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Abstract. Let M be a compact Riemannian manifold with bound-
ary ∂M and L = δ+Z for a C1-vector field Z onM . Several equivalent
statements, including the gradient and Poincaré/log-Sobolev type in-
equalities of the Neumann semigroup generated by L, are presented
for lower bound conditions on the curvature of L and the second
fundamental form of ∂M . The main result not only generalizes the
corresponding known ones on manifolds without boundary, but also
clarifies the role of the second fundamental form in the analysis of
the Neumann semigroup. Moreover, the Lévy-Gromov isoperimetric
inequality is also studied on manifolds with boundary.
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1 Introduction

The main purpose of this paper is to find out equivalent properties of the Neu-
mann semigroup on manifolds with boundary for lower bounds of the second
fundamental form of the boundary. To explain the main idea of the study,
let us briefly recall some equivalent semigroup properties for curvature lower
bounds on manifolds without boundary.
Let M be a connected complete Riemannian manifold without boundary and
let L = ∆ + Z for some C1-vector field Z on M . Let Pt be the diffusion
semigroup generated by L, which is unique and Markovian if the curvature of
L is bounded below, namely (see [3]),

Ric−∇Z ≥ −K (1.1)

1Supported in part by NNSFC(10721091) and the 973-Project.
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holds on M for some constant K ∈ R. The following is a collection of known
equivalent statements for (1.1), where the first two ones on gradient estimates
are classical in geometry (see e.g. [1, 5, 6, 7]), and the remainder follows from
Propositions 2.1 and 2.6 in [2] (see also [9]):

(i) |∇Ptf |2 ≤ e2KtPt|∇f |2, t ≥ 0, f ∈ C1
b (M);

(ii) |∇Ptf | ≤ eKtPt|∇f |, t ≥ 0, f ∈ C1
b (M);

(iii) Ptf
2 − (Ptf)

2 ≤ e2Kt − 1

K
Pt|∇f |2, t ≥ 0, f ∈ C1

b (M);

(iv) Ptf
2 − (Ptf)

2 ≥ 1− e−2Kt

K
|∇Ptf |2, t ≥ 0, f ∈ C1

b (M);

(v) Pt(f
2 log f2) − (Ptf

2) log(Ptf
2) ≤ 2(e2Kt − 1)

K
Pt|∇f |2, t ≥ 0, f ∈

C1
b (M);

(vi) (Ptf){Pt(f log f) − (Ptf) log(Ptf)} ≥ 1− e−2Kt

2K
|∇Ptf |2, t ≥ 0, f ∈

C1
b (M), f ≥ 0.

These equivalent statements for the curvature condition are crucial in the study
of heat semigroups and functional inequalities on manifolds. For the case that
M has a convex boundary, these equivalences are also true for Pt the Neumann
semigroup (see [10] for one more equivalent statement on Harnack inequality).
The question is now can we extend this result to manifolds with non-convex
boundary, and furthermore describe the second fundamental using semigroup
properties?
So, from now on we assume that M has a boundary ∂M . Let N be the inward
unit normal vector field on ∂M . Then the second fundamental form is a two-
tensor on T∂M , the tangent space of ∂M , defined by

I(X,Y ) = −〈∇XN, Y 〉, X, Y ∈ T∂M.

If I ≥ 0(i.e. I(X,X) ≥ 0 for X ∈ T∂M), then ∂M (or M) is called convex. In
general, we intend to study the lower bound condition of I; namely, I ≥ −σ on
∂M for some σ ∈ R.
For x ∈ M , let Ex be the expectation taken for the reflecting L-diffusion process
Xt starting from x. So, for a bounded measurable functional Φ of X ,

EΦ : x 7→ E
xΦ

is a function on M . Moreover, let lt be the local time of Xt on ∂M . According
to [8, Theorem 5.1], (1.1) and I ≥ −σ imply

|∇Ptf | ≤ eKt
E
[

|∇f |(Xt)|eσlt
]

, t > 0, f ∈ C1(M). (1.2)
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To see that (1.2) is indeed equivalent to (1.1) and I ≥ −σ, we shall make use
of the following formula for the second fundamental form established recently
by the author in [12]: for any f ∈ C∞(M) satisfying the Neumann condition
Nf |∂M = 0,

I(∇f,∇f) =

√
π|∇f |2
2

lim
t→0

1√
t
log

(Pt|∇f |p)1/p
|∇Ptf |

(1.3)

holds on ∂M for any p ∈ [1,∞). With help of this result and stochastic analysis
on the reflecting diffusion process, we are able to prove the following main result
of the paper.

