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Abstract. We prove that the cohomology of the moduli stack of
G-bundles on a smooth projective curve is freely generated by the
Atiyah–Bott classes in arbitrary characteristic. The main techni-
cal tool needed is the construction of coarse moduli spaces for bun-
dles with parabolic structure in arbitrary characteristic. Using these
spaces we show that the cohomology of the moduli stack is pure and
satisfies base-change for curves defined over a discrete valuation ring.
Thereby we get an algebraic proof of the theorem of Atiyah and Bott
and conversely this can be used to give a geometric proof of the fact
that the Tamagawa number of a Chevalley group is the number of
connected components of the moduli stack of principal bundles.
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1 Introduction

Atiyah and Bott [1] proved that for any semisimple group G the cohomology
ring of the moduli stack BunG of principal G-bundles on a Riemann surface C is
freely generated by the Künneth components of the characteristic classes of the
universal bundle on BunG ×C. (Of course, in their article, this was expressed
in terms of equivariant cohomology instead of the cohomology of a stack. The
formulation in terms of stacks can also be found in Teleman’s article [42].) The
argument of Harder and Narasimhan [19] suggests that the result should also
hold for curves over finite fields.
The original aim of this article was to give an algebraic proof of the result of
Atiyah and Bott in positive characteristics. In the case of G = GLn this was
suggested by G. Harder, given as a Diploma thesis to the first author [21] (see
[10] for a different approach). For general G we have to use the recent con-
structions of coarse moduli spaces in arbitrary characteristics [15]. The results
of Behrend ([4], [5]) prove the Lefschetz trace formula for the moduli stack
BunG over finite fields. However, purity of the cohomology groups is not so
clear. One also has to check that the universal classes generate a sufficiently
large subring. To prove purity, we embed the cohomology of the stack into
the cohomology of a projective variety. This enables us to argue in two ways:
either we use the known calculations of the Tamagawa number to prove the
theorem with algebraic methods over finite fields (Theorem 3.3.5), or we use
the projective variety to apply base change (Corollary 3.3.4) and deduce the

Documenta Mathematica 15 (2010) 423–488



Moduli Stacks of Principal Bundles 425

general result from the known one in characteristic 0. This in turn gives a
calculation of the Tamagawa number (Corollary 3.1.3) and thus provides a ge-
ometric proof of Harder’s conjecture that the Tamagawa number should be the
number of connected components of the moduli stack of principal G-bundles in
this situation (see also the introduction to [8]). In order to make this argument
precise the formalism of the six operations for sheaves on Artin stacks recently
constructed by Laszlo and Olsson [29] is applied.
As pointed out by Neumann and Stuhler in [33], the computation of the co-
homology ring over finite fields also gives an explicit description of the action
of the Frobenius endomorphism of the moduli stack on the cohomology of the
stack, even if the geometry of this action is quite mysterious.
As explained above, the main new ingredient in our approach is the purity of
the cohomology and the proof of a base change theorem for the cohomology of
BunG. The idea to prove these results is to embed the cohomology of BunG

into the cohomology of the stack of principal G-bundles together with flags
at a finite set of points of the curve (“flagged principal bundles”). On this
stack one can find a line bundle, such that the open subset of stable bundles
has a complement of high codimension. Furthermore, there exists a projective
coarse moduli space for stable flagged principal bundles. The existence of
coarse moduli spaces for flagged principal bundles in arbitrary characteristic
is demonstrated in the second part of this article. So here we use Geometric
Invariant Theory in order to obtain a result for the moduli stack, whereas one
usually argues in the other direction.
Our main theorem is:

Theorem. Assume that C is a curve over a field k. Then the cohomology of
the connected components Bunϑ

G of BunG is freely generated by the canonical
classes, i.e.,

H⋆
(
Bunϑ

G,k
,Qℓ

)
= Qℓ[a1, . . . , ar] ⊗

⋆∧
[bji ]i=1,...r,j=1,...,2g ⊗Qℓ[f1, . . . , fr].

(The canonical classes are obtained from the Künneth components of the uni-
versal principal bundle on BunG × C, see Section 3.1.)
As remarked above, the main technical ingredient is the construction of proper
coarse moduli spaces for flagged principal bundles in positive characteristic.
It is contained in the second part of this paper and might be of independent
interest. Let us therefore give a statement of this result as well.
Since there are different definitions of parabolic bundles in the literature, we
have used the term flagged principal bundles instead. The precise definition is
as follows. Let x = (xi)i=1,...,b be a finite set of distinct k-rational points of C,
and let P = (Pi)i=1,...,b be a tuple of parabolic subgroups of G. A principal
G-bundle with a flagging of type (x, P ) is a tuple (P, s) that consists of a
principal G-bundle P on C and a tuple s = (s1, ..., sb) of sections si : {xi} →
(P ×C {xi})/Pi, i.e., si is a reduction of the structure group of P ×C {xi} to
Pi, i = 1, ..., b.
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In Section 4 we introduce a semistability concept for such bundles. It depends
on a parameter a which, as in the case of parabolic vector bundles, has to
satisfy a certain admissibility condition. Using this notion we show:

Theorem. For any type (x, P ) of flaggings and any admissible stability param-
eter a, there exists a projective coarse moduli space M (x, P )a-ss of a-semistable
flagged principal G-bundles.

Finally one should note that it is well known that one can use the compu-
tation of the cohomology of the moduli stack and the splitting of the Gysin
sequence for the Harder–Narasimhan stratification of BunG (as in [1], this holds
in arbitrary characteristic) to calculate the cohomology of the moduli stack of
semistable bundles. If the connected component Bunϑ

G is such that there are
no properly semistable bundles, this gives a computation of the cohomology of
the coarse moduli space (as in the proof of Corollary 3.3.2).

2 Preliminaries

In this section we collect some well known results on the moduli stacks BunG

and their cohomology.

2.1 Basic Properties of the Moduli Stack of Principal Bundles

Let C be a smooth, projective curve of genus g over the (locally noetherian)
scheme S. It would be reasonable to assume that C is a curve over a field,
but since we want to be able to transport our results from characteristic p to
characteristic 0, we will finally need some base ring.
Let G/S be a reductive group of rank r. Denote by BunG the moduli stack of
principal G-bundles over C, i.e., for a scheme X → S, the X-valued points of
BunG are defined as

BunG(X) := Category of principal G-bundles over C ×X.

Recall the following basic fact which is proved in [4], Proposition 4.4.6 and
Corollary 4.5.2.

Proposition 2.1.1. The stack BunG is an algebraic stack, locally of finite type
and smooth of relative dimension (g − 1) dimG over S.

Furthermore the connected components of BunG are known ([14], Proposition
5, [24]). (In the first reference, the result is stated only for simply connected
groups, but the proof gives the result in the general case.)

Proposition 2.1.2. If S = Spec(k), or if G is a split reductive group, then the
connected components of BunG are in natural bijection to π1(G).

Remark 2.1.3. The stack BunG is smooth (2.1.1). Therefore, its connected
components are also irreducible.
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2.2 Behrend’s Trace Formula

Let us now assume that S = Spec(k) is the spectrum of a field. In the fol-
lowing, we will write Bunϑ

G,k
with ϑ ∈ π1(Gk) for the corresponding connected

component of BunG,k.

Since the stack Bunϑ
G is only locally of finite type, we define its ℓ-adic coho-

mology as the limit of the cohomologies of all open substacks of finite type:

H⋆(Bunϑ
G,Qℓ) := lim

U⊂BunG
open, fin. type

H⋆(U,Qℓ).

Remark 2.2.1. The basic reference for stacks and their cohomology is [30]. The
general formalism of cohomology has been developed in the articles by Laszlo
and Olsson [29]. Behrend in [7] also constructed all the functors that we will
use. In particular, we will compute cohomology groups with respect to the
lisse-étale topology. To simplify the statement of our main theorem we will useQℓ coefficients, because we want to chose generators of the cohomology ring
that are eigenvectors for the Frobenius action.

By semi-purity, which is recalled below, the cohomology of BunG in degrees
< 2i is equal to the cohomology of U ⊂ BunG, if the codimension of the
complement of U is at least i:

Lemma 2.2.2 (Semi-purity). Let X be a smooth stack of finite type and U
j
→֒ X

an open substack with complement Z := X \ U
i
→֒ X. Then,

H⋆(X,Qℓ) ∼= H⋆(U,Qℓ) for ⋆ < 2 codim(Z).

Proof. As usual, this can be deduced from the corresponding statement for
schemes. For schemes instead of stacks, this follows from the long exact se-
quence for cohomology with compact support,

· · · −→ H⋆
c (U,Qℓ) −→ H⋆

c (X,Qℓ) −→ H⋆
c (Z,Qℓ) −→ · · · ,

the vanishing of H⋆
c (Z,Qℓ) for ⋆ > 2 dimZ, and Poincaré duality,

H2 dim U−⋆
c (U,Qℓ) ∼= H⋆

(
U,Qℓ(dimU)

)∨
.

Now, if X0 ։ X is a smooth atlas of the stack X , and Xn := X0 ×X X0 ×X

· · · ×X X0, then there is a spectral sequence:

Hp(Xq,Qℓ) ⇒ Hp+q(X,Qℓ).

Since the codimension is preserved under smooth pull-backs, for any U ⊂ X , we
get the atlas U0 := U ×X X0 → U , and the induced embeddings Uq → Xq have
complements of codimension codim(U). Therefore we can apply the lemma in
the case of schemes to the morphism of spectral sequences

Hp(Uq,Qℓ) → Hp(Xq,Qℓ)

to prove our claim.
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Remark 2.2.3. The same argument applies to the higher direct image sheaves
in the relative situation X → S, if X is smooth over S and U ⊂ X is of
codimension i in every fiber.

Behrend proved ([4], [5]) that, if C is a curve defined over a finite field k, the
Lefschetz trace formula holds for the stack BunG.

Theorem 2.2.4 (Behrend). Let C be a smooth, projective curve over the finite
field k = Fq and G a semisimple group over k. Let Frob denote the arithmetic
Frobenius acting on H⋆(BunG,k,Qℓ). Then, we have

qdim(BunG)
∑

i≥0

(−1)i tr
(
Frob, Hi(BunG,k,Qℓ)

)
=

∑

x∈BunG(Fq)

1

#Aut(x)(Fq)
.

As in [19], a result of Siegel allows us to calculate the right hand side of the
formula. To state it, we first recall a theorem of Steinberg.

Proposition 2.2.5 (Steinberg). Let G be a semisimple group over k = Fq.
There are integers d1, . . . , dr and roots of unity ǫ1, . . . , ǫr such that:

• #G(Fq) = qdim G
∏r

i=1(1 − ǫiq
−di)

• Let BG be the classifying stack of principal G-bundles. Then,
H⋆(BGk,Qℓ) = Qℓ[c1, . . . , cr] with ci ∈ H2di(BG,Qℓ) and Frob(ci) =
ǫiq

−di .

The second part is of course not stated in this form in Steinberg’s book [40],
but one only has to recall the argument from topology. First the theorem
holds for tori, since H⋆(Gm,Qℓ) = Qℓ[x]. For a maximal torus T contained
in the Borel subgroup B ⊂ G, the map BT → BB induces an isomorphism
in cohomology: since the fibers are isomorphic to BU where U ∼= An is the
unipotent radical of B, they have no higher cohomology. The fibers of the
map BB → BG are isomorphic to the flag manifold G/B. Thus the map

indG
T : BT → BG induces an injection indG,⋆

T : H⋆(BG,Qℓ) →֒ H⋆(BT,Qℓ)
which lies in the part invariant under the Weyl group. For dimensional
reasons—since we already stated the trace formula, this follows most easily
from 1/(#G(Fq)) = q− dim G

∑
tr(Frob, Hi(BGk,Qℓ)) and the fact that the di

are the degrees of the homogeneous generators in H⋆(BTk,Qℓ)
W —it must then

be isomorphic to the invariant ring.

With the notations from Steinberg’s theorem we can state a theorem of Siegel.
A nice reference for the theorem is [26], Section 3. In this article, you can also
find a short reminder on the Tamagawa number τ(G).

Theorem 2.2.6 (Siegel’s formula). Let G/Fq
be a semisimple group, and denote
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by αj the eigenvalues of the geometric Frobenius on H1(CFq
,Qℓ). Then,

∑

x∈BunG(Fq)

1

#Aut(x)(Fq)
= τ(G)

∏

p∈C

1

vol(G(Op))

= τ(G)q(g−1) dim G
rk G∏

i=1

∏2g
j=1(1 − ǫiαjq

−di)

(1 − ǫiq−di)(1 − ǫiq(1−di))
.

3 The Cohomology of BunG

Our next aim is to recall from [1] the construction of the canonical classes in the
cohomology ring of BunG and to prove that these generate a free subalgebra
over any field. We will then explain how to deduce our main theorem from the
purity of the cohomology of BunG which will occupy the rest of this article.

3.1 The Subring Generated by the Atiyah–Bott Classes

Fix ϑ ∈ π0(BunG) = π1(G). The universal principal G-bundle Puniv on
Bunϑ

G ×C defines a map f : Bunϑ
G ×C → BG. The characteristic classes of

Puniv are defined as ci(Puniv) := f⋆ci where the ci are, as in Proposition
2.2.5, the standard generators of the cohomology ring of BG.
Note that the Künneth theorem for stacks can be deduced from the correspond-
ing result for schemes using the spectral sequence computing the cohomology
of the stack from the cohomology of an atlas as in Lemma 2.2.2.
We choose a basis (γi)i=1,...,2g of H1(C,Qℓ). In the case that C is defined over
a finite field k, we choose the γi as eigenvectors for the geometric Frobenius
of eigenvalue αi. The Künneth decomposition of ci(Puniv) is therefore of the
form:

ci(Puniv) =: ai ⊗ 1 +

2g∑

j=1

bji ⊗ γj + fi ⊗ [pt].

Note that di > 1, because we assume that G is semisimple. Thus, the fi are not
constant. Of course, these classes depend on ϑ, but we don’t want to include
this dependence in our notation.

Proposition 3.1.1. The classes (ai, b
j
i , fi) generate a free graded subalgebra of

the cohomology ring H⋆(Bunϑ
G,k

,Qℓ), i.e., there is an inclusion:

can: Qℓ[a1, . . . , ar] ⊗

⋆∧
[bji ]i=1,...r,j=1,...,2g ⊗Qℓ[f1, . . . , fr] →֒ H⋆(Bunϑ

G,k
,Qℓ).

If k is a finite field, then the classes ai, b
j
i , fi are eigenvectors for the action of

the arithmetic Frobenius with eigenvalues, q−di , q−diαj , q
1−di respectively.

Proof. Denote by Can⋆ ⊂ H⋆(Bunϑ
G,Qℓ) the subring generated by the classes

(ai, b
j
i , fi).
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Note first that the analog of the theorem holds for G = Gm. In this case,
BunGm is the disjoint union of the stacks BundGm

classifying line bundles of

degree d. There is the Gm-gerbe BundGm
→ Picd

C which is trivial over any field

over which C has a rational point, because in this case Picd
C is a fine moduli

space for line bundles together with a trivialization at a fixed rational point
p. Forgetting the trivialization at p corresponds to taking the quotient of Pic
by the trivial Gm-action. Thus, BundGm

∼= Picd ×BGm and the cohomology of

this stack is H⋆(Picd,Qℓ)⊗Qℓ[c1]. Here, the first factor is the exterior algebra
generated by the Künneth components of the Poincaré bundle.

Let T ⊂ G be a maximal torus and fix an isomorphism T ∼= Gr
m in order to

apply the result for Gm. Then, X⋆(T )∨ ∼= Zr. Recall furthermore that the
G-bundle induced from a T -bundle of degree k ∈ Zr ∼= X⋆(T )∨ lies in Bunϑ

G,
if and only if k ≡ ϑ ∈ X⋆(T )∨/Λ∨. We denote this coset by Zr

ϑ.

Write H⋆(BTk,Qℓ) ∼= Qℓ[x1, . . . xr ] and, for every degree k ∈ Zr, denote by

Ai, B
j
i ∈ H⋆(Bun

k
T ,Qℓ) the Künneth components of the Chern classes of the

universal T -bundle. Note that, since Λ∨ ⊂ Zr has finite index, we have the
injective mapQℓ[A1, . . . , Ar]⊗

⋆∧
[Bj

i ]i=1,...r,j=1,...,2g⊗Qℓ[K1, . . . ,Kr] →֒
∏

k∈Zr
ϑ

H⋆(Bun
k
T ,Qℓ)

defined by Ki 7→ (ki)k∈Zr
ϑ

where ki is considered as an element of

H0(Bun
k
T ,Qℓ) = Qℓ.

Recall that the induced map H⋆(BGk,Qℓ) → H⋆(BTk,Qℓ) ∼= Qℓ[x1, . . . , xrk G]
is given by ci 7→ σi(x1, . . . , xr) where σi is a homogeneous polynomial of degree
di. Therefore, we can calculate the image of the canonical classes under the
map

H⋆(Bunϑ
G,Qℓ) ⊗H⋆(C,Qℓ) → H⋆(BunT ,Qℓ) ⊗H⋆(C,Qℓ)

∼=
∏

k∈Zr
ϑ

H⋆(Bun
k
T ,Qℓ) ⊗H⋆(C,Qℓ)

which respects the Künneth decomposition. It is given by

ci(Puniv) 7→
∏

k∈Zr
ϑ

σi

(
A1 ⊗ 1 +

2g∑

j=1

Bj
1 ⊗ γj + k1 ⊗ [pt], . . .

)
.
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The Künneth decomposition of this class is

σi

(
A1 ⊗ 1 +

2g∑

j=1

Bj
1 ⊗ γj + k1 ⊗ [pt], . . .

)

= σi(A1, . . . , Ar) ⊗ 1

+

2g∑

j=1

( r∑

m=1

(∂mσi)(A1, . . . , Ar)
)
Bj

m ⊗ γj

+

r∑

m=1

(∂mσi)(A1, . . . , Ark G)km ⊗ [pt]

+
∑

Bj
iB

j′
i′ · Pj,j′(A1, . . . , Ark G) ⊗ [pt],

where the Pj,j′ are some polynomials. In particular, we see that the above map
factors through the subringQℓ[A1, . . . , Ar]⊗

⋆∧
[Bj

i ]i=1,...r, j=1,...,2g⊗Qℓ[K1, . . . ,Kr] →֒
∏

k∈Zr
ϑ

H⋆(Bun
k
T ,Qℓ)

defined above. We already know that the elements σi(A1, . . . , Ark G) are al-
gebraically independent in H⋆(BunT,k,Qℓ). In particular, since the mapArk G → Ark G ∼= (Ark G/W ) defined by the polynomials σi is generically a
Galois covering with Galois group W , we also know that the derivatives ∂σi

are linearly independent. This shows our claim.

Remark 3.1.2. In the proof above, we have only used the fact that
H⋆(Pic0

C ,Qℓ) ∼=
∧⋆H1(C,Qℓ). Thus, one might note that the proof shows

that for any smooth, projective varietyX the analogous classes ai, b
j
i , f

k
i , where

fk
i are the Künneth components corresponding to a basis of NS(X)Q, generate

a free subalgebra of the cohomology of the moduli stack of principal bundles
on X .

In the following, we will denote the graded subring constructed above by Can⋆.
Of course, we want to show that Can⋆ is indeed the whole cohomology ring of
Bunϑ

G,k
.

Corollary 3.1.3. Let k be a finite field and let G/k be a semisimple group.

If H⋆(Bunϑ
G,k

,Qℓ) is generated by the canonical classes for all ϑ, then the

Tamagawa number τ(G) satisfies τ(G) = dimH0(BunG,Qℓ) = #π0(BunG).
Conversely, if the cohomology of BunG is pure and the Tamagawa number
fulfills τ(G) = #π0(BunG), then H⋆(BunG,Qℓ) = Can⋆.

Proof. For the graded ring Cani generated by the canonical classes, we know
that

∞∑

i=0

(−1)i tr(Frob,Cani) =

∏r
i=1

∏2g
j=1(1 − ǫiαjq

−di)
∏r

i=1(1 − ǫiq−di)(1 − ǫiq1−di)
.
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Comparing this with Siegel’s formula, we get the first claim.
Furthermore we know that the Zeta function of BunG converges and is equal
to

Z(BunG, t) = exp

( ∞∑

i=1

#BunG(Fqn)
ti

i

)

=

∞∏

i=0

det
(
1 − Frob ·qdim(BunG) · t,Hi(BunG,Qℓ)

)(−1)i+1

.

Now, since such a product expansion of an analytic function is unique and the
eigenvalues of Frob on Hi have absolute value qi/2, there can be no cancella-
tions. Thus, the Poincaré series of the cohomology ring can be read off the
Zeta function.

3.2 The Main Results on Moduli Spaces of Flagged Principal Bun-
dles

Let x = (xi)i=1,...,b be a finite set of distinct k-rational points of C, and let P =
(Pi)i=1,...,b be a tuple of parabolic subgroups of G. A principal G-bundle with
a flagging of type (x, P ) is a tuple (P, s) that consists of a principal G-bundle
P on C and a tuple s = (s1, ..., sb) of sections si : {xi} → (P ×C {xi})/Pi,
i.e., si is a reduction of the structure group of P ×C {xi} to Pi, i = 1, ..., b.

