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Abstract. We prove within the Hartree-Fock theory of pseudo-
relativistic atoms that the maximal negative ionization charge and
the ionization energy of an atom remain bounded independently of
the nuclear charge Z and the fine structure constant α as long as Zα
is bounded.
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1 Introduction

A long standing open problem in the mathematical physics literature is the
Ionization conjecture. It can be formulated as follows. Consider atoms with
arbitrarily large nuclear charge Z, is it true that the radius (see Definition 1.8)
and the maximal negative ionization remain bounded? A positive answer to
this question in the non-relativistic Hartree-Fock model has been given by the
second author in [23]. One of the aims of the present paper is to extend the
result taking into account some relativistic effects. The ionization conjecture
for the full Schrödinger theory is still open both in the non-relativistic and
relativistic case. See [13], [16], [17], [6], [7] and [22] for some Z-dependent
bounds on the maximal negative ionization. The best result is thatN(Z) = Z+
O(Za) with a = 47/56 where N(Z) denotes the maximal number of electrons
a nucleus of charge Z binds (see [6], [7] and [22]) .

1 The authors wish to thank Heinz Siedentop for suggesting the problem. Support from
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Quantum Systems, contract no. HPRN-CT-2002-00277 is gratefully acknowledged. Jan
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As a model for an atom with nuclear charge Z and N electrons we consider (in
units where ~ = m = e = 1) the operator

H =

N
∑

i=1

α−1
(

√

−∆i + α−2 − α−1 − Zα

|xi|
)

+
∑

1≤i<j≤N

1

|xi − xj |
, (1)

where α is Sommerfeld’s fine structure constant. The operator H acts on a
dense subset of the N body Hilbert space HF := ∧Ni=1L

2(R3; Cq) of antisym-
metric wave functions, where q is the number of spin states. The operator H
is bounded from below on this subspace if Zα ≤ 2/π (see [9] for N = 1, [5] and
[19] for N ≥ 1). In this paper we will consider the sub-critical case Zα < 2/π.
Let us notice here that to define the operator H there is an issue. Indeed for
Zα < 2/π the nuclear potential is only a small form perturbation of the kinetic
energy and hence one needs to work with forms to define the operator H . This
has been done in detail in [2].

The quantum ground state energy is the infimum of the spectrum of H con-
sidered as an operator acting on HF . In the Hartree-Fock approximation one
restricts to wave-functions ψ which are pure wedge products, also called Slater
determinants:

ψ(x1, σ1,x2, σ2, . . . ,xN , σN ) = 1√
N !

det(ui(xj , σj))
N
i,j=1, (2)

with {ui}Ni=1 orthonormal in L2(R3; Cq). The ui’s are also called orbitals.
Notice that ‖ψ‖L2(R3N ,CqN ) = 1. The Hartree-Fock ground state energy is

EHF(N,Z, α) := inf{q(ψ, ψ)|ψ ∈ Q(H) and ψ a Slater determinant},

with q the quadratic form defined by H and Q(H) the corresponding form
domain.

One of the main result of the paper is the following.

Theorem 1.1. Let Z ≥ 1 and α > 0. Let Zα = κ and assume that 0 ≤ κ <
2/π. There is a constant Q > 0 depending only on κ such that if N is such
that a Hartree-Fock minimizer exists then N ≤ Z +Q.2

The idea of the proof is the same as in [23]. One shows that the Thomas-
Fermi model is a good approximation of the Hartree-Fock model except in the
region far away from the nucleus. We first introduce some notation in order to
introduce the Hartree-Fock and Thomas-Fermi models.

2 In order to prove this result we need that N < CZ for a positive constant C. We do
not include a proof of this fact here for simplicity and since a much stronger result has been
proved by Lieb in [13] for αZ < 1/2. The needed extension of this result of Lieb to αZ < 2/π
will appear in [3] (see Theorem 1.6 below).
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1.1 Notation

Let e be the quadratic form with domain H
1
2 (R3,Cq) such that

e(u, v) = (E(p)
1
2 u,E(p)

1
2 v) for all u, v ∈ H

1
2 (R3,Cq), (3)

whereE(p) denotes the operatorE(i∇) =
√
−∆ + α−2. As usual (u, v) denotes

the scalar product of u and v in L2(R3,Cq). Let V (x) := Zα/|x| and v be the

quadratic form with domain H
1
2 (R3,Cq) defined by

v(u, v) = (V
1
2u, V

1
2 v) for all u, v ∈ H

1
2 (R3,Cq). (4)

From [10, 5.33 p.307] we have
∫

R3

|f(x)|2
|x| dx ≤ 2

π

∫

R3

|p||f̂(p)|2 dp for f ∈ H
1
2 (R3,C) (5)

with f̂ the Fourier transform of f . Thus since Zα ≤ 2/π and E(p) ≥ |p| it

follows that v(u, u) ≤ e(u, u) for all u ∈ H
1
2 (R3,Cq).

In the following t denotes the quadratic form associated to the kinetic energy;
i.e. for all u, v ∈ H

1
2 (R3,Cq)

t(u, v) := α−1e(u, v) − α−2(u, v) = α−1(T (p)
1
2 u, T (p)

1
2 v), (6)

with T (p) := E(p) − α−1.
A density matrix γ is a self-adjoint trace class operator that satisfies the oper-
ator inequality 0 ≤ γ ≤ Id . A density matrix γ : L2(R3; Cq) → L2(R3; Cq) has
an integral kernel

γ (x, σ,y, τ) =
∑

j

λjuj(x, σ)uj(y, τ)
∗, (7)

where λj , uj are the eigenvalues and corresponding eigenfunctions of γ. We
choose the uj’s to be orthonormal in L2(R3,Cq). Let ργ ∈ L1(R3) denote the
1-particle density associated to γ given by

ργ(x) =

q
∑

σ=1

∑

j

λj |uj(x, σ)|2.

We define
A := {γ density matrix: Tr[T (p)γ] < +∞} , (8)

where for γ ∈ A written as in (7) Tr[T (p)γ] := Tr[E(p)γ] − α−1 Tr[γ] and

Tr[E(p)γ] :=
∑

j

λje(uj , uj). (9)

Similarly we use the following notation Tr [V γ] :=
∑

j λjv(uj , uj).

Remark 1.2. If γ ∈ A then ργ ∈ L1(R3) since γ is trace class and ργ ∈
L4/3(R3). The second inclusion follows from Daubechies’ inequality, a gener-
alization of the Lieb-Thirring inequality (see Theorem 2.3).
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1.2 Hartree-Fock theory

In Hartree-Fock theory one considers wave functions that are pure wedge prod-
ucts and that satisfy the right statistics: determinantal wave functions as in (2).
To define the HF-energy functional it is convenient to use the one to one corre-
spondence between Slater determinants and projections onto finite dimensional
subspaces of L2(R3,Cq). Indeed if ψ is given by (2) and γ is the projection
onto the space spanned by u1, . . . , uN the energy expectation depends only on
γ: (ψ,Hψ) = EHF(γ). Here EHF defines the HF-energy functional

EHF(γ) = α−1 Tr[(T (p) − V )γ] + D(γ) − Ex (γ) , (10)

where D(γ) is the direct Coulomb energy

D(γ) = 1
2

∫

R3

∫

R3

ργ(x)ργ(y)

|x − y| dxdy,

and Ex(γ) is the exchange Coulomb energy

Ex(γ) = 1
2

∫

R3

∫

R3

TrCq

[

|γ(x,y)|2
]

|x − y| dxdy,

where we think of the integral kernel γ(x, y) as a q × q matrix.
Using projections we can define as follows the HF-ground state.

Definition 1.3 (The HF-ground state). Let Z > 0 be a real number and N ≥ 0
be an integer. The HF-ground state energy is

EHF(N,Z, α) := inf
{

EHF(γ) : γ2 = γ, γ ∈ A, Tr[γ] = N
}

.

If a minimizer exists we say that the atom has a HF ground state described by
γHF.

We may extend the definition of the HF-functional from projections to density
matrices in A. We first notice that if γ ∈ A, then all the terms in EHF(γ) are
finite. From (5) it follows that

Tr[V γ] =
∑

j

λjv(uj , uj) ≤
∑

j

λje(uj, uj) = Tr[E(p)γ].

On the other hand if γ ∈ A then ργ ∈ L1(R3) ∩ L
4
3 (R3) (see Remark 1.2).

By Hölder’s inequality ργ ∈ L
6
5 (R3) and hence D(γ) is bounded by Hardy-

Littlewood-Sobolev’s inequality. The boundness of the exchange term follows
from 0 ≤ Ex(γ) ≤ D(γ). On the other hand if γ is a density matrix with γ /∈ A
then EHF(γ) = ∞. Here we use also that Zα < 2/π.
Extending the set where we minimize, we could have lowered the ground state
energy and/or changed the minimizer. That this is not the case follows from
Lieb’s variational principle.
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Theorem 1.4 (Lieb’s variational principle, [12]). For all N non-negative inte-
gers it holds that

inf{EHF(γ) : γ ∈ A, γ2 = γ, Tr[γ] = N} = inf{EHF(γ) : γ ∈ A, Tr[γ] = N},

and if the infimum over all density matrices is attained so is the infimum over
projections.

The following existence theorem for the HF-minimizer in the pseudo-relativistic
case has been recently proved in [2].

Theorem 1.5. Let Zα < 2/π and let N ≥ 2 be a positive integer such that
N < Z + 1.
Then there exists an N -dimensional projection γHF = γHF(N,Z, α) minimizing
the HF-energy functional EHF given by (10), that is, EHF(N,Z, α) is attained.
Moreover, one can write

γHF(x, σ,y, τ) =

N
∑

i=1

ui(x, σ)ui(y, τ)
∗,

with ui ∈ L2(R3,Cq), i = 1, . . . , N , orthonormal, such that the HF-orbitals
{ui}Ni=1 satisfy:

1. hγHFui = εiui, with 0 > εN ≥ εN−1 ≥ · · · ≥ ε1 > −α−1 and

hγHF := T (p) − Zα

|x| + ρHF ∗ |x|−1 −KγHF , (11)

where ρHF denotes the density of the HF-minimizer and for f ∈ H
1
2 (R3)

(KγHFf)(x, σ) =

N
∑

i=1

ui(x, σ)

q
∑

τ=1

∫

R3

ui(y, τ)
∗f(y, τ)|x − y|−1dy.

2. ui ∈ C∞(R3 \ {0},Cq) for i = 1, . . . , N ;

3. ui ∈ H1(R3 \BR(0)) for all R > 0 and i = 1, . . . , N .

In the opposite direction the following result gives an upper bound on the
excess charge.

Theorem 1.6. Let αZ < 2
π . If N is a positive integer such that N > 2Z + 1

there are no minimizers for the HF-energy functional.

This theorem for Zα < 1/2 was proved by Lieb in [13]. With an improved
approximation argument the proof can be extended to Zα < 2/π (see [3]).
Notice that both proofs work not only in the Hartree-Fock approximation but
for the minimization problem on ∧NL2(R3).
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Definition 1.7. Let γHF be the HF-minimizer. The function

ϕHF(x) :=
Z

|x| −
∫

R3

ρHF(y)

|x − y|dy for x ∈ R
3,

is called the HF-mean field potential and

ΦHF
R (x) :=

Z

|x| −
∫

|y|<R

ρHF(y)

|x− y| dy for x ∈ R
3,

is the HF-screened nuclear potential.

Definition 1.8. We define the HF-radius RHF
Z,N (ν) to the ν last electrons by

∫

|x|≥RHF
Z,N (ν)

ρHF(x) dx = ν.

1.3 A bit of Thomas-Fermi theory

In this subsection we present briefly the Thomas-Fermi theory and especially
the result that will be used in the rest of the paper. We refer the interested
reader to [11].
Let U be a potential in L5/2(R3) + L∞(R3) with

inf{‖W‖∞ : U −W ∈ L
5
2 (R3)} = 0.

Then the TF-energy functional is defined by

ETF
U (ρ) = 3

10 (6π2

q )
2
3

∫

R3

ρ(x)
5
3 dx−

∫

R3

U(x)ρ(x)dx + 1
2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y| dxdy,

on non-negative functions ρ ∈ L5/3(R3) ∩ L1(R3). As before, q denotes the
number of spin states.
We recall some properties of the TF-model, see [18].

Theorem 1.9. Let U be as above. For all N ′ ≥ 0 there exists a unique non-
negative ρTF

U ∈ L5/3(R3) such that
∫

ρTF
U ≤ N ′ and

ETF
U (ρTF

V ) = inf{ETF
U (ρ) : ρ ∈ L5/3(R3),

∫

R3

ρ(x) dx ≤ N ′}.

There exists a unique chemical potential µTF
U (N ′), with 0 ≤ µTF

U (N ′) ≤ supU,
such that ρTF

U is uniquely characterized by

ETF
U (ρTF

U ) + µTF
U (N ′)

∫

R3

ρTF
U (x) dx

= inf{ETF
U (ρ) + µTF

U (N ′)

∫

R3

ρ(x) dx : 0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3)}.
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Moreover ρTF
U is the unique solution in L5/3(R3) ∩ L1(R3) to the TF-equation

1
2 (6π2

q )
2
3 (ρTF

U (x))
2
3 =

[

U(x) − ρTF
U ∗ |x|−1 − µTF

U (N ′)
]

+
.

If µTF
U (N ′) > 0 then

∫

ρTF
U = N ′. For all µ > 0 there is a unique minimizer

0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3) to ETF
U (ρ) + µ

∫

ρ.

One defines the TF-mean field potential ϕTF
U , the TF-screened nuclear potential

ΦTF
U,R and the TF-radius RTF

N,Z(ν) to the ν last-electron similarly as in Defini-
tions 1.7 and 1.8 replacing the HF-density with the TF-density.

Theorem 1.10. If U(x) = Z/|x| (the Coulomb potential), then the minimizer
of ETF

U , under the condition
∫

ρ ≤ N, exists for every N . Moreover, µTF
U (N) =

0 if and only if N ≥ Z.

When U(x) = Z/|x| we denote the minimizer of the TF-functional, under the
condition

∫

ρ ≤ Z, simply by ρTF and
∫

ρTF = Z. Correspondingly ϕTF and
ΦTF
R denote, respectively, its mean field and screened nuclear potential. With

this notation
ETF(ρTF) = −e0Z

7
3 , (12)

where e0 is the total binding energy of a neutral TF-atom of unit nuclear charge.
We recall here a result due to Sommerfeld on the asymptotic behavior of the
TF-mean field potential, see [23, Th. 4.6].

Theorem 1.11 (Sommerfeld asymptotics). Assume that the potential U is con-
tinuous and harmonic for |x| > R and that it satisfies lim|x|→∞U(x) = 0.
Consider the corresponding TF-mean field potential ϕTF

U and assume that
µTF
U < lim inf

rցR
inf

|x|=r
ϕTF
U (x). With ζ = (−7 +

√
73)/2 define

a(R) := lim inf
rցR

sup
|x|=r

[( ϕTF
U (x)

342−1q−2π2r−4

)− 1
2 − 1

]

rζ

A(R,µTF
U ) := lim inf

rցR
sup
|x|=r

[ ϕTF
U (x) − µTF

U

342−1q−2π2r−4
− 1

]

rζ .

Then we find for all |x| > R

ϕTF
U (x) ≤ 34π2

2q2 (1 +A(R,µTF
U )|x|−ζ)|x|−4 + µTF

U and

ϕTF
U (x) ≥ max

{

34π2

2q2 (1 + a(R)|x|−ζ)−2|x|−4, ν(µTF
U )|x|−1

}

,

where

ν(µTF
U ) := inf

|x|≥R
max

{

34π2

2q2 (1 + a(R)|x|−ζ)−2|x|−3, µTF
U |x|

}

.

For easy reference we give here the estimate on the TF-mean field potential
corresponding to the Coulomb potential.
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Theorem 1.12 (Atomic Sommerfeld estimate, [23, Thm 5.2-5.4]). The atomic
TF-mean field potential satisfies the bound

Z

|x| − min
{ Z

|x| ,
Z

4
3

2β0

}

≤ ϕTF(x) ≤ min
{

34π2

2q2
1

|x|4 ,
Z

|x|
}

, (13)

with 2β0 = π
2
3 3−

5
3 2−

1
3 q−

2
3 , and for |x| ≥ R > 0

ϕTF(x) ≥ 34π2

2q2 (1 + a(R)|x|−ζ)−2|x|−4,

where ζ and a(R) are defined in Theorem 1.11.

Corollary 1.13. Let ζ and β0 be defined as in Theorem 1.11 and 1.12 re-
spectively. Then the TF-mean field potential satisfies the bound

ϕTF(x) ≥



















Z

|x| −
Z

4
3

2β0
if |x| ≤ β0Z

− 1
3

34π2

2q2
(1 + aZ− ζ

3 |x|−ζ)−2|x|−4 if |x| > β0Z
− 1

3 ,

with a = βζ0 (32π/(qβ
3
2
0 ) − 1).

Corollary 1.14. The TF-screened nuclear potential satisfies

ΦTF
|x| (x) ≤ 342π2

q2 |x|−4 for all x ∈ R
3.

Corollary 1.15. The following estimate holds

∫

R3

(ρTF(x))
5
3 dx ≤ 4 2

2
3

π2
5
7q

4
3Z

7
3 .

Proof. By the TF-equation and since µTF = 0 we find

∫

R3

(ρTF(x))
5
3 dx = 2

5
2 ( q

6π2 )
5
3

∫

R3

(ϕTF(x))
5
2 dx.

The estimate follows from the atomic Sommerfeld upper bound.

1.4 Construction and main results

We present the basic idea for the proof of Theorem 1.1. Let us consider an
atomic system with N ≥ 2 fermionic particles and a nucleus of charge Z ≥ 1
with Zα = κ and 0 ≤ κ < 2/π. We assume that N ≥ Z and that N is such
that a HF-minimizer exists. That is: there exists a density matrix γHF ∈ A
such that Tr[γHF] = N and

EHF(γHF) = inf
{

EHF(γ) : γ = γ∗, 0 ≤ γ ≤ I,Tr[γ] = N
}

.
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Let ρTF be the TF-minimizer with potential U(x) = Z/|x| and under the
condition

∫

ρTF = Z. We know that such a minimizer exists and that the
corresponding chemical potential is zero (see Theorem 1.10).
Denoting by ρHF the density of the minimizer γHF, we find for all r > 0

N =

∫

R3

ρHF(x)dx

=

∫

|x|<r

[

ρHF(x) − ρTF(x)
]

dx +

∫

|x|<r
ρTF(x) dx +

∫

|x|>r
ρHF(x) dx.

By the equalities above and since
∫

|x|<r ρ
TF(x)dx ≤ Z, Theorem 1.1 follows

from the following result.

Theorem 1.16. There exist r > 0 and positive constants c1 and c2 independent
of N and Z but possibly depending on κ such that

∫

|x|<r

[

ρHF(x) − ρTF(x)
]

dx ≤ c1 and

∫

|x|>r
ρHF(x)dx ≤ c2.

The following theorem is the principal ingredient in the proof of the previous
one and is the main technical estimate in the paper.