Theorem 1.1. Let M be a compact Riemannian manifold with boundary and

let Pt be the Neumann semigroup generated by L = ∆ + Z. Then for any

constants K,σ ∈ R, the following statements are equivalent to each other:

(1) Ric−∇Z ≥ −K on M and I ≥ −σ on ∂M ;

(2) (1.2) holds;

(3) |∇Ptf |2 ≤ e2Kt(Pt|∇f |2)Ee2σlt , t ≥ 0, f ∈ C1(M);

(4) Pt(f
2 log f2)− (Ptf

2) logPtf
2 ≤ 4E

[

|∇f |2(Xt)
∫ t

0
e2σ(lt−lt−s)+2Ksds

]

,
t ≥ 0, f ∈ C1(M);

(5) Ptf
2−(Ptf)

2 ≤ 2E
[

|∇f |2(Xt)
∫ t

0 e2σ(lt−lt−s)+2Ksds
]

, t ≥ 0, f ∈ C1(M);

(6) |∇Ptf |2 ≤
≤

( 2K

1− e−2Kt

)2
(

Pt(f log f)− (Ptf) logPtf
)

E
[

f(Xt)
∫ t

0
e2σls−2Ksds

]

,

t > 0, f ≥ 0, f ∈ C1(M);

(7) |∇Ptf |2 ≤ 2K2

(1− e−2Kt)2
(

Ptf
2 − (Ptf)

2
)

E
∫ t

0 e
2σls−2Ksds, t ≥ 0, f ∈

C1(M).

Theorem 1.1 can be extended to a class of non-compact manifolds with bound-
ary such that the local times lt is exponentially integrable. According to [13]
the later is true provided I is bounded, the sectional curvature around ∂M is
bounded above, the drift Z is bounded around ∂M , and the injectivity radius
of the boundary is positive. To avoid technical complications, here we simply
consider the compact case.
In the next section, we shall provide a result on gradient estimate and non-
constant lower bounds of curvature and second fundamental form, which im-
plies the equivalences among (1), (2) and (3) as a special case. Then we present
a complete proof for the remainder of Theorem 1.1 in Section 3. As mentioned
above, for manifolds without boundary or with a convex boundary an equiva-
lent Harnack inequality for the curvature condition has been presented in [10].
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Due to unboundedness of the local time which causes an essential difficulty
in the study of Harnack inequality, the corresponding result for lower bound
conditions of the curvature and the second fundamental form is still open. Nev-
ertheless, log-Harnack and Harnack inequalities for the Neumann semigroup on
non-convex manifolds have been provided by [13, Theorem 5.1] and [14, Theo-
rem 4.1] respectively. Finally, as an extension to a result in [4] where manifolds
without boundary is considered, the Lévy-Gromov isoperimetric inequality is
derived in Section 4 for manifolds with boundary.

2 Gradient estimate

Let K1,K2 ∈ C(M) be such that

Ric−∇Z ≥ −K1 on M, I ≥ −K2 on ∂M. (2.1)

According to [8, Theorem 5.1] this condition implies

|∇Ptf | ≤ E
[

|∇f |(Xt)e
∫

t

0
K1(Xs)ds+

∫
t

0
K2(Xs)dls

]

, t ≥ 0, f ∈ C1(M). (2.2)

The main purpose of this section is to prove that these two statements are
indeed equivalent to each other. To prove that (2.2) implies (2.1), we need the
following results collected from [11, Proof of Lemma 2.1] and [13, Theorem 2.1,
Lemma 2.2, Proposition A.2] respectively:

(I) For any λ > 0, Eeλlt < ∞.

(II) For X0 = x ∈ ∂M, lim supt→0
1
t |Elt − 2

√

t/π| < ∞.

(III) For X0 = x ∈ ∂M , there exists a constant c > 0 such that El2t ≤ ct, t ∈
[0, 1].

(IV) Let ρ be the Riemannian distance. For δ > 0 and X0 = x ∈ M \ ∂M
such that ρ(x, ∂M) ≥ δ, the stopping time τδ := inf{t > 0 : ρ(Xt, x) ≥ δ}
satisfies P(τδ ≤ t) ≤ c exp[−δ2/(16t)] for some constant c > 0 and all
t > 0.