Remark 3.2.1. For G = GLr(k), parabolic subgroups correspond to flags of
quotients of kr, so that a flagged principal GLr(k)-bundle may be identified
with a vector bundle E together with flags of quotients Exi ։ Vj,i, j = 1, ..., ti,
i = 1, ..., b, of the fibers of E at xi, i = 1, ..., b. (A “flag of quotients” means of
course that K1,i ( · · · ⊆ Kti,i, Kj,i := ker(Exi ։ Vj,i), j = 1, ..., ti, i = 1, ..., b.)
These objects were introduced by Mehta and Seshadri [31] and called quasi-
parabolic vector bundles. We had to chose a different name, because the notion
of a parabolic principal bundle has been used differently in [2]. The same objects
that we are looking at have also been considered in [9] and [43].

Lemma 3.2.2. Fix a type (x, P ) as in the definition.
i) The principal G-bundles with a flagging of type (x, P ) form the smooth alge-
braic stack BunG,x,P .
ii) The forgetful map BunG,x,P → BunG is a locally trivial bundle whose fibers
are isomorphic to

∏s
i=1(G/Pi).

iii) The cohomology algebra H⋆(BunG,x,P ,Qℓ) is a free module over

H⋆(BunG,Qℓ) with a basis of pure cohomology classes. The same holds
for all open substacks of BunG and their preimages in BunG,x,P .

Proof. The first parts are easy, because for a G-bundle P → T × C the
space

∏
i(P|T×xi)/Pi → T parameterizes flaggings of P at T × x. This is

a
∏s

i=1(G/Pi) bundle over T . The last part follows from the second by the
theorem of Leray–Hirsch: the flagging of the universal bundle at xi defines
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a Pi-bundle over BunG,x,P and thus a map BunG,x,P → BPi. But the map
G/Pi → BPi induces a surjection on cohomology, and thus the pull back of the
universal classes in H⋆(BPi,Qℓ) to H⋆(BunG,x,Qℓ) generate the cohomology
of all the fibers of BunG,x → BunG.

In Section 4, we will introduce a notion of a-stability for flagged principal
bundles depending on some parameter a. As in the case of vector bundles, we
will define a coprimality condition for a (see 4.2.1) as well as some admissibility
condition (following Remark 4.1.5).

In BunG,x,P there are open substacks Bun
a-(s)s
G,x,P of a-(semi)stable flagged prin-

cipal G-bundles of type (x, P ). Our main results on the coarse moduli spaces
of these substacks are collected in the following theorem.

Theorem 3.2.3. i) For any type (x, P ) and any admissible stability parameter
a, there exists a projective coarse moduli space M (x, P )a-ss for a-semistable
flagged principal G-bundles of type (x, P ).
ii) If a is of coprime type, then the notions of a-semi stability and a-stability
coincide. In this case, Bun

a-s
G,x,P is a proper, smooth quotient-stack with finite

stabilizer groups.
iii) For any substack U ⊂ BunG of finite type and any i > 0, there exist s > 0,
a type (x, P ), and an admissible stability parameter a of coprime type, such
that U lies in the image of the map Bun

a-s
G,x,P → BunG and such that the subset

of a-unstable bundles is of codimension > i in BunG,x,P .

The proof of this theorem takes up the largest part of this article. We will
prove the existence of the coarse moduli spaces in Section 5. The projectivity
then follows from our semistable reduction theorem 4.4.1. The last two parts
of the theorem are much easier. We will prove them in Section 4.

Remark 3.2.4. For simplicity, we have stated Theorem 3.2.3 only for curves
defined over a field. In order to prove our base change theorem, we will need
the result in the case that C is a smooth, projective family of curves with
geometrically reduced, connected fibers, defined over an integral ring R, finitely
generated over Z, and G a semisimple Chevalley group over R.
Seshadri proved in [39] (Theorem 4, p. 269) that GIT-quotients can be con-
structed for families over R. Further, the parameter spaces constructed in
Section 5 are given by quot schemes which exist over base schemes, and, in
Section 5.6, we finally need a Poincaré bundle on the relative Picard scheme.
A Poincaré bundle exists, if the family C −→ Spec(R) has a section. This
certainly holds after an étale extension of R. Hence, the first assertion still
holds after an étale extension of R.
Except for the properness assertion for the stack of stable flagged principal
bundles which is Lemma 3.3.1, the last two parts of the theorem carry over to
this situation without modification.
We will come back to the issue of the base ring in Remarks 5.2.4, 5.3.3, and
5.5.4.
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Before we proceed with the proof of the theorem, we want to deduce our main
application.

3.3 Purity of H⋆(BunG)

Assume that k is a finite field. Since all open substacks of finite type of BunG

can be written as [X/GLN ] where X is a smooth variety, we know that the

eigenvalues λi of the (arithmetic) Frobenius onHi(BunG,Qℓ) satisfy |λi| ≤ q−
i
2

[8]. To prove equality, i.e., to prove that the cohomology is pure, we cannot rely
on such a general argument. But, using the results on coarse moduli spaces,
we can show that for all i the cohomology Hi(BunG,Qℓ) occurs as a direct
summand in the i-th cohomology of a projective variety, parameterizing stable
flagged principal bundles.

Lemma 3.3.1. Assume that R is a field or a discrete valuation ring with quotient
field K. Let G/R be a reductive group, acting on the projective scheme XR and

L a G-linearized ample line bundle on XR, such that all points of X := X
ss

L

are stable with respect to the chosen linearization. Then, the quotient stack
[X/G] is separated and the map [X/G] → X//G is proper.

Proof. If R is a field, we can apply GIT ([32] Corollary 2.5), saying that the map
G ×X → X ×X is proper. Therefore, the diagonal [X/G] → [X/G] × [X/G]
is universally closed, i.e., [X/G] is separated.
We claim that we may prove the separatednedness of the map [X/G] → X//G
over a discrete valuation ring R in the same manner. To show the lifting
criterion for properness for the group action, we assume that we are given
x1, x2 ∈ X(R) and g ∈ G(K), such that g.x1 = x2. We have to show that
g ∈ G(R). We may (after possibly replacing R by a finite extension as in [32],
Appendix to Chapter 2.A) apply the Iwahori decomposition to write g = g0zg

′
0

with g0, g
′
0 ∈ G(R) and z ∈ T (K) for a maximal torus T ⊂ G. Thus, we have

reduced the problem to the case that g = z ∈ T (K). Choose a local parameter
π ∈ R. Multiplying with an element of T (R), we may further assume that there
is a one-parameter subgroup λ : Gm → T , such that z = λ(π). Assume that λ
is non-trivial. Now, embed XR ⊂ P(V ) into a projective space and decompose
V =

∑
i∈Z Vi into the eigenspaces of λ. Write x1 =

∑
i∈Z vi and x2 =

∑
i∈Z wi

as sums of eigenvectors for λ. Since the reduction x1 of x1 mod π is stable,
there must be indices i− < 0 < i+ with vi− 6= 0 6= vi+ . The analogous condition
holds for x2. But, one readily checks that x2 = z.x1 implies wi = 0, for i > 0,
a contradiction.
Now, for algebraically closed fields K, the map [X/G] → X//G induces a bi-
jection on isomorphism classes of K-points. Thus, since we already know sep-
aratedness, it is sufficient to show that given a discrete valuation ring R and
a point x ∈ X//G(R), then we can find an extension R′ of R, such that x lifts
to a point x ∈ X(R′) and thus to a point in [X/G]. Let K be the quotient
field of R, η ∈ X a point lying over the generic point of x. Then, the closure
of G× η ⊂ X is a G-invariant subset. Since X//G is a good quotient, its image
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is closed and contains x. Thus, the orbit of η specializes to a point lying over
the closed point of x, and we can find x ∈ X(R′) as claimed.

Corollary 3.3.2. Assume that C is a smooth projective curve, defined over
the finite field k. If a is of coprime type, then H⋆(Bun

a-s
G,x,P ,Qℓ) is pure.

Proof. The stack Bun
a-s
G,x,P of a-stable flagged principal G-bundles of type

(x, P ) is a smooth quotient stack. Therefore, its i-th cohomology is of weight
≥ i. This is proved in [8], Theorem 5.21. (Observe the different conventions
for the Frobenius map.) Furthemore, by the definition of stability, all auto-
morphism groups of stable parabolic bundles are finite. In particular, by the
preceding lemma, the map p : Bun

a-s
G,x,P → M (x, P )a-s is proper. In order to

prove that Rp⋆Qℓ
∼= Qℓ, it is therefore sufficient to compare the stalks of these

sheaves ([34], Theorem 1.3). But the fibers are quotients of Spec(K) by finite
group schemes. Thus, for rational coefficients, the higher cohomology of the
fibers vanishes. In particular, p induces an isomorphism on cohomology. Since
the scheme M (x, P )a-s is proper (Theorem 3.2.3), its i-th cohomology is of
weight ≤ i, by Deligne’s theorem ([12], Théorème I),

Remark 3.3.3. i) So far, we have treated the moduli spaces only over alge-
braically closed fields. Of course, they will be defined over a finite extension
of Fq. (In fact, as the construction of the moduli spaces will reveal, they will
be defined over the same field as the points in the tuple x.) If we replace Fq

by a finite extension, the new Frobenius is a power of the original Frobenius.
The purity statement is obviously not affected, because it concerns only the
absolute values of the eigenvalues of the Frobenius map.

ii) The moduli space M (x, P )a-s will, in general, have finite quotient singulari-
ties. Therefore, we could obtain both estimates for the weights from the coarse
moduli space.

Corollary 3.3.4. Suppose R is of finite type over Z, regular, and of dimension
at most 1, and let C/R be a smooth projective curve and G a split semisimple
group scheme over R. Then, the cohomology of BunG → Spec(R) is locally
constant over Spec(R).

Proof. By Theorem 3.2.3, iii), we know that, for fixed i, the i-th cohomology
sheaf of BunG is a direct summand of the corresponding sheaf of Bun

a-s
G,x,P for

suitable type (x, P ) and suitable stability parameter a. Further, by Lemma
3.3.1, the map p : Bun

a-s
G,x,P → M (x, P )a-s is proper. Since the coarse moduli

space is proper as well, we can again apply Olsson’s base change theorem ([34],
Theorem 1.3) to the proper map π : Bun

a-s
G,x,P → M (x, P )a-s → Spec(R). In

particular, the fibers of Rπ⋆Qℓ compute the cohomology of the fibers of π.

Moreover, the stack X := Bun
a-s
G,x,P is smooth. Thus, we may use local acyclic-

ity of smooth maps as in [11], Chapitre V. To see that this holds for stacks, let
us recall the argument. We may suppose that the base S = Spec(R) is strictly
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henselian. Denote by η the spectrum of an algebraic closure of the generic
point of S and let s denote the special point of S. We have a cartesian diagram

Xη
ǫ′ //

��

X

f

��

Xs
i′oo

��

η
ǫ // S {s}.

ioo

Now, Rǫ′⋆Qℓ
∼= f⋆Rǫ⋆Qℓ, because this holds for any smooth covering U → X

and i′∗Rǫ⋆Qℓ = Qℓ. Thus, using the above calculation and proper base change
for the last equality, we find:

H⋆(Xη,Qℓ) ∼= H⋆(X ,Rǫ′⋆Qℓ) ∼= H⋆(Xs,Qℓ).

This settles the claim.

We may now derive our main result.

Theorem 3.3.5. Assume that C is a curve over the field k. Then, the coho-
mology of BunG is freely generated by the canonical classes, i.e.,

H⋆
(
Bunϑ

G,k
,Qℓ

)
= Qℓ[a1, . . . , ar] ⊗

⋆∧
[bji ]i=1,...,r,j=1,...,2g ⊗Qℓ[f1, . . . , fr].

Proof. First method. One can deduce the result from the theorem of Atiyah
and Bott. By the base change corollary above, knowing the theorem for k = C
implies the claim over an arbitrary algebraically closed field. For k = C Atiyah
and Bott proved the result. Namely they constructed a continuous atlas X →
BunG, where X is contractible and BunG is the quotient of X by the action
of an infinite dimensional group G . In the article of Atiyah and Bott the
equivariant cohomology of X with respect to this group action is computed.
However, the spectral sequence computing equivariant cohomology from the
cohomology of G coincides with the sequence computing the cohomology of
BunG from the atlas X → BunG.

Second method. By the base change corollary 3.3.4, it is sufficient to prove
the claim in the case that C is defined over a finite field k. We have just
seen (Corollary 3.3.2) that in this case the cohomology of BunG is pure. Fur-
thermore, Harder proved [18] that τ(G) = 1 for semisimple simply connected
groups and Ono showed how to deduce τ(G) = #π1(G) for arbitrary semisim-
ple groups (see [8], §6). Thus, we can apply Corollary 3.1.3 to Siegel’s formula
and Behrend’s trace formula.

Remark 3.3.6. For G = SLn(k) (or G = GLn(k)), one can use Beauville’s trick
[3] which shows that the cohomology of Bun

a-s
SLn,x,P is generated by the classes

constructed in Remark 3.2.2. This gives a direct proof of the theorem.
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4 Semistability for Flagged Principal Bundles

In this section, we introduce the parameter dependent notion of semistability
for flagged principal bundles. After discussing its basic features, including the
important fact that any principal bundle can be turned into a stable flagged
principal bundle for a suitable type and a suitable stability parameter, we
apply Behrend’s formalism of complementary polyhedra to derive the Harder–
Narasimhan reduction for semistable flagged principal bundles. We conclude
with a proof of the semistable reduction theorem for flagged principal bundles,
generalizing the arguments from [22] and [23].

4.1 Definition of Semistability

We want to define a notion of semistability for flagged principal bundles. For
an algebraic group P let us denote by X⋆(P ) := Hom(P,Gm) the group of
characters and by X⋆(P )∨Q := Hom(X⋆(P ),Q) the rational cocharacters. The
notion of semistability will depend on parameters ai varying over the sets

X⋆(Pi)
∨Q,+ :=

{
a ∈ X⋆(Pi)

∨Q ∣∣∣ for all parabolic subgroups P ′ ⊃ Pi

a(detP ′ ⊗ det−1
Pi

) < 0

}
,

i = 1, ..., b. (Since BunG,x,P → BunG is a locally trivial fibration with fiber∏s
i=1G/Pi, we see that the Picard group of BunG,x,P is a free Z-module gener-

ated by Pic(BunG) ∼= Z and
∏s

i=1X
⋆(Pi). Therefore the notion of semistabil-

ity should depend on an element in X⋆(Pi)
+. Since this has a canonical basis,

the dual appears in our definition.) To state this in terms closer to Geomet-
ric Invariant Theory, note that the pairing of characters and one-parameter
subgroups of a parabolic subgroup of G is invariant under conjugation. There-
fore, conjugacy classes of rational one-parameter subgroups of Pi are given
by X⋆(Pi)

∨Q, i = 1, ..., b. A one-parameter subgroup λ : Gm → G defines the
parabolic subgroup

P (λ) := PG(λ) =
{
g ∈ G

∣∣ lim
z→0

λ(z)gλ(z)−1 exists in G
}
.

For later purposes, we also introduce

QG(λ) := PG(−λ) =
{
g ∈ G

∣∣ lim
z→∞

λ(z)gλ(z)−1 exists in G
}
.

Example 4.1.1. Any one-parameter subgroup λ : Gm(k) −→ GL(V ) defines a
set of weights γ1 < · · · < γt+1 and a decomposition

V =

t+1⊕

l=1

V l with V l :=
{
v ∈ V

∣∣λ(z)(v) = zγl ·v, ∀z ∈ Gm(k)
}
, l = 1, ..., t+1,

into eigenspaces. We derive the flag

V•(λ) : {0} ( V1 := V 1 ( V2 := V 1 ⊕ V 2 ( · · · ( Vt := V 1 ⊕ · · · ⊕ V t ( V.
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Note that the group QGL(V )(λ) is the stabilizer of the flag V•(λ). As an ad-
ditional datum, we define the tuple β•(λ) = (β1, ..., βt) with βl := (γl+1 −
γl)/ dim(V ), l = 1, ..., t. The pair (V•(λ), β•(λ)) is the weighted flag of λ.

Since P (λ) = P (nλ) for all n ∈ N, the group P (λ) is also well defined for
rational one-parameter subgroups, and it only depends on the conjugacy class
of λ in P (λ). Finally, writing G as a product of root groups, we see that
λ ∈ X⋆(Pi)Q defines an element λ ∈ X⋆(Pi)

∨Q,+, if and only if Pi = P (λ).
It will often be convenient for us to view ai ∈ X⋆(Pi)

∨Q,+ as a rational one-
parameter subgroup of G which we will denote by the same symbol.

Remark 4.1.2. i) Let (P, s) be a flagged principal G-bundle and Pxi,Pi the Pi-
torsor over xi defined by si, i = 1, ..., b. Denote further Psi := AutPi(Pxi,Pi) ⊂
AutG(Pxi) the corresponding parabolic subgroup. Any (Pi-equivariant) triv-
ialization Pxi,Pi

∼= Pi defines an isomorphism Psi
∼= Pi. This isomorphism is

canonical up to inner automorphisms of Pi, so that we obtain canonical isomor-
phisms X⋆(Pi)Q ∼= X⋆(Psi)Q and X⋆(Pi)

∨Q,+
∼= X⋆(Psi )

∨Q,+, i = 1, ..., b. Given
ai ∈ X⋆(Pi)

∨Q,+ we will denote the corresponding element in X⋆(Psi )
∨Q,+ by

asi . The “one-parameter subgroup” asi is well-defined only up to conjugation
in Psi . If we choose a maximal torus T ⊂ Psi , we may assume that asi is a
one-parameter subgroup of T . As such it is well-defined.
ii) Likewise, if a parabolic subgroupQ of G, a character χ of Q, and a reduction
PQ of P to Q are given, then we get in each point xi a parabolic subgroup
Qi in Aut(Pxi) and a character χsi of that parabolic subgroup, i = 1, ..., b.
iii) Any two parabolic subgroups P and Q of G share a maximal torus, and
all common maximal tori are conjugate in Q ∩ P . Let Qi ⊂ Aut(Pxi) be a
parabolic subgroup, i = 1, ..., b. By our previous remarks, we may assume that
asi is a subgroup of Qi ∩ Psi . Then, for any i and any character χi ∈ X⋆(Qi),
the value of the pairing 〈χi, asi〉 is well-defined.

These remarks also show the following.

Lemma 4.1.3. Let Q,P ⊂ G be parabolic subgroups, a ∈ X⋆(P )∨Q,+, and χ ∈

X⋆(Q) a dominant character. Denote by gχ = χ(g−1 · ·g) the corresponding
character of gQg−1. Then, the value of the function

G −→ Q
g 7−→ 〈gχ, a〉

at an element of G depends only on the image of that element in Q\G/P .

Example 4.1.4. Using the notations of the above lemma, assume that P = B
is a Borel subgroup and assume that Q contains B. Choose a maximal torus
T ⊂ B, denote by ∆P and ∆Q the roots of P and Q, respectively, and by W
and WQ the Weyl groups of G and Q/Ru(Q), respectively. Then, the double
coset Q\G/P is in bijection to WQ\W and, by Bruhat decomposition, we know
that QwP/P ⊂ G/P lies in the closure of Qw′P/P only if all roots of wQw−1

which do not lie in ∆P are contained in ∆w′Qw′−1 . Now, since a ∈ X⋆(P )∨Q,+,
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we know that 〈α, a〉 < 0 occurs precisely for the roots α 6∈ ∆P . Thus, we find
〈wχ, a〉 ≥ 〈w

′

χ, a〉, whenever QwP lies in the closure of Qw′P and equality
implies that the double cosets coincide.
In particular the largest value of 〈wχ, a〉 is obtained for w = 1 and the most
negative one for the longest element of W .

Fix a ∈
∏b

i=1X
⋆(Pi)

∨Q,+. Using Remark 4.1.2 and Lemma 4.1.3, we define the
a-parabolic degree (of the reduction PQ of P) as the function

a-deg(PQ) : X⋆(Q) −→ Q
χ 7−→ deg

(
PQ(χ)

)
+

b∑

i=1

〈χsi , asi〉.

(As usual, PQ(χ) is the line bundle on C that is associated with the principal
Q-bundle PQ and the character χ : Q −→ Gm(k).) We write a-deg(PQ) :=
a-deg(PQ)(detQ) where detQ is the character defined by the determinant of
the adjoint representation of Q.
A flagged principal G-bundle (P, s) is called a-(semi)stable, if for any parabolic
subgroup Q ⊂ G and any reduction PQ of P to Q, the condition

a-deg(PQ)(≤)0

is verified. Here the standard notation (≤) means that for stable bundles we
require a strict inequality, whereas for semistable bundles ≤ is allowed.
The a-parabolic degree of instability of (P, s) is set to be

idega(P, s) := max
{
a-deg(PQ)

∣∣Q ⊂ G a parabolic subgroup

and PQ a reduction of P to Q
}
.

