# The Rank-One Limit of the Fourier-Mukai Transform 

Gerard van der Geer and Alexis Kouvidakis

Received: October 15. 2009

Communicated by Gavril Farkas


#### Abstract

We give a formula for the specialization of the FourierMukai transform on a semi-abelian variety of torus rank 1.


2010 Mathematics Subject Classification: 14C25, 14H40

## 1. Introduction

Let $\pi: \mathcal{X}^{\star} \rightarrow S$ be a semi-abelian variety of relative dimension $g$ over the spectrum $S$ of a discrete valuation ring $R$ with algebraically closed residue field $k$ such that the generic fibre $X_{\eta}$ is a principally polarized abelian variety. We assume that $\mathcal{X}^{\star}$ is contained in a complete rank-one degeneration $\mathcal{X}$. In particular, the special fibre $X_{0}$ of $\mathcal{X}$ is a complete variety over $k$ containing as an open part the total space of the $\mathbb{G}_{m}$-bundle associated to a line bundle $J \rightarrow B$ over a $(g-1)$-dimensional abelian variety $B$. The normalization $\nu: \mathbb{P} \rightarrow X_{0}$ of $X_{0}$ can be identified with the $\mathbb{P}^{1}$-bundle over $B$ associated to $J$ and $X_{0}$ is obtained by identifying the zero-section of $\mathbb{P}$ with the infinity-section of $\mathbb{P}$, both isomorphic to $B$, by a translation. Moreover, $X_{0}$ is provided with a theta divisor that is the specialization of the polarization divisor on the generic fibre. If $c_{\eta}$ is an algebraic cycle on $X_{\eta}$ we can take the Fourier-Mukai transform $\varphi_{\eta}:=F\left(c_{\eta}\right)$ and consider the limit cycle (specialization) $\varphi_{0}$ of $\varphi_{\eta}$. A natural question is: What is the limit $\varphi_{0}$ of $\varphi_{\eta}$ ?
If $q: \mathbb{P} \rightarrow B$ denotes the natural projection of the $\mathbb{P}^{1}$-bundle, the Chow ring $A^{*}(\mathbb{P})$ of $\mathbb{P}$ is the extension $\mathrm{A}^{*}(B)[\eta] /\left(\eta^{2}-\eta \cdot q^{*} c_{1}(J)\right)$ of the Chow ring $A^{*}(B)$ of $B$ with $\eta=c_{1}\left(O_{\mathbb{P}}(1)\right)$. We consider now cycles with rational coefficients. We denote by $c_{0}$ the specialization of the cycle $c_{\eta}$ on $X_{0}$. We can write $c_{0}$ as $\nu_{*}(\gamma)$ with $\gamma=q^{*} z+q^{*} w \cdot \eta$.
Theorem 1.1. Let $c_{\eta}$ be a cycle on $X_{\eta}$ with $c_{0}=\nu_{*}\left(q^{*} z+q^{*} w \cdot \eta\right)$, for $z, w \in$ $\mathrm{A}^{*}(B)$. The limit $\varphi_{0}$ of the Fourier-Mukai transform $\varphi_{\eta}=F\left(c_{\eta}\right)$ is given by $\varphi_{0}=\nu_{*}\left(q^{*} a+q^{*} b \cdot \eta\right)$ with

$$
a=F_{B}(w)+\sum_{n=0}^{2 g-2} \sum_{m=0}^{n} \frac{(-1)^{m}}{(n+2)!} F_{B}\left[\left(z+w \cdot c_{1}(J)\right) \cdot c_{1}^{m}(J)\right] \cdot c_{1}^{n-m+1}(J)
$$

and

$$
b=\sum_{n=0}^{2 g-2} \sum_{m=0}^{n} \frac{(-1)^{m}}{(n+2)!} F_{B}\left[\left(\left((-1)^{n+1}-1\right) z-w \cdot c_{1}(J)\right) \cdot c_{1}^{m}(J)\right] \cdot c_{1}^{n-m}(J),
$$

where $F_{B}$ is the Fourier-Mukai transform on the abelian variety $B$.
We denote algebraic equivalence by $\stackrel{a}{=}$. The relation $c_{1}(J) \stackrel{a}{=} 0$ implies the following result.
Theorem 1.2. With the above notation the limit $\varphi_{0}$ satisfies

$$
\varphi_{0} \stackrel{a}{=} \nu_{*}\left(q^{*} F_{B}(w)-q^{*} F_{B}(z) \cdot \eta\right) .
$$

Note that this is compatible with the fact that for a principally polarized abelian variety $A$ of dimension $g$ the Fourier-Mukai transform satisfies $F_{A} \circ F_{A}=$ $(-1)^{g}\left(-1_{A}\right)^{*}$.
Beauville introduced in [2] a decomposition on the Chow ring with rational coefficients of an abelian variety using the Fourier-Mukai transform. Theorem 1.2 can be used to deduce non-vanishing results for Beauville components of cycles on the generic fibre of a semi-abelian variety of rank 1 ; we refer to $\S 7$ for examples.
We prove the theorem by constructing a smooth model $\mathcal{Y}$ of $\mathcal{X} \times{ }_{S} \mathcal{X}$ to which the addition map $\mathcal{X}^{\star} \times_{S} \mathcal{X}^{\star} \rightarrow \mathcal{X}^{\star}$ extends and by choosing an appropriate extension of the Poincaré bundle to $\mathcal{Y}$. The proof is then reduced to a calculation in the special fibre. We refer to Fulton's book [8] for the intersection theory we use. The theory in that book is built for algebraic schemes over a field. In our case we work over the spectrum of a discrete valuation ring. But as is stated in $\S 20.1$ and 20.2 there, most of the theory in Fulton's book, including in particular the statements we use in this paper, is valid for schemes of finite type and separated over $S$. However, for us projective space denotes the space of hyperplanes and not lines, which conflicts with Fulton's book, but is in accordance with [10].

## 2. Families of abelian varieties with a rank one degeneration

We now assume that $R$ is a complete discrete valuation ring with local parameter $t$, field of quotients $K$ and algebraically closed residue field $k$. Suppose that $\left(\mathcal{X}^{\star}, \mathcal{L}\right)$ is a semi-abelian variety over $S=\operatorname{Spec}(R)$ such that the generic fibre $X_{\eta}$ is abelian and the special fibre $X_{0}^{*}$ has torus rank 1 ; moreover, we assume that $\mathcal{L}$ is a cubical invertible sheaf (meaning that $\mathcal{L}$ satisfies the theorem of the cube, see [7], p. 2, 8) and $L_{\eta}$ is ample. In particular, the special fibre of $\mathcal{X}^{\star}$ fits in an exact sequence

$$
1 \rightarrow T_{0} \rightarrow X_{0}^{*} \rightarrow B \rightarrow 0
$$

where $B$ is an abelian variety over $k$ and $T_{0}$ the multiplicative group $\mathbb{G}_{m}$ over $k$. The torus $T_{0}$ lifts uniquely to a torus $T_{i}$ of rank 1 over $S_{i}=\operatorname{Spec}\left(R /\left(t^{i+1}\right)\right.$ in $X_{i}^{*}=\mathcal{X}^{\star} \times_{S} S_{i}$. The quotient $X_{i}^{*} / T_{i}$ is an abelian variety $B_{i}$ over $S_{i}$. The system $\left\{B_{i}\right\}_{i=1}^{\infty}$ defines a formal abelian variety which is algebraizable, resulting
in an abelian scheme $\mathcal{B}$, so that we have an exact sequence of group schemes over $S$

$$
1 \rightarrow T \rightarrow G \xrightarrow{\pi} \mathcal{B} \rightarrow 0
$$

cf. [F-C, p. 34]. We assume now that we are given a line bundle $M$ on $\mathcal{B}$ defining a principal polarization $\lambda: B \rightarrow B^{t}$ and consider $L=\pi^{*}(M)$. This defines a cubical line bundle on $G$. The extension $G$ is given by a homomorphism $c$ of the character group $Z \cong \mathbb{Z}$ of $T$ to $\mathcal{B}^{t}$. The semi-abelian group scheme dual to $\mathcal{X}^{\star}$ defines a similar extension

$$
1 \rightarrow T^{t} \rightarrow G^{t} \rightarrow \mathcal{B}^{t} \rightarrow 0
$$

and the polarization provides an isomorphism $\phi$ of the character group $Z$ of $T$ with the character group $Z^{t}$ of $T^{t}$. Now the degenerating abelian variety (i.e. semi-abelian variety) $\mathcal{X}^{\star}$ over $S$ gives rise to the set of degeneration data (cf. [7], p 51, Thm 6.2, or [1], Def. 2.3):
(i) an abelian variety $\mathcal{B}$ over $S$ and a rank 1 extension $G$. This amounts to a $S$-valued point $b$ of $\mathcal{B}=\mathcal{B}^{t}$.
(ii) a $K$-valued point of $G$ lying over $b$.
(iii) a cubical ample sheaf $L$ on $G$ inducing the polarization on $\mathcal{B}$ and an action of $Z=Z^{t}$ on $L_{\eta}$.
A section $s \in \Gamma(G, L)$ possesses the analogue of a classical Fourier expansion as explained in [7], p. 37. So $s$ can be written uniquely as $s=\sum_{\chi \in Z} \sigma_{\chi}(s)$, where $\sigma_{\chi}: \Gamma(G, L) \rightarrow \Gamma\left(\mathcal{B}, M_{\chi}\right)$ is a $R$-linear homomorphism and $M_{\chi}$ is the twist of $M$ by $\chi$ : in fact $\pi_{*}\left(O_{G}\right)=\oplus_{\chi} O_{\chi}$ with $O_{\chi}$ the subsheaf consisting of $\chi$-eigenfunctions. (We refer to [7], p. 43; note also the sign conventions there in the last lines.) We have now by the action

$$
T_{c^{t}(y)}^{*} M \cong M_{\phi(y)} \cong M \otimes O_{\phi(y)}, \quad y \in Z^{t}
$$