Theorem 2.1. (2.1), (2.2) and the following inequality are equivalent to each

other:

|∇Ptf |2 ≤ (Pt|∇f |2)E
[

e2
∫

t

0
K1(Xs)ds+2

∫
t

0
K2(Xs)dls

]

, t ≥ 0, f ∈ C1(M). (2.3)

Proof. Since by [8] (2.1) implies (2.2) which is stronger than (2.3) due to the
Schwartz inequality, it remains to deduce (2.1) from (2.3).
(a) Proof of Ric−∇Z ≥ −K1. It suffices to prove at points in the interior. Let
X0 = x ∈ M \ ∂M. For any ε > 0 there exists δ > 0 such that
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B̄(x, δ) ⊂ M \ ∂M, sup
y∈B̄(x,δ)

|K1(y)−K1(x)| ≤ ε, (2.4)

where B̄(x, δ) is the closed geodesic ball at x with radius δ. Since lt = 0 for
t ≤ τδ, by (2.3), (I) and (IV) we have

|∇Ptf |2(x) ≤ (Pt|∇f |2(x))Ee2
∫

t

0
K1(Xs)ds+2

∫
t

0
K2(Xs)dls

≤ (Pt|∇f |2(x))
{

e2t(K1(x)+ε)
P(τδ ≥ t) +

√

P(τδ < t)Ee4t‖K1‖∞+4‖K2‖∞lt

}

≤ (Pt|∇f |2(x))e2t(K1(x)+ε) + Ce−λ/t, t ∈ (0, 1]

for some constants C, λ > 0.
This implies

lim sup
t→0

|∇Ptf |2(x) − |∇f |2(x)
t

≤ lim sup
t→0

e2t(K1(x)+ε)Pt|∇f |2(x)− |∇f |2(x)
t

.

(2.5)
Now, let f ∈ C∞(M) with Nf |∂M = 0, we have

Ptf = f +

∫ t

0

PsLfds, t ≥ 0.

Then

lim sup
t→0

|∇Ptf |2(x)− |∇f |2(x)
t

= lim
t→0

1

t

{∣

∣

∣

∣

∫ t

0

∇PsLfds

∣

∣

∣

∣

2

+ 2

∫ t

0

〈∇f,∇PsLf〉ds
}

(x).

(2.6)

Moreover, according to the last display in the proof of [8, Theorem 5.1] (the
initial data u0 ∈ Ox(M) was missed in the right hand side therein),

∇PtLf = u0E
[

Mtu
−1
t ∇Lf(Xt)

]

,

where ut is the horizontal lift of Xt on the frame bundle O(M), and Mt is a
d × d-matrices valued right continuous process satisfying M0 = I and (see [8,
Corollary 3.6])

‖Mt‖ ≤ exp
[

‖K1‖∞t+ ‖K2‖∞lt
]

.

So, due to (I), |∇P·Lf | is bounded on [0, 1]×M and ∇PsLf → ∇Lf as s → 0.
Combining this with (2.6) we obtain

lim sup
t→0

|∇Ptf |2(x)− |∇f |2(x)
t

= 2〈∇f,∇Lf〉(x). (2.7)
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On the other hand, applying the Itô formula to |∇f |2(Xt) we have

Pt|∇f |2(x) = |∇f |2(x) +
∫ t

0

PsL|∇f |2(x)ds+ E

∫ t

0

N |∇f |2(Xs)dls

≤ |∇f |2(x) +
∫ t

0

PsL|∇f |2(x)ds+ ‖∇|∇f |2‖∞Elt.

(2.8)

Since lt = 0 for t ≤ τδ, by (III) and (IV) we have

Elt ≤
√

(El2t )P(τδ ≤ t) ≤ c1e
−λ/t, t ∈ (0, 1]

for some constants c1, λ > 0. So, it follows from (2.8) that

lim sup
t→0

Pt|∇f |2(x)− |∇f |2(x)
t

≤ L|∇f |2(x).

Combining this with (2.5) and (2.7), we arrive at

1

2
L|∇f |2(x) − 〈∇f,∇Lf〉(x) ≥ −(K1(x) + ε), f ∈ C∞(M), Nf |∂M = 0.

According to the Bochner-Weitzenböck formula, this is equivalent to (Ric −
∇Z)(x) ≥ −(K1(x) + ε). Therefore, Ric − ∇Z ≥ −K1 holds on M by the
arbitrariness of x ∈ M \ ∂M and ε > 0.
(b) Proof of I ≥ −K2. Let X0 = x ∈ ∂M. For any f ∈ C∞(M) with Nf |∂M =
0, (2.3) implies that

|∇Ptf |2(x) ≤ eC1t(Pt|∇f |2(x))Ee2
∫

t

0
K2(Xs)dls , (2.9)

where C1 = 2‖K1‖∞. Let

εt = 2 sup
s∈[0,t]

|K2(Xs)−K2(x)|.

