to

Pρ(rA,R) ≤ ‖LB,A‖2Pρ(rB,R)

for any r ∈ [0, 1). Hence, we have tA
H≺

‖LB,A‖
tB for any t ∈ [0, 1). Applying again

Theorem 2.2 to the operators tA and tB, we deduce that ‖LtA,tB‖ ≤ ‖LB,A‖.
Conversely, suppose that c := supr∈[0,1) ‖LrA,rB‖ < ∞. Since ‖LrA,rB‖ ≤ c,

Theorem 2.2 implies rA
H≺
c
rB for any r ∈ [0, 1) and, therefore, Pρ(rtA,R) ≤

c2Pρ(rtB,R) for any t, r ∈ [0, 1). Hence, A
H≺
c
B and, consequently, ‖LB,A‖ ≤ c.

Therefore, ‖LA,B‖ = supr∈[0,1) ‖LrA,rB‖. The fact that r 7→ ‖LrA,rB‖ is an

increasing function on [0, 1) follows from the latter relation. This completes
the proof. �

We remark that if 1 ≤ m < n and u is a positive free pluriharmonic function
on [B(K)n]1, then the map

(X1, . . . , Xm) 7→ u(X1, . . . , Xm, 0, . . . , 0)

is a positive free pluriharmonic function on [B(K)m]1. Moreover, if g is a
positive free pluriharmonic function on [B(K)m]1, then the map

(X1, . . . , Xn) 7→ g(X1, . . . , Xm, 0, . . . , 0)

is a positive free pluriharmonic function on [B(K)n]1. Consequently, using
Corollary 1.2, one can easily deduce the following result.

Corollary 2.4. Let c > 0, ρ > 0, and 1 ≤ m < n. Consider two n-tuples
(A1, . . . , Am) ∈ B(H)m and (B1, . . . , Bm) ∈ B(H)m in the class Cρ and let
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(A1, . . . , Am, 0, . . . , 0) and (B1, . . . , Bm, 0, . . . , 0) be their extensions in B(H)n,

respectively. Then (A1, . . . , Am)
H≺
c

(B1, . . . , Bm) in Cρ ⊂ B(H)m if and only if

(A1, . . . , Am, 0, . . . , 0)
H≺
c

(B1, . . . , Bm, 0, . . . , 0) in Cρ ⊂ B(H)n.

We recall (e.g. [43]) that if (T1, . . . Tn) is an n-tuple of operators, then the joint

spectral radius r(T1, . . . , Tn) < 1 if and only if limk→∞
∥∥∥
∑
|α|=k TαT

∗
α

∥∥∥ = 0.

In what follows, we characterize the elements of Cρ which are Harnack domi-
nated by 0.

Theorem 2.5. Let A := (A1, . . . , An) be in Cρ. Then A
H≺ 0 if and only if the

joint spectral radius r(A1, . . . , An) < 1.

Proof. Note that the map X 7→ Pρ(X,R) is a positive free pluriharmonic func-
tion on [B(H)n]1 with coefficients in B(F 2(Hn)) and has the factorization

Pρ(X,R) =

= (I −RX)−1 + (ρ− 2)I + (I −R∗X)−1

= (I −R∗X)−1 [I −RX + (ρ− 2)(I −R∗X)(I −RX) + I −R∗X ] (I −RX)−1

= (I −R∗X)−1 [ρI + (1− ρ)(R∗X +RX) + (ρ− 2)R∗XRX ] (I −RX)−1,

(2.4)

where RX := X∗1 ⊗ R1 + · · · + X∗n ⊗ Rn is the reconstruction operator as-
sociated with the n-tuple X := (X1, . . . , Xn) ∈ [B(H)n]1. We remark that,
due to the fact that the spectral radius of RX is equal to the joint spec-
tral radius r(X1, . . . , Xn), the factorization above holds for any X ∈ Cρ with
r(X1, . . . , Xn) < 1.

Now, using Theorem 2.2 part (ii) and the above-mentioned factorization, we

deduce that A
H≺ 0 if and only if there exists c > 0 such that

(I −R∗rA)−1 [ρI + (1− ρ)(R∗rA +RrA) + (ρ− 2)R∗rARrA] (I −RrA)−1 ≤ ρc2I
for any r ∈ [0, 1). Similar inequality holds if we replace the right creation
operators by the left creation operators. Then, applying the noncommutative
Poisson transform id⊗ PeiθR, where R := (R1, . . . , Rn), we obtain
(2.5)
ρI+(1−ρ)(e−iθR∗rA+eiθRrA)+(ρ−2)R∗rARrA ≤ ρc2(I−re−iθR∗A)(I−reiθRA)

for any r ∈ [0, 1) and θ ∈ R.

On the other hand, since A := (A1, . . . , An) ∈ Cρ, we have r(A1, . . . , An) ≤
1. Suppose that r(A1, . . . , An) = 1. Taking into account that r(RA) =
r(A1, . . . , An), we can find λ0 ∈ T in the approximative spectrum of RA. Con-
sequently, there is a sequence {hm} in H⊗ F 2(Hn) such that ‖hm‖ = 1 and

(2.6) λ0hm −RAhm → 0 as m→∞.
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In particular, relation (2.5) implies

ρ‖hm‖2 + (1− ρ)
[
〈λ0R

∗
rAhm, hm〉+

〈
λ̄0RrAhm, hm

〉]
+ (ρ− 2)‖RrAhm‖2

≤ ρc2‖hm − λ̄0RrAhm‖2

(2.7)

for any r ∈ (0, 1) and m ∈ N. Note that due to (2.6) and the fact that |λ0| = 1,
we have

〈
λ̄0RAhm, hm

〉
= λ̄0 〈RAhm − λ0hm, hm〉+ 1→ 1, as m→∞.

Since

‖hm − λ̄0RrAhm‖ ≤ ‖hm − λ̄0RAhm‖+ ‖λ̄0(RAhm −RrAhm)‖
= ‖λ̄0hm −RAhm‖+ (1 − r)‖RAhm‖

and due to the fact that ‖RAhm‖ → 1 as m→∞, we deduce that

lim sup
m→∞

‖hm − λ̄0RrAhm‖ ≤ 1− r

for any r ∈ (0, 1). Now, since RrA = rRA and taking m→∞ in relation (2.7),
we obtain

ρ+ 2(1− ρ)r + (ρ− 2)r2 ≤ c2ρ(1− r)2
for any r ∈ (0, 1). Setting r = 1 − 1

m , m ≥ 2, straightforward calculations

imply 2m ≤ ρc2− ρ+ 2 for any m ∈ N, which is a contradiction. Therefore, we
must have r(A1, . . . , An) < 1.

Conversely, assume that A := (A1, . . . , An) ∈ Cρ has the joint spectral radius
r(A1, . . . , An) < 1. Since r(A1, . . . , An) = r(RA), one can see that M :=
supr∈(0,1) ‖(I − rRA)−1‖ exists and M ≥ 1. Hence

(2.8) M2(I −R∗rA)(I − RrA) ≥ I ≥ I −R∗rARrA
for any r ∈ (0, 1). Now we consider the case ρ ≥ 1. Note that relation (2.8)
implies

I −R∗rARrA + (ρ− 1)(I −R∗rA)(I −RrA) ≤ ρM2(I −R∗rA)(I −RrA).

The latter inequality is equivalent to

ρI + (1− ρ)(R∗rA +RrA) + (ρ− 2)R∗rARrA ≤ ρM2(I −R∗rA)(I −RrA),

which, due to the factorization (2.4), is equivalent to

Pρ(rA,R) ≤ ρM2 = M2Pρ(0, R)

for any r ∈ [0, 1). According to Theorem 2.2, we deduce that A
H≺ 0.

Now, consider the case when ρ ∈ (0, 1). Since ‖RrA‖ ≤ rρ and δ − 2 < 0, we
have

ρI + (1− ρ)(R∗rA +RrA) + (ρ− 2)R∗rARrA ≤ ρI + (1− ρ)(R∗rA +RrA)

≤ ρI + 2(1− ρ)rρ ≤ (3ρ− 2ρ2)I.

Using again the factorization (2.4), we deduce that

Pρ(rA,R) ≤ (3ρ− 2ρ2)(I −R∗rA)−1(I −RrA)−1
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for any r ∈ (0, 1). Hence and using the fact that (I−R∗rA)−1(I−RrA)−1 ≤M2I,
we obtain

Pρ(rA,R) ≤ (3− 2ρ)M2Pρ(0, R)

for any r ∈ (0, 1). Using again Theorem 2.2, we get A
H≺ 0. The proof is

complete. �

We mention that in the particular case when n = 1 we can recover a result
obtained by Ando, Suciu, and Timotin [1], when ρ = 1, and by G. Cassier and
N. Suciu [9], when ρ 6= 1.

3. Hyperbolic metric on Harnack parts of the noncommutative
ball Cρ

The relation
H≺ induces an equivalence relation

H∼ on the class Cρ. We provide a
Harnack type double inequality for positive free pluriharmonic functions on the
noncommutative ball Cρ and use it to prove that the Harnack part of Cρ which
contains 0 coincides with the open noncommutative ball [Cρ]<1. We introduce
a hyperbolic metric on any Harnack part of Cρ and obtain a concrete formula
in terms of the reconstruction operator.

Since
H≺ is a preorder relation on Cρ, it induces an equivalence relation

H∼ on Cρ,
which we call Harnack equivalence. The equivalence classes with respect to

H∼
are called Harnack parts of Cρ. Let A := (A1, . . . , An) and B := (B1, . . . , Bn)

be in Cρ. We say that A and B are Harnack equivalent (we denote A
H∼ B) if

and only if there exists c ≥ 1 such that

1

c2
[ℜp(B1, . . . , Bn) + (ρ− 1)ℜp(0)] ≤ ℜp(A1, . . . , An) + (ρ− 1)ℜp(0)

≤ c2 [ℜp(B1, . . . , Bn) + (ρ− 1)ℜp(0)]

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗Mm, m ∈ N, such that ℜp(X) ≥ 0 for any X ∈ [B(H)n]1.

We also use the notation A
H∼
c
B when A

H≺
c
B and B

H≺
c
A. We remark that Theo-

rem 2.2 can be used to provide several characterizations for the Harnack parts
of Cρ.
The first result is an extension of Harnack inequality to positive free plurihar-
monic functions on the noncommutative ball Cρ, ρ > 0.

Theorem 3.1. If u is a positive free pluriharmonic function on [B(H)n]1 with
operator-valued coefficients in B(E) and 0 ≤ r < 1, then

u(0)
1− r(2ρ− 1)

1 + r
≤ u(rX1, . . . , rXn) ≤ u(0)

1 + r(2ρ− 1)

1− r
for any (X1, . . . , Xn) ∈ Cρ.
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Proof. Let

u(Z1, . . . , Zn) =
∞∑

k=1

∑

|α|=k
Z∗α ⊗A∗(α) + I ⊗A(0) +

∞∑

k=1

∑

|α|=k
Zα ⊗A(α)

be a positive free pluriharmonic function on [B(H)n]1 with coefficients in B(E).
According to Theorem 1.4 from [49], for any Y ∈ [B(H)n]−1 and r ∈ [0, 1), we
have

(3.1) u(0)
1− r
1 + r

≤ u(rY1, . . . , rYn) ≤ u(0)
1 + r

1− r .

On the other hand, let (X1, . . . , Xn) ∈ Cρ and let (V1, . . . , Vn) be the minimal
isometric dilation of (X1, . . . , Xn) on a Hilbert space KT ⊇ H. Since Xα =
ρPHVα|H for any α ∈ F+

n \{g0}, and using the free pluriharmonic functional
calculus, we have

u(rX1, . . . , rXn) =

=

∞∑

k=1

∑

|α|=k
r|α|X∗α ⊗A∗(α) + I ⊗A(0) +

∞∑

k=1

∑

|α|=k
r|α|Xα ⊗A(α)

= ρ(PH ⊗ IE )



∞∑

k=1

∑

|α|=k
r|α|V ∗α ⊗A∗(α)


 |H⊗E + IH ⊗A(0)

+ ρ(PH ⊗ IE)



∞∑

k=1

∑

|α|=k
r|α|Vα ⊗A(α)


 |H⊗E

= ρ(PH ⊗ IE )u(rV1, . . . , rVn)|H⊗E + (1 − ρ)u(0),

where the convergence is in the operator norm topology. Due to (3.1), we have

u(0)
1− r
1 + r

≤ u(rV1, . . . , Vn) ≤ u(0)
1 + r

1− r .

Consequently, we deduce that

u(0)

[
ρ(1 − r)

1 + r
+ (1− ρ)

]
≤ ρ(PH ⊗ IE)u(rV1, . . . , rVn)|H⊗E + (1 − ρ)u(0)

≤ u(0)

[
ρ(1 + r)

1− r + (1− ρ)

]
.

Since

u(rX1, . . . , rXn) = ρ(PH ⊗ IE )u(rV1, . . . , rVn)|H⊗E + (1 − ρ)u(0),

the result follows. �

Now, we can determine the Harnack part of Cρ which contains 0.

Theorem 3.2. Let A := (A1, . . . , An) be in Cρ. Then the following statements
are equivalent:
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(i) ωρ(A1, . . . , An) < 1;

(ii) A
H∼ 0;

(iii) r(A1, . . . , An) < 1 and Pρ(A,R) ≥ aI for some constant a > 0.

Proof. First, we prove that (i) =⇒ (ii). Let A := (A1, . . . , An) be in Cρ
and assume that ωρ(A) < 1. Then there is r0 ∈ (0, 1) such that ωρ(

1
r0
A) =

1
r0
ωρ(A) < 1. Consequently, 1

r0
A ∈ Cρ.

According to Theorem 3.1, we have

ℜp(0)
1− r0(2ρ− 1)

1 + r0
≤ ℜp(A1, . . . , An) ≤ ℜp(0)

1 + r0(2ρ− 1)

1− r0
for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗ Mm, m ∈ N, such that ℜp ≥ 0 on [B(H)n]1. Hence, we

deduce that A
H∼ 0.

To prove that (ii) =⇒ (iii), assume that A
H∼ 0. Due to Theorem 2.5, we

have r(A) < 1. Using now Theorem 2.2, we deduce that there exists c > 0 such
that

(3.2) Pρ(rA,R) ≥ 1

c2
Pρ(0, R) =

ρ

c2
I

for any r ∈ [0, 1). Since r(A) < 1, one can prove that limr→1 Pρ(rA,R) =
Pρ(A,R) in the operator norm topology. Consequently, taking r → 1 in relation
(3.2), we obtain item (iii).

It remains to show that (iii) =⇒ (i). Assume that r(A1, . . . , An) < 1 and
Pρ(A,R) ≥ aI for some constant a > 0. Note that there exists t0 ∈ (0, 1) such
that the map

t 7→
(
I −

n∑

i=1

A∗i ⊗ tRi
)−1

+ (ρ− 2)I +

(
I −

n∑

i=1

Ai ⊗ tR∗i

)−1

is well-defined and continuous on [0, 1 + t0] in the operator norm topology. In
particular, there is ǫ0 ∈ (0, t0) such that

‖Pρ(A,R)− Pρ(A, tR)‖ < a

2

for any t ∈ (1− ǫ0, 1 + ǫ0). Consequently, if γ0 ∈ (1, 1 + ǫ0), then

Pρ(γ0A,R) ≥ Pρ(A,R)− ‖Pρ(A,R)− Pρ(γ0A,R)‖I ≥ a

2
I > 0.

Due to Theorem 1.1, we have γ0A ∈ Cρ, which implies ω(γ0A) ≤ 1. Therefore,
ω(A) ≤ 1

γ0
< 1 and item (i) holds. The proof is complete. �

We remark that, when n = 1, we recover a result obtain by Foiaş [15] if ρ = 1,
and by Cassier and Suciu [9] if ρ > 0.
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Given A,B ∈ Cρ, ρ > 0, in the same Harnack part of Cρ, i.e., A
H∼ B, we

introduce

(3.3) Λρ(A,B) := inf
{
c > 1 : A

H∼
c
B
}
.

Note that, due to Theorem 2.2, A
H∼ B if and only if the operator LB,A is

invertible. In this case, L−1
B,A = LA,B and

Λρ(A,B) = max {‖LA,B‖, ‖LB,A‖} .

To prove the latter equality, assume that A
H∼
c
B for some c ≥ 1. Due to the

same theorem, we have ‖LB,A‖ ≤ c and ‖LA,B‖ ≤ c. Consequently,

(3.4) max {‖LA,B‖, ‖LB,A‖} ≤ inf
{
c ≥ 1 : A

H∼
c
B
}

= Λρ(A,B).

On the other hand, setting c0 := ‖LB,A‖ and c′0 := ‖LA,B‖, Theorem

2.2 implies A
H≺
c0
B and B

H≺
c′0

A. Hence, we deduce that A
H∼
d
B, where d :=

max{c0, c′0}. Consequently, Λρ(A,B) ≤ d, which together with relation (3.4)
imply Λρ(A,B) = max {‖LA,B‖, ‖LB,A‖}, which proves our assertion.

Now, we can introduce a hyperbolic (Poincaré-Bergman type) metric δρ : ∆×
∆→ R+ on any Harnack part ∆ of Cρ, by setting

(3.5) δρ(A,B) := ln Λρ(A,B), A,B ∈ ∆.

Due to our discussion above, we also have

δρ(A,B) = ln max
{
‖LA,B‖ ,

∥∥∥L−1
A,B

∥∥∥
}
.

Proposition 3.3. δρ is a metric on any Harnack part of Cρ.

Proof. The proof is similar to that of Proposition 2.2 from [49], but uses ρ-
pluriharmonic kernels. �

We remark that, according to Theorem 3.2, the set

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1}
is the Harnack part of Cρ containing 0.

In what follows we calculate the norm of LY,X with X,Y ∈ [Cρ]<1, in terms of
the reconstruction operators.

Theorem 3.4. If X,Y ∈ [Cρ]<1, then ‖LY,X‖ = ‖Cρ,XC−1
ρ,Y ‖, where

Cρ,X := ∆ρ,X(I −RX)−1,

∆ρ,X := [ρI + (1− ρ)(R∗X +RX) + (ρ− 2)R∗XRX ]
1/2

.

Moreover, if X,Y ∈ Cρ is such that X
H≺ Y , then ‖LY,X‖ =

supr∈[0,1) ‖Cρ,rXC−1
ρ,rY ‖.
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Proof. Since X,Y ∈ [Cρ]<1, Theorem 3.2 implies X
H∼ Y , r(X) < 1, and

r(Y ) < 1. Let c > 1 and assume that Pρ(rX,R) ≤ c2Pρ(rY,R) for any
r ∈ [0, 1). Since r(X) < 1 and r(Y ) < 1, we can take the limit, as r → 1, in the
operator norm topology, and obtain Pρ(X,R) ≤ c2Pρ(Y,R). Conversely, if the
latter inequality holds, then Pρ(X,S) ≤ c2Pρ(Y, S), where S := (S1, . . . , Sn) is
the n-tuple of left creation operators. Applying the noncommutative Poisson
transform id⊗PrR, r ∈ [0, 1), and taking into account that it is a positive map,
we deduce that Pρ(rX,R) ≤ c2Pρ(rY,R) for any r ∈ [0, 1).

Therefore, due to Theorem 2.2, we have

(3.6) Pρ(X,R) ≤ c2Pρ(Y,R) if and only if ‖LY,X‖ ≤ c.
We recall that the free pluriharmonic kernel Pρ(X,R) with X ∈ [Cρ]<1, has the
factorization P (X,R) = C∗ρ,XCρ,X . Due to Theorem 3.2, Pρ(X,R) is invertible
and, consequently, so is Cρ,X . Consequently,

Pρ(X,R) ≤ c2Pρ(Y,R) if and only if C∗ρ,Y
−1C∗ρ,XCρ,XC

−1
ρ,Y ≤ c2I.

Setting c0 := ‖Cρ,XC−1
ρ,Y ‖, we have Pρ(X,R) ≤ c20Pρ(Y,R). Now, due to

relation (3.6), we obtain

‖LY,X‖ ≤ c0 = ‖Cρ,XC−1
ρ,Y ‖.

Setting c′0 := ‖LY,X‖ and using again (3.6), we obtain Pρ(X,R) ≤ c′02
Pρ(Y,R).

Hence, we deduce that C∗ρ,Y
−1C∗ρ,XCρ,XC

−1
ρ,Y ≤ c′0

2
I, which implies

‖Cρ,XC−1
ρ,Y ‖ ≤ c′0 = ‖LY,X‖.

Therefore, ‖LY,X‖ = ‖Cρ,XC−1
ρ,Y ‖. The last part of the theorem is now obvious.

�

Combining Theorem 3.4 with the remarks preceding Proposition 3.3, we ob-
tain a concrete formula for the hyperbolic metric δρ on [Cρ]<1 in terms of the
reconstruction operator, which is the main result of this section.

Theorem 3.5. Let δρ : [Cρ]<1 × [Cρ]<1 → [0,∞) be the hyperbolic metric. If
X,Y ∈ [Cρ]<1, then

δρ(X,Y ) = ln max
{∥∥∥Cρ,XC−1

ρ,Y

∥∥∥ ,
∥∥∥Cρ,Y C−1

ρ,X

∥∥∥
}
,

where

Cρ,X := ∆ρ,X(I −RX)−1,

∆ρ,X := [ρI + (1− ρ)(R∗X +RX) + (ρ− 2)R∗XRX ]
1/2

,

and RX := X∗1 ⊗R1 + · · ·+X∗n ⊗Rn is the reconstruction operator associated
with the right creation operators R1, . . . , Rn and X := (X1, . . . , Xn) ∈ [Cρ]<1.

Using Theorem 2.2, one can easily obtain the following result. Since the proof
is similar to that of Lemma 2.6 from [49], we shall omit it.
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Lemma 3.6. Let X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn) be in Cρ. Then the
following properties hold.

(i) X
H∼ Y if and only if rX

H∼ rX for any r ∈ [0, 1) and
supr∈[0,1) Λρ(rX, rY ) <∞. In this case,

Λρ(X,Y ) = sup
r∈[0,1)

Λρ(rX, rY ) and δρ(X,Y ) = sup
r∈[0,1)

δρ(rX, rY ).

(ii) If X
H∼ Y , then the functions r 7→ Λρ(rX, rY ) and r 7→ δρ(rX, rY ) are

increasing on [0, 1).

Putting together Theorem 3.5 and Lemma 3.6, we deduce the following result.

Theorem 3.7. Let X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn) be in Cρ such

that X
H∼ Y . Then the metric δρ satisfies the relation

δρ(X,Y ) = ln max

{
sup
r∈[0,1)

∥∥∥Cρ,rXC−1
ρ,rY

∥∥∥ , sup
r∈[0,1)

∥∥∥Cρ,rY C−1
ρ,rX

∥∥∥
}
,

where Cρ,X := ∆ρ,X(I − RX)−1 and RX := X∗1 ⊗ R1 + · · · + X∗n ⊗ Rn is the
reconstruction operator.

Using the Harnack type inequality of Theorem 3.1, we obtain an upper bound
for the hyperbolic distance δρ on [Cρ]<1. First, we need the following result.

Proposition 3.8. Let f be in the noncommutative disc algebra An such that
ℜf ≥ 0 and let X := (X1, . . . , Xn) ∈ Cρ be with ωρ(X) < 1. Then

ρ
1− ωρ(X)

1 + ωρ(X)
ℜf(0) ≤ ℜf(X1, . . . , Xn) + (ρ− 1)ℜf(0) ≤ ρ1 + ωρ(X)

1− ωρ(X)
.

Proof. Let r := ωρ(X) and define Y := 1
rX . Since ωρ(Y ) = 1

rωρ(X) = 1, we
deduce that Y ∈ Cρ. Applying Theorem 3.1 to Y , we obtain

1− ωρ(X)(2ρ− 1)

1 + ωρ(X)
ℜf(0) ≤ ℜf(X1, . . . , Xn) ≤ ρ1 + ωρ(X)(2ρ− 1)

1− ωρ(X)
.

It is easy to see that the latter inequality is equivalent to the one from the
proposition. �

Now, we can deduce the following upper bound for the hyperbolic distance on
[Cρ]<1.

Corollary 3.9. For any X,Y ∈ [Cρ]<1,

δρ(X,Y ) ≤ 1

2
ln

(1 + ωρ(X))(1 + ωρ(Y ))

(1− ωρ(X))(1− ωρ(Y ))
.
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Proof. Using Theorem 2.2 and the inequality of Proposition 3.8, we deduce
that

Λρ(X, 0) ≤
(

1 + ωρ(X)

1− ωρ(X)

)1/2

.

On the other hand, since δρ is a metric on [Cρ]<1, we have δ(X,Y ) ≤ δ(X, 0) +
δρ(Y, 0). Taking into account that δρ(X,Y ) = ln Λρ(X,Y ), the result follows.

�

We remark that when ρ = 1, the inequality of Corollary 3.9 is sharper then the
one obtained in Corollary 2.5 from [49].

Using Corollary 2.4, on can easily obtain the following result.

Corollary 3.10. Let ρ > 0, and 1 ≤ m < n. Consider two n-tuples A :=
(A1, . . . , Am) ∈ B(H)m and B := (B1, . . . , Bm) ∈ B(H)m in the class Cρ and

their extensions Ã := (A1, . . . , Am, 0, . . . , 0) and B̃ := (B1, . . . , Bm, 0, . . . , 0) in
B(H)n, respectively. Then

A
H∼B if and only if Ã

H∼ B̃.
Moreover, in this case,

δρ(A,B) = δρ(Ã, B̃).

In what follows we provide a few properties for the map ρ 7→ δρ(A,B).

Lemma 3.11. Let A := (A1, . . . , An) ∈ B(H)n and B := (B1, . . . , Bn) ∈ B(H)n

be in the class Cρ and let c > 0 and 0 < ρ ≤ ρ′. Then the following statements
hold.

(i) if A
H≺
c
B in Cρ, then A

H≺
c
B in Cρ′ ;

(ii) if A
H∼
c
B in Cρ, then if A

H∼
c
B in Cρ and

δρ′(A,B) ≤ δρ(A,B).

Proof. First recall that Cρ ⊆ Cρ′ . If A
H≺
c
B in Cρ, then

ℜp(A1, . . . , An) + (ρ− 1)ℜp(0) ≤ c2 [ℜp(B1, . . . , Bn) + (ρ− 1)ℜp(0)]

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗Mm, m ∈ N, such that ℜp(X) ≥ 0 for any X ∈ [B(H)n]1.
Hence, c ≥ 1 and, consequently, the inequality above holds when we replace ρ

with ρ′ ≥ ρ. This shows that A
H≺
c
B in Cρ′ . Part (ii) is a clear consequence of

(i) and the definition of the hyperbolic metric. �

If A := (A1, . . . , An) ∈ B(H)n is a nonzero n-tuple of operators such that
A ∈ [C∞]<1, i.e., the joint spectral radius r(A) < 1, then

ρA := inf{ρ > 0 : A ∈ Cρ} > 0.
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Indeed, if ρ, ρ′ ∈ (0,∞], ρ ≤ ρ′, then Cρ ⊆ Cρ′ and, moreover, we have

ωρ′(A) ≤ ωρ(A), r(A) = lim
ρ→∞

ωρ(A), A ∈ B(H)n.

Consequently, there exists ρ > 0 such that ωρ′(A) < 1, for any ρ′ ≥ ρ. Assume
now that ρA = 0. Then T ∈ Cρ, i.e., ωρ(A) ≤ 1 for any ρ > 0. On the other
hand, we know that ‖A‖ ≤ ρωρ(A). Taking ρ → 0, we deduce that A = 0,
which is a contradiction. This proves our assertion.

Note that if A,B ∈ [C∞]<1, then

ρA,B := inf{ρ > 0 : A,B ∈ Cρ} = max{ρA, ρB}.

Proposition 3.12. If A,B ∈ [C∞]<1, then the map

[ρA,B,∞) ∋ ρ 7→ δρ(A,B) ∈ R+

is continuous, decreasing, and

lim
ρ→∞

δρ(A,B) = 0.

Proof. Using Theorem 3.5 and Lemma 3.11, one can easily deduce that the
map ρ 7→ δρ(A,B) is continuous and decreasing. To prove the last part of the
proposition, note that since δρ(A,B) ≤ δρ(A, 0)+δρ(0, B), it is enough to show
that limρ→∞ δρ(A, 0) = 0. To this end, note that Theorem 3.5, implies

(3.7) δρ(A, 0) = ln max
{∥∥Cρ,AC−1

ρ,0

∥∥ ,
∥∥∥Cρ,0C−1

ρ,A

∥∥∥
}
,

where

Cρ,AC
−1
ρ,0 =

1√
ρ

[ρI + (1− ρ)(R∗A +RA) + (ρ− 2)R∗ARA]
1/2

(I −RA)−1.

Hence, we deduce that

lim
ρ→∞

‖Cρ,AC−1
ρ,0‖ =

∥∥∥[I − (R∗A +RA) +R∗ARA]1/2 (I −RA)−1
∥∥∥

=
∥∥(I −R∗A)−1 [I − (R∗A +RA) +R∗ARA] (I −RA)−1

∥∥
=
∥∥(I −R∗A)−1(I −R∗A)(I −RA)(I −RA)−1

∥∥
= 1

Similarly, we have limρ→∞ ‖Cρ,0C−1
ρ,A‖ = 1. Using now relation (3.7), we com-

plete the proof. �
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4. Mapping theorems for free holomorphic functions on
noncommutative balls

In this section, we provide mapping theorems, spectral von Neumann inequal-
ities, and Schwarz type results for free holomorphic functions on noncommu-
tative balls, with respect to the hyperbolic metric and the operator radius ωρ,
ρ ∈ (0,∞].

First, we prove the following mapping theorem for the classes Cρ, ρ > 0.

Theorem 4.1. Let f := (f1, . . . , fm) be a contractive free holomorphic function

with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the non-
commutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n is of class Cρ, ρ > 0,
then f(T1, . . . , Tn) is of class Cρf , where

(4.1) ρf :=





1 + (ρ− 1)1−‖f(0)‖
1+‖f(0)‖ if ρ < 1

1 + (ρ− 1)1+‖f(0)‖
1−‖f(0)‖ if ρ ≥ 1.

Proof. Let p ∈ C[Z1, . . . , Zm] ⊗Mk, k ∈ N, be such that ℜp ≥ 0 on the unit
ball [B(H)m]1. This is equivalent to ℜp(S′1, . . . S′m) ≥ 0, where S′1, . . . , S

′
m

are the left creation operators on the full Fock space F 2(Hm). Applying the
noncommutative Poisson transform Pf(X1,...,Xn) ⊗ id, which is a completely
positive linear map, to the inequality ℜp(S′1, . . . S′m) ≥ 0, we obtain

ℜp(f(X1, . . . , Xn)) ≥ 0, X ∈ [B(H)n]1.

Moreover, since the boundary functions f̃1, . . . , f̃m are in the noncommutative
disc algebra An, we deduce that the boundary function of the composition p◦f
is p(f̃1, . . . , f̃m) ∈ An⊗̄minMk.

Assume that (T1, . . . , Tn) ∈ Cρ. Using the free pluriharmonic functional calcu-
lus of Theorem 1.3 and Theorem 1.1, we deduce that

(4.2) ℜ(p ◦ f)(T1, . . . , Tn) + (ρ− 1)ℜ(p ◦ f)(0) ≥ 0.

On the other hand, according to the Harnack type inequality of Theorem 1.4
from [49] applied to the positive free pluriharmonic function ℜp at the point
f(0) = (f1(0), . . . , fm(0)), we have

(4.3) ℜp(0)
1− ‖f(0)‖
1 + ‖f(0)‖ ≤ ℜp(f(0)) ≤ ℜp(0)

1 + ‖f(0)‖
1− ‖f(0)‖ .

Let γ > 0 and note that

(4.4) ℜp(f(T1, . . . , Tn)) + (γ − 1)ℜp(0) = A+B,

where

A := ℜp(f(T1, . . . , Tn)) + (ρ− 1)p(f(0))

B := (γ − 1)ℜp(0)− (ρ− 1)p(f(0)).
(4.5)
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Assume now that ρ ≥ 1. Using the second inequality in (4.3), we obtain

B ≥ (γ − 1)ℜp(0)− (ρ− 1)ℜp(0)
1 + ‖f(0)‖
1− ‖f(0)‖

=

[
(γ − 1)− (ρ− 1)

1 + ‖f(0)‖
1− ‖f(0)‖

]
ℜp(0),

which is positive if γ ≥ 1 + (ρ − 1)1+‖f(0)‖
1−‖f(0)‖ . In this case, using relation (4.4)

and (4.2), we obtain

ℜp(f(T1, . . . , Tn)) + (γ − 1)ℜp(0) ≥ 0

for any p ∈ C[Z1, . . . , Zn] ⊗ Mk, k ∈ N, be such that ℜp ≥ 0 on the unit
ball [B(H)m]1. Applying Theorem 1.1, we deduce that f(T1, . . . , Tn) ∈ Cγ . In
particular, we have f(T1, . . . , Tn) ∈ Cδf where

δf := 1 + (ρ− 1)
1 + ‖f(0)‖
1− ‖f(0)‖ .

Now, we consider the case ρ ∈ (0, 1). Using the first inequality in (4.3), we
obtain

B ≥
[
(γ − 1)− (ρ− 1)

1− ‖f(0)‖
1 + ‖f(0)‖

]
ℜp(0),

which is positive if γ ≥ 1 + (ρ− 1)1−‖f(0)‖
1+‖f(0)‖ . As above, using relations (4.4) and

(4.2), we obtain

ℜp(f(T1, . . . , Tn)) + (γ − 1)ℜp(0) ≥ 0

for any p ∈ C[Z1, . . . , Zn] ⊗Mk, k ∈ N, be such that ℜp ≥ 0 on the unit ball
[B(H)m]1. Theorem 1.1 implies f(T1, . . . , Tn) ∈ Cγ . In particular, we have
f(T1, . . . , Tn) ∈ Cδf where

δf := 1 + (ρ− 1)
1− ‖f(0)‖
1 + ‖f(0)‖ .

The proof is complete. �

Note that under the conditions of Theorem 4.1, ρ ≤ ρf and ρ = 1 =⇒ ρf = 1.
Moreover, if ρ 6= 1, then ρf = ρ if and only if f(0) = 0. On can also show that
ρf ≤ 1 if ρ ≤ 1.

We remark that, under the conditions of Theorem 4.1, there exists T :=
(T1, . . . , Tn) ∈ B(H)n such that if ρ > 0 is the smallest positive number such
that (T1, . . . , Tn) ∈ Cρ, then there exists a free holomorphic function f such
that ρf is the smallest positive number with the property that f(T1, . . . , Tn) ∈
Cρf . Indeed, if n ≤ m, take f(X1, . . . , Xn) = (X1, . . . , Xn, 0, . . . , 0) and
use Corollary 2.4. When n > m, take f(X1, . . . , Xn) = (X1, . . . , Xm) and
T := (T1, . . . , Tn, 0, . . . , 0) with (T1, . . . , Tn) ∈ Cρ.
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Corollary 4.2. Let f := (f1, . . . , fm) be a bounded free holomorphic function

with ‖f(0)‖ < ‖f‖∞ such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n is of class Cρ, ρ > 0,
then

ωρf (f(T1, . . . , Tn)) ≤ ‖f‖∞,
where ρf is given by relation (4.1). In particular, if f(0) = 0 and (T1, . . . , Tn) ∈
Cρ, then

ωρ(f(T1, . . . , Tn)) ≤ ‖f‖∞.

Proof. Applying Theorem 4.1 the function 1
‖f‖∞ f , we deduce that

1
‖f‖∞ f(T1, . . . , Tn) is in the class Cρf , which is equivalent to

ωρf

(
1

‖f‖∞ f(T1, . . . , Tn)
)
≤ 1, and the first inequality of the theorem fol-

lows. Hence, and using the fact that ρf = ρ when f(0) = 0, we complete the
proof. �

A simple consequence of Corollary 4.2 is the following power inequality.

Corollary 4.3. If (T1, . . . , Tn) ∈ B(H)n is non-zero, ρ ∈ (0,∞), and k ≥ 1,
then

ωρ(Tα : α ∈ F+
n , |α| = k) ≤ ωρ(T1, . . . , Tn).

Proof. Since ‖(T1, . . . , Tn)‖ ≤ ρωρ(T1, . . . , Tn), we have ωρ(T1, . . . , Tn) 6=
0. Applying the second part of Corollary 4.2 to the n-tuple of operators(

1
ωρ(T1,...,Tn)T1, . . . ,

1
ωρ(T1,...,Tn)Tn

)
∈ Cρ and to the free holomorphic function

f(X1, . . . , Xn) := (Xα : α ∈ F+
n , |α| = k), (X1, . . . , Xn) ∈ [B(H)n]1,

we complete the proof. �

Theorem 4.4. Let f := (f1, . . . , fm) be a bounded free holomorphic function

with ‖f(0)‖ < ‖f‖∞ such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then, for each r ∈ [0, 1),

sup
T∈Cρ, ωρ(T )≤r

ωρf (f(T1, . . . , Tn)) ≤ ‖f(rS1, . . . , rSn)‖,

where S1, . . . , Sn are the left creation operators.

Proof. Consider the free holomorphic function fr, defined by

fr(X1, . . . , Xn) := f(rX1, . . . , rXn), (X1, . . . , Xn) ∈ [B(H)n]1

and recall that ‖fr‖∞ = ‖f(rS1, . . . , rSn)‖. Applying Corollary 4.2 to fr, we
have

(4.6) ωρfr (fr(A1, . . . , An)) ≤ ‖fr‖∞, (A1, . . . , An) ∈ Cρ
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Since f(0) = fr(0), we have ρf = ρfr . Consequently, if we assume that
ωρ(T1, . . . , Tn) ≤ r < 1, then

(
1
rT1, . . . ,

1
rTn

)
∈ Cρ and inequality (4.6) im-

plies

ωρf (f(T1, . . . , Tn)) = ωρf

(
fr

(
1

r
T1, . . . ,

1

r
Tn

))
≤ ‖fr‖∞,

which completes the proof. �

Corollary 4.5. Let (T1, . . . , Tn) ∈ B(H)n be such that ωρ(T1, . . . , Tn) < 1,
and let f := (f1, . . . , fm) be a bounded free holomorphic function with the fol-
lowing properties:

(i) the boundary functions f̃1, . . . , f̃m are in the noncommutative disc al-
gebra An.

(ii) fj has the standard representation of the form

fj(X1, . . . , Xn) =
∑

|α|≥k
a(j)
α Xα, j = 1, . . . ,m.

Then

ωρ(f(T1, . . . , Tn)) ≤ ωρ(T1, . . . , Tn)k‖f‖∞.

Proof. Consider the free holomorphic function g := 1
‖f‖∞ f . Note that ‖g‖∞ =

1 and g(0) = 0. According to the Schwarz lemma for free holomorphic functions
(see Theorem 2.4 from [44]), we have

‖g(X1, . . . , Xn)‖ ≤ ‖(X1, . . . , Xn)‖k, (X1, . . . , Xn) ∈ [B(H)n]1.

Denote r := ωρ(T1, . . . , Tn) < 1, ρ > 0, and consider

gr(X1, . . . , Xn) := g(rX1, . . . , rXn), (X1, . . . , Xn) ∈ [B(H)n]1.

Note that the inequality above implies ‖gr‖∞ ≤ rk. Applying now Theorem
4.4 to g, and using the latter inequality, we obtain

ωρ(g(T1, . . . , Tn)) ≤ ‖gr‖∞ ≤ rk = ωρ(T1, . . . , Tn)k.

Hence, the result follows. �

Corollary 4.6. Let (T1, . . . , Tn) ∈ B(H)n be such that ωρ(T1, . . . , Tn) < 1,
and let f : [B(H)n]1 → B(H) be a free holomorphic function with ℜf ≤ I and
having the standard representation

f(X1, . . . , Xn) =
∑

|α|≥k
aαXα, where k ≥ 1.

Then

ωρ(f(T1, . . . , Tn)) ≤ 2ωρ(T1, . . . , Tn)k

1− ωρ(T1, . . . , Tn)k
.
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Proof. According to the Carathéodory type result for free holomorhic functions
(see Theorem 5.1 from [51]), we have

‖f(X1, . . . , Xn)‖ ≤
2‖∑|β|=kXβX

∗
β‖1/2

1− ‖∑|β|=kXβX∗β‖1/2
, (X1, . . . , Xn) ∈ [B(H)n]1.

Hence, we deduce that ‖fr‖∞ ≤ 2rk

1−rk for any r ∈ (0, 1). Setting r :=

ωρ(T1, . . . , Tn) < 1, ρ > 0, and applying Theorem 4.4, we obtain

ωρ(f(T1, . . . , Tn)) ≤ ‖fr‖∞ ≤
2ωρ(T1, . . . , Tn)k

1− ωρ(T1, . . . , Tn)k
.

The proof is complete. �

Lemma 4.7. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in
the noncommutative disc algebra An. Let A := (A1, . . . , An) ∈ B(H)n and
B := (B1, . . . , Bn) ∈ B(H)n be in the class Cρ ⊂ B(H)n and let c ≥ 1. If

A
H≺
c
B, then f(A) and f(B) are in Cρf ⊂ B(H)m and f(A)

H≺
c
f(B), where ρf is

given by relation (4.1).

Proof. First, note that, due to Theorem 4.1, f(A), f(B) are in Cρf , where ρf
is given by relation (4.1). Let p ∈ C[Z1, . . . , Zm] ⊗Mk, k ∈ N, be such that
ℜp ≥ 0 on the unit ball [B(H)m]1. According to the proof of Theorem 4.1, the

boundary function of the composition p ◦ f is p(f̃1, . . . , f̃m) ∈ An⊗̄minMk and
ℜ(p ◦ f) ≥ 0. Using the free pluriharmonic functional calculus for the class Cρ
and Theorem 2.2, if A,B are in Cρ and A

H≺
c
B, c ≥ 1, then

ℜ(p ◦ f)(A1, . . . , An) + (ρ− 1)ℜ(p ◦ f)(0)

≤ c2 [ℜ(p ◦ f)(B1, . . . , Bn) + (ρ− 1)ℜ(p ◦ f)(0)] .
(4.7)

Assume now that ρ ≥ 1. Due to the Harnack type inequality (4.3), the inequal-
ity (4.7) implies

ℜ(p◦f)(A1, . . . , An) ≤ c2ℜ(p◦f)(B1, . . . , Bn)+(c2−1)(ρ−1)ℜp(0)
1 + ‖f(0)‖
1− ‖f(0)‖ ,

which is equivalent to

ℜ(p ◦ f)(A1, . . . , An) + (ρf − 1)ℜ(p ◦ f)(0)

≤ c2 [ℜ(p ◦ f)(B1, . . . , Bn) + (ρf − 1)ℜ(p ◦ f)(0)] ,

where δf := 1 + (ρ − 1)1+‖f(0)‖
1−‖f(0)‖ . Applying Theorem 2.2, we deduce that

f(A)
H≺
c
f(B).
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Now, we consider the case ρ ∈ (0, 1). The inequality (4.7) and the Harnack
type inequality (4.3) imply

ℜ(p◦f)(A1, . . . , An) ≤ c2ℜ(p◦f)(B1, . . . , Bn)+(c2−1)(ρ−1)ℜp(0)
1− ‖f(0)‖
1 + ‖f(0)‖ .

As above, we deduce that f(A)
H≺
c
f(B) in Cρf , where δf := 1 + (ρ− 1)1−‖f(0)‖

1+‖f(0)‖ .

This completes the proof. �

Theorem 4.8. Let δρ : ∆×∆→ [0,∞) be the hyperbolic metric on a Harnack
part ∆ of Cρ, and let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An.Then

δρf (f(A), f(B)) ≤ δρ(A,B), A,B ∈ ∆,

where ρf is given by relation (4.1).

Proof. Let A,B ∈ ∆ ⊂ Cρ, i.e., there is c ≥ 1 such that A
H∼
c
B. According to

Theorem 4.1 and Lemma 4.7, f(A) and f(B) are in Cρf , and f(A)
H∼
c
f(B) in

Cρf , where ρf is given by relation (4.1). Hence and taking into account that

δρ(A,B) := ln inf
{
c > 1 : A

H∼
c
B
}
, A,B ∈ ∆,

we deduce that

δρf (f(A), f(B)) ≤ δρ(A,B), A,B ∈ ∆.

The proof is complete. �

Now, we can deduce the following Schwarz type result.

Corollary 4.9. Let δρ : ∆ ×∆ → [0,∞) be the hyperbolic metric on a Har-
nack part ∆ of Cρ, and let f := (f1, . . . , fm) be a contractive free holomorphic

function with f(0) = 0 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then

δρ(f(A), f(B)) ≤ δρ(A,B), A,B ∈ ∆.

We recall that, due to Theorem 3.2, the open ball [Cρ]<1 is the Harnack part
of Cρ containing 0. Consequently, Theorem 4.8 and Corollary 4.9 hold in the
particular case when ∆ := [Cρ]<1.

Ky Fan [14] showed that the von Neumann inequality [57] is equivalent to the
fact that if T ∈ B(H) is a strict contraction (‖T ‖ < 1) and f : D → D is an
analytic function, then ‖f(T )‖ < 1. A multivariable analogue of this result was
obtained in [51]. In what follows, we provide a spectral version of this result,
when the norm is replaced by the joint spectral radius.
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Theorem 4.10. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n and the joint spec-
tral radius r(T1, . . . , Tn) < 1, then

r(f(T1, . . . , Tn)) < 1.

Proof. Assume that (T1, . . . , Tn) ∈ B(H)n has the joint spectral ra-
dius r(T1, . . . , Tn) < 1. Taking into account that r(T1, . . . , Tn) =
limρ→∞ ωρ(T1, . . . , Tn), we find δ > 1 such that ωρ(T1, . . . , Tn) < 1. Therefore,
we have T := (T1, . . . , Tn) ∈ Cρ and, due to Theorem 3.2, the n-tuple T

is Harnack equivalent to 0. Consequently, T
H≺
c

0 for some constant c ≥ 1.

According to Theorem 4.1, f(T ) and f(0) are in the class Cρf , where ρf is

given by relation (4.1). On the other hand, Lemma 4.7 implies f(T )
H≺
c
f(0) in

Cρf . Since ‖f(0)‖ < 1, we have the joint spectral radius r(f(0)) < 1. Applying

Theorem 2.5, we deduce that f(0)
H≺
c

0 in Cρf . Therefore, we have f(T )
H≺
c

0

in Cρf . Applying again Theorem 2.5, we have r(f(T )) < 1. The proof is
complete. �

An analogue of Theorem 4.10 for n-tuples of operators with joint operator
radius ωρ(T1, . . . , Tn) < 1 is the following.

Theorem 4.11. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the non-
commutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n and ωρ(T1, . . . , Tn) < 1,
then

ωρf (f(T1, . . . , Tn)) < 1,

where ρf is defined by relation (4.1). In particular, if f(0) = 0, then
ωρ(f(T1, . . . , Tn)) < 1.

Proof. If T := (T1, . . . , Tn) ∈ B(H)n and ωρ(T1, . . . , Tn) < 1, then T ∈ Cρ.
According to Theorem 3.2, we have

r(T1, . . . , Tn) < 1 and Pρ(T,R) ≥ aI
for some constant a > 0. Applying Theorem 4.1 and Theorem 4.10, we deduce
that f(T ) ∈ Cρf and r(f(T )) < 1. Since ωρ(T ) < 1, Theorem 3.2 implies

T
H∼ 0. In particular, we have 0

H≺
c
T for some constant c ≥ 1. Applying Lemma

4.7, we deduce that f(0)
H≺
c
f(T ) in Cρf , where ρf is given by relation (4.1).

Hence, and using Theorem 2.2 (part (ii)), we get

Pρf (rf(0), R) ≤ c2Pρf (rf(T ), R), r ∈ [0, 1).

Since r(f(0)) < 1 and r(f(T )) < 1, the latter inequality implies

(4.8) Pρf (f(0), R) ≤ c2Pρf (f(T ), R), r ∈ [0, 1).
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On the other hand, since the mapping X 7→ P1(X,R) is a positive free pluri-
harmonic function on [B(H)n]1, the Harnack inequality (3.1) implies

P1(f(0), R) ≥ P1(0, R)
1− ‖f(0)‖
1 + ‖f(0)‖ =

1− ‖f(0)‖
1 + ‖f(0)‖I.

Therefore, we have

Pρf (f(0), R) = P1(f(0), R) + (ρf − 1)I

≥
(
ρf − 1 +

1− ‖f(0)‖
1 + ‖f(0)‖

)
I.

Since

a := ρf − 1 +
1− ‖f(0)‖
1 + ‖f(0)‖ =





ρ 1−‖f(0)‖
1+‖f(0)‖ if ρ < 1

(ρ− 1)1+‖f(0)‖
1−‖f(0)‖ + 1−‖f(0)‖

1+‖f(0)‖ if ρ ≥ 1,

we have a > 0. Combining the latter inequality with (4.8) we obtain

Pρf (f(T ), R) ≥ a

c2
I.

Using again Theorem 3.2, we deduce that ωρf (f(T )) < 1. The last part of the
theorem follows from Theorem 4.1. This completes the proof. �

Remark 4.12. If m = 1, all the results of this section remain true when the
condition ‖f(0)‖ < 1 is dropped if f is a nonconstant contractive free holomor-
phic function with boundary function in the noncommutative algebra An.

5. Carathéodory metric on the open noncommutative ball [C∞]<1

and Lipschitz mappings

In this section, we introduce a Carathéodory type metric dK on the open ball of
all n-tuples of operators (T1, . . . , Tn) with joint spectral radius r(T1, . . . , Tn) <
1. We obtain a concrete formula for dK in terms of the free pluriharmonic
kernel on the open unit ball [C∞]<1. This is used to prove that the metric
dK is complete on [C∞]<1 and its topology coincides with the operator norm
topology.

We need some notation. Consider the noncommutative balls

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1} for ρ ∈ (0,∞],

where ω∞(X1, . . . , Xn) := r(X1, . . . , Xn) is the joint spectral radius of
(X1, . . . , Xn), and set

[Cρ]≺ 0 := Cρ ∩ [C∞]<1 for ρ ∈ (0,∞).

According to Theorem 1.35 from [48], if ρ, ρ′ ∈ (0,∞], ρ ≤ ρ′, then Cρ ⊆ Cρ′
and, moreover, we have

ωρ′(X) ≤ ωρ(X), r(X) = lim
ρ→∞

ωρ(X), X ∈ B(H)n.
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Consequently, we have

[Cρ]≺ 0 ⊆ [Cρ′ ]≺ 0, [Cρ]<1 ⊆ [Cρ′ ]<1.

Due to Theorem 2.5 and Theorem 3.2, one can easily see that

{X ∈ Cρ : X
H∼ 0} = [Cρ]<1 ⊂ [Cρ]≺ 0 =

{
X ∈ Cρ : X

H≺ 0

}

for any ρ ∈ (0,∞). Note also that
⋃

ρ>0

[Cρ]<1 =
⋃

ρ>0

[Cρ]≺ 0 = [C∞]<1.

Indeed, if X ∈ [C∞]<1, i.e., r(X) < 1, then taking into account that r(X) =
limρ→∞ ωρ(X), we find ρ > 0 such that ωρ(X) < 1. Thus X ∈ [Cρ]<1, which
proves our assertion. Note also that

⋃
ρ>0

[Cρ]<1 is dense (in the norm topology)

in the set C∞ of all n-tuples of operators (T1, . . . , Tn) with joint spectral radius
r(T1, . . . , Tn) ≤ 1.

Now, we introduce the map dK : [C∞]<1 × [C∞]<1 → [0,∞) by setting

(5.1) dK(A,B) = sup
p
‖ℜp(A)−ℜp(B)‖, A,B ∈ [C∞]<1,

where the supremum is taken over all polynomials p ∈ C[X1, . . . , Xn] ⊗Mm,
m ∈ N, with ℜp(0) = I and ℜp ≥ 0 on [B(H)n]1. In what follows we will
prove that dK is a metric and obtain a concrete formula in terms of the free
pluriharmonic kernel on the open unit ball [C∞]<1.

First, we need the following result.

Lemma 5.1. Let G be a free pluriharmonic function on [B(H)n]1 with coeffi-
cients in B(E), such that G(0) = I and G ≥ 0. If A,B ∈ [C∞]<1, then

‖G(A)−G(B)‖ ≤ ‖P1(A,R)− P1(B,R)‖,
where where P1(X,R) is the free pluriharmonic Poisson kernel defined by

P1(X,R) :=

∞∑

k=1

∑

|α|=k
Xα ⊗R∗α̃ + I ⊗ I +

∞∑

k=1

∑

|α|=k
X∗α ⊗Rα̃, X ∈ [C∞]<1,

and the convergence is in the operator norm topology.

Proof. Since G is a positive free pluriharmonic function of [B(H)n]1 it has a
unique representation of the form

G(X1, . . . , Xn) =

∞∑

k=1

∑

|α|=k
X∗α⊗A∗(α)+I⊗I+

∞∑

k=1

∑

|α|=k
Xα⊗A(α), X ∈ [B(H)n]1,

for some A(α) ∈ B(E), where the series converge in the operator norm topology.
Applying Theorem 5.2 from [47] to G, we find a completely positive linear map
µ : R∗n +Rn → B(E) with µ(I) = I and µ(R∗α̃) = A(α) if |α| ≥ 1.

Since A,B ∈ [Cρ]<1, we have r(A) < 1 and r(B) < 1. According to the
free pluriharmonic functional calculus, Pρ(A,R), Pρ(B,R), G(A), and G(B)
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are well-defined and the corresponding series converge in the operator norm
topology. Consequently, we have

G(A) = (id⊗ µ)(P1(A,R)) and G(A) = (id⊗ µ)(P1(A,R)).

Taking into account that µ is completely positive linear map with µ(I) = I, we
have

‖G(A)−G(B)‖ ≤ ‖µ‖‖P1(A,R)− P1(B,R)‖ = ‖P1(A,R)− P1(B,R)‖.

The proof is complete. �

According to Lemma 5.1, it makes sense to define the map d′K : [C∞]<1 ×
[C∞]<1 → [0,∞) by setting

d′K(A,B) := sup
u
‖u(A)− u(B)‖ <∞,

where the supremum is taken over all free pluriharmonic functions u on
[B(H)n]1 with coefficients in B(E), such that u(0) = I and u ≥ 0.

Using the the free pluriharmonic functional calculus for for n-tuples of operators
(T1, . . . , Tn) with the joint spectral radius r(T1, . . . , Tn) < 1, one can extend
Proposition 3.1 from [49] and show that for any A,B ∈ [C∞]<1,

d′K(A,B) = dK(A,B),

where dK is defined by relation (5.1). Since the proof is essentially the same,
we shall omit it.

Proposition 5.2. dK is a metric on [C∞]<1 satisfying relation

dK(A,B) = ‖P1(A,R)− P1(B,R)‖, A,B ∈ [C∞]<1.

In addition, the map [0, 1) ∋ r 7→ dK(rA, rB) ∈ R+ is increasing and

dK(A,B) = sup
r∈[0,1)

dK(rA, rB).

Proof. Using Lemma 5.1 we deduce that dK(A,B) ≤ ‖P1(A,R) − P1(B,R)‖.
The rest of the proof is similar to that of Proposition 3.2 from [49], so we shall
omit it. �

Now, we can prove the main result of this section.

Theorem 5.3. Let dK be the Carathéodory metric on [C∞]<1. Then the fol-
lowing statements hold:

(i) the dK-topology coincides with the norm topology on [C∞]<1;
(ii) [Cρ]≺ 0 is a dK-closed subset of [C∞]<1 for any ρ > 0;

(iii) the metric dK is complete on [C∞]<1.
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Proof. We recall that the free pluriharmonic Poisson kernel is given by

P1(X,R) =

∞∑

k=1

∑

|α|=k
Xα ⊗R∗α̃ + I ⊗ I +

∞∑

k=1

∑

|α|=k
X∗α ⊗Rα̃, X ∈ [C∞]<1,

where the convergence is in the operator norm topology. Let RA := A∗1 ⊗
R1 + · · · + A∗n ⊗ Rn be the reconstruction operator. Note that, due to the
noncommutative von Neumann inequality, we have

‖A−B‖ = ‖RA −RB‖

=

∥∥∥∥
1

2π

∫ 2π

0

eit[P1(A, eitR)− P1(B, eitR)]dt

∥∥∥∥
≤ sup

t∈[0,2π]

∥∥P1(A, eitR)− P1(B, eitR)
∥∥

≤ ‖P1(A,R)− P1(B,R)‖.
Now, Proposition 5.2 implies

(5.2) ‖A−B‖ ≤ dK(A,B), A,B ∈ [C∞]<1,

which shows that the dK -topology is stronger then the norm topology on
[C∞]<1. Conversely, to prove that the norm topology on [C∞]<1 is stronger than
the dK -topology, note that since r(RA) = r(A) < 1 and r(RB) = r(B) < 1,
the operators I −RA and I −RB are invertible. Thus

dK(A,B) = ‖P1(A,R)− P1(B,R)‖ ≤ 2‖(I −RA)−1 − (I −RB)−1‖
for any A,B ∈ [C∞]<1. Hence and due to the continuity of the maps
X 7→ I − RX on B(H)n and Y 7→ Y −1 on the group of invertible elements
in B(H⊗F 2(Hn)), in the operator norm topology, we deduce our assertion. In
conclusion, the dK-topology coincides with the norm topology on [C∞]<1.

Now, to prove (ii), let {A(k) := (A
(k)
1 , . . . , A

(k)
n )}∞k=1 be a dK-Cauchy sequence

in [Cρ]≺ 0 ⊂ Cρ. Due to inequality (5.2), we deduce that {A(k)}∞k=1 is a Cauchy
sequence in the norm topology of B(H)n. Since Cρ is closed in the operator

norm topology, there exists T := (T1, . . . , Tn) in Cρ such that ‖T −A(k)‖ → 0,
as k →∞.

Now let us prove that the joint spectral radius r(T ) < 1. Since {A(k)}∞k=1 is

a dK-Cauchy sequence, there exists k0 ∈ N such that dK(A(k), A(k0)) ≤ 1 for

any k ≥ k0. On the other hand, since A(k0) ∈ [Cρ]≺ 0, i.e., A(k0)
H≺ 0, Theorem

2.2 shows that there is c ≥ 1 such that Pρ(rA
(k0), R) ≤ c2δ for any r ∈ [0, 1).

Hence, and due to the noncommutative von Neumann inequality, we deduce
that

Pρ(rA
(k), R) ≤

(
‖Pρ(rA(k), R)− Pρ(rA(k0), R)‖+ ‖Pρ(rA(k0), R)‖

)
I

≤
(
dK(A(k), A(k0)) + ‖Pρ(rA(k0), R)‖

)
I ≤ (1 + c2δ)I

(5.3)

for any k ≥ k0 and r ∈ [0, 1).
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We show now that limk→∞ Pρ(rA
(k), R) = Pρ(rT,R) in the operator norm

topology. First, one can easily see that, since T,A(k) ∈ Cρ, we have
∑

|α|=p
TαT

∗
α ≤ ρ2I and

∑

|α|=p
A(k)
α A(k)

α ≤ ρ2I

for any p, k = 1, 2, . . .. Given ǫ > 0 and r ∈ (0, 1), let m ∈ N be such that∑∞
p=m ρr

p < ǫ
2 . Note that

‖P (rA(k), R)− P (rT,R)‖

≤ 2

m−1∑

p=1

∥∥∥∥∥∥
∑

|α|=p
r|α|(A(k)

α − Tα)⊗R∗α̃

∥∥∥∥∥∥

+ 2

∞∑

p=m

∥∥∥∥∥∥
∑

|α|=p
r|α|A(k)

α ⊗R∗α̃

∥∥∥∥∥∥
+ 2

∞∑

p=m

∥∥∥∥∥∥
∑

|α|=p
r|α|Tα ⊗R∗α̃

∥∥∥∥∥∥

= 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p
(A(k)

α − Tα)(A(k)
α − Tα)∗

∥∥∥∥∥∥

+ 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p
A(k)
α A(k)

α

∗
∥∥∥∥∥∥

+ 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p
TαTα

∗

∥∥∥∥∥∥

≤ 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p
(A(k)

α − Tα)(A(k)
α − Tα)∗

∥∥∥∥∥∥
+ ǫ

for any k = 1, 2, . . .. Since A(k) → T in the norm topology, as k → ∞, and
using the results above, one can easily deduce that limk→∞ Pρ(rA

(k), R) =
Pρ(rT,R) for each r ∈ [0, 1). Now, taking k → ∞ in inequality (5.3), we
obtain Pρ(rT,R) ≤ (1 + c2δ)I for r ∈ [0, 1). Applying Theorem 2.2, we deduce

that T
H≺ 0. Now, Theorem 2.5 implies r(T ) < 1, which shows that T is in

[Cρ]≺ 0 and, therefore, in [C∞]<1, which proves part (ii).

It remains to prove part (iii). To this end, let {A(k) := (A
(k)
1 , . . . , A

(k)
n )}∞k=1 be

a dK-Cauchy sequence in [C∞]<1. Given ǫ > 0, there exists k0 ≥ 1 such that
dK(A(k), A(j)) < ǫ for any k, j ≥ k0. Then we have

(5.4) dK(A(k), 0) ≤ c := dK(A(k0), 0) + ǫ for any k ≥ k0.

Hence, and due to the definition of dK , we have ‖u(A(k)) − u(0)‖ ≤ c and,
consequently,

u(A(k)) ≤ (‖u(A(k) − u(0)‖+ 1)I ≤ (c+ 1)u(0) for any k ≥ k0

and for any positive free pluriharmonic function u on [B(H)n]1 with coefficients
in B(E) such that u(0) = I.
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Now, for each k ≥ k0, fix ρk ≥ 1 such that A(k) ∈ [Cρk ]≺ 0. Note that the
inequality above implies

u(A(k)) + (ρk − 1)u(0) ≤ ρk(c+ 1)u(0)

for all k ≥ k0. Applying Theorem 2.2 and using relation (5.4), we obtain

‖L0,A(k)‖2 ≤ dK(A(k0), 0) + ǫ+ 1, k ≥ k0.

Consequently, we have

(5.5) 1 ≤ ǫ0 := sup
k≥k0

‖L0,A(k)‖2 <∞.

Since {A(k)} is a dK-Cauchy sequence, there exists m0 ≥ k0 such that

dK(A(m′), A(m)) < 1
2ǫ0

for any m,m′ ≥ m0. Using now relation (5.5), we
obtain

(5.6) dK(A(m), A(m0)) <
1

2‖L0,A(m0)‖2 , k ≥ m0.

Since A(m0) ∈ [Cρm0
]≺ 0, Theorem 2.5 implies r(A(m0)) < 1. On the other

hand, since limρ→∞ ωρ(A(m0)) = r(A(m0)) < 1, there exists ρm0 > 0 such that

ωρm0
(A(m0)) < 1 for any ρ ≥ ρm0 . We can assume that

(5.7) ρm0 ≥
‖LA(m0),0‖2
‖L0,A(m0)‖2 .

Using Proposition 5.2 and relation (5.6), we deduce that

(5.8) Pρm0
(A(m0), R) ≤ Pρm0

(A(k), R) +
1

2‖L0,A(k)‖2 I, k ≥ m0.

On the other hand, since ωρm0
(A(m0)) < 1, Theorem 3.2 implies A(m0) H∼ 0 in

Cρm0
. Consequently, we have 0

H≺A(m0), which due to Theorem 2.2, implies

ρm0I = Pρm0
(0, R) ≤ ‖LA(m0),0‖2Pρm0

(A(m0), R).

Combining this with relation (5.7), we get

Pρm0
(A(m0), R) ≥ 1

‖L0,A(m0)‖2 I.

Hence, and due to (5.8), we have

Pρm0
(A(k), R) ≥ 1

2‖L0,A(m0)‖2 I ≥
1

2ǫ0
I.

Applying Theorem 3.2, we deduce that A(k) H∼ 0 and A(k) ∈ Cρm0
. Therefore,

A(k) ∈ [Cρm0
]≺ 0 for all k ≥ m0 and the sequence {A(k)}k≥m0 is a dK-Cauchy

sequence in [Cρm0
]≺ 0. Due to part (ii), there exists A ∈ [Cρm0

]≺ 0 ⊂ [C∞]<1

such that dK(A(k), A) → 0, as k → ∞, which proves that dK is a complete
metric on [C∞]<1. The proof is complete. �
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We can provide now a class of Lipschitz functions with respect to the
Carathéodory metric on [C∞]<1.

Theorem 5.4. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then

dK(f(A), f(B)) ≤ 1 + ‖f(0)‖
1− ‖f(0)‖dK(A,B)

for any n-tuples A := (A1, . . . , An) and B := (B1, . . . , Bn) in [C∞]<1.

Proof. According to the maximum principle for free holomorphic functions
with operator-valued coefficients (see Proposition 5.2 from [50]), the condition
‖f(0)‖ < 1 implies that ‖f(X)‖ < 1, X ∈ [B(H)n]1. If u is a free plurihar-
monic function on [B(H)m]1, then Theorem 1.1 from [51] shows that u ◦ f is
a free pluriharmonic function on [B(H)n]1. If, in addition, u is positive, then
u ◦ f is also positive.

Assume now that A and B are in [C∞]<1. Due to Theorem 4.10, f(A) and f(B)
are in [C∞]<1. Let p ∈ C[X1, . . . , Xm] ⊗Mk, k ∈ N, be a matrix-valued non-
commutative polynomial with ℜp(0) = I and ℜp ≥ 0 on [B(H)m]1. According
to the Harnack type inequality (4.3), we have

1− ‖f(0)‖
1 + ‖f(0)‖I ≤ ℜp(f(0)) ≤ 1 + ‖f(0)‖

1− ‖f(0)‖I.

Since ‖f(0)‖ < 1, we deduce that ℜp(f(0)) is a positive invertible operator
of the form IH ⊗ A for some A ∈ Mk. Define the mapping h : [B(H)n]1 →
B(H)⊗̄minMk by setting

h(X) := [ℜp(f(0))]−1/2ℜp(f(X))[ℜp(f(0))]−1/2, X ∈ [B(H)n]1.

Note that h is a positive free pluriharmonic function on [B(H)n]1 with coeffi-
cients in Mk with the property that h(0) = I. Now, using the above-mentioned
Harnack type inequality, we have

‖ℜp(f(A))−ℜp(f(B))‖

≤ ‖[ℜp(f(0))]1/2‖
∥∥∥[ℜp(f(0))]−1/2 (ℜp(f(A))−ℜp(f(B))) [ℜp(f(0))]1/2

∥∥∥

· ‖[ℜp(f(0))]1/2‖
≤ ‖[ℜp(f(0))]‖‖h(A)− h(B)‖
1 + ‖f(0)‖
1− ‖f(0)‖dK(A,B).

Taking the supremum over all polynomials p ∈ C[X1, . . . , Xm] ⊗Mk, k ∈ N,
with ℜp(0) = I and ℜp ≥ 0 on [B(H)m]1, we obtain

dK(f(A), f(B)) ≤ 1 + ‖f(0)‖
1− ‖f(0)‖dK(A,B),
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which completes the proof. �

Corollary 5.5. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with f(0) = 0 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then

dK(f(A), f(B)) ≤ dK(A,B)

for any A,B ∈ [C∞]<1.

We remark that, using Corollary 1.2 and the remarks preceding Corollary 2.4,
one can easily obtain the following result, which provides a simple example
when the inequality of Theorem 5.4 is an equality.

Corollary 5.6. If 1 ≤ m < n, let A := (A1, . . . , Am) ∈ B(H)m and B :=

(B1, . . . , Bm) ∈ B(H)m be in [C∞]<1 and let Ã := (A1, . . . , Am, 0, . . . , 0) and

B̃ := (B1, . . . , Bm, 0, . . . , 0) be their extensions in B(H)n, respectively. Then

dK(A,B) = dK(Ã, B̃).

According to Theorem 5.3, the dK-topology coincides with the norm topology
on [C∞]<1. Due to Theorem 5.4, we deduce the following result.

Corollary 5.7. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then the map

[C∞]<1 ∋ (T1, . . . , Tn) 7→ f(T1, . . . , Tn) ∈ [C∞]<1

is continuous in the operator norm topology, where [C∞]<1 is the corresponding
ball in B(H)n and B(H)m, respectively.

6. Three metric topologies on Harnack parts of Cρ
In this section we study the relation between the δρ-topology, the dK-topology,
and the operator norm topology on Harnack parts of Cρ. We prove that the
hyperbolic metric δρ is a complete metric on certain Harnack parts of Cρ, and
that all the three topologies coincide on [Cρ]<1. In particular, we prove that
the hyperbolic metric δρ is complete on the open unit unit ball [Cρ]<1, while
the other two metrics are not complete.

First, we mention another formula for the hyperbolic distance that will be used
to prove the main result of this section. If f ∈ An⊗̄minMm, m ∈ N, then we
call ℜf strictly positive and denote ℜf > 0 if there exists a constant a > 0
such that ℜ f ≥ aI. We remark that, in this case, if (T1, . . . , Tn) ∈ Cρ, then,
using the functional calculus for the class Cρ, we deduce that

ℜf(T1, . . . , Tn) + (ρ− 1)ℜf(0) ≥ ρaI.
The proof of the next result is similar to that of Proposition 3.5 from [49], but
uses the functional calculus for the class Cρ and Theorem 2.2 of the present
paper. We shall omit it.

Documenta Mathematica 14 (2009) 595–651



640 Gelu Popescu

Proposition 6.1. Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be in Cρ such

that A
H∼ B. Then

(6.1) δρ(A,B) =
1

2
sup

∣∣∣∣ln
〈[ℜf(A1, . . . , An) + (ρ− 1)ℜf(0)]x, x〉
〈[ℜf(B1, . . . , Bn) + (ρ− 1)ℜf(0)]x, x〉

∣∣∣∣ ,

where the supremum is taken over all f ∈ An ⊗Mm, m ∈ N, with ℜf > 0 and
x ∈ H⊗ Cm with x 6= 0.

We remark that, under the conditions of Proposition 6.1, one can also prove
that relation (6.1) holds if the supremum is taken over all noncommutative
polynomials f ∈ C[X1, . . . , Xn]⊗Mm, m ∈ N, with ℜf > 0, and x ∈ H ⊗ Cm
with x 6= 0.

The main result of this section is the following.

Theorem 6.2. Let δρ, ρ > 0, be the hyperbolic metric on a Harnack part ∆ of
[Cρ]≺ 0. Then the following properties hold:

(i) δρ is complete on ∆;
(ii) the δρ-topology is stronger then the dK -topology on ∆;

(iii) the δρ-topology, the dK -topology, and the operator norm topology coin-
cide on [Cρ]<1;

(iv) [Cρ]<1 is complete relative the hyperbolic metric, but not complete with
respect to the Carathéodory metric dK and the operator metric.

Proof. Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be n-tuples in a Harnack
part ∆ of [Cρ]≺ 0. Then A is Harnack equivalent to B and

ℜf(A1, . . . , An) + (ρ− 1)ℜf(0) ≤ Λρ(A,B)2[ℜf(B1, . . . , Bn) + (ρ− 1)ℜf(0)]

for any f ∈ An⊗̄minMm with ℜf ≥ 0, where Λρ(A,B) is defined by (3.3).
Hence, we deduce that
(6.2)

ℜf(A1, . . . , An)−ℜf(B1, . . . , Bn) ≤ [Λρ(A, B)2− 1][ℜf(B1, . . . , Bn) + (ρ− 1)ℜf(0)].

Since B
H≺ 0, we have the joint spectral radius r(B) < 1, so the ρ-pluriharmonic

kernel Pρ(B,R) makes sense. Due to the fact that the noncommutative Poisson
transform id ⊗ PrR is completely positive, and Pρ(B,S) ≤ ‖Pρ(B,R)‖I, one
can easily see that

Pρ(rB,R) = (id⊗ PrR)[Pρ(B,S)] ≤ ‖Pρ(B,R)‖I

=
1

ρ
‖Pρ(B,R)‖Pρ(0, R)

for any r ∈ [0, 1). Using the equivalence (ii)↔ (iii) of Theorem 2.2, when c2 =
1
ρ‖Pρ(B,R)‖, we obtain ℜf(rB1, . . . , rBn) + (ρ− 1)ℜf(0) ≤ ‖Pρ(B,R)‖ℜf(0)

for any r ∈ [0, 1). Letting r → 1, in the operator norm topology, we deduce
that

ℜf(B1, . . . , Bn) + (ρ− 1)ℜf(0) ≤ ‖Pρ(B,R)‖ℜf(0).
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Hence, and using relation (6.2), we obtain

ℜf(A1, . . . , An)−ℜf(B1, . . . , Bn) ≤ [Λρ(A,B)2 − 1]‖Pρ(B,R)‖ℜf(0).

We can obtain a similar inequality if we interchange A with B. If, in addition,
we assume that ℜf(0) = I, then we obtain

−tI ≤ ℜf(A1, . . . , An)−ℜf(B1, . . . , Bn) ≤ tI,
where t := [Λρ(A,B)2 − 1] max{‖Pρ(A,R)‖, ‖Pρ(B,R)‖}. On the other hand,
since ℜf(A1, . . . , An) − ℜf(B1, . . . , Bn) is a self-adjoint operator, we get
‖ℜf(A1, . . . , An)−ℜf(B1, . . . , Bn)‖ ≤ t. Hence, we deduce that dK(A,B) ≤ s.
As a consequence, we obtain

(6.3) dK(A,B) ≤ max{‖Pρ(A,R)‖, ‖Pρ(B,R)‖}
(
e2δρ(A,B) − 1

)
.

Let us prove that δρ is a complete metric on ∆. To this end, let {A(k) :=

(A
(k)
1 , . . . , A

(k)
n )}∞k=1 ⊂ ∆ be a δρ-Cauchy sequence. First, we prove that the

sequence {‖Pρ(A(k), R)‖}∞k=1 is bounded. Given ǫ > 0, there exists k0 ∈ N such
that

(6.4) δρ(A
(k), A(p)) < ǫ for any k, p ≥ k0.

Let f ∈ An⊗̄minMm with Re f ≥ 0. Since A(k0)
H≺ 0 and

Pρ(rA
(k0), R) ≤ 1

ρ
‖Pρ(rA(k0), R)‖Pρ(0, R),

Theorem 2.2 implies

ℜf(A(k0)) + (ρ− 1)ℜf(0) ≤ 1

ρ
‖Pρ(rA(k0), R)‖[ℜf(0) + (ρ− 1)ℜf(0)].

On the other hand, since A(k) H∼ A(k0), Theorem 2.2 implies

ℜf(A(k)) + (ρ− 1)ℜf(0) ≤ Λρ(A
(k), A(k0))2[ℜf(A(k0)) + (ρ− 1)ℜf(0)].

