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Abstract. Generalizing earlier results for the disc and the ball, we give
a formula for the Dixmier trace of the product of 2n Hankel operators
on Bergman spaces of strictly pseudoconvex domains in C

n. The answer
turns out to involve the dual Levi form evaluated on boundary deriva-
tives of the symbols. Our main tool is the theory of generalized Toeplitz
operators due to Boutet de Monvel and Guillemin.
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1. Introduction

Let Ω be a bounded strictly pseudoconvex domain inC
n with smooth boundary,

and L2
hol(Ω) the Bergman space of all holomorphic functions in L2(Ω). For a

bounded measurable function f on Ω, the Toeplitz and the Hankel operator
with symbol f are the operators Tf : L2

hol(Ω) → L2
hol(Ω) and Hf : L2

hol(Ω) →
L2(Ω)⊖ L2

hol(Ω), respectively, defined by

(1) Tfg := Π(fg), Hfg := (I −Π)(fg),

where Π : L2(Ω) → L2
hol(Ω) is the orthogonal projection. It has been known

for some time that for f holomorphic and n > 1, the Hankel operator Hf
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602 M. Englǐs, G. Zhang

belongs to the Schatten ideal Sp if and only if f is in the diagonal Besov space
Bp(Ω) and p > 2n, or f is constant (so Hf = 0) and p ≤ 2n; see Arazy, Fisher
and Peetre [1] for Ω = B

n, the unit ball of Cn, and Li and Luecking [21] for
general smoothly bounded strictly pseudoconvex domains Ω. This phenomenon
is called a cutoff at p = 2n. In dimension n = 1, the situation is slightly
different, in that the cutoff occurs not at p = 2 but at p = 1. One can rephrase
the above results also in terms of membership in the Schatten classes of the
commutators [Tf ,Tg] := TfTg − TgTf of Toeplitz operators. In fact, it is

immediate from (1) that

Tfg −TgTf = H∗
gHf ,

and also that TfTg = Tfg if f or g is holomorphic; thus for holomorphic f

and g
[Tf ,Tg] = H∗

gHf .

In any case, it follows that there are no nonzero trace-class Hankel op-
erators Hf , with f holomorphic, if n = 1, and similarly the product

H∗
f
1

Hf
2

. . . H∗
f
2n−1

Hf
2n

= [Tf
2

,Tf1 ] . . . [Tf
2n
,Tf2n−1

], with f1, . . . , f2n holo-

morphic, is never trace-class if n > 1. In particular, there is no hope for n > 1
of having an analogue of the well-known formula for the unit disc,

(2) tr[Tf ,Tf ] =

∫

D

|f ′(z)|2 dm(z)

expressing the trace of the commutator [Tf ,Tf ] as the square of the Dirichlet
norm of the holomorphic function f , which is one of the best known Moebius
invariant integrals. (This formula actually holds for Toeplitz operators on any
Bergman space of a bounded planar domain, if the Lebesgue area measure
dm(z) is replaced by an appropriate measure associated to the domain, see [2].)
A remarkable substitute for (2) on the unit ball Bn is the result of Helton and
Howe [19], who showed that for smooth functions f1, . . . , f2n on the closed
ball, the complete anti-symmetrization [Tf1 ,Tf2 , . . . ,Tf2n ] of the 2n operators
Tf1 , . . . ,Tf2n is trace-class and

tr[Tf1 ,Tf2 , . . . ,Tf2n ] =

∫

Bn

df1 ∧ df2 ∧ · · · ∧ df2n.

There is, however, a generalization of (2) to the unit ball Bn, n > 1, in a
different direction — using the Dixmier trace. This may be notable especially
in view of the prominent applications of the Dixmier trace in noncommutative
differential geometry [9].
Namely, it was shown by the present authors and Guo [12] that for f1, . . . , fn
and g1, . . . , gn smooth on the closed ball, the product [Tf1 ,Tg1 ] . . . [Tfn ,Tgn ]
belongs to the Dixmier class SDixm and has Dixmier trace equal to

(3) Trω([Tf1 ,Tg1 ] . . . [Tfn ,Tgn ]) =
1

n!

∫

∂Bn

n
∏

j=1

{fj, gj}b dσ,
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where dσ is the normalized surface measure on ∂Bn and {f, g}b is the “bound-
ary Poisson bracket” given by

{f, g}b :=
n
∑

j=1

( ∂f

∂zj

∂g

∂zj
−

∂f

∂zj

∂g

∂zj

)

− (RfRg −RfRg),

with R :=
∑n

j=1 zj
∂

∂zj
and R :=

∑n
j=1 zj

∂
∂zj

the anti-holomorphic and the

holomorphic part of the radial derivative, respectively. In particular, for f
holomorphic on B

n and smooth on the closed ball, (H∗
f
Hf )

n = [Tf ,Tf ]
n ∈

SDixm and

Trω((H
∗
f
Hf )

n) =
1

n!

∫

∂Bn

(

n
∑

j=1

∣

∣

∣

∂f

∂zj

∣

∣

∣

2

− |Rf |2
)n

dσ.

Note that for n = 1 the right-hand side vanishes, in accordance with the fact
that in dimension 1 the cutoff occurs at p = 1 instead of p = 2n = 2; in fact,
it was shown by Rochberg and the first author [13] that for n = 1 actually
|Hf | = (H∗

fHf )
1/2, rather than H∗

fHf , is in the Dixmier class for any f ∈

C∞(D), and

Trω(|Hf |) =

∫

∂D

|∂f | dσ,

so, in particular,

Trω(|Hf |) =

∫

∂D

|f ′| dσ = ‖f ′‖H1

for f ∈ C∞(D) holomorphic on D, where H1 denotes the Hardy 1-space on
the unit circle.
In this paper, we generalize the result of [12] to arbitrary bounded strictly
pseudoconvex domains Ω with smooth boundary. Our result is that for any 2n
functions f1, g1, . . . , fn, gn ∈ C∞(Ω),