This satisfies $\sigma_{\chi+1}(s)=\psi(1) \tau(\chi) T_{b}^{*}\left(\sigma_{\chi}(s)\right)$, where $\tau$ is given by a point of $G(K)$ lying over $b$ and $\psi$ is a cubical trivialization of $T_{c^{t}(y)}^{*} M_{\eta}^{-1}$ as in [7], p. 44, Thm. 5.1. We refer to Faltings-Chai's theorem (6.2) of [7], p. 51 for the degeneration data.
The compactification $\mathcal{X}$ of $\mathcal{X}^{\star}$ is now constructed as a quotient of the action of $Z^{t}$ on a so-called relatively complete model. Such a relatively complete model $\tilde{P}$ for $G$ can be constructed here in an essentially unique way. If $B$ is trivial (i.e. $\operatorname{dim}(B)=0)$ and if the torus is $T=\operatorname{Spec}\left(R\left[z, z^{-1}\right]\right)$ it is given as the toroidal variety obtained by gluing the affine pieces

$$
U_{n}=\operatorname{Spec}\left(R\left[x_{n}, y_{n}\right]\right), \quad \text { with } \quad x_{n} y_{n}=t
$$

where $G \subset \tilde{P}$ is given by $x_{n}=z / t^{n}, \quad y_{n}=t^{n+1} / z$, (cf. [13], also in [7], p. 306). By glueing we obtain an infinite chain $\tilde{P}_{0}$ of $\mathbb{P}^{1}$ 's in the special fibre. We can 'divide' by the action of $Z^{t}$; this is easy in the analytic case, more involved in the algebraic case, but amounts to the same, cf. [13], also [7], p. 55-56.
In the special fibre we find a rational curve with one ordinary double point. If instead we divide by the action of $n Z^{t}$ for $n>1$ we find a cycle consisting of $n$ copies of $\mathbb{P}^{1}$.

In case the abelian part $B$ is not trivial we take as a relatively complete model the contracted (or smashed) product $\tilde{P} \times^{T} G$ with $\tilde{P}$ the relatively complete model for the case that $B$ is trivial. Call the resulting space $\tilde{P}$. Then $\tilde{P}$ corresponds by Mumford's [loc. cit., p 29] to a polyhedral decomposition of $Z^{t} \otimes \mathbb{R}=\mathbb{R}$ with $Z^{t}$ the cocharacter group of $T$. Then we essentially quotient by the action of $Z^{t}$ or $n Z^{t}$ as before and obtain a proper $\mathcal{X} \rightarrow S$.
We describe the central fibre $X_{0}$ of $\mathcal{X}$. Let $b$ be the $k$-valued point of $B \cong B^{t}$ that determines the above $\mathbb{G}_{m}$-extension. If $M$ denotes a line bundle defining the principal polarization of $B$ we let $M_{b}$ be the translation of $M$ by $b$ and we set $J=M \otimes M_{b}^{-1}$ and define the projective bundle $\mathbb{P}=\mathbb{P}\left(J \oplus \mathcal{O}_{B}\right)$ with projection $q: \mathbb{P} \rightarrow B$. The bundle $\mathbb{P}$ has two natural sections (with images) $\mathbb{P}_{1}$ and $\mathbb{P}_{2}$ corresponding to the projections $J \oplus \mathcal{O}_{B} \rightarrow J$ and $J \oplus \mathcal{O}_{B} \rightarrow \mathcal{O}_{B}$. We have $\mathcal{O}\left(\mathbb{P}_{1}\right) \cong \mathcal{O}\left(\mathbb{P}_{2}\right) \otimes q^{*} J$ and $\mathcal{O}(1) \cong \mathcal{O}\left(\mathbb{P}_{1}\right)$ with $\mathcal{O}(1)$ the natural line bundle on $\mathbb{P}$. We denote by $\overline{\mathbb{P}}$ the non-normal variety obtained by gluing the sections $\mathbb{P}_{1}$ and $\mathbb{P}_{2}$ under a translation by the point $b$. The singular locus of $\overline{\mathbb{P}}$ has support isomorphic to $B$. The line bundle $\tilde{L}=\mathcal{O}\left(\mathbb{P}_{1}\right) \otimes q^{*} M_{b} \cong \mathcal{O}\left(\mathbb{P}_{2}\right) \otimes q^{*} M$ descends to a line bundle $\bar{L}$ on $\overline{\mathbb{P}}$ with a unique ample divisor $D$, see [14]. The central fibre $X_{0}$ of the family $\pi: \mathcal{X} \rightarrow S$ is then equal to $\overline{\mathbb{P}}$. The cubical invertible sheaf $\mathcal{L}$ on $\mathcal{X}^{\star}$ extends (uniquely) to $\mathcal{X}$ and its restriction to the central fibre $\overline{\mathbb{P}}$ is the line bundle $\bar{L}$, see [15].

## 3. Extension of the addition map

The addition map $\mu: \mathcal{X}^{\star} \times_{S} \mathcal{X}^{\star} \rightarrow \mathcal{X}^{\star}$ of the semi-abelian scheme $\mathcal{X}^{\star}$ does not extend to a morphism $\mathcal{X} \times_{S} \mathcal{X} \rightarrow \mathcal{X}$, but it does so after a small blow-up of $\mathcal{X} \times{ }_{S} \mathcal{X}$ as we shall see.
The degeneration data of $\mathcal{X}^{\star}$ defines (product) degeneration data for $\mathcal{X}^{\star} \times{ }_{S} \mathcal{X}^{\star}$. Indeed, we can take the fibre product of the relatively complete model $\tilde{P}^{\prime}=$ $\tilde{P} \times_{S} \tilde{P}$ and this corresponds (e.g. via [13], Corollary (6.6)) to the standard polyhedral decomposition of $\mathbb{R}^{2}=\left(Z^{t} \otimes \mathbb{R}\right)^{2}$ by the lines $x=m$ and $y=n$ for $m, n \in \mathbb{Z}$. The special fibre of the model $\tilde{P}^{\prime}$ is an infinite union of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ bundles over $B \times B$ glued along the fibres over 0 and $\infty$. The compactified model of $\mathcal{X} \times_{S} \mathcal{X}$ is obtained by taking the 'quotient' of $\tilde{P}^{\prime}$ under the action of $Z^{t} \times Z^{t}$. This is not regular; for example the criterion of Mumford ([13], p. 29, point (D)]) is not satisfied. We can remedy this by subdividing. For example, by taking the decomposition of $\mathbb{R}^{2}$ given by the lines $x=m, y=n$ and $x+y=l$ for $m, n, l \in \mathbb{Z}$.
The special fibre of this model is an infinite union of copies of $\mathbb{P}^{1} \times \mathbb{P}^{1}$-bundles over $B \times B$ blown up in the two anti-diagonal sections $(0, \infty)=\mathbb{P}_{1} \times \mathbb{P}_{2}$ and $(\infty, 0)=\mathbb{P}_{2} \times \mathbb{P}_{1}$. This is regular.
Both polyhedral decompositions are invariant under the action of translations $(x, y) \mapsto(x+a, y+b)$ for fixed $a, b \in \mathbb{Z}$. This means that we can form the 'quotient' by $Z^{t} \times Z^{t} \cong \mathbb{Z}^{2}$ (or a subgroup $n Z^{t} \times n Z^{t}$ ) and obtain a completed semi-abelian variety $\mathcal{Y}$ of relative dimension $2 g$ over $S$. We denote by $\epsilon: \mathcal{Y} \rightarrow$ $\mathcal{Y}^{\prime}=\mathcal{X} \times_{S} \mathcal{X}$ the natural map. We shall write $V$ for $Y_{0}$ and $\sigma: \tilde{V} \rightarrow V$ for
its normalization. Then $\tilde{V}$ is an irreducible component of the special fibre of $\tilde{P}^{\prime}$. We denote by $\tau: \tilde{V} \rightarrow \mathbb{P} \times \mathbb{P}$ the blow up map and by $E_{12}$ and $E_{21}$ the exceptional divisors over the blowing up loci $\mathbb{P}_{1} \times \mathbb{P}_{2}$ and $\mathbb{P}_{2} \times \mathbb{P}_{1}$, respectively. Now consider the addition map $\mu: \mathcal{X}^{\star} \times_{S} \mathcal{X}^{\star} \rightarrow \mathcal{X}^{\star}$ with $\mathcal{X}^{\star}$ as in $\S 2$. This morphism induces (and is induced by) a map $\tilde{\mu}: G \times_{S} G \rightarrow G$. However, this map does not extend to a morphism of the relatively complete model $\tilde{P}^{\prime}$ since the corresponding (covariant) map $\left(Z^{t} \otimes \mathbb{R}\right)^{2} \rightarrow\left(Z^{t} \otimes \mathbb{R}\right)$ does not map cells to cells. After subdividing (by adding the lines $x+y=l$ with $l \in \mathbb{Z}$ ) this property is satisfied (cf. [11], Thm. 7, p. 25). This means that the map $\mu$ extends to $\tilde{\mu}: \tilde{P}^{\prime} \rightarrow \tilde{P}$ for the polyhedral decomposition given by this subdivision. It is compatible with the action of $\mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z}$ and hence descends to a morphism $\bar{\mu}: \mathcal{Y} \rightarrow \mathcal{X}$. We summarize:
Proposition 3.1. The addition map of group schemes $\mu: \mathcal{X}^{\star} \times{ }_{S} \mathcal{X}^{\star} \rightarrow X^{\star}$ extends to a morphism $\bar{\mu}: \mathcal{Y} \rightarrow \mathcal{X}$.
We now describe an explicit local construction of the model $\mathcal{Y}$ by blowing up the model $\mathcal{X} \times_{S} \mathcal{X}$. Let $A_{S}^{g+1}=\operatorname{Spec}\left(R\left[x_{1}, \ldots, x_{g+1}\right]\right)$ denote affine $S$ space. In local coordinates, inside $A_{S}^{g+1}$, we may assume that the $g$-dimensional fibration $\pi: \mathcal{X}^{\star} \rightarrow S$ is given by the equation $x_{1} x_{2}=t$, where the coordinates $x_{3}, \ldots, x_{g+1}$ are not involved, see [14] p. 361-362. We may assume that the zero section of the family is defined by $x_{i}=1$ for $i=1, \ldots, g+1$.
We form the fibre product $\pi: \mathcal{Y}^{\prime}=\mathcal{X} \times_{S} \mathcal{X}$. We denote by $\Lambda$ the support of the singular locus of $X_{0}$. The $(2 g+1)$-dimensional variety $\mathcal{Y}^{\prime}$ is singular in the special fibre along $\Sigma=\Lambda \times{ }_{k} \Lambda \cong B \times_{k} B$ of dimension $2 g-2$. The generic fibre $Y_{\eta}^{\prime}$ is the product $X_{\eta} \times_{K} X_{\eta}$ of the abelian variety $X_{\eta}$, while the zero fibre $Y_{0}^{\prime}$ is singular. The local equations of $\mathcal{Y}^{\prime}$ in a neighborhood of the singular locus of the family are given in our local coordinates by the system $x_{1} x_{2}=t, x_{1}^{\prime} x_{2}^{\prime}=t$. The singular locus $\Sigma$ of $\mathcal{Y}^{\prime}$ is given by the equations $x_{1}=x_{2}=x_{1}^{\prime}=x_{2}^{\prime}=t=0$. The above blow up $\epsilon: \mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ is a small blow up and can be described directly as follows: we blow up $\mathcal{Y}^{\prime}$ along its subvariety $\Pi$ defined by $x_{1}=x_{2}^{\prime}=0$ (a 2-plane contained in the central fibre of $\mathcal{Y}^{\prime}$ ). The proper transform $\mathcal{Y}$ of $\mathcal{Y}^{\prime}$ is smooth. In local coordinates, the blow-up is given by the graph $\Gamma_{\phi} \subseteq \mathcal{Y}^{\prime} \times \mathbb{P}^{1}$ of the rational map $\phi: \mathcal{Y}^{\prime} \longrightarrow \mathbb{P}^{1}$ given by $\phi\left(x_{1}, \ldots, x_{g+1}^{\prime}, t\right)=\left(x_{1}: x_{2}^{\prime}\right)$. The equations of the graph $\Gamma_{\phi} \subseteq \mathcal{Y}^{\prime} \times \mathbb{P}^{1} \subseteq A_{S}^{2(g+1)} \times_{S} \mathbb{P}_{S}^{1}$ are given by the system

