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Abstract. We consider the problem of representing an analytic function
on a vertical strip by a bilateral Laplace transform. We givea Paley–Wiener
theorem for weighted Bergman spaces on the existence of suchrepresenta-
tions, with applications. We generalise a result of Batty and Blake, on ab-
scissae of convergence and boundedness of analytic functions on halfplanes,
and also consider harmonic functions. We consider analyticcontinuations
of Laplace transforms, and uniqueness questions: if an analytic function is
the Laplace transform of functionsf1, f2 on two disjoint vertical strips, and
extends analytically between the strips, when isf1 = f2? We show that
this is related to the uniqueness of the Cauchy problem for the heat equation
with complex space variable, and give some applications, including a new
proof of a Maximum Principle for harmonic functions.
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1 Introduction and notation

We are concerned with Laplace transforms: for an analytic function F on
{a < Re(z) < b}, we would like to know when

F (z) = Lh(z) ∼
∫ ∞

t=−∞
e−zth(t) dt ∼

∫ ∞

t=−∞
e−xth(t)e−iyt dt

for someh, in some sense: either as an absolutely convergent Lebesgueintegral, or as
theL2 or tempered distribution Fourier transform ofe−xth(t). Our normalisation of
the Fourier transform is

f̂(ω) ∼
∫ ∞

t=−∞
e−iωtf(t) dt, f(t) ∼ 1

2π
̂̂
f(−t).
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In Section 2 we give a fairly general Paley–Wiener theorem which guarantees the
existence of such anh for analytic functionsF in certain weighted Bergman spaces,
with applications. In Section 3 we generalise a result of C. Batty and M. D. Blake
concerning bounded functions on halfplanes; we obtain the same result, but under
weaker assumptions, as well as a similar result for harmonicfunctions.
In Section 4 we consider theuniquenessproblem, which is important because ana-
lytic functions can sometimes be represented by Laplace transforms of differenth on
disjoint vertical strips. We obtain an explicit formula foranalytic continuation under
quite mild conditions, and relate this to the heat equation.Thus uniqueness theo-
rems on the heat equation immediately give uniqueness theorems for boundary values
of harmonic functions; see Corollaries 4.5, 4.6. Finally, Sections 5, 6 contain some
longer proofs.
The problem of existence of Laplace transform representations for functions in certain
spaces has been studied extensively; for example, see [4], [5], [9], [12], [20], [27],
[29].
Given any domainΩ ⊆ C and Banach spaceE, we writeHol(Ω, E) for the set of all
analytic functionsF : Ω → E, or justHol(Ω) whenE = C. We need the theory of
Hardy spaces: see [1], [10], [21], [25] and [26].
Let C+ = {z ∈ C : Re(z) > 0} andR+ = {t ∈ R : t > 0}. For any Banach space
E, 1 6 p < ∞ andF ∈ Hol(C+, E), define

‖F‖Hp(C+,E) = sup
r>0

(∫ ∞

−∞
‖F (r + iy)‖p

E

dy

2π

)1/p

.

The set of allF with ‖F‖ < ∞ is theHardy spaceHp(C+, E). WhenE = C we
write simplyHp(C+). We mainly use the casep = 2 with E a Hilbert space.
The classical Paley–Wiener Theorem says thatL : L2(R+, E) → H2(C+, E) is a
unitary operatorfrom L2 ontoH2, providedthatE is a Hilbert space:

‖f‖L2(R+,E) =

(∫ ∞

t=0

‖f(t)‖2
E dt

)1/2

= ‖Lf‖H2(C+,E),

andL−1 : H2(C+, E) → L2(R+, E) is well–defined. Here, we are thinking of
H2(C+, E) ⊂ L2(iR, E) in terms of a.e. boundary values.

2 Hilbert space Paley–Wiener type results

Theorem 2.1 Let −∞ 6 a < b 6 +∞, let E be a Hilbert space, and letΩ =
{z ∈ C : a < Re(z) < b}.
Suppose thatv : (a, b) → [0, +∞] is Lebesgue measurable, withv > 0 almost
everywhere. For anyF ∈ Hol(Ω, E), define

‖F‖2
L2(Ω,v,E) =

1

2π

∫ b

x=a

∫ ∞

y=−∞
‖F (x + iy)‖2

E v(x) dy dx.
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For anyh : R → E strongly measurable, define

Nv(h)2 =

∫

t∈R

‖h(t)‖2
E

(∫ b

x=a

e−2xtv(x) dx

)
dt.

Then, wheneverNv(h) < ∞, we haveNv(h) = ‖Lh‖L2(Ω,v,E).
Conversely, let F ∈ Hol(Ω, E) with ‖F‖L2(Ω,v,E) < ∞. Assume alsothat:

∀ a < α < β < b, ∃ ε(α, β) > 0 such that
∫ β

α

v(x)−ε(α,β)dx < ∞. (1)

Then: ∃h such thatF = Lh on Ω, and Nv(h) = ‖F‖L2(Ω,v,E). Furthermore,
F ∈ L2(c + iR) for everya < c < b, so h is given by the standard Bromwich
Inversion Formula

h(t) ∼ 1

2π

∫ ∞

y=−∞
F (c + iy)ecteiyt dy ∼ 1

2πi

∫

c+iR

F (z)ezt dz,

in the sense ofL2(R, E) Fourier transforms.

