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Abstract. Let p be an odd prime. We show that the classification
of p-divisible groups by Breuil windows and the classification of com-
mutative finite flat group schemes of p-power order by Breuil modules
hold over every complete regular local ring with perfect residue field
of characteristic p. We set up a formalism of frames and windows
with an abstract deformation theory that applies to Breuil windows.
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1 Introduction

Let R be a complete regular local ring of dimension r with perfect residue field
k of odd characteristic p. Let W (k) be the ring of Witt vectors of k. One can
write R = S/ES with

S =W (k)[[x1, . . . , xr]]

such that E ∈ S is a power series with constant term p. Let σ be the endomor-
phism of S that extends the Frobenius automorphism of W (k) by σ(xi) = xpi .
Following Vasiu and Zink, a Breuil window relative to S → R is a pair (Q,φ)
where Q is a free S-module of finite rank, and where

φ : Q→ Q(σ)

is an S-linear map with cokernel annihilated by E.

Theorem 1.1. The category of p-divisible groups over R is equivalent to the
category of Breuil windows relative to S→ R.
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If R has characteristic p, this follows from more general results of A. de Jong
[dJ]; this case is included here only for completeness. If r = 1 and E is an
Eisenstein polynomial, Theorem 1.1 was conjectured by Breuil [Br] and proved
by Kisin [K1]. When E is a deformation of an Eisenstein polynomial the result
is proved in [VZ1].
Like in these cases one can deduce a classification of commutative finite flat
group schemes of p-power order over R: A Breuil module relative to S→ R is
a triple (M,ϕ, ψ) where M is a finitely generated S-module annihilated by a
power of p and of projective dimension at most one, and where

ϕ :M →M (σ), ψ :M (σ) →M

are S-linear maps with ϕψ = E and ψϕ = E. If R has characteristic zero, such
triples are equivalent to pairs (M,ϕ) such that the cokernel of ϕ is annihilated
by E.

Theorem 1.2. The category of commutative finite flat group schemes over
R annihilated by a power of p is equivalent to the category of Breuil modules
relative to S→ R. 1

This result is applied in [VZ2] to the question whether abelian schemes or p-
divisible groups defined over the complement of the maximal ideal in SpecR
extend to SpecR.

Frames and windows

To prove Theorem 1.1 we show that Breuil windows are equivalent to Dieudonné
displays over R, which are equivalent to p-divisible groups over R by [Z2]; the
same route is followed in [VZ1]. So the main part of this article is purely
module theoretic.
We introduce a notion of frames and windows (motivated by [Z3]) which allows
to formulate a deformation theory that generalises the deformation theory of
Dieudonné displays developed in [Z2] and that also applies to Breuil windows.
Technically the main point is the formalism of σ1 in Definition 2.1; the central
result is the lifting of windows in Theorem 3.2.
This is applied as follows. Let mR be the maximal ideal of R. For each positive
integer a we consider the ringsSa = S/(x1, . . . , xr)

aS and Ra = R/ma
R. There

is an obvious notion of Breuil windows relative to Sa → Ra and a functor

κa : (Breuil windows relative to Sa → Ra)→ (Dieudonné displays over Ra).

Here κ1 is trivially an equivalence because S1 = W (k) and R1 = k. The
deformation theory implies that on both sides lifts from a to a+1 are classified
by lifts of the Hodge filtration in a compatible way. Thus κa is an equivalence
for all a by induction, and Theorem 1.1 follows.

1Recently, Theorems 1.1 and 1.2 have been extended to the case p = 2. See: A relation

between Dieudonné displays and crystalline Dieudonné theory (in preparation).
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Complements

There is some freedom in the choice of the Frobenius lift on S. Namely, let σ
be a ring endomorphism of S which preserves the ideal J = (x1, . . . , xr) and
which induces the Frobenius on S/pS. If the endomorphism σ/p of J/J2 is
nilpotent modulo p, Theorems 1.1 and 1.2 hold without change.
All of the above equivalences of categories are compatible with the natural
duality operations on both sides.
If the residue field k is not perfect, there is an analogue of Theorems 1.1 and
1.2 for connected groups. Here p = 2 is allowed. The ring W (k) is replaced by
a Cohen ring of k, and the operators φ and ϕ must be nilpotent modulo the
maximal ideal of S.
In the first version of this article [L3] the formalism of frames was introduced
only to give an alternative proof of the results of Vasiu and Zink [VZ1]. In
response, they pointed out that both their and this approach apply in greater
generality, e.g. in the case where E ∈ S takes the form E = g + pǫ such that ǫ
is a unit and g divides σ(g) for a general Frobenius lift σ as above. However,
the method of loc. cit. seems not to give Theorem 1.1 completely.

All rings in this article are commutative and have a unit. All finite flat group
schemes are commutative.

Acknowledgements. The author thanks A. Vasiu and Th. Zink for valuable
discussions, in particular Th. Zink for sharing his notion of κ-frames and for
suggesting to include section 10, and the referee for many helpful comments.

2 Frames and windows

Let p be a prime. The following notion of frames and windows differs from
[Z3]. Some definitions and arguments could be simplified by assuming that the
relevant rings are local, which is the case in our applications, but we work in
greater generality until section 4.
If S is a ring equipped with a ring endomorphism σ, for an S-module M we
write M (σ) = S ⊗σ,S M , and for a σ-linear map of S-modules g : M → N
we denote by g♯ : M (σ) → N its linearisation, g♯(s ⊗ m) = sg(m). If g♯ is
invertible, g is called a σ-linear isomorphism.

Definition 2.1. A frame is a quintuple

F = (S, I, R, σ, σ1)

consisting of a ring S, an ideal I of S, the quotient ring R = S/I, a ring
endomorphism σ : S → S, and a σ-linear map of S-modules σ1 : I → S, such
that the following conditions hold:

i. I + pS ⊆ Rad(S),

ii. σ(a) ≡ ap mod pS for a ∈ S,
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iii. σ1(I) generates S as an S-module.

We do not assume here that R is the specific ring considered in the introduction.
In our examples σ1(I) contains the element 1.

Lemma 2.2. For every frame F there is a unique element θ ∈ S such that
σ(a) = θσ1(a) for a ∈ I.

Proof. Condition iii means that the homomorphism σ♯
1 : I(σ) → S is surjective.

Let us choose b ∈ I(σ) such that σ♯
1(b) = 1. Then necessarily θ = σ♯(b). For

a ∈ I we compute σ(a) = σ♯
1(b)σ(a) = σ♯

1(ba) = σ♯(b)σ1(a) as desired.

Definition 2.3. Let F be a frame. A window over F , also called an F -
window, is a quadruple

P = (P,Q, F, F1)

where P is a finitely generated projective S-module, Q ⊆ P is a submodule,
F : P → P and F1 : Q → P are σ-linear map of S-modules, such that the
following conditions hold:

1. There is a decomposition P = L⊕ T with Q = L⊕ IT ,

2. F1(ax) = σ1(a)F (x) for a ∈ I and x ∈ P ,

3. F1(Q) generates P as an S-module.

A decomposition as in 1 is called a normal decomposition of (P,Q) or of P.

Remark 2.4. The operator F is determined by F1. Indeed, if b ∈ I
(σ) satisfies

σ♯
1(b) = 1, then condition 2 implies that F (x) = F ♯

1 (bx) for x ∈ P . In particular
we have F (x) = θF1(x) when x lies in Q.

Remark 2.5. Condition 1 implies that

1′. P/Q is a projective R-module.

If finitely generated projective R-modules lift to projective S-modules, neces-
sarily finitely generated because I ⊆ Rad(S), condition 1 is equivalent to 1′. In
all our examples, this lifting property holds because S is either local or I-adic.

Lemma 2.6. Let F be a frame, let P = L⊕T be a finitely generated projective
S-module, and let Q = L ⊕ IT . The set of F -window structures (P,Q, F, F1)
on these modules is mapped bijectively to the set of σ-linear isomorphisms

Ψ : L⊕ T → P

by the assignment Ψ(l + t) = F1(l) + F (t) for l ∈ L and t ∈ T .