$$
x_{1} x_{2}=t, u x_{2}^{\prime}-v x_{1}=0, u x_{2}-v x_{1}^{\prime}=0,
$$

where $u, v$ are homogeneous coordinates on $\mathbb{P}^{1}$.
For later calculations we write down the morphism $\bar{\mu}$ explicitly on the special fibre. We start with $g=1$; then $B$ is trivial and we may restrict the map to an irreducible component of the special fibre of the relatively complete model $\tilde{P} \times_{S} \tilde{P}$ and get the map $m: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ given by $\left((a: b),\left(a^{\prime}: b^{\prime}\right)\right) \mapsto\left(a a^{\prime}:\right.$ $\left.b b^{\prime}\right)$. This is not defined in the points $(0, \infty)$ and $(\infty, 0)$. After blowing up these points (which is the blow up $\mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ ) the rational map becomes a regular map $\tilde{m}: \tilde{V} \rightarrow \mathbb{P}^{1}$. It is defined by the two $\operatorname{sections} \operatorname{prop}\left(p_{1}^{*}\{0\}\right)+\operatorname{prop}\left(p_{2}^{*}\{0\}\right)$ and $\operatorname{prop}\left(p_{1}^{*}\{\infty\}\right)+\operatorname{prop}\left(p_{2}^{*}\{\infty\}\right)$ of the linear system $\left|\tau^{*}\left(F_{1}+F_{2}\right)-E_{12}-E_{21}\right|$ with
$F_{1}$ and $F_{2}$ the horizontal and vertical fibre (with $\operatorname{prop}()$ meaning the proper transform). The map $\tilde{m}$ descends to a map $\bar{m}: V \rightarrow \mathbb{P}$ which is the restriction of the morphism $\bar{\mu}: \mathcal{Y} \rightarrow \mathcal{X}$ to the central fibre.
For the case $g>1$, note that we have the addition map $\mu_{\mathcal{X}^{\star}}$. Its restriction to the special fibre extends to a map of the relatively complete model and then restricts to a morphism $\tilde{m}: \tilde{V} \rightarrow \mathbb{P}$ that lifts the addition map $\mu_{B}$ of $B$. That means that it comes from a surjective bundle map (cf. [10], Ch. II, Prop. 7.12)

$$
\delta: m_{1}^{*}\left(J \oplus \mathcal{O}_{B}\right) \cong\left(p_{1}^{*} q^{*} J \otimes p_{2}^{*} q^{*} J\right) \oplus \mathcal{O}_{\tilde{V}} \rightarrow N
$$

with $m_{1}:=\mu_{B} \circ(q \times q) \circ \tau: \tilde{V} \rightarrow B$ and $N=\tau^{*}\left(p_{1}^{*} \mathcal{O}\left(\mathbb{P}_{1}\right) \otimes p_{2}^{*} \mathcal{O}\left(\mathbb{P}_{1}\right)\right) \otimes$ $\left.\mathcal{O}\left(-E_{12}-E_{21}\right)\right)$ with $p_{i}: \mathbb{P} \times \mathbb{P} \rightarrow \mathbb{P}$ the $i$ th projection. Then $m_{1}^{*}\left(J \oplus \mathcal{O}_{B}\right)^{\vee} \otimes N$ is isomorphic to the direct sum of

$$
\tau^{*} p_{1}^{*} \mathcal{O}\left(\mathbb{P}_{i}\right) \otimes \tau^{*} p_{2}^{*} \mathcal{O}\left(\mathbb{P}_{i}\right) \otimes \mathcal{O}\left(-E_{12}-E_{21}\right) \quad(i=1,2)
$$

The map $\delta$ is then given by the two $\operatorname{sections} \operatorname{prop}\left(p_{1}^{*} \mathbb{P}_{i}\right)+\operatorname{prop}\left(p_{2}^{*} \mathbb{P}_{i}\right)$ of $\tau^{*} p_{1}^{*} \mathcal{O}\left(\mathbb{P}_{i}\right) \otimes \tau^{*} p_{2}^{*} \mathcal{O}\left(\mathbb{P}_{i}\right) \otimes \mathcal{O}\left(-E_{12}-E_{21}\right)$ for $i=1,2$. The map $\tilde{m}$ descends to a map $\bar{m}: V \rightarrow \overline{\mathbb{P}}$ which is the restriction of the morphism $\bar{\mu}: \mathcal{Y} \rightarrow \mathcal{X}$ to the central fibre.

## 4. Extension of the Poincaré bundle

We denote by $j_{0}: X_{0} \hookrightarrow \mathcal{X}$ and $i_{0}:{\underset{\tilde{V}}{0}} \hookrightarrow \mathcal{Y}$ the inclusions of the special fibre. Recall that we write $V$ for $Y_{0}$ and $\tilde{V}$ for its normalization. We denote by $\mathcal{P}_{\eta}$ the Poincaré bundle on $Y_{\eta}^{\prime}$ and by $P_{B}$ the Poincaré bundle on $B$.
Theorem 4.1. The Poincaré bundle $\mathcal{P}_{\eta}$ has an extension $\mathcal{P}$ such that the pull back of $\mathcal{P}_{0}:=i_{0}^{*} \mathcal{P}$ to $\tilde{V}$ satisfies $\sigma^{*} \mathcal{P}_{0} \cong \tau^{*}(q \times q)^{*} P_{B} \otimes \mathcal{O}\left(-E_{12}-E_{21}\right)$.
Proof. We have the following commutative diagram of maps