Combining these inequalities, we obtain

ℜf(A(k)) + (ρ− 1)ℜf(0) ≤ c2 1

ρ
[ℜf(0) + (ρ− 1)ℜf(0)],(6.5)

where c := ‖Pρ(A(k0), R)‖1/2Λρ(A
(k), A(k0)), for any f ∈ An⊗Mm with ℜf ≥ 0.

Consequently, due to Theorem 2.2, we have ‖Pρ(A(k), R)‖ ≤ c2 for any k ≥ k0.
Combining this with relation (6.4), we obtain

‖Pρ(A(k), R)‖ ≤ ‖Pρ(A(k0), R)‖e2ǫ

for any k ≥ k0. This shows that the sequence {‖Pρ(A(k), R)‖}∞k=1 is bounded.

Consequently, inequality (6.3) implies that {A(k)} is a dK-Cauchy sequence.
Due to Theorem 5.3, there exists A := (A1, . . . , An) ∈ [Cρ]≺ 0 such that

(6.6) dK(A(k), A)→ 0 as k →∞.
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In what follows, we prove that A ∈ ∆. Let f ∈ An ⊗Mm with ℜf ≥ 0 and
ℜf(0) = I. Taking into account relations (6.5) and (6.4), we have

ℜf(A(k)) + (ρ− 1)ℜf(0) ≤ Λρ(A
(k), A(k0))2[ℜf(A(k0)) + (ρ− 1)ℜf(0)]

≤ e2ǫ[ℜf(A(k0)) + (ρ− 1)ℜf(0)]
(6.7)

for k ≥ k0. According to relation (6.6) and the definition of dK , ℜf(A(k)) →
ℜf(A), as k→∞, in the operator norm topology. Consequently, relation (6.7)
implies

(6.8) ℜf(A) + (ρ− 1)ℜf(0) ≤ e2ǫ[ℜf(A(k0)) + (ρ− 1)ℜf(0)].

Such an inequality can be deduced in the more general case when f ∈ An⊗Mm

with ℜf ≥ 0. Indeed, for each ǫ′ > 0 let g := ǫ′I + f , Y := ℜg(0), and
ϕ := Y −1/2gY −1/2. Since ℜϕ ≥ 0 and ℜϕ(0) = I, we can apply inequality
(6.8) to ϕ and deduce that

ρǫ′I + ℜf(A) + (ρ− 1)ℜf(0) ≤ e2ǫ
[
ρǫ′I + ℜf(A(k0)) + (ρ− 1)ℜf(0)

]

for any ǫ′ > 0. Letting ǫ′ → 0, we get

(6.9) ℜf(A) + (ρ− 1)ℜf(0) ≤ e2ǫ[ℜf(A(k0)) + (ρ− 1)ℜf(0)]

for any f ∈ An ⊗Mm with ℜf ≥ 0. Therefore,

(6.10) A
H≺A(k0).

On the other hand, since A(k0)
H≺A(k) for any k ≥ k0, Theorem 2.2 and relation

(6.4), imply

ℜp(A(k0)) + (ρ− 1)ℜp(0) ≤ Λρ(A
(k0), A(k))2[ℜp(A(k)) + (ρ− 1)ℜp(0)]

≤ e2ǫ[ℜp(A(k)) + (ρ− 1)ℜ(0)]

for k ≥ k0 and any polynomial p ∈ C[X1, . . . , Xn]⊗Mm, m ∈ N, with ℜp ≥ 0.
According to Theorem 5.3, the dK-topology coincides with the norm topology
on [Cρ]≺ 0. Therefore, relation (6.6) implies A(k) → A ∈ [Cρ]≺ 0 in the operator
norm topology. Taking the limit, as k →∞, in the inequality above, we deduce
that

(6.11) ℜp(A(k0)) + (ρ− 1)ℜp(0) ≤ e2ǫ[ℜp(A) + (ρ− 1)ℜp(0)]

for any p ∈ C[X1, . . . , Xn]⊗Mm with ℜp ≥ 0. Consequently, we get A(k0)
H≺A.

Hence, and using relation (6.10), we obtain A
H∼A(k0), which proves that A ∈ ∆.

The inequalities (6.9) and (6.11) imply Λρ(A
(k0), A) ≤ e2ǫ. This shows that

δρ(A
(k0), A) < ǫ, which together with relation (6.4) imply δρ(A

(k), A) < 2ǫ for

any k ≥ k0. Therefore, δρ(A
(k), A) → 0, as k → ∞, which proves that δρ is a

complete metric on the Harnack part ∆. Note that we have also proved part
(ii) of this theorem.
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In what follows, we prove part (iii). To this end, assume that A and B
are n-tuples of operators in [Cρ]<1. Due to Theorem 3.2, Pρ(B,R) is a
positive invertible operator. Since Pρ(B,R)−1 ≤ ‖Pρ(B,R)−1‖, we have
I ≤ ‖Pρ(B,R)−1‖Pρ(B,R), which, applying the noncommutative Poisson
transform, implies I ≤ ‖Pρ(B,R)−1‖Pρ(rB,R) for any r ∈ [0, 1). By The-

orem 2.2, we deduce that 0
H≺B and

ℜf(0) ≤ ‖Pρ(B,R)−1‖ [ℜf(B) + (ρ− 1)ℜf(0)]

for any f ∈ An ⊗Mm with ℜf ≥ 0. If, in addition, ℜf(0) = I, then the latter
inequality implies

〈[ℜf(A) + (ρ− 1)ℜf(0)]x, x〉
〈[ℜf(B) + (ρ− 1)ℜf(0)]x, x〉 − 1 ≤ ‖Pρ(B,R)−1‖

‖x‖ 〈(ℜf(A)− ℜf(B))x, x〉

≤ ‖Pρ(B,R)−1‖dK(A,B)

for any x ∈ H⊗ Cm, x 6= 0. Consequently, we have

ln
〈[ℜf(A) + (ρ− 1)ℜf(0)]x, x〉
〈[ℜf(B) + (ρ− 1)ℜf(0)]x, x〉 ≤ ln

(
1 + ‖Pρ(B,R)−1‖dK(A,B)

)
.

A similar inequality can be obtained interchanging A with B. Combining these
two inequalities, we get

∣∣∣∣ln
〈[ℜf(A) + (ρ− 1)ℜf(0)]x, x〉
〈[ℜf(B) + (ρ− 1)ℜf(0)]x, x〉

∣∣∣∣
≤ ln

(
1 + max{‖Pρ(B,R)−1‖, ‖Pρ(A,R)−1‖}dK(A,B)

)
.

(6.12)

Now, we consider the general case when g ∈ An⊗Mm with ℜg > 0. Note that
Y := ℜg(0) is a positive invertible operator on H⊗Cm and f := Y −1/2gY −1/2

has the properties ℜf ≥ 0 and ℜf(0) = I. Applying inequality (6.12) to f
when x := Y −1/2y, y ∈ H⊗ Cm, and y 6= 0, we obtain

(6.13) 2δρ(A,B) ≤ ln
(
1 + max{‖Pρ(B,R)−1‖, ‖Pρ(A,R)−1‖}dK(A,B)

)
.

Consider a sequence {A(k)}∞k=1 of elements in [Cρ]<1 and let A ∈ [Cρ]<1 be

such that dK(A(k), A) → 0, as k → ∞. By Proposition 5.2, we deduce that
Pρ(A

(k), R)→ Pρ(A,R) in the operator norm topology. On the other hand, due

to Theorem 3.2, the operators P (A(k), R) and P (A,R) are invertible. Hence,
and using the well-known fact that the map Z 7→ Z−1 is continuous on the open
set of all invertible operators, we deduce that Pρ(A

(k), R)−1 → Pρ(A,R)−1 in
the operator norm topology, as k → ∞. Hence, we deduce that the sequence
{‖Pρ(A(k), R)−1‖}∞k=1 is bounded. Consequently, there exists M > 0 with

‖Pρ(A(k), R)−1‖ ≤M for any k ∈ N. Using inequality (6.13), we obtain

2δρ(A
(k), A) ≤ ln

(
1 +MdK(A(k), A)

)
, k ∈ N.

Since dK(A(k), A) → 0, as k → ∞, the latter inequality implies that
δρ(A

(k), A) → 0. Therefore, the dK-topology on [Cρ]<1 is stronger than the

Documenta Mathematica 14 (2009) 595–651



644 Gelu Popescu

δρ-topology. Due to the first part of this theorem, the two topologies coincide
on [Cρ]<1. Using now Theorem 5.3, we complete the proof of part (iii).

Now, we prove item (iv). Since [Cρ]<1 is the Harnack part of 0 (see Theorem
3.2), part (i) implies its completeness with respect to the hyperbolic metric. To
prove that [Cρ]<1 is not complete with respect to the Carathéodory metric dK
and the operator metric, we consider the following example. Let (T1, . . . , Tn) ∈
B(P1)n be the n-tuple of operators defined by Ti := PP1Si|P1 , i = 1, . . . , n,
where P1 := span{eα : |α| ≤ 1}. Note that ‖[T1, . . . , Tn]‖ = 1 and Tα = 0 for
any α ∈ F+

n with |α| ≥ 2. Set Xi := ρTi, i = 1, . . . , n, and note that

Xβ = ρTβ = ρPP1Sβ|P1 , β ∈ F+
n \{g0}.

Therefore, (X1, . . . , Xn) ∈ Cρ, i.e., ωρ(X1, . . . , Xn) ≤ 1, which implies
ωρ(T1, . . . , Tn) ≤ 1

ρ . The reverse inequality is due to the fact that

‖[T1, . . . , Tn]‖ ≤ ρωρ(T1, . . . , Tn). Consequently, we have

ωρ(T1, . . . , Tn) =
1

ρ
, for ρ ∈ (0,∞).

On other hand, the condition Tα = 0 if |α| ≥ 2 implies r(T1, . . . , Tn) = 0.
Therefore, we have

ωρ(X1, . . . , Xn) = 1 and r(X1, . . . , Xn) = 0.

Now, let c ∈ (0, 1) and define Y (k) := c1/k(X1, . . . , Xn) for k = 1, 2, . . . . Since

ωρ(Y
(k)) = c1/n < 1, Theorem 3.2 implies Y (k) H∼ 0 in Cρ and Y (k) ∈ [Cρ]<1.

On the other hand, since ωρ(X1, . . . , Xn) = 1, we have X := (X1, . . . , Xn) /∈
[Cρ]<1. Now, note that

dK(Y (k), X) ≤ 2‖(I −RY (k))−1 − (I −RX)−1‖
= 2‖RY (k) −RX‖ = 2‖Y (k) −X‖ = 2‖X‖(1− c1/k).

Consequently, Y (k) → X in the operator norm and dK(Y (k), X) → 0, as k →
∞. This shows that [Cρ]<1 is not complete with respect to the Carathéodory
metric dK and the operator metric. The proof is complete. �

Corollary 6.3. Let δρ be the hyperbolic metric on a Harnack part ∆ of [Cρ]≺ 0.
Then

dK(A,B) ≤ max{‖Pρ(A,R)‖, ‖Pρ(B,R)‖}
(
e2δρ(A,B) − 1

)
, A,B ∈ ∆.

If, in addition A,B ∈ [Cρ]<1, then

2δρ(A,B) ≤ ln
(
1 + max{‖Pρ(B,R)−1‖, ‖Pρ(A,R)−1‖}dK(A,B)

)
.

Corollary 6.4. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. If ∆ is a Harnack part of [Cρ]≺ 0, then the
map

∆ ∋ (T1, . . . , Tn) 7→ f(T1, . . . , Tn) ∈ [Cρf ]≺ 0
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is continuous with respect to the hyperbolic metric δρ on ∆ and the
Carathéodory metric dK on [Cρf ]≺ 0, where ρf is defined by relation (4.1). In
particular, tha map

[Cρ]<1 ∋ (T1, . . . , Tn) 7→ f(T1, . . . , Tn) ∈ [Cρf ]<1

is continuous with respect to the hyperbolic metric.

7. Harnack domination and hyperbolic metric for ρ-contractions
(case n = 1)

In this section, we consider the single variable case (n = 1) and show that our
Harnack domination of ρ-contractions is equivalent to the one introduced and
studied by Cassier and Suciu in [9]. We recover some of their results and obtain
some results which seem to be new even in the single variable case.

In the particular case when n = 1, the free pluriharmonic Poisson kernel
Pρ(rY,R), r ∈ [0, 1), coincides with

Qρ(rY, U) :=
∑

k=1

rkY ∗k ⊗Uk + ρI ⊗ I +

∞∑

k=1

rkY k ⊗U∗k, Y ∈ Cρ ⊂ B(H),

where the convergence of the series is in the operator norm topology and U is
the unilateral shift acting on the Hardy space H2(T). For each ρ-contraction
T ∈ B(H), consider the operator-valued Poisson kernel defined by

Kρ(z, T ) :=

∞∑

k=1

zkT ∗k + ρI +

∞∑

k=1

z̄kT k, z ∈ D,

which was employed by Cassier and Fack in [8]. Using Theorem 2.2, in the
particular case when n = 1, we can prove the following result.

Proposition 7.1. Let T and T ′ be two ρ-contractions in B(H) and let c ≥ 1.
Then the following statements are equivalent:

(i) T
H≺
c
T ′;

(ii) Qρ(rT, U) ≤ c2Qρ(rT ′, U) for any r ∈ [0, 1);
(iii) Kρ(z, T ) ≤ c2Kρ(z, T

′) for any z ∈ D.

Proof. The equivalence (i) ↔ (ii) follows from Theorem 2.2, when n = 1. To
prove the implication (ii) =⇒ (iii), we apply the noncommutative Poisson
transform (when n = 1) at eitI to the inequality of part (ii). Consequently, we
obtain

Kρ(re
it, T ) = (id⊗ PeitI)[Qρ(rT, U)]

≤ c2(id⊗ PeitI)[Qρ(rT ′, U)] = c2Kρ(re
it, T ′)
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for any r ∈ [0, 1) and t ∈ R. Now let us prove that (iii) =⇒ (ii). Since
〈

(T ∗k ⊗ Uk)(hm ⊗ eimt), hp ⊗ eipt
〉
H⊗H2(T)

=
1

2π

∫ π

−π

〈
eiktT ∗k(eimthm), eipthp

〉
H
dt

for any hm, hp ∈ H and k,m, p ∈ N, one can easily obtain
〈(
c2Qρ(rT

′, U)−Qρ(rT, U)
)
h(eit), h(eit)

〉
H⊗H2(T)

=
1

2π

∫ π

−π

〈(
c2Kρ(re

it, T ′)−Kρ(re
it, T )

)
h(eit), h(eit)

〉
H

for any function eit 7→ h(eit) in H⊗H2(T). Now, the implication (iii) =⇒ (ii)
is clear. The proof is complete. �

Let T, T ′ ∈ B(H) be ρ-contractions such that T
H≺ T ′. Due to Proposition 7.1

and Corollary 2.3, we deduce that

‖LT ′,T ‖ = inf{c > 1 : Qρ(rT, U) ≤ c2Qρ(rT ′, U) for any r ∈ [0, 1)}
= inf{c > 1 : Kρ(z, T ) ≤ c2Kρ(z, T

′) for any z ∈ D}
= inf{c > 1 : Kρ(z, T

∗) ≤ c2Kρ(z, T
′∗) for any z ∈ D} = ‖LT ′∗,T∗‖.

Therefore T
H≺ T ′ if and only if T ∗

H≺ T ′∗.

Theorem 7.2. Let T, T ′ ∈ B(H) be such that T, T ′ ∈ [Cρ]<1. Then

‖LT ′,T ‖ = sup
z∈D
‖∆ρ,T ′∗(z)−1(I − z̄T ′∗)(I − z̄T ∗)−1∆ρ,T∗(z)‖,

where

∆ρ,T (z) := [ρI + (1− ρ)(zT ∗ + z̄T ) + (ρ− 2)TT ∗]1/2, z ∈ D.

Moreover,

δρ(T, T
′) = ln max {‖LT,T ′‖ , ‖LT ′,T ‖} .

Proof. If T, T ′ ∈ [Cρ]<1, Theorem 3.4 implies

‖LT ′,T ‖ = ‖LT ′∗,T∗‖ = sup
z∈D
‖∆ρ,T∗(z)(I − zT )−1(I − zT ′)∆ρ,T ′∗(z)−1‖

= sup
z∈D
‖∆ρ,T ′∗(z)−1(I − z̄T ′∗)(I − z̄T ∗)−1∆ρ,T∗(z)‖.

Using now Theorem 3.5, we complete the proof. �

We mention that when ρ = 1, we recover a result obtained by I. Suciu [53],
using different methods. However, if ρ > 0 and ρ 6= 1, the result of Theorem
7.2 seems to be new. We also remark that Proposition 3.12 , Proposition 5.2,
and part (i) of Theorem 5.3 are new even in the single variable case (n = 1).
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The next result makes an interesting connection between the Harnack dom-
ination for n-tuples of operators in Cρ and and the Harnack domination for
ρ-contractions (n = 1), via the reconstruction operator.

Theorem 7.3. Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be in Cρ and let
c > 0. Then the following statements are equivalent:

(i) A
H≺
c
B;

(ii) RA
H≺
c
RB , where RX := X∗1 ⊗R1 + · · ·+X∗n ⊗Rn is the reconstruction

operator associated with X := (X1, . . . , Xn) ∈ Cρ and the right creation
operators R1, . . . , Rn.

(iii) R∗A
H≺
c
R∗B .

Proof. First, assume that item (i) holds. Due to Theorem 2.2, we have

(7.1) Pρ(rA, S) ≤ c2Pρ(rB, S)

for any r ∈ [0, 1), where S := (S1, . . . , Sn) is the n-tuple of left creation
operators. Let U be the unilateral shift on the Hardy space H2(T). Since
R∗iRj = δijI, the n-tuple (R1 ⊗ U∗, . . . , Rn ⊗ U∗) is a row contraction acting
from [F 2(Hn) ⊗H2(T)]n to F 2(Hn) ⊗H2(T). Applying the noncommutative
Poisson transform at (R1 ⊗ U∗, . . . , Rn ⊗ U∗) to inequality (7.1), we obtain

Qρ(rRA, U) =
(
id⊗ P(R1⊗U∗,...,Rn⊗U∗)

)
[Pρ(rA, S)]

≤ c2
(
id⊗ P(R1⊗U∗,...,Rn⊗U∗)

)
[Pρ(rB, S)] = c2Qρ(rRB , U)

for any r ∈ [0, 1). Using Proposition 7.1, we obtain that RA
H≺
c
RB. Now, assume

that (ii) holds. Proposition 7.1 implies

(7.2) Kρ(re
it, RA) ≤ c2Kρ(re

it, RB), r ∈ [0, 1) and t ∈ R.

Taking t = 0, we obtain Pρ(rA,R) ≤ c2Pρ(rB,R) for any r ∈ [0, 1), which, due

to Theorem 2.2, implies A
H≺
c
B. The equivalence (ii) ↔ (iii) is a consequence

of Proposition 7.1 and the fact that inequality (7.2) is equivalent to

Kρ(re
it, R∗A) ≤ c2Kρ(re

it, R∗B), r ∈ [0, 1) and t ∈ R.

This completes the proof. �

We remark that, according to Theorem 3.4 and Corollary 2.3, we have

‖LB,A‖ = ‖Cρ,AC−1
ρ,B‖ = inf{c > 1 : Pρ(A,R) ≤ c2Pρ(B,R)}

for any A,B ∈ [Cρ]<1, where Cρ,A is defined in Theorem 3.4.

Corollary 7.4. If A,B are n-tuples of operators in [Cρ]<1, then ‖LB,A‖ =
‖LRB,RA‖ = ‖LR∗B,R∗A‖. Moreover, δρ(A,B) = δρ(RA, RB).
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1. Introduction.

Our original goal was to prove a strong version of a rigidity principle for ho-
momorphisms between algebraic groups which is part of the area’s folklore.
The general philosophy is that if G and H are algebraic groups over an alge-
braically closed field k, then the set Homk−gr(G,H) modulo the adjoint action
of H should remain constant under any base change K/k with K algebraically
closed. Our result is as follows.

Theorem 1.1. Let k be an algebraic closed field. Let G be a linearly reductive
(affine) algebraic k–group, and H a smooth algebraic k–group scheme. Then
for every algebraically closed field extension K/k, the natural map

Homk−gr(G,H)/H(k)→ HomK−gr(GK ,HK)/H(K)

is bijective.

When k is of characteristic 0 and G and H are both reductive this result
has been established by Vinberg [19, prop. 10] by reducing to the case where
G = GLN and H is connected. Our proof is very different in spirit than
Vinberg’s, and the main result more general. The proof we give is based on
the deformation theory à la Demazure-Grothendieck described in [17], which
is itself linked to the analytic viewpoint later taken by Richardson on similar
problems [12] [13] [16]. The main auxiliary statement we use is case (i) of
the following Theorem, a vanishing result for Hochschild cohomology of affine
group schemes which is of its own interest.

Theorem 1.2. Let R be a commutative ring. Let G be a flat affine group
scheme over Spec(R). Assume that the fibers of G over all closed points of
Spec(R) are linearly reductive groups (as affine groups over the corresponding
residue fields. See §3.1 below for the relevant definitions and references). Let
L be a G-R–module (see §2.1 below). Assume that one of the following two
conditions holds:

(i) R is noetherian,

(ii) the group G is of finite presentation as an R-scheme, and L is a direct
limit G-R–modules which are finitely presented as R-modules.

Then

Hi(G, L) = 0 for all i > 0.

This result extends a theorem of Grothendieck for R–groups of multiplicative
type [17, IX.3.1].

At this point we recall some standard notation that will be used throughout
the paper. Let S be scheme, and G a group scheme over S. For all scheme
morphism S → T we will denote as it is customary the T -group G ×S T by
GT . If T = Spec(R) we write GR instead of GT , and G(R) instead of G(T ).
Group schemes over a given scheme S will for brevity and convenience some-
times be refereed to simply as S–groups, or R–groups in the case when
S = Spec(R).
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2. Generalities on Hochschild cohomology

In this paper, we deal with Hochschild cohomology of a flat affine group scheme
G over an affine base X = Spec(R), and their corresponding G-OX–modules
[17, I 4.7]. This set up is equivalent to that of G-R-modules as we now explain.
Let G = Spec(R[G]). The group structure of G gives the R-algebra R[G] a
coassociative and counital Hopf algebra structure. We have thus a comultipli-
cation ∆G : R[G] → R[G] ⊗R R[G], a counit ǫ : R[G] → R and an antipode
map ι : R[G]→ R[G].
For any ring homomorphismR→ S recall that the S-group G×RS obtained by
base change is denoted by GS . This is an affine S–group with S[G] = S⊗RR[G]
as its Hopf algebra. Similarly, for any R–module L we denote the S–module
L⊗R S by LS .

2.1. Definition and basic properties. Let L be anR-module, and ρ : G→
GL(L) a linear representation of G. This amounts to give for each R–algebra
S an S–linear representation ρS of the abstract group G(S) on the S–module
LS in such a way that the family (ρS) is “functorial on S.” We also then say
that L is a (left) G-R–module. Because G is affine, to give L a G-R–module
structure is equivalent to give L a (right) R[G]-comodule structure, that is an
R–linear map

∆L : L→ L⊗R R[G]

satisfying the two following natural axioms:

(CM1) The following diagram is commutative

L
∆L−−−−→ L⊗R R[G]

∆L

y idL⊗∆G

y

L⊗R R[G]
∆L⊗idR[G]−−−−−−−→ L⊗R R[G]⊗R R[G]

(CM2) The composite map

L
∆L−−−−→ L⊗R R[G]

idL⊗ǫ−−−−→ L

is the identity map idL.

The flatness condition on G/R is natural within the present context since the
category of G-R–modules is then abelian. See [15, prop. 2].1 Recall that the
fixed points of L under G are defined by

LG :=
{
f ∈ L | ∆L(f) = f ⊗ 1

}
.

This is an R–submodule of L. Because of the assumption on flatness, the
Hochschild cohomology groups Hn(G, L) are the derived functors of the “fixed
point” functor G-R − mod → R − mod given by L → LG [17, I 5.3.1]. The
Hn(G, L) can thus be computed as the cohomology groups of the complex [4,
II §3.3.1]

1The existence of the unit section of G, more precisely of the counit ǫ, shows that R[G]
is in fact a faithfully flat R-algebra.
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L
∂0→ L⊗R R[G]

∂1→ L⊗R R[G2]
∂2→ L⊗R R[G3]→ · · ·(2.1)

where as usual R[Gn] = R[G × · · · × G] ≃ R[G] ⊗R · · · ⊗R R[G], and both
products and tensor products are taken n-times. We denote as it is customary
ker(∂i) by Zi(G, L) (the cocycles), and Im(∂i−1) by Bi(G, L) (the cobound-
aries). In particular we have the exact sequence

0→ LG = H0(G, L)→ L
∂0→ Z1(G, L)→ H1(G, L)→ 0.(2.2)

The following four properties easily follow from the resolution (2.1).

Lemma 2.1. Let L be a G-R–module.

(1) Let I be an ideal of R which annihilates L. Then LR/I = L⊗R R/I is nat-

urally a GR/I-R/I–module, and Hn(G, L)
∼−→ Hn(GR/I , LR/I) for all n ≥ 0.

(2) If S/R is a flat extension of rings, then

Hn(G, L)⊗R S ∼−→ Hn(GS , LS) for all n ≥ 0.

(3) Let L = lim−→i Li be the inductive limit of G-R–modules. Then

lim−→
i

Hn(G, Li)
∼−→ Hn(G, L) for all n ≥ 0.

(4) Let S = lim−→α Sα be an inductive limit of R–rings. Then

lim−→
α

Hn(GSα , LSα)
∼−→ Hn(GS , LS) for all n ≥ 0.

Proof. (1) The natural map L → L ⊗R R/I is an isomorphism of both R and
R/I–modules. We have R and R/I–module isomorphisms

L⊗R R[Gn] ≃ L⊗R R/I ⊗R R[Gn] ≃ L⊗R R/I[Gn] ≃
≃ L⊗R R/I ⊗R/I R/I[Gn] ≃ LR/I ⊗R/I R/I[Gn].

Now (1) follows from the fact that Hn(G, L) and Hn(GR/I , LR/I) are com-
puted by the cohomology of the same complex. This is also a special case of
[17, III 1.1.2].

(2) See [10, I.4.13].

(3) See [10, I.4.17].

(4) The terms of the complex (2.1) for the GS-S–module LS are

LS ⊗S S[Gn] = (L⊗R S)⊗S (S ⊗R R[Gn]
)
≃
(
L⊗R R[Gn]

)
⊗R S

So this complex reads

L⊗R S →
(
L⊗R R[G]

)
⊗R S →

(
L⊗RR[G2]

)
⊗R S →

(
L⊗R R[G3]

)
⊗R S · · ·

which is the inductive limit over the Sα of the complexes

L⊗RSα →
(
L⊗RR[G]

)
⊗RSα →

(
L⊗RR[G2]

)
⊗RSα →

(
L⊗RR[G3]

)
⊗RSα · · ·
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whence the statement. �

The third property in the last Proposition is useful in view of the following
fact.

Proposition 2.2. (Serre) Assume that one of the following hypothesis holds.

(i) R is noetherian,

(ii) G is essentially free over R (see §6).
Let L be a G-R–module. Then L is the inductive limit of its G-R submodules
which are of finite type as R–modules.

Proof. (i) See [14, prop. 2].

(ii) See [17, VIB 11.10].
�

We also recall the following application of erasing functors.

Lemma 2.3. Let d > 0 be a positive integer such that Hd(G, L) = 0 for all
G-R–modules L. Then Hd+i(G, L) = 0 for all G-R–modules L and for all
i ≥ 0.

Proof. It is enough to prove the vanishing for d + 1. Let eR be the trivial R–
group, and view L as a (necessarily trivial) eR-R–module. We also view L as
a trivial G-R–module which we denote by L0 to avoid any possible confusion.
Now we embed L into the induced G-R–module indG

eR
(L) = L0 ⊗R R[G] via

the comodule map ∆L, and denote by Q the resulting quotient. We know that
the Shapiro lemma holds [10, I.4.6], namely that

Hi(G, indG
eR

(L))
∼−→ Hi(eR, L) = 0 ∀ i > 0.

The long exact sequence for cohomology for 0→ L→ indG
1 (L)→ Q→ 0 yields

an isomorphism Hd(G, Q)
∼−→ Hd+1(G, L), whence the result. �

3. Vanishing of Hochschild cohomology

The proof of Theorem 1.2 proceeds by considering successively the cases of
fields, artinian rings, complete noetherian rings and local rings. We begin by
recalling and collecting a few facts about linearly reductive groups.

3.1. Linearly reductive groups. Let k be a field. A k–group G is linearly
reductive if it is affine and its corresponding category Repk(G) of finite dimen-
sional linear representations is semisimple. We recall the following criterion.

Proposition 3.1. Let G be an affine k-group. Then the following are equiva-
lent:

(1) G is linearly reductive.
(2) Every linear representation of G is semisimple.
(3) H1(G, V ) = 0 for any finitely dimensional G-k–module V.
(4) H1(G, V ) = 0 for any G-k–module V .
(5) Hi(G, V ) = 0 for any G-k–module V and all i > 0.
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(6) k is a direct summand of the G-k–module structure on k[G] corre-
sponding to the right regular representation.

(7) k is an injective G-k–module.

Proof. For the equivalence of the first five assertions, see [4, II prop. 3.3.7].

(2) =⇒ (6): This follows from the fact that k is a submodule of k[G].

(6) =⇒ (7): See [10, I.3.10].
(7) =⇒ (3): If k is an injective G-k–module, the groupH1(G, V ) = Ext1G(k, V )
vanishes for each finite dimensional G-k–module V (by duality). �

The property of being linearly reductive behaves well with respect to base
change.

Proposition 3.2. Let G be an affine algebraic k–group. Let K/k be a field
extension. For the K-group GK to be linearly reductive it is necessary and
sufficient that G be linearly reductive. In particular, if k is an algebraic closure
of k and Gk is a linearly reductive k-group, then G is linearly reductive.

This result is certainly known. We give three different proofs for the sake of
completeness.

Proof. (1) As observed by S. Donkin in §2 of [5], G is linearly reductive if and
only if the injective envelope EG(k) of the trivial G-k–module k coincides with
k. One also knows [ibid. eq. (1)] that EGK

(K) = EG(k)⊗kK. The proposition
follows.

(2) Assume that the k–group G is linearly reductive. By the criterion (6) of
Proposition 3.1, k is a direct summand of k[G]. Hence K is a direct summand
of K[G] and therefore GK is linearly reductive. Conversely if GK is linearly
reductive and V is a G-k–module, then by Lemma 2.1.2 we have H1(G, V )⊗k
K ≃ H1(GK , VK) = 0.

(3) The argument depends on the characteristic of k. One uses [4] IV prop. 3.3
in characteristic 0, and Nagata’s theorem (ibid. théorème 3.6) if the character-
istic is positive.

�

Remark 3.3. Let G be an affine algebraic group over a field k. Let S be a
scheme over k, and consider the S-group scheme GS = G ×k S. The fibers
of GS are then affine algebraic groups over the corresponding residue fields.
It follows from the previous proposition that if any of the fibers is linearly
reductive, then all fibers are linearly reductive.

The following useful statement seems to have gone unnoticed in the literature.

Proposition 3.4. Let 1 → G1 → G2 → G3 → 1 be an exact sequence of
affine algebraic k–groups. Then the following are equivalent:

(1) G2 is linearly reductive ,
(2) G1 and G3 are linearly reductive.

Documenta Mathematica 14 (2009) 653–672



Vanishing of Hochschild Cohomology . . . 659

Proof. (1) =⇒ (2): Since G2/G1 is affine, we know that the induction functor

indG2

G1
is exact [10, I.5.13], and therefore Shapiro’s lemma hence holds (ibid.

I.4.6). Thus

H∗(G2, indG2

G1
(V1))

∼−→ H∗(G1, V1)

for any G1-k–module V1. Thus Hi(G1, V1) = 0 for i > 0 and Proposition 3.1

shows that G1 is linearly reductive. Since the functor indG2

G1
is exact we can use

the Hochschild-Serre spectral sequence in this framework (ibid. I.6.6.) Given
a finite dimensional representation V3 of G3, this spectral sequence reads as
follows

E2
p,q = Hp(G3, H

q(G1, V3)) =⇒ Hp+q(G2, V3).

Since G1 is linearly reductive Hq(G1, V3) vanishes for all q ≥ 1, hence

Hn(G3, V3)
∼−→ Hn(G2, V3) for all n ≥ 0. Since H1(G2, V3) = 0,

H1(G3, V3) = 0 and we conclude that G3 is linearly reductive by Proposition
3.1.

(2) =⇒ (1): Assume that G1 and G3 are linearly reductive. Let us check that
G2 is linearly reductive by again appealing to Proposition 3.1. Let V2 be a
finitely dimensional representation of G2. Again we can use the Hochschild-
Serre spectral sequence which now reads as follows

E2
p,q = Hp(G3, H

q(G1, V2)) =⇒ Hp+q(G2, V2).

The only non zero E2-term is H0(G3, H
0(G1, V2)) = H0(G2, V2). Hence

Hi(G2, V2) = 0 for i > 0. Thus G2 is linearly reductive. �

Note that Proposition 3.4 agrees with Nagata’s theorem characterizing linearly
reductive groups over an algebraically closed field [11].

Proposition 3.5. Let G be an affine algebraic k–group which admits a com-
position series where each of the factors is of one of the following types:

(i) algebraic k-groups of multiplicative type,

(ii) finite étale k-group whose order is invertible in k,

(iii) reductive k-group if k is of characteristic zero.

Then G is linearly reductive.

Proof. By Proposition 3.4 we are reduced to verifying the result for each of
the given types. Proposition 3.2 permits us to assume that the base field k
is algebraically closed. Case (i) is then that of a diagonalizable k–group [17,
th. I.5.3.3]. Case (ii) is the case of a finite constant group of invertible order
(Maschke’s theorem, see [11]). Case (iii) is a classical result due to H. Weyl
(see [18, th. 27.3.3]). �
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3.2. Finiteness considerations. Recall that for arbitrary groups schemes
G and H over a scheme S the functor HomS−gp(G,H) : Sch/S → Sets is
defined by

T 7→ HomS−gr(G,H)(T ) = HomT−gr(GT ,HT )

for all schemes T/S.
The following observations will be repeatedly used in the proofs of our main
results. For the remainder of this section we assume that G and H are finitely
presented group schemes over S.
Assume that T = Spec(B) is an affine scheme (in the absolute sense) over S. In
what follows we will encounter ourselves several times in the situation where
B is given to us as an inductive limit

(3.1) B = lim−→
λ∈Λ

Bλ

over some directed set Λ. Note that the Spec(Bλ) do not in general have any
natural structure of schemes over S.
Under these assumptions the group schemes GB and HB are defined over some
Bµ by [17, V IB 10.10.3], i.e. there exists µ ∈ Λ and finitely presented Bµ–group
schemes Gµ and Hµ such that

(3.2) GB = Gµ ×Bµ B and HB = Hµ ×Bµ B.
Furthermore if either G is affine (resp. flat, smooth), so is Gµ by [9] 8.10.5
(resp. 11.2.6, 17.7.8). Similarly for H.
It follows from the very definition that
(3.3)

HomS−gp(G,H)(B) = HomB−gp(GB,HB) = HomBµ−gp(Gµ,Hµ)(B)

For all λ ≥ µ define Gλ = Gµ ×Bµ Bλ and Hλ = Hµ ×Bµ Bλ. Then the
canonical map

(3.4) lim−→
λ≥µ

HomBλ−gr(Gλ,Hλ)→ HomB−gr(GB,HB).

is bijective by [17, V IB 10.10.2] (see also [9, théorème 8.8.2]).

Remark 3.6. From the foregoing it follows that if u, v : G → H are two
homomorphisms of S-group schemes, then there exist µ ∈ Λ such that uB
and vB are obtained by the base change Bµ → B from group homomorphisms
uµ, vµ ∈ HomBµ−gp(Gµ,Hµ).

Lemma 3.7. Let L be a GB-B-module which is of finite presentation as a B-
module. Then there exists an index µ and a Gµ-Bµ-module Lµ which is finitely
presented as a Bµ–module such that L = Lµ ⊗Bµ B.

Proof. According to (3.2) and proposition 8.9.1 (ii) of [9] we can find an index α,
a Bα–group Gα and a finitely presented Bα-module Lα such that Gα×Bα B =
GB and Lα⊗BαB = L. For λ ≥ α, we set Gλ = Gα×BαBλ and Lλ = L⊗Bα Bλ.
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By [9] 8.5.2.2, we have an isomorphism

lim−→
λ≥α

HomBλ

(
Lλ, Lλ ⊗Bλ Bλ[Gλ]

) ∼−→ HomB

(
lim−→
λ≥α

Lλ, lim−→
λ≥α

Lλ ⊗Bλ Bλ[Gλ]
)

=

= HomB(L,L⊗B B[G]).

It follows that there exists λ ≥ α such that the B–module homomorphisms
∆L : L→ L⊗BB[G] is obtained by the base changeBλ → B from a Bλ–module
homomorphism ∆Lλ : Lλ → Lλ ⊗Bλ Bλ[Gλ]. The same reasoning applied to
HomB(L,L⊗B B[G]⊗B B[G]) and HomB(L,L) show that there exists µ ≥ λ
such that ∆Lλ satisfies conditions (CM1) and (CM2) after applying the base
change Bλ → Bµ. �

3.3. Proof of Theorem 1.2. We assume throughout that i > 0.
Case (i) R a noetherian ring: The proof is a classical dévissage argument [8,
§7.2.7)].

Case of R a field: The result follows from Proposition 3.1.

Case of R local artinian: Let m be the maximal ideal of R, and k the corre-
sponding residue field. By our assumption on the closed fibers of G the k–group
Gk = G×R k is linearly reductive.
Fix an integer e ≥ 2 such that me = 0. Thus there exists a smallest integer
j = j(L) such that 0 < j ≤ e and mjL = 0. We reason by induction on j.
If j = 1 then mL = 0. By Lemma 2.1.1, we have Hi(G, L) ∼= Hi(Gk, Lk) for
all i, and Hi(Gk, Lk) vanishes since Gk is linearly reductive. Assume now that
Hi(G,M) = 0 for all G-R–modules M satisfying mjM = 0. If mj+1L = 0, we
consider the exact sequence

0→ mL→ L→ L′ → 0

of G-R–modules. Observe that mj(mL) = 0 and that mL′ = 0. This sequence
gives rise to the long exact sequence of cohomology [10, I.4.2]

· · · → Hi(G,mL)→ Hi(G, L)→ Hi(G, L′)→ · · ·

We have Hi(G, L′) = 0 by the case j = 1 and Hi(G,mL) = 0 by the induction
hypothesis. Thus Hi(G, L) = 0 as desired.

Case of R local and complete: We denote by m the maximal ideal of R, and set
Rn = R/mn+1 for all n ≥ 0.
By Lemma 2.3 it will suffice to establish the case i = 1. Furthermore, Propo-
sition 2.2 together with Lemma 2.1.3 allows us to assume that L is finitely
generated over R. By the Artin-Rees lemma [7, cor. 0.7.3.3 ] we have a natural
isomorphism

L
∼−→ lim←−

n

Ln

where Ln = L ⊗R Rn. We are given a cocycle z ∈ Z1(G, L) and our goal is
to show by using approximation that z is a coboundary. Since Rn is a local

Documenta Mathematica 14 (2009) 653–672



662 Benedictus Margaux

artinian ring we have H1(Gn, Ln) = 0 where Gn = G ×R Rn.2 We consider
the exact commutative diagram

0 −−−−−→ H0(G, L) −−−−−→ L
∂0−−−−−→ Z1(G, L) −−−−−→ H1(G, L) → 0

?
?
y

?
?
y

?
?
y

?
?
y

0 −−−−−→ H0(Gn, Ln) −−−−−→ Ln
∂0,n
−−−−−→ Z1(Gn, Ln) −−−−−→ H1(Gn, Ln) = 0.

Then the images zn of z in the Z1(Gn, Ln) define elements bn ∈ B1(Gn, Ln) ⊂
Z1(G, Ln). We look now

0 −−−−→ H0(Gn, Ln) −−−−→ Ln
∂0,n−−−−→ B1(Gn, Ln) −−−−→ 0.

Since H0(Gn, Ln) is a finitely generated Rn-module, it is artinian. Hence the
system

(
H0(G, Ln)

)
n≥0

satisfies the Mittag-Leffler condition [7, cor. 0.13.2.2

]. We get then an exact sequence (ibid. prop. 13.2.2)

0 −−−−−→ lim←−n
H0(Gn, Ln) −−−−−→ lim←−n

Ln −−−−−→ lim←−n
B1(Gn, Ln) −−−−−→ 0.

It follows that there exists l ∈ L such that z = ∂0(l) modulo mn+1 for all
n ≥ 0. Thus z = ∂0(l) and therefore the image of z in H1(G, L) vanishes.

Case of R local: We know that the completion R̂ of R is local noetherian and
faithfully flat over R [7, cor. 0.7.3.5]). By Lemma 2.1.2, we have

Hi(G, L)⊗R R̂ ∼−→ Hi(G bR, L bR).

The right hand side vanishes by the local complete case, hence Hi(G, L) = 0
by faithfully flat descent.

Case of R arbitrary noetherian: By the same reasoning used in the previous
case we have Hi(G, L) ⊗R Rm = 0 for any maximal ideal m of R. Thus
Hi(G, L) = 0.

Case (ii) The group G is finitely presented as an R-scheme and L is a direct
limit of G-R-modules which are finitely presented as R–modules: By Lemma
2.1.3 we may assume that L is a finitely presented R–module. The same rea-
soning used in the final step of the noetherian case allows us to assume that
R is a local ring. Let m be the maximal ideal of R and k its residue field.
We consider the standard filtration R = lim−→λRλ of R by its finitely generated

(hence noetherian) Z–subalgebras. For each λ, we consider the prime ideal
pλ := p ∩ Rλ of Rλ, and the corresponding local ring R′λ := (Rλ)pλ whose
maximal ideal pλR

′
λ we denote by mλ. Note that the residue field kλ of R′λ is a

subfield of k. We have R = lim−→λR
′
λ and the following commutative diagram

2One of course verifies that the Rn-groups Gn satisfy the assumptions of the theorem.
Similar considerations apply to the reductions that follow.
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R′λ −−−−→ R
y

y

kλ = R′λ/mλ −−−−→ R/m = k.

We now apply the considerations of §3.2 to the case when S = Spec(R), B = R
and Bλ = R′λ. This yield the existence of an R′µ, an affine, flat and finitely
presented R′µ– group scheme Gµ and a Gµ-R′µ-module Lµ such that G =
Gµ ×R′µ R and L = Lµ ⊗R′µ R. By Lemma 2.1.4, we have

(3.5) Hi(G, L) = lim−→
λ≥µ

Hi(Gµ ×R′µ R′λ, Lµ ⊗R′µ R′λ).

We also have by the transitivity of base change that

(3.6) (Gµ ×R′µ kµ)×kµ k ≃ Gµ ×R′µ k ≃ (Gµ ×R′µ R)×R k = G×R k.
From our assumptions on the R–group G it follows that the k–group G ×R
k is affine algebraic and linearly reductive. It then follows from (3.6) and
Proposition 3.2 that the kµ–algebraic group Gµ ×R′µ kµ is linearly reductive as

well. This shows that the R′µ–group Gµ satisfies the assumption of the first
part of the theorem. Similar considerations apply to the R′λ–group Gµ×R′µ R′λ
for all λ ≥ µ. Thus the noetherian case that we have already established shows,
with the aid of (3.5), that Hi(G, L) = 0. �

4. Rigidity and deformation theory

4.1. Locally finitely presented S–functors. Let S be a scheme and
F : Sch/S → Sets a contravariant functor. We recall the following definitions:

- F is locally of finite presentation over S if for every filtered inverse system of
affine S-schemes Spec(Bi), the canonical morphism

lim−→F (Bi)→ F (lim−→Bi)

is an isomorphism [3, §8.3].3

- F is formally smooth (resp. formally unramified, formally étale) if for any
affine scheme Spec(B) over S and any subscheme Spec(B0) of Spec(B) defined
by a nilpotent ideal I of B, the map

F (B)→ F (B0)

is surjective (resp. injective, bijective) [17, XI.1.1].

Note that all these definitions are stable by an arbitrary base change T → S.
In the second definition, we can require furthermore that I2 = 0. The following
lemma is elementary.

3This reference has assumptions on the nature of S related to Artin’s approximation
theorem which are relevant to their work, but not to ours. As it is customary, given an affine
scheme Spec(B) over S, we write F (B) instead of F

`

Spec(B)
´

.
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Lemma 4.1. Assume that F is locally of finite presentation over S. Consider
a field extension K/k over S, that is morphisms Spec(K) → Spec(k) → S.
Assume that k is separably closed and K is a separable field extension of k.
Then the map F (k)→ F (K) is injective.

Remark 4.2. If k is algebraically closed, any field extension K/k is separable,
hence the Lemma applies.

Proof. We may assume without loss of generality that S = Spec(k). We are
given two elements α, β ∈ F (k) with same image in F (K). Since K is the induc-
tive limit of its finitely generated subalgebras, there exists a finitely generated
k–algebra A such that α and β have same image in F (A). Since K/k is sep-
arable, the finitely generated k–subalgebras of K are separable over k. Hence
A is integral and absolutely reduced (i.e. A⊗k k is reduced), and therefore the
affine variety Spec(A) admits a k–point [1, AG.13.3]. In other words, the ring
homomorphim k → A admits a section. This, in turn, induces a section of the
group homomorphism F (k)→ F (A), hence α = β in F (k). �

4.2. Formal étalness. We recall the following crucial statement of deforma-
tion theory for group scheme homomorphisms due to Demazure.

Theorem 4.3. ([17, cor. III.2.6]) Let G and H be group schemes over a scheme
S. Assume that G is affine (in the absolute sense) and flat, and that H is
smooth. Let S0 be a closed subscheme of S defined by an ideal I of OS such
that I2 = 0. We set G0 = G×S S0 and H0 = H×S S0. Let f0 : G0 → H0 be a
homomorphism of S0-groups, and let G0 act on Lie(H0) via f0 and the adjoint
representation of H0. Then

(1) If H2
(
G0,Lie(H0) ⊗OS0

I
)

= 0 the homomorphism f0 lifts to an S–
group homomorphism f : G→ H.

(2) If H1
(
G0,Lie(H0)⊗OS0

I
)

= 0, then any two liftings f and f ′ of f0 as

in (1) are conjugate under an element of ker
(
H(S) → H(S0)

)
. More

precisely f ′ = int(h)f for some h ∈ ker
(
H(S)→ H(S0)

)
. �

Combined with the vanishing result given by Theorem 1.2 we are very close
to the completion of the proof of our main result. The missing ingredient is
some detailed information pertaining to the nature of certain functors related
to homomorphisms between group schemes.
Let G and H be group schemes over a scheme S. The functor HomS−gp(G,H)
was already defined in §3.2. Any element h ∈ H(T ) defines an inner automor-
phism int(t) ∈ AutT−gr(HT ), and this last group acts naturally on the set

HomS−gr(G,H)(T ). This allows us to define a new functor HomS−gr(G,H) :
Sch/S → Sets by

T 7→ HomS−gr(G,H)(T ) = HomT−gr(GT ,HT )/H(T ).

The final functor which is relevant to us is the transporter of two elements of
HomS−gr(G,H). Let u, v : G → H two homomorphisms of S-group schemes.
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Recall the subfunctor Transp(u, v) of H defined by

T → Transp(u, v)(T ) =
{
h ∈ H(T ) | uT = int(h) vT

}
.

We begin with an easy observation.

Lemma 4.4. Let G and H be finitely presented group schemes over S, and let
u, v ∈ HomS−gr(G,H). The S-functors HomS−gr(G,H), HomS−gr(G,H)
and Transp(u, v) are locally of finite presentation.

Proof. For every filtered inverse system of affine schemes Spec(Bλ) over S based
on some directed set Λ, and we have to show that the canonical morphisms

lim−→HomS−gr(G,H)(Bλ)→ HomS−gr(G,H)(lim−→Bλ) = HomS−gr(G,H)(B),

lim−→HomS−gr(G,H)(Bλ)→ HomS−gr(G,H)(lim−→Bλ) = HomS−gr(G,H)(B),

and

lim−→Transp(u, v)(Bλ)→ Transp(u, v)(lim−→Bλ) = Transp(u, v)(B)

are bijective. Taking into account (3.2), (3.3) and (4.1) we may replace S by
Spec(Bµ) for some suitable index µ ∈ Λ, and replace Λ by the subset of Λ
consisting of all indices λ ≥ µ. Denote G ×Bµ Bλ and H ×Bµ Bλ by Gλ and
Hλ respectively, just as we did in §3.2. Then (3.4) shows that HomS−gr(G,H)
is locally of finite presentation.
As for the second assertion, we look in view of (3.3) at the map

lim−→HomBλ−gr(Gλ,Hλ)/Hλ(Bλ)→ HomB−gr(GB ,HB)/HB(B)

which is already known to be surjective. For the injectivity, we are given
φα, φ

′
α ∈ HomBα−gr(Gα,Hα) for some α ≥ µ whose images φ, φ′ in

HomB−gr(GB,HB) are conjugated under HB(B) = H(B). Since H is of finite

presentation lim−→H(Bλ)
∼−→ H(B). So there exists β ≥ α and hβ ∈ H(Bβ)

such that φ = int(h)φ′ where h stands for the image of hβ in H(B). By (3.4)
there exists γ ≥ β such that φα ×Bα idBγ = int(hγ)(φ′α ×Bα idBγ ), where hγ is
the image of hβ in H(Bγ). In other words, φα, φ

′
α map to the same element of

HomBγ−gr(Gγ ,Hγ)/Hγ(Bγ), hence define the same element in the inductive

limit lim−→ HomBλ−gr(Gλ,Hλ)/Hλ(Bλ). We conclude that HomS−gr(G,H) is

locally of finite presentation.
Finally we look at the case of the transporter. Assume that h ∈ H(B) is such
that uB = int(h)vB. Since H is finitely presented there exists α ≥ µ and an
element hα ∈ H(Bα) whose image in H(B) is h. Then the two elements uα and
int(hα)vα of HomBα(Gα,Hα) map to the same element of HomB(GB,HB).
By (3.4) there exists β ≥ α such that uβ = int(hβ)vβ (where the subindex
β denotes the image of the element in question under the map Bα → Bβ).
This shows that our map is surjective. Note that from the definition of the
transporter it follows that

(4.1) Transp(u, v)(B) = Transp(uB, vB)(B) = Transp(uµ, vµ)(B)
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Injectivity is clear since for all λ ≥ µ we have Transp(uµ, vµ)(Bλ) ⊂ Hµ(Bλ)
and Hµ is of finite presentation. �

Theorem 4.5. Let S be a scheme and let G and H be finitely presented group
schemes over S. Assume that G is affine (in the absolute sense) and flat, and
that H is smooth. Assume that for all s ∈ S the fiber Gs is linearly reductive
(as an affine algebraic group over the residue field κ(s) of s). Then

(1) The functor Hom(G,H) is formally smooth.

(2) The functor Hom(G,H) is formally étale.
(3) If u, v : G→ H are two homomorphisms of S-group schemes, the subfunc-
tor Transp(u, v) of H is formally smooth.

The case when G is of multiplicative type is an important result of
Grothendieck [17, XI prop. 2.1]. If S is of characteristic zero and G is re-
ductive, the first statement is due to Demazure [17, XXIV prop. 7.3.1.a].

Proof. We note that if HomS−gr(G,H) is formally smooth, then

HomS−gr(G,H) is formally smooth as well. As a consequence, to estab-
lish (1) and (2) it will suffice to prove that HomS−gr(G,H) is formally

smooth and that HomS−gr(G,H) is formally unramified. We are given an
affine scheme Spec(B) over S, and a closed subscheme Spec(B0) defined by an
ideal I of B satisfying I2 = 0, and we need to show that

(I) HomS−gr(G,H)(B)→ HomS−gr(G,H)(B0) is surjective,

(II) HomS−gr(G,H)(B)→ HomS−gr(G,H)(B0) is injective, and

(III) Transp(u, v)(B)→ Transp(u, v)(B0) is surjective.

Proof of (I) and (II): By the first equality of (3.3) we may assume with no loss
of generality that S = Spec(B). We claim that, with the obvious adaptations
to the notation of Theorem 4.3,

(4.2) Hi
(
G0,Lie(H0)⊗B0 I

)
= 0 for all i > 0.

Write B = lim−→Bλ where the limit is taken over all finitely generated Z–

subalgebras (hence noetherian) Bλ of B. Then Jλ := I ∩ Bλ is an ideal of
Bλ such that J2

λ = 0 and I = lim−→Jλ. Consider the trivial G0-B0 module

Iλ := Jλ ⊗Bλ B0.

Since Jλ is a Bλ-module of finite presentation, Iλ is a B0-module of finite
presentation. We have an isomorphism of B0-modules

lim−→Iλ
∼−→ I

hence an isomorphism of G0-B0–modules

lim−→
(
Lie(H0)⊗B0 Iλ

) ∼−→ Lie(H0)⊗B0 I.

Because H0 is a smooth B0–group Lie(H0) is a finitely presented B0–module
(see [4] II §4.8). Since the tensor product of finitely presented modules is finitely
presented, Lie(H0)⊗B0 I is a direct limit of G0-B0–modules which are finitely
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presented as B0-modules. It is clear that the B0-groups G0 and H0 satisfy the
assumptions of Theorem 1.2.2. This shows that (4.2) holds, and we can now
apply Theorem 4.3 to obtain (I) and (II)

Proof of (III): For convenience we denote Transp(u, v) by T(u, v). Con-
sider the B-group homomorphisms uB, vB ∈ HomB−gr(GB,HB) induced by
the base change Spec(B) → S. By the definition of the transporter we see
that T(u, v)(B) = T(uB, vB)(B) and T(u, v)(B0) = T(uB, vB)(B0) where
Spec(B0)→ Spec(B) is the natural map. From this it follows that to establish
(III) we may assume without loss of generality that S = Spec(B).
Let u0 and v0 be the elements of HomB0−gr(G0,H0) induced by the base change
B → B0. Let h0 ∈ Transp(u0, v0)(B0), so that u0 = int(h0)v0. Lift h0 to an el-
ement h′ ∈ H(B) (which is possible since H is smooth), and set u′ = int(h′)vB .
Then u′ and uB map to the same element of HomB0−gr(G0,H0), namely u0. By
II there exists h′′ ∈ H(B) such that uB = int(h′′)u′. Furthermore, because of
(4.2) we may assume that h′′ ∈ ker

(
H(B)→ H(B0)

)
. Then h = h′′h′ ∈ H(B)

maps to h0 and satisfies uB = int(h)vB . �

Remark 4.6. The assumption on the fibers of G is not superfluous. Let B =
C[ǫ] be the ring of dual numbers over C, and let S = Spec(B). If I = Cǫ, then
B0 = C. Consider now the case when G = Ga and H = Gm (the additive and
multiplicative groups over B.)
It is well-known that HomB−gr(G,H)(B0) = HomC−gr(Ga,C,Gm,C) is trivial.
On the other hand HomB−gr(G,H)(B) is infinite; it consists of the homomor-
phisms {φz : z ∈ C} which under Yoneda correspond to the B–Hopf algebra
homomorphisms φ∗z : B[t±1] → B[x] given by φ∗z : t 7→ 1 + zǫx. Since H
is abelian the functors HomB−gr(G,H) and HomB−gr(G,H) coincide. The

above discussion shows that HomB−gr(G,H) is not formally étale.

Lemma 4.7. If G is essentially free over S (see §6), the functor Transp(u, v)
is representable by a closed S–subscheme of H

Proof. Consider the two morphisms q1, q2 : H → Hom(G,H) which for all
schemes T/S and h ∈ H(T ) are given by and q1(h) = uT and q2(h) =
int(h)vT . Since G is assumed essentially free over S and H is separated over
S, Grothendieck’s criterion [17, VIII.6.5.b] applied to X = H, Y = G,
Z = H shows the representability of Transp(u1, u2) by a closed S–subscheme
of H. �

Corollary 4.8. Under the assumptions of Theorem 4.5, assume furthermore
that G is essentially free over S. Let u, v : G → H be two homomorphisms
of S-group schemes. Then the S-functor Transp(u, v) is representable by a
smooth closed S-subscheme of H. In particular, if u = v, then the centralizer
subfunctor Centr(u) of H is representable by a smooth closed subscheme of H.

Proof. By the last Lemma the S-functor Transp(u, v) is representable by a
closed subscheme of H, which is locally of finite presentation by Lemma 4.4
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and [9] 8.14.2, and formally smooth by Theorem 4.5. Thus Transp(u, v) is a
smooth scheme over S. �

Corollary 4.9. Under the assumptions of Theorem 4.5, assume furthermore
that G is essentially free over S and that S = Spec(B) where B is a henselian
local ring of residue field k. Then the map Hom(G,H)(B)→ Hom(G,H)(k)
is injective. Thus two homomorphisms u, v : G → H of S-group schemes are
conjugate under H(B) if and only if uk, vk : G ×B k → H×B k are conjugate
under H(k).

Proof. By Corollary 4.8, the B–functor Transp(u, v) is representable by a
smooth B–scheme. By Hensel’s lemma [3, §2.3] the map

Transp(u, v)(B)→ Transp(u, v)(k)

is surjective. Thus if uk, vk : G ×B k → H×B k are such that uk = int(h0)vk
for some h0 ∈ H(k), then there exists h ∈ H(B) such that u = int(h)v. �

5. Applications

5.1. Rigidity. Our first result establishes Theorem 1.1

Theorem 5.1. Let k be a field. Let G be a linearly reductive algebraic k–group
and let H be a smooth algebraic k–group. Let K/k be a field extension such
that k and K are both separably closed and K is separable over k (for example
if both k and K are algebraically closed).
Then the map

Homk−gr(G,H)(k)→ Homk−gr(G,H)(K) = HomK−gr(GK ,HK)(K)

is bijective.

Proof. By Lemma 4.1.1 and Lemma 4.4 the map Homk−gr(G,H)(k)→
Homk−gr(G,H)(K) is injective. Conversely we are given an element
u ∈ HomK−gr(GK ,HK) and we want to show that there exists v0 ∈
Homk−gr(G,H) and h ∈ H(K) such that v0 ×k idK = int(h)u.
The homomorphism u : GK → HK arises by base change from some A-group
scheme homomorphism v ∈ HomA−gr(GA,HA), i.e. u = vK , where A ⊂ K
is a finitely generated k–algebra. Under our assumption on k we may assume,
by considering a basic open affine subsheme of Spec(A) if needed, that A is
smooth over k. In particular, A is normal.
Since A is separable over k and k is separably closed, there exists a maximal
ideal m of A such that A/m = k. Then v gives rise to a k–homomorphism
v0 : G→ H. Denote by B the (strict) henselization of the local ring Am. Then
B is noetherian and may be identified with a subring of a separable closure
of the fraction field of A [M, I.4.10, 11]. In particular B can be assumed to
embed into K. By Proposition 3.2 and Remark 3.3 the group GB (which is
clearly affine and free of finite rank over B) satisfies the assumption on the
fibers of Theorem 4.5. By Corollary 4.9, v0×k idB = int(h)(v×A idB) for some
h ∈ H(B). Thus v0 ×k idK = int(hK)u as desired. �
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Remark 5.2. The assumption that G be linearly reductive is not superflu-
ous. Recall (see §3.1) that H1(G, V ) = Ext1G(k, V ). Assume that k is alge-
braically closed of positive characteristic, and let K/k be an arbitrary field
extension. One knows from Nagata’s work that for each non-trivial semisim-
ple k-group G there exists a non-trivial finite dimensional irreducible G-k–
module V such that H1(G, V ) 6= 0. This implies that Theorem 5.1 fails for
Homk−gr(G,GLn) if n = dim(V ) + 1. Indeed Homk−gr(G,GLn)(k) mea-
sures the equivalence classes of n–dimensional linear representations of G. We
know that Ext1G(k, V ), which by assumption is a non-trivial k-space, can be
identified with the subset of Homk−gr(G,GLn)(k) that corresponds to those
representations of G that are extensions of k by V. Similar considerations
apply to HomK−gr(GK ,GLn,K)(K). Since H1(G, V ) ⊗k K = H1(GK , VK)

the foregoing discussion shows that the natural map Homk−gr(G,H)(k) →
Homk−gr(G,H)(K) is not surjective whenever k 6= K.

Remark 5.3. Let H be a simple Chevalley Z–group of adjoint type. In [2]
Borel, Friedman and Morgan provide a considerable amount of information
about the set of conjugacy classes of n-tuples x = (x1, · · · , xn) of commuting
elements of finite order of H(C).4 The methods used in [2] are topological and
analytic in nature, and do not immediately translate to other algebraically
closed fields of characteristic 0. One of the reasons why this problem is relevant
is because of its applications to infinite dimensional Lie theory. The interested
reader can consult [6] for details and further references about this topic.
Fix an n-tuple m = (m1, · · · ,mn) of positive integers, and let Fm be the finite
constant Q–group corresponding to the finite group Z/m1Z × · · · × Z/mnZ.
Because of the nature of our base field the group Fm is diagonalizable, hence
linearly reductive. Let K be an algebraically closed field of characteristic 0. The
conjugacy classes of n-tuples x = (x1, · · · , xn) of commuting elements of H(K)
where the xi satisfy xmii = 1 are parametrized by HomK−gr(Fm,K,HK)(K).
By Theorem 1.1 we have natural bijections

HomK−gr(Fm,K,HK)(K) ≃ HomQ−gr(Fm,HQ)(Q)) ≃
≃HomC−gr(Fm,C,HC)(C).

This allows us to translate the relevant information within [2] to the group
H(K).

5.2. Lie algebras. Assume henceforth that the base scheme S is of “charac-
teristic zero”, i.e. that S is a scheme over Q. Let G/S be a semisimple group
scheme and let H/S be an affine smooth group scheme. In this case, we already
know that the functor HomS−gp(G,H) is representable by a smooth affine S-
scheme of finite presentation [17, XXIV.7.3.1]. Furthermore, if G/S is simply
connected, we have an S-scheme isomorphism

HomS−gr(G,H)
∼−→ HomS−Lie

(
Lie(G), Lie(H)

)
.

4When lifted to the simply connected cover of H(C) the n-tuples will be comprised of
“almost commuting” elements.
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From this and Theorem 4.5 it follows that the functor

T 7→ HomT−Lie
(
Lie(GT ),Lie(HT )

)
/H(T )

is formally étale.

Corollary 5.4. Let k be an algebraically closed field of characteristic zero.
Let g be a finite dimensional semisimple Lie algebra over k. Let H be a smooth
algebraic k–group. If K is an algebraically closed field extension of k, then the
map

Homk−Lie(g,Lie(H))/H(k)→ HomK−Lie(g⊗k K,Lie(H)⊗k K)/H(K)

is bijective. �

6. Appendix: Affine group schemes which are essentially free

Definition 6.1. [17, VIII 6] A morphism of schemes X/S is essentially free
if there exists an open covering of S by affine schemes Si = Spec(Ai), and for
all i an faithfully flat extension S′i = Spec(A′i) → Si such that each X ×S S′i
admits an open covering by affine schemes (Spec(B′i,j)) such that B′i,j is a free

A′i–module for all j.

Note that an essentially free morphism is flat. Furthermore this property is
stable by arbitrary base change and is local with respect to the Zariski and the
fpqc topology. Recall that that a sequence

1→ G1 → G2 → G3 → 1

of S–group schemes is said to be exact if it is exact as a sequence of fpqc-sheaves
over S [17, VIB 9].

Lemma 6.2. (1) Let G/S be a flat group scheme which is essentially free
over S. Let X → S be a G–torsor which is locally trivial for the fpqc–
topology. Then X is essentially free over S.

(2) Let 1 → G1 → G2 → G3 → 1 be an exact sequence of S–group
schemes. If G1 and G3 are essentially free over S, then G2 is essen-
tialy free over S.

Proof. (1) Since we can reason locally for the Zariski and for the fpqc topology,
we can assume that X is the trivial torsor, namely X = G.

(2) Similarly, we can assume that S = Spec(A) and that G1 (resp. G3) is
covered by open affines subschemes Spec(Bj) (resp. Spec(Cl)) for the fpqc
topology such that the Bj and the Cl are free A–modules. Up to refining the
second fpqc covering, we can furthermore assume that

G2 ×G3 Spec(Cl)
∼−→ G1 ×S Spec(Cl).

It follows that the Spec(Bl⊗ACl)’s form a fpqc–cover of G2 where the Bl⊗ACl
are free A–modules. Thus G2 is essentially free over S as desired. �

Several well-known affine group schemes are essentially free.
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Proposition 6.3. Let G/S be an affine S–group scheme which admits locally
for the fpqc topology a composition series with factors of the following kind:

(i) S-group schemes of multiplicative type,

(ii) twisted finite constant S–group schemes,

(iii) smooth S-group schemes with connected geometric fibers.

Then G is essentially free over S.

Note that the last case includes reductive group schemes over S and their
parabolic subgroups.

Proof. By Lemma 6.2 it suffices to verify each of the three cases locally for
the fpqc topology. Case (i) is then the case of diagonalizable groups which are
essentially free over S by definition. Case (ii) is that of finite constant S–group
schemes which are also essentially free over S by definition. Case (iii) has been
noticed by Seshadri [15, Lemma 1 p. 230] using a result of Raynaud. �
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der Mathematik und ihrer Grenzgebiete 21 (1990) Springer-Verlag.

[4] M. Demazure, P. Gabriel, Groupes algébriques. Tome I: Géométrie
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Abstract. In this paper we investigate proper R–actions on hyper-
bolic Stein surfaces and prove in particular the following result: Let
D ⊂ C2 be a simply-connected bounded domain of holomorphy which
admits a proper R–action by holomorphic transformations. The quo-
tient D/Z with respect to the induced proper Z–action is a Stein
manifold. A normal form for the domain D is deduced.
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1. Introduction

Let X be a Stein manifold endowed with a real Lie transformation group G
of holomorphic automorphisms. In this situation it is natural to ask whether
there exists a G–invariant holomorphic map π : X → X//G onto a complex
space X//G such that OX//G = (π∗OX)G and, if yes, whether this quotient
X//G is again Stein. If the group G is compact, both questions have a positive
answer as is shown in [Hei91].
For non-compact G even the existence of a complex quotient in the above sense
of X by G cannot be guaranteed. In this paper we concentrate on the most
basic and already non-trivial case G = R. We suppose that G acts properly
on X . Let Γ = Z. Then X/Γ is a complex manifold and if, moreover, it is
Stein, we can define X//G := (X/Γ)//(G/Γ). The following was conjectured by
Alan Huckleberry.

Let X be a contractible bounded domain of holomorphy in Cn with a proper
action of G = R. Then the complex manifold X/Z is Stein.

(1)The authors would like to thank Peter Heinzner and Jean-Jacques Loeb
for numerous discussions on the subject.
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In [FI01] this conjecture is proven for the unit ball and in [Mie08] for arbitrary
bounded homogeneous domains in Cn. In this paper we make a first step
towards a proof in the general case by showing

Theorem 1.1. — Let D be a simply-connected bounded domain of holomorphy
in C2. Suppose that the group R acts properly by holomorphic transformations
on D. Then the complex manifold D/Z is Stein. Moreover, D/Z is biholomor-
phically equivalent to a domain of holomorphy in C2.

As an application of this theorem we deduce a normal form for domains of holo-
morphy whose identity component of the automorphism group is non-compact
as well as for proper R–actions on them. Notice that we make no assumption
on smoothness of their boundaries.
We first discuss the following more general situation. Let X be a hyperbolic
Stein manifold with a proper R–action. Then there is an induced local holo-
morphic C–action on X which can be globalized in the sense of [HI97]. The
following result is central for the proof of the above theorem.

Theorem 1.2. — Let X be a hyperbolic Stein surface with a proper R–action.
Suppose that either X is taut or that it admits the Bergman metric and
H1(X,R) = 0. Then the universal globalization X∗ of the induced local C–
action is Hausdorff and C acts properly on X∗. Furthermore, for simply-
connected X one has that X∗ → X∗/C is a holomorphically trivial C–principal
bundle over a simply-connected Riemann surface.

Finally, we discuss several examples of hyperbolic Stein manifolds X with
proper R–actions such that X/Z is not Stein. If one does not require the
existence of an R–action, there are bounded Reinhardt domains in C2 with
proper Z–actions for which the quotients are not Stein.

2. Hyperbolic Stein R–manifolds

In this section we present the general set-up.

2.1. The induced local C–action and its globalization. — Let X be
a hyperbolic Stein manifold. It is known that the group Aut(X) of holomorphic
automorphisms of X is a real Lie group with respect to the compact-open
topology which acts properly on X (see [Kob98]). Let {ϕt}t∈R be a closed
one parameter subgroup of Aut(D). Consequently, the action R × X → X ,
t ·x := ϕt(x), is proper. By restriction, we obtain also a proper Z–action on X .
Since every such action must be free, the quotient X/Z is a complex manifold.
This complex manifold X/Z carries an action of S1 ∼= R/Z which is induced
by the R–action on X .
Integrating the holomorphic vector field on X which corresponds to this R–
action we obtain a local C–action on X in the following sense. There are an
open neighborhood Ω ⊂ C×X of {0}×X and a holomorphic map Φ: Ω→ X ,
Φ(t, x) =: t · x, such that the following holds:
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(1) For every x ∈ X the set Ω(x) :=
{
t ∈ C; (t, x) ∈ Ω

}
⊂ C is connected;

(2) for all x ∈ X we have 0 · x = x;
(3) we have (t+ t′) · x = t · (t′ · x) whenever both sides are defined.

Following [Pal57] (compare [HI97] for the holomorphic setting) we say that a
globalization of the local C–action on X is an open R–equivariant holomorphic
embedding ι : X →֒ X∗ into a (not necessarily Hausdorff) complex manifold X∗

endowed with a holomorphic C–action such that C·ι(X) = X∗. A globalization
ι : X →֒ X∗ is called universal if for every R–equivariant holomorphic map
f : X → Y into a holomorphic C–manifold Y there exists a holomorphic C–
equivariant map F : X∗ → Y such that the diagram

X
ι //

f   @
@@

@@
@@

@ X∗

F}}||
||

||
||

Y

commutes. It follows that a universal globalization is unique up to isomorphism
if it exists.
Since X is Stein, the universal globalization X∗ of the induced local C–action
exists as is proven in [HI97]. We will always identify X with its image ι(X) ⊂
X∗. Then the local C–action on X coincides with the restriction of the global
C–action on X∗ to X .
Recall that X is said to be orbit-connected in X∗ if for every x ∈ X∗ the
set Σ(x) := {t ∈ C; t · x ∈ X} is connected. The following criterion for a
globalization to be universal is proven in [CTIT00].

Lemma 2.1. — Let X∗ be any globalization of the induced local C–action on
X. Then X∗ is universal if and only if X is orbit-connected in X∗.

Remark. — The results about (universal) globalizations hold for a bigger class
of groups ([CTIT00]). However, we will need it only for the groups C and C∗
and thus will not give the most general formulation.

For later use we also note the following

Lemma 2.2. — The C–action on X∗ is free.

Proof. — Suppose that there exists a point x ∈ X∗ such that Cx is non-trivial.
Because of C · X = X∗ we can assume that x ∈ X holds. Since Cx is a non-
trivial closed subgroup of C, it is either a lattice of rank 1 or 2, or C. The last
possibility means that x is a fixed point under C which is not possible since R
acts freely on X .
We observe that the lattice Cx is contained in the connected R–invariant set
Σ(x) = {t ∈ C; t · x ∈ X}. By R–invariance Σ(x) is a strip. Since X is
hyperbolic, this strip cannot coincide with C. The only lattice in C which can
possibly be contained in such a strip is of the form Zr for some r ∈ R. Since
this contradicts the fact that R acts freely on X , the lemma is proven.
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Note that we do not know whether X∗ is Hausdorff. In order to guarantee the
Hausdorff property of X∗, we make further assumptions on X . The following
result is proven in [Ian03] and [IST04].

Theorem 2.3. — Let X be a hyperbolic Stein manifold with a proper R–action.
Suppose in addition that X is taut or admits the Bergman metric. Then X∗ is
Hausdorff. If X is simply-connected, then the same is true for X∗.

We refer the reader to Chapter 5 in [Kob98] for the definition and examples
of tautness. For the reader’s convenience we describe here the construction
of the Bergman metric for an arbitrary n–dimensional complex manifold X .
For more details see Chapter 4.10 in [Kob98]. The space A2(X) of square
integrable holomorphic n–forms on X is a separable complex Hilbert space

with respect to the inner product 〈ω1, ω2〉 := in
2 ∫

X ω1 ∧ ω2. Let ω1, ω2, . . .

be an orthonormal basis of A2(X) and define BX :=
∑

j≥1 i
n2

ωj ∧ ωj . The

non-negative (n, n)–form BX is independent of the chosen basis and is called
the Bergman kernel form of X . Suppose that BX is positive, i. e. that for every
x ∈ X there exists ω ∈ A2(X) with ωx 6= 0. Then we may define the map
ι : X → P

(
A2(X)∗

)
which associates to each x ∈ X the hyperplane consisting

of forms in A2(X) which vanish at x. By definition one says that X admits
the Bergman metric if this map ι is an immersion. The Bergman metric of X
is then defined as the pull-back of the Fubini-Study metric of P

(
A2(X)∗

)
.

Remark. — Every bounded domain in Cn admits the Bergman metric.

2.2. The quotient X/Z. — We assume from now on that X fulfills the
hypothesis of Theorem 2.3. Since X∗ is covered by the translates t ·X for t ∈ C
and since the action of Z on each domain t ·X is proper, we conclude that the
quotient X∗/Z fulfills all axioms of a complex manifold except for possibly not
being Hausdorff.
We have the following commutative diagram:

X //

��

X∗

��
X/Z // X∗/Z.

Note that the group C∗ = (S1)C ∼= C/Z acts on X∗/Z. Concretely, if we
identify C/Z with C∗ via C→ C∗, t 7→ e2πit, the quotient map p : X∗ → X∗/Z
fulfills p(t · x) = e2πit · p(x).

Lemma 2.4. — The induced map X/Z →֒ X∗/Z is the universal globalization
of the local C∗–action on X/Z.