The paper [11] proves this result in the special casea = 0, b = ∞ andv(x) =
xr with r > 0, and gives some applications. However, their method is different
and probably cannot be generalised (the conformal transformation1−z

1+z induces an
isometric isomorphism with a weighted Bergman space on the disc, for which(zn)n>0

is an orthogonal basis). Other related results and examples are given in Section 2
of [19].
Proof: The proof thatNv(h) < ∞ impliesLh ∈ L2(Ω, v, E) with the same
norm is not hard: by Fubini’s Theorem,

∫ b

x=a
‖e−xth(t)‖2

L2(R,E)v(x) dx < ∞. Thus

e−xth(t) ∈ L2 for a.e.x ∈ (a, b), becausev > 0 a.e. Now the Plancherel Theorem
can be applied to the functione−xth, for a.e.x, and integrating withv(x)dx gives the
result.
For the converse: first, leta < α < β < b. We must show thatF is boundedon
{x + iy : α 6 x 6 β}. Let r > 0 be sufficiently small, so thata < α − r < α <
β < β + r < b. Fix ϕ ∈ E∗ and considerFϕ(z) = ϕ(F (z)). We have the following
result, which is a substitute for the lack of subharmonicityof |Fϕ|p whenp < 1. See
Lemma 2, p. 172 of [14], there attributed to Hardy and Littlewood; the proof is given
also on p. 185 of [23]:

∀ p > 0, |Fϕ(λ)| 6 Cp

(
1

πr2

∫

|z−λ|<r

|Fϕ(z)|p dA(z)

)1/p

, (2)

with someCp < ∞. (This is true more generally for harmonic functions in several
variables. The casep > 1 is trivial by the Mean Value Property). By assumption,∫ β+r

α−r v(x)−εdx < ∞ for someε > 0. Now let p = 2ε(1 + ε)−1. Apply Hölder’s
inequality with exponent2/p to obtain that

∫

|z−λ|<r

‖F (z)‖p dA(z) =

∫

|z−λ|<r

‖F (z)‖pv(x)p/2v(x)−p/2 dA(z)
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is bounded by a multiple of
(∫

|z−λ|<r ‖F (z)‖2v(x) dA(z)
)p/2

, independently ofλ

with α 6 Re(λ) 6 β. By (2) and (1), we now have|Fϕ(λ)| 6 K‖ϕ‖E∗ , so indeedF
is bounded on{α 6 x 6 β} as required.
Second, suppose that

∫∞
−∞ ‖F (x+iy)‖2 dy < ∞ for x = α, β, wherea < α < β < b.

Thus for eachY > 0, Cauchy’s Integral Formula gives

F (λ) =
1

2πi

∫

∂RY

F (z)

z − λ
dz for all λ ∈ RY = (α, β) × (−Y, Y ).

But F is bounded onRY , uniformly in Y , by above; so we can letY → ∞ for each
fixedλ to obtain

F (λ) =
1

2πi

(∫

β+iR

−
∫

α+iR

)
F (z)

z − λ
dz, wheneverRe(λ) ∈ (α, β).

Now
∫

α+iR
F (z)

z−(α+ω)dz, as a function ofω ∈ C+, is the Szegö projection of the

L2(iR, E) functionF (iy+α) onto the Hardy spaceH2(C+, E), and so by the Paley–
Wiener Theorem it can be represented asLf1 for somef1 ∈ L2(R+, E). We can
consider similarly

∫
β+iR

F (z)
z−(β−ω)dz. Thus

F (λ) = −
∫ ∞

t=0

e−(λ−α)tf1(t) dt +

∫ ∞

t=0

e−(β−λ)tf2(t) dt,

and soF (λ) = Lh(λ) =
∫∞

t=−∞ e−λth(t) dt on{α < Re(λ) < β}, with
∫ ∞

0

‖e−αth(t)‖2 dt,

∫ ∞

0

‖eβth(−t)‖2 dt < ∞.

This shows thate−cth(t) ∈ L2(R, E) for eachα < c < β.
Now v > 0 a.e., so

∫∞
−∞ ‖F (x + iy)‖2 dy < ∞ for a.e. x ∈ (a, b). So choose

sequences(αj) ց a and (βj) ր b such that this holds withx = αj , βj . Then
F = Lhj on{αj < Re(λ) < βj} for eachj. By uniqueness of the Fourier transform
we must havehj ≡ h1 = h a.e.
So finallyF = Lh on{a < Re(λ) < b}, and Plancherel’s Theorem gives

1

2π

∫ ∞

y=−∞
‖F (x + iy)‖2dy =

∫ ∞

t=−∞
e−2xt‖h(t)‖2 dt

for eacha < x < b. HenceNv(h) = ‖F‖L2(Ω,v,E).
�

Similarly, with the Hausdorff–Young theorem and Paley–Wiener theorem forHp, we
can easily obtain the following result:

Theorem 2.2 LetF ∈ Hol{a < Re(z) < b}, let 1 < p 6 2, let v satisfy the same
conditions as Theorem 2.1, and suppose that

∫ b

x=a

∫ ∞

y=−∞
|F (x + iy)|p v(x) dy dx < ∞. (3)
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Then there exists someh such thatF = Lh and

∫ b

x=a

(∫ ∞

t=−∞
e−p′xt|h(t)|p′

dt

)p−1

v(x) dx < ∞. (4)

We can consider Dirichlet–type norms also; for example:

Corollary 2.3 LetF ∈ Hol(C+, E), for a Hilbert spaceE. Then

∫∫

C+

‖F ′(z)‖2xdx dy < ∞ ⇐⇒ F ∈ H2(C+, E) + {constants}.

This is obvious, since
∫∞
0 ‖h(t)‖2dt/t2 < ∞ if and only if h(t)/t ∈ L2(R+, E) if

and only ifL(h(t)/t) ∈ H2.

Corollary 2.4 Let F ∈ Hol{0 < Re(z) < R} be bounded, for some0 < R 6

+∞. Then∃ g : R → C such thatF (z) = zLg(z), and

∫ 0

−∞
e2R|t||g(t)|2 dt < ∞, sup

T>1/R

(
1

T

∫ T

0

|g(t)|2 dt

)
< ∞.