The triple (L, T,Ψ) is called a normal representation of (P,Q, F, F1).
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Proof. If (P,Q, F, F1) is an F -window, by conditions 2 and 3 of Definition
2.3 the linearisation of Ψ is surjective, thus bijective since P and P (σ) are
projective S-modules of equal rank by conditions i and ii of Definition 2.1.
Conversely, if Ψ is given, one gets an F -window by F (l + t) = θΨ(l) + Ψ(t)
and F1(l + at) = Ψ(l) + σ1(a)Ψ(t) for l ∈ L, t ∈ T , and a ∈ I.

Example. The Witt frame of a p-adic ring R is

WR = (W (R), IR, R, f, f1)

where W (R) is the ring of p-typical Witt vectors of R, f is its Frobenius
endomorphism, and f1 : IR → W (R) is the inverse of the Verschiebung homo-
morphism. Here θ = p. We have IR ⊆ Rad(W (R)) because W (R) is IR-adic;
see [Z1, Proposition 3]. Windows over WR are 3n-displays over R in the sense
of [Z1], called displays in [M2], which is the terminology we follow.

Functoriality

Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′

1) be frames.

Definition 2.7. A homomorphism of frames α : F → F ′, also called a frame
homomorphism, is a ring homomorphism α : S → S′ with α(I) ⊆ I ′ such that
σ′α = ασ and σ′

1α = u · ασ1 for a unit u ∈ S′. If u = 1, then α is called strict.

Remark 2.8. The unit u is unique because ασ1(I) generates S
′ as an S′-module.

We have α(θ) = uθ′. If we want to specify u, we say that α is a u-homo-
morphism. There is a unique factorisation of α into frame homomorphisms

F
α′

−→ F
′′ ω
−→ F

′

such that α′ is strict and ω is an invertible u-homomorphism. Here F ′′ is the
u−1-twist of F ′ defined as F ′′ = (S′, I ′, R′, σ′, u−1σ′

1).

Let α : F → F ′ be a u-homomorphism of frames.

Definition 2.9. Let P be an F -window and let P ′ be an F ′-window. A ho-
momorphism of windows g : P →P ′ over α, also called an α-homomorphism,
is an S-linear map g : P → P ′ with g(Q) ⊆ Q′ such that F ′g = gF and
F ′

1g = u · gF1. A homomorphism of F -windows is an idP-homomorphism in
the previous sense.

Lemma 2.10. For each F -window P there is a base change window α∗P over
F ′ together with an α-homomorphism of windows P → α∗P that induces a
bijection HomF ′(α∗P,P ′) = Homα(P,P ′) for all F ′-windows P ′.

Proof. Clearly this requirement determines α∗P uniquely. It can be con-
structed explicitly as follows: If (L, T,Ψ) is a normal representation of P,
a normal representation of α∗P is (S′ ⊗S L, S

′ ⊗S T,Ψ
′) where Ψ′ is defined

by Ψ′(s′ ⊗ l) = uσ′(s′)⊗Ψ(l) and Ψ′(s′ ⊗ t) = σ′(s′)⊗Ψ(t).
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If α∗P = (P ′, Q′, F ′, F ′

1), then P
′ = S′⊗S P , and Q

′ ⊆ P ′ is the S′-submodule
generated by I ′P ′ and by the image of Q.

Remark 2.11. As suggested in [VZ2], the above definitions of frames and win-
dows can be generalised as follows. Instead of condition iii of Definition 2.1,
the element θ given by Lemma 2.2 is taken as part of the data. For a u-
homomorphism α : F → F ′ of generalised frames in this sense it is necessary
to require that α(θ) = uθ′. For a window over a generalised frame the relation
F (x) = θF1(x) of Remark 2.4 becomes part of the definition, and condition 3
of Definition 2.3 is replaced by the requirement that F1(Q) + F (P ) generates
P . Then the results of sections 2–4 hold for generalised frames and windows
as well. Details are left to the reader.

Limits

Windows are compatible with projective limits of frames in the following sense.
Assume that for each positive integer n we have a frame

Fn = (Sn, In, Rn, σn, σ1n)

and a strict frame homomorphism πn : Fn+1 → Fn such that the involved
maps Sn+1 → Sn and In+1 → In are surjective and Ker(πn) is contained in
Rad(Sn+1). We obtain a frame lim

←−
Fn = (S, I, R, σ, σ1) with S = lim

←−
Sn etc.

By definition, an F∗-window is a system P∗ of Fn-windows Pn together with
isomorphisms πn∗Fn+1

∼= Fn.

Lemma 2.12. The category of (lim
←−

Fn)-windows is equivalent to the category
of F∗-windows.

Proof. The obvious functor from (lim
←−

Fn)-windows to F∗-windows is fully
faithful. We have to show that for an F∗-window P∗, the projective limit
lim
←−

Pn = (P,Q, F, F1) defined by P = lim
←−

Pn etc. is a window over lim
←−

Fn.
The condition Ker(πn) ⊆ Rad(Sn+1) implies that P is a finitely generated pro-
jective S-module and that P/Q is projective over R. In order that P has a
normal decomposition it suffices to show that each normal decomposition of
Pn lifts to a normal decomposition of Pn+1. Assume that Pn = L′

n ⊕ T ′

n

and Pn+1 = Ln+1 ⊕ Tn+1 are normal decompositions and let Pn = Ln ⊕ Tn
be induced by the second. Since Tn ⊗ Rn

∼= Pn/Qn
∼= T ′

n ⊗ Rn and
Ln ⊗ Rn

∼= Qn/IPn
∼= L′

n ⊗ Rn, we have Tn ∼= T ′

n and Ln
∼= L′

n. Hence
the two decompositions of Pn differ by an automorphism of Ln⊕Tn of the type
ω =

(

a b
c d

)

with c : Ln → InTn. Now ω lifts to an endomorphism ω′ =
(

a′ b′

c′ d′

)

of Ln+1 ⊕ Tn+1 with c′ : Ln+1 → In+1Tn+1, and ω
′ is an automorphism since

Ker(πn) ⊆ Rad(Sn+1). The required lifting of normal decompositions follows.
All remaining window axioms for lim

←−
Pn are easily checked.

Remark 2.13. Assume that S1 is a local ring. Then all Sn and S are local
too. Hence lim

←−
Fn satisfies the lifting property of Remark 2.5, so the normal

decomposition of P in the preceding proof is automatic.
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Duality

Let P, P ′, and P ′′ be windows over a frame F . A bilinear form of F -
windows β : P ×P ′ → P ′′ is an S-bilinear map β : P × P ′ → P ′′ such that
β(Q ×Q′) ⊆ Q′′ and

β(F1(x), F
′

1(x
′)) = F ′′

1 (β(x, x
′)) (2.1)

for x ∈ Q and x′ ∈ Q′. Let F also denote the F -window (S, I, σ, σ1). For every
F -window P there is a unique dual F -window Pt together with a bilinear
form P ×Pt → F which induces for each F -window P ′ an isomorphism
Hom(P ′,Pt) ∼= Bil(P ×P ′,F ). Explicitly we have Pt = (P∨, Qt, F t, F t

1)
where P∨ = HomS(P, S) and

Qt = {x′ ∈ P∨ | x′(Q) ⊆ I}.

The operators F t
1 and F t are determined by (2.1) with σ1 in place of F ′′

1 . If
(L, T,Ψ) is a normal representation for P, a normal representation for Pt is
given by (T∨, L∨,Ψt) where (Ψt)♯ is equal to ((Ψ♯)−1)∨. This shows that F t

1

and F t are well-defined. There is a natural isomorphism Ptt ∼= P.
For a more detailed exposition of the duality formalism in the case of
(Diedonné) displays we refer to [Z1, Definition 19] or [L2, Section 3].

Lemma 2.14. Let α : F → F ′ be a u-homomorphism of frames and let c ∈ S′

be a unit such that c−1σ′(c) = u. For all F -windows P there is a natural
isomorphism (depending on c)

α∗(P
t) ∼= (α∗P)t.