Theorem 1.17. Let Zα = κ, 0 ≤ κ < 2/π. Assume N ≥ Z ≥ 1.
Then there exist universal constants α0 > 0, 0 < ε < 4 and CM and CΦ

depending on κ such that for all α ≤ α0
∣

∣

∣
ΦHF

|x| (x) − ΦTF
|x| (x)

∣

∣

∣
≤ CΦ|x|−4+ε + CM .

This main estimate is proven by an iterative procedure. We first prove the
estimate for small x (i.e. |x| ≤ β0Z

− 1
3 ), then for intermediate x (i.e. up to a

fixed distance independent of Z) and finally for big x.
By proving Theorem 1.17 we also get the following interesting results. The
proofs of those are given in Section 5.

Theorem 1.18 (Asymptotic formula for the radius). Let Zα = κ, 0 ≤ κ < 2/π.
Both lim infZ→∞RHF

Z,Z(ν) and lim supZ→∞RHF
Z,Z(ν) are bounded and behave

asymptotically as

3
4
3
2

1
2 π

2
3

q
2
3

ν−
1
3 + o(ν−

1
3 ) as ν → ∞.

Theorem 1.19 (Bound on the ionization energy of a neutral atom). Let Zα =
κ, 0 ≤ κ < 2/π and Z ≥ 1. The ionization energy of a neutral atom EHF(Z −
1, Z) − EHF(Z,Z) is bounded by a universal constant.

Theorem 1.20 (Potential estimate). Let Zα = κ, 0 ≤ κ < 2/π. For all Z ≥ 1
and N with N ≥ Z for which a HF minimizer exists with

∫

ρHF = N , we have

|ϕTF(x) − ϕHF(x)| ≤ Aϕ|x|−4+ε0 +A1,

with A0, A1 and ε0 universal constants.
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2 Prerequisites

In this section we recall some results that will be used in the rest of the paper.
Localization of the kinetic energy. The following is the IMS formula corre-
sponding to the operator T (p).

Theorem 2.1 ([19]). Let χi, i = 0, . . . ,K, be real valued Lipschitz continuous

functions on R3 such that
∑K

i=0 χ
2
i (x) = 1 for all x ∈ R3. Then for every

f ∈ H1/2(R3)

t(f, f) =

K
∑

i=0

t(χif, χif) − α−1
K

∑

i=0

(f, Lif),

where Li is a bounded operator with kernel

Li(x,y) = α−2

4π2

|χi(x) − χi(y)|2
|x − y|2 K2(α

−1|x − y|), (14)

where K2 is a modified Bessel function of the second kind.

Remark 2.2. As in [24, App.A, pages 94–98] we use the following integral
formula for the modified Bessel function

K2(t) = t

∫ ∞

0

e−t
√
s2+1s2 ds , t > 0.

We recall that this function is decreasing and smooth in R+. Moreover,
∫ +∞

0

t2K2(t) dt = 3π
2 and K2 (t) ≤ 16 t−2e−

1
2 t for t > 0. (15)

The integral is computed in [21, (A6)] while the estimate follows directly from
the integral formula for K2 by estimating

√
s2 + 1 ≥ 1

2 + 1
2s.

Generalization of the Lieb-Thirring inequality. This result due to Daubechies
generalizes the Lieb-Thirring inequality to the pseudo-relativistic case.

Theorem 2.3 (Daubechies’ inequality, [4]). For γ ∈ A

Tr[T (p)γ] ≥
∫

R3

Gα(ργ(x))dx,

where Gα(ρ) = 3
8α

−4Cg(α(ρ/C)
1
3 ) − α−1ρ with C = .163q, q the number of

spin states and g(t) = t(1 + t2)
1
2 (1 + 2t2) − ln(t+ (1 + t2)

1
2 ).

Remark 2.4. The function Gα defined in the previous theorem is convex and
it has the following behavior:

9
20 min

{

1
5αC

− 2
3 ρ

5
3 , 1

2C
− 1

3 ρ
4
3

}

≤ Gα (ρ) ≤ 3
2 min

{

1
5αC

− 2
3 ρ

5
3 , 1

2C
− 1

3 ρ
4
3

}

.

(16)
(The proof of the estimate above is in Appendix A.) Notice that when α ց 0
then α−1Gα(ρ) tends to a constant times ρ5/3.
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Theorem 2.5 (Generalization of the Lieb-Thirring inequality, [4]). Let f−1

be the inverse of the function f(t) :=
√
t2 + α−2 − α−1, t ≥ 0, and define

F (s) =
∫ s

0
dt [f−1(t)]3. Then for any density matrix γ it holds

Tr[(T (p) − U)γ] ≥ −Cq
∫

R3

F (|U(x)|)dx,

with C ≤ 0.163.

Remark 2.6. Since f−1(t) = (t2 + 2α−1t)1/2 we find for F

F (s) = 2
3
2α−3/2

∫ s

0

t3/2
(

1 + 1
2αt

)3/2
dt for s ≥ 0, (17)

and since by convexity (1 + 1
2αt)

3
2 ≤

√
2 + 1

2 (αt)
3
2 we have

F (s) ≤ 23

5 α
− 3

2 s
5
2 + 1

2
√

2
s4 for s ≥ 0.

Hence for any density matrix γ and potential U ∈ L
5
2

(

R3
)

∩ L4
(

R3
)

Tr[(T (p) − U)γ] ≥ −Cq
∫

R3

(

23

5 α
− 3

2 |U(x)| 52 + 1
2
√

2
|U(x)|4)dx. (18)

Coulomb norm estimate. We present here only the definition of Coulomb norm
and the result we need. For a more complete presentation we refer to [23,
Sec.9].

Definition 2.7. For f, g ∈ L
6
5 (R3) we define the Coulomb inner product

D(f, g) := 1
2

∫

R3

∫

R3

f(x)g(y)

|x − y| dxdy,

and the corresponding norm ‖g‖C := D(g, g)
1
2 .

In the following we write the direct term in the HF-energy functional using
the Coulomb scalar product: i.e. D(γ) = D(ργ , ργ) = D(ργ). Similarly, for

ρ ∈ L1(R3) ∩ L 5
3 (R3) the term D(ρ) denotes D(ρ, ρ).

The next proposition follows as Corollary 9.3 in [23].

Proposition 2.8. For s > 0, x ∈ R3 and f ∈ L
6
5 (R3) it holds

f ∗ |x|−1 ≤
∫

|x−y|<s
[f(y)]+

( 1

|x − y| −
1

s

)

dy +
√

2 s−
1
2 ‖f‖C.

Moreover, for k > 0
∫

|y|<|x|

f(y)

|x− y|dy ≤
∫

A(|x|,k)

[f(y)]+
|x − y| dy + 2

3
2 k−1|x|− 1

2 ‖f‖C ,

where A(|x|, k) denotes the annulus

A(|x|, k) :=
{

y ∈ R
3 : (1 − 2k)|x| ≤ |y| ≤ |x|

}

.
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2.1 Improved relativistic Lieb-Thirring inequalities

A major difference between the pseudo-relativistic HF-model and the non-
relativistic one studied in [23] is that the boundness of the functional does not

yield a bound on the L
5
3 norm of the HF-density ρHF in the pseudo-relativistic

case. By Theorem 2.3 and Remark 2.4 we see that we can control only the L
4
3 -

norm of ρHF. Therefore one cannot estimate the term ρHF ∗ |x|−1 in L1-norm
simply by Hölder’s inequality with p = 5/2 and q = 5/3. To estimate it we are
going to use a combined Daubechies-Lieb-Yau inequality.
The following lemma can be found in [24, pages 98–99]3.

Lemma 2.9. For f ∈ S(R3),

∫

R3

e−µ|x|
2

|x| |f(x)|2dx ≤ π

2

1√
2 − 1

(f, T (p)f),

with µ = π−1α−2.

The following is a slight generalization of the Daubechies-Lieb-Yau inequality
formulated in Theorem 2.8 in [24].

Theorem 2.10 (Daubechies-Lieb-Yau inequality). Assume that the potential
U ∈ L1

loc(R
3) satisfies

0 ≥ −U(x) ≥ −κ|x|−1 for |x| < max{α,R} , (19)

for α,R > 0 and 0 ≤ κ ≤ 2/π. Then we have

Tr[T (p) − U ]− ≥ −Cκ5/2α−3/2R1/2 − Cκ4α−1

−C
∫

|x|>R

(

α− 3
2 |U(x)| 52 + |U(x)|4

)

dx.

Proof. If (
√

2 − 1)/π ≤ κ ≤ 2/π then κ5/2α−3/2R1/2 + κ4α−1 ≥ Cκ5/2α−1

and the result follows immediately from Theorem 2.8 in [24] observing that for
R > α the two integrals of the potential on {α < |x| < R} are bounded by the
constants.
If 0 ≤ κ < (

√
2 − 1)/π we write

U(x) = e−µ|x|
2

U(x)χ|x|<R + (1 − e−µ|x|
2

)U(x)χ|x|<R + U(x)χ|x|>R

with µ = α−2π−1. Using (19) and Lemma 2.9 we find that

T (p) − U(x) ≥ 1

2
T (p) − κ(1 − e−µ|x|

2

)|x|−1χ|x|<R − U(x)χ|x|>R.

3The result of the lemma and the proof given in [24] are actually due to us, but we commu-
nicated the result to the authors of [24], where it is referred to as a a private communication.
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Hence from the generalization of the Lieb-Thirring inequality Theorem 2.5 (see
(18)) we obtain

Tr[T (p) − U ]− ≥ −C
∫

|x|<R
α− 3

2

(

κ(1 − e−µ|x|
2

)|x|−1)
)

5
2 dx

−C
∫

|x|<R

(

κ(1 − e−µ|x|
2

)|x|−1
)4
dx

−C
∫

|x|>R

(

α− 3
2 |U(x)| 52 + |U(x)|4

)

dx.

Since the two first integrals above are estimated below by −Cκ5/2α−3/2R1/2 −
Cκ4α−1 we get the result in the theorem.

By Theorem 2.10 we find

κ

∫

|x−y|<R

ρHF(y)

|x − y| dy ≤ Tr[T (p)γHF] + C1κZ
3
2R

1
2 + C2κ

3Z, (20)

with κ ∈ [0, 2/π], κ = Zα and R > 0 parameters to be chosen. This is the
inequality that we use to estimate ρHF ∗ |x|−1 (see proof of Lemma 3.2 below).

2.1.1 Bound on the Hartree-Fock energy

As a first application of Theorem 2.10 we can give a lower bound to the HF-
energy.

Theorem 2.11 (Bound on the HF-energy). Let N > 0, Z > 0 and such that
Zα = κ with 0 ≤ κ ≤ 2/π. Then

EHF(N,Z) ≥ −2C
2
3Z2N

1
3 − Cκ2Z2,

with C the constant in Theorem 2.10.

Proof. Let γ be a N -dimensional projection. Since the electron-electron inter-
action is positive we see that

EHF(γ) ≥ α−1 Tr[(T (p) − Zα

| · | )γ]

= α−1 Tr[(T (p) − κ

| · |χ|x|<R)γ] − α−1 Tr[
κ

| · | (1 − χ|x|<R)γ]

with R > 0 a parameter to be chosen. By Theorem 2.10 we find

EHF(γ) ≥ −2C
2
3Z2N

1
3 − Cκ2Z2,

using that κ = Zα and by choosing R = C− 2
3Z−1N

2
3 .
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3 Near the nucleus

In this section we prove the estimate in Theorem 1.17 in the region near the
nucleus (i.e. at distance of Z− 1

3 ).
We again assume that N ≥ Z and that an HF-minimizer γHF exists for this
N and Z. We denote the density of γHF by ρHF. We assume throughout that
αZ = κ is fixed with 0 ≤ κ < 2/π and Z ≥ 1.

Lemma 3.1. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Let Gα be the
function defined in Theorem 2.3. Then, there exists α0 > 0 such that for all
α ≤ α0

α−1

∫

R3

Gα(ρHF(x))dx ≤ CZ7/3, α−1 Tr[T (p)γHF] ≤ CZ7/3

and ‖ρTF − ρHF‖2
C ≤ CZ2+ 3

11 ,

(21)

with C a universal constant depending only on κ.

Proof. Let µ ∈ (0, 1) be such that µ−1κ < 2/π. Notice that here we need
κ < 2/π. Splitting the kinetic energy into two parts we find

EHF(γHF) = (1 − µ)α−1 Tr[T (p)γHF] + D(γHF) − Ex(γHF)

+µTr[(α−1T (p) − Z

µ|x| )γ
HF] = . . . ,

and introducing ρ ∈ L
5
3 (R3) ∩ L1(R3), ρ ≥ 0, to be chosen

. . . = (1 − µ)α−1 Tr[T (p)γHF] + µ‖ρ− ρHF‖2
C + (1 − µ)D(γHF) (22)

−Ex(γHF) − µD(ρ) + µTr[(α−1T (p) −
( Z

µ|x| − ρ ∗ 1

|x|
)

)γHF].

Here ‖ · ‖C denotes the Coulomb norm defined in Definition 2.7 and we used
that

‖ρ− ρHF‖2
C = D(ρ) −

∫∫

ρHF(x)ρ(y)

|x − y| dxdy + D(γHF).

The estimates in the claim will follow from (22) with different choices of µ and
ρ. The main idea is to relate, up to lower order term, the last term on the right
hand side of (22) to the TF-energy of a neutral atom of nuclear charge Zµ−1.
This has been done in [21]. For completeness and easy reference we repeat the
reasoning in Propositions B.1 and B.2 in Appendix B.
To prove the first inequality in (21) we choose ρ as the minimizer of the TF-
energy functional of a neutral atom with charge µ−1Z. Since the corresponding
TF-mean field potential is Z/(µ|x|)−ρ∗1/|x| by Proposition B.2 in Appendix B
we find

Tr[(α−1T (p) − (
Z

µ|x| − ρ ∗ 1

|x| ))γ
HF] ≥ −C1Z

7
3 +D(ρ). (23)
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Here we use (12). Since EHF(γHF) ≤ 0 from (22) and (23) leaving out the
positive terms we find

0 ≥ (1 − µ)α−1 Tr[T (p)γHF] − Ex(γHF) − C1Z
7
3 . (24)

From (24) and Theorem 2.3 we get

(1 − µ)α−1

∫

R3

Gα(ρHF(x)) dx ≤ (1 − µ)α−1 Tr[T (p)γHF] ≤ Ex(γHF) + C1Z
7
3 .

(25)
It remains to estimate the exchange term. By the exchange inequality (see [15])

Ex(γHF) ≤ 1.68

∫

R3

(

ρHF(x)
)

4
3 dx.

To proceed we separate R3 into two regions. Let us define

Σ =
{

x ∈ R
3 : α

(

C−1ρHF(x)
)

1
3 ≥ 5

2

}

, (26)

with the same notation as in (16). By Remark 2.4, Gα(ρHF(x)) ≥ C2(ρ
HF(x))

4
3

in Σ and α−1Gα(ρHF(x)) ≥ C3(ρ
HF(x))

5
3 in R3 \Σ. Hence by Hölder’s inequal-

ity we find

Ex(γHF) ≤ 1.68

∫

Σ

(ρHF(x))
4
3 dx

+1.68
(

∫

R3\Σ
(ρHF(x))

5
3 dx

)
1
2
(

∫

R3\Σ
ρHF(x) dx

)
1
2

≤C4

∫

R3

Gα(ρHF(x)) dx + C5

(

∫

R3

α−1Gα(ρHF(x)) dx
)

1
2

N
1
2 .(27)

Choosing α0 such that 1 − µ > 2C4α for α ≤ α0, from (25) and (27) we find

1−µ
2 α−1

∫

R3

Gα(ρHF(x)) dx ≤ C1Z
7
3 + C5

(

∫

R3

α−1Gα(ρHF(x)) dx
)

1
2

N
1
2 .

The first estimate in (21) follows from the estimate above using that x2−bx−c ≤
0 implies x2 ≤ b2 + 2c and that N ≤ 2Z + 1 (Theorem 1.6). The second
inequality in (21) follows then from (25) and the bound on the exchange term.
To prove the third inequality in (21) we estimate from above and from below
EHF(γHF). For the one from below we choose in (22) µ = 1 and ρ = ρTF the
TF-minimizer of a neutral atom with nucleus of charge Z. We find

EHF(γHF) =
N

∑

i=1

(ui, (α
−1T (p)−ϕTF)ui)+‖ρHF −ρTF‖2

C −D(ρTF)−Ex(γHF).

(28)
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From (28) and the proof of Proposition B.2 (see (B37)), we find

EHF(γHF) ≥ − 2
3
2

15π2 q

∫

dq(ϕTF(q))
5
2 − CZ2+1/5 (29)

−D(ρTF) + ‖ρHF − ρTF‖2
C − Ex(γHF).

To estimate from above EHF(γHF) we may proceed exactly as in [23, page
543] using that α−1T (p) ≤ 1

2 |p|2. For completeness we repeat the main ideas.
We consider γ the density matrix that acts identically on each of the spin
components as

γj = 1
(2π)3

∫∫

1
2 |p|2≤ϕTF(q)

Πp,q dqdp for j = 1, . . . , q.

Here Πp,q is the projection onto the space spanned by hp,q
s (x) := hs(x−q)eip.x

where hs is the ground state (normalized in L2(R3)) for the Dirichlet Laplacian
on the ball of radius Z−s with s ∈ (1/3, 2/3) to be chosen. One sees that
Tr[γ] = Z ≤ N since

ργ(x) = 23/2q
6π2 (ϕTF)3/2 ∗ h2

s(x) = ρTF ∗ h2
s(x),

where we have used the TF-equation. Hence EHF(γ) ≥ EHF(γHF). Now we
estimate from above EHF(γ). Since α−1T (p) ≤ 1

2 |p|2 and Ex(γ) ≥ 0 we find

EHF(γ) ≤ Tr[(− 1
2∆ − Z

| · | )γ] +D(ργ) = . . . ,

and proceeding as in [23, page 543])

· · · = q
(2π)3

∫∫

1
2 |p|2≤ϕTF(q)

1
2 |p|2 dpdq − π2

2 Z
2sN −

∫

R3

Z

|x|ργ(x) dx +D(ργ).

Computing the integral and summing and subtracting the term
∫

ρTFϕTF we
get

EHF(γ) ≤ q2
1
2

5π2

∫

R3

(ϕTF(q))
5
2 dq − π2

2 Z
2sN −

∫

R3

ϕTF(x)ρTF(x) dx

−
∫

R3

Z

|x| (ργ(x) − ρTF(x))dx − 2D(ρTF) +D(ργ). (30)

By Newton’s theorem one sees that D(ργ) ≤ D(ρTF) and that

Z

∫

R3

ρTF(x) − ργ(x)

|x| dx ≤ Z

∫

|x|≤Z−s

ρTF(x)

|x| dx ≤ CZ
1
5 (12−s).

In the last step we use Hölder’s inequality and Corollary 1.15. From (30) using
the TF-equation, that N ≤ 2Z + 1 (Theorem 1.6) and optimizing in s we find

EHF(γ) ≤ − 2
3
2

15π2 q

∫

R3

(ϕTF(q))
5
2 dq + CZ

1
5 (12− 7

11 ) −D(ρTF). (31)
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Hence from (29) and (31) we obtain

∥

∥ρHF − ρTF
∥

∥

2

C
≤ CZ2+ 3

11 + Ex(γHF).