Let $\mathcal{L}$ be the theta line bundle on the family $\mathcal{X}$ introduced in $\S 2$. We define the extension of $\mathcal{P}_{\eta}$ by

$$
\mathcal{P}:=\bar{\mu}^{*} \mathcal{L} \otimes \rho_{1}^{*} \mathcal{L}^{-1} \otimes \rho_{2}^{*} \mathcal{L}^{-1}
$$

where we denote by $\rho_{1}, \rho_{2}: \mathcal{Y} \rightarrow \mathcal{X}$ the compositions of the natural projections $\rho^{\prime}{ }_{i}: \mathcal{Y}^{\prime} \rightarrow \mathcal{X}$ with the blowing up map $\epsilon: \mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ of $\S 3$. We then have $\sigma^{*} \mathcal{P}_{0}=\sigma^{*}\left(\bar{m}^{*} j_{0}^{*} \mathcal{L}\right) \otimes \sigma^{*} i_{0}^{*} \rho_{1}^{*} \mathcal{L}^{-1} \otimes \sigma^{*} i_{0}^{*} \rho_{2}^{*} \mathcal{L}^{-1}$. Now $\bar{m}^{*} j_{0}^{*} \mathcal{L}=\bar{m}^{*} \bar{L}$ and by using
the description of $\bar{L}$ in $\S 2$ we have $\sigma^{*}\left(\bar{m}^{*} j_{0}^{*} \mathcal{L}\right)=\tilde{m}^{*} \nu^{*} \bar{L}=\tilde{m}^{*}\left(\mathcal{O}\left(\mathbb{P}_{1}\right) \otimes q^{*} M_{b}\right)$. In view of $\mathcal{O}\left(\mathbb{P}_{1}\right)=\mathcal{O}(1)$ we have by the discussion at the end of $\S 3$ that

$$
\tilde{m}^{*} \mathcal{O}\left(\mathbb{P}_{1}\right)=\tau^{*} p_{1}^{*} \mathcal{O}\left(\mathbb{P}_{1}\right) \otimes \tau^{*} p_{2}^{*} \mathcal{O}\left(\mathbb{P}_{1}\right) \otimes \mathcal{O}\left(-E_{12}-E_{21}\right)
$$

and $\tilde{m}^{*} q^{*} M_{b}=\tau^{*}(q \times q)^{*} \mu_{B}^{*} M_{b}$. On the other hand we have

$$
\sigma^{*}\left(i_{0}^{*} \rho_{i}^{*} \mathcal{L}\right)=\tau^{*} p_{i}^{*} \nu^{*} \bar{L}=\tau^{*} p_{i}^{*} \mathcal{O}\left(\mathbb{P}_{1}\right) \otimes \tau^{*}(q \times q)^{*} q_{i}^{*} M_{b}
$$

and putting this together we get the result.

## 5. The basic construction

The fibration $\pi: \mathcal{Y} \rightarrow S$ is a flat map since $\mathcal{Y}$ is irreducible and $S$ is smooth 1dimensional, see [10], Ch. III, Proposition 9.7. The maps $\rho_{i}=\mathcal{Y} \rightarrow \mathcal{X}, i=1,2$, defined in the proof of Theorem 4.1, are flat maps too since they are maps of smooth irreducible varieties with fibres of constant dimension $g$, see e.g. [12], Corollary of Thm. 23.1.
We denote by $Y_{0}\left(\right.$ resp. $\left.Y_{\eta}\right)$ the special fibre (resp. the generic fibre) and by $i_{0}: Y_{0} \rightarrow \mathcal{Y}$ (resp. $\left.i_{\eta}: Y_{\eta} \rightarrow \mathcal{Y}\right)$ the corresponding embedding. According to [8], Example 10.1.2, $i_{0}$ is a regular embedding. Similarly, $j_{0}: X_{0} \rightarrow \mathcal{X}$ is a regular embedding. We consider the diagram


Let $i_{0}^{*}: A_{k}(\mathcal{Y}) \rightarrow A_{k-1}\left(Y_{0}\right)$ be the Gysin map (see [8], Example 5.2.1). Since $Y_{0}$ is an effective Cartier divisor in $\mathcal{Y}$ the Gysin map $i_{0}^{*}$ coincides with the Gysin map for divisors (see [8], Example 5.2.1 (a) and § 2.6).
We now consider specialization of cycles, see [8], § 20.3. Note that according to [8], Remark 6.2.1., in our case we have $s^{!} a=i_{0}^{*} a, a \in A_{*}(\mathcal{Y})$. If $\mathcal{Z}$ is a flat scheme over the spectrum of a discrete valuation ring $S$ the specialization homomorphism $\sigma_{Z}: A_{k}\left(Z_{\eta}\right) \rightarrow A_{k}\left(Z_{0}\right)$ is defined as follows, see [8], pg. 399: If $\beta_{\eta}$ is a cycle on $Z_{\eta}$ we denote by $\beta$ an extension of $\beta_{\eta}$ in $\mathcal{Z}$ (e.g. the Zariski closure of $\beta_{\eta}$ in $\mathcal{Z}$ ) and then $\sigma_{Z}\left(\beta_{\eta}\right)=i_{0}^{*}(\beta)$, where $i_{0}: Z_{0} \rightarrow \mathcal{Z}$ is the natural embedding.
Let $c_{\eta}$ be a cycle on $X_{\eta}$ and let $\varphi_{\eta}=F\left(c_{\eta}\right)$ be the Fourier-Mukai transform. It is defined by $F\left(c_{\eta}\right)=\rho_{2 *}\left(e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}\right) \in A_{*}\left(X_{\eta}\right)$. Let $\sigma_{X}: A_{k}\left(X_{\eta}\right) \rightarrow A_{k}\left(X_{0}\right)$ be the specialization map. We have to determine $\sigma_{X}\left(F\left(c_{\eta}\right)\right)$.
If $\beta_{\eta}$ is a cycle on $Y_{\eta}$, we have $\rho_{2 *} \sigma_{Y}\left(\beta_{\eta}\right)=\sigma_{X} \rho_{2 *}\left(\beta_{\eta}\right)$ by applying [8] Proposition 20.3 (a) to the proper map $\rho_{2}: \mathcal{Y} \rightarrow \mathcal{X}$. By choosing $\beta_{\eta}=e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}$ we have

$$
\begin{equation*}
\sigma_{X}\left(F\left(c_{\eta}\right)\right)=\rho_{2 *} \sigma_{Y}\left(e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}\right) \tag{1}
\end{equation*}
$$

Therefore, in order to compute $\sigma_{X}\left(\mathcal{F}\left(c_{\eta}\right)\right)$ we have to identify $\sigma_{Y}\left(e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}\right)$. We take the extension $e^{c_{1}(\mathcal{P})}$ of $e^{c_{1}\left(\mathcal{P}_{\eta}\right)}$ and the extension of $\rho_{1}^{*} c_{\eta}$ given by $\rho_{1}^{*} c$,
where $c$ is the Zariski closure of $c_{\eta}$ in $\mathcal{X}$. Since $i_{\eta}: Y_{\eta} \rightarrow \mathcal{Y}$ is an open embedding and hence a flat map of dimension 0 , we have $i_{\eta}^{*}\left(e^{c_{1}(\mathcal{P})} \cdot \rho_{1}^{*} c\right)=e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}$, see [8], Proposition 2.3 (d). In other words, the cycle $e^{c_{1}(\mathcal{P})} \cdot \rho_{1}^{*} c$ extends the cycle $e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}$ and hence $\sigma_{Y}\left(e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}\right)=i_{0}^{*}\left(e^{c_{1}(\mathcal{P})} \cdot \rho_{1}^{*} c\right)$.
Now, for any $k$-cycle $a$ on $\mathcal{Y}$ we have the identity

$$
i_{0}^{*}\left(c_{1}(\mathcal{P}) \cdot a\right)=c_{1}\left(\mathcal{P}_{0}\right) \cdot i_{0}^{*}(a)
$$

in $A_{k-2}\left(Y_{0}\right)$, where $\mathcal{P}_{0}=i_{0}^{*} \mathcal{P}$ is the pull back of the line bundle and $i_{0}^{*} a$ the Gysin pull back to the divisor $Y_{0}$. This follows from applying the formula in [8], Proposition 2.6 (e) to $i_{0}: Y_{0} \rightarrow \mathcal{Y}$, with $D=Y_{0}, X=\mathcal{Y}$ and $L=\mathcal{P}$ the Poincaré bundle. Hence

$$
\begin{equation*}
\sigma_{Y}\left(e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}\right)=e^{c_{1}\left(\mathcal{P}_{0}\right)} \cdot i_{0}^{*}\left(\rho_{1}^{*} c\right) \tag{2}
\end{equation*}
$$

By the Moving Lemma (see [8], § 11.4), we may choose the cycle $c$ on the regular $\mathcal{X}$ such that it intersects the singular locus $\Lambda$ of the central fibre properly. Since $\Lambda \subseteq X_{0}$ the cycle $c_{0}=j_{0}^{*}(c)$ meets $\Lambda$ properly by the following dimension argument. We have $\operatorname{dim}(c \cap \Lambda)=\operatorname{dim}\left(c_{0} \cap \Lambda\right)$, hence

$$
\begin{aligned}
\operatorname{dim}\left(c_{0} \cap \Lambda\right) & =\operatorname{dim}(c)+\operatorname{dim}(\Lambda)-\operatorname{dim}(X) \\
& =(\operatorname{dim}(c)-1)+\operatorname{dim}(\Lambda)-(\operatorname{dim}(X)-1) \\
& =\operatorname{dim}\left(c_{0}\right)+\operatorname{dim}(\Lambda)-\operatorname{dim}\left(X_{0}\right)
\end{aligned}
$$