Alsosup06c6R ‖e−ctg‖BMO(R) < ∞. In particular,

∫ ∞

t=0

|g(t)| + e−Rt|g(−t)|
1 + t2

dt < ∞.

In the caseR = +∞, we haveg(t) = 0 for all t < 0.

BMO(R) is the very important Bounded Mean Oscillation space, discussed in [1],
[16], [23] and many other books, which often serves as a useful substitute forL∞(R).
For locally integrablef : R → C we have

‖f‖BMO(R) = sup
I

|f − fI |I , where fI =
1

|I|

∫

I

f(t) dt,

I ranges over allbounded intervalsof R, and|I| is thelength.
Proof: The existence ofg is immediate from Theorem 2.1, if we considerG(z) =
F (z)/z and take, e.g.v(x) = x/(1 + x3). The estimates follow from Plancherel’s
Theorem:

∫ ∞

−∞
e−2xt|g(t)|2 dt =

1

2π

∫ ∞

−∞

∣∣∣∣
F (x + iy)

x + iy

∣∣∣∣
2

dy ≪ 1

x
.

For the estimate witht > 0, let T > 1/R and consider
∫ T

t=0 only with x = 1/T . For∫ 0

t=−∞ we just letx ր R.
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For theBMO result, let0 < c < R. ThenF (c+iy)
c+iy is anL2 function ofy ∈ R, with∣∣∣F (c+iy)

c+iy

∣∣∣ 6 sup |F |
|y| . We have

e−ctg(t) ∼ 1

2π

∫ ∞

−∞

F (c + iy)

c + iy
eiyt dy.

Now apply Lemma 2.5 below to get‖e−ctg‖BMO(R) 6 K for someK independent
of c. Forc = 0 andc = R, choose sequencescj ց 0 andcj ր R and use Dominated
Convergence: for each intervalI, (e−cjtg)I → gI or (e−Rtg)I as appropriate. Then
|e−cjtg− (e−cjtg)I |I also converges appropriately; since theBMO norm is given by
a supremum over allI, we have the result.
�

Lemma 2.5 If f ∈ L2(R) then
∥∥∥f̂
∥∥∥

BMO(R)
6 C supβ∈R |βf(β)|, whereC is a

universal constant independent off .

Proof: By considering the restrictions off to R+ andR− separately, it is enough
to considerf ∈ L2(R+) with |βf(β)| 6 1. Takeu ∈ L2(R+) and consider the
convolution(k ∗ u)(α) =

∫ α

s=0
k(α − s)u(s) ds. By Hardy’s Inequality (see [18]),

∫ ∞

α=0

|(βf ∗ u)(α)|2 dα

α2
6

∫ ∞

α=0

(
1

α

∫ α

s=0

|u(s)| ds

)2

dα

6 4

∫ ∞

s=0

|u(s)|2ds.

Taking Laplace transforms and using (the easy half of) Theorem 2.1 gives
∫∫

C+

|L(βf)(z)Lu(z)|2xdx dy 6 K‖Lu‖2
H2(C+).

But this says exactly that|L(βf)(z)|2xdx dy = |(Lf)′(z)|2xdx dy is a Carleson
Measureon C+. HenceLf ∈ Hol(C+) is the Poisson integralof some function
U ∈ BMO, by [13]. But alsoLf ∈ H2(C+), and soLf is the Poisson integral of its
boundary function̂f . Hencef̂ = U ∈ BMO as required.
�

In Theorem 3.1 below we obtain further results ong, assuming extra conditions onF
(decay behaviour on a vertical line).

3 Results assuming decay on a vertical line

The following theorem generalises the main result of [3].

Theorem 3.1 Let 0 < R 6 +∞ and Ω = {z : 0 < Re(z) < R}. Let E be
a Banach space, and letF ∈ Hol(Ω, E) be bounded. Assume that∃ 0 < c < R,
0 < δ 6 1 andν > 1 such that

∀ϕ ∈ E∗,

∫ ∞

y=−∞

∣∣ϕ(F (c + iy))
∣∣ν

(1 + |y|)1−δ
dy < ∞. (5)
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Thenthere exists some continuousg : R → E with F (z) = zLg(z) for all z ∈ Ω,
such that

‖g(t)‖ 6

{
M(1 + t) for t > 0,

MeRt(1 + |t|) for t < 0.
(6)

In the caseR = +∞, we haveg(t) = 0 for all t 6 0. Alsog satisfies local Ḧolder
estimates: there is someM < ∞ such that

‖g(t + s) − g(s)‖ 6 Mecstδ/ν (∀ s ∈ R, 0 < t < 1). (7)

The proof is given in Section 5. Of course we can get additional information about
|ϕ(g(t))|2 by applying Corollary 2.4 above toϕ ◦ F .
In [3] the main result was the estimate (6) for the caseR = +∞ only, assuming the
much stronger condition

F = Lf with
∫ ∞

0

‖e−rtf(t)‖pdt < ∞, p > 1, r > 0. (8)

[3] also explains that (8) is not sufficient in the casep = 1. Under assumption (8),
we would haveg(t) =

∫ t

0 f(s) ds. By increasingr if necessary and using Hölder’s
inequality, we could take1 < p 6 2 without loss of generality. Then the Hausdorff–
Young Theorem would give (5) forc = r with ν = (1 − 1/p)−1 = p′ > 2 andδ = 1.
The estimate (6) is best possible in general, even under the extra assumption (8), as
shown in [2].
Additionally (7), which is aconclusionof our theorem, would follow automatically
from the assumption (8).
In the caseR = +∞, we have a similar result forharmonicfunctions:

Theorem 3.2 Let F : C+ → E be a boundedharmonicfunction, whereE is a
Banach space. Assume that(5) holds withc > 0.
Then:there existgj : R+ → E continuous,j = 1, 2, such that

gj(0) = 0, ‖gj(t)‖ 6 K(1 + t2),

F (z) = z Lg1(z) + z̄Lg2(z̄) onC+,

andg1, g2 satisfy the same Ḧolder estimate(7) from Theorem 3.1.