The last estimate in (21) follows from the estimate above since Ex(γHF) ≤ CZ
5
3

using (27) and the estimate just proved on α−1
∫

Gα(ρHF(x)) dx.

Lemma 3.2. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Then, there

exists an α0 > 0 such that for all α ≤ α0, µ > 0 and x ∈ R3 with |x| ≤ βZ− 1+µ
3

we have

|ΦTF
|x| (x) − ΦHF

|x| (x)| ≤ Cβ
4

1+µ (1 + β
9

22(1+µ) |x|
2+11µ

22(1+µ) )|x|−4+ 4µ
1+µ .

Proof. By the definition of screened nuclear potential we have

∣

∣

∣
ΦHF

|x| (x) − ΦTF
|x| (x)

∣

∣

∣
≤

∫

|y|<|x|

|ρHF(y) − ρTF(y)|
|x − y| dy = . . .

and for all k > 0 by Proposition 2.8

. . . ≤ 2
3
2 k−1|x|− 1

2

∥

∥ρHF − ρTF
∥

∥

C
+

∫

A(|x|,k)

ρHF(y) + ρTF(y)

|x − y| dy. (32)

Since ‖ρTF‖
L

5
3 (R3)

≤ CZ
7
5 (Corollary 1.15) and

∫

A(|x|,k)

1

|x − y| 52
dy ≤ 8π|x| 12 (2k)

1
2 . (33)

(see [23] page 549) one finds

∫

A(|x|,k)

ρTF(y)

|x − y|dy ≤ CZ
7
5 |x| 15 k 1

5 . (34)

The term with the HF-density has to be treated differently since we do not
have a bound for the L

5
3 -norm of ρHF. For a R ∈ R+ to be chosen later we

consider the splitting
∫

A(|x|,k)

ρHF(y)

|x− y| dy =

∫

A(|x|,k)
|x−y|>R

ρHF(y)

|x − y| dy +

∫

A(|x|,k)
|x−y|<R

ρHF(y)

|x − y|dy. (35)

We consider these two terms separately. Let Σ be defined as in (26); i.e.

the region where Gα(ρHF) behaves like (ρHF)
4
3 (Remark 2.4). By Hölder’s

inequality we find
∫

A(|x|,k)
|x−y|>R

ρHF(y)

|x − y|dy ≤
(

∫

A(|x|,k)
|x−y|>R

1

|x − y|4 dy
)

1
4
(

∫

y∈Σ

(

ρHF(y))
4
3 dy

)
3
4

+
(

∫

A(|x|,k)

1

|x − y| 52
dy

)
2
5
(

∫

y∈R
3\Σ

(

ρHF(y)
)

5
3 dy

)
3
5

.
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From the inequality above, Remark 2.4 and estimate (21) we get

∫

A(|x|,k)
|x−y|>R

ρHF(y)

|x− y| dy ≤ CR− 3
8 |x| 18 k 1

8Z + C|x| 15 k 1
5Z

7
5 . (36)

On the other hand for the second term on the right hand side of (35) by (20)
and Lemma 3.1 we find

∫

|x−y|<R

ρHF(y)

|x − y|dy ≤ C(Z
4
3 +R

1
2Z

3
2 ). (37)

Hence from (32), Lemma 3.1, (34), (36) and (37), we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C
( Z1+ 3

22

|x|1/2k + Z
7
5 |x| 15 k 1

5 +R− 3
8 |x| 18 k 1

8Z +R
1
2Z

3
2 + Z

4
3

)

.

(38)

Choosing k such that Z
4
3 = Z

7
5 |x| 15 k 1

5 , i.e. k = |x|−1Z− 1
3 and R such that

R− 3
8Z1− 1

24 = Z
4
3 , i.e. R = Z−1 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(|x| 12Z 4
3 + 3

22 + Z
4
3 ).

The claim follows using that |x| ≤ βZ− 1+µ
3 .

Theorem 3.3. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Then there

exists an α0 > 0 such that for all α ≤ α0 and x ∈ R3 with |x| ≤ βZ− 1
3 we have

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ Cβ2− 1
66 (1 + β2 + β

5
2 + β2+ 789

1936 |x| 179
1936 )|x|−4+ 1

66 . (39)

Moreover if |x| ≤ βZ− 1−µ
3 for µ < 2

11
1
49 , then

|ΦTF
|x| (x) − ΦHF

|x| (x)| ≤ Cβ2−a(µ)(1 + β2 + β
5
2 + βb(µ)|x|c(µ))|x|−4+a(µ), (40)

with a(µ) = 1
66(1−µ) −

49µ
12(1−µ) , b(µ) = 2 + 3

176

24−24µ− 1
11+ 49

2 µ

1−µ and c(µ) = 1
11 −

3
11− 3

2 49µ

22(8−8µ) strictly positive constants.

Proof. Proceeding as in the proof of Lemma 3.2 up to (36) we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(k−1|x|− 1
2Z1+ 3

22 + Z
7
5 |x| 15 k 1

5 + R− 3
8 |x| 18 k 1

8Z)

+

∫

|x−y|≤R

ρHF(y)

|x − y|dy, (41)

for R ∈ R+ to be chosen. It remains to estimate the last term on the right
hand side of (41). For ‘small’ R which is relevant for small x we already did it
in Lemma 3.2, for ‘big’ R which is relevant for big x we use Proposition B.1 in
Appendix B.
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Take γ ≤ 1/263 to be chosen. If |x| ≤ βZ− 1+γ
3 then by Lemma 3.2

|ΦTF
|x| (x) − ΦHF

|x| (x)| ≤ Cβ
4

1+γ (1 + β
9

22(1+γ) |x|
2+11γ

22(1+γ) )|x|−4+ 4γ
1+γ . (42)

If instead |x| > βZ− 1+γ
3 , let Hx be the Hamiltonian defined in (B2) with P = x

and ν = Z. Then by the definition of Hx and taking the HF-minimizer as a
trial wave function we have

inf
ψ∈∧N

i=1L
2(R3)

‖ψ‖2=1

〈ψ,Hxψ〉 ≤ EHF(γHF) − Z

∫

|x−y|<R

ρHF(y)

|x− y| dy

= inf
γ∈A

EHF(γ) − Z

∫

|x−y|<R

ρHF(y)

|x − y|dy = . . . .

Since 1
2 |p|2 ≥ α−1T (p), infγ∈A EHF(γ) is estimated from above by the HF-

ground state energy of the non-relativistic model (i.e. when the kinetic energy
is given by − 1

2∆). Moreover, this last one can be estimated from above by

ETF(ρTF) + CN
1
5Z2 (see [18] and [11]). Hence we find

· · · ≤ ETF(ρTF) + CN
1
5Z2 − Z

∫

|x−y|<R

ρHF(y)

|x− y| dy.

On the other hand since |x| > βZ− 1+γ
3 choosing for some l > 1+γ

3 , R < βZ−l/4
from Proposition B.1 it follows that there exists a constant depending only on
κ such that for t ∈ ((1+γ)/3,min{l, 3/5}), and for every ψ ∈ ∧Ni=1L

2(R3) with
‖ψ‖2 = 1 we have

〈ψ,Hxψ〉 ≥ ETF(ρTF) − C(β1/2 + β−2)Z
5
2− t

2 ,

Hence combining the two inequalities above we find
∫

|x−y|≤R

ρHF(y)

|x − y|dy ≤ C(β1/2 + β−2)Z
1
2 (3−t). (43)

From (41) and the inequality above we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ Ck−1|x|− 1
2Z1+ 3

22 + CZ
7
5 |x| 15 k 1

5

+CR− 3
8 |x| 18 k 1

8Z + C(β1/2 + β−2)Z
1
2 (3−t).

Choosing k such that Z
1
2 (3−t) = Z

7
5 |x| 15 k 1

5 , i.e k = |x|−1Z
1
2 (1−5t) and R such

that Z
1
2 (3−t) ∼ R− 3

8Z1+ 1
16 (1−5t), i.e R = βZ− 7

6 + 1
2 t/4 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(|x| 12Z 7
11+ 5

2 t + (β1/2 + β−2)Z
1
2 (3−t)). (44)

Notice that R < βZ−l/4 is satisfied choosing l = 4t/3. Then for x such that

βZ− 1+γ
3 ≤ |x| ≤ βZ− 1

3 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(|x|− 31
22− 15

2 tβ
21
11 + 15

2 t + (β1/2 + β−2)β
3
2 (3−t)|x|− 3

2 (3−t)).
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Optimizing in t gives t = 1/3 + 1/99. For this value of t we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + β
5
2 )β2− 1

66 |x|−4+ 1
66 . (45)

Inequality (39) follows from (42) and (45) choosing γ such that 4γ/(1 + γ) =
1/66, i.e. γ = 1/263.

On the other hand from (44) for x such that βZ− 1+γ
3 ≤ |x| ≤ βZ− 1−µ

3 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C|x| 12− 3
1−µ ( 7

11+ 5
2 t)β

3
1−µ ( 7

11 + 5
2 t)

+C(β1/2 + β−2)β
3

2(1−µ)
(3−t)|x|− 3

2(1−µ)
(3−t).

Optimizing in t gives t = 1/3 + 1/99 − 1
18µ. For this value of t we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + β
5
2 )β2− 1

66(1−µ)
+ 49µ

12(1−µ) |x|−4+ 1
66(1−µ)

− 49µ
12(1−µ) .

Inequality (40) follows from the one above and (42) choosing γ such that 4γ/(1+
γ) = 1

66(1−µ) −
49µ

12(1−µ) .

4 The exterior part

In this section we complete the proof of Theorem 1.17. We first estimate the
exterior integral of the density and study the minimization problem that the
exterior part of the minimizer satisfies. Then we prove the main estimate in
Theorem 1.17 in an intermediate zone, i.e. far from the nucleus but not further
than a fixed distance independent of Z. To study this area we need first to
construct a TF-model that gives a good approximation of the HF-density in
this intermediate zone. By the estimate on the exterior integral of the density
we can then also prove Theorem 1.17 in the region far away from the nucleus.

4.1 The exterior integral of the density

The main result of this section is the following lemma.

Lemma 4.1 (The exterior integral of the density). Assume that for some
R, σ, ε′ > 0

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ σ|x|−4+ε′ , (46)

holds for |x| ≤ R. Then for 0 < r ≤ R

∣

∣

∣

∫

|x|<r
(ρHF(x) − ρTF(x)) dx

∣

∣

∣
≤ σr−3+ε′ (47)

and
∫

|x|>r
ρHF(x)dx ≤ C(1 + σrε

′

)(1 + r−3), (48)

with C a universal constant.
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We proceed similarly as in the proof of Lemma 10.5 in [23]. Since we need to
localize we first present some technical lemmas that will take care of the error
terms due to the localization. The localization error that will appear in the
argument below (see (58)) will be in the form of an operator L similar to the
error (14) in the IMS formula. We estimate this error in Lemma 4.3.

Remark 4.2. Let 0 ≤ β1 < .. < β4 be real numbers with possibly β4 = ∞. Let
us denote Σr(βi, βj) = {x ∈ R3 : βir ≤ |x| ≤ βjr}. Then we have

∫∫

x ∈ Σr(β1, β2)
y ∈ Σr(β3, β4)

K2(α
−1|x − y|)2 dxdy ≤ 46π2

3

β3
2 − β3

1

β3 − β2
α4r2e−α

−1r(β3−β2) .

The proof of this estimate is given in Appendix A.

Lemma 4.3. Let r > 0 and λ, ν ∈ (0, 1). Let χ− be the characteristic function
of Br(1−ν)(0) and χ0 be the characteristic function of the sector {x ∈ R3 :
r(1 − ν) < |x| < r(1 + ν)/(1 − λ)}. Let η be a Lipschitz function such that
0 ≤ η(x) ≤ 1 for all x ∈ R3, η(x) ≡ 0 if |x| ≤ r, η(x) ≡ 1 if |x| ≥ r(1 − λ)−1

and ‖∇η‖∞ is bounded. Let L denote the operator with integral kernel

L(x,y) =
α−2

4π2

(η(x) − η(y))(η(x)|x| − η(y)|y|)
|x − y|2 K2(α

−1|x − y|). (49)

Then for every function f ∈ L2(R3) we have

α−1|(f, Lf)| ≤ 3D(η, λ, r) ‖χ0f‖2
2 +D(η, λ, r)e−

1
2α

−1rν‖χ−f‖2
2 +α−1|(f,Qf)|,

with D(η, λ, r) := ‖∇η‖∞
(

‖∇η‖∞r
1−λ +1

)

and Q a positive semi-definite operator

such that

Tr[Q] ≤ CD(η, λ, r)α−1r2e−
1
2α

−1rν ,

with C depending only on λ and ν.

Proof. As a first step we decompose the operator L. We introduce a third
cut-off function χ+ such that 1 = χ−(x) + χ0(x) + χ+(x) for all x ∈ R3.
We decompose the operator L with respect to these characteristic functions as
follows:

L = χ−L(χ0 + χ+) + (χ0 + χ+)Lχ− + χ0Lχ+ + χ+Lχ0 + χ0Lχ0.

We proceed similarly as in [24, Proof of Theorem 2.6 (Localization error)]. For
Γ1,Γ2 bounded operators from (Γ1 − Γ2)(Γ1 − Γ2)

∗ ≥ 0 it follows

Γ1Γ
∗
2 + Γ2Γ

∗
1 ≤ Γ1Γ

∗
1 + Γ2Γ

∗
2. (50)

We are going to use several times this inequality with different choices of Γ1

and Γ2.
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As a first choice we consider Γ1 =
√
ε1χ− and Γ2 = 1/

√
ε1(χ0 + χ+)Lχ− with

ε1 > 0 to be chosen. Using (50) we get

|(f, (χ−L(χ0 + χ+) + (χ0 + χ+)Lχ−)f)| ≤ ε1‖χ−f‖2
2 +

1

ε1
(f,Q1f), (51)

with Q1 = (χ0 + χ+)Lχ2
−L(χ0 + χ+). We estimate now the trace of Q1. By

the definition of η, χ−, χ0 and χ+ it follows that

Tr[Q1] =

∫

|x|≤r(1−ν)

∫

|y|≥r
L2(x,y) dxdy ≤ (16)2

3π2

(1−ν)3
ν D(η, λ, r)2r2e−α

−1rν .

In the last step we use the definition of L, Remark 4.2 and the definition of the
constant D(η, λ, r) given in the statement of the lemma.
Now we choose Γ1 =

√
ε2χ0 and Γ2 = 1/

√
ε2χ+Lχ0 with ε2 > 0 to be chosen.

Proceeding as above we get

|(f, (χ+Lχ0 + χ0Lχ+)f)| ≤ ε2‖χ0f‖2
2 +

1

ε2
(f,Q2f), (52)

with Q2 = χ+Lχ
2
0Lχ+ and such that

Tr[Q2] ≤ (16)2

3π2

1−(1−ν)3(1−λ)3

ν(1−λ)2 D(η, λ, r)2 r2e−α
−1r ν

1−λ .

It remains to study the term χ0Lχ0. This one has to be treated differently. By
Schwartz’s inequality one gets

|(f, χ0Lχ0f)| ≤ 3α
2 D(η, λ, r)

∫

R3

χ0(x)|f(x)|2, (53)

since
∫

R3 |L(x,y)|dxdy ≤ 3α
2 D(η, λ, r).

The claim follows from (51), (52) and (53) choosing ε1 = D(η, λ, r)αe−
1
2α

−1rν ,
ε2 = 3α

2 D(η, λ, r) and with Q := 1
ε1
Q1 + 1

ε2
Q2.

Definition 4.4 (The localization function). Fix 0 < λ < 1 and let G : R3 → R

be given by

G(x) :=







0 if |x| ≤ 1,
π
2 (|x| − 1) 1

(1−λ)−1−1 if 1 ≤ |x| ≤ (1 − λ)−1,
π
2 if (1 − λ)−1 ≤ |x|.

Let r > 0 and define the outside localization function θr(x) := sin(G( |x|r )).

Remark 4.5. From the definition it follows that ‖∇θr‖∞ ≤ π
2

1−λ
λ r−1.

Lemma 4.6. For all r > 0 and λ, ν ∈ (0, 1) the density ρHF of the minimizer
satisfies

∫

|x|>r(1−λ)−1

ρHF(x)dx ≤ 1 + 2
λ + 2 sup

|x|=r(1−λ)

|x|ΦHF
r(1−λ)(x) + R 1

2

Documenta Mathematica 15 (2010) 285–345



Excess Charge for Pseudo-Relativistic Atoms. . . 307

with

R = 6D(λ)r−1

∫

r(1−ν)<|x|<r 1+ν
1−λ

ρHF(x) dx + 2D(λ)(r−1N +Crα−2)e−
1
2α

−1rν ,

with D(λ) := (1 + π/(2λ(1 − λ)))π/(2λ) and C = C(λ, ν).

Proof. Let γHF be the minimizer. By the variational principle, γHF is a projec-
tion onto the subspace spanned by u1, . . . , uN . These functions ui satisfy the
Euler Lagrange equations hγHFui = εiui, εi < 0, for i = 1, . . . , N , with hγHF

defined in (11).

Given η a function in C1(R3) with support away from zero, we find

0 ≥
N

∑

i=1

εi

∫

R3

|ui(x)|2|x|η2(x)dx =

N
∑

i=1

∫

R3

ui(x)∗|x|η2(x)hγHFui(x)dx.

Since ηT (p)ui ∈ L2(R3) (Theorem 1.5, (3)), using the Euler-Lagrange equa-
tions and treating all the terms, except the kinetic energy, as in [23, Formula
(63)] we get

0 ≥ α−1
N

∑

i=1

(uiη| · |, ηT (p)ui) − Z

∫

R3

ρHF(x)η2(x)dx

+

∫

R3

∫

R3

[

ρHF(x)ρHF(y) − TrCq |γHF(x,y)|2
] |y|(1 − η2(x))η2(y)

|x − y| dxdy

+ 1
2

(

∫

R3

ρHF(x)η2(x)dx
)2

− 1
2

∫

R3

ρHF(x)η2(x)dx. (54)

Now we look at the kinetic energy term. For each i ∈ {1, . . . , N} we may write

Re(uiη| · |, ηT (p)ui) = Re(uiη| · |, T (p)(ηui)) + Re(uiη| · |, [η, T (p)]ui), (55)

where [A,B] denotes the commutator of the operators A and B. The first term
on the right hand side of (55) is non-negative by the result of Lieb in [13].
Notice that here we may use that ηui ∈ H1(R3) (see Theorem 1.5, (3)).