By the continuity of the reflecting diffusion process we have εt ↓ 0 as t ↓ 0.
Since there exists c0 > 0 such that for any r ≥ 0 one has er ≤ 1+ r+ c0r

3/2er,
we obtain

logEe2
∫

t

0
K2(Xs)dls ≤ log

{

1 + 2K2(x)Elt + E(εtlt) + C2E(l
3/2
t eC2lt)

}

(2.10)

for some constant C2 > 0. Moreover, by (I) and (III) we have

E(l
3/2
t eC2lt) ≤ (El2t )

3/4(Ee4C2lt)1/4 ≤ C3t
3/4, t ∈ (0, 1]

for some constant C3 > 0. Substituting this and (2.10) into (2.9), we arrive at
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lim sup
t→0

1√
t
log

|∇Ptf |2(x)
Pt|∇f |2(x) ≤ lim sup

t→0

2K2(x)Elt + E(εtlt)√
t

.

Since Eε2t → 0 as t → 0 and El2t ≤ ct due to (III), this and (II) imply

lim sup
t→0

1√
t
log

|∇Ptf |2(x)
Pt|∇f |2(x) ≤ 4K2(x)√

π
.

Combining this with (1.3) for p = 2 we complete the proof.

3 Proof of Theorem 1.1

Applying Theorem 2.1 toK1 = K andK2 = σ we conclude that (1), (2) and (3)
are equivalent to each other. Noting that the log-Sobolev inequality (4) implies
the Poincaré inequality (5) (see e.g. [6]), it suffices to prove that (2) ⇒ (4),
(5) ⇒ (1), and (2) ⇒ (6) ⇒ (7) ⇒ (1), where “ ⇒” stands for “implies”. We
shall complete the proof step by step.
(a) (2) ⇒ (4). By approximations we may assume that f ∈ C∞(M) with
Nf |∂M = 0. In this case

d

dt
Ptf = LPtf = PtLf.

So, for fixed t > 0 it follows from (2) that

d

ds
Pt−s{(Psf

2) logPsf
2} = −Pt−s

|∇Psf
2|2

Psf2

≥ −4e2KsPt−s
(E[f |∇f |(Xs)e

σls ])2

Psf2

≥ −4e2KsPt−sE[|∇f |2(Xs)e
2σls ].

(3.1)

Next, by the Markov property, for Fs = σ(Xr : r ≤ s), s ≥ 0, we have

Pt−s(E[|∇f |2(Xs)e
2σls ])(x) = E

x
E
Xt−s [|∇f |2(Xs)e

2σls ]

= E
x[Ex(e2σ(lt−lt−s)|∇f |2(Xt)|Ft−s)]

= E
x[|∇f |2(Xt)e

2σ(lt−lt−s)].

Combining this with (3.1) we obtain

d

ds
Pt−s{(Psf

2) logPsf
2} ≥ −4E

[

|∇f |2(Xt)e
2Ks+2σ(lt−lt−s)

]

, s ∈ (0, t).

This implies (4) by integrating both sides with respect to ds from 0 to t.
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(b1) (5) ⇒ Ric − ∇Z ≥ −K. Let X0 = x ∈ M \ ∂M and f ∈ C∞(M) with
Nf |∂M = 0. By (5) we have

Ptf
2 − (Ptf)

2 ≤ 2E

[

|∇f |2(Xt)

∫ t

0

e2Ks+2σ(lt−lt−s)ds

]

. (3.2)

Let δ > 0 and τδ be as in the proof of Theorem 2.1(a). Then

E

[

|∇f |2(Xt)

∫ t

0

e2Ks+2σ(lt−lt−s)ds

]

≤ (Pt|∇f |2)
∫ t

0

e2Ksds+ t‖∇f‖∞e2Kt
E[e2σlt1{τδ<t}]

≤ e2Kt − 1

2K
Pt|∇f |2(x) + ce−λ/t, t ∈ (0, 1]

holds for some constants c, λ > 0 according to (IV). Combining this with (3.2)
we conclude that

Ptf
2(x) − (Ptf)

2(x) ≤ e2Kt − 1

K
Pt|∇f |2(x) + 2ce−λ/t, t ∈ (0, 1]. (3.3)

Since f ∈ C∞(M) with Nf |∂M=0, we have

Ptf
2 − (Ptf)

2 = f2 +

∫ t

0

PsLf
2ds−

(

f +

∫ t

0

PsLfds

)2

=

∫ t

0

(PsLf
2 − 2fPsLf)ds−

(
∫ t

0

PsLfds

)2

.