(4) Trω(H
∗
f1Hg1 . . .H

∗
fnHgn) =

1

n!(2π)n

∫

∂Ω

n
∏

j=1

L(∂bgj , ∂bfj) η ∧ (dη)n−1,

where ∂b stands for the boundary ∂-operator [14], η∧ (dη)n−1 is a certain mea-
sure on ∂Ω, and L stands for the dual of the Levi form on the anti-holomorphic
tangent bundle; see §§ 2 and 4 below for the details.
In contrast to [12], where we were using the so-called pseudo-Toeplitz operators
of Howe [18], our proof here relies on Boutet de Monvel’s and Guillemin’s
theory of Toeplitz operators on the Hardy spaceH2(∂Ω) with pseudodifferential
symbols. (This is also the approach used in [13], however the situation Ω = D

treated there is much more manageable.)
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In fact, it turns out that for any classical pseudodifferential operator Q on
∂Ω of order −n, the corresponding Hardy-Toeplitz operator TQ belongs to the
Dixmier class and

(5) Trω(TQ) =
1

n!(2π)n

∫

∂Ω

σ−n(Q)(x, η(x)) η(x) ∧ (dη(x))n−1,

where σ−n(Q) is the principal symbol of Q, and η is a certain 1-form on ∂Ω; see
again §2 below for the details. In particular, in view of the results of Guillemin
[16] [17], this means that on Toeplitz operators TQ of order ≤ −n, the Dixmier
trace Trω TQ coincides with the residual trace TrRes TQ, a quantity constructed
using the meromorphic continuation of the ζ function of TQ (Wodzicki [24],
Boutet de Monvel [7], Ponge [23], Lesch [20], Connes [9]).

We recall the necessary prerequisites on the Dixmier trace, Hankel operators
and the Boutet de Monvel-Guillemin theory in Section 2. The proofs of (5)
and (4) appear in Sections 3 and 4, respectively. Some concluding comments
are assembled in the final Section 5.

Throughout the paper, we will denote Bergman-space Toeplitz operators byTf ,
in order to distinguish them from the Hardy-space Toeplitz operators Tf

and TQ. Since Hankel operators on the Hardy space never appear in this
paper, Hankel operators on the Bergman space are denoted simply by Hf .

2. Background

2.1 Generalized Toeplitz operators. Let r be a defining function for Ω,
that is, r ∈ C∞(Ω), r < 0 on Ω, and r = 0, ‖∂r‖ > 0 on ∂Ω. Denote

by η the restriction to ∂Ω of the 1-form Im(∂r) = (∂r − ∂r)/2i. The strict
pseudoconvexity of Ω guarantees that η is a contact form, i.e. the half-line
bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}

is a symplectic submanifold of T ∗(∂Ω). Equip ∂Ω with a measure with smooth
positive density, and let L2(∂Ω) be the Lebesgue space with respect to this
measure. The Hardy space H2(∂Ω) is the subspace in L2(∂Ω) of functions
whose Poisson extension is holomorphic in Ω; or, equivalently, the closure in
L2(∂Ω) of C∞

hol(∂Ω), the space of boundary values of all the functions in C∞(Ω)
that are holomorphic on Ω. (In dimensions greater than 1, H2(∂Ω) can also
be characterized as the null-space of the ∂b-operator, which will appear in
Section 4 further on.) We will also denote by W s(∂Ω), s ∈ R, the Sobolev
spaces on ∂Ω, and by W s

hol(∂Ω) the corresponding subspaces of nontangential
boundary values of functions holomorphic in Ω. (Thus W 0(∂Ω) = L2(∂Ω) and
W 0

hol(∂Ω) = H2(∂Ω).)

Unless otherwise specified, by a pseudodifferential operator or Fourier integral
operator (ΨDO or FIO for short) on ∂Ω we will always mean an operator which
is “classical”, i.e. whose total symbol (or amplitude) in any local coordinate
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Hankel Operators and the Dixmier Trace 605

system has an asymptotic expansion

p(x, ξ) ∼

∞
∑

j=0

pm−j(x, ξ),

where pm−j is C
∞ in x, ξ, and is positive homogeneous of degree m− j in ξ for

|ξ| > 1. Here j runs through nonnegative integers, while m can be any integer;

and the symbol “∼” means that the difference between p and
∑k−1

j=0 pm−j should

belong to the Hörmander class Sm−k, for each k = 0, 1, 2, . . . . The set of all
classical ΨDOs on ∂Ω as above (i.e. of order m) will be denoted by Ψm

cl ; and
we set, as usual, Ψcl :=

⋃

m∈Z
Ψm

cl and Ψ−∞ :=
⋂

m∈Z
Ψm

cl . The operators in

Ψ−∞ are precisely the smoothing operators, i.e. those given by a C∞ Schwartz
kernel; and for any P,Q ∈ Ψcl, we will write P ∼ Q if P − Q is smoothing.
Note that if P ∈ Ψm

cl , then P is continuous from W s(∂Ω) into W s−m(∂Ω), for
any s ∈ R.
For Q ∈ Ψm

cl , the generalized Toeplitz operator TQ : Wm
hol(∂Ω) → H2(∂Ω) is

defined as
TQ = ΠQ,

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projec-
tion). Alternatively, one may view TQ as the operator

TQ = ΠQΠ

on all of Wm(∂Ω). Actually, TQ maps continuously W s(∂Ω) into W s−m
hol (∂Ω),

for each s ∈ R, because Π is bounded on W s(∂Ω) for any s ∈ R (see [6]).
It is known that the generalized Toeplitz operators TP , P ∈ Ψcl, have the
following properties.

(P1) They form an algebra which is, modulo smoothing operators, locally
isomorphic to the algebra of classical ΨDOs on R

n.
(P2) In fact, for any TQ there exists a ΨDO P of the same order such that

TQ = TP and PΠ = ΠP .
(P3) If P,Q are of the same order and TP = TQ, then the principal symbols

σ(P ) and σ(Q) coincide on Σ. One can thus define unambiguously the
order of a generalized Toeplitz operator as ord(TQ) := min{ord(P ) :
TP = TQ}, and its principal symbol (or just “symbol”) as σ(TQ) :=
σ(Q)|Σ if ord(Q) = ord(TQ). (The symbol is undefined if ord(TQ) =
−∞.)

(P4) The order and the symbol are multiplicative: ord(TPTQ) = ord(TP ) +
ord(TQ) and σ(TPTQ) = σ(TP )σ(TQ).