Hence, from (54) and (55) we find

0 ≥ α−1
N

∑

i=1

Re(uiη| · |, [η, T (p)]ui) − Z

∫

R3

ρHF(x)η2(x)dx

+

∫

R3

∫

R3

[

ρHF(x)ρHF(y) − TrCq |γHF(x,y)|2
] |y|(1 − η2(x))η2(y)

|x − y| dxdy

+ 1
2

(

∫

R3

ρHF(x)η2(x)dx
)2

− 1
2

∫

R3

ρHF(x)η2(x)dx. (56)
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By a density argument we may choose η = θr the localization function defined
in Definition 4.4. Reasoning as on page 541 of [23], we get

0 ≥ α−1
N

∑

i=1

Re(uiη| · |, [η, T (p)]ui) + 1
2

(

∫

R3

ρHF(x)η2(x)dx
)2

−
(

1
2 + 1

λ + sup
|x|=r(1−λ)

|x|ΦHF
r(1−λ)(x)

)

∫

R3

ρHF(x)η2(x)dx. (57)

It remains to estimate the first term on the right hand side of (57). With the
same arguments used in the proof of the IMS formula, it can be rewritten as

α−1
N

∑

i=1

Re(uiη| · |, [η, T (p)]ui) = −α−1
N

∑

i=1

(ui, Lui), (58)

where L is the operator defined in (49). Using Lemma 4.3 and since ‖∇η‖∞ =
‖∇θr‖∞ ≤ π/ (2λr) we find, with D(λ) defined as in the statement,

α−1
∣

∣

∣

N
∑

i=1

(ui, Lui)
∣

∣

∣
≤ 3D(λ)r−1‖χ0ρ

HF‖1 +D(λ)r−1e−
1
2α

−1rν‖χ−ρ
HF‖1

+CD(λ)rα−2e−
1
2α

−1rν , (59)

where χ0, χ− and C are as defined in the statement of Lemma 4.3. Hence
combining (57) with (59), using the definition of χ0 and that ‖χ−ρHF‖1 ≤ N
we have

0 ≥ −3D(λ)r−1

∫

r(1−ν)<|x|<r 1+ν
1−λ

ρHF(x) dx −D(λ)r−1e−
1
2α

−1rνN

−CD(λ)rα−2e−
1
2α

−1rν + 1
2

(

∫

R3

ρHF(x)η2(x)dx
)2

−
(

1
2 + 1

λ + sup
|x|=r(1−λ)

|x|ΦHF
r(1−λ)(x)

)

∫

R3

ρHF(x)η2(x)dx.

The claim follows using that x2 −Bx− C ≤ 0 implies x ≤ B +
√
C.

Proof of Lemma 4.1. We proceed as in [23, page 551]. The first estimate follows
directly from the equality

∫

|x|<r
(ρHF(x) − ρTF(x)) dx = 1

4π r

∫

S2

(ΦHF
r (rω) − ΦTF

r (rω)) dω,

and (46). To prove (48) we use Lemma 4.6. We first notice that for 0 < β < γ
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and γ such that rγ ≤ R

∫

rβ<|y|<rγ
ρHF(y) dy ≤

∣

∣

∣

∫

|y|<rγ
(ρHF(y) − ρTF(y)) dy

∣

∣

∣

+
∣

∣

∣

∫

|y|<rβ
(ρHF(y) − ρTF(y)) dy

∣

∣

∣
+

∫

|y|>rβ
ρTF(y) dy

≤ Cr−3β−3(1 + σrε
′

). (60)

Here we used (47) and that by the TF-equation and (13)

∫

|y|>rβ
ρTF(y) dy ≤ 342π2

q2 β−3r−3.

Since
∫

|x|>r ρ
HF ≤

∫

|x|>2r/3 ρ
HF to prove the claim we estimate this second

integral. By Lemma 4.6 with r replaced by r/2, λ = 1
4 and ν = 1

2 we get

∫

|x|>2r/3

ρHF(x)dx ≤ 9 + 3
4r sup

|x|=3r/8

ΦHF
3r/8(x) + R 1

2 ,

with R defined as in the statement of Lemma 4.6. By (46) and Corollary 1.14
we find

sup
|x|=3r/8

ΦHF
3r/8(x) ≤ Cσr−4+ε′ + sup

|x|=3r/8

ΦTF
3r/8(x) ≤ C(1 + σrε

′

)r−4.

Moreover, from (60) with β = 1/4 and γ = 1, since N < 2Z + 1 and the
boundness of R+ ∋ x 7→ xpe−x for all p > 0, we find

R ≤ C(r−4(1 + σrε
′

) + r−1).

The claim follows directly.

4.2 Separating the inside from the outside

We consider the exterior part of the minimizer, i.e. the density matrix

γHF
r := θrγ

HFθr, (61)

with θr as defined in Definition 4.4. This density matrix almost minimizes a
new energy functional where there is no exchange term. Indeed sufficiently
far away from the nucleus the electrons are far apart and hence their mutual
interaction is small.

We define an auxiliary energy functional on A (see (8)) given by

EA(γ) := Tr[(α−1T (p) − ΦHF
r )γ] +D(ργ). (62)
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Theorem 4.7. Let r > 0 and λ, ν ∈ (0, 1). Let χ+
r denote the characteristic

function of R3 \Br(0). The density matrix γHF
r defined in (61) satisfies

EA(γHF
r ) ≤

{

EA(γ) : γ ∈ A, supp(ργ) ⊂ R
3 \Br(0), ‖ργ‖1 ≤ ‖ρHFχr‖1

}

+ R,

where

R = ( π2λ + C
λ2 r

−1)r−1

∫

r(1−λ)(1−ν)≤|x|
ρHF(x) dx + c′α−2(1 + αr−2)e−

1
2α

−1rd

+Ex(γHF
r ) + C

∫

r(1−λ)≤|x|≤ r
1−λ

[

(

ΦHF
r(1−λ)(x)

)
5
2 + α3

(

ΦHF
r(1−λ)(x)

)4
]

dx,

and c′, d are positive constants depending only on ν and λ.

Proof. We proceed as in [23, pages 532-6]. The first step of the proof is a
localization. Once again we have to treat carefully the localization error coming
from the kinetic energy. This is the main difference with [23]. For completeness
we repeat the main ideas of the reasoning.
We consider the following partition of unity of R3: 1 = θ2r(x) + θ20(x) + θ2−(x)
with θr defined as in Definition 4.4 and

θ0(x) :=
(

θ2r(1−λ)(x) − θ2r(x)
)

1
2 and θ−(x) :=

(

1 − θ2r(1−λ)(x)
)

1
2 .

Associated to this partition of unity we define

γHF
0 := θ0γ

HFθ0 and γHF
− := θ−γ

HFθ−.

We prove the claim by showing that for all density matrices γ ∈ A such that
supp(ργ) ⊂ R3 \Br(0) and ‖ργ‖1 ≤ ‖ρHFχ+

r ‖1 it holds that

EA(γHF
r ) + EHF(γHF

− ) −R ≤ EHF(γHF) ≤ EA(γ) + EHF(γHF
− ). (63)

The proof of the upper bound in (63) is as in [23, page 533].
To prove the lower bound as a first step we localize. By Theorem 2.1 we find

α−1 Tr[T (p)γHF] = α−1 Tr[T (p)(γHF
r + γHF

0 + γHF
− )]

−α−1
N

∑

i=1

(ui, (Lr + L0 + L−)ui),

where Lr, L0 and L− are defined as the Li’s in (14).
We first estimate the error term. The procedure is similar to the one used
in the proof of Lemma 4.3. We introduce three cut-off functions: χ− be the
characteristic function of Br(1−λ)(1−ν)(0), χr the characteristic function of R3 \
Br 1+ν

1−λ
(0) and χ0 defined by χ0(x) = 1 − χr(x) − χ−(x) for all x ∈ R3. Notice

that χ− and χr are the characteristic functions of sets where θ−, θ0 and θr are
constants. For k ∈ {−, 0, r} we have the following splitting

Lk = χ−Lk(χ0 + χr) + (χ0 + χr)Lkχ− + χrLkχ0 + χ0Lkχr + χ0Lkχ0,
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and proceeding as in the proof of Lemma 4.3 with ε1,k, ε2,k to be chosen we
find

(f, Lkf) ≤ ε1,k‖χ−f‖2
2 + ε−1

1,k(f,Q1f) + ε2,k‖χ0f‖2
2 + ε−1

2,k(f,Q2f)

+ 3α
2 ‖∇θk‖2

∞‖χ0f‖2
2.

with operators Q1 and Q2 being positive semi-definite operators with

Tr[Q1] ≤ (16)2

3π2

(1−λ)2(1−ν)3
ν ‖∇θk‖4

∞r
2e−α

−1rν(1−λ)

Tr[Q2] ≤ (16)2

3π2
1

ν(1−λ)2 ‖∇θk‖4
∞r

2e−α
−1r ν

1−λ .

Choosing then

ε2,k = 3α
2 ‖∇θk‖2

∞ and ε1,k = α‖∇θk‖2
∞e

−1
2α

−1rν(1−λ),

since (‖∇θr‖2
∞ + ‖∇θ0‖2

∞ + ‖∇θ−‖2
∞) ≤ 3π2/(4λ2)r−2 and ‖ρHFχ−‖1 ≤ N we

get

α−1
N

∑

i=1

(ui, (Lr + L0 + L−)ui) ≤ 3π2

4λ2 r
−2‖ρHFχ0‖1 + 3π2

4λ2 r
−2e−

1
2α

−1rν(1−λ)N

+ cα−2e−
1
2α

−1rν(1−λ).

Here c is a constant that depends only on ν and λ.
Hence from (64), the inequality above and since N ≤ 2Z + 1 we find

EHF(γHF) ≥ Tr
[(

α−1T (p) − Z

| · |
)

(γHF
r + γHF

0 + γHF
− )

]

+ D(γHF)

−Ex(γHF) − 3π2

4λ2 r
−2‖ρHFχ0‖1 − c′α−2(1 + αr−2)e−

1
2α

−1rd.

The constants c′, d depend only on λ and ν. Proceeding as in [23] we get

EHF(γHF) ≥ EHF(γHF
− ) + EA(γHF

r ) − Ex(γHF
r ) − c′α−2(1 + αr−2)e−

1
2α

−1rd

+ Tr
[(

α−1T (p) − ΦHF
r(1−λ)(·)

)

γHF
0

]

−( π2λ + 3π2

4λ2 r
−1)r−1

∫

|x|≥r(1−λ)(1−ν)
ρHF(x) dx.

The claim follows using Theorem 2.5.

4.3 Comparing with an Outside Thomas Fermi

At this point we introduce an “Outside Thomas Fermi”: a TF-energy functional
whose minimizer approximates the HF-density at a certain distance from the
nucleus.
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Let r > 0 such that

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ σ|x|−4+ε′ , (64)

for all |x| ≤ r for some σ > 0 and ε′ > 0. Let Vr be the potential defined by

Vr(x) = χ+
r (x)ΦHF

r (x) =

{

0 if |x| < r,
ΦHF
r (x) if |x| ≥ r.

(65)

Here and in the following χ+
r (x) := 1 − χr(x), x ∈ R

3, where χr is the
characteristic function of the ball of radius r centered at 0. Notice that
Vr ∈ L

5
2 (R3) + L∞(R3) with

inf{‖W‖∞ : Vr −W ∈ L
5
2 (R3)} = 0.

Let EOTF
r be the TF-functional ETF

Vr
corresponding to the potential Vr defined

in (65). Let ρOTF
r be the unique minimizer of EOTF

r under the condition
∫

R3

ρ(x)dx ≤
∫

|y|≥r
ρHF(y)dy,

(see Theorem 1.9). Then ρOTF
r is solution to the OTF-equation

1
2

(

6π2

q

)
2
3

(ρOTF
r )

2
3 = [ϕOTF

r − µOTF
r ]+ , (66)

where

ϕOTF
r (x) = Vr(x) −

∫

R3

ρOTF
r (y)

|x − y| dy,

is the OTF-mean field potential and µOTF
r is the corresponding chemical poten-

tial. From (66) (and µOTF
r ≥ 0) we see that the support of ρOTF

r is contained
in R3 \Br(0).
In the intermediary zone instead of comparing directly ΦHF

|x| and ΦTF
|x| we com-

pare first the HF-density with the OTF-density and then the OTF-density with
the TF-density. When comparing the TF and OTF there is no difference with
the non-relativistic case and for brevity we refer for the proofs to [23].
We start by studying the behavior of the minimizer and mean field potential
of the OTF. The proof of the following bounds is in [23, page 557-558] in the
case q = 2 and it can be directly generalised to the other values of q.

Lemma 4.8 ([23, Lem.12.1]). For all y ∈ R3 we have

ϕTF(y) ≤ 342−1q−2π2|y|−4 and ρTF(y) ≤ 352−1q−2π|y|−6.

Let β0 be as defined in Theorem 1.12, then for all |y| ≥ β0Z
− 1

3 we have

ϕTF(y) ≥ C|y|−4 and ρTF(y) ≥ C|y|−6.

With r, σ, ε′ such that (64) holds and σrε
′ ≤ 1 we have for all |y| ≥ r

ρOTF
r (y) ≤ Cr−6 and ϕOTF

r (y) ≤ |Vr(y)| ≤ Cr−4.
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Lemma 4.9 ([23, Lem.12.2]). With r, σ, ε′ such that (64) holds for all |x| ≤ r
we have

∫

|y|≥r
(ρTF(y) − ρHF(y))dy ≤ σr−3+ε′ .

For x ∈ R3 with |x| > r we may write

ΦHF
|x| (x) − ΦTF

|x| (x) = A1(r,x) + A2(r,x) + A3(r,x), (67)

where

A1(r,x) = ϕOTF
r (x) − ϕTF(x),

A2(r,x) =

∫

|y|>|x|

ρOTF
r (y) − ρTF(y)

|x− y| dy

and

A3(r,x) =

∫

r<|y|<|x|

ρOTF
r (y) − ρHF(y)

|x − y| dy.

4.3.1 Estimate on A1 and A2

Lemma 4.10 ([23, Lem.12.4]). Let N ≥ Z. Given ε′, σ > 0 there exists a

constant D > 0 such that for all r with β0Z
− 1

3 ≤ r ≤ D for which (64) holds
for all |x| ≤ r, then µOTF

r = 0 and

34π2

2q2 |x|−4(1 + arζ |x|−ζ)−2 ≤ ϕOTF
r (x) ≤ 34π2

2q2 |x|−4(1 +Arζ |x|−ζ) for |x| > r,

where a,A are universal constants and ζ = (−7 +
√

73)/2.

Lemma 4.11 ([23, Lem.12.5]). Let N ≥ Z. Given ε′, σ > 0 there exists a

constant D > 0 depending only on ε′, σ such that for all r with β0Z
− 1

3 ≤ r ≤ D
for which (64) holds for |x| ≤ r, then for all |x| ≥ r

|A1(r,x)| ≤ C|x|−4−ζrζ and |A2(r,x)| ≤ C|x|−4−ζrζ ,

with ζ = (−7 +
√

73)/2 and C a universal constant.

The proof of the previous lemmas is in [23, p. 558-564].

4.3.2 Estimate on ‖χ+
r ρ

HF − ρOTF
r ‖C

Lemma 4.12. Let Gα be the function defined in Theorem 2.3 and ρHF
r (x) be

the one-particle density of the density matrix γHF
r defined in (61). Let Zα = κ

fixed, 0 ≤ κ < 2/π and Z ≥ 1.

Given constants ε′, σ > 0 there exists D < 4
5 such that for all r with β0Z

− 1
3 ≤

r ≤ D for which (64) holds for |x| ≤ r, it follows that

α−1

∫

R3

Gα(ρHF
r (x)) dx ≤ α−1 Tr[T (p)γHF

r ]

≤ 2R + Cr−7 + Cr−4

∫

R3

ρHF
r (x) dx,
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with C a universal positive constant and R as defined in Theorem 4.7.

Proof. The first inequality follows directly from Theorem 2.3. To prove the
second inequality we proceed as in Lemma 3.1. In this case we are interested
only in the exterior part of the minimizer. Hence, instead of considering the
HF-energy functional we consider the auxiliary functional EA, defined in (62),
applied to the “exterior part of the minimizer”γHF

r .
Splitting the kinetic energy in two terms we find

EA(γHF
r ) ≥ 1

2α
−1 Tr[T (p)γHF

r ] +D(ρHF
r ) + 1

2 Tr[(α−1T (p)− 2ΦHF
r )γHF

r ]. (68)

Since ΦHF
r (x) is harmonic for |x| > r and going to zero at infinity

ΦHF
r (x) ≤ r

|x| sup
|y|=r

ΦHF
r (y) for |x| > r.

Hence, since supp(ρHF
r ) ⊂ R3 \Br(0) we find

Tr[(α−1T (p) − 2ΦHF
r )γHF

r ] ≥ Tr[(α−1T (p) − 2r

| · | sup
|y|=r

ΦHF
r (y))γHF

r ] = . . . .

Adding and subtracting 2D(ρ, ρHF
r ) for ρ ∈ L1(R3) ∩ L

5
3 (R3), ρ ≥ 0, to be

chosen

. . . = Tr[(α−1T (p) − Vρ)γ
HF
r ] −

∫

R3

∫

R3

ρHF
r (x)ρ(y)

|x − y| dxdy. (69)

where for simplicity of notation here and in the following Vρ is defined as
Vρ(x) := 2r

|x| sup|y|=r ΦHF
r (y) − ρ ∗ 1

|x| .

From (69), (68) and the definition of the Coulomb norm and scalar product
(Definition 2.7) we find

EA(γHF
r ) ≥ 1

2α
−1 Tr[T (p)γHF

r ] + 1
2D(ρHF

r ) + 1
2‖ρHF

r − ρ‖2
C

− 1
2D(ρ) + 1

2 Tr[(α−1T (p) − Vρ)γ
HF
r ] (70)

≥ 1
2α

−1 Tr[T (p)γHF
r ] + 1

2

N
∑

i=1

(θrui, (α
−1T (p) − Vρ)θrui) − 1

2D(ρ),

denoting by ui the HF-orbitals.
We now choose ρ as the minimizer of the TF-energy functional of a neutral
atom with Coulomb potential and nuclear charge 2r sup|y|=r ΦHF

r (y). Then Vρ
is the corresponding TF-mean field potential and we see that the last two terms
on the right hand side of (70) are like the ones in the claim of Proposition B.2.
The only difference is due to the presence of the localization function θr. We
now prove that these terms give the TF-energy modulo lower order terms. The
method is the same as that of Proposition B.2. We repeat the main steps
since in this case the scaling depends on r. Notice that since r > β0Z

− 1
3 the

contribution is coming only from the “outer zone”.
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Let g ∈ C∞
0 (R3) be spherically symmetric, normalized in L2(R3) and with

support in B1(0). Let us define gr(x) := r−3g(xr−2) and ψr := g2
r . Since Vρ is

sub-harmonic on |x| > 0, we see from the support properties of ψr and θr that

N
∑

i=1

(θrui, (α
−1T (p) − Vρ)θrui) ≥

N
∑

i=1

(θrui, (α
−1T (p) − Vρ ∗ ψr)θrui) = . . . .