Proof. — The open embedding X →֒ X∗ induces an open embedding X/Z →֒
X∗/Z. This embedding is S1–equivariant and we have C∗ ·X/Z = X∗/Z. This
implies that X∗/Z is a globalization of the local C∗–action on X/Z.
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In order to prove that this globalization is universal, by the globalization the-
orem in [CTIT00] it is enough to show that X/Z is orbit-connected in X∗/Z.
Hence, we must show that for every [x] ∈ X/Z the set Σ

(
[x]
)

:= {t ∈ C∗; t·[x] ∈
X/Z} is connected in C∗. For this we consider the set Σ(x) = {t ∈ C; t·x ∈ X}.
Since the map X → X/Z intertwines the local C– and C∗–actions, we conclude
that t ∈ Σ(x) holds if and only if e2πit ∈ Σ

(
[x]
)

holds. Since X∗ is universal,

Σ(x) is connected which implies that Σ
(
[x]
)

is likewise connected. Thus X∗/Z
is universal.

Remark. — The globalization X∗/Z is Hausdorff if and only if Z or, equiva-
lently, R act properly on X∗. As we shall see in Lemma 3.3, this is the case if
X is taut.

2.3. A sufficient condition for X/Z to be Stein. — If dimX = 2, we
have the following sufficient condition for X/Z to be a Stein surface.

Proposition 2.5. — If the C–action on X∗ is proper and if the Riemann surface
X∗/C is not compact, then X/Z is Stein.

Proof. — Under the above hypothesis we have the C–principal bundle X∗ →
X∗/C. If the base X∗/C is not compact, then this bundle is holomorphically
trivial, i. e. X∗ is biholomorphic to C×R where R is a non-compact Riemann
surface. Since R is Stein, the same is true for X∗ and for X∗/Z ∼= C∗ × R.
Since X/Z is locally Stein, see [Mie08], in the Stein manifold X∗/Z, the claim
follows from [DG60].

Therefore, the crucial step in the proof of our main result consists in showing
that C acts properly on X∗ under the assumption dimX = 2.

3. Local properness

Let X be a hyperbolic Stein R–manifold. Suppose that X is taut or that it
admits the Bergman metric and H1(X,R) = {0}. We show that then C acts
locally properly on X∗.

3.1. Locally proper actions. — Recall that the action of a Lie groupG on
a manifold M is called locally proper if every point in M admits a G–invariant
open neighborhood on which G acts properly.

Lemma 3.1. — Let G×M →M be locally proper.

(1) For every x ∈M the isotropy group Gx is compact.
(2) Every G–orbit admits a geometric slice.
(3) The orbit space M/G is a smooth manifold which is in general not Haus-

dorff.
(4) All G–orbits are closed in M .
(5) The G–action on M is proper if and only if M/G is Hausdorff.
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Proof. — The first claim is elementary to check. The second claim is proven
in [DK00]. The third one is a consequence of (2) since the slices yield charts
on M/G which are smoothly compatible because the transitions are given by
the smooth action of G on M . Assertion (4) follows from (3) because in lo-
cally Euclidian topological spaces points are closed. The last claim is proven
in [Pal61].

Remark. — Since R acts properly on X and C ·X = X∗, the R-action on X∗

is locally proper.

3.2. Local properness of the C–action on X∗. — Recall that we as-
sume that

(3.1) X is taut

or that

(3.2) X admits the Bergman metric and H1(X,R) = {0}.
We first show that assumption (3.1) implies that C acts locally properly on
X∗.
Since X∗ is the universal globalization of the induced local C–action on X , we
know that X is orbit-connected in X∗. This means that for every x ∈ X∗ the
set Σ(x) = {t ∈ C; t · x ∈ X} is a strip in C. In the following we will exploit
the properties of the thickness of this strip.
Since Σ(x) is R–invariant, there are “numbers” u(x) ∈ R ∪ {−∞} and o(x) ∈
R ∪ {∞} for every x ∈ X∗ such that

Σ(x) =
{
t ∈ C; u(x) < Im(t) < o(x)

}
.

The functions u : X∗ → R∪{−∞} and o : X∗ → R∪{∞} so obtained are upper
and lower semicontinuous, respectively. Moreover, u und o are R–invariant and
iR–equivariant:

u(it · x) = u(x)− t and o(it · x) = o(x)− t.
Proposition 3.2. — The functions u,−o : X∗ → R ∪ {−∞} are plurisubhar-
monic. Moreover, u and o are continuous on X∗\{u = −∞} and X∗\{o =∞},
respectively.

Proof. — It is proven in [For96] that u and −o are plurisubharmonic on X .
By equivariance, we obtain this result for X∗.
Now we prove that the function u : X \{u = −∞} → R is continuous which was
remarked without complete proof in [Ian03]. For this let (xn) be a sequence in
X which converges to x0 ∈ X\{u = −∞}. Since u is upper semi-continuous, we
have lim supn→∞ u(xn) ≤ u(x0). Suppose that u is not continuous in x0. Then,
after replacing (xn) by a subsequence, we find ε > 0 such that u(xn) ≤ u(x0)−
ε < u(x0) holds for all n ∈ N. Consequently, we have Σ(x0) =

{
t ∈ C; u(x0) <

Im(t) < o(x0)
}
⊂ Σ :=

{
t ∈ C; u(x0) − ε < Im(t) < o(x0)

}
⊂ Σ(xn) for all n

and hence obtain the sequence of holomorphic functions fn : Σ → X , fn(t) :=
t·xn. SinceX is taut and fn(0) = xn → x0, the sequence (fn) has a subsequence
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which compactly converges to a holomorphic function f0 : Σ→ X . Because of
f0
(
iu(x0)

)
= limn→∞ fn

(
iu(x0)

)
= limn→∞ iu(x0) · xn = iu(x0) · x0 /∈ X

we arrive at a contradiction. Thus the function u : X \ {u = −∞} → R is
continuous. By (iR)–equivariance, u is also continuous on X∗ \ {u = −∞}. A
similar argument shows continuity of −o : X∗ \ {o =∞} → R.

Let us consider the sets

N (o) :=
{
x ∈ X∗; o(x) = 0

}
and P(o) :=

{
x ∈ X∗; o(x) =∞

}
.

The sets N (u) and P(u) are similarly defined. Since X =
{
x ∈ X∗; u(x) <

0 < o(x)
}

, we can recover X from X∗ with the help of u and o.

Lemma 3.3. — The action of R on X∗ is proper.

Proof. — Let ∂∗X denote the boundary of X in X∗. Since the functions u
and −o are continuous on X∗ \ P(u) and X∗ \ P(o) one verifies directly that
∂∗X = N (u) ∪ N (o) holds. As a consequence, we note that if x ∈ ∂∗X , then
for every ε > 0 the element (i ε) · x is not contained in ∂∗X .
Let (tn) and (xn) be sequences in R and X∗ such that (tn · xn, xn) converges
to (y0, x0) in X∗×X∗. We may assume without loss of generality that x0 and
hence xn are contained in X for all n. Consequently, we have y0 ∈ X ∪ ∂∗X .
If y0 ∈ ∂∗X holds, we may choose an ε > 0 such that (i ε) · y0 and (i ε) · x0 lie
in X . Since the R–action on X is proper, we find a convergent subsequence of
(tn) which was to be shown.

Lemma 3.4. — We have:

(1) N (u) and N (o) are R–invariant.
(2) We have N (u) ∩ N (o) = ∅.
(3) The sets P(u) and P(o) are closed, C–invariant and pluripolar in X∗.
(4) P(u) ∩ P(o) = ∅.

Proof. — The first claim follows from the R–invariance of u and o.
The second claim follows from u(x) < o(x).
The third one is a consequence of the R–invariance and iR–equivariance of u
and o.
If there was a point x ∈ P(u)∩ P(o), then C · x would be a subset of X which
is impossible since X is hyperbolic.

Lemma 3.5. — If o is not identically ∞, then the map

ϕ : iR×N (o)→ X∗ \ P(o), ϕ(it, z) = it · z,
is an iR–equivariant homeomorphism. Since R acts properly on N (o), it follows
that C acts properly on X∗ \ P(o). The same holds when o is replaced by u.

Proof. — The inverse map ϕ−1 is given by x 7→
(
−io(x), io(x) · x

)
.

Corollary 3.6. — The C–action on X∗ is locally proper. If P(o) = ∅ or P(u) =
∅ hold, then C acts properly on X∗.
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From now on we suppose that X fulfills the assumption (3.2). Recall that the
Bergman form ω is a Kähler form on X invariant under the action of Aut(X).
Let ξ denote the complete holomorphic vector field on X which corresponds
to the R–action, i. e. we have ξ(x) = ∂

∂t

∣∣
0
ϕt(x). Hence, ιξω = ω(·, ξ) is a

1–form on X and since H1(X,R) = {0} there exists a function µξ ∈ C∞(X)
with dµξ = ιξω.

Remark. — This means that µξ is a momentum map for the R–action on X .

Lemma 3.7. — The map µξ : X → R is an R–invariant submersion.

Proof. — The claim follows from dµξ(x)Jξx = ωx(Jξx, ξx) > 0.

Proposition 3.8. — The C–action on X∗ is locally proper.

Proof. — Since µξ is a submersion, the fibers (µξ)−1(c), c ∈ R, are real hyper-
surfaces in X . Then

d

dt

∣∣∣∣
0

µξ(it · x) = ωx(Jξx, ξx) > 0

implies that every iR–orbit intersects (µξ)−1(c) transversally. Since X is orbit-
connected in X∗, the map iR × (µξ)−1(c) → X∗ is injective and therefore a
diffeomorphism onto its open image. Together with the fact that (µξ)−1(c)
is R–invariant this yields the existence of differentiable local slices for the C–
action.

3.3. A necessary condition for X/Z to be Stein. — We have the fol-
lowing necessary condition for X/Z to be a Stein manifold.

Proposition 3.9. — If the quotient manifold X/Z is Stein, then X∗ is Stein
and the C–action on X∗ is proper.

Proof. — Suppose that X/Z is a Stein manifold. By [CTIT00] this implies
that X∗ is Stein as well.
Next we will show that the C∗–action on X∗/Z is proper. For this we will use
as above a moment map for the S1–action on X∗/Z.
By compactness of S1 we may apply the complexification theorem from [Hei91]
which shows that X∗/Z is also a Stein manifold and in particular Hausdorff.
Hence, there exists a smooth strictly plurisubharmonic exhaustion function
ρ : X∗/Z → R>0 invariant under S1. Consequently, ω := i

2∂∂ρ ∈ A1,1(X∗)
is an S1–invariant Kähler form. Associated to ω we have the S1–invariant
moment map

µ : X∗/Z→ R, µξ(x) :=
d

dt

∣∣∣∣
0

ρ
(
exp(itξ) · x

)
,

where ξ is the complete holomorphic vector field on X∗/Z which corresponds
to the S1–action. Now we can apply the same argument as above in order to
deduce that C∗ acts locally properly on X∗/Z.
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We still must show that (X∗/Z)/C∗ is Hausdorff. To see this, let C∗ · xj ,
j = 0, 1, be two different orbits in X∗/Z. Since C∗ acts locally properly, these
are closed and therefore there exists a function f ∈ O(X∗/Z) with f |C∗·xj = j

for j = 0, 1. Again we may assume that f is S1– and consequently C∗–invariant.
Hence, there is a continuous function on (X∗/Z)/C∗ which separates the two
orbits, which implies that (X∗/Z)/C∗ is Hausdorff. This proves that C∗ acts
properly on X∗/Z.
Since we know already that the C–action on X∗ is locally proper, it is enough
to show that X∗/C is Hausdorff. But this follows from the properness of the
C∗–action on X∗/Z since X∗/C ∼= (X∗/Z)/C∗ is Hausdorff.

4. Properness of the C–action

Let X be a hyperbolic Stein R–manifold. Suppose that X fulfills (3.1) or (3.2).
We have seen that C acts locally properly on X∗. In this section we prove that
under the additional assumption dimX = 2 the orbit space X∗/C is Hausdorff.
This implies that C acts properly on X∗ if dimX = 2.

4.1. Stein surfaces with C–actions. — For every function f ∈ O(∆)
which vanishes only at the origin, we define

Xf :=
{

(x, y, z) ∈ ∆× C2; f(x)y − z2 = 1
}
.

Since the differential of the defining equation of Xf is given by
(
f ′(x)y f(x) −

2z
)
, we see that 1 is a regular value of (x, y, z) 7→ f(x)y − z2. Hence, Xf is a

smooth Stein surface in ∆× C2.
There is a holomorphic C–action on Xf defined by

t · (x, y, z) :=
(
x, y + 2tz + t2f(x), z + tf(x)

)
.

Lemma 4.1. — The C–action on Xf is free, and all orbits are closed.

Proof. — Let t ∈ C such that (x, y + 2tz + t2f(x), z + tf(x)
)

= (x, y, z) for
some (x, y, z) ∈ Xf . If f(x) 6= 0, then z + tf(x) = z implies t = 0. If f(x) = 0,
then z 6= 0 and y + 2tz = y gives t = 0.
The map π : Xf → ∆, (x, y, z) 7→ x, is C–invariant. If a ∈ ∆∗, then f(a) 6= 0
and we have

z

f(a)
·
(
a, f(a)−1, 0

)
= (a, y, z) ∈ Xf ,

which implies π−1(a) = C ·
(
a, f(a)−1, 0

)
. A similar calculation gives π−1(0) =

C ·p1∪C ·p2 with p1 = (0, 0, i) and p2 = (0, 0,−i). Consequently, every C–orbit
is closed.

Remark. — The orbit space Xf/C is the unit disc with a doubled origin and
in particular not Hausdorff.
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We calculate slices at the point pj , j = 1, 2, as follows. Let ϕj : ∆ × C → Xf

be given by ϕ1(z, t) := t · (z, 0, i) and ϕ2(w, s) = s · (w, 0,−i). Solving the
equation s · (w, 0,−i) = t · (z, 0, i) for (w, s) yields the transition function
ϕ12 = ϕ−1

2 ◦ ϕ1 : ∆∗ × C→ ∆∗ × C,

(z, t) 7→
(
z, t+

2i

f(z)

)
.

The function 1
f is a meromorphic function on ∆ without zeros and with the

unique pole 0.

Lemma 4.2. — Let R act on Xf via R →֒ C, t 7→ ta, for some a ∈ C∗. Then
there is no R–invariant domain D ⊂ Xf with D ∩ C · pj 6= ∅ for j = 1, 2 on
which R acts properly.

Proof. — Suppose that D ⊂ Xf is an R–invariant domain with D ∩C · pj 6= ∅
for j = 1, 2. Without loss of generality we may assume that p1 ∈ D and
ζ · p2 = (0,−2ζi,−i) ∈ D for some ζ ∈ C. We will show that the orbits R · p1

and R · (ζ · p2) cannot be separated by R–invariant open neighborhoods.
Let U1 ⊂ D be an R–invariant open neighborhood of p1. Then there are
r, r′ > 0 such that ∆∗r ×∆r′ × {i} ⊂ U1 holds. Here, ∆r = {z ∈ C; |z| < r}.
For (ε1, ε2) ∈ ∆∗r ×∆r′ and t ∈ R we have

t · (ε1, ε2, i) =
(
ε1, ε2 +2(ta)i+ (ta)2f(ε1), i+ (ta)f(ε1)

)
∈ U1.

We have to show that for all r2, r3 > 0 there exist (ε̃2, ε̃3) ∈ ∆r2 × ∆r3 ,
(ε1, ε2) ∈ ∆∗r ×∆r′ and t ∈ R such that

(4.1)
(
ε1, ε2 +2(ta)i+ (ta)2f(ε1), i+ (ta)f(ε1)

)
= (ε1,−2ζi+ ε̃2,−i+ ε̃3)

holds.
Let r2, r3 > 0 be given. From (4.1) we obtain ε̃3 = taf(ε1)+2i or, equivalently,

ta = eε3−2i
f(ε1) . Setting ε̃2 = ε2 we obtain from 2(ta)i + (ta)2f(ε1) = −2ζi the

equivalent expression

(4.2) f(ε1) = −2i
ζ + ta

(ta)2
.

for t 6= 0. Choosing a real number t≫ 1, we find an ε1 ∈ ∆∗r such that (4.2) is

fulfilled. After possibly enlarging t we have ε̃3 := taf(ε1) + 2i = −2i ζta ∈ ∆r3 .
Together with ε2 = ε̃2 equation (4.1) is fulfilled and the proof is finished.

Thus, the Stein surface Xf cannot be obtained as globalization of the local
C–action on any R–invariant domain D ⊂ Xf on which R acts properly.

4.2. The quotient X∗/C is Hausdorff. — Suppose that X∗/C is not
Hausdorff and let x1, x2 ∈ X be such that the corresponding C–orbits cannot
be separated in X∗/C. Since we already know that C acts locally proper on
X∗ we find local holomorphic slices ϕj : ∆ × C → Uj ⊂ X , ϕj(z, t) = t · sj(z)
at each C ·xj where sj : ∆→ X is holomorphic with sj(0) = xj . Consequently,
we obtain the transition function ϕ12 : (∆ \ A) × C → (∆ \ A) × C for some
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closed subset A ⊂ ∆ which must be of the form (z, t) 7→
(
z, t+ f(z)

)
for some

f ∈ O(∆\A). The following lemma applies to show that A is discrete and that
f is meromorphic on ∆. Hence, we are in one of the model cases discussed in
the previous subsection.

Lemma 4.3. — Let ∆1 and ∆2 denote two copies of the unit disk {z ∈ C; |z| <
1}. Let U ⊂ ∆j, j = 1, 2, be a connected open subset and f : U ⊂ ∆1 → C a
non-constant holomorphic function on U . Define the complex manifold

M := (∆1 × C) ∪ (∆2 × C)/∼,

where ∼ is the relation (z1, t1) ∼ (z2, t2) :⇔ z1 = z2 =: z ∈ U and t2 =
t1 + f(z).
Suppose that M is Hausdorff. Then the complement A of U is discrete and f
extends to a meromorphic function on ∆1.

Proof. — We first prove that for every sequence (xn), xn ∈ U , with
limn→∞ xn = p ∈ ∂U , one has limn→∞|f(xn)| = ∞ ∈ P1(C). Assume the
contrary, i.e. there is a sequence (xn), xn ∈ U , with limn→∞ xn = p ∈ ∂U
such that limn→∞ f(xn) = a ∈ C. Choose now t1 ∈ C, consider the two points
(p, t1) ∈ ∆1 × C and (p, t1 + a) ∈ ∆2 × C and note their corresponding points
in M as q1 and q2. Then q1 6= q2. The sequences (xn, t1) ∈ ∆1 × C and
(xn, t1 + f(xn)) ∈ ∆2 × C define the same sequence in M having q1 and q2 as
accumulation points. So M is not Hausdorff, a contradiction.
In particular we have proved that the zeros of f do not accumulate to ∂U in
∆1. So there is an open neighborhood V of ∂U in ∆1 such that the restriction
of f to W := U ∩ V does not vanish. Let g := 1/f on W . Then g extends to
a continuous function on V taking the value zero outside of U . The theorem
of Rado implies that this function is holomorphic on V . It follows that the
boundary ∂U is discrete in ∆1 and that f has a pole in each of the points of
this set, so f is a meromorphic function on ∆1.

Theorem 4.4. — The orbit space X∗/C is Hausdorff. Consequently, C acts
properly on X∗.

Proof. — By virtue of the above lemma, in a neighborhood of two non-
separable C–orbits X is isomorphic to a domain in one of the model Stein
surfaces discussed in the previous subsection. Since we have seen there that
these surfaces are never globalizations, we arrive at a contradiction. Hence, all
C–orbits are separable.

5. Examples

In this section we discuss several examples which illustrate our results.
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5.1. Hyperbolic Stein surfaces with proper R–actions. — Let R be
a compact Riemann surface of genus g ≥ 2. It follows that the universal
covering of R is given by the unit disc ∆ ⊂ C and hence that R is hyperbolic.
The fundamental group π1(R) of R contains a normal subgroup N such that

π1(R)/N ∼= Z. Let R̃→ R denote the corresponding normal covering. Then R̃

is a hyperbolic Riemann surface with a holomorphic Z–action such that R̃/Z =
R. Note that Z is not contained in a one parameter group of automorphisms

of R̃.
We have two mappings

X := H×Z R̃
q //

p

��

R̃/Z = R

H/Z ∼= ∆ \ {0}.

The map p : X → ∆ \ {0} is a holomorphic fiber bundle with fiber R̃. Since
the Serre problem has a positive answer if the fiber is a non-compact Riemann

surface ([Mok82]), the suspension X = H ×Z R̃ is a hyperbolic Stein surface.

The group R acts on H× R̃ by t · (z, x) = (z + t, x) and this action commutes
with the diagonal action of Z. Consequently, we obtain an action of R on X .

Lemma 5.1. — The universal globalization of the local C–action on X is given

by X∗ = C×Z R̃. Moreover, C acts properly on X∗.

Proof. — One checks directly that t · [z, x] := [z + t, x] defines a holomorphic

C–action on X∗ = C ×Z R̃ which extends the R–action on X . We will show
that X is orbit-connected in X∗: Since [z + t, x] lies in X if and only if there

exist elements (z′, x′) ∈ H× R̃ and m ∈ Z such that (z+ t, x) =
(
z′+m,m ·x′

)
,

we conclude C[z, x] =
{
t ∈ C; Im(t) > − Im(z)

}
which is connected.

In order to show that C acts properly on X∗ it is sufficient to show that C×Z
acts properly on C× R̃. Hence, we choose sequences {tn} in C, {mn} in Z and{

(zn, xn)
}

in C× R̃ such that
(
(tn,mn) · (zn, xn), (zn, xn)

)
=

=
(
(zn + tn +mn,mn · xn), (zn, xn)

)
→
(
(z1, x1), (z0, x0)

)

holds. Since Z acts properly on R̃, it follows that {mn} has a convergent
subsequence, which in turn implies that {tn} has a convergent subsequence.
Hence, the lemma is proven.

Proposition 5.2. — The quotient X/Z ∼= ∆∗ × R is not holomorphically sepa-
rable and in particular not Stein. The quotient X∗/C is biholomorphically

equivalent to R̃/Z = R.

Proof. — It is sufficient to note that the map Φ: X = H ×Z R̃ → ∆∗ × R,
Φ[z, x] :=

(
e2πiz, [x]

)
, induces a biholomorphic map X/Z→ ∆∗ ×R.
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Thus we have found an example for a hyperbolic Stein surface X endowed with
a proper R–action such that the associated Z–quotient is not holomorphically
separable. Moreover, the R–action on X extends to a proper C–action on a
Stein manifold X∗ containing X as an orbit-connected domain such that X∗/C
is any given compact Riemann surface of genus g ≥ 2.

5.2. Counterexamples with domains in Cn. — There is a bounded Rein-
hardt domain D in C2 endowed with a holomorphic action of Z such that D/Z
is not Stein. However, this Z–action does not extend to an R–action. We give
quickly the construction.
Let λ := 1

2 (3 +
√

5) and

D := {(x, y) ∈ C2 | |x| > |y|λ, |y| > |x|λ}.
It is obvious that D is a bounded Reinhardt domain in C2 avoiding the coordi-
nate hyperplanes. The holomorphic automorphism group of D is a semidirect
product Γ ⋉ (S1)2, where the group Γ ≃ Z is generated by the automorphism
(x, y) 7→ (x3y−1, x) and (S1)2 is the rotation group. Therefore the group Γ
is not contained in a one-parameter group. Furthermore the quotient D/Γ
is the (non-Stein) complement of the singular point in a 2-dimensional nor-
mal complex Stein space, a so-called ”cusp singularity”. These singularities
are intensively studied in connection with Hilbert modular surfaces and Inoue-
Hirzebruch surfaces, see e.g. [vdG88] and [Zaf01].
In the rest of this subsection we give an example of a hyperbolic domain of
holomorphy in a 3–dimensional Stein solvmanifold endowed with a proper R–
action such that the Z–quotient is not Stein. While this domain is not simply-
connected, its fundamental group is much simpler than the fundamental groups
of our two-dimensional examples.

Let G :=
{(

1 a c
0 1 b
0 0 1

)
; a, b, c ∈ C

}
be the complex Heisenberg group and let us

consider its discrete subgroup

Γ :=








1 m m2

2 + 2πik
0 1 m+ 2πil
0 0 1


 ; m, k, l ∈ Z



 .

Note that Γ is isomorphic to Zm ⋉ Z2
(k,l). We let Γ act on C2 by

(z, w) 7→
(
z +mw − m2

2
− 2πik, w −m− 2πil

)
.

Proposition 5.3. — The group Γ acts properly and freely on C2, and the quo-
tient manifold C2/Γ is holomorphically separable but not Stein.

Proof. — Since Γ′ ∼= Z2 is a normal subgroup of Γ, we obtain C2/Γ ∼=
(C2/Γ′)/(Γ/Γ′). The map C2 → C∗ × C∗, (z, w) 7→

(
exp(z), exp(w)

)
, iden-

tifies C2/Γ′ with C∗×C∗. The induced action of Γ/Γ′ ∼= Z on C∗×C∗ is given
by

(z, w) 7→
(
e−m

2/2zwm, e−mw
)
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which shows that Γ acts properly and freely on C2. Moreover, we obtain the
commutative diagram

C∗ × C∗

(z,w) 7→w
��

// Y := (C∗ × C∗)/Z

��
C∗ // T := C∗/Z.

The group C∗ acts by multiplication in the first factor on C∗ × C∗ and this
action commutes with the Z–action. One checks directly that the joint (C∗×Z)–
action on C∗×C∗ is proper which implies that the map Y → T is a C∗–principal
bundle. Consequently, Y is not Stein.
In order to show that Y is holomorphically separable, note that by [Oel92] this
C∗–principal bundle Y → T extends to a line bundle p : L→ T with first Chern
class c1(L) = −1. Therefore the zero section of p : L → T can be blown down
and we obtain a singular normal Stein space Y = Y ∪{y0} where y0 = Sing(Y )
is the blown down zero section. Thus Y is holomorphically separable.

Let us now choose a neighborhood of the singularity y0 ∈ Y biholomorphic
to the unit ball and let U be its inverse image in C2. It follows that U is
a hyperbolic domain with smooth strictly Levi-convex boundary in C2 and in
particular Stein. In order to obtain a proper action of R we form the suspension

D = H ×Γ U where Γ acts on H × U by (t, z, w) 7→ (t + m, z + mw − m2

2 −
2πik, w −m− 2πil).

Proposition 5.4. — The suspension D = H ×Γ U is isomorphic to a Stein do-
main in the Stein manifold G/Γ.

Proof. — We identify H× U with the R× Γ–invariant domain

Ω :=








1 a c
0 1 b
0 0 1


 ; Im(a) > 0, (c, b) ∈ U





in G.
Since H×U is Stein, it follows that H×Γ U is locally Stein in G/Γ. Hence, by
virtue of [DG60] we only have to show that G/Γ is Stein.
For this we note first that G is a closed subgroup of SL(2,C) ⋉ C2 which im-
plies that G/Γ is a closed complex submanifold of X :=

(
SL(2,C) ⋉ C2

)
/Γ.

By [Oel92] the manifold X is holomorphically separable, hence G/Γ is holo-
morphically separable. Since G is solvable, a result of Huckleberry and Oel-
jeklaus ([HO86]) yields the Steinness of G/Γ.
One checks directly that the action of R× Γ on H×U is proper which implies
that R acts properly on H×Γ U .

Because of (H ×Γ U)/Z ∼= ∆∗ × (U/Γ) this quotient manifold is not Stein but
holomorphically separable.
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6. Bounded domains with proper R–actions

In this section we give the proof of our main result.

6.1. Proper R–actions on D. — Let D ⊂ Cn be a bounded domain and
let Aut(D)0 be the connected component of the identity in Aut(D).

Lemma 6.1. — A proper R–action by holomorphic transformations on D exists
if and only if the group Aut(D)0 is non-compact.

Proof. — We note first that effective R–actions by holomorphic transforma-
tions on D correspond bijectively to one parameter subgroups R →֒ Aut(D)0,
t 7→ ϕt, where the correspondence is given by t · z = ϕt(z) for t ∈ R and z ∈ D.
Since the group Aut(D)0 acts properly on D, proper R–actions correspond to
closed embeddings R →֒ Aut(D)0. If Aut(D)0 admits such an embedding, it
cannot be compact.
Conversely, suppose that Aut(D)0 is not compact. By Theorem 3.1 in [Ho65]
there are a maximal compact subgroup K of Aut(D)0 and a linear subspace V
of the Lie algebra of Aut(D)0 such that the map K × V → Aut(D)0, (k, ξ) 7→
k exp(ξ), is a diffeomorphism. Since Aut(D)0 is not compact, the vector space
V has positive dimension and the map t 7→ ϕt := exp(tξ), for some 0 6= ξ ∈ V ,
defines a closed embedding of R into Aut(D)0 and hence a proper R–action by
holomorphic transformations on D.

6.2. Steinness of D/Z. — Now we give the proof of our main result.

Theorem 6.2. — Let D be a simply-connected bounded domain of holomorphy
in C2. Suppose that the group R acts properly by holomorphic transformations
on D. Then the complex manifold D/Z is biholomorphically equivalent to a
domain of holomorphy in C2.

Proof. — Let D ⊂ C2 be a simply-connected bounded domain of holomorphy.
Since the Serre problem is solvable if the fiber is D, see [Siu76], the universal
globalization D∗ is a simply-connected Stein surface, [CTIT00]. Moreover, we
have shown in Theorem 4.4, that C acts properly on D∗. Since the Riemann
surface D∗/C is also simply-connected, it must be ∆, C or P1(C). In all three
cases the bundle D∗ → D∗/C is holomorphically trivial. So we can exclude the
case that D∗/C is compact and it follows that D/Z ∼= C∗ × (D∗/C) is a Stein
domain in C2.

6.3. A normal form for domains with non-compact Aut(D)0. — Let
D ⊂ C2 be a simply-connected bounded domain of holomorphy such that the
identity component of its automorphism group is non-compact. As we have
seen, this yields a proper R–action on D by holomorphic transformations and
the universal globalization of the induced local C–action on D is isomorphic to
C × S where S is either ∆ or C and where C acts by translation in the first
factor.
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Moreover, there are plurisubharmonic functions u,−o : C × S → R ∪ {−∞}
which fulfill

u
(
t · (z1, z2)

)
= u(z1, z2)− Im(t) and o

(
t · (z1, z2)

)
= o(z1, z2)− Im(t)

such that D =
{

(z1, z2) ∈ C × S; u(z1, z2) < 0 < o(z1, z2)
}

. From this we
conclude u(z1, z2) = u(0, z2)− Im(z1), o(z1, z2) = o(0, z2)− Im(z1) and define
u′(z2) := u(0, z2), o′(z2) := o(0, z2).
We summarize our remarks in the following

Theorem 6.3. — Let D be a simply-connected bounded domain of holomorphy
in C2 admitting a non-compact connected identity component of its automor-
phism group. Then D is biholomorphic to a domain of the form

D̃ =
{

(z1, z2) ∈ C× S; u′(z2) < Im(z1) < o′(z2)
}
,

where the functions u′,−o′ are subharmonic in S.

Remark. — As a consequence of this normal form we see that the domain D
admits a continuous fibration over the contractible domain S such that every
fiber is a strip in C. Hence, it follows a posteriori that the simply-connected
domain of holomorphy D is contractible.
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1. Introduction

Motivated by Gromov’s comments in his seminal paper [12], Sec. 3.5.G and
3.5.G’, we prove in Sec. 2 that the homotopy type of an Oka manifold X (as
a topological space) is captured by holomorphic maps from the affine spaces
Cn, n ≥ 0, into X . In Sec. 3 we present generalisations of this result. We start
with a very brief review of some background material.

The concept of an Oka manifold has evolved from Gromov’s paper and subse-
quent work, mainly due to Forstnerič, see in particular [4] and [5]. By a Stein
inclusion we mean the inclusion into a reduced Stein space S (or a Stein man-
ifold: the choice is immaterial) of a closed analytic subvariety T . A complex
manifold X has the basic Oka property with interpolation (BOPI) with respect
to T →֒ S if every continuous map h : S → X with h|T holomorphic can be
deformed to a holomorphic map S → X with h|T fixed. Also, X has the inter-
polation property with respect to T →֒ S if every holomorphic map h : T → X
extends to a holomorphic map S → X . The following are equivalent (see [15])
and define what it means for X to be Oka:
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(1) X has BOPI with respect to every Stein inclusion.
(2) X has the interpolation property, or equivalently BOPI, with respect

to every Stein inclusion T →֒ Cn, n ≥ 1, where T is contractible
(holomorphically or topologically: the choice is immaterial).

The Oka property has several other equivalent formulations. Each of these
has a parametric version, where instead of a single map h as above we have a
family of maps depending continuously on a parameter. The parametric Oka
properties are all equivalent [4], and are equivalent to the Oka property [7].

A holomorphic map f : X → Y has the parametric Oka property with inter-
polation (POPI) if for every Stein inclusion T →֒ S, every finite polyhedron P
with a subpolyhedron Q, and every continuous map g : S × P → X such that
the restriction g|S ×Q is holomorphic along S (meaning that g(·, q) : S → X
is holomorphic for each q ∈ Q), the restriction g|T ×P is holomorphic along T ,
and the composition f ◦ g is holomorphic along S, there is a continuous map
G : S × P × I → X , where I = [0, 1], such that:

(1) G(·, ·, 0) = g,
(2) G(·, ·, 1) : S × P → X is holomorphic along S,
(3) G(·, ·, t) = g on S ×Q and on T × P for all t ∈ I,
(4) f ◦G(·, ·, t) = f ◦ g on S × P for all t ∈ I.

Equivalently, Q →֒ P may be taken to be any cofibration between cofibrant
topological spaces, such as the inclusion of a subcomplex in a CW-complex,
and the existence of G can be replaced by the stronger statement that the
inclusion into the space, with the compact-open topology, of continuous maps
h : S × P → X with h = g on S × Q and on T × P and f ◦ h = f ◦ g on
S × P of the subspace of maps that are holomorphic along S is acyclic, that
is, a weak homotopy equivalence (see [14], §16). Taking P to be a point and
Q empty defines BOPI for f . A complex manifold X is Oka if and only if the
constant map from X to a point satisfies BOPI or, equivalently, POPI. For
maps in general, it is not known whether BOPI implies POPI.

The notion of a holomorphic submersion being subelliptic was defined by
Forstnerič [2], generalising the concept of ellipticity due to Gromov [12]. Subel-
lipticity is the weakest currently-known sufficient geometric condition for a
holomorphic map to satisfy POPI (see Forstnerič’s recently-proved parametric
Oka principle for liftings [6]) and for a complex manifold to be Oka.

By the influential work of Grauert in [9] and [10], the primary examples of
Oka manifolds, to which our results apply, are complex Lie groups and their
homogeneous spaces, that is, complex manifolds on which a complex Lie group
acts holomorphically and transitively. Among other known examples are Cn\A,
where A is an algebraic or a tame analytic subvariety of codimension at least
2, Pn \ A, where A is a subvariety of codimension at least 2, Hopf manifolds,
Hirzebruch surfaces, and the complement of a finite set in a complex torus of
dimension at least 2 (see [3] and [5]).
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2. Oka manifolds are homotopically elliptic

Our results are naturally formulated in the language of simplicial sets. Simpli-
cial sets are combinatorial objects that have a homotopy theory equivalent to
that of topological spaces, but tend to be more useful or at least more conve-
nient than topological spaces for various homotopy-theoretic purposes. For an
introduction to simplicial sets, we refer the reader to [8] or [16].

We denote by ∆ the category of finite ordinals and order-preserving maps. The
objects of ∆ are the sets n = {0, 1, 2, . . . , n}, n ∈ N, with the usual order, and a
morphism θ : n→m is a map such that θ(i) ≤ θ(j) whenever 0 ≤ i ≤ j ≤ n. A
cosimplicial object in a category C is a functor ∆→ C. A simplicial object in C
is a functor from the opposite category ∆op to C. In particular, a simplicial set
is a functor from ∆op to the category Set of sets. The category of simplicial
objects in C is denoted sC. A cosimplicial object A• in C induces a functor
hA• : C → sSet, X 7→ homC(A•, X). We call the simplicial set homC(A•, X)
the homotopy type of X with respect to A•.
The standard n-simplex Tn, n ≥ 0, is the subset

Tn = {(t0, . . . , tn) ∈ Rn+1 : t0 + · · ·+ tn = 1, t0, . . . , tn ≥ 0}
of Rn+1 with the subspace topology. An order-preserving map θ : n → m
induces a continuous map θ∗ : Tn → Tm defined by the formula θ∗(t0, . . . , tn) =
(s0, . . . , sm), where

si =
∑

j∈θ−1(i)

tj

(the sum is interpreted as zero if θ−1(i) is empty). It is easy to check that
this defines a cosimplicial object T• in the category of topological spaces. The
homotopy type sX = C (T•, X) of a topological space X with respect to T• is
the usual homotopy type of X . Here, for each n ≥ 0, C (Tn, X) denotes the set
of continuous maps Tn → X . The simplicial set sX is called the singular set
of X . It is a fibrant simplicial set, that is, a Kan complex.

The affine n-simplex An, n ≥ 0, is the affine subspace

An = {(t0, . . . , tn) ∈ Cn+1 : t0 + · · ·+ tn = 1}
of Cn+1, viewed as a complex manifold biholomorphic to Cn. An order-
preserving map θ : n → m induces a holomorphic map θ∗ : An → Am defined
by the same formula as above, and we have a cosimplicial object A• in the
category of complex manifolds. We call the homotopy type eX = O(A•, X) of
a complex manifold X with respect to A• the affine homotopy type of X . Here,
for each n ≥ 0, O(An, X) denotes the set of holomorphic maps An → X . We
also call the simplicial set eX the affine singular set of X .

A holomorphic map An → X is determined by its restriction to Tn ⊂ An, so we
have a monomorphism, that is, a cofibration eX →֒ sX . The following lemma
comes from basic homotopy theory.

Lemma. For a complex manifold X, the following are equivalent.
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(a) The affine singular set eX is fibrant and the cofibration eX →֒ sX is
a weak equivalence of simplicial sets.

(b) The cofibration eX →֒ sX is the inclusion of a strong deformation
retract.

Proof. (a) ⇒ (b) by [13], Prop. 7.6.11.

(b) ⇒ (a) by [13], Prop. 7.8.3, and since a retract of a fibrant object is fibrant.
�

We say that X is homotopically elliptic if conditions (a) and (b) are satisfied.
Then the usual homotopy type of X as a topological space is represented by
the affine singular set eX of X .

If X is connected and homotopically elliptic, then X is C-connected, meaning
that any two points in X can be joined by an entire curve. In fact, any finite
subset of X lies in a holomorphic image of C. On the other hand, if X is Brody
hyperbolic, then eX is discrete.

Theorem 1. An Oka manifold is homotopically elliptic.

Proof. Let Zn = {(z1, . . . , zn) ∈ Cn : zj = 0 for some j} be the union of
the coordinate hyperplanes in Cn, n ≥ 2. If X is an Oka manifold, every
holomorphic map Zn → X extends to a holomorphic map Cn → X , but this is
precisely what it means for eX to be fibrant.

The homotopy groups πm(K, ∗), m ≥ 1, of a Kan complex K with respect to
a base point ∗ ∈ K0 may be simply described as follows:

πm(K, ∗) = {a ∈ Km : dja = ∗ for j = 0, . . . ,m}/ ∼,
where dj : Km → Km−1 is the face map that in the case of sX and eX acts by
precomposition by the map

δj : (t0, . . . , tm−1) 7→ (t0, . . . , tj−1, 0, tj, . . . , tm−1),

and ∼ is the equivalence relation with a ∼ b for a, b ∈ Km with all faces ∗
if there is c ∈ Km+1 such that djc = a for some j, djc = b for another j,
and djc = ∗ for the remaining values of j. Identifying vertices a, b ∈ K0 if
there is c ∈ K1 with d0c = a and d1c = b (this is an equivalence relation)
gives the set π0(K) of path components of K. (See e.g. [1], Th. 2.4, or [17],
Sec. 8.2—homotopy groups of non-fibrant simplicial sets are not so easily dealt
with.)

Since X is Oka, two points in the same path component of X can be joined by
a holomorphic image of C. Thus the inclusion eX →֒ sX induces a bijection
π0(eX)→ π0(sX).

By induction over m we obtain continuous retractions ρm : Am → Tm, m ≥ 0,
such that ρm+1 ◦ δj = δj ◦ ρm for j = 0, . . . ,m, so ρm retracts each face of Am
onto the corresponding face of Tm. The continuous surjection σm : Tm × I →
Tm+1,

(t0, . . . , tm, s) 7→ (t0(1− s), t1, . . . , tm, t0s),
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m ≥ 1, collapses each segment {x}× I, where x belongs to the face of Tm with
t0 = 0, and makes no other identifications.

Let m ≥ 1 and choose a base point ∗ ∈ X . To prove surjectivity of the induced
map πm(eX, ∗) → πm(sX, ∗), we need to show that if a ∈ smX has all faces
∗, then there is b ∈ emX with all faces ∗ that is equivalent to a by some
c ∈ sm+1X . Now a0 = a ◦ ρm : Am → X is continuous with all faces ∗, so since
X is Oka, there is a continuous deformation at, t ∈ I, of a0, such that a1 is
holomorphic and at has all faces ∗ for all t ∈ I. The restriction to Tm × I of
the deformation factors through σm by a map Tm+1 → X , which is continuous
since σm is a quotient map, and which is the desired c.

To prove injectivity of the induced map πm(eX, ∗) → πm(sX, ∗), we need to
show that if a, b ∈ emX with all faces ∗ are equivalent by c ∈ sm+1X , say
dc = (a, b, ∗, . . . , ∗), then a and b are also equivalent by some c′ ∈ em+1X .
Continuously extend c to Tm+1 ∪ Wm+1, where Wm+1 = {(t0, . . . , tm+1) ∈
Am+1 : tj = 0 for some j}, such that dc is still (a, b, ∗, . . . , ∗). Use the acyclic
cofibration Tm+1 ∪Wm+1 →֒ Am+1 to further extend c to a continuous map
c : Am+1 → X . Since X is Oka, c may be deformed to c′ ∈ em+1X with
dc′ = dc. �

The author has tried to directly construct a strong deformation retraction from
sX onto eX , but without success.

The proof shows that a complex manifold is homotopically elliptic if and only
if it satisfies the interpolation property with respect to the Stein inclusions
Zn →֒ Cn, n ≥ 2, and a weak version of BOPI with respect to the Stein
inclusions Wn →֒ An ∼= Cn, n ≥ 1.

3. Generalisations

Theorem 1 is a special case of a more general result. Let f : X → Y be a
holomorphic map between complex manifolds and T →֒ S be a Stein inclusion.
Let

T //

��

X

��
S // Y

be a commuting square of holomorphic maps. Let LO be the space, with the
compact-open topology, of holomorphic liftings in the square, and LC be the
space of continuous liftings. Let eLO be the simplicial set whose n-simplices,
n ≥ 0, are the holomorphic maps λ : S×An → X such that λ(·, t) is a lifting in
the square for every t ∈ An, and whose maps taking m-simplices to n-simplices
are given by precomposing in the second variable by the holomorphic maps
θ∗ : An → Am described above. There are inclusions

eLO →֒i
′

sLO →֒i
′′

sLC .

Documenta Mathematica 14 (2009) 691–697



696 Finnur Lárusson

If f satisfies POPI, then i′′ is a weak equivalence (see [14], §16). Also, the proof
of the Theorem is easily generalised to show that if f satisfies BOPI, then eLO

is fibrant and i′′ ◦ i′ is a weak equivalence. Thus, if f satisfies POPI, i′ is a
weak equivalence of Kan complexes.

Theorem 1 is the case when T is empty and S and Y are points. A less special
case is when T is empty and Y is a point. Then liftings in the square are simply
maps S → X , so we write eO(S,X) for eLO and conclude that if X is Oka,
then the inclusions eO(S,X) →֒ sO(S,X) →֒ sC (S,X) are weak equivalences
of Kan complexes.

Generalising this in a different direction, we can represent the the homotopy
type of the space C (M,X) of continuous maps from any smooth manifold M
to an Oka manifold X by a simplicial set whose simplices are holomorphic
maps into X . Namely, assuming as we may that M is real-analytic, by a well-
known result of Grauert [11], M can be real-analytically embedded into a Stein
manifold S such that M is a strong deformation retract of S. Then, if X is
Oka, the homotopy type of C (M,X) is given by the Kan complex eO(S,X).

For ease of reference, we summarise the above as a theorem.

Theorem 2. Let X be an Oka manifold.

(1) For every Stein manifold S, the inclusions

eO(S,X) →֒ sO(S,X) →֒ sC (S,X)

are weak equivalences of Kan complexes.
(2) For every smooth manifold M , there is a Stein manifold S such that

the homotopy type of C (M,X) is given by the Kan complex eO(S,X).
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Mathematics, Birkhäuser, to appear, arXiv:0901.4388.

[16] J. P. May. Simplicial objects in algebraic topology. Van Nostrand Mathe-
matical Studies, 11. D. Van Nostrand Co., 1967. Chicago Lectures in Math-
ematics. University of Chicago Press, 1992.

[17] P. Selick. Introduction to homotopy theory. Fields Institute Monographs,
9. Amer. Math. Soc., 1997.

Finnur Lárusson

School of Mathematical Sciences

University of Adelaide

Adelaide SA 5005

Australia.

finnur.larusson@adelaide.edu.au

Documenta Mathematica 14 (2009) 691–697



698

Documenta Mathematica 14 (2009)



Documenta Math. 699

Thom Spectra that Are Symmetric Spectra

Christian Schlichtkrull

Received: November 7, 2007

Revised: December 18, 2009

Communicated by Stefan Schwede

Abstract. We analyze the functorial and multiplicative properties
of the Thom spectrum functor in the setting of symmetric spectra and
we establish the relevant homotopy invariance.

2000 Mathematics Subject Classification: 55P43
Keywords and Phrases: Thom spectra, symmetric spectra.

1. Introduction

The purpose of this paper is to develop the theory of Thom spectra in the
setting of symmetric spectra. In particular, we establish the relevant homotopy
invariance and we investigate the multiplicative properties. Classically, given
a sequence of spaces X0 → X1 → X2 → . . . , equipped with a compatible
sequence of maps fn : Xn → BO(n), the Thom spectrum T (f) is defined by
pulling the universal bundles V (n) over BO(n) back via the fn’s and letting

T (f)n = f∗V (n)/Xn.

Here the bar denotes fibre-wise one-point compactification. More generally,
one may consider compatible families of maps Xn → BF (n), where F (n) is
the topological monoid of base point preserving self-homotopy equivalences
of Sn, and similarly define a Thom spectrum by pulling back the canon-
ical Sn-(quasi)fibration over BF (n). Composing with the canonical maps
BO(n) → BF (n), one sees that the latter construction generalizes the for-
mer. This generalization was suggested by Mahowald [24], [25], and has been
investigated in detail by Lewis in [20].
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1.1. Symmetric Thom spectra via I-spaces. In order to translate the
definition of Thom spectra into the setting of symmetric spectra, we shall
modify the construction by considering certain diagrams of spaces. Let I be
the category whose objects are the finite sets n = {1, . . . , n}, together with the
empty set 0, and whose morphisms are the injective maps. The concatenation
m ⊔ n in I is defined by letting m correspond to the first m and n to the last
n elements of {1, . . . ,m + n}. This makes I a symmetric monoidal category
with symmetric structure given by the (m,n)-shuffles τm,n : m ⊔ n → n ⊔m.
We define an I-space to be a functor from I to the category U of spaces and
write IU for the category of such functors. The correspondence n → BF (n)
defines an I-space and we show that if X → BF is a map of I-spaces, then
the Thom spectrum T (f) defined as above is a symmetric spectrum. The main

advantage of the category SpΣ of symmetric spectra to ordinary spectra is that
it has a symmetric monoidal smash product. Similarly, the category IU/BF
of I-spaces over BF inherits a symmetric monoidal structure from I and the
Thom spectrum functor is compatible with these structures in the following
sense.

Theorem 1.1. The symmetric Thom spectrum functor T : IU/BF → SpΣ is
strong symmetric monoidal.

That T is strong symmetric monoidal means of course that there is a natural
isomorphism of symmetric spectra T (f)∧T (g) ∼= T (f⊠g), where f⊠g denotes
the monoidal product in IU/BF . In particular, T takes monoids in IU/BF to
symmetric ring spectra. A similar construction can be carried out in the setting
of orthogonal spectra and the idea of realizing Thom spectra as “structured ring
spectra” by such a diagrammatic approach goes back to [31].

1.2. Lifting space level data to I-spaces. Let N be the ordered set of
non-negative integers, thought of as a subcategory of I via the canonical subset
inclusions. Another starting point for the construction of Thom spectra is to
consider maps X → BFN , where BFN denotes the colimit of the I-space BF
restricted to N . Given such a map, one may choose a suitable filtration of
X so as to get a map of N -spaces X(n) → BF (n) and the definition of the
Thom spectrum T (f) then proceeds as above. This is the point of view taken
by Lewis [20]. The space BFN has an action of the linear isometries operad L,
and Lewis proves that if f is a map of C-spaces where C is an operad that is
augmented over L, then the Thom spectrum T (f) inherits an action of C.
In the setting of symmetric spectra the problem is how to lift space level data
to objects in IU/BF . We think of I as some kind of algebraic structure acting
on BF , and in order to pull such an action back via a space level map we should
ideally map into the quotient space BFI , that is, into the colimit over I. The
problem with this approach is that the homotopy type of BFI differs from
that of BFN . For this reason we shall instead work with the homotopy colimit
BFhI which does have the correct homotopy type. We prove in Section 4 that
the homotopy colimit functor has a right adjoint U : U/BFhI → IU/BF such
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that this pair of adjoint functors defines a Quillen equivalence

hocolim
I

: IU/BF // U/BFhI :U.oo

Here the model structure on IU is the one established by Sagave-Schlichtkrull
[33]. The weak equivalences in this model structure are called I-equivalences
and are the maps that induce weak homotopy equivalences on the associated
homotopy colimits; see Section 4.1 for details. It follows from the theorem that
the homotopy theory associated to IU/BF is equivalent to that of U/BFhI . As
is often the case for functors that are right adjoints, U is only homotopically
well-behaved when applied to fibrant objects. We shall usually remedy this
by composing with a suitable fibrant replacement functor on U/BFhI and we
write U ′ for the composite functor so defined.
Composing the right adjoint U with the symmetric Thom spectrum functor
from Theorem 1.1 we get a Thom spectrum functor on U/BFhI . However,
even when restricted to fibrant objects this functor does not have all the prop-
erties one may expect from a Thom spectrum functor. Notably, one of the
important properties of the Lewis-May Thom spectrum functor on U/BFN is
that it preserves colimits whereas the symmetric Thom spectrum obtained by
composing with U does not have this property. For this reason we shall intro-
duce another procedure for lifting space level data to I-spaces in the form of a
functor

R : U/BFhI → IU/BF
and we shall use this functor to associate Thom spectra to objects in U/BFhI .
The first statement in the following theorem ensures that the functor so defined
produces Thom spectra with the correct homotopy type.

Theorem 1.2. There is a natural level equivalence R
∼−→ U ′ over BF and the

symmetric Thom spectrum functor defined by the composition

T : U/BFhI R−→ IU/BF T−→ SpΣ

preserves colimits.

As indicated in the theorem we shall use the notation T both for the symmetric
Thom spectrum on IU/BF and for its composition with R; the context will
always make the meaning clear. In Section 4.4 we show that in a precise sense
our Thom spectrum functor becomes equivalent to that of Lewis-May when
composing with the forgetful functor from symmetric spectra to spectra. We
also have the following analogue of Lewis’ result imposing L-actions on Thom
spectra. In our setting the relevant operad is the Barrat-Eccles operad E , see
[2] and [28], Remarks 6.5. We recall that E is an E∞ operad and that a space
with an E-action is automatically an associative monoid.

Theorem 1.3. The operad E acts on BFhI and if f : X → BFhI is a map of
C-spaces where C is an operad that is augmented over E, then T (f) inherits an
action of C.
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We often find that the enriched functoriality obtained by working with homo-
topy colimits over I instead of colimits over N is very useful. For example, one
may represent complexification followed by realification as maps of E-spaces

BOhI → BUhI → BOhI ,

such that the composite E∞ map represents multiplication by 2. The procedure
for lifting space level data described above works quite generally for diagram
categories. Implemented in the framework of orthogonal spectra, it gives an
answer to the problem left open in [32], Chapter 23, on how to construct
orthogonal Thom spectra from space level data; we spell out the details of this
in Section 8.5. We also remark that one can define an I-space BGL1(A) for
any symmetric ring spectrum A, and that an analogous lifting procedure allows
one to associate A-module Thom spectra to maps X → BGL1(A)hI . We hope
to return to this in a future paper.

1.3. Homotopy invariance. Ideally, one would like the symmetric Thom
spectrum functor to take I-equivalences of I-spaces over BF to stable equiv-
alences of symmetric spectra. However, due to the fact that quasifibrations
are not in general preserved under pullbacks this is not true without further
assumptions on the objects in IU/BF . We say that an object (X, f) (that is,
a map f : X → BF ) is T -good if T (f) has the same homotopy type as the
Thom spectrum associated to a fibrant replacement of f ; see Definition 5.1 for
details.

Theorem 1.4. If (X, f)→ (Y, g) is an I-equivalence of T -good I-spaces over
BF , then the induced map T (f) → T (g) is a stable equivalence of symmetric
spectra.

Here stable equivalence refers to the stable model structure on SpΣ defined
in [16] and [27]. It is a subtle property of this model structure that a sta-
ble equivalence needs not induce an isomorphism of stable homotopy groups.
However, if X and Y are convergent (see Section 2), then the associated Thom
spectra are also convergent, and in this case a stable equivalence is indeed a π∗-
isomorphism in the usual sense. The T -goodness requirement in the theorem
is not a real restriction since in general any object in U/BF can (and should)
be replaced by one that is T -good. The functor R takes values in the subcat-
egory of convergent T -good objects and takes weak homotopy equivalences to
I-equivalences (in fact to level-wise equivalences). It follows that the Thom
spectrum functor in Theorem 1.2 is a homotopy functor; see Corollary 4.13.

Example 1.5. Theorem 1.4 also has interesting consequences for Thom spec-
tra that are not convergent. As an example, consider the Thom spectrum
MO(1)∧∞ that represents the bordism theory of manifolds whose stable nor-
mal bundle splits as a sum of line bundles, see [1], [9]. This is the symmetric
Thom spectrum associated to the map of I-spaces X(n) → BF (n), where
X(n) = BO(1)n. It is proved in [34] that XhI is homotopy equivalent to
Q(RP∞), hence it follows that MO(1)∧∞ is stably equivalent as a symmetric
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ring spectrum to the Thom spectrum associated to the map of infinite loop
spaces Q(RP∞)→ BFhI .

In general any I-space X is I-equivalent to the constant I-space XhI and
consequently any symmetric Thom spectrum is stably equivalent to one arising
from a space-level map. However, the added flexibility obtained by working in
IU is often very convenient. Notably, it is proved in [33] that any E∞ monoid
in IU is equivalent to a strictly commutative monoid; something which is well-
known not to be the case in U .

1.4. Applications to the Thom isomorphism. As an application of the
techniques developed in this paper we present a strictly multiplicative version
of the Thom isomorphism. A map f : X → BFhI gives rise to a morphism in
U/BFhI ,

∆: (X, f)→ (X ×X, f ◦ π2),

where ∆ is the diagonal inclusion and π2 denotes the projection onto the second
factor of X ×X . The Thom spectrum T (f ◦ π2) is isomorphic to X+ ∧ T (f),
and the Thom diagonal

∆: T (f)→ X+ ∧ T (f)

is the map of Thom spectra induced by ∆. In Section 7.1 we define a canonical
orientation T (f)→ H , where H denotes (a convenient model of) the Eilenberg-
Mac Lane spectrum HZ/2. Using this we get a map of symmetric spectra

(1.6) T (f) ∧H ∆∧H−−−→ X+ ∧ T (f) ∧H → X+ ∧H ∧H → X+ ∧H,
where the last map is induced by the multiplication in H . The spectrum level
version of the Z/2-Thom isomorphism theorem is the statement that this is a
stable equivalence, see [26]. If f is oriented in the sense that it lifts to a map
f : X → BSFhI , then we define a canonical integral orientation T (f) → HZ
and the spectrum level version of the integral Thom isomorphism theorem is
the statement that the induced map

(1.7) T (f) ∧HZ→ X+ ∧HZ

is a stable equivalence. In our framework these results lift to “structured ring
spectra” in the sense of the following theorem. Here C again denotes an operad
that is augmented over E .

Theorem 1.8. If f : X → BFhI (respectively f : X → BSFhI) is a map of
C-spaces, then the spectrum level Thom equivalence (1.6) (respectively (1.7)) is
a C-map.

For example, one may represent the complex cobordism spectrum MU as the
Thom spectrum associated to the E-map BUhI → BSFhI and the Thom equiv-
alence (1.7) is then an equivalence of E∞ symmetric ring spectra. This should
be compared with the H∞ version in [20].
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1.5. Diagram Thom spectra and symmetrization. The definition of the
symmetric Thom spectrum functor shows that the category I is closely related
to the category of symmetric spectra. However, many of the Thom spectra
that occur in the applications do not naturally arise from a map of I-spaces
but rather from a map of D-spaces for some monoidal category D equipped
with a monoidal functor D → I. We formalize this in Section 8 where we
introduce the notion of a D-spectrum associated to such a monoidal functor.
For example, the complex cobordism spectrum MU associated to the unitary
groups U(n) and the Thom spectrum MB associated to the braid groups B(n)
can be realized as diagram ring spectra in this way. It is often convenient to
replace the D-Thom spectrum associated to a map of D-spaces f : X → BF by
a symmetric spectrum, and our preferred way of doing this is to first transform
f to a map of I-spaces and then evaluate the symmetric Thom spectrum functor
on this transformed map. In this way we end up with a symmetric spectrum
to which we can exploit the structural relationship to the category of I-spaces.
We shall discuss various ways of carrying out this “symmetrization” process
and in particular we shall see how to realize the Thom spectra MU and MB

as (in the case of MU commutative) symmetric ring spectra.

1.6. Organization of the paper. We begin by recalling the basic facts
about Thom spaces and Thom spectra in Section 2, and in Section 3 we intro-
duce the symmetric Thom spectrum functor and show that it is strong symmet-
ric monoidal. The I-space lifting functor R is introduced in Section 4, where
we prove Theorem 1.2 in a more precise form; this is the content of Propo-
sition 4.10 and Corollary 4.13. Here we also compare the Lewis-May Thom
spectrum functor to our construction. We prove the homotopy invariance re-
sult Theorem 1.4 in Section 5, and in Section 6 we analyze to what extent the
constructions introduced in the previous sections are preserved under operad
actions. In particular, we prove Theorem 1.3 in a more precise form; this is the
content of Corollary 6.9. The Thom isomorphism theorem is proved in Section
7 and in Section 8 we discuss how to symmetrize other types of diagram Thom
spectra and how the analogue of the lifting functor R works in the context of
orthogonal spectra. Finally, we have included some background material on
homotopy colimits in Appendix A.

1.7. Notation and conventions. We shall work in the categories U and
T of unbased and based compactly generated weak Hausdorff spaces. By a
cofibration we understand a map having the homotopy extension property,
see [39]. A based space is well-based if the inclusion of the base point is a
cofibration. In this paper Sn always denotes the one-point compactification of
Rn. By a spectrum E we understand a sequence {En : n ≥ 0} of based spaces
together with a sequence of based structure maps S1 ∧En → En+1. A map of
spectra f : E → F is a sequence of based maps fn : En → Fn that commute
with the structure maps and we write Sp for the category of spectra so defined.
A spectrum is connective if πn(E) = 0 for n < 0 and convergent if there is
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an unbounded, non-decreasing sequence of integers {λn : n ≥ 0} such that the
adjoint structure maps En → ΩEn+1 are (λn + n)-connected for all n.

2. Preliminaries on Thom spaces and Thom spectra

In this section we recall the basic facts about Thom spaces and Thom spectra
that we shall need. The main reference for this material is Lewis’ account in
[20], Section IX. Here we emphasize the details relevant for the construction
of symmetric Thom spectra in Section 3. We begin by recalling the two-sided
simplicial bar construction and some of its properties, referring to [30] for more
details. Given a topological monoid G, a right G-space Y , and a left G-space
X , this is the simplicial space B•(Y,G,X) with k-simplices Y × Gk ×X and
simplicial operators

di(y, g1, . . . , gk, x) =





(yg1, g2 . . . , gk, x), for i = 0

(y, g1, . . . , gigi+1, . . . , gk, x), for 0 < i < k

(y, g1, . . . , gkx), for i = k,

and

si(y, g1, . . . , gk, x) = (y, . . . , gi−1, 1, gi, . . . , x), for 0 ≤ i ≤ k.
We write B(Y,G,X) for the topological realization. In the case where X and
Y equal the one-point space ∗, this is the usual simplicial construction of the
classifying space BG. The projection of X onto ∗ induces a map

p : B(Y,G,X)→ B(Y,G, ∗)
whose fibres are homeomorphic to X . Furthermore, if X has a G-invariant
basepoint, then the inclusion of the base point defines a section

s : B(Y,G, ∗)→ B(Y,G,X).

Recall that a topological monoid is grouplike if the set of components with the
induced monoid structure is a group.

Proposition 2.1 ([19],[30]). If G is a well-based grouplike monoid, then the
projection p is a quasifibration, and if X has a G-invariant base point such that
X is (non-equivariantly) well-based, then the section s is a cofibration. �

In general we say that a sectioned quasifibration is well-based if the section
is a cofibration. Let F (n) be the topological monoid of base point preserving
homotopy equivalences of Sn, where we recall that the latter denotes the one-
point compactification of Rn. It follows from [19], Theorem 2.1, that this is
a well-based monoid and we let V (n) = B(∗, F (n), Sn). Then BF (n) is a
classifying space for sectioned fibrations with fibre equivalent to Sn and the
projection pn : V (n) → BF (n) is a well-based quasifibration. Given a map
f : X → BF (n), let pX : f∗V (n) → X be the pull-back of V (n) along f ,
and notice that the section s gives rise to a section sX : X → f∗V (n). The
associated Thom space is the quotient space

T (f) = f∗V (n)/sX(X).
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This construction is clearly functorial on the category U/BF (n) of spaces over
BF (n). We often use the notation (X, f) for an object f : X → BF (n) in
this category. In order for the Thom space functor to be homotopically well-
behaved we would like pX to be a quasifibration and sX to be a cofibration,
but unfortunately this is not true in general. This is the main technical dif-
ference compared to working with sectioned fibrations. For our purpose it will
not do to replace the quasifibration pn by an equivalent fibration since we then
loose the strict multiplicative properties of the bar construction required for
the definition of strict multiplicative structures on Thom spectra. We say that
f classifies a well-based quasifibration if pX is a quasi-fibration and sX is a cofi-
bration. The following well-known results are included here for completeness.

Lemma 2.2 ([20]). Given a well-based sectioned quasifibration p : V → B and
a Hurewicz fibration f : X → B, the pullback pX : f∗V → X is again a well-
based quasifibration.

Proof. Since f is a fibration the pullback diagram defining f∗V is homotopy
cartesian, hence f∗V → X is a quasifibration. In order to see that the section
sX is a cofibration, notice that it is the pullback of the section of p along the
Hurewicz fibration f∗V → V . The result then follows from Theorem 12 of [40]
which states that the pullback of a cofibration along a Hurewicz fibration is
again a cofibration. �

Let Top(n) be the topological group of base point preserving homeomorphisms
of Sn. The next result is the main reason why the objects in U/BF (n) that
factor through BTop(n) are easier to handle than general objects.

Lemma 2.3. If f : X → BF (n) factors through BTop(n), then f classifies a
well-based Hurewicz fibration, hence a well-based quasifibration. �

Proof. Let W (n) = B(∗,Top(n), Sn). The projection W (n) → BTop(n) is
a fibre bundle by [30], Corollary 8.4, and in particular a Hurewicz fibration.
Suppose that f factors through a map g : X → BTop(n). Then f∗V (n) is
homeomorphic to g∗W (n) and thus pX is a Hurewicz fibration. We must prove
that the section is a cofibration. Let us use the Strøm model structure [41] on
U to get a factorization g = g2g1 where g1 is a cofibration and g2 is a Hurewicz
fibration. From this we get a factorization of the pullback diagram defining
g∗W (n),

g∗W (n) //

pX

��

g∗2W (n) //

pY

��

W (n)

��
X

g1 // Y
g2 // BTop(n),

and it follows from Lemma 2.2 that the section sY of pY is a cofibration. Since
pY is a Hurewicz fibration it follows by the same argument that the induced
map g∗W (n) → g∗2W (n) is also a cofibration. It is clear that the composition
X → g∗W (n)→ g∗2W (n) is a cofibration and the conclusion thus follows from
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Lemma 5 of [41], which states that if h = i ◦ j is a composition of maps in
which h and i are both cofibrations, then j is a cofibration as well. �

This lemma applies in particular if f factors through BO(n). In order to get
around the difficulty that the Thom space functor is not a homotopy functor
on the whole category U/BF (n) we follow Lewis [20], Section IX, and define a
functor

(2.4) Γ: U/BF (n)→ U/BF (n), (X, f) 7→ (Γf (X),Γ(f))

by replacing a map by a (Hurewicz) fibration in the usual way,

Γf (X) = {(x, ω) ∈ X ×BF (n)I : f(x) = ω(0)}, Γ(f)(x, ω) = ω(1).

We sometimes write Γ(X) instead of Γf (X) when the map f is clear from the
context. The natural inclusion X → Γf (X), whose second coordinate is the
constant path at f(x), defines a natural equivalence from the identity functor
on U/BF (n) to Γ. It follows from Lemma 2.2 that the composition of the
Thom space functor T with Γ is a homotopy functor. We think of T (Γ(f)) as
representing the correct homotopy type of the Thom space and say that f is
T -good if the natural map T (f) → T (Γ(f)) is a weak homotopy equivalence.
In particular, f is T -good if it classifies a well-based quasifibration. It follows
from the above discussion that the restriction of T to the subcategory of T -good
objects is a homotopy functor.

Remark 2.5. The fibrant replacement functors used in [20] and [30] are defined
using Moore paths instead of paths defined on the unit interval I. The use
of Moore paths is less convenient for our purposes since we shall use Γ in
combination with more general homotopy pullback constructions.

The following basic lemma is needed in order to establish the connectivity and
convergence properties of the Thom spectrum functor. It may for example be
deduced from the dual Blakers-Massey Theorem in [14].

Lemma 2.6. Let
V1 −−−−→ V2yp1

yp2

B1
β−−−−→ B2

be a pullback diagram of well-based quasifibrations p1 and p2. Suppose that p1

and p2 are n-connected with n > 1 and that β is k-connected. Then the quotient
spaces V1/B1 and V2/B2 are well-based and (n− 1)-connected, and the induced
map V1/B1 → V2/B2 is (k + n)-connected. �

We now turn to Thom spectra. Let N be as in Section 1.2, and write NU for
the category of N -spaces, that is, functors X : N → U . Consider the N -space
BF defined by the sequence of cofibrations

BF (0)
i0→ BF (1)

i1→ BF (2)
i2→ . . .
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obtained by applying B to the monoid homomorphisms F (n)→ F (n+ 1) that
take an element u to 1S1∧u, the smash product with the identity on S1. Notice,
that there are pullback diagrams

(2.7)

S1∧̄V (n) −−−−→ V (n+ 1)
y

y

BF (n)
in−−−−→ BF (n+ 1),

where S1∧̄− denotes fibre-wise smash product with S1. Indeed, there clearly
is such a pullback diagram of the underlying simplicial spaces, and topological
realization preserves pullback diagrams. We let NU/BF be the category of
N -spaces over BF . Thus, an object is a sequence of maps

fn : X(n)→ BF (n)

that are compatible with the structure maps. Again we may specify the domain
by writing the objects in the form (X, f).

Definition 2.8. The Thom spectrum functor T : NU/BF → Sp is defined
by applying the Thom space construction level-wise, T (f)n = T (fn), with
structure maps given by

S1 ∧ T (fn) ∼= T (in ◦ fn)→ T (fn+1).

A morphism in NU/BF induces a map of Thom spectra in the obvious way.
As for the Thom space functor, the Thom spectrum functor is not homo-
topically well-behaved on the whole category NU/BF . We define a functor
Γ: NU/BF → NU/BF by applying the functor Γ level-wise, and we say that
an object (X, f) is T -good if the induced map T (f) → T (Γ(f)) is a stable
equivalence. We say that f is level-wise T -good if the induced map is a level-
wise equivalence. The following proposition is an immediate consequence of
Lemma 2.2 and Lemma 2.6.

Proposition 2.9. If f : X → BF is T -good, then T (f) is connective. �

An N -space X is said to be convergent if there exists an unbounded, non-
decreasing sequence of integers {λn : n ≥ 0} such that X(n) → X(n + 1) is
λn-connected for each n.

Proposition 2.10. If f : X → BF is level-wise T -good and X is convergent,
then T (f) is also convergent.

Proof. We may assume that f is a level-wise fibration, hence classifies a well-
based quasifibration at each level. If X(n) → X(n + 1) is λn-connected, it
follows from Lemma 2.6 that the structure map S1 ∧ T (fn) → T (fn+1) is
(λn + n)-connected. The convergence of X thus implies that of T (f). �

Given an N -space X , write XhN for its homotopy colimit. This is homotopy
equivalent to the usual telescope construction on X . We say that a morphism
(X, f)→ (Y, g) inNU/BF is anN -equivalence if the induced map of homotopy
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colimits XhN → YhN is a weak homotopy equivalence. The following theorem
can be deduced from [20], Proposition 4.9. We shall indicate a more direct
proof in Section 5.1.

Theorem 2.11. If (X, f) → (Y, g) is an N -equivalence of T -good N -spaces
over BF , then the induced map T (f)→ T (g) is a stable equivalence.

In particular, it follows that T ◦Γ takes N -equivalences to stable equivalences.

3. Symmetric Thom spectra

We begin by recalling the definition of a (topological) symmetric spectrum.
The basic references are the papers [16] and [27] that deal respectively with
the simplicial and the topological version of the theory. See also [35].

3.1. Symmetric spectra. By definition a symmetric spectrum X is a spec-
trum in which each of the spaces X(n) is equipped with a base point preserving
left Σn-action, such that the iterated structure maps

σn : Sm ∧X(n)→ X(m+ n)

are Σm×Σn-equivariant. A map of symmetric spectra f : X → Y is a sequence
of Σn-equivariant based maps X(n) → Y (n) that strictly commute with the

structure maps. We write SpΣ for the category of symmetric spectra. Following
[27] we shall view symmetric spectra as diagram spectra, and for this reason
we introduce some notation which will be convenient for our purposes. Let
the category I be as in Section 1.1. Given a morphism α : m → n in I, let
n − α denote the complement of α(m) in n and let Sn−α be the one-point
compactification of Rn−α. Consider then the topological category IS that has
the same objects as I, but whose morphism spaces are defined by

IS(m,n) =
∨

α∈I(m,n)

Sn−α.

We view IS as a category enriched in the category of based spaces T . Writing
the morphisms in the form (x, α) for x ∈ Sn−α, the composition is defined by

IS(m,n) ∧ IS(l,m)→ IS(l,n), (x, α) ∧ (y, β) 7→ (x ∧ α∗y, αβ),

where x ∧ α∗y is defined by the canonical homeomorphism

Sn−α ∧ Sm−β ∼= Sn−αβ , x ∧ y 7→ x ∧ α∗y,
obtained by reindexing the coordinates of Sm−β via α. This choice of notation
has the advantage of making some of our constructions self-explanatory. By a
functor between categories enriched in T we understand a functor such that
the maps of morphism spaces are based and continuous. Thus, if X : IS → T
is a functor in this sense, then we have for each morphism α : m → n in I a
based continuous map

α∗ : Sn−α ∧X(m)→ X(n).

One easily checks that the maps S1 ∧X(n) → X(n+ 1) induced by the mor-
phisms n→ 1 ⊔ n give X the structure of a symmetric spectrum and that the
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category of (based continuous) functors IS → T may be identified with SpΣ

in this way. The symmetric monoidal structure of I gives rise to a symmetric
monoidal structure on IS . On morphism spaces this is given by the continuous
maps

⊔ : IS(m1,n1)× IS(m2,n2)→ IS(m1 ⊔m2,n1 ⊔ n2),

that map a pair of morphisms
(
(x, α), (y, β)

)
to (x ∧ y, α ⊔ β). As noted in

[27], this implies that the category of symmetric spectra inherits a symmetric
monoidal smash product. Given symmetric spectra X and Y , this is defined
by the left Kan extension,

(3.1) X ∧ Y (n) = colim
n1⊔n2→n

X(n1) ∧ Y (n2),

where the colimit is over the topological category (⊔ ↓ n) of objects and mor-
phisms in IS × IS over n. More explicitly, we may rewrite this as

X ∧ Y (n) = colim
α : n1⊔n2→n

Sn−α ∧X(n1) ∧ Y (n2),

where the colimit is now over the discrete category (⊔ ↓ n) of objects and
morphisms in I × I over n. Given a morphism in this category of the form

(β1, β2) : (n1,n2,n1 ⊔ n2
α−→ n)→ (n′1,n

′
2,n
′
1 ⊔ n′2

α′−→ n),

the morphism α′ specifies a homeomorphism

Sn−α ∼= Sn−α
′ ∧ Sn′1−β1 ∧ Sn′2−β2 ,

and the induced map in the diagram is defined by

Sn−α ∧X(n1) ∧ Y (n2)→ Sn−α
′ ∧ Sn′1−β1 ∧X(n1) ∧ Sn′2−β2 ∧ Y (n2)

→ Sn−α
′ ∧X(n′1) ∧ Y (n′2).

The unit for the smash product is the sphere spectrum S with S(n) = Sn. By
definition, a symmetric ring spectrum is a monoid in this monoidal category.
Spelling this out using the above notation, a symmetric ring spectrum is a
symmetric spectrum X equipped with a based map 1X : S0 → X(0) and a
collection of based maps

µm,n : X(m) ∧X(n)→ X(m+ n),

such that the usual unitality and associativity conditions hold, and such that
the diagrams

Sn−α ∧X(m) ∧ Sn′−α′ ∧X(m′)
µm,m′◦tw−−−−−−→ Sn+n′−α⊔α′ ∧X(m+m′)

yα∧α′
yα⊔α′

X(n) ∧X(n′)
µn,n′−−−−→ X(n+ n′)

commute for each pair of morphisms α : m → n and α′ : m′ → n′ in I. Here
tw flips the factors X(m) and Sn

′−α′ . A ring spectrum is commutative if it
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defines a commutative monoid in SpΣ. Explicitly, this means that there are
commutative diagrams

X(m) ∧X(n)
µm,n−−−−→ X(m+ n)

ytw

yτm,n

X(n) ∧X(m)
µn,m−−−−→ X(n+m),

where the right hand vertical map is given by the left action of the (m,n)-shuffle
τm,n.