(P5) If ord(TQ) ≤ 0, then TQ is a bounded operator on L2(∂Ω); if ord(TQ) <
0, then it is even compact.

(P6) If Q ∈ Ψm
cl and σ(TQ) = 0, then there exists P ∈ Ψm−1

cl with TP = TQ.
In particular, if TQ ∼ 0, then there exists a ΨDO P ∼ 0 such that
TQ = TP .
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(P7) We will say that a generalized Toeplitz operator TQ of orderm is elliptic
if σ(TQ) does not vanish. Then TQ has a parametrix, i.e. there exists
a Toeplitz operator TP of order −m, with σ(TP ) = σ(TQ)

−1, such that
TQTP ∼ IH2(∂Ω) ∼ TPTQ.

We refer to the book [5], especially its Appendix, and to the paper [4] (which we
have loosely followed in this section) for the proofs and additional information
on generalized Toeplitz operators.

2.2 The Poisson operator. Let K denote the Poisson extension operator
on Ω, i.e. K solves the Dirichlet problem

(6) ∆Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Here ∆ is the ordinary
Laplace operator.) By the standard elliptic regularity theory (see e.g. [22]),

K acts continuously fromW s(∂Ω) onto the subspaceW
s+1/2
harm (Ω) of all harmonic

functions inW s+1/2(Ω). In particular, it is continuous from L2(∂Ω) into L2(Ω),
and thus has a continuous Hilbert space adjoint K

∗ : L2(Ω) → L2(∂Ω).
The composition

K
∗
K =: Λ

is known to be an elliptic positive ΨDO on ∂Ω of order −1. We have

(7) Λ−1
K

∗
K = IL2(∂Ω),

while

KΛ−1
K

∗ = Πharm,

the orthogonal projection in L2(Ω) onto the subspace L2
harm(Ω) of all harmonic

functions. (Indeed, from (7) it is immediate that the left-hand side acts as the
identity on the range of K, while it trivially vanishes on KerK∗ = (RanK)⊥.)
Comparing (7) with (6), we also see that the restriction

γ := Λ−1
K

∗|L2

harm
(Ω)

is the operator of “taking the boundary values” of a harmonic function. Again,
by elliptic regularity, γ extends to a continuous operator from W s

harm(Ω) onto

W s−1/2(∂Ω), for any s ∈ R, which is the inverse of K.
The operators

Λw := K
∗wK,

with w a smooth function on Ω, are governed by a calculus developed by Boutet
de Monvel [3]. It was shown there that for w of the form

(8) w = rmg, m = 0, 1, 2, . . . , g ∈ C∞(Ω),
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Λw is a ΨDO on ∂Ω of order −m− 1, with symbol

(9) σ(Λw)(x, ξ) =
(−1)mm!

2|ξ|m+1
g(x) ‖ηx‖

m.

(In particular, σ(Λ)(x, ξ) = 1/2|ξ|.)

By abstract Hilbert space theory, K has, as an operator from L2(∂Ω)
into L2(Ω), the polar decomposition

(10) K = U(K∗
K)1/2 = UΛ1/2,

where U is a partial isometry with initial space RanK∗ = (KerK)⊥ and final
space RanK; that is, U is a unitary operator from L2(∂Ω) onto L2

harm(Ω).

The operators γ, K and U = KΛ−1/2 can be used to “transfer” operators
on L2

harm(Ω) ⊂ L2(Ω) into operators on L2(∂Ω). The following proposition
appears as Proposition 8 in [11]; we reproduce its (short) proof here for com-
pleteness.

Proposition 1. γΠK = T−1
Λ ΠΛ.

Proof. Set ΠΛ := KT−1
Λ ΠΛγ, an operator on L2

harm(Ω); we need to show that

ΠΛ = Π|L2

harm

. Since T−1
Λ ΠΛ acts as the identity on the range of Π, it is

immediate that Π
2
Λ = ΠΛ; furthermore, ΠΛ = KT−1

Λ ΠK∗ = KΠT−1
Λ ΠK∗

is evidently self-adjoint. Thus ΠΛ is the orthogonal projection in L2
harm(Ω)

onto RanΠΛ. But

RanΠΛ = (KerΠΛ)
⊥ = (KerKΠT−1

Λ ΠK∗)⊥ = (KerT
−1/2
Λ ΠK∗)⊥

= (KerΠK∗)⊥ = RanKΠ = KH2(∂Ω)

= W
1/2
hol (Ω) = L2

hol(Ω).

So, indeed, ΠΛ = Π. �

Similarly to (10), the bounded (in fact — since Λ is of order < 0 — even
compact) operator Λ1/2Π on L2(∂Ω) has polar decomposition

Λ1/2Π = W (ΠΛΠ)1/2 = WT
1/2
Λ ,

where W is a partial isometry with initial space RanΠΛ1/2 = H2(∂Ω) and final

space RanΛ1/2Π = Λ1/2H2(∂Ω); in particular,

(11) W ∗W = I on H2(∂Ω).

The following proposition is analogous to Corollary 9 of [11].
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Proposition 2. Let w ∈ C∞(Ω) be of the form (8). Then

U∗
TwU = WT

−1/2
Λ TΛwT

−1/2
Λ W ∗ = WTQwW

∗,

where Qw is a ΨDO on ∂Ω of order −m with

σ(Qw)(x, ξ)|Σ =
(−1)mm!

|ξ|m
g(x) ‖ηx‖

m.