Remark 4.1.5. i) Let Q be a maximal parabolic subgroup of G. Then, all
dominant characters on Q are positive rational multiples of the corresponding
fundamental weight. Thus, they are also positive rational multiples of the char-
acter detQ. If Q is an arbitrary parabolic subgroup and χ is a dominant char-
acter on it, then one finds maximal parabolic subgroups Q1, ..., QT that contain
it and such that χ is a positive rational linear combination of the characters
detQ1 ,...,detQT (viewed as characters of Q). Therefore, a flagged principal G-
bundle (P, s) is a-semistable, if and only if for any parabolic subgroup Q, any
reduction PQ of P to Q, and any dominant character χ ∈ X⋆(Q), we have
a-deg(PQ)(χ) ≤ 0. Or, equivalently, we may use anti-dominant characters
χ and require a-deg(PQ)(χ) ≥ 0. (We have used the version with dominant
characters, because this allows us to adapt Behrend’s existence proof of the
canonical reduction ([4], [6]) more easily. For our GIT computations below,
the formulation with anti-dominant characters seems better suited.)
ii) From our observations in i), we also infer that it suffices to test semistability
for maximal parabolic subgroups.
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iii) The a-parabolic degree of instability is finite, because the degree of insta-
bility is finite and the values of 〈χsi , asi〉, i = 1, ..., b, are bounded for every
fixed a, and only finitely many χ occur.

An element ai ∈ X⋆(Pi)
∨Q,+ is called admissible, if for some maximal torus

T ⊂ Pi, such that ai factors through T , we have |〈α, ai〉| <
1
2 for all roots α.

Note that this does not depend on the choice of T , because all maximal tori are
conjugate over k and conjugation permutes the roots. The stability parameter
a is called admissible, if ai is admissible for i = 1, ..., b.

4.2 General Remarks on Semistability

As in the case of vector bundles, the notions of a-semistability and a-stability
will coincide, if a satisfies some coprimality condition. In the following lemma,
we will also allow real stability parameters a ∈

⊕b
i=1X

⋆(Pi)
∨R in order to define

a nice chamber decomposition. Clearly, a-(semi)stability may also be defined
for such parameters.

Lemma 4.2.1. Fix the type (x, P ). For every parabolic subgroup Q ∈ G and
every d ∈ Z, we introduce the wall

WQ,d :=

{
a ∈

b⊕

i=1

X⋆(Pi)
∨R ∣∣ b∑

i=1

〈detQ, ai〉 = d

}
.

Then, the following properties are satisfied:
i) For every bounded subset A ⊂ X⋆(Pi)

∨R, there are only finitely many walls
WQ,d with WQ,d ∩A 6= ∅.
ii) If one of the groups Pi is a Borel subgroup, then WQ,d is for all parabolic
subgroups Q and all integers d a proper subset of codimension 1 or empty.
iii) If

a 6∈
⋃

Q⊂G parabolic, d∈ZWQ,d,

then every a-semistable bundle is a-stable.
iv) If the stability parameters a and a′ lie in the same connected component of

b⊕

i=1

X⋆(Pi)
∨R \

⋃

Q⊂G parabolic, d∈ZWQ,d,

then the notions of a-(semi)stability and a′-(semi)stability coincide.

v) Let C be a connected component of
⊕b

i=1X
⋆(Pi)

∨R\⋃Q⊂G parabolic, d∈ZWQ,d.

If a ∈ C and a′ ∈ C , then every a′-stable bundle is a-stable and every a-
semistable bundle is a′-semistable.

A stability parameter a satisfying the condition stated in iii) of the lemma is
said to be of coprime type.
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Proof. Let c be a conjugacy class of parabolic subgroups in G and Qc a rep-
resentative of c. For a parabolic subgroup Q in the class c and i ∈ { 1, ..., b },
the number 〈detQ, ai〉 depends only on the class of Q in Qc\G/Pi. This was
shown in Lemma 4.1.3. Since there are only finitely many conjugacy classes of
parabolic subgroups and any set of the form Q\G/P , P , Q parabolic subgroups
of G, is finite, there are only finitely many functions of the form

a 7−→

b∑

i=1

〈detQ, ai〉

on
⊕b

i=1X
⋆(Pi)

∨R, and any bounded set A is “hit” by only finitely many walls.
The second part is easy, because, for a Borel subgroup, one has X⋆(B) =
X⋆(T ), so that 〈detQ, .〉 cannot vanish identically on X⋆(B)∨R.
For a properly semistable flagged principal G-bundle (P, s), there are
a parabolic subgroup Q and a reduction PQ of P to Q, such that∑b

i=1〈detQ, ai〉 = − deg(PQ) ∈ Z. This immediately yields iii) and also proves
the last two statements.

Proposition 4.2.2. Fix a connected component Bunϑ
G of BunG and a Borel

subgroup B ⊂ G. Then, for all h ∈ Z, there exists a number b0 ∈ N, such
that, for any b > b0, and any collection x = (x1, ..., xb) of distinct k-rational

points on C, there is an admissible stability parameter ab ∈
∏b

i=1X
⋆(B)∨Q,+ of

coprime type with the following property: for every principal G-bundle P with
degree of instability ≤ h, there exists a flagging s with si : {xi} → P|{xi}/B,

i = 1, ..., b, such that (P, s) is an ab-stable flagged principal G-bundle of type
(xb, (B, ..., B)).

Proof. Part v) of Lemma 4.2.1 shows that we may replace any stability param-
eter by one of coprime type, while enlarging the set of stable bundles. So we
do not have to worry about the coprimality condition on a.
Let Bunϑ,≤h

G be the stack of principal G-bundles of instability degree ≤ h.
This is an open substack of finite type of BunG [4]. Choose a ∈ X⋆(B)∨Q,+,
such that for all parabolic subgroups Q ⊂ G one has either 〈detQ, a〉 > 0 or
〈detQ, a〉 < −2h. Such a choice is possible by Lemma 4.2.1, ii): we can find
a′ ∈ X⋆(B)Q, such that the finitely many values 〈detQ, a

′〉 are all non-zero.
Multiplying a′ with a sufficiently large constant, we find a. Set

D := max
{
〈detQ, a〉 |Q ⊂ G a parabolic subgroup

}
.

Note that this is a positive number.
Next, choose a sequence (xn)n≥1 of distinct points in C(k), set xb := (x1, ..., xb),
and consider, for b ∈ N, the stability parameter ab := (a/b, . . . , a/b). It will be
admissible for b≫ 0.

Observation. Let P be a principal G-bundle, Q ⊂ G a parabolic subgroup,
and PQ a reduction of P to Q, such that deg(PQ) < −D. Then, for any
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b and any choice of sections si : {xi} → P|{xi}/B, i = 1, ..., b, we have

ab- deg(PQ) < 0.

We want to estimate the dimension of the space of ab-unstable flagged principal
G-bundles (P, s) of type (xb, (B, ..., B)) with P ∈ Bunϑ,≤h

G . First of all, the
stack

Reductions :=

〈
(
P,PQ

) ∣∣∣∣
P ∈ Bunϑ,≤h

G ,
PQ a reduction of P to the parabolic
subgroup Q with deg(PQ) ≥ −D

〉

is an algebraic stack of finite type: reductions of a principal G-bundle P

to Q are given by sections of P/Q, and P/Q is projective over the base.
Thus, by Grothendieck’s construction of the quot schemes, these sections are
parametrized by a countable union of quasi-projective schemes. We may apply
this to the universal bundle over Bunϑ,≤h

G ×C, because locally we may use the
quot schemes for any bounded family over a scheme and the resulting schemes
glue, because the functor is defined over the stack. The substack of reductions
of fixed degree is of finite type, because the reduction is defined by the induced
vector subbundle of the adjoint bundle of rank dim(Q) and the same degree as
the reduction. In any bounded family of vector bundles, the vector subbundles
of given rank and degree form also a bounded family. Finally, recall that we
look only at degrees between −D and h.
Therefore, the fiber product

Test := Reductions ×
Bun

ϑ,≤h
G

Bunϑ,≤h
G,xb

parameterizing flagged principal G-bundles of type (xb, (B, ..., B)) together
with a reduction of bounded degree to a parabolic subgroup is for any b ∈ N of
finite type. Consider the closed substack Bad ⊂ Test given by (P, s,PQ)
with ab- deg(PQ) ≥ 0. We can estimate the dimension of the fibers of

Bad → Reductions as follows: fix P ∈ Bunϑ,≤h
G , a parabolic subgroup Q ⊂ G,

and a reduction PQ of P to Q. Given b, the variety of flaggings of P is

X
b
i=1P|{xi}/B

∼= (G/B)×b. Now, for every i, the subset
{
si ∈ P|{xi}/B | 〈detQ, asi〉 < 0

}
⊂ Pxi/B

is non-empty and open. Denote its complement by Zi. Now, if #{i|si 6∈ Zi} >
b · (h+D)/(2h+D), then (P, s) is ab-stable: indeed, we compute

ab- deg(PQ) = deg(PQ) +

b∑

i=1

〈detQ, asi〉

< h− b ·
h+D

2h+D
·
2h

b
+ b ·

(
1 −

h+D

2h+D

)
·
D

b
= 0.

Thus,

dim(Bad) ≤ dim(Reductions) + b · dim(G/B) − b ·
h

2h+D
.
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Thus, for b≫ 0, we see that dim(Bad) < b ·dim(G/B) and therefore the image

of Bad in Bunϑ,≤h
G,xb cannot contain any fiber of Bunϑ,≤h

G,xb → Bunϑ,≤h
G .

Remark 4.2.3. The proof also shows that we may make the codimension of the
locus of ab-unstable flagged principal G-bundles as large as we wish.

4.3 The Canonical Reduction for Flagged Principal Bundles

Motivated by work of Harder [20], Stuhler explained in [41] how to define a
notion of stability for Arakelov group schemes over curves and how to use
Behrend’s technique of complementary polyhedra to prove the existence of a
canonical reduction to a parabolic subgroup in this situation. We only had
to translate this to our special case of flagged principal G-bundles. According
to Behrend, it suffices to show that the parabolic degree defined above defines
a complementary polyhedron, a concept which we will recall below. All the
results of this section are due to Behrend [6] (with some simplifications given
by Harder and Stuhler in the above references). We only have to verify that his
theory applies to our situation. Since in our case of flagged principal bundles
the arguments simplify a bit, we will try to give a self-contained account.
Let (P, s) be a flagged principal G-bundle on C and fix a stability parameter
a. Let P ⊂ G be a parabolic subgroup. A reduction PP of P to P is called
canonical, if

(1) a-deg(PP ) = idega(P, s).

(2) P is a maximal element in the set of parabolic subgroups for which there
is a reduction PP of degree idega(P, s).

Remark 4.3.1. Let PP be a canonical reduction of P and denote by Ru(P ) the
unipotent radical of P . Note that by Remark 4.1.2, iii), the induced principal
(P/Ru(P ))-bundle PP /Ru(P ) inherits a flagging s′: indeed, we may choose a
representative for asi which lies in a maximal torus of Aut(P)|{xi} which is
contained in the intersection of the parabolic subgroup given by the flagging at
xi with the parabolic subgroup given by the canonical reduction and define the
parabolic subgroup of Aut(PP /Ru(P ))|{xi} associated with asi as the flagging
s′i of PP /Ru(P ) at xi, i = 1, ..., b. Using this, we find that PP has the
following properties:

(1′) (PP /Ru(P ), s′) is an a-semistable flagged principal bundle.
This holds, because the preimage of a reduction of positive degree of
PP /Ru(P ) would define a parabolic reduction of larger degree in P.

(2′) For all parabolic subgroups P ′ containing P , one has the inequality
a-deg(PP )(detP ⊗ det−1

P ′ ) > 0. In fact, by the definition of a canonical re-
duction, we know that a-deg(PP )(detP ′) = a-deg(PP ′) < a-deg(PP ) =
a-deg(PP )(detP ).

We can now state the analog of Behrend’s theorem for flagged principal bundles:
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Theorem 4.3.2. Let (P, s) be a flagged principal G-bundle and a an admissible
stability parameter. Then, there is a unique reduction of P to a parabolic
subgroup P ⊂ G, satisfying the above conditions (1′) and (2′). Moreover, this
is a canonical reduction of (P, s).

Let us rewrite Behrend’s proof in our situation. Since canonical reductions
of P exist, only the uniqueness has to be proved. Thus, fix two parabolic
subgroups P and Q of G and let PP and PQ be reductions of P to P and Q,
respectively. Since any two parabolic subgroups share a maximal torus, we may
assume that, locally at the generic point η ∈ C, there is a reduction PT,η of P

to a torus T ⊂ P ∩Q, such that PP,η = PT,η ×T P and PQ,η = PT,η ×T Q
as subbundles of P.
Note further that any reduction of the generic fiber of P to a parabolic sub-
group canonically extends to a reduction of P, so that PP and PQ are deter-
mined by PP,η and PQ,η, respectively. We therefore fix a reduction PT,η. For
any parabolic subgroup T ⊂ P ⊂ G, this defines a reduction PP of P, and we
only need to study how the degree of PP varies with P . Finally, given a Borel
subgroup T ⊂ B ⊂ P , the parabolic degree a-deg(PB) determines a-deg(PP ).
Thus, like Behrend, we consider these degrees as a map:

d :
{
T ⊂ B ⊂ G |Borel subgroup

}
−→ X⋆(T )∨

B 7−→ a-deg(PB).

This map is a “complementary polyhedron”, i.e., it satisfies:

(P1) If B and B′ are two Borel subgroups contained in the parabolic subgroup
P ⊂ G, then d(B)|X⋆(P ) = d(B′)|X⋆(P ).

(P2) Let B and B′ be two Borel subgroups, such that the simple roots of B
are IB = {α, α1, . . . αr−1} and {−α} = −IB ∩ ∆B′ . Then, d(B)(α) +
d(B′)(−α) ≤ 0.

(P1) is clear, since both sides only depend on the reduction of P to P .
To see (P2), let L be a Levi subgroup of Pα := BB′, and set L′ :=
Pα/Ru(Pα)Z(L) ∼= L/Z(L). Then, L := Pα/Ru(Pα)Z(L) is the principal
L′-bundle obtained from PPα by extension of the structure group via Pα → L′,
and we may compute d(B)(α) and d(B′)(α) from L and the induced reduc-
tions. Thus, by replacing G by L′, we may assume that G is semisimple of
rank one and that B and B′ define reductions LB and LB′ of L which are
opposite at the generic point. Denote by g, b, and b′ the Lie algebras of G, B,
and B′, respectively, and by uα the root space of α.
Since the reductions are opposite in the generic fiber, the composition

LB ×B uα ⊂ LB ×B g = LB′ ×B′

g → LB′ ×B g/b′

is non-zero, i.e., there is an injective map of line bundles LB(α) → LB′(α).
If this map is an isomorphism at xi, then LB and LB′ are opposite in this
fiber. In this case, if si defines a reduction to either LB,xi or LB′,xi , then
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〈α, asi〉LB + 〈−α, asi〉LB′ = 0, and, if the reduction is different from LB,xi

and LB′,xi , then 〈α, asi〉LB = 〈−α, asi〉LB′ ≤ 0. (Note that by our reduction
to the case of semisimple rank one, there are only two possible values for the
product 〈., .〉, by Lemma 4.1.3). If the map is not an isomorphism at xi, then
deg(LB(α)) ≤ deg(LB′(α))−1. Thus, our claim follows again, because we have
chosen a to be admissible, i.e., 2|〈α, ai〉| < 1. Altogether, we have established
(P2). In the case G = SL3, the above properties imply that the points d(B)
are the corners of a hexagon whose sides are parallel to the coroots. This might
motivate the following observation of Behrend. (For any M ⊂ X⋆(T )∨, denote
by conv(M) the convex hull of M (in X⋆(T )∨R).)

Lemma 4.3.3 ([6], Lemma 2.5). With the above notation, we have

conv
({
d(B) |T ⊂ B

})
=

⋂

P⊃T
P max. par.

{
x ∈ X⋆(T )∨ |x(detP ) ≥ a-deg(PP )(detP )

}
.

In particular, if (P, s) is semistable, then this convex set contains 0.

Note that, for a maximal parabolic subgroup P , the space X⋆(P )Q is one
dimensional, so that in the above we might replace detP by any dominant
character λ ∈ X⋆(P )Q.

Proof. Again, given a parabolic subgroup P ⊃ T , denote by ∆P the set of
roots of P and, given a Borel subgroup B ⊃ T , by IB the set of positive simple
roots.
To prove the inclusion “⊂”, we fix P and show that d(B)(detP ) ≥ d(P )(detP ).
If B ⊂ P , then this holds by definition. Otherwise, let −α0 ∈ IB \ ∆P be a
simple root of B which is not a root of P , so that α0 ∈ ∆P . Let B′ be the
Borel subgroup that differs fromB by α0, and let Pα0 be the parabolic subgroup
generated by BB′. If we show that detP = λα0 +mα0, with λα0 ∈ X⋆(Pα0)Q
and m ≥ 0, then, by the properties (P1) and (P2) of d, we see that

d(B)(detP ) = d(B)(λα0 ) +md(B)(α0)

≥ d(B′)(λα0 ) +md(B′)(α0) = d(B′)(detP ).

Iterating this procedure, we finally arrive at the case B ⊂ P .
Let (., .) be a W -invariant scalar product on X⋆(T )Q. Define α∨

0 , such that
the reflection sα0 is given as λ 7→ λ − (λ, α∨

0 )α0. Then, we need to show
that (detP , α

∨
0 ) ≥ 0. Recall that detP =

∑
α∈∆P

α. For a root α ∈ ∆P

with (α, α∨
0 ) < 0, we know that sα0(α) ∈ ∆P , because α0, α ∈ ∆P , and

(sα0(α), α∨
0 ) = −(α, α∨

0 ). Thus, our assertion is trivial.
To prove the other inclusion, Behrend proceeds by induction on the rank of
G. The claim holds, if X⋆(T ) is one dimensional. Let P ⊃ T be a maxi-
mal parabolic subgroup with Levi subgroup L. Then, the polyhedron for the
associated Levi bundle is given by

conv
({
d(B) |T ⊂ B ⊂ P

})

⊂
{
ϕ ∈ X⋆(T )∨Q |ϕ(detP ) = a-deg(PP )(detP )

}
∼= X⋆(T/Z(L))∨Q.
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Now, in the first step of the proof, we have seen that, for any Borel subgroup
B ⊃ T , either d(B)(detP ) > a-deg(PP )) or d(B) = d(B′) for some Borel
subgroup B′ ⊂ P . Thus,

conv
({
d(B) |T ⊂ B

})
∩
{
ϕ |ϕ(detP ) = a-deg(PP )

}

= conv
({
d(B) |T ⊂ B ⊂ P

})
.

This shows that the d(B) also span the intersection of the halfspaces.

Again, fix a scalar product (., .) on X⋆(T )∨Q which is invariant under the action
of the Weyl group of G. Then, Behrend’s theorem follows immediately from:

Proposition 4.3.4 ([6], Proposition 3.13). Let PQ be a reduction of P sat-
isfying (1′) and (2′), and let PT,η be a reduction of PQ to T at the generic
point of C. Then, PQ is also defined as the reduction to the parabolic sub-
group associated with the rational one-parameter subgroup of least distance to
the origin in conv({ d(B) |T ⊂ B }).

Proof. Again, let Q ⊂ G be the parabolic subgroup corresponding to the re-
duction PQ, and let L be a Levi subgroup of Q. The intersection

⋂

P⊃Q
P max. parabolic

{
x ∈ X⋆(T )∨Q |x(detP ) = a-deg(PP )

}
∩X⋆(Z(L))∨Q

contains only one point, call it yQ. Indeed, X⋆(Q)Q ∼= X⋆(Z(L))Q and, if
Pi ⊃ Q, i = 1, . . . ,m, are the maximal parabolic subgroups containing Q, then
(detPi)i=1,...,m is a basis for X⋆(Q)Q.
Claim 1: Under the identification X⋆(T )∨ ∼= X⋆(T ), the parabolic subgroup
defined by yQ ∈ X⋆(T ) is Q.
First, yQ ∈ X⋆(Z(L))∨ implies that yQ ∈ X⋆(Z(L))Q. Furthermore, since the
characters detPi , i = 1, ...,m, form a basis of X⋆(Q)Q, we have yQ(detP ) =
a-deg(PQ)(detP ), for all maximal parabolic subgroups P ⊃ Q. Therefore,
property (2′) of PQ implies that the parabolic subgroup associated with yQ is
Q (compare the comments before Remark 4.1.2).
Claim 2: yQ ∈ conv({ d(B) |T ⊂ B ⊂ Q }) ⊂ conv({ d(B) |T ⊂ B }).
We have the exact sequence

X⋆(Z(L))∨Q −→ X⋆(T )∨Q π
−→ X⋆(T/Z(L))∨,

and π(conv{ d(B) |T ⊂ B ⊂ Q }) is the polyhedron of the Levi bun-
dle PQ/Ru(Q), which is semistable by assumption. In particular, 0 ∈
π(conv{ d(B) |T ⊂ B ⊂ Q }) (Lemma 4.3.3). Thus, conv({ d(B) |T ⊂ B ⊂
Q })∩X⋆(Z(L))∨ 6= ∅, and yQ is the only point that can be contained in this
intersection.
Claim 3: Under the identification X⋆(T )∨R ∼= X⋆(T )R given by the W -invariant
scalar product (., .), we have yQ =

∑m
i=1 ni detPi with ni > 0, i = 1, ...,m.
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First, X⋆(Q)R ∼= X⋆(Z(L))R is the intersection of the subspaces invariant
under the reflections sαi , for αi ∈ IB \ IQ, i.e., X⋆(Q)R = (

⊕
αi∈IB\IQ

Rαi)
⊥.