For p,q ∈ R3 we define the coherent states gp,qr (x) := gr(x − q)eip·x. By the
formulas (B16) and (B17) with Lq the operator defined in the equation below
(B17) we get

. . . = 1
(2π)3α

−1

∫

R3

∫

R3

dpdq (T (p) − αVρ(q))

N
∑

i=1

q
∑

j=1

|(θruji , gp,qr )|2

−α−1
N

∑

i=1

∫

R3

∫

R3

dxdq (θrui)(x)(Lqθrui)(x) , (71)

where uji denotes the j-th spin component of the orbital ui. By the choice of
the function gr and with the same arguments that led to (B19) in the appendix
we find

α−1
N

∑

i=1

∫

R3

∫

R3

dxdq (θrui)(x)(Lqθrui)(x)

≤ 3

N
∑

i=1

‖θrui‖2
2‖∇gr‖2

∞V ol(supp(gr)) ≤ Cr−4‖ρHF
r ‖1. (72)

In the first term on the right hand side of (71) the integrand is zero if |q| <
1
4r

2 since in this case supp(θr) ∩ supp(gq,pr ) = ∅ (by the choice D < 4/5).
To estimate it further from below we consider only the negative part of the
integrand

1
(2π)3α

−1

∫

R3

∫

R3

dpdq (T (p) − αVρ(q))
N

∑

i=1

q
∑

j=1

|(θruji , gp,qr )|2

≥ q
(2π)3α

−1

∫∫

|q|> 1
4 r

2

T (p)≤αVρ(q)

dpdq (T (p) − αVρ(q)) , (73)

where we have used that 0 ≤ ∑N
i=1 |(θru

j
i , g

p,q
r )|2 ≤ 1 (Bessel’s inequality). We

split the domain of integration in p as follows

{p ∈ R
3 : T (p) ≤ αVρ(q)} = Σ1 ∪ Σ2

with Σ1,Σ2 disjoint and Σ1 = {p ∈ R3 : 1
2 |p|2 ≤ Vρ(q)}. We treat these two

contributions separately. We have

α−1

∫∫

|q|> 1
4 r

2

p∈Σ2

dpdq (T (p) − αVρ(q)) ≥ −
∫∫

|q|> 1
4 r

2

p∈Σ2

dpdq [Vρ(q)]+ = . . .
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and computing the integral, using that (1 + x)
3
2 ≤ 1 + 3

2x+ 3
8x

2

· · · ≥ −C
∫

|q|> 1
4 r

2

dq (α2[Vρ(q)]
7
2
+ + α4[Vρ(q)]

9
2
+) ≥ −Cα2r−

23
2 − Cα4r−

33
2 .

(74)
In the last step we used that [Vρ(q)]+ ≤ 2 r

|q| sup|x|=r ΦHF
r (x) and that by the

hypothesis and Corollary 1.14

r sup
|x|=r

ΦHF
r (x) ≤ Cr−3, (75)

choosing D such that σrε
′ ≤ 1.

Since T (p) ≥ 1
2α|p|2 − 1

8α
3|p|4 we find

α−1

∫∫

|q|> 1
4 r

2

p∈Σ1

dpdq (T (p) − αVρ(q))

≥
∫∫

|q|> 1
4 r

2

1
2 |p|2≤Vρ(q)

dpdq (
1

2
|p|2 − Vρ(q)) − 1

8α
2

∫∫

|q|> 1
4 r

2

1
2 |p|

2≤Vρ(q)

dpdq |p|4. (76)

Computing the last integral we find

α2

∫∫

|q|> 1
4 r

2

1
2 |p|

2≤Vρ(q)

dpdq |p|4 ≤ Cα2r−1(2r sup
|x|=r

ΦHF
r (x))

7
2 ≤ Cα2r−

23
2 . (77)

While for the first term on the right hand side of (76), computing the integral
with respect to p, we get

∫∫

|q|> 1
4 r

2

1
2 |p|

2≤Vρ(q)

dpdq (1
2 |p|2 − Vρ(q)) = −4π 2

5
2

15

∫

|q|> 1
4 r

2

dq [Vρ(q)]
5
2
+.

Hence collecting together (71), (72), (73) (74), (77) and the inequality above
we find

Tr[(α−1T (p)−Vρ)γHF
r ] ≥ − 2

3
2 q

15π2

∫

R3

dx [Vρ(x)]
5
2
+−Cr−4‖ρHF

r ‖1−Cr−
11
2 = . . . .

since β0Z
− 1

3 ≤ r implies β0α
1
3 ≤ κ

1
3 r. From the TF-equation that ρ satisfies

it follows that

. . . = 3
10 (6π2

q )
2
3

∫

R3

dx ρ(x)
5
3 −

∫

R3

ρ(x)Vρ(x) dx − Cr−4‖ρHF
r ‖1 − Cr−

11
2

= ETF(ρ) +D(ρ) − Cr−4‖ρHF
r ‖1 − Cr−

11
2 .

Hence from (70) and the inequality above we get using (12) and (75)

EA(γHF
r ) ≥ 1

2α
−1 Tr[T (p)γHF] − Cr−7 − Cr−4‖ρHF

r ‖1.

The claim follows since EA(γHF
r ) ≤ R by the result of Theorem 4.7 considering

as a trial density matrix γ ≡ 0.
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Lemma 4.13. Let N ′ ∈ N and Zα = κ be fixed, 0 ≤ κ < 2/π and Z ≥ 1. Let
ej be the first N ′ negative eigenvalues of the operator α−1T (p) − ϕOTF

r acting
on functions with support on {x ∈ R3 : |x| ≥ r}.
Given constants ε′, σ > 0 there exists D < 4/5 such that for all r with β0Z

− 1
3 ≤

r ≤ D for which (64) holds for |x| ≤ r, for all µ ∈ (0, 1) and s < r we have

N ′

∑

j=1

ej ≥ −( 2
1−µ)

3
2 1

15π2

∫

|q|>r
[ϕOTF
r (q)]

5
2
+ dq − Cr−8sµ− 3

2 − Cµ−3r−5s

−C(1 − µ)−
7
2 r−5 − C(1 − µ)s−2N ′,

with C a positive constant.

Proof. Let fj be the eigenfunctions (normalized in L2(R3,Cq)) corresponding
to the eigenvalues ej , j = 1, .., N ′. Let g ∈ C∞

0 (R3) with support in B1(0) and

define gs(x) = s−
3
2 g(x/s) for a positive parameter s, s < r. We then write for

µ ∈ (0, 1)
N ′

∑

j=1

ej =
N ′

∑

j=1

(fj , (α
−1T (p) − ϕOTF

r )fj) = B1 + B2,

where

B1 =

N ′

∑

j=1

(fj , ((1 − µ)α−1T (p) − ϕOTF
r ∗ g2

s)fj),

B2 =

N ′

∑

j=1

(fj , (µα
−1T (p) − ϕOTF

r + ϕOTF
r ∗ g2

s)fj).

We estimate these two terms separately. Considering for p,q ∈ R3 the coherent
states gp,qs (x) := eip.xgs(x − q) using (B16) and (B17), we find

B1 = 1
(2π)3

∫∫

((1 − µ)α−1T (p) − ϕOTF
r (q))

N
∑

j=1

|(fj , gp,qs )|2 dqdp

− (1 − µ)α−1
N ′

∑

j=1

∫

R3

∫

R3

dxdqfj(x)(Lqfj)(x) . (78)

Estimating the error term as done in (B32) and previous inequalities we get

(1 − µ)α−1
N ′

∑

j=1

∫

R3

∫

R3

dxdqfj(x)(Lqfj)(x) ≤ C(1 − µ)s−2N ′.

Since we are interested in an estimate from below and ϕOTF
r (q) ≤ 0 for |q| < r,
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from (78) we find

B1 ≥ 1
(2π)3

∫∫

|q|>r
((1 − µ)α−1T (p) − ϕOTF

r (q))

N
∑

j=1

|(fj , gp,qs )|2 dqdp

−C(1 − µ)s−2N ′. (79)

We estimate now the first term on the right hand side of (79). Considering

only the negative part of the integrand and since
∑N ′

j=1 |(fj , gp,qs )|2 ≤ 1 we get

1
(2π)3

∫∫

|q|>r
((1 − µ)α−1T (p) − ϕOTF

r (q))

N ′

∑

j=1

|(fj, gp,qs )| dqdp

≥ 1
(2π)3

∫∫

|q|>r,
(1−µ)α−1T (p)≤ϕOTF

r (q)

((1 − µ)α−1T (p) − ϕOTF
r (q)) dpdq.

Now we split the domain of integration in p as follows

{p ∈ R
3 : α−1(1 − µ)T (p) ≤ ϕOTF

r (q)} = Σ1 ∪ Σ2,

with Σ1,Σ2 disjoint and Σ1 = {p ∈ R3 : (1 − µ)|p|2/2 ≤ ϕOTF
r (q)}. We treat

these two contributions separately. Then

1
(2π)3

∫∫

|q|>r,
p∈Σ2

((1 − µ)α−1T (p) − ϕOTF
r (q))dpdq

≥ − 1
(2π)3

∫∫

|q|>r,
p∈Σ2

[ϕOTF
r (q)]+dpdq = . . .

and since in the domain of integration

2
1−µ [ϕOTF

r (q)]+ ≤ |p|2 ≤ 2
1−µ [ϕOTF

r (q)]+(1 + 1
2(1−µ)α

2[ϕOTF
r (q)]+)

we get

. . . ≥ − C

(1−µ)
5
2
α2

∫

|q|>r
dq ([ϕOTF

r (q)]
7
2
+ + α2

8(1−µ) [ϕ
OTF
r (q)]

9
2
+)

≥ − C

(1−µ)
5
2
α2(r−11 + α2

1−µr
−15), (80)

using Lemma 4.10 in the last step.
Since

√
1 + t2 ≥ 1 + (1/2)t2 − (1/8)t4, we get

1
(2π)3

∫∫

|q|>r,
p∈Σ1

((1 − µ)α−1T (p) − ϕOTF
r (q))dpdq

≥ 1
(2π)3

∫∫

|q|>r,
p∈Σ1

((1 − µ)1
2 |p|2 − ϕOTF

r (q) − 1
8 (1 − µ)α2|p|4)dpdq.
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The last term gives by Lemma 4.10

α2

∫∫

|q|>r
p∈Σ1

dpdq |p|4 = α2 4π
7

∫

|q|>r
dq ( 2

1−µ )
7
2 [ϕOTF

r (q)]
7
2
+ ≤ Cα2( 2

1−µ)
7
2 r−11.

(81)
While for the other terms computing the integral with respect to p, we get

1
(2π)3

∫∫

|q|>r,
p∈Σ1

((1 − µ)1
2 |p|2 − ϕOTF

r (q))dpdq

= −( 2
1−µ)

3
2 1

15π2

∫

|q|>r
dq [ϕOTF

r (q)]
5
2
+. (82)

For the term B2 using Theorem 2.5 and Remark 2.6 we find

B2 ≥ −Cq(µ− 3
2 ‖[ϕOTF

r − ϕOTF
r ∗ g2

s ]+‖
5
2
5
2

+ α3µ−3‖[ϕOTF
r − ϕOTF

r ∗ g2
s ]+‖4

4).

From the choice of gs it follows that ϕOTF
r − ϕOTF

r ∗ g2
s ≤ Vr − Vr ∗ g2

s and the
term Vr −Vr ∗ g2

s is non-zero only for r− s ≤ |x| ≤ r+ s. Hence by Lemma 4.8
and since s < r

‖[ϕOTF
r −ϕOTF

r ∗g2
s ]+‖

5
2
5
2

≤
∫

r−s≤|x|≤r+s
[Vr(x)−Vr ∗g2(x)]

5
2
+dx ≤ Cr−8s, (83)

and similarly ‖[ϕOTF
r − ϕOTF

r ∗ g2
s ]+‖4

4 ≤ Cr−14s. The claim follows from (79),

(80), (81), (82) and (83) using that β0α
1
3 ≤ κ

1
3 r.

Lemma 4.14. Let Gα be the function defined in Theorem 2.3 and ρHF
r (x) the

one-particle density of the density matrix γHF
r defined in (61). Let Zα = κ be

fixed, 0 ≤ κ < 2/π and Z ≥ 1.
There exists α0 > 0 such that given ε′, σ > 0 there exists D < 1/4 such that

for all α ≤ α0 and r with β0Z
− 1

3 ≤ r ≤ D for which (64) holds for |x| ≤ r, we
have

‖χ+
r ρ

HF − ρOTF
r ‖C ≤ Cr−

7
2+ 1

6 and

α−1

∫

R3

Gα(χ+
r ρ

HF(x))dx ≤ Cr−7, α−1 Tr[T (p)γHF
r ] ≤ Cr−7,

(84)

with C a universal positive constant.

Proof. The idea of the proof is the same as that of Lemma 3.1. In this case
we are interested only in the exterior part of the minimizer. Hence, instead
of considering the HF-energy functional we estimate from above and below
the auxiliary one EA, defined in (62), applied on the “exterior part of the
minimizer”γHF

r .
Step I. Estimate from above on EA(γHF

r ). Let us consider γ the density matrix
that acts identically on the spin components and on each as

γj = 1
(2π)3

∫∫

1
2 |p|2≤ϕOTF

r (q)

Πp,q dpdq,
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where j ∈ {1, . . . , q} is the spin index, Πp,q is the projection onto the space
spanned by hp,q

s (x) = hs(x − q)eip.x where hs is the ground state for the
Dirichlet Laplacian on the ball of radius s for 0 < s < r. By the OTF-equation
(66) and since µOTF

r = 0 (see Lemma 4.10) we see that ργ(x) = ρOTF
r ∗|hs|2(x).

Moreover, by Lemma 4.10

Tr[− 1
2∆γ] = 3

10 (6π2

q )
2
3

∫

R3

(ρOTF
r (x))

5
3 dx + Cs−2r−3. (85)

Since [ΦHF
r ]+ ∈ L

5
2

loc(R
3), by [23, Lemma 8.5] for λ′ ∈ (0, 1) we may find γ̃ such

that supp(ργ̃) ⊂ {x : |x| ≥ r}, ργ̃(x) ≤ ργ(x) for x ∈ R
3 and

Tr[(− 1
2∆ − ΦHF

r )γ̃] ≤ Tr[(− 1
2∆ − χ+

r ΦHF
r )γ] + L1

∫

|x|≤ r
1−λ′

[Vr(x)]
5
2
+ dx

+ 1
2 ( π

2λ′r )
2

∫

|x|≤ r
1−λ′

ργ(x) dx. (86)

Since
∫

ργ̃ ≤
∫

ργ =
∫

ρOTF
r ≤

∫

χ+
r ρ

HF we may choose γ̃ as a trial density
matrix in Theorem 4.7 and we find for λ, ν to be chosen

EA(γHF
r ) ≤ EA(γ̃) + R ≤ Tr[(− 1

2∆ − ΦHF
r )γ̃] + R +D(ργ̃),

since α−1T (p) ≤ 1
2 |p|2. Notice that R depends on λ and ν. From (86) it

follows that

EA(γHF
r ) ≤ Tr[(− 1

2∆ − χ+
r ΦHF

r )γ] + L1

∫

|x|≤ r
1−λ′

[Vr(x)]
5
2
+ dx

+ 1
2 ( π

2λ′r )
2

∫

|x|≤ r
1−λ′

ργ(x) dx + R +D(ργ̃). (87)

From the OTF-equation (66) and Lemma 4.10 we get

∫

|x|≤ r
1−λ′

ργ(x) dx ≤
∫

|x|≤ 2−λ′

1−λ′
r

ρOTF
r (x) dx ≤ Cr−3.

While since Vr(y) ≤ Cr−4 (Lemma 4.8) and is non-zero only for |y| > r

∫

|x|≤ r
1−λ′

[Vr(x)]
5
2
+ dx ≤ Cr−7 λ′

(1−λ′)3 .

Hence, from (85) and (87) and the inequalities above we find choosing λ′ = r
2
3

EA(γHF
r ) ≤ 3

10 (6π2

q )
2
3

∫

R3

(ρOTF
r (x))

5
3 dx −

∫

R3

Vr(x)ργ(x) dx + Cs−2r−3

+Cr−7+ 2
3 + R +D(ργ̃) = . . . .
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Here we used that λ′ ≤ 1/2 which follows by the bound on D. Since ργ̃ ≤ ργ ,
D(ργ̃) ≤ D(ργ). Moreover by Newton’s Theorem D(ργ) ≤ D(ρOTF

r ). Hence
we get

. . . ≤ EOTF(ρOTF
r ) +

∫

R3

Vr(x)(ρOTF
r (x) − ργ(x)) dx + Cs−2r−3

+Cr−7+ 2
3 + R. (88)

We study now the second term on the right hand side of (88). Since ργ =
ρOTF ∗ |hs|2, rewriting

∫

R3

Vr(x)(ρOTF
r (x) − ργ(x)) dx =

∫

R3

ρOTF
r (x)(Vr(x) − Vr ∗ |hs|2(x)) dx.

Since s < r, Vr is harmonic on |x| > r and ρOTF
r vanishes for |x| < r one sees

that the integrand on the right hand side of the equation above is non-zero
only for r < |x| < r + s. Hence by Lemma 4.8

∫

R3

Vr(x)(ρOTF
r (x) − ργ(x)) dx ≤

∫

r<|x|<r+s
ρOTF
r (x)Vr(x) dx ≤ Cr−8s.

Choosing s = r
5
3 we find from (88) that

EA(γHF
r ) ≤ EOTF(ρOTF

r ) + Cr−7+ 2
3 + R. (89)

It remains to estimate R. From Lemma 4.1, choosing λ, ν ≤ 1/2 and D such
that σrε

′ ≤ 1 we find

( π
2λr + C

λ2r2 )

∫

|x|≥r(1−λ)(1−ν)
ρHF(x) dx ≤ Cr−5λ−2.

By Lemma 4.8, (65) and since λ ≤ 1/2 we get

∫

r(1−λ)≤|x|≤ r
1−λ

(ΦHF
r(1−λ)(x))

5
2 dx ≤ Cr−7λ,

and similarly

α3

∫

r(1−λ)≤|x|≤ r
1−λ

(ΦHF
r(1−λ)(x))4 dx ≤ Cr−4λ,

since r ≥ β0Z
− 1

3 implies αr−3 ≤ β−3
0 κ. Hence from the expression of R and

the boundness of tpe−t for t > 0, we find

R ≤ Ex(γHF
r ) + Cr−5λ−2 + Cr−7λ. (90)
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We estimate now the exchange term. By the exchange inequality ([15] or [23,
Th.6.4]) and proceeding as in (27) we find by Lemma 4.1 and Lemma 4.12

Ex(γHF
r ) ≤ C

∫

R3

Gα(ρHF
r (x))dx + Cr−

3
2

(

α−1

∫

R3

Gα(ρHF
r (x))dx

)
1
2

≤ CαR + Cαr−7 + Cr−
3
2 (R + r−7)

1
2 .