Proof. We consider the F ′-window F ′

u = (S′, I ′, uσ′, uσ′

1). The given bilinear
form P ×Pt → F induces a bilinear form α∗P × α∗(P

t) → F ′

u; this is
easily verified using that under base change by α each of the operators F1,
F ′

1, and F ′′

1 = σ1 accounts for one factor of u in (2.1). Multiplication by
c is an isomorphism of F ′-windows F ′

u
∼= F ′. The resulting bilinear form

α∗P × α∗(P
t)→ F ′ induces an isomorphism α∗(P

t) ∼= (α∗P)t.

3 Crystalline homomorphisms

Definition 3.1. A homomorphism of frames α : F → F ′ is called crystalline if
the functor α∗ : (F -windows)→ (F ′-windows) is an equivalence of categories.

Theorem 3.2. Let α : F → F ′ be a strict frame homomorphism that induces
an isomorphism R ∼= R′ and a surjection S → S′ with kernel a ⊂ S. We
assume that there is a finite filtration a = a0 ⊇ · · · ⊇ an = 0 with σ(ai) ⊆ ai+1

and σ1(ai) ⊆ ai such that σ1 is elementwise nilpotent on ai/ai+1. We assume
that finitely generated projective S′-modules lift to projective S-modules. Then
α is crystalline.
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In many applications the lifting property of projective modules holds because a
is nilpotent or S is local. The proof of Theorem 3.2 is a variation of the proofs
of [Z1, Theorem 44] and [Z2, Theorem 3].

Proof. The homomorphism α factors into F → F ′′ → F ′ where the frame F ′′

is determined by S′′ = S/a1, so by induction we may assume that σ(a) = 0. The
functor α∗ is essentially surjective because normal representations (L, T,Ψ) can
be lifted from F ′ to F . In order that α∗ is fully faithful it suffices to show that
α∗ is fully faithful on automorphisms because a homomorphism g : P → P ′

can be encoded by the automorphism
(

1 0
g 1

)

of P⊕P ′. Since for a window P

over F an automorphism of α∗P can be lifted to an S-module automorphism
of P , it suffices to prove the following assertion.
Assume that P = (P,Q, F, F1) and P ′ = (P,Q, F ′, F ′

1) are two F -windows
such that F ≡ F ′ and F1 ≡ F ′

1 modulo a. Then there is a unique F -window
isomorphism g : P ∼= P ′ with g ≡ id modulo a.
We write F ′

1 = F1 + η and F ′ = F + ε and g = 1 + ω, where the σ-linear
maps η : Q → aP and ε : P → aP are given, and where ω : P → aP is an
arbitrary S-linear map. The induced g is an isomorphism of windows if and
only if gF1 = F ′

1g on Q, which translates into the identity

η = ωF1 − F
′

1ω. (3.1)

We fix a normal decomposition P = L⊕T , thus Q = L⊕ IT . For l ∈ L, t ∈ T ,
and a ∈ I we have

η(l + at) = η(l) + σ1(a)ε(t),

ω(F1(l + at)) = ω(F1(l)) + σ1(a)ω(F (t)),

F ′

1(ω(l + at)) = F ′

1(ω(l)) + σ1(a)F
′(ω(t)).

Here F ′ω = 0 because for a ∈ a and x ∈ P we have F ′(ax) = σ(a)F ′(x), and
σ(a) = 0. As σ1(I) generates S we see that (3.1) is equivalent to:

{

ε = ωF on T,
η = ωF1 − F

′

1ω on L.
(3.2)

Since Ψ : L⊕ T
F1+F
−−−−→ P is a σ-linear isomorphism, to give ω is equivalent to

give a pair of σ-linear maps

ωL = ωF1 : L→ aP, ωT = ωF : T → aP.

Let λ : L→ L(σ) be the composition L ⊆ P
(Ψ♯)−1

−−−−→ L(σ) ⊕ T (σ) pr1
−−→ L(σ) and

let τ : L → T (σ) be analogous with pr2 in place of pr1. Then the restriction
ω|L is equal to ω♯

Lλ+ ω♯
T τ , and (3.2) becomes:

{

ωT = ε|T ,

ωL − F
′

1ω
♯
Lλ = η|L + F ′

1ω
♯
T τ.

(3.3)
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Let H be the abelian group of σ-linear maps L→ aP . We claim that the en-
domorphism U of H given by U(ωL) = F ′

1ω
♯
Lλ is elementwise nilpotent, which

implies that 1 − U is bijective, and (3.3) has a unique solution in (ωL, ωT )
and thus in ω. The endomorphism F ′

1 of aP is elementwise nilpotent because
F ′

1(ax) = σ1(a)F
′(x) and because σ1 is elementwise nilpotent on a by assump-

tion. Since L is finitely generated it follows that U is elementwise nilpotent.

Remark 3.3. The same argument applies if instead of σ1 being elementwise
nilpotent one demands that λ is (topologically) nilpotent, which is the original
situation in [Z1, Theorem 44]; see section 10.

4 Abstract deformation theory

Definition 4.1. The Hodge filtration of a window P is the submodule

Q/IP ⊆ P/IP.

Lemma 4.2. Let α : F → F ′ be a strict homomorphism of frames such that
S = S′; thus R → R′ is surjective and we have I ⊆ I ′. Then F -windows P

are equivalent to pairs consisting of an F ′-window P ′ = (P ′, Q′, F ′, F ′

1) and a
lift of its Hodge filtration to a direct summand V ⊆ P ′/IP ′.

Proof. The equivalence is given by the functor P 7→ (α∗P, Q/IP ), which is
easily seen to be fully faithful. We show that it is essentially surjective. Let
an F ′-window P ′ and a lift of its Hodge filtration V ⊆ P ′/IP ′ be given and
let Q ⊆ P ′ be the inverse image of V ; thus Q ⊆ Q′. We have to show that
P = (P ′, Q, F ′, F ′

1|Q) is an F -window. First we need a normal decomposition
for P; this is a decomposition P ′ = L ⊕ T such that V = L/IL. Since P ′

has a normal decomposition, P has one too for at least one choice of V . By
modifying the isomorphism P ′ ∼= L⊕ T with an automorphism ( 1 0

c 1 ) of L⊕ T
for some homomorphism c : L → I ′T one reaches every lift of the Hodge
filtration. It remains to show that F ′

1(Q) generates P ′. In terms of a normal
decomposition P ′ = L ⊕ T for P this means that F ′

1 + F ′ : L ⊕ T → P ′ is a
σ-linear isomorphism, which holds because P ′ is an F ′-window.

Assume that a strict homomorphism of frames α : F → F ′ is given such that
S → S′ is surjective with kernel a, and I ′ = IS′. We want to factor α into
strict frame homomorphisms

(S, I, R, σ, σ1)
α1−→ (S, I ′′, R′, σ, σ′′

1 )
α2−→ (S′, I ′, R′, σ′, σ′

1) (4.1)

such that α2 satisfies the hypotheses of Theorem 3.2.
Necessarily I ′′ = I + a. The main point is to define σ′′

1 : I ′′ → S, which is
equivalent to defining a σ-linear map σ′′

1 : a→ a that extends the restriction of
σ1 to I ∩ a and satisfies the hypotheses of Theorem 3.2. Once this is achieved,
Theorem 3.2 and Lemma 4.2 will show that F -windows are equivalent to F ′-
windows P ′ plus a lift of the Hodge filtration of P ′ to a direct summand of
P/IP , where P ′′ = (P,Q′′, F, F ′′

1 ) is the unique lift of P ′ under α2.
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5 Dieudonné frames

Let R be a noetherian complete local ring with maximal ideal mR and with
perfect residue field k of characteristic p. If p = 2, we assume that p annihilates
R. Let Ŵ (mR) ⊂W (R) be the ideal of all Witt vectors whose coefficients lie in
mR and converge to zero mR-adically. There is a unique subring W(R) ofW (R)
which is stable under the Frobenius f such that the projection W(R)→W (k)
is surjective with kernel Ŵ (mR), and the ring W(R) is also stable under the
Verschiebung v; see [Z2, Lemma 2]. Let IR be the kernel of the projection to
the first component W(R)→ R. Then v : W(R)→ IR is bijective.

Definition 5.1. The Dieudonné frame associated to R is

DR = (W(R), IR, R, f, f1)

with f1 = v−1.