Proof. By Proposition 1, ΠK = KT−1
Λ ΠΛ = KΠT−1

Λ ΠΛ; hence

U∗
TwU = Λ−1/2

K
∗
ΠwΠKΛ−1/2

= Λ1/2ΠT−1
Λ ΠK∗wKΠT−1

Λ ΠΛ1/2

= Λ1/2ΠT−1
Λ ΠΛwΠT

−1
Λ ΠΛ1/2

= Λ1/2ΠT−1
Λ TΛwT

−1
Λ ΠΛ1/2

= WT
−1/2
Λ TΛwT

−1/2
Λ W ∗,

proving the first equality. The second equality follows from (9) and the prop-
erties (P1) and (P4). �

2.3 The Dixmier trace. Recall that if A is a compact operator acting on a
Hilbert space then its sequence of singular values {sj(A)}

∞
j=1 is the sequence of

eigenvalues of |A| = (A∗A)1/2 arranged in nonincreasing order. In particular if
A ≫ 0 this will also be the sequence of eigenvalues of A in nonincreasing order.
For 0 < p < ∞ we say that A is in the Schatten ideal Sp if {sj(A)} ∈ lp(Z>0).
If A ≫ 0 is in S1, the trace class, then A has a finite trace and, in fact,
tr(A) =

∑

j sj(A). If however we only know that

sj(A) = O(j−1) or that

Sk(A) :=
k
∑

j=1

sj(A) = O(log(1 + k))

then A may have infinite trace. However in this case we may still try to
compute its Dixmier trace, Trω(A). Informally Trω(A) = limk

1
log kSk(A) and

this will actually be true in the cases of interest to us. We begin with the
definition. Select a continuous positive linear functional ω on l∞(Z>0) and
denote its value on a = (a1, a2, ...) by Limω(ak). We require of this choice
that Limω(ak) = lim ak if the latter exists. We require further that ω be scale

invariant; a technical requirement that is fundamental for the theory but will
not be of further concern to us.
Let SDixm be the class of all compact operators A which satisfy

(12)
( Sk(A)

log(1 + k)

)

∈ l∞.
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With the norm defined as the l∞-norm of the left-hand side of (12), SDixm

becomes a Banach space [15]. For a positive operator A ∈ SDixm, we define

the Dixmier trace of A, Trω(A), as Trω(A) = Limω(
Sk(A)

log(1+k) ). Trω(·) is then

extended by linearity to all of SDixm. Although this definition does depend on
ω the operators A we consider are measurable, that is, the value of Trω(A) is
independent of the particular choice of ω. We refer to [9] for details and for
discussion of the role of these functionals.
It is a result of Connes [8] that if Q is a ΨDO on a compact manifold M of
real dimension n and ord(Q) = −n, then Q ∈ SDixm and

(13) Trω(Q) =
1

n!(2π)n

∫

(T ∗M)1

σ(Q).

(Here (T ∗M)1 denotes the unit sphere bundle in the cotangent bundle T ∗M ,
and the integral is taken with respect to a measure induced by any Riemannian
metric on M ; since σ(Q) is homogeneous of degree −n, the value of the integral
is independent of the choice of such metric.) In the next section, we will see
that for Toeplitz operators TQ on ∂Ω, Ω ⊂ C

n, the “right” order for TQ to
belong to SDixm is not − dimR ∂Ω = −(2n− 1), but − dimC Ω = −n.

3. Dixmier trace of generalized Toeplitz operators

Let T be a positive self-adjoint generalized Toeplitz operator on ∂Ω of order
1 with σ(T ) > 0. Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . be the points of its spectrum
(counting multiplicities) and let N(λ) denote the number of λj ’s less than λ.
It was shown in Theorem 13.1 in [5] that as λ → +∞,

(14) N(λ) =
vol(ΣT )

(2π)n
λn +O(λn−1),

where ΣT is the subset of Σ where σ(T ) ≤ 1, and vol(ΣT ) is its symplectic
volume.
Using properties of generalized Toeplitz operators, it is easy to derive from here
the formula for the Dixmier trace.

Theorem 3. Let T be a generalized Toeplitz operator on H2(∂Ω) of order −n.
Then T ∈ SDixm, and

Trω(T ) =
1

n!(2π)n

∫

∂Ω

σ(T )(x, ηx) η ∧ (dη)n−1.

In particular, T is measurable.

Proof. As the Dixmier trace is defined first on positive operators and then
extended to all of SDixm by linearity, while T may be split into its real and
imaginary parts each of which can be expressed as a difference of two positive
generalized Toeplitz operators of the same order, it is enough to prove the
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610 M. Englǐs, G. Zhang

assertion when T is positive self-adjoint with σ(T ) > 0. Then T is elliptic, and
it follows from Seeley’s theorem on complex powers of ΨDO’s and from the
property (P2) that T−1/n is also a generalized Toeplitz operator, with symbol
σ(T )−1/n and of order 1 (see [10], Proposition 16, for the detailed argument).
Thus the eigenvalues λ1 ≤ λ2 ≤ . . . of T−1/n satisfy (14). Consequently,

Sk(T ) =

k
∑

j=1

sj(T ) =

k
∑

j=1

λ−n
j =

∫

[λ1,λk]

λ−n dN(λ)

=

∫

[λ1,λk]

( c

N(λ)
+O

(

N(λ)−1− 1

n

)

)

dN(λ)

=

∫ k

1

( c

N
+O(N−1− 1

n )
)

dN

= c log k +O(1).

Here we have temporarily denoted c := (2π)−n vol(ΣT−1/n). Dividing by
log(k + 1) and letting k tend to infinity, it follows that T ∈ SDixm and

(15) Trω(T ) = lim
k→∞

Sk(T )

log(k + 1)
= c.

Let us parameterize Σ as (x, tηx) with x ∈ ∂Ω, t > 0. The subset ΣT−1/n is
then characterized by

σ(T )(x, tηx)
−1/n ≤ 1, or t ≤ σ(T )(x, ηx)

1/n.

A routine computation, which we postpone to the next lemma, shows that the
symplectic volume on Σ with respect to the above parameterization is given by
tn−1

(n−1)! dt ∧ η(x) ∧ (dη(x))n−1. Consequently,

vol(ΣT−1/n) =

∫

∂Ω

∫ σ(T )(x,ηx)
1/n

0

tn−1

(n− 1)!
dt ∧ η ∧ (dη)n−1

=
1

n!

∫

∂Ω

σ(T )(x, ηx) η ∧ (dη)n−1.

Combining this with (15) and the definition of c, the assertion follows. �

Remark 4. Observe that, in analogy with (13), the last integral is independent
of the choice of the defining function. Indeed, if r is replaced by gr, with g > 0
on ∂Ω, then η = Im(∂r) is replaced by gη (since ∂(gr) = g∂r on the set where
r = 0), and η ∧ (dη)n−1 by gη ∧ (g dη + dg ∧ η)n−1 = gn η ∧ (dη)n−1 (because
η ∧ η = 0); as σ(T )(x, ξ) is homogeneous of degree −n in ξ, the integrand
remains unchanged. �

Documenta Mathematica 15 (2010) 601–622
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Lemma 5. With respect to the parameterization Σ = {(x, tηx) : x ∈ ∂Ω, t >
0}, the symplectic form on Σ is given by

ω = t dη + dt ∧ η = d(tη).