(3.4)

Moreover, by the continuity of s 7→ PsLf , we have

(
∫ t

0

PsLfds

)2

= (Lf)2t2 + ◦(t2), (3.5)

where and in what follows, for a positive function (0, 1] ∋ t 7→ ξt the notion
◦(ξt) stands for a variable such that ◦(ξt)/ξt → 0 as t → 0; while ©(ξt) satisfies
that ©(ξt)/ξt is bounded for t ∈ (0, 1]. Moreover, since

PsLf
2 − 2fPsLf =Lf2 − 2fLf +

∫ s

0

(PrL
2f2 − 2fPrL

2f)dr

+ E

∫ s

0

(NLf2 − 2f(x)NLf)(Xr)dlr,

and due to (IV)
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∣

∣

∣

∣

E

∫ t

0

{

NLf2 − 2f(x)NLf
}

(Xr)dlr

∣

∣

∣

∣

≤ c1Els ≤ c2e
−λ/s, s ∈ (0, 1]

holds for some constants c1, c2, λ > 0, it follows from the continuity of Ps in s
that

∫ t

0

(PsLf
2 − 2fPsLf)ds = 2t|∇f |2 + t2

2
(L2f2 − 2fL2f) + ◦(t2).

Combining this with (3.4) and (3.5) we obtain

Ptf
2(x)−(Ptf)

2(x) =

= 2t|∇f |2(x) + t2

2
(L2f2 − 2fL2f)(x)− t2(Lf)2(x) + ◦(t2)

= 2t|∇f |2(x) + t2(2〈∇f,∇Lf〉+ L|∇f |2)(x) + ◦(t2).

(3.6)

Similarly,

Pt|∇f |2(x) = |∇f |2(x) +
∫ t

0

PsL|∇f |2(x)ds+ E

∫ t

0

N |∇f |2(Xs)dls

= |∇f |2(x) + tL|∇f |2(x) + ◦(t).

Combining this with (3.3) and (3.6) we arrive at

1

t2
{

t2(2〈∇f,∇Lf〉+ L|∇f |2)(x) + ◦(t2)
}

≤ e2Kt − 1

Kt
L|∇f |2(x) + ◦(1) + 1

t

(e2Kt − 1

Kt
− 2

)

|∇f |2(x).

Letting t → 0 we obtain

L|∇f |2(x)− 2〈∇f,∇Lf〉(x) ≥ −2K|∇f |2(x),
which implies (Ric−∇Z)(x) ≥ −K by the Bochner-Weitzenböck formula.
(b2) (5) ⇒ I ≥ −σ. Let X0 = x ∈ ∂M and f ∈ C∞(M) with Nf |∂M = 0.
Noting that Lf2 − 2fLf = 2|∇f |2, by the Itô formula we have

Ptf
2(x) − (Ptf)

2(x) = f2 +

∫ t

0

PsLf
2ds−

(

f +

∫ t

0

PsLfds

)2

= 2

∫ t

0

Ps|∇f |2(x)ds+ 2

∫ t

0

[Ps(fLf)(x)− f(x)PsLf(x)]ds+©(t2).

(3.7)

Since Nf |∂M = 0 implies
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0 = 〈∇f,∇〈N,∇f〉〉 = Hessf (N,∇f)− I(∇f,∇f),

it follows that

I(∇f,∇f) = Hessf (N,∇f) =
1

2
N |∇f |2. (3.8)

So, by the Itô formula, (II) and (III) yield

Ps|∇f |2(x) = |∇f |2(x) +
∫ s

0

PrL|∇f |2(x)dr + E

∫ s

0

N |∇f |2(Xr)dlr

= |∇f |2(x) +©(s) + 2E

∫ s

0

I(∇f,∇f)(Xr)dlr

= |∇f |2(x) + 4
√
s√
π
I(∇f,∇f)(x) + ◦(s1/2).

(3.9)

Moreover, since (fNLf)(Xr)−f(x)(NLf)(Xr) is bounded and goes to zero as
r → 0, it follows from (III) that

2E

∫ t

0

ds

∫ s

0

[(fNf)(Xr)− f(x)(NLf)(Xr)]dlr = ◦(t3/2).

So, by the Iô formula

2

∫ t

0

[Ps(fLf)(x)− f(x)PsLf(x)]ds

= 2

∫ t

0

ds

∫ s

0

[PrL(fLf)(x)− f(x)PrL
2f(x)]dr

+ 2E

∫ t

0

ds

∫ s

0

[(fNLf)(Xr)− f(x)(NLf)(Xr)]dlr = ◦(t3/2).