See Section 6 for the proof. Unfortunately, the caseR < ∞ is unsatisfactory. For
example, there is no functiong such thatz + a = zLg(z), with a ∈ C constant. Thus
2Re(z) = z + z̄ is harmonic and bounded on{0 < Re(z) < 1} butcannotbe written
aszLg1(z) + z̄Lg2(z̄) for any functionsg1, g2.

4 Uniqueness conditions

It is natural to consideruniqueness: if Lf1 = Lf2 on {a < Re(z) < b}, in any
reasonable sense, thenf1 = f2 by uniqueness of Fourier transforms. However, this
does not answer the following:
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Question 4.1 Leta1 < b1 < a2 < b2 andF ∈ Hol{a1 < Re(z) < b2}, with

sup
aj<c<bj

∫ ∞

−∞
|F (c + iy)|2 dy < ∞, for j = 1, 2,

so thatF = Lfj on {aj < Re(z) < bj} for some (uniquely determined)f1, f2, by
Theorem 2.1. When do we havef1 = f2?

In contrast to Laurent series on concentric annuli{rj < |z| < Rj}, it is possible to
havef1 6= f2. The paper [24] considers

G ∈ Hol(C), G(z) =

∫ ∞

t=0

eztt−tdt.

ThenG is entire, and bounded on{|Im(z)| > π/2 + δ} for eachδ > 0. Define
F (z) = −iG(iz). By Cauchy’s Theorem as in [24] we obtain

F (z) =

∫ ∞

s=0

e−zs exp
(
−is log s +

πs

2

)
ds, Re(z) >

π

2
.

SinceG(z̄) = G(z), we haveF (−z̄) = −F (z). Thus

F (z) = −
∫ 0

s=−∞
e−zs exp

(
−is log(−s) − πs

2

)
ds, Re(z) < −π

2
.

SoF is entire and represented bydifferentbilateral Laplace transforms on{x > π/2},
{x < −π/2}, even though (using Plancherel’s Theorem)

∫ ∞

−∞
|F (x + iy)|2 dy 6 M

(
|x| − π

2

)−1

whenever|x| > π/2.

Thus by rescaling, for anyǫ > 0 the “gap”{|x| < ǫ} is “unsafe”: crossing the gap
can change the Laplace transform function. However, we shall prove below that the
gap{x = 0} can be safely crossed under quite mild restrictions. First we derive an
explicit formulafor analytic continuation of Laplace transforms.

Theorem 4.2 LetΩ = {z : a < Re(z) < b} andF ∈ Hol(Ω, E), withE a Banach
space. Assume thata < c < b, κ > 0, and

∫ ∞

−∞
‖F (c + iy)‖ exp(−κy2) dy < ∞. (9)

DefineFσ ∈ Hol(C, E), for sufficiently smallσ > 0, by

Fσ(z) = Fσ,c(z) =

∫

λ∈c+iR

F (λ) exp

(
(λ − z)2

2σ2

)
dλ

iσ
√

2π

=

∫ ∞

y=−∞
F (c + iy) exp

(
(c + iy − z)2

2σ2

)
dy

σ
√

2π
.

ThensupC |Fσ − F | 6 K(C)σ2 for each fixed compactC ⊂ Ω. In particular,
Fσ → F locally uniformly onΩ, asσ → 0+.
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Proof: DefineG(λ, z) = F (λ)

iσ
√

2π
exp

(
(λ−z)2

2σ2

)
, so that

‖G(λ, x + iy)‖ =
‖F (λ)‖
σ
√

2π
exp

( |x − Re(λ)|2 − |y − Im(λ)|2
2σ2

)
.

For each fixedz ∈ C, Fσ(z) is the integral ofG(λ, z) over the contourc + iR, which
converges for1/2σ2 > κ by condition (9). SinceG(λ, z) is an analytic function of
λ, we can use Cauchy’s Theorem with the same contour as in Theorem 3.1. Pick
ω = ω1 + iω2 ∈ Ω and fix a squareΣ = {|x − ω1|, |y − ω2| 6 δ} ⊂ Ω. Let Y be
large, much larger thanδ, and consider the contours

Γ(x) = {Re(λ) = x, |Im(λ) − ω2| 6 Y },
Γ±

Y (x) = {Re(λ) ∈ [x, c], Im(λ) = ω2 ± Y },
Γ′ = {Re(λ) = c, |Im(λ) − ω2| > Y }.

Forλ ∈ Γ±
Y (x), we have

‖G(λ, z)‖ 6 sup
µ∈I

‖F (µ)‖ · σ−1 exp

(
M − Y 2/2

2σ2

)
,

uniformly for z ∈ Σ, whereI = Γ±
Y (ω1 − δ) or I = Γ±

Y (ω1 + δ) as appropriate
(depending on whetherω1 < c or ω1 > c). We are using(Y − y)2 > Y 2/2 and
(c − x)2 < M .
Thus

∫
Γ±

Y
(x) Gdλ → 0 rapidly asσ → 0, uniformly inz, as long asY is large enough.

By condition (9) again, also
∫
Γ′ Gdλ → 0 rapidly asσ → 0, uniformly for z ∈ Σ.

Finally, the integral overΓ(x) is a standard Gaussian convolution approximation to
F (z):

∫

Γ(x)

G(λ, x + iy) dλ =

∫ ω2+Y

ω2−Y

F (x + iu) exp

(−(y − u)2

2σ2

)
du

σ
√

2π
.