Since $\Lambda$ is of codimension 1 in $X_{0}=\overline{\mathbb{P}}$, saying that $c_{0}$ meets $\Lambda$ properly, is equivalent to saying that no component of $c_{0}$ is contained in $\Lambda$.
Lemma 5.1. There exists a cycle $\gamma$ on $\mathbb{P}$ with $c_{0}=\nu_{*} \gamma$ that meets the sections $\mathbb{P}_{i}$ for $i=1,2$ properly.
Proof. If $\Lambda$ is the singular locus of $\overline{\mathbb{P}}$ and $A=\mathbb{P}_{1} \cup \mathbb{P}_{2}$ its preimage in $\mathbb{P}$, then $\overline{\mathbb{P}} \backslash \Lambda \cong \mathbb{P} \backslash A$. We may assume that the cycle $c_{0}$ is irreducible and we consider the support of $c_{0} \cap(\overline{\mathbb{P}} \backslash \Lambda)$ as a subset $W$ of $\mathbb{P} \backslash A$. Its Zariski closure $\gamma=\bar{W}$ is an irreducible cycle on $\mathbb{P}$. Then $\nu_{*} \gamma$ is an irreducible cycle on $\overline{\mathbb{P}}$ since the map $\nu$ is a projective map. Also, $\nu_{*} \gamma \cap(\overline{\mathbb{P}} \backslash \Lambda)=c_{0} \cap(\overline{\mathbb{P}} \backslash \Lambda)$, hence $\nu_{*} \gamma$ is the Zariski closure of $c_{0} \cap(\overline{\mathbb{P}} \backslash \Lambda)$ and so, by the irreducibility, we have $\nu_{*} \gamma=c_{0}$.
Lemma 5.2. If $c_{0}=\nu_{*} \gamma$, then we have $i_{0}^{*} \rho_{1}^{*} c=\sigma_{*}\left(\tau^{*}\left(p_{1}^{*} \gamma\right)\right)$.
Proof. We denote the restriction of $\rho_{i}$ to the special fibre again by $\rho_{i}$. Then we have $i_{0}^{*} \rho_{1}^{*} c=\rho_{1}^{*} c_{0}$ since $\rho_{1}$ is a flat map and $i_{0}, j_{0}$ are regular embeddings (see [8], Theorem 6.2 (b) and Remark 6.2.1). We will use the following commutative diagram


Documenta Mathematica 15 (2010) 747-763

We may assume that $c_{0}$ and $\gamma$ are irreducible $k$-cycles. We claim that $\rho_{1}^{*} c_{0}$ is irreducible. Indeed, the map $\rho_{1}$ is a flat map of relative dimension $g$. The cycle $\rho_{1}^{*} c_{0}$ is then a cycle of pure dimension $k+g$ and contains the proper transform of $\left(\rho_{1}^{\prime}\right)^{*} c_{0}$ and that is an irreducible cycle. Any other irreducible component of $\rho_{1}^{*} c_{0}$ must have support on the preimage of $\Lambda$. But since the cycle $c_{0}$ intersects $\Lambda$ along a $k$ - 1 -cycle, there is no irreducible component of $\rho_{1}^{*} c_{0}$ on the preimage of $\Lambda$. On the other hand, since $\gamma$ meets the sections $\mathbb{P}_{i}$ properly, the cycle $\tau^{*} p_{1}^{*} \gamma$ is an irreducible cycle, and hence so is $\sigma_{*}\left(\tau^{*} p_{1}^{*} \gamma\right)$. But as $\rho_{1}^{*} c_{0}$ and $\sigma_{*}\left(\tau^{*} p_{1}^{*} \gamma\right)$ coincide outside the exceptional divisor of $V$, they have to coincide everywhere.

Proposition 5.3. We have $\sigma_{X}\left(\mathcal{F}\left(c_{\eta}\right)\right)=\rho_{2 *}\left(e^{c_{1}\left(\mathcal{P}_{0}\right)} \cdot \sigma_{*}\left(\tau^{*} p_{1}^{*} \gamma\right)\right)$.
Proof. By equation (2) and Lemma 5.2 we have

$$
\begin{equation*}
\sigma_{Y}\left(e^{c_{1}\left(\mathcal{P}_{\eta}\right)} \cdot \rho_{1}^{*} c_{\eta}\right)=e^{c_{1}\left(\mathcal{P}_{0}\right)} \cdot \sigma_{*} \tau^{*}\left(p_{1}^{*} \gamma\right) \tag{3}
\end{equation*}
$$

The result follows from equation (1).
In order to calculate the limit of the Fourier-Mukai transform we are thus reduced to a calculation in the special fibre.

## 6. A calculation in the special fibre - Proof of the main theorem

Recall the normalization map $\sigma: \tilde{V} \rightarrow V$. Suppose we have a cycle $\rho$ on $\tilde{V}$ with $\sigma_{*} \rho=c_{0}$. We can consider the intersection $c_{1}\left(\mathcal{P}_{0}\right)^{k} \cdot c_{0}$, that is a successive intersection of a cycle with a Cartier divisor on the singular variety $V$. On the other hand we have the cycle $\sigma_{*}\left(c_{1}\left(\sigma^{*} \mathcal{P}_{0}\right)^{k} \cdot \rho\right)$ and the projection formula ([8], Proposition 2.5 (c)) implies that

$$
c_{1}\left(\mathcal{P}_{0}\right)^{k} \cdot c_{0}=\sigma_{*}\left(c_{1}\left(\sigma^{*} \mathcal{P}_{0}\right)^{k} \cdot \rho\right)
$$

Now we will use the following diagram of maps.


Lemma 6.1. Let $x$ be a cycle on $B \times B$. Then the following holds.
(1) $p_{2 *}\left((q \times q)^{*} x\right)=0$.
(2) $p_{2 *}\left((q \times q)^{*} x \cdot p_{1}^{*} \eta\right)=q^{*} q_{2 *} x$.

Proof. For (1) we observe that $p_{2 *}=\kappa_{2 *} \alpha_{1 *}$, and $(q \times q)^{*}=\alpha_{1}^{*} \beta_{2}^{*}$ and $\alpha_{1 *} \alpha_{1}^{*}=$ 0 . For (2) we use the identities

$$
\begin{aligned}
p_{2 *}\left((q \times q)^{*} x \cdot p_{1}^{*} \eta\right) & =p_{2 *}\left(\alpha_{2}^{*} \beta_{1}^{*} x \cdot \alpha_{2}^{*} \kappa_{1}^{*} \eta\right)=p_{2 *} \alpha_{2}^{*}\left(\beta_{1}^{*} x \cdot \kappa_{1}^{*} \eta\right) \\
& =\kappa_{2 *} \alpha_{1 *} \alpha_{2}^{*}\left(\beta_{1}^{*} x \cdot \kappa_{1}^{*} \eta\right)=\kappa_{2 *} \beta_{2}^{*} \beta_{1 *}\left(\beta_{1}^{*} x \cdot \kappa_{1}^{*} \eta\right) \\
& =\kappa_{2 *} \beta_{2}^{*}\left(x \cdot \beta_{1 *} \kappa_{1}^{*} \eta\right)=q^{*} q_{2 *}\left(x \cdot q_{1}^{*} q_{*} \eta\right)=q^{*} q_{2 *} x .
\end{aligned}
$$

Consider the following diagram of maps

where $p_{i}, q_{i}$ are the projections to the $i$ th factor, $\pi_{i j}$ the canonical map of the projective bundle $E_{i j}$ and the maps $\lambda_{i}, \lambda_{i j}$ and $\epsilon_{i j}$ the natural inclusions. The map $(q \times q) \circ \lambda_{i j}$ is an isomorphism.
By the adjunction formula, the normal bundles to $\mathbb{P}_{1}, \mathbb{P}_{2}$ are $N_{\mathbb{P}_{1}}(\mathbb{P})=J$ and $N_{\mathbb{P}_{2}}(\mathbb{P})=J^{-1}$. The exceptional divisors $E_{12}$ and $E_{21}$ are projective bundles over the blowing up loci $\mathbb{P}_{i} \times \mathbb{P}_{j}$. By identifying $\mathbb{P}_{i} \times \mathbb{P}_{j}$ with $B \times B$, via the $\operatorname{map}(q \times q) \circ \lambda_{i j}$, we have $E_{12}=\mathbb{P}\left(q_{1}^{*} J^{-1} \oplus q_{2}^{*} J\right)$ and $E_{21}=\mathbb{P}\left(q_{1}^{*} J \oplus q_{2}^{*} J^{-1}\right)$. We set $\xi_{i j}=c_{1}(O(1))$ on $E_{i j}$. By standard theory [[10], ch. II, Theorem 8.24 (c)] we have $\epsilon_{i j}^{*} E_{i j}=-\xi_{i j}$.

We now introduce the notation

$$
\gamma:=c_{1}(J), \quad \gamma_{i}=q_{i}^{*} \gamma, \quad \eta_{i}=p_{i}^{*} \eta, \quad i=1,2 .
$$

Note that $\gamma$ is algebraically equivalent to 0 , but not rationally equivalent to 0 . We have the quadratic relations

$$
\left(\xi_{i j}-\pi_{i j}^{\prime *} \gamma_{j}\right)\left(\xi_{i j}+\pi_{i j}^{\prime} \gamma_{i}\right)=0
$$

where $\pi_{i j}^{\prime}: E_{i j} \rightarrow B \times B$ is the natural map, showing that $\xi_{i j}^{2}$ is expressible in lower powers.

Lemma 6.2. Suppose that $\xi$ satisfies the relation $\xi^{2}+(a-b) \xi-a b=0$. Then, with $\phi_{k}=\left(b^{k}-(-a)^{k}\right) /(b+a)$ we have $\xi^{k}=\phi_{k} \xi+a b \phi_{k-1}$ for any $k \geq 1$ (where we put $\phi_{0}=0$ ).

Proof. Immediate by checking the relation with $\xi=b$ or $\xi=-a$.