Combining this with (3.7) and (3.9) we arrive at

lim
t→0

1

t
√
t

(

Ptf
2(x)− (Ptf)

2(x) − 2t|∇f |2(x)
)

=
8√
π
I(∇f,∇f)(x) lim

t→0

1

t
√
t

∫ t

0

√
s ds =

16

3
√
π
I(∇f,∇f)(x).

(3.10)

On the other hand, by the Itô formula for |∇f |2(Xt), it follows from (3.8) and
(II) that
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At :=

=
1

t
√
t
E

{

|∇f |2(Xt)

∫ t

0

e2Ks+2σ(lt−lt−s)ds− t|∇f |2(x)
}

=
1√
t

(

E|∇f |2(Xt)− |∇f |2(x)
)

+ E

{ |∇f |2(Xt)

t
√
t

∫ t

0

(

e2Ks+2σ(lt−lt−s) − 1
)

ds

}

=
1√
t

{
∫ t

0

PsL|∇f |2(x)ds+ E

∫ t

0

N |∇f |2(Xs)dls

}

+ E

{ |∇f |2(Xt)

t
√
t

∫ t

0

(

e2Ks+2σ(lt−lt−s) − 1
)

ds

}

=
4√
π
I(∇f,∇f)(x) + ◦(1) + E

{ |∇f |2(Xt)

t
√
t

∫ t

0

(

e2Ks+2σ(lt−lt−s) − 1
)

ds

}

.

(3.11)

Since by (I) and (III)

∣

∣

∣

∣

E

[

(

|∇f |2(Xt)− |∇f |2(x)
)

∫ t

0

(

e2Ks+2σ(lt−lt−s) − 1
)

ds
]

∣

∣

∣

∣

≤ t
{

E
(

|∇f |2(Xt)− |∇f |2(x)
)2
}1/2{

E
(

e2Kt+2σlt − 1
)2
}1/2

= ◦(t) ·
(

E[4σ2l2t ] + ◦(t)
)

= ◦(t2),

it follows from (I) and (II) that

E

[

|∇f |2(Xt)

∫ t

0

(

e2Ks+2σ(lt−lt−s) − 1
)

ds

]

= ◦(t2) + |∇f |2(x)E
∫ t

0

(

e2Ks+2σ(lt−lt−s) − 1
)

ds

= ◦(t3/2) + 4σ|∇f |2(x)√
π

∫ t

0

(
√
t−

√
t− s

)

ds

=
4σt

√
t

3
√
π

|∇f |2(x) + ◦(t3/2).

Combining this with (3.11) we arrive at

At ≤ ◦(1) + 4√
π
I(∇f,∇f)(x) +

4σ

3
√
π
|∇f |2(x).

So, (3.10) and (5) imply that

16

3
√
π
I(∇f,∇f)(x) ≤ lim sup

t→0
2At ≤

8√
π
I(∇f,∇f)(x) +

8σ

3
√
π
|∇f |2(x).
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Therefore, I(∇f,∇f)(x) ≥ −σ|∇f |2(x).
(c) (2) ⇒ (6). Let f ≥ 0 be smooth satisfying the Neumann boundary condi-
tion. We have

d

ds
Ps

{

(Pt−sf) logPt−sf
}

= Ps
|∇Pt−sf |2
Pt−sf

.

This implies

Pt(f log f)− (Ptf) logPtf =

∫ t

0

Ps
|∇Pt−sf |2
Pt−sf

ds. (3.12)

On the other hand, by (2) and applying the Schwartz inequality to the proba-
bility measure 2K

1−exp[−2Kt]e
−2Ksds on [0, t], we obtain

|∇Ptf |2 =

=

{

2K

1− e−2Kt

∫ t

0

|∇Ps(Pt−sf)|e−2Ksds

}2

≤
{

2K

1− e−2Kt

∫ t

0

E
[

|∇Pt−sf |(Xs)e
σls−Ks

]

ds

}2

≤
( 2K

1− e−2Kt

)2
(

E

∫ t

0

|∇Pt−sf |2
Pt−sf

(Xs)ds

)
∫ t

0

E
[

Pt−sf(Xs)e
2σls−2Ks

]

ds

=
( 2K

1− e−2Kt

)2
(
∫ t

0

Ps
|∇Pt−sf |2
Pt−sf

ds

)
∫ t

0

E
[

Pt−sf(Xs)e
2σls−2Ks

]

ds.