Consequently, the symplectic volume in the (x, t) coordinates is given by

ωn

n!
=

tn−1

(n− 1)!
dt ∧ η ∧ (dη)n−1.

We are supplying a proof of this simple fact below, since we were unable to
locate it in the literature (though we expect that it must be at least implicitly
contained e.g. somewhere in [5]).

Proof. Recall that if (x1, x2, . . . , x2n−1) is a real coordinate chart on ∂Ω
and (x, ξ) the corresponding local coordinates for a point (x; ξ1dx1 + · · · +
ξ2n−1dx2n−1) in T ∗∂Ω, then the form α = ξ1dx1+ · · ·+ξ2n−1dx2n−1 is globally
defined and the symplectic form is given by ω = dα = dξ1∧dx1+ · · ·+dξ2n−1∧
dx2n−1. Since exterior differentiation commutes with restriction (or, more pre-
cisely, with the pullback j∗ under the inclusion map j : Σ → T ∗∂Ω), it follows
that the symplectic form ωΣ = j∗ω on Σ is given by ωΣ = d(j∗α). As in our
case j∗α = tη, the first formula follows. (We will drop the subscript Σ from
now on.) The second formula is immediate from the first since η ∧ η = 0 and
(dη)n = 0. �

The following corollary is immediate upon combining Theorem 3 and Proposi-
tion 2.

Corollary 6. Assume that f ∈ C∞(Ω) vanishes at ∂Ω to order n. Then Tf

belongs to the Dixmier class, is measurable, and

Trω(Tf ) =
1

n!(4π)n

∫

∂Ω

N
nf

η ∧ (dη)n−1

‖η‖n
,

where N denotes the interior unit normal derivative.

4. Dixmier trace for products of Hankel operators

It is known [5] that the symbol of the commutator of two generalized Toep-
litz operators is given by the Poisson bracket (with respect to the symplectic
structure of Σ) of their symbols:

σ([TP , TQ]) =
1
i {σ(TP ), σ(TQ)}Σ.

We need an analogous formula for the semi-commutator TPQ−TPTQ of two gen-
eralized Toeplitz operators. Not surprisingly, it turns out to be given (at least
in the cases of interest to us) by an appropriate “half” of the Poisson bracket.
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Let us denote by T ′′ ⊂ T ∂Ω⊗C the anti-holomorphic complex tangent space
to ∂Ω, i.e. the elements of T ′′

x , x ∈ ∂Ω, are the vectors
∑n

j=1 aj
∂

∂zj
, aj ∈ C,

such that
∑

j aj
∂r
∂zj

(x) = 0. (This notation follows [6], p. 141.) On the open

subset Um of ∂Ω where ∂r
∂zm

6= 0 (as m ranges from 1 to n, these subsets cover

all of ∂Ω), T ′′ is spanned by the n− 1 vector fields

Rj :=
∂

∂zj
−

∂r/∂zj
∂r/∂zm

∂

∂zm
, j 6= m.

(Thus Rj depends also on m, although this is not reflected by the notation.)
The (similarly defined) holomorphic complex tangent space T ′ is, analogously,
spanned on Um by the n− 1 vector fields

Rj :=
∂

∂zj
−

∂r/∂zj
∂r/∂zm

∂

∂zm
, j 6= m,

while the whole complex tangent space T ∂Ω⊗C is spanned there by the Rj ,

Rj and

E :=

n
∑

j=1

∂r

∂zj

∂

∂zj
−

∂r

∂zj

∂

∂zj

(the “complex normal” direction).
The boundary d-bar operator ∂b : C∞(∂Ω) → C∞(∂Ω, T ′′∗) is defined as the
restriction

∂bf := df |T ′′ ,

or, more precisely, ∂bf = df̃ |T ′′ for any smooth extension f̃ of f to a neigh-
bourhood of ∂Ω in C

n (the right-hand side is independent of the choice of such
extension). On Um, T ′′∗ admits dzj |T ′′ , j 6= m, as a basis and

∂bf =
∑

j

Rjf dzj |T ′′ .

Under our parameterization of Σ by (x, t) ∈ ∂Ω×R+, the tangent bundle T Σ
is identified with T ∂Ω ×R, being spanned at each (x, tηx) ∈ Σ by Rj , Rj , E

and the extra vector T := ∂
∂t . Recall that the Levi form L′ is the Hermitian

form on T ′ defined by

L′(X,Y ) :=

n
∑

j,k=1

∂2r

∂zj∂zk
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.

The strong pseudoconvexity of Ω means that L′ is positive definite. Similarly,
one has the positive-definite Levi form L′′ on T ′′ defined by

L′′(X,Y ) :=

n
∑

j,k=1

∂2r

∂zk∂zj
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.
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In terms of the complex conjugationX 7→ X given byXj
∂

∂zj
= Xj

∂
∂zj

, mapping

T ′ onto T ′′ and vice versa, the two forms are related by

(16) L′′(X,Y ) = L′(Y ,X) ∀X,Y ∈ T ′′.

By the usual formalism, L′′ induces a positive definite Hermitian form1 on the
dual space T ′′∗ of T ′′; we denote it by L. Namely, if L′′ is given by a matrix
L with respect to some basis {ej}, then L is given by the inverse matrix L

−1

with respect to the dual basis {êk} satisfying êk(ej) = δjk. An alternative
description is the following. For any α ∈ T ′′∗, let Z ′′

α ∈ T ′′ be defined by

L′′(X,Z ′′
α) = α(X) ∀X ∈ T ′′.

(This is possible, and Z ′′
α is unique, owing to the non-degeneracy of L′′. Note

that α 7→ Z ′′
α is conjugate-linear.) Then

L(α, β) = L′′(Z ′′
β , Z

′′
α) = α(Z ′′

β ) = β(Z ′′
α).