Applying the above for the classes $\xi_{i j}$ of the bundles $E_{i j}$, considered as bundles over $B \times B$ via the isomorphism $(q \times q) \circ \lambda_{i j}$, we get, by choosing

$$
\phi_{k}=\sum_{m=0}^{k-1}(-1)^{m} \gamma_{1}^{m} \gamma_{2}^{k-1-m}
$$

that

$$
\begin{aligned}
\xi_{12}^{k} & =\pi^{\prime *}{ }_{12} \phi_{k} \cdot \xi_{12}+\pi_{12}^{\prime *}\left(\gamma_{1} \gamma_{2} \phi_{k-1}\right) \\
\xi_{21}^{k} & =(-1)^{k+1} \pi_{21}^{\prime *} \phi_{k} \cdot \xi_{21}+(-1)^{k} \pi^{\prime \prime}{ }_{21}\left(\gamma_{1} \gamma_{2} \phi_{k-1}\right)
\end{aligned}
$$

We view now the bundles $E_{i j}$ as bundles over $\mathbb{P}_{i} \times \mathbb{P}_{j}$ and, for any $k \geq 0$, we write $\xi_{i j}^{k}=\pi_{i j}^{*} A_{i j}(k) \xi_{i j}+\pi_{i j}^{*} B_{i j}(k)$, for some cycles $A_{i j}(k), B_{i j}(k)$ on $\mathbb{P}_{i} \times \mathbb{P}_{j}$. By the above relations we have

$$
(q \times q)_{*} \lambda_{i j *} A_{i j}(k)=(-1)^{(k+1) j} \phi_{k} .
$$

Lemma 6.3. We have

$$
\lambda_{i j *} A_{i j}(k)=(-1)^{(k+1) j}\left[(q \times q)^{*} \phi_{k} \cdot \eta_{1} \eta_{2}-(q \times q)^{*}\left(\phi_{k} \gamma_{j}\right) \cdot \eta_{i}\right] .
$$

Proof. We let $\psi_{i j}=(q \times q) \circ \lambda_{i j}: \mathbb{P}_{i} \times \mathbb{P}_{j} \rightarrow B \times B$ be the natural isomorphism. We then have the identity

$$
\lambda_{i j *} A_{i j}(k)=\lambda_{i j *}\left(\psi_{i j}^{*} \psi_{i j *} A_{i j}(k)\right)=(q \times q)^{*} \psi_{i j *} A_{i j}(k) \cdot \lambda_{i j *} 1_{\mathbb{P}_{i} \times \mathbb{P}_{j}}
$$

But $\lambda_{i j *} 1_{\mathbb{P}_{i} \times \mathbb{P}_{j}}=p_{1}^{*} \mathbb{P}_{i} \cdot p_{2}^{*} \mathbb{P}_{j}=\eta_{i}\left(\eta_{j}-p_{j}^{*} q^{*} \gamma\right)=\eta_{1} \eta_{2}-\eta_{i} \cdot(q \times q)^{*} \gamma_{j}$ and the result follows.
Lemma 6.4. For a cycle class $x=q^{*} z+q^{*} w \cdot \eta$ on $\mathbb{P}$ the cycle class $\tau_{*}\left(\tau^{*} p_{1}^{*} x\right.$. $\left.\left(E_{12}^{k}+E_{21}^{k}\right)\right)$ for $k \geq 1$ is given by

$$
\begin{aligned}
& \sum_{m=0}^{k-2}(-1)^{m}\left\{(q \times q)^{*} q_{1}^{*}\left[\left(\left((-1)^{k+1}-1\right) z+(-1)^{k+1} w \gamma\right) \gamma^{m}\right] \cdot \eta_{1} \eta_{2}\right. \\
& +(-1)^{k}(q \times q)^{*} q_{1}^{*}\left[(z+w \gamma) \gamma^{m}\right] \cdot \eta_{1} \cdot p_{2}^{*} q^{*} \gamma \\
& \left.+(q \times q)^{*} q_{1}^{*}\left(z \gamma^{m+1}\right) \cdot \eta_{2}\right\} \cdot p_{2}^{*} q^{*} \gamma^{k-2-m}
\end{aligned}
$$

Note that for $k=1$ the above sum is zero.
Proof. Since $\epsilon_{i j}^{*} E_{i j}=-\xi_{i j}$ we have $E_{i j}^{k}=(-1)^{k-1} \epsilon_{i j *} \xi_{i j}^{k-1}$. Therefore

$$
\begin{aligned}
\tau_{*}\left(\tau^{*} p_{1}^{*} x \cdot E_{i j}^{k}\right) & =(-1)^{k-1} p_{1}^{*} x \cdot \tau_{*} \epsilon_{i j *} \xi_{i j}^{k-1} \\
& =(-1)^{k-1} p_{1}^{*} x \cdot \lambda_{i j *} \pi_{i j *}\left(\pi_{i j}^{*} A_{i j}(k-1) \xi_{i j}+\pi_{i j}^{*} B_{i j}(k-1)\right) \\
& =(-1)^{k-1} p_{1}^{*} x \cdot \lambda_{i j *} A_{i j}(k-1)
\end{aligned}
$$

since $\pi_{i j *} \xi_{i j}=1_{\mathbb{P}_{i} \times \mathbb{P}_{j}}$. Note that since $A_{i j}(0)=0$ the above calculation shows that $\tau_{*}\left(\tau^{*} p_{1}^{*} x \cdot E_{i j}\right)=0$. By Lemma 6.3 and by using the relation

$$
p_{1}^{*} x=(q \times q)^{*} q_{1}^{*} z+(q \times q)^{*} q_{1}^{*} w \cdot \eta_{1},
$$

we have

$$
\begin{aligned}
\tau_{*}\left(\tau^{*} p_{1}^{*} x \cdot E_{i j}^{k}\right)= & (-1)^{k(j+1)+1}\left((q \times q)^{*} q_{1}^{*} z+(q \times q)^{*} q_{1}^{*} w \cdot \eta_{1}\right) \\
& \cdot\left[(q \times q)^{*} \phi_{k-1} \cdot \eta_{1} \eta_{2}-(q \times q)^{*}\left(\phi_{k-1} \gamma_{j}\right) \cdot \eta_{i}\right]
\end{aligned}
$$

and this equals

$$
\begin{aligned}
& (-1)^{k(j+1)+1}\left[(q \times q)^{*}\left(q_{1}^{*} z \cdot \phi_{k-1}\right) \cdot \eta_{1} \eta_{2}-(q \times q)^{*}\left(q_{1}^{*} z \cdot \phi_{k-1} \gamma_{j}\right) \cdot \eta_{i}\right. \\
& \left.+(q \times q)^{*}\left(q_{1}^{*} w \cdot \phi_{k-1}\right) \cdot \eta_{1}^{2} \eta_{2}-(q \times q)^{*}\left(q_{1}^{*} w \cdot \phi_{k-1} \gamma_{j}\right) \cdot \eta_{1} \eta_{i}\right]
\end{aligned}
$$

We then have, by using the formula $\eta^{2}=q^{*} \gamma \cdot \eta$, that

$$
\begin{aligned}
\tau_{*}\left(\tau^{*} p_{1}^{*} x \cdot E_{12}^{k}\right)= & (-1)^{k+1}\left[(q \times q)^{*}\left(q_{1}^{*}(z+w \gamma) \cdot \phi_{k-1}\right) \cdot \eta_{1} \eta_{2}\right. \\
& \left.-(q \times q)^{*}\left(q_{1}^{*}(z+w \gamma) \cdot \phi_{k-1}\right) \cdot \eta_{1} \cdot p_{2}^{*} q^{*} \gamma\right]
\end{aligned}
$$

and

$$
\tau_{*}\left(\tau^{*} p_{1}^{*} x \cdot E_{21}^{k}\right)=-(q \times q)^{*}\left(q_{1}^{*} z \cdot \phi_{k-1}\right) \cdot \eta_{1} \eta_{2}+(q \times q)^{*}\left(q_{1}^{*}(z \gamma) \cdot \phi_{k-1}\right) \cdot \eta_{2}
$$

Using $\phi_{k-1}=\sum_{m=0}^{k-2}(-1)^{m} \gamma_{1}^{m} \cdot \gamma_{2}^{k-2-m}$ we deduce the proposition.
We state now the basic result of this section.
Proposition 6.5. Let $z, w$ be cycles on $B$. Then we have

$$
p_{2 *} \tau_{*}\left(e^{c_{1}\left(\sigma^{*} \mathcal{P}_{0}\right)} \cdot \tau^{*}\left(p_{1}^{*}\left(q^{*} z+q^{*} w \cdot \eta\right)\right)=q^{*} a+q^{*} b \cdot \eta\right.
$$

with $a$ and $b$ as in Theorem 1.1.
Proof. We put $x=q^{*} z+q^{*} w \cdot \eta$. We want to calculate

$$
p_{2 *} \tau_{*}\left(e^{\tau^{*}(q \times q)^{*} c_{1}\left(P_{B}\right)-E_{12}-E_{21}} \cdot \tau^{*}\left(p_{1}^{*} x\right)\right)
$$

which equals

$$
p_{2 *}\left(e^{(q \times q)^{*} c_{1}\left(P_{B}\right)} \cdot \tau_{*}\left(e^{-E_{12}-E_{21}} \cdot \tau^{*} p_{1}^{*} x\right)\right)
$$

Since $E_{12} \cdot E_{21}=0$ we have

$$
e^{-E_{12}-E_{21}}=1+\sum_{k=1}^{2 g} \frac{(-1)^{k}}{k!}\left(E_{12}^{k}+E_{21}^{k}\right)
$$

and so $\tau_{*}\left(e^{-E_{12}-E_{21}} \cdot \tau^{*} p_{1}^{*} x\right)$ equals

$$
p_{1}^{*} x+\sum_{k=1}^{2 g} \frac{(-1)^{k}}{k!} \tau_{*}\left[\tau^{*} p_{1}^{*} x \cdot\left(E_{12}^{k}+E_{21}^{k}\right)\right]
$$