Combining this with (3.12) and noting that the Markov property implies

E[Pt−sf(Xs)e
2σls ] = E[(EXsf(Xt−s))e

2σls ] = E[e2σlsE(f(Xt)|Fs)]

= E[E(f(Xt)e
2σls |Fs)] = E[f(Xt)e

2σls ],

we obtain (6).
(d) (6) ⇒ (7). The proof is similar to the classical one for the log-Sobolev
inequality to imply the Poincaré inequality. Let f ∈ C∞(M). SInce M is
compact, 1 + εf > 0 for small ε > 0. Applying (6) to 1 + εf in place of f , we
obtain

|∇Ptf |2 ≤ 2K

ε2(1− e−2Kt)

{

Pt(1 + εf) log(1 + εf)− (1 + εPtf) log(1 + εPtf)
}

· E
{

(1 + εf(Xt))

∫ t

0

e2σls−2Ksds

}

.

(3.13)

Since by Taylor’s expansion
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Pt(1 + εf) log(1 + εf)− (1 + εPtf) log(1 + εPtf) =
ε2

2

(

Ptf
2 − (Ptf)

2
)

+ ◦(ε2),

letting ε → 0 in (3.13) we obtain (7).
(e1) (7) ⇒ Ric − ∇Z ≥ −K. Let X0 = x ∈ M \ ∂M and f ∈ C∞(M) with
Nf |∂M = 0. by (I) and (IV) we have

Ee2σls = 1 + E[e2σls1{τδ≤s}] = 1 + ◦(s).
So,

E

∫ t

0

e2σls−2Ksds =
1− exp[−2Kt]

2K
+ ◦(t).

Combining this with (3.6) and (7), we conclude that, at point x,

|∇Ptf |2 − |∇f |2
t

≤

≤ K

1− e−2Kt

{

2|∇f |2 + t
(

2〈∇f,∇Lf〉+ L|∇f |2
)}

− |∇f |2
t

+ ◦(1)

=
1

t

( 2Kt

1− e−2Kt
− 1

)

|∇f |2 + Kt

1− e−2Kt

(

2〈∇f,∇Lf〉+ L|∇f |2
)

+ ◦(1).

Letting t → 0 and using (2.7), we obtain

2〈∇f,∇Lf〉 ≤ K|∇f |2 + 〈∇f,∇Lf〉+ 1

2
L|∇f |2

at point x. This implies Ric − ∇Z ≥ −K at this point according to the
Bochner-Weitzenböck formula.
(e2) (7) ⇒ I ≥ −σ. Let X0 = x ∈ ∂M and f ∈ C∞(M) with Nf |∂M = 0. It
follows from (3.10), (7) and (II) that at point x,

|∇Ptf |2 ≤

≤ 2K2

(1− e−2Kt)2

(

2t|∇f |2 +
16t3/2

3
√
π

I(∇f,∇f) + ◦(t3/2)
)(

t+
8σt3/2

3
√
π

+ ◦(t3/2)
)

=
4K2t2

(1− e−2Kt)2
|∇f |2 +

4K2t5/2

(1− e−2Kt)2

( 8

3
√
π
I(∇f,∇f) +

8σ

3
√
π
|∇f |2

)

+ ◦(t1/2).

Combining this with (2.7) we deduce at point x that

0 = lim
t→0

1√
t

(

|∇Ptf |2 −
4K2t2

(1− e−2Kt)2
|∇f |2

)

≤ lim
t→0

4K2t2

(1− e−2Kt)2

( 8

3
√
π
I(∇f,∇f) +

8σ

3
√
π
|∇f |2

)

=
8

3
√
π
I(∇f,∇f) +

8σ

3
√
π
|∇f |2.
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Therefore, I(∇f,∇f)(x) ≥ −σ|∇f |2(x).

4 Lévy-Gromov isoperimetric inequality

As a dimension-free version of the classical Lévy-Gromov isoperimetric inequal-
ity, it is proved in [4] that if M does not have boundary then for V ∈ C2(M)
such that Ric−HessV ≥ R > 0 the following inequality

U (µ(f)) ≤
∫

M

√

U 2(f) +R−1|∇f |2 dµ, (4.1)

holds for any smooth function f with values in [0, 1], where µ(dx) :=
C(V )−1eV (x)dx for C(V ) =

∫

M
eV (x)dx is a probability measure on M , and

U = ϕ ◦ Φ−1 for Φ(r) = (2π)−1
∫ r

−∞ e−s2/2ds and ϕ = Φ′. Since U (0) =
U (1) = 0, taking f = 1A (by approximations) in (4.1) for a smooth domain
A ⊂ M , we obtain the isoperimetric inequality

RU (A) ≤ µ∂(∂A), (4.2)

where µ∂(∂A) is the area of ∂A induced by µ. This inequality is crucial in the
study of Gaussian type concentration of µ (see [4, 9]). Obviously, (4.1) follows
from the following semigroup inequality by letting t → ∞:

U (Ptf) ≤ Pt

√

U 2(f) +R−1(1− e−2Rt)|∇f |2. (4.3)

In this section we aim to extend (4.3) to manifolds with boundary.
Now, let again M be compact with boundary ∂M , and let Pt be the Neumann
semigroup generated by L = ∆ + Z. We shall prove an analogue of (4.3) for
the curvature and second fundamental condition in Theorem 1.1(1).