Here θ = p. Windows over DR are Dieudonné displays over R in the sense
of [Z2]. We note that W(R) is a local ring, which guarantees the existence of
normal decompositions; see Remark 2.5. The inclusion W(R) → W (R) is a
strict homomorphism of frames DR → WR.
If R′ has the same properties as R, a local ring homomorphism R→ R′ induces
a strict frame homomorphism DR → DR′ .
Assume that R′ = R/b for an ideal b which is equipped with elementwise
nilpotent divided powers γ. Then W(R) → W(R′) is surjective with kernel
Ŵ (b) = W (b) ∩ Ŵ (mR). In this situation, a factorisation (4.1) of the homo-
morphism DR → DR′ can be defined as follows. We recall that the γ-divided
Witt polynomials are defined as

w′

n(X0, . . . , Xn) = (pn − 1)!γpn(X0) + (pn−1 − 1)!γpn−1(X1) + · · ·+Xn.

Thus pnw′

n is the usual Witt polynomial wn(X0, . . . , Xn) = Xpn

0 + · · ·+ pnXn.
Let b<∞> be the W (R)-module of all sequences [b0, b1, . . .] with elements
bi ∈ b that converge to zero mR-adically, such that x ∈ W (R) acts on b<∞>

by [b0, b1, . . .] 7→ [w0(x)b0, w1(x)b1, . . .]. We have an isomorphism of W (R)-
modules

log : Ŵ (b) ∼= b<∞>; b 7→ (w′

0(b), w
′

1(b), . . .);

see the remark after [Z1, Cor. 82]. For b ∈ Ŵ (b) we call log(b) the logarithmic
coordinates of b. Let

IR/R′ = IR + Ŵ (b).

In logarithmic coordinates, the restriction of f1 to IR ∩ Ŵ (b) is given by

f1([0, b1, b2, . . .]) = [b1, b2, . . .].

Thus f1 : IR →W(R) extends uniquely to an f -linear map

f̃1 : IR/R′ →W(R)
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with f̃1([b0, b1, . . .]) = [b1, b2, . . .] on Ŵ (b), and we obtain a factorisation

DR
α1−→ DR/R′ = (W(R), IR/R′ , R′, f, f̃1)

α2−→ DR′ . (5.1)

Proposition 5.2. The frame homomorphism α2 is crystalline.

This is a reformulation of [Z2, Theorem 3] if mR is nilpotent, and the general
case is an easy consequence. As explained in section 4, it follows that defor-
mations of Dieudonné displays from R′ to R are classified by lifts of the Hodge
filtration; this is [Z2, Theorem 4].

Proof of Proposition 5.2. When mR is nilpotent, α2 satisfies the hypotheses of
Theorem 3.2; the required filtration of a = Ŵ (b) is ai = pia. In general, these
hypotheses are not fulfilled because f1 : a → a is only topologically nilpotent.
However, one can find a sequence of ideals R ⊃ I1 ⊃ I2 · · · which define the
mR-adic topology such that each b ∩ In is stable under the divided powers of
b. Indeed, for each n there is an l with ml

R ∩ b ⊆ mn
Rb; for In = mn

Rb+ml
R we

have b∩ In = mn
Rb. The proposition holds for each R/In in place of R, and the

general case follows by passing to the projective limit, using Lemma 2.12.

6 κ-frames

The results in this section are essentially due to Th. Zink (private communica-
tion); see also [Z3, Section 1] and [VZ1, Section 3].

Definition 6.1. A κ-frame is a frame F = (S, I, R, σ, σ1) such that

iv. S has no p-torsion,

v. W (R) has no p-torsion,

vi. σ(θ)− θp = p · unit in S.

The numbering extends i–iii of Definition 2.1. In the following we refer to
conditions i–vi without explicitly mentioning Definitions 2.1 and 6.1.

Remark 6.2. If ii and iv hold, we have a (non-additive) map

τ : S → S, τ(x) =
σ(x) − xp

p
,

and vi says that τ(θ) is a unit. Condition v is satisfied if and only if the
nilradical N (R) has no p-torsion, for example if R is reduced, or flat over Z(p).

Proposition 6.3. To each κ-frame F one can associate a u-homomorphism
of frames κ : F → WR lying over idR for a well-defined unit u of W (R).
The homomorphism κ and the unit u are functorial in F with respect to strict
frame homomorphisms.

Documenta Mathematica 15 (2010) 545–569



556 Eike Lau

Proof. Conditions iv and ii imply that there is a well-defined ring homomor-
phism δ : S → W (S) with wnδ = σn; see [Bou, IX.1, proposition 2]. We have
fδ = δσ. Let κ be the composite ring homomorphism

κ : S
δ
−→W (S)→W (R).

Then fκ = κσ and κ(I) ⊆ IR. Clearly κ is functorial in F . To define u we
write 1 =

∑

yiσ1(xi) in S with xi ∈ I and yi ∈ S. This is possible by iii.
Recall that θ =

∑

yiσ(xi); see the proof of Lemma 2.2. Let

u =
∑

κ(yi)f1κ(xi).

Then pu = κ(θ) because pf1 = f and fκ = κσ. We claim that f1κ = u · κσ1.
By condition v this is equivalent to the relation p · f1κ = pu ·κσ1, which holds
since pf1 = f and pu = κ(θ) and θσ1 = σ. It remains to show that u is a unit
in W (R). Let pu = κ(θ) = (a0, a1, . . .) as a Witt vector. By Lemma 6.4 below,
u is a unit if and only if a1 is a unit in R. In W2(S) we have δ(θ) = (θ, τ(θ))
because (w0, w1) applied to both sides gives (θ, σ(θ)). Hence a1 is a unit by vi.
We conclude that κ : F → WR is a u-homomorphism of frames.

Finally, u is functorial in F by its uniqueness, see Remark 2.8.

Lemma 6.4. Let R be a ring with p ∈ Rad(R) and let u ∈W (R) be given. For
an integer r ≥ 0 let pru = (a0, a1, a2, . . .). The element u is a unit in W (R) if
and only if ar is a unit in R.

Proof. Assume first that r = 0. It suffices to show that an element ū of
Wn+1(R) that maps to 1 in Wn(R) is a unit. If ū = 1+vn(x) with x ∈ R, then
ū−1 = 1+ vn(y) where y ∈ R is determined by the equation x+ y+ pnxy = 0,
which has a solution since p ∈ Rad(R). For general r, by the case r = 0 we
may replace R by R/pR. Then we have p(b0, b1, . . .) = (0, bp0, b

p
1, . . .) in W (R),

which reduces the assertion to the case r = 0.

Corollary 6.5. Let F be a κ-frame with S =W (k)[[x1, . . . , xr]] for a perfect
field k of odd characteristic p. Assume that σ extends the Frobenius automor-
phism of W (k) by σ(xi) = xpi . Then u is a unit in W(R), and κ induces a
u-homomorphism of frames κ : F → DR.

Proof. We claim that δ(S) lies in W(S). Indeed, δ(xi) = [xi] because wn

applied to both sides gives xp
n

i . Thus for each multi-exponent e = (e1, . . . , er)
the element δ(xe) = [xe] lies in W(S). Let mS be the maximal ideal of S. Since
W(S) = lim

←−
W(S/mn

S) and since for each n all but finitely many xe lie in mn
S ,

the claim follows. Hence the image of κ : S → W (R) is contained in W(R).
By its construction the unit u lies in W(R); it is invertible in W(R) because
the inclusion W(R)→W (R) is a local homomorphism of local rings.
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7 The main frame

Let R be a complete regular local ring with perfect residue field k of charac-
teristic p ≥ 3. We choose a ring homomorphism

S =W (k)[[x1, . . . , xr]]
π
−→ R

such that x1, . . . , xr map to a regular system of parameters of R. Since the
graded ring of R is isomorphic to k[x1, . . . , xr], one can find a power series
E0 ∈ S with constant term zero such that π(E0) = −p. Let E = E0 + p and
I = ES. Then R = S/I. Let σ : S → S be the ring endomorphism that
extends the Frobenius automorphism of W (k) by σ(xi) = xpi . We have a frame

B = (S, I, R, σ, σ1)

where σ1 is defined by σ1(Ey) = σ(y) for y ∈ S.

Lemma 7.1. The frame B is a κ-frame.