In particular,X⋆(Z(L))∨R is the subspace that is invariant under the Weyl group
WL of L.
Let B ⊂ Q be a Borel subgroup, αi a simple root of B for which −αi is not
a root of Q, and Pmin

i the parabolic subgroup obtained from Q by adding the
root αi, i = 1, ...,m. Define α̃i := detQ ⊗ det−1

Pmin
i

∈ X⋆(Q), i = 1, ...,m. Then,

α̃i = lαi +
∑

β∈IB\IQ
lββ ∈ X⋆(Q) with l > 0, lβ ≥ 0, i = 1, ...,m. Therefore,

α̃i is the l-fold multiple of the orthogonal projection of αi to X⋆(Q), i =
1, ...,m. Moreover, detPi is invariant under the reflection sα, for α ∈ IB \ {αi},
i = 1, ...,m. Since α̃i and detPi are both positive linear combinations of the
simple roots, we find that (detPj , α̃k) = cjδjk with cj > 0, j, k = 1, ...,m.
Now, yQ|X⋆(Q) = a-deg(PQ) and deg(PQ)(α̃i) > 0, i = 1, ...,m, because PQ

satisfies (2′). We infer yQ =
∑m

i=1 ni detPi with ni > 0, for i = 1, ...,m.
Claim 4: yQ is the point of least distance to 0 in conv(d(B)).
We have seen in Lemma 4.3.3 that

conv
({
d(B) |T ⊂ B

})
=

⋂

P⊃T
P max. parabolic

{
x ∈ X⋆(T )∨ |x(detP ) ≥ a-deg(PP )

}
.

Thus, for any x ∈ conv({ d(B) |T ⊂ B }) and any i ∈ { 1, ...,m }, we have
x(detPi) > a-deg(PQ)(detPi) = yQ(detPi). Since yQ =

∑m
i=1 ni detPi with

ni ≥ 0, i = 1, ...,m, we see that

(x− yQ, yQ) =

m∑

i=1

ni

(
x(detPi) − yQ(detPi)

)
≥ 0,

so that ‖x‖ ≥ ‖yQ‖.

4.4 Semistable Reduction for Flagged Principal Bundles

Following our strategy from [22],[23], we want to prove a semistable reduction
theorem for flagged principal bundles.

Theorem 4.4.1. Let C be a smooth projective curve over the discrete valuation
ring R with residue field k. Let { xi : Spec(R) → C | i = 1, . . . , b } be a finite
set of disjoint sections, G a semisimple Chevalley group scheme over R, P a
tuple of parabolic subgroups of G, and a an admissible stability parameter.
Then, for any a-semistable flagged principal G-bundle (PK , sK) over CK , there
is a finite extension R′ ⊃ R, such that (PK , sK) extends to an a-semistable
flagged principal G-bundle over CR′ .

Proof. In order to ease notation, we will assume that Pi = B, i = 1, ..., b, for a
fixed Borel subgroup B of G. For our main application, this case is sufficient.
The other cases are proved in the same way. Write S = { x1, . . . , xb }, and
consider S as a closed subscheme of C.
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First Step: Find an arbitrary extension of GK to CR′ .
We know ([22], First Step) that, after replacing R by a finite extension, we
can always extend the principal G-bundle PK to a principal bundle PR over
CR. The reductions of PR|S are parameterized by a scheme which is locally
(over R) isomorphic to G/B ×R S. Since this scheme is projective over R, the
flaggings of PK|K×RS extend uniquely to flaggings si of PR|S , i = 1, ..., b.
Second Step: Find a modification of (PR, s).
Fix a local parameter π ∈ R. Assume that (Pk, s) is not semistable. Then, by
Theorem 4.3.2, there is a canonical reduction of Pk to a parabolic subgroup
P ⊂ G. Let T ⊂ B ∩ P be a maximal torus of G. The relative position of the
reduction to P and to B at xi is given by an element of P\G/B ∼= WP \W ,
i = 1, ..., b. Here, W = N(T )/T is the Weyl group of G, and WP is the
Weyl group of the Levi quotient of P . For i = 1, . . . , b, we choose an element
wi ∈ N(T ) which defines the relative position at xi.
We want to describe (PR, s) by a glueing cocycle. Recall that any g ∈∏

S G((t))(R) defines a principal G-bundle Pg on C together with a trivial-
ization of the restrictions Pg|C\S and Pg| bOC,S

. In particular, the latter trivi-

alization also defines flaggings at S.
As in [22], we choose a maximal parabolic subgroup Q ⊃ P . Then, there
is a finite, disjoint set of sections U , such that we can find a cocycle g ∈∏

S G((t))(R) ×
∏

U G((t))(R) and g0 ∈
∏

S G(R), satisfying the following:

(1) gg0 defines (PR, s)

(2) g mod π ∈
∏

S∪U P ((t))(k) defines the canonical reduction of Pk to P .

(3) (g0)xi∈S mod π = (wi)xi∈S ∈ N(T )(k).

(4) Either g satisfies the conditions of [22], Proposition 7, or g ∈∏
S∪U P ((t))(R).

(5) If g ∈
∏

S∪U P ((t))(R), then the maximal N , such that (g0)xi∈S ≡
(wi)xi∈S mod πN is finite. Furthermore, (g0)xi∈S mod πN+1 6∈∏

xi∈S PwiB.

For the above cocycle gg0, choose z = πℓ/N with ℓ maximal, such that the
cocycle zgg0(w

−1z−1w) = zgz−1zg0(w
−1z−1w) is an R[π1/N ]-valued cocycle.

This defines a flagged principal G-bundle (P ′, s′) which is another extension
of (PK , sK).
Third Step: Show that (P ′

k, s
′) is less unstable.

The Harder–Narasimhan strata (HN-strata) that we shall consider in the fol-
lowing are understood as Harder–Narasimhan strata in the stack BunG,x,P ,a of
flagged principal G-bundles of type (x, P ) with respect to the stability param-
eter a.

Lemma 4.4.2. Let (Pη, s) be a flagged principal G-bundle which specializes to
the flagged principal G-bundle (P0, s), i.e., assume that there is a family of
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flagged principal G-bundles parameterized by the complete discrete valuation
ring R with special fiber (P0, s) and generic fiber (Pη, s). Assume further that
(Pη, s) has a canonical reduction defined over the generic point of R. Then,
idega(Pη, s) ≤ idega(P0, s). If the flagged principal G-bundles (Pη, s) and
(P0, s) do not lie in the same HN-stratum, then idega(Pη, s) < idega(P0, s).

Proof. Let PP,η denote the canonical reduction of (Pη, s). This induces a
reduction P0,P of the generic fiber by first extending the reduction to an open
subset of the special fiber and then extending this to a reduction over the
special fiber. Let us compare the contributions of the flaggings at the point
xi, i = 1, ..., b. First assume that the reduction PP,η extends to the special
fiber, locally at the point xi. In this case, this extension coincides with P0,P

and we can apply the semicontinuity argument of Example 4.1.4 to see that
the contribution of 〈detP , ai〉 can at most increase in the special fiber.
In the other case, the reduction PP,η|{xi} can also be extended to a reduction
of Pxi . We denote the corresponding reduction by PP,xi . To this reduction,
we can apply the same argument as before to see that the corresponding value
of 〈detP , ai〉 can at most increase in the special fiber.
Finally, let Pmax

p be the maximal subsheaf of P ×G Lie(G) that extends

Pη,P ×P Lie(P ). Then, in the special fiber over xi, we have

P
max
p|{xi,0 } ⊂ Pxi,P ×P Lie(P ) ∩ P0,P ×P Lie(P )|{xi,0 }, i = 1, ..., b.

Since a is admissible, this implies

ideg(Pη, s) ≤ a-deg(P0,P , s)(det(P ))−

− deg
(
coker(Pmax

p,0 → P0,P ×P Lie(P )
)
·

·
(
1 − 2 · max

{
|〈α, ai〉| |α a root of G, i = 1, . . . , b

})

≤ ideg(P0, s).

Therefore, we see that either ideg(Pη) < ideg(P0), or the canonical reduction
PP defines a reduction of P0 of the same parabolic degree, which must then
be the canonical reduction by Theorem 4.3.2.

Lemma 4.4.3. Let P be a principal G-bundle and (P, s) and (P, s′) two flag-
gings of P of the same type. Let PP be the canonical reduction of (P, s), and
denote by wi and w′

i ∈ P\G/B the elements defined by the relative position
of the two reductions of P|{xi} to P and B given by si and s′i, respectively,
i = 1, ..., b. Assume that w′

i specializes to wi, i = 1, ..., b. Then, (P, s′) is less
unstable than (P, s).

Proof. Since s′ specializes to s, we can apply Lemma 4.4.2 to see that
ideg(P, s) ≥ ideg(P, s′). Assume that both flagged principal G-bundles lie
in the same HN-stratum. Then, the canonical reduction of (P, s′) defines an-
other reduction P ′

P of P to P . Now, we may use Example 4.1.4 to see that
the parabolic degree of (P ′

P , s) is bigger than the parabolic degree of (PP , s
′),

because w 6= w′.
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Finally, as in [22], third step, choose a Levi subgroup L of Q, set PQ :=
PP ×P Q, and consider the family Qλ of principal Q-bundles over Ck × A1

that is isomorphic to PQ ×Gm over C ×Gm and such that the fiber over 0 is
PQ/Ru(Q)×L Q. Set Pλ := Qλ ×Q G. Note that the flagging of Pk induces
a flagging for the whole family (Pλ, sλ); denote by (P0, s0) the fiber over 0 of
this family.

Lemma 4.4.4. The flagged principal G-bundles (P0, s0) and (Pk, s) lie in the
same HN-stratum of BunG,x,P ,a.

Proof. The principal P -bundle PP also defines a reduction P0,P of P0 to P .
For this reduction, a-deg(P0,P ) = a-deg(PP ), because all terms in the defini-
tion of the degree depend only on the quotient of PP /Ru(P ). By Behrend’s
characterization of the canonical reduction, this implies that P0,P is the canon-
ical reduction of P0.

Corollary 4.4.5. The flagged principal G-bundle (P ′
k, s

′) is less unstable than
(Pk, s).

Proof. As in the case of principal bundles, we only need to compare the HN-
strata of (P ′

k, s
′) and (Pk, s). If P ′ and P are isomorphic as principal G-

bundles (i.e., without flagging), then the cocycle used to define P ′ satisfies
(5). Then, we know that the element g′0 specializes to w, in which case Lemma
4.4.3 proves our claim.

Otherwise, we can argue as in the case of principal bundles [23] to see that the
reduction of P0 to Q does not lift to P ′. So, again we know that P ′ is less
unstable.

As in the case of principal bundles without flaggings, we can now argue as fol-
lows: start with an arbitrary unstable extension (P, s) of the flagged principal
bundle (PK , sK). Either the special fiber of (P, s) is semistable, or we can find
another extension (P ′, s′) which is less unstable. Since the instability degree
of (P, s) is finite, this process will stop after finitely many iterations.

5 Construction of the Moduli Spaces

We will now carry out the GIT construction of the moduli spaces of flagged
principalG-bundles. The strategy is roughly the same as in the case of principal
G-bundles ([36], [38], [15]), i.e., we first introduce flagged pseudo G-bundles
whose moduli spaces can be constructed with the help of decorated flagged
vector bundles and then explain how we obtain the moduli spaces of flagged
principal G-bundles from there. At the end, we will give the full construction of
the moduli space of decorated flagged vector bundles, following and generalizing
[37].
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5.1 Reduction to a Problem for Decorated Vector Bundles

Fix the type (x, P ) of the flagging and the semistability parameter a. We want
to adapt the construction of moduli spaces for principal bundles given in [15] to
flagged principalG-bundles. Thus, we will fix a faithful representation ̺ : G −→
SL(V ) ⊂ GL(V ) on a finite dimensional k-vector space V . Given a principal
G-bundle P over C, we write P(V ) or P(̺) for the vector bundle with fiber
V that is associated with G via the representation ̺, PSL(V ) := P ×G SL(V )
for the corresponding principal SL(V )-bundle, and PGL(V ) := P ×G GL(V )
for the associated principal GL(V )-bundle.

̺-Flagged Principal G-Bundles. — Let P = (P1, ..., Pb) be a tuple of
parabolic subgroups of GL(V ). As before, we fix a tuple x = (x1, ..., xb) of
distinct k-rational points. Then, a ̺-flagged principal G-bundle (of type (x, P ))
is a tuple (P, s) that is composed of a principal G-bundle P and reductions
si : {xi} −→ (PGL(V ) ×C {xi})/Pi of the associated principal GL(V )-bundle
at the points xi, i = 1, ..., b. This time, the stability parameter will be a tuple
a = (a1, ..., ab) with ai ∈ X⋆(Pi)

∨Q,+, i = 1, ..., b.
Before we introduce the correct notion of semistability, we point out that, given
a parabolic subgroup Q of G, a dominant character χ on Q, and ai as above,
there is no intrinsic way to define 〈χsi , asi〉 (compare Section 4). Thus, we have
to explain how we extend a parabolic subgroup of G and a dominant character
on it to a parabolic subgroup of GL(V ) and a dominant character on it. For
this, we use the construction introduced in [36] and [15].

Fix a basis for V and let T̃ ⊂ GL(V ) be the corresponding maximal torus

of diagonal matrices. The basis yields a basis for X⋆(T̃ ), i.e., an iso-

morphism X⋆(T̃ ) ∼= Zn. The symmetric bilinear map Zn × Zn −→ Z,
((b1, ..., bn), (b′1, ..., b

′
m)) 7−→

∑n
i=1 bi · b

′
i induces the symmetric bilinear map

(., .) : X⋆(T̃ ) × X⋆(T̃ ) −→ Z. Let (., .)K : X⋆,K(T̃ ) × X⋆,K(T̃ ) −→ K be itsK-bilinear extension to the vector space X⋆,K(T̃ ) := X⋆(T̃ ) ⊗Z K, K = Q,R.
Since the pairing (., .) is invariant under the Weyl group, it induces similar
pairings on the character and cocharacter groups of any other maximal torus
T̃ ′ ⊂ GL(V ).

On the other hand, given a one-parameter subgroup λ ∈ X⋆(T̃ ) and a char-

acter χ̃ ∈ X⋆(T̃ ), the composition χ̃ ◦ λ : Gm(k) −→ Gm(k) is of the form

z 7−→ z〈eχ,λ〉 and gives the duality pairing 〈., .〉 : X⋆(T̃ ) × X⋆(T̃ ) −→ Z. We

let 〈., .〉K : X⋆K(T̃ ) ×X⋆,K(T̃ ) −→ K, K = Q,R, X⋆K(T̃ ) := X⋆(T̃ ) ⊗Z K, be its

extensions. Thus, any rational one-parameter subgroup λ ∈ X⋆,Q(T̃ ) gives rise

to a character χ̃λ ∈ X⋆Q(T̃ ) defined by

(λ, λ′)Q = 〈 χ̃λ, λ
′ 〉Q, ∀λ′ ∈ X⋆,Q(T̃ ).

One checks that χ̃λ comes from a character of Q := QGL(V )(λ) that depends
only on the conjugacy class of λ within Q. If the weighted flag of λ is, for
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example, ({0} ( U ( V, (1)), then

χ̃λ : QGL(V )(λ) −→ Gm(k) (1)
(
g ⋆
0 h

)
7−→ det(g)dim(U)−dim(V ) · det(h)dim(U).

If T ⊂ G is a maximal torus, then we may extend it to a maximal torus T̃ of
GL(V ). The scalar product on X⋆K(T̃ ) that we have obtained before restricts
to a scalar product on X⋆K(T ). Lemma 2.8 in Chapter II of [32] implies that
the scalar product on X⋆K(T ) thus obtained does not depend on the choice

of the extending torus T̃ . Furthermore, it is invariant under the Weyl group
N (T )/T .
If λ : Gm(k) −→ G is a one-parameter subgroup, then we associate with
it the parabolic subgroup QG(λ), the anti-dominant character χλ, and the
dominant character χ−λ = −χλ. Likewise, we have QGL(V )(λ), the anti-
dominant character χ̃λ, and the dominant character χ̃−λ = −χ̃λ. Note that
QG(λ) = QGL(V )(λ) ∩G and χ̃±λ|QG(λ) = χ±λ.

Proposition 5.1.1. The assignment λ 7−→ (QG(λ), χ−λ) (λ 7−→ (QG(λ), χλ))
is a surjection from the set of one-parameter subgroups of G onto the set of
pairs consisting of a parabolic subgroup of G and a dominant (anti-dominant)
character on that parabolic subgroup.

Proof. See Section 3.2 of [15].

We say that a ̺-flagged principal G-bundle (P, s) is a-(semi)stable, if, for
every one-parameter subgroup λ : Gm(k) −→ G and every reduction of P to
the parabolic subgroup Q := QG(λ), the inequality

deg
(
PQ(χ−λ)

)
+

b∑

i=1

〈
(χ̃−λ)si , asi

〉
(≤)0

holds true.

Associated Flagged Principal Bundles and Semistability. — Now,
we return to the situation where we are given a type (x, P ) with x as usual and
P = (P1, ..., Pb) a tuple of parabolic subgroups of G and a stability parameter
a = (a1, ..., ab) with ai ∈ X⋆(Pi)

∨Q,+, i = 1, ..., b. As we have explained in Sec-
tion 4, we may view ai as a rational one-parameter subgroup ofG with PG(ai) =

Pi, i = 1, ..., b. We set ̺⋆(P ) := (P̃1, ..., P̃b) := (PGL(V )(a1), ..., PGL(V )(ab)) and
̺⋆(a) := (ã1, ..., ãb) := (̺ ◦ a1, ..., ̺ ◦ as). Next note that any flagged principal
G-bundle (P, s) of type (x, P ) defines the ̺-flagged principal GL(V )-bundle
(PGL(V ), ̺⋆(s)), ̺⋆(s) = (s̃1, ..., s̃b), with

s̃i : {xi}
si−→ P|{xi}/Pi →֒ PGL(V )|{xi}/P̃i, i = 1, ..., b.
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Lemma 5.1.2. A flagged principal G-bundle (P, s) of type (x, P ) is a-
(semi)stable, if and only if the associated ̺-flagged principal GL(V )-bundle
(PGL(V ), ̺⋆(s)) of type (x, ̺⋆(P )) is ̺⋆(a)-(semi)stable.

Proof. By Proposition 5.1.1, (P, s) is a-(semi)stable, if and only if, for every
one-parameter subgroup λ : Gm(k) −→ G and every reduction PQ of P to
Q := QG(λ), one has

deg
(
PQ(χ−λ)

)
+

b∑

i=1

〈
(χ−λ)si , asi

〉
(≤)0.

Our contention therefore reduces to the trivial fact 〈(χ−λ)si , asi〉 =
〈(χ̃−λ)si , ãsi〉, i = 1, ..., b.

Another Formulation of Semistability for ̺-Flagged Principal
Bundles. — Before we may introduce even more general objects, we have
to reformulate the notion of a-(semi)stability. The first trivial reformulation
is that we may say that (P, s) is a-(semi)stable, if, for every one-parameter
subgroup λ : Gm(k) −→ G and every reduction of P to the parabolic subgroup
Q := QG(λ), the inequality

deg
(
PQ(χλ)

)
+

b∑

i=1

〈
(χ̃λ)si , asi

〉
(≥)0

holds true.
Next, assume we are given a principal G-bundle P, a one-parameter subgroup
λ : Gm(k) −→ G with weighted flag

(
V•(λ), β•(λ)

)
=
(
{0} ( V1 ( · · · ( Vt ( V, (β1, ..., βt)

)
,

and a reduction PQ of P to Q := QG(λ). Then, we obtain an induced
reduction PQGL(V )(λ) of the principal GL(V )-bundle PGL(V ) to QGL(V )(λ).
The datum of that reduction is equivalent to the datum of a filtration

E•(PQ) : {0} ( E1 ( · · · ( Et ( E with rk(Ei) = dim(Vi), i = 1, ..., t.

Using (1), one easily computes

deg
(
PQ(χλ)

)
=

t∑

i=1

βi ·
(
deg(E) · rk(Ei) − deg(Ei) · rk(E)

)
. (2)

Note that a parabolic subgroup of GL(V ) is the stabilizer of a flag in V . Thus,
the tuple P of parabolic subgroups of GL(V ) gives quotients V −→ Wij , and
subspaces Vij := ker(V −→Wij), j = 1, ..., ti, i = 1, ..., b, such that Vij ( Vij+1,
j = 1, ..., ti − 1, i = 1, ..., b.
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Next, let λ : Gm(k) −→ G be a one-parameter subgroup with weighted flag

(
V•(λ), β•(λ)

)
=
(
{0} ( V ′

1 ( · · · ( V ′
t ( V, (β1, ..., βt)

)

and a a rational one-parameter subgroup of G with weighted flag

(
V•(a), β•(a)

)
=

(
{0} ( V1 ( · · · ( Vτ ( V,

1

dim(V )
· (a1, ..., aτ )

)
.