Theorem 4.1. Let Ric − ∇Z ≥ −K and I ≥ −σ for some constants K ∈ R

and σ ≥ 0. Then for any smooth function f with values in [0, 1],

U (Ptf) ≤ E

√

U 2(f)(Xt) + |∇f |2(Xt)
(e2Kt − 1)e2σlt

K
, t ≥ 0. (4.4)

If in particular ∂M is convex (i.e. σ = 0), then

U (Ptf) ≤ Pt

√

U 2(f) + |∇f |2(Xt)
e2Kt − 1

K
, t ≥ 0.

If moreover K < 0, then (4.1) and (4.2) hold for R = −K > 0.

Proof. It suffices to prove the first assertion. To this end, we shall use the
following equivalent condition for Ric − ∇Z ≥ −K (see e.g. the proof of [9,
(1.14)]):

Γ2(f, f) :=
1

2
L|∇f |2 − 〈∇f,∇Lf〉 ≥ −K|∇f |2 + |∇|∇f |2|2

4|∇f |2 . (4.5)
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To prove (4.4), we consider the process

ηs = U
2(Pt−sf)(Xs) + |∇Pt−sf |2(Xs)

(e2Ks − 1)e2σls

K
, s ∈ [0, t].

To apply the Itô formula for ηs, recall that Xs solves the equation

dXs =
√
2 us ◦ dBs +N(Xs)dls,

where us is the horizontal lift of Xs and Bs is the Brownian motion on R
d

provided M is d-dimensional. So,

dηs =
√
2
〈

2(U U
′)(Pt−sf)(Xs) +

(e2Ks − 1)e2σls

K
∇|∇Pt−sf |2(Xs), usdBs

〉

+
{

2(U ′2 + U U
′′)(Pt−sf)|∇Pt−sf |2 + 2Γ2(Pt−sf, Pt−sf)

(e2Ks − 1)e2σls

K

+ 2|∇Pt−sf |2e2Ks+2σls
}

(Xs)ds

+
(e2Ks − 1)e2σls

K

(

N |∇Pt−sf |2 + 2σ|∇Pt−sf |2
)

(Xs)dls.

Noting that U U ′′ = −1 and σ ≥ 0 so that e2σls ≥ 1, combining this with
(3.8), I ≥ −σ and (4.5), we obtain

dηs ≥
√
2
〈

2(U U
′)(Pt−sf)(Xs) +

(e2Ks − 1)e2σls

K
∇|∇Pt−sf |2(Xs), usdBs

〉

+
{

2U ′2(Pt−sf)|∇Pt−sf |2 +
(e2Ks − 1)e2σls |∇|∇Pt−sf |2|2

2K|∇Pt−sf |2
}

(Xs)ds.

Therefore, there exists a martingale Ms for s ∈ [0, t] such that

dη1/2s = dMs +
dηs

2η
1/2
s

−

−
∣

∣2(U U ′)(Pt−sf)∇Pt−sf + (e2Ks−1)e2σls

K ∇|∇Pt−sf |2
∣

∣

2
(Xs)

4η
3/2
s

= dMs +
1

4η
3/2
s

Bsds,

where
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Bs :=2ηs

(

2U ′2(Pt−sf)|∇Pt−sf |2 +
(e2Ks − 1)e2σls |∇|∇Pt−sf |2|2

2K|∇Pt−sf |2
)

(Xs)

−
∣

∣

∣
2(U U

′)(Pt−sf)∇Pt−sf +
e2Ks − 1

K
e2σls∇|∇Pt−sf |2

∣

∣

∣

2

(Xs)

≥ (e2Ks − 1)e2σls

K

{

U 2(Pt−sf)|∇|∇Pt−sf |2|2
2|∇Pt−sf |2

+ 4|∇Pt−sf |4U ′2(Pt−sf)

− 4(U U
′)(Pt−sf)〈∇Pt−sf,∇|∇Pt−sf |2〉

}

(Xs)

≥0.

So, η
1/2
s is a sub-martingale on [0, t]. Therefore, Eη

1/2
0 ≤ Eη

1/2
t , which is

nothing but (4.4).
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