Let, in particular, Z ′′
f := Z ′′

∂bf
, so that

L′′(X,Z ′′
f ) = ∂bf(X) ∀X ∈ T ′′,

and denote by Z ′
f ∈ T ′ the similarly defined holomorphic vector field satisfying

L′(Y, Z ′
f ) = ∂bf(Y ) ∀Y ∈ T ′,

where ∂bf := df |T ′ . Set

Zf := i(Z ′′
f − Z ′

f) ∈ T ′ + T ′′.

These objects are related to the symplectic structure of Σ as follows. Note that

dη = i∂∂r = i
n
∑

k,l=1

∂2r

∂zk∂zl
dzk ∧ dzl,

hence
dη(X ′ +X ′′, Y ′ + Y ′′) = iL′(X ′, Y ′′)− iL′(Y ′, X ′′)

for all X ′, Y ′ ∈ T ′ and X ′′, Y ′′ ∈ T ′′. It follows that dη is a non-degenerate
skew-symmetric bilinear form on T ′ + T ′′, and

(17) dη(X,Zf ) = Xf ∀X ∈ T ′ + T ′′.

1or, perhaps more appropriately, a positive definite Hermitian bivector
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Indeed,

dη(X ′ +X ′′, Zf ) = iL′(X ′,−iZ ′
f)− iL′(iZ ′′

f , X
′′)

= L′(X ′, Z ′
f ) + L′′(X ′′, Z ′′

f )

= ∂bf(X
′) + ∂bf(X

′′) = df(X ′ +X ′′).

Let us define ET ∈ T ′ + T ′′ by

(18) dη(X,ET ) = dη(X,E) ∀X ∈ T ′ + T ′′

(again, this is possible and unambiguous by virtue of the non-degeneracy of dη
on T ′ + T ′′), and set

E⊥ :=
E − ET

η(E)
=

E − ET

i‖η‖2
.

The vector field E⊥ is usually called the Reeb vector field, and is defined by
the conditions η(E⊥) = 1, iE⊥

dη = 0.

Proposition 7. Let f, g ∈ C∞(∂Ω), and let F,G be the functions on Σ ∼=
∂Ω×R+ given by

F (x, t) = t−kf(x), G(x, t) = t−mg(x).

Then the Poisson bracket of F and G is given by

{F,G}Σ = t−k−m−1
(

Zfg +mgE⊥f − kfE⊥g
)

.

Proof. Recall that the Hamiltonian vector field HF of F is the pre-dual of dF
with respect to the symplectic form ωΣ ≡ ω on Σ, namely

ω(X,HF ) = dF (X) = XF, ∀X ∈ T Σ.

Since F = t−kf(x), we have dF = t−kdf − kt−k−1fdt, so

(19) HF = t−kHf − kt−k−1fHt.

We claim that

(20) Ht = E⊥, Hf =
1

t
Zf − E⊥f T.

We check the formula for Ht, i.e.

ω(X,Ht) = dt(X) ∀X ∈ T Σ.
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For X = T ,

ω(T,E⊥) =
1

η(E)
(tdη + dt ∧ η)(T,E − ET )

=
1

η(E)
dt ∧ η(T,E − ET ) =

η(E) − η(ET )

η(E)

= 1 = dt(T ),

since η vanishes on T ′ + T ′′ ∋ ET . Similarly, for X = X ′ ∈ T ′,

ω(X ′, E⊥) =
1

η(E)
t dη(X ′, E⊥)

vanishes by the definition (18) of ET , and so does dt(E⊥) since E⊥ contains no
t-differentiations. Analogously for X = X ′′ ∈ T ′′. Finally, for X = E we have

ω(E,E⊥) = −
1

η(E)
ω(E,ET ) = −

1

η(E)
t dη(E,ET )

= −
1

η(E)
t dη(ET , ET ) = 0 = dt(E),

where in the third equality we have used (18) for X = ET .
Next we check the formula for Hf . For X = T , both ω(X,Hf) and df(X) are
zero. For X ∈ T ′ + T ′′, we have ω(X,T ) = dt∧ η(X,T ) = −η(X) = 0 and the
equality follows by (17). Finally for X = E

ω(E,Hf ) = t dη(E, 1
tZf) + dt ∧ η(E,−E⊥f T )

= dη(ET , Zf ) + η(E)E⊥f

= ET f + η(E)E⊥f by (17)

= ET f + (E − ET )f,

which indeed coincides with df(E) = Ef .
By (20) and (19), we thus get

HF = t−k−1Zf − t−kE⊥f T − kt−k−1fE⊥.

Consequently,

{F,G}Σ = ω(HF , HG) = HFG

= t−k−m−1Zfg +mt−k−m−1gE⊥f − kt−k−m−1fE⊥g,

and the assertion follows. �
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Corollary 8. Let f, g ∈ C∞(∂Ω), and denote by f, g also the corresponding

functions on Σ ∼= ∂Ω×R+ constant on each fiber. Then

{f, g}Σ =
1

t
Zfg = i

L(∂bf, ∂bg)− L(∂bg, ∂bf)

t
.

Proof. Immediate upon takingm = k = 0 in the last proposition, and observing
that

1

i
Zfg = Z ′′

f g − Z ′
fg = dg(Z ′′

f )− dg(Z ′
f )

= ∂bg(Z ′′
f )− ∂bg(Z ′

f ) = ∂bg(Z ′′
f )− ∂bg(Z ′

f )

= L(∂bg, ∂bf)− L(∂bg, ∂bf),

since Z ′
f = Z ′′

f
by virtue of (16). �

We are now ready to state the main result of this section and, in some sense,
of this paper.

Theorem 9. Let U , W have the same meaning as in Proposition 2. Then for

f, g ∈ C∞(Ω),
U∗(Tfg −TgTf )U = WTQW

∗,

where TQ is a generalized Toeplitz operator on ∂Ω of order −1 with principal

symbol

(21) σ(TQ)(x, tηx) =
1

t
L(∂bf, ∂bg)(x).