In addition, define

Qh := V/Vh, Rih := V ′
i /(V

′
i ∩ Vh), rih := dim(Rih), i = 1, ..., t, h = 1, ..., τ,

r := dim(V ). We claim that

〈χ̃λ, a〉 =

t∑

i=1

(
βi ·

τ∑

h=1

ah ·
(
r · rih − rj · dim(Qh)

))
. (3)

By bilinearity, this has to be checked only for τ = t = 1, β1 = 1, and a1 = r.
In this case, it follows easily from the definitions and (1).

Finally, suppose we are given a stability parameter a = (a1, ..., ab) with ai ∈
X⋆(Pi)

∨Q,+, i = 1, ..., b. Then, we write β•(ai) =: (1/r)·(ai1, ..., aiti), i = 1, ..., b.
The parabolic subgroups P1, ..., Pb define quotients V −→ Wij , and we set
rij := dim(Wij), j = 1, ..., ti, i = 1, ..., b. Suppose that (P, s) is a ̺-flagged
principal G-bundle of type (x, P ). Then, we have the associated vector bundle
E, and the reductions si define quotients qij : Ei −→ Qij with dim(Qij) = rij ,
j = 1, ..., ti, i = 1, ..., b. For any subbundle {0} ( F ( E, we set

a-deg(F ) := deg(F ) −

b∑

i=1

ti∑

j=1

aij · dim
(
qij(F )

)
.

Putting (2) and (3) together, we infer the following characterization of semista-
bility.

Proposition 5.1.3. The ̺-flagged principal G-bundle is a-(semi)stable, if and
only if, for every one-parameter subgroup λ of G and every reduction PQ of
P to Q := QG(λ), the inequality

t∑

i=1

βi

(
a-deg(E) · rk(Ei) − a-deg(Ei) · rk(E)

)
(≥)0

is verified. Here,

E•

(
PQ

)
= {0} ( E1 ( · · · ( Et ( E and β•(λ) = (β1, ..., βt).
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Reminder on Pseudo G-Bundles. — Following the general strategy from
[36] and [15], we will first embed principal G-bundles into pseudo G-bundles
which in turn can be embedded into decorated vector bundles for which we
finally can do the GIT-calculations. We have already chosen to view principal
G-bundles as principal GL(V )-bundles together with a reduction to G, i.e.,
as pairs (P, σ) that consist of a principal GL(V )-bundle P and a section
σ : C −→ P/G. Given such a pair (P, σ), let E be the corresponding vector
bundle. Then,

P = Isom(V ⊗ OC , E) ⊂ Hom(V ⊗ OC , E) = Spec
(
Sym⋆(V ⊗ E∨)

)
.

Moreover, the good quotient Hom(V ⊗ OC , E)//G = Spec(Sym⋆(V ⊗ E)G)
exists and there is the open embedding

Isom(V ⊗ OC , E)/G ⊂ Hom(V ⊗ OC , E)//G.

Thus, σ is given by a non-trivial homomorphism τ : Sym⋆(V ⊗E∨)G −→ OC .
This suggests the following definition: a pseudo G-bundle (E, τ) consists of
a vector bundle E with trivial determinant det(E) ∼= OC and a non-trivial
homomorphism τ : Sym⋆(V ⊗ E∨)G −→ OC of OC -algebras. Not any homo-
morphism τ gives rise to a principal G-bundle, but the following result ([36],
Corollary 3.4) gives an important characterization when it does.

Lemma 5.1.4. Let (E, τ) be a pseudo G-bundle with associated section σ : C −→
Hom(V ⊗OC , E)//G. Then, (E, τ) is a principal G-bundle, if and only if there
exists a point x ∈ C, such that

σ(x) ∈ Isom(V,E|{x})/G.

For our purposes, we therefore look at the following objects: a ̺-flagged pseudo
G-bundle (E, τ, q) is a pseudo G-bundle (E, τ) together with quotients

qij : E|{xi} −→ Qij

onto k-vector spaces Qij , j = 1, ..., ti, i = 1, ..., b, such that

ker(qij) ⊆ ker(qij+1), j = 1, ..., ti − 1, i = 1, ..., b. (4)

The tuple (x, r) with r = (rij := dim(Qij), j = 1, ..., ti, i = 1, ..., s) will be
referred to as the type of the flagging. There is an obvious notion of isomorphism
of ̺-flagged pseudo G-bundles.
The algebra Sym⋆(V ⊗ E∨)G is finitely generated, so that the morphism τ is
determined, for s ≫ 0, by its restriction τ≤s :

⊕s
i=1 Symi(V ⊗ E∨)G −→ OC .

In particular, ̺-flagged pseudo-G-bundles form an algebraic stack, locally of
finite type. Lemma 5.1.4 implies that the stack of ̺-flagged G-bundles is an
open substack of the stack of ̺-flagged pseudo G-bundles. Following [15], we
choose s≫ 0, such that
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a) Sym⋆(V ⊗ kr∨)G is generated by elements in degree ≤ s.

b) Sym(s!)(V ⊗ kr∨)G is generated by elements in degree 1, i.e., by the
elements in the vector space Syms!(V ⊗ kr∨)G.

SetVs(E) :=
⊕

(d1,...,ds):

di≥0,
P

idi=s!

(
Symd1

(
(V ⊗ E∨)G

)
⊗ · · · ⊗ Symds

(
Syms(V ⊗ E∨)G

))
.

Then, τ induces morphisms

τs! : Syms!(V ⊗ E∨)G −→ OC

and
ϕ : Vs(E) ։ Syms!(V ⊗ E∨)G −→ OC .

Homogeneous Representations. — Instead of the representation Vs, we
can also allow a more general class of representations without complicating the
arguments. This might be useful for other applications, too. A representation
κ : GLr(k) −→ GL(U) is called a polynomial representation, if it extends to a
(multiplicative) map κ : Mr(k) −→ End(U). We say that κ is homogeneous of
degree u ∈ Z, if

κ
(
z · Er

)
= zu · idU , ∀z ∈ Gm(k).

Let P (r, u) be the abelian category of homogeneous polynomial representations
of GLr(k) of degree u. It comes with the duality functor

⋆ : P (r, u) −→ P (r, u)

κ 7−→
(
κ ◦ id∨

GLr(k)

)∨
.

Here, .∨ stands for the corresponding dual representation. An example for a
representation in P (r, u) is the u-th divided power (Symu(idGLr(k)))

⋆, i.e., the
representation of GLr(k) on

Du(W ) :=
(
Symu(W∨)

)∨
, W := kr.

More generally, we look, for u, v > 0, at the GLr(k)-moduleDu,v(W ) :=
⊕

(u1,...,uv):

ui≥0,
Pv

i=1
ui=u

(
Du1(W ) ⊗ · · · ⊗Duv (W )

)
. (5)

Lemma 5.1.5. Let κ : GLr(k) −→ GL(U) be a homogeneous polynomial repre-
sentation of degree u. Then, there exists an integer v > 0, such that U is a
quotient of the GL(U)-module Du,v(W ). If κ is homogeneous, but not polyno-
mial, then it is a quotient of Du,v(W ) ⊗ (

∧r W )⊗−w for some w > 0.
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Proof. The proof of Proposition 5.3 in [27] shows that any representation
κ′ : GLr(k) −→ GL(U ′) in P (r, u) is, for suitable v > 0, a sub-representation
of the representation of GLr(k) on the vector space

⊕

(u1,...,uv):

ui≥0,
Pv

i=1
ui=u

(
Symu1(W ) ⊗ · · · ⊗ Symuv (W )

)
.

Applying this result to the dual κ⋆ : GLr(k) −→ GL(U⋆) of κ proves the first
assertion.
The second assertion follows from the obvious fact that U ⊗ (

∧r W )⊗w will be
a polynomial representation for large w.

Remark 5.1.6. As is apparent from the construction in [27], the above result
also holds over the ring of integers.

Fix natural numbers u, v and let A be any vector bundle on the curve C, that
is, we do not assume A to have rank r. Then, we set for w ≥ 0Du,v(A) :=

⊕

(u1,...,uv):

ui≥0,
Pv

i=1
ui=u

(
Du1(A)⊗· · ·⊗Duv (A)

)
, Dw(A) :=

(
Symw(A∨)

)∨
.

Remark 5.1.7. Any surjective homomorphism ψ : A −→ B between vector bun-
dles induces a surjective homomorphismDu,v(ψ) : Du,v(A) −→ Du,v(B).

Decorated Flagged Vector Bundles. — Now, fix a line bundle L on
C. A decorated flagged vector bundle of type (r, d, x, r, u, v, L) is a tuple (E, q, ϕ)
which consists of a vector bundle E on C of rank r and degree d, a non-trivial
homomorphism

ϕ : Du,v(E) −→ L,

and a flagging q = (qij : E|{xi} −→ Qij , j = 1, ..., ti, i = 1, ..., s) of type r =
(rij , j = 1, ..., ti, i = 1, ..., s). The moduli functors for the objects we have
considered, so far, are straightforward to define (just form the isomorphism
classes in the corresponding stack). For decorated flagged vector bundles, this
is slightly more delicate. Thus, we give the definition. A family of decorated
flagged vector bundles of type (r, d, x, r, u, v, L) (parameterized by the scheme
S) is a tuple (ES , qS

,NS , ϕS) which consists of a vector bundle ES of rank r
on S × C and fiberwise of degree d, a tuple q

S
= (qS,ij : ES|S×{xi} −→ QS,ij)

of surjections onto vector bundles QS,ij of rank rij , j = 1, ..., ti, i = 1, ..., b,
subject to the conditions in (4), a line bundle NS on S, and a homomorphism
ϕS : Du,v(ES) −→ π⋆

C(L) ⊗ π⋆
S(NS) which is non-trivial on every fiber {s} ×

C. Two such families (ES , qS
,NS , ϕS) and (E′

S , q
′
S
,N ′

S , ϕ
′
S) are said to be

isomorphic, if there exist isomorphisms ψS : ES −→ E′
S and χS : NS −→ N ′

S

fulfilling
qS,ij = q′S,ij ◦ ψS|S×{xi}, j = 1, ..., ti, i = 1, ..., b,
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and
ϕS =

(
idπ⋆

C(L) ⊗ π⋆
S(χS)

)−1
◦ ϕ′

S ◦Du,v(ψS).

Thus, we may form the functor that assigns to every scheme the set of isomor-
phism classes of families of decorated vector bundles of type (r, d, x, r, u, v, L)
parameterized by S.
By Lemma 5.1.5, the representation Vs can be written as the quotient ofDu,v(W ) ⊗ (

∧r
W )⊗−s!. Now, suppose we are given a vector bundle ES on

S ×C, a homomorphism τS : Sym⋆(V ⊗E∨
S )G −→ OS×C and a flagging q

S
of

type (x, r) of ES . Then, the determinant of ES is isomorphic to the pullback
of a line bundle DS on S. Choose an isomorphism det(ES) ∼= π⋆

S(DS), and set
NS := D⊗s!, so that τS gives rise toDu,v(ES) ⊗ N

∨
S ։ Vs(ES) ։ Syms!(V ⊗ E∨

S )G −→ OS×C .

Thus, we obtain the family (ES , qS
,NS , ϕS) of decorated flagged vector bun-

dles. Its isomorphism class does not depend on the choice of the isomorphism
det(ES) ∼= π⋆

S(DS), so that this construction gives rise to a natural transfor-
mation of functors.

Lemma 5.1.8. The above natural transformation applied to S = Spec(K), K
an algebraically closed extension of k, is injective.

Proof. The proof is the same as the one of Lemma 5.1.1 in [15].

We now come to the definition of semistability. Fix the stability parameter a
for the flagging. Here, we view a = (aij , j = 1, ..., ti, i = 1, ..., s) as a tuple of
rational numbers, and we assume that

• aij > 0, j = 1, ..., ti, i = 1, ..., s;

•
∑ti

j=1 aij < 1, i = 1, ..., s.

Then, given a decorated flagged vector bundle (E, q, ϕ) and a weighted filtration
(E•, β•) of E, we define

Ma(E•, β•) :=
t∑

j=1

βj ·
(
a-deg(E) · rk(Ej) − a-deg(Ej) · rk(E)

)
.

The quantity µ(E•, β•;ϕ) is obtained as follows. Let η be the generic point of
the curve C and let E stand for the restriction of E to {η}. Then, the restricted
homomorphism ϕ|{η} gives a point

ση ∈ P(Du,v(E)
)
.

We may choose a one-parameter subgroup λK : Gm(K) −→ SL(E), K := k(C),
whose weighted flag agrees with the restriction of (E•, β•) to {η} and define

µ
(
E•, β•;ϕ

)
:= µ(λK , ση).

This does not depend on the choice of λK .
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Remark 5.1.9. By construction, the vector bundle Du,v(E) is a subbundle of
(E⊗u)⊕N for some N > 0. Set Et+1 := E and, for (i1, ..., iu) ∈ { 1, ..., t+1 }×u,

Ei1 ⋆ · · · ⋆ Eiu :=
(
Ei1 ⊗ · · · ⊗Eiu

)⊕N
∩Du,v(E).

For a weighted filtration (E•, β•) of the vector bundle E, we define the associ-
ated (integral) weight vector

(
γ1, . . . , γ1︸ ︷︷ ︸
(rk E1)×

, γ2, . . . , γ2︸ ︷︷ ︸
(rk E2−rk E1)×

, . . . , γt+1, . . . , γt+1︸ ︷︷ ︸
(rk E−rk Et)×

)
:=

t∑

l=1

βl · γ
(rk El)
r . (6)

(Note that we recover βl = (γl+1 − γl)/r, l = 1, ..., t.)
With these concepts, one readily verifies

µ
(
E•, β•;ϕ

)
=

−min
{
γi1 + · · · + γiu

∣∣ (i1, ..., iu) ∈ { 1, ..., t+ 1 }×u : ϕ|(Ei1⋆···⋆Eiu ) 6≡ 0
}
.

To define semistability, we also fix a positive rational number δ. Then, we say
that a decorated flagged vector bundle is (a, δ)-(semi)stable, if the inequality

Ma(E•, β•) + δ · µ
(
E•, β•;ϕ

)
(≥)0

holds for any weighted filtration (E•, β•) of E.

Boundedness. — The starting point for the GIT construction is the bound-
edness of the family of (a, δ)-semistable decorated flagged vector bundles of type
(r, d, x, r, u, v, L). This property is a consequence of the following statement.

Proposition 5.1.10. Fix the type (r, d, x, r, u, v, L) and the stability parameter
δ. Then, there is a positive constant D0, such that, given a tuple a = (aij , j =

1, ..., ti, 1 = 1, ..., s) of positive rational numbers with
∑ti

j=1 aij < 1 for i =
1, ..., s and an (a, δ)-semistable decorated flagged vector bundle (E, q, ϕ) of type
(r, d, x, r, u, v, L), one finds

µmax(E) ≤
d

r
+D0.

Proof. Let (F, q̃) be any vector bundle with a flagging of type r. Setting R :=
max{ rij | j = 1, ..., ti, i = 1, ..., s }, we derive, for a as in the proposition, the
obvious estimate

deg(F ) ≥ a-deg(F ) ≥ deg(F ) − s · R.

Now, let (E, q, ϕ) be as above and 0 ( F ( E a subbundle. For the weighted
filtration (E• : 0 ( F ( E, β• = (1)), one checks

µ(E•, β•;ϕ) ≤ u · (r − 1).
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Together with these two estimates, the condition of (a, δ)-semistability implies

d · rk(F ) − deg(F ) · r + s · r ·R + δ · u · (r − 1)

≥ a-deg(E) · rk(F ) − a-deg(F ) · r + δ · µ(E•, β•;ϕ) ≥ 0.

We transform this into the inequality

µ(F ) ≤
d

r
+
s · r · R+ δ · u · (r − 1)

rk(F ) · r
≤
d

r
+ s · R+

δ · u · (r − 1)

r︸ ︷︷ ︸
=:D0

.

This is the assertion we made.

5.2 The Moduli Space of Decorated Flagged Vector Bundles

Suppose we are given a constant D. Then, we let S be the bounded family of
isomorphism classes of vector bundles of rank r and degree d with µmax(E) ≤ D.
We also fix an ample line bundle OC(1) of degree one on C, a natural number n,
such that E(n) is globally generated and H1(E(n)) = {0} for any vector bundle
E, such that [E] ∈ S, as well as a vector space Y of dimension d+ r(n+1− g).
Now, a quotient family of decorated flagged vector bundles of type
(r, d, x, r, u, v, L) (parameterized by the scheme S) is a tuple (kS , qS

,NS , ϕS)
which consists of a quotient kS : Y ⊗ π⋆

C(OC(n)) −→ ES , a tuple
q

S
= (qS,ij : ES|S×{xi} −→ QS,ij, j = 1, ..., ti, i = 1, ..., b), a line bundle

NS on S, and a homomorphism ϕS : Du,v(ES) −→ π⋆
C(L) ⊗ π⋆

S(NS) with the
following properties:

• ES is a vector bundle on S × C, such that [ES|{s}×C ] ∈ S, for every
s ∈ S(k),

• πS⋆(kS ⊗ idπ⋆
C(OC(n))) : Y ⊗ OS −→ πS⋆(ES ⊗ π⋆

C(OC(n))) is an isomor-
phism,

• q
S

consists of surjections onto vector bundles QS,ij of rank rij , j =
1, ..., ti, i = 1, ..., b, subject to the conditions in (4), and

• ϕS is non-trivial on every fiber {s} × C.

Two such families (kS , qS
,NS , ϕS) and (k′S , q

′
S
,N ′

S , ϕ
′
S) are said to be iso-

morphic, if there exist isomorphisms ψS : ES −→ E′
S and χS : NS −→ N ′

S ,
fulfilling

kS = k′S ◦ ψS , qS,ij = q′S,ij ◦ ψS|S×{xi}, j = 1, ..., ti, i = 1, ..., b,

ϕS =
(
idπ⋆

C(L) ⊗ π⋆
S(χS)

)−1
◦ ϕ′

S ◦Du,v(ψS).

Suppose we are also given stability parameters a and δ as above. Then, we
take D = D0 from Proposition 5.1.10. The first step toward the construction
of the moduli spaces is the construction of a suitable parameter space:
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Proposition 5.2.1. Fix the input data (r, d, x, r, u, v, L), and let D0 be a before.
Then, the functor that assigns to a scheme S the set of isomorphism classes of
quotient families of type (r, d, x, r, u, v, L) is representable by a quasi-projective
scheme P.

By its universal property, the parameter scheme P comes with a natural action
of GL(Y ). The next theorem is the main GIT-result that we will prove.

Theorem 5.2.2. i) There are open subschemes P(a,δ)-(s)s whose k-rational
points are the classes of tuples (q : Y ⊗ OC(−n) −→ E, q, ϕ), such that
(E, q, ϕ) is an (a, δ)-(semi)stable decorated flagged vector bundle of type
(r, d, x, r, u, v, L).
ii) The good quotient

M (r, d, x, r, u, v, L)(a,δ)-ss := P(a,δ)-ss//GL(Y )

exists as a projective scheme over Spec(k), and the geometric quotient

M (r, d, x, r, u, v, L)(a,δ)-s := P(a,δ)-s/GL(Y )

as an open subscheme of M (r, d, x, r, u, v, L)(a,δ)-ss.

Let M(r, d, x, r, u, v, L)(a,δ)-(s)s stand for the functor that associates with a
scheme S the set of isomorphism classes of families of (a, δ)-(semi)stable deco-
rated flagged vector bundles of type (r, d, x, r, u, v, L) parameterized by S. We
infer from the above theorem:

Corollary 5.2.3. The scheme M (r, d, x, r, u, v, L)(a,δ)-(s)s is the coarse mod-
uli scheme for the functor M(r, d, x, r, u, v, L)(a,δ)-(s)s.

Remark 5.2.4. The divided powers are clearly defined over the integers. There-
fore, the above theorem also works in the relative setting, i.e., for a curve
C −→ Spec(R), possessing a section. The justification has already been given
in Remark 3.2.4.

Now that we have stated our main result on the moduli spaces of decorated
flagged vector bundles and have explained how we get from flagged principal
G-bundles to decorated flagged vector bundles, we must next show how to work
our way back from the above theorem to get moduli spaces of flagged principal
G-bundles. This will be the content of the next sections.

5.3 The Moduli Space for ̺-Flagged Pseudo G-Bundles

Let D, S, n, and Y be as above. A quotient family of ̺-flagged pseudo G-
bundles of type (x, r) (parameterized by the scheme S) is a tuple (kS , τS , qS

)
which is composed of a quotient kS : Y ⊗ π⋆

C(OC(n)) −→ ES , a homomor-
phism τS : Sym⋆(V ⊗ E∨

S ) −→ OS×C , and a tuple q
S

= (qS,ij : ES|S×{xi} −→
QS,ij, j = 1, ..., ti, i = 1, ..., b), such that
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• ES is a vector bundle on S × C, such that [ES|{s}×C ] ∈ S, for every
s ∈ S(k),

• πS⋆(kS ⊗ idπ⋆
C(OC(n))) : Y ⊗ OS −→ πS⋆(ES ⊗ π⋆

C(OC(n))) is an isomor-
phism, and

• τS is non-trivial on every fiber {s} × C.