After Y is chosen,F (t+iu) is then bounded on the tall, narrow rectangle|t−ω1| 6 δ,
|u − ω2| 6 Y . If we approximateF (x + iu) by its Taylor series aboutx + iy, it is
now routine to verify that

∫
Γ(x) G(λ, x + iy) dλ = F (x + iy) + O(σ2), uniformlyfor

|x − ω1|, |y − ω2| < δ/2, say. The errors from the other contours are much smaller,
beingO(exp(−ν/σ2)) for someν > 0.
�

Corollary 4.3 WithF as in Theorem 4.2 andE = C, suppose that

∃ 1 6 p 6 2 such that
∫ ∞

−∞
|F (c + iy)|p dy < ∞.

Then

F (z) = lim
σ→0+

∫ ∞

t=−∞
e−zth(t) exp(−σ2t2/2) dt (10)
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locally uniformly forz ∈ Ω, for some measurableh satisfying
∫ ∞

−∞
|h(t)|e−δt2 dt < ∞ ∀ δ > 0.

Proof: We use the Hausdorff–Young Theorem. Set

h(t)e−ct ∼ 1

2π
̂F (c + iy)(−t) ∈ Lp′

(R),

for p′ = (1− 1/p)−1 the conjugate exponent top. This is well–defined for a.e.t ∈ R.

Now
∫

̂h(t)e−ct(y)g(y) dy =
∫

h(t)e−ctĝ(t) dt for every Schwartz functiong. Now

putF (c + iy) ∼ ĥe−ct(y) in the definition ofFσ,c(z) and calculate.
�

Notice that (10) is just a weak kind of Laplace transform representation forF . It
says that a particular Abelian summability method assigns the valueF (z) to the for-
mal integral “

∫∞
−∞ e−zth(t) dt”, even though this integral may diverge. See [17] for

much more on these topics; unfortunately the classical results given there appear to be
inadequate for our problem.

Corollary 4.4 Let Ω = {z : a < Re(z) < b} andF ∈ Hol(Ω). Suppose that
there exista < c1 < c2 < b andf1, f2 such that

F (cj + iy) ∼
∫ ∞

t=−∞
fj(t)e

−cjt exp(−iyt) dt (y ∈ R, j = 1, 2),

as Fourier transforms offj(t)e
−cjt ∈ L2(R). Define

H(z, v) =

∫ ∞

t=−∞

(
f1(t) − f2(t)

)
exp(izt − vt2)dt

for z ∈ C, v > 0. ThenH has a continuous extensionH : iΩ× [0,∞) → C satisfying

∂2H

∂z2
=

∂H

∂v
, H(z, 0) ≡ 0 (z ∈ iΩ).

Proof: By Corollary 4.3, equation (10) holds for bothh = f1 and h = f2.
Therefore,H(z, v) → F (−iz) − F (−iz) = 0 asv → 0+, for eachz ∈ iΩ. Because
this convergence is locally uniform, we have the required continuity ofH . Finally, the
complex heat equation∂

2H
∂z2 = ∂H

∂v follows immediately by differentiating under the
integral sign.
�

The lettert is normally used for the time variable, but we usev = σ2/2 (for variance,
with an extra factor of2). Now we can apply known results on the heat equation. The
papers [6], [30] prove many results about functions on discs. The following corollaries
are closely related (after applying a conformal transformation), but our proofs are
easier and quite different.
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Corollary 4.5 LetF ∈ Hol({−1 < x < 1}) andA, B, r > 0, with

∫ ∞

−∞
|F (x + iy)|2dy 6 A exp(B|x|−r), ∀x 6= 0.

Thensup−1<x<1

∫∞
−∞ |F (x + iy)|2dy < ∞. In particular, F is bounded on|x| <

1 − ǫ, for eachǫ > 0.

Notice that, a priori, it is not obvious that any estimate for|F (iy)| is possible:
exp(B|x|−r) grows so rapidly as|x| → 0 that any simple attempt based on the Mean
Value Property must fail.
Proof: First, by Theorem 3.1, we know thatF = Lf+ on{0 < x < 1} andF =
Lf− on{−1 < x < 0}, with

∫∞
−∞ e−2δt|f+(t)|2 dt ≪ exp(Bδ−r), and similarly for

f−. Now considerϕ = f+ − f−. Then

∫ ∞

−∞
e−2δ|t||ϕ(t)|2 dt ≪ exp(Bδ−r).

Following Corollary 4.4, define

H(y, v) =

∫ ∞

−∞
exp(iyt − vt2)ϕ(t) dt

for y ∈ R andv > 0. ThenH satisfies the heat equation and extends to be continuous
on{v > 0}, with H(y, 0) ≡ 0. We calculate

|H(y, v)| 6

(∫ ∞

−∞
e−δ|t||ϕ(t)| dt

)
sup
τ∈R

exp(δ|τ | − vτ2)

≪ δ−1/2 exp(Bδ−r/2) exp(δ2/4v) 6 exp

(
Cδ−r +

δ2

4v

)
,

for any 0 < δ < 1. We have used the Cauchy–Schwarz inequality andδ−1/2 <
exp(δ−1/2) 6 exp(δ−r), as long asr > 1/2, which we could clearly assume from
the start. Notice thatC does not depend onδ.
Now chooseδ = vα with α = 1/(r + 2), so thatαr = 1 − 2α, to obtain

|H(y, v)| 6 A′ exp

(
C + 4−1

v1−2α

)
= A′ exp(C′/vη), (11)

for all y ∈ R, 0 < v < 1, with 0 < η < 1. SinceH = H(y, v) is a solution to the
heat equation withH(y, 0) ≡ 0, condition (11) implies thatH ≡ 0. See [8], [15]. In
general the condition|H | 6 A(ǫ) exp(ǫ/v) for eachǫ > 0 is not sufficient, as shown
in [7], but our proof works because we have an estimate forA(ǫ). Thereforeϕ = 0
andf+ = f− almost everywhere, as required.
�
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Corollary 4.6 Let Ω = {x + iy : 0 < x < 1}. Let E be a Banach space,
F : Ω → E continuous, harmonic onΩ, andF ∈ L∞(∂Ω). Suppose thatA, B, r > 0
satisfy

‖F (x + iy)‖ 6 A exp(B[x(1 − x)]−r) ∀ 0 < x < 1, y ∈ R.