3.2. Symmetric Thom spectra via I-spaces. As in Section 1.1 we write
IU for the category of I-spaces. This category inherits the structure of a
symmetric monoidal category from that of I in the usual way: given I-spaces
X and Y , their product X ⊠ Y is defined by the Kan extension

(X ⊠ Y )(n) = colim
n1⊔n2→n

X(n1)× Y (n2),

where the colimit is again over the category (⊔ ↓ n). The unit for the monoidal
structure is the constant I-space I(0,−). We use term I-space monoid for a
monoid in this category. This amounts to an I-space X equipped with a unit
1X ∈ X(0) and a natural transformation of I × I-diagrams

µm,n : X(m)×X(n)→ X(m+ n)

that satisfies the obvious associativity and unitality conditions. An I-space
monoid X is commutative if it defines a commutative monoid in IU , that is,
the diagrams

X(m)×X(n)
µm,n−−−−→ X(m+ n)

ytw

yτm,n

X(n)×X(m)
µn,m−−−−→ X(n+m)

are commutative.
The family of topological monoids F (n) define a functor from I to the cate-
gory of topological monoids: a morphism α : m → n in I induces a monoid
homomorphism α : F (m)→ F (n) by associating to an element f in F (m) the
composite map

(3.2) Sn ∼= Sn−α ∧ Sm Sn−α∧f−−−−−→ Sn−α ∧ Sm ∼= Sn.

As usual the homeomorphism Sn−α ∧ Sm ∼= Sn is induced by the bijection
(n− α) ⊔m→ n specified by α and the inclusion of n− α in n. We also have
the natural monoid homomorphisms

F (m)× F (n)→ F (m+ n), (f, g) 7→ f ∧ g
defined by the usual smash product of based spaces. Applying the classify-
ing space functor degree-wise and using that it commutes with products, we
get from this the commutative I-space monoid BF : n 7→ BF (n). We write
IU/BF for the category of I-spaces over BF with objects (X, f) given by a
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map f : X → BF of I-spaces. This category inherits a symmetric monoidal
structure from that of IU : given objects (X, f) and (Y, g), the product is
defined by the composition

f ⊠ g : X ⊠ Y
f⊠g−→ BF ⊠BF → BF,

where the last map is the multiplication in BF . The meaning of the symbol
f ⊠ g will always be clear from the context. By definition, a monoid in this
monoidal structure is a pair (X, f) given by an I-space monoid X together
with a monoid morphism f : X → BF .

Definition 3.3. The symmetric Thom spectrum functor T : IU/BF → SpΣ

is defined by the level-wise Thom space construction T (f)(n) = T (fn). A
morphism α : m→ n in I gives rise to a pullback diagram

Sn−α∧̄V (m) −−−−→ V (n)
y

y

BF (m)
α−−−−→ BF (n)

in which ∧̄ denotes the fibre-wise smash product. On fibres this restricts to the
homeomorphism Sn−α ∧ Sm → Sn specified by α. Pulling this diagram back
via f and applying the Thom space construction, we get the required structure
maps

Sn−α ∧ T (fm) ∼= T (α ◦ fm)→ T (fn).

Notice, that this Thom spectrum functor is related to that in Section 2 by a
commutative diagram of functors

(3.4)

IU/BF T−−−−→ SpΣ

y
y

NU/BF T−−−−→ Sp,

where the vertical arrows represent the obvious forgetful functors. Recall the
notion of a strong symmetric monoidal functor from [22], Section XI.2. We
now prove Theorem 1.1 stating that the symmetric Thom spectrum is strong
symmetric monoidal.

Proof of Theorem 1.1. It is clear that we have a canonical isomorphism S →
T (∗). We must show that given objects (X, f) and (Y, g) in IU/BF there is a
natural isomorphism

T (f) ∧ T (g) ∼= T (f ⊠ g).

By definition, X ⊠ Y (n) is the colimit of the (⊔ ↓ n)-diagram

(n1,n2,n1 ⊔ n2
α−→ n) 7→ X(n1)× Y (n2).

Given α : n1 ⊔ n2 → n, let α(f, g) be the composite map

X(n1)× Y (n2)
fn1×gn2−−−−−−→ BF (n1)×BF (n2)→ BF (n1 + n2)

α−→ BF (n).
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Using these structure maps we view the above (⊔ ↓ n)-diagram as a dia-
gram over BF (n), and since the Thom space functor preserves colimits by
[20], Propositions 1.1 and 1.4, we get the homeomorphism

T (f ⊠ g)(n) ∼= colim
(⊔↓n)

T (α(f, g)).

Furthermore, since pullback commutes with topological realization and fibre-
wise smash products, we have an isomorphism

α(f, g)∗V (n) ∼= Sn−α∧̄f∗n1
V (n1)∧̄g∗n2

V (n2)

of sectioned spaces over BF (n), hence a homeomorphism of the associated
Thom spaces

T (α(f, g)) ∼= Sn−α ∧ T (fn1) ∧ T (gn2).

Combining the above, we get the homeomorphism

T (f) ∧ T (g)(n) ∼= colim
α

Sn−α ∧ T (fn1) ∧ T (gn2) ∼= T (f ⊠ g)(n),

specifying the required isomorphism of symmetric spectra. �

Corollary 3.5. If X is an I-space monoid and f : X → BF a monoid mor-
phism, then T (f) is a symmetric ring spectrum which is commutative if X
is. �

Recall that the tensor of an unbased space K with a symmetric spectrum X
is defined by the level-wise smash product X ∧K+. Similarly, the tensor of K
with an I-space X is defined by the level-wise product X ×K. For an object
(X, f) in IU/BF , the tensor is given by (X ×K, f ◦ πX), where πX denotes
the projection onto X . We refer to [6], Chapter 6, for a general discussion of
tensors in enriched categories.

Proposition 3.6. The symmetric Thom spectrum functor preserves colimits
and tensors with unbased spaces.

Proof. The first statement follows [20], Proposition 1.1 and Corollary 1.4, which
combine to show that the Thom space functor preserves colimits. The second
claim is that T (f ◦ πX) is isomorphic to T (f)∧K+ which follows directly from
the definition. �

4. Lifting space level data to I-spaces

The homotopy colimit construction induces a functor

(4.1) hocolim
I

: IU/BF → U/BFhI , (X → BF ) 7→ (XhI → BFhI),

where, given an I-space X , we write XhI for its homotopy colimit. Our first
task in this section is to verify that this is the left adjoint in a Quillen equiva-
lence.

Documenta Mathematica 14 (2009) 699–748



714 Christian Schlichtkrull

4.1. The right adjoint of hocolimI. Recall first that the homotopy colimit
functor IU → U has a right adjoint that to a space Y associates the I-space
n 7→ Map(B(n ↓ I), Y ). Here (n ↓ I) denotes the category of objects in
I under n. We refer to [7], Section XII.2.2, and [17] for the details of this
adjunction. The right adjoint in turn induces a functor

U : U/BFhI → IU/BF, (X, f) 7→ (Uf (X), U(f))

by associating to a map f : X → BFhI the map of I-spaces defined by the
upper row in the pullback diagram

Uf (X)
U(f)−−−−→ BF

y
y

Map(B(− ↓ I), X) −−−−→ Map(B(− ↓ I), BFhI)

The map on the right is the unit of the adjunction. It is immediate that U
is right adjoint to the homotopy colimit functor in (4.1) and we shall prove in
Proposition 4.5 below that the adjunction

(4.2) hocolim
I

: IU/BF // U/BFhI :Uoo

is a Quillen equivalence when we give U/BFhI the model structure induced by
the Quillen model structure on U and IU/BF the model structure induced by
the I-model structure on IU established by Sagave-Schlichtkrull [33]. Before
describing the I-model structure we recall that IU has a level model structure
in which the weak equivalences and fibrations are defined level-wise. Given
d ≥ 0, let Fd : U → IU be the functor that to a space K associates the I-space
Fd(K) = I(d,−) ×K. Thus, Fd is left adjoint to the evaluation functor that
takes an I-space X to X(d). The level structure on IU is cofibrantly generated
with set of generating cofibrations

FI = {Fd(Sn−1)→ Fd(Dn) : d ≥ 0, n ≥ 0}
obtained by applying the functors Fd to the set I of generating cofibrations
for the Quillen model structure on U . By a relative cell complex in IU we
understand a map X → Y that can be written as the transfinite composition
of a sequence of maps

X = Y0 → Y1 → Y2 → · · · → colim
n≥0

Yn = Y

where each map Yn → Yn+1 is the pushout of a coproduct of generating cofi-
brations. It follows from the general theory for cofibrantly generated model
categories that a cofibration in IU is a retract of a cell complex. We refer the
reader to [15], Section 11.6, for a general discussion of level model structures
on diagram categories.
As explained in Section 1.2, the weak equivalences in the I-model structure
on IU , that is, the I-equivalences, are the maps that induce weak homotopy
equivalences of homotopy colimits. The cofibrations in the I-model structure
are the same as for the level structure and the fibrations can be characterized
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as the maps having the right lifting property with respect to acyclic cofibra-
tions. Again, the I-model structure is cofibrantly generated with FI the set of
generating cofibrations. There also is an explicit description of the generating
acyclic cofibrations and the fibrations but we shall not need this here.

Lemma 4.3. The adjunction in (4.2) is a Quillen adjunction

Proof. We claim that hocolimI preserves cofibrations and acyclic cofibrations.
By definition, hocolimI preserves weak equivalences in general and the first
claim therefore implies the second. For the first claim it suffices to show that
hocolimI takes the generating cofibrations for IU to cofibrations in U . The
homotopy colimit of a map Fd(S

n−1) → Fd(D
n) may be identified with the

map

B(d ↓ I)× Sn−1 → B(d ↓ I)×Dn

and the claim follows since B(d ↓ I) is a cell complex. �

In preparation for the proof that the above Quillen adjunction is in fact a
Quillen equivalence we make some general comments on homotopy colimits of
I-spaces. In general, given an I-space X , the homotopy type of XhI may
be very different from that of XhN . However, if the underlying N -space is
convergent, then the natural map XhN → XhI is a weak homotopy equivalence
by the following lemma due to Bökstedt; see [23], Lemma 2.3.7, for a published
version.

Lemma 4.4 ([8]). Let X be an I-space and suppose that there exists an
unbounded non-decreasing sequence of integers λm such that any morphism
m → n in I induces a λm-connected map X(m)→ X(n). Then the inclusion
{n} → I induces a (λn − 1)-connected map X(n)→ XhI for all n. �

The structure maps F (m) → F (n) are (m − 1)-connected by the Freudentahl
suspension theorem and consequently the induced maps BF (m)→ BF (n) are
m-connected. Thus, the proposition applies to the I-space BF and we see that
the canonical map BF (n) → BFhI is (n − 1)-connected. This map can be
written as the composition

BF (n)→ Map(B(n ↓ I), BFhI)→ BFhI

where the first map is the unit of the adjunction and the second map is defined
by evaluating at the vertex represented by the initial object. Since the second
map is clearly a homotopy equivalence it follows that the first map is also
(n− 1)-connected.

Proposition 4.5. The adjunction (4.2) is a Quillen equivalence.

Proof. Given a cofibrant object f : X → BF in IU/BF and a fibrant object
g : Y → BFhI in U/BFhI we must show that a morphism φ : XhI → Y of
spaces over BFhI is a weak homotopy equivalence if and only if the adjoint
ψ : X → Ug(Y ) is an I-equivalence of I-spaces over BF . The maps φ and ψ
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are related by the commutative diagram

XhI
ψhI //

φ !!B
BB

BB
BB

B
Ug(Y )hI

ε
{{vv

vvv
vvv

v

Y

where ε denotes the counit for the adjunction. It therefore suffices to show that
ε is a weak homotopy equivalence. The assumption that (Y, g) be a fibrant
object means that g is a fibration and the pullback diagram

Ug(Y )(n) −−−−→ BF (n)
y

y

Map(B(n ↓ I), Y ) −−−−→ Map(B(n ↓ I), BFhI)

used to define Ug(Y ) is therefore homotopy cartesian. By the remarks following
Lemma 4.4 it follows that the vertical maps are (n− 1)-connected. The counit
ε admits a factorization

Ug(Y )hI → Map(B(− ↓ I), Y )hI → Y

where the first map is a weak homotopy equivalence by the above discussion and
the second map is a weak homotopy equivalence since B(− ↓ I) is level-wise
contractible. This completes the proof. �

The functor U is only homotopically well-behaved when applied to fibrant
objects. We define a (Hurewicz) fibrant replacement functor Γ on U/BFhI as
in (2.4) (replacing BF (n) by BFhI) and we write U ′ for the composite functor
U ◦Γ. This is up to natural homeomorphism the same as the functor obtained
by evaluating the homotopy pullback instead of the pullback in the diagram
defining Uf (X).

4.2. The I-space lifting functor R. As discussed in Section 1.2, the func-
tor U does not have all the properties one may wish when constructing Thom
spectra from maps to BFhI . In this section we introduce the I-space lifting
functor R and we establish some of its properties. Given a space X and a map
f : X → BFhI , we shall view this as a map of constant I-spaces. In order to
lift it to a map with target BF , consider the I-space BF defined by

BF (n) = hocolim
(I↓n)

BF ◦ πn,

where πn : (I ↓ n) → I is the forgetful functor that maps an object m → n
to m. By definition, BF is the homotopy left Kan extension of BF along
the identity functor on I, see Appendix A.1. Since the identity on n is a
terminal object in (I ↓ n) there results a canonical homotopy equivalence
tn : BF (n)→ BF (n) for each n.

Lemma 4.6. The map πn : BF (n)→ BFhI induced by the functor πn is (n−1)-
connected.
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Proof. The homotopy equivalence tn has a section induced by the inclusion of
the terminal object in (I ↓ n), such that the canonical map BF (n) → BFhI
factors through BF (n). The result therefore follows from Lemma 4.4 and the
above discussion. �

Consider now the diagram of I-spaces

BFhI
π←− BF t−→ BF,

where the right hand map is the level-wise equivalence specified above and the
left hand map is induced by the functors πn. Here we again view BFhI as a
constant I-space. We define the I-space Rf (X) to be the level-wise homotopy
pullback of the diagram of I-spaces

(4.7) X
f−→ BFhI

π←− BF,
that is, Rf (X)(n) is the space

{(x, ω, b) ∈ X ×BF IhI ×BF (n) : ω(0) = f(x), ω(1) = π(b)}.
Notice, that the two projections Rf (X)→ X and Rf (X)→ BF are level-wise
Hurewicz fibrations of I-spaces. The functor R is defined by
(4.8)

R : U/BFhI → IU/BF, (f : X → BFhI) 7→ (R(f) : Rf (X)→ BF
t−→ BF ).

When there is no risk of confusion we write R(X) instead of Rf (X).

Proposition 4.9. The I-space Rf (X) is convergent and R(f) is level-wise
T -good.

Proof. Since Rf (X) is defined as a homotopy pullback, we see from Lemma
4.6 that the map Rf (X)(n)→ X is (n−1)-connected for each n, hence Rf (X)
is convergent. We claim that R(f) classifies a well-based quasifibration at
each level. In order to see this we first observe that t∗V (n) is a well-based
quasifibration over BF (n) by Lemma A.4. Thus, R(f)∗V (n) is a pullback of
a well-based quasifibration along the Hurewicz fibration Rf (X)(n) → BF (n),
hence is itself a well-based quasifibration by Lemma 2.2. �

Proposition 4.10. There is a natural level-wise equivalence Rf (X)
∼−→ U ′f (X)

over BF .

Proof. Given a map f : X → BFhI , consider the diagram of I-spaces

X
f //

��

BFhI

��

BF
πoo

t

��
Map(B(− ↓ I), X)

f // Map(B(− ↓ I), BFhI) BFoo

where we view X and BFhI as constant I-spaces and the corresponding vertical
maps are induced by the projection B(− ↓ I) → ∗. The left hand square is
strictly commutative and we claim that the right hand square is homotopy
commutative. Indeed, with notation as in Appendix A.1, BF is the homotopy
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Kan extension idh∗BF along the identity functor on I and the adjoints of the
two compositions in the diagram are the two maps hocolimI BF → BFhI
shown to be homotopic in Lemma A.3. Using the canonical homotopy from that
lemma we therefore get a canonical homotopy relating the two composites in the
right hand square. The latter homotopy in turn gives rise to a natural maps of
the associated homotopy pullbacks, that is, to a natural map Rf (X)→ U ′f (X).
Since the vertical maps in the above diagram are level-wise equivalences the
same holds for the map of homotopy pullbacks. �

Corollary 4.11. The functors R and hocolimI are homotopy inverses in the
sense that there is a chain of natural weak homotopy equivalences Rf (X)hI ≃ X
of spaces over BFhI and a chain of natural I-equivalences RfhI (XhI) ≃ X of
I-spaces over BF .

Proof. It follows easily from Proposition 4.5 and its proof that the functor U ′

has this property and the same therefore holds for R by Proposition 4.11. �

The functor R has good properties both formally and homotopically.

Proposition 4.12. The functor R in (4.8) takes weak homotopy equivalences
over BFhI to level-wise equivalences over BF and preserves colimits and ten-
sors with unbased spaces.

Proof. The first statement follows from the homotopy invariance of homotopy
pullbacks. In order to verify that R preserves colimits, we first observe that
BFhI is locally equiconnected (the diagonal BFhI → BFhI × BFhI is a cofi-
bration) by [19], Corollary 2.4. We then view Rf (X) as the pullback of X

along the level-wise Hurewicz fibrant replacement Γπ(BF ) → BFhI and the
result follows from [20], Propositions 1.1 and 1.2, which together state that
the pullback functor along a Hurewicz fibration preserves colimits provided the
base space is locally equiconnected. The last statement about preservation of
tensors is the claim that if K is an unbased space and (X, f) an object of
U/BFhI , then R takes (X×K, f ◦πX) to Rf (X)×K; this follows immediately
from the definition. �

Combining this result with Proposition 2.10, Proposition 3.6 and Proposition
4.9, we get the following corollary in which we define the Thom spectrum
functor on U/BFhI using R.

Corollary 4.13. The Thom spectrum functor

(4.14) T : U/BFhI R−→ IU/BF T−→ SpΣ

takes values in the subcategory of well-based, connective and convergent sym-
metric spectra. It takes weak homotopy equivalences over BFhI to level-wise
equivalences and preserves colimits and tensors with unbased spaces. �

The functor R also behaves well with respect to cofibrations as we explain
next. We follow [27] in using the term h-cofibration for a morphism having the
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homotopy extension property. Thus, a map i : A→ X in U is an h-cofibration
if and only if the induced map from the mapping cylinder

(4.15) X ∪i (A× I)→ X × I
admits a retraction. By our conventions, this is precisely what we mean by
a cofibration of spaces in this paper. Given a base space B, a morphism i in
U/B is an h-cofibration if the analogous morphism (4.15) admits a retraction
in U/B; we emphasize this by saying that i is a fibre-wise h-cofibration. These
conventions also apply to define h-cofibrations in IU and, given an I-space B,
fibre-wise h-cofibrations in IU/B with the corresponding mapping cylinders

defined level-wise. A morphism i : A → X in SpΣ is an h-cofibration if the
mapping cylinder X ∪i (A ∧ I+) is a retract of X ∧ I+.

Proposition 4.16. The functor R takes maps over BFhI that are cofibrations
in U to fibre-wise h-cofibrations in IU/BF and the Thom spectrum functor
(4.14) takes such maps to h-cofibrations of symmetric spectra.

Proof. Notice first that we may view Rf (X) as the pullback of BF along the
fibrant replacement Γf (X) → BFhI . Given a morphism (A, f) → (X, g) in
U/BFhI such that A → X is a cofibration, the induced map Γf (A) → Γg(X)
is a fibre-wise h-cofibration by [20], IX, Proposition 1.11. Since fibre-wise h-
cofibrations are preserved under pullback, this in turn implies that Rf (A) →
Rg(X) is a fibre-wise h-cofibration over BF , hence over BF . It follows from
Proposition 3.6 that the Thom spectrum functor on IU/BF takes fibre-wise h-
cofibrations to h-cofibrations. Combining this with the above gives the result.

�

4.3. Preservation of monoidal structures. Recall from [22], Section
XI.2, that given monoidal categories (A,�, 1A) and (B,△, 1B), a monoidal
functor Φ: A → B is a functor Φ together with a morphism 1B → Φ(1A) and
a natural transformation

Φ(X)△Φ(Y )→ Φ(X�Y ),

satisfying the usual associativity and unitality conditions. It follows from the
definition that if A is a monoid in A, then Φ(A) inherits the structure of a
monoid in B. Since (unbased) homotopy colimits commute with products, we
may view hocolimI as a monoidal functor IU → U with structure maps

hocolim
I

X × hocolim
I

Y ∼= hocolim
I×I

X × Y → hocolim
I

X ⊠ Y

induced by the universal natural transformation X(m)×Y (n)→ X⊠Y (m⊔n)
of I ×I-diagrams. The unit morphism is induced by the inclusion of the initial
object 0, thought of as a vertex in BI. Since BF is a monoid in IU , BFhI
inherits the structure of a topological monoid. It follows that we may also view
U/BFhI as a monoidal category and the following result is then clear from the
definition.

Proposition 4.17. The functor hocolimI in (4.1) is monoidal. �
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However, the functor hocolimI is not symmetric monoidal, hence does not
take commutative monoids in IU to commutative topological monoids. In
particular, BFhI is not a commutative monoid which is already clear from the
fact that it is not equivalent to a product of Eilenberg-Mac Lane spaces. We
prove in Section 6.1 that BFhI has a canonical E∞ structure and that more
generally hocolimI takes E∞ objects in IU to E∞ spaces.

Proposition 4.18. The functor R in (4.8) is monoidal.

Proof. By definition, R(∗)(0) is the loop space of BFhI and we let ∗ → R(∗)
be the map of I-spaces that is the inclusion of the constant loop in degree 0.
We must define an associative and unital natural transformation of I-spaces
R(X) ⊠ R(Y ) → R(X × Y ) over BF . By the universal property of the ⊠-
product, this amounts to an associative and unital natural transformation of
I2-diagrams

R(X)(m)×R(Y )(n)→ R(X × Y )(m ⊔ n).

The domain is the homotopy pullback of the diagram

X × Y → BFhI ×BFhI ← BF (m)×BF (n),

and the target is the homotopy pullback of the diagram

X × Y → BFhI ← BF (m+ n).

The I-space BF inherits a monoid structure from that of BF such that
π : BF → BFhI is a map of monoids. Using these structure maps, we define
a map from the first diagram to the second, giving the required multiplica-
tion. �

Since the monoids in the monoidal category U/BFhI are precisely the topolog-
ical monoids over BFhI , this has the following corollary.

Corollary 4.19. If X is a topological monoid and f : X → BFhI a monoid
morphism, then T (f) is a symmetric ring spectrum. �

This may be reformulated as saying that the Thom spectrum functor preserves
the action of the associativity operad whose kth space is the symmetric group
Σk, see [28], Section 3. More generally, we show in Section 6 that T preserves all
operad actions of operads that are augmented over the Barratt-Eccles operad.

4.4. Comparison with the Lewis-May Thom spectrum functor. Let
as before BFN denote the colimit of BF over N . In this section we recall
the Thom spectrum functor on U/BFN considered in [20], Section IX, and we
relate this to our symmetric Thom spectrum functor on U/BFhI . We shall
use the same notation for the I-space BF and its restriction to an N -space.
The colimit functor NU/BF → U/BFN has a right adjoint, again denoted U ,
that to an object f : X → BFN associates the map of N -spaces defined by the
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upper row in the pullback diagram

Uf(X)
U(f)−−−−→ BF

y
y

X
f−−−−→ BFN

where the vertical map on the right is the unit of the adjunction relating the
colimit and the constant functors. Here we view X and BFN as constant
N -spaces. We again write U ′ for the functor obtained by composing with
the Hurewicz fibrant replacement functor Γ on U/BFN . The Thom spectrum
functor considered in [20] is the composition

U/BFN U−→ NU/BF T−→ Sp,

where T is the functor from Section 2. (In the language of [20] this is the Thom
prespectrum associated to f . The authors go on to define a spectrum M(f) with
the property that the adjoint structure maps are homeomorphisms, but this
will not be relevant for the discussion here). The first step in the comparison
to our symmetric Thom spectrum functor on U/BFhI is to relate the spaces
BFN and BFhI . Consider the diagram of weak homotopy equivalences

BFhI
i←− BFhN t−→ BFN ,

where i is induced from the inclusion i : N → I and t is the canonical pro-
jection from the homotopy colimit to the colimit. The former is a weak ho-
motopy equivalence by Lemma 4.4 and the latter is a weak homotopy equiv-
alence since the structure maps are cofibrations. Let us choose a homotopy
inverse j : BFhI → BFhN of i and a homotopy relating i ◦ j to the identity on
BFhI . Here we of course use that these spaces have the homotopy type of a
CW-complex. The precise formulation of the comparison will depend on these
choices. Let ζ be the composite homotopy equivalence

ζ : BFhI
j−→ BFhN

t−→ BFN .

In general, given a map φ : B1 → B2 in U , we write φ∗ : U/B1 → U/B2 for the
functor defined by post-composing with φ.

Lemma 4.20. Suppose that φ and ψ are maps from B1 to B2 that are homotopic
by a homotopy h : B1 × I → B2. Then the functors φ∗ and ψ∗ from U/B1 to
U/B2 are related by a chain of natural weak homotopy equivalences depending
on h.

Proof. Let h∗ : U/B1 → U/B2 be the functor that takes f : X → B1 to

X × I f×I−−−→ B1 × I h−→ B2.

The two endpoint inclusions of X in X × I then give rise to the natural weak
homotopy equivalences φ∗ → h∗ ← ψ∗. �
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Applied to the homotopy relating i◦ j to the identity on BFhI this result gives
a chain of natural weak homotopy equivalences relating the composite functor

U/BFhI j∗−→ U/BFhN i∗−→ U/BFhI
to the identity on U/BFhI .

Lemma 4.21. The two compositions in the diagram

U/BFhI U ′−−−−→ IU/BF
yζ∗

yi∗

U/BFN U ′−−−−→ NU/BF
are related by a chain of natural level-wise equivalences.

Proof. We shall interpolate between these functors by relating both to the N -
space analogue of the functor U ′ on U/BFhI . Thus, given f : X → BFhN , the
diagram of N -spaces

Map(B(− ↓ N ), X)
f−→ Map(B(− ↓ N ), BFhN )←− BF

is related by evident chains of term-wise level equivalences to the diagrams

Map(i∗B(− ↓ I), X)
i◦f−−→ Map(i∗B(− ↓ I), BFhI)←− BF

and

X
t◦f−−→ BFN ←− BF.

Evaluating the homotopy pullbacks of these diagrams we get a chain of natural
level-wise equivalences relating the two compositions in the diagram

U/BFN
U ′

��

U/BFhN
t∗oo i∗ // U/BFhI

U ′

��
NU/BF IU/BF.i∗oo

By the remarks following Lemma 4.20 we therefore get a chain of natural trans-
formations

(4.22) i∗ ◦ U ′ ∼ i∗ ◦ U ′ ◦ i∗ ◦ j∗ ∼ U ′ ◦ t∗ ◦ j∗ ∼ U ′ ◦ ζ∗,

each of which is a level-wise weak homotopy equivalence. �

We can now compare our symmetric Thom spectrum functor to the Lewis-
May Thom spectrum functor on U/BFN . Since the functors TR and TU ′ on
U/BFhI are level-wise equivalent by Proposition 4.10, it suffices to consider
TU ′.
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Proposition 4.23. The two compositions in the diagram

U/BFhI TU ′−−−−→ SpΣ

yζ∗
y

U/BFN TU ′−−−−→ Sp

are related by a chain of level-wise equivalences.

Proof. The diagram in question is obtained by composing the diagram in
Proposition 4.21 with the commutative diagram (3.4). Since the chain of weak
homotopy equivalences in (4.22) is contained in the full subcategory of level-
wise T -good objects in NU/BF , applying T gives a chain of level-wise equiv-
alences. �

5. Homotopy invariance of symmetric Thom spectra

In this section we prove the homotopy invariance result stated in Theorem 1.4
and we show how the proof can be modified to give the N -space analogue in
Theorem 2.11. As for the Thom space functor, the symmetric Thom spec-
trum functor is not homotopically well-behaved on the whole domain cate-
gory IU/BF . We define a level-wise Hurewicz fibrant replacement functor on
IU/BF by applying the functor Γ in (2.4) at each level.

Definition 5.1. An object (X, f) in IU/BF is T -good if the canonical map
T (f)→ T (Γ(f)) is a stable equivalence (a weak equivalence in the stable model
structure) of symmetric spectra.

As before we say that (X, f) is level-wise T -good if T (f)→ T (Γ(f)) is a level-
wise equivalence. The first step in the proof of Theorem 1.4 is to generalize the
definition of BF to any I-space X by associating to X the I-space X defined
by

X(n) = hocolim
(I↓n)

X ◦ πn.

We then have a diagram of I-spaces

XhI
π←− X t−→ X,

where we view XhI as a constant I-space. The map t is a level-wise equivalence
and π is an I-equivalence by Lemma A.2. If f : X → BF is a map of I-spaces,
then we have a commutative diagram

X
f̄−−−−→ BF

yπ
yπ

XhI
fhI−−−−→ BFhI ,

hence there is an induced morphism

(5.2) (X, t ◦ f̄)→ (RfhI (XhI), R(fhI))

of I-spaces over BF .
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Proposition 5.3. Applying T ◦ Γ to the morphism (5.2) gives a stable equiv-
alence of symmetric spectra.

In order to prove this proposition we shall make use of the level model structure
on IU recalled in Section 4.1. Let Fd : U → IU be the functor defined in that
section and let us write Fd(u) : Fd(K)→ BF for the map of I-spaces associated
to a map of spaces u : K → BF (d).

Lemma 5.4. If u is a Hurewicz fibration, then Fd(u) is level-wise T -good.

Proof. The pullback of V (n) along Fd(u) is isomorphic to the coproduct of the
pullbacks along u of the fibre-wise suspensions Sn−α∧̄V (d) over BF (d), where
α runs through the injective maps d→ n. These are well-based quasifibrations
by Proposition 2.1 and since u is a fibration, the same holds for the pullbacks
by Lemma 2.2 and the claim follows. �

The idea is to first prove Proposition 5.3 for objects of the form Fd(u).

Lemma 5.5. Applying T ◦Γ to the map of I-spaces Fd(K)→ R(Fd(K)hI) over
BF gives a stable equivalence of symmetric spectra.

The proof of this requires some preparation. We view K as a space over BFhI
via the map

(5.6) ũ : K → BF (d)→ BFhI ,

where the second map is induced by the inclusion of {d} in I.

Lemma 5.7. There is a weak homotopy equivalence K → Fd(K)hI of spaces
over BFhI .

Proof. By definition of the homotopy colimit we may identify Fd(K)hI with
B(d ↓ I) × K, where (d ↓ I) is the category of objects in I under d. Since
this category has an initial object its classifying space is contractible and the
result follows. �

In the case of the I-space Fd(K), the level-wise equivalence t : Fd(K)→ Fd(K)

has a section induced by the canonical map K → Fd(K)(d). Using this, we get
a commutative diagram in IU/BF ,

(5.8)

Fd(K)
∼−−−−→ Fd(K)

y
y

R(K)
∼−−−−→ R(Fd(K)hI).

The upper horizontal map is a level-wise equivalence since t is and the lower
horizontal map is a level-wise equivalence by the above lemma. Thus, in order
to prove Lemma 5.5, we may equally well consider the vertical map on the left
hand side of the diagram.
Given a based space T , let FSd (T ) be the symmetric spectrum IS(d,−) ∧ T .

The functor FSd so defined is left adjoint to the functor SpΣ → T that takes a
symmetric spectrum to its dth space, see [27]. In particular it follows from the
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definition that FS0 (T ) is the suspension spectrum of T . Notice also that the
Thom spectrum T (Fd(u)) associated to Fd(u) may be identified with FSd (T (u)),
where as usual T (u) denotes the Thom space of the map u. Let T (ũ) be the
symmetric Thom spectrum of the map ũ in (5.6) and let ΣdLT (ũ) be the left
shift by d, that is, the composition of T (ũ) with the concatenation functor
IS → IS , n 7→ d ⊔ n. Thus, the nth space of ΣdLT (ũ) is T (ũ)(d ⊔ n) with Σn
acting via the inclusion Σn → Σd+n induced by n 7→ d⊔n. The condition that
u be a Hurewicz fibration in the following lemma is unnecessarily restrictive,
but the present formulation is sufficient for our purposes.

Lemma 5.9. If u is a Hurewicz fibration, then the canonical map of spaces
T (u)→ T (ũ)(d) induces a π∗-isomorphism FS0 (T (u))→ ΣdLT (ũ).

Proof. In spectrum degree n this is the map of Thom spaces induced by the
map

K → Rũ(K)(d)→ Rũ(K)(d ⊔ n),

viewed as a map of T -good spaces over BF (d+n). This is also a map of spaces
over K via the projection Rũ(K)→ K, and it therefore follows from the proof
of Proposition 4.9 that its connectivity tends to infinity with n. The result
then follows from Lemma 2.6. �

We shall prove Lemma 5.5 using the detection functor D from [37]. We recall
that this functor associates to a symmetric spectrum T the symmetric spectrum
DT whose nth space is the based homotopy colimit

DT (n) = hocolim
m∈I

Ωm(T (m) ∧ Sn).

By [37], Theorem 3.1.2, a map of (level-wise well-based) symmetric spectra
T → T ′ is a stable equivalence if and only if the induced map DT → DT ′ is a
π∗-isomorphism. There is a closely related functor T 7→MT , where MT is the
symmetric spectrum with nth space

MT (n) = hocolim
m∈I

Ωm(T (m ⊔ n)).

Thus, MT is the homotopy colimit of the I-diagram of symmetric spectra
m 7→ Ωm(ΣmL T ). There is a canonical map DT → MT , which is a level-wise
equivalence if T is convergent and level-wise well-based.

Proof of Lemma 5.5. We claim that applying T ◦ Γ to the vertical map on the
left hand side of (5.8) gives a stable equivalence, and for this we may assume
without loss of generality that u is a Hurewicz fibration. Then Fd(u) is T -good
by Lemma 5.4 and since R(ũ) is T -good by Proposition 4.9, it suffices to show
that T (Fd(u))→ T (ũ) is a stable equivalence. Furthermore, by [27], Theorem
8.12, it is enough to show that this map is a stable equivalence after smashing
with Sd and by the above remarks this in turn follows if applying D gives a
π∗-isomorphism. We identify T (Fd(u)) with FSd (T (u)) and claim that there is
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a commutative diagram

FS0 (T (u))
∼−−−−→ ΣdLT (ũ)

∼−−−−→ Ωd(Sd ∧ ΣdLT (ũ))
y∼

y∼

D(Sd ∧ FSd (T (u))) −−−−→ D(Sd ∧ T (ũ))
∼−−−−→ M(Sd ∧ T (ũ)),

where the maps are π∗-isomorphisms as indicated. The vertical map on the
left hand side is induced by the space-level map

T (u)→ FSd (T (u))(d)→ Ωd(Sd ∧ FSd (T (u))(d))→ D(Sd ∧ FSd (T (u)))(0).

It is a fundamental property of the model structure on SpΣ that the induced
map of symmetric spectra is a π∗-isomorphism, see the proof of [37], Lemma
3.2.5. The first map in the upper row is the stable equivalence from Lemma
5.9, and the remaining indicated arrows are π∗-isomorphisms since T (ũ) is
connective and convergent. This proves the claim. �

We now wish to prove Proposition 5.3 by an inductive argument based on the
filtration

(5.10) ∅ = X0 → X1 → X2 → · · · → colim
n

Xn = X

of a cell complex X in IU , cf. the discussion of the level model structure in
Section 4.1. In order to carry out the induction step, we need to ensure that the
induced maps of Thom spectra are h-cofibrations in the sense of Section 4.2.
The following is the I-space analogue of [20], IX, Lemma 1.9 and Proposition
1.11. The proof is essentially the same as in the space-level case.

Proposition 5.11. The functor Γ on IU/BF preserves colimits and takes
morphisms in IU/BF that are h-cofibrations in IU to fibre-wise h-cofibrations.

�

Since the symmetric Thom spectrum functor on IU/BF preserves colimits and
takes fibre-wise h-cofibrations to h-cofibrations by Proposition 3.6, this has the
following consequence.

Proposition 5.12. The composite functor T ◦ Γ preserves colimits and takes
morphisms in IU/BF that are h-cofibrations in IU to h-cofibrations of sym-
metric spectra. �

Proof of Proposition 5.3. Using the level model structure we may choose a cofi-
brant I-space X ′ and a level-wise equivalence X ′ → X , hence it suffices to
consider the case where X is a cofibrant I-space. Then X is a retract of a cell
complex which we may view as a cell complex over BF via the retraction. By
functoriality we are thus reduced to the case where X is a cell complex with
a filtration by h-cofibrations as in (5.10). In order to handle this case we use
that both functors in (5.2) preserve colimits and tensors with unbased spaces,
hence they also preserve (not necessarily fibre-wise) h-cofibrations. Applying
the functor T ◦ Γ, we see that both functors in the proposition preserve colim-
its and take h-cofibrations of I-spaces over BF to h-cofibrations of symmetric
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spectra. We prove by induction that the result holds for each of the I-spaces
Xn in the filtration. By definition, Xn+1 is a pushout of a diagram of the form
B ← A → Xn, where A → B is a coproduct of generating cofibrations, hence
in particular an h-cofibration. We view this as a diagram of I-spaces over BF
via the inclusion of Xn+1 in X and get a diagram of Thom spectra

TΓ(Xn) ←−−−− TΓ(A) −−−−→ TΓ(B)
y

y
y

TΓ(R((Xn)hI)) ←−−−− TΓ(R(AhI)) −−−−→ TΓ(R(BhI)),

such that the map for Xn+1 is the induced map of pushouts. By the above
discussion it follows that the horizontal maps on the right hand side of the
diagram are h-cofibrations and the vertical maps are stable equivalences by
Lemma 5.5 and the induction hypothesis. Consequently the map of pushouts
is also a stable equivalence, see [27], Theorem 8.12. �

Proof of Theorem 1.4. We prove that applying the functor T ◦ Γ to an I-
equivalence X → Y over BF gives a stable equivalence of symmetric spectra.
Consider the commutative diagram

X ←−−−− X −−−−→ R(XhI)y
y

y

Y ←−−−− Y −−−−→ R(YhI)

of I-spaces over BF . Applying T ◦ Γ to this diagram we get a diagram of
symmetric spectra where the horizontal maps are stable equivalence by Propo-
sition 5.3 and the fact that T ◦ Γ preserves level-wise equivalences. The result
now follows from Corollary 4.13 which ensures that the map R(XhI)→ R(YhI)
induces a stable equivalence. �

Notice, that as a consequence of the theorem, the composite functor T ◦ Γ is a
homotopy functor on IU/BF in the sense that it takes I-equivalences to stable
equivalences.

5.1. The proof of Theorem of 2.11. The proof of Theorem 2.11 is similar
to but simpler than the proof of Theorem 1.4. We first introduce a functor

RN : U/BFhN → NU/BF,
which is the N -space analogue of the functor R. Let us temporarily write BF
for the homotopy Kan extension of the N -space BF along the identity functor
of N , that is,

BF (n) = hocolim
(N↓n)

BF ◦ πn,

where πn is the forgetful functor (N ↓ n)→ N . Given a map f : X → BFhN ,
we define RNf (X) to be the level-wise homotopy pullback of the diagram of
N -spaces

X
f−→ BFhN

π←− BF,
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and we define RN (f) to be the composite map of N -spaces

RN (f) : RNf (X)→ BF
t−→ BF.

Exactly as in the I-space case there is a map of N -spaces

(5.13) (X, t ◦ f)→ (RNfhN (XhN ), RN (fhN ))

over BF , where we again use the (temporary) notation X for the homotopy
Kan extension along the identity on N . Theorem 2.11 then follows from the
following proposition in the same way that Theorem 1.4 follows from Proposi-
tion 5.3.

Proposition 5.14. Applying T ◦Γ to (5.13) gives a stable equivalence of spec-
tra.

In order to prove this we first consider the N -spaces Fd(K) defined by
N (d,−) × K, where d is an object in N and K is a space. Given a map
u : K → BF (d), we have the following N -space analogue of (5.8),

Fd(K) −−−−→ Fd(K)
y

y

R(K) −−−−→ R(Fd(K)hN ).

However, in contrast to the I-space setting, this is a diagram of convergent
N -spaces and the connectivity of the maps in degree n tends to infinity with
n. Thus, the N -space analogue of Lemma 5.5 holds with a simpler proof.

Proof of Proposition 5.14. We use that NU has a cofibrantly generated level
model structure and as in the I-space case we reduce to the case of a cell
complex. Using that the functors in (5.13) preserve colimits and h-cofibrations,
the inductive argument used in the proof of Proposition 5.3 then also applies
in the N -space setting. �

6. Preservation of operad actions

Let C be an operad as defined in [28] and notice that C defines a monad C on
the symmetric monoidal category IU in the usual way by letting

C(X) =
∞∐

k=0

C(k)×Σk X
⊠k.

We define a C-I-space to be an algebra for this monad and write IU [C] for
the category of such algebras. More explicitly, a C-I-space is an I-space X
together with a sequence of maps of I-spaces

θk : C(k)×X⊠k → X,

satisfying the associativity, unitality and equivariance relations listed in [28],
Lemma 1.4. By the universal property of the ⊠-product, θk is determined by
a natural transformation of Ik-diagrams

(6.1) θk : C(k)×X(n1)× · · · ×X(nk)→ X(n1 + · · ·+ nk)
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and the equivariance condition amounts to the commutativity of the diagram

C(k)×X(n1)× · · · ×X(nk)
θk◦(σ×id)−−−−−−→ X(n1 + · · ·+ nk)

yid×σ
yσ(n1,...,nk)∗

C(k)×X(nσ−1(1))× · · · ×X(nσ−1(k))
θk−−−−→ X(nσ−1(1) + · · ·+ nσ−1(k))

for all elements σ in Σk. Here σ permutes the factors on the left hand side of
the diagram and σ(n1, . . . , nk) denotes the permutation of n1 ⊔ · · · ⊔ nk that
permutes the k summands as σ permutes the elements of k. As defined in [28],
the 0th space of C is a one-point space, so that θ0 specifies a base point of X .
Notice, that an action of the one-point operad ∗ on an I-space X is the same
thing as a commutative monoid structure on X . In this case the projection
C → ∗ induces a C-action on X for any operad C. This applies in particular to
the commutative I-space monoid BF .
In similar fashion an operad C defines a monad C on the category SpΣ by
letting

C(X) =

∞∨

k=0

C(k)+ ∧Σk X
∧k

and we write SpΣ[C] for the category of algebras for this monad. Thus, an

object of SpΣ[C] is a symmetric spectrum X together with a sequence of maps
of symmetric spectra

θk : C(k)+ ∧X∧k → X,

satisfying the analogous associativity, unitality and equivariance relations. By
the universal property of the smash product, θk is determined by a natural
transformation of IkS-diagrams,

(6.2) θk : C(k)+ ∧X(n1) ∧ · · · ∧X(nk)→ X(n1 + · · ·+ nk).

The naturality condition can be formulated explicitly as follows. Given a family
of morphisms αi : mi → ni in I for i = 1, . . . , k, let α = α1 ⊔ · · · ⊔αk. Writing
n = n1 + · · ·+ nk and making the identification

Sn1−α1 ∧ · · · ∧ Snk−αk = Sn−α,

we require that the diagram

Sn−α ∧ C(k)+ ∧X(m1) ∧ · · · ∧X(mk)
Sn−α∧θk−−−−−−→ Sn−α ∧X(m1 + · · ·+mk)

y
y

C(k)+ ∧X(n1) ∧ · · · ∧X(nk)
θk−−−−→ X(n1 + · · ·+ nk)

be commutative. We now show that the symmetric Thom spectrum functor
behaves well with respect to operad actions. Given an operad C and a map of
I-spaces f : X → BF , let C(f) be the composite map

C(f) : C(X)→ C(BF )→ BF.
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The following is the analogue in our setting of [20], Theorem IX 7.1. It is a
formal consequence of the fact that T is a strong symmetric monoidal functor
that preserves colimits and tensors with unbased spaces.

Proposition 6.3. There is a canonical isomorphism of symmetric spectra

T (C(f)) = C(T (f)). �

Corollary 6.4. The Thom spectrum functor on IU/BF preserves operad
actions in the sense that there is an induced functor

T : IU [C]/BF → SpΣ[C]. �

6.1. Operad actions preserved by hocolimI . As in Section 1.2 we use the
notation E for the Barratt-Eccles operad. We recall that the kth space E(k)

is the classifying space of the translation category Σ̃k that has the elements of
Σk as its objects. A morphism ρ : σ → τ in Σ̃k is an element ρ ∈ Σk such that
ρσ = τ ; see [29], Section 4 (but notice that the order of the composition in Σ̃k
is defined differently here). In the following proposition, C denotes an arbitrary
operad and E × C denotes the product operad whose kth space is the product
E(k)× C(k).

Proposition 6.5. The functor hocolimI induces a functor

hocolim
I

: IU [C]→ U [E × C].

Proof. Let I(X) be the topological category whose space of objects is the
disjoint union of the spaces X(n) indexed by the objects n in I, and in which a
morphism (m, x)→ (n, y) is specified by a morphism α : m→ n in I such that
α∗(x) = y. Then it follows from the definition of the homotopy colimit that
XhI may be identified with the classifying space BI(X); see Appendix A for
details. In the following we shall view the spaces C(k) as topological categories
with only identity morphisms. For each k, consider the functor of topological
categories

ψk : Σ̃k × C(k)× I(X)k → I(X),

that maps a tuple of objects σ ∈ Σk, c ∈ C(k), and (n1, x1), . . . , (nk, xk), to

(nσ−1(1) ⊔ · · · ⊔ nσ−1(k), σ(n1, . . . , nk)∗θk(c, x1, . . . , xk)).

Here θk denotes the C(k)-action on X and σ(n1, . . . , nk) is defined as at the

beginning of this section. If ρ : σ → τ is a morphism in Σ̃k, then the induced
morphism in I(X) is specified by

ψk(ρ) = ρ(nσ−1(1), . . . , nσ−1(k)),

and if ~α denotes a k-tuple of morphisms in I(X) whose ith component is
specified by αi : ni →mi, then the induced morphism in I(X) is specified by

ψk(~α) = ασ−1(1) ⊔ · · · ⊔ ασ−1(k).

Since the classifying space functor preserves products, these functors give rise
to maps

ψk : E(k)× C(k)×BI(X)k → BI(X),
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and it is straightforward to check that this defines an E × C-action on BI(X).
The associativity, unitality, and equivariance conditions may all be checked on
the categorical level. �

Letting C be the commutativity operad ∗, it follows in particular that if X is a
commutative I-space monoid, then XhI inherits an E-action. In this case the
action is induced by a permutative structure on the category I(X) introduced
in the above proof, cf. [29], Section 4. This applies in particular to the I-space
BF giving an E-action on BFhI . We say that an operad C is augmented over E
if there is a specified morphism of operads C → E . In this case we may restrict
an (E × C)-action to the diagonal C-action via the morphism C → E × C.
Corollary 6.6. If C is augmented over E, then hocolimI induces a functor

hocolim
I

: IU [C]/BF → U [C]/BFhI . �

6.2. Operad actions preserved by R. In order to prove that the I-space
lifting functor R preserves operad actions, we need the following lemma in
which we view BFhI as a constant E-I-space.

Lemma 6.7. The I-space BF has an E-action such that π : BF → BFhI is a
morphism of E-I-spaces.
Proof. Consider more generally a commutative I-space monoid X , and let X
be the I-space defined in Section 5. For each object n in I, let I/n(X) be the
topological category whose classifying space is X(n). Thus, the object space is
given by ∐

α : m→n

X(m),

where the coproduct is over the objects in (I ↓ n); see Appendix A for details.
Consider for each k the functor

ψk : Σ̃k × I/n1(X)× · · · × I/nk(X)→ I/(n1 ⊔ · · · ⊔ nk)(X)

that maps a tuple of objects σ in Σ̃k and (αi, xi) in I/ni(X) for i = 1, . . . , k,
to the object

(α,xσ−1(1) . . .xσ−1(k)),

where α is the morphism

α : mσ−1(1) ⊔ · · · ⊔mσ−1(k)

ασ−1(1)⊔···⊔ασ−1(k)−−−−−−−−−−−−−→ nσ−1(1) ⊔ · · · ⊔ nσ−1(k)

σ−1(nσ−1(1),...,nσ−1(k))−−−−−−−−−−−−−−−−→ n1 ⊔ · · · ⊔ nk

and the second factor is the product of the elements xσ−1(1), . . . ,xσ−1(k) using
the monoid structure. The induced maps of classifying spaces

ψk : E(k)×X(n1)× · · · ×X(nk)→ X(n1 + · · ·+ nk)

then specify the required E-action on X . With this definition it is clear that
the canonical morphism X → XhI is a morphism of E-I-spaces. �
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Proposition 6.8. Let C be an operad augmented over the Barratt-Eccles op-
erad. Then the I-space lifting functor R induces a functor

R : U [C]/BFhI → IU [C]/BF.

Proof. We give BFhI the C-action defined by the augmentation to E . Let
f : X → BFhI be a map of C-spaces and consider the diagram

X
f−→ BFhI

π←− BF
defining Rf (X). Pulling the E-action on BF defined in Lemma 6.7 back to a C-
action, this is a diagram of C-I-spaces. Thus, Rf (X) is a homotopy pullback of
a diagram in IU [C], hence is itself an object in this category and the projections
Rf (X) → X and Rf (X) → BF are maps of C-I-spaces, see [28], Section 1.

Since the equivalence t : BF → BF is also a map of C-I-spaces, the conclusion
follows. �

Combining this with Corollary 6.4 we get the following.

Corollary 6.9. If C is an operad that is augmented over E, then the Thom
spectrum functor on U/BFhI induces a functor T : U [C]/BFhI → SpΣ[C]. �

7. The Thom isomorphism

Let MF be the symmetric Thom spectrum associated to the identity BF →
BF , and let MSF be the symmetric Thom spectrum associated to the inclusion
BSF → BF . Here SF (n) denotes the submonoid of orientation preserving
based homotopy equivalences (those that are homotopic to the identity) and
BSF is the corresponding commutative I-space monoid. We first construct
canonical orientations of these Thom spectra, and for this we need convenient
models of Eilenberg-Mac Lane spectra.

7.1. Eilenberg-Mac Lane spectra and orientations. Let A be a dis-
crete ring, and write A[−] for the functor that to a topological space X asso-
ciates the free topological A-module A[X ] generated by X , see e.g. [42], Section
2.3. In the special case where X is the realization of a simplicial set X• this
may be identified with the realization of the simplicial A-module A[X•]. If X
is based, we write A(X) for the topological A-module A[X ]/A[∗]. The functor
A(−) defined in this way is left adjoint to the forgetful functor from topologi-
cal A-modules to based spaces. It is well-known that A(Sn) is a model of the
Eilenberg-Mac Lane space K(A, n), and that when equipped with the obvious
structure maps this defines a model of the Eilenberg-Mac Lane spectrum for
A as a symmetric ring spectrum. In order to define the orientations, we shall
consider a variant of this construction. Let FA(n) be the topological monoid
of continuous A-linear endomorphisms of A(Sn) and notice that by the above
remarks this is homotopy equivalent to A considered as a discrete multiplica-
tive monoid. Writing SFA(n) for the connected component corresponding to
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the unit of A, this is then a contractible topological monoid. Applying the bar
construction as in Section 2, we get a well-based quasifibration

B(∗, SFA(n), A(Sn))→ BSFA(n),

and we define the Eilenberg-Mac Lane spectrum HA to be the symmetric
spectrum with nth space

HA(n) = B(∗, SFA(n), A(Sn))/BSFA(n).

It is easy to check that this is a commutative symmetric ring spectrum which is
level-wise equivalent to the usual model for the Eilenberg-Mac Lane spectrum
considered above. Since HA is flat in the sense of [4], the functor HA ∧ (−)
preserves stable equivalences between well-based spectra; this follows from a
slight refinement of the argument used in [4]. (Alternatively, one can check
that the arguments in [35], Proposition 5.14, works equally well with Quillen
cofibrations of spaces replaced by our notion of (h-)cofibrations.) Let now
A = Z/2 and observe that the functor Z/2(−) defines a map of sectioned
quasifibrations

B(∗, F (n), Sn)→ B(∗, SFZ/2(n),Z/2(n)).

The canonical orientation of MF is the induced map of commutative symmetric
ring spectra MF → HZ/2. Similarly, the functor Z(−) defines a map of
sectioned quasifibrations

B(∗, SF (n), Sn)→ B(∗, SFZ(n),Z(Sn))

and the canonical orientation of MSF is the induced map of commutative
symmetric ring spectra MSF → HZ.

7.2. The Thom isomorphism. We first consider the Thom isomorphism with
Z/2-coefficients. Given a map f : X → BFhI , the I-space lift Rf (X) → BF
induces a map of symmetric spectra T (f) → MF , and we define the HZ/2-
orientation of T (f) to be the composition

T (f)→MF → HZ/2.

As explained in Section 1.4, the orientation induces a map of symmetric spectra

(7.1) T (f) ∧HZ/2→ X+ ∧HZ/2.

Since our construction of the Thom spectrum functor has good properties both
formally and homotopically, the proof that this is a stable equivalence is almost
completely formal.

Theorem 7.2. The map of symmetric spectra (7.1) is a stable equivalence.

Proof. Both functor in the theorem are homotopy functors on U/BFhI in the
sense that they take weak homotopy equivalences to stable equivalences; this
follows from Corollary 4.13 and the fact that HZ/2 is flat. Thus, we may
assume that X is a CW-complex and consider the filtration of X by skeleta
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Xn such that X−1 is the empty set and Xn is homeomorphic to the pushout
of a diagram of the form

Xn−1 ←
∐

Sn−1 →
∐

Dn.

Since both functors in the theorem preserve pushouts and h-cofibrations, it
suffices by [27], Theorem 8.12, to consider the case where the domain of f is of
the form Dn or Sn. If f is the inclusion of the basepoint ∗ → BFhI , then the
unit of the I-space monoid Rf (∗) gives a stable equivalence S → T (f) and the
composition

S ∧HZ/2 ∼−→ T (f) ∧HZ/2→ ∗+ ∧HZ/2
is the identity on HZ/2. Using the homotopy invariance of the Thom spectrum
functor, this easily implies the result for Dn. Identifying Sn with the pushout of
the diagram Dn ← Sn−1 → Dn, the result for Sn then follows by an inductive
argument. �

7.3. The integral Thom isomorphism. Using the commutative I-space
monoid BSF instead of BF , we get a a monoidal I-space lifting functor

R : U/BSFhI → IU/BSF
defined in analogy with the I-space lifting functor on U/BFhI . The two lifting
functors are related by a diagram

U/BSFhI R−−−−→ IU/BSF
y

y

U/BFhI R−−−−→ IU/BF,
which is commutative up to natural I-equivalence. Thus, the two natural ways
to define a Thom spectrum functor on U/BSFhI are equivalent up to stable
equivalence. For the definition of orientations it is most convenient to define
the Thom spectrum functor on U/BSFhI to be the composition

T : U/BSFhI R−→ IU/BSF → IU/BF T−→ SpΣ.

With this definition we have a canonical integral orientation of the Thom
spectrum associated to a map X → BSFhI , defined by the composition
T (f)→MSF → HZ. The orientation again gives rise to a map of symmetric
spectra

(7.3) T (f) ∧HZ→ X+ ∧HZ

and the proof of the integral version of the Thom isomorphism theorem is
completely analogous to the HZ/2-version.

Theorem 7.4. The map (7.3) is a stable equivalence. �

We can now verify the claim in Theorem 1.8 that the Thom equivalence is
strictly multiplicative.
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Proof of Theorem 1.8. Let H denote either one of the commutative symmetric
ring spectra HZ/2 or HZ, and view H as an object in SpΣ[C] by projecting

C onto the commutativity operad. We claim that (1.6) is a diagram in SpΣ[C]
when we give each of the terms the diagonal C-action. For the first two maps
this follows from Proposition 6.8 and Corollary 6.9, which imply that the Thom
diagonal and T (f) → MF (or T (f) → MSF ) are both C-maps. For the last
map the claim follows from the fact that the multiplication H ∧H → H is a
map of commutative symmetric ring spectra, hence in particular a C-map. �

8. Symmetrization of diagram Thom spectra

In this section we first generalize the definition of the symmetric Thom spec-
trum functor to other types of diagram spectra. We then show how the results
in the previous sections can be used to turn such diagram Thom spectra into
symmetric spectra.

8.1. Diagram spaces and diagram Thom spectra. Given a small category
D, we define a D-space to be a functor X : D → U and we write DU for the
category of such functors. Suppose that we are given a functor φ : D → I.
Then we can generalize the notion of a symmetric spectrum by introducing the
topological category DS that has the same objects as D, but whose morphism
spaces are defined by

DS(a, b) =
∨

α∈D(a,b)

Sb−α,

where Sb−α is shorthand notation for Sφ(b)−φ(α), cf. Section 3.1. The compo-
sition is defined as for IS . We define a D-spectrum to be a continuous based
functor DS → T and we write DST for the category of such functors. Thus, a
D-spectrum is given by a family of based spaces X(a) indexed by the objects
a in D, together with a family of based structure maps Sb−α ∧ X(a) → X(b)
indexed by the morphisms α : a→ b in D. It is required (i) that the structure
map associated to an identity morphism 1a : a→ a is the canonical identifica-
tion S0 ∧ X(a) → X(a), and (ii) that given a pair of composable morphisms
α : a→ b and β : b→ c, the following diagram is commutative

Sc−β ∧ Sb−α ∧X(a) −−−−→ Sc−β ∧X(b)
y

y

Sc−βα ∧X(a) −−−−→ X(c).

In particular, if φ denotes the identity functor on I, then IST is an alternative
notation for the category of symmetric spectra. Suppose now that D has the
structure of a strict monoidal category. As in the case of I-spaces, DU inherits
a monoidal structure from D which is symmetric monoidal if D is. If in addition
φ is strict monoidal, then the monoidal structure of D also induces a monoidal
structure on DS which is symmetric monoidal if D and φ are. This in turn
induces a monoidal structure on the category of D-spectra DST which again is
symmetric monoidal if D and φ are. The I-space BF pulls back to a D-space
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via φ and the definition of the symmetric Thom spectrum functor immediately
generalizes to give a Thom spectrum functor

T : DU/BF → DST .
The proof of Theorem 1.1 generalizes to show that this is a strong monoidal
functor which is symmetric monoidal if D and φ are.

8.2. Examples of diagram Thom spectra. Many examples of Thom spec-
tra arise from compatible families of groups over the topological monoids F (n).
It often happens that such a family defines a D-diagram of groups for some
strict monoidal category D over I and if the induced maps of classifying spaces
define a D-space over BF we get an associated D-Thom spectrum. We begin
by fixing notation for some of the relevant categories. For each k ≥ 1 we have
the strict symmetric monoidal faithful functor

ψk : I → I, n 7→ k ⊔ · · · ⊔ k︸ ︷︷ ︸
n

.

and we write I[k] for its image in I. Thus, I[k] is a strict symmetric monoidal
category whose objects have cardinality a multiple of k, and whose morphisms
permute blocks of k letters simultaneously. Let us write M for the subcat-
egory of injective order preserving morphisms in I. This inherits a strict
monoidal (but not symmetric monoidal) structure from I and we similarly
define monoidal subcategoriesM[k] for k ≥ 1.

Example 8.1 (The classical groups). The orthogonal groups O(n) and the spe-
cial orthogonal groups SO(n) define the commutative I-space monoids BO
and BSO that give rise to the commutative symmetric ring spectra MO and
MSO. The unitary groups U(n) and the special unitary groups SU(n) define
the commutative I[2]-space monoids BU and BSU that give rise to the commu-
tative I[2]-ring spectra MU and MSU . The symplectic groups Sp(n) define
the commutative I[4]-space monoid BSp that gives rise to the commutative
I[4]-spectrum MSp.

Example 8.2 (Discrete groups and I-spaces). The symmetric groups Σn define
the commutative I-space monoid BΣ in which the monoid structure is induced
by concatenation of permutations. This gives rise to the commutative symmet-
ric ring spectrum MΣ whose associated bordism theory has been studied by
Bullett [9]. Other systems of discrete groups that give rise to symmetric ring
spectra include the general linear groups GLn(Z), the groups (Z/2)n of diago-
nal matrices with entries ±1, and the groups Σn ≀Z/2 of permutation matrices
with entries ±1. For details and more examples, see [9] and [12].

Example 8.3 (Braid groups and M-spaces). The family of braid groups B(n)
defines an M-space monoid BB in a natural way. We refer to [5] for the
definition and basic properties of the braid groups. If we view an element of
B(n) as a system of n strings in the usual way, then the monoid structure on
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BB is induced by concatenation of such systems. Let ρ denote the sequence of
monoid homomorphisms

ρn : B(n)→ Σn → F (n)

where the first map takes a system of strings to the induced permutation of the
endpoints and the second map in the canonical inclusion. This defines a map
Bρ : BB→ BF ofM-space monoids and we write MB for the associatedM-
Thom ring spectrum. The underlying spectrum of MB has been analyzed in [9]
and [10], where it is shown to be equivalent to the Eilenberg-Mac Lane spectrum
HZ/2. Suppose that G is an M-diagram of groups over the monoids F (n)
and that the homomorphisms ρn can be factored as B(n) → G(n) → F (n).
If the M-space BG admits a monoid structure such that the induced map
BB→ BG is a map of M-space monoids over BF it then follows that MG is
an M-module spectrum over MB. For example, this applies to MΣ and MO
but not to MSO. We show how to symmetrize the constructions so as to get
symmetric Thom spectra in Section 8.3. Again we refer to [9], [10], [12] for
further examples.

Example 8.4 (Maps to BF (k) and I[k]-spaces). For our next class of examples
we need some preliminary definitions. Let X be a based space and let X• be
the I-space defined by n 7→ Xn. Given a morphism α : m → n, the induced
map α∗ : Xm → Xn is defined by

α∗(x1, . . . , xm) = (xα−1(1), . . . , xα−1(n)),

with the convention that x∅ is the base point in X . We give X• the structure
of a commutative I-space monoid using the identifications Xm×Xn = Xm+n.
Suppose now that f : X → BF (k) is a based map. Then we view X• as an
I[k]-space via the isomorphism ψk : I → I[k], and the maps

Xn → BF (k)n
µ−→ BF (k ⊔ · · · ⊔ k︸ ︷︷ ︸

n

)

define a map of I[k]-space monoids X• → BF , where we view BF as an
I[k]-space by restriction. We write MX∧∞ for the associated commutative
I[k]-ring spectrum, the function f being understood. In the cases X = BO(1)
and X = BU(1), we get the Thom spectra MO(1)∧∞ and MU(1)∧∞ that
represent the bordism theories of manifolds with stable normal bundle given as
an ordered sum of real or complex line bundles. These Thom spectra have been
analyzed by Arthan and Bullett [1], [9]. Letting X = BO(k) or X = BU(k), we
similarly get the I[k]-spectrum MO(k)∧∞ and the I[2k]-spectrum MU(k)∧∞.

8.3. Symmetrization of diagram Thom spectra. As demonstrated in the
last section, many Thom spectra naturally arise as D-Thom spectra associated
to maps of D-spaces f : X → BF for suitable monoidal categories D over I. In
the applications it is often convenient to replace such a D-Thom spectrum by
a symmetric Thom spectrum and our preferred way of doing is to first trans-
form f to a map of I-spaces and then evaluate the symmetric Thom spectrum
functor on this transformed map. We shall discuss two ways of performing
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this “symmetrization” procedure: in this section we consider symmetrizations
using the I-space lifting functor R and in the next section we consider sym-
metrizations via (homotopy) Kan extension.
For simplicity we shall from now on assume that D is a monoidal subcategory
of I such that the intersection D∩N is a cofinal subcategory of N . Thus, any
D-spectrum has an underlying D ∩ N -spectrum and we define the spectrum
homotopy groups in the usual way by evaluating the colimit of the associated
D ∩N -diagram of homotopy groups. Given a map f : X → BF , we write (by
abuse of notation) fhD for the composite map

fhD : XhD
fhD−−→ BFhD → BFhI .

Applying the I-space lifting functor R to this map we get a functor

(8.5) DU/BF → IU/BF, (X
f−→ BF ) 7→ (RfhD (XhD)

R(fhD)−−−−−→ BF ).

We say that a map of D-spaces X → Y is a D-equivalence if the induced map
XhD → YhD is a weak homotopy equivalence.

Lemma 8.6. The restriction of RfhD (XhD) to a D-space is related to X by a
chain of D-equivalences over BF .

Proof. In analogy with the case of I-spaces considered in Section 5, there is a
diagram of D-equivalences X ← X → RfhD (XhD) over BF . �

It follows from the D-space analogue of Bökstedt’s approximation Lemma 4.4
that if X → Y is a D-equivalence of convergent D-spaces X and Y , then the
connectivity of the maps X(d)→ Y (d) tends to infinity with d. The previous
lemma therefore has the following consequence.

Proposition 8.7. If X is a convergent D-space and f : X → BF is a map
of D-spaces which is level-wise T -good, then the restriction of the symmetric
spectrum T (R(fhD)) to a D-spectrum is π∗-equivalent to T (f). �

This construction preserves multiplicative structures in the sense that if X is
a D-space monoid and f : X → BF a map of D-space monoids, then fhD is a
map of topological monoids and T (fhD) is a symmetric ring spectra by Lemma
4.19. In the following we consider the effect of applying the construction to the
examples considered in the previous section.

Example 8.8. Let X be an I[k]-space with an action of an operad C that is
augmented over the Barratt-Eccles operad. If f : X → BF is a map of C-I[k]-
spaces, then the induced map

fhI[k] : XhI[k] → BFhI[k] → BFhI

is map of C-spaces and it follows from Corollary 6.9 that the symmetric spec-
trum T (fhI[k]) inherits a C-action. Here we use the canonical isomorphism of
categories ψk : I → I[k] to identify XhI[k] with (ψ∗kX)hI , and we transfer the
C-action on (ψ∗kX)hI defined in Corollary 6.6 to XhI[k] via this identification.
This applies in particular to the map of commutative I[2]-spaces BU → BF
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to give a model of the Thom spectrum MU as a symmetric ring spectrum with
an action of the Barratt-Eccles operad. We shall see how to realize MU as a
strictly commutative symmetric ring spectrum in Example 8.17.

Example 8.9. Let as before BB denote the M-space monoid defined by the
braid groups. We shall identify the map BBhN → BBhM in terms of Quillen’s
plus construction. Firstly, it follows from the homological stability of the braid
groups (see [11], III, Appendix) and the homological version of Lemma 4.4,
that this map is a homology isomorphism. Secondly, the monoidal structure
of M gives BBhM the structure of a topological monoid, which in particular
implies that its fundamental group is abelian. Thus, the map in question has
the effect of abelianizing the fundamental group. The space BBhN may be
identified with the classifying space of the infinite braid group B(∞). Since
the commutator subgroup of the latter is perfect, it follows from the above that
we may identify BBhM with Quillen’s plus construction BB+

hN . It is proved
in [10] that there is a homotopy commutative diagram

BBhN
θ−−−−→ Ω2(S3)

y(Bρ)hN

yη

BFhN BFhN ,

where η denotes the “Mahowald orientation”, that is, the extension of the non-
trivial map S1 → BFhN to a 2-fold loop map. It is a theorem of Mahowald
[24], that the Thom spectrum of η is stably equivalent to the Eilenberg-Mac
Lane spectrum HZ/2. By the universal property of the plus construction, we
conclude from the above that there is a homotopy commutative diagram

BBhM
∼−−−−→ Ω2(S3)

y(Bρ)hM

yη

BFhI BFhI ,

where the upper map is a homotopy equivalence as indicated. Consequently,
the symmetric ring spectrum T ((Bρ)hM) is a model of HZ/2.

Example 8.10. Let BGL(Z) be the commutative I-space monoid associated
to the general linear groups GLn(Z). As in the case of the braid groups, we
may identify BGL(Z)hN → BGL(Z)hI in terms of Quillen’s plus construction.
Indeed, by the homological stability of the groups GLn(Z), it follows that this
map is a homology equivalence. Since BGL(Z)hI is a topological monoid it has
abelian fundamental group, hence it may be identified with BGL∞(Z)+; the
base point component of Quillen’s algebraic K-theory space. In similar fashion,
starting with the I-space BΣ, we may identify BΣhI with BΣ+

∞, which by the
Barratt-Priddy-Quillen Theorem is equivalent to the base point component of
Q(S0).

Example 8.11. Let f : X → BF (k) be a based map and consider the associated
map of I[k]-spaces X• → BF . It is proved in [34] that if X is well-based and
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connected, then X•hI is a model of the infinite loop space Q(X). Identifying
X•hI with X•hI[k] via the isomorphism ψk, it follows as in Example 8.8 that

the induced map X•hI[k] → BFhI is a map of E-spaces which models the usual

extension of f to a map of infinite loop spaces. If we instead think of X• as an
M-space by restriction, then one can show that XhM is homotopy equivalent
to the colimit X•M, that is, to the free based monoid generated by X . By a
theorem of James [18] the latter is a model of ΩΣ(X), and the mapX•hM → X•hI
corresponds to the inclusion of ΩΣ(X) in Q(X).

Example 8.12. Let Ek be the kth stage of the Smith filtration of the Barratt-
Eccles operad E and write X 7→ Ek(X) for the associated monad on based
spaces, see [3], [38]. Thus, Ek is equivalent to the little k-cubes operad, and
if X is a well-based connected space, then Ek(X) is a combinatorial model of
ΩkΣk(X). Given a based map f : X → BFhI , we use that Ek is augmented
over E to extend f to a map of Ek-spaces

Ek(f) : Ek(X)→ Ek(BFhI)→ BFhI ,

which for connected X is a model of the usual extension of f to a k-fold loop
map. It follows that the associated symmetric Thom spectrum T (Ek(f)) is
equipped with an Ek-action.

8.4. Symmetrization via Kan Extension. Let again D be a monoidal sub-
category of I such that D ∩ N is cofinal in N and let us write j : D → I for
the inclusion. We first consider homotopy Kan extensions along j. Recall that
given a D-space X , the homotopy Kan extension is the I-space jh∗ (X) defined
by

jh∗ (X)(n) = hocolim
(j↓n)

X ◦ πn,

see Appendix A.1. The functor jh∗ (−) induces a functor

jh∗ : DU/BF → IU/BF, (f : X → BF ) 7→ (jh∗ (f) : jh∗ (X)→ jh∗ (BF )→ BF )

which is I-equivalent to the functor (8.5) in the sense of the following lemma.

Lemma 8.13. There is a natural I-equivalence jh∗ (X) → RfhD (XhD) of I-
spaces over BF .

Proof. Notice first that there is a commutative diagram

jh∗ (X) −−−−→ BF
y

y

XhD −−−−→ BFhI ,

inducing a map of I-spaces jh∗ (X) → RfhD (XhD) over BF . Since this is also
a map over XhD, the result follows from the fact that jh∗ (X) → XhD and
RfhD (XhD)→ XhD are I-equivalences, see Lemma A.2 and the proof of Propo-
sition 4.9. �
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We now turn to (categorical) Kan extensions. Given a D-space, the Kan ex-
tension j∗(X) is defined as the homotopy Kan extension except that we use
the colimit instead of the homotopy colimit, that is,

j∗(X)(n) = colim
(j↓n)

X ◦ πn.

The functor j∗ is left adjoint to the functor that pulls an I-space back to a
D-space via j and it induces a functor

j∗ : DU/BF → IU/BF, (X → BF ) 7→ (j∗(X)→ j∗(BF )→ BF )

where the map j∗(BF )→ BF is the counit of the adjunction. This functor is
strong monoidal and is symmetric monoidal if D and j are. Thus, in the latter
case it takes commutative D-space monoids to commutative I-space monoids.
The drawback of using the categorical Kan extension is of course that it is
homotopically well-behaved only under suitable cofibration conditions on the
D-space X and the main purpose of this section is to formulate such conditions.
More precisely, we shall consider an inclusion j : D → I of a (not necessarily
monoidal) subcategory D of I and we shall formulate conditions on D and X
which ensure that the canonical map jh∗ (X)→ j∗(X) is a level-wise equivalence.
Given an object d0 of D, consider the category (D ↓ d0) of objects in D over
d0 and let ∂d0 be the subcategory obtained by excluding the terminal objects.

Lemma 8.14. Let j : D → I be the inclusion of a subcategory D and suppose
that X is a D-space such that the map

colim
∂d0

X ◦ πd0 → colim
(D↓d0)

X ◦ πd0 = X(d0)

is a cofibration for all objects d0 in D. Then jh∗ (X) → j∗(X) is a level-wise
equivalence.

Proof. Notice first that the category (j ↓ n) is a preorder in the sense that the
morphism sets have at most one element. Choosing a representative for each
isomorphism class we get an equivalent skeleton subcategory A(n) (in fact a
partially ordered set), and it suffices to show that the map

hocolim
A(n)

X ◦ πn → colim
A(n)

X ◦ πn

is a weak homotopy equivalence. The advantage of this is that the category
A(n) is very small in the sense that its nerve only has finitely many non-
degenerate simplices. In this situation there is a general model categorical
criterion for comparing the homotopy colimit to the colimit, see [13], Section
10. Working in the Strøm model category on U [41], we must check that for
each object a in A(n) the map

colim
∂a

X ◦ πn ◦ πa → colim
(A(n)↓a)

X ◦ πn ◦ πa = X(πn(a))

is a cofibration. Here we use the notation ∂a for the subcategory of (A(n) ↓ a)
obtained by excluding the terminal object. It remains to see that if a is an
object of the form d0 → n, then this criterion is the same as that stated in the
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lemma. On the one hand we may view (A(n) ↓ a) as a skeleton subcategory of
((j ↓ n) ↓ a) and on the other hand we may identify the latter category with
(D ↓ d0). Taken together this gives a homeomorphism

colim
∂a

X ◦ πn ◦ πa ∼= colim
∂d0

X ◦ πd0

and the conclusion follows. �

The criterion in Lemma 8.14 is not very practical and in order to have a more
convenient formulation we impose conditions on the subcategory D of I. We
say that D has the intersection property if each diagram in D of the form

d1
δ1−→ d12

δ2←− d2

can be completed to a commutative square

(8.15)

d0 −−−−→ d1y
yδ1

d2
δ2−−−−→ d12

in D such that the image of the composite morphism equals the intersection
of the images of δ1 and δ2. For example, the monoidal subcategories I[k] and
J [k] have the intersection property for all k ≥ 1. We say that a D-space
X is intersection cofibrant if for any diagram of the form (8.15), such that
the intersection of the images of δ1 and δ2 equals the image of the composite
morphism, the induced map

X(d1) ∪X(d0) X(d2)→ X(d12)

is a cofibration. By Lillig’s union theorem [21] for cofibrations, this is equivalent
to the requirement that (i) any morphism d1 → d2 in D induces a cofibration
X(d1) → X(d2), and (ii) that the intersection of the images of X(d1) and
X(d2) in X(d12) equals the image of X(d0).