Hence choosing α0 such that 1 − Cα ≥ 1/2 for all α ≤ α0 we get from the
inequality above and (90)

1
2R ≤ Cr−

3
2 (R + r−7)

1
2 + Cr−5λ−2 + Cr−7λ ,

that gives
R ≤ C(r−5λ−2 + λr−7) . (91)

The second two inequalities in (84) follow from the estimate above and lem-
mas 4.1 and 4.12 choosing λ = 1/2 and replacing r with r/2.
Step II. Estimate from below on EA(γHF

r ). Adding and subtracting D(ρOTF
r )

and Tr[ρOTF
r ∗ 1

|·|γ
HF
r ] we write

EA(γHF
r ) = Tr[(α−1T (p) − ϕOTF

r )γHF
r ] + ‖ρOTF

r − ρHF
r ‖2

C −D(ρOTF
r ), (92)

using that Vr = ΦHF
r on the support of ρHF

r . The first term on the right hand
side of (92) is estimated from below by the sum of the first N ′ eigenvalues of
the operator α−1T (p) − ϕOTF

r acting on the functions with support on {x :
|x| ≥ r}. Here N ′ denotes the smallest integer bigger than Tr[γHF

r ]. Hence by
Lemma 4.13 we find for µ ∈ (0, 1) and s < r

EA(γHF
r ) ≥ −( 2

1−µ)
3
2

q
15π2

∫

R3

[ϕOTF
r (q)]

5
2
+ dq − Cr−8sµ− 3

2 − Cµ−3r−5s

−C(1 − µ)−
7
2 r−5 − C(1 − µ)s−2

(

∫

R3

ρHF
r (x) dx + 1

)

+‖ρOTF
r − ρHF

r ‖2
C −D(ρOTF

r ) = . . . ,

Notice the factor q due to spin. Choosing D such that σrε
′ ≤ 1, by lemmas 4.1

and 4.10 we find
∫

R3

ρHF
r (x) dx ≤ Cr−3 and

∫

R3

[ϕOTF
r (q)]

5
2
+ dq ≤ Cr−7.

Hence considering µ ≤ 1/2

. . . ≥ −2
3
2

q
15π2

∫

R3

[ϕOTF
r (q)]

5
2
+ dq − Cr−7 − Cr−8sµ− 3

2 − Cµ−3r−5s

−Cs−2r−3 + ‖ρOTF
r − ρHF

r ‖2
C −D(ρOTF

r ) = . . . .

By the OTF-equation (66) and since ρOTF
r has support where ϕOTF

r ≥ 0 we
find

· · · = EOTF(ρOTF
r ) − Cr−7+ 1

3 + ‖ρOTF
r − ρHF

r ‖2
C ,
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choosing µ = 1
2r

− 2
5 s

2
5 and s = r

11
6 .

Hence combining the inequality above with (89) and (91) we find

‖ρOTF
r − ρHF

r ‖2
C ≤ Cr−7+ 1

3 + C(r−5λ−2 + λr−7). (93)

We study now ‖χ+
r ρ

HF − ρHF
r ‖C . By Hardy-Littlewood-Sobolev inequality we

find

‖χ+
r ρ

HF − ρHF
r ‖C ≤ C‖χ+

r ρ
HF − ρHF

r ‖ 6
5
≤ C

(

∫

r≤|x|≤ r
1−λ

ρHF(x)
6
5 dx

)
5
6

. (94)

To estimate the last term in (94) we are going to use the second estimate in
(84) that we have just proved. With Σ defined as in (26) we find by Hölder’s
inequality

∫

r≤|x|≤ r
1−λ

ρHF(x)
6
5 dx ≤

(

∫

r≤|x|,
x∈Σ

ρHF(x)
4
3 dx

)
9
10

(

∫

r≤|x|≤ r
1−λ

1 dx
)

1
10

+
(

∫

r≤|x|,
x∈R

3\Σ

ρHF(x)
5
3 dx

)
18
25

(

∫

r≤|x|≤ r
1−λ

1 dx
)

7
25

≤ Cr−
33
10λ

1
10 + Cr−

21
5 λ

7
25 .

From the estimate above, (93) and (94) it then follows

‖χ+
r ρ

HF − ρOTF
r ‖C ≤ ‖χ+

r ρ
HF − ρHF

r ‖C + ‖ρHF
r − ρOTF

r ‖C
≤ Cr−

7
2+ 1

6 + C(r−5λ−2 + λr−7)
1
2 + C(r−

11
4 λ

1
12 + r−

7
2λ

7
30 ),

that gives the claim choosing λ = r
5
7

4.3.3 Estimate on A3

Lemma 4.15. Let Gα be the function defined in Theorem 2.3. Let Zα = κ
fixed, 0 ≤ κ < 2/π and Z ≥ 1.
There exists α0 > 0 such that given ε′, σ > 0 there exists a constant D < 1/4
depending only on ε′ and σ such that if (64) holds for all |x| ≤ D, then for all
α ≤ α0

α−1

∫

|y|≥|x|
Gα(ρHF(y))dy ≤ C|x|−7 for all |x| ≤ D,

with C a universal positive constant.

Proof. If |x| < β0Z
− 1

3 we find by Lemma 3.1

α−1

∫

|y|>|x|
Gα(ρHF(y))dy ≤ α−1

∫

R3

Gα(ρHF(y))dy ≤ CZ
7
3 ≤ C|x|−7.

While if D ≥ |x| ≥ β0Z
− 1

3 the claim follows from the second estimate in
(84).
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Lemma 4.16. Let Zα = κ fixed, 0 ≤ κ < 2/π, Z ≥ 1 and 0 < µ < 1
109 .

There exists α0 such that given ε′, σ > 0 there exists a constant D < 1/4
depending only on ε′ and σ such that for all α ≤ α0 and for all r with

β0Z
− 1−µ

3 ≤ r ≤ D for which (64) holds for |x| ≤ r, then for all x with |x| ≥ r

|A3(r,x)| ≤ C
( |x|
r

)
1
12

r−4+ 3µ
1−µ ,

with C > 0 a universal constant.

Proof. We proceed similarly as in Theorem 3.3. By the formula for A3, Propo-
sition 2.8 and Lemma 4.14 we get

|A3(r,x)| ≤
∫

A(|x|,k)
χ+
r (y)

|ρOTF
r (y) − ρHF(y)|

|x − y| dy + Ck−1|x|− 1
2 r−

7
2+ 1

6 . (95)

By Hölder’s inequality, Lemma 4.10, the OTF-equation (66) and (33) we find

∫

A(|x|,k)

ρOTF
r (y)

|x − y| dy ≤ Cr−
21
5 |x| 15 k 1

5 . (96)

Once again, to estimate
∫

A(|x|,k)
χ+

r (y)ρHF(y)
|x−y| dy we have to proceed differently

than in [23, Lem.12.7] since ρHF is not in L
5
3 (R3). We consider the following

splitting

∫

A(|x|,k)
χ+
r (y)

ρHF(y)

|x − y| dy =

∫

A(|x|,k)
|x−y|>R,|y|>r

ρHF(y)

|x − y| dy +

∫

|y|>r,
|x−y|<R

ρHF(y)

|x − y| dy,

(97)
for R > 0 to be chosen. By Hölder’s inequality, Theorem 2.3, Remark 2.4, (33)
and Lemma 4.14 we get

∫

A(|x|,k)
|x−y|>R,|y|>r

ρHF(y)

|x − y| dy ≤ Cα
3
4R− 3

8 |x| 18 k 1
8 r−

21
4 + Cr−

21
5 |x| 15 k 1

5 . (98)

It remains to study the second term on the right hand side of (97). Let ν ∈ R+

be such that να ≤ 2/π. We consider the density matrix γHF
r/2 defined in (61)

with λ = 1/2. From Theorem 2.10 it follows that for x such that |x| ≥ r

Tr[(α−1T (p) − ν

| · −x|χBR(x)(·))γHF
r/2] ≥ −C(ν

5
2R

1
2 + ν4α2).

Hence we find

ν

∫

|y−x|<R
χ+
r (y)

ρHF(y)

|x − y| dy ≤ ν

∫

|y−x|<R

ρHF
r/2(y)

|x− y| dy

≤ Tr[α−1T (p)γHF
r/2] + C(ν

5
2R

1
2 + ν4α2)
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and by Lemma 4.14

∫

|y−x|<R
χ+
r (y)

ρHF(y)

|x − y| dy ≤ Cν−1r−7 + C(ν
3
2R

1
2 + ν3α2). (99)

Hence from (95), (96), (98) and (99) it follows that

|A3(r,x)| ≤ Cν−1r−7 + C(ν
3
2R

1
2 + ν3α2) + Cα

3
4R− 3

8 |x| 18 k 1
8 r−

21
4

+Cr−
21
5 |x| 15 k 1

5 + Ck−1|x|− 1
2 r−

7
2+ 1

6 .

So choosing ν = 1/2(β0r
−1)

3
1−µ (that gives να < 2/π), k such that

r−
21
5 |x| 15 k 1

5 = k−1|x|− 1
2 r−

7
2+ 1

6 , i.e. k = |x|− 7
12 r

13
18 and R such that

α
3
4R− 3

8 |x| 18 5
12 r−

21
4 + 1

8
13
18 = r−4− 1

18 |x| 1
12 , i.e. R = α2|x|− 1

12 r−
5
18

|A3(r,x)| ≤ C(r−4+ 3µ
1−µ + |x|− 1

24 r−
5
36− 9

2(1−µ)α+ r−
9

1−µα2 + |x| 1
12 r−4− 1

18 ).

Finally since r−1α
1−µ

3 ≤ β−1
0 κ

1−µ
3 , the claim follows for |x| ≥ r and µ <

1/(109).

4.4 The intermediate region

Here we prove the main estimate in Theorem 1.17 up to a fixed distance inde-
pendent of Z.

Lemma 4.17 (Iterative step). Let Zα = κ fixed with 0 ≤ κ < 2/π. Consider
µ = 1

11
1
49 and assume N ≥ Z ≥ 1.

Then there exists α0 > 0 such that for all δ, ε′, σ > 0 with δ < δ0, where δ0 is
some universal constant, there exists constants ε2, C

′
φ > 0 depending only on

δ and a constant D = D(ε′, σ) > 0 depending only on ε′, σ with the following

property. For all α ≤ α0 and R0 < D satisfying that β0Z
− 1−µ

3 ≤ R1+δ
0 and

that (64) holds for all |x| ≤ R0, there exists R′
0 > R0 such that

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C′
Φ|x|−4+ε2

for all x with R0 < |x| < R′
0.

Proof. Let D > 0 depending on σ, ε′ be the smaller of the values of D occurring
in Lemma 4.11 and Lemma 4.16. Given δ > 0. We consider R0 < D satisfying

β0Z
− 1−µ

3 ≤ R1+δ
0 and such that (64) holds for all |x| ≤ R0.

Set R′
0 = R1−δ

0 and r = R1+δ
0 . Then we have β0Z

− 1
3 ≤ β0Z

− 1−µ
3 ≤ r ≤ R0 < D

we can therefore apply Lemma 4.11 and Lemma 4.16. From (67) we obtain
that for all |x| ≥ r and all α ≤ α0

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C|x|−4−ζrζ + C
( |x|
r

)
1
12

r−4+ 3µ
1−µ .
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Since for R0 < |x| < R′
0 we have

|x| 2δ
1−δ ≤ r

|x| ≤ |x|δ

and thus

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C|x|−4+δζ + C|x|−4+3 µ
1−µ |x|− δ

1−δ (8+ 1
6−

6µ
1−µ ).

Hence choosing δ0 sufficiently small there are C′
Φ and ε2 such that the claim

holds.

Lemma 4.18. Let Zα = κ fixed with 0 ≤ κ < 2/π. Assume N ≥ Z ≥ 1.
Then there exist universal constants α0, ε ∈ (0, 4) and D,CΦ > 0, D < 1/4,
such that for all α ≤ α0 and x with |x| ≤ D we have

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ CΦ|x|−4+ε.

Proof. We fix µ = 1
11

1
49 as in Lemma 4.17. Since µ < 2

11
1
49 , by Theorem 3.3

we know that there exists constants a, b, c > 0 such that for all |x| ≤ βZ− 1−µ
3

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + β2 + β5/2 + βb|x|c)β2−a|x|−4+a. (100)

We first show that we may choose δ small enough such that if we choose R̃1+δ =

β0Z
− 1−µ

3 we have for all |x| < R̃ that

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C′′
Φ|x|−4+ a

2 . (101)

Let β > 0 be such that (βZ− 1−µ
3 )1+δ = β0Z

− 1−µ
3 , i.e. β1+δ = β0Z

δ 1−µ
3 . Hence

from (100) we find for all |x| ≤ βZ− 1−µ
3

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + β2 + β5/2 + βb|x|c)β2− a
2Z− a

2
1−µ

3 |x|−4+ a
2 ,

and by the choice of β (and β0 < 1)

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + Z2 δ
1+δ

1−µ
3 + Z

5
2

δ
1+δ

1−µ
3 + Z

δ
1+δ

1−µ
3 (b+c)Z−c 1−µ

3 )

Z(2− a
2 ) 1−µ

3
δ

1+δZ−a
2

1−µ
3 |x|−4+ a

2 .

Hence if δ is small enough we may choose a universal constant C′′
Φ such that

(101) holds.
Let now δ be small enough so that we may apply Lemma 4.17. This give
constant ε2 and C′

Φ (depending only on δ) and for all σ, ε′ > 0 a constant
D < 1/4. Now choose σ = max{C′

Φ, C
′′
Φ} and ε′ = min{a/2, ε2}. Now σ, ε′

and D are universal constants. To prove the claim we shall prove that for all
|x| ≤ D

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ σ|x|−4+ε′ . (102)
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We have to prove that D belongs to the set

M = {0 < R ≤ 1/4 : Inequality (102) holds for all |x| ≤ R}.

We reason by contradiction. If this was not true then D > R0 = supM and
in particular R0 < 1/4. From (101) and the choice of σ and ε′ it follows that
either R̃ > 1/4 or R̃ ∈ M. In the first case then R0 = supM = 1/4 > D
that contradicts our hypothesis. On the other hand if R̃ ∈ M, then R1+δ

0 ≥
R̃1+δ = β0Z

− 1−µ
3 . It then follows from Lemma 4.17 that there exists R′

0 ∈ M
with R′

0 > R0. This contradicts also our hypothesis.

4.5 The outer zone and proof of Theorem 1.17

The proof of Theorem 1.17 follows directly from Lemma 4.18 and the following
result.

Lemma 4.19. Let Zα = κ, 0 ≤ κ < 2/π. Assume N ≥ Z ≥ 1. Let D, ε and
CΦ be the constants introduced in Lemma 4.18.

Then there exist α0 > 0 and a universal constant CM > 0 such that for all
α ≤ α0 and x with |x| ≥ D we have

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ CM .

Proof. Here Ci, i = 1, . . . , 6 denote positive universal constants. We write

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ |ΦHF
D (x) − ΦTF

D (x)| +
∫

D<|y|<|x|

ρTF(y) + ρHF(y)

|x − y| dy.

(103)
Since ΦHF

D (x) − ΦTF
D (x) is harmonic for |x| > D and tends to zero at infinity

we have by Lemma 4.18

|ΦHF
D (x) − ΦTF

D (x)| ≤ sup
|x|=D

|ΦHF
D (x) − ΦTF

D (x)| ≤ CφD
−4+ε. (104)

For the second term on the right hand side of (103) we write

∫

D<|y|<|x|

ρTF(y) + ρHF(y)

|x − y| dy

≤
∫

|x−y|<D/4
|y|>D

ρTF(y) + ρHF(y)

|x − y| dy +
4

D

∫

D<|y|
(ρTF(y) + ρHF(y)) dy. (105)

By Lemma 4.1, Lemma 4.18, estimate (13) and the TF-equation we find

∫

D<|y|
(ρTF(y) + ρHF(y)) dy ≤ C1(1 + CΦD

ε)(1 +D−3) + C1D
−3. (106)
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It remains to estimate the first term on the right hand side of (105). By
Hölder’s inequality, estimate (13) and the TF-equation we get

∫

|x−y|<D/4
|y|>D

ρTF(y)

|x − y| dy ≤ C2

(

∫

|y|>D
(ρTF(y))

5
3 dy

)
3
5

D
1
5 ≤ C3D

−4. (107)

To estimate the term with the HF-density we use Theorem 2.10. Let γHF
D be

the exterior HF-density matrix as defined in (61) with r = D/2 and λ = 1/2.
Then by Theorem 2.10 with ν = β3

0D
−3

α−1 Tr[(T (p) − να

|x − ·|χBD
4

(x)(·))γHF
D/2] ≥ −C4(D

1
2 ν

5
2 + ν4α2),

and thus
∫

|x−y|<D/4

ρHF
D/2(y)

|x − y| dy ≤ C5D
3α−1 Tr[T (p)γHF

D/2] + C6D
−4,

Here we use that D > 2β0Z
− 1

3 (for α ≤ α0) and D < 1/4. By Lemma 4.14 we
conclude

∫

|x−y|<D/4
χ+
D(y)

ρHF(y)

|x − y| dy ≤
∫

|x−y|<D/4

ρHF
D/2(y)

|x − y| dy ≤ C7D
−4. (108)

The claim follows collecting together formula (103) to formula (108).

5 Proofs of Theorems 1.1, 1.18, 1.19 and 1.20

In this section we always assume the following: Zα = κ with 0 ≤ κ < 2/π and
N ≥ Z ≥ 1.

Proof of Theorem 1.1. Assume that a HF-minimizer exists with
∫

ρHF = N .
Let ρTF be the minimizer of the TF-energy functional of the neutral atom with
nuclear charge Z. Then for R > 0 to be chosen

N =

∫

|x|<R
ρTF(x) dx+

∫

|x|<R
(ρHF(x)−ρTF(x)) dx+

∫

|x|>R
ρHF(x) dx. (109)

By Theorem 1.17 we know that there exist universal positive constants
ε, α0, CM and CΦ such that for all α ≤ α0 and x ∈ R3

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ CΦ|x|−4+ε + CM . (110)

Let Z0 be such that Z0α0 = κ. Then α ≤ α0 corresponds to Z ≥ Z0. Let us
choose R such that CΦR

−4+ε = CM . Then from (109), (110) and Lemma 4.1
for all Z ≥ Z0 we find

N ≤
∫

|x|<R
ρTF(x) dx + 2CΦR

−3+ε + C(1 + CΦR
ε)(R−3 + 1) < Z + Q̃.

The claim follows choosing Q = max{Q̃, Z0 + 1}.
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Proof of Theorem 1.18. Let ρHF be the density of the HF-minimizer in the
neutral case N = Z. We have

∣

∣

∣

∫

|x|>R
(ρHF(x) − ρTF(x))dx

∣

∣

∣
=

∣

∣

∣

∫

|x|<R
(ρHF(x) − ρTF(x))dx

∣

∣

∣

=
∣

∣

∣

R

4π

∫

S2

dω(ΦHF
R (Rω) − ΦTF

R (Rω))
∣

∣

∣

≤ CΦR
−3+ε + CMR,

where in the last step we have used Theorem 1.17. Notice that for Z sufficiently
big α ≤ α0 where α0 is the constant given in Theorem 1.17. By the TF-
equation, Theorem 1.12 we then find

34 2π2

q2
R−3 − CΦR

−3+ε − CMR ≤
∫

|x|>R
ρHF(x)dx

≤ 34 2π2

q2
R−3 + CΦR

−3+ε + CMR,

from which the claim follows directly by the definition of HF-radius.

Proof of Theorem 1.19. Since EHF(Z − 1, Z) ≥ EHF(Z,Z) the ionization en-
ergy is bounded from below by zero. If Z is smaller than a universal constant
then we can also bound the ionization energy with a universal constant using
Theorem 2.11.
It remains to estimate from above the ionization energy when Z is larger than
a universal constant. We first construct a density matrix γ such that Tr[γ] ≤
Z − 1. Let θ− := (1 − θ2r(1−λ))

1
2 for r, λ positive parameters and θr defined in

Definition 4.4. We consider the density matrix γHF
− := θ−γHFθ− where γHF

is the HF-minimizer in the neutral case. By an opportune choice of r we will
then have Tr[γHF

− ] ≤ Z − 1. Indeed,

Tr[γHF
− ] =

∫

R3

ρHF(x) dx −
∫

R3

θ2r(1−λ)(x)ρHF(x) dx ≤ Z −
∫

|x|>r
ρHF(x) dx.