Proof. By Proposition 2,

U∗(Tfg −TgTf )U = W (TQfg
− TQg

TQf
)W ∗,

where TQf
= T

−1/2
Λ TΛf

T
−1/2
Λ is a generalized Toeplitz operator of order 0 with

symbol σ(TQf
)(x, ξ) = f(x). By (P1) and (P4), the expression TQfg

−TQg
TQf

is thus a generalized Toeplitz operator TQ of order 0 with symbol σ(TQ) =
σ(TQfg

) − σ(TQg
)σ(TQf

) = fg − gf = 0; thus by (P6), it is indeed, in fact,
a generalized Toeplitz operator of order −1. It remains to show that its symbol,
which we denote by ρ(f, g), is given by (21).
By the general theory, ρ(f, g) is given by a local expression, i.e. one involving
only finitely many derivatives of f and g at the given point, and linear in f
and g. (Indeed, the proof of Proposition 2.5 in [5] shows that the construction,
for a given ΨDO Q, of the ΨDO P from property (P2), i.e. such that TQ = TP

and [P,Π] = 0, is completely local in nature, so the total symbol of the P
corresponding to Q = Λf is given by local expressions in terms of the total
symbol of Λf , hence, by local expressions in terms of f ; the claim thus follows
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from the product formula for the symbol of ΨDOs.) It is therefore enough to
show that

(22) ρ(f, g) =
1

t
L(∂bf, ∂bg)

for functions f, g of the form uv, with u, v holomorphic on Ω. 2 Next, if u
and v are holomorphic on Ω, then TvTf = Tvf and TfTu = Tfu for any f ;
consequently, using Proposition 2 and (11),

U∗(Tufvg −TvgTuf )U = U∗
Tv(Tfg −TgTf )TuU

= U∗
TvUU∗(Tfg −TgTf )UU∗

TuU

= WTQv
W ∗W (TQfg

− TQg
TQf

)W ∗WTQuW
∗

= WTQv
(TQfg

− TQg
TQf

)TQuW
∗.

By (P4) we see that
ρ(uf, vg) = u ρ(f, g) v.

Since also
L(∂buf, ∂bvg) = uL(∂bf, ∂bg) v

(because ∂b(uf) = u ∂bf for holomorphic u), it in fact suffices to prove (22)
when f, g are both conjugate-holomorphic, i.e. ∂bf = ∂bg = 0. However, in that
case Tfg = TfTg, so, using again Proposition 2 and (11),

U∗(Tfg −TgTf )U = U∗[Tf ,Tg]U = [U∗
TfU,U

∗
TgU ]

= [WTQf
W ∗,WTQg

W ∗] = W [TQf
, TQg

]W ∗,

implying that

ρ(f, g) = σ([TQf
, TQg

])

= 1
i {σ(TQf

), σ(TQg
)}Σ

= 1
i {f, g}Σ

=
L(∂bf, ∂bg)− L(∂bg, ∂bf)

t
by Corollary 8

= 1
t L(∂bf, ∂bg),

completing the proof. �

Remark 10. It seems much more difficult to obtain a formula for the symbol
of TPQ − TPTQ for general ΨDOs P and Q. �

We are now ready to prove the main result on Dixmier traces.

2In fact, even holomorphic polynomials u, v would do.
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Theorem 11. Let f1, g1, . . . , fn, gn ∈ C∞(Ω). Then the operator

H = H∗
g1Hf1H

∗
g2Hf2 . . . H

∗
gnHfn

on L2
hol(Ω) belongs to the Dixmier class, and

(23) Trω(H) =
1

n!(2π)n

∫

∂Ω

L(∂bf1, ∂bg1) . . .L(∂bfn, ∂bgn) η ∧ (dη)n−1.

In particular, H is measurable.

Proof. Denote, for brevity, Vj := T
−1/2
Λ (TΛfjgj

−TΛgj
T−1
Λ TΛfj

)T
−1/2
Λ . We have

seen in the last theorem that H∗
gjHfj = Tgjfj −Tgj

Tfj satisfies

U∗H∗
gjHfjU = WVjW

∗

and that Vj is a generalized Toeplitz operator of order −1 with symbol given by

σ(Vj)(x, tηx) =
1
tL(∂bfj, ∂bgj). By iteration and using (11), it follows that

U∗H∗
g1Hf1H

∗
g2Hf2 . . . H

∗
gnHfnU = WV1V2 . . . VnW

∗ = WVW ∗,

where V := V1V2 . . . Vn is a generalized Toeplitz operator of order −n with
symbol σ(V )(x, tηx) = t−n

∏n
j=1 L(∂bfj , ∂bgj). An application of Theorem 3

completes the proof. �

Corollary 12. Let f be holomorphic on Ω and C∞ on Ω. Then |Hf |
2n is in

the Dixmier class, measurable, and

Trω(|Hf |
2n) =

1

n!(2π)n

∫

∂Ω

L(∂bf, ∂bf)
n η ∧ (dη)n−1.

By standard matrix algebra, one has3

L(∂bf, ∂bg) =

[

∂g̃
0

]∗ [

∂∂r ∂r
∂r 0

]−1 [
∂f̃
0

]

,

3Let, quite generally, X be an operator on Cn, u ∈ Cn, and denote by A the compression
of X to the orthogonal complement u⊥ of u, i.e. A = PX|RanP where P : Cn → u⊥ is

the orthogonal projection. Assume that A is invertible. Then the block matrix

[

X u

u∗ 0

]

∈

C
(n+1)×(n+1) is invertible, and for any v, w ∈ C

n,

〈A−1Pv, Pw〉 =

[

w

0

]∗ [

X u

u∗ 0

]−1 [
v

0

]

.