Proposition 8.16. Let j : D → I be the inclusion of a subcategory D which has
the intersection property and let X be a D-space which is intersection cofibrant.
Then the map jh∗ (X)→ j∗(X) is a level-wise equivalence.

Proof. We show that the assumptions on D and X imply that the criterion in
Lemma 8.14 is satisfied. Given an object d0 in D, consider the range functor

r : (D ↓ d0)→ (I ↓ d0)→ P(d0), r(d
δ−→ d0) = δ(d) ⊆ d0,

where P(d0) denotes the category of subsets and inclusions in d0. The as-
sumption that D has the intersection property implies that the image of r is a
full subcategory of P(d0) that is closed under inclusions and that r defines an
equivalence of categories between (D ↓ d0) and its image. Thus, we might as
well view X ◦ πd0 as a diagram U 7→ X(U) indexed on the objects U in a full
subcategory A of P(d0) that is closed under intersections. By assumption (i)
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above we may view X(U) as a closed subspace of X(d0) for all U ∈ A and by
assumption (ii) we have the equality

X(U) ∩X(V ) = X(U ∩ V )

for all pairs of objects U and V in A. It therefore follows from the gluing lemma
for continuous functions on a union of closed subspaces that colim∂d0 X ◦πd0 is
homeomorphic to the union of the subspaces X(U) of X(d0) for U 6= d0. The
conclusion then follows from Lillig’s union theorem for cofibrations [21]. �

Example 8.17. Let j : I[2] → I be the inclusion of the symmetric monoidal
subcategory I[2]. Since I[2] has the intersection property and the commutative
I[2]-space monoid BU is intersection cofibrant, it follows from Lemma 8.13 and
Proposition 8.16 that there is a chain of I-equivalences

j∗(BU)
∼←− jh∗ (BU)

∼−→ R(BUhI)

over BF . Thus, it follows from Proposition 8.7 together with Theorem 1.4 and
Lemma 2.3 that applying the symmetric Thom spectrum functor to the commu-
tative I-space monoid j∗(BU) gives a commutative symmetric ring spectrum
which is a model of MU .

8.5. Orthogonal Thom spectra and diagram lifting. Recall from [27]
that an orthogonal spectrum is a spectrum X such that the nth space X(n) has
an action of the orthogonal group O(n), and such that the iterated structure

maps Sm ∧ X(n) → X(m + n) are O(m) × O(n)-equivariant. We write SpO

for the category of orthogonal spectra. Let V be the topological category
whose objects are the vector spaces Rn, and whose morphisms are the linear
isometries. A V-space is a continuous functor V → U , and we write VU for
the category of such functors. The symmetric monoidal structure of V induces
a symmetric monoidal structure on VU in the usual way, and the I-space
BF extends to a commutative V-space monoid. Applying the Thom space
construction level-wise as in the definition of the symmetric Thom spectrum
functor, we get the symmetric monoidal orthogonal Thom spectrum functor

T : VU/BF → SpO.

In order to construct orthogonal Thom spectra from space level data, we need
a V-space version

R : U/BFhV → VU/BF
of the I-space lifting functor. Here the homotopy colimit BFhV denotes the
realization of the simplicial space

[k] 7→
∐

n0,...,nk

V(Rn1 ,Rn0)× · · · × V(Rnk ,Rnk−1)×BF (nk).

The statement in Lemma 4.4 remains true with V instead of I, and we conclude
from this that the canonical map BFhN → BFhV is a weak homotopy equiva-
lence. The definition of the V-space lifting functor is then completely analogous
to the definition of the I-space lifting functor in Section 4.2: Let BF be the
V-space defined by the homotopy Kan extension along the identity functor on

Documenta Mathematica 14 (2009) 699–748



744 Christian Schlichtkrull

V . Given a map f : X → BFhV , we define Rf (X) to be the homotopy pullback
of the diagram of V-spaces

X
f−→ BFhV

π←− BF,
and we define R(f) to be the composition

R(f) : Rf (X)→ BF → BF.

The Barratt-Eccles operad acts on BFhV and the results on preservation of
operad actions from Section 6 carry over to this setting.

Appendix A. Homotopy colimits

We here collect the facts about homotopy colimits needed in the paper. We
shall adapt the definitions of Bousfield and Kan [7], except that we work with
topological spaces instead of simplicial sets. Thus, given a small category A
and an A-diagram X : A → U , the homotopy colimit hocolimC X is defined to
be the realization of the simplicial space

(A.1) [k] 7→
∐

a0←···←ak
X(ak),

where the coproduct is over the k-simplices of the nerve N•C. It is sometimes
convenient to view this as the classifying space of the topological categoryA(X)
whose space of objects is the disjoint union of the spaces X(a) where a runs
through the objects of A. A morphism (a, x)→ (a′, x′) in A(X) is specified by
a morphism α : a → a′ in A such that α∗x = x′. If X is a based A-diagram,
that is, a functor X : A → T , then the inclusion of the base points gives a map
BA → BA(X) and we define the based homotopy colimit to be the quotient
space. Equivalently, this is the realization of the simplicial space obtained by
replacing the disjoint union in (A.1) by the wedge product.

A.1. Homotopy Kan extensions. Let φ : A → B be a functor between
small categories. Given an A-diagram X , the (left) homotopy Kan extension
φh∗X is the B-diagram defined by

φh∗X(b) = hocolim
(φ↓b)

X ◦ πb.

The homotopy colimit is over the category (φ ↓ b) whose objects are pairs
(a, β) in which a is an object of A and β : φ(a) → b is a morphism in B. A
morphism (a, β) → (a′, β′) is given by a morphism α : a → a′ in A such that
β = β′ ◦ φ(α). The functor πb : (φ ↓ b) → A is defined by (a, β) 7→ a. We
recall that the categorical Kan extension φ∗X is defined using the categorical
colimit instead of the homotopy colimit, see [22]. If B is the terminal category
∗ and p : A → ∗ the projection, then p∗X and ph∗X are respectively the colimit
and the homotopy colimit of the A-diagram X . Notice, that the functors πb
define a map of B-diagrams from φh∗X to the constant B-diagram hocolimAX .
A proof of the following well-known lemma can be found in [34].
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Lemma A.2. The induced map

π : hocolim
B

φh∗X
∼−→ hocolim

A
X.

is a weak homotopy equivalence. �

This lemma may be viewed as a statement about the composition of two derived
functors. Given an additional functor ψ : B → C, one can more generally show
that there is a natural equivalence of functors ψh∗φ

h
∗
∼−→ (ψφ)h∗ . In the lemma

below, we shall consider the case where X has the form φ∗Y for a B-diagram Y ,
and we shall relate π to the map of homotopy colimits induced by the natural
transformation of B-diagrams

t : φh∗φ
∗Y → φ∗φ

∗Y → Y,

where the first arrow is the canonical projection from the homotopy colimit
to the colimit and the second arrow is given by the universal property of the
categorical Kan extension.

Lemma A.3. Given a B-diagram Y , the diagram

hocolim
B

φh∗φ
∗Y π //

t &&NNNNNNNNNNN

hocolim
A

φ∗Y

φxxqqqqqqqqqq

hocolim
B

Y

is homotopy commutative by a canonical choice of a natural homotopy.

Proof. We may view the homotopy colimit of the B-diagram φh∗φ
∗Y as the

realization of the bisimplicial space

([i], [j]) 7→
∐

n
b0←...←bi←φ(a0)

a0←...←aj
o
φ∗Y (aj),

and it is well-known that this is homeomorphic to the realization of the diagonal
simplicial space. Restricting to this simplicial space, the two maps in the
diagram are induced by the simplicial maps that map a simplex

(b0 ← . . .← bi
γ←− φ(a0), a0

α1←− . . . αi←− ai, y)

with y in φ∗Y (ai), to

(b0 ← . . .← bi, γ∗φ(α1 . . . αi)∗y),

respectively (φ(a0)
φ(α0)←−−− . . . φ(αi)←−−− φ(ai), y).

The required homotopy between the topological realizations of these maps is
then defined by

[(b0 ← . . .← bi ← φ(a0)← . . .← φ(ai), y); (su, (1− s)u)],

for u ∈ ∆i and s ∈ I. Here I denotes the unit interval and

∆i = {(u0, . . . , ui) ∈ Ii+1 : u0 + · · ·+ ui = 1}
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is the standard i-simplex. �

The following lemma is needed to ensure that the functor R defined in Section
4.2 takes values in the subcategory of level-wise T -good objects in IU/BF .

Lemma A.4. Let A be a small category and let fa : Xa → BF (n) be an A-
diagram in U/BF (n). If each fa classifies a well-based quasifibration, then the
induced map

f : hocolim
A

Xa → BF (n)

also classifies a well-based quasifibration.

Proof. Let Wa = f∗aV (n), and notice that f∗V (n) is homeomorphic to
hocolimAWa since topological realization preserves pullback diagrams. It fol-
lows that the pullback of V (n) → BF (n) along f is homeomorphic to the
realization of the simplicial map

∐

a0←···←ak
Wak →

∐

a0←···←ak
Xak .

These are good simplicial spaces in the sense of [36], Appendix A, and the
map is a degree-wise quasifibration by assumption. The result then follows
from standard results on realization of simplicial quasifibrations and simplicial
cofibrations, see e.g. [36], Proposition 1.6 and [19]. �
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Abstract. We calculate the cohomology spaces of the Hilbert
schemes of points on surfaces with values in local systems. For that
purpose, we generalise I. Grojnoswki’s and H. Nakajima’s description
of the ordinary cohomology in terms of a Fock space representation
to the twisted case. We make further non-trivial generalisations of
M. Lehn’s work on the action of the Virasoro algebra to the twisted
and the non-projective case.

Building on work by M. Lehn and Ch. Sorger, we then give an ex-
plicit description of the cup-product in the twisted case whenever the
surface has a numerically trivial canonical divisor.

We formulate our results in a way that they apply to the projective
and non-projective case in equal measure.

As an application of our methods, we give explicit models for the
cohomology rings of the generalised Kummer varieties and of a series
of certain even dimensional Calabi–Yau manifolds.
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1. Introduction and results

Let X be a quasi-projective smooth surface over the complex numbers. We
denote by X [n] the Hilbert scheme of n points on X , parametrising zero-
dimensional subschemes of X of length n. It is a quasi-projective variety
([Gro61]) and smooth of dimension 2n ([Fog68]). Recall that the Hilbert scheme
X [n] can be viewed as a resolution of the n-th symmetric power X(n) := Xn/Sn

of the surface X by virtue of the Hilbert–Chow morphism ρ : X [n] → X(n),
which maps each zero-dimensional subscheme ξ of X to its support supp ξ
counted with multiplicities.
Let L be a local system (always over the complex numbers and of rank 1) over
X . We can view it as a functor from the fundamental groupoid Π of X to the
category of one-dimensional complex vector spaces.
The fundamental groupoid Π(n) of X(n) is the quotient groupoid of Πn by the
natural Sn-action by [Bro88]. (Recall from [Bro88] that the quotient groupoid
of a groupoid P on which a group G is acting (by functors) is a groupoid P/G
together with a functor p : P → P/G that is invariant under the G-action and
so that p : P → P/G is universal with respect to this property.)
Readers who prefer to think in terms of the fundamental group (as opposed to
the fundamental groupoid) can find a description of the fundamental group of
L(n) in [Bea83].
By the universal property of Π(n), we can thus construct from L a local system
L(n) on X(n) by setting

L(n)(x1, . . . , xn) :=
⊗

i

L(xi),

for each (x1, . . . , xn) ∈ X(n) (for the notion of the tensor product over an
unordered index set see, e.g., [LS03]). This induces the locally free system
L[n] := ρ∗L(n) on X [n].
We are interested in the calculation of the direct sum of cohomology spaces⊕

n≥0H
∗(X [n], L[n][2n]). Besided the natural grading given by the cohomo-

logical degree it carries weighting (see remark 1.1 below) given by the number
of points n. Likewise, the symmetric algebra S∗(

⊕
ν≥1H

∗(X,Lν [2])) carries
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a grading by cohomological degree and a weighting, which is defined so that
H∗(X,L[2]ν) is of pure weight ν.

Remark 1.1. Here, a weighting is just another name for a second grading. A
weight space is a homogeneous subspace to a given degree with respect to this
second grading. Being of pure weight means being homogeneous with respect
to the second grading.
In the context of super vector spaces, however, me make a difference between a
grading and a weighting: Write V = V 0⊕ V 1 for the decomposition of a super
vector space into its even and odd part. Recall that for a grading V =

⊕
n∈Z Vn

on V we have V i =
⊕

n V
i+n (mod 2)
n .

For a weighting, on the contrary, we want to adopt the following convention:
If V =

⊕
n∈Z V (n) is the decomposition of a weighted super vector space into

its weight spaces, one has V i =
⊕

n V (n)i, i.e. the weighting does not interfere
with the Z/(2)-grading.
This difference is important, for example, for the notion of (super-
)commutativity.

The first result of this paper is the following:

Theorem 1.2. There is a natural vector space isomorphism

⊕

n≥0

H∗(X [n], L[n][2n])→ S∗


⊕

ν≥1

H∗(X,Lν[2])




that respects the grading and weighting.

For L = C, the trivial system, this result has already appeared in [Gro96]
and [Nak97]).
Theorem 1.2 is proven by defining a Heisenberg Lie algebra hX,L, whose un-
derlying vector space is given by

⊕

n≥0

H∗(X,Ln[2])⊕
⊕

n≥0

H∗c (X,L−n[2])⊕Cc⊕Cd

and by showing that
⊕

n≥0H
∗(X [n], L[n][2n]) is an irreducible lowest weight

representation of this Lie algebra, as is done in [Nak97] for the untwisted case.

Let p : X̂ → X be a finite abelian Galois covering over the surface X with
Galois group G. The direct image M := p∗C of the trivial local system on X̂
is a local system on X of rank |G|, the order of G. Note that G acts naturally
on M . As G is abelian, there is a decomposition M ∼=

⊕
χ∈G∨ Lχ, where

G∨ = Hom(G,C×) is the character group of G and Lχ is the subsystem of M
on which G acts via χ. In fact, each Lχ is a local system of rank one.

Consider M [n] :=
⊕

χ∈G∨ L
[n]
χ . This is a local system of rank |G| on X [n]. Let

q : X̂ [n] → X [n] be a finite abelian Galois covering ofX [n] such that q∗C = M [n].
Using the Leray spectral sequence for q, which already degenerates at the E2-

term, the cohomology of X̂ [n] can be computed by Theorem 1.2:
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Corollary 1.3. There is a natural vector space isomorphism

⊕

n≥0

H∗(X̂ [n],C[2n])→
⊕

χ∈G∨
S∗


⊕

ν≥1

H∗(X,Lνχ[2])




that respects the grading and weighting.

We then proceed in the paper by defining a twisted version vX,L of the Virasoro
Lie algebra, whose underlying vector space will be given by

⊕

n≥0

H∗(X,Ln)⊕
⊕

n≥0

H∗c (X,L−n)⊕Cc⊕Cd.

(Note the different grading compared to hX,L.) We define an action of vX,L on⊕
n≥0H

∗(X [n], L[n][2n]) by generalising results of [Leh99] to the twisted, not

necessarily projective case. As in [Leh99], we calculate the commutators of the
operators in hX,L with the boundary operator ∂ that is given by multiplying
with − 1

2 of the exceptional divisor class of the Hilbert–Chow morphism. It
turns out that the same relations as in the untwisted, projective case hold.
The next main result of the paper is a decription of the ring structure whenever
X has a numerically trivial canonical divisor. Following ideas in [LS03], we in-
troduce a family of explicitely described graded unital algebras H [n] associated
to a G-weighted (non-counital) graded Frobenius algebra H of degree d. For
example, H =

⊕
L∈G∨ H

∗(X,Lχ[2]) is such a Frobenius algebra of degree 2
where G is as above. The following holds for each n ≥ 0:

Theorem 1.4. Assume that X has a numerically trivial canonical divisor.
Then there is a natural isomorphism

⊕

χ∈G∨
H∗(X [n], L[n]

χ [2n])→


⊕

χ∈G∨
H∗(X,Lχ[2])




[n]

of (G-weighted) graded algebras of degree 2n.

For G the trivial group, and X projective, this theorem is the main result
in [LS03].
The idea of the proof of Theorem 1.4 is not to reinvent the wheel but to study
how everything can already be deduced from the more special case considered
in [LS03].
Again by the Leray spectral sequence, Theorem 1.4 also has a natural applica-
tion to the cohomology ring of coverings of X [n]:

Corollary 1.5. There is a natural isomorphism

H∗(X̂ [n],C[2n])→


⊕

χ∈G∨
H∗(X,Lχ[2])




[n]

of graded unital algebras of degree 2n.
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We want to point out at least two applications of our results. The first one
is the computation of the cohomology ring of certain families of Calabi–Yau
manifolds of even dimension: Let X be an Enriques surface. Let X̂ be its
universal covering, which is a K3 surface. Then G ≃ Z/(2). We denote the
local system corresponding to the non-trivial element in G by L. The Hodge
diamonds of H∗(X,C[2]) and H∗(X,L[2]) are given by

1
0 0

0 10 0
0 0

1

and

0
0 0

1 10 1,
0 0

0

respectively.
Denote by X{n} the (two-fold) universal cover of X [n]. By Remark 2.7, the
isomorphism of Corollary 1.3 is in fact an isomorphism of Hodge structures. It
follows that

Hk,0(X{n},C) =

{
C for k = 0 or k = 2n, and

0 for 0 < k < 2n.

In conjunction with Corollary 1.5, we have thus proven:

Proposition 1.6. For n > 1, the manifold X{n} is a Calabi–Yau manifold in
the strict sense. Its cohomology ring H∗(X{n},C[2n]) is naturally isomorphic

to (H∗(X,C[2])⊕H∗(X,L[2]))
[n]

.

Our second application is the calculation of the cohomology ring of the gener-
alised Kummer varieties X [[n]] for an abelian surface X . (A slightly less explicit
description of this ring has been obtained by more special methods in [Bri02].)
Recall from [Bea83] that the generalised Kummer variety X [[n]] is defined as
the fibre over 0 of the morphism σ : X [n] → X , which is the Hilbert–Chow mor-
phism followed by the summation morphism X(n) → X of the abelian surface.
The generalised Kummer surface is smooth and of dimension 2n− 2 ([Bea83]).
As above, let H be a G-weighted graded Frobenius algebra of degree d. Assume
further that H is equipped with a compatible structure of a Hopf algebra of
degree d. For each n > 0, we associate to such an algebra an explicitely
described graded unital algebra H [[n]] of degree n.
In the following Theorem, we view H∗(X,C[2]) as such an algebra (the
Hopf algebra structure is given by the group structure of X), where we give
H∗(X,C[2]) the trivial G-weighting for the group G := X [n], the character
group of the group of n-torsion points on X . We prove the following:

Theorem 1.7. There is a natural isomorphism

H∗(X [[n]],C[2n])→ (H∗(X,C[2]))
[[n]]

of graded unital algebras of degree 2n.
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We should remark that most of the “hard work” that is hidden behind the
scenes is the work of [Gro96], [Nak97], [Leh99], [LQW02], [LS03], etc. Our own
contribution is to generalise and apply the ideas and results in the cited papers
to the twisted and to the non-projective case.

Remark 1.8. Let us finally mention that the restriction to algebraic, i.e. quasi-
projected surfaces, is just a matter of convenience. Our methods work equally
well when we replace X by any complex surface. In this case, the Hilbert
schemes become the Douady spaces ([Dou66]).

2. The Fock space description

In this section, we prove Theorem 1.2 for a local system L on X by the method
that is used in [Nak97] for the untwisted case, i.e. by realising the cohomol-
ogy space of the Hilbert schemes (with coefficients in a local system) as an
irreducible representation of a Heisenberg Lie algebra.
Let l ≥ 0 and n ≥ 1 be two natural numbers. Set

X(l,n) :=
{

(x′, x, x) ∈ X(n+l) ×X ×X(l) | x′ = x+ nx
}

(we write the union of unordered tuples additively). We further define the
reduced subvariety

X [n,l] :=
{

(ξ′, x, ξ) ∈ X [n+l] ×X ×X [l] | ξ ⊂ ξ′, (ρ(ξ′), x, ρ(ξ)) ∈ X(l,n)
}

in X [n+l] × X × X [l]. This incidence variety has already been considered
in [Nak97]. In contrast to the Hilbert schemes, these incidence varieties are
almost never smooth. Its image under the Hilbert–Chow morphism is again
X(l,n).
We denote the projections of X(l+n)×X×X(l) onto its three factors by p̃, q̃ and
r̃, respectively. Likewise, we denote the three projections of X [l+n] ×X ×X [l]

by p, q and r.

Lemma 2.1. We have a natural isomorphism q∗Ln ⊗ r∗L[l]|X[n,l]
∼=

p∗L[l+n]|X[n,l].

Proof. Firstly, we have a natural isomorphism q̃∗Ln ⊗ r̃∗L(l)|X(n,l)
∼=

p̃∗L(l+n)|X(n,l) . This follows from

(q̃∗Ln ⊗ r̃∗L(l))(x+ nx, x, x)

= L(x)⊗n ⊗
⊗

x′∈x
L(x′) =

⊗

x′∈x+nx
L(x′) = p̃∗L(l+n)(x + nx, x, x)

for every (x + nx, x, x) ∈ X(l,n). By pulling back everything to the Hilbert
schemes, the Lemma follows. �
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Due to Lemma 2.1 and the fact that p|X[l,n] is proper ([Nak97]), the operator
(a correspondence, see [Nak97])

N : H∗(X,Ln[2])×H∗(X [l], L[l][2l])→ H∗(X [l+n], L[l+n][2(l+ n)]),

(α, β) 7→ PD−1p∗((q
∗α ∪ r∗β) ∩ [X [l,n]])

is well-defined. Here,

PD: H∗(X [l+n], L[n+l][2(l + n)])→ HBM
∗ (X [l+n], L[n+l][−2(l+ n)])

is the Poincar -duality isomorphism between the cohomology and the Borel–
Moore homology. (The degree shifts are chosen in a way that N is an operator
of degree 0, see [LS03].)

Remark 2.2. Note that although the variety X [l,n] is not smooth in general, it
nevertheless possesses a fundamental class [X [l,n]] ∈ HBM

∗ (X [l,n],C). (This is
actually true for every analytic variety, see e.g. the appendices of [PS08].)

Furthermore, q × r|X×X[l] is proper ([Nak97]). Thus we can also define an
operator the other way round:

N † : H∗c (X,L−n[2])×H∗(X [n+l], L[l+n][2])→ H∗(X [l], L[l][2l]),

(α, β) 7→ (−1)nPD−1r∗(q
∗α ∪ p∗β ∩ [X [l,n]])

As in [Nak97], we will use these operators to define an action of a Heisenberg
Lie algebra on

VX,L :=
⊕

n≥0

H∗(X [n], L[n][2n]).

For this, let A be a weighted, graded Frobenius algebra of degree d (over the
complex numbers), that is a weighted and graded vector space over C with a
(graded) commutative and associative multiplication of degree d and weight 0
and a unit element 1 (necessarily of degree −d and weight 0) together with a
linear form

∫
: A → C of degree −d and weight 0 such that for each weight

ν ∈ Z the induced bilinear form 〈·, ·〉 : A(ν) × A(−ν) → C, (a, a′) 7→
∫
A aa

′ is
non-degenerate (of degree 0). Here A(ν) denotes the weight space of weight ν.
In particular, all weight spaces are finite-dimensional. In the case of a trivial
weighting, this notion of a graded Frobenius algebra has already appeared
in [LS03].

Example 2.3. Consider the vector space

AX,L :=
⊕

ν≥0

H∗(X,Lν [2])⊕
⊕

ν≥0

H∗c (X,L−ν [2]).

It inherits a grading from the cohomological grading of its pieces H∗(X,Lν [2]).
We endow AX,L also with a weighting by defining H∗(X,Lν[2]) to be of pure
weight ν for ν ≥ 0 and H∗c (X,L−ν[2]) to be of pure weight −ν.
Recall that there is a natural linear map φ : H∗c (X,M)→ H∗(X,M) for every
local system M on X . (In the de Rham-model of cohomology, it is induced
by the inclusion of the (co-)complex of forms with compact support into the
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complex of forms with arbitrary support.) This linear map is compatible with
the — non-unitary in the case of compact support — algebra structures on
H∗c (X, ·) and H∗(X, ·) and the module structure of H∗c (X, ·) over H∗(X, ·).
With this, we mean that

φ(am) = aφ(m), φ(mn) = φ(m)φ(n), φ(m)n = mn(1)

for all a ∈ H∗(X,M) and m,n ∈ H∗c (X,M).
This allows us to define a commutative multiplication map of degree 2 ( =
dimX) and weight 0 on AX,L as follows: For elements α, β ∈ AX,L of pure
weight, we set

α · β :=





α ∪ β for α ∈ H∗(X,Lν[2]), β ∈ H∗(X,Lµ[2])

α ∪ β for α ∈ H∗c (X,L−ν[2]), β ∈ H∗c (X,L−µ[2])

α ∪ β for α ∈ H∗(X,Lν[2]), β ∈ H∗c (X,L−µ[2]) and ν ≤ µ
φ(α ∪ β) α ∈ H∗(X,Lν[2]), β ∈ H∗c (X,L−µ)[2] and ν > µ

for ν, µ ≥ 0. By (1), it follows immediately that this multiplication map is
associative, i.e. defines on AX,L the structure of a weighted, graded, unital,
commutative and associative algebra of degree 2.
We proceed by extending the linear form

∫
X

: H∗c (X,C[2]) → C of degree −2
given by evaluating a class of compact support on the fundamental class of X
trivially (that is by extending by zero) on AX,L and call the resulting linear
form

∫
: AX,L → C.

We claim that this endows AX,L with the structure of a weighted, graded
Frobenius algebra of degree 2: In fact, given a class α ∈ H∗(X,Lν), we can
always find a class β ∈ H∗c (X,L−ν) and vice versa so that

∫
α·β =

∫
X α∪β 6= 0.

For any weighted, graded Frobenius algebra A we set

hA := A⊕Cc⊕Cd.

We define the structure of a weighted, graded Lie algebra on hA by defining c

to be a central element of weight 0 and degree 0, d an element of weight 0 and
degree 0 and by setting the following commutator relations: [d, a] := n · a for
each element a ∈ A of weight n, and [a, a′] = 〈[d, a], a′〉c for elements a, a′ ∈ A.

Definition 2.4. The Lie algebra hA the Heisenberg algebra associated to A.

For A = AX,L, we set hX,L := hA. We define a linear map

q : hX,L → End(VX,L)

as follows: Let l ≥ 0 and β ∈ VX,L(l) = H∗(X [l], L[l][2l]). We set q(c)(β) := β,
and q(d)(β) := lβ. For n ≥ 0, and α ∈ AX,L(ν) = H∗(X,Lν [2]), we set
q(α)(β) := N(α, β). For α ∈ AX,L(−ν) = H∗c (X,L−ν[2]), we set q(α)(β) :=
N †(α, β). Finally, we set q(α)(β) = 0 for α ∈ AX,L(0) = H∗(X,C)⊕H∗c (X,C).

Proposition 2.5. The map q is a weighted, graded action of hX,L on VX,L.
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Proof. This Proposition is proven in [Nak97] for the untwisted case, i.e. for
L = C. The proof there is based on calculating commutators on the level of cy-
cles of the correspondences defined by the incidence schemes X [l,n]. These com-
mutators are independent of the local system used. Thus the proof in [Nak97]
also applies to this more general case. �

Example 2.6. Let α =
∑
α(1) ⊗ · · · ⊗ α(n) ∈ H∗(X(n), L(n)[2n]) =

SnH∗(X,L[2]) = (H∗(X,L[2])⊗n)Sn (we use the Sweedler notation to denote
elements in tensor products). The pull-back of α by the Hilbert–Chow mor-
phism ρ : X [n] → X(n) is then given by

ρ∗α =
1

n!

∑
q(α(1)) · · · q(α(n))|0〉,

where |0〉 is the unit 1 ∈ H∗(X [0],C) = C.

We will use Proposition 2.5 to prove our first Theorem.

Proof of Theorem 1.2. The vector space ṼX,L := S∗(
⊕

ν≥1H
∗(X,Lν[2])) car-

ries a unique structure of an hX,L-module such that c acts as the identity, d

acts by multiplying with the weight, α ∈ H∗(X,Ln) for n ≥ 1 acts by multiply-
ing with α, and α ∈ H∗(X,C)⊕H∗c (X,C) acts by zero. By the representation
theory of the Lie algebras of Heisenberg type, this is an irreducible lowest
weight representation of hV,L, which is generated by the lowest weight vector
1 of weight 0.
The hV,L-module VX,L also has a vector of weight 0, namely |0〉. Thus, there

is a unique morphism Φ: ṼL → VL of hL-modules that maps 1 to |0〉. This
will be the inverse of the isomorphism mentioned in Theorem 1.2. It remains
to show that Φ is bijective. The injectivity follows from the fact that ṼX,L is
irreducible as an hX,L-module.
In order to prove the surjectivity, we will derive upper bounds on the dimen-
sions of the weight spaces of the right hand side VX,L (see also [Leh04] about
this proof method). By the Leray spectral sequence associated to the Hilbert–
Chow morphism ρ : X [n] → X(n), such an upper bound is provided by the
dimension of the spectral sequence’s E2-term H∗(X(n),R∗ρ∗L[2n]). As shown
in [GS93], it follows from the Beilinson–Bernstein–Deligne–Gabber decompo-
sition theorem that

R∗ρ∗Q[2n] =
⊕

λ∈P(n)

(iλ)∗Q[2ℓ(λ)].

Here, P (n) is the set of all partitions of n, ℓ(λ) = r is the length of a partition
λ = (λ1, λ2, . . . , λr), X(λ) := {∑r

i=1 λixi | xi ∈ X} ⊂ X(n), and iλ : X(λ) →
X(n) is the inclusion map.
Set L(λ) := i∗λL

(n). By the projection formula, it follows that R∗ρ∗L[2n] =⊕
λ∈P(n)(iλ)∗L(λ)[2ℓ(λ)].

Thus, an upper bound on the dimension of H∗(X [n], L[n][2n]) is provided by
the dimension of

⊕
λ∈P(n)H

∗(X(λ), L(λ)[2ℓ(λ)]). By [GS93], this can be seen
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to be isomorphic to
⊕

P
i≥1 iνi=n

⊗

i≥1

SνiH∗(X,Li[2]),

where each νi ≥ 0. It follows that the upper bound given by the E2-term is
exactly the dimension of the n-th weight space of ṼX,L. Thus the dimension of
the weight spaces of VX,L cannot be greater than the dimensions of the weight

spaces of ṼX,L. Thus the Theorem is proven. �

Remark 2.7. Assume that X is projective. In this case, the (twisted) coho-
mology spaces of X and its Hilbert schemes X [n] carry pure Hodge structures.
As the isomorphism of Theorem 1.2 is defined by algebraic correspondences
(i.e. by correspondences of Hodge type (p, p)), it follows that the isomorphism
in Theorem 1.2 is compatible with the natural Hodge structures on both sides.
In terms of Hodge numbers, the following equation encodes our result:
∑

n≥0

∏

i,j

hi,j(X [n], L[n][2n])piqjzn

=
∏

m≥1

∏

i,j

(1− (−1)i+jpiqjzm)−(−1)i+jhi,j(X,Lm[2])

3. The Virasoro algebra in the twisted case

To each weighted, graded Frobenius algebra A of degree d, we associate a
skew-symmetric form e : A×A→ C of degree d as follows:
Let n ∈ Z. We note that A(n) and A(−n) are dual to each other via the linear
form

∫
. Thus we can consider the linear map ∆(n) : C→ A(n)⊗A(−n) dual to

the bilinear form 〈·, ·〉 : A(n)⊗A(−n)→ C. Write ∆(n)1 =
∑
e(1)(n)⊗e(2)(n)

in Sweedler notation. Then we define e by setting

e(α, β) :=

n∑

ν=0

ν(n− ν)

2

∫ ∑
e(1)(ν)e(2)(ν)αβ

for all α ∈ A(n) whenever n ≥ 0. We shall call this form the Euler form of A.

Example 3.1. Assume that A(n) ≡ A(0) for all n ∈ Z. In this case, we have

e(α, β) =
n3 − n

12

∫
eαβ

for α ∈ A(n) with e :=
∫ ∑

e(1)(0)e(2)(0) ([Leh99]).

We use the Euler form to define another Lie algebra associated to A. We set

vA := A[−2]⊕Cc⊕Cd.

We define the structure of a weighted, graded Lie algebra on vA be defining c

to be a central element or weight 0 and degree 0, d an alement of weight 0 and
degree 0 and by introducing the following commutator relations: [d, a] := n · a
for each element a ∈ A[−2] of weight n, and [a, a′] := (da)a′− a(da′)− e(a, a′)
for elements a, a′ ∈ A.
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Definition 3.2. The Lie algebra vA is the Virasoro algebra associated to A.

For A = AX,L, we set vX,L := vA. The whole construction is a generalisation
to the twisted case of the Virasoro algebra found in [Leh99].
We now define a linear map L : vX,L → End(VX,L) as follows: We define L(c)
to be the identity, L(d) to be multiplication with the weight, and for α ∈ A[−2]
we set

L(α) :=
1

2

∑∑

ν∈Z
:q(e(1)(ν))q(e(2)(ν)α):,

where the normal ordered product :aa′: of two operators is defined to be aa′ if
the weight of a is greater or equal to the weight of a′ and is defined to be a′a
if the weight of a′ is greater than the weight of a.
The following Lemma is proven for the untwisted case in [Leh99].

Lemma 3.3. For α ∈ AV,L[−2] and β ∈ AV,L, we have

[L(α), q(β)] = −q(α[d, β]).

Proof. Let α ∈ AV,L[2](n) and β ∈ AV,L(m) with n,m ∈ Z. In
the following calculations we omit all Koszul signs arising from commut-
ing the graded elements α and β. By definition, we have [L(α), q(β)] =
1
2

∑∑
ν [:q(e(1)(ν))q(e(2)(ν)α):, q(β)], where ν runs through all integers. As

the commutator of two operators in hV,L is central, we do not have to pay
attention to the order of the factors of the normally ordered product when
calculating the commutator:

[:q(e(1)(ν))q(e(2)(ν)α):, q(β)]

= ν〈e(1)(ν), β〉q(e(2)(ν)α) + (n− ν)〈e(2)(ν)α, β〉q(e(1)(ν)).

As 〈·, ·〉 is of weight zero, the first summand is only non-zero for ν = −m, while
the second summand is only non-zero for ν = n+m. Thus we have

[L(α), q(β)] = −m
2

∑(
〈e(1)(−m), β〉q(e(2)(−m)α)

+〈e(2)(n+m)α, β〉q(e(1)(n+m))
)
.

As e(1)(·) is the dual basis to e(2)(·), the right hand side simplifies to −mq(αβ),
which proves the Lemma. �

We use Lemma 3.3 to prove the following Proposition, which has already ap-
peared in [Leh99] for the untwisted, projective case:

Proposition 3.4. The map L is a weighted, graded action of the Virasoro
algebra vX,L on VX,L.

Proof. Let α ∈ A[−2](m) and β ∈ A[−2](n) with m,n ∈ Z. We have to prove
that [L(α), L(β)] = (m − n)L(αβ) − e(α, β). We follow ideas in [FLM88]. In
all summations below, ν runs through all integers if not specified otherwise.
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We begin with the case n 6= 0 and m+n 6= 0. In this case, by Lemma 3.3, it is

[L(α), L(β)] =
1

2

[
L(m),

∑∑

ν

q(e(1)(ν))q(e(2)(ν)β)

]
=

=
1

2

(∑∑

ν

(−ν)q(e(1)(ν)α)q(e(2)(ν)β) +
∑∑

ν

(ν − n)q(e(1)(ν))q(e(2)(ν)αβ)

)
.

As
∑
q(e(1)(ν)(α)q(e(2)(ν)β) = q(e(1)(ν+m))q(e(2)(ν−m)αβ), the right hand

side is equal to

1

2

∑∑

ν

(
(−ν)q(e(1)(ν +m))q(e(2)(ν +m)αβ)+

+(ν − n)q(e(1)(ν))q(e(2)(ν)αβ)
)
,

which is nothing else than (m− n)L(αβ). Note that e(α, β) = 0 in this case.
The next case we study is m > 0 and n = −m. In order to ensure convergence
in the following calculations we have to split up L(β) as follows:

L(β) =
∑∑

ν≥m
q(e(1)(ν)β)q(e(2)(ν)) +

∑∑

ν<m

q(e(2)(ν))q(e(1)(ν)β)

Calculating the commutator [L(α), L(β)] thus yields the four terms:

1

2

∑∑

ν≥m
(m− ν)q(e(1)(ν)αβ)q(e(2)(ν)) +

1

2

∑∑

ν≥m
νq(e(1)(ν)β)q(e(1)(ν)α)+

+
1

2

∑∑

ν<m

νq(e(2)(ν)α)q(e(1)(ν)β) +
1

2

∑∑

ν<m

(m− ν)q(e(2)(ν))q(e(1)(ν)αβ).

As in the first case, we now move α and β rightwards. Then we can split off an
infinite part given by a multiple of L(αβ) and are left over with the finite sum

[L(α), L(β)] − 2mL(αβ)

=
1

2

∑ m∑

ν=0

(m− ν)
(
q(e(2)(ν))q(e(1)(ν)αβ) − q(e(1)(ν))q(e(2)(ν)αβ)

)
.

The right side is exactly e(α, β).
The remaining cases either follow from the above by exchanging n and m or
are trivial (n = m = 0). �

4. The boundary operator

We proceed as in [Leh99] by introducing a boundary operator on VX,L. Recall
the definition of the tautological classes of the Hilbert scheme [LQW02]: Let Ξn

be the universal family over X [n], which is a subscheme of X [n]×X . We denote
the projections of X [n]×X onto its factors by p and q. To each α ∈ H∗(X,C)
we associate the tautological classes

α[n] := p∗(ch(OΞn) ∪ q∗(td(X) ∪ α))
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in H∗(X [n],C).

Remark 4.1. Note that the tautological classes live in the cohomology with
untwisted coefficients, and we have not generalised this concept to the twisted
case.

Each α ∈ H∗(X,C) defines an operator m(α) ∈ End(VX,L), which is given

by m(α)(β) := α[n] ∪ β for all β ∈ H∗(X [n], L[n]). It is an operator of weight
zero. As it does not respect the grading, we split it up into its homogeneous
components m(α) =

∑
m∗(α) with respect to the grading. Following [Leh99],

we set ∂ := m2(1) and call it the boundary operator. It is an operator of weight
0 and degree 2. For each operator p ∈ End(VX,L), we set p′ := [∂, p] and call
it the derivative of p.
The main theorem in [Leh99] is the calculation of the derivatives of the Heisen-
berg operators in the untwisted, projective case. In the sequel, we will do this
in our more general case:
Let K be the canonical divisor class of X . We make it into an operator
K : AX,L → AX,L[−2] of weight zero by setting

K(α) :=
|n| − 1

2
Kα

for α ∈ H∗(X,Ln[2]).

Proposition 4.2. For all α, β ∈ AX,L the following holds:

[q′(α), q(β)] = −q([d, α][d, β])−
∫
K([d, α])[d, β].

Proof. Let us first consider the case of α ∈ A(m) and β ∈ A(n) with n+m 6= 0.
We have to show that [q′(α), q(β)] = −nmq(αβ). This is proven in [Leh99] for
the projective, untwisted case. The proof in [Leh99] is based on calculating
the commutator on the level of cycles. As these calculations are local in X ,
the result remains true for non-projective X . Furthermore, the proof literally
works in the twisted case.
The case n + m = 0 remains. Here we have to show that [q′(α), q(β)] =

m2 |m|−1
2

∫
Kαβ. In [Leh99] the following intermediate result is formulated

for the projective, untwisted case: For all m ∈ Z, there exists a class Km ∈
H∗(X,C) such that [q′(α), q(β)] = m2id

∫
Kmαβ. As above the proof for this

intermediate result that is given in [Leh99] also works in the twisted and non-
projective case. The classes Km do not depend on the choice of L, i.e. are
universal for the surface. In [Leh99], the classes Km are computed for the

projective case, namely Km = |m|−1
2 K, where K is the class of the canonical

divisor. All that remains is to calculate the classes Km for the non-projective
(untwisted) case. As [q′(α), q(β)] = [q′(β), q(α)] (up to Koszul signs), it is
enough to calculate Km for m > 0:
Let β ∈ AX,C(−m) = H∗c (X,C[2]). Consider an open embedding j : X →
X̂ of X into a smooth, projective surface X̂ . We denote the corresponding
embeddings X [n] → X̂ [n] also by the letter j. Denote the 1 in AX̂,C(m) =
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H∗(X,C[2]) by 1(m). As all constructions considered so far are functorial (in
the appropriate senses) with respect to open embeddings, we have

j∗[q′(1(m)), q(j∗β)]|0〉 = [q′(j∗1(m)), q(β)]|0〉.
The right hand side is given by m2

∫
Kmβ, where Km is the class corre-

sponding to X . By the calculations in [Leh99], the left hand side is given

by m2 |m|−1
2

∫
KX̂j∗β, where KX̂ is the canonical divisor class of X̂. As

j∗KX̂ = KX , we see that Km = |m|−1
2 K also holds in the non-projective

case, which proves the Proposition. �

Corollary 4.3. For all α ∈ AX,L, the following holds:

q′(α) = L([d, α]) + q(K([d, α])).

Proof. This can be deduced from 4.2 as the respective statement for the un-
twisted, projective case is proven in [Leh99]. �

5. The ring structure

From now on, we assume that the canonical divisor of X is numerically trivial.

Example 5.1. Let H be a graded Frobenius algebra of degree d. Recall the
symmetric non-degenerate bilinear form 〈·, ·〉 : H ⊗H → C, h⊗ h′ →

∫
hh′. It

defines an isomorphism between H and its dual H∨. We can use this to dualise
the multiplication map H⊗H → H to a map ∆: H → H⊗H,h 7→∑

h(1)⊗h(2)

(in Sweedler notation) of degree d. It is coassociative and cocommutative (this
follows from the associativity and commutativity of the multiplication map of
H). Further, this map is characterised by

∑
〈h(1), e〉 〈h(2), f〉 = 〈h, ef〉

for all e, f ∈ H . It follows that ∆(gh) =
∑

(gh(1)) ⊗ h(2) for all g ∈ H . Thus
∆ is a homomorphisms of H-modules when we view H⊗H as a left H-algebra
by scalar multiplication on the first factor. (By the cocommutativity of ∆ we
could have equally chosen the analogously defined right H-algebra structure on
H ⊗H .)

The example leads us to the following definition when we forget about the
linear form

∫
:

A non-counital graded Frobenius algebra H of degree d (over the complex num-
bers) is a graded vector space over C with a (graded) commutative and associa-
tive multiplication of degree d and a unit element 1 (of degree−d) together with
a coassociative and cocommutative H-module homomorphism ∆: H → H⊗H
of degree d where we regard H ⊗H as a left H-algebra by multiplying on the
left factor. The map ∆ is called the diagonal.
By example 5.1, every graded Frobenius algebra is in particular a non-counital
graded Frobenius algebra.
Let G be a finite abelian group. A G-weighting on H is an action of G on
H compatible with the Frobenius structure on H . In other words, H comes
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together with a weight decomposition of the form
⊕

χ∈G∨ H(χ), where each

g ∈ G acts on H(χ) by multiplication with χ(g).

Example 5.2. Let p : X̂ → X be a finite abelian Galois covering of X with
Galois group G. Then G acts on M := p∗C. Write M =

⊕
χ∈G∨ Lχ, where G

acts on each Lχ by multiplication via the character χ. The multiplication on
the local system on C induces a multiplication map M ⊗M → M and thus
isomorphisms Lχ⊗Lχ′ ∼= Lχχ′ of local systems on X that are commutative and
associative in a certain sense. Thus we may assume without loss of generality
that these isomorphisms are in fact equalities.
The G-weighted vector space

HX,G :=
⊕

χ∈G∨
H∗(X,Lχ[2])

is naturally a non-counital G-weighted, graded Frobenius algebra of degree 2 as
follows: the grading is given by the cohomological grading. The multiplication
is given by the cup product. The diagonal is given by the proper push-forward
δ∗ : HX,G → HX,G⊗HX,G that is induced by the diagonal map δ : X → X×X .
(The map δ∗ is indeed a module homomorphism with respect to the left (or,
equivalently, right) module structure on HX,G⊗HX,G as one can see as follows:
Let π : X×X → X be the projection onto the left factor. Then one has by the
projection formula that

δ∗(α ∪ β) = δ∗((δ
∗π∗α) ∪ β) = (π∗α) ∪ (δ∗β)

for all α, β ∈ HX,G.)

By iterated application, ∆ induce maps ∆: H → H⊗n with n ≥ 1. We denote
the restriction of ∆: H → H⊗n to H(Lnχ), χ ∈ G∨, followed by the projection

onto H(Lχ)⊗n by ∆(χ) : H(Lnχ)→ H(Lχ)⊗n. The element e := (∇◦∆(1))(1) ∈
H is called the Euler class of H , where ∇ : H ⊗H → H is the multiplication
map.
There is a construction given in [LS03] that associates to each graded Frobenius
algebra H of degree of d a sequence of graded Frobenius algebras H [n] (whose
degrees are given by nd). We extend this construction to G-weighted not
necessarily counital Frobenius algebras as follows: For each χ ∈ G∨, set

Hn(χ) :=
⊕

σ∈Sn


 ⊗

B∈σ\[n]

H(L|B|χ )


σ and Hn :=

⊕

χ∈G∨
Hn(χ),

where [n] := {1, . . . , n} and σ\[n] is the set of orbits of the action of the cyclic
group generated by σ on the set [n]. (Note that Hn(1) = H(1){Sn} in the
terminology of [LS03].) The symmetric group Sn acts on Hn. The graded
vector space of invariants, HSn

n , is denoted by H [n].
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Let f : I → J a surjection of finite sets and (ni)i∈I a tuple of integers. Fibre-
wise multiplication yields ring homomorphisms

∇I,J := ∇f :
⊗

i∈I
H(Lniχ )→

⊗

j∈J
H
(
L

P
f(i)=j ni

χ

)

of degree d(|I| − |J |). (These correspond to the ring homomorphism f I,J

in [LS03].) Dually, by using the diagonal morphisms ∆(χ) and relying on
their coassociativity and cocommutativity, we can define ∇f -module homo-
morphisms

∆J,I := ∆f :
⊗

j∈J
H
(
L

P
f(i)=j ni

χ

)
→
⊗

i∈I
H(Lniχ ),

which are also of degree d(|I| − |J |). (These correspond to the module homo-
morphisms fJ,I in [LS03]).
Let σ, τ ∈ Sn be two permutations. By 〈σ, τ〉 we denote the subgroup of Sn

generated by the two permutations. Note that there are natural surjections
σ\[n] → 〈σ, τ〉\[n], τ\[n] → 〈σ, τ〉\[n], and (στ)\[n] → 〈σ, τ〉\[n]. The corre-
sponding ring and module homomorphism are denoted by ∇σ,〈σ,τ〉, etc., and
∆〈σ,τ〉,σ, etc.
Let χ, χ′ ∈ G∨. We define a linear map

mσ,τ :
⊗

B∈σ\[n]

H(L|B|χ )⊗
⊗

B∈τ\[n]

H(L
|B|
χ′ )→

⊗

B∈(στ)\[n]

H(L
|B|
χχ′)

by

mσ,τ (α ⊗ β) = ∆〈σ,τ〉,(στ)(∇σ,〈σ,τ〉(α)∇τ,〈σ,τ〉(β)eγ(σ,τ)),

where the expression eγ(σ,τ) is defined as in [LS03] (we have to use our Euler
class e, which is defined above). This defines a product Hn ⊗Hn → Hn which
is given by

(ασ) · (βτ ) := mσ,τ (α, β)στ

for ασ ∈ Hn(Lχ) and βτ ∈ Hn(Lχ′). This product is associative, Sn-
equivariant, and of degree nd, which can be proven exactly as the corresponding
statements about the product of the rings H{Sn}, which are defined in [LS03].
The product becomes (graded) commutative when restricted to H [n]. Thus we
have made H [n] a graded commutative, unital algebra of degree nd.

Definition 5.3. The algebra H [n] is the n-th Hilbert algebra of H .

In case G is trivial, the n-th Hilbert algebra of H defined here is exactly the
algebra H [n] of [LS03]. For non-trivial G, this is no longer true.
The underlying graded vector space of

⊕
n≥0H

[n](Lχ) is naturally isomorphic

to S(Lχ) := S∗(
⊕

n≥1H(Lnχ)), namely as follows: Firstly, we introduce linear

maps Hn(Lχ)→ S(Lχ), which are defined by mapping an element of the form∑
σ∈Sn

⊗
B∈σ\[n] ασ,Bσ to 1

n!

∑
σ∈Sn

∏
B∈σ\[n] ασ,B. The restrictions of these

morphisms to the S∗-invariant parts define a linear map
⊕

n≥0H
[n](Lχ) →
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S(Lχ). This map is an isomorphism, which can be proven exactly as it is
in [LS03] for trivial G.
Recall that H∗(X,C[2]) is a (trivially weighted) graded non-counital Frobenius
algebra of degree d.

Lemma 5.4. There is a natural isomorphism H∗(X,C[2])[n] → H∗(X [n],C[2n])
of graded unital algebras of degree nd.

Proof. Recall the just defined isomorphism between the spaces⊕
n≥0H

∗(X,C[2])
[n]

and S∗(
⊕

ν>0H
∗(X,C[2])) (for the trivial character

χ = 1). The composition of this isomorphism with isomorphism between
the spaces S∗(

⊕
ν>0H

∗(X,C[2])) and
⊕

n≥0H
∗(X [n],C[2n]) of Theorem 1.2

induces by restriction the claimed isomorphism of the Lemma on the level of
graded vector spaces.
That this isomorphism is in fact an isomorphism of unital algebras, is proven
in [LS03] for X being projective. The proof there does not use the fact that
H∗(X,C[2]) has a counit, in fact it only uses its diagonal map. It relies on
the earlier work in [Leh99], which has been extended to the non-projective
case above, and [LQW02], which can similarly be extended. Thus the proof
in [LS03] also works in the non-projective case, when we replace the notion of
a Frobenius algebra by the notion of a non-counital Frobenius algebra. �

We will now deduce Theorem 1.4 from Lemma 5.4:

Proof of Theorem 1.4. Let χ, χ′ ∈ G∨. Set L := Lχ and M := Lχ′ .
Let λ = (λ1, . . . , λl) be a partition of n. Let νi the multiplicity of i in λ,
i.e. λ =

∑
i νi · i. Set X(λ) :=

∏
iX

(νi), and L(λ) :=
∏
i pr∗iL

(νi), where the

pri denote the projections onto the factors X(νi). Let α =
∑
α(1) · · ·α(r) ∈

H∗(X(λ), L(λ)[2l]) =
⊗

i S
νiH∗(X,Li[2]).

We set
|α〉 :=

∑
q(α(1)) · · · q(α(r))|0〉.

By Theorem 1.2, the cohomology space H∗(X [n], L[n][2n]) is linearly spanned
by classes of the form |α〉.
Let µ = (µ1, . . . , µm) be another partition of n and β ∈ H∗(X(µ),M (µ)[2m]). In
order to describe the ring structure of H∗(X [n], L[n][2n]), we have to calculate
the classes |α ∪ β〉 := |α〉 ∪ |β〉 in terms of the vector space description given
by Theorem 1.2.
This means that we have to calculate the numbers

〈γ | α ∪ β〉 := q(γ)|α ∪ β〉 ∈ H∗(X [0],C) = C

for all γ ∈ H∗c (X(κ), ((LM)−1)
(κ)

[2k]) for all partitions κ = (κ1, . . . , κk) of n,
and we have to show that they are equal to the numbers that would come out
if we calculated the product of α and β by the right hand side of the claimed
isomorphism of the Theorem.
The class |α〉 is given by applying a sequence of correspondences to the vacuum
vector: Recall from [Nak97] how to compose correspondences. It follows that
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|α〉 is given by

PD−1(pr1)∗(pr∗2α ∩ ζλ),

where the symbols have the following meaning: The maps pr1 and pr2 are the
projections of X [n] × X(λ) onto its factors X [n] and X(λ). Further, ζλ is a
certain class in HBM

∗ (Zλ), where Zλ is the incidence variety

Zλ :=

{
(ξ, (x1, x2, . . .)) ∈ X [n] ×X(λ) | supp ξ =

∑

i

ixi

}

in X [n] ×X(λ). (Note that pr∗1L
[n]|Zλ = pr∗2L

(λ)|Zλ , and that p|Zλ is proper.)
For |β〉 and |γ〉 we get similar expressions. By definition of the cup-product
(pull-back along the diagonal), it follows that 〈γ | α ∪ β〉 = 〈r∗γ ∪ p∗α ∪
q∗β, ζλ,µ,κ〉, where p, q, and r are the projections from X(λ)×X(µ)×X(κ) onto
its three factors, and ζλ,µ,κ is a certain class in HBM

∗ (Zλ,µ,κ) with

Zλ,µ,κ :=

=



((x1, x2, . . .), (y1

, y
2
, . . .), (z1, z2, . . .)) |

∑

i

ixi =
∑

j

jy
j

=
∑

k

kzk



 .

(The incidence variety is proper over any of the three factors, so everything
is well-defined.) The main point is now that the incidence variety Zλ,µ,κ and
the homology class ζλ,µ,κ are independent of the local systems L and M . In
particular, we can calculate ζλ,µ,κ once we know the cup-product in the case
L = M = C. But this is the case that is described in Lemma 5.4, which we
will analyse now.
First of all, the incidence variety is given by

Zλ,µ,κ =
∑

σ,τ

Zσ,τ

where σ and τ run through all permutations with cycle type λ and µ, respec-
tively, such that ρ := στ has cycle type κ. The varieties Zσ,τ are defined as
follows:
As the orbits of the group action of 〈σ〉 on [n] correspond to the entries of
the partition λ, there exists a natural map Xσ\[n] → X(λ), which is given by
symmetrising. Furthermore the natural surjection σ\[n] → 〈σ, τ〉\[n] induces
a diagonal embedding X〈σ,τ〉\[n] → Xσ\[n]. Composing both maps, we get a
natural map X〈σ,τ〉\[n] → X(λ). Analoguously, we get maps from X〈σ,τ〉\[n] to
X(µ) and X(κ). Together, these maps define a diagonal embedding

iτ,σ : X〈σ,τ〉\[n] → X(κ) ×X(λ) ×X(µ).

We define Zσ,τ to be the image of this map.
By Lemma 5.4, the class ζλ,µ,κ is given by

∑
σ,τ (iσ,τ )∗ζσ,τ , where each class

ζσ,τ ∈ HBM
∗ (X〈σ,τ〉\[n]) is Poincaré dual to cσ,τ e

γ(σ,τ). Here, cσ,τ is a certain
combinatorial factor (possibly depending on σ and τ), whose precise value is
of no concern for us.
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Having derived the value of ζλ,µ,κ from Lemma 5.4, we have thus calculated
the value 〈γ | α ∪ β〉.
Now we have to compare this value with the one that is predicted by the descrip-
tion of the cup-product given by the right hand side of the claimed isomorphism
of the Theorem. With the same analysis as above, we find this value is also
given by a correspondence on Zλ,µ,κ with the class

∑
τ,σ(iσ,τ )∗cσ,τPD(eγ(σ,τ))

with the same combinatorial factors cσ,τ as above. We thus find that the
claimed ring structure yields the correct value of 〈γ | α ∪ β〉. �

Remark 5.5. One can also define a natural diagonal map for the Hilbert algebras
H [n] making them into graded, non-counital Frobenius algebras of degree nd.
The isomorphism of Theorem 1.4 then becomes an isomorphism of graded non-
counital Frobenius algebras.

6. The generalised Kummer varieties

Finally, we want to use Theorem 1.4 to study the cohomology ring of the
generalised Kummer varieties.
Let H be a non-counital graded Frobenius algebra of degree d that is moreover
endowed with a compatible structure of a cocommutative Hopf algebra of degree
d. The comultiplication δ of the Hopf algebra structure is of degree −d. The
counit of the Hopf algebra structure is denoted by ǫ and is of degree d. We
further assume that H is also equipped with a G-weighting for a finite abelian
group G.

Example 6.1. Let X be an abelian surface. The group structure on X induces
naturally a graded Hopf algebra structure of degree 2 on the graded Frobenius
algebra H∗(X,C[2]). This algebra is also trivially X [n]-weighted, where G :=
X [n] ≃ (Z/(n))4 is the group of n-torsion points on X . (Trivially weighted
means that the only non-trivial X [n]-weight space of H∗(X,C[2]) is the one
corresponding to the identity element 0.)

Let n be a positive integer. Recall the definition of the (G-weighted) Hilbert
algebra H [n]. Repeated application of the comultiplication δ induces a map
δ : H → H⊗n = H id\[n], which is of degree −(n − 1)d. Its image lies in the
subspace of symmetric tensors. Thus we can define a map φ : H → H [n] with
φ(α) := δ(α)id. One can easily check that this map is an algebra homomor-
phism of degree −(n− 1)d, making H [n] into an H-algebra.
Define

H [[n]] := H [n] ⊗H C,

where we view C as an H-algebra of degree d via the Hopf counit ǫ. It is H [[n]]

a (G-weighted) graded Frobenius algebra of degree nd.

Definition 6.2. The algebra H [[n]] is the n-th Kummer algebra of H .

The reason of this naming is of course Theorem 1.7.
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Proof of Theorem 1.7. Let n : X → X denote the morphism that maps x to
n · x. There is a natural cartesian square

(2)

X ×X [[n]] ν−−−−→ X [n]

p

y
yσ

X −−−−→
n

X,

where p is the projection on the first factor and ν maps a pair (x, ξ) to x+ ξ,
the subscheme that is given by translating ξ by x ([Bea83]). Then G is the
Galois group of n. Each element χ of G∨ corresponds to a local system Lχ
on X , and we have n∗C =

⊕
χ∈G∨ Lχ. It follows that ν is an abelian Galois

covering of X [n] with ν∗C =
⊕

χ∈G∨ L
[n]
χ .

Together with Theorem 1.4, this leads to the claimed description of the coho-
mology ring of X [[n]]: Firstly, there is a natural isomorphism

H∗(X [[n]],C[2n])→ H∗(X ×X [[n]],C[2n])⊗H∗(X,C[2]) C

of unital algebras (the tensor product is taken with respect to the map p∗ and
the Hopf counit H∗(X,C[2])→ C). By the Leray spectral sequence for ν and
by (2), the right hand side is naturally isomorphic to

H∗(X [n], ν∗C[2n])⊗H∗(X,C[2]) C =
⊕

χ∈G∨
H∗(X [n], L[n]

χ [2n])⊗H∗(X,C[2]) C

(where the tensor product is taken with respect to the map σ∗ and the Hopf
counit).

By Theorem 1.4, the algebra
⊕

χ∈G∨ H
∗(X [n], L

[n]
χ [2n]) is naturally isomor-

phic to
⊕

χ∈G∨ H
∗(X,Lχ[2])

[n]
. Now H∗(X,Lχ[2]) = 0 unless χ is the trivial

character, which follows from the fact that all classes in H∗(X,C) are invari-
ant under the action of the Galois group of n, i.e. correspond to the trivial
character. Thus there is a natural isomorphism

⊕

χ∈G∨
H∗(X [n], L[n]

χ [2n])→ H∗(X,C[2])
[n]
,

of G-weighted algebras, where we endow H∗(X,C[2]) with the trivial G-
weighting. Under this isomorphism, the map σ∗ corresponds to the homo-
morphism φ defined below Example 6.1. Thus we have proven the existence of
a natural isomorphism

H∗(X [[n]],C[2n])→ H∗(X,C[2])
[n] ⊗H∗(X,C[2]) C

of unital, graded algebras. But the right hand side is nothing but H [[n]], thus
the Theorem is proven. �
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1. Introduction

The Sato-Tate conjecture is a conjecture about the distribution of the number
of points on an elliptic curve over finite fields. Specifically, if E is an elliptic
curve over Q without CM, then for each prime l such that E has good reduction
at l we set

al := 1 + l −#E(Fl).

Then the Sato-Tate conjecture states that the quantities cos−1(al/2
√
l) are

equidistributed with respect to the measure

2

π
sin2 θdθ

on [0, π]. Alternatively, by the Weil bounds for E, the polynomial

X2 − alX + l = (X − αll1/2)(X − βll1/2)

satisfies |αl| = |βl| = 1, and there is a well-defined conjugacy class xE,l in
SU(2), the conjugacy class of the matrix

(
αl 0
0 βl

)
.

The Sato-Tate conjecture is then equivalent to the statement that the classes
xE,l are equidistributed with respect to the Haar measure on SU(2).
Tate observed that the conjecture would follow from properties of the symmet-
ric power L-functions of E, specifically that these L-functions (suitably nor-
malised) should have nonvanishing analytic continuation to the region ℜs ≥ 1.
This would follow (given the modularity of elliptic curves) from the Langlands
conjectures (specifically, it would be a consequence of the symmetric power
functoriality from GL2 to GLn for all n). Unfortunately, proving this functo-
riality appears to be well beyond the reach of current techniques. However,
Harris, Shepherd-Baron and Taylor observed that the required analytic prop-
erties would follow from a proof of the potential automorphy of the symmetric
power L-functions (that is, the automorphy of the L-functions after base change
to some extension of Q), and were able to use Taylor’s potential automorphy
techniques to prove the Sato-Tate conjecture for all elliptic curves E with non-
integral j-invariant (see [HSBT09]).
There are various possible generalisations of the Sato-Tate conjecture; if one
wishes to be maximally ambitious, one could consider equidistribution results
for the Satake parameters of rather general automorphic representations (see
for example section 2 of [Lan79]). Again, such results appear to be well beyond
the range of current technology. There is, however, one special case that does
seem to be reasonable to attack, which is the case of Hilbert cuspidal eigenforms
of regular weight. In this paper, we prove a natural generalisation of the Sato-
Tate conjecture for modular newforms (over Q) of weight 2 or 3, subject to
the natural analogue of the condition that an elliptic curve has non-integral
j-invariant. We note that previously the only modular forms for which the
conjecture was known were those corresponding to elliptic curves; in particular,
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there were no examples of weight 3 modular forms for which the conjecture was
known. After this paper was made available, the conjecture was proved for all
modular forms of weight at least 2 in [BLGHT09], by rather different methods.
Our approach is similar to that of [HSBT09], and we are fortunate in being able
to quote many of their results. Indeed, it is straightforward to check that Tate’s
argument shows that the conjecture would follow from the potential automor-
phy of the symmetric powers of the l-adic Galois representations associated to a
modular form. One might then hope to prove this potential automorphy in the
style of [HSBT09]; one would proceed by realising the symmetric powers of the
mod l Galois representation geometrically in such a way that their potential
automorphy may be established, and then deduce the potential automorphy
of the l-adic representations by means of the modularity lifting theorems of
[CHT08] and [Tay08].
It turns out that this simple strategy encounters some significant obstacles.
First and foremost, it is an unavoidable limitation of the known potential auto-
morphy methods that they can only deduce that a mod l Galois representation
is automorphic of minimal weight (which we refer to as “weight 0”). However,
the symmetric powers of the Galois representations corresponding to modular
forms of weight greater than 2 are never automorphic of minimal weight, so
one has no hope of directly proving their potential automorphy in the fashion
outlined above without some additional argument. If, for example, one knew
the weight part of Serre’s conjecture for GLn (or even for unitary groups) one
would be able to deduce the required results, but this appears to be an ex-
tremely difficult problem in general. There is, however, one case in which the
analysis of the Serre weights is rather easier, which is the case that the l-adic
Galois representations are ordinary. It is this observation that we exploit in
this paper.
In general, it is anticipated that for a given newform f of weight k ≥ 2, there
is a density one set of primes l such that there is an ordinary l-adic Galois
representation corresponding to f . Unfortunately, if k > 3 then it is not even
known that there is an infinite set of such primes; this is the reason for our
restriction to k = 2 or 3. In these cases, one may use the Ramanujan conjecture
and Serre’s form of the Cebotarev density theorem (see [Ser81]) to prove that
the set of l which are “ordinary” in this sense has density one, via an argument
that is presumably well-known to the experts (although we have not been able
to find the precise argument that we use in the literature). We note that it is
important for us to be able to choose l arbitrarily large in certain arguments (in
order to satisfy the hypotheses of the automorphy lifting theorems of [Tay08]),
so it does not appear to be possible to apply our methods to any modular
forms of weight greater than 3. Similarly, we cannot prove anything for Hilbert
modular forms of parallel weight 3 over any field other than Q.
We now outline our arguments in more detail, and explain exactly what we
prove. The early sections of the paper are devoted to proving the required
potential automorphy results. In section 2 we recall some basic definitions and
results from [CHT08] on the existence of Galois representations attached to
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regular automorphic representations of GLn over totally real and CM fields,
subject to suitable self-duality hypotheses and to the existence of finite places
at which the representations are square integrable. Section 3 recalls some
standard results on the Galois representations attached to modular forms, and
proves the result mentioned above on the existence of a density one set of
primes for which there is an ordinary Galois representation.
In section 4 we prove the potential automorphy in weight 0 of the symmetric
powers of the residual Galois representations associated to a modular form,
under the hypotheses that the residual Galois representation is ordinary and
irreducible, and the automorphic representation corresponding to the modular
form is an unramified twist of the Steinberg representation at some finite place.
The latter condition arises because of restrictions of our knowledge as to when
there are Galois representations associated to automorphic representations on
unitary groups, and it is anticipated that it will be possible to remove it in
the near future. That would then allow us to prove our main theorems for any
modular forms of weights 2 or 3 which are not of CM type. (Note added in
proof: such results are now available, cf. [Shi09], [CH09], [Gue09], and it is thus
an easy exercise to deduce our main results without any Steinberg assumption.)
One approach to proving the potential automorphy result in weight 0 would
be to mimic the proofs for elliptic curves in [HSBT09]. In fact we can do bet-
ter than this, and are able to directly utilise their results. We are reduced to
proving that after making a quadratic base change and twisting, the mod l
representation attached to our modular form is, after a further base change,
congruent to a mod l representation arising from a certain Hilbert-Blumenthal
abelian variety. This is essentially proved in [Tay02], and we only need to
make minor changes to the proofs in [Tay02] in order to deduce the proper-
ties we need. We can then directly apply one of the main results of [HSBT09]
to deduce the automorphy of the even-dimensional symmetric powers of the
Hilbert-Blumenthal abelian variety, and after twisting back we deduce the re-
quired potential automorphy of our residual representations. Note that apart
from resulting in rather clean proofs, the advantage of making an initial con-
gruence to a Galois representation attached to an abelian variety and then
using the potential automorphy of the symmetric powers of this abelian variety
is that we are able to obtain local-global compatibility at all finite places (in-
cluding those dividing the residue characteristic). This compatibility is not yet
available for automorphic representations on unitary groups in general, and is
needed in our subsequent arguments. In particular, it tells us that the automor-
phic representations of weight 0 which correspond to the symmetric powers of
the l-adic representations coming from our Hilbert-Blumenthal abelian variety
are ordinary at l.
In section 5 we exploit this ordinarity to deduce that the even-dimensional
symmetric powers of the mod l representations are potentially automorphic of
the “correct” weight. This is a basic consequence of Hida theory for unitary
groups, but we are not aware of any reference that proves the precise result we
need. Accordingly, we provide a proof in the style of the arguments of [Tay88].
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There is nothing original in this section, and as the arguments are somewhat
technical the reader may wish to skip it on a first reading.
The results of the preceding sections are combined in section 6 to establish
the required potential automorphy results for l-adic (rather than mod l) rep-
resentations. This essentially comes down to checking the hypotheses of the
modularity lifting theorem that we wish to apply from [Tay08], which follow
from the analogous arguments in [HSBT09] together with the conditions that
we have imposed in our potential automorphy arguments. It is here that we
need the freedom to choose l to be arbitrarily large, which results in our re-
striction to weights 2 and 3.
Finally, in section 7 we deduce the form of the Sato-Tate conjecture mentioned
above. As in [HSBT09] we have only proved the potential automorphy of the
even-dimensional symmetric powers of the l-adic representations associated to
our modular form, and we deduce the required analytic properties for the L-
functions attached to odd-dimensional symmetric powers via an argument with
Rankin-Selberg convolutions exactly analogous to that of [HSBT09]. In fact,
we need to prove the same results for the L-functions of certain twists of our
representations by finite-order characters, but this is no more difficult.
We now describe the form of the final result, which is slightly different from that
for elliptic curves, because our modular forms may have non-trivial nebentypus
(and indeed are required to do so if they have weight 3). Suppose that the
newform f has level N , nebentypus χf and weight k; then the image of χf is
precisely the m-th roots of unity for some m. Then if p ∤ N is a prime, we
know that if

X2 − apX + pk−1χf (p) = (X − αpp(k−1)/2)(X − βpp(k−1)/2)

where ap is the eigenvalue of f for the Hecke operator Tp, then the matrix
(
αp 0
0 βp

)

defines a conjugacy class xf,p in U(2)m, the subgroup of U(2) of matrices with
determinant an m-th root of unity. Then our main result is

Theorem. If f has weight 2 or 3 and the associated automorphic represen-
tation is a twist of the Steinberg representation at some finite place, then the
conjugacy classes xf,p are equidistributed with respect to the Haar measure on
U(2)m (normalised so that U(2)m has measure 1).

One can make this more concrete by restricting to primes p such that χf (p) is
a specific m-th root of unity; see the remarks at the end of section 7.
We would like to thank Thomas Barnet-Lamb, David Geraghty and Richard
Taylor for various helpful discussions during the writing of this paper.

2. Notation and assumptions

We let ǫ denote the l-adic cyclotomic character, regarded as a character of the
absolute Galois group of a number field or of a completion of a number field at
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a finite place. We sometimes use the same notation for the mod l cyclotomic
character; it will always be clear from the context which we are referring to.
We denote Tate twists in the usual way, i.e. ρ(n) := ρ⊗ ǫn. We write K̄ for a
separable closure of a field K. If x is a finite place of a number field F , we will
write Ix for the inertia subgroup of Gal(F x/Fx). We fix an algebraic closure
Q of Q, and regard all finite extensions of Q as being subfields of Q. We also
fix algebraic closures Qp of Qp for all primes p, and embeddings Q →֒ Qp.
We need several incarnations of the local Langlands correspondence. Let K be
a finite extension of Qp, and l 6= p a prime. We have a canonical isomorphism

ArtK : K× →W ab
K

normalised so that geometric Frobenius elements correspond to uniformisers.
Let Irr(GLn(K)) denote the set of isomorphism classes of irreducible admissi-
ble representations of GLn(K) over C, and let WDRepn(WK) denote the set
of isomorphism classes of n-dimensional Frobenius semi-simple complex Weil-
Deligne representations of the Weil group WK of K. The main result of [HT01]
is that there is a family of bijections

recK : Irr(GLn(K))→WDRepn(WK)

satisfying a number of properties that specify them uniquely (see the introduc-
tion to [HT01] for a complete list). Among these properties are:

• If π ∈ Irr(GL1(K)) then recK(π) = π ◦Art−1
K .

• recK(π∨) = recK(π)∨.
• If χ1, . . . , χn ∈ Irr(GL1(K)) are such that the normalised induction

n-Ind(χ1, . . . , χn) is irreducible, then

recK(n-Ind(χ1, . . . , χn)) = ⊕ni=1 recK(χi).

We will often just write rec for recK when the choice of K is clear from the
context. After choosing an isomorphism ι : Ql → C one obtains bijections recl
from the set of isomorphism classes of irreducible admissible representations of
GLn(K) over Ql to the set of isomorphism classes of n-dimensional Frobenius
semi-simple Weil-Deligne Ql-representations of WK . We then define rl(π) to
be the l-adic representation of Gal(K/K) associated to recl(π

∨ ⊗ | · |(1−n)/2)
whenever this exists (that is, whenever the eigenvalues of recl(π

∨⊗|·|(1−n)/2)(φ)
are l-adic units, where φ is a Frobenius element). We will, of course, only use
this notation where it makes sense. It is useful to note that

rl(π)∨(1− n) = rl(π
∨).

Let M denote a CM field with maximal totally real subfield F (by “CM field”
we always mean “imaginary CM field”). We denote the nontrivial element of
Gal(M/F ) by c. Following [CHT08] we define a RACSDC (regular, algebraic,
conjugate self dual, cuspidal) automorphic representation of GLn(AM ) to be a
cuspidal automorphic representation π such that

• π∨ ∼= πc, and
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• π∞ has the same infinitesimal character as some irreducible algebraic
representation of ResM/Q GLn.

We say that a ∈ (Zn)Hom(M,C) is a weight if

• aτ,1 ≥ · · · ≥ aτ,n for all τ ∈ Hom(M,C), and
• aτc,i = −aτ,n+1−i.

For any weight a we may form an irreducible algebraic representation Wa of

GLHom(M,C)
n , the tensor product over τ of the irreducible algebraic represen-

tations of GLn with highest weight aτ . We say that π has weight a if it has
the same infinitesimal character as W∨a ; note that any RACSDC automorphic
representation has some weight. Let S be a non-empty finite set of finite places
of M . For each v ∈ S, choose an irreducible square integrable representation ρv
of GLn(Mv) (in this paper, we will in fact only need to consider the case where
each ρv is the Steinberg representation). We say that an RACSDC automor-
phic representation π has type {ρv}v∈S if for each v ∈ S, πv is an unramified
twist of ρ∨v . There is a compatible family of Galois representations associated
to such a representation in the following fashion.