We now choose λ = 1
2 . Let R > 0 be such that CM = CΦR

−4+ε where
CM , CΦ, ε are the constants in Theorem 1.17. Then R is a universal constant.
We consider Z large enough so that β0Z

− 1
3 < R where β0 is the constant in

Theorem 1.12. This gives that Z has to be larger than some universal constant.
For r such that β0Z

− 1
3 < r < R by Theorem 1.17 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ 2CΦ|x|−4+ε for all |x| ≤ r.

Since
∫

ρTF =
∫

ρHF, by the choice of r and Lemma 4.1 we get
∫

|x|>r
ρHF(x) dx =

∫

|x|>r
ρTF(x) dx +

∫

|x|<r
(ρTF(x) − ρHF(x)) dx

≥
∫

|x|>r
ρTF(x) dx − 2CΦr

−3+ε ≥ Cr−3 − 2CΦr
−3+ε. (111)
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In the last step we used the TF-equation, Corollary 1.13 and that r > β0Z
− 1

3 .
Finally, it follows from (111) by choosing r sufficiently small that

∫

|x|>r ρ
HF > 1

and hence that Tr[γHF
− ] ≤ Z − 1. We may choose r sufficiently small by taking

Z large enough. Notice that r can be chosen universally and so Z has to be
larger than some universal constant.
By the last estimate in the proof of Theorem 4.7 we find

EHF(γHF
− ) ≤ EHF(γHF) − EA(γHF

r ) + R,
with R and γHF

r as defined in the statement of Theorem 4.7. Since EHF(γHF
− ) ≥

EHF(Z−1, Z) and EHF(γHF) = EHF(Z,Z) it remains to prove that −EA(γHF
r )+

R is bounded from above by some universal constant. Here we use repeteadly
that r is a universal constant. By estimate (91) we see that R ≤ Cr−7 a
universal constant. To estimate from below EA(γHF

r ) we first leave out the
kinetic energy term and the direct term since these are positive. Moreover,
since ΦHF

r is harmonic for |x| > r and tends to zero at infinity we see that

ΦHF
r (x) ≤ r

|x| sup
|y|=r

ΦHF
r (y) ≤ r

|x| sup
|y|=r

ΦTF
r (y) +

r

|x| sup
|y|=r

|ΦTF
r (y) − ΦHF

r (y)|,

which is bounded by C′/|x|, C′ a universal constant, by Theorem 1.17 and
Corollary 1.14. It then follows that

EA(γHF
r ) ≥ −Tr[

C′

| · |γ
HF
r ] ≥ −C

′

r

∫

|x|>r
ρHF(x) dx,

that is bounded from below by a universal constant using Lemma 4.1.

Proof of Theorem 1.20. Let α0 be the constant appearing in Theorem 1.17 and
Z0 be such that α0Z0 = κ. The claim follows directly for Z ≤ Z0 since both
functions are bounded for |x| large, while for |x| small the functions are bounded
by a constant times |x|−1.
The case Z > Z0 corresponds to α < α0 and for such values of α we can use the
result in Theorem 1.17. We separate the case small x, intermediate x and large
x. Once again, comparing with the proof in the non-relativistic case ([23]) we
have to do an extra splitting for small x.
By the definition of the mean field potential and Proposition 2.8 we find

|ϕTF(x) − ϕHF(x)| ≤
∫

|x−y|<s
(ρTF(y) + ρHF(y))

( 1

|x − y| −
1

s

)

+

√
2

s
1
2

‖ρTF − ρHF‖C .

Since ρTF is bounded in L
5
3 -norm, we find using Hölder’s inequality, Corol-

lary 1.15 and Lemma 3.1 that

|ϕTF(x) − ϕHF(x)| ≤
∫

|x−y|<s
ρHF(y)

( 1

|x − y| −
1

s

)

+ C(s
1
5Z

7
5 + s−

1
2Z1+ 3

22 ).

(112)
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For the integral with the HF-density we need to split the region where the
HF-density is bounded in L

4
3 -norm from the one where it is bounded in L

5
3 -

norm. Proceeding as in the proof of Lemma 3.2 (from (35) to (37) replacing
the integrals on A(|x|, k) with integrals on |x − y| < s) using the results of
Lemma 3.1 we get with R ∈ (0, s) to be chosen

∫

|x−y|<s
ρHF(y)

( 1

|x − y|−
1

s

)

≤ C(Z
7
5 s

1
5 +R− 1

4 (αZ
7
3 )

3
4 +Z

4
3 +R

1
2Z

3
2 ). (113)

Recall that Zα = κ is fixed. Choosing s such that Z
7
5 s

1
5 = Z

4
3 (i.e. s = Z− 1

3 )

and R such that R− 1
4Z = R

1
2Z

3
2 (i.e R = Z− 2

3 ; notice that R < s) we get from
(112) and (113)

|ϕTF(x) − ϕHF(x)| ≤ C(Z
4
3 + Z

7
6 ).

The claim follows from this inequality for x ∈ R
3 such that |x| ≤ β0Z

− 1+γ
3 for

γ > 0. We consider γ < 1
263 .

If |x| ≥ β0Z
− 1+γ

3 then proceeding as for very small x and as in the proof of
Theorem 3.3 up to inequality (43) we get for t ∈ (1+γ

3 , 3
5 ), l > t and R < β0Z

−l

|ϕTF(x) − ϕHF(x)| ≤ C(s
1
5Z

7
5 + s−

1
2Z1+ 3

22 +R− 3
8 s

1
8Z + Z

1
2 (3−t)).

Here we have also used that Zα is a constant. So choosing s such that s
1
5Z

7
5 =

Z
1
2 (3−t) (i.e. s = Z

1
2− 5

2 t), R such that R− 3
8Z1+ 1

16− 5
16 t = Z

1
2 (3−t) (i.e. R =

Z− 7
6+ 1

2 t) and optimizing in t (i.e. t = 1
3 + 4

3
1
77 ) we obtain

|ϕTF(x) − ϕHF(x)| ≤ CZ
4
3− 2

3
1
77 . (114)

Notice that t > 1+γ
3 , R < s by the choice of t and that R satisfies the condition

R < β0Z
−l, l > t, for Z sufficiently big. The claim then follows from (114) for

x ∈ R3 such that |x|1+δ ≤ β0Z
− 1

3 for δ < 1
153 . We fix δ = 1

2
1

153 .
We turn now to study intermediate x. Let D ≤ 1 be such that CM ≤ CΦD

−4+ε

with CM , CΦ, ε the constants in Theorem 1.17. Then for all x such that |x| ≤ D

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ 2CΦ|x|−4+ε.

Moreover we choose D such that Lemma 4.11 holds. Let x be such that
β0Z

− 1
3 ≤ |x|1+δ ≤ D

1+δ
1+µ with 0 < µ ≤ δ. We set r = |x|1+µ. Then β0Z

− 1
3 ≤

r ≤ D. We write ϕTF(x) − ϕHF(x) = ϕTF(x) − ϕOTF
r (x) + ϕOTF

r (x) − ϕHF(x)
with ϕOTF

r the mean field potential of the OTF-problem defined in Subsec-
tion 4.3. By the choice of r andD and Lemma 4.11 we get since |x| ≥ r = |x|1+µ

|ϕTF(x) − ϕOTF
r (x)| ≤ C|x|−4−ζrζ , (115)

for |x| ≥ r with ζ = (7 +
√

73)/2. For the other two terms we see

ϕHF(x) − ϕOTF
r (x) =

∫

ρOTF
r (y) − χ+

r (y)ρHF(y)

|x − y| dy,
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and proceeding as for small x with the Coulomb-norm estimate Proposition
2.8, by Lemma 4.14 and inequality (99)

|ϕHF(x)−ϕOTF
r (x)| ≤ C

( s
1
5

r
21
5

+
r−

7
2+ 1

6

s
1
2

+R− 1
4 (αr−7)

3
4 +ν−1r−7+ν

3
2R

1
2 +ν3α2

)

.

Choosing ν = β3
0r

−3 1+δ
1+µ , so that να ≤ κ < 2/π, s such that s

1
5 r−

21
5 =

r−
7
2+ 1

6 s−
1
2 (i.e. s = r1+

5
21 ), and choosing R such that the two terms where it

appears are equal (i.e. R = r2+9 δ−µ
1+µ ; notice that R < s) we get

|ϕHF(x) − ϕOTF
r (x)| ≤ C(r−4+ 1

21 + r−4+3 δ−µ
1+µ ),

since αr−3 1+δ
1+µ is bounded and r ≤ 1. Collecting together the inequality above

and (115) and using that r = |x|1+µ the claim follows for β0Z
− 1

3 ≤ |x|1+δ ≤
D

1+δ
1+µ . We fix µ = δ/2.

It remains to study the case of large x, i.e. |x| ≥ D
1+δ
1+µ with D, δ, µ universal

constants. For simplicity of notation we fix the universal constant A := D
1+δ
1+µ .

We first notice that

ϕHF(x) − ϕTF(x) = ΦHF
|x| (x) − ΦTF

|x| (x) +

∫

|y|>|x|

ρTF(y) − ρHF(y)

|x − y| dy.

The difference of the first two terms is bounded by a universal constant for
|x| ≥ A by the result in Theorem 1.17. To estimate the last integral we split it
as follows

∫

|y|>|x|

|ρTF(y) − ρHF(y)|
|x − y| dy ≤

∫

|y|>|x|
|x−y|<1

ρTF(y)

|x − y|dy +

∫

|y|>|x|
|x−y|<1

ρHF(y)

|x− y| dy

+

∫

|y|>|x|
(ρTF(y) + ρHF(y)) dy.

Since |x| ≥ A the third term on the right hand side is bounded by a universal
constant by Lemma 4.1 (for ρHF) and Corollary 1.13 (for ρTF). We estimate
the first term by Hölder’s inequality and Corollary 1.15. We get a bound on the
second term proceeding as in (99) (using Theorem 2.10) and choosing ν = 1

2
and R = 1. We obtain

∫

|y|>|x|
|x−y|<1

ρTF(y) + ρHF(y)

|x − y| dy ≤ C(A− 21
5 +A−7 + α2).

Then there exists a universal contant A′ such that |ϕHF(x)−ϕTF(x)| ≤ A′ for
|x| ≥ A.
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A Technical lemmas

Proof of (16) By the definition of the function Gα the inequalities in (16)
are equivalent to the following ones

3
5 t

4 min{ 2
5 t, 1} ≤ g(t) − 8

3 t
3 ≤ 2t4 min{ 2

5 t, 1} for t ≥ 0. (A1)

As before we use the substitution t = α(ρ/C)
1
3 .

The estimates in (A1) follow directly from the study of the function g separating
the cases t < 5

2 and t ≥ 5
2 .

Proof of Remark 4.2 Using the estimate on K2 given in (15) we find

∫∫

x ∈ Σr(β1, β2)
y ∈ Σr(β3, β4)

K2(α
−1|x − y|)2 dxdy

≤ (16)2α4

∫∫

x ∈ Σr(β1, β2)
y ∈ Σr(β3, β4)

e−α
−1|x−y|

|x − y|4 dxdy

≤ (16)2α4e−α
−1r(β3−β2)4π

∫ ∞

r(β3−β2)

ρ−2dρ

∫

Σr(β1,β2)

dx,

since |x− y| ≥ (β3 − β2)r. The claim follows computing the two integrals.

A.1 Fourier transform

In the present sub-section we present our notation for the Fourier transform
(as in [20]). Given f ∈ L2(R3) we denote its Fourier transform by

f̂(p) = F(f)(p) := 1

(2π)
3
2

∫

R3

eip·xf(x)dx.

Let f, g ∈ L2(R3). The following formulas hold:

1. F(f ∗ g)(p) = (2π)
3
2 f̂(p)ĝ(p);

2. F(fg)(p) = (2π)−
3
2 (f̂ ∗ ĝ)(p);

3. if g(x) = e−λ|x|
2

then ĝ(p) = (2λ)−
3
2 e−|p|2/(4λ);

4. |x|−α = π
α
2 (Γ(α2 ))−1

∫ +∞
0

e−π|x|
2λλ

α
2 −1dλ for 0 < α < n (see [14, page

130]).

Moreover,

F
(f(x)

|x|
)

(k) = 1
2π2

∫

R3

f̂(p)

|k − p|2 dp.
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B Large Z-behavior of the energy

In [21] the author studies the large Z-behavior of the ground state energy for
problem (1). In this work we are going to use the same construction in several
points (Lemmas 3.1, 4.12, Theorem 3.3, ....) and with, in certain cases, a
slightly different Hamiltonian. For convenience we repeat here the main ideas
of the proof. We do it as it is needed in the proof of Theorem 3.3 since in
this case the proof is more involved. We remark that in our proof we use a
localisation less than in [21]. Thanks to Theorem 2.10 and [24, Theorem 2.8]
it is sufficient to consider the region near the nuclei and the one far away from
the nuclei. There is no need for an intermediate region.

Proposition B.1. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Let

us consider P ∈ R3, with |P| ≥ βZ− 1+µ
3 for β > 0 and µ ∈ (0, 4/5). Let

Z ≥ ν > 0 and R > 0 be such that R < βZ−l/4 for some 1+µ
3 < l. Moreover,

let ρTF denote the minimizer of the TF-energy functional of a neutral atom
with nucleus of charge Z. Consider the Hamiltonian

HP :=
N

∑

i=1

(

α−1T (pi) −
Z

|xi|
− ν

|xi − P|χBR(P)(xi)
)

+
∑

i<j

1

|xi − xj |
, (B2)

acting on ∧Ni=1L
2(R3; Cq).

Then for all t ∈ (1+µ
3 ,min{l, 3

5}) and ψ ∈ ∧Ni=1L
2(R3), with ‖ψ‖2 = 1,

〈ψ,Hpψ〉 ≥ ETF(ρTF) − C(β
1
2 + β−2)Z

5
2− 1

2 t,

with C depending only on q and κ.

Proof. Since ETF(ρTF) = −e0Z 7
3 (see (12)) to prove the claim it is sufficient to

show that the TF-energy gives a lower bound to the quantum energy modulo
lower order terms. In the proof we first reduce to a one-particle operator. Then
we localize the energy separating the contribution from the regions near the
nuclei from the contribution from the region far away from them. Finally we
study the contribution of each of these terms. The main contribution to the
energy is given by the region far away from the nuclei. This region will give
the TF-energy.

In the following, s = (3 − t)/4 (t < s < 2/3).

In the proof C denotes a generic positive constant depending only on q and κ.

Reduction to a one-particle problem. We are going to estimate from below HP

by a one-particle operator. This allows us to consider only Slater determinants
when minimizing the energy.

Let g ∈ C∞
0 (R3), g ≥ 0 be spherically symmetric with supp(g) ⊂ B1(0)

and such that ‖g‖2 = 1. Starting from these g we define Φs(x) :=
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(β/(8Zs))−3g2(8Zsx/β). Then by Newton’s theorem

∑

i<j

1

|xi − xj |
≥

∑

i<j

∫∫

Φs(xi − x)Φs(xj − y)

|x − y| dxdy =

= 1
2

N
∑

i,j=1

∫∫

Φs(xi − x)Φs(xj − y)

|x − y| dxdy − N
2

∫∫

Φs(x)Φs(y)

|x − y| dxdy = . . .

and introducing ρ ∈ L1(R3) ∩ L 5
3 (R3), ρ ≥ 0, to be chosen

. . . = 1
2

∫

R3

∫

R3

(
∑N

i=1 Φs(xi − x) − ρ(x))(
∑N

j=1 Φs(xj − y) − ρ(y))

|x − y| dxdy

+

N
∑

i=1

∫

R3

∫

R3

Φs(xi − x)ρ(y)

|x − y| dxdy −D(ρ) − N
2

∫

R3

∫

R3

Φs(x)Φs(y)

|x − y| dxdy

≥
N

∑

i=1

ρ ∗ Φs ∗
1

|xi|
−D(ρ) − C‖g2‖2

6
5
Nβ−1Zs. (B3)

In the last inequality we use that the first term on the left hand side of (B3)
is non-negative and that

∫

R3

∫

R3

Φs(x)Φs(y)

|x− y| dxdy = Cβ−1Zs
∫

R3

∫

R3

g2(x)g2(y)

|x − y| dxdy

≤ Cβ−1Zs‖g2‖2
6/5,

by definition of Φs and Hardy-Littlewood-Sobolev’s inequality. Hence

HP ≥
N

∑

i=1

(

α−1T (pi) −
Z

|xi|
− ν

|xi − P|χBR(P)(xi) + ρ ∗ Φs ∗
1

|xi|
)

−D(ρ) − C‖g2‖2
6
5
Nβ−1Zs. (B4)

Choice of the localization. The localization will be given by the following func-
tions χ1, χ2 ∈ C∞

0 (R3):

χ1(x) :=

{

1 if |x| < 1
4βZ

−t,

0 if |x| > 1
2βZ

−t,
χ2(x) :=

{

1 if |x − P| < 1
4βZ

−t,

0 if |x − P| > 1
2βZ

−t (B5)

and χ3 ∈ C∞(R3) such that
∑3
i=1 χ

2
i (x) = 1 for all x ∈ R3. Moreover we ask

that
‖∇χ1‖∞, ‖∇χ2‖∞, ‖∇χ3‖∞ ≤ 25β−1Zt. (B6)

Here t is the parameter given in the statement of the proposition. Notice that
by the assumptions on R and P the functions defined above give a well defined
partition of unity of R3. Moreover, BR(P) is a subset of {x ∈ R3 : χ2(x) = 1}.
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The localization in the energy expectation. We insert now the localization in
the energy expectation. As already observed, since we reduced the operator
to a one-particle operator in the energy expectation it is sufficient to consider
Slater determinants: i.e. ψ = u1∧· · ·∧uN with {ui}Ni=1 orthonormal functions

in L2(R3,Cq). We may assume that ui ∈ H
1
2 (R3,Cq) for i = 1, . . . , N .

From (B4) and Theorem 2.1 we find with ψ = u1 ∧ · · · ∧ uN

〈ψ,HPψ〉 ≥
N

∑

i=1

3
∑

j=1

(χjui, hχjui) −D(ρ) − C‖g2‖2
6
5
Nβ−1Zs

−α−1
N

∑

i=1

3
∑

j=1

(ui, Ljui), (B7)

with

h := α−1T (p) − Z

| · | −
ν χBR(P)(·)

| · −P| + ρ ∗ Φs ∗
1

| · | ,

and Lj is the operator (defined in Theorem 2.1) that gives the error due to the
localization in the kinetic energy. We first estimate this error term. Using the
definition of Lj we find for all j ∈ {1, 2, 3}, i ∈ {1, . . . , N}

(ui, Ljui) ≤
α−2

4π2
‖∇χj‖2

∞

∫∫

K2(α
−1|x− y|)|ui(y)||ui(x)| dxdy.