For these quotient families, we have an obvious notion of isomorphism.

Proposition 5.3.1. Fix the input data D and (x, r). The functor that assigns
to a scheme S the set of isomorphism classes of quotient families of ̺-flagged
pseudo G-bundles of type (x, r) is representable by a quasi-projective scheme
F̺-FLPsBun.
Let Q be the quasi-projective scheme that parameterizes quotients q : Y ⊗
OC(−n) −→ E, such that [E] ∈ S and H0(q(n)) is an isomorphism.
The natural morphism F̺-FLPsBun −→ Q induces a projective morphism
F̺-FLPsBun//Gm(k) −→ Q. (Here, the Gm(k)-action comes from the embedding
of Gm(k) into GL(Y ) as the group of homotheties and the natural GL(Y )-action
on F̺-FLPsBun.)

Fix stability parameters a and δ as before. We say that a ̺-flagged pseudo G-
bundle (E, τ, q) is (a, δ)-(semi)stable, if the associated decorated flagged vector
bundle (E, q, ϕ) is so. Given the type (x, r), we define the moduli functor

M(̺, x, r)(a,δ)-(s)s as the functor that assigns to a scheme S the isomorphism
classes of (a, δ)-(semi)stable ̺-flagged pseudo G-bundles parameterized by S.
In order to obtain the moduli spaces, we proceed as follows.
The natural transformation from the functor of isomorphism classes of families
of ̺-flagged pseudo G-bundles into the functor of decorated flagged vector
bundles gives rise to the GL(Y )-equivariant morphism

AD: F̺-FLPsBun

&&MMMMMMMMMMM
// P

����
�
�
�
�
�

Q

.

The subgroup Gm(k) = Gm(k) · idV acts trivially on P and Q, so that AD
induces the SL(Y )-equivariant morphism

AD: F̺-FLPsBun//Gm(k)

((PPPPPPPPPPPPPP

// P

����
��

��
��

Q

.

By Proposition 5.3.1, the scheme F̺-FLPsBun//Gm(k) is proper over Q, so that
AD is a proper morphism. According to Lemma 5.1.8, it is also an injective
map. Altogether, we realize that AD is a finite map.
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Theorem 5.2.2 claims that there are the SL(Y )-invariant open subsets P(a,δ)-(s)s

that correspond to the (a, δ)-(semi)stable decorated flagged vector bundles. By
definition,

F
(a,δ)-(s)s
̺-FLPsBun := AD−1

(
P(a,δ)-(s)s)

is set the of (a, δ)-(semi)stable ̺-flagged pseudo G-bundles, and we find

F
(a,δ)-(s)s
̺-FLPsBun//Gm(k) = AD

−1(
P(a,δ)-(s)s).

We have seen that the good quotient P(a,δ)-ss// SL(Y ) exists as a projective
scheme that contains the geometric quotient P(a,δ)-s/ SL(Y ) as an open sub-
scheme. Since AD is finite, the quotients

M (̺, x, r)(a,δ)-(s)s :=
(
F

(a,δ)-(s)s
̺-FLPsBun//Gm(k)

)
// SL(Y )

also exist. The scheme M (̺, x, r)(a,δ)-ss is a projective good quotient and
M (̺, x, r)(a,δ)-s, an open subscheme of M (a,δ)-ss(̺, r), is a geometric quotient.
Since

(
F

(a,δ)-(s)s
̺-FLPsBun//Gm(k)

)
// SL(Y ) = F

(a,δ)-(s)s
̺-FLPsBun//

(Gm(k) × SL(Y )
)

= F
(a,δ)-(s)s
̺-FLPsBun//GL(Y ),

the scheme M (̺, x, r)(a,δ)-ss is the moduli space we were striving at. (More
details on the above arguments may be found in the paper [15].) This con-
struction implies the following result.

Theorem 5.3.2. The coarse moduli spaces M (̺, x, r)(a,δ)-(s)s for the functors
M(̺, x, r)(a,δ)-(s)s exist, the scheme M (̺, x, r)(a,δ)-ss being projective.

Remark 5.3.3. The construction of this moduli space does not immediately
generalize to curves over a base ring. Let us explain the remedy.
We assume that G and the representation ̺ : G −→ GL(VZ) are defined over the
integers. By Seshadri’s generalization of GIT relative to base varieties which
are defined over Nagata rings [39], the algebra

Sym⋆(VZ ⊗ Zr)G

is a finitely generated Z-algebra, and we have the good quotients

π : Hom(VZ,Zr) −→ Hom(VZ,Zr)//G := Spec
(
Sym⋆(VZ ⊗ Zr)G

)
−→ Spec(Z)

and

π : P(Hom(VZ,Zr)∨
)

//___ P(Hom(VZ,Zr)∨
)
//G := Proj

(
Sym⋆(VZ ⊗ Zr)G

)

��

Spec(Z).
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The quotient
π0 : Isom(VZ,Zr) −→ Isom(VZ,Zr)/G

is a principal G-bundle and thus a universal categorical quotient. However,
the quotients π and π are not necessarily universal categorical quotients. This
fact accounts for the slight modifications which we do have to make. The
good quotient parameterizes orbits of geometric points with respect to the
equivalence relation that two points map to the same point in the quotient, if
and only if the closures of their orbits intersect. This implies the following.

Lemma 5.3.4. Let Z →֒ Spec(Z) be a closed subscheme. Then, the canonical
morphisms

(
Hom(VZ,Zr) ×Spec(Z) Z

)
//G −→

(
Hom(VZ,Zr)//G

)
×Spec(Z) Z

and
(P(Hom(VZ,Zr)∨

)
×Spec(Z) Z

)
//G −→

(P(Hom(VZ,Zr)∨
)
//G
)
×Spec(Z) Z

are bijective on geometric points.

Let us write
(
Hom(VZ,Zr) ×Spec(Z) Z

)
/̃/G :=

(
Hom(VZ,Zr)//G

)
×Spec(Z) Z

and
(P(Hom(VZ,Zr)∨

)
×Spec(Z) Z

)
/̃/G :=

(P(Hom(VZ,Zr)∨
)
)//G

)
×Spec(Z) Z.

Next, assume that E is a locally free sheaf on the scheme Y which is of fi-
nite type over Spec(R), R a Nagata ring. Then, we may easily construct the
geometric quotient

H̃ := Hom(V ⊗ OY , E)/̃/G :=(
Isom(Rr ⊗ OY , E) ×Spec(R)

(
Hom(VZ,Zr) ×Spec(Z) Spec(R)

)
/̃/G
)
/GLr(R),

using local trivializations. The construction of Hom(V ⊗ OY , E)/̃/G clearly
commutes with base changes Y ′ −→ Y . Moreover, we have the natural mor-
phism

Hom(V ⊗ OY , E)//G −→ Hom(V ⊗ OY , E)/̃/G

which is bijective, by Lemma 5.3.4. This construction has an algebraic coun-

terpart. Define π̃ : H̃ −→ Y as the projection map, and let

S̃ym
⋆
(E∨ ⊗ V )G

be the sheaf π̃⋆(O fH
). Then, we obtain the homomorphism

ps(E) : S̃ym
⋆
(E∨ ⊗ V )G −→ Sym⋆(E∨ ⊗ V )G
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that induces the bijective map Hom(V ⊗ OY , E)//G −→ H̃ .
Now, assume that C −→ Spec(R) is a curve over the Nagata ring R and that
S −→ Spec(R) is a scheme of finite type over R. Then, a family of weak pseudo

G-bundles on C parameterized by S, is a pair (ES , τ̃S) that consists of a locally
free sheaf ES of rank dim(V ) on S ×Spec(R) C , such that det(ES) is a pullback
from S, and a homomorphism

τ̃ : S̃ym
⋆
(E∨

S ⊗ V )G −→ OS×Spec(R)C

whose fibers over S are non-trivial. Unlike the pseudo G-bundles that we had
considered before, there is a pull-back for weak pseudo G-bundles, so that there
are reasonable stacks and moduli functors for them. In the same manner, we
can define ̺-flagged weak pseudo G-bundles and families of such.
Next, suppose that the algebra Sym⋆(VZ ⊗ Zr)G is generated in degrees ≤ s.
By Remark 5.1.6, we may write

⊕

(d1,...,ds):

di≥0,
P

idi=s!

Symd1
(
(VZ ⊗ Zr)G

)
⊗ · · · ⊗ Symds

(
Symi(VZ ⊗ Zr)G

)

as the quotient of Ds!,v(Zr), for an appropriate integer v > 0. As before, we
may therefore associate with a family of ̺-flagged weak pseudo G-bundles a
family of ̺-flagged decorated vector bundles.
We also point out the following result:

Lemma 5.3.5. Let G be a reductive algebraic group, X and Y projective schemes
equipped with a G-action, and π : X −→ Y a finite and G-equivariant mor-
phism. Suppose L is a G-linearized ample line bundle on Y . Then, for any
point x ∈ X and any one-parameter subgroup λ : Gm −→ G, one has

µπ⋆(L )(λ, x) = µL

(
λ, π(x)

)
.

Proof. This is Lemma 2.1 in [38] and also holds in positive characteristic: sim-
ply replace theG-module splitting by a splitting of the inducedGm-module.

In particular, we may apply this lemma to the finite morphism

π : P(Hom(V, kr)∨
)
//G −→ P(Hom(V, kr)∨

)
/̃/G.

(Note that the ample line bundle N on the left hand space with which we
compute the µ-function is indeed the pullback of the ample line bundle L

on the right hand space with respect to which we compute the µ-function.
Indeed, for r ≫ 0, N is constructed from the invariant global sections in
OP(Hom(V,kr)∨)(r) whereas L is constructed from those invariant sections that
extend to P(Hom(VZ,Zr)∨).) The lemma therefore shows that, if we use the
above new construction to associate with a principal G-bundle P = (E, τ)
a decorated vector bundle (E,ϕ), we may still characterize those weighted
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filtrations (E•, β•) that arise from reductions of P to one-parameter subgroups
of G by the condition “µ(E•, β•;ϕ) = 0”, as in [15], Lemma 5.4.2.
These considerations clearly show that the moduli spaces of ̺-flagged weak
pseudo G-bundles on C may be constructed from the moduli spaces of ̺-flagged
decorated vector bundles in the same way as before.
Note that, for ̺-flagged principal G-bundles, nothing changes, because

Isom(V ⊗ OY , E)/G is still an open subscheme of Hom(V ⊗ OY , E)/̃/G.

S-equivalence. — As usual, the points in the moduli space will be in one
to one correspondence to the S-equivalence classes of (a, δ)-semistable pseudo
G-bundles. So, in order to identify the closed points of M (̺, x, r)(a,δ)-ss, we
have to explain this equivalence relation.

Suppose that (E, τ, q) is an (a, δ)-semistable ̺-flagged pseudo G-bundle with
associated decorated flagged vector bundle (E, q, ϕ) and that (E•, β•) is a
weighted filtration of E with

Ma(E•, β•) + δ · µ
(
E•, β•;ϕ

)
= 0.

We first define the associated admissible deformation df(E•,β•)(E, τ, q) =

(Edf , τdf , qdf
). We set Edf =

⊕t
i=0 Ei+1/Ei. Let λ : Gm(k) −→ SLr(k) be

a one-parameter subgroup whose weighted flag (W•(λ), β•(λ)) in kr satisfies:

• dim(Wi) = rk(Ei), i = 1, ..., t, in W•(λ) : 0 ( W1 ( · · · ( Wt ( kr;

• β•(λ) = β•.

Then, the given filtration E• corresponds to a reduction of the structure group
of Isom(O⊕r

C , E) to Q(λ). On the other hand, λ defines a decomposition

Sym⋆
(
V ⊗ (kr)∨

)G
=
⊕

i∈Z U i,

U i being the eigenspace to the character z 7−→ zi, i ∈ Z. With Ui :=
⊕

j≤i U
i,

we define the filtration

· · · ⊂ Ui−1 ⊂ Ui ⊂ Ui+1 ⊂ · · · ⊂ Sym⋆
(
V ⊗ (kr)∨

)G
. (7)

Observe that Q(λ) fixes this filtration. Thus, we obtain a Q(λ)-module struc-
ture on ⊕

i∈Z Ui/Ui−1
∼= Sym⋆

(
V ⊗ (kr)∨

)G
. (8)

Next, we write Q(λ) = Ru(Q(λ)) ⋊ L(λ) where L(λ) ∼= GL(W1/W0) ×
· · · × GL(kr/Wt) is the centralizer of λ. Note that (8) is an isomorphism
of L(λ)-modules. The process of passing from E to Edf corresponds to
first reducing the structure group to Q(λ), then extending it to L(λ) via
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Q(λ) −→ Q(λ)/Ru(Q(λ)) ∼= L(λ), and then extending it to GLr(k) via the
inclusion L(λ) ⊂ GLr(k). By (7), there is a filtration

· · · ⊂ Ui−1 ⊂ Ui ⊂ Ui+1 ⊂ · · · ⊂ Sym⋆(V ⊗ E∨)G,

and, by (8), we have a canonical isomorphism

Sym⋆(V ⊗ E∨
df)

G ∼=
⊕

i∈Z Ui/Ui−1. (9)

Observe that the modules Ui and Ui/Ui−1, i ∈ Z, are graded by the degree in
the algebra Sym⋆(V ⊗E∨)G, so that the algebra in (9) is in fact bigraded. We
now look at the subalgebra Sµ consisting of the components of bidegree (d, i)
where either d = 0 or d > 0 and

i

d
=

1

s!
· µ(E•, β•;ϕ).

Then, τ clearly induces a non-trivial homomorphism τµ on Sµ, and we define
τdf as τµ on Sµ and as zero on the other components. The flagging q

df
of Edf

is obtained by a similar procedure.

Remark 5.3.6. If (E, τ, q) is a ̺-flagged principal G-bundle and δ ≫ 0, the
arguments of [15], proof of Theorem 5.4.1, show that admissible deformations
are associated with weighted filtrations (E•, β•), such that Ma(E•, β•) = 0 and
µ(E•, β•;ϕ) = 0. In that case, S0 = U0. Recall that µ(E•, β•;ϕ) = 0 means
that (E•, β•) comes from a reduction of P = (E, τ) to a parabolic subgroup
([15], Lemma 5.4.2).

A ̺-flagged pseudo G-bundle (E, τ, q) is said to be (a, δ)-polystable, if it is (a, δ)-
semistable and equivalent to every admissible deformation df(E•,β•)(E, τ, q) =
(Edf , τdf , qdf

) associated with a filtration (E•, β•) of E with Ma(E•, β•) + δ ·

µ
(
E•, β•;ϕ

)
= 0.

Lemma 5.3.7. Let (E, τ, q) be an (a, δ)-semistable ̺-flagged pseudo G-bundle.
Then, there exists an (a, δ)-polystable admissible deformation gr(E, τ, q) of
(E, τ, q). The ̺-flagged pseudo G-bundle gr(E, τ, q) is unique up to equiva-
lence.

In general, not every admissible deformation will immediately lead to a
polystable ̺-flagged pseudo G-bundle, but any iteration of admissible deforma-
tions (leading to non-equivalent ̺-flagged pseudo G-bundles) will do so after
finitely many steps. We call two (a, δ)-semistable ̺-flagged pseudo G-bundles
(E, τ, q) and (E′, τ ′, q′) S-equivalent, if gr(E, τ, q) and gr(E′, τ ′, q′) are equiva-
lent.

Sketch of proof of Lemma 5.3.7. The lemma follows from our GIT construc-
tion of the moduli space. As is well-known, two points y, y′ ∈ F(a,δ)-ss,
F := F̺-FLPsBun, will be mapped to the same point in the quotient, if and only
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if the closures of their orbits intersect. Let us call the resulting equivalence re-
lation orbit equivalence. Let y ∈ F(a,δ)-ss be a point and λ : Gm(k) −→ SL(Y ) a
one parameter subgroup with µ(λ, y) = 0. Define y∞(λ) := limz→∞ λ(z)·y. By
the Hilbert–Mumford criterion (see [32], p. 53, i), and Lemma 0.3), orbit equiv-
alence is the equivalence relation that is generated by y ∼ y∞(λ), y ∈ F(a,δ)-ss,
λ a one-parameter subgroup of SL(Y ) with µ(λ, y) = 0.

On the other hand, if y represents the ̺-flagged pseudo G-bundle (E, τ, q), then
λ induces a weighted filtration (E•, β•) with Ma(E•, β•) + δ · µ(E•, β•;ϕ) = 0
and y∞(λ) represents the admissible deformation df(E•,β•)(E, τ, q). Conversely,
any admissible deformation of (E, τ, q) comes from a one-parameter subgroup
λ of SL(Y ) with µ(λ, y) = 0. The assertion of the lemma now results from the
fact that the closure of any orbit contains a unique closed orbit.

The details of the above proof consist of a very careful but routine analysis of
the computations with the Hilbert–Mumford criterion (which will be performed
in Section 5.6).

Corollary 5.3.8. The closed points of the moduli space M (̺, x, r)(a,δ)-ss are
in one to one correspondence to the S-equivalence classes of (a, δ)-semistable ̺-
flagged pseudo G-bundles of type r, or, equivalently, to the isomorphism classes
of (a, δ)-polystable ̺-flagged pseudo G-bundles of type r.

5.4 The Moduli Spaces for ̺-Flagged Principal G-Bundles

Let us remind the reader of the set-up for ̺-flagged principal G-bundles. First,
we fix an element ϑ ∈ π1(G), a tuple x = (x1, ..., xb) of distinct k-rational
points on C, and a tuple P = (P1, ..., Pb) of parabolic subgroups of GL(V ).
The tuple P gives rise to a tuple r = (rij , j = 1, ..., ti, i = 1, ..., b) of positive
integers.

Let a = (a1, ..., ab) be a stability parameter where ai ∈ X⋆(Pi)
∨Q,+, i = 1, ..., b.

Then, representing ai by a rational one-parameter subgroup, we obtain a
weighted flag (V•(ai), β•(ai)) in V , i = 1, ..., b. The tuple β•(ai) does not de-
pend on the choice of the representative for ai. Hence, we get the well-defined
tuple a̺ = (a̺

ij , j = 1, ..., ti, i = 1, ..., b) via

(
a̺

i1, ..., a
̺
iti

)
:= r · β•(ai), i = 1, ..., b.

Proposition 5.4.1. There is a positive rational number δ0, such that for ev-
ery rational number δ > δ0 and every ̺-flagged principal G-bundle (P, s) of
type (x, P ) with associated ̺-flagged pseudo G-bundle (E, τ, q) of type (x, r) the
following properties are equivalent:

i) (P, s) is an a-(semi)stable ̺-flagged principal G-bundle.

ii) (E, τ, q) is an (a̺, δ)-(semi)stable ̺-flagged pseudo G-bundle.
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Proof. First note that the set of isomorphism classes of a-semistable ̺-flagged
principal G-bundles of type (x, P ) is bounded. Indeed, given a parabolic sub-
group Q of G, we write the pair (Q, detQ) as (QG(λ), χ−λ) for some one-
parameter subgroup λ of G. Since there only finitely many conjugacy classes
of parabolic subgroups of G, it is clear that we may find a constant D1 with

〈
(χ̃λ)si , asi

〉
= −

〈
(χ̃−λ)si , asi

〉
≥ D1,

for any reduction PQ of P to Q and i = 1, ..., b. The condition of a-
semistability thus gives the estimate

deg
(
PQ(detQ)

)
≥

b∑

i=1

〈
(χ̃λ)si , asi

〉
≥ b ·D1.

Therefore, the degree of instability of P as a principal G-bundle is bounded
from below by a constant that depends only on the input data. As is well known
(see, e.g., [4]) this implies that P belongs to a bounded family of isomorphism
classes of principal G-bundles.
Using Proposition 5.1.3, the rest of the arguments are now identical to those
given in the proof of Theorem 5.4.1 in [15].

As is obvious from Lemma 5.1.4, there is an open and GL(Y )-invariant sub-
scheme

F̺-FlBun ⊂ F̺-FlPsBun

that parameterizes the ̺-flagged principal G-bundles. We claim that

F
a-ss
̺-FlBun := F

(a̺,δ)-ss
̺-FlPsBun ∩ F̺-FlBun

is a saturated open subset, i.e., for every point f ∈ F
a-ss
̺-FlBun, the closure of the

orbit GL(Y ) · f inside F
(a̺,δ)-ss
̺-FlPsBun is contained in F

a-ss
̺-FlBun. The discussion of

S-equivalence of ̺-flagged pseudo G-bundles shows that this statement is equiv-
alent to the fact that the set of isomorphism classes of a-semistable ̺-flagged
principal bundles is closed under S-equivalence inside the set of isomorphism
classes of (a̺, δ)-semistable ̺-flagged pseudo G-bundles. To see this, note that,
by Remark 5.3.6, an admissible deformation of the ̺-flagged principal bundle
(E, τ, q) is associated with a weighted filtration (E•(PQ), β•(PQ)), coming
from a reduction PQ of P to a parabolic subgroup Q of G, such that

Ma

(
E•(PQ), β•(PQ)

)
= 0.