ThenF ∈ L∞(Ω) with supΩ ‖F‖ = sup∂Ω ‖F‖.

This is a Maximum Principle, similar in some ways (but quite different in other ways)
to the Phragmén–Lindelöf theorems.
Proof: By consideringϕ ◦ F for eachϕ ∈ E∗, it is enough to consider the case
E = C; by consideringRe(F ), Im(F ), we can takeE = R. Now let F̃ be the unique
boundedharmonic function withF = F̃ on∂Ω. For example, we could obtaiñF by
conformal mapping and the well–known Poisson Formula for the disc. By considering
F − F̃ , we only need to prove the special case whereF is real–valued, and zero on
∂Ω.
By the Schwarz Reflection Principle, we can extendF to be harmonic onC+ and
continuous oniR, by definingF (n + x + iy) = −F (n − x + iy) repeatedly for
x ∈ [0, 1], y ∈ R andn = 1, 2, 3, . . ..
Thus|F | ≪ exp(C · dist(x, Z)−r), wheredist meansdistance. We haveF = g + ḡ
for someg ∈ Hol(C+). Now

g′(λ) =
1

2πr

∫ 2π

0

F (λ + reiθ)e−iθdθ,

so that|g′| ≪ exp(C′dist(x, Z)−r), by simple estimates forF with the Mean Value

Property. Also
∫ n+1/2

n−1/2 |g′(t)| dt is independent ofn, because of the reflection process
used to extendF . Thus

|g(z)| =

∣∣∣∣g(1) +

∫ x

1

g′(t) dt + i

∫ y

0

g′(x + is) ds

∣∣∣∣

6 A′(1 + |z|) exp

(
C′

dist(x, Z)r

)
.

Now considerh(z) = g(z)(1+z)−1. By applying Corollary 4.5 toh repeatedly on the
domains{|x − n| < 1 − ǫ} (with trivial rescaling), we obtain

∫∞
−∞ |h(x + iy)|2dy 6

M(ǫ) for all x > ǫ, i.e. h ∈ H2({Re(z) > ǫ}) for eachǫ > 0. Thush = Lu on C+

for someu onR+ with
∫∞
0

e−δt|u(t)|2dt < ∞ for all δ > 0. But now

0 =
F (n)

1 + n
= 2Re[h(n)] =

∫ ∞

0

e−nt2(Re u)(t) dt

for all n = 1, 2, 3, . . .. SoL(Re u) is bounded and analytic on{Re(z) > 1/2}, with
a zero at eachn, and thus identically zero everywhere by the Blaschke condition for
zero sequences of Hardy space functions. ThusRe u = 0 almost everywhere.
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Soū = −u a.e., and nowh(x) = −h(x) for all x > 0, so thatF (x) = g(x)+ g(x) =
0. Now the proof is finished; we have shown thatF = 0 on{0 < x < 1}. Applying
this toFα = F (z + iα) for eachα ∈ R, we obtain thatF ≡ 0, as required.
�

We remark, omitting the details, that Corollary 4.6 can be used to prove Corollary 4.5,
so they are equivalent: given an analyticF on {|x| < 1}, considerU(z) = F (z) −
F (−z̄) on{0 6 x 6 1/2}.

5 proof of Theorem 3.1

We first prove (6). First consider the scalar caseE = C. By Theorem 2.1 applied to
F (z)/z, we see immediately thatF (z)/z = Lg(z) for someg, given by

g(t) ∼ 1

2π

∫ ∞

−∞

F (c + iy)

c + iy
e(c+iy)t dy ∼ 1

2πi

∫

c+iR

F (z)

z
ezt dz.

If R = +∞ then Theorem 2.1 also givesg(t) ≡ 0 for t 6 0. But
∫

c+iR

∣∣∣F (z)
z

∣∣∣ |dz| <

∞ by Hölder’s inequality, so in factg : R → C is continuous(after changingg on a
set of measure zero).
The estimate|g(t)| 6 M(1 + t) for t > 0 was already proved in [3] for the special
caseR = +∞ andF ∈ Lq(c + iR) for someq > 1. But that proof needed only the
estimate

∫
|z|>κ

|F (z)|
|z| |dz| = O(κ−ǫ) for some0 < ǫ < 1, which follows from (5) by

Hölder’s inequality. The proof also applies without change whenR < ∞. Fort < 0,
we can simply apply the result toF (R − z).
The Hölder estimate (7) follows by direct calculation: we have

|g(t + s) − g(s)| ≪
∫

c+iR

∣∣∣∣
F (z)

z

∣∣∣∣ e
cs|ezt − 1| |dz|.