We have

$$
\begin{aligned}
p_{2 *}\left((q \times q)^{*}\right. & \left.e^{c_{1}\left(P_{B}\right)} \cdot p_{1}^{*} x\right)= \\
& =p_{2 *}\left(e^{(q \times q)^{*} c_{1}\left(P_{B}\right)} \cdot p_{1}^{*}\left(q^{*} z+q^{*} w \eta\right)\right) \\
& =p_{2 *}\left((q \times q)^{*}\left(e^{c_{1}\left(P_{B}\right)} q_{1}^{*} z\right)+(q \times q)^{*}\left(e^{c_{1}\left(P_{B}\right)} q_{1}^{*} w\right) p_{1}^{*} \eta\right) \\
& =0+q^{*} q_{2 *}\left(e^{c_{1}\left(P_{B}\right)} q_{1}^{*} w\right)=q^{*} F_{B}(w)
\end{aligned}
$$

by Lemma 6.1. Combining the above with Lemma 6.4 we find that

$$
\begin{aligned}
& p_{2 *} \tau_{*}\left(e^{\tau^{*}(q \times q)^{*} c_{1}\left(P_{B}\right)-E_{12}-E_{21}} \cdot \tau^{*}\left(p_{1}^{*} x\right)\right) \\
& \text { Documenta Mathematica } 15(2010) 747-763
\end{aligned}
$$

is the sum of the four terms: the first is $q^{*} F_{B}(w)$, the second is

$$
\begin{array}{r}
\sum_{k=2}^{2 g} \sum_{m=0}^{k-2} \frac{(-1)^{k+m}}{k!}\left\{p _ { 2 * } \left[( q \times q ) ^ { * } \left[e ^ { c _ { 1 } ( P _ { B } ) } q _ { 1 } ^ { * } \left[\left(\left((-1)^{k+1}-1\right) z+\right.\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.(-1)^{k+1} w \gamma\right) \gamma^{m}\right]\right] \cdot \eta_{1}\right]\right\} \cdot \eta \cdot q^{*} \gamma^{k-2-m}
\end{array}
$$

the third term is

$$
\sum_{k=2}^{2 g} \sum_{m=0}^{k-2} \frac{(-1)^{m}}{k!}\left\{p_{2 *}\left[(q \times q)^{*}\left[e^{c_{1}\left(P_{B}\right)} q_{1}^{*}\left[(z+w \gamma) \gamma^{m}\right]\right] \cdot \eta_{1}\right]\right\} \cdot q^{*} \gamma^{k-1-m}
$$

and finally the fourth is

$$
\sum_{k=2}^{2 g} \sum_{m=0}^{k-2} \frac{(-1)^{k+m}}{k!}\left\{p_{2 *}\left[(q \times q)^{*}\left[e^{c_{1}\left(P_{B}\right)} q_{1}^{*}\left(z \gamma^{m+1}\right)\right]\right]\right\} \cdot \eta \cdot q^{*} \gamma^{k-2-m}
$$

By applying now Lemma 6.1 and by making the substitution $n=k-2$ we get the desired expression.

Corollary 6.6. Let $z, w$ be cycles on $B$. Then modulo algebraic equivalence we have

$$
p_{2 *} \tau_{*}\left(e^{c_{1}\left(\sigma^{*} \mathcal{P}_{0}\right)} \cdot \tau^{*}\left(p_{1}^{*}\left(q^{*} z+q^{*} w \cdot \eta\right)\right) \stackrel{a}{=} q^{*} F_{B}(w)-q^{*} F_{B}(z) \cdot \eta\right.
$$

Proof. Indeed, since $c_{1}(J) \stackrel{a}{=} 0$ it is clear that $a \stackrel{a}{=} F_{B}(w)$ and $b \stackrel{a}{=}-q^{*} F_{B}(z)$ since the only non zero term of the sum corresponds to $m=0, n=0$.

We conclude now with the proof of the basic Theorem 1.1 and Theorem 1.2:
Proof. By Proposition 5.3 we have $\varphi_{0}=\sigma_{X} F\left(c_{\eta}\right)=\rho_{2 *}\left(e^{c_{1}\left(\mathcal{P}_{0}\right)} \cdot \sigma_{*}\left(\tau^{*} p_{1}^{*} \gamma\right)\right)$. By the projection formula we have $e^{c_{1}\left(\mathcal{P}_{0}\right)} \cdot \sigma_{*}\left(\tau^{*} p_{1}^{*} \gamma\right)=\sigma_{*}\left(e^{c_{1}\left(\sigma^{*} \mathcal{P}_{0}\right)} \cdot \tau^{*} p_{1}^{*} \gamma\right)$. Observe now that $\rho_{2} \circ \sigma=\nu \circ\left(p_{2} \circ \tau\right): \tilde{V} \rightarrow \overline{\mathbb{P}}$, see the diagram in the proof of Lemma 5.2. The proof then follows from Proposition 6.5 and Corollary 6.6.

## 7. Applications

Let $\mathcal{X} \rightarrow S$ be a completed rank-one degeneration as described in $\S 2$. According to Beauville [2] we have a decomposition of $A_{\mathbb{Q}}^{i}\left(X_{\eta}\right)$ into subspaces which are eigenspaces for the action by multiplication by an integer on $X_{\eta}$ :

$$
A_{\mathbb{Q}}^{i}\left(X_{\eta}\right)=\oplus_{j} A_{(j)}^{i}\left(X_{\eta}\right)
$$

such that $n^{*}(x)=n^{2 i-j} x$ for $x \in A^{i}\left(X_{\eta}\right)$. (Beauville works over $\mathbb{C}$, but his proof does not use more than the Fourier-Mukai transform which works over the residue field of $\eta$.) The multiplication map $n$ acts as multiplication by $n^{2 i}$ on homology and therefore all cycles in $A_{(j)}^{i}\left(X_{\eta}\right)$ are homologically trivial for $j \neq 0$. Since under the Fourier-Mukai transform we have $F\left(A_{(j)}^{i}\left(X_{\eta}\right)\right)=A_{(j)}^{g-i+j}\left(X_{\eta}\right)$, the elements of $A^{i}$ that lie in $A_{(j)}^{i}$ are characterized by the codimension of their Fourier transform (namely $g-i+j$ ).

Suppose now that $c=\sum c^{(j)} \in A^{i}\left(X_{\eta}\right)$ with $c^{(j)} \in A_{(j)}^{i}\left(X_{\eta}\right)$, where the decomposition corresponds to $\varphi:=F(c)=\sum \varphi^{(j)}$ with $\varphi^{(j)} \in A^{g-i+j}\left(X_{\eta}\right)$.

Theorem 7.1. Let $c=c_{\eta}=\sum c^{(j)} \in A^{i}\left(X_{\eta}\right)$ with $c^{(j)} \in A_{(j)}^{i}\left(X_{\eta}\right)$. Assume for some $j^{\prime}$ that $\varphi_{0}^{\left(j^{\prime}\right)} \neq 0$, where $\varphi_{0}$ is the specialization of $\varphi$ and $\varphi_{0}^{\left(j^{\prime}\right)}$ the codimension $g-i+j^{\prime}$-part of $\varphi_{0}$. Then $c^{\left(j^{\prime}\right)} \neq 0$.
Proof. The specialization map preserves the codimension of cycles. Therefore, if $c^{\left(j^{\prime}\right)}=0$ then $\varphi^{\left(j^{\prime}\right)}=0$, hence $\varphi_{0}^{\left(j^{\prime}\right)}=0$ and this contradicts our assumption.

This theorem, which holds as well for cycles modulo algebraic equivalence, can be used to prove non-vanishing results for cycles. For the rest of this section we work modulo algebraic equivalence. For example, consider a threefold $\mathcal{Z} / S$ such that $Z_{\eta}$ is a smooth cubic threefold and $Z_{0}$ is a generic nodal cubic threefold. We shall consider the Picard variety of the Fano surface of this degenerating cubic threefold and this will give us a degenerating abelian variety of dimension 5, cf. [5].
As is well-known the nodal cubic threefold $Z_{0}$, and hence its Fano surface, corresponds to a canonical genus 4 curve $C$ in $\mathbb{P}^{3}$, see e.g. [9] Section 2. The genericity assumption means that the curve $C$ is a generic curve and hence we may assume by Ceresa's result [4] that the class $C^{(1)}$ does not vanish in the Jacobian $B$ of the curve $C$. Since $C$ is a trigonal curve we have by [6] that $C^{(j)} \stackrel{a}{=} 0$ for $j \geq 2$. Hence the Beauville decomposition of $C$ is $[C] \stackrel{a}{=} C^{(0)}+C^{(1)}$ with $F_{B}\left(C^{(0)}\right) \in A_{(0)}^{1}(B)$ and $F_{B}\left(C^{(1)}\right) \in A_{(1)}^{2}(B)$.
The Picard variety $\mathcal{X} / S$ of the Fano surface of $\mathcal{Z} / S$ defines a principally polarized semi-abelian variety with central fibre a rank-one extension of the Jacobian $B$ of the curve $C$, see [9], Corollary 6.3 and Section 10. The principal polarization on $X_{\eta}$ is induced by a geometrically defined divisor $\Theta$. Let $\Sigma$ be the Fano surface of lines in $Z_{\eta}$. If $s \in \Sigma$ we denote by $l_{s}$ the corresponding line in $Z_{\eta}$. For each $s \in \Sigma$ we have the divisor

$$
D_{s}=\left\{s^{\prime} \in \Sigma, l_{s^{\prime}} \cap l_{s} \neq \emptyset\right\}
$$

on $\Sigma$ as defined in [5]. We then have a natural map

$$
\Sigma \rightarrow \operatorname{Pic}^{0}(\Sigma), \quad s \mapsto D_{s}-D_{s_{0}}
$$

with $s_{0} \in \Sigma$ a base point. It is well known that the cohomology class of $\Sigma$ in $\operatorname{Pic}^{0}(\Sigma)$ is equal to that of the cycle $\Theta^{3} / 3$ !, see [5]. By [2], Propositions 3 and 4, we have that $A_{(j)}^{3}\left(X_{\eta}\right)=0$ for $j<0$ and $A_{(j)}^{5}\left(X_{\eta}\right)=0$ for $j \neq 0$. We have therefore the decomposition

$$
[\Sigma] \stackrel{a}{=} \Sigma^{(0)}+\Sigma^{(1)}+\Sigma^{(2)} \quad \text { with } \Sigma^{(j)} \in A_{(j)}^{3}
$$