Indeed, switching to a convenient basis we may assume that u = [0, . . . , 0, 1]t. Write X =
[

A b

c∗ d

]

, with b, c ∈ Cn, d ∈ C. Then

[

X u

u∗ 0

]

=





A b 0
c∗ d 1
0 1 0



 =





1 0 b

0 1 d

0 0 1









A 0 0
0 0 1
0 1 0









1 0 0
0 1 0
c∗ 0 1



 ,
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where f̃ , g̃ are any smooth extensions of f, g ∈ C∞(∂Ω) to a neighbourhood
of ∂Ω.
In particular, for Ω = B

d, the unit ball, with the defining function r(z) =
|z|2 − 1, we obtain

(24) L(∂bf, ∂bg) =
n
∑

j=1

∂f̃

∂zj

∂g̃

∂zj
−Rf̃Rg̃,

where R :=
∑n

j=1 zj
∂

∂zj
is the anti-holomorphic radial derivative. One also

easily checks that η ∧ (dη)n−1 = (2π)n dσ where dσ is the normalized sur-
face measure on ∂Bn. The last two theorems thus recover, as they should,
the results from [12] (Theorem 4.4 — which is the formula (3) above — and
Corollary 4.5 there).
Note also that for n = 1, the expression (24) vanishes; in this case U∗H∗

gHfU

is thus in fact of order not −1 but −2 (so that |H∗
gHf |

1/2 is in the Dixmier
class rather than H∗

gHf ), and some additional work is needed to compute the
symbol (and, from it, the Dixmier trace); see [13].
Finally, we pause to remark that the value of the integral (23) remains un-
changed under biholomorphic mappings, as well as changes of the defining
function. Indeed, if r is replaced by gr, with g > 0 on ∂Ω, then T ′′ and ∂b are
unaffected, while the Levi form L on T ′′ gets multiplied by g. Hence its dual
L gets multiplied by g−1, and as η ∧ (dη)n−1 transforms into gnη ∧ (dη)n−1

(cf. Remark 4), the integrand in (23) does not change. Similarly, if φ : Ω1 → Ω2

is a biholomorphic map and r is a defining function for Ω2, one can choose φ◦r
as the defining function for Ω1; then it is immediate, in turn, that φ sends
T ′ into T ′ and T ′′ into T ′′, and that it transforms each of η, η ∧ (dη)n−1,
∂b, ∂b, L and L into the corresponding object on the other domain. Hence
L(∂bf, ∂bg) = (φ∗L)(φ

∗∂bf, φ
∗∂bg) = L(∂b(f ◦ φ), ∂b(g ◦ φ)) and, finally,

φ∗(
∏

j L(∂bfj , ∂bgj) η ∧ (dη)n−1) =
∏

j L(∂b(fj ◦ φ), ∂b(gj ◦ φ)) η ∧ (dη)n−1,

proving the claim. Note that e.g. even in the formula (3) for Ω = B
n, the

invariance of the value of the integral under biholomorphic self-maps of the
ball is definitely not apparent.

5. Concluding remarks

5.1 Manifolds. The results in this paper should all be generalizable to arbi-
trary strictly pseudoconvex manifolds.

whence





1 0 0
0 1 0
c∗ 0 1





[

X u

u∗ 0

]−1




1 0 b

0 1 d

0 0 1



 =





A 0 0
0 0 1
0 1 0





−1

=





A−1 0 0
0 0 1
0 1 0



 ,

and the claim follows.
The formula for L(∂bf, ∂bg) is obtained upon taking X = L, u = ∂r, v = ∂f and w = ∂g.
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5.2 Residual trace. Comparing Theorem 3 with the results of Guillemin
[16] [17], we see that the Dixmier trace for generalized Toeplitz operators coin-
cides (possibly up to different normalization) with the residual trace of Wodz-
icki, Guillemin, Manin and Adler. This is completely analogous to the situation
for ΨDOs, cf. Connes [8], Theorem 1.

5.3 Nonsmooth symbols. For the unit disc D in C, the analogue of Corol-
lary 12 is

Trω(|Hf |) =

∫

∂D

|f ′(eiθ)|
dθ

2π

for f holomorphic on D and smooth on D; see [13]. It was shown in [13] that
the smoothness assumption can be dispensed with: namely, for f holomorphic
on D, |Hf | ∈ SDixm if and only if f ′ belongs to the Hardy 1-space H1(∂D),
and then

Trω(|Hf |) = ‖f ′‖H1 .

We expect that the same situation prevails also for general domains Ω of the
kind studied in this paper, in the following sense. For f holomorphic on Ω,
denote

Lf (z) :=

[

∂f
0

]∗ [

∂∂r ∂r
∂r 0

]−1 [
∂f
0

]

(z).

This is a smooth function defined in some neighbourhood of ∂Ω in Ω, whose
boundary values coincide with L(∂bf, ∂bf) if f is smooth up to the boundary.

Conjecture. Let f be holomorphic on Ω. Then |Hf |
2n ∈ SDixm if and only if

‖f‖L := lim sup
ǫց0

( 1

n!(2π)n

∫

r=−ǫ

|Lf |
n |η ∧ (dη)n−1|

)1/2n

is finite, and then

Trω(|Hf |
2n) = ‖f‖2nL .

The proof for the disc went by showing first that ‖f ′‖H1
actually dominates

the SDixm norm of |Hf |; the result then followed from the one for f ∈ C∞(D)
by a straightforward approximation argument. This approach might also work
for general domains Ω (with ‖f‖L and |Hf |

2n replacing ‖f ′‖H1 and |Hf |), but

the techniques for doing so (estimates for the oscillation of f ′ on Carleson-type
rectangles, etc.) are outside the scope of this paper.

5.4 Higher type. The generalized Toeplitz operators on H2(∂Ω) of higher

type m, m = 1, 2, . . . , are defined as T
(m)
Q = ΠmQΠm, where Q is a ΨDO on

∂Ω as before and Πm is the orthogonal projection in L2(∂Ω) onto the subspace

H2
(m)(∂Ω) of functions annihilated by the m-th symmetric power of ∂b; in other

words,

H2
(m)(∂Ω) = closure of {f ∈ C∞(∂Ω) : Rj1Rj2 . . . Rjmf = 0 ∀j1, j2, . . . , jm}.
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For m = 1, this recovers the ordinary Szegö projector Π and the generalized
Toeplitz operators discussed so far. As shown in §15.3 of [5], the projectors Πm

have almost the same microlocal description as Π, so it is conceivable that our
results could also be extended to these higher type Toeplitz operators.

5.5 Weighted spaces. Our methods also work, with only minimal modifi-
cations, for L2

hol(Ω) replaced by the weighted Bergman spaces L2
hol(Ω, |r|

ν ) ⊂
L2(Ω, |r|ν), with any ν > −1. The formulas in Theorems 9 and 11, and in
Corollary 12, remain unchanged (i.e. they do not depend on ν).
Finally, it is immediate from Theorem 3, the property (P4) and the proof of
Theorem 9 that the formulas in Theorem 11 and Corollary 12 also remain valid
for Hankel operators on the Hardy space H2(∂Ω).
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