Proposition 2.1. Let ι : Ql
∼−→ C. Suppose that π is an RACSDC auto-

morphic representation of GLn(AM ) of type {ρv}v∈S for some nonempty set of
finite places S. Then there is a continuous semisimple representation

rl,ι(π) : Gal(M/M)→ GLn(Ql)

such that

(1) For each finite place v ∤ l of M , we have

rl,ι(π)|ss
Gal(Mv/Mv)

= rl(ι
−1πv)

∨(1− n)ss.

(2) rl,ι(π)c = rl,ι(π)∨ǫ1−n.

Proof. This follows from Proposition 4.2.1 of [CHT08] (which in fact also gives
information on rl,ι|Gal(Mv/Mv)

for places v|l). �

The representation rl,ι(π) may be conjugated to be valued in the ring of integers
of a finite extension of Ql, and we may reduce it modulo the maximal ideal
of this ring of integers and semisimplify to obtain a well-defined continuous
representation

r̄l,ι(π) : Gal(M/M)→ GLn(Fl).

Let a ∈ (Zn)Hom(M,Ql), and let ι : Ql
∼−→ C. Define ι∗a ∈ (Zn)Hom(M,C) by

(ι∗a)ιτ,i = aτ,i. Now let ρv be a discrete series representation of GLn(Mv)

over Ql for each v ∈ S. If r : Gal(M/M) → GLn(Ql), we say that r is
automorphic of weight a and type {ρv}v∈S if r ∼= rl,ι(π) for some RACSDC
automorphic representation π of weight ι∗a and type {ιρv}v∈S . Similarly, if
r̄ : Gal(M/M)→ GLn(Fl), we say that r̄ is automorphic of weight a and type
{ρv}v∈S if r̄ ∼= r̄l,ι(π) for some RACSDC automorphic representation π with
πl unramified, of weight ι∗a and type {ιρv}v∈S .
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We now consider automorphic representations of GLn(AF ). We say that a cusp-
idal automorphic representation π of GLn(AF ) is RAESDC (regular, algebraic,
essentially self dual, cuspidal) if

• π∨ ∼= χπ for some character χ : F×\A×F → C× with χv(−1) indepen-
dent of v|∞, and
• π∞ has the same infinitesimal character as some irreducible algebraic

representation of ResF/Q GLn.

We say that a ∈ (Zn)Hom(F,C) is a weight if

aτ,1 ≥ · · · ≥ aτ,n
for all τ ∈ Hom(F,C). For any weight a we may form an irreducible alge-

braic representation Wa of GLHom(F,C)
n , the tensor product over τ of the irre-

ducible algebraic representations of GLn with highest weight aτ . We say that
an RAESDC automorphic representation π has weight a if it has the same
infinitesimal character as W∨a . In this case, by the classification of algebraic
characters over a totally real field, we must have aτ,i + aτ,n+1−i = wa for some
wa independent of τ . Let S be a non-empty finite set of finite places of F .
For each v ∈ S, choose an irreducible square integrable representation ρv of
GLn(Mv). We say that an RAESDC automorphic representation π has type
{ρv}v∈S if for each v ∈ S, πv is an unramified twist of ρ∨v . Again, there is a
compatible family of Galois representations associated to such a representation
in the following fashion.

Proposition 2.2. Let ι : Ql
∼−→ C. Suppose that π is an RAESDC auto-

morphic representation of GLn(AF ), of type {ρv}v∈S for some nonempty set
of finite places S, with π∨ ∼= χπ. Then there is a continuous semisimple repre-
sentation

rl,ι(π) : Gal(F/F )→ GLn(Ql)

such that

(1) For each finite place v ∤ l of F , we have

rl,ι(π)|ss
Gal(Fv/Fv)

= rl(ι
−1πv)

∨(1 − n)ss.

(2) rl,ι(π)∨ = rl,ι(χ)ǫn−1rl,ι(π).

Here rl,ι(χ) is the l-adic Galois representation associated to χ via ι (see Lemma
4.1.3 of [CHT08]).

Proof. This is Proposition 4.3.1 of [CHT08] (which again obtains a stronger
result, giving information on rl,ι|Gal(Fv/Fv)

for places v|l). �

Again, the representation rl,ι(π) may be conjugated to be valued in the ring of
integers of a finite extension of Ql, and we may reduce it modulo the maximal
ideal of this ring of integers and semisimplify to obtain a well-defined continuous
representation

r̄l,ι(π) : Gal(F/F )→ GLn(Fl).
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Let a ∈ (Zn)Hom(F,Ql), and let ι : Ql
∼−→ C. Define ι∗a ∈ (Zn)Hom(F,C) by

(ι∗a)ιτ,i = aτ,i. Let ρv be a discrete series representation of GLn(Mv) over Ql

for each v ∈ S. If r : Gal(F/F ) → GLn(Ql), we say that r is automorphic
of weight a and type {ρv}v∈S if r ∼= rl,ι(π) for some RAESDC automorphic

representation π of weight ι∗a and type {ιρv}v∈S. Similarly, if r̄ : Gal(F/F )→
GLn(Fl), we say that r̄ is automorphic of weight a and type {ρv}v∈S if r̄ ∼=
r̄l,ι(π) for some RAESDC automorphic representation π with πl unramified, of
weight ι∗a and type {ιρv}v∈S.
As in [HSBT09] we denote the Steinberg representation of GLn(K), K a nonar-
chimedean local field, by Spn(1).

3. Modular forms

3.1. Let f be a cuspidal newform of level Γ1(N), nebentypus χf , and weight
k ≥ 2. Suppose that for each prime p ∤ N we have Tpf = apf . Then each ap is
an algebraic integer, and the set {ap} generates a number field Kf with ring of
integers Of . We will view Kf as a subfield of C. It is known that Kf contains
the image of χf . For each place λ|l of Of there is a continuous representation

ρf,λ : Gal(Q/Q)→ GL2(Kf,λ)

which is determined up to isomorphism by the property that for all p ∤ Nl,
ρf,λ|Gal(Qp/Qp)

is unramified, and the characteristic polynomial of ρf,λ(Frobp)

is X2 − apX + pk−1χf (p) (where Frobp is a choice of a geometric Frobenius
element at p).
Assume from now on that f is not of CM type.

Definition 3.1. Let λ be a prime of Of lying over a rational prime l. Then
we say that f is ordinary at λ if λ ∤ al. We say that f is ordinary at l if it is
ordinary at λ for some λ|l.
Lemma 3.2. If k = 2 or 3, then the set of primes l such that f is ordinary at
l has density one.

Proof. The proof is based on an argument of Wiles (see the final lemma of
[Wil88]). Let S be the finite set of primes which either divide N or which are
ramified in Of . Suppose that f is not ordinary at p /∈ S. By definition we have
that λ|ap for each prime λ of Of lying over p. Since p is unramified in Of ,
(p) =

∏
λ|p λ, so p|ap. Write ap = pbp with bp ∈ Of .

Since p ∤ N , the Weil bounds (that is, the Ramanujan-Petersson conjecture)
tell us that for each embedding ι : Kf →֒ C we have |ι(ap)| ≤ 2p(k−1)/2. Since
k ≤ 3, this implies that |ι(bp)| ≤ 2 for all ι. Let T be the set of y ∈ Of such
that |ι(y)| ≤ 2 for all ι. This is a finite set, because one can bound the absolute
values of the coefficients of the characteristic polynomial of such a y.
From the above analysis, it is sufficient to prove that for each y ∈ T , the set
of primes p for which ap = py has density zero. However, by Corollaire 1 to
Théorème 15 of [Ser81], the number of primes p ≤ x for which ap = py is
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O(x/(log x)5/4−δ) for any δ > 0, which immediately shows that the density of
such primes is zero, as required. �

The following result is well known, and follows from, for example, [Sch90] and
Theorem 2 of [Wil88].

Lemma 3.3. If f is ordinary at a place λ|l of Of , and l ∤ N , then the Galois
representation ρf,λ is crystalline, and furthermore it is ordinary; that is,

ρf,λ|Gal(Ql/Ql)
∼=
(
ψ1 ∗
0 ψ2ǫ

1−k

)

where ψ1 and ψ2 are unramified characters of finite order. In addition, ψ1

takes Frobl to the unit root of X2 − alX + χf (l)lk−1.

3.2. Let ρf,λ denote the semisimplification of the reduction mod λ of ρf,λ; this
makes sense because ρf,λ may be conjugated to take values in GL2(Of,λ), and
it is independent of the choice of lattice. It is valued in GL2(kf,λ), where kf,λ
is the residue field of Kf,λ.

Definition 3.4. We say that ρf,λ has large image if

SL2(k) ⊂ ρf,λ(Gal(Q/Q)) ⊂ k×f,λ GL2(k)

for some subfield k of kf,λ.

We will need to know that the residual Galois representations ρf,λ frequently
have large image. The following result is essentially due to Ribet (see [Rib75],
which treats the case N = 1; for a concrete reference, which also proves the
corresponding result for Hilbert modular forms, see [Dim05]).

Lemma 3.5. For all but finitely many primes λ of Of , ρf,λ has large image.

3.3. We let π(f) be the automorphic representation of GL2(AQ) corresponding
to f , normalised so that π(f) is RAESDC of weight (k − 2, 0) (it is essentially
self dual because

π(f)∨ ∼= χπ(f)

where χ = | · |k−2χ−1
f ). Let λ|l be a place of Of , and choose an isomorphism

ι : Ql
∼−→ C and a compatible embedding Kf,λ →֒ Ql; that is, an embedding

such that the diagram

Kf //

��

C

Kf,λ // Ql

ι

OO

commutes. Assume that πf,v is square integrable for some finite place v. Then
by Proposition 2.2 there is a Galois representation

rl,ι(π(f)) : Gal(Q/Q)→ GL2(Ql)

associated to πf , and it follows from the definitions that

rl,ι(π(f)) ∼= ρf,λ ⊗Kf,λ Ql.
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Definition 3.6. We say that f is Steinberg at a prime q if π(f)q is an unram-
ified twist of the Steinberg representation.

Definition 3.7. We say that f is potentially Steinberg at a prime q if π(f)q
is a (possibly ramified) twist of the Steinberg representation.

Note that if f is (potentially) Steinberg at q for some q then it is not CM. Note
also that if f is potentially Steinberg at q then there is a Dirichlet character θ
such that f ⊗ θ is Steinberg at q.

4. Potential automorphy in weight 0

4.1. Let l be an odd prime, and let f be a modular form of weight 2 ≤ k < l
and level N , l ∤ N . Assume that f is Steinberg at q. Suppose that λ|l is a place
of Of such that f is ordinary at λ. Assume that ρf,λ is absolutely irreducible.
By Lemma 3.3 we have

ρf,λ|Gal(Ql/Ql)
∼=
(
ψ1 ∗
0 ψ2ǫ

1−k

)

where ψ1 and ψ2 are unramified characters. We wish to prove that the sym-
metric powers of ρf,λ are potentially automorphic of some weight. To do so,
we use a potential modularity argument to realise ρf,λ geometrically, and then
appeal to the results of [HSBT09].
The potential modularity result that we need is almost proved in [Tay02]; the
one missing ingredient is that we wish to preserve the condition of being Stein-
berg at q. This is, however, easily arranged, and rather than repeating all of
the arguments of [Tay02], we simply indicate the modifications required.
We begin by recalling some definitions from [Tay02]. Let N be a totally real
field. Then an N -HBAV over a field K is a triple (A, i, j) where

• A/K is an abelian variety of dimension [N : Q],
• i : ON →֒ End(A/K), and

• j : O+
N

∼−→ P(A, i) is an isomorphism of ordered invertible ON -
modules.

For the definitions of ordered invertible ON -modules and of O+
N and P(A, i),

see page 133 of [Tay02].
Choose a totally real quadratic field F in which l is inert and q is unramified

and which is linearly disjoint from Q
ker(ρf,λ)

over Q, a finite extension k/kf,λ
and a character θ : Gal(F/F )→ k× which is unramified at q such that

det ρf,λ|Gal(F/F ) = ǫ−1θ
−2

and (ρf,λ|Gal(F/F ) ⊗ θ)(Frobw) has eigenvalues 1, #k(w), where w|q is a place

of F . This is possible as the obstruction to taking a square root of a character
is in the 2-part of the Brauer group, and because any class in the Brauer group
of a local field splits over an unramified extension. Let ρ = ρf,λ|Gal(F/F ) ⊗ θ :
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Gal(F/F ) → GL2(k), so that det ρ = ǫ−1. If x is the place of F lying over l,
then we may write (for some character χx of Gal(Fx/Fx))

ρ|Gal(Fx/Fx)
∼=
(
χ−1
x ∗
0 χxǫ

−1

)

with χ2
x|Ix = ǫ2−k.

Theorem 4.1. There is a finite totally real Galois extension E/F which is

linearly disjoint from Q
ker(ρf,λ)

over Q and in which the unique prime of F
dividing l splits completely, a totally real field N , a place λ′|l of N , a place vq|q
of E, and an N -HBAV (A, i, j)/E with potentially good reduction at all places
dividing l such that

• the representation of Gal(Ē/E) on A[λ′] is equivalent to (ρ|Gal(Ē/E))
∨,

• at each place x|l of E, the action of Gal(Ex/Ex) on Tλ′A ⊗ Ql is of
the form (

χ−1
x ǫ ∗
0 χx

)

with χx a tamely ramified lift of χx, and
• A has multiplicative reduction at vq.

Proof. As remarked above, this is essentially proved in [Tay02]. Indeed, if
k > 2 then with the exception of the fact that E can be chosen to be linearly

disjoint from Q
ker(ρf,λ)

over Q, and the claim that A can be chosen to have
multiplicative reduction at some place over q, the result is obtained on page
136 of [Tay02] (the existence of A with A[λ′] equivalent to (ρ|Gal(Ē/E))

∨ is
established in the second paragraph on that page, and the form of the action
of Gal(Ex/Ex) for x|l follows from Lemma 1.5 of loc. cit. ).
We now indicate the modifications needed to the arguments of [Tay02] to obtain
the slight strengthening that we require. Suppose firstly that k > 2. Rather
than employing the theorem of Moret-Bailly stated as Theorem G of [Tay02], we
use the variant given in Proposition 2.1 of [HSBT09]. This immediately allows

us to assume that E is linearly disjoint from Q
ker(ρf,λ)

over Q, so we only need
to ensure that A has multiplicative reduction at some place dividing q. Let X
be the moduli space defined in the first paragraph of page 136 of [Tay02]. Let
v be a place of F lying over q. It is enough to check that there is a non-empty
open subset Ωv of X(Fv) such that for each point of Ωv, the corresponding
N -HBAV has multiplicative reduction. Let Ωv denote the set of all points of
X(Fv) such that the corresponding N -HBAV has multiplicative reduction; this
is an open subset of X(Fv), and it is non-empty (by the assumptions on θ̄ at
places of F dividing q, and the assumption that π(f) is an unramified twist of
the Steinberg representation, we see that ρ(Frobv) has eigenvalues 1 and #k(v),
and is congruent to a Galois representation attached to an unramified twist
of a Steinberg representation, so any N -HBAV with multiplicative reduction
suffices), as required.
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If k = 2, then the only additional argument needed is one to ensure that if
χ2
x = 1, then the abelian variety can be chosen to have good reduction rather

than multiplicative reduction. This follows easily from the fact that ρ|Gal(Fx/Fx)

is finite flat (cf. the proof of Theorem 2.1 of [KW08], which establishes a very
similar result). �

Let M be a totally real field, and let (A, i, j)/M be an N -HBAV. Fix an
embedding N ⊂ R. We recall some definitions from section 4 of [HSBT09]. For
each finite place v of M there is a two dimensional Weil-Deligne representation
WDv(A, i) defined over N such that if p is a place of N of residue characteristic
p different from the residue characteristic of v, we have

WD(H1(A×M,Qp)|Gal(Mv/Mv)
⊗Np Np) ∼= WDv(A, i)⊗N Np.

Definition 4.2. We say that SymmA is automorphic of type {ρv}v∈S if there
is an RAESDC representation π of GLm+1(AM ) of weight 0 and type {ρv}v∈S
such that for all finite places v of M ,

rec(πv)|Art−1
Mv
|−m/2 = Symm WDv(A, i).

Theorem 4.3. Let E, A be as in the statement of Theorem 4.1. Let N be
a finite set of even positive integers. Then there is a finite Galois totally real
extension F ′/E and a place wq|q of F ′ such that

• for any n ∈ N , Symn−1A is automorphic over F ′ of weight 0 and type
{Spn(1)}{wq},
• The primes of E dividing l are unramified in F ′, and

• F ′ is linearly disjoint from Q
ker(ρf,λ)

over Q.

Proof. This is essentially Theorem 4.1 of [HSBT09]. In particular, the proof in
[HSBT09] establishes that there is a Galois totally real extension F ′/E, and a
place wq of F ′ lying over q such that for any n ∈ N , Symn−1A is automorphic
over F ′ of weight 0 and type {Spn(1)}{wq}. Note that the l used in their
argument is not the l used here. To complete the proof, we need to establish
that it is possible to obtain an F ′ in which l is unramified, and which is linearly

disjoint from Q
ker(ρf,λ)

over Q. The latter point causes no difficulty, but the
first point requires some minor modifications of the arguments of [HSBT09].
We now outline the necessary changes.
To aid comparison to [HSBT09], for the rest of this proof we will refer to our l
as s; all references to l will be to primes of that name in the proofs of various
theorems in [HSBT09]. We begin by choosing a finite solvable totally real

extension L of E, linearly disjoint from Q
ker(ρf,λ)

over Q, such that the base
change of A to L has good reduction at all places dividing s. Choose a prime l as
in the proof of Theorem 4.1 of [HSBT09]. We then apply a slight modification
of Theorem 4.2 of loc.cit., with the conclusion strengthened to include the
hypothesis that s is unramified in F ′. To prove this, in the proof of Theorem 4.2
of loc.cit., note that F1 = E. Choose all auxiliary primes not to divide s. Rather
than constructing a moduli space XW over E, construct the analogous space
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over L, and consider the restriction of scalars Y = ResL/E(XW ). Applying
Proposition 2.1 of [HSBT09] to Y , rather than XW , we may find a finite totally
real Galois extension F (1)/E in which s is unramified, such that Y has an F (1)-

point. Furthermore, we may assume that F (1) is linearly disjoint from Q
ker(ρf,λ)

over Q. Note that an F (1)-point of Y corresponds to an F (1)L-point of XW .
We now make a similar modification to the proof of Theorem 3.1 of [HSBT09],
replacing the schemes TWi over F with ResLF/F TWi . We conclude that there
is a finite Galois totally real extension F ′/E in which s is unramified, which is

linearly disjoint from Q
ker(ρf,λ)

over Q, such that for any n ∈ N , Symn−1A is
automorphic over F ′L of weight 0 and type {Spn(1)}{wq}. Since the extension
F ′L/F ′ is solvable, it follows from solvable base change (e.g. Lemma 1.3 of
[BLGHT09]) that in fact for any n ∈ N , Symn−1A is automorphic over F ′ of
weight 0 and type {Spn(1)}{wq}, as required. �

We may now twist ρ by θ
−1

in order to deduce results about ρf,λ. Let N and

λ be as in the statement of Theorem 4.1. Fix an embedding Nλ′ →֒ Ql. Let θ
be the Teichmüller lift of θ, and let ρn denote the action of Gal(Ē/E) on

Symn−1(H1(A× E,Ql)⊗Nl Nλ′ ⊗ θ−1)⊗N ′
λ

Ql.

By construction, ρn is a lift of Symn−1 ρf,λ|Gal(E/E) ⊗kf,λ F̄l (where the em-

bedding kf,λ →֒ Fl is determined by the embedding k →֒ Fl induced by the

embedding Nλ′ →֒ Ql). Note also that (again by construction) at each place
x|l of E,

ρ2|Gal(Ex/Ex)
∼=
(
ψ1 ∗
0 ψ2ω

2−kǫ−1

)

with ψ1, ψ2 unramified lifts of ψ1|Gal(Ex/Ex)
and ψ2|Gal(Ex/Ex)

respectively,

and ω the Teichmüller lift of ǫ.

Corollary 4.4. Let N be a finite set of even positive integers. Then there is
a Galois totally real extension F ′/E and a place wq|q of F ′ such that

• for any n ∈ N , ρn|Gal(Q/F ′) is automorphic of weight 0 and type

{Spn(1)}{wq},
• every prime of E dividing l is unramified in F ′ (so that l is unramified

in F ′), and

• F ′ is linearly disjoint from Q
ker(ρf,λ)

over Q.

Let ι : Ql
∼−→ C, and for n ∈ N let πn be the RAESDC representation of

GLn(AF ′) with rl,ι(πn) ∼= ρn|Gal(Ql/F
′). If k = 2 then πn,x is unramified for

each x|l, and if k > 2 then for each place x|l of F ′, πn,x is a principal series

representation n-Ind
GLn(F ′x)

Bn(F ′x)
(χ1, . . . , χn) with ι−1χi ◦ Art−1

F ′x
|Ix = ω(i−1)(2−k)

and vl(ι
−1χi(l)) = [F ′x : Ql]

(
i− 1 + 1−n

2

)
, where vl is the l-adic valuation on

Ql with vl(l) = 1.
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Proof. This is a straightforward consequence of Theorem 4.3. The only part
that needs to be checked is the assertion about the form of πn,x for x|l when
k > 2. Without loss of generality, we may assume that 2 ∈ N . Note firstly
that any principal series representation of the given form is irreducible, so that
we need only check that

ι−1 rec(πn,x) =

n⊕

i=1

ω(i−1)(2−k)αi,

where αi is an unramified character with vl(αi(l)) = [F ′x : Ql]
(
i− 1 + 1−n

2

)
.

By Definition 4.2 and Theorem 4.3 we see that rec(πn,x) = Symn−1 rec(π2,x),
so it suffices to establish the result in the case n = 2, or rather (because of the
compatibility of rec with twisting) it suffices to check the corresponding result
for WDv(A, i) at places v|l. This is now an immediate consequence of local-
global compaitibility, and follows at once from, for example, Lemma B.4.1 of
[CDT99], together with the computations of the Weil-Deligne representations
associated to characters in section B.2 of loc. cit.

�

5. Changing weight

5.1. We now explain how to deduce from the results of the previous section that
Symn ρf,λ is potentially automorphic of the correct weight (that is, the weight
of the conjectural automorphic representation corresponding to Symn ρf,λ),
rather than potentially automorphic of weight 0. We accomplish this as a basic
consequence of Hida theory; note that we simply need a congruence, rather
than a result about families, and the result follows from a straightforward
combinatorial argument. This result is certainly known to the experts, but as
we have been unable to find a reference which provides the precise result we
need, we present a proof in the spirit of the arguments of [Tay88].

5.2. For each n-tuple of integers a = (a1, . . . , an) with a1 ≥ · · · ≥ an there
is an irreducible representation of the algebraic group GLn defined over Ql,
with highest weight (with respect to the Borel subgroup of upper-triangular
matrices) given by

diag(t1, . . . , tn) 7→
n∏

i=1

taii .

We will need an explicit model of this representation, for which we follow section
2 of [Che04].
Let K be an algebraic extension of Ql, N the subgroup of GLn(K) con-
sisting of upper triangular unipotent matrices, N the subgroup of lower tri-
angular unipotent matrices, and T the subgroup of diagonal matrices. Let
R := K[GLn] = K[{Xi,j}1≤i,j≤n, det(Xi,j)

−1]. We have commuting natu-
ral actions of GLn(K) on R by left and right multiplication. For an element
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g ∈ GLn(K) we denote these actions by gl and gr respectively, so that if we let
M denote the matrix (Xi,j)i,j ∈Mn(R), we have

(gl.X)i,j = g−1M

and

(gr.X)i,j = Mg.

If (t1, . . . , tn) ∈ Zn, we say that an element f ∈ R is of left weight t (respectively
of right weight t) if for all d ∈ T we have dlf = t−1(d)f (respectively drf =
t(d)f) where

t(diag(x1, . . . , xn)) =

n∏

i=1

xtii .

For each 1 ≤ i ≤ n and each i-tuple j = (j1, . . . , ji), 1 ≤ j1 < · · · < ji ≤ n,
we let Yi,j be the minor of order i of M obtained by taking the entries from

the first i rows and columns j1,. . . ,ji. Let RN denote the subalgebra of R of

elements fixed by the gl-action of N ; it is easy to check that Yi,j ∈ RN . Because

T normalises N it acts on RN on the left, and we let RNt be the sub K-vector
space of elements of left weight t; this has a natural action of GLn(K) induced
by gr.

Proposition 5.1. Suppose that t1 ≥ · · · ≥ tn. Then RNt is a model of the ir-
reducible algebraic representation of GLn(K) of highest weight t. Furthermore,
it is generated as a K-vector space by the monomials in Yi,j of left weight t,
and a highest weight vector is given by the unique monomial in Yi,j of left and
right weight t.

Proof. This follows from Proposition 2.2.1 of [Che04]. �

Assume that in fact t1 ≥ · · · ≥ tn ≥ 0, and let Xt denote the free OK-module
with basis the monomials in Yi,j of left weight t. By Proposition 5.1, Xt is a

GLn(OK)-stable lattice in RNt . Let T+ be the submonoid of T consisting of
elements of the form

diag(lb1 , . . . , lbn)

with b1 ≥ · · · ≥ bn ≥ 0; then Xt is certainly also stable under the action of T+.
Let α = diag(lb1 , . . . , lbn) ∈ T+. We wish to determine the action of α on Xt.

Lemma 5.2. If Y ∈ Xt is a monomial in the Yi,j, then α(Y ) ⊂ l
Pn
i=1 bitn+1−iXt.

If in fact b1 > · · · > bn then α(Y ) ⊂ l1+
Pn
i=1 bitn+1−iXt unless Y is the unique

lowest weight vector.

Proof. If Y has (right) weight (v1, . . . , vn), then α(Y ) = l
Pn
i=1 biviY . The

unique lowest weight vector has weight (tn, . . . , t1), so it suffices to prove

that for any other Y of weight (v1, . . . , vn) which occurs in RNt , the quan-
tity

∑n
i=1 bivi is at least as large, and is strictly greater if b1 > · · · >

bn. However, by standard weight theory we know that we may obtain
(v1, . . . , vn) from (tn, . . . , t1) by successively adding vectors of the form
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(0, . . . , 1, 0 . . . , 0,−1, 0, . . . , 0), and it is clear that the addition of such a vec-
tor does not decrease the sum, and in fact increases it if b1 > · · · > bn, as
required. �

We define a new action of T+ on Xt, which we denote by ·twist, by multiplying
the natural action of diag(lb1 , . . . , lbn) by l−

Pn
i=1 bitn+1−i ; this is legitimate by

Lemma 5.2.

5.3. Fix for the rest of this section a choice of isomorphism ι : Ql
∼−→ C.

Assume for the rest of this section that F ′ is a totally real field in which each
l is unramified, and π′ is an RAESDC representation of GLn(AF ′) of weight 0
and type {Spn(1)}{wq} for some place wq|q of F ′, with (π′)∨ = χπ′. Suppose
furthermore that there is an integer k > 2 such that

• for each place x|l, π′x is a principal series n-Ind
GLn(Fx)
Bn(Fx)

(χ1, . . . , χn)

with vl(ι
−1χi(l)) = [F ′x : Ql]

(
i− 1 + 1−n

2

)
and ι−1χi ◦ Art−1

Fx
|Ix =

ω(i−1)(2−k).

(See Corollary 4.4 for an example of such a representation.) We transfer to
a unitary group, following section 3.3 of [CHT08]. Firstly, we make a quartic

totally real Galois extension F/F ′, linearly disjoint from Q
ker rl,ι(π)

over Q,
such that wq and all primes dividing l split in F . Let S(B) be the set of places
of F lying over wq. Let E be a imaginary quadratic field in which l and q

split, such that E is linearly disjoint from Q
ker rl,ι(π)

over Q. Let M = FE.
Let c denote the nontrivial element of Gal(M/F ). Let Sl denote the places of

F dividing l, and let S̃l denote a set of places of M dividing l such that the
natural map S̃l → Sl is a bijection. If v|l is a place of F then we write ṽ for

the corresponding place in S̃l.

Lemma 5.3. There is a finite order character φ : M×\A×M → C× such that

• φ ◦NM/F = χ ◦NM/F , and

• φ is unramified at all places lying over S(B) and at all places in S̃l.

Proof. By Lemma 4.1.1 of [CHT08] (or more properly its proof, which shows
that the character produced may be arranged to have finite order) there is a
finite order character ψ : M×\A×M → C× such that for each v ∈ Sl, ψ|Mṽ

× = 1
and ψ|Mcṽ

× = χ|F×v , and such that ψ is unramified at each place in S(B). It

now suffices to prove the result for the character χ(ψ|A×F )−1, which is unramified

at S(B) ∪ Sl, and the result now follows from Lemma 4.1.4 of [CHT08]. �

Now let π = π′M ⊗ φ, which is an RACSDC representation of GLn(AM ), satis-
fying:

• π has weight 0.
• π has type {Spn(1)}w|wq .
• for each place x ∈ S̃l, πx is a principal series n-Ind

GLn(Mx)
Bn(Mx)

(χ1, . . . , χn)

with vl(ι
−1χi(l)) = [F ′x : Ql]

(
i− 1 + 1−n

2

)
and ι−1χi ◦ Art−1

Mx
|Ix =

ω(i−1)(2−k) with k > 2.
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5.4. Choose a division algebra B with centre M such that

• B splits at all places not dividing a place in S(B).
• If w is a place of M lying over a place in S(B), then Bw is a division

algebra.
• dimM B = n2.
• Bop ∼= B ⊗M,cM .

For any involution ‡ on B with ‡|M = c, we may define a reductive algebraic
group G‡/F by

G‡(R) = {g ∈ B ⊗F R : g‡⊗1g = 1}
for any F -algebra R. Because [F : Q] is divisible by 4 and #S(B) is even, we
may (by the argument used to prove Lemma 1.7.1 of [HT01]) choose ‡ such
that

• If v /∈ S(B) is a finite place of F then G‡(Fv) is quasi-split, and
• If v|∞, G‡(Fv) ∼= U(n).

Fix such a choice of ‡, and write G for G‡. We wish to work with algebraic
modular forms on G; in order to do so, we need an integral model for G. We

obtain such a model by fixing an order OB in B such that O‡B = OB and OB,w
is a maximal order for all primes w which are split over M (see section 3.3
of [CHT08] for a proof that such an order exists). We now regard G as an
algebraic group over OF , by defining

G(R) = {g ∈ OB ⊗OF R : g‡⊗1g = 1}

for all OF -algebras R.
We may identify G with GLn at places not in S(B) which split in M in the
following way. Let v /∈ S(B) be a place of F which splits in M . Choose an iso-

morphism iv : OB,v ∼−→Mn(OMv ) such that iv(x
‡) = tiv(x)c (where t denotes

matrix transposition). Choosing a prime w|v of M gives an isomorphism

iw : G(Fv)
∼−→ GLn(Mw)

i−1
v (x, tx−c) 7→ x.

This identification satisfies iwG(OF,v) = GLn(OM,w). Similarly, if v ∈ S(B)
then v splits in M , and if w|v then we obtain an isomorphism

iw : G(Fv)
∼−→ B×w

with iwG(OF,v) = O×B,w.

Now let K = Ql. Write O for the ring of integers of K, and k for the residue
field Fl.
Let Il = Hom(F,K), and let Ĩl be the subset of elements of Hom(M,K) such

that the induced place of M is in S̃l. Let a ∈ (Zn)Hom(M,K); we assume that

• aτ,1 ≥ · · · ≥ aτ,n ≥ 0 if τ ∈ Ĩl, and
• aτc,i = −aτ,n+1−i.
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Consider the constructions of section 5.2 applied to our choice of K. Then we
have an O-module

Ya = ⊗τ∈ĨlXaτ

which has a natural action of G(OF,l), where g ∈ G(OF,l) acts on Xaτ by
τ(iτgτ ). From now on, if v|l is a place of F , we will identify G(OFv ) with
GLn(OMṽ ) via the map iṽ without comment.
We say that an open compact subgroup U ⊂ G(A∞F ) is sufficiently small if for
some place v of F the projection of U to G(Fv) contains no nontrivial elements
of finite order. Assume from now on that U is sufficiently small, and in addition
that we may write U =

∏
v Uv, Uv ⊂ G(OFv ), such that

• if v ∈ S(B) and w|v is a place of M , then iw(Uv) = O×B,w, and

• if v|l then Uv is the Iwahori subgroup of matrices which are upper-
triangular mod l.

If v|l, let U ′v denote the pro-l subgroup of Uv corresponding to the group of
matrices which are (upper-triangular) unipotent mod l, and let

χv : Uv/U
′
v → O×

be a character. Let χ = ⊗χv :
∏
v|l Uv → O×, and write

Ya,χ = Ya ⊗O χ,
a
∏
v|l Uv-module.

Let A be an O-algebra. Then we define the space of algebraic modular forms

Sa,χ(U,A)

to be the space of functions

f : G(F )\G(A∞F )→ A⊗O Ya,χ
satisfying

f(gu) = u−1f(g)

for all u ∈ U , g ∈ G(A∞F ), where the action of U on A ⊗O Ya,χ is inherited
from the action of

∏
v|l Uv on Ya,χ. Note that because U is sufficiently small

we have
Sa,χ(U,A) = Sa,χ(U,O)⊗O A.

More generally, if V is any U ′′-module with U ′′ a sufficiently small compact
open subgroup, we define the space of algebraic modular forms

S(U ′′, V )

to be the space of functions

f : G(F )\G(A∞F )→ V

satisfying
f(gu) = u−1f(g)

for all u ∈ U ′′, g ∈ G(A∞F ).
Let T+

l denote the monoid of elements of G(A∞F ) which are trivial out-
side of places dividing l, and at places dividing l correspond to matrices
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diag(lb1 , . . . , lbn) with b1 ≥ · · · ≥ bn ≥ 0. In addition to the action of U
on Ya,χ, we can also allow T+

l to act. We define the action of T+
l via the action

·twist on Xt defined above. This gives us an action of the monoid 〈U, T+
l 〉 on

Ya,χ. Now suppose that g is an element of G(A∞F ) with either gl ∈ G(OF,l) or

g ∈ T+
l ; then we write

UgU =
∐

i

giU,

a finite union of cosets, and define a linear map

[UgU ] : Sa,χ(U,A)→ Sa,χ(U,A)

by

([UgU ]f)(h) =
∑

i

gif(hgi).

We now introduce some notation for Hecke algebras. Let v be a place of F
which splits in M , and suppose that v /∈ S(B) and that Uv = G(OFv ) (so, in
particular v ∤ l). Suppose that w|v is a place of M , so that we may regard

G(OFv ) as GLn(OMw ) via iw. Then we let T
(j)
w , 1 ≤ j ≤ n denote the Hecke

operator given by

[U diag(̟w, . . . , ̟w, 1, . . . , 1)U ]

where ̟w is a uniformiser of Mw, and there are j occurrences of it in
this matrix. We let Ta,χ(U,A) denote the commutative A-subalgebra of

End(Sa,χ(U,A)) generated by the operators T
(j)
w and (T

(n)
w )−1 for all w, j

as above. Note that Ta,χ(U,A) commutes with [UgU ] for all g ∈ T+
l . More

generally, let T(U) denote the polynomial ring over O in the formal variables

T
(j)
w and (T nw)−1, which we may think of as acting on Sa,χ(U,A) via the obvious

map T(U)→ Ta,χ(U,A).

We also wish to consider the Hecke operator Ul = [UuU ], where u ∈ T+
l has

uv = diag(ln−1, . . . , l, 1) for each v|l. As usual, we can define a Hida idempotent

el = lim
n→∞

Un!
l ,

which has the property that Ul is invertible on elSa,χ(U,O) and is topologically
nilpotent on (1− el)Sa,χ(U,O). We write

Sorda,χ (U,A) := elSa,χ(U,A).

Let a ∈ (Zn)Hom(M,K) be a weight, and let χa = ⊗v|lχa,v, where χa,v :

Uv/U
′
v
∼= ((OMv/mMv)×)n → O× is given by the character (x1, . . . , xn) 7→∏

τ

∏
i τ(x̃i)

aṽ,n+1−i , where x̃i is the Teichmüller lift of xi, and the product is

over the embeddings τ ∈ Ĩl which give rise to v.
The main lemma we require is the following.

Lemma 5.4. Let a be a weight. Then there is a T(U)-equivariant isomorphism

Sorda,χ (U, k)→ Sord0,χχa(U, k).
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Proof. Note firstly that there is a natural projection map j from Ya,χ to the
O-module given by the tensor product Za,χ of the lowest weight vectors. This
is a map of

∏
v|l Uv-modules, and by Lemma 5.2 we see that j induces an

isomorphism

u · twistYa,χ ⊗O k → u · twistZa,χ ⊗O k.
Note also that by definition we have an isomorphism of 〈U, T+

l 〉-modules Za,χ →
Y0,χχa . It thus suffices to prove that the induced map

j : Sorda,χ (U, k)→ Sord(U,Za,χ ⊗O k) (= Sord0,χχa(U, k))

is an isomorphism.
We claim that there is a diagram

Sa,χ(U, k)
j

// S(U,Za,χ ⊗O k)
u·twist // S(U ∩ uUu−1, u · twistZa,χ ⊗O k)

j−1

��

Sa,χ(U ∩ uUu−1, k)

cor

hhQQQQQQQQQQQQQ

S(U ∩ uUu−1, u ·twist Ya,χ ⊗O k)
ioo

such that the maps

cor ◦i ◦ j−1 ◦ u · twist ◦ j : Sa,χ(U, k)→ Sa,χ(U, k)

and

j ◦ cor ◦i ◦ j−1 ◦ u · twist : S(U,Za,χ ⊗O k)→ S(U,Za,χ ⊗O k)

are both given by Ul. Since Ul is an isomorphism on Sorda,χ (U, k), the result will
follow.
In fact, the construction of the diagram is rather straightforward. The maps
j, j−1 are just the natural maps on the coefficients (note that both are maps
of U -modules). The map u · twist is given by

(u · twistf)(h) = u ·twist f(hu).

The map i is given by the inclusion of U -modules u·twistYa,χ⊗Ok →֒ Ya,χ⊗Ok.
Finally, the map cor is defined in the following fashion. We may write

U =
∐

ui(U ∩ uUu−1),

and we define

(cor f)(h) =
∑

uif(hui).

The claims regarding the compositions of these maps follow immediately from
the observation that

UuU =
∐

uiuU.

�
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5.5. We now recall some results on tamely ramified principal series represen-
tations of GLn from [Roc98]. Let L be a finite extension of Qp for some p,
and let πL be an irreducible smooth complex representation of GLn(L). Let
I denote the Iwahori subgroup of GLn(OL) consisting of matrices which are
upper-triangular mod mL, and let I1 denote its Sylow pro-l subgroup. Let l
be the residue field of L, and let ̟L denote a uniformiser of L. Then there is
a natural isomorphism I/I1 ∼= (l×)n. If χ = (χ1, . . . , χn) : (l×)n → C× is a

character, then we let πI,χL denote the space of vectors in πL which are fixed

by I1 and transform by χ under the action of I/I1. The space πI,χL has a nat-
ural action of the Hecke algebra H(I, χ) of compactly supported χ−1-spherical
functions on GLn(L). We consider the commutative subalgebra T(I, χ) of

H(I, χ) generated by double cosets [IαI] where α = diag(̟b1
L , . . . , ̟

bn
L ) with

b1 ≥ · · · ≥ bn ≥ 0.
If χ : (O×L )n → C× is tamely ramified, then we let πI,χL denote πI,χ̄L , where
χ̄ is the character (l×)n → C× determined by χ. Let δ denote the modulus
character of GLn(L), so that

δ(diag(a1, . . . , an)) = |a1|n−1|a2|n−3 . . . |an|1−n

where | · | denotes the usual norm on L.

Proposition 5.5. (1) If πIL 6= 0 then π is a subquotient of an unramified
principal series representation.

(2) If πI1L 6= 0 then π is a subquotient of a tamely ramified principal series

representation. More precisely, if πI,χL 6= 0 then πL is a subquotient of a

tamely ramified principal series representation n-Ind
GLn(L)
Bn(L) (χ′1, . . . , χ

′
n)

with χ′i extending χi for each i.

(3) If πL = n-Ind
GLn(L)
Bn(L) (χ) with χ tamely ramified, then

πI,χL
∼= ⊕wχδ−1/2

as a T(I, χ)-module, where the sum is over the elements w of the Weyl
group of GLn with χw = χ; that is, the double coset [IαI] acts via

(χδ−1/2)(α) on πI,χL .

Proof. The first two parts follow from Lemma 3.1.6 of [CHT08] and its proof.
All three parts follow at once from Theorem 7.7 and Remark 7.8 of [Roc98]
(which are valid for GLn without any restrictions on L - see the proof of Lemma
3.1.6 of [CHT08]), together with the standard calculation of the Jacquet module
of a principal series representation, for which see for example Theorem 6.3.5 of

[Cas95] (although note that there is a missing factor of δ1/2 (or rather δ
1/2
Ω in

the notation of loc. cit.) in the formula given there). �

5.6. Keep our running assumptions on π. Suppose that U =
∏
v Uv is a suf-

ficiently small subgroup of G(AF ). Assume further that U has been chosen
such that if v /∈ S(B), v = wwc splits completely in M , and Uv is a maximal
compact subgroup of G(Fv), then πw is unramified. Recall that we have fixed
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an isomorphism ι : Ql
∼−→ C. There is a maximal ideal mι,π of T(U) deter-

mined by π in the following fashion. For each place v = wwc as above the

Hecke operators T
(i)
w act via scalars αw,i on (πw)GLn(OMw ). The αw,i are all

algebraic integers, so that ι−1(αw,i) ∈ O. Then mι,π is the maximal ideal of

T(U) containing all the T
(i)
w − ι−1(αw,i). Let σk ∈ (Zn)Hom(M,K) be the weight

determined by (σk)τ,i = (k − 2)(n− i) for each τ ∈ Ĩl.

Lemma 5.6. Suppose that π is a RACSDC representation of GLn(AM ) of

weight 0 and type {Spn(1)}S(B). Suppose that for each place x ∈ S̃l, πx

is a principal series n-Ind
GLn(Mx)
Bn(Mx)

(χx,1, . . . , χx,n) with ι−1χx,i ◦ Art−1
Fx
|Ix =

ω(i−1)(2−k). Then there is a sufficiently small compact open subgroup U
of G(AF ) such that U satisfies the requirements above (in particular, U =∏
v Uv where Uv is an Iwahori subgroup of GLn(Fv) for each v|l) and

S0,χσk
(U,O)mι,π 6= 0. If we assume furthermore that vl(ι

−1χx,i(l)) = [Mx :

Ql]
(
i− 1 + 1−n

2

)
for all i (and all x ∈ S̃l) then Sord0,χσk

(U,O)mι,π 6= 0.

Proof. This is a consequence of Proposition 3.3.2 of [CHT08]. The only issues
are at places dividing l and places in S(B). For the latter, it is enough to
note that under the Jacquet-Langlands correspondence, Spn(1) corresponds to
the trivial representation. For the first part, we also need to check that at
each place x ∈ S̃l, πIx,χxx 6= 0, where Ix is the standard Iwahori subgroup of
GLn(Mx), and χx = (χx,1, . . . , χx,n). This follows at once from Proposition
5.5.
For the second part, we must check in addition that if the Hecke operator
[IxuxIx] (where ux = diag(ln−1, . . . , 1)) acts via the scalar αx on πIx,χxx , then
ι−1(αx) is an l-adic unit. This is straightforward; by Proposition 5.5(3), αx =
χx(u)δ−1/2(u). Thus

vl(ι
−1(αx)) = vl(ι

−1(χx(u)δ−1/2(u)))

=

n∑

i=1

(n− i)vl(ι−1χx,i(l)) +

n∑

i=1

(n− i)vl((l−[Mx:Ql])−(n+1−2i)/2))

=
n∑

i=1

(n− i)([Mx : Ql]

(
i− 1 +

1− n
2

)
)+

+

n∑

i=1

[Mx : Ql](n− i)(n+ 1− 2i)/2

=
[Mx : Ql]

2

n∑

i=1

(n− i)((2i− 1− n) + (n+ 1− 2i))

= 0,

as required. �
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Lemma 5.7. Keep (all) the assumptions of Lemma 5.6. Then there is an
RACSDC representation π′′ of GLn(AM ) of weight ι∗σk, type {Spn(1)}{S(B)}
and with π′′l unramified such that rl,ι(π

′′) ∼= r̄l,ι(π).

Proof. This is essentially a consequence of Lemma 5.6, Lemma 5.4, and Propo-
sition 5.5, together with Proposition 3.3.2 of [CHT08]. Indeed, Lemma 5.4 and
Lemma 5.6 show that Sordσk,1

(U,O)mι,π 6= 0, which by Proposition 5.5(1) and
Proposition 3.3.2 of [CHT08] gives us a π′′ satisfying all the properties we claim,
except that we only know that for each x|l, π′′x is a subquotient of an unramified
principal series representation. We claim that this unramified principal series
is irreducible, so that π′′x is unramified. To see this, note that the fact that
we know that Sordσk,1(U,O)mι,π 6= 0 (rather than merely Sσk,1(U,O)mι,π 6= 0)

means that we can choose π′′ so that for each x ∈ S̃l, π′′x is a subquotient of an

unramified principal series representation n-Ind
GLn(Mx)
Bn(Mx)

(χx,1, . . . , χx,n) with

vl(ι
−1χx,i(l)) = [Mx : Ql] ((i− 1)(k − 1) + (1 − n)/2)

(this follows from the comparison of the Hecke actions on (π′′x)Ix and
Sσk,1(U,O), noting that the latter action is defined in terms of ·twist). Now, if

the principal series n-Ind
GLn(Mx)
Bn(Mx) (χx,1, . . . , χx,n) were reducible, there would be

i, j with χx,i = χx,j| · |, so that χx,i(l)l
[Mx:Ql] = χx,j(l), which is a contradiction

because k > 2. The result follows. �

Combining Corollary 4.4 with Lemma 5.7, we obtain

Proposition 5.8. Let l be an odd prime, and let f be a modular form of weight
2 ≤ k < l and level coprime to l. Assume that f is Steinberg at q, and that
for some place λ|l of Of , f is ordinary at λ and ρf,λ is absolutely irreducible.

Fix an embedding Kf,λ →֒ Ql. Let N be a finite set of even positive integers.
Then there is a Galois totally real extension F/Q and a quadratic imaginary

field E, together with a place wq|q of M = FE such that if we choose a set S̃l
of places of M consisting of one place above each place of F dividing l, and
define σk ∈ (Zn)Hom(M,K) by (σk)τ,i = (k − 2)(n− i), then

• for each n ∈ N , there is a character φ̄n : Gal(M/M) → F
×
l which is

unramified at all places in S̃l, which satisfies

φ̄nφ̄
c
n = (ǫ det ρf,λ ⊗ Fl)1−n|Gal(M/M)

and (Symn−1 ρf,λ⊗Fl)|Gal(M/M)⊗ φ̄n is automorphic of weight σk and

type {Spn(1)}{wq}.
• l is unramified in M .

• M is linearly disjoint from Q
ker(ρf,λ)

over Q.

6. Potential automorphy

6.1. Assume as before that f is a cuspidal newform of level Γ1(N), weight k ≥
2, and nebentypus χf . Let π(f) be the RAESDC representation of GL2(AQ)
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corresponding to f . We will think of χf as an automorphic representation of
GL1(AQ), and write χf = ⊗pχf,p. We now define what we mean by the claim
that the symmetric powers of f are potentially automorphic. If F is a totally
real field and v|p is a place of F , we write rec(πf,p)|Fv for the restriction of
the Weil-Deligne representation rec(πf,p) to the Weil group of Fv. Then we

say that Symn−1 f is potentially automorphic over F if there is an RAESDC
representation πn of GLn(AF ) such that for all primes p and all places v|p of
F we have

rec(πn,v) = Symn−1(rec(πf,p)|Fv ).

By a standard argument (see for example section 4 of [HSBT09]) this is equiva-
lent to asking that Symn−1 ρf,λ|Gal(F/F ) be automorphic for some place (equiv-

alently for all places) λ of Kf .

Similarly, we may speak of Symn−1 f being potentially automorphic of a specific
weight and type. We then define (for each n ≥ 1 and each integer a) the L-series

L(χaf ⊗ Symn−1 f, s) =
∏

p

L((χaf,p ◦Art−1
Qp

)⊗ Symn−1 rec(πf,p), s+ (1− n)/2).

We now normalise the L-functions of RAESDC automorphic representations
to agree with those of their corresponding Galois representations. Specifically,
if π is an RAESDC representation of GLn(AF ), we define

L(π, s) =
∏

v∤∞
L(πv, s+ (1− n)/2).

If π is square integrable at some finite place, then for each isomorphism ι :
Ql

∼−→ C there is a Galois representation rl,ι(π), and by definition we have

L(π, s) =
∏

v∤∞
L(πv ⊗ (| · | ◦ det)(1−n)/2, s)

=
∏

v∤∞
L(rec(πv ⊗ (| · | ◦ det)(1−n)/2), s)

=
∏

v∤∞
L(rl(ι

−1πv)
∨(1− n), s)

= L(rl,ι(π), s).

Theorem 6.1. Suppose that f is a cuspidal newform of level Γ1(N) and weight
k = 2 or 3. Suppose that f is Steinberg at q. Let N be a finite set of even
positive integers. Then there is a Galois totally real field F such that for any
n ∈ N and any subfield F ′ ⊂ F with F/F ′ soluble, Symn−1 f is automorphic
over F ′.

Proof. By Lemma 3.2 and Lemma 3.5 we may choose a prime l > 3 and a place
λ of Of lying over l such that

• l ∤ N .
• f is ordinary at λ.
• l > max(2n+ 1)n∈N .
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• ρf,λ has large image.

By Corollary 5.8 there is an embedding Kf,λ →֒ Ql, a Galois totally real
extension F/Q and a quadratic imaginary field E, together with a place wq|q
of M = FE such that if we choose a set S̃l of places of M consisting of one
place above each place of F dividing l, and define σk ∈ (Zn)Hom(M,K) by
(σk)τ,i = (k − 2)(n− i), then

• for each n ∈ N , there is a character φ̄n : Gal(M/M) → F
×
l which is

unramified at all places in S̃l and satisfies

φ̄nφ̄
c
n = (ǫ det ρf,λ ⊗ Fl)1−n|Gal(M/M),

and (Symn−1 ρf,λ⊗Fl)|Gal(M/M)⊗ φ̄n is automorphic of weight σk and

type {Spn(1)}{wq}.
• l is unramified in M .

• M is linearly disjoint from Q
ker(ρf,λ)

over Q.

Fix n ∈ N , and let ρ := Symn−1 ρf,λ|Gal(F/F ) ⊗ Ql. There is a crystalline

character χ : Gal(F/F )→ O×
Ql

which is unramified above q such that

ρ∨ ∼= ρχǫn−1;

in fact,

χ = (ǫ det ρf,λ ⊗OQl
)1−n|Gal(F/F ).

By Lemma 4.1.6 of [CHT08] we can choose an algebraic character

ψ : Gal(M/M)→ O×
Ql

such that

• χ|Gal(M/M) = ψψc,

• ψ is crystalline,
• ψ is unramified at each place in S̃l.
• ψ is unramified above q,
• ψ̄ = φ̄n.

Then ρ′ = ρ|Gal(M/M)ψ satisfies

(ρ′)c ∼= (ρ′)∨ǫ1−n.

We claim that ρ′ is automorphic of weight σk, level prime to l and type
{Spn(1)}{wq}. This follows from Theorem 5.2 of [Tay08]; we now check the

hypotheses of that theorem. Certainly ρ̄′ ∼= (Symn−1 ρf,λ ⊗ Fl)|Gal(M/M) ⊗ φ̄n
is automorphic of weight σk, level prime to l and type {Spn(1)}{wq}. The only
non-trivial conditions to check are that:

• Mker ad ρ′

does not contain M(ζl), and
• The image ρ′(Gal(M/M(ζl))) is big in the sense of Definition 2.5.1 of

[CHT08].
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These both follow from the assumption that ρf,λ has large image, the fact that

M is linearly disjoint from Q
ker(ρf,λ)

over Q, Corollary 2.5.4 of [CHT08], and
the fact that PSL2(k) is simple if k is a finite field of cardinality greater than
3.
It follows from Lemma 4.3.3 of [CHT08] that ρ is automorphic. Then
from Lemma 4.3.2 of [CHT08] we see that for each F ′ with F/F ′ soluble,
Symn−1 ρf,λ|Gal(F/F ′) is automorphic, as required. �

Corollary 6.2. Suppose that f is a cuspidal newform of level Γ1(N) and
weight k = 2 or 3. Suppose that f is potentially Steinberg at q. Let N be a
finite set of even positive integers. Then there is a Galois totally real field F
such that for any n ∈ N and any subfield F ′ ⊂ F with F/F ′ soluble, Symn−1 f
is automorphic over F ′.

Proof. Let θ be a Dirichlet character such that f ′ = f ⊗ θ is Steinberg at q.
The result then follows from Theorem 6.1 applied to f ′. �

7. The Sato-Tate Conjecture

7.1. Let f be a cuspidal newform of level Γ1(N), nebentypus χf , and weight
k ≥ 2. Suppose that χf has order m, so that the image of χf is precisely the
group µm of m-th roots of unity. Let U(2)m be the subgroup of U(2) consisting
of matrices with determinant in µm. For each prime l ∤ N , if we write

X2 − alX + lk−1χf (l) = (X − αll(k−1)/2)(X − βll(k−1)/2)

then (by the Ramanujan conjecture) the matrix
(
αl 0
0 βl

)

defines a conjugacy class xf,l in U(2)m. A natural generalisation of the Sato-
Tate conjecture is

Conjecture 7.1. If f is not of CM type, then the conjugacy classes xf,l are
equidistributed with respect to the Haar measure on U(2)m (normalised so that
U(2)m has measure 1).

The group U(2)m is compact, and its irreducible representations are given by

deta⊗ Symb C2 for 0 ≤ a < m and b ≥ 0. By the corollary to Theorem 2
of section I.A.2 of [Ser68] (noting the different normalisations of L-functions
in force there), Conjecture 7.1 follows if one knows that for each b ≥ 1, the

functions L(χaf⊗Symb f, s) are holomorphic and non-zero for ℜs ≥ 1+b(k−1)/2

(the required results for b = 0 are classical).

Theorem 7.2. Suppose that f is a cuspidal newform of level Γ1(N), character
χf , and weight k = 2 or 3. Suppose that χf has order m. Suppose also that f
is potentially Steinberg at q for some prime q. Then for all integers 0 ≤ a < m,
b ≥ 1 the function L(χaf⊗Symb f, s) has meromorphic continuation to the whole
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complex plane, satisfies the expected functional equation, and is holomorphic
and nonzero in ℜs ≥ 1 + b(k − 1)/2.

Proof. The argument is very similar to the proof of Theorem 4.2 of [HSBT09].
We argue by induction on b; suppose that b is odd, and the result is known for
all 1 ≤ b′ < b. We will deduce the result for b and for b + 1 simultaneously.
Apply Corollary 6.2 with N = {2, b + 1}. Let F be as in the conclusion of
Corollary 6.2. By Brauer’s theorem, we may write

1 = Σjaj Ind
Gal(F/Q)
Gal(F/Fj)

χj

where F ⊃ Fj with F/Fj soluble, χj a character Gal(F/Fj)→ C×, and aj ∈ Z.

Then for each j, Symb f is automorphic over Fj , corresponding to an RAESDC
representation πj of GLb+1(AFj ). In addition, f is automorphic over Fj , cor-
responding to an RAESDC representation σj of GL2(AFj ).
Then we have

L(χaf ⊗ Symb f, s) =
∏

j

L(πj ⊗ (χj ◦ArtFj )⊗ (χaf ◦NFj/Q), s)aj ,

L(χaf ⊗ Sym2 f, s) =
∏

j

L((Sym2 σj)⊗ (χj ◦ArtFj )⊗ (χaf ◦NFj/Q), s)aj ,

and

L(χaf ⊗ Symb+1 f, s)L(χa+1
f ⊗ Symb−1 f, s− k + 1) =

=
∏

j

L((πj ⊗ (χj ◦ArtFj )⊗ (χaf ◦NFj/Q))× σj , s+ b(k − 1)/2)aj .

The result then follows from the main results of [CPS04] and [GJ78] (in the
case b = 1) together with Theorem 5.1 of [Sha81]. �

Corollary 7.3. Suppose that f is a cuspidal newform of level Γ1(N) and
weight k = 2 or 3. Suppose also that f is potentially Steinberg at q for some
prime q. Then Conjecture 7.1 holds for f .

Finally, we note that one can make this result more concrete, as one can easily
explicitly determine the Haar measure on U(2)m from that of its finite index
subgroup SU(2). One finds that (as already follows from Dirchlet’s theorem)
the classes xf,l are equidistributed by determinant, and that furthermore the
classes with fixed determinant are equidistributed with respect to the natural
analogue of the usual Sato-Tate measure. That is, suppose that ζ ∈ µm, and
fix a square root ζ1/2 of ζ. Then any conjugacy class xf,l in U(2)m with
determinant ζ contains a representative of the form

(
ζ1/2eiθl 0

0 ζ1/2e−iθl

)

with θl ∈ [0, π], and the θl are equidistributed with respect to the measure
2
π sin2 θdθ.
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Abstract. The notion of a subproduct system, a generalization of
that of a product system, is introduced. We show that there is an
essentially 1 to 1 correspondence between cp-semigroups and pairs
(X,T ) where X is a subproduct system and T is an injective subprod-
uct system representation. A similar statement holds for subproduct
systems and units of subproduct systems. This correspondence is used
as a framework for developing a dilation theory for cp-semigroups. Re-
sults we obtain:
(i) a ∗-automorphic dilation to semigroups of ∗-endomorphisms over
quite general semigroups;
(ii) necessary and sufficient conditions for a semigroup of CP maps to
have a ∗-endomorphic dilation;
(iii) an analogue of Parrot’s example of three contractions with no
isometric dilation, that is, an example of three commuting, contrac-
tive normal CP maps on B(H) that admit no ∗-endomorphic dilation
(thereby solving an open problem raised by Bhat in 1998).
Special attention is given to subproduct systems over the semigroup
N, which are used as a framework for studying tuples of operators
satisfying homogeneous polynomial relations, and the operator alge-
bras they generate. As applications we obtain a noncommutative
(projective) Nullstellensatz, a model for tuples of operators subject to
homogeneous polynomial relations, a complete description of all rep-
resentations of Matsumoto’s subshift C∗-algebra when the subshift
is of finite type, and a classification of certain operator algebras –
including an interesting non-selfadjoint generalization of the noncom-
mutative tori.
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Introduction

Motivation: dilation theory of CP0-semigroups. We begin by describ-
ing the problems that motivated this work.
Let H be a separable Hilbert space, and let M ⊆ B(H) be a von Neumann
algebra. A CP map on M is a contractive, normal and completely positive
map. A CP0-semigroup on M is a family Θ = {Θt}t≥0 of unital CP maps on
M satisfying the semigroup property

Θs+t(a) = Θs(Θt(a)) , s, t ≥ 0, a ∈M,

Θ0(a) = a , a ∈ B(H),

and the continuity condition

lim
t→t0
〈Θt(a)h, g〉 = 〈Θt0(a)h, g〉 , a ∈ M, h, g ∈ H.
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A CP0-semigroup is called an E0-semigroup if each of its elements is a ∗-
endomorphism.
Let Θ be a CP0-semigroup acting onM, and let α be an E0-semigroup acting
on R, where R is a von Neumann subalgebra of B(K) and K ⊇ H . Denote
the orthogonal projection of K onto H by p. We say that α is an E0-dilation
of Θ if for all t ≥ 0 and b ∈ R
(0.1) Θt(pbp) = pαt(b)p.

In the mid 1990’s Bhat proved the following result, known today as “Bhat’s
Theorem” (see [9] for the caseM = B(H), and also [40, 15, 29, 6] for different
proofs and for the general case):

Theorem 0.1. (Bhat). Every CP0-semigroup has a unique minimal E0-
dilation.

A natural question is then this: given two commuting CP0-semigroups, can
one simultaneously dilate them to a pair of commuting E0-semigroups? In [43]
the following partial positive answer was obtained2:

Theorem 0.2. [43, Theorem 6.6] Let {φt}t≥0 and {θt}t≥0 be two strongly com-
muting CP0-semigroups on a von Neumann algebra M⊆ B(H), where H is a
separable Hilbert space. Then there is a separable Hilbert space K containing H
and an orthogonal projection p : K → H, a von Neumann algebra R ⊆ B(K)
such that M = pRp, and two commuting E0-semigroups α and β on R such
that

φs ◦ θt(pbp) = pαs ◦ βt(b)p
for all s, t ≥ 0 and all b ∈ R.

In other words: every two-parameter CP0-semigroup that satisfies an addi-
tional condition of strong commutativity has a two-parameter E0-dilation. The
condition of strong commutativity was introduced in [48]. A precise definition
will not be given here. The main tools in the proof of Theorem 0.2,
and also in some of the proofs of Theorem 0.1, were product sys-
tems of W∗-correspondences and their representations. In fact, the
only place in the proof of Theorem 0.2 where the assumption of strong com-
mutativity is used, is in the construction of a certain product system. More
about that later.
In [10], Bhat showed that given a pair of commuting CP maps Θ and Φ on
B(H), there is a Hilbert space K ⊇ H and a pair of commuting normal ∗-
endomorphisms α and β acting on B(K) such that

Θm ◦ Φn(pbp) = pαm ◦ βn(b)p , b ∈ B(K)

for all m,n ∈ N (here p denotes the projection of K onto H). Later on Solel,
using a different method (using in fact product systems and their representa-
tions), proved this result for commuting CP maps on arbitrary von Neumann
algebras [48]. Neither one of the above results requires strong commutativity.

2The same result was obtained in [42] for nonunital semigroups acting on M = B(H).
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In light of the above discussion, and inspired by classical dilation theory [47, 49],
it is natural to conjecture that every two commuting (not necessarily strongly
commuting) CP0-semigroups have an E0-dilation, and in fact that the same is
true for any k commuting CP0-semigroups, for any positive integer k. However,
the framework given by product systems seems to be too weak to prove this.
Trying to bypass this stoppage, we arrived at the notion of a subproduct system.

Background: from product systems to subproduct systems. Prod-
uct systems of Hilbert spaces over R+ were introduced by Arveson some 20
years ago in his study of E0-semigroups [3]. In a few imprecise words, a prod-
uct system of Hilbert spaces over R+ is a bundle {X(t)}t∈R+ of Hilbert spaces
such that

X(s+ t) = X(s)⊗X(t) , s, t ∈ R+.

We emphasize immediately that Arveson’s definition of product systems re-
quired also that the bundle carry a certain Borel measurable structure, but we
do not deal with these matters here. To every E0-semigroup Arveson associated
a product system, and it turns out that the product system associated to an
E0-semigroup is a complete cocycle conjugacy invariant of the E0-semigroup.
Later, product systems of Hilbert C∗-correspondences over R+ appeared (see
the survey [46] by Skeide). In [15], Bhat and Skeide associate with every
semigroup of completely positive maps on a C∗-algebra A a product system of
Hilbert A-correspondences. This product system was then used in showing that
every semigroup of completely positive maps can be “dilated” to a semigroup of
∗-endomorphisms. Muhly and Solel introduced a different construction [29]: to
every CP0-semigroup on a von Neumann algebraM they associated a product
system of Hilbert W∗-correspondences overM′, the commutant of M. Again,
this product system is then used in constructing an E0-dilation for the original
CP0-semigroup.
Product systems of C∗-correspondences over semigroups other than R+ were
first studied by Fowler [21], and they have been studied since then by many
authors. In [48], product systems over N2 (and their representations) were stud-
ied, and the results were used to prove that every pair of commuting CP maps
has a ∗-endomorphic dilation. Product systems over R2

+ were also central to the
proof of Theorem 0.2, where every pair of strongly commuting CP0-semigroups
is associated with a product system over R2

+. However, the construction of the
product system is one of the hardest parts in that proof. Furthermore, that
construction fails when one drops the assumption of strong commutativity, and
it also fails when one tries to repeat it for k strongly commuting semigroups.
On the other hand there is another object that may be naturally associated
with a semigroup of CP maps over any semigroup: this object is the subproduct
system, which, when the CP maps act on B(H), is the bundle of Arveson’s
“metric operator spaces” (introduced in [4]). Roughly, a subproduct system of
correspondences over a semigroup S is a bundle {X(s)}s∈S of correspondences
such that

X(s+ t) ⊆ X(s)⊗X(t) , s, t ∈ S.
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See Definition 1.1 below. Of course, a difficult problem cannot be made easy
just by introducing a new notion, and the problem of dilating k-parameter
CP0-semigroups remains unsolved. However, subproduct systems did already
provide us with an efficient general framework for tackling various problems
in operator algebras, and in particular it has led us to a progress toward the
solution of the discrete analogue of the above unsolved problem.
While preparing this paper we learned that Bhat and Mukherjee have also
considered subproduct systems over the semigroup R+ ([14]). They called it
inclusion systems and used it to compute the index of certain product systems.
This paper consists of two parts. In the first part we introduce subproduct
systems over general semigroups, show the connection between subproduct sys-
tems and cp-semigroups, and use this connection to obtain three main results
in dilation theory of cp-semigroups. The first result is that every e0-semigroup
over a (certain kind of) semigroup S can be dilated to a semigroup of ∗-
automorphisms on some type I factor. The second is some necessary conditions
and sufficient conditions for a cp-semigroup to have a (minimal) ∗-endomorphic
dilation. The third is an analogue of Parrot’s example of three contractions
with no isometric dilation, that is, an example of three commuting, contractive
normal CP maps onB(H) that admit no ∗-endomorphic dilation. The CP maps
in the stated example can be taken to have arbitrarily small norm, providing
the first example of a theorem in the classical theory of isometric dilations that
cannot be generalized to the theory of e-dilations of cp-semigroups.
Having convinced the reader that subproduct systems are an interesting and
important object, we turn in the second part of the paper to take a closer look
at the simplest examples of subproduct systems, that is, subproduct systems
of Hilbert spaces over N. We study certain tuples of operators and operator
algebras that can be naturally associated with every subproduct system, and
explore the relationship between these objects and the subproduct systems that
give rise to them.

Some preliminaries. M and N will denote von Neumann subalgebras of
B(H), where H is some Hilbert space.
In Sections 1 through 5, S will denote a sub-semigroup of Rk+. In fact, in large
parts of the paper S can be taken to be any semigroup with unit, or at least any
Ore semigroup (see [25] for a definition), but we prefer to avoid this distraction.

Definition 0.3. A cp-semigroup is a semigroup of CP maps, that is, a family
Θ = {Θs}s∈S of completely positive, contractive and normal maps on M such
that

Θs+t(a) = Θs(Θt(a)) , s, t ∈ S, a ∈ M
and

Θ0(a) = a , a ∈M.

A cp0-semigroup is a semigroup of unital CP maps. An e-semigroup is a
semigroup of ∗-endomorphisms. An e0-semigroup is a semigroup of unital ∗-
endomorphisms.
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For concreteness, one should think of the case S = Nk, where a cp-semigroup is
a k-tuple of commuting CP maps, or the case S = Rk+, where a cp-semigroup is
a k-parameter semigroup of CP maps, or k mutually commuting one-parameter
cp-semigroups.

Definition 0.4. Let Θ = {Θs}s∈S be a cp-semigroup acting on a von Neumann
algebra M ⊆ B(H). An e-dilation of Θ is a triple (α,K,R) consisting of
a Hilbert space K ⊇ H (with orthogonal projection PH : K → H), a von
Neumann algebra R ⊆ B(K) that containsM as a corner M = PHRPH , and
an e-semigroup α = {αs}s∈S on R such that for all T ∈ R, s ∈ S,

Θs(PHTPH) = PHαs(T )PH .

Definition 0.5. Let A be a C∗-algebra. A Hilbert C∗-correspondences over
A is a (right) Hilbert A-module E which carries a non-degenerate, adjointable,
left action of A.

Definition 0.6. Let M be a W ∗-algebra. A Hilbert W ∗-correspondence over
M is a self-adjoint Hilbert C∗-correspondence E over M, such that the map
M→ L(E) which gives rise to the left action is normal.

Definition 0.7. Let E be a C∗-correspondence over A, and let H be a Hilbert
space. A pair (σ, T ) is called a completely contractive covariant representation
of E on H (or, for brevity, a c.c. representation) if

(1) T : E → B(H) is a completely contractive linear map;
(2) σ : A→ B(H) is a nondegenerate ∗-homomorphism; and
(3) T (xa) = T (x)σ(a) and T (a ·x) = σ(a)T (x) for all x ∈ E and all a ∈ A.

If A is a W ∗-algebra and E is W ∗-correspondence then we also require that σ
be normal.

Given a C∗-correspondence E and a c.c. representation (σ, T ) of E on H ,
one can form the Hilbert space E ⊗σ H , which is defined as the Hausdorff
completion of the algebraic tensor product with respect to the inner product

〈x⊗ h, y ⊗ g〉 = 〈h, σ(〈x, y〉)g〉.
One then defines T̃ : E ⊗σ H → H by

T̃ (x⊗ h) = T (x)h.

Definition 0.8. A c.c. representation (σ, T ) is called isometric if for all x, y ∈
E,

T (x)∗T (y) = σ(〈x, y〉).
(This is the case if and only if T̃ is an isometry). It is called fully coisometric

if T̃ is a coisometry.

Given two Hilbert C∗-correspondences E and F over A, the balanced (or inner)
tensor product E ⊗F is a Hilbert C∗-correspondence over A defined to be the
Hausdorff completion of the algebraic tensor product with respect to the inner
product

〈x⊗ y, w ⊗ z〉 = 〈y, 〈x,w〉 · z〉 , x, w ∈ E, y, z ∈ F.
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The left and right actions are defined as a · (x⊗ y) = (a ·x)⊗ y and (x⊗ y)a =
x⊗(ya), respectively, for all a ∈ A, x ∈ E, y ∈ F . When working in the context
of W ∗-correspondences, that is, if E and F are W*-correspondences and A is
a W ∗-algebra, then E ⊗ F is understood do be the self-dual extension of the
above construction.

Detailed overview of the paper. Subproduct systems, their represen-
tations, and their units, are defined in the next section. The following two
sections, 2 and 3, can be viewed as a reorganization and sharpening of some
known results, including several new observations.
Section 2 establishes the correspondence between cp-semigroups and subprod-
uct systems. It is shown that given a subproduct system X of N - correspon-
dences and a subproduct system representationR of X on H , we may construct
a cp-semigroup Θ acting on N ′. We denote this assignment as Θ = Σ(X,R).
Conversely, it is shown that given a cp-semigroup Θ acting on M, there is a
subproduct system E (called the Arveson-Stinespring subproduct system of Θ)
of M′-correspondences and an injective representation T of E on H such that
Θ = Σ(E, T ). Denoting this assignment as (E, T ) = Ξ(Θ), we have that Σ◦Ξ is
the identity. In Theorem 2.6 we show that Ξ◦Σ is also, after restricting to pairs
(X,R) with R an injective representation (and up to some “isomorphism”), the
identity. This allows us to deduce (Corollary 2.8) that a subproduct system
that is not a product system has no isometric representations. We introduce
the Fock spaces associated to a subproduct system and the canonical shift rep-
resentations. These constructs allow us to show that every subproduct system
is the Arveson-Stinespring subproduct system of some cp-semigroup.
In Section 3 we briefly sketch the picture that is dual to that of Section 2. It is
shown that given a subproduct system and a unit of that subproduct system
one may construct a cp-semigroup, and that every cp-semigroup arises this way.
In Section 4, we construct for every subproduct system X and every fully
coisometric subproduct system representation T of X on a Hilbert space, a
semigroup T̂ of contractions on a Hilbert space that captures “all the informa-
tion” about X and T . This construction is a modification of the construction
introduced in [41] for the case where X is a product system. It turns out that

when X is merely a subproduct system, it is hard to apply T̂ to obtain new
results about the representation T . However, when X is a true product sys-
tem T̂ is very handy, and we use it to prove that every e0-semigroup has a
∗-automorphic dilation (in a certain sense).
Section 5 begins with some general remarks regarding dilations and pieces of
subproduct system representations, and then the connection between the di-
lation theories of cp-semigroups and of representations of subproduct systems
is made. We define the notion of a subproduct subsystem and then we define
dilations and pieces of subproduct system representations. These notions gen-
eralize the notions of commuting piece or q-commuting piece of [12] and [19],
and also generalizes the definition of dilation of a product system representa-
tion of [29]. Proposition 5.8, Theorem 5.12 and Corollary 5.13 show that the
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1-1 correspondences Σ and Ξ between cp-semigroups and subproduct systems
with representations take isometric dilations of representations to e-dilations
and vice-versa. This is used to obtain an example of three commuting, unital
and contractive CP maps on B(H) for which there exists no e-dilation act-
ing on a B(K), and no minimal dilation acting on any von Neumann algebra
(Theorem 5.14).
In Section 5 we also present a reduction of both the problem of constructing an
e0-dilation to a cp0-semigroup, and the problem of constructing an e-dilation
to a k-tuple of commuting CP maps with small enough norm, to the problem
of embedding a subproduct system in a larger product system. We show that
not every subproduct system can be embedded in a product system (Propo-
sition 5.15), and we use this to construct an example of three commuting CP
maps θ1, θ2, θ3 such that for any λ > 0 the three-tuple λθ1, λθ2, λθ3 has no
e-dilation (Theorem 5.16). This unexpected phenomenon has no counterpart
in the classical theory of isometric dilations, and provides the first example of
a theorem in classical dilation theory that cannot be generalized to the theory
of e-dilations of cp-semigroups.
The developments described in the first part of the paper indicate that sub-
product systems are worthwhile objects of study, but to make progress we must
look at plenty of concrete examples. In the second part of the paper we be-
gin studying subproduct systems of Hilbert spaces over the semigroup N. In
Section 6 we show that every subproduct system (of W∗-correspondences) over
N is isomorphic to a standard subproduct system, that is, it is a subproduct
subsystem of the full product system {E⊗n}n∈N for some W∗-correspondence
E. Using the results of the previous section, this gives a new proof to the
discrete analogue of Bhat’s Theorem: every cp0-semigroup over N has an e0-
dilation. Given a subproduct system we define the standard X-shift, and we
show that if X is a subproduct subsystem of Y , then the standard X-shift is
the maximal X-piece of the standard Y -shift, generalizing and unifying results
from [12, 19, 39].
In Section 7 we explain why subproduct systems are convenient for studying
noncommutative projective algebraic geometry. We show that every homo-
geneous ideal I in the algebra C〈x1, . . . , xd〉 of noncommutative polynomials
corresponds to a unique subproduct system XI , and vice-versa. The represen-
tations of XI on a Hilbert space H are precisely determined by the d-tuples in
the zero set of I,

Z(I) = {T = (T1, . . . , Td) ∈ B(H)d : ∀p ∈ I.p(T ) = 0}.
A noncommutative version of the Nullstellensatz is obtained, stating that

{p ∈ C〈x1, . . . , xd〉 : ∀T ∈ Z(I).p(T ) = 0} = I.