Indeed, $\Sigma^{(j)} \in A_{(j)}^{3}\left(X_{\eta}\right)$, hence $F\left(\Sigma^{(j)}\right) \in A_{(j)}^{2+j}\left(X_{\eta}\right)$ which is zero for $j \geq 3$. Now we show that $\Sigma^{(1)} \stackrel{a}{\neq} 0$, and we thus obtain a cycle which is homologically
but not algebraically equivalent to zero. Since $\Theta \in A_{(0)}^{1}\left(X_{\eta}\right)$ this implies that $\Sigma$ is homologically, but not algebraically equivalent to $\Theta^{3} / 3$ ! .
We denote by $\mathcal{X}$ the completed rank one degeneration of $X_{\eta}$. The class $[\Sigma]$ degenerates to a cycle $\left[\Sigma_{0}\right]=\nu_{*}(\gamma)$ on the central fibre $X_{0}$ of class

$$
\gamma \stackrel{a}{=} q^{*}[C]+\frac{1}{2} q^{*}[C * C] \cdot \eta,
$$

where $C * C$ is the Pontryagin product, see [9], Propositions 10.1 and 8.1. In order to see that $\Sigma^{(1)} \neq 0$ it suffices by Theorem 7.1 to show that $\varphi_{0}^{(1)} \stackrel{a}{\neq 0}$ with $\varphi_{0}$ the limit of the Fourier-Mukai transform. By Theorem 1.2, we have

$$
\varphi_{0} \stackrel{a}{=} \nu_{*}\left(\frac{1}{2} q^{*}\left[F_{B}(C) \cdot F_{B}(C)\right]-q^{*} F_{B}(C) \cdot \eta\right)
$$

hence

$$
\varphi_{0}^{(1)} \stackrel{a}{=} \nu_{*}\left(q^{*}\left[F_{B}\left(C^{(0)}\right) \cdot F_{B}\left(C^{(1)}\right)\right]-q^{*} F_{B}\left(C^{(1)}\right) \cdot \eta\right)
$$

Since $C^{(1)} \stackrel{a}{\neq 0}$ we conclude that $\varphi_{0}^{(1)} \stackrel{a}{\neq 0}$, and this implies the result.
By using the specialization of the Fourier-Mukai transform we can deduce the specialization of the Beauville decomposition. We do this working modulo algebraic equivalence.
Proposition 7.2. Let $c=c_{\eta} \in A^{i}\left(X_{\eta}\right)$ with specialization $c_{0}=\nu_{*}\left(q^{*} z+q^{*} w\right.$. $\eta)$, where $z \in A^{i}(B)$ and $w \in A^{i-1}(B)$. Let $c=\sum c^{(j)}$ with $c^{(j)} \in A_{(j)}^{i}\left(X_{\eta}\right)$, and let $z=\sum z^{(j)}$ with $z^{(j)} \in A_{(j)}^{i}(B)$ and $w=\sum w^{(j)}$ with $w^{(j)} \in A_{(j)}^{i-1}(B)$ be the Beauville decompositions. If $c_{0}^{(j)}$ is the specialization of $c^{(j)}$, then

$$
c_{0}^{(j)} \stackrel{a}{=} \nu_{*}\left(q^{*} z^{(j)}+q^{*} w^{(j)} \cdot \eta\right)
$$

Proof. By the proof of the main theorem in [2], the component $c^{(j)}$ is defined as $(-1)^{g} F\left((-1)^{*} \phi^{(j)}\right)$ with $\phi^{(j)} \in A^{g-i+j}\left(X_{\eta}\right)$ (notation as above). The inversion on $X_{\eta}$ leaves the cell decomposition of the toroidal compactification invariant and hence extends naturally to $X_{0}$. So $c_{0}^{(j)}$ equals $(-1)^{g} F\left((-1)^{*} \phi_{0}^{(j)}\right)$ with $\phi_{0}^{(j)} \in A^{g-i+j}\left(X_{0}\right)$. Therefore, by Theorem 1.2, we have

$$
\begin{aligned}
& c_{0}^{(j)} \stackrel{a}{=}(-1)^{g} F\left((-1)^{*} \nu_{*}\left(q^{*} F_{B}\left(w^{(j)}\right)-q^{*} F_{B}\left(z^{(j)}\right) \cdot \eta\right)\right) \\
& \quad \stackrel{a}{=}(-1)^{g+j}(-1)^{g-1+j} \nu_{*}\left(-q^{*} z^{(j)}-q^{*} w^{(j)} \cdot \eta\right)=\nu_{*}\left(q^{*} z^{(j)}+q^{*} w^{(j)} \cdot \eta\right)
\end{aligned}
$$

For example, let $\mathcal{C} \rightarrow S$ be a genus $g$ curve with $C_{\eta}$ a smooth curve and $C_{0}$ a one-nodal curve with normalization $\tilde{C}_{0}$. Let $p$ be the node of $C_{0}$ and $x_{1}, x_{2}$ the points of $\tilde{C}_{0}$ lying over $p$. The compactified Jacobian $\mathcal{X}=\overline{P_{\mathcal{C} / S}}$ is then a complete rank one degeneration with central fibre the $\mathbb{P}^{1}$-bundle over $\operatorname{Pic}^{0}\left(\tilde{C}_{0}\right)$ associated to the line bundle $J=O\left(x_{1}-x_{2}\right)$. Let $\bar{u}: \mathcal{C} \rightarrow \mathcal{X}$ be the compactified Abel-Jacobi map and let $c_{\eta}=\left[\bar{u}\left(C_{\eta}\right)\right]$. The cycle $c_{\eta}$ specializes then to the cycle $c_{0}=\left[\bar{u}\left(C_{0}\right)\right]$ with $c_{0} \stackrel{a}{=} \nu_{*}\left(q^{*}[\mathrm{pt}]+q^{*} \tilde{c}_{0} \cdot \eta\right)$, where $[\mathrm{pt}]$ is the
class of a point and $\tilde{c}_{0}$ is the class of the Abel-Jacobi image of the smooth curve $\tilde{C}_{0}$ in $\operatorname{Pic}^{0}\left(\tilde{C}_{0}\right)$, see e.g. [9], Proposition 7.1. By Proposition 7.2 we have then

$$
c_{0}^{(j)} \stackrel{a}{=}\left\{\begin{array}{l}
q^{*} \tilde{c}_{0}^{(j)} \cdot \eta, \quad j \neq 0, \\
q^{*}[\mathrm{pt}]+q^{*} \tilde{c}_{0}^{(0)} \cdot \eta, \quad j=0
\end{array}\right.
$$

Acknowledgement The second author thanks the Korteweg-de Vries Instituut van de Universiteit van Amsterdam, where part of this work was done, for its support and hospitality.

## References

[1] V. Alexeev, I. Nakamura: On Mumford's construction of degenerating abelian varieties. Tohoku Math. J. 51 (1999), p. 399-420.
[2] A. Beauville: Sur l'anneau de Chow d'une variété abélienne. Math. Annalen 273 (1986), 647-651.
[3] A. Beauville: Algebraic Cycles on Jacobian Varieties. Compositio Math. 140 (2004), 683-688.
[4] G. Ceresa: $C$ is not algebraically equivalent to $C^{-}$in its Jacobian. Ann. of Math. 117 (1983), 285-291.
[5] H. Clemens, Ph. Griffiths: The intermediate Jacobian of the cubic threefold. Ann. Math. 95 (1972), 281-356.
[6] E. Colombo, B. van Geemen: Notes on curves in a Jacobian. Compositio Math. 88 (1993), 333-353.
[7] G. Faltings, C.L. Chai: Degeneration of abelian varieties. Ergebnisse der Mathematik, Springer Verlag.
[8] W. Fulton: Intersection Theory. Ergebnisse der Mathematik. 3. Folge, 2, 1998, Berlin, Springer Verlag.
[9] G. van der Geer, A. Kouvidakis: A Note on Fano Surfaces of Nodal Cubic Threefolds, arXiv 0902.3877v1. In: Algebraic and Arithmetic structures of Moduli spaces (Sapporo 2007). Advanced Studies in Pure Mathematics 58, (2010), 27-45.
[10] R. Hartshorne: Algebraic Geometry. Graduate Texts in Math, Springer Verlag 1977.
[11] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat: Toroidal embeddings I, Lecture Notes in Math. 339, Springer Verlag 1972.
[12] H. Matsumura: Commutative ring theory. Cambridge University Press, 1986.
[13] D. Mumford: An analytic construction of degenerating abelian varieties over complete rings. Comp. Math. 24, (1972), 239-272.
[14] D. Mumford: On the Kodaira dimension of the Siegel modular variety. In Open Problems in Geometry. Lecture Notes in Math. 997, 348-375. Springer Verlag 1983.
[15] Y. Namikawa: A new compactification of the Siegel space and degeneration of Abelian varieties, I, II. Math. Ann. 221, (1976), 97-141, 201-241.

Gerard van der Geer<br>Korteweg-de Vries Instituut Universiteit van<br>Amsterdam<br>Postbus 94248<br>1090 GE Amsterdam<br>The Netherlands<br>G.B.M.vanderGeer@uva.nl<br>Alexis Kouvidakis<br>Department of Mathematics<br>University of Crete<br>GR-71409 Heraklion<br>Greece<br>kouvid@math.uoc.gr