Proof. Let θ ∈ S be the element given by Lemma 2.2. The only condition to
be checked is that τ(θ) is a unit in S. Let E′

0 = σ(E0). Since σ1(E) = 1, we
have θ = σ(E) = E′

0 + p. Hence

τ(θ) =
σ(E′

0) + p− (E′

0 + p)p

p
≡ 1 + τ(E′

0) mod p.

Since the constant term of E0 is zero, the same is true for τ(E′

0), which implies
that τ(θ) is a unit as required.

Thus Proposition 6.3 and Corollary 6.5 give a ring homomorphism κ from S

to W(R), which is a u-homomorphism of frames

κ : B → DR.

Here the unit u ∈W(R) is determined by the identity pu = κσ(E).

Theorem 7.2. The frame homomorphism κ is crystalline (Definition 3.1).

To prove this we consider the following auxiliary frames. Let J ⊂ S be the
ideal J = (x1, . . . , xr), and let mR be the maximal ideal of R. For each positive
integer a let Sa = S/JaS and Ra = R/ma

R. Then Ra = Sa/ESa, where E is
not a zero divisor in Sa. There is a well-defined frame

Ba = (Sa, Ia, Ra, σa, σ1a)

such that the projection S → Sa is a strict frame homomorphism B → Ba.
Indeed, σ induces an endomorphism σa ofSa because σ(J) ⊆ J , and for y ∈ Sa

one can define σ1a(Ey) = σa(y).

Documenta Mathematica 15 (2010) 545–569



558 Eike Lau

For simplicity, the image of u in W(Ra) is denoted by u as well. The u-
homomorphism κ induces a u-homomorphism

κa : Ba → DRa

because for e ∈ Nr we have κ(xe) = [xe], which maps to zero in W(Ra) when
e1 + · · ·+ er ≥ a. We note that Ba is again a κ-frame, so the existence of κa

can also be viewed as a consequence of Proposition 6.3.

Theorem 7.3. For each positive integer a the homomorphism κa is crystalline.

To prepare for the proof, for each a ≥ 1 we will construct the following com-
mutative diagram of frames, where vertical arrows are u-homomorphisms and
where horizontal arrows are strict.

Ba+1
ι

//

κa+1

��

B̃a+1
π

//

κ̃a+1

��

Ba

κa

��

DRa+1

ι′
// DRa+1/Ra

π′

// DRa

(7.1)

The upper line is a factorisation (4.1) of the projection Ba+1 → Ba. This
means that the frame B̃a+1 necessarily takes the form

B̃a+1 = (Sa+1, Ĩa+1, Ra, σa+1, σ̃1(a+1))

with Ĩa+1 = ESa+1 + Ja/Ja+1. We define σ̃1(a+1) : Ĩa+1 → Sa+1 to be the
extension of σ1(a+1) : ESa+1 → Sa+1 by zero on Ja/Ja+1. This is well-defined
because

ESa+1 ∩ J
a/Ja+1 = E(Ja/Ja+1)

and because for x ∈ Ja/Ja+1 we have σ1(a+1)(Ex) = σa+1(x), which is zero
since σ(Ja) ⊆ Jap.
The lower line of (7.1) is the factorisation (5.1) with respect to the trivial
divided powers on the kernel ma

R/m
a+1
R .

In order that the diagram commutes it is necessary and sufficient that κ̃a+1 is
given by the ring homomorphism κa+1.
It remains to show that κ̃a+1 is a u-homomorphism of frames. The only non-
trivial condition is that f̃1κa+1 = u · κa+1σ̃1(a+1) on Ĩa+1. This relation holds
on ESa+1 because κa+1 is a u-homomorphism of frames. On Ja/Ja+1 we have
κa+1σ̃1(a+1) = 0 by definition. For y ∈ Sa+1 and e ∈ Nr with e1 + · · ·+ er = a
we compute

f̃1(κa+1(x
ey)) = f̃1([x

e]κa+1(y)) = f̃1([x
e])f(κa+1(y)) = 0

because log([xe]) = [xe, 0, 0, . . .] and thus f̃1([x
e]) = 0. As these xe generate

Ja, the required relation on Ĩa+1 follows. Thus the diagram is constructed.
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Proof of Theorem 7.3. We use induction on a. The homomorphism κ1 is crys-
talline because it is invertible. Assume that κa is crystalline for some positive
integer a and consider the diagram (7.1). The homomorphism π′ is crystalline
by Proposition 5.2, while π is crystalline by Theorem 3.2; the required filtra-
tion of Ja/Ja+1 is trivial. Hence κ̃a+1 is crystalline. By Lemma 4.2, lifts of
windows under ι or under ι′ are classified by lifts of the Hodge filtration. Since
κa+1 lies over the identity of Ra+1 and since κ̃a+1 lies over the identity of Ra,
it follows that κa+1 is crystalline too.

Proof of Theorem 7.2. The frame homomorphism κ : B → DR is the pro-
jective limit of the frame homomorphisms κa : Ba → DRa

. By Lemma 2.12,
B-windows are equivalent to compatible systems of Ba-windows for a ≥ 1, and
DR-windows are equivalent to compatible systems of DRa

-windows for a ≥ 1.
Thus Theorem 7.2 follows from Theorem 7.3.

8 Classification of group schemes

The following consequences of Theorem 7.2 are analogous to [VZ1]. Recall that
we assume p ≥ 3. Let B = (S, I, R, σ, σ1) be the frame defined in section 7.

Definition 8.1. A Breuil window relative to S→ R is a pair (Q,φ) where Q
is a free S-module of finite rank and where φ : Q → Q(σ) is an S-linear map
with cokernel annihilated by E.

Lemma 8.2. Breuil windows relative to S → R are equivalent to B-windows
in the sense of Definition 2.3.

Proof. This is similar to [VZ1, Lemma 1]. For a B-window (P,Q, F, F1) the

module Q is free over S because I = ES is free. Hence F ♯
1 : Q(σ) → P is

bijective, and we can define a Breuil window (Q,φ) where φ is the inclusion

Q → P composed with the inverse of F ♯
1 . Conversely, if (Q,φ) is a Breuil

window, Coker(φ) is a free R-module. Indeed, φ is injective because it becomes
bijective over S[E−1], so Coker(φ) has projective dimension at most one over
S, which implies that it is free over R by using depth. Thus one can define a
B-window as follows: P = Q(σ), the inclusion Q → P is φ, F1 : Q → Q(σ) is
given by x 7→ 1⊗ x, and F (x) = F1(Ex). The two constructions are mutually
inverse.

By [Z2], p-divisible groups over R are equivalent to Dieudonné displays over R.
Together with Theorem 7.2 and Lemma 8.2 this implies:

Corollary 8.3. The category of p-divisible groups over R is equivalent to the
category of Breuil windows relative to S→ R.

Let us use the following abbreviation: An admissible torsion S-module is a
finitely generated S-module annihilated by a power of p and of projective
dimension at most one.
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Definition 8.4. A Breuil module relative to S→ R is a triple (M,ϕ, ψ) where
M is an admissible torsion S-module together with S-linear maps ϕ : M →
M (σ) and ψ :M (σ) →M such that ϕψ = E and ψϕ = E.

When R has characteristic zero, each of the maps ϕ and ψ determines the other
one; see Lemma 8.6 below.

Theorem 8.5. The category of (commutative) finite flat group schemes over
R annihilated by a power of p is equivalent to the category of Breuil modules
relative to S→ R.

This follows from Corollary 8.3 by the arguments of [K1] or [VZ1]. For com-
pleteness we give a detailed proof here.