It is easy to verify that (Edf , τdf) in df(E•(δ),β•(δ))(E, τ, q) = (Edf , τdf , qdf
) de-

fines again a principal G-bundle. (In fact, P is obtained from PQ by means
of extending the structure group via Q ⊂ G. Extending the structure group
of PQ via Q −→ L ⊂ G, L a Levi subgroup of Q, yields the principal bundle
Pdf corresponding to (Edf , τdf).)

Documenta Mathematica 15 (2010) 423–488



470 J. Heinloth, A. H. W. Schmitt

Since F
a-ss
̺-FlBun is a saturated subset of F

(a̺,δ)-ss
̺-FlPsBun, there is an open subset

U ⊂ F
(a̺,δ)-ss
̺-FlPsBun//GL(Y ), such that F

a-ss
̺-FlBun is the preimage of U under the

quotient map F
(a̺,δ)-ss
̺-FlPsBun −→ F

(a̺,δ)-ss
̺-FlPsBun//GL(Y ), and

U = F
a-ss
̺-FlBun//GL(Y )

is the good quotient. Likewise, we see that the geometric quotient
F

a-s
̺-FlBun/GL(Y ) does exist. We define

M (ϑ, ̺, x, P )a-(s)s := F
a-(s)s
̺-FlBun//GL(Y ).

Theorem 5.4.2. Assume that the stability parameter a is such that
∑ti

j=1 a
̺
ij <

1 for i = 1, ..., b. Then, the moduli spaces M (ϑ, ̺, x, P )a-(s)s for the functors
that assign to a scheme S the set of isomorphism classes of families of a-
(semi)stable ̺-flagged principal G-bundles of topological type ϑ and type (x, P )
exist as quasi-projective schemes.

Finally, we note that the same argument as in Theorem 5.4.4 in [15] gives the
following result:

Theorem 5.4.3 (Semistable reduction). Assume that the representation
̺ : G −→ GL(V ) is of low separable index or that G is an adjoint group,
̺ : G −→ GL(Lie(G)) is the adjoint representation, and that the characteristic
of k is larger than the height of ̺. Then, M (ϑ, ̺, x, P )a-(s)s is projective.

5.5 The Moduli Spaces for Flagged Principal G-Bundles

We fix ϑ ∈ π1(G), x = (x1, ..., xb), and the tuple P = (P1, ..., Ps) of
parabolic subgroups of G. Let a = (a1, ..., ab) be a stability parameter with
ai ∈ X⋆(Pi)

∨Q,+, i = 1, ..., b.
For the moment, let ̺ : G −→ GL(V ) be any (not necessarily faithful) represen-
tation. We assume that we may represent the ai by rational one-parameter sub-
groups that do not lie in the kernel of ̺. Then, the same construction as in the
last section provides us with a tuple a̺ = (a̺

ij , j = 1, ..., ti, i = 1, ..., b) of pos-
itive rational numbers. We say that the stability parameter a is ̺-admissible,
if the condition

ti∑

j=1

a̺
ij < 1, i = 1, ..., b,

is verified.

Lemma 5.5.1. The stability parameter a is Ad-admissible, if and only it is
admissible in the sense of the definition following Remark 4.1.5.

Proof. Let a be a rational one-parameter subgroup of the maximal torus T ⊂ G.
The eigenspaces of a are direct sums of root spaces, and a acts on the space
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for the root α with the weight 〈α, a〉. The Lie algebra of T is contained in the
eigenspace to the weight zero. Since, for every root α, −α is also a root, the
weights of the eigenspaces of a are (in increasing order) −γs, ...,−γ1, 0, γ1, ..., γs.
If (a1, ..., at) = dim(G) · β•(a), we infer

t∑

j=1

aj = 2γs.

The condition
∑t

j=1 aj < 1 thus amounts to the condition γs < 1/2. Since
|〈α, a〉| ≤ γs for all roots and equality holds for at least one root, these consid-
erations establish our claim.

Note that there is a GL(Y )-invariant closed subscheme

FFlBun →֒ F̺-FlBun

that parameterizes the flagged principalG-bundles. Recall that we have verified
in Lemma 5.1.2 the compatibility of the notions of (semi)stability. Theorem
5.4.2 thus immediatly implies:

Theorem 5.5.2. Let a be a stability parameter, such that there exists a faithful
representation ̺ : G −→ GL(V ) for which a is ̺-admissible. Then, the moduli
spaces M (ϑ, x, P )a-(s)s for the functors of isomorphism classes of families of
a-(semi)stable flagged principal G-bundles of topological type ϑ and type (x, P )
exist as quasi-projective schemes. They are projective by Theorem 4.4.1.

Corollary 5.5.3. Assume that the stability parameter a is admissible. Then,
the moduli spaces M (ϑ, x, P )a-(s)s exist as projective schemes.

Proof. If G is an adjoint group, the quasi-projectivity of the moduli space is
a restatement of Theorem 5.4.2, taking into account Lemma 5.5.1. Properness
follows from Theorem 4.4.1.
In general, one can use Ramanathan’s method to construct the moduli space
for an arbitrary semisimple group from the one of the adjoint group. (Observe
that every flagged principal G-bundle (P, s) defines in a natural way an adjoint
flagged principal G-bundle Ad(P, s), such that (P, s) is a-semistable, if and
only if Ad(P, s) is so.) The necessary techniques are described in Section 5 of
[16].

Remark 5.5.4. i) The corollary gives a complete construction of the moduli
spaces of flagged principal G-bundles in all characteristics. Note that we do
not need it for our applications, because we are allowed to make the stability
parameter a as small as we wish to (cf. the proof of Proposition 4.2.2). Thus,
having prescribed any faithful representation ̺, we may for our purposes assume
that a is ̺-admissible.
ii) Note that, in our application, we need only the moduli spaces for stability
parameters of coprime type. For these stability parameters, the properness of
the moduli space implies the semistable reduction theorem, by Lemma 3.3.1.
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iii) Suppose that R is, as in Corollary 3.3.4, a ring of finite type over Z, reg-
ular and of dimension at most 1. Assume that C −→ Spec(R) is a smooth
projective curve. We claim that in this setting, we can construct our mod-
uli space MC (ϑ, x, P )a-ss as a projective scheme over Spec(R). The only case
in which this is not completely obvious is the case when Spec(R) dominates
Spec(Z). By Remark 5.3.3, we know that we can construct MC (ϑ, x, P )a-ss

as a quasi-projective scheme; let M −→ Spec(R) be the closure that is ob-
tained as the quotient of the closure of the locus a-semistable flagged principal

G-bundles in F
(a,δ)-ss
̺-FLPsBun. By Proposition 2.1.2 and Remark 2.1.3, the moduli

space MC (ϑ, x, P )a-ss is irreducible, so that the same holds for M . Let Cη be
the generic fiber of C over Spec(R). We know that the generic fiber of M is the
projective moduli space MCη(ϑ, x, P )a-ss. By the same argument as before, this
moduli space is irreducible and, hence, connected. If r ∈ Spec(R) is a closed
point, and Cr is the fiber of C over r, then the semistable reduction theorem
(Theorem 4.4.1 and 5.4.3) implies that MCr(ϑ, x, P )a-ss is a connected compo-
nent of the fiber of M over r. Thus, we have to show that M −→ Spec(R) has
connected fibers. This follows from Stein factorization: indeed, if we factorize
M −→ Spec(R′) −→ Spec(R), such that the morphism M −→ Spec(R′) has
connected fibers, then Spec(R′) −→ Spec(R) must be an isomorphism. This
follows, because it is an isomorphism at the generic point (the generic fiber of
M was already connected) and R is assumed to be normal.

5.6 Construction of the Moduli Spaces for Decorated Flagged
Vector Bundles

In this section, we will first give the proof of Proposition 5.2.1 by an explicit
construction and then carry out the most difficult parts in the proof of Theorem
5.2.2.

Construction of the Parameter Space. — We fix the type
(r, d, x, r, u, v, L). Again, we pick a point x0 ∈ C and write OC(1) for OC(x0).
By Proposition 5.1.10, we can choose an integer n0, such that, for every n ≥ n0

and every (a, δ)-semistable decorated flagged vector bundle (E, q, ϕ) of type
(r, d, x, r, u, v, L), the following conclusions are true:

• H1(E(n)) = {0} and E(n) is globally generated;

• H1(det(E)(rn)) = {0} and det(E)(rn) is globally generated.

Furthermore, we suppose:

• H1(L(un)) = {0} and L(un) is globally generated.

Choose some n ≥ n0 and set l := d+ rn+ r(1 − g). Let Y be a k-vector space
of dimension l. We define Q0 as the quasi-projective scheme parameterizing
equivalence classes of quotients k : Y ⊗ OC(−n) −→ E where E is a vector
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bundle of rank r and degree d on C and H0(k(n)) is an isomorphism. Then,
there is the universal quotient

kQ0 : Y ⊗ π⋆
C

(
OC(−n)

)
−→ EQ0

on Q0 × C. Set

H := Hom
(Du,v(Y ), L(un)

)
and H := P(H ∨) × Q0.

We let

kH : Y ⊗ π⋆
C

(
OC(−n)

)
−→ EH

be the pullback of kQ0 to H × C. Now, on H × C, there is the tautological
homomorphism

sH : Du,v(Y ) ⊗ OH −→ π⋆
C

(
L(un)

)
⊗ π⋆

H

(
OH(1)

)
.

Let T be the closed subscheme defined by the condition that sH⊗π
⋆
C(idOC(−un))

vanishes on

ker
(Du,v(Y ) ⊗ π⋆

C

(
OC(−un)

)
−→ Du,v(EH)

)
(cf. Remark 5.1.7).

Let

kT : Y ⊗ π⋆
C

(
OC(−n)

)
−→ ET

be the restriction of kH to T × C. By definition, there is the universal homo-
morphism

ϕT : Du,v
(
ET

)
−→ π⋆

C(L) ⊗ π⋆
T(NT).

Here, NT is the restriction of OH(1) to T.
Next, let Gij be the Graßmann variety that parameterizes the rij -dimensional
quotients of the vector space Y , j = 1, ..., ti, i = 1, ..., s, and set G :=

Xj=1,...,ti,i=1,...,s Gij . We construct the parameter space P as a closed sub-

scheme of T × G: on the scheme P̃ := T × G, there are the tautological
quotients

q̃eP,ij : Y ⊗ OeP×C −→ R̃eP,ij , j = 1, ..., ti, i = 1, ...., s.

We define the closed subscheme P by the condition that q̃eP,ij vanishes on the

kernel of the restriction of keP to P̃ × {xi}, for all j = 1, ..., ti, i = 1, ...., s. Let
NP be the pullback of NT to P. Similarly, we may pull back kT and ϕT from
T × C to P × C in order to obtain

kP : Y ⊗ π⋆
C

(
OC(−n)

)
−→ EP

and

ϕP : Du,v
(
EP

)
−→ π⋆

C(L) ⊗ π⋆
P(NP).
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Finally, on P × {xi}, we have the quotients

qP,ij : EP|P×{xi} −→ RP,ij , j = 1, ..., ti, i = 1, ...., s.

We call (EP; q
P

;ϕP) the universal family. This name is justified, because any

family of decorated flagged vector bundles parameterized by a scheme S is
locally induced by a morphism to P and this universal family.
Finally, we note that there is a canonical action of the group GL(Y ) on the
parameter space P, and it will be our task to construct the good and the
geometric quotient of the open subsets that parameterize the semistable and
the stable objects, respectively. Since the center Gm(k) · idY acts trivially on
P, it suffices to construct the respective quotients for the action of SL(Y ).

The Map to the Gieseker Space. — Let Jacd be the Jacobian variety
that classifies the line bundles of degree d on C, and choose a Poincaré sheaf
P on Jacd ×C. By our assumptions on n, the sheaf

K1 := Hom
( r∧

(Y ) ⊗ OJacd , πJacd ⋆

(
P ⊗ π⋆

C(OC(rn))
))

is locally free. We set K1 := P(K ∨
1 ). By replacing P with P ⊗ π⋆

Jacd (suffi-

ciently ample)∨, we may assume that OK1(1) is very ample. Let d : P −→ Jacd

be the morphism associated with
∧r

(EP), and let AP be a line bundle on P

with
∧r

(EP) ∼= (d × idC)⋆(P) ⊗ π⋆
P(AP). Then,

r∧(
kP⊗ idπ⋆

C(OC(n))

)
:

r∧
(Y )⊗OP −→ (d× idC)⋆(P)⊗π⋆

C

(
OC(rn)

)
⊗π⋆

P(AP)

defines a morphism ι1 : P −→ K1 with ι⋆1(OK1(1)) ∼= AP.
DefineK2 := P(H ∨) (see above) as well as the Gieseker space G := K1×K2×G,
and let

ι := (ι1 × idK2 × idG) : P −→ G
be the natural, SL(Y )-equivariant, and injective morphism. Using the ample
line bundles on the Gij that are induced by the Plücker embedding, we find,
for every tuple e := (e1; e2; εij , j = 1, ..., ti, i = 1, ..., s) of positive rational
numbers, the SL(Y )-linearized ample Q-line bundle

Le := O
(
e1; e2; εij , j = 1, ..., ti, i = 1, ..., s

)

on the Gieseker space G.
Linearize the SL(Y )-action on G in Le with

e1 := l−u·δ−

s∑

i=1

ti∑

j=1

rij ·aij , e2 := r·δ, εij := r·aij , j = 1, ..., ti, i = 1, ..., s,

(10)
and denote by Ge-(s)s the sets of points in G that are SL(Y )-(semi)stable with
respect to the linearization in the line bundle Le.
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Theorem 5.6.1. Given a point p ∈ P, denote by (Ep; qp
;ϕp) the restriction of

the universal family to P × {p}. Then, for n large enough, the following two
properties hold true.
i) The preimages ι−1(Ge-(s)s) consist exactly of those points p ∈ P for which
(Ep; qp

;ϕp) is an (a, δ)-(semi)stable decorated flagged vector bundle of type

(r, d, x, r, u, v, L).
ii) The morphism

ι′ : Pe-ss −→ Ge-ss,

induced by restricting the morphism ι to the preimage Pe-ss of Ge-ss, is proper.

The proof resembles the one of Theorem 2.11 in [37] and Theorem 4.4.1 in [15].
A part of it will be explained in the following section.

Elements of the Proof of Theorem 5.6.1. — Let p be a point in the
parameter space P, such that the decorated flagged vector bundle (Ep; qp

;ϕp)

is (a, δ)-(semi)stable. In this section, we will demonstrate that the Gieseker
point ι(p) is (semi)stable with respect to the chosen linearization of the SL(Y )-
action.
By the Hilbert–Mumford criterion, we have to show that, for every one-
parameter subgroup λ : Gm(k) −→ SL(Y ), the inequality

µLe

(
λ, ι(p)

)
= e1 · µOK1

(1)

(
λ, ι1(t)

)
+ e2 · µOK2

(1)

(
λ, ι2(t)

)

+

s∑

i=1

ti∑

j=1

εij · µOGij
(1)(λ, qij) (≥) 0 (11)

is satisfied. The one-parameter subgroup λ provides us with the weighted flag
(Y•(λ), δ•(λ)) in the vector space Y . We write

Y•(λ) : 0 =: Y0 ( Y1 ( · · · ( Yτ ( Yτ+1 := Y ; δ•(λ) = (δ1, ..., δτ ).

We remind the reader that there is an integer N > 0 (which is the number of
summands in (5)), such thatDu,v(Y ) ⊂ Yu,N :=

(
Y ⊗u

)⊕N
.

Let kp : Y ⊗ OC(−n) −→ Ep be the quotient corresponding to p. For h ∈
{ 1, ..., τ }, define lh := dim(Yh) and Fh := kp(Yh ⊗OC(−n)). Now, using (11),
we compute

µLe

(
λ, ι(p)

)
= e1 ·

τ∑

h=1

δh ·
(
l · rk(Fh) − lh · r

)
+ e2 · µOK2

(1)

(
λ, ι2(t)

)
+

+

s∑

i=1

ti∑

j=1

εij ·

τ∑

h=1

δh ·
(
l · dim(qij(Fh)) − lh · rij

)
.
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We first inspect the quantity µOK2
(1)(λ, ι2(t)). To this end, let Ẽh be the

subbundle of Ep that is generated by Fh, h = 0, ..., τ + 1. Note that improper

inclusions may occur among the bundles Ẽh, i.e., there might exist indices
h′ < h with Ẽh′ = Ẽh. We eliminate these improper inclusions in order to find
the filtration

E• : 0 =: E0 ( E1 ( · · · ( Et ( Et+1 := Ep.

With each index j ∈ { 1, ..., t }, we associate the set

T (j) :=
{
h ∈ { 1, ..., τ }

∣∣ Ẽh = Ej

}

and the positive rational number

βj :=
∑

h∈T (j)

δh. (12)

Setting β• := (β1, ..., βt), we have defined the weighted filtration (E•, β•) of
E. In addition, we define the function J : { 1, ..., τ } −→ { 1, ..., t } by requiring

that Ẽh = EJ(h), h = 1, ..., τ . For an index j ∈ { 0, ..., t+ 1 }, we set

h(j) := min
{
h = 1, ..., τ | Ẽh = Ej

}
, Y j := Yh(j),

h(j) := max
{
h = 1, ..., τ | Ẽh = Ej

}
, Y j := Yh(j),

and also, for j = 1, ..., t,
Ỹj := Y j/Y j−1.

Next, given an index tuple (i1, ..., iu) ∈ I := { 1, ..., t+ 1 }×u, we introduce the
vector space

Ỹi1,...,iu :=
(
Ỹi1 ⊗ · · · ⊗ Ỹiu

)⊕N
.

We fix a basis y for Y that consists of eigenvectors for the one-parameter
subgroup λ and has the property

〈 y1, ..., ylh 〉 = Yh, h = 0, ..., τ + 1.

Using this basis, we may view (Ỹi1,...,iu)⊕N as a subspace of Yν,N , and declare

Ỹ ⋆
i1,...,iu

:= Ỹi1,...,iu ∩Du,v(Y ).

If we are also given a weight vector γ = (γ1, ..., γl), we let λ(y, γ) be the
one-parameter subgroup with λ(y, γ)(yi) = zγi · yi, z ∈ Gm(k), i = 1, ..., l.
Apparently,

λ = λ(y, γ) for γ =

τ∑

h=1

δh · γ
(lh)
l .

We also define the one-parameter subgroups λh := λ(y, γ
(lh)
l ), h = 1, ..., τ .

Then, the subspaces Ỹ ⋆
i1,...,iu

, (i1, ..., iu) ∈ I, that we have just defined are

Documenta Mathematica 15 (2010) 423–488



Moduli Stacks of Principal Bundles 477

eigenspaces for all the one-parameter subgroups λ1, ..., λτ . Indeed, define for
i ∈ I and j ∈ { 0, ..., t+ 1 },

νj(i) = #
{
ik ≤ j | k = 1, ..., u

}
.

Since h(j) ≤ h holds precisely when j ≤ J(h), the one-parameter subgroup

λh acts on Ỹ ⋆
i1,...,iu

with weight lh · u − l · νJ(h)(i1, ..., iu), i = (i1, ..., iu) ∈ I,
h = 1, ..., τ .
The homomorphism ϕp is determined by the homomorphism

Fp : Du,v(Y ) −→ H0
(
L(un)

)
.

Therefore,

µOK2(1)
(λ, Fp) ≥ (13)

−min
{ τ∑

h=1

δh
(
lh · u− l · νJ(h)(i1, ..., iu)

) ∣∣ i = (i1, ..., iu) ∈ I : Fp|eY ⋆
i1,...,iu

6≡ 0
}
.

Let i0 = (i01, ..., i
0
u) ∈ I be an index tuple, such that the minimum in the second

formula in Remark 5.1.9 is achieved for this index tuple.

Lemma 5.6.2. The restricted homomorphism Fp|eY ⋆

i0
1

,...,i0u

is non-trivial.