By Hölder’s inequality, this is

≪ ecs

(∫

c+iR

|F (z)|ν
|z|1−δ

dy

)1/ν
(∫

c+iR

|ezt − 1|ν′

|z|α |dz|
)1/ν′

,

whereα =
(
1 − 1−δ

ν

)
ν′ = 1 + δ ν′

ν > 1. Since|z| ≈ c + |y| ≈ 1 + |y|, the second
integral above is

≪
∫

R

|e(c+iy)it − 1|ν′

(1 + |y|)α
dy

≪ tν
′

∫

|c+iy|<t−1

|c + iy|ν′

(1 + |y|)α
dy +

∫

|c+iy|>t−1

dy

(1 + |y|)α

≪ tν
′

∫

|y|<At−1

(1 + |y|)ν′−αdy +

∫

|y|>Bt−1

dy

(1 + |y|)α

≪ tν
′

(1/t)ν′−α+1 + (1/t)1−α ≪ tα−1.
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Heret is small,A, B > 0 depend onc, and|eλ − 1| ≪ |λ| for λ bounded; note also
thatν′ > α. Since(α − 1)/ν′ = δ/ν, we obtain (7) as required,in the special case
whereE = C.
Now let E be a general Banach space. A standard Closed Graph Theorem argument
shows that

(∫

c+iR

|ϕ(F (z))|ν
|z|1−δ

dy

)1/ν

6 K‖ϕ‖E∗

for all ϕ ∈ E∗, with some constantK < ∞. For eachϕ ∈ E∗ we considerϕ(F (z))
and apply the scalar–valued case, to obtain a continuousgϕ : R → C such that

ϕ(F (z)) = zLgϕ(z), gϕ(t) =
1

2πi

∫

c+iR

ϕ(F (z))

z
ezt dz.

Examining the above proof carefully, we find that the constant M in (6) is bounded
by an absolute constant multiple of

∫

c+iR

|ϕ(F (z))|
|z| |dz| + sup

z∈Ω
|ϕ(F (z))| ≪ ‖ϕ‖E∗ .

Thus |gϕ(t)| 6 M ′‖ϕ‖E∗(1 + t) with someM ′ < ∞ for t > 0, and similarly for
t < 0, so we can defineg : R → E∗∗ by g(t)(ϕ) = gϕ(t). As usual, regardE ⊆ E∗∗

via the canonical embedding. We also have a similar estimateto (7) for

gϕ(t + s) − gϕ(s) = [g(t + s) − g(s)](ϕ),

which gives (7) with‖g(t+ s)− g(s)‖E∗∗ instead of‖ · ‖E . Crucially, this also shows
thatg : R → E∗∗ is continuous.
But nowϕ(F (z)) = z(Lgϕ)(z) = [zLg(z)](ϕ), so thatF (z) = zLg(z), considered
as anE∗∗-valued function; note thatLg converges because we have an estimate for
‖g(t)‖E∗∗ . Thus all is finished, except thatg(t) ∈ E∗∗ instead ofE. Put

H : R → E, H(t) =
1

2πi

∫

c+iR

F (z)

z2
ezt dz,

which is well–defined and continuous because
∫

c+iR
‖F (z)‖E

|z|2 |dz| < ∞. Now (ϕ ◦
H)′(t) = (ϕ ◦ g)(t) for eachϕ ∈ E∗ andt ∈ R. Becauseg, ϕ ◦ g are continuous, we
have

ϕ(H(t)) − ϕ(H(0)) =

∫ t

0

ϕ(g(τ)) dτ.

HenceH(t) = H(0) +
∫ t

0 g(τ) dτ as anE∗∗-valued integral, soH ′(t) = g(t) for
all t ∈ R, again by continuity ofg : R → E∗∗. Thus finallyg(t) ∈ E as required,
becauseH is E-valued.
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6 Proof of Theorem 3.2

Now F : C+ → E is harmonic; so there existanalyticFj ∈ Hol(C+, E), with j =
1, 2, such thatF (z) = F1(z) + F2(z̄). The functionsF1, F2 are unique up to additive
constants. We will show thatF1, F2 can be chosen to satisfy (5) in Theorem 3.1, and
thatF1, F2 are almost bounded (with only logarithmic unboundedness); the result will
then follow by a similar proof to Theorem 3.1.
F is bounded, so we can representF on{Re(z) > c} by its Poisson integral:

∀u > 0, F (c + u + iv) =
1

π

∫ ∞

−∞
F (c + iy)

u

u2 + (v − y)2
dy.

Now we define

G1(λ) =
1

2πi

∫

c+iR

F (z)

λ − z
dz, G2(λ) =

1

2πi

∫

c+iR

F (z)

λ − z̄
dz

for all Re(λ) > c, so that

Gj ∈ Hol({Re(λ) > c}, E), F (λ) = G1(λ) + G2

(
λ̄
)
.

Because(G1−F1)(λ) = −(G2−F2)(λ̄) onRe(λ) > c, the functionsG1−F1 ≡ F2−
G2 are constant; so we have analytic continuationsGj ∈ Hol(C+, E) for j = 1, 2.
We use the standard theory of the Weighted Hilbert Transform, found in [22], [16]
and many other sources. The famousMuckenhoupt weight conditionw ∈ Aν(R) for
w : R → [0, +∞], 1 < ν < ∞ is

sup
bounded intervalsI ⊂ R

(
1

|I|

∫

I

w(t) dt

)(
1

|I|

∫

I

w(s)−1/(ν−1) ds

)ν−1

< ∞.

Now w ∈ Aν(R) is equivalentto the Hilbert transform being bounded onLν(w):

Hf(t) = lim
ε→0+

1

π

∫

y∈R, |y−t|>ε

f(y)

t − y
dy exists for a.e.t ∈ R,

wheneverf ∈ Lν(w), i.e.
∫

R
|f |νw dt < ∞, and furthermore‖Hf‖Lν(w) 6

Cw‖f‖Lν(w) for some constantCw < ∞ depending only onw.
For our problem, we easily check thatw(y) = |y|−ς satisfiesw ∈ Aν(R) for any
0 < ς < 1. Assume for the moment thatE = C. Define

Hε(α) =

∫

|y−α|>ε

F (c + iy)

α − y
dy,

so that by aboveHε(α) → H(α) as ε → 0, for almost everyα ∈ R and some
H ∈ Lν(|α|−(1−δ)). Fix α ∈ R such thatHε(α) → H(α) does hold. ForR large,
the condition (5) gives