Proof of Theorem 8.5. In this proof, all finite flat group schemes are of p-power
order over R, and all Breuil modules or windows are relative to S→ R.
A homomorphism g : (Q0, φ0)→ (Q1, φ1) of Breuil windows is called an isogeny
if it becomes invertible over S[1/p]. Then g is injective, and its cokernel is
naturally a Breuil module; the required ψ is induced by the S-linear map

Eφ−1
1 : Q

(σ)
1 → Q1. A homomorphism γ : G0 → G1 of p-divisible groups is

called an isogeny if it becomes invertible in Hom(G0, G1) ⊗ Q. Then γ is a
surjection of fppf sheaves, and its kernel is a finite flat group scheme.
We denote isogenies by X∗ = [X0 → X1]. A homomorphism of isogenies
q : X∗ → Y∗ is called a quasi-isomorphism if its cone is a short exact sequence.
In the case of p-divisible groups this means that q induces an isomorphism of
finite flat group schemes on the kernels; in the case of Breuil windows this
means that q induces an isomorphism of Breuil modules on the cokernels.
The equivalence between p-divisible groups and Breuil windows preserves isoge-
nies and short exact sequences, and thus also quasi-isomorphisms of isogenies.
We note the following two facts.

(a) Each finite flat group scheme over R of p-power order is the kernel of an
isogeny of p-divisible groups over R. See [BBM, Théorème 3.1.1].

(b) Each Breuil module is the cokernel of an isogeny of Breuil windows. This
is analogous to [VZ1, Proposition 2]; a proof is also given below.

Let us define an additive functor H 7→ M(H) from finite flat group schemes
to Breuil modules. We write each H as the kernel of an isogeny of p-divisible
groups G0 → G1 and define M(H) as the cokernel of the associated isogeny
of Breuil windows. Assume that h : H → H ′ is a homomorphism of finite flat
group schemes, andH ′ is written as the kernel of an isogeny of p-divisible groups
G′

0 → G′

1. We embed H into G′′

0 = G0 ⊕G
′

0 by (1, h) and define G′′

1 = G′′

0/H .
The coordinate projectionsG0 ← G′′

0 → G′

0 induce homomorphisms of isogenies
G∗ ← G′′

∗
→ G′

∗
such that the first map is a quasi-isomorphism, and the

composition induces h on the kernels. Let Q∗ ← Q′′

∗
→ Q′

∗
be the associated

homomorphisms of isogenies of Breuil windows. The first map is a quasi-
isomorphism, and the composition induces a homomorphism M(h) :M(H)→
M(H ′) on the cokernels.
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One has to show that the construction is independent of the choice and de-
fines an additive functor. This is an easy verification based on the following
observation: If a homomorphism of isogenies of p-divisible groups q : G∗ → G′

∗

induces zero on the kernels, then q is null-homotopic.

The construction of an additive functor M 7→ H(M) from Breuil modules to
finite flat group schemes is analogous. Each M is written as the cokernel of an
isogeny of Breuil windows Q0 → Q1, and H(M) is defined as the kernel of the
associated isogeny of p-divisible groups. If m :M →M ′ is a homomorphism of
Breuil modules and if M ′ is written as the cokernel of an isogeny of Breuil win-
dowsQ′

0 → Q′

1, let Q
′′

0 be the kernel of the surjectionQ′′

1 = Q1⊕Q
′

1 →M ′ given
by (m, 1). The coordinate inclusions Q1 → Q′′

1 ← Q′

1 induce homomorphisms
of isogenies Q∗ → Q′′

∗
← Q′

∗
, where the second map is a quasi-isomorphism.

The associated homomorphisms of isogenies of p-divisible groups induce a ho-
momorphism of finite flat group schemes H(m) : H(M) → H(M ′) on the
kernels.

Again, it is easy to verify that this construction is independent of the choice
and defines an additive functor, using that a homomorphism of isogenies of
Breuil windows is null-homotopic if and only if it induces zero on the cokernels.
Clearly the two functors are mutually inverse.

Finally, let us prove (b). If (M,ϕ, ψ) is a Breuil module, one can find free
S-modules P and Q together with surjective S-linear maps ξ : Q → M and
ξ′ : P → M (σ) and S-linear maps ϕ̃ : Q → P and ψ̃ : P → Q which lift ϕ
and ψ such that ϕ̃ψ̃ = E and ψ̃ϕ̃ = E. Next one can choose an isomorphism
α : P ∼= Q(σ) compatible with the projections ξ′ and ξ(σ) toM (σ). Let φ = αϕ̃.
Then (Q,φ) is a Breuil window, and (M,ϕ, ψ) is the cokernel of the isogeny of
Breuil windows (Ker ξ, φ′)→ (Q,φ), where φ′ is the restriction of φ.

Lemma 8.6. If R has characteristic zero, the category of Breuil modules relative
to S→ R is equivalent to the category of pairs (M,ϕ) whereM is an admissible
torsion S-module and where ϕ : M → M (σ) is an S-linear map with cokernel
annihilated by E.

Proof. Cf. [VZ1, Proposition 2]. For a non-zero admissible torsion S-module
M the set of zero divisors on M is equal to p = pS because every associated
prime ofM has height one and contains p. In particular,M →Mp is injective.
The hypothesis of the lemma means that E 6∈ p. For a given pair (M,ϕ) as

in the lemma this implies that ϕp : Mp → M
(σ)
p is surjective, thus bijective

because both sides have the same finite length. It follows that ϕ is injective,
and (M,ϕ) is extended uniquely to a Breuil module by ψ(x) = ϕ−1(Ex).

Duality

The dual of a Breuil window (Q,φ) is the Breuil window (Q,φ)t = (Q∨, ψ∨)
where Q∨ = HomS(Q,S) and where ψ : Q(σ) → Q is the unique S-linear map
with ψφ = E. Here we identify (Q(σ))∨ and (Q∨)(σ). For a p-divisible group
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G over R let G∨ be the Serre dual of G, and let M(G) be the Breuil window
associated to G by the equivalence of Corollary 8.3.

Proposition 8.7. There is a functorial isomorphism λG : M(G∨) ∼= M(G)t.

Proof. The equivalence between p-divisible groups over R and Dieudonné dis-
plays over R is compatible with duality by [L2, Theorem 3.4]. It is easy to see
that the equivalence of Lemma 8.2 preserves duality, so it remains to show that
the functor κ∗ preserves duality as well. By Lemma 2.14 it suffices to find a
unit c ∈ W(R) with c−1f(c) = u. Since E has constant term p, u maps to 1
in W (k) and thus lies in 1 + Ŵ (mR). Hence we can define c−1 by the infinite
product uf(u)f2(u) · · · , which converges in W(R) = lim

←−
W(R/mn) in the sense

that for each n, all but finitely many factors map to 1 in W(R/mn).

The dual of a Breuil module M = (M,ϕ, ψ) is defined as the Breuil module
Mt = (M⋆, ψ⋆, ϕ⋆) where M⋆ = Ext1S(M,S). Here we identify (M (σ))⋆ and
(M⋆)(σ) using that ( )(σ) preserves projective resolutions as σ is flat. For a
finite flat group scheme H over R of p-power order let H∨ be the Cartier dual
of H and let M(H) be the Breuil module associated to H by the equivalence
of Theorem 8.5.

Proposition 8.8. There is a functorial isomorphism λH : M(H∨) ∼= M(H)t.

Proof. Choose an isogeny of p-divisible groups G0 → G1 with kernel H . Then
M(H) is the cokernel of M(G0) → M(G1), which implies that M(H)t is the
cokernel of M(G1)

t → M(G0)
t. On the other hand, H∨ is the kernel of G∨

1 →
G∨

0 , so M(H∨) is the cokernel of M(G∨

1 )→ M(G∨

0 ). The isomorphisms λGi
of

Proposition 8.7 give an isomorphism λH : M(H∨) ∼= M(H)t. One easily checks
that λH is independent of the choice of G∗ and functorial in H .

9 Other lifts of Frobenius

One may ask how much freedom we have in the choice of σ for the frame
B. Let R = S/ES be as in section 7; in particular we assume that p ≥ 3.
Let J = (x1, . . . , xr). To begin with, let σ : S → S be an arbitrary ring
endomorphism such that σ(J) ⊂ J and σ(a) ≡ ap modulo pS for a ∈ S. We
consider the frame

B = (S, I, R, σ, σ1)

with σ1(Ey) = σ(y). Again this is a κ-frame; the proof of Lemma 7.1 uses only
that σ preserves J . Thus Proposition 6.3 gives a homomorphism of frames

κ : B → WR.

By the assumptions on σ we have σ(J) ⊆ Jp + pJ , which implies that the
endomorphism σ : J/J2 → J/J2 is divisible by p.