Proof. Under the surjection Du,v(Y ⊗OC(n)) −→ Du,v(Ep(n)) that is induced
by kp, the vector space Fp|eY ⋆

i0
1

,...,i0u

maps to the global sections of the bundle

Ei01
(n) ⋆ · · · ⋆ Ei0u

(n), and

(Du,v(Y ) ∩
(
Y ′

i01
⊗ · · · ⊗ Y ′

i0u

)⊕N
)
⊗OC(un) with Y ′

j :=

j⊕

k=1

Ỹk, j = 1, ..., t,

generically generates that bundle. To see these assertions, observe that

Du1(Y ) ⊗ · · · ⊗Duv (Y ) ⊂ Y ⊗u, for u1 + · · · + uv = u,

is, by definition, the submodule that is invariant under action of Σu1×· · ·×Σuv ,
Σw being the symmetric group in w letters, w > 0. The intersection

Du1(Y ) ⊗ · · · ⊗Duv (Y ) ∩
(
Y ′

i01
⊗ · · · ⊗ Y ′

i0u

)

is consequently of the form

Du1(Y ′
i⋆
1
) ⊗ · · · ⊗Duv (Y ′

i⋆
v
)

where i⋆1 is the smallest index among i01,...,i
0
u1

, i⋆2 is the smallest index among
i0u1+1,...,i

0
u2

, and so on. The map (Y ⊗OC(−n))⊗u −→ E⊗u
p is certainly equiv-

ariant under the (Σu1×· · ·×Σuv )-action and is easily seen to induce a surjection
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Du1(Y ⊗ OC(−n)) ⊗ · · · ⊗ Duv (Y ⊗ OC(−n)) −→ Du1(Ep) ⊗ · · · ⊗ Duv (Ep).
Since the isomorphism Y −→ H0(Ep(n)) maps Y ′

j to the global sections of
Ej(n), j = 1, ..., t, and Y ′

j generically generates the bundle Ej , we see that
Du1(Y ′

i⋆
1
) ⊗ · · · ⊗Duv (Y ′

i⋆
v
) generically generates

Du1(Ei⋆
1
) ⊗ · · · ⊗Duv (Ei⋆

v
) =

(
Du1(Ep) ⊗ · · · ⊗Duv (Ep)

)
∩
(
Ei01

⊗ · · · ⊗Ei0u

)
.

Therefore, if Fp|eY ⋆

i0
1

,...,i0u

were zero, we would find indices i′j ≤ i0j , j = 1, ..., u,

where at least one inequality is strict, such that Fp|eY ⋆
i′
1

,...,i′u

6≡ 0. By the same

argument as before, this would imply that the restriction of ϕp to Ei′1
⋆ · · ·⋆Ei′u

was non-trivial. But clearly

γi′1
+ · · · + γi′u < γi01

+ · · · + γi0u
.

This contradicts our choice of i0.

Using (13), we find

µOK2(1)
(λ, Fp) ≥ −

τ∑

h=1

δh ·
(
lh · u− l · νJ(h)(i

0
1, ..., i

0
u)
)

≥ −

t∑

j=1

βj ·
(
h0(Ej(n)) · u− l · νj(i

0
1, ..., i

0
u)
)
. (14)

We note our first estimate:

µLe

(
λ, ι(p)

)
≥ e1 ·

τ∑

h=1

δh ·
(
l · rk(Fh) − lh · r

)
+

+e2 ·

t∑

j=1

βj ·
(
l · νj(i

0
1, ..., i

0
u) − h0(Ej(n)) · u

)
+ (15)

+
s∑

i=1

ti∑

j=1

εij ·
τ∑

h=1

δh ·
(
l · dim(qij(Fh)) − lh · rij

)
.

For j ∈ { 1, ..., t }, choose h⋆(j) ∈ T (j), such that

e1 ·
(
l · rk(Fh⋆(j)) − lh⋆(j) · r

)
+

+

s∑

i=1

ti∑

j=1

εij ·
(
l · dim(qij(Fh⋆(j))) − lh⋆(j) · rij

)

= min
{
e1 ·

(
l · rk(Fh) − lh · r

)
+

s∑

i=1

ti∑

j=1

εij ·
(
l · dim(qij(Fh)) − lh · rij

) ∣∣

h ∈ T (j)
}
.

Documenta Mathematica 15 (2010) 423–488



Moduli Stacks of Principal Bundles 479

Together with (15), we arrive at our second estimate:

µLe

(
λ, ι(p)

)
≥ e1 ·

t∑

k=1

βk ·
(
l · rk(Fh⋆(k)) − lh⋆(k) · r

)
+

+e2 ·

t∑

k=1

βk ·
(
l · vk(i0) − h0(Ek(n)) · u

)
+ (16)

+

s∑

i=1

ti∑

j=1

εij ·

t∑

k=1

βk ·
(
l · dim(qij(Fh⋆(k))) − lh⋆(k) · rij

)
.

Plugging in the definition (10) of the linearization parameters, Formula (16)
transforms into

µLe

(
λ, ι(p)

)

≥

t∑

k=1

βk ·
(
l2 · rk(Fh⋆(k)) − l · u · δ · rk(Fh⋆(k)) −

−l ·

s∑

i=1

ti∑

j=1

rij · aij · rk(Fh⋆(k)) − l · lh⋆(k) · r
)

+

+r · δ ·

t∑

k=1

βk · l · νk(i0) + r ·

s∑

i=1

ti∑

j=1

aij ·

t∑

k=1

βk · l · dim(qij(Fh⋆(k))).

Note that lh⋆(k) ≤ h0(Fh⋆(k)(n)), so that we find

µLe

(
λ, ι(p)

)

≥

t∑

k=1

βk

(
l2 · rk(Fh⋆(k)) − l · u · δ · rk(Fh⋆(k)) −

−l ·

s∑

i=1

ti∑

j=1

rij · aij · rk(Fh⋆(k)) − l · h0(Fh⋆(k)(n)) · r
)

+

+r · δ ·

t∑

k=1

βk · l · νk(i0) + r ·

s∑

i=1

ti∑

j=1

aij ·

t∑

k=1

βk · l · dim(qij(Fh⋆(k))).

We divide the quantity on the right hand side by l and rearrange it, until we
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get

µLe

(
λ, ι(p)

)
≥

t∑

k=1

βk ·
(
l · rk(Fh⋆(k)) − h0(Fh⋆(k)(n)) · r

)
+

+δ ·

t∑

k=1

βk ·
(
r · νk(i0) − u · rk(Ek)

)
+ (17)

+
s∑

i=1

ti∑

j=1

aij

t∑

k=1

βk

(
r · dim(qij(Fh⋆(k))) − rk(Fh⋆(k)) · rij

)
.

By our choice of i0, the number
∑t

k=1 βk · (r · νk(i0) − u · rk(Ek)) equals
µ(E•, β•;ϕp). Our contention is therefore a consequence of the next result.

Proposition 5.6.3. Having fixed the input data r, d, u, v, and L, as well
as the stability parameters a and δ, there exists an n1, such that any (a, δ)-
(semi)stable decorated flagged vector bundle (E,L, ϕ) of type (r, d, x, r, u, v, L)
has the following property: Let

0 ( F1 ( · · · ( Ft ( E

be a filtration of E by not necessarily saturated subsheaves, such that 0 <
rk(F1) < · · · < rk(Ft) < r, let

E• : 0 ( E1 ( · · · ( Et ( E

be the filtration of E by the subbundles Ei := ker(E −→
(E/Fi)/Torsion(E/Fi)), i = 1, ..., t, and let β• = (β1, ..., βt) be a tuple
of positive rational numbers. Then, for all n ≥ n1,

0 ≤
t∑

k=1

βk ·
(
h0(E(n)) · rk(Fk) − h0(Fk(n)) · r

)
+ δ · µ(E•, β•;ϕ) +

+

s∑

i=1

ti∑

j=1

aij ·

t∑

k=1

βk ·
(
r · dim(qij(Fk)) − rk(Fk) · rij

)
.

Proof. We choose n1 ≥ n0, so that h1(E(n)) = 0 and l := h0(E(n)) =
d + r(n + 1 − g). First, we assume that the sheaves F1(n), ...,Ft(n) are all
globally generated and have trivial first cohomology spaces. The same holds
then for E1(n),...,Et(n). Let Ti be the torsion sheaf Ei/Fi, i = 1, ..., t. Since
H1(Fi(n)) = {0}, the map H0(Ei(n)) −→ Ti is surjective, so that

h0
(
Ei(n)

)
= h0

(
Fi(n)

)
+ dim(Ti), i = 1, ..., t. (18)

Invoking
∑ti

j=1 aij < 1, i = 1, ..., s, once more, we discover

ti∑

j=1

aij · dim(qij(Ek)) ≤

ti∑

j=1

aij · dim(qij(Fk)) + dim(Tk|{xi}), i = 1, ..., s.
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In this case, we consequently find

t∑

k=1

βk ·
(
h0(E(n)) · rk(Ek) − h0(Fk(n)) · r

)
+ δ · µ(E•, β•;ϕ) +

+
s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Fk)) − rk(Fk) · rij

)

≥

t∑

k=1

βk ·
(
h0(E(n)) · rk(Ek) − h0(Ek(n)) · r

)
+ δ · µ(E•, β•;ϕ) +

+

s∑

i=1

ti∑

j=1

aij ·

t∑

k=1

βk ·
(
r · dim(qij(Ek)) − rk(Ek) · rij

)
(19)

=

t∑

k=1

βk ·
(
deg(E) · rk(Ek) − deg(Ek) · r

)
+ δ · µ(E•, β•;ϕ) +

+

s∑

i=1

ti∑

j=1

aij ·

t∑

k=1

βk ·
(
r · dim(qij(Ek)) − rk(Ek) · rij

)

= Ma(E•, β•) + δ · µ(E•, β•;ϕ) (≥) 0.

Let S be the bounded family of isomorphism classes of locally free sheaves E of
rank r and degree d on C for which there exists an (a, δ)-semistable decorated
flagged vector bundle (E, q, ϕ) of type (r, d, x, r, u, v, L). Suppose that we have
fixed some positive constant K. Then, we divide the locally free sheaves F on
C that may occur as subsheaves of sheaves in the family S into two classes:

A. µ(F ) ≥ d/r −K

B. µ(F ) < d/r −K.

By the Langer–LePotier–Simpson estimate [28], there are non-negative con-
stantsK1 andK2 which depend only on r, such that any locally free OC -module
A on C of rank at most r satisfies

h0(A) ≤

rk(A) ·

(
rk(A) − 1

rk(A)
·
[
µmax(A) +K1 + 1

]
+

+
1

rk(A)
·
[
µ(A) +K2 + 1

]
+

)
.

For a sheaf A in Class B, this leads to

h0
(
A(n)

)
≤ rk(A) ·

(
d

r
+ n+ 1 + (r − 1)(K0 +K1) +K2 −

1

r
·K

)
,

if the right hand side is positive. There exists an integer n′(K) =
n′(r, d,K1,K2,K) such that this holds for n ≥ n′(K). Furthermore, we es-
timate

h0(E(n)) · rk(A) − h0(A(n)) · r ≥

−(r − 1)rg − (r − 2)(r − 1)r(K0 +K1) − (r − 2)rK2 +K =: L.
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We choose K so large that

L ≥ δ · u · (r − 1) +

( s∑

i=1

ti∑

j=1

aij

)
· (r − 1)2.

Suppose that all the sheaves F1, ...,Ft belong to Class B. Then,

t∑

k=1

βk ·
(
h0(E(n)) · rk(Fk) − h0(Fk(n)) · r

)
− δ · u · (r − 1) ·

l∑

k=1

βk +

+
s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Fk)) − rk(Fk) · rij

)

≥

l∑

k=1

βk ·
(
L− δ · u · (r − 1)

)
−

s∑

i=1

ti∑

j=1

aij ·

t∑

k=1

βk · rk(Ek) · rij (20)

≥

l∑

k=1

βk ·

(
L− δ · u · (r − 1) − (r − 1)2 ·

( s∑

i=1

ti∑

j=1

aij

))
> 0.

Note that the sheaves in Class A form a bounded family: the ranks and degrees
of those sheaves belong to finite sets and their µmax is bounded by µmax(E),
[E] ∈ S. Hence, there is an n′′(K), such that, for any n ≥ n′′(K) and any sheaf
A of Class A, one finds that A(n) is globally generated and that h1(A(n)) =
0. Set n1 := max{n′(K), n′′(K) }. We have to verify our assertion. To do
so, we set I := { 1, ..., t }, IA := { i ∈ I |Fi is in Class A }, and IB := { i ∈

I |Fi is in Class B }, so that I = IA ⊔ IB. Write IA/B = { i
A/B
1 , ..., i

A/B
tA/B

} with

i
A/B
1 < · · · < i

A/B
tA/B

. This gives the weighted filtrations

(
E

A/B
• : 0 ( E

i
A/B
1

( · · · ( E
i
A/B
tA/B

( E, β
A/B
• = (β

i
A/B
1

, ..., β
i
A/B
tA/B

)
)
.

It is then easy to see that

µ
(
E•, β•;ϕ

)
≥ µ

(
EA

• , β
A
• ;ϕ

)
− u · (r − 1) ·

tB∑

j=1

βiBj
. (21)

Equation (21) together with the formulae (19) and (20) finally establishes the
contention of the Proposition.

The Remaining Steps. — The converse assertion, namely the fact that
(Ep, qp

, ϕp) is (a, δ)-(semi)stable, if the Gieseker point associated with p is

(semi)stable with respect to the linearization in Le, is proved along similar
lines, but is easier. The same holds for the proof of properness of the Gieseker
map. The reader should combine the above arguments with those from [37]
and [15] to fill in the details.
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5.7 Construction of the Parameter Spaces for ̺-Flagged Pseudo
G-Bundles

We next include the explicit construction of the parameter space F̺-FLPsBun

that will make the asserted properties in Proposition 5.3.1 evident.
There is a quasi-projective quot scheme Q which parameterizes quotients k : Y⊗
OC(−n) −→ E where E is a vector bundle of rank r and degree zero, such that
µmax(E) ≤ D, and where H0(k(n)) is an isomorphism. The scheme Q × C
carries the universal quotient

kQ : Y ⊗ π⋆
C

(
OC(−n)

)
−→ EQ.

For the vector bundle EQ, as for any vector bundle of rank r, we have the
canonical isomorphism

E∨
Q
∼=

r−1∧(
EQ

)
⊗
( r∧(

EQ

))∨
.

Since the restriction of (
∧r(EQ))∨ to any fiber {k}×C, k ∈ Q, is trivial, there

is a line bundle A on Q, such that

( r∧(
EQ

))∨
∼= π⋆

Q(A ).

Gathering all this information, we find a surjection

Sym⋆
(
V ⊗

r−1∧(
Y ⊗ π⋆

C(OC(−n))
)
⊗ π⋆

Q(A )
)G

−→ Sym⋆
(
V ⊗ E∨

Q

)G
.

For a point [q : Y ⊗ OC(−n) −→ E] ∈ Q, any homomorphism τ : Sym⋆(V ⊗
E∨)G −→ OC of OC -algebras is determined by the composite homomorphism

s⊕

i=1

Symi
(
V ⊗

r−1∧(
Y ⊗ OC(−n)

))G

−→ OC

of OC -modules. Noting that

Symi
(
V ⊗

r−1∧(
Y ⊗ OC(−n)

))G
∼= Symi

(
V ⊗

r−1∧
Y
)G

⊗ OC

(
−i(r − 1)n

)
,

τ is determined by a collection of homomorphisms

ϕi : Symi
(
V ⊗

r−1∧
Y
)G

⊗ OC −→ OC

(
i(r − 1)n

)
, i = 1, ..., s.

Since ϕi is determined by the induced linear map on global sections, we will
construct the parameter space inside

Y :=
s⊕

i=1

Hom

(
Symi

(
V ⊗

r−1∧
Y ⊗ π⋆

Q(A )
)G

, H0
(
OC

(
i(r − 1)n

))
⊗ OQ

)
.
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Write π : Y −→ Q for the bundle projection and observe that, over Y × C,
there are universal homomorphisms

ϕ̃i : Symi
(
V ⊗

r−1∧
Y ⊗

(
πQ◦(π×idC)

)⋆
(A )

)G

→ H0
(
OC

(
i(r−1)n

))
⊗OY×C , .

i = 1, ..., s. Define ϕi = ev ◦ ϕ̃i as the composition of ϕ̃i with the evaluation
map ev : H0(OC(i(r − 1)n)) ⊗ OY×C −→ π⋆

C(OC(i(r − 1)n)), i = 1, ..., s. We

twist ϕi by idπ⋆
C(OC(−i(r−1)n)) and put the resulting maps together to obtain

the homomorphism
ϕ : VY −→ OY×C

with

VY :=

s⊕

i=1

Symi

(
V ⊗

r−1∧(
Y ⊗ π⋆

C

(
OC(−n)

))
⊗
(
πQ ◦ (π × idC)

)⋆
(A )

)G

.

Next, ϕ yields a homomorphism of OY×C-algebras

τ̃Y : Sym⋆
(
VY

)
−→ OY×C .

On the other hand, there is a surjective homomorphism

β : Sym⋆(VY) −→ Sym⋆
(
V ⊗ (π × idC)⋆

(
E∨

Q

))G

of graded algebras where the left hand algebra is graded by assigning the weight
i to the elements in Sym i(· · · )G. The parameter space Y is defined by the
condition that τ̃Y factorizes over β, i.e., setting EY := ((π × idC)⋆(EQ))|Y×C ,
there is a homomorphism

τY : Sym⋆
(
V ⊗ E∨

Y

)G
−→ OY×C

with τ̃Y|Y×C = τY ◦β. Formally, Y is defined as the scheme theoretic intersec-
tion of the closed subschemes

Yd :=
{
y ∈ Y

∣∣ τ̃d
Y|{y}×C

: ker
(
βd
|{y}×C

)
−→ OC is trivial

}
, d ≥ 0.

The family (EY, τY) is the universal family of pseudo G-bundles parameterized
by Y.

Remark 5.7.1. i) The scheme Y is equipped with a natural GL(Y )-action, and
the vector bundle EY is linearized with respect to this group action.
ii) Note that elimination theory shows that there is an open subscheme Y0

that parameterizes the principal G-bundles. Moreover, there exists a universal

principal G-bundle PY0 on Y0 × C.
iii) There is a locally closed and GL(Y )-invariant subscheme Yϑ,≥h ⊂ Y0 which
parameterizes those principal G-bundles P that have topological type ϑ and
instability degree at least h. By construction, every such principal bundle P

is represented by at least one point in Yϑ,≥h, so that we have a surjective map
Yϑ,≥h −→ Bunϑ,≥h

G . In fact, this map identifies Bunϑ,≥h
G with the quotient

[Yϑ,≥h/GL(Y )].
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We proceed to parameterize ̺-flagged pseudo G-bundles. For this, we fix the
tuple x = (x1, ..., xb) of points on C and the type r = (rij , j = 1, ..., ti, i =
1, ..., b) of the flaggings. The tuple (ri1, ..., riti) determines the conjugacy class

of a parabolic subgroup of GL(V ). Pick representatives P̃i for these conjugacy
classes, i = 1, ..., b, and define

F̃i :=
(
Isom

(
V ⊗ OY, EY|(Y×{xi})

))
/P̃i, i = 1, ..., b,

and
F̺-FlPsBun := F̃1 ×Y · · · ×Y F̃b.

Remark 5.7.2. Since the vector bundle EY is linearized, F̃i, i = 1, ..., b, and
F̺-FlPsBun inherit GL(Y )-actions. The equivalence relation on geometric points
that is induced by the group action on F̺-FlPsBun is isomorphy of ̺-flagged
pseudo G-bundles.

Acknowledgments

Alexander Schmitt acknowledges support by the DFG via a Heisenberg fellow-
ship and via the Schwerpunkt program “Globale Methoden in der Komplexen
Geometrie—Global Methods in Complex Geometry”. The article was partly
written during the visit of A.S. to the Institut des Hautes Études Scientifiques
where he benefitted from support of the European Commission through its
6th Framework Program “Structuring the European Research Area” and the
contract Nr. RITA-CT-2004-505493 for the provision of Transnational Access
implemented as Specific Support Action.
Jochen Heinloth was partially supported by the Leibniz-Preis of H. Esnault
and E. Viehweg. He would like to thank G. Harder for raising the question a
long time ago and U. Stuhler for his interest.

References

[1] M.F. Atiyah, R. Bott, The Yang–Mills equations over Riemann sur-
faces, Phil. Trans. R. Soc. Lond. A 308 (1983), 523-615.

[2] V. Balaji, I. Biswas, D.S. Nagaraj, Principal bundles with parabolic
structure, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 37-
44.

[3] A. Beauville, Sur la cohomologie de certains espaces de modules de
fibrés vectoriels in Geometry and Analysis (Bombay, 1992), 37-40,
Tata Inst. Fund. Res., Bombay, 1995.

[4] K.A. Behrend, The Lefschetz Trace Formula for the Moduli Space
of Principal Bundles, PhD thesis, Berkeley, 1990, 96 pp., available
at http://www.math.ubc.ca/∼behrend/thesis.html.

Documenta Mathematica 15 (2010) 423–488



486 J. Heinloth, A. H. W. Schmitt

[5] K.A. Behrend, The Lefschetz trace formula for algebraic stacks, In-
vent. Math. 112 (1993), 127-49.

[6] K.A. Behrend, Semi-stability of reductive group schemes over
curves, Math. Ann. 301 (1995), 281-305.

[7] K.A. Behrend, Derived ℓ-adic categories for algebraic stacks, Mem.
Amer. Math. Soc. 163 (2003), no. 774.

[8] K.A. Behrend, A. Dhillon, Connected components of moduli stacks
of torsors via Tamagawa numbers, Can. J. Math. 61 (2009), 3-28.

[9] U. Bhosle, A. Ramanathan, Moduli of parabolic G-bundles on
curves, Math. Z. 202 (1989), 161-80.

[10] E. Bifet, F. Ghione, M. Letizia, On the Abel–Jacobi map for divisors
of higher rank on a curve, Math. Ann. 299 (1994), 641-672.

[11] P. Deligne, Cohomologie étale, Seminaire de géométrie algébrique
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