Section 8 starts with a review of a powerful tool, Gelu Popescu’s “Poisson
Transform” [38]. Using this tool we derive some basic results (obtained previ-
ously by Popescu in [39]) which allow us to identify the operator algebra AX
generated by the X-shift as the universal unital operator algebra generated by a
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row contraction subject to homogeneous polynomial identities. We then prove
that every completely bounded representation of a subproduct system X is a
piece of a scaled inflation of the X-shift, and derive a related “von Neumann
inequality”.
In Section 9 we discuss the relationship between a subproduct system X and
AX , the (non-selfadjoint operator algebra generated by the X-shift). The main
result in this section is Theorem 9.7, which says that X ∼= Y if and only if AX
is completely isometrically isomorphic to AY by an isomorphism that pre-
serves the vacuum state. This result is used in Section 10, where we study the
universal norm closed unital operator algebra generated by a row contraction
(T1, . . . , Td) satisfying the relations

TiTj = qijTjTi , 1 ≤ i < j ≤ d,
where q = (qi,j)

d
i,j=1 ∈ Mn(C) is a matrix such that qj,i = q−1

i,j . These non-
selfadjoint analogues of the noncommutative tori, are shown to be classified by
their subproduct systems when qi,j 6= 1 for all i, j. In particular, when d = 2,
we obtain the universal algebra for the relation

T1T2 = qT2T1,

which we call Aq. It is shown that Aq is isomorphically isomorphic to Ar if
and only if q = r or q = r−1.
In Section 11 we describe all standard maximal subproduct systems X with
dimX(1) = 2 and dimX(2) = 3, and classify their algebras up to isometric
isomorphisms.
In the closing section of this paper, Section 12, we find that subproduct systems
are also closely related to subshifts and to the subshift C∗-algebras introduced
by K. Matsumoto [28]. We show how every subshift gives rise to a subproduct
system, and characterize the subproduct systems that come from subshifts.
We use this connection together with the results of Section 8 to describe all
representations of subshift C∗-algebras that come from a subshift of finite type
(Theorem 12.7).

Acknowledgments. The authors owe their thanks to Eliahu Levy for point-
ing out a mistake in a previous version of the paper, and to Michael Skeide, for
several helpful remarks.
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Part 1. Subproduct systems and cp-semigroups

1. Subproduct systems of Hilbert W ∗-correspondences

Definition 1.1. Let N be a von Neumann algebra. A subproduct system of
Hilbert W ∗-correspondences over N is a family X = {X(s)}s∈S of Hilbert
W ∗-correspondences over N such that

(1) X(0) = N ,
(2) For every s, t ∈ S there is a coisometric mapping of N -correspondences

Us,t : X(s)⊗X(t)→ X(s+ t),

(3) The maps Us,0 and U0,s are given by the left and right actions of N on
X(s),

(4) The maps Us,t satisfy the following associativity condition:

(1.1) Us+t,r
(
Us,t ⊗ IX(r)

)
= Us,t+r

(
IX(s) ⊗ Ut,r

)
.

The difference between a subproduct system and a product system is that in a
subproduct system the maps Us,t are only required to be coisometric, while in a
product system these maps are required to be unitaries. Thus, given the image
Us,t(x⊗ y) of x⊗ y in X(s+ t), one cannot recover x and y. Thus, subproduct
systems may be thought of as irreversible product systems. The terminology
is, admittedly, a bit awkward. It may be more sensible – however, impossible
at present – to use the term product system for the objects described above
and to use the term full product system for product system.

Example 1.2. The simplest example of a subproduct system F = FE =
{F (n)}n∈N is given by

F (n) = E⊗n,

where E is some W∗-correspondence. F is actually a product system. We shall
call this subproduct system the full product system (over E).

Example 1.3. Let E be a fixed Hilbert space. We define a subproduct system
(of Hilbert spaces) SSP = SSPE over N using the familiar symmetric tensor
products (one can obtain a subproduct system from the anti-symmetric tensor
products as well). Define

E⊗n = E ⊗ · · · ⊗E,
(n times). Let pn be the projection of E⊗n onto the symmetric subspace of
E⊗n, given by

pnk1 ⊗ · · · ⊗ kn =
1

n!

∑

σ∈Sn
kσ−1(1) ⊗ · · · ⊗ kσ−1(n).

We define
SSP (n) = Esn := pnE

⊗n,

the symmetric tensor product of E with itself n times (SSP (0) = C). We
define a map Um,n : SSP (m)⊗ SSP (n)→ SSP (m+ n) by

Um,n(x⊗ y) = pm+n(x⊗ y).
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The U ’s are coisometric maps because every projection, when considered as a
map from its domain onto its range, is coisometric. A straightforward calcula-
tion shows that (1.1) holds (see [35, Corollary 17.2]). In these notes we shall
refer to SSP (or SSPE to be precise) as the symmetric subproduct system (over
E).

Definition 1.4. Let X and Y be two subproduct systems over the same semi-
group S (with families of coisometries {UXs,t}s,t∈S and {UYs,t}s,t∈S). A family
V = {Vs}s∈S of maps Vs : X(s) → Y (s) is called a morphism of subproduct
systems if V0 : X(0)→ Y (0) is the identity, if for all s ∈ S \ {0} the map Vs is
a coisometric correspondence map, and if for all s, t ∈ S the following identity
holds:

(1.2) Vs+t ◦ UXs,t = UYs,t ◦ (Vs ⊗ Vt).
V is said to be an isomorphism if Vs is a unitary for all s ∈ S \ {0}. X is said
to be isomorphic to Y if there exists an isomorphism V : X → Y .

There is an obvious extension of the above definition to the case where X(0)
and Y (0) are ∗-isomorphic. The above notion of morphism is not optimized
in any way. It is simply precisely what we need in order to develop dilation
theory for cp-semigroups.

Definition 1.5. Let N be a von Neumann algebra, let H be a Hilbert space, and
let X be a subproduct system of Hilbert N -correspondences over the semigroup
S. Assume that T : X → B(H), and write Ts for the restriction of T to X(s),
s ∈ S, and σ for T0. T (or (σ, T )) is said to be a completely contractive
covariant representation of X if

(1) For each s ∈ S, (σ, Ts) is a c.c. representation of X(s); and
(2) Ts+t(Us,t(x ⊗ y)) = Ts(x)Tt(y) for all s, t ∈ S and all x ∈ X(s), y ∈

X(t).

T is said to be an isometric (fully coisometric) representation if it is an iso-
metric (fully coisometric) representation on every fiber X(s).

Since we shall not be concerned with any other kind of representation, we shall
call a completely contractive covariant representation of a subproduct system
simply a representation.

Remark 1.6. Item 2 in the above definition of product system can be rewritten
as follows:

T̃s+t(Us,t ⊗ IH) = T̃s(IX(s) ⊗ T̃t).
Here T̃s : X(s)⊗σ H → H is the map given by

T̃s(x⊗ h) = Ts(x)h.

Example 1.7. We now define a representation T of the symmetric subproduct
system SSP from Example 1.3 on the symmetric Fock space. Denote by F+

the symmetric Fock space

F+ =
⊕

n∈N

Esn.
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For every n ∈ N, the map Tn : SSP (n) = Esn → B(F+) is defined on the
m-particle space Esm by putting

Tn(x)y = pn+m(x ⊗ y)

for all x ∈ X(n), y ∈ Esm. Then T extends to a representation of the sub-
product system SSP on F+ (to see that item 2 of Definition 1.5 is satisfied one
may use again [35, Corollary 17.2]).

Definition 1.8. Let X = {X(s)}s∈S be a subproduct system of N -
correspondences over S. A family ξ = {ξs}s∈S is called a unit for X if

(1.3) ξs ⊗ ξt = U∗s,tξs+t.

A unit ξ = {ξs}s∈S is called unital if 〈ξs, ξs〉 = 1N for all s ∈ S, it is called
contractive if 〈ξs, ξs〉 ≤ 1N for all s ∈ S, and it is called generating if X(s) is
spanned by elements of the form
(1.4)
Us1+···+sn−1,sn(· · ·Us1+s2,s3(Us1,s2(a1ξs1 ⊗ a2ξs2)⊗ a3ξs3 )⊗ · · · ⊗ anξsnan+1),

where s = s1 + s2 + · · ·+ sn.

From (1.3) follows the perhaps more natural looking

Us,t(ξs ⊗ ξt) = ξs+t.

Example 1.9. A unital unit for the symmetric subproduct system SSP from
Example 1.3 is given by defining ξ0 = 1 and

ξn = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times

for n ≥ 1. This unit is generating only if E is one dimensional.

2. Subproduct system representations and cp-semigroups

In this section, following Muhly and Solel’s constructions from [29], we show
that subproduct systems and their representations provide a framework for
dealing with cp-semigroups, and allow us to obtain a generalization of the
classical result of Wigner that any strongly continuous one-parameter group
of automorphisms of B(H) is given by X 7→ UtXU

∗
t for some one-parameter

unitary group {Ut}t∈R.

2.1. All cp-semigroups come from subproduct system representa-
tions.

Proposition 2.1. Let N be a von Neumann algebra and let X be a subproduct
system of N -correspondences over S, and let R be completely contractive co-
variant representation of X on a Hilbert space H, such that R0 is unital. Then
the family of maps

(2.1) Θs : a 7→ R̃s(IX(s) ⊗ a)R̃∗s , a ∈ R0(N )′,
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is a semigroup of CP maps on R0(N )′. Moreover, if R is an isometric (a fully
coisometric) representation, then Θs is a ∗-endomorphism (a unital map) for
all s ∈ S.
Proof. By Proposition 2.21 in [29], {Θs}s∈S is a family of contractive, normal,
completely positive maps on R0(N )′. Moreover, these maps are unital if R is
a fully coisometric representation, and they are ∗-endomorphisms if R is an
isometric representation. It remains is to check that Θ = {Θs}s∈S satisfies the
semigroup condition Θs ◦Θt = Θs+t. Fix a ∈ R0(N )′. For all s, t ∈ S,

Θs(Θt(a)) = R̃s

(
IX(s) ⊗

(
R̃t(IX(t) ⊗ a)R̃∗t

))
R̃∗s

= R̃s(IX(s) ⊗ R̃t)(IX(s) ⊗ IX(t) ⊗ a)(IX(s) ⊗ R̃∗t )R̃∗s
= R̃s+t(Us,t ⊗ IG)(IX(s) ⊗ IX(t) ⊗ a)(U∗s,t ⊗ IG)R̃∗s+t

= R̃s+t(IX(s·t) ⊗ a)R̃∗s+t
= Θs+t(a).

Using the fact that R0 is unital, we have

Θ0(a)h = R̃0(IN ⊗ a)R̃0

∗
h

= R̃0(IN ⊗ a)(1N ⊗ h)

= R0(1N )ah

= ah,

thus Θ0(a) = a for all a ∈ N . �

We will now show that every cp-semigroup is given by a subproduct represen-
tation as in (2.1) above. We recall some constructions from [29] (building on
the foundations set in [4]).
Fix a CP map Θ on von Neumann algebra M ⊆ B(H). We define M⊗Θ H
to be the Hausdorff completion of the algebraic tensor product M⊗ H with
respect to the sesquilinear positive semidefinite form

〈T1 ⊗ h1, T2 ⊗ h2〉 = 〈h1,Θ(T ∗1 T2)h2〉 .
We define a representation πΘ of M on M⊗Θ H by

πΘ(S)(T ⊗ h) = ST ⊗ h,
and we define a (contractive) linear map WΘ : H →M⊗H by

WΘ(h) = I ⊗ h.
If Θ is unital then WΘ is an isometry, and if Θ is an endomorphism then WΘ

is a coisometry. The adjoint of WΘ is given by

W ∗Θ(T ⊗ h) = Θ(T )h.

For a given CP semigroup Θ on M, Muhly and Solel defined in [29] a W ∗-
correspondence EΘ overM′ and a c.c. representation (σ, TΘ) of EΘ on H such
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that for all a ∈ M
(2.2) Θ(a) = T̃Θ (IEΘ ⊗ a) T̃ ∗Θ.

The W ∗-correspondence EΘ is defined as the intertwining space

EΘ = LM(H,M⊗Θ H),

where

LM(H,M⊗Θ H) := {X ∈ B(H,M⊗Θ H)
∣∣ XT = πΘ(T )X, T ∈M}.

The left and right actions of M′ are given by

S ·X = (I ⊗ S)X , X · S = XS

for all X ∈ EΘ and S ∈ M′. The M′-valued inner product on EΘ is de-
fined by 〈X,Y 〉 = X∗Y . EΘ is called the Arveson-Stinespring correspondence
(associated with Θ).
The representation (σ, TΘ) is defined by letting σ = idM′ , the identity repre-
sentation of M′ on H , and by defining

TΘ(X) = W ∗ΘX.

(idM′ , TΘ) is called the identity representation (associated with Θ). We remark
that the paper [29] focused on unital CP maps, but the results we cite are true
for nonunital CP maps, with the proofs unchanged.
The case where M = B(H) in the following theorem appears, in essence at
least, in [4].

Theorem 2.2. Let Θ = {Θs}s∈S be a cp-semigroup on a von Neumann algebra
M ⊆ B(H), and for all s ∈ S let E(s) := EΘs be the Arveson-Stinespring
correspondence associated with Θs, and let Ts := TΘs denote the identity
representation for Θs. Then E = {E(s)}s∈S is a subproduct system of M′-
correspondences, and (idM′ , T ) is a representation of E on H that satisfies

(2.3) Θs(a) = T̃s
(
IE(s) ⊗ a

)
T̃ ∗s

for all a ∈ M and all s ∈ S. Ts is injective for all s ∈ S. If Θ is an e-semigroup
(cp0-semigroup), then (idM′ , T ) is isometric (fully coisometric).

Proof. We begin by defining the subproduct system maps Us,t : E(s)⊗E(t)→
E(s + t). We use the constructions made in [29, Proposition 2.12] and the
surrounding discussion. We define

Us,t = V ∗s,tΨs,t ,

where the map

Ψs,t : LM(H,M⊗Θs H)⊗ LM(H,M⊗Θt H)→ LM(H,M⊗ΘtM⊗Θs H)

is given by Ψs,t(X ⊗ Y ) = (I ⊗X)Y , and

Vs,t : LM(H,M⊗Θs+t H)→ LM(H,M⊗ΘtM⊗Θs H)

is given by Vs,t(X) = Γs,t ◦X , where Γs,t :M⊗Θs+t H →M⊗ΘtM⊗Θs H is
the isometry

Γs,t : S ⊗Θs+t h 7→ S ⊗Θt I ⊗Θs h.
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By [29, Proposition 2.12], Us,t is a coisometric bimodule map for all s, t ∈ S.
To see that the U ’s compose associatively as in (1.1), take s, t, u ∈ S, X ∈
E(s), Y ∈ E(t), Z ∈ E(u), and compute:

Us,t+u(IE(s) ⊗ Ut,u)(X ⊗ Y ⊗ Z) = Us,t+u(X ⊗ V ∗t,u(I ⊗ Y )Z)

= V ∗s,t+u
(
(I ⊗X)V ∗t,u(I ⊗ Y )Z

)

= Γ∗s,t+u(I ⊗X)Γ∗t,u(I ⊗ Y )Z

and

Us+t,u(Us,t ⊗ IE(u))(X ⊗ Y ⊗ Z) = Us+t,u(V ∗s,t(I ⊗X)Y ⊗ Z)

= V ∗s+t,u
(
(I ⊗ V ∗s,t(I ⊗X)Y )Z

)

= Γ∗s+t,u(I ⊗ Γ∗s,t)(I ⊗ I ⊗X)(I ⊗ Y )Z .

So it suffices to show that

Γ∗s,t+u(I ⊗X)Γ∗t,u = Γ∗s+t,u(I ⊗ Γ∗s,t)(I ⊗ I ⊗X)

It is easier to show that their adjoints are equal. Let a⊗h be a typical element
of M⊗Θs+t+u h.

Γt,u(I ⊗X∗)Γs,t+u(a⊗Θs+t+u h) = Γt,u(I ⊗X∗)(a⊗Θt+u I ⊗Θs h)

= Γt,u(a⊗Θt+u X
∗(I ⊗Θs h))

= a⊗Θu I ⊗Θt X
∗(I ⊗Θs h).

On the other hand

(I ⊗ I ⊗X∗)(I ⊗ Γs,t)Γs+t,u(a⊗Θs+t+u h) =

= (I ⊗ I ⊗X∗)(I ⊗ Γs,t)(a⊗Θu I ⊗Θs+t h)

= (I ⊗ I ⊗X∗)(a⊗Θu I ⊗Θt I ⊗Θs h)

= a⊗Θu I ⊗Θt X
∗(I ⊗Θs h).

This shows that the maps {Us,t} make E into a subproduct system.
Let us now verify that T is a representation of subproduct systems. That
(idM′ , Ts) is a c.c. representation of E(s) is explained in [29, page 878]. Let
X ∈ E(s), Y ∈ E(t).

Ts+t(Us,t(X ⊗ Y )) = W ∗Θs+tΓ
∗
s,t(I ⊗X)Y,

while

Ts(X)Tt(Y ) = W ∗ΘsXW
∗
ΘtY.

But for all h ∈ H ,

WΘtX
∗WΘsh = WΘtX

∗(I ⊗Θs h)

= I ⊗Θt X
∗(I ⊗Θs h)

= (I ⊗X∗)(I ⊗Θt I ⊗Θs h)

= (I ⊗X∗)Γs,t(I ⊗Θs+t h)

= (I ⊗X∗)Γs,tWΘs+th,
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which implies W ∗ΘsXW
∗
Θt
Y = W ∗Θs+tΓ

∗
s,t(I ⊗ X)Y , so we have the desired

equality

Ts+t(Us,t(X ⊗ Y )) = Ts(X)Tt(Y ).

Equation (2.3) is a consequence of (2.2). The injectivity of the identity repre-
sentation has already been noted by Solel in [48] (for all h, g ∈ H and a ∈ M ,
〈W ∗ΘXa∗h, g〉 = 〈Xa∗h, I ⊗ g〉 = 〈(I ⊗ a∗)Xh, I ⊗ g〉 = 〈Xh, a⊗ g〉 ). The final
assertion of the theorem is trivial (if Θs is a ∗-endomorphism, then WΘs is a
coisometry). �

Definition 2.3. Given a cp-semigroup Θ on a W ∗ algebraM, the pair (E, T )
constructed in Theorem 2.2 is called the identity representation of Θ, and E
is called the Arveson-Stinespring subproduct system associated with Θ.

Remark 2.4. If follows from [29, Proposition 2.14], if Θ is an e-semigroup,
then the identity representation subproduct system is, in fact, a (full) product
system.

Remark 2.5. In [27], Daniel Markiewicz has studied the Arveson-Stinespring
subproduct system of a CP0-semigroup over R+ acting on B(H), and has also
shown that it carries a structure of a measurable Hilbert bundle.

2.2. Essentially all injective subproduct system representations
come from cp-semigroups. The following generalizes and is motivated by
[48, Proposition 5.7]. We shall also repeat some arguments from [32, Theorem
2.1].
By Theorem 2.2, with every cp-semigroup Θ = {Θs}s∈S on M ⊆ B(H) we
can associate a pair (E, T ) - the identity representation of Θ - consisting of a
subproduct system E (of correspondences overM′) and an injective subproduct
system c.c. representation T . Let us write (E, T ) = Ξ(Θ). Conversely, given a
pair (X,R) consisting of a subproduct system X of correspondences over M′
and a c.c. representationR of X such that R0 = id, one may define by equation
(2.1) a cp-semigroup Θ acting on M, which we denote as Θ = Σ(X,R). The
meaning of equation (2.3) is that Σ ◦ Ξ is the identity map on the set of cp-
semigroups of M. We will show below that Ξ ◦ Σ, when restricted to pairs
(X,R) such that R is injective, is also, essentially, the identity. When (X,R)
is not injective, we will show that Ξ ◦Σ(X,R) “sits inside” (X,R).

Theorem 2.6. Let N be a W∗-algebra, let X = {X(s)}s∈S be a subproduct
system of N -correspondences, and let R be a c.c. representation of X on
H, such that σ := R0 is faithful and nondegenerate. Let M ⊆ B(H) be the
commutant σ(N )′ of σ(N ). Let Θ = Σ(X,R), and let (E, T ) = Ξ(Θ). Then
there is a morphism of subproduct systems W : X → E such that

(2.4) Rs = Ts ◦Ws , s ∈ S.
W ∗sWs = IX(s)− qs, where qs is the orthogonal projection of X(s) onto KerRs.
In particular, W is an isomorphism if and only if Rs is injective for all s ∈ S.
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Remark 2.7. The construction of the morphism W below basically comes from
[48, 32], and it remains only to show that it respects the subproduct system
structure. Some of the details in the proof will be left out.

Proof. We may construct a subproduct system X ′ of M′-correspondences (re-
call thatM′ = σ(N )), and a representation R′ of X ′ on H such that R′0 is the
identity, in such a way that (X,R) may be naturally identified with (X ′, R′).
Indeed, put

X ′(0) =M′ , X ′(s) = X(s) for s 6= 0,

where the inner product is defined by

〈x, y〉X′ = σ(〈x, y〉X),

and the left and right actions are defined by

a · x · b := σ−1(a)xσ−1(b),

for a, b ∈ M′ and x, y ∈ X ′(s), s ∈ S \ {0}. Defining R′0 = id and W0 = σ;
and R′s = Rs for and Ws = id for s ∈ S \ {0}, we have that W is a morphism
X → X ′ that sends R to R′.
Assume, therefore, that N =M′ and that σ is the identity representation.
We begin by defining for every s 6= 0

vs :M⊗Θs H → X(s)⊗H
by

vs(a⊗ h) = (IX(s) ⊗ a)R̃∗sh.

It is straightforward to show that for all s ∈ S the map vs is a well-defined

isometry. [(IX(s) ⊗M)R̃∗sH ] is invariant under IX(s) ⊗M, thus the projection
onto the orthocomplement of this subspace is in (IX(s)⊗M)′ = L(X(s))⊗ IH ,
so it has the form qs ⊗ IH for some projection qs ∈ L(X(s)). In fact, it is easy
to check that qs is the orthogonal projection of X(s) onto KerRs.
By the definition of vs and by the covariance properties of T , we have for all
a ∈ M and b ∈M′,

vs(a⊗ I) = (I ⊗ a)vs , vs(I ⊗ b) = (b ⊗ I)vs.

Fix s ∈ S and x ∈ E(s). For all ξ ∈ X(s), h ∈ H , write

ψ(ξ)h = x∗v∗s (ξ ⊗ h).

It is easy to verify that the linear map ξ 7→ ψ(ξ) maps X(s) into M′ and is
a bounded right module map. From the self duality of X(s) it follows that
there is a unique element in X(s), which we denote by Vs(x), such that for all
ξ ∈ X(s), h ∈ H ,

(2.5) 〈Vs(x), ξ〉h = x∗v∗s (ξ ⊗ h).

The map Vs is then a linear bimodule map. To show that Vs preserves inner
products, write Lξ, ξ ∈ X(s), for the operator Lξ : H → X(s)⊗H that maps
h to ξ ⊗ h and note that equation (2.5) becomes

L∗Vs(x)Lξ = x∗v∗sLξ , ξ ∈ X(s),
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or LVs(x) = vsx, for all x ∈ E(s). But since vs preserves inner products, we
have for all x, y ∈ E(s):

〈x, y〉 = x∗y = x∗v∗svsy = L∗Vs(x)LVs(y) = 〈Vs(x), Vs(y)〉.

We now prove that VsV
∗
s = IX(s)−qs. ξ ∈ ImV ⊥s if and only if L∗ξvsE(s)H = 0.

But by [29, Lemma 2.10], E(s)H =M⊗ΘsH , thus L∗ξvsE(s)H = 0 if and only

if 〈ξ, η〉 = 0 for all η ∈ (IX(s) − qs)X(s), which is the same as ξ ∈ qsX(s).
Fix h, k ∈ H . For x ∈ E(s), we compute:

〈Ts(x)h, k〉 = 〈W ∗Θsxh, k〉
= 〈xh, I ⊗Θs k〉
= 〈vsxh, vs(I ⊗Θs k)〉
= 〈Vs(x)⊗ h, R̃∗sk〉
= 〈Rs(Vs(x))h, k〉,

thus Ts = Rs ◦ Vs for all s ∈ S. Define Ws = V ∗s . Then Ts = Rs ◦ W ∗s .
Multiplying both sides by Ws we obtain Ts ◦Ws = Rs ◦W ∗sWs. But W ∗sWs =

I − qs is the orthogonal projection onto (KerRs)
⊥

, thus we obtain (2.4).
Finally, we need to show that W = {Ws} respects the subproduct system
structure: for all s, t ∈ S, x ∈ X(s) and y ∈ X(t), we must show that

Ws+t(U
X
s,t(x⊗ y)) = UEs,t(Ws(x) ⊗Wt(y)).

Since Ts+t is injective, it is enough to show that after applying Ts+t to both
sides of the above equation we get the same thing. But Ts+t applied to the left
hand side gives

Ts+tWs+t(U
X
s,t(x⊗ y)) = Rs+t(U

X
s,t(x⊗ y)) = Rs(x)Rt(y),

and Ts+t applied to the right hand side gives

Ts+t(U
E
s,t(Ws(x) ⊗Wt(y))) = Ts(Ws(x))Tt(Wt(y)) = Rs(x)Rt(y).

�

Corollary 2.8. Let X be a subproduct system that has an isometric represen-
tation V such that V0 is faithful and nondegenerate. Then X is a (full) product
system.

Proof. Let Θ = Σ(X,V ). Then Θ is an e-semigroup. Thus, if (E, T ) = Ξ(Θ)
is the identity representation of Θ, then, by Remark 2.4, E is a (full) product
system. But if V0 is faithful and V is isometric then V is injective. By the
above theorem, X is isomorphic to E, so it is a product system. �

2.3. Subproduct systems arise from cp-semigroups. The shift rep-
resentation. A question arises: does every subproduct system arise as the
Arveson-Stinespring subproduct system associated with a cp-semigroup? By
Theorem 2.6, this is equivalent to the question does every subproduct system
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have an injective representation? We shall answer this question in the affir-
mative by constructing for every such subproduct system a canonical injective
representation.
The following constructs will be of most interest when S is a countable semi-
group, such as Nk.

Definition 2.9. Let X = {X(s)}s∈S be a subproduct system. The X-Fock
space FX is defined as

FX =
⊕

s∈S
X(s).

The vector Ω := 1 ∈ N = X(0) is called the vacuum vector of FX . The X-shift
representation of X on FX is the representation

SX : X → B(FX),

given by SX(x)y = UXs,t(x⊗ y), for all x ∈ X(s), y ∈ X(t) and all s, t ∈ S.

Strictly speaking, SX as defined above is not a representation because it rep-
resents X on a C∗-correspondence rather than on a Hilbert space. However,
since for any C∗-correspondence E, L(E) is a C∗-algebra, one can compose a
faithful representation π : L(E) → B(H) with SX to obtain a representation
on a Hilbert space.

A direct computation shows that S̃Xs : X(s)⊗ FX → FX is a contraction, and
also that SX(x)SX(y) = SX(UXs,t(x ⊗ y)) so SX is a completely contractive

representation of X . SX is also injective because SX(x)Ω = x for all x ∈ X .
Thus,

Corollary 2.10. Every subproduct system is the Arveson-Stinespring sub-
product system of a cp-semigroup.

3. Subproduct system units and cp-semigroups

In this section, following Bhat and Skeide’s constructions from [15], we show
that subproduct systems and their units may also serve as a tool for studying
cp-semigroups.

Proposition 3.1. Let N be a von Neumann algebra and let X be a subproduct
system of N -correspondences over S, and let ξ = {ξs}s∈S be a contractive unit
of X, such that ξ0 = 1N . Then the family of maps

(3.1) Θs : a 7→ 〈ξs, aξs〉 ,
is a semigroup of CP maps on N . Moreover, if ξ is unital, then Θs is a unital
map for all s ∈ S.

Proof. It is standard that Θs given by (3.1) is a contractive completely positive
map on N , which is unital if and only if ξ is unital. The fact that Θs is normal
goes a little bit deeper, but is also known (one may use [29, Remark 2.4(i)]).
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We show that {Θs}s∈S is a semigroup. It is clear that Θ0(a) = a for all a ∈ N .
For all s, t ∈ S,

Θs(Θt(a)) = 〈ξs, 〈ξt, aξt〉 ξs〉
= 〈ξt ⊗ ξs, , aξt ⊗ ξs〉
=
〈
U∗t,sξs+t, , aU

∗
t,sξs+t

〉

= 〈ξs+t, aξs+t〉
= Θs+t(a).

�

We recall a central construction in Bhat and Skeide’s approach to dilation of
cp-semigroup [15], that goes back to Paschke [36]. LetM be a W ∗-algebra, and
let Θ be a normal completely positive map on M 3. The GNS representation
of Θ is a pair (FΘ, ξΘ) consisting of a Hilbert W ∗-correspondence FΘ and a
vector ξΘ ∈ FΘ such that

Θ(a) = 〈ξΘ, aξΘ〉 for all a ∈ M.

FΘ is defined to be the correspondence M⊗ΘM - which is the self-dual ex-
tension of the Hausdorff completion of the algebraic tensor product M⊗M
with respect to the inner product

〈a⊗ b, c⊗ d〉 = b∗Θ(a∗c)d.

ξΘ is defined to be ξΘ = 1 ⊗ 1. Note that ξΘ is a unit vector, that is -
〈ξΘ, ξΘ〉 = 1, if and only if Θ is unital.

Theorem 3.2. Let Θ = {Θs}s∈S be a cp-semigroup on a W ∗-algebra M.
For every s ∈ S let (F (s), ξs) be the GNS representation of Θs. Then F =
{F (s)}s∈S is a subproduct system of M-correspondences, and ξ = {ξs}s∈S is
a generating contractive unit for F that gives back Θ by the formula

(3.2) Θs(a) = 〈ξs, aξs〉 for all a ∈M.

Θ is a cp0-semigroup if and only if ξ is a unital unit.

Proof. For all s, t ∈ S define a map Vs,t : F (s + t) → F (s) ⊗ F (t) by sending
ξs+t to ξs ⊗ ξt and extending to a bimodule map. Because

〈aξs ⊗ ξtb, cξs ⊗ ξtd〉 = 〈ξtb, 〈aξs, cξs〉 ξtd〉
= 〈ξtb,Θs(a

∗c)ξtd〉
= b∗ 〈ξt,Θs(a

∗c)ξt〉 d
= b∗Θt+s(a

∗c)d

= 〈aξt+sb, cξt+sd〉 ,
Vs,t extends to a well defined isometric bimodule map from F (s+t) into F (s)⊗
F (t). We define the map Us,t to be the adjoint of Vs,t (here it is important that

3The construction works also for completely positive maps on unital C∗-algebras, but in
Theorem 3.2 below we will need to work with normal maps on W∗-algebras.
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we are working with W ∗ algebras - in general, an isometry from one Hilbert
C∗-module into another need not be adjointable, but bounded module maps
between self-dual Hilbert modules are always adjointable, [36, Proposition 3.4]).
The collection {Us,t}s,t∈S makes F into a subproduct system. Indeed, these
maps are coisometric by definition, and they compose in an associative manner.
To see the latter, we check that (IF (r) ⊗ Vs,t)Vr,s+t = (Vr,s ⊗ IF (t))Vr+s,t and
take adjoints.

(IF (r) ⊗ Vs,t)Vr,s+t(aξr+s+tb) = (IF (r) ⊗ Vs,t)(aξr ⊗ ξs+tb)
= aξr ⊗ ξs ⊗ ξtb.

Similarly, (Vr,s ⊗ IF (t))Vr+s,t(aξr+s+tb) = aξr ⊗ ξs ⊗ ξtb. Since F (r + s+ t) is
spanned by linear combinations of elements of the form aξr+s+tb, the U ’s make
F into a subproduct system, and ξ is certainly a unit for F . Equation (3.2)
follows by definition of the GNS representation. Now,

〈ξs, ξs〉 = Θs(1) , s ∈ S,
so ξ is a contractive unit because Θs(1) ≤ 1, and ξ it is unital if and only if
Θs is unital for all s. ξ is in fact more then just a generating unit, as F (s) is
spanned by elements with the form described in equation (1.4) with (s1, . . . , sn)
a fixed n-tuple such that s1 + · · ·+ sn = s. �

Definition 3.3. Given a cp-semigroup Θ on a W ∗ algebra M, the subproduct
system F and the unit ξ constructed in Theorem 3.2 are called, respectively,
the GNS subproduct system and the GNS unit of Θ. The pair (F, ξ) is called
the GNS representation of Θ.

Remark 3.4. There is a precise relationship between the identity represen-
tation (Definition 2.3) and the GNS representation of a cp-semigroup. The
GNS representation of a CP map is the dual of the identity representation in
a sense that is briefly described in [31]. This notion of duality has been used
to move from the product-system-and-representation picture to the product-
system-with-unit picture, and vice versa. See for example [44] and the ref-
erences therein. It is more-or-less straightforward to use this duality to get
Theorem 3.2 from Theorem 2.2 (or the other way around).

4. ∗-automorphic dilation of an e0-semigroup

We now apply some of the tools developed above to dilate an e0-semigroup to a
semigroup of ∗-automorphisms. We shall need the following proposition, which
is a modification (suited for subproduct systems) of the method introduced
in [41] for representing a product system representation as a semigroup of
contractive operators on a Hilbert space.

Proposition 4.1. Let N be a von Neumann algebra and let X be a subproduct
system of W ∗-correspondences over S. Let (σ, T ) be a fully coisometric covari-
ant representation of X on the Hilbert space H, and assume that σ is unital.
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Denote

Hs :=
(
X(s)⊗σ H

)/
KerT̃s

and

H =
⊕

s∈S
Hs.

Then there exists a semigroup of coisometries T̂ = {T̂s}s∈S on H such that for
all s ∈ S, x ∈ X(s) and h ∈ H,

T̂s (δs · x⊗ h) = Ts(x)h.

T̂ also has the property that for all s ∈ S and all t ≥ s
(4.1) T̂ ∗s T̂s

∣∣
Ht

= IHt , (t ≥ s).

Proof. First, we note that the assumptions on σ and on the left action of N
imply that H0

∼= H via the identification a ⊗ h ↔ σ(a)h. This identification
will be made repeatedly below.
Define H0 to be the space of all finitely supported functions f on S such that
for all s ∈ S,

f(s) ∈ Hs.

H0 is generated by the functions δs ·ξ, where δs is the function taking the value
1 at s and 0 elsewhere, and ξ ∈ Hs. We equip H0 with the inner product

〈δs · ξ, δt · η〉 = δs,t〈ξ, η〉,
for all s, t ∈ S, ξ ∈ Hs, η ∈ Ht (here δs,t is Kronecker’s delta function). Let H
be the completion of H0 with respect to this inner product. We have

H ∼=
⊕

s∈S
Hs.

It will sometimes be convenient to identify the subspace δs ·Hs ⊆ H with Hs,
and for s = 0 this gives us an inclusion H ⊆ H. We define a family T̂ = {T̂s}s∈S
of operators on H0 as follows. First, we define T̂0 to be the identity. Now

assume that s > 0. If t ∈ S and t � s, then we define T̂s(δt · ξ) = 0 for all
ξ ∈ Ht. If t ≥ s > 0 we would like to define (as we did in [41])

(4.2) T̂s (δt · (xt−s ⊗ xs ⊗ h)) = δt−s ·
(
xt−s ⊗ T̃s(xs ⊗ h)

)
,

but since X is not a true product system, we cannot identify X(t− s)⊗X(s)
with X(t). For a fixed t > 0, we define for all s ≤ t, ξ ∈ X(t) and h ∈ H

Ťs (δt · (ξ ⊗ h)) = δt−s ·
(

(IX(t−s) ⊗ T̃s)(U∗t−s,sξ ⊗ h)
)
.

Ťs can be extended to a well defined contraction from X(t)⊗H to X(t−s)⊗H ,
for all t ≥ s, and has an adjoint given by

(4.3) Ť ∗s δt−s · η ⊗ h = δt ·
(

(Ut−s,s ⊗ IH)(η ⊗ T̃ ∗s h)
)
.
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We are going to obtain T̂s as the map Ht → Ht−s induced by Ťs. Let Y ∈ Ht

satisfy T̃t(Y ) = 0. We shall show that Ťsδt · Y = 0 in δt−s ·Ht−s. But

Ťsδt · Y = δt−s ·
(

(IX(t−s) ⊗ T̃s)(U∗t−s,s ⊗ IH)Y
)
,

and

T̃t−s
(

(IX(t−s) ⊗ T̃s)(U∗t−s,s ⊗ IH)Y
)

(∗) = T̃t(Ut−s,s ⊗ IH)(U∗t−s,s ⊗ IH)Y

(∗∗) = T̃t(Y ) = 0,

where the equation marked by (*) follows from the fact that T is a representa-
tion of subproduct systems, and the one marked by (**) follows from the fact
that Ut−s,s is a coisometry. Thus, for all s, t ∈ S,

Ťs

(
δt ·KerT̃t

)
⊆ δt−s ·KerT̃t−s,

thus Ťs induces a well defined contraction T̂s on H given by

(4.4) T̂s (δt · (ξ ⊗ h)) = δt−s ·
(

(IX(t−s) ⊗ T̃s)(U∗t−s,sξ ⊗ h)
)
,

where ξ⊗h and (IX(t−s)⊗T̃s)(U∗t−s,sξ⊗h) stand for these elements’ equivalence

classes in
(
X(t) ⊗ H

)/
KerT̃t and

(
X(t − s) ⊗ H

)/
KerT̃t−s, respectively. It

follows that we have the following, more precise, variant of (4.2):

T̂s (δt · (Ut−s,s(xt−s ⊗ xs)⊗ h)) = δt−s ·
(
xt−s ⊗ T̃s(xs ⊗ h)

)
.

In particular,

T̂s (δs · xs ⊗ h) = Ts(xs)h,

for all s ∈ S, xs ∈ X(s), h ∈ H .

It will be very helpful to have a formula for T̂ ∗s as well. Assume that
∑

i ξi⊗hi ∈
KerT̃t.

Ť ∗s

(
δt ·
∑

i

ξi ⊗ hi
)

= δs+t ·
(

(Ut,s ⊗ IH)(
∑

i

ξi ⊗ T̃ ∗s hi)
)
,

and applying T̃s+t to the right hand side (without the δ) we get

T̃s+t

(
(Ut,s ⊗ IH)(

∑

i

ξi ⊗ T̃ ∗s hi)
)

= T̃t(IX(t) ⊗ T̃s)(
∑

i

ξi ⊗ T̃ ∗s hi)

= T̃t(
∑

i

ξi ⊗ T̃sT̃ ∗s hi)

= T̃t(
∑

i

ξi ⊗ hi) = 0,

because T is a fully coisometric representation. So

Ť ∗s
(
δt ·KerT̃t

)
⊆ δs+t ·KerT̃s+t,
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and this means that Ť ∗s induces on H a well defined contraction which is equal

to T̂ ∗s , and is given by the formula (4.3).

We now show that T̂ is a semigroup. Let s, t, u ∈ S. If either s = 0 or t = 0
then it is clear that the semigroup property T̂sT̂t = T̂s+t holds. Assume that

s, t > 0. If u � s+ t, then both T̂sT̂t and T̂s+t annihilate δu · ξ, for all ξ ∈ Hu.

Assuming u ≥ s+ t, we shall show that T̂sT̂t and T̂s+t agree on elements of the
form

Z = δu ·
(
Uu−t,t(Uu−t−s,s ⊗ I)(xu−s−t ⊗ xs ⊗ xt)

)
⊗ h,

and since the set of all such elements is total in Hu, this will establish the
semigroup property.

T̂sT̂tZ = T̂s

(
δu−t

(
Uu−t−s,s(xu−s−t ⊗ xs)⊗ T̃t(xt ⊗ h)

))

= δu−s−t
(
xu−s−t ⊗ T̃s(xs ⊗ T̃t(xt ⊗ h))

)

= δu−s−t
(
xu−s−t ⊗ T̃s(I ⊗ T̃t)(xs ⊗ xt ⊗ h)

)

= δu−s−t
(
xu−s−t ⊗ T̃s+t (Us,t(xs ⊗ xt)⊗ h)

)

= T̂t+sδu · (Uu−t−s,t+s (xu−s−t ⊗ Us,t(xs ⊗ xt))⊗ h)

= T̂t+sZ.

The final equality follows from the associativity condition (1.1).

To see that T̂ is a semigroup of coisometries, we take ξ ∈ X(t), h ∈ H , and
compute

T̃t

(
T̂sT̂

∗
s δt · (ξ ⊗ h)

)
=

= T̃t

(
(IX(t) ⊗ T̃s)(U∗t,s ⊗ IH)(Ut,s ⊗ IH)(IX(t) ⊗ T̃ ∗s )(ξ ⊗ h)

)

= T̃s+t(Ut,s ⊗ IH)(IX(t) ⊗ T̃ ∗s )(ξ ⊗ h)

= T̃t(ξ ⊗ T̃sT̃ ∗s h) = T̃t(ξ ⊗ h),

so T̂sT̂
∗
s is the identity on Ht for all t ∈ S, thus T̂sT̂

∗
s = IH. Equation (4.1)

follows by a similar computation, which is omitted. �

We can now obtain a ∗-automorphic dilation for any e0-semigroup over any
subsemigroup of Rk+. The following result should be compared with similar-
looking results of Arveson-Kishimoto [8], Laca [25], Skeide [45], and Arveson-
Courtney [7] (none of these cited results is strictly stronger or weaker than the
result we obtain for the case of e0-semigroups).

Theorem 4.2. Let Θ be a e0-semigroup acting on a von Neumann algebra
M. Then Θ can be dilated to a semigroup of ∗-automorphisms in the follow-
ing sense: there is a Hilbert space K, an orthogonal projection p of K onto a
subspace H of K, a normal, faithful representation ϕ : M → B(K) such that
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ϕ(1) = p, and a semigroup α = {αs}s∈S of ∗-automorphisms on B(K) such
that for all a ∈ M and all s ∈ S
(4.5) αs(ϕ(a))

∣∣
H = ϕ(Θs(a)),

so, in particular,

(4.6) pαs(ϕ(a))p = ϕ(Θs(a)).

The projection p is increasing for α, in the sense that for all s ∈ S,
(4.7) αs(p) ≥ p.
Remark 4.3. Another way of phrasing the above theorem is by using the
terminology of “weak Markov flows”, as used in [15]. Denoting ϕ by j0, and
defining js := αs ◦ j0, we have that (B(K), j) is a weak Markov flow for Θ on
K, which just means that for all t ≤ s ∈ S and all a ∈ M,

(4.8) jt(1)js(a)jt(1) = jt(Θs−t(a)).

Equation (4.8) for t = 0 is just (4.6), and the case t ≥ 0 follows from the case
t = 0.

Remark 4.4. The assumption that Θ is a unital semigroup is essential, since
(4.6) and (4.7) imply that Θ(1) = 1.

Remark 4.5. It is impossible, in the generality we are working in, to hope for
a semigroup of automorphisms that extends Θ in the sense that

(4.9) αs(ϕ(a)) = ϕ(Θs(a)),

because that would imply that Θ is injective.

Proof. Let (E, T ) be the identity representation of Θ. Since Θ preserves the

unit, T is a fully coisometric representation. Let T̂ and H be the semigroup
and Hilbert space representing T as described in Proposition 4.1. {T̂ ∗s }s∈S is a

commutative semigroup of isometries. By a theorem of Douglas [20], {T̂ ∗s }s∈S
can be extended to a semigroup {V̂ ∗s }s∈S of unitaries acting on a space K ⊇ H.

We obtain a semigroup of unitaries V = {V̂s}s∈S that is a dilation of T̂ , that is

PHV̂s
∣∣
H = T̂s , s ∈ S.

For any b ∈ B(K), and any s ∈ S, we define

αs(b) = V̂sbV̂
∗
s .

Clearly, α = {αs}s∈S is a semigroup of ∗-automorphisms.
Put p = PH, the orthogonal projection of K onto H. Define ϕ :M→ B(K) by
ϕ(a) = p(I ⊗ a)p, where I ⊗ a : H → H is given by

(I ⊗ a)δt · x⊗ h = δt · x⊗ ah , x⊗ h ∈ E(t)⊗H.
ϕ is well defined because T is an isometric representation (so KerT̃t is always
zero). We have that ϕ is a faithful, normal ∗-representation (the fact that T0 is
the identity representation ensures that ϕ is faithful). It is clear that ϕ(1) = p.
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To see (4.7), we note that since V̂ ∗s is an extension of T̂ ∗s , we have T̂ ∗s = V̂ ∗s p =

pV̂ ∗s p, thus

pαs(p)p = pV̂spV̂
∗
s p

= pV̂sV̂
∗
s p

= p,

that is, pαs(p)p = p, which implies that αs(p) ≥ p.
We now prove (4.6). Let δt · x⊗ h be a typical element of H. We compute

pαs(ϕ(a))pδt · x⊗ h = pV̂sp(I ⊗ a)pV̂ ∗s pδt · x⊗ h
= T̂s(I ⊗ a)T̂ ∗s δt · x⊗ h

= T̂s(I ⊗ a)δs+t · (Ut,s ⊗ IH)
(
x⊗ T̃ ∗s h

)

= T̂sδs+t · (Ut,s ⊗ IH)
(
x⊗ (I ⊗ a)T̃ ∗s h

)

= δt · x⊗
(
T̃s(I ⊗ a)T̃ ∗s h

)

= δt · x⊗ (Θs(a)h)

= ϕ(Θs(a))δt · x⊗ h.
Since both pαs(ϕ(a))p and ϕ(Θs(a)) annihilate K ⊖H, we have (4.6).
To prove (4.5), it just remains to show that

pαs(ϕ(a))
∣∣
H = αs(ϕ(a))

∣∣
H,

that is, that αs(ϕ(a))H ⊆ H. Now, V̂ ∗s is an extension of T̂ ∗s . Moreover (4.1)

shows that if ξ ∈ Hu with u ≥ s, then ‖T̂s(ξ)‖ = ‖ξ‖. Thus

‖ξ‖2 = ‖V̂sξ‖2 = ‖PHV̂sξ‖2 + ‖(IK − PH)V̂sξ‖2 = ‖T̂sξ‖2 + ‖(IK − PH)V̂sξ‖2.
So V̂sξ = T̂sξ for ξ ∈ Hu with u ≥ s. Now, for a typical element δt · x ⊗ h in
Ht, t ∈ S, we have

αs(ϕ(a))δt · x⊗ h = V̂s(I ⊗ a)V̂ ∗s δt · x⊗ h
= V̂s(I ⊗ a)T̂ ∗s δt · x⊗ h

= V̂sδs+t · (Us,t ⊗ IH)
(
x⊗ (I ⊗ a)T̃ ∗s h

)

= T̂sδs+t · (Us,t ⊗ IH)
(
x⊗ (I ⊗ a)T̃ ∗s h

)
∈ H,

because δs+t · x⊗ (I ⊗ a)T̃ ∗s h ∈ Hs+t, and s+ t ≥ s. �

5. Dilations and pieces of subproduct system representations

5.1. Dilations and pieces of subproduct system representations.

Definition 5.1. Let X and Y be subproduct systems of M correspondences
(M a W∗-algebra) over the same semigroup S. Denote by UXs,t and UYs,t the
coisometric maps that make X and Y , respectively, into subproduct systems.
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X is said to be a subproduct subsystem of Y (or simply a subsystem of Y for
short) if for all s ∈ S the space X(s) is a closed subspace of Y (s), and if the
orthogonal projections ps : Y (s)→ X(s) are bimodule maps that satisfy

(5.1) ps+t ◦ UYs,t = UXs,t ◦ (ps ⊗ pt) , s, t ∈ S.
One checks that if X is a subproduct subsystem of Y then

(5.2) ps+t+u ◦ UYs,t+u(I ⊗ (pt+u ◦ UYt,u)) = ps+t+u ◦ UYs+t,u((ps+t ◦ UYs,t)⊗ I),

for all s, t, u ∈ S. Conversely, given a subproduct system Y and a family of
orthogonal projections {ps}s∈S that are bimodule maps satisfying (5.2), then
by defining X(s) = psY (s) and UXs,t = ps+t ◦ UYs,t one obtains a subproduct
subsystem X of Y (with (5.1) satisfied).
The following proposition is a consequence of the definitions.

Proposition 5.2. There exists a morphism X → Y if and only if Y is iso-
morphic to a subproduct subsystem of X.

Remark 5.3. In the notation of Theorem 2.6, we may now say that given a sub-
product system X and a representation R of X , then the Arveson-Stinespring
subproduct system E of Θ = Σ(X,R) is isomorphic to a subproduct subsystem
of X .

The following definitions are inspired by the work of Bhat, Bhattacharyya and
Dey [12].

Definition 5.4. Let X and Y be subproduct systems of W∗-correspondences
(over the same W∗-algebra M) over S, and let T be a representation of Y on
a Hilbert space K. Let H be some fixed Hilbert space, and let S = {Ss}s∈S be
a family of maps Ss : X(s)→ B(H). (Y, T,K) is called a dilation of (X,S,H)
if

(1) X is a subsystem of Y ,
(2) H is a subspace of K, and

(3) for all s ∈ S, T̃ ∗sH ⊆ X(s)⊗H and T̃ ∗s
∣∣
H

= S̃∗s .

In this case we say that S is an X-piece of T , or simply a piece of T . T is said
to be an isometric dilation of S if T is an isometric representation.

The third item can be replaced by the three conditions

1’ T0(·)PH = PHT0(·)PH = S0(·),
2’ PH T̃s

∣∣
X(s)⊗H = S̃s for all s ∈ S, and

3’ PH T̃s
∣∣
Y (s)⊗K⊖X(s)⊗H = 0.

So our definition of dilation is identical to Muhly and Solel’s definition of di-
lation of representations when X = Y is a product system [29, Theorem and
Definition 3.7].

Proposition 5.5. Let T be a representation of Y , let X be a subproduct sub-
system of Y , and let S an X-piece of T . Then S is a representation of X.
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Proof. S is a completely contractive linear map as the compression of a com-
pletely contractive linear map. Item 1’ above together with the coinvariance of
T imply that S is coinvariant: if a, b ∈ M and x ∈ X(s), then

Ss(axb) = PHTs(axb)PH = PHT0(a)Ts(x)T0(b)PH

= PHT0(a)PHTs(x)PHT0(b)PH

= S0(a)Ss(x)S0(b).

Finally, (using Item 3’ above),

Ss+t(U
X
s,t(x ⊗ y))h = Ss+t(ps+tU

Y
s,t(x ⊗ y))h

= S̃s+t(ps+tU
Y
s,t(x ⊗ y)⊗ h)

= PH T̃s+t(U
Y
s,t(x⊗ y)⊗ h)

= PHTs(x)Tt(y)h

= PHTs(x)PHTt(y)h

= Ss(x)St(y)h.

�

Example 5.6. Let E be a Hilbert space of dimension d, and let X be the
symmetric subproduct system constructed in Example 1.3. Fix an orthonor-
mal basis {e1, . . . , en} of E. There is a one-to-one correspondence between
c.c. representations S of X (on some H) and commuting row contractions
(S1, . . . , Sd) (of operators on H), given by

S ↔ S = (S(e1), . . . , S(ed)).

If Y is the full product system over E, then any dilation (Y, T,K) gives rise to
a tuple T = (T (e1), . . . , T (ed)) that is a dilation of S in the sense of [12], and
vice versa. Moreover, S is then a commuting piece of T in the sense of [12].

Consider a subproduct system Y and a representation T of Y on K. Let X be
some subproduct subsystem of Y . Define the following set of subspaces of K:

(5.3) P(X,T ) = {H ⊆ K : T̃ ∗sH ⊆ X(s)⊗H for all s ∈ S}.
As in [12], we observe that P(X,T ) is closed under closed linear spans (and
intersections), thus we may define

KX(T ) =
∨

H∈P(X,T )

H.

KX(T ) is the maximal element of P(X,T ).

Definition 5.7. The representation TX of X on KX(T ) given by

TX(x)h = PKX (T )T (x)h,

for x ∈ X(s) and h ∈ KX(T ), is called the maximal X-piece of T .

By Proposition 5.5, TX is indeed a representation of X .
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5.2. Consequences in dilation theory of cp-semigroups.

Proposition 5.8. Let X and Y be subproduct systems of W∗-correspondences
(over the same W∗-algebra M) over S, and let S and T be representations of
X on H and of Y on K, respectively. Assume that (Y, T,K) is a dilation of
(X,S,H). Then the cp-semigroup Θ acting on V0(M)′, given by

Θs(a) = T̃s(IY (s) ⊗ a)T̃ ∗s , a ∈ V0(M)′,

is a dilation of the cp-semigroup Φ acting on T0(M)′ given by

Φs(a) = S̃s(IX(s) ⊗ a)S̃∗s , a ∈ T0(M)′,

in the sense that for all b ∈ V0(M)′ and all s ∈ S,
Φs(PHbPH) = PHΘs(b)PH .

Proof. This follows from the definitions. �

Although the above proposition follows immediately from the definitions, we
hope that it will prove to be important in the theory of dilations of cp-
semigroups, because it points to a conceptually new way of constructing di-
lations of cp-semigroups, as the following proposition and corollary illustrate.

Proposition 5.9. Let X = {X(s)}s∈S be a subproduct system, and let S be
a fully coisometric representation of X on H such that S0 is unital. If there
exists a (full) product system Y = {Y (s)}s∈S such that X is a subproduct
subsystem of Y , then S has an isometric and fully coisometric dilation.

Proof. Define a representation T of Y on H by

(5.4) Ts = Ss ◦ ps,
where, as above, ps is the orthogonal projection Y (s) → X(s). A straightfor-
ward verification shows that T is indeed a fully coisometric representation of Y
on H . By [43, Theorem 5.2], (Y, T,H) has a minimal isometric and fully coiso-
metric dilation (Y, V,K). (Y, V,K) is also clearly a dilation of (X,S,H). �

Corollary 5.10. Let Θ = {Θs}s∈S be a cp0-semigroup and let (E, T ) = Ξ(Θ)
be the Arveson-Stinespring representation of Θ. If there is a (full) product
system Y such that E is a subproduct subsystem of Y , then Θ has an e0-
dilation.

Proof. Combine Propositions 2.1, 5.8 and 5.9. �

Thus, the problem of constructing e0-dilations to cp0-semigroups is reduced to
the problem of embedding a subproduct system into a full product system. In
the next subsection we give an example of a subproduct system that cannot
be embedded into full product system. When this can be done in general is a
challenging open question.
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Corollary 5.11. Let Θ = {Θs}s∈Nk be a cp-semigroup generated by k com-
muting CP maps θ1, . . . , θk, and let (E, T ) = Ξ(Θ) be the Arveson representa-
tion of Θ. Assume, in addition, that

k∑

i=1

‖θi‖ ≤ 1.

If there is a (full) product system Y such that E is a subproduct subsystem of
Y , then Θ has an e-dilation.

Proof. As in (5.4), we may extend T to a product system representation of Y
on H , which we also denote by T . Denote by ei the element of Nk with 1 in
the ith element and zeros elsewhere. Then

k∑

i=1

‖T̃ei
T̃ ∗ei
‖ =

k∑

i=1

‖θi‖ ≤ 1.

By the methods of [41], one may show that S has a minimal (regular) isometric
dilation. This isometric dilation provides the required e-dilation of Θ. �

Theorem 5.12. Let M ⊆ B(H) be a von Neumann algebra, let X be a sub-
product system of M′-correspondences, and let R be an injective representa-
tion of X on a Hilbert space H. Let Θ = Σ(X,R) be the cp-semigroup act-
ing on R0(M′)′ given by (2.1). Assume that (α,K,R) is an e-dilation of Θ,
and let (Y, V ) = Ξ(α) be the Arveson-Stinespring subproduct system of α to-
gether with the identity representation. Assume, in addition, that the map
R′ ∋ b 7→ PHbPH is a ∗-isomorphism of R′ onto R0(M′). Then (Y, V,K) is a
dilation of (X,R,H).

Proof. For every s ∈ S, define Ws : Y (s) → B(H) by Ws(y) = PHVs(y)PH .
We claim that W = {Ws}s∈S is a representation of Y on H . First, note

that PHαs(I − PH)PH = Θs(PH(I − PH)PH) = 0, thus PH Ṽs(I ⊗ (I −
PH))Ṽ ∗s PH = 0, and consequently PH Ṽs(I ⊗ PH) = PH Ṽs. It follows that
Ws(y) = PHVs(y)PH = PHVs(y). From this it follows that

Ws(y1)Wt(y2) = PHVs(y1)PHVt(y2) = PHVs(y1)Vt(y2)

= PHVs+t(U
Y
s,t(y1 ⊗ y2)) = Ws+t(U

Y
s,t(y1 ⊗ y2)).

By Theorem 2.6, we may assume that (X,R) = (E, T ) = Ξ(Θ) is the Arveson-
Stinespring representation of Θ. Because α is a dilation of Θ, we have

W̃s(I ⊗ a)W̃ ∗s = PH Ṽs(I ⊗ a)Ṽ ∗s PH = Θs(a),

That is, Θ = Σ(Y,W ). Thus, by Theorem 2.6 and Remark 5.3, we may assume
that E is a subproduct subsystem of Y , and that Ts ◦ ps = Ws, ps being the
projection of Y (s) onto E(s). In other words, for all y ∈ Y ,

T̃s(ps ⊗ IH) = PHW̃s.
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Therefore, W̃ ∗sH ⊆ E(s)⊗H , and W̃ ∗s
∣∣
H

= T̃ ∗s . That is, (Y,W,H) is a dilation

of (E, T,H). But (Y, V,K) is a dilation of (Y,W,H), so it is also a dilation of
(E, T,H). �

The assumption that R′ ∋ b 7→ PHbPH ∈ M′ is a ∗-isomorphism is satisfied
when M = B(H) and R = B(K). More generally, it is satisfied whenever the
central projection of PH in R is IK (see Propositions 5.5.5 and 5.5.6 in [22]).
Let (α,K,R) be an e-dilation of a semigroup Θ on M ⊆ B(H). (α,K,R) is
called a minimal dilation if the central support of PH in R is IK and if

R = W ∗
(⋃

s∈S
αs(M)

)
.

Corollary 5.13. Let Θ be cp-semigroup on M⊆ B(H), and let (α,K,R) be
a minimal dilation of Θ. Then Ξ(α) is an isometric dilation of Ξ(Θ).

5.3. cp-semigroups with no e-dilations. Obstructions of a new na-
ture. By Parrot’s famous example [34], there exist 3 commuting contractions
that do not have a commuting isometric dilation. In 1998 Bhat asked whether
3 commuting CP maps necessarily have a commuting ∗-endomorphic dilation
[10]. Note that it is not obvious that the non-existence of an isometric di-
lation for three commuting contractions would imply the non-existence of a
∗-endomorphic dilation for 3 commuting CP maps. However, it turns out that
this is the case.

Theorem 5.14. There exists a cp-semigroup Θ = {Θn}n∈N3 acting on a B(H)
for which there is no e-dilation (α,K,B(K)). In fact, Θ has no minimal e-
dilation (α,K,R) on any von Neumann algebra R.

Proof. Let T1, T2, T3 ∈ B(H) be three commuting contractions that have no
isometric dilation and such that T n1

1 T n2
2 T n3

3 6= 0 for all n = (n1, n2, n3) ∈ N3

(one may take commuting contractions R1, R2, R3 with no isometric dilation as
in Parrot’s example [34], and define Ti = Ri⊕1). For all n = (n1, n2, n3) ∈ N3,
define

Θn(a) = T n1
1 T n2

2 T n3
3 a(T n3

3 )∗(T n2
2 )∗(T n1

1 )∗ , a ∈ B(H).

Note that Θ = Σ(X,R), where X = {X(n)}n∈N3 is the subproduct system
given by X(n) = C for all n ∈ N3, and R is the (injective) representation that
sends 1 ∈ X(n) to T n1

1 T n2
2 T n3

3 (the product in X is simply multiplication of
scalars).
Assume, for the sake of obtaining a contradiction, that Θ = {Θn}n∈N3 has an
e-dilation (α,K,B(K)). Let (Y, V ) = Ξ(α) be the Arveson-Stinespring sub-
product system of α together with the identity representation. By Theorem
5.12, (Y, V,K) is a dilation of (X,R,H). It follows that V1, V2, V3 are a com-
muting isometric dilation of T1, T2, T3 where V1 := V (1) with 1 ∈ X(1, 0, 0),
V2 := V (1) with 1 ∈ X(0, 1, 0), and V3 := V (1) with 1 ∈ X(0, 0, 1). This is a
contradiction.
Finally, a standard argument shows that if (α,K,R) is a minimal dilation of
Θ, then R = B(K). �
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Until this point, all the results that we have seen in the dilation theory of cp-
semigroups have been anticipated by the classical theory of isometric dilations.
We shall now encounter a phenomena that has no counterpart in the classical
theory.
By [49, Proposition 9.2], if T1, . . . , Tk is a commuting k-tuple of contractions
such that

(5.5)

k∑

i=1

‖Ti‖2 ≤ 1,

then T1, . . . , Tk has a commuting regular unitary dilation (and, in particular,
an isometric dilation). One is tempted to conjecture that if θ1, . . . , θk is a
commuting k-tuple of CP maps such that

(5.6)

k∑

i=1

‖θi‖ ≤ 1,

then the tuple θ1, . . . , θk has an e-dilation. Indeed, if θi(a) = TiaT
∗
i , where

T1, . . . , Tk is a commuting k-tuple satisfying (5.5), then it is easy to construct
an e-dilation of θ1, . . . , θk from the isometric dilation of T1, . . . , Tk. However,
it turns out that (5.6) is far from being sufficient for an e-dilation to exist. We
need some preparations before exhibiting an example.

Proposition 5.15. There exists a subproduct system that is not a subsystem
of any product system.

Proof. We construct a counter example over N3. Let e1, e2, e3 be the standard
basis of N3. We let X(e1) = X(e2) = X(e3) = C2. Let X(ei + ej) = C2 ⊗ C2

for all i, j = 1, 2, 3. Put X(n) = {0} for all n ∈ Nk such that |n| > 2. To
complete the construction of X we need to define the product maps UXm,n. Let

UXei,ej be the identity on C2 ⊗ C2 for all i, j except for i = 3, j = 2, and let

UXe3,e2 be the flip. Define the rest of the products to be zero maps (except the

maps UX0,n, U
X
m,0 which are identities). This product is evidently coisometric,

and it is also associative, because the product of any three nontrivial elements
vanishes.
Let Y be a product system “dilating” X . Then for all k,m, n ∈ Nk we have

UYk+m,n(UYk,m ⊗ I) = UYk,m+n(I ⊗ UYm,n),

or

UYk+m,n = UYk,m+n(I ⊗ UYm,n)(UYk,m ⊗ I)∗,

and

UYk,m+n = UYk+m,n(UYk,m ⊗ I)(I ⊗ UYm,n)∗.
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Iterating these identities, we have, on the one hand,

Ue3,e1+e2 = UYe3+e2,e1(UYe3,e2 ⊗ I)(I ⊗ UYe2,e1)∗

= UYe2,e3+e1(I ⊗ UYe3,e1)(UYe2,e3 ⊗ I)∗(UYe3,e2 ⊗ I)(I ⊗ UYe2,e1)∗

= UYe1+e2,e3(UYe2,e1 ⊗ I)(I ⊗ UYe1,e3)∗

(I ⊗ UYe3,e1)(UYe2,e3 ⊗ I)∗(UYe3,e2 ⊗ I)(I ⊗ UYe2,e1)∗,

and on the other hand

Ue3,e1+e2 = UYe3+e1,e2(UYe3,e1 ⊗ I)(I ⊗ UYe1,e2)∗

= UYe1,e3+e2(I ⊗ UYe3,e2)(UYe1,e3 ⊗ I)∗(UYe3,e1 ⊗ I)(I ⊗ UYe1,e2)∗

= UYe1+e2,e3(UYe1,e2 ⊗ I)(I ⊗ UYe2,e3)∗

(I ⊗ UYe3,e2)(UYe1,e3 ⊗ I)∗(UYe3,e1 ⊗ I)(I ⊗ UYe1,e2)∗.

Canceling UYe1+e2,e3 , we must have

(UYe1,e2 ⊗ I)(I ⊗ UYe2,e3)∗(I ⊗ UYe3,e2)(UYe1,e3 ⊗ I)∗(UYe3,e1 ⊗ I)(I ⊗ UYe1,e2)∗

= (UYe2,e1 ⊗ I)(I ⊗ UYe1,e3)∗(I ⊗ UYe3,e1)(UYe2,e3 ⊗ I)∗(UYe3,e2 ⊗ I)(I ⊗ UYe2,e1)∗.

Now, UXei,ej were unitary to begin with, so the above identity implies

(UXe1,e2 ⊗ I)(I ⊗ UXe2,e3)∗(I ⊗ UXe3,e2)(UXe1,e3 ⊗ I)∗(UXe3,e1 ⊗ I)(I ⊗ UXe1,e2)∗

= (UXe2,e1 ⊗ I)(I ⊗ UXe1,e3)∗(I ⊗ UXe3,e1)(UXe2,e3 ⊗ I)∗(UXe3,e2 ⊗ I)(I ⊗ UXe2,e1)∗.

Recalling the definition of the product inX (the product is usually the identity),
this reduces to

I ⊗ UXe3,e2 = UXe3,e2 ⊗ I.
This is absurd. Thus, X cannot be dilated to a product system. �

We can now strengthen Theorem 5.14:

Theorem 5.16. There exists a cp-semigroup Θ = {Θn}n∈N3 acting on a B(H),
such that for all λ > 0, λΘ has no e-dilation (α,K,B(K)), and no minimal
e-dilation (α,K,R) on any von Neumann algebra R.

Proof. Let X be as in Proposition 5.15. Let Θ be the cp-semigroup generated
by the X-shift, as in Section 2.3 of the paper. Of course, Θ, as a semigroup
over N3, can be generated by three commuting CP maps θ1, θ2, θ3. X cannot
be embedded into a full product system, so by Theorem 5.12, Θ has no minimal
e-dilation, nor does it have an e-dilation acting on a B(K). Note that if Θ is
scaled its product system is left unchanged (this follows from Theorem 2.6: if
you take X and scale the representation SX you get a scaled version of Θ). So
no matter how small you take λ > 0, λθ1, λθ2, λθ3 cannot be dilated to three
commuting ∗-endomorphisms on B(K), nor to a minimal three-tuple on any
von Neumann algebra. �
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Note that the obstruction here seems to be of a completely different nature
from the one in the example given in Theorem 5.14. The subproduct system
arising there is already a product system, and, indeed, the cp-semigroup arising
there can be dilated once it is multiplied by a small enough scalar.

Part 2. Subproduct systems over N

6. Subproduct systems of Hilbert spaces over N

We now specialize to subproduct systems of Hilbert W∗-correspondences over
the semigroup N, so from now on any subproduct system is to be understood
as such (soon we will specialize even further to subproduct systems of Hilbert
spaces).

6.1. Standard and maximal subproduct systems. If X is a subproduct
system over N, then X(0) = M (some von Neumann algebra), X(1) equals
some W∗-correspondence E, and X(n) can be regarded as a subspace of E⊗n.
The following lemma allows us to consider X(m+ n) as a subspace of X(m)⊗
X(n).

Lemma 6.1. Let X = {X(n)}n∈N be a subproduct system. X is isomorphic
to a subproduct system Y = {Y (n)}n∈N with coisometries {UYm,n}m,n∈N that
satisfies

Y (1) = X(1)

and

(6.1) Y (m+ n) ⊆ Y (m)⊗ Y (n).

Moreover, if pm+n is the orthogonal projection of Y (1)⊗(m+n) onto Y (m+ n),
then

(6.2) UYm,n = pm+n

∣∣∣
Y (m)⊗Y (n)

and the projections {pn}n∈N satisfy

(6.3) pk+m+n = pk+m+n(IE⊗k ⊗ pm+n) = pk+m+n(pk+m ⊗ IE⊗n).

Proof. Denote by UXm,n the subproduct system maps X(s)⊗X(t)→ X(s+ t).
Denote E = X(1). We first note that for every n there is a well defined
coisometry Un : E⊗n → X(n) given by composing in any way a sequence of
maps UXk,m (for example, one can take U3 = UX2,1(UX1,1 ⊗ IE) and so on). We

define Y (n) = Ker(Un)⊥, and we let pn be the orthogonal projection from
E⊗n onto Y (n). pn = U∗nUn, so, in particular, pn is a bimodule map. For all
m,n ∈ N we have that

E⊗m ⊗Ker(Un) ⊆ Ker(Um+n).

Thus E⊗m⊗Ker(Un)⊥ ⊇ Ker(Um+n)⊥, so pm+n ≤ IE⊗m⊗pn. This means that
(6.3) holds. In addition, defining UYm,n to be pm+n restricted to Y (m)⊗Y (n) ⊆
E⊗(m+n) gives Y the associative multiplication of a subproduct system.
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It remains to show that X is isomorphic to Y . For all n, X(n) is spanned by
elements of the form Un(x1 ⊗ · · · ⊗ xn), with x1, . . . , xn ∈ E. We define a map
Vn : X(n)→ Y (n) by

Vn
(
Un(x1 ⊗ · · · ⊗ xn)

)
= pn(x1 ⊗ · · · ⊗ xn).

It is immediate that Vn preserves inner products (thus it is well defined) and
that it maps X(n) onto Y (n). Finally, for all m,n ∈ N and x ∈ E⊗m, y ∈ E⊗n,

Vm+n

(
UXm,n(Um(x)⊗ Un(y))

)
= Vm+n

(
Um+n(x⊗ y)

)

= pm+n(x ⊗ y)

= pm+n(pmx⊗ pny)

= pm+n

(
(VmUm(x)) ⊗ (VnUn(y))

)

= UYm+n

(
(VmUm(x)) ⊗ (VnUn(y))

)
,

and (1.2) holds. �

Definition 6.2. A subproduct system Y satisfying (6.1), (6.2) and (6.3) above
will be called a standard subproduct system.

Note that a standard subproduct system is a subproduct subsystem of the full
product system {E⊗n}n∈N.

Corollary 6.3. Every cp-semigroup over N has an e-dilation.

Proof. The unital case follows from Corollary 5.10 together with the above
lemma. The nonunital case follows from a similar construction (where the
dilation of a non-fully-coisometric representation is obtained by adapting [41,
Theorem 4.2] instead of [43, Theorem 5.2]). �

Let k ∈ N, and let E = X(1), X(2), . . . , X(k) be subspaces of E,E⊗2, . . . , E⊗k,
respectively, such that the orthogonal projections pn : E⊗n → X(n) satisfy

pn ≤ IE⊗i ⊗ pj
and

pn ≤ pi ⊗ IE⊗j
for all i, j, n ∈ N+ satisfying i+j = n ≤ k. In this case one can define a maximal
standard subproduct system X with the prescribed fibers X(1), . . . , X(k) by
defining inductively for n > k

X(n) =


 ⋂

i+j=n

E⊗i ⊗X(j)


⋂


 ⋂

i+j=n

X(i)⊗ E⊗j

 .

It is easy to see that

X(n) =
⋂

n1+...+nm=n

X(n1)⊗ · · · ⊗X(nm) =
⋂

i+j=n

X(i)⊗X(j).
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We then have obvious formulas for the projections {pn}n∈N as well, for example

pn =
∧

i+j=n

pi ⊗ pj , (n > k).

6.2. Examples.

Example 6.4. In the case k = 1, the maximal standard subproduct system
with prescribed fiber X(1) = E, with E a Hilbert space, is the full product
system FE of Example 1.2. If dimE = d, we think of this subproduct system as
the product system representing a (row-contractive) d-tuple (T1, . . . , Td) of non
commuting operators, that is, d operators that are not assumed to satisfy any
relations (the idea behind this last remark must be rather vague at this point,
but it shall become clearer as we proceed). In the case k = 2, if X(2) is the
symmetric tensor product E with itself then the maximal standard subproduct
system with prescribed fibers X(1), X(2) is the symmetric subproduct system
SSPE of Example 1.3. We think of SSP as the subproduct system representing
a commuting d-tuple.

Example 6.5. Let E be a two dimensional Hilbert space with basis {e1, e2}.
Let X(2) be the space spanned by e1⊗ e1, e1⊗ e2, and e2⊗ e1. In other words,
X(2) is what remains of E⊗2 after we declare that e2⊗e2 = 0. We think of the
maximal standard subproduct system X with prescribed fibers X(1) = E,X(2)
as the subproduct system representing pairs (T1, T2) of operators subject only
to the condition T 2

2 = 0. E⊗n has a basis consisting of all vectors of the form
eα = eα1 ⊗ · · · ⊗ eαn where α = α1 · · ·αn is a word of length n in “1” and “2”.
X(n) then has a basis consisting of all vectors eα where α is a word of length
n not containing “22” as a subword. Let us compute dimX(n), that is, the
number of such words.
Let An denote the number of words not containing “22” that have leftmost
letter “1”, and let Bn denote the number of words not containing “22” that
have leftmost letter “2”. Then we have the recursive relationAn = An−1+Bn−1

and Bn = An−1. The solution of this recursion gives

dimX(n) = An +Bn ≈
(

1 +
√

5

2

)n
.

As one might expect, the dimension of X(n) grows exponentially fast.

Example 6.6. Suppose that we want a “subproduct system that will represent
a pair of operators (T1, T2) such that TiT2 = 0 for i = 1, 2”. Although we have
not yet made clear what we mean by this, let us proceed heuristically along
the lines of the preceding examples. We let E be as above, but now we declare
e1⊗e2 = e2⊗e2 = 0. In other words, we define X(2) = {e1⊗e2, e2⊗e2}⊥. One
checks that the maximal standard subproduct system X with prescribed fibers
X(1) = E,X(2) is given by X(n) = span{e1⊗ e1⊗ · · · ⊗ e1, e2⊗ e1⊗ · · · ⊗ e1}.
This is an example of a subproduct system with two dimensional fibers.
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At this point two natural questions might come to mind. First, is every stan-
dard subproduct system X the maximal subproduct system with prescribed fibers
X(1), . . . , X(k) for some k ∈ N? Second, does dimX(n) grow exponentially
fast (or remain a constant) for every subproduct system X? The next example
answers both questions negatively.