Proposition 9.1. The image of κ : S → W (R) lies in W(R) if and only if
the endomorphism σ/p of J/J2 is nilpotent modulo p.
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We have a non-additive map τ : J → J given by τ(x) = (σ(x) − xp)/p. Let m
be the maximal ideal of S. We write grn(J) = mnJ/mn+1J .

Lemma 9.2. For n ≥ 0 the map τ preserves mnJ and induces a σ-linear endo-
morphism of k-modules grn(τ) : grn(J) → grn(J). We have gr0(τ) = σ/p as
an endomorphism of gr0(J) = J/(J2 + pJ). There is a commutative diagram
of the following type with πi = id

grn(J)
grn(τ)

//

π

��

grn(J)

gr0(J)
gr0(τ)

// gr0(J).

i

OO

Proof. Let J ′ = p−1mJ as an S-submodule of J ⊗ Q. Then J ⊂ J ′, and
grn(J) is an S-submodule of grn(J

′) = mnJ ′/mn+1J ′. The composition J
τ
−→

J ⊂ J ′ can be written as τ = σ/p − ϕ/p, where ϕ(x) = xp. One checks
that ϕ/p : mnJ → mn+1J ′ (which requires p ≥ 3 when n = 0) and that
σ/p : mnJ → mnJ ′. Hence σ/p and τ induce the same map mnJ → grn(J

′).
This map is σ-linear and zero on mn+1J because this holds for σ/p, and its
image lies in grn(J) because this is true for τ .
We define i : gr0(J) → grn(J) by x 7→ pnx. For n ≥ 1 let Kn be the image of
mn−1J2 → grn(J). Then i maps gr0(J) bijectively onto grn(J)/Kn, so there
is a unique homomorphism π : grn(J) → gr0(J) with kernel Kn such that
πi = id. Clearly i commutes with gr(τ). Thus, in order that the diagram
commutes, it suffices that grn(τ) vanishes on Kn. We have σ(J) ⊆ mJ , which
implies that (σ/p)(mn−1J2) ⊆ mn+1J ′, and the assertion follows.

Proof of Proposition 9.1. Recall that κ = πδ, where δ : S → W (S) is defined
by wnδ = σn for n ≥ 0, and where π :W (S)→W (R) is the obvious projection.
For x ∈ J and n ≥ 1 let

τn(x) = (σ(x)p
n−1

− xp
n

)/pn,

thus τ1 = τ . It is easy to see that

τn+1(x) ∈ J · τn(x),

in particular we have τn : J → Jn. If δ(x) = (y0, y1, . . .), the coefficients yn are
determined by y0 = x and wn(y) = σwn−1(y) for n ≥ 1, which translates into
the equations

yn = τn(y0) + τn−1(y1) + · · ·+ τ1(yn−1).

Assume now that σ/p is nilpotent on J/J2 modulo p. By Lemma 9.2 this
implies that grn(τ) is nilpotent for every n ≥ 0. We will show that for x ∈ J the
element δ(x) lies is W(S), which means that the above sequence (yn) converges
to zero. Assume that for some N ≥ 0 we have yn ∈ mNJ for all but finitely
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many n. The last two displayed equations give that yn− τ(yn−1) ∈ mN+1J for
all but finitely many n. As grN (τ) is nilpotent it follows that yn ∈ mN+1J for
all but finitely many n. Thus δ(x) ∈W(S) and in particular κ(x) ∈W(R).

Conversely, if σ/p is not nilpotent on J/J2 modulo p, then gr0(τ) is not nilpo-
tent by Lemma 9.2, so there is an x ∈ J such that τn(x) 6∈ mJ for all n ≥ 0.
For δ(x) = (y0, y1, . . .) we have yn ≡ τnx modulo mJ . The projection S → R
induces an isomorphism J/mJ ∼= mR/m

2
R. It follows that κ(x) lies in W (mR)

but not in Ŵ (mR), thus κ(x) 6∈W(R).

Now we assume that σ/p is nilpotent on J/J2 modulo p. Then we have a
homomorphism of frames

κ : B → DR.

As earlier let Ba = (Sa, Ia, Ra, σa, σ1a) with Sa = S/Ja and Ra = R/ma
R.

The proof of Lemma 7.1 shows that Ba is a κ-frame. Since W(Ra) is the image
of W(R) in W (Ra), we get a homomorphism of frames compatible with κ:

κa : Ba → DRa
.

Theorem 9.3. The homomorphisms κ and κa are crystalline.

Proof. The proof is similar to that of Theorems 7.2 and 7.3.

First we repeat the construction of the diagram (7.1). The restriction of σ1(a+1)

to E(Ja/Ja+1) = p(Ja/Ja+1) is given by σ1 = σ/p = τ , which need not
be zero in general, but still σ1 extends uniquely to Ja/Ja+1 by the formula
σ1 = σ/p. In order that κ̃a+1 is a u-homomorphism of frames we need that
f̃1κa+1 = u ·κa+1σ̃1(a+1) on J

a/Ja+1. Here u acts on Ja/Ja+1 as the identity.
By the proof of Proposition 9.1, for x ∈ Ja/Ja+1 we have in W (Ja/Ja+1)

δ(x) = (x, τ(x), τ2(x), . . .).

Since σ̃1(a+1)(x) = τ(x), the required relation follows easily.

To complete the proof we have to show that π : B̃a+1 → Ba is crystalline.
Now σ/p is nilpotent modulo p on Jn/Jn+1 for n ≥ 1. Indeed, for n = 1 this is
our assumption, and for n ≥ 2 the endomorphism σ/p of Jn/Jn+1 is divisible
by pn−1 since σ(J) ⊆ pJ +Jp. In order to apply Theorem 3.2 we need another
sequence of auxiliary frames: For c ∈ N let Sa+1,c = Sa+1/p

cJaSa+1 and

let B̃a+1,c = (Sa+1,c, Ia+1,c, Ra, . . .) be the obvious quotient frame of B̃a+1.

Then Ba is isomorphic to B̃a+1,0, and B̃a+1 is the projective limit of B̃a+1,c

for c → ∞. Theorem 3.2 shows that each projection B̃a+1,c+1 → B̃a+1,c is
crystalline, which implies that π is crystalline by Lemma 2.12.

If σ/p is nilpotent on J/J2 modulo p, then Corollary 8.3, Theorem 8.5, and
the duality Propositions 8.7 and 8.8 follow as before.
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10 Nilpotent windows

All results in this article have a nilpotent counterpart where only connected
p-divisible groups and nilpotent windows are considered; in this case k need not
be perfect and p need not be odd. The necessary modifications are standard,
but for completeness we work out the details.

10.1 Nilpotence condition

Let F = (S, I, R, σ, σ1) be a frame. For an F -window P = (P,Q, F, F1) there
is a unique S-linear map

V ♯ : P → P (σ)

with V ♯(F1(x)) = 1 ⊗ x for x ∈ Q. In terms of a normal representation
Ψ : L⊕ T → P of P we have V ♯ = (1 ⊕ θ)(Ψ♯)−1 for θ as in Lemma 2.2. For
simplicity, the composition

P
V ♯

−−→ P (σ) (V ♯)(σ)

−−−−−→ P (σ2) → · · · → P (σn)

is denoted (V ♯)n. The nilpotence condition depends on the choice of an ideal
J ⊂ S such that σ(J) + I + θS ⊆ J , which we call an ideal of definition for F .

Definition 10.1. Let J ⊂ S be an ideal of definition for F . An F -window
P is called nilpotent (with respect to J) if (V ♯)n ≡ 0 modulo J for sufficiently
large n.

Remark 10.2. For an F -window P we consider the composition

λ : L ⊆ L⊕ T
(Ψ♯)−1

−−−−→ L(σ) ⊕ T (σ) → L(σ).

Then P is nilpotent if and only if λ is nilpotent modulo J .

10.2 Nil-crystalline homomorphisms

If α : F → F ′ is a homomorphism of frames and J ⊂ S and J ′ ⊂ S′ are ideals
of definition with α(J) ⊆ J ′, the functor α∗ preserves nilpotent windows. We
call α nil-crystalline if it induces an equivalence between nilpotent F -windows
and nilpotent F ′-windows. The following variant of Theorem 3.2 formalises
[Z1, Theorem 44].