We then obtain by using Schwarz’s inequality

α−1
N

∑

i=1

3
∑

j=1

(ui, Ljui) ≤
α−3

4π2

3
∑

j=1

‖∇χj‖2
∞

N
∑

i=1

∫

K2(α
−1|z|)dz ≤ CNβ−2Z2t,

(B8)
since from (15)

∫

R3

K2(α
−1|z|) dz = α3

∫

R3

K2(|z|) dz = 4πα3

∫ ∞

0

t2K2(t) dt = 6π2α3. (B9)

Collecting together (B7) and (B8) we get

〈ψ,HPψ〉 ≥
N

∑

i=1

3
∑

j=1

(χjui, hχjui)−D(ρ)−Cβ−2Z1+2t−Cβ−1Z7/4−t/4. (B10)

Here we used that N ≤ 2Z + 1, the choice of s and that we may choose g such
that ‖∇g‖2

2 ≤ 2π.
Near the nuclei. When j = 1 in the summation in the first term on the right
hand side of (B10) we find

N
∑

i=1

(χ1ui, hχ1ui) ≥
N

∑

i=1

(χ1ui, (α
−1T (p) − Z

| · | )χ1ui),
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since χBR(P)χ1 ≡ 0 by the choice of χ1, and the term Φs∗ρ∗ 1
|·| is non-negative.

Then by Theorem 2.10 we find

N
∑

i=1

(χ1ui, hχ1ui) ≥ Tr[α−1T (p) − Z

| · |χ|x|< 1
2βZ

−t ]−

≥ −Cβ1/2Z5/2−t/2 − Cκ2Z2. (B11)

To estimate from below the term corresponding to j = 2 in the sum on the
right hand side of (B10) we use [24, Theorem 2.8]. Here we need the result in
[24] (instead of Theorem 2.10) because of the presence of the two nuclei. Notice
that Theorem 2.10 can be extended to include also different nuclei. We have

N
∑

i=1

(χ2ui, hχ2ui) ≥
N

∑

i=1

(χ2ui, (α
−1T (p) − Z

|x| −
ν

|x − P|χBR(P))χ2ui)

≥ Tr[α−1T (p) − Z

|x|χ|x−P|< 1
2βZ

−t − ν

|x − P|χBR(P)]−,

and by [24, Theorem 2.8] we get

N
∑

i=1

(χ2ui, hχ2ui) ≥ −CZ5/2α1/2 − C

∫

1
2βZ

−t>|x−P|>α

(

Z5/2

|x|5/2 + α3 Z
4

|x|4
)

dx

−C
∫

R>|x−P|>α

(

ν5/2

|x − P|5/2 + α3 ν4

|x − P|4
)

dx

≥ −Cκ1/2Z2 − Cβ1/2Z5/2−t/2 − Cκ2Z2. (B12)

Here we used that t < l and Zα = κ.
The outer zone. This region gives the main contribution to the energy. The
term in (B10) that we still have to study is

N
∑

i=1

(χ3ui, hχ3ui) −D(ρ) (B13)

We start by estimating the first term in (B13) using coherent states.
We consider again the function g ∈ C∞

0 (R3) introduced at the beginning of the
proof and we define the function

gs(x) := (β/(8Zs))−
3
2 g(8Zsx/β) = Φ

1
2
s (x), (B14)

with s the same parameter as before. For simplicity of notation we write
Ṽ := Z/|x| − ρ ∗ 1/|x|. Then

Z

|x| − ρ ∗ Φs ∗
1

|x| = Ṽ ∗ Φs − ZΦs ∗
1

|x| +
Z

|x| .
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Since supp(gs) ∩ supp(χ3) = ∅ by Newton’s Theorem we find

N
∑

i=1

(χ3ui, hχ3ui) =

N
∑

i=1

(χ3ui, (α
−1T (p) − Ṽ ∗ Φs)χ3ui). (B15)

We consider the coherent states gp,qs defined for p,q ∈ R3 by

gp,qs (x) = gs(x − q)e−ip.x.

The following formulas hold for f ∈ H
1
2 (R3,C)

(f, f) = 1
(2π)3

∫

R3

dp

∫

R3

dq (f, gp,qs ) (gp,qs , f),

(f, V ∗ g2
sf) = 1

(2π)3

∫

R3

dp

∫

R3

dqV (q) (f, gp,qs ) (gp,qs , f) (B16)

and

(f, T (p)f) = 1
(2π)3

∫

R3

dp

∫

R3

dq T (p) (f, gp,qs ) (gp,qs , f)

−
∫

R3

dx

∫

R3

dqf(x)(Lqf)(x), (B17)

where Lq has integral kernel

Lq(x,y) =
α−2

4π2
|gs(x − q) − gs(y − q)|2K2(α

−1|x − y|)
|x − y|2 .

Using these formulas we can rewrite (B15) as follows

N
∑

i=1

(χ3ui, (α
−1T (p) − Ṽ ∗ Φs)χ3ui)

= 1
(2π)3α

−1

∫

R3

dp

∫

R3

dq(T (p) − αṼ (q))

q
∑

j=1

N
∑

i=1

|(χ3u
j
i , g

p,q
s )|2

−α−1
N

∑

i=1

∫

R3

dx

∫

R3

dq χ3ui(x)(Lqχ3ui)(x), (B18)

Here uji is the j-th spin component of ui. We start by estimating the error
term, the last term on the right hand side of (B18). From the definition of Lq

it follows

Lq(x,y) ≤ α−2

4π2
‖∇gs‖2

∞K2(α
−1|x − y|)(χsupp(gs)(x − q) + χsupp(gs)(y − q)),

and by the definition of the function gs
∫

R3

Lq(x,y) dq ≤ C‖∇g‖2
∞α

−2β−2Z2sK2(α
−1|x − y|).
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By the estimate above, Schwarz’s inequality, (B9) and the choice of s we find

α−1
N

∑

i=1

∫

R3

dx

∫

R3

dq χ3ui(x)(Lqχ3ui)(x) ≤ C‖∇g‖2
∞β

−2Z3/2−t/2N. (B19)

It remains to study the first term on the right hand side of (B18). In order to
get an estimate from below we consider only the negative part of the integrand.
Moreover, since if |q| < βZ−t/8 then supp(χ3g

p,q
s ) = ∅ (because Z−t > Z−s

since s > t) we find

1
(2π)3α

−1

∫

R3

dp

∫

R3

dq (T (p) − αṼ (q))

q
∑

j=1

N
∑

i=1

|(χ3u
j
i , g

p,q
s )|2

≥ q
(2π)3α

−1

∫

|q|≥ 1
8βZ

−t

dq

∫

T (p)−αṼ (q)≤0

dp (T (p) − αṼ (q)) = . . . , (B20)

where we also use that
∑N
i=1 |(χ3u

j
i , g

p,q
s )|2 ≤ 1 (Bessel’s inequality). We split

now the integral as a sum of two terms

. . . = q
(2π)3

α−1

∫∫

1
2 |p|

2−Ṽ (q)≤0

|q|≥ 1
8βZ

−t

dqdp (T (p) − αṼ (q))

+ q
(2π)3α

−1

∫∫

α
2 |p|2≥αṼ (q)≥T (p)

|q|≥ 1
8βZ

−t

dqdp (T (p) − αṼ (q)). (B21)

We consider these two terms separately. The second term in (B21) gives a
lower order contribution. Indeed

q
(2π)3α

−1

∫∫

α
2 |p|2≥αṼ (q)≥T (p)

|q|≥ 1
8βZ

−t

dqdp (T (p) − αṼ (q))

≥ − q
(2π)3

∫∫

(α2[Ṽ (q)]2++2[Ṽ (q)]+)
1
2 ≥|p|≥(2[Ṽ (q)]+)

1
2

|q|≥ 1
8βZ

−t

dqdp [Ṽ (q)]+ = . . . ,

and computing the p-integral

· · · = −C
∫

|q|≥ 1
8βZ

−t

dq [Ṽ (q)]
5
2
+((1 +

α2

2
[Ṽ (q)]+)

3
2 − 1) = . . . .

Using (1 + x)
3
2 ≤ 1 + 3

2x + 3
8x

2 and that [Ṽ (q)]+ ≤ Z/|q| we get computing
the integral

. . . = −Cα2
∫

|q|≥ 1
8βZ

−t dq [Ṽ (q)]
7
2
+(1 + α2

8 [Ṽ (q)]+)

≥ −Cβ− 1
2 κ2Z3/2+t/2 − Cκ4β− 3

2Z1/2+3t/2.

(B22)
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Here we use that Zα = κ.
Since

√
1 + x ≥ 1 + x/2 − x3/8 for all x > 0, we have

T (p) ≥ α1
2 |p|2 − α3 1

8 |p|4,

and, for the first term on the right hand side of (B21), we obtain

q
(2π)3

α−1

∫∫

1
2 |p|

2−Ṽ (q)≤0

|q|≥ 1
8βZ

−t

dqdp (T (p) − αṼ (q)) ≥

≥ q
(2π)3

∫∫

1
2 |p|

2−Ṽ (q)≤0

|q|≥ 1
8βZ

−t

dqdp (1
2 |p|2 − 1

8α
2|p|4 − Ṽ (q)) = . . . .

Computing now the integral with respect to p, we find

· · · = − 2
3
2 q

15π2

∫

|q|> 1
8βZ

−t

[Ṽ (q)]
5
2
+ dq − Cα2

∫

|q|> 1
8βZ

−t

[Ṽ (q)]
7
2
+ dq. (B23)

We see that the second term on the right hand side of (B23) gives a lower order
contribution since it is of the same order as the one in (B22).
Collecting together (B10), (B11), (B12), (B15), (B18), (B19), (B22) and (B23)

〈ψ,HPψ〉 ≥ −C(β
1
2 + β−2)Z5/2−t/2 − 2

3
2 q

15π2

∫

R3

[Ṽ (q)]
5
2
+ dq −D(ρ) . (B24)

Here we used also that N < 2Z + 1, the choice of s and that t ≤ 3/5.
Now we choose ρ = ρTF the minimizer of the TF-energy functional of a neutral
atom with Coulomb potential and nuclear charge Z. Hence ρTF satisfies the
TF-equation

1
2

(

6π2

q

)
2
3 ρTF(x)

2
3 = [Ṽ (x)]+,

since Ṽ is the TF-mean field potential. Notice that here we use that the
chemical potential of a neutral atom is zero. By the choice of ρ from the
TF-equation it follows from (B24) that

〈ψ,HPψ〉 ≥ −C(β
1
2 + β−2)Z5/2−t/2 + 3

10

(

6π2

q

)
2
3

∫

R3

dx ρTF(x)
5
3

−Z
∫

R3

ρTF(x)

|x| dx +D(ρTF)

= ETF(ρTF) − C(β
1
2 + β−2)Z5/2−t/2 .

The claim follows.

Proposition B.2. Let ρTF be the minimizer of the TF-energy functional of a
neutral atom with nuclear charge Z. Let Zα = κ be fixed with 0 ≤ κ < 2/π
and Z ≥ 1.
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Then there is a constant depending only on κ and q such that for all {ui}Ni=1 ⊂
H

1
2 (R3; Cq) orthonormal in L2(R3) we have

N
∑

i=1

(ui, (α
−1T (p) − ϕTF)ui) −D(ρTF) ≥ ETF(ρTF) − CZ2+ 1

5 ,

with D(·) = D(·, ·) the Coulomb scalar product.

Proof. Since ETF(ρTF) = −e0Z
7
3 (see (12)) to prove the claim it is sufficient to

show that the TF-energy gives a lower bound to the quantum energy modulo
lower order terms. In the proof we localize the energy separating the contribu-
tion from the region near the nucleus to the one far away. The region far away
from the nuclei will give the TF-energy.
In the proof C denotes a generic universal positive constant.

Choice of the localization. The localization will be given by the functions χ1 ∈
C∞

0 (R3) and χ2 ∈ C∞(R3) such that: 0 ≤ χ1, χ2 ≤ 1, χ2
1 + χ2

2 = 1 in R3,

χ1(x) :=

{

1 if |x| < 2Z−3/5,
0 if |x| > 3Z−3/5.

(B25)

Moreover we ask that

‖∇χ1‖∞, ‖∇χ2‖∞ ≤ 22Z3/5. (B26)

The localization in the energy expectation. We insert now the localization in
the energy expectation. From Theorem 2.1 we find

N
∑

i=1

(ui, (α
−1T (p) − ϕTF)ui) −D(ρTF) (B27)

≥
N

∑

i=1

2
∑

j=1

(χjui, (α
−1T (p) − ϕTF)χjui) −D(ρTF) − α−1

N
∑

i=1

2
∑

j=1

(ui, Ljui),

with Lj is the operator (defined in Theorem 2.1) that gives the error due to
the localization in the kinetic energy. We first estimate this error term. Since
N ≤ 2Z + 1 we find as in (B8) that

α−1
N

∑

i=1

2
∑

j=1

(ui, Ljui) ≤ CZ6/5N ≤ CZ2+1/5 . (B28)

Near the nucleus. Since

N
∑

i=1

(χ1ui, (α
−1T (p) − ϕTF)χ1ui) ≥ Tr[α−1T (p) − ϕTFχ|x|<3Z−3/5 ]−,
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by Theorem 2.10 with R = 3Z−3/5 we find

N
∑

i=1

(χ1ui, (α
−1T (p) − ϕTF)χ1ui) ≥ −CZ2+1/5 − Cκ2Z2. (B29)

Here we use that Zα = κ.
The outer zone. This region gives the main contribution to the energy.
Let g ∈ C∞

0 (R3), g ≥ 0 be spherically symmetric with supp(g) ⊂ B1(0)
and such that ‖g‖2 = 1. Starting from these g we define ΦZ(x) :=
(Z−3/5)−3g2(xZ3/5) and

gZ(x) := (Z−3/5)−
3
2 g(xZ3/5) = Φ

1
2

Z(x).

Since supp(gZ) ∩ supp(χ2) = ∅ by Newton’s Theorem we find

N
∑

i=1

(χ2ui, (α
−1T (p) − ϕTF)χ2ui) =

N
∑

i=1

(χ2ui, (α
−1T (p) − ϕTF ∗ ΦZ)χ2ui).

(B30)
We consider the coherent states gp,qZ defined for p,q ∈ R3 by

gp,qZ (x) = gZ(x − q)e−ip.x.

Using formulas (B16) and (B17) we can rewrite (B30) as follows

N
∑

i=1

(χ2ui, (α
−1T (p) − ϕTF ∗ g2

Z)χ2ui)

= 1
(2π)3α

−1

∫

R3

dp

∫

R3

dq(T (p) − αϕTF(q))

q
∑

j=1

N
∑

i=1

|(χ2u
j
i , g

p,q
Z )|2

−α−1
N

∑

i=1

∫

R3

dx

∫

R3

dq χ2ui(x)(Lqχ2ui)(x), (B31)

Here uji is the j-th spin component of ui. We start by estimating the error
term, the last term on the right hand side of (B31). We find as in (B19) that

α−1
N

∑

i=1

∫

R3

dx

∫

R3

dq χ2ui(x)(Lqχ2ui)(x) ≤ C‖∇g‖2
∞Z

6/5N. (B32)

It remains to study the first term on the right hand side of (B31). In order to
get an estimate from below we consider only the negative part of the integrand.
Moreover, since if |q| < Z−3/5 then supp(χ2g

p,q
Z ) = ∅ we find

1
(2π)3α

−1

∫

R3

dp

∫

R3

dq (T (p) − αϕTF(q))

q
∑

j=1

N
∑

i=1

|(χ2u
j
i , g

p,q
Z )|2

≥ q
(2π)3α

−1

∫

|q|≥Z−3/5

dq

∫

T (p)−αϕTF(q)≤0

dp (T (p) − αϕTF(q)) = . . . , (B33)
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where we also use that
∑N
i=1 |(χ3u

j
i , g

p,q
Z )|2 ≤ 1 (Bessel’s inequality). We split

now the integral as a sum of two terms

. . . = q
(2π)3

α−1

∫∫

1
2 |p|

2−ϕTF(q)≤0

|q|≥Z−3/5

dqdp (T (p) − αϕTF(q))

+ q
(2π)3α

−1

∫∫

α
2 |p|2≥αϕTF(q)≥T (p)

|q|≥Z−3/5

dqdp (T (p) − αϕTF(q)). (B34)

We consider these two terms separately. The second term in (B34) gives a
lower order contribution. Indeed

q
(2π)3α

−1

∫∫

α
2 |p|2≥αϕTF(q)≥T (p)

|q|≥Z−3/5

dqdp (T (p) − αϕTF(q))

≥ − q
(2π)3

∫∫

(α2[ϕTF]2++2[ϕTF]+)
1
2 ≥|p|≥(2[ϕTF(q)]+)

1
2

|q|≥Z−3/5

dqdp [ϕTF(q)]+ = . . . ,

and computing the integral in p

· · · = −C
∫

|q|≥Z−3/5

dq [ϕTF(q)]
5
2
+((1 +

α2

2
[ϕTF(q)]+)

3
2 − 1) = . . . .

Using (1 + x)
3
2 ≤ 1 + 3

2x+ 3
8x

2 and that [ϕTF(q)]+ ≤ Z/|q| we get computing
the integral

. . . = −Cα2

∫

|q|≥Z−3/5

dq [ϕTF]
7
2
+(1 +

α2

8
[ϕTF(q)]+)

≥ −Cκ2Z2− 1
5 − Cκ4Z

7
5 .

(B35)

Since
√

1 + x ≥ 1 + x/2 − x3/8 for all x ≥ 0, we have

T (p) ≥ α1
2 |p|2 − α3 1

8 |p|4,

and, for the first term on the right hand side of (B34), we obtain

q
(2π)3

α−1

∫∫

1
2 |p|

2−ϕTF(q)≤0

|q|≥Z−3/5

dqdp (T (p) − αϕTF(q)) ≥

≥ q
(2π)3

∫∫

1
2 |p|

2−ϕTF(q)≤0

|q|≥Z−3/5

dqdp (1
2 |p|2 − 1

8α
2|p|4 − ϕTF(q)) = . . . .

Computing now the integral with respect to p, we find

· · · = − 2
3
2 q

15π2

∫

|q|>Z−3/5

[ϕTF(q)]
5
2
+ dq − Cα2

∫

|q|>Z−3/5

[ϕTF(q)]
7
2
+ dq. (B36)
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We see that the second term on the right hand side of (B36) gives a lower order
contribution since it is of the same order as the one in (B35).
Starting from (B27), by (B28), (B29), (B32), (B35) and (B36) we find

N
∑

i=1

(ui, (α
−1T (p) − ϕTF)ui) −D(ρTF) (B37)

≥ −C(Z2+1/5 + Z2 + Z2−1/5 + Z7/5) − 2
3
2 q

15π2

∫

R3

[ϕTF(q)]
5
2
+ dq −D(ρTF).

The result follows from the TF-equation.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with
formulas, graphs, and mathematical tables, Dover Publications, Inc., New
York 1964.

[2] A. Dall’Acqua, T. Østergaard Sørensen, E. Stockmeyer, Hartree-Fock the-
ory for pseudorelativistic atoms. Ann. Henri Poincaré 9 (2008), 711–742.
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