Example 6.7. Let E be as in the preceding examples, and let X(n) be a
subspace of E⊗n having basis the set

{eα : |α| = n, α does not contain the words 22, 212, 2112, 21112, . . .}.
Then X = {X(n)}n∈N is a standard subproduct system, but it is smaller than
the maximal subproduct system defined by any initial k fibers. Also, X(n) is
the span of eα with α = 11 · · ·11, 21 · · ·11, 121 · · ·11, . . . , 11 · · · 12, thus

dimX(n) = n+ 1,

so this is an example of a subproduct system with fibers that have a linearly
growing dimension.

Of course, one did not have to go far to find an example of a subproduct
system with linearly growing dimension: indeed, the dimension of the fibers of
the symmetric subproduct system SSPCd is known to be

dimSSPCd(n) =

(
n+ d− 1

n

)
.

Taking d = 2 we get the same dimension as in Example 6.7. However, SSP :=
SSPC2 and the subproduct system X of Example 6.7 are not isomorphic: for
any nonzero x ∈ SSP (1), the “square” USSP1,1 (x ⊗ x) ∈ SSP (2) is never zero,

while UX1,1(e2 ⊗ e2) = 0.
Here is an interesting question that we do not know the answer to: given a
solution f : N→ N to the functional inequality

f(m+ n) ≤ f(m)f(n) , m, n ∈ N,

does there exists a subproduct system X such that dimX(n) = f(n) for all
n ∈ N?

Remark 6.8. One can cook up simple examples of subproduct systems that
are not standard. We will not write these examples down, as we already know
that such a subproduct system is isomorphic to a standard one.

6.3. Representations of subproduct systems. Fix a W∗-correspondence
E. Every completely contractive linear map T1 : E → B(H) gives rise to a c.c.
representation T n of the full product system FE = {E⊗n}n∈N by defining for
all x ∈ E⊗n and h ∈ H
(6.4) T n(x)h = T̃1

(
IE ⊗ T̃1

)
· · ·
(
IE⊗(n−1) ⊗ T̃1

)
(x⊗ h),

where T̃1 : E ⊗ H → H is given by T̃1(e ⊗ h) = T1(e)h. We will denote

the operator acting on x ⊗ h in the right hand side of (6.4) as T̃ n, so as not

Documenta Mathematica 14 (2009) 801–868



838 Orr Shalit and Baruch Solel

to confuse with T̃n, which sometimes has a different meaning (namely: if T
denotes a c.c. representation of a subproduct system X then

T̃n : X(n)⊗H → H

is given by

T̃n(x ⊗ h) = T (x)h

for all x ∈ X(n), h ∈ H . Of course, when X = FE , T is a representation

of FE and T1 is the restriction of T to E, then T̃ n = T̃n for all n). If X is a
standard subproduct system and X(1) = E, we obtain a completely contractive
representation of X(n) by restricting T n to X(n). Let us denote this restriction
by Tn, and denote the family {Tn}n∈N by T .

Proposition 6.9. Let X be a standard subproduct system with projections
{pn}n∈N, and let T1 : E → B(H) be a completely contractive map. Construct
the family of maps T = {Tn}n∈N, with Tn : X(n)→ B(H) as in the preceding
paragraph. Then the following are equivalent:

(1) T is a representation of X.
(2) For all m,n ∈ N,

(6.5) T̃m(IX(m) ⊗ T̃n)(pm ⊗ pn ⊗ IH)(p⊥m+n ⊗ IH) = 0.

(3) For all n ∈ N,

(6.6) T̃ n(p⊥n ⊗ IH) = 0.

Proof. If T is a representation, then

T̃m(IX(m)⊗T̃n)(pm⊗pn⊗IH)(p⊥m+n⊗IH) = T̃m+n(pm+n⊗IH)(p⊥m+n⊗IH) = 0,

so 1 ⇒ 2. To prove 2 ⇒ 3 note first that (6.6) is clear for n = 1. Assuming
that (6.6) holds for n = 1, 2, . . . , k − 1, we will show that it holds for n = k.

T̃ k(p⊥k ⊗ IH) = T̃ 1(I ⊗ T̃ k−1)(p⊥k ⊗ IH)

= T̃ 1(I ⊗ T̃ k−1)(IE ⊗ p⊥k−1 ⊗ IH + IE ⊗ pk−1 ⊗ IH)(p⊥k ⊗ IH)

(∗) = T̃ 1(I ⊗ T̃ k−1(pk−1 ⊗ IH))(p⊥k ⊗ IH)

= T̃1(I ⊗ T̃k−1(pk−1 ⊗ IH))(p⊥k ⊗ IH)

(∗∗) = 0.

The equality marked by (*) is true by the inductive hypothesis, and the one
marked by (**) follows from (6.5).

Finally, 3 ⇒ 1: by (6.6) we have T̃ n(pn ⊗ IH) = T̃ n. On the other hand,

T̃ n(pn ⊗ IH) = T̃n(pn ⊗ IH). Thus

T̃m+n(pm+n ⊗ IH) = T̃m+n(pm+n ⊗ IH)

= T̃m+n

= T̃m(IX(m) ⊗ T̃ n)

= T̃m(IX(m) ⊗ T̃n)(pm ⊗ pn ⊗ IH),
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which shows that T is a representation. �

Proposition 6.10. Let X be the maximal standard subproduct system with
prescribed fibers X(1), . . . , X(k), and let T1 : E → B(H) be a completely con-
tractive map. Construct T as in Proposition 6.9. Then T is a representation
of X if and only if

(6.7) T̃ n(p⊥n ⊗ IH) = 0 for all n = 1, 2, . . . , k.

Proof. The necessity of (6.7) follows from Proposition 6.9. By the same propo-
sition, to show that the condition is sufficient it is enough to show that (6.7)
holds for all n ∈ N. Given m ∈ N, we have pm =

∧
q q, where q runs over all

projections of the form q = IX(i) ⊗ pj or q = pi ⊗ IX(j), with i, j ∈ N+ and

i+ j = m. But then p⊥m =
∨
q q
⊥, thus if (6.7) holds for all n < m then it also

holds for n = m. �

6.4. Fock spaces and standard shifts.

Definition 6.11. Let X be a subproduct system of Hilbert spaces. Fix an
orthonormal basis {ei}i∈I of E = X(1). X(n), when considered as a subspace
of FX , is called the n particle space. The standard X-shift (related to {ei}i∈I)

on FX is the tuple of operators SX =
(
SXi
)
i∈I in B(FX) given by

SXi (x) = U1,n(ei ⊗ x),

for all i ∈ I, n ∈ N and x ∈ X(n).

It is clear that SXi = SX(ei), where SX is the shift representation given by
Definition 2.9.
If F denotes the usual full product system (Example 1.2) then FF is the usual
Fock space and the tuple (SFi )i∈I is the standard shift (the I orthogonal shift
of [37]). We shall denote FF as F and (SFi )i∈I as (Si)i∈I . It is then obvious
that the tuple

(
SXi
)
i∈I is a row contraction, as it is the compression of the

row contraction (Si)i∈I . Indeed, assuming (as we may, thanks to Lemma 6.1)
that Um,n is an orthogonal projection pm+n : X(m)⊗X(n)→ X(m+ n), and
denoting p = ⊕npn, we have for all i that SXi = pSi

∣∣FX .

Example 6.12. The q-commuting Fock space of [19] also fits into this frame-
work. Indeed, let (as in [19]) Γ(Cd) be the full Fock space, let Γq(Cd) denote
the q-commuting Fock space, and let Y (n) be the “n particle q-commuting
space” with orthogonal projection pn : (Cd)n → Y (n). Then a straightforward
calculation shows that the projections {pn}n∈N satisfy equation (6.3) of Lemma
6.1, thus Y = {Y (n)}n∈N is a subproduct system (satisfying (6.1) and (6.2)).
With our notation from above we have that FY = Γq(Cd) and that the tuple
(SYi , . . . , S

Y
d ) is the standard q-commuting shift.

SF , the standard shift of the full product system on the full Fock space, will
be denoted by S, and will be called simply the standard shift.
By the notation introduced in Definition 5.7, the symbol SX is also used to
denote the maximal X-piece of the standard shift S. The following proposition
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– which is a generalization of [12, Proposition 6], [19, Proposition 11] and [39,
Proposition 2.9] – shows that this is consistent.

Proposition 6.13. Let X subproduct subsystem of a subproduct system Y .
Then the maximal X-piece of the standard Y -shift is the standard X-shift.

Proof. Let E = Y (1), and let F = FE be the full product system. Viewing

F (n) ⊗ FF as direct sum of |I|n copies of FF , (S̃)n is just the row isometry
(Si1 ◦ · · · ◦ Sin)i1,...,in∈I from the space of columns FF ⊕ FF ⊕ · · · into FF . In
other words, for h ∈ FF and i1, . . . , in ∈ I,

(S̃)n
(
(ei1 ⊗ · · · ⊗ ein)⊗ h

)
= Si1 ◦ · · · ◦ Sinh = (ei1 ⊗ · · · ⊗ ein)⊗ h.

This is an isometry, and the adjoint works by sending (ei1 ⊗· · ·⊗ ein)⊗h ∈ FF
back to (ei1 ⊗ · · · ⊗ ein) ⊗ h ∈ F (n) ⊗ FF , and by sending the 0, 1, . . . , n − 1
particle spaces to 0.
Now, if Z is any standard subproduct subsystem of F , then

(
S̃Z
)
n

= PFZ

(
S̃
)
n

∣∣
Z(n)⊗FZ

,

thus

(6.8)
(
S̃Z
)∗
n

= PZ(n)⊗FZ

(
S̃
)∗
n

∣∣
FZ
.

Now if h is in the k particle space of FF with k < n, then (S̃Z)∗nh = 0. If
k ≥ n, then since Z(k) ⊆ Z(n)⊗ Z(k − n) we may write h =

∑
ξi ⊗ ηi, where

ξi ∈ Z(n) and ηi ∈ Z(k − n). Thus by (6.8) we find that

(6.9) (S̃Z)∗n
(∑

ξi ⊗ ηi
)

=
∑

pZn ξi ⊗ pZk−nηi =
∑

ξi ⊗ ηi.

From these considerations it follows that the standard X-shift is in fact an
X-piece of the standard Y shift, as (S̃Y )∗n

∣∣
FX

= (S̃X)∗n. It remains to show

that the X-shift is maximal.
Assume that there is a Hilbert space H , FX ⊆ H ⊆ FY , such that the com-
pression of SY to H is an X-piece of Y , that is, H ∈ P(X,SY ) (see equation
(5.3)). Let h ∈ H ⊖ FX . We shall prove that h = 0. Being orthogonal to all
of FX , pYn h must be orthogonal to X(n) for all n. Thus, we may assume that
h ∈ Y (n)⊖X(n) for some n. But then by (6.9)

(S̃Y )∗nh = h⊗ Ω.

But since H ∈ P(X,SY ), we must have h⊗ Ω ∈ X(n)⊗H , and this, together
with h ∈ Y (n)⊖X(n), forces h = 0. �

7. Zeros of homogeneous polynomials in noncommutative
variables

In the next section we will describe a model theory for representations of sub-
product systems. But before that we dedicate this section to build a precise
connection between subproduct systems together with their representations
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and tuples of operators that are the zeros of homogeneous polynomials in non
commuting variables.

Remark 7.1. The notions that we are developing give a framework for study-
ing tuples of operators satisfying relations given by homogeneous polynomials.
One can go much further by considering subspaces of Fock spaces and “repre-
sentations”, i.e., maps of the Fock space into B(H), that give a framework for
studying tuples of operators satisfying arbitrary (not-necessarily homogeneous)
polynomial and even analytic identities. Gelu Popescu [39] has already begun
developing such a theory.

We begin by setting up the usual notation. Let I be a fixed set of indices, and
let C〈(xi)i∈I〉 be the algebra of complex polynomials in the non commuting
variables (xi)i∈I . We denote x = (xi)i∈I , and we consider x as a “tuple
variable”. We shall sometimes write C〈x〉 for C〈(xi)i∈I〉. The set of all words
in I is denoted by F+

I . For a word α ∈ F+
I , let |α| denote the length of α, i.e.,

the number of letters in α.
For every word α = α1 · · ·αk in I denote xα = xα1 · · ·xαk . If α = 0 is the empty
word, then this is to be understood as 1. k is also referred to in this context
as the degree of the monomial xα. C〈x〉 is by definition the linear span over
C of all such monomials, and every element in C〈x〉 is called a polynomial. A
polynomial is called homogeneous if it is the sum of monomials of equal degree.
A homogeneous ideal is a two-sided ideal that is generated by homogeneous
polynomials.
If T = (Ti)i∈I is a tuple of operators on a Hilbert space H and α = α1 · · ·αk
is a word with letters in I, we define

Tα = Tα1Tα2 · · ·Tαk .
We define T 0 = IH . If p(x) =

∑
α cαx

α ∈ C〈x〉, we define p(T ) =
∑

α cαT
α.

If E is a Hilbert space with orthonormal basis {ei}i∈I , An element eα1 ⊗
· · · ⊗ eαk ∈ E⊗k will be written in short form as eα, where α = α1 · · ·αk. If
p(x) =

∑
α cαx

α ∈ C〈x〉, we define p(e) =
∑
α cαeα. Here e0 (0 the empty

word) is understood as the vacuum vector Ω.

Proposition 7.2. Let E be a Hilbert space with orthonormal basis {ei}i∈I.
There is an inclusion reversing correspondence between proper homogeneous
ideals I ⊳C〈x〉 and standard subproduct systems X = {X(n)}n∈N with X(1) ⊆
E. When |I| <∞ this correspondence is bijective.

Proof. Let X be such a subproduct system. We define an ideal

(7.1) IX := span{p ∈ C〈x〉 : ∃n > 0, p(e) ∈ E⊗n ⊖X(n)}.
Once it is established that IX is a two-sided ideal the fact that it is homogeneous
will follow from the definition. Let p ∈ C〈x〉 be such that p(e) ∈ E⊗n ⊖X(n)
for some n > 0. It suffices to show that for every monomial xα we have that
xαp(x) ∈ IX , that is,

eα ⊗ p(e) ∈ E⊗|α|+n ⊖X(|α|+ n).

Documenta Mathematica 14 (2009) 801–868



842 Orr Shalit and Baruch Solel

But since X is standard, X(|α|+ n) ⊆ X(|α|)⊗X(n), thus

E⊗|α| ⊗ (E⊗n ⊖X(n)) ⊆ E⊗|α|+n ⊖X(|α|+ n).

It follows that IX is a homogeneous ideal.
Conversely, let I be a homogeneous ideal. We construct a subproduct system
XI as follows. Let I(n) be the set of all homogeneous polynomials of degree n
in I. Define

(7.2) XI(n) = E⊗n ⊖ {p(e) : p ∈ I(n)}.
Denote by pn the orthogonal projection of E⊗n onto XI(n). To show that XI is
a subproduct system it is enough (by symmetry) to prove that for all m,n ∈ N

pm+n ≤ IE⊗m ⊗ pn,
or, in other words, that

(7.3) XI(m+ n) ⊆ E⊗m ⊗XI(n).

Let x ∈ XI(m+ n), let α ∈ Im, and let q ∈ I(n). Since I is an ideal, xαq(x) is
in I(m+n), thus 〈x, eα ⊗ q(e)〉 = 0. This proves (7.3).
Assume now that |I| <∞. We will show that the maps X 7→ IX and I 7→ XI

are inverses of each other. Let J be a homogeneous ideal in C〈x〉. Then

IXJ = span{p ∈ C〈x〉 : ∃n > 0, p(e) ∈ E⊗n ⊖XJ (n)}
(∗) = span{p ∈ C〈x〉 : ∃n > 0, p(e) ∈ {q(e) : q ∈ J (n)}}

= span{p : ∃n > 0, p ∈ J (n)}
(∗∗) = J,

where (*) follows from the definition of XJ , and (**) from the fact that J is a
homogeneous ideal.
For the other direction, let Y be a standard subproduct subsystem of FE =
{E⊗n}n∈N. Clearly, (IY )(n) = {p ∈ C〈x〉 : p(e) ∈ E⊗n ⊖ Y (n)}. Thus

XIY (n) = E⊗n ⊖ {p(e) : p ∈ (IY )(n)}
= E⊗n ⊖ {p(e) : p ∈ {q ∈ C〈x〉 : q(e) ∈ E⊗n ⊖ Y (n)}
= E⊗n ⊖ (E⊗n ⊖ Y (n))

= Y (n).

�

We record the definitions of IX and XI from the above theorem for later use:

Definition 7.3. Let E be a Hilbert space with orthonormal basis {ei}i∈I (|I| is
not assumed finite). Given a homogeneous ideal I ⊳C〈x〉, the subproduct system
XI defined by (7.2) will be called the subproduct system associated with I. If
X is a given subproduct subsystem of FE, then the ideal IX of C〈x〉 defined by
(7.1) will be called the ideal associated with X.

We note that XI depends on the choice of the space E and basis {ei}i∈I , but
different choices will give rise to isomorphic subproduct systems.
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Proposition 7.4. Let X and Y be standard subproduct systems with
dimX(1) = dimY (1) = d < ∞. Then X is isomorphic to Y if and only if
there is a unitary linear change of variables in C〈x1, . . . , xd〉 that sends IX

onto IY .

Fix some infinite dimensional separable Hilbert space H . As in classical alge-
braic geometry, given a homogeneous ideal I ⊳ C〈x〉, it is natural to introduce
and to study the zero set of I

Z(I) := {T = (Ti)i∈I ∈ B(H)I : ∀p ∈ I, p(T ) = 0}.
Also, given a set Z ⊆ B(H)I , one may form the following two-sided ideal in
C〈x〉

I(Z) := {p ∈ C〈x〉 : ∀T ∈ Z, p(T ) = 0}.
In the following theorem we shall use the notation of 6.3. This simple result is
the justification for viewing subproduct systems as a framework for studying
tuples of operators satisfying certain homogeneous polynomial relations.

Theorem 7.5. Let E be a Hilbert space with orthonormal basis {ei}i∈I (not
necessarily with |I| < ∞), and let I be a proper homogeneous ideal in
C〈(xi)i∈I〉. Let XI be the associated subproduct system. Let T1 : E → B(H)
be a given representation of E. Define a tuple T = (T (ei))i∈I . Construct the
family of maps T = {Tn}n∈N, with Tn : X(n) → B(H) as in the paragraphs
before Proposition 6.9. Then T is a representation of X if and only if T ∈ Z(I).

Proof. On the one hand, E⊗n ⊖XI(n) = span{p(e) : p ∈ I(n)}. On the other
hand, for every p ∈ I(n) and every h ∈ H ,

T̃ n(p(e)⊗ h) = p(T )h.

Hence, the Theorem follows from Proposition 6.9. �

Lemma 7.6. Let J ⊳ C〈(xi)i∈I〉, |I| < ∞, be a proper homogeneous ideal. Let
SXJ be the XJ -shift representation, and define T = (Ti)i∈I by Ti = SXJ (ei),
i ∈ I. If p ∈ C〈x〉 is a homogeneous polynomial, then p(T ) = 0 if and only if
p ∈ J .

Proof. The “if” part follows from Theorem 7.5. For the “only if” part, let
p /∈ J be a homogeneous polynomial of degree n. Applying p(T ) to the vacuum
vector Ω, we have

p(T )Ω = Pp(e),

where P is the orthogonal projection of E⊗n onto XJ(n). But as p /∈ J , p(e)
is not in E⊗n ⊖XJ(n) = kerP , thus Pp(e) 6= 0. In particular, p(T ) 6= 0. �

We have the following noncommutative projective Nullstellensatz.

Theorem 7.7. Let H be a fixed infinite dimensional separable Hilbert space.
Let J be a homogeneous ideal in C〈(xi)i∈I〉, with |I| <∞. Then

I(Z(J)) = J.
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In particular, Z(J) = {0 = (0, 0, . . .)} if and only if J is the ideal generated by
all the xi, i ∈ I.
Proof. I(Z(J)) ⊇ J is immediate. To see the converse, first note that equal-
ity is obvious when J = C〈x〉, so we may assume that J is proper. Also
note that since J is homogeneous Z(J) is scale invariant. From this it fol-
lows that I(Z(J)) is also a homogeneous ideal. Indeed, if h, g ∈ H , and
p(x) =

∑
α cαx

α ∈ I(Z(J)), then for all λ ∈ C one has for every tuple
T = (Ti)i∈I ∈ Z(I),

0 = 〈p(λT )h, g〉 =
∑

k


∑

|α|=k
cα〈Tαh, g〉


λk,

and since a nonzero univariate polynomial has only finitely many zeros, it
follows the homogeneous components of p are all in I(Z(J)).
Assume now that p is a homogeneous polynomial not in J . Let SXJ be the
XJ -shift representation, and define T = (Ti)i∈I by Ti = SXJ (ei), i ∈ I. It is
clear that B(H)I contains some unitarily equivalent copy of T , which we also
denote by T . By Theorem 7.5, T ∈ Z(J). But by Lemma 7.6, p(T ) 6= 0, so
p /∈ I(Z(J)). This completes the proof. �

8. Universality of the shift: universal algebras and models

In [5], Arveson established a model for commuting, row-contractive tuples.
Using an idea from that paper that appeared also in [12] and [19] – an idea
that rests upon Popescu’s “Poisson Transform” introduced in [38] (and pushed
forward in [33] and [39]) – we construct below a model for representations of
subproduct systems. Roughly speaking, we will show that every representation
of a subproduct system X is a piece of a scaled inflation of the shift. Our
model should be compared with a similar model obtained by Popescu in [39].
We will also see below that the operator algebra generated by the shift SX is
the universal operator algebra generated by a representation of X .

8.1. Notation for this section. We continue to use the notation set in the
previous section. Let X be a standard subproduct system of Hilbert spaces
over N, to be fixed throughout this section. Let pn : E⊗n → X(n) be the
projections. Denote E = X(1). Let {ei}i∈I be an orthonormal basis for E,
fixed once and for all.
We denote the standard X-shift tuple by SX = (SXi )i∈I , and we denote the
standard X-shift representation of X on FX by SX . We consider FX to be a
subspace of the full Fock space F, we denote the full shift by S = (Si)i∈I , and
we denote the full shift representation of F on F := FF by S.
Given a representation T : X → B(H), we will write T = (Ti)i∈I for the tuple
(T (ei))i∈I .
We denote by AX the unital algebra

AX := span{SXα : α ∈ F+
I }.
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We denote by EX the operator system

EX := spanAXA∗X ,
and by TX = C∗(SX) the C∗-algebra generated by SXi , i ∈ I and IFX . We
denote by K(FX) the algebra of compact operators on FX
If T and U are two representations of X on Hilbert spaces H and K, respec-
tively, then we define

T ⊕ U
to be the representation of X on H ⊕K given by (T ⊕ U)(x) = T (x)⊕ U(x).
We also define

T ⊗ IK
to be the representation of X on H ⊗K given by (T ⊗ IK)(x) = T (x)⊗ IK .

8.2. Popescu’s “Poisson Transform”. After obtaining the results of this
section, we discovered that they were obtained earlier by Popescu [39]. We are
presenting them here since they are important for the rest of this paper but we
leave out some of the arguments.

Proposition 8.1. K(FX) ⊆ EX .

Proof. The result follows from the equations

(8.1) I −
∑

i∈I
SXi

(
SX
)∗
i

= PC.

and

(SX)β

(
I −

∑

i∈I
SXi

(
SX
)∗
i

)
SX

α∗
x = p|β|〈eα, x〉eβ .

As the elements p|β|eβ span FX , it follows that K(FX) ⊆ EX .
Full details can be found in [39, Theorem 1.3] �

Given a representation T of X on a Hilbert space H and given an integer
m ∈ N, we denote by m · T the representation

m · T : X → B(H ⊕H ⊕ · · · ⊕H︸ ︷︷ ︸
m times

)

given by m · T (x) = T (x)⊕ T (x)⊕ · · · ⊕ T (x)︸ ︷︷ ︸
m times

. T is a row contraction (i.e.,

∑
i∈I TiT

∗
i ≤ IH) if and only if T is completely contractive. When T is a row

contraction the defect operator ∆(T ) is defined as

∆(T ) = I −
∑

i∈I
TiT

∗
i ,

and the Poisson Kernel [38] associated with T is the family of isometries
{Kr (T )}0≤r<1

Kr (T ) : H → F⊗H,
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given by

Kr (T )h =
∑

α∈F+
I

eα ⊗
(
r|α|∆(rT )1/2Tα∗h

)
.

(See the beginning of [38, Section 8] for the remark that T has “property (P)”,
and [38, Lemma 3.2] for the fact that these are isometries). When it makes
sense, we also define K1 (T ) by the same formula with r = 1. The Poisson
transform is then defined as a map

Φ = ΦT : C∗(S)→ B(H)

Φ(a) = ΦT (a) = lim
rր1

Kr (T )
∗

(a⊗ I)Kr (T ) .

By [38, Theorem 3.8], Φ is a unital, completely positive, completely contractive,
satisfies

Φ(SαSβ∗) = TαT β∗,

and is multiplicative on Alg(S, IF), the algebra generated by S and IF (Φ is in
fact an Alg(S, IF)-morphism).

Theorem 8.2. Let T be a c.c. representation of X on H. There exists a
unital, completely positive, completely contractive map

Ψ : EX → B(H)

that satisfies

Ψ
(
(SX)α(SX)β∗

)
= TαT β∗ , α, β ∈ F+

I
and

(8.2) Ψ(ab) = Ψ(a)Ψ(b) , a ∈ AX , b ∈ EX .
Proof. By the lemma below, the range of Kr (T ) is contained in FX ⊗H for all
0 ≤ r < 1, thus

(PFX ⊗ IH)Kr (T ) = Kr (T ) .

We may then define

Ψ(T )(
(
(SX)α(SX)β∗

)
) = lim

rր1
Kr (T )

∗ ((
(SX)α(SX)β∗

)
⊗ I
)
Kr (T )

(∗) = lim
rր1

Kr (T )
∗
((
SαSβ∗

)
⊗ I
)
Kr (T )

= TαT β∗,

where in (*) we have made use of the coinvariance of FX under S. This obvi-
ously extends to the desired map on EX . �

Lemma 8.3. Kr (T )H ⊆ FX ⊗H.

Proof. This was proved in [39, Equation (2.5)] for r = 1. The same argument
(using the fact that p, there, can be chosen homogeneous) works also for r <
1. �
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8.3. The universal algebra generated by a tuple subject to homo-
geneous polynomial identities.

Theorem 8.4. J ⊳ C〈(xi)i∈I〉, be a homogeneous ideal. Then AXJ is the uni-
versal unital operator algebra generated by a row contraction in Z(J), that is:
AXJ is a norm closed unital operator algebra generated by a tuple in Z(J),

(namely, (SXJi )i∈I), and if B ⊆ B(H) is another norm closed unital operator
algebra generated by a row contraction (Ti)i∈I ∈ Z(J), then there is a unique
unital and completely contractive homomorphism ϕ of AXJ onto B, such that

ϕ(SXJi ) = Ti for all i ∈ I.

Proof. This follows from Theorems 7.5 and 8.2. �

8.4. A model for representations: every completely bounded rep-
resentation of X is a piece of an inflation of SX. We will now con-
struct a model for representations of subproduct systems. In [39, Section 2],
a similar but different model – that includes also a fully coisometric part and
not only the shift – has been obtained.

Theorem 8.5. Let T be a completely bounded representation of the subproduct
system X on a separable Hilbert space H, and let K be an infinite dimensional,
separable Hilbert space. Then for all r > ‖T ‖cb, T is unitarily equivalent to a
piece of

(8.3) SX ⊗ rIK .
Moreover, ‖T ‖cb is equal the infimum of r such that T is a piece of an operator
as in (8.3).

Proof. It is known that ‖T ‖cb = ‖(Ti)i∈I‖row, where Ti = T (ei). Thus if r >
r0 = ‖T ‖cb, then

∑
i∈I TiT

∗
i ≤ r20I < r2I. Put Wi = r−1Ti, so

∑
i∈IWiW

∗
i ≤

r20/r
2I. Then K1 (W ) is an isometry (it is equal to Kr0/r(r/r0W ), and r/r0W

is a row contraction). Thus we may define a map (as in the proof of Theorem
8.2)

Ψ : B(FX)→ B(H)

by

Ψ(a) = K1 (W )
∗

(a⊗ I)K1 (W ) .

Ψ is a normal completely positive unital map that satisfies

Ψ
(
(SX)α(SX)β∗

)
= WαW β∗ , α, β ∈ F+

I .

Since Ψ is normal it has a normal minimal Stinespring dilation Ψ(a) =
V ∗π(a)V , with π : B(FX)→ B(L) a normal ∗-homomorphism and V : H → L
an isometry. It is well known that π is equivalent to a multiple of the identity
representation. Thus we obtain, up to unitary equivalence and after identi-
fying H with V H , that r−1Ti = PHπ(SXi )PH = PH(SXi ⊗ IG)PH , for some
Hilbert space G. To see that T is a piece of SX ⊗ IG we need to show that
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(SXi ⊗ IG)∗
∣∣
H

= T ∗i for all i ∈ I. In other words, we need to show that

PHπ(SXi ) = PHπ(SXi )PH . But, for all b ∈ EX ,

PHπ(SXi )π(b)PH = PHπ(SXi b)PH

= Ψ(SXi b)

(∗) = Ψ(SXi )Ψ(b)

= PHπ(SXi )PHπ(b)PH ,

where (*) follows from (8.2). By Proposition 8.1, the strong operator closure
of EX is B(FX). PHπ(SXi ) = PHπ(SXi )PH now follows from the minimality
and normality of the dilation.
It is clear that r−1T is a also piece of SX⊗IK for every K with dimK ≥ dimG,
so we may choose K to be infinite dimensional.
We want to show that necessarily dimK ≥ dimH . Since SX ⊗ IK is a dilation
of r−1T , IL−

∑
i∈I S

X
i (SXi )∗⊗IK is a dilation of IH −

∑
i∈I r

−2TiT
∗
i . But the

latter operator is invertible so it has rank dimH . Thus the rank of PC ⊗ IK =
IL −

∑
i∈I S

X
i (SXi )∗ ⊗ IK , which is dimK, must be greater.

Now the final assertion is clear. �

We can now obtain a general von Neumann inequality.

Theorem 8.6. Let X be a subproduct system, and let T be a c.c. representation
of X on a Hilbert space H. Let {e1, . . . , ed} be an orthonormal set in X(1),
and define Ti = T (ei) and SXi = SX(ei) for i = 1, . . . , d. Then for every
polynomials p and q in d non commuting variables,

‖p(T1, . . . , Td)q(T1, . . . , Td)
∗‖ ≤ ‖p(SX1 , . . . , SXd )q(SX1 , . . . , S

X
d )∗‖.

Proof. Since T is a piece of SX ⊗ rIK for all r > 1, we have

p(T1, . . . , Td)q(T1, . . . , Td)
∗ = P

(
p(rS1, . . . , rSd)q(rS1, . . . , rSd)

∗ ⊗ IK
)
P

for some projection P , and the result follows by taking r ց 1. �

9. The operator algebra associated to a subproduct system

9.1. Let X be a subproduct system. Recall the definitions of AX and EX from
8.1. If {ei}i∈I is an orthonormal basis for X(1), then AX is the unital oper-
ator algebra generated by (SXi )i∈I with SXi = SX(ei). If {fi}i∈I is another
orthonormal basis then the tuple (SX(fi))i∈I is not necessarily unitarily equiv-
alent to (SXi )i∈I . For instance (with the above notation), if X and {e1, e2} are
as in Example 6.7, and

f1 =
1√
2

(e1 + e2) , f2 =
1√
2

(e1 − e2),

then SX1 , S
X
2 are partial isometries, whereas T1 = SX(f1) and T2 = SX(f2)

are not. Thus, the unitary equivalence of the row (SXi ) does not determine the
isomorphism class of the subproduct system X .
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Proposition 9.1. Let X and Y be two subproduct systems with X(1) = E
and Y (1) = F . Assume that {ei}i∈I is an orthonormal basis for E and that
{fi}i∈I is an orthonormal basis for F . Then the shifts (SXi )i∈I and (SYi )i∈I
are unitarily equivalent as rows (i.e., there exists a unitary V : FX → FY such
that V SXi = SYi V for all i ∈ I), if and only if there is an isomorphism of
subproduct systems W : X → Y such that Wei = fi for all i ∈ I.

Proof. If X and Y are isomorphic with the isomorphism W sending ei to fi,
then define a unitary V : FX → FY by

V =
⊕

n∈N

W
∣∣
X(n)

.

V SXi = SYi V follows from the properties of W . Conversely, a unitary V in-

tertwining SX and SY must send ΩX to ΩY . Indeed, such a unitary must
send {ΩX}⊥ (which is equal to ∨iImSXi ) onto a subspace of {ΩY }⊥ that has
codimension 1 in FY , thus it must send {ΩX}⊥ onto {ΩY }⊥. It follows that

V ΩX = ΩY . Thus, given a unitary V intertwining SX and SY , we may define
W
∣∣X(n) : X(n)→ Y (n) by

WSXα Ω = V SXα Ω = SYα Ω,

for all |α| = n, and it is easy to see that the maps W
∣∣
X(n)

assemble to form an

isomorphism of subproduct systems. �

In the example preceding the proposition, we saw how the shift “tuple”
(SX1 , S

X
2 ) depends essentially on the choice of basis in E. However, the closed

unital algebra generated by (SX1 , S
X
2 ) is isomorphic to the one generated by

(T1, T2). Similar remarks hold for EX and TX .

Example 9.2. Let X be the subproduct system given by X(0) = C, X(1) = C2

and X(n) = 0 for all n ≥ 2. Let Y be the subproduct system given by
Y (0) = Y (1) = Y (2) = C and Y (n) = 0 for all n ≥ 3. Then since EX and
EY contain the compact operators on FX and FY (the Fock spaces), we have
EX = TX ∼= M3(C) ∼= TY = EY .
On the other hand, let {e1, e2} be an orthonormal basis for X(1). Then if Ω
is the vacuum vector, then AX is generated by SX(Ω) = I, SX(e1), SX(e2). In
the base {Ω, e1, e2} for FX , these operators have the form




1 0 0
0 1 0
0 0 1


 ,




0 0 0
1 0 0
0 0 0


 ,




0 0 0
0 0 0
1 0 0


 .

Thus,

AX ∼=







a 0 0
b a 0
c 0 a



∣∣∣a, b, c ∈ C



 .
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On the other hand, AY is generated by

I =




1 0 0
0 1 0
0 0 1


 , SY (f1) =




0 0 0
1 0 0
0 1 0


 ,
(
SY (f1)

)2
=




0 0 0
0 0 0
1 0 0


 ,

where {f1} is an orthonormal basis for Y (1). Thus

AY ∼=







a 0 0
b a 0
c b a



∣∣∣a, b, c ∈ C



 .

So AX ≇ AY (in AX the solutions of T 2 = 0 form a two dimensional subspace,
and in AY they form a one dimensional subspace).

9.2. AX as a graded algebra. For every subproduct system X there exists
a unique completely contractive multiplicative linear functional ρ0 : EX → C
that sends λI to λ and SXα to 0 when |α| > 0. The existence of ρ0 follows from
Theorem 8.2 (using the Poisson Transform), but it is also clear that ρ0 is just
the vector state associated with the vacuum vector ΩX :

ρ0(T ) = 〈TΩX ,ΩX〉 , T ∈ AX .
ρ0 can be considered also as a conditional expectation ρ0 : AX → C · ΩX ,
inducing a direct sum

(9.1) AX = ρ0AX ⊕ kerρ0 = C · I ⊕
∑

i

SXi AX .

AX contains a dense graded subalgebra, with the homogeneous elements of
degree n being SX(ξ), where ξ ∈ X(n). To be precise, we have the following
proposition.

Proposition 9.3. Every T ∈ AX can be written in a unique way as

T =

∞∑

n=0

Tn,

where Tn ∈ span{SX(ξ) : ξ ∈ X(n)} and the sum is Cesaro convergent in the
norm topology.

Proof. The proof uses a familiar gadget in operator algebra theory, the gauge
action of the torus. For every t ∈ [−π, π], let Wt : X → X be the subproduct
system automorphism given by

X(n) ∋ ξ 7→ eintξ ∈ X(n).

The gauge action on AX is given by

γt(T ) = WtTW
∗
t , T ∈ AX .

Note that if α ∈ In, then

γt(S
X
α ) = eintSXα ,
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and it follows also that for all T ∈ span{SX(ξ) : ξ ∈ X(n)},
γt(T ) = eintT.

Moreover, for all T ∈ AX , the path t 7→ γt(T ) is strong operator continuous.
Given T ∈ AX , we define

Φn(T ) =
1

2π

∫ π

−π
γt(T )e−intdt,

where this is interpreted in the strong operator sense.
It is easy to show that Φn is an idempotent whose range is span{SX(ξ) : ξ ∈
X(n)}.
Define linear maps on AX by

ΨN (T ) =

N∑

n=0

(
1− n

N

)
Φn(T ).

It is then a standard argument (using the Fejer kernel) to prove that
∑

n Φn(T )
is Cesaro convergent to T in the norm topology, that is, to show that for all
T ∈ AX ,

‖ΨN(T )− T ‖ N→∞−→ 0.

It remains to prove the uniqueness assertion. Assume that T =
∑
n Tn, where

the sum is Cesaro convergent to T , and Tn ∈ span{SX(ξ) : ξ ∈ X(n)}. Then
for all N > n,

Φn

(
N∑

m=0

(
1− m

N

)
Tm

)
=
(

1− n

N

)
Tn

N→∞−→ Tn.

On the other hand,

Φn

(
N∑

m=0

(
1− m

N

)
Tm

)
N→∞−→ Φn(T ),

whence Tn = Φn(T ). �

9.3. Vacuum state preserving isometric isomorphisms of AX .

Lemma 9.4. Let ϕ : AX → AY be an isometric isomorphism. Then ϕ is unital.

Proof. A theorem of Arazy and Solel [1] implies that an isometric map between
AX and AY must send I ∈ AX to an isometry in AX ∩ A∗X . It follows that
ϕ(I) = cI, |c| = 1. But since ϕ is a homomorphism, then c = 1. �

Lemma 9.5. For all n ∈ N, ξ ∈ X(n)

‖SX(ξ)‖ = ‖SX(ξ)ΩX‖ = ‖ξ‖.
Proof. Because SX(ξ) maps the orthogonal summands X(k) of FX into the
orthogonal summands X(k + n), it suffices to show that for all η ∈ X(k),
‖SX(ξ)η‖ ≤ ‖ξ‖‖η‖ (because SX(ξ)ΩX = ξ). Now, SX(ξ)η = pXn+k(ξ ⊗ η),
thus

‖SX(ξ)η‖2 ≤ ‖ξ ⊗ η‖2 = ‖ξ‖2‖η‖2.
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�

Lemma 9.6. Let ϕ : AX → AY be an isometric isomorphism that preserves
the direct sum decomposition (9.1). Then ϕ preserves the grading: if ξ ∈ X(n)
then ϕ(SX(ξ)) is in the norm closure of span{SY (η) : η ∈ Y (n)}.

Proof. Since ϕ is a homomorphism, it suffices to show, say, that ϕ(SX1 ) has
“degree one”, that is, it is in the norm closure of span{SY (η) : η ∈ Y (1)}. By
assumption, we may write ϕ(SX1 ) =

∑
i aiS

Y
i + T , with T in the closure of

span{SY (η) : η ∈ Y (n), n ≥ 2}. But ϕ−1(
∑

i aiS
Y
i + T ) = SX1 , and ϕ−1(T )

is in the norm closure of span{SX(ξ) : η ∈ X(n), n ≥ 2}, so ϕ−1(
∑

i aiS
Y
i ) =

SX1 + B, with B = −ϕ−1(T ) (note that ϕ−1 also preserves the direct sum
decomposition (9.1)).
If T = 0 then we are done, so assume T 6= 0. Then B 6= 0, also. But

1 = ‖SX1 ‖ = ‖SX1 ΩX‖ < ‖(SX1 +B)ΩX‖ ≤ ‖SX1 +B‖ = ‖
∑

i

aiS
Y
i ‖,

and at the same time

‖
∑

i

aiS
Y
i ‖ = ‖

∑

i

aiS
Y
i ΩY ‖ < ‖(

∑

i

aiS
Y
i + T )ΩY ‖ ≤

≤ ‖
∑

i

aiS
Y
i + T ‖ = ‖SX1 ‖ = 1.

From T 6= 0 we arrived at 1 < 1, thus T = 0. �

Theorem 9.7. X ∼= Y if and only if AX and AY are isometrically isomorphic
with an isomorphism that preserves the direct sum decomposition (9.1), and this
happens if and only if AX and AY are isometrically isomorphic with a grading
preserving isomorphism. In fact, if ϕ : AX → AY is a grading preserving
isometric isomorphism then there is an isomorphism V : X → Y such that for
all T ∈ AX , ϕ(T ) = V TV ∗.

Proof. X ∼= Y implies AX ∼= AY because these algebras are then generated by
unitarily equivalent tuples.
For the converse, we will assume that X and Y are standard subproduct sys-
tems. The isomorphism V : X → Y is defined on the fiber X(n) by

V (ξ) = V (SX(ξ)ΩX) = ϕ(SX(ξ))ΩY , ξ ∈ X(n).

If it is well defined, then it is onto. Lemma 9.5 shows that V is an isometry on
the fibers:

‖SX(ξ)ΩX‖ = ‖SX(ξ)‖ = ‖ϕ(SX(ξ))‖ = ‖ϕ(SX(ξ))ΩY ‖.
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Lemma 9.6 implies that V (ξ) sits in Y (n). V respects the subproduct structure:
if m,n ∈ N, ξ ∈ X(n), η ∈ X(m), then

V pXm,n(ξ ⊗ η) = V SX(pXm,n(ξ ⊗ η))ΩX

= ϕ(SX(pXm,n(ξ ⊗ η)))ΩY

= ϕ(SX(ξ)SX(η))ΩY

= ϕ(SX(ξ))ϕ(SX (η))ΩY

(∗) = pYm,n
(
ϕ(SX(ξ))ΩY ⊗ ϕ(SX(η))ΩY

)

= pYm,n(V (ξ)⊗ V (η)).

(*) follows from the facts SY (y)ΩY = y and SY (y1)SY (y2)ΩY = SY (pYm,n(y1⊗
y2))ΩY = pYm,n(y1 ⊗ y2) = pYm,n(SY (y1)ΩY ⊗ SY (y2)ΩY ).
Finally, let us show that for all T ∈ AX , ϕ(T ) = V TV ∗. What we mean by
this is that for all ξ ∈ X , ϕ(SX(ξ)) = V SX(ξ)V ∗. Let ϕ(SX(η))ΩY = V (η) be
a typical element in FY .

V SX(ξ)V ∗ϕ(SX(η))ΩY = V SX(ξ)η

= V pX(ξ ⊗ η)

= ϕ(SX(pX(ξ ⊗ η)))ΩY

= ϕ(SX(ξ)SX(η))ΩY

= ϕ(SX(ξ))ϕ(SX (η))ΩY ,

This completes the proof. �

10. Classification of the universal algebras of q-commuting
tuples

Definition 10.1. A matrix q is called admissible if qii = 0 and 0 6= qij = q−1
ji

for all i 6= j.

10.1. The q-commuting algebras Aq and their universality. Let
{e1, . . . , ed} be an orthonormal basis for E := Cd, to be fixed (together with d)
throughout this section. Let q ∈ Md(C) be an admissible matrix, and let Xq

be the maximal standard subproduct system with fibers

Xq(1) = E , Xq(2) = E ⊗ E ⊖ span{ei ⊗ ej − qijej ⊗ ei : 1 ≤ i, j ≤ d, i 6= j}.
When qij = 1 for all i < j, then Xq is the symmetric subproduct system SSP .
The Fock spaces FXq have been studied in [19].

For brevity, we shall write Sqi instead of S
Xq
i . We denote byAq the algebraAXq .

By Theorem 8.4, the algebra Aq is the universal norm closed unital operator
algebra generated by a row contraction (T1, . . . , Td) satisfying the relations

TiTj = qijTjTi , 1 ≤ i < j ≤ d.
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10.2. The character space of Aq. LetMq be the space of all (contractive)
multiplicative and unital linear functionals on Aq, endowed with the weak-∗
topology. We shall call Mq the character space of Aq. Every ρ ∈ Mq is
uniquely determined by the d-tuple of complex numbers (x1, . . . , xd), where
xi = ρ(Sqi ) for i = 1, . . . , d. Since a contractive linear functional is completely
contractive, (x1, . . . , xd) must be a row contraction, that is, |x1|2 + . . .+ |xd|2 ≤
1. In other words, (x1, . . . , xd) is in the unit ball Bd of Cd. The multiplicativity
of ρ implies that (x1, . . . , xd) must lie inside the set

Zq := {(z1, . . . , zd) ∈ Bd : (1− qij)zizj = 0, 1 ≤ i < j ≤ d}.
Conversely, Theorem 8.4 implies that every (x1, . . . , xd) ∈ Zq gives rise to a
character ρ ∈Mq that sends Sqi to xi. Thus the map

Mq ∋ ρ 7→ (ρ(Sq1), . . . , ρ(Sqd)) ∈ Zq
is injective and surjective. It is also obviously continuous (with respect to the
weak-∗ and standard topologies). Since Mq is compact, we have the homeo-
morphism

(10.1) Mq
∼= Zq.

Note that the vacuum state ρ0 corresponds to the point 0 ∈ Zq ⊂ Cd.
When qij = 1, the condition (1 − qij)zizj = 0 is trivially satisfied, so when
qi,j = 1 for all i, j, then Zq is the unit ball Bd. When qij 6= 1, the condition is
that either zi = 0 or zj = 0. Thus, if for all i, j, qij 6= 1, then Zq is the union
of d discs glued together at their origins.

10.3. Classification of the Aq, qij 6= 1. Given a permutation σ (on a set
with d elements), let Uσ be the matrix that induces the same permutation on
the standard basis of Cd.

Proposition 10.2. Let q and r be two admissible d×d matrices. Assume that
there is a permutation σ ∈ Sd such that r = UσqU

−1
σ , and let λ1, . . . , λd be any

complex numbers on the unit circle. Then the map

(10.2) ei 7→ λieσ(i)

extends to an isomorphism of Xq onto Xr, and thus the map

Sqi 7→ λiS
r
σ(i)

extends to a completely isometric isomorphism between Aq and Ar.
Proof. For all n, the map (10.2) extends to a unitary Vn of E⊗n. For n = 2,
this unitary sends ei ⊗ ej − qijej ⊗ ei to λiλjeσ(i) ⊗ eσ(j) − λiλjqijeσ(j) ⊗ eσ(i).

But r = UσqU
−1
σ implies rσ(i)σ(j) = qij , thus

V2 : ei ⊗ ej − qijej ⊗ ei 7→ λiλjeσ(i) ⊗ eσ(j) − λiλjrσ(i)σ(j)eσ(j) ⊗ eσ(i),

so V2 is a unitary between Xq(2) and Xr(2) that respects the product. By
induction, it follows that V = {Vn

∣∣
Xq(n)

}n is an isomorphism of subproduct

systems. The final assertion follows from Proposition 9.1. �
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Theorem 10.3. Let q and r be two admissible d×d matrices such that qij , rij 6=
1 for all i, j. Then Xq is isomorphic to Xr if and only if there is a permutation
σ ∈ Sd such that r = UσqU

−1
σ . In this case the isomorphisms are precisely

those of the form

ei 7→ λieσ(i),

where λ1, . . . , λd are any complex numbers on the unit circle, and σ is such that
r = UσqU

−1
σ .

Proof. One direction is Proposition 10.2, so assume that there is an isomor-
phism of subproduct systems V : Xq → Xr. Let fi := V −1ei. There is a d× d
unitary matrix U = (uij) such that fi =

∑
j uijej . As V is an isomorphism of

subproduct systems, we have for all i 6= j

V p
Xq
2 (fi ⊗ fj − rijfj ⊗ fi) = pXr2 (ei ⊗ ej − rijej ⊗ ei) = 0,

thus

(
∑

k

uikek)⊗ (
∑

l

ujlel)− rij(
∑

k

ujkek)⊗ (
∑

l

uilel) ∈

∈ span{em ⊗ en − qmnen ⊗ em : m 6= n},
or

(10.3)
∑

k,l

(uikujl − rijujkuil)ek ⊗ el ∈ span{em ⊗ en − qmnen ⊗ em : m 6= n}.

The coefficients of the vectors ek ⊗ ek in the sum above must vanish, thus
uikujk − rijujkuik = 0 for all i 6= j. Since rij 6= 1, we must have ujkuik = 0
for all k and all i 6= j. Thus the unitary matrix U has precisely one nonzero
element in each column, and it therefore must be of the form U−1

σ D, where D
is a diagonal unitary matrix.
Equation (10.3) becomes

uiσ(i)ujσ(j)eσ(i) ⊗ eσ(j) − rijujσ(j)uiσ(i)eσ(j) ⊗ eσ(i) ∈
∈ span{em ⊗ en − qmnen ⊗ em : m 6= n},

but this can only happen if

uiσ(i)ujσ(j)eσ(i) ⊗ eσ(j) − rijujσ(j)uiσ(i)eσ(j) ⊗ eσ(i)

is proportional to

eσ(i) ⊗ eσ(j) − qσ(i)σ(j)eσ(j) ⊗ eσ(i),

that is uiσ(i)ujσ(j)qσ(i)σ(j) = ujσ(j)uiσ(i)rij , or rij = qσ(i)σ(j) . Replacing σ with

σ−1, the proof is complete. �

Corollary 10.4. Let q be an admissible d × d matrix such that there is no
permutation σ ∈ Sd such that q = UσqU

−1
σ . Assume that qij 6= 1 for all

i, j. Then the only automorphisms of Xq are unitary scalings of the basis
{e1, . . . , ed}.
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Theorem 10.5. Let q and r be two admissible d×d matrices such that qij , rij 6=
1 for all i, j. Then Aq is isometrically isomorphic to Ar if and only if there
is a permutation σ ∈ Sd such that r = UσqU

−1
σ . In this case the isometric

isomorphisms between Aq and Ar are precisely those of the form

Sqi 7→ λiS
r
σ(i),

where λ1, . . . , λd are any complex numbers on the unit circle.

Proof. If r = UσqU
−1
σ , then by Proposition 10.2 and Theorem 9.7 Aq and Ar

are isomorphic (with an isomorphism that preserves the direct sum decompo-
sition (9.1)).
Conversely, assume that ϕ : Aq → Ar is a completely isometric isomorphism.
Then ϕ induces a homeomorphism between Mr and Mq by ρ 7→ ρ ◦ ϕ. Recall
that Mq and Mr are both homeomorphic to d discs glued together at the
origin. Thus the homeomorphism ρ 7→ ρ ◦ ϕ must take ρ0 of Xr to ρ0 of Xq,
because these are the unique points in Mr and Mq, respectively, that when
removed from Mr andMq leave d disconnected punctured discs. Thus ϕ sends
the vacuum state of Ar to the vacuum state of Aq, and must therefore preserve
the direct sum decomposition (9.1). By Theorem 9.7, there is an isomorphism
of subproduct systems V : Xq → Xr such that ϕ(•) = V • V ∗. By Theorem
10.3 we conclude that there is a permutation σ ∈ Sd such that r = UσqU

−1
σ . It

also follows that ϕ(Sqi ) = λiS
r
σ(i). �

Corollary 10.6. Let q be an admissible d × d matrix such that there is no
permutation σ ∈ Sd such that q = UσqU

−1
σ . Then the only isometric automor-

phisms of Aq are unitary scalings of the shift {Sq1 , . . . , Sqd}.
As a corollary of the above discussion we have:

Corollary 10.7. Let q and r be two admissible d × d matrices such that
qij , rij 6= 1 for all i, j. Then Aq is isometrically isomorphic to Ar if and only
if Xq

∼= Xr.

10.4. Xq and Aq, d = 2. In the particular case d = 2, we let a complex
number q parameterize the spaces Xq (we may allow also q = 0) defined to be
the maximal standard subproduct system with fibers

Xq(1) = C2 , Xq(2) = C2 ⊗ C2 ⊖ span{e1 ⊗ e2 − qe2 ⊗ e1}.
Since M1

∼= B2, A1 is not isomorphic to any Aq with q 6= 1 (recall that when
q 6= 1, Mq is homeomorphic to two discs glued together at the origin). Thus
Theorem 10.5 gives:

Corollary 10.8. Assume that d = 2. Then Xq
∼= Xr if and only if Aq is

isometrically isomorphic to Ar, and either one of these happens if and only if
either r = q or r = q−1.

Elias Katsoulis has pointed out to us that the above corollary also follows from
the techniques of [18].
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The above result is reminiscent to the fact that two rotation algebras Aθ and
Aθ′ are isomorphic if and only if either e2πiθ = e2πiθ

′

or (e2πiθ)−1 = e2πiθ
′

. One
cannot help but wonder whether one can draw a deeper connection between
these results then the superficial one, in particular, can the classification of
rotation algebras be deduced from the classification of the algebras Aq?
By Corollaries 10.4 and 10.6 we have the following.

Corollary 10.9. Let d = 2 and let q 6= 1. Then subproduct system Xq has
no automorphisms aside form the unitary scalings of the basis. The algebra Aq
has no isometric automorphisms other than unitary scalings of the generators.

On the other hand, a direct calculation shows that every unitary on C2 extends
to an automorphism of X1, and thus induces a non-obvious automorphism of
A1.

11. Standard maximal subproduct systems with dimX(1) = 2 and
dimX(2) = 3

Again, let {e1, . . . , ed} be an orthonormal basis for E := Cd. We will soon
turn attention to the case d = 2. For a matrix A ∈ Md(C), we define the
symmetric part of A to be As := (A + At)/2 and the antisymmetric part of
A to be Aa := (A − At)/2. Denote by XA the maximal standard subproduct
system with fibers

XA(1) = E , XA(2) = E ⊗ E ⊖ span





d∑

i,j=1

aijei ⊗ ej



 .

We will write SA for the shift SXA . We will also write AA for AXA .

Proposition 11.1. Let A,B ∈ Md(C). Then there is an isomorphism V :
XA → XB if and only if there exists λ ∈ C and a unitary d× d matrix U such
that B = λU tAU . In this case, U extends to the isomorphism V between XA

and XB by V1 = U .

Proof. Let V : XA → XB be an isomorphism of subproduct systems. There is
a d× d unitary matrix U = (uij) such that

fi := V1(ei) =

d∑

j=1

uijej.

Then

0 = V1(pX2 (
∑

i,j

aijei ⊗ ej))

= pY2 (
∑

i,j

aijfi ⊗ fj),
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so
∑

i,j aijfi⊗fj must be a spanning vector of span
{∑

i,j bijei ⊗ ej
}

. Writing

out fully what this means,

λ
∑

i,j

aij
∑

k,l

uikujlek ⊗ el =
∑

k,l

bklek ⊗ el

for some λ ∈ C, so

bkl = λ
∑

i,j

aijuikujl.

But the right hand side is precisely the kl-th element of λU tAU .
Conversely, assuming B = λU tAU , one can read the above argument from
finish to start to obtain an isomorphism V : XA → XB. �

We see that for XA and XB to be isomorphic the ranks of A and B must be
the same, as well as the ranks of their symmetric and anti-symmetric parts.
For example, if A is symmetric and B is not then XA ≇ XB, a result which
may not seem obvious at first glance.

Theorem 11.2. Assume that d = 2. Let A,B ∈ M2(C) be any two matrices.
Then AA is isometrically isomorphic to AB if and only if XA

∼= XB, and this
happens if and only if there exists λ ∈ C and a unitary 2 × 2 matrix U such
that B = λU tAU .

The proof of Theorem 11.2 will occupy the rest of this section. Denote by
MA the character space of AA, that is, the topological space of contractive
multiplicative and unital linear functionals on AA, endowed with the weak-∗
topology.

Lemma 11.3. The topology ofMA depends on the rank r(As) of the symmetric
part As of A:

(1) If r(As) = 0 then MA
∼= B2, the unit ball in C2.

(2) If r(As) = 1 then MA
∼= D, the unit disc in C.

(3) If r(As) = 2 thenMA is homeomorphic to two discs pasted together at
the origin.

Proof. We proceed similarly to the lines of 10.2. Every character ρ ∈ MA

is uniquely determined by λ1 = ρ(SA1 ) and λ2 = ρ(SA2 ), which lie in B2.
Conversely, every (λ1, λ2) ∈ B2 that satisfies

∑

i,j

aijλiλj = 0

gives rise to a character ρ by defining λ1 = ρ(SA1 ) and λ2 = ρ(SA2 ). Thus,

MA
∼= VA :=



(λi, λj) ∈ B2 :

∑

i,j

aijλiλj = 0



 .
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Clearly, VA = VAs . However, every symmetric 2×2 matrix is complex congruent
to one of the following:

D0 =

(
0 0
0 0

)
, D1 =

(
1 0
0 0

)
or D2 =

(
1 0
0 1

)
,

i.e., there exists a nonsingular matrix T such that As = T tDiT , for i = r(As).
But then VAs = T−1VDi

∼= VDi , so it remains to verify that VDi is homeomor-
phic to the spaces listed in the statement of the lemma. �

Corollary 11.4. If r(As) 6= r(Bs) then AA ≇ AB.

We can use this corollary to break down the classification of the algebras AA
to the classification of the algebras AA with fixed r(As). The easiest case is

r(As) = 0, because then A is either the zero matrix or a multiple of

(
0 1
−1 0

)
,

and these two matrices give rise to non isomorphic algebras (these are the
algebras generated by the full and symmetric shifts, respectively).
The next easiest case is r(As) = 2.

Lemma 11.5. If A,B ∈ M2(C) and r(As) = r(Bs) = 2, then AA is isometri-
cally isomorphic to AB if and only if XA

∼= XB, and this happens if and only
if there exists λ ∈ C and a unitary 2 × 2 matrix U such that B = λU tAU .
Any isometric isomorphism between AA and AB arises as conjugation by the
subproduct system isomorphism arising from U .

Proof. In light of Theorem 9.7 and Proposition 11.1, it suffices to show that any
isometric isomorphism ϕ : AA → AB sends the vacuum state to the vacuum
state. But the vacuum state inMA and inMB corresponds to the point where
the two discs are glued together. Since ϕ induces a homeomorphism between
MB and MA, it must send the vacuum state to the vacuum state. �

Remark 11.6. In the previous section we have seen already that there is a
continuum of non-(completely isometrically)-isomorphic algebras AA and sub-
product systems XA with r(As) = 2, namely the algebras Aq. One can see
that these algebras AA are not exhausted by the algebras Aq of the previous

section. For example, all the algebras AA with A =

(
1 0
0 q

)
, with q > 0, are

non-isomorphic, and only for q = 1 is this algebra isomorphic to an Aq (in this
case q = −1).

We now come to the trickiest case, r(As) = 1.

Lemma 11.7. If A,B ∈ M2(C) are two symmetric matrices of rank 1, then
there exists λ ∈ C and a unitary 2 × 2 matrix U such that B = λU tAU , and
consequently XA

∼= XB and AA is isometrically isomorphic to AB .

Proof. We only have to prove the first assertion, and we may assume that

B =

(
1 0
0 0

)
. We may also assume that there is a unit vector v = (v1, v2)t
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such that A = vvt. Now let

U =

(
v1 v2
v2 −v1

)
.

Then

U tAU =

(
v1 v2
v2 −v1

)t
vvt
(
v1 v2
v2 −v1

)
=

(
v1 v2
v2 −v1

)t(
v1 0
v2 0

)
=

(
1 0
0 0

)
.

�

Below we will also need the following lemma.

Lemma 11.8. Let A be a 2× 2 matrix for which r(As) = 1. Then there exists
one and only one q ≥ 0 for which there is a λ ∈ C and a unitary U such that

(
1 q
−q 0

)
= λU tAU.

Furthermore, if A is non-symmetric then A is congruent to the matrix
(

1 1
−1 0

)
.

Proof. Direct verification, using Lemma 11.7 and the fact that congruations
preserves, up to a scalar, the anti-symmetric part. �

Let us write Aq for the matrix

Aq =

(
1 q
−q 0

)
.

By the above lemma, we may restrict attention only to the algebras AAq with
q ≥ 0.
Recall that the character space MAq of AAq is identified with the closed unit

disc D by

MAq ∋ ρ←→ ρ(S
Aq
2 ) ∈ D.

We write ρz for the character that sends S
Aq
2 to z ∈ D. This identifies the

vacuum vector ρ0 with the point 0. Recall also that if ϕ : AAq → AAr is an
isometric isomorphism, then it induces a homeomorphism ϕ∗ : MAr → MAq

given by ϕ∗ρ = ρ ◦ϕ. We write Fϕ for the homeomorphism D→ D induced by

ϕ, that is, Fϕ is the unique self map of D that satisfies

ϕ∗ρz = ρFϕ(z) , z ∈ D.

Let us introduce the notation

O(0; q, r) = {Fϕ(0)
∣∣ϕ : AAq → AAr is an isometric isomorphism},

and

O(0; q) = O(0; q, q).

Lemma 11.9. Let q, r ≥ 0. If q 6= r then 0 does not lie in O(0; q, r).
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Proof. Assume that 0 ∈ O(0; q, r). Then there is some isometric isomorphism
ϕ : AAq → AAq that preserves the character ρ0. It follows from Theorem 9.7
and Proposition 11.1 that, for some unitary 2 × 2 matrix U and some λ ∈ C,
Aq = λU tArU . But, as noted in Lemma 11.8, this is impossible if r 6= q. �

Lemma 11.10. The sets O(0; q, r) are invariant under rotations around 0.

Proof. For λ with |λ| = 1, write ϕλ for the isometric isomorphism mapping

S
Aq
i to λS

Aq
i (i = 1, 2). For b = Fϕ(0) ∈ O(0; q, r), consider ϕ ◦ ϕλ. We

have ρ0((ϕ ◦ ϕλ)(S
Aq
2 )) = ρ0(ϕ(λS

Aq
2 )) = λρ0(ϕ(S

Aq
2 )) = λb. Thus λb ∈

O(0; q, r). �

Lemma 11.11. Let q, r ≥ 0. If q 6= r then AAq is not isometrically isomorphic
to AAr .
Proof. Assume that ϕ : AAq → AAr is an isometric isomorphism. We have

ρ0 ◦ ϕ = ρb, with b = Fϕ(0), and Fϕ is a homeomorphism of D onto itself.
By definition, b ∈ O(0; q, r). By Lemma 11.9, b 6= 0. Denote C := {z : |z| =
|b|}. By Lemma 11.10, C ⊆ O(0; q, r). Consider C′ := F−1

ϕ (C). We have that
C′ ⊆ O(0; r). C′ is a simply connected closed path in D that goes through the
origin. By Lemma 11.10, the interior of C′, int(C′), is in O(0; r). But then
Fϕ(int(C′)) is the interior of C, and it is in O(0; q, r). But then 0 ∈ O(0; q, r),
contradicting Lemma 11.9. �

That concludes the proof of Theorem 11.2.

12. The representation theory of Matsumoto’s subshift
C∗-algebras

In [28] Kengo Matsumoto introduced a class of C∗-algebras that arise from
symbolic dynamical systems called “subshifts” (we note that in the later paper
[17] Carlsen and Matsumoto suggest another way of associating a C∗-algebra
with a subshift. Here we are discussing only the algebras originally introduced
in [28]). These subshift algebras, as we shall call them, are strict generalizations
of Cuntz-Krieger algebras and have been extensively studied by Matsumoto, T.
M. Carlsen and others. For example, the following have been studied: criteria
for simplicity and pure-infiniteness; conditions on the underlying dynamical
systems for subshift algebras to be isomorphic; the automorphisms of the sub-
shift algebras; K-theory of the subshift algebras; and much more. In this section
we will use the framework constructed in the previous sections to give a com-
plete description of all representations of a subshift algebra when the subshift
is of finite type.

12.1. Subshifts and the corresponding subproduct systems and C∗-
algebras. Our references for subshifts are [28] and [16, Chapter 3].
Let I = {1, 2, . . . , d} be a fixed finite set. IZ is the space of all two-sided infinite
sequences, endowed with the product topology. The left shift (or simply the
shift) on IZ is the homeomorphism σ : IZ → IZ given by (σ(x))k = xk+1. Let
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Λ be a shift invariant closed subset of IZ. By this we mean σ(Λ) = Λ. The
topological dynamical system (Λ, σ

∣∣
Λ

) is called a subshift. Sometimes Λ is also
referred to as the subshift.
If W is a set of words in 1, 2, . . . , d, one can define a subshift by forbidding the
words in W as follows:

ΛW = {x ∈ IZ : no word in W occurs as a block in x}.
Conversely, every subshift arises this way: i.e., for every subshift Λ there exists
a collection of words W , called the set of forbidden words, such that Λ = ΛW .
In this context, if W can be chosen finite then Λ = ΛW is called a subshift of
finite type, or SFT for short. By replacing I if needed, we may always assume
that W has no words of length one. If W can be chosen such that the longest
word in W has length k + 1 then Λ is called a k-step SFT. A 1-step SFT is
also called a topological Markov chain. A basic result is that every SFT is
isomorphic to a topological Markov chain ([16, Proposition 3.2.1]).
For a fixed subshift (Λ, σ

∣∣
Λ

), we set

Λk = {α : α is a word with length k occurring in some x ∈ Λ},
and Λl = ∪lk=0Λk, Λ∗ = ∪∞k=0Λk. With the subshift (Λ, σ

∣∣
Λ

) we associate a

subproduct system XΛ as follows. Let {ei}i∈I be an orthonormal basis of a
Hilbert space E. We define

XΛ(0) = C,
and for n ≥ 1 we define

XΛ(n) = span{eα : α ∈ Λn}.
We define a product Um,n : XΛ(m)⊗XΛ(n)→ XΛ(m+ n) by

Um,n(eα ⊗ eβ) =

{
eαβ , if αβ ∈ Λm+n

0, else.

Since Λm+n ⊆ Λm · Λn, XΛ is a standard subproduct system.

Definition 12.1. The C∗-algebra associated with a subshift (Λ, σ
∣∣
Λ

) is defined
as the quotient algebra

OΛ := OXΛ = TXΛ/K(FXΛ).

Remark 12.2. Just to prevent confusion: In [28], OΛ was defined as the quo-
tient by the compacts of the C∗-algebra generated by the “creation operators”
(that is, the X-shift) on FX , without using the language of subproduct systems.

12.2. Subproduct systems that come from subshifts.

Proposition 12.3. Let X be a standard subproduct system such that there is
an orthonormal basis {ei}i∈I of X(1), with I finite, such that

(1) Every X(n), n ≥ 1, is spanned by vectors of the form eα with |α| = n.
(2) For all m,n ∈ N, |α| = n and eα ∈ X(n), implies that there is some

β, γ ∈ Im such that eβ ⊗ eα and eα ⊗ eγ are in X(m+ n).
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Then there is a shift invariant closed subset Λ of IZ such that X =
XΛ. X is the maximal standard subproduct system with prescribed fibers
X(1), X(2), . . . , X(k + 1) if and only if Λ is k-step SFT.

Proof. For all k ∈ N, define

Λ(k) = {α ∈ Ik : eα ∈ X(k)}.
For all m ∈ Z, k ∈ N, define the closed sets

Am,k = {x ∈ IZ : (xm, xm+1, . . . , xm+k−1) ∈ Λ(k)}.
Condition (2) implies that X(k) always contains a nonzero vector of the form
eα, |α| = k. That implies that the family {Am,k}m,k has the finite intersection
property. Indeed,

Am1,k1 ∩Am2,k2 ⊇ AM,K 6= ∅,
where M = min{m1,m2}, K = max{m2 + k2,m1 + k1} −M . By compactness
of IZ we conclude that the closed set

Λ :=
⋂

m,k

Am,k

is non-empty. Λ is invariant under the left and the right shifts, so σ(Λ) = Λ,
so (Λ, σ

∣∣
Λ

) is a subshift. By condition (2), Λk = Λ(k). Condition (1) together
with the definition of XΛ now imply that X = XΛ.
The final assertion follows from the following facts, together with X = XΛ.
Fact number one:

E⊗n ⊖XΛ(n) = span{eα : α is a forbidden word of length n}.
Fact number two: X is the maximal standard subproduct system with pre-
scribed fibers X(1), . . . , X(k + 1) if and only if for every n > k + 1,

X(n) =
⋂

i+j=n

X(i)⊗X(j),

or in other words, if and only if

E⊗n ⊖X(n) =
∨

i+j=n

(
E⊗n ⊖ (X(i)⊗X(j))

)

=
∨

i+j=n

(
E⊗i ⊗ (E⊗j ⊖X(j)) + (E⊗i ⊖X(i))⊗ E⊗j

)
.

Fact number three: Λ is a k-step SFT if and only if for every n > k + 1,

{forbidden words of length n} =
⋃

i+j=n

(
Ii · {forbidden words of length j} ∪ {forbidden words of length i} · Ij

)
.

These facts assemble together to complete the proof. �
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Not every subproduct system is isomorphic to one that comes from a subshift.
Indeed, in the symmetric subproduct system SSP (see Example 1.3) for any
basis {ei}i∈I of X(1), the product ei ⊗ ej for i 6= j is never in X(2), and thus
the images fi and fj of ei and ej in any isomorphic subproduct system X can
never be such that fi ⊗ fj is mapped isometrically to UX1,1(fi ⊗ fj). Thus if
SSP is isomorphic to XΛ for some subshift Λ, then Λ must be the subshift
containing only constant sequences. But such XΛ is clearly not isomorphic to
SSP .
As another example, the subproduct systemX(0) = C, X(1) = C2, andX(n) =
0 for n > 1, cannot be of the form XΛ for any Λ ⊆ IZ.

12.3. The representation theory of the C∗-algebra associated
with a subshift of finite type. Let Λ be a fixed subshift in IZ (with
I = {1, 2, . . . , d}), and let X = XΛ be the associated subproduct system. We
will denote the X-shift by S (instead of SX) to make some formulas more read-
able. Let Zi be the image of Si in the quotient OΛ. We define for i ∈ I, k ∈ N
the sets

Eki = {α ∈ Λk : iα ∈ Λ∗}.
Lemma 12.4. If Λ is a k-step SFT, then for all i ∈ I,

{γ ∈ Λ∗ : |γ| ≥ k, iγ ∈ Λ∗} = {αβ ∈ Λ∗ : α ∈ Eki , β ∈ Λ∗}.
Proof. Assume that γ ∈ Λ∗ is such that |γ| ≥ k and iγ ∈ Λ∗. Defining
α = γ1 · · ·γk and β = γk+1 · · · γk+l, we have that γ = αβ where α ∈ Eki and
β ∈ Λ∗.
Conversely, if γ = αβ ∈ Λ∗ where α ∈ Eki and β ∈ Λ∗, then iγ must be in Λ∗.
Indeed, if not, then iγ must contain a forbidden word. But γ ∈ Λ∗, thus the
forbidden word must be in iα (since Λ is a k-step SFT). But that is impossible
because α ∈ Eki . �

Lemma 12.5. If Λ is a k-step SFT then for all i, j ∈ I, i 6= j,

S∗i Sj = 0,

and

(12.1) S∗i Si =
∑

α∈Eki

SαSα∗ mod KX .

Consequently, EX = TX .

Proof. Since the Si are partial isometries with orthogonal ranges, we have
S∗i Sj = 0 for all i 6= j. Since KX ⊆ EX ⊆ TX (Proposition 8.1), EX = TX will
be established once we prove (12.1).
S∗i Si is the projection onto the initial space of Si. Call this space G. We have

G = span{eα : α ∈ Λ∗ such that iα ∈ Λ∗}.
The space

G′ = span{eα : α ∈ Λ∗ such that iα ∈ Λ∗ and |α| ≥ k}
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has finite codimension in G. But by Lemma 12.4,

G′ = {eαβ : αβ ∈ Λ∗, α ∈ Eki },
that is, G′ is spanned by eγ where γ runs through all legal words beginning

with some α ∈ Eki . Thus, G′ is the range of the projection
∑

α∈Eki S
αSα

∗

.

Since G′ has finite codimension in G, we have (12.1). �

Proposition 12.6. For every subshift Λ, the d-tuple Z = (Z1, . . . , Zd) satisfies
the following relations:

(12.2) p(Z) = 0 , for all p ∈ IX ,

(12.3) Z∗i Zj = 0 , for all i, j ∈ I , i 6= j,

and

(12.4)

d∑

i=1

ZiZ
∗
i = 1.

In particular, Zi is a partial isometry for all i ∈ I. If Λ is a k-step SFT, the
Z also satisfies

(12.5) Z∗i Zi =
∑

α∈Eki

ZαZα∗ , for all i ∈ I.

Proof. The quotient map TX → OΛ is a ∗-homomorphism, so (12.2) follows
from Theorem 7.5. (12.3) and (12.5) follow from the previous lemma, and
(12.4) follows ¿¿from equation (8.1). �

Theorem 12.7. Let Λ be a k-step SFT. Every unital representation π : OΛ →
B(H) is determined by a row-contraction T = (T1, . . . , Td) satisfying relations
(12.2)-(12.5) such that π(Zi) = Ti for all i ∈ I. Conversely, every row con-
traction in B(H)d satisfying the relations (12.2)-(12.5) gives rise to a unital
representation π : OΛ → B(H) such π(Zi) = Ti for all i ∈ I.
Proof. It is the second assertion that is non-trivial, and we will try to convince
that it is true. By Theorem 8.2, there is unital completely positive map

Ψ : EX → B(H)

sending SαSβ∗ to TαT β∗. Since enough of the rank one operators on FX arise

as Sα(I −∑d
i=1 SiS

∗
i )Sβ∗ (see equation (8.1)), and because T satisfies (12.4),

we must have that Ψ(K) = 0 for every K ∈ K(FX). By Lemma 12.5, EX = TX ,
and it follows that Ψ induces a positive and unital (hence contractive) mapping

π : OΛ → B(H)

that sends ZαZβ∗ to TαT β∗. Roughly speaking: π must be multiplicative
because Z and T satisfy the same relations. In more detail: every product

(ZαZβ∗)(Zα
′

Zβ
′∗) may be written, using the relations (12.2)-(12.5) as some
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sum
∑

γ,δ Z
γZδ∗. The mapping π then takes this sum to

∑
γ,δ T

γT δ∗, and this

can be rewritten (using the same relations) as

(TαT β∗)(Tα
′

T β
′∗) = π(ZαZβ∗)π(Zα

′

Zβ
′∗).

This shows that

π
(

(ZαZβ∗)(Zα
′

Zβ
′∗)
)

= π(ZαZβ∗)π(Zα
′

Zβ
′∗),

and since the elements of the form ZαZβ∗ span OΛ, and since π is a positive
linear map, it follows that π is in fact a ∗-representation. �
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