∫
|y|>R

|F (c+iy)|
|y| dy ≪ R−η, and so

Hε(α) =

∫

ε<|y−α|<R

F (c + iy)

α − y
dy + O(R−η)
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asR → ∞, for some unimportantη > 0. But F is harmonic and thus smooth onC+,

so
∫
|y−α|<1

∣∣∣F (c+iy)−F (c+iα)
α−y

∣∣∣ dy < ∞. Also
∫

ε<|y−α|<R
dy

α−y = 0, so we can write

Hε(α) =

∫

ε<|y−α|<R

F (c + iy) − F (c + iα)

α − y
dy + O(R−η)

=

∫

|y−α|<R

F (c + iy) − F (c + iα)

α − y
dy + oR + oε

whereoε → 0 asε → 0+, uniformly in R > 1, and similarlyoR → 0 asR → ∞,
uniformly in 0 < ε < 1. Now, for all0 < ξ < 1,

G1(c + iα + ξ) =
1

2π

∫

|y−α|<R

F (c + iy)

ξ + i(α − y)
dy + O(R−η)

=
1

2π

∫

|y−α|<R

F (c + iy) − F (c + iα)

ξ + i(α − y)
dy + oR

+ F (c + iα)I(R, ξ),

where

I(R, ξ) =
1

2π

∫

|y−α|<R

dy

ξ + i(α − y)
=

tan−1(R/ξ)

π
.

Now fix R and letξ → 0+. ThenI(R, ξ) → 1
2 andG1(c + ξ + iα) → G1(c + iα),

simply becauseG1 ∈ Hol(C+), so that

G1(c + iα) =
1

2
F (c + iα) +

1

2πi
Hε(α) + oR + oε

by Dominated Convergence, because
∫
|y−α|<R

∣∣∣F (c+iy)−F (c+iα)
α−y

∣∣∣ dy < ∞. Finally

let ε → 0 andR → ∞, to giveG1(c + iα) = 1
2F (c + iα) + 1

2πiH(α). This is true
for almost everyα, andF (c + iα), H(α) are both inLν(|α|−(1−δ)), and thus so is
G1(c + iα).
Now we have

∫
c+iR

|G1|ν
|z|1−δ dy < ∞, in the special caseE = C. In general, we get the

same forϕ ◦ G1, for eachϕ ∈ E∗. This is the estimate (5) we need in Theorem 3.1,
for G1 instead ofF .
Theorem 3.1 does not apply toG1 becauseG1 may be unbounded. However, the
unboundedness is at mostlogarithmic, by two simple calculations:

Lemma 6.1 Let F : Ω → E be harmonic, for some domainΩ. Then, for every
z ∈ Ω andr > 0 such that{λ : |λ − z| 6 r} ⊂ Ω, we have

∂F

∂z
=

1

2πi

∮

|λ−z|=r

F (λ)

(λ − z)2
dλ,

∥∥∥∥
∂F

∂z

∥∥∥∥ 6
max|λ−z|=r ‖F (λ)‖

r
.

The proof is immediate, from power series representations.
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Lemma 6.2 Let F : C+ → E be harmonic and bounded, withF (z) = G1(z) +
G2(z̄) for G1, G2 ∈ Hol(C+, E). Then there exist constantsMj < ∞, j = 1, 2, such
that

‖Gj(x + iy)‖E 6 Mj

(
1 + | log x| + log(1 + |y|)

)
. (12)

Proof: Givenu + iv ∈ C+, we have

Gj(u + iv) − Gj(1) =




∫

x∈[1,S],
y=0

+

∫

x=S,
y∈[0,v]

+

∫

x∈[S,u],
y=v



G′
j(z) dz,

for any S > 1. But G′
1 = ∂F/∂z, so with r = x/2 in Lemma 6.1 we obtain

‖G′
1(x + iy)‖ 6 2

(
supC+

‖F‖
)

/x. Thus

‖G1(u + iv)‖ 6 ‖G1(1)‖ + 2 sup
C+

‖F‖
(

log S +
|v|
S

+ | log S − log u|
)

.

Now lettingS = |v| + 1 gives the result forG1, and the proof forG2 is similar.
�

The logarithmic terms are unavoidable; e.g.2θ = −i(log z − log z̄) is harmonic and
bounded onC+ = {reiθ : r > 0, |θ| < π/2}.
Finally, to complete the proof of Theorem 3.2:G1 satisfies (12), and also the vertical
estimate (5) onc+ iR. Similarly, or by consideringF (z̄) instead,G2 also satisfies the
same estimates. The local Hölder estimate (7) follows fromthe proof of Theorem 3.1
without change, since only (5) is needed.
To estimate‖gj(t)‖ for larget > 0, we use the same method as Theorem 3.1 (which
in fact is the method used in [3]), but with additional logarithmic estimates. As usual,
considerϕ ◦ F for eachϕ ∈ E∗. In the contour integral formula

ϕ ◦ gj(t) =
1

2πi

∫

c+iR

ϕ ◦ Gj(z)

z
ezt dz,

use Cauchy’s Theorem to replacec + iR by the contours{c + iy : |y| > κ}, {x± iκ :

t−1 < x < c} and{t−1 + iy : |y| 6 κ}, for t large. Estimating
∣∣∣ϕ◦Gj(z)

z ezt
∣∣∣ on each

of these contours finally gives that|ϕ ◦ gj(t)|/‖ϕ‖E∗ is

≪ ectκ−ǫ + (1 + log t + log(1 + κ))
[
ectκ−1 + exp(t−1 · t) log(κt)

]

for t large and some0 < ǫ < 1, which is≪ t2 upon takingκ = exp(ct/ǫ).
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