Theorem 10.3. Let α : F → F ′ be a homomorphism of frames that induces an
isomorphism R ∼= R′ and a surjection S → S′ with kernel a ⊂ S. We assume
that there is a finite filtration a = a0 ⊇ · · · ⊇ an = 0 such that σ(ai) ⊆ ai+1

and σ1(ai) ⊆ ai. We assume that finitely generated projective S′-modules lift to
projective S-modules. If J ⊂ S is an ideal of definition for F such that Jna = 0
for large n, then α is nil-crystalline with respect to J ⊂ S and J ′ = J/a ⊂ S′.
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Proof. The assumptions imply that a ⊆ I ⊆ J , in particular J ′ is well-defined.
An F -window P is nilpotent if and only if α∗P is nilpotent. Using this,
the proof of Theorem 3.2 applies with the following modification in its final
paragraph. We claim that the endomorphism U of H is nilpotent, which again
implies that 1−U is bijective. Since P is nilpotent, λ is nilpotent modulo J , so
λ is nilpotent modulo Jn for each n ≥ 1 as J is stable under σ. Since Jna = 0
by assumption, the claim follows from the definition of U .

10.3 Nilpotent displays

Let R be a ring which is complete and separated in the c-adic topology for an
ideal c ⊂ R containing p. We consider the Witt frame

WR = (W (R), IR, R, f, f1).

Here IR ⊆ RadR as required since W (R) = lim
←−

Wn(R/c
n) and the successive

kernels in this projective system are nilpotent. The inverse image of c is an
ideal of definition J ⊂ W (R). Nilpotent windows over WR with respect to
J are displays over R which are nilpotent over R/c. By [Z1] and [L1] these
are equivalent to p-divisible groups over R which are infinitesimal over R/c.
(Here one uses that displays and p-divisible groups over R are equivalent to
compatible systems of the same objects over R/cn for n ≥ 1; cf. Lemma 2.12
above and [M1, Lemma 4.16].)
Assume that R′ = R/b for a closed ideal b ⊆ c equipped with (not necessarily
nilpotent) divided powers. One can define a factorisation

WR
α1−→ WR/R′ = (W (R), IR/R′ , R′, f, f̃1)

α2−→ WR′

of the projection of frames WR → WR′ as follows. Necessarily IR/R′ = IR +
W (b). The divided Witt polynomials define an isomorphism

log :W (b) ∼= b∞,

and f̃1 : IR/R′ → W (R) extends f1 such that f̃1([b0, b1, . . .]) = [b1, b2, . . .] in
logarithmic coordinates on W (b). Let J ′ ⊂ W (R′) be the image of J . This is
an ideal of definition for WR′ , and J is an ideal of definition for WR/R′ .
We assume that the c-adic topology of R can be defined by a sequence of ideals
R ⊃ I1 ⊃ I2 · · · such that b ∩ In is stable under the divided powers of b for
each n. This is automatic when c is nilpotent or when R is noetherian; see the
proof of Proposition 5.2.

Proposition 10.4. The homomorphism α2 is nil-crystalline with respect to
the ideals of definition J for WR/R′ and J ′ for WR′ .

This is essentially [Z1, Theorem 44].

Proof. By a limit argument the assertion is reduced to the case where c ⊂ R is
a nilpotent ideal; see Lemma 2.12. Then Theorem 10.3 applies: The required
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filtration of a =W (b) is ai = pia. The condition Jna = 0 for large n is satisfied
because Jn ⊆ IR for some n and In+1

R ⊆ pnW (R) for all n, and W (b) ∼= b∞ is
annihilated by some power of p.

10.4 The main frame

Let now R be a complete regular local ring with arbitrary residue field k of
characteristic p. Let C be a complete discrete valuation ring with maximal
ideal pC and residue field k. We choose a surjective ring homomorphism

S = C[[x1, . . . , xr]]→ R

that lifts the identity of k such that x1, . . . , xr map to a regular system of
parameters for R. There is a power series E ∈ S with constant term p such
that R = S/ES. Let σ : S → S be a ring endomorphism which induces the
Frobenius on S/pS and preserves the ideal (x1, . . . , xr). Such σ exist because
C has a Frobenius lift; see [Gr, Chap. 0, Théorème 19.8.6]. We consider the
frame

B = (S, I, R, σ, σ1)

where σ1(Ey) = σ(y). Here θ = σ(E). The proof of Lemma 7.1 shows that B

is again a κ-frame, so we have a u-homomorphism of frames

κ : B → WR.

Let m ⊂ S and n ⊂W (R) be the maximal ideals.

Theorem 10.5. The homomorphism κ is nil-crystalline with respect to the
ideals of definition m of B and n of WR.

Proof. The proof of Theorem 9.3 applies with the following modification: The
initial case a = 1 is not trivial because C is not isomorphic to W (k) if k is
not perfect, but one can apply [Z3, Theorem 1.6]. In the diagram (7.1) the
frame homomorphisms π′ and π are only nil-crystalline in general; whether π
is crystalline depends on the choice of σ.

10.5 Connected group schemes

One defines Breuil windows relative to S → R and Breuil modules relative
to S → R as before. A Breuil window (Q,φ) or a Breuil module (M,ϕ, ψ) is
called nilpotent if φ or ϕ is nilpotent modulo the maximal ideal of S. The proof
of Lemma 8.2 shows that nilpotent Breuil windows are equivalent to nilpotent
B-windows. Hence Theorem 10.5 implies:

Corollary 10.6. Connected p-divisible groups over R are equivalent to nilpo-
tent Breuil windows relative to S→ R.

Similarly we have:
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Theorem 10.7. Connected finite flat group schemes over R of p-power order
are equivalent to nilpotent Breuil modules relative to S→ R.

This is proved like Theorem 8.5, using two additional remarks:

Lemma 10.8. Every connected finite flat group scheme H over R is the kernel
of an isogeny of connected p-divisible groups.

Proof. We know thatH is the kernel of an isogeny of p-divisible groupsG→ G′.
There is a functorial exact sequence 0 → G0 → G → G1 → 0 of p-divisible
groups where G0 is connected and G1 is etale. Since Hom(H,G1) is zero, H is
the kernel of the isogeny G0 → G′

0.

Lemma 10.9. Every nilpotent Breuil module (M,ϕ, ψ) relative to S→ R is the
cokernel of an isogeny of nilpotent Breuil windows.

Proof. See also [K2, Section 1.3]. As in the proof of Theorem 8.5 we see that
(M,ϕ, ψ) is the cokernel of an isogeny of Breuil windows (Q,φ) → (Q′, φ′).
There is a functorial exact sequence 0→ Q0 → Q→ Q1 → 0 of Breuil windows

where Q0 is nilpotent and where Q1 is etale in the sense that φ : Q1 → Q
(σ)
1 is

bijective. Indeed, by [Z2, Lemma 10] it suffices to construct the sequence over
k. Let φk : Q⊗S k → Q(σ)⊗S k be the special fibre of φ. Then Q0⊗S k is the
kernel of the obvious iterate (φk)

n : Q⊗S k → Q(σn) ⊗S k for large n.

We claim that the free S-modules Q1 and Q′

1 have the same rank. Let us
identify C with S/(x1, . . . , xr). Since Q → Q′ becomes bijective over S[1/p],
the homomorphism Q⊗S C → Q′ ⊗S C becomes bijective over C[1/p]. Hence
the etale parts (Q ⊗S C)1 and (Q′ ⊗S C)1 have the same rank. The claim
follows since (Q ⊗S C)1 = Q1 ⊗S C and similarly for Q′.

Let us consider M̄ = Q′

1/Q1. Here φ
′ induces a homomorphism ϕ̄ : M̄ → M̄ (σ),

which is surjective as Q′

1 is etale. The natural surjection π : M → M̄ satisfies
π(σ)ϕ = ϕ̄π. Since ϕk is nilpotent it follows that ϕ̄k is nilpotent, thus M̄ = 0
by Nakayama’s lemma. Hence Q1 → Q′

1 is bijective because both sides are free
of the same rank, and consequently M = Q′

0/Q0 